pax_global_header00006660000000000000000000000064146542644770014535gustar00rootroot0000000000000052 comment=2d11cd7fa98225e4bada7b833d8ec0072ddbfd4e ignite-0.5.1/000077500000000000000000000000001465426447700130175ustar00rootroot00000000000000ignite-0.5.1/.github/000077500000000000000000000000001465426447700143575ustar00rootroot00000000000000ignite-0.5.1/.github/FUNDING.yml000066400000000000000000000013401465426447700161720ustar00rootroot00000000000000# These are supported funding model platforms github: [vfdev-5] # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2] patreon: # Replace with a single Patreon username open_collective: pytorch-ignite # Replace with a single Open Collective username ko_fi: # Replace with a single Ko-fi username tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry liberapay: # Replace with a single Liberapay username issuehunt: # Replace with a single IssueHunt username otechie: # Replace with a single Otechie username custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2'] ignite-0.5.1/.github/ISSUE_TEMPLATE/000077500000000000000000000000001465426447700165425ustar00rootroot00000000000000ignite-0.5.1/.github/ISSUE_TEMPLATE/bug-report.md000066400000000000000000000011341465426447700211510ustar00rootroot00000000000000--- name: "\U0001F41B Bug Report" about: Submit a bug report to help us improve Ignite --- ## πŸ› Bug description ## Environment - PyTorch Version (e.g., 1.4): - Ignite Version (e.g., 0.3.0): - OS (e.g., Linux): - How you installed Ignite (`conda`, `pip`, source): - Python version: - Any other relevant information: ignite-0.5.1/.github/ISSUE_TEMPLATE/documentation.md000066400000000000000000000004701465426447700217360ustar00rootroot00000000000000--- name: "\U0001F4DA Documentation" about: Report an issue, comment or suggestion related to project's docs labels: "docs" --- ## πŸ“š Documentation ignite-0.5.1/.github/ISSUE_TEMPLATE/feature-request.md000066400000000000000000000012101465426447700221770ustar00rootroot00000000000000--- name: "\U0001F680 Feature Request" about: Submit a proposal/request for a new Ingite feature --- ## πŸš€ Feature ignite-0.5.1/.github/ISSUE_TEMPLATE/questions-help-support.md000066400000000000000000000010101465426447700235460ustar00rootroot00000000000000--- name: "❓Questions/Help/Support" about: Do you have a question? labels: "question" --- ## ❓ Questions/Help/Support ignite-0.5.1/.github/ISSUE_TEMPLATE/user-feedback.md000066400000000000000000000005101465426447700215600ustar00rootroot00000000000000--- name: "\U0001F44D User feedback" about: Say thanks or why you don't like title: "" labels: "" assignees: "" --- > This is a place to leave any feedback on this package. > If you like the work, feel free to say thanks here > If you do not like something, please, share it with us and we can see how to improve > Thank you ! ignite-0.5.1/.github/PULL_REQUEST_TEMPLATE.md000066400000000000000000000003361465426447700201620ustar00rootroot00000000000000Fixes #{issue number} Description: Check list: - [ ] New tests are added (if a new feature is added) - [ ] New doc strings: description and/or example code are in RST format - [ ] Documentation is updated (if required) ignite-0.5.1/.github/failed_schedule_issue_template.md000066400000000000000000000005361465426447700231100ustar00rootroot00000000000000--- title: Scheduled workflow failed labels: - bug --- Oh no, something went wrong in the scheduled workflow **{{ env.GITHUB_WORKFLOW }} with commit {{ env.GITHUB_SHA }}**. Please look into it: {{ env.GITHUB_SERVER_URL }}/{{ env.GITHUB_REPOSITORY }}/actions/runs/{{ env.GITHUB_RUN_ID }} Feel free to close this if this was just a one-off error. ignite-0.5.1/.github/pr-labeler-config.yml000066400000000000000000000027111465426447700203730ustar00rootroot00000000000000# Add 'docker' to any changes within 'docker' folder or any subfolders docker: - changed-files: - any-glob-to-any-file: docker/** # Add 'docs' to any changes within 'docs' folder docs: - changed-files: - any-glob-to-any-file: docs/** # Add 'ci' to any changes in '.github' folder ci: - changed-files: - any-glob-to-any-file: .github/** # Add 'examples' to any changes within 'examples' folder examples: - changed-files: - any-glob-to-any-file: examples/** # Add 'base' to any changes within 'base' folder "module: base": - changed-files: - any-glob-to-any-file: ignite/base/**/* # Add 'contrib' to any changes within 'contrib' folder "module: contrib": - changed-files: - any-glob-to-any-file: ignite/contrib/**/* # Add 'distributed' to any changes within 'distributed' folder "module: distributed": - changed-files: - any-glob-to-any-file: ignite/distributed/**/* # Add 'engine' to any changes within 'engine' folder "module: engine": - changed-files: - any-glob-to-any-file: ignite/engine/**/* # Add 'handlers' to any changes within 'handlers' folder "module: handlers": - changed-files: - any-glob-to-any-file: ignite/handlers/**/* # Add 'metrics' to any changes within 'metrics' folder "module: metrics": - changed-files: - any-glob-to-any-file: ignite/metrics/**/* - # Add 'utils' to any changes within 'utils' module "module: utils": - changed-files: - any-glob-to-any-file: ignite/utils.py ignite-0.5.1/.github/workflows/000077500000000000000000000000001465426447700164145ustar00rootroot00000000000000ignite-0.5.1/.github/workflows/binaries-nightly-release.yml000066400000000000000000000036071465426447700240330ustar00rootroot00000000000000name: Nightly Releases on: # https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions#onschedule schedule: # Run at 00:00 UTC Every Day - cron: "0 0 * * *" jobs: build-publish: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Setup Miniconda uses: conda-incubator/setup-miniconda@v2 with: miniconda-version: "latest" python-version: "3.10" - name: Setup nightly version run: | sed -i "s/__version__ = \"\(.*\)\"/__version__ = \"\1.dev$(date -u +%Y%m%d)\"/g" ignite/__init__.py cat ignite/__init__.py - name: Install dependencies shell: bash -l {0} run: | conda install -y pytorch torchvision cpuonly -c pytorch-nightly pip install -r requirements-dev.txt - name: Build and Publish Conda binaries shell: bash -l {0} env: ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }} UPLOAD_USER: "pytorch-nightly" run: | chmod +x ./conda.recipe/build_and_upload.sh ./conda.recipe/build_and_upload.sh - name: Build and Publish PyPI binaries shell: bash -l {0} run: | # workaround to fix https://github.com/pytorch/ignite/issues/2373 pip uninstall -y twine pkginfo pip install --upgrade --no-cache-dir twine 'pkginfo>=1.8.2' python setup.py sdist bdist_wheel twine --version twine check dist/* TWINE_USERNAME="${{ secrets.PYPI_USER }}" TWINE_PASSWORD="${{ secrets.PYPI_TOKEN }}" twine upload --verbose dist/* - uses: JasonEtco/create-an-issue@v2 name: Create issue if nightly releases failed if: failure() env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: filename: .github/failed_schedule_issue_template.md ignite-0.5.1/.github/workflows/build_docs.sh000066400000000000000000000002101465426447700210500ustar00rootroot00000000000000sphinx-versioning --use-master-conf --use-master-templates build --greatest-tag --whitelist-branches master docs/source docs/build/html ignite-0.5.1/.github/workflows/code-style.yml000066400000000000000000000015131465426447700212070ustar00rootroot00000000000000name: Format python code on: push: paths: - "**.py" - "setup.cfg" - "requirements-dev.txt" - "pyproject.toml" - "tests/run_code_style.sh" - ".github/workflows/code-style.yml" - "!assets/**" - "!docker/**" - "!docs/**" - "!conda.recipe" jobs: code-style: runs-on: ubuntu-latest steps: - if: github.event_name == 'push' uses: actions/checkout@v4 - uses: actions/setup-python@v4 with: python-version: "3.8" - run: | bash ./tests/run_code_style.sh install bash ./tests/run_code_style.sh fmt - name: Commit and push changes uses: stefanzweifel/git-auto-commit-action@v4 with: commit_message: "autopep8 fix" env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} ignite-0.5.1/.github/workflows/discord_issues.yml000066400000000000000000000020401465426447700221550ustar00rootroot00000000000000name: Discuss "help-wanted" issue on Discord on: issues: types: - labeled workflow_dispatch: inputs: issue_number: description: 'Issue number' required: true permissions: issues: write jobs: discord: runs-on: ubuntu-latest steps: - name: "Discuss on Discord-Issues" if: ${{ github.event.label.name == 'help wanted' }} uses: EndBug/discuss-on-discord@v1.1.0 with: discord_bot_token: ${{ secrets.DISCORD_BOT_TOKEN }} destination: ${{ secrets.DISCORD_BOT_DESTINATION }} issue_number: ${{ github.event.inputs.issue_number || github.event.issue.number }} issue_comment: Hey πŸ‘‹, I've just created a [thread]($THREAD_LINK$) for this issue on [PyTorch-Ignite Discord](https://pytorch-ignite.ai/chat) where you can quickly talk to the community on the topic. discord_message: New issue created in `${{ github.repository }}`: ignite-0.5.1/.github/workflows/discord_pull_requests.yaml000066400000000000000000000021641465426447700237210ustar00rootroot00000000000000name: Discuss "help-wanted" PR on Discord on: pull_request: types: - labeled workflow_dispatch: inputs: pull_request_number: description: 'Pull request number' required: true permissions: pull-requests: write jobs: discord: runs-on: ubuntu-latest steps: - name: "Discuss on Discord-PR (Non-maintainer only)" if: ${{ github.event.label.name == 'help wanted' }} uses: EndBug/discuss-on-discord@v1.1.0 with: discord_bot_token: ${{ secrets.DISCORD_BOT_TOKEN }} destination: ${{ secrets.DISCORD_BOT_DESTINATION }} issue_number: ${{ github.event.inputs.pull_request_number || github.event.pull_request.number }} issue_comment: Hey πŸ‘‹, I've just created a [thread]($THREAD_LINK$) for this pull request on [PyTorch-Ignite Discord](https://pytorch-ignite.ai/chat) where you can quickly talk to the community on the topic. discord_message: New PR created in `${{ github.repository }}`: ignite-0.5.1/.github/workflows/docker-build.yml000066400000000000000000000242751465426447700215150ustar00rootroot00000000000000name: Build/Publish Docker Images on: pull_request: paths: - docker/** - ".github/workflows/docker-build.yml" release: types: [published] workflow_dispatch: concurrency: # -- group: docker-build-publish-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true jobs: setup: name: Setup runs-on: ubuntu-latest outputs: modified: ${{ steps.set-modified.outputs.modified }} pth_version: ${{ steps.set-versions.outputs.pth_version }} hvd_version: ${{ steps.set-versions.outputs.hvd_version }} msdp_version: ${{ steps.set-versions.outputs.msdp_version }} steps: - uses: actions/checkout@v4 - name: Changed Files Exporter if: github.event_name == 'pull_request' id: files uses: umani/changed-files@v4.1.0 with: repo-token: ${{ secrets.GITHUB_TOKEN }} - name: Get a list of modified files if: github.event_name == 'pull_request' run: echo "modified=${{ steps.files.outputs.files_created }} ${{ steps.files.outputs.files_updated }}" >> $GITHUB_ENV - name: Set outputs id: set-modified run: echo "modified=${{ env.modified }}" >> $GITHUB_OUTPUT - name: Set versions id: set-versions working-directory: docker run: | echo "pth_version=$(python -c "import configparser; cfg=configparser.ConfigParser(); cfg.read('docker.cfg'); print(cfg.get('DEFAULT', 'build_docker_image_pytorch_version'))")" >> $GITHUB_OUTPUT echo "hvd_version=$(python -c "import configparser; cfg=configparser.ConfigParser(); cfg.read('docker.cfg'); print(cfg.get('DEFAULT', 'build_docker_image_hvd_version'))")" >> $GITHUB_OUTPUT build-hvd: name: Build all Horovod flavoured PyTorch-Ignite images needs: setup if: github.event_name != 'pull_request' || (contains(needs.setup.outputs.modified, 'hvd/') || contains(needs.setup.outputs.modified, 'docker.cfg')) # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml env: REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.4xlarge steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Build docker images working-directory: ${{ github.repository }}/docker run: | export PTH_VERSION=${{ needs.setup.outputs.pth_version }} export HVD_VERSION=${{ needs.setup.outputs.hvd_version }} bash build.sh hvd hvd-base bash build.sh hvd hvd-vision bash build.sh hvd hvd-nlp - name: Publish docker images if: github.event_name == 'workflow_dispatch' || github.event_name == 'release' env: DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }} DOCKER_USER: ${{ secrets.DOCKER_USER }} working-directory: ${{ github.repository }}/docker run: | bash push_all.sh hvd-base bash push_all.sh hvd-vision bash push_all.sh hvd-nlp build-hvd-apex: name: Build all Horovod + Apex flavoured PyTorch-Ignite images needs: setup if: github.event_name != 'pull_request' || (contains(needs.setup.outputs.modified, 'hvd/') || contains(needs.setup.outputs.modified, 'docker.cfg')) # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml env: REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.12xlarge steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Build docker images working-directory: ${{ github.repository }}/docker run: | export PTH_VERSION=${{ needs.setup.outputs.pth_version }} export HVD_VERSION=${{ needs.setup.outputs.hvd_version }} bash build.sh hvd hvd-apex bash build.sh hvd hvd-apex-vision bash build.sh hvd hvd-apex-nlp - name: Publish docker images if: github.event_name == 'workflow_dispatch' || github.event_name == 'release' env: DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }} DOCKER_USER: ${{ secrets.DOCKER_USER }} working-directory: ${{ github.repository }}/docker run: | bash push_all.sh hvd-apex bash push_all.sh hvd-apex-vision bash push_all.sh hvd-apex-nlp build-main: name: Build all PyTorch-Ignite images needs: setup if: github.event_name != 'pull_request' || (contains(needs.setup.outputs.modified, 'main/') || contains(needs.setup.outputs.modified, 'docker.cfg')) # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml env: REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.4xlarge steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Build docker images working-directory: ${{ github.repository }}/docker run: | export PTH_VERSION=${{ needs.setup.outputs.pth_version }} export HVD_VERSION=${{ needs.setup.outputs.hvd_version }} bash build.sh main base bash build.sh main vision bash build.sh main nlp - name: Publish docker images if: github.event_name == 'workflow_dispatch' || github.event_name == 'release' env: DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }} DOCKER_USER: ${{ secrets.DOCKER_USER }} working-directory: ${{ github.repository }}/docker run: | bash push_all.sh base bash push_all.sh vision bash push_all.sh nlp build-main-apex: name: Build all PyTorch-Ignite images with Apex needs: setup if: github.event_name != 'pull_request' || (contains(needs.setup.outputs.modified, 'main/') || contains(needs.setup.outputs.modified, 'docker.cfg')) # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml env: REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.12xlarge steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Build docker images working-directory: ${{ github.repository }}/docker run: | export PTH_VERSION=${{ needs.setup.outputs.pth_version }} export HVD_VERSION=${{ needs.setup.outputs.hvd_version }} bash build.sh main apex bash build.sh main apex-vision bash build.sh main apex-nlp - name: Publish docker images if: github.event_name == 'workflow_dispatch' || github.event_name == 'release' env: DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }} DOCKER_USER: ${{ secrets.DOCKER_USER }} working-directory: ${{ github.repository }}/docker run: | bash push_all.sh apex bash push_all.sh apex-vision bash push_all.sh apex-nlp ignite-0.5.1/.github/workflows/docs.yml000066400000000000000000000047231465426447700200750ustar00rootroot00000000000000name: Build docs on: push: branches: - master pull_request: paths-ignore: - "tests/**" - "docker/**" release: types: [published] workflow_dispatch: jobs: build-deploy: permissions: contents: write if: (github.ref == 'refs/heads/master' && github.event_name == 'push') || github.event_name == 'release' runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v4 with: python-version: "3.10" - run: sudo npm install katex -g - uses: actions/cache@v3 with: path: ~/.cache/pip key: pip-${{ hashFiles('requirements-dev.txt') }}-${{ hashFiles('docs/requirements.txt') }} - name: Install docs deps run: bash .github/workflows/install_docs_deps.sh - name: Build docs run: bash .github/workflows/build_docs.sh - name: Deploy docs uses: peaceiris/actions-gh-pages@v3 with: github_token: ${{ secrets.GITHUB_TOKEN }} publish_dir: docs/build/html publish_branch: gh-pages commit_message: Deploy pytorch/ignite docs force_orphan: true linkcheck: if: github.event_name == 'pull_request' || github.event_name == 'push' runs-on: ubuntu-latest timeout-minutes: 10 steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v4 with: python-version: "3.10" - uses: actions/cache@v3 with: path: ~/.cache/pip key: pip-${{ hashFiles('requirements-dev.txt') }}-${{ hashFiles('docs/requirements.txt') }} - name: Install docs deps run: bash .github/workflows/install_docs_deps.sh - name: make linkcheck working-directory: ./docs/ run: make linkcheck doctest: if: github.event_name == 'pull_request' || github.event_name == 'push' runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v4 with: python-version: "3.10" - run: sudo npm install katex -g - uses: actions/cache@v3 with: path: ~/.cache/pip key: pip-${{ hashFiles('requirements-dev.txt') }}-${{ hashFiles('docs/requirements.txt') }} - name: Install docs deps run: bash .github/workflows/install_docs_deps.sh - name: make doctest working-directory: ./docs/ run: | make html make doctest make coverage ignite-0.5.1/.github/workflows/gpu-hvd-tests.yml000066400000000000000000000144671465426447700216650ustar00rootroot00000000000000name: Run HVD-specific unit tests on GPUs on: push: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_gpu_tests.sh" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/gpu-hvd-tests.yml" workflow_dispatch: concurrency: # -- group: gpu-hvd-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml jobs: gpu-hvd-tests: strategy: matrix: pytorch-channel: [pytorch] fail-fast: false env: DOCKER_IMAGE: "pytorch/conda-builder:cuda12.1" REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.8xlarge.nvidia.gpu timeout-minutes: 60 steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Pull docker image uses: ./test-infra/.github/actions/pull-docker-image with: docker-image: ${{ env.DOCKER_IMAGE }} - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Start Pytorch container working-directory: ${{ github.repository }} run: | docker run --name pthd --gpus=all --rm \ --cap-add=SYS_PTRACE \ --detach \ --ipc=host \ --security-opt seccomp=unconfined \ --shm-size=2g \ --tty \ --ulimit stack=10485760:83886080 \ -v $PWD:/work \ -w /work \ ${DOCKER_IMAGE} script=$(cat << EOF set -xe nvidia-smi ls -alh conda --version python --version EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Install PyTorch and dependencies continue-on-error: false run: | script=$(cat << EOF set -xe # Install PyTorch if [ "${{ matrix.pytorch-channel }}" == "pytorch" ]; then pip install --upgrade torch torchvision --index-url https://download.pytorch.org/whl/cu121 else pip install --upgrade --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu121 fi python -c "import torch; print(torch.__version__, ', CUDA is available: ', torch.cuda.is_available()); exit(not torch.cuda.is_available())" pip list # Install dependencies pip install -r requirements-dev.txt pip install -e . EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Install Horovod with NCCL GPU ops run: | script=$(cat << EOF set -xe # Can't build Horovod with recent pytorch due to pytorch required C++17 standard # and horovod is still using C++14 # HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_PYTORCH=1 pip install horovod[pytorch] # Using a similar hack as described here: # https://github.com/horovod/horovod/issues/3941#issuecomment-1732505345 git clone --recursive https://github.com/horovod/horovod.git /horovod cd /horovod sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" CMakeLists.txt sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" horovod/torch/CMakeLists.txt HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_WITH_PYTORCH=1 python setup.py install horovodrun --check-build pip list EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Run GPU and CPU Unit HVD Tests run: | script=$(cat << EOF set -xe bash tests/run_gpu_tests.sh 2 hvd CUDA_VISIBLE_DEVICES="" pytest --cov ignite --cov-append --cov-report term-missing --cov-report xml -vvv tests/ignite -m distributed -k hvd EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ${{ github.repository }}/coverage.xml flags: gpu-2 fail_ci_if_error: false - name: Run examples in container continue-on-error: false run: | SCRIPT=$(cat << EOF set -xe # Install additional example dependencies pip install fire # Check training on CIFAR10, run with horovod backend using horovodrun # initial run CI=1 horovodrun -np 2 python -u examples/cifar10/main.py run --backend=horovod --checkpoint_every=200 --stop_iteration=500 # resume CI=1 horovodrun -np 2 python examples/cifar10/main.py run --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-horovod-2_stop-on-500/training_checkpoint_400.pt # Check training on CIFAR10 using spawn # initial run CI=1 python -u examples/cifar10/main.py run --backend=horovod --nproc_per_node=2 --checkpoint_every=200 --stop_iteration=500 # resume CI=1 python -u examples/cifar10/main.py run --backend=horovod --nproc_per_node=2 --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-horovod-2_stop-on-500/training_checkpoint_400.pt EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Teardown Linux if: ${{ always() }} uses: ./test-infra/.github/actions/teardown-linux ignite-0.5.1/.github/workflows/gpu-tests.yml000066400000000000000000000134071465426447700210770ustar00rootroot00000000000000name: Run unit tests on GPUs on: push: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_gpu_tests.sh" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/gpu-tests.yml" workflow_dispatch: concurrency: # -- group: gpu-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true # Cherry-picked from https://github.com/pytorch/test-infra/blob/main/.github/workflows/linux_job.yml jobs: gpu-tests: strategy: matrix: pytorch-channel: [pytorch, pytorch-nightly] fail-fast: false env: DOCKER_IMAGE: "pytorch/conda-builder:cuda12.1" REPOSITORY: ${{ github.repository }} PR_NUMBER: ${{ github.event.pull_request.number }} runs-on: amz2023.linux.8xlarge.nvidia.gpu timeout-minutes: 85 steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Setup Linux uses: ./test-infra/.github/actions/setup-linux - name: Pull docker image uses: ./test-infra/.github/actions/pull-docker-image with: docker-image: ${{ env.DOCKER_IMAGE }} - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Start Pytorch container working-directory: ${{ github.repository }} run: | docker run --name pthd --gpus=all --rm \ --cap-add=SYS_PTRACE \ --detach \ --ipc=host \ --security-opt seccomp=unconfined \ --shm-size=2g \ --tty \ --ulimit stack=10485760:83886080 \ -v $PWD:/work \ -w /work \ ${DOCKER_IMAGE} script=$(cat << EOF set -xe nvidia-smi ls -alh conda --version python --version EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Install PyTorch and dependencies continue-on-error: false run: | script=$(cat << EOF set -xe # Install PyTorch if [ "${{ matrix.pytorch-channel }}" == "pytorch" ]; then pip install --upgrade torch torchvision --index-url https://download.pytorch.org/whl/cu121 else pip install --upgrade --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu121 fi python -c "import torch; print(torch.__version__, ', CUDA is available: ', torch.cuda.is_available()); exit(not torch.cuda.is_available())" pip list # Install dependencies pip install -r requirements-dev.txt pip install -e . EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Run GPU Unit Tests continue-on-error: false uses: nick-fields/retry@v2.9.0 with: max_attempts: 5 timeout_minutes: 25 shell: bash command: docker exec -t pthd /bin/bash -xec 'bash tests/run_gpu_tests.sh 2' new_command_on_retry: docker exec -e USE_LAST_FAILED=1 -t pthd /bin/bash -xec 'bash tests/run_gpu_tests.sh 2' - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ${{ github.repository }}/coverage.xml flags: gpu-2 fail_ci_if_error: false - name: Run examples in container continue-on-error: false run: | SCRIPT=$(cat << EOF set -xe # Install additional example dependencies pip install fire # Check training on cifar10, run without backend ## initial run CI=1 python examples/cifar10/main.py run --checkpoint_every=200 --stop_iteration=500 ## resume CI=1 python examples/cifar10/main.py run --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-None-1_stop-on-500/training_checkpoint_400.pt # Check training on cifar10, run with NCCL backend using torchrun ## initial run CI=1 torchrun --nproc_per_node=2 examples/cifar10/main.py run --backend=nccl --checkpoint_every=200 --stop_iteration=500 ## resume CI=1 torchrun --nproc_per_node=2 examples/cifar10/main.py run --backend=nccl --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-nccl-2_stop-on-500/training_checkpoint_400.pt # Check training on cifar10, run with NCCL backend using spawn ## initial run CI=1 python -u examples/cifar10/main.py run --backend=nccl --nproc_per_node=2 --checkpoint_every=200 --stop_iteration=500 ## resume CI=1 python -u examples/cifar10/main.py run --backend=nccl --nproc_per_node=2 --checkpoint_every=200 --num_epochs=7 --resume-from=/tmp/output-cifar10/resnet18_backend-nccl-2_stop-on-500/training_checkpoint_400.pt EOF ) docker exec -t pthd /bin/bash -c "${script}" - name: Teardown Linux if: ${{ always() }} uses: ./test-infra/.github/actions/teardown-linux ignite-0.5.1/.github/workflows/hvd-tests.yml000066400000000000000000000047601465426447700210670ustar00rootroot00000000000000name: Run Horovod tests on: push: branches: - master - "*.*.*" paths: - "ignite/**" - "tests/ignite/**" - "tests/run_cpu_tests.sh" - ".github/workflows/hvd-tests.yml" pull_request: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_cpu_tests.sh" - ".github/workflows/hvd-tests.yml" workflow_dispatch: concurrency: # -- group: hvd-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true jobs: horovod-tests: runs-on: ubuntu-latest timeout-minutes: 60 strategy: matrix: python-version: [3.8] pytorch-channel: [pytorch] steps: - uses: actions/checkout@v4 - name: Get year & week number id: get-date run: echo "date=$(/bin/date "+%Y-%U")" >> $GITHUB_OUTPUT shell: bash -l {0} - name: Get pip cache dir id: pip-cache run: | python3 -m pip install -U pip echo "pip_cache=$(python3 -m pip cache dir)" >> $GITHUB_OUTPUT shell: bash -l {0} - uses: actions/cache@v3 with: path: | ~/conda_pkgs_dir ${{ steps.pip-cache.outputs.pip_cache }} key: ${{ steps.get-date.outputs.date }}-horovod-${{ hashFiles('requirements-dev.txt') }} - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Install dependencies shell: bash -l {0} run: | #install other dependencies pip install torch torchvision -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install -r requirements-dev.txt pip install horovod python setup.py install # Download MNIST: https://github.com/pytorch/ignite/issues/1737 # to "/tmp" for cpu tests - name: Download MNIST uses: pytorch-ignite/download-mnist-github-action@master with: target_dir: /tmp - name: Run Tests uses: nick-fields/retry@v3 with: max_attempts: 5 timeout_minutes: 15 shell: bash command: bash tests/run_cpu_tests.sh new_command_on_retry: USE_LAST_FAILED=1 bash tests/run_cpu_tests.sh - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ./coverage.xml flags: hvd-cpu fail_ci_if_error: false ignite-0.5.1/.github/workflows/install_docs_deps.sh000066400000000000000000000007021465426447700224400ustar00rootroot00000000000000# remove pkg-resources as it causes failure when installing https://github.com/pytorch-ignite/sphinxcontrib-versioning pip uninstall -y pkg-resources setuptools && pip install --upgrade setuptools pip wheel pip install torch torchvision -f https://download.pytorch.org/whl/cpu/torch_stable.html -U pip install -r requirements-dev.txt pip install -r docs/requirements.txt pip install git+https://github.com/pytorch-ignite/sphinxcontrib-versioning.git ignite-0.5.1/.github/workflows/mps-tests.yml000066400000000000000000000101441465426447700210760ustar00rootroot00000000000000name: Run unit tests on M1 on: push: branches: - master - "*.*.*" paths: - "ignite/**" - "tests/ignite/**" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/mps-tests.yml" pull_request: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/mps-tests.yml" workflow_dispatch: concurrency: # -- group: mps-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true # Cherry-picked from # - https://github.com/pytorch/vision/blob/main/.github/workflows/tests.yml # - https://github.com/pytorch/test-infra/blob/main/.github/workflows/macos_job.yml jobs: mps-tests: strategy: matrix: python-version: [3.8] pytorch-channel: ["pytorch"] skip-distrib-tests: [1] fail-fast: false runs-on: ["macos-m1-stable"] timeout-minutes: 60 steps: - name: Clean workspace run: | echo "::group::Cleanup debug output" sudo rm -rfv "${GITHUB_WORKSPACE}" mkdir -p "${GITHUB_WORKSPACE}" echo "::endgroup::" - name: Checkout repository (pytorch/test-infra) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: pytorch/test-infra path: test-infra - name: Checkout repository (${{ github.repository }}) uses: actions/checkout@v3 with: # Support the use case where we need to checkout someone's fork repository: ${{ github.repository }} ref: ${{ github.ref }} path: ${{ github.repository }} fetch-depth: 1 - name: Setup miniconda uses: ./test-infra/.github/actions/setup-miniconda with: python-version: ${{ matrix.python-version }} - name: Install PyTorch if: ${{ matrix.pytorch-channel == 'pytorch' }} shell: bash -l {0} run: | conda shell.bash hook conda activate $CONDA_ENV pip install torch torchvision - name: Install PyTorch (nightly) if: ${{ matrix.pytorch-channel == 'pytorch-nightly' }} shell: bash -l {0} run: | conda shell.bash hook conda activate $CONDA_ENV pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cpu - name: Install dependencies shell: bash -l {0} working-directory: ${{ github.repository }} run: | conda activate $CONDA_ENV # TODO: We add set -xe to explicitly fail the CI if one of the commands is failing. # Somehow the step is passing even if a subcommand failed set -xe pip install -r requirements-dev.txt echo "1 returned code: $?" pip install -e . echo "2 returned code: $?" pip list echo "3 returned code: $?" # Download MNIST: https://github.com/pytorch/ignite/issues/1737 # to "/tmp" for unit tests - name: Download MNIST uses: pytorch-ignite/download-mnist-github-action@master with: target_dir: /tmp # Copy MNIST to "." for the examples - name: Copy MNIST run: | cp -R /tmp/MNIST . - name: Run Tests shell: bash -l {0} working-directory: ${{ github.repository }} run: | conda activate $CONDA_ENV SKIP_DISTRIB_TESTS=${{ matrix.skip-distrib-tests }} bash tests/run_cpu_tests.sh - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ${{ github.repository }}/coverage.xml flags: mps fail_ci_if_error: false - name: Run MNIST Examples shell: bash -l {0} working-directory: ${{ github.repository }} run: | conda activate $CONDA_ENV python examples/mnist/mnist.py --epochs=1 ignite-0.5.1/.github/workflows/pytorch-version-tests.yml000066400000000000000000000100631465426447700234520ustar00rootroot00000000000000name: PyTorch version tests on: # https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions#onschedule schedule: # Run at 00:00 UTC Every Day - cron: "0 0 * * *" workflow_dispatch: jobs: build: runs-on: ubuntu-latest timeout-minutes: 85 strategy: max-parallel: 5 fail-fast: false matrix: python-version: [3.8, 3.9, "3.10"] pytorch-version: [2.3.1, 2.2.2, 2.1.2, 2.0.1, 1.13.1, 1.12.1, 1.10.0, 1.8.1, 1.5.1] exclude: - pytorch-version: 1.5.1 python-version: 3.9 - pytorch-version: 1.5.1 python-version: "3.10" # disabling python 3.9 support with PyTorch 1.7.1 and 1.8.1, to stop repeated pytorch-version test fail. # https://github.com/pytorch/ignite/issues/2383 - pytorch-version: 1.8.1 python-version: 3.9 - pytorch-version: 1.8.1 python-version: "3.10" - pytorch-version: 1.10.0 python-version: "3.10" - pytorch-version: 1.11.0 python-version: "3.10" steps: - uses: actions/checkout@v4 - name: Get year & week number id: get-date run: echo "date=$(/bin/date "+%Y-%U")" >> $GITHUB_OUTPUT shell: bash -l {0} - name: Get pip cache dir id: pip-cache run: | python3 -m pip install -U pip echo "pip_cache=$(python3 -m pip cache dir)" >> $GITHUB_OUTPUT shell: bash -l {0} - uses: actions/cache@v3 with: path: | ~/conda_pkgs_dir ${{ steps.pip-cache.outputs.pip_cache }} key: ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.python-version }}-${{ matrix.pytorch-version }}-${{ hashFiles('requirements-dev.txt') }} restore-keys: | ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.python-version }}-${{ matrix.pytorch-version }}- - name: Setup Miniconda uses: conda-incubator/setup-miniconda@v2 with: miniconda-version: "latest" python-version: ${{ matrix.python-version }} use-only-tar-bz2: true # IMPORTANT: This needs to be set for caching to work properly! - name: Install dependencies shell: bash -l {0} run: | conda install pytorch=${{ matrix.pytorch-version }} torchvision cpuonly python=${{ matrix.python-version }} -c pytorch pip install -r requirements-dev.txt python setup.py install # pytorch>=1.9.0,<1.11.0 is using "from setuptools import distutils; distutils.version.LooseVersion" anti-pattern # which raises the error: AttributeError: module 'distutils' has no attribute 'version' for setuptools>59 bad_pth_version=$(python -c "import torch; print('.'.join(torch.__version__.split('.')[:2]) in ['1.9', '1.10'])") if [ "${bad_pth_version}" == "True" ]; then pip install --upgrade "setuptools<59" python -c "from setuptools import distutils; distutils.version.LooseVersion" fi - name: Download MNIST uses: pytorch-ignite/download-mnist-github-action@master with: target_dir: /tmp - name: Run Tests uses: nick-fields/retry@v3 with: max_attempts: 5 timeout_minutes: 15 shell: bash command: bash -l tests/run_cpu_tests.sh "not test_time_profilers" new_command_on_retry: USE_LAST_FAILED=1 bash -l tests/run_cpu_tests.sh "not test_time_profilers" create-issue: runs-on: ubuntu-latest # https://docs.github.com/en/actions/reference/context-and-expression-syntax-for-github-actions#needs-context needs: build if: always() && needs.build.result == 'failure' steps: - uses: actions/checkout@v4 - uses: JasonEtco/create-an-issue@v2 name: Create issue if pytorch version tests failed with: filename: .github/failed_schedule_issue_template.md env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} ignite-0.5.1/.github/workflows/stable-release-anaconda.yml000066400000000000000000000014461465426447700235760ustar00rootroot00000000000000name: Anaconda Stable Releases on: release: types: [published] jobs: conda-build-publish: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Setup Miniconda uses: conda-incubator/setup-miniconda@v2 with: miniconda-version: "latest" python-version: "3.10" - name: Install dependencies shell: bash -l {0} run: | conda install -y pytorch torchvision cpuonly -c pytorch python setup.py install - name: Build and Publish Conda binaries shell: bash -l {0} env: ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }} UPLOAD_USER: "pytorch" run: | chmod +x ./conda.recipe/build_and_upload.sh ./conda.recipe/build_and_upload.sh ignite-0.5.1/.github/workflows/stable-release-pypi.yml000066400000000000000000000017721465426447700230150ustar00rootroot00000000000000name: PyPI Stable Releases on: release: types: [published] jobs: build-publish: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Setup Miniconda uses: conda-incubator/setup-miniconda@v2 with: miniconda-version: "latest" python-version: "3.10" - name: Install dependencies shell: bash -l {0} run: | conda install -y pytorch torchvision cpuonly -c pytorch pip install -r requirements-dev.txt - name: Build and Publish PyPI binaries shell: bash -l {0} run: | # workaround to fix https://github.com/pytorch/ignite/issues/2373 pip uninstall -y twine pkginfo pip install --upgrade --no-cache-dir twine 'pkginfo>=1.8.2' python setup.py sdist bdist_wheel twine --version twine check dist/* TWINE_USERNAME="${{ secrets.PYPI_USER }}" TWINE_PASSWORD="${{ secrets.PYPI_TOKEN }}" twine upload --verbose dist/* ignite-0.5.1/.github/workflows/tpu-tests.yml000066400000000000000000000070651465426447700211170ustar00rootroot00000000000000name: Run TPU tests on: push: branches: - master - "*.*.*" paths: - "ignite/**" - "tests/ignite/**" - "tests/run_tpu_tests.sh" - "tests/run_code_style.sh" - "requirements-dev.txt" - ".github/workflows/tpu-tests.yml" pull_request: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_tpu_tests.sh" - "tests/run_code_style.sh" - "requirements-dev.txt" - ".github/workflows/tpu-tests.yml" workflow_dispatch: concurrency: # -- group: tpu-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true jobs: tpu-tests: runs-on: ubuntu-latest strategy: fail-fast: false matrix: xla-version: [nightly] steps: - uses: actions/checkout@v4 - name: Set up Python 3.10 uses: actions/setup-python@v4 with: python-version: "3.10" architecture: "x64" - name: Get year & week number id: get-date run: echo "date=$(/bin/date "+%Y-%U")" >> $GITHUB_OUTPUT shell: bash -l {0} - name: Get pip cache dir id: pip-cache run: | pip3 install -U "pip<24" echo "pip_cache=$(pip cache dir)" >> $GITHUB_OUTPUT shell: bash -l {0} - uses: actions/cache@v3 with: path: | ${{ steps.pip-cache.outputs.pip_cache }} key: ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.xla-version }}-${{ hashFiles('requirements-dev.txt') }} restore-keys: | ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.xla-version }}- - name: Install Torch XLA and others run: | ## Install mkl (alternative approach to https://github.com/pytorch/xla/blob/b0ba29f98a695671972d4a4cc07441014dba2892/.kokoro/common.sh#L31-L32) sudo apt-get update && sudo apt-get install -y libopenblas-dev libomp5 pip install mkl==2021.4.0 ## Install torch & xla and torchvision pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cpu pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-nightly-cp310-cp310-linux_x86_64.whl # Check installation python -c "import torch" ## Install test deps and Ignite pip install -r requirements-dev.txt python setup.py install # Download MNIST: https://github.com/pytorch/ignite/issues/1737 # to "/tmp" for tpu tests - name: Download MNIST uses: pytorch-ignite/download-mnist-github-action@master with: target_dir: /tmp - name: Run Tests uses: nick-fields/retry@v3 with: max_attempts: 5 timeout_minutes: 25 shell: bash command: | python -c "import torch_xla; print('torch xla version:', torch_xla.__version__)" bash tests/run_tpu_tests.sh new_command_on_retry: USE_LAST_FAILED=1 bash tests/run_tpu_tests.sh env: LD_LIBRARY_PATH: ${{ env.LD_LIBRARY_PATH }}:${{ env.Python_ROOT_DIR }}/lib XRT_DEVICE_MAP: "CPU:0;/job:localservice/replica:0/task:0/device:XLA_CPU:0" XRT_WORKERS: "localservice:0;grpc://localhost:40934" - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ./coverage.xml flags: tpu fail_ci_if_error: false ignite-0.5.1/.github/workflows/triage.yml000066400000000000000000000024271465426447700204170ustar00rootroot00000000000000name: Triage on: pull_request_target: # types: [opened] # issues: # types: [opened] jobs: triage: permissions: contents: read pull-requests: write runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Pull Request Labeler uses: actions/labeler@v5 with: configuration-path: .github/pr-labeler-config.yml repo-token: "${{ secrets.GITHUB_TOKEN }}" # Turned off due to unexpected behavior on issue opening+labeling? https://github.com/pytorch/ignite/issues/1836 # - name: Welcome # uses: actions/first-interaction@v1 # with: # issue-message: "**Thank you for opening your First Issue!**\n\nWe appreciate a lot user's feedback on what we are doing!\n\nIf you'd like to contribute to the project, please check out our [Contributing Guide](https://github.com/pytorch/ignite/blob/master/CONTRIBUTING.md)." # pr-message: "**Thank you for opening your First Pull Request!**\nWe appreciate a lot community contributions as pull requests!\n\nIf you would like to get more details on the project development, please take a look at our [Contributing Guide](https://github.com/pytorch/ignite/blob/master/CONTRIBUTING.md)." # repo-token: ${{ secrets.GITHUB_TOKEN }} ignite-0.5.1/.github/workflows/unit-tests.yml000066400000000000000000000157511465426447700212670ustar00rootroot00000000000000name: Run unit tests on: push: branches: - master - "*.*.*" paths: - "ignite/**" - "tests/ignite/**" - "tests/run_cpu_tests.sh" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/unit-tests.yml" pull_request: paths: - "ignite/**" - "tests/ignite/**" - "tests/run_cpu_tests.sh" - "tests/run_code_style.sh" - "examples/**.py" - "requirements-dev.txt" - ".github/workflows/unit-tests.yml" workflow_dispatch: concurrency: # -- group: unit-tests-${{ github.ref_name }}-${{ !(github.ref_protected) || github.sha }} cancel-in-progress: true jobs: cpu-tests: runs-on: ${{ matrix.os }} timeout-minutes: 85 defaults: run: shell: bash strategy: max-parallel: 10 fail-fast: false matrix: os: [ubuntu-latest] python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] pytorch-channel: [pytorch, pytorch-nightly] include: # includes a single build on windows - os: windows-latest pytorch-channel: pytorch python-version: 3.9 skip-distrib-tests: 1 # includes a single build on macosx - os: macos-latest pytorch-channel: pytorch python-version: 3.9 skip-distrib-tests: 1 steps: - uses: actions/checkout@v4 - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Get year & week number id: get-date run: | echo "date=$(/bin/date "+%Y-%U")" >> $GITHUB_OUTPUT - name: Get pip cache dir id: pip-cache run: | pip install -U pip || python -m pip install -U pip echo "pip_cache=$(pip cache dir)" >> $GITHUB_OUTPUT - uses: actions/cache@v3 with: path: | ${{ steps.pip-cache.outputs.pip_cache }} key: ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.python-version }}-${{ matrix.pytorch-channel }}-${{ hashFiles('requirements-dev.txt') }} restore-keys: | ${{ steps.get-date.outputs.date }}-pytorch-${{ runner.os }}-${{ matrix.python-version }}-${{ matrix.pytorch-channel }}- - run: pip install pip wheel setuptools -Uqq - name: Install PyTorch if: ${{ matrix.pytorch-channel == 'pytorch' }} run: pip install torch torchvision -f https://download.pytorch.org/whl/cpu/torch_stable.html - name: Install PyTorch (nightly) if: ${{ matrix.pytorch-channel == 'pytorch-nightly' }} run: pip install torch torchvision -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html --pre - name: Install dependencies run: | pip install -r requirements-dev.txt python setup.py install pip list - name: Check code formatting run: | bash ./tests/run_code_style.sh install bash ./tests/run_code_style.sh lint - name: Run Mypy # https://github.com/pytorch/ignite/pull/2780 # if: ${{ matrix.os == 'ubuntu-latest' && matrix.pytorch-channel == 'pytorch-nightly'}} run: | bash ./tests/run_code_style.sh mypy # Download MNIST: https://github.com/pytorch/ignite/issues/1737 # to "/tmp" for unit tests - name: Download MNIST uses: pytorch-ignite/download-mnist-github-action@master with: target_dir: /tmp # Copy MNIST to "." for the examples - name: Copy MNIST run: | cp -R /tmp/MNIST . - name: Run Tests uses: nick-fields/retry@v3 with: max_attempts: 5 timeout_minutes: 15 shell: bash command: SKIP_DISTRIB_TESTS=${{ matrix.skip-distrib-tests }} bash tests/run_cpu_tests.sh new_command_on_retry: USE_LAST_FAILED=1 SKIP_DISTRIB_TESTS=${{ matrix.skip-distrib-tests }} bash tests/run_cpu_tests.sh - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: file: ./coverage.xml flags: cpu fail_ci_if_error: false - name: Run MNIST Examples run: | # MNIST # 1) mnist.py python examples/mnist/mnist.py --epochs=1 - name: Run MNIST with loggers Examples if: ${{ matrix.os == 'ubuntu-latest' }} run: | # 2) mnist_with_visdom.py python -c "from visdom.server.build import download_scripts; download_scripts()" # download scripts : https://github.com/facebookresearch/visdom/blob/master/py/server.py#L929 python -m visdom.server & sleep 10 python examples/mnist/mnist_with_visdom.py --epochs=1 kill %1 # 3.1) mnist_with_tensorboard.py with tbX python examples/mnist/mnist_with_tensorboard.py --epochs=1 # 3.2) mnist_with_tensorboard.py with native torch tb pip uninstall -y tensorboardX python examples/mnist/mnist_with_tensorboard.py --epochs=1 - name: Run MNIST Example With Crash if: ${{ matrix.os == 'ubuntu-latest' }} continue-on-error: true run: | # 4) mnist_save_resume_engine.py python examples/mnist/mnist_save_resume_engine.py --epochs=2 --crash_iteration 1100 - name: Resume MNIST from previous crash if: ${{ matrix.os == 'ubuntu-latest' }} run: | python examples/mnist/mnist_save_resume_engine.py --epochs=2 --resume_from=/tmp/mnist_save_resume/checkpoint_1.pt - name: Run GAN example if: ${{ matrix.os == 'ubuntu-latest' }} run: | # DCGAN python examples/gan/dcgan.py --dataset fake --dataroot /tmp/fakedata --output-dir /tmp/outputs-dcgan --batch-size 2 --epochs 2 --workers 0 - name: Run RL Examples if: ${{ matrix.os == 'ubuntu-latest' }} run: | # RL # 1) Actor-Critic python examples/reinforcement_learning/actor_critic.py --max-episodes=2 # 2) Reinforce python examples/reinforcement_learning/reinforce.py --max-episodes=2 - name: Run Neural Style Example if: ${{ matrix.os == 'ubuntu-latest' }} run: | #fast-neural-style #train mkdir -p ~/.cache/torch/checkpoints/ && wget "https://download.pytorch.org/models/vgg16-397923af.pth" -O ~/.cache/torch/checkpoints/vgg16-397923af.pth python examples/fast_neural_style/neural_style.py train --epochs 1 --cuda 0 --dataset test --dataroot . --image_size 32 --style_image examples/fast_neural_style/images/style_images/mosaic.jpg --style_size 32 - name: Run SR Example if: ${{ matrix.os == 'ubuntu-latest' }} run: | # Super-Resolution python examples/super_resolution/main.py --upscale_factor 3 --crop_size 180 --batch_size 4 --test_batch_size 100 --n_epochs 1 --lr 0.001 --threads 2 --debug ignite-0.5.1/.gitignore000066400000000000000000000007661465426447700150200ustar00rootroot00000000000000# Byte-compiled / optimized / DLL files *.pyc __pycache__/ *.py[cod] *$py.class # Distribution / packaging .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ *.egg-info/ .installed.cfg *.egg MANIFEST **/.DS_Store # Unit test / coverage reports htmlcov/ .tox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover .hypothesis/ .pytest_cache/ # Documentation /docs/src/ /docs/build/ /docs/source/generated/ # Virtualenv .venv/ .python-version ignite-0.5.1/.pre-commit-config.yaml000066400000000000000000000013021465426447700172740ustar00rootroot00000000000000exclude: "^conda.recipe" repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v3.4.0 hooks: - id: check-toml - id: check-yaml - id: end-of-file-fixer - id: trailing-whitespace - repo: https://github.com/pre-commit/mirrors-prettier rev: v2.2.1 hooks: - id: prettier exclude_types: ["python", "jupyter", "shell", "gitignore"] - repo: https://github.com/omnilib/ufmt rev: v2.5.1 hooks: - id: ufmt additional_dependencies: - black == 24.3.0 - usort == 1.0.8.post1 - repo: https://github.com/pycqa/flake8 rev: 7.0.0 hooks: - id: flake8 args: ["--config", "setup.cfg"] ignite-0.5.1/CITATION000066400000000000000000000004771465426447700141640ustar00rootroot00000000000000@misc{pytorch-ignite, author = {V. Fomin and J. Anmol and S. Desroziers and J. Kriss and A. Tejani}, title = {High-level library to help with training neural networks in PyTorch}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/pytorch/ignite}}, }ignite-0.5.1/CODE_OF_CONDUCT.md000066400000000000000000000064331465426447700156240ustar00rootroot00000000000000# Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: - Using welcoming and inclusive language - Being respectful of differing viewpoints and experiences - Gracefully accepting constructive criticism - Focusing on what is best for the community - Showing empathy towards other community members Examples of unacceptable behavior by participants include: - The use of sexualized language or imagery and unwelcome sexual attention or advances - Trolling, insulting/derogatory comments, and personal or political attacks - Public or private harassment - Publishing others' private information, such as a physical or electronic address, without explicit permission - Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies within all project spaces, and it also applies when an individual is representing the project or its community in public spaces. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at . All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq ignite-0.5.1/CONTRIBUTING.md000066400000000000000000000345121465426447700152550ustar00rootroot00000000000000# Contributing to Ignite This project is a community effort, and everyone is welcome to contribute ! If you are interested in contributing to Ignite, there are many ways to help out. Your contributions may fall into the following categories: 1. It helps us very much if you could - Report issues you’re facing - Give a :+1: on issues that others reported and that are relevant to you - Spread a word about the project or simply :star: to say "I use it" 2. Answering queries on the issue tracker, investigating bugs and reviewing other developers’ pull requests are very valuable contributions that decrease the burden on the project maintainers. 3. You would like to improve the documentation. This is no less important than improving the library itself! If you find a typo in the documentation, do not hesitate to submit a GitHub pull request. 4. You would like propose a new feature and implement it - Post about your intended feature, and we shall discuss the design and implementation. Once we agree that the plan looks good, go ahead and implement it. 5. You would like implement a feature or bug-fix for an outstanding issue - Look at the issues labelled as ["help wanted"](https://github.com/pytorch/ignite/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) - Pick an issue and comment on the task that you want to work on this feature. - If you need more context on a particular issue, please ask and we shall provide. ## Table of Contents - [Table of Contents](#table-of-contents) - [Developing Ignite](#developing-ignite) - [Quickstart guide for first-time contributors](#quickstart-guide-for-first-time-contributors) - [Installation](#installation) - [Code development](#code-development) - [Codebase structure](#codebase-structure) - [Formatting Code](#formatting-code) - [Formatting without pre-commit](#formatting-without-pre-commit) - [Formatting with pre-commit](#formatting-with-pre-commit) - [Run tests](#run-tests) - [Run distributed tests only on CPU](#run-distributed-tests-only-on-cpu) - [Run Mypy checks](#run-mypy-checks) - [Send a PR](#send-a-pr) - [Sync up with the upstream](#sync-up-with-the-upstream) - [Writing documentation](#writing-documentation) - [Local documentation building and deploying](#local-documentation-building-and-deploying) - [Install requirements](#install-requirements) - [Build](#build) - [Local deployment](#local-deployment) ## Developing Ignite ### Quickstart guide for first-time contributors
- Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) for your system. - Create an isolated conda environment for pytorch-ignite: ```bash conda create -n pytorch-ignite-dev python=3.8 ``` - Activate the newly created environment: ```bash conda activate pytorch-ignite-dev ``` - When developing please take care of preserving `.gitignore` file and make use of `.git/info/exclude` to exclude custom files like: `.idea`, `.vscode` etc. - Please refer to [github first contributions guidelines](https://github.com/firstcontributions/first-contributions) and don't hesitate to ask the pytorch-ignite community in case of any doubt. - A good way to start is to tackle one of the [good first issues](https://github.com/pytorch/ignite/labels/good%20first%20issue).
### Installation 1) Make a fork of the repository on the GitHub (see [here](https://github.com/firstcontributions/first-contributions#fork-this-repository) for details). As a result, for example your username is `happy-ignite-developer`, then you should be able to see your fork on the GitHub, e.g https://github.com/happy-ignite-developer/ignite.git 2) Clone your fork locally and setup `upstream`. Assuming your username is `happy-ignite-developer`: ```bash git clone https://github.com/happy-ignite-developer/ignite.git cd ignite git remote add upstream https://github.com/pytorch/ignite.git git remote -v ``` You might see the following output: ``` origin https://github.com/happy-ignite-developer/ignite.git (fetch) origin https://github.com/happy-ignite-developer/ignite.git (push) upstream https://github.com/pytorch/ignite (fetch) upstream https://github.com/pytorch/ignite (push) ``` 3) Sync and install all necessary dependencies: ```bash git pull upstream master python setup.py develop pip install -r requirements-dev.txt bash ./tests/run_code_style.sh install ``` ### Code development #### Codebase structure - [ignite](ignite) - Core library files - [engine](ignite/engine) - Module containing core classes like Engine, Events, State. - [handlers](ignite/handlers) - Module containing out-of-the-box handlers - [metrics](ignite/metrics) - Module containing out-of-the-box metrics - [contrib](ignite/contrib) - Contrib module with other metrics, handlers classes that may require additional dependencies - [distributed](ignite/distributed) - Module with helpers for distributed computations - [tests](tests) - Python unit tests - [examples](examples) - Examples and notebook tutorials - [docs](docs) - Documentation files If you modify the code, you will most probably also need to code some tests to ensure the correct behaviour. We are using `pytest` to write our tests: - naming convention for files `test_*.py`, e.g. `test_precision.py` - naming of testing functions `def test_*`, e.g. `def test_precision_on_random_data()` - if test function should run on GPU, please **make sure to add `cuda`** in the test name, e.g. `def test_something_on_cuda()`. Additionally, we may want to decorate it with `@pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU")`. For more examples, please see https://github.com/pytorch/ignite/blob/master/tests/ignite/engine/test_create_supervised.py - if test function checks distributed configuration, we have to mark the test as `@pytest.mark.distributed` and additional conditions depending on the intended checks. For example, please see https://github.com/pytorch/ignite/blob/master/tests/ignite/metrics/test_accuracy.py New code should be compatible with Python 3.X versions. Once you finish implementing a feature or bugfix and tests, please run lint checking and tests: #### Formatting Code To ensure the codebase complies with a style guide, we use [flake8](https://flake8.pycqa.org/en/latest/) and [ufmt](https://ufmt.omnilib.dev/) ([black](https://black.readthedocs.io/en/stable/) and [usort](https://usort.readthedocs.io/en/stable/)) to format and check codebase for compliance with PEP8. ##### Formatting without pre-commit If you choose not to use pre-commit, you can take advantage of IDE extensions configured to black format or invoke black manually to format files and commit them. To install `flake8`, `ufmt` and `mypy`, please run ```bash bash ./tests/run_code_style.sh install ``` To format files and commit changes: ```bash # This should autoformat the files bash ./tests/run_code_style.sh fmt # If everything is OK, then commit git add . git commit -m "Added awesome feature" ``` ##### Formatting with pre-commit To automate the process, we have configured the repo with [pre-commit hooks](https://pre-commit.com/) to use Β΅fmt to autoformat the staged files to ensure every commit complies with a style guide. This requires some setup, which is described below: 1. Install pre-commit in your python environment. 2. Run pre-commit install that configures a virtual environment to invoke ufmt and flake8 on commits. ```bash pip install pre-commit pre-commit install ``` 3. When files are committed: - If the stages files are not compliant with black or Β΅sort, Β΅fmt will autoformat the staged files. If this were to happen, files should be staged and committed again. See example code below. - If the staged files are not compliant with flake8, errors will be raised. These errors should be fixed and the files should be committed again. See example code below. ```bash git add . git commit -m "Added awesome feature" # DONT'T WORRY IF ERRORS ARE RAISED. # YOUR CODE IS NOT COMPLIANT WITH flake8, Β΅sort or black # Fix any flake8 errors by following their suggestions # Β΅fmt will automatically format the files so they might look different, but you'll need to stage the files # again for committing # After fixing any flake8 errors git add . git commit -m "Added feature" ``` #### Run tests: To run a specific test, for example `test_terminate` from `test_engine.py`: ```bash pytest tests/ignite/engine/test_engine.py -vvv -k test_terminate ``` To run all tests with coverage (assuming installed `pytest-cov` and `pytest-xdist`): ```bash bash tests/run_cpu_tests.sh ``` On Windows, distributed tests should be skipped ```bash SKIP_DISTRIB_TESTS=1 bash tests/run_cpu_tests.sh ``` ##### Run distributed tests only on CPU To run distributed tests only (assuming installed `pytest-xdist`): ```bash export WORLD_SIZE=2 CUDA_VISIBLE_DEVICES="" pytest --dist=each --tx $WORLD_SIZE*popen//python=python tests/ -m distributed -vvv ``` #### Run Mypy checks: To run mypy to check the optional static type: ```bash bash ./tests/run_code_style.sh mypy ``` To change any config for specif folder, please see the file mypy.ini #### Send a PR If everything is OK, please send a Pull Request to https://github.com/pytorch/ignite from your fork. If you are not familiar with creating a Pull Request, here are some guides: - https://github.com/firstcontributions/first-contributions - http://stackoverflow.com/questions/14680711/how-to-do-a-github-pull-request - https://help.github.com/articles/creating-a-pull-request/ **NOTE : When sending a PR, please kindly check if the changes are required to run in the CI.** For example, typo changes in `CONTRIBUTING.md`, `README.md` are not required to run in the CI. So, please add `[skip ci]` in the PR title to save the resources. Ignite has setup several CIs. - GitHub Actions - Netlify So, please add - `[skip actions]` for the changes which are not required to run on GitHub Actions, - `[skip netlify]` for the changes which are not required to run on Netlify PR Preview build, or - `[skip ci]` for the changes which are not required to run on any CI. **NOTE : Those skip statements are case sensitive, need open bracket `[` and close bracket `]`. And, Ignite has followed a convention of starting with `skip` word.** ##### Sync up with the upstream First, make sure you have set [upstream](https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/configuring-a-remote-for-a-fork) by running: ```bash git remote add upstream https://github.com/pytorch/ignite ``` Then you can see if you have set up multiple remote correctly by running `git remote -v`: ```bash origin https://github.com/{YOUR_USERNAME}/ignite.git (fetch) origin https://github.com/{YOUR_USERNAME}/ignite.git (push) upstream https://github.com/pytorch/ignite (fetch) upstream https://github.com/pytorch/ignite (push) ``` Now you can get the latest development into your forked repository with this: ```bash git fetch upstream git checkout master git merge upstream/master ``` ### Writing documentation Ignite uses [Google style](https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#type-annotations) for formatting docstrings, specially from an example of `Google style with Python 3 type annotations` and - [`.. versionadded::`] directive for adding new classes, class methods, functions, - [`.. versionchanged::`] directive for adding new arguments, changing internal behaviours, fixing bugs and - [`.. deprecated::`] directive for deprecations. Examples: ``versionadded`` usage [link](https://github.com/pytorch/ignite/blob/52c69251dd9d97c32da1df0477ec3854e5702029/ignite/handlers/state_param_scheduler.py#L24), ``versionchanged`` usage [link](https://github.com/pytorch/ignite/blob/d2020e4e253ac1455a757c2db895c68ccfd2b958/ignite/metrics/metric.py#L281-L282) Length of line inside docstrings block must be limited to 120 characters. [`.. versionadded::`]: https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionadded [`.. versionchanged::`]: https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionchanged [`.. deprecated::`]: https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-deprecated #### Local documentation building and deploying Please, follow the instructions to build and deploy the documentation locally. ##### Install requirements ```bash cd docs pip install -r requirements.txt ``` [Katex](https://katex.org/) is also needed to build the documentation. To install katex, you need to have [nodejs](https://nodejs.org/en/) installed. Optionaly, we can install `nodejs/npm` using conda: `conda install nodejs`. Then you can install katex with [npm](https://www.npmjs.com/) or [yarn](https://yarnpkg.com/) (if installed). ```bash npm install -g katex # or if you use yarn package manager yarn global add katex ``` ##### Build ```bash cd docs make html ``` ##### Local deployment Please, use python 3.X for the command below: ```bash cd docs/build python -m http.server # python -m http.server 1234 ``` Then open the browser at `localhost:` (e.g. `localhost:1234`) and click to `html` folder. #### Examples testing (doctests) PyTorch-Ignite uses **Sphinx directives**. Every code that needs to be tested should be under `.. testcode::` and expected output should be under `.. testoutput::`. For example: ```py .. testcode:: def process_function(engine, batch): y_pred, y = batch return y_pred, y engine = Engine(process_function) metric = SSIM(data_range=1.0) metric.attach(engine, 'ssim') preds = torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = engine.run([[preds, target]]) print(state.metrics['ssim']) .. testoutput:: 0.9218971... ``` If the floating point results are needed for assertion and the results can vary per operating systems and PyTorch versions, we could assert the results up to 4 or 6 decimal places and match the rest of the results with `...`. Learn more about `sphinx.ext.doctest` in [the official documentation](https://www.sphinx-doc.org/en/master/usage/extensions/doctest.html). To make writing doctests easy, there are some configuratons defined in `conf.py`. Search `doctest_global_setup` in [conf.py](docs/source/conf.py) to see which variables and functions are available. To run doctests locally: ```sh cd docs make html && make doctest ``` ignite-0.5.1/LICENSE000066400000000000000000000027671465426447700140400ustar00rootroot00000000000000BSD 3-Clause License Copyright (c) 2018-present, PyTorch-Ignite team All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ignite-0.5.1/README.md000066400000000000000000000652721465426447700143120ustar00rootroot00000000000000
| ![image](https://img.shields.io/badge/-Tests:-black?style=flat-square) [![image](https://github.com/pytorch/ignite/actions/workflows/unit-tests.yml/badge.svg?branch=master)](https://github.com/pytorch/ignite/actions/workflows/unit-tests.yml) [![image](https://github.com/pytorch/ignite/actions/workflows/gpu-tests.yml/badge.svg)](https://github.com/pytorch/ignite/actions/workflows/gpu-tests.yml) [![image](https://codecov.io/gh/pytorch/ignite/branch/master/graph/badge.svg)](https://codecov.io/gh/pytorch/ignite) [![image](https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fpytorch-ignite%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://pytorch.org/ignite/index.html) | |:--- | ![image](https://img.shields.io/badge/-Stable%20Releases:-black?style=flat-square) [![image](https://anaconda.org/pytorch/ignite/badges/version.svg)](https://anaconda.org/pytorch/ignite) ・ [![image](https://img.shields.io/badge/dynamic/json.svg?label=PyPI&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fpytorch-ignite%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://pypi.org/project/pytorch-ignite/) [![image](https://static.pepy.tech/badge/pytorch-ignite)](https://pepy.tech/project/pytorch-ignite) ・ [![image](https://img.shields.io/badge/docker-hub-blue)](https://hub.docker.com/u/pytorchignite) | | ![image](https://img.shields.io/badge/-Nightly%20Releases:-black?style=flat-square) [![image](https://anaconda.org/pytorch-nightly/ignite/badges/version.svg)](https://anaconda.org/pytorch-nightly/ignite) [![image](https://img.shields.io/badge/PyPI-pre%20releases-brightgreen)](https://pypi.org/project/pytorch-ignite/#history)| | ![image](https://img.shields.io/badge/-Community:-black?style=flat-square) [![Twitter](https://img.shields.io/badge/news-twitter-blue)](https://twitter.com/pytorch_ignite) [![discord](https://img.shields.io/badge/chat-discord-blue?logo=discord)](https://discord.gg/djZtm3EmKj) [![numfocus](https://img.shields.io/badge/NumFOCUS-affiliated%20project-green)](https://numfocus.org/sponsored-projects/affiliated-projects) | | ![image](https://img.shields.io/badge/-Supported_PyTorch/Python_versions:-black?style=flat-square) [![link](https://img.shields.io/badge/-check_here-blue)](https://github.com/pytorch/ignite/actions?query=workflow%3A%22PyTorch+version+tests%22)|
## TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
PyTorch-Ignite teaser _Click on the image to see complete code_
### Features - [Less code than pure PyTorch](https://raw.githubusercontent.com/pytorch/ignite/master/assets/ignite_vs_bare_pytorch.png) while ensuring maximum control and simplicity - Library approach and no program's control inversion - _Use ignite where and when you need_ - Extensible API for metrics, experiment managers, and other components # Table of Contents - [Table of Contents](#table-of-contents) - [Why Ignite?](#why-ignite) - [Simplified training and validation loop](#simplified-training-and-validation-loop) - [Power of Events & Handlers](#power-of-events--handlers) - [Execute any number of functions whenever you wish](#execute-any-number-of-functions-whenever-you-wish) - [Built-in events filtering](#built-in-events-filtering) - [Stack events to share some actions](#stack-events-to-share-some-actions) - [Custom events to go beyond standard events](#custom-events-to-go-beyond-standard-events) - [Out-of-the-box metrics](#out-of-the-box-metrics) - [Installation](#installation) - [Nightly releases](#nightly-releases) - [Docker Images](#docker-images) - [Using pre-built images](#using-pre-built-images) - [Getting Started](#getting-started) - [Documentation](#documentation) - [Additional Materials](#additional-materials) - [Examples](#examples) - [Tutorials](#tutorials) - [Reproducible Training Examples](#reproducible-training-examples) - [Communication](#communication) - [User feedback](#user-feedback) - [Contributing](#contributing) - [Projects using Ignite](#projects-using-ignite) - [Citing Ignite](#citing-ignite) - [About the team & Disclaimer](#about-the-team--disclaimer) # Why Ignite? Ignite is a **library** that provides three high-level features: - Extremely simple engine and event system - Out-of-the-box metrics to easily evaluate models - Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics ## Simplified training and validation loop No more coding `for/while` loops on epochs and iterations. Users instantiate engines and run them.
Example ```python from ignite.engine import Engine, Events, create_supervised_evaluator from ignite.metrics import Accuracy # Setup training engine: def train_step(engine, batch): # Users can do whatever they need on a single iteration # Eg. forward/backward pass for any number of models, optimizers, etc # ... trainer = Engine(train_step) # Setup single model evaluation engine evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}) def validation(): state = evaluator.run(validation_data_loader) # print computed metrics print(trainer.state.epoch, state.metrics) # Run model's validation at the end of each epoch trainer.add_event_handler(Events.EPOCH_COMPLETED, validation) # Start the training trainer.run(training_data_loader, max_epochs=100) ```
## Power of Events & Handlers The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g. lambda, simple function, class method, etc. Thus, we do not require to inherit from an interface and override its abstract methods which could unnecessarily bulk up your code and its complexity. ### Execute any number of functions whenever you wish
Examples ```python trainer.add_event_handler(Events.STARTED, lambda _: print("Start training")) # attach handler with args, kwargs mydata = [1, 2, 3, 4] logger = ... def on_training_ended(data): print(f"Training is ended. mydata={data}") # User can use variables from another scope logger.info("Training is ended") trainer.add_event_handler(Events.COMPLETED, on_training_ended, mydata) # call any number of functions on a single event trainer.add_event_handler(Events.COMPLETED, lambda engine: print(engine.state.times)) @trainer.on(Events.ITERATION_COMPLETED) def log_something(engine): print(engine.state.output) ```
### Built-in events filtering
Examples ```python # run the validation every 5 epochs @trainer.on(Events.EPOCH_COMPLETED(every=5)) def run_validation(): # run validation # change some training variable once on 20th epoch @trainer.on(Events.EPOCH_STARTED(once=20)) def change_training_variable(): # ... # Trigger handler with customly defined frequency @trainer.on(Events.ITERATION_COMPLETED(event_filter=first_x_iters)) def log_gradients(): # ... ```
### Stack events to share some actions
Examples Events can be stacked together to enable multiple calls: ```python @trainer.on(Events.COMPLETED | Events.EPOCH_COMPLETED(every=10)) def run_validation(): # ... ```
### Custom events to go beyond standard events
Examples Custom events related to backward and optimizer step calls: ```python from ignite.engine import EventEnum class BackpropEvents(EventEnum): BACKWARD_STARTED = 'backward_started' BACKWARD_COMPLETED = 'backward_completed' OPTIM_STEP_COMPLETED = 'optim_step_completed' def update(engine, batch): # ... loss = criterion(y_pred, y) engine.fire_event(BackpropEvents.BACKWARD_STARTED) loss.backward() engine.fire_event(BackpropEvents.BACKWARD_COMPLETED) optimizer.step() engine.fire_event(BackpropEvents.OPTIM_STEP_COMPLETED) # ... trainer = Engine(update) trainer.register_events(*BackpropEvents) @trainer.on(BackpropEvents.BACKWARD_STARTED) def function_before_backprop(engine): # ... ``` - Complete snippet is found [here](https://pytorch.org/ignite/faq.html#creating-custom-events-based-on-forward-backward-pass). - Another use-case of custom events: [trainer for Truncated Backprop Through Time](https://pytorch.org/ignite/contrib/engines.html#ignite.contrib.engines.create_supervised_tbptt_trainer).
## Out-of-the-box metrics - [Metrics](https://pytorch.org/ignite/metrics.html#complete-list-of-metrics) for various tasks: Precision, Recall, Accuracy, Confusion Matrix, IoU etc, ~20 [regression metrics](https://pytorch.org/ignite/metrics.html#complete-list-of-metrics). - Users can also [compose their metrics](https://pytorch.org/ignite/metrics.html#metric-arithmetics) with ease from existing ones using arithmetic operations or torch methods.
Example ```python precision = Precision(average=False) recall = Recall(average=False) F1_per_class = (precision * recall * 2 / (precision + recall)) F1_mean = F1_per_class.mean() # torch mean method F1_mean.attach(engine, "F1") ```
# Installation From [pip](https://pypi.org/project/pytorch-ignite/): ```bash pip install pytorch-ignite ``` From [conda](https://anaconda.org/pytorch/ignite): ```bash conda install ignite -c pytorch ``` From source: ```bash pip install git+https://github.com/pytorch/ignite ``` ## Nightly releases From pip: ```bash pip install --pre pytorch-ignite ``` From conda (this suggests to install [pytorch nightly release](https://anaconda.org/pytorch-nightly/pytorch) instead of stable version as dependency): ```bash conda install ignite -c pytorch-nightly ``` ## Docker Images ### Using pre-built images Pull a pre-built docker image from [our Docker Hub](https://hub.docker.com/u/pytorchignite) and run it with docker v19.03+. ```bash docker run --gpus all -it -v $PWD:/workspace/project --network=host --shm-size 16G pytorchignite/base:latest /bin/bash ```
List of available pre-built images Base - `pytorchignite/base:latest` - `pytorchignite/apex:latest` - `pytorchignite/hvd-base:latest` - `pytorchignite/hvd-apex:latest` - `pytorchignite/msdp-apex:latest` Vision: - `pytorchignite/vision:latest` - `pytorchignite/hvd-vision:latest` - `pytorchignite/apex-vision:latest` - `pytorchignite/hvd-apex-vision:latest` - `pytorchignite/msdp-apex-vision:latest` NLP: - `pytorchignite/nlp:latest` - `pytorchignite/hvd-nlp:latest` - `pytorchignite/apex-nlp:latest` - `pytorchignite/hvd-apex-nlp:latest` - `pytorchignite/msdp-apex-nlp:latest`
For more details, see [here](docker). # Getting Started Few pointers to get you started: - [Quick Start Guide: Essentials of getting a project up and running](https://pytorch-ignite.ai/tutorials/beginner/01-getting-started/) - [Concepts of the library: Engine, Events & Handlers, State, Metrics](https://pytorch-ignite.ai/concepts/) - Full-featured template examples (coming soon) # Documentation - Stable API documentation and an overview of the library: https://pytorch.org/ignite/ - Development version API documentation: https://pytorch.org/ignite/master/ - [FAQ](https://pytorch.org/ignite/faq.html), ["Questions on Github"](https://github.com/pytorch/ignite/issues?q=is%3Aissue+label%3Aquestion+) and ["Questions on Discuss.PyTorch"](https://discuss.pytorch.org/c/ignite). - [Project's Roadmap](https://github.com/pytorch/ignite/wiki/Roadmap) ## Additional Materials - [Distributed Training Made Easy with PyTorch-Ignite](https://labs.quansight.org/blog/2021/06/distributed-made-easy-with-ignite/) - [PyTorch Ecosystem Day 2021 Breakout session presentation](https://colab.research.google.com/drive/1qhUgWQ0N2U71IVShLpocyeY4AhlDCPRd) - [Tutorial blog post about PyTorch-Ignite](https://labs.quansight.org/blog/2020/09/pytorch-ignite/) - [8 Creators and Core Contributors Talk About Their Model Training Libraries From PyTorch Ecosystem](https://neptune.ai/blog/model-training-libraries-pytorch-ecosystem?utm_source=reddit&utm_medium=post&utm_campaign=blog-model-training-libraries-pytorch-ecosystem) - Ignite Posters from Pytorch Developer Conferences: - [2021](https://drive.google.com/file/d/1YXrkJIepPk_KltSG1ZfWRtA5IRgPFz_U) - [2019](https://drive.google.com/open?id=1bqIl-EM6GCCCoSixFZxhIbuF25F2qTZg) - [2018](https://drive.google.com/open?id=1_2vzBJ0KeCjGv1srojMHiJRvceSVbVR5) # Examples ## Tutorials - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb) [Text Classification using Convolutional Neural Networks](https://github.com/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb) [Variational Auto Encoders](https://github.com/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb) [Convolutional Neural Networks for Classifying Fashion-MNIST Dataset](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb) [Training Cycle-GAN on Horses to Zebras with Nvidia/Apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb) - [ logs on W&B](https://app.wandb.ai/vfdev-5/ignite-cyclegan-apex) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb) [Another training Cycle-GAN on Horses to Zebras with Native Torch CUDA AMP](https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb) - [logs on W&B](https://app.wandb.ai/vfdev-5/ignite-cyclegan-torch-amp) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb) [Finetuning EfficientNet-B0 on CIFAR100](https://github.com/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb) [Hyperparameters tuning with Ax](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb) [Basic example of LR finder on MNIST](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb) [Benchmark mixed precision training on Cifar100: torch.cuda.amp vs nvidia/apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb) [MNIST training on a single TPU](https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1E9zJrptnLJ_PKhmaP5Vhb6DTVRvyrKHx) [CIFAR10 Training on multiple TPUs](https://github.com/pytorch/ignite/tree/master/examples/cifar10) - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/HandlersTimeProfiler_MNIST.ipynb) [Basic example of handlers time profiling on MNIST training example](https://github.com/pytorch/ignite/blob/master/examples/notebooks/HandlersTimeProfiler_MNIST.ipynb) ## Reproducible Training Examples Inspired by [torchvision/references](https://github.com/pytorch/vision/tree/master/references), we provide several reproducible baselines for vision tasks: - [ImageNet](examples/references/classification/imagenet) - logs on Ignite Trains server coming soon ... - [Pascal VOC2012](examples/references/segmentation/pascal_voc2012) - logs on Ignite Trains server coming soon ... Features: - Distributed training: native or horovod and using [PyTorch native AMP](https://pytorch.org/docs/stable/notes/amp_examples.html) ## Code-Generator application The easiest way to create your training scripts with PyTorch-Ignite: - https://code-generator.pytorch-ignite.ai/ # Communication - [GitHub issues](https://github.com/pytorch/ignite/issues): questions, bug reports, feature requests, etc. - [Discuss.PyTorch](https://discuss.pytorch.org/c/ignite), category "Ignite". - [PyTorch-Ignite Discord Server](https://discord.gg/djZtm3EmKj): to chat with the community - [GitHub Discussions](https://github.com/pytorch/ignite/discussions): general library-related discussions, ideas, Q&A, etc. ## User feedback We have created a form for ["user feedback"](https://github.com/pytorch/ignite/issues/new/choose). We appreciate any type of feedback, and this is how we would like to see our community: - If you like the project and want to say thanks, this the right place. - If you do not like something, please, share it with us, and we can see how to improve it. Thank you! # Contributing Please see the [contribution guidelines](https://github.com/pytorch/ignite/blob/master/CONTRIBUTING.md) for more information. As always, PRs are welcome :) # Projects using Ignite
Research papers - [BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning](https://github.com/BlackHC/BatchBALD) - [A Model to Search for Synthesizable Molecules](https://github.com/john-bradshaw/molecule-chef) - [Localised Generative Flows](https://github.com/jrmcornish/lgf) - [Extracting T Cell Function and Differentiation Characteristics from the Biomedical Literature](https://github.com/hammerlab/t-cell-relation-extraction) - [Variational Information Distillation for Knowledge Transfer](https://github.com/amzn/xfer/tree/master/var_info_distil) - [XPersona: Evaluating Multilingual Personalized Chatbot](https://github.com/HLTCHKUST/Xpersona) - [CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in MPR Images](https://github.com/ucuapps/CoronaryArteryStenosisScoreClassification) - [Bridging Text and Video: A Universal Multimodal Transformer for Video-Audio Scene-Aware Dialog](https://github.com/ictnlp/DSTC8-AVSD) - [Adversarial Decomposition of Text Representation](https://github.com/text-machine-lab/adversarial_decomposition) - [Uncertainty Estimation Using a Single Deep Deterministic Neural Network](https://github.com/y0ast/deterministic-uncertainty-quantification) - [DeepSphere: a graph-based spherical CNN](https://github.com/deepsphere/deepsphere-pytorch) - [Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment](https://github.com/lidq92/LinearityIQA) - [Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training](https://github.com/lidq92/MDTVSFA) - [Deep Signature Transforms](https://github.com/patrick-kidger/Deep-Signature-Transforms) - [Neural CDEs for Long Time-Series via the Log-ODE Method](https://github.com/jambo6/neuralCDEs-via-logODEs) - [Volumetric Grasping Network](https://github.com/ethz-asl/vgn) - [Mood Classification using Listening Data](https://github.com/fdlm/listening-moods) - [Deterministic Uncertainty Estimation (DUE)](https://github.com/y0ast/DUE) - [PyTorch-Hebbian: facilitating local learning in a deep learning framework](https://github.com/Joxis/pytorch-hebbian) - [Stochastic Weight Matrix-Based Regularization Methods for Deep Neural Networks](https://github.com/rpatrik96/lod-wmm-2019) - [Learning explanations that are hard to vary](https://github.com/gibipara92/learning-explanations-hard-to-vary) - [The role of disentanglement in generalisation](https://github.com/mmrl/disent-and-gen) - [A Probabilistic Programming Approach to Protein Structure Superposition](https://github.com/LysSanzMoreta/Theseus-PP) - [PadChest: A large chest x-ray image dataset with multi-label annotated reports](https://github.com/auriml/Rx-thorax-automatic-captioning)
Blog articles, tutorials, books - [State-of-the-Art Conversational AI with Transfer Learning](https://github.com/huggingface/transfer-learning-conv-ai) - [Tutorial on Transfer Learning in NLP held at NAACL 2019](https://github.com/huggingface/naacl_transfer_learning_tutorial) - [Deep-Reinforcement-Learning-Hands-On-Second-Edition, published by Packt](https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition) - [Once Upon a Repository: How to Write Readable, Maintainable Code with PyTorch](https://towardsdatascience.com/once-upon-a-repository-how-to-write-readable-maintainable-code-with-pytorch-951f03f6a829) - [The Hero Rises: Build Your Own SSD](https://allegro.ai/blog/the-hero-rises-build-your-own-ssd/) - [Using Optuna to Optimize PyTorch Ignite Hyperparameters](https://medium.com/pytorch/using-optuna-to-optimize-pytorch-ignite-hyperparameters-626ffe6d4783) - [PyTorch Igniteβ€Š-β€ŠClassifying Tiny ImageNet with EfficientNet](https://towardsdatascience.com/pytorch-ignite-classifying-tiny-imagenet-with-efficientnet-e5b1768e5e8f)
Toolkits - [Project MONAI - AI Toolkit for Healthcare Imaging](https://github.com/Project-MONAI/MONAI) - [DeepSeismic - Deep Learning for Seismic Imaging and Interpretation](https://github.com/microsoft/seismic-deeplearning) - [Nussl - a flexible, object-oriented Python audio source separation library](https://github.com/nussl/nussl) - [PyTorch Adapt - A fully featured and modular domain adaptation library](https://github.com/KevinMusgrave/pytorch-adapt) - [gnina-torch: PyTorch implementation of GNINA scoring function](https://github.com/RMeli/gnina-torch)
Others - [Implementation of "Attention is All You Need" paper](https://github.com/akurniawan/pytorch-transformer) - [Implementation of DropBlock: A regularization method for convolutional networks in PyTorch](https://github.com/miguelvr/dropblock) - [Kaggle Kuzushiji Recognition: 2nd place solution](https://github.com/lopuhin/kaggle-kuzushiji-2019) - [Unsupervised Data Augmentation experiments in PyTorch](https://github.com/vfdev-5/UDA-pytorch) - [Hyperparameters tuning with Optuna](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py) - [Logging with ChainerUI](https://chainerui.readthedocs.io/en/latest/reference/module.html#external-library-support) - [FixMatch experiments in PyTorch and Ignite (CTA dataaug policy)](https://github.com/vfdev-5/FixMatch-pytorch) - [Kaggle Birdcall Identification Competition: 1st place solution](https://github.com/ryanwongsa/kaggle-birdsong-recognition) - [Logging with Aim - An open-source experiment tracker](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-pytorch-ignite)
See other projects at ["Used by"](https://github.com/pytorch/ignite/network/dependents?package_id=UGFja2FnZS02NzI5ODEwNA%3D%3D) If your project implements a paper, represents other use-cases not covered in our official tutorials, Kaggle competition's code, or just your code presents interesting results and uses Ignite. We would like to add your project to this list, so please send a PR with brief description of the project. # Citing Ignite If you use PyTorch-Ignite in a scientific publication, we would appreciate citations to our project. ``` @misc{pytorch-ignite, author = {V. Fomin and J. Anmol and S. Desroziers and J. Kriss and A. Tejani}, title = {High-level library to help with training neural networks in PyTorch}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/pytorch/ignite}}, } ``` # About the team & Disclaimer PyTorch-Ignite is a [NumFOCUS Affiliated Project](https://www.numfocus.org/), operated and maintained by volunteers in the PyTorch community in their capacities as individuals (and not as representatives of their employers). See the ["About us"](https://pytorch-ignite.ai/about/community/#about-us) page for a list of core contributors. For usage questions and issues, please see the various channels [here](#communication). For all other questions and inquiries, please send an email to contact@pytorch-ignite.ai. ignite-0.5.1/assets/000077500000000000000000000000001465426447700143215ustar00rootroot00000000000000ignite-0.5.1/assets/ignite_vs_bare_pytorch.png000066400000000000000000015362141465426447700215730ustar00rootroot00000000000000‰PNG  IHDR φJ eΔx (iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήDιUz l„$PBH"vdQΑ΅ bΑŠŠ¨Έ@velΨP”u±`CεM@WΏχήχΞχΝ½Μ9sΞΉs'wPb‹DY¨ΩΒ› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πŸiTXtXML:com.adobe.xmp 2806 1610 4uCpiDOT%(%%‰HtM@IDATxμέ ”Uε}βIΖ„BœΒˆC` ‚@$N‡€Bπ†x Τͺ ώ$.SC–]°κ/M’‹Π₯‰ϊWњhƒw%π£\ZΘXΔB :\30Qύ?ηώœϋήϋμsΟZ0ϋμΛsy=ΟΎœgΎη9§455}&~@@@@@*8p`°ΆΫwξͺ’ZSUΏϊ5τ &ΉyσfΏ“&=@@@@¨RSμ­–§Ϊ € € € €T±½Uάψ>Vΐ^1I @@@@‚φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ@@@@@ κμ­Ί&ΟK… μΝ +‰"€ € € € PΥφVuσSy@@@@ͺS€ΐήκlwΏkM`―ί’€‡ € € € €φ*N qό]Ί~μ`S―Γj}κ^-Ϋ”¦Šu-š6sšϊœ-ν~λ9Νυς4;²@@@@ μ­΄-N}μ-Ž;Ήz`όά»G"€ € € €…¨Žΐή^cτ©£υy£zpΣ"-XψfΞΎ=š§λΊ«Lπθ‘Obiu>Wn^`D—ΔΦ±TXΊ1š>ϋΥrέΣͺG6_ϋΣ– ».»ν;jξΩ£M+ΏO«Ά¦έ™  € € € €$@`o5f«R½ŒŸ±8kΖΟ Nv € € € €€7κμm˜ 3V7cΤώήKšχτ"oZΦQυcΎ₯ι_»ΨZZλjυ4\Ύή6ŒPsƒ ώ΄C:³―.=<ΨΎ₯ŸsΣzHΐΐ½kεczζ΅΅‘—αίv`―™ιφ3ΣνΞ„]<Ύ΄¦·-ž«η—nr‘₯šφΣ›Υ'pā·5Ǐ*KX―Ω±»&άω}θΫΥ,› εGL²Ou ƒ@@@@ °·4Ϋ₯άJU½ŒŸ;λvŒŸ3~° € € € ³½9šκΖιφΩSό φ£\nΣ°p₯£ζhμzl“^Έ6Η₯Ψ»Μφϊ [?κMΏ<$½ε7s΅`Ήσΐή†±wiκψΑΑ’ξZω” H~3Τι^ΨΑΔ»W?£ω/¬J·+λ@@@@*D€ΐή iΘ"Wƒΐ^ ΐψ9γηΊ » € € € €Δ*3°·»jMۏ ΥΤ¬Ξ03φšωuύ›±7f(Y±e=c―U»z;–>¬_.ή`­Κ_`omσ­šyΥΘ`^›^›£WfŸs7T°zMόφ}v~ΰ•ΛY„λZ4}φ4Υ=²NΟ>πs1ioƒ@@@@ rμ­άΆ-dΝΚ2°—ρso]„ρsΖΟ½υŽB@@@\ δ!°wˆ&έ6VηΤHŸ|¬3zφUο:3σ«kγβΧτϋΣ©eτπ`ΰm σ—ŸΧΒΦΔYYΥrνW5hΰ`u;Ϋθ“jΝοC¬Σ{­ ΅jCš`Ο†M7ZMύ‚ѝ&Ο£jΫΎQkWΕS―Po³&]ΰνΐ17jψΑκΣλά(βρ#»΄ν­z}i–™_­½tιG-ε…h=Β³υš²7Ί$»fμuξΩ]ΝΧ^― λNΧ‰Ž“:£{“ι/!€φ}ΫuψθΗQ±šΞή5/iΩΫ)ΪΏ—™5yVhΦδγΫ—κ‰_ό›Ϊ£Gf_hώζ]6¨§Ωρ°ZŸΊWΛ»dφ$Ψ@@@@ Œμ-£Ζ*α’Ίμeόό‘§•p‹f(γη‡ρσ =„M € € € €€oώφ6˜Ωqg„fΗuVΚ=ZτΠ΅v_xοΊKuύίέ¬Ζσ½eιcZ°xmά΅CԍS'gεΫπ"9πΆQγn»I#ϋ‚:Szo‘~υτ+ιE£zι‡S§\bk­zθΨν:xšϊτ ΉlωΝ\-X‰vΝΨλΦ³IS~z·8€Ψ±x~Ή4RŽΨA=š§λŽ«šƒ+’Ϋ8Ά_Ί₯Ζρwιϊ±ƒƒ›·™<žO‘GΊcY € € € P~φ–_›•b‰]φ2~ςμ5=‘ρσR<) € € € P1ώφΪΑ‘fΖά-+WκΔω#5Έol&άmfΦέ£έ†iX8˜vΣk?Ρ‹+·ΤξχχίΧΘ~~?‡΅eυz23φvλ‰œYΤΜͺ:˚UuˆΏN5šY}ƒ?GΆkν[λuμ¬Ύ:*2;phSbΠgΛ-s4z`,¨wΧ†•Ϊ±ϋΊτξ―‘ΓšΒ J»V>¦g^‹&Žn΄κœ˜~t =.ΉIS§ŒR—cfέHύ2¦ΥUmο,ΠcΟ-ΙΈWʍV=L΅lΑ&]4%,}`΅ζψ …ζΚMΨλΕσ’ρ7ͺοη:λΔ§:£ΗP5υ ΅sΫΦ·΅χιΤSΝτρŸš\·X«· ½ΆώzΝ?hΘ~Α5[L`Ήυ£ξΠτΛ‡χ» ­b²ˆ € € € P"φ–HC”y1\φƍΑ2~žkσ3~Ξψy}ˆγ@@@@RΘk`ορν‹υΰ/^”Ύnfρ½"4›ξ+τΓ‡%™Μ³B3ϋξ]ύŒžxa•ΤJΝΌm’jƒRmj}vž–mˆqš ίΫΎcfΦ zοUσΙώ7‚{֏ΊΥeŽ ωΩ¨Wψ½Ρ2Y3§Ž§™0£nΣd}ηζρκάwZŸŸ―eo‡BW«jΝ±7šc»·o ߝ«ΝΑ儬ΑXΏƒBλΗ|KΣΏvqB†™_Άo~Uσž Ωdή3a«U©MKΈO§Mώ‘F‡Ν7šμW‚Ψi{}π¬mΎU3― ΅ε¦Χζ˜€οX{$”6ξεΘ©s4nH(@;~vαΈέΎ¨5Τ3MuΰΗο6L›)@@@@Š&@`oΡθ+*γ\{?Ο½+0~Ξψy@@@@Θk`ο‘ /ι‘gƒxo7AΌ°ΛC˜uf6ΩΊM›=M}λή3ϋ=½H]υ]]Ρά?¨=6ψ*όŸ ži„ƒΏGΦιΩ~fΣΘ©h‚:Οξ΄mι\=Ώx“}”šΏ9G— }Fς μ`·ΫΜΘ;?ŌΌφ>ο,˜£…kR ”Y±vϊq…πϊ’aŒ&]z‘:wœT‡ƒ4jj:λΟmokα4³ gJΓͺG °wΩCχ©υœλLπσΨPπσΎV=ϊΠ|νWκΐ^ΫΚ«§=s›];οXr¦Κ&lλ5N·Οšκ£αώ˜°/@@@@*H€ΐή jΜ"V%—ΐήθΈ5.ΛψΉΛΖdόάγηŽ˜Ψ @@@(όφF$ΜμΌ3B³σΖ_cΑ‘‘uvξ–ίόD –oK€jΤδοέ£¦σ«Mΰι#&πtg½&~ϋn ;Ώkpέ ³nU ΪΧϊ±ƒE#y6ΎνGj ΟF+VΫΎκΤΙ:0°Ψ©‹ΊΥ–R—Ιl°^#uQfYυˆωš™’οόΎFφ ¬_0[――9'E;ψγi·½eΦ(. € € € PFφ–Qc•pQs 썌%3~^Β-lρs&Ζ°Ί‹ € € € €@> Ψ«Ί~φνj¬‹ΝΞ+kΦΧH°mμSγmZυψ}Z±5±κ±`ΰXΰ©μ{Ψwoqv°h$/©I“gί­&S&§?iM­½XϊNS-‘ύ¬zΔ|₯Ϊα7iζυ£Bέ³B?όΩouεχξΣΰΈk<νΆJ띂lδΤ9fΦζΠ¬ΜnŽ‹$U{‰©γ”PΛΊ #β7 € € € €@F{3ς°Ρ‘€/½ŒŸ;Τ.ςnŒŸ€ρσ"χC²G@@@ͺ(P`o, 76θ“Ό.Ψ»ΗΜΖϋC3ob4j¬{4΄W`}dΖ^;°WZϋΤmZ΄)ώ8;XΤΞ?6ϋ―™wε«Ϊχ‘tjό‘ΡW™|l[£wwŒ‹.Xz±τ£[s[θ5D-C/P§ŽGιœZS£?z_­kœmΥ#ζ800+ς}fVδΐςQ΅>υŒΞϊκΫΑ«§έVnt‡^σš4²_ €Ϊ²x,uW;_ίΫ0X*ώC@@@(%{K©5Κ·,ώφ&•gžƒρσhaό­ΪiΦ™`ίΑΑ`ί=ZςΠ΅z_όa=Fέ‘;.\ Ϊ «ήm‚U»šυζΈΜqGβsόΚώͺ΄ τΘ³KšmΗϊ1ίτ―]œm·ΈνΗ7ΏͺŸ|#n£i{₯ΝΣuΗUΝΑdmmΥώ³«)h °φΗΣ°έdϊΐ‹I} uMβΚω »Τ»¦\Ϋ8ώ.]?vppΫ6όΌΛΐΰ”‰²@@@@ dμ-Ω¦)«‚'°—ρσH'aό<ρo(™ψߌŸΗ{π @@@(u’ μqΓ?jBhZXνn}Jσ_~3ή―nŒn}ƒzΦΫ€ΝfqδΤ97€gpߍ/ΟΡ+­»ƒΛ‘†^σ3›kŸΰΛX`oόqn‚H#ιFΧ΅hΪμi ζ°―U>4_ϋ£s[θΡ|« ¨ι*‘vΨ:οιEŽ ξœ!°78CD4€ΪN:ΨλgKLρ”PρήΥΟθ‰VΩ™₯_ξ5N·Οš’@/8Ύ}©žψΕΏ©=ύήI[šΏ9G— }ΨΜH|―–Ή›π7)=V € € € €”Ά½₯έ>εRΊBφ2~žά+?gό<ΉW°@@@(’ μ­½δ&͜2*€jξF˜/Ίό»ΊbTΠΛVhήΓΏ o6ŽΏΫΜΆΪ\κ|ΠuΖ~.Υ7ξΏYœZcφ6ŒΉCSΏšΙWGΦιω~”Ÿo7_η5΄Χ ­;]΄g£&ο5Θc—=πOZλuφίXΑ£K=uzτUφ…Ϋ·iΏ—ό3φJφlΊ±RΔ{}ρ΄Κp|λb=ψψ‹±¬2.f ΎΟΜΐΨ)2›sΖbM`φt˜]X“©Ď` @@@@ Μμ-σ,‘β2°—ρσԍΞψyj—ψ΅ŒŸΗ{π @@@(m’ μ•š4eφέPFΫ·N‹ώίB­ύ3μWΠΈζΑQΝΈvν™|Νmο-ΦΧ_Τ‘ξ-ϊΫ‰Σ4 Wτ0ف½ΑYhM@ξΰ`@ΩηΨv­^ΎJοχοτqνy:·{½ϊ^Ψ€ †τWν±uzφώŸkg,©Έ₯–[~€ΡΟ ­;°I«Χm՟T£N:΄γ"mή·{iΎ°‚jΑ±ΛΉO­qndΣ>M‘φ ΦΒή―QWζκ™Π–»7¬Π¦ίνΡΙN§©“Nθπ–UΪ™&hΉaμ]š:>ΤGv­|JΟΌ–0γsuϋλΪ\Νœ&=V#€ € € €”Ύ½₯ίFεPΒBφ2~^δΑψΉ?/r${@@@¨{&hƌ«ΥΝΖ‚hcŸφΊΘ,·±uR3kοT3ko— M˜•χY3+ο~kŸο5£cΏΦ¦ΈE;―ΰ†ώtλmW«wά^)^d μU―kΖmWλxτΆΕsυόt³ύ&ξ]ΔΧVΫ₯›υΦž •4av\<›Ώ9G— κ™"³ε₯šφΣ›Υ'p䁷5ǏjwΚTμ•έ5αΞοkDίf₯€lοΓ2 € € € €@₯ Ψ[i-ZœϊΈμ΅Ζ`ccՌŸ3~žΠ3ό=‚ρσ+^"€ € € €(ΰ`―™quϊμTo°φΎυœžψυr³d&g™™qΝΜΉ{ί1λž‹_ΧφΞ=φά’(o퐯λςqW¨Od&έθiΗκ—΄π…Ej·ΦEŽΏUcǎTmdEπw›6ά¦sG οΖΚdνT7D&MԈA}¬•±Εφ}ΫυΑζ7υϊβU±•©–ϊΣ”±-Π7>(uγk?Ρ+¦ %ΣkŒnuC8Θy—–<τOZ4Σπ3«ς±Y••bΏœ=λΥ|ΥD5 ψKuν|Ίœ“Λf9τΪh—ϊXΏ`Ž^_“%΄·i²fή<>ΨgΪ7/ΤΌ'_‰eΖ € € € €@Ε Ψ[±M[ЊΉμeόœρsΖΟ zŽ’ € € € PŽώφϊ¨Π0ΌEη}ξLιd Ρ?ιΐφUΪ™hša]“†θ­Σk€ŽiοήΤξ# ϋ€{ΩΛΫ7t¬:Nκ㏏θπΎ ڝ-ΟtιUϋϊbxšρ[M`ypζ=+υθΟώ5nfηΔ&}ˏΤ2π\³ϊ°V=~―VlMάƒΧ € € € €•(@`o%Άjαλδ:°ΧΗ"2~ξ#f1’bόΌκδ‰ € € €”…@Iφ–… …,9ο5£›rVλSχjΩ¦4Eμ5ΞΜP<%<“σ3»tlΦθ4G°@@@@ B쭐†,r5ŠΨ[δͺ“}™ 0~^¦ G±@@@@ ͺμ­ͺ榲 € € € €  °—~ΰ‡½~(’ € € € €ΨφΪ,#€ € € € €@UΨ[͜χJΨ›wb2@@@@@ κμ­Ί&§Β € € € € @`/}ΐ{ύP$ @@@@°μ΅5XF@@@@ͺ °·*š9ο•$°7οΔd€ € € € €@Υ Ψ[uMN…@@@@@€ΐ^ϊ€φϊ‘H € € € € ` Ψkk°Œ € € € €U!@`oU4sή+I`oή‰Ι@@@@ͺ °·κšœ #€ € € € €½τ?μυC‘4@@@@@ΐ °ΧΦ`@@@@ͺB€ΐήͺhζΌW’ΐήΌ“ € € € €U'@`oΥ59F@@@@{ι~Ψλ‡"i € € € € €€-@`―­Α2 € € € €T…½UΡΜy―$½y'&@@@@ͺN€ΐήͺkr*Œ € € € €φό °ΧE@@@@@[€ΐ^[ƒe@@@@¨ {«’™σ^I{σNL € € € €T½UΧδT@*Q qό]Ί~μ`S΅Γj}κ^-ΫT‰΅€N €x¨kΡ΄™ΣΤηliχ[Οiώ―—{LˆΓ@ ’μ­€Φ,^]μ-ž=9#€ €N?w*Ε~ €U)ΐψyU6;•.}{Ϋ¨W‹Ÿ2Z]j:ΤΎy‰^\Ό6q’ΌξΡ<]Χ]e‚uŽ|ΛΏσΉϊpσσΙ%±u₯ΌΤkŒΎ1u΄>oΚxpΣ"-Xψf)—Ά¬ΛVθώRθός8τΟΌ°Vl’Uά_8ίK΄W׍ΡτΩ7¨>PΌ=­zτgσ΅ΏD‹κ©X₯ψ|Vw©¦ά4AέO—ώwη ύς… ³κwΜΤο™rͺ_)φOΏΌ*θύΑꟜ%ΦOJϊόλΛnϋŽšϋŸkΠΪ΄βρϋ΄jk‰ωQ(Έ½'―Θ «.°·Dοχ}ΝWOβρ¦|‘¦K·Πύ₯Πω₯«wNλιŸ9ρUέΑUά_8ίK΄·3~^ψ†aόπζNs,Ρηy§Ε/Χύ zΰό+έnRηγη₯Ϋq(Y5 δ?°·nˆZΎ|:«CGΆ·jύΦƒ₯νέ0A3f\­n¦”νο½€yO/*‰ς֏ω–¦νβ€²2e|€DʘTΈΔ%j›XΜJx]θώRθόςFτΟΌ°ζ%ΡRΈ―δ³Ώ”Bύ24η{œ"nzν4ιK}‚%XΏ`Ž^_³;siJΌŸ%>Ÿη\RfW³L…hΏbΦΟa€έ­œΛžΆR₯Ώ‘ χ‡bΆ1η_ζΞXΜΆΙ\²Π֦ɚyσx՚Wν›_ΥΌ'ίprϋ €@ Ψ[Α[ΐͺεΨ[ˆη ?=Jτ~_ΠηQ?=ν΄JΤΦ.b₯,ΊΏ:ΏΌ΄ύ3/¬yI΄ξ+ωμ/₯PΏ Ηωž§ˆ›?/~>―ΩͺSˆλD1λ—­ώΩΆ—sΩ³Υ­„·τώPΜ6ζόΛά ‹Ω6™KΪΚψΉ%φA  yμ΅oPΫΟΥσKKό{‘Ύ™3ώ‘οΈωCίƒ₯ς‡Ύ†jn0αƟvHgφΥe£‡;JYφφš Ϋg]­ž¦δeUξ‚ž’>eVθώRθό|bŠK†ώΗQΚ/JβΎ’ΗώRυΛΤ8ί3ιiΫ₯šφΣ›Υ'ϋ·5Ǐ*KX―JΎŸ%J–βσY―‰ΥO|]φ+bύλλϊu)φΧ•(Γ y(bδόΛ7Kώόλ w~_#ϊv5Ω£eόP­;³Τ‰Ν PΡφVtσ¬rΉφδωΒOR½ίςyΤOO;­">ηΪΕ¨ŠεBχ—B痏F€ζC5/i–Δ}%ύ₯$κ—©ε8ί3ιiγηEΟγu [} r(bύ²Υ?λφR}žΟZπ2ί‘χ‡"φOΞΏ,ύ΄δΟ?ΖΟ³΄ ›(Έ@ώ{Gέ‘ι—‡‚P·όf,/ρΐ^σ ’qc‡θτιΨΞ7΅bΝΆ‚7JΦ λΖιφΩSΚ/@ΆˆYM+y‡Bχ—BηηWΫΡ?ύ’Μ{:υ₯p_Ιc)‰ϊ9mEΞw§Ryέ―aμ]š:~p0]+Ÿ3―½™5Ώ²κgΪ”βσY―Ω° νWΔϊe«Φν₯Ψ_²ΊΒvΘχύ‘ˆύ“σ/K_-ƒσΟ\ή½ϊΝaU–J±*Y€ΐήJnέΒΥ-ηΐήRηpΓUχ{εϋyԍ—›}‹ψœλ¦˜·o‘ϋK‘σσ«ΑθŸ~Iζ=‚ΌoΝV‹<φ—’¨_ΆϊGΆsΎG$Šϊ›ρσ"ρηρ:­FΉN±~ΩκŸu{9<Οg­D™οοϋCϋ'η_–ΎYηγηYڐΝX ΅Ν·jζU#ƒΥΪτΪ½Έ2Ϋr(ΗμŠx#vΕUΧ=τ§G†3εžafμ5σ3c―+Θw.t)t~^yθŸ^εŠ~\Qξ+μ/E©ŸΧVε|χ*ηγqυšψνϋ4μό@’mZρΘ}Zε`ζΑ²κg>jωšTΊώŸx½π5ΣPbiΏtυ“yΎ«3ε0Οwνy¨IVˆ@ΪώγSύ₯Οωηp…'SΧ’ι³§©>PΝ#λτμ?—ƒ[g…£P=ͺW€ΐήκm{?kžk`oAžού¬p9€•ξy±ΤʞψόjΚΝψy©Πύ₯Πωy%₯z•+ϊqEΉ―°Ώ₯~^[•σέ«œΗ1~ξ#¦»€υΔλ…»Tν]λDΊϊ1~ͺ~§΄ύΗ'™tιsώω\αΙ0~^α LυΚM ½έΥ|νυΊ°ξtθ8©3Ί7©wΰζ§}ίv>ϊqθ…ωΏ¦³΄wΝKZφvb°οMΊν+:§¦FΗχ,Χ‹%Mœ4Fτν§Ϊ³C‡·Ψλ–kα΅Α=šZτWͺwο/¨ϋ9=Υ%ΌŸŽΦήΆίkΧ{+΅¬5υlΑcnˆ jΥΡ-š)\Žξψ-\ΎΑZY’‰·ŒΥΉgšςνX₯΅‡ΞSKσ0]p~ΟπG΅{ΓJ-φ•¬_…IΡΥοt7ⴉ4ͺεΪ―jΠΐΑκf\ڏ)θxθƒuz―u‘VmHτ—rρTC‹&­¦~Α(#Sͺ£jΫΎQkWΕS―Po³ζΠ{/ι‘§%•xΰ˜5|Θ`υιuntΫρ#»΄ν­z}iΊέχ—hβy_bϊςΨ`_ξ8ΆU MŸHΣγ’λτΥα!―Γ[™~κ«9΅C€nϋKδ@Ώ]ηGLΌžy”/Ξa c4y‚9ίϋΖmΫ7iνͺmκ5|ˆj;Χ船–.Jq-u~Ύϋq_ρΘγαzζώΌΝ­~ξσσh‘κ0Ξχ―χ#sΌζ2 hΌP=λ_ ϊ9~dΪφξ֎wίΤκ iΎA —™ΕVhγΫ—κ‰_ό[ΚϋŒΜ`Οg>?ŸYύΏνW΅φ`7ψΰXkΣ¦΅KτβΒδ™ έŸ·~΄_¨_ “.Ψ€ϊΈg-ΣΧ>Ψ^σοzwgμY·›dξmο,Πβ-g©ε+…xήυv>Έž—NΌC_ξW«ΫoΒ' ωφ™Υ§š―ρΨ·ϊ9-Y“όΌμό>N³`Ώͺΰω“σ/Oο7«ηόkώζ]6(p…;¬Φ§ξΥ²ΤC;kΙŠ'@`oρμ+)gχ½~<ί»ιώ}H¬•ά?o3~žιοŒŸΗϊ–Tο_μκ–­χ3ιώNγ猟gϋ{™χ•ψ^ηψγη™©8ί|ά?Ώ„π6^<–ρs« ό|fυΖΟ­fΘyΡΫωΰώyžρσ²ŽίΰόcόάSάUμΕψyΜ‚%Š-‡ΐή&Mωιέΰ°f;ΟΥ/—&ό­Α|2}FxfWϊQΟΑͺκΪι3³λά˜]§QSξΏGRνcνΏ«υ=σrrpEσ-鲁±@šΘ!ν›_ΥΌ'߈ΌŒύnψΊfΞΈ"8mleŠ₯VhήΓΏJ`“b§«¬qցŸΊKuύίέ¬Ζσ'ΎeιcZ°8 ΪΛ»gν+uγΤ‰ΑYyΣη˜*°·Qγn»I#ϋG‚“>τήBύκ遱ϋKrΪω[3DΧί§ƒ}³MΛΜLŠ­)¦ƒjΉεG=048³ε7s΅ Ψλ½βκγ¦ΏΔθρ…›όθŸ1δθυ,ΆͺΤ—j›Μω~sφσ=ωZκφ|χαΎβΣΫυΜΛy›KύΌδη#έ!œορ2^ξGζ:ψ™7λ‚ Ο0Η7Ώ€ŸLώ0L σΝΣuΗUΝΑrd~&Θ₯Ÿ…«ιΊ~ΉυΟ’>³ϊX(ε―C›ΝσΛ“φσ‹ΪΟτ΅Ι7]£¦σ“Ÿy#?nž}Œ<ϋ:¬Ÿό|ήΝα|pέ_L₯›ΝσΧeα篈Aͺί±g³ΘV·χ±Θq…ϊ]ϟϋ'ηŸ‹>Weη_γψ»tύΨΑA mfLβωΔ1 tμŠε-@`oy·_©”ή}`―ΟχΌ?ΛάόΦσbζχΚ&σΔψy˜³(γ“Uπώ%±·?γE\_Οβ/εWŒŸ‡Z'ώ:\θq1/ωωΨ«8ίγ1½œο9ŒW2gόάj‚BΗ7Xύί*E"γwI$ιWδp>0~n³VΑσ'η_¨Αωϋ•έρ£Λiγ’{HŒŸ[,"Pd<φJΏQ}?ΧY'>νΠ=†š™Cm[ίΦή?~€SO Le~j:tpέb­ήž,΄6ξΛ‘Uίm[Χ™γ€³Ξι­ϊώ}Τ%:Π{cvόΐ.νή³Ϋ|;π!ύYg©gΏ!fζΨH°θQ­~φjΙ†ψόF]§‘υ{OJΟΡΰAύƒΩΖΏΩ΄J’βFΨώΑΫΪ΄uΏΞκ;XCϋΗfͺM•Ÿ•’·E+΄e ¦ά]γώώϋΩ/ΐqX[V―Χ!3co·ώ—h@4°γ¨™₯h–5K‘WOϋ!ΘΰΘv­}k½ŽΥWCG  „N,wΛ-sL`k€€]fΖγ»©Kοώ9¬)κ΄kεczζ5;Ωl²<’;š…τύΕή+Λ]σΊbdΏ`F»V˜ς/L(Ώ.Υ΄Ÿή¬>Α=ΆκΥοώTο—½ΆCπΰΨ–O’{l'—ηGL}=sί=.ΉIS§Œ2ΧΔ£R†ΰΐXΚ]ƒ³/>φά’Ψ*ΧKζP³Ν‡8Β3²λΨ.½³z­ΪkΞΧE£GΖχ'φ;/η{ΞχΧυσz=σvήz―Ÿ·ό\s€;€σ=^Ζς°7dΊ Όό»ΊfTθΉΓάΉΜ}zƒφψH»ž£nηχΥ€~}li'l–‡š{Μ€π=f‹ LZ!0Ι{? gκΊ~ΉυΟ’>Kαx\ή:³~¨F έϋzΫ?l‚Ζ"ίαΝ%·φkΤ•³ξΡΰ^αΆ4Ώv›o³Ψ±η:ΩM=ϊ4ͺΡΜΌήnΎQa^δΤ/ŸΟ»Ήœϋ‹1svό·v˜izOttΥ03ϋrδ'1θΟΛ},’V‘~WόσgšώΙω罇UΫωW?κMΏ|x,ρYΥ»"G"€@9 Ψ[Ž­VzevΨΛψ9γηα~Μψy’βίΏ$^Ά¬χ3™ŸE?gό<Τyœό½,·q£ΔNκδ5γηN”μΏ_rΎ1λϊgϋ1~.Ud|CŠφfόάξωξ—«mόΞ½σ#*ώω“σ/άRΗ‡9ο)±=«νόcό<Φφ,!PlΌφΪ•ͺmΎU3―\΅ι΅9zqeςΧΨΪϋ—“n4»΄κΩՊ Φ±ζλ].k<οΛv;μkΥ£ΝΧ~+ΣL7E/ν`%Z΄|βά“vτi…ΣόlΜFŒ]ΟάΆDύ˜oiϊΧ.vuXς,ΊWsΎί9ߏmλσζjύ‘pf&ίΦLΎqύ.ΧσέdαιΎβzς|=3ωδzήΊ­_ωΉ€‰ίσ=ηϋQΆ―2©ν©ϊžyHλ7l‹·Ώ9uŽΖ }0&yVΡ”‡WΊνgΑƒ¬φ₯œύ~λ[,Ε糏ΐ̏˜™y#?]~·Υzy`΅ζψ EžnruqΫ~φ³†”ό¬(dΰ«Έ.ϊό^-x9όœœPΏB<οζz>Dμε€ΏDwN^zΥw5©9px¦ύ…y¦ήγr|nMΞ.?kμη¬J|ώL蟜‰tί­ͺνό«5Œ›i>ψ‰{VuOΗ Pζφ–y–Hρ½φΪEwϋ|<6αyΘL“ΐψΉjωdΌΧΫΟ͌OΖύ½ΕζΜϋ²έ•ψώ%ώ™σxZ"iΆΧŒŸGF€²I9ίΞψΉC+ΞχœΟχ\Η+?·ϊͺΥkσ>ή›γwŒίϊ]ΦΈΐN…ψ©τηOΞ?ίγ΅r½E»u™όύŠρσh‹±€@ΡςΨk88IΈΡl|yŽ^iΝ፧Ή8Ξ0ΑΊΐЌyζ°ςN»―΅΄]―?πΟ±€Ά@&pm¦ T­5‹ΉΟ’Kϊ±ςO[FsΠE&(αŠpPΒ‘ /ι‘gcΑΗΑ4ν―ά8²NΟ>πsνLΚ,Ŋ4ž#M@σΈp@σΆ₯ζλLΗYΗnvρν`·ΫΜΘ;?qF^S{ŸwΜΡΒ5V°<₯ΝΉΏ€¨rn«κ5iΦ}œ%―M«ΏO+ΆΖR}ۏΤ°Nͺ[l·δ₯4퐴£ε“©Ώ$ηu…ΓόθŸ^SΧ0F“.½PΝ¬γ)6'ͺ©ι¬?·½­…K½Ώ‰΄ΟΙmKΝL”‹#3Q†r³Kμ~gηι|7Ι{Ί―$"dym—ΣΝυ,K²ζλ³ί|­Ÿƒό²–9Σœο9ߏb}ν°ZΏWΛ¬ϋC&ϊΘΆΨρζώχΪOτΚΚΤΐ‘ύ#Ώ=υ3«½ιδ|ΏuΣ?­ΌνkJ€>ΑίΦ>y>‹Λ―M+ΉO«β€μ™KΪ΄ΜloΫWϊΨ .ξΪ―^Ώ}Ÿ†…ΏPbNJ‡υΛ…ρΧμXζΦR\ύ σΌλΟήΞ‡hι­²§ν/ѝγΖά‘©_ Νβ˜E{…yn[e—±2šY½<·Ζg—ΗWώόi΅q°8rξK±Ύ]%η_/σήYY>Π›³* €@9Ψ[­TϊeΜ5°Χέσ}Ψ#ξyˆχgI½ΔςΙτž€ρΙ$Ή"­¨πχ/‰ͺτϜΗΣI³Ύfό<+‘Ϋbο!Ν7UΉψ{`Φ||Λ’£ƒό²€y3η{Ξη{¬―y―ˆΟψΉΑψΉ}κ2~ώHδ[όl–4ˌŸ§‰¬vz_qxˆ$λϊ·•>γη―jή“± ][†ˆέOΌέ’ωZm“ι½jtk‘ ηγη–<‹W τ{mΤσχ‹œ„©Τ6\ͺaΓ/ω_θ₯ϝqštς„NίNgυTmψλι³^\H­}tδmΝΰΡθ lΑζ΄Άο}λ9=ρλεώΆ²•~¦ϊ؁΄[~σ-Xž¨Ψ¨Ιί»GMηŠ—pβΞ3πΠ{· ιL+9Έ%>Ο.·Ψ*VΫΎκΤ)¬Su« €-%ΥΕς‹ώ’C^_6NΌ[׏ΝΪ·»υ)ΝωΝP~uctλμΤ;π*MΩέ΅CŠjX>Ά{Š=ύYε0?ϊ§?άΕI₯ˆη»©°§?xΉ‚ς^ΏH6Ήœ·^κ—K~‘2{ϊΝωo΅<]ӝν ψΐ=pΫ;λ΅γw;΅ί.νήw0qχ€Χ±7’˜LsΟJ* YαK΄lΣήΛ¬} ς|–-?SχΨ½ΞΌΡκA-ΫkΣ\\ά]'μη½νZd>Ά62ϋlͺ‹¬ΛV?k»_Ο»Ήž‘’ΫƒΤiϋKtgk!aΖωTΑς9?·ZΩε{±’Ÿ?­ώ—ς|7ΈœξzX՝ LΊλ μ@ Ψ[Α[ΐͺ=°—χgΙ­m=/fzO{fL1ζLΥ~?Εψy2΄k*ϊύK"ύ3ηρ΄D{ν}|ُqwγF^τΌΧ/’[αΖΕB9ζ’_€Μž~sΎη|Ύη:^ΑψΉΥs­ώ˜r<ΝΪξΛx―•^ΚόLΡbΟbŒŸ[-•v1Χσ!š°Υ6™ž•£ϋG?Hδώw/―m-A–+}Ξ?β΅ͺξόcό<ΛIΖf 'Pϊ½)Ύz)ΟΘkΎ«q#Γ_™›j‡πΊC˜™k—€ίΓΊΙ₯}±φiίΊPσ}νr0ak{Ϊ4— ϋ‡ιΗή¬$ΟΚ€QWšΐήΑ){έ{Ϊƒœ‡Ν¬΄χΖΝJΘΟLˆΉ4iςμ»ΥT—½Ϊ‘=’f~Ά<δ°ΏD*Ψo»ŒΦΧq7Œω–™ξβ`1ΪήyN=ξΎRΤΘΚ;ζžb?ΏV9̏ώιx1±Οχδ?jJ”·σ=!ν€λ/vύά\ΟB™ηzήΪvNκ—k~9‘qΎ›IkvzΛΓρύΘ|έόΫ&ΏU ©-Ž΅iΛ»oκί_^€φ€αώ6uŽ™-Ώgπ…“ώIΖm? η‘~ΎυO+ο΄χ2kŸ‚<ŸYωιƒzτα_i8ό;60iώHΌx, υ—\]ά΅ίM™}§ž΅˜€ύ8αi eŽΎ΄κWΟ@Ζ9ž©ΚžΆΏDwŽ,\ͺoά³.pοj3ΨσBόs™ωZŽάŸ[#Ωβ·Υ†ͺ΄ηO»nœr3«FΪWeη_%–Ά'°ͺ °·κš{?- Y°ςO[F³γ“6Z‘—­6«Έχ/‰΄V]ιŸΗςp<ž–hZr―νρeΖΟϋyχ#wγbζZοΧߏ½τ3«':ΨΙq?²5–s―°±?Ÿ`Ύ½θjώšPη3«3~nΎYΩΕ¬Έ gAμeŽηC4!«m2]›’ϋ?xψr_ρΤ‘8ψm₯ΟωΗω—ΗdΊ/2~žNυ^ δ{³βΜ†\§œ:6ͺw|ίVmΫΎ]νΗΜ|½§š/¦?«F Of}8±nriχΝΆOΆνΡ’z\p˜~μΰσυΟ?Lρυύš4λ ν(‡5ΈΰΙΣ¨Φ>u›Y±Nμ7Ϋ1ΫψγΆ¬|Uϋ>2Ν8 ΕO`&ί#ΫΦθݝ±ομGύ%EΊω_Υ]ξόΎFτ Μ:ψΤ‘ωΊυMέ5ξοΏ―‘ύλŽjυS³΄Δ6σΤ)jβ°Ώ€8Ϋ*‡ωΡ?½ρ¦<ͺΧ΅ ½@:ΜυΞΑΟ©55ϊσ‘χΥΊΖξpŒξbŸ·Φ΅#Ί=η»ΙΓΎ–dzഊγrџ›λ™ΙΖ‡σΦUύ|ΘΟ%Nόξœοώ܏ϊΡ•£Zτ;_]β…ƒ―Žo_ͺ'~ρo)ƒ{‡^σš4²_p?;p4E2q«\υ³Θ‘v{gϋ Tΰ?ϋ§χ{iή„gΫ'ΫφH=ώΆkίl>θυdΒ½L:—ύύγj5ωΖΨχΑΕUϋΥ΅hΪμiκ¨—ΗΐήΨs[ ‘πU”Ϋ#ϋΉύΓωΝΚuΩκΝsΪέαη4)ύ9πτά-d!*ψωΣjcΞΏ4ΧD/]¬ŠΞ?ϋ:κλ5Μ‹;Η €@Qμ-*Εd^μΐ^Gγ‘>Ό‰6˜υ,–φ>šmŸlΫ£™y\p˜>γ“}σrXΏIτ’ϊ3ž–θšι5γη™t“2ξ#Վy[WΑϟœΡ2€}Οκ₯_εp?Šfg΅³²ηοWφσ–³rFkΘψ,PΠΐήM―ύD/ά–½ ./f#nψGMv~0έέfv­ω‰³kՍΡν³o~-λEΗIήΩφΙΆ=»@ζ=&hƌ«ƒ³ϋeΈ L¦ϋzξψ{W8•*˜ΪͺΏ›Ύ_“L―ܟΡΤ\–mΔ΅?Π„/υ ~d£^xΰ_΄9š˜½ΰΟ}ΜN1ίΛϋόi΅1矏ˆvΘΚ?Ηί₯λΗΦx›™QύωπŒκQ@ j쭚¦ΞkEύ μu<Ξa=9y―ψχg‰-ΜxEΌˆΛώpα^Uμϋ—DBϊgΌHϊ'γηώ.ί*Y^1~ž(Ά™σ=fXΚω|w?^ΑψΉΥΩό³m·’r΄h₯ΗψγwŽϊLvͺΨηOΞΏόφFϋ¨ϋϋQτP«m½—/ί―?Ά ] =.1'SB'{W?c‚We―΄Λ‹Y,@0u@iύ˜;LΠ[b@išb8Ι;Ϋ>ΩΆ§ΙΪρj{ζ΅ _΅7`Ϋϊ”ζΏόf|&ΰωVπά;°φΨ&½pά`ƒWOϋλL6ΎσTΝΡIηθ³`Ч™―?‘8jgΰΣ²ν½o΅mμ¬ α@ίέ)ΪΗk;$•ΦaI:Ξλ ‡Η‘a;@IDATωΡ?½'Χ£ωVΨ72yC†5ν&Hk^_ϋλŸRͺ`ˆX0›δλωnκδιΎ’Α"Υ&ϋΊδξzf‚ψ†"ž½ίάΤ/ΦήσKUΗλ8ίγ©rΉΕ§|5ϊ–9jψb,Εf{ Ύ²ώλ5ΞΌ9όπRϊYF­ύΓ‹nϊYτh—υσ΅:Ι;Ϋ>ΩΆG+κpΑJOΪΧψg­ϋp’ωΔ,σ!ˆ„oFπΓΕ]ϋY½¦jλΜΡλ&ΐ8λU?ϋ:=.ΫφθŽώ,8:"YΉ([ƒyŸ05ό>!π +7tΫI(ω·}πτάH’ηΟdX·k¬6ζόΛΗβ€’ΞΏp՚Ώ9G— άc#ί¦_g^!€@υΨ[=mΟšζΨλξω>\λy(εσzB…ύxMIήΩφΙΆ=š™ΗΖ+βαrρζύKΌ₯―θŸρŠΉτΟψ”ΎbόάΑίeΣκ₯ή`0~žΪ(Έ–σ=ΗησέΡxγη±6ΘζŸm{,%gKVzŒί1~η¬Σ„χβωΣWʝ9ςΨ―ξθ~9Δj›lοε‹ςχ«p9?4Ώ(Ύ@ή{νOίίΊX>ώbφZ»Έ˜‹ L¦ϊ£άM™}»Τ…²Νvq”υ€Ÿv6άlεΛΆ=»@–=μ―ΉΩ₯Eό“ΦΖ’„―½δ&͜2*τ ܍$~ΡείΥ£ϊ‡^~°BσώUπkΎ½z6ŽΏΫΜzΤL/\τ ωΪπΨΟ₯ϊΖύ7λ‚³Ckμvˆ»!Y§ηψΉR~~Ψ|]Π^'΄ώmσ5ΦφO.ήηΤθGέIMο3½τΫOτκ£+|]}ۏΤά„4S‘xm‡„ΔΝKgύ%ω8―kœεGτκ›ϊΈ :=υ¦”k?nί¦ύ))wN±ώΐ„Μyϋ‚9o£³šλθ­&Π0ψ‘s¬―η{ ,Φ9οψΎ’’™Vy½žωrήΊ¨Ÿ/ωe‚ΘΊσ=ŽΘj;»ίΗν“π’GƒΉoξά€ύ λ/šϋτ5αϋtϊ―• Μ zŸ†…gЎ̾Ÿ"ΉψUVYŸGΦ1Nκηk,Εη3Λ#€»cΕcϊεΒ΅1ηα7κ;׏V—ΐ3Sξ χ‡fυΕΕΚΫIϋ]t•yζk?σx[ΟψΡδg­Ί!ΡpBk#ΟYV)Ϋ;Ϋφ˜„γ₯άΟ‡pVNϊK`Χ¦+5γζ‰ΑoΑ̌½ώεΉz=αƒi‰…ΟωΉ5 ϟ‰¬ξ_[ύ/p0ηί"χ† GTΝω¨·ωΓκτΩΣTXΞτώ3°¨x{+Ύ‰ RΑ\{=sXΟC)ŸΧjξΛϋHšNž·³•/ΫφH^ž3^G—‹7ο_β(ύyAŒsΜ₯Ζ%”ωγη™}άneόά©η{œ”‡σ=χρ ΖΟ£mΝ?ΫφhB¬τG0~Ηψ]\ΟIχΨ‰ηΟ8*O/8|μΝύ~nI'ο§»λοWΌ?(πƒ@Ιδ?°Χž₯ΤT{χ†Ϊτ»=:Ωι4u ή²J;ƒΛ¬£ΙθΧ› ŽlŠ%χή> Ία—θΛcΠηΕΌ“λΥ€‹z}>ΌΓ 8λB½|΄jkφ΄κΥΐWrž˜ΗU:ρ§?hσ&3ΓYΆςeΫL-·Znω‘F ˆΨ€ΥλΆκOͺQ§NΪΏq‘6ο €ίd‚šοŽ5kί:-ϊ ΅φL0τWΠΈζΑΡBΨ3ŽΩ3mΊςLhλΆχkιλ/κHχύνΔiœ±.”e|;ΔΟ$§cΫ΅zω*½ίΏΣΗ΅ηιάξυκ{a“._΅ΗΦιΩϋΡ’›…\Ό»ΦhΞίt ύQ7˜ζgZ`{ίΘS`oΚO†οY©Gφ―IA]žΫΑΆ /;λ/)τΈΚY~τOΌ%rΨ¬{4X_ζ:΄ͺυ-©9_ΓnjUοp °Ύžο5Žξ+γάό$δατzζΛy›w¦ϊω’Ÿ—ϋrΎ[(οGf`wφ=jͺkΣ–·ώ[»vnΥώ}{υ‘ΞΣ‡ώ΅šG…f}ΔΜ"wσ‹εΫ0φ.MΊ§οZω”žy-a†ώΨ±%ύ,zΛϊεΤ?ΛαωΜςΥ–/λίRέ%Χiμ”±Α™”Ϋμo­ΘΙ%nΫΟ~HγΘV΅ώηκΏ·μ’j{«oγ 5₯ΪΝ―κΑ'ίεbΥ/ώ:ڜΣσW8‰ψ_9œ^ϊ‹yϊ›τ=3£rδ}Βσm Λ·©ζ¬3γ‹e^}ψ‡υΪΌσ`x}ŽΟ­Txώ΄ή―„Yέώ²ϊgθPΞ?·„ρϋWΡωg*n ―}}Ž7αT‹½Υω­g΁½nŸοΥ±ž‡R>―'T9§χ!^ž·³•/Ϋφ„ς{yΙx…₯–‹7ο_rb5Ed‘ώ‘0ΏsιŸV2₯·Θψy€MμϋTNχ£H‚.ξ›ΎδΙΧγoΞw ΞυωžΓx…•-γηEŠo°Ϊ;ΤŒίYέΓbηƒ—ηyΖΟΛ;~ƒσΟηΐή*:ΜΥ‰ρs—hA ωμ5…Mӝ\“T_α† š1γκΰμYφΎδ£ΓkΜώ·›ύC_Vv―ΰ†ΔτF~σG7(qΥ4i˜ ω&¨twΆς™εŒY.ʟ&»Œ«ϋ]3n»"<ΓXόžΆi3kοT3kopΆΈψέ’―³λ>kf׍Ξ˜ƒηΐ‰wιšΡ±€αh& ‰ν ώtλmWGgψLΨ=φ2U`oΆφˆΌTΰO|Ifζ⟚™‹­’μXρ°™αoƒ΅&Ό˜C;$%ζ°Ώ$ηu…ΓόθŸ^KγΈΪαΧiΪυcC„ΘP€φχ^Ό§­O’ζrΎ‡σq}_ΙPΎt›<]Ο|:oΧΟ§ό8ZΟωcr}?ŠΌŒ%‘jιψΦ…ζ^I΅)ΌξRM3χ–>Wf6Φωf6Vσ1€¬?ŽϋY$%·υΛ‘–Εσ™ε!Jωϋˆ™­χΠl½Αν9ΈΨι»mΏ—ܨ름?Όf'd-·›ΐήy‘ΐ^«~IΟmc|ήυ~>xκ/qίh`!€X΄Ÿ­ƒ›s½ρό©$ΣξWYύ3γ~œyb«θόSwMΈσϋΡ·«©~›–™Ξ΄¦ωΰLΜ‡%¨d{+Ήu W·œ{MQέ>ί3~ξ }―ˆ!YΟΟ)ίίΕφL^βύKξο_’U%ϊgL%—ώK₯$—?5KάuΗ΄·ΧΏηڍμψΎιS~vή—9ίcdΟwογ±LKŒŸ%ΎΑjοψφHxΕψ]HΊ—ήΟΖΟΣ™FΦW`όηŸΟρZUtώ1~Ή0π’(H`―‰ιWσUΥ4ΰ/Υ΅σΉκbΝδΈρ΅Ÿθ••ΫβAz1_γ~C0Θ³mΓ=φμ’ψν)^ΥωΊ.ΪκS—°10ϋλΚ­κ9j’ϊ˜|ΣzΝ?hΘ~ ₯yΉ―U>4_ϋΝ§A§ΟΎ!8Λλ‘ /ι‘g­€΅ΐ‘fϊτΘΧΠ·½cΚ\φς§Ι1σκώγ4el‹τiN4 ڌ36‘Ι¬Tw¬~I _X€vk]`Ρ«gΰ؁γoΥΨ±#‚ύΪ΄Ρ΄σΉ£FΫuο[Οι‰_/μϋ1_=aDΤ'ΆΞZjί·]l~S―/^e­5‹ϊK$Aύ:ι»j"/₯νΠ+OjklοK±―Ύ $½KKϊ'­Ξ°œœU.퐔šΓώ’tœΧσ£z.γj›&hόWΏ’Ζ^±Hϊ`΅Άμꀋón[ό°ž_šΌξυ|VΫε}%zœ»/Χ3Ξ[ηυσ'?w.I{sΎ‡H\ߏΊ«εΪohPΏ&uK|~ ¦xXΫVV+^x#φα›$όЊ‘Χώ@“ΎΤ'ψbύ‚9z}“Π^ηύ,˜°λϊyž(‹η3γ1έ<―ΦœΆχVκΐ™ά/ώ™¬έ\—>χ„6'|;…?η­Λφ 4bΓ]9ntR9ƒν{lΦ―|M―/_― ώΌλύ|πΤ_L`ο€Yχh¨υA‡mϊΝOτ’™Ν7ξ'‡ϋϟRβϋ•8['/8|~ΏY=矚&kζΝγƒοUΫ7/4fΘτΑ'‘}@ άμ-χ,ςϋΨΛψ9γη1~:§?›γη₯q­χZ ΖΟΝ7Y%ό=°Πγbώδη΅„cό<αz|ΩϋxEb‹1~^„ψΖοΏσχaN^ΖΟ?OΌ†‹Ώ_%‘DVψύχ+ΖΟ#²όF t Ψ[Έ 7 oΡyΑ―Π=©?}Έ_οnΨTΈΜK<§ ΝηΜΧ Ÿ τO:°}•v¦ (TΕ³g]“†θ­ΣMΜlΗΗΗ΄wojwBPK$€ίζλ †φ «Ž“ϊψγ#:Όoƒvg)kR:V\1’³ξyJtΟU>Ρ·η³θλRYπά₯Rε :@*α]j{Υλτ@ωώΌ[ϋΝΉήcΤΊγςαΑoωΝ\-XžζZ\ΐσέ3ŸΗλY‘ΟΫBηηΩΣΘωž¬Χ£‘I=»Χ©σιg*πq“ŽhχΫ²τFS²Ώ‚nΟΚ”_έ· εΤ?sα©oΊT=Ξ=;Ψ†ΈWλ³<‡Λ₯Άaˆ.όΒyΑrͺγOϊ°}Ώ6oJ\Ν"Ηcs>rΜίΥαξc<ΊvΌ3ηŸcͺŒ;Vϊω7ϊ–©e`ΰi‡΅κρ{΅"ŸŸθΜ(ΝF({K₯%Κ»ώφΞ XοC WCο91^‘lΗϋ—d“b­‘Kޟ|?Ov,τύ¨Πω%ΧΨωΞχd«œΗ+?OF-ΒΖοόAΟω|π§ΞRaόά™SφβόσΉΟ?ΖΟύι'€‚€ŸΨλ'Žoi™ °CκUs²ΓU’5jτΡώMZΏΙΙ¬{’fη ΐ©šyΩivV˜γΊη·'u ΪtθŸΥΦβ>Φ·»zτ:¨ύIAχφWKλ_6³‡Άψ:FΏNέΞΈ€v©΅'ή₯kF6΅9¬Φ§ξΥ²4ρτRέά«Αω»‘žΆF†ež?ƒ8τ— }ΔΓ&<‘Yί¬³χ­ζdς43 ³°”ˆ½%e^Œr μ-InžgJ²Y$ήΏ†ώY’ύ³ŠΕψy9΄R\9ίγ8*νγη.[”σΑ%X–έρΜΩΜσgP‚ώιώόΖΣ™#γηΞœΨ  Ψ[πϊ1ίτ―]μ)§γ›_ΥƒOΎαιXΚ"p^Ό€“Ί…wϋuŸθ©½₯7[o–ZδΌ™ώ™3aΥ&Pofεnfεέ½y΅~Ώ}›φξί―“g~AƒGZ_σ~`΅ζψ 8¬WτλΤέ—Τ.¬­NΞΫO‡ž<‘θ/ϋ‹ΓέπtΕn €@ {S °Κ΅½Ι’ΰy&‰€4Vπώ%ΨτΟθŽεX ΖΟΛ―Υ8ίΛ―Ν(qώ8ό΅ΕΣ‘'ϟA(ϊ‹Γώβp7<B±”€½h–Θ›w/Y΅o~Iσž\δεPŽΙ"pή_ΤhΦπNκς±τΙvθŸΧTαl½Ζˆώ™₯£°9­@φ‡ΰ6΅>;OΛ6L›FΎ6Π―SΛβ’Ϊ…΅Υ)ΐωΰo»γιΜ“ηϐύΕYqΊžN₯ΨH °7Ω„5ξμuo–xΟ3‰"₯ρšχ/‘v –F,ΗR0~^~­Ζω^~mF‰σ'ΐωΰ―-žΞ”jp|ήΦ΅hΪΜiκsΆ΄ϋ­η4ΧΛ«‡:"€Ή pύΜݐ@< Ψ›'Ψ*K–ΐή*kpͺ‹δ ΰx.‡<8όp|ή2ώγ/<©!€@υpύ¬žΆ¦¦ ΰZ€ΐήD²^-Ί~Κhu©ιPϋζ%zqρΪΔ=ό}]θόό-=©•’@έ₯šrΣu?]:Άs…žyΐ«΄ΝTςη_w5€΅g«πι'ŸθΨ‡{ΥΆa“φ§­TdC£.jΎ@u]OΧΙ“'υι'«ƒx_ΫvŒμώέ]=z·ξτ3€wξV{άZ/κΖhϊμTΨuO«ύΩ|εtn>wι5Fߘ:ZŸ7yά΄H Ύ™sn=š§λΊ«Lpσ‘Obiu>Wn^`!—ΔΦ±„@)Έ:o»λ²ΫΎ£ζώηš’·iΕγχiΥΦR¨D¬ =»tθΊs?“NΖΦι”ΟταG5zꏧZ+KgρσύZtvι“5κ|ΪΗϊπƒΡσWΎBη—Ώš21Βφλή:wΰ…:σ,σ°ψωτcύιΰοtxΟήΠλ”—ώυ3e±Y‰T½UΠΘ¨bΥφz<­Πω ΟE‘?wή%ώ1~ξΌ1=ξΙψΉG8«ΖΟ‹ή”…χ“ _с)@UΆ_3~^ŠJ"€@Α*/°·nˆZΎ|:«CGΆ·jύΦΔ Ά,Ά 4cΖΥκfvkο%Ν{zQ–rά\θόr,nΕžk)EjκSΉΆ_ [ s“ώzΤ(υ43c&UΫφϊ_ΜΧΆδ:ρ΅ŒΪΫΪχlΤ;ωͺZ7μn9uŽΖ ι™bΟ£Ϊ»u«ή_»(ΊoŠβV ½φšτ₯>ΑuλΜΡλkByΔνTj/ςΠκΗ|KΣΏvqRM™{Κ#ωΎ§$εΚ ΟΉ^_χE}αβKυ5Xζ³ΑŸoώ‹ΆΫ‘k‘8Ύ5ŸiΤٟ™χGζ3'>Uλ>.D¦…Κ#‡~푈=ΎνΞμ«ΛLuΰ§ΟΗ`%+远―/eaαεΌν w~_#ϊv55ά£eόP­qΧ‘"WΌσgj>έΜΨψ9υ3ύ|(Θ·τ{J_όΖί©ϋ9‘’¦ϊΐ›Ώ0³~χzΜ―ΫPύεKΤσ‹_ …Ϊεa8nμ^#Ϋω¦V¬I5¦ _θό|,z%$UŸk)E„| ΄”b=M™rnΏR<¬Ωάμm[ΝΜγkΧjχκr^7υ ΖΏ©ήuGM`ο¬Έΐή7ό@†υ όΩ»a©ώλΝα?Ÿ‘ž}ΥoΠ%jκΧ3n6r;°·}λJ½³γκRΧ[η77yDR’Žo_ͺ'~ρoj­Š[j{—¦Ž\·kεSzζ΅7γΆ—μ‹|Ÿ/uγtϋμ)Uh_²mμ±`9__<ζ[ΘΓΌž·φ νξΥΟhώ « YlηyΥ|ͺ;zw„ΞΏ›±·ΧWgλ‚ Ο Χe―ώ°|‘=Mέ‡LPᅩ¬ί­Ο?€}ιft.!oω] ώΣξyŸK½©]JqmύΩf&λΊPϋΨϋλ μυΦ―=ΆΠηZ4tΪdEΎHα£~«]λVθπHη^|™ϊ\zitίcοΏ¨υKS_Λζϊ鑉Γ@r °·[­τΚ\v½ΉŽ‡z<­Πω•^+j‰*r|$ίγEm±ψΜsnΏR<?oδ|ΏΚχωΒψyΎ[0oιη|}Ι[ΙόK˜ρs,έ¦TΠq?S8oω1~ξΆ]KuΖΟ}ψ;γη₯Ϊ½)T€@ΕφΦ6ίͺ™W 6Ν¦ΧζθΕ•e1gdt₯ς¬BEφ—΄-έUΤίΖ17iΔ΅κ0ߚύ©©ΡΡ‘…Λ7DW…†hmcƒeμψδcΡ³―Ι/PΎΓΪΈψ5ύώτAj1_»3smꝗŸΧΒΦψYƒέεLH'ή‘/χ«Υ‰νB†ΆΙxΙ¬>ΥL3ΌoυsZ’"πnΰ˜5|Θ`υιunψ 3η‘]ΪφΦ ½ΎΤφŒn6 ¦=n ΄GŽοYKš8iŒ.θΫ/؎=Ϋl׎uΛ΅pιZϋΐ^Ξ½ΏΘτKWύ:ͺ‘›ηΠρ7钁MͺkΓ=jϋ`»ώ{ΝΏλݝ±@ΕΫM bO“oΫ; ΄xΛYjωΚ0]p~`Mΰη¨voX©εΟΎ’ψ3!΄Υϋ.]ͺδ|wλΩRω–‡tΩΐpπ°uxϋζW5οΙH>α ΛKf=τC­έ[γ*ΏπaΝ·όΘ”1”K-~)90―Qγn»I#ϋG‚:γχΌ:τήBύκιW’ƒ­Ί2pυ¬ϊHΰ—Μ13[ίύ%:[Ÿ]ΞΰrŽύΕKΏŽ”Α«§ΙsςMΧ¨ιόδ>IϊΈι«FϊͺHٞςχ+4οα_%·{ʝ³¬τβbydJ½άΟχLuK΅->Πφ'Z°<Ν BάΑšό½{ΤΎήn[ϊ°ž_œψ‘„Έ’/βσ›kς‹Ώ>jȍϊΞΤΡκ£g^^e­ /Zω:»?xΘΟΚ#Ή©Φ$τSGwχΏοσ³κ`ΥΥ™§9֜ߘy³.ΘΠ†Η7Ώdξ ‹¬Œb‹ŽΟΫΨ!qKγουcC³Sn3ΟVΟ'<[Εν\¬n{;ͺ;{v„fπ6‹™γλΓ½qUθ8UΟξ­ΡŽΈ•Ξ_τ{.ψbΰγζƒl›_Τ»ΛΓηΨω_ӈ+Ζι ;©ήΧϋOώBαξΨ[/ϋ™_WΨ;€”{­6srŠ~σ?΄φDxοšOuΓy‘ΨtΗoiο€_ƒWΝΉζg`ΗuοΠ—ΟŒε&ηD₯ ml2y~ΫτΛPprdeŠί¦Οώμ@MψΈΟtmύIΗ±“~ V·ςk7eω™)K܏eΠώ‘Ω~Θl·ΦΕν›φEB;€έ/ύ?ϋuϊ\b[ΞdςΏ ΘδfFήWfδν.ωΫΏ–ω©>ωύ3coBΰo,)•ΕυΣ*/‹ €@₯ Ψ[ι-\˜ϊyμυ2Ξa½ΜT»ψq€\ίοJΖ³–1VώΔχσ.σ 'ΔψyL4·₯ϋ‹—~)°ΥwŽ5y2~ω;VŽνg8 }ΎGšίιοψρlΖΟγώώθρόcόάL’χwη@oτ0žmwbΧΧ3ωYyΨY§_NΌί2~ΞψΉΛoΌ³Ζ“"0~ž|Ά1~ϋK²Nͺ5‰γȟ‡”]RΩe^ΗψyfΆ"€ε$§ΐήξχχίΧΘ~‘@ΔΓΪ²z½™™ΟΊυΏD’ŠG͌”³b3RZPΔφν«υΞζ=ϊ\ί1¨Od΅6½φ½Έ2πvΡψΥχsuβӝΡc¨šϊ†ςmΫϊΆφώρ#zj8*£¦CΧ-Φκ­ρα £ΣΠϊΐŒ½f ¬Ξηhπ Π¬—)ƒ°βΚxT[VΤ‰σGjpίXΠν63ρΡnΓ4,Lk—5PWω…k:ζμψY…Ν4½':ΊjΨ—B5]ƒkZn™£ΡcA½»ΜL­;vR—ήύ52όUʁγv­|LΟΌfYVΖΥ5°"τΣΆuqύ“Ξ:§·κϋχ13ΉyμνqΙMš:εgοNΐ₯¨ξ<ξδ"*¨Ή"›A6AΈa‰D—ˆwάbΤ NH’‰qσψΚ3N&FC^Λ¨θ‘άC` Λ‚AA „-ΘeυŽ€ ο©ξΣu«oWUχ½vίώήηΡΪΟ9υ9UΥτΏ}zΈ)γ€’C\Ή΅d›ž”…φ‰η_ΟΆCΞυρ―—˜Χ΅Ϋ’Xž=uι€;Υ―Κ-DΪfFΡά΄}―šŸΠFν»τTΟT»ϊEMy6•ΌPOν–eZ³~—Zvν§½ΌK—Lϋw½Ύ2σ~πj ;Σ%¨Mπ~«θξ7ψκŸhΜ ·j΄bŽnξ"/ΑΗέ1cj“ΨΫ/‘Ψ[£Oή£Eλ3vΘΊ Hμ5#w_uο­κ™H4e?jΚޜYœύσgλL‚ίŒl ~}υωσ:ΣΣώΫSν7νήΏQKίZ‘ƒ-»jΰpwtυδωψŸωy=?]"λœύε»»δ5΅ΚwΛ σΊi&νήͺmΫ·iž½ϊH-Υ‘Η3²±ϋΊq@Ο‰€zϊ³Ώ>xΙΠυeΤυz1#ZΖxύ‹ϊ―>·ΟβΌήφΉψ]9<5J·ω…€uKVjηξΤβ€SΤ¦SWυξΡE_ϊHW–œ }ίϊŽs;ΏM7^|Nb±Am·’|¦Q{­ύνjk>l¦柈-ΝH°MBf+“ΨϋΪι7jDΜΏT}Ν$φž™Lμέ½θ—ZŽ“"άQέΗέ©ͺφvΝΞόnmyα~ύύώυα— Y_Ρ&3ϊμ­{Ώ™›s?3Κ²ϋ·α}σ+fΏA©dΪ5ϋ››Ρ˜“£ΣŽnwD_NοkŽ7£εξ9jΖ7:αSυΆFΔ]Ό»Ήζ~dJΜ³ΎαmŽhDK―m[ΜH»›Μ¨Έ­ΜΘ½_>Ρ 9œϊΫς~s=W›A7£Ξδ΅&pΎΖŒ$άςψO50$|ŒώΌ§Ή^0ΉO“ͺ›y δδ0μgͺN§{=§ΣuM5»MοwΨh«Ύΐ‘:‚Ά[λœΡ’ΓφΓ’κλcΏ(δubΟ11ο1ΏuƒZ·LξΆ{ι³ZζŠδB›/ι¬―]cFΏO.ξ[ϊŸZϋζ_²–WΟΟ¬­g ΠτHμmz}ϊyœQΌΔޘqŽŒχΚΙ³ ΘηύSK€xvF£ΏŸ\_’!ΥFβηρsβη₯υyYκ=!~žνσǘ―+ΔΟΣΧ^ζgΉ1βΩι’ΜLΖk‘·ψΉϋΉƒω\Ί?―&~ξ]wY笘^`Π ΅Ώ½Ι7?7 +Ά12ϊ,|ά–ψΉω₯lχ"'~ξJδ˜?ΟΔf@ Ά@Γ$φφΊToΉ(ύσ‹§MΡΌtς ysyΛΜ²ΙDΨ½«_Ρ£Ο¦ΎMμ{£γŒ$ϋ¨IΦύh~j~¬υSσ›ŸšίεnLM+‡ή¬‰— I,­yu²IώέζΫ#Ηbkσ“ςw'R>0QΕj㑍sτΰc/˜ΘζΧΝHΓ—$Gƒ4£ ήgFAuή΄M˜”}xΗ’ητΤΜΤhlώκsΥηίί·œa²•^yμ—zΗM³ϊ ύΰ¦ R#mnΧβιS5o™ηQ9ΰ 3Šε©Q,Χhζk­]ΎuΙΥ[΅hΪiΑJ― ™Ÿ·?ίόΞος9σs$Ϊ{σG~G7^xΆ·"Δ\ΰHΚ!Ž Ϊ%υχΊv+Žαiπ/ΥνC§hη§±ϊa‡fΌ4?Y“―žΛ_ΤSΟ§’~ΝCΗDηH&Ž&t'K Έ.Ύv–ΕύF5ΓΣ=`Ÿvl©ΡΎΫ΅cϋ»ZΊΜ7ͺnΥhέ«ŽΘΧKϊ/λCΎυYηš$Ξν™λ§ά+{§'μՊ•Α£~‡Ύoέ>χM+Νs&šΔVη―Am_}±­ UΌΐδ1ZΈ§B LeϊΟ$Ž2Cκξ8ηv‹ωο;!qϏιέ·ίΥ)ηή’/NT³oωΛϊδτKuZ"Ιw·6›ΔήJμΝ·ΎbLϊ¨B?ίmΒmΦΘ2 °―ΕΦIΘ½ύ΄δhΜ;Tθ?ί3ϋgFΒmοŽ„{Œ›€ΨΉ©€X§#F·5IΏ©€Ωτυc]S‘λ3IΈw˜Ρ[%zΩΤ··Bs?π­J“L|­Ν·Mb{3ΝάV‘ΔΣΩͺΣΩ΄γ i~ΣώΤίΠShT«d²pFB°»ƒ™VΆ:ͺοϊibΨlνβΝZυ₯ΟΫۚ‘άœήnΕευ·Η~ΠΨχ‘CΠ²Ο₯κ=ς«ζ+0ΙΏOήΫ¦?¬Π U#υ:knš§΅³_“›'Ϊ5cRΟό³€4m{›v6ΦΩΕJμηπ' E‰Έ‘ήοΊΩΣ\ρlλ=nδχσv=ξ|ϊάύ²L‰Ÿg Ή:υχΊvΫb];ΙUΉγ#ΔΟS_ϊήΎPMβσ2χZ¨ošqΉ;?W† ρsχΚΘηu3r<;]©™‰ρ<‹\ŸUGδΧΫ|γΩζ#½>δ[ŸuIζά―ΔΟν 2ΛΌΣKΗω²μšXmνŸάψΉŸ‹ψΉ7 t”8q"^OόΌΞηΔΟ‹ψσGΝΟ2 Π€ ’ΨΫί$ΰ^’Jΐέ»ςE=:ΝK*Lœ‹I„haΙTϋΝh―χJ‰<±Œ˜oΧΌ‡ξΣβφΩΦ΅fδΘδΟNΧ((ΑΜδΤ›`fkΟ[mLT±·»η–±n†9_3šlλaΊώξλΥΕ”XŽ[§}¬uυQwΤUw{=Σn#oΣψ “£ε%’ω|£tΪ {Ϋ̈ΌSύ#ςš²ν}–Ο˜¬YoZI»Vۜf¬zi²^^lm―§m‘7u©±η©f΄d3@ZΞΏŠŠϊ¨f™fΝ]šsί0;DΉ^b_ΧnC"{vΦEί»Gξΰ­›<’_ΟZι––}šQΟF½vh…›μνeή@O4 ίΞύWˆ$ιΨ.ν,“ϋ={―elι9ςF½ph*ω'cSbαΠΞUZXg”g»ŒUf4υ—S£©ΧiΉΥηιΧ†ŒuٟŸq―3»mζ>¬ιs2“X½ΰNζ³Ϊ>.ΦσΣ=yϋό">γέ"κZε;Ιq^7Λ7šM0_rqΜ_Γ2κ-ΐλCP}VQ―—Bτ_”Χ‡Όλ³ΞΥι0―·^ϋ΄ψΙ»4/δ(έn{Η›ϊκ»oέόSσ…‚[Ν œ”ώΐkΔΏη±lγ&Wνk—y‰—§ΗΏ_Ό„ΔΪω‡{΄iύ0υ—+t²SΑ{ΛτΦ―θŒkοTϋΔθŸ…LμΝΏΎbL¦ϋ8¨ί+>Υυͺ«!vχλ_yT—žœLvuΧeτ±Iώ^‡Tβο‘fšΆ³B›‚ΚZPί“€ϋ΅Tξ63"ο3V₯φ>ΛΝυχ;ηϊ³ΚwFΓ}mGs½m£Ω<Ώg†ϋ BΏΨλ%ύΊEw>ρ¨nj<Χuο5ΧodΉ¬ϊ]‚Ά‡]ηwωΒ¨Ψοϋ>r-۝¨³vsSSσΛ#fT4ι―Zϋ=’}Ύ­uKαωY§Ρ¬@š‰½M·oσΜβ$φƍsd& Ε‹DyΏθh½‡ |?ho'~Hieο?#Υ“eη(ΧKμλΪ­ΫΊvœUΉγ#ΔΟ›άηecJόΌξηqο?;FHό<ψsηΐΛ1(žmοωyf0TŸUρσΊfή΅MόΌNjMPL/λΞfƒ΅Ώ³ρσΊXΔΟ½ΔήtlΩΊnλόqβ}ΝdΗΖ‰Ÿ§>Η ~^ΌŸ?Φ½ύYƒ4˜@ƒ$φΪ‰Rλ~€fΜχΧSW˜Ÿ―Nύl|:AΧz’ύΛ4υώΗεO#vΓdθ뀑˜ΐε£&ρ7‘μωD 4yGYsVr&έ$-+©Ξ;ΖK†σΦYυΈ³ΉκsχσO«/Υ„›.Jκœ”3β–ŸjXjdd™˜kvVσζΎ‚š·R›ΦΞΡRΎ²Ϊ&“,8έ$ ϊ{WZΙ-FΉ^b_ΧJdOϋ>Ω¨Ω&Aw© λ–λŸΪυέGΦφo=―§~;ί_B€εΨ.V;Κζ~"[užFό’Ίt{4σp+ΙΦz9χjFb―ύEŠtϋ΄ΰΡ»΄ΘDͺΟͺ#έ†ΧK!ϊΟΎ6‚FώΧ‹ua_oνwΧψ ΛWhΣ_7kΧΞ­ΪΆsΧΈ,sφ½_ο}›εx•BbZPΐ(Ϋω8λ­ύu΄™žίQΡ ξρΝθ«sΠΗgή nݝ‡μ~mϋέ}ϊΫΦξκuνwΥΰ‰½ωΧWIkΔήt PŸι²ΣލŸyΜΉλμ‘nƒ“]?Σ•ζ˜jsŒ“P;·¦Ή˜ Yί3ππΤΐNy5Ÿ˜g­?ΏΦ,·iž}7έ&ϋΊ4 ΖϘγŒχGΦφτhΔN“­ΏΟ%±7€‹ΥΜH³}9;ύkwͺλ™υΙf`h3lο{ΆιˆΙ—nήΎsb_Σ₯fδήΝf”ν)υ²] ΟΟH½ΑΞ €@i Ψ[ΪύW,­“Ψ/ΞaΞΨ~χ3»?O]ΔΟ r‹D‰ΔΎέ–ΪΧw¨xρσ&wΏ»ΧB˜)ρσDΜލ›Ζ»ˆŸ;—Z}χQ€xΆ}έF~ž%ŽTŸU‡{ˆψyΊˆŸ§)²ΟXqE7fš}g³Εڟψy°ρsβηφ}’Ύ―¬{'½ŽψyπMδ¬%~žέ†- P– ’Ψλ%‹Τh‘EvAQδμD1λΦ›Ϊ΅³4ει—λtŠχζτ€–NX³—e|΄­(¦:…;+¬6€ίΩ;n¬«ξΎU=[Ϋ£ΦyηXŽ[f`yξΖlΣσΜΘΕ7₯F.6IKLrζLrf΅Έϋϋͺ6m ϋW'qΙj›v.ΦγMΥ°…•Θ~Q—ΨΧ΅kΩs€Ζέ}»z;}ΈΫ$Ί¬n’»[tΖΤͺ§v½ΉžτέGΦφz―͌B³/Δv±ΪQ6χ{vΖz·΄οV­ͺΣ»κτύ5°Oo_χ'ΦͺFκζIW«cb‹/Υόγχf3ͺfΗƒfc*QΣIruΏPαυ_˜Δ^ο8―Nbοdΰ|α"[©½­>χ½pΟO―Q^Wμΰώ>σztWΧ#ϋΰ΅©ΟΟΤ)η|Mqχ‹;΅L£ήGCΌC£‡€~―žϊχL€lοcΥφυ!r}V^ί„Ή^ΆεϊgΞΥΎ6κΌ>Ϊ*ΐυbkXOηηυ&άβ}Α'£Ik΄ξ7τ‡—f«6cƒ·ϊΎυɘ+‰Ÿ’ –dœ…oΑΪ_Ÿ4Σγ5ζiYψ?/!ρ€φu›ZžY­γM5ί}A+ζ.2sέΥΣ$φ6Ĉ½ωΦWI“Δ{uΥυ4_fKΙ{½ΜOΖνjϋϋΪK7±7T}ΗθJΣ¦jμόUZΛA‰½΅šyχ4³φ2³Φuλoζ.ŸKbo(ίΉd6»ή₯ΖΎZφΉZƒFž›jΣύ}ώ‹Ϊ²vSjω,u{Ή:ž‘ψ”΄λOzkΖLΥΉ€R{—Δσ³^}6"€MK€Δަ՟ŸΧΩΔIμη0gh½Œp}ΒΏίuπM­6xοΧ­}·‡y?οϋΥ?·Θΐς܍٦ΔΟ³ΙD]εz‰}]»²ϊ:\|„ψy“ϋΌΜ½"N‰ŸΟΆπ ~žqωXΟ•¨―›‘γΩvΕV½αžgζs–¨ρz«ου8Μλ-ρs?O^­!βŠφemΗ!‰ŸgΘ€ˆŸ$φ†Š?ČZ¬€Ο1WΔβηΑΨ(bNμ UΧrμ€;5°Κ‘±Εμ7!ξΟtωπFόσCΦΓaΆξθ’QMΎ’“‹vάyν·%ρ­³ JΝ–°_zUgΉύϋά5iphγ\=υΨowμ„6“l·πν4£KeϋψάΙw†7υΞfk”?»mA‰]ι6ε1S5@ΓvWσ£φo g/―YE…>ΪϋΏιU4ϋ1υm‰r½xΙˆΧ΅Ϋ€¨ž­½ŸSŠ›Ψλ½™wa¦v;‚qkΧ0³±]μv”Λύ4Η>‡^§q— W«Δ~ξσΣ{ήd™ΦΩέ τΊΗeŽΆœΌ8Ψ|‘ΰΦΤ |IΓ©ΆΌςG;€Gbiέσ\ž›εώ΄ϋ<}νymχΧΊλβ]g™ΟΑ₯Οά’ΩΎ¦ΩΟ»~oTω˜ΟΟ”M‘ο7·ΨτΤ6r ψ¦~2~TΊ˜C;ΧkΓƍͺ=hΖλmfžΗ-»hΔπ³Ϋ=—τξ™Ο‘0―qκ³Ο-υ²ΙϊU€ψύg_Αχ†λ‘y5κλm―‘ΊtΔ?©{N©g‚Ϋ¦δ4ϋΏ€Πχmf‘ι%Ϋ'πIοω9Ξδ˜Μ– ™>›<ώύβT₯™‘?Χθ/O?©χ«Ξ2#φώszΔή-/ά―ΏΓΪ7βl!λ+•ΐ€tή €˜Ψ›Χn5γο3]άαˆΆpVΦ3bo`°ΝK N^K&0™ύΧ<—ή―Πσ¨­Θ¨Ο[¨0#χήqΪ”λ:Ξ΅έ)±7p€―mν lƒί 0yάΩ±ίςΊΆΞ.λ¬]ί­zV«πνϋeυϋ—oκ ‰΅»Ν¨½χg΅·$žŸΎ³chΚ$φ6εήmΌsΛ/±7bœΡ~―%`qΨ©ύu=k·!ύ~έΪ!p{έXύ+QυΎ― ,Οͺ―Ξ,ρsβηu.ŠΜΉ©\Ϋ3KΛΉ/iŠ΅ΫQ.χ{NΝά;?ςΊ’Χ$~nb6ξ―Ζ‰gΫ—gΖύ0p†½―3§>»Žτλq˜Χ[βη.?ρσ $LW'` ΨΟYEό\{ήxLοΎύn FZΨg!βΆ&Ι”ψy–>"~Cό<…• €@A8±W ώygοEFšυ&D»—˜JŸΚό©YsΚCώ‰FκdζΌΔ4[ΒLyυ½°pƒ½9χΌΥ†ΐ€bΰvο|Όc‚ΦTX^ΐ~©UƒΏρ―σ₯.Ι₯ύ«4σώ_jmΰξφOθlΧλχί§%ϋwΜΎ2bΫ²”}Kη‘ίэ&“Η²ο•ΉεΠΪWτΰΣΏΛ\s)Κυβΰ"^ΧnΫ"{zΧP؟fOT•«ž\ΫM!ν«ΟSηJgόΐΤίΗϋ΅tΩJw)cΫΕjGSΏί£xfΰ.΄ΥθΫ¬!‰δ~χ9h]+ζ˜ &Ήvz@r­ΧWξqΉ{+ΟΉN―žjΙz½rΗΟυŽ―]ν‡ή¨Ϋ.šXλ=};9‹VŸ{ϋym―oΧφ(χŸ)Ϋ|‰€_βK$ζ9ψyξΜlWϋα·ιΆ‹ΟI¬τκ/ΐσΣ­Ζώι«0 °ζΈHΧ‹eε>l^KΗ$^K₯mfΤχ©ώQί[Τ­w_-gfΟΕ=)3΅κ άnνκΜΖͺ/°Ž0ΧΛ]τ½οkP'η 01_Μ‘α_ p½ž«#φ―­ΊUwQ»NgͺgΏsΤ₯]ςΛ?’σλn~έΐϊNͺΘΠχm–&τΌΰ»ΊjTΏΔΦlϜ,‡6ήκ\Kƒ\ώ’Λωόϋ₯jԝκ~VrŒu·τΜ@ΧξH.Ά₯W}=9Θϊοκέ§“Ώ[vω’N>ι8χpι“χT³ώ/ή²5Wˆϊάβšfb―y]Ωί\/4Ω΄^€ΣIμ]PΣ\ ? v{ϋy αώuΗθλνjΠqŸ™ŽΡμh%αΎΣVπΔή5ζ\gΦ9WλΔΝ}πνӎ&~ φ3Bπ^ίΧƒξ“ u!ž_λ{μχ…Έ£άGgŒύ‰:ŸαόŒΖν0ΞΪΌqŸ…ζΜ†i»$žŸΎ³chΚ$φ6εήmΌsΛ/±7JœΓœ“υώ1JΐΦ~Χ>ʚ·Ϊάζύ|aFμ%~.?·Χ ΩΐkΤΪ1Χv³k”ψ]ΌΈ¦©ΔjGSΏί£xZ=•e–ψyψΟe‰Ÿ;QΠηΞ±βΩφiέΏ―•φΎf>V}u„y½%~Nό±wΔ·~ͺa}’ΧB­IͺŸ”T_5Z·N—H­οΞv0Ίώg₯wν»ϋΕ½Ξμηΰͺ—&λεΕ™χΠΐ+Ռ6ά%aεΦε,ΨΗΕz~&J4³GήήΉX?4U»άmY¦‘—˜χ‘w-'Δ‹#Ύ5Ωά·NZΆ5Κ„ψ°χ­ΈΤ²7ψ>-~ζ.Νσ†]η°šiΰζ:Ε$ϋ9ǚζ¬8¬=Xl˜U|ͺλ;UW§τOšιρš σ΅°zώ“ƒχΟηί/-ϋ\­A#ΟMόΑ¦ΩZ>ϋΛ-ϋŽΧ ―€ώ½·σOzλΕ™ϊ8½59ΣqΜOΤ­»“d˜ϊϋ`•V=ύ΄ώΟ]Ά¦…¨Ο-.r`²‘ϋ=°ΟόI΅#Ś·>’ OL^ΫΜΊΟΤϊXΝυσmsύ$ή―m¦™;*΄&ϊΌ€œΙ΅.Έ3 ¬ΣΪ!Χv³k‡VGuΫ©Ÿ&Ϊq Bωžο\­βœΡΣ£ i¦gvVd|Ρ.+ΘΨ†άύ0σ¬[bΏ(Δuε>:γR“Ψ{zςžΫ΅θ—ΪπΞ¦ 5bo}#mG~~ϊjb@ °$φΦ³\K‹“Ψ7ΞaΗVšz<-}=ExΟLό<©Fό<}υΟδΊ¦rm7₯F‰ίqΏ;ŸεΕτΌξ‰βι•}ŽψyψΟeνΈ&ρsοσ–Xρlϋ’ ρ±wU_`AχZέuvΏΗύόƒψΉέƒuη#Η:ŽZ·‰ζηĈŸ;,…ˆ3ΊΌΔΟγ&φΪ#?οg>@sbοΔΟC~ώθή€L@&*Π ‰½•ηšΗ₯Fx΄wSˆώ΄)&­ΦΩf½ q7Μ}DΣηx£„f–»JΣο5ͺ:;ΪV‡ΦΟΡƒOΎ`oΝ=o%Ίμ ]Ρ*ίKfͺϋ¦(W "ݐ\υΉ;V_ͺ 7]€6‰εZρΓzΝ— ζξκN3™ϋίΦτϋUΧΛΩΩόΖΐͺΓZ±Μ—•xnι…›ΆοΦS֘s9 ώΈvƒvE}8[©Φ9ζΊ^2―?+!=UvΦλΪ­ΫͺΛ»v܍ΑΣώ—™dΝ‘©dΝέΛ4ύgΧνΓΦ4ΈΫa3’nͺrΥ“k»iŠDH΅ΛΤ=Υԝ™™άΫΕj‡SRSΎί£xΆ?η›U--}ν7ΪtW_‘‰7] ΚVΝΎί΄ΤΩΟηΉiα3ϊυ«™_ͺπ‚ΘΑ‰½kLβλ ιηJO?NΓtIΤδόoιτ»Gώ4c›šRο1#€:{yΑ/g)γΟj£w„{~Ζ½Ξz^π}3ͺ¨5NρƒύΖjyΊφή›ΤύΔδ*―MΎ/RΔy~¦k±ΞΜκ―τφΊ3QΏ‡½Ό:‚ή ΦΈ»oUοTΞ ν’nm`_¦·Φ™‰U_`α—Ό_œ3°κΟυϊw}V]ήuDΝSΊ™λzσšΐDρ>&ΡΚT’ϊηγκ”ςΎ­sœYaΦoΌϋzsη›ΏϊξϋΨS*τΣjΣλ>Σ‹ϊD―Ό—^Ρ3V‚’%υχf”Τ₯υ’˜œ˜½Yρύς%υύ—kRΟqσ…₯%ΏΤκen’ υσ›ίUϋΆΙzk—?«Υ^Q§φΟ%6Ύ·B+ύ¬K4θ/ϊάR3IΗ_J%ο^τ€ΦΏ“eΨέΑ?mθ~μ³ά ₯˜ΔήJ“μϊ½T²«άΔ]«ύύ+κ““Ι°ϊ¨™~±»B΅yΤΧύ€£Jͺ<“0ϋΌI˜­σ>Ζ©ΨΟtΆ ά½ύAjαΐ:­†ζڞ(Σ ¨ϊ°B?ί2±7ΰΎέ||2!:ίΔ^§Jε>ͺϊΪέκ~f»όG›gώφšΥ fΆΗ₯:χ‚―ͺEbνm~ανψGζ.‰₯8ΟΟ€bX… P8{ gYΞ%ΕIμη°ί«:ζaγύc½Νυ~7γ8w!W<Ϋ*ί{ξύΌ[EΖ4W}ξΞΔΟ] ?OS$gˆŸ'd(βΟΛΌΨaͺοκω<‚ψyp’tάΧβηφηΩήηΞή5Iό<πσcηV΅^οsύ{‚ψy–ΟηSΌΔ€‘γ¨v]ιyβηI βηΞ`—vDnB)ρsβηΞ½εs(βηι+3 €@Α$±Wͺ6IAίO'iηۚύ?³΄Τ|Έ9δ+—hτΠδO7;g“ρM@λM@ςLhΝά—4oΞ"΅zΎzوDΒΩΆ-h$`gƒ=°³ίΚZσΧν:όX5Χaν[·H›νdΉͺjυ―ϊ‚s€ω;¬Γ-ΟΤ¨‹G$“-Ά/Φ+ΞΟٟΰŒ+gΆ~ψw­}―ڌLyΉοηΙ#&£Φ·ΖI₯쬱?ΌG“Ÿ%ΛωΩ₯Ωσ7¨’ε ‰vΩ{ο+΄vσžΤ*―]‰7jΙόEzχ/ΥΗ•νtjΫΞκzf΅Ίθ₯Κ Y­ώπ‚°vmM`>υσΊv™βxΪώ;εμ_―Εό£ώ²n«TΩQ]{φUυ¨αͺ4#©>莀š«ž\ΫM5^ΠΒ©Τόν7‰½χ'φrΏ’pΙGρτFJ= ­«WiΛ–MΪe2ُ4‚Ξθέ_}‡œNΣ–ΉšςΘo’_Œ0UeόΤ Yή±z–-Y¦χΤRν;υUΏމ$V/ωΦnΫ‘-Λ΄rk­Zžrš: ¨N}‘ y΅kg™Ρz_N.όΏΫ¨οjόΙgϋV“Tόœ/©8qHΰ΅η=§ΌηLΠΊ˜χŸο―Y=Gs_{AϋΫΣsΡυκ]坌WΏ³ΞkCb¨ΟO―X 3£Hz¬έk΄δνυϊPjήό¨v­š­΅;­Ν¬έ'‰-υέ–i²”p―›ήΟ‹™£φ―Ρ‚Χ` w«υ9ηκΛ#/QwχυΖlΞtIΦbν·§vs'±κ³ΞΝ«Γλ—°λmˆΣΎk§ώOxνŠU_ΰΉΊzAS“0~χͺn]£uoύE[7―ם;τΎΪ鬁€‘#ΞQ«Δaή½TJ¨ϋ6ΰΐΞ#ΏcFt>;±%τ―#œT‘Ι_mžLNω™f˜Δήί5hb―4ΌΝh™LBΤαfϊσΑcτ‘©ΏΒδLξώ°™ΦΆN0L‚€΅{>³vΓ΄D;ώ8[{φV›³/Φι]έp›6MH;χΦ­©N@ε}“Ψϋ\ΆΔ^'γ%%F«ο‹:cδσ¬£ϊΤόWqr΅;=ΩΎΜΏ9kίΔ€~V¨™+xΟ²ΧτήϋΎΆ6tΏφYέ dP`Yχͺ#κέ<Υf3ͺσοk›i©Ή&†œτ©Ύζ&υšΝιvσ¬Ο Ž&jΥ Rχ“9‰½¦˜Ψρ―λd•QξAΞ˜nλ{C_Ή\΅š’w€Σ‡œgώ΅•ϊΫυ†–Οψ­>p—­i¬η§u<³ €… ±·π¦εXbœΔ^βiυΔӈŸΧm)>3~ηžqδψˆ9ψyB―d?/Kυ}”x(ρσlΟϘχŸο'~ž,%V<Ϋ}–9ӈϳXυΦαΕ©‰Ÿ?·/ΙlσΔΟ“2ργŒΔΟAβηΔΟ‰Ÿg{Κ²Θ_ {ΝHrfΤήρfΤήdbIpCΡ§™ΡΣ?Kn½ >"΅6ΗθpήΟ[Τ-e܇5έIΦMύ Ήα§έ7ω3σξΊ¬S“ό:υΉ­ϊϊ„Λ oΉή]ρCσ¦Αδ>xϋ™D¨υέϋ+3Jͺ=βcΦΦ%6ψΟO½Ζθζ[.OώŒp}‡%φv£ uΞ΅ΎBJs[”λ%Φuν²Δτlξ5ϊζΈT²Ή[–oZk{§Έ‰½Ήκ1χΩ“œξŒώl_›v‘QiΞq±\Κΰ~wM£xΪ ξρΑΣνšχδ}ZΌήήΪV#nψކυνd― ˜ίͺΧϊ7-1 ₯uΪ°χ¦%3τλ™―l±W§λ~“Ί8«²¨xmš‚žŸ±3Ӝ>}WWŽπΎPβ41θ―ΞύΟσΣ ΧΧ5α–K2₯έΝužΩfC>‰”Ψλ–μ›ϊ_7M_άjžο|»-Φqqv μΛ £SλβΤXGψλ%―ΧΏT³£Ό>δU_ΰΉΦγιό» ‘Ψ[ί>f”κυ³Μ/dOΘ—Bά·uͺh«1·Xƒ»ždΆx£ΧΩΝΏβsqΐ4βΈOu{ϋ£Αχί{ΝυόΤ¨¨N{[˜};$χM',ϊΟ£`ΛuΦ΅7¨ν)Ω άύΖcZφ»;DIHL³ΎΣΎ¦ΑWŒΡρ­°WξΧ–ξΣίύ#”6tΏφYpbο•fājσ]=»o;˜Q{Η›Q{λ}ΏςQ…¦νnfvσ—g}Ξυψms=v΄ι‚ζνΔήΐ:­ƒLbον§εΎn‡žzD£ZyIΉV Ϊΰ»—Ϋάьν}σiΛΐ6†ο_±c^Χ©’έG§κŒ±·«σ©αμ³Άr·ώφ»ϋ΅mkΠ1ŸŸAE±@ `$φŒ²¬ Š—ΨK<ΝωRuPό‡ψyρέNQβ#qγw‰³ŽIZ?―ηΧ Q”ώ‹|εωy™{΅G‰‡?O&φ=?γήΔΟΝ•Hόά½λNƒ>?NνεωBόΌ.mƚ†Ž£fTf-?OaČ3?Χ!βηΦ •9Kό<Σ#ΉDό?UkνQw­r“³5τ²‹Tέϋ ΤβT΅JύΜΊ³mΥ«θε…ήίΌςG;€GWμ\¬Η§nӘ»―NŒ8·γ­ηυΤoη›]M’Ρ€;ΥόόΈcΉYχ|溚ε3τΔσΙ€ΈΘυ=4Υ$>χΤXSώ@S~Ώ5Ώ@/˜Ρ|3ώΜOM{‘χν’±Ϊ]¨έΉQ[ΦΎ‘ΧΜΘΘU#uσ€«Ι5+Ν9LKžCΖ>Mb!όυβœnδλΪ5ΚΗ³ΫH]:z„ϊυHΓ;Έ]+ΎͺΧζ―LΦdΎa}cκέ»ςE=:Ν τXζηλnž4.Ω―Φ΅i푌o;Μ(ΡSφ”I2ΟώΩ₯ ξwW+’g·aϋΥsΥ©s/΅±ž]nYΞtΗΪ…Z6ηΏτŽo€WwŸώά¬‘£†&²Υl\’ ^Υυ{»Χi›[ΘΑmέΈN«—ώA+RϋΊ›²M~γ_5φK]›W̘¬Χήτ]1Φ΅ηωιω:K΄Ζ$χ“QΖ€2΅œœΤh•y=8uΈΙΨ¬πΪdνχωi‘˜ν5ZγF Sο™χ°5ΙΩ·NŸΤwεq%,/4―Ρώ%gtΫ…λΥaψEκbΑΐηŒηYδϊ p½(οώ‹φϊ»ΎΘžm5μΧͺo3²ΆΏά>mXς'-˜ω;οΛS‰υu—σΎυR}…&ήtAβ^Κ5’·}hίΝuGoglΠΤίΥύ (γ» ξΆBOMpςf€Ρή©HέβWνo—ΜΎι?“ ωm“ ι<jUθρ}Ν›fζ‹κqωε:­Κί‰»υE/jγ;ΑI½N[ͺFέ©ξgYι‘ο™Χ=MκmhŒϊΪ|Uύ―ΊT'Χ[³1xtαοw3νM&]~ BωžΣg&‘΄ƒωΩ°ζΉ~Ь۟ΉΖ¬{<±.yR•'|ͺ‹+ͺ«Iϊυm4eΞ2eΦΊ PŸΜθΌcL}_Κ’d[ϋΙ1ΪςA3½ϊ~κϊ³κLέφ8SϋΊυ›½›γ2΄ςS}ь`}1Ÿ©•u;ΦΉ́g›6Ž΅F-N”εŒ2lΪΥρdcnŽO[Zmά³2Ϋe)Ζu*>ϊ}tͺͺ†~]§ θΞk5ΥΕzΗςgU³έZiΟΖ|~ΪE0 Px{ oZŽ%ΖMμu¬"Η9ςˆdφMψχ»‘γΩΔΟ3©›ΔRψλΕ9έΘΧ΅k9>βh¦ΔΟ- lψώkμϋέmi€x(ρsΓζ}&iώθxΖ½ˆŸΧύά9r<Ϋ½ iŒηYδϊˆŸΫβΎyβη>ϊ‰Ÿ§|bΔ‰Ÿ?·ο.βηΔΟνλy@ @ šΨλΆ±Ϋ9ΓΤξδ€#Κ΅{γ"mJH³“&‘τQ“HΪΉϊ<΅?υΔΔΟΔ~όώV­XιKZu+aš[ΐόŒΩΐuœσAώΡ#ϊψγύΪ·s₯ΆυEξΚ~ΠΧu₯*» Π™ζ'°ΉG?Τϋ΅»΄vMqέ‘]Έίs^ν{ P‡ΚΦ:αΈδο„ύψ vm#δ=ΫY}Ξν‘SZ5wnwύψ=sμΗζlZπ&t³I*O€šm_¨Ηρ_9“ ƒ Κ½6τufΥΪ<{'Ÿ ΛΏΛzΏ$b\¬ΟΟάG Λ–ζ5ΪΌHψώ.½³Υή(ΨlcΧ—hxcχ_#ΦΧΎ[΅:΄m­ǝxm8ϊΑnm[Ά2ό½ρΎρ­ŸjXηKWϋ΄θΙ»΄ dfξ%ƒ[θς^ν’•Ÿθ?·Z°‹­D ϊB/λΔ“[ι³£1:€χ·όYήoΈΖ7f}₯Τοέ[~ͺΆΞ?°R—εž›iΣα†λϋ™Ξnρ™Z8·…©σ“ΟŽΡήΓΗh[CΦυtLϋ›–O>=F›?8ΖKrŽZVοߘס̿tNιΥM'ŸψΉτιΗϊpο½χ}υžeάηg½…²@ o{σ&€#Ob― :ΞQ€8€['ӁF|?P{“[ϊΊ.ΰ™?/ f Eό<{'ΕΊˆŸ‚6v<»±λKœtcΏώ5b}ΔΟ/λ’ZΩΈq?©1λ#~^Ο₯HόΌœθ›σΊ&~½8¨O Q{λk@Ζ6;0ΉΪŒ4ϊ¬o€ΡŒY@’ΰ~/ιξΛΦxοg»φiρ3wi^ΓζˆfkFω¬η>*ŸΎnΐ3 }ίZ#Ύοxk†ωΥ‚°#ω7ΣΔσΥ –©“xο¨ξόΣνnΐs’θb ί‹‘hC‘Δ~~Iϋi Π„Hμmۈ§VˆΔήΠΝ%šŠ(yξχ’οΒ ‡ :˜uΡΈ’›qDΠχmμψqΤ:θe±‚~/‹nζ$Γ Δ~~†+ž½@R ±·”{Ά#PΚTJΉχh{±pKOЎϊΪUθΑs›«MjŸ}ϋ=³ƒΡzλ#kΫθχ&эœ €M]€Δή¦ήÍs~$φ6Ž3΅ PvΔύΚΛ9αΰ>jTŠ,ΈqΤ‚“–Dτ{ItD@ΰσ(Δήnc4aΒε‰Δ½ŒΨϋy_ԏ@Γ pΏ7¬/₯—‡χQyτs‰Ÿe»Σ*4ιœζjυ±τΙΥΌΙh½%ή₯‘šOΏ‡bb'@ψœHμύœ; ‰Tί¨‰½ΔšΘUΓi B€ϋ=» C€ϋ(›‹A€8j1τB㷁~o|sjD@ Š+±·j€nžt΅:ɚ•3τΔ΄°?ρ\Šτ΄2ΰ~/σ €Σ/ˆχQA)@@ΚS€ΔήςμχBŸu£&φ(tχQΕ+ΐύ^Ό}CΛJG€ϋ¨tϊŠ–"€ € €@βJμ­ΣkΦ†h}žΖ]7Fm“n^ ηf’ψ†­ώ}Ϊͺ}Υ f—΅kηžϊwΝΨΪΨΗeT^: ­GκΖ»―Vg§ΕΫλρ_LΥ¬­o«σoω†φ:ΥμQ£Oή£Eλ³ξΜ@@@² Ψ›•† J6±·©Η—›ϊωEΈFΩΥ'@όάRˆΕƎƒΗ­―ηϊ9”Aόόs@§J@@@ΰσhΊ‰½έΖhΒ„ΛΥΖΧ~QSž]Ώvλφεξj‘£ΪΏq±V¬’ΌWΡ ²5κω5H#š@‘₯ΦοaΘΉ62•ͺFλζIγΤΡ]{p½^ΉχηzΗ]NO{κή©~νœΫ5ο‘ϋ΄x§3ίSc'έ©UΞ|ζ=zovζsύ5φqΉΪSΌΫ~γ_5φK] \1c²^{s[ύ­ΎBoΊ@•f―Ϊ΅―hΚΣΏ«Ά"€ € €  @bo «" ”lboΤb©ΕQ£ž_δž/“J­ίΓt ΧF¦ρσL"\"~^„B“@@@FhΒ‰½_ΧΔ —$Ώ™Δ―s$~uωέxαΩ ς sΦτΉΩ~Ύz%Lέ’_˜"ΛqŸ’λχ0T5F·NΊ\ΜΎ{MRϋ£Ή’ΪΓ”YΚϋXZχ4Ά.|BΟ½κΕΫNμ5#ΑšήE‰ޞΊΒ$όV'~£%φ6ξqξΩ•Ϊτ<]σ›ΤΕiφξešϊ³Η•#­ΧμΨVcn±w=ΙΜ›$μGMv¨dk§ώ@@@H ΨΛ•PMμ_.Ή8*ρσB\ή*Ή~sΦΔΟ3•ˆŸgzέρσ’λ„ € €4’@ΣMμ5ί$=j€Ž«n~C ήάP/iηα·ιΖ‹ΟIμ³ξχkΖό"Oμx~υž|o,Ή~ΣW&3•,ι€Ωf’AΡΜ{Φڌ=3{½‘y³­Ο88`‘± hB ¬κ6κ»AΏDK·.|Ζ$\ΏͺΥφ‡ Ϋ–<§©3…:Ž@@@pHμu%˜ζ#P²‰½γΛ%Gx~ω\MωΨ’λχ0aΕ‹Γ€YΔΟΓ\@»ρσΖυ¦6@@@ ˜šnboDεΚ‘7kβeCG­yu²^X˜{ΜȈU°{ 4Ι~·q™ΙΆͺlm:aΥa_4X“,»ŽMsѯ笴VeKΔΝΆή:4pΆ± lD‘―쬋Ύwurši’’Ω­‡ιΖ»―WggΧύokΪύΏƒφ†pc@@@΄‰½i fς(ΩΔވηά$γ¨ Κqχ&ΩοVΌ˜ψΉΉͺ-ϋ'~nk|^σΔΟ?/yκE@@ŠA Q{^pϊχ©VηͺSΣη|hvΥlΩ¨ΏΌω½³yOz}rf°ΖήςRQ‘CΫηλ…?K©ξ]{¨ςΔδ΅»7jΣΫσ5kξτ±=G^§Αέ+uτhz•dΚ8°ι5kΎΐηlo«‘ίΈJgΆ>N‡Ρρm«ΥΡIz4΅;7j߁“ ζ-€oΎ¨yΛκ&ϋφyΞΠO]2Ξm«6Ό΅@―ΝΝ6ςdcœ_Ίωf¦§†}γkκΫ§ŸΪΏΪƒJ8ξέςΆV/ž₯E+ύη5@}k”N=ΑψoZ€₯{ΫiΨΠAκή©CͺΠΪΆr‘ζO{Yώ#νZ‹sΎύΥΣ•ˆΧοξΡ‘ο#+W³|†ζ¬k©a_iΘώ‹{½Δ=Ξ 9M{€Fλ5‡2΅ͺ“ š-7Ϋϊ\υ7φqn{β^ŸζΈ+ΟWοžgͺCk3ͺqκ/ρ¬ή±M›ήyCKV|χ8SAΥhέ:iœœ'Λ‘sυΤcΏ‰”t>τ†Ι:Ώ―sτ>-~ζ.Ν+ςΦS€L@@@ŠD€Δή"ιˆoF!{CΗύVρβŒΔΟΣ€Ύ™¨ρ΄FŠkϊZΩ8‹ΔϝQk ϋωGάλ%ξq―βη9>/s=γΖΑγgκ%~ξβ3E@@ΚR a{[Ÿ§+»R՝Ό$1Ώς‘΅―θΑ§—ΉΊΫM˜pΉΪ˜΅{7ϊ©s*‘7cΗƒf”Ζ{½Q‡~λ!ί§n]΅¦Ž)ώ:T­q?Ύzg˜}aӜ‡υλΉvΦXOΎε: ιε&»Φ=vοκYϊοg_›¨Φ(η—jιƒ«Ύ}“zΆ«Ϋ>wΝΊΉOhΖ/AZέΎ‰.Q₯»CΆι–šςΘΧ=ΏlϋΕϊ<ϋ=ާ{ή1ϋ]Qο£t Ξ­8Λ΄Pύχz‰{\–ΣΙΊΪφ8Έ][χ«.]“χνΊί?¬σέϋ:["nΆυYkLmhμγL΅q―Osά΅oRχ ηlκl­}Ρ<«ggžtάγR₯΄z£n»lhb)stŒΜj²-υΌΰ»ΊjTΏΔζ ζ==γν(Φ#€ € €  ±—+‘y%φFϋΉ Žg$~ξZΣ8ρ΄ΖŠkZΝlΌYβηikβη"~žΊβΖΑγ—ͺ–ψyϊnd@@(KLμ5Im“ξTΏ*ΟuΫκ…Ϊ΄}―šŸΠFν»τTO“\W»ϊEMyΦ—,f'βy‡«fύΫΪρή‡jyJGuξΥE­|‰½έ†S;;#φ‘Zœ’~}{%ŽΞ–0Φ‚kΤυδ:όιQί~ ͺ»&“‚kΦ/3υ| fΝ*’΅W՞·ηhΙzodαaߚ¬}Ό€ή­fΫMΫφͺUΗ^2¨:έκ­ ŸΠs―ZI³Ξ–F:?gTβΡόc ια&;οΣΊ%+΄ΧŒΨΫ¦ΧΉκNΈ>`F»œδvΠΎΪ-Λ΄fύ.΅μΪO{uJί-™φοz}₯η’>ρ3νΟ½NγΗ 7}iFS­'©Π+ξ$9£Π>ρόλήͺˆsρϋ=¦§ΫΎWgSύΧuŒϋ( ž†κΏΔ©Ε­/ξqgΨiF=[5oΖυwQβ‹Ϊ½DSφTjδιl‰ΈΩΦηj@cϊμsρΊrxςyiHσœX©»?P‹“NQ›N]Υ»G} #ξqάΐ+€±Cz$Χ™Δάs;ΏM7^|NβψlΟy·.¦ € € €ψHμυ‹°G ~boŒΈŸΫΐŒx—»2WœQ"~ξY%ηbΖΣό*ώJό<Χuγ>jΔώK\gqλ‹{œ2Ο΅œQρsgΔζŒΟˌ_ά8xάγά.#~ξJ0E@@ΚS Α{ν„+i»OŸͺyΛΆe(;?ύΥ ;4γ₯ωλλ&ΎnΥ’i₯+­γ» Σω=Υς9σƒGŒmm~βύξδOΌ‡Iψͺz³&^6$ю5―NΦ ­Ί2['U_‘άtZ%ΦΧ=·ΚWθšρ$΅F3οxXkν22%Ξ†:Ώ^—jβ-₯Fή­ΡβiS4/„k‚–·όΐŒ8|j’e{WΏ’GŸMœμkߎε/κ©η½δλ‘γ’σ$“{—νsΝ1ίyδwtγ…gηΨ+ssπΜ™ϋ„]ŠΤοq=έΖψ\Γτ{¬ϋΘWOCφ_βΤβΦχ8Χ3μ4£ž½~=:φŠŸjDκΪ_υκzyαSZΆDάlλs5 ‘ΛγϊzΓdίΧω’Β>΄ΌΛKςObe―σΤυ„½Z±qςώβη–0dόdό‚DζθξυO+Ν&š/8ažσυ—ΖV@@@r ±·άzΌaΞ7nbo¬ΈŸ{ ρ.geΕ—έϊΜ4R•ψ9ρs3x@θΟ#άλ,Ζuλ>ςΥCό|ŒntΉ’QZβηΞε˜ρy™YŽ{œ{K?w%˜"€ € €ε)Π@‰½uΡχξΡ Τΐ›<’_ΟZ^ΨXYυd½ΌΈžDΫ ’­2Β$|Ω \ fCLbλθTbλ63"οTˆΌ¦=φ>ΛgLΦ¬7­φ[msšήPηΧ²;tΙΠΤ¨Ε+_Τ£ΣΌδά™ύ“aϋίΦ΄ϋ₯ΝΞ†ŒφmΤkχ‡VμO‘όŸ ΜN4‰Ν•f)ο$Ϋn#5φΌ3ΥŒ²|Τͺ"ΫlEE }T³L³ζϊFAΞv@ŽυQϊ=Ά§Ϋ† Χ0ύσ>Κ¨§ϋΟ9·ΈυΕ=Ξυ ;Ν¨§FσΊG‹Oω¦IΞ•LΞίΉX?4U»J<±7ŸλΣ{^™Δή'MbοϊpΈqsKχŽ7χC:ΑΪέbZeΎΐ1)ό8B”Θ. € € €e$@bouvžjΌΔޘq?χ<2β]aβŒξΦΤ*ƒψΉIδ#~n]ή,ρσW4ειΤ€(K΄9λ^“"Δλγ­uΎψ>ρsηs/ٟ—™E/ŽMό<κεΕώ € € €ρ(±·§ψαͺnη4l£f›ΔΠ₯vbhφΪ‹ƒ«4ύή_*sœΘ\˜νV…LŽΈε§–νΣα²fηa5oξkSσVjΣϊ€ΔΚuΏ@3ζ[g`΅M x~ή·₯:mH΄Μξ'°yΤ$<:™½vϋφ/ΣΤϋ—•–œ±}Η[Ολ©ίϊF\φQσb”ΐdlOΐv ΥοvDΈμz£βΦχ8Χ3μΤnj‘ΌΞ͈շXCΊ&οΡ3ξΦkožb=·άύœJyδݘυεs}Ϊίόwži–―Π¦Ώn֝[΅m瞬qs τ’$φΊ&L@@@O€ΔήΖ³nΚ5ΕKμχs!νxW¨8£{ 5΅Κ ~NόάΊ22f‰Ÿΰσλ^S”x}άγ2z0Δ‚]ρσΤηšφηNb―χΛsΔΟC\Sμ‚ € € PJμ qwίή­Mw›ΔПωCs5έ$€GΣΜuo»UFa“ΥΊβξο«Ϊ9·uFΆΪ¦πœλ4ρͺαΙRΆ/Π}Ώψ“.ύα=κ—ψB‚ΈΛrŸδ¬ΏqΛλϊμu©&άr‘ڝΣΑ­{η ύα₯Ωͺυo{\ͺ; Zη9ι―+`Ής\Σ‡γ’}XκΟ’€Σc € € €@ ΨΫΐΐeR|ΌΔޘq?ΧԎw5`|Ω­Ξ™†£?·Ξ(υ˜Uψ~·G5ψy„{‘EΎcήGV=ΔΟ ΎεAόόΞ€ΟŒQά8xάγRχρsχαΐ@@(O†Iμm=LΧί}½Ί8¦y&φξ]9CN{=zοXΑˆ0Α³π*{4σMώ…―hηR³,-tFςέΏαM½³Ωυn[žŸ—θ·έŒRz_r4ތvφΤΨIwj`•³Jd΄Ϋ·ϊE=ϊμ쌣μ@OΫΜƒ}KU4l`w5?zΤ·!x±YE…>ΪϋΏΉ&x‡ˆkΓχ»˜ŒθιΆΙv Σοqο#»ž†ξ?ηάβΦχ8Χ3μΤͺ'γ:—ύ“‡΄ψ™ηΤςk·Χ½bŽ ΫΨ#ύΖΎί]Η^#uιˆRχΤΚ]gMmœ«§ϋM@roΜγLΩ―ό‘Ζ鑨eݜ‡5cn΄ϋΪΎσ~YηΚ, € € €@yΨ[ύάΠg+±7nάΟ=+ήEόάEρMm£ ©Ω=v<-WΩΉΆϋšZο"ρσμ nΘN2ΰχ5¨ΣIfϋv½~}Z²?ΛΩVGl[`1!Κπ“Ω~ζ>sDяޣE›MmΉΚΞ΅=°ΑΑ+;όŽnΌπμΰYΦZϋŠ|ϊwYΆF[Ύίν@oDO·I‘έ¬ώ‰rεͺ'ΧvΣήφΥη©sερnΛ₯χk鲕޲=—«ΌlΫ³­wΛΞ΅έμͺV9™IsόΠuΫeC5ξ]ΏX»ZφSuβήΆέν癝οΆ3λΤκΏF8.φύ^§ύmΥ­Ί‹Ϊu:S=ϋ£.νœgσw@K§»f/³Ύ€άϊτγ2ό³|ΐ’Q…o‘ηίΥU£ϊ%Φn0‰ΑΣ#&ϋŠc@@@ ΜHμ-³o Σ•ΨkΗ›’Δύάs°β]ΔΟ]ί4„QμxZ²smχ5΅ΎEβηυιXρΧ(χQώΙ΅έ4)T\Ϊmzς²mΟΆ>lΉaΫiΥCόά±7ύy™λžFƒ'~ρσ4:3 € € €@Y 4|b―a]1c²^{s[x`+ΠXΙφηšΏqΙΏKžΣS3em―ύσ7υ'g)’‘ΞoπΥ?јAΨΆψM}ιΜ΅©›οΎZ΅Χhζ½k­3Ÿ«}ΉΆ;e„όk?τf“X9$δήΙέjMΰ(Β‘JπvŽο±=έκ"»YISFθϋ(W=ΉΆ›Ί†ήπSίχT·εζϊx[Σξύ•œΌο:ΉΚΛΆ=Ϋz·‚\ΫΝ~‘Ϊi•γL&FΥ5£VχKŒZνVμLK/±7ολΣ>}k~Δ·&kXŸ‰5λ~oF՝nTέPΗUΦ­“ΖΙ)=λˆΐV[ό³Co˜lSηθ}fΔε»4/\ΣόΕ°Œ € € P¦$φ–iΗψ΄σNμ5ν χsΫnΕ»ˆŸ»(Ύi£Ψρ΄\eηΪξkj}‹ΔΟλΣ!~~λ€Λ±ΥlΟβηήυϋ~χŠœ 82ΤqΔΟδX… € €”@%φJύ/»C— ν•”ά½LΣφΈκŒΫz€w;lFυec"πe½α υsdV‡ΦΟΡƒOΎυ*θ6ς6ΏπœδφύokϊύΏͺ{nΞVσ3Y«kΕηt~•η^§‰γ†'Ϋi'ξ&Χ¨Ε¦†§ϊhΛMyδΏU›hχ“lWO@Θ²Κ0JUjΎ[OjΟδNΧnΠ¨£$g+ί:—\ύΫΣ­Ϋͺ+¬[¬ϋ(W=ΉΆ›φΪ£U$šoξα©ζLΟΟU^ΆνΩΦGπ ΥN«žΜ„έdEφ¨ΝnΥ™ϋΩβ(£t7ξqω\Ÿν»UK›Χh—žλcžW¦žώΔήΈΗ₯ —3ϊ=ftgM²‚ΰ‘ž3?΅wγέΧ›Μ_}ΟατΜ € € € )@bo¦Kρβ%φ?Oh?uΡ?ΟΞDόΌžΟq ρsοΪ!~žεsLˆ9@@@"h°Δ^ΩIWΞIο_―Εό£ώ²n«TΩQ]{φUυ¨αͺ\ϋŠ|ϊw™,V"^ΨHUU«ΥRεΦα–gjΤΕ#Tι¬ΩΎX―8?Ρ~Β±‰ν‡?ό»Φρ₯(ڣך½Ά­\ 5έ#͏UsΦΎu‹΄9Lj'왝nΤ’ω‹τξ_ώͺ+ΫιΤΆΥυΜjuΠK•A#6ΪωUkάέίWοΦ‰Σ–vΎ­Ω3KKa:_ΉD£‡&Βήٚ1ςpφεڞͺ$&‘ϊ=¦§ Η-Ξ}”«ž\ΫM{λόφ›ΔήϋK ±7¨Φωf&μΊS­+Μ}Rνή'‰ΥΩFμ5Ο†ΥK΄ο©Β=ܞV4ΧΫήΤλ Wš΅™Ο‰†?.ξυΩӜζόk΄ξ­ΏhλζυΪ΅s‡ήW;5πŸ4tΔ9j•2ΙLΌ{œ &uυ]Ώ ω,ΪΊπ=χͺodρΜέΣKφΟζe=}3 € € €X$φZΜΖˆ›ΨKόœψyμ‹1$~G~=ψ9ρsβηω ’.@@@ <.±ΧxΆ?χ}s\*Ή6‹o­IμβOμν6F&\6昰‰½Cnψ©Fχ=5K-ΎΥ&Ωvκ½Ώͺ3ϊ¨χ³ξΎύΝβ†9kΊ“μώυ£›oΉ\έεlΣ ΔήF<ΏφfΤήρfΤήdb^p#mœ«iύΖ­3WϋL’δ3’o”ώ Ή8ΦFιχXžξiζruχσM#ίGΉκ Ρ‘“qλ‹{œεͺV=ΩF…΅“K“ΕۣǚΦšΔΧvVΕυΜJY‘±sžΉ1ξw“€œLμ­η€Μ¦Cλg™‘Μ_ΆvŠ{œUDbφ<]σ›ΤΕ™―odθΔΎξΪjΜν?Φΰ'™vΩέΞ@@@ά$φζ6bά±{MΡ‘γ~ns¬xρσ$JάΟbΕΣrω‡ˆΏΊ]Y Sβη³λtS¨Έ΄{Tάλ%ξqn½fͺV=ΔΟMάyρsλŠb@@@ 14±7q"έFκΡ#Τ―G‡Ίηup»V,|U―ΝwF·΄ώͺFκζIW'’fkVΞΠΣ^·6ΟΌςG;€GπFڝ‹υψCS½DΦτφΞzΩEͺξ}†NjqͺZ˜ή U―> —nπV8s­hΜΨ‹4Έo—Μυ©₯ڝ΅eνzmΞ’Μν|~•Ύ‹G_’.‰‰›–Ό¨Y3g«Φn‘ωώw_ψ‰ϋ½+_Τ£Σ|«ͺΡ¦Ζ%ϋgΉιŸηsχ]|ρΝGλχȞξ ΗθwχPEΉ ΠCώ‰Fκ”^»—hκϞͺ“ ŸΨ!n}qσZ₯Pν΄ά₯­zύ‘Σ’V!‰ΩftλΫ½Ρ­3φ묋Ύχ} κδ$‘ζώ«Iߍ}\²mΡ―ΟΆφkΥ·G΅ΪdŒZμžλ>mXς'-˜ω;ί33ξqnΉήtΰ7ώUcΏΤ%±bŌΙzνM߈κήΙΉκ+4ρ¦ #²ΧeΎb'ϋwf@@@`{ƒ]XM ŸΔήDMQβ~nΣ¬xρσ$J>ŸDާ ιveiL‰Ÿϋϋ)T\Ϊ=(ξυχ8·^3 ΥNλyBό<ΰσ2ōƒΗ=ΞκΐΤ,ρσΊ&¬A@@ΚA α{SŠ•έθΜΣΫ%Ύώθ‡zΏv—Φρ%Κ–ͺxU΅vν¨γ*Μ =’?ή―};Wj[δΑΟχ»3LνN>A:β΄γCνήΈH›‹¬Ÿ―P΄Ϊ?Ο&}EγgοqΟφέͺΥ‘mk΅8ξ„Δ³ϊθ»΅mΩJ_Bo݊γ—.Ι©o6_&HŒ€Ύ}‘ΕΥ[ηˆoύTΓϊ8#΄οΣ’'ο‚υι’˜A@@@ ΄‰½‘©Ψ±Ό{Se7ιΈρσz ¦»)N|2_&}ε‹ΓρqΟΈqπΈΗ₯Lό}WWŽθgΪ§ΕΟά₯yk²oΎγ­zκ·₯>bx–σd5 € € €@ƒ ΨΫΰΔeQA‘{Λ‹“Dˆ%@ό<!€ € €%-@boIwG@@@@8$φΖQγΏ‰½~–@@@@@ _{σδx@@@@(9{Kˊ²Α$φe·Π(@@@@JZ€Δή’ξ> € € € €qH썣Ζ1~{ύ",#€ € € € €@Ύ$φζ+Θρ € € € € Pr$φ–\—eƒIμ-Κn‘Q € € € €”΄‰½%έ}4@@@@βΨGcό$φϊEXF@@@@|HμΝWγ@@@@@ δHμ-Ή.+Κ“Ψ[”έB£@@@@(i{KΊϋh< € € € €Δ ±7ŽΗψHμυ‹°Œ € € € €ω Ψ›― Η#€ € € € €@Ι Ψ[r]V” &±·(»…F!€ € € € P$φ–tχΡx@@@@ˆ#@bo5Žρ Ψλa@@@@ς ±7_AŽG@@@@’ ±·δΊ¬(LboQv B@@@@ €Hμ-ιξ£ρ € € € € G€Δή8jγ ±Χ/Β2 € € € €δ+@boΎ‚ € € € €%'@boΙuYQ6˜Δή’μ… € € € €@I Ψ[έGγ@@@@@ މ½qΤ8Ζ/@b―_„e@@@@ΘW€Δή|9@@@@JN€Δή’λ²’l0‰½EΩ-4 @@@@’ ±·€»Ζ#€ € € € €@{γ¨qŒ_€Δ^ΏΛ € € € € ―‰½ω r< € € € €”œ‰½%ΧeEΩ`{‹²[h € € € €%-@boIwG@@@@8$φΖQγΏ‰½~–@@@@@ _{σδx@@@@(9{Kˊ²Α$φe·Π(@@@@JZ€Δή’ξ> € € € €qH썣Ζ1~{ύ",#€ € € € €@Ύ$φζ+Θρ € € € € Pr$φ–\—eƒIμ-Κn‘Q € € € €”΄‰½%έ}4@@@@βΨGcό$φϊEXF@@@@|HμΝWγ@@@@@ δHμ-Ή.+Κ“Ψ[”έB£@@@@(i{KΊϋh< € € € €Δ ±7ŽΗψHμυ‹°Œ € € € €ω Ψ›― Η#€ € € € €@Ι Ψ[r]V” &±·(»…F!€ € € € P$φ–tχΡx@@@@ˆ#@bo5Žρ Ψλa@@@@ς ±7_AŽG@@@@’ ±·δΊ¬(LboQv B@@@@ €Hμ-ιξ£ρ € € € € G€Δή8jγ ±Χ/Β2 € € € €δ+@boΎ‚ € € € €%'@boΙuYQ6˜Δή’μ… € € € €@I Ψ[έGγ@@@@@ މ½qΤ8Ζ/@b―_„e@@@@ΘW€Δή|9@@@@JN€Δή’λ²’l0‰½EΩ-4 @@@@’ ±·€»Ζ#€ € € € €@{γ¨qŒ_€Δ^ΏΛ € € € € ―‰½ω r< € € € €”œ‰½%ΧeEΩ`{‹²[h € € € €―4•@IDAT%-@boIwG@@@@8$φΖQγΏ‰½~–@@@@@ _{σδx@@@@(9{Kˊ²Α$φe·Π(@@@@JZ€Δή’ξ> € € € €qH썣Ζ1~{ύ",#€ € € € €@Ύ$φζ+Θρ € € € € Pr$φ–\—eƒIμ-Κn‘Q € € € €”΄‰½%έ}4@@@@βΨGcό$φϊEXF@@@@|HμΝWγ@@@@@ δHμ-Ή.+Κ“Ψ[”έB£@@@@(i{KΊϋh< € € € €Δ ±7ŽΗψHμυ‹°Œ € € € €ω Ψ›― Η#€ € € € €@Ι Ψ[r]V” &±·(»…F!€ € € € P$φ–tχΡx@@@@ˆ#@bo5Žρ Ψλa@@@@ς ±7_AŽG@@@@’ ±·δΊ¬(LboQv B@@@@ €Hμ-ιξ£ρ € € € € G€Δή8jγ ±Χ/Β2 € € € €δ+@boΎ‚ € € € €%'@boΙuYQ6˜Δή’μ… € € € €@I Ψ[έGγ@@@@@ މ½qΤ8Ζ/@b―_„e@@@@ΘW€Δή|9@@@@JN€Δή’λ²’l0‰½EΩ-4 @@@@’ ±·€»Ζ#€ € € € €@{γ¨qŒ_€Δ^ΏΛ € € € € ―‰½ω 6Εγ[Ÿ§q׍QΫ〃›θΉ™σ›βY~nητ…Γtb+ι“ΓjqμΗz˟uΰύΟ­9TŒ € € €”₯‰½eΩν?i{ NZό?oΠ>"~ή ΌŽ € € €%"@bo‰tT£6³ΫM˜pΉΪ˜JkWΏ¨)ΟΞnΤκK’²“ΟιgŸ§ΣΎΨOΗ§Όϋ_jύΫ›κiώΥγςΛuZUkί>»΅sΡ‹ΪτΞ»Ύυ,"€ € € €4”‰½ %[^ε’Ψ[^ύ8[βηΉ;ψyn#φ@@@@κ ±·œ²έT5F·NΊ\ ΐ^“Ψϋ(‰½ή₯Πf Ξp:œu–Zxks{ήxLン-9χ‹:λΪo«ν)Ύƒ¬ΕέζψυY·vd@@@@ o{σ&€#@bo^ΔΟ³w:ρσμ6lA@@@"Ψ«lv%0™₯«»«ΧυίU»“ƒ7Χ—Ψ[υ΅»ΥύΜv©wθοσgkοcΥvΐu<Γ]ΏM›¦?€{ƒΛg- € € € €@αHμ-œe9—Dboφ>ρσ,Nό< «@@@@Θ$φF&+ƒ²&Ϋͺ²΅9ύ{T[ uOΡ&―5‰½‰QwhΪ?kί‡uζ κΔΩ{Ώ€Ύr*Sώγhγκ©₯/kΠΏ|S-SK΅ΛŸΥκ?―H-1A@@@h({JΆΌΚ%±·Όϊ;qΆΔΟ³t:ρσ,0¬F@@@" 4@be”N©Ž~ς±ŽοΠU[ŸdΆO«ζΌͺΏΧWΓFœ“Jr¬Ρς—¦kΦβ5ι†·―¦/φOWΫS:¨Υ‰©MχiGΝί΄uυBΝ³φ—ΪjΔψkuΖ‰ΝυiΕmωί_kњ=ις’3uώψΛΥΡμΣΜμσ·ΕΏΦ‚•ώ}|‡„\μ3ς3 ŸΊTš>βΠώ­ΪπΦ½6χτΊΔLλΑ{ΕW6οo}SSO >»Z>fƒΫ΅jΙ\½<Ηw\Ί”žφ―©oŸ~jc\jJ•fΊwΛΫZ½x–­ά–ή3hfΰΧ©ŸjuΞhλvΥlΩ¨ΏΌω½³9eb&k–ΟМu-5μ+ƒΤ½S‡T±΄mεB͟φ²‚k4νΌς|υξy¦wnζΘCϋM];Μ¨΄οΌ‘%+75±ΘΧuT·K―Q«ƒοκο+_Σ{fdέ–ύoΠ aνΞ–ΨΫ²ΟΥ4ςάδΉνzCoΝψ­>Niϋ―NTΟ/vσΞ{ηŸτΦ‹3ΣΫ½ Μ!€ € € €R€ΔήBj–oYΡ{‰Ÿ?'~n?1ˆŸΫΜ#€ € € €IΒ'φv£ .W›ΠΒΫ5ϋ‘ϋ΄t§s@O»χNυv“y³”±uρszξ₯Eι­ύ/»C— ν•\ήΆ¦ί+Ωi£ύ/6Ϋ‡§Ά\£W¦<¬wφ§9ΣS£oΉNCzΉΙu‹Ω»z–ώϋΩ—½ΡmCΪΤ¬|EOLϋ]f­ΟΣUίΎI=ΫeΆ—ΦΝ}B3ζ,΅W%ηΝ±W\w₯ͺ;9 ΦΑ‡ΦΎ’ŸNΥi%φοZ»e¦<ςίήω9«M]ΧNΌIέλιΓCk_4uΝ·θRΩx’Iμ#±·jԝκ~VΗΔ)½Ώφ½3?uνvΊPƒ/­γν“ύΰ]½ϋτc*LΪΉ]0σ € € € €Ά‰½Άσq"'φ†Œ{ν!~ξY$爟ϋEŠw™ψyρφ -C@@@β(|boFRθ­[ΈP‡; QΏήˆΆΜθ²Ϊ  TRμšWΠ T\/±χΠξ­ΪΆ}›φοΩ«ΤRz Pu7‰φ€–Lϋw½žu·­ΞΏεΪ+YΗήΥ―θΡgSIͺΎ©Œ₯V‰~Ψ§ΕΟά₯yήΑ±{gΨ·&kD·=V3‚ν¦m{Υͺc/ T.wλΒ'τά«©dΫ ›δ.΅—hωΪν:Ήλ` ξΫ%}œgβ¬j«Ρόc ια&ζξΣΊ%+΄χ Τ¦ΧΉκNΨ=`Ξo’οόzκIwͺ_UΊhm3£oΪΎWΝOh£φ]zͺgΧͺ]ύ’¦<›JΆ jη–eZ³~—Zvν§½:₯ σχƒΤΗ$Q_ι&Q«Ζ΄s₯vξώ@-N:Em:uUο]”‘Dμ5+\ϋs―ΣψqΓΝθΉ€z’ˆ½BO’3ϊπΟΏξ­*ΐ\¨ΐδΧLbο™ΙΔήέ‹~©υοl25wTχqwͺͺ½Ώ»΅ε…ϋυχψΧ³Œ € € € PH{ ©YΎeENμ͈½?'~NόΌŠψyω>@9s@@@Θ*Π ‰½‡6ΞΡƒ½ uϋΊΕχ’δ(Ύf”ΧϋΜ(―2Μ “’#ϋξXςœžš™ΕtπEΧθΔ½οhΑ›u³o^ω##q25˟7Išσ­3#Εή덻nΞš1·₯ΊχvυL%~n˜ϋˆ¦ΟYisΆϊ ύΰ¦ RΙΒΫ΅xϊTΝ[Ά-]Xε€+tΝψ R£―ΡΜ;ΦZgkFΠVrFτ}Ԍθλώ 4#uGήΎPβΏ΄ΛΩΨλRMΌε"U&v¬ΡβiS4ΟJjm’š‡%5›ύ;ΏM7^|NβH©n[ =G^§ώ_Ψ‘/₯<}νά±όE=υΌ7ΒξΠρ?Ρω’Ι½WSΦΠ&λόΎNΒspue―σΤυ„½Z±SΩiE΄ΏΞ#Ώ£/<;A΅fTβ)ξ¨Δ‘ŽΜΎsΤΔή=o<¦wί~W§œ{‹Ύ88™ΎoωΛϊδτKuZ"Ιw·6›Δή$φfGg  € € € P{ €HΚ'±—ψΉs?·o#βηΔΟφξ<ΊΚκΠϋψ―QAiŒ 4BA‰@*oh‰ΌQDAA*""Κ+VκβJoΛ»tΉdΥz―Κ’Έ€KΔ -‚"bΈ”α–4ˆ2h‘aΈAb!ζ2Yzί}¦œη Ι9Ο9Ξ9|³VΝ3μρ³όcϋλΖϊ=p € € €―@“{«‹–kώ"΅E«‹–šgζΤΤ”Mœ5Q]Œ}΅9-vΎη΄Ψ†Φ"%OΣfufƒΦρ9·œψ{©npβ[[²Κ„:½!Ϊ†Ί υn ΆζΉƒ­εζDή…žy-­eΆ-­U_˜ΰ―ΕΑ²]7ηEVX*i€ 'OU†3ˆ\©uσŸSᩏ όŽr~λL­ΥLpzΊ N;ƒΏ5Ϋ΅θ₯ίΚT3?iρ³ηΤΟ}ΐξώ oθƒUE֚Α―}ΖY¦•/ύ»vΤXŠš`σtlvτη–υΞΫ{ί1§#—Zκ5ζezξ½½»Z_8― a΄›”ΤZ¨άͺUkέ§'‡Q'œ"φ‚½'Uρηη΄Ώ4G}~:Fν|³U_~°A7>ε*ηΓ=Ÿ™ΣƒΧ›j-΄ͺΩͺ…/½%ο9Ώϊ9ζΔΫ‘ΞoΝΖε|ό5 ]ο)ΈR][>έejŒ±Μ2–’7lΞβ΅]ΆVοΎωΗθΒ½©ΩΚι›‘VΜwΖΟ%IIϊGυ^~ΡX߁«S{Α^Λ@Ολo ήΡ7ΞG7™{RwbοΑe/ι«―-eΉD@@@ht‚½NzQ6Ψ8Αή {εζoc ψοΨ?ϋηaώ1cE-A\K@ΧgΓΆπ=-όh“O-™ΐσdxvFGOλΓζͺΔYΒڞ΄cιl­όΒ?JμΫ”σΞ2Ξ`Ξ>';±7H“ŽGCŸmBΧ.·=ŸΉN#§hΘǝOΦχ YΞZ ΦŒuήϋ§$[ΛΨ½'ΨΫ¦ηCκ—;°ι3ϋσ΅-?λξΫτš ~?t}Χͺψ«Ύ\ώ‘ΞΦ½ε@@@@ )φ6…κΕΧfs{Ω?·ξw{Έ`<πΟϋη&₯Ψ4p‚pJŽ™ΔΊω«¦T…ω‹ώΆηIwVΧΜ^Κ6DΙ&τόš'τl§―³kΤΦyψΎΟԘY3••R©=_ώM‡”κhŝPGέΤχhπΠώjλlΒ{š‚»Ε8ϊu‹nΜΝ6β ϊ§ω_R»nκx½λΓ<σΥ՞ψNίS’.ΡθΨΦ•ϊζ„kj©wΞRFwΟ\₯#ΙΧ±κsjλH]ίΥσΌ\ϋ—ΜQEuq0T@@@@ NφΖιΒΕΨ°›5ΨΛώ9ϋη1φύ‡ύσ@ž € € € €φ?Ψ›>\Σ¦V{3oθΣ„΅>σs5™ΖΊg¦ξTSΧnmh:uuΤAwLωW ξq«ψΑzλίϋœΫiπ$=q`ws•*xož6k¨ωΠοz Χδ)£Υ9TΙƒ½υTr p'sšοsš―+Όή鲡Zτζ}ζξ(Ωiΰx=8vhέ‰±Αjך`ο«άΆTo/^γτLΞΎG#ο₯.)~ΌŽSq7–κΪ!#ΤŜΜ[Ydκ,Z£δώhϊΈ!Β¦LώΫ-~uΝν ?εέΦΕωΒ€}Ν`£ώIΙΦπ{Gh@/W»ώνΥV”ι`Ι&­4'ς:¬'α–nΦΡΦέ•ΥΥHvW=X¨΅‹ͺ€ΖΏ5sΐΓ&ΟΨxx΅ΩΏyΉV}˜―ZΛ3ŸΛτ\έ—7T½»‰MŸ:¬?ΡΚυE*–5¬.Zω‹ς}šRjž&Ολ 5[ΧN&dσγ‡Υ«[–Ϊϋ―Ÿ³…γΪ·ω―Ϊπα§αcίbψύΤgά}jrˆΑNί½EέFΦu©ώ8UϊΊ`ΉΚvκ ΙJ@@@@ ‘φ6δEތν`―eο•ύsφΟ}ψ°ΞώΉοΑ € € €\Όμm$Λτώ9κΨζ ΣΪy}{β¨v7RΛMΠLj–ϊvν¬Λ’LΫΞλμΩ―(RΉΐΨμ5Αδω&˜œ–u»:]s₯UϞ8€EϋBΠiΣΞ؜wύVUe:ΰίW=­$§g«ϋυύιΒ·:Q{T%Ε‘ϋ¬§ΉzwJΟ΅RΤϊ²+œ}]8S₯ς­Eρθ­w¦φ_|ΏΫte»Άϊί χtZ'~“'μ·C @@@@ΘφFnGM―€ν`―·jTWμŸΧΟΗώyύ6ρπ†ύσxX%ƈ € € €M-³Αή&xJ–d§)ιΌIVΪψIj•€3G‹΅£ΈάF-KQk°w·9 χ}Ώ“p-EΉD@@@@¦ ΨΫtΆSΛ-μmRcφΟ›”—Ζ@@@@%pQ{ΣrŸΤ€»o eτύι’zmΑ§Aί…|H°7$@@@@h‚½Ν‘œψ}$b°—ύσΔn™! € € € €@l \œΑή!OhΘώ­LmΙrΝ[αI»ιΓ5mΪh΅7=WsboDώTB@@@@ 1φ6†"m$d°—ύs>l@@@@ZTΰ’ φJiΚΜξ€VηΞιΌ ώV—^ͺTŠc6jYЦζjςŒ‡ΤΩ<ͺ,Zͺ·­±Όδ@@@@šK€`osI'v?‰μe<±ΏYf‡ € € € ϋi°7φ†"€ € € € €@Σ μm:Ϋ‹©εΔ φ^L+Θ\@@@@ˆ=‚½±·&Œ@@@@šX€`o_$Νμ½Hši"€ € € € Ќ{››@@@@@ 6φΖΖ:Δϋ(φΖϋ 2~@@@@bO€`oμ­ #B@@@@& ΨΫΔΐIσ{/’…fš € € € €4£ΑήfΔ¦+@@@@ˆ ‚½±±ρ> ‚½ρΎ‚Œ@@@@Ψ Ψ{kˆ@@@@@ ‰φ61πE<Αή‹d‘™& € € € €Ν(@°·±ι @@@@bC€`ol¬CΌ‚`oΌ― γG@@@@ φφΖޚ0"@@@@hb‚½M |‘4O°χ"Yh¦‰ € € € €@3 μmFlΊB@@@@Ψ Ψλο£ Ψο+Θψ@@@@ˆ=‚½±·&Œ@@@@šX€`o_$Νμ½Hši"€ € € € Ќ μν4x’ΌΏ·T󝗯υ5:Q²T ΄Ζϋ,ΤUjŽΖͺΆIT[²FΛVo U#π}jž0Tί7oŽηkιͺMex‚@‚ |Ώ[Žl+}w.I­/=«?ΧΙ‘'i½Π-S@@@ ΨhΒϋρμeάώΪR¦ˆt\Σ¦V{S Φԝg§§ΡΖhΓΣ–ο”lεό C­uA5e…ΪQzΜΏχD/Πξ&]λνΊξ–ήΊάέZΥ¦ΧUΊ}mί’n£GλΊΤΏ2Uͺ(Xύ;χϊ=χάFZΟSŸί € € € €€}‚½φΝ¨(/Α^φΟ׎'D,ΐώyΔtTD@@@π&Ψ«τœnβΈΌ ]ΡUw νο°μ½GΣ§R²©}Ίd…^[πix’ΦR©Γ5uΖh]kžΩξίΪNkλμΎΥs΅dmqR’ΙΊpΑ2P3ώ“ϋˌ«ΘςΠο2=Gcς†*«›kIU–ν–ΝΥΊuΒ(u6Ε«w/Χόχσλ*ڟ_ ώρ8uOΉLη.œΧε²Τ9ΕΥ\mE™ŽŸ<[ΧvRkιΘΛ΅nk`Ψ·gξxυΟξ­.©ΧΤ•?]sHϋΎά •k7Υ=k¬‹πϋ‹ξ{ρŒ7όώ<5Ώ˜oυ‡ΞoυταυZφΉ4βή\etν¦dχwW[U¦ύΫΧkΥΪ3ρψp]cŒυ]…ώkΑ¨lή₯ζjμΘ[u…’τ]υ-ωp££8ωι¬τϋΖ«ν©½ϊͺh₯Ύ1'λΆισ¨ϊετuŽΏΎ`o›ž©_ξ@׏n—K$ΟWΩιGΣ•yKΊwώΥ—Λ?tΎ΄ž·1@@@@ΘφFnGM―€ύ`otϋ‘φχ—½c­»bΌŽΒsΩώ²§ΆύίαχέχβYψύyj8~³nՐω/>μŸϋŠp‡ € € €M'Π$Αήq/<₯Lg0²Rλζ?§ΒΘyόe νι ™ξωl–:ƒ½™ϋΒLέμ σVs>9Tψ;ύzޚΗ67&?>GwτΌ* ½Ϊ’š·ΰΣ€ηŽΙΩχiό„ΞSyƒp?τ φF2Ώ,}υέάP'–wϋWΟΥk­ΑηLεMyDƒz\k)ε{Y½{•ώπ~πΆoΙpξμφ—­ΘΏΗxμφg™CΊ9YyšϋdeΘ>smo₯ϋφNmΧ’Φ©χΟgͺwGWύ-Kf)«ϋ„fK“}ξ7άΝω€Ίh©ζ/Ч`―e"ξΛ«L°7;D°7uΨLeά䈱K'J–iηzχŸΝξΦ€QyΊάέ–σΧ™½Ϊ»ΰM9δ"­gmŽk@@@@ R‚½‘ΚQΟ*I°7ςύΠHφ—­£u_³nA‰bΩJψ—vϋc<|Ϋζ/Ιώyσ›Σ# € € €‹@{₯>˜pγ WΈρΠ†·υ»U[ό’ c‡˜ΎOJΑΒΖΝ]₯ΚmKυφβΖ ‡΅1y§ φvw{« ^WιΞύft•1v¦R;ω΄J—½€―Ύ6Αήλω·Θ= € € € ‰ΑήHΤ¨γ/`?ΨΛώ9ϋηφφλΩ?χS'±ξoβέwχΓ= € € €Δ§@“{Υγ>MŸ2Βp­(Τ[sκ¨Ε'mΘš4²Ώσ‰@rΐˆρΊ²z§6|a=uΦUΉ― ίλ Wn[lBŒλ-­Z.-Mφ-₯‚_¦δiꬱrl­ΥW7mΘd3ώAϊ5»΄β₯ΧέΑdσ({Œ¦OΈ«.άλίF΄σK;W%Ξλi‘~/‘φη™žε;q=:€‚EΏΧ†"―‘stGζ₯ΪΆz½jSr4iΦD₯9 —iεK5žΖ§8Χδ C]ή‡7jήo~―Zοk[WiΉOjέ·ΪͺΣΠ ΣΆ²Άμ=ΆιMνέΎWWœ’[Έ‚γΗ·}¬οΏOΧ9CΎU:`‚½Gό‚½vκY†Η% € € € ±Αވι¨hˆ$ΨΛώ9ϋ璍ύzφΟ-β\—μŸKυν»`ρ@@@βR i‚½&ϊxοŒηΤ7ΥaRiN.}Ξηδ‘S^VNkœ`Ϋ–ΞΦͺ/,AΚ†Mθvš έ:‚¨ώYŸj–ΐfƒε|*ΉoΒ¨;hΒσΚΛΎΑYaίΪΉZ²Ϊ7„<ψΡΩΊ£—λuo«0ζg Eοωl–χνΫ:%λ8ΛΝ‰Ό ƒœΘk-ck-¬Ή―­mΩλ/²ο%ςώάΆ¬΅γɏfλγΒ†ΏEλΪξYmόΧzύO0λžνZχ}ζέΛ;wαJΟΥ½·wWksŠτ…0j%%΅Φ?*·jΥΪθO]Άvg/Ψ{R~NϋKsΤη§cΤΞΡΠ7[υεtγΓ3ΥιjΗƒ`Α^{υ­πƒ € € €D+@°7ZAκ;" φ²ΞώΉ­ύzφΟώmΓώy½ϋξV<@@@@Έh’`―”9βκ:±³Όπ=-όh“ (%W“g=€ΞŽ»S»΄δ…סϏ.9ύvυλίG7\Ÿͺv—_*?§σ¦L«6Χ*ωJWα³–ΐfƒεόϊuή†¬›¦?{FύnΈΚ―Τ†ωΟ©ΰ€oCΦπm°ώ£™Ÿ΅νPΑ^k€Ϊό·UYqN­ZωŽU­Ϊͺ}Šc.žΟ^1AaΥπ+ίΐm4ύEς½Dӟs–΅ο[τŸο©ΌΜ©ΌpŸΚ{»&Ύϊ˜Ί8+”jΕ³―zOqφo$Žξν{₯#«_ΡΩξ*=££™eΚ?}Q}(C=~Zλ φΪ«G| @@@bX€`o /N -²`/ϋηυύ~Ž₯gŽƒxVyƒzψ< vS]΄Tσ­ φJΦΎƒkƒWr?΅Œ;xέLωωLe9r‹&,[πΞ/|N#v<΅†oύۈv~ΦΆφfiΜ¬g”•βQx? ·ͺ(ϋ³Έ+¬ο%ΚώΣ±φYQ¨·ζ,ΤΡPΣT¦ξ3λίΫΉώ&ΨmN£.(5kžϋ„&έέίYΫΝC6ΓμmLžTΝίΛΥ¦{–.7s:΅w™v¬-0WΚ4Αή†Nμ΅S/†Ή € € €Δ‘Αή8Z¬j€Α^Ÿ½Ι°φC]Ρξ/;[±μ‹ΪήΛ Y—ύσΰŸk”ϋΩwφΟƒ ·ΔSφΟ[B>@@@Έ8š.Ψ«ώΤ/5 «γ]~\…ούBλŠ;(ο'ΏΤ nŽg'΅ω½ZSlΞ~PΟOVχΰtE©φ••©φ”9―χ’ R›.:Δ npΓΡ²ΙΥ`ΉΊž,!λZ7&₯-οMQΎu¦)kψΦ§F˜Ÿ΅ν†ƒΈΎγά³q…*ΞFΛT­—Ž“|kφ}‘ŽYΫΈŽΆ?»ίK΄ύ™©YΧΊ‘ ΈŸ‚υt„#›§w?,PήSs4Θω­ŸΤ–EΏV~Q€ŽξΞR³•Σ7C­.˜ο>ŒŸK’’τκ½*όΒοc £nCEμmLZZ:S¬Ώ-xGί8έdNμύIέ‰½—½€―Ύ6όwΞTFwηΩέފaΤσζ @@@ˆ\€`oδvΤτ Dμeά‰ΘώΉχ[²^ξΧ³nυϋη†#ψΎ»7 € € € ·Mμ5§σ3§σήε βΩόž @^©―>€k\–S€~ΉλκžΩŸ―mωYwί¦Χυϋ‘λΟ­*ώͺ/—¨³ζm€υκζ@@@ˆB€`oxT­ˆ&ΨΛώΉo°—ύσΊΟ*ψϋηu.μŸ›ύυzφέ됸@@@@ΈhΪ`―‘:εeετp ­?•ΪπΞs*(΅>sf=Αήγ*|οZWl}?@cgMΥΝ)gΦΐ¬΅”λ:Sc~>SYw‡”―΄%άΣjSσ4Υ}ϊj}§ύfήυŒΖ ΛrvuΊl­^{σnΌ]Ώπ˜2œΗ“Φ·1Εό,aΤΣ₯«υΪ;Λ,}ϋ^¦› τwZ5Ϋ΅δ₯ί*θωΎζ―­κ›zN;Άϊ€ϋ6Ζ]cτgη{‰Ί?‹eΓίSΰδ“ϋ?’ιγ†x_œ2—W2'8*ΰgo!{W3u™*gkχιhΈίy˜ν^f6os‡r« ^QιNχ)Ό>υoS―ŸŽW²ϋYνζΧ΅{λ~χ]†2|Z:Έnk·½―ݟοpΏ‹΄ž»:Ώ@@@@(φFGΥ:¨‚½¦;ϋ‘μŸ‡ρί,{ΎμŸGωί,–μŸΧύ‘χΉ`ά‡ƒ@@@hD&φύNή¨·~σϋ€St=d‚½ύ\'Ÿͺ¦XΦόΩ«” ~;JΞ kφ‘6’Ό'ͺšςUΕΪΌ½Tί*I­Z]ΠΡ]ω*©p+¦f©Oκχέ7ηtMw 9ΤR<\¨kMΨυŠKοΟ}ϋ•JŠΝιΌΦgΌySΉ{΅Φ\¦š9ϊΏ#&κζTwsζ—uœ2?ΏΎΛ‹6¨ψο‡uΎΥ₯j₯s:Ύ§@ꝙΊΟœ{{άN•iσϊνύΫίu6Ή£ι¦έ³”‘έCΙ§ΆkΡ ΏΥοΠ#ΈŠΎ?;ί‹eQlLJY3λe9‚ζΞP―91·t•ζ½σqn±Tεݘ›mΕτOσΏ€vέΤρzΧtζ«ͺ=ρΎgώ]’Ρ±­+υΝ ΧΨSοœ₯Œξž­JGώ’―cΥηΤώΦ‘ΊΎ«ηyΉφ/™£Šjο|#­ηm+@@@@ 2‚½‘ΉQΛW Ϊ`―ύΠFΩ_vŸύsD”ϋΛΎŸBwΡχgη{‰z~μŸYSφΟƒ π@@@š@ Ιƒ½’9ΑφUs‚­eπϋ7Ό‘VYžΈ/Σ‡kκ΄ΡΊ6πMΐk`6ΰ₯γA{4mΚ(΅ςrίκΉZβ욟AΎ¬Ό^ώ' ©δxdΒ― MψΥD{ΥsΔΣz`hοz zϋŒ³‘ζ7ψΡΩΊ£Wp%λܜ£θ1\“§ŒVg_5J°Χ4u6ΎΗL’ιΟ¬Η4σ½9ΎŸur΄ΖOΟ‘Οκ!=κJξψhΆV:ΎŽ8ώΉξN 3\—‡œB.{Q_}ν)ΨW7=ό¨:\νΉό]΅ιM•nίλχ"z~Νp‹ € € €Ψ ΨkŒβA’ φ²Ύ\σίΟwΩ²ξύΖκέ―gά‹ΤW쟷:]"€ € € pq 4C°Χ„g'˜“x³έ'ρκΦΜω•6{NΜυsOΞΎG#ο₯.Ž“P­?ŽΣf7–κΪ!#ΤεJsJnΡR½½h΅Dΰu<–£›»ϊ†`w}ςŠ>ήΈΟYΎο¦{u ¬μIE‘ޚ³°ξ€αžwMΦ°aƒ\§ϋΦ•―Τ.Σφ5C†8Γ΄GΎ\¬w΄ΎξmγΜ/Mƒο‘¬›oΤU­―Q[γαω±ΞΝσL)Ω~ο θΥ₯ξ‘υ’Ά’LK6iεκλγΘ―£μΟΞχβd€ύ₯ζjςŒ‡œλΦχδ/’ύˆžŸ0ΔυτΤ.-yαuΉΎ*‚qtίώGκ3ξ>΅ 9δΐΣw₯[Τmτh]—κ‡·J_,WΩNP―§“Hλyκσ@@@°/@°ΧΎ5’φ²ΞώΉοwjΏžύs_―f½cΌYΉι @@@‹Y Y‚½‘§χΟQΗ6W˜ͺηυ퉣ΪYδ:a7’Άš΄NJ–ϊήάY—%IΞѿoRyMθ[d~©f¬]]cΥ…σ:{ΆFΗ+ŠT^OΘ:τ,B”HπώzŽ|ΖœΨ›εD¨4ξ·-ξ2 ύϊϋέ~ +Ϋ΅Υ^Ύ§Σ:qπs<zΚ‘Φ έ2%@@@@@‚½&<±/ΠΑ^ϋ½J-²ΏΙ@Ω?―_ύσϊmψM€ϋΰ‘ΦK`J¦† € € €@B Δl°7‘Υcurf“u@vš’Ξ›D¦Ÿ€VI:s΄X;ŠΛmԊχ’·k⫏©‹sΗUπΞ/΄‘4ήηΔψ@@@@‹G€`οΕ³ΦM9Σ– φ6εœh»φΟλ φ˜ύσ`*‚½α(Q@@@@μμ΅£EY@@@@H‚½ ±Œ-> ‚½-Ύ @@@@„ Ψ›pKΚ„@@@@@ ”ΑήPBΌG€`o8J”A@@@@;{νhQ@@@@B€`oB,c‹O‚`o‹/@@@@@ αφ&ά’2!@@@@%@°7”οΓ ΨŽe@@@@@ΐŽ@l{SnΧΨG†«Γe©τ»ΧΫ™K³–ν3βI Ξκ`ϊΌ ²υΏΧš­εΝΪĝ₯ζhάΨ‘j›tA΅%k΄lυ–ˆ›’"± πύn9Ί²­τέΉ$΅Ύτ¬Nό\'O„Y€υB·L @@@ˆ‚½ρ°J±?Ζf φ²ήτϋηMoLΝ*ι>x€υšurt† € € €@ ΔV°7}Έ¦M­φΌvχrΝ{??fι?:[wτΊΦ9Ύ=ŸΝΥυΕ1;VŸ5—qJΆr~‘Φ&ψ\SV¨₯Η|†Α >νnυ·ήλnι­Λέ/ͺ6½νϋ}Šωήά’n£GλΊΤίΗͺREΑrνίΉΧοΉη6zžϊόF@@@D Ψ›«ΨςshΦ`osνν6+ϋη!Ω?ΔkφΟ}8ΈA@@@ΰbˆ­`oκpM1ZŽΈl΅ φΏα`ο  Ο+/ϋη7_Αή{4}Ϊ(%›‘Ÿ.Y‘Χ|Ϊ$ίyZξ“štχ­ΞΆχ­ž«%kγ$ψά$4Z―@ϋΎΊ1{ ½ι&χύ9ΆιMνέ^8χ¦‡Eφ­c½«2υKκί’ΘκY[ζ@@@A€`o"¬bΛΟ‘Yƒ½μŸ7ύ‚§³ήτΘτΆϋηaSQ@@@D ΨμτEQ@IDATαŠΖm°Χœ7,[—%I§l†/φE(Πp΅΄!OhΘώΞBq|nxZΌmT υ˜ψ΄:Ά ήhCΑήΤ;g)£{GwΕ#ϊj}ΎͺO^ͺΩΓΥωFΟσrν_2GΥήφ#­ηm+@@@H‚½‰²’-;‚½ΑύΩ?ξβyΚώΉG‚ίυ °^Ώ o@@@H|8 φvPrŠYŒšcͺ‘5‰ΫΙfςK=³”–zM]χ§k«ς`™ώφş΅σΐ1ΧsΛ_%VΉm©Vοi£œφSΖ ΧΊλTyΡF­_τ±κ‹‰φΜ―ώΩ½ΥΕ§―CΪχε­\»©`aΣTn8Ψ›­HΧ΄6“.Σ7»?ΥʍΕRΚέ;ζ‡ΊΪœ–{βΠϊoejΐ­YΊ6ε*ΧpNΦΝkυρκϊΖ™©œί©^={«ύ•Rν))Ωό>Έ]» W© (ΈJfξ#‘¬ \έ8™”€“ϋK«ΦYz.γ¦kHιύΪRέQ9ƒC­C ώρ8uOΉLη.œΧε²ΤΩΖ6?΅e:~ς¬λΖό3ΙΈωbΉΦm >ήΊ‚6.Β_χlέ;e˜Yƒ$]8UͺUζ[ ο4πAέΩηŽοΙ7Nfύ,?αχg©$³ώSλo\―Χ²Ο₯χζ*£k7η::JΦV•iφυZ΅φŒYƒαoθ» ύΧ‚?ζSs5vδ­ΊBIϊz‡–|ΈΖΪaŒ_wVϊ}γΥφΤ^}U΄Rߘ“uΫτyTύrϊ:Η]_°·MΟ‡Τ/w knG7ιΛ₯’ηλκτ£ιΚΌ%έ;κΛε:ίGZΟΫW € € € H{i5[n.μ {_šύsφΟ#όΤΓίΟf\Σ¦V{Ο€κω]Y΄Bo/r›xʘ1Žϋ—Η”ΩΡσ πχž΅okικ-/?>Gwτ \ƒZc?Οco­•~¦OUw"ͺυ•Ο΅Ο:diμ«ΟθfŸυίμ_=W¬υ ΛΦ_Ί‘7vΧ=[γ^xJ™&-UjέόηTx °ύœΗ_ΦО ϊžΟζji]°Χn–Ά-λ_]ΆKgν­4η8,e—§ΆkΡ λΤϋη3ΥΫ½ή[–ΜRώVwήRΌΟύ¦Qƒ»9ŸT-ΥόEρμ΅LΔ}y• φf‡φ¦›©Œ›:;kœ(Y¦λ \΅oΈ[Fειrk³gφjο‚7吋΄ž΅9@@@@ qφ&ΞZΆδL’ φΪέ—fάΉΤμŸΫωβνξg³nG·ΉΛ²ήάβτ‡ € € €@Λ 4a°7SχΝ0ΑDOΐΥΜ±|χFν?\­VW΄W§.™Κμz­jw/ΧΌχσ]A6&knUqιQ΅ιΪ[}{ΈNP•Njσ’_kM‘7θ˜σψlΔτ†z™“}χ—W«mηΤ/«NψΠΖ·υ»OΆΤέ˜šk{œ¦vπ`ούωTέμ ίVlΥ’9oiŸ§·`σ+Ϋ¬m%‡Υλ θΥΕSRşΌ’e=5;(ο'ΏΤ nžpξqνΩΌCΥζΔήφ=κζΊΰτIΎ7Cλός²ιCTί4Η‰½η₯ΦW«w―Ξ~ͺύ|}]Οζ"Ψ8ΓX‡>wWΧv­uξŸty§ΎΚκκoeιVωζŒ.ΉΔUμψIΊ cΫWks©wύ\/μ3’uοσ€ Γr…am0ίΓ*λχΰΓνšψκcκβN©V<ϋͺv:―₯HϊsW κκxWYΊέψ|«6WwVZ.ζ[G°χ·]OkΒ°ήΞκΑΧ*Kc~ώŒ²œίΫqΌσ m(­λΝΦE§hΒΨ!¦ο“R°°q@kWΙqͺφΫ‹7HΦΖδ&ΨΫέμ­*x]₯;χ›ΡuVΖΨ™Jνδ?Π*\φ’ΎϊΪπGXΟΏEξ@@@@ 1φ&Ζ:Άτ,"φF°/αΎ­Γ(ς}ΝΖiϊcά‘ξϋί1Ψ?oθΏΣ ί·C‘ύs‡‚λ‡ύsΏ@@@H|& φ¦ yB“Fφw Vα’…Z·΅άG43χυωώ-ύh½λΉίΖΝ‘mΛυξbwθΧ”<αyέ‘ν χϊt³Ζθ_»Km­φ•œ=Fγ'άε>)·X>;W%ξ‘D4NSΧgcς“ΩZΊρz›eNΤMq7|ΈP‹~³P>‡ΑϊΝΟq‚π|s‚°η§ούΟκήΑΠ­oΤ[Ώω½Ž:^φΈOΣ§ŒpŸ [©ΒEσ΄.ΤlBΏSώ՜Tμ:]Άzχ Σ¦ίiΏžΏSς4uΦX9"ΠΑΓ’ζ…ί8Γ^GϋξŸδΑ“5ύώAΞ»bγ³l£οΪ{ΚEυ;u·zVκ­9 ]ΞξΑXΏ £HϋσLΟU:€‚EΏΧ†"‹MzŽξΘΌTΫV―WmJŽ&͚¨4gύ2­|ιί΅£ΖӘ”œ=^“' u}χζ{™gΎ—Zοk[WiΉOjέ·ΪͺSο‰ΟΆZρ-lwcςΨ¦7΅wϋ^]=pŠnΰΪ>Ύνc}wύ}ΊΞς­μ=βμ΅SΟw„ά!€ € € €@’μM”•lΩyDμ΅ξAJ{ڎY±ΞώyT_w€ϋΩμŸ°³.Υ·ο€Ε@@@h& φ¦iΔϞS?χ»ϋ7Ό‘V…°Oπ10Θ(³5έx“MKΦP‘5d[nNδ]θs"―«[k™mKgkΥŽ0e„γ45½νTρΪυΊ€χ¨Ί“zOά¨₯oό^–Έ¦k>σ;¬us^Ta…λ•λŸτπ S•α<1΅Rλζ?§B“ ξcΏ£άίκ"sΚξ"oΨΩY/ύMŸ6Κό­1§½Ύτ[ί@±΅ Λ|B«υ”‘Β_k֍ι=ŸΝΥυ~Η[ Gxν]s΄ΝuΏwΖsκ냝­;zΉN’ή³Ϊ8υ:ž`ήe»ήν3ο–Xήω4ΞMzξ½½»Z›S/„Q>)©΅ώQΉU«Φn £tψEμ{OͺβΟΟiiŽϊόtŒΪ9Ίωf«Ύό`ƒn|x¦:]νx,Ψk―ž£~@@@@ ρφ&ޚΆΔŒ" φFΈ/ν³ΏώΎm4ϋ¨νσ›…πφΙώωΌq°.Yχޝv}ΎoφΟƒύϋŒύσ`*¦.Ξ:₯Zρμ«Ϊ€~Ό=²·1)YύŠΞvTιŽΩΤ¨όΣυί‡2Τγα§Υ±ή`―½zρfΘx@@@@ <‚½α9QͺaΘ‚½Φύ\φΟλ„­ϋ§Αφ₯MAφΟλ΄B^D³ŸΝώyHή)ΐώy‹°Σ) € € €-"ΠDΑήlυ”nN1sͺ2έπ θΦ7UΛΖ]mι*Ν{ηcί’–χήPj–ΖΜzFYŽΎΒόρž α8M?υ{OjΗ'ojεFOΤ2(ΛψkKΜόψΝΟυ†xOjΛ’ΉΚίZnι+πtYWλ™ΊΟ©{;ƒΤμ ,σ4—MμfέΝ-k‘ͺΝζ}ΧΖNΟ}RξΎΥ9™Κm‹υφbWx\в?G‹Φ>+ υ֜…:κμ©‘ψνsΊpA©ρΝ}B“ξξο¬θύ³ΠP;ρρΞήΖδIΥό½\mΊgιr3½S{—iΗΪs•‘LμmθΔ^;υβCŽQ"€ € € €€]‚½vΕ(L ²`o„ϋ–ύΕπχm£Ω׌pœŠύσΡrό]kυνέ².y;ϋO–εϋϋηΑώu#φΟƒ²π@@@„hš`oJŽ&Κθ:M4Β`oΠ /ΛƎχ½υt³΄q…*ΞH—Τ³\Ž“|kφ}‘ŽI‘ŽΣ΄νΏ1yϊ”ΤφJO§‡”?ηWΪRαΉwΆŽΏhΉζ/Κχ+`N…ύΙεtσœ,<ל,\lιΛ{Š―oΕLέ;c¦ϊ¦:ž6n°ΧλlιΡ:έfοΞ£ι7&£XwηT:hψSΏΤ€λγ*|οZWάAy?ω₯9ύOjσ{3΄¦Ψ3οhϋ3νX݊–šυ_γiΌΑίΦΣŽlώήύ°@yOΝΡ ηΨM|Ρ―•_dΎηh~R³•Σ7C­.\«•K’’τκ½*ό’(¬z‘ Ωۘ΄΄v¦X[πŽΎq>ΊΙœΨϋ“Ί{.{I_}mψŒξΞ³˜½Γ¨η-Μ € € €$’ΑήDZΝ–›KDΑήHχ₯­ϋ‹ΑφeƒΎb_3qšε`Ό₯ƒ½Q¬»σϋη>Vaάpίwχqβ@@@M i‚½²œ2zj—–ΌπΊ‚œ_8‰ –bAί§iΔϞQΏΝΓZσ‹Ϊ\c©Σΰe„γ4mZ7&l[ͺw―1AΡ9ξ ¨c(υΦo~ο{"«eόΦSb­CτΠσΚλwƒyδ θZϋΪυΙ+ϊ8ΰ4`Λ©Έα’ή·§KVθ΅Ÿz4ΒUXΑήa& {“o@χλυ―¨¬δˆk퇩οΈ{δΜٟ٫½ ή”#φœa½F˜M € € € €@ μΑE‰Γ!Eμeœύσ!ζodιϊΩΨ?wΑγΏ;ύWϋη>,‘ξƒGZΟ§sn@@@@ Ρš>Ψk†Ίcιl­ό’<τ CmάΤσ~Π„ΩΚΛvόΕV’½M0k ΦΖ8M?Φ°m]Ÿ©&€9Γΐ4eΚ §…8†εϊ±Œ_*Պg_ΥNΟ;ηoλxΌέ&μ;άφu΄ωžis“O-Y7NλΓζͺΔ·„χΞ2†¦ φv8IOŒμμΧsΚ¬wsωΊ»ϋ·ΊUlVώΦξϊsŽΊΏpμλ‘Ιyόe νyy{Rεk•ΦΥώ–φox[¬Ϊ⼎ζOΦχ²ΥD­9d^Σšm5βW8œ`o›ž©_ξΐΊšgφηk[ώΦέ·ι5Aύ~θΪWΕ_υεςuΦΌ΄^]Γ\ € € € €@B μM¨εl±ΙDμ5#gά½|–ύSφΟ£€£ήΟfΌnΨ?7ϋλυμ»Χ!q € € €*ΠDΑ^©ΟύΟjΤΰΑVmΥ’x+πΤή”l H?§-[‹]ε,wAC§υΌOΟ}BξvωjΆkΙKΏ μΛΡƒωλ’ϊ¦žΣOζQDγ4υ¬Αή=ŸΝΥυ9€ ™lώŸφž€δImYςkεouœj~,γwάξ[ϋ†–¬.r\:’>’ιc‡Έn,'ϋ> ξφi¬‡Έ­nΠΌ7ώ Zw›ΏRσ4Υ}ΪkuΡRΝ_΄& ˆuœvΦΑ§!Λ\O—Φkο,σyέ7Ρ¬»§‘S^VNG`ΦϊcBΥο˜SK­Ο€¨ϋ³˜uυνΞη.ΉΏω6ΖΉΏ Η›SζWš9Ώζ Ÿ’ίtJΟΤe6jŸ­έ§£aŸŽ^Γ—™ΝΑΫά‘άͺ‚WTΊΣ} ―OυΫΤλ§γ•μ~V»ωuνήΊί}—‘ΜŸV§ΫΪmοkχη;άο"­ηΞ/@@@H(‚½ ΅œ-6™Θ‚½ξK‡Ϊ_¬η}4ϋšμŸ³ΞώΉλ_/μŸΧ·οήbϊ₯c@@@Z Ι‚½JΙΡ€Y•ζα«)Uα_ώ’Ών9$%wVΧΜ^Κ6DΙ%+τΪ‚O]₯κΩxτ4QΰΤz­)}ͺL›Χhοίώ³ΙuM‡4uνž₯ŒμJ>΅]‹^ψ­xdœ¦n}Α^G³ƒ'<―;²]'ͺʜ »Βœ λ<™Χ2?Wχ'UΌφ#­[] ŽƒΗλGχ•λάa“y³4vΦ3Ί9ΕUKΫ•Ÿ«΄εk3ŽŽRήΰήξAN,NΝRŸΤο»ίŸΣΉ6έ5lδPW(ςp‘V¬5δ+.uΎ?χνW*)6'+[Ζ4€κ½£5λ›ίά–mPρίλ|«KΥJηt|OD bݝ3–‚ώ?νoΤ[Ώω½ŽΊΛxEΩ_8nήΞό²4Ζ|YŽoΐκ•jKWiή;ϋ•‹·Ϋ[tcnΆ _Π?Ν’ΪuSΗλ;:'qζ«ͺ=ρΎ§$]’Ρ±­+υΝ ΧόRοœ₯ŒξrR•Žό%_ΗͺΟ©ύ­#u}WΟσrν_2GΥ^“Hλy[ΰ @@@E€`o’¬dΛΞ#`/ϋημŸOžeωΫΨ?ύί%ό£Ξώ9ϋη ~ ΌD@@@ ξš.Ψk(: ―ΗΊC€υΠԚ`•…&ˆΟ?Χέ©c†λςs¨ΡΑe/κ+fwύτΥM?ͺW{ξWmzS₯Ϋχϊ½ˆ΄ž_3ά"€ € € €@ά μϋ%Œ‰ Dμ5£·½/jΡμ?³^gΑώyύ6 ςίM\₯Ω?o@­ι_±ήτΖτ€ € € €@Œ 4i°Χ9ητ\έ—7T½» xž:¬?ΡΚυξ₯9εu’ω©;Nω­.Zω‹ς}ΩRσ4yΖXgx·rΫR½½Ψο―ΑJΙΦπ{Gh@―.Ύυάw΅e:X²I+Ν Ή?vΖi*χύρΏιήΫΊ9›ΩυΡ+ϊΈpŸo“YχiΪc#œ!eι€Ά,ω΅ς+ϊkͺ &;$ͺK7λhλξΚκκΊ­=X¨΅‹ͺ$ΘiΆΙΩχhdή(uρHjιqζεZυaΎj-Ο—}0γδ§ί«ΐۊB½5g‘ŽF»u-§iπύ#”uσΊͺυ5j{eέ νϊĘmτ3σΎΆwΝΊ›ž¬§/K‡΄fΞ―΄Ή’!DΪ_jω~]§0T™οw‘ίχΫ@—ΞWُθω C\₯Nν’^W# †κΉιή·‘ϊŒ»OνBφxϊt‹Ί­λR=GY{©ΧΛUΆΣ?Τλyi=O}~#€ € € €@"μM„Ulω9DμuŽήΞΎt΄ϋΆ‘ξk:jgœ¦8ϋη όw ηΒ;ώΑώy…γ‚ύsη ϋη&‘ξƒGZ/ψ(xŠ € € €vš-Ψkw` YήΊ1ΉΫœHόΎί‰Δ 9ι&•’₯ΩiJ:o™6~’Z%ιΜΡbν(.·Q+ή‹ή‰―>¦.ΞiWΑ;ΏΠ†xŸγG@@@ZN€`oΛΩ'RύμM$“ˆηΒώΉ/ϋηΎ ή±ή /@@@@ ξφ6η’±1飝–ϋ€&έ}«Ο³poN—¬Πk > ·xœ–KΣ€άήΊό’ΆJλ=P©WΉζQΆV/ΎωΗ8ΓF@@@bC€`ol¬CΌ‚`o# ϋη>˜μŸϋpΉa< @@@@ Aφ6ηB¦Χ΄i£ΥήτYΝ‰½Jς„&μΡ Τ–,ΧΌ ~βqϊ=š>m”’}„Μi½ο™Σz‹}rƒ € € € `S€`―M0Š Ψ”%²‡μŸϋΈ±ξΓxΓώy  O@@@@ aφ6ηR¦ζjςŒ‡ΤΩτYY΄To/ZӜ½Η`_iΚΜξ€VηΞ鼍ѡΊτRύ£κT³Q+‹¦ζ™οe¬σ{qŒΎϊp±φ.Χ†­εq8†Œ € € €Δ–ΑήΨZx ΑήF\9φΟύ0Ω?χρ½eάΧƒ;@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@@@@ˆ{‚½qΏ„11‚½1± @@@@„ Ψ›PΛΙd@@@@@ ‚½α(Q&”ΑήPBΌG@@@@»{νŠQ@@@@β^€`oά/aLL€`oL,ƒ@@@@@ ‘φ&Τr2@@@@G€`o8J” %@°7”ο@@@@@ΐΑ^»b”G@@@@Έ ΨχK ΨΛΐ @@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@@@@ˆ{‚½qΏ„11‚½1± @@@@„ Ψ›PΛΙd@@@@@ ‚½α(Q&”ΑήPBΌG@@@@»{νŠQ@@@@β^€`oά/aLL€`oL,ƒ@@@@@ ‘φ&Τr2@@@@G€`o8J” %@°7”ο@@@@@ΐΑ^»b”G@@@@Έ ΨχK ΨΛΐ @@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@@@@ˆ{‚½qΏ„11‚½1± @@@@„ Ψ›PΛΙd@@@@@ ‚½α(Q&”ΑήPBΌG@@@@»{νŠQ@@@@β^€`oά/aLL€`oL,ƒ@@@@@ ‘φ&Τr2@@@@G€`o8J” %@°7”ο@@@@@ΐΑ^»b”G@@@@Έ ΨχK ΨΛΐ @@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@@@@ˆ{‚½qΏ„11‚½1± @@@@„ Ψ›PΛΙd@@@@@ ‚½α(Q&”ΑήPBΌG@@@@»{νŠQ@@@@β^€`oά/aLL€`oL,ƒ@@@@@ ‘φ&Τr2@@@@G€`o8J” %@°7”ο@@@@@ΐΑ^»b”G@@@@Έ ΨχK ΨΛΐ @@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@@@@ˆ{‚½qΏ„11‚½1± @@@@„ Ψ›PΛΙd@@@@@ ‚½α(Q&”ΑήPBΌG@@@@»{νŠQ@@@@β^€`oά/aLL€`oL,ƒ@@@@@ ‘φ&Τr2@@@@G€`o8J” %@°7”ο@@@@@ΐΑ^»b”G@@@@Έ ΨχK ΨΛΐ @@@@H(‚½ ΅œL@@@@Β ΨŽeB μ %Δ{@@@@°+@°Χε@@@@@ ξφΖύΖΔφΖΔ20@@@@J€`oB-'“A@@@@pφ†£D™P{C ρ@@@@μ μ΅+Fy@T σ§5nXo3»γ*|οZWœ eZ € €δhβτ‰κr₯Tώεb-όΣϊ†Λσ@8 Ψ§ cΓ&Ψc ΒpšL€}£&£₯aZ^€}€–_F€ € €ψ μυQjŽΖͺΆIT[²FΛVoρ/Α= ™@<ώϋ%5WOͺο›+ΞΧU›"›{"ԊΗυ³γž’«I³Rš£ΞαB½υ›…:j§~K”m‚ο³ΣΰIzπ~nωΞ;£ΦΧθDΙΟήΉ@WQέϋKΒ#‚!ΐ i0)“ΚγF(""E zŠKt‘ήZΊτzε_―­ΘBΊ€U«PK‹Š¨¨₯ ¨“JˆjΪͺzΌόU}Κ m–}FތΕχ1²ίύ‹mƒϋ‹1mωχξ Ώ+Ι7ΰވ„θΫ_ŠyŸœτ›Δ#BrޜΩI΄γpA žXρ3,Uπΰy# ΟyτŒFα,Ϊ!σšζ­c5”η¬’βxL€ 0&ΐ˜`L€ 0p½°7!Ω·φ@,κQ}({‹L„…‹†TNΪXΜ™s¦'R(§rJ›k'­Zz0ςPσ2.;bNΞυh‹«(ύζ|PxΡ#$Ϋdaoηn1xe`΄«‘β`yŽ“Λήhςά{ωlή= Α!ξι‰˜•ή¨'ΫΫΆΗά1l`_Ψϋ#lx¦‡μm·zaδόώ;ϋ†''cυs=ΡΛIω~JΜΫΦμΕ£ŸŸς“"»yήΘM‘ηά(t+αζξςt• F(ζ56ηFΘ0&ΐ˜`L€ 0&ΐ‚H τΒޜ٘~—"Š9ψΕb¬ΪαΒ^ςτ•;:­h^σά‘νΨ²£8ˆΈ9«k@rSΧzƒ»ώMρψΒ Ζ&7šbϋYμΓi£Η΄1ύδΨ%[—αέO·[LΩΘΡBΨ?εš%δbΦό)!Ά729ΗΕθΦνF$vθŠ8W<œ«Β±ŠοPςΥVlΚ3χœ>ςAdυˆG=}uΫύ£²Οώ'Φn.pi+™χπhtlCφή†•‘=|ztWή”Ξ’΄`+6―ψΔλ§ΜϋŒ|ƒ3ϋ!%©£;ΫΪκΉŸmτζ)Ρ>wζMheΐ˜ΡΏO’ulΚPqτΎήρμ;βΊλδœ‹έv°ίΟ‚1»vΊΡ8ZIGφδQθ~Ί&HŸ^V~΅ΥΤΗJqxίvδˆž¬₯ρp;:ΖΖΠxݎΥk ύ7! wOϊ Ϊ“—‹3%‡OΦ+c>žΒ;Θα;π‘50C+σ\φηo€ψ†όTƒhιŒ‹ώRGΗ’Ρς±¨ώ\֘ΚWW» Ήw –U‘¨:ΈŽŽΪ±ΖώρEΝΥn;¨ιrIΛΖ€άΘθ©ΤC:ŽUڏω•8mΊQφ•_}„₯^§d{-γΑNϋρωΑΧyΣέ|Iδ•vžβ•ΆφΠFΌύΗχMϋ9ιτUΛΛ—ΠΊk*ί₯cDφ―ί΅κ‹μƒeaΈ$ήύρ{Xλqή₯~=υτνӝθ<]sŽ^x eεΡ=ψ*o-Ά―\VΠ?'\εFόƒ›<w·φŽƒχ3{ε)mέgάlάΪ3u—Δ‹AW?œXQp}Ξ‘<%6μπμ§Ξϊ™ύγ™Λ’FY„λϊΜ^ϋή?%˜αl?{υ›Ϊζx§cv χ+jιΓΎ£ϊJχ9UΘ[φ,6i—9j^2&ΐ˜h²XΨΫd›.’ HΨΫ! έ[:I"[ιw₯• ΨTr?ƒ4 ρ&μ##ΊE‘χυ-δ”Ώ3η°ο»zόΙΓofdE£K p…œσήΠ9J~‰[Js„Κ«u9μ!3ΞŸΗ’)‚ν_GόζΙξH’ΜκΞΒ{γ¨ιyŸμžxf˜2‰_Ί;ό·ΛσlŸΜπΣΎ‘ά=:ΖΑ==yφ ΛΟbηžcXΈΩ—Z›ΒήQcΣqo―V†ηQ8Qτ=ΩUε@ϊ Xt׍Θν₯Ξ‘^FQQ%ήΏ ˜4«2(₯QΨkΏ~­1kϊMΘισWβϊ‘αz€P^Vƒ’3Ϊ}lΛV@αΆCXΈέSμ;nμM˜œΥ YέΫΈλS]uΫώυ=~ύωqw˜Η Οy qDδΌ‘:― 'σΩφŸΈih+αζb»<»χΧ@@\Β>―ψ|“έy€ψŒ±“Xz&\ƒθ Gρχ?―†#‹Φ_x 0&ΐ˜`L€ 0&ΐΌ°7S>‰ή^‹Το8Ό~1ώΊΡπt8³Ϋ~φΟπ·Ÿ“ώ)]Ψ>~ Χgž=Y1½_φΣjϊ˜Ηqίθ~r`1έ»½gΌwΣGη-&ΐ˜`MŠ {›TsE¬±N…½oˆΖ<ο*ΎW½WΟSΨΫ i‰;:k‚^cj)Ν’έυ8‘ξ 7λ[ Ϊ«Ϋ>–g*ΰρšXΤGT/»:β‹ϊ#[žβ­Ε’WvΰMΡG€+՜ΗoŜ~ŠΘtΣG{ρ„,μ½―-„Qή§‡εΤ;·ČΏωp3lSΨ;λρΫ0·_¬G}ΚχFξοΏσ—’³R±tVͺμ•Χ4‚+P/μuRΏxν­ε«aίφ5{1λsQψ|=ž}ςfLˈbιWKφŜ?˜ °yήΘδ9Š/"η2qŸγωl'Ο?TΒ2ά\μ”ηδώ:€η2―)Μ­ωώaώU»σΙ#ΕτŸΤ:ρGcΑkL€ 0&ΐ˜`L€ 0„@Ψ τσRΫΗ’‘­» @Fͺ2WQ΄ ΗNGT”δϊŒ~Ρυ8Ήg=ς‹N*ΫκαF\ ’–E{(ύ΄νΠ Ι½Rη(i΅'JPZVŠκ“•ΈˆΆθΪ3“~[«Ό ΆtμΟβΰΦ­¨λ>ύR5ΟσΕδuχl§AδzyE»‰ΘύΕ―0΄§ϊdŠŽ/{QI{;υ‚ήξ:Ξ’7Θy‚7HηύΣΩxΠΈϋ[0ϊΏ!χ6ςΤ΅‘RΌ•γn γΦΦqPg£έ~¦ΤΙVyVP\§χΞDnzλκΫaΠ-Š QŠj5ΤΟtuuB oη#“χJ΄D![ ου™T »νHlŒφ³[? ˆγέβύб;%ηΜΖτ»ΛΑ‘u,4ZΚΫL€ 0&ΐμ`a―}fœΒ“€3aoζεΆDς°*ΘΣξ¦οp:ΆrzDλ^Ύ6 {'dΕ➚¨χΰ±z|}κ*Ϊ_…;Ί«žƒ‡λπ²Ϋσn LȈF"MΛK_­λΦ-7Ιe_ΕWe ¨’°hW–ηΙ}οίβ±ΈηΑx1'^ΪΞυ_aΖjύ|<ωΏΔ²·2%Η¨Ζσ3 π‘Ό _«+NcoΙY”Ώˆ3ˆΑΝ7Σ΅q―89p+ήά…—w^tm6…½ΩΉ=11•žgG\ΔΆΒΈΚ'υ’\± QΌLαU5x_'PΧwξ aŠΫΰ±ΧYύξΉϋ& ‰ΖΕϊ΄KκŒάžŠΉ¨°_W]AL΄«έ£p(ΏΛ 5.sBj•°sΧχψχΡ‹HθήΣ†js:;7R;½ol'€ηLžΣ¨]AΈ―€{₯ώŽη³=PqΈ—αζbΉ<‡χΧ‚°Χήόr#Νk <άmB+vζ›μΞˆρε2«waωKo˜zkmβu&ΐ˜`L€ 0&ΐ˜πM $Β^±Θψα`ξΔ‘rPα§ HœW*ξ6_χΈρ,ΑΆΑρέτωšQι-±{ύfΩ#nΦΈp]ε>lΩaπώK%ˆ“O»W’u³yΉRh}’|ΎςIr―“1ϋŽνώo―Τ<˜Ÿφ|z1ˆ–Κ%Y°_.br+λoΦZHδΥ³±…΄jύΏ')žτιβώΧΓͺ νg—Kνh?³5°SεjwιοKρ½†!΅M%φh"[όMnj·ύBΈd§δ©z)yͺV&>ρΓ]"γ²­xγ΅Ώ(Ÿn ”‹‘\Ώγ¨Χݘ;sœβ‘»<o,Zϋ„”ΨwMλ―VHZZ9ΎP4GνΰKrΞ#$ΦQŽΡ¨ή5/ύ^&Σ1i.“”Η0R}Dm€λΔͺ9Y·5ΤμΆ₯ tάͺE[j?ƒ}Mαό0tΪδfv•«ιιΤ]{ˆc½φΠzΌϊΗΥ€ΐ»“<μOPΞ[δυρEςR/Ε›3OρΊ,]Όύ!yΚΗ½4·b 6Ή_²‘Iυ™O‘'{εaRεWk¨Ÿ)^ΊχO‡γA¨­²*΄g°ϋΏGYvςΫP*ΞςqW°ΝΡΈϋGsΫύL,G]·xάU£—Ίs‘tŒό##«]±νgB]•ƒ]g¬έmρ„ψϊΜΜ8›νg«FBϋY©_Ζ»εσ‘I;ΔΣ‹sιΕ?ιQΗB[9ˆ 0&ΐ˜€],μ΅KŒγ›p"μ핃ω?v9Ώ QοŸ6Υξž•yς}•<ωvrmκ„½ΙσξΥσnΎΨsο#1ͺλ§χά€₯ŸΥa‡ΊSXώGfKL“Eΐ XΉ±λ/;ƒ±š‘Š O¦*Χ²rL}ρέ¬5δΒσF&ΟiTFΒ}}Dέ+‰χ‘6糃2n.VΛΉΨ˜Ÿ”šΫ —F›Χx(]Υώ|“έyύό•z‚„½Ώca―Ÿ3&ΐ˜`L€ 0&ΐœΉ°WΌ‘σ)λ`Έράρ|’§ `Ε¨–Φι‘ωλJ“‘~'X„²½Ζβ‡πΩKΏΕ^Uδ!DBΉ$ΰ•Δp’θu( ~s]‚ίRςΘ»άθ‘—β‹qv―Z€΅;„zλΚζ"Ωjό₯Δψa7!–Ό“£ΏΏθθX\¬Ψ…΅wϊλ=B2Ζ=ρ)Zhής:ώΊΆΐ{tγ›\DƎΪΑXΎΊm‘ŸΩ!³S΅Χd©•Y…Ό·žΕ¦"“HΖ Ώι˜ρΆ_—ΔB›½ˆ<έ\|~φΒ,τ=GW`ΣηwD?F΅Ÿ\+γ(γη=‡²« l{λ9lΈŒ˜ω2²]‚D1k—•+Ύ“vΠvΈˆιŠ7η΅Χλ_ŽΠDΖŽŸΖϊϊΩΆ3άYΩn?wJσ γ֝P(Ϋ΄―K…8Mεό φύδϋΑ;Ά»ξ†ΊUΘ{‰Ό…ϊV¬’° $`ΟΖCσ’ ©œϊ“P‚K¨οN+f.~2^ψT›h›ώ)¦³3D“δu±~AΆ{”e#ΐ)O±½',+Δ@IDATμwEӍ[1LΕύ6ϋ™XŒ{]ΜΟf¦œi?UΌ”J^μ·Πρ›pόΈŸ ΆIφ†δΊΞ ΒΙJx―ΟL-©ΗΣx@;ύ3"ΪΟBύ‚3ή­ί―˜ςM’ηωyρΡ4!2&ΐ˜ˆ|,μό6j :φŽΨχw‹’«·―¨‹ŠtU½sP,¦$).tEa―˜ξ[ςΘϋάy΅δbœ\Ζ²2Mψ«Ζβ\Εͺ]ΖηžZ5ͺΓe~σόLη{kρ§Ε;°X˜rzςΙ[ρŸmδΌWΏ»½M›ϊ,D·Ÿ“θ6…"³Ίt{-€1; O VΎJ΄mν^<ϊ‰ΰ¬G‡`ξ@Ε½‡O;uFΣ†…ϊ‰’θMνΕλτe‹YŠvGήi&yΕ8fm!ή;ρΌ‘H—Φ-άΣR„i3ˆσΩ’ΕVηQΓΝΕbyŽο―Efλ^Έˆc'¬σšΙ\GσM6纐ƒ§Ω.O2"a~Χ ‡1&ΐ˜`L€ 0&ΐ˜€5‘/μ=·ο½π{ώA½Φ,>m ξξ7&‘}λ–ΐ•:\‘Ψ1m»"^Z¦ 7½^B˜}RFΨμΛ•xϋΕΓ¬(€οs‘’Ό11†κΔΔ‘S‚2)xπ‹W°j³Ps!_Ψΰb(!7Σ1鿞AFgΙ΄CXGB青PڟΕ6ΉΪτ3;‚“@ντ‡ΝlΏθAκ£Ε»χβπ·GpΌΌ₯ε'Ν’ψŸΐΪG7¦„pΣqD₯e|Fτ•Όwπw) IΨ0±\‹γ(}ά“ΈoD†\ΌeXώρv…EΒH<2~t“Ά¬δ%”­c‘δζώο€œqΉH’ϊ'IT/sH΄FβιmΔXό‰}Φ—Νb«λbގ^ό°ΒάeL γΦ]+ν'Δ1νΧΒώH9?ˆ“Μ–Π¨Ι4ςΞ;GρΞ«υtάMΗτ~tLWΓDΈΗΉM,žT!Ώ$*tΦ?α|«6ΊΠ^j]Τ]ΉtΖ“,κcΪ?)ŠΩqW¬«£q+f Ψ`ΚΤlΏΕ~&γ^7ΛΟ½ΣΗJΖݘ3cœΫC–ΩΨΈŸ ΆY:‡ψ074»Δqϊλ3Σ:ŒLϋ‹!‘ώνg‘~!οBΩβωΘ€TΩ΄ω@Ο4dL€ 0&‘XΨ‘ ΣΔΜ²/μm·΅Δν$αξU|DΒΪ5m¦θΡWφN‹ρΑ―”Άτ4ΠRΡkΤΘπ m•8»\ƒÍ!μFMκΧΖ(_η)ΨRˆi;ؘ˜„χ_ΊςLΫΩ“xbήWΨ€Y/―%§wΑΤa‰ΘLŽCηΆTΑΊ\¦=±qqHR¦ΞQΨ‡ωυLJ‰%‹j±τ•Xj˜RΕ·fΒή@κ'ζνOΨ+ ¨ (*k@+zl’ϋ΅l‰”ŽR]€Mν&‘0u*αΗσF€ω\Aܳ XCΎΘ|vΐσ¨αζb±<ΗχΧΦ²Η₯η5Žη›ΜtIJG+\Δ₯Φ­‹§θ™’—ηI!ού\`L€ 0&ΐ˜`L ωˆ|a―Ι§‚Μπό4r‡JΘςύs{τMΈιυ:#Δ©)Z‹%o}’ΟMد呁IσŸD†ςέ+}|/[B7!_Xδβ%λ ΞΔ”ω‘·ΔΖΙ'zlq ¬νgΦ'Ω鸁ιsTsfjB&]>η*ppίvόγγu¨wό΅ώ.DπΆ_―9@γθΓ8’,΄ΙΆ³Ψωήb¬ΫΥqΖ‘`+NδΣg€ή†δK;mδ£δΝq \يέ+ρζJEΔ/Τ^Ώ*δcΚJm»œφ—:AT_EވŸΥy#–Μϋ¬O›UΫm,ΕΌ=ŽwήςZ=:nέ¦e{e!Δi*ηQHΊiυΟΒ}σg!ŽίZ˜§°W{διυZα«₯‘DζŠ‡nQTh§:‚λ ΅ΡMλ¬ξlΌ₯3žd―PλΗ]ιh§ύ[-ΉΞ­Ο΅ύΦϊ™‹ΆjšŸΆΫ|myŒŸαςΛ§—΄>4ίƒΠΟΫ¬ΟΜν Uh8―ΟΌΤA`€υ/q)ΨzŒφ³PΏ ŒwΛχ+ζlν~‚Σ<eL€ 0&™XΨ™νΤ¬r"μ}μφXά" T―β³_Ζ‡•ϊZ› {£πΨ¨–Έ₯­>―­έκHΨΫΰ%τ{©HΑσ-*~ΐŒηb'gύ1ώpμαEωί`ΫΊOxaΖƒ™x*Η$zΙbάωΖχu“„²Ν„΅ζ‰\‘~Σ^E !WςE@bΩ?-ώ·Ξ±*ŠoεZ?1oίΒήXτςδ*ΪjΙ,Ώ?³όxήHφ.&,MgήHnhα~ΣΞ|vPζQ…²­άΛϋν˜ώ"X,Ορύ5•oŸK#Ξk <œΞ7ρ<€ΏNΗϋ™`L€ 0&ΐ˜`α!ρΒ^ΏB\‰Sζ½x~Ϊh7±Ϊς":„šsδ―7ͺh›‚9ŠψΞοD‚pΣλ5Ώ8¦ϋΕyš ΪΊεηΙ<·ΥϊΙ“ouρμ;"ΌΥ*ζ«~ς\Ÿ,π­€Ld聘zβfፋ•ί o‡ΙΔ–…τrα³ν {ύχ—Ϊ!ύΜΊΰ$;­rχ―ΧHά=β6τθΩq&qjmΔΫ|_χšzRŠύVυς)νΓΥΟ­ Ι€ΥΏX„μžͺkiU’†s%bμcΏBVͺdKς–=‹M…‰ΘύΕ―0TΆο,ς—ΝΓΓ@¬³ΘΒPoyΣV;8ν/a/°sΩL¬3ΤAμ³^‰fφ[σφ:AnΜGdhε8„qλ6A,Ϋ[ϋω‹cΊίiϋηό0`ς/1~hOΉšΧΣ8Ϋhθ*/Ά½σšHWν3ΪΔΉζ}[ΝVY¦cόΌg0 IΪ2φΪιŸAΰ©gZgugγ-ρ${ΕϊX>ξκϋƒ£q+’m0G¦ϋ=ϋ”Y?‹q―›ζηήk²’LΗϋ']Η{ς½d<ηΉS‘Ÿ‰ΆY9žΉΛΣJX―ΟΌΤIddΦ_ Ι¬χΟi? υ Κx7cg‘l―ΘU=«ϋxΙ˜`L ©`aoSoΑΘ°?0a/yIέq οžΠΧΕ\ΨΫš Ψ}ψ ސΠkϊ“<ω?Ω€m§Ηc/ΠΟύr0ξν)yƒ½€ε― ZγΩ§cZ/)μ2VΌώ/Ό\ ˜ŸΥ_ΟJvT—Uc[Ρi;CβδhͺG\{Μ­ˆ‚‚Yw"iΕ―8W[Ώα7­(μή}3ˆu άDρ­ΞΞ ΤOΜΫLˆ«UFo禍‡QXK_7Τ"θΦbiGιγψ¨ψ’.œηLžΣ¨„lάW©IΒ·t0Ÿ¬yΤps±XžγϋkG\τσΦηέυιλ9"Ο„o€rIL€ 0&ΐ˜`L€ 0_Β*μ-ότ¬ήjψ.•™uoΔΥ€Yχ?±ƒΊΛ›₯δUmΉΡ«ZΒH̚?€—θύ>ŒΆRΆΏ8¦ϋΕOο”aΓK/"ΏZ­Ε₯iΎΣZŒ–LH§»<ZL‚Ϊkπκ;Ÿ[nOμ8ϊ4-.ΞΫ!ύLœρ=œΫiΨaP"2RΠΉϋMHο7)]ίΉƒδ=χΙ{KT˜4Μ»έ¨”κ KŒ}ΑΫg›„v½ˆΖ₯±+mUθ.BΉ~‚1i£Ι;οεcωΛΘ{ckΜZ¨WΌΩ/$WV•m₯œr‘±GbΚ~²˜’ŽK‹θΈ€w’‚.9³1ϋΑ²ύvxyΤέ$ΐϊxΫdŒqλ.έJΩώβ˜ξwΪ~nΛτ‚M3—ΥΈΪeψt̞8\φΩΖ¦ΆkΗo-­g˜6qμ§kO<΄4’°wΛη°νˆΣώž*$ρΕ…^:γI•ΪΠΫqΛσΈ«ΒP–ŽΖ­˜…`ƒΦg„¦ϋ΅ώ‘₯1 ςQWMσSwz.³¦ώcoIQvTοΗ‡/ύ<£QHϊ™MΫLΝi Ζ8τΧg^*b“‘υώ!νg‘~ΑοΪΈ8[([>ζqά7ΊŸΌYL/€Όην5/™`L€ 4!,μmBΑ¦:φΞΞ‰Ε°λ₯J5`ε?λ°ώ¬Ύ‚?JΑ‹?V$»?”_Α³»%' -0γΆ–Έ½C %έFJwAŸΞκVX<φ’1Ωw’wή Š·pk!ξύK4VΏu3δοξ ^|U»§=’…g‡*s[ΏΑ΄Ώ&ͺ“°ϊ%%½N0«f .Σ“ρω3=‘BΫ>=ϋͺρΕ₯aοoŸ„qς㈳xuΑN,Σμ}rϋΰƒ)²K_ˆv£~’°wΓͺݘ·α΄h½°‡ωυLJ‘DΤdη|²SxG\ˆθs•η|ΰ‰Πy#Υb»σΩA›G 7‹ε9½ΏvΖ₯η5mάο«}ΕΈδy#ήfL€ 0&ΐ˜`L€ 4 {» !ΑΠE0t,]Γmσ_S›7žΪ ΉΉ0-yδl«Z¦Y)Ϋ_/ϋΕΟVωuzAδ%_/±wώ Ό†ΪJ[C"²%^g+>² ‘{W-ΐg; ³‘ϊϊ-›\œΆC0ϊ™ρΰΤN=œΰmxx²ϋ(zοͺΒ[δΥ»°ό₯7 ΆžΨ§tΒ‘έ€"¬yz!φιΜϋ…*τ£Ο^M[€άLŎ°Ž#zAΰzA@0£<λφΗb¬Kθ[š· Λ?ή³ήtC¨³Ž…idσ@oνΰ”‹˜nΗ πIžΨzΐ€ΙΏ&o)²1Nm6― `g<Έσ°Ι0γΦVΩώμσ²_l‡°φk©r‚ψή»wR)ήX̚wα%mœjύΓ3L7n6^ΔρuΎ°XSŠ\μτO1#žj£‹KΛσπΖ’ε8ξσΆl…yY1θΕ#RKŠ·~oώixHλ-Ή•p§<Ε6΄sάmr4nΕ Lϋ‘ΑtΏgŸ …Ηή4Ί^œζΊ^”ζo‘ΐΌH°Ν°p?3­«‘o›aθg"cɌP_Ÿ™VΥ&#;ύ³QΫO­¬…ϊcΌkΗg΅`ZZ([=όη 0ͺ―tν₯~΅@έΓK&ΐ˜`MŸ {›~FB μ {1cq7I  lίo|§χͺ{{ί–˜‘%οΧ„½ϊt_~}―Υ§“Xψ.a/Hˆϋ> q3$›Κ~ΐΛ{’ρ¬Kθ[°₯Σώ¦ΏΛž1; O –„½ζ‚Ω¬±}°μe^PΜzT9ρ,{©7²δrΛ1υΕoΌΌ΄ι‘’·ί³‡qrβ΅+wΰ—›Ιπ›ϊΰ <Ÿ#+·uΒή`Τ―OφΝψΰ!ω-}n=Hbι„’υ«’ΎEΐϊtΊ-ž7αΠmDθΌ‘ΫFqΎΝΒ|vΠζQpqν`ΕbyNﯝrηΒ:―iγ~ίm»σρƒοΕΤάˆΉRGYlhm!>ύ/ΊηDήΚβp&ΐ˜`L€ 0&ΐ˜πN δΒ^ρ‘qmΡzΌϊΦjοΦ¨{lήxj7Φf›³0eώ,τNP27}°­–+-…‰ͺJoήωόΩηeΏN0R½ο½τ˜ϊ/NΚ€Ο‘Χaο.ύη―E–~λ!ΦΙζz—΄t΄²‘ζRM1ŽΫυ>lΘΏΔ§1aΈμ«8± ούξ O6 ™ΘJ«ΓΞΉ8m‡ τ3‘oψNν4 ΅΅Ω%¦Ωš Χϊάυ4&η(mδUΨ‹¬{ι7Ψιξ‰ΘύΕ―0΄§βiCΧo’‘Ε_Η{λ΅οΦΕys§δ(φŸΫχ^ψ½ά'ζ"”«³Η©3_Fv―ކ˜$:φ#ώr'°r|‘ΘNΪΑ)—τ1O’>ωρŠόΙωWψΎΫ\`~φΒ τΈN ²ΛKΘΘ|Uh γΑΖŠ=A·jαVΪϟ}^φ;m?Υ΄ΐΞ’ηΚη0Hφ4£‰θέy«+¦Ά[\κΗ³&άU³ξOΗ— 㠎nΑ’Χ†Ϊι΄ΜS5 Β‹ Η7w$ύJ‡hΌ|[ np‡^ΕGΊŒ5§ά―8ε)φΙ«Η]ΑB?°‹½/Ζg†Τ¨κ2ΰ~fZW5w?Λ0τ3Ι‚p^Ÿ™ΦΨjϋ©‰¦ώϊg£ΆŸΫή\zabŠςΒ„—ϋŽ`Œwm,©ΣR`eΊ_JH§Οˆ|TΣΟΧύ‹Ÿ—L€ 0&ΐšφ6±‹Ps{¦·Δ½αξ™Κz<ώο+Bν’πtnKτm₯‰ΒήΎ=bπtΕ“/ΞΧγ΅MW°GHι^m…ΫΫ<ΦΰWΒ&μ₯BŸ|ςVόgF±xZ―ΕΕ;°Τ0ύ­ _/`ωλΖBmͺ$β΅—ϋb”kjΞ§°ΧcΡ‚AΘ•5ΐ§ρςόέXq`‚·Νδ±ϊΉtΩ«°7oΏ£ξξΧΖ)†T•"gα!!·.xsQ†)Σ‘^„½ΤOπ(\]X‚œΕG„²υ«Ω$„ώƒKͺxβΩ―±IEΩJ76ΰƒνf“ °Ÿ 푍΅―Υ°τ32 ¬ΧgTž£φ@ΩꟍΠ~Žκψx7ν_ϋ_ςΘGιΛ'eΘ–ΏΎ"4 ―2&ΐ˜ˆt,μτjφ9φ’M4ώ{t \U,-Ώ‚Π}f\ξλΣƒΤιjΪ/ {˜}{¬[4ŠK ψϋ·υΨ]q[·@ΧλZ Ob~ά- .Υcα†+ψΚc8…½}FφΖχk―ΏΚζ”|©Ώ)φπ’;γςΨ;Τ₯ˆ­ͺΒOKρωφ ψΡ°.xpl Sœυ*Yμ9„; έΣ™ζ<~+ζτsέΧUTaŎS4ΟΩ±1WρνžR¬U“&wΐ=7ΖΊ2iΐ₯λβρĔΔJΚρόΪ* m”ΌωsX[@ήyEOΔ΄§hO xίuΎOMκQΪt¨^ΨŒϊΚ.ΨU†υΞαrKͺ}=θ»―~ΐ6υΆ•ΞΏ%σ8•ΫΩ¬X ›φžFm‡6Hν·τIΐ­ƒtφχ5ΜΎ·ΘσF†η4B—‹Μy#Ν@;σΩAyώα*Ϊ6ΝdGkΦΚsvν˜‹aŽ"lσšοχ½v2œC_M½Kωjͺœ―Ι—½•ΗαL€ 0&ΐ˜`L€ 0&ΰ@θ…½TΆφΩOCŠΧ/Ζ{’xVό₯Εœ9χΘ^ΣLD‹q₯uŠ?‹β«σSΖέβΆ1Ώ‘?Ή}]‚1’Ω:‰m—“ΨΆΤŸ}tγ<‡>W.y}3–‡^cρΘΜ{ΠΝ,1ΜLΨλ―\1}\ο2δά;Ε%ͺφb {—…½NΈ8i‡ϊ™X[γΑ‰baΆΦUA©οD΅EkΙσφ'ΊH¦„ΊΚ†n<L&Q΅ 3οppq_ά֐Ϋ…δΑΦ½ ής:ώΊVη>Δ½ΧΡρΕ-μugcΊbΦN/}Ζ=ŽΙ#4a₯i¨k?o‘l†ΫRήvΫ/€qλ¨ύόΩ±η‡axˆϊvŠΔ˜Ό¦/'―ικσ-)Hώ™ΦMΖiύCσ’‘…‘'jςΒ=Όp+/¨™κ—΅‡6by>.;'„ςΡλNΜ™9ΑεΙUάAoΝaΒδIΥΟ@Ž»BΥνŒ[Ϋγθέάιq h½ŸΩ.OΊΣyf*j²κΡζτ3Σ1eR¨YP˜ϊ™Tt8―Ϝ΅ŸώιτΌ)—θ ύœΦΟΡxχgŸ―σ‘i"Ζ>φ+d₯JŠ lZϊςΨݎ›―0&ΐ˜@σ ΐΒήζю] GΒ^2zΘΝ-1η&E0κ«za/ΕμD’ΰ[5Q°Χ΄>…½±ΈΏ[ Jό―ΜxΪClί"ΆΒŽνλχaΦjΜιΙXύLOΩ[q—qΫ·Η^Šρ#|ώdeÐxۚ½xΤυξŒGoΕS=_μ4$Q6Iό:ƒΔ―;ikά€Ύψν˜DΣhb ΞΞ ΥoΦ£C0w ω ‹X7َŒdΌdOdˆF™­ϋφJ_υβy#3h‘σFš΅6ζ³ι>ιs6­<ך].Ψ °XžΣϋk§\e^Σί|€O΄ΞζXΨλ*οdL€ 0&ΐ˜`L€ 8&a―δ mψΔqΘθύ#΄‹νˆ8Χgέ%«χϊ >ΩZ¬―@H<2ο~YόZAŸ₯}sΕύ~“­ψΜ;qΧO' %Α°Sς·΅]sΖ!…Κ5ζ7`ς/1~hOC"/›εyxcΡr§7m§ΟΏ_φΖWYπ–X§O@Ÿ ~„>«+‰w+v“ύ+ φ'dbμψqΘκ›’OηΪͺ)?„£Άγ3ς\ͺϋ9ΰ’Kί6FβξάθΧΣD¦} {·~ŠΟ6D”NΉ8h§ύLήζxp`§Ύ<«[‰Θžϊ3τ홁NΖq$gQ…βόaΛ‡ŸλDwjξξzγs βΠs%4ώΎARΞ$KγO‚ΐ¬²(ΗcoBFͺ^d_s4W.ǁj΅aι”‹Σώβ*Zϋτ–P‚ ‹~ƒ|£ΗNW\GΗϊ¬` ν‡\ϊŒy£GUΌ•»μ—D<ϋιψά1'G>žϋr%ήώ`³{opVlŽνηtά:jΏ&|~0υΧKŠά¬{W-ΐg; ^‘nZ_ Αε<ς4œΫMύc₯Τ?΄0ݘ§=r[δΉZυŒ*—¦ό;œΦ~Έ5B˜ΊκΈ:jΉξe―\Lή©ϊs“Ω5LߞτYΤήΟ’JœΗK[― ΘYπVlσ τΈλ6έϊΈ΅=Ž–—b¬λΛI?³]žt]G}v<υγԏύύ Ώx«Ι›―ξ紟98ž©ε†³ŸΙe†ιϊΜYϋ©TΤ₯υώ)§cϋR?Ϋγ]8f;Ί_‘ΰdLΒάcδkƒškιε:ύ‹]*q^2&ΐ˜hΚXΨΫ”[/rlw*μ•j0$=S{E^&½Šν‡Π΅G΄μΡχΘwWπ?ϋλυn…‡ϊDcT’Ή0ΈςtVΤγOΕ ϊt­ΫϋΆΔŒ)m}e¦.Θ_™ρ,rΖlςΔ;Ψ剧ρκ‚έXf˜vPS%gύ3©²τΣ„€δmφ§Πλ?R‘EYν*Ζ€7ΎW“™/3nΔkwvΓ¨žzμΪU»ρΛ §ε4SˆηsβΝΣCΛΚ1υΕoܞ†ΗέέOŒ»AρξλŽ[‹΅O!eτ²˜Ά0οά»\›< Nύβ0λTάΡ―cΫ AEK6ˆus›”ΨΟMNΑ½WΠξ@yY vξΏώ„>­δεΗσF^ΐHΑ:o€Zlg>Ϋι<ͺZ–niƒ‹.Σ ‹εΩΎΏ&{αφyΝζ›œΞt2³§ ΧZŽΎ†΅όwo{:ŽΠbπ`L€ 0&ΐ˜`L€ X &a―K‚%mp6:˟NΎ‚ gŽc_ΑpΚ J6τ9ή©έΠJΤ_Α₯KΥ¨*/@©6Ο”bšb&ρi™ΈιΖΞτ±s‰Νœ©9Ž…!M°*ζ ₯Ÿ9°Σ)’.i蚘€ΨVmδ6¨?₯» L½Ί2²uc9Ν%Js”˜‰τδ4’ΐŒόKIΐŸœ1 ]:^§€?S‚½Ϊ<Œ\tu Γ†γvlsΒ%ŽI½•cRύ₯s8ώνv”š‰ͺΓPχPΡ(γΦiEœ΄ŸΣ²Τt${„•²Gω²­xγ΅ΏψσjZ›KΉ-Ϊ“7œ+RΒ 8qhŽψ;χ?ΓΘsBV,ξι*y=R~Ϋ .γOeWΥ͐,-σ Φq7$΅h™6σ~&΅PX―ΟΒέ%ΒΨ~TΝςx€WΪΏŒμ>’š’ Ϋήz[Bρ†Bμδ,˜`L€ B€…½Πγ΄*@„½r$½½s ΄&mύ•«(­l@Ρ5w?Λv”6AIK]\€τ?œ‘τgύ€k»³‡έ€žΧI³Γ 8}κ>Ϊy*2­N쀩}γΤ]¨CΡ7Η±σ€S₯~Ιd+‰œ%[q₯΅/αθχUΨιEd­«Οιp8έhŒy#'Ά6©yT'€4Nξ―si"σš<ΰ°3q2&ΐ˜`L€ 0&ΐ˜@ˆ4;aoˆ8qΆL ς ΠδPVf2’―w”Φq"˜9Fט ›\?kLX\φ΅G s4^γώ„κ?χ\Ζ²c‘υΦk 2wmαŠΨΘ‘ήΟ"Ζ˜`L€ 0O,μυdΒ!φ °°Χ>3NΑI|?/7;Ο/_“½Ÿ+Ν˜`L€ 0&ΐ˜`°°Χ4NΒ"‘@rΞlLΏk°#Σj|„%ο„ΩcnΪXΜ™s,€«d½ŽΪ­15Ή~֐ΈΜk–@η’1op β.—OΧγ·;"Θ[―Τ*|άm}3βϋY³ Μ•`L€ 0&ΐ,μ½VZ:΄υdaohωrξL Ήΰϋy₯%y~ΉΉτh`L€ 0&ΐ˜`L€ „š {CM˜σga#ŒτΜ.ˆ©«ΓeΖ΄l‰‹'Jp€ό€TAˆš4Μ»έ(«Š‚Uxsβ9TÐEλga ΒE0&C€»M¦©ΨP&ΐ˜`L€ 0π`aox87χRXΨΫά[˜λΗ˜@p πόrpyrnL€ 0&ΐ˜`L€ 0&Π\ °°·ΉΆ,Χ‹ 0&ΐ˜`L€ 0&ΐ˜`L€ 0―XΨλ ο°A€…½6`qT&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ,`a―%L‰ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ζD€…½Ν©5―.,μm<φ\2`L€ 0&ΐ˜`L€ 0&ΐ˜hXΨΫ\[–λΕ˜`L€ 0&ΐ˜`L€ 0&ΐ˜€W,μυІwΨ ΐΒ^°8*`L€ 0&ΐ˜`L€ 0&ΐ˜`–°°Χ&ŽΔ˜`L€ 0&ΐ˜`L€ 0&ΐ˜@s"ΐΒήζԚWφ6{.™ 0&ΐ˜`L€ 0&ΐ˜`L€ 4W,μm-ΛυbL€ 0&ΐ˜`L€ 0&ΐ˜`Lΐ+φzEΓ;l`a― X• 0&ΐ˜`L€ 0&ΐ˜`L€ 0KXΨk GbL€ 0&ΐ˜`L€ 0&ΐ˜`L 9`aosjΝΖ« {=—Μ˜`L€ 0&ΐ˜`L€ 0&ΐš+φ6Χ–εz1&ΐ˜`L€ 0&ΐ˜`L€ 0&ΰ• {½’α6°°Χ,ŽΚ˜`L€ 0&ΐ˜`L€ 0&ΐ˜€%,μ΅„‰#1&ΐ˜`L€ 0&ΐ˜`L€ 0&М°°·9΅fγΥ……½ΗžKfL€ 0&ΐ˜`L€ 0&ΐ˜`Ν• {›kΛr½˜`L€ 0&ΐ˜@DHDrF :΄i‰Ί+ηQUZ€γΥe Γ˜ ψ΄ $΅o ΤΥαά©c(-?”|9&ΐ‚O€…½Αgz-ζΘΒήk±ΥΉΞL€ 0&ΐ˜`L€ 0&ΐ˜`L ΄XΨZΎœ;`L€ 0&!Η<ŽϋFχ#kͺ·μYl*ŒΓΨ &Πμ $cψδ θγ~θtVΩβ/γ½Ν<5"ΌΖ˜@8 XΎ.HΘΖCsB ΏJΏ\‰εlφkζ🿌Q};jρͺK°ϋ_k±vkζmΝAyή²βp&ΐό`a―FΓ?φϊgΔ1˜Έφ„ςzϋΪ£Ι5fL€ 0&ΐ˜`L€ 0k‘ΐ5/μν2|:ξH"ŸκΛZϋΗvΔ™«θέ-ŒΧ˜`M@R6ξ›2qΡυ¨9°«ΧοŒό$ΔΟ¦ΐυdιΙΒuX΅v{δΫ$ ω|$ή²I‰ισοG²΄Ώ,oΌΆǽō”πŒξg‘Έ;Z6ΰώ„Δ΅jΞGγΓ3΄Œ~ΪΓ<}₯ ?}«·λΥ­ψτΛξŒVφ₯3(ΪPŽ3κ>^6_M₯έΡ₯u₯.^ ΟΣ썡ΙuJ[Χ‰5σ) ο% u+°ε­η°­Θw‡N{Ή™έ ‘Κ°iΡ‹Θ+7{lΪ/Ο# `Lΐ2φZFΕ}`a―8‘²‹ο―#₯%œΩΑνηŒ›ƒTA›7 ρυΆƒͺq&ΐ˜`L€ 0&ΐ˜`MŽΐ5/μMω(¦t GΓU~υ–ώyGx£$d"ϋΦˆE=ͺεao?Dnτ6‰dΈΏDrλ„ήΆ΄±˜3ηt’’j蘢$iF MΡfcnσωΘ!8‹ΙLύ5Ζί’"Ηή»j>ΫQj1e#F Αxhrύ,άψ£―"ηΊ«tEο|]ŒΒžKa2 Άu­WŽΧ΅Ρx­**L‡§˜3_FΆ,ˆ“Ό]ΑΦνΐŸ₯O섬;’@²}Ηϋ>)CMxΜεR“@iχμ‡_ƈ>ͺ7Vz.%‘η‘ΖΗeΫ%`ϋΊ cζΞƒx*¨ζΐ,yηs E’ΌΧΝΈmΜDdto'Η?HžΚWYρTξ¨< &q&ΐ<°°Χ 8 ΐΒ^Н„ο―ΓM<Έεqϋ—§ά‚5ožλmα]L€ 0&ΐ˜`L€ 0&ΐšk^Ψ‹΄, O#Ω[C=Π&£F –›5R…½βΔJρzϊ|ρFώ|q3‡!«χ—‘m§έ‰Ήs&Θ„Z ΌjI€ΠΘUK‹YσξAW2#RΓ!#Δ磐‘†α‘…3"•pb–ξ 4Y/ŠρΠΔϊY;…iΦΙνκ1£CƒΌ―ψT Vž “η\φ>AΒ^I0VK{V6'ao&Ν Φ"¬yz!φΙ„ύό‹ο„Aw&Ύ|/ {χ’°—=φϊaΦv7‰vΟΒΟ^˜…rηT ήψ:ώΊΎ 9΄ΐ5R'Χ‰ϋΨ―•* tΙσξRςΌkQΜέ%g6fί₯Μ3XφΒyyΧH#r5™@Π°°7h(―ιŒXΨΫšŸο―›@#ω0‘ΫΟœ ο ΚΌQx―·ƒL€³cL€ 0&ΐ˜`L€ 0&1XΨ+6EB.f͟Ρ‚²dz(8έφCA±’Ό~-ΰώr-΅ΆI]ΙcsξθL΄Š&MΤ‘νΨ²ΓΛηΞM’6ZP(&κ­2Μη£ΰy&Mύ8¦ι'ο(ΩΊ ο~Ίέ3R$†„z<4~ξfIΎŽ„½ аχ {?—°—<ηΆo@kŸ½…-΅a‡p:ξώ―gΠ―3fGXί$žaxmΪ=~Θƒ˜;%GΧ.΅G7βνΧίg―:*‘»ατΊ@|i²4],p›₯JŠχdv^\sZž%£8`n,μu£ΰ•°°7xαJΚχΧα"šrΈύBΓΥ_ηΒ}½ν―ΌŸ 0&ΐ˜`L€ 0&ΐ˜@S%ΐΒ^±εB=A$–εp=~ψ#˜;q¨œΊπΣX½΅IψtX[N(ξ/δτ!'¨|Έϊ€R‡ηΗ^ς£~νyμaσωH€ΰz2Ζ=ρu—²‰πΟ₯‡{<4~`γΫNW':*ΒήΒκ|x9 lmγRAΨ[M³_²θ1» <ƒˆ³ 4vΟΊyŒUN*‚ε%Xχo°³ZβΥ%ΐuAB6¦ΟΙRΝͺχ`ΕKΐ ΅t*μ…Γς,˜ΔQ˜°°W€Α«Ž °°Χ1ΊΠ%δϋλΠ± GΞά~α μΏ GσFαΏήφ_ŽΑ˜`L€ 0&ΐ˜`L iΉ°·ΟΘ08³R’:Ί ΥV— ψΛ-ψl£θ1/γgŽF‡θhԟ+ΒΪŸ˜z<κ2δ^ά1XVη κΰ:¬έ\(ηΫ%#?ξέݺ݈Δ]§~υ\ŽU|‡’―ΆbSžΧmˆqΕςDE&Ζ=|;:ΖΖ Άl;V―λA™&dαξI?A{ς’y¦δπΙϊξ’μΫ™ˆαSοΓM ­PW­3ΠMώ”1PS~Ug/ΉσŽŽŽνψ›vΕΎιȞzϊφι‡NΔ₯ζOΛΚ£{πUήZl+0ΖW³Μ’6ω‰ά&΅e›±ϊίΐΈρ#Ρ#΅§œ^ŠUsβοٌ΅΅:ͺ©›Κrΐ˜ΡΏO’u}΄ GαλΐΎ#.Α‘»BΞΉXJaΣ_»vΊΡ8Z‘ώ9yz§ί„ §m•_m5΅Α±Rή·ω’§Y‡γΖεx—δqΉί!Y3΄2Ο•aώF―†ρ¬DKg\μτ—Ί€Žƒ’©ι#DVxΤΧ †ΣqυμαρΧ'’νΆƒ–Ώ#.i٘”;=•γ9ω¨DΕ‘ύΨ™_‰Σ& eoΗ£™fχ5λvςωΘόΌΩDΟGIδžβΏφyTό£7Šj»υ—/‘uΧT:ίJΗ€*μ_)ΎkΥΩ#ΛBtI Όϋγχ°ΦγΊΒαω6€ρ`½_›Œ ΛΧ=&iCtw%6 žτ΄υ€―m{έbRi-°TΎ‹ΊŠμλiΏ\~ μŠΖη&ήm3ΪΥcPάU€RzυW{₯ŠΟFαSϊΓ;Τ#½%p™’ΆiΩ@ε){k.·@e½&썦ΥςsQΨx^ Sbͺ6_ΕωKΡ$GΦWOηιWSΧ‡Ο‘­‚ΰt²1«5Π ™(Ug/Fιβ)9xώΨΎύΫ^E²‘Ž?\l―©¬}—i"§Cz·ΉŠ2SeΏΔε‡Kdίω(δ_0Φ͘‡“νΠ {γΊu@b·λΠ>‘ έ΄F,q•/γLΝyœ*­BIq­Oγ»τKBΧΫ#>.¨]ΏΛη.ΰμ‰s8ρm%Nœ¬SƒuKλιΪ‘ηνΡ6¦.WžΒ75Ί|Χ½†tD+κž—NT‘hύ~΄§s|G΄Ž’Wβ›ožƒ:‘cηλΠΪUί‹§Ο‘κh%}­€ —8ͺ[gͺ™|ε"JώωŒΦΛ•‰O@ŸΑΧ#†:zύ™Σ(ό²ΚPGΪt μΟ‹1Ωˆ₯{₯ϊθD_8ŠΏy5Ž{愐 L™$zKχcΥϋ‘_ά C‡φ’σ-ότzιRΌfυ,Ξώ}‡’‡υt―“έ¦ΪΉnUξμί―Έ s―X«_έƒ₯{pJvΉ|ηo0½‹M‰)w DDΣXΩ‹χ>άΰ.G^±|] O¦n ωŒκΫ•6«·μYlς3Ε ₯s,μ₯΄NΚ“Κδ`Φ °°Χ:+Žι {lψώzιŸΧ‘4‘mnΏPΆŸυy΅šΒσ2‘{7ΒυΆP:―2&ΐ˜`L€ 0&ΐ˜hVB(μMGξΜ1΄—τΠΛόWωΥZόνΟͺ€7χ½πeAn6-}y&ξo²~#ϊ("αƒ_,Ζ*YΨ›Ž)/<ƒήͺ˜ΧΌ8”佋w?φρΉL«—΄;1wΞΕΛδWa‰q’.Ψ»γA*²ϊ •ioάκΡΨή’6ψΩάθaΦ―\™ΥzΥ=†(ΠιψΪΝ—kπζ C›ΒE(Χ8ϊ7nq|Tj5όαEΥΗ³OΧP_^bμΛ*'ν §uΦ_β3οΖΣΖΙ^yUΜ–ΑφΪ΅“ΟGj{θΟ›Mσ|Τeψt̞8\’Ο>%ŒU΅ώΎ—eX·θEμ,wΕrxΎu>μφk“ΪX½ξ1I² Ψ<Φ΅ήορA+ΏΎψ!;ݚ˫ΘM¬Η­$^υφ«¬Ζ_«’\/]ΕΤδ+–―³ŠΑ_q\†`s%‰rΟ“88Ω%θΥΩP…Η’qΨ8ΌΣŒ&aρWs>―UκΕΗΊ8Ρ ˜ά©­<Σͺρj)…b”ζgΔ΅§™]DiΤΜ^AΨ{ϊφ~Vf.E[τ™ά‰ͺ˜Χ‹½§Ύ‘xvς܏›³“Π₯“KΡν—Ώώ§αE/»ι1δŽ ™y±΄;ΆVκKJ섬;’¨6΄{ΪOοϋΟWœΖεψλoVη‹5Ψχa)υοpri‹^γ{’λυJ•ΎΟ;ˆΓGέƒ]ΟΞƒΣΠϋfε’ο|Ι1μό—a―Οvwg‹δ‘bϊOj6<©j‰,eLΒάcδϋΐΪ’5x{k‘—Sγ(ΉΏk-GχvοWœ^'«ΥΞ…ώ―[₯ϋ?'χ+ja΄΄U?αXBIwΎ7λvΖ%…χŸψKLήS.€²`–Π {-_Θ9xώKσ8ξέOήQLχήο‰χޞΡεδ‘³©–Χ+ >"›Τω/ „`'ε Ιy• 0 XΨkGρK€…½DΒ5…a—MΎΏφ¦q‚Ήύa―έyœ&4?)τΤΖΈήŠηU&ΐ˜`L€ 0&ΐ˜`͊@Θ„½Ω/ &κ-)؊Γ₯•ˆλΦ CeΈ!–l}ο~ΊSήξ?™Β UΒ•l‘π΅JΈ;2†α‘…3"aΝΣ ±O^Χ(֞(AiY)ͺOVβ"=ΠξΪ3“™Ÿ7_ο|4€ΖΤxΧ΅ΕAΰ¬ς&ΐэճ8Έu+κΊEΏTν‹Εδεώl§AδziI;V8­Ÿσρΰ€_{ ‘ΞΑoeΨ Qμμκ‘τΐ8x& u$œνGήoΥ_ρςBNρΉΔ»…Υ1δ%Wρ4›CbΩ‚Xφhm“7Ϊ8ςj{λuδΨυ;z&οΦ(iϊ“ηΫ4Ί”’dˆ­[^E†«¬Š Q8F‡R·Δ–’Ÿ QpΎφ±%7Νj tœw₯oKήq“ΙΦ8ƒ°·Ω3€ΔΉυRΥ(ο~qŠ}’πψu›bbΧ+θ§9•E©TGς.Mތ»R~ιd ερšGyžά^­?q%―ΕΗ¨Β±ΡW‘HizSQΨάλ3Ί~ί₯λΌκ]τιϊ7,}ΊήΊηVMΐzωτyœ:σg.γ y뼎”¦]ΊͺκΧ+(Ϋϊ-ޔЂS€ώ”©’χUΧ―†ξWͺ+/#*6Χ‘7άN[›q€<ў'aοN£°ΧΖ~ΥViyΌ§ΟΥ#φΊ6Έ>©-bM„½αΰίοGθίOQφšΦ€―7ο.r”Λ(Ωψ Ύ«kβZ8ΰ Ί?ρ&θ֊ήPεPκgΛ©Ÿ™zsΥ’9Zλ?ρi*ΧVΕIΤΉΎ-~φΒ,ε%΅s…ψπ…Ε8ΰ‘³ΣϋιόΧmμ«ανΊUφΪΉ_QςΆ_Ώ4ΥNs‰jΝΟ[˜τ_O"C~©΅ Ϋήz[ŠΔš–― τΙά[b3·ΑU[ιu'ζ̜ Ώ΄RS΄KήϊDΫηgΝQy~ςδέL€ θ °°WΟƒ·œ`a―›pΝ!}‘‰ο― |lnχώΜBαά~!φ:™Ηi2σ“B·j”λm‘|^eL€ 0&ΐ˜`L€ 0&М„FΨKžŒž"OFq2©2δ½·›viVγ3'‘·Ζ1.olττiΧΠ^wcξΜqΚη•ΛσπΖ’εΊO¨ϊz¨•5ξ\WΉ[vήj]-%N&Tμ^I’ΠΝζm(LZω|Hη/žύΪ?ό̝8TΆΏπΣτΉW«G₯Dž$šΜ[±›ά’f!Ν|Š<*+‚₯Κ―ΦΠ„•ΑK©P%οl[ρl)Κ€Ο‡’οWο^ΏΩεωΞΓ ŸΆ|ΖVvϊτ†e!½EμK€g•‏|ύ―?†Uϊ‹].NΗΩΦώ€/'?Ÿ–ο5 ©m*±· XΛ^ΰo:N½νΒ₯Μ$αKΙcΈϊ@Bρ.‘)πΖkQŽ?r1” ψGβΈ΅yTλβ^&δbΦό)²@Ξ”•+’£vpΘ%9ηLΏK9†IŸ°^σο]/h1tn˜Kη†x—]ΎlvΧΡߊC;@;:nε* ύΖ'ρ|μΤΞ¦r>:mr3™¨ζιί€γ¬j­Η«\-{ŸCϊ;IяnΑ‹―  xsζ)^ωεΏ‹·?ά]±qΎu<œφkc΅…:ϋμgΖt‘άD²΅Ιλμ‰(RŸ ^|Ι#ξœ .Ε{ŒΐRΫ;?’x­πtηzΧυg δUFcγyEΌ+™ί†ΌΦ’7_Ή=Iϋai4ŒWρqυx’£"€Γ>«,Ψ¬Δk­'£±ε‚VΆT‡Ρ€/έEBε³ΜΘ£ξμnŠ Ω—°7ωΊzΜHΠΊΖ:JY§·«Gft |PCL\ΏαΙ;pœ’ Ξ;ƒΥ=Κ2ΎU’Z`Λζΰ]Ÿ%"ϋώY1(E)ˆΞ―KθόjΚ@o’­­2o@μΩ3ψξp­GΊ.·€αfε“ 8wδ{μή^νŽΣώζξ0ΈƒkϋΎΛ+CΙQ=œ„>IθΪφ"μ 0 X5ΎΪΨ―|%[ΏΗw₯‚½‰rC ό°Ώ’ώ<¬\β:§Τξsψ9|σρš£Uς ˜“Y“^Y‰όυ岍ξΖ`E]O aοοB!μMΖψyΟa€όb`ΆΌυΆ‘htΔΜ—‘νΊ§ΪM^dΧΌΘκν³~ία(ΏγΊύJ“ψΉn₯HN―'Υ/!Ση?„dΩΈCψμ₯ίb―64Ÿω™6B9x9ήXΎ.Pxό§Sη‹©ΟςΉSψ1P…έŸώk·Ο@EΙŽΚ3ϊC™πB€…½^ΐp°-,μ5ΰ9ψώΪΐΖΑfπξΟ,Ξν|a―Σyœ¦2?)t­FΉήΚηU&ΐ˜`L€ 0&ΐ˜`Ν‰@H„½C§=O"šξ2§RςΘ»άε‘W'ΖΩ½jΦξΔ’ϊ‡₯Ϋθa©θaGχΠԝFΜΥΛ:‰Ϋ搸Mrψ|ψ&LZΟj>Fs-Ψ)>υ)P’ΌER¦Ÿό>Υ ³OΦ υLέρ|’'΅Si#1~ΨMˆ%ο’υ²ŽŽΕŊ]X»q§…Ψή’$cάΟaEqxΛλψλΪo‘=ΓmrϋΊ½ρΰY΄.$Θύ%dvκŒΦoheV!ϋΐώO_Α'[…Δ:‹¬ΤΟdλΒ\Ÿσ&QΡC$*J‘΄*s§η[Ρ6;γALg―_‹¦u±~δ‘>4Ÿš4”ιoSΙΊfa$„}ˆ„°©”Ÿo(‰WοΕ«t\"ΌΛ\yΕ"Ε8»«bπy­ Ύ₯ˆ’pφΰ©|pVΏ_ΜΛ½.Ψ'…ν§|?6δλŽλmEΘC­gΤ«Έ³Λ j₯μ9t:=mΑ>ŠΥ›ΟΗIΨ+©>}ύΉ>KΚΖ}SF υ•Kh›Ψά_d04ϊ2#(ϋβ:"kb7ϊŽ ΤΆFΟ1ιθ¦(½QυυQ|]@_πϋs˜Ξ†pWo§Λ !½Rρe1ŠŠQ―_» ‚ΞΈ1'=’Ι' γΐך²χΖΫh_в―’φ ϋ –ΩήμB/>Ξv½ψ('6»―±Κ ­»@IDAT«Iρ“Δ‚x8m4y‘ΣONΰωe§χΣω;ΫΨ/U(ΰϋ?―ΧλG6‰ΧŠFOόΓιežQ—yŠΙK{&^ϊΕs¨ΟλΉEMώ "]υ:ΐ$–GPΦδ§1v¨βνYΪYs’g€!rαΦ½σΎξ…f]b‡ειςΰ &ΐ|`a―O<ΌΣ"φ@‰Χ|m€γ`3ϋ3Ειζ ΈύœτH#^ƒΪ›Ηi"σ“BΕΊ†σz[0W™`L€ 0&ΐ˜`L€ 4!φŠ\Ι#MEybb ΜbβΠ)‘xπ‹W°j³"΄Iχ$ξ‘!‡—ζ-Γς·+ Fβ‘ωχ£›΄un?ή{αχ0JsβΣ†aΠΰώθ~cΪ·n \©£Οπ1m»"ή%*πωπMœtτ%pρΟΟώ@μ΄#€=τ+@₯ιτ©g\Ÿ*Υ„ŒξύB=Ό1wΗmR+b½ιA*yzΪ)xzς[›\’-ακ/Ϊι—›Iρ ~ιXQΌ{/KήΚKPZ~$ όMΗ³·ύBΈτ)p³O4g|Fτ•$’$ό]JΒ_φΜE,ΧΛ±ΛXΡ@ŽƒΊΌ„²MYΉ";ig\.’¨ώIΥKΗ~ςtGβιmΔXό‰Η8_6‹i|­;³“ΟGVΞ›b[ω{Ρ€1ΟG–(˜AΔ₯υGϊt8;ϋΡgΎΥ0gυ“DMΞΖC ύZ7^ΜꬋΠfWΑc―&z½Š‰7\A?ΊάSΓF$^ANΙ+­τkŠΛt hΤ½v§%Ž™p7`ao}V‹φΈFUlςρί¬ήΡ―b2Υ9ƒκ,Υο‹c1Ψiε­(Š­ {•΄Εη’pθb ―k:),ˆ?zqμ)ςt§Λ²ω«ήΒωE>ݎ m΄JŒΗ =Ϊγϊ„ΦhKފλΠ@ΉG΅’mEOjφΆΕΝγ{’Λυ’ ηPLfΠt¨>μr˜Nζϊξϊۏ‹§ρΥ‡ίΑΚεkψΈz―Ό'Ι+ο.―Όρθ7-ŠodϊσŠ£8αƒ°“]]’Ρ qIjμ‹§θZΛu€“Μ]iƐ€w΄‰€—ϊΌΫ»;]cxι h—7Nο;¦σw\·±ίΞύŸύϋ‡υ£ΆΠ{εέB^ΐζς> -œΉ½Š°ζι…ΪW!\m(-,_it«m³&>‰±Γ•Ή-ΟύXρτο…>£ν‘Χ(ϐo2&ΰ… {½€α`[XΨkΐevΝΑχΧHΌΙντŸ™Η džΨώuΊ‘_šυCγfc^omαm&ΐ˜`L€ 0&ΐ˜`M@„½˜4Id$XG£ “8‘OŸQ}’Ψ΄‘bΪOΚ™Vμ^‰7WnΦ0”<ΰδ pt;…Κ—Η=!Μ½*”­ŠuάϋΔρ|μΤN;B*m₯FοΗJu4q’$²S=”Ί«*ΤεyxcΡrοž„ά‰šΒJ&¦Μ ½₯>*xΫ²lΉ-.‡πυ—ΐμ΄ΜΞ‘>'6gζ8ΧgΡ ;ΟUΰΰΎνψΗΗλτŸμψ›ŽSoϋ…πšk±δO ŠΐΞbη{‹±nW»ΐŽgR BΉ–Η‘˜ΖΖqΠ£BB>¦¬ΤΆΫΑi©^&¨’γ³:―μ’9β1Ξ§Νͺν>—Nνtyψρωhƒi±­tηq˜’ˆ&όη#QΈξΣN‘½΅Ύ—…ϋζΟB:/΄0νά©†9;ߊ’&;γ!ΐ~-ΆiΕ°n*p½Šϋ“ ^SEΌ€QΨΫ“)N†ρE2U‰°χrή¨ˆ¦«*›?Σz󸊩TΗήRλ’°μ‡hωΩΛt»UλRo~Ύ­oƒ΅QΨP₯?ߚfd!0!#nλIά.©'2zΊ>‘@ΫFοšr³₯Ϋ-©θ™Ό0θ+Αω’cΨω―*W”vθsw*₯—NŸΒήΟΚpΖWbχ>‡ι‚)μ­Β/ŽΑŸ9Ό\$@mΡ‹Δ]e±τEΩXŒ2 νϋtΗ€Š¬ΧT΄μfΩ+ΉΏX„‘=•~Vψιb¬ήzρt~¨©ξ¦έ[Π‹jyΛθ+K ΐι}‡ΓtώŽλ6φ[½nuvΏβ°~rΡΞΓς‹bτ•ŸmτՏ䑳1ύ§ƒεκωΩ¬GYΎ.0KLaρCΔά)9~ΛΡ'OΔ¨™Oax―Ž{ΐuU8Ό»'kινŒσeψrγ6―Η_gειKη-&ΐ|`a―o>ΌΧφ8™^sπύ΅RδnrϋYΨΰ<ŽΠ;?)τζΖΉή ΰU&ΐ˜`L€ 0&ΐ˜`͈@„½’P…ΰo]ƒςσδ-Λ 4Ι“ouρμ;’zUJΔΨΗ~…¬Tι‘©ϊ`4ΉΏψ•λAκYδ/›‡ ξ‡₯-σ^Y9oŠmεS0Kν€ _Γ>0ω—?΄§ά[|Š MΗ‹&ϊ£g˜³ϊιϋ§υρ Og:K8¦uφ7Ζͺ©ΐΥ(β•*a$μu{³₯γυ™h£K‹h/uˆ&Ο½Υ£°ΌϊŠΏ@=φjΒc1W λ¦υ6€‹nΐCέκ‘*ΫφJiHά;ρϊτh}Υό|{1:αχρϊ,kκ/1φe Š!%“‚ςKξŠŸδ mΧοrυYTUΤβΒEςΜE±m‘Φ'^ή«•Ζu@Ώ‰έ/²v„½NΣ%vBΦI$}%_i9vn­TMV–v„Ώ:²>χVΈΉΈ NΘLAί·—·Ξ—aο—§–Ϋέ;ΣM}Kεϋ­ίβpΠέD»kΊΊ˜>!$[(AΥ™l™{KΌώΡ ά»ΝWΘλξœyS\/WT!½W±a—Ή}Ζ •gΜ„·™πI€…½>ρπN‹XΨk%^SΈη£<ο₯₯ΉiγqψώΪΐRΪ βύ™IξžAά~Aφ:γ`žΨιuΊ±7˜φc$ύv£\oλMΰ-&ΐ˜`L€ 0&ΐ˜`Ν†@„½β§₯Λ°α₯‘oε;±΄ΡδwŒ"Δ=–ΏŒΤ΅Ζ¬…χ£«Gπ^©&ΙΊyŒΤ]ή,Ν_‰εκ½ω"a$fΝWϋ|ψ&>υυ 3i$™w?ΊQ‰5֐ηΟΟUS”₯—ΟeΓNρΑ^α§―§¨b}ΩΒ–6 μ§ΈŸxΔΥ&OeoGKΙΫΡ!7BjK«Ιδ‰yΊΛ³₯©–˜Ώjdn5±O¨χΉύxο…ίΫϋdΆ-.ΞΗCxϋ‹s;m‘χ9i)θάύ&€χŒ”Ξͺη=Ι{.=œW~;’ΐΦμ8"™6”Ž%Ής±DΊ‹­ώ’²{ΤR kŽΚΆNΉΠΨ£— ϊΙ/ΠωaΚ{i΅KΞlΜΎΛΏ·5}*o[NνΤς³ΫΑ·rι|> Ϊω¨Λπι˜=qΈŒΥη5€ιxΡΞZZΟ0gη[§γ!π~νξαVϋ™;AVLF―Ή°χNςH;¨ 9Ρ?ƒ|kο ι*% { «cπα9Rϋϋ™Ϊμ/‘aΏ₯<4¨ΒΚcΡφ_„"%qoblγ"΅₯ΔLϊ΅ΐ—•1XG/δχϊŒ‘ ]‚Θκ]Xρή?9―bλ ΓθΊ!­œ¦¦ψ{μϋpγ—€Ao„δ˜W/¨ΌΛώφΞ:Š*mOAœ !² c&8 ‚ˆβ‚+*ξ#32Fζ?Γwτxδ ŸίΈ‡9:.ŸˆΜ°ˆ(2, ΩΡA6ƒ‰!„˜‚l!·ͺΊ»nWWwWUw !OŸ“τ­{ο{—ί½΅φSο=ρ|5χ[X,ôãΈvνsγeΠ$―'Ύϋλ>³ˆϊRZ’ονlΪιkF4α―₯΅ηž‹―Β»πΦϊ‰c?`λgΗΡΙΧ/ό§B<#ηΠ3²₯Cηy3}ΠΓr}2ΠY+JVΙJ'υ­tbž3ΰκΎΓ£ΧλdΟlΟ…ώΔΠoοΧ=ϋηo‚άί?,χχΪύ8΄γʌ}*ΒΩpΟ όfΪ·γλΥH gw ν©ΗμZς*f/³Ό₯¦δυSϊέƒ‡ο¬ΏTQY(+‡ΌΊrˆ?―υΫK}Φ2ΈM$™…½‘ω0Υ {-œl―)Μσ?ο―-Ό’lΖχώ,JeZ2Η―Ο\TzΞ5ΘLibζ;YυΆ˜ΫPμΟqκόσΙ@_ΟΟυΆR=ƒ$@$@$@$@$@$@$pA¨a―ζ™o †υΦVC4ρ©-Mυ‡Ί’΅XΌ­1Fψ„ΎA|Ζ¦ Ζ^(ζtYΞ O%ωςƒμ ί²ΦV*oYΛ‰3D P€dIΟ•~o1~ψ5T{,΄΄9igϊ(1J~οDJΥAΑ ZσίŌΧ₯k‚ηΐ’Η 0χΉW±]ΝaϋOΝ{Xeε΄΄Jρτ0ν½ΕN³Ϋδ3$k‰›ηLΑΗλΤ΄1Q£\rρΊ?Δc^»™/^Ϋ©’‰gxπCSΧέ8Ž{υΆ©₯B|ττKΨΤ`u^”b₯Oθ3—σ%Π$utp Ψ©―u+e„―\T»mNΑ‚όΰ}―Ον-ήU;θ-PŸJ“\Υϊx>šπ8r/ηυ|€Όlβ\MΆϋ‹y\0ηchœΧώ©σΣΝώ ΪyšΧώ~«#^χψ δϋβDLμŸ,^N 1h#‰Z²ω4>;ͺδ‰%h+p5­¦GάΠΈ-ΟΰzͺjΗ’\K[Ϋ4«Ζγ-Οκ±ΕGΕƒνšˆ8ΚΗΆΝQl¬ΙŽΚ0ϋ¬™o>œŒ…U„ΗΦΊ,Ϋƒ[Α ¦·?$γGDψf^ΛZ²‡έ }fξ3šΟzέΆ@‡ ν~֝;hΒή±ϋ“oP\lxiχφθsU =2¬°WRΏbvν9ll»₯{]Ϊ]1ͺ3"F"xέΌΰ@ΐ΅Yφeθwuͺ^cp;}p)μ=χ\|ν”―φ?ΏY—5–ΠT–FJkCx}ψλύψzΛ3cœB)ύξΔΓϊ ωΜi)QŽJUψδ΅ΏݟΕZUήS0Έ‡q]ZΌe%v•‡ζƒΨ9#Ύ˜³F;MAΥ;½2%Εω}‡w»Ϋ~; 9šk›ύMέ·ΝσšΦfίΗφ\θO ύφ~=α΅fςzƒ»·”ˆ£(ΪW‰ΜŽΖ‹Ύ{VΎ…­73ZCN― ¬vΎν\™ ΧιsΑΏΊP˜ŒJtΠ}~˜•C”μAA/υΐ  ¨(썊ˆ °ΧΙφšΒ<›Χ!‘q κώΪ‚-ά¦z .5>όύ™5§Ν6Η/ΒοB&―ά^λBνzΤχ9Ά 3Ÿϋ‹ν‹¬1?ΗqωœΨϋuΊΏ3Ύo/ύΞΓυΆ₯Υά$       †@­{³†<ޱ7Q± ³§ώΕή£˜,#Υ'γ46oυr3ψѐΧUy0’#±έΫβUΆ0˜Ώω ΒξΗ΅ώ3ω1t3~'‡ωΰ0Έ cK b?OύΦΫΊξŠ”/ Γ~ρ{ μlxUλ‹K;•kU…KπςΫσμ:’Η₯ ΈΖ 2m„»½nz7κj€ο[‰i―ύ AZ₯.΅a+τ˜ž•‹\؞¬ά…ƒΆγ⼐^·Hίs}}—eqgρΝΠ9šΪύ³NΛ›φ–ωι’‹Χύα\Ο―νtN=4gzV°·ΐV@ί]ζηνΎωVΨ²Ÿ†ί‚…½ΐe―aφΣ‹BπώbzrŽ™‹Λω’RrsTνaεAjy/δ^ΖΑ+—μαO‰—3wωh"Λ—ίψ{ Ήΐ5ΈχΉΡIΕ ΚρZ1‹τΪN΅H7γ—ύV―…~DΔ°Έš‚ΦHΒήNΝ«1Ά…!ΚΕρh[Ζ£­x¨½J΄›ŽΫˆb•ϊ«~LΒK‡κ’°θ•RΡ—ϊϊxZϊψ½M“jΠ_.¬Φ+ύkΣX„»§Pj3:9RζνΎ2ύΒ^-[όΟΜύΘNhhΣ$WQ¦€υΎ]Ήϋ‹UσKΡ}t€ωΞ+VΑlλ~Ρν ί ω_}| Τko³ζhΫϊ,ΎίW(Ψ›]S„½8Ž]ξΖχ"!kh΄ocHE­νΤ+φ,μ=w\ό€.ꘁΉ­ό›β’X‚MŽ‹πzwˆπΪΜδ=€Š&υR4qυ έ_Oσ]Ÿ„?¨Χ κu¦Χϋov‘Žλα― τmΟ…Τ@,Χήϊg6!₯Ÿάλήε»ΧΥ’Ιί%ϋeEˆ?„¬aZi!‡ΧΑFΖ–ΖMφ{ πœΓb«Ίc^cX2Ωmz¬Ο(Ζ‘ „'@aox6LqN€Β^ +Ϋk σΎΐ<†Ζ5¨ϋk ΆH›ρ»?‹T‹/γαw!“Ÿy-μ‹“ίfΘo Α. Œ΄x<ΗQο7ΜVΤ•ίΛ̝λm΅v†I€H€H€H€H€H€HΰB"P+Β^Uτ’Γ:ΆkW¬ΖΞ―ΏΑΙ”Φh™–‰Ž]rΠ©wW€„y“ΩφMτ²¬ιŸό˚šΓ0πξg1ΜPμˆg’¬\ϊ/|΅‘ ©ύΰ§CnF'Νc‘οc>8τΗ›ž$Ύ¬k7Š―$$'WγΰΆΕΨ/Ÿ†λDΌ›λοVΨ€UK£θ΄xΪΊn(ϊv5Όi%«υΕ₯κΫΩR~‘xŒ*ψζΞ$7―Q§qxΗjμ ˆ^sDΤόT@Ԍ’MXόι"¬^Ό_{3†εKˆjν΄υψgϋOΛ}|ΤI΅ξT"σΟρυŽύ@J;tΜ‘ƒ²ύ#Ό<ύ“ΰ»ζb>€Φ rΈ?œϋω⭝Αpάl‰π`²xK-Ŏ/ΏΖώ½…8XR,ήλZγŠ>?Cξΰ~ϊr΅’ί{QΊ·ύΟ*μΥΌ{,ϋΛ—¬Fλά{πσ[ΛχJ%ΑžΑcδβzΎ˜ έu«ŒτΚΠ\jŸΣ8έ΄ †ή4)Ϊζ||€-|±¨ΩδsϊΗο°½@{Τμu΅n†I€’ °7:#ζˆN€Β^ #Ϋk σΎ€χΧ^um“γαw!s°B„½οCΜω―—ΰα9Nέ~>irΡBηϊz;Έvn‘      ΐ…C –„½¨λ<όθ­aDXda„½ΊηΖ—Δs£bΈgεk²¬ζ%Ζ́ΗΖίε…f0cΜ‡f\P¨λθΝP|L’w-y³5aœ|l€rš ϊβΤNs9N³Hm£—.^{NJΧήfώ 6ߚΧΜ™β5σ 5MΪ;^Έj,‚ϊaΝWO·Σάƒ;ΗψDaϊP)ΒήiVa―.^φ‡σ0_bίoΓ€΄φ Jm‘UςύΛ–θ=νΚCι@αv;/γ^ΖΟ_Ά—ωβ·Υ<Ψ:=ŠΝ@Yn˜Ί\ ›€{gΘςpEa―M%ΚnΌΞ—ξ#ŸΔνƒΝ ”j‚‚q;ξΔ2~z‹\ŒCœφ[½ZžΜωΣ~€s ξ—}©ƒ 'Κ²­ΓόαŜ¦7D3ΞϋωΦσώσΌΦ`ΘΗα<32ΛΪφΨΫψ,~Ω¦ΪΈφ¨JΒk‡5qͺ)Ψ5…³"VoŽˆxΝ8Ιz‘sΣMan έΦ@8a―δΛmyC›ωE·Α†»~HΖ¬£>‘­?ΙΆΝώDϋοRΗυa걐ΆΎ+"dνU νΣ¦Y5ξlιQ!+EΨϋ§aoHΆ ΗŠƒ¬œl¨β»PΦNJˆ˜'­ϊ^ŸŸSވYC„½’»Y§ΆΈς§ihΑς„{Χ©Β^vΝ²ε%ΐ«}ˈD¨Ο~φ—~6;Ϋtky牋Ώ­κˆœξ>oΘωύ—»°k—¦ςGMκ₯GόAέ}ύύοώoŒθΫA7,έ8oΝZj_H–άGŽχίGξ/_XύΕλ}‡;OΧΙώٞ ύ‰6ί1^χxιŸΪ u…-~σ‡SπqΎh©ζ΄†\XM†Ώό=ϊwΤζu)–Ώώ ςχ†d²Hτ8Ώ©ŸžΆk‰¬²Μζ™Fˆ₯χϊBŠb @DφFΔΓD‡(μ΅€²½¦ΰύ΅w ­Ί·Ιρ λo.ZwΒ^1ˆω9Nέ~> νά^oΧΝ-      ΈpԞ°Wc”Ϊ#FDl‰U–μΖΎνkπ±xΜ΄ϋ?‰Ό¬fJοqΣ 7£ƒυ·rννηU…h3h$:Θ/ώ₯²ύ[3ΓόλoDΧa34έ:ΆρΗθίΫΎˆ«vβϊάτ$F ²ˆΣŽν—ϊv"cΠpdjυY~όO;3‘{ΛHδt»Ν·D3EΙ`m£ΦX½ΞaΒFρ\μοĞ΅σ±hξbTϊ#ΤοŒ!xxβέΊ8Ϋ7ΥΆΎ„³†`τ°ΑθΩ9x¬υζ;€Ν«βγ–^½rρ°?œωλ~λ|θӐwΗ½θΡ9­¬ϋ­^ΘaμZϋo¬œϋI¨θ\]οа·Όp-6ξ‚œŽ-ƒš[Ή/ΛfΝΐφŠ hcΓΓψι†^η‹― nŽƒ}n5°³Mγm’Jςρζ+3„mlγΰuΎtώ0†hzIΤ›XŠmrŒm9h~ά)ώrήωΗ ›Ζ{ˆς:~Ύͺ܌C|φ[_Ε< b܏΄Bϊάρίuu½ΌΝsDψ³Ξ"όοΉγ&ί­{B5ηžόπ8qzfΕe>Ξζ£g{ŽχpΎυΌ?Δ8―uΪ?‡σLΛΪ£s2žξ¦ωυ}ώS©«Ξ ΠΏλ·β‘Άψhώο‡D)Q„½mΔoc‡cWW*qoκqΎΚΕsνˆ”j\F8[y*ϋŽ'bα­»O rΕλν•MkΠ<‘Ν”ξn«HΖ‡Η,Β^ρΨϋH[CL\*bδ7u1²]ΉfάU-Ξ`Ts{ρ°™Λ:•ˆ7K“DF¦|DL|‹΄±§x ωˆ§βΝG’°P jQŸE«δά‘€]βΙw₯°ͺΓ.«§Έ`’ϋΧΞΑ§+–β έΉΦSω’ηΞLCΧ«Ϊ’…rM¬uβl?†KΊ·A QξΫ_Œ>ZKZ*Ίφj…6mlδ½'~ΔχΫK±kϋΡΈΨ₯_u9θΈΦJ=q\ΪyΝ»§#Ekη^iηK;SRΡηΖΛp©dΫK Ο­™ΈvοUΙΑWsΏE‡<¨§ιΖαρ1Ήf\ΩZYχ€ήLπΚ1ηS>1g4α¨y~cνΜ—±TΌ2>^ξ;4cv―“ύτpΎωΊΗCόΝEοϋπμΨAΖζ±m˜ύܟaή­rΩ’^X­rnΓ„‡λΧ•ΫΕ3πτΦΆΫ)YΧ oΔMθγ»οΨρΟW1g…ρ²°­?c}~s~“ 8'@a―sVΜž…½6ΌΏŽϊ»‚…XέΪδψ9Ώ Υ+΄trγsœΊώ|RΘηκz[­“a      ΈΠΤ°ΧOK–‡οΣ±.„Υgpςd—lAQ‰?CόΎ³ϊε‘uSm)Ϋ3ψρΘAlέβΰG³XͺΟκώ—΅Π—g>yΌ ϋ6l±ΙZκ8ην”ϊυ:/6g΄Ζόˆ²έ«±·ΖΐΥz±™’Υ].k­#ͺΔ‘ΚƒΨ^ΰτga—]τ°?œωνtI"==+mDTΣψ’‹υ1¨–}©Hφ₯/ _ΐΝώ§ {EΰΊό3sAzΛKŒύχΘ~lήβ`ΜΟ!kwk{Ϋσ8h σΒ%UΠ݌sCυΙc8ψΝΥ–κΗΟK;ύΆ.ΏΟω~λfPϊrΞΫ)uŸ—σ‘ό0υ°wΫi}?° oώι―я1 '7AOύ‹e8‡σϊζώqkSΨΊzΛ)όίq©`΅•·Q j\ƒΖZs₯‰§jP~:E§k«Βs_nŠτ―‹όιΪcιγQυœ0ΗΗΪ’6’7]ΈhLτΛς³ 8p<‘–½fνΩßΒ]CsΜ_Θξ…΄L."R:Ά@³‹ αχιγ'QVTεΒZΒiΝ‘Ϊ²1tΙχΩ³8YuεΕΗ£–αΪ.νR΄mΩH―ηΜΙS¨άw'£Φβ=Γωΰκͺβ±W“!‹yχwΨΈΆΆOπήωœkK―χν<^xελυ„λώIC»ίτnd[Jε…°·άΌζςΊ`πC/ ―»φRΰa¬~ϋwX卖βιy˜ΟΣ³Ι΄+ί~«£ΨjωέΦgΦΑ €[φΊ%Ζόv(μ΅£ŸΈ ωώ:>„κv)Ώ0γsŸγΔz¦Ρ£kωz;z˜ƒH€H€H€H€H€H€κ?s#쭜Ψ +‘υ€3ΥΦ”ˆΫIΙI8~°› Š"ζ‹{’*μύj>^oqά«`΅@ ΎΝ³Z@ΐ"γG ϋΘ'qϋΰžRΰaδΏϋ;,―εwβΧςΊRR"&\Χ}›ϊΪσC5&ύϋ ΚκJσ؎:L Χ=0Ή=:΅Ρn9Σ  ά¨§RΠsl&Zθ­?…ύΛvβΫΪq]Oω°Ωρ! ,ολPlk­ΧρuAΖ0YΙfŒoE‰9²’ΔRkQ!ΫΉΌ€λz(«ƒTΘj0kΛj0λCς†Dx¨/€ F 8&@a―cT́…½ΰ0‰H Α¨Νλν •'     hP(μmPΓΝΞ’@όdyγnΈΚSUΫ?ΒΛΣ?ρdλوΒ^ΟθΞ§a½›gηλ&Ϊ&Π: /HF+_=Ÿm:…w‹λ¨·ήΪfΑς½HΝDVΫt4ΏΈ “ͺqψ\xjχΦRZΉ&Πm»7Grb~’™Š–©ΙF ₯eψ|U½q LτM›!³ηtΚhnδΫ½ ΟΏρχ06η':½kd€4A²μ U΅ΉΜωιk% Š…½Τpž·ΞPΨ{ήΠ³b        Έ` PΨ{Α-;F΅K sΠγwS?O•TnŸiΣΟ±Ηά¬?ώV]VN½žΖν|Υ»yv> ±N8GZ·MΒΔ~Ιhv8υŸjόο:zλ=GθY Τ}iip}[4 j©xλ])ήz‹ƒ"ΉAή d݈ γoFJP ‡±ZΌπ―€ώ *ά pN€Β^笘3< {Γ³a         €7φzγF+ d"»w:’OŸΖ4’5Β‰²ύΨ[rΘ…U²f ‘%tοΦ—Π-έ2o͌Ύ„nje1¨gσ,ζώ²  ¨‡RZ’ύνp©―ιΗˏ ¬°ίξ;Q;Γ&ΧYΓδz~Œ~=―΅±ό@vδΟΗΚ EuΆΙl @έ'@aoέ£ϊΠB {λΓ(±$@$@$@$@$@$@$@$@$PΏPΨ[ΏΖ‹­%        ˆ {γ‘E€Β^N         x °7ήDY         @'@ao’zΡ@ {λΕ0±‘$@$@$@$@$@$@$@$@$P―PΨ[―†‹%        ˆ {γA‘ePΨΛ9@$@$@$@$@$@$@$@$@$oφΖ›(Λ#        ¨σ(μ­σCT/Hao½&6’H€H€H€H€H€H€H€H€κ {λΥp±±$@$@$@$@$@$@$@$@$@ρ @ao<(² {9H€H€H€H€H€H€H€H€H€βM€Βήxey$@$@$@$@$@$@$@$@$@už…½u~ˆκE)μ­ΓΔF’        @½"@ao½.6–H€H€H€H€H€H€H€H€H (μE–Aa/η         @Ό PΨo’,H€H€H€H€H€H€H€H€H Ξ °·ΞQ½h …½υb˜ΨH        ¨W(μ­WΓΕΖ’         Δƒ…½ρ Θ2(με         ˆ7 {γM”ε‘         ΤyφΦω!ͺ €°·^ I$@$@$@$@$@$@$@$@υŠ…½υjΈΨX         x °7Y…½œ$@nό€s.iœ:„ƍNβΘΎ/pτˆ›˜—H€H€H€H€H€H€H ! °·!Œ2ϋH$@$@$@$@$@$@$@$@$D€Βή άπH€Β^ΰhFvR{#利Πը؝Ν…‡μrΥΣΈ+ΡωΦ[Ρ6#Υώ2”¬ž=[wZβΉI$@$@$@$@$@$@$А PΨېGŸ}'        J€Βή:πqξ6…½qΚβ4Μ!O`ά Wι v-y³—\ <Δχ>‚΄α»SΆζ n’Έ7uMΪtD»ΤζΫ–,Δ·υ@ήΰ~>Qe)6~8‹ςγλΆΟπϋΠ«{23ZΪ[Uq₯ϋvγλuΒΦ½‡ρF yw\έ{’Υ%@ε1 EΎΛχmΒWω‹°zK0ΣΈΏτυZι«p=°σΎFŽ‚N;λφZΎΚ²έΨ³i-ΣΨψ?^νΔ³ω{Π―wOtκΫ~μϊr%>^fuΎog\{Η]θ’zNWŸA“΄?£€Κ’έ8|τd Τ€Ζ@ρΊωXΎ!Ÿ@Φ:hΪύnτ2ΐhΣΑ5ψrΞ?ΰοUϊΟ' ϋΚ,³½%Ζ—σηΝ†H€H€H€H€H€H€H€ {ڈ³Ώ$@$@$@$@$@$@$@$@$@ °—“ (μ΅‘˜u#&ŒΏ9ΰ‘Τ&‡΅o%¦½φ7Tϊ3(v•_ΝΗ΄χϋSŒο¬?ώV΄’­Κν’>]•ΈΰΜαΆ`ρ+Οc}IΈtρ©ΧΰΆϋnGN{MHl©Ϊώ^žώ‰™(6w=ς ²[›QΦЎeoaŽ.ZΆ€(}-ί½ ΗΫτD¦‚C>Η6aζsΑ^‚'»l {τ> μκcϋ 3ΏΛΏZ„Ώ½·ΐ?’+.9σSθ淍ς½gΙ«ψ`Y|…ΩQͺŒ99cθ$tΊ’^Ξ‘νσ°uΕj£Μφ7 ΝΓΠD­αψNμœώ¬Rp5 Γ$@$@$@$@$@$@$@ ƒ…½ cœΩK         ……½ = °Χ]Ζ<6ρV¨’ΠΚ}PPxM;φDŸν}FG±vζ`ιŸŒQ±+aολVa―]ΊŎU«pΊύ@τμhzΟέ%^pΆκ‹Ύ>‘jΑΒ1oΥ.›†»‰ΚΖ艓Π3Γ΄)ϊjφ(GςΕ­ή!ΩΫ X œ†aΏψ=vφ cΗΪΝ(½­Ί@·€@ψ(ςߝˆεVύjP_ΝzK 7‘ψ‡Ρ΄E;dvν€fVa―»Ό‡¦`pwsχ‹‡ε=EεhΦ+φΝ TΎΥ[x‘κΨ=—^ΓοAΗKγτΩj4IοƒœŽŸΒ ―γHLwΜΪ'©‡6-ΑΪBο²Χτχaμ˜AΒθ(`'Š6jRώ7GιΖ9xkΦR%Ξ]0γzφv1„½e«ŒΒ­{€€vθ4f2­e•aίΌ©ψξ{k<·I€H€H€H€H€H€H€ {ڈ³Ώ$@$@$@$@$@$@$@$@$@τΨΛ9φΪ`΄I‹7ΞΗ;³Lο»ΉcŸΕu½ qo0T±σ"μ­Ϊ½/Ώ1OΌψή(ž}oΦ=ϋBΌ?/^!e±±ζν·xνϋxgΟkͺMσDezγnκηΛzω³g`ω†’ Σμ!χ‘ΧOŠ1ηΓF|ΧјπθHŸ'γRδϜ†ε~Q3DτϋθoΔC!H.κ#6+ž~΅>Fϋ±zζ_±r‹RoVΛn„KV˜žtέΪεά†ί<8ΝτJBϋ–ϋ6ά3vΈΑ˜ϋτ«Ψn4žΈψl΅―”ά‡1ᖁzLΑΒ)"ΐVϊ¦δσΜςΖέp•+σJρΊαu‘xδδ‘Χhšgγœ)X΄Nk‡7.F‰ΖUΌγŸ―bΞ «Ϋb5·‡pΦŒΊ¦ WŸA΅σ€€Ζ8QΊ‹–©^‰*YLaοQ”όλμ)ΜC―_έ†K΅yίξο„χ>‰Φφž£a5$@$@$@$@$@$@$P?PΨ[?Ζ‰­$        ˆ# {γ³Ea―Νΰ+BΚΒE˜φφ‚ΰLJΊ)Ό•,αβύΦvιvq菻&?†μTUΔOaooŒ™όKt“ςQ&Βε?Z„ΛώφZΎM/·₯Xύφ3XYhΙ³@aoI>ή|eZ‹°ΫV!ͺ]n›όr΄Ύ9ό˜žu½qQ«Ή°…½GQρMšvΙAιτ±σ°yΩj uBΆ{ι±W “       PΨΛ9@$@$@$@$@$@$@$@$@$ΠΰPΨΫΰ†ΌV:La― VEH$άυg —nλiΧo$ίvvvqŠ@Φ¬ί͚qJΩn‚©yΈςύθ ΩxφoΌΟ{γΥλΟΖ¨‰“Π'Cۈ,μ-ί2―Ο\ͺ[Eύ§2Šj§zέv¬ϊ%ǁΔ0•hž|+v­ΓΦ½‡\Τ’k]Ψ›Ρy}:!ΉΊZ­6l81) 'Κw"]AΨ<ΡT½ΌΗ πυτ·ρƒq…xμύEΐcοΎySρέχœ        4Pφ6Ёg·I€H€H€H€H€H€H€H€H ! °·!~όϊNa― KUHϊΥ|ΌώήβΰLα3†ΰα‰w£δάώ¦MΔb7 Mƒ6ηΪ–e'β΅‹ .ήω–YŽmΓμηώŒ]ŒM½ΐΆ…/bΑ*«•R{WΎώ VοU Άν«’.θΚ.#ύϊΆo.₯ΐ©ΟcmEΈ‚­ρJϋ]pQKQ…½Βh^#5·ϋpζ'0\VΙ\|Ω:]”1t:]‘Νjσσύб{{±Ρj(ϊάu#.ΡΆŽοΔΞιo@dό       4pφ6π ΐξ“        @C$@aoCυψχ™Β^¦Ρ„€aΣo±0cκ›(RŠOΟ}ί2P©3Β^iΝζ9Sπρ:΅₯J£•`»ŸΕˆΎνυ˜’όw1γΓ5JͺSEΨ<Ω6γXζ>χ*Ά«9ΒrS3Ω„]Ϊ ;ΓzkςiΐΈVφŠ­S.zEΎιΖαρ1ΉϊVρΪχρΞάΥjrΜau9-¬RΔιΣ¬βt§Ζ’―iχ»ΡwΘ€€Ερ=‹±qρ§ν¦=Ζ’ο΅ύŒν’γΛωsq2Κ       @C%@aoCyφ›H€H€H€H€H€H€H€H€0 {πΰΗ±λφΪΐŒ&$ ›{±‹§ώλήbΣ0μΏΗΐΚ'Ωσν±θuΛΣΈ9·«Ρω² ˜ύΗ7C½φ¦φF¬ΣXΏ‘@Ο—2ΰ>L3Θ°±ξφΊIΚδ+sίJL{νo¨4rΓrS3Ω„]Ϊe ycoπ M+6aφΤΏ„φM«&£7ϊdœΖf_΄(/\4»ΐGikUαΌόφΌ@RΌιYΩΈΘEa'+wα``Ί0 d½=~uR|Ϋ•kŒ―6μρmuBφO"=ΝΨ¬άψΎϊbsΐ’       †K€Βή†;φμ9         4Xφ6Ψ‘kΗ)μ΅Α©ˆ3žuΥlaΣΣpˆws}βέͺ°jΙbΎ ύŠΎ] o·ZQrmΛ2=ΗςΑ.Nm”ΛpjΖMΎ™~³ŠBδώ9Ύή±Hi‡ŽΩ=3tRΆ„—§βΛ•ƒ1“ŸB·TίfΙ&,ώtΦ Όφf Λνι/ΝήSm_&ανLVz‘ΗvcνŠΥΨωυ78™-Σ2Ρ±K:υξŠ”c›0σΉΏ`―ΏvO\όΖς­z-–Ν’-+QπΝœIn„dœΖα«±7&‘­RΧ9 f\?Ί΄φΥX†βΟγPωi΄Ίκ&\ΦΡ_„=³_AIω9l«"      ¨³(μ­³CΓ†‘         Τ {k‹lΓ*—Β^›ρ΁ργoE+I2…΅J>šŽŸhŸžžϋ0Ώe ’Ω>(ΧΆ.S˜Θ'ΒήΫ~; 9’‘4γμΛv›>ΰά9fpΐ«]₯{§„½@Ίxν+^{›ΩeφΕUν^†™oό­ylϋjΝd³νΕλ<όθ­hgS\P”UΨ+‰^Έ¨eζ>0Χυh£FΒ»–ΌŠΩΛ ȁΘzθƒ+ξ}i-Β7ΆlΝ(ά΄3|¦       4(φ6¨αfgI€H€H€H€H€H€H€H€H€4φrΔƒ…½6ΕλκΈΙwλήlΛ·ΜΗλ3gΚ†‡'ŽΡE£₯ηΰ­YKƒϋάτ$F 2½Χκ‰ΗφcνͺΘ4™—;₯β/gᝬμ"μ8 =3€β7+8.`T«Η¬!=l0zvΆ’;€Ν«βγ[‚ Oι}#nv3:ψ΅*©{ΦΞΗ’Ή‹Q©Δ‚C„Ϋέ·-Βmf0·@>kΐ«]joŒ5ύ{t°–¨oW–μΖΎνkπρ’Υ‘ιΈ˜…d"χ–‘Θιv9š7n‰f2ήώΟΆ…/bΑͺ]ώΝzφ}%:ίz+Ϊfψ]6ϋ›_†οWΟΗξ­υϊ‰π›H€H€H€H€H€H€H °—³€H€H€H€H€H€H€H€H€H Α °·Α y­t˜ΒήZΑ dυGΛZ IŠ?yΌ ϋ6l±»ΦRυn‹MΙκ.—΅ΦΫ‹κq€ς ΆD fυΛCλK/Ξh΅ύˆ²έ«±·ΔmΝη Fϊtl‡‹΄Α¨>ƒ“'+pΈd Š΄Υ —sΠ£σZΕO:—\Ϊ 5Υςͺpdί8zδΌ6‰•“       ΤAφΦΑAa“H€H€H€H€H€H€H€H€H€j—…½΅Λ·‘”Nao=ιΤτ€3’¬tρIJNΒρƒΨ\PδŠYI€H€H€H€H€H€H€H€Hΐ= {έ3£         @='@ao=ΐ:| {λΘ@ΈhFζ'0\X˜Y«Ά„—§bF0D$@$@$@$@$@$@$@$@΅@€ΒήZ€Κ"I€H€H€H€H€H€H€H€H€κ6 {λφψΤ—ΦQΨ[_FΚlgζ Η1ξ¦~f„‹Pεφω˜6}± f%        χ(μuό$@$@$@$@$@$@$@$@$@υœ…½υ|λHσ)μ­#αͺ™ΘδΣ§qΖ…]r£F8QΆ{KΉ°bV        pO€Β^χΜhA$@$@$@$@$@$@$@$@$PΟ PΨ[Ο°Ž4ŸΒή:2l         \@(μ½€“]!        pF€Β^gœ˜+2 {#σa*         €{φΊgF          zN€Βήz>€u€ωφΦ‘`3H€H€H€H€H€H€H€H€Hΰ"@aο4˜μ         €3φ:γΔ\‘ PΨ™SI€H€H€H€H€H€H€H€H€ά °Χ=3Z         ΤsφΦσ¬#Ν§°·Ž ›A$@$@$@$@$@$@$@$@ {/ ΑdWH€H€H€H€H€H€H€H€H€œ °Χ'ζŠL€ΒήΘ|˜J$@$@$@$@$@$@$@$@$ΰž…½ξ™Ρ‚H€H€H€H€H€H€H€H€H ž °·ž`i>…½ud Ψ         2Βύ–@IDATΈ€PΨ{ &»B$@$@$@$@$@$@$@$@$ΰŒ…½Ξ81WdφFζΓT         χ(μuό$@$@$@$@$@$@$@$@$@υœ…½υ|λHσ)μ­#Αf        ΐD€Βή h0Ωƒ@φπ'qΧО²qωοώΛ H†H€HΰB"ΐγό…4šμ ΤS©yΈΒύθp Pτε,ΜψΗ gρjη¬tζ"  pI€Β^—ΐ˜έ–…½ΆXI$@$@$@$@$@$@$@$@$ {c€dš‘‡»Ζ F³€jTn_ŠyKΦ%sγH‚q“οF¦V݁|Όω§8hSuJj&.jb“`:ρ#V²Ζr;^RӐήδβ(₯Ι”ψΖΐQ~kq¦½·q—6fΨ·ρdI*­Υ…ΫVΫn^©yΒ•oφŽμ•ό!e₯‘{n?€7ΏgΞΙΙ'qpΧlί[7χΜήyΈΌMK$KcO­Ζ©#ί£hΓΫ}ήθκΉι_€yvPζLψE£PλHυεφΟ;Gσ$ΘR6Μ6ΉO/Κί7³\ν|d―‹}Θoκπ8οΟΞοϊI =wξΌE^©8ev qKΩ>G”KΝΈh‘x\Ÿe Α½cγ'RΧ‘‚Ε˜³hM΄Z™ή €αΊGƒά-₯·₯Xωφ3X]θ€γ^νœ”Ν<$@$@$@n PΨλ–σΫ °ΧŽ γ*ΈέΟ7T€ϊύ“ΞyΈ€pκt7:‰#ϋΎΐΡ# ˜D$@$@$@$@$@$@$P― Τ]aojoδύ΄£»σ±Ή°n Λ£Ÿ5γΗߊVQωΥ|L{oq ‰sG ΟQWwΠ+ά^g'’ΛΖmΏ„œΦΪU±3¦Ύ »RXŸ,uz?ΚΖh‡žΖ‘`α‹˜·jŽ‚a½ΫΈδZŠε―?ƒό½ήΖ}ΰΨg₯Ξφaκ<Šβέ…ΨΉv%ς·μ “ΗˆΞ{θ €€M«χ[ώ±φΟ-O½ϊwΧΈΆ[Ρ!5(VίΨ³v>˜λe ΓΓΗ ?Ϋ±B|τάKΨκί|«γ{Λ_yω%ΔΨ]‡aΜπαθΦΎΉM9G±γ ,œυI°θΪiQ'‘O†ΏθέX<υ±ΎΒΏ­}gb䯟Bί@ύj’Ν³Γ(ΪΎω‹°>θΌ¦Φ럳jαΒΡκSμ|Η³Œσ²…Ϋwe*”}hύbΩ‡œiη•~3X/ dyγnΈ*€νεrυΊ›k¬x\ŸΕ£Œžψ"κτy:\£ s&<8)QΉύ#L›ώI )bΐ«]ΔB™H$@$@$ΰ……½^¨ΡΖJ€Β^+n7dq»ŸoΘCϊ~%:ίz+ΪfXά–‘dυ|μΩΊ3Δ‚$@$@$@$@$@$@$@υŸ@ν {εYΓ¨λjpΕε5Έ΄© 쇃 ΨΆ6ΛBΥ`z&υΠ%―bφ²ΣΈ.†²nΔ„ρ7λ?μWΙϋ/;ύaΏ.φ₯ήΆιάƒθ ΅ΏLΉ 'ΘU‡Q:{lf>χXτ—QŒκNrέޏ²1ζΉIθ&KXGϋψΉΌ€λzψΕ±Ρ¬όι‡EDϋ;ΡzχΘΒ^² χZY†{nΈeΈϋγήηC'₯―{–½†–l1 P¬ύsΛ3Py΍xμΑ›I2]Ίq>ޚ%/,(7ΏύώUoαύ…λύ›Ύo•·½Ωbΰh3sΐ=-ήΡ5UΨO…μ·S•ύΦMDΨώ; \;δ4G=Ιρ~Όο[ωƒ…ΪjΏΓΆPOΨ±δ5)Χ?”zEψmˆΡ#Ϋ©ΞλƒοxΦΆŽξGΕ[α“™ "x\Φzμτ8ο„σΤiYύ‘›%―K‰7n\άΧ ξ§7Χ½°7Χg#πΨΔ[υc€λϊ£@Ϋηι(g²HÈ_ώύ;j/šΘK―ΛK,Ž.½Ϊ:   @Ό PΨo’ ³< {ζΈ³ΧaΔλ~>Lρ /ϊJ\qο#HkΎηekή@α&Š{Γb       ΤO΅*μ½rp nQλ{Δ*ͺ‚Υ xϋγ5Jgzγn2D;ώ)’ͺu\Ψ+Χ† 퍋’€c{Χ`εΊΘή;C:̈˜ d }c‡Λ²έςΩΏκ]†[*[ΒΐζU…8“$gχ9UŠ/­φόi—―ŽΖΥνύ( }†AΖΕI’ΫͺΖE}Π³³O΄[² λw—ΪΈ$U£τ«ΊΧξ¬άΡθΦΊ)ΞxW£:©5z μ Y… Pν|yqί|Ύ»*Ό»*μ-ίΎ ;JŽ#QΚnά"]ϊφ ˜n/Ρ‹lΌD§ ΈΖ ς΅ΘψͺΪ· οΌφχ Ή[άσ4Z’r‘ρΐ»|ΑBδ‹σΤΌλoΑྜྷνΦ½`Θ άΎBΔLΗ 0χΉW±=S ¨εΊͺΌΡU΅Š Φ[QˆΥΛ—aϋ 4kq.ΟξnΉύDp« ςΥvˆa΄ώ­kβIΪ:Vέoz·κκo…|«ύSλۏ">!σXΣ&^’ή}z˜»Ϊ) U»eΏx#xΏP»νό8―Z1\ο €Γc“ΗxΦΖγϊ¬6…½υνz·ήO¦ψw@g­}_^ςYν¨―vŽ g&   Η(μuŒŠ# °7&5l±άΟ7lrήg\?Ίψ—Ό+Ζw+£όh#€υv—ϋγ‹°gφ+()˜1@$@$@$@$@$@$@$p¨5aοΥ£jpO^MQюμ~8 €_\έΏF“ƒιŸ5sρ/Yυ@JξØpΛ@=\°p ζ­rΆDwp)άj821ςΧΟ o{­ΗΡΌƒ*BΈ²΅xσοDρY)Φ§ύHmkω–9x}ζRgΰΥΔνΌ»*μ 9₯^ƒ»~ρ ²}ΒΔJY"~šΝρύο~#ŒΙ©τi?OύΦW(QvAΗύ 6vΜ3ηNόζΑ‘†0ZΌ oƒ«oƒyLΑΰ†/ίΚΒE˜Άθ€"μ5λ υ@¬πΎš6nCy½€Αέ}βoρΚ=[Όr‡ΌB‘Ρƒ{6Ηζ%>AΎΫώ½½=DΨ+― `ι+ΐΪ­ΕΩ5qϊd¨­W…ΈJΏνŽ/9£Ε;ςΘ€wδ’όw1γCν%ΕΞ/ΕΞ>΅™‘ΒŽη™·ϊΒοGixϋ½60'Π:]@n#άηΕ1p!¨Ea­-žΤ4ύ₯ΚŠCF²Τ?^<φj/ΔΫc―z¬9ΗΨ6Ž‘uŽ@jΖMΎ_ŽPς±zŒΤX―v‘Κd   €kφΊFFφΪ@a hΞυύόGύjτψΥ=Ηίώ"vUμλεOΡχWwΒΏHfεΖχπΥ›/8μ       4d΅"μmwM &6E½Λžˆ7Z0w—<γjΠN‹>€)n+ξΈ ]R/Βικ3h’–πβWY²‡Š"ΨχIj ―›ε¬bίώυθ΅h!ή«¬ΐΌ/€‘£† SΗΞHΉΔ0,ۍ=›V`Ρ2cΩψτœ<\Ω­;Ϊ΅»L–3jƒfΎ|8vΕ₯ίbW«°<ίή[pφϋΠΏS ΔΩ¨ω‘Ίξω ‹Vψ—W7“€ήωΠP΄₯U{Vc}ykδεφE§φ†hNσ~Y΄eVΘRδ֞ωKι>δτλέ2|β6I¨ͺ؏]_ΔΗΛΒy¨uΟΕ_ŸΧολΗΤ o·΄žΗ€Tω.۟€ω ψtkh©w‡ς•§εx,Iκ“΄Vg‘ͺ5]ά—Vždktw΄¨AΤΰτιDΜϊAν«Zw΄plηΏX³-s›ώ7ϋύ(cΖάt.FN•oΖμΉKΥ α\y ζ:ύ%ηη'ΝΨ«] bH€H€H€b&@aoΜY€ °Χnxy©•£Ωύ\Υ“εωώΜ[dyޝΪ£o»—Κ½ς‘ύŸcΑνΏ>¨>uMΪt”ί΄gš‡±mΙB|{Qδ ξηG–bㇳ±(Μσ~1rύq~’†ΑcοΕε—$γlμϋμ¬.π½P¨5׍½ν$O’δω6¬άbδqα~ψ.οη5+η<ΥΚΞΟσl΅΅nΪύnτ2ΐ(ϊΰ|9ηπJ–ώσ ΘΎ2Λ¬Άδίψrώά@Ί™ΐ       @}%P+Βή±OE?Ÿ7ΓΕ—ˆO-Ί΅–"p;,^*――Ύh^}%ΰ½η―Dη—Dόζδž%―βYβ<θ“%ΥΖϋ<ͺ‰γx›žΘτ uՌeΪ³1ζΉIθf—GΙΏ?}Όaθ²ΊΉ½‚λΊ›ΒGΏ‰­8NKΜΊΖίxΓڟ?δ[āΣBāΩφθ}ΨΥ/±/r‹π·χl§Ή„–ν8&΅>Tƒ*P6†Ϋ–'`ϊ§Šͺc ž}’>§§6Ύ(Oy=AΙ†~sΗαρ[rυ«θ&4·"Lsμα²7ξzξ—ΘΦηŠ*β .]υ(,υ0~žζ‹ˆHcُΔν½D§ϋDΥφωxyϊβΰŽΗaΛ©5€*Ηˆ½Œ{taoΊxάη]άΦS_Ξm˜πΰp}Ώ―*όο¬j†‡E$ήL:φX‘vqT#ρmͺ,οiŸόθ ΘλjΌ(°KŽ«³­ΗUωqδΙ2χυTζώ¬5ΘΉϋVΓγ¬<Δί¨:t4ŽKΦ9?Ϊ/ Ύ·Σι–ΪΘ~;C‹_Ά©6<žHΔqεfκνPςhAΟ,NDΟΆgΠ³‘‘φey#,>nΙ'›½RΞ`τ₯F;΅~Ύ&ύτφ‰εόΫuV ½Žη§aαϊϊLΜRzΖ=cGκc¨Χ&`ξ³Z’—ώΕxž–:=_Ϊτ'z”Ϋϊb™/SΟύsu½»=η(`ύμΙXΌΑϊƒΊμGΚΛ/‘VΘώ$ξΪSΗi.΅'νΥΞΎ4Ζ’   x!@a―j΄± °ΧJDΆ==Χ Ά3_†VΚWϋ+εε4ν₯§δŒ<€Ε―[Wψ~£jϊίΗwbητ7zg«δaH€H€H€H€H€H€H ^ˆ»°·eί™šΗή3@γθΩΓxθ,ϊπη–o›φUξΫ€‚ΒƒhΪ±'ϊt5=ΔYλΛ{hŠ,Aοo, /ž}χ•£Y»Ψ7'PΙώUoαύ…λΫzΐ¦^-><—`s7[£?‹Ÿw2-Ά­K@©xl“]ƒžώξIςςβΕy»/_†xo~Κη½ΩU!"ήΝ…ΐ%j0ΐχ,SKϊμƒD,°ρψΫηφ‡Q ―£;Dœ8'Dœθ+XR„iΗv#ΕfœHΆSPΗ`s!μ%uάμ«cJαΌΘΒΧΰώ—D½ŽB|ττKπ7ΥΣψٌ›“ωkΈχύ¨»<<ΎέπXΔ…;ΦnAIΩq4nή­ΪwD·ΞP%^]_ΆzuUρz «ΒΝ°ϋ]Ω §ΘvήΖ=š Q{vB]υύe"œ]χ>χ˜!žΦ<ΰ>χ*ό»‚]χΤγFδώ[;㙃ΫΔ›pŽ.Ϊ=,ΗΉ—CŽsšpν6?ωΕϊ›?ύΪ^_†°ϋ±|Nzρ‰α‚· oWBΥΰ~ψ·ϊˆΈj”Ο³°sϊ7η]$]ϋ α±·$sΧ·λ/ ȏ>Sg£Ν#“ΠG^\(ύr6‹wΘΊη]wΒ^uN™?Ryε₯ΨΉ8žωΉΎΟσ~€yΪΌKφ Λ+_«χZ§Τ}-ϊq>X€«°―*{N& ™xξύι%βκΦχΩw$οWΧ*½ZˆΆΉq ³ο?ε%=YܟYŽzXΞGEIγΌ*ψΥ’Τ§£ύ!ογm«}ϋU ₯βΈX.1š&Χ SΚΝta―œ―.­ΖΨ£φ’έά.βί]ό›€U“±½χ};f\‰Λί/o˜΅7GιΖ9xkΦRx?™?Βλοω„±½ο”—ž g‘«UyΈŒ…K­ΡλΚέk±qϋ\Ϊ±?ϊχθ@‘₯RN`Ό–Αo<ΕΓο9zž>ΐϋs•ΰž:ίΚΈ^„½] aoΩκ?£pλ1n‡Nc&!#έZNφΝ›ŠοΎ·Ζs›H€H€H€H€H€H€H Ύˆ»°χηχžΕθ^Žόύ…|!o”·»ΊΏΈέπ†υ‰{—ν3SSΔ ζŸΜ‚…SdΉzΎ•EFIϋ±zζ_eΉ*ΕV–YΎ.»6.Y‘/±έδ=Έ€|+V³x•TQιΖY"nYa6ΠJ†Η&ΡE9aRYΪWΌq>ή™ez>Νϋ¬,En¨_ƒΊβρσ7βρ³™^ηδϞεΜ>₯τΎMΌΜ χy™‘ΰΣ‘ ₯^‘Gεb힣mο>ϋˆιywΉˆp?φ+[₯€Ρ‹θΧ'-ϋ:Sίχ ¦,Βή’M xeΆ)¦*sκF}Nί¬±ψΗfšΏ]eχaΎeάƒ½†ϊs¨ίŠNΆ ‰X»ŽΖ„GG—Eπχζ+3pP± +Ξπ:~–qs<_”6Ήέ’- υtΌΈ›·Xάp+uz †ε­@…SΨ}O/ΓΫΈ«"Μ|sVψϋž‰>#G`ˆ,εgμ›ς#Α²ΧDΈ»Eiq&FM|}2΄¨R¬|[Ċ" R½Θn/‹lΌ qάΏ€…pΖSe’ŠSƒΛόxυνnό²γσUhqν Ÿ±K§>ƒF·½€ΑΎ$Ά-| ViŒœ•\Sψ­\ΩΗ―σν㑜ΓΩ9kCPώωwœξw§!μΥ=ΰnΓυ/=†Rލπ“Ύύτcνϊw'£΄ηΥW;f«μ”:m<θfζή‡Ρ· xnί³ς5|°H›3Š]Py’ρ£ΪEΜY”οxžy«/x?’—/VXΟΉjΉ*O³OŽσMΞβιΦΥΎ}3ωεIXvάΡ!Β^γJΒΚΝ6CΌϊW,Ž$’2ι,lWLέ>'cS΅Ώ0ρ>{q5I;kτd"ώt0 —yγnΈΚΜδ xYΑλωOκˆΛu–γωiΣ)Χg™ƒΖΈ›ΖΫπΡΤ?ېk¬ r•β+Ϊzž‰΅ΞΣ^―'l°8ŠςZŸΧωβ΅>g”ybDEΉήMΝΓΈΙχϋφ£POα)βIόaΏ'ρ«0νOΥοόΥ©ί)ςοΞkλQσYΓ^ν¬εp›H€H€Hΐ; {½³£₯I€Β^“E dΉ>wό\S±³½ΆΆKWβͺv/ΑΛoΜΣ=—•στϋ~ί*LšhxόDc΅Ώβ΅ο㝹«ΝuˆιώEVL{Ξ\1mΗyήΈ¬iΠ §vΟΎ\ίΖΒE±ΥΨh+Ύ.+ϊ?}Δσπ(ΏηaΉ_zSξ—Τηδώ|Q…ΪώŒ1πžYς8žgήκ ΏhΒ^{οΡjюσ[žΑυ͌σQ‘xδ}Χη‘Wν΅šgγαd|R₯³jpS›3θΣXΛixΊ]y΄œvƒΔsφ1mδδΉ>_Ωaο6iΟ‡z{|ι6_ΉRηP_wόŒ5ΟΉjΪ.I›₯₯e Α¨kΊ ±¬2 h€mJ6’’’γDι,ZΆ^"ΌΒξOpzεx~ϊ VΎΨͺsΛπ¬,oσΕ{}Ύ)c­Ε8ΉήUΗΦκ <θ…Y bv€Υ 2δΏ‰Q^π³οΥΞ,Ζ‘   x"@a―'l4² °ΧDΫ Ί>wρ\S±³½²KWγΆΜΗλ3Ε‘FPά‰[*χhyΈ_^ξλ Ν³-[k·ΓOΜχ/AήyKe%ΑFΘloΌT_Ή}¦M7E΄ŽšdwΔΐ%Ε8€ε―<ό΅%ύΝΙ"½ ”‰y,{δSΈk°ρF|Qώ»˜ρα#-už|·,„% cΟ㧎›‹ωh¬ά†4;Υ#¦6Χvm܌=ίμΕΑ’ύAΤ:βVΫuS+U8EΆσ6ξκάR«UΓ₯kΕ£χ\cUγ³”eΎƒΌY7"ΰ5DΖv¦ Βj8χO­9xμΓsQ˜Dx― ŸΆ­aο`EΨ« PΣ0μ—ΏΗΐŽΖ1hσœΙψx] YΒ|’o sUψάN§[κ8„γΒβ‘ EΨ;ΠφjΗι“βAώqŸy­*XšmRϋ§ΦΆa’p?œŽEωώ³”j§–© -M±sy< *Ωρ<σVŸΙ °/*ε ›΅3_Ζ-ζ±Wk«ZF΄γΌ*ΐΥΊ₯’NΆž:d»U²q}’ c³R»rVΗSt$IDΑ‰*ρ’ϋˆxΙՏσΥ‰˜UœΈΖˆ₯>½pUΨk)Ϋ¨<τΏWήJ=ΫYܟYŽz8 Δ±βΩεduj-U θ“ηρνώNθzο“hMaoόα³D      ¨β.μ+Βή~ςlaσΗ‰xOV³κ$Βή'uaoΌš€ΟΤ7»³Ελ#†'Φ€ΘΣōΠ!ΐQyP„€ΧΘ@ͺm`ΰνOcΨΐΆijdωί›ύj€VκϋJΙSY(oήΏmyσ^I7ΛΘΑm“ŸBNͺZYδpˆ0D)Χ)—Θ5Ψ§ώόή³έΛH[ϊ‰ψ§_―¦dχΟ-*0ζŠp·’P<=ΏcQ_)ιe_‹'ΰχ-ιR–ϊ/€JύFΠ|ˆ Ε‹jH6»•eΩZρΐϊŽαU–βλ[βΌt£ˆ(Š&ΔΥΜdΙ«gΗ PURˆ]»w£ς˜ψλM”…ͺ›vΐΰAWιια<ωΜΥΊΏ’₯­ή“%Ώ¬ŸhylΣUΑ‰x:\υJŽKσ¬eϋΆ5OΎ»Φaλ^ΕΣ‘Z.aʎ­ {­γι·½ϋ©³ΰ{XΘMΈ-] οsϋΓ¨υj¬K)ϋλ6ΏΝ‡Έα<˜y­‘4ŒΟ€ύuΟ€~A¦x+ύ…x+ΥœG±φέ‰ΚΨΖO7»9-]šξi?κ:£ :·Χ…ˆVU»—α7ώwq―ΪΦ¨ϋ›Ϊ(ŒμήΖ]$|8σςύ©31βγΡΏ³±LDΜjzϊ“eyΏq²Ό_¦ΪΦ0α οΟΦ<Žϋl茧ϊΰ\ΒΟό,ΆxIΥDO¦ηέ£ΨψιZ΄»ώΏB„½2ΫΔλε3βυRkΗQ+Ώ¦Χ}τύݍP5Έώ­^·<›s—0*e˜fwŒυg|{θߜΉhtνƒa―Ό±Χ§ {݈qUοΒΕG“π?$΅σΛCΙXό£―™½‘Χ§’«†ƒObRN”οDώ:/ŠnΟRIΌ³ΟO›ŽE΅Uq"ά—Qϋ»μ+.μρ4ύSˎ,μ n§§λA<α£b­Ον|‰΅>ι‰:Φ.wUοΒΕkίΗ;sW‹zy1GΏΦ wn &§Ž£›k―vΑ΅s‹H€H€H φΖBΆ~φϊI(ίκυΉ›ηšΆžv£”k[—ωόΒΌF·‹SΚvŒΓύ‹^WoεΕ£ς°Ο΅½άΖΒE΅έ"ΏuΜ ύ­c°84Θσ94{?«–c7τnǁηΉxžσsΗ,Ρφ’δΩdΎžώ6~Π£½Ώxμέ7o*Ύϋ^ΙΛ       @½&P{ΒήO1}ΉΌ3ͺΗήΕIΔ§ϋ$C4αn΄t)"=wΏ%W―-κX©:BΈ¬‘βwΈ!ψ.^ϋ@šΰ±—Œy’z₯3ΊΓψE·hιOϋ‘ΡpωŸ†¬œhέΎ ²{φC‡Φ†ηYM΄Ή~Ά@Εc©υ“žs 2S4ΏΎΟΙ ¬ί°ΕΏρ[mkτ1TŠrΐΑΘm>Όw#θŽ,HρξK¦xwσœ)ψx!όMτ0Ώi ΠΑ’Uxσ•Ώβ ]Ηύ 6vΚSυΖ»kΙk˜½Μ:^βαδ9ρpr‰VΎXg­AΞέ·Ϊ{-ϋaa>6ν‰ίςφΛ}ž}ƒ[ι|KνOΫϋχϊ_‘vϋ€a―]KΝΉFΨλΚƒ2? °7Θγ3μ—½w~œ―ΑιΥθ{‘!Μύ΄8kiYΓ¬zη5³ΐγ™ΥΖΌWΌψ±ΧηUΨ‹€³x€]5Ϊi 9#ηέC ΪΦΎ™βY~œΟ³| £QUΫ?ΒΛΣ? δrwώβv₯ώ°λB°©7<κ1Tφ½‰²Ολ/!ΘuΦ+r₯.!…€z\Žη‘ή[γΡ?υΨωz7†λ‰ΐΊ Δ^Ÿ»ω{}AΒή°?Ϋ0λύ‡εz_ߏδΊpζŒ}:qŒ±Ώ+ή©m,QΩßΔ]C{κΫ»–Ό*ηR‹:<38ΰΥ.Έn‘   ΔB€ΒήXθΡΦO€Β^? ε;Ϊ½XΈτ Ή>Ÿh\ŸWΚ=ιgοMΐ«ͺΞύoH@‡`Π!aˆDhRADTDΡ‚-pΕŸΘƒzKι―•[.­θƒψˆE―‚EEPT)^h(Θ(0Θ‰!&DΘτχήgXgŸ}ζs2~Ο£œ΅χšήυYλœ$οϊξw-Vώ&Υ[OΘΒTΫολ‘e[N?‹£œβvήSlφ;†Ώ_€―!,@FO[ΐGίΕr’Μ\·“d‚ϊϋ3.J]w·alΊμ­dι{+ͺ_Μ1#αΧίσααitΈ?Ϋd±ΗΛpψU<6ξ!#aψθzώΧͺ£Δ·[žΑΡC'λvΓΡwό­ΠέΆ?}‰/_ϋά=φŽͺL       40aφώφρjτm”|…ωoF‘mŸΜό•χΜ±(,_…c€ΈLy )RV{™…½ŠPsœ!Τ΄GΟ2JzωWq8ωγœsв¬…ΓλOίΎΚxΘWχ.ϊπΐΖC»J»ά~5n½^ΉuV"/?mŠΌlΛΞ_±†ήΗ·GaρQ}ɜϚ]cD0•v^—vφiωΎ„»Ύςυ6œN]ίeŽέ@žŽ‘¨’X FΪ„ΎV‘Wƒž?_σζ+_ κsδ¨kbΘσΔΩάQΏι) Γΰί.ΐ°^ŠCϊμ^¬xκ%=Ί©kkξWͺΈΙŸΟ―£?8eƒ›wηχ„u€Q5’, E ϋΌ!ΠΝψν< ιeπ:Ή?GJ‚ΤvΌ*Ρ ΙιCΠIχΌbσ’§‘sά‘νLψ=>g-ε/Ο>·I$άL[$\« “ξc1cΚθϊώ³πήΛGρΛYΦΒ^=κ¬C §ΪγΕΑ―󖖍›eγΖpeKdμΫ¬AΆ¨πψžϊΙ&ao@(λ³ {ΥΝ,ˍ;mn•Ν;_ίσιm+qskγΑ‘άΣ1xO~ζτR³›α“sΐ-mͺυ& $π²rΧΈω!χΧΌΣl‚ά@"φjeΆ«ΔV†ˆΉΰgωμλQ…£?ΔΰΝœγξ0X6ΈΓΟ‡ l°ά’cόσO6ωR―‘ΦBό=K" ί/Π;kvεΘƒΛ­„ΠςΝ/?ΎC՟Σ$2ϋŽΘμFc}οϊ£œ ΠYΏP>9>?Ύ@~N«vυϋ ™λϋ x½Μ“υbόά j|~Μ΅§!gΘ†ϊ}Cύ N”#±‹ΆncΩ/γΝu»ύV"W8 Χ’’q‰λ-―Wʏΰ”ι3¦~o9+[όsΞ{¨Ώg)»ΘΗϊωΖ.“]N[L)?~?K1S’­ΚΟ?yi’ρgφŽΘ ω>Ÿlϋ>ԟ3aŸςΩσυs:θί'”Ρ’ G¬—ϋSXͺσδϘ]£†K³ςeωΑωΟnœέΪSπφ{ΊΉb°υΜνπšH€H€H $φ†„•m(μ΅X Ύ~?χ˜ονοΏxdύǐήΝ8UΜρ{Ώe[N…£\…½!ύύ"Ύͺβ‹Σ’wœŒŒ|ψHλb›<|ΏD‰VΤߟ‘pQκj³kφ[Ζœˆγ2‰—@o?υ‚΅ίE˜?›άΕσίσ‘π ՟m±z=ή ‡_Εcγ–7 Χ»ΟΆV€ς/ΰΰn=lŽ”ξŠδ{A‡x£bωžΧqπίzΛ–x“H€H€H€H€H€H€H α»°χΖ±5Έg !„ωΧ›ΝπήηE"΅>pν˜ckHλ_j†OO(yj”/Ή] /sΏ*DeLs‰zY²ΓΫpά,κPNN‡¦)ι<.J2Nη"{γ?Δ1R‚ΈqγΠ1θͺ(έΪKHAŸ„+m-V ’Υ΅~ΫΓΙR˜ƒ΅ΪΌ-E-$―ŠσίΰPn‹Θ­=­ GϋŽH­ΞŎ-Ϋπε_αBl{΄OD—kSΠ5΅;b­"€zlWoΝλ?nΒ^fΏπ?ΦΒ^­‘ώPήmlMEaυΖ(l+nΚ¬Ανƒœ©}5ΓλΫlε|Eδυ•ok&iψ#˜0’·~•Ώuήψp»-Ηό¦ς,Ζα=ΗdEE› ιΧΡ8ΓŸΎ…C¦΅fω„Ύ­Υ΅1΅?Ιρwώ|Ν›―|͈€>Gβh#ŽΦ8aςΩΘ?ž‡SE'ρ£Hπ―λϋK 2ΐ!ώτ$Tu:™m,"kΨrδ-ιwŒB§K£QUU…K―κδk η5Jςp ΏTΔiΡς_Nξ[‡Ήί9«ͺ)8θεΥyπήΥ1Y {₯νΎwK4Η:VΙ:x3§ Ώ?ΔΈφ"nVΧμΉ£ςΓί,`π{|ΑςLΔθYsε‘Γ\m}n[1φ6—ˆ£0X\ξΑεΊ’^…½’€•u4SΦ‘­=ύ-<Β^tΏΣ§ŒA;{Σgσ±ck6Ύ”΅rYάΥΈZ„ιΧέΠΫτ=ΰψv·©Β^ω™wpΚ.ΚGΐ>Vυ=:?μΔΖ­š<Έu­6§§ύ^gΑυ§~ŽΞΨύωεhΥζ*\“šβœO1€όΠ:9fσ7σμ7ΤόχοωάqU%z?†ͺ(όϋ‡fψς|3\ŒA[τv‘ΘΆ][W#ΆͺVœŒ6N°w$ο[WaZ[E0«ε]h†₯§’%ωb!{ά•P‰-$Έ.κŽη£ρόwQ…Ν{ΘΟΏ~Ο2θ"μ/ΙŎ½yς:11U8u`=Ω*σϋ™ιgeρΑ ΨτΡjœŽΟΐ―GݏφοGιBύύ-,γ3υνύχ]υσ'Ζψϋϋ„‰₯—‘χΘzqύ> b|~YP~vι’^ωεΙχΡ+žΏμ­¨Η±ϊ}ʈTΆž½_Ύ“   „‡…½ααΨΤ[‘°Χbψϊύάc~<†‰xw°MΌ{p7ΆnX‚Š«1`Ψpτοnœ‘υθψϋΜ²-ηί3ŽrŠΕyΟΒvΏn9ΫΧ‹ϋύχYΖK0€d=€ψr–aωϋ6Άό}8iΞ½Žΰͺ˜6¨Ώ?Cα’Τ5pœAξ¦χ±yΓ6΄|nΊcŒσVLc°`ηίίσΑς ݟmar½Ί•pσt½ΦΎQU‚“·ί•V ]ΏΫpuϋύ{ϋ9‰;/       ΖC μΒ^MΔ;kvα€R£² ³Œ›kp­ˆ#4‘ωύ{£pyR.κ9΄Ω],κ<žΦψ‘ ‹πΆ&žU_I#1}ϊz{~9η€όT)owB©M™Σζφ»Y½Œ(–ζ²nΧ"Ά]ώΤK(πeŸ8Μ¦K$LM΄fξέGβΑ)wڎ‘wλΑyΓJΨλ«_gm·T ΒήN΅χ?$j―Mžι֞vγΜ±(όmi$p³ρκRƒ9œKΎˆΒό7L‘EΨ;g¦—|{;„ϋN6Žκφ"¦Τ„#ΞHŽΚer”Ψll;nΞ–~WWεφ±μεΈfMhgρ fώ|Ν›·υ’˜ΰηΘξU*[$Ο‰ΠεYBUΌ§Wυ*μM–¨ΨO8’b[tεΈeωy·η*Žf·Ο½ŒώάΌ«cς$μ…RλͺΰΔI9Ζ»“ήkρžUxyεF=νφO’U§Ϋ…ͺG% ε_ά£P0Ύ yϊ±> >[…εοΚ8”uιι¨=U|iŒΩWm72otxξ7ά©Β² ω{0ρ©ί²~WΜ_ ·Ώ­SηΪPΗ§¬3―λίlΉRϜeq}N"·<«Gn €ž§ο3ι €uΜχ§“•Ε`l·ŽνX…7ίσπYqTσχ{^*\Rίu¨ςύsΣƒ°¨Ζo«ΠΝΡ7pτ‡Όωƒιg”=?”ώZTγαŽUΖΟsΡx±,0QnJlξΊΒ)BήWƒΟy°ΣnoΠοόό“ο‹`Οr3Ο,μW ¨?#‚ϊύLΪκ9κά5Δx8HiΪ-ιςs&Lγσ紘γΗχ™n΄ω{Πm$~ήΉΏΦ‹fR(ύ)?Ÿ\ζΙΟ‘ͺ'hUφItρΡΕ=5―DΥ δ!–`λy²ƒχI€H€H€‚%@ao°δXO%@a―JΓ–φυϋΉΏ¦ε‚]8~ο·μΛ)u”S|>Ξ{ ϋ{+ΰΏ_D΄<ε1ΗΙX8±K_ό»ΛΙiOΒ΄;Ϋ,“΅–-FΆμ ˜Ώ?Cα’ψ‰ΌβπηΤ?žξοAρ‹ι*ΌZ oώlο5λCn_\χ›ί"ήLΕΒ€’νCήή/-rx‹H€H€H€H€H€H€H !Ώ°WhdŒ―ΖΨ~–“ŸGα™7ƒ—$b°DτLιρ \ή’-Z۞dΧZ>πα3ψ`λ£ϋΏ Cρΰ¬{uOρ~Σ­π%bSoΕm·ŒAg—θ’ φ”ύΦV}hϋ^QΎOOλ>UDΫ+’mOε“X")cGf!₯‹ΥcΪ:έ‚ "-W[υw|²NFΛ:Ρ#Ιϊ}ΞΣϊdΞGκsŽO™S―λ_5NK'bΤ£3Ρί΅ΪœmΊv Ζ•ώLeά/λΪ-/λLύΉ}7Ψ 8[Œό£‡qpΧ?°/Ο΄φνeLοώ}ΟΫ*Itή‘"z½‘΅3bΌΪ\ωΕ(œψ©>όΡZH›ήΆ7;κFαΣoc°£BmΑ”Ά?‰Ψϋ»« r±{—(μEΛ*όWΌMΨ+B啁Ψτ’ΙΠΠ.ωωμοY–vΟΒΈαθaϊμ«ίiAύ~fλ¬ηˆ1|xΊιΑbί7Ϋff꿟όl%^}w‹ΓΌπŒΟߟӢnύ}Βam‰ϋ d½θ۟ςσΙό{»_#Oˆ''dE½%«΄¦‘λ+βΈRK‚Ϋ;ή ¨žK#Ό    {ΓA‘mPΨk±Bτkφ½νŒΞ4=|©Ÿάτ%2G QσΧΫύηJ_οٜώ’“{δοΈ•ΪίqΞ{ŽΊ¦t+€Ώ_bLČρφΏ9δ—εϋι3J§ιβ‹Μ²ω"Οέ$'|½£η΅)Ύ@IDATόχg(\?Qiήœjq­ψα\ƒœ”ŸΘΑ¦•ΛέNΊS†βLϊρχΌ^8žFγ‘ϋ³FΦηΤυθv睸*Αμ΄/Α·ΫΦΰθηυΦηΩ£m$@$@$@$@$@$@$,ˆ{΅c‘§ωTŽΑŽ€Κ$XΆzI2ΠΎUKΉͺ”hΒ§πω~S4ΰΫku9fΊ―D½D }\U‰ N£¬h? ,aν7ΐΖλ_ƒŽWH₯J£b±Dκύ26ŠΓςA9²L•Z(Qžwzΰ"SΌΜ_‡€tŒC‹KZκΆ«~*AΑξύ½‘ΕVλ‚@ς€‘ˆΏβν«EζώΎ=ΊΗ#ύΉ r Ί§!±C;΄@ͺΔΰσε§πun« ΧΤvCŸΙt^Ϊ σ=ίΌύZΤ …φ\ˆh|/ΦD‘΄"JŽς΄7ζχZξOΨ[|F„Αί[ •Γ<Κ€šk0ΏgΕΙοX=Œί±ͺ.œΕ©―Ά£ΰ΄ο‘ΦΙψjϋχ‰Fή_ΟΫfβΜ}²‹Eΐύ²"ΰφ΄†<°=΅Νν2l{e6²σ<•t½l=ΧVxE$@$@$φ†ƒ"Ϋ °7Bk ) iW·Ρ}“Δ7yB|“.qG¨Ϋ š­ΕΏ—jεοOUΨ+T–H•Δ”AθΠφ2c>~ΜΗΎύάμ ‚gSπg_ΩνF\vEkΤTQ8‡Oόg~ jΕ²       @ !a―Œ\’°>π@ z+Q[Oаσ›SΐyqΫnξ§ΝπΚfϋίI€H€Δ‘a-ύ‚ΦΉCkρμkU—•H q¨AΪε5ΠΞΈ¦u5ΊI4bύυs4ώTR’υ6Ξ9¨£βχ―9JDΪΠήΈ΄Yk$φˆ —δ¨Ϋ§mGέϊjω$@$@$@ Ÿ…½ λΓ(μ­³˜ ό{Ι/ {}b6        Dž@Δ…½ϊΊΤΰ–>#ӁV-΄(½5h.j”-³9πΥ¦fXΉ=ςƒe$@$@uC 1s&έ6 ¨ΞΛ­ΑβΧ$(x¬Τ8 ΄¨Ζ£«λ2:‰Φ["ΡzvΉΙ‹&L€ί»>&?ιV̘>Ζτ9’h½rΪC6O{πΩ$@$@$ΠxPΨΫxζ².GBao]oώ½δƒ[HLŸ~'ΪI±RFμυ‹Ω$@$@$@$@$@$@$@$΅#썌νl•H€H ΑHDrjΔTT 2›cš7ΗΟ%ω8^τ]΅X”9ζΥψέUUθdfι…f8t¦²Šjδηπ#ΐο]―Ό²πΰ¬qΞΟQa.η¬Aφξ―՘I$@$@$ΠΈPΨΫΈζ³FCao]‘₯_ώ½δ•^ΒPω{ι^ύο₯βύ«πςŠ^‹3“H€H€H€H€H€H€H€H ό(μ ?SΆH$@$@$@$@$@$@$@$@$PΟ PΨ[Ο'¨˜Gao™(šI$@$@$@$@$@$@$@$@ ˆ…½ h²h*         @xPΨŽM½ {›ϊ ΰψI€H€H€H€H€H€H€H€H ό(μ ?SΆH$@$@$@$@$@$@$@$@$PΟ PΨ[Ο'¨˜Gao™(šI$@$@$@$@$@$@$@$@ ˆ…½ h²h*         @xPΨŽM½ {›ϊ ΰψI€H€H€H€H€H€H€H€H ό(μ ?SΆH$@$@$@$@$@$@$@$@$PΟ PΨ[Ο'¨˜Gao™(šI$@$@$@$@$@$@$@$@ ˆ…½ h²h*         @xPΨŽM½ {›ϊ ΰψI€H€H€H€H€H€H€H€H ό(μ ?SΆH$@$@$@$@$@$@$@$@$PΟ PΨ[Ο'¨˜Gao™(šI$@$@$@$@$@$@$@$@ ˆ…½ h²h*         @xPΨŽM½ {›ϊ ΰψI€H€H€H€H€H€H€H€H ό(μ ?SΆH$@$@$@$@$@$@$@$@$PΟ PΨ[Ο'¨˜Gao™(šI$@$@$@$@$@$@$@$@ ˆ…½ h²hjd $xγ‡χ–Nʐ³l66ηFΆ?Ά"Έ ά?γ~tΎ (ψl%–Ώ»%ΔYH€H€H€H€H€H€H ) °·)ΝvδΖJaoδΨ²e        hͺκFΨ{y4οvB½¨Έ‹Ώ¬Ž(ά”τφQˆmTh=4‹ΒΉ²*,8Xώ"ΫdΟ‘ΧaΡ½BLμwΌZ΄DɁ#˜°όΗ-Ÿ‰Δ«πΔ«]“ 0λƒο|Vq+˜€—§\ƒΙ8Ά?>εV€Α݈ŠIsξE’fxa–>Ώ`TΞiHΘΐψqCΠ:Ί ε‡6bυ†]ΞΌ›ŠΗ°)apχΆ2‚bdΏ2Ϋςμ`h8       @- °·–7ξ(μυwb‘Ώ>nΖM‰ψK€ŽgγΝχYΐe|ge|oΤΕψ.o†Y}’!o(-Β‹G"±‡δοΪ­»rOΒ=wH0’ӝF΄h‹­’@χΒ”ͺνώΒdΆk3 Cρ› Cp₯άύ.w=V­ΫξšΟ+      h κFΨΫ& ~ƒ«RiQ%Ϋ£ˆUΓ. χ lŽ›EΤk~ύ(BβGv…»?s/αΏNy=–έΩή­αό½GqλKnχ=ήHNΔΗOtCg)P$u³©ko4mΨΫ2ΏΗ·ΕτΜ+Ρ 5(ψς[Ό›ϋ³ΉDDϋήύGŒΎ‘³ήφΎUσπΡNLγR‘qcW΄@NΝΑΎΌ ‰‡F“Fbϊτ;u1}ωΑ5XόϊzΨν”±˜1ybΕμςCk±ψ΅Ψh.       @] °·Θ7~)μυg>™ΏΎ.}­΅α—ΛρΩ—SΔχμΥοχΔ‘a-ύ܌,’ψψk»?·…γF}XΏαΫ      hςκFΨ+{ηέ£GGύV„½³Γ,μmί)Οτ‹ΆMn U㔄썖§»/ž©ΖΗΰΣέΙρ˜šά¨Ϋ[]#:κγ \Ψϋ l|’«mχτcΘ|αλΐ?‰‰X=·ΊKΝ€ϋχΡ›*`ήΆvϊψ{5Β‘=χ/œ¬‹Q²ΛΊ>d½P\G6,ΒΫ›rΓaHδΪHΊ3¦Ρ°ηDϋl£ΐΖcδΓ@Z—Λ…]!6/y9Η#‡‘-“       4φ6žΉ¬Λ‘PΨλ›~£σΧ'ŒΔΤYwBσΠGJ`ι‰j­ψ₯λp|Žq‹°χY £ϊΨPƒ΅8ΖJ") ƒ“„B΅«iΩΓ† Π[‹ΨΊ«νώBaγ©n}XΏžlγ}      €@£φvοƒ9ΧΒήΟWΰΉ£ PΘλmγ―ΖκωΙΑ k%"ξμQρm5Ύ;ς-mϋΑ[OΦy‘φfυΔ²q†hyσš}xt}δ…½IΓΑ„rœ•Ός·.Γϊ>š)1s&έf8Ρ²«ΆΤsa―DrΘžŠKdήΟߎμG¬ηΆήUΩ;ήΐςχΆ5ΐQΠd       Ϊ&@aomoœύQΨλ{^ΏΎ…ƒ΅β—Γρ9VSΛfΈοΪfh%ΑZΚΛͺπ^a#«Ι&β²0uΞΈΪ”ΧvαšΨϊ°~Γ5ΆC$@$@$@$@$@$Π€ Ԏ°·eΪ ζ’σ6狨JHΔή«δ^$"φLiŽιIβρA 6ネ7ΎmdsAa­%©ψKυθΚίύldKKΔήΞr‰C{ΰ“{΅•l\΅³6žΣΣ‘ϋ'£‹ώΧh=#{Ι\lσ#βkμΰ1γŽtέ¬άηaυV_1~#7‚&ίr\&ΝΉ__£8½+ζΏ?¦°Ιc#      hκ(μmκ+ <γ§°Χ7ΗFη―χ$Œ‹ΧOL+?ύo(A–¨Ώ΄§ρAΖ'†ΛψΚƒ΄ŸΥB ΰq^BhΣ[ΥΪξΟ›-ής̟;±{ΊDΤΦ’=G,²±7{˜G$@$@$@$@$@$@a"Yao›fxψΊhάΠNΩj―”Vcs~ ~5 IrΗ“°w`Χ ιΤ =ŒkjόψS5>Ί 끷&§E£C P)Αy―jίL£]«s\ϊ;g Ψ#fότC²έΠ όj‹?ΟΌ XΕ™ορίKOΐJΩ3£žt™ήzΑ―ρ_ΆΘ³=S―Β-½Ϊ %ρrtmΫq—Ϋ 8sΉEg°kοI,άβ#Jm€Βήa#“qOχKP%§59^ΡΝP’χΨUζΈε–HΎ Οέv5²ΊΫΌˆΌΌRΌση1vjW€H³°7πρ]Š©“Ef»hόTYƒ+;ΆEJ[Γ’’Βrδθ4Ίω%@ξΆ£XΈέ]μ;jδ΅Έ+­iιΖι²°ν_ίΰŸrάsK$ΘS§άΟέ„Wφާd<ί=ΧΖ]‚ŠͺJ\Ÿ‚NšS^εEGQvζ‚q!F·Nξ\#’rσΚHΓθ)ΏB›θhœ+ά‚ΥFŠ]Ί!ΦX*(/9Šc{·`έ¦]z{R2p}žθΤιjΔ·ιˆΦΆr8[†“Ε_#ΰVlΞ±ŽœŸΎΎ^VŠ£.$@$@$@$@$@$@$@ƒ…½cλzφZΝ@¨ώϊ(Œιƒ;6ΓUβ.Χk;yV"·ώϋDΦ~λ)zk3όn`4΄νˆ3ίWαΕ―Ι=£q}[Ω/ϊΪ«τL5Ύψ¦ ΛάφŒ|ΏώUΕ{ΦbΧwβ—Ύ‘7:ڝύg‹‘»k#V―s?Y,po8όΖ¨ϊŽ˜ˆ>=Sθβ»-Dρ‰£ψbη?πωq› Ωe|«°αp+dό*0?±_M…ϊɞΠΠvQ¨V·od.Ώ/•ω:¦ή΄W΄­³ζ2ίRfΣΉ(Œξ^mμ{J5ψκdVν­Bž½JΠο©βΫϋφ«ΞζaψΘ­ΔΝήƒ›θQDPvx½ψα Guΰσna¨2/΅"X ΈΏddά}3zυμv²Q~ϊΎG鉽8˜³Ϋφ›χK€Έ$e`lΦ€t3xkϋΕG`׎Rτ›0‘'N΅½Αύ‹υΜ[$@$@$@$@$@$@> DLΨΫώͺhΜρ{Υ³ξΒή(ά7°9nnowΎΈΧΥκ<·§ %φ¬6Ρxα—1ΈΒ~νεύΗβJ<²Λ)υRΤCV[Ότ\dθZΧsXόΜNΌ|Δ½θτGnΔτή†Θtσš}xTφ^‰ηŸλav¬{5ύΞμØόΦ·rεv€Βή©ό3z‹ΪΤτ*:p Y/ˆwΣβ•˜ΦK¦vAg‹<υ–«°7˜ρ΅Ασ―τΕ0΅Q/ινkχaκΗͺπωJ̞y&€΄φX+ο LΙZ€έaπ$L»c°^Χ““Ηh8γΞD½ΈfΫ°on2©K“δIριΆ'ΕΕΑτSΗήH΄ uΥκg%κμSZΤΩdŒ{κ τ°*£”ΟΟyoΌοξ$όΐsΦΣ}±•Z‹Ε―}¬΄`K&݊ΣΗθQ%ά3•;'²±ψΕ·LŽΛddM™ˆτξv°Rή–,=Έo½nαπ ˜‹{ΫΙ#Αψα½υŒ#Βώm3{S•Δ‘a-ύœwιΧΙ‚)      h"(μm"αaRΨk8}Λf˜%ϋ}άݚŽŽφδU`ρ ‘§τ»@φ ΄=‰o%ΰΗΩΛ›αZ› ΧQYK\¨Β•8θr3€ Eπθ­Vι!ρ‡Ύ¦ϊCƒρχ†Α/7c'ή…”kγgν>c?ΗK?±7"ήσnMkqέχ…JeOη1«=™οgeΎ΅Θ¬^_"b{₯s?ΙkaO™©ΤΓHΦ}υΕΨ,'εw/›ρΐ ιi½8όΙ"¬…½ΑΜ»{ΫPζΕϋ^†Eέ`nŸ¬±ρΏ›ŒdνθN―Γ›^Ζͺ F@£Hπ\bSoΗ}Fωœ{wNu³Αύ‹‚·I€H€H€H€H€H€Όˆ°WœoYβ|³;Ν$ξζ―«ρC‹(dv•'ζ“ΜΒή1βΌΉSqή–'ͺΏψΎW\Ω 7_#gΫ^‡U`#ς<ΑŸψhθΡI;uŠΆ9μjp°°β·A΄Ντ“„ο}Λςιn{ΛΎίοœΨOgΖκwm8ˆΙ«mO²;ͺvΐ²WR¦_ŸΖ“Sφcžv _O€}ωgPxκgόˆ\w]ΌDΖ΅‹S/bΕΛ»±`Χώ] {3²ΊαŽ.-P!qΡβŒκg„šuεͺ=¨βeΉ_VŽwώU‚²ΦWΰφα‘ um#Έρέyϋ΅Ÿ«ͺqyB{du3DΘyΉΕψ’¬1]XEWγθŽ,Λur™ώΘ@PΫΉ»v#Q~Fά5m0!έ5vΧ&™§wΜστ½λχήMoώ°BWy„φqΊ\!««pi‡ΎHιb8B‹σvγδχ?‘Y3Y€Ϊ+Ί ίνέ€y¦ώG˜QΠψ·8o―Τ?Vm:!±{g΄Άφž+ΙGAaœrVŠŸΡ »₯Κ“θvνμXρ?ΨΈί΅Ώ€Μ{Π7Q‹Ψ[)σή½{uΧ;twfΩ¬±°―όΔnδζB«.½Ρ·»σΙwsΜ‡₯έ‰δ,‘}”’u§ξHοŸβnώΦ—ρΖ‡»ΧzΒ’_νΎg.Υ΅«ΔΜi˜tΫ=Γγψ”jjyύφιέX>©ΗHΔJU&I€H€H€H€H€H€H€  {ΙDΦρ0(졚€`ύυτγF ϊ!Q[W φδW£H"φ&Θ)}ύ•H¬ŸμΌˆw‘?lΕ/ΖΌ›bh2© € Η.o…k₯+" μΥό¨ϋž@ΛΔΎHO5ό͚G6Ό(Aμ§§9…Œψ{CσK'γφYO ·βΤ/SΰŽ–"¦e;t蜌δ.Q~p ΏΎή gα―υΧOlBΠe―.1ΘlcœΚ¨mθ J0φΜ{HŽF-ζ»T6ƒ>+©Αε₯9CζΪxΥΰΣέxΛc€gG‹^}d/aŒm/!?[όάλL~n Βύ 'Ϋ‚₯δaνγ ρΉήbpσξfŒ2/ώψΐέκzΓοώdoλ?ώ€τnvαxοΨ‡³i»ϋ@τpΚΟΘi{³”Σφ‚ε’Š¬eP§bΧgϋpΆUτΝΰΈΔΜ©φ1Έθβcy      @D„½έΕ3ηz›ΘQD½»ΉŽx’ΙχY‰δkχΊ8eΪKδ݁φΘ»Υψdo%ή9ιh&K‰΄$lœΪΩ!ξ5·κψ‡φΐ'χ}o\΅³6ž³›εώžš„­w†!S>ƒεΛaαvgωD±u‰ΨΪY―Y†ίOωλL­€O˜‡¬TcœOΠ› Y\Ζ~3ξHΧsr?œ‡Υ[ ,J™n)Ž0#'ΫVόΩκTr|Τ°δζΨ³a‹7mΤ}Έ¬τsdοΜ55ζ*J.ή³/―άβVΖq#. SηŒƒ6R³3ΛQΖdίΙ=kπκJ›3W žπ$†₯β^nΚX<6yZλ "ηνεΨΌΫΙ#6u¬<=?Βφ™ΟΕ{/rωΌ¨‘ [|sqΨlKΔœˆγ2υ+γS*Ή9JDΨϋW {DL’      @£'@ao£ŸβZ …½Ύ1ϋν―o'{7Ϊχjπ‰ˆ1ίqˆ1]OϊsΩW°›ΰ&τ¬ΖG»+ρž£ )Ψ¦BφεD@{}ίM~T-2ο‰ΜkυΉm&ΖdΪ‚”μΏγ«Ž€‘ϊ{υK»ϊAέ}·šΝΙC'’Ο•'±κ}›Ω4>ΏύΔvαxo)"να†HΫr΅>Lσ}Ό°Ϊο<­ρΦ~Ν1“!ξu €έonj)£ αhQ–>·§”¦TΦfu¨σw£Μ‹Ή}Ōπ%ύνOε‚bδ¬XŒΝŽ $"ϊς˜œτga)=ΈK^Ψac0\3” Ζή NΐΪω/ΨΤ¬μE̐½#,i/€χ1Τ΅‘žϋŽ5ΐ      €gφŽ‡Ι½6‡Ιηr,Φs¦c±nνίγŒ§ξU§ŒZο+‰ΘϋߎˆΌΞ¨eώΉ"–:…ΏφRΞ25Xυ―‹ψΨ]Ck/δ{kόωɁ£kΟανΔ"Ew9sζψ]JK½νΥoμΔmsŠM½v(’ۏEtΫY ™³.υBφϊQwς΄4<6ΐxΊzΫΊ}xθW€Sˆύ §W;]Œ– ?Ζ§Š’7―Ω‡GΧ»φ­6©ΪΉ_"ςN°ˆΘ«–±š‹t«fΩΔͺ>|l=’vα1­:bό+Ž0­αοΟΓ9N¬ΗΚμ;­t.Ž―"ΰ՜bεr4ΫbΫΡl*Γ‰Θ»ά‘WΚ«eφ¬š‡u;•q»τ$—.Ος!\V†A„ΩΣlΒlύφι½X1%WΚ0I$@$@$@$@$@$@$ΠΈ PΨΫΈη·ΆFGa―oώϊλ3RšγwI†σΫ“•˜½Χ)Τ{i#Βί_Ϊ„Ώ?UaαζJT»7 =·Έˆ₯_»ο¨U‚J»ψ3‹‘½d.ΆΉ8Ո’ΕΨ,ω9.ωzυΓί˜_:£‹ώF¬Λ~o³Gφ`ƒvΫe|ώϋ‰½΄x–2—κ’KCJ Λ$ΘΛ?Υ /HζY $£ϋΟ‹+ρΨ.Σzri̟‹DŒž5}υθΗΕΨφΚ\dη9λ ™²6«›άYΜ=εΗΌλ•”yρθγwo=ψ;~φΧηŽΗ1f°ν΄ΐύk°d…3Xˆήy­˜1}Œ!Ά ΔΊΧpdΣ"Ό½Aٜ“v†υ2‚Ή¨œΤz΅½Αύˆΰ—!k’     @S&ao&²9nΕͺΑΦ5i3ՈΎͺSζ-0Ί½!ψjPπΠάπγ9ηH_%Gfi―=‡.bρ1wǜΏŽBg£§†νƒηGOοΟΞΕ„·lΟfΗ'ΰωΧAΜwxtΦAl65Ÿ˜άwŠGjbk΄o%¬¨ΖE)Σ’uk$ΨN+ς*˜υCœkκyι³nkόι}1Άs ©sKžΩ‰%&­«*Ύ΅²3”ρ©mϋφͺjΰ<ς «qIsηPυTσζθάV °yΝ Λ’R^ͺ3§V…½gΰν§^€ ­b™3›4ύτΑ5W'ΰŠKe€•¨”μ˜V{™QNuP9k*)œpJœ–ΆσMl•ό“Ÿ­Δ«οT‡%P†β’ ΔΔ(}kɘΦhg,ξß<ƒU[”‘+ν"..=(μΥκvHHΖ%ψ.½ψω{œ*ϊΞ₯I^       4nφ6ξω­­ΡQΨλ›΄Ώώz5 ˆ΅ο? ίΤ7θnF‹ ͺΠσB5žίX½ΎΝ Ό„κΟ΄ς£J‹Nqar–=‹ΝΉNίc(ώήΐ„½ΙϋŸO ₯½6Δ£X/v©<άΧψ”|ΥOμ©Ή ξ+s©ξ!Ή΄₯”½η‹Π[ΡΩΊDτ=ώ΅Dσ=ͺ°W’š‰ρCτέδ,Γςχ·&Ε ΕƒsξE'νΚƒ;”yΧ;QΈϋά0¬ ν_?ϋsuΐΝχ―[ Cw‘{`\4±ϊL«k_V’z@ύŒ¨œκzƒϋ‘-GΦ&     ¦H "Β^ΥΉφΡΏ/β½RW΄ΦΒήfxxXsάΠΚ΅¬·«=‡*DΨ[νVΔ_G‘[Ε@n(Y‹Ιsc—ΤΟy=^ΊSχ”!oΗ—ϋj‘K«“'¦β±Μ8—{Vω»ΰΦ₯ίXe‰g"«ηvƒφ ΄•°ΦΊ’νΟΊWβΉyύ‘₯?Π|^’Ϋ%±ΦŠ*Ύ5χκψΤΆ½ {ΫΰΉ}‘eh«½ٞiΥ^ϊ„y±ΧxzΫοΘ» κς»žβƒΕQ]v;Υχτ»GVΊρ΄»zߜ.έΏJž„ίhΎνΌVϊVYΞ’RΚ”η­ΓβWœΗΗιε”|g);g&R|/iGWnΌ”vύεβhΜ–ˆ83ΖeκWNΫΜ₯xM$@$@$@$@$@$@$@Nφ:Y0< {}³σΧ_―–³ΪW’0M„½ƒόφώP…'·Vβkίζ^BυgžΘΖί‚-쇣-±γ†EX΅Ιˆ*ͺΏ70Ώt*ΖΝy=4ίm‰rψ«)ƒΓZSBŸ~bS‘^*’]„½₯%‘w§IΈλOΪ©°AΙaϊ*΄³ι’†>„ ·τΣ[+ή³/―4‚bΨ›uήυv”ΎkΕξgΞΰ)ξQŒρ'γv˜χΦ·Ν\…½sQEΒe5yΆKΤd­?υ3βδT?φ1 ό—H€H€H€H€H€H€ό#aa―DIέyo”Έc-μUŸΆ—hΌΗ*qό" z-_Z$ίSίUcΫχu±Έs?χtΣ’ΑžΗς…ϋ/ΕμΗ`BwνήE¬xρ_X žl•Φ _LMtŒηtαilΛϋ'qr΄Œ£υ˜>ά›³ŽJZΒ§8Χ₯΄λ…ΟΊͺ°xηΕ-˜§ŽAZSΕ·.v†a|jΫVB\η`\νάΌιrΟI`Xg—T Ι(8t kŽόμrΏο]ΏΗθτnϊ½ΓŠƒΥ₯Ε…κrͺZ”Χo©Ž0_B\­Bκ=xrΒpGkηŠςpδθQ”Ÿ•x½ΝΔIΩͺ3†dΞB§ƒΚQά5‘φ}PŽΓzέt–VΪWΛ|Υ‘&Oδo]‹’ŸΔ<ΧήWZ$ίΣGvβσγΞ.ύϊΓΕњ3‘Ξ‡OΞjL‘       4aφ6αΙγΠ)μυ Sμ’ώ>6πgoΑY«ώUaQ. ΏΛlŒ+΅ή#φ~{²³χš„žφŽB}Wό€ε‡$@Βk¦ ώ°xƒ ·³D1aοφ†Αί«ϊAνzO\ξŸs?:kωA {-}­Κψ-σ=ΩΘ}DΉΎΚψΚΔGΩxŒ|ψHλ’©Λ΅hΜ³%s<²ώγHο¦έ;ƒΛfa£‘γ6j…aήυ†jƒ»a±ρ―Ÿύ9…½…ΨΌδiδWΡΙ=λ τMЊ°7(.ϋ»–MΑz•΅τ ~FœλΣ΅^]νchψ"       DDΨ;MœkƒtηZ5Vώ³ΞΈšσ‹.1xϊzC²λ|Ϊ: “Ω7΅‰’ΒRo“Τ;οZΟί+§ΠΒΉηo#~”ΛΈU’σŽ1„ΈΉ[sqΟί£±ϊ•λτHΊj_{SLΓμt=œφoύώξΝρ X=ί¨ο"˜΅7`ONΔΗOtΣr^#ϋΪΛ«ο~{ςdŒΊF«tΟΞΫ…eΪ#ηΚ«gVOΌ;Έr«ΪŽρ©Βލ«φ`ΦΖ”žΥdkόι}1Ά³&’;爝ŠVT-ι-έaπ$L»c°^ΔιδρVΓΘSCΉ>ƒΥ[ψδ§#ΜήPΪ½Obd}"P°c%–Ώηϊ”?δx―©rΌ—6>mχ§o_e,σΥ£― ±qώΣΨαΟqnφAjο–νͺ|§“G<‚ρΓ{λˆ@ϋm[ ί5Y‚H€H€H€H€H€H€H © °·©Ξ|xΗMa―ožώϊλε€ν_\Δζ {׈Hx­*ŽˆΣb|Š?§%ξ|χHΈιβΫΝ}»g°gΥ"¬ΫY€pψ{σK+‘RΟΐΫO½?ΌΨΎύ΅Κψ}ϊ₯-πωu˟ΉτUΖWΎ_†ΈJ.ΡyG7NξX†Wί»S~z5Š―½f8ζ]o+i$¦OΏνδΒη ~φΞCyχ³?§°8 {%Έν•(λP„½ΩKζb›ˆƒγ"m‰HΈ·.–ύˆηd?Β΄ΝΦ!s¦έ6@Ήs}֏}ŒP¦ƒuI€H€H€H€H€H€š{ύZΰήNš@WpΔχ΅«ξ¦^Ν1Ή³ΣΣ)μu­χ™8ξ^tsάω7AN`d…½šχβ¦hf~‹{£1Ϋ&τݟ‹ oΉΐ5yZ`<΅m%˜MΩΛξtΜΊ:ώ*,›ίizΏEΈϋι/qΘ­‡>…½ΐδiΕΞΦzλVξΔ﷜siμξ‰ύρd¦ά†*μ Ηψzf\‡wοΧ½2ΘέzXΔίΊτ­^¨vz«΅Lι„,L5NǞ;Ί ―ών”›ŠX]v(‚ΰq† ψδŽ7Δy·Νͺ˜λ½žN‡˜΅ƒ*qθ4LΊΕμ rνqεOίΎΚxΘOŸ0Y©ΖΊυ[δμ0LΪU‹ψJ;Ά³GIπ^#vΐ=Έ;«/b*+€`sΰ\.>~ροϊ±iήk2—H€H€H€H€H€H€H ± °·±ΜdݎƒΒ^ίόύυΧ:΅9&\cμ|uΌ+'έ©―–Ρψ―α1Hξ]¨Ζ’Ψ©ζGHΘ©v‘§&pΝ φΉ;H”₯sέ"”†Γί˜_ZTϋVΝΓG"0φωRΖηF*΅|ε+EƒNϊ3—ΎΚψΚΦ8 Έρ άθ€Υ/ځυZ`€Mθ[³ Λίίξr8ζ]oPΐ\”ƒ₯Ο-‡λ”K·‘_ψٟ‹@ΧbόZ€―³Ήxο©Eϊ~V°\ΤύˆοΟΓ9kΊο]”S;λγWΧ―Z―Άχ1Έϊrd $@$@$@$@$@$Π DDΨΫ/Ή9νn8ΰ~,­Β#TΨ6ΓγYΝΡλγ–*μνΥ5χ4"ωβ§*<ΏΉ{•šŽδεΝpΣΐ?Oš{Άώ: 텐˜9σFό.₯₯©…sX²h'–˜Žr _Οcω‹ΖΒύj΅x<Ώ †΅5ξ©‚Y΅”‘ΎΟΝλ,]KωΜΩƒώF«MΌ«η&λQ…=Eϋv{ψ-Ά9DΜWβ/"peηv¦+6œΔζ}?ΰ\›–θαrάΠ37ˆCΒ™<4λ XΕΥMώˆΥΫΰΎuήψΠυ‰zηh•”ϊ”Ήά.؟ά― QΣ1¨@Ωαm8nvͺθπtΧ&œΞEφΖΰΰξΔ ˆ‡ŽAW݁gΨ€:¨τ; )θ“` U ’Υ΅~ΫΔj™…9X»IΔ΅-%R­Ό*ΞƒCΉ²`|Ωη1ί5ςΞŎ-Ϋπε_αBl{΄OD—kSΠ5΅;bΟξŊ§^rΠzlW7Οη?‰C’ΘΕφ£Οό‹ž¬Y§wΰαΘ<Ÿ³       @ƒ%@aoƒΊze8…½Ύ§Γ}3Μ&ϋ­lmώP…_Vαgδ΄Ώ€ά›dυJΆε‰rΊŒRρgχΟΰpφϋψΗΊmˆx†Ÿ§ε©§½…δ_Z Š ΅q:9χψβp>Ϋ ]’{!ex&b­Ε³―}lτ’ŒΟΝﬕπ•o΄ΨΏΜ%C‚ΉΨ_[4ΓέΧG£vγϋ*όο‘jύΰ5νςbE v–Θ)‘ΎζΫWΎΦX―ƒΔ΄;]knΕηξE7,σnλ)γΣ&(.ΙŎ½y8hΔΔΘώہυ8TδjR¨Wώυ—"AHf:‚ h/ΦΊ»δ0Ζτ_AΦ`cοE³E”4Σg ψΰlϊh5NΗgΰΧ£ξGγ@H}θλ·ξφ1ΈκJd}     hš"#μ–―kŽιΧ:mžπΊ {₯T;9NλFΫqZž*iχ½ {[ΰήNQR¨kώuk­΅zk; <‰`ϋŠD°Uκlίπ9¦Α¬ω•œˆΥOtӣ嚳ΜΧͺ`֜§_§όΟμŠΞ™ΫΦξΓCƒžόЍx¬Ÿ9’°E%ν–ˆ_'‹ψU‹-0jl/όeDΌ‡‚ΞΫ.v†i|SˆύτxΎl)ulϊ­”DΌ3³Œη³έŠ;oxφBfοώ…“ –΅`ΉD-™«ΟΧΰίΞΓ°^vU±kρ#αmM<«Ύ’Fbϊτ;ug€«CI-€€₯όT)oέƒRN’ζφ»Y½Μ\λ8Dl»\ΔΆΎμ‡ντYμο>NΉΣ8~ΜΡ°EΒJΨλ«_‹fœ·β1ςα? ­‹&˜/Ζζ%s‘γGΨ]:œ™"      ¦J€Βή¦:σα7…½ΎyŽθηΏΏώ΅χq‰Ϊ«h<έ:ΠN \(§~mΞiΏŒ†ΓmίΑ\6”kΕŸι΅™Σ­wΎ­W/‚ΏWν'PΏt‡χαžqΆ jCJΊ\„½‹νΒ^e|fΏ³^Ε›ŸXi3δˆώ²F΄=?^²74_‚Ύδωšoφ.Έ)RλA"ΓʞBWΕάcΩ/Jδf—cά0Ν»ήXχ[1}ΚCπ¬τ­%-χ$LeΎτ³Ώ΅w‚Dν΅ήΥ1zΥ’λθΊ§μF„ΐ₯η¨GpΧ§`Ψή€ωέmύΦΡ>χ#Μ3Γk      DLΨ«u>09ww·=Uν°¦ۏU£cΧh$Ι½γ_WβOLG$΅l†ϋ{FcX‚΅0Έτ‡j.Ά=₯νhΧ™Έ©WsLξ¬Υ­ΖͺUΐ¦qusjς4‰Δ;ΐ‰?ΰΩy{°Μƒ241νψΣΨH3k.΅h³ψέέiTήξ#»το–¦\ηoν„aέ\έ%λVνΑο7ώ Χ½{b?<™©Ηiυή––[X„»ŸώixΤν=π訫ŒθΎŽΪη°nΣχθ<όj]L››σ%ξYξ| <<γk©χuΑΝ½/G|‹–ˆ³£Τ±9LŠo‹ΉwuΖ=ύμj9z’¨°»|‹?~ ˆ{xυ½ϋ}Cg=wίͺyψh§‡ t©ŸˆΑwŒBJ_ΰςmΡΪvΌ“Vδΐ‡Οΰƒ­G\J#a(œu―.~-ήΏ /―Ψθšoq›z+n»e :Η™2΅¨Έ[σΠ1s:KΏζφϊήυ{ŒNοfͺδα²(KŸ[ŽSς€ϋ€9χ"QŠ•ξ_ƒ%+Φ»VHΘϋΗφοϋWšμ—#ΫFŽ…΄^]λΩΚ‹ŽβΔ‘νψhƒ)nr\€ŒΕŒΙ#τHΔε‡Φ‰σωG–·D‡“0mά`g‘’"θ~Υ/A·³S$@$@$@$@$@$@$@ ™…½ yφκνφϊž‹@ύυν―ŠΖέcΠCρ Ϋ{9˜_‰7V‘Δ~C}!牐3Iξœ¬Δά½¦}΅l(iρgN?―ζG->Έ%-“Ρ»›kx†ς;°iε«8tΪ΅£`ύ½­θ—Φ*' ΕνYCάμΤΫ=[ˆ}[?ΔG[l’ΤPύΔΖϊuε\#~—HΞOna·œω Α΅Rε[™οΩζωVΧC‘¬‡ύα]ιžDVͺύxΓ|l|ξΟΨαά*qHxζέΦdχ,Œž]\Χœεž„‹A^ψٟ>Ζ,ΩΛPN΄χxlΗ¬{o=Κν7lο‘pι9βA žnœRθh·d_¦mf¦Ύqς³•xυέ-Ž\=Qϋ܏p^‘      ψG ’Β^έιήΤ> —ŠΞΆͺ²₯ΥΘ;οŸqγ—nŠ3κŠF?Kύo”ϊrτVCe Ί έ.‹–aTγ‡οΟc͈†W|άέ«5ZΗη+χε)μϊΞwsu2ΎD±UDΚ­¨¬ΖΉŸ/ΰΔ7eΨεFW=ΎΙΓ‘YΎGΉI2ΠΎ•yΉη<…Οχ›’Gλΐ[NHAί.p‰ΆΌ«*qαΒi”νG§fΰ8k ‘£Η2τ£ΗΚ°ν•ΩΘΞsζ1E$@$@$@$@$@$@$@ήPΨλσό%@a―Ώ€/Χ«S3tΊT’ΈΚή€v:ίIΩ[8XOχS‘CΫΛ ΉD/όxϋ|ψoλΚί›”Šk―n―Ϋ‰ͺσψ±όεšT>U¬α'Ίšw?Ν K1}ŒWΘ^F₯Φάy”έ†γ>φ‚ζ'{=Œ½ˆͺ gqκ«ν(0‰ι=ͺχ1<Ϊΐ       πB ςΒ^/3‹κηρMeΘY6›λ±vΆ>q«3[”Β'?[%Oή›"Χ™aμ˜H€H€H€H€H€H€H ! °·!ΜRύ·‘Βήϊ?G΄šΉ¦₯&"Ί2°ΘΔΡ1ΡψιT.φεϊ!₯Iδ I€H€H€H€H€H€H ^ °·^L         ¨MφΦ&νΖΫ…½wn92hH‡>„I·τ Κδs‡ΦβΩΧ>ͺ.+‘       D†…½‘αΚVI€H€H€H€H€H€H€H€H€κ1 {λρδ4 Σ(μm@“ESI H̜†I· j„ε‡Φ`ρkλƒͺΛJ$@$@$@$@$@$@$@‘!@aodΈ²U         zL€Βήz<9 Θ4 {ΠdΡThΤ‘œΪ1¨ `œ1Ν›γη’|/ϊ.€Z,J$@$@$@$@$@$@$iφFš0Ϋ'        ¨w(μ­wS ’°·AN&        zM€Βήz==4ŽH€H€H€H€H€H€H€H€H (μΥ¦Χ&…½MoΞ9b        ˆ4 {#M˜ν“         Τ;φΦ»)iQΨΫ §F“        @½&@ao½žG$@$@$@$@$@$@$@$@$ φF‚jΣk“Βή¦7η1         Dš…½‘&ΜφI€H€H€H€H€H€H€H€H€κ {λέ”4Hƒ(μmΣF£I€H€H€H€H€H€H€H€H ^ °·^O#        ˆ {#A΅ι΅IaoΣ›sŽ˜H€H€H€H€H€H€H€H€"M€ΒήHfϋ$@$@$@$@$@$@$@$@$@υŽ…½υnJ€Aφ6Θi£Ρ$@$@$@$@$@$@$@$@$P― PΨ[―§‡Ζ‘         D‚…½‘ ΪτΪ€°·ιΝ9GL$@$@$@$@$@$@$@$@‘&@ao€ ³}         zG€Βήz7% {δ΄Ρh        ¨Χ(μ­ΧΣCγH ξ $xγ‡χCʐ³l66ηΦ½M΄ ˆΛΐύ3ξGηΛ€‚ΟVbω»[Α 8      †D€Βή†4[υΧV {λοάΠ2        h¨(μm¨3η§έOΒ=wˆ(στEgmργ‘U"€ΫθΌΗ XˆŠIsξE’–W˜ƒ₯Ο/Η)«r΅|―ΆΧumχœ Cρ› Cp₯4ώ]ξz¬Z·="έψίh<†My ƒ»·•*ΕΘ~e.Άεω_›%I€H€H€H€H€H€H Tφ†Jυ5φrθ20~ά΄ŽBω‘X½aΑ D‚@ά Œ›8ρ—?ΟΖ›ο5²€ΚψΞΚψήhlγ‹Δš`›$@$@$@$@$@$ΠH PΨΫH'Φ>¬Δ‘a-ύμ—Žχƒk°δυυŽλz“ˆKEƍ]ΡU8}4ϋςΎ«7¦5ECϊήύGŒΎ‘³>τ}«ζᣝυCm―λΪξ/"“Fbϊτ;ΡN/—ΟβϊπωO‹“G V³ιΠZ,~ν㈠’      € {­¨π^ (μ ”X#-_}oα@έPόυ ΕΞpΜI m4F.uωY« žu9Ύ@ΦΛ’      Dœ…½G\Η$₯ap’Hωͺ«€–]0lΘέ ϊ*μU”G6,ΒΫ›rλ`Sξ~ξ_85%»±ό―KQ?d½bOm―λΪξOcξWΒHLu':J»υησ‘i].« ±yΙΣΘ9=      °&@a―5ή Œ…½ρj΄₯“nŌιcτΨΟΙμΟ6’ΨŠΏΎ‘ΨYΫλΏQr©C?w­π¬ΓρΥφϊd$@$@$@$@$@$@ή PΨλOγʍΛΒΤ9γκ™°Οqbζ4LΊΝώdVm‘°Χ•Pν]% FτΦ;ΜίΊ o|Έ½φ:€§Ϊ^Χ΅έ_ ,Ό•­§AΥZ°γ ,o›·Q0H€H€H€H€H€H€ΒF€Βή°‘l QΨΫ€§ί9x‰δ™5<—DgoGφΞ#ΞΌœj(ώϊ†bgm/…FΙ₯ύά΅Β³ΗWΫλ“ύ‘      x'@a―w>+·8b?ˆw€λάs?œ‡Υ[λMŒΨΖ΅|Ž&£‹ώΧh‹‘½d.ΆΥΧHͺ΅½k»?Ÿsε‘@\Ό!€ότwF±{ΊDμ•ψέυ(b―—IsξG’fει½X1%ΤΧ₯¦™Θ      @γ!@aoγ™ΛΊ …½uIŸ}Gš@CρΧ7;#=_ζφ%Oώy³?ά #ΘYΑQ@IDAT Χ΅ΒΣΣψ ώώ8„ψϋΛΓ06A$@$@$@$@$@$P PΨβυz€φFη„ΆŽ–ΞΞΗ‘Ο²ρΡ&5Βi*FOŽ6ΡΡ¨:›‡u+>°όγ»Γΐ{pσ]M‰²Γλ±Ξ±ΆCJοѝ:]ψ6Ρϊ2[wgΛp²ψkδ܊Ν9>’Ϋzt8L·%R1ꁛТE ΞnΗκuκ8€H\nϋ+\!Ρ~Μ?|°a—£ΐνŒΗΰ»ΗγΪΈKPQU‰KγSΠIsNΘ«Όθ(ΚΞ\0.δίθΐɝk°y·Yμ›ŒŒ»oF―ž½ΡNΈ”Ÿbε½τΔ^ΜY‡mϋΝενM¦ΙœόJŸ“s…[°ϊίΐ¨ΡCΡ΅K7½ΎVͺΌδ(Žνέ‚u›œc΄Χό=Πώ‚­ήp΄msΗΆaWi{d ξΧt΄™|ϋ·b‹¬AOd ѝgѝΟέ„WφŽεzΊ|Ζ,kψύ9²Χ|}ώ9²χ%οI›5)݌οΰ Šΐ₯θ7a :I‘ƒk°δυυJ%#ιχ™Z5Πu­Φ5ƒ;Γziλ³ 9Λfc³―2χx‡H€H€H€H€H€H€'@aoΰΜX݅½ξLšΚδ‘‘Φ5UUʈΕζΨ?Ε―Ώ_ΉiOι·όhρΗ·Ρύρ;ρ5’‘Φ/γ.7>[ˆ;6‰ŸήδΗίmΰ~ώpψλνγδ{hv†δEώΠ€‘;RόΆ]œ~ϊβ£ΉΨ΅ν€"ΆE4NΛΪYo±vόχΫ†Ζ%’3ΆΆ|ρž΅Ψυ];€έΠ[ω<#wΧFΩΧr?.πyΟΎ#&’OΟ$Ίμ%’ψΔQ|±σψόΈ3@ΗT Π‘­’β=«°αp+dό*ΐύ°ΑfC$@$@$@$@$@$@uI€Βή ι'#kΚD€w·;aά*=Έo½nπ¦bόS#Yδc³D@Ν±K™ρΐ ιiˆ„²«tao2Ζ=υzΨΕΌξ]ιwςsήΐο»;+Ε‡‡'aŸ^6ιV̘>ƈφ)ΐΕf`’DώœnDώ,?$ω―Ω‚ΑΨ™‚q g’‡ΓHο‰cαΝMŠκ/nΖn2’Ϋ{wxΣΛX₯ˆ%•q”Šπρ§Ž½‘hΕψ¬D}* QDν/ΨyPκ9Ζj•8‘Ε/Ύe)Ψν0x¦έ1X―εu­ˆsΈΑ¬k+Αάσχs€΅Τϊ ζsd $6υvά7a”•ΧΫΠάη4Πο3₯υ@Χ΅R՞LρΖο­_‘ΟψΫκgά^ˆο$@$@$@$@$@$@$fφ†hmŽΒή&:ρ2μΑ<‡a=mβZCω‘΅β3XΉcKλ·Uόoξ:οο_‹—W(ύ*ύ•ϋνηΡ_ο4'Β©Pμ ήͺJ™χbSΔo;Ω·ίΦ}νκ· …K„§,\Ν+ώyoM–’ύΉΧμϋsZΙ`ζ= ΎxdύǐήΝξ)ΓαϋP*{ΫuˆGΙ‰:Λ= ¨2£γίβΌ½οy΄jΣ ‰έ;£uΈ„½φ§”·œ/OωΚ}ϋΈΚOμFnή)΄κ}»;#ΉzZ/}e­ŽΆ­ΥΓ"΄\εEhΩ`Φ΅F¨ο _Λyq΄μϊ ξs€EOvŠ¬ΕˆΣG±λ³}8Ϋͺ ϊfΠ…ϊvΣΜvσ}fo Η=Iς9J̜†I· Π«›mSΫdšH€H€H€H€H€H€ΒI€ΒήplΊmQΨΫtη>)στMΤ"φV-Ϊ w―ξ: ώ- ?š_~[«zGw`Ο‘B\Ρ% i½:;&!χΓg°zλγZ©gi“‡όΰύυ3j%ΌΑϊ_mΓRΈ©υμqθ nb;©gσ±gΗ.”G_ƒ>C]‚4˜η)Ώmπ\ΤΡψ—ξ0p"&ŒΛ”=”3€UΠ·f.Χ£ΠΎΌr£[Žί7,ψkŸ£}O eb_€§{pZ{G6Ό(A$μΡ³ƒ›χΠx&γφYO w‚strϊζ±ΒRΔ΄l‡“‘,œ]„χΖΘώ޳7¦H€H€H€H€H€H€2 {ƒ™½”±xlς΄Φλ"ηνεΨΌ»ΐΡRlκX‰š9ΒζΙΕ{/Β!-·ϋν˜1e”!°+ΚΑη–㔣ΰMά–6κ>\Vϊ9²w*ΡjmuUfρž•xyε₯U%©8Μ"₯T‘že9/ν„jgμΰ1γŽtݜάη‰ΙΥΕFνBε‰bδ¬XŒΝQ³ˆ*§<&•θΗ₯ΧbΙλJ΄­Ύ2νΘΗΆGφ~₯Ο€ KnŽ=ΆXFΆ5κωωo ύ)εš₯žfΩΙ=kπκJ{Te‰$1αI K5Δ½ͺπ\Eϊ„yΘJ5γΞΘΡj %­ΞC}^׊Ι!%Ύ–σbo\εΰϊ ζs”˜ω ˆcΟNΐΪω/Ψ ƒδ;i†|'ΕΪls±;Ψο3ϋ8Ζ­ΐ?G±βž!`νεb›Ρ %      ˆ °7"X›\£φ6Ή)·p\¦ΞΝ£κΡΏeς£ων·5ΥΣN \"'Ϊ_}οx£’bnΕηnμ;(υ,mς•/δ―·TοΪŒΥ1,…›qΟ»?τρΫN³ϋmΟζβ£Ε‹°ο΄­5‰δ;]‰δλ2O‘ϊm₯‹@Ή8Ζθg"qθC˜tK??KΕά£Tέm_G‹Μ»D"σΪ_}n›‰1™)ΖeΙ,λ«°οψ„4οb <Υ=?ΐ}/Q32yθDτΉς$V½oΫΧ3­/ΏΏ'Œσ_      FD€Βή &3]„‘Y6adDδ]n‹Θ«6₯–Ω³jΦνΤ\‰=k.ϊκOηcΫ+s‘η¬5dΚdΨ„¨Ξ:Ξ|)qN§a;)ΰβψ1WP!•σ·s~Ψ©::| JϋˆΓrŒΝaYΊ –¬pŠWυ•£Ζpz/VΜ ΗU›”qh·Ό?δΨ]=™ζαs€ΞΩ‘M‹πφΧ‡v†υ2ΔΪͺέj½ΐΎΟl*<΄;A}Ždγc–OT…GП# {CZ’¬L$@$@$@$@$@$ {ƒγΖZ(μuεΡd―™κ{sα‘” Θo뫞t’!υΡκαοώRΨλ‚ήκ"0«‚:φrœ₯λΠo+F²ίβ΄Ήž§TώVϋbΎΣ7_†œeΟbsξwŽA=οB`<Υύ©£X/XvΩ#5;¬±HψŸ’οiΗ’Uή"     h€(μ xR0vΞL€Δω_Ρ%ς¬ςG7”c€’δΘ’ Ά#‹ώφΞ=<Šςμ_9  Cΐ Db8€€€‘MΰG‘ˆx€z("ΚOmρ’·΅o•^φς*Χλk[υ’τ’ύ©hiα}Q"…RmhhS8$@ ˆ!„!œIύ=3³»σμξμξΜμf³›ύξΩΩ™ηp?Ÿϋyf7χ|ηžΪ}+ρΦJw±eΌη1)Ηρ8-?]Χ—¬™k·—ϊφ\Tj*ηηx°vZ ŒθβSομΗ€tά'„½™f„½5EXφΖrνeΖτ‚ί+qƒ™ώ€ς†ώςu\Ϊίx|#–Ό­?†J„tά°]QHΞΰ6}QΪŒΨyνΛv«ϋ₯±ϊβ§4Μό΄ΎŽδ αy‘ ό·lΰŠ=ςΪνς|¦4,ρ05―•:―ψ±aώΜρκ^έ6BόH$@$@$@$@$@$@!&@aoˆΖhsφΖ¨γ=‡-ΕΘ|Ζ·€2–βΆr½2ο}Χ#ή+lΡ…Œ±gΥblΪ+žL'Υ3΄)ΠqΡS4'φδ¦ΟVν΄•"q •γΆΙG<λ~ AάΦ£νHφŸD7π¦ΜΤ,{σΟ^ΧuτυέΌ«·jO· Κο–yfaζΒg1LΉ–X'°όΪ#‹―‘Jγ³tžπΥχ“      D- {-»NĈ @αzΤ\ΪωhGΙδΫPΎO:οNΔ”g_Dφ %³¦r·π βnαDLϊα‹Θ’컈βχ`‹gΠZΝzΏ˜5ΡΥΓ₯šγ(―¨@c“ΘΧΫN<ΰ¨k*ςǏRλWq}C ψ-—6σζ=€ή’¦a9_ν„ΐN+8]8)e!ΠG+Ά1mΑO12YΩi4“ΗαOνΦf¬φgΧr?‡Χ`ιϋ›άt\”9γg˜–3D­'Ύά’?EΑΌ–Ν fΫ?₯yΫσΣΦ:r?/νyο)l’Ο!ΒymιλΪ½žυσ™hXζasΫ¦Pδ‹H€H€H€H€H€H€ZŽ…½-Η6–Z¦°7–Όνg¬rŒΜ(&«T TΖΧqy‰ˆχπˆχЦσψςΤλ βšΕ_„q»ڍ/KΓ”γvv₯γ‘²iΙN[ρWi€nώπ“hE­"Η_ Qˆ2²ν!Ϋz΄έ"ώKΞBήΘΑθΠ,S™x΅kίW돑h·GπΪD]W‰£‘ϋ„Ύ\νς†Ύ‚υ»0@φU@ž y˜½p6RΓm {υω 4βxIγ7<ξ,Ηw      ¨'@a―eʏNͺΖ–W~‰b3Ο‘ϊI›(²σNΦ„ΈgŠίΓ;ފ§_{}•2R_g•μG~)£ͺ«ŠWbω‡ξΩ|‘P€§jυύώ#/ςό π’ 0wΑ#θ/zl,[/2|β4E{Ož„§ΜTν•ϋ …r`€τγίΰ£ΒrχΎ₯OΊp8$Κσ*랱wΗ—°Sy™σD$)cRβouΆ\kΐž½%ϊg£-«ύΩτƒν±dsRξ|y1ΚδΦHδ²ΫΉΏŠ #zι{›φcΕΛΏ‡¬Φ:Ά,χgΟr`KφΛ3vHβνK[ρΞώ|lΘΌ#r^ϋ°Ϋκn“λΘξό΄»Žδσ‘΅‹°HŸ™šOΊ%^[B(=G<’,E9ΰο|κU‘;H€H€H€H€H€H€H 8φǏ΅5φr&¨€D υΎž–(ŽζλΈ΄_ι«|λ›X΅Yzœ{RΞ κ/Žι;ΞοζQ©ο@ρz·z=ΫγΥou@?ΧΞ―±ζŸΧ±ώK׎ΠnX°ΣnόΥe°Τ—guχؐ³(ρΟΕυ$W1o抧#ͺI`D=Ή½ γΆŠ’­–όη1“ΡΩ_cΧΛqΦπΊ”GA_₯1)ENμx ΪΈG/=ζQόδα|Δ){D¦άE¦\…wΠ~WΪ“ϊ6ΓσξϋΕ5ͺ\Η5*q iΥ―—y_KLΘBvΪ ρDHΗuD©y>(έ«―@ǝεψN$@$@$@$@$@$υ(μ΅εBχ;mΡTβν;qμΘgΈί½S0θŽ ΞŠx™\ οd.Δ²ίώΡ+‹|Η6J±cΛίpxoƌΕ7 ¦cp}†θ뇑χδ«ΘξΧ•’xq\A{tθЌ³‡6‘¬F)œˆ BΌ›λο^ͺή‹ΒΝ›PucΖL˜ˆΡCΥηF©­Κύ…ΔN9λ«θ‘ͺdJ?«ΖΝΡ7pώθNœt}2„¨ωΗ.Q3jφcΣ_7bΟ"Hσνι˜”›©Ϊ¨ό1ΜDDD9Ί0ΘlμκάΉaΉ?{~ƒK²œf<ξ(˜6ρ9̚¬1¬,||μžIΪ՞΄ΩσZ24ΘMsλΘήό΄½Ž<ΦNναΝΨΊα#4$ζαLaj†mΰξσ"Θσ™εyν_~\[ ,έξ5ω‰H€H€H€H€H€H€‚#@aopόX[#@aoŒΞ„δ ܝ|›cπ7p£λ˜xo>β•=ΥEXΏUˆτΊ(yjWN£¬Tdκ Gσu\Ϊ―6ˆ‹(έΊΫ6οDŸάGρϋσ‘=_PΔΣݞlg3Ύ¬u’ύυˆ9ϊΧK»·Η’οtΠnζWwΥBΨϋIK {-Ψi;ώκžδχ8«³€η{ΆHΊπ΄+ιΔu™EŸ’‘ύ@Œ)˜ˆώŽd J-χφ‚ŒΫ* Zΰ’Š—Δ_³χ"ŽξX‹Ώmά‰„±aβΜ‰υ Η›ƒφ»™UžrR ₯~Γqύγ8r΄ˆοAι#1q<βΛΦγυw?QJΨ?Oh΅ω—H€H€H€H€H€H   °Χ3‡NΑά§pέIν³Β^@dΠ|MdΠ”*žΨρ¦Έ³XΏΣήu(m žžχ€+αΪo°αψ1(0τΜ{j:z’e(Π4¨γΦ_ˆμΜ}|&Œp†"έ;•mTŽ$‰¬½³DΦ^υξkχ’OJφ"{ιYΧΗ†°wžΰͺ°p‡g9ƒΟΆ„½6ϊ³λΏγ―y ̌{f‹9šͺŒίLFb•SdΟkΥΔPό1»ŽμΜΟ ΦΡπ©ΟaFΎ.hχ5T―ωΜωΜΖΌΦνJΔ”g_Dφ ξbW-Ά-} E'υ£ά"      –$@aoKΆ)μ_Λ#ΝyόULαωD>Ή„΄-,ωχ¨ Gσ·υ2JmΛ›OΓ²_–ΫΫVβυͺαΞΨkΕΞ β―κψωΡA߈σf?Ί‡οΒ9―C`³Υ&μΜOΫλ(Aœ“†iη€ζkM8ϋΩ.Tυ ΗΖσYώ“―"oΈΘ>oΏ€-Ω7.w’      Δ. {cΧχ‘9…½‘€ΙΆ ΘΒ^‘Ψc©Hμ‘’1I½Ίiqϋ •8P’'μ0l#Μρειٝπ@ί[\¦μ,ΉŽWύ΅λs€l؎Ώ1€ψδtVκ_­ΒY³M žΉwŒΪβΡΏ,Ζκν>ω„1nΔπZ₯ͺϋz8#Φƒ†λZΓοJΧρiYΈc@uέ’ω .4žEYi€΅Ϋ*DΩ)      @$ °7Ό@H ‚ Ÿϊfδ+™›Ο£θ½°ΝL,ςF"DΩY)h³Ω’mν;΄Ηε³₯8P8K±₯†YX# eŽ>σιj‘AXΟόMD$@$@$@$@$@$@$φ†ƒrΫοƒΒήΆογV‘,μ=,žΠφΎΗΪZέ@OΪaώ„ŽέΥ±ΛfότŸ7QηY,¦>'")ωΞz%"IΔ”g_Dφ ξ*kΕSσŠŽ©©ΑΑ’      €φϊΓέ$@mƒ@JΑ0η{£l ζRΩzΌώξ'Άκ²       @d °7²ύ-ΦQΨ-žŠb;£MΨΫ§=^Ϋ½ΘΎ:ή;yΩzΓ9#RDVή9"+oUY1>―(Η™³gq³Λdζδ#sH_Ν”Ίb,υ; ¬7œža_$@$@$@$@$@$@$Ή(μ\ίΠ2 pMν4ΥXΆKލτ vFΖ:$@$@$@$@$@$@$@φr„‚…½‘ Θ6όH›‚yσP…²υQ±·OΏφX0¦βΧΏjΖ―vΗzΆ^ pς‰Z­X‚m%ηόN$      ˆφƎ―9RˆQ)HΟJB‡7pӁ;βj]%NΦ0˜j‹’      @Τ °7j\Ρ†RΨΡξiΖ%`ξ‚GΠ_Œ¦Άd5ήZ±₯mŒ+†FŸu&ηŽBAη1ξڊbμΩςœτ8ΐ$@$@$@$@$@$@$@1M€Βޘv?O$@$@$@$@$@$@$@$@±I€ΒήΨτ{¨GMao¨‰²=hΫβ“SΠ£{wtΓΌy±U5m{Ό       €=φΪγΖZ$@$@$@$@$@$@$@$@$@QL€Βή(v^™Nao9ƒ¦        @!@aoq$‡A$@$@$@$@$@$@$@$@$`ž…½ζY±€oφϊfΓ#$@$@$@$@$@$@$@$@$@φPΨkk‘         D1 {£Ψyd:…½δ šB$@$@$@$@$@$@$@$@m„…½mΔ‘         €yφšgΕ’Ύ PΨλ›          Ψ#@a―=n¬E$@$@$@$@$@$@$@$@$Ε(μbηEιφF3h         ΄φΆGr$@$@$@$@$@$@$@$@$@ζ PΨkžKϊ&@a―o60³_{© ­Ί½Xώλe0)λΪh\ΣώzHΔ”g_Dφ ξf5Ά-ύ%ŠN*`ω"     ˆφF™—SΖ?ƒ9χjbΛ£YŒΥΫΓ$μwOš˜…Ξ큦“»°cwy”‘£Ή– $LΒΣ g†60hΩZm=ψ7«Υ†›KΈϋkuΐ& h5.<_›τ‹‘     Δ: {c}„fόφ††#[1G ΥβMζΜs•Š;]GγFK{e6―€M|³&gͺ-UΎ‡>ή%·κ»Ζ5ƒY²(Έͺψ,p§†Xλη±Mfwiχ`ώΌιZΆ@\β@”ζ_£πα—νΨδzσμαϋϋψž-G·Ύ…Υ’ψΨUR‡•uδͺoeΓςz†K+ψA\D°v΄O*+ωLΪλg“ηk#8±wΎ6’ΐ}$@$@$@$@$@m‘…½mΡ«α…½αg=Ϊ‰3ڊ£χ3«-Y·VHρώpΫ `„I–z+qF;σE4Ÿu5UΝΚ«·ν½ε-μ AόΥμυɜ€ά9xζώ\u·MRAiΣςu(i~JΝxožΪ%oώY›τa$‡τΙΟα቙κΛΕ5ΐUžΧ½GΟ=$@$@$@$@$@$@m€…½V(3”;£βΖΐd3ο–‹¬Ÿ{Ζh‡x·τγίΰ£B-Σlή“‹„SυVŠ;‡OTΥ#PδŒΞpYSYψ>ψXΛlzχδG1¨G'άψw3nM‰ŒAš`Άφψ^œως2Ϊ΅·ά+―φΝ8·3Š{dΒu³Y+ͺό­=Ύ_ΤΏ‚=ϋ#eh*β<„½iγΒΘ%cοM SOdŽͺVφIΗ} ~ŠΜd½Ÿ*‘φDu=:t鍀Τt€κ‹Fθπ{ŸΗŒρZϋJ¦γ£Ε%¨©»ŒNέ{’χΐA6$^β2½ Σ[IcΓ¬™γΕX/„―Z£έQ»o5ήZΉΕtFmω}ΖΟ0=gˆΪ\ε16κ™n΅>ΖaφkO UύpλŸ Υm]¨y©UΥUh8W«θŠΎC²ΔύΞωwΕ+ώ<ζ‹ΦΈωŒ½ό2œ>Ϋ³ΣώzHΔ€Ύˆœ!NΑωy1Ο ^dμν=t,†Ή„θΕ]ο Όοz—ΖαD€ΌZGrY³ΫvΦƒ}.αφ`g=˜eηVΞΝg<_»±Q?DφωΪΫ^ξ!     Π °7΄ΔΒσDΖήJ[β.ΰ_Š»€•ΰΧΌZfί3ΕΰEfԌρ“'&#Nν³E«–cΫ^ύa@ρYŠ»―';ξΎ.Ε‡Ο/F™‡}ρΉs1ώuoιΗ‹„`X―οQT(Ω¬ν¬ΔΞĎ©xœΣ„τŽΨ·y»~³ή ‘΄P{„’Ώΐ`ΌΗ¨4©τ>Μjͺš 5EXφΖrœ•ϊ’Y{ϊ${κ£θV;v{doυεΰZνΎ•B΄¬ϋAj> Β^ X;-­™§­X‚m.Q³>υ‘I[θΧ^/]&e©Pΐ„bΉφύ!Ψυ`‰‹0#¬~°»|γς}DςΟΧޘδsH$ž―½-ζ     - {CΛ3V[£°7=o7Ξ(Εͺ<γΉ*Ε@ΗE!Kq?©=₯}εIKΕ“―‘χ?iΉŽdΥ…XφΫ?jρg©^Xμtdα=μq~‰‰ε8£Νω’2~sjΧ‚Πpλ_ω#±‡%%ΝΧ’βΜάόͺψ«4f·φύψ)gΦ"LΚ‹θOτSΑσ™λP’]Jυ3ϋΦΰ•ϊ“sgύ²4q―œ@Η3ΎMλ!^$¬™/Φ(/³ΎP σ      @T °Χͺϋ€ A}Ι,]!nϋV‹}"»kBf/œ­fSuώ£# “…*‘‘wΉ##―l‚\fίκEΨΈ[ߊ‚²Λt`D²OιλΠΪEXWδήlƒαΆΤ†s<ήεR0υ?^ΒhΗ Ρ'vΌ‰?m,ρ.f°Gχy½ύΆ7(Š]i˜6ξtYˆ›M΄ΧΎ}'\­έ‹[=³εš¨μ(’ °ζχL[πFͺُk±σν—°Cβ’Τ«ΘsQζŠO Eplži+BtίΎMωάD9³νxlΒN+λαn¨žξT»Φά§ό―†ύXρΚοqR>.CΩmkΙνωΩΦ猽υ`…‹3΄C!φƒ>6«λ! ₯ή$ŸΉ|ηλˆ>_{{”{H€H€H€H€H€H €(μ )ΘmŒΒήΨs½ν8£—O΄[ϊΎ.FT):. YŠϋIν)7uo{γ—(ͺ‘ύ•Όό4«OΆ«ΕΆ₯/‘H ˆJυ γǁŽ[΅S6ΙμvΈγός˜-^²;_δ8jωΦΕX΅Ω=‰‡žΒ=Ξ/Χ³v=ΒΎ;‰³5•¨ͺ9'•ŒΎΝ`όž>υΗx8?CtUΡ{XΎv— ‘s>‚ώΚ'>O‡ΡcξΖΐΙθqkGΰζ άΕ;tν‹x5X«ΟM­QΏ¦|.κ*ΰx0vZYr Σhm‰\ό•ΩN,8|1w φ=Ψυ`…‹ΣΦpω!˜υΰ΄Υτ»δ3Χy‹ηk>yΎσ|mzN±     @›"@ao›rg« †ΒήVCίjێ3ΕͺδQ:.ΚZŠϋIν‘a/–Ώ² žι>ς_„όJ†U!t\*„ΏΡ"μ•Ή…c[bi5ΞhoΎ(IT~,’¨(׊j±CˆwΊe‘pŸ .›DιΕ_Ζ€uΨ…½FσZ²ϋΜ§+ρΞnΧ¬–φGέz °7ΐΜγa     h›(μ΅κWιŸ=X’‡>τY(ι)μ­Βƒ Œ QΖμΛ(#―₯ΐ³#ΙfΤaΩΛ΅Gj9›y—ΪΠΗνY1 3>‹aΚλD πΧށBΟΟβqTσžšͺf‘uνsn4ΥβθΑ]ψΫΪMhtξ‹šχŒΰό.qG]±`ϊŽ|M+ψf}o”J‘vίJΌ΅œrpΙ™ρ<&ε8£ζ‡U}‰#c©Q©oί>•σs₯2ΗΕΌ~Ϋc^KΗu.ξmGΫzˆϋζΟ―βsS@ ,@$@$@$@$@$@$Ν(μ΅κ=Γ €.Τ©φάwBΚ -\šΛ@;ύ+™|ΚwγΰIχl΅r°Ζt`DΆΩŸΣ‡-κnΉ _]JΘΓμ…³‘ͺT°*μUκ -ΐ}ωίΒΰ!§|φx]ͺ؊wώπ?Α‰{“³7r0:47{΄nό±]ϋφΈZ E»έse\Ϊh―€³γχDLyφEdRξΜ?’χ^ΐΆDLϊα‹Θ’컈βχ`‹l^ΦCψΕ¬‰.c.ΥGyE›DΎήvbά]S‘?^λσΥU\ί0γs₯΄aT½ŸΑΈΨie=θw)ϋ„d¦’±wΪ‚Ÿbd²²ΣΏ°Χ― Ϊ­Ν >±¬pAXύμz°ΘΣp{ž›•Gzξγω: ι ζgΐΆY€H€H€H€H€H€ΒD€Βή0nγέPΨΫΖl0<ΫqF»qTΙKq?96V²KW(q0χWώί@žg±λΏ,OζpΫιn’ΉOαŽσΛ,]ΧGn©a_vΛϋ£l=ϋZ37I€H€H€H€H€H€Ϊ$ {­ΊUώηίR§TztR5ΆΌςK7Xνά=XSϊρoπQayΰF m\Ν­„©6τ@šaΥΛΏƒ λάΊΡ>$"-#}ށτΜ1Hν£X•—’5ΰΏEΦw±³vΜάί‘ιvŽ#Σ­Ήΐ₯²υxύέOΜχ('?2˞ίΣ&ŠμΌ“5!ξ™βχπΞ‡·βιׁς€49‹―³γμG~)£ͺ«ŠWbω‡ξΩ|‘P€§jυ _Ξ†δ?Axrζ.xύE½FΑj‰'+‰ …r@+ΠzΠξΐ!±vΦy­iώ=ήΜΤpΒsOΚ‡”ψ[υΧ°go‰ώΩο–υυ`…KxύόzPP™ζiθ3έΟϊόχάΗσ΅ί)ιvΠϊόt«Ξ$@$@$@$@$@$Њ(μmEψm¨k {ې3MΕvœΡfU6ΛJάONΈ`GVΪΝ±δIj,YJtn;εšά{œίvœQφZ‰K‹x₯HB‘©&‘ΧήΧ“jάα$Οά;Fέ©Η9CU5{}@2+)wžΉ?ΧΓ&©@ MCΞ••ρu\Ϊmλ!}ςsxxb¦ ’\¦WYL{ δG      θ @a―U?IόλΑOQ˜―;³aR–*ΗD ’/³’ΖŠΐΘL-0r¦ψ!ςά髨ΎίΠfύ°©-Smθ”6¬^„ »Ε£»‚|ε?ΉyΓ5n¬6ΫLʝ+K9–j7 χ’χ½³˜mD~ό”-Ώ !ξ\!ΔU„³¨)Ζ¦C0Ε!τ­*zΛΧξr3E,όR žβfΟ€Ÿ[Ϊ9sM–½±g Š)ΩNόϟ"£8Ψ°Λ_YΩλ2s}͈ ρ,4ΞRΘφν΄²ά¬άΑ³‹sS)>|y1ΚδρšZr};χρW1aD/}GΣ~¬xωχ8©ο1½ef=Xαn?½)Σ< }¦Ÿ§τωθ½/vZρƒkΪμ:jnΓTϊ˜•F#ρ|mn°,E$@$@$@$@$@φ PΨkŸkκ(μΥYΔΚ–ύ8£½8ͺΜΥRΌIŠΗ±ώωΧpPnLzŠ•ς³K_ΒN5`f;έl2χAŽ9›«!’Rη—Xϊ‹)z?lμΞ9>yhν"¬+’£ξΐΘ?ΩqSΥαλ6)qχΰ―C©šΎ> y@Jςaλ Œ†œ₯φ•Ν@e|—φGΫzΘ}|‘ΈΎ \#s>ΥΡƒ ?’      ΄IφZu«τΟΏ,ΡRώφ₯ Aε,‡  ϋ±κ•ίg΄‘™|φ<¦HκρΝxύ폏@ͺ£ΫΈš[ ) Sο'{λέχ?ιΉC΅ͺu{±κΧ˼ǘ…μ΄"c©>Ύ€΄ ΰd©‘ptψ½ΟcΖx­Ν`…½ŠaIiιθμ685–㬍μΚΞVCαχό§^EήPIͺ6.‚­o‹`λqgOΪ».Τ4 ςdcζΒ§1,A+λ>H\TbΣ+…=†ό•KΔ€ΎˆΗγάδώBb§4·­‡ψ±aώΜρΪΐ „»w‹y6έ1Οpj–Όωg4Κh₯ΎδqΘE|mλcu”kcΉXξ‘X½vΠλA²5έΆ ζ‹…ώB±t›π”μ}Ζσ΅s¦EΓωΪi+ίI€H€H€H€H€H %PΨΫTc―M {cΟηφγŒφβ¨n„₯xW ΈŸ,€TΪ(ίϊ&Vm֟"ζ>ω |aΆΣm€ζ?„5Ξ/q·gtημPΒW\:}ςE–VqέDΌ‘μλψ Ξ8όΰε'0Έ›ΆK· EόUkΥί<LqΫT2Ώ큂²Xά­οfCϊBjΧqiΏR:jΦƒXΟY8)ŠΡώ+*Ηω"     hS(μ΅κNιŸ=XbN(&ί­­vΫTβν;qμΘgΈί½S0θŽ ΞŠx_=ε¬’’‘ͺ’(ύ¬7;tDάΐω£;qS|ihs€'gΰξδΫ…nΰFΧ;0ρή|Δ+{ͺ‹°^yΤO—ŽκρWN£¬Τ!Q”ƒ ΚΡ†γ(ϊΗ?pδh%ίƒG cβxΔ—­Ηλο~’ΦW3Ύ._jqτΣ#¨?T;lψέ0Au!–ύφ^bhύρi’·†RμΨς7ή[‡„1cρΝ‚ι¬dΦuΌτ9μάγώžχδ«ΘξΧ•’xq\A{tθЌ³‡6‘L}όW"&ρnCΌ{©z/ 7oBՍ3a"FU²ςj/ΉΏΨii=dQσ]’fΤμΗ¦ΏnĞ/DƒoOΗ€\νQVŠ₯†™•ν¬#ΗΈ½„¨™EΕ›˜»,p Ώ‚_¦yϊLο_Ÿώχ©Ύ±±nέ²@‹FxΎΦg9·H€H€H€H€H€H PΨ ^ˆ~(μ~Zέ8£½8ͺ›}β~žΒ^ΰ"J·ΕΆΝ;Ρ'χQ|ηώ|hΟΙq+·'œ…ΩN·Fθ‡ βŒ6狇―koΖΦ ‘!1gκl KΦYιqNeŸλTKΨ‰k:š6w}ΐQΨρ–6ρ9̚¬ΕΪ+ ίΓ»?qΠ­΄λP†ΎZυu\Ϊ―•ŽŽυRπ#ρΖQͺΙ¦Ÿβ)αΰ&      @τ °Χͺο¦`ήΌΠ[ΤΣƒ%z Dήχΰ ±ͺQκϋD₯‘S0χ©Π?PΏΎ„½’žώΨοFΚ7/Ζ*Et+Ώ m– xoη<ώ*&πΜλ]Nέ#l]ώςο]ΩG“Ζ>Їf:Dΐ>ͺ4 aο/a―ΒŽέ—ŽoŠΧω/©Gƒφ»Έ5qΎ4Ύ;ήğ6κ\‡„ΏŸsΤ”uν7Ψp››Η1τΜ{jΊ:ί=ΛsΝPxμYA|vλ/DvZYI"kο,‘΅WŠ(v)ΩVˆμg=ΫXGΞ&L QΥ Na―³Άρ{ υ`šK+ψ!Ψσ iž†>γωšηkγ5Ε½$@$@$@$@$@±G€ΒήΨσyKŒ˜Βή– ωmڍ3ڊ£zΰ0χσ2z4δόh4¬v:νˆδχ γŒvηΛπ©ΟaFΎžΒ"·Έ»R(θλŽžL^p·kf‹k©ΚΞO³uΚΠ’bήΟ[ΰy OΚυˆ)ΟΎˆμAέΕj±mιK(:)•›$@$@$@$@$@$@mš…½Vέ+ξ’ž³πυ±7g>]‰wώw»hAΕό™βι3ϋΔΎ•ξϋjχ­Ζ[+·θ=%daΚ΄©Θ‘ͺο“Άk*pͺl6ˆ;η_)Θ½*2†έŽξz!ΞρΈ%₯쑏ƒu…εξΥ’ 0wΑ#ͺ˜ΈΆDΨ²B²Ε½€λΣΘ?Γ΄œ!Ο~7jаμεξBΘ΄ά7)™C δ₯MΥ8Pψ16lwŠR‘χύ`Đ τN0κι<Κ‹‰~βή‡QΡHή€ίέŌ•ΨςΖ‘X͘λ=θψ¬{pοχ¦#Υ“§rw~αqτ?©bޘšC'aζΔ< δξKΟΉ6ςήη0mΌG±©Rτw Ιγ'#EιΟc-„ΖNkλAνs’`#e.vu3Œ~O“‡>]»ˆnoβΚ…³8Xβ‘ΝΩΣΆ`?§e#{@OΥwΧ„οN ίŠd=ϊ »’΅Ο‚ΝMŘ+¨«Ψ‰“ΆφΒ½ZΓγzπ˜vΦ>F‹ΦFεVšηk7ό@$@$@$@$@$(μ'‡aˆφ†r„wa+Ξh3Žj …,d ?–Š„)γΤ«›Ώ½P‰%Ύcυj_α°Σ ’Ώ°­ω’ % Σ%5_kΒΩΟv‘Κ@ŒmH§5βšB|;W$ΘQŸ\Y]ˆeΏύcλ_γ‰Βυδ«ΘˆρΟcηΫ/`ΗqCs'      @%@aou,‡E$@$@$@$@$@$@$@$@$ΰ›…½ΎΩπˆyφšgΕ’a& ‹Μ¦ο{d6 ³9μ.Ά Ÿϊfδ+Oψ;’χ^ΐΆΞ9n΄­)σπ™OW‹§‡~g@,@$@$@$@$@$@$U(μ*wΡX         P °7Ω…½œK Ϊ„Œ ’†΅ \m      Δ {cΙΫ+         €J€Β^N„P °7ΩF‹H›‚yσ@oΡx=3φΆb6EΈ’ΘY4•H€H€H€H€H€H@!@a/η         @Μ °7ζ\ή"¦°·E°²ΡPH.ΐ܏ Ώh«Άd5ήZ±%­² ˆN\Ρι7ZM$@$@$@$@$@1L€Βήv>‡N$@$@$@$@$@$@$@$@±J€ΒήXυ|hΗMaohy²5         fμε         ˆAφΖ Σ[`ΘφΆT6I$@$@$@$@$@$@$@$@1N€{c|pψ$@$@$@$@$@$@$@$@$‹(μE―‡~Μφ†ž)[$        X'@ao¬ΟŽŸH€H€H€H€H€H€H€H€b…½1θτ2…½-•M’        @Œ °7Ζ'‡O$@$@$@$@$@$@$@$@±H€ΒήXτzθΗLaoθ™²E        ˆuφΖϊ ΰψI€H€H€H€H€H€H€H€H  PΨƒNo!SΨΫPΩ$         Δ8 {c|pψ$@$@$@$@$@$@$@$@$‹(μE―‡~Μφ†ž)[$        X'@ao¬ΟŽŸH€H€H€H€H€H€H€H€b…½1θτ2…½-•M’        @Œ °7Ζ'‡OζtDώ]pk§vψws3œΏˆK—τšγΠ½K{ ωk\ΏtoθΉE$@$@1Gΐχf[ΗΑίmέΓ   ΄φΆ_ΆζH(μmMϊμ›H€H€H€H€H€H€H€H€Ϊ& {Ϋ¦_#jTι“ŸΓΓ3…MηQτή ΨVQζΡΏnΕ€o$‘_Κmθz«^°~ ”–ιΚήγοΔΰ”Nz¦Λ8sμ,*Ž]Τχq‹H€H€Ϊ<sί›m΄us|$@$@$ΠvPΨΫv|ٚ#‘°·5ι³o hΌξΥ:άΩ«9œŸζ8…ΌTBfϟΤn@Υ§+±ό·‡Ό‹Xnσ:–½ωc7=?νž'μΦ‹|t΄Πϊݝ ™^·Aχd±ϊέ"°Ά_œΒήhυqΟ<δηδγΦvΝh:½;ξ‰Μ‘$`ΞΒG’XW]„eΏ]޳ž–ΖυΐΠoφFg|[p_όλ4κTΝhG Χ ]oΪ_}φ*O]υ¬­ŽλˆΈŽ"k¬ςΊΡ,2ΚZΙΫI™‰HJŽCgΡΧΏ•6Ϊ kΞΦγΠ§ Κ§˜|%dގ™·yύμή ;vΩ΅Ώ·ξΐΤ.ΟΪΖœψδ3œnτΨέγ{"#§7:΅ϋWNΧαΨ‘ -ΡKμ΄Ižφ}αy}ΔΉΈ"ΞG‚9Πφύΐš$ΠJΜ~oΆŽyί?]Ίw@‡β·•ψέuσ54œΊˆk¦ 2χ{ΙΦο‚Pύ4=$   €Β^Ξ‚P °7Ω @ΤH‡™MAbg ιδ|πa ΩΜ\χŠZ‡š4<ύnM‹K.ΐfεCΉZwtVoάε»ΞOίlZόH"&<υδν%zͺŎ·_ΒΞγ-ήiltΐy~ŽΦQZšŸvΟvλE+TΪ­ˆBΏ'ηαα™ωˆkߌƲ-ψhsλΨZmF‘ί[UltLao΄ϊ9q ξό€ϊO\Σηk°ΆpSˌ$. w₯FG4γBmN|qΞR?#ΏsLϋFͺZηΐκEΨ°»Κ»~bod7]Υ#Χqς―ΗP­vΣwή7IβΞFεuNd‰-“²Δj{υΏΏs'8³Ζ^ν”;ΪΡΛouDZΑ` LvΦΥK]?ύώυwƒ1ΗuΗΐ;Ί’½Ε\©ύgk­ˆˆυφ#}λφ‚;‘κΰXρ>?ֈΖF_cΒκΎέ00«’zwP‡Θg!Ώ4‡VΥ`wa½¦ΫΊ‚ŸUžώiΗΦΡP² e[±εŽ–Z€΅οΝ0™ΑwυDοΤολ_½’eΩ?覫Ώ—,ώ.Ξy€ύίƒϊΐΈE$@$@$@ PΨ˜K&@ao`F,A¦ $d!ΡI\h¨(γ±yӍE`ΑΆ8Ύ΄)˜7οτΈ―Α’χ[θZUΉΣΤu/Ω^ϊ]¦Αm;,¬3Λσӎ=ΑΤ‰–υ`ΧΌ1‰ΙˆŒΛΦcΙ»ŸC+p]»vn9’JXžΧ1ΒΕ²“ΒΝ%άύYš –η§έσ„έz‘¦ωVbΔοζ8JΪε-~w±π›ΕY₯5ή-―[»FφΈFCΏ»2]ΧhλvύΗ…φΝο+Ϊόξw0<, {ƒ%ΨZυοΑύ“§CΡΌ^=½«w΄Μ?‰?ΒδQ£ΤQž>°;Ž”Zρ8Μ~ν €*5κφbω―—Α@Φ ΔχΖθ{’Υ±ˆΡΰ„δžv{‡N‚ΎŽ„±ώE’=p׌Tτ’+ηΒ‘CΪΫyP?δδ&:ΚέΔ—UpωϊΧhΧξ47^ΐ‰2o‘Kα)9Jω· ¨/9#jŠaGmε-N«;„ΥqtΕ)Τ™Zܝ1fLO΅€Ÿ™hΜl‘ΔDŒύn?υΛΠ§[j«­ϋ/θρYδ)‘ε¦t>»,Dζ{‰Μύ£όΡα1ˆ@φΎ7[z ςw‚ΏΎΛ«qπΣ/}±σ{IiΜτοιόiχ Oσy€H€H€H€ PΨkˆ…;- °Χ"0'?R ~„9ίΣG”o^ŒU[­\πΣp„j“γKž‚§<€Ύ‚q½φ.mσΒ^“Χ½€9GΏK0Έi€ιuf}~Ϊ3Θ~­hYφνLΔ”g_Dφ ξR5Ά-ύ%ŠNΪ稦};΅IΗ­ΟλΨΰbέGαζξώ¬ E λσ°{ž°[/γ4ίFlψέ<gIϋ\’ΓοΞq"ν̟7]½Αε’ΈΑευ–ΎΑΕΥ±• ;λΦJϋ’lο‘Έ=k,ϊήy§ΈiΥύunΧpl1χ^Ÿ’Μο^φsG( PΨJšαlKd=" Ϋ‹Η½ΧξΒΑε-{βΟ`rφ΅νΟχ/Fa©ω@ZΪΔη0kr¦Z·²π=|π±GΓ„@ΘΡyp2rΎ©άΏΧΥa–Ϊ€—ξ!„¨#BT³"]ΉNΨΔ«ϊΠΒ΄Υ.aυW_βΐ†jxKœ½M‘Ω-lτnήxΘP›6’:΄ύŸŸΈl\Ξ±WΆ±-ϊ/θρYδιv¬”ΞgAΟϊ!ΦfΗυμ}oΆτ°uaοM4V}…†ΊΛΈtρ:ΪΕőθ•ΰ΄ΰ:>/<Κ*γΜόςw‹ΩίKJΛr=ΏηEιόIa―Σ'|'  hiφΆ4αΨhŸΒήΨπ3G)γŸΑœ{΅λG²«·›Ώ ƒλ₯MŽΟ΄ΰ08v‘RΫτu/Ι`ϊ]‚ΑM{L3;σӞAφkEΛzΖNYΌUUό–ΈΣ>°5ƒ±3@ΣsΨΞΌŽ.vn.αξΟ“`λΨ™ŸJŸvΟvλ;N+υcΑοVx8ΛΓ%όξ'DfβI³ΠYθؚNξŽέ-£csυgcΓξΊ5ίΥ` ύϊτ0aNΨkJ₯&!μ]ΑΒ^‹ΈΫΊΪϊψ,Ί;ΌΕ₯󙛀-#: K]2Μ…ΧHφF$Π2μ}oΆŒ-z«Sϊ`Π€[Pwπ,Ό~uΗπϋ!Qω$^珈§”?νΐΞο%₯M { |‘   D* {#Υ3Ρe…½Ρε/ZΩβsηbώύΪυˆα£BΑϊΘ’›umr|>‡‰ˆW.‘4œC£…hώ`αΊ—4Lϊ]‚ΑMsΔϊ%ΕϊQ_bΝ™±•τFΎ3cΫ›ŸZαϋ-λ!(;ς0gαl€(XφcΕ+Ώ‡―KδΑ’ΚΞ`;K}{σΊνs±?ά\Βݟ=*ΑΤ²7?Υνž'μΦ f˜λΆ}Ώ[β(—(π»=*­Q+ˆukΪ\!μύφͺ9Ώˆ†²αό•ώΈct†Ϊ‚Ya/θwΣΔΫzA {νx8.9cΏξβ.ƒΛu»…l5w¦e ‘›ςX ρΊZ“ε[QtΠG†ZˆϊJύφΈZΏ;ΕM cG 9iΊέͺ5ΡτUjNnΗξ#{΄βoŒΗ04)_νΪά—Οώ»KK€ΞΝ,ŒΝŸˆD?΅;qμbŒ:ύ{χuΈˆΊΚBμίΉŽ ΕώDdδ<Œέ;γFσMtΎ-½b¦† |u嚳q΄ο(ώόl œ4%O_š©>~ιRΕVΌσ‡ρΌ‘„pφ2΄Ε QΚ`M”τͺkΪa`Ίζ‹³{+„θΦ3{kw ωNotνπ5ώύο[—άμΈP{7ώ­ ±]»vΈΩπ%Κφ+₯ξˆ9ΙθΥ­šύ5:φθ.Wšpιͺ£’(Ωpα³ZTžςϋφήΙ©·‘g‚žpύzΣeœ―¨Gω_α­H/θ…[Ϋέ‚λυυ8φ0dtoτκΣ ·: ΏϊUΟͺGΕ39u]. °aO dZΐ χ@‡†'#ΉoG|­£πoΑ΅Ϊσ¨(σ%E—βϊχDbnθ‘Πqβ€ΠΙ9A―^Η…ΖΛψ²κ<*ΛeuVπγ³ΖSφNW ΜIDί·‘«°σͺ˜φΚΌΌ\׈Ϊcu¨ς\ŽυΧIΜηΪΤ\μ„”‘ρθΥΫ9H‘Q²²§ώYη#C΄θο½Ρ'ΉΊu‹ΝρΊήt›Κ/q¦ΚsΝ;K…α]:Ÿ5ό§/tΒ€!·ιΆ @g+ΞαX‰ργξ­ϋΑ>OλσLζgεΌΤ,ΞΉ}Δ9WΤΏy•ΒΨ·"?|Μmθ€[Π|α+”~z^ξΠςvpγΣΊKΚLs»‡Έ!Ÿ³Ε\«kBέgυ¨;g,Τ6_Oρ_/ΑF9Ώ)ζ…Ηχ@\ Ϋ Ϋ Qxέy?δyŽ·β­nψΈΔ΅Šί-O”V°ώ½ΩΉo ΦνΕo‹‹ο°vΧ/γDαYΘgψšhΠXBV*Fά₯έ6z΅κ μ.tώ*΄σ{Ι»ΣΏ €σ§½ίƒή}s    "@ao Bϊ0uZ’ΦWŠ4ΦUΰΔώνΨΈUΏq=Β^=`xΑ£“•‰T·±U’όΣΨ°ΥΧυmœζΈ$"χϋγŽνzΔ­‰诈AΕ«±¦η/JΧ#DxζΜξ5ΨΆΧ­^dύ ΕψΒ=_4‚ζό'ΚJΒήΪ}«±ωhWδ}{4Τ―CU•bϋŠu΅ημΝΟ L˜5YCUα$š.’ΆΆŠ’η]£‘Ψ₯=.TaΓfy 9f•ιλ^τ;p-γw»η3«λ( SŸόzuκ Ξ·»πΡFσ]B6ξ{πΫθ!_¨όΦΉζ‹Ro"z‰ytιΔNμ©οƒΌ\ λ!-NΚGΖ5k’˜xb~VžβzŒš5ύΕŸΒ^ΣσΣ1ŸΥ·pp b=ΞΣηž*ηέψιΘ•Ύ ŽλρMΥ8TΌUπχπμψ/;e€ŽνάΗaΒε‰Y/ŠsΨFƒs˜TΚά›i“0sR&ΔΟ+|yt+6h γpίχΗ‘‡ψ.»T½ΣύwœιοΩJ«Ϋύ‘vί£ˆk:†Σ%πe=ΠυξΗ1:o€Ϊia―(έr~·:&–oMφΪ‘Ÿ8χN~·¨ΫPΉw~β]JͺUν!\‹ΟD§¦M.}u?Άώ=ΎpμΛΘ£8ώY‘Κ5^΅;ŒϊΉχOžηoO©Šϋfέ¬ωλŸ"’ ŒμΗΈέ½„ΟOg,Ζφ#ή?d“rηΰ™ϋsΥz>ΙtΆ*„Ωχ$£«ϊω*Nώ΅Υj¬³+ξœ6IΠηφŸ@Y™Τ₯’0'©βάλ5_`Y{ŒšΨΚ&WO Κί=§‰‰ψζwϋ©Η&ψzΏ.κK­/ΔΓ³„xΨWAύηKNΰΘΩΦH+€ΙFŽΦ*_ͺΕ‘Β:θ‘JG£‰‚Οw5>—kΏΒυψΫoΤΜΥFό°Κπ‹ΦΓ<“­ ””†{ ˆ‘£ΤΫOpΉ²{ώ)Ύ©Zΰ5ΰ;Γ1x€.μtvaθsD“ΊbψŒ!H4ς±sβύΛc"`±Χ) v|€5žCββ‘Q‚ή~N†ηU’L#Šυ7V¬ΏΓƒPL’xΛξλAτwΧ”τςSωϊι±f[fΞIψ}oΊ Σ|»|Z¬χΏ{―wΛ~°ΝΣΞ<“ΖcιΌT$q.ολ˜'§‹ŽβΔ©RcΪf‘=}˜š=]Γ+ψsG0Βή Η'ζڝyΙHκν}Žq?8χˆw«υ$]­ͺ‚JΉ+qΎ*ζφnΟΉ-7χύN.wˆ@ΏKΎh•MiΜ&3έχž"Ύ3γuk›ΔwωΊP~—λMϋΪκ3fX{ΪοΛ¦“g°o—cνΩϊ½δέ‹ιίΑώτξš{H€H€H€H  {"b(μ5©­ |l2zΗμCΎTΆ―Ώ+ΕξE‡οHογ,αύ~tλ[Xν‰IΗΣDΖΖyŽŒBθuΉo&RŒ‚M";ΰΛRv@[υ1ι©Η3Τ)6‘μplΦވ?ΏopαΧ— Μ|νΗζέΌαž›γO[K EζΞ ΗΧσΕ’uIΨλΧ§v`Ι›Ρυ ›σSαωC±ώβq_φ6–­Α’w7y6έ‹~wΑ ©ίE«vΞgvΦQΪ=˜?oΊ–5χ°˜ο{ΜΙ·ω"Υs10Ϊ0ΰŸu5UΝΚkTΕΉΟΧ5WσσΣΡRΨΈ±$ΞΞρ½Χ–¬Η[+€οZɍ¦ύ„F₯O~OΜT”‹οU!ϋξ²kg:ξϋϟ"ΣρϋcΟͺ…Ψ΄ΧγϊΉ°φξϋ†ιΉCT»λKVcι !μ΅λ΅›ηk΅.`~^Ϋε’t”Ž™/Ì~S9μPή*‹>ΐkwJ{›Ÿz“ΏΟβ3Δz"πzoΏ#—ΘΏ#…­Φ~ŸΓΕ{¨χΨν―­ΟOcrvΟvλ[нvύτΝυητ@ sZΞοYxψεg‘žk±M<‰½Θ Ν|ή“―"Έv#λΡΏ,ΖjIΨ›ϋδ˜0άϋbοs˜s΄šοMŸΟ€ουKΗ7βυ·ΧΙ yog=„ŸΜš(Bή7D™^ρn6˜=έ…°7Λ†°·εόΜhX7ά(μ΅CΌηL½ηΘϋ7Υ£ΌΊ]ϋdγΞΫS]­Vξω v)yε—A}εpΓ™ύ¨Ώtγϊ#©*nυφφ»σ! IŒYfoŠΫ6z"νφ‘j«_}ΎzόS©1θ§©n/*ϜEη>™Έ£Ώ~ΗgΩ?ώϋͺ΄πiw?Š~]:αζΧΝθ?©}΄“pΓ™½ΒΎΛΈEd V_ν›Ρxr3Ž}αύΓ䌟aZŽφΓ¨ψ‡e΅ΏXβ{aτ=ύ‘ύ^Ύ‚Ÿ|†Σκm B σ=!s€6ΞΎ Θ‚”ϊC'Pz¨=ξš‘ͺ‰^@釕¨Χ,vό?ΗτD‘ΧRPΖ₯φreoβόΙ―pUμΙzΕλάΌp'Λ.¨υϊdφCΟZΖήρρHκ£ ΎšjΎΔWMΝ’Ξ-ZϋνΎΖ%‘…αL­.\ψt€ ΠՈ_ŠŒ€ υΧΡ)‘¦iYς”Κ_–UβΠ~­?­1ρΧ‡P°©¦Qν·S·.Έ-Ή+:…\؏Μ)詘-JΧU› ΊυMDφΔ~ͺPϋjM-vo―s %”ρwφEίήJΖ^‘ΒΊCGτMΡζιe!ŽΫγ)ŽGtαέυ―.γ«σ—qωΒuάwuΚΘ€ΎΞytΥ…Ÿαd•6Ο‚Ÿβ«<•,ΦiοΐΐΎΪ:·ψβ\y£Θ^-ΦTr]‚Θ›ψ|G™8ο8Όo0Ÿ―Φ}‰³5ΧΠ©Οmθ—άΕQΠ}|ΚΞή£!Γυ£πͺθο+\ΈΠŒφ·vD\ο8$φν C±₯£Ε°Όω_Θ"άQ( ¦κ‘ϊ’S(=βž]Ϊ²|τ˜§½yζbhΠ―rΜΧy ™·γξLMΩkΌFγčƒ7r\GεΦcψΌΦΥ›`Ζηώέ£tήX₯³Ϋuκ„n"[zoq7Ž·ΧF=‰£! ΗeHΎόΠ(ΞΜΞ¬œ_΄Ά­/>Œ~œŒΜoφί…βKάyš”‘xmw€›ˆΥ븝ΦΏ7εlΆj&Αv¬3s+OJΓΗošsϋ+ΔMTΞ¬ηφ~/yυcφwAΏ½ϊε   0A€Β^X$  {"j£„aΘ$λΓ«ΩάNTΧ£C—ήHJMGΊΘΐζ.(JΔ€Ύˆœ!Ξ‹žηq΄ψκ›DάkθX s „/Šμ~ Ό³ϋωPΦߏ3_^AמύΕ“±REf a―zyO.nuQo₯ΘΈzBΔGβϊEŽγ’ΚΘ+ ίΒοΡ!ˆ‹σVΉά=ωQ κΡI΅ΗχŠq]qwύzΔΉύ›Q|άϋz„d€ίΝ€±aΦΜρ‚‘ˆΙιa:?uΊCΙBϋΦJ!l²ω²?ΎΦ˜/Φύg$μm<΅₯ΗΟ’λ LŒͺ_‡*^ρίΨRbίNΨ›Ÿ‰˜ Φ_΄ώJ‹ŠQΧά #ΖηΈ‰)} '­\χ’ίCοwΥ–Οg6בԏα|πu\ΪζΦƒ,ͺ5ΕTχ|zM]aδψ1ZviGƒ†φˆcVζ§ςτV[ίGψ νπqάφzΪsρ¬(ΖΎ²jτ”μ©Ξέ(ύψ7ψ¨Πq=^ͺ;]Vθ)γŸΑœ{Η¨; mΠ‹Zή²Λ3Mˆg9ΔΖΖ6eΰΑό12Tροyμ|ϋμ8.Μ“x:m4γQΨήωΪΩ‹΅ym—‹,,ΌTW‰ͺκ*4œ«ΗUq=₯ο,‘AΫω{θ" ΏΗ ψ(#πύϋLˆ Š›šœB“¦Jμ+ήƒΖφqwΎο#;<νsΡύ`eΛnm}~1΄{ž°[ΟΘ†Pν³λw?ση΄€ίοΪιmWερέFω;e–ŒΓμמ@ͺ:aŽcύσ―α Ί­ύIF¦({Ε5ΪN=‘9BΣ±Χhu¬Ο.ληΝρΏξ+M¬’ΞMY [ϊρϋ`»γχ(`νχ’³Εΰίν {[οΑŠ-„‹…½vH{fΏϊ|£Φκw Ξ~γξΤNV¨/Δ'›ώg^M΅;ϊ"ό…Cψ#VI"JΜΓΘδŽ(?ΈέψqΜq“0υ™ͺΈΨ¬°·ώδl*ΐyΏΐ¨TνŸλΪ²·π·}ž'h!ΠKŸ‹Ζζ¨fWξY$DΚ’~ΨεΜZ„IYΪ]Ο;6όT³qθV€/ύΤΏ"ΫοV‘νWˆΑn/ΈS<LΙΩ+Ο%²CVd‡tvΦoάHOSΔ„WP±φ3œ‘ν: yΌwN€œohΏΈΟξ-Η±cW=JHEFαoŠŒΒš5WπyQ5*Oιε;§$!s|’*„νAι !²$μZ½,¦§ρy•ή†x.Rϋέ‚/5Έg8•Μ°ΆΩΗݎ΄4-2κλQΌΉΖ\Ϋnœλ8³·ΗL@΅f {ι8!Ώ_‡ŠγάK#ύΧ/Kd”ΎxŸŸπζ–τ4ά©έ2%Di§EfŏΡΑΪψΌj‹fxφ탱ϋ:τsWρyα)T:DΖͺθ·`°ΘP­ΝϊΛβΡξ{œvχ˜ΟNΦΰΐ.]z?ΰ[w`pͺ&ξυΊŸŽΑ)ŠbοΊ ΣΕŽ1tξ/Msg…ˆΆΥ^γS2σξ™y―>£R1lΈCΜUl8-V½—?xτg…gPσΜ£_‘cΧy)§ΈΣ{ #Ω„ckOβ¬4½;§τΓ¨ρ‰ΪyΚωΖ:e·έρΉ -½ΟΩJΫ Γ“Ρ·λU”νΥן­zGΓs—…γŠ]ύ J„•Kύξ•ωVεαq†wu|΅χ½ι>oDλ_})Ξ ΥΎΟ Ύ °u$ώܝεΜμ½6εFνό^Rλ·ΖοΩpn“   €φϊΓC¦ PΨkU›*(_`ͺQ΄j9Άνu+$½ϋΆ3X½v»6φ‘χaώSSρ‘Z­X‚m.‘£Y=υ‘!·—ZΆώπz,}_Κ>¨μυŽTbηŠ?bG‰Τ―xŒϋ„τŽΨ·y»ž€Αj½Œρ“'&«ŽŒΖŸυ Θ*9Ω!„,Ε‡Ο/F™6BΨβ⨫ΌΕηΞΕόϋsΤ=₯/"-ilR9»›)?œTέ¦)KMY_+Μ[ώσ˜_gφ­Α;+υλPΉ³~ YΪu(o!Έ5~ji»σSΚτ%δVB<’.žΩηŠlΨύζψ!Ψ½ξei^Σοώ'…Η|S―ϊ=Ϊε)υc8|—φ+1»RΖΟ"Pνά‡†CXΚοtΑŒ8ηΞη\gΟΠΡ—₯ωn.’W-­žJ¦ψ₯"SΌσ5ςώη1-Χq=ΎΊΛ~ϋGœUJυ y:.š°d§Σ ι=^άH2_άH’Ό mΚ³iΙΞ„<ΜY8)j‡ΨπΚ―p@ΏΔψ¬G1wVΎφύ/x.<•²/ε£i?Ψ=_+8^–ζ΅³’x·ΔE”Οžϊ(ΊΥĎέ₯R+Ϊ¦,«έ·Rάμγψ]η,ιΑ'Πy©³XοΟ8Χ{S)6,Y¬ϋAdς'eςu›;!ΰi•‹sˆvί-υCσΣΙΣξyΒn=gΏ-ύnΙοΒ?siQΏΛΏ jаμεΪχ©Γ4ω·σ’‘ι “πτΒ™θ+Žω,kγ|ΦΛuγ©ο¬ΒNsς7©ŽP,¨Ε‘xηIη‹Ώ—τjAoΩφΆ¨ίƒ {νvζVc'ΏD©›r73ŸF5c\-φo~ ₯ςMΘnυ“»‘¨άb€Jjܰ·»Φό n:Αώβώ‚ΙκιM§Χcν@‘`“xη3˜œ­έQψωώΕ(,υώAk„0Gk&9‚5‡Δ]’λœwIfŸτrY —Θ™₯e‡ ”‘―ΏQ…„Wqβ―ε8-ϋΚ‡m²ηάώ"»€P󨣷/²>ŠŒΌ=3ςŠςr™3*GΕ‰«z+’°KΩYϋi9Ž—KΗυ’ΑmΕχDFNot™:υθ†Œ‡ΖΒ6υϋΖ €§;3OWEζΩ«ΧDλM¨ψ{­±Xέ_ƒŽIŒ Εqυ£ΪBμ™-D̊δΪΧX­ŒΟφΡO9SφεJ‘%ωŸΊ8WmD<Β}μwϋiΒ_ωΡςRΫ"Ώ«—ΐB?Vα•ιη)ΊΣΧ‰φŠŒ•΅†Φ·ξN·ρ‰› Δ9₯Ϊνœ3‘·ΊΎœs€Ά|ωΪ=£·5ž~Ašg’mJ;fΞKΊ08W"Ξ›Gτσζ€o Ρvͺv©ΗJ₯c~ν΄{ΠηψnŐΙιθί[kψό‘S8R"2Έ|Ω¬'q4τ±…γŠ‰fόΰw(!η„Νο‰ H‡v"‹»Θγπu‹HΝ³±G|J뢁|oΖ‰…Ζ8nR;”Ο—-„ψ 5ϊ»ΙEυ‡DρCΎη»~pξ2°*μΏ lΰ.   0"@a―ξ³J€Β^«ΔΪBωLύ—0Ϊ‘ςĎ7ρ§%v· MwκKֈΗ[λβG΅²,<4ΚDδ!9΄vΦ™Έ`±žΫ―y—»eδΥ†)—Ω·z6ξVμ°ΗE'_4n‘„!i˜&}tΩ€šεŽ}l·oί WkχbγΦ=>JXΫme|αŸ/6ύη6ΏΌ…bξη ‘Έ"J …HZž{Vζηπ{ŸΗŒρšΠυxyΙ}nŸ?,ΦηϋλS”•ϋΆrέ‹~χ|”Όήκ¦Ϋ|m―#©CQŠ―γ~ΐόzηVωΦΕX΅ΩύZl¨LP*ΎE2rζgΨΉH~Ά²ά₯ΥΨφΖ/QT#5†lόΰε§1XΝΐ. }$?XςŸΤ΄%;₯zΝd!lZ@Ψδ*lΓͺς\ς|βnHΪ5Α‘΄«\<w•σiΌO决~η€•σ΅LCn#ΠΌ–λYε"ΧυΪ"΅yB€¦\6 4Ÿ”ΊΞKς˜Κ·Ύ)Φ»ϋoHYΜ,χ'Χ³Λ3€\Ό@yο°Ϊ_¬ΜO)»η »υ\·μ†UΏϋ΅†λOΗΣ’~OΑ΄/‰Δ“Jw΅"cϋKZΖvGοωO½Š<Η ¨ϊ~Ίin[w†|“ΛΨ9Ÿ}Φs:vdw}&sζL†xψ ΞόZ»Kt“.²ΟTΛ>oπ?΅ά·«Ω8y;!Iβ³"s όRΧU‘QΊaFcWΨ‹υ»l!·#™…½vΌ#‰jΡ΄›Χ.ƒ›nK΄yΧψEy»r€ώnΒ_Ή€\κ!l_ύ;8ŸRoΪ© SΒ^#;₯6κ?[‰MΕw˜ c"]Ψ+?ζΫMΐ+D…ΩBT¨ζ›΅>ΈZΟPΰَPŊpRΞ¬dmjψ7œOs™ΎΊvλ ~t ΆΨ% »„B‡?ό>Ύ\ΝΩΪΜΎ)˜i9V-\EυΏͺpR;xο7&ιwφπ(υψά§/< ›(12Ηy΄ ώλœΩ{θ*Κs+w‰`„„1„(w*•‚ω!¨ΰ•V{ΤϊWOνͺuyκ―­]vΉκ:O[]Οͺ­φg₯NυΌKαX Ζ‚ „Θ%$B!@€pν™Ω—yχή3{ΟΌ³³/α»ΧJφ\ήΛσ~žwή=σΞwžΑ€‘½qq^τθΦ 8{瀝ΊΛz@˜Vao„X/βΥν!Ψ=1|v L}½"S|»WΞ+ϋlίƒυ«­ή>PğeAρ§q,5νlAσΎγ8&―ΚώϊO^ΕK޽₯€NΈ¨Ϋ?ς&δ{d7"„„B₯%τ»Ώ‡q*ύΙΝ8˜ΠοͺψC„,HT·J#ͺ›RmpΪ―l‡λγΑΥ?$‹cjld9£νj²΅Gxͺ€œ‹ΡˆΰGmKΒq>O)ӊΚ'‚ΣηEψλΗ!#εΫ“JΎπbŠ„8^파ʻB’ςώ)xΟ6ΞkΦ5ύ ;^‡Κ‚—~­ζσΚΕΘ›[zƍ…ΑƒŠΠ»GWΰΜiΘKεΡ₯g!rMρΈ aoΒσ3ύγ=‹΅;•© %?š+ρήβωˆψSšΝ₯ 7ΒήΦz±sy”.ΚΠφ>!{ a3πΒΜ¦yn7•NΑ…YΕύλv`λΦSθž#OMλ7 AΎy’mˆη$Ί§ƒzZG¨β^šƒα7 EAπ„ίM»b"+Β.4ΔΊΏΤ'?β­aXN/\2μ"ές.BA‘ρTIΰ]3΄έώ»+J¦ Ε%E"6 χ8…ƒ;ΰx›ΔP<Υ†ϊΟΉ|ͺΕΎtΫ­ #[q\T¦Lχί@‰x\¦D<Ž2?Όz\:υڏ†ΧC ξΫΚυν‚§zάΤ,«Ζ2DV?L„½…q„½m{°fy”„3^έ…ύ1aza@°]][Τ4cΗΊ¦δχ―θΊβ­+φ£ρΦ½Ώ/ζx΅„½±‘k#ŠVΚrμΧJ―<}υ3₯^χγRdŸΨ)ύ¦NϊMοƒ1fl@ΦλΨΞ0ξVτΪΧΛϊν8|λί­ƒ»xšωŽΆmχ°ί­RΛΕπUjύξw$)U~7“dλbzΙƒC‚^H¦¦ƒXΏ΄>a_WΗ}·o8˜”†σΧ,˜H€H€Hΰ|'@aοωή’Σ~ {“Γ1»JΉ~—ε‰Υ"dόe”Ρ‘1ΦMΔΨ(H,εΈI’ μo¬)³PyΚMπΛΠΎxߞςUΰΦGB…Ρ6—kώ_‹ZŽ@͟ιΛ^Ϊ—ϊώ’ι?₯΅l[Œη~uJΩοtsί½ίτϋ§Εσ D!ϋID2³~vͺQ­~ŸΨzϊέ>rbr6)?Ή-Ώ{w•zlϋ­Σ~e»ϋγAΥΫχO΅ΩΪ#¨ΌτΟ”sQ\©Ά%αq€ςά"γΛ’Ζ)Χ)ΕΪΧžΕ’ur?^ΙgΛ+Ρ~)Χ“JϋB‹©zuΆw;#Ο5VHTΖUΫ€½Š8*†™Β«Ε΅zω8ŸQτΦ―­\ήύ7ρΆaΖΔ@Tw΅œθe»ˆοjK<.©Η»ΝΉžT¨ϊΤς…ώοŸΪ΅μ„ΗŸšQsΩ{}ηG αΤ'tσ…κmοo―~ηρηΞ#νξwe¬GγjΉΖ}Ι|X―tΪχpηucM#>}/Ύšΰ!=₯k SΫ¨;žυ΄’τοZ_όζOΚ9€Q~ήςX}ι<ό|ξ$³ΒDQΡγŽƒκΫtTσγ-·~†Ζ3FΡ]ao»ϋ=ΪPg$ {uά’ bkήΐ;«b_Ι3κ<ƒ‘…'Φwφ,VnV^›‘‘δί»j»Ε†•±6 QšDϋΕ*]aο˜Ϋ~ŒΩΛΜvEΏΚΓ{crδτΑ¨››―prHήά²΅Φ΅„ΧΥ‘Š{α€ΕQD|[φαΘ)ΰΥeYή ŽϋZD¨DπT…]BN₯ˆ€-˜XŠς² "ωp³άφ$ύ˜•ηφΕ„Ε—§PWΉ;w)νIš…JA*£Ϊ½X»²IΩ»˜Ρώ+.ΔΥSΜΩ{ΣπSΝGq°αNΒθNςΧ­'JGδšϋl…€²Η}ϋb٘[\π΄Ž›ΨρΏ_b•ά,€'Κ―+Γσ&€}Δ^[ϋΥ]˜‡a—χE^α…QΡ₯m9ΥΠˆΟ–5€Oά«ΨίΆG„ΛF —ΕΜyM„ωά‡,ΗωΝόWΚ²ee€J”ΖiΏί~¦–λa\Κ]‚+.Dς>R]‡υŸBι y@£Ώρ€ΖμYω%vΤ&aΌΠmŸόŒ”ίSfμEΨ«›/ΏŸD—/2ΗK[«œνΖ6uΏ?€šK '#%~Ον…Α%=Ρ霌“.>tΊgŽΆbΟW!™]”hnΊ*=Y‰dlžY‚ύ‚‘–·`Σ»΅ή`ϋʘξΖ¬tœΈ±‹iH€H€H€H@PΨΛn φ&ƒb–•‘7w?z7J ³΅„½JTΑˆ¦—Λ+P Ώ592”F½IZ΅Ο/py_ΑS>Up"A;VΎ½ΗeZ2dCΤ·Ι·Ήz 6μ”ΙAM.j‘^…j^WΛE£1yΜPt9{ΦUςN;£­i+*Χ(χw\ε΄Oδ₯}–π.EύEΧjΪd#ΰL΄ί•ΓVύώiραδσ"썾γξΒNέϋ^τ»MΏpπpΒΝͺŸ\Œƒ–ί=G₯³πΐ· Ÿd+JQνPϋ½ΣφPΓlχGφλ΅/ί‹%QCŽΪ‡lν‘ς½τΟ”s ΅_ΎΥΆΔΤyT^UΔή ŸϊΟΟ`rY(‚ό³ _ΰιϊOΧN%_hQm§“ΟBiύ|«υ$δ¬HΚXΏϊΌ΄hf|Lbpτ‚Γ’*妟–N[―B—R=O(@Ότk%›·~6ϊ›ψωΣΓُνέ†κνΫΡ*ρz;ΙωBΟL΅Ωϊ2‚O’σ3υxχ"μUσισΤι/a0 :υύ3„RεcΫ·B £ΎuσEΣn«ͺ} Η%ύ rυ_\W€|ΜϊώO1Αό-8ˆΚ—‚6ηcΖ?ΝίΩ£XύςΓx?κ%¦|uLTϑ uΗ3ΰ±e’aKλfy{Ν_1JH5Ά –½ωΝ'°©ο7pϋγAPΒ› ξWΚ1yΞx\dDEtυ錳'jπΙUΆo/ΧφΆΏί]5މL€Β^(‚X^₯οΌετΦ,qψ€ŸcBι`YnΐgKΓf5’ί1Ϊn"»ά”‘(M’ύbƒ*μ­Yϋ+¬Ϊκκε^(˜4χίx’}~X$ΐμπA?ήeθ€ζ&‰t»7&r¦YG¨’ 'χ―Ϋ.‘‚evΣφΣe3K1ΠМΐφ7ΏDύ1Ϋ„ΞUᖝ°Λ9§Ο="œΎ3(œn=„ oΥΩώEW}Ȍ”oŠ.m#ˆFgHΖΊGF™μΏW]Šς@΄δ–κ=ΨπIΤ{όrς0ξζA0$ΧΆB@ΩξΎ}π]π΄ŽεδΨs DEιό_‰ΞjŒƒ‰ΚN΄?lrWδΌ9}sΠχ’>θsqP€fˆC+EΪήbς°Q Šύγf½7G’’ —™>>ƒϊΏοΔφFhk›R–“―uyϊξgnl³i€Ž‘ώkJ{qεΓγ*˜xy€ΐle›~ϋ”~Ϋv›νv%xŒˆJλ%_πΈ!ΐ£mΟ>‚«' DŽ ς±νύz.A§€ΐο½GKδηΐCJWˆ»xJ˜=šyά‰vκύn&*ΥnΞΐ\τΞQn«ž>}»ŽΪ%UΆυ@ιτyӁDΤ7>mGπΕ’4ΊσΈ]‚ΌŸκ₯Οβ΅eρ•PZΗƒ”­e§ϊZuymψ‚ω»0ύαΉ(4ŒU’4«ζGι·Άϋ%Q¬τΗλ`­ζ—ήΐ — ‡f™}¨]ύ*ζ/ŠŠF)Όξ“ΧΠ|l?…ν~΅A(Ζμ>†1ζ°δEΨ›ž^Έ¨f³ͺ4¬eέώ*Αλ8α7_({{ιg<ώά{ΓkΡ9nK§Ktή™κWΏ,~τΐ}ΏŒNγL މϊγΩ¨›„'’έ:TΎ³ ΓζLGΏζmψtWgŒW††ͺΕΨΡm&[ΔΏ‹[’ τ{άFηzUWΨλΥο bΒ¬"@a―Ž»A,° •υλ¨pΪε˜4η”š― oΧ?†ΟU­Ž’?Σ…½}†ΞΓ WΊΥ―`ɚUξˆ)΅ΗΆ/ΓKΏϋW’Pw…R žRQJηa@IDATŽβΐdΟ‘šh:r6"rΐ9tFΏς|τ6“8EΥφζ ˆρ_νkŠ:ιdϋΐ―•£¬$`g|°C …[₯hlVnE»B{,β*3ή%ŽΧHτ܏βGΟ΅+Γσ6Œ2Ω–pJ„ΰο‰Ό%’F_‘·—φE–\sΑ3B h[ς‰xlσ’˜=!QΩ‰φΫ \ςυr” gŽQp%ͺjΕΥωθ@DΟN8…ڏwcc‡*άmVμ—3Fl}s'φGˆζzH$γςΨHΖv₯+eي:<‰8μχέΟΚ΅kFτΆΑ_ŽA†°π ZO#·@Θ~πσ|^-ƒŽΞνn]Ώ}ΚΈ'Uνϋ{5ͺ„Χ¦θη>» Ζω‚Ν8›S.°|%π‹mπθ‡Τs± ΅·ίUVV­ρ—Ϊd ]“ Β{ό’χ*ύΐƟѩυξC qω¨\yπœ¬‰Pχδl{oΜΡyMŽ‘ΕA±³­ΥΖ9Χκ*γδπ8iŒOΫίΫσ]ΊnυoΒވ߭T¨†s™H€H€H€β °7ξrM€Β^Χ¨:PBE)­ZΏPD‚k’D‚6­Έq]ω2ζΏωqd*Uhcw#2αMΘβΒkσ©―sχ&ΥγΆS ”€!ΑW§†’ͺϋύ.LΊG’LτTL‹DšzQ"=Lμ₯}©ο/šώKΤΏν6“ΎύΉ"pΏΕDη5ΆΊύӝ5+_Δ+﬍paάΧΠ‡Rjήχ’ίν…½^όr*τL, τ#%šœη?ω‚ω:κκXaG’ώξ°_νΧExώV”π|Μm?“·€–˜ΥGΤ2ΘψφΠ?SΞE±ΣΛρ ϊΫΈφ~ JY”D<£ι?₯lOv*ωB‹“Ύύ„Œk†Τ>b`(]θ[λxΜΊvNώξS˜:Βw’vW Їπ;VΌˆ^9>κϊAνΧήΞ'BTδΫCΏVryβb έν…υ ŽkΥuΩͺΟ^τ­ώ^©Η{2xκφφOΥƒΚ²f •ΰuœΠΞwa'<<‘‹Ό­4pΌ«΄tύi|x4TbrΏ½τ3λxΰρ—Θ ^ϋ‹Φq«^ξ]%»aVPθ[kwύjg΄‹1Qw<Λ-°ϊύ}8i,+μmϋGœύ9ω9ΐcΆ‘·ϋI}Αϊ…½ωύ0αΪ"τ4μ0?ΞcG(…ηoΕ~#oŒXU"Z5ΡΩu³D„u”Ύ»πƒ.OίύLi§­γ€λ>DϊΞ€`ί1΅Ι_γ"2άξId§ %»χγ¨xι»Γƒ}χπ!lz·.6joN/ θN"€Zγ΅^Ύž {qΥonΗΎp‘]%Ίκ₯]5Ϊ–³G?ψρ»^ϋ,/₯Βο9ω=ε‘χŸ³ΗγX˜·ϋ|Ξ)½nͺ’W³\#’΅‹ω–/ƒΦH_]/}ΥI?θk—bh‰ˆθγνΜQTu—Χœ[€ξ±κτ(μ.όŒ>πγπ@ŠZ—I€H€H€H •(μM%νŽ[…½Χ·ρZfE ’TλπΪ/_@tό]䍖·ϊ–Θ£›Ν’r―Ό Ξ ή7°#ˆΜΧ†Jς]+πάoώω§‹›€Ά6{ΜW:ν~άy] 2$š?ΓkOώ6ΆmFEE£1¦θ4ΦΫglαbδ [m“›±Ώw{?"\BΒ…‚rtO˜ΚJp²₯ϋ]G-ΆςΩ.yh_:ϊ‹–”6©€pϋν—„–¨#˜KŽ©ωrLΩΙεuϋ§*21ŽΩRΎuΛJζ‘Ρ4MσΎ—Β QΏ¦ίνύξ₯?…ΣΚ‚>OEŠ,yς_±6<¨―₯Žκ/Š―½ε3’θ¦ιF°€§%X’υΉ τψw04x_ΘΆ\3±ϋώ™r.Vcδ·cξ{ψ3ϊi’γAMkQ½μ7xm©u?>²ε΅άό½τŸj>c9o2ζ=z·Δf•OΌίQcπγe ε1Ώ½πT2ζŽ—s’Ϋƒη$ΖφVω»¨F"FkLΔh]?θŽΧŠ™²θΎ_GδσΐΕbo'ž€Ήή~Υ»νρ§Τe»?Β0i‘œgΝSΞ³ΙyV8’€Ξξ‘θΙƒyΤς’ΒS±5αρ§Ψm1 nŒσ;­dσvΌ+;|4Ϊͺ1N˜ˆtςυ錧ΎΦŒ7>:…·…7$wΑC?³ϊΏΈNΠπ»Ε6X²Λγvκ½Oaς0ε;3»θ½~/z―mq­ μT„³MU ρό‚X›φx¦rš²cΩ³ψο₯=qχγχ‘$xdμͺYω²<Θυ ­™Gσw%XŸξWχ+ξΔW\c7ϊΆmˆΩ«ΆΧεω„}Aܚν(μΥρ "v d?Ššoβ³ «[ώ-ŒΎrͺ)Έ5φ5n}»6jΐPς»φφ©@i3°”zgΊ]Šq¦^_ήT‰Κ29ΨέxΎFτ'χ Ά^¦<Υ“hΏQXΞ4ΜΊε„$X5+°koΞvξ*β™Σ8ZΏΚQR:ύͺ=πšηΣ¨ΔϋΗx­σDΗ™Ÿ8b–άΛ/Α¨Ρn§D€»,V€«%TQ£‘Š-1Έq_ΞuΎ@βνύ'κ‘%,R„>†Αm­¨ϋΌMuΗpΆg7\ΨϋBδθ…Ύ%½ΠΓ.βžGα–Ι$)»γ0ŽJφ&?b°Άάτοθοΐ9œλžƒ‘γH¬ςi:ˆ/6‰€»›D>”ΟΉSmhͺ7”LΚ'ƒύ7πͺKQV*β+γΣz;7HίΪu ΙΕ Λ ohέΆB?#Ÿ§φIz-ž9"2£ΉΥ±O’ίΌ¬eΓ-C#"U'κώϋEy“D6½¨ ΆΑ! ƒ{μP›ˆ…»‘_IŠ/ο#KΖ'ŽXW)ΫL*iwΘC{Φ’ς?¦Ž38πω>μ¨:„ ‡bθWϋΖm©,&Ϊ·Ž”ϊlϋƒΓ~ίύΜ‘\w sΔ—CΕ—’ΪυΚ—Œ[μεΑVήΖN΅νv^Ω‘   €kφΊFΕ„qPΨNGή₯ήd3Ϊ)―­όΫίπω52Χ6CΚ―@Ετ)Θές6žώΓ{A"y(,ΑήΟ°δcν>6^}#fL Μ₯‰m#Ϋ)7ΙU‘G°pη/Οω"#·’u;V/_…­Ÿ‰“ΉύΡ7ΏC.­ΐΠΡÐYU‹‹bΊ%J6ΧV­ΐζ/λp¦KWt‘ϋΏX…aq’/[=΅/ ύEΗ‰ϊW’ύβ»αM„TΛΕΊύs4nόϋ(ήπoΩΎKίω/T·U`ΖM·b’h }β_Zχ½θwŠ΅―ύ–¬SξγΙƒέγ6”ίέχεΈdΪhy τ¬¨™Ξ’sο2τψA9Ύg=ZŽœΒ’Έλ„Γ8°ξ]²Ή5«γwwΆ1UΆ °WΗcŠ 6nv™ΤZώζoQ(ζΜΌΖπζVΨ;|ΚS˜pIτ“ΡΧΫ>Γ…ΏΕDυH;ζܐ؎Š)O`μ%…Ά•νY,V|.ƒ±νη*άύλο ΔΨης Ϋbl6Έͺ ε₯Έ›­;λριΗmRΙ¦ό|‰Π9 ‘³U’!ξŒ"όZ9ΚJ IhA M郦”Λk°M)iΜή¦ͺΨόyXΩ φØιEθ“2jƒ°W‰2j+μŠ*"y«ͺλˆD­qŽ,ͺTš#‘ωΖ#σ5UI”δΟc£$+Ι΅Κ+ΘΛΤWΗ+E˜—Χ“Gf¬Δίγ$ͺ¬rέζΨΊxύΑKϋtyζHΤή‘΅7 ¨΅7σTC#6.k°’μ&κΟ"pC ͺndϋBΒ^ϋzB[O‰@τοNшρΐΘαν˜Υχ[i_άt­­χ­Θh½Z~Pκ‹δ¬έ‰§ί~–¨ήΈΤΛF}ŸT£Ί:J€Ÿ ŒΈ»}Ά/gθ\ώΥΰΓ΅‰°w*μ•t:ωrΚe2ψ+ΖμYό­½ϊ!M\B-kwΏ‡*JΫ·χίMUτjšG «6ΛΩ·ΖΙοχ@-ΣXΆλΧ‘4ΊηK©8/ΩΘo   πJ€Β^―Ęގ…½vTΏmW~ ߜΌiιΠδφ>φ―ΜΎ wJΤή‡τΖf#Zγ‰Φsγ΄txΰ3G€Π#NaΖ.|Γfαž{o ―kˆφJB.jωΦλFΥ­εκ₯Οβ5γζpΌ΄/ύΕ³υ/<= Ρ9ΰ1NύΦ³π@³OΉσζLŒΫ{Œ»:'6½a+D dΤ»οEΏ/‰αξΩοF ‰ϊ[L-ϊγ­°Ε¦όˆ~ΘΎ8ΗÈλ€Ϋ¦ZxΨTenЍ/&‘ϋώ©;Ύhq‰²Συρ &£Šˆ\΅‰b—R;#¬ΙΗ¬ο†’π| o΄­΄ΒƒG€TW΄Ž‡`yͺΚςySΐm‘7Θϊϊ7Ÿΐ»•6±}ψšγu€©ξϋ΅šΟ59nο“σ+{%„Z’ΓοX’γ>²s-wό7qχνΣ­36iŒM-ς{τœϊ`DxΊζ’ΨΔώι,μtϊ§ή8!Β­ρ©ŽΨ+}Ηu?γρ>œ―sτόάΚ›Dγ54l°cΕoπί‹«”-ΦβΔo?…WΈΤ±Ι΅γ|Ι›Ώ4šγΩ„oό ³ΎR0@Ρ •Nž4l;ή}ςί±ήρPγΦj³«₯ΧbΒ­³ γfhΖΧ‘D}τόUW; {u©{Χ―Ζ‘—’€δ`ΥΪX‰O?šZEΫͺDΑ½!·Ήf!―Š ?N\zεqUyYτfϋυζJΌ·x>I΄έk%Ϊ‘ϋ?\σήYuαάg†Ψ1לPiή)vT:ΩQŒŠ Χ£dΠ%θΩ₯/z(Z֝k…Κ­ΥφvΘΦ12°Ξ¬λΚΑ› ΗάN;z`θŒR κx=y|A˜DΟ» …¦fκκVξΐΞΪΣ|₯ΓΝΗ΄OHτΞ/=DομAγϋ£`POtλ έ. λΆcΫΦγυ@^έ>t\Ι‘;ELΣ܊C{‘zcΤγQΉysΓ SάZ#"ζDΜΡϊ^Œ$y¨Ί;6ŒϋΪςξωΉΈdL‘Ό’> υ<πΩlΩbwψ3Ξς™‹ršbέ_κ-ai8Kζϊ―{q>†€>Ρκ^#Ϊσ–V\4’}€ΏΕοξΫ燧iλ(±5τ V˜/p°z/Ύό€I’κ*‰&<κζAζΕκρš½XϋQ“²SsϋJθο’ύˆšOΨψ:PEξεΕΑ;ΧͺOϊΖzιΡ’o+Ζ’―£δx5ji­mBk·‹ΔfepνmΝΨQΉMQ‡†–΄yJw?ύΜοΈT\„«§cΑ·Ζ¦E»αxn­α#‹―φδηaΨ¨~1ώ3v‘νφmi@υ›4ςŒ½ΓGDDmΗεx?Š^# kοΗƒi…/ήΖΕ09~’IΣ—χί͜‘1ώ«Κ9δαf¬wOΒq)"ϊ²ΡΪ8ωΌŒ-ρ~W¬rܟ/₯κΌ Mg΅$@$@$@€…½ΐ‰Π {3ΐ ι4‘tnš1#Λlδ ­uXΏςΌ»<ς&hξθ0gƍrO!Φπ«ίΐβEKΠ»K’!I”Γ‡Q䡦/ΪΌΦΤ.›vΎΌΡ˜5ϋzLΈ’ΔΆΨ–½Ϋ±kΛΗxW"'Ζ|4ΈXecΝΧ£β²KΠ«[_δ(sίωήZι|?Β*#“—Ό΅/εύΕ@ηΕ•mžDί4^9ίT%‚ΨQχ‘”ΧŠ7|*ύφΥΨϋPΡڌϊWcώ/_ άτ7Φν>šύ³tΚ]˜9gJψ-•’bΗ¦]ΈψŠ‘qΘ!3τξ{Ρο!~‘o-ΏkŽƒΊΗј9?ΐμ)QbΫΦ¬^ΉESf’XΖ§ˆ~νσx1σLŸ>1JμΧ€2ξυ2Ε|Ψ’ώ“WρŸ—‡0Ζ|{ιŸ)γc₯ΛγA”6m[ύς6ۊ!Κ\ͺ”Ϋ²«Λ^-67<ϋOΧN5_Ε­xπ;3MΆl‘ΈxKέλΈ¬u<„KsΙ3œ>Έ0ϊ.όόΞ)•֍xνρ„ν/¬O?@sΌVΝυ―­|ΗΒurnƒΕxkΑΚm(œ": γx·;—*faζ΅W£ΌΘκΣM»Vγ‹š.;uΌωXυίΘM‘η‘ώyΊηbΙώιpΎδΉjŽΠΜwEYόθ²Ξ!wΚύ€³xrεl³Ά΄Γ’ϋ~Ζγ/€ίρ:GΣο~ŽΫHQp ήζ_±z―}7sۏ1{’KΫήJΌπΜ|λVίυΑˆs"ε·JDaΞ†ƒΝπ|άΪ7ίykΏ―cΤν7%ό(W<;^{{›’Šτ{T)\ν (μΥq€*μaξ;"ΜΝxϊτΊHBe§Χ`G­ν©―NmٝG ΅οbΝξΖΊ΄>7ύ{ ‹ΡYΞύgNŸΖ‰CGqΔvΆΦe™ν”,od Ω;¦τhας@‰ \Œ l%–h¨ΛͺQΧ`mιK)τ_ξ>Θιnt”ΘΈrΆO dUΣΦ ΕΦs†=ηp¬αZΪ©Oηδη §w7tξΪΙsϝ<…#»Ž: zC„½₯ƒ,‘νΎΏK”ΨIŒͺ(κ»χΐ\Ρυ―RΞoΓώ σc:ϊYΏ±%¨[Z·οΑ§«mfέ’8κϊm_χό^ΘλΫΝτΝΓΙc'ΡTυΰ†qžσεχΖ€Ύ]ύDϊt‹τιQΌM~6₯ƒK*ύŸΌn7ύΤ‘ yΟ«σ‚lpm$  p$@a―#ξπ@€Β^°:pάΡΈT^­iή2?{BζzχΛkFγί#(?ύ{_(F˜hάΎ ;n˜¦Ό^u̐θn4ξμœ<ٌƒ{«PλΒV.imkWžŽώ’ώΣιŸyε˜0Ί=ŒιμsΗq f9ͺ[fΰΎGηšγGD•N’Βϋ^τ{rJ-ž₯0aPs|?yΌ»ΦUΩ?|‘,SσdΜ½,0ζž=يύ_~ŒZ/Σηύ3cΉ("&T>/΄W\…‚Ύόq€λ«βΦ"Εώ›ϊέ§0y„!Τ<ˆUΏ V΄―rΞW―1η!‰Ψ[a–Ρ ‚ργΙπƒQ‹Ξxj‘FΏeυςm =εάLNΞNُ U›½dΧJ›[T,―j—O[-φΛ±^0ε~ά?gΌYΦy —;Ψΰ‡§–₯©ΝΤ‘ϋ§ξ8‘›οΖ έpKαaͺ:…Wχπz¦,πψ³χ„ίνKΛΠ­ιΟRτ»’KόΌπ».œσ0…½:NW…½»%ξΚ¨'uΚμΐy¬ΧΗDεΛ?ΑηŸA7­'J¦α’¨(ΓMU;°ωσcαv š2C‹Qz͍­Ν²zΏD³Lj,Τp}\ οzaΔMCŠπΡΤ„ΥKχΆ«p»ηKŽ\ŒΌ³}ΜζžBΝ²­ΨέΡ8_\驝η‹ίέύnzB—…‰y^…N£Ι$@$@$pž °χ °χ|ςvϋ΅•ΒήφcΛ’I€H e2DΈ–²φ²"Θ<.“μ₯bL˜6R’•η xδ•ZΤ+PώφeψΕοώΗΉ.ϊΑ™ζžb‰Κ;O’ςΦnYέΫ«QΏ?Ξ\8#'NΕΘ²Β@©«1—/ΙKΪΟ—ϋg»xΊg<}eτ ώαg§πr}ζEλm—Ά;ΚγΟ 7“ d, {u\“? sfή‚‹%οaFμΥ!Θ<$@$Rέ‹ 0rJΊ΄Ιλ՚Q΅ΌΡzSιό|\yν€°°:P΅Dλ]!ΡzλSiλJ)ϊ=₯ΈY    €wφzgΖ±(μeΒ-$@$uDΈφΐΓ·˜Β7{³}4˜²‘€D~ΰ—Is]ι xπ‘QΰA¬’·νˆχΆ]ϊ!‚X2VЧ}σ§¨T.xTˆ“¦ƒνbl‡φΠο‚œ“ΐ©ΓgροkΞχh½Ώvιj,”H  PΨ«·Ο4ΜΊασΏΉf!―ΚδWiθ4yH€H€H ‰rϋbΜ Ρ;Xδρ¦#hάΦ€έ»DiΝOΗ%@Ώw\ί²e$@$@$@$ΠAPΨΫA™ζfPΨ›f°z Hyεν}Ο…'±©j!ž_ΐϋ~ΙΐΚ2Hΐ’iΈηα;0P iγςE—ΎpBy΅·QPSέf|QωV¬K–~πΗέ&wξθ0sX 29QϋΆ―ΖΪχ_ΒϊQ;:ϊ*ϋgGχpΖ΄Η_ΖΈ‚† Έ$@a―KPLF$@$@$@$@$@$@$@$@$ΠqPΨΫq|™Ξ–PΨ›Nϊ¬›H€H€H€H€²—@nQ1zχκ….„3G7£voφΆ…–“@Άΰρ—m£½$p~ °χότ;[M$@$@$@$@$@$@$@$@η5 {Οkχ'­ρφ& % "         °—]H€H€H€H€H€H€H€H€HΰΌ#@aοyηςvi0…½ν‚•…’        ΐyM€Β^ŸξΏθ’‹ΜZ[[}–Δμ$@$@$@$@$@$@$@$@$@©"@aoͺHwμz(μνΨώeλH€H€H€H€H€H€H€H€H (μυIΒ^Ÿ™H€H€H€H€H€H€H€H€@€Βή4@ο€URΨ۝Κ&‘        @š PΨλΣφϊΘμ$@$@$@$@$@$@$@$@$φ¦z¬’ΒήθT6‰H€H€H€H€H€H€H€H€L€Β^Ÿ °Χ'@f'        4 °7 Π;`•φv@§²I$@$@$@$@$@$@$@$@$fφϊt…½>2;         €…½i€ή«€°·:•M"        4 °Χ§(μυ ΩI€H€H€H€H€H€H€H€H (μMτX%…½Π©l         €™…½>@a―O€ΜžρΚgώ·O)vDεΛ?Α›3ήdH$@$@i!0ρŽŸaΖΈ’ΘΊχVbώ3σQΉ•k$ΰ@1fπ!Œά+"OCΥBΌΈΰύˆm1+y“qχƒw£δ" φ“W1ΟΛc’ΨnΠΝg[7’  @ζ °7s}“M–QΨ›Mή’­$@$@™H€χ‘2Ρ+qlβΌQ8ώwΉ>θ°Y    d8 {}:ˆΒ^Ÿ“ž=cfΞΔΓ†ΰ’Ξΐ£ό.]ΡΆs^YδRȐt›²ΈΐΌi˜χθ(6šPW‰ώc>φgqsbL/šŒΫηNENη³hΩς>^_Ί6& 7€oμgΎF@ž8Ξ›•,ρϋΔ;Ž£GΊ₯υ3,xό·ΨΉΥZΛΝΓΘΙύΡέΨrςΆ½ΏG¬½\κ¨<ω½·>ώ*Dœ«~š6½ηΈDέd³œkξύLΦWφ5`ΕοΓͺm6Ιb6ιζ‹)ˆH€H€H £ PΨ›ΡξΙγ(μΝWΡP HΌ«0χYΘ— ŸVޟŠΟ½£ί‡Šίϊ,έ›Ζy£,™'Φv¬§γ!~Πn 3’    x!@a―Z6i)졁’ΆMω˜!Β…‰¦p!ˆc[ήΖΣx/rγω°–7“Ώ:έpΝΫ+±~ΫO­σŸaφWJΜ<λ>wΧ$ˆ7θ³>OΖ%#qι,<πΐ-θ'e΅ˆ8ζΉ„β˜dTΪΛH΅ίS]Ÿ_—yνgΩΦ>―|όΆΟ+O―φ1}|~ύΏtη½YβwKΨ{λ²;D‘ΫυD6lvn[~?LΈΆ=­‡°α­:΄8§ζžŽBΐ£ί *& πBi|Ο LŸ3 9²θNΨ+ +nΕƒί™‰\Yl‘sβηܞλζ“zψ!  l!@aoΆx*³ν€°7³ύCλH £€k^%£ ΨΣΉdΙ\–7RΎΙσ}¨”[ΨΑ+Τ=ώ5oδυΨm_šάξωxH—Δ‡Υ’   ΐωF€Β^Ÿ§°Χ'ΐ$fΟ-Na―O€IΜ^<ε~Μ›3ή,Ρ»ˆ5‰†dPQ*“/ώς,.w/μ-ώά9s€Ωšš•/γ•w>NΨ2?υ%,Ό=Θ“Ί3¦FχΞΖλ°>Ɗ5q"*ΆGύ€ΜTϋ=Υυωv“Η~–uνσΘwϋ<ςτh“' ΰΫ Κwܝ%~·„½ "ž|̝xRWΰι‹;²‚€ί5o ͺ71jWΏ‚ω‹VΉΒ€›ΟUαLD$@$@@€Βή pB0ΒήΰD6RD mσ*)jŸn5’‹ζυ».ΓlΝ§s*[ۚ©vϋ9ώ2oδqžΨOϋRν3έγ!-~H5ΦG$@$@$@η) {}:žΒ^Ÿ“˜}ΔΝ?Ζm“Κ€Δ£X»ΰa,©JbαYZTξ€{πΰΝMλ7Ώσ^_Yλ²%ΕΈώ‡aά`#yVˆ8i•‹ΘnϊυΉ4‹Ι2’@ͺύžκϊR νK5qΦη…@GοŸ^XΨ₯₯°ΧŽ ·ΩH±°y“1οΡ»QlΣό<ω[Έ8΅ƒv>ΫFs#   d {3Ο'Ωh…½Ωθ5ΪLι!y•ς+g‘ Wgœn©Ζκu™ά"]\Ϊ΅8 {σ‘›'57@K» …λέ‡Κ†–e“ΎŽ?έω¦ςΥΎΪ ™΅ΣΉ/kš˜~H)JVF$@$@$@ˆ…½>Ia―O€Ύ²ΖυߝŽΎέΞΰμΩ.θ;lrƒεΥoߌΆ³•Ν»γΔޏ±πθΘdε˜όkqň‘θ'οΏnirε»iΧgΨTΉ«ͺœD°0ϋή«Ρ§sg«[ŽΧ\?{†)3σ΅Ά4nΗŽΟ–cρ²Σ’vΊ€Ξ:‰…C00Οx ςAl\ϊvwΏ“§ŽΪέ€Oί| ‹+­¨Ί“qωe#0pΰ δχ)DŽωžnΙήzυ »Q³i%>PC^΅<ι·γΌξ8}φ zδWH}†EbΣήν8xτd`EώwξΤ―y¬³i§ςšηcΫ—α₯ίύΓ$S2κσΒs­iΏw.αf£|Ϊ]˜04WϊŒ΅ βΛ£;>Δβεvjπ`?»Pό½cΦ6υΗδIγ0t°ρlγs΅U+±|Α[°!i¦1ν[?z$JŠϊšλΖΏcΝ5¨ώdή]ζ Ω;—pαZ r<άv .+Ώ…f r¬Ή υ΅Ψ±αc¬ Mϊϊσ»wω«/„CΟ‘άήΎ½υ³tΆΟ{?K‡ΌρT}εuœχΌ«΅·Οςh_Ώ+!›άΙθŸήϋ™a§Ύί­3σ.ŒQβˆ±WΖ΄]ΫρωšΏbΓΞ!Αo/γ`TΦΰj{ {sφAώΐ‹Π;οB9'θn=‚·Β‘–γ8T{5ΥΗμ n-Y„ΒA½ε&’œ?§ZOΰhc+ΏlBγΣ‘ΝίξσυBΩΧϋ’g— pͺιΆVEέ¦ΚιaWφEχNΐΙΖƒΨΆρHD=@oρ}_τθdδoΒΦ/²qύΠ·EθloΫαVάΥ„νŸς¦ŽKŽ΄­Ώ΄ML>Σ†šχ!Ϊz³1r‡nΔψ‹Ρΰμ‘ΓΨόΙΑ¨6Κjͺ…½Rε€o?k0Ξ_’ςεŸΰλ”3Φ>e‹n>₯.’  @Ζ °7c]“U†QΨ›UξJ’±ΊσFΎ―Λ|v™Wώ―/ŽšΜ›€›n½½e.ωHΝίπΦRc.49σ~u}έξσξyβ@»τζŒΌξηGb Ίγ’Œy•ΨΊ½m)ΗάΗΑeroαΨ–·ρτήσ–½]R'ƒ‹ΧyΏPCτϋ‹Q‚;ΏKBEΨΫπιB,ύ’'&_ννΎBΘboί^η·8.ΉΎKΐ΅ΒYSέ_τϋYΆK©˜7ς6OœŒρΕΛοC’~§}F7O…Β‡H€H€H€H€RF€Β^Ÿ¨)μυ ΠOφπ/܈eΔLXε]…ΫΏο ΌΏsζ/–½ˆ…ζδiTšYxΰ[ΠO67m߈γ…#QάͺI[%Ϊ+5˜L«ξr^Γ’g~΅{Φ„›sz ¦ςΌςfH΄\ΉΏ~—ΕΛ μΫ±τYόχ²XUGΑ€yΈζIfΚ¦Moΰω?.Qr©‹I¨Ο ΟǍθr:\,›'}χ\3ΒWG~ZdRσ9»IMιgJ? ‰Ζ#s)k»VΰΉίό)J]Žχή…‰ΓB"`%}p±iΣbόιoE哝žΉΔ–νz‹τΰw0Τ 9Άε ™τ υ?~ΧρŸŸϊŒψπƒkˆ‘ ½υ³4ΆΟs?K‡dRΚλqkΈCgœχuΌGφv[S|ζυwΕΘαυxπΫ?₯JΕζ„Ώ›ζ8h™–ߍ¬βϋ[οΊ ƒcΗϊ@Ι67²<ƒ‘’"Ώ} {ΒϊwλμΕ’θ‰·•!?$捬:Όvhk6;^/δδbψδ"τ3T©φŸS{φαοF ž½ζΛΟΗ•Χ€af[ν^¬YΩYY~?LΈΆHZ#ϋχΘώχo8ŒSΉ#ΧΝm-Ψ°¨V~?SΙ₯'†Ν.CαŁ&ν©ό;vΕ ‘ϋ/ΕeΓ?ͺΗkκ±φ£ΒήΈ~Δ§ήŒŽ•OVΛgώ·Oiξ¨–sΐΧlΞcsιη³+‹ΫH€H€H ΣPΨ›iΙN{(μΝNΏω²Zwώ@ΙΧ"sΟEΟΉ*ΧΟ-2χœ1§lsgsτ<€»\Ά©4――S2οΜ¨ŒάΟ;xQyβ’„y₯j½ΕrάτΑHΉβυ:R―>7Ή|r€ΌŸyς»0P„½q‰ΨήWˆ›Γy§Ψθmž_ŠJγΈδώ>”d―~0²¦£Ώ(cwG—tη›―&\τ6Oμs|ρ:ψ:aCΜφΏΣZΗƒRa*ό TΗE     °Χ'h {}τ•]ž°½ω*δvΞ‰¦"Τ€ ΐφ(v|Ί-²­“Dƒ“Ψ΄8Ω΄ο/=şόSL, ~β‹ΥλΡ${ϋ »—……@G%šΩΓ±ΡΜ&dΆ}†ϊC'Π³Ο@+AŽ!μ}±ΣΎYηQ|±r%Nžˆ‘C¬Θ­ΥψhΏqn~ηWx}₯ΥΠk¬Am]­Ό© m"`),Š²Xτ(V/ψ7Ό_⌚ω- ιέ §ΟE‚1¨hgΓΆubίqa"!ŒOη³8πΩR¬ή%ΰ‘]cnϋ1fO,3“}!…q„ΎλσΒ3JΨλ…‹ΩωW:ε›SlDμ=t냑W 3w9NjΪΨΧ²k6oۏžCFbΜ°ΑΑ’#ύ`lœόέ'0uDΘO"Β–ΘΎ;j›3p&Ž«ζ“ν+_Δ+ο„ϊgp³M½ΖΫ~¦Nd‡KuΏ0bΏpΫ”©Aއ*μm<Žn½ϊ ίΰ!Έ¬¬$&šƒΎίSί―}ωΑ=ƈ”^ϋ™>ΟTχ³ΤϋΟλ•§½\kœ·9ξάο =W"lτϊ»’Χ_ότOE„ΝœDγ™wΏeΛΝͺ‡εfU‘UO­D·ίQΧ„.φCAI9Κ‡"ϊͺΞ8hΥ`-ωφΆŠ°χ­ΔΒήS‡γπΑγ8~δΞΘyΞE’4-( ©_Ο nε—ΨY« NEzRƒQό ‹[δχ¨Ήι:u놋$nΏώ=l„Έω”H΄ΗEΨ»6ZΨλaΏEV^V°·‡[Ο’ΫEβ⒞θf#μM—ά‘—`ΤΘ€²ΧΆ}ςΘΩπΩCQ`&9…še[±»AmIpYα€Έ~Κ«OŽη.QYB«ΕSξΗΌ9γΝU/yuσ…κε7   d2 {3Ω;Ωc…½Ωγ«€Yͺœ—‡Κt5 δ³='·Ϋ―l3ήζm~9dΞ·Ξυ΅ζ|LΘΌˆΆ†6Ί˜ΥΘ§?_蝋οy …ζRbaoΑ•wαΞΉSδžΖQ NπΛ€^0’ΠΎψκϋΦ&Kϊ\ΡΟΌϋέNΨλjœπΘQM5Ώ₯?©—Όά‡ ΄SΓΊσΔ!° ŸΠ&γ;ΡΌ¦εΛΦq)σF^η‰υǍωσˆ>’;νύxP{$ ?DΦΘ5    T °Χ'e {}Lbφ wό³Ζ"Λ:Όδ/°ΊΩ‘πa7αΑ{―F`m@ε‚ηπAPkŠΑξύ‰°ή6mz[’ΥF½š*β"Ν¨£«όVTΥZ–NΖ5ε]ριΖξψFPΨ{lϋR<ύ»ΧΝ' °FΔ_ΘΣΨΏ(―ΖEώ’ΞΨVΏϊΌ΄(wΒυίΒEM°bMlT]υ"―αΣWemΉUp)w=xπζ‰ζΪζwžΑ°bcLjkΓΔ;ŸΐŒΡAκaοςΨϊ­ΤΦ’V}^x.]nFΆυΛ%lqή άχθ\Sxm;ie$Œ²―ώΣ7π«‘Θ΅IτΟγšΡqo„@·βVόΛwf#JΧ‘ς΅ωψ`Ε?wτ­ψ֝3ύ›±θGΟbKΨ°Ψzγφ³ 5»—εD―θΙv†\Ψ„υU†ΰ<φγΥο~ύη©>Ώ~ˆmχ-nϊ™RjJΫΥΏέτ³”ϊOα^tΓSwœβαϊx—‚ΕFΟΏ+I8<υΟΕζΐ¦8Ώ›Nγ™ΏKακ¦q>=φυ―nuq=Ύiύnϊν΄„½‘Μ.ΎŒ€nG`χŽc1© ΎRŠα偻o­;χΰӏ­‘ήΓcΜψ>Α<'°»²5»Ϊ"ΚΘQ„ΒžmΨ²Ξg>E°j+|υ°?`ΰqyfvΧ*φζχAΙ€ °oc3NJ’”rΙιƒQ7žGΆbλ›;±_qGχβ;%έ γ›š°zι^ΣΖ@[’π_9žΟ]ͺΙ•΅ʍZγγ%―n>3Έ™H€H€2Š…½厬5†Βή¬uΎαΚyΉQˆλω%Ÿν9Ήέ~e›ηyύκ]_λΞΗ„μTΪΨδrώΐk>σ#Ίσ‘&jΝ«„2k+Βή*y;ίkn;Tdρ΄οaήucC«Ύί€η*wd"O\ΠΟ΄όΥ/]‘h<­iΝo)v¦z\ςzJΛiθ/¦Σ'&Ο²x\JωΌ‘ΛyβΠΑγi|Ρρƒβk?ΏΣ^‡PϋBί)χC¨b~“    ΄+ {}β₯°Χ'ΐ$fw+¦uσpγ€`”V»‰,εΥCh–¨»Oώ;U;•‹4cσΖ7Ÿΐ[•–`SMͺŠB›Bu)ω›ͺΚDš<՞7w?z7J$³νδID‘ΑΉx}@D©†Ψ):ΡαE k±”φIα·ΜΒvFDnΣͺOαa”—gduφk.Έ„3*u;1T}lΗ»Oώ;Φ[š'@.τoͺNfͺ k%"οό舼’^MσιΒ'°xΫ {}s1 qψXvDεο‚Ά9$tΨ¬εw‡²ΰΒ^κ³ΪhωΑΙN/Ϋ_:φ3₯Ό”ΆO±Ν0Αw?K²,Φ’b³Oνq^)ΫΛρn—‚%ΕF―Ώ+Ι8ΌτΟ0 Εfc›V?SΚpς»ΘzqύƒωŒΤ³cΕoπί‹«ΒfΔ[°Ψ荃‘²­rπΑσ‘2β"”ͺΎsϊbΒΝ%?)¨ν²™εh>Qό|>―’< ?šω<w#ν €δ7Ά4|RmՊ¨7‘έQ ’Ξ4₯C‹’Tνΐ–Ο-eο ―ΙΎ’ΐΎ&Ω·YΩe™ήͺ«cΑ‘θ"y ια4ΩeΥΝgW·‘  @† °7Γ’₯ζPΨ›₯ŽσcΆr^ξiώ@Ιg{mk·_έ–μωeGzΧΧΪσ1!;”Ά›\ΟxΜg]»{/Τγjžρ­5―’ΰbΉxΨhτθb%.”Χ †>gšQ}Ί ³―Ίέδ-wgCΫγ|wξά m λ°xYΤ[θβδ‰·Λ —Τχ3MΏGτKχχβqJ΄ΟκΫζ·;S=.YφΚρžπ>”žRί_‚^RΈ[g* oχ1τΈ¨}ΙΛρ§ζ /§zήHakΫgΓ†Ό΄OΛu2ίxs«ΧωzΥT΅ξΔΗƒš3Έœj?ؘΐM$@$@$@$@Ι'@a―O¦φϊ˜ΔμΦEO|1υΤ2πΕ_~%Ρh££–γΦϋ*ϊΖΩ”₯\4’u#^{ό?]BΈYJΪπf©Dη} 7ΌΝxuΈΤ9Rκ΄ΆJΙ-½ γƏΒΰAEθέC&άΜ–Χn]z"7ψZ¬θ<‘ϊ½\°†ςίK7*VN­ϊF yZUΑ—p1JέN #„½Νλ0Ι Θo#"ϊΦς*^ϊs δΤ{ŸΒδ`δg‘Q‘aοitQ&TMΊδ _^/s1¦/*Άyαn›‡υI`ΓΦκOΧcΗ—po jχHX’ŽίύψΟK}Ύύ°υ.(ΎtμgJ1)mŸb›—~–*)X¬EΕf'žΪγΌR6<ο–q)XRl ·ίεοJ2Ž/ύ3LC±ΩK? η7”2ΒνŽH`¬¨ΏίΫ±DΔX«>ˆ“ήΪΰw •dύ~ڜ?„ωό‹C{γβΌθΡ­pφΞI™ΊΛz@O%μν‰α³ΛPp±Qq+ͺ%Βμ>K‡ΗΝ|Š07‘p7Ρ~΄Ζ¦E»αƍ©γDFε= Qyχ£ςζbδΕΔF–Wο-Ψ…Ζ8„΅vΉ:J֝ΰΧΝη`7“  @& °7“Ό‘½ΆPΨ›½ΎΣΆ\9/χ4 δ³½Ά΅Ϋo·Νε<€vϋ4――΅ηcB†*mυ4ΰ1ŸώόˆώΌC¨‰Zσ*‘ΜnΎ…EθΝ€n’›iZ%ΈΙγQΑM\gNNB/\RίΟ4ύφΛΝ3jΝo)v¦z\²ζΡάά‡σCκϋKπ˜PΈΊΟ²z\JυΌ‘ΒΦΆΟF K^Ζ-?lj {7ITτ?JTtίioΗCT#ΥTϋΑΖn"   H> {}2₯°Χ'ΐ$f·.zβ‹iΤt«~VΔD'΅DΆ …½{+ρΒ3σ±ί©Ά˜pϋ£χ‘…ρ ι—KΈ­Jέ*χπ~cAIΣ²m1žϋύ[»ΥύVΈυΡ‡P!>vϋ‰α¬Τλ–‹ΫΊbΙλ¨Έχz3ϊsΜΎΦ|±αcόυΝ%h‰ΩΨΰΥο~ύηΎΎ$ψΑ‘͞6+Ύ΄ϊˆs )mŸb›Ϋ~–:90Rlvβ©=Ξ+e»?ήμl―͊VϋέόΤϊ—€Mξϋ§@±Ωm?Sr•2¬vG§Ή~—co£<ˆρΛ¨1’“«λ>ΗΑPQjίkˆ½Ώ2eεBBuΪ}―©Ηڏwυˆ›† ίxθπ!¬·Gμ2ΕlΣΜ—LaoσA¬ϋK=ιSΛΕΥΓD,]hŠ₯Ϋ°sY5κ€ή#cΜΨ€¬ΧV΄ΓXcƒ«cΑΎ\έWςιζ³·‚[I€H€H ³PΨ›YώΘVk(μΝVΟω°[9/χ4 δ³½Ά΅Ϋo· nζDX€ύΡ»ΎV―‰Ϋ}ή]m›Β(ρΌƒŸωB=.ͺ©Zσ*j‰–ELφ 1ή.ηϊ“eΒήΤχ3MΏ+ύΣ8αΪq6 uζ·;S=.y»₯η‡Τχ— _}\JωΌ‘ΒΦΆΟFξΗ]Νί‡­Ε±Β^ίioΗCT#e5ε~ˆ5[H€H€H€H€ځ…½>‘RΨλ`³«θρΔ4VΊ:yMφ/l^“]ŽΩ?‚1E†q6"aυ’±j!ž_πΎs+Τ΄‘'5m£σΪ{G?ΏszΈμc{·‘zϋv΄΄JΌήNςB¬ž%˜:e¬ΉίιβΥύkΈsaΜm?Ζμ‰eζςKŸΕΒe›#8¬iΥ§2JΔΣ¨7 \Βζ«u‡ύήXH”ΖvΏϊτΈD†^ω6φ·EZ5"ω6W―Α†Jt\΅\7\B…ι~›†›¦~ CΛ#Η¦ŒcΫ—α₯ίύ­ΈΧ“ί“ΰ?χυ%Α6,Υ67ύ,₯ώS ¨‹ͺΝ<΅ΗωDe'Ϊ―ΪΩ^ΛΆ6Ψό†ΔόΦμP’ΡkŽK&χύS Ϊ즟)YΓ‹j~Gήdάύθέ(12yφy|ŒƒFvγcυ=›σ‡@ύΕ…ΈzŠω:³ŒSΝGq°αN΄ύC~`δ―[O”ŽάΊ‹•ζτΑΘ›’ΘzφκζΛο‡ Χ‰τQ‘ƒƒMχ"ό(; K5— y£KpΕε½Ν΅#ΥuXΙ!”΁Αύπόg°gε—ΨQ{ΪΑh›έ Ε«Η―ΣΉ£]Vέ|veq   d {3Ν#Ωi…½Ωι7_V':/wΪoΑO±Δ.ŸέΆ˜k~CΔk77 ”νeQσϊΪΊ&NΑΌ»Ϊ•QΒyσ…š\TSΥ뫘@jBνε|Œš4u–όΛ8‹^9g&Κϊ±]•¨¬Ϊ ΘώΐΗHΨ„Υ»Ncς˜‘θr6”+΄ίώ»SηΞhkڊΚ5ξξΨ—bmυΒ%εύLΧοjΏ΄›ΛJ΄ίΒγmΙλόVΗ%Oχ‘4ύςώς–κί>.©Η―—ω¦*Οί*[»c+ͺ@ΥΎψγζοCΫxa―έo²έ6ΛXOΗƒ•-Ό€Ά3%~ΧΜ    φ$@a―OΊφϊ•½ β*ηί#mμ;ٌ΅λͺ’RΩ―ZθρΕ4V:§ΧϋXW†°wΕσaΥN₯N/Άi­ς­‹«Ψmξψ9flV\»ϊUΜ_΄\1Bσ¦αΎGο@‘,ZεD&Q/δ6Ώσ+ΌΎ²:2ΓZΑ€yΈζIζ^§²ν²jΥgΛΘτΐΆdp —ξ¦ξDilχγϊ>„qƒ¨ŠuxΙ_`΅›χˆ‡ “ΫrΥΞΛ~Ž# ₯%θ?ψR”’ώ‘ȐG±φ΅Γ’uŠψ8h‚Ώ'ΓξλK‚€ώxJ}™φy΄-΅ώsθγ.lΦ畝hΏƒΙIέlkCμoHμ ½ΝώΗ%iˆϋώ©΄ΪΦfeΏ›EWeXάΌβΞΉZογ`¨,«Μ™ΒΆ@IDATοΕ? ₯χς=ΰ*—K/4³΄TοΑ†O’~Xrς0ξζA0σF{Υθ²m‡±iΡnDεt0C‰Jλ%_nΖά0†δ΅mΟ>¬ω0κw#·/Ζέ0ΠΖΞ ‰„ΏQΦ¦žKΠα=FxνDλ!lψπ8†Ϋ…ΓΝyΛΘΘQ J΄κκX°/€|ζpϋτ‘ζΞjypλ5—nιζ³·‚[I€H€H ³PΨ›YώΘVk(μΝVΟω°;ΡyΉΣώ’iΈηα;LeΛ–·ράή‹4Βξ5ΪΆeYΧΏΦά­έΆΘβέ―YeyΉΎΆ‰S0ο6Ζ–‘š@]φ3_¨Η%’φ)χcޜρζ&/συjή—‹qΣ} #εYaΗ7Mϋζ]"βΆόc‡ŸŽξΓn3G₯σ2ί”ϊ~¦ιχDύ2Ρ~aδo^ΪεόVΗ%oχ‘τόϊώμά.όkΩ=.y7ςΧ―…š'Ά^ζ³5ύ`kΥ_έώN{;¬ήZςκ‡P>~“    d6 {}ϊ‡Β^Ÿ£²OϊφSΈζŠΎΦV―².Πγ‹i"„i•/cώ›[υK"˜½G³Ζμh݌E?‹-Ζrθc{‘Ϊυm›ΦݝՆ>#ΒPy^ύO“Iΐλ“€Φ…‘šB&~ξά€@·~υ+xiΡͺΘNkΚ$rΌH­ΡΩ΅κ³e]²΅ž .αάԝ(Γ~υ΅9Z“΄ε†m³ΰη8Š.vκwŸΐδ†|\"|ώE’7/ΒΰΕοΙπŸ·ϊžΐŒΡϋ΅ό νφΝΣ£/SΪ>Ά₯ΪfΗ‹ώηΒfνq>QΩ‰φΆ^Ψ Oθ"ΡQ%‚ͺ|ΊΚίυ§ραQsΥ?[άώψ?ΌτΟpcmmοu·ΰͺ ‹ƒQθϊ…Oΰέ5΅ξʏ“ΚΝ8Κn#ρΟEBι½|όΪ₯(+1„½'°ύ½/Qί™»χˆΑ3ΆΉΡQΨ+{χύ½Υ;Ϊ"3Ϋ)Β^ω†Ο.CΑΕ’I―λίͺ‹Έζ”Βψ―δ™5FΪ4Β£°7υ\‚vΚΧΰ―Gι n²t-§‘Ϋ? Ό>ψy >―:b%Lζ’«cΑΎΒIί~BΞ³ίΔƒ¨|ω'ψ φ'έ6£n>ΫΒΈ‘H€H€2Œ…½ζ,5‡Βή,uœ³—;ξW’6―Γό'_€zΥZ0ι Ά0Ρ΄,<ίk[–uύN—Μˆ½JY†1n――΅ηcBΎ°mkhgœoωτηm-ξ†5nΉ¨–kΝ«¨h-[v[ύ%² ΅οEξq^k‘H™Ούшνγ…Kκϋ™ΕΟh©kΏ'κ—‰φK]Ύη₯Χ8Οo₯q\ςtJΟ©ο/Aθ.ό«ΈGή¦;o«ΗE­ΫΛρ§ζ -{7ςέ―=²υ>-?ΨΪcωΕwνΆ…(Κ·§γAΙ\τκ‡ΨΈ…H€H€H€H  PΨλΣ+φϊ•έΔwxx•Ά•7Ύ˜&χΚ»πΰά) l„»£ζό7NΨΏkžϋ͟‘±½H‹jHhΥ6­έΕ[μ6«=vβ‹ ˜ϋθ}Έ, ‹qŒΨ«>ΉzlΫR<ύϋΧC–%ψ6žL}L"ΞΙl’;εVΪλΊ>%uλTϊšs\BΕ+ΚNΡ T†Άφ9Ψ_*Βλ;ƒΒk4†Χžό-lγ%Ζ˜’ΣXΏ.J]γPnΘτxίVί ¦Jp”V;7cΏM‘#δxΈ-x<8 {UF‰όnΩζΓ ›Dυωφƒ0±lvΗ3£›~¦fJeϋ”Ίlϋ·j—,[,RγΏ¨κ«.xjσ‰x$ΪoXΨ§3žϊZ ΌρΡ)Ό}(ΌΑί‚­ ±Ώ!±{— Ηƒ—γ=άP[›Γ{έ-Έπ»QΠ¨›ε7|Rπ7\ΖΎΧ~ωBμΨ›7JOΛ¬qΧχ8l…uŒΔ?qΧθΘT–€υv―؊šzuoŒΈ©ωFΈ^ωD fϋ‚Λ†#°>„MοΦΕFνΝι…ύΟaίcBδΏ^Ύž {qΥonΗΎp‘]Q:ύR .μbΦm§ΉQ[Ψ›:.!@έ‡aβ€~‘U Q,‹=Ž‹πz{ŒπΪJδsIχx’WVΞ{τnΥΗ;/‰6O7_t9\'   %@ao†:&ΛΜ’°7Λ– s—;ξWt¨Α’'kΓ―TΙnjώ)&–έΒσ4ΆeΉ›πΣTλkνω˜‘Άm νŒσν1ŸŸω.–+Ά&šΧŒΘηkΕΏΔXPZŽξ±›·œl©ΖώpuLζn‡.ιθgZ~WΪ>žU‰φKZkž)˜±]ζωΣ9.y»₯γ‡tτΣ[.ό«v‡¬—4捼φk•S€ν άχπάΐΫL«βωοΗ$‰Ψ ψ"ΡΈ«ε₯|λX·wνΆ©–z;ԜΠπCD~    d, {}Ί†Β^Ÿ£²Η\ΠΩD.ˆΚ^΅ς&ΣTˆ(φ‘°({?Γ’]Œ΅ϋd’δκ1cRΰΕFΑΆ>m/ΒfD.Ψ¦΅»x‹έ6ρŽŸcΖ8SY+ŒΝXρώ_±i]#ςΖ_‰―N»CεΥY‘u±ΪόV£Λ¦ΪͺΨόeΞtιŠ.8ƒ_¬ΒN‡Ι·ι?ΐ3,jVΎŒWή‰ŠlU•ΉͺSŸ-#»ΒΫ|q)ͺΐ¨"#„ ρ9Σ=/Ετ9S‘k¬ΦUβmγ•Τρ5eο‰=Ψ²Ybf$²ΟqΏεS³ΐΦνX½|Ά~ώ%NζφGίόb Ή΄CGC]djΗrΝβώ³Ž…`²ΈΗ‘Lά=ϊ*ςπΕ'Ÿ£fη6μί[/Ρϋcψ˜―aΤρΘ1‹‰#πφΰw_ώ ΅ΪC}ͺΈΡΜξΥ’ΙOΙ ΣΟBm3ΎSΩ>ύ,υώΣε©9Ξ'β‘hΏαΏ^ρΔΧ»ΔsΖΊDξ](Βήχ2@Ψ›ŒγΑ[4$GƒΙ"Ύt#uΣ(°y*φ7|ώE ;CΚ―@Ετ)ȍx]dΖΑ ρΦx‘θ\$˜ΑΓΧΐ«$boi ",Z`η†hάu ΙΕ Λ oθηMʌΜζτΡσΰΐοQgλQμήrκO={ w@/τΩ=φμΓί?<`Y₯•―+JDΌ{IPΌ{ͺιjͺΰΘΩpE>Ϋ`g§Q³Wao:Έ„ ε`ψMCQ`ͺMQ―|νmΐšεαI_p3ΩTZ¬ΌVΥΛ[tσ٘ΐM$@$@$‘(μΝH·dQφfΛόœθΌάq>ρξ€ xχXέ:¬\Ί΅§εΝ&ΧLΗΈaΑΉ`±0<ίk[–5οN§DΩ΅ΆωhͺΦυ΅ζ|LΘLΫΆ†vΖωφœΟβg–κeΎP‹‹b»§y?%Ÿ―ΕrΉςˆy?€EζCžϋΓ{ΎJk—ΜžΈ€‘Ÿιψ=QΏL΄_@[σLAκν2ϟήqΙΣ}(? ύΕp— ½όΚΞqIgήΘ[Ώ6XjάΧSαz_4ό`λk«λ7Ωn›j($ ‚Ζ}Y)BΗ‘5sH€H€H€H S PΨλΣ3φϊ•έσ’ίzEJb0}Dν½S’φ‹J!Κβ±νΛ°ΰwΕ΄txΰρΩ¬ 2%£Ίh›ΦξβΝz*:\¦δ½Oκ1^˜œθΞc“ΠzύJμΞκ₯Οβ5CΜjϋΉ wϊ;(1φ%x\ΝξΉ>[Fj‰QΛ>ΈLόφS˜qEί¨VEl;ρί’6‘}rΡώΐΓύaΨ,άsο-θPEx³°7Q½αΜ± ގ£ -ΆuΛ±m‹%βσ[ꦈeΧ~χα?΅BΧυ™όψA²{γ)ιuϊ™Ϊ8YNYϋΌφ³4ψO—§Φ8ŸˆGΌγ=δΓφŽΨkk£ΛίΓFŸΗƒQ„§ώid°΅ΩΨαόΡυ»QbΑ•ίΒ7ηΪp¨"ςFVrΖA£*kΌ¨ΓΟό•{ Πٜίγ-B0(oάb„½’:gθ\ώΥ|τˆ“³M„½kTa―fΎœrΉ)ύ•ΰkβΤgg'€€=%ŸνώθςΔ%dFΏ±CP1" Y6ξϋ€ΥΥ†Κ·>jτjyνισ^{šYί)& 1μτ":ΧΝΧNmg±$@$@$Π(μm¨ηa‘φž‡NOtgώ `=Έζ‰ ‘…η{mλς0°&ηή――kςΝ»«fΫ2RΨ,ϋ˜Ρα’Zΰy^EΝ¬Ή<αϊ»0°w7œάΏK–―Υ,₯}³yα’Ž~ζΩο‰ϊeœq"Dښg nq%μ εΆΆ›ηOοΈδν>”g?†tτωP?σΆ:\Τβεψ³ςιΝyλΧYpΏΕφXΧύφv<|‘ηˏ\"   Θdφϊτ…½>Feˆiμk\ωΏ| 75αgΜm?Ζμ‰e’NΔ4Ο‹˜fgό,Ή£oΐœ7’D‰|Κ±cυXΌh ZBΤο’iΈηα;L±fƒΌζεΕx―y‘'Aη=z‡Ή±ώ“WρŸ—KIrAχπ#YΤ*Ϋ^άΦπ©”ωjΰΥ1¦Χ‰ΡΪ#ŠΐΚm(œr=JDαߎbLΊωzT\v zuλ‹E΄ρ_α­•Υjλ"–Η|γg˜ύ•sΫϊ…Oΰέ5n<α±>/<ƒΦιr±ϊHD3νWφVβ…gζcΏβΓ¦*Π,X™^6χΘk ρκ»p"yεϋ¬ΩΧcΒ%αMκBΛήνΨ΅εcΌ»t•ΊYžBφΠΟ"sΒΫq”Ιίψ'\QV~ΡύΜ,χ ͺW„‹ή‹ΉGΤλήοΊώ‹¨NŽ*OύZΧR©7ž€V?‹lœ¬₯¨}ύ,ΥώσΓΣ΄ΥΛ8οχxΟ]QΦ?Ί¬³εΡΓgρδΚ3Ψfmρ·€Ψ¨σ»bVξγxο±jτ3?~7m,†›fLΕΘ2›ΗcZλ°~ε;xwyUΠΙUaοQ¬Λ"μ8t=Ρ„ ›kƒFΈϊκ^œac ς[nflkEέ–V\4’}DΉΫZSO?:[f~†κ‡ΒByoΫ μΫ€κ-G“’―`μ%>B #l”Ϊv\μ<Š^# kΨΉSμό8ΚΞά<ŒΉazKrΗvDY˜6.†ΕEΈzŠρΈ—|ΪcΣ’έpxB ζ‚Š (4‚χ¬· L2N ίθOTfΕ­xπ;3͈Ν-[Kt&ηu"ŠΝQWH€H€H ³ PΨ›ΩώΙλ(μΝO%ΡNεΪ\gΎp̜`φ”ΐ›ΒV΅ΦΘ|οVM™‰bcΎ74G¬Τ₯=DcΑΣυu |Οσ1!³4ζΜ¬Ίωό̏hp 5ΣσΌŸ•±ƒ/y›oJy?3θ{ρ»rμκŒFuήζ₯ύΝo₯s\ς|Κ‹ ςIy9Ζ%Νy#oύ: ξ·(Ηz2~§=š~όO$@$@$@$ι(μυι! {}Μ€μ₯γ'£oQJœ1Œ9Ζν«°3™φ’ΠFΣƞ†šγ Nُ UNQv“P™Z„\ή#Βd3βlέJΌπ•@ά©fnε΄qΡišΌ.h̐θnθύΞΑΙ“Ν8Έ· ΅ΤΧ J+P(’―nέ/„iζρFΤ«j7Ÿ§ΕYΰξΞ“Βφ₯Εα†z[0mMΡ8γ„nΈ₯π‚°«ͺNαΥύ#ΌžQ )μ/ιjwnιh\:¨Ώ9¦αμ iُ-qDΆ~ΗΑ˜ˆFΓν’²ϋ’;€rΊw’RώΣΗO’±φ˜§»ηχB^ίn0JΐΉs8yμ$šκ',ΓsΎόήΠ·«YΟ™“§Π²λ(N&¬E?A:Έτ["{ ²Έzϋ|ΊΊ=d½UϊρGP%θv+μϊέ§0y„ρΖ‚ƒXυϋŸ`…Λ' tσ™0ψH€H€²„…½Yβ¨ 7“Βή wP¦šW:υ1―WOΚά.™ƒ³ 2‘!φ{½Ύ6ΜNε|Œ/L>ζGtΈψ²•™c€£ŸeΊί΅η·5.iή‡ρC:ϊKL§u³! Ζ₯σbήΘ‡άΈΩ6ΗγαΌπƒ-(n$   σƒ…½>ύLa―O€ΜžρF\ά6Ո q•/€HSœρ`h  Δθ„―ιŠq=ƒ;Ε#AcL:nθ¨&ήρ3ΜWΩ<‰?_"ΐ»‰y™‘k™O #ο,FΣΠS¨YΆ»ΪΓκbΜώαC3ΈWDαρίΨLͺΌY ώ“…ςφˆΐ[!" ²[ΡΝgW·‘  @ °7ƒ“E¦QΨ›EΞ:_LΝ«ΐ„ΡΕθ|欧wξΗχoΖϊΝΌ‚υމI€|ΰ}(ίS[ηΪ•·λγ~hW?°p   Θφϊτ…½>2;   tύ;γι+» _°=~v /Χgh΄ήŽΒœν ”θ#z‘K§ΞΈΈ8}σΊ,hhΔί–΅‹ͺ7ε-d…$@$@$p> °χ|ςvϋ΅•ΒήφcΛ’υOϋζ]7V+σ±-oγι?Ό§•—™H€H€H€H€H€H€H€H€’G€Β^Ÿ,)μυ ΩI€H€H ƒθ? 3ί9'S‡ΟβίΧ0Zoq-›Aό|\yντ°ΆΘ’Dλ]!Ρzλ#6r…H€H€H PΨ›NΚ)μΝ'g&OΉσζŒΧjuΛ–7πά–hεe&        δ °Χ'K {}dv    ΘΉ}1憁θ΄χxΣ4nkΐξ]mΩΪI$@$@$  °WΑEmφj£cΖv#PŒςΡθrϊ4Ξx¨£KΧhk¬ΑΞ½<δbR        φ @a―OͺφϊΘμ$@$@$@$@$@$@$@$@$φ¦z¬’ΒήθT6‰H€H€H€H€H€H€H€H€L€Β^Ÿ °Χ'@f'        4 °7 Π;`•φv@§²I$@$@$@$@$@$@$@$@$fφϊt…½>2;         €…½i€ή«€°·:•M"        4 °7Ν`υ$@$@$@$@$@$@$@$@$@©'@aoκ™wΔ)μνˆ^e›H€H€H€H€H€H€H€H€H ½(μM/ΦN$@$@$@$@$@$@$@$@$φ¦z¬’ΒήθT6‰H€H€H€H€H€H€H€H€L€Βή4;€Υ“         €ž…½©gήk€°·#z•m"        τ °7½όY;         @PΨ›θ°J {; SΩ$        H3 {ΣμVO$@$@$@$@$@$@$@$@$zφ¦žyG¬‘ΒގθUΆ‰H€H€H€H€H€H€H€H€K€Βήτςgν$@$@$@$@$@$@$@$@$@i @ao wΐ*)μν€Ne“H€H€H€H€H€H€H€H€H Ν(μM³X=         @κ PΨ›zζ±F {;’WΩ&  H/‰wό 3Ζ•D±·σŸ™ΪΘ­škŘύΓ‡0fp―ˆό U ρβ‚χ#Άq…H€H€H€H€H =(μMwΦJ$@$@$@$@$@$@$@$@$Fφ¦~ͺšΒήδL6…(˜4ίΌy$Π|ΚJΩ­/ŽlYˆω¦Ξ‚Β%H2Ό«0χYΘο΄ξ\W-Or™WάΔ;Ž£GΦϊΩΟή½€UUζϋ hήCD1HT%R’bpςrH35o₯eζ¨“qz,ηΜxώuόη8©|Μy΄¬SYc£3^JΛδ8¨3xpπŽ ”` D$FΑR.ώί΅χ^{½k³6μ·Νw?ΟΈΧ^k½οzΧη}χyϊς[WΏ‹ϊ½ΦOwIDΟΐ­_tι|Χ.ύΧ―YΫlD`Φκ•ˆκ©ί]~~76}΄_Ώ“Ÿ(@ P€ (@V`°·UΨyQ P€ (@ P€ (@ P 5μmM}οΉ6ƒ½ή3—Ό 4%:ώ9,xδΎ§1Χ€„;Ϊ£@@ Œ.¨CE^Ξδ\i;w>Λ–ΝD Q₯žnθΑS-Ψ{gΎά‰|Πνό}9ΞfζΜΛ½2s&ξ °9V†’#»‘φ+›ύζAQqΠMlwΒΔi ™`πyfHŝ (@ P€h{[…₯(@ P€ (@ P€ ZS€ΑήΦΤχžk3Ψλ=sΙ;‘@“αqHΡΒϊ: [&ŒmjΒ \“r<‘ΘΑυάδυ؞’ΩvF<KVΜΔ1’Žς}Σ‚½E8ΈξU€•Ψ›Ž{ρ£§~†~}μʎΎƒœΣΖα^S«ΰ$α;§CωΪΧβ P€ (@ ΄{ΫΞ\p$ (@ P€ (@ P€ @ 0ΨΫBΠ^~{½|‚y{°' ‚p«„³ΗΓύνO tμR,˜f«gΉ;1Ψۚ³¨{KqpΣΛH»h<šΰ‡WaπΠώ–ƒΕψΗ‘ύ(Ώήύb&#δu!ς·―CIΉqθ€Αi;άM P€ (@6%ΐ`o›š† (@ P€ (@ P€h {[BΩϋ―Α`―χΟ1 1f2‚zω’¦2ι's ΈΣ{όaωŒxΣ eξ]ƒ]©…mηζμ~ίϊΑ?@ ³β *ΫΞh=2Η‚½χcΔΏ> ΛΏύΫλΘ;_lωτFύλθnωTyκ#œϋγ±Ωυ5>{)@ P€ (@–`°·eœy P€ (@ P€ (@ P  0ΨΫ†&£…Αήv'(*χސ»Ε―“€=-M«’ΈτœOΕAέ}Ήα"œ§ gΕτZΑ1|ƒΔέ…&Wqέͺ"œKOώςύΩ܊ςΡ… œγžςυ"8{†E ΥΖ(WW‘΄XTα<{ιΝΊΐœΥ+1LΜEuΦΌωΑς ΪΜvμ€§1rxBukTΨ\ΚΓ…cΑΩ‹ΆλPx>ώ0F F Έ·Κ*ΐ_Ό—_:σiϋp$C­ΥnT¬›ΕΚΊίϋ’CΨυw`ΚΤρ6ΔΤ^9―²,ω§a_ŠςέU_Ά\[/ζλ:ζ ΟΕΠ€;PSW‹ύ’ΔσΕάΎ²$W―ίToΎ]€βc»qπ€=λ©n8Ή₯ο[ι©HΞξŽΔŸ8ςάœΎˆ[πΐsωS φv>£Ζ1›_>Šγ;ώ uΦ‚ZŽˆ{ΓΝΗ”?KώΗwο΄Χˆ-Ι·όόnlϊhΏξ0?P€ (@ P€­#ΐ`oλΈσͺ (@ P€ (@ P€ @+ 0Ψۊψ^ti{½h2½•πG±|Ωtk…D»Ν.Ζ†ΤͺHJν*Epjƒmp*|2–-›‰@Ρae–8ώVIϋμ^Gw ϋΧ½Š%Ί.|ˆ@β§©†•vQ~~ώψΡgΦϋ9γ%LOˆ4ŸXqΫΧΎ 9n:rš8>ΦrΌ*{6¬ΗΩ εt-@Ϊπ*ڞ‚΄ρρ§GΜ;άqq°miΖΌ»΅‘0«SA8η=M7π žZΎƒΥ ³ΖaέͺkεMe­xόΗ~΅ΡύEθ΅-ύ„Ν¬§g#j t7~5$‹6sΆβžμ½²SήΕS¨ήζ iέ”ηΓΡ5š—ͺΣΨΊϊm\T›»ΤΞΕυ’\Σ)—(Μyγ SΗΪΔ{~ςz|’βpe]Kί·F‡iϋάuεω’\@š·Ζgόœpcώ€‹9μ žΈƒbju-kΞ²<#>‚ΈιIθ*υ‡_α«ށmΤέtŠδΫ&Ώος}p› (@ P€H€Αή4ΩΌU P€ (@ P€ (@ Pΐ,ΐ`/W‚'μυ„b;λC @©#―Όt™9—Ρ=,±‘-»―#}λoqΐR•ΆΙŠˆRΏΦ`•΄O©œšŠšρˆΣ*θζŠ*£ΧGa”%„›ΉχuμJ•#΅κ(O|v Ζ ΧB½’q~a9z„D"~T”΅£‚Τwρρ^΅:i?LXό""Νc+?ΏGT}΄ccžΐ‹σ'’‡©εU€}ψk΄ζ΅`ouY ‹ Qq₯?ˆ_ ?`H ’†¨γ<έqΡ΅5ίJe^:Ne‘wXβF ²ή_£–R?Φω²ΆΤoΈζ)*ΆŠ0τl5 Rd§g €μΊτκƒΐa6dP3VΣm:Ψ4ζi̟3=ͺF!W=ƒψΤ J΅Υw·hpΔΉbl+Dθ8XkU(ͺ:η•Γ―[ ‚E "lτϊ~Hϊωo?D _žgP.*φFŽΑ0k@ψΊXŸ+€υiΉ†4ίΪUœΣ(ώξ{tο‚ΠΘAΒΒ&ΨλB;WΧ‹’wΦeδ€'Φ» jκλΠ5(QafŸœ“βΎnΐΗG”ΆV^ΎuΈr:ι9†±Pσ9ώιΊ6ptθΉ+{~Ύ(χat=ŸϟΠ‘`οΓ"Ψ;Τμ-;ς{δœΝ„`πœ•χ”α΅ψΗ·ΆϋΕgι~›zž΄ζ. P€ (@ P ™μm&XvK P€ (@ P€ (@ ΄]{Ϋξά΄§‘1Ψ۞fΛCc•PJΕ§vγύmZΕΤ„ω―`BŒ9ά« ΎJν ƒSFΗ₯}ΥyΙxσ]’’δ£’²οtSe_ˆκ”―ŠͺΐJ(kΩ s΅ίβτρώNKΥFWn9j^\8ΙΒ-BΪφ-8x²ΠΪ“Μ,<9’ωϊΘΔΞ—Φ#ΛzTT˜]­U˜ΝN~;RΊcξκηa ~ζ¦lΔφδ k e#nΚ“θY~‡YΣΎΦγ±³ Sγ‡˜>—žΪ&B‘‡t!4§]$S₯S₯ςπ&QyX}ŊΚΓSΥΚΓE©ΨόΦpY=(ΏKύΞ§zž ?]ƒ #”`³mΪάΉδƒλVŽ3ξΉΥ‘κί₯`oΖnlΪͺ­qυΌΠρΟaΑ#χ©z―ΜΪ#ͺQ7R ف^BΗ.Ε‚i£-g6\£ΚˆρOcδΕΨρ©X/Κ+ς1,_<ΕRi»i[7ΰ Ί‡ύŠPzΌQ(έάZ·ζΜ» pdλp8Cϋn <":γTς!k%k90ιP;7Φ‹K.κύ‰w„EX>#ή΄'sορ½IηΉ»ιΊ–ΎoΚυ~ξŠs~Ύ(°ΉžΓΟ 7ζOΉ¬όr6Ψ{εθ;ψκτWθ3f1ξ3ΖΥSŸαΦݏα.SΘ· E°·˜Α^™™Ϋ (@ P€hΣ φΆιιαΰ(@ P€ (@ P€ (@ζ`°·9T;^Ÿ φvΌ9ΧΎςπωΪΒ™ ΙA»–‹`¬ΏΨ₯ 1JA1Γ ¨ΡqyŸΤνΫ!—’ϊi@"žYυ ‰kφ- ―©M-LŠŠΌ[¬y΅–ς9§v¬ΑΎcRPW·TTΰνŒΠζ*Ύ•YϋD¨S Ρj=6²„e«ζ˜‚ΔΦ{ΣXB§Ί}ΈHηE8ΈξU€•Θ׏αδ%l "—βΰ¦—‘vQ>nΩ–ϊ±ŽΛΰ4ΩΚYO­­φΎ'ͺη\ΐC»B#cΠΥOλ¬Ά6Μ›gr¨ΜIAςΑ @·Ξ Θ­‚©E—ΊZΤiGμnωϊvΑ₯'±/E­ςlχΤF„bΚ/_Ζ(KaμόΓρΙ>}Pά¨ρH؞n l—«ί%ωD˜_.σΚχ’κξΪ·‘›viΎ•SΞ}ΊŸ₯Iλ^Ωiτr²6ηΞ~\s‘‡,ƒ³Ώ\‡νεσ]έΦξΡ‰u­stβΉΫΤ ž/JέυNhχζμό5¨Φ—ύηP°΅bοu”όεeδη$bδΏΞBo₯»οNβψ'‡qΟS+ΤGΩΑ`―’ΐ(@ P€ Ϊ“ƒ½νiΆ8V P€ (@ P€ (@ Pΐ# φz„±ΓwΒ`o\rΰ«β$Ά¬έ ]ΌO:^||ή³₯b¨΄ί0jtάh_Έ¨Ξ»Μ\WλGͺz^]?jX]ΥΡ™·ψ5$Z*—*•bKKjΰ'>Mύψυ@`@/Σfφ—’*ο!}ΕΨαΣ^ΐμ±ζŠ‘ΦλVΓΞΥΏ—ͺϋZ˜6όΓΔ¨Ρ#1πξ`τξ*€΅5¨GόΊ€Ώ₯Ϊ―υ~έq‘ΪΒhώΔ5E₯άq¦JΉ"Π·Iu OΛΈ₯~¬γ²’ίάρŒŸΏI1JΕ^εuΉ§Ξ λ‹Έ\R€Β’+ζݞψSά‹ZρΩαξͺDψu΅MψΥαΖξœYΏZ‰¨ώJyΨ/‚υ'δ`½΅*±€Ρš5~₯~ ‚”|C¬ενb-λW½ ;ΩΞυυ"ίqyΤ-μua]ˎFί[ιΈξΉkΉA§ž/J©?gžϟ<ζmη‚½’б¨~sθO>XωrT π‹WρMΑ`D>υ τg°·!0χP€ (@ P 0ΨΫ&‰C€(@ P€ (@ P€ <+ΐ`―g=;jo φvΐ™—_•9’ν{6h₯γΊΐ§½ύ*‘Ρq£}ˆΓάUK WηυT°7 ³V½€(Ρ·£/{•='―xqΑZ/ι.Ζ;@γgΏ„€ψHνd;[ε–JΌξΈHmνUΦB Χqbϋzμ?©‹n›G'υ£›gέΨέτŒ| ΛO1U+Φu«|¨*EφΩ£ψΛ§ϋQΩΰ “;DX|Ή‹›ͺΥ:Ϊ΄Υ‚½1˜³κy SΦh™ΦΞ&XogόrHςΘ{/γpƒκΗΪwh"Ψ[’†ΝλΆΰ²kιvKλMΆsg½Έζ"΅₯‚½pe]KŽN=wΕ :ύ|QPδλΩ©4ήπ9ΡΛcΟOeςš΅W9\Ψ[ρu!ΊBWΡΆκ«]8“rDl F„φ²b―"Κ(@ P€ ڟƒ½νoΞ8b P€ (@ P€ (@ PΐM{έds“ƒ½p!H/Γ@§½γ†•v%?£vFϋDeΡΗDΕhQ”Q»ΎΡ>©o‡7εͺŸ’²iκ”ά|μ΄W*ωVδΓΩ‹ΆΥc₯‘₯mvςzμH1HφΖ<WζO΄^‘Ί$Ήyy¨¬υz}κ€ξƒ0nμ}¦γΦϋuΗEn›!ͺomXέxάΟΧ!qˆZ‘XŒϋΑΈε~μVIφ€gδx<6ξΗŠžΚ§_α«ށα“BΊ_§Φ·vYnQ€ (@ P€Ν ΐ`o3 ²K P€ (@ P€ (@ P m 0ΨΫΆη§½ŒŽΑήφ2SgS(»Η₯jœ'±eνf] 4(a–Ξˆ7 Τ¬2μK πYΟ3¬βλΪ=ΗΟ_ƒ€%^ 8ξS―1ι˜;1Ϊό±βNδ݁Έϋ#-ŸOcϋΪ·uAL-Ό&‚ΔλDX†•_‘γ—ŠπθhΣ.λύΊγ"΅r°η₯7pVΎ d©„‘<Υsε ©%iΨΌn .«Η€ww=₯t›γž]#ΒΣζyΚώNUa] g?­3}ςšΥ±©RTέπQΓ*Ιφ[ΨΡΖ₯9³c >?fΝΆmθžibΛ§Gυ'‰ω" 7E$«2±sυzdΙgHλΖΊεγφΆlηϊzqΝEvИX:'Α΄«8ύcΌΏσˆ|ΨξvΒO_Γ„RΏκ4Ά~r.Ϊnc›vΧuSŽvŽ»τ|QΖ$υηΜsΒυω³΅±Ϋφv>£Ζ±6Ύ‘Ώ§φυsχσ1κ'ζη'JώΗwοΔMλQiCΊ_§Φ·Τ7)@ P€ (@Ο 0ΨλySφH P€ (@ P€ (@ ΄q{Ϋψ΅“α1ΨΫN&Κ“Γl*eχΈμEφ―ύOœ°VΓ퇀ŸρCΜUX­Α*ΓΎ΄Ÿυ<)Œͺνsν¦ΓEvΎ%H‹Š†A\k―Α1ˆ Α™“™Φ]ˆš…ε 'Αί΄G­$ L~ώ7ˆ ³ά›¨ΨΊIͺΨͺ…Χ"νΓ_γ ΤˆcbΞͺ%`Ύ„υήάq‘Ϊ*½ζ¦lΔφd­Ί¨˜§±|ΞXσ­|ΪΨ|š›+Ίγ\Μ4 Ÿφf5¦[+Ψ«ά_PxξP6|έ¬ΜΕeλΊw°‘Νi#gΌ„ι –°xΩIlέf]Xάtz@ βΒkDεXσ‚ΟkΓΰξHα9έβ‰K‡±aγQ)_WZ7Φu(··νd;wΦ‹+.ΊaKc­ΞIΖ›ονΆχAϋ[Ξs²EΜ‰½Έ΅KλZ›‘ΏγΪ؜xΎ(·!υ§|tτ9αΞό)Χ‘_ΪΨν{ϋ1β_Ÿ΄'ܘ? Ι΄₯Ή6μC}xU”e(ώΫ~\)―Aΰ}Σpw˜ΊΏωΫΧ‘€άζ"κGι~Zίj{ΎS€ (@ P€Ν"ΐ`o³°²S P€ (@ P€ (@ P - 0ΨΫ–g§ύŒΑήφ3Wiψd,[6’CΓ”H-[a|<(a–Ξˆor(Φ~ ―₯Η¬η‰0ξ¬_‰¨ΘpiϋšΌŒύ"'cΡβ™±†ωˆ5Ψ+BΛ‹_DB€%δz)›7ώAWi6(aΈχK₯8ςαΞΌ"JΪNΖᩆi»€υήάq‘l]«ΡjΕjΓΘG±lρtΣZPw©οΉΙλ±=ΕR~ΨiO₯5©φhό^³OTVύΜψ ›{γ¦<ή]pσς9μ?tΒΝή<ΫgΥc|§(@ P€ ZM€ΑήV£η…)@ P€ (@ P€ (@Φ`°·΅δ½λΊ φzΧ|:t7RυΩςŒέΨ΄uΏΎ™H-)%[zjήέv@w$NΑή+ ŸϋΆιχYΫκκΒ‡€Lž:q#6,ΙΓ₯¬£ψ\TΊυύ4–Οk>OT€έξα„A-ώρGύζώ”ε›"@©ΌόcΕ΄G¦cP€ι£φ‡Rέ65ΖNΑ Ε%CxnžξΈH½ςœt\ξ2Qa–@²εΚ•—²m ² ͺ“jƒ³lE&aΞΔD Σ‡!Ον}Ÿ₯ζj§;αinΤ‰?…C’hλb:α*rΣ‡w~Ρ0„ͺ]Υ»·ΒΗγ±€qˆ’·7έtUΞ€ξΕη‡2t¦΅–$֚ZΘT:šŸΎϋvξG₯΄ΟΊ<^|―η™ΏΧκ:΄ldΓΥvN―i .Έh­C‘0c ’†έƒ^]ϊ’‡ψή©―kΪr@WWΩW–Ž-Ώ{…jCέ»‹λZϊΞ;ϋάuϊω’ŒΧέη„;σgρ‚½Χqζ˝ȿtώΎg3₯ηŠΥφ^ ™9wΫ>,Κπν‘έΘ;kκ ŠŠΓ€n’“ξQ˜8-Αzg°ΧŠΚ P€ (@ ΄Ίƒ½­>(@ P€ (@ P€ (Π φΆ΄Έw^Α^οœΧfΏ«π8ΔέέΎβB7o”αΙ γ0a³ā G!6,w(ƒ­«ΕΝ›ΈZ’Bƒΰ½5zJψθDτο€Μjρύ΅Λ8›a©xΫh+'ʁ=Πά$‚Β‘Q"¨oOσ|\+ΐ™ £ΰœ“Χ±wΊ žAαQΠ/]ξθfcX3…bΝ\ΆwΆί?<Cοξo²AέχΈVyY†αG Ζ΄Φz‹΅V«μϋeyGp±Φ΄vE·\X/κ•\qQΫΆΔ{K―k§ž/žzNΈ1Z°Wš k•tiŸ΄yηΠ³wά:‘Χ.ύΧE Ψψ%ͺ‚―•ή₯πΆrƒ½ΖZάK P€ (@Φ`°·5ΤyM P€ (@ P€ (@ P UμmU~―Ή8ƒ½^3•ήs#Qˆ‹ …o­Hv9ρςυσō˙8“i\gΣ‰Ϊφ©r`οΌ¨Έό‘MΕεΆ=zŽŽh 6𜈟'*œ€ΏΫ’4lY·ΕN5dύ©M ΕΤ_Ύ€Ψ½t§Z+£λφς(@ P€ (Π φΆ†:―I P€ (@ P€ (@ ΄ͺƒ½­Κο5g°Χk¦kn$tόsXπΘ}.έOuΦΌωΑ.΅m7Ϊ@`―έXq θ¨|NtΤ™η}S€ (@ P M 0ΨΫ¦¦ƒƒ‘(@ P€ (@ P€ ZB€Αή–Pφώk0Ψλύsάήξ0tμR,˜6Ϊ₯aWfνΖ†ΌΌ‚mψd,[6BˆΏrή₯eΒFπ~>'ΌŽy‡ (@ P€h φΆƒIβ)@ P€ (@ P€ (@Ο 0ΨλYώΪƒ½uζΫς}‡""&~55¨ub˜~;ㇲ\,ΉβD«vxjπx,Z1!bθό•σνpώ8d ΄„Ÿ-‘ΜkP€ (@ P€M0ΨΫS€ (@ P€ (@ P€ή'ΐ`―χΝikάƒ½­‘ΞkR€ (@ P€ (@ Pΐ»μυξωεέQ€ (@ P€ (@ P€ φ p—Σ φ:MΖ (@ P€ (@ P€ @ φ6ΔΓ (@ P€ (@ P€ €χ 0Ψλ}sΪwΔ`ok¨σš (@ P€ (@ P€πn{½{~yw (@ P€ (@ P€ €ƒ½(ά崃½N“±(@ P€ (@ P€ (Π„ƒ½Mρ0(@ P€ (@ P€ (ΰ} φzߜΆΖ1ΨΫκΌ&(@ P€ (@ P€ Ό[€Α^οž_ή(@ P€ (@ P€ (` ΐ`― w9-ΐ`―Σdl@ P€ (@ P€ (@ 4!ΐ`o@ νγ(@ P€ (@6&ΐ`o›‡ (@ P€ (@ P€h~{›ίΈ#\Αή66Λέ|0ύžNY@\.―Η_Λo·±r8h1H|`0Ί yi8“s₯ε>Λ–ΝD rε²tlωέϋ(lωQπŠ^ :ώ9,xδΎwR~~76}΄ΏΑ~ξ (@ P€ (ΠVμm+3ΑqP€ (@ P€ (@ P€-&ΐ`o‹Q{υ…μm[Σ9Ψ«†ϋšu6»λςκΫΦ9 ΄9™›ΌΫS2[|Τρσ^A¨¦λ€~ˆχmρ1π‚^"‡„p――Ί…aΒΈΡ¦c°ΧKζ—·A P€ (@/`°Χ‹'—·F P€ (@ P€ (@  0ΨkμΒ½Ξ 0ΨλœWsŸ&‚½χšƒ½§²j°!ŸΑήζ6gή':v)L3‡³Ώ\‡Z8Ψœ„E+ζ ΔD›ƒ=/½³ήΗΜ;j €$,Y5Δ΅μm ΰ5)@ P€ (@gμuF‹ηR€ (@ P€ (@ P€^!ΐ`―WLc«ίƒ½­>ΊτΏΗ―G›ƒ½Η/άΒΖK·uΗωhZΐ?a–Οˆ7˜Ήw v₯6έΘƒgΔΞώ7Lbκ±8ύcΌΏσˆ{gWZ x2–¬˜Ι`o‡^Όy P€ (@ ΄{ΫΟ\q€ (@ P€ (@ P€ €‡μυdο†ΑήΖ€~6Ɓ>ΐυοκ°ρ`αp_άΫׁw˜Ϋ•_―Η…ΤαΓ<}eέ1ƒύ0.ΔΓξμd½ΐ΅υ8ϋMώ[wn'<ν‡˜ΐ’‹=}ήέχ?λρνMksψ‰Όο₯ojρ§b5μλƒ…qΎς³Œο+ύΠΝKEHΈwWλ°9Χζ8œ½?Λυ:‹λ•Χ!₯Ί¦†ωbDυoγλβ:μ8]‡mΨnlΕ`Κ³Ρ·›/ͺσΰDy$&ŒΒΰJ­Jεu…©8΄υ3θc›J»‡Π·‹ͺ‹ŽbΧΎ£¦³­Δα±Y?Aoαy­ΰoψ,ω„8ƒ©‹'’ΨWwλ&ΊCH@/±*Ξ%οΕ7wŒ@βΈΡπ7uRŠSŸnΗΎ4ΟVτ4FBhp_λP«+ŠPz)a#=Ρ@IDATŽύg/^±ξ7oD ρρ‡1bx4{•U€Ώx/ΏtηΣφαH†^Ek'ξυ'β^…kΡ!μϊ;0eκx bj―œWY–‡όΣ‡°/E±Q_Ά†£c’1HwoΘ=~Ÿ§Ψ̏z9Λ»c.ύπψ\ Έ5u΅θΪ/J̟ΉƒΚ’<\½}‘|»ΕΗvγΰI{>6pϊγƒx捅djW€λώι%NwbΠ γ|_/ύ0nώSΈ§§κ}kq鯟ΰH¦νχ$ζΟDˆ8ΗGœσMΪ'8œa>'(*χސ»Ρ―Ορό΅°W]Eqι7(8ŸŠƒΊοΉΟ ρά™*ž;Κ3ζZΑ1|ƒΔέ…¦ηŒΈnUΞ₯§ˆηQγίΈμuάS^vβω2{†E ΥΖ(›žIΕ…Θ?{ιΉrnS€ (@ P€h ΐ`oξ (@ P€ (@ P€ Ό]€Α^oŸα–Ή?{q ¬Χ~쇻Δ)ί–Χ£ͺ—†Z½ΊV7λπƁZœ7νμ„'ΗtΖΓύΥ°«ξLΣ‡oKj±ξTΚLŸ|°|jgŒjxšαžσΩ5xC ‹ρ½)Ζ(Ξ,}Ύ(ϊΤ½€ρ——Šγ'μwθώ€λιcϋαjV­΅άŸνA'>‡?ŠεΛ¦[Β΄΄»t6ώ•κ)R»Κσ»±α£ύκσ{ψd,[6ΣδV™%Ž ŽKϋτ'ΫϋT„ύλ^Ε O6Δ¬§g#j $6~UgνΑ›|‘mζώl!"ϊk»l·²SήΕShΩζˆt―εyηpc@4BΥ@£|jΥil]ύ6.ͺϋ\j€ΕO#>R c«iοεηχα}¦ΝŸzΘ)—(Μyγ SΫ6ρžŸΌŸ€x6˜­^rψ΄—0{l€ιcyΖlΪz@=δή»΄ν¨]œ_/#gΌ„ι foTœΖφ΅oCŽ›Žσ1έ2¨ΚĞ λqΆBŒΐœΥ+1ΜhνKΐiγγO˜χHίι”F6₯焃mK3φΰέ­wέΆw§‚½Ξ{š.'Ύ{O-_ˆΑΨT‹gη›Κ³“/ P€ (@ P€0ΨΫQ€ (@ P€ (@ P€ή)ΐ`―wΞkKίƒ½ˆχςڇόjsJaY.ήzuο„‘ύ}Π[ φNλ‚™΄PoΆ¨`{α»Ϋθ}§(JηZ^Ωω5x-Λ\A71ΒΓ»·D!ήξ"<|_s{υ:Ύjw’ω?DuΰδrKΕ^i|JXψΧΆΑ^'Ž«γRήΥλ6Έ?©?υόrβ=^v½DγDaa~έƜ¬ΑΏU+ «g;ω.ΨΤ–•—N"3η2Ί‡E#6r eχu€oύ-Xͺp6YΡRκ·\7)Α_iŸR 8;55γ¦UΟΝUp―ŽΒ(KH5sολΨ•*GΥQ:σΗV¬Dt°Φ¦PT Ν/*‡_·@ Š@DΨθΚύτσί ~ˆΎŠμτ3({#Η`˜5 |iΐAΫόͺξ^΅λ–ζœFρwί£{Ÿ„FBΫ`― νŸ]ƒqΓ΅Po¨°œ_XŽ!‘ˆe½xAκ»ψx―\Ψy—‘“žDXο.¨©―CΧ XD…™}JsNŠϋΊQ*UyωΦαΚιd€ηΨVv5vοΟΜ]ύ<"LΘRήτ2ŽX“Ρξυ¬_£ζΎΌνϋΰΪzι‡ ‹_DB€ω»Z~~ψN[‚±1OΰΕωΡΓΔuU|~-}΄`ouY ‹ Qq₯? ; ‰AΤuέJΟέwΐΙη„­eώςq*«½Γβ7by§ψ³Ρg‹Τυωem©ίpΝSTΨ–Βι@©xΎd €μΊτκƒΐa6dό°ώόD P€ (@ Pΐ$ΐ`/(@ P€ (@ P€ (ΠαμνpSή,7Μ`o#¬ ‚¬υψόd-vʁΥ>>x’_'ΞxϋϋβχcόΠΫΤe=Ύ<]‹?kαΦώwωbΕhs` ›>―Α1›ΛχΏΗ―G›ˆΗ/άΒΖKZ{›SE²X {&ΨΫΔύIΧSΖr±¨7C«όθ}1'Δξ•ƒΛ Ζνθ)ΐ¦4)>΅οoΣ*D&ΜbΜα^]0Tjg|3:.ν«ΞKΖ›ομU|•}§›*ϋBTA}UTVΒ•ΛV˜«ύ§ŒχwZ*y:zO6η…Ž]ŠΣF[φ!mϋQ ϊ3Ο]ΒΖίλΎn¬@T˜]­U˜ΝN~;RΊK!k 7e#Ά'gθζ#nΚ“θY~‡Ω¦ίΨΩ†©ρCLη—žΪ†w·‰οŸ4N?'€ΆJ§J₯κM’R΅ϊŠ•‡§ͺ•‡‹R±ω­?ΰ²zP~—ϊ1|Ύ©ηΊα™πΣ5˜0B 6Ϋ†‘͝ϋG>ˆ°nε8“αξ6¨ƒε;(@ P€ (ΰ­ φzλΜςΎ(@ P€ (@ P€ (@» φΪ₯α'μmΛ&Θzτά-lώΖ~Πv’ΆΞ³[ΏyŸ₯"―|ωœΏfάΒ‡Eϊώ"Γό°κ^s°χTV 6δ›«ϊΚ}X·₯ρy"ΨΫΤύΙAb%˜όaJ ώϊ½u4€6Ώ)‚́bWyi-^<‘…~₯³ί”l@>_ϋ_8S!5Α΅ε"8κ/vUfν!JK•N©aπΝθΈΌ/CTρέͺ―β[ž±Cμ;$β™UΟ`Έ¦aίπšή Ε”_ΎŒQ–ΒΓω‡7β“}ϊΰ‘Q#EpΊ%XŽU>Q’—‹@²β‚ŠΣΨΊφmθŠΖJχͺœrξΣ5ψ,́૓νβEπ:ΙΌ.y·θ*ς*WδsNνXƒ}Η”qΈζbκΠς‡ Ξώr=vjά”ΟχΜvfύκDυWz3DΊuΏχ}δ΅ΰάz±¨κͺσ–Š Ό:Π\ΕΧ₯u@–­šc~žTφΆ~χ€yiτ9!αΰΊW‘V"―ˆ8N^‚Α–jΟE΅η4έΧrΤOcΟ w<΅ΆbΏ'ͺηΘγδ6(@ P€ (@Ημu܊gR€ (@ P€ (@ P€^"ΐ`―—Ld+ίƒ½L€œΕΝzΌu §9}φ˜.˜ΪΏ“εŒΫ(ό'ΠΩΗ¦ΘμήΥέ|Ξ©¬["ΈΫF‚½ܟ.Ψ{£kΦB—χ’Ό.~#ͺωžσ`°·β$Ά¬έ ]όT Έί†χ,*j*/iΏaπΝθΈΡΎpQw™Ή:―ΦOϋΥJD‹π¦ΆΟ|YηŒAΠ•– hφ‹ΰς 9Έl§C­š&ύ₯¨LzΘΆj¦άo)₯{EΥ9l_ύ{Ψφ`xi'ۍ[ό-•ƒ• kiI όόlzφλΐ€^¦Ϊ½ΘγwάEξΉ5‚½Acaι4s•ΰκK)xsγŸδ!ΉΏ-ϋ{αχΑυυ’ΡŸφfv([bοk\­­?(ͺ;‡?ˆQ£GbΰέΑθέ΅3P[ƒZq’_χπ7…l₯οΊ4ΦοΏ£Ο ©-ŒζO\3QTΚgͺ”+‚Ώ›Dπ׍`―;žρσ׈PΎR±Wy]Eξ©3Θϊ".— °δŠy7€(@ P€ (ΰ€ƒ½ ρ P€ (@ P€ (@ Pΐ»μυωl­»a°·y)¨ŠΦα•ΤZ|cχtR߁Α'k%^i΄gŽƒΟ ©­½ ΒZh:Nl_ύ'u?Κ`™Τ6ΫA»ιω–-žbͺVlΫ3ͺJ‘}φ(ώςι~T68Θ (@ P€ τ φκ=ψ‰ (@ P€ (@ P€θ φv€In[d°·d9¨Z\‹_ŸΆ ²κšvΒσuΑύζβ£8•_‹‹·Q Χπ₯Tς½|₯GΎs£bo_Όφc?ά%`€•Η_"ΖΚfόςρ&οO\D>Ώ©ώŒŽJ4²³©›½γ†4₯λ΅3Ϊ'd΅šΥφI};³ˆgV=ƒAJ—‚½φͺzFˆιJKΘ΄ρ`―5°θΘΈe£ŒΨ΄υ@#­δͺ»’²pκ”άl X«(•|+rαμE†uΡEνKyoι`―θ§±|ξXσš =Λ#ub[φ?Ώ›>Ϊ―olοx»ψ>Έ±^t R(ά²?;y=v€${cžΐ+σ'Z[W—δ 7/•U’^―xVv„qcο3·~Χ ž ϋδΆbώΆΪ̟ΈΈŸ―Cβ΅‚΅χ!ƒqΛύ­ӈ=ΰ9ϋ1ˆV%m£:/οΏσ'†{5nQ€ (@ P€ φ p(@ P€ (@ P€ (ΰέ φzχόΆΤέ1ΨۈtSAV]ΣNXψγΞx¨O'±·ΫRjό½ξ‡>Θ{_Έ…—τΑ_]'b|ρΒΕΞςRQAχD#Α]£ ­Sχ'.ΤωMΧ ήMΨμE+ζ!D\’2k6|π…ώbΑIX²b”_4ο‘ΐžΎw'>iα?TΓφΥΏG­΅Š½ΐΉ½―γ³TΫVRΏ’bοαM/γΘE©c{n)†›N΅ Ε”_Ύ€Q•b¬}醽μ”Ζο„‹ά‘μΝF»Ιg»»έIΟρaζ@¦ρœΈ{ ΡΎ){ΗΫΕχΑυ’َ{φ5$ο«ν0mWΆŽ›χ &h:£0}Άμ<€o0KVΝσάsBš”₯‹ έοΓΆoΌS’iL|utrPΫnΐή3žζKφCxΤ τ8Ρ£1¨Ώε§W Tώ­¨*μαΚΤκ}ς (@ P€π {½by (@ P€ (@ P€ €3 φ:£Εsν 0ΨkOFμw2¨:ιΎ.˜’{&CΉ¦³ώqΟ@?Όcσ{± χ|}Γ“¬{€*Α7κ°φ`-r¬Η€{ξ}E›ϋr©’―Τ—i³)¦ŽΫφΧΤg)g ΰΚmμ—ͺUVœΔ–΅›uΊ „EX:#ήΤ“΅_ΓΎ΄€©υ<Γ*Ύς œΩΦϊWZΩ±Ÿ³ϊ5μOHLϋ[>=ͺ?I‰@’lFU&v^,ω Γ{•O°³νd»ψωk£Δ§ηΒ΅ΉΘ£³Kη$˜v§Œχw‘{v;κ ΌΈp’Ήͺ©•—DSώv·οƒλλΕ,1ι˜;1Ϊό‘βNδ݁Έϋ#-ŸOcϋΪ·uΑy- /‚ηλDπΌD?#‘γ—bΑ#£M;­ίCcm½ZΟ3zNHm!žΤ{^zgu—ΤϊQ _=WhέHuhw=ΥΛΩΎ{vO›ΏΧΩ_Ϊ©*lۈŸ)@ P€ (@+ΐ`o‡zή8(@ P€ (@ P€ :ƒ½wξ=yη φ6’ιdPuΔ`?Ό4ά€…ΪΎ%‚Ά§Ίο僇z-6νJΧΌVV‹_³©Β«λO φŠ*Α[E•ΰΏX«wΒ“tΖÁζ q‡ φ’ϋΧώ'NX«ΕŠκͺ?ΥU-ΏξήΔ“BwΦ}Fα<Γ}ΊIqκΓΘ/az‚%|(B‘Ϋ·Y>4uƒΈπœ8™iϊθ?ζi,Ÿ3Φ|ƒΰξΘi’Ο±–>/Ζ†D₯<*Γ{•O°³νd»pŒœo F’’a°z•ΰΔΧΰŒεώ”ύΈXϋS6€±Vη$γΝχvι{ςƒ\%67y=Ά§˜ηΙ“Χ0υ%έ“ΆF₯«Ψ=.{ΫπχΑυ‚¨YXΎpόMj%Y`²¨€g©€\.ͺwo’ͺwkΑή«HϋπΧ8¨›Ά8ΜY΅ΓΜΎVoCc-k=Οθ9!΅UzΝMوνΙζ ˆ?υίλΖ*x76ŸΦξΰŽgPxp1—΅ξ¬[ΓΕσeΆεωΒ`―•… (@ P€ €{νΐp7(@ P€ (@ P€ (ΰ½ φzοάΆδ1ΨۈΆ²5 Ζ6hΪ Kκ‚ΥίT~³σuN•ήΖ];a@ΟNήΟχ†ψ πfή8P‹σΆ}tσΕLτCΈeΧΕu8v₯5>Π·QZVσRxχ ή}Δή½φ]φ~U‡άΊN዇ϊϋX{7Ώ³χΧΤωM·ŽΖΑ )§ζ€ΆvχΓήM°„w«‹N"5y? kξΖθ 1*r ΅kΏ†}9Ψ³φζΒ†¨ΎΉ`Υ3U›Vδ νoΓ…μ‘τ AXΔDM J|ΣJŒ‘Γ¬‘C”œΖώΩ‡ίρ?™Ž€KΥRΡ§a₯\Γ{UΠΘ»Σν4?S―UyH?t_]ψ7ύϋ£oΏP„ Βΰ˜HψWΖΦΥoγ’zy—\ΤΖβ]Z,>fFζΧE¨υλ ?Τΰjφ\΄†½₯vΞn†?ŠeΛ¦#PiWΥXΣَ ΞoΚίξρφς}pu½Δaξκ%ˆθi6+”«X‹u°@T―VΏ_r˜6~ή+HeyTdβπΏΰόΙ2ŒƒΖOΗΰώΪxδ9!͏ΉηλΘLω“ Β“xhΖ8˜λΰŠυ*ίƒ6 λVβ³―aάπΎζΟe™H?ƒοα ?Ώ:\>·Y¦κΓzŠΰπͺ•ˆ (Eφρ (Έ˜ƒΛ%ΕΈ†ώψQ쏑0n΄Ή:ucU…­#ε(@ P€ (ΠΡμνθ+€χO P€ (@ P€ (@(ΐ`oœτfΈe{Aνγ‹Χ~쇻Δ)†ΑX£¦"˜ϋ€Μ5:Ε΄Ο^°W|tTΜ 6WΪ΅m6»λςκ­»οΉΗ―F[ͺ[χ6ά0Ώ³χΧΤω"ΨϋΪCNz5ͺΆ'|²MΞ4…&­Α:ν¨©*λ²ΖΗƒaιŒxωlΓmkΏ†Χ‚qΦσD%ΞYΏ‘7ϊΣφvνπΞ 1Oβ‰9γ,ΥF›UŠ`οk°U{η‹ͺ½=ŒO7ν­ΞKΑΦwώΤ°κ¦α½6‘zΘ•v‘“±hρL„¨}Ψ{· φŠσ\q‘»OψιL‘F%ε#’Zͺ‡*λjU_‚Τwρρήϊ yςSSώ"8ΪξΏN―Z^ό""-!ΧK©ΨΌρΊ5”°@< ,3QŠ#nΐαΜ+€π\"ž/Ζ+D?qΦοΊα8ψœhμΥ_Γϊ©±κΦκI‘"PΎΨ(WχYήukΫiO₯5ΨkΣ±ΝΗκœ}’φg6{ω‘ (@ P€ €^€Α^½?Q€ (@ P€ (@ P€@€Αή0Ι-p‹ φ6‚,‚ͺ!‚ͺJυάΒβZΌ|Ί‘“₯Cέ|πΜp_LΦ*ζJGQώΟzd—ΦαΏs΅€|θ„G£|1f€ό};‘χΪΡ£naσ₯ΫΪ±υΠπΞX8ΨζZJ΅ΰόz„φΓPΡΎ°HŒ?ΓfόΞޟ¨&όD5α‘βšί _ΫzΘύ]O7j>HΥ6Λ3vcΣΦύϊFΑIX΄bŽ)4Zzjήέv@w$N½+ ŸϋΆιχYΫκκβ‡πρx,i’‡Δ «Šp&u/>?”‘λά?ζQLKšŽAReQυ„ότέΨ·s?*Υς{πxα6Ομ–!άΆκέδSuΫΆ ˆΑδ©S7b;υCeI.eΕη’riƒ— .Z‘H˜1QΓξA―.}ΡΓRΡU9~nολψ,5W;Υ•-±ώ–ˆυgž±μyι œu₯GΫHkΤ«ΏN¬ΡOcωά±fAQz»…¦j΅zΤψΗIχ2νTοoŠΐ»ς2}‡ί‘ΣGν₯ΊtjŒ‚AΚsBύžHsΰτsB φ–η€γr—‘ˆ ³’-WΌ”†”m[εH5ιΘ$Μ™˜ˆaaϊgFƒ΅ν„§yύψψS1$ Ά.¦"7ύqxηΊ΅†Η- P€ (@ P€šƒ½š·(@ P€ (@ P€ (@"ΐ`o™θfΎM{›Έ— θ„JζVdx¨½o―Υ#ηz3\³ώΕΏ“ψeμβ:·n#«ΈeΝp™vΧexβξξcrΉy£ —Nf‡]Ϋȍω‡Η`θέύMγEέχΈVyY™PΓG'’οn@­rί£,ο.„[ύƒ£‚;”EZW‹›7+p΅$…ŒΥ—ζΎίXj ‹§Œχw“›{ΞφߞΎn¬§Y”οPwρ_’ο―]ΖٌLg»hϊ|9Ψ+‚Β›D >4κAυνi~>]+ΐ™ŒΖΏλM_€‘3\π Β€~θrG7ΣλΔ3΄P4n({Ο‹ δΩT oΌ5R€ (@ P€h— φΆΛiγ )@ P€ (@ P€ (@wμuGmU{U ΎSΐ9ΠρΟaΑ#χ9ΧΘrvuΦΌωΑ.΅e£Ά!‡žEΧο/#7‡!m~šX— φ6ΔΓ (@ P€ €7 0Ψ덳Κ{’(@ P€ (@ P€ `°·QtP€Α^‘xlBΗ.Ε‚i£mφ:φ±2k76|ΐŠŽiρ¬φ ΐοC³>Λ–ΝD 8­œ{›ΐβa P€ (@ Pΐ[μυ–™δ}P€ (@ P€ (@ P€ 0Ψλ0OlD€ΑήFpxˆ „""&~55¨mτ<ύAΏΞρCY.–\Ρΰ' ΄k~ΎΰρX΄bBΔI₯;πξ֍žΞƒ (@ P€ ΌA€Α^o˜Eή(@ P€ (@ P€ (ΰ”ƒ½Nqρd; φځαn P€ (@ P€ (@ Pΐe{]¦cC P€ (@ P€ (@ P ½ 0ΨΫ^gm›ΑήΆ5 (@ P€ (@ P€ ΌA€Α^o˜Eή(@ P€ (@ P€ (ΰ”ƒ½Nqρd; φځαn P€ (@ P€ (@ Pΐe{]¦cC P€ (@ P€ (@ P ½ 0ΨΫ^gm›ΑήΆ5 (@ P€ (@ P€ ΌA€Α^o˜Eή(@ P€ (@ P€ (ΰ”ƒ½Nqρd; φځαn P€ (@ P€ (@ Pΐe{]¦cC P€ (@ P€ (@ P ½ 0ΨΫ^gm›ΑήΆ5 (@ P€ (@ P€ ΌA€Α^o˜Eή(@ P€ (@ P€ (ΰ”ƒ½Nqρd; φځαn P€ (@ P€ (@ Pΐe{]¦cC P€ (@ P€ (@ P ½ 0ΨΫ^gm›ΑήΆ5 (@ P€ (@ P€ ΌA€Α^o˜Eή(@ P€ (@ P€ (ΰ”ƒ½Nqρd; φځαn P€ (@ P€ (@ Pΐe{]¦cC P€h―“~Ή£Επ―"νΓ_γ`f{½Ž› (@ ΄²@@"žYώ υ oΓ–?jερς `°Χq+ži_€Α^ϋ6ΕΉσκΡ£PyΓ;―‰Φ|uλ„{όœΐ7Χo;ί¨Υ[τΓ„Ε/"!²―I)Ώχ2Žδ΄ϊ 8 P€ 0ΨλOjB€Αή&€x˜ (@ P€ (@ P€pZ m{Γ'cΩ²™·Qy~76|΄ίιj© ?]ƒ #˜.—ύεzμ8ΤNΚ=Ά”q@ Œ."ψ\‘—†39WZjjΌΰ:˜Ίb%bƒΥ[ΙΓώ΅…κgε=S~ωF μeΩY„ƒλ^EZ‰|އ·›aν„Ž Ή―Α@ΛΕχ“#ίΘ$Μ™4 Γ¬rWΧQpκφnϋ•ΚξfΏ|5Onσω„¦›Ο—ΨΗSοdΊΘ™kπω1ώ`ΧY“ηΓ-eμζ:σΐ:χάj)ά;iS]κρό€:σΏΏ«}ρΦU7ƒ½½ΐπΙ‚Ύύμάf.Ÿ8Œάc·sœ»=.ΰ{c{ή.?KυƒN·§d΅3λΣ™s=Žά°ΓIχuΑΌgΓΕ·±γoα‹οφΧζχDΝΒς…“L?$P™΅>ψ’Ν™€( 0ΨΛuΰ {=‘Θ>(@ P€ (@ P€ (@Y m{ƒ'cɊ™Pβ²ϋδ»iΑνψω― )f ιŠν+Ψϋ(–/›nϊΥβ?ΈΎΩLΑUlζ&―Ηφ”v|nΑ5dR˜υ«•ˆκ/Ξ¨Ίτμ…laΈC6 T„ΰ§#ΠrάTk“¨ŒuΡ~―niŽοgxΒE”_TΩE·0L7Ϊ4LGΎ‘cžΔc’ϊ΄RaΠξ«β4Ά}&–ζΏέ »w€Ο—Ζύά{Ύ<ˆgήXˆAΚ%ΚNbΛο6Γƒ±^€λ¬ρΙσΔQρόλ09³žZΘΕSΘ>ژ€¨rΊτ:σΏΏE°w£»Αή»&bΤ¬GΡ½‰Ϋ¬ϊκ3œIωkgρ°'B{ΥaaŸzSWΉίωaΫugΓ¦ž…‹}8³>E°χ—"€όΫ°ZTμ}£ά͐Ί‹CV›=:ͺ ζ;k}»E°wO{ φ’&?Δ…)?x(~θp“ψ‘Γζό&*4ί)@ Έ)ΐ`―›€ln`°—  (@ P€ (@ P€𴃽.ŠΆΫΰ¨@˜41wˆίˆ\uρ(ΛuQ ρf‘c—bΑ4sH³]ŸΏ­:ΗD°7Z φZ^Υ—RπώΖ?™+ϊ}Γ§½„Ωc#ΥΓβ½TόΗσ—›χ?ž;0“Fζπf@–¬šγX°?R›‹`³ΪyEŽLAVQzτΉχDŒΐ°„Ρ"ψ,‚½«μU™šύ½<_Β'ώσ'E›( R?ΔΗ{z–₯ΉΏ'-k³Mό=ζΜzj‘ο_γj<Ϊ.œ N:rƒ;χQψ”d’ςr!ͺΛΛpσΖχπιu7τ ϊ«•|―£ψ/λq1ηͺ#½ς7B{Š`o€9Ψ›-‚½φΦ`―¨LœΤ»]E–φϊMv6Tλ²AΣχψbtΟNβχ—h―ZŸNx`z+»ώYƒε·i˜ΎΈ³λpϊ{­M{Ϊ’ψͺ0ύclΩy€= Ÿc₯:¨ƒ½tβ=|Ϋ φz”έQ€ (@ P€ (@ P€h'Αή~πW2W¬ΑΖ֞»vˆj!8„EX>#ήt΅Μ½k°+Υ£51[θ.Zλ2 ƒ½@¬ϋO€—(cŠΐΤ+,―‚½β{'.Q)Ύw¦—˜-΅•0­#u͍œψΣ‰[β³―aάπΎζΞEΥΥν’κjƒˆzpΖEχΒ™δCζη†έώω|qb–ΪΔ©?_B1ε—/c”©Ψz)7G•k³6±F<1ΧΧ™WoιηCeΣv, ~ΈΛτχ»š6ΑήηEΕ^ΣίثΠ(©ΕkFF}>σ„+=+GίΑW§Ώ2:‘ϋ<(ΰί£ΏμkφfVψag•”$υΰuOΝβ0uΦOΠGόλkΗπhΖέ…ζpͺŠp.=Ÿ%Ϋg#†G#°§\V‰`†x/ΏtηΣφαH†qx6bόӈμ:ωΏϋϊβzώ_±οP†€νKDταΉ:N”χGbBSσΠ ΟΕΠ€;PSW‹ύ’b)ΘVY’‡«ΧoZ/β+\ŠνΖΑ“ ΗλΪό ΧŊ«oΡ!μϊ;0eκx bςQ.\Y–‡όΣ‡°/ε„umwC φV]‘ΤΎ¦ϋΘMوνΙbΎ"ΓςΕSD(η:ΚΛn!°Ώς½2 φΊΆ^žˆYIγ5Δ”~}_Giή9œH/Η}σ§#Dμ±μumώ,3a7i9Ύ‹ΚΎ+Μ•}«HϋπΧ8(Ύ^MΎ€ώω|1rm½΄§η €΅S'ͺ`Ώ£UΑ6‘χ9όχΧY‡{L^7o»ψάuώϋ§Ž¨­½yΦ#ΐη6nόΰƒγ΅@b―z ΉCTΆ4½:‘°Ϊ―ϊΨύχ z§Ξ½ίΖΨ>υΦν6ψ©Χf­ν„oovBώ €―DθZ{ΕωΑ]n£ΏhΣCόΟτͺλ„βšN(γLΡU ½iύκαίιΆψw™φ‰{¨4δ€υHκaCΕχ>ψΒ¦ΒjT―:ŒΗΓΔuΥ—2Ξάλ>Ψ+ώgψκRΩώυˆκͺΆι„:α„θϋΎ~uζΏί=μ5€ygχ‘?Ε¨ΔXΣ‡ω_ΰΤώ”FΞnΉCχυΓΘξ·jcϊ­0ΊPε‹³·lΗ’Ν卛Ύ", <κ_‡ΑΒΧί²*ΕΘmݝ?ηאЧ[bΊ»‰πvˆŸyό•·:‘\¬Oυε+6KͺΔ:½‘νSΉ΄ΞΤΖΞΎ»Έ>#Δw!+P―.kεΊβV‹g‡­»~HϟΎ'?υΑή‡,Αήμ=%4£Ύ|π³1Ύ_λλίΥaγ7ΐΒαΎΈ·―ο0Ÿ_~½ώQ‡σ”πΆΖω"HΜ·ιό―́nkΟέ|°4Ϊ}Dί]­Γζ\›γβΔ1ƒύ0.ΔΓξΤΦΔ΅υ8ϋMώΫt ko† ?]ƒ #”ξΔΏΣ {βN P€-#ΐ`oΛ8{ϋUμυφζύQ€ (@ P€ (@ P εš7Ψπ f==Q-ΑUƒϋ«ΞΪƒ7?ψΒ|D DœͺνΊt6ώΡ&€ΕO#>R k§«[εηχα}fΣNuvœ’‰ύ`o f­xQj5ՊsΨ³εχ8["…‹Š§ΛΜOΥ1½—fμΑ»[-&κ bŒsΆύΥ ί³SήŎδ†ΑΥ„gΧaΒπ†sP)μ7¨φrwαbω²ι¦jnςξΫΊyˆΒœ7^ΐ°'οΘO^ORδ4¦σ'Ή–‹κΡη―ͺΣΨΊϊm\lp ­ν‚½E'qκzF ![αύͺXχ#gό¦' ΚDΨΆ€7βb‰° φΊΈ^όcΓ“σ§˜ͺφ5¦0ΨλΖό©’Ύ ϋWOBΗ.Ε‚i£Ν;Κ±εwο;μ’ϊΧz3Ψ­kυΈχΗη‹Šh~o•η‹ωA °tF‚ιCckL7`gηλΜΔΧ1Σ­‡?ΈώάΑ=g~WGΥΦήΏ_¨kϊί!"ΈχV™oΓΧ©χιΜ»o=žΧ’s ΪVίπΕεrhφ6©Ε°FΪ(έ\Ίζ‹+Υv·1O΄‰0΅ι„”R?€5Œck1N„L•Wφw~ψ³5Ψ{I"„ϋ€Ϋ{•‹pξ'6anβώD»@{,ϋ•ΆEΫζ|…<ΌαC•ΏŒγΔ#σΨ…ζΌ\Σ}‹ΉŸ-‚δQΦΰxΓ& η^œ#ΦισbΝ(¦εb-ήαΩP£΅ ά[‹}‘oκΦ•ωsm=*ΦfΓ[1ά“'ΦΨ'Φ5¦œβΚ8 »vh§;λ3A|W&ZΎ+ςΕ*Εχυ-έχU>*Ά]š?›>\ωθl°WόDθk?φΓ]βZί–Χ£ͺ—†Z½ΊΛί¬Γjq^œ¦8ί΄.EpψEΫΰ°Τ_y©8~BwΒ“c:γαώZ Ww e ’Οu’Ο2ΫηˆIΏΐά‰Ρ¦=ΉβσmΧύ>ιDnR€h# φΆ‘‰hηΓ`°·O ‡O P€ (@ P€ (@6(ЌΑ^N\±ΡjΐUά|αωTδ•Γ―[ ‚E "l*ΟοΖ†φ›i Q•—N"3η2Ί‡E#6R„M―λHίϊ[Θ°TϊϋŸ]ƒqΓ΅Po¨μ›_XŽ!‘ˆei€Ύ‹χΚαWΖ)z3φΖaΞ―–`˜Ύ-9‰νλ6#W½ΊΡύε₯γTVz‡Ε!nΔ υLdξ}»RΥ–ύτσί ~ˆΞ½Šμτ3(―#Η`˜58}]T/]Ρ ziψΨ'ͺTμ%οΊτAτˆHΣuμیΖιΐ<Œœτ$ΒzwAM}ΊΕ"*Μ<ޜ“(ώξ||,iί:\9ŒτO̟Έƒρ*7XšsZ\χ{tο‚ΠΘAθαF°7hΜӘ?g¬θγ:`6‰Κτ2U~wΫy§ƒΫR°·$ ;³MaΔ"μ_»~Ά±b•߁3ˆΓδϋ‰~ε`―«λ%sW?υώ*ςpβψTuCμΨΡΊ€•νΪqύϋ'‘HσhΫΏtbE°yͺl―ΖΞ“Ϋ˜Ά₯ώΥc|Ύ(³b{xΎ¨σ;[¬xσΪΙA“MM\ψϋλLεξpYoά© ן»Κeœώώ©c3X§Κ!Oώ½©^Κ₯w\zWι78¨ν+Ep2STΛν.*δΖZC­πχ+~8π½z–λοQ’κμήjεΚNΘUo‹kΔ?›|o£Ÿ|UX†;΅ΐe΅¨ΜZ(ͺϊVˆwe8w‰ ­\WηΘ>΅x¬—9˜{ιŸ~ψψŸΆ!Ίz<Z‡0Σνψΰ³BQ-ΦrkrΰWΩuITΞΧν!ͺΜ>ΠSΏ&ύVͺύΚabΡHTφ=.ξ―Zά[¬ΈgKίΚ›μm–χτŒϋώαχώΘrEρ›8ΎXo J#hιΝۘ1 Ρβ·I¨/₯tΎ¨jλ+*Fs!ζΎRžί² <¬S₯RQaΉXό“»»¨ΰ*Φj)Ψλκό©r§Φ™¨@.ώι-–1ΊvΎm]κψ¬ρm±LΚΔύ₯kΏ\C,WξΙ±u¦œιΚΛωυ)_e°Xχ±bžκ”―”Έ—hQνZy©kΩτΑθ'ζοσ»`œ§ώ€³Α^ι|ω6 ΛκpρΠ«{' νοƒήj°W:_ α6¨άΘριq]0s€ϊά?TP\‡ ίέFο;}ππ@λŠAv~ ^˞7ςΈ”mω‡πœϊ·ΊmGόL P …μm!h/Ώ ƒ½^>ΑΌ= P€ (@ P€ (@ ΄‚@³{ε !mϋ=dήo4)>΅οo³„~Ε σ_Α„sΈWЍš…NBS/ ―ε3KT!d©R–‰/­G–e$.S΄Υ{χΑŽΤ»1w•¨¨`ιΈ( [ίΪ’―ksJαM’‚°ϊŠρ’,šC·(JΕζ·ώ€ΛΚΑΘΗ°|ρKπ’i[7ΰ 5Τ,By‹_•ŠϋšΊ)?ΏGτω…ΪeΓχ€$,Y5Η–±ϋZmΖιπ°:~ΦllDκdͺΉ”Χ)‚Αiψc,λrΤQGœjͺυŸe HΙ ;ζ`Σ±tT…?ΝZ¨8‹Ί©-²:Fπύ.FL•Vfbι +n”bΖj ~Ζ΅εc‡m |Ζ§g³’}yzoγ‘€ΰΒ^ορ;8τaL―ο „΅ύRΚΗkρφ¦,ύԘυ}ΣqW·4ν–LΊJω@ΒήξψΥ5™ΈHo°ήRƒ?΄ltΏ$³†™ƒZΌψφ9Θ³‡Ÿ,y r¦‘΅O’{zΧΚάI$@灅½ηz 4Iao Tv‰H€H€H€H€H€H€H€H€Ξ3φζ`Βχ‡7”ξ-z――π!Ύ³ Mφΰν9?ΗΦJ…ŸfŠ€W¨’IUd[&yΨ2ςυΥ2›—<‰οk’ϐ~JM«½γ(]³ι·Δ2υV²K^ψY©α„­°vξOQ\n2ώΓ½O<„~zΖTK¨y…~o‰ ~l{/.tˆεΤWΫWnΑΒ9ΏΆ ŠUŠž?΄*e㠚QqΙtKΙκhό’mώΫί|oΗΡWέ Ύž;―½ m%λ±ϊΒZ―†22ΪβtΕ&¬X£f‡φ*νά―{+7aޜyΘsd€Ζ‰νXψΔ―Π]Δξcu±{κρ’ŽΓξ5ςΪάUvΡγˆoŠ φrCP«ΖŽZ/Τψ™έWΖQmߚ‰w’’aΛGΉ_AσόXF^Λ!΅ŒYWέ·»*‹ŽΩE–¨Yρ³žξ{z rϋ©‚ή¨―χWlxλ-Λρσ²V‡›zΤΰͺv†ρ=’=ωυΈμΙ ³Ε©œG2VoΊΌΝΤq2~f}Ο₯gœY5TρμΞΟ3ρΗγφ°JΚwœΨΉ,ΞΤ6‚¬«φ|Η§—eLμηœK₯¬v4αψΥΣω {‘LxλtU)―zoϋYΜϋ_Kpλ,₯|aοΈ+ΫΰžήΖ\ϊ/ΙΘϋ\2ςͺeώΊν,ζππ£—…‘ΡŒ΅ΐQT”ŸCf¦ΓHfGtΝξ€ο΄Δ€!ύ”VT1Žέv,xτWvΏΝŠpλŸ”)βΙB]<)ΒίEψ»O2+‚JΛw³Qm©φΓxͺ%bλŠžΒ₯Œ«ŸΚqub6d%ˆπ.όψE-*ώh‚ΧΕ"xυ)υT]nBλva―vœ‘ ΘΣ£5G+6/ΑK‹V+qh{ΈxΡDŒˆ_;G*PτβγΨ ±§~Τ1Uc'ερ3(γ¨Άo6—κΉη~>˜%K₯ύ qΎκy`·Υ>Ϊ{ΑωEγ‘Ζb²T~*ΧδΒސγΗ8k•Χ15Ξό―‡Ÿw]m(±—hΥλ*e›δuSάIΟω’aΦv?¨?x\²ω~nˆΡ\Ήψά©Š ΅Μ«»O€cΟι4:—†²s‰Ι’¬¬CE|i;ye½ζŠhέjd‘™^‡¬ £Sd˜'™~οΉΈV?Xv,CDΊΡ>ˆHσΫ"ξ­‰€cΡΑŒΨ=*ψΥ|¬8+6œϊLΩξšiˆν 'DΌρͺΆO2zVdb½ΤS?ͺθΣι§Z.Μzη+οΔ%—\y. ™υDvωrpς8ΠAξ7mΒφ% ρE˜†λ₯N&]Rƒό6Zciψ³Θ7ͺςd6”8tŽ•[Υpγg p˜83ύPΗ8™°7U?M›ώ–šΈΊγS“€±¬”υ3~ώϊγ£T2α­³ ₯<ΞΤβΉΥη°ΕYFέVΚφNΊ¦-&v7γ­erbΆqN­2Ÿ]Α(³yΗY<Ώ—Β^=ΧI€š/ {›οΨ5%Ο)μmJ£A_H€H€H€H€H€H€H€H€H eh aο`Lžύ0j Ί‹@χ;EhR΅kžΩ‘ΙK9n‰VςqΗμGο’ Μˌ% ι§4¬ ΔμvŽcλςίΰm·LŠU;€―:ϊ' Y’ΜγΨΈψY¬άT¦Ψͺΐ†—GΡ.»EMΨ{«© t!΅%πt–·,†Ž’Jγ`oΓΏπ.•ρ‹ΪTόEy1ζΝ]€CvwšΩ–2ž1ψ΅ΈιiθνΙΖΕ³%6>³ΕΖZγjBp+6ƒΔ‹*b<*qφ£Έ8SΗԊz?st”q΄Ϊ7ZΛS$sπ`#sπή’—$ΈΟ¬ΘJϋώγ:•ώq~I–±Χ8Xγ―­©±hΝηφ2n[Γ%vΖFc'y½γΗ8k…Χ1·hσ³/μΌλΡΆ{‰ζP½ΆRΆI^7Α]Υ)ΙΘϋ™C]¦O*ήσΐ·»dׁ‘–]7ξIΓΞκt¬ρm•γΰπΞάΠΙθ:Ω6γόTϊ€s"^ώΤ/χλΑ”ΞF{'20―컈P{‰ΥωΰšΝŠ}ΓφͺβUgv`­†*ϊŒσΣήdΚ[ϊί€ώ£ΖγβFSΗώω|ψΧ€άnΈκp§0¨1UΖΐw[κžMΗΌŠ y4Κλvό eθ8‹Ί£Žqbaoj~zυή{Ώ]\r|*c’4–•²H:~ή=|$™πΦΩ R_Dπ“υ5ψ_gu[)ο_Ψ›Ž‡―oƒ«£η₯ڜΧϊζηDΨλ>χe]sfN₯WMz=ς2ΐύ$@$Ј(μmDΨ-Ψ…½-xpΩ5        8OFΨ›=χΟΎί!†φΊώ¨Q¬γͺ0ΨΉ~ΚO¦ ΒΙUΛδ[Ήϋ}|Έο3 ¬Ÿ¨%ž4,TŸ:^hZۏ•s†εζvt©ϊΏν ΌΈp₯£PψΉΩίΜ,ό,–¬+UlYY|νσ0qΦcKΫ[ΏΒ^‹³bQνΗGίΖχΓΏπ.…ρ3]RύΩΆDΈ6Τί²Χ`Œ™©ά32pϊΘΗ(~Ώ4„nΒ^‰Ή;AΑ—.’LweXσ›Ψ'-[qh»΅/HΌΨΗaγό±αΊ:¦V\Ψλ:œdΤqτˆ+­Κ·=Š[F ΠkWIΉη]βΟΩ΄Ύ¬}Χγ)τσ‹λάWΞʈ%;.EΥXL.Π΅Ϊ2ι?0qx}ΗΞU2ΏqΉU4όυ!™ΗgΪ*Νχ:¦NuϋΈϋŸw=lΈΖ–² uέτ0νk·"Έsη%;ξˈK!χή&Ytϋ]P‡Ž.‡«OKvΰÊΈ·}-ώ«›u_P-βΐέ’ε·Κά•Q‡Β‹ α›[?Ζw―ΑΥbKΛ[|8kNceίW£ϋώ!ϋVΛ>γ£ ε~W²ό;Ρ„ΐf‘Ψ2C;Κ2υ@IDATτ •§ΣραY{½·ΑΚX›FqUτσ³ο{Ϊ ˜„Αώ5΄ΥΜۊm―ύ’Γ·ρ?’ω~ɎάW³œ’°7ΖΝ³φqπ?~`Šq¦Ή€ŽqRao,‹q8σμx’v.ΎγΣ«Υ sC²υy>$ή:ϋ¦–?Xƒm1'gΑθvη <υ΅L\"›ώ…½ixψΊΆΈΪψ ŠΝ{k°O2{{Ν/Z&ίCŸΥbΓηξ{Υϋ4λ;ƒ‡ΏάM$@M€…½M`Z€ φΆ€AdH€H€H€H€H€H€H€H€H ‰ha―šAφΔv,~βW±Χ'μ2QŠλqυUΦ°zΞOQR™ΠŠrPPρSZ°Δ“ΐΑΝKπΚ’Υπ\ λύEτΐzΜ{ξwφΜ±Š8\"™Œ_±ΏZZkχžŸ`μU—Κš›Pp}Ό©W$™[7hͺO·βƒη­ΙΚ$;.vΥtK—rΛ`¬ϋ—ΚψE;θΓ7AφεŒώ.¦ήxe*¨ή± ΟΌϊN :Fae^hZ‡›$£πUν !π»3Q’Dί§;‰:άΦ³ΊŠ6 ο~*υΞGΜΏ=/Œ`zΆ]€ά χ=—ήˆkn{ώ…½±΄‘t,:˜αοϋŠ .P†ΏΤγLsWφ–Vfbι Q~»~ΒϋιΪ\αβΣ³Ω c l½žͺP·\„Ί›“œΘ!ΚΧu™ΘHG*jπƒŽφ]ΫKΓ΄―΅Αu΅Έ¨Ε’5η°κ”'ε€ςΖ}w)ΠΛν–©'z*ik,@$@ O€Βή†gά,PΨΫF™}$        Ζ%ΠπΒ^ιΟΦ%OβνχΛ’χ,™ΠΔγΈϊzυ "/»(€ŸKP Δlφfέƒήў–Ώ†on°ϊ­ψμΒ²GŸΖ‡ΦQYS„dŠ@w˜ˆ}Ηλb_ ¬xΎ΄ωž­²Εξμ¨έ₯XϊΔ³Ψa/am)>x Ϋ’•Iv\¬υΈFt“ έΑ’ΧπΚR…ƒεΎ~ό’ ωπΗa2πfˆ px z²ΙΪZVβ „°7lΌ¨γ°ύΝ'ρV±ύœ2ιΗ’ν΄ξ©;j½ΨΉ`λΟ 5Γmy1ζΝ]`Ζ›Ντ+ηΩδθyv% gaυ6σ`‚e²8ρ8ΎΚ8Š[ΎηA)ΛωεvCη‘Ή9Θόb‹‰‡$v4‘]υž5xε7@•­€Ίrό<β(Φ²ΗqΖYσΎŽΕΖ7ΰŠ:ξAζ]W3±•rYgνΣ1kX&:‹(RϋhšΘU[Οα―υ™r5™ΰ.Ωqέ³ϊϋSΨ΅£:ύU³οRƒDψ«eάuΜζtŠ`Zg»`Φζ•Ώ-Β_ύΎQ²ύώΉΈ1ZΎL2ςΞ―² …-{rο™Pœi³΅ήφ£™x³Ϊ.κΌ²s &v2ϊg τΎη’pΥγΡAsS2φn—Œ½_Ψ]–,΅gͺ°Wμo6ΛlœnΩΆΖ‘:αΖ/dœ‰Σ=;Šx»‹‹†ˆά[jΏΒϊ©Άd]΅η7>=Ϋ2&ΚΦλωΰ*¬υμ΄ΌΜG±μ»'#˜³ΆFΎuZŸ/9?-0rρͺ}Η]Ωχτ6ζ†ώy/|bΜ VMk#Ύω$Ώ\»Ϋ:Šβω?ΒΪ/Hπί*K’ @Γ °·αΨΆ¦–)μmM£ΝΎ’        @γh a/pΕmβ–Œ^ή„ΕΏ˜Ÿ+{0†εžΓΖMΡ_ϋ’‰R<ŽηŽžŽ)7™DQΉ‹ηό:ή–ζ‰ΌFuH―sΨjΪ“]‘ό”zͺπN}|Ξ¨0υfSz7VnϊL³nΛͺmξ^󯲉YΧά‡™“Gi‡%Γ§}ΌpχŠ›…υ¨(λOŠπό Ώχ«)Β6Ο¬¨œ Ηδo²γZA₯LυUxζε?Εͺ;WR?½-Ε–*8uΪIu»GnΪhδLΥnς=ZmX†φ†—ΌqHv­|έMτψŒˆ­Ο΅Έχ‰iθw‘±GεœςψŌ¨―₯ߏ•s~†όF~λ)κbԬ܎eΏω>t–Ν‰±_i–―6Ξ‡dqβq<•ώq~Yέ؊gίΗ΅‚JΙζ—X»ϊŠ–χqΟI$Ιn.εCŸβ›zžΔόπ8Ξ8kήΧ±Ψψ\ ;ﺚρs}7+zΔ‘y8αRyΝ»Qoόύ,–IΆΩzϋ$ά%;Β‘žmEΔv6M«ŠδgE0ι"Cι%μ->œ‰5§ΥΊuΈ³W fϋLΑ¬ZB[/μ&’αφN]Šebύ{i5Γ/j$ΓlΉG†YΙ0|₯(·œ4DzyEpO–αυι <}XuΦβ^χ7t~ΆΜΒaο{:υ‰ŽΨ‡Š=νˆnεL˜/χνnl}φ>6a’I­ςgbν Ϋ[£c«eI^τ© ӌ: “ΐQž1'ΖaΨρ³„―igP|­>%1π™±ι+aύ΄·β+l|ΊZPϊιuΞΕκ)+•Βž1{ζJP‘nΠςͺ°W²ο.”컉eίMΓ7ΎΪ7t5ζUΨ{yΏL<:(:ˆ ψ9o1}V—qέEΐ_sŠzH_—υ¦ΞΎ9ΪF’οεqΉƒH€Ξ {Οϋ–d™Βή–4šμ         4  &μ…ϊ£žΦΧΚ](ώΫίπϝϋ¬ήθ›w9ςnjB֎exζΥw Ι„&žΗ!€Φ‰=(Y·σ_8“Υ]Ίε οeωθ7x²NlΑΒ'~-rƒθ'ŒŸRΥKΨ«΅:bΚOpύΰK ’Aw™dΠΥ3σ*ώ£tΝ›X»jΊψ»­PΟ$©³gζΝΗδُ``ΆQ ε[°ςέΨψ©ψρυ[0vDAτ€’=ΨάΣ+WτΊ8Ίuη:\†17"KΫs Λ΄W£ΆΧςνηNύv”–ΩDsA„iz#ζ5‹°μ+ΫV„@MfdβŽξά€}1!f γ§ΩSΈΊϊkϊΤl– Β^ dΌ8Ζ¬β£UXσφŸPΩm$ώ}ΒύΨΛhη¬ψ« rώYMκk6ΑξαR”lΩ…SΘ@ff‡Ά―Ďςh…7aΖƒ· «YΔ~”¬/ΒΗϋΰΒμ/αKΉωψ·« μη{²8ρ<žB8Ώ4ωΕ c™;ζ{˜2Θ3χ―ŸΧ–;2 «Ε̟gEφ<Ξ83ΡΗeώnΧ1Σϋ€ΛΠσΨ ΓΕtΟ3Ν –ŠΘΜ(U‡%"μ}§Y {λ0IDΈω™iΨy<ŸœIΓ‘si8&]­C-Ύvq­U΅n+Dp{ΦθωπlΙΨ{aT”+BΫ"Ι°»]ğ]€Ξπ‹E,kά^ι…½D†j&U£Uω{&σeΈˆŒλpΫ%5(0ۍ€α_€γγSι8+βΣ."θν{Aϊu¬EV$ f`―Φ¨šX6+ͺ3°F|=šY‹±#ΨV+d|Όό4ϋYφδφΛΖΙCγ‹ς2œψόΝ=‡6Y_F—~W!»[§X3U›‹ώ±5Ά[iŒ8ӌ ›i"lΦEˆΪΆŒc±0ύηi> Σ>Τβ+"ŠΞ:)bΨ#1l@a(‚αsόκ#Μ1PVmτ1’!•§Σ±WΫΠ?!γΜ¬t™J|JΜ_!Oš _-ΖdΛxi;δ`ωΗμ–x—λΊ[ql·Ÿ†ιΧ΅Ε΅ζιy¦οώ+‚Νu8}Az^˜†Aέρ•ήιθz&‚§WΧΰ#§sFSoΌR?’μ­-.ΥΉ‹H€Ξ  {Ο φg”Βή7€μ         œw 'μ•υΈζΈkrTDκΡΥ*φ>o {sΗcƌΫu±ž]8­,B”³<ŽΌέx±‡-}·SΨ+;ϋ)uΤΧg«{ ΣƒEˆϋpLˆ«e”|E2ΦV)B£œΗ_—μF=$›οΙζkKάλiYVJ–ΥCΚααί| c/f6Uφ» ›"z.Ke”†­Χ°*;£«»W=‹Εš¨Ψό€0~Hζ―i£Ω,•Μ΅"μ]8gž%DwτΑ˜Ϋ³†—AΎ‡I…–Pάa.Άw~¦2~±VeΕ)ΨUŽ9c¦Η5wΙό2Ζo(εl«κωž,N8Ώ΄άωΕΧβώ§§‘ΆO²Ι/lςς8ƒη'πυqf°lΧ1Ο(J| μΌκϊnΊ’,NΝrnΛΖΘ€ΪΆχŒχƒ"B}α¨%DΣ]AήΓ—$8ξζwΒ}¦°7a!Δe:?§‹ŸΪ η“}Ό³’17GDΐJ{ΎΘΔλ_(DεΪΥβΫ="ΙοwUa―ΤΟ‘ρ$('ϋxϋ™¬¦uΌχψΩ"μfδ΅vΗ­-;>zci|Ά^­dcΔYΤ#M\}W—¨4ΞKcG•{Ÿs {“Ε©[[aΖ―^βL<μRƒ1M¬έΉέŸgbΡq%ζΒψio2ΠVΨψ΄²ϋ0'ηΔ|»ΗωaΖΟ‡™€E‚ u•sΑ.ΔυΆτε/gβ§Ρμ»ήΕΧ^Χ όΧW3‘› Ž~ΘSΨΫ γώO λ«©ƒ+°φΕΗQ{š6Y£Ωρή– ΉqŸ ~Jε!wώ&^mΘ0ΆΏωKΌUΌΫήdώ­˜1mB4£θql\όίXY>‰0Y#qdW ΅½ ω}ν’ΫͺOбfΡμˆe³΅šΝ|n{ ϊΈh%φ–ΌKW’Κ*― ™$~Wε"Žκfy1ζΝ]€C©ŽC¬ΝŒΈmς~ΪvAΗ c°}Ή0[ο`vόz–ΈΈΗˆ‹m qa™m&ky˜8λ1 ι%ξ–—`ΑάW,‚£Γξω1Ζ_ΥGφξΗκΉ?C‰™ΡVφ„‰­ωAγΐ˜1Γ‚Ω l—ρκ2j”Ξωΰ‹πΚΧiΕ­OΨρ³Z0ΦŒΕδ1#1°―}Ξp™ά‘ΈcόX9μe†ŽbwΙ:¬ZΊΪ8/RλTϊΗωEbω<Ο/Jœ ΉσΗ2χΡχl]ς$ή~?&σQJ)«AƏq†V}SΒ&Θj˜y7Τυέt*…λζεύεuνΑΨΜY_ƒ]fΫυ±T²¨Ί MEΨϋmφφ['20―2=e«£$sνενkΡ5Σ­©4μ–LΎEŸ§ΗeΡΝ’:7KέΎΞzZ6Φcιθy‘\Z–άyNrΤ”]œ˜†w?ΝDΙ97?’ϋ$“μψ¬φiVMΓ''Σ±\쫟|ρeŒ–}Vέ)Ω=·“,ΓΥΧχγψιg*ŸΞWή‰K/돋»Ήά°j Ÿ<ŒΓ»6`ρœρ0Τ(q¦Ϊ‘ηmΒ¦@2Η}d,·ΛΐrUψͺRγ0ΑψΖ΅bόκ#Ξ΄ŒΑ#€_ιP‡Niu訜ΖΫ+3ρζ EΨ«9ΒΟΈΎΨ&>―μ\ƒ‰\ΖΜΝξYΙ„]‘dΒ;~nmΩ§{ΛΦΰρ-±TΙξ­HωΊΞΫϊ*mεΊAm0­Ÿγ\Φ²πξ­α}&.k'oT9 φ·9μ·OΗύƒ2p}/Gέh»GΎ¨ΕΊώg·Λƒωw`ζ΄qϊS΅c…<Όϋ–{ŸΈ—H€š {›Ψ€4Sw(μm¦G·I€H€H€H€H€H€H€H€H  hxao΄σYΉƒqΩ—Ίλ―{EδŽUŽR‡°³Ύ@Ι멇τνvΪΦ‘œ9S‰£εΫP¦ˆ½L5¨ŸJΖή#"@}Q¨9ωΧ’G— u.gŽνΗΦmΙ™δ‰ξ΅—Χk½8…Γ{6`ŸΎyυΉΙνOaόš\_š€C‘β%[Ξ‘Ζ99s‡ώυΚ\Δζέ;γΧcΐ0δτ芢ˆ "ηό)™_ώ·΄4NθξκoН)τσKPΨ T^Δ·ΘC$š(ΦcήsΏ³e:χ²Ϊ γη4Κ8siωΫ©Μ»Hη–amq{OKΈaΫYόΟŸΒΊFτ3¬©žmλΠ£MΪJυΫΘΪ48™'θuΆί―C-δ-υϊη”A?_½eœΩΘηŒώ.¦ήx₯mŸίκΛπΜ«οψ-ή4ΚuΟΐ3Χd’kΤ›Ώn9‹ωͺi '9"˜ΦΩε΅π>lUŸΜΐΣGά_9ο£:‹4&g ΡΥ–Π&ΟΏ–0Šμ  ΄nφΆξρ――ήSΨ[_$Ω         €I€Β^“Dc,sΗcƌΫuAΜfμm β΄A­‡η—Φ3Φη³§Œ3ύœQΣ1υζ‘Ά}~7ͺvΌη_m^™ϋ»_’YC3Ρρ pφ‹~ώ~ΘΦ+ΐs.aov8ao•{Ÿ£°ΧoΨ6JΉ¦gωfh„η_34ΊL$@$`#@a― 7B °7$8V#        π$@a―'š8Πk4˜uzKΣΫ–ΰ₯…|EiPf“$Π: p~iγήΨ½fœ9ˆη opdž;‡Η‘D›™mΪΰταύΨWώY’b<ζ›@ςΪm$yπ9ίu€|pΊ& {ƒT Π>‹’@λ ΐσ―uŒ3{I$@-—…½-wl³gφ6&mΪ"        ΦA€ΒήΦ1Ξμ%         €B€Β^WC °74:V$        π @a―ξ&        hΉ(μmΉcۘ=£°·1iΣ         ΄φΆŽqf/I€H€H€H€H€H€H€H€H€φ*0Έš…½‘Ρ±"         € {=ΐp7         @Λ%@aoΛΫΖμ…½I›ΆH€H€H€H€H€H€H€H€H u °·uŒ3{I$@$@$@$@$@$@$@$@$  °WΑΥΠ(μ ŽI€H€H€H€H€H€H€H€H€<PΨ놻I€H€H€H€H€H€H€H€H€Z. {[ξΨ6fΟ(μmLΪ΄E$@$@$@$@$@$@$@$@­ƒ…½­cœΩK         ……½ †&@aoht¬H$@$@$@$@$@$@$@$@$ΰA€Β^0άM$@$@$@$@$@$@$@$@$Πr PΨΫrΗΆ1{Faoc¦-        h(μmγΜ^’         ((μU`p54 {C£cE         φz€αn h ςΖ}w)EρόamiKθϋ@$@$`ΰe,Β‚?k5]gGI€κŸ…½υΟ΄5ΆHaokuφ™H€H€H€H€H€H€H€H€–…½NΎ½FβξΙ…θ˜AՎΥψΣͺΞάK Χhά;₯KύΟJWbɊχό΅ΆžΏΦY*UΩΧbς}γΡ­pb_^[ΪLXOg=FLΕ]·‰8Άς¬E«mΫ±D„«­}Mm-{4¦ΞΎ9š_Š1οΉ8δβcVvΪ]ΰrΐΉλτ)ͺόΜΉ—ΫυE »z\Π>Ik2εΡ1πUήٜU?άΈ‹½ά}EΩ¦mηΌΡΥΖι_’8;$1γύ1c-ΡΕΧNdΟVڌ;_qb«)–OνιM™}³ΪΥζΰcϋœCfUŸσΌYœΛσH έ/]1α»‘ίM`E°gέο°zS’sυ<2ušζχ8'‘Όέ Χ?ψŒΠEϊX’—Η†]-Έ»μ @ƒ °·AρΆšΖ)μm5C͎’        @£hxaoφ`Œόj?΄•†+χcλ¦)ˆ‰Ο3nGWΩQυΡxώ·+c‡Έ’"°lΓΦKΡέQ½1ΞΏ–2> ϊ‘3ϊ»˜zγ•q!qDζˆ›π1δΞcβΥ}tΏ·.yoΏο&ΜΙΓ?| ωέγΊΏ£rΜ™·Vβ 7Α=q>„ξvn•q(π1₯Λ‰?­ίαSžΔΨΑ=Z¬ΐΪGρΎpγ>|ΚOΔζ₯6γΰž]ψΈ€ΕΫv{”1vόΦS(€‰q΄rΔ§ ϋŒ-σoͺύ ΚΣ΄«/ŒΗύw܎>ΩΆ½ϊΖή’%x}iTΠίk,˜5½Νb'vaΩOγCs;ΆTΗχΦΞύ)ŠΛcS[0“ǍΓΐK;Ή΄sϋ7―ΓςEοΨEΧ~ϋ‡λu^Ξ#―sWΞ‘]rm\)琿™Φί<―τ›«η@‚ϋŒση”»εί|Χ_n\_vώωY,YΧLύ7γ&}?α>¦-roώ˜9m²€sU;–αωWίi‘έd§H€ž…½ ΟΈ5X °·5Œ2ϋH$@$@$@$@$@$@$@$@K Α…½ͺ nχͺg±xMa8χ&̜q‹ώa΅ό@ψ  ¬Ώˆμ5ΝΊšL  2l½ϊσΌΩΆΤ(η_KŸDύΘ†Ή"χ—,˜hίΧΥc"P7z]‹ϋŸž†>šέΓ"Θύ…— W&qςΔ,|βΧpθ/“Tj:‡ε|έέΗJΕζ7π"yπG‘™Eφ― ―-ίhnF—*ow!³£‚―͜kΎ[ε-š¨ΙσS)ηνεΌ ?φΖ„'ŽvΒNΉ—[’ήΛΙ}Σ Ήoκ=nj«ύφτP?°sΥ Š]~bτΔυ£ών!:Ÿ]DΟ£ƒΫVΰ…o%ΘΈ¬υΨο<ο‡Λ48Dχ n<˜uo^ΒήΖωΧ΄ο'‚uσ.έ γώO λ«=Ψ"•Ό(Ν4Χ›Τζ=τžš= {›ύ6‰PΨΫ$†N        @‹"ΠπΒήQΣ1υfCΧ,~– LcΗ F» ΰΔΎχPτ~⬃-*Ί3a aλ5tšAϋ9qώ΅”ρρۏμ±xhφδΰυFŽ—ά1ίΓ”qΊΥύλη‹Ππ=T!άl]Ώ 52Ί}ΞVΰ+ΦΩ3Ί•k’ϋε|έχn2n4z΅Ούxνz AA¨h·|;6ξ9 hγ’AΕGλτμχΉ#nΕΐξP³A$£;.^€ŽΪ>΅^΄L:Nβ_{ »+Í»*φ:²c=v–ŸDΊ΄έΆs/\vUM`ΊY²D―pɝuΝ}˜9yTΤ#cQύΙΌςΒl±•Z‚σ4{`α+D\t’KŸx;b%΅΅έ BU[#φ"¨}P΅ζήΚ]Ψ°v v¨DΗΞ_Β—σ.ΗΐCEp« ςU?€b²ώ½A\&iηX ΊωQL5ΐτB–jT{ϋ±YΑ§%Ž΅g$.μΡC.·xκ’¬X&c΅žΪžbΖuU­ηo>Λ>ΟηQΥυΨΌχstΜξKσ†’·’%ΊzœΏ±Ÿj·ύΟσj-Ÿ7~ο3Ξ›ƒ–auoίίLΧι{\ΣΎŸ0a΄Ž₯*².+yM*ΪΠ::Ξ^’ Τ+ {λg«mŒΒήV;τμ8         4φfx3ow tω“ςϊp―n°³αΖ#έΝx5jεg†M4̐Œ½š)a¦Σ°υ―gΝΖR£œžBM $γ_Υ‰…3Οώ6₯Nζ`ΒχΗU—j>%Λͺα—`ή/^I’!²)υ3˜/r>sΙ³΄κλ‘mKπβΒ՞emTαyΒzαΖ]{Ε]Σ³―Εέί™†Ό¨0±κ£7πόo%«­γ3잟`ΌœΚ‘ύX9ηgΨX©μr[υέ?{eί<σοΒ¦1„Ρ’ύ―H²mP²”ΧΣF_O_΅kž_qFφZ6γ3+ΌmΒW«NΠ΅‘ίz …ƒ’βoΙΚ½X²rΗ=ŠΤk :aλͺ¨ ?h^ή'μφcυܟ‘€\σ8g=†!½TοU!o·ω%VɎΌ©=„ Τ ΔK©ηfOu3ΡΊο8 gΟϋ<κ†α“ξΕΨαω1οtΉ‹@2ΟǚγΚω$ΰyΠτξ—ΤmVΒήF_υšw-l$h&J {$¦ΞΎ_fDω83Τ  ψ$@a―OP,–…½ ρπ         @ μν†wލ˲Ϋα\€tˏe«*ίƒ£ΗΟΔάΜh | ¬έδϋΓΔΏŽΞ’Υ­ϊΐ:όιΐ„‰£Ρ―odE_έ]uxφnY‡kŒΧ]χΘ‰― „ή½Ώ„n{’£ωŠοGq°β±£υX[\³­δΎΓϊeA’$Z±}|ο_±bωZhλ0Ύ5]$³bυή Ψx€;FŽΈ ύ.ν-teΫΦcΌBΩΩ3³•A£Ώ‘ƒ Π§WT”#ͺ+χcχEx{WfΝΰ\L{A—©πDξHά1ΆωύuU‘˜>ŽŠ=’q²δœr zΛWaoΨzA;§”χ?ƒ%&Ηθ1‘ ‡+dlέΔͺ=Ή 7 5ϊ}tηJ‰{Μω·§9&ΞκγόSωYU„*›—`ΥΞωuηCΈ8 ΓEιHͺq¦τΧ5ŽSζj°q7k₯pΎχ’¬Β³Œ¬ΒΙ2>Ϊt•›°`Ξ<ΟyΛτL‹ΝΦs>δaδ€λ10ο2τΜΦ^υl|ͺ+ β`φ~ψJΆΕΙ)Νb‘—j6@Ώq¦σŸŠ ΡχΈΙΔ^9cΎ‹©γΤ]©ώ€H²πώή1WζcςμG0PύoGΙξv>άΘφZΊό—ςπO–ΎϋgGο—η·ύnad‘­Ϊ± ΟΏϊ޽‘·bζƒŒΜΔZfή—vαkςΐJO3[―”–γΔE ο@BU»ωΨ–rŽGQΊ›–<,/₯ž‡=έP²?Ύγ,œ½dηш)OβϊΑΖ=₯. ω­x•H>Ο[Υσ;EpUΗ:τm[ΫY]“†έΗΣ±\ώ[Ÿ:άά­YiurœŽGΣη²Q²gΗZŒ•φ΄Oε©tΌs<Ν8ύλߞZΝ²}ςL–žnʊ ίuȊ&”―:—†½'2ĞλZ‹lΝuI_ώΧ#ξΧ°6΅Έ³s.@ΝKΗ’ΟΥΎͺΆƒ―w”Ϋ=½\#>ΩƒΎ|ΈΟzΐν!}Ύ³$ΰύ’ιUΈϋ £Άo?₯xβΥξΓCω‡Œvψό£wπφz™€²εΎενϋplϋψ_θ»2ίΊvž8€ν%kπΦ*―ο9r½½σ\>¨]ε{\•Œ»φ½οΘ'[πQρ lΨζώ­ͺqΎΗ‡ϋkcΨτΏώΗύ|ܟ™ŽΉo=)14ވ‘³εψλ«Ώw?o{Ζδ›―D{dΰμ‘­XΌt΅iΜΆ!έ\―?tγzhk€$@­ž…½­>κ…½υ‚‘         (@Ψ+’§E΄£I΄ΊwΥ³x]^ΝlϋδJfΧΡΜ"=Ω³9¦PW-{½t&?ρΊ•QΚο/~ ―½zΞߚ‹λY‚-³Š«¨G;˜{fΞΈΕφΚq³Žm)’¦ηγDMyϋΰ}>ΐΫjθG>ZίΦE8˜K|Ϋώφ„η™5ψV|cΚλΥΰB΅°υ<šχ±;θ8 ΖέO<Œ<=ΖTΡ’έ”šAўα,¨=i7TœΥΓωgοRς-E•°pάω2ΞBq1<«—8SϊλŒγψώ‡w³‘Ξχ#¦bϊm#τ–όψx«)άσα²•œ’φή™ΣΠ/Α΅₯zΗxζΥψ¬΄ζ0†]ϊ’Ζ΅ο;>A’οqO&φzH–ώιΡ,ύ™σςοΐΜiγτλgυexe}G< Mt”Žx^sΥNϊξŸZIr›ŽšŽ©7Υw&:' | #άμ–ϋ“ΕΞϋ΅ί=[zVbΉ,zωχhΒ^ωˆhmgmΠ§―q}w^bη™MψjχΣο–ΪΘψ-LΫξ’7{‹ϋχβοΠmRTΨ{`6ΙΓ+2ŸTξobBαΓςπNωE6ΈT―‘Jœym՘±ΖF©gkΟޟψ-₯^€ΈŽkΗwœ…³—X4)ή ώ~0₯0š9zޞσslud³6Οk=¬ΓΨn|΅½%θuφϋHu^ xλpOοδιBΪ4¬©ΘDρYg `TΧv0Ϊάωy&ώφ΅§΄έΆχŒox8Ž“"ΚΝ‰ z•R€ŽLGΑ%5(hcωΰH¬  Δ•yάuwΏ€•Jα~"¨ŸbΝ;FγŽY#ΏWΤσΚνXΆΰWψ°\Ά•ϋ–θQΧEΕΆexi‘γ‘ -γϋ·%γ»φΗgηš—°d•ρ@§Z€qΎΗ‡ϋk½“AΗύ<ܟ™ƒ‘Œ‘€ίίΧ’ΐΌχ”ϊΟΖΚMQΌΩž,cΧYOτφ‚ΌqίΓέc τšξΧn₯Q’ €  {] pW`φFΖ $@$@$@$@$@$@$@$@$@I4€°W~„χ τ½¨-ΞΥFpA!Θοkόΰ]±k~~ιιΡ_η3"ψlΛ*”μrόηρΓwΕ-R:t}ΠΡEΨ[}x?Κ”‘ς³#8θΩ°dŽ5E΄ΗQ²πΏ±z›έ^0$GΛΨ[΄νŒ‚ˍ쁖ΐΔAΡΕΏͺO6‘tΧ!tθ[€!¬L΅N{#Ώ%―ρdϊ#/΄–ΜΎ{ˎ cο~U~ΜΠώυ/α΅εcΫϊŠ‹]mΏ7{u[–ΰ2OυΗd±VΉ?؊ϊbΘ¨‘6!΄mΨzώ{δ,f˜$™‡™χΙψ¬pŒΕύOOCέΨ.,{τi|5Ζ\ΖΫOœ₯|ώ9a%Ϋι§&R1ωβ,΄½zŠ3ΕΎ=ŽγA…w³ŎΉK[ϊ9ί‡H¬NŒΖκN'.‰'ͺ-*Β΄{PΌn+NgΊ)¨€“‡J±΅ΤΆ†σaΠ͏b(γz ‰w–lCωα“hΫ©3Ί^ΪϋχM΄₯bMq]n&‹3›)%nΧ 7ξήb/Γ 5φά„ΊWάφ¨dΔ5˜ξ^#ΒΩUpοβi-ξΟb‡­CŽ ίύ³ΧσΗ3wH6α|]΄{Tξž‰»_Πζ­;DŒ”Ÿm}χ/Έδ†7„½Ψ΅KJqΕδθΓ-6Α­Β;PΥήskˆdžΝ,œxœΝΪ2D–ΜGΖΧ§{Λ‹±τ}`’ώΠΐ¬œ³=Ώύ†‹Š–`+†aΌžy7˜°W©zΝΨ`>S)ιλΎγLΧφΤ>Ϋΰ¦'Γδa’‡b½ψ86μ3Kυ\K>ΟΫΈZ ŸT§cο™4t”Μ½_½PRέF?ŸΛΔkUFΦέ+:‹Ά“!†ύδ Ω…=―–"χώœϊκuΣρVYFμΎGόj‡ύΨ‹Ίˆwϊ%‘θyΫ‹ Ι|PnΥ;dΦ!GΚua―\―.Š`J–ΡwΡn&‰ψ7_¦aύ‘Lμ|¦L%ί%$εo‚‡7,λτ,»/-23†ΚΨΟΡ»)p•‚eςv½Ž ³}Wτ蓇<ω[1-”Έ2Ϋυs_§• ?ΒO±η£Γ0ω‡a )Ύ-ί„Εsηa·Ω·ών)ΑζpQίavy³$μΪ»aμwώΓϋ›ι£r½έŠ#’±·λ€k00&œ>.ΩΙgΕe'o¬οq~-΄ΒŒ{£ίŸ™£κ2ώΪ!―ϋVˆwJTŒλ~“kΦ嚬ΗΫQlxωG(Ϊe³/ύ]γνuΈE$@* {U\K€Βή°δXH€H€H€H€H€H€H€H€Hΐ‹@ƒ{UcY’½of4{_ις'ε5Ϋ>rΚΕύ0ΈώEκ+XsGβϊΌ6ΨΌjώjΰaΎ |ˆ’χΩΕUόP±y^Z΄NuΡΎž-―°ŸmΌΒήύGF)ξποΰζ7πΚ"+cγˆ)?‘W(β^›@W2ώ@2vΤ-@ρβX»Ιβ‘5ψΙv;.šνVN:N»" NΚΕή9[axζŒz@2"7ŒhΌζH/Σ€τm¦τ-+Ί­² [Οl:π2μ8Δ^9.Eΰ4oξRŒ{ώ¨֞cΌ}Η™βS¨σO©οk5?ΓΔYΨσ―ήβLι―Ηq¬ΒŽ»ΩbΗΨε|.―q}»»hΜ4’-ašΊΫeέ&bmηC²W;g Έ}ΫΑΦm1Y“ ΅p»<η“dΝ)q“0>CŽ»]μυK,Ygφ=C&ŒΗθΒ‘Ρk°{Ν "άέ¦xœƒ‰³Η]W’—E¬("5‹μfΙΪ·Β%k_¬ίύ‹ΥΠWόρTΟUœjo«π[’Υw‘ΥwηίΦ£σΧGEˆX=ηq΄Ήγ)F³ώn_ώKΌ΅^cδ―m»%ο­rŽ_=Ηγ9{Υσηƒ­ώΞ ½Λφκp·γ†§`Ω»y.Ύj¨~Ο²qώlT|―ξ}TvŠM— Ί9#ξΓ­·Šέμ-z――ΠbF©gkΟ«oζ~΅žΉΟ}i›ΟœE|ΗY8{φσHΎXηΌwUΫUyZŽšη/¨Ε£έ#Ρs3 ΕG2°ζ€%Νj_‹{%›oW½ωt,ξQ»Z|ΏGΔŸ³ι˜W‘!£a}r.Œ`ZΆ‹ 6¬=³ι8a―ˆq?Λ@Ρ)ΛgHVί1›Ž₯£*£ΣzG£ΧOΓΫ3±%b6d΅ΰΫέjώŸIΗs‡2pΡθοbκWZ…|¬©+¨s O―5—7ϊ>\qρA,y3ϊ½C‰+νΈοϋΊξ'Bω)ΎΩbTΎΏ-Y%ΙV.uυ€ΐb,|nφi1?Žώio yQή@b~†Θƒ£vΰΐzΜ{ξwΖ}΄z?!VΌπy¬=„)’ί o:1ζά#-“6Ω~MΪ²!ΏΗ)vεώ:μΈ«<γϋŠΙΕ1ώIΏ§fΔΤΩχGΟΫψΜδY’Ήό3sΉΔΛσ/U¦-Η2λšϋ0S„ϊΪ'ρ½£"7I€H J€Β^†B} °·>(²          •@ƒ {Υ”“ Μ’9~άώζ“x«Ψΐͺπ΅.?ςΞ±&XHϊcŸbΫ³¬Rˆ!ςC¬ωͺqU ώH^&y83ςŠj™ΝKžΔŠχ•~Ϋμ)sρΟ₯OΥw#£]¨b‰δμγΆž‹gΎv©φ‚ƒ]”ΆADijζ(›8M»Πφlγν?ΞT‘Ξ?΅?λυΰ§«8³ {ύsQΗ!H|Ζω¦τΧsސJͺ½`q΅¨ΨΡφ9ίUΫ–°0ΪnάBΕ΄ν°e)†*l‰ηƒΕρ(Š%SάZLq6Hυ΄‘ž»‰β,Μ7‰λ…w‹‰aΉͺς¨Ύ&»‹!š;!›’ύ²jΧόαε?Ψ~°½¦ύπ&,ψΕ±8ΡΫ'zΙƒΉ³’<˜kϊΙ%  Έ °Χ w&@ao`d¬@$@$@$@$@$@$@$@$@$„@ΣφŠ`d±F΄|wΙ>YΉΧβͺ‘Wΰ/υΒEΘϋvkΞAήΨ‹Μ=‘}Ν珼fγʏ’že•2‘ΛΊ(ς[ۏΚ?X„WώhdκR…ŸΐQT”ŸCf¦i8ΊΜμˆΩΖ«hγΔ:ͺέ\|o㩉‘ƒζ»dbtym΄ϊ#ΈΕ6l=ί݈+˜Κ8δMxwζλm–ΟΗ‚7ί3ΪύfίƒήΪ–clBΫSΗ;@œUζ %¨ φ#Ι| ψΰ9Χ+e‚ŒƒΩMm©^SάΟa΅tΈυπγ.3ac~_1»§ru|2‹8—φ¬ΌE’•χχΡ¬ΌΧβώ§§‘^a–=ϊtβσ–Β^'Zn“ $@ao@`,ξJ€Β^W,άI$@$@$@$@$@$@$@$@$¦/μe»KάΛα“ΕΨα’£GΆ-‘LP«½Λ)?JϊωAΈjΧ <²υšY½aΧ6ςqΗμGoΎΒΦΫƒΨ‘ΈŠ•vα“K¬±€+Αyͺ?ΊΕΙn©f³ΥΜ«?‚[lΓΦ Ψ‘XρΗAy­ψ‚_Όbdœ”W:O‰ΎΉb³ˆΪ™’Άμ)ΆόΗY¬£ϊŠΚ<.žμEΓo₯ΰgπ87CΩ«Η8Sμ[qμΔ—ΒΈ›M)v‚žοͺ 5ωΈ+2%‹ͺιFΒ₯κcK<δuΦ3œ}=½ƒΔ‰ μόπ=όεΝ•ž―†vΤ΄©ž»ήqζ€2&‰λ…wUμU} {Ÿ‚–Ι²KNzΚυ­Z2φvΌΠl©ŽύΞ\ οoˆ]K—?‹?­?Œ,©SUΩ“g?ŒϊυQ²#Ο—μΘφ„οV3ΎϋgUΡΦόρT˜(’3{K€*ΆΪω·υθόυQVΖήhfΩ¬‘ςZπ»GUα§Ού·ώπq#σmΡ°Σ–ΧΆšΙpoΡKx}…–E4Ω'DώόœzW,c―ρ “*Έ6.ž•›>S„€ͺπN΅©ωwΥΊ›τŒΖU‡χγΣύ₯ψpΝ[ΨmFͺυΤφτ1θ|¦6ν;Ξ?ΨSΟ#χ9ZiΧ#^όΟσu˜Τ«ωΞΙΤώ:ΦUa/T‘νΉtΜ4CΏοιΧ)‚) ΑoΕ‰ Μ«Œ ~%ΛoJφ4_T›gΣ1―"C($ϋΤαΆKjP ?—’†’C™X/Ω…sΔΟiQ?Tgΰ…£¦ŸΙΪKt|°5gχpχ/©άO„τSΊΖ¨Δql]ώΌ½ήα+G•σ¦j‡|?zΥρύHŠZ"ήγ2w<+sG™b«BΎ?Ψί†a΄žό|ˆy‘ψΰy TΚ4έϋλTΖ]h(}DCߟ™πU›ΎΏ§ΪΗΆHΖƒΌ!g΄<Œsc²‡qLΓ@Φ5r͝l\s=Ηέ*Ξ5 ˆ#@aoξA€ΒήΠX…H€H€H€H€H€H€H€H€H !&/μM*ΔΥΊ7ψ.όdʘXG«Λwaχž=¨:!ωzΣε»ϊ pΤ•ϊρ€?φ)?Jz–MVΖυΈ*,” mλ—‘ό€ΈσΪΎ’eς­άύ>>άgeΗT€υΕΕή€­P<νύΫ8A¬t³ά…Uaλω€έ^πqθ†ρ’‰q˜ž‰Ρ IvΖοHvF]°v%σgau¬ο)Ψs#₯7ɎKQ•Ή»xHi/μj2?ΌŽ‡Š3q«=ΣΧγφqπŸf£Κ΅}εΈΎj·<Ξ€ΥN²ζ‡LϊLή_ίλ|΅±£¨l*’ ·ΜΠρ”=­ΰ|0·~ ύϊ_ͺ •Ξλ«Υ{Φΰ•ίό‘ήΕ½κΉλy-r:£m«qσ‘Όό·ŽWšΗκ„wUμUϊζ“ψSqY΄ΕŒΞ λίΕΨ1«•yOveΔΤΩχΛ μ“lΩНΕ}χΟ^ΡOUH%’³…•Ž,©Ϊωbeή=ŽΝο– χ 'μ•ΩW²Ψ?.Yμ5?Ž‹Xω5tΈαa ι₯mͺjεγ?κ«λ«dœŸχg΅nˆώ-YŠ6_ŸζφŠθοΞGPπ₯‹€“eXσ›z†e+6ΤώΩγ,a6fΥUu^ ΔΛn/ξ 6 6|ΗY8{+―Œ½Γpο‘ŸώΆ χ· ψŸηEh+‚Χόh"φ’uχ άgxt?C2χVžNΗ‡’ΥΧόŒο^ƒ«/Π²ω¦‘ψp&֜ΖΚΎ―FχύCφ­–}Ζ'u{ͺ°7ˆWΝ.|πxώησt›Ÿ|–‰•§’nφŒ‘Cϊ!3"0||32pϊΘΗ(~_nπd>»_ζ³>Z½Β^Χyέ5ξΤ9'ΰχ‡°~J·ΤΥΊi<΄‘­iŸύX9χgΨXnlΕώͺώo“λΟΒψλO‘<ΰ12ϊ€‡y_jΩr(D›w'ΞzΜίό©ϊΰu LV&Ωqι°zM1ϋγP/+)Œ»nΏοΟΜώͺάά·ͺΩ…–Ό†W–n¬χς ώ]ΛλZl5–κxΈž[φβά" 8φΖ!αŽ(μ UH€H€H€H€H€H€H€H€H€hTaoις_J†>— ONΥ½~”Uκ »η'o¨gP&―_ΰ|xφh<4ϋ]x“τΗ>?Ά“•q=‰|‘–­πVΟω)JlΩι”ωΚά"@IDATy­ΊΆλUΨΎΏGώ΅ΘΙΊΐΪy¦7m³Ά•΅pρ”ΒΙόπ8.ΞΒΪ«Η8ˏ3nΧ³Έz μSw“Ώ7σp’eS1ύΆz‘€sž*  ,μZΟωΠ Ήω}ΠύːW0}Ί™g5ΡζΖΕ"•Œ₯ΞOyΧYW=w“‘RΫwά4„ QΔ»O[βέ­KžΔΫοΒί£ωΈβh‚Υςυ˜7χw8δVΔwμ•ύςT³ρξ^υ―q^'‡αn\ζE—k½‡ό{nwφΆσpW1u(@Ύ~  _ν~ϊέRϋDXΈ/ώέ&Ι΅½»x–d~°Δyj”8 "€Tη₯V(μ΅e|†ϋkθmρ•π^Ή7υˆΰͺv†0χέƒ™(ρ§e…£šΧΜΣs"Fά+Y| ©Ϋ +μEF-Ύέ;‚ήš#5ιXψYΖ\βξgŽΌiajτM ±Ž&Y©ή± ΟΌϊŽ”RβϊΔv,~βWπρν&δύR*χ!ύ”Zη3ppσΌ²h΅<Ψ67ϊ`›8 στsŽyZ™Ÿγο‡ ΈΓε;ΫXύ;›5O¨ΆΆΛwΕ·βΎ+*ύω H2£oΨg΄χWρΑσΪ™¬L²γbTƒζώ:•q7¨4Ϊύ™9>Έ™EmKωžώ€|OΧΟ[ΉΞ,\π Ζ̚lΜ/JΆa[ΗFήΈοαξ1ϊήέ«ž•kwμ KGIn’ €; {έΉpo0φγΕ$@$@$@$@$@$@$@$@$@Ι 4Έ°·Η5"0›lΜΜ,ρRκ²gŠ.}ΗY8{ΙΞ£Βo=%σ‹qΟζ‡š›ζωα]jpCGMΨ ”Vfbι IΛδ£ fΟ¦γΟΥΐkυΚ$πό*ϋϋ'RΆΧ¦Σ£‚ά {5‡Fu­AaCΔ\vZ˜zVa`Ο™xύ «ί=FΘΓ·ω|Ψ ΚΚʎ­Œ»Sbˆu_$‹+γαο'Bϊ)ή«1»‡ι%ΜYQ¦”)+~ ήά`υUρ‚tΥK k{Π«xΎ΄ωžΥ¦Ά¦ήgœ(Ε'žΕ{ kKρΑσΪ™¬L²γb­1ξ―Ï{‡Κ­!Ώ―˜τ}p3‹:—#eΞ+ΤηΌγ(ϋ€ 9}/Υ‹μ-z ――Ψθ,·=Bξ1Χο1Μ·©Δ±οhŸŽYΓ2ΡΖΌ¨%4_΅υώzά^Œ[$@­‡…½­g¬²§φ6$]ΆM$@$@$@$@$@$@$@$@­“@ƒ {UNυUxζε?%'π‡AλΗg·σ†aςμ‡00Ϋ0λω#―ι•"”πΜΖ™Μ?γΉ£§cʍC K•[°xΞ―έ3|Ι끇τ:‡­›Ω†<Ϊ5]O΄΄EK%Ȝg• Ζ3oά#’-)_7 ‰ Ÿ‘ΧΣ[Ÿkε΅Σ’―•Τq[Οj;ΨZΚγ ζΤ¬‡–u)Ό,YΔvY{΄΅Πφ’w²γšq₯ŒοσO«δ£ΨPΗ5Φ„Ηρ°q¦φ)ˆ½ϊ‹3υυΘς:κ9ς:j—μΫ‘ΗέηΑΝ<œx©ez{\2„k₯,ρŒ{Eh#™ΡζύβχL©ξ•υ½-υ|θ‘+σΩΎRWƒD:)*υφZ1…—`ήuβΝΡΩΜ¨θΜσZ䬀mϋŽ›pγφΙ΅ί"|Ÿ*―¨Ο‰ϊfήzΘόPtώχŽG5Žv―‘lΉ«\”ͺΎϋg‡γ›gώψΑ΄qθ¨W―ΐ™Σ‹”9ύϊŸΒˆŠΰrUDDτ^Β^{VGΛ#+S₯΅/ψš%„’Ί•Ϋ±μ7ΏΒ‡ΞΉ(w$Ζ~₯=>XΎUš‰ ύ{u7n=οΒή o9Χqτ}ΗY8{κyT*Bύ)φ T §LΖΘΑ}b.m\<Ϋ5#ΈD—οy^ΝΈ«e²]Tžα~Ω¦WŠΒmΛIKk:RΨ­£Ϊ"8s†’C™XΖΪ£­₯l/aoV‡ΎίΥλ^iΩ‰3πξ§’©ψœΎ'φ§GnΪΕΆ’―œ©ΪCΡsΜφƒΜν‹1/žiφ` Λ='oȈήΟ'‹+γ©άO„ςSP¨1ͺΞυ9’}}j,ϋΊ#c½βΏFΣ9g]sfNe€V2ΫχΗ wΥπIžαχΖ|f΄dΫ€ίγl†”Ύ6Τύu*γnϊͺ^WΝ}ϊ}a}~_1V˜ΈήŸ›ε\–φ,εRΰ„όΏpΏΌζgqo€‰«ήw$ϊ~­V윁§Ύ–‰KbϋκπΖίΟbΩη±\!he(μmeή@έ₯°·ΐ²Y        hΕ^Ψ«f Πe’©―τ_P“ΩF²υΓѝ°Ο)D ψΓ υZW1PYŠ’ΥΑG›#{θ5ψκθ[ΠO{…tτχCc―|\ΡλβθΡs8Χα2ŒΉΉΠΘΖw Λ΄WyΆΧςψηNύv”ΚkΕ“ωηy\€h žΨƒ’uπρ?…3YέΡ₯[ϊ^–~ƒ Λ-£g»Zc‰?κτzΙ™μBσtŒuΕG«°ζν?‘²ΫHόϋ„ϋ1°—ε£mΒΦ³š Έ–β8ˆ5ΧLon―%Φ= i/Ωx';Ωv°υuώι>ψ“̏γ‘γΜ£½˜Η^Η,|Ηg¬akΕ&¨;\Š’-»p Θ̌ΰΠφ•ΨQ• 9ξ¦―~˜Η“,sΗ|SΖθ₯φ―ŸΧ–;2ΰΕκ«~V`ηζ½23gĎͺ+˝οώ;svΛ<Dΐ=ϋ1δg “ώ‰ύϋvαPωACwόې―aDαИψΣλ΅ΰAζ] †ί6½/Θ@$Α— οNώΓ»°}§eΘΏn]’ΟΤ‘±Φ}ΗMΈqWϋ€Š½,€!wJvφ«ϋ»d^|½8‚{ο.4Άˆ›Υ˜­ή#ύΖεA ίύ Λ3g=.ΧD{$Χι +ίΑΦmpΥθ ‘.7‹ΰrEωΠ„Β^QJ="qmO_ԏ°nŒoAW³ιϋQ²ΎK¬\˜ύ%|I„ιvuγ~"`6unΒ^Ήwό¨GΟΚ)`φU]fdβdΩϋX½^‚‡‹k΅9}έwœ…³§žG՟lΒΆύUθΠω\:8ίOq€jΗ ΙύVœ{ζυœI<ΟΧαΆKjP`άΞ‘4όγ‹t||*g3κΠE½}%³mΏŽ΅ΘŠ€cαΑ μ5D—=;F0½‹"˜ΥφŸIΗΌCςψˆσ“’½„½ œ“zΥ _K ‹z…γ© <χ™=«°ΣγΐΫͺ˜P«\Ή ΕϋώΉs?Υ}σ.Gώ˜QΘ’ΜίϘ™Ώ“Ε•ηq5ΞΔVοaόjŒ:ηϊS~‚λλO‰/₯X&t?”:κχ#m’MΌtΝ›X»jΊψ»­Fήv-Ϋ―š™7_Β|$φ&Κ·`ε»+°ρSργλ·`μγ^Fk1–=XΫΠ>ϊ=Ξ0©uάS6Θύ΅m>«AΖ=κj£άŸ™X<γΧ,h©\+uQ―œ·»dώ{Ω{ώ3[Λύ]L½ρJ}Σχہ:eΰΙλ2c!iσΖφΎCa―‰•Khu(μmuCή ¦°·A°²Q        hΥ^Ψ+x­ΧcΖ³ή½κY,ΦΔ³κ'waμ%οDq¦ΈψόSκϊZ λgΨ8 kO:SoqζΤ) lsZ˜q7ΫJΦO³œηςZά/1ΪG;ž@L© αœωΚžMβ(Š^ό6μs–h‰ηƒ)μuφΥΎ]-Β“g<„'ζ]‡Ι"$6³ΛΫ­Ψ·l1f?dV9ηY{ΡpγφΙ)φŠ΅―dLΤφ•}rP^«έ[?\±y ^Z΄:VΤΆ’+BΥ¦PudΓώy|6lίΒ‘xϊ8oΛ>X‚”~(η©WvlU|iτΧ;k±‡Χά…»&1Fς*??u~ϋ†…sζ!ξτΪ΅bCνŸg‰ξ;β|WκΕ‹ίQO©η5ŸIϋβ,Μόi±Šο‹ΉgoΙΌΎΤγ\1 ΑοΊ:/ &ΚΝϊ`E–yλΡL,―φπSιOΠΥΧ|CΞΏθΓ€•«$6Ÿ7…½Κ|α:?'Ί―σqήκ.8ΟwΩΨO©3|Κ“;Ψψf?Χ–λΥΓ±λ•–±φy#K•rήxΰ0v»dUν!Ω|§H6_#[Ί{mνm εm ‡”Íώ=N±έΰχך­Ζέp΅ξΟL&ΙβΫ,η±Tί„ Ω*ΩΜߎe3χ¨$Eψ?1¬―φ T€‡f˜±Χ (χ“@«%@ao«ϊzν8…½υŠ“‘         Fφj― !™σ~ΪvAΗ -φΫ—o­ίmνΠΦzΖ³ξΡΕΫD΄0™°A’c Ύ 7ίx ϊΨ²βI[Zv£υ»ΠsΤτ»Ξφ†LϊLΚμΨΆΚ‹1oξ’,MSgί£gω9²ν ΌΈp₯­DΤτΐ¬Ι†n"&y5οψ‰0μς>φzΡ­ͺς=ψdΗ{x[2\Ω>!Έ˜υmΩQ΅‡K°ΰ―@ς»~ΒςΤ4ξŒ3ά!4ͺΐvη.£Fι\~°―όqΝvΨzΆF‚l„‡¨ »0ΗΗλbƒΪK5Ξb,ž±z>WRπ3Tœ₯`OλQ½ΕΩ€±˜Ί΅SΗO£}§ τυΔBΥ§£(Yψ Vosd&n€ώΉφ#w4ξΎυ&δυŠfMŽq;ŽλίΔ’εΡλ³rž^Χ»Ξ»\ΜH°•ά‘ΈcόXδ;ζ"£-NΧa•D«ΤVύφO„½e~Π3—Λ}Γ\οϋ†a2ζγυ1W9(cšδΎCuO»oœπύGp•™΅Ϊ~0nΛŒ+φβJ9wXqν<’ {β<Š›LNT`žψhγ_°u—#φΝ2Ž₯Ώy>ZI²σŽΡλΥλ­›UgΣπΙΙt,?ζ.€ή₯7Δκ¦αέO3QrΞ΅)cgX{’±χΫ—"δ φΞ (μEϋώ«[TΨ+BεE’ΨρM#ΣΙΉtλΨBτ·ί 譜8€­λ—γνuΡ‡ΎRΌAΨϋ Ν™ ~Jρ!wΚχ£«οGΫί”οjΕ‚ω·bΖ΄ Ρ ΣΗ±qρc₯’ΑόΘj{™ΜKφ‡'«>)ƚE β2k.κχ„cε»œΛƒF{KήΐŠ₯+νσ˜ζηωψ§9«ψώΪ4“ΚΈK ~fϊ©\ί·Ν" —ƒοΓO¦Œ2ŠœΨŽΕOό*ωy›fN§ηL–α\΅}yL<:PΙEsΦΧ`—Zˆλ$@­Š…½­jΈ¬³φ6Z6L$@$@$@$@$@$@$@$@­–@# {oξΠ‘θή‘½¬Α©c‡πα6G6ΰΖs%Ή%y}μΙbΨNϋ]1Rƒ3g*q΄|ΚΚ“Wm¬‘yfKί}‹œ9Cze•>Ό[ΟGӞE{۞gǛ΁ΠqΆ ­!Ξ46""z@BΠs₯XyΟύΞS„eΚυšΑωΠ#7=»e£m»φЧ듇QΆi[Σc™ς`°'Ό‘£Ρν’vΪ%ZΖώ >έ³ϋšΠ5Zυ·Η€aΘιΡmAD>Uu[Z'„Sλ4§ώ©~s]!fžoS‡+ΫΦ‘­–ΔV4Ύgλpδ\Κ‰t“Wٞš±·βΈƒ?w*ξG‚ YΉƒqΩ—ΊλΧDNᘜ;JbΨυJαΊΩ ~*^‘3_”3sς―E.κ\Ξۏ­Ϋ’3Ρο /’οr2ο§pxΟ†&;ο·T §0ξ‘L7²½A7?‚I£ςuW+δΠ—€Ίυ‘π[Oaδ M<~^ώŠ|*soΦ·χ΄²xoΨvsΐύ7»άG$ΠςPΨΫςΖτ|τˆΒήσA6I€H€H€H€H€H€H€H€H ehqΒή–=\μN@D™Γη £&HFfN*ΕΦR·¬₯šjY…Ι³e§£7ƒ&|“ dοQΟΦ6αgs“Z.Ξ»-wlΟCΟ8Ο«ΠkqN}υ]iX(EgΤγ\o0ͺ°χ#y£Ιoo4i0ΓM΄aΞσζZάτ4τΡkψι*oΘ9ψΑyΜjŸφ1σϊ6ΈͺC΄ψη<φχφY›ΕH€Z& {[ζΈ6v―(μmlβ΄G$@$@$@$@$@$@$@$@-Ÿ…½-Œ[\sFSoΌ2TΏͺw,Γ3―ΎͺnK­Dž-udΩ/ ¦J€σnSϊΥ< ΤaX§:hολΈ΄c-ϊK6bύs:ία†ΟΦΫ<™5€ΧφΪ rž·αpΩΘΑ°ΡΈ ½#r AΏ^Œ2{Φΰ§ΏωƒKωzΪΥ=Ο\“‰ΡζώΊε,ζdΆήz’ΛfH Ω °·Ω]“rœΒή&5t†H€H€H€H€H€H€H€H€Z {[Δ0ΆN䌚Ž©7 ΥιͺoΰωW[y19ςtα&  40Ξ» ˜Ν·.mkρύždΩz-ΩzKΆήΣΆάhHΉγ1cΖνΊ`ς3φ‚σ|’`Λ½ 3gάβ8o%[―Ό]’¨ί.Ρύ’ Μš‰Ž’Ιϋμόό}fλM2R’ 4%œw›hΠ—fN M-Ύ}I½£έ8r&;ާ£θdZ3οX3sΏΧh<0λ}*Ά-ΑK W7³Τ·»œην5Vβe²uή(ΕΞβ7P΄©,a5$ † @aoCPm}mRΨΫϊƜ=&        †&@aoCfϋ$@$@$@$@$@$@$@$@$@MŽ…½MnHš₯Cφ6Λa£Σ$@$@$@$@$@$@$@$@$Π€ PΨΫ€‡‡Ξ‘         4 {‚jλk“ΒήΦ7ζμ1         44 {š0Ϋ'        hr(μmrC,’°·Y&        &M€Βή&=ϋΊε ‘O|IqAΔͺΉ;?GκΑόζγζJΟ‘Ιx|ΪhψzΥ’"+λ·₯ΉR›Λ6mIί`ζ·ο`ύξ}’zδ€ψδ`ΠεάΈŒμΤ"\VσψW#@œξJDgJΉRP‚¬τ -ΟδžotoάuwwΊ1Υi-xwΐυ³…8ΊΏLK«oη―>:Z^θόjΖhm\Θ܊u[φiy&χB’fβ±Ι΄h[^­΅Π‘.g­#Αmͺ–f³7rΖHIθk“Z€KίΒή"›d»Γ Œύ’b$ap1v}Ό{²ν q`L€ 0&ΠF °°·NlΛ#Βή^xy˜i,EΕ5X~BxΖi΄ρ΅Γ}Ρ^ά~νιR»νΫαJY-–«m΄^\j((οΟ GΏNτœ‘S€YŸ7ψz—šoΜΒS¦ή…ί$HO΄uψaλ ,Ωw₯1›χ\[a½παS}ΰU‡ΒŒ|,ΨΨBΏx03>0‰DΑ^¬|5Ξ{ŽJγ΄ά‚ž“g@·A+Mνmκώnƒ)lpˆΌŽΡ "· άNη΅+χω&αΒ~M·Ο_n€ 0&ΐ˜`-œ {[ψ±yL€ 0I rζΝ›"/0UΫ€εΫΪ"Ν”ŒJϊυbŠδΨSΆο8EY]ΧZ’¬6γ€$’:πΉ'7ϊ8[Pƒ’ΐω—{…4‘ΥΪcSχgνψ6ήρτuوhy£~˜n_ου7ο\+ηS^ομΧtnϊΈ`L€ 0&ΐZ#φΆΖYc›™`ΝMΐ‘#~RtΣς ¨hn-ύ·Z‡XρσKzσ'”{Λόv1Φοn1PšˆŽ μ-§1o;!†…‘ΖσγλƒŽ”sγ …’6β”H‘»ΠKΒ[Ή²„yp©}‘ {Ξt§Γ ΊΏΛύ;0"·S|]ΟDnwψ£Ώ’“ίa/’1sαΣrD4”ƚ·?νuD™Σ™`L€ ΄,μm;sٜ#iaoηvί)½F_‘6R].‘ˆ½½hΧ{GΔω`^$…ηΕ-μ8XΟΞIΆ€Ν‘°·Β‚ΘΎ Χ[LδΦV±·‰¦9lΜ@|„t©λ`Aκ'{ΓΔaX_©x1v­X„=-υᬕ<'; ΎUcΏf«œΆ¦5Ϊ‘‰Χ1šv"άο­Yχ¦ΎΟ›ΕΔ~M³δΈ`L€ 0&ΐZ<φΆψ)b™`MG`Θψ§086a‘=¬^)/@ρι\όtΰαθ)MΠ5‡]R܍βCλ°νx$rϊυU"q•ΘOߍk6:\p‰σ$†'Δ#\ΧWr~ά…οΆΧ‰Γi;ΙΎϊ…½ ˜ψ›ϋΠ£τκˆ‹Η6γ»έ™@@"œϊKψSτ’ΛypΡH‡žΚ'QU€ŒύΫ±q›#;£‘<ύ~ ŠGΰ$„«" #ύ–ž>Œc{·`OΊ±x6zΜSHμη‡Zϊ ½uσςBεΙbΛΞtk’Ά#Ω?=:{αΚΙ=H+ FrRCσ„€ι£@Gά¬­A§ 8τ–ΔΨ΄Uε’¬ς†r@½ˆKၠ΄Θgo―Ήω#³%doΑN¬70ρΑ1θ%σ‘m(ΙΕΙΓ;±e{šΥŽζΫρ€°·+’Η’­£ΦΥΤΑΗΟέξπ¦‘V£8½ή]~—?:ΙƒΏŽΒ ‘›#-‚ω"κΎ`t‘ŠΦ\Gή?Οα²\Ζζ)μc‡w‡7Ϊ‘φς%dώXm²?±έ.θ;2=ϋtG2μϊu ύ^-©@ρ‰δS‚Ρ䏃³³%·UΕ—p6§‘£z‘₯:ήΖφBhxwψH©²UW]EYn)r~jΰυA λ¨}΅Mέ―PΟYa―_άŒOŽCΊ¦j½Όαuν4ώρ·υ8―k؝ƒΊvΖΙχ€ΪκθΤ3‚[ι~T†ŒmίβLΗAH=\ήJ Ÿ‡ΎY‹-{ι^¦ΫΜέ—™Œ©)£%―ͺR‹•(ΞΝ@ΪώR ρ0zSŠ#­Ήϋ„Εh‡ /ΊAΩ˜φRKIΏ^Œ±ƒ€ΗΚ°wΥkΨa‹Π7N`L€ 0&ΐZ;φΆφlφ»%μυoηxαξ@Id+m·_Z‡y·πΛαވ€GΒήύΌ1Ίw{ μήN)ύΉ|΅GΟΤβ―vxΫcV’BθY’AΡ+Έ½ό’žTηυwΕ°Χ›ΜΈz©Λ³, RFΨ¦?‡β{ ‘―ϊ\Hο„—UβΔΟΨΆ§r,Ο“‚°7{–dψ`vJ0ξ χ΅XQτƒ…xεi8ςLœΠ&‹€ΊΎ.aΟgρϊζϊŸœΆ“¬©_ΨΫΏΎΒ€·[ΙRtδ4^O½αΏκPš‡’άσ8DOqμΩ1Ee++±…^Έ~u£#;»cήΜ0<„pz$,ͺBι7/·ίο<i’ίΐ~;!Εt΄ρ7΅GIφYόχΦ2ϋ μο‹°.νq1»_”tΑμΡ ΝC'Μ™Ω£½p΅ζΊχμ8‹{±¨ y—5g—qΙά“‹wχΨJ_oY |½εJξv|ς—/ΰηδΫj0wΝ™δ’ίΑ”Υ}Ώ¦kώWχΟ3ΧϊSζ/vβ\ό"Κ7oh׍uf₯`λ”άž>σV΄ €Θ·f©;ζό1­Λoλτϊ€ΰ_βu υ ]Όn-U]?―›oC­Σϋ&ύ‘sQ-rϊsΥ―ιyΆ:6ώeL€ 0&ΐ˜p‡ {έ‘Ηu™`m…@ΐ=˜ϊΤ£ˆλ+ Ō·+Y›πή§›•LΑ!f\Ϊ’zz–ωο6ψh€Μ~ #c$ρ”ρVzl ώώ·6υ¨¬«vRΗΒήL]πβB-6”g`Σκp΄ˆŽ#)ε<%₯%Χπ§8}>Zca’– ΟYˆ–Bν8؎oλΆΩ/A%ύf)ΖΖΪΟA±_²یœ„ωσΆˆωΔ ›}έ<ΔaΪ»/b MG‡'·-ΓmΥmn̟ΐ΅”„W{Ζ#ŒΟv[EΛ|³%DΛlaο₯‹8ς]½ψ6ˆοW’Υڍί0αr6Œs]σ`zvW έ{'O["ΰ υ‚‡GbΰξΥΌB€e·3ٟ₯Q_?č C ₯_‘+λξ…Œ0\Ξ(Mί€kœ_θŒ<§|ξ5‡ξ}kuχ>ϋΎ8… 0&ΐ˜hύXΨΫϊη°%Œΐ¬°7Έ—xW‰iκx$φΒήvxr„ξΦ½Ά΅₯:KΥ’DΝ 7—?ΈΧ[~±RMrτ{ΉΈΟ§ˆΙU¨/=(KητGJΈφ²¦mρςŒ“υΑ%YφΪ–Σηΰ?ώlσ2ywΌφβ̈SEΐΊςAήαӘχαi›z”εͺTΕ±°·–Ύ1)}-ύ—]ΐ+Žaƒ€½‹ΓζW’nΙrτ“}π$¦΄0Q ‘ΏC²cwvl9†6^PkXη</ζΗΫΟA±OQΩ[KΣNτH}₯T—™˜₯ΫΧΝƒ?ήxΖκ 8>Ψ·ιζl&±³Ν’4s''Ι©υ> ςs2Z”°ΧŒίΑΙ9Τϋ_έυkK½ψ_΄Q;mό1”αR–†’~³„|ΔZΰ ­}ύήρο—aέΞΫΜoλκϊ€ΰ_Σ³9ωΟΥ<7ό[ΪI]ς:AΠΝƒϋΧ»:“όšχ‡š»ήeΫ„{ΩuWύšχg»Λ2&ΐ˜`L€ 8$ΐΒ^‡h8ƒ 0&p» ρβ‚W/xλσνΖΙ‚Rxw¦(›αшŽθ‰Šc°\aΰ«8}™ΩηΡ%"CbΤΥ‹Jμ_σΏHMΧ’³£c΅Uˆ<Šμ{2ΏΎ½c0rXœzήξπΩ·iΦcZUpέNͺmμKΔ΄ίΝΑ@U|[tk—DŽΪ›ΡψrχγPVΊE$"qPΈZ™ίΎƒυ»ΥšAHωνad”*Ξ-ΓρύGPJ{cF` U8]IΡ ΨEƒŒυ†„I{k€ώˆ#χγp!ΓΘN'ζaπψ'Ρ­nΦΥ’SΘΔE(φgDαΕ«hί^ ύ@›W-.ή†ύٍ1Ԟ½R7ΕΩ‡©ίkθβίa1απm1Βή{πτ›³.ιcΛbΝΫ+αΤΧEah {7{Ε2¨Α…¬RΤ g°ΆΠVz’7Ίω‘·Eάzώ`.NœΈ Ώψ;18^QΨ V}1ΰΑ~‘‹T#oϋ œΉˆa“B‘H}]λπAδΈώθΫS ,mΥΈS+Χ)~ph‚ΥτœΩ•[Άˆ{4ͺ6·ͺ gs/‘ΊC„Ζͺш•’Άγθ{_4"ϋ¨‹y₯(/­F‡€;Π7RŠρ«l³ςqX/&Vσ 0ΆmίZΖhG¨ηlΔ^1J¬ά$/«ι|±™bΤ‘iΊk§ΗwοΖΝΎ#‘-ςδP4πΚΐafyiB»7™½/%ΰρ7ŸC΄rΠ5‹΄ ͺK†ŒR£+ΆΫή£Μίη˜mΫJΩοΖLΒΌΩΛbδŠμ-XώρFϋ2RΔyt©Oνq2`L€ 0&Πς °°·εΟQk°Πœ°·=€ψ`°ΡUΪ(ξŽ3uΈΤ‘Fυσ½\g+μ}8±¦τΤD½Η kρΣΕ[θΦ½=ξοK!w-Ϋρ“7±Δy·ŽσB=ξK_ κέΫ ύεΎoαXAΚ(ΝΛδU ίϋχ“±·;ώψΖ0LT]DdWϊα³Ψ—wθ301QώHŽςEΡα\€|hyz2φε#5σό£i ͺΏ₯k>:ˆ%iτ`jΩζ=?σβ}ΥC€<‹ŸΎŽ€Ύώ˜AQqΥ-mϋ1ΜϊRσs&μ€ΖŒ…½Axρ ŒUέ^Εxα­,μP;7_φ9|Q‰~!xl¨φ6mκΊCXzΙR³^{y8fΔ¨>ƒkΨ±ϋNWq=1Φ*œΖκ?€wm>ϊ”œ…Ιδ’HΊθΠ‡*ŸnΚ#φ“Tφͺ―‘NΜΓ”Gϊc„ŸΧΦ‘kh0R’{³3‹ρSY Ό½,η§WrχηcU¦6jχC}ŽŒ’Σ —λ½p)<3J_–αηd•`sόšτ;θζP±»Β «;~M©—ό―:]=Ο”1ΉΤŸRΕbγϊ(Ϋ¦χfmW »[y!Y*jϋR²[ώέX-†ΠOΛςۚX0―cHσkςΊ΅œ.ŸΧ&ηΑέλέb ?ζύ‘R'.sQ-3ΰ#eΉrύΉκΧΛΛf4Ά?[2&ΐ˜`L€ ΈE€…½nαγΚL€ 0ΦO@_€½kWcΗA½Mϊ„Πΰξ…XχΝNeΐ6ކΒCπΙZTΔ€o`l‚²r£θΖMΕK³ΖCYf±οΛ/a*E‡oYΐΚΔΧ//C–±);©NΨϋνb¬Ϋݏ/€ˆΊΚP°kή_­lڌOŠ Ό‚"«ΫΙ/γΑ$Et‹‚έXωώη?’σζϞh‰ [Œ½k–c‡UΤLΞ²Ω/Q€be1©τΨ&jΣ&گځτ@Ÿ\¨|zΠ‘ΐΜΖN§ηAθΗ/ι̟λ铏77ζOnΣΖ^ϊX$φ¬ω»…>ι3Wc£}phΫNϋˆΝ σDF’Ÿ˜ƒΡΓΒ•Ζiž—Σ„ϋ…}5ίΡ―πΩV  ‡Ύύœ>e+F―qT‘.·Oaώ΄Qr—ϊtά$η0&ΐ˜`-œ {[ψ΅σΜ{c"Ό±π.ΛK΅$κύλŽ› ½+Eς}"ωΚΧ§°7˜"οŽP#οΦαϋΓ5ψ²Δš–MΈ+Ύ»‰j¦πϋ >˜!‹€λπΕφ›ΨvMΘl€έΔ”X¬šΦΣZ%V―ΚΒ»ϋ„‡WΚ;!ωWα…Ώ)εl₯™ϋsρΨ'šΟ`ΞάDΜˆ{uέ„Hμ~.Κ¨}_a‰‘X1'ά)· ―Ξ>Š-ΛLΩIuuΒήuπBκψp EΤU5ΔyExφ'΄y•ϊ³ŸAxEV·ιO&ΰΡ–ηθΌ³˜ώ‡Ε/Τ#,t―`υGGρUΤL’ί‡P€βΞr3y‡OR›6Ρ~Υ€ί >Xv4$―–³Β^§ηAθ'lΜ@|„:•ψ,HΥΟ½PT·;rΖb€$(η}4R‘¨πΜΘΟΙ—ζΨ5ιw° ΰ΄U£K~M‘žu·!«;η™΅a§‘ώ„’F»:Ÿ΄δ«ω ωjΚ-%έυΗcUZly~[½Ν~mA²›Χ1xΓrE˜ϊ1ν5κΝ•λ½?Wύšϊλ‰ΠΨώl#&œΖ˜`L€ 0&ΰ2φΊŒŒ+0&ΐځ0L|a†Y’§œάυgόί›°FΓΥ9rρέΫΔΥ‰(•'Gβ|πJ’―ЬMXώ©"`EΆω‘w΅."―‘XζΠΊΕΨr@Zΐ1i'ΥΤΪ«Dζφh°5Rο•Σ»±ξϟΫGΥԍ―;θ“φ{-kLŠ•‰ψΥ›sΠOŽdYŒ+a/…rL‚ί‡-‚_ΓOΐ“o> ρd1\ωaŠϋ‘^P¬4όlp(0ΚΞσ؍θΐ©wΑ„*i,ΧζΟ£Ξ^ γ›ΕΨΈW[ νj–ύΠd<>m4:Υά@— (ͺ‘Jaμ(vΛFQtJ‹}i?4U—VHie²ˆ7žDΌώΤ™(Nν3*ύΒ©ν…τ“ΘϊI[ λs/ε…+y₯”—)ειΪv­Ώΰα8@Y8½ͺΪ*žΙ#H,χXU£σetο{ϋ#*\YX,₯Ο{ffh6JΥΕ1ˆcλUPDή£yΕ2…ΞAξIMψk5M³(ΆhΌΘΟ΅δεVΊΎ]νZΈv¬χ]Ϊ:¬X“J/$γι…OΛ‹Υκ}Γμ}IΌήsΆ/ΓΪm™:«“~½c)‹­j_R±ž©ϋ„Ϊ‹8>ŠοΚ'F}FJΛΤΚVQ’‡Λιw-[?ύRyCΝQ°8&±ο3&ΐ˜`m‹ {ΫΦ|6ΧhΜ{ΗυΑ½ΫΛ&ΝΎ‰₯9ϊΉ“†uΐ΄P%„(μλύLyΗ‘W½XζŸιΥXU  ΥRZ™[XχC56Σ;€»ωβχ―ΐΤp₯Υ}ێbΞzzΖmhΣ _+πΦΒΓψJ KήTπJ*’ηΜ”«(²M§ˆΌ3ty•NΕ2λ?;€ή#=$˜΄“jjνU#uKΌ†υ³Fκ-Ο=‹—ώ˜ƒ4₯kν―n|•XΎ8 ιά"Aψhι ά#?‚_Αςwΰ#ϊHΤόΎeόζΡΧ|&­ΤU"%۝H}₯Ÿ"ό-+Α³―ύ€kθΔΕΞ {Ÿ±Q0½cΓΌ°ΥΉ“L|¦Μ ―dm΄~%KlφΕgΖtzf\CtiόœlCΜc‡fύβ|Qδ§ύ―β@\ρkŠυ¬ϋβ9cδ{σ]<Ο¬}ˆ;b{Fύ‰emφ#ΗΜŌ†[R‹±λγEΨ“­―SώΑ6©Υη·5»> —σώsσ½₯ ό:NQZΈK©έτ₯ˆΎ’dY?Ά;Η @Έ%0Pͺς:΄·²’ KΌΌΡεεζal•1³΅Ζί FGλN$qΎ~η‹lμN—Β΅c½DRtήyJt^kέ+‘{z<έΣΥ4sχ%iβEzιCΊΣb½Ό°‡ξqβ&ή;ΤΎ€|·οj'FcVσœψMœό"&$ΕΩ”ΜΐΊοΫ E+γ’\«Θ{L€ 0&ΐ˜@k%ΐΒήΦ:s-ΛnΧ…½ν0λ^άη/ woa k7ΩhňΎ’°χΡπ`°"ψ•κζ_|}°…žŸzuQΚΚͺΖς“Ν!μνŽ₯‹‡!E~°KH »Ζ™G$QψZVŒY―eιΕ±B~ζήxl΅ςφ‹/ώi‰XKoτ!» }4$ςžΒ{twwl8DBS‚“vRMMΨ+7)όΉ€Y³ινVsϋa4>*7οΩ˜7Τ—φHψϋ Ιq2‡ζΛi€f»Ϊ¨τ+ŽC‹%¬ϋ‚ N {μΪηΑΪν4©°WHςs²8MΆoΞο@ζ Ού†~M*bδ&ϊ&L ύDί†΅£|'Ο3kβŽQ{bΎ£ύΈG0oΦDk$w#Ρ»ΫώΑΆι·5»> ŽΛΘΟ/δ‹ώsσjWsZW"mν2l=˜/τUŒ=5a—5A‘&Ί“Δrj€_ΓΡ 6h mJ eœŸ}Ξ;Δά™?KŸ‚½(Ϊ‹•KW;Žœ©7³iŽ0ϊήXHk]C£e eMΗΗ·-ΓΊνϊˆ₯ne(:ν†ΈGΒεHΑšˆΧXΨ hι²pv; g‹I,KbΩ‘φbYc‘«sύiΡq―#ϊ9Cύθ7½-аWϋVS½vυŒ…½ΎπH?„X£%λ{2:Ί@ŸΝΚ’"-Ωl†ŒmΚ΄–CαΪΡξ‰x|αDΣ=UKΣξ1jšvtεΎ$.B”Ρύμ5»ϋ™xοPϋ’pνnάηm&ΓpΜ6e ƒ0vφKH’^"©’w”αδ‘L\ΈRK ςόΈ}QΪ¨ͺ«Ÿ¬3jƒΣ˜`L€ 0ΦE€…½­kΎZͺ΅f„½ΟέΧwΛο4ίΒwΖΧτq3φΆΗsc}pw±dύϋ‡²n’°·Ξη#φφΐϋKc,ύ·Ε$Π]d#Π΅³Θ’ F‹2O#eΩi}I!_₯ϊcι’!H‘ϊrrΣ"Ț΄“ϊq,μ%‘φΊcx=UΫl‚ύE4ΎlΖGΕ5o5Ύ\u‹χ]ϊΊ‚Ώ.;€evξ‰ξψ# ©'ΚBκΖφ:?ϊ±šφ.FJ‚ςuΝ/¨o[>2|fδηdRO2ηw ³„9tΕ*HτMΤ{Ύˆ•Δ}ΑΝ·!0Μwξ<ZΡv ΫΣ²χξ‘/ΗΝ²|9ŽDϋ)ˆΖΧ;mŠ6‚?F°­Eϊmar}@—σώswxš΄“fT»–l¦—^τΰu Χ”ΨtξΨ¬?ΤAλΒΉgx« eΝ^μׁς>`L€ 0&ΐΪφΆΉδ‘0&ΐ\' |Άέ¬°ΧΠ)!8"΄|Ρ1BBΙέ›PD?mΛ¨ƒ"ω–ηΐΡSΕ¬Τ˜­Cμ ½|­’Α ŽΛˆΉaΎ<ΝΪI³―]KΚ©ΐλϊKΒνλ]ߜΑ‘~ޝχ‡4%%ž[N”5yύ‰|Ψ―ι€3'3&ΐ˜`L `ao+œ46™ 0&Πx4G€KŸψiΘ)a˜/~Κ¨©oΏ…ύεΎĀΤΌθ+<΄Ÿ|‘JΡ₯V‡( vcεϋŸλ#Η φÁ sδo e˜΄b’ tΕΎŒ>‰&.&HυŒ>oo%"ΨΰΠΣP™†ς©3Ρα“ων;XoΑX6ʝω³ŒΚ {¬γo;ɘωξΣ“l‘O΅­y{%N5–]†’SΧ„½π ΐΙ} K{«.βθ?―’߀ސuλ—Κqδ»³Έ¬ΪλFš°—ΞZZxΜ>AŠ|έ¦Ω-GώEΎ@i$φν)‹}―!wσΟ(¬ΠU‚ο€Ύ>ά6Ίp'DDο@i –κ}CυhAΦΤˆΔϋC)Ά1jΝ+DΪe¦ši• ―νΎ¨έ#μΣΜέ—¨z !^~ ξΧKι~mσDΘ¨Ή˜ϋΠpΦ#ά'Tΰβ§-]phϋ Ο<>ΎΤŽa$΅}ƒίθρΟγρqρrNEι^ۘQΊ ϊγ$&ΐ˜`L ω °°·ωη -X`FΨ;wTάΣ]}ΎψηMl#Q¨Έέ፷ξR$»ηŠjπΪ!ϊ½ς8λ^άη/½ϊHυΆS½kb-ηχ=±Wˆ [y/,8†Θא`Τ0ίΏ}¦†KbΨJΌ·0 «œ{·Κ›΄“jŠΒήΜύ9xμ“³Xτκ½x,Jε"ο,¦!YβΈϋQ|Ž"Gš˜/΅ϋL"^)‰ψ4ΨΧ–u‡πͺ]4`aToΕ;°"Η¦aυP°ΑP΄+•k¨LCωΤ„(μM%›ΨΩ¬€ Iš‰Ή““δDνYS_F>βηdΒ¦€iϊ$s~²S˜CWό―βχkŠ΅„}ΑΓσΝ0ίήχ"ϊ| ΫQ»4lOΝ΄Mœώ:W2Κ3πυΫθο)Φ*ΰqΡ6kΧMΆ£qηu Ί0o\G¦―[‘kλ`ƒΓσΏ‘2 εSgn_οVƒν˜υ‡:hΟ‰1YkΊRΦZIΏΓ~M=>bL€ 0&ΐ˜@[!ΐΒήΆ2“<&ΐ˜€)‚CŒκY·ί°²aΧtCŽω#ghŸΣ«_DjΫ£I;©ΡIeν3t žYπz[ΊΙίϋV³GλT°ΘΖ¦—ίΕQ-—φD{4n"‰}'Θb_Šώ²w΅ΉOW ΤοBKΏU™ψϊΝeœ±TM°Α“±΄`2MY0)ά}ΚMΰ ·žXš?KCΌɦOλaηφXθ (‘†|(cΫ‘›ψ§Νβ§΅|£μσLΒήΥ$μuβκpg7„Άb}ο€Θ>’a *JnΒ/Έ³œ]φS~J·Κz7ϊλuODG*νVœΘΗΡƒΆ ]A`|ύ22ΏΞƒτΩήχF#*Ό“lOρ9Θ–’! [EC­|CV‹P¬―wž„Δ'μ„ΔB#υνϊϊ#~r_:gh+/ΓΑο iyΣ3›ίπΗ0=eΌk€ΘΑtv^ΙΔζ?ήxη‹α΅£ŸΪ=Β>Νμ}IΌή3ΎYŒ{υgG_§(Jα2P­ιžλζ}B"1ΒIΡ^¬\ΊZ†ZΞζ7lΜ\Μ|ΐ"8vρΗ¦Šυ0ιΧ‹1vτΙΧ2μ]υvdZ³x‡ 0&ΐ˜h£XΨΫF'Ά‰‡εΊ°?΄žθ­|›d_F5VžΡGΥ½of…·—G’ {υυ~ό©>­―ημΠ›TΨKFmϊμ^ίγΔYC‚Qω³ζŽΐKΓ}εα»""Υ {]±“ΚŠb[kŸa‘ψrΡΔΙ–ι»ŽcΖίΟYŽθG°ŸTρΖμtlΠriΟX ;ƒΔΎ―Ιb_©ΝLj󼂨߷-ύV–αΥG±E_B;lπ€°76yΎzZ~[™»γ±Οš5φ{τ–9τιΙΜqtRΚδηdηž“›ΐŸfΦο Ξ‘+ώWρ€qΕ―)Φ³ξžGΦ\·Ξ3‘m·‘ώ΄’ˆ$Ζ ‹Cρρ"μΙ ΨμΊνqΑ6›&8Οτώx^ǰ΁0o\G¦―[kΗŽ`ƒθ#J8Έ–„N΄αφυ.tηhWΌŽ\ρ‡Άηʬυ\)k­€ίqΥ―ιqΆή<>bL€ 0&ΐ˜0I€…½&Αq5&ΐ˜@[!0xςΛx8)FNΙA¬ύΣJΨυH@bδM€΄¨œr48ΘΧ9$ΛcνΫΪχ%Yš€!‘7qD폒LΩIυDa―ψIΆ°QΟ`ζC#₯ήh«DΪΪΕVυsν‚ύRnΞφ?cνΆtiWήόF<…ωΣF)UXϋζς8τιφΒέΑλQΦ§waωŸnπι4K'ΒBF©£h•‚†N³†ς₯„2W²·α½Χ[ °qgώδΦ„Ύ ν΅οRKρχΒ’{½Ρ˚r ~¨Ζ¦‹Φμh"I)boKφvŒΕΘ€@mμ’vΆΣUА›«λ†°·c?κγ–>αΪiπΠ ŒU> ˆ’ ؟z7(3 >ƒβεxΒ¨..ΑΏ·«UθΧw=†Šξ’°Χ/Ά/U"ω’ͺΗ6ζΣr§ΑζΧ!ώu8ΪΡβp x0 !r¬«Θω&η5hή•$QL*ΧkμΟ†ΧŽv~jΧ“}šΩϋRτψ)z­²--¦ΎGŸzΤΆ{π«7g‘ŸΠϊ‡~αΙΕϋΌΦΎ΄'~ώ.[ίώ O}-1z‡h—Ύ”Α ‰g.T#tΧσο“AUNbL€ 0&ΐZ/φΆήΉkI–›φφΑ 1Špχri-žw0€φx9Εƒ:*I’°wP?oΌ«DςΕΥZΌΏ£‡…šΦένq=Žύ³°Ξš$ξx^Ψ Ly2o–?γBš΄bΌ°(Λ>joPΜθ_‡5ϋ,χ ‰Nδ'OˆΕ‡S$)(me%xᡟμϋ’ςΒz`zŸ:|₯φGI¦μ€z’°wΗ†#xa«2†Δ”X5Mυ^TγΛU±xŸτ°N›`ΏtΈgΛQ<»QϋΊLXr4ΎΊ”E*-±>έ^Έ;ε1b=ΞΒ:·όρgΗ/š†υΑϊEѐΌSys0iεYΉ;έΑNCρoCωRcB™ςΜ<ŒZζμ7€Θ£‹ Ό7―½L―³O:ΰηdηž“›ΐŸfΦο Ξ‘4₯Ξϊ_₯²ΦM8ςkZλˆ; ω_…φ5ƒ½οEjεĎ,ϋ υ§V‰{σfM„⍫đo–α;›Υ’κονΰ·5΅>`8‡*5ϊuοOSv’)ΌŽ1E~©Γα5$Μ•©λ]˜vG»fύ‘†ν9{½K•…±9Ώa'–D~Mϋ³λ³—σ˜`L€ 0&ΐœ&ΐΒ^§QqA&ΐ˜@% >τKC,ΟΖήύ ?Ο#ν]oDDBάΈQπΛΪ„χ>έ¬@hΘΡΰ0_s|Κ UεbΞ=8ρΣΟΈαŒAaˆθ‡~ 1π«:Œ5o~«ΫߌΤ‰#‡˜ΤŒ706‘―l (‚ξ&Š +GζμW2+‘ΉύμΨΆΑIOβΎΙ£e'“”§Μ‡i _Δ@ΛZ Šcλ?Ά νΩρΛ‡‘’―4G­ΡƒΥ”Π8 •ˆ”r7»τΗΈ‡F“ό‘Ά‚½Ψ$}Ύ³§–r―EV&EΟμ4tψ4”/5&F¦Γότ]ΘόΉ5ή>π&;ʎοΑ)«˜Ξω“ϊrΖ©œΡΦΥ ‹οσF˜5οΦ‘°w³eνϚܨ;ΒxIτΎšDοϊ˜₯ntζ†ΠVί«/<!’ΐRυOQ1μ,Ρs«?_ΔRA'Κ+s΄η(poο!ˆ ž·€.Β―Ι—¬©Κ?“‡ΞγZWτΪAκuBy’°θ‚δφT›½^…‚ŸΚQZp΅]: s·ΞπλΥ=Β»’Συ ύ:ί‘@^‹hL\ΊŒ‚ΣUtV·Cϋφ·p%Ώ₯4†ΖΨD1©ά^c Α ―νόΤ£4“χ%›{Cρ±mΨώέz”%γ?&>Jΰ%yΈZ‘fƒœιΚ}^ ύIώΝŒŽν‘$”dbαl\ƒΌ½kq>c+²Š΄²κž8Η6`ωίΆͺYυώ†y–"ύ•Λ4½Όή†8“ 0&ΐ˜hUXΨΫͺ¦«ΕkFΨ‹Ξ^ψοqވ΄Œ*Ώ¨_eΡs}ΫγρX SŸ‡(_φ‚žgζήΧχXޭč:όγηZ*Ύ…λΪ‘ηνΤwυnΐ΅x7΅Η Θ5…°A½°ζνHPϋ/+ΗκΤB|Œ>½γο‹τύρϋ WΖIŒϊΰŒRJƒΊ&(#έRS•X³­;Ž\ΒΈ銻cπ‹α­,Α³ ~‚υ{Efμ€. {₯Μ™›ˆωΓ-“Dtί Ί€ a|!PΤ-'±lγ9τΣσžθ+ n₯}d^ΌΏdΖZPP‚%ߞƚB²γ?"ρθ ©ŠΌY£« aώ˜"ιGJ¨Γ;όπΒ΄ΎιςŠπΖwQDζ7VaK:½+ΨιΪ<¨―E˜Σ`[Vͺ}Ϊ‘}ιΜ±sΨsA(/μFŽ{3Ζ+>΄Όέ«πΩ·6_Δ’Κςs2ΰΜsr“ψΣLϊ„9T¦ίY«p²Ψψ.κχkJ獋ώΧ‹qAΪVl¨ω=4ˆQš‰ώ$/y?όέ" ΆŒ³d?Άξ́WεkZ–TωηςΩ#Θ:₯^Hš r¦«ώa>΄q‰½Υ³ί$ηυof} ‘q9Μwƒ§;ixΌŽa{­Ωœs^ο6՝:΄ιΓy(΅ξκύEΎή-V9<²fόš’Uξ₯±ύΩΞ™Ξ₯˜`L€ 0&ΐ ΐΒήq6`Lΰv 2βI<6Ν""u0ΰ φ.W…½‘0oή9j€‘£σΘι)E°Λ™€gfOAoύX“m…½”ᲝTGό|’±Wι'„ΈΟY…Έ›ήŸPΔΪ Α‘b΅ΗhΗ eEσAΡ|}Κ[€θ—k(ϊ₯ψαΔ‘Ώ^‚”Aκ M=•₯,b³šDΟωξΜƒΠ…φ™&!Ρ²›³mΦJ’buscώА½jFΏMaΔΎΫ8L%‘vœ$@%αχΧ$όΞ²/d.%(‰χ‡’„U΅j‚VMθͺEΥτ]RΔά85b.eϋ199–h@jQ7ϋσ₯¨½ρ΅·ƒΪžΑ―•7ƒ’ς u LΈqw +ΦύŽέΨzbΘΈPtΣ³?j@Ψ‹žAHΧKζl[Ή4ύ$2­΅-αό±Η‘†ΧŽΆΐ έg΅(·Zštο4w_Šψ<­,¦ΦGCμK.ηΞ}Bμ(fζΝ~Ψ‘FΜ H>Άχ&KvΘ¨Ή˜ϋΠpω(gE[ߞ―hx„ Ού#€…χbμX±{­o•VΰD&ΐ˜`L `ao™Θf†)a/Ω!GO-Mί€kl""g†žY0MοZ‡ΎH[£·λ0αΑ‰HO·UεβtΦ>|Grν6Wμ€ΚC¦ΏŠοŽ’›Ιψζlά›£oζΣfik[‹†kΡ²χγ|‡ώˆ‹Π‹n+NοΕφ/V#«\ߜtδ—0 ₯<Œp5²‚Pδδώ ΨςυV»£C%;G*v ōw‹φbεΥ8οξ;‘ΏŽaAˆά ώ:έ²œ"όόc)nΨΪFǁρ}Π/>tyΧQL‘zΊΔΚβ]PΘ·+ϊ AŸ0IώlΏ]/―ΒΕ³‘“qΡ>SLιΩ±ρ=¬· ψ`.²O\Kšή1s§%iυ)šΚκ?}xž…k½πΗ/πΙW;©/ZHZπ βCΒC”φ…>ΝφήkζΎ$ (vό37n€=ά:ΒbdΠ}‘Η¨Qςυ¬Ωd-ΰή}^h1)˜6.#τ6έ›ό"οAς„‡0ΔrΏΆ™ClX؏›Šω³ΖΛc¬ΘΪB/±l2y— 0&ΐ˜hΛXΨΫ–g·ιΖfVΨ+Y8"ΪΣcΌl^f»…}'λΠ³Ÿ—ΡχΤ™ό>£V? Ξνρt¬Ζ† ƒK/Υαxq-ώšS§―g9Ίof…Kuλθk87=ϋ5œθPόρ‘Ύ˜c π¬¬Δ¦w ―o΅<λR”Χ5o£όζΡ3Ϋ€•ωzϋΓϊΰΛEΡ²x7{¦~rVŸΤ‹ ΗcC \©dQA2ΞαuАk·Ήb'Už>s(ήHς“›ΩςΕ!ΌΊσ’ΎΙ„l~.B§Rdή/WΔβ³ΑXOΒδ*™—y9ύ₯έεαύOO`Λ}sQXβψύCύ¨<’ ξ۝‹ω<ίξ9tϊSdη(ΕNϋmR Š0ύ­Θrw¬ΝϊbΞ“Έ?Ύ+‚:tF€β^‘s·¬#f©6Μ¬υ$ήλδΟ —Sެ[Œο؜ όœμΤsrSϊΣ\φ;ΒήRώWνtqή―ι²uu>&X|ΰšοΓyŒΛύIώ^ςχ ά+xCw¦Θ._·TΛΤyνξρ:R†…Ϋ€cΧΗ‹°Η υθί,A2}(ޏ_Γ.'κΨtΖ‡L€ 0&ΐ˜@+%ΐΒήV:q-Μlw„½ςPθωκΎΰvθDΟ<΅5·_Z‡μkN²+Υ PκJΟhΧ©ώΉΛTΏΙϊMX,,ΊF…w†ΤgM-JΚ―bKΊca§[¦…ωcz”/|½₯ΎθΉυϊ œ>[†΄ό†[υ¨BΔήΌƒ9$\>‹Δ„ΔϋΘ\Π³ξWi 3IΎ§’Ί“3MΦ{Χ"χΔ9μqbl Ύ• Ψ3$¨”ΏψU°+ί\χε«Ζ΄΄->'«|šΓŸζ4ΟFςΏͺcε_·ίΦ£λ68αOΪΩHΧ‘ΣΧ­-—Ά|μŽ?΄ Ή°_³ asWL€ 0&ΐ˜h,μmθά%`L€ ΄p’CμE$ώ›MDβn~Ϋ3―=ζυΑ05pλΕZΌςC Jšd ΡϋλiH²‰.mχ©»&±Ε¨?ΔΟƒΏœUΌν'p¦Ψ¨§1ΆK ιΧK0vU½œ’ΜοίJQζΣ΄aΎπΗu 9΅α:\‚ 0&ΐ˜h3XΨΫf¦²YβΆ°·Y­ηΞ›”€(μ=L‰?lkjάΖ₯©}½ {W½†™Ϋ~Ϋo­9ύiNΠe«ZC‘~ž΅„ξΨΘΧ‘ž‰qΒΰE/Ή²yy{ακωLΙle.³_Σ•iζ²L€ 0&ΐ˜h•XΨΫ*§fL€ 0`‡˜GρΊάx°ήαmύ4ι?WcU‘η£υκμ Cd―tνά ν½jQζJΔR]CqΠ ½b»R[/t @)mΕ%ψΧvVυ*0ψονD $&‘~Υ™.…+žŒ2;Aε±2&ΐ˜ΈM°°χ6™h“…½ά–šgao[šΝ–?––ΰO«ϋ_λ£ΣzςZϊyΦzHš³”―#·°1ΟbζCuiΞ\ΙΪ„χ>έμlq.Η˜`L€ 0&ΐš„ {›3wΒ˜`­Š@δΜ›7E’–rΔήfŸΊΰ^^X0άΎ7€κK΅ψてŠΦΫμC76 (#ξο…NΊ\ŠΦ»‹’υκω€ 0&ΐ˜`L€ 0z°°·8œε4φ:Š F‡aσ+Q'y±—Οhρώ4φΏzψ hšζ[όyΦ4š―ΎŽtμΓFΝΕΜ‡†λœ=¨ΘΪ€εŸς—εΕε˜`L€ 0&ΐš† {›†3χΒ˜`­‰@θ<³ΰ τ&›‹ΣΧα£5όiφΦ4}mήVΏ2©7ΊYz΅τ2J²‹qζτυ6?t `L€ 0&ΐ˜hL,μmLš·o[,μ½}ηή呇…βΛEG³ζ`κΚ³.7Α˜@›!ΐώΧ63•<f$ΐΧ‘ ό0D'„ΐϋζMΤΨδΤwθνγƒλ%y8Ut‘ΎbœΗ˜`L€ 0&ΐšœΐ‚}ž@IDATμέ xTΥ‘χ_2DΓ‚€ " Πr)Ε ^ΑͺEλ₯κ)i«ηx<}}ΛϋχxN«zmΥz=΄zŠwEΠr©`δBΉ „0A ·Ϊs]3Ω“L&aLfΎσ<5{Φ^kν΅>kf' ΏYIΛΛΛ«@@@@@ …μνΆ»RhΦL΅ΉϊητρvΉiΣ¦ζξšώ@@@@@ Eφ¦θΚ3m@@@@RX€`o /~3N`o3b € € € €xφςB@@@@@” Ψ›rK~R&L°χ€°) € € € €)-@°7₯—ŸΙ#€ € € € š{Ssέ›{Φ{›[”ώ@@@@@€`/―@@@@H9‚½)·δ'eΒ{O +"€ € € € {Szω™< € € € €©)@°75Χ½ΉgM°·ΉEι@@@@φς@@@@@” Ψ›rK~R&L°χ€°) € € € €)-@°7₯—ŸΙ#€ € € € š{Ssέ›{Φ{›[”ώ@@@@@€`/―@@@@H9‚½)·δ'eΒ{O +"€ € € € {Szω™< € € € €©)@°75Χ½ΉgM°·ΉEι@@@@φς@@@@@” Ψ›rK~R&L°χ€°) € € € €)-@°7₯—ŸΙ#€ € € € š{Ssέ›{Φ{cν6P£Οξ₯Ά:‘βΟ?Φ–R©Ϋΐα:;ϋLιΔ7ΪόΡ*퍑ͺ € € € € *{Se₯™' € € € €φ)8h‚Αή†ρzž=Z£υ4+΄ι£χ΅Ρ{Ο=Eƒzž*Ϋ£ί-$ΨΫ0#5@@@@RH€`o -6SE@@@@ŸΑ^^ Ν!@°·aΕ³G_lBΌνM·H½Ώ\₯:K£§\ 'Χ{θ«υϊΰΣ- wB @@@@RH€`o -6SE@@@@ŸΑ^^ Ν!@°·!Ş&Δ;Ϊβ-ί΅Z[±]κyΆ¦Œ$“λΥΥjΕφoκ„σ € € € €€”Αή”Zn&‹ € € € €ŽΑ^^Ν!@°·bΏ³‡«[‡ ΥԘsι§)ϋ¬ΎJΗJ΅«δ¨2ΪuYέΞπ–+ύJ%ΗL΅γ΅aν­Ϋ% € € € €€œΑή”[r&Œ € € € €{y 4‡ΑήHΕnΊ`Κt–³o£{τќB•6ͺ •@@@@HN‚½ΙΉΜ @@@@κ Ψ[§b ΨIΥNyηTV{*k<κΪ5Σ_‘BφUM›κšιOύVώ£Η•žήF5ίξ՚O?Χ7‘έρ@@@@ Ψ›‚‹Ξ”@@@@Hu‚½©ώ hžωμ­ΟΡμή{±Ω½·½tθ«υϊΰΣ-Rη<]<~°L‘ΎZΏHŸn9P_œC@@@@ %φ¦δ²3i@@@@R[€`oj―s͞`o=’=ΟΦ”ΡƒδμΟϋΥ†τι₯κyφhΤΣ”†Eθ r½υr @@@@ Uφ¦κΚ3o@@@@RX€`o /~3N`otL;Δ»ή„xΝyσF_¬Α=-|‹΄θƒε"Χݏ3 € € € €©+@°7uמ™#€ € € € ²{Svι›uβ{mΞvκΦσLyLQυ )λμaΠΝ„x΅_k?Ϊ ƒžL qz:[ψ؏Χ}%΅•Žξ-Υ7v7#€ € € € β{Sόΐτ@@@@HE‚½©ΈκΝ?g‚½!ΣΞΞΧψόμPAŒG_­HŸn)±6Υ@@@@H~‚½ΙΏΖΜ@@@@"φF€π4.‚½!Ά3M°wR\ΑήE&Ψ{ ΤQŽΞμ™­.νΪ„z¨<ͺνE{CΟ£%Ί]”aPŒ € € € €€W€`//@@@@H9‚½)·δ'eΒ{mΦvκάνtyͺ«ufΞΉΚο“iNζεk΄ϋϊŸ7Z9NQΕ-_ώ…Žy<ήΖGJKuΤξ¦ Η/ΈXCΟjκαΨWϊθέOΥΠ~ΐ‰n G € € € €Τ Ψ[Χ„@@@@Hr‚½IΎΐ šΑ^wθ³G_¬A=MΐφP‘}°\t– ¦\ ¬SMΡWλυΑ§[ά6±tΐω?R~Ά“φ?‚ΧΈMt;χQPŠ € € € €€O€`/―@@@@H9‚½)·δ'eΒ{έXΟhβνi‡x{Υ”ΡeŠτΥϊτι–†φΠuλ·α²:έ ,~ί ΧHt»ϊGΓY@@@@T Ψ›κ―ζ € € € €@ μMΑE? S&Ψ[΅έYC5α_ˆ·hύ"-ίbφλϊ]0°›©|Hλ} StR‰θΖ{½“2y:E@@@H‚½I³”L@@@@b Ψ«υκ Ψ[W§σ€‘Ÿίǜ(7!ήΏyCΌFώHω}2MΧμ ϋAΓ;θΦν5Ά’ΰuΥν2Χ[ΡπŽ½ρ%¨]ΰ2|E@@@@ΐM€`―› e € € € € Τ{“zy69‚½ £ζB € € € €€ŒΑή”Yj&Š € € € €‚½ Ύ6E€`oSτh‹ € € € €n{έT(C@@@@€ Ψ›ΤΛ›°ΙμM5B@@@@ eφ¦ΜR3Q@@@@μ Hπ΅){›’G[@@@@p Ψλ¦B € € € €$΅Αή€^ή„MŽ`oΒ¨Ή € € € €)#@°7e–š‰"€ € € € €@@€`o@‚―M ΨΫ=Ϊ"€ € € € €€›Α^7Κ@@@@@ ©φ&υς&lr{FΝ…@@@@H‚½)³ΤL@@@@{|mŠΑή¦θΡ@@@@άφΊ©P† € € € €I-@°7©—7a“#Ψ›0j.„ € € € €@ΚμM™₯f’ € € € €  ؐΰkSφ6EΆ € € € € ΰ&@°ΧM…2@@@@Hj‚½I½Ό ›Αή„Qs!@@@@RF€`oΚ,5E@@@@€Αή€_›"@°·)z΄E@@@@7‚½n*”!€ € € € €@R μMκεMΨδφ&Œš !€ € € € 2{Sf©™( € € € €φ$ψΪ‚½MΡ£- € € € €Έ μuS‘¬U δNΎKΧNjζp@…/ά§…[υt< €©)ΠiŒnœy£ϊœ.}φŠ^όλ’Τt`Φ € €'M€`οI£M©Ž φ¦Τr3Y@@@@"@°7’9kŒ6Nν=Υ*ίτ‘^ŸΏ"²Ο[²@§ρΊιώλ”νŒqw‘ž~όEνkΙγmμΨZθλ³{ΑMϊΙ•&L}πDhFm;λΠ¦9&ˆυa¨¬%eΧO§Σ™fŒϋ7ΞӜΉŸ΄δΡ26|ž]Σ₯F]Σ₯ΓΗυςΧζ€Ν-ΠιBM»α"u=E:²c±^~-QۚpΫ―U0°³™Q‰?ϋ€–niξΙΡ € €@* μMεΥoΎΉμm>KzB@@@@ŸΐΙφvΚט ϊ©­ͺup[‘ΦlΩί²νs.ŒW©‹eω†7τΔKσZφx]˜ΐ°kώ]SΞλγ-[3g–ή]^vΎΞ^ŸuHβ)Θ έtρΉuš–™χΠS­ε=Δ{ΏΞϊQΠ ΪΦθΞΥΎοY=~€`o+X΅Φ7Δοςώ˜w΅fή[σ}k'5έSYf—Ψ»}»ΔVl[ ηώψΏQBFΌ>₯†_Ÿq½\’ΐ"ΏζjΜ5?֐ΑCΥΕΌoˏΘϋ>/ΫΉZ ηjιΪΊο’¦Όί•3FWO§ΌώήΈΜa•l[―ΛΚtξτΛΥΛ””mxCO½4/r jοΫ:Γ§ V—u­QfšΙΦH§΅­U―ŒZS?MλΏNΧ—ι΅s¦9ον!M«xτ^…©μτ8΅FgŸV«,Σ›iΧή ’:κ4W¦iWEΊXυSγ:W«©ηάnwςhΙ1§Τ~Τjbηe™:Nw»{΄ψ[ϋ|όΗyͺ5Ό}­ϊšρUiΪz8]ο˜…=<Ζ¦“Οζπ±4}©Z<½V=Ό>¦¦™γzΣζΝC킝ΤjlΗ iW£.f"εfΒNΠΆμXΊ6˜vKΎ 9›XηžQ­sΪΥ*;b¬{ΝX>?βΡΊώΚV°·Δ”Ο3VcΞ¨QSsLS‘Y‡…£|?ςsYΗΰάL׎ΛήγiΪ~4]Λ«5μ(‡ωζ{ϊDσ=έ°8S{τ5?t0uhύόwτε)C4fάλ¬D«ή|Us­ο׍ΏwΥΈι?ΥχNΟP§J;ώg-έθπG˜­ Σ―R/S'έΤω²πΟZΌ6²N°r£uŸ0ί§˜ο‹ŽΝ‘]ΛΝλ,W#ΟΝS―Ήμ‘έZΏlω~ρύ48’Ζί?ƒMΝΑ°Ι7θœΑyΚϋYd·JvnΣηΛ¦u;ό&Φ}½dΥΝίάNc~ИŸ{Μ8§NΠ ά‘Ή™λW4Χ*.φuŸhΩΪϊBBΑΟfiΒηη¬*|α>-t‘ΞžΗ € €4(@°·A"*Δ @°Χι΄tύ|¨G]Μ―MΎ>P­-JΧ„ήιΚnη}Θρ}²«ZOo5ΏŠx|―[ΊFuOWί3ΣΥΛΤ?γ…γ΅ΪqΈF_μ©Ρ~Y·―Vš.βΡΣGπZζΔ‘£5ϊ²ΌVŸο©Φό½ί™ΨŽ·έΗ € € € €4ŸΐIφζiΪο₯A1ŽqϋόΗτηιŒ³sζ Ξ™&pw΄ΗPe‚ΊvΏGΜm:»ΆεjΪƒχj[«ώΒ—υς›K­ίaΑ-jΒ`'dώ(ίτΆžxώ½πBηYΞ₯š9γr©ξι`ΙΞΕzβΙΏDLs5ιΆ4j` ¬<(Ϋ0Wy魈vζt£]‚]ΖwΠΨλY.ε&ωDd0κ―|“9Ό?8i΅«w žΎέ nWxŸD eϊjςϊ Χγ¬ρ«-Lη.Τ΅?ΏYΉέ’_hσ‚g4'wκΕ~ΟΜΏBΧOΏΔ»+oτ+Ί{[ΡϋΆΎ‰Ežk[£;{T7θj–¦χχfhE₯SR«kzUi $ΦχΨiΒ»/—‡Β―ηdVλ <υ>ͺυʏμ8_Ψωκt½UbB¬φ‡.κ»XΤs΅šΤ΅Z˜πj΄GY…G6αΧΰ£1Ϊ”˜vO›vaOλV­ά6a₯aO6—gθ―‡\Β½¦νΤ.5Κ sÚyŸTυθχeώkZΑήΊ5­(~ΌΤšŸsΚ\λ§fύϋΧ³†aΧ²ΊkΤ‘uέnΝ{τ·Z±Η©ίϋύœ+οΡε}—3;ΌΎjvx {]fΏυŸ?²Qo?ρ˜ΦŒmtΡkΕqŸˆΡ¦dνΫzfvΔΟ#qέ?ύ£7m―ΎaͺςzΧύΩ'0Ώ σ3Π#Ÿ¬ϋzΰΌλW·ο+ζZ?y³ϊΥσ3Z…ω™ΰ‘ΐΟ›WΒδ»tνΔ‘ή³[Νώ―Fώμ₯Ε € €Τ'@°·>ΞΕ*@°ΧEΚ|‚υαΡκιrΚ.**«ν_ό€iζ€ΆσΪ•­γΝ;*υπƈp― ί3¦†ΤΣφPI•ξZa_Οto;k<"€ € € € Πά'!Ψ+3ωzυ=£­*kͺujχaΚλλ Ž”lY©β―*=ݟ"ςTkκωZΆ%b—Ό(’’-«MϋoΥc/eμ£φ.Αފ]*Ϊ]dώ*t™Ž©zτΟ7;sB΄‡΅lφθÈ]ωrΖώDΓ²{«€Ά5tˆ/μ5”θ2Ύς+΅qΛ>΅λ;TΓφφ―Sέ덹e–Ζ ŒΗμFivφέ^T¦φ½jΤπΌΰϊξZςŒ^~gEπΉχΐεΊNyt—πζ~ΦΨλYυ]풝·ΚcŒΥ3PΨΤΥ”Qύ½O7›ΐϜz?Ό>£Ώ>žMϊj­§λλ ΨyWMϊ§Σ¨ώ`Ωm^ΆFefΗή.ΟΧ `ΰμ°ΩρnkwΖPΠ―qοχ|]ϋΰΚ „ΛnӊΟΦθH»Ύ66°[¨op‘γnUοΫ o a‘Π4m6»ΟVš@λΠSCΨ­&˜{ΨΤξΕn<˜‘׎8ΤP°·ΒμΞ[dvw=hΎ:›λφ<ΝSƒ}€ιΣύϊΠΪuwbΧ*ψϋs΅O‚±¦έ=&€Ϋή;τ4–fhΑ±ζΡ@•±]ͺ4Ξμ~xμ4;Ψn7γmovΓ½ΰτΠ?ν<”aBΘώ°m˜―eΉ Η<κμS£σΜΞΏGΘΔW2©[•.°ζΏΩμΠ»ίό›QW3ΏAΑΐΫόjue* mθYήέv·ŸH“ΗμžάΓ΄Ν5ύ–³ΗfQΖΉΡμ²ΫΞμ¨<,f»y&d=5²6»4;γ,6‘νΆf·βζZƒΜ΅μ`oχσoΠτicΝχήΓRΰ}ͺΛQ9»»>σ‘Ημ¨~•|ίωkσ’%ͺμ=JCϋ†v¬ίjvη>άeΈ†ϋ?τ²ρίιυ%N7ήχ{WMΈνΧ*θ»FΩ†·Ν.άώ`lώOτλιύ―³ζΫύ5ϋ„uΏ –o[¦U›v댾#5rHŸ@±B&NQΌχO§mΈϋ^ ΝrŽ}"σW Άο.SΖi]Τ½OrϋφPΨtάΖγΟ=ƒMˆzj D­sŸ_«=₯GΥΆCGuιέWƒϊχQXˆ80¨ˆ―ΩcοΠM—π–Fή£#ͺς@@˜φΖLEΕzφΊΰtπhΦ3”m*+«Φβ’ZuκdvοΝ }Hϊ³ΟOθɝί³„‚½‡ΜξΌ0»μξ;b~?aϊω^WΞλψt­>XY©Ώμ ΄“ΞάF3ϊϊ­Υ*³#πσ{ΖSOISVΗ4 7Ϋ»{γmgMC@@@@š]ΰ€{νQfάͺ™WŽςm|g– κ٧ݏλHviιμ1&Ϋj›3FΜvˆ«ζ/ςξ@8ς’λuzΩ:-^±ϋ―Ή‚ϊ,YυŠžye‘ϋuN“tϋύΣΌ€¨Α‘ˆρ―zCΟ½βί}ΦtQ0ύ7šο O†tσΦ―ožμνVα«/jαΚМ2σ―6»‰NφQ―έσ˜6Ω#Έ‰7θb7oτqc―gΥw΅‹vή*wΖ³§5‘QΣgiRΎ/6Άω}μ]Tχu`Uςϊt uβ<°ΦΣυuθvΰšyΫ%ώ―KT8ϋ - †ξMhΝ„ςFΉ…ςLϋxήοΩco5‘0ί½HΧλν‡ώ[λc1ο½™ζ½—ι6ξΦφΎ Μ)–―V(΄β˜ΩΆΤόㇽS­ ²ώ_³Λ«L½;{ϊvφ->μџΎ6υΜcδ™Υ:έμΊ»Έ"π*‘‹žΫ±JS:ψώq₯δˆΩΥφ ――†Ω)ΆWh§ΨΝ_›έkMVτ:³ps[͎Ά―ΈνhΊDlG&άzΩ=7.σh η™&lϋS&ξβ-HΧkEys*,€lžŸkB±S‘ΨγιzzŸΗDΝΓ„~Ω½ΪZ2α]j^`…š'™Ps`ηΰΘ>³O―Φ͝AcΣ6b¬NχΉͺ•οIΣ_» GŒ³ΨXΙ².θ\₯‰ώrXpΩτ:η2–2Ν\rΣ΄Ϊ„„Gφψ_見ΟυΗϊοΞχσ«ƒΑފmσυΘ_χξ|?Γμ|οu7»ΌώΦμn/sο˜aΐNYρ²—υάkK½—‰ηύξŸΩ)φΑΠN±›ηΞ|θ£]Xΐλ‚'υκό΅±N'z½xοΦύιάΩ±)³cΰ1Μμ<<%°σπξ%zϊρΡ>ηdξŸv@Vͺϋ³ˆΣ}ξψtΞ™Εšσ¦η₯ˆq6ζϋtΑΟfiΒηϋ³{ˆ:sΰ…κ{Z™Φ¬΅χTvFώΘ4Ας™&Xξ<ΒξΡαΥx† € €@£φ6Š‹ΚQφΊΐD{χξ©}«Μ§žύζ΅ΡΝ9ώί}]­ί|\₯/ύη~τύ YQ£Χv~Gh%ύpˆiΧΗΧh·Ωνwm¨ΟK‡·Υ΄,ηw΅zω ύoi¨sΤΝ{·©Υί­0°So;§-@@@@N–ΐIφΪ’˜—’υoΞ[…Eρ˜°ξ ΦuΒB †A¬kG­kΥ‘Άιέ‡ώSkμ?αm>3M€Χ zCMώ?e=Κ~'ωΏEfGή#wδ5υν:«ζΜάεΦΌΓ+5Ω₯!ΡΖ^ΟͺοjνΌUήO{ψΆΫz³Σγ[ޝνξΗΌ>ίց?΅ξNΤψRk=]_ώΟ1΅Λύ΅²΅oθ©Ω‘pΌ·JΞ₯ši‚ή°νΑ՚ύΠ΄#–ΡDyΏΫ―‘­ ̟qŸώ…ΟΒοv»VρΎΕ(PΗ …C¦nežέh‚Έ}M»`½@ΡΎš6wš6ήϋ½+o ~ΔξΌEΗMpΤμλ<ʏšiΛόΈ¨ηΧQ&Ψϊc°΅ΘμΘϋB`G^«?»ΞͺzΟ *[2»Ω.Ψ›‘B³›mθQkΒΙUκο "›σ%ζό ³c½ ό^αόΊZ™ΰτ/{ψƒΏ&={GΫ½ΦκξUΑ?5Ήν› ύωη£xDŒσέβ …ύKlώ₯ 6{ΏEΈ†ζm‚½ϋLΩ¬A½œρšrα΅5»Ϋ‡ώΩ,z §­Ž•¬ΤάM]‚Αήΰ{έΎO¬cήš֌эχί¨>¦ΛϊξaWŒς~Φ Ϋ·ΔμθίFΩ½}»ψ–oškξ‘m°Mqί','d»πΡίͺp=€‘&œ|»ϊywH.ΡΒ§P‘ΉΖΜΦ%Ώ|@Γ{ϋ±}ρ“ϊσά΅φݏΓΖϋΟ=Ng!μ}φ>-άβ~‰K³Μ―ξnΰƒW vB@@Βφ†{π,>‚½.naΑήΝω{₯ή3κ=uΟ€6rŠSR«9ŸΠ{_‡ΞF=:Ν£‡'f¨§©ž|nσ‘qηχI&Ψϋ© φ–Eν%μDΌνΒ:α  € € € €Ν,Πςƒ½GΦλΥ[υογζSΙΜΉPΓGœ£ήgeιŒSΫHU•ͺ2§2ΪυP¦Ο†7²Β+QλZutp₯^|θiYρ[?;^όΩ+zξ―‹ΌwΫΓγ߁ΤΩΉdO₯22"V4£½Ίtκΰ-άόΎΩ]p‘5sϋΊp‰ΈBμO{=«Ύ«]΄σVyc<퉄‚C&πœΘ`o#Φ‘₯Ώ>mΟ&[λιϊ:πwniλΌΦ½uruυΏά«ΌnΞ“P Νί\σtΒlΏ2a6η½U’Ε&·4"%l‡Όνq·Ίχm(–―V(4B΅vμ –™Ή²g•†šΫj¨ΜwLS„ Ξφ6‘ά3|vβ»ο¦Χ*ΣΏϋnd›ΐΠςLvj`ΧΫ@a΅Ω5·ΨΏkn ¬ _Η™rǞψ³Œi*1αیȼ¬yή%ΓWΗ·{°)°ldΈ/˜nΨ}ތi¬ σ††CΑήΠ.ΈR°―°ρΧjͺ±4ӘG¨σNvωϋ& »"–τlCγ΄ΞΫ»-;W{}cΩz$]ێ₯i_ešŠΒBΜΞω&<άξ 9fwήΎέyCο·\]aήσCΝ{>Tζ»nγήοαc|Ω―4ul^x‘ΉwΏf~ΆΫ?ΌF£žΕ}Ÿ°l\Ώ™QŒ1;ގσξxk‚ΏO™ΰ―ΉwΕ΄ο«Ϋ4Ο|0i…ύΑ€h³nhœΦyϋη§;{G}ηgŸ­«Φhϋ?vhߞ]*Ϊ³?Ϊλ–μ­kB  € €@“φ6™ŒΑ^——μ=Z­‡V)ςsž—›v―ςξ°k‚Ώ›ΰ―μνΦ1]γz§k@fΊ::ΏC1Ώ#q~UΡ¦mšΊxΓΐnΑήΆ&Ψψ₯O­Φ™7μ―QΡ‘Zm9ψέPέ±N>7Ύvu{’@@@@ζhωΑή=…zϊΡ}zΊžyšz&XO ί©²ΐΞ€ΡjZα”Θ`Q°‰U§|‹Ωροو¬σ‘>ςtυύΏR^§`/ ΤΩαΨκW1Ί4x‘ϊ*4φzVύΠΌ­ D;o•ΗξiυkνΰP·πͺaΟμ0gΜν¬ρΖΊ-υΖ΄'–λλΐί{(Œ]’₯Ο> Ε‘ΏέW(δμmΌ§f;`w_λΩ―…ΠΈ[αϋΆ1«g…>CαΫZ]—U₯\σ‘»Μ-Ψ;ͺc΅~ά‘¦Α+†ϊ©[υ’•:―m¨όΣ6ϊπXθyӎLXΦΜ%/ςυt γZ6Ρv…xΣτY™GσަYaΩ4-1»ΰ.>y±PH:2Ψ{λ g¬•&HΌ·n8²'οs{œίšŽχ;ιjλa―³§˜]•»ϋvUΆZψ«Σ΄Ή"]–§«ΌΞΙFΈήFκΪϋoWωžzΏ…ήσ‘2so†οοέύ¬Ff…Ζ½μ…Ϋτaψ¦έ‘“>jΒ}Β²‰Άƒp(Δ{X+^}LσVY»ΰ6φώ™―iχί©AΞΟ"₯ζƒIρΑ€hs·ΗσΟ=ώΞ^‘·]βέ½»NχGJ΄yέ'ϊΫ›σ|ežƒfNλνΒ~}Τι“@@!@°·XT*@°Χ…Ζ φ–•TιΧ.Ÿ^ΎΤ{§yƒ½΅ZΈΊR/ϋΒ·“‡˜wϋDό~Γε{‹«tŸύg‹Ί˜έ|/πνζ[§ϊρZ­*Φ««Uy2ήv‘ύπ@@@@fhρΑήƒΈ†ωSΫΏ™>1ΘR±g‹ΆnΫ¦ς#fΏήtσqώv}4nμΉήσ †A¬πJΤΊ Υq=o ΝNŽKή֞£fxΑQ‡8;ωάΊ\λvX»ΩΩύ6Pο.Ύg½žλŒΦ₯νώ6Ό‘§^šη;­<Π΄‘σ¦ή°©ͺ)£ϊ{[lž˜ζ,ˆ-±e‡9γ φ&Ολ3€έ _cX/η*‘`ohΚπ«ηjΚέχj˜7ŒgνΨΧϋ=όύ·Β„ϊζEΌDμΧBθ½ήUΌoΓλζϊ OCAP—²ΣjτΊ†Ά”­8‘­f·Χς@‘§Vγό»ρ†ϊ‰N­‚aV©`°6²j\Ον]pΝ}χGζίpδίHΈN³©ΛΑcιZgvυ΅wμ6ώqέΜnΐ§†οτΪΧލ׾T­.λQ₯aή0³UΗS£{U«―S5Ξ`―λ8]Χ؏ χ^yfϊ™y΄·Š‡Η<ϊS©?ά›•―1Γϊ)£:°ΘZξ_Σ=+ϋB…»³ΨΕή~oΥݝΧ%ΨΧϋ=r7Z… μ χπ>³‚½uΈώκS/h«)]|;μΪT©'Ά›χΜΠK#BΏΉ9τMΦ•ΥhΏσΑi§ͺΩ±χͺ~Ύσ{χ˜`οͺˆίQ˜ξuv—tαΏŽύεPY΅f}Zεέ9Η € € € €4£@Bƒ½ίω^_²΅αα7‰θaδuΏΡEΓ{{K‹–½’_[^£Σxέ~uκaJ])vνXέPΧσΩΊδ—ΏπήN8g·>|θ·Z˟ΏnμΨμϊΦqχΌ •yj¨δψA­XΉ6τάνΘunύeYγuλέΧ©—yZΎιm=ρό{α•£ύν†ΣΠys•ξ7ιŽ+ ΌΧkp­QΩA‘Τ~}Z(M=΄ήυΠCΑ^i½Ή7ΌUηή ω9;φ.~κ-έ!Εχ~7}™πPoHΨΌ5οΏ=αν>φέqΩoaθ5τέΎoΓGxžΉ†>]BΌͺ[6²S•.>έj-:μΡ _G|LΑUο0AUο}·Β£'Dœ7ΣΧΕcΫEώ)Δh;έΖ3Z]jv€~Šs4}Pœ‘eή΅WΛ&ZΠv”1ψ±Χ Π {Νλϊ`†ή<βϋͺΠuB–Ξ˜—dh‰$ΆŒUWŠ=Šα»eΓdkΑίΠΐΌαήmk”ΫΎV}ΫΦΕٍ8ΓμF,e…nΊΨχ!«Y½‡ζ{Α#σ«γφΖχ~Έ[֘ΑΓ Ν=Ε}§πˆj1=mΒ}Βϊώ¦efέηTqΝQζgœIޟqBpˆχώ){'τ#λυκƒΫλΜgθώh ΄‘σΑͺ]•“ΧGέzPξΠκΣΝX–œέˆΓμFl}˜)ΨΖw;ω.];q¨χΙVσžWcόOD7χqφ»]’ί·:-]wΜPGσΞ£ωίό5•ϊϋaοΣ¦Η5τ ž†‚ uΛBV˜έk³•αΓΙξP­›;Φx Cύ„κδžQ­λ2}ηU•ΟΎ•Ξλzώʞƒ­‘.]Bγ4χ]΄}­NΠΦ΅YX`ΦΩ[ύ­"Φ…U ™Ψέ°ΐ³Ω!ψ…ςˆ@³ <άž½―kΰ}Νx}›GΫύIkd蝊ΐ?:…]8ό‰λZU:oU΅νΠu`eϋnΧ­οΈάμήϊΔίw°7ήχ{`LvTΧkΕΆS4ςΌΎΣWλΥ‡ώ[°5Πa”―qί'¬οo2Δωφ=ΏxΕπ‡Fά?Γ‚½f.kζΜ»ΛΓο…S΄Ζφύ;PΉ‘σz_Ηέ2Λ„}?5΄k~ΑΟf™ŸcœΊTψΒ}Z±λzDΧ,«RkVF€V’τΑαϊ4dδ?˟ΰnτυ¬`―viήCŸVw%ξͺIτoεsβaλΠΠu:³cβfGdηIhwWl£±ϊNυΧgt€Ζž©οuκ+σό4sΪX_ά Τ8η²{tωXoηb=ρδ_Ό¦=τZnάϋ=wς―Μnyήξπχ#ζΟΎ‡κ§ή¬~§ϋJμΧηwωΎUG‘žΑ†ώ‘#XΤ”ΧΠg(` δΦ- fΣTXš‘ΗμΤꚬ* Κπ•…ϊρΧ9΅FΏμV­LοΣЎ°u«y§ϊBΜeGΝ.Ώe‘Xϋ1χ3γιώ€± Ž6;Ԛ;κ£ώ0­eγ\jky†^9 ΪfΆ―Φ/;ϋƒΘΦ»‘ε‘ΰoΐηdVλŠ3όνŽ₯λρRχuνœ ;WiΖΊΧ%άμ©ΥΘS€.γ¬γμtjΝ#ς|ΆΖϊDšΉcΦ}δ™qNυ3μujuΟΙ•Ή|̏γε[΅οΤ‹š!ΨΫΈχ»w€yWkζΝ“ύ―³ΐްEwώ›Fφυν[fv~*rwω˜gͺχ}ΒϊδτΆuΑ“zu~h7ύπϋdh‡έπςΠ#ŠvtΟs₯Ή·ψο­ζgWλιΊαζNω™SivφχbΣΎ?g¬yΎ{ŽΉοξΨθϊΑζ>?ΥŸ―7Ψk>0rΣύ7zwdͺχη§ΰ€8@@@ 6‚½±9Q«~‚½.>aΑ^iέ–J=ΊΥϋS½[ο ύ.ίΠΥρ=ώa₯V›ςP°·Vο/?‘-΅ϋNΧΜ m4Ό―,rΗήοu4ΏGϊΊF_ΪMόΗηn£ύ|ΏgŠ φΖΫΞε2!€ € € € Πl'?ΨkοΊi†]΄v±6ώc·ͺ2Ϊ(C•:°y©vßώy5 ‰˜~θΟT›7jρ‡Σ†•₯κ4β|]0ώrυλj8QVžΞΙ:Σ_‘R•νhβeγ|A έ…zΫωSΟ§9ϋdJ•ί~₯M‹Μξ°n!%Ξ—¨ηνχL½#Ϋ΄lΡR}ρω?t<³›:wΝVίyκ—?P™n;κFνΧΊv”ΓP_ΑeGέ:M}½š`Β»ώπnΕξ•Z2žŠ*ψ 5| 7uλ½LΨ:4t†Ξϋž3ρ.MŸμϋ3έ»–Ό —ί‰ΨΆΞM―O=υ<7™&•Ήεaμί!Ίt£–­ή’oεQFF΅φ­Ÿ§M{œξσLθώWΑΠ½φ¬ΦΌζjΕ^³+ο.Χ€ίZ:5νrγ~ΏG¬uΙ†ωZπξλ:ΨuŒ~tɍ”ε\Ιχ{}ΪΊή9ΐχ­"ώΔώΣ„ώ‘6ν‹kθ³nˆΧΉξ•=«4Τά αΠQͺτγΣ}!\'0»ΨμL»ή„M;·«Ρ¨3«ΥίwΫτŽ/ΠΖ7ΨZ³σJ•rύvSdοjkv³½Ωμf›νŸUd˜6ΎΙ†Ζξm_¦OΏIΧί¦λ„ Ιv6ήΎ&Lά―}2M@wΆΩAw»SΡ²ρ]7MΝJW7κgB½Ύ}FΝχ5{ΖΚ5λDΊή7νV˜G™‰υšNλμ 1ǡЌυσc&PlΖΪΗ’Ο6»gšΠσο‘gkœαΞΎQΫσ?_«©&|—‘¦Ν‡Σ΅σxšφU¦ιχΝŽ>³Fν½]€iqI†–œπχΟΧ{xθϋaθύV·,ξχ»FκΪoW?¬_dοjkξ7™έΐƒ―³ˆ0m§λ½`x°7MwNh«σΪΥjΥ—5Ϊ| ΖόΎ¦V_+M皢— πθ o«ΘΝΗΫΞeΞ!€ € € € Ќ'?ΨkϊσΙuGΎuώczΥ Οڏœ‹4cΖUκbΚ\$v]ηΨΤΏέΤ„¬"OΫΟ#ϋυ³‡5iˆ?€hWt;6aΫόƒŠŸ ΈΜΈ;Κψ^€[o»ΚχgΨέ(s φ6tέ@[—―q{γΈ^¬ͺ=lΊN}žas½P7ώώfυqΚbΩ‘Ψί–Χgσ{5πRΝΈνrο{ΨΟόbΏη»›]{§›]{}Β`•°gwέΩfwέ}Rσz‰χύ>ψ’»4u\(0θ2ςkΨλΣ9ω½oOϊ޽mktgjί½ΆΒμ{ΐω‡“P65!PμΝ³‚½2mο0mcΊοϋ–&v­RΑiώ@°Ω±φi³c­½clš½#°ωΗ—%f7ΰΕa»GV ΟO©ΡΟ»W7|ί­7Ψε:.»;s˜nζPολϊ˜G³KΣΓζξ\ΑiϋΣΦ·›±ϋ5ΛM°χρ@°Χu ­v&ψ{gΟΘ5vΞ‚½V]—ΓŠoMˆxΏΤ\ΞΗTδz―βuΒ±W‹ šγίƒq½ίΝ‡Lnϋ΅ ϊΏ·ο\’§ŸόŸΠ=Δ Ί{ΑMΊγΚπK΄τ…'΄xγώ˜¦΅R<χ +΅_η„Λ.qέ?ύι~ώυϊΙ4‡˜’\Έά{Ÿ{]ΧΠjυϋt ΨkΥu9¬Ψ2ΧόE‡·\Ξ8E]­]–K΄π©TΈ#JUŠ@@h€ΑήF‚QέU€`― K`―K§θh΅_Xεέ­Χ[ΓόυͺYζ―W>Œ₯•·Ψ=Ψ[_ ιPi•ξZ^mU {­"—ΓΊν\*Q„ € € € €@3 $$Ψ+σ«Έ‚+/Qή ο©CΫΞjοίAΟ™Ηϊw~§·–l ŸRΦxέzχuήVΙΪ9zfφ‡αη]žeζ_ͺΛ.Ύ\}:EœtvΧ\²E=Ζ^’>ζΊ‘ύ ›ϊ―š2ͺD£(OχκιG_Τ>k·Ώ²΅oθ©ΩΑΘ¬IfόΣ|γ_eΖJΔψ͟ΈΎhΚ%9€λ…ΚχlΣΞMŸθ]³c_Ψ#—@ϋ°]ΒezρΏž“Ω8ϊ#Ξλ »μ.Mž<²Λ¬ΓΚ;YΩΞ:Ψ.Mυ΄f0μšΧ”σϊxKΦΜ™₯w—Χ;CK^Ÿaσœ€iΗhPίπθgδ{ήϋޝdή»ΦΞځAl_φ†ζΎ6OεΧxίοNσΑ“oΥΔ‰£"‚“%ZoξCΗŽυΎo‹?{EΟύuQψUΏƒχνώΊgk[g4ίTλ‘%UΪ>²ψŸY;ΔφθO_ϋƒ½=ΜξΌm₯β#¦μ`xY‰){Ϊ[f6χ<­F—u¬Vߌˆ!8»βšm{œaΞ™α—˜`οΣ&4œΩZΏμβہE¦Ξϋ&΄λμdωΥΡμάΑώ­0Ψί›l“fΗΫ‹2«u^{¨8’ΓςiΪy4]ο˜q{φNΈfwί}i΅Κ3;ϋڏrL^pΐ£φΏω+xmΜυϊZ;Ϊn3Φsuδλ:pή M_ivζq=οyγΆΖμόΞa³‹―σ°Φ0ΔφςώΧΜγη&ΨΫΛ<±ΧΞ97Φ¬έ³†]"ΧΟΫ0M[ΝNΎ‹Ν8νΰ΅χTccέγCο-μ½ϋ^ Ν2―³UζύφŠσ~ •Ωί#ϋ~Οqƒf^;Φ7Jσ3ΐΌgώS+Ό»„‡|”ω~1ΙύΒωΑ#ζM~4φ>a{ΛΆ,ΣΎΆ”Χ7όΓFε; ΅ΰ•΅ι`έΡΕs φ’3^WL§‘ύΓοΡήσGvkΝ’wτξ’΅ΎκΦ6ξηžsΝO5€žΊDώ|ζνω€Ά.ϋX‹_{/,x£sw΅fή<Ω{Ο.ί4Χ„£€ΓZρ@@˜φΖΔD₯φΊYΑή½₯ΥΪνIΧyύΏΛπW/;P­Ώ©ςoΓΫwλιΡ-ƒ34¨]xΉŽΧθƒν5ΚξgΝbώ‚Rq•Xψ₯Lš.š‘ Ί¦«gd;o7΅Z·«Z―o¨Φ—aέΖΫ.¬ž € € € € Πμ φ6ϋΈ£v˜3bŒΊ΅;͜―·‡φiέΪˆέ€£ΆόNdεiXί^:ΕΙνUWιψρƒ:°g­Š\HίΑθšvɜ‘yVG9S;~΄T;WbkΪ•Β[›πΡ­ζO¬;!6ν6»4>ΎKcxεΔ?kU―ΟσxmΞ0οέ*ηΒίͺtΫRνhΰ½·g'σήδ{οU?’}ψDE.‘9W‚Ύo/ΩVWυύ£Η΅'τ§έααRΧ1&Έ°_»™7ρ>Ύ5ΑΣuί†Ζœΰ‘4|Ή6΅:·m­Ϊ:C4”'jΣTV™¦’Θ€±μυο8œ}jΊ›¬s_;aζΉ:†yzmœώeΫ<]Ϋ#―eΤ™fœ̜ζNϋΓζš5ΏmsξΖΕ1qU]“¦έGӚθ2―x‹γ~ΏΗ{Α¦΄‹υ>a{Ν™ž2dΚΞ»Pέ;Ÿξϋώyh—Φ¬ψπ“ΛΈβΉΊΙΜΙΧ€³Ίω^gΥίκPω>mΪΨπ5νcύΪ='O=ΊvRΫSNσ½ΞΜΟEζgƒΰnμQ:wΛΓ3Ψ ;ΠgοΣβfϋdC” RŒ € R{SjΉOΪd φΊ³Τ]>@IDATΠΪΑ^ΐ½ΟpvKWvϋ4ο'-lΑΩξamB#σ³ε© μpΫ¨<έ·Qk6ΕΦ€ZHΧΜ m4<°ΛΘΧΥΊχγ*•6²—V_έμ΄;² ·Φo=u¦ι1!ΥoM`wuΌAX—`o‹P<ίΥ}Πφn0ΰ₯ˆΏ<ΒρΝΔϊ şΝ1;©Gό„ψz₯ € €A‚½A š @°ΧΟφξ1ΑήUϋ½£K!€ € € € R{SjΉ™,u²ΗB7]|nέ1”Tlz[<^ 5©hn=r~†Ίψώ}υ ½PάΘtk£/Ϊςdw¨ΦΝcΫ‘%rτG=ϊ}™+αΘ“ ='ΨېPRΞξƒ{“κuΔd@@ZŸΑήΦ·f-qΔ{]V…`― E € € € €Δ.@°7v+j"”ΩcοΠM—ˆknε›ήΠΟ³Γd\x 4κΦΣ£»Gd¨ύqιΔ7ΥϊΟε)Έ[―1Κ>έ{;Εμ-7ΑήΗγ φΆ­Ρ=ͺ½Ακ² ž<g@ΈuζtΛψΞξƒ9iƌ«|―3vμm/F € R{SjΉOΪd φΊΠvτθαΡκiNνeΗ^ Š@@@@¨_€`oύ>œE ²•›ί]••ͺjΔl3Ϊ΄Ρ±]Ϊ±g#ZQΖ Τ*χ4©Ω¬Έ²MΫ€IΗͺ΄½1μώ͎½?οY­^¦¬Δ{Ÿ&Ψkλ$αρwtΜ―[οΎΞχ:[;GΟΜώ0 m™ € €-W€`oΛ]›Φ42‚½.«evμύ??ΜPŽ9UT\₯VW»T’@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„NŒ`oBΉΉ € € € €)!@°7%–™I"€ € € € €€-@°ΧΦΰ8^‚½ρΚΡ@@@@’ μ&C9 € € € €$­Αή€]Ϊ„N¬Ω‚½Yctν΄qjο©Vω¦υϊό G] Οf[3ϋΡιν₯•΅ms\‡v~ͺΓ‡š­{:B@@@p Ψλ‚B € € € €$·Αήδ^ίDΝΩ‚½9iƌ«ΤΕ Ό|Γzβ₯yυO‘SΎΖ\ΠOmU­ƒΫ ΅fΛώϊλ·Ά³M_c=[›OBΖ{Άϊ_u•zfuŠΈZ©φ,}CΫΧ}QΞS@@@@ζ ΨΫ\’τƒ € € € €­F€`o«Yͺ=Πζ φ^ͺ™3.W¦™mΕ¦·υΘσοΥ;ομρΏΠMŸλ­³uώczuΑΖzλ·Ά“Mž_Nγ<[›ΟΙοΩϊώO£_©τ“?jΛjΒ½Ρ…8ƒ € € €Δ/@°7~;Z"€ € € € €@+ ΨΫJ… »Ω‚½f‡ΪIσuŠG:²γ-^Ύ΅ή™f½C7]6Β[gσϋiΞ’$ φ6u~τ¬;Ofύψ~υΠΝ?σb}΅hžΚ·QΧό‹Τλ{ς"mυQν)KA ¦Œ € € €œd‚½'˜ξ@@@@@ ε μmykGΤlΑήFN>³ΰVΝΌr”·ΥΖwfιυ%Eμ‘eWOφω΅lύσ4䟯χξνŒsοGΏΣΆ Εώ!_ αό΅σ?+_υ’6|ΊΖŒ/ € € € €Ν%@°·Ή$ι@@@@ZΑήV³T-z M φ掿A#ϋeͺΊΪš’Η£ΓΫΉ‹ΦZ…ΞaW\s­t:E•ΥU:΅kžzuςU)ί³MΦχ΄•Š—Ώ‘…+λ†}Ώ^#ς‡ͺOVη`ύŠƒ»΄υ³ΕzwΑ'Α²πƒ‘šrΫΤь­bχ"½ώ©tΙ”ρκΧ·Ώ2OχΥ,/έ¦ν«iξ‚ή‚ξyctφ ΑκΥλ,uνΨCνύυtδ€ŠKΎΤ K΄°ΠήeΈισkœ§=Γ\ΉζΗ2x¨Ί˜q–‘w^e;WkCα\-]阯Kn™¨Ξ§νK΅’¬›Ζ WΏή=όVΡΪ%Z4ϋ-EΆ΄―ΪRΫ ΎNΓǟοήΎOτٜΏ*πκκώΓ™Κ=;'4τ=λ³7^ žΰ@@@@ ){›’G[@@@@h•{[岡ΈA7%Ψ[pΛ£š0ΈC9•oz[O<^Dyž¦ύώWQνιφωιΟ μΰl&έvƒF „OλΆ,Ϋ0Wyι-•GžΚΉH3f\₯.¦ΌlΫzν1Tف ]χΘjΝ~πΪ‘\M{π^ r«cΥίUψ²^~s©Ώ€©σ“ηιΏl§ uνΟoVn7k`‡›<£9σ}e臭K5sΖεΑm#ͺ‡žξ\¬'žόK]ΟPy”5ρ^υϋ~/οΨmz]λωΧ¨χΕyω$jϊθϊβω?jΏ]Ζ1 € € € €@“φ6™@@@@@ ΅ μmm+Φ2ΗΫ”`oΞ؟hXΆ³co•ΤΆ£†θdΩ†7τΤKσκLψœΙΧ«οmUYS­S»S^__(ΈdΛJ}Tιι_O΅φ―ž―e[BqΛ1·ΜΈΑ‘Pο.³£μφ’2΅ο5P£†η―΅kΙ3zω+ΔκœΙΊH·ί}•B­}ΥKΆ¬6ΧύVν:φRφΐ>jομ­(έ₯’έE:ΈΏLΗΤN=ϊη+― §ΓZ6ϋ?ταZί8›2?gDυtvAžτO¦QύακΪΌlΚ̎½]ž―A½ε‡UψΒέZΘI»x”ο\©[φ©]ί‘6°·Hασσ6κKχσoΠτicνa© ΄―γ*Y5GΟΌςa£cWΞϊ± φπ{K—ώ·Ά¬ΫnNχRΏiχ*«»]Σ9.ΥΞΧW{#ΛyŽ € € € Π‚½MΡ£- € € € €΄J‚½­rΩZά ›μ ›L§IΊύώiήπl΄`―]?³ΰVΝΌr”·hγ;³τϊ’"ϋtψqήΥϊυΝ“Υή[Ί[…―Ύ¨…+Cυ3σ―ΦυΣ'{wδ•6κ΅{Σ&»‡:AΦ]Z:ϋ΄xm¨εŒΡ„ά6Z5‘w‡Ϊ‘—\―ΣΛΦiρς@6Τα°©ͺ)£ϊ{ JV½bB¨‹B'ύGš_Φ¦ ρWhζm—ψwή-Qαμ'΄Π2φ†~oϋ΅ΩαΈ³·χ² o›°΅εβUoθΉWBAμ‚ιΏΡ„|_ΈΧ5(ν6ή(eΩγ‘›.>7ΚYχbχŸέλΊ•ΪΑήύŸόQ_¬ώBΟΏMgτΐ¬zK'ΞΊB=½!ίRν0Αήb‚½n””!€ € € €q 썛ކ € € € € ΠZφΆΦ•kYγnΆ`―%Ψ›=φέtΩ/ΖζχӜEu΄©Q&h:Ι4-2;ςΎΉ#―©hΧY5g–ζ.·B»Φ؜>ΧΏ9KoZηŠυ« έΞ0!ζ.¦~΄Ή6f~—΅Ζνη\y./πο’ΌΦμ’<;Ξυφ™s©fΞΈάό=ΈZ³ϊƒv8'¬Ύ₯mzχ‘ԚƒΦ(Lz¦ Rg𒦆l•3^S. ΆfWηjλΡ=žΆ:V²RsDμΊ­Ky(Ψ{X{ώφ€Άo£sώωjαΤύz₯>ϋσb}ο§χͺ{G§€`―£ΐ@@@hn‚½Ν-J € € € € ΠβφΆψ%jl Αήq·=¬1ώg₯*ΩS©ŒŒތφꩃ·pσϋΏ3Aα­‘ vυΘz½ϊΰΛ:ͺq”™s‘†8G½ΟΚ§Ά‘ͺ*Ueκd΄λ‘ΜΣ}•£…nμ-ψΩ,MΓ;:sφ–ζκκΉWyݜ'%ZψΤ*t’½ΆΗΑ•zρ‘§sΆΞφŠžϋkέ‰½έ·Π„‚½Rρόίιψ€Ÿ)§ŸƒpPEούV_ξ꧁?½KέφΆΠdX € € €  {“a™ € € € €4J€`o£Έ¨E ε{σtυύΏR^§(p)³°T՞B=ύθ‹ΪηΞ.5υMεΫ Χ.<.[;Ημ”ϋad±μ νR\’₯Ο> Ε["‡‘«+L°wh=Αής-sυΔ³o…7΄Ό’—Γ΄¬g‘`οaόG‘Ϊ ΘΣ©fˆGΎx]k,5Gύ”k‚½μΨΫ²ΦΡ € € € €@r μMυd6 € € € € ƒΑސ¨ @ΛφΪ»ΞJ›—Ό­=G₯τ(3svς=ΈuΉΦνΨͺaU£qC•ΝQώOτ›ιƒE{ΆhλΆm*?bφλM―–ΪυΡΈ±ηzΟG Ύ&6Ψ»ΫμΖϋ[ίnΌΑQ;Ήšrχ½–ε»οΨλ:~ΫkΓzκ₯yNρ=²ς5fX?eT·ιŽ•}‘Βεc¨ν^%μ΅ΞݨϟV_{‹Ύovμύ§ΰ޽;_H_ν΅κrˆ € € € Πd‚½M&€@@@@hm{[ۊ΅ΜρΆ„`οΖw~§Χ—l”­K~ω+ οέΑœί­ϊ­–ŒR5Zq#ƒͺ#―ϋ.ήΫΫ[Ρ²Wτβk‹Β{ξ4^·ίz˜RΧ`¬)·ƒ½υΟ/Όλΰ³ΖΪ±WZo ίͺcΎcοβ§Πζ υέΠωΰ >Θ έt±/έpm_ŠMoλ‘ηί‹΅zzYοUΏοχ +ί»θwΪΆ©ΨWΦe’†]{©NwžύB_ό*υ>λ^p«ξΈrT½u"O–›]‚ŸhΒ.Αν_§αγΟv{tϋ<­šχAπy»!Σ5όΎυӞυΩ―ιxπ, € € € €Ν!@°·9ι@@@@Z•ΑήV΅\-v°Ν은ΫοžζΫΕvν=5ϋΓϊηl…G+ΆΜΧ#ΟΎ΅~Ž Nχiup΅^}θrέί7+_Γ²*΅fεΖπΎ¬kE βΪ BΑή*|α>- λn€¦έ»uς΅ˆΪŸuΝ†ζg_;xœΥ°gζω7hζ΄±Ύ&vpΧίΙ9?{χu}η{ό ((6„«‘d!`8αVΠ4T.AΌα…’E­Ί₯GκuΧ²GΧSΞa]oKΠ’GEJ…DJμ‚‘ ·& ΓB 1ΠB8ίΉf2“I&3ΙLζ5ίεϋϋ^žίίΜ_o?NyRSGχsœΛΥ‚…ο¨vf™›ίω»ομΏΎΊ₯₯λŠϊ66ν.TΦι†Veφκϋψ?§+Ιy­rΗ―u`χηY₯ίύ˜ΊuqœVξy[ώ²ΟλiN@@@@/@°·ρ†τ€ € € € €1&@°7Ζ6,J§r°7%CƒSΎγ\U•ͺΪ_§ρSΖ8Β”'ς΄f“IΓΆkcΏ_υν«° Ψ[ΐZMΦά)ΞΟUΑη'TΨF‰ͺ™ƒΫtΤξLΧ­ό”uuvqH;ΆlΣ_?ϋ\’ΊͺS—TυΎ.C}2ϋ)ιά^-{ξ7:j­AΥQχ>«œa==T(wγŸM0΄LΙΓGκϊ±SΥΗ5ΣΒo0ΦφdƒΦgΪ‡δ™aBƏ»CΖ*Ω«υZ§]§€Q?œͺœ¬AΆ™Ψ?^•Žƒy»οκ4Цά4W}smT™NώΧz}Y^₯ΞC§θ»½]Χ‹udΕ+*)β…05@@@@ FφΖθΖ1m@@@@]€`oθv<ι5Ψ;κΗΟ+g`'OGu™°νΆυ‰φ*λΗσ4n`wΏOήπͺVΨΒΑOΏ‰zθαΫΥΓuθ―Ώ`oΪD͚u»:›gq­ύ™φ˜φώgfmXw Y_¨žέLΥή¦jοUήΣς:;_΄IΛ~ϋv] ζa‚½³ζ4ΐΛΥoTύ’ρ£«KΗΐ“*Ϋώ[ΪϋΧΐ Έƒ € € € ²Αސιx@@@@bU€`o¬ξ\tΝ;Τ`ο;E“Gυ­ίbJς΄ψ•%ž`©ϋ©Teέ6IύAΪvUW»oh/κύ­‡=lGΙ™š8y’F με}έyVYR€c…Ϋ΅vΓ6οϋ)cυМ{ν‘ΰό•zmΩFοϋ~Ξ’2oΡ”›§ͺW²ΟM[΅ΰ­‡Τ}τ$υ2σ­»Ώϊ――1žφΉζ˜ΉΊ ΡZ¦|dΗj­[΅^•–kΆjΒ3ηή«Ts­<΅-[o½kͺη―i―=Ζkyp/ο’εμ{κ{ϋνΊ6ΕwΛtjΫj}J¨7ZvŠy € € € €@Λ ΨΫςφ”!€ € € € €@‚½A€Έ]/Pƒ½υκ<Ω{]””lΖ―ψR•M0 †ˆETMϊω3ΦΣ6χRε.zFΫ¨€‹|ΞΝύ;‘œ­™sοWͺm¦{΅lώoΔ«|Ϋh € €D“ΑήhΪ ζ‚ € € € €M"@°·I˜[ό ‘{[λ κ–(U›βΌΧvm­ΞN©£ε—tή\³}MΦχ›ΏΥhA‘σ‚γ²ω·•¦JΤυέ[λΪ+€ς Rgσχ”©άϊ—c5Zs*PυΦΦϊΙΘu6ύžύͺF Ώ οu2γ›ηmŸς³—τΩΧθ­0U 0vΊ†gR―”NŽΜΏη+Žλπ'ΉZ»Ι§RiςMΎγ‡κhŠ}|§ΎPΊF ΝPχdΫNή|ΝΠώ›τώŸηwΝΏιΚΎλ& 0H―6•lΟIIζoω±½:·NΫς‹έ-ύ ™pŸΘPͺΧ\O¨τX‘>Ϋωg}zτKΗc–ΐ^ιž•Ϊp°½²8L}zvwv{VΕω[΅eΩϋͺ{D³|mhŸDνάJ—¬―ƒΩΛ―ΚΝ~±^tυα|Οژύ6m6o₯Ι½4°c+gƒΛϊόdVξ­Ρ!Χ#aωkφρaΫ>&θό‰-zχ/€ΙcΥ§w_ϋ~Ψ†¨,+‘½[΄nΣ.ϋˆέ2²υ½ώΤ£ΗwΥ₯cw]eφΝώ9wF'KΏΠρ[΅9―ΐyΡυ'S“―NνΜ8GΆiWyWeg5`ΖκŽ‰c”ΡΫ³o₯EΪ΅ν°R†g*©m‚*Žό§ΦoΙw θώΫ χΪύ”9HΙΡ#s¦Ι6βω’Mzγ·Ο4†γνί…š‹teχήκaœΡώ θ‹+*{Μp%Ωϋ.՞χVhΕ§αž]4fƏτW'κRB΅Žύηο΅­ΐωΎ»ηŸͺq3nWΣ¦΅iσEήο•›οΫΖέΈA ςŒ›ί σ{vη8υOΏΞσhTΟW˜ί€“Ε:ςιvνΘ?\§s֏ηiά@ΫΫvFyo=­ΝΎ_!Ÿ§“2&jBv†ΪΦT«&!Q ίӟή~W§}ΪqŠ € € Π4{›Ζ™Q@@@@@ ŠφFΡfΔπTB φšδꯐ¨kκ±ξ―K«υΨOΛv­5gd vf]=7$eάͺιL jSiφ}kίν‡π^[&Τ-k¦½-Λ~₯όΐj-z{½εεΠbhΉZΗα ­ε—ΪUbkšηΰ۞ΤΤ¬~Ž1L…Χ¦Β«56:xŠΉ?Ϊy\Φ,xUŸVΤ1₯zέ Α³ž61ύ;a~“~4ϋυ©γ;qΎp΅ωM πώ8νΣ'<¦{Ζ²ŸήπͺVlͺ;Ω›:φ§šyσPΟΞQιΧcΑ € € Π {›!@@@@@ yφ6―K=€`―­βnF‚Ί˜Κ΄5&³Ϋ£G‚3`{YN\’ΙY*Α™ίόΖ”ο}Η]΅•¦_ίF7™ͺ­ŽΟeν9~I%¦boŠ©ϊ;ΜR‰υ£υί€f‡Ν»1ΡρΏf·l@qYŽ~#uhίJΧ™~ C°7ϋΑy3ΐκ=n*Ψ).ΧU=ϊiΤ° χθΗ·Ύ¦₯8ΓΆ~³•E;΄§π„ι=B#φr?WπΑ‹zw«+vΨE9τ κλ ζžΡΑϋTn*φvξ7Rύ݁ݳ¦jεŸͺ•ιΊuΞS”βξZΕ¦:μ‘εJlΧYέz₯+έTt­4!Μ¦ΏyΫ­‚C§ΥΎχ ιΧΣΩΩYνXφοΪ¦ͺ¦{'jtGG•gΫ rCŠ)Χk>§JͺυτKψΫ9ΊόμwΉyΉ>)»¬¦JsΆΩkΗη²ώ΄»Jο¬τμ갞ύψ؞,=΄W'ΏϊVν;φPjΏ^ΊΚO°χ|ΩqŸ(VΕ—εϊ»Ϊ«{ίLeτu½G>ž~Ζ©¬Χ>dhΪάΗΥ?ΩΉžsΗ΅gΗ.U&τΤΰ1£ΌΒΎΎαېήk ې;E“Gυ΅_9h‚–+-½ΦvV·nUUΟQΤΫSωϊ°©B}Άσ0 s†η=ί O°·Ažκ’q?‘¬~Ž1Κ¬1Αcg˜=σn=1cΌ²ΟΌ~Υ_-Λx’§—£λ–φ;1ΐ„¨οt…¨Uj~ΟςURφΪvθ¨Ξ={«ί^ςϊ §Ž~T3§ ·ίυ}—ύ=bmoΏ_±[Kζ/kεqγr @@@ΐΏΑ^.\E@@@@,@°·on.-΄`―χ1³fτ΄…,/iω¦*mψΦϋΎϋ¬³©ΐz½«λe}d˜p‡1MθΧTς½©«#τλ7μY+θyIkwWk•»3RΗΦΊ»K+ε ½‚kΖz⁠Ξΰ ε­X’Ν»‹έΛHΚΌCΣgLp( ΄κΙWUh»λΨ³Uτ]d*ϊΊ>CLEΡɊ’'Άjρ―~ηψ_Δχ»U³žδ¬άZͺΌe ΄Ω¦5‘_Vε/¬h:φ²Υž«mμτ±χiπwNjε{[Sρ™ηΙ=«υΖrOεΜ¬Οj\¦#άλ\v<žΫ™φxGHΫο^ΫFρΩο£'ͺυΏσ=ΰ[†ΆΡ΄ŽpοΑ#UzΎΠO•ηPfλγ#ΧΆeΏSnΎηPZΆΖ₯·Ρž [μGLš«Λ?UξΞΪE­aΨ=ΛυΪςΖνC·ΡιΡ)£+3•gךʳϋ\•gM%ίY–JΎ^aΘPίk‹α¨σ”“ι*όΘ{·Τ^―½ΉΕπ|Ρ½όΫw%S‘x–©Pl―ΐlͺTƒΆ}gfΝqTΉ>Ήc©ήXε¨h’§}`S)φ9O₯Ψƒ^4αγφΊηΉŸ)έY=φπ¦…Z±!ί²ͺCυ΄ΨΨFn‰ΏY?ž§qmο‰uRΏΤ»]Ήφε»ώγ{4ς>͞6Ϊ~Σλ]φίάηχΠ4*3Αήφΰβ2 € € q‚½'f@@@@ˆ6‚½ΡΆ#±9Ÿp{'˜€ε½φ€εe­όψ’>όΚΏEvFύ$ΝΔ½{'΄ω•_*―ΔςF˜Πα#Ξ=}©6/zFyG₯Α&π;Υψ-Ο_­EΛφ›ͺΣο»«N[Ω-ksΏΣ^ΧVšχ|£”œ­ϋηή―^ζλ\m]όςt=ΰU·ΤTPn£ΤžŽ*Ύ•…λΜϋόΎ«e£ώZ-δiqZζο„ΗΖ{_Z›…H’£GζL“-"\Ÿχ£[– ½ίζ ½Ϋ†τϊ½ q<† € € ²Αސιx@@@@bU€`o¬ξ\tΝ»)ƒ½· k«i)ŽŠΌ{ /jΑίPn+ύμΖΆϊ~›‘Ÿ°% ͺ —τ«UΪΞ1?―lg…\[ΕΙ’*%&ϊ ”x•:'Ϋ'ͺƒ™ͺ [LεIk`/ΐ>ΫT²c―di}‹LπΧ{=Υ-ειΛkΈtέρΟO)£«ν’'ljρZi½ θξrUnυzήη$Ψ<-χO~²\oόΡYaΦ§›FZφ²^Α^τžo‚ή^ω@KGΏ0Υ|χG Ψ{nΏV<χkΥ]WΤ!‘”vƒ† ¬žίMΡ5WΆ‘ͺ«Tmn%Άο$g΅X―p’ΕYώήΛ}Ο>ΨΒ܏›0·νέ+U ‡o3ουc­βl/δχΪΉ'°iΟυ φ0aυ·MX=ΝTηε¨Ξλ™WΊn5οφ σn{9l°§ež¦<;GgX˜C³—«Μ^Ϊ«k{ί ι,dOΛΎϊέw3›X°†ΛmΏ‘‡χμӑϏκtΙq—|Yο{mwKIΧϊ».\y₯τχ―̘ ―ώ3£% € € €@=φΦ‰& € € € € Π²φΆ¬ύlΥ4e°ΧZΩwν_.jUΉοͺ[ιQ콑>ΑήΏΥθΩ­ΥϊΒ·‹FŸg莹+#ΉώόθUμ-π φͺ κ ρžΥ―jύξbyΒ’₯ΪφϊP2ž@IDAT3ΚυJ―Ϊζα ?z{35mξΟΤί6Χ†ό/η-ΑΒΚC¦‚ιλ>L-χ}Γ–υW Κ­O°·ΌΜTδέιά­OA¦αχΆeύ*ΙΣβW–θ΄ί†ž‹£ξ|R9£ϊy.8*ΟwVͺ΅έ·ŒS}°†Ή­!oΟ€ώƒ½x―=]›wuž©fm«Ÿj ‘;ί{Λ}χ‘emžwh„ξ™ϋˆΝϋκΉζy·=Χ€<έƒ;&Ξy]#R<wΌυ°6š―ix>π΄Ψ΄Ψί‰~·jΦΓ“μUͺkyŸ+ΥΑO·λΟο­We­›ή’Fή§ΩΣFΫ/ZίοVœ!€ € €D«Αήhέζ… € € € € Ψ1ΪΈκΈy‚½—΄ςγ*}ψ•/u+ύdt[eΗv½ξн§NVλι½>AOίξB:·'Mxqλ•|#΅Π—­’oΕαϊτ¨© i μ•η›*₯ΛL•RŸΟ˜zEΩ}]•~ΑHO°ΧSΕΧϋ±tMžσ”†ΨCŠ–0grΆξŸ{ΏzΩ‡μυ–³ΓUmΥ{B?«O(7X›`χC₯uύΦ n ώ2οΦ³3Ζ»οž/9€ΓEEͺΧΐχΪχ;E“Gυ΅_9ΈΑΌΏ›$eΜ½vu^?ΑήP=-σ”,‘wηυ:ηλυl}Nαi΅iΙΏύΖκΦ1?PŸΎ=u•σE›τΖoPgΈΧ»μ§3.!€ € €D₯Αή¨ά&… € € € €‘ ΨIέψι»y‚½φΟ.jρ±Λ>Πή{W|Qk¬αίH9½f‘ͺI?\ΓzΪΒ·'΄qώ/΅£Β«AΰK`Oe;΄δ…7TμΣzΤ½Ο*gXOsΥΚτ{₯ύΌ¨χ·φyΚ~΄=—»θm;jkbΉ~nΏV<χkω>ιΣ‘γΤ2O― ©«q°ϋvω[Ÿ½ Φ&ΨύPηΧΐυ0{:ΡΎ§RρŽεZ²j‹χΘΙcυΘά{e«sλεlΏχS5ωηΟhˆν²ΌCΦύ‡!ρ^[:ο–5Sή–eΏβ΅Kϋ‘ίΉ{ήWΟ³΅―…μi™Γ˜ŸWφ€N–+ΆΓ@±}šΥλ΄ž›ψψθ’΄Œ^κΪσ:₯^]aƒd«Zώο¦jΉω"|'<¦{Ζ²ί=l‚δ+Ι<Οe@@@ζ ΨΫΌώŒŽ € € € €Ν @°·Π[ΰMμύΗΜ6šΡΣQϋφσ£Uϊ?—ΌEΫ%θίΖ'*ΝvυΒ%-ΪX₯Φ‘ rZΗ0Η£fΜSN¦-†)˜ ν»΅‚Άφ[΅±φtHkž|IŸz΅ς„­]― cή[Zςήv―§d‚‘™`hΫΥsZυά«*΄·°φ'ν[9OkwϊF‰½»²ŸYζι XZΪ»oiςa}φ2X›`χC\Χο f› ψ+&^β=pκΨG5σζαφ‹^ήΑΖ pί3žδ/μθ {‰C~―­ΛIΙΡ#s¦ΩCΚuV\υ;wΟϋκq¨}Ν³Ύz:ηi ƒͺbΏv]‘ίοηΈ[±W+ζ¦~xλΊύ‡μi±QώNŒypž ];~_~δ¨Zξ‡Χ~)λΗσ4n ­νε½υ΄6(νz>iψέΊ+gˆ««Μ₯6ω}Έπw΅ώ W{ώ"€ € €DV€`od}ι@@@@’P€`onJ N©)ƒ½]{&κΕΜ‡’Ÿΰnφ€6ϊIGπWgjτΤφj•YM#䴎aŽΣLs†3ˆ©Ί‚€)™’R₯}»i3―ΐž ]nZ¨ςέ½'ΌO³§vœ[*μz_·wMOyRSG;ƒ‰Ηr΅`α;ξ}ύΰΫΜ½,η½²έZρΒβΪ‘ΕδLH«.?στ,έΣ”,λπ{ί4δCλ^ž¬ΦΣ{kjwemSbΪμρiμ~νλw₯λχQύ…GhΪάGΤ?Ω1΄—g°qά·…mοη*Tu½Ν&xϋ ήΪCΰζΤ:^Θο΅—š­Rν3¦’΅ν’΅z΄W£οPν―΅κ΄k!{Ϊ¦q‡f?0AIφιΈ*ΒJφ θν¨[^ΈF‹ήόΠgΒ ? ΩΣ²―ΆQ[βοD·΄ ιhNϋa`~ΟξtώžΥμMΞΦΜΉχ+ΥΦG]ΏΓ–1ΌΎφηvkΩόΕ:jiΓ! € € €@Σ μm:kFB@@@@( Ψ%γΣhΚ`―ΤZ³Η΅Ρ°φN΄ΏΥhΩ_kτ糄΄Dέ›ζ υšΫŸ|vQ ]φ֍TΣ{sζ Ϊo+Ž-ΫτΧΟ>Χ…€κΤ%U½―ΛPŸΜ~J:·W˞ϋ#8ζΨ³ύ―ζ 6½§ΝΆ©kΦtέxΫ{₯S[ŸΕ^•y3LψσqwψS%{΅ώOλ΄λ”©όΓ©ΚΙrό―θmΟΥͺ l ΏΩTRήύ—>;x\Jκ‘ήι•1~΄’L˜ρeW˜Ρ2OW˜φ¨ϋμΎ»a:΄Vφ5žφΫΆΦ]ίKPgΫ₯―jτ›κΝ¦ΐ¦νs±κ²v–™½ΆίΑξ;ΊkψΏ \Ώ΅B* ”»ρΟ:°»LΙΓGκϊ±SΥ§«g ^ήΑΖ x„~τά#κs΅³ί²mΛϋD =5|μxυp]7·½Ζ υ½φLί~”6ώ1͘ΰx'o}KK?π©0mkεwξžο•g^΅―…μ©ΊΗΈ€;Χου3U―gšͺΧφ¨™žo˜ΦΎ°γ™»ύQ~'œ‚ιΊcξSΚH.ΥΑO>Σρ£‡tΊδ€ΎVWύ!?P֘αΊΚή²Ž`ΈΉŸ:φ§¦υP{Λ“;–κUۜύώ“:ΪTǞ⨎moU±[KL°·uΜwΚ@@@φ†LΗƒ € € € € «{cuη’kήα φΆΥ½=Z™…]Φκ/jΝWΧψ¦jj―%γY«ρΧε5zι/ΥϊΒχNΗ=ƒD]kŸςWΑΥ·}cΞϋMΤCίξ|°«:ƒ½žςS}²›©ζ;ΓTσuήό?wΎh“–ύφ΅ͺ`v9]wOγ¬RκΩJμ]ΰ φ¦MΤ¬Y·ΫC΅ž€₯ε9ʜ5§Žϋ–¦υ=œ0ΜΌ#)Άw€Ÿ 5šΏ±Z‡‚ν· φ>cή‡`>ΎK0ν1žέ}―ϋ9χς6Nϋ4όnέΟψ:χά6|εΥZπφzΟLBy―=O;nΠύ/= ^Ά3S%z‰©]+8ιwmž ¬ΗΑ„@Ω„@MψΩ}-$Ο.χπΚκΧΙ1Ηc[΅xαοΌΎ+έ²fκΡΫ²χM΅αmo-PnΑ—Ξσ„βi =Χ9jΜώNΈ‚½uNη­ΣΛ―Ώ QK•εRm^τŒςκQv—`oN.#€ € €Ν$@°·™ΰ@@@@šO€`oσΩ·€‘Γμ½q`=ΠΛVmχ’V~\₯λφΪμΊ^› ϋ%ͺ‡Ϊ’ŽWk違վe―ΰϊo&Θ™fξŸ¬Φ3{kό΅ ί΅δLMœQΧ™GN™ύ~ΪwΏM°Χύ>œ0οC~˜ή‡”±fύχ:֟oΦΏ,ψϊν{w³Ω»dŸυΩͺΈn=€ξ£'©—©$[jν―‘ϋ”1Qnϊ‘S<οXω±:x£Γ;>Vξͺ½‚Χ^ϋq‡f?0Α\―,\gώ£„@`―§Τm€ oOs…·Ν½²&xώFνΰΉχcœ!€ € €DH€`o„`ι@@@@’W€`oτξM,Ν,ΑήPΧ;°GkυΈTq½dλα²N–_³‘φΑηR24€w]‘`Ζ¨©Φ… :S’―bίΰ 5°gœ‹L 45γuλt΅l^ψϊΈφε:Ρ΄αΩκzM;©ΪΦτ[•mΣQί±τ’”–©λΎΫΥ>žjΎΥΧ•§UX|ΜέqΉφ½koφΞlή·_ŸΦ§ω μ‘αΝ“RRu…ν±Ώλ΄ Œwύ¨2άήΡΑ^ΥΚ-ζPίχΪί”Lpχ‘ΉŽπ³N˜κΈΏςŽλο‘P5‡g(σ΄?S_Ο8ϊθ––‘ξ]’ΥφŠvφί€šoΚTΌ;?p Χ‰?ζΑη•=ΐX?£m―?­άC!ο "€ € €4£ΑήfΔgh@@@@h‚½ΝγήFmΞ`oK³”5°wΐTΒ}Ϋ§n‹[0 j>.κ–ς₯NΧ |wΡğύB#z;Κaο{ΟTΣΝ󩦦I˜τ˜ξ3ΘτvFyo=­ΝςΓa.όέ$ghDfͺͺVι9!1Aߜ.ΠΎ‚]ω¨{/-ΓO~²T{^1»ξΉ‹ € € Π\{›Kžq@@@@@ Ωφ6}‹˜`o·“ΐ^1ιͺ.TS•w¦©Κ[\ΈC_ΦΙΣ§Uέξ»4jŒυνξx΄l‡–Όπ†BŒŸΦ5|‹Έ—:φ§šyσАΦrΎp^~σОε?§@@@bO€`oμν3F@@@@F μm$ Ϋφ†ρEH›¨Y³nWgΣe9{ΓKWΎΑC©₯Κ[Ά@›σΏτ}”s§€+ Heαj-x3ĊάόN„BΞ3 € € €1(@°77)#€ € € € €@γφ6Ώ§{Γψ&€ŒΥCsξUΣeiώJ½ΆŒ…|uιΚ"”y‹&d Uή=u•εΊν°΄h‡vm|CϋŽϊάΰΤG Uι™έ”XU₯jŸ;u&Άi£Ώ—ΧΡ’CΣόNΤΕΛ=@@@$@°·m&KA@@@@ϊ 쭟­κ Ψ[·wˆv€”T]Σ‘ƒΝD«Ο¨Έ$ΪgΜό@@@@ φΖΓ.³F@@@@π ΨλΕΑIˆ{C„γ1@@@@(@°7 7@@@@@ ₯ μm©;Ϋ΄λ"Ψ۴ތ† € € € €@<썇]f € € € € ΰ%@°Χ‹ƒ“φ†Ηc € € € € P€`o@n € € € € €@K ΨΫRwΆiΧE°·i½ @@@@x Ψ»Μ@@@@@ΐK€`―'! μ ŽΗ@@@@@  Αή€4ά@@@@@–*@°·₯ξlΣ‹`oΣz3 € € € €ρ @°7v™5"€ € € € €€—Α^/NB Ψ"!€ € € € €@@‚½iΈ € € € €-U€`oKέΩ¦]Αή¦υf4@@@@βA€`o<μ2kD@@@@/‚½^œ„(@°7D8C@@@@€{p@@@@ZͺΑή–Ί³M».‚½υυn₯Σ4ͺk+%΅–ͺl΅n₯σgjτόšϊvν’oΠ΄ϋ&ͺΛߎζκχ«ΆDΗΌΒ5 ΛϊΞ™υ-mŽυuh­9ƒdώ¨Ό΄F _ Χκⳟ”lέ3mŒJ¨QeαF½»aWT8t˚©»o$U\τΜ§m'}]ΈRKώΈΡs-šRΖκG3Ζθ;fŽ_¬ΧΚuΫ£yΆΜ @@@ †φΖΠf1U@@@@Αήπ8Ζ{/{λσ΄τ‘mt“ υϊ~Ύ.­Φc»b,Ψ›6Q³fέΞf1•VkΑΫλ}—ΉσδLe_ίGmU£Š’<ν;τeψΗjΞυΉVΣ1AΟ Qךσς’j=±'Κή‘¦Ψ—E8ώFÞϊYGκ؟jζΝCkέ)7ί«EMω½ͺ5ƒ\ˆRΫ¬€¦ € € €Q*@°7J7†i!€ € € € €@δφFΞ6žz&Ψ|·»φHΤ‹Cœ /λ`Ι%6%{L5Φ‹g/iι‘«Ζš2QΜΉ]έ͊š:€h BήπͺVl*Ύ mьλsOΥ{_6Α^[x:ΓίM²nŒ0€έ’Ω³¦*ΙtuΎp^~σΓ0t†.F(+Νμς%άnΧ[γΖ ·wΪΤί«F­$Ύ/Z#€ € €D«Αήhέζ… € € € € Ψ1ΪΈκ˜`oπνξΧ;QsΏηφ~z°J―ΕXΧw‰ΝδKύ¨fNq„~τͺVni‘Αήv­5ύΊΦjoΒί•gj΄κΔeί]hΦσ&Ω‡pΠTΞŸ©+ΜΧπάΡνΚέy8œ½‡§―δ=2wZ³ζ΅€fό=hΤΌy@@@ κφFύ1A@@@@·Αήp‹Ζg{ƒοϋȌ6š•fšΊ¬Ν»/jι©ΰΟDu‹@AΎδ.φЍ•_FlϊIYiφm£μύ|0Oοn-XΦ'³Ύd3œY_eψG©›dbJ$ “ ψή…‘οpvαϋ=7σže*x›ΊΓM^Α;œΛ’/@@@θ Ψ}{Œ@@@@@ Β{# 'έμυ·Ρ­υΐˆuK”ͺMqήk»ΆΆ‡ήl-–_ygΑήD“υύζo5ZPθ[Α·•¦JΤυέ[λΪ+LXξ‚ΤΩό=e*·ώεXΦœ T½΅΅~22AMΏgΏͺΡΒ/€$θ{ΜψζyΫ§όμ%}φί5z«1Uƒ-Δ=k΄λΛΞρύAκžάΑ1ΘΉRμΪ¨wΧmsœ[ών–‘­ου =Ύ«.»λͺ«7ϝΡΙ/tόΐVmΞ³Vαν’¬»ξΡuΙW¨ͺ¦ZWvΙP[ΈΦ|*KŠtζ¬Αq~ΪJ'w6αiaί!ξΣΰJMιδzDη+N¨τX‘>Ϋωg}zΤHφZίJm8Ψ^Ω?¦>=»;Ÿ;«βό­Ϊ²μ}ωΙέ}ƒ†φIΤΨΞ­tΙϊ:˜½όͺάμΧλEW·Ξχ¬ΩoΣfΣωVšά;A;Άr6Έ¬ΟOΦhεήr=ςίpμΓM~ψ‡κ˜ σ'ΆθέΏH“&UŸή}•δ|*ˊtdο­Ϋ΄Λ>Σ†Ώ/ž¦½O#ϊ$©¦ΖsMfμ³GώSλΆδ[.Ί35ιΑρκΤΞΜοΘ6ν*οͺμ¬Θο»ktYή»ς«΅θνυξ[ώ•}ΧM8`:ΏΚs²;–Ϋ«yλ΄-ΏφΫΩO₯e뎜1ΚθΫΣ9³*-Ϊ―];Κ5tΖTυ0WΝ{ΐΨιž9H½ΌΎ{Ηuψ“\­έ΄έςΤπχΕΥQRΖDMΘΞP[σ›Q“¨„oιOoΏ«ΣόE@@ˆ ‚½1±ML@@@@Β)@°7œšρΫΑ^?{ί1AΏώA’ρsΛχΧ₯Υzl—%yΨ΅ζŒl£ΑΌ¬o{ΫωžCUZpΨOΠӌϋΌχZΣζ” ŸλΠZΧ9½^ύ\¨ΡK«uΐλbN,ΔΊž*/\§wή|ίRέ6]Ӟ{Jύ]aήΟ[ͺ₯οΉBΑšφγκ ­οε#^Υο7YƒΑ¦Eς ΊγΎ;•Ρ30κωΒ5zωΝέΥs}:–« ί±¬Οw6 ;ΏeD[Mλξ εzž-7οΘΦwΔuΛμχΛfΏm•Rλό˜@ψSΫ«UVg£`7Γ°i¦²λ,geWύ¦ϋ ₯ϊ{ΞνΥ²η~££ ε}ρ¬#λΑW4n@ν=―4{½ΐ΅ΧžζRΪ-š=kͺ½κ΄υr­γ0ο»»Λ{( λnkήι{~ς€»Ί―Τ:8Έι5­άΰH;n†ξ™”y«¦Ο˜τ]«=οtε<|ŸFυs…βkMΣ„ΝοΔΫΦί g›Ώ/žΎSΗώT3oκΉPaή©ωΆwŠ € € €@, μ₯έb € € € € ‚½aaŒϋNφϊ{LΕ݌uI½Zh Ξ€νe8qI&g©g~σSΎχw5ΦVš~}έdͺΆ:>—΅ηψ%•˜’΄)¦κο0K%֏v^Τ|“š4οΖD₯ϊL©Έ¬FGΏ‘:΄o₯λL?ΧD Ψ[yl·φ8¦v©C4*³―{‡7,ԊMꨞ`αω²γ*>Q¬Š/Λυw΅WχΎ™¦¨+όwV;–ύ»6ζ;*θž0]½―i«ͺK5Ί²Ϋeτv„5KνΦΙ―ΎQλΦΪφI¨Ρ—{7hΗ!gε]ϋΕtέ:η) J±ŸΨ)6Uœ(Wb»ΞκΦ+]ι½»«TH]ΰͺj XΊž²­―ΰΠi΅ο=HCϊy*–Zηιjκ߁½5Ί££Κ³νΉ!Ε”λ5ŸS%Υzz%όνΐΟ~—›—λ“²Λκ`ͺ4g›½v|.λO»«τNΐJΟλώΫΈ}0}ϋq΅Xzh―ΩΗoΥΎc₯φλ₯«ό{ςΎΈV‘6ϊn I΅Uμ­–ΪvΤ ύμ·j‡OOψ™_Sμ»kΎVŸ€s΄7ϊ…Fυu…–ΟθΰŽ}*7{;χ©ώξϋYε½5G›έ9χΠΎR¦ξyξgJw…°+Š΄λ“}:ΧΎ·†Œξ„φwφƒσ4f€λ{-7•—λͺύ4jX†{ιΗ·Ύ¦₯XCΘζ–Ÿύ°=ψ}qw§Τяjζ”αž »΅dώβ°VΨφtΞ € € €@€φFJ–~@@@@@ jφFνΦΔΤΔφίΜl£=m!ΛKZΎ©JΎ πLgSυzWΦΛϊΘ„1ΰcšΠ―©δ{SWGθΧoΨ³VΠσ’ΦξΦ*wf܎­uw—VΚ=\zWŸΐ­2ο"S™Χυ<εqMν ν•νΠ’ήpκFLš«Λ?UξNwΪΠυ˜†άω/š<Κ .έ³\―-ίβΎη:HΚzH³oe?-ψ`žήέZμΊεχ―wΐο„ςV,ΡζέήΟ€½OƒΏsR+ίsŽη³Ύ“{VλελέύgΝxVγ2α^ΏDwΛF΄3!νρސΆί½Άuν³ίGOTλη{ΐ· m£i=αήƒGͺτ|α₯FLΘϋΡ†ξƒύiWσΤΆeΏSnΎe?²5.½φlΨb―„άΨχΕ=λδ=2wšlSί𩻍Οόš|ί-γœ£m²ύnΥμ‡'9΅₯Κ[Ά@›!xΙ„~~ΒTΘνd_Vω5ZτΆ³΅ΉŠgκθ‡LHΦρSΕ~­™k}jοέό“y‡fϘΰχzΝ;γ=ρΐ]eo[ϋ»—džnžuTœ.Πͺ'_U‘«_Ϋ_‹‡γrπχΕυΈχχή\-3ΑήφΊ|ψ‹ € €ĊΑήXΩ)ζ‰ € € € €a Ψ6ΚΈξˆ`oπνŸ`–χΪ–—΅ςγ‹ϊπ+Οdg΄ΡOAΜS'M•Φ½ž¦ύ‰Ž&ψϋgπχ›½΄ΉZ¬]ω=·οΏ¨Ε_\ΆΆΟ±WΰTΉ‹žΡΆ£Φ­>K΅ΩάΟσΊomk96αΛY&|i ϊy-M¬½ƒ½ͺ•[j„=ΝS5ιηΟh˜#ƒ«#Ή υϋuκΑžV΅ŽΌΦW€΅σCϋ*,­L`qΆ ,&™K•…k΄ΰMOpͺq‡–½¬_°χ’ή2‘ρ΄†Ζ»šχe€γ})/­Φ»|ή§FΜ°aϋΰΘΛUΪή<½Ÿg υ6t>υx_ά]ZΖτnyI›aίλ3G³ Α·=©©YΞκΓω«΅h™'tn_oΪ-š=kͺ#l[±WΛζFυωϊ)€η(dΟqΩozU+6xη²~Αής2S‘w§Op·>}„8Ν†νƒs‹›Jς΄ψ•%΅ήίι4φ}qχg;ΰžYΪ4ΛΎ[Ζ8G³ O•ΫRm{ύεz₯Ήm+NΧ­&Π>Θhχφ6άΣ>cΖ{ΊΦxΦwΑ3ο έ1χqeΨΎ{υόΤͺΐmρ¨οϋRΟ‘h† € € #{cd£˜& € € € €„O€`oψ,γΉ'‚½ΑwίΨ]ωρE}ψ•g<ν.iεΗU~Ϊ΅OF·UφwlΟΧ]±χΤΙj=½Χ'θιΨ†_΅ξ* MπυMŸΰ«ιqά?½¬ΎŽέ½Μ»υμŒρξρΞ—α’"Už3υz[›ΉΆο₯1£‡Ϊο{‚ξζφkˆΠέ―wΟYrΆξŸ{ΏzΩ„μυ;ΛϊύήχΜ τ£ϊ„rƒ΅ v?τΩ50`νΘκ Έν5₯0Ό/ξώ¬cX­Eo―wίrkμΎ»£κΩΏ'Ψ{B›ύRyG}ΗKΧδ9OiHŠνΊ%Ψ’§5Ψ+νzλa­wdτέƒZΏ“žοƒχs·QΙ7ζkξ~ΚϋΐVΙ·βπN}zΤRUΧκQŸχΕ»KΞ@@@Z€Αή°‰,@@@@&@°·a^΄φ/@°ΧΏ‹υͺ'°λ'Œkiθi'mμ’»lΉk;τΨ»Ϊ„„ΧXCΒ rzMΔΈS…©„;Ώv%άQχ>«œa=Νcg΅gε«Z·³X#Μ΅‰φkRρŽεZ²j‹W·J«Gζή«ξζͺ' θέΔ",ψΰE½»υ°w―3Kεsϋ΅βΉ_«ΦξG-λσ;`χέ5β >{¬M°ϋ˜^ΓφΑ9PέΒρΎΈ—XŸ±ƒ΅ vί=Xˆi5kΦνκlT±ΪΦ³'Ψ+ν7߁χk},ο½ φζ.zFΫLψ74OΣ— ²‡„Ohγ+ΏΤŽουuύ¨2ά~Ρσ}IΥ€Ÿ?a=mεΕΝsσΝsήΟ=‹΄wΠ Π@@@ Ήφ6χ0> € € € €4ΉΑή&'o‘μ Ύ­žΐnέΑήΜl£=5-??Z₯SpΙ»σv ϊ·ρ‰J³]½pI‹6Vi§΅EƒœΦad άIEZ;?΄Ο+΄—j*†>S«b¨'θ? ˜:φQΝΌΩ7 θ5²Ίœ©G§eΩ/žά±To¬ΪζέΐλΜp”φ­œ§΅&`τcYŸ'¨hy*Ψ}KӐλ³—ΑΪ»ςδΤΐ}pΤ@·pΌ/ξ%Φgμ`m‚έw⁡ΒtIžΏ²D§ύtεΠΝ{KKήΫξέΚδ2ωΆ«η ΄κΉWUhCυ5cžr2mq{$~ožήΟσώ Ήσ_5yT/ϋ}λχΕϊ\πΎύqοα4όnέ•3D‰ΥU¦Ο6ω}ΈπwςžΉχpœ!€ € €DŸΑήθΫf„ € € € € Ψaΰ8ιž`oπo°·kΟD½˜™ΰθΠOp7{@ύ€OkΗύ35zj{΅Κ¬ΓG0ΘiΖ;Ψ+Ι}MΏ_·ΛΣdψt=qΟ]e»b*ε2•r½ƒ…g”χΦΣΪ\ΰyΔΤΥ΄Ή¨²γš5 hmeϋό‘ zωυw½nϋž ΎνIMΝκηΈ\Ά[+^X\»jor¦F€UiΧnη„‚ ƒέχD(ηΦ½ϋ`οΨςLΐύ΅ΜΐDmΔϋβκ/%GΜ™ζ¨ΏR‹–mtέρό 6Ώ`χ==…x”;ώω)et΅=~\λη_νς Μ;ΊMyŸfOν8±w€ΑSΜ;?ΪωΞΛΥ‚…ο¨ά Υ3}ΒγΊg|†½ϋσE›τςoΰΚό½A?zξυΉΪqΙΊ―i&¨?ΓΤWΕ^­˜›Ϊί=Ϋc)™ζ?¨>ΧχΟΡ•Ή>ΡμΩνuVπv5υύkύμχLeρe¦²Έ)\Μ@@@ †φΖΠf1U@@@@Αήπ8Ζ{/{ƒΏυ φJ­5{\ kομσo5ZφΧύω¬4!-Qχ¦9C½ζφ'Ÿ]ΤΒc—½dΣ:’%pηΈ|VsίӟΧmSςΘ»5~Ϊx{ΟvΟZUwΤ½Ο*gXOΗ#ΚέψgΨ]¦δα#uύΨ©κc4:n[‚Ž+Ξ­ΥHΝ₯βό\|~BΥ‰m”¨*9ΈMG­aHSuζάϋ•κκ€βςώλΏτΩΑγRRυN¨Œρ£•TΈF/Ώω‘£•e}~ημΎk¬†όνΠZΩΧxΈΨΆ΅ξϊ^‚:Ϋ.}U£wΨTo6…GmŸ‹U—΅³Μμ}°ύvίΡ]h6tl£4Π­QοKJ†§|ΗΉΆ*U΅ΏN㧌Q’νΚ‰<­ΩdBάν Uίώ· L-Χ`σ vί9Zcώd?ψΌΖ θδθ’¬@;φ·JPbbNο_―ΒΫ­ ‚ά‚WΙ^­Σ:ν:eΒ»?œͺœ¬Aξ)X+ε†μι³Χ₯6hΣΪwUΡ%[8ι~υOq'οο‹wΕl+Ž-ΫτΧΟ>Χ…€κΤ%U½―ΛPŸΜ~J:·W˞ϋwπΆή©£Mυο)ŽκίφΩ™`ομ₯b―g―8B@@bA€`o,μsD@@@@° μ +gάvF°7ψΦOΪVχφhe^Φκ/jΝWŸωS΅χIS΅Χ’ρ¬Υψλς½τ—j}α{§c‚žA’5ΧOω«ΰκΫ>Τσ΄‰š5λvGθ΄>*L΅ήωŽj½φfζΉGΜsέλzΖyΟ; θύ@֏ηiά@½ήπͺVΨB›–O·‘Σuχ4g¨ΣrέzXi‚½ \Α^ΛϊόΞΓg™J’ΆΠ­ίϋ֎λyj4c΅Ϋoμ}ώΖΘ½ έsυ]z#ή—Q?~^9Yί~}ΟM¨t‰ •›_φέw*κw‹f=<ΥοwΛϊnw3U{g˜ͺ½φͺΨ΅:q\°UΧ]fͺλžvέo„η€IιΞ1žΐ°«KίΏ΅Ύύ&ꑇoWί†Ύηώ‚½ΑφΓ·Λ9Α^ ‡ € € €@ μαΝcκ € € € € šΑήΠάxΚ[€`―·‡Ώ³ΆΡ½lΥv/iεΗUϊ°Ž`―νωΧ&θΑ~‰κί‘voŽWk違վe―ΰϊo&Θ™fξŸ¬Φ3{kό΅jό΅”±š9η^{ά[UΦ.]ƒϊzm+νΠ¦εo¨°Β{Έ€Μ[4εζ©κ•μ}έ^Νsλ!u=I½–JσWκ΅e}ΉNS•uΫ$eτuhΫIW™φΟώ^Τϋ[»N=ΣΖκ֜1΅ζiopξ„φmύ@k·δ;Ϊ› ₯3η:ΦWžΏZ‹–­χτc;JΙΡCs¦ΩÊ₯{Μ<—š§χcuyή‘ΊZ9ο™JΞΟn5Αξv ϊ_γuΉ|ΚμχΣΎϋm‚½ξχα„yςΓύ>4pΜ{σyol!ΟΊχΧcκϋ2δΞΡδQ}=ΥuT’§Ε―,ΡιfΨwΏΣκ—£iγ³ΥΏ·χwΚχέΆΫδ˜ο’₯΅«Ώ#;Vkέͺυͺt]pώ ΥΣφψ€ iόψQŽͺΗξ~K΅ί|ί:mίΧ“Ÿ,ΧάβΎk?HΞΤΔΙ“4b`/ολΞ³Κ’"+ά΅Άyία}quΠmδL=:-Λu*•νΠ’ή b―G„#@@@ &φΖΔ61I@@@@§ΑήpjΖo_{#·χ{΄V+MΧKΆ1.λdω%8ΉρΣsjΖ κΦιj%˜N.|}Rϋς½«ζϊφ6<[]Ϋ·3—«υνΧ§υiφΎΟ‡zž”–©λΎΫΥ>OΥ|«―+O«°ΐO8Τx."ΝυΎDd1aξΤnsω.UΫ:ώVeEΫt΄€ξABφLΞАώ=t…ω’Χ\8§ΣŸoW±Ox?ΰΘ)ζΩގgUS­ *t¦$_ΕAζ°?n € € €΄x‚½-~‹Y  € € € €ψ μυα<‚½‘¨ρ ΔΌ€ ΉŽΘLUBuΓ*!'$&θ›ΣΪWPσ,@@@H 썀.}#€ € € € €@T μΚm‰ΉI썹-cΒ Τ±?ΥΜ›‡†ΤΣωΒ5zωΝCz–‡@@@ˆ‚½ρ²Σ¬@@@@ά{έ4B€`o#πxbV uτ£š9exHσ―,\­oιYB@@@ ^φΖΛN³N@@@@p μuSpΠ‚½ΐγQˆaT₯gvSbU•ͺ°ŠΔ6mτχ²γ:Zςež’) € € €ρ'@°7ώφœ#€ € € € χ{γώ Αή°0  € € € €XφZ08D@@@@ψ ΨϋιU썴0ύ#€ € € € {γoΟY1 € € € €q/@°7ξ_°μ # € € € € €€E€`―ƒC@@@@ˆ‚½ρ±Ο‘^%ΑήH Σ? € € € €ρ'@°7ώφœ#€ € € € χ{γώ Αή°0  € € € €XφZ08D@@@@ψ ΨϋιU썴0ύ#€ € € € {γoΟY1 € € € €q/@°7ξ_°μ # € € € € €€E€`―ƒC@@@@ˆ‚½ρ±Ο‘^%ΑήH Σ? € € € €ρ'@°7ώφœ#€ € € € χ{γώ Αή°0  € € € €XφZ08D@@@@ψ ΨϋιU썴0ύ#€-G }ΒcΊgό ³ 3Κ{λim.°Άδlέ?ϋ~υΊZ*ώdΉ–όqK€†\F@@h©{[κΞ².@@@@(@°7 7 @°·X4Œ@ΚXύhΖ}ΗτώeΑz­\·½Ργt˚©»o3αʋžΎΪvΧ…+Mΐp£ηG`oj)ΩΊgΪ]•P£ΚzwΓP{ͺίsΙc5sξ½J΅΅>‘§ΕΏZ’ΣŸμ’q?‘¬~L‹RεΎώŒΆ ؘ € € €-P€`o άT–„ € € € €u μ­Ϋ‡»υ Ψ[?'ZEP m’fΝΊ]Ν•VkΑΫλ=Xκ؟jζΝCkυSnϊ_†ώkuΟZώ%g*ϋϊ>j«Uεiί‘/£{g#`_Χ‚‡άυ―šόύ^φ&ϋVΞΣڝΕu5—2ξΠμ&(Ι΄ͺ,\£o~Xw{ξ"€ € €΄(‚½-j;Y  € € € €ΤG€`o}”hL€`o0!ξG\ e’™s»Ί›ΒΌM‘¬4ΎT#΅λ­qc†Ϋ—Άώ#ŽC΄ ύ³ΒoxU+6DχF€έ’Ω³¦Ϊƒ³ηMpφεˆgoΠύ/= ^6‘²έZςΒb‰υš†]4ρgΏΠˆήΜρ m^τKε΅uΐ@@@ φΖΓ.³F@@@@π ΨλΕΑIˆ{C„γ±π D"j]rŽ™;-ΌΑakρ~ά‚φ/uτ£š9Ε?ψΡ«ZΉ%Κƒ½¦ΒpΞψL]‘ ;Ί]Ή;GμmL˜fLdοψΦ·΄τƒνυΛ–.ή±TKVm«Χs4B@@ˆ}‚½±Ώ‡¬@@@@(@°·`4χ+@°Χ/ #)άΕ^a΄²βKΗ(&:ΛTμ5υuΓW±Χ:HO­cΕΓq ήΏ€¬‡4ϋΆQφ],ψ`žήέΌ&m1τΎχ MŸ:J]/œ—Όλks¬njΨΏNo―Ωήf―mkaB*EuαξqkΐuωΏZtkο\epΏΗ Ηφι䟾ΤM7™ςΦΦ/₯Eg”ͺςΨYχΉχί€=ρ6šzΧΗ˜ϋΏR—;ϋ*cpσŽ΄φ^σΊζLΡΌιγ|ΥDΒ‰ΩSτύ§Ζ©««o½*ΦΤΞ}uή;•jξ}άά뚷ͺ΅ώ…%:β»j;°­9`|[—X3ŠžΡΜϋο‰κφ•U#ΕΆφ/°θϊ€ΜΌΙξw΅zΛ"hχΏo!G²ν‰»Ο •―ώ•vWΩξΝ,Ԙ¬›΅Ώt—«"nή„Ηu{γgΪ½'¨ϊ―ΐ’mΨΏΖ„ΐw…|΄Š5gΑTYQΰοvΠόNξί¨kΆωΖ,˜ώΙq‡{Cδσ§/RqŽ;p|τcμέΥzήΎRM~ž ΐ[ΏσtΈ&@@@ψ ΨίϋΗμ@@@@@ ‚½1 qK+‚½­H»Αςk¬Ϊ¨e«Mΐ/ mi3ΥdΣ 5cΑ υ7ή ήέ“_Π€OuPο½v­Μ4Ο„S­Ά&Stρ[:nσMp°Ψ¬Ω±DkKCO.˜aξΠ χYΦφϋκLEή•yν}φ―[€­{laJkλg_ίa³ζχύ‘Fw‡«ψ7³Hο»KMυΤ–†IIι¬Ώ4μΣΦ!ͺ ‡ΓΎο΄±αΫΊn―,q€Υζo}θƒEΪTαπΆυ`ϋ5Φ-1a]+°nμ]|ΗΆg‡μkλ#ΥκΓΕ€ƒMΎ$ ŸgτΦw*tnΞ™ ή›\Όmc„;L7δωaΘαΖΰ: € € €@ά 썻-cΒ € € € € p΅{―Vϋ-‚½IφΨB~Ύ `¦©Ξ[βΞλkS–ϊΑ‹ήΛ.΄p~όš©ΪY„—₯)ζžlsΤ Λ^VΕρ MψήσΡ―›«m·i+·ΎΆŸ=LιΎ4zφ«*τT–Ξ©αΤeuκd»Ρ:μΤU=¬±%η9™ Nkvέ‡8­…ύk·΄Ώ‹1{/Ϊ…ΏPπ—α4ΑΤΜ΅η…@@IDATϋ4bδέκχυtέqλΝ•ΛΊb:vκG©·»ο°NcDτnΫή5νΣΚΕΛ;Ά]?ωι­ψ]λ Α{υiD@@#@°7 —@@@@@ ρφ&ޞވμ½κ7π™ΆŸ?4˜§i ζ(+Νβ•C°ΧξkPω;/kχ±ΰuψΓΐώ`―=μ{ΞάχR«ϋμaJœ²5eΑσΚ6sŠτ2ˆιΈζHGν`ύΧΒώ΅Χ.ΩίŐοSπΓl{’SZώΖJξtžΘ *ΞwWΏΊpΪXε©ΐΠj;±=ΫνΨ[‡Ά>ΝΗΆjι;›;Ψ‡#ϊ"SuΫ]U;bΫSRο}Bσ¦Žr΅„z†­;‡ € € € "@°7A6’e € € € € €@δ{#·’gh‚½‘mςŠcˆΟΘυ‡ξZ·ωƒ½υ¦ο+¦o°P–&ΞQΉιV»·b―=Ψ+ν}oΆΆUήgSڟο―ώkͺρ–mΦ©/₯›oυY•|›jφθ³γg}mΎΗ5ϋ^έAzŽ sͺSKKDγά”’’Ώ4ώ»*φ!Dt·ιδΈ–Φ{Υv0›ύ Εm#°Ϊχ$\ΧzpΞ£ϊΙτ±Ύ)\ςCMΜδϋhι­Ϋέϋkw »&ΧSψ@@@ φ&Β.²@@@@ˆJ€`oT\t!@°7L’6;†ψ’ †J‡ΆΌ¦Me5AJώq¬`οξe/«όΈi3aία°o½ΆΏρŠ*OήΦ{Τ\Ν}p€«ΡϊΛΠ„ο=―ύΊ™vsίbs_Sΰ}ŸeŽWIΙΓκan[5βAέ3ŠžΡΜϋέ!ΜHo½xd³^χ£H»φc΄lυφ@‡³ήΩχ)#υV•KMΪ»―ΚβΘ@­6οψ†VοΈΓŽ{βΠΟΣ”χΨO4~D?ΧY]ε­\Ώ+°sZ‘ζ,xLV}\χΨΕwΙ³Γυ wέ<¬wΑL͝\ΰzlΨ9ω&η?Θχœ¦ξj¨1Αΰ΅Qƒύ#q„ € € O{γi·˜+ € € € €΄‹ΑήvaLϊAφ&Ω+ΰβσrύ‘½ΦmΔŠχ΄ςƒOρL q– $φ΅Z/TkύΒ%:bσ§/RqŽS4ΰiSEλΨϋOξ#?6Υ@ϋ»NύΟΌ/β₯wPϋί΄BΝX0C'œͺΠς7Vκ΄ύϊUχ.˜eωQΠl*«.uͺ¬Ι(μ_DϋWπδ«3¬»_τΒ­^ψ–Z™φχpυΎΧX§Ί¬'+WiΕϊς §Ž{βΠΟΣd―|νtΟ(škΒβΑAχγEςμp}Β]·^¬9σ§ΊΒΖkwhΕ/«ζSrj.xr‘ΩλΏηTρήKΪ]Α_§!iC@@ˆ‚½q°IL@@@@ΪW€`oϋz&λh{“lηC|­CΌRλΆΤ{ŸΠΌ©£ά`ΆΰWπξ_Π€Qƒέ§_μΦ7γ e{ήTλΜv΅[‘ΐΧM(Π»OίYψ”ήξn±{3MΐqΊ'ਦZ»ψ-Χvέ•ž£άτΛ:Έ/TZ0KS~π’²{Y½OhΫβ₯½±VuO3ΰίή™YΊ% ₯ν“KΝ5:λσΩΏˆφΟžυμΕ™}ZωΣε Œ”;μ“Νχβ±R½ώΞ‡NAMΆ{μοoP/ί©nN!Χ²]Jχ^Ϋ9]οη]ΫΥ0:­‹τι£υ5sεlυ6­ΫϊIλ>ή–΄"Ν\π˜2¬σϊ -ωJφ^kυ·§ΖΜώΎ w7W΄ϋ—U~¬U'@@@X€`oo.KC@@@@g‚½Ξ.΄F'@°7:/z_₯@ZŽ Ώ9PΥ’¦Ϊ nΈλ‘'ΚήΣͺ-ŸD4{˜Ώr•V/θ>:!€ € €ΔΏΑήψίCV€ € € € €Q μŒξŽ{YhΌF©³4orΎkτκ-‹΄‘,|ΝΟk4†E 9zΊ*^77u―ί{KLΕήζ,tΕή MψήΛΡΟΊ₯A»—½¬ςH+ο¦jζ‚Κ°nm: Υ‹ίR€·Z·πC@@ˆ_‚½ρ»wΜ@@@@b Ψ#·μ ΰH²“,~ϋο5lθpυΈ]jΎ ₯šΏ_Πክ*― έ¦εiβ”oιNS-χΟ'φθΚRή=Ωκ“ΦΝνv‘^‡*whS©½’gO|{šξJ»E—[θ֞Ωκ›ζξή|ͺVηΞ_ς™§t–NξΩ¨ϋŸ›Uτ„ς¦ͺ₯ΕΧUJIΡωΟ―­»ͺlΦaŽ&ΞλšcΛ_/ιΦ>Μσ¬ωΣ‘-ϊγ-ΓT8z€+Ψhχ°V[+«Gχ<χγ‡N˜«oJΥεKφIΊ―ΙxΙ4ίdΚ Ÿͺ\£ν{ΧgυZτΈFζ Wτξž›€‹M'Tσιn}ΈΓξι»lΜ~ΜΆφ#EλwiΓΏJ&iΰ€A}΄z6Ÿ©Υηvi뎽φ£>Ž―υEω^G­tCf‘¦Œ­μ}<Ξ«‘ΆZ{Λk”>2G©SΤdήΥm­ήΥθχ―wv‘ώvΘPυνϋuυΌ³ΊšοΥυ»pN'ώ¨‡Λ΄3θ}φτ2 5₯ΨΜs+kš­yήΚFέ3}’ϊš–ΑήτbΝ™?UΦ /ΦξЊ_ώVΝΎΓ<ΉHc†YwŸSΕ{/igΰ'~z € € €Δ₯ΑήΈά6& € € € €W#@°χjτΈΧ+@°Χ+‘dΣξΣ΄xJY½B―ϋ获΅ΤΝ4•=Kά•=Cίeβ²U›υφκ<]²5υgΟkH[7Ψ}^ΊDΏή˜ϊ+xϊ κ Ϋϊ6Ω¬₯οzŸγΉαύΓΤkΫ―hο)KTΟσάVπτ«fŽώP΄ΐ££/ΡΊ]φυe©xφΚμ …φ·ΞoΥoήίΤ:Hi[k£ h~ΩgΈ2ΌAOϋ0L•Τ…WW%5nΦΛ{m·Šς85ϋ!=ώΤW΅ΫΆn χFΆYšΊπE qΪcΫΓOT¬ͺΚm-&°Ÿcζ9=όήTν|ΨU΅ΣkΣ\[©ύGκuΗ€<ε λοmVυ–Χ΄‘¬Ζu~χΈΗ5ΰŽΞΊό_-Ί΅w©lκΏαΨ>όΣ—Ίι&«€­ω₯΄θμRU;λ>χό›9κQεfX{―HοΤπaƒ]W†s<―£eeΊά/_ΓψC·5¦ρω#4Β¦΅ΟΥ8ͺηΜρφΐͺΒ¦Lοε–nρ w Ρκj,|z‘Fυ‡zOT•ισΊFuν;Xω#²=£K'ΚήΦͺ-Ά΅u%`­Ύj8vΐΈ~₯.wφUΖΰώκΪΑ^·IG__Œο΅Ÿ.Κ#Z_`Bλž ΤΊpBϋ+χͺ9₯Ÿξφ ϊzόΑή‹gN¨ΎNMgυuQŸA9¦―χ=:―ΚΥ¨νUήο(GΣ>«,o Έ©V{?=¨ ](w”·z΅ϋωŽσ4—rω‘&ζru:j‚Ήλ’ ζfŒš«™Žtέκξπ/ € € €@" μM€έd- € € € € ‘Αވ˜θF€`o DΌ<ψ!Ν›=A©΅5¨bυRντ…M8rφχMYwΆρπf-{ίS7(HjU’]f*ΙzΉ“_ΠΔwθVυeZώσ_ι΄χ’ηojΑ,Ν›œο:«ή²Θ„λ‚z„9M+֜S]αbΗ€ mŽkKυϊ/7˜€ξ¦π$wΠς‹έzεΝίΈB±%&€άΓ<ξdε*­XXαΤ7‹pΟσut>0i:€ΝΏό…>kςτ͞’ο?5N]]§υͺX»R;χω=Rs¦˜*«γ<Ρj­a‰ŽΨc[«»ω„ΚWJ»«όc(³Pc²nΦώ]­+ώΪNJρΈC­/Φχ:Ζ΅χ5KstΏΛΊP­—.ΡAίή>€[%ίpοj€ϋ—7αqέήψ™vο±W}vίmί6μ_£·Χμr]Θ0σœι§υ.6ο wΝζ›gή1χ ¬κΠΝ7½Ν{Υχ7ϊ"ηΈƒΓ­«NϋΊ…Η€ mŽΎ΅΄­3λέ.₯jΖ‚κo¦ζ8ŽwΚφ{C„½]ƒfΝΥτϋέUJ₯ν~ηe•σχʟώ–μηj¨3yWWδ5Wμ}φ―[€­{l‘]Ϋά¬A}°H›*lΧ]#_»:Ϊϊb~―c$²οM͎7΅Ά΄*`${Φρkού3!τz·ΒκφηΞs‰™g`(ΈΰΙE3ΜΪ΅ίg_Œ}ŒC¦χ&O5n{Ÿ6ΣM ~ό6oζ" € € €@Ό μΧcή € € € € ³ΑޘιΈΡ&@°Χ†‘$‡φ ίя_ΣΊ]5A+Ο”Ό¨μ^V³- k"6νΣΚΕΛ#-4!Αѐ  ώ.3Αίμυq3Η›Š½ξκΌώΰb–2knΦθo b°Nmkn³_π­Ω[Β£gΏͺBOedιœN]V§NAuκͺiέ\­φΚ67]8€΅ ‘ΰ ­ύN;ΰϊb~―cRΙΠ„ο=―ύ¬½1‘mb/oγ]w|wbάΏΤΜϋ4bδέκχυtέqλΝ•ΛΊbfΡ©K₯ΊBυφwΊζiΖ&ΨΣKΒM € € €@ μMϊW@@@@’O€`oςνω΅X1Αήk‘Ϊ±Ητ‡τTnͺΘξΆU‘uΟάz μm>²UKίέΤj‘ώpεyν]»DΫφF―kΕ^o°WyšΆ`޲μGC—ή•ΩΒ—mφσφwύ½ΟT.~ΚSΉX:YΉF+Φο θ!ekΚ‚η•mζι―U…cΫάtͺBΛίX©Σ‘vUύ:ζϊb~―c²~·eΧߝφ/‘Tœ?ΨφηΓΖ*OejΩηyΞ|ο/΅ϊήΓΞΣ<Β^}ΈΥ{θ<…€ΦΤ{ŸΠΌ©£\m޽9A@@H‚½‰²“¬@@@@" Ψ1Ϋ ΨΫN‚^ς «κΚ„'ΞQΉι€sΕήΖͺZΆz[+‘Ρί}C…ƒΌf—˜jΐΥ}μ!ΒX‚a+θΪΒ’ώ‘SˆΧ©-`ͺξΗρϊωš24ώΩη•7ΐmp±v‡Vός·jφ]χΨ—Ρ²Ν:υ₯t“χrΠ_«’oSΝ}vό¬Š}nΎ §ς΅9κΈλ‹ω½Ž ΚΎΆoΔ6–ύ]χΏ‹ΆΡξ_Ξ£ϊΙτ±Ύ.ž:¦šΪZ5_0υzoj‘ΊτΧθQχΈϋŸgŸ§΄χ½ΩΪψI*μ<͈ΉόPσΉΖ>ZjΎλAƒψfε|Ι3œο€@@@ žφΖσξ1w@@@@ˆI€`oLlά$@°7$ NύHιΠ–Χ΄©¬&hΥώΠ«μέ½μe•7]lAD©ΤʟP`=^SΩ󱟨xD?Σ9|Ψ±Ϊ<{C«gM%ψΤ6xΡΦΙρΊ=ώ{œΪlγxΗσ^lύ7οΫ?Φψoτw_h:€υ‹‘#­»™– MψήσΡΟ ΧkϋβWTΩδΨ1tc”s³Τ;ϋ>e€ήκoΊΤ€½ϋͺόη!Ž:ςϊb~―C¬΅νζ MόήΛΚ΅^υήu{g5ΚύΛ3ίΦxΧ·%Υ™*Π+ƒ«@§iΞ‚ΗΤΗ<Β<σž›ώpWHίΌgo˜χμ”mζ°χ¨ΉšϋΰHW£Ύ >35wrA›}ο<Λχœ¦ξj¬1Αΰ΅QƒGγ @@@ ^φΖΛN1O@@@@h7‚½νF™ΤμMΎνVΌ§•|ˆ`‚³L@°―Υz‘Zλ.q‡SmADι˜6Ώπ3}p§?,Άυι}― NuOVŠυεΆ«ΪζΰBtΌξŸ—§6‡η;ŽηΠΟ4eΝΥτϋέIΧϊί1θcΞ}­Φόι‹TœcΕ0₯krvμόOΑ“―jΜ°ξώ‹hυΒ·dε·Cύ:ϊϊb~―C-8L»=HμVυ‡άνA[Ϋ QΌ[Φ]ώη9t3Μϋ7ΣσώωίσΐχμΠ‹΄©"0ŽŸϋȏM5ήώ‰Ωοs5xI/֜ωS]‘αΠU¨½[-xr‘yί¬wύœ*ή{I;£+ψΫz@Z@@@βB€`o\l“D@@@@φ Ψ۞šΙ;ΑήδΫϋΤ{ŸΠΌ©£ά ·w=w?ψ‚&μ>ϋb·–Ύω5[gΆ ’uZ³γM­-υWy χΦ.ό…‚kΫΗΈx¬T―Ώ³Α*ςŸ-`ΨX΅NΛVoΌΧ6GHΡ)ΔλΤ8”λ,άσΌ·d?€’§&¨‡λόΌ~°D(½]½‚²M΄vρ[­½¬Ξι9ΚMΏ¬ƒϋ‚ŽkυŽήφ_HΤΣοΜ>Syy« ΜΎQβ`}οŸ-ξYDΘχΪ·ΘθμAZ™ύ[oφΟWΩΌ7³LΦŽ7ΓϊίEΫ3’ά?ž9…cσ4uΑ Iso^ΦΈηM΅άlΧ+”ϋϊ/k›Δ}ϊΞΒ§4πφΦχΩ:™C«ΒτΛ¦Β΄Υj«βΨΙω,­P3Μ0#˜_[οΉσέ΄"€ € €Δ±Αή8ή<¦Ž € € € €± μΝ»φz$ΗYΆ >ο κΤmϋί[΅χšκžίš€β‚α>†€J²Ά ’»ΓyUοψ@;KΛΥ«ΰqύέδъžΦ΅:§JΐΦ{5`«_ΥnU‘^W:έ¬NΊ¬sGΛuΌΙκθω₯gλξτ―yN.λr—»4φΑΡJ΅Zκ+΄y‡ »ήv³λϊε―ώCGώ”m*‹>μš‡?άθβuj3ΓDϋΌj«ϊi†&ώΰeεφrMC:S©m»j”ε6OƒΟŸγ Ž?λiπΟΑΥp‘V•»Κυοφ]Jν₯ξ=34ΰl Μ¬T§ŠΊΆύπ―Υ¬ΆŽό!QO―&μ]*Ψ/λ‹ρ½n ͺΝky&;ΗŠΥ™j•W|ͺ¦”~Y4V}=aYkΗύ‰rμ€ΥT­έΫY‡χQΪΘ{υΝ’Iθ}‚ŸτΝ5.Վ7¨©g‘ώη„’ξ_€γ<=—3Η>§ιγάm8QφžVm ͺτν&ΰ(£θSIψW[LUΊFγ@@@ žφΖΣn1W@@@@h‚½ν˜τƒμMΞW ·©Ϊ;έTννΪΖς­κž«MuΟΣή>Ά ’·Ιρo˜ͺœO.˜a}o­)]’΅VXΧσΛςUλξ=mϋ― Ώ\uB”<μͺœλ)ϊ΄φΆ)?xQΩ& ιo3ΑζhŸ·π-Sε6Kޱڞ ©r΄> ―Y³φUv yΏS°7sΌJZ­5δ’ φΖΟϊbz―d’;Iω¨fLλš·qkσαZϊώΆΐΡξŸι?Ημ·σ—8΄ύΆ πœνμφφŸίηΏbέ§?{Jύ­Γpž­>_OφGΚΠ͜5hη²—Uqάs‰? € € € /@°7ᷘ"€ € € € €@°Αή`Ξc Ψ‹Zbά“šσ€,ž€ώΆJŸή•}^ΉQ[ΧoS³·Αϊk φ6«ΤιΞw){@`θΆω‹ νX³RGμUwνcΈŽ3T0y‚²‡όΊuξΆΚ¦‡ΆΌ¦Me5Ύ;rω‘&ζς·ypͺBΛWΦiό‚ΗL ]ιδ§k΄βw»Μ‘ φΞQΓMe“ϋMۚΐΆ†ύλτφšν‘£~ή+Mπ9KΝψΉΆΚ§‘ζYύρkΪ`ͺωόr4~βε λΠμ=i>U«/Ž|’Meδ€_z‘fΝΜ n¨2kXν^C@Ÿ'Υ_­>¦Κπʟ0!e§_|­/κχΪiΙQ΄₯fΧΈΏ–²ύίBγ•:z’“ξ=ž―)}ΣΦ«Ga\k»ί|³iCΙͺφ\vL}FMPσ=9½CΗΝΨ±ωA!δ2ί[χQ£\ο‘› ίsšϋνkβ7ϊ»Ξ[€χ8Ώ1Ύ»³§hήSγ\Οl>²UKίέδ»Δ € € €@β μMό=f… € € € € $@°7„Σ˜φΖΔ–P7eŽ,T―;n“XΛϊJgjΛuό”ΓνΑ^$]f‚€Ωχ©wχΫ•bΊ_ϊσ ¬ ­: CSτlεθ«[,Μ–+Ίt©IηNU©Ξi/B Ρ‘›―σϊ"~―Ϋ -5=C·Xcύ₯N§M°½χ¨ΉšϋΰHΧθG?^’u»ό•¨―φ‘΅u1ί¬ωhΏϊσi}VαΨiζβ~ΗZ.]Πι?|’Ί6CψA3M3arœοk5Χ—iωΟε―θΤΥ:ύτ«*jžΟ©ό—΄ϋ˜C'š@@@V€`oΒn- C@@@@P{CΙЍΑήh΄’Ό―=Ψ{x£–½Ώ-ΙAX~\ ˜k^N†R΄D΅Œ”N)ϊςt΅V[Υj{ͺwϊYnΎξ©ρΟώHyΊΉΖ>ψ©n[¦ΊmT³Έq‡NxNŒn&pNο½€‘2ΕιΕ¦’τTO%ΰu¦zvδ₯oάκx2 € € €@{ μmOMΖB@@@@Έ ΨΫΤα'I°·ΓoQΗ™ Αގ³Μδͺ2ŠžΡΜϋο‰iœ‹G6λυw?R†©Κ;ΣTε­;R©?ΦΦθδιΣΊrΫΧ5<΄†κγϋL₯Vώt…#Φ7!€ € €$©Αή$έx– € € € €@2 μMζέoΏ΅μm?Λ„)sΌJJV³ΠF*φ&όv'ϊ½‘άXΦΩ|d£–Ύ»MαΓΑ ͺX½T;«ΞΖςξA@@@ φΖυφ1y@@@@ˆE€`o,jά,@°7X„σιEš51υ5ͺΦινΥΫCvε_ CY9½Υιςe]‰b²nΎY9sBΗOUjΞWpϊθ§Ac4ΤVjοφ:x<θ§ € € €$‰Αή$Ωh–‰ € € € €~‚½~ Žb Ψ»w"€^Ττ έΡ­›:™†+η«UwΚ{…Ώ € € €$§ΑήδάwV € € € €@R μMκνo·Εμm7JB@@@@Α^^@@@@H:‚½I·εΧdΑ{― +ƒ"€ € € € Τ{“zϋY< € € € €Ι)@°79χ½½WM°·½E@@@@φς € € € € €@ μMΊ-Ώ& &Ψ{MX@@@@€ Ψ›ΤΫΟβ@@@@HN‚½ΙΉον½j‚½ν-Κx € € € € @°—w@@@@’N€`omω5Y0ΑήkΒΚ  € € € €$΅Αή€ή~ € € € €@r μMΞ}oοUμmoQΖC@@@@‚½Ό € € € € t{“nΛ―Ι‚ φ^VE@@@@ ©φ&υφ³x@@@@’S€`orξ{{―š`o{‹2 € € € €με@@@@@€ Ψ›t[~ML°χš°Ζί ι…š6u΄Ί¦΄¨ωΘvm(έk`ΖΔƒ@Ϊ}šϊΔxυΌEϊΟγ»υλυ»βaΦ‘ΟΡΆΎ f}«m}‘KΠ@@Hz‚½I € € € € €@ς μMΎ=Ώ+&Ψ{-TγpΜΜρ*)yX=ΜΤ›oΤχ·Εα"¦œ–£ΒoTg΅¨©ΆBuθΤšβežΧ›*]nδ·v=ηC°7>χYG&Z0Kσ&η»:WoY€ eu‘έx{ΕΛ<―3‹%Tπ5­§«bvsΣΩkΖ|]iέάχ]¨Χ‘ΚΪTϊ‰χAžΏΦσώNέ;wΕϊO΄akΠu3ξCfά;\γώ‹Ή―Ή―§ Ύ=Mw₯έ’Λ-WtkΟlυ΅Β„ζΧ|ͺVηΞ_rŸ˜S:K'χlΤΞ}³υ]ΏΆW7ΟήΩ…ϊΫ!CΥ·οΧΥσΞ>κz»gΆΞιdΓuβp™vV„ͺNlφcΆ΅fλwiΓΏJ&iΰ€AJυŒΣ|¦VŸΨ₯­;,SΟ/³HSƏVφ~7ΤVkoyGζ(΅sŠšΜ»³ΝαέZτΈFζ WτξήΡt±ι„j>έ­wΨχυκ\|ƒwδ[π΅afν=ΫCyίnϋT½w»yίΛ[­"ϊ}o?ΟάqOθξ‘ΩΚΨΓz5|Q«ΫσΟϊμΈ'°Ύu*=ΪE…ίŠΰΏ­VK € € €@Ό μχdώ € € € € ΅Αή¨ΙΈΑA€`―J’4<ύ†Ζ υ„kmkn>²YKίύΘΦβ9Μ|@σJ&ΉͺŠΆΎhkωb·–ΎωUΞΜρ*)yX=l]œͺ6λνΥΆηڞΧ|x£–ΎΏ-π6ΫΈΝGΜυw­λٚϊ³η5$°gΘ³ΟK—θΧ;B`CήΦfžYšΊπE ρ†yCΜζDΕ*­ϊ u8T6·ΖΪCϊ²Οpe8uα€V/|KΗΝψ©Ωιρ§&„έΓΦοN–Šg?‘όΑή0pλΙ6ήͺίΌΏΙσΎ\Kλ±;d‹-ψΪΦό—w½.VΟXφ½<ΣξΣ”'QvΏΦ­πΞ’ωoΖλήfDΈ>wΒ;@@@F€`oΒl% A@@@@HφF*EΏΆφΆ₯“ΨΧ2G=ͺά «bο©σ>l°kΑ&D»,8Dk]qμ5±OΥΗN«Λ€αΚάΟv^•«QΫ«ZWπτtPsm₯φ©Χς”7¬Ώ·YΥ[^Σ†²χΉνyŽs qύξqkΐuωΏZtkο\SaΦHl8ΆO'τ₯nΊΙ”ψ΅~)-:{ T•Η<σt·^·cŸ§?ΰyρΜ ΥΥΧ©ιl£ώ’.κ3(GΩƒΌ!Ϊ }πΜζζm²ώ6;`|ΎR—;ϋ*cpuυ{M8t K{*λΒ ν―ά«ζ”~Ί{t~@Ψ7xŸ Ÿ^€ΡC½σ‘N˜ŠΞŸΧ5ͺkίΑΚ‘ν{ό‰²·΅jΛ^Χyμ.Ύα">θ}οš>u”YλyΙ)άάj€njΨΏNo―ΩήκJΔ ώΦwtππΊ-#Wω9ƒ|CΥ”Ύ©΅;ΌΥ³cΫχ«σΜCσ_Τπtί”TgͺA^ί¨N·υPοώYΚ2œ‚χ!ΦφΏώGp„ € €  {d#Y € € € €D.@°7r+z† ΨΪ&©€kΞ‚©²"˜ΑαLŸCP`οδώZ±Ζ_E·`ϊO4&Ηξ΅5ƒΑV…Φe¦B«χ—;ωM,p‡ŠU_¦ε?•N[mΟsœSΈλfˆΤ‚Yš79ίυ¨κ-‹LhΈΞuάΡώ‰vžyΧ퍟iχžΦΥ†sω‘&ζ»Γ‘ ϋטκΐεΪάάN¨|υ―΄»Κf“Y¨1Y7kι.έ2j–ζ>θ6Τ…j}Έt‰6y†4•|Kl•|φ){ŠΎΤ8uuu­WΕΪ•ΪΉΟŒΤœ)z|ϊ8O0ΈZλ_X’#3½ζϋ—QτŒfήOΠSΫ>m]•Ένώ­ω[•y—™ΚΌήίέ>―I£<‘η3•ZωΣςͺ]ΥΎ›DϋžeŒš«™ŽτL­υZ²ŠžΠέ_;©uxή³ υEόί ΟSψƒ € € 8{g/Y  € € € €D(@°7B(Ί΅)@°·MžδΉh γ„3νΆ>R­>\όOώ€§ΥΟ9η™ gͺ9 ?άW―oΌ’ŠSφστ…s4ΠU1΅A;—½¬ŠγζΊν>Η9…»n†°~ΌDλv΅ΒΪgr£ŽΫuž&€]bBΪ=ΜbΒΉYλ=τΑ"mͺπFG[ δ›ΐv±'°]³ΓT-υVuχ͟ΎΘ\wWε΅?Ο~_©Θ»S‘Χώ{Ÿύλiλžΐy΄«‹ύΑήγΜ"MΌο.u6U«[ΌmmόMIι¬Ώ4μΣΦξκΒmt }Ιφޚ:ΙΪmήχrλ}χύr4mα³Κ ώ|ΧC„Ϋws[tžšπ½—5ΒSˆϋσέoκΧ[χήq&λ‹βΏŽƒΡˆ € € Ο{γyχ˜; € € € €Δ$@°7&6n  Ψ’¬§Ά0ž=œΐa룦}ZΉxΉ―’¨«ŸνϊΙOΧhΕο*x:έgn.|r‘F³Β‘&ψ»Μ φΠ;€fή§#οVΏ―§λŽ[o–\ΦΣ±S—>Ju…B#φ^8€΅ ‘§ΈΪ¬pησ&άΩ͜9…PΓ’φwgτμWU8Έ»gδsj8uY:=¨SWυH³Ζ–Ž~όš ^Ξ$Ί jΠΨυΤφ8~Gfήζ{γϊΞ©β½Χ΅³ϊ¬o51ο»!:Ο,MωΑ‹Κξe=ΊVΫL―·R³o6αΦg»πί ‡‘hB@@ˆo‚½ρ½Μ@@@@b Ψ·΄ Ψۊ$9la;{83ΓΦ§ωΨV-}gSΐεvνχ1χ½tŸΕd<―½k—hΫ>SΉΥvŸγœΒ]7γFd \Ξυ<‹vžωΌ βόΑa§ΨX΅NΛVoμgsΣ© -c₯Nφ°ΩÝΆjΚΆφΉϋχ)[S<―μ4[Η0‡N•νc;]3dΗΌlχb·–Ώω›VώώοΑžKM₯ιξJΣW΅οF#:ΟM]π¬†X{xΖωδ₯k[_T5ν € € €q+@°7n·Ž‰#€ € € € €@¬{c•γ>»Α^»FΫΒxώpfGΈ>‘ΫΫ«6š ιΆ ₯Ρί}C…ƒΌ•[Mq— 2fŽWIΙΓκaz;ΞΙ>ξa3ξϋ­Η.ΘΨjZΧ­!ͺyζ<ͺŸLλ›ΫΕSΗTS[«ζ ¦^οM-R—ώ=κΧυ°nNΑ_ίΘΦA¬Α^ϋ}&œZΆY§Ύ4Σ ΫbUςmͺ٣ώϋ+ΣZW£rρωQzŽ sͺS‹q‹ΰwSJŠώψοͺΨγΪFpKλ.ΆχΆ9DΠ}ΜwίQΑ χ­Ύ@σΥξ».*Ο΄BΝX0Cύ­iΔμ ϋώ…ψn­GςC@@ˆ‚½ρΏ‡¬@@@@’ Ψ%έφ:²$_£-lθΖ³DΒυ uέΦ3•¦ςη ™zΌΏόΗ~’βύL›­*lz‘fΝL}Mkσ‘Ν¦οGχ(½XsζOUΣjΞφ cυ–Χ΄‘¬&pŒrΝ<σŒΥx—•TWΉF+Χο \EZ‘ζ,x,΄‹m?BΉωΜΠΔャ\kkμ{γου—‘ ί{^#ϊYaνzm_όŠ*›l7ExK„CtΛ(zF3οw‡ .΄qrΡΌ‹―Ώ‹mτouΙζ―&S wqλJΈώοαΌφ―[’­{κtΥϋn&g–ϊΑ‹ήΛάxαΦ.ό…"ϊzlλσΏ6…pΧm]9D@@ˆo‚½ρ½Μ@@@@b Ψ·΄ Ψۊ$9" Ϋ…λκΊ­]:¦Ν/όLŸ(Ϋ„&<Ί{ΩΛ*?nu°U}u@φ.˜₯Ή“σ]#9Ν•ήχΞΤά©>'+WiΕϊrΧqΨn»Iσσ:ιNύ·«λΝζίƒ—υϋσaC4σ̟nBΠ9VΦfί0ΩSΜ(škΒͺ#]Ž.ΆύpΌ8œόΟ“jJ—hνŽΐj΅ώj`ΐ:ϊ"3O+v-ΕͺŽΖ%hڝΪί‘ˆn0šM•Ω₯Υ‘#½ί—jυαβΑ€Π³ SΟ7aκtkDΠέΏ1ξ»-:Oϋw)\·Hš€qΨ_Έχ+άυ°  € € €@Ό썗bž € € € € Πn{ۍ2©"Ψ›ΤΫο_Ό½ϊmΥ:-[½έΝ{.κΊ­έͺfΗ›Z[ZεU©χ>‘ySGΉΟ*ƒΪ‚½:‘m‹—φϊ=Uόέ)U60PκΘσ―νُ•κυw6\yrgŠ^ύ;ιψ:ό·6ώŸΏjσŸ| ν{Ε<ύΟsͺxο%ν ΘΩζiκ‚9’ζžžcpΧφ,ΗλA+³…Υt@λΏ₯#ή>ζ½™eͺ&[U•­Ÿ}ΌL0žξ [χ­5χ9V|MΟ1!ΦΛ:Έ/`!ξmsjάwGτoοΜ,έQOw§KΝ5:ν{£ΈΡΫΥΆ&«ισέoλΧ[χz―J#Χχ§VW«Ε|λM₯\ΛϋͺχέΟφμH<οžό‚& Άξ”ΞμΣڟ.o½‡i9ΚΛΌ¬½ήύ³=Γώ>Έ1†»ξλΘ € € €@Ό μχdώ € € € € ΅Αή¨ΙΈΑA€`―J24₯gλξτ―yVzY—»ά₯±ŽVͺΥR_‘ΝVUΦΫ¬:΅ε―ώCGͺM₯ΞpΌPΧmνu^Υ;>ΠΞrυ*x\7y΄άu]₯ΊŠχ΄ςƒOάέΤScLx·ΐή½XΏOe₯ΫTwωλ9f¬F ΆͺΦΊŽBλRZ‘f-xΜ<­«Ϊ­κ?ΤλJ§›ΥI—uξhΉŽ;…4»₯hΡίuR†g|™Κ½λL°χ£kμbžφ ΉjͺΦξν¬ΓϋΞ(mδ½ϊfΡ$ με›t@ΠΦΧjۏnΎΞΦAžΎ³pŽήξigšκ·VΫΖͺZΆΪΰ΄FJ/Φ¬ωS]!Ξ†ύλτφšνξρmΑήΖc•:έω.e 7Q‘kVκˆCυάάŸΣΔQΓέcy½pB•eτQγ”a*Ζ<ΟΫΗχ7C“'({Θί¨[ηξκj«0{hΛkΪTVγλι=6¨“^’β=•ώ³E‹Λ蘿εE>ΟԜτΰύ“Τ?-hVUά²cκ3j‚ϊ[.UfV{φΑΫ5έT1žοbμxέΫ/θojφxϋϋo)+έΏw_Tκθ‰NΊgτHu5ύkJί4Aιͺΐ;Σr4~βε λΨξ9k>U«/Ž|’Mgη_δ.Ξχw°Vγ?Σψ[ίQΓα2Ή-KΓΖ΄›λŽ5+Z}W΅ο>†<3‹τPρθVσt y‘^ΛΆθΓ]ž}υΏΎωq€ € € ({e'Y € € € €D,@°7b*:Ά!@°· .΅€=Ψk‚¦ΛLΠ4#ϋ>υξ~»¬θμ₯?ŸΠΑͺΦαΪ€‡gζ)ολwΊϋyF_μ«Rs@‡φ=™”ΧYχω|ƒ–WύU_ύϋΞ;ΚAζΘBυκr›™Ξ}υηΣϊ¬Κ‘ϊp;O65=C·Xcώ₯N§M»χ¨ΉšϋΰHΧSŽ~ΌDλv…˜CzΆrτΥ-Φ¦·\Ρ₯KM:wͺJu§\·&υ?ίΓIσ=„0τ(݈}·š™£»ΎήΛυͺε+ύΉω΄ŽT‡ωv“zgY< € € ά{“{Y= € € € €I)@°7)·½έM°·έI0Xΐμ=l*ύΎTι7Έ ?ΏIσΖά¬]<ωS‹^ό?Wtζ†ΟλFN §z§ŸΥιV!ܞ쏔7 ›kr?X€+κnδDy6 € € €t‚½d#˜ € € € €\?‚½ΧΟ:‘ŸD°7‘w·ƒ¬-ή‚½½Rτϊ½ΤΓΓχϋΥ{';^΅ήλΉ»¦*οLS•·ξH₯ώX[£“§OλΚm_ΧπόΡ>¨{*g*΅ς§+D¬χzξ ΟB@@@ γ μνΈ{ΓΜ@@@@@ΰ μ½F°I6,Αή$Ϋπ±άΜρ*)yΨ”mŒƒŠ½½ώGŠζμ€—€Ώώg‹ώiO²Wλ•2ŠžΡΜϋοiγνiPΕκ₯ΪYuΆ>\B@@@d Ψ›L»ΝZ@@@@@ΐ%@°—‘=φΆ‡"c΄)^€YσS_Σ©‘jή^½½Νξ\μx©9h\Α=κ; ŸΊM―‘ΆR{·―ΠΑγA8E@@@€ Ψ›ΤΫΟβ@@@@HN‚½ΙΉον½j‚½ν-Κx$Ά@jz†ξθΦMΜ2―œ―Vέ©Δ^/«C@@@ΨφΖζΖ] € € € € Η{γxσ:ΠΤ φv Ν`* € € € €$ˆΑήΩH– € € € €‘ μάŠž‘φ†Άα  € € € €Δ&@°767ξB@@@@8 ΨǛׁ¦N°·mSA@@@@ Aφ&ΘF² @@@@ˆ\€`oδVτ -@°7΄ W@@@@@ 6‚½±Ήq € € € €Δ±Αή8ήΌ4u‚½h3˜  € € € € "@°7A6’e € € € € €@δ{#·’gh‚½‘mΈ‚ € € € €± μΝ»@@@@@ ŽφΖρζu ©μν@›ΑT@@@@H‚½ ²‘,@@@@" ΨΉ=C μ mΓ@@@@ˆM€`olnά… € € € €q,@°7Ž7―M`oΪ ¦‚F kάsš6vΈ™Ο9UΌχ’vVw˜©ΕΗD 5cή υΏ]ͺϋtVώnW|Μ›Y"€ € €΄›Αήv£d @@@@ˆ‚½ρ²S{ž{;φώ0;V ½Hί™>Z_3 <[½MλΆ~rΥKν]0SN6aά¦ΏϊΗκά]>²ΞK·ϋΫΒ₯iζ‚Η”aυ«―ΠςŸ―ΤιpχXΧΣ 5mκhuMiQσ‘νΪPΊ7’»΄OO™ύ} ξnΦΧ έοΌ¬ςc ΊT–… € € ΰ(@°Χ‘…F@@@@Hd‚½‰Ό»Χom{―Ÿ5O2i9*όζ@uV‹šj+tπΨَΙ/σμ˜z‘Ν*sΌJJVΣ»ωπF-}[dχ΅Ρ+£θΝΌžV=ΝψΛ’?χΫ?ΦΔoτwspέ"}Έ§Υ˜Ž Χ`MŽΟΉή±~ΩS4ο©qJ5σm>²YKίύθzϜη!€ € €ά@‚½7ŸG#€ € € € €ΐ Ψ{cάν©{mG;φzμΑ˚%Z»£ΊCN8^ζΩ!ρ"TϊxΝ™°ϊ˜ώΡoC>"3O™&*ό_-m4fτHWΧθΖΏO3~φ”ϊ[wžΩ§•?]c½RζšW2Ιd½h‚¬―'H5φο‘§Ζ?ϋ#ε θf0λ΅sΩ+ͺ8nΑςC@@H‚½Ι°Λ¬@@@@φpp£ΑήαΈ-&ŒQs5σAwΨςθΗK΄nW φΖΙΛ”ΞΙ=΅sŸηΉfΌ‰fΌ;]γνΡ•₯Ό{²Υ'­›ϋž υ:TΉΓ<'hΊΞστ­ #δhβμ±.Λ–Ώ^­}˜}°ΟιPιύρ–a*=Ό΅­ϋ?X«­ΑΥ”£}_<™…šR}‚«*―μΦG­ƒ½Y*žύ„ς{ΓNχlΥoήί:xC°·wΑL͝\ΰzXλ9΅žƒΥRπτ3Τ6·ui>²Ω|Άχ{Νφ~z›~±[Kίό}ξaGό²Ζ=§ic‡»–YcΎρ΅ήoάqα4"€ € €$ŠΑήDΩIց € € € € 썘ŠŽmμm'a/υTρw€όAή0β9­<¨FS±·Ηΰ{5€Ÿ·ύΌ©9ί_]3\P2Δυ»Η=wtΦεjΡ­½s•=ΐ=~Γ±}:ω§/uΣM¦$―υKiΡΩ₯ͺ‘ιSG©λ…σ’©’ώΧM ϋΧιν5ΫΓwuκa[³U1χhY™.χΛΧπώJΈ5¦Jσω#4Β¦υ›ΖψΎ˜ΚΙΣ>«,οϊšj΅χΣƒΊΠe€rGy«»'kί«₯πιE=Τκ=a*Ψ~^Χ¨}+DΆo…'ΚήΦͺ-Veh‡ŸmΝΑγ;τv5ε>ςCMΜδ:>j¨λ" fŽzTΉVΕή+Rη;5|Ψ`Χύ!Ÿi›—wΝ_μSυ±Σκ2`Έrϋ+WώGm―Šο!cΤ\Ν|pdΫ.^ ώ"€ € €$ŒΑή„ΩJ‚ € € € €‘ μTŠ~m μmK'A― ~HσfOpUή•T±z©vzΓƒ2!ΞΩί7•R݁ΟΖΓ›΅μ}OΥQ[ Ρ1΄ξΊαL-˜₯y“σ]°Υ[™0n]hdΫxV§ΖΓ[Ν\6ωϊηN~A ά!JΥ—iωΟ₯ΣΦUΫ}ΧežΎE~QτŒfήOδ7˜ž!+ΐF2ŠΝδbm©^εΙTŽ-1˜{Xχ›κ°―˜κ°–]Ι|wΥε“•«΄b}Ήγϋ’1j– sΊχZM‡΄yρ/τ™w9S4oϊ8Ο;hννF³·V…gσ˞’ο?5N]]'υͺX»R;χωί“Tsογζ^ΧΌU­υ/,ΡWί lk?¨›ύ4ϊ"ηΈΕG?6Αή]žκΡφNm§kΞ‚©²FωLΫΌ¬‘Nξί¨kΛZ†ύΎ:S‘w₯CE^{ŸύλiλπΧΓυ³―Οφ^wψkχ©½Ι[Ϊ‘―cS$Ο΄υ‘jυαβΑ&Ϋh&Ψ<Ο›­ο/ Μp_œ}ι&πηφ9'ηδ\r;ηδyώH>—½χgοΗώœψΟ‹·D!@°7 ,š† Ψ’&io8•Η>|ΙT%=°ΦLMωαΣΚκn]nΓΐ¬3ΘXw@EΛW+0Ύ™oΒ‘v8ΤW™ΰo’{Δ[όΤaι Ρf˜κΌ \Υy½Χ”©{Νή1{οΉΫϋ’ρίRΓzίlΏC{LθΊΔN‡ϋVκ y{žeέ-˜ϋ‚ςέ£₯‹ͺ©ΎͺŽ}ύ죎Υ5Υ[ ώ›ΑΦlχύ£Υƒ½ΑήkΗΌΟ}ΌNk~³Ϋ5aΗuλgZΕνχ`oθ—Ž; € € €@ μMβΝei € € € € \€`opF'@°7:―dhν /Φ¨δ%ΪseiΚβ'•eζι'δώ]sγ£ζΞXfͺ »ͺ‡·±!"y¦£Mύqσ^Ώπ^;ξϋ\ΜCΧνϋrΧΓZ8m€-η·¦Ζ,Ή‡ € € π{~ Y € € € €D+@°7Z1Ϊ ΨL%Ή―ω‚šŽ*·~KΞΤ„EOkhšuΡQ±7h…WGGGπ0TxΟζ œtŽWΎQ«Φns<ΜuXπ½W”ίίSΉu…©>\!΅φ<Μ*‚ iΩΚΪO―]‹ ±t]‡ϊsνοUΊΟ¬/–Σςˆ±|Ϋ²τΈ}ϋΥπZlο‹3Ψ+νkΆLέω.8Ÿο«mͺρξέ¬κ/ΜϊC¬Ωͺδ[wbŸ>=ύYΓAΧά°™σΚΠ©?„άώφ₯cΫΝϋ΄3`ΞΖΑŽ#yfΈ6‘ξ;―'Ψχ!ψ^δ € € €@2 μM¦έd- € € € € ‘Αވ˜hF€`o $Όν jJ‡·Ό€M{O¬ξ΄‚½{V-QΙiΣ$m”ζ,z@½ΜaύΡΝ¦‚ξώύ 5oΡ4YυN}AM&Ξ€_…yφ» žνhο2κB™Š^\#SΧο“ϋΐs*ΦΫ\s[{ž~3Šμ$}Τcšuχ‘5v·ΊbΜ_4t‡₯oo|ϋάΨ΅Ψή3Ά ‡±ΓαUΪρΚσ*«φŸl‘σ5βpϋ’οωιύ'5¬·Φ6ύ–›~uώύ">sΌΛ‹M0|GΨ=ςfiώδ<»oNa»ωuφέΆΒ΅ uίq=ΡΎ™cŸΠτ1CμεŸ0ιυΡ¦9E@@H ‚½‰±OΜ@@@@šQ€`o3bΆγ‘φΆΏΝΟ1aΨqvVͺ,}KEο}䏐jΌ‹]^]Π†₯+tΤnα¨ΒZw@EΛWϋm{δΝ1‘Θ\»e¨Pd»Lprš+8yμ­ΩPβlη™3Θ¨γΪόΤOτ©σΎ£β¬_Ω\χV}myϊΝ)²§Ud=L˜ΪTΪ]iWڍ΄‡£Γ·7‘{c}_rg,SaΆσ6ςχ–iS©,{θΤ›κΈ}μϋΎ9IΞ~aΓίvο?Rσ5sρLΩO¨.ΥκWŠt>DSοeG8ύΚɝZσΪ―Uο½ΑAPη€~αΪ„ΊοΈϋ>δ=²L£[οΒE•ΎυŒvEY9@S@@@ Ψ› Ε4@@@@@ ωφ6Ÿe{‰`oϋΫύ”»ΦΒi#] χ ξΊ.έ1ρ)M9ΐurfVΎϊ+wΈΡ˜ΥYm[ώΪο­¦ΪM…ί{VΉύ­J«‘+φΚNΌr|»^~γ]Χs‚ύt΄΅nŸΨωͺΦo/χΆτ_Ηa­_ϊ3Ήj·ς<½3Šξ GF¦’ΛWυ'tήλEG«©Γ’,Ψλομ z»ζκ}Ιϋ€©še7²B²/›¬ο3B-­~7Ήψζ$eŒš―w»*ωͺξ Φ/Ή{_}½ν£΄l M»ͺCB₯D{ΖςžZƒ—˜ŠΑΦG΅jού0Ž`pm¨*ΑAχΒ1n¨ϋŽλVλ„ω>˜€υ,°N·&έΨ~Zχω € € €$•Αή€ΪNƒ € € € €‘μD‰6αφ†JΖϋYšΆψI Lu―­ϊ ΆύσVνOS-υ;“T˜7Δ»hŠ©έ4Ϊ„wσάαέ+U΄wϋ6U^½MΓGΡ°vξλ jz³œΥ€ΝieωUό‘J_wό†:κͺ.+ΡiOx5 Θ(]RΕΞχ΄k{‰Ίη=¨Ώ\ W=ΨΐΚΓ­² @@@@ˆB€`oX4 )@°7$MίHΙΎG '© q~N•mΤΦ ΫTxܝψ„&Œ k^>«²½ΏWΪΘ±JΏΙDψ>)Φλλvιm]JWήδρΚψΏts§.κlΪ{>‡·Ό€M{OΈNAΖΪγe:ίιveυυQ֟)ΥΞuE:κ©ςλΘόn΅y:ž·‡¦zξ¬ΕyιάΗλ΄ζ7»Ν‘ φ.zZCLεάsŸ˜kλό―ξa¬οΛ ±s4fL«Š­¨F‡Ν>w9οϊζδm`ͺ;gkά„ρΚάΗqΡwX_}RgŽ~€χMηF? 5mLΎφυ“ϋ½k ½Ηšπ­>φΥCΕΛτώΎΰΡή‘S€ Ήύz‡8­.ΥκWŠtή±΅ε΅jν6i…š³hšνβ·‰ψ}Ț’…³ΗΪ{_t«VΎΉΙ­œ!€ € €$΅Αή€ή^‡ € € € €ΑφSαZ΄{£KΎφΓσΥύ–€―­΅}© 'KtΊ:Μ:3r”sΫ­κ`š}υŝ9P4f”Ζo;ƒŒεΕ&ΉCιY#Τ£ΛMη~~V‡Κέ!ΰP#΅Ζu5g΅Tμε­hο|Ϊϋΐϊ@@@„ Ψ›p[Ζ„@@@@@ ©{›*HK€`/οAά €œE¨—™`My±^_»#n§ΚΔhqΎ-NΜ@@@šW€`oσz2 € € € €$€ΑήΨ€˜"ΑήΨ$¦ˆ € € € €@‚ μM° cΊ € € € € Πt‚½M7d*φς € € € € €@σ μm~SFD@@@@8 Ψη” Σ£bo‚lΣD@@@@ φ&Πf1U@@@@h‚½ΝγΨήG!ΨΫήί֏ € € € €@σ μm~SFD@@@@8 Ψη” Σ#Ψ› Ε4@@@@H ‚½ ΄YL@@@@šG€`oσ8ΆχQφΆχ7€υ#€ € € € Πό{›ί”@@@@@ ΞφΖω%Θτφ&ΘF1M@@@@H€`omSE@@@@ζ ΨΫ<Žν}‚½νύ `ύ € € € €4ΏΑήζ7eD@@@@ˆs‚½qΎA 2=‚½ ²QL@@@@ Ψ›@›ΕT@@@@@ yφ6c{…`o{X?Δƒ@ζΨ'4}Μ3•‹*}λνͺˆ‡Y1β\ 5_3ΞTŸ›€ΚΧ©θ7»γ|ΒL@@φ%@°·}ν7«E@@@@#@°—Χ 9φ6‡bβΡ#o–Ύ;Ω„λώβ›|§.ϊόh± Fνπ]γ(Ής5}Z:wΈ¦ϊ£;τξφύΙ΅ήDY_κ(ΝZό€-ύͺR­ώi‘Ξ'ΧN°ZH ›FΟύςt1γΧhΟKTrΌ…Ε° € € ΅Αή¨Ιθ€ € € € €‰.@°7Ρw0>ζO°7>φ‘΅g‘>κ1ΝΊϋΏ­=²Q«ήήΦΰ:’T cœ,ΈO]ΝςκΝή― ·χ©ΩΚ›~κ€kͺ;YͺCΗ?‹o˜hΧΧF«z5α[}μ§*^¦χχUΆΡLB<6Qφy†ΨΐΉλώeMΡΒΩc•b–Yt³VΎωA‚,˜i"€ € ό{“Y! € € € €μ α4&‚½1±%~§Œεe˜8η_“nθ«ΡΓν5μMό­jχhα‚Iv ξŠ Δ½&η „ŸΨΎBλwVDυΈVoεϊZ}~φGhζOf«u|α€Š^\­8‹υ*QφyΪ/TΒώˆ}ΊiάγΟ*§οΝfνUΪ΅κy•žNX&Ž € €@R μMͺνd1 € € € € ‰ΑήH”hN€`o8‘vp?΅PσOSO³T‚½ν`ΏK42 ΗdλϊεΣiΟΎΞ» ŽΣGΞΧ¬‰ψ±W¨xwœ{£\_ƒ·Β…Œ1OhΖΨ!φ“Ξξ}Kοlω¨žέ#eί™gtϋo­›²ΞPpeΩ;*ΪPoΛc> € €΄K‚½νrΫY4 € € € €ν[€`oϋήζZ=Αήζ’LΰqΖiή’ϋφ&πΆΦΤSςζhαδ\ϋq[–ιέ½ρV[Ά΅$šλ9ιύ%ΦΫ―F{V-QIVM”}gžΝυ^ΆΝ8MΪΏΤ|ΝZ»[ΌSstο”οθS΅ωσ³ͺMΫ­w₯ ϋnΖ›`Ζ»ΥoŸώh\sξΜς}η/WιpΩNσœ€yΘςlΕy†n;Mπ4³ι‘•―3pzυΊMέnν©Ξζο­ύΉ|Qηjώ¨³GφjWi¨κΩ±}”1JSΖ(«―ο}9Y‘ύ%'”6<[):¨ΞόΝΨΦΰo†ωχ½i.nο―ΌG–iτ`kΎUϊΦ3ΪŠΔΫƒ@@hi‚½--Μψ € € € € w{γnKrB{rۚwΡ{SGhϊίΟVfχΠS8ΆσuΫα@GΣο‘…³ΥΟHsάς^9ΊQ/ΏΉΝsκϊk?QβϋΜ¬qΚΓS•ΥΫvœπ•£›Νώ—3ΖiΑ‚ϋΤΥ\­=yX_τ’τ`Ύ—MυΚ₯Ύκ•yΎ’Ρƒ>«ή­ΑΎΫŽyŸ-}GοΌWβΈβ>tμG€'R²ξΥƒ³ΗΫ[θ»πoF΄ίχ¦Έψζα9Κϋ„¦bŸž0‹Φϋύ-ς΄β7 € €΄¦ΑήΦΤζY € € € € {γb~{~ ›Ύ€ˆƒ½έTψ½g•Ϋί ½¨ce‡Tk*φvp—zƒ©—L΅ΔE~ΥM|JSGpΟ΅Ζτ+Wυ…/Τιζ[Υ΅w_ μίGΑΒ«±φ‹₯Η]kΖ΄‘κ|ω’&@ηϋfΥ|R¬ΧΧνˆφQν3uο’§5$ΝwΉTί™Κ43ƒϋζλ-Υ?¨sϊR7ήΪKιϊ˜5ω{3F~WCΣ­Š½_KnՐΑ} ,½cμƒκ{K']ύοkϊf‘¦‚§kkŽ0ΟωBΧ]gJ³ZŸΧτΩΑν*;ξ«,œθ2 ς…zϚ Ά§*kΥΉΧεΛrυ3?Οξ}]οlρUΆo΄ϊ¬κ΄1½ΧAζWζ€*ŽŸΧ}‡hθ€ήξυ]RΩΪԎrŸ‹gαC§ώHrϋΫ§ΗL±ΈΡ bΣηtλpޏyίγyΦY²LŸ­-}s”3Έη²*ΆΌ€wχΊ«t;ϊ9ηαmβ~Μστά:±ΟΣμ½rα¬*«*UχY­ώ¬Υ³Ά²ϊ{Ύ_!ή3‡›s₯‘N˜°νbζwWζΦε³ϊ€lΏκ;τΦΉ~aίΐ}Šεϋ»‹s5γτ‘σ5kβpϋ$pn [s@@ZC€`ok(σ @@@@ˆ+‚½q΅ ;‚½ »uΝ7qGπ«Ρ0Τ€{΅pξxw…•]©]ή°’ Ξύ©ΜΪŞWν‘Ν¦ϊ¨―gΈEzΚ€κ{C­•»C~ξΥΕΪ/ZœτQiΦέwFΥ­a΅Κ¨ΊΫA4©J₯λ‹΄λ@₯ί@™£ΦuNΕονφ».ΗΎΉnœUΙΪ_hOΉ£FΎFg~CŸlί΄b¬R 5oρ4YΡΐFχήύδ”Ό9Z89Χ>«Ψ²Μ„2Οr·ρώʚ’Μ«Ξφ…†kKɞ’gŒu+΄α©:κνlZk}±ΎΧσ;χΙF­Yη«Έ›7γ9Ξv…{ƒ—Νsg,SaΆ+˜yμCμέν¬vμΔ0ΗΝ0Ο {μXGΠϋζΡQν»ciπN9ζΦ’λ‹ω½vΞ―ξ€Š–―–#–μT=χρ:­ωM@%U³jg2\°·9ζtλzίΜ3š}wtΜŌ—Θ2 Ά*›ΰο*ό%Ψk,€dŒΠ°αw¨χmiΊε›ίΎΎͺ―M—Ž7φTŠ’Ž Ψφο„υ ž4ΨΐϊNΦh ]—xώu†{zΞwΑωΎ4ωϋnΖwŽξΈ§γ‹`―Ώg € €āΑή8Ψ¦€ € € € €­+@°·u½“υi{“ug£XWΑ>k4_±F%o,ўUw3u― φ μΥσΏpŸ;ή*Ω`f—ktμӏτΫχΆ©>πf¬ύΗ‰ΛσlM[όΈ¦šΙ]0ΑΠ‚‘αζμΨ7U—jυ+E:Oΰ}Ηΐ^`3ΟyδΑ»,MYό€²¬΅EψiδsΜ­%Χσ{ν˜_ύρ­ZωΖ&•:uΧ¬ί΄ΨΏαζξΎ™Gδϋn;Ζ«?j\ή p1M|!εKΪΏ~…Ά0‘hGΏ ^αξG;OΣΎ­>QyšIζN}J…ΉΒN·ΆΌΨTRίαίΞαώ{δόΗώ8Γ3¨sξΎ}j†ο»y€sμpίΟ|œΏSξzX §΄/ωζζlΑ1 € €΄ΆΑήΦηy € € € € Πζ{Ϋ| ’b{“b›ΆGπ«±0”/騲ιχδLMXτ΄†¦Yƒ„ΒŒ½ίVΏώ½ΥΩ―ŸλδΚɝZσΪ―ƒ„{cμδ!/₯e+h?uΌv-dηλ:tПk―}ΞΛΡ§ζkζβ™κcυjb°7h /’ΩDΈχž‘"ή9‚¦ΒσήΝͺώBΊΞ3Pΐo«’oέ‰}ϊτ΄£z³snΑ‹c=uŽqd£V½½­A³˜ίλpc‡»of2tκ4!·Ώ=§cΫW¨xgθχ)ζyfŒΣ‚χΩ‘ϊ ίοζωΎ›₯8Η+7ζkš|οεχχTj6λήmΦέΪσlπ&΄ή…¨<³Ώ«ηfŒρNξJυq8yRυ—M½ήλΜί«ϋ¨`δφύ°ϋφ{δόήωnžβœ»οyΞ~1~ίƎ%Ψ|n^:@@@  φΆ:D@@@@Ά ΨΫΆώΙςt‚½Ι²“MX‡3PΧHπΛ,”oyI›φžx¨Εή`wW‡nΚΘκ£ξ½oWζακΣέπ“¬κhͺw:~Oˆ΅Ÿί AOG=¦Yw»ΒqAΉxεθf½όζAξDzΙαuω°Φ/ύ™EΙ  Zm΄Ώu3Κ1œΑΉ σΌΫΰπ<1]γΏ€†υΆφΆJ;–?―²:Ο½G9· £F0FΜοuΈ±Γέ7ξ‘7Kσ'ηΩSχ…$ƒΔQ±7Κο_Ϊ(ΝYτ€z™aλΝ;»2πM+ΤΌEΣΤΣά5‡Θχέ βX·.”™JΤkdκρϊ}rxN…Γz›kŽπhkΟΣoF­{gޱg[I•eλT΄a·dSGiήβBοŸc?Bν―oΐtMψώ ΅ΆΖΉ7Ύ!‚½Νπ}7ψΖΕ1%οaζΨ'4}Μϋό„ Κ―o$(ονΔ € €΄¨Αήεep@@@@ˆG‚½ρΈ+‰7'‚½‰·gΝ>cgεΨκR­~₯Hηƒ<Δ/`Vϊ–ŠήϋΘΏ• ˜Ν13+@¨ΛΪ°t…Žϊ·zVπθ2ε²b…¦γ‡ξκA[ϊ_Œ΅Ÿ(³ysLΐ27Ψ­ΧκM˜ve °!;4Έαφš{‡Š—ιύ}Θ|’ μωΊωE9F»Luš+ˆzμ­ΩPβ7œσ$wΖ2f»φ΅ρ°³—γ8ΚΉ9zϊ##ζχ:άΨαξ[³t„jCV¬v―&ζyΚQM΅ξ€Š–―φ Ϊ:ίύPΑΟhφέ/Ψ«γΪόΤOτ©oGΜ‘σ½―‘ο΄ς<sΊα:-Κι¨[υ?φΥo˜ŸΫ]ΥΏ\r6jΎγh<}ΑsΕδ«ύη‘>jΎωG Γν‹Aχ/’χΠ1€οyR°p¬/”νoςχέΜ!Η”½‡y,ΣθΑΦߜ‹*}λν ]ΫΫ‡@@hY‚½-λΛθ € € € € ‡{γpSpJ{pӚ}ʎ@ΞjΫςΠώ ΥUSξzX §t==HpχމOiΘϋgφhε«ΏR½{=2²€ΣAΓƒLΏ©ξ~ΑήXϋΕBΤ##SΧGΡρ«ϊ:Δ)Š!tΗdc–η6»p@λ_\έ°jojΆr2j€”Z”½ σrKk©Φμνλxζ•γΫυςοzod˜ΐα wΰPu΅~ωΟΝκ”–­‘iWu¨Φσ{ν°ˆ=PiU:]b*[ΐ«uξ‰yžΞ`oƒοw7~οYεφwUΝΊkŽ΅†Ϋwg[«λ‰―jύφrλΠώψ―ΓY©Ί±ΏC-0OΟ„¬ί·vΠ ίξ¨Ώφ^ϋmό·ΏhσŸΌšχ O_Π6XX5GΣΟΣΐTΧτ‚ξŸγYAο¬ΜΆΎ·ΜχΦϋ4Μί‹9¦Ί³ύ7L?ηxMώΎ[σpΜ5μ{0o™ 2kρL₯[Χϋ{؏s@@hQ‚½-ΚΛΰ € € € € {γqWoN{oΟZbΖωΎ ‚A]\C_¨PΩΑγϊRΤ±γ5?ΌMGν*‘Y&Dφ€7D¦κƒΪφΟ[΅?₯άοLRažλn β_‘Υφ?­¬Τϋψw:{ϊΈΞWŸΣηκ=τΫΚ+Ξφ“ƒ±φs-#!~:ΓhΦ„λŽ«τ_UΏ;vVJι₯Ύ™ƒ•5f€RŽnΦΛo~ΰΏ$GΞ°σop––₯;ώΚ}ρͺήx»ΖL,PŠu₯ͺT›­uύ V½Rικ—‘£„U™M›Κς=ͺψC•Ύξψ uΤU]λχhΑάIκd`玽‡©Ϊ;ΓTνuqƒ46—œά©΅―ύΪQΧΠ ήήsυΚρ­¦μ&Ο©ωk?Η pΨγυέiξpmˆωΦ›`οΚΐ`oΖ8-XpŸ½gώ»ƒ˜ΛΉΌ ΒΑξwθf;&l[dΒΆΡ^ωώwχ pΎ+φέγ4gξ}ή Ÿ {Έ― φΆβϊbz―ΓΝΟ*,ŠdFhζOf«Eaͺ6™ͺ́ζn%Ε4OΣΉGή͟œλ&δοΖή£ˆχέ$ ω λFͺͺ­:OηδZ»b―yvĞζ=›gΎηž0΄sځΗAχ/ά{8ˆ9Oώ]͜>Ζψrίs©ώΘF­|{›ηTjΚχέ=JΔ.Ύ§š£nχψ³ΚιkUžΡUKTκχ―όs‚ € €­(@°·±y € € € €Δ‡ΑήψΨ‡DŸΑήDίΑfœ€BM“―}ύ#d‡·Ό€M{Ox”’}&NRG₯HΟΝSe΅uΓ6Υ{.ΨΏ»)ώ‡4Έ–ΊΊ—ρ~·uQ'ΚώM{6|ΰ[-bνη?zBœeŒ½…ίίޞϋε*Ϊ»Eοο.χ_JΪ(ΝYτ€š­)/Φλkwψίr6tκ4!·;A.U—jυ+E{b΅KWήδρΚψΏts§.κμ¨ΰψΨ£¦fkά„ρΚάΗ> όQ_}RgŽ~€χMEWΏO+―/κχΪT΅ψ»ΚkmωF­Zλ8Z I+4ϋ3Ν΅?Ÿ˜ύYz†ήcMψV{ω‡Š—ιύ}‘’½&tυχΟVC'>‘ #}U΅ν«—Οͺlοο•6r¬Ν>Φ4:Οχέμ­=^¦σnWV_0yύ™Rν\W€£ήκΞ9Z?[mžΎGšΏMυΤΐΎ+uMΛχ~­γΎ+-p‘§y²½ηw›ΏΉ?­*Ψ{«ηΘρκcν_°Ώ1|¬Ε¦dΣΨΏϋŽ2Σ|{W{¦LΗΞvԝξ*λ'ΆΏͺυ;ώ.Εϊ}χ Gξβν’5E g΅ƒΘυG·šαό"ήV € € €@μmt‰ € € € €m+@°·mύ“ει{“e'[ΓσΥύ–€―­g© 'KtΊΊρyτΘΘRΟn©κtύ ²btΧΎΈ ΚεAΒ£ώγΔΪΟ”ψ?KΙΘΦν·u·mtνK}^^G+|‘κψ_A#3LΛΠΎ½t½½ρ_λ«―κt±Ί\•aή™FFl‘[±ΌΧMžˆ Ο1!α^Φ@U{΅ϊ§Ώϋˆiž9ΚΉνVϋύϊΚ|χΘοžΏΙ+1fSaΦT*Ά"κ΅&hΊΚΞΣ³F¨G—›\Ούό¬•‡y§[cžŽ₯NΚι€ϋzώή+%εΡ«ϊοyΌΨ{~£ω›kώθ~ωωy}Z^ΡβSKIKΧυΦSώ\©σ&ˆέcδ|͟8ά~ξ±W¨xwˆ9΄βχ½ΰΡ”?Θ _TΙΟhOΛ&²ν΅σ@@" Ψ™­@@@@@ ‰φ&ΡfΆαRφΆ!>FάƒΖ?‘©VEέ‹*}λν ‘—Œ{0g°χˆ©dόv@%γΈ[ΐuZ8ϊv£{bΊ¦§νk]ˆ»yΆζ„Ί©GΪg:ί tίMγV9}oΆ'sθ=S]Ί4tuιV™±£2φΉ‹΅ζ7‘+c·Κ|x € €ψ μυγΰ@@@@Ϊw%oσ@IDATƒΑήφ°Λ-ΏF‚½-oΜ@v#hΑήξτς]ΥΥ½Arπ/zλ\όUλmΝχ'έTεeͺςV-ΣOžΠΉσηυυ ·iHn†τ·j1›Ο…2½ΈFmλuΝ…Ÿ € € ·{γvk˜ € € € €΄”Αή–’m_γμm_ϋΝj@Θ§ ²΅ P±·ϋ_wΠ’αΥω+ι/uM΄―½Wλ•G=¦YwίΩΘkR£΅+΅«ό³FΪp @@φς € € € € €@» ΨΫξΆΌEL°·EXhŸi£4gΡκeV_S^¬ΧΧξhŸ Όκ”μ{46οNυκΫ[ΦQs²Lϋw¬Ρ‘Σ78E@@‚μ ‚Β%@@@@Hn‚½Ι½Ώ­΅:‚½­%Νs@H,”΄tέrσΝκh¦ύυ₯ UV'Φό™- € €΄­ΑήΆυηι € € € € Π{Ϋ= I°7 7•%!€ € € € ΠΖ{Ϋxx< € € € €΄ΎΑήΦ7OΖ'μMΖ]eM € € € €΄­ΑήΆυηι € € € € Π{Ϋ= I°7 7•%!€ € € € ΠΖ{Ϋxx< € € € €΄ΎΑήΦ7OΖ'μMΖ]eM € € € €΄­ΑήΆυηι € € € € Π{Ϋ= I°7 7•%!€ € € € ΠΖ{Ϋxx< € € € €΄ΎΑήΦ7OΖ'μMΖ]eM € € € €΄­ΑήΆυηι € € € € Π{Ϋ= I°7 7•%!€ € € € ΠΖ{Ϋxx< € € € €΄ΎΑήΦ7OΖ'μMΖ]eM € € € €΄­ΑήΆυηι € € € € Π{Ϋ= I°7 7•%!€€W sμš>fˆ9Ώ¨·žΡ ο-ƒΤ|Ν\8S}n’*?^§’ίμφΏΟ € € €D%@°7*.#€ € € € €@2μM†]lϋ5μmϋ=h‹τΘ›₯οN6aΗΊΏψί©‹>?Zl;|ΧΪΣQκM{xœΊ]/ύΧι=ϊε†ψ vή1ώ1εeu3»sM'wB;TΆŸJ₯‡fθ―̊?«Ψ¦β­…^{κ(ΝZό€­U₯ZύΣ"ΩΊ›FΟύςt1-j΄η%*9²17@@@@ ŒΑή0@άF@@@@δ Ψ›|{Ϊ+"ΨΫκmΜτQiΦέw6˜H푍ZυφΆΧΫΕ…ŒqZ°ΰ>u5‹­7+γΨ!ο‘e=Έ§½-Η>\‘βέ‘ΚΠ&αΞE±OCο±&|«p¨x™ήί&5E gUŠιQt³VΎωA²$@@@ZG€`oλ8σ@@@@ˆ#‚½q΄ <‚½ ΌyM™zFŽς2L„υΏ―I7τΥθ‚αφhν:Ψ›6Nσέ'+.οΉ3žSavo{ΟΪ]°7β}‘™?™­>–…*zq΅ΒΔzMΓnχψ³Κι{³9UΟ«τ΄5@@@ˆV€`o΄b΄G@@@@„ Ψ›π[ ΨΫΠΆ“H-ΤΌΕΣ"ΠΪ’PF[t N°7|;cΜš1vˆνyvο[zgΛGΩ:«YW–½£’ %υ£ € € €ψ μυχΰ @@@@ځΑήv°Ι­°D‚½­€οH @k‹R†rHν¦σΰϊΊΟZτρΡ ή‚½ώfŸ˜ΚΚ¦ήt#••Σ5ώϋK4Μ.j\£=«–¨$Κ»©ωš΅x¦­ ©;¨΅ΛH»F³‡΄E@@@ Ωφ&ϋ³>@@@@h @°· b ΨZ²u h ΉΞLείw₯©#Έ jLΏrU_ψBnΎU]{χΥΐώ}L°Χ?Όj5Ž΅_LΨOϊ3tθΘݐ>TΉΩύ=—ubϋ«&μι©|λ φ^ΉpV•U•ͺϋ¬V֍κΩ?ΫTœ΅*ΏZŸK*[ϋΪQξ«Ό+eκήEOkˆ'ˆkZUšκΎ§ͺjΥρ†κΡ'S™}{ͺήT¦]ι¨L<Ψ›£i?œ§žΠuυ­e΅N(KΣ?©©fπ:ž]ξ ΟZ3 φq†Z+>|Iοξ–7ΨύϊΜ‚ΈZΟ­9~Pηώτ₯nΌ΅—τQgo°7[Σ—>LOψ·ξ€φ|H—oμ«‘#‡ΫeΟΌC½―C§ώHr]ϋuΜs‹£ 榏œ―Y‡Ϋ υ Οψ € € €Αφwα* € € € €$±Αή$ήάV\ΑήVĎΧG9‚—†ά«…sΗ»ƒ•5*]»R»Ό!Uϊϋεθb―²φΘf­zΫWa6ο‘e=Ψ Έ^4‘ίgόBΏV‡”#Τχ†Z*?aχχόˆ΅Ÿ§TΏV?«2ο*S™ΧσΉcβ“š42Λuz‘LE/Q₯ϋfΞψuSν§Ϊ³―aeWgΘ΄ζ“uz}IΚΊ?Ξ©T₯υEΪuΐ3ͺ«Q樇uΗ_Sρ{Ύ~~Αή-ΛTΌχ6M_l*)[α]λSUͺ΅?-iΧ™ς]¦‚A–v­Z’RΟ χ}η―|³Wφ^Υhi[bΪΖΊ>{άWS»X%k‘=εŽufδktζ7τΙφέΊeδͺΝuMΙͺ8ΌόgϊΤ3Αμ)Z8c¬7άκ}͝±L…Ω@υ±M°wwΓ}ρ μwΚ]kα΄‘φ­PΟ֏k € € € ΰ Ψλ³ΰ@@@@Ϊ‰Αήv²Ρ-ΌL‚½- œΓ;‚—…ο˜ό”&εΉͺξΦ–oΤͺ΅ΫόW—q.˜δ ]T†υQM°χ μ=ξί5ΤY¬ύBΧθu‡ƒ€υ„Z}}œ•dΓd½ύR ΅`ρ4u5ό}Σ5ώϋK4¬·«ε©=―κ—[=U€½½ƒψ\.©bηn]7d’·Rο•3{Uόκ/Ό‘ckgήΓ[^¦½&@V¨Y³Ζκ–N&nύιύς½¬–šςΓ§•eUύ ΨCkœ Ÿλs·φs•Ώ·L›J‘ή€A}k“Nμ\‘υΫύCΉΎ°w §o ηήυϊn‡?26σM“ φί³π]i € € €.‚½Ό  € € € € ΠξφΆ»-o‘μmΦΔΤΌl,Δθ Tϋπ%SΥΏΊ_(4 2¬³‚ͺU΅χΔ'‡tκ§uΎϊ¬*«? ιkΏ6vΓα Ί*ZΎΪ/kuυX•‡_6•‡}sOΙ‘aΓοPοΫtΛ7Ώ!}}U_›>oμ©”›\φχu„huRΫ–“φΧΉΪ…ϋι ϊ·=¬’§~Φ`ήΚ2•ng»*ݞϋxΦόf·GΝΧ¬»‡»ΊW—jυ+E:ο΄Φέ¬•oϊͺ.GΏ>χ̜—kύŸ)πΝρ­Α ;?iΒΞ7›KΑΒΥ’³Κ±Ώ§o§Α^Ÿ G € € €΄¦ΑήΦΤζY € € € € {γb~{~ ›ΎGπ2TPzˆ/,Y£’7–hOƒͺ»™ΊΧT{bU{ φjΐ½Z0wΌ]΅ΦΊλχΉ\£cŸ~€ίΎ·Mυ~7ΜI¬ύΗ‰δάα 3{΄ϊΥ_ι|@?_°W:Ά}…ŠwΊͺΙζN}J…ΉjΖ]όNkΛ‹M₯γξkٚΆψq L5§LψΕ†AbΏΞŽί^8.Ϊ‡—thΛkzίͺΘλχΙΡCK穟06k{ή¬ΝΉ©J;–?―²ΫgιΉiyvΟ;_5Υr]„c[Ÿ{NWO€ΨonΞgΨω’yϞiπžEμ]¦Βl«ήΩ§Ν>νφ―ϊλ|b°γ”»ΦΒi#ν[}'‚υε € € €Έφς& € € € € €@» ΨΫξΆΌEL°·EXkPGπ²±£/LZ₯]«žWιιΐefjΒ’§54ΝΊ^cΪ,ρo3`”ξ-ψΆϊυο­Ξ]Νω•“;΅ζ΅_ χΖΨ/Θ3½δp¨?ΊΥT«έΤ ωθqΌώΛήΐhφwυ܌1ήΆWͺλΔΙ“ͺΏlκυ^wMΊ± FήiίχσMΝΧΜΕ3ΥΗΊΣΔ`ο•ΛRgwU`ι¬Ά½ςΪ_m?ύ£›FοY3wS χr…©šϋ[έ±ψIW¨Ψέ’β½e:ε~Mi”­ŠΔϘŠΔζ0ΦυΉΗ•ΓΥ?Ψμiΰόν φJϋߚ«m™άH‚½C§ώHr]ε `;ŸΤΨq$Οh¬?χ@@@@@"ΨΛ[€ € € € €νN€`o»ΫςY0ΑήaM¬A3ΖiΑ‚ϋμjΊ/}Α^ιπ–—΄©AUXн{L°·€Aψג馌¬>κήϋve>έMΨΤώ\ώυ¨m>sŸώŠΎ_¬JOω¦o ―κ΄€« ­ο’ϋΘ@U© »ΌaέάžSα°ή¦Γ%}RΌB[χU*Η\g_“*ΛΦ©hΓn‘SGiήβdՏυ φΚαuω° ΫώLuvύς9χβά'ΕZ³n‡Ζ=ώŠrϊΊ-«φjυOαWqψŽΙOiRžΪ­Rι–γ0qŒΊΦΧ'g:hΨ°ώͺ)ίͺS†)o™© nXΊBGMλΨΧ瞯ΓΥύΎυψŽŒ‰ ‡±Γᦊπ+¦Š°_@Yκ1rΎζOnw 5^ΌYš?ΩUy8Tί3eŽ}BΣΗ ±oœ0•™Χ»+37lΙ@@@%@°7” Χ@@@@@ iφ&νΦΆκΒφΆ*w|>ΜY9ΆΊT«_)ς „z&νπ,}KEο}δΉεϊm¬sL€΅—uζ†ϊ7jxVπθ2ε[aRσρVΑmΨ¬Α•Hϊε=ς‚Fξβλ{ω Φ.ύΉ‚ζTι€ή_ώO:Tηλ*₯›ŠΔKT$φ…lƒQΣGΝΧ¬»ƒQΑ^σ˜CΕΛτΎ Gςρ=Sͺ0!λw­ušρ_δφ7ƒT–Ύcφ¨Δ;\Κπ΅pz}^[]£i=M•δ­Z[r£ζΟ6Χ/Χ¨φ/=Υ5ΥͺžΌ]/ΏφέΦχ¬hΧη~΄Γ5’mξŒe*Μv½‡MαM₯ώ&C§ώΨTγνγZΗ‘Zυφ6χƒΏ 5oΡ4;L²΄£yΰaή#ΛΜ{cΝΑQΉ8°η € € € Π¨ΑήFyΈ‰ € € € €Ι(@°7w΅υΧD°·υΝγšςΓ§•ΥݚΩYm[ώΪοhuΝ8凡pΪHΧIΰξMEΨ‘VEXσ9³G+_ύ•κ]gκ‘‘%dϊMuχ φΖΪΟύXωB©ξ+L%ήVβ΅ο:¨Φω©=―λ—[χ»;š_&ϋŒνl]1v7˜ »VE[ί3‚…@s4mρ< 4aYλlυUΡ57ΝάΦ›Ή5¨Ϊ›š­œŒ«¦p…=†υΓχL0tϊΘ9š51Χέ. ² pΟZ<ΣΔ“}ŸS;Wθ—ΫoΤΜ₯σΤη&ίυ³{ί;[\Αmί³’_Ÿ=’Γ5pύΎ'ϊŽ2Η>iͺεšχΕ|¬PξΛ―ύΪwS#τΠΩκηžkθρ5ώϋKδ*€\£ΠΥ£C{Nu΅~ωΟ-Ώ@@@@ €Αސ4ά@@@@@d Ψ›¬;ΫΊλ"ΨΫΊήρϊ΄όG_PΑ weΫ *;x\_ͺƒ:vΌ¦σ‡·ιh΅5σ,R}RUυAmϋη­ΪŸ&hϊI*Μβ]ž·Š¬}Ε‡›ΰpjŽ}ό;=}\η«ΟιsuΧϊmε w…eΐŒ΅Ÿw~Xϋj φ.,Ψ+]±=οι·[K”zΧw5fΪ»¬5ΞΉ²w΄fƒ«nξΟ©Π• •κ*΄gΗouδΐ₯ΏK3j’ϊفiלQ!R«Iέq•ώλΏκwΗΞJ)½Τ7s°²ΖŒTΚΡΝzωΝ\ƒ˜ŸΎ°­°Χj7γ9ΞξνjkΨ›—Π§φ™3μj]0ήo,QΙq©`ξ Κΰ©lμnϊ¬ΗDμ•³ς³5Λ#Ϋ΅σύwUΧ-_wόL L³u}xzn˜ίcžΠŒ±wTv4 z˜>κ1SaωNϋžsŸƒ6ζ" € € €„ Ψ’† € € € € ¬{“ug[w]{[Χ;nŸ6ΰ-˜;I]ƒLπΔφZΏΣU-Ά‡©Ϊ;ΓTν΅«Φik]²ͺ¬5UVΟ{ο{Ίή Aίͺ—ίΨδΈk?ίΞ¬}΅±`oΖ8-Xp_P߈ζ¨ΞTλ]ξͺΦk_7ύζ™~=ύ? DνqΧƒϊξ΄₯οb_­7Αή•~Αήe*Μv=1°Κ±”m؏{ΨWŽoך7ή΅«'ηάcϋVΧ“Υ‹3ΖήΝόΙlυ±:Φj†ώtӸǟUNί›M“νZ΅D₯§C·ζ € € €„ ΨΪ†; € € € € €{“tc[yY{[<ž7 PΣΖδk`_ˆκα-/iΣήή™§dί£‰…“ΤΗQ‰ΦsσTΩFmέ°Ν‘zIέ”Cά?K]S}W}Gu’μί΄gΓŽ0°u7Φ~Ύ‘ύͺΝZ—/”©θΕ5ͺτ5ρ₯¬E(έ\©9²WnΘԐώώυgΚ΄sέυ„^έ½m“»Iΰϊ.ŸTΩήγκ9rΌϊάdΖ-/Φλkwψžι9Κ₯{ <ΟΎ}ΉJ‡φnΡϋ»Λ=­5τώiΒ·ϊΫη‡ί3ϋSκΫϋbΦ½Z0{Ό;€μ«ΐΫ#oŽζOΞ΅›œϋxΦόf·kLGU]UνΥκŸώΒo/š΄>γ:ΗΈφ2O Ή~Χ,ό~;GcΖδžktΨΌ‹]FŽ΄Ησ[ƒ_oΧΙPdžΰ2*^¦χχέy_Ο¬)Z8{¬ύΜϊ£[M˜Ϊ4χ5γ@@@Β μ oD @@@@H2‚½IΆ‘m΄‚½mŸΝž―ξ·ά }m-ζK]8Y’ΣՍ/¬GF–zvKU§λoPΣτΪTy ά/Dl„Xϋ+škιY#Τ£ΛMφ\Ώϊόœ•»*‡Γ6ΉΡ˜”/??―OΓ΄'%#[·ίΦέ~ž}©ΟλΟλhE@h7°S+ž7u}QO55KCφυζeΉφΥeΓGͺ U7:fͺ /v…Šƒ–ϋ<ϊ‚ςu1—/ͺδg΄ηx` Ξ@@@@ R‚½‘JΡ@@@@’F€`ole›.„`o›ςσphaAγŸΠΤ‚!ζ)UϊΦ3Ϊ*›Vh* OsW.6ՌƒTVnαΉ2< € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€Έ € € € €Q 썚Œ € € € € θ{}γcώ{γc˜ € € € €Ι$@°7™v“΅ € € € € €@D{#b’Q‚½a€ΈνR sμš>fˆYϋE•ΎυŒvU„`HΝΧΜ…3Υη&©ςγu*ϊΝξ ΉŒ € € €@ϋ ΨΫΎφ›Υ"€ € € € €€ ΨΛkΠ{›C‘1ZM -_Σ§¨s‡kͺ?ΊCοnίί²nνη΅μj=RΤQš΅ψ₯[ν«J΅ϊ§E:²o7žϋε θbZΤhΟKTrκ1ΝΊϋN»σ‰ν+΄~gEteά£… &ΩΚ+&@ωrK([ϋyΡi$Lλ&ο{«t„fώdΆϊXΟΌp@E/V˜X―iΨMγV9}o6ΗUΪ΅κy•žΆΰƒ € € €@ϋ ΨΫ~χž•#€ € € € ΠnφΆΫ­oΦ…μmVN #>rΎfMn·:φα οŽ2Ψk*ΏŽΙΦυ€Λ§?ž}'Β<±‰·[ϋyMœnΌvoςΎ·βΒ2Ζ<‘c‡ΨO<»χ-½³ε£ˆžξ /W–½£’ %υ£ € € €Ι*@°7Yw–u!€ € € € €@H‚½!iΈ…Αή(°hΪd”Ό9Z89Χ§bΛ2½»7|-Τ&?”Ϊ\ qφ=]γΏΏDΓz[d5Ϊ³j‰J"­Ό›š―Y‹g*έκZwPk—\‘v΅ΊπA@@@ Ωφ&ێ²@@@@+@°7, " ΨR6ΙTώύ§Αƒ†¨λMRύe)Εό=sPGJ·ͺ€< t›š£ SΎ£[M΅άΟΟξΣ•©œ;³Τ3υf—Πε*.Ϋ©M۝N»)οώιΊ=υz]½φ΅ΎΩ-K½R]Νλ«Oκβ₯―ΌΊ:IηφmΤώΟΝυ°rϊ₯θΪ5oS©C]:υ/ΪΊ»άqΡ:ΜΦ„Ήcμ9^ϋΛWϊfΟΎζyΦό.κπφ-ϊγυƒ•_0\)v―}ςήzm-υ―έσμ4hό|ύM]ύΚ9IΧ=/™ΛΧ™2ΓΥeλ΄cŸϊ¬VƒF=¨αΩCΤ'­‹»“t₯ξ¬N|ΌGοοtzzo›³s­ύθ +U»υξΏKγ'ŒRΏΎύν}΄ZΦ_8©SwkλΞύΎ1›χeκh ΜΌέ·ηf€+uUͺ9W©SŸ~€²rOε¦ο»5Ι¨\bz?( 5oΡ4υ΄Φur§ΦΌφkΥ4iμ4ο‘e=Ψκ}Q₯o=£]ώ―Vc]Ή‡ € € €@ μMΊ-eA € € € € N€`o8!ξG"@°7₯$l“:BΣ~Ά2»‡^Ϋ±―«x»#š1N ά§‘»ΨwjΚ7λυ΅Έ[eiΪOžΤΐ0}<·Om_‘_ξτOCζ=ϊŠFr‡‡= Νοϊ£›΅ςMΟsά7"œ£o˜*m{εyν―φ]‰κyξnyΎ`ζθ εϊFσ?:φα οv/S…sVξ+ όS{d«~υφ¦†SΗZkOΦ=‡(έ³|.›κ±K›X=ΦΌ/-œ­~ΑΖw?πΚэzωΝmξ{ .Ž ώο§γ†9μ‘7Kσ'ηΩklΤͺ·=λρoκ,sμš>fˆ}ϋ„y—ΧΌΛ‘ϊq@@@d Ψ›Œ»Κš@@@@@ Q‚½ςp3B‚½B%U³n*όή³Κνο Λ^Τ±²Cͺ5{»ΈK{{_2UGωͺަ3ΥLﳫ™z8κO–ι“£UΊ₯oŽrχρ\VΕ–—τξ^WυΦ;Ζ>¨Ύ·tΥΎ¦oφͺ¬ΎρkŽΠΉ?}‘λ³JښO‡kϊμΰv•Μuξώ™1ς»šnUμύZκt«† `ί Ότ›γ%Ϋ»WW{ηjH__θφ„©F|©λ0 s‡is΅Žκy~sΌΙΏͺ°)Σ{υΪΝφ-WΠΣjφΜt™ ωB½gΛχκTe­:χ άaYξΡ₯³{_Χ;[!kλŽίZ½MUsό qύR7ήΪKιϊ¨s3{M|JSGΊά₯σΎ”«ϊΒκtσ­κΪ»―φο£+&hύ²#hέ”}Ι%ˆG$ο§ON:υGšΫίΎtΜs‹£ 榏œ―Y‡ΫύƒΎŸΞ‡qŒ € € €@’ μMς fy € € € € ΠP€`oCD/@°7z³„ο1ΰ^-œ;^)φBjTΊv₯v•{Β΄&τ;χ¦‚¬+[{d³©ZκŠœ΄*Ι2•d=Ÿ‘“Ÿ„ϋ°©:½Ι]u:’5ΪmLπ|Q#Ασˆ’! € € €‰/@°7ρχ € € € € €@”{££yP‚½AY’ϊ’―ϊͺtμΓ—TΌ;°Κj¦¦όπieu·]gp²ξ€Š–―V`Œ4ίTv-°+»š`ε*όmΛ`―'ˆ›1ΞTμuUηυ…x3u―Yγ³Fί΅ ΫξXs£ν»fέ«³Η»«νšΠmhΑά”οŒlUΒ­©ΎͺŽκΨY]SoΆ/6Ψ+Ηάtω°Φ/ύ™w2`΄˜O•l­ΉžψδNύα΄ΞWŸUe΅§Ϊsθα£ φΖμβτˆρύ$ΨzΉƒ € € €@΄{££= € € € €$ΌΑή„ίΒΈXΑήΈΨ†V„/ΌX£SEvOƒκ«ΎΠk¨`oύΡ­Zωζ¦σφ…†/iϊΪvΐ?ϊMΐ³ΑΰΦGx3hΠ6θύM_Α’m7ΐ•ηϊ‚Κ~έ/ΧθΨ§ι·οmS½ί ίIδϋή‡G¬ο§3ΐάΐΫ·œG)w=¬…ΣFΪχ}―BŽΐ @@@’G€`oςμ%+A@@@@φFE³Fφ6Κ“”7}ΑήΰUu₯LMXτ΄†¦YΛ^±·Ά|£V­έΦΐ§ΰ{―(ΏΏ§Βμ S ΈΒ―MδOΏnΎGx3hp2θύ`!ή`Χ|ρΟ{7ΘAΊΖ=ώ€rϊΊ œά©5―ύ:HΰΥYΩTNή»YΥ_HΧΡΊdUς­;±OŸžvTΗuΞ­ΌΨμǎ½›ις€QΊ·ΰΫκΧΏ·:2τZ₯Θχ½ .~±½ŸC§ώHrϋΫ«;ΆέΌΏ;ύίί Λφ»δ\gΠχΣ―5' € € €$·Αήδή_V‡ € € € €AφAαRΤ{£&KψΎ`―txΛKΪ΄χDΐš|‘W+Ψ»gΥ•œ6MΑI](SΡ‹kδ_WΚ}ΰ9λm;ΑŽΡΑΗ σμw<ΫΡ8Ψ‘cAƒ“AοϋΦγλμZ/H;χ₯œϋ¬qίκγ:«;¬ Λ¦£A›§kόχŸΤ°ήVΈJ;–?―²Ί  C_Œrn΁zdPzΚ7}—ΎͺΣώ?{w]Uyοό#TPΓΨPs!`¨€`(©Ή‘%rS©CQQ+uQm-wιr•U·Λ%uψ)h©Π"(*…ΛBcQF‘C™.”4` ©€!ϊ{φ>ηδμ3εΜΙήYΛdŸ=<Γλ»χΖ?>y²έϋΉΕ­n*,ξ­ξ—]’ACΥ»»+Δ,Y«4—Y₯Ω>v·yέγpqxΔzφ(›’i7”Ω£φή+-bψ,}Ÿn5Θή·ΗƒG φiŒ € € €€ΉΑή4/ ΓG@@@@θφFoƁ{M2}Ο0Ύc‡o₯CΥσ΅ΰυw|§œW‘©³nU/kο©½φθΣpͺ38©Z-ΰ ½οs₯7,λvœΣcΈ NNr'l|E/ΎΆΑq4‚MΗ‚/ƒχŽΛ{M°}AϊΪ^σΜŠiš|νPχAˆ~Α’kƒŸkν-<[•%=ν’rέ΅Κξ|LΧ μβ=γΤV-|τ—²ςΫΡ~Ό{ΆΚΈζ±ϋw«4[νESχ˜]΅RŒχ§ς+uοΜI²fΣ Δ‘ŒΚξœm\­««zώCZέ‚Ώ‘še? € € €i)@°7-ΛΖ @@@@@ ‚½ρθq­G€`―G"{~ζΏ]3&pMΨάu\9ώMΡίυι@•ζ>σͺ­O>ΑIiϚg΄x•w•Wίvwhρ£ΏZΐΞ6NΧ“/,uχαGπ²aϋΝ[ΈΪχBΗ[ρFμυ=ƒφηι½ψzMΏk¬ΊΪŸOjΫλOλ­jυŒ='»~ϊOlΥβ9Ώ τ²NΝ/Ρΰό³ΪΆΩ/%tΎ}„ϊδ\΅Ω>ηΨf³σs+0{οQX,ν―ΡQΟΗΟζ~ΉΙ}Ώ„ φFSχ˜]ΦπbΊ?e­ό°YIΩjΑ±Z΅υ1άW^Ή¦ΜΊΓ΄`ΎZͺgΈv8Ž € € €@†μ͐B2 @@@@ˆ\€`oδVœZ€`oh›Μ=R¬I³ξΧyξΦmΥΚY‘M3«Θ~}‚*Λ5Oέg%YΏΰ€tR5k^ΧΪUΤ½μ6}㆑φJ§ΦΕAWΆ8WΆΞΫ^₯šΏΦΉφΤ^gu|χν?aθώΚ/Φ•ω_p8«³.Χ¨ρ#•kν9\­εkLΨυΒφρ³ŸόU»ώ^lV\½ΡGLΑήhϋ«±Β»χΓ‡5Έ»= ιΨF­\·G9.tοπώψθ―Ϋ΄k‡ξήp±½γΤ^m\·Aόω/:“Ϋ]]Ί¨ΟεΕκ[_ΉΑVΤuΤΓ;Wo_-m{O˜`οœPΑή"Mœυ Šσκ΅ϋ½?λΰώZ­;’Τ]_ό―*9TνΞZΒFUχ]ΉΗpš Gέ§Ι£]ΟΐΑυσυΚ›~+Z‡€-¨ψ¦\{•}4¦Υ¨C΄Λn@@@U€`oΊVŽq#€ € € € €@Μ{c¦γB‡Α^Fmφ0«φN6«φΊ™Α'~zο-|φ7ήUZ‚“Α― ·Ziٝ³uΝΐžA/ή³κi-ΆΒΊξ―;Sεΐ.ž-4αΧ―ΤuΣo΄WΞυ†]½AQηΎ‰?4aUΖυξ3Αζhϋ{τ—f•[|u·ΥςΝ*²~σS1šzύκξΒ`ΑήΒ1š0Χp ΉŽΗμmΉνΣ΅+Μ Μo„<)šΊΗδ’ ϋSΊZw›]υZ;οaUοχe @@@l Ψ›UgΞ € € € €dΉΑή,Ώ4}‚½ ‚LΓfrKΣψΚ κνYiΦ1‡}—iΕk+ΥθΨ'Gp²‘v£ŽvΌ\Ε}|C·ͺ΅fΡνrΊλlΓή.PΩ cU|ΕΏθβŽ]Τω"ο ;ή|\o¬ίΣΌcπM?Έ~͟[ά¨«Φs iΜ¬[ΝΊ‘χιΕί3[&Ψ;σA Κ7ϋΆ˜}‹|χΥoY’η­Ά›ŽΊΏ§˜ΰs‘Ζ™φ›φΓ}Υόξq-5«ωϊ|ε•hΜΈ±6°·ΟnΟ‡ΖΊ½:°λ½eVFφωΚ―ΠΤ™·Ϊ‘ΰϊνf ]sπ9'Δ‡[QεΛΌGΝ*Γ ~φ’ )ϋκ¦ςo}[ϋ««g•gŸΣŽkΟΖ?ͺκ΅·½!pŸγž‘ΧέΎ"Z—„έŸΰoύ§Ζ}΅·=ŒmKfλ­wƒΛxf¦β‰šqΧh{%ιΖ]+4χ₯ΠηζkΨ@@@@ Γφfx™ € € € € μ 4aOτ{£7Λ΄+ ‡–«ϋ%J笙}’c{7h]Y:ƒ“&H:ΟI Š―V.)ǜ~棃ڢέ/΄€v…Θ/Φΰ>½tΎ…ΩtNgΜΠρΊν:¬!šHφξ…ΕκΩ-OΟΏΠyΣΗΗthσφ0ή8G©K"οΟ<š6q{%εΓλυάΟΥβGήύ˜ΚX!χγΪπΒCͺͺsΞ\Ž € € €@μΝ€"2@@@@ˆN€`ot^œ\€`opφp'w.ΣΌ—W9‰]΄‘@‚οΟcοΣM#™ΙWυό‡΄Ά&ΔΌς+ΝΚΙ“μπ‘χ–˜U’#_99D‹μF@@@ #φfD™ € € € €D#@°7-Ξ %@°7” ϋœ hŸΔ#ΐύΧ"€ € € p‚½ '₯A@@@@Hu‚½©^‘τΑήτ¨SJŒ²pŒ¦OΏQ]Ν`X±7%JΒ ܟ 6@@@h{‚½m_F€ € € € €­,@°·•Α3΄;‚½ZΨdL+ΏBSgήͺ^¦νϊνKτόΒΥΙθ…6ˆM€ϋ367B@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € € €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥb¬ € € € €€‡Αήτ¨£D@@@@ μM f7E°7‹‹ΟΤ@@@@H’Αή$Α, € € € €€ΑήΤ­M:Œ`o:U‹±"€ € € € {Σ£NŒ@@@@(@°7˜YάΑή,.>SG@@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € € €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥb¬ € € € €€‡Αήτ¨£D@@@@ μM f7E°7‹‹ΟΤ@@@@H’Αή$Α, € € € €€ΑήΤ­M:Œ`o:U‹±"€ € € € {Σ£NŒ@@@@(@°7˜YάΑή,.>SG@@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € € €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥb¬ € € € €€‡Αήτ¨£D@@@@ μM f7E°7‹‹ΟΤ@@@@H’Αή$Α, € € € €€ΑήΤ­M:Œ`o:U‹±"€ € € € {Σ£NŒ@@@@(@°7˜YάΑή,.>SG@@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € € €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥb¬ € € € €€‡Αήτ¨£D@@@@ μM f7E°7‹‹ΟΤ@@@@H’Αή$Α, € € € €€ΑήΤ­M:Œ`o:U‹±"€ € € € {Σ£NŒ@@@@(@°7˜YάΑή,.>SG@@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € €"bΞw@IDAT €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥb¬ € € € €€‡Αήτ¨£D@@@@ μM f7E°7‹‹ΟΤ@@@@H’Αή$Α, € € € €€ΑήΤ­M:Œ`o:U‹±"€ € € € {Σ£NŒ@@@@(@°7˜YάΑή,.>SG@@@@ I{“K³ € € € € Ί{S·6ι42‚½ιT-Ɗ € € € €@zμM:1J@@@@H ΑήbfqS{³ΈψL@@@@$ μM,Ν"€ € € € €@κ μMέΪ€ΣΘφ¦S΅+ € € € €ι!@°7=κΔ(@@@@@ {ˆ™ΕMμΝββ3u@@@@’$@°7I°4‹ € € € €©+@°7uk“N##Ψ›NΥJβX/n§™WζΘόPC}“žΩσY„§o娴ϋyΚ5מ΅jwžNoc;›"l#ŠΣςΛuΛ€‘κœΣ€Ζ]«΅tΥ¦(.ζΤ<HRyG²)Ίω†A‰O½ΓμΨEνZ’Ώ]νέn+uΟ―Π·'ΤL_Φ¬Τ’ο„λ•γdŒΐϊ•λ’Ξ§gsΤ±Γ}tΰO:ωQΖL‰ € € 0‚½ £€!@@@@H‚½ιR©Τ'ΑήΤO«ξ=φ―νυEΣaCέ9ύ`K$‘άσtΫπϊ¦ υϊ}TNχmŠ€ +Γ|.£ιΣoTWsZγΞešϋςΚ–/Θ+QωΧϊͺ£štbo΅ΆΥ~Ψςωιv4ήωEλ™β>Ή…Γτεή]•cκ}κθA½_³'ΕGέπ *Ύ«)Χ^pQƒyζ…{œW%’ξ‰hΓ9&ηvΌχ΅³-ΆH¨ΐWΤοΖυΕό<ΏV©nΓ2ν{Ώύ|D@@ »φfwύ™= € € € €Y)@°7+˞πIμM8iz6h‚½Oš`―˜4”Ϋ½W{=~UŽ{ΎŸkwέg:j–μΝ1+χ~zς3½²/U£ +ΌN3¦OPΉδτεzς₯·[ΌΨ„ά³κi-^SΣβωιv0ξωEι™Κ>ΓnΊ_cJ‹}†Ψ°w½V=ϋ+νχΩ›ΖLpΉ¬Π<₯Ÿ™Πό…}tΝΘ‘φd’φFχΛ£{gή¨žζ`ΤύmΠ»3ξϋΪΫ[$Pΰ+ϊς·]έ. έδ±wžUνVΒ½‘…8‚ € m{³­βΜ@@@@D°—› {‘˜m\ΨN·]ήNL(·ρx“^;όyΨIυοΣ^³Ύβ φΎΏϋ¬žΪ›„ ―(ΜJž•£JtΎιφΤώwTυnΛ+²Œ˜¦)γ]αΗέΏ{ZKΦeX°7ήωEιι_ŽTω\8껚<Ϊ³’νq5œθ’ξ5w.7+;·O•yD5ŽΌJέ;kRlΑΪDΤ=™Αήxολ¨ 9ΘςΏ9K}/οξ>ωˆώΊn₯NvP·’1κυ/žύ‡΄oρSͺkˆ¬MΞB@@ Σφfz…™ € € € €μ aG {c@γ[`xqM/4I`}΅›?Υ+K=˜ά²©šqC©=°š7gkιϊC©7Θ8F”ισ‹Œ¦HΧπA 2ΉΊΖΥZυΜYqο›Pei³uXkŸϊ‰ͺλ"k-mΞJb°6¨A^7{₯μΖΊ›ώ§›{ΝϊΑ _±—ϋ:hΨΩ¦_ΥΐΈΝ~¬aόνkοΞ#ξ}MCώγfurjάς²vώi›ϋ?@@Θn‚½Ω]f € € € €@V μΝΚ²'|{Nš6 ^Υ·½*Ίž§Οœ 횜ξίš4Ÿs§gJνtΧ°υh/3‡ΏΨ½곎ξoψL§έ—΄7m|ό&Νέ¬ O[‘,ͺΈ]Γϊζͺ©ΙqMNŽNξϋ½V¬ΫξΨimvSΩ·nΡεyηλlΣ9]Π­X½<+·ΦνΥρ“gšΟΟι(yw™ %†}Tά¦‘%ƒΤ;ΏKσω§OԞχͺτ֚wšχωn ΣΈ{ΎKΝΨN^§₯’ΖŽ«Pί>ύ”{‘λΜΖc{΅oλ:­X³ΙήΡ£Έ\_Ήb€zυϊ’ωσξ=ΥΩ}žNΧ‘ϊΣΑλ΅ΆΪΉΚpόσ‹ΞΣ9Γ"•λ›8`Ίšq6ž’=―†[΅³z…6lχw,ΡΨ»G©Λ…Ζcίmjθς²!κ{YOw£'uhϋz­[ψ†ό―tφ~»@cΏΏ†\v±Ž¬F/ΎιΎ' 'κ‘ι£Νευͺšχ°6μίRδg”˜Z²kέtͺV+Μƒ\άcψΝϊζΠΛμ#Ηw―4χ««–ΡΧ=HγQ{c{aΉ&VŽTq?Χ<€“ͺί»C›66θͺΙΤΛ ­aη2Ν{yeσ £Ÿ_όχ΅ΥylΟmσ°£ήˆΌΏψξΟΐ"οΟs…υ3šχΗ晣.ζέ¨Oλτϋ—^ ώlζWhψ«t‘rτiΓ6-~m΅³ΓŒάξ4ΰV ©ξšΫΡwτή’ίΚσ―IoΜPΡW ½σϋ£ή[φZσqράβ1]^¬Žζί¦¦œφΚωδ€ώηε₯:κ9Ÿ € €d Αή ,*SB@@@@–φΆμΓΡΘφF攉g]7¬£&υͺχZ r―~m΅°iρ,­άμ^‘ΩΡδ•7όHΚϊΩ{Ά/ΡΌ…™μΝυ ϊ~ي±KνZͺχΧΉίΙ—]«a*u}ΔύνγτΑKΟΚ_ β»šrνUή3O˜ ζXπ… € €@ζ μΝάΪ23@@@@!@°7 »£ ΨWF<°O{ΈΤ΅ϊrΞΣΥωνμωύ­ξœΪ$Ψ«σ4‘8Gέrd―žΫ«WŽ.?ίΊδsν<ό™Ž›KL3φΧΗfωήWƒϊλ:ΝχΒ7kp΅bο9©γ₯4°Ώ}Ήo˜ΠΫβ•£oSŸK:κμgMΊ Η`χq…‚λk7λΘί?V»vfΦWN“>άΊJk½ρ«ς»g› ¦7Τ{Π¬(»οPƒ:χκ―!ΕλΜχƒλŸΧ+onjώlo8‚–Ξυ΅[MΏŸ¨Σ₯½TΠΏ·: φž>vP‡‰τOσέ{φ+1+€zΖqRώ—Vow3žωYγŠΦΣZΉς;?Vi?OΈϊΈvoά¦³boΧώΓu…Y)ΧυuRΥσgj­''Δ£ρΐfΥΤU§>ƒ4ΈΏwXηό܍Eυ£τΦGT9ΔΥή‘]Υͺ;u±.κ W¨ψΨf-ψΩsφΚ£ΦJ²W ’ΛKŠΝ1ΏρFΥ£tεM&άXκ 7¬2χΓ ΏϋAWλŽ'ξRo»έZ-ΰ ½oo{ƒ―ΡΤ=`xίPΟ‚σšθλξ £š–NμΥ¦χΆιT§>iήg6B½—4ϊ>M5Θ>Υ·ž«‹5ρ‡χ«ΨωΧ†RU­ηXt?{˜πύdΎο|κ€ζ\-_¬ϊ-K΄|˜{~Qμδόoš`οε`ο± ΏPνϋϋ̐z©ο€•ίΓήΗt`ιύυoΎϋ FLΣ”ρC½;O˜wΣΧ»Ι»“-@@2K€`ofΥ“Ω € € € € €@{#@β”°{ΓeΗ ζhφ¨φ*0³ μυ₯ψ·’š|™ώL‹ΦœΥͺO|'εS^₯ξ5IVδ5xθΜ·Χά²©šqC©½³ζΝΩZΊώο ΞOΕυƒ»F«³½ο°ͺ/ΠΪΝήσsK&šΥKG»W/­Ρk<­]Ξλt΅aα―T΅έΫ† ΛuMQmY΅Ξ^‘vΨΨΫtQΓϋͺzΧ“†υ68ΨGΗΉƒ£υ[ιωEλΌέ[QΝ/ΰj³#ΟώΧkΖ=cέAΞzU/œ«΅ξ±ϊ½ηf…cΧͺ΄ ;—kήΛξU”ύ<ŽlY¦­lEΩδGtM‰+Œ4(έ|f$Γ4ι‡χκ …OνΥ†7^ΧΡΌΑA\WΡ|/ΠΈ™kpΎuM½YΉτaŸ•KGήσ˜Κ݁η€{₯₯n"¨»}ΉΓ7TνBvΑ΅Ξ{}Ϛ§΅x•ο³Svηl]3Π΅ͺtTύG0Ώhξkη8cznC"?{±έ/±χηΏ£Φ֞HήKΞΪξ^eή›kΌ΅/›lκ^βͺϋsl±γXp±φVhάΥ—«£Y½©…Σ<‡rr:κŸυ›΅bΕ±]·ΖUmOΛαzƒ½'UχΏk_mΉό‰ΊΔΊτο›υή―«τ/ί~P=Μ*ψRπ`oσ‹&ΣάΏhb%ηϋήΑ7@@2O€`oζΥ”!€ € € € €@‚½a€8‘Αވ˜2$‚½r1₯γͺ―;«φνύJίΎ³ΊζYΑQiχο7Aα=ήœΊS;΄ψΡ_ΘqΤ{žίVnαΥ2τJ]φ₯|]rAιάY3η΄οΤSΉξ@j¨ΰd4HΏn]cΥ‡OΘΟΞv+EšψΓUl―–[―΅σVυ~sΐΡΆ‚ύΙyΗρ#ο-‹Ώ \‘8θ˜ΓμPv½ŠRAΏΛά«/K§OVύ‘Ϊχη­ΪΈέR ΣTΨΓEcοΧ-#]+vͺž――ΏγΊ&―BSgέͺ^Φ§χBΨλ 2šΥxΧ/WέΗR»U±Vς=±η]½Ώί±Ϊ’#@*ˆλΣ\ΙΝzdς¨ζ]§λj΅gο^5ž2λυΆ3˜ΎSoα ‡† ΡE€lξΖwΓ9ζΛ4οε•ΎΗΝ'o°χ°Yχ'Υx}Ξ*Έ™jpΎ΅3ψнAΗAί>έ„όP λg=¬AžPφ©zνΩ΅]»7/5υ¦o?z―ϊΊW>v6Ρ°έΜwaΰ|η„ίξ¦1ίϋ±†υ±VΆ=κωimM7U~ηΗ*νgν;©σgj΅s‘ΰΤέW<~a―υ}6ΝΏG+s0pή{>υMΐόœm·μυgLΟ­ι·xϋ‹φ~‰·?3/g­Cό‚@°Ω;W>²ρ½ψΪU~ο)•ΪχϊImZψ_ZΉέρώ ΦHΈ}ω%*άWν›Μϋ.‚―v99ϊgΓͺ>ά!Άλήυ»‰#θΣsŠ7ΨλΩc~~\£?Ώτ‚ώnοϊ²Y±χ;Ν+φX:Gύ›γ\6@@ΘR‚½YZx¦ € € € €@6 μΝζκ'nξ{g™Φ-eA°·ζΝΗ΅tύže*ΠΨοί―!—YaΜΓZ=η'Ϊx"Δ©‘v;t!B²ΞK‡έϊˆΖ ΉΜήuhγ"-xΝwUWεUθήY·ͺ§9Γ'8ιhΔ€ly~Ž‹œ›ŒΩμ•vΓ7 }W쭚gVχάo: ΧvΈγΞq†Ω.5M£]¨ΪΝοiΛϊwšWβυΧkΗͺ•ϊΣώ³Ίκc4l€ε^/ΟJ€ašoρpα(³:οhWϋΘΖω&yξ}ΒU7ηͺ¬žFΌc’b­»έVαMŸ~£ΊšΙ=°~†΅755aνAvXΫ<O™η‘ΞΩ€ΤcΔ4MΈzk"ζω}€ηΦwZa>Εί_tχKόύ…―uˆ)›χΟTσώιe>±Y Π¨™“μχQ°ϋ:D+-ξ.0+[Oq―lέβ‰Žƒ§w-Χ’ƒ—Εtέ“/½νh)ΊΝόQͺο—mζ ΆξqνέuΔυΉλ( Ύε:ΩΏCπρϊΰ₯ggμΉΉ6@@Hg‚½ι\=Ǝ € € € €1 썉‹όφϊdλΗ φφ>EΣ&•ΩUυ¬:ͺΔ₯“g«²ΔŠΡJΙ Ι:ϋφfƒ'#ω³χΡΜΟΩwσvΨ€§δΤ¬ž――ΏΣ|Ή½α žͺΡk>­]ցpm‡;ξΫKLŸJMxΊ„§OοZ¦'_ς¬Ξλ]Ε·εΥ`#μ9ΊZΉ££ΖΈƒΎ‡‚x%’ξφΘςΚuΗ¬;ΤΫϊPW­ηžZ £φΎE`ο|vΌ>[oTςixπM©q₯½ν}Ξΰy"ζΝ}νgLΟ­Ο¬Βˆ»Ώ¨ο—Φ}/9Κο~L#t1»NκЁFτqύ"ΒΎͺηυλ›œ§Ζ΄έ£lͺ¦έPΥ΅ζ—&~³7?¦λζY‘<Ξ; ΈUC*†7ŸώρΎ•Ϊ²ςš?w8YCΎξ Ί«ξzoΩk:Σ|Τ΅‘;τf}«r°ΪŸ;kvtNΧθνg~%ί'Λο">"€ € ζ{ΣΌ€ @@@@’ Ψ½W μ 4ΙΚ=Ξ`ο‘szhkψ?>ϊͺΊ΅W;ΓυΉ–όρS½νϊ{δΙεΛ―Τ½ξU##Z₯Τ`<]»JOΎ°4δψ +¦iς΅ξ`Φ‰­Z<η— ΊΎ―ωσρƒσΟjΫfΏ?λξθΛt Υ‘7y\ΥσZŸζ†i¬{uEžλκν9ϊ 7Ώ γˆΐ3wψνš1i„λrgpΧέΰ•γΠ„ύ]ŸTiξ3―ΊVΜuŒ-θψΓ:ΰθvzŒ­U>½«uӏޫήfiΝ„{͐Fήσ˜Κϋ[HηWπ=c’⨻έM‘&ώπAw·>ΤΚ9?Υ¦HW™Ž ξE£οΧ-£ŠνžNο]£'Ÿύ½νϊv΅Ύύθ]κk/Oκ»’tBζηΈ7ΒέΧq?·ŽYE²™ˆώ’Ή_βξΟaτ9laΉCΝ³‹ϋΩ·Ξ;eώ»θ YΑω§+8·ΠL‹‡zιόΟπ=x¦qŽšϋ<Φλ|[‹ζΣW5π?nSϋ’ƍΏΠΞΝϋܟϊͺθζϋΤ£›λcγ–—΅σOΫwώ²†}ΠZ yΞs²8η @@L Ψ›©•e^ € € € € R€`oHD!@°7 ¬L:υβv*ΏΔ;‘O;ΆΣ·Ύ’£ΦΏ7ινωΜ^PΠϊψιΩΟυξ±Ο­MŸ―V φζλΚό/Έϋ=«³.Χ¨ρ#]αͺΓΥZΎΖ€a/4+š―³ŸόU»jόΦ>tŽiΞ9΄½J59¬sν;¨½Ξκψξ Ϊί†,υ&(9ΘJš“OνΥΖuτΑŸ’3ΉέΥ₯[ϊ\^¬Ύ%ύ•{j«>ϊKί@V”:Οj²ΦΨu’FU«ΧŎ)oθp}­b‚ϊzΖa‡ δE5?ΣPLžΕ&d|sΘXu[΅ςVhΣί€―OPeΩ kφ—ΟŠ©α<Βχ4ΗΟΑί2«Κ~΅·iα€v―_₯-΅Ÿ¨xd₯χ³VfΌ₯» +^―η~ώ«€UtRwχ ½+ͺšΗj΄qk­>QŽΪ·oΡ+΅«Ξ}b,uχ»·κwš·–κD·rύΫΨ;tEΎWΚy&d~~}'υΉυN#Β­8ί¦—hξ)ΞώβzΊ5Ρ<ϋΕΦ/Ψ‘^©±v…ζΎπF„V™uZώ7g©οεžσ1ωΓJ}ΨpV]――/υρμ?€}‹ŸR]Cΰά FLΣ”ρξ_±›`ομυϋW+πBφ € € Ζ{ΣΈx @@@@b Ψ›Wω μυυΘ–O£‡tΤ­ωηE6έ3Mš³ϊœjύΞ}•i£—ΥΖηZfVμ]ž„{Kο|L•ύWBυˆη£ Ϋ.0a[Tٝ³uΝ@+Θψ΅gΥΣZl…ƒ=_ύΗhκ=7ͺ—ηs¨ŸΑ‚½…c4}ϊv8Ϊt Υ„ΜωχšσƒΜχͺ–Ϊ‹f~±zφ0«φN6«φvφ–Ο'kUΧ…fUΧ£ž½α¦ΏmX¦½ουZ.=†OΡ΄Ie^’c΅ΰg/ό2ŠχΆ@@H‚½ι_Cf€ € € € €Q μŒΣƒ μ ΚΒN€όb ξΣKηηŒ¦s:sζ„ŽΧmΧ‘aΝxΘ ‡–«{§ MητΙGGυώvΗ*Βρ4œ„kν±^bΖzΞjόΫ»Aϋ“`’„‘§\“iSχ<σ,\αzšΞœΡΏΌ£C'ΒsΆΙόZρΉ΅2ΌΏγο7+φΫS­7ξηξπw@ζžρ…~_ΣE—tΦηMy:­όI'?Κάω23@@b Ψ«Χ!€ € € € €@Ϊ μMΫ₯Τΐ φ¦T9  €@2LHyXIrΞ™Df_9νsτρΡm«9ΕUι~κպ㉻Τ۞Ζqmxα!UΥ¦ϋœ? € €΄¦ΑήΦΤ¦/@@@@H ‚½)Q†΄Αή΄/!@ˆP  β»šrνUžν{Ϊι]ΛυδKoϋξΜΈOV1H΄λ¬‚AΓΥ7bΧ χΡOžύMΖΝ– !€ € €@rφ&Χ—Φ@@@@@ φ¦`QpH{Σ°h @ &‚Σ4eόИmά΅Ls_ZΣ΅isQαuš1}‚r}lVλoVλ­ρΩΙ@@@ ¬Αή°Dœ€ € € € €™&@°7Σ*Ϊ6σ!ΨΫ6ξτŠ Π**ι‘φgΟκ\έ·οΠAŒβͺ4<5ΏRSgNR/χΠΧhwυ2Um>”†“aΘ € € ΠΦ{ΫΊτ € € € €­.@°·ΥΙ3²C‚½YV&… € € € €@› μmS~:G@@@@Ά ΨΫκ™Χ'ΑήΜ«)3B@@@@ ­φΆuθ@@@@Z]€`o«“gd‡{3²¬L @@@@6 ΨΫ¦όtŽ € € € €m!@°·-Τ3―O‚½™WSf„ € € € €@[ μmλ Π? € € € €΄ΊΑήV'ΟΘ φfdY™ € € € €m*@°·Mωι@@@@ΪB€`o[¨g^Ÿ{3―¦Μ@@@@Ά ΨΫΦ @@@@hu‚½­Nž‘μΝΘ²2)@@@@ΪT€`o›ςΣ9 € € € €΄…ΑήΆPΟΌ> φf^M™ € € € €m-@°·­+@ € € € € Πκ{[<#;$Ψ›‘eeR € € € €΄©Αή6ε§s@@@@h ‚½m‘žy}μΝΌš2#@Y hτ}ΊeΤ 3…γͺžΦΦ€σl;ψδ•λŽw¨χE‘χiΑoΧωζ €d–ΑήΜͺ'³A@@@@φF€Δ)aφ†%β„tΘ»Z“n£nηKΨ_₯_ΏG`$Ώ\·L©Ξ9Mjά΅ZKWmJ7 Ζ‹ θQ6E7ί`B§'>υΆά±‹>Ϊ΅ΔΤV{χ…ΫJΔϋ%ΏBߞKu»(ΗΧΪ.­έ_”‘ž„ϋ3²ŽCΥMΧάσ•υοbN¨WΥ kCm¨sُ €ι.@°7έ+Θψ@@@@@ j‚½Q“qA‚½APΨ•ή…c4}ϊκjfΡΈs™ζΎΌ2φω$²­ΨGΑ• BίΥ”k― QƒyίΜ‹ζ}“ˆχK"Ϊ˜‰{G^‰ΚΏΦWΥ€{«΅­φΓPg&tΰoύ§Ζ}΅·έζΆ%³υΦ»‡Ϊ~RKBvŸ%eΒmΧhk»΄vI‘MΒύχ8‹'jΖ]£•kjά΅\s_z;ξ&i@RS€`ojΦ…Q!€ € € € €@φ&7‹š&Ψ›EΕΞ–©ζΡ½3oTO3ί¨ƒvώF…ΧiΖτ vπδ΄ žΡ:N>σ‘™!΄z`Ξ=fήwΣΝ εfύΰψW(χ+gnΩTΝΈ‘Τή[σζl-]Ÿμ΅s 4φϋkΘeV—υͺšχ°6€κ ž­X»‘ώ]³fρ·Φviνώb-mkߟ1³\Sfέ‘λϊ[΅pΞ/•ͺ|¬Sδ:@φr € € € € €@Φ μΝΊ’'eΒ{“ΒJ£m)ΰήΤoYMvΥ°―RΟ<λΟ=›―SυͺΩ΄ZKW_¨βv λ›«¦&Χιφχœάχ{­X·έ±Σ³Y’±wR— stzίmjθς²!κ{YOχ 'uhϋz­[ψFΐŸ”οQ\―\1@½z}Iέ.ν©ΞΉ/9u\GκOwΧΪκP«dΣΈ{ΎKΝΨN^§₯’ΖŽ«Pί>ύ”λn§ρΨ^νΫΊN+Φ|lΖ8F]:šφ?­Σο_z5`,vΟωš4ώ*]¨}Ϊ°M‹_[νPl?β›Ÿ«ΟΑ£oΧ•ŠUί₯y§OVύ½ϊσ»«χχjG~UΏo›φΖρs_ψ­š7LΧOόΊ.1«6tπzcΥ¦ζqΈ6’©ƒλΪΦs)n“Ίϋ%ρc‰yFΩΟ@Σ©Z­0ΟXcήz ΏYίj§Eu|χJσ»ž©DΤ!Ϊ`oτοχ„ Λ5±r€ŠϋΉζ!TύήΪ΄±AWMž ^洆Λ4οε•ΝΡΟ―›ΚΎu‹.Ο;_g›Ξι‚nΕκ•ηj±n―ŽŸ<ΣάvŽy—yw™Φn ϋ¨ΈMCK©·Ο3{P{ή«[kόž―ζΝFΎYύx¦kυγΣ{ΧθΕg΄ž’§ξRΣ§gtAΟ>fœΦϋύΈv¬zSwώ@•j"‡ήςϊb­x©ό[ίΤΐƒΤΥΌ/OΙ~o6ΨͺΥ+΄a{ΰΌμ‘ΖPΟcv±pό»ζ_gOϋ­ΣS‡₯Λσ·QΤuˆώ>‹ώΉuΜͺΥοΟθύsŒΦή,»sΆhύqUΟHkCύ/…|F@΄ Ψ›6₯b  € € € € (‚½‰’Μξvφfwύ3rφŽΰMKσkΨ΅B―Ύ,»ϋ)]3ΐv4ΠΈkΉζΎτΆc{³π:͘>Α" <άΌη@•ζ>σͺ#¨V€I>¨+ΦΚ§~’MuξΓζqΛΏί₯"χϋ0ΨE»Χ<―%~!ώΨκ`΅Ÿ‹=Ύ(ο³`sJόΎτ{ώβ6ˆ¦1έg±<·Y΅Ιύιx#ϋχ/°E£οΣ-£Ωφ˜wΚbŸwJΰωμA@τ Ψ›~5cΔ € € € € §Αή8Ήά ΨˍqŽΰgn6kΫΞΊ°`°JK\ΑUλ؞UϘ‰ο*Ό…#nΦΰkΕήsRΗK5h`»™A³ύΥΤU§>ƒ4ΈΏw…͍ K«·{΅ήΟιcuθπ!ψ°AT'υμWbVζτ„γNΚχ:χ¬‚τk©―έͺ#D.ν₯‚ώ½ΥΩφώR2α™ΙξπLπΉkβοW±v; /<€ͺZw_1ύˆg~&:Σ‘σ½2«ο;ά φvUήE*κΣSAάs8u‰βΈw΄‘λΰ φF_χθηW؊uο1όvMž4Βάs'₯`!s'½}±κ·,Ρσ‹b_y“ £—ΊžιƒUΟλ•ώ+*_­;žΈK½νώj΅ό'τΎ½Ούi7ΰϊξώpœjmFύ~1«ΣzΓΛ¦{΅ι½m:Υ©π¬JλκΔχώm~WŽΎM}.騳Ÿ5邃UάΗ¬――έlή+«];³t΅υ•Σ€·ΖZΟϋL*Ώ{Ά P{ή[A³RωΎC κά«ΏJ‡»3ί7uzΣΏN`SΛqξZξ6Ώ%‘~skεβέλΧλμe₯ΤΗ»ͺχ³κξΙC4Δ2yσq-]ΏΗτήM•ίω±Jϋy~aΰΈvoά¦³boΧώΓuEσ/œ4«‡Ξt¬kβw±αsφ­s3k›l€Ϋσ7RΔuˆυ>‹νΉ΅V±Žν=ηύιπpΪ†ϊ Ώw‘‚Σ4eόPϋςTΊ·σa@β ΨŸW#€ € € € €@ μMΓ’₯ΰ φ¦`QR|~Akeήyfe^ΟΧ•γοΧ„ξΩ±Zπ³βKyζOΓΟrύiψΏώŽlY¦yWu-›όˆ)q…{ύmΓΖή¦‹ήWΥ»ΞU/]#u†άκ·,2αΗuž)Έ~ϊυkβrΪ°πWͺrώ yσgΉ―)κ -«Φ©1―\Sfέ‘ϋκ½zkΞkΫ o“Ή%·iκδ‘κlν:Ό^sώ+ΗκΒήσ’يu~Ξ Œͺ/ΠΪΝΎU*ͺΈ]W~αˆ–Όξu‰ι:‡cΠGqάe¦ζ€VuiΕΊT|WS½*š[D!WŽ΄•ώΧkΖ=c]+fΧUλΉ§θ¨γZη=α_ίXλΰh^ wψœμχ!‚χKΑˆ©&τVκΊπΔ-Ÿσ w0Ωμ*™¨“G7―žθωε–MՌ\}ΧΌ9Ϋc}ŸAŸΩOΤξνzyfsΝXo3cνj_T£ΧxZ»|J'ΟVe‰+μ]YΩο$λ£ΓότήUzςΩ₯&1}YΑ|‚«}³:ϊOΜκθΦyΣgΊV5?²ρ½ψšYωάyΏ¨^Υ ηjmσ/[˜0ζ=?0+»Β ;—kήΛUΪcC\lǜύλD¨υv9=Σνω‹E):8]’ΈΟ¬!Ες^j³ϋΣααβ οŸ?{ω…ζB¬―”Ί·ύΚg@ˆY€`oΜt\ˆ € € € €ι*@°7]+—Zγ&Ψ›Zυ`4 π šΤ«jήΓΪ°ίΩse»z­5Η«}Ž;Ξu΄2pβ8G ΜΚ»f˜ΐ[i6ͺ£ ύM7‘b+΄oŸ~₯―ΟΦΥ-οL;ewΞΦ5έΑ9Ώ1ΛL¨ξw¨UώvΘωhμχΦχBΗϋͺžΡ―Wψͺ쨐c3ΖλŽαœΓ·IƒάLΈK+Φ½°BγΎ\ΝjΧM3 Ψ““ΣQ¬ί¬kWo 89δŽ›ω°Ϋ«;Χ›•¦φYizδ=©άΤά²dΆVΌΫς3άMΘ:4ŸαΪwψξσ1‚kKΝ/TΊ1`ΟσgκWωώ€σ™zϊtθψΑόœ‘θƒΆ¦Yη8™yY‘ΧyN°Z8ο0+μΎa―°λ³gΣιΆ}™ζ-4ΏHα³o‰ΩgV6‘φ;Μ/3τ6ΧylΌαM(s―ΒξΉΦΣυΣ„g˜€°υΎΦ‰­Z8η—²ώypŽ-š:8―‹ΥΕŠΟόvš9Ώμύεϋx›}Kγη/3η}ΦBb½ΟΒ)ΔsλΌΟZυώtxXcιίΏ|σ T3ΓόUXN@@T Ψ›ΚΥal € € € € ‚½IaΝΊF φf]Ι3ΒΞ Ι‰ΝZ0ηΉ€y½aΈγζΟ­?iώάϊ‡Α]my‚a':ΞQ°ώǏΌ·H/ώvOΉ…WkΘΠ+uΩ—ςuΙ€sguΜѾSOε^δ:5hߎvuj‡?ϊ YhΎ₯/ίUy«ΜͺΌ―ΊWε½Zw…xF’―ƒ«ιζοαξŸζƒl„½Φ «ίoBξ›‹ƒύ’‚ΒώϋxζM°Χ –Ž«Ύξ¬Ϊ·χ›sϋΞκšgΝEΪύ»Η΅dοΛNŒ8Ψλ WšΥy§»Vηυ>§EΊήΌK™w‰gŸχέ| ’σ=βωŏΨλ,μ½bŸΥ&ίφω‹E+Β:ΔvŸyέsΫ†χ§Γ#Τ;Φ;«[{Cΐ°@Μ Ψ›9΅d& € € € € ‘Αή‘8­E‚½-ςp0œAσ'ٟ{ζUυ›‡OθΖoεZŸSmy‚a>Η­ŽskWhξ oψžβ8ξίFιM¨²Τ΅z€οEΎŸΆ»W tξv΄« έyͺwΫt³ƒ‚fuΣ ΅&X1MSjŸζ?Fο΅ΡoΕ6ΏMšυ=]‘gϊ;f‚Ω? fIŒΧ9ƒΞ=Šγ‘Φ‘u],­Φ­{πϊ$q―£F:ΆΡά3/ΪaώŠοjς΅WΩΧoY€ηω†κc«ƒί<}½όNχωφZgΘτΈYψ!ŸΥˆ­Άœα[ώ㝟³ν–Wμ-ΦΔYχ«Ψzf#ό Φ^©Y5Ό½jx°γΝMu¦[fέ«"3―ƒχΎχμσ†‡Wwv΅ο½ΖzGΊVt΅‰q±ΗtΞΝ"m»α[Z=±¨9ζκΉ§‚5Ϋ}ζj)ϊηΆ οO‡G€ώω{εΏ]3&°w·dκŸ@@ }φ¦O­) € € € €$H€`o‚ ³Ό‚½Y~dβτA“Ζ]&hϋ’_ΠΦΜωšοΌ ²~ΙG σCsτ4”κxΙΝzdς¨ζΖNΧΥjΟή½j¨ΑωΦώ`Αήhκΰ[ΏX]솽WόηњŸΣτω‹…(Β:ΔvŸ™Ετάϊήg‘Ώ'|―‹ιώtzDςο_sη{Ζϋμ9‘] € Ά{ΣΆt @@@@b Ψ«Χ9φ:5ΨΞGΠD'̊―sW|-½υUΉΜLχ€Ά,yZ+ή=|ꎢBNβψ03†1φ€CiΑkΎ«‰*―BχΞΊU=ΝΘ‚φ’έΰqμ5νN5νφ²vŸ… hΤΜIv?ΞΥWΔ΄ϋόΌaΌθώ΄wŒΧ叙.Ζ]ΛMόmίω†ϋ3αQΦ‘υ]άΣi…Ί˜r§ΈWΘυE ύι΄1ί<τι!Ž2«σŽvαlœoλθή'\ΟO°ϋ:φ:ψ Α 6Ψφή1χ΄ ™²C¦‡΅ϊ©Ÿhco=FLΣ΄ρ«m'b~Ξΐ]Ν›kιϊ=Ύ7*ΠΨοί―!—Y!j3Ξ9fœ'šFΌΡ£lЦέPfŸτηi)¨›χωχ^ΈΟΈ”v˜9½0'ο5φͺζσΜͺζϋc­Cb\μiΗsŸyά’ψ3-ŸΏX<"¬Clχ™ΫsΫ†χgΠg1:Ψ’Ρχι–Qƒμ‹φ˜@β5~Ώ½]sœ €)(@°7‹Β@@@@@ Ή{“λ›-­μΝ–JgΡ<Ai―ޚσίΪζ2+0+2>μ·"cG[ή°˜ίΉαΞ qάό Ψ+¨˜fB’½ζήC΄Ϋ|Ό…ς»ΣΘ]Μ'uθ@£ ϊX!gi_ΥσϊυŠMφvΌίbŸŸ3X'm[2[o… ^ϋ 2φλ&ώπAw7 ‚χ(›jΒ†₯vOAο(λΠϊ.^€dΧέiεν΅ε­F³Κνά—WΆ|R$GΑ庍ZΉ££ΖΈƒΎ‡ͺηkΑλοψ΄{|š‘œ+EΧUλΉ§θ¨ί)!?Fpο”Nž­Κ+ήo‚¨―ΟΦΥΎΏ„0ψ¦4«άφΆ;οΟDΜ―Ηp΄δ ΪzVχΆ; ςΝ9Ξ–CΐA.φμr„θOο]£Ÿύ=ǜ?ƒΊyŸ―Cΰ>ŸΰdϋΒϊ…Šζ_|8U£Χ}Z»LίΞωEWoύbv±ζΛ}va;ΝΦ^—κs[―ƒωΎjΫYύώ€ύ1±ίœnιςόΕ"abΏΟΜ/•XGχmv}£ƒ-»sΆh½γ<«­Gw=g#€ €@κ μMύ1B@@@@H°Αήƒfis{³΄π™³Φ5ω%ζ—*Ξj›γΉυ6e­pϋ°YωΧΪcκf―–λ=ΪΌε—w΁!^)p_ξpσξ›δ~χ9‚»žΆ―oή=#άοžUšϋΜ«vΈ8Φ:$ΖΕ] χΩ₯9zμ_Ϋλ‹žΙ™€ο²?~ͺεoޑЍ΄{ώbš}duˆυ>‹υΉm³ϋ3賬 JO™u‡ ¬KZzoDΡ$§"€ €@κ μM½š0"@@@@H²Αή$gIσ{³€ΠΩ4MGΠΔ5ν“Ϊ]υΊώwΕε ΏY£&’kύK)`Κόb]™·ΦYνtΉF©\kΟαj-·ώDτ…ΦΊ‡ΩOώͺ]5fυLGސ™}Šλ[ˆγ₯·š`‘+Αf-5ͺZύΏΪΉω˜ς†ΧΧ*&¨―΅‚¬ϋ+šv=Χ΄ό³Xgέ―b+8l‡z₯ΖΪšϋΒ-_ΕΡΈζη ϋX}ž¨Uυώ ?ο>h©½Τ§h ŠGPξεzς₯·½£ŠιΊnΊΖ„wΛάαέΣ‡7kύͺ•:tφKzΝ( ιοZΝΨκ$uh—f‘δΧ½Ή«6ΨΊbπαυzξηΏ XE7:ψΝΝ»²9p¬F·Φκε¨}ϋ&έ±R»κάΔς~q„jš©ίΉJkήZͺέΚυocοΠωήΑ8οΟ„ΜΟ―οCΫ«Tσ—Γ:ΧΎƒΪ묎οή ύΝ‘loˆΦΡ©½ΪΈnƒ>ψσ_t&·»Ίt+PŸΛ‹Υ·€ΏrOmΥΒG©ύή‘7oŽΊO“G²?\?_―Όι»²} θ;ΥΫΏΧ!ΨΎbσKχ7„κΆjε¬Π¦Ώ™°χΧ'¨²ΜΥ·ΥΟ »~‘ΦΑ.ΆΗ£‹umΔχ™έ‘ωvqŽf£½+4iοϋ\KL°χν${SώωσΈΔω3²:ΔvŸΕόάΆΥύτYŒΈ β»ζ/\e_πc‘7Γ™ € β{SΌ@ @@@@/@°7ρ¦ΩΨ"Αήl¬z†ΟΉpŒ¦OΏQ]ΓMσ„Y­wŽοj½₯w>¦Κώ+~†hΘ„Σ˜pΪ!Gή@™γ|™>Σ5ŸγζΊ{Ν8=!cΗ›>ΧyކλΧs^ˆŸΜΚ”7yV¦4ηl{}Άήͺ6AεD}Ε9ΏΓoΣΝ“ά‘κcj4ΑήΉΞ`―9/–λ‚‚τ™:΄‘‹g:I―»§£6ωiV°}Β¬`λθ{_Υ3ϊυŠνŽ=ξΝ8λΰΣ`λ4ύž Aί9{V=­ΕΦ/˜―˜ή/ζΊcοΣM#½S»± ί|ξΟΝ―μΞΩΊf`π·”snφpϊΡΤ{nT― cσΩΥB°WΊZw˜φΆ.0«u/0«uΌ•Μά<οxοœƒ…x½««zΟ³ή·k²Y΅Χ^΅έg`ήΦκΘ ΝκΘG½»b«ƒu}B\¬v"»Οš‡άΚ+φZ΅Kεη―Ω%ލλΣ}ΗsΣ{Β²ˆηώ ϊ,F άMcΎχc λc­ˆ_―΅f…ξκ`iH›γ<@HY‚½)[† € € € €Ι Ψ›,Ωμj—`ovΥ;+f›_‘)3o΅W)¬ίΉ^Η., ~ΎΑ΄Ζ΅fΡ‹ΪΥΌΪ€KfπM?Έ~‘1ΥUλΉ§θ¨Y)oΚ,W Ϋ—iήΒ•ΎΧηWjκΜIvΨ­~Λ=Ώhuσρά’λ4ώΪ κm­œλό²Vu\_«ž#ΖͺχE&ς²έ\·Π{}ͺ™ηT3O+DτΈ³½`Ϋ%·λ‘Ιž?IΏC‹ύ…φ;/Ž}qΝΟκ·°BΧWŽ ¨Ÿ=€S‡΅mύ›zk]°ΠfτΧ ŸΖπ Ož:hκπςGŒVUΏϊΩ㈑mζb Έκn»΄Ρ7·pP«Ÿϊ©6zVΜυSάupΆΧΏR“F•λŠ>Ύοšo>7Φ»ž¬˜ή/ξ>ŒžͺQ£J]«‡7χ[―¦ν.#FΨο#ο-‹Ώ]Χ|41σ+PΩ cU|ΕΏθβŽ]ΤΩ<ž/ηά<ϋ”W’1γΖjΨΐήΝ»œu{u`Χ;zkΥηnŸνΑίϊOϋjo{ίΆ%ζήυ‹φ:ήΉή9›`οΜ5(ί¬ΔΎΕ8,²ΌϋόŸ]Ϋ¦Ό{+£{±oγ2­xm₯=;?c©ƒ}y\μv"ΈΟ<ΓΨ―½Έ"ΗσQϊG“ζ¬?§Zοž„o₯ςσ—ΠΙFX‡Xξ³xžΫVΏ?cψχ―ΉΕ5γΡφ;­q—ω‹/½Ρ|ˆ @Θ,‚½™UOfƒ € € € €썉SΒ μ KΔ  PP|΅ztΉHVΔιΜGG΄m»kΝT™ZαΠruοt‘Ξ9}ςΡQ½ί γ0ώ~³bo±MPoΟ;‰v‰w~Ή…%ΊόKένϊ©ι}ΤxT»jΒǐ£Ύp˜†}ιRΧ}ςρ1ΨΌ=hΈ/Q>mαšuO”S²Ϋ‰·Ι_sϋyΕ|E/o^dMgNιθ_ήΡ!Ώ_Nh>Χ±Ρ&σΛ7cνγ«šΞιΜ™:^·]‡B„¬Γ•Lpwͺωe {είΓλυάΟε³rΟΉq~°m.1οήsVCŸθΨή ΪnŒ1ΦΑj<.QΞuΒ°ŽΊ±ηyΝWmΨώ©ώίαΟ›?§ΚF›άŸ­<ωX]δώyχc*`ύ…„γΪπΒCͺJfβΌ•λMw € ΰ+@°ΧΧƒO € € € € {³ Θ­0E‚½­€L€œ€γΟέ‡ ՘pΠ°’εœkŠjτ9νsτρΡm«ρ[e3ͺV899Τ=9Σ*Q {Ÿni­ }\ΥσΪΤϊ]Œ¨ζ6'·ΣŒk:hH'wοoƒ<§cm3˜Άλ•ΗΪΞΎ₯žΙΰΘ{KΜJγ«[:›c € ζ{ΣΌ€ @@@@’ Ψ½W μ 4a™)P aƒtA»Ξ*4\}σ/vMsούδΩίLΉ β»šrνUϋ#ΩqzΧr=ωΫ‘œΚ9IˆξI €@ςΊηθΙανΥΥέΣο·~ͺωGRo΅ήdCποX²…i@/@°7Όg € € € € €@† μΝ°‚ΆΡtφΆ<έ"ΠΪ…ΧiΖτ ΚυιΧό l³fUΥ0 FLΣ”ρC}ΎτCγešϋΚHOηΌd DYχd…Ά@ uΊ1G3‡ΆWη3§hΏ›…«υjώkϋ^@@–φΆ€Γ1@@@@ΘH‚½YΦVŸΑήV'§CΪFΐρ§―­4ΡξκeͺΪ|(Δx TTCνϞչgΫέΎCύσΨAν―ϋ0Ψaφ΅Ά@Τuoν ,ώK–,ν"€ €‘ μTŠσ@@@@@ cφfL)Ϋt"{Ϋ”ŸΞ@@@@ΘH‚½YV&… € € € €- μmI‡c‘ μTŠσ@@@@@ R‚½‘Jq € € € €dŒΑތ)e›N„`o›ςΣ9 € € € πΩ»χπ(λ;/9CC $ˆ!`@’₯Њ\Tλω@Χφ§ΦΦou—½κφrΫmΧ½μεU―Ϋνι²ξU[۟J-[νβωP©‹ΰBQ!&!„ @ΏŸ{ŽχΜά3™™$“{fžΉ.ΘΜ}ψŸ{ξ™?^σd€Αތ\V&… € € € €±φΖa_Ό{γ•β8@@@@ˆW€`oΌR‡ € € € €#@°7c–²G'B°·Gωι@@@@Œ Ψ›‘ΛΚ€@@@@@ –ΑήX:μ‹W€`oΌR‡ € € € €ρ μWŠγ@@@@@ cφfΜRφθDφφ(?#€ € € € ‘{3rY™ € € € €Δ ΨK‡}ρ μWŠγ@@@@@ ^‚½ρJq € € € €dŒΑތYʝΑήε§s@  ϊjθθΠ―—Ν=«“‡Žιψρ`³ύσs4d`oιμηj?ή¦£-§ƒ;y„ €@Φ Δ~ίΜt>dϊ 3?@ΐ]{έ΅Œ@@@@R @°7ΘYΠΑή,Xd¦ˆ@ ²kΏ£;ηO1GΪg¨w+bΜ.— Π˜Λ 4ͺψ| ZΣ¦UT“½cζNψβ~ΑZOhοŽͺήq,ΈG €dΌ@|ο›™Ξΐη‚L_aζ‡ΈK€`―»ΦƒΡ € € € € €@ φ¦9 Ί Ψ›‹ΜS/P4Gw.ΌZ9½Οͺ₯ς½΄|CκΗOyσtοΓ_S±ulύZ=υ«%:~^ΞPMΌr„ϊλs§ΣΪΑ5z2£}5φͺΡΚtžΤK:ςι~Υξn ?;ψ<§―rϊšͺ±ΦΟ鳦’l"Ucϋͺ`JΎ ŠrΤίτuΞj£·́&mύ°Ωz–•?yS.Π%SΏ˜ϋΥΪ±γD`ϋθ/\¨ %Ο½NͺζΝO΅§%lsw<Ν¦ςY#Τ―Χη:Ή§Q;ΆνŽ^²§M<“_λœ\Mž3ά‹€“ζώ±½3χΦ!ωuΰLzH ήχ͞^_εŽΞΡΐ!}Τ§ωle>w9~JΝ»ιTάŠοσRRŸ Ίκσ`άsα@@L Ψ›)+Ι<@@@@@ n‚½qSq` ‚½1pΨ…@²₯ΧiΡ’Ϋ4œ߲νe=ρ‡·“m)φyyΣ4ηΚρκ§³j^«Ν;Ζ>>lοτ―ώ›nΌΌΔ³uσ²Εzc}]ΨζiώΝόr‘yφ΄kΧ_w¨ήΣΝ MΊe‚ {O9hͺΔVΪͺΔ†74φK“T:Ζ_5ΆΝ΄Sεk'όΘπη}U:oΌΖωΟ ξoί³_Όη0ηœ!{α υ6‘˜“ ‡u !‘q°}·?Ί`ή$•ψ\Zͺχλ³-ji‰6W¬.¬±ΣF©`DΟΤ:Z³.›Ώνj«Ϋ§υ«›b7ιλΧΩω%κ[;»φv₯]WΆ•]«ΐlθ1Δή7S4Μά\Ώx˜F” ‘­ψ~°σΆ“ή*ϋΫ;ϊRL’Ÿ—ό\`»ηIΙ NŒG €Ω"@°7[Všy"€ € € € €@@€`o€‚ ΨΫ %‡X―”;B—έP$o~·M5&»Ημxγϊ ΖΖ‰ΥΕw”hΈ-±rhλnmίz¬Γρφ7J³fηϋŽ;£ΓuGu’ύsυκužΞΆUMedΠeθδbMΏΤ—šΆΤ¨b»§Δ°―Lω•c‚Υγ}Ακcϊdιn5Ζ1΅œIc5cΖ0Ο‘±Χ,ŽΖβ=$?_W|y”'°5Œmk+ΣΧ―ΣσKΠΣFΛCΫύμ„ ™oθ(dKŒuˆ₯Γ>\(άϋfwOΔώž«―–ͺz}όαᨇ$σyΙj,ξΟΆϋ§”μηΑ¨Γg €@ μΝΰΕej € € € € ΰ,@°ΧΩ…­‰ μMΜ‹£ˆKΐT]0šϊχ–Zw½―Uλ«β:-ΡƒŠη> {ošα9ν“ΏrX›ί¨WdΔ9r(v›N#›wήb*Τ–^2T}zI§Φg5'œσm΅1Χ―ΣσKΠ3&vΆν΄έΟ:}ύ³Ωvυ0ί΄Hξ}³»§ φžQKέ57žΠρcνκ•“£Β …žηA»>[]£Ϊ:ηΚόφχ–x?/Y-ΫΟ‹y_΄έ? φϊΧ„ί €ρμG‰c@@@@@ £φfΤrφΨdφφ=#ΠiάΩχιΑ[gyΪ©x}±^ZνXsΧ‘Ÿb]Oθ²±Φ­zς­Ωεp˜΅© ‚£ΊPe₯Γ:8‘ͺWͺ΅ΏƒbΊ#f”ͺ|’U/ψŒφ¬TMSμ_6F³.χ&al¬Žma}gΒS[@©Υ{_uq°7AξL_ΏLŸ_‚˝ΪΓmχ³[N_υ7#9uά90—ΪAt@rο›έ3–`«ύ‹GjܘσΤψρ5G|&’Ι·ŒSΎχΟ&θΠvσΧΆ8΅ƒd>/Y£ Ψ\ !€tΑήξq₯U@@@@p±Α^/N `o-CO o¦nΌύ‹fͺε­]―ΟT¦™—–«0oˆχόΦzm]·B―.R‘Vζόo[ηχΦρϊ•zιιϊηiόΈ Κυ+Z«U³i₯ήZ±!0¦²ywkζψ\=Ψ$™6ŽΥΌ§·Vn±mτ?œ¦λΏ5_Γš~jΦhCΣHΝ™}™Ζ-τpLu[VkεWΜ²ζkφWοΤ…yύuϊμ Θ/Χh_%·–}Υ:tμ”Ώqυξ'ν]²ήέ<;°³hξh‘¬žŽW―ΠΣΏύ³Z;ΓΨ‚pΙUhΛ1‘”ρήPJλΥολ₯±eή΅8°±Ϊ„nΓ«·Ρ„/Π >ŸλάΉσ”S4D|C:ΪpT§ΟyŸτκΥKgš«r“υg©ϋjΜ¬" άKgΟ}ΎC‡j¨o­Ϊš[uΌΝw’9²Ws]|Ϊ Ϊέ‘aί“G©¨δ| Λ3xΎŸφΦ:Tέ€ͺνΡ„†ͺlήp θužΪ›š΄γSiΒe#4|δ` π ΌνH«νnRυφxjκϊ{ξθwr₯Έ<uίΑώΌΙE**μ«Οƒτ<j8€κΚπPRz­_ΞθaΚ=XCσ*gπυσ_ mν:ΪrB‡λ©ΆΚžΞκόόσ΄/Ξ •―Β1ηkg›Ήμ­λςDc‹v4ͺΎ.όuΰ{ύυ3ΧsC³φλ§β‰Ή>Β?ISQ²ΆI»Φ₯B΄ιοςY4Xƒ››ο§½υ€Ž5›ΪΓΪ[ώšχ•‚ίΆϋYλύΪs΄ŸΖL8?8Vt ϊ vlqώsχ‰―Cςž‰_gvΏDξKgΝ=w€ΉηšσΟ΄©φ½ύΞk››§Ι3ΞW§³G¨βΓCφ~άΉωy»+˜Rdν‘Κ Ήg›k­±UŸ6©ρ sP;ώσ¬υnl¬ϋϋas]„½δ ΥΔ+†«/ o<€[Γορ‰¬ƒχάΤΉδτΘΊ'|‘tι ‰Ώoφ=B.’ήζ³Ε9σΦ«ύ„jVύί₯Cth,oZ‰.Ήx¨gO[έ~­_}ΠwT2Ÿ—";ˆϋsνώ™άηΑΘΎΩ‚ {³c™% € € € €ΨφΪ0x˜΄Αή€ι8Ρ­₯ΧiΡ’Ϋ4’ƒρ5lyMΏ[ϊfδQΆσ›ͺ·κDαϋB’!·nG#‘ΫΩίϊ₯™μ Ϋl©|MO<γΤΟ zpΡΝΚ΅λψpχ*=ρλ?ω‚·εZψσοκ"Η#7Φ,\΅’"bGΑμ{υΐ­³=Ϋ›Ά½¬'πvΔ1 &Θ1σ†" ςlhΣΏV©ή“)€I7NPΑωή#nͺQe₯CΤetΈΊΐΞmί·_›*{λω#eEgΫφ˜€Κ{ώ€Š―Ηό|]ωεQžύΎ-Q΅›σ?πœoΒΓw™πpΤ#CwΪR£νΫνc€yc4ΆΘ^ =ήzv’A[W7*φ“o|Ύμυ9ΡpDνΉη+Χ©™Ά}όb]τud—lI< d58tςXMΏt˜§ν΅ϋ΄αoMτ“άξ1_š¬ρc‚ΑN+ŽktZΏAš|Ηε;­±’ζχαζ ύαΠΞΞOJΜΣ7œ\•Ο+ΦίkΤ6ΌΐΓƒ[kUi#šΧίζυΧΑτd“ZχΞώΠΧƒιοβλŠ5<ΖΙν{φ™Χlχ\sIΕzL‹~ΰ‰=ζυώ^δλ=αuHΪ3™λΜ6Ÿ„ξKM*0χςBίu²gν'ͺΩˆiͺ§_䩞n{Ν½£3ΑήNΞΟ\k“ζ©`Dδ=Ζ―|πo1Ώ=ΟΆ~muϋL 2μΪ΅9·™k{}ψ΅mΫίϋC*]lο!†&5λn[‹yh›sœ•ξ‡N.6ο™ΆOj­ζ½όΥ|/οbδŒqζ΅ηύ|ΩΊk―>zίχΪKκσRdq.θμηΑΘΩ‚ %{³d‘™& € € € €φ-x”ΌΑήδν8Σ₯EΧ™j΄·yͺΡϊGΨR½NUΦkθΈ™šyI‰³*^™^Z]xξyΰpΎ΅½aη&ν=|Rƒ†6,K”μ-ϋwš^lUμ=#υ¦)—Lτ458λΠOΛξͺΨy@ƒΖMΡτ‰c=ηKΗ΄nιΏλ-ήμΤkΏqCϋ™Κ΅g5 `ΊΚΗyΓ ;7šρP―^¦T±υΣϋ¬nZu;Γ‚³fΧτ;~ gMπφ‰ .szvZεΧe7ŒΦ`Ο†“ͺyσSνρ-4™―˜0˜―b°sυ]ΙHiΪZ£Š­½uρ%ήπ_ΫQUΌX«Π¨”©ψ9c˜šΌΦ9C™S2ά”=£C»Ž¨Νl3ΕzΝΟy:sτ¨vUz«Žœ2JΓy+φφΙΝUΑHoΰ«uίai=kΞ9Ο3υϊ\ΗwΤή†`pmμ—ΚT:&˜F\Y«­›Β*2F ΆξkρτΫoπ@_4HύΊ<Ψ›«)wk˜5lPϊψΥϊψBΓ…ωš9”'¨έΆ―AλW6z]ΊψάI…*aUμύ\κΣW…Εήλτ„ ΗmΗ™ΎΣgύ‚Α»φ#'tδΠ 8Ϊ3κ­Α&YP迎Ψ~υ§ΪUη½Ξ:3?kiυ΄ͺX—ΞΏPc ύΑΗv¬j1Υ«Νkͺ(Oω@δ}ΆͺR&§ιύqΈžΫλΐΎSκ7ς|*θ;0t~ΦΖ—ŽSyΰΛ m¦Ώ#:zτ¬z諜9Κ/$Η°₯―Ε”όŠ2Ώ}¦Šp_“€[β½ΣYciΪ²[ΫC«K'ΌQϊλΨ3Ήλ,`θΠ―΅/Ϊ}IS.ΠΤ)ήd―σk4Η|‘cΌο‹νͺ]±CŸ5zKβAgζϊήcuήRη½gχκΧOƒM΅τ#(2ˆ›Δy6GG—φΫ‘’­C‹Ή3ϋΏ8ΘύΕΫvβσΛMαΊηŒ/”+G˜χBσ&ξΏMΪQ"χQHˆ5b2ί΄W³υτg 8™Ρ9Ÿ3@γ”jŒο3ΝΑMΥζKTώͺηΙ}^Šθ'ήϝό<Ρ/@²F€`oΦ,5E@@@@ΏΑ^ΏΏ;#@°·3zœλJ°ΐlΣΆ·LEΪWC~λχtγloθΦ$οτΤ―ώ¨½ζAΨωR­Φ,ύ£Vm© U:GΧ”υΥGΛW:‡)σθώ‡zΒΕρ{χ~τ²ž~>X9wφ]?5ΣΌαήΪΥΏΣs―oφο{”;ϋ>=xλ,Ο³ŠΧ›²mŒG7ΜΊk±L+τlψδ/&Ψ»²"Έ³K PΩWΚ4Κώ5Υ~W˜jΏ& vΑΌI*)²jφJ{MuΘj‡κώaŒΊκB••ZaΒ“ͺ~εSν΅Ϊυφ»ΩΝΊά›8>°±J;v˜4c΄SQψJSQΨ;š“ϊlm½jwο_\ )s |‹MyiXΩμςvqB΅«χθ³Ί`Κ¦’QηiΦζΠ §ΡΖΤαφΎ{Υ*-υΦQVS“Φ-ί_Ϋ!ΑœvνέX―κq v8¦δ˜pψ­ήpΈc8.μT·―ί¨i¦’τ±£ϊ¬&­ΰςRM*σ†C[wν1•›Γf'%4Ώˆ³Ν†x< GκŠω…Ύό\›>[½[΅Ύ±'τ;oΌ©Pν½κO˜?νΎΑ§έΓη£»φiσϋΑθύ˜/\¨ρ%ήpoxΠ}Μά2/Ά{ν&,Ό#φΝ‘arϋ΅λ€ ΡφΨOΨό¬ΚΌLe^ΟΘKKtΡd_˜H³6Ώ±GaQ~‘ρ­CX‰xvκ: λΧΤ؍}_Κ¦©·ŽυUoՎWvι€νςξ_ϊ}!Ζ’Ω•{q±¦NσW Ž|mΪΫLζσ’ηόžψ\`8@2^€`oΖ/1D@@@@p‚½α"Qkͺ$-Ξυ4bώ„ϋ_ε ώΪ΄Ό­mSί5"ΰ)„ΏΒα­Λ/C]φε"ί_L0UΔ·š*β[£_οΑ{pχ.‡Q₯όsΓΨ„ Ή{3wm™ € € € €D Ψ†Ν μMˆ‹ƒΣAΐͺUσF-yμ)…Ηrη|c±Ύ€ΠΜΖŸ4ΑίhΑήΦ­zαΡTU’σΆ!`―Σ8mmμύπy=ύί+#Fαφ`―ύΟ|‡xM¨p¦ zκ͚?kύρ«υΞ•ΝŒ“ ͺ$œ΄WΆ*Ά6ŸS―ήaΤ½ϋhΠΰ>ž‘Ϋl²»LBVΫ^όLφ|vXKΙ?5fW3oU3mͺ N»μAc~šQ’²IΎΚ€cθγ₯ŸE]‹ΐa‰>°9†γΒΪK‡υ럟«Qγ‡κόΌΠ―—tφœΞ™yτκož{σ=μ λ…όιv?φ MΊq‚ <ωz[ΜΆVrϊ“σΆύG«χhσΊΰΥ>Ϊ„?'ψŸΦk©iW‹šχŸΠρΓ'u΄ε΄ΏγžύmΏγόΜθ‚vVεαSy8ΚΨmmE½mΗ8φgΫξiA%}ΩڍχΎZ•χ ©ΎίWlœq΄‘|°w±©Ψk›₯D*ύ:Μ4ζ¦ω“5ΆΠˆ=°±F;v΄«ŽtκψMΎeœς=U“­πœ©ξΉΧΉ©d‚*ρCs4ι–ρ*πŒΓΉπ­€mΑ.5ΖΏμνϊŠ·Φ r†θ‚‰ƒMΈHκ—7X…C ―Ψαψ ―JζΧE&"lΠC»ŽκD›©‘Ψή¦½ΫϋΒ|Ž''·ΡfδŽ kΥνλ7ΪT<ž`«x6όΐΣζ’ήπ·CηώρΟΟFΨο8<ν―›ΪUϊ¬!¬ «Ÿh‚½…1‚½mϋ΄~eX„3Vί…#5s~‘7°ή][›Φ6«fcSΧ__α}ΕznΏjγ;ϋ#^―Α`odεڐ¦mmE½mΗ$κΩ©λΜΦoόχ₯Πkb—ΉnκΝu3tςXMΏΤλ:Ο˜ψž$7Ώ!ΑχŽ#‡΅ωzΕWΟ5ΙσlŽŽsO`ΌλZk­R»ξρ]]tT—½ovΡxβnfˆωβΕ8ί/ΜIM‡΄yωή―uϋ}?ήΏpΰR|.ˆΫ‚@2A€`o&¬"s@@@@@„φ&ΔΕΑQφFasϊ Ψ±[^Φ“Kߎ˜ΛΥKΝ™0Δ³="Ψrώ2sώ;ηwΈΑήΖ63†?DŽ‘Γπom$μ~Ηtγ¬ ήω/\ΛVTt8₯„Θ¦©·ŽUn'Άμ¨ΣΗ[L&¨p^ΕΡ„ψ*χλh»tžγHL5VS¬οδώ“΄Uπ΄»’9£4Χ©Ν£f•ͺl‚/‘|€Ωάφtϊρt˜;\3oν _Ά«~mvνΆΝ§S£Šr²έ¨nŸ6¬nŠr w³«Χ―ΈP_œ;20ώφζc:Τp\'­`t/σ―ί •Nφ^υŽA@sfόσ tϊ Οΰλζ€jώϊ©φ mΒ σ•}e‚FεY۝+φ:ŽΏ£Ύ σ4ρβαΚ+V]ΪΫ{C£6­hθΉp―mόm{Lpω½°ΰ²fΙό)Ίΐϋ½Eω½ΣπώokΛΡΚ:ͺ£c’νομufo7ϋRή΄]r±·’χΡͺzmώπ°J˜/hŒ΄Ύ qF{VͺšΊ.Έ_$;?σΎ2ΕΌ―xbΖ‰{“=/„©._δΉ_:±έΩιήfίΟ:€ΪΕ{%+%λž;DcK©Χ9sŸŒγηΌ^ηιΜ±Vν©‰«$s-JIΏoΖΥzWdξΝΧ–hΤο—’t€EΫή¨‹λ/οϋΆ{z<Γκ‰ΟρŒ‹c@2F€`oΖ,%A@@@@xφΖ+Εq±φΖa_Z Ψ±j\§%?}ZΆzΌž)Νϊڏ΄ΰ²±ζqƒή}ς­έe›©νό¨Υvm‡;>Œ§ŽŽιhΏιΨμ­xύgziu•γpΒ7ΜΎWά:Ϋ³9ι9†7φαΠ©΅i€&\[ͺўΝIUΏς©φ&š!²·œ‚]QzξόfœΎΛœn=¬_­—s4:΄§ώγFιΩωžΠ₯cΡΠΓ»ζY‚Fn^ΏQW]¨²Ro΅δ–ͺ=ϊψΓζP£œ<]vλY‘kΗ  ΩόB›<‹Γ3ψΊ1w9σΨρ«ωWSΥ vΤvGϋƒμ«άΡ•3y»Vq~. ήχ φφΘηο ω@ KφfΙB3M@@@@ μ Zπ(y‚½ΙΫq¦KlXi§^ϋήΟυqΘPΛtΛΏ|_S)Z ϋZ(«(ερκzϊ·Ž+΅=‡cη–©΄x€gΟΡΪƒj:zVΆˆ‹Ξ©·F”εk¨ηhUE“ φζŒ­Wχφν«:ι0DΟ¦Ρ_(Σ„ο8c‡€£΄`p+J+IlΆά’:y¬ Wyκ]κD­©žϋ·ΨΥsΪHx[‚Fn^Ώ`pΚΑί4Aπ°4uˆo” w"σs΄ŽΓ3$ θTΫδ3᱊kεΉ:j»£ύŽ–.ψR™JΖx_gQ«ΰšͺͺε_Μ7q{oEΟ^jWέϋŸι@˜q”.βΫlΏΤͺ―쁐ΠάSΙΈ,²’±SλΆΆCΦ9e§―³(ν:M#|ΫΨ/MRι+XxF-§•;d?΄½VΫ·„Η Γώοyςσ³έχLWϋ?¨RU΄ΰuΘP’?oTpΎiΜα>›SfΎΐrΉχ ,ŽΧ@‚λz— Rw―»έ*ΨkμGmζΊΎƒ ο±[ίk»Φ3όhλyq…Ίxjz=gž™O1§Žjη;ϋ"Ύ~“4ΎΨΠ΅vΆ΅θγλb|Φκkξ“γχIλώTύζˆχ˜π~μΟƒΧObΑސχ­T}.°œΗ €/@°7γ—˜ "€ € € € €@ΈΑήpž'#@°75Ξq΅@H°WͺZρk½°|K`ΘΉWά­Ξυ>oέͺύO…ΤΉ΅Ÿt5[[pΆiΛ2=Ήτ@υΣΡ~«!Ϋ1Ηw.Χ/~R ωΨŠuύ?="OΡbS΅8"άϋδ8φΥΕw”hΈ'ΗΧ¦]ώj ag^0o’JŠΌΑ—¦­»U±5²š]RA[˜ͺ}ί}°ς@XΟΑ§Ή&θ:ΥtU«ω“Χ―Fω“Χζψ ;§»CR€χ‚]uρ£ΔJΦμΥbƒh]#ϋž`Ÿ {'™/όΜπ}α'ΚRμύπ@Dφ&*Ζρ € € € € φ{Σ~ ]1‚½XΡ•Ά°«·ΩcͺXρŠή]ΎF#g]_ΊυjO₯Zk_έΪg΅δ•χC{·w°·¨\S‹¬’~ΦΟit‘ζίt΅r­§υkυڊ i`_λ™NŸά£ΚŠΊPc?ρŒ#ožξ{ψkνiΩΜgΛ*U|Z―3}ϊͺΗ‘OΦhW³ogΨ―ωίΡ]ΧNρl­]ύ¬ž{=Μ!μψDžZΦy– Ηy~b„Yr/Ύ@S§yέΪLwEd7© Š½©D‹©άΈΏMηzŸgκν}“{«%²}¬·΅ͺ~{³šκλμ ~8t rG Ρπ’!ΰTq/Αΰ–Η€Kώ³;†qxWφ`oΧWCτυ–›£‘ΓΌΧ»Lmζsύs4~†U‰Υό4'ΫL€»Ÿ·~σΉφ65ν΅’LΆ―ίθ«.Τ„RoS΅Տ͡΅»]ΗεjΜΕ£4ά0Σq ϊYΣLh~ζψ€«<€ƒ{OJƒxξΧ#§ŒΠ€=ϋυΑ{Ά‹'©σϊͺΔ„w/π…wΫ›«vΛA=;@£.ΙΧθ"ί½ΐ #‘υFΤ#.ΑtΊΊκ±‰ΏoΪί3=γoπ³‹o²1Ξ „²}―75Φή£ζοτ:/TΚfn™ω3؞(iΔή¦-5ͺΨHφJ…#4}~‘†FΆΑ)Ψk«2κμ k’λžΪCXGMeΡΪθ•Emζ˜Κ|3|•ωšΆ˜*ΙΫ#«$ΫOκαhσ'Θ'Ψy¬VŒιfσηΙΓcJ]?³ή—™ͺ²ώπg¬©ΕΊ™_²ž9¦jοS΅Χ¨ui{C£ΆhVΩνθz6Ρ™7x«κ†ΞΟμuξΗΏ΅έD?ˆ ΉXg$φšχχσ·m~1k5Υz_ ­Φ›Τ:Ψϊ υςυΝ³³ΧYGύƜΌd―°lΊΓ*UU…π;h#ζξNΞ/gό(]|₯οΛQ:j3Αήυφ`―9.™σrΚΖhΖεyQz nv\ίDΧ‘‡\ό³θφuχwΤcΏί΄‡^=ÎΠ΅O+²υmq^¬χ{›Φc§λΪL²Ÿ—RρΉΐ?F~#€d§Αήμ\wf € € € €@V μΝκεο²Ιμν2Jr‹€-ΨΫ΄sτ»PεγBC·-»ΧjΕσKTιTΝΆΘTΑ}Θ[·aΛ2ύnι;Ξlϊ?Ѝ³&txœη€}kυΤ/—耩Ά{―©Ά[l66myYO.};τό’f =Υx>2γx>Ϊ8Š5ϋΦλU~ΡoΈrl‰Γ­―L― mΧφlϊWM7^^βΩ²yΩb½±Ύ+’½4~A©ΖŒτώyς؁0S=ο+TθΙL΅«~uv՝ΆP*ΈΌT“Κ¬I4Υ;?M z獙1Rc©_Ÿ~κgΛψ6l¬ΦΞ'Bϊ‘ωΣνγ/+Иbo 9t§ Σ4·κπžΓͺΪz8tWnž¦ί0Ζ n­5!ζΏE 1‡žΥΟB+IΪ«šŠC1lyό\]0½Πό‰zoΤσΰ¦UVΪΞ]0*«‰ΰšΕΡ`σ!mόΛή`°4pŠ{Χ―qΎ&^:JΓl―5Ο°­jΟ•­<ΉPΓΜυϋzˆ~ρτŒuͺk°@o@ψPΥ>}ϊa“©ͺkϋ1Υ„§ή:ΖS υDν>mψ[“m§y˜;ά\ο£½Χ{HhΏ―ΖΞ­ΒΒ‘ξβi‘]MU‡TϋαA‡΅φv‘{q±©ΰν©sξέ`ΝζΪ}{w&ωΏy½N5―W«—ΦΊ&΅φlΖl»9˜νmΝͺY»GMa/€Φ!iO©SΧYgοKΕEϊβ\λλ-Θm{ρ39½]zHξNΝΟκ2?O§ŽˆX?ΟhΪNjeƒͺ*ΎΈΔy—^ I“Γ^Dm'Μλύ˜†L.Pυzy=ψL’X‡s±†œ‚uχΙτΠ―Δί7sƏ֌+mŸ!4kσ{:Ό/…T_ΆfγΌDξ-±ήW‚νΔy)UŸ zhΑι@ΐ%{]² @@@@R'@°7uΦ™άΑήL^έ,›=Ψk‚ΉOš`nqωU*>X½ Ι©£΅ΪΌ%zΨ5«ΤLΈψ>.mMΊ~΅žϊΥu «&››£‚‘Τ§—Ωwξs9}Z'ΣΡ‡c{xSή”]2%²Ξpxpy΄© <ΑWA98dS uE•κ‚[2βQ Χ/wά0ετ·.”ΟuϊΔ)5Φ…%A]κλ@3ΦsΦ ΞιxΓa΅tΣ5“Ÿ£œ‘ύΤ»o/y^F§Ϊutχ±¨^?ΣΨ/•©tL0d»S%Ά¦ «Δϊ; ϋ=ttΙυχφŒυΜ‰6pΩ:φΔu6β•Oφή[Z«χθ£u]λ .BgηΧ?ˆς†χσ¬ŸΞΣ©γ§Τ΄7μ‹Αξ>/¨F ολ½NΜ5έbιP| εyΠ.©\χQJΌ•xί7o9½ΞΘͺΟι΅4ŒΘH‚½Ή¬L @@@@b μ₯ΓΎxφΖ+Εqi#`φn3•pV 7m&’šNΎώ;Ίγκ)¦³CZϋμυnEjϊ₯—€’ΉEΊ ¬ΚpΣ–Ul†LΗ̝€ρΕή*½ž^[M5Λͺ¦še—ΦBνŠ ΡFΦ Ρδ[Ζ)ί_ν·©Iλ–ολΦΰdΦRw8ρ\MΉ«XΓ<Η΅«vΕ}–i_θΠ Θ–uο}3Σ―>dϊ 3?@ΐ]{έ΅Œ@@@@R @°7ΘYΠΑή,Xδl›"Αήl[qζ›3@ΉΉύΤ―_oΧλslhΡΡ`W9…C58ΗT$5%«OΗYΝTR*0Ί@W\] ½ή½k?QυξΣ)Bvw6@£&1•Κ{λόβ< ΟλγεhhΤ Υ›ΉΧF―{ο›™»ζή™ρΉ ΣW˜ω!€ξ Ψλυ`4 € € € € ‚½)@Ξ‚.φfΑ"gΫK―Σ’E·i„™w{³mυ™/€‘@βM™[ >mΉζFmYΩ@΅ήTc~Ύψς¨@°ΪΫ΅©Φ»ΚTλݛʁΠWJXχ”rΣ €Ω*@°7[Wžy#€ € € € Ε{³xρ»pκ{»“¦ά!P4Oχ=τ56£iΨ²LΏ[ϊŽ;ΖΕ(@p£@ξpMΏa΄†ϊΖv’ι¨w6θ³έ&iΝOζ °ξ™»ΆΜ @ μuΡb0@@@@HΑήΤ8gz/{3}…™ € € € €© Ψ›zszD@@@@ ΨΫΓ !έμ͐…d € € € €ΈH€`―‹ƒ‘ € € € € €@jφ¦Ζ9Σ{!Ψ›ι+Μό@@@@H½ΑήΤ›Σ# € € € €τ°Αή^€ ιž`o†,$Σ@@@@@ΐE{]΄ @@@@R#@°75Ξ™ή ΑήL_aζ‡ € € € €@κφ¦ήœ@@@@@ ‡φφπdHχ{3d!™ € € € €. Ψλ’Ε`( € € € € ‚½©qΞτ^φfϊ 3?@@@@R/@°7υζτˆ € € € €=,@°·‡ CΊ'Ψ›! Ι4@@@@p‘Α^-CA@@@@ΤμMs¦χB°7ΣW˜ω!€ € € € z‚½©7§G@@@@θa‚½=Ό=Αή YH¦Y)Pvνwtηό)fφΩκ݊¬d` €@ζδΝΡ=ή£’ΑRέ‡ΟkΙ―Œonɞ_λ… €$%@°7)6NB@@@@t Ψ›Ξ«ηž±μuΟZ02_ _Σ―½V—L§Α½₯3Φ„ϋτUΫUzξΕ8ƒK™ σζιή‡Ώ¦bλŒϊ΅zκWKt ž³‹ζθΞ…W+§χY΅TΎ£—–oˆη,މ&€§”w•ή}ςϋKGΜλωΏ:σzΖ3Ϊ•Ζφ¬ΘΧ5ίώg͞8άΜΈA«~ˆΦμŒgςɞOΫƒ €$'@°797ΞB@@@@4 Ψ›Ζ‹η’‘μuΡb02Z _ LPi–'¨:Ργ•―ιΟΌΊ1žεMӜ+Η«ŸΞͺΉz­6ο<˜Π¬§υίtγε%žs6/[¬7ΦΧΕw~ιua±4Ύ@IDATZ΄θ60G·l{YOόανΨηurœ±wΑήΞΞ/QOLΉΛ‡Π•]ΩV—O”H‘@ωνzπ›Χ*ΧtΧbή#Ÿˆχ=2ΩσR4-ΊA@μ Ψ›}kΌ@@@@Θz‚½Y t Αή.a€θ@ wΖΧυΰWϋŽ:¦Ϊm:tς¬zυξ­3Άκν•ΩW5Άxή?θή―\κ1©ZώΈ^XQс’}χUΊηηίT‰΅©q£–ότ)Ελ•JoΠƒ‹nφΖβ Uwnœφ1»σq§η— §;:9ͺ’λtC·©Π4ΣdΒβOvΥž±tΨ—5ωΊξU3Η 13Χ»OώXkwΕ3ωdΟ‹§mŽA@ Ψ›Έg € € € € €@š μMσtΙπ φΊd!.P<χέ{Σ Ο,±f&Žέδ“Ώ€··dώœ;šaξμϋτΰ­³<‡UΌΎX/­Ž·ζn±§GtΩXλΤ­zς­‰«’cG#rޟό8ΫsΫΦLŸ_JΌ£{σς=•‘[š¦dt‚@F δΝΡ½ί£bkRΝ›΄τ±ί([}²ηe“A@·μuΛJ0@@@@H™Αή”QgtG{3zy™=(0MΧkΎ†χ;£³gϋhψΔ‰ž€Ÿ5 ½Υj;λZοήύurίϋZφzx%Β2Νωκ—uΙδ)1Xji•rΝο¦έ›΄mν[Z³%Zv¦nόφ5¬wo―_©—>ΏqžΖ›ΰ9ίκ΅₯±Z5›Vκ­§Ν±σΝ±ΩφSP8N£σ¬?{~H[—ΏΟϊ_’9WΟπ»A½ς‚ήZ¬ͺ[P>G_4Y£GQώ°Bε˜ρy~ZioΓgͺέΆZοڎ—ς5ϋ«wκΒΌώ:}φŒδ—›ώΌ§΄μ«Φ‘c§| H½ϋ§υ/λݍσ,Z ϋZ¨Bsτρκzϊ·VKΰLηeσξΦΜρΉf-lϋΡ±šχτΦΚπ”u׌sςΌ―kΖ΄)*)θτxs­ͺ>\₯7VD«0œΘϊmπ΄Ϋ되g`ϊζA’Χ΅οu4Π\Ο5k΄‘i€ζΜΎLγΗZ«oύSέ–ΥZΉτU9\)ήCRρΏ-ΨΫπΡkΪpp„f^>E…žΧ“@kƒ*6Ό£—ή {—Έgς.‰_/vΐDΟζxΉšσΫχι½gώδΌFEσ΄π¦K5P½Υή΄Y/ΌψŽ½Γ„wn~ήξ¦_{·¦N.WqΘk·^ »«΅}ύθγ]ΞAνψΟ³ΦοKΖ¦ΉOΏo‹°ϋAήLέrϋ5Τά›Φώ―^]ξ}­1Y‡dοΑήόβ›_y—ϋμo,Φ5—X―χCZϋμυnπ-Θ?,ΗίɞηΨ@@Nμν§"€ € € € €@z μMΟusΫ¨ φΊmE"PzƒώyΡΝΚ‰c:Η+_Σ/žy3xdήUΊσ|Se#ƒ›Β}²βwZφ2G•^§E‹nΣσ°©z«NNQ±?pko€ΥT?|VΧϊŽ΅οŠώΈ^oςΗΪ°Ο:’L ύΎ.rjΫΦ@νΪητά+ώ0cΉώό»ΊΘΆ?ΦÚελΏVD¦Έ fί«nν9΅iΫΛzςoΗjΖ³oφ·~©k&[‘εПc„έή³»³γ,Σ‚oί­YύαΣΠ>­gMΫޟώπjd 9‘υ{Τͺ^Ω3되§oώΙ\Χζuτ yεF†nΩ½JOόϊO‘ž‘Guί3[°7V'M•fݟ‰\χ„=“vIζz±Ν(‘λσ]Mω—οkŠο>Άα…‡υφΖΘ@μTSΝόfO5sσΊΨ²LO.νL°·“σ3Χθνwί‘ς±‘χ ΏBΔύΪΪ‘θyΆυk1χ°'Βοa6η–J³™°{œm‡χω€οώ':Ώ2έ…λ^vνwtηό)žΑT™χ„ήl# ©AΓF«xb‰r¬`οοj5‘Ϋ<•o­Κ§Ÿ¬^­ΣcgiΚΈ`…Ω*Sψ؈Λt™/€ZρϊΟτκ*3ξ`€ξxc­κκλΤ|°Im€Β ΣT>Αj=¦uK]οlρϊ¦^ϋuΪO§ΟΥ€‚ι*ηgΓ΍f|'Œ‰)Qiύτ>«ƒ›–kέΞΘ ΰτ;~ gMπφ‰ z-‹#θU:χο4½ΨͺΨ{Fκ7LS.™θ9?Z0Έ3γœσ­ΕΊz²ώR­©([SΧ€œΡ5λ²rOΏΦ΅«§η^χ―»os"λΨKε:$κiUkNκΊvπhΩ½Q;hΠΈ)š>q¬.τ:σmLέ―(γάΌm·OΧ¬iήλΥPΥς_›pbh•θ„=£τΧ±Kr―Ϋ€CΏΦ>Ηϋ‹Ή>eB™wωB™Ξ―΅rέώ/ίUΉ'ό{Hk~C­Ϊθ-‰™Ÿ €>d‚ΘEΑnλLΥρšϊ&υ8B%e*W¨Θ nηΩ]Ψmτu° ‘ϋ„·νΔηWΪ…λ^<χέ{Σ ΟP­μΆΗɞgk‚‡ € €@—μνFA@@@@t Ψ›N«εή±μuοΪ022I`ζΧ~€λ.³Bˆυzη±k]s”ΩMΌE~ϋz_…­]ϊ„ήυ…b=αΘo³©λ ή6m{ΝT«΅Uϊ΅š΄ΒΌ=ΤjΝ?jΥ–Ί`‡₯stMY_}΄΅ΏΎκ φ―^_όφ%SρχSρχfOΕ_™*¨?6UP­6™γ¬*ΐ{Χ=§§_τVΰyύΧ5Έιc­ZYUΧΎmψθyύξω•Αώ}rgί§oεyVρϊbΆ1βθΰ†Yw-Φ‚iήΰμ'1Αή•‘ύvx”·@χ?ΌΠhŽ'(–Π8ΛoΧ?σZ_₯ζz­}a‰ήέœWξ΄Ϋυυ»υϊͺB/~οqUΪ‡˜Θϊ-_ι©PΫSλv<žΙ^Χa{?zYO?¬^:ϋιšiήp―cP:0Θn~6N«22―gκMίΥΝs}‘ξΖuZςΣ§Ό*όGω~ΗγΦ_".Ί^Βϊ5ρτθχλϊΜ›£{ΎGŞ©UλΗώC›mχΎάi_Χ}w]ν}½Τ―ΦΏϊc§«.';?{ΤΊO‡Ώv­)”Ν»[SΟί«e―οgIgstΌ%°ί{Υt°ζ ”ΊtαΊη^q·\8Χ3MG+/@ΔɞΡ@@N μν$ §#€ € € € €@ϊ μMΏ5s㈠φΊqU™'0Λxˆ zχΙG΄v—σ§ήϊ=σgι}Υd·Όlώ,}0Δθ9Γφ'άΥlͺξ>φ…4e „YΗo}e±^]%Bh;ΆΙίWΘΆe¦w̟™Ÿ£{L8―Δ΄w°Κ„™π¬ŽvŽ=—H@7hiζg*Ώκ© l:ŠχΗ>ΗmΖψaΖaν$2NϋΨκLEή%αyMΫφc>ZΆXo­·­mlΦ0b_Ψ8Ÿvγ:ϊ³9ΪZ'}]ΫΪ–"ƒ‘2AκM:Χ ¦₯ς5=ρLXΠ=0Θn~2Ξ­2―ρ5!/ΜiΊσΡTΩ`k±οφp~4Oϋ1]κΡυ2ΟψΟΩίX¬k.ρρΓ*lΟ6!ύk|!ύ*³ο…8ͺowj%£Ξ―XΧΣ#ς|χΒtP³κΧϊ―·B«*;χ›δy6GΗ5N`Ώ5ξ»O$9?3¦.[χ"σEŒ‡β"F`’=/Π@@ ΨΫ5Ž΄‚ € € € €i$@°7ΛΕC%ΨλβΕahd@0Μ;Τ†ϊΛΟL5Ϊͺ0…2σ§λΏοϋΣυmΩajέͺύO…·hΠvl \Vjͺσ.ςVη l“ωSμ¦Ο)##CΊΉ₯Wι²S5vL‘†θ+9­3¦ƒ>ƒ •λ 1Fžγο?‘ΐ¬λwΠ}Αή«ΏύΝρUT–©aίiυιc½yά'G#ς†x6~ΎΖΆ5ιpύlΝφΔ:Ί·9xΝφz$}]ΫΪVσF-yμ©ΠJ·Άύ{?|^OχΚЎSυΜ6Ηqšq iν³ΏΠ»Ggk+šgH°7 —€―ΫΨβ½>C«ς2Uyδ«Κ{•ξωω7=_vκ΅ού\;‹$Ό5ρωΩο«ΥzΫTή`«,}Ižgst\γφΗ»ΦRηbϊ ©Ζά‰uO6 ›μyΡ›= € €@R{“bγ$@@@@Hg‚½ιΌzξ;Α^χ¬#A “‚aT‡0mβφγΦόώ­ΪiΫιy Ω:Vώ΄Β΄o­žϊεoΒάvl0\6Sw>|ΏΚςμά`ŸΑγLΐφŽοiΑ,oua“NΏ›Άψ*†νL>Ψ»ΨT?φUύΛγ&ό\ΦrOηύœψΗYΫώʍ]Ό?•Šmcλpύ|τΤ:ζh³ύϊμ7’Ύmm·μ|KOόώU{³²\£υzB7=³S»Wι©_)βu φJŸ„U •­­¨s²“¨K§[Ώρ^Ÿ²}1ΐΊg­2χ΅5ζΎV<οέϋ•ž©GgL|O’›ί4-|ψu‘υΪm4ςŸ†Θ£vδy6GΗΉ'°?ήuH­‹|ίθΜΊη^q·\8Χ³ŽVQΦ&Ωσ’4Ηf@@ i‚½IΣq" € € € €€«Αήt]9w›`―»ΦƒΡ ©φ`γ»O>’΅»œg<^ο>ωc‡γΚtγCίΧτ"λ|‡°=%PθΩ~μΆ—υδή6»‚a¬`ˆΚaΫ΄ΏΣξšhκψΎͺͺVK«©ΧΫλ¬4¨DWΟ½Τ³?ΨNΰpΟƒψ³‘ηMΏγΊqΦΟƘΙΠΣ‚Οηάώ(ώqΪ«wšπζκΧ΄ο„αoΠχάͺδΫ\΅^ο²Un΅­£υ³ΪιΑuLΛ>ζΐuΨλyτuέQΫνFχ=³£₯Ÿ ›ž―ωϋίkΆχ²UD Ϋ>2[[Ρ^;š£΅ΡΩλΕήn<Χ§o^eΧWw^]ξyΆwέszϊΕ5ZπΏΤ¬qVεκcΪ°τίυφΫλΐξ‘Θγdη—7Gχ<|·zp"ΑήdΟs¬Œn›¨έΩι5eίΟ:€ΪΕ7•Xwϋύ7κλΑFη˜μyώσω €t•Αή’€@@@@H‚½i³T(Α^W/ƒCΐUεW©8w@pL§š΅aγ–ΰσ‚ΑF‡0νΌΰqΦΧ¦WWWΩφZƒ![OD^c Ϋ_N0{kŽΗΫ†¨"·Νόڏtέec=­Υ­{^K^\ioYΚ›§ϋώš¬ΊΊΑvB±―*Μ\_Š˜kθρώg³οΥ·Ξφ<ΦΆXΗߎσv<³1ώqλϊϊ.k…λυΞc?ΦΊζθν:ξIpl=ΉρΗ1ζ€―λŽΪξh`έόΐ65›Š―EV|e^3 <―™cϊhΩγzk}σ lmE½Ύ;:&ΚώN_/QΪužˆm«Ήάgξ£­MΖgι’έšΠBΟύAλL…ά§EΓΦHΗ“Ÿ_π§Φ­zαΡTψΧΉχ$Ο+2y=Z*_3Aπ7C›/Z ϋ}>ŽΧ@‚λzίtΊ`έΛύŽξœ?ΕΣ`•©tύŠψ*΄'{^θBπ @θΌΑήΞ € € € €€™Αή4[0——`―K†a!ΰBΩίψ‰Ήdxpd­›΄τΡίȞ« ξ } 6Ζφ†°Φ>«%―Όڐ=(ΥZ‘}\•φ# |9 ͺe‘Ϋ‚σ1Φ_šλ>ϋ €βyθή―Μπl ΆzLΑ& »ΠΠυWρ ="Κ3[θνxυ =ύΫ?«%Κ‘Ž›ηνx€gc"γœuΧb-˜fΕ™₯DΒʞ¬[ƒΠqŒ9ιλΊ£Ά;Ϊoq`/=4³†ιsψϋš—o>­χŽyžvΝΆqHΥzγ±ΠζPw±©΄ύHτJΫφQΨڊφΪιπ:‰F§―—(νΪ‡νρœoύDWOΆξŸΗT·»EΕγΌ_ ¨Yυ;ύΧ[’–ΠφδηΌΗYn^ΆXoD ^‡Œ(ωσn—ο«|€iΜ!^0ϋ>σε…Yžž―Χ!υ.A€Ξϋμo,6ο»Φ=υΦ>ϋC½_Wɞ9@@ ΨΫ5Ž΄‚ € € € €i$@°7ΛΕC%ΨλβΕahΈL Žς ,?Ω<7v°7χŠ»υΰΒΉή‚»Soϊžnž;Ρ»χ*=ρλ?…†Z |9 ͺe‘Ϋ‚σq [ΝΤΒ‡οΧEyήaΫρΉωΩϊ?ΎsΉ~ρϋ—ό{:ψmUΖ}ΔTΖ΅kΠͺπͺΕœ-[0Έ)ž?cŸΐ8KM ω._ YΝ›τΒcΏqόY4Ν„pϋ\/­]―lθόΫ8¬Ζ"Βͺ3ΎΎσjεX;MEΨMEؐ@Ύ΅έ‡g烽IΎnmσŒηϊτOΙϊ;ΓάΫξτέΫ¬ ­ζίΰZσΕ€ρΕkw2?y=L½Υά[gϋξ­ζήώΒOŸŠ|νζMΣΜΣ¦R{πu›άye {U«·ϋΏΪ‚ηkΑί«fM°*G©xžΰ:τ„‹ύ:΅ξystοΓχ¨Ψj,ΦύΤί™w²ηωΟη7 € Π…{»“¦@@@@@ =φ¦Η:Ή}”{έΎBŒχΓQΎ19TZŒ6ΪΰΉ±ƒ½RΉ Ε~7ŠΥΎMzϋ―oiΓ~iΦoΦ‚Ωή?InυγX6‘ΐ—㱑!^)rΫ¬―ύH ΌΙZΈͺΠͺwώGΫ66*oΖΊrήΝoU’τύD Ϊ«›cλΆ¬RΕ§υ:Σ§―ϊθ΄}²F»a7kήί₯σΏ£»υZΤ~VΟ½VΩΨ~xQΉ¦οΫrZ§]¨ω7]­\kKύZ½fύiχVWιτΙ=ͺ¬¨σ<ό—Π8ƒVžσ[«΅nενΨώ©NεŽΤπόb»°\γ§MTSΕgΗ5 Œ$βA¬CRžI^Χyt΄ί[‹ΏΤΗτ~e&Ψϋf7{­ͺ΄Ÿ¬zEσΦε]ρwšΏpΎΌuœ₯ˆκΤΙxv4ο(ϋ;}½Di7βΒtάPΫΝ½­ά ό{B½RΛΞ·τΔο_u<:™šŸ= juήΌSkχ΅ύ“Z“J­qe—¨|ώ\εVΎ¦_<σfpxI—―kLxwΆ/Ό{Ό~£V/[u§ΗhΖ5σuΩDo5c«Ηϋg‚λΠ#.‘δΧ½xή?˜Κο—zZŠxέڏ|μy‘-±@θΌΑήΞ € € € €€™Αή4[0——`―K†a!ΰB`8Χ7Έ„‚½‹΅`šνλΈΒl©Ϊ{—©Ϊλ©ξΕαxυ -ύνŸu |ιuZ΄θ60Ϋaφ㏠Sƒη«KΆ™sο7ύψÊφfΓΞ ίaž\zδΞͺελ+tλψs•ξωω7Ubνλ rς¬oόD .ξΨJΔFΆ]ςθoνMlœ―Σ}ίΎM£#Ϋΰμu\“°σμO{`’υLκΊξΘΓ=ΤΑυžŠŠ½ΆqΪ—'βq³©ΦϋXh΅ή€ €xFŽκ­‡fτQΞ)©ύΘYύΗzͺυ¦τΪ(½A.ΊYΉ!šj½¦Ίφ*‡κΪΕsΠ½7Ν9:ή'-•/λ‰gގχpŽλNΧ½;‡BΫ € €@O μνι @@@@HΉΑή”“gd‡{3rY™ €τ΄@ΡέχΠBφ£©ΎBŸ¬}Y«6ΦEY±Κ¦¨ΟιΣ:ε§Ν}ϊφU[c­vν;θ΄›m©HxέS=@ϊC@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσdψ € € € €ΈP€`― …!!€ € € € €@χ μν^ίli`oΆ¬4σD@@@@ u{SgMO € € € € ΰ‚½.Yˆ4Αή4_@† € € € €€ φΊpQ € € € €t―ΑήξυΝ–Φ φfΛJ3O@@@@R'@°7uΦτ„ € € € €. Ψλ’…HσaμMσμͺαι₯‡¦φ–ω₯¦†³ϊuΥΉ8[>O_*λ­Y#ΟS9χ΄uV―σtόΠYύdΫΩ8ΫHΰ°’9ΊsαΥΚι}V-•οθ₯ε8™C#ώ{w]euθ}όW‚¨ 6F¦†’BΐPIDHIΝZ7P«εŠoΉ.ͺ­ε.].YΧz«²(.©Γ«’BA@)\.Γ-4dŠΠ€‘ah(iΐ€ΉZτέΟχ™’3$αœδ›΅κy†ύμα³χs?~ΩΰBμ2ΡΔ;F«Λ…ΙύλυΖ[뚽Ιx4ζ~εv1ŸSΥΊ7΅zkuΌU΅μs¬λ–υ¦΅fψjίb]IϊόLš:\pZŸψ³N|μΝ € € μM˜ @@@@@ Υφ¦ΪŒ%g φ&ηΌ΄x―.OΣS§½Ύf«9«Ÿl‹&”ϋέ>τ}ί„zƒ>©=«o‰¦Žΰ'9Ο­iΣnRgS¬~ΧΝ}}eΓdδ©ψ;}ΤΑW•iGεG —O΅»‰Ž/VΟ$χIΟ.Π7{uVš™ο“GκƒŠ½ΙΧγ2/Ίk–ΠέeΈηsTΊ"ω<Γυ¨₯Œ}Βυk|K}oΊI_ΛΜΈ*UΝΖ%ΪχΑ‡AΧ9E@@ Ήφ&Χ|Π@@@@h‚½-€άš ΨΫ&9š!š`ο³&Ψλf£ εvνΡ^O_ζ©ύKν©ωBGΜ–½ifηήΟO|‘7φE»λo4τ”ΙΎ^Σ§WΊ9=΅{™ž}υέΞqΏ&_w΅«ΜήUs΄hMŠ•fΒγ‹ΡΣίrςάό Fζt¬jƒV½π¦φ\=Ο'™£5uΖMrβ²u&œ>―±pϊyμnα€ΗT’ΧΣΥƒΤ φΖφ=/qΒο_Ό σ\ψ–ΎωΓQ—Λ#χθ{/¨r;αήΘBάA@8ί{Οχ Π> € € € €΄ΈΑή'o• μm•Σϋ .n§Ϋ―l§Ž&”[μœή:τe£uτλέ^3Ώεφ~°ηŒfW5C7Έf‡Μ’‘yΊΠ4{r{ZΏΉαY³†έ§Ιγ†ΈjI©`bπΈ#œ'<Ύ=#tγΌ_ΞyΏ&rΈ₯cͺ;~…:{6Έ¬ί΅ΜμμάpΌE@°·ωΉ[h]'όώ5Ώ-€°@ζχgͺΟ•]=#8¬Ώ―[©Ί¨Kήhυψ†χz΅φ-š­šΊ(]G@hΥ{[υτ28@@@@'@°7œ Χb Ψ«ε½Cs/Π΄l“Φ—Z»υs½ροδωL/š’ι7Ί:T±|–o¨NžΞ5AOZϋψ’#ΚΡ ?}XMΞ­ώ@™V=?_Nά»πζ‡TRΨΟΪΩO¨¬&ΊΪš½TΔ`o₯;aδγ©ΎΩ;])»cotΓKΈο_Β„TQΰΫπ―·»v§wŠόγO«jΧaOιοhπΏώ@=gυΫ^Χ?οπœρ € €@r μMω 7 € € € € Π{[Ή 4A°· Lr„!^έ§½FtώŠΎ°7Ϊ59ݏλΞι΅}φEoνtwAšΊ΅—ΞšΫ_λΪN=·φΧ}‘SžGΪ›:>ύίsš»;\ήΊ’Μq‡ ϊ€λά9λ™΄4Ψχ?Z±άΊθvQΡ-·κʌ uζάY]Τ%W=Ό;·ΦTιΨ‰ΣΎςi€Γ›—˜PrhΨ·ˆΫ5$o ze^α+κψAν}½ήYσžοZΰAΖήϋ]]nϊvκΠ:-ώ³4fμυιέWι—ΈKΦ­Ύνλ΄bΝΧ…nΉΕϊΦUύΥ£ΗΧΝ?·ή]<εtς˜ΧώMwmΠΪ² «™ΔΗ›§Υ΄rT|Λχ5 @u6ύ¬?)ΧΈκlΧ²ΪX옧1χŒΤ}΅₯«Š‹«OΟξžJO¨Ί|ƒΦ-Xͺΰ'νV?Θ{Pƒ{^ͺΓžΧ+Λ=k"{‚›6Κ<^«υσΥΖύΧ”H‰όQwhP\e¬™Cͺ=P₯Ώlώo}°#wυV°·v[©Vνι¨βοΖζίϊt7u?Mρ†ƒ½Ξό~OW˜χHiκγ]οκ f­f˜χ`‚σHŸά¬Ώ™uSpuΊg\κξΐΙCΪΉi–ŠτΕΊΞάΥΖΎγYŸ‰ΏξήΖχίθη=Ο|t};Y©ζ ο6τϊώžΞΫ³|ŸΪί5RτνΩγ‰ε{πS³†F»ΧΠη5ϊŸWώ» s„&Ž»Z+MŸΧνΠ’·VΫ ΆΚγŽύoΣΰCέc;ςžή/ύ½ΌΏ½Ί}oΊrΎ•νw͟τώ’·|χ½7sGkTq:˜ί…ηΪ+ν³ϊ―Χ눷Ÿ € €΄€Αή@¦ @@@@H.‚½Ι5©Ϊ‚½©:s‰χϋϊ‚šΨύ+!Υ՞ΥOΆΨ)ZO“Τ{ξ΄Χe!O„^ψΔΤργpu„mτJΡ=³umO(Π*]Ώ{™ζΎϊuΕ9ΜΥΔgΤUAW#ξ[5GΏYc‡ΩrTrο*μη Ÿ†>Y·k…~ϋz˜ \φhM›v“+μ\W΅SŸv¨,oPΧζδv-xόΧΪoXW…+c•?Xφ†ήx{£ηJ’γ“bστ4›qnύ—»•γύΧί­ώyχ¬yI₯«άeΧ΅μλ5}Ϊxߎ“ήr!ŸΦkξσΏ < )φBŽ&Μ|XΉ&ΐ}ψύ…zεχλ\₯‡ή‘釙γpΑή Ql †‡m α‹ΖfΒ7+Χ‹#ύœ2kυYοZ΅‚½‘Κ»‡uI`}ΖΪOΣ‰ΘΑή|υΛeΈ_“―»Ϊ_ςΈωέσ€σ»‡@@ZN€`oΛYΣ € € € €$‰Αή$™ˆοΑήŸΐΊ? w{ »ά½ϋΎ’k2ΫΉjϋGΝY=²-L°W_Ρψά4u1;q:»ηφ葦+/tωR»}‘c暩Ζυσ©ΩΎχ·awύuߏεΏΩΓ~ ό,gΗή³R‡Λ5p@?Χγu»–hήλ+Cͺ4κvυΎ¬ƒΞ|qNuΛWnowΰ²Άr«ό©Ϊ΅3p~Ξι£ν«΄©‡*Ύg– ΊωC½͎²ϋͺλΤ©G?Ξu?gώ{pΓKzcωίΉλ B`³Άr»iχ3uΌΌ‡²ϊυR§0ΑήSGͺϊP΅ŽT§š`½{ί<εφυφγ„6-ψ…V—»ϋ™Θψœ~Ζκιμ‚\ς£Ÿ«°―7ΈzL{6νPΩ±·sΏ‘ΊΚh=‘²Χfh­7'Ζ£ώΐVUTQΗή•ί―§Η/p|ž‹1}ήφ˜J»λ;Ό»L5'/Υ•ίθέͺωΏ|Ρ΅¨³CςΥωƒue^ΉΤߘZτΞΡ 3Φ@oΐΥ\6»,ο;T§φwV·^9Κιέ]υf­ΞυΥ\β_Ÿqτӌ%|°·@:UWyCή5[΅hφ‹Ϊλ% 7ΎͺMΪΆϋ.λ] ‚½Ό%U±όi-ήΰ}2Ξuζ©-ζuŸQ¬ΟDί?ίΰc8ˆgήέlΒ°…ξ0μΑυζϋjEΠχ•ѝΟά­^~TjΩCΟθOŸβiΟ7œ0Ξ½HίƒυcM9Πυxψοτ\MψιƒΚu­·cΪψς#Z_ιk-¦ƒn&μ?Ι„ύ;§Κφ™.υPŸ‰+³[π°κΐβ'υχ^ΟvŸ&βΏxά|>ιώ.τ_δ@@ζ ΨΫΌΎΤŽ € € € €I(@°7 '%»D°7'­9Ί|qšfl―,Swδ`o`Γ7οMκ鄁ΏΠΒ5g΄κ³ΐϋΝr–Q’©3'Κ‰Ό†Άš^4EΣo,t]¬X>Λ„« ΨgΉτ“»G©“λΪ!•-š―΅[ύεΣσ&θφI£\;ςJzλ‘9Ϊm?h;¨ ήΤϊrΚ.Φ΅9hΫͺuj ΖάKκ>ΠϊΝή4¬ΏΒ|Μλ ζΥn[¨—σίτΕ4Ύ§Ν…h<ϋέ ιχŽρμΌ[«²s΅Φ2v…~ού‰ΩαΨ½λgέe&lνΩ…5ΘγπΆ%ze‘?ˆ]4ι1]›ηγ† J‡λoΔkAaSoΉ“UΪΈτmΙΘWώ€|υιιξ§ϋφ1m+§›­ωρ>εg`p.tΝ8Υ䌸CƒΎzX₯o{ζ/^—Φg\ύ4}φšχ§tΓΧuλL³s³ΩΩυs¨L ~5?pΠ ρ9;\Ο3;\{ςo|Hc‹άα|Ϊ υ¦Ž87γ]gފνΟhΦuP?γYŸ ΏvŸ#Η;οΆgM™^œ=ίνμiΗ^ί₯ρΆη퐫ω3ˆ†Ώ3Š5yζί=R•ήyς?΅γΈ·2)=οvM™4άύ½lΦΛ\³^κύ·c: ΩΑ6Чα—μΈσm”Ο…ξ(Εƒž"v°χ£χ^Π‡Ϋ?ΤεCοΥ· r]%Žm[ͺΟΏ~ƒΎζ ωΥ~μ=άX°Χϊ#‡θ{BI@@ Ψ›˜O#€ € € € €@ μMΑIKΒ.μMΒI9]ΊΤ{Ώ[°wΤΥθΆνLoΏTιŸ>Χ»·@Η­ΠX@-BΣvx-πŸš}ΐ1V›yηοΘk±Λl+ ΅ϊζΤΎσνYZZhΤ έN3!ζΞ¦Hce|NŸB~¬>Gjc bŽχ1λΚΝ.Ι όα\W}ΩΧkϊ΄ρξΰ―ύO½[u‡ μΙ§› uΊ©Δ Ο%‚s+K…γF¨Wgggα4uθ }ώΉtYVΊ[»sΦΪ©ͺ]ΫΜ?m^@ΠΡ]G,͘{Tž‚΅oύσϊ͊ςΖ+ˆΣΕ^{±­Ο8ϋiFβoσ„*Φ¬S»γ};υž:°A₯ΟΏιΪ 9`Πγ;€΅³ŸPY]’@?||ͺϊΈζ€Vkη=ͺ²ύRάλΜΪ{lυ!Ί–U&ήυ™πϋηνoŸώ90»AΗτ½”₯±3U~¦Sy­ΩιφΡ€n‡ίϋ”Š=|ϋ»,ώφ<ƒpξ{°θYΊv€{‡ς=«ζ¨tŠ&™{yξ{{Ν½EΦ½ΨΒίΚ‘±Χ\©fχχsαK\MKλ ΦnՊύ—Ζχܚΰ]’ͺoπΔμ=‘š~Tϋ*‹5θ_'θ2穏·κύί¬Χ7~ψ°Ί™]χ₯πΑήnζ[ξσόa‹SJφχ³λA@@ ωφ6Ώ1- € € € € €@’ μM² IΡξμMΡ‰kκnμ•t“Ž©ΆζŒΪ·‚nίI3œΰ¨΄ηO«tέ^;Πvr§=ώœ¬»ώrAGιΩΧhπAκωυL]vΡΩ3:kΚ΄οΨ]ιž@j€pbΒΑB«Ο‘ΪݏΩ5–MψιΓΚνκœψƒšΑΙpΌΥφαχκ•ί‡ξHμͺ>Ζτ/ΊAΉ*«oOΟξΛ©γ‡T[}@ϋώ²]›Κύ‘Α«*n»J+ΝN£[¬Fƒ ϋO­q+—ψΧgœύ4=ΆCžώ8G;5‘ηBC½Ξ­ΖΖgŠ› ηpWΣη™ΰ― φƽΜ6ƒ¬>DZ׍φΣͺ#ϊLψύ ξw˜σψηέμ=ζAέ:ά½ΓkuΩkšφ{ξ2FhΚΜΫΤΓ9 ϊJ€=Wε–[pέξΖCΈ+οz³+οo=»ς^£;ŸΉ[½\TjΩCΟθƒΠΗ[ε°W:ΌκiΎς.eχqΎd«ϊέ'τ·ƒ}Το‡?VΧ‚½L·Μ]¨κτEIόXGj>j•^ @@ yφ&οάΠ3@@@@h&‚½ΝΫΖͺ%ΨΫΖ&¨άŒH@‘ΧCvΆm5ezqφόFw„-Όω!•φ ­<θJ]y©Ω)wuΠU)α`‘ΥηHHΈ3tΧOw‡rtƒ φl Ψ[_ΉBs_^Ψ(Ϊ| ςY·\³›εΐΑϊζΰ\χΞΑž’uΆ«κΰ*£W_υθb‚Ύ τ1νέτG­zk₯'<Ήή†οδiβΜt•³fbω'ξ­qGο’ΘϊŒ³ŸfXώΉ–8‘Λ_Π;ΒDΧνρν6σώjΠΌ›ͺό!ήΪ²hŽVn­ΆΪŠqwΝ9·ϊi]Ϋe’Ÿ‡ΐΖ~« s–ΘΌ:θθ&Νε+0vφˆϋ5ιΊ«]νΥn[¨—zCυ ΆηΤhΩ+ΚοAAψYovήXiΎίFά§ΙΧ qυ3β<ΊξΆΎψƒ½'tό―ΥκxeL4W'?\¬k6š£>Κ1Αή†vμm}*Œ@@ φ¦β¬Ρg@@@@HH€`oB|<μ ΨΛRp ΄ω`―½«©ΩwΓ2Υ|*΅‹°<œ|οέ¬φ[»ZΆHAά€κς~ Η&τ]:US©½UUͺ?iφλmgώ‘ψ޽4|˜;|)Τ–p°Πξσ%šχϊJΆ0όΙ@IDAT_Όώp§wUο=χgŽΖΞxXω™ΞYψ{Γφ?ŠΆΫ‰t–₯f>ͺήPφΙZνέ]=[›ω)ΠŸͺ>žνκΚΝx„ŽΧ.ΣΰqF±ξœy§{7Ρ8ƒ½Ρ»$°>γν§Όξέ§NΚŽvΞjεμΠ–χ=ίνy`<όG³UάΧ»συ³σu…ΥVŒλΜΧ°u`χ!ΒΊΆ¨ΡΟƒΥ†9Lψύ ¬.ΜYσξͺ­‹F?πsτv¬©μ΅G΄Ά’‹J~τsΊόOhΣk3΄Ϊ·‰u’ν™flϋf » ήτ†^yk£J˜­BWίM|Α/΄²άϊΎ WIcΧ2σTœίGνΟ™οΧ(~Ϊ₯₯ιŸuͺμΠρ=·ΩEkEόΑ^λϊ§ϊΛ«/λcΧ₯oš{δΫ±χΐβ'υχXe9D@@ Iφ&ΙDΠ @@@@h9‚½-gݚ["Ψۚg7†±΅`oΕς§΅8ά£.¦,ω·5Έ§€;€ΥO>‘MΗcπsŠΪΆHaB«Κ‚ΫΣθΑ=]Wͺ7-Τό·Ό»fz eŒΠΤ™·©»9 <4Χν`aΓγσΤόEŸνpηNcΈ4Δ0h·Νyf·Νύ¦‘Ζκnμ~p_8ΟyŸFΌX•[ίΧΆ οωvβυΧjηͺ•ϊσώ3Ίϊ{£UΠίq―•wgΠͺnΰ–5ξ“;΅θρηfΪΠηwΨϋ‰¬Ο8ϋiznΟύαm₯zeαjν Šš‡6θΕ_½Έ3΅Υ{—X’Π¬ύΧΪχΑνΆbZgvΕήc«‘ޝ¦XŸ ΏήώFόLdήέ•f4»σŽrΐαM―™ΐμEšϊŒϋ{%t~o―QΧHc5ίwSΜχ]ηώρ­Z0€FΘθϊώ νg€JΎžev*žμΩ©Έα’ώ»§v/SιΑžq=χμ«οϊ+Šρ(sδΓκσM—†οΙ¬{ZU»»Ο;Tώ­ΧΛυ7 Ÿ~¨_}A ƞ}νp€ € €@S μmJMκB@@@@” Ψ›Σ”τ$Ψ›τSΤ2l₯ΑήnC'λΎ‰E.Cο.‘@ 'ΝRIž£•š+$k·ν2š ρl$Ϊω4š†>–ρΩmϋŽ£@ϊΓ±RuΩkšφ{ΎΗ]v οd…ήz|Žv;7«»±ϋ­Δuζ žΪ½DΟΎκݝ׿‹οž?Έw‹«rYYSΑŽYzgsuγU56ξχγ_ŸqφӌĿF­w"Σ0gx˜¦LuΩfMlτΫκΏT©e=£όwΝ‘έφΑγ^gu{N¬>4g°7αχ/\ίƒΕ?μχ³f“Vξμ Ρž oΈχ9αφ’±£χ΄ψž§4Όζτ„ͺΤ+«·ϋφ­IΏY±Ε[,ξΟnEStߍ…1=_oώHγwU™q=77ΜθΡ6ή±mγκ§Qχϊ9`[e ›’ΙγΌΙΪ²θZΉΥ³_¨ΥηΉ½kžΧ’UεΞ‘λ'p=ωw:ΌnΔ=ΟE\gžϋQ¬λ& ž[cλύ θtψ“Dζέ[γπ{ŸRq?'0k„ί±:αφ,“°ο½έ… γτ!ζ»ζVΟwsο€ωί%Ν>όGΘ>=υi·μ]uiιtύ^1»·Ηϋ\ MύΆόλνJχ\­ίτœvmέη9룜όXέΊΈOλ·½]ήτΌΩΡέόN›μύζάuvB~ςE9ͺσƒ € €@K μm)iΪA@@@@€ Ψ›4S‘!Ψ›Ση/m§βΛόή‘nωVš:;—>>§·χ ΧΞιηgΎΤζ£_:‡?-μΝΜΥ Μ―zΪ=£3―ΤΘqΓέa§CeZΆΖ€a/6;šŸ3Ÿύ]»+‚φ"΄w«4eͺΛΧ«β―‡tΆύj―3:Άg£φ›Π–ϋΗήIΤ\9Y₯Mλ6κΓΏόU§Σ»κŠ.Yκ}eϊδυSϊΙνZπψ―R1ΪΌ»ΙΊΪ>^‘υ«Ϋ·Ž*cΘP}gΔxυικι–ωˆ‹i|¦’ΈΞΌFcΗ WNΏ^ξ`ςΙZUl_―ΕΛΧE]E£³Gθ†’αθΪ 8¨τΙCΪ±aΉήYη Q&κοϊtΊK?Mρό[Μϋχmχϋ·σmσ”½+Ή7hΪέcά;}›y·,ϊ…VΦ ΡTΨvβΐu•›t€Γ•ΚνΞ―?P¦5 ηk·o·l§sξŸ˜Χ™y,uθκu\Ί ¬ϋ&ω‰Žnό_ΎςΗ/ώ!€ € Πτ{›ή”@@@@@ Ιφ&ω₯Hχφ¦ΘDΡΝ–ΘΜU~οΊ0Ν4}ξ¬NŸ>c5εͺn( g/³‡«kΗ‹ΝΣgυΩ'GτAΉ΅‹pœu6ΧcΎ^fϊzΦiα3­Ϊ¨ύΝ`\ύoΞzΣ³σtεΧ»ΚY2:χ™>©?’έΝKL`}6k?­{λLΐ}ž Έgε^£nW\βr9ύΙAν(oά„ua₯&0οjlψr ·ΧάƒfΗή\WŸjί_¨—~ί„ό†GšΤwΏΪχ;Ίδ²Nϊςœτ'ώ¬Ÿ$u—ι € €.‚½,@@@@hs{Ϋά”7Λ€ φ6 +•"€mSΐφξ2;5ΏΎ²m:xG‘«‚Ό,₯5‰Μ~Ϊ§ιΣ#ΪQQΓS©^τέωΜέκεΖ1m|ω­―Lυ1Ρ@@ΪΆΑήΆ=Œ@@@@6)@°·MN{“š`o““R! ΠvφΜ}ֈϋ5ωΊ«E{rjχ2=ϋκ»ΡOΡrY*1P΅λ€¬CΥ'σRχ8ͺΦθ‰~—’c’Ϋ € € ΰ Ψλ•ΰ@@@@ڌΑή63ΥΝ:P‚½ΝΚKε €@ΫΘ­iΣnRg3κ:vμUΦ°ϋ4yܐΈΦ@ύξ%šϋj+ίρ8ϋzMŸ6^ιBf·ήΧΜn½9A@@ Ψ›‚“F—@@@@@ 1‚½‰ωρ΄[€`/+@ Ι2GhʌΫΤΓTX[^ͺ—¬n²ͺS³’,εδuSϋ3gt6†΄ΏΰύσθAν―ω(†§R°hf‰Y/]λΕι}έ‘ ν)[’υ[«Sp0t@@‚φ‹pŽ € € € €­^€`o«Ÿβ Αήa¦@@@@Ϊ”Αή65έ @@@@‚½¬ƒ¦ ΨΫŠΤ € € € €ΆΑ^[ƒc@@@@h{ΫΔ47ϋ φ6;1 € € € € ΠζφΆΉ)gΐ € € € € @°—5Π{›B‘:@@@@@ΐ ΨkkpŒ € € € €mB€`o›˜ζf$Αήf'¦@@@@ڜΑή67ε @@@@φ²šB€`oS(R € € € €Ψ{m Ž@@@@@ MμmΣάμƒ$ΨΫμΔ4€ € € € €@› ΨΫ榜#€ € € € €Α^Φ@Sμm Eκ@@@@@[€`―­Α1 € € € €΄ ‚½mbš›}{›˜@@@@hs{Ϋά”3`@@@@ ΨΛh ‚½M‘H ΠΪrFύX·Žh†uLe―=’΅­m„Œ@2Šuητ;Υλ©ϊύ…šϋu TΖ£ € ΠZφΆΦ™e\ € € € € Q€`oDnΔ @°7,ŠΆnŒk4ρŽΡκr‘trz½ρVςTΉ_EΉ]Μ|œSΥΊ7΅zkujΜMf±n8\Ξ©~χj-^΅%9ϋ1B“gή¦,§w‡Κτβ―ζλHrφΤί«Μϊα€αϊͺΉςQΕJ•xΟ/Ξ£nE“υƒMΈωψηώ:\‘Ov—šΧj5Žβhιχ‘₯Ϋ‹O₯u=Εο•ζŸΟΆ΄cωžo—.Ίφޟ¨¨ίfžk΅ώεG΅±²ω§œ@@ ΅φ¦Φ|Ρ[@@@@h‚½M€H"ΨΛ"@ΐ#=ZΣ¦έ€Ξζ΄~ΧΝ}}eέ5KΧθξκߞ?ΜQιΊΩNΆ₯Œ3ςTό>κ`‚ΟΗ«Κ΄£ς£˜ζ2–ΧΨoχr=³£t–ήٜΑιf°ΝqΏ&_wuˆ]y?ζ%ρϋα源ΰ:S3ΜYƒCmιφμLΉ™Bζό^idM&ϊΎ7R}T·cYO±”ͺρ…r'hϊέ£”nnΧο^¦Ή―Ύ‘ —@@ ­ μm«3ΟΈ@@@@hΓ{Ϋπδ7αΠ φ6!&U₯Ά@ζhMq“œΈl² '=¦’Όž.οΤ φ^―ιΣΖ»@§LθΩf فԽ«ζhњX‚ΟΧθΞgξV/GχθVΝε‹JX―Τλ7»@EΩ&κώΕ9ιβήΊvψךKφχΓΥΙψObλΜt0»eήEK·ηkΈ 4Η{ΩLœό^i6αχ½ακ£»Λzj±χ½‹F?πsτΎΤŒαΦΞ{Beϋ£₯@@ mμmσΜ(@@@@@ΐ Ψkap·ΑήΈιx°΅ Δ˜9ΟcOΩ–Ωρ°ddž.L“NξOλ7οmΙ¬aχiς8w5ΦΰsφΘk¨~άπšήXώ^³τ±Ι+mξυ›Q’©3'¦Dπ½Ιm#T˜Θ:sUΩBοƒ―ϋ-ݞ―α6|Πάοeς{₯aΜ„ίχ†«ξn,λ©ίw;τ\½ι Νkctγ‘ €΄ ‚½mbš$ € € € €Ψ{m Žγ Ψ―Ο΅:ˆ™.JΟ0£=ώ‘κ“dΠ)ΐj!Ώτ’)š~c‘«΅Šε³΄xC΄{ξfiΜΏ=ͺΑ͐k΅~ޣژ¬;f˜uiFXoΦ₯λΗ¬ίifΗi³Ώnσμ8ρύp7ί:k‹ZmtΜί~―€ΪŠ8/ο{KΟΗ;)Ś<σNe9ΟίOώZΙϊ«3ή!ς €Δ/@°7~;žD@@@@ Ψ›’—dέ&Ψ›dBwš\ ΤΤ?WY™Wψκ>uόjTι/›[μχ#§š`dwSͺv[©Vνι¨βοVŸžΞηη„ͺΛ7hέ‚₯Šν?βv Ι¨^mΤήχΧλ5 οόu?MOφζiΜ=ίΣLΑ΄ υρwυΞ† )£@c'|W—›έr?9ΈYSŽ ΞUχ ηŸΟ6?'iη¦5ZΊ*R?sT|Λχ5 @uΎΔJOJιζ³ξΐvν*[‘εαUrFά‘‚>ι:wΞ݌λΏii:±ο΄b]ΉuΡ{θτ€Έ8M§φmΤ–Ί*.jlΊ¨θ–[ueΖ…:sξ¬.κ’«NΫόΤΧTιΨ‰Σξσί4γrxσ­έ¦Ώ™fWΪξ]iOU­Ρ+/ό.B˜;Ocοι²<χωi]Τ½·iΟq<¦«–λoPρπ!ΰ­YMΪφφ"­(3sπŸ§²‹5‘dΈrϋΊΗ¦Ζͺ­Ϊ©-›κtυ€ρκaΤνZ’y―― hΝ9Id}*b@1€™σt!FΟΈή‡ΔΧYlοCβλ,ΆφάSΧΜ}ϊNίt9mΏ΄ži5ί2—Ϋ™m·k6-ΤκΝ‘οQ|λΜ|?έλ|?™χώΠ:-ώ³4fμυιέΧυ=γ΄^΄JϋΆ―ӊ5[<9Q_[ο ΏWΒΝWŒο­§ŠΨΧυyό½n؍]‹σ{>voGŠξš₯k8ι˜Κ^{Dkƒεy›β@ڜΑή67ε @@@@φ²šB€`oS(RGR d\£ wܬܞžΰj˜NžΪ½LΟΎϊϋŽΐ SΤιΐzΝ}ώ·AΟ•ά{‡ ϋyCΐώβή£Ί]+τΫΧ—=gξΖΪOσHδ`ož&Μx@Ή™žVοΤ²ωΟιƒsžmvtζήΡΥs7μGmω2½΄ΐcβ-aϊxλΏά­œή ‘Ÿ{ΦΌ€U‘»’{fλΪώ‘sPoμηzννκ²―Χτiγ=‘XϋFΠqΐ<δjβ3κͺ "‘Nχ­š£ί¬ Mu+š¬ϋn,r=)λΊ₯₯ΏύCZ9ϋ mqζΑω‰Σ3=οέ>iŒkW^wEαΪχΦ§· λύ­ί[θ<}ΖγεΎ‰―³˜ή‡(ϋθWZgζFLνy**Ίη)σΞϊΒ_ΰў?ΜQι:ϋ=J`Yc­3AυO»T–ωÁŸ“f7ΠΗΟγn ±~_[οMΘXμ ίgή xΖΪOΣ$ΏW Bΐ<$ώΎ{g2–ΟψΏηγ{ί]}k‚χ/gԏuλȁκφšί±‹ΒόŽΕ² € ΠzφΆžΉd$ € € € € ₯Αή(‘(Φ ΑήyΈ™²9ΊaΖΓθ ΈšqTοΪ }‡κΤώβΞκΦ+G9½»«ήμl:Χ»³i˜Vύ­ͺ¨<’޽*ΏŸ‡ΤM ~‘Υ垝~MέΕχΜπώώPοA³³οΎκ:uκΡO…ƒs}Š7Ό€7–ΫαΧ8ϊij ΐ*ΠğNΥUήπmΝV-šύ’φz[7ΎͺMΪΆϋ.λ] ‚½Ό%U±όi-ήΰ}²‹J~τsφυ†siΟ¦ͺ3;φvξ7TWω‚Σ'Μ.}3BvιΛφεg9;φž•:\ϊΉΪ‰ ΧΟ(ζaΠ¨ΫΥϋ²:σΕ9]Τ-_Ή½έύ­­άͺΓͺv휭FΝOΪ9}΄}•6UϊηΟ}CΚΏωg[ΨΧuΊΗ“J#“ϊxB{6lΠ™ž…ΨΫ†άkv1>Ρy°{Βή~Σx=σtλγ(Ηv<^₯-οοΠɎ½•?Μ»;°{$ΑΆρ―O―Œω΄Ζ\ΏUκ<ΖιiΗΫιϊ(ή‡DΧYLοC@c]gξQΕԞΒύΜ%»l›mzϜ»TƒΏνξ9EƒΓ{ ­³€±z:b>j+·›χχ3uΌΌ‡²ϊυR§σμγϋ:ΜΈψ½βΜoœο­giΔΌγœ‡DίwOwcψˆ{ήi$foΟΒψ8·by²†έ§Ιγ†ΈjLίήAς‰ €ηK€`οω’§]@@@@8o{Ο}«j˜`o«šNγ°&!•-š―΅[Ιx矬τΥΓ*}{ϋ© `ΛαmKτΚΒ•>Σ’IιΪ>avuvΒ°ΣfΈwI>Όι ½ςΦΖΈ=³†M1‘)χ˜δμΔό€Ω‰ΩΫ%³Ζ¦›5–ξ9°M`}z«w}Zc¨? Πy8‰w}Zγqzυϋ` 1ήuζ«’±χΑκcΜλΜ׈uΠX{VΡp‡ίΞ|Α¬Αγž’‰3k¬ξjγ‚7΅Ύάzw³‹umΞΪΆj]θΞηα:άΔΧψ½Βο•x~―Δ² γώžΧH,ο{ΌιCοΠτ‰Γ\=IͺίαlΈ† €-*@°·EΉi @@@@’A€`o2ΜBκχ`oκΟ!#Ș{Tƒ=μξ[Ό~³’<ΈPθy@°₯Jο<ωŸΪα ­9₯MpmΊ π:αΙϊέΛ4χUw€ΥΩV›yημΘλnΖ.³­t–VlvΒjqφΣ<ι―ο„*Φ¬S»γ};υž:°A₯ΟΏ)+ηξDΐψiνμ'TVγΎεώo~ψψTυqν[«΅σU™I2ίρžΐo]ωΝ[ΰ;»ž3Φι&Πκ •ίOώ:0Pl7aυ!bπΗ*#E?v3v―Α€ύ9φ»J;ΝΕK}»΄ϊθ3 ΈVjœV› s±ξœy§z™Η½γΧΣξΫή5ζŸ9_UΠ©’»fιΪξP²·-§€ύ\lλ3 ϊ€έ±7^O{b'όνϋ`«Δ»Ξ|uΨkΖμ>Ο»{Έ·€}ίϋξ\‹ΌΞΌU|ΪΟ†k/ pΰIφˆϋ4ι:χnœfO­ωQm¬τ—IxY}sjέωφ,-- ωσ7ΨβGq~_Œ+ϊο³ψ=γμ§ρτ·Ιοοοw{™%όΎΫ•E8φρΩ;†οω°ΥYkΟώΠXYη~\ο_¦ωݍόαNΨΖΉˆ €­]€`okŸaΖ‡ € € € €!{CHΈ‡Αή8Πx$Ιr4α§+·«ΣΝ*­4έ-v@7Rο­ŒŽoΥό'_ ΗZχΏΏP―όή½Σοπ{ŸR±gΗZι˜jkΞ¨}ϋ FΪwRηŒK]χόαi•ΫkŽγμ§yΆ΄Sσz.°ίήVΓŽΟ”+6αΠαp¨ :Ξ3Α_μ΅£ώΎ{+u>νqψΑv ί±Υ‡ˆA#«LΨ~Zχνyπ΅aβ `ΩQ{½Ιl³;ο4χξΌώ±εθ³š΅θ½Ÿ§Φ{Є՝5dB•&t½Ρ̍ύcΩΫ–s?ώυiΧnŽ-w»ώ R-~ŸgΰxΒ3S$άϋ`Π6%@ξ«£1Σpχ£\gΎ6μƒpυΩχ#ηή iwρμ:>τžπ:³ϊ¦“;΅θρηδ|K&Ϗύ=ΗοίΌΨσξχ¦)ξ=Šϋ½υ5lX}ˆψέd• ϋΎ[χ›ϊχŠΥΣFγž[±5¦ˆ.ή­²qΏ{½š|"€ €@Αή N@@@@@ υ μmύsά#$ΨΫΚ΄Ρ²yš8σ]•aZ=jΊΏ θFκŒl©―\‘Ή// ,iέχ‡dr5aζƒΚuڊςΗŒ³Ÿ¦;€Ψμ νXώ‚ή ·Σ¬Υϊέf|―ΟTδ[Π–Es΄rk΅ΥV­6š]:Χ[»tΊΫφ‡WΠ©w§ίΐ~yΞ¬>ψ ƒJZe’Ÿ‡ΐ:β \Nš₯’<χ·ώy ¬ΫufυΡ?Žέ:sͺrΜZπ_σΫx―ωη.O;TxΜΜΓ#!σ`ΩΫ–Ωf:υ4ξ°c*sNγσ4΅ΖΛϋ`Ρ6op½ΨΩΗVόsf{?ΊufΥβ? [Ÿvψ£kΜNήw{vς–o2Τπ–ϋόε›`Y}SM™^œ=_Gό $ΑQœίΧΦΈ’>KΔ3Ξ~a»ΜΝοG$αχ=˜5δ<ήοωŠά¬΅φϋΕ~Μ*οϋ—>τMŸ8ΜUk£νΩmsŒ €­^€`o«Ÿbˆ € € € €Α{ƒE8G€`oD ώ4V¦±ϋ¦-;`TaϊΌ8€Οή~v+š¬ϋn,r]ŒΨ?ηnΨ>ψόΟ†^‹ΟΣΤcΒΣ]αi³Ξf›uάξ6μ>έ7nHPίYŸͺόΙ­iΣnRgs₯.Ξΰ—Ώ²¦;ŠΟΣ΄oΝa,οƒέσxΧ™―«ώ5γ»ΠGύΠ5Υ\Αή‚[ώ]£ΏέΛέ‘γ;υΦ“Οi·Υ=a¬³Ζ,ό§#Ώ;ΏW¬)°ζ-–χ(ξχΦjΪwhυΑžψξΊ+ΣΨ}SKΒο{P—BOγύž­Ιu%Š1ωžŒ₯¬ο‘ΐƒœQ?Φ­#Ί.ξ5³(Ζ>Ζ €΄‚½m`’" € € € € μ τΰ,>‚½ρΉρT2 X,ΣΝ₯³τΞζΰk˜ώ7l‰pΏp,•δuwUKˆΤγ9GέOSΦEωΪΜ‘)3nSWO€κ²74퍞3σaυ_ͺΤ²‡žΡώ»ζΘvσt LΨw΄+μλΤωš©σ½€§”aڝιiχd…ήz|N„π_`š3€Υm¨ θNttozC―Όe9φ>π,³DSgL”3›‘w'4ΏŸl‘Χβυ΄ΧΩΞ·giiYΰšΞΏωίΝnΓ½\γρ·ο¬•xΧ§«*μ@kΚτβμωΑqIΡΕν4£ ½.Χ—k˜ΪqFsΒ_$Ρ£x=γ}μώΖ½ΞΌ•Xο€=gήΫvύχCΧ”ύξϊΛωjρ4֞Ώ€²Gά§IΧΉƒβNΠύΛ&°_i:LxΕΠ· ¦₯XgΆ±Σ~Τί׍+Βύψ=ύλ#¦~šΒό^ΉΙυέιJψ}w&€‘{ήcωž[m„΅•pΩ°HEwΝ΅œίžΗTφΪ#Z΄«|„ΗΈŒ €m@€`o˜d†ˆ € € € €{=8‹O€`o|n<•άƒn|Hγ‹ϊΉ;yt«ύςEν ξrFž ²ΟhΛVOϊ€±L„ϋΈγΫ΅θΙ_‡Άε΄™§όΜ3ΪαmΟ\Š«Ÿζ9;€΅ηsTΊΞ=†¬aS4y\‘Ӛω9‘-‹~‘•[?rŸZύw.μ]σΌ­*wί3Mz‡¦Oζ>?ΉS‹Ξ5Žΐλ‘ΑέAγŒυ0υυšϋόoUο«5θΐ ΞFάυΥκgΨ€Ucχ&­2§*WιΩ—u$©³σθ£rη˜ύαζVύώ>ϊu ]‹Χ3gΤƒf7Δ\WWœΠρ³/όΞκΦ5ϊαγw«Ο%ξKώφЌq}Z ˜CϋŸ‰?¨•Oώ‡Ά4Ά;υεizκ΄ΧΧ|}©%ϊ\Λ>φ]Hψ ^O{8ˆφ}θ°΅b[gžZ{¬ϊύsέ: θ§χ€±φΌεroΠ΄»ΗΈvgvΎGvΌ=GοΙ½E½Ÿ‰|Ίκ;Voν|Άΐ:szΧχucγŠp?ΟΈϊiΖΗƒ½φwF\ο{#ΛΨΉοχ|Ψͺ£}ߝ‡#¬Γ°υ†»hώπcςΜ;•εάkθχLΈgΉ† €­^€`o«Ÿbˆ € € € €Α{ƒE8G€`oyύ”~r»<ώkνw·(ΕΣOσl€–SmΡ€Ηtm^Ow fέef]ΧΞΌVέ7O¨bΝΫZ»j£Ίέοέ8ά΅[‘s/pgή\Mœω Κp?₯šνZω_+΄ε¦ί―’"χ?½νάυνμ)ͺΜ\ ΚόͺημŒΞtΌR#Η WΊsεP™–9TχΕΞ>™ΟώέfZ«Ÿώ0£«ˆϋ?έwJΩ»›Σκςυͺψλ!mΪ댎νΩ¨ύB©Ω#¬I£άc:Έα5½±?Z‘MΫ+υ™ΤΎύ9ΩΉR»k|Eέ—¦iΦχΪ»Γ^+_ͺΤ{ίmΒ`―§§5‡ξΞFϋ>Xc š“FΧY¬οΓΗΉfιΰ°‘>ύσξšιg¬ν9οŸ™­±?}Tω]=γ<ΊI+ΧνUZΗ‹­»?ωϋνήοωÁDΧ™5ώq…4ώB‹¬3Σt<ί׍+β}œΊΛ{O?M#ό^ ~Χ‚–[¬ο{ΠγQ΅ύχΌ©=χέΣ«ˆλ0ͺ^+kΔύš|έΥΒ1ν’]υ”B@ Ψ›βHχ@@@@@ v‚½±›ρD¨ΑήP΄nCoΧ&zB€†To‚½s½Αήμњ6ν&Χ.•aƒe&ψ2Ν„μ:›ΊBξχ­)χή€Ϊρ]φš1χΣΟώc~¬›‡ϋƒΤ}²NμΆ\—XŸV΅RΏλ5νήρž\ξ(¬i ν€—gοƒ=ςXΦYΜοΓu}ΘwRτλ,ζφœχ/`gf{€‘Η!sžΘ: ϋN…ΆφJ ­3§ν˜Ώ―ΏWΪΘο•°+7μΕxΏηγ{ί=]hl†ν©χb~ΰη*θ}©ΉP«΅σU™ο―—ΌeψD@Ά,@°·-Ο>cG@@@@  μm£ίΔΓ&ΨΫΔ T—\Ω#tCΙp μΫ=΄_'iΗ†εzg]ΉϋžΩ)oςΜΫ\»‹Φ•/ΡΌ+Ÿ1¬υ”]αέΪm₯ziακΐϋy=vŒ τ Όξ9«―©έοι³CnΘO,ύ4ηίς3ύv_W5;ί~ZKΛφV™{ƒ¦έ=Ζΐ<‘-‹~‘•5Cό»Vn‘W*·w`θΆώ@™Φ,œ―έav³MΟ»^γJΖ«—w'O«Ε}›–hΕ[+Uo]sσo6ύ,tχ3θVθiM™^œ=_G_ΝY*ΊqŒr―ϊ†.νp…:]β»‘ΛΩ† 3mγϋοΖ·—λʎYzgsP΄Χκγαχκ•ί―3eMΰrΖΓhvΞ=ΌΝ\[x-xΝΔγιt¨¨)9²Π½λ±«‡Ξj΅ΣŒηŠaΓ\λΣί'_³ΫhλΣͺFύJ4qd±κψN…3Π·½Ί*ΝτžΣ“Ξͺ₯Ɏbφ΄‚½uqΌώŽGΏΞb~ζWk΄η;Ι?§Ρ―³˜Ϋsή?³ŽΗšuœoΦqc?xZ‹ΝnΎ?ρ³Μζϋυ6χχkΉω~]°: Ϊ†NZrΉϊΛχ΅υ]Αο•ΠYŒω½5UΔ΅_Χ£ί}ΔqΟχ|\.ήΎ%πώ)w‚¦ί=Κυ;©~χ σΗRK½΅ς‰ €Έφ²@@@@@ Ν μmsSή,&ΨΫ,¬TšdιΩyΊςλ]εŠžϋLŸΤΡ@ZSυΩόsΨω½{θB§±sguϊτq«)WuMγ 4k?ν £ ΞΝ3ΑΉ¬άkΤνŠK\.§?9¨卛d)VΧΛ.–Ξ:γωLG«6jck|τITΒ„ΐ¦˜@₯kζCτβ―ή Ψ‰Έ){—g†YcWΉΧΨΉΣ'uδ―ο©:L;l?XŸaλkΰβψ‚Ί©ϋW|%6–wθKίysDνΩDοCsŒ‘UΤΩΚΧ™3GΝϊ}ΌπlΦ~6Ρ{υ{μšΟωžoA—αχ<₯βώΞ ΣΖ—ΡϊζψˍM!€ €@Σ μmzSjD@@@@$ Ψ›δ”"έ#Ψ›"E7HTΐ`ν2;Ώ΄#q’υ·²ηύϊ1•½φˆΦV΄²6ϋpΪiϊ΅hpGOCŸΣΓ:«£Νήn” π>D •μΕ’|%;_’ύγ= 4aά‚Ό,₯=x½‘³΄φiϊτH…vTνίΘsηύΆυ/~ΏΤμ^ύNΫη½οt@ZL€`o‹QΣ € € € €$‹Αήd™‰ΤξΑήԞ?z@Τ°’¦’`tMΣ³CΫ«³§ͺΩώΉ^;άΌ»υΖΤkή‡˜Έ’Άp²―³€…k’Žρ@fΈ_“―»:ΰZ΄'§v/Σ³―ΎmqΚ!€ €)#@°7e¦ŠŽ"€ € € € €@S μm*ΙΆ]ΑήΆ=ŒΎ dΦ΄i7Ή‚–uμΨΫ†&ώό ΅λΧ4cH{u:-}ώΏητŸ›“h·^‡„χαό,Œ&n5ιΧY7ιͺγ= ˜’¬aχiςΈ!Χ’=©ί½Ds_e'ύh½(‡ €©#@°7u択"€ € € € €@ μm"Θ6^ Αή6Ύ~ΫΘ‘)3nS3βΪςR½΄€2»νL># ΰ}!α1 π‘e)'―›ΪŸ9£³Aw:mΑϊηΡƒΪ_σQCΕΈ‡ €€€Αή”œ6: € € € €‰μMDg½{½|"€ € € € €@S μm*IκA@@@@” Ψ›2S•Τ%Ψ›ΤΣCη@@@@HI‚½)9mt@@@@ Ψ›ˆΟzφz%ψD@@@@¦ ΨΫT’Τƒ € € € €)#@°7e¦*©;J°7©§‡Ξ!€ € € € ’{SrΪθ4 € € € €$"@°7=žυ μυJπ‰ € € € €M%@°·©$©@@@@RF€`oΚLURw”`oROC@@@@ %φ¦δ΄Ρi@@@@HD€`o"z<λ Ψλ•ΰ@@@@šJ€`oSIR € € € €€ŒΑή”™ͺ€ξ(Αή€ž:‡ € € € €@J μMΙi£Σ € € € € ˆΑήDτxΦ+@°Χ+Α' € € € €4•Αή¦’€@@@@H‚½)3UIέQ‚½I==t@@@@” Ψ›’ΣF§@@@@@ ‚½‰θρ¬W€`―W’fλΦ‰ΓΥ)νœκw―ΦβU[Ϊ8H‚ΓΗ3A@G@@@T Ψ›κ3H@@@@@ f‚½1“ρ@‚½aPΪβ₯μњ6ν&u6c―ί΅Ds__Ω°BFžŠΏΣGtNΗ«Κ΄£ς£†Λ§ΪέDΗ«gͺω${/ϋ¦Ύ~υ5ϊΪ·κ"O_Ύχœ*·οKφžΣ?@@@ZΑήV3• @@@@’ Ψ­ε ΨېNΊ—}½¦O―t3δS»—ιΩWίmpπY#ξΧδλv•Ω»jŽ­©h°|ͺέLx|1z¦šOφ·sΎΎ‘7TέΏωM:όωθ½ταφ/r† € € €Ν&@°·Ωh©@@@@’U€`o²ΞLjυ‹`ojΝW³υΦμP[22O¦I'χΏ§υ›χ6ΨTΦ°ϋ4yάW™=˜£u­,Ψ›θψbτl››Q τQΏ;¬—…/N°7Ό W@@@h.‚½Ν%K½ € € € € ΄{“vjRͺc{SjΊ’¦³ιES4ύΖBW*–Οβ ΥIΣ·¦θHk_’F9CG«Ϋ₯i:SΏW›Ά6O΄­θŸ7Αήš`οεΞ't|χŸuμ³Ίrp« ‚½ΡKR@@@¦ ΨΫŠΤ € € € €)%@°7₯¦+i;K°7i§¦Ω;–3βτIΧΉsVSii:±ο΄b]ΉuΡ9μ’’[nΥ•κΜΉ³Ί¨KzdΈ‹ΤΧTιΨ‰ΣΎςi€Γ›—hνΦΠ°o·kHή@υΚΌΒWώΤρƒΪϋώz½³ζ=ί΅ΐƒ½χ»ΊάτνΤ‘uZόgiΜΨκΣ»―/q—¬?Z₯}ΫΧiŚ- έr‹υ­«ϊ«G―«ΛεέΥΙSN'ιpνίtpΧ­-³wN||±yΪ#ΜQρ-ίΧ€ώΥΩτ³ώ€\γͺ;°]»ΚVhcy°cžΖά3RW\l<φmΤ–Ί*.¬>=»{*=‘κς Z·`©‚Ÿ΄[8GXW™ΎžΪ½LΟΎϊnόU5ι“=”}ΓνκtςCύ½ό}\'ut—η»Z!ΨΫ€ΨT† € € €@£{%’ € € € €΄6‚½­mFΟΟxφžχdh΅θžΩΊΆ₯!]©7aΝΉ!aΝ\M|ζA]R:ό…}«ζθ7kμΰlŽJξ½C…ύΌαΣΠηκv­Πo__ͺϊΰ[Ω£5mΪMκlΧUνΤ§έ*Λԡ˞܏ZϋεžΪ·ƒ–½‘7ήή蹜θψ€Ψ<=Νf\£[εnεt ξ|Ϛ—TΊΚXv]ΝΎ^Σ§WΊΏHψ£λ5χωί†z†/ΓΥέπΣ‡5ΠτΉnΧΝ{}e ΟΆlΡKM°7`oΛ’Σ € € €‚½,@@@@hs{Ϋά”7Λ€ φ6 kJTš=μΚΟrvμ=+uΈ\τsυ;RXsΠ¨ΫΥϋ²:σΕ9]Τ-_Ή½έ‘ΰΪΚ­:όρ§jΧ.Ν=ξ΄sϊhϋ*mͺόΘηP|Ο, οου4;Κξ«S§ύT88ΧWξΰ†—τΖr+ΔκάΙ­©3n’iwρΪΚν¦έΟΤρςΚκΧΛμΤμ=uτ ͺUλψGuϊ§:ͺ{ί<εφυΦtB›όB«ΛέύLd|NbυtvA.ωΡΟUΨΧ>¦=›v¨ΞμΨΫΉίP]ΥΣ{ύ„Κ^›‘΅ήœtϊ[UQyD{T~Ώžn ŽΟs± >φvz‡&Mfζδ„.„‹KU»­T/-\r'‘ {ΡγY@@@ Ψ›˜O#€ € € € €@ μMΑIKΒ.μMΒI9]Κ(ΡΤ™]αΩHΑ^»[ιES4ύΖBΧ₯Šε³΄xC΅};π8w‚~rχ(ur]=€²Eσ΅v«Ώ|zήέ>i”kG^©Bo=4G»νB‚¬΅qΑ›Z_ξ―CΩΕΊ6ηm[΅Ξ΅CmΑ˜ΫuIέZΏΩ›†υW˜σΟ4Ά°―λBνΆ…&LΊΞΣsΣψBž6’ρμwƒ¦ί;Ζ³σn­ΚΜΥZOΘΨϊ½χ'f‡γ+\΅ΧνZfvΖ}ΧέRΗαmKτΚBΉE“Σ΅yξpoΨ tΈώΖtΝ φ–›{ψΫφV“5β~MΎξjοiTŸαwŠŽκш…φF€α € € €Ν.@°·Ω‰i@@@@’M€`o²ΝHjφ‡`ojΞ[“χΪ ‹FμΝvŸ&βκƞ?ΜQιΊΠ­·…&hZ⠚V›yηοΘk ΪeΆ•ΞŠΝVhΧκ›SηΞ·gii™uίΫP΄Ÿ&t;Ν„˜;›ς‘ΖΛψΒ6kυ9Rƒn|Hγ‹<»$‡ Θf_―ιΣΖ»ƒΏΗΝnΔOώZϋΖ¬Ί₯*½σδjΗq«&H=έ©ΣΝ₯¦ΛfυΛΣEνύυŸ=›‘οάv›ϊ˜xλ+ΧhΥΪΏH_`8½gϊjμ5WͺƒΩ ϊœNΔ£΄΄ϊgνV­X΄[sΔ'’»A°7:'J!€ € € Π{›C•:@@@!8ΚΝIDAT@@ ©φ&υτ€Lηφ¦ΜT5oG­°h€ ͺ݁X‚―Γο}Jޝg₯cͺ­9£φVPΤUoϋNκœq©λpΟž6Aα½ώζ¬ΎιδN-zό9Ywύε‚Ž³―Ρΰ!ƒΤσλ™Ίμ"<={FgM™φ»+έ„RŸHce|ξš‚ώkυ9REwΝ΅Ί» ³λjŽ&ότaεvuNj΅vή£*s’½Vέ:ΎUσŸ|Q1gλώαχκ•ί‡ξHμͺ>š˜Ί¦ΝΈΙ³›r4˜2'MωqO9ΚGš«Αήζ’₯^@@@ ΨΫΈ%@@@@@ • μmezž†C°χ<Α'[³V4RΥξrτΑΧ\M˜ω r3μ§>ΩΨκ›jΚτβμω:p*Όω!•ΊwΓm¨h]y©ζ-XR$ϊρ…<κΎ`υ9’§—βZm|ωQ­― +G7˜`οΐ‚½υ•+4χε₯FΡvΰ œe6»ίδή5Έb·φpp‚ € € €@[ ΨΫVgžq#€ € € € Π†φΆαΙoΒ‘μmBΜT*Ζ0hτΑW{ΧYiΟ†eͺωTjΑΚΩΙχψήΝϊ`Gώvί"qύ…ΝQήτΨ€‘ΎK§j*΅·ͺJυ'Ν~½νΞI{iψ°«]χ#…n£Ÿ―™ΐ»Ο»–hήλ+ο›3°χΩχ χnΌ₯r4vΖΓΚΟt.†ί±7l£h; ™OΊhPQΎ.I“Œœληœ.Υΐq£Τܝ:P¦²ςΙάw8λ΄ιΐηχQϋsή§ΌχΓΆKKΣ?λ>TΩζŠπβΌΚ޽qΒρ € € €M @°· ©@@@@RK€`ojΝW²φ–`o²ΞL χ+Ζ0¨|­Xώ΄oΨ‘ΓYσojpΟKΝύCZύδΪt[Υ;gVίΒφΏ±ϋžϊγh<ΨλΤέ-;GΖΠΘιϊ½:λn΍Τα€Iϊφwέ!ξ£ŸVε‡y‚Ϋ € € € ΠT{›J’z@@@@@ eφ¦ΜT%uG φ&υτ4_η2s5(σ«žϊΟθLΗ+5rάp₯;W•iΩ“†½ψΧύ3Ÿύ]»+ͺ=e=φn²ζRuωzUόυΞΆΏ@νuFΗφlΤ~_HΣu=}²J›ΦmΤ‡ω«N§wΥ]²ΤϋΚ\υΙλ§τ“Ϋ΅ΰρ_kΏέZŒAΥΒΫSΙΰžξŽWhύκΦ­G•1d¨Ύ3bΌϊtυW6λ܎i|¦|\žΉ&dό /d¬šνZω_+΄εRαwΗ«€h ―£;7ζΡΨ}_­ρδ˜~?μκwύξešϋκ»ρVΤ Ο}Kί‘gΕητ…ω_Ϊe}Υυλξ το;TΙηϊŠΤN«ΆΎ£?i†.P% € € €Έφ²@@@@@ Ν μmsSή,&ΨΫ,¬I_iα]O©dΐΡυΣ„mη›°mP΄WEwΝ΅Ί‡­cοͺ9Z䄃½?ύFkΚ½7©‡χc5忝{Ε©- ’(z,$   XZOΐ‚$ζ…ͺ¬H%+CŸzwS£μΜ;žž~«λ›γςόμσ‡ίΣΫΛqχγώϋη~υ‹ίλΕηίϊώυ3§γυαφxό“_ύ‘ώ1 @€ @ φ†PΖ @€ @€θφφάrsaο¦Ύ·  @€ @€t {;οj+ @€ @€aο€γS, 썩  @€ @€  {C(c @€ @€τ{{nΉΉ‰°wSίΫ @€ @€:„½w΅ @€ @€ƒ€°wΐρ)φΖT  @€ @€„½!”1 @€ @€z„½=·άάDΨ»©οm @€ @€Βήλڊ @€ @€A@Ψ;ΰψ {c*ƒ @€ @€„ΒήΚ @€ @€=Βޞ[nn"μέΤχ6 @€ @€Naoη]mE€ @€ @€ΐ μp|Š„½1•A @€ @€BaoeŒ @€ @€aoΟ-77φnκ{› @€ @€@§€°·σΆ"@€ @€ @`φ8>ΕΒή˜Κ  @€ @€‘€°7„2F€ @€ @€@€°·η–››{7υ½M€ @€ @ S@ΨΫyW[ @€ @€ 0{ŸbaoLe @€ @€P@ΨB#@€ @€ @ G@ΨΫsΛΝM„½›ϊή&@€ @€ Π) μνΌ«­ @€ @€„½ŽO±€°7¦2H€ @€ @€@( μ ‘Œ @€ @€ Π# μνΉεζ&ΒήM}o @€ @€θφvήΥV @€ @€ ΒήΗ§X@ΨS$@€ @€ @ φ†PΖ @€ @€θφφάrsaο¦Ύ·  @€ @€t {;οj+ @€ @€aο€γS, 썩  @€ @€  {C(c @€ @€τ{{nΉΉ‰°wSίΫ @€ @€:„½w΅ @€ @€ƒ€°wΐρ)φΖT  @€ @€„½!”1 @€ @€z„½=·άάDΨ»©οm @€ @€Βήλڊ @€ @€A@Ψ;ΰψ {c*ƒ @€ @€„ΒήΚ @€ @€=Βޞ[nn"μέΤχ6 @€ @€Naoη]mE€ @€ @€ΐ μp|Š„½1•A @€ @€BaoeŒ @€ @€aoΟ-77φnκ{› @€ @€@§€°·σΆ"@€ @€ @`φ8>ΕΒή˜Κ  @€ @€‘€°7„2F€ @€ @€@€°·η–››{7υ½M€ @€ @ SΰCP€Ϋ©ΥIENDB`‚ignite-0.5.1/assets/logo/000077500000000000000000000000001465426447700152615ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logo.png000066400000000000000000001355531465426447700203020ustar00rootroot00000000000000‰PNG  IHDRΦι@ΖH pHYs,J,JwztM IDATxœμέύqάΘ΅7`xΛSy@QŽ@t(ι@άDG nζF°T&k0Α%kΈb#π[X7wg΅$ψΥ@ΟSΕ’}ΛwӘ }Nε?ωOάογ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬@Α:τ¬ΐL΄Mύ¦mκ#ηςϊ«ρ€iλυͺͺŽίNUU'N)δ#X€‰Ί'P X€‰¨ΐΈλ0mSοUUu(P€q Φ Έ¨WUυΡΉ€ρ Φ (:Δ X€`κ‹`‚¨@L‚u(¬mκƒͺͺŽͺͺzο\@<‚u($κ]…ϊ»ŒGpι|@^‚uΩ@:0Α:ŒD Σ$X€ Τ`Ϊλ0Ά©χR ώΡΐt Φ ³Ά©ί€@ύ“±€ι¬@FmSwϊQUU;ΖζA°€}ΤO«ͺΪ5ž0/‚ux…΄ϊIUUο#ΜΣΞ+ΌLjϋ~%T€yS±Ο€ν;,‹`ž¨mκ7©νϋΗΐcvΰ`VλπmSHUκ;ΑΗλ[€c€Y¬@T₯~juXœ{Έ_ͺR*T€eS±ίQ₯lS±[T©ίS±ͺΤ€*ΦXΌΆ©ͺͺΊͺχ¬°hmSWUυοͺͺv—>ΐύ΄‚`‘Ϊ¦ή«ͺκ¬ͺͺ}Šu§mκΓΤϊ]¨΄Ÿ:04­ΰ˜€Ά©Oν§ŒA°ΐ€΄Mύ&ν§ώΞ™Ζ <“Ρ6υ^UUBu`L*Φ˜„Ά©ί¦Pέ~κΐ¨T¬^ΫΤ‡Bu λ„–Bυ_œ% Α:a΅M}ZUΥGg(I°@8mSΏ©ͺκD¨D X ”ͺwϋ©ο;3@?8 D!T"¬BΫΤo«ͺΊšx¨~[UΥ«ͺκ2ΐ±™Φ(.…κ]₯ϊξ„ΟF¦Ώ]­7gŽΘΘλ΅ͺοLψLό΄ZoŽ0λΣ6υαΔCυ›ͺͺώ.T€yS±@)TeΒ£^UΥαj½ωΰX€ Φέ Bυ¬Φ›“ΗŒ@°ΐ¨&ͺίVUu°Zo 0{¬0š‰‡κ—UUν Υ`yT¬0Љ‡κ?―Φ›£Η b€ΑM8TοZΏψ‚P]U;̈ŠuΥ6υiUU'8Κ7UU}xaλχoPˆŠu3αP½ΫOύνDχSί p 0+*ΦDΫΤΗ Υ§ΎŸΊ`2¬]ΪSύσGΆΫOύ4ΐqΦΘ*…κΏLlTo«ͺ:˜hλw``φX ›‰†κΧήO`€,&ͺ_¦Jυ―ŽJ+x^m’‘ϊ—Υzsΰ8€ΰT¬π* ΥͺO₯b€k›ϊνCυWλΝi€γ&B°ΐ‹€PύbB£w[UΥ‡Υz3Ζ1α9€‘ΦxΆ­P}g"£Χ…κ«υζj€ηλyξσΆΰsΐ,Ωc€gi›zob‘ϊυΘ‘zioς:`4*Φx²Ά©»Πφl‚‘ΊΦμΐ‹©XΰIR¨ήUͺοOdΔ„κ@‚užκtB‘ϊΉPΘE+xΥ6uͺΏŸΘH}Y­7‡Ž˜ λτj›ϊΈͺͺ₯(‘zΙJω7ŸfI°ΐƒΪ¦ξBκΟ‘0•κ«υζͺΰΣO₯]?L†`€{΅M}PUΥ/νί€ΑΦψ“Ά©ίVUu6‘‘ͺƒ¬πmSΏI‘ϊΞFF¨ N°ΐoR¨~QUΥξFE¨ŒB°ΐΆ“ͺͺφ'0"SΥ―K=qΪΘD°ΐ―Ϊ¦>ͺκγFc*•κߐ`€.Tο‚κΟ νί€Ρ Φmκ·©|tBu Α:ΐ‚΅Mύ¦ͺͺ‹ͺͺv‚‚Pύyφ¦t°``Ω„κΓΉ(ψά‚uΘH°°PmSŸVU΅όΥ«TЬ,PΫΤ]Xύ1ψ+?ͺΦ¦mκ·UUύόU_WU%TΉ·S=pˆH°° mSΏ)ΌχχSt‘ϊΑj½ω6ρ3Srœί|n˜Α:ΐ²œUU΅ψΟ%TfD°°mSŸTUυ.π«½νΪΏ Υ³P± Φ mκUU} όJoS₯ϊU€cΙ₯δύ‚Ο ³#X˜ΉΆ©χͺͺ: ώ*?Μ,T―ζφz`Ιλσ}_υWλΝE€γΈ—``ΖΎκ‘Ϋ‚c΅ήD―¦Ÿ€Ά©–>‹``¦&°―ϊ—Υzsΰ8†t9ί—Λ!X˜‘ μ«~ΉZoΐ£λσy_υλͺͺ>8ŽΉΣ 2¬ΜLπ}Υo»P}΅ή| p,cΈšK€ω¬ΜHΫԁχUοBυƒΥzσ5ΐ±Œ₯δ‚7ŸfE°0mSΏI-ΰ£:Z­7*ΈΗσv)/†&X˜Σΐϋͺ΄ZoNΗΨ.–υr`žλ3Π6υQUUοƒΎ’σΥzsΰ8–FΕ:d"X˜ΈΆ©»5jp}]UΥa€γ(₯δλQ»ΐδΦ¦/j ψΫͺͺ>¬Φ›’αrQ₯χ”Oϋξ―$X˜°Ά©»Jυύ ―  ΥΏ8Ž%Σ2¬LTj9θΡc΅ή\8Ž—>0u‚u€ J-ΎOƒω—Υzsΰ8’(Ω ΦPΐ4 Φ¦)j ψ:ϋ(ΐqD²Ψ=ζ`.λΣ6uW…ό)ΰQίVUuΈZoΙtUπΉU¬@5ˆΣΌ|ͺ— ‘ ˜Ά©χͺͺΪΫzώn.οmUU«υζΒ™˜6Α:ΐ΄t-ΰwρΟ«υζ,ΐqDΤέ4}.t\oc @L)$?όξΰή¦°|ϋΏο<ρΦ&N°0mSΏ Ϊώz΅ήΨW=¦§ήΨπG‡‹%ΘλΣ±|·―ϊ‡ΗVι6_iAπ *Φ& mκό~ΐ#νφUΰ8xΨc•œ-ν·ρj΅ή| p0i‚u€ΰ~NΫNΩWύι .Œ8°‡όζ€ͺͺwKŽΆ©οώγMUUέ’Θ.hΏΪϊWψ¬Δ±Ό}՟ΗD5ΑnϊλΌί>žΆ©oSΘ~qχ―°‘΅Mέν]»g ηm΅ή/} ˜Α:@`mS¬ͺκ&]Η”\<Σ2`d;ιzε·k–Ά©―SΠ~‘S9\b‰¬0 ‚u€ Ϊ¦~tβh΅ή\8Ž))Yνeuΰ₯φΣί§ΤNώΌͺͺ.`?SΝΐόΰŒ„u’*‡"9_­7[ΣGWr!B©½έ€ωιΪΗ­m›ϊ΄mjqX Α:@@i’ςc°#»ΡώŊVt΅MmίJ ·ξZυίmSMϋdΐ¬ ΦbŠX~¨εηΛ¬Φ›‹Β‡ X†²ΫU±·Mύ­mκ㴝̎` ˜nB2MPFςs€pxκn Ϋy !X·…ΡηͺͺT°0K‚u€@RΛξ£`ηδΊͺͺγΗ1u%χYW±Œe'U°΅;s"Xˆε8MFF’|_ >·Šu`l»iφSνα˜Α:@©’ηc°σρΣj½)Yi='‚u`‰>¦φπͺΧ˜4Α:@'ΑΞΕυj½Ρ>Ÿ’ vTŠν€κuΧ–L–` €Ά©«ͺΪv.ܔn§―j(ν³ΦπL•` °4±­Z] ψΜVλΝEαC¬t­α/„λL` Ό£Τ3 -ΰ‡sSπΉχ >7ΐΆ}α:S#X(¨mκ.μόμh?œ―Ÿ[Ε:‰p€I¬”­2όg-ΰU²Ό`ˆf?ΰ–Hp―Ώ€2Ϊ¦>H{LFq0θŸ›’λ;]‡„ΥzSς`nn Ύχy7‘±ώΨ6υΥj½°š` œh!φαj½ωΰ8ζ¬τΔϋ^ΰΙ˜’ΣΥz~abZΠY₯6{ιίHΑϋ?Ϋ¦ΎΠ9 €Θλ€ΙΝH“™η«υ¦d›ςEθΖΈmκ’/υ p;z €­λΌ?\΄Mύ6]tο Ÿ›³ξx,τ\–Υzs0—ά-Ιy·Zoώ’λ±€<λeœχΫZ=ΐq,EΧ2v·Πk΅Ο:π›T!~u·ΟyΫΤua‰}7ut:r†ˆθg`\mS Vοs¬2hT%[± Φ€­Φ›³ΥzΣ…λ«ͺͺ~J 0Ητ©mκ=g€ˆλγ‹΄ηεj½9 pKR²ϋnΫΤo–7δΐst‹.Σήρ{φHΰ7‚u€΅M}¬Z]«Νρ]~~Uλΐ“|°<¨½k›z6ϋn0‚u€‘€JαHΥκ?§}5Wι17Q ‰α²ΰQΌσrY­7§]Ϋμ΄M-\ Α:ΐ°’Tˆwν9OΏ+Z΅n’Θμx uΝ@‚u€΄M}¨Zύd΅ή| pότ^χ&©€lVλΝΕ@UλYA°0œ‘ͺvžλf΅ήD9~WzŸu“Τ@n§<ζ[g €λHΥκ»AΖV¨PΪοώΆΰ‘™€r;ΰ1»}Φχœ)J¬ #R΅ϊ•CδQ²|7I-\²I[0’‚uЬdΦ6υA jυΓΗΐΓ΄ƒζfˆ…ƒPœ` Ώ(Υκ—«υ¦dE4+}~λ@nC,|γ,Pš` £΄γ» cjoυΰ,|x~€IθϊF+xЬδ₯ZηΊ,9biλ€œn2?ž`€βώκδΡ6uΧ’ςcαT­>…»hIΟΊ…Ι0A_«ͺΪu
X`|΅ZoΎ9iΠ/ukόΣ’7χΣΥ6υΫ{ΆήρpΑ:@>GAΖR΅ϊ΄ ±ιs¨XνίmSm΅ή”~Ÿ@x)κΏ»χRX΄”co›zϋΏ^WUυ--Ίϋ»rmΞ\₯‚‘·ιοΝΦΏ{OY0χέη§ΪκΠχΫη§ϋΧgh\ι{qϋ»ρ₯ητξ|^mOα;°8‚u€|’λͺΥ§₯τ"ˆwέΝ³‘xΆͺhN,€`b wδ …€[O ϟαξρώπ}–‚¦λt/χλŸϋ©yHχ`ΫΥΨέ‡]₯EΥφΒ‹ΥzσuJ‘Χ»ΟΠΫΊΝΌϋξί»η­gθ*}†,XΙδ»οΕ·™―Η:ŸΧ[ί…gcΏf€± Φ2h›ϊ°ͺͺc©Z}bΊ ˜t’{θ9Ί.7?ρΌMGΤ-~8Z­7'K&£hΐ”ΝsξΛ~fΒΏŸ1g,)<¬† Ÿc?ύ}ͺ~–NΣ{wRαjNmSΏf‘LŸŽx¬]ωa+€|Ξϋι‘°ς/™o[‘λ‡τWrλξ3τλ–ŠmSί¦y‰‹τ9²Xε‰ΆήΛέίϋ‡πΫχaZ4qή} فΉ¬δqdU«OΣEαI‘‚υήnΤqΫΤ‹ž€€gθ&˜?g°·ιz‰{€ ύ_2Νhαρ₯ύœΣ_ξŠΪ\ΊϋΉv[!ϋιΓΑΧ|χ^ŽρΩO JE΄Mύ!H˜ήg'…μέί/mS_n-V²ί#ΧΓ€οεξxή·M}“Ξα‰sΜ‰`ΰ•Šω­.U«OΧΕ]₯C!ڌǴ]υ΅“nH+xάi Έrι&‡χ,p{PξEΧƚκχΆάG @·Cφ/έ"Yοι'l^%-Ξ8J!δPΑςυ@ϋ"iΡΣazέQ€τy—ώ~IŸ£Ss^ΏΧ£ΰ ξμ¦Ε6GmSŸ؁ΉψΑ™x΅({«k=QΪcν¦"ΔςύΔ―-α#θ—&mΏd&λΛ=6ξk«(n›ΊΫ ΰί3¨*ξͺo―mκ‹΄P€uzΫΤέb«K‹Ω‡¬ΦvΑkjΙ5-π˜b¨ώ½ξsτοξ{!uXœοΞλ牝םtΜ_—zώ€y¬ΌΒΦ>F₯έΨ»hς. Ώ“<τ,t8NΥΩ›Η–»°ΕmχHχCΉƒOχ5 ΥΟ]Ά(ΉUΦή₯`πΤυόπΆBΘ«»=Όηξžΰ5jΛχΧΨOμWKZ¨’Βθ9œΧtώ.υΐ$ Φ^'ΚώTφVŸΎ-Ν¬Žε‘`}Ǟ£L@ρN8©]μMΖ‡Ταη~ΉŸk»<©ͺψ,U¨GΨfmH]Θ{•PΎ“#,Mq5γpωO^ΫKzΝϋi‘ΚٜΪξΊ#uοψefηυ]ͺ^WΰL’`ΰu"TtΥκ‚Άι+]™³oΕp(}χZΒΐΣ¨Z^ξ`έ}ΝΒ€λΪ«΄|Ž_Ϋ"§ͺ[ v2IΫ§iΖڟ?*-Jι’ύk)―ω;οΣχΗμ€Ε7;ΓξwvβEΐδΦ^(έGΈΐ5ω4«υ¦»Ό-όJμΗclZΒΐγr_'»VΪ2@ψ[Ϋ[-G A/Π‹¨*ΎG7ŸπΏͺΧ_/ΝΟ,¦ν{υ{{π«tyxLιξΟρυ±νV•ϊηPG>œ_|S#XxΉ+]{ΰ8Θ£τ ‘Ιβ8›ΩρΩ`A^t΄ZoΊ μσŒΓ΄£²κr_; Υ"΅ύ*όΝg{ζΩ­‘Σχς¨Ψe‹­ΚόΉ΅©)ύvτλι½|1γ*υ‡t߁ζ7€Ι¬Ό@ΊαBžΪƒpVJίΎ7™Sή3ΪAΎO{ι@4‘Β²άUλ‚υίεΎ1©Ύ©υϋΏ‚}o^h <[sƒ·$O]Λ.–T™ˆΩt:IΑς’K|²x˜ Α:ΐΛ|r±kςi^"΄0{v…Ω=g2νΤbΰΕ IΣ„ϋMΖ!zg;–AΪΐί€­‘˜±‚ώΣ9~ΠΎpύiΆΆXRλχ»vχK«fξ3ωP}«Α§‡SΪ/©£ @h‚u€—‰°Šς<΅·d&ωΌ.όjT@—χœ‰΄*ρΰΕ „^ΈͺZΟ/χ5£λ™Ϋ ŽTΩ>n'…λKύžyτ7$-μΉXV©SΩ…N2ιb“­χ²οΖߝYΐD'Xx¦tαN΅ϊ<ΩgηZΒΙ“‘―έϊH°žŸ`'½ΘNͺά\βwMo7­χΣbͺΆΣϋΰ_Bυ?™t§“%Ύ—ŸHρž`ΰω"άάv7Ϊ†“_ιˆ!mq/YΈ£%<Qd―XνΔyκ tžοˆͺέ%·*  ό΅N\³18κΊ„]ήσwΰΨΆi‹ΌeΑ‘z”=δ£™lx‘ϊ£ΊmwŽ‚#°`uςž-B°~ΰ@7qά6υmαΥθζ°WΩ½’}ξέͺn‹"(-χoQύΡO3‡Α‡: •’ϋλΔ5S©ύ{©ΰθ&}FΏήύϋœ)Π~“ u…ξΡΊΆΘSΜ}¦Ύϋ‘₯…κABυΛ΄%Λ·­uWπqϐ½οώήπω™dUσΘ‘ϊΝΦwΰ·­­uVλΝ½έ€ΆΞεέ9<θό=ζΈmκ3 ο€ˆλϐB―έΒcv+τœ½³Β­…³εΌ¦ΚοΧ–π«υΖχE€ΙβάΕYΒ€ξχ±mκ›ŒΧςΊΧϋΠΔτΜεΎVtν2C…φT?Oο§‹Χ†1[β~{¦ω€ƒ΄°f¬€χ ·RF IDATnΟυ· ˜ξ ο /xͺl‹­{­Τwγyz-O]Πρ”ŽŠιαξ3tπΚ-―§ΈΨ€§ίΛ7w߁ιό=ϋε‘s™ή“‡ι`ŒyѝTTdϋ Α:ΐσDΈ ;[θή’”Φ»vπ‡«υΖΎVγ{mϋά%όžο bq^Ξ‰σξΪζs¦ΗΪI―wQΧK΄?wέ2?©…οXχ37ιsx:tπœ‚Όξο€»ζͺκ(Ν ]ΙΉ³UΉΎΈΟΛΘο§*mp7ΞΫΪoΎ»_{M0ό ­Šζ1+„―SχΑζ›γ^l/@HΥΡ^ΦN΅Zύd€χςνΦwΰ`‹ cwŸΕ£tގ‡ϊ lωΨ6υ±ͺu Α:ΐσDΦ΅JœΏmE7QΔkƒυ»Uέφ# „!~’λUΊ7XΪυRξΕ7g&.αUuϊq©Εΐ)θ馻kƒΠύ40ϋκΝTUσ~Ίή {―žΰmUaο₯–Ϋ―R T’Ω"sιy/gι"ϊ)‹U¦ΪιδSΖΗ*φ˜ΞΫAϊ|ž άMBΥ:Ξ_ώσŸ8+OΠ΅Xͺκ_…ΗͺkwυΪΰ θφ’Κ\ τ+Dγj›:Χ…ΩίKMŽDΦ6υEζꚟVλΝ±“ώλΨv‘Β πΠY―GΈΖϊŸ%UReώ έΦ›7™«Έάί/«υζ/ƒ½΄fΘP°«Ξ<‰φέ›ΡγΜΑΩ}ώ±ZoΒ.ΆΟt?σχΤ2ϋM «sΏŸ.Σ’žpέGάB‘ƒ£¨νΤΣόΫΡί©—«υζϋ=έ‡<–γΜ‹ς^«θ’’ϋ€Jό!Ώϋu­ΔχƒsπdφV­ΎV`Ϋk}Di…~.§i" Ζ2DΘu=@θ‘{"z1]bRhšsaнΥηηtΰP½«.~qASχ]΅ZoΊοƒΏ₯γΚ?3ί7Dv–ρύt›ͺ³»€k©0T?!TοΖα₯1»Gωj½9Kαω€σΆm©NnΣš½hΫφ₯οΎ| ‹XPλOW:dΌ5ω΄(Ξ΅vβγΚ9AΆλζ€±€Ε\C„Ω»―t“υ©Ϊ+—%-DΜύZ-ž‘TΥ9δ~»?wέΫ’W-¦°ςΰž00§Ή‹{i_υ\履»Η\­7‡Qί?iαΠί‰—i&3―ԝ―ξΌ}°/q^μ2-* ϋ»™Βώ‘Βυ €HλOΪP΅ΗΥCΒ΅)c8ι\ŸβύtƒΟ8rWž|J{žΐΠ†ZŒ7ΤΆ&9C©έt―°9χ8½‰\-Ισ€ κ![%˜*"'!U―wŸ— tΌϋi!Γ\dZ$|™*ԏ&0—2t·‡ŸR•ϊ$η”Άφ%nWwwξΒ·BOαϊί{;:*‘Φž&ΒάRΫ]-Y„•Ψ9'Pι7DKG-αTZ„7D v;`U]ξλκΩOφ¦σΌŸρ!έΫΜΛPη³λΪφ·hmŸ*U—UΑωyΖ-α?f™1•02suώ}~ŒΈ}ΒK,,TοΎώ>΅s—Ύχ.xhΑ:†`ΰiJ_ΐuCUμ—`}Y†˜LΡ€‘ x v”‚–œ>.`![ξϋ!ΑϊL€P0η’‹;]¨zθ§Έ=²νώμ&-ƘΔΨ€EKCέ―MzaΚΒέ}Muπ0½†œή+’¬<"΅R.ήΎπσS@vπ»Ϊ‰oΰj-αΔΐUvC‡"ͺ֟'ηbΛλ)T‘ςΈr  Νe»€Ϋ#Ώ[ΠVOqφ‘žϋζd ω¦Y,LY¨λ©Ÿ»τ?Δuœο; Α:ΐγ"\ΈY‰Ύ\ͺΦ—aθ6ŽͺΘ*-Ϊϊη@£:ψώΫ©ΝόMΖ‡œΜώΟΟ5@xχ6σ1T(ψΉUΩ¦ κ/<΄ΟΣ]¦0r2­ΒΣοθϋ~6 S¦[q8“sw2@ΥΊ‚ Α:ΐγJλ*:–-B°Ύ„φ¦₯ ¬w΄„ ‹ΤieΘk”±~³rwϋ3ήο8χύn\3\|ΰ•œO₯χ e^ΠS₯λό₯/„ΎLϋ©Omν‘~λ~Τώ}’fΥe }s— ցλ=dΑnα1rC΄`AΪΑWͺΦ7ΖDόηOψ0’τ[r1ΰVI·#ΉŸgΧK9_ΧωΓ/ξ7D(x3ηϋŽτήbαώ’Π^O±=tjα?ΔV*_„κ“5—JυmΉί‹»iž (Α:@Ώ7h*:ˆπ˜m{Σ †ΪŸφ{&Yx±TωΏ†κ՘mSW¨œ gΠή΅Θ X­~8χ…)8ϋ)σΓ.΅jύfjνί· ±βΪ}ϋdύœΆ¨™•³*Uλ@‚u€~₯ƒυKmΰIΑzžk7νGf#W‘οk ΐsu[Β΄Mέ]ό2πΰέΨ/8gΠ»“ͺη$η빝cp°PC\Ov•Ά Ξ“ZΒ/νΏ»?ώ0ΕP=έWη\°tgφ SfͺΫώqΞ "rξλΒ'Xx@ΪSz¬*‡¨θΰe`„IHνΰ‡1φ‘–πpŸEιοšNΊ,© @NέΆŸ3=ήν *z"tYzΑ~NΣ’ƒB,xmΰωƒΤ>w΅νRχV^χω”ρρgΈϊzΚχŸ© όϋΜλσ3]Kό]ΌΜ8—%XŠR±pΏa—ΐ’‡œehx)UΞyDΦwLx„°“&Ÿσ7εPύΗ€!IΞίÝ©nŸ£ <Θ½XδΛTχΚ@ξΟΘΤφάgκ!ςΫ((Ș¦Ϋ…ž»œ )λ@Q‚u€οDΨ_έ I“OήοΣg…Šπ]³EKxΖτcΔ}rSυόyΖ‡œjΈ•σΈΟ…§³‘ϋύμž7Y­7W™·’؝ٽΪν φⷍw–ZH£C0‚u€?+]Aamb‹²Z8ΐ1LY΄ΙφγΤ’†2Tί’σΨ¦Ί1ηb;αι €=»sΆ_jΕfŸάγ1§ͺυ9„ΘΉΫΐ Φ§λΉΫώΜEΞ`έΌP”`ΰΟμ―Nh©’α:ΐ1~ΔΎJ΄Ι.-αZτPύsTΞmw&n₯5WG9T™ς_Ήο‘έσώYξ1‰°εT.“ώi›:χΉΈNV˜&λ―—s»€g¬όΩΫΒcbuž"JΥΊφα/$Ό xh]eέχd ¬.¨ώΫ„B֜Η9΅k₯œϋΒ OηCψ­Φ›‹Μ‹zζ¬ί€…εS–ϋ\X° ΦΆ€°«δΚΗΫά42‚41sβε₯ŽT­ΏHδπϊΤ9 £n›£½‰]γζ\ΐΈ;@΅βr^£ζ#χβs‹Ιο—s\vRŠ©›Γ" ΨΆΤnΊ,³!Xψ£“^&xŽ“•;ͺΦ_$g5Xn;:"0]έΐ¬Φ›ƒΥzσmJ―"΅Ψ½Μψ‘χ“Ή όMͺΐeβΨ_ύzjί #Κύ™™C°>‡ο‘œΚn΄ŸΆ₯ž?ο[`Nλ€ ’ΊΦΤƒυ9ΌWλlσΫ0‚u€d€½γž+η>Ž,DšΌŽ°κYΥϊdž΄Γ'-αx@WΝύ₯ͺͺΏΝ0PΏ“sγ»΄LT9ƒœ (/g0xkΡΕ£r†Ι;_ό<‡`=ηχΎΟ XψύΥ™ͺ(UΕͺΦ7ΕΕZΉ°­[ ϊc¬Φ›Γ9w\JFΞΕ―‘«ΦsΆ¬ΟKΞΕηͺΥ—;8rΥϊBδwΛη¬όN°Ξ$eήτ5T­χH‹¦²ΏϊΆύΆ©΅„XΆσ¦OͺN?ΑΎ·O5ϋvπ™;κœ/θ½1{t. >.χEξ”ρ˜Iλ,:χω™>Ώ3 Xψ]ι`έM―a―υψ o7ρŸΣ€;ΛΠνρϋsΪ7ύ/«υζC ΣΧ‚6σΖέΆ©#.²ΛψŸe|,ζG¨τΈάc4ε`}κrί?i?}ζύfΰ―N"ΐorΆθz•ΌIͺ/άήU­«pώ³©Wσwο1ϋ­ΜΟuš¬ο&{/fΊWϊkuαϊ§Lυ!`ψœ+μΏM ˜άΧ~Ύ_Ρ}·Mσ!'¬ΟΰχHΕ:̐`ΰΏ-ΊJίlš`ΰUΊ…mSw“΄ŒdW΅~b±ΘοRΝ\-VKyΧ6υΡj½±η:ΐοΎl΅ ί Άσ^€ί€»}Β―R5dχοΧ9ΩIΖ`ύcϊ= q”Ή ΌjuˆGΕz9Ή+Φέ_@‚u€ž98¬«Z³Ήμ=ά-ΰXb+`€|έͺ¨{BΙ΄ σϋ γΎΫs}ύMμWίΧytγΨ6υeΖW2οέώ9Ϋΐ«VŸŸ¬χΙ:b<ΩΝ ε’™Εpƒ`ΰΏλL^šτύ’j=– ΌŸΙΛΩIU{χ‡˜„v Ό§η4c°~(„Ξυ›~#4₯ά­¬yš―ƒυsKfμ`†~pR~Uτ†Η$E©ίQ±ώ›ΉΓϋΆ©λ,JΪ;ό6Σkή°•6πŒ-Χη‡ηΩ1^Εδ\˜rω„ 0Α:ΐ• Φ―rIUpQnΊ?E˜4.©mκ7A:δvš^,IΞ*σΫΔδl’ρ±˜']ژ<Α:ΐ•άΏL+Pr‹T!½τͺυΉμ­ώ= X’œαqΞPϋ₯ru ΉΆŸlεΪώ€ηΡΡ (Α:°xmS+χΙ*m-₯jύγR«ΦSEχ\ƒυ*u$(ύύ £Ιάh§δΦ*™ΫΐGΩ/ {¬ΐ Φͺͺtθg5:CˆTMΌΤΙΦ£μi¨ν+K“σΊ¦dΥzΞη¬C`Kߞ« œχ‚ζ Α:@ω`]Ε:Ω«Z·΄ΚζT«ίΩo›ZKxc΅ήt!ςm¦Χϋ>]3”+X?_­7ί ½ΰiλ™ΦΚΆηΊ5Ε€μ΅^ΞͺΥο©‚`a&]΅žZΠηΊN9Λτ8α ΦΚήV­Ξ`V­—lw:šU«ίΩΡ€…ΙΉJ‰λ£\{»ί¦ ~€E¬TΥ~Α1¬34Uλγ[R΅ϊΕ,œ€Υzσ5γβΕn[•±;hε ΦU«‹"X-@ϋβ― ? ,XΥϊnΫΤ³δ^`΅ϊΆ“‚ϋΔΐΨ&Ω>sxΥκ0 ζ2¬KW:XW±ΞBU­Ο<|]b΅ϊξ₯ΐB₯θ·™^ύ˜]_rU«ί€œ@p©Λց₯»νβχάΰ2Έ`Uλ;s­θ^x΅ϊOmSΔ8\Šν·TΡ`zάc@‚u`ιŠVΞZ9Έ"ΎŸlΓ0„γW«o;‰s(0¨œΏyΉοenοχ~’,Ξ]!κ<ψόΐ ց₯+Y±ξ&‹Ρ¬Φ›nہ/F|V“±i‘ΐ§‡Α~ΫΤZΒ0{i‘lkϊχ#,<Μή_[ Μ Μy;(B°,]Ι›ϋoK|F)μ|?³–αͺΆώθh¦] ΰ{ΉΪΑW#T­ηzόœ―™εΨw‹ΈYΰkž# S Α:°t%+Φ―–>ψŒ+U©ZΟ,-x?‡Χ’ΡŽΕ,Αj½ιBζΫL/u°­{2·¬/‡Εΰeδ\ ͺ»Δ0?‚u`±œ΄z*Α:£KUλ?ω“Ά©'ΫΦmκ£@Υ]7‚σΗ±mηž(η"»‘ͺΦsλg™‡e¬O§Ό™0‡‹W ց…+φΈΑ₯”“Œ-K_kgΘΆ§CJ7‘:tηυ0ΠΉ­R΅Ν$Ο/δ^”–± όmj}ΟrδΈ¬?"m3•“εδ.¦°`¬KVτ¦^ EJIο½HνΛ?O΄-δIαν$Ά]Φ›«tn£ΩS=ΏπΉ睌ΥεwT«…kΒΗεOuΚ+'χΨη^tΌ€`X²’7υΧήyΦ…Β7NΒ€φ)O•_οʝί*ηS%YͺΉ\T·0wg»Ζf«\ΑΊίσ…Y­7Ή+Φ΅²~\ξ1¬—“»K‘Šu@°,YΙ›Υκ•*›#΅1?@ΫΓA€φ¬‘&–/ο™τŒΦώ]ΫΤΉC#][εͺθ~—«ΫKΖ6π7„¬LCΞkJΑϊγr‘-θ  K‘Ο X–¬δM‰Uγ—*›#U­O₯ κ4P ψκΎi―Χh]Nrο ΑδόνΝ΅ M΅:―•3˜έu6•³³ή­-θŠΛΩIμέDΗfE°P†`("UοΆM©ŠώOΆ€ςPυΨj½9ΆνΔN°. Υj½ΉΚψΫ+X'Ь ¦₯ͺ ύŒO­Z½Ό¬s?mS«Z€Βλΐ’•Ό!±jœR(i?UΝ©%k΄Iεǂ꣑Žγ©>™ `ζrU­οΎ6€ΜΨώ:uΓa™rŸ{ΑϊXt`ϋ†ςr/nπω€Βλΐ’•lεlε8‘D _wΆ0Ώs¬ό—Η&ΉΣΒ‰ŸΗ;€'‰z~ ‡³Œ{RΏΆj=W΅ΊίξeΛΞZdω°ά‘©y‡ςλ03‚uXΈΤΆτK Qψ­EdΫΤ§™Ϋ2ζπΤΆκΗ'ψsxΧ6u€- ›΄ŸρY¦ΗϋψN>ιοc¦γΘυz˜ ΄3η΅€`πa‚υ™yhΫWπω€Βλΐ"•νΈΉ‚ΧŠΎ†©ŒJ!p‰ι\~zjKΦ4Α-Θ>‰Ϊς2Θyσͺσ\ΥκηιZ‚eΛyΊcŸυ½ΛψX7Άpγ:γψό@a‚uΰ%R›ΟύΆ©‹·¨O‘ϊ/₯γ;·Ο=W«υζ,Ψ^ϊ;χ€,R7 \AΚK/sλ§™‡iΛ½0<Χϋs6Ϊ¦Ξ=&σΗασ3"X_€ͺ`ΨΦ…΅7FδΈdUsΠP½sτΒΚ±hUλŸΫ¦ή p0„\ χŸϋ{™ŸήgxξΫ΄8ƒΓ¬Ο—Ο̈`Xͺ·_·}Ξ)…΅Oέ·{ ;₯ͺθS΅|ΔPύz΅ήΌ¨r,u%ψ)!½Š*8ζκ,γ‚ΪηV­η ]„κό*uaΘΉw·mκ’χδ Φgj€J»ΪΑ@9‚u`©μν χH‘m€–αǞ4HUaσ9ŸαUνΣWλΝq°οh{ Ε₯‹ΉΒ”ηώVζϊm΄Mεεm ”€λᝌymυpΞ3P΄nd°‚u€ρΉΑ%ΊHUλΥΨUΝA+»;η«υ&GεI΄I“φΜUίΈέ§.DΛΨώ&U)Γν¬‡“{,t…Š'χΒ”%·M€%¬KUςD°Nh)Όύθ»ΙδQΓώTΩ}=ζs>β6WUσ γHΑt뉧oΉ:ΑΪYηΪή ³Σ6υβ«nS8ϊ1σΓΪΖ!ž!Ξ‰P€`X*ϋΉAΏγΜg―u”Z΄)DίqζvŽGΞ/Œ"WΥϊS«λ )χϋΒβΚόα¨6π₯νAr·ƒ?R΅γ¬Œο›1'Ί4©EχN–πWAZΒw“cYΟEšΨ‰4‘Ήcb€™ΚYεΫ»θ/cxΑΙ}=ήu.:Xψhη^ΜkQL\Ή«ΦwT­ΐψλΐ³t{ϋiΩϋjφ*d*Ί0χ&Π±Ύ{κώ’Ήi ?Hε| λ#΅»hb€ΉI‹Ωr…)]δΊNŠ΄Έ’@2oopg±σ ©ώn懬Ǖ{;…JΥ:ŒO°χ—Ζjw쉃‚-α―SΕό`VλΝEUU?xmYςΔ*3•ΉΚχήίɌmΰΟs’χ¬ίD·"ψ’³6fΎœPΥνω›ύ«υ’jύ(Ί ¬Ÿ?loοFWIΣ“­ͺΉ[85|±%όΫ‘[ΐί6_­Ο“΅ό?Ω,τ’ηΩΊΪμΧcx‘:w2PΥϊl αplŒιγσΊλ:žη©@tβ·W·9ε©0,Α:πI·ζͺο:rΦ`ZV5Ο’eψ¨αλ-αo ΆήΟt}ƞ₯#θ+ˆ|vλ¨―6πC₯΄kˆͺυnσl³ceˆάss}†Ίf6(ΐ°λΐηœGK^€ŒUΝ Ά„­χGω―JΌφ'<ŸP;P& ξ΅}mΠ;ώΔόPΧFVqV­γθZτf€πoU«ΧgΐͺυƒΧuš€ցŠ˟lOVσX»wa/Ωͺ֟|bΞθ`l S‚Ή¦'ΙZώ«œ 5}έΫ><“υΨ^0ΗCtž―8sg­m°ά,ηuS­^―‘6tΞήΧ`‚uΰ/b&ӏ_835‡Σ%}Θ0Έ•Jv¦ΟΗ^4 %|WiR|ΣBTeZœ}γ μ’§Ml‡<φuŸ¬soŽ‹:ˆ`°‰p= žπWΏŠΚg*Κ†ϊm-\€ց?Ω™«Ξ0ή;―4ΰ4YUs©yά}U\χΈ(Ύ·ωj}–lͺušAd_Ώ·NzzΉ,5ІϊEΗ₯ΧΌ‘&Βυhk₯Β…‡ΈIΨMŒϋς·΅p Xn»ΈγΜ/soa’bA8ΫάΓο£ΫΖhzj ί-’Η9Ν$Σ"έaΓs6˜¦Ύ6uσžτπχΨΔΖΎ†'΄ ΧG}ΞοΛfΉθ>[?τן&ό Α=πΫϊ¨₯ξ³θ²£ Α:π»ψΡwΧ…;^aΒ’2εm²3PcKψγθS‰–’―Σ™J Zχώ>ΊΓάeCτ]θXΖ^’γΑP3»ηΏF;υ*tΟ­ό}?ΠρΎ.S4`ΐ[Ϋp½κΝΚ¨wΏSh΄ά‰`ψ fΨυ£hSΆζ‡…*­zΎK>1SΛ­.hL–Pμ΅ͺWϊ0_­Οά,Ω7[Fe𛃿›Lc€θΝ‹6”ξχΤΟ5|†nλ6l–‹«Τ/ͺ΅“υ¬έΓθ£σžgB+x˜Έ¨LΩ·zί^Žέζξ-αΏ‹ΕΗ΄βϊfͺ„9Q΅@C.’l`ΣN—> >›ΝfW+o£J½Ϋ˜ϊο¨JΖ1Rμ)ι&ΆŸ‘ΣΜΧ¬[§μΊjn–‹χ1Nαπ#k~P„`&.BŠ»ΞUίε˜Eπ:δβΩC”X ΎΟyHρ%θ IDATͺoE«ϋ,Χχΐ XZ!Jιμ7Ρ‚z±Ήid[y›fφzύέfΫ—ΏΤΙ;^±‡Ψ°ύέηπ 6€_E5xŠυ½Ψœm¦ξΞΓ’«ζηΦ*όP„`8x75Π°X<ΛV1r4φό{œ‡jBυ™Z°?.+Π‚Ζ„κτ.ΒΑ1žŸΔμυw%*ΨwBΐ«ΟTΤφιulz₯aρ[ρΥHοπ0ών^EuψθAuT¦ŸΔμτM7ςαk”‚uŠ¬Γ„ŏχΞύzr‡`’jbΘyŠρrμ6ΞΓOŸω_©1TŸE%ΫΫ‡²eA€&DY²3ŒN0 "žyΗuμο7ΛΕωfΉ¬v„ιΗέλμ„€CκΛ„›™Θ|΅~Χ|,QώοΨ¨r6T7ˆ.Ό*ωσΨ”ςŸψ=dΡ†kŠψΪi‡iŠ¨?»ό@OΊW+1€nΑkμφ§Ρώrw­k…ω4Οkuσ"3θͺΦΟ΅Α g*ŒνΊςg’λͺ«c£λC7σίΧAΌVχ¬8‹‘o’EϋΥCώ½ΗΊΙ£¨Œ}Z¨ΐΰ:~K˜«>-OγίοΨ&βΟχ;Ÿ£ξ³σ>ާσξsγsσMόΩ~† πωΡ}€"λ0A;sΥχύ=~ά³h…νΧK, Κ“­ά|΅­+ΞC·ΙΰΧψ―ΊJƒγωj}5Φ1 ‘[ˆά,―F\ύ’Σ›&`η…žŸͺλ’C}ΊΚΫηJΩ ςβ8n"$άzοmΈυ8Ι†α›ψ-aέebβwe©p}ΧξηθεφΏΟSqέζΪkP­ΰašΞ{jWfžπ»°3΅ οœl Σ|΅~άΠύ“XάΛΰΙPν `L˜5Ow—`QD[λΖ?ζ`'(μώ<‹°πΩ­>K¨^{Χ+φχ‡§#·…―vπŒN°₯Ο\w` 'ΙNμA‰…γωjέUΚg;{‰…L³XΝZ c?«\ͺπcLΙΒυΥω@ΈώE6[0:Α:LHTχ½μρs‡`Bbρη‡dοψCKψΗΡ‚³˜σ˜ͺušέnΖΌΏfΪ(ΗDΧο¬ P ΥΩ–ŠuF'X‡‰θkϊ-ZΑ“)|έ½%|‹bQ'S₯Έ6Ά΄bΜ°»οί…p'ηl}λ¨T7S?ιώMtcΖlNω Ώρ`¦γM’9a@γb!θE²wy :«σΥϊ<Ρ,ύΓΝr‘νί<ΔX›Ε^ ν()ž%Ώvηόα‡ωj}μσΙη؜ς ~`&`³\taΡοΤΞPΰ£’₯ιλdgηΩfΉ8Np-ΘT΅nΦ:Υ‹0mŒJDέ^(.~+αq·I'Α±0!‚uhTTdžώΛؐ΄ύM=t ‚uhDΜ•ύΉΐ»ω‘›VΫY, Φ™ΊΝrρΐφ/ιZ5j‘Ί‡‚χ‘ P₯΅Υw‡ŸΉξVΟ4=¬C₯’ ―ο…—‡8ςoθήTPΒ2Ά„ο*³T]Χ*K ύD*Ρw΅ϊυ|΅~ηβτG°υR}T/qKψSμΓ©Z€{λ{SŸ‘a=¬C…6ΛEf9ςJgΨΎOp €–π-Λh?·I€Μ6ΛΕγ~ί]Έθύ¬Ce6ΛΕ7T3LQΙΆˆψ+-ᓬjέu ³ΎοS―η«υ•+Π/Α:Τη,*)313ό~λpK΄„Ο~j ΏŸ,Uλ/bc€χ§Ύη««V€`*-Ÿ'<βΓ ­ΰ!™ωjέ-ΏNvXZΒο!QΥϊͺu’:ξyγτ``‚u¨ΛY£}œΰξeΎZ—l_έω‚½ˆαLΊ–πY*―k”¦j=Α1ΐm}ߟ.’=¬C%6ΛEΧnύI£ίOΆVώF,g @_FΧξ)QΥϊαfΉFŒ›ιϋ7žN;¬C=2WKT:»φΊΤ ›υ Ÿ–΄%όΜBυ^²άΓ΄ƒ “ΎοKΧ±‘ €Φ‘›εβ8q΅ϊV•œW_[ε+|^Ζ–πGZΒ?L,ςΫΜ΄γ(:ΐ@½·wU†#X‡:d­ΎKPτFKψ&™΅!Ζ“τ="ͺ†ίΥ¬Cr±ΰrXΑuͺ1hzWπ΅sπΡώUΒσ€%όΜWλσ$UλΟc¦-”ΤχF―·σΥΊdG.€ζ Φ!ΏZΪΧΏ/ψΪf¬Γݜ$ cwuνΔU„=Œͺu&/Ίίτ=κΛΖ?€ Φ!±ŠͺΥ;‡›ε’Ά°ΨŒuH.qKψοΝκΎΏ¨ZΟ0;$Α10]}ί‡γ ΐ€λ[-Υκ[΅…L%ƒuλpGσΥϊΝl6ϋ)αω:―pCQͺύbσŒ*Ζ‘<οω5…κ#¬CR›εβΈ’jυ­Ϊ‚υ’­ΰΝχ…ϋ9MΨώ°Β Pœ©Z`Β†xv0’`‚uΘ«Ζͺ‚υωjύΰΛΧΆiŠΎq-3TΦŌ[Ε@Υκ―βή ΐΐλP„4O*Ό6GΆE.V5)ЁϋIάώBKψ{ΛRY§j€1 ±±Lχ€‘Φ!§šGj«ά,Y΅.ˆƒϋΛΨώΐlΣϋ™―ΦW]…]‚C9Ά)€1 ΄yϊUάS`’‰φ€5V«o™³~w*Φαž·„ΆY.ŽGM2lF8Hϊο €†Δ&.ΥꕬC>΅/ŽΤ,©X‡Κ$n ϊωξβ:ΎMp(ΪΑ0΄ξ7ήaΟ―‘Z`d‚uH$™η•_“Γ¨Ί―EɊυΪͺϋ!“nϊ2Ω1i ΞΧa΄η€ήΕ=ζϋώjΥκ#¬C.­TΝΥT΅^²b½¦ Jς–πZ‹ίΡ|΅>O23ί5 w±qϊb€Ώϊ'Υκγ¬C.­λ5Uώ•\κ»$LΚ|΅ξ6Ζόπ=ŸUΦΉ£΄ UλΗΪψΠ§Έ―Ό‰Ž6}ΊQ­P†`’ˆ ΗΎ]JyVK@QΊc³\<.ωϊP»ωj­%|ύΞΌƒƒΚΊ­_ͺ p”§ΡΉ€‘ Φ!VͺΥ·j (J†rͺZaΫx?Ω,­}―"W Ευ`oέγΝrρn PύrΎZgؐ0I‚uH ͺ–‡Xx)©¦`½dΕ‡ŠuΨSβ–π§ZΒίY†ΰΘυ`qͺR}f@Y‚uΘ‘Ε’jΪΑΗβW)‚u聖πu‹ΝoΌ j†ͺTοό4_­Kώn˜<Α:ασσF―C-Uλ%笫Ž„ώtί97ΙΞ§–πw—a‚9λάΛfΉxΊY.ΊΐϋΗΨT7„λŽ+P–`ΚΛ8Έ/‚υ/km3_­―’.:#?ψŒωj}ž`cΔαfΉπY1Gύd³\tΟΏvι>c/ζ«uΙρU“ΧωΪY€βZdόΠΎ‚E w%_Ό«rΡΦϊ1_­Ο"zϋΎΞ~Έ“ξ<}_ψΊ?…€D’ΛXwχ‰17Ηώΰ·΄m³\<*\tq›\ψΑ:Œ‡_ƒγμ3†»ΰ³\ά ΨΊρK΄ƒ‡~½ˆ 3₯>Σs΄Y.Nc<Ÿv– XήU!ͺ ¨[όΦ:‹g‚έοτ«Οt¬ϊfg#ά£?₯~³½υμ“Π}ΟΌ,ψFίf_·ΘB°eMaξξI%?Πή¬pUΕ =κZΒw!vΜ:ΝδεfΉΈ˜―ΦE»ddΧξm‚Žι7…πEίΔύ$[›»Ίh΄ΐ$Φ‘h'8……’JσQΜ>ΞL° ‰–π]»ΦgΙή•–π_v.X‡Ωi?]UΟqК›Φ±ξ)ΉΦ‘œγdmЇtRAu~Ι Z«h »ΡκUKψŠtσ7ΛΕYαλφ¬’Ma΄― Υ-ό.˜ΝfΎ³¨QΝ‘τ±7ωόŸkΕΌ˜Π©―α½ Ob$Π£¨ςΚψύσgώ‹.ƒφ»«8˜ώnΎZΏIpά"X‡Ί*Έ‰U)l–‹Ταz‚Ε+! `ΎZwνλ„ηφ„'΄>.ΩώiΑΧ†¦%n ύfΉπΩ΄ α‚vπu+½Iλ.ΊΝͺδ'X‡‘EΈ|8Ρσž}CAΙ9ŒG_š-αJψ>΅„΄ ƒvπu{Ÿόθ―» Άρœ@r‚uί”ιŸ'ŠΞYWΉ ƒ;μL΅„Έθ4Pz>Ύvπ ₯»Η=Žρ'T@°γ›z[ΩΜUλ₯΅λ0 -α«”‘‚oκχm€še¬XοZΏsΎZΗ³ •¬Γˆ"8™jψ­΄Αz,l•¬fΝ>ƒͺ7_­ίh _˜7{Sψ€΅ƒ¨WΆjπW³ΩμΡ|΅>Kp,ά“`Ζeq~6;Ψ,™ΟCΙΕ7«0-αλRΊj];xφυv6›ύ}ΎZΏP₯P/Α:Œ«t;Ω›¨’(-sxTrΞz·ι@Υ: ,΄3ΆχΦώ㴃 V―"Pj–:@ύλ0’ΝrΡ-Κ>ί]8q^ψ:‡‰«ΦK/x Φa±ΈύCΒsα;:•ωj}‘ Γ€Ž3u*ρlΩΝPοnaQ‘.Ph„`Ζ“‘Ϊν,ζ ghœ²j=ΞOIͺUa$σΥϊ4Ώ3ι6i WΪΑ›PŸ1Ϊw]Α^Οf³οf³Ωίζ«υγn†Ί–ον¬ΓxJλΧ;Υg…e–Όj½dΠ&X‡qeόzi,Δ_d¨δΧ >WΡ‘ζmόΩΧeό=?μιίΜWλγωj}>_­―όhΧΧ- /’mΰwΓτ. ψ±ΰ±l&m{άU­zνnΓΑ#‹r0ŽnΓΡfΉθΗ_&;εg6Ϊό!SΧmε°ΰakΥP—x¦ώK'˜ξy{6›=Ίγ›y―;3Α:Œ&CEδοmt»Ά„›εβΥl6{^φώW΅ήUw>ŽΫΊ`ύϋ‚―œ€«LBΧ~³\άPσ1O6ΛΕIΧJΦΏΒί]ώn~Vπ΅θQξ6²p/ZΑΓ8J·½όHt–°&γ,α)ͺTa|[Ÿšλύ'Ε7aΕ `‚λ0°h_²uνμc!z΄3,9K|+έ¬υΨ„p]πλ0²ψNόg²σ~ {Εβ•όnž™³Σ%X‡αeX„ΏψΔŸ%°9KX•ω¦ΰkΔ† `DΡvύm²sώ|³\Ψlσ‡OέΟΖβZΐD Φax₯ƒυΧέLυύΔlσΥ³¨ΚγȌRJΟY?²Ι¦G°Γ*Œή5|Θ4Ώ7Σ±”oTEB!I[ΒΏŒ#“6_­/lz°ρ x°n³ξfΉxϊ‘?6ρ@b_»80ŒξΑ8* KΊS0άH›εβUW1žΰŸCΧύΕ|΅ΞPE―έ0LXΧ~³\tŸΓ'‰ΞΒiTΣO]χύό¬ΰ98N°ω (¨[ΏšΝf>³ρΆ ɏξy„ί&X>AΕ: §t(zω₯6π·dͺΜL1K8*V― ΒA²Φψ0EΩZΒ?[SW:Τv €λβΛ،ύ±?χ Υ€δλ0œ‹ξχͺψŽωΥp‡s/‰‚ώ»„U¦BAI[Βg;žJλ‡ΪςΐtΕ*€‘ Φaρp]zWκCB‡LaΝχIͺ2Kλͺ"‘°%όl6{›θ:<™zΥztdΉ,|ΖuΐtY―€ ¬Γ0J?\_F•ε½$«ZŸέ·κ~ ₯«"TEB ΩZŸ%8†Jί#,€ΐtέ$X‡a”^lί§Κ:SΥzΧj·θρ¨Šfl<Κfw›n¦>*BG Ώ`‚λ0ŒΧ²NX΅ώr³\”ή\Ίj}κα€0_­Ol΄Ω5ιYλσΥϊέl6».x ξO@₯G@Φ‘g±Θ~XπΌήΜWλ}«ψ²…5η›εβ›‚――<°u’θLͺZW΅Œk³\ψ%X‡ώU[­ΎUλ?υvDϋ;*φGUdιΩΚΪΑC±q)Σχ〫Φl|² ΣγwL”`ϊWσ|υ]§ Βδ]ίή¬<°•ιϋqκUλ₯+Φ΅‚€ι¬ΐD}νΒCοͺ―XŸύ―*σύfΉ8λfœχρχυδ’k‰ή[ΧξΒ›η^wλ(ήϋUΑcώψ~μZœδ|tAy‚γ]\‹Λ‚σ }7°§Kή·Ob‰5–ΪΩ` %X‡Ε|υƒ‚ητ²ηΠω,*₯KΌίuαQ‰Άθ B΄γΈ&@aσΥϊ<*ş$ΈͺΦ»cJp,%Ό)¬ΟbCέTΟ={Šuœ˜Έ£k@AZΑCΏZiAόΈΛ6ΏχYTŠŽ*ΞΕΫ²o];xH&Σχγ”g­kŒΕσ?L˜`ϊΥDψ]QY:PΎνΗΨ!<ΆsΦ?΄ƒ/| @˜―Φ] ϋ*ΙωθͺΦ'9ηoΎZ—ώn6_¦Γσ?L˜`ϊUτα:Bž!d¬„|³Y.Ύω5K‡7Ρ«υΟκΎo’œ’)W­—άV² =0.Α:L˜`z•Δ%g, *$«Κά:;螯ΦWέϋ1_σ#JΜ—>!ΎΞ’œŸ'S­ZŸΝfοJΎψ„Ο;LFxΊβ0]‚uθOSσΥ?β$QUζV"όšcΏήm“mχ ‰%ϊ~|‘ΰJ0gšυ˜8Α:τ§ι`}ΎZΏOΪfψωfΉ3HΚΠ~ͺΑ€ߏYΖ4<*SS:X·ΐν³‘&N°ύ)ϊp=ΰ|υέΧ8KΠ ύc~«Š;Ϊ>_ρZŸq\`Ύ<πσΥϊ<ΑwΓV–4±Ή‘δύΙ΄Ο†Z˜8Α:τ BΞ£‚ηr°ωκ‘΅Zϊb³\Œl”Z?0kRΚΥγΕD7ί”œ³~hΓ4ο‰K Σ&X‡~”T­ξ|΅ξ‚‹ŸΖz½{θΒζ7#g#ΌΖ—hΙ$ͺZŸκζsΦ€AŒΥ)ΘM°ύhzΎϊGœ&jyΌk”p=ΪΑ—n‰d’s”!»,mΨ³TϏ©dΕϊL°MσΌΦ‘'ΝΟWΏυzοWLTΉ~>πί“›£ ΩΝWλ‹‘Ηs|ΚαΤ**’£JIΪ ]*ΦΑ:τ€δΓu‘'ΒόŒ-αg#…λ₯η¬Ο΄ƒ‡΄2Œ‹˜Mτ;’δ¦Α:΄Λσ> X‡}E;'²δLΩ¬-αgC‡λIΪΑl– α:$UλΎŸOpdDΙͺυ£‚― $~W:Ώ€`φWzΗj±!yKψΩ•λΪΑ Φ!§,3Ώ؊Άƒί,ͺX =ΪΐΦa₯ΡKV¬go ?8\Ο¬?™`E*€7_­Ο“T­Ÿ$8†1•ž³ξϋΪc-π`φWrΧκuT—vš -ϊηlΓυ^8χ―{?ΪϋΛR όY†ΟζαfΉ˜LuΕ|΅.¬[p€φ¨X>¬ΓώJ.’­Vίͺ %ό,Βυw΄ι½θωο{ˆγΫέ”¨j}j##ή|mΑ:΄ηΘ5f‚uΨOT@<₯+σ~U‚Lr8Ÿr•λ½…Lœέτ~€χs`Φ:€•adΔΤ6ί\|m­ΰ !Sκ|™`φSz=M°>ϋ_Θ|–€5ϊηt!τΟ›ε’ΟΝͺΦ§6Gjq–dσΝq=§lo%ο*Y -‚uΰw‚uΨOΡ‡λωj’ό-/’΄>ώ’—›εβ’§*Ξ³aυNΊ9ΚS Ξ  1*#ΕȈΗ0–’›Ξ9”#X~'X‡ύ”\<ΏΜxν"Dͺ%ΐyΦ΅ ή·­W΄ΑΟp=T­CN}vΘx¨g1Ύd Jws™RΫ}h³ΐο밟’!Eͺ6π»*™·ΎΥ΅Hώu³\œνY½žaŽς³Ώ ŸωjέΝό~›ΰΐ&Q΅ΌJΆίχ= ˆnT%°%X‡ύ”œ₯š6XŸύ1oύU‚CΉ«ο»sΊG0!XŸE+~ Ÿ ##¦τύPς9•ΞΠ:ΥκΐŸΦαT§ΦΓIΦ–υŸpΥλχm™’6<ŸP»g¨Ζ|΅ξζ¬_>ή#νΰGα;Ϊ π'‚uxΈ’ ησΥϊMφk·3o½dKή‡θf―g³\œή³=|–ͺυ 󜁿Κπ1‰vπ³Ωμ}ΑΧVΥm¬"X‡‡+¬WS³…kύ!ςr6›]Εόυ/^οΨμPΊ"uUλϋΜ‹†‘!XŸJ;ψ’›ΟΜ`€ΚΕΊΚ‘λμ¬ΓΓ• ‹―jΊnσΥΊkΙϋ]‚Cyˆƒ˜ΏώŸh₯jΟ,Υβ' ŽΨ^>'Si_τ>ΉY.T­@έT«!X‡‡+LΤ0_ύOζ«uW©ωC’CzˆEόΏ6ΛΕϋΩO>2k"IλϋUλE‚ƒjΎ|lb(Ιχ/ΤΝfYΰ/λπp%ΫA₯Ÿ―ώ1σΥΊ«ζ~•οΘξν Bφg³Ω―›εβΏΆΏIšΝβU­C2±Ι¨τζ›©ΜY/96Ε"ΤMΕ:π‚ux€-^«jΏkΎZwσ}ίζ9’ήtAφ“ψ“eΎͺuΘ©τœ'ωnx_π΅}χ@ݞΈ~ΐm‚ux˜’σi΄ΈέΧqαJΒ©P΅9%8ͺ)T­—›’b*υ‘±|ν4ΐƒ”\0―ΎΪ{ΎZΏ)]λτ£‡Τ²jύ¬;ηS?Ε|΅~·Y. ιΎƒΟG‘b`ΗGB‚»†W·:f½σl γΊυω}tΝώοvŸ‰ζ«u•cε e™Œθh·ϋoώχ™έ{Κϋn­ΓΏ` κ9 IDATλπ0%+Φk―V@Έ>šmΥϊιDή/Τ’k}ΑcBΕzwyYθ΅-Δ£ΪY}›{v³χ1E›ε’ϋ›νΆΑϋ‡Ω’*άίfΉΨ†Ow>»ϊވŸέΩΞηχύνΟ±3πŠušk°Ϋ{M_Ο‰ϊ½½sΉάΉΏΌίζW t`ψ@°#XοΑNΈώpεfλT­C>η…ƒυƒΝrρXψ1˜ήC,€­ΰΆ!ϊΣ‘Βσ;8ˆω³šA‹ͺoγΏϋσΖB*ό!6Β<έω —˜γ|°σΊΟnίυ­Ο―*w¦ΘFYͺ΄³ΩςιΞσβΨkΫͺν}ζCλρMlζςŒTG°Sς»©$Βυγx D CΥ:$“€όqkχ”[ŠΎ·.ψ²Hτ!‚τ§;jؐϊ§ΐ=ξyέσώΕ|΅Ύ({h0 ύi<e Ɵ.pAΘet\΄ΣΌΈο*ώ ±Ί½Οdο Ί}FόPh°σŒΈ}NT€χΥϋ_W ξi³\”όΰό½Ε Γψαr‘-ό`ΊV< B]'‰ΒUλoη«uΣ- ί―Ώ΅πΜΎ’³Ο―…OδσΥΪζΌ‘Ε΅?$„{ˆΧρμŸf΅λδmQK¨ͺύφNΫς1Tٚ<ΞΡ6θxv‡“šάμ|~m”ιΑGζΝlδ›ε’+Lψ±ΰ!ό³ρ Πψ­τpίc.£Γί…κ@V*Φαžb‘«˜VμtKfκ ΊΟ~P›νΰŸt‹xoΈΉtOjΟΒ/β™­υNNΟβΟΩfΉθ‚Ήσ μg…ZrwΎίA΅xq{ͺsσ{8zέΒZ~ώ辟žw6ΛΕ6d?Μξεqαto[Ÿ)~kσΤφ½ξnhΘT₯^2ΤΣWyŸ½ˆ{Μ‹ψΣς=ζ(>?n–‹mΘ~PΘD°uΉnωzνΜ\γT°y$i4C[UςΗχΣΚB €¨8Ϊ.’N±νμn@wΟ«Ϊ€²+ύύtgSΜσ‡3ΆέΟπelPρf;…/»yΦ°$ΪΌΏh°2ύ.vCφWI6bΦαJξβmΎŽp}P‡›εβΕ|΅C…«Φ[Φ― V|R,’žψŽϊ“.όψ9ͺΨΟ’V8G©φόŸ΅S9x"Έϋέ‘Ο0}λΦ0β7ΛvόΔγ tuaββs2ፗ󧍘Φ6’λP—I΄V‹ߏ7ΛΕωDwύIΥ:δς&A°ή²’ƚ= T$‚S‹€ŸumΖO„sž;ύ;]&N„{Ÿδ3LŸ^Ψ„ΖTΔ=ζΤZθg}؈ΉY.N£KŠ6ρΐθώΟ)‡{+BLκAaΎZw? ~Jp(-9Œ] ωjέU‹ί<’£Ψ Oλΐέχl·ψ·Y.ήG5§PύnΆαάΥfΉ8©α€DŠη”.μˆί‰—Bυ/Ϋύ ϋ π ·ξ1Bυ»9Œ6ροάc€± Φ‘.“›#3_­»E΄οJK„=KιοφT•`=3 (*ϊq{9ˆΩšοvζι2EΗƒΕƘ3aΗ^’ΊπΝfΉhωΉ“aψ7C³κ½ΨV°_Ε¨%€Α Φαώ΄ YΜΝω{αͺΞtηοΫωj}:υΙ”žq.€†E@˜°na―[ΰ‹ uz?Ί€υΧ.δΤmeZ’5ξ¨Ά&bcLΙ±=-ιΦRώηξΚ=”ζμάcή Τ{ΣμŠM\ Š€A Φ‘"σΥz²•wσΥϊ]TZ_&8œ½νΞί” Ab₯?—-λ%G¨X„ κͺ1»½naOΛχΑ|m?m ›ŽQΘ£ΣΔ;&σ2:P>€Ι‰ͺjχ˜αt›Έώc0$Α:άƒΆeeΝWλχσΥϊ±ΉλχφΓ|΅~ڝΏΚŽ&aΎZw•PΧίk³XbSΐΰvΪE[‡«Qͺ^Ÿ”Q؝1?Ϋ3Έ£Ψ £m/0 ΡφέζΛρl7qYΛz'X‡ϋ)ΉhσΦ΅ϊŸ˜»ώ­αΏ¨ κώυ;T‘h;x?6‡‘ ¦!*§ίi]DwΞΝmnί χӝ–Ό6ƌλ Ϊφϊ½ΚGιLB+6ΛΕI<+ΊΗŒλ(FœLιMΓ¬Γύ¨†HbΎZ_Δ‹ χΊ›ο«ZͺQΊ|ˁDΙMX‚uhΨN•ϊ―*Š:Šp]εk»{NΩΩσrκ'Ή ͺπ|²οhV<+vΏυΤφ½¨cφΊu} ‚uΈŸ’Αƒ€τ–h ί-„όSυϊοΊσπέ|΅>Φϊͺ"XŽϋ'Π»¨~£J= •―mλ}!άƘtžGΛ^‘Π„Ψπw₯J=ξ:\ιrτA°υ’~Β|΅>‹PhκΥλ—³Ω¬›₯n·?T&6Β\»S? @ξ3Ν:*\μTB°LΪ|΅Ύ˜―ΦΗQΕώ]„μ%;t―έ|΅ώ¦«Χς&§θF*­6©ͺ7O5R½Ύ8#½»›ε⍰£IOΜ[Ÿ$ίΥ€#ToήQ\c€OϊΪ©*Όw™†ΥU±Οf³σψ³ —Άž ψβ—±ςMς'8@AέfšΝrQς΄Θ&+ž„κν;Šgώ㩟ˆΪt­ό?΅ρ86KΌΉKO΅N7ΛΕ…Νη“βσL* Υ―?ΡύmΘ5,žwλ21Nΰ/λpw%Γ­ΰG­Χo³Y.Η\ΏGΆΟξω0Ή} }·ύOν݁Ox[πΗͺ`½_ͺl ρ¬7΅MŽ—±χκžc3ΗχΫ7‡ΟΊΕq ¦Υyτ±«‡κ7wXxΤπHŸ]±)F‡%`t›ε⬱Pύmά_ήoΧ?ο»NΩmx‹{Π7ρ|Έ]7mα~ά…λ]”κuΰ/λpwΒ† ›―Φο>· ±σ0ω;Α9π@ο 돼h%»Ύ¨² μ„r^―λΈ·Ό‹χyΥgΕgœΏνBκvQ΅†j& ¦υωΛoςΚCυ·ρœςnη?χϊΉσyάύ\>j¨Β°k ¬ΫΫdόPθ>* ΎΊη†7£‚Ύ―ψ<ίΔ7QθΣKWJ~—4Waέ-n―$Φh¨~οι"Ζ z_‰‘JYpŒ.ΫΥgCΓ,˜Φεc›έΟ+ Υίξlpι-ΤΈνΦηρc!ΗγδŸΙ»8›`‡‘Iš―Φ§%ήw|VJληξKyD¨^γ¨ λψ<κžσ9»@γyϋ8ώΤvΉθži!v Φ‘ZΑLGΙοό+Φ>笑ξ]…ΫE–J͎Oέ9ξUwU3mdΈˆξSδχ§η”˜u›uώzgsK–Οδ6δΘώ™ό’ΓΝrqZ*t¦#6 žUφ†_eۜ›ΎΊ{φy„μέf…“JƘΔύάZ π;Α:ά]ΙΕ–’mlWɝЭΆAψ‹¨@ͺ}Vζu,ψžΗ’eZ.~γάΏHτ ΒFΏΉςϋ½³NY·—\ΤPΩΆύLξTžV4«ύ€ϋ7ύ{¨We]nβy0ύχbί‡cξ§΄Š?Š{ΞI‚cψ?ξLƒ+½?nšVi­τ?ζ«υ£ωj]]ΈΤΝ5Ÿ―ΦέύζoQYUΪQC3¨[φ‘Z,Ω¬Ϋ.Μψi6›ύ}ΎZ?ŽΟcUνb»οψLvkίΕ†μ’Ϊ w…κέ=θ‡nΝΊλβQασΰ›xό6žm3ϋ>:½ΦΊtQ†‹₯η•vιθΏν!³΄—ήG@ΞWλ‰vr;ˆ €fέvασwσΥϊ›‚­ΔόΪ!μμŒΐ&³“ψ>θ[ £‚~ͺ5PΏm'`.ω½ηά}˜ Φ‘f¬LKΙΖf‡­;­pϊuT¨?Ν43³/vξαΧΒ'k»Ή₯ 3Ξ Λ`ΊΚϋθΪχ:ρaD {€ήT0*θ2Ί€œ΄6#bΣ@F±9˜8Α:Tΐά0€Ι)šΨ 4+ͺ]³΄Ύ«"Δ«ΎBύKvφouo!™λnΝmnω˜hΥλY&>6 2Œ ϊgŒiΆ+ξ=έ¨$­^¦%< X‡»40ξw@“vZΐΧ’«Œύ[Χβsj"£%θγJΪQΣΆ›hωώh*ϊmQ½ώχ€ŸΕCЇ䣂ΆUκ™C^Ε†ΗI7Zj 'X‡»«­]$υ*Ή]+x U]@}XΙ{ϋ!*c―K1±€œuQ•φmηΧNΎνkTG>MΏHp @ύ²Ž κFδ%+-LφΘB/€QCUIW•έτάΜ}ΔΌΝﴆg`―γs8ΙΆο_’8\ΧxΔ£‚Ύ³Ρςq.ΎΛrŠ,3‹]kΰS²lΎόΑfΛ~Ε3`†λ«0 Α:-+Ω‚Ν|_OΆΕΚW±¨GAQ={ζLΞkŸΏ’2λOC†gΔ·σΥ:Γwγ””ZΆY.lς‚F Φ`WΞ+ /*‘2ΜΝάΊQ•”Κ™ͺυIρω+,ζ—ώΜιXΜ"Ψ|–ΰLh?²Ψ`Wz£»ͺuh”`€šek¦uq-T­OΗYt* ¬6ΛEΙE@žίκ’RLι翌£ͺ€Φ!?mcΰ#"8yžθά\ qSR΅> 7>id‘T­:˜¨V/ηΌπλΩδm¬C~™ΪZ@mό…Άek±xͺZ=Uλ“‘[Dο‰"˜°ΝrΡ=#>ͺΥ Šg‚Χ…C;xh`€ΫZZ”V­mΛ4KωzΎZ—ŒαΣ\›Ά©VO$I$X‡iΛΠ†[΅zy₯ŸλΠ Α:·e¨2jκΠfΉθB“£DηΨβib1wϋΥΤΟCΓT«ηsYψˆl„‰ŠφΫΟ ΏϋkΥκεΝWλ‹Βγ€žf9@λpwo+F€…9ΐηeͺQ­^Χ¨]m>₯7jz–†ιΚP­‹J%78l– α:4F°“*€ΟΛ°hΊeρ΄Q9v=υσΠ ΧΡ‘€\J_Ο0]žmψΚγ’π‘Φ‘1‚u¨ΐfΉπƒƏXhP²6π7O«bD{|ώr*έω 뉆“δρ•ρ$©ց^ Φ‘Z˜0&‹ύ0«†“iκάβiUJ/―›˜ŸJ>ΕΏ#`¦%Γ¨ χ₯Dβ9ύ²ΰ=IwR€½Φr*Φ­dΎZ „ϋ!hƒαdš―Ί"Ρ2όυΤΟCC„I%yž¬Γτ”~FΌΆα+₯’]TΜY‡ΆΦαξ„ ŒIϋΚ~XP…6=KςΜv“οvΈ–Ή]OύγΩ,ί$¨v_Κ©τxc^‘!‚uΈ»’UgnΎπ0‡Ξ΄e³\dͺV7ΫΉN½Ϋ  |~₯7Ω` Σ’ <ŸRΊ`NΕ:4D°u0c`B · +9{¬)σΥΊτxhU–…)‘^₯ΜΪ€ξ³ω•‹#X‡i)ύŒxγ7`NΡaͺdEsΠΑ:»š™ ΎY.,¦B›²λͺΥλfSDύŒkΛΟ5ΖTΊbέ³En%οI‡1ͺh€`ξδΝ׍`Zμfξ‡` RGIή•`½nΏλWΊΝ8Il–‹ξ7τAα£Q­ž[ιΝ^Φy ‚uΈ;3ΦKΙ Uϊ‘Ε0 #K΅ϊυ|΅V‰Y±Έ~7S?•¬ηWΊ’™Ά0>ο6νε&Xz!XΘΗ"`?Jώpm¦₯>$“εϋρ,Α1°?›ΙκfsK~0–Οˆ—σΥΪoΐάJoΘΣQ!X‡»+yσuγ˜–’λ--€₯νΙRι!mƒΠ―b v”Φ=&— Ϋ”Šuh„`ξhΎZ— Φ]'€I)9?Έ₯Ej-υ‘=OΌ#mΰΫα»Ί^ΧS?όωκάCΙηΑ:4B°ΘfΉ(έ₯€₯y₯~ΈBC6ΛE–6πζg6bΎZ[―—ωκleψέgΣeJ>?”ήότD°χSlW[μΎ }EƒυΒZZβϋIΦαaJ.š—Ψ ?₯«Υoζ«ukQΙ hΪ@£λπ0E«Ρ6ΛEΡj<φ3ᴁο_Ι`]΅:τ,Ιs―Ο6@.ΦF(B°0_­KζΤ― Υ Ώ‹ΦΪΐwž|mν’‘M‚u@°{Έ.xςΜY¨ί‹ο ©`}³\”ήx&X€F ΦααJ.ž«X¨ΨfΉxTΈ²Ίs9_­ίW}"ͺτύQU+4J°W2X/Ζ°Ÿ“ηο<Α1τ­hG—ωj­bΪΤΪ&$ΰλπpEΟ7ΛΕSΧ ZΪΐ£δ½ρ²ΰkCΛ2Œ@²i έ<(B°WzΝ$@…6ΛEͺ>ς |‹mΛKήo0Œ Α:Ή|γzP©7.ΤM°” ¬ΤIψΔάϊ’ΜW€† Φa?o ž?­ΰ*c<Ž΅6πύ³λ&X‡ύ”lϋzΈY.΄=¨K†Ωκo΅„VπΠ0Α:μ§τ"Ίͺu€JD«ςη ŽΆΉ6π‘d°~=_­ί|}``‚u؏`€»:Mr¦ZlίyRπ΅U«@γλ°‡ωjέ-€ί<‡‚u€ ΔθŽγGϊͺΕΚκ˜]_’`'X‡ύ•\L?rύͺp2›Ν¨6πΓxSψυ€ ΦaEΣTιπQ­~’ΰusΐ[ €U¬CςΌ Φ‘₯Σ3΄ΰΣT«―dθuέb{}ΰΟΎv>`o₯«TΠ$•¨Z½s–ΰz·Y.ήΈ Z†ε3@F?Έ*<ΐ•“u¬ΓžΊ*΅Νrq=›Ν Λ£.ΈQ-R–jυW ί'Jo03_†ε€ΫΊΝ—OJž•ωj}κͺLVπΠUλόI²jumΰ‡£šΪηY ›/(B°ύ¬p[–jυnxΛUΥEŸ[>"6Σ01‚uθGιEυγΒ―ΐŽdΥκΝΆ§K0_ύmΑΧ†©ΘPdΡ€Ϋ;#Σ#X‡ΜWλ«"°ΰΉ<ά,\K€4Ξ’T«ίΜf³‹Η1σΥ‘qσΥ:ΓΈ…£Ηΐπl ΰ³λΠUλΜb£Σσ$gβlΎZ·<{Ξ|u`Z}N‚ P+Χ €λΠsΦ˜E΅zη_λ0 7 ή₯VŸyΦ(B°ύ)½ΈώL% @Y›ε’ zŸ%Ή ―bTI“β\—l·Ωx7Θ$Cwc—Ψeγ%ΐ Φ‘' ζ¬ΟT­—©Zύ4Α1 ©τΥκ0-‚uv)p˜ Α:τ˜u€‰Ϊ,/ΝgmΊZ=hΣ‘ασ¦"©aΡ¨Δ|΅φ{ €"λΠ/Α:ΐΕ(³ΥG²}Z© IDATY.%ΨΔ`!¦EΕ:»lΜ˜ Α:τλ’πω7c¬Cb‘ύ²π9U΅0’ΝrΡ΅ώ>Ρ9o}ΆϊΜ|u˜œYl`mš`κσπ0A‚uθ_ιͺuΑ:ΐΈ2΅]oΎZ=Ϊξ?+|₯ου0)σΥΊτ’ι–ΕΣv}3υά[–uŒH°ύ+½Ψ~Υ“ l³\œ$k¬Z}h΅]'8&ΟΨνrm >Ε—Yƒ˜Α:τ,*jJΟψyQψυš·Y.% ²§0[}–`ΎϊλΒ―Su•ΰ}[8m—Šuΰ!Α?Jp ŒH°ΓΘ°θ.X@T+ž';·' Ža ₯οmΧσΥ:KΈSσ.Ιϋ¬·Η‚8T(Ζq–ζ9`bλ0€ωjύ>Α VΑ:ΐ0²΅€5‘°·τ½M΅:’dαtζ»I*Φ ^Χ…ΏΟb0ϋΛΦώ&aΠ?ˆΈ—•ξ T‡ς²tPα܈Ψ4—ιήάO†ζž &D°Γ:Op~U­μi³\œ&œv2_­ί'8Ž1d¨ΥΚΛR±nσj;,„@έ2<ͺX˜Α: +CuΫI‚c¨VΜK{™μψ/η«u†Ν[cΙp/S±…EG¨λ$ΧA;ψ6X€ŠΝWλ Αϊ‘M—Σ!X‡%i‘χ?Ž3ͺ“Ω4χ°£Β‡ρzBέ »,έ#λmP±υ{›ΰx¦˜Α: /CE‘ͺu€‡ιΎΓ“»WσΥzJmΙ3Œ4Q­ydωώ{σΉ©T\Ώ·€ύe¨Z·ι`"λ0Ό ‹ρΗZάΟfΉθ6%=KvΪnf³Ωi‚γ“`Ψ•ic‘ΤΊ©,€6dΦ=WL„`νΰK·$:°πpwΡ~όΗ„§μ,ξ+“°Y.^Δ=¬$mΰ!‘$£–Άt…ͺ›ίGΠ† /β˜Α:Œ#C;ψ©U8πWΩͺΦ…λy'ξRτ#ΛυUλm¬ΓΘ’­o†‡Όη1c`R"Tžψ=O²|ά“2\—WmΑ΅ΚΆΖ"j^6=@ϋ²λ±©€ΖΦ‘Œ,-fU­“RA¨ώΣ[ΐ‡,­ςT«CEb#Μ«DG| ΐΝ'ζίNύ<PE0{ˆgΓ,νΰ=4H°Δ<Θ· Ξ½Š`2*Υ/§ϊΓ;ΡάΫλωjύ&Αqχ“eΣκΦχ›εβqŽC!XΨΰ Ÿ)Αϊώ²lVοΖ™΅ΠΑ:”“‘"ξ@Υ:0„곩Ά€'Iζή ^ B‰6­ξΚφO–juξcΎZ—ΦΩΣ|΅ξ~ί$9§ŠšΪ"X‡B=δΩ9 4­’PύŸ MU†M^7‰*€ϋΛ6Ζα‰ ₯ςb!Ϋ&j"„νG¦Yλž "X‡²2,ςF@s* Υ_ΟWλΙ.ϊ'ͺ$Ό˜pΗ¨^lZ½Nφ>T(•—₯# άΥ‘3Υ‹LΏ±_n– -ώ!X‡²²TΦΨ9 4§’PύΪHŽ4νΧ΅‡ϊeϋθ„QN,`Ώœκϋ`/Yڈσ@Ρξ2ΡωΛΦ] €¬CA1·ιu‚kp΄Y.ž&8€½uՁ•„κγ)WI'ͺVk–"Τ/iΥΊ–πεXΐΰ‘ŠŽι²FΧ›LUλέ3αq‚γ`O‚u(/ΛCžJ= zΡrχM%‘ϊΤηͺΟT«ΘψyξZΒ?Np“›žLύ<P-£dϊq‘¬ϋΐΉ1Aυ¬CaσΥϊM’Κš'ό€šEΛΧ7•Μ€{5εΉκ³?ͺ02T«_Η½h@ͺυ ©γ‰η¦ΨGιbΦηzέα2u°9ΠQ ~‚uΘ!ˏ6•@•bcΠ»JBυKί·¨V†’ρs}d!u4η±p UΊ³Ψ£Β―ί’lڟΕH4*υ΅ )\Δƒ^ι η›εβԜYψΈί~ωκq΄d۝wφx§MΫϋ[?ΐ»*ΨχοϋοΤΫ}*~”fψ½‹›©ΟUŸύQ­ž‘EοMάƒ†tUλέ3m’»žΕ³Ά =‰λ<΅S±ή“ns³\ΌJ6.ξl³\Ό3 N‚uH  X6ΛE ½Lp8έb”“LήoΏ|υ(τ§ρ£φ•ΠΟvώηŸιί~ωjUΚο"lσώΏΪΐƒψξόΎ’C>Άyιƒ,‘ΩΤ79@ΓΊΞ Jψφ^n–‹«hYObΣV†ίSΤ―tΰYC'Άšœ& Φ·c‚žϊ= P­ΰ!,‹kΟc.!LN¦φΛW'ΏύςUχ#ϊ?³ΩμηψρΥǏڣψ»ΊΏσ?ΏύςΥΥoΏ|uUπάS7§v³\Ό©,TΞ,οTΥ계mžΜWλΕΫ€ησ,F˜Π“8Ÿ:Π—βagόn’±ΉύU²siL@₯λD²‡<ν)™”ί~ωκΕN˜ώγH»Γ#ώw„μ] Νώο&ogžzM­^_©Nό]–{Μ+ΥΠΌ¬Ο΄]•αz?ΊΝvͺ›«@_2΄θφœΠ―ŒΟ…έ˜ 땬C.Y*ηT­ΣΌ.Δών—―Nϋε«χQE^²ΥΪaϊΫ*vŸΏOˆΩ©N87χs^ΟWk#6ςU«ΫD‹.!Ωͺ“Ά„λ=ˆPύMeΟ$—dŠυ%­ZŸΕ¬υ€ŠΦ!‘ωjύ.QΛJMΪκ]ˆs83U7Dϋ"τWΑΊΝ>Ρϊ½ΆΩ©έl}?’εήςΪ¬{˜ŒnΦϊM7+\ίΓN¨n-CΈ,|VŸ~ύe]λόYΈPΑ:δ“ε!OΥ:Νων—―Ž£₯[Ά@ύc^FϋIΎCΧfΉ8°υϋ,‚œ§ΪΩκ@ ρœyΓθ6\W•v±A¨ΐŠočίΒτ$6Wτ| Χ+f£,L‹`’‰–•ΧIŽJΥ:Mˆ*υnφζΏ*kΪ-ΆψΫ/_½™b{ψm³\l―[msS…κ•εžς6ξ΅ΐDΜWλ³D]‘>¦»Ηύj1υn„κŒ$ÜuΑzΞw3W¦»^›ε’Ϋ°aV>Lˆ`rR΅=‰*υ«ΚΫ¨uUΎο¦T½ΎY.N*ΎnΫP=ΓBL QiaΆ:PR χΠn1υ«©ΌΫ(ψο¨’™LΕRC›ξ¨[–1R~Λ  ’nFέϊΦ»ΝraήώHΊ,±Ήσ?χ\―¬ΓDΦ!7UλpGQ©~1‘P}«Ίp½Α@}&TΈ€T«ιΔχΑλΚLwΟΌj½=όΞάΚVž¨[–`ύ‰`u05΄Ϊοž‰ώ₯5όpb­ͺ{}έ’²ΉsJλ‘0i‚uH,ͺΦΝZ‡/Ψi>Ε6‘U„λΡBλΌ±@}&T¬“DΧΩζ0ΰΆ•Μ[Ϋ»Ÿ€6²-ΐι=Η06½€ S+°j¦f̌W`j…WPx3Ο‡P°‚‘΄{°:ϋΘO…!ω'‘{3Ώ/BQκŽηT¦ώεύέsΞΌY{ψ°χfήκάBζ]s+—%m²8yζΏ€2δΠ ~F¨Ί…΄„Ÿy§z}±Θ₯Ή΅ͺΏžŽu„ `ς—K;ψ*£JϋχΫ€…φƒΨ`•X(?ŽZοzV}&TΏElΔΚ₯ͺR΅:π“ΨΐΊSΘΌυλRπόWΫΤ%·ˆMwϋs ™«Ψ y^H₯+Ώrو·f]n9’%|)›μ^Eυϊ‘¨Η‰ί »±©σί ^«¬ΓΦ!s1ς0“£L­§Ζόπνσ‹ν–Ύ{­π³‘όc‘όMNΗ΅ Bυn{ͺՁάE…RΙ­ΥΧ’ L­A³―^š[Θ<MwVό}±‘ ά&§ϋμ·1ZΕ+mΓεΫτ[ͺδM–ΟiC¬πγΟ%mκ¬ΓΦ‘ 9ύhφžl|ϋόbη‘sϊκΝ·Ο/rzζΤ6o‘„κ’υY.οKΥκ@§ψŒψΤƒ³τ.ͺ—.r Ω£Εζή\˜ώg&›"ΝΠ%« μiS]ŸFΒδ" ›J<―i“εWϋΟbCg ΣΣ{Έ}¦ΒΑ: ΐΉΘΏτγmκΓL‚ŠT΅ž*;r»±``b¦xN£rρΗ·Ο/ŽΧ·―Ž38žƒV« Υο–Σϋf0ΰN£Ιt7"ϋ°Yo-žΗ»Ά©«hkzΣeWgGKΝxŒγŸ9ށ9M¦~Gp§΄ «mκΛΜΎΟH˜haΞ‚€΅ΞΆ©?FX]’Y£έ˜Ύ'6ϊc“Δ*6rφ±c#p`Κ±—Ρbί~†;vžƒžΝλ^€4o}s}ϋjΥ­MbGp\F»Ψ6,d+Ζ…δr#©Zxˆέϋ6^ζM<Ύ/·M}3ΝΣχΩΕ\w™―χY€ΕΚY5ΤμΟ³–²xVψžίQ†πώˆοεcM'mVˆσϊΆΐΓ_‹1;Ϊ¦ώ’Φ†ϊ^›:Ηse΄wθ1mκŠύ&X‡BdV΅ώ*΅X°*Ρξά\υΫ½ŠΝ8+]4N7χ}n=E ΥΗnŒξ%§οΥΐ½ΕwΦ8η>ΖxŸBπ¨pο»KsΥx„ƒυ*ΒίTQΏ«³δBντΰ7αۘΙ―ίƒ> δ€ί`£Η£aπ*3Φ‘89…ϋfχ° ί>ΏΨPet/’]ώͺ•~s&TΏŸ΄˜“ΡM­juΰΑ"lέ‰π•ώ™m”dkT/BλσLOaΊϋŸΆ©c“ OΏ Η=ωM8τwΫΤi#ιAΜίΘΰΨ:Ōτq̏OmϊΣuωίθŒψ.ΣP½2gϊOΕ:$³ͺυ΅7Uςάφ΄€Ώ·ύΈ\™˜Q–Ϋ<Ίϋš…κͺΪξ­rϊ>πέο6Έ@Ο Φ‘<9ΝZOσœT}π\’»τΆβΟιΝ·Ο/ΖλΫW«nχ•kΫΌ.‡£Ιt'ίΓΛΞ~F7½'ͺՁ§χ{ί <Ρ~ζΑϊΜ›xόsΆΣύψρ²Φξ’ςω¦Η}‚Ρ¬;aΞύ&όw‡³ ―ζƒφκ―ηe„μ_γq1ίΦόΎνδηΒς™ωΟύ·>ώΦV±='X‡ΒdV΅^EΠ/|βΉ¨B}Έύ ~Το¬>šLχ38Ž"Δ sNΧΧηπdΒυ^ͺπd±w‘u)ήΖc>0=°τG@zSXz-ηΥBΡˆί„ο£ύψ¬ΝmΞψIΫΤ9 O²–6œ(Dƒώ¬C™rͺZU뫈₯ηbΆϊ[ΧωΑ^―Ίj=nDΟ3ž5“Ά|ž=XN›N\?`Q„λ½p(T`zάί…žΠλι³ƒ°΄[ϊ-ηh(α:O·@ύΛE…ςĎ·ΓŒ\e'ΟAκγεpξr_ΤNσΤ7…²Σ6υNf>'€…ŠΉŸγΨ|EYŒu`‘β~ράYžΨ¨χ~θη{ΣzL°εΪΛhοu„+°ί>ΏHνΗΆœέG{«”s°ž6*΅ιz˜Ά©_fΆ±κΠΖ`"\߈MX”α£P€%±™wqΖΟυ-‚p¬C Φ‘PεhμGΘΛ°₯λ“νς/Ο¬ά‰Λ˜»Ί3šL/28žμeφΎ΄ΐ,M|O€Είg9{ι»έwKαͺΝvΧ7݌Έƒ`zL°eΫΟθ‡άšPƒ%R­ώt9œΓœ6E•ΊΉ«Π6uΊIόΡ!}qXΆ&Σr²³υήw;Ο`₯ΧY­ΡdzdTwx₯ ϊK°‹Κ™œ‚ͺmS―Ίέ4=mΰίΊOφκΫη«ή1{΄βΏζS„κ§yN‘r -.mμžΣh2έU©”t-~ͺπbΥ'{Έb=a¬{T­CO Φ‘|9U­W™ΟQ¦LͺΥg₯η26­rρaΆθΎ«υϋγ΅M₯ΧΎλ <·¨TΪ΄˜š…Yšγ‘ŸžΥMvOVtEο\ΈnT7;+ΠO‚u(\„ 9΅ zΣ6΅ ”EςCtqr8—«Ϊ|“ύ ‹ξO]Irͺ?7GX•4‚b4™¦pύ£‹°2_t‘`b•{‘§)Ύ’Χ¨ n‘6έψ} =%X‡ˆ–‡η=“sdX ΑϊβΌYυD…ίsξκOŸΏ&Σ-UΝ ‘Ί€¬et<²€•‹ >Ώ¨^v}Ώ°J£Ιt_΅2ΥF½ΧΕ€ͺͺ£°#—qˆΐ‚ Φ‘?rͺZ_v°ί>ΏHΥ±―œΜΕωφωEžλζ"νίt3³эδmF‡tb–.‹T1=W½nAuΉΞc΄‹ϋ r°ε»Ÿκ?…OζΧIόFέ±ρϊM°=ΑQN»d?΄M]|K'VnΓ%XΈή—ϋKώί?3K}±’ In!Ά@ΘN„½›Ρ’œΕϋ›ζŒv qΟ©ΣίΝmΆΤ~8fΗ~£Β0Φ‘_r TςTnNoεΑzΜA]ΖψŠT%π{Ί‰u3³p{™΅€?t\ΕμυT½φ«Š₯…Ή4Ϊ€\Ε=ξ{θΑz[­αΝlt'‹•νϋΡdͺν; Œ`z$B†œͺc^·MS‹zΚ£b}ρr9§‹ήxσ)fX-»~pΪ¦N\>dτΌ/3p£τΫ<*–ή[T}’OζT»h.\˜œ6o/\¬ΣΞFΡ³’Ž γι`˜λΠ?Ή… {mS Gy,―Ελ[°ž6ύ·ΆοΛ‘i ψ}Χ(IZpK oφ;1Ϊ€’ΧΉ.ύ†‰QAΏd6Β“‡›U¨ΏTΤΓ&X‡žI­'3Ϋ Ήφ σ”ι―—νΒ½Κα β³κ)νqg‹ν[ρΏΕrμεςš η±(Pœk»…ΥΫΝ-Ν© 8Βun³ΧΗ6ZiΎε» u@°=΅mirρΆmκ-/6α΅“ΦkΉ!™κΫ—,ΓπΙNΗπ$°cξζ‘³ωƒEKz!ΎΗ~ΙlmŽ ΔkcΦήλ#o_bύΙoSΰλΠCΡ*1·–πΡRX±oŸ_δς^|ȍɁϊσΙ΄όΧθ“˜Αž6 œΖW/Y΄ wR…rŒbΣ₯¦Clθ”Ήφπφμ€kρ)FnYƒn"X‡žŠE©§΄Y^΄΅ CͺΝžwlϊrΗΫ‘š•Θ­όe†Ζ"Wχ£Mό/±˜Χχύ<6ψŽ ·β;~ίyΒSώAΐž•“Ήωι»F]λΠoΉ…ZΒΧέπίΞγ¦r”*ωάΠ<―L[ΐο{Cσ7w―…μ9m–}гx>ΏDuzNŸνYl: Ÿw^|Χά΅±œΊ°›Αώ|ζ7zŽuNξ뿜)θ―TωΡ6uϊΡώ6£'Ήί6υqTͺ—n\ڦޏισ*͝½)lηD ψάΞy,2 J΄ύΎQΆmκ΄Π:ž{δΤUδ6i±ςxφΘ|ƒΤΪ*rϋύίƒ[±‘9έίΌqΩ™k₯1N3½NΘ wNBΗšΗAόΦx0Α:τίn,ΐ­t±hΞ«ΈΠVd}ϋ*·Ε۝Xp·αfυ2ϊΎ˜ΩΙγ0V'γf£•b#ΤfόΞߌ §Χ+<Δ΄Hω5Bτ΄HyͺΣό,6Sμ?ΌΜδ8²―“T0΅χΔ;+ώ­W²³ψ },LA°=—΄’τŒžι‡¨ZW• T> ςΠ6υNfN’CU|?‹Νh³jπڦތκqό·ΝΉλΝGnžΊŒ°<Ή˜ϋsϊ»/,PΐΓΝμQ|²“α&ηη°™aΧ΄lΔoΎύθš^+[Bφ;]Ζk*½ΗŽq‹&X‡H-t#0Ι©edjk΄αΗ w8s³Λ7θϋ™κKέMΰ{€ωλŠOƒͺγ‚Μ…ά6%±L+~Ή‡,ΛͺΏΗJ°κο{ο©Š/ιΎg·mκ­N·z²ŸΔοΛY§Ώ5ο)^+σ!ϋ8^+9u*]…Λkγ‡lϊ–κΕΥΥ•3 -¦ώΞμ™~M¦[™ϊφωΕ±Άh wΆΎ}΅Ω³ηΔ₯."ΎΧή§ό=Χ6υJFF“ι ―1ζΕ:ήμQΪΊΘ¬ΫΝilάψ ³<Χ^/νRTŠ“ΉΧΧ±Χπάλ0 mSeΨζχ7m ΉΝ·Ο/R¨φΞ Z¨“υν«ρ3ώ}dmκ½ΜΖ…$'£ΙΤλ€₯‹φω^噬p—N7η«ξξwΥζ§s£b.ŒςΚCόΎ™”X΄r6·1γ46g¨FVN+x–έ Ϋ₯–π›vr ―‹ΕsΒ±8“[¨~3γΰ9Όt–Θ]Φ­£ψF„§/γ1λPχς‘αϋΙܟOηFΜώξScστ?Φnx½Μ6³―*tŸmΞΈΈaƒ†΅+ [‚u^·M½ŸYˆ²3ϊT&r“γ CΏΩ¬ΐwmSΏŒΟίάμΫlΐ€œΈΨ‘9P<Α: Μh2έk›z+ƒ–Qσή΄M½;šLχσ9$2αΗφβΉαf&…κ―2;gι{*ƒγ€Α˜ ήgŒξΈΑΏœ€έ ŸτŸ1~XίΎΊˆΦP,Θϊφ•Ν €θι{ΰm†gB xž›{ξE°s™>eψΜ’51ΜSa½8ZRΕ&¦?3<΅„`άp/‚uΤjχ2³gŸΪΣkΟuZO-Žs9p±y)Ηׁπ ΥmσHȌ`j4™^dΪrχ]Μ€‡λ‹#X'ΗΉκ•π¬Πͺ[Α Φ !X‡M¦)dϋ’αH-α7282sΦs|–ζl}ϋΚΒ퀡M½—ι\u-ΰX%­ΰΈΑ:°“aKψ5•΅\γυπt₯?―mκqUUdx ΅€`ΥV¬ΫψPΑ: \΄„Ο1Τxέ6΅yλ|·Ύ}uαΨœ0PΡ$Χλ―<«φzΕΏ` ‚u …λ)ΐ>ΙπL|0o96Z<ή‘6πΓΤ6υΛΥΧ2<Zΐ°Rρ= χ"Xfrl _™·Ξ­ΜΟΉύ *ρnr’<Ψ\υ!Œ&ΣγNw¬ߍ&Σ―™Ά„>o]5 Qq‚:/αIDAT}8ψρp'λΫWl¨mκέͺͺήeψΜ/΅€ ξ1Έ7Α:πCΖ-α_kNPαϊpΞΩ΅M=ͺκΟLŸωnlζ€U[uΕzŽχ^άB°\—kKψwmS«pΈ¨Z4τσπͺΥ(ΖgeϊΜΏŒ&S£ ΘΕΚ[ΑPΑ:π·„Oώj›Ϊβ{™nώΘ‘Ν(c3ŽbŒFnΞ½&ΘΜƊΗH€‚ցŸDKψ/™ž™cσΦ‡m}ϋκ"΅’ϊyΈ‡QαΟ°ΔψŒνŒ&Σ ―G2²κοLί‹¬·Ι΅%όšΚΦ·―Μ€μtΆΎ}eΆϊΐ΄Mήo3}ΦG“©Οn²‘I'¬Σ Ž€{¬7ŠͺΒ\[φΎŽ‰aΫώVΪmLΫΤ隿ΛτYŸŒ&S=ȍ`€¬·M¦iNοa¦gθ]ΫΤځX΄„ μχυν+‹΄6uΪdςW¦Οψϋ€L­:XΏ4" ,‚uΰ.)Ό>Οτ,ύΩ6υ8ƒγ`EΦ·―描Ξ‡λΫWϋ™ Ο ΪΨζάΑ#ΝU7λ€­:X· 0‚u STQle|–Ž2™ΘŠΔ,ρ\;+<§³ΨΓ@΄M½QUUš[Ύ–ι3ώO GoV|L‚u€Βց;&Σӌ«‚Χ"\™Α±°:»,UzξγhΟΔgήQΖ‘ϊΩh2΅Ρ€,e²1W°PΑ:p/£Ι4UŸdzΆ^EΥ&ςx αΊP}`"TOŸy―3}ζ—™w:€ΖI•PΑ:π;˜δθuΫΤ9ΟfΙ Υ‡i?γP½2W€¬δFΕ¬Ι§ŒΟΪ‡Ά©sY²4―o_₯ΕΓŸλ/BυቍC9‡κ'16²σΥΧV||ζ«H°<Ψh2έΝΌΚβ/α:λΫWι5πΎ‡'βγϊφΥ–P}Xβ3νCΖOϊά\u ‘Γ|umΰ $Xk+γyλΙ~T£0`λΫW©mφ/ϊ•.½ί~]ίΎR<0ͺ•ω³ήM¦6{P‚6‚©X(`x”ζ­§φŽΗΒuΦ·―Βεfζ# ξ’ZΏo¬o_©n˜BBυχ£ΙT@@φΪ¦~YUΥ›U§οM€2 ցG+`ήϊ,\™Α±°B1w}7ͺΧO ΊηQ₯υϋͺŽ&Σƒ Žξ#‡jυ’~‹0G°PWΏΗ¨ƒΝxΌzδ‰K!ύi,¦››Ξu…κG“ι^ΗχΦ6uϊνWgμχΡdΊŸΑqπ‚u`‘’ΥϊqT‡ηLΈΞ£|ϋό" ιuΎ›\D^ ΡΉKΫΤiσΖQ‘ΊΟMŠΤ6υΧ'l\€M¦_½ŠΚ$XmꍅD2ͺ »ΛΩh2έΜϋΰgmS§πfpj|—Όu`α’ c«€3ϋ.ZΧ<»’Bυ‰E‰nZΉŒ0qίP8Α:°£Ι4΅Ώ~_ΐΩΟ Pύ²ͺͺΡdz‘Α±ΐCνeΤEλ(ƒcΰ ΄‚–*BλwœemαgQP¨žό2šLO38xΆ©S·•Ώ39kΪΐτ€Šu`©"¬>)ΰ,«\–m꽂BυχBuJ-ΰsϊmο> λΐs؊½ΉKαϊq,Δ,Tlήω£³šBu!₯JmΧ_etμΎSz@°,]Μζέ‰Y½Ή{SU•pX¨‚ΖbT1C@‘β;χMFΗ~χCΌuΰΩ΄Mζ ώ»3ž*μΗΑ€§ˆM:ΗUU½.δDΖ(NΫΤ;Ž\ωu4™gp<‘`xV™.vέFΈn›z#ƒcΑHUκmSŸφ ό8ͺdΕηqΏ Υ†M°+Ά~‹9‡₯zSUΥiΫΤ»^‰°\iVlTώ»­nΣβΎP /ΖότWϊή-ΉΝ? XŠσ Η…‡λkUUύ©z–§mκq}hΡkqžο]Ύ¬ΕM¦§=Χ+Υλ°xQ₯žΊ[ό]UΥ«œβχχ²₯b½„κόπβκκΚΩz!ΝMͺκ¨'αYšΌ3šLΏfp,P€Ά©ΣBψ~t…(]Ϊ8΄kΆ+@ήΪ¦vƒέBuώA°τJͺN­ͺκΈσ“g>Ž&Σ½<Κ›lφ£ D€P}έ9ΘXΫΤ=ΩΠ5tBu~"Xz§‡αϊyT―gp,­x留(zt•ΞͺͺΪ½  mSχhcΧPύ>šLχ‡~ψ™λ@οŒ&Σ‹Ρdš*V{ςάRkϋΏΣœθk’νϋמ…κ'Q©.T€εKb~ͺpΑ:Π[ΡΎρSžί»ΆM½›Α±@Ϊ¦·MZ€Υ³Φ»©m Υ/28ξΟ؎2ΕfΆ£‘Ÿn'Xzm4™¦ϊ}žc l›:μ㠎V’mκh·ϋwΖ>ΜΌ7Χ X6D•η0Bu›"θdΖ:0Bυ¬’΅ŠVΡ;ZE3)P9κοzψ”/cžϊqΗΐ#Dg‘?»"\ΖοhUκά‹`ŒΆ©7#\ΥΓηœ*mv΅¦―Ϊ¦~™^γρθΫ™*ZΠnΩ$PΆΨΜω·Λ˜=Ώx0Α:0(Ξχ°utU7ϋιa‘Ύ@ ^YάθΑzφΞ£J]wL° RΫΤ=m%]EΐΎ7šLχ38x”κΙοή«ύί_­KšΏx2Α:0X˜y ˆ άΛ€uσΤzͺmj7ΩωΠΡ €…¬ƒν:zΰ ΨΙή€υ*橏-πτSΫΤψ.˝@€…¬ƒΧ6υF„λ}œ»>ο{ΐžž«FrοΏ¦ο $„ψ4šLw38–€mκԍδσ»6”°4‚u€TΛξχxξϊ<<¬\ΫΤ›¨α=WΕϋng4™ep,,‘`}%«ͺ:0b€e¬Μi›z'Bη!TΞ¦ ο φ―ﱝg1Oέϋ `Ϊ¦NΏ%?ΈΦKwΏelΰ9Φ‰JΪTUϊj@ηF•K37?}g`ο«δγh2έΛΰ8x&mS§Ού?œο₯˜…ιG6¬πάλ7ˆ 0-Ϊ½Ψω9‹ vs)y²Ά©Η¦₯έϋΌσhύn³ ΐΐΦξ$6½ ΣX)Α:@‡Ά©S•νŸσ%Bumi(6–ύνΪ?Zڜvaϊ±οSr!XΈC΄†O!σ끞«“Ή–›6ΉQΫΤ[¨­ΛΓΌ΄!eWΗ€a¬?Ψ,H?Ž έ¦N²$XΈ‡¨ΒMm=? ψ|]FεYμ|›Nvβ±6π³rUκΒ€k›z£ͺͺϊy萾3O#H?υέ @)λUΉBΔο•EGZΕΟ\˜Ύ5ΰVο󆓽ΡdΊŸΟ!°jmS»Ρώί‹_#@!ϊiǏ"Xx ¨^O‘ςηξ»³ΉVρBφ¦ίκ,ͺΤ…όΓ€‚υYx>{€οΔ έθ#Α:ΐ#΅M½να‡^½>ο,ͺ’„e‹ξ caϊ.£[Γ^†Η@Ϊ¦>.tζΙ΅”ΗŸgαyΥη ˆ`ΰ b†ζκυΝΪŏ&Σ£ 9ρZžιcFne–:ΐ Φ@υϊ½|‰jφcΥμ«# ΖsΧC?'w0K`ΐλ ’zύAΞg!{νͺ—l.Hߌzή_Ϊ²λu 0\‚u€S½ώ(η1Γσ8fvψ²2ΧΪ}€«HΈσԍ28Α:ΐD¨™ZFΏu~ν$ΒφΣΫ΅ΏEΫΤ)<ߘ Ρ7mμx²ι=<šL/ ,€``‰Ϊ¦ήŠ€ύ•σΌ)lTΥώuHνΉcΓΖ¬}φg-έ+½Ζv΄}`ž``ΙbΆuj ΑΉ^š†^Duϋ–Xεή6υ8ώ˜ͺΞgsΡ_jεΎtΪΎp+Α:ΐ3‰vέϋ*ŒŸέeνΥ\π~ύΟK αccΕζάšζσœ―ΞeΌ/΅}ΰV‚u€gΦ6υNT°kŸΏσh;_6M”ε0½΅}ΰ.‚u€ˆ*ζέͺͺώpώαٝD ~μΤp‚u€j›z#ͺΧίΉ°t©ΑŽ@€‡¬d mκqμZ‰ΓβG…ϊs ΐcΦ26υVUUϋζ―ΓB\¦χΣh2έs:x Α:@†Ϊ¦ή‰ v;<άelPI‘ϊ…σΐS Φ2Φ6u Χw«ͺZsΰNu–B°ΉΆ©_FΈ.`‡› ΤX*Α:@!μπ“σΤκ,“` 0°οDΐn;C”υ½Ρdzΰκπλk›:μ{vβ$Ϊ½Ήΰ<'Α:@Dΐžo\Ozθ0Ϊ½»Έ¬‚` GΪ¦GΐώΞu₯p—sσΣΏΊ˜¬’` ‡Ϊ¦ή˜›ΓΎζS“ΣΝO ‚u€ž‹6ρ)`νZ“©T~σΣO]$r#XˆΆ©7#`ίRΕN&ΎW§§P}4™^Έ(δJ°00mSΏŒp];«p>Wnv:E¬ XΜbŸU±ΏςZ`If­ήSeϊ‘“ @iλ|Χ6υΈͺͺ­βY /¦8©”L°ΐOڦފ€]ΘΞC}™«N77€^¬ΠIΘΞfmޏ…ιτ•`€{› ΩΗf²Ϊω,L73€!¬π(mSoΞU²Ώv{οd.L?ϊΙ`XλΑ:½Υξ/γωΝy#ΥάΏ/kΖϋ¬=ϋΜΕ΅ŸηΥh2=φj€όΦΰmSοψΡ†zL°ώεδΐνλΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°λΠA°·©ͺκι‘2C#“IENDB`‚ignite-0.5.1/assets/logo/ignite_logo.svg000066400000000000000000000130251465426447700203020ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logo_dark.png000066400000000000000000001343271465426447700213010ustar00rootroot00000000000000‰PNG  IHDRΦι@ΖH pHYs,J,JwztM IDATxœμέίUIΆ/ΰœ^σ^ΊΐyŽ4ˆ±@ΊˆΆ@Œ’-Ϊ‚F°`ΐ‚ρ|„WX0weOΠ]­†€€ΘŒ™ί·K3gͩʊ¬?™ρ‹½γ/ώχΏ;ΰa?xœ`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`Φ`€`"₯τ&₯tμ|@]5ž0o} ήuέqωΫt]wκ”@=‚u˜©u`‚u˜:LK°3‘RΪοΊξH Σ¬@p%P?ιΊξ£sΣ¬@PuˆA°ΑΤ Α:!P€˜λΠXJι°λΊγλή;`)z_‘ώβ\9ŸP—`&6R ŒD°¨ΐ< Φ`du˜7Α:Œ$₯΄_υΖζK°•₯”ή”@ύ“±€ω¬@E)₯>P?ξΊnc\`λPAΩGύ¬λΊ=γ Λ"X€W(ϋ¨Ÿv]χή8ΐ2ύΰΌΐΛ”ΆοΧBuX6λπLΪΎΐΊΦ`G)₯7₯νϋΗΐcvΰ`Qλ°ƒ”‡R₯Ύ >^ί,Š`”*υ3ϋ¨ΐzύΰάΐΓJ•ϊW‘:¬›ŠuψŽ*u`›ŠuΨ’JψžŠuP₯ P±ΐκ₯”»»ͺ¬°j)₯“λώΥuέήΪΗx˜Vπ¬RJiΏλΊσλΌ€!*ΦX”Qiύ.Tž€b€ΥH)½ιΊξ΄λΊΞ:°+Α:«RzΫuέΩ ͺΤΏ8X­ΰXΌϊύr%­ίλP™Šu-₯t¦υ;π‚u)₯΄ίuέωJͺΤ€iΐβ€”»»ͺ5ΦX””qΧuκΊnγΜ5hΐ"€”ήt]wj?u 6Α:³g?u`LZΑ0kφSΖ&X`ΆRJGφSΖ¦<³”R:³Ÿ:0Α:³’RzSφSηΜSΠ €ΩH)νw]w)T¦€b€YH)½-‘ΊύΤ€I©X Ό”‘PhEΕ:‘•Pύg hE°@X)₯³λ>:C@K‚uΒI)½ιΊξT¨D X ”ͺχϋ©83@?8 D!T"¬BJιmΧuΧ3ΥοΊϋΏ]Χ]8 Α:Ν•P½―Tί›ρΩθΓτ·9ησΗTdušΪ Υ73>?εœO0λ4“R:šy¨~Ϋuέί…κ°l*Φh’„κΏΜxτ/Ί;Κ9 p,ΐˆλLn‘ϊ?rΞ§Ž˜€`€IΝύ\ΪυΐlΦxPJι°λΊ_f2:ΪΏ£¬π')₯·]םΟdd„κΐ¨λόAJιM Υ73‘:0:Α:Ώ)‘ϊeΧu{3‘:0 Α:ΫN»;˜ΑˆΜ!TΏiυΔe| Α:ΏJ)t]χq£1—Jυoލ@°@ͺχAυηŒ„φοΐδλ+—Rz[ZΐG'Tš¬¬XJιMΧu—]Χm‚‚Pύyφηt°``έ„κγΉlψά‚u¨H°°R)₯³λ‚Ώz•κ@s‚u€J)υaυΗΰ―όB¨D XX™”Ϋλ~ ώͺoΊͺΏάΫΉ8D$XX‘”›Ζ{ο’ΥsΞίf~fZŽσ›†Ο ‹#XX—σλ6_ρRBu`Aλ+‘R:νΊξ]ΰW{Χ·ͺW‘b*¬¬@JιCΧuŸΏ»R©~ΰXjiΉ@ΰ αsΐβΦ.₯΄ίuέYπWωaa‘z·΄Χk&XXΎθϋͺ˜sΎ p¬,XΩW=r[π䜣WΣΟRJιpνc΅ΦjϋͺΙ9Ÿ8Ž1]-χ₯ΐzΦhϋͺ_圏ΐ“λΛy_υ›λ>8Ž₯Σ *¬,Lπ}ΥοϊP=ηό-ΐ±Lαzω/–O°° )₯Γΐϋͺχ‘ϊaΞωk€c™JΛo>7,Š``!RJoJ ψ¨ŽsΞ*Έ§σv-/Ζ&XX޳ΐϋͺ”s> pS»\ΧΛ€e¬,@JιΈλΊχA_ΙEΞω$ΐq¬Šu¨D°0s)₯>@\ίt]wΰ8ZiΉΗzΤξ0;‚u€ω‹ΪώλΊ9η–αrS­χ”/ϋξ―$X˜±”R_©~ττ‘ϊΧΗ±fΪΑ@‚u€™*-ΰ?=ϊδœ/G7k˜;Α:ΐ •ίgAόKΞω4ΐqDΡ²ώa¬‘€y¬ΜSΤπ}uφq€γˆd΅{ΜΐRΦf&₯ΤW! xΤw]ΧεœΙtέπΉU¬@5ˆσΌ|ͺ· ‘ ™”~Χuϋ[ΟίΟε½νΊξ2η|ιΜΜ›``^ϊπ{ψηœσy€γˆ¨ΏiϊάθΈήΖ€˜JH~τέΑ½-aωφίμψλ3'X˜‰”Ϋ -ΰorΞφUiΧ;ώθ¨a±Ωc`>"Ά€οχUΰ8Βjέζ«,Θ^AΕ:ΐ €”ϊπ΄ίWύk€γΰqoŒ όGYpΆΆίΖλœσ·Η³&Xμη±ν”}ΥwwΣpaΔ‘=Όΰ7§]Χ½[Ϋp€”ξγmΧuύ’Θ>hΏήϊWψO¬Δ±Ό}՟ΗD5Α^ωλ½ί>ž”] Ω/οΆ3Ά”RΏwνΎ^ΆœσΙΪΗ€e¬–R:XUΥOΊ8Ž9Ήnxη9dΐΔ6εzε·k–”M Ϊ/u*b$Gkμ"±B‚uA°TJιMΠ ˆγœσu€γ˜“–Υ^φX^κ ό}*νδ/ΊλφsΥμ¬ΝΞ8@X§₯r(’‹œsΔΦτΡ΅\ˆΠjow`yϊφρΏt]χRJg)%qX Α:@@e’ςc°#»ΥώŚVt₯”μ[ ΤΦ_«ώ+₯τ΅μ“ ‹&Xˆ)bUψ‘–Ÿ/“sΎl|‚u`,{}{Jι[Jι€lg‹#X¦Ÿ,”‘ό ž»»†ΗvCΦoaτΉλ:μ,’` ²ϋ8Ψ9ΉιΊξ$ΐqΜ]Λ}ΦU¬SΩ” φ―φ``I뱜”ΙΘH΄€―γkΓηV±Lm―μΑ~¦=<K X’Tτ| v>~Κ9·¬΄^Α:°FK{xΥλ̚` ŽΣ`ηβ&η¬|=-(lTŠ mJυΊkKfK°@Jι¨λΊƒ`ηβ(ΐ1,IλvϊͺΦ€Φ>k ΐ\ Φ+‹ΡͺΥ΅€―,η|Ωψλ@}kψKα:s#Xh︴njB ψρά6|ξύ†Ο °ν@ΈΐάΦJ)υaηη`η@ ψρ|mψά*Φ€H„λ̊` ­h•α?k?ͺ–νΰλ@4·D€ύΥ°΄‘R:,{LFq0θ_š–λ›ΎCBΞΉε1ΐά6ώ}ςn&cύ1₯ts°š` h!φQΞω[€γX²Φοϋ'`ŽΞrΞα&–]ι`³_ώΌ3₯t©s‘ Φ(“›‘&3/rΞ-Ϋ”―B?Ζ)₯–/υ°q;z ­λΌ?\€”ή–λƒώο}γssޏ…žλ’s>\Κ ξ‡ΤΌΗΛ9₯ΦcuΦΪ8 4ξw}΅z€γX‹Ύeμ^£ΧjŸuΰ7₯Bόϊ~Ÿσ”‡r]Ψ"dί+Ž!"ϊΑY˜VJι¨a°ϊ•A“jي]°<*η|žsξΓυΣuέOeζ”>₯”φ!"¬L/>œW9ηΣΗ±&-[±ο₯”ή¬oΘ€ηθ]–½γχμ‘:;ΐoλJ)«VΧjsz׍Ÿ_Υ:°“οφŸ'΅w)₯Εμ» ΐrΦ&R*…#U«\φΥdZ­ΗάD5π,%`οdώ½λΊΫ F/53όJ°0~2rdΌοLXΆ‘snΉΗz§bx©œσeΉ–ΈyϋͺuΧ,„"X˜@©VΤvύ€―< pk5φdτ“Τΐ‹•κυΎΞ—‘GΡ–E„"X˜F€jυ›œσi€γX³–νΰχRJϋk?ΐλ䜏FΧ?”Ε©‚``d«ΥU΄ΧzŸuUλΐ«•pύf€‘μ₯~p–ˆB°0ΎHΥκeoLΪj¬Ά`1ϊπϋn€#X Α:ΐˆT«σœ³Šu`rΞ_GΌΖ΄€0λγŠT­ώS™ψ$†«†GρΞ{¨%η|6΅Ν&₯$\ Α:ΐΈ’Tˆχν9OΏkZ΅n’¨μd€uΝ@‚u€‘€”ŽU«ŸζœΏ8~Χz―{“Τ@59ηΛ‘ͺΦ]³‚``/cμCϊ*ΦcϋWJιo9ηΦο―„C}ΰwο~ ‹v9φ”φ½ιΊξ[Y,twνڜ₯*#oΛί›­χwY0χέη§ΫκΠχΫη§ΧghZε{qϋ»ρ₯ητώ|^oOα;°:‚u€z’λͺΥη₯υ"ˆwύΝ³‘xΆͺhN-€`fwδV „€‡[;…ηΟpxψ>+AΣMΉ—ϋυΟύΤ2”{°νjμΗξΓΛ’‹n{αEΞωλœ’χŸ‘·#t›yχέΏχΟΫ•ΟΠuω Y°RΙwί‹o+_=v>oΆΎ Ο§~ΝS¬TR:κΊn`,U«ΟL?SnBjO=GΓεζ'ž·εˆϊΕΗ9ηΣ΅³Ρ4`*Χζ5χe?7α?̘3•uγιΟqPώ>uΏKgε½;«p΅¦”kϊχΑτΩ„ΗڐΆΘ缟 +RιπF±Ί~(-η±ξ?CΏn©˜RΊ+σ—εsd±ΚŽΆήΛύίϋ‡πΫχaY4qΡ ف₯¬ΤqdU«ΟΣeγI‘‚υήnΤIJiΥ“tπ ύσηŠφΆ\/ρ€2‘Kε±™,\#Ύ²ŸσQω«]Q[K?χΟώo+d?[a8ψšοή«)>ϋe!P«²‰”‡ aϊM ΩϋΏ_RJW[‹U„μ(ηυ(ΰ{Ή?žχ)₯ΫrOC`Iλ―TVΜGhu©Z}Ύ.ο+Ρf<¦νͺ―MΉ!uΰig%ΰͺ₯Ÿή·ΐνQ΅άkΊίΫrΟ0έΩΏτ‹d½§w2ΪΌJYœq\BΘ±‚ε›‘χEΚ’§£ςΊ£.HςόύR>GgζΌ~;―ΗΑέΫ+‹mŽSJ§v`)~p&^-ΚήκΪDΟT€φX{e±|?±τkKx熕IΫ/•‡IΕϊγjϋš•λ+ŠSJύVZ@Uq_}ϋΏ)₯Λ²P€ υzJ©_lυΏe1ϋ˜ΥΪ!Γ>x--ωΏ–s ΥΏΧŽώΥ/”Ž«σέyύ<³σΊ)Ηόu­ηXΑ:ΐ+lνcΤΪ­½‹fοͺρ 0ΙΘΐB‡“Rm‘½ pl΅Ϋ [άφ€r?T;ψt_³R}πάΠek–[eα] Ο\Ϗo+„ΌΎίΓ{ι^£Ά|ƒRΑ~½¦…*%Œ^Βyέ”σwYfI°π:Qφ§²·ϊό΅nifΥp,λ{Ž0Ν;α”v±·R‡Ÿ‡Υ^d|‘Mμϊ”ͺβσR‘a›΅1υ!οu @ωN°΄<Ζυ‚Γε?){m―ι5”…*ηKhϋλŽ½γ—…Χw₯z]0K‚u€Χ‰PΉW« Ϊζ―ue΁Γ‘ Mάk »Q΅>ΎΪΑΊϋš•)Χ΅Χ hωώΏΆE.U·μTR*ΆΟʍ%΄?RY”/$ϋο΅ΌζοΌ/ί‹Sφ$ŸvοΈ·)‹#y³#Xx‘rαΧδΣδœϋ›Α»Ζ―Δή‘q<5Α¦%<<­φu²k₯-#΄Ώ³½Υz”τ²μ½Šͺβτσ £zύυΚόΜjΪΎwΏ·Ώ^A—‡§΄ξώχ_ŸϊίnU© uδγωΕw 07‚u€—‹P±±§Žƒ:Zίš,Žγ©Ι‘Ο>+ς’k€œs?}Qq˜6*«ώ φ΅£P}%Jϋί―Αί|ΆηπožέΊ|/O€ŠνIΆ±ΨͺΜ_Z{π—šΣoΗ`°^ήΛ— RΜηR‘0 ‚u€(7ΌBΘ3{.JλΒχ&sΪ{F;Θχe/=ˆ&RXV»j]°ώ»ΪΧ!&ΥW ΄~—@πOϊοΝK­αŸg+`Ž`τ–δ₯kΩεš*󟰘N'%X^σb‰O/s!Xx™A.vM>-K„fΟ ΊηL¦Y ΐ Όx!i™pΏ­8DοlΗ2JψΫ²5 VBΠ:Ǐ:οfk+5΅~ΏowΏΆjζ!³Υ·:¬₯υϋ_JG€Πλ/aεEioΙB”σyΣψΥ¨€nο9i›*ρΰΕF „^ΈͺZ――φ5£λ™Ϋ ŽTΩ>mSΒυ΅~Ο<ωRφ\i+©μR§‡?™u±ΙΦ{ΩwγοΞ-`’¬šΩΆͺ?©ίvη8ψ1+φW'ΰΩ"λ'ށτΗ)₯»Ζ«Ρ?,a―²9zEϋάϋUέEΠZνί’Zϋ£ŸUƒtj₯φ9Φ‰k‘JϋχVΑΡmωŒ~½χ9 8J ύ¦,κέ£υm‘η\™ϋLCχCk Υƒ„κWeK–o[ώκΎΰだϋίύ½ασ3Λͺζ‰CυΫ­οΐo[[λ\ηœμ΄u.οΟααHηο)')₯s ο€ˆλΟPB―½Ζcv'τ\ΌσΖ­…³νΌ¦ΚοΧ–π9gί4Q&‹kOW “ϊίΗ”mΕkωύλ}lbzαj_+ΊvY F{ͺ_”χΣεkØ­qΏ½?Λ|ΐaYX3Uΐ{ΏηϊΫ•L†wiμͺΪb«ς^kυέxQ^Λε :vι¨Xξ?C‡―άbρfŽ‹Mϊqω½|{XΞί³―Q;—ε=yT¦˜έ”’"ΫοαΦž'ΒέωJ' §­n IDATπΦ€u°ή·ƒ?Κ9ΫΧjz―mŸΫ·„ίχ@#c,Ξ«9qή_Ϋ|τX›ςzWu½4Bψ Χ-ΛSZψNu?s[>‡gcΟ%ΘλNϋkξλŽΛΑΨ•œ›­ΚυΥ}^&~?ue«€ϋqήΠ~σέύΪk‚αGmU4OY!|SΊ‡Œ6ίTχr{B©Žώπ‚°vΥκ§#Ό—οΆΎG[lP»,—σv2Φg`ΛΗ”‰ͺu Α:ΐσDΦ΅J\ΎmEW7QΔkƒυϋUέφ# …1~’λ]Ή7XΫυRνΕ7¦.œΰUυϊI«Εΐ%θι¦ϋkο㑃Ѓ2°ψκΝRέMσ~ΊΩ {―ŸΰmUaο—–Ϋ― TRΩ&sεy/ΛgιΎ"z—Ε*sνtς©βc5ϋ,ην°|>OGξ&‘jη/ώχΏ€τ-–»ϋοΖcΥ·»zmπΖ τ{IUz‰£‚hZ)₯Zfo59YJι²ruΝO9η'ύΧ±νC…α‘«^Œpυ_kͺ€ͺόΊΛ9Ώ©τXΝΥώ~Ι9e†c°_Ì φΥ™§ΡΎ{K zR98{Θ?rΞaΫWΊŸω{i™ύ¦„Υ΅ίOWeQOΈn€n‘ЏΑqΤvκeώνψ‘οΤ«œσχ{Ίy,'•ε½VΣEE)•ψc~χ­κZ ˆοη`gφV­ΎV`Ϋk}Be…~-ge" ¦2FΘu3BθQ{"z5]bJhZsaŠ½Υ—ηlδP½―.~qAS]•sξΏώVŽs,¬|ίΩyΕχΣ]©ΞξΊΎ₯ώYΐPύh‚P½‡[Ζ με9ησžW9oΫΦΪιδ,¬ΩΆm_ωξϋqΔ§°ˆE°°»Φ!γΙ§U‰p΅ŸVΝ ²=7ŸL₯,ζ# ¨ή}₯Ÿ¬/Υ^΅¬i!bνΧjΡπ‚”ͺΞ1χΫύΉοή½j±„•‡„5-=Xά/ϋͺΧz?ύά?fΞω(κϋ§,\ϋ;ρͺŒΓlζ•ϊσ՟·οφ5Ξ‹]•EEa7KΨ?VΈώAα‰``₯ ΥT{\=&\›2ΖSΞυEγ!>(7ψL£vεΙ§²ηŒm¬ΕxcmkR3”Ϊ+χ kPsΣΫΘΥ’`![νϋ!ΑϊB”P°ζ’‹{}¨zθ]ŒάΩv v[cΜblΚ’₯±ξΧf½0eεξΏζ:xT^CMο QΦžPZ)7oίψωi H;ψ=νΔΗ7r΅‰–πŒbδ*»±CUλΟSs±εΝͺHyZ 9Ζ —²]ΐˆν‘ί­h+Š]ά”}¨ητΎ9iΎi SVκfξηόƏqηϋA°π΄nV’―—ͺυu»£*ͺ*‹Άώ9¨ŽΎvi3[ρ!g³σsΠή½ΝrŒ ώciUΆ₯‚ϊΛνστW%ŒœM«πς;ϊ~€‡_ΜΒ”•ιD-δܝŽP΅`A°π΄ΦΑΊŠŽu‹¬―‘½ikcλ}η-α¨’tZσeͺί¬šΑέΑ‚χ;}?€Χ”Gx%siγύΗ•τtε:ν ‘―Κ~κsΫ{¬ίΊ΅Ÿ₯Eu(ŸΗΪίε‚u Α:ΐ€2Y°ΧxŒά­XvπͺυΡM1yΑώL€ό–\ŽΈUέ„@νηYκυRΝΧu1Γπ‹‡ ή.ωΎ£ΌχΗXΈΏζ΄7sl]Zψ±•Κ‘ϊl-₯R}[νχβ^™§hJ°0,Β šŠ"ΌΫή4ˆ±φ§ύžI^¬TEώψ‘z7e[γͺζΖΕ‚#΄w-²#V«-}αE Ξ~ͺό°k­ZΏ[ϋχ-c,†Έqί>[?—-je„λ¬NΥ:``Xλ`ύJxJ°^{oͺηΪ+{ΐQΩΔUδZΒπ\ύ–0)₯ώzδ—‘οΆΑ~Α5ƒήM©B\’š―ηn‰ΑΑJq=ΩWΪ^d8OGh ΏΆkόώώψΓCυr_]sΑ½Ε/LY¨~ϋΗ%/ˆ¨ύ»― М`ΰeOι©ͺH£’ƒϋ–&!΅ƒΗΤ7†ZΒ°“¨χaMΏΠσύ£v2u(P‚ήšΧ—jΎ‘ϊ”ϋδΪΥκwkͺ΄-ίs΅ƒπ½.μr<γΆΩc,‚ψimΔΧbισ,΅L™Λš¬<.BuΙ'ξEXdρΡ~V£hqchяϊ.POw+ΪΒ‘jΥΊ‚ 5Α:ΐγZ·QSQΚχ΄ƒ_¦V­Μ>»!X·R™ώk˜žRκtώχ-žwΡ΄…m©¦Ί¨ψK 9j^χΉ·Y€j|―ς+YνbΟ‘O/ύ~νx₯›Iνy¦«²₯ σs^?Φ v;xσ@S‚u€”°©φ„ΑsΉ9β{*9ϊ½ϋ„λ•”οš)«Ώg’`EΆ‚τ“”e©LΏΣ[ύέia[σ7q―΄ϋ­Ϊΐ»ζX†Ϊ‘ΰν\[zWTϋϋoΙχj-· ©αΓΏ΅ΊΝךΞ]νΕ“‚u )Α:ΐΓZ·Ώ]ΡΚUvTήWΖK«ΉzZΧτν"O€ιέ”αV€~Ϊ‡θ₯"ύ>HdΚ»]’~U*ώjVŽΞύχ΅ζyΉqo³΅?―kΥοχZΏ«ψ³_Ψ3ΐχκ]•ΜΟŚ~Gx­‚u ©Ώ~€΅»T«σ˜³αύώά‡nβ«hύ]ΣλC—5΅‘¨©ίVγs₯Η»{AEO„.K―ρ!ΨοΟYYtPCˆ―  <PΪΐΧΆ]λήκίλ?#Ÿ*>ήΡCίΜωώ³΄_ωa}~ζkΏ‹Wη²λ@S*ΦΦ:μXς˜σΚ /₯ΚΉŽΑϊΖ„7@›2αψœΏ9‡κ? IjώnζΊ}Ž6π<’φb‘/sέ+{΅?#s_Ψ󐹇Θcl£  cžξVzξj.€¬M ΦΎau7H<¦L>ExΌ/Ÿ^(ΒwΝ-α˜χΙ-ΥσrαVΝγΎž.Fνχ³{ή"η|]y+н…έ«έ-`/~Ϋ(po­…4:δ‹!Xψ³Φ€φΠ&Ά(«υOÜE›l?)- `L!Cυ-5m k.Άž.@Ω³»fψ΅Vl©=KͺZ_Bˆ\» Ό`}Ύž»νΟRΤ ΦΝ[M ΦώΜώκ„V*nγGAμ«D›μ€±EΥο;GΥάvgVαV PkuΤYB•)QϋΩ=οŸΥ“[NΥ2λο‘”RνsqS:¬0O*Φ_―ζv5Ο&Xψ³·ΗΔώκμ"JΥΊφα/P$Ό xh}eέχd ­>¨ώیB֚Η9·k₯šϋΒ O—Cψ‘εœ/+/κYJ°~[–ΟYνsaΑ4$XΨRΒ–+οpΣΘΚΔtΝ‰——:V΅ώ"‘Γλ3η€ŠϊmŽφgv[sγήՊcͺy"όYŽΪ‹Ο-&XΝqΩ”s·„E:>°m­έtYC°πG­'½L0π&+7ͺΦ_€f5Xm›@˜―~ΰ?rΞ‡9ηosz₯ΕξUΕ‡Œό»›ΚmΰoK.37Βώκ7sϋN˜PνΟΜ‚υ%|ΤμTv« όΌ­υόyίK"Xψ#mΰ™“0νΰU8ο.₯΄΄ όΆ3« –‹ώΊ:η<η…Z50~˜Ι΅’6π ,:˜ΛώκΫRJZΒ¬ΫE Σ«T§Ÿ-`ίΫ]-Ύ|εŽ:+zo,ޝ‹ƒO«=F‘;e\Tι±> Ÿk…ύwe!ΛQϋΪΟχΛϊοΰ”RΝ‡œm°Ύ€ί#λ°@‚u€΄θj}³i‚Wιf€”ϊIڏF²―Z?΅Xδw₯f­«­ΌK)ηœνΉπ»/[­Β·¨νΌΰ7ΰ~ŸπλR ΩϋuΙϋ£WvZ1XX~OC\'Un―ZβQ±ήNνŠuχΧ€`ΰ?΄g N‚λͺΦl){ϟτ 8ΦΨ ΰ_·*κvZ(Yt~t<τ{―ί΅‰ύκϋΊŽ~SJW;\}¨ΌwϋkΤl―Z}yͺή'눱³Ϋ,Κ₯2‹α Α:ΐΦ™½2ιϋEΥz,%@yΏ—³)U{χ‡˜…v Όηη¬b°~(„υ›~+4]€Ϊ­¬ΩΝ׊Αz빎53φ°@?8©ΏjzΓcŠŠ’T‰oT¬fiγπ>₯$X`UΚήαw•^σA€­¨΄gj΅>?<ΟΖx5SsaΚΥ`‚u€h¬ί8ΤRͺΰ’άtŠ0iάRJιM΅•ΧkR³Κ<Β615ΫΐŸV|,–I—6fO°π-χ/Σ ”Ϊ"UH―½j}){«OGΦ¨fx\3Τ~©ZhnμηΏX΅Ά?ΰyt΄J°¬^Jι°ρXΉOUek(UλΧZ΅^*Ί—¬w₯#AλοO˜LεΞ@›–[«TneΏx€Hμ± $XθΊΦ‘ŸΥθŒ!R5ρZ'[W°§‘Ά―¬MΝλš–Uλ5Ÿ[°­}{†jή š7€ λνƒuλT¬jύέΪ*›WP­~ο ₯€%<«‘sξCδ»J―χ}Ήfh‘V°~‘sώΦθ5»¬T"Xh۞λΞD#²Χz;k¨VΏw¬ €•™uΥziA_λ:εΌγ„'Xh»z[΅:£ X΅ή²έιdVT­~o£,+Ss+”ΧG΅φvΏ+ό« XθΊƒ†c XglͺΦ§·¦jυ{«Y89η―/φΫͺLέA«V°ZXΑ:°jΪ]ω)`dΑͺΦχRJ‹δ^a΅ϊΆΣ†ϋΔΐΤfΩΎrxΥκ0ζ*¬kΧ:XW±ΞBU­/<|]c΅ϊ½Ν χ`₯J τ»J―~Κ/΅ͺΥoΛN Έe€ λΐΪMέvρ{np]°ͺυΝR+ΊW^­~οSJι0Ζ‘ΐθjUlo&άREx€ωqAց΅kZ9kε8Šψ~° ΓNV\­Ύν4Ξ‘ΐ¨jώζΥ ΌUΉ Όίϋuˆ²8wm„¨Λΰσ $XΦeΕΊ›,&“sξ·ψhΔ5[ | p(€”΄„`ρΚ"ΩZΧτο'XxX+ΌΏ±@˜XςvP¬„`X»–7χίΦ>ψL.RΨω~a-ΓUmύΡρB»ΐχj΅ƒο&¨Z―υψ5_3λqΰ\7q»ΒΧΌD¦@‚u`νZV¬_―}π™V©,R΅^YY π~ ―₯’Ε¬AΞΉ™ο*½ΤΡΆξ©ά^°Ύƒ·QsͺξΛ`a !XΦε~Θnpi!RΥzί2ό(ΐqΌ–ωaοΛ$>,]­ y/₯4ΦΒίZΏΙ9gaλzT] £ΡΞφfrœ »4>°<‚u`΅Fœ΄Ϊ•`Ι•ͺυŸόiJiΆmνRJǁͺϊnŽcΫ¬Ο/μ¨ζ"»±ͺΦkλ畇u¬OO§Ό…0‡«Χ ց•kφΈΑ₯•ΣŠ-K_k3fΫΣ1•Š›Hϊσzθάv₯Ϊf–ηvU.^U°΅₯UlWZί³΅+nλO(ΫLΥ€ΓD;΅‹),X€λΐš5½©ΧB‘VΚ{/RϋςΟ3m yΪx;‰mW9ηλrn£Ωs=Ώπ΅ηMΕκς{ͺΥ‰Β5αΣj‡§:ε΅S{μk/Ί^@°¬YΛ›ϊο<λCαΫ@'aVϋ”—Κ―χεήo•σ₯’¬VΥ\-ͺΫXΊσŠ]cŽ*U­`έοωΚδœkW¬keύ΄Ϊc$Xo§v—Bλ€`X³–7%ͺΥiͺT6Gjcώ~„Ά‡£(νY#M,_=0ι­%ό»”RνΒ(ΧV΅*ΊίΥκφR± όν!+σPσšR°ώ΄Ϊcd ΊFFθRθσց5kySbΥ8Ν•ΚζHUλs©‚: ΤΎ{hDΩλ5Z€ΣΪ{Ζ@05{k-HS­ΞkΥ fχœ'Υμ¬wg Ίζjv{7Σ1€E¬΄!X'ŠHUΔ{)₯HUτ°ό—ΗͺΗrΞ'ΑΆΨλ’U圯+ώφ Φ‰’j§‚Ήt©jθ βS«Vo―κάOJIΥ:4&XΦ¬ε ‰Uγ„PBΩHϋqG­j.-Y£M*?TOt»ϊd2€…«U΅ΎχΪ²bψ› ‡uͺ}ξλaсνΪ«½ΈΑη¬kΦ²•³•γD)|έla~οΪς*¨yσͺσZΥκεZ‚u«yΊ±Οϊ£ήU|¬[[8„qSρ@|~ 1Α:p_‰©ΝηAJ©y‹ϊͺϊ8Ύsχάs•s>Ά—ώ&ΰώοPEιT+Hyιοe­`ύ¬γ0o΅†Χz.FJ©φ˜XΜ‡Ο,ˆ``z‘ͺ‚a[Φή‘“–UΝACυήρ +Η’U­N)ν8C­‹Ού½,ΧOο+<χ]Yœ‚Αρ Φ—ΛηD°¬ΥΫ†―Ϋ>g„TΒΪ]χνžΒ¦U}©–ͺίδœ_T9VΊόT^EKu^qAνs«Φk….Bu~UΊ0Τ\€»—RjyO‘`}‘FX ΄§<΄#XΦΚήΎπ€ΪFjώqκIƒRφΟ)Ÿσ^Υ>=η|¬+Α»Ϊ^@seΑb­0εΉΏ•΅~[#mD{΅ΓAΫεzxSρ!oμ―ΞEεŠΦ VC°0=7ΈD©j½›Ίͺ9hewο"η\£ς$Ϊ$ŒI{–ͺΦoάή Ρ*ΆΏ-UΚpO;λρΤ ]‘β©½0εcΛmΣ`ΝλΐZ΅Ό¬Z oΏ:Ζ~2y°ΏTvίLωœOΈ«UΥγόΐ4J0]λzbΧΰ­V@'˜γJ;λZΫτ6)₯ΥWέ–pτc凡CΪ΅σZWνͺυͺu˜ž`x–~o?-{_Ν^…ΜEζή:Φw»ξ/ZK–π£TΞ—°>R»ϋ&VXš²˜­V˜ςΤ5A­λ€H‹+ €ςφχV;ΏPZαοU~XΑz\΅·SθT­ΐτλΐΞJ›^7i°e"8Ϊ ψΣ-[ΒT&0ΗνόZΈΐΥ ͺRJC[ZΥ ΦνΟΜΪ /ή­x―υΪΧΎ_Κ=U^huOη/˜˜`ΨI ²ΞΛEϋVΓΪcvsξ?χWΖjoꉃ†-αoJΕόhrΞ—]Χύάΰ΅=fΝ«,Tε*ί'+ΆΏΜρ„1ͺnOΦVu[:ͺV_Ÿ1ξο>=±θ ¨H°μͺ_•~Pώ·KΈ`μέίuΗ΅/ΰ9gω:€~ΠŠ€p€" ‘E 0ƒˆˆΐΔC=ˆΰψ¦χH#ˆLwΧξο[‹ΛηϊžΓιιζLχΤ―φή _ΫB½ΙtΞΎpΠ¨%ό\ηύt‚ΕΡ}¬na€U«ΚχKΟcU« ζψͺΨx1vΥϊαšfEΗ³ξΨοχ26Ν’X­υz’λΎ»`&‚uΰ›’zπ₯35މΫ:Γf―“U5o-ΜΉΑ`κπΏIΨςU «¬ΖXUΎ₯”Ο…θcλ·Ρ­Ύεl‚™oVTu{>ΑfΑj?¦¨Z?Š.ΐΔλΐWΕΫ»»ΡUΒϊd«jf _gl 9u ψ»j­ηΙZώŸ”Rž$8ΕΘ³u°ΩoΔ6πBuξe’ͺυΝΒαΨ3ΖηuΧM<ΟӁθ,0Εo―asΚs`Z‚uΰ‹ξΜUίuδ¬ΑΊ$¬jήDΛπYΓΧZΒί6l½ŸιϊΜ=Kf0VωβΞ3ΠXmΰ§JY)ͺΦ‡Ν³‹ύwk,Sΰž›ϋ3Υ5»°A¦%XΎζX`KψWΡzvQ‘ΆΕkΑΛ΅`β^;Φ½γ/όϏucd1aΥϊλG·Dο'h©Z½?V­DΈΣ$LD°|V΄Xώb{²žwΐΪ½ {ΙV΅ώμ sF'3aKψŸΜ5=IΦς_εK3Φ½νΣ3وmΰs<Ζποωf‚3wΆ΄ –₯”σ‰Ί©VοΧTH†gο…λ0 Α:π'1“ι§oœ™žΓι–Η>e i˜\„Κ?';Σηs/LΠ~¨4iΎi!*2-ΞΝΎq&v1&ΆΓΗΊO Φy° ΗED0Έˆp= ^NπWΏΚg:Κ¦ϊm-\€‰ց?Ψ™«Ξ4>:―,ΐi²ͺζVσΈΗͺ0ΈqQ|o΅Φ³d›€T­°DŽυ{λd€η‘«V£hθ_t\z7ΑYDΈmνΏUΈπ· »‰ρpSώΆΐλΐ]χœωeξ-¬T,g›{ψ:ΊmΜf€–πΓ"ΚqœΣL2-.xΞ&λ4Φ¦±acή³ώ›ΨΨΧTγ„Άαϊ¬Οωc)₯ Ÿ­_&ϊλOώ†ΰfψm}΄€ξ›θ²£  Α:π›ψΡwί…;^aΕ’2ε2Ωθ±%όqτ©DKΙ·‰ŽιL₯Kχώ1ΊΓάgCτ}θXΖ^’γΑT3‡ηΏF;υ. Ο­ό½žθx/£Λ 0aΧ‡­mΈήυfεΤ‡ί©ΏN4ZξE°|3l§ϊΡ,SΆ懍*­{~H>1SΛ­.X˜,‘Ψ;U―Œ‘Φz>q8ψS)ε"ϋfΛ¨ ~?aπw›iŒ£y#Β¦2όžϊ₯‡ΟΠ]Γ†€RΚuκΏυΪΙ€ώ ցαaτΙPιωΐ3‘<¬\T¦μΫ }loζnsχΘ–π?ΔβcZq}3Uœ¨Z`A.’l`ΣN—1MΎΨl6Χ+o£J}ؘϊ―¨žJΖ1Rμ)ι&ΆŸ‘ΣΜΧlX§Ίj–R>Ζ8…ΓΟό―ωm@‚uXΉ)ξ;W}—X`Αλ”‹gΡbψ!η!}¨Ύ­ξ³\ί3`XŠQZ·`ΏΔ0ŠppΚM#ΫΚΫ4³Χ#θ6ΫΎ™ψ₯~LήρŠ=Δ†νf8‡±!ύ:ͺΑS¬οΕζ”a3υpώ]5ΏΆV©ΰ€&λΐΩΔ»©‹Ε³l#Gsοΐΐyθ&Tί‘©ϋΛθ²KΠzØPΡE88Ησ㳘½ώ‘EϋNxύ•ŠΪ1½·ŸŸΒ IDAT‹M―,XόV|;Σ;<Œ»ΧQ>{P•ι'1;ύ #°F)X  Α:¬Xόψ|μά―gχψίV ͺ&¦œ§ψoζ`γ<όό••CυMT²]&8”- Š,B-;ΓθΓ$β™w‘QGQΑώ±”r^J™¬v„ιΗΓλμ„€Sꃫ„›™™H­υU\σΉDuψΏb£ΚΩTέ †π>ͺδΟcSΚΏγsτ˜5Fhβ/N;¬SμDύΕεF2όψΏ~ΔX‰) ^s·‡<φ—» lC+Μη±xή«“˜™ΑP΅~ & q‘Βάn:6!Ή‘Ί:6Ί>v3CΔk ϊ›Ψϊ>Z΄_?ζί{¬›<‰ΚΨη nβ·„Ήκλς<ώύΞέaς(ώΌήω Ÿq<ƒ_ϋχŸ›οβΟφ3τd‚Ϗξ›4!X‡Ϊ™«Ύ—αοργΨD+τhΏήbaψKž mεj­³UcΕy6όΥPip\k½žλ¦0,D–RήΞΈ0ϊ-§ 6MΐΞ=?uΧE‡ώ •·Ξ΅x†|ΆδΕqάFHΈυ1ώίΫ pλi’ Γ·ρ[ΒΊΛΚΔοΚVαϊέΟΡ›νŸ§ζ†Ν;½Φ ?ZΑΓ:ΤΜ<#ΰ7`gj>8mΨώηZλΣύΠ?‰Ε½ žM՞ζΩ\σtw Φ™E΄΅nρoόsv‚ΒαΟ‹ _άωﳄκ½w½bqx>s[ψήhΐμλ°2QQϊΒu&r’μΔ΄X8΅•ςΩΞΕ^ba'Σ,V³ΦXŠΉŸUTψ1§dαz„κ|"\&›­˜`V$ͺϋތψŽΏ»Η°"±ψσc²wό©%|‚γX‚³˜σ˜ͺu!ΊέΜyΝ΄QŽ•ίΫ >ͺ³%\*λΜN°+1Φ\υ;΄‚>'SψΊ5{Kψ%ŠEL•βΪΨ°s†έc.„{‰pύgλ‹ήE₯Ί™κόΑπob3fsʟψΐμλ°ο“Μ .‚^%{—ͺ³ΖQk=O4K°”’νί<Ζ\›Εή νh)ž%ΏvηόξΗZλ±Ο'_csʟ(ψ`v‚uXRΚ&MπNν >+ZšΎKvv^”RŽΗdͺZ7k€ξE˜6G%’n/4Ώž&Ϊ¬Ω°ΑΰϋZ«gZξ%6§όMkψO’C'ΜF° !λ‰ή₯`ψšW +QΞύπή_,†ͺZ€qMzίΦZ΅'…Zλu­u˜ύ㊯Ȼ˜§ώ>Α±Π‘a΄†_σηg› όΎ`V‚uX°RΚS @+Qyu’μψ^M¦0[…έ‹pνfΒχ!T'¨ΤώλΚͺΧo’J]λwφŸŸΏ­΄ϋΓ0>αι°I'Α±°"‚uX¨¨Θ<Ÿxz―³Œ>$8X…dσΈ·΄„A,`ΜΡ²φ>T­°gΎ)nx΄κυΏOΌΉ€΅ΫU©3š¨^³Χ—όωΩΦώj|­ΦaΉ¦š«ΎkΚΠ~2v„Γμ΄„_“DΧΦΒ K0Ug›!|ρ/„Μ†QCθΌΐ€π6Zv?2•aSϋB??[—ΡιαΉ*uZ¬Γ•R† γ₯k d?z³- i ?‚Ψ¨”₯ϊMΥ:έ‹{λaT«Σ„Γ±c¨ΫδΟξ|~–Π"~7PΧι€ζλ°01Wύ§ΉήUΌχχΜΉbj­ΓbξU²·%ό8ΞT­ΐ¨¦˜…nΎ:έΩ Ώ 'ΩΊ`}Ιp¬–οguZˆΟΟσ˜ΑώsGŸŸMlJω9ZΎ ΤHε/.,G΄5ž{ΑD+eΰΎ†jβ%;[CKψ'»o8w₯”!\“ΰp>U­Ηl€Ο»ΆV€LαωΘη₯ΆΉ³Πj"ͺ½5γψσ<ΡxΊΫX‹ŽσbεΏ-–P!½(1dθlyRJyΎσ:Lφ>oβst‘,HΏρίυΪοΕΎ€EψŸόη?$,D)ex}1σ»ωΎΗ£₯”f_~΅ΦiυΪΠZ)ε4I»λ]­UεϊžJ)ΧIgn’² Ί4Α=υ›ΞX’ ·žΞ΄ίFˆώιO—Π•aƒωΟΟΡΜΗ’ΆŸ£΅‡ΞtB° seiπn~f…υv[@‚uΦ”ς‘ΑφoZ5j‘Ί‡†χ‘Ο Π₯΅5v‡ŸΣ‡5ˆ πiόy²ση±Ώύ·Υ•Γ~πyb©b³Κφ³σ4ΊTξσΊ‰*νρ9ώηk­έθ™Vπ°ργρΜ΅|,••°FCΊ_“½o-αχ4ΩΡ‘ Γwλp‚uzt2ς1Ώυ|ΓZDΕλυΧFδEpψ%ΧͺfY³ϋήίψ έλο€ž ΦaΞΝγ†*­βX³α‡v)εηΝfσ:Ρi8ˆοR-αχsš€j}˜΅ώά’ϋYDGΨαωφγ3ΐΪύοΪOτ.Zο>kψ6ΎΊS•ΟϊΞiOμM²Σπ’”"XίC΄_ΏJr8ݍ)`έβ·έ˜¦oΊ`:VJωN x GΡ’τUΒC?ρ<ήΨ-lλΩ·Ϊ@2coπ3`D‚uθ[†π½V_k]E ΉŸ“]‡‹Πϋ‰λz™δpT­Π…ΨΨχbδcυL0"Α:t*ͺπΖ^xyŒ#†L%ό.cKψ‘9KΥu―²ΪΟt  cW«ίΤZ?Έψγ¬CΏTέKάώT ϋxͺΦΰΑΖήΤgdΐΘλΠ‘RΚf9ςNgΨ~Lp €–πK–%Π~i“™•RžNπϋξΒE—`:SJωn‚j†5jΩQΐ¦%όΒ$«ZwΘlμϋΤ»Zλ΅+0.Α:τη,*)313όaλpG΄„Ο~j ΏŸ,Uλ―bc€χ§±η««V˜€`:-_&<βΓ ­ΰ!™Zλ°ό.Ωai Ώ‡DUλͺΦHκxδΣ·‚u€iΦ‘/gIφi‚cxZkΛVπݝ/˜Ρ«XΞdh Ÿ₯ςΊGiͺΦά5φύι":02Α:t’”2΄[–τhΕ“­•?€ ΑΠ7Ρ5„JT΅~XJFŒ›ϋ7žN;¬C?2WKt:»φ¦Υ ›υ _–΄%όΖBυ^²άΓ΄ƒ “±οK7±‘ € Φ‘₯”γΔΥκ[=Vr^7|m•―πu[Βi 8±Θίl3ӎ£θŒήήU˜Ž`ϊuΆϊ.A0-αΙ¬u1ždμQ=όnθ–`’‹—ΓSAΣ‡†―-˜ƒoˆ–πož'-α‘Φzž€jύeΜ΄€–ΖήθuYkmΩ‘ `ρλ_/m‡{ Š?6|m3Φα~N’„±»†vβ*ΒGΥ:«έoΖυeγΐΔλXGΥκƒΓRJoa±λ\β–π―Νκ~Έ¨ZΟ0;$Α1°^cί‡nβ ΐ„λ[/Υκ[½…L-ƒuλpO΅Φχ›Νζη„ηλΌΓ Ed¨φ?ˆΝk0«GςrδΧͺΜ@°I•RŽ;ͺVίκ-XoΩ ή|_x˜Σ„-α;ά•Α™ͺuVlŠg#jf X‡Όz\πο*X―΅~hψς½mš€¦΄„_ŽΈ–*λŽbΖ-Μb’jυ·qo`b‚uH(Bšg^›£Ϋ"7«šθΐΓ$n ‘%όƒe©¬S΅ΐœ¦ΨX¦{ΐLλSΟ‹#½UnΆ¬ZΔΑΓel `ΆιΓΤZ―‡ »‡rlSs˜hστΫΈ§0Α:$ν{¬Vί2gύώT¬Γ%n ’”rœΰ8z’a3ΒAO,HlβR­Π9Α:δΣϋβHoΑ’ŠuθLβ–πηͺŸο/γe‚CΡ€© ΏρG~ Υκ3¬C"ΘΌμόšFΥ}/ZV¬χVέ™ ΤWɎIKψ‡ΛpΎ£=/Œ.ξ1―'ψ«U«ΜL°Ή,₯j§ͺυ–λ=m@€T’·„ΧZόžj­ηIfζ»fŒ.6N_LπW¬Z`~‚uΘe)ΑzO•-€Ζn «Rk6Ζό˜π=ŸuΦΉ£΅ UλΗΪψ0¦Έ―ΌŽ6cΊU­Π†`’ˆ Η±]ZyΡK@ΡΊ£”ς΄ελCοj­ZΒχο,Α;8θ¬Ϋ ω ‘ϊΡGy{˜™`ςXJ΅ϊVOEΛPNU+μ/cοg₯”₯}―O"· Ευ`oΓγRΚ‡‰Bυ«Zk† i«$X‡’jyŠ…—–z Φ[V|¨X‡=%n ͺ%ό½e Ž\/φχ‘©*Υ76΄%X‡–Έ@M;ψXόjE°#ΠΎo±9β2Α›Xπ(Ρ©fͺJυΑΟ΅Φ–Ώ[VO°Eψόr‘Χ‘—ͺυ–sΦUGΒx†οœΫdηSKψϋΛ° Αœu€”ςΌ”2ή?Ε¦Ί)ά p\€ΆλΠ^ΖΩΐc¬ΫF@3΅Φ뀋Ξ?ΕΘΎ’Φzž`cΔa)EΈΐWΕυ“RΚπμρλ°‘nβ3φͺΦΪr|ΐκ ώβ,@sKdόΤΎƒE -_|¨rΡΦΖQk=‹`tκξ‡:7ϊα^†στΊρ1 ~.‰D—±α>ώ<ξsnŽύΡoXΆRΚ“ΖEΧ±Ι€oψŸόη?Ξ4ŒZψω‘‡h₯”Άnό–.Ξτ"¦>4όLɏ1 ž/ˆkχοηηTτ-~kΕ3ΑξwϊυW:V}·³ξΙΟΓF'γ²ΦϊΌΡk36ΫGχ‹V|Χά“Šuhk swO’ΜΝύ– +\U±Βˆ†–π₯”Σ˜ušΙ›RΚE­΅i—ŒΜβΪ]&θ8pάΙ½ €/ϋ.ξ'ΩΊΨάΧMG£΅VA°D;Α5,” ˆ1ϋ83Α:,H΄„ͺ.^${WZΒΫΉ`ώk§ύtKΧ<ΗΑάχ"έSr¬C;Η ΫO倃κό–€½VΡ@v―’Υk¦οΪa³Ρ©–π_6ŒΖ(₯œ5Ύn/:ΩΖς=mάvπγf³ρEz₯uΈΘη]hζՊN}ο΅ix3 E•WΖοŸ7>σίt‘ΰ΄ίθXΗΑτ΅Φχ Ž€;λΠΐP·²*εƒRJκp=Α═ &PkΪw Ονy΄xζσΞœ—5m€ ‡!T7Š )Α:΄±Ζ*ΈŠ«†―-X‡ιΌŠY₯™i­όeQeΨς;ymϋŸ4>ΦC¨œ`ΪΘ>o| Ο:h}ά²όσ†― ‹–Έ%όλRŠΟώ—e΄ƒθ[λMZχ1lώϋ»P ?Α:Μ,ΒεΓ•žχμ ZΞaK`s–°*σ}ΓΧ>ˆ ΐŒ’νϊe²sώ²”b³ΝοΎt?›‹k+%X‡ι΅Φί 3Υ?χ³Ν[Wm’*σ$Αqμj¬oTEB3CΫd§_ΥϊοZ·ƒ?΄ρ ΦI°*₯<Ωl6GΟρ·ͺϋšΟ¬ 'ΙͺΦΝY‡ŠQ§ΙήωQΆ‘­h΄"X‡ieGΏ¬Ÿ%©ΞL5K8Β›–ηεYΒφψ° I[Βg™ΡŠŽ"ΐμλ0­΄mΰ·β?KΥϊΛd-v[‡7ͺΦ‘l-α3ŽΜh₯υœυ#›`}λ0­ΦΑθ}Γ‡Lσ{3KλπFU$4’΄%ό›1²j΅Φ‹›l|mΨ¬[Jyώ™?6ρ@bqq`ΓƒqTΆt―`xJ)o‡Šρ†θ―j­ͺ衆ZΒ—R†Οα³Dgα4ͺιΧnψ~~Ρπ'Ψ|44¬_m6›'_Ωx;„δG<Βο¬G_ b¦Σ:½ϊVψ;2Uf¦˜%«7 α Yk|X£l-α_ΖΖ­΅kj»ΐΠuρMlΖώܟ‡†κ@r‚u˜NλEχU|GˆόvΊΓyƒDAλ]Β*S‘‘€-α³O ­ƒυCmω`½βχ@λN•ΐΜλ0xΈn½+υ1‘C¦°ζu’ͺΜΦΑΊͺHhlh ΏΩl.]‡gk―ZŽ,WΓΈX/λ5°B‚u˜Fλ‡λ«¨²|dU뛇VέO€uUδ‘ͺHH![Kψ³ΗΠZλ{„…4X/£ϋ`…λ0Φ‹νϋTYgͺZZν6=U‘ΐζχG™ΒμaΣΝΪGEθ(΄βχ¬`¦ΡϊαϊΡUΦ «Φί”RZοn]΅Ύφπ R¨΅ž&Ψh³kΥ³Φk­6›ΝMΓC8HpΪh=h@°#‹EφΓ†ηυΆΦΊo_Ά°ζΌ”ς]ΓΧΧΨ:It&U­«ZζUJρ;VJ°γλΆZ}+ͺΦνˆφwΤ2μͺΘΦ³•΅ƒ‡bγR¦οΗUW­'ΨψdA ΦΗοX)Α:Œ―ηωκ»N„Ι»^7ή¬<°•ιϋqνUλ­+Φ΅‚€υ¬ΐJύΕ…‡Ρu_±ΎωoUζΗRΚΩ0γ|ŒΏo$CKταΨΌφήΌlπΊ[Gρή―πϋχγΠώ—$ηcϊΟΗμβZ\5œox軀= ]ςΎox[¬±τΞ[X)Α:Œ(ζ«4<§W#‡ΞgQ)έrfόƒZ΄EΏH’Η5«΅žG₯ψ³ΧβSΥϊpL Ž₯…χ ƒυMl¨[λΉ`O±ŽΣΊχ”`νhH+xΧRΪΐ?ξ²Νο}•’³ŠsqΩφ­kΙdϊ~\σ¬uνΰ€Ήxώ€¬ΓΈΡ~WT@Ά”οϊ)vΟ­υœυOνΰj­C ϋ6ΙωͺΦW9η―ΦΪϊ»Ω|EXΟ°b‚uWΣ‡λy¦±ς})ε»™_³ux3˜½Zψͺαϋρ6Ι)ZsΥzΛ `-ΫΠσ¬ΐŠ Φa$QIάrΖd‘B²ͺΜ­ƒΉƒξZλυ0Η~ΞΧόŒσε/ˆο…³$ηηΩZ«Φ7›Ν‡–/Ύβσ«‡8¬—`Ζ³¨ωκŸq’¨*sk‘Ξg~ΝΉ_οΥΆ{†ΔΞ}?ΎJp -˜³LΝz ¬œ`Ζ³θ`½Φϊ1i›α—₯”9ƒ€ νΰΧœAJρύ˜eLΓΛθ ²6­ƒu l°|6ΤΐΚ Φaρί«›£ ΩΥZ/fΟρ%‡k«¨ˆŽ*-Yh€εR±Φa$-›8ζgl Ώ™)\o=g}£<€•a\Δf₯ί-75Φ`Ή<ο‚uΨW΄γ>hx"[Ξ”ΝΪ~3uΈž€όA)EΈΙDΥz†οΖ—+Ρ²jύ¨αk‰ίU‡Ξ/ X‡ύ΅ή±Ϊ,DHή~3Cεz†vπ‚uΘ)ˌσγΗ0§¦νΰK)ͺX`y΄>¬ΓώZ/’·¬XΟή~3qΈž!XΆΒŠTH―Φzž€jύ$Α1Μ©υœuίΗ°<6ΠŸΦa-w­ήDΥxk§ Ϊ’Ν6\5πˆsnτ£}Έ,•±ΐeψl–RVS]Qkm¬[p€εQ±|"X‡ύ΅\DoZ­ΎΥAKψM„λ&hΣ{1ςίχΗΆ»)QΥϊΪFF\6|mΑ:,Ο‘k l밟¨€>hx[Wζύ&ͺ‘δpΎδ *ΧG ™"8»ύHζΐ¬uH+ΓȈ΅mΎΉnψΪZΑΐ‚¬©πm‚uΨOλτ4ΑϊζΏ!σY’Φθ_3„ΠΏ”RΖlќ‘j}ms”‘gI6ίχsΚφΦςή¨’–E°όF°ϋiϊp]kMΡ ώŽWIZΛ›RΚΕHUœgΣκ½ s”ΧœAbTFŠ‘ Ža.M7M0rhG°όF°ϋiΉx~•ρΪEˆΤK€σbhΌo[―hƒŸαz¨Z‡œΖμρX/b|Ι΄ξ沦Άϋ°t6ΞΏ¬Γ~Z†©ΪΐοκdήϊΦΠ"ωΧRΚٞΥλζ(?3ϋ ς©΅3Ώ/Ψ*ͺΦcƒWΛφϋΎ‡`’Ձk l Φa?-g©¦ Φ7ΏΟ[›ΰPξλυpNχ¦3λ›hΕδ“adĚΎZή#Χ–N΅:π‚ux€•Α©ƒυp’΅eύFυϊΕC[&G…d†/WΤξΊQkζ¬ί4>ή#νΰgα;–A7*ΰλπxMΞk­ο³_»yλ-[ς>Ζ0{ύί₯”ΣΆ‡ΟR΅žaž3πgΎ#VΡ~³Ω|lψΪͺZ`λΐΦαρZλέTΗlα^ˆΌΩl6Χ1ύ›Χ;6;΄HέDΥϊ>σβidΦΧΎεζ33 s±rθ:»λπx-Γβλž[­uhΙϋC‚CyŒƒ˜Ώώοh­jΟ,Υβ' ŽΨή5>'kiίτ>YJQ΅}S­ό‰`―e0ΡΓ|υ?¨΅•š?&:€ΗZΔ³”ς1Bφ“ΟΜΪΏHϊώDΥ:€t‘ΰ ί>61΄δϋϊf³,π'‚uxΌ–ν ΟWœZλPΝύ6ί‘=ΨA„μ?m6›_K)‰°ύ}’ΠlΗ¨j’‰MF­7ί¬eΞzΛ±)α o*Φ€?¬Γ#$hρΪU+ψ]΅ΦaΎοež#Νd?‹?YζλͺZ‡œZoΐyΆ’ _Ϋw/τν™λά%X‡Ηi:Ÿ6A‹Ϋ}7$\ UλΣY‚£ZCΥzΛ±)*Φ SŸϋπΙ_œx”– ζέW{ΧZ?Ə”‘uϊQ‚CZ²‘jύl8ηk?E­υC)ε¦ρH‘α;ψ|α(T¬μψLHpίΠΰϊNΗ¬ž-a^w>ΏO°ΩΓξ3Q­΅Λ±rΠ€²¬Ft΄Ϋύ7ίϋΜξ=εγ°Φα_ °‚uxœ–λ½W«"\ŸΝΆjύt%οz1΄ƒέπXΧP±>ά_ή4zm qΐ¬vDŸΖζžέ}LQ)eψΫνΆΑϋ§Ω’*<\)eb<ίωμ>{#f|v7;Ÿίw?Η6Ξΐ'*ΦY”XƒέήkΖzNόΓον{ΜΥΞύεcό6Ώ^@V€Oλπ8‚υμ„λWn.ͺuΘηΌq°~PJy*ό˜Μθ!ΐVpΫύωTαω=ΔόΩ?Μ EΥΛxΖώΌ· Ώ‹0Οw>Γ-ζ8μΌξ‹;Ηwsησ«Κ5²Q–.νlΆ|ΎσΌ8χšλΆ;»]& IDAT€j{ŸωΐίyF|›Ή<#έ¬Γγ΄|ΐ^Tαϊq

Ώ6>‘?ΦZmΞ›Y\ϋγNBΈΗxΟώiP‡N.Ρ΅…Ϊoο΄-ŸC—­ΙγmƒŽχψ?ιΙνΞηΧF™|fΎράΜFήQJ ~jxXψθOόVzΌ…ίc’Γί…κ@V*Φαb‘«™₯ώΨ–Μ\ŸΤASόΞζ©ν{έέА©J½e¨?§YΙϋEάc^ş%ίcŽβ3πS)e²Ÿ+2¬C_n–|½vf Χ§q*X‡<’΄ƒ‹‘KΥςΗχσΞB ¨8Ϊ.’±νμn@wΟ«Ϊ€²+ύύtgSΜΛ‡3·έΟπUlPρf;…/»yΦ°%ΪΌΏZ`eϊ}μ†μo“lΔ¬Γ#΄άΕ»ψ8ΒυI–R^ΥZ…λΗEγͺυ₯λΧ «Ύ(IO|GύΑ~όUμgQ+œ£U{ώ―Ϊ©<άύζΘg˜± kρ›e;~βι ΊΊ°rq9YρΖΛΟωΓFLk›@KλμCWVΡZmψρ]k~,½Mp8KcF*δz·υ’[>6ސ6ΧμY #C@PJΎ›ώ)T’ƒh3>ŒŠ:ΕeΦ«εάι?ΊL .γγ'Ηgω 3¦m7ˆgρG¨ΞbΕ=fŒ_|ΊΗόΩ§˜Γσt)εΔ=hA°Χ2„XΥnοZλπκ燲$‡±γH Φ:T‹ί6<’#?D'#X>Ύg#\ϊ՜Iοg7œ;ια€™DŠη”°γίροRΈχm»ŸaΏAΎΰΞ=fcEγ06Έ}pζ&X‡Ύ¬nŽL­uXDϋ!Α‘,‰°riύݞͺldζ―MΕBί΅ n/1[σΓΞ<]Φ£ιx°Ψs&μΨΛATΎ/₯,ωΉ“iψ7Γb ΤG±[Α~Ό€χt@°§eγΜbnΞίWu.ΑpώΎ―΅jΉ΄žq.€˜†E@X±aa/ZΎ"PΝ°ώ:„œΊ­¬Λ<Μύ†·&bcΜλ•_‚± k)Šσ χεΚβμάc>ΤG3μŒM\ Š€I Φ‘#΅ΦΥVήΥZ?D₯υU‚ΓιΡεpώΦόo3g}:-G¨X„ͺ1‡½˜‘εϋ4^GΫOΓΦcΦςθ4ρA§‰ΙΌ‰‚`u’ͺΪ=f:Γ&ΫΔLI° mY[΅Φ΅Φ§ζ?؏΅ΦηΓωλμΈaj­C%ΤMΓχΊΨN,±) `r;ν’₯ΓΥ,U――Κ,μΞƘ_lŒ™άQlΡΆX…hϋnσε|Ά›Έ¬ε£¬ΓΓ΄\΄Ήt­ώ+ζ]kψo‚ΊΏiύ]hΪޏΝi¨Δ‚uˆΚιΪE71œss›—oϋιNK^cζum{ύ^ε³t&a)J)'ρ¬θ3―£Ar²¦7 LO°£"‰ZλE,°Ψpπyο†ωΎͺ5‘­ΫΑ/9hΉ K° ΆS₯ώ«Κ£¦Ž"\WωΊ\“=§μlŒy³φ“άΠPUxΎΪw,V<+Ώυφ½©ŸbφΊu}`‚ux˜–Αƒ€τŽh ?,„όCυϊo†σπC­υXλwθŠ`}:ξŸΐθ’Bϊ½*υ4TΎ.Ϋθ α6Ζ€σ2Zφ =€Eˆ ΧͺΤΣΓ΅.GΐλΠ!ιΤZΟ"Z{υϊΥf³f©Ϋ흉0W ΪK€{*₯ΌŠ–ΡGΞY:Ÿ*_…s‹3κsŠ1im»Oψό]‹[T₯žΞA΄†΅φμG°Σ2xΈv­Ύ¬ΦzΥλΩβkσs­Uλwθ[ΛΟ―]τΣ0$*\‡ ŒΏΈ©½Ξ-ΞhΑDΜY΅1&/α:» £T€½ΔBι΅ Χξ™₯Ι揭ί_8!έx!πzσΤ‡ϋΜ‘‹Φ•—₯”6b%X‡‡iΆλPxϊpΡ~˜›σΧ…μΓ,ωΏ›b.3°ΓwVγNOό;ψ£¨’}oFf·’r]ΈήΏGU¬ο„6Ζτηe΄ξH+ζu›§ή/]Ž€¬‹· €ύ2ΪΎ?Xž–mΛΝ0Ÿ : ₯ΏZ(νžp}Όΰ-μX„Ÿφ@Χ\{R+₯ έ2q•Ί'\D°}XΓ¬πΙνμmΤo:9τέ@]ηXΆ–Ÿρ₯V¬·άˆδ‡9t*9 ₯Λ± ΧugιΧƒ6FDqŸαeΈvΩΔ}ζ ³ΒuΰήλpOwI·¬`\œν φZλ°°φχΝfσ.α{ΌκϊΏ ΤaUZ~ί/uœΐƒΥλ@@Χ΅{_·;^ύ„-Θ§ΟξΪO‡ϋΜb5.v:!XV­ΦzQk=Ž*φ"doΩ!`xύj­ί ΥυZΎΓκ4έH₯Υ&°vBυΕSΤ―oΞHk)ε½°c‘ž™·ΎJΎ«IG¨ΎxGqΎθ/N tα£Λ4­‘Š}³ΩœΗŸmΈ΄ύσlΒΏŠέο‡?Α©6Σ”RZ‚ΉΐjΕσŸP}ωŽβ™xν'’7C+/m<ŽΝοοΐΣ­ΣRΚ…Νη«βσL*+ ΥoΎΠύmΚ5,^λ21NΰOλp-Γ­ΰg­ΧkSJysύžDΨΎyΰΓδφτΓφ?΅wΎΰ²αUΑϊΈTΩ@'βYom›―bουΗf<ο·ο:=^ ‹γL»σδsVͺίήc=ΰΙ‚Gϊμ:ˆM1:,³+₯œ-,TΏŒϋΛΗνϊηCΧ)‡ oqϊ.ž·λ¦KΈαϊP₯zψΑ:ܟ°aΕj­ΎΆ ±σ0ωΑ9πHλOxΡZv}QeΨ εz½nβής!ήηυ˜ŸqώΆ ©ΫEΥͺ™,˜φηOΏΙ;Υ/γ9εΓΞξυ;rησΈϋΉ|²  Γ‘%ό±no«ρc£7ϊ€q€ϊφޘXŒ zέρyΎ €ο£Πg”xžάώ[ύΓχςŒ@§τK)εΪϊ.p—``w&φΡς»dqΦΓ’Aγφϊ@b Υoγ=]ΔΈ‘Iο+1RιO ŽΡ`» ϊbΚcΨƒΣΎ|n³ϋy'‘ϊεΞ—ΡB»ξ|?rŽ?½έ.†gZcH€]‚uθƒVπλΡς;‰λ_sΆ ξC…ΫE–J͎OΓ9UwU3mdΈˆξSδχ‡η”˜u›uώfgsK–Οδ6δΘώ™ό–ΓRΚi«ΠXΨ$xΦΩ~›msFlϊξΩη²›N:crχsk%ΐoλp-[ZΆ±`^-wB/΅ 2ΐŸDRο³2obΑχ<-ӊpρSΐηώU’Φ 6ϊΝ•ίou’ΞΊ½Šΰΰ’‡ΚΆνgr§’π΄£Yν'ΓΏμί{@Ώ:λjtΟƒιΏγψ>kt‡8ν UόQάsN ΐΊpoͺ˜\λ…Ψψq °hV νΪJ½Φϊ€ΦΪ]Έ4Μ5―΅χ›ΏFeUkG šA½dŸͺΕ’ΝΊŒŸ7›Νίj­OγσΨU»Ψαϋ#>“ΓšΗ±a'»ƒ¨v]G‘ϊpϊqX³Ίxtψ<ψ>žΏgΫΜ^G§Α:@BW. ΐ4b±τΌΣ.Γ’γχΓ"d–φϋΘZλ«D;ΉΔΐ ³n‡πω‡ZλwC[‹ω΅SΨ ΨMf'ρ}0ΆFύάk ~ΧNΐώCς{ΟΉϋ°¬C7ΜXX—–?ŒΝ–ξ΄ΓΉκ7Q‘ώ<ΣΜΜ±Ψy€_Ÿ¬νζ–!Μ8o|,“*ο£kί»Δ‡y-μFΣΑ¨ «θ’r²΄qq_}›2:ˆΝΉΐΚ Φ‘ζ†¬NΛΠΔl`±’Ϊ5K ιϋϊ1BΌξ+ΤΏe'`^χ’ΉΩι±ΈΝ-Ÿ-⏣z=«ΣΔΗt¦ƒQAˆ±#‹-ΐŠ{Ο0κγοI«Χ_h Φαώ ¬ϋ°H;-ΰ{1TΖώuhρΉΆ‘Ρτi'ν¨YΆΫhωώd-ϊ]Q½ώ·€ŸΕC0†δ£‚ΆUκ™CQΕ†§I7Zj +'X‡ϋλ­]$ύjΉ]+x`©†€ϊ°“χφcTΖ^'8–fb9λ’*Λ·_»ϊΆ―QωF€Œ¨£π7Q‘€½qΨYTΝ:o“εΩΆ}_άόΪ}$Χ‡ΆΌOΠ©θ|‘ρ9qΨhωjνχ’τc‚CΩυ2~_+$XΘ§e…’…ΙYθ…4z¨*ͺ²=7s1oσ­α™Ψ»ψ²νϋ·$Χ΅ƒ%ρ¨ l΄ό]œ‹²OP΅+%X‡ό΄=X™Ζ­{i“ά Α:4VJ9ι`¬ΣΫ‘*{νIί-Ή³Ά£¦CˆqμsψuŸ$;¬lΗτ#Ϋ\υΫ蚲ϊ1$wΕ9Ι•RŒ#¬C~~Τΐ#DRφjŸ·Ρβ’{Ψ©˜½qΎΙvƒγžβ\ešy{XJyšΰ8€ŽD+ο‰Žψ6ζ©λšς ΓυΣψ½¬ˆ` 'Kφw–¬ ιΥ.Βυ§ξ•Œΐ†Η;IΆΑΕw)po [ΐoCuχ£oˆpύη$‡s¨k ¬` §fKbη>@ΧJ)Γ(†—‰ίΓP©n6γ#E»nmαΩΗΫ1t‰{„8o™Βsց‡8I6νD¨~΅Φ“DSNT­ΓΊΦ`"ΪψAS™Ϋ:k>α:{ψτͺο§Φz±Ωl.“Ξal¨ψͺψx“θ,ύ`Ι£œ$ι^t jΦE°ΐ’DηgIίΣ;‘ϊxvfΓ}ΩΨ2LηRΥ:p™:ύ,TœΨχ*ΙKUλ°"‚u€œT:<ήisweπψ"\aiο‹IΥGVk½NԎΧ&ΰ«bσε‹$gι2ZšσHρ ˜αͺZ‡¬°‰«Υ‡j­§'Υ^YΒ=rͺO'Λf¦,aW–ο«]6ΖΟ€οŠg X Α:w™O τ,k΅ϊ«¨ͺa:Yfm’Ο•P}:Q΅ž!ΤΨnψάχΓ«D›/mΆU†–π‡ρo X8Α:w ց.%Vζg^$8ŽEΫ™΅ »n΄ŸE–™Ε5π%Y6_ώh³εΈβ0ΓυΥV@°ΐRd¬VΏ2?s>±PύγZή/ίt«*p΅Φχ±‰‘5Α:π'QI|˜ΰΜ Ο…Y»+u­Φz– sΡQ)εiη§ψΑ:έ+₯`B‚uKΕ¬FΖMΘφNbΖ6λσΚ\υf.Γ“Η$PJyždTηΒ™d©Zoόϊΐ„λ,YΛlζϋΒ|²-VΎE=ŠκΩ3Χ`uήωό5•!Xžΰ€2<#^ΦZ3|7Iλͺυ₯›Ό`‘λ0k禕HζfnέͺJJεLΥϊͺψό5σƒ[ζt,6lΎHp&΄€ŸYl°k½Ρ]Υ:,”`€žek¦uq-T­―ΗYt* ­ΦJ)-»9dxFΌΤE₯™ΦΟGU#¬C~ΪΖΐgDpς2ΡΉΉ⦀j}n}ώΘ"©Z2t0Q­ήΞyγΧ?²Ι –I°ωejk ½ρC–-[‹ΕSΥκω¨Z_ έ"ςψΰH)ΐŠ•R†gΔƒΖg@΅zCρLπρah $Xΰ%-J«V‚eΛ4Kω¦ΦΪΊ2†/sm–M΅z"I‚$Α:¬[†6άͺΥΫkύό'X‡¬pW†*£%P*₯ ‘ΙQ’slρ4±˜»ύvνηaΑT«ηsΥψˆl„•ŠφΫ/ΏϋΥκνΥZ/zžε\γ¬Γύ]:WΜH s€―ΛT’Z½ΡrΉΆω΄ή¨ιYΦ+C΅Ί.*y΄άΰpPJΓΒΦrReπuM·,žv *ΗnΦ~θ]t$ —ΦΧΔ³4¬W†gDΎςΈh|$‚uXΑ:t ”β!<ޱ°@ΙΪΐίZ<νŠMΛγσ—SλΘYO 0$ψo'IE°ŒJ°}ΠΒ €9Y‡Yυ0L TηO»zq•qέΖόTςiώ½°.FΉ/%ΟιW θYΊ“μE°S³n%΅Vπ8m0LσΥU@w$Z†Ώ[ϋyXαERIž'λ°>­ŸolψJ©isΦaYλpBζ€}ε8,¨Β2½HςΜvξ“οεp-s»Yϋ ζSJω.Au°ϋRN­Η“σ "X‡ϋkYuζζ sθΌΑ²”R2U«›νά'‹ήΛ  |~­7Ω` λ’ <_Ί`NΕ:,ˆ`ϊ`Ζ:ΐŠ4nΦrφΨ’ΤZ[οŠ‡₯Κ²0%ΤλT‚Y›ŒΓ}6ΏΦcqλ°.­ŸoύΜ):L΅μ’’hD°ΐΕΜ/₯XL…eΚ¬«Vο›Mύ3-?Χ˜SλŠuΟΉ΅Ό'Ζ¨`λp-oΎnΌλb7σ8λ°0± u”δ] Φϋfρ»­ΫŒD)eψ }ΠψhT«ηΦz³—uXΑ:ܟλΜ₯ε†*‹γΠb¦‘₯Zύ¦Φͺ³cqύnΧ~:'XΟ―u'$3ma=2|ήmΪΛM°ŒB°Eΐq΄όẘ–ϊL–οΗ³Ηΐώl&λ›Ν-ωΉFΐ\Z?#^ΥZύΜ­υ†<υ`!λp-oΎnΌλ²b}I  F©ΐςd©τΘ.ƒΠ―c v΄Φ=&— Ϋ”ŠuXΑ:άS­΅e°~θ:¬JΛωΑKZ€ΦR–ηY‚w€ όrψξΧΝΪOeΎ:ΠςωA° !XH€”ΊKΙ’ζ•ϊα RJΙήόΜ…¨΅Zο—ωκleψέgΣeZ>?΄ήόŒD°ΣlW[μΎ`ωšλ;΄,‰σγΛς<,X_–«΅Ÿ€NiίA0‡Φ›/oόŽξFΣλ”h£0°Α:(Ήρ,_λ6v‚υqhO γΛPt™ΰ˜†k }j¬{†θKλMΦχaλπ0-Κ3Μ”`Z-ƒυ›Zλ’α–!œŠ_†Šu­§!ŸG6 žmͺξH‚ξΦχaλπ΅Φ¦?ήK)*u˜NΛE₯…Α‚uX– ΟΑ‚ΌεβΏ3 Ϋ ΐγ4>wžVF°wΫπœ Φͺ”ς΄ρ’ΐB›`Y2TwX8H’”z”ΪFΕ:ΐϊΦααZ.¨ Φ–Λ|υq΅ά€ X‡•RRΜ"lέ½ŠIΉΆΠŸ ψž!x$B€=ΦααZξD¬,—`}$ ~¨ Φa\ζ«_%8¦£Ϊ ϊ“ပ¬ΓΓ΅ μhX ίΩm­uIapΣΚ……KΘ C5’Ο5δqγZα±ΦΊ΄‘j|Γ_œ x°–Υ )Ϊ`0RΚqγSjΎϊx,φΓψ2T#iσΉ`Γ’x)eν§‘'6Ί°ΙπŒXJ9m} ΜK°ΧrQνΘυX€ΦΑϊ£–£S,φΓ2ωlpΧg`]΄‚‡‡kΊ¨VJ1?`yZϊXZΕzΛ`]U+Œ/Γ8$Α:@.Ο\:Τr½`(ΑάT7_€‰ S‡-ίΡηΒ΅\`i92˜Ž`Ψ—΅}θœ`ηͺαyS±°,―Ώ›Λ%ΝRJλ©KΫ€|Χϊlez-γPJiώ|ΐ: ΦαqZ.¬ Φ–₯υ|umΰΗ%|ƒρ5>§·_Ÿyθ8ύ°> @‚uxœ–σS΅‹XˆRΚqλ6π›Νζb1'τΏšΞbVΥ ‹ΤςΩHB°ΣrΡΌuΕγi]­~[k]Z`Τrš6Β°P‚uxœ¦Υh₯”¦Υxμ/fΒi?Ύ–ΑΊjuY’η^Ÿm€\¬Π„`‘ΦΪ:ˆ0G C¨~Πψ],­ όΰYΓΧΦ.–I°Φa7 Ož9λύ{•ΰ,*X/₯΄ήx&X€…¬Γγ΅\8Kp £+₯‚uYTΤ΄žρσͺρλ,^)εI² { ³Υ7 ζ«Ώkόϊ°VΧ ή·…ΣεR±<†g€•¬Γ4΄ƒXΎσd­ίΦP­Ύ1_VZΰ₯ IDAT+Γgο(ΖQ°<™ΊΟχ“αω°υΖof&X‡i΄~°ΪΑ Χ&߱ϝίwk¨Vσήz3ƒωκΠF†ŠυΕΣεΡΒΊυ1Α?Ip ΜH°ΣΘ°θ.X˜@T+ž';·' Ža­οm7΅Φ,α¬Ν‡$οW°Ύ<Δ C1޳5Ο+#X‡ ΤZ?&˜Α*X˜FΆπoWφΆΎ·©V‡F’,œnT±°"‚u˜V†κΆ“ΗΠ­˜—φ&Ωρ_ΥZ3lޚK†{™Šuh,:Bέ$ΉΪΑ/ƒ…pθX­5C°~dΣ%ΐzΦaBIΪΑF(ΐŏ㌁κj6MΕ=μ¨ρaΌ[QwΘ.KχΑϊ2¨X€ώ]&xž)VB°ΣΛPQ¨jΰq†οπΓdηnyΧΤ–<ΓHΥκG–οΏ1Ÿ›NΕυk½q Ψ_†ͺu›.VB°ΣΛ°¬%ΐΓ”R†MI/’ΆΫn–¬»2m,²€Ϊ7•e° ‚uΟ+!X‡‰E;ψΦ-‰,όά_΄)α);‹ϋΚ*”R^Ε=¬%mΰ!‘$£–Άt…κ›ίG° 6^Ε °‚u˜G†v𧠎 ½θπ‘±ΥϊU­umίεͺՁΟΙς=, ͺNκ—k /oΌΟ+ X‡ydX”·πp?οTIΞͺ*#c·³‡"X‡|2lZέΚ°ˆ*₯'½Χ“‘ΌηB€¬Γ ’…μ»ηΪΐW”R†°ζ(α9ϊΉΦš±Š~J6h ΥZ‡…ΣΫ$Gφ²”ς$Αqπ0Ϊΐΐ²dΨ}δΉ`ωλ0Ÿ •5ώΎ ”2Ή/žŸΫ΅σˆvόE¦ͺXΰ2u“°y΅?‚uX–,Ρ=,œ`fRk½HRYγΰŽh ϋSσςj…UΣͺΥoγή δ”ισy‚θ@)ε•6π$ζ™βΝY·ξ °p‚u˜W†Κ7x;b–wΦΚδw+ w3ά«„κX’M«›iU@χΓο!2{κκ€…¬Γό²Μƒ΄¨¬V)εT(΅—₯# άΧ‘35ŠLΏ±ί”R΄ψXΑ:΄•₯²ΖΞI`q: ΥoŒδHΣ~]xθ_ΆΟρNνΔφ›΅Ύφ’₯8αΏlέ•x$Α:4s›ή%ΈG₯”η Ž`oCu`'‘ϊΰxΝU‰ͺΥ/ΝR„ώ%­ZΧΎ ΨIeΝ3 ~@Ο’ελϋNf½]σ\υΝοUͺΥoβ^ ,@ͺυ ©σ‰η¦ΨGλbΦηFέα2u°9ΠQ ‚uΘ!ˏ6•@—bcΠ‡NBυ+ί·Ÿ¨V¦’ρs}d!u6η±p ΥΊ³Ψ“Ζ―Ώ$Ω6΄Ώˆ‘htκ/.€pz­€^–RNΝ™…Ο‹πv¨6۝wφt§MΫΗ;?ΐ‡*؏Ϊ}O+~”fψ½Ϋ΅ΟUίό^­ž‘EοmάƒͺΦ‡gΪ$]1v½ˆgmz&Χ] xz§b}$Γg)εm²qqg₯”֊ϊ$X‡†€₯”2„BoΞ°eη$«mDŸΗŸ§¨„~±σ?ϊL—R6Q₯ό!Βφχ6°Œ#Ύ;_wtΘΗύ'YB₯³΅or€:ƒό3αΫ{SJΉŽ–υŒ(6meψ=@Zž=tbλΙi²`};&θΉί£ύΡ ςΘ²Έφ2EXαί~)εdΨ9ΌΩlώ½Ωl~‰_cό¨=ŠΏkψ;=,ͺ‘pTΑσ@ÜΪRΚϋΞBυΜςNU­ΎIΨI­uθFq™τ|Ί,Ξ§$Œ₯yΨΏ›Aln›μ\Π)Α:$‘μ!O{JVeh%Ύ¦4ΣξπΓ…!ϋθw»ΥΫ™§ήS«Χ·ͺ“εσVu,^ΦgΪ‘Jι½p}ρόta:#ΚΠ’ΫsΒΈ2>c‚¬tF°Ήd©œS΅ΞβEΕσi)εcT‘·l΅vώΆŠέηο bvκΏΞΝύšw΅V#6ςU«ΫD ]B²U'm ΧG‘ϊϋΞ H.Ι\λ#JZ΅Ύ‰5Xλ¬C"΅Φ‰ZV X€m >„Ψ1‡3SuΣAT±;Bμ!ΪτΏοpvκ0[ߏδίeΉ·Ό3λVc˜΅~›τΝ Χχ°ͺ›C ΐŸΥ_‰²uώ"\θ‡`ςΙς§jΕ)₯GK·lϊηΌ‰ φ“|‡6―λΦSλχM9Ο΅/³Υβ;8σ†ΡmΈ*νb3‚P€)5߈Ώ…Ilώ1ιωwΜFYXΑ:$-+o’•ͺu!ͺΤ‡Ω›μ¬Uθ°ΨώΣP©½Ζ.w[osS…κ–εžrχZ`%j­g‰ΊB}ΞpϋΥbκύΥ˜I†9λ‚υρ%ξf$\οΜp½J)Γ† ³ςaE됓ͺuIμπΎξΌΪPεϋaMΥλρ^{½nΫP=ΓBL ρ94[h©‡{谘znΜ—ΕσΑΏ:άp@λ ›ί3? Χ;°¨<6|ŠΦ!‘ZλΉͺuΨ_)ε¬ΣjηΟΩV―/zΑ}¨B‹Yκ?u|έN„κ’₯υϊjuX§ψ^ΞΪϊsΧKsΧl§‹ΝOَ €ΕΚπ›ξ@Θ:ΎXwΝάΝθ—XΟ"™ΟκΏ1Ϊ ΦC°yei!£jξΔβλž½^ΰΥΫ.Έ/*\kvUh½ΝRίυCόH'ΔBP– 6‹ΑŠΥZ‡ο€«ΞΐQάλWΣ©ζkb‘ςCηέ‡θLΜγΞΠ2\°>μΟY―u2Κ!Φ«NΏ¨ο°1VB°yešω#ˆ ρ£γ}ηαμ· ξΧK¨fΫώ@‰Άο/>„κŸ—εrγϊΡR5λ\Ν]ΫN5«­^ίΩtχk’ Z¬K†ͺυg*aΗΧI7£ma…‚§†σΎ³^υζΟ£‚uX Α:$3²΄ύQ΅NbαωύJfτά*φN ώfνϊ…κŸΥ–ͺՁ4’ϊ¬§Jπa£ΰΏ’Jf5K Ϊt@ί²Œ‘ς[ft3Φ·>”RΜ۟ɰ‘%6wώϋλU‚uX Α:δ¦jξ)›/Vͺou/0PίΥ?/>“ͺՁtβϋΰ]gWζMt«Yt{ψΉ•KyF oY‚υg‚ΥΙτΠjx&ϊ§ΦπΣ‰΅ͺα9τCtKzΜζΞ5­GΒͺ Φ!±¨Z7kΎa§ύϋΫ„vG ­σ…κ‘ϊW$ΊΞ6‡w½κdήϊm{ψ!`_̼՝…ΜoΝ­œΚ°ΙβrζΧ ZΑo U'ΠIKψ­—ͺΧΗ5¬₯ν¬Uύ²o8ΎΦN°6‚uψνέίuG–ΰž9ϋ.mβ>ΧƒθG :QˆŽΐT¦"0ΑP˜ŒΐβC=―ΑˆxOi.΄0-6Δ­ξο;G΄gŽΥhltύκή›_–vπC’›Kϋχ›<Λz“ εgΡBλΝΔͺΟ„κ7ˆXYͺ*U«Xχ;™·~] ž+₯|ιΉE|lΊ;ZYΘάΖΙΛN*ΥΨ‚ψΎe#ή3λr›-α{Ωdχ"ͺΧO@=L|=ˆM¬y­J°3 X‡δbδI’£l­§ ŽΎ‰₯Ϊ-ύηœ&8ŽoΪ‚,”ΏJrHλ$Tw¨ZΘ.*”zn­ώ,Ίΐό;Zƒ¦―^ZYΘό›ξήmωz±‘ ά$Σ}φλ­ΖϊυΆαςuϋ.Υσ&Λ§΄!iYψρλ†6u ΦaλΠ‡L_š}'hƒϊΉGSυ*ΩMv¦Άyλ$T­Ο²|.U«£βwΔ‡ œ₯7Q½τ%[Θ-6WΒτ_“lŠό96Wΐ˜TΨΫ¦Ί)„Ι" ›z<―m“εgϋίΕ†Ξ¦·Ο𿟨πC°3π_^dΘ―}Ή+₯œ$ *ZpΧ*;²έX03ήe•E»Ι>«΅ž%8žγ V« Υo—ιsi3p«ZλA,DNa³ή³xoJ)C΄5=‹Η§MWgGKέx,βόc`Nj­ΎGp«Ά «”r•μzΦFΒμD sΦ€­u–RήGXέ“e£ƒθκxf'Φ ±Ib9§Ψ±ΈF°ύ8L΄Ψw”pΗ.σs<±yέλΤ*Υv΄6=ΑSpνb3lXH+Ζ…dΉ‘T­άΗA„ΐS/σ*_ˆK)—1ΣΌ]ΟΎ¬t—ω|—ΨX¬\VC-^ώΩΛBβEη#xz§ 7ΰύΧε}cMΦ§mVˆσϊΊΓΓcvή•R>Ά΅‘©FΕ¦ΞΕΚcνέο{L»Ί"Α΄ Φ‘ΙͺΦ_΄V: Ά%ڝ›«~³±g«‹Ζνζ>Ρο­Ηh‘ϊѝdΊ.¨ήξ,Y‹œ§όγE<ώ‚G…ϋΤ]™«ΐd Φ‡[EύΞ’k΅?ο„―c&UΌ§P(1HŽ F„ΩΜX‡ξd ŽΜξaβK΄*£Ϋ½‹]ΦΫΦϋΝύ…PύnΪbN’›ZΥκΐ½EΨΊα+Σ³ά(7ΛΦ¨<\„Φ—IOa»ϋW ›y€ψNΈ˜ΘwΒ嘠ίK)m#ιqΜίIpl£bFϊ"ζΗ·χw{]ώ7:#ΎIͺζ¬Γτ©X‡Ž$«Zᦊ@žΪ‘πwv7ƒ[3Κ²Ν£»«e¨ͺν±Ρ*Συΐ΅ x˜£Ί¬\χ}cZl”ΰN£ΝvV―"<=Nb§ξeWΖΘ,VFΘμD(ϊCΦkσ΅nFSωNΈ ΩΏ+Lj ³¨ώϊΨΖ{ζ†χΘnΗηέ˜8Α:τ'Σ¬υ6ΟιXΥO%ΎlχήVό)½j7‚ Ϊ}em›7ζ€ΦΊŸχπ9JtΣ{Zx αϊ$½umΰ‘Ž’λK―βρ[ΜΩnχγg›Z»‹Κηο=ξŒ¦ξ„Ήςπ‡³ /Vƒφα?―ηU„μŸγρe΅­ω]Χ—VΒς₯Υ^¬ό»)~ΧV±'X‡Ξ$«Z"θ>ρTT‘ήίQ‚/υGλ?ΧZGnxρ{x4αϊ€Υx΄X;ΠΊ―γ±˜~аτ[@ϊ½°τZ0Ί Ξ‡„’ί ίFϋρ9xΆ²9γoJ)39 ς¬m8QˆΣ%X‡>eͺZUλۈeβbτk―σ½½άvΥz܈^&ž΅Τφό>»·L›Ξ½~ΐΊΧ'αD¨ΐ΅υΈί;=‘ΧΣ_–ƒ°t\ϋ.ηh.α:·ΐύΣ‹ ύ‰o'‰\e'OAκΓe8wΩ΅Ϋ<υ]‘μύ”Rφ“Ulψ=¬UΜύ\Δζ+ϊb¬ kχ‹—ΞκόΔF½·s?ά™vπ0a‚uθΧa’Ύ—ΐF”RZϋ±=gχΑ^EΕ6eΦΫF₯…6]χŸΛL«NlŒ6!ΒυΨ„Eή ΥΨ›yΧgρTΡ:ΧΉΑ:L˜`:P¦@γ(BΨ„=-Xν`›yόΞΚH\ΕάΥύZλ—ΗΣ›ΓdŸK \ΐΖΔu’-ώž;Λι΅k»kαͺΝv3―OΊq Α:L˜`ϊv”θ‹ά3‘€Zύρ2œΓL›.’JέάΥ(₯΄›Δw‰ιƒŽΐ¦΅p½ΦΪΒυNvZo]Ϋx[έΈΞvΥZO β/ Αt Φ‘cQ9“)¨z— έ4_D_{]νE„‘Ϋtšδ\|ˆPύS‚cιU¦ΠβΚΖ.ΰ)ΥZT*₯Σ^‹…κ<…AυΡɞ―XOXθ^ΐUλ0Q‚uθ_¦ͺυ!ωeϊ€Z}}Άz.c3Π6–‹ξZΏ?\)₯J/‘ΧxjQ©΄k15…eš³ΉŸžΤMvΦuEοJΈnTί³pV`šλΠΉ2΅ zUJ„²NΎˆO†sΉ­Ν7-Πί±θώ8Ρ•$Suψ₯9ΊΐΆ΄΅ΦΏχ"lΝG]hΨ†Eε^δqΊ―θ5*ˆ΄M7ΎŸΒD Φa’εαe’grlŽ k$X_ŸWΫ>€¨π{Κ]ύνwγO΅Φ=UΝkΡΊ€?¨^rο]ίΨ¦Zλ‘je†τV†a8‰ΒŽ,γ5¬ΓtdͺZ&μ`’:φ…“Ή>₯” žκζ’νίu3³эδu’C:7KΘ’UL―T―[Pέ¬Λνβ~€ φ\ϋώΏπΙάυω:ο¨ϋ6~Β΄ Φa""8Κ΄Kφ])₯ϋ–Nlݎ—`ν2|.6όίΏ0K}½’ IΆ[ €aοn΄(gύ>Ζ¦9£]H!ξ9uΪγ«•Ν–ZΓΟΗ²SβΒwT˜Α:LKΆA%!εζtύΆ¬ΗΤMŒ―hU?·›X73kw˜¬ό‰ΧΘ*f―·κ΅U,­Ν•Ρ.dχΈo½@χ6Ω‚œh c²Ρ¬W{mίΦZ΅}‡™¬Γ„DȐ©:ζe)%S‹zϊ£b}ύ²œΣuoΌω3¬6] ?;1>ΰ]’η}•lό ΐw΅οζQ±τΦ’κ£|0§€μ’ Έpύ~2mή^»X§]Ž b:–E;ΖΣΑ< Φaz²… ‡1'Β{gύ¦¬·ΝD£νϋf$mδ΅zάΪΒ›€ύή΍v 'ΒukίabTΠΙFxrΛ υηŠ:`ήλ01­υd²Οž`ž2Συάk»v/2DόzL{άεbϋ^ό·ΨŒΓ,ο™p‹έΉ°[X½ΩrќJΊ#\η{bφϊΒFΛ.­Ά|W‘Φa’Ž’-M―K){ήl<ΐK'mrC² Τ-ΆoXΒπΝ~‚cx”Ψ1wσΔΩόΖ’%“Χ±’­Ν‘@Ό7–να½?rϋλOΎ›!X‡ ŠV‰ΩZΒGKa`Λ}οscςQ ώt’Ά€θ΅¦$f°· Cέζ4ΞΈzΙ’%“Σ*”c›.5#bCχ¬¬΄‡ί°§Σ^‹1rpΟπ=‚u˜¨X”zL›εu{–0€ΉΪΝπΌcΠΗ[ώo'nhΆ"[ ψ«„ΖΦ"W’Mό±˜7υύ26ΈΖ0Yq_Δ5OxΚ_ΨS9_™Ÿ~`δ 0F°Σ–-„ΠΈξτ;ξ2n*»UςΉ‘yZI[ΐysσ7…μ™6Λ>ΖE<Ÿ’:=Σοφ›˜¦vΝ‹kΝmΛ™‘k»μOgu£ηBη$ΰώΛ™‚ιj•₯”φ₯ύu’'yTJ9‹JU`ζڍK)ε(ΊZ΄ίWmξμχΒvž@΄€Οvώ/c‘`V’…μ׍²₯”ΆΠΊXydκ*r“ΆXyΆ|$ί υl›ΉŠ}€ι‹λΰ^ldnχ7―Όμ¬Š΅γ§Ωή'mdΠ'i­.cΝγ8Ύkά›`¦ο ΰΆΊX΄βEά@hι [’pρv?άmΈΩΎγDΧ‹₯ύ‡°=±Ό­‘vγ{ώnT8½άβ!ΆEΚΟ’·EΚO:ΐίΕύψBΐώΝσ$Η‘JΌOZΑΤAάοoω»^Ο.β;τ™0XΑ:L\[ЊjΠ_=ΣwQ΅*ό.Θ‘”²Ÿ¬ΓIs’Šΰοb3Ϊ²ό›RΚn,P/βίν,Xο>pσΤU„εΝ—•ŸΫίύΕ%άίJΐΎΕ'ϋ 79?…έ„]ӈο|GΡ΄½Wφ„μ·ΊŠχTϋŒ*βΦM°3ΠZθF`’©edkk΄γΛ ·Έp³›7θGΙNυ•ξ&π5ΐόqΛ§AΥqGVBn›’Ψ€γ-ΏΗάCφeΫΧ±lϋzο3΅EΡα₯έχ”Rφ"8έ›pΘ~ί/—n|ΧΌ£x―¬†μ‹x―dκTΊ WΧΖΩτ lΤ?ώόσOgf ZLύžμ™~¬΅ξ%8’j ΄E[»‹ZλξЏ”τ³φΆΝΰOpL\)e« #΅Φx°*Φρ–ήΦE–έn>Εƍ―Ί11›sνύςΠ.E½8_yy_OM°3RJ9MΨζχ'm ΉI)₯…joœ ΅:―΅.žπο#ΉRΚa²q!ƒχ)O%Ϊη±Ν.Xΰ6œξ<Άέέο2ͺΝ?­ŒŠωb”WρύfυΡcΡΚΕΚƌO±9C5:°uZΑΓΌ$lΤZΒοΪ]Θ Ό/ΦΟMίΔβLΆPύ*fΖΐSxξ,]Φ ­£ψN„§Ογ±μPχόαϋωΚϟVF,ξOΖ:ζτ_ΦΎσ~YnfίVθΎάœρε;4¬]i ΦaFZx]J9J’<‹}*ωž³„‘_οlVΰ«RΚσψύ›Ν‘ΝVΜΘΉ€‡ˆϋ¦ΟΧwψžΫή/+Αϋpm“Ζͺ›ώύη‘υ¦ΥΏOhtO°3Sk=,₯μ%h΅κU)ε Φz”ηHΒ—νυsΓΝR Υ_$;ν:•ΰ8`6V‚χ%£;ΎγŸN ΜAΒ'ύḱo’½Ψ₯3²>v3όg'z»ΌNx2΄€ΰ©ΉΰNλ0C1—ιCΒg~­‰a• λυΡj”!61ύšπLΌ·ρ€-pΐΦaΎZ«έ«dΟΎ΅§Χžλ΄žZηrζbσRΖχπΜΥMσHHF°3-Ά3Άά}3ΰaIΕϊϊΦΙ8W}Π€-Ϊv+xΑ:@'λ0c΅Φ²}LxZKψΗA± $γϋ΄7­"ΨΒνŒ•R“ΞUΧ€m €;¬ϋ [Β?SYΛ5ޏwάϋΰαJ)‹a~Ix ΅€`ΫΆ¬ΫψΠ Α:Μ\Tg 5^–RΜ[η«ZλqΒ ½±9a¦’HΦΧ_ xΆνε–~Α:@'λ@ -[€}žπLΌ3o6Z<ά‰6πσTJy‘ϊ³„'@ xΆ*“p'‚u`)cKψΑΌuVheώpΞέ|%¨Δϋžs-ΰH`wΫ‡Pk=Λp"Έ`ψ*ͺY3†_η­«&!ή£'³?χwnΑvžJ)Γ0ΌIψδ―΄€ χά™`ψ&qKψ—Ϊ€TΈήŸs6C₯”Ε0 Ώ&}ζFΔΆ+Φ3ή{pΑ:p]Φ–πoJ)*g.ΒΈs?χ Z}†b|Ζigώ±Φj4Yl½<ύ¬‘Έ%|σ[)Εβ‡I7dd3ΚΜΔ،Σ£‘Ν₯χ$Ιμlωpl€θˆ`ψ›h 1ι™93o}ήj­_Z+鹟‡;x―έφ,ΗψŒŒφγσ YlϋšιΊΠΑ:p“¬-៩μ ZI›Iy³‹Z«Ωκ3SJiŸ‹ΧIŸυ{c Θ$I'¬O Ž€;¬ίU…Y[φΎŒ‰yΫΣώFΪmΟL)₯½ζo’>λs=HH°ΐ½ցΥZΫœή“€gθM)E;πKΎωc›~΅Z€‘RJΫdς[g|εs @RΫΦ―ŒHθ‹`ΈM ―/“ž₯_K)‹ΗΑ–ΔζχΞ7'΅Φ£$ΗΒˆ6Ά™;xμ›υ@RΫΦm„θŒ`U{‰Οi’ωˆlI΄˜ΞΪYα)]ΔFf’”²3 C›[ώ,ι3ώ›_ £W[>&Α:@gλΐ­’­tΦͺΰg?Op,lΟAΛs՞ϋB;Ρdc‰MIDATωˆίy§‰Cυ‹Z«€”dc` 3‚uΰN’*ψ<ιΩzU›ΜTΚ‹™†λBυ™‰P½ύΞ{™τ™_%οtΖI•ΠΑ:pϋ˜dτ²”’yΞ06Σp]¨>OG‰CυΑ\u:°υ`½Φjc0@gλΐEP²ŸψŒ½)₯%8Άd%\ΟΪ]a„κ3ˆή$~ζοΝU ΫΦη<Β [‚uΰ^"0ωψ¬½+₯dΩ°4ΧZΫbιΙ„ΟυG‘ϊόΔΖ‘Μ‘ϊyŒ €΄bΎϊ³-Ÿωκ¬χVk=H^eρ›pZk{Όΰ‰hΑ{Bυy‰ίiο?ιKsΥθD†ωκΪΐtH°<Τ^βyλΝQT£0c΅ΦΦ6ϋ‡ύzΧ>o?ͺžŸΥKώΔmφ 6‚©Xθ`xζ­·φŽgΒuj­mαr7ωƒΫ΄Φο;΅VΥM3ΣI¨ώ6>gZ)εω0 ―Ά}Œ›}¬ΦΑΌυeΈώ<Α±°E1wύ ͺΧΟ;z-.£J]5π uͺŸDgθA†jυžΎ‹°B°ΤZ@ό;†αUG―‡t©”²ΧέΜχoλΣ#XΆ.Η>uΤ:Ή9†α@₯'Μ[)e7ζ©χ΄9H¨@—J){qέΝ|ίp^k]$8ΦL+x`λj­Ÿ[ΘaO/ήΔάυηήA0O±Έί[Η ‘:έiίΉK)GΓ0ό«ƒΝΈf«L”`H!BžήΒυ¦}ŽŠU`FJ)‡,ξ―ͺНRΚ"Ί[½λΰΨΫΘ¨³Ηΐh€!υ½*WΡήE˜ΈθRΡ>λ―;{¦BuΊΧά£θΥƒv­έ1* `Ίλ@:₯”ύa~λπ•i* ŽΨ€Ψψs: Γ‹ΞΞ―P€nD ~ž:ΓόTk=Mplˆ`H©γpύγ0 ϋ*U`ZβwQg όƒP€^t¨7k­{ Ž€ ¬iu_Γ°'Θ‚ώuΨ†v•P€τ’#L Σχ: Τ‡ψξΏkc-ΐτ ցΤ:ΧΝ]‡ΞΕBϋ Ώμπ™ΥH«”²Aϊ~§ΧΩU?ΦZΟς›"Xλ8\oNj­ϋ ŽΈ‡RJ«œ;μ΄rN¨@:±am/½‡ιKοk­‡9€M¬]θ<\ΏˆΦπŸ 0"ZΏ·*υםž'‘:)”R­Ez».Ε£ΗΝjcΜU˜Α:ЍΞΓu­α!ΉN;^ψͺπδ’}'BτεΟS©HΏ‰Ήκ3$XΊyΈήœDΐn’ˆ*υΦΖυ]Η―ΙetΖͺ°q}܍ΦκΟ»+<΅*τ»°‘ `¦λ@w& ΐ ‰¨²;ξΌ²ξ"ψmΨΨ’ψŽΊίρkπ|•ζλπS­υ΄§ΐ} ց.M \oήΧZΜR)₯}ώ~ιόΉ Υ’˜Θu…qov˜―zνΕ‚ΦΫΞ_Ό_J)g₯”Η³ΡͺΤK)Ÿ&~œ ΥRρϋxΪN„κσ&XΊ [?ŜΓ^½†αS)εΐ;6«ΝŠjΒ?&ΠκΆ-ξ Υr1ζgΊΪu·η6¬`θZΜ7\t?†αWΥλ°9₯”EShΡkqžŽλ._ ցξΥZ?M \T―ΓϊE•zλnρϋ0 /&pŠίZάHKΕϊτΥψζώω§³LB››< ΓιDΒ³6;yΏΦϊ9Α±@—J)m!ό(ΊBτm:0Ϋ ·RŠμιͺπ‚u`RZuκ0 g˜ŸΌτΎΦz˜γP ±Ιζ(Ί@LA Υѝ€ΔJ)_&²‘kξ„κό`˜œ †λ—Q½~–ΰX ­ψ췍(ο&τ*] Γ°§{@J)gΪΨ5W?ΧZζ~ψ;3ցɩ΅~©΅ΆŠΥ“‰<·ΦΪώχ6':‚Cΰšhϋώyb‘ϊyTͺ Υ`σZ‡˜Ÿ„κάD°LV΄oό0‘ηχ¦‡₯”ƒΗ)”R₯”Φ"ύ·‰΅ήm-h[¨ώ%Α±pwΖvτι"6³ΞύDp3Α:0i΅ΦBΏΠslΑα―₯”°/lE)e'Ϊνώ>‘±KoΝuθ– Qύ9‰Pέ¦F™±ΜB„Π§«h’UτΎVΡΜE ΤcŽϊ› >嫘§~–ΰXx€θ,τ«sΧ…«ψ­J€;¬³QJٍpύΕŸs«΄9Π6š©*₯g3PJiί%ίy­7ξ"ΎΛΫ, ΐS¬\•΄­ͺτŌ΍*6fe~ϊώΜ>WΝϋZλa‚γΰ‰”RΪού_œοX†ι§6¬πΤλίA`[΄{=³σsμζRςh₯”E„ιsiχΎκ2ZΏΫ¬03‚υ΅;M―ΒtΆJ°0’”ͺlα9&ž‰M)ϋQ‘>·κτ₯ͺkK 0C±±μw―ύƒ΅Νig¦ŸΉž…`ΰΡΎ…Μ/gzΞWZnZΨδ»J){¨Ο­ΛΓͺΆ!ε@Η€y¬ίΫ2H?‹ έ¦NR¬άATαΆΆžοf|Ύ’rΘ,vΎŠM'ϋρx6σ³rUκΒ€™+₯μ ΓπΏs?#Ϊ5σSιŸ\;θ…`ΰ’*χXˆψ΅²θT«ψωY Σχfάκ}UΫprXk=ΚsHl[)ōφΎ/~Žύs„θŸ<ˆ`ΰž’z½…Κ―œ»―.VZΕ Ω'H˜~£‹¨Rπ3 Φ—αωςΡ‰_t7`ŠλTJ9ˆφπs―^_uUIΗΒΖΎEw†…0ύ»’[ΓaΒc RΚY§›0Ο―ύσΧ <~^†ηCTŸ`Fλ34U―Χ²]όY­υ4αρ±"ήΛΛ }aΓȍΜR˜!Α:ΐ¨^Ώ“QΝ~¦š}ϋb€Αbερrξηδf©̘``MT―ίΛε2d ]υο†­ι»ρ§χιέ΅M!ή§σ%XX3Υλr3<ΟbfηY‡Ο!••ΦξΛ ]Eϊύ]F n”ΐΜ Φ6 BΝΦ2ϊ΅σϋ`ηΆа]ϋψ”RZxΎ³’οΪΨρhοΫgΈΦϊ₯σηΐΦ6¨”²ϋ ηy-ZΨώ9­ͺύσœΪsΗ†e%ϊςg-έΧ«½Ηφ΅}`•``ΓbΆuk ιޘ†~‰κφoφXε^JYď­κ|9ύΉVξ§ν;7¬<‘hΧ}€ΒψΙ]EΠ>¬οΧήX+vWώΥ20_ύYpΎ=WρΉΤφ€ ΦžX)e?*Ψ΅‡Οο2ΪΞί•M}9iŸEmίΈ`` ’Šω`†_œxrη¨Ÿ9υά…``‹J);Q½ώΖλΧ:μ ΤΈ/Α:@₯”EμZ‰Γϊ]F…ϊ±s ΐCΦ)₯μ Γpdώ:¬ΕUϋ<ΥZNC°P)e?*ΨμpW±A₯…κ_œ?K°X)₯…λΓ0<σ:Α­κl„` ΉRΚσΧμπ}u6J°Π ;όΝeκΗu6I°Π™Ψχ#`7ƒ9jϊa­υΨ«ΐS¬t¬”φC;3qνήO½ΰ<%Α:ΐDΐή―ΌžLΠI΄{?σβ° ‚u€ )₯,"`γu₯sW+σΣ?{1Ψ&Α:ΐ•RvVζ°?σΣ‘σΣΝO Α:ΐΔE›ψ°ΏτZ“T«N?ω韼Hd#X˜‰RΚnμ{ͺΨIβkuz Υk­_Ό(d%X˜™RΚσΧU±³ —+Υιf§ΠΑ:ΐŒΕ,φeϋ ο6dΩκ½U¦Ÿ:ΙτF°ΐW₯”Ε0 ϋZΕ³F#L?vRθ™`€Ώ)₯μEΐ.dηΎ>T§››ΐ$Φ%dηΛ6οgΒt¦J°ΐ­„μ 3Ωgνr¦›™ΐΦxRΚξJ%ϋKgqςΞWΒτOs?Μ‹`€G+₯<*vΥμΣqνέU₯0{‚uΦ”²ϋBΠލoAz„ιf₯@¬°qΧ‚φ]­γS8ύ“ Ζ ΦxrΡ:~w%hίUΥΎQΛ½ύiF:܏`€ΎΆο¨lΏ·«ΠΏ=„θπx‚uR+₯,Cφee{ ΰ_ΝόU»†αsT Y Ρ΅s€ ¬Π₯• χλή—Αω24_ώωΉΦϊ9Αρΐ¬Φ˜¬¨vΟoυηx +Ό©οΛφμK_ύσ28j­gލ`nQJYάςΡ†&L°#ώιδΐΝλ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°#λ0B°7†αAf`5’˜IENDB`‚ignite-0.5.1/assets/logo/ignite_logo_dark.svg000066400000000000000000000130001465426447700212740ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logo_guidelines.md000066400000000000000000000037611465426447700223210ustar00rootroot00000000000000# PyTorch Ignite Logo Guidelines These guidelines are meant to help keep the PyTorch Ignite logo (as developed in [#1221](https://github.com/pytorch/ignite/issues/1221)) consistent and recognizable across all its uses. They also provide a common language for referring to the logos and their components. The primary logo is the combination of the logomark and wordmark next to each other. The logomark is the flame alone (no text) and the wordmark is only the text. It's preferable to use the primary logo whenever possible, and the logomark when a smaller version is needed. ## Color The full color options are a combonation of PyTorch's main orange (`#ee4c2c`) with yellow details (`#eaa700`). Light options are white (`#FFFFFF`) and dark options dark grey (`#2a2a2a`). The alternate "mixed" logo uses the full color logomark with a dark grey wordmark. Whenever possible, use the full color logos. One color logos (light or dark) are to be used when full color will not have enough contrast, usually when logos must be on colored backgrounds or are being reproduced somewhere that doesn't support color. Please note: The orange (`#ee4c2c`) and yellow (`#eaa700`) do not meet WCAG 2.1 color contrast recommendations for text or UI when used with white or other light colors. Make sure to use these colors primarily as decorative elements or with a dark color for text and/or UI. Accessibility should not be overlooked. ## Type The PyTorch Ignite wordmark is made from Oxygen (by Vernon Adams @vernnobile). ## Minimum Size For consistent legibility, please do not display the primary logo at less than 60px wide or the logomark at less than 15px wide. ## Logo Integrity A few other notes to keep in mind when using the logo: - Make sure to scale the logo proportionally. - Maintain a good amount of space around the logo. Don’t let it overlap with text, images, or other elements. - Do not try and recreate or modify the logo. For example, do not use the logomark and then try to write PyTorch Ignite in another font. ignite-0.5.1/assets/logo/ignite_logo_light.png000066400000000000000000001246331465426447700214660ustar00rootroot00000000000000‰PNG  IHDRΥι«+}K pHYs,J,JwztM IDATxœμέύQ$Ι΅7ΰ”boπZ²dΑΜ΅Φ‚A kΑ²,Xp ,X °@`ΑΌΡΪlm/C1 Yy*λy"&τ΅šκξΚΚ_ž“ωϊυkΎυWη^&T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€Bu T€~μ€”N]O(η/_Ώ~u:`ΪVaϊςΟbyw= ŒœG˜¬ηa:P˜P¦G˜#ͺΐtμ₯”N„ι0‘:Δ· ΣΟRJΗŒK¨q Σ 1‘:Δ#L€ „κ‡0‚ͺ@{G)₯Σ”Χbͺ@;GΉ2ύ°ΰάΈžPŽPΖW#L*ͺΐx„ι01Bu¨O˜%T€zφr˜~μΐ4 Υ Ό¦rn`Ϊ„κPΦ2L?M)-œW˜>‘:”±ά7ύ"₯΄λ|@?ώκZΐV–ϋ¦_₯”~¨@„κπ~ΛVο·)₯Ξ!τIϋwx;­ή`&Tͺΐζvr˜ΉΥϋm€c€n¨T€Ν|́ϊ"ψωz p Π ‘:ΌnUnίt˜!νί`Ψ²:ύ^ σ₯RΎ₯:ψ•κπgͺΣ€R©ΏS|C₯:€t”RΊ¨Ο Υ˜»³”o)₯έΉŸΰ[ΪΏ0W{)₯«”ΎO0D₯:st’Ϋ½ Τ€W©T`NvRJη)₯cWΨ„P€Ή8H)]Μ :ύ>ΐ1@7΄`–νή―gξ]¨©T wΪ½ο%T W{)₯«™T§•h@ŽRJ·u`[BuzsšRϊ-₯΄pe€mi@/vRJηφOJͺΠϋ§UhΐΤΩ?¨F¨ΐ”Ψ?¨Iϋw¦κΒώι@mBu¦f'οŸ~θΚ΅iΐ”μ₯”κΐXTͺ09P·:0•κLΑ‰@hA₯:Ρ-υ_]% ‘:‘]€”Ž]! νίˆhG D R€hvςώιϋ КJu"¨‘Υˆβ ₯t;ρ@ύ)₯τΏ)₯›Η T ‚ƒ\‘Ύ;α«q“ίΗU€c ͺΠΪ*P_LψJό”R:J)έ8  ‘:-Lεκτ)Ά{*ώ€’¦¨ίMxt 2‘:₯L1PΏΙκχŽH¨@ S Τ/s ώΰX€ „κlkЁϊOωΈ^υƒΣΐ&¨˜RΊpΐΥx―e ~=‘³χ”Rϊ81k)ͺπ«@}1‘³χ”χOΏιυΖz—4|mθŽ=Υx«½‰κw#κ­νΜδ}ΐ(TͺπΛΐφj‚Ίvμΐ»¨T`S;ΉB}"gL lM¨ΐ¦.&¨¨%ΥΨΔ2P0‘3u™Rϊ(PJͺπ=g)₯γ‰œ₯e ~ΰ8Zϊ; _Ίσ—―_ΏΊͺ YΤΏNδμD ΤWZή`π΅ +Bu†,χ$m"g'Z ž„κΠνίxΙAJιj"g&b tB₯:Ο-χδΎM)νNΰΜDΤUͺ@Tͺ°n¨_ Τ~'T`έyJigd ϊ]ΓΧ>jψΪΠ‘:+g)₯㠜©T¨?8`KBuR©?OΰLhωŒJ¨ΐAnϋ@P`ήvRJΧ)₯Eπ³ P›½),D&T˜7z=Χ _[¨…Υζλ"₯΄όέ«PšͺΜΣ2¨>ώΞΏΤ€Φ„κσsRϊ5ψ»Ύ¨oε`ΒΗ‘Υζe§ρ^ί›XκG)₯Η‰_™–ηy§αk@W„κσr•RZ~Η½κ@'„κσqžR: όnŸrΛwϊφTͺ@!Bu€yψ˜Rϊψ>ε υΫΗRJΛΕϋ _Ίς—―_ΏΊ’}ΫΛauδΆοŸΐ^οοΡς&ϋ—†― έP©ΠΏθϋ¨Ψi t@¨Π·σΰ­ΐ‘RΊp=:šϋ €„κύŠΎϊeύ{vΣωϋ€ξ Υϊ΄Ό|6Ÿ8€W Υϊyυ»\EO]ΪΏ@Bu€ώDήGύ)κŽe ·ύΏEθ›P /GχQΚΗwΰXΖrρΐNΓΧ€nΥϊ±“ΫΎGuͺr{T3z―PP χQ)ίά\Οπ=@W„κ}XVϊNΎ€”ΞΗά¨T€„κΣw8΄ΎK)8ŽVZξ©΅kLΚ_Ύ~ύκŠLΫrŸςύ€οΰ)ώχŽ₯₯–7Ϊiμΐδ©T˜Ά³ ϊGzsZΐΐ–„κΣ΅ L?=ϊ€”Gws?0eBu€iΪI)]=ςΛ”y€γˆ’eϋυ£X§¦G¨0MQΫΎ/«²OG$φ4€ ͺLΟ²ϊψSΐ£~J)‘ΏqΫπ΅Uͺΐ–~p&%rΫχ“Ζ2΄²œ·;xφΪΛ‚‡ϋΐσylθ/_Ώ~u¦γ<ύΦ衟ς›ΫΙ$λσ*{ωΟϊήέΰoΌΡM`ϊTͺLΗAΠ@έ>κq-ζ~ήa9χ³ΐŠ=Υ¦#b›¨e%τΗΗΩuγc{ήv x•κΣp–RΪx€'y_(βώ~χΌ]ηά«ΐφ„κρ-'?<Κε>κWŽc ξ.Š8 P-œSeΩaθ6ΏΦυΪΏ ήΰ;„κρElϋnυ·yœΑ]Z€”σ[ύλϊ"ƒ›Ίί…νPΣQώCί.όžΠ‘:@l§k“žQ<εJ/6wΫπ:š¨6qψlΌςΓυλܝΘ"AJ;šyχˆΉ°H€.όΥek'ο₯ΝιZλP6Σrڞκΐ{즔ŽSJΏ¦”ώΗ§3ά—„ꁝη6‘| ڎ>Ί–‹Zνετe9¦ψ9₯τ―\Ήs³!Tˆι(WEς`ςτέZ·KUQ”τ!W°?ζΞJ:γΠ5‘:@L«ΑOμ₯ωn׍__¨Τ°Θ{b;_9θ’P ž³Ό‡e$Ώ†§ξ©αρτq €ΐŽskx•λtG¨Λ²Ίη4Ψ1έεΙQΆΣr_uUcΐX–•λχΆ  'Bu€XΞrΝH΄}/γΎαk«TΖ΄Θ{_[ά@„κqεΆ™‘όΤΈΒΊ'Bu`nσX2Z'&x‘:@ηΑ…Άοe΅\œ°°·)ΠΘrςsJιΚx€©ͺΔ°l±ΎμZΨ³¬Φ-τU«-}Π€©ͺ΄·°J]ΫχςΏΎPhm?1K˜‘:@{§Ή-fΪΎΧσΠπ΅U…,ςbCΑ:“!Thkt~v ΄}―ηΎαk›Έ’Xhΐ”ΥڊVώ‹ΆοU΅l/T"YλWy+$ν— ™£”q Σ ν{u-+ΥΉ¬ε1@Ož/F<Ά½Πελ)₯1~'Th'Z€½lϋώΰ8zΦ:Πͺ@9·y‘dtΉ|/9 ΊH)¦”Ξ ΌH¨ΠΖr2σ0ΠΉΈ5ω\΄>ΗG3ΜΞP5ύ*`?Κ•β-CφŸσΕ6DσrΦQ§¬εϋψ\ποϋ»q;ΔbOu€6.χ§\₯Ξ8žgϋͺ+χyLz’+Ω–RΊΜcΓTͺ–P`|Λ‰Λέ@ηύLΫχQ΅lΏ.T†άμ?6Xxh‘'Q ΥΖ©Εαͺ Ρ΅lγΈ›'Κ^s‘ΫÏŸ«‘P`\§ΑͺΤOΓά΄ή+T΅:°©UΈώ‘ΪΒ/ŒOˆH¨0ž`UκΏxη¨υ9?šηiΆpžζ݌pOU«P`<§Ήϊ&‚§`œ΄άS=©Tήι>/Ξϋ₯ς \Ž—?ΊHD"TΗN°V–Λ@ύ1ΐqΜΥU^C„κΐ6Nσ^λ5Yό @(Bu€qDͺRΏΛ-ΐq𻛆ηαΠ5 ΉΟγΜT«‚P (•αO)₯σΗΑ΄€zqžΗ›₯―‚P ž“@UκΛ‰ΞΗΗΑZοmo’(e9ΞΌ¨p6uΧ ‘:@=gAΞνC cα*Υ€žΤκŠd_ušͺΤ±¬Rί rnκ1έWj“Ί)Τ@IΛ±Ν]…3Ίη*КP ŽHUκ5ZqRFΛπ Α:PXq§ρ Ν ΥΚ; T₯~ΰ¦<Π“ …κ4'T(/J•ϊMγJhΎ―υυͺ%ΥX0Έγ КP ¬εž‡AΞ©½Τγkͺ˜ΒI&ε¦πΑ ΥhN¨P–*uήͺτΔσ[©VJz,όχν»:΄φƒ+PΜ²Šζ8ΘιT₯>׍»Y€šλΐΤάκ†wπBŒϋόxέNώ=w[aaγΨΛό&|‡P œΣ ηR•ϊ΄ΤΨ{τ-TͺΗφ[Jιo>'έ*:zό½gσC”σX|0yΦ¦gGkߣ՟wvΉΛίί‘ΆφςoαΑ–Χtu=Χ―£…ΐμΥΚ‰ͺ«RŸ–Φ”‡ωΚƒP<«η?0!ͺš€±|ΜAΡQ…ξ_»ωOz‘ϋΖC~Ž[ύρ»Χ‡ƒ΅2 t4HΟ*xΧ‚Ε©-„^-@9Κο΅τv+λίKί‘Ϋ΅`VΠ^ΞΡ³λΊ(τ7―ηκ·φsώΧυίΓ+sK@ο„κeœ¨nC•ϊτ<ζΏ-χ =Κ?Δ²^YsšΓuˆuΈtTx1Ϊ­qw9ηŒe/ιo‘΅›·~[mφ?³3ο0uςB ι·»@ΰγZπψ–ΟΣΠ?ϋχ ΜΗ­}‡v7ψηkY-ZYΫΏ¬³ͺΌΝΙΪ΅{nrύχπΧ<Ώu.`z%T(γ$ΘyT₯>M׍Cυ&.CZί§ξΜδlμsΑSυ4P©ΘΞ etnY³“ŸWN?3½f*}ΚVϋω Ηξ'[.vc>γ(g‹π±•ƒόž£ƒ ωόœƒΩ Οΐ―:ΘΏ‹Ρ>Λϋ9\_λg!Π“ΏΊš[{λͺζZT©OWλ릡xLλU‹<©Όξ:‡Z₯,ς„5/Ϋ«tZμIʟ­‹Ζό8Pn°+yΦΪ\­s΅“ΓΗεgι·\Q[#„Œ6s’ιŸω39₯Eϋ9\_}’²Dp’;bό³βgΉ„E>ΎείςmΊX„!TΨ^”½Τ΅†žΦ‡»Οͺ’‰αωbΓ@Ώ7Yιq±Ιόa₯\j;{«­©ώ<0ΪΔaqο-Ξibg­JφηΖνΞΗt²Ά%BΘΆσ{ΉΟΧsέcN&ΈΘheλ LžP`;;AŽTtLήMγ7 ‚"–‘EgVx\„ϋTιξ.΄€TzΑgšωZU¦φlŸε,ΓάSΉ>ͺU5οη΅y_]{\@°›―ηύΜ»ut]?ηο₯’`²„κΫ‰²w‘ΥžΣΧΊUœ ¬X†2΅ Ί‘ϊcx.ΙXι[₯[Ώ? ΥgiUMΌͺLοΩͺrύΒB•Ϊς³u―ΑςKŽrP9—χΌΘο΅χpv/ίλμΊξηΦυΊπ“$TΨN„Aΰƒ­ ­'χMμ„ςΪδ€6ππ}₯ΗΗξ½ί*έ±Λ3Νό­UΟΙ±–π/Ϊφyτ4‡u=΄<ίΔNήξδ· Ά/aΞφΨΙmΥi‘·λ~vί¦H¨π~A\ Bϋp›«sZ2©ΗχVάkΐ\Όw|tŸ–²«]ι7JWο{™—σ+0ίb‘[Β«ZίήNώΝyκoδ ςΒ§ΙqyΚlp'\ό:“m ŽύS#TxΏΥ*Oy2‚>΄n/Tγ{Υ ί}fβv‹·Yϊ^©Zύ₯[Ώ?ly­™Ž=aΰŸηη@‹vήwr¨ΪΊ:ύnΔΧZUδΟuAΚΊžΆ 9˜AuϊKŽ-ͺ¦D¨π>;AΘ‹Όg$}hύ@ψΑ α6Lϊ`!:€“΄ξ»(}.,œ‡U»χ9Άͺ~Ν~ΦηώσΦgΡ“.G¨θc^f'ίΧζT‘=½„±'ω7` %>ց©ͺΌΟΗ n&ŸϊΊR=›Ÿ«·Thh•@οΆiλΊ 9. žŸE…–ηSUϊ<τTmΘΛNr»χ9΄4~U;xΏ1›9Ο-²ηbΥβώxFοω{ξ:ιpr:£vο―9ΞΫά„&TxŸΊ_&΄w›ΉΉmάKζ^Α[Bυ…έSΊ…ρΆγ]Υκε•nύ~γΉ¦{g3 @·ρλŒƒ₯Mο3Ϋ>ΰ@‡‡υπ¬σΐŸ}6Ξ’ͺΌέ^€ύΊ’*υnΩW·†ΪΐΕN…J«m[κ^ηύΊKωŸζ¬τΈΓΑΎ]δ „Ν}žιχb“ϋΗΕΜͺ΅fήό5Sοp2·Ος¦tγBͺΌ]„*υ‡ ­Β)―υδΙB@Ϋά{νxπ ‚ΫΘ”hνZz1κάΫ3kύΞ¦"†FΉ;Βσ?%ί”pœΫBσ‡Ήκso ώ’»‰w8¨Ӎν—ΰΝ"L’Ωg¨_Λ‰γ§ΖΞMn6σή–Ή«O "h)j¨^Ί½κɌΗγ₯[Ώ_θF@L' C£§Fήζ?χoό-9Θ VςΏ?hT)όsώ~Μ)`ΪKΟƒ‡₯Ηφ‚κwkί‘ϋgΧζ6Ώοƒg ΌwΦώ»ƒό^J¦ΨΉquξΖ ΤŸς5ΊΞΧiυψό:[]·΅ίΎΏΜKQ Υή¦ΥΓτΊ'Λξ]5ž0ΜΆ³Ν>΄<h­t¨ώT(¨xΜαm©ρΥn~―sμ₯JMœ4ΨCύ.‡UΧγ¬ώλίρ½ό½˜Ηέcω5†Νε»ςR¨~2=ΤK,[ΩΙΧ»E ~—_ϋϊ χΈ—ήϋKŸΧΥ"•£όg›χ7ΕοΓ}ξ>QkηιΩ΅{O%ϊ΅\?Η{ω·οdΔ½ύύ€ˆ„κo‘JύJ5GχZ‡κ‹όYΧrk|Ϋ„κ)_³=Ώ4PΊ‚9)JW†Υ·f±pŸF ΤWŸ‘³ZAίηί‘ΥΆK'9 cΡύE!Kώ&NΕΡΘ 4Φ>KΟ+zΧ޽gΛM]\¦όžWŸνšί£UΨ»ͺ2_μo jΏLτy·VχŽΛό;Xσ~zŸ―Ϋy0g΅k^ ˆH¨π6Bυ)ΆΉβm"LΠ~τπΔΆ‘ϊ"?ΰΪ€±ΥΈχ”]ηΰ Tφ1ksZΘVΊk—±fvFz–yZ xZ|Χ^΅DΝp}±¬χώ›³χμίΧ Φ‚ήΫw.Z8*|/Έ1PΏi\ Ό:ηηk•Π›,T™κb¬’!tΛίΐϋ΅ί½‹Κ LΌ€hώκŠlμc ύ¬θΫc^}έ‡gϋ’1Ž€Ÿ*νi ―©±ψ΄τΈ·δβΤΕ ·Μ)}M”χgŒ= /Χ*%#Μ«NQΘAW-ϋ3ωΞ¬‡κ5Z ?δkυςk­*aί{ΏΉ^kΉ½­Z•ΜΟ-ΟΑζgΖ(υύZΈώχό=Ιά;œ,ίOA~οσgθNJΏ}»AŠ›ώK¨°Ή“fͺΤη#Βƒ’½ΥΗ΅m•ϊΊ ‹"ΡI₯ ­tΕkι@jn½%Η† wηΌr…νCΫN‚Vk―Αš‹£?Μθwη¬πηι2~φς΅ͺ½]ΐ[Œ4ίσΣΆu?瓏w’gΆΛ IDAT=°σvˆΏ[P΄²κ’Q+XΧ…E¨°ΉΦγάWδΞM„kναe\%Cυέό° c¨qΟΉ«0iόψJυΫ{>«ͺμYιΦο χε(wKͺε&#l“υšΗ\W¬ά<μψ9ν°@ΐόΛ„‚Θ’Uω/ω%~χP 1·"“LπΪ]η₯ٚC¨°™ΦΈ‡‰<R–P}^+Ό[m਩V˜V{Ών’ vg0Ω[Ίυ»ΕΒύ8¨ΨφύΗ>+5["Ÿ[<ϋ§όΉ‰ά&ϋΉšŸρUψN֏ή&ε,o7PB°D!TψΎ£ ­ί™Ÿ-ΰw΅EΝ=Β΄ †šΥu΅'’K‡½OτjύΐZίΥ_:Z|Q«%ςΒβΩ?yΚΟζΧ-₯·±RΙχσ πιFΕ#sλŠεnηrΒs%5ΣM…ύ«ΗYη…4χ…[ΐΧμ–°‘:ΐ°UΉZΏ³a`ΞϋυΥΤ"ΰΆ`€Χ¬Βτ_+ν›όάSΓ@¨δx{dϋ¨RJΎOŽ*„Λͺν뙝ΗϋΒ zŒ@?L|Ac·ψ}šfro,=―©@hJ¨0¬u¨~g?,Φ\^αϋ^ΨΛkρP¨ <ΟδΙέΗΓτ•³†γή«Βc¬^ΖJ₯[Ώ[,ά‡ŸοΉU©―”‹/fς¬6ε}ΓO*l£ς“-'k.s+₯M)τšͺ k]e’’”η΄€οS«•ΦŸ=ΜήQοσžιŸFΨ7ύΉmkKŽ»?δm€¦δ˜οFθΣ…{A·Ψφ! Υκow9ρ₯―Ο“. “u7£₯·~Q©4%TxΩήΘΥ9/QΝΑs˜wλEν5/ΦYΌ0;9D?ΛγΜe₯ίo9Ho5ξ} 2(}?μa¬Tr±ρFj,:Ÿ{η€ο°γE³OΌμελSΉξ†“5§Ε₯χUW4%TxYλΦοͺ9xΑ}τim-khύ[sθzte/ί[VαωY„ZŽ!ώCτΟΉšΊε’•“ cήϋΌ―s)SΥ΅~η%₯Cu κ<ί΅ξΈWΛωΔ?/ͺΤYyšαb³’ί]‘:ΠΤN?ΐ‹Z]&žrQa…ϋ[νηοΘ\Ϊ•ΥΤϊ·&­U,Ξ}Rΰ­–χγ―ΟΪ[ƒ•|OžͺŸ‚y/ςbƒφs0]ΊειXJ.Έ»TIΩ…‚ߏΰοJ?ߝtxn{K‡κ~['kŽέ[ ώΞυ°Ε0aBu€—΅Ί„• ΉΚ ­«ΛN}N‹ˆͺ/ςƒ}„c˜³Φ‹ζΖt°οUξUͺBϋtΒλ%+]-ξCικηŸΊ(ό|·Ÿ+9{Z0{5ρΉΖφ‚₯LΧCυ’ίί)/(: ύ;ΐ·μ§NdA>΄έΪZ„ίšmΰΛeΰ°ΉδDχT[0,ξ=yιFιΟ³Οş•>½-–ϊήϋΆN`εiΒ]lΆ1Ηχ tJ¨π­Φ φΜ&Ά(«§>ΉΡZ΄Ιφ3­Τ¨,r ž ‡κ‹‰Vͺ—ŸΜ±―W₯Ÿ‘}6ώL¨>μƒΉτsŸοΟtΝ5\ΆUΠ ‘:ΐ·μ§Nt·yr‘΅c!μV’…κ 4T=PO9ΈωRπο›b΅ΊPηŽ o=υ jρ₯η¦Ϊ)γ%SΩ©°½‹9£ιšλz₯σm]4#TψΦAγsbŸj6₯Z]Λπχ©1ΉRΒ‡Ξ&αˆαΗ Um— p¦Ά]NΙΦο‚Σ~”/‚/+Ή g`^£”©^JΎ¨ϊ€v„κΆ Ίφž“Ήξ―ΔΫ]δΟKk§ͺΥί%rp}αšPΘ2XύΫΔ* ―ςq—2₯Εj%5ΚPΆW:΄ˆόe₯ΟK‘z­ίK_‹R¦mΞσ}ζ―Ά&Tψ³Φ-„L0π&¨ͺΥί%r΅ήΒD8ό’Γ„)N —cMiœT2Tότ£t(θ™χeΪ#«‡ΟŠE)¬›s—D@„κ¦υ;S©ΌΚζΝνmύΎξΨ>eΌΣ²²ποy|0ΥΙγ’‘ϊξDξ©%[ΏίtP]Κοφ ο§~§uυ •κίκa~€δsίƒίVhK¨πg*Υ™’ϋΒ{ο½—jυ·™JXmΰx‹‡ΌwϊAcΪc¬)μ'_r|2₯vΌN•ϊΈn ΎZΛmνJ™ϊηΕχ‡ηTkLœPΰΟZ―ζ6ΐζ­T«OΟT ,+λΞ±­Βτ½ΞΒΤ’οεγΖIZΏσ’ΟǞw_WϊόLΉZύ©ƒBužΣ©`β„κ8(άΪξ­JJg>σdvkͺΥ7sΓκ©ψ€ <–•άΫa˜ΎrUpŒ΅ή©¦dλχK‘AW„κγ*έΪ{/ϊ~EŸ•ηίχͺόΑ~κLU”jbΥκί7Ε…QΊ!Πήr?δ€”ώ_b{―H.ΉX r xUκ  ŽK₯ϊzΨ;ΌτβdίhL¨π‘:Su‘Ϋ㡦Zύu;ΪO}έΎ6π³Ά€δΕV=„›(ͺ-5>yͺw§δΎάws?™(šNΉR½‡ϋLΙη:N_„ƒlI¨πϋ©3eφVο€ρΫψ<ρJ6w—[x/[»Ο ƒτuχΉΝ})«ΥKΆ~οq€9+=¦ŸγoΘ[•ή:aΚ‘zΫH”\”b[ισΠ‘:ΐž‹Ilι\΅zxS?/Ϊΐτη!WΏύ”RϊϋZˆ~’+ŽOϋo_²‹ŽP½/φSo£dE”;OύσRϊάϋώ@?ΈΡz·Φοlλ1O~8“§9€5‡ε~z»QζΧ-Ώ«Skθλ~§p₯Ϊ{άε{ςύ³?Ɵ›ΉΚ‹JάΗwξE_*Tϊ@%Ÿ‘Zίζ¬τ’UΞ€PΰwZΏΣƒ³ ‘ϊͺZέ>άθ₯z,&u~>VΑτ¦υΞ γΞ—ώ»·z|6žΌχ[]ΤEή ₯„H‘zΙΦοέυ§τ3²…<›ΉoάE˜άΣ ‘:ΐο„κτΰ>οͺZ=–e'ŒΌ—EΎ%[ΕΜΙγ@°©r™o• Տσ8)Β©δύάgΈ?Sn>e₯ΓΣ=l­η˜€ μ©π»ΦZκ8n„vlΐbΫ6Zou7W₯₯˜3€„κΏkͺίΉtŸ'6#ψdη?“):”v‘z €™Ή(ψv#l S²υ{ΙsC₯ΗzΊ³0iBu€ίν6<ͺ:(-Reτά«Υ{ΩKύ9˜›e{σ‡Bοy?ΐΒΓ“‚—Φο}ΎΊ ‹‚ͺ€tΤψxh¦΄λ@ΥκΗ3Vίι8TOΉAλίOS/Υκ;y;—.΅υ†’|ŸϊPς9ιiΞ'"ͺ΄όμE ‘ͺˆηΪτ΄`[Υ¨Ξ;°δ˜¦εΎκ%_[•:@] 1 ‘:@ϋPέ5DͺV?œaEsοUκ+ϋΪΐ0#Λm›Ύz»» ƒυR―ϋ$T‡πt–(D¨Πv―Έ'νέ¨ΘήκνΜ‘J}εtΖ-ώ˜Ÿ’Υκ%χ5ίTΙΦοsνF̐P m€Jš’U«·˜8na.Uκ+ “κΜΘ²2ϋ‘ΠΫύΗ c*YοώΜ†PΰχφΕ­Υ©M΅ϊψζT₯Ύ2§E0εjυR‘ϊƒg`N„κΐά΅nY|?χ @u‘ͺΥwgPΑ=·*υuη ͺν …©†κ%[ΏŸϊ{€Ί_€2„κΐά΅ΥUw0†hΥκ=―s¬R_YΜpο|ζiΉ0φK‘wΎμšu0Y,ΩϊύͺΰίžP˜»±&°†¨Tg ‘ͺΥWrΟΉJ}εSJι(Ζ‘@U%Cε±ͺΥK…κ7žcFΣzή Θ„κΐά΅˜5ΕX"…½Ÿt‰¨αlΖUκ봃`–-ΰŸ ½Ο1Bυ’­ίKΆΏ'.]ΥΪ°@΅%Ώ?ž1 ‘:0w-WόF©f–υ—ήioΑλ^ζχ6ΆΪΐ0₯ΒεΕΑΊΦοΌΥcα3ΦσPπ\ιο€P˜»–φ²[€ σCgUͺ³μ΄Σn°δύΏdθ]σοΏτΓ;iaέ†ξx…ՁΉkω`―c»W­^ΕQΑvͺ½XXhΐ άμ>υ‘β‚΄’­ίU©Ο‡Εm”ώͺχΑΆ€P˜»–{SyΈ₯…HΥκϋ#ν!Z›πψeF¨Ί€ΦJξ/^λΎYκο}ͺΟJιEΰΊmΖyκΓυάOτH¨ΜYλφsBuZX~ξ~ tζΟ'ΎΏβi^Α² Α— Η²2υλ ίs‘ΓζN+νR‘zΙ̏°x3%ΗΞw5”QΩ>ͺsΦ:θΡώVΞ NώnkQqΉΆ½`•ηΉς?Κ΅]ڝπυ€M• ›w+'%[Ώ ΥηE₯z%μjαίNι" • ‘:0g­κ=ΰΚc°–εŸ':Ιvήx ‰u7yβσ1`ˆ=Υλ ›*9*}/U₯ώ`Qπμ”~^5όΎΑ©οl;₯Cu•κ€P˜³–υΪ°ΡΪyžbjϋ’,XυUΒzΕόEΩ#QΩ@Οξ ή{?ΦJ…κS«QFΙ1₯PπϋJŸ# ωΫ*ωΌmQ  Tζ¬eϋ,·΄φ¬uω2 > p›Ψ /';―ŸύwΡΪΐζc€^•, α%[Ώ_ϊ{˜–’Ο­ -¬Ώ«t¨ώόq•¬V/Ή-πNBu`ΞZ”/έ ήγ"X΅ϊTͺ™/΅}O‹#ξV”›H c΄•ZˆV*œΏρό2[₯Ϋ‡«VJυΎ”^Τ0•EθΠ-‘:@&₯ˆ"Rυπn°κω—Dkϋ~ωΚdΝY°­&ΈΎ°R  ΅ϊ-΅?»m\ζ«t¨.|]ιPݞκmΩW:#Tζ¬ε‰γDqlνΣΐΥΜ{'•ΏR—šL/ε“Ι :V²KΜΆ χ Ά Φϊ}ΎTͺ«d‹οHΟxsU:T·(ͺsΦ²}³γD)x]l[Ύr¬νϋε5ΛEΏŒt<›Šz}`[χƒ¬mCυR­ί/-ž΅ϋ‚Ϋ$‘ΰ«JŸsνiͺ·yΒ4Šγ€…+GJΨ΄•ϊYαΙΠmΫvJ*ΥΥfwΛρP©{­*uJƒ Υꃄκ}*Ω1ΐχͺsΥ:°+½bΆ-xTΝ|’ƒώH~zC;ΑΗ€!φyΰ6°‹‚cͺχήΏK΅~ͺSαΩ΅T…ή”ž£0ηCιΕ ͺΥ !‘:r@)Θή–~9™ύk€γXχτŽkul_ΕEΐύή ”RΥκίΉ­ThYκ}0mBυϊvr7§R*μηΝϋ”ώώθψ ΥΖ©Φη ˜(ΞW3G ΤS£ί³·i΄ ˜ΟΉ’zSj‘ββd©{ΎP”+mK>Γξ~£τBUκq”ΎΎ?АP˜«–ϋPΩی¨ί°Oχ «ηOƒκw[LpίηΆρ‘˜¬ Gχ;ΔΌ΅³K©Φοž[XSzΥκ&TοΧc~†+I΅:4"TζΚ^Ύπ²‹`mμ·œŒώyδΧάΤΆ-ΣΟ‚u#84© @§J-{kUb©ϋj€mhO λz–s ν₯A° ‰} ‘:ΐψμmFt‘ͺΥSƒjζˆέK_ MhF›„1i@. ΆΜ~Λ’ΊRχy‘λJφw‹€τΣ/οά*ŠzJ/JΩ΅0ΪͺsΥ²R]¨NtΛ‡ώΛ@ΗΈΫ θ?«Π¦oOͺΤW\_G©…›†'₯ZΏίxfα™ΗΦ–Tjl;u₯Οƒ1ράVθζϋ ՁΉ²*^wV°Ίͺ„Σ7Ά>-!REχYαΙνSΧͺ+ՍeΣͺΔR•‹cw bJ‡΅ΗΖΩζͺΔB˜uBυ˜J6Ψ& fO¨0>­Ψ˜‚ϋ`mΉ &xoƒ΄Ώ«p-ƒU‡/T«Π‘ϋ\υ]Β&ΉΦοΤTrKƒ•Ήο ]ΊΪXλχΈj<Λz~€‘ Ձ·ϊhΰΎ΅Ϋ‰?σq^‘Mέ6μ‘ |­ΙΖσ`-ξU[Π‘RAΚρwΆ°*ΥϊύR(Η+Jƒ§·fkiωύPψυu™ˆ«δ"«Υκ02‘:π{`VξΥvή`β­eΝO•βD»ΎmΠ›’Υ½―IJ- εψŽΥΆŸfΈ·ϊ‘*υYΊ¨Π n?ΰBiθ–PΨΤωZ;ΑιEΓΧΦN‘©‰r~jπ;Τ’ όXηύ¬Βώ˜Ϋ8›qPϊTͺ’p` Tͺυ»PŽMΤXτ9·Ο^ικβ'Λ“QkoυΉ-L€&„κΐ&Nς~”aOu¦ζ>X5sj4ρ6ζβ‚ΪmίΧEkσΏ«Ϊ€Ξ”¬ξ}iμ\Ό@¨Όζ"·αH«™[΅Ή«zŸ4œ[V§]6zν—7Ψ;jͺQ­^j\{˜Iy5@ξwάΖϊΌBΒ“…¨“T«Z=εοg(¨D¨ YV,~xεŸr[6-…αύ’U«6X_« ό/&΄Oƒ΅ωW5@OJέΧ>¬=Σ”ΥoTΊςΛjυ/NάqΓΞM΅,ίΟ§ χΉ½Τ'λi5·W¬@%BuΰΉ­ͺ²Šœœ«fn΅v©‰Ύ‡`Αρy°@ͺΥθI©ϋΪ©Φοp_q¬ΦC°~PρϋΥ[5]Uά^M°Ձηςΰϋ{ ΜaΎNβ|ΚU c*Ρώ)κΡάDjσΏk€Ž\ZœXκώxiα/[*έΑiέ”ƒυ“jn2ΏςV—ωοfϊN*.X_λ=uώΪΛέUlλ@Bu`έyn΅»‰±[-±Τ\U^Sl1‡σΡ\ηΙΊ(ΞέwθΔcΑΚΥa*uJ¨ ώΪhœΏΣ|ά5υ‡` `ΩΞ}εkΛΟΰuΠύk¦+₯t,T ‘:°ς1Wzl*ZΥΘn£ ¦χž‡ƒW˜DjσΏ0y@G’„Bu Ή­ O€•υj;½Ÿ+ΎΖ‰ξέYήΎT~SŸςχtj]'ςw¦―θž @Bu ­­ψ| XΰΎ@ϋσ>7ψ}zOψίρ»;Άš{dΎΗ©ju:q[±]φ[Τ)©v0ΈŸRϊgο#Ž OςψωCΕΧψIΫχnδ…N5­ΎCΡ»€νδgΏεχ鷁Žš*ΥhB¨μΌaυu‚ εςΪoΥ"¬~Λy˜B Ύrθϊ.:h[+ξiS0'#,ωœ¦D隡ͺ€­Υξ}ε¦r7ΪzqοσOkmη#ΝνδωΙηn»―ό³ }hB¨œηΥͺορ° ό~ƒ §MΟΓ”υ•HmΧνŸ@/o³r—ƒI(ι±ςώκ+»9Δn žδ0}¨’Ά€‡WΪΉΝΟ‹cXδ*ΞΟ§G ήυήZώ5§7ντ T  ‘:ΜΫΙ³=‰ή’φC#0Χ#μχVŸ„―ΛσπΛ+ϋυ”'9nΗg"7²=ΛοψξlΰG0Lƒ#™ ,!‚… lί‘·δmcf¦›–T·ͺΎοŽwχgΤjΊ%Υ―ξ½:Τ`•ΉύΊ*u¦r7cΌ· ^§5Ž)φγT˜°Jΰλ"Oι|š£ή†Λ―CwicΗCϊωœύ΅ΝνΗιu¦Ÿ±??Ǟ ˜›PΪ΄iei·4¬R όs r”$ζœY:΄Όό5ύχϋ²iα‘ύ"ΚUΖ…ηΞ3΅(€1έ₯{…ΉΗq}ͺΰή„ψ†n96σΌπΉzz!œΎyvι?i–σœή Τ›5ŒΛωόυη(cΑ˜PΪt9Cβ‘]‘ΐš‹ Gqž6ΝΉpΌή><ς]₯χ7B7‚#• Tβ"Cθ¨JΉδ ֟[Όπœy¬]©££O„`=2‘:³3SΪsώΚyE›ˆ"/2-FU¨w© Ξͺ―1[€\§ ΪΉ< Υ™Ωe ˆΩΜ“@5§©c§s³ͺC[ϊΞ#Ύβ₯Ώΰ™Ύ=αOΑNΚQ…w.}¨ώδXŽ,€PΥΜ!χ΅^d XίΜSΊΏ¨³N°ώ2k’ΜN¨νkŽϊΊC?ΐ "―ƒsναF± V!nΑ€ΜΩ F•:ΉτχmίΟά™‘$χ)P7C—œΪ˜ς7‘η½P)‘:΄γ&Θ\ ~«΅ωoQ,‚΅./YΏ zδψχώ­ΐΆξR 6΅G‘:™έ€Νωsό½—δ“@ τΟa΄1ε/ϋ0+‘:΄αb’œͺ>ΟΉI‹C‘ΌιΊξΔ;6ŠHΥκf«Pƒ96 Τ‰ΰ!Θ½ψ1=£Λΐ&ξZ\΄gν\¬K0+‘:Τ―8{?Ρ«tσ |Ιiΐ]τ—f―βF΅:Œκz†ϋ&cSˆ’ΟΊϋ‘αͺΫϋTu¬›ΫZ₯΅Ύ―Z²€Ή Υ‘n‡N€Œ†Ε²HΎG)ΘV­@ιVW’ίk-M@Χi³~KUλO) =τ™dGισsΥΰ‰ό”^ϋM€c !Bu¨Χ2GSΞQ/uv‘W˜O€ωΫmΰΗρhG΅:5˜²bΥ¦B’6β~πΉalW)TΞXVι9¨…ΟOο1½V#ΘB¨υšjŽϊΊ)ϋ)Ήρ†yi_―σ@ο­juJw—*Κ§`ž:Ρέ€Yλ5†ƒ}˜ώ]z.²Αjώόt)L§:€ά„κP§~—χ[ο-ΔCΐΐSψq<ͺ΄Q­@ ¦Έ~JΧl(A-αΰSjk?„ι>ƒΜaύσSC[ψυ0έσ;Ω Υ‘>}KφŸg|U₯Ά€Οε¨Ν— ,OUyυZΪΐγB΅:ŒfŠŠrUκ”hΏKαt΄ΞWŸs»ž ΣΙδ&mζψ.Νπ,θxJΎŸπ»B IDAT¦Ν·ή¨Κ2Γ‚‰φΙΐ¦ϊ‡ϊ;[—ιA]ΖΧ[₯`ύC€cͺΥ-Ό/yΉκρΞYfΗ#+Ÿ„κ³ϋϋΕ½ι<€pϊ,mˆ=IŸ“½(˜ΊAά€ΟZΛ!ϊ˜ΧEŸq Ε.RQΜπšz\δΆ†kΥu°kΦjΔοφΦο}?UψζχίχNB=Sε圾/tžQΞ/Ώo2ώnΘνv]χ>ΠiX€οRmΰws€Z}/mήP™@IΖΎΡ…ώΚs8μΖg€¦ύ_λ'*pš±βΊK‘Ϋω^hΕyͺžŠδP}g—©Uf%vQ ]ϋι^dLώžΖ!T‡²--”…Z₯MAΡ\j“Ί³³ Ηqdγ{cί½ΩΟγͺCΩ"΄}/΅κZK`ΘohΙΠžΧλίΧΫ ηO΅:₯{Sšϋ€ Υ‘\Η΄|C[S9 ± όQ jλRE ³t ‡]Χν|˜Bu€ Υ‘\I€Dm.Œέ‰juΨάΨ›ω>₯{,F"T‡2OPΙ°‹+―-2AΪΐΧ)J˜ύΦ [N0OύΪ0.‘:”g©-ρ(ξ2ώnαό6πυ‰T­ξ} ͺ“΄™o,O6ŒO¨εΉyΡe f„oG¨· |jΏ›(Υκ§iSD3φUκͺCYSΫhJ *΄‡xΣ ΠH΄ίM”jυ…juΪOqΖtαŸPΚuδ0ΐ1l+gϋχΟΜε4΅-δ(PΕu‰"U«@$coψzΜόœP-‘:”γx‚*†±‰·­}?D² ~~π]χjQͺΥχλs2ςαθ0‘:”#r•δ’Ππ·ΩΎπyΫΐwͺwε¦<Qœ€ _cr―0‘:”α$p•ϊ Δ Ξ‡ŒΏ[Ε+|YΔ6πΪΐΏΪMζLƒƒΤωr»{Κmζη€ͺ Υ‘ Qg©―RcΎ>f«ΐνw]χfδs‘J`BBuˆοt‚Ά€S(1dΊΛψ»…rπu}ψ«€ηΙ’υλ\©V›Β Θeμ ^OιΎ €‰Υ!ΎRZ —―2ώn3Υa3gA‚Ψu…t‰H΅:­[¦ϋ›1]g~Ά¨žPb+₯J½KΗYZPl¦:Δ΅ ό{c/^ε2Θ¬ό±Γ ΨΤIΧu‹‘ΟV)±Š%T‡ΨJ[)-`Κͺ«T‡Νέt]χ1ΰωΊτY~•Uώ Υκd2φ3ήmζη€&Υ!“‚ͺΤ₯…κ9[$šη Ϋ9Ψ~OeΨ«\¨V QSt"s/0ƒo~ύwηbκ+3 {oξ lkžσKπ›ŒΏJΤoάω5ΰqŸΎ³ΩάEj‘ŸΫ?»»σΎ0ƒeΊζŒͺ?Ϊ¬ 0•κΣqzο ΐVΘ9«%ΝU‡νDm­ όΦ"΄€οT«0£3UκεͺCL%/Ž”Φ>g…’Ά± ό"ΝWgsύμΧ«ηλΔw13؟`#Χ£ϋ€ωΥ!žύB«ΤζͺoN₯:lo•ζ‘Fσ&΄l.B°ϊχ@].5gLͺΤf$T‡xJ_)-TR©ε‰Ϊώηz+ύϋxΰ8΄€`J'iσݘT©ΜL¨±τaΜΫΒί“½Tm_Šœ•κ₯UυC$ύ€ϋ`Η€ όφ"œ―=ίΗLd9Ρ΅N•:ΐΜ„κK-Υr%U«η¬T/iσDΉ Όvβ›» 2#ί{ΐn&hϋ~oΐό„κK-‘zIχ^Ζί 5θ7Εόπu\Ψ4³•Αΐ‰ΦύŒ¬ΏΎLpR-Θ@¨qœNPŐ˛‚Β‰œ‘zο0σο‡i_Ύ‹―`QX—b»œh¬Χ§TύΐΜ„κGm%…99Υ¬°»ˆ­»T’m¬oεΰ8Ό_Œaͺ@ύΙ΅ ‘:Δp8QkΐœJ ΥW·JuΨ]Τ6πη6Ξl,B΅ϊχ €,' Τ»t­Μέe  YBuˆ‘Ɗƒ’Zΐηl‘(T‡qh_Ά~cΔm€W €Χ8NΧ²©υϋt―@&BuΘo9αβKn₯T«η¬ψP γ9I­Q#Ρ~s6 ˜«ΐ6ϊ{ωλλ~νΊnoΒ3qΤ @S„κ_Ν $Bυ―«­ν?δτ΄Šλg])6r`SĞ`€―X¦gΈΎΫΥo©CΧ”~LUπdτΝοΏξόC^W5δφΜ3Λ7Ρ/Œύ'γο>s z¨ΝMͺδ^°Ύ‘~^μϋΜΗp₯"€gŽΣuόx†}έmϊ@έrn ~0² `3BuΘ«_˜ωwεοΑ»BΠViώq₯œ#(Ε~ͺθΚυ™ώœŸΜCύͺύTυ—[ Βψ²›­w₯Z}₯κ{°—ιYm™±³ΤSΊ.ΊAύr.ΞΪΌ°!‘:δuYρ<υA)Υ™9+[?šΉ £;KmΧ£ω§_‘Σ€ΝNε+}±Γ=΄C¨P€o½IΝ²‘Ή­©Β"ηάςMάe q΄„†ρ]dhΡΊ‰KŸω―Ί ͺŸΥ "χ"χΧͺziΌσΩˆE₯:δΣΟkύ₯‘σ_B%vξχγ›ŒΏj΅Lz΄/OΞ‘ƒο ΨFύr?¬©^£d%―α>Ϊ£R ηM‚lN:υ%ΌΦάΑ‰ΚUί*θχΟŸω―Ίp -t“¨Y‰•ήWu€˜„κΗ~€ΦΆsZ¬ίdώύ6˜FΞ~ xn/S%=/»p^ZΪό@~W=q Υ!«ίJX ΊΟψ»…κ0ώϋη)Ψω=P‰φEw™Ώ“»τνg>Ϊ PN¨yDŸ/>…£‚γœ-ΰΝ0ƒιDmήg‹.ƒπεΚ=ήiS? ΤβͺΓόϊ`y―Ρσ}3AΞΉ‹7΄ o1ΰλΤώσ"„κB€rEΥϋ.:οt(ƒPζΧςύΫΰαQξΉκ*VaZύ’υc°sΌg1ύ³VζαkΐξΣ½„ dl@¨σk½•lδjυœ•κP&§ |yqλΧmΖυSκ^–ϋΩ€-Υa^Η ·~DΥW™«X£Οœ‡άh_”ΛΤ7'-ΰΚ”» Υs·]ΧύS‡€2 Υa^ζ»nό<δ¬Q© σΠΎ,Ή«Υ΅€`ύ=Ηι^_u:@‘„κ0―ά-dϋjΏ«ΜΗΠŽrV΄,T«Γ,VA[zk2-ΰ(Q_™ώ}ژαZΐ„κ0Ÿ“šζtZιζΆΈZ=wυˆPζq—fšFα;:šλtš(ΟC†#~LcfΎKε’΅ ΰ•„κ0ŸUnia'BΫγ¨ΥκΉΎT©Β|ϊο‘ϋ`η[ψ—Ehoζ=@Yζ ΥϋŠτΣΌτΎ*ύ,S ΐ„„κ0Ÿά‘ϊγZφEζcι‚W«η Ω„κ0―ˆίCt­ψ›όZΐ”§οJσ)ίO;ύcϊχτ•θοRˆώMΊΏ0/ nίόώϋοήb˜^Žό;σyώq-Lο«νώ“ωxΊ΄0΅ΰ8ž»H³sωNu Μκ<Ω‘άΪdσ7iCV.ŸλdϋaΝw5ZnΉyM w`j9―χυR©σˆP Ήή:wΥuέUΖcD­VΟ½p&΄yEl”ΪΗς?Ή[ΐΏΙόϋΗ*έοoϊBu˜Iξτώ…Κη-ΰ» ³ƒs·n΄KζqƒΟΉ9ή‘<…P¦w˜Ή]mχ™ύ.HefΔjυ‡Τš>‘:Μο.ΙˆdhTw™Ώ›;‘:΄I¨Σ‹°Ή–ΉQš‹€Υ˜9[=.ΆœσŒγ"ΝŒδ­6‘»Όχ$T‡ιεΥ?₯Ή/Ή PυΧ₯9Ϊμ`sΥ‘M}猧`―\΅ϊδnΏgΣ΄G¨ΣΪοΊξ σ9ώZU_„΅] Υ#U«›«mzH³Μ#9:σ=-ΰ€Ω ΥaZ‚Ρ―…κAͺ2£ΝΎΛ|^ŽΆΔ‡VDlqLF.:‰³ͺΓ΄"·~¬U«Ώ ΦV7wp£Zς‰Φ>☌\rΟU?°ΑΪ"T‡iεE7 "UˆG:–άΑjHΘ'bψi¬Hλlx°ι ΨΕρ ?žχ °o½90™γTY˜Σ¦‘p]₯Jρ܎R…h„κy-†‘mιsxθ,œ›―ώ‡ώϋωMΖί`γΟŠ~‘“ΥΆΟ’?άά $Bu˜Nξ@τ~ƒΦολΞƒ„κ] ²·<ώ)τ› »ΫΛτϋιαμ.Σοώ`ίΨ$5x›6εήτ“ΫuζP]₯:΄ν,σ3 03νίa:Ήά·­τͺΥ#XΪ™›;ΈR‘ yEl―r!•ψžΦŒΠ΄ΓΦO΄F¨ΣθΪ2ŸΫΧ‘‚šχA*s‡κͺ!!ΏΎ{Ζm χαΘwÝLξ3ƒΠ¦ύŒ] €L„κ0άaΗ}ͺάV€jυ.Θ\υάՐͺ!!„ΎkΔS ·β"ΐ1δ–ϋΡϊΖh•ghP¦‘ϋζz—κκHΥκ{ŽG5$Π₯MG‘‚μγ!t²Πϊ$T‡iδ^hί₯Ί:Z΅ϊ‡+Ή«Υ[Ξ Šσ›lΦ΅>[ύλΊΗŒΏa1 šdƒ-4H¨γ;Μ8 T98Jνιη4χο{εΟΥE οΗΣǐƒΉκΐ”–ΊT@Ϋ„κ0žΪCυUΠΦΒog‘"΄€o54ƒ¨VF3ΌMSZ“;T·Ω κζž'T‡ρδR›#PΈΠώό%ΏΜψpΣ·z~œιw}ΞI†yςΐ—]ψnD ψη΄Κ|}R©usύͺΓ8r·€šržϊsQ«€―g|ΐΙ]­Ύ0[BŠΝγ΄Ρ79ηͺοΩμUS©ͺΓ8Z¨Rτ‘ΕΗί¦ι<Μj\Μπ;ΎF xˆ'J΅z«oΜU¦rδΜ@Ϋ„κ0ŽΪη©?w¨ΝρΊΉ‚υ‡mπ› ΡEi½₯j~N9+Υ;‘:TΛ½> T‡‘΄T©ή₯Ω΅Q+₯f Φ/'ώχo’ΕΉΙέυΜ#9>g―Αφ„Bu` ZΏBuIΞ›λ\αΝMΠ6πέLΑzξΉκπV„]£ί974Υ NBu@¨#ΨOmΗsΙ9C6jψn†`=B ψ…`BΊςέψΆΑ19«Υ2ώn`:6ΠBuAξλœBδ6πέ Αz„πBuˆ)ΚLσ“Η0'-ΰ€1ν§ρZ@γ„κ°»Φζ©Ώτϋ£Άο&Φ#„κG V’B .ƒT«Ÿ8†9εΥ}@]lœώ T‡έ圫τ˜ͺΕs;Π ύK†`}μ°£?χŸFώwΎF”ŠXΰ―"|6χ›§R“yκΐ„κ°»œ θΉ«ΤΡΫΐw)XΏ›ΰύΊωίχ'ΆΈ^/J΅zkc"n3ώn‘:ΤE¨όA¨»ι+ŸΟauύ±όηp^΄HΖ ˜ϊΠμiΔίk,ΜV‡°"Œ‰hmγΝCΖί­ύ;Τεΐϋ tBuΨYξΕσH‘zο"H;τ/ιθ_FnΛ‘Z½΅ΉΙPŠ‹ oNΚ9e;Λym΄ΰυP₯όI¨»Ι}s₯ύϋΊΣ 펿ζC ΓΗ¨ήΌ˜φP7²ΧXh₯XΡ sΥ€1Υ€? Υa79ΞοƒΎw«‚Β›7©MπIwAήΥκӘ1^λMC­Ιs‡κ-΅Ϊ€šΩ0 όI¨»ΙPDkύΎ„ωκƒΎ-ς―©Ϊ|— $Βάδ#»¨!€~σΞm€k₯Z}•ΉεΎοa¨ƒ{{ΰOBuΨMΞΩ©‘Cυ.…ΤWŽcSοΣ9}νS„P½Kνχx"Œ‰hιϋ!η5²•ŽP³ΓTˆπ‘:Ό^ξέͺΡCυ.΅#Ϊ¦ώ%{©jύϊ‘Θ*Θ&‚·©^yΜ|`ZΐΟΒw0”Oλwΰ/„κπzΉΝo2ώM σΥsΆα}~φπoiς6-α£T«G˜ί ό]„οˆ–Zΐηbρ Κ§υ;πBux½œ‘zIΥί?ˆ|HΗ±αϋ} ΅KΥκ»Μ‡¦!To₯|΍gZD@ωl–ώB¨―—3(~(μ}λΫπΎ p―±HσΦKν›ΏVε₯Jό,ΐ1ΥwΚ|NZiŸϋ:iΚ΅LΟNͺΓλε %J˜§ώ\_‘ωS¬CΪZίώ_©­πu ŸoΈξώL΅:„tΰ ZhŸ;Tχύ εϊψ‘:Όή^ΖsWΒ<υ—τUάWρkk‹°άuέ―]Χύž‚φ› Y—ŽQ΅:Δs`γM+sΥsŽJQ©εr?όP^'χΝuiνίΧυσ|oγΞhϊϋ(ύD™§«ZbΚ½ω樑ο†UΖίν»Κ₯Rψ‘:ΌNξy΄%‡κ]ͺ’ΜYAΨ ΥκΣE€£j‘Z=稕-P#οπά·ΞΌJΞΕςͺΌWiΧoί.ύ ΐρΤμ,x9+6ΏκΓήΗΜcDŽS+ϊš©TψŸΓgίM›V୞mRz¨`ƒ/”fύσ»άb=βωηυΞs!lΔYZ³~_Έιuζω5₯ΤQ₯[ͺΓλδ¬T―eK°>‘ZύΌ… ι[ΐΏΟxΈ-TͺχΧ—™~·…8`nΗιεωΟ”ΈnΧBχ!Ό³  ΫŒΓτωBτ)Ÿ“‡Νϊ7kŸc‘;ό—ΦοΤfύϊ²~―8Ε}βγΪ}αΓΪ}bΞNr£ͺΓλΥΗ1λw™+6k§ZβΉΜͺ/΅Ϋi,j|Q@CψvΌΒ序ZγΎyφΏί―t75πλŸααsœγΎαθΩ?OΟ>»7ž#iP’­ί#f(dΪK?/PΈvqη›ίέ»Ϋ[e\0!U8Φδ0έP !¦σ“juη!σ†’ΪΏϊEλdόύίi‘Μr?¬έZXΞnΉΎΪαι)=Ώά€ θhΝqκTκgψ>}~o„μ4"ηsš΅ΆuΈvy)ȎμiνΪrνω(P^'ηηŸ•ξδΫO7PZΑOγ)c ΗEζjυΒ²œΧλο΅AfBυ6 U¬§•ήί§Ž-‘Oχ3v#+mNύ63½wUκ e 8†£ΆΝγŸηΧ&™ρδΌΦT‹ώEύφ*]#kgάΔλ-Χ/'•]cΣ΅εχ•PΆΧί΄όšρΌ}Sρ{Ά4c}Rοy8ƒRδ^°ιύ£ςŌ»ŒΧ‘:cͺ·γ0…θ'Eϊ΄ΆxšS_ψ!Σο/­*qΞηαΞΝIϊ?‰P³Ok›dx½œΧϋυλ§ΣΪS·φΊ—Φ‘fηYi{Γ}b+טΗt}ΉTΑDb¦:”ε±ςχk˜±.XŸΖΉPBΉKίλ9Γ“γΚAsn8ΆP|Ε2-ΦZ‘Ύ‰7ιη"ύX8e] A_ԝ₯Οq‹γΜ†Οπ~\¨>e&/…㝠œΚ¦kLmι›ΨK?€Ν?—Φ4ώΟ»[Λω`ίΒΣ¬ί8–Ϊμ₯Ε ŽάvνU)‚ ’Γ΄(ψŸλ~Άθ‡EZ4ύ-›\­ΨaS§iσάoiœO‹ϊΊ!όψΟ0#:N5†™Λ©ͺχΤρλΧτσaνη(ύΈΆR²Σ΄ Ώ;λσΗgϊ—τpΎΆ‘`vBu(K+σdVi±ρ*ΐ±Τ¦€φ‰Π‚ά•ΜBυιXLž;IίϋΓ)/{+\'9 v"†ξiq?ΪρEα3ΜXŽΣ¦•!(oi< νY¦5»UΊΖΨςwΓ.α:PΆ—3€h­ZΏ`ρ1ΐqΤD΅:ΔWͺ?e<’’“±ˆ †ξ_BΈ­ ΑœEΣΆExο‡ cΣ{›y› |†>oύσAUϊFΒu ‘:”₯ΕΩ¬ύμ wŽ£&‚ˆ%χwϋa΄2"3́œŽ…p£Mm mSξϋ”3AΗN†ΰγ.uλ€mΤήU‹Ά Σwχ<\˜œPΆ§Ίd~}ΫΈfζ¬AώΎw£ ᘫ^§š7+_v˜6υό*LΝ"mNΈ±A΄9ΉͺΟ†? :F±—Ίu\«(ψsfΊ0}λαΊυ `RBu(KΛwwiν>ΐ±”θ6?U›ΉκΣΙ96Εβ΄g™6ƒώΫFάΙ₯η‚³J_7χ&΅γto¦ΓΔ4ή=€†ΊΖLj/mj΅ ˜ŒPΆ£κ,―UzΜYίΞOiΡ’΅™όPŠ~aρ1γ±Φόά8  C‹θ·ήοΙ-RυπΣ&ΜΥ™`Ψσ«M1“[€σ¬ƒЊώsaγεl† \Ǝ£ͺΓvr.Ϊάz―ώΤ/Zώ όW=¦Άω+ Ύά-ΰm›†ΕPΏ‘Ρσ;²`Ϊ„9₯6ΕδρA5!_!|€Ηi³χ{οζ¬iμΘ₯λ 0&‘:lΗE8Žλ΄ΐb³ΑΛ>₯L•&”!w ψšCυœ°„κP·³t―eΡ?ŸaΑΤ&zMy-΅)&Ώ7ΊN»H9΄zΟηmΊ_WHŒB¨ΫΙyŽώέ*νψόQΥϊŸϊσπ.UμhχεͺOΗυΫ2mπΔΕ‘β΅^S6ΕΔq π*s¨:=”½Τz΄υμN¨ε~ήEΊam½jύ>m2Έ p,ΐvVι3œ‹EL€Ν§6Ρoœ―p†ŠW]Bκ3ζ}ŠM11ν₯Ο―{R6IQͺΣτ}vΰ ηk¦ΐ„객œxή«/zH‹œ?€Yβ­ω¨έ;/ηηW•Φ4Žk|QΠ°³ΤΒS—ŠΧ:ΩΫB°Ξ”θ2·ξγzkμ° ‘:l'ηW¨Ύ™λτπυS#-αϋ ί§E^ lZΐOΓf#` —©²•ψsυγ½<·)¦ £€-Σsη[o^Žλΐk Ձ­’IΏψrUρ;όSzΉƒ8`BυiŸμΒ"i™†`έμΜ:μ²θ=΄{ΠϊI,Ȟ°(ΘΠ5R»χ²θnΌŠPΆ“³=ΰt{i!ν»ΚΒυΫτšΞ…EP•‡Μ6Μ ψ«}31‹ΆH-Xλε{ν8•a²vοε90χΆy6UP‚α:³ηέ*žξFΐΆ„κ@ j ΧoS«χcγ Z9[•›=>ηP.UGυ¬—ο5αΪ±M1Ε{“6’Σ&χΡDwš3Ɗ”ΝΨ `+Bu(C ³Αη0„λH­Σ 9ξυ0]Η¨[ΞΟx­•κ97!©°2Z$­Ξ/6mΫ`όΤότj|πΩ:Mχ3u¬ͺΓζr>Θε¬\¬Ρ0s½~θΊξSΐΧψ”ͺκΏ¦CSr~ίΧΪ²Ng`υz][,-Ϊ¦Υ† ƒz\Ϋ¨β:S§!X7ψ"‘:ΠΊώύ$U―ΏK{ΞΟq,ӍΊ0Ϊ’{•J  eυΊ©B*Ϋ&οΫ₯ £J σΥ›d# ΤλΆ°‘ ψšo!(ΒΚΫ4ΉUzPω+» IDAT֏Χ~Ž&όεχiqο&έΈmΛ½‘Ζl UKzk랱Κς΅{”ώ9ξmλ'©bofxΟΜν°ŠhZ ԟ>³α°{εƒτLpμ^x‰P6—3hΠώ}~7ΟZ¦Ÿύ΅JΞmΒφΗ–έ­ύSKwΰ%·oζω‘ϊΈμp‡2΄¨χ¦«-Ÿ5φΧΉU»Ϊ³XZ€/έ£Τ¨ί~εΎ|ΕΜωR]¦ΏŸ[`n'•κχΟΦ'WkάΤrmσΛρΪ=b©χ‡λϊλκEΪHπBu؜ ‘mw_YpάαoDhΌΖ]ΖΡ+Br.ΌΆ²Θ ₯»ψσϊ΄Ά™s}ρtLΗk «Η…T1Y,-ΟηžΗK ΤοΣ=ΚΝ³Ν-Ϋ†Ο ΐΧ?—΅Tφ―αΌλΊ³ΗΒτ.3©|Θψώή6²–T¨ΓΓ FP|Z»λοk΅φοzώο<|Φ΄ΔkΠΫτwzΰX€@„κγx0IΞο’+«u{Ύδ²’Ššu·i£ΐΝL߁ΓBκz[ζύ΅…Τ“ ‹©oΣωΉp,|έK‘ϊy!ϊύΪ&ν©;–})ΰ8 ώ™άΔϋτ™υμ]Ώœ!fΞPύFˆΚa‘݌ž}Ωu¦±wΟξ±NΦ~J:—λ0zψ“PΚ hGΞο|³ –œVΤ2ϊ6ΧAZ#?€γB‘ΓtΎORϋυ(~φ¬UŒηχ(§™ƒ―/yZΫΨε39Ο?“§†Eι»`JΛτYwδν³ϋ―(ΦΓύαΪSΚ¦ΦΛtΝ΄™ ψΓ9 °±œνίΝ hGΞ‡΅–ζ m;¬`6fά}μΊξ»T}zψΉα.΅lΎοΊξ*ΐ1 +νΤR›υ{”Σ€ŸίΗτyόgϊ{:-δ3ΩλΜnδΝZ›{€©ά4θκΩύ`d—ι8Ώ v?ψ9 •κΐ:‘:lΞLuζ{΄EJ vΛΒΗϊπξ]z>9+°rζ&ŽθΊξ§΄9 §Ej)M|C σH-ϋ―R(=|Kμ|pξΎ/(\Χ˜e!ϊ¦Ÿx?ψŽϋ»4σ=²γ‚€P ž{ο ΐd.‚΅ ίΤz˜ΉvS«Œν Χ‰o?ΘlΫ§τ7ϋΤRΑv³?8ž/9²˜H γn ӟ{H#=ΎΎςήuθ„κP sώΪ’3(1W¨ΩIsΤ‡oΏ€–ž―!\gSΚ¨[–ιoΆΦ1m7kŸΗΘNƒPžhέPž{LέQŽ+œρ}“ΞδkΟ₯‘A€PΚ`¦:@[n2ΎZ‰@­–†ŸRΈΥB«γ!\?,  (myzΦ%’η©r0κF—·Ζτ#Ζεξ†ς9Wι©φωήύ΅ηŸA«ΦχŒ„κ°9!-p½jux‘τΉΗf4ΈΑv½ hτΤΤ―ζ.›ͺΦ£Άδ= p @.ƒŽzJΥι§ έή₯jό«Ηςœ6πΠ8‘:lξΐΉ`&9Η~hΤ¨iίςΊ>₯οβœ]K"ΈQ΅NFüښۼoj•„ˆΑΊπΐNƒή'ή7Rώ’Uz_ήΕ;΄f7ΪAσ:‘:@H­/ήŒ©”ΆοC‹ι«Σ?g•ΞΗ;³Φ™Iwφc₯σjw5X_ց흣~εZτ‡ΛT©ι>Pxh˜P žœΞfSŽΛω„όΞ hϋώ˜NUΎΌμ2νΰ™P1\‰`τsxΰ€rEtΥX»χ―ΉNןHΑϊ™g}h“Pβ‹:» €ιδ Υ#Ξ‘+™mΘλ8Ν>ŒlςrŽώ(Α]:Ož˜ΒΗτχΥzEΰΧ έ#"oRG€mυΑθQ°³φ£/Ί ¬/T«C›„κŸ]‰π:Ρ»ξΣ‘{ώΝDžνL™†± gήΏέ<_(`[Λ€χ‰οtKω’hΑϊΫ΄!hˆP &ΐnNV­»J qυν ΑϊUIMHOΖ.ΌZΞ>:‘:°­hmίίΉm$ΪΖ.›  1Bu€˜r†,Ηώ&€ΒE¬>Zw+ΪΙ*-¨Ϊ€Ζk»°»³@Υ‚Zΐ[8N£#’ψ(PίΚej“Α‘υh‹P¦sγάB}Ψ³τΤί§™ΔμF+x^k»`~ϊn‚Uθω^6)ΐΎ2‚δU.u-2["T &Λΐ‹“f¨jΦ+zMLλήgpTη>Bu`η6^ήλ\΄“(]‹T«CC„κ1©px³`32O)τζk•Ξk”6ΤΔ%PŸF” =π5‘6^>ϊήΪΩ*mJˆp¨Ϋ4B¨@-"W©Ÿšί<™;‹™|…@}:—AͺΥiN>ΐηœΪxi£ε8ξ‚lξκgτο8`bBužσ0”*j•ϊΗλGΝϊ`οSλ'ι1½(󉡀>§Ζ}δμόh£ε¨ϊωκ·ŽΓluh€P€η„κ@‰’V©ί«’žΝ©ωκ<σ”*Τœ˜I]9­”Ο‰xήϊΞ¬I„{ν“τ<TL¨@ "V©?©œœΥ0[gͺgΡφ‡φοΐKϊMγoœχ…ΣΉK‘rZΈ…ϊ Υ¨AΔE¬s²³»Ρžδ*P[ςDqa:π’(UκgF‘Lκ§UΙΛΨ…ω]Ώ TΦE©RΏ΅Ρkr«χή{F‘@έ„κ”.Zxφ€ύcV«@Uiδqͺ0‹ΥκBu`]”{Dχ…σΈ°±{ ͺP3 «PΏΎδ Ψ«ΌΠφ=»‹ U³Μο'sΤ³Ή p ξύ€Α2HΐωΡ}αl"T«››ͺP³eΖΧ&́yD«yT%†J‘φ<»U„Jυ£ΗΔΠί,2Ι“ϋΒΩεΎXΦ‘^Bu˜†j˜ή2ȜΜu‚ά8n SΪq¦ν{vŸƒju  ϊύΒuivύωΎΚ| Bu¨”P€RE[°Ί ώ˜QΦŽΫ •­‹π˜³SCΈ—ωHžtOΙF x`Buˆoί{/ŠP΄N•z<ͺΥΫaE BυγΗδαžL•z>w]ΧέgόύZΐC₯„κ_ξ]•P2•JP―~σιA WweμCXΒΦϊιΗ]€#QœmλΏήd>ͺΤσ»Μ|Bu¨P€ηjΪMo¦&Τ+Z•Ίΰ6>l}lύ$TΞη/–άέ!„κΠΆa¦*υόr„Ρ5*$TΰΉF5P1ӊTύ‘J=>‘k½T©Η“ϋ^¦Jh[„—Ή«€ωο½yΞπ{GP‘:lΞ>ζ€m9ΐη“$°ο:΅b₯>‚‹xr‡κ‹ˆ'˜E„{D›-γΘ} Z*#TˆΙŽf€Ο; tn,œ–a  (γ{ͺ‡α;Q xhS„{DΧ₯8rίϋ™«•ͺC+π:v†C"-PY8-ΗEλ' B6JΔ‘ΏPΪ”ϋρΡH’P{’ΛQλoΤF¨eΠ€9­œνQ˜MӈΤϊύήΒiQξ2/¬2>›ZβΚ=nΑ: ΄'Β=’λR<Ή7ΰΩθͺΔ”³K‰0x6'ΐ4"-L©|.Εξzά»g -χ{£γ΄Gλw^’{¬λTD¨›σ°ΐœΞφ(΄ώ„ϊDiύώdα΄Hή³zθ›Ν…ΐάroΌΌOνΖ‰%χύ‚Ju¨ˆP6—σΠŽ6x(-’q,Ν&Ξ–)χlMΖγ3[ξΒ+‘-ύgώ σ+v]Ši•ωήΟΊ>TD¨e0  -9w2ίϋ[ :ŸΦοŒ!χlMvχ€›_!T‡ΆDΈGτόWΞχfΟ5 κ!T`]M­:=ΈB}’„κΪ{–M¨^>z|Β%`NΉΗ=Ί6…–ϋΎέΪTB¨›Λyc€R -ΪƒΓƒ+Τ'J¨½gΩ„}ε\°.χ=’ {±™«ŒB¨›3S€ΉδάL%h‡6ϊ0Ύe€Y™‘zω>΅~ WSg¦aΪΡή™_­ηθΨroΖsM‚JΥⱋy9\-φΓψ’|7~ς―‚ΕﲩT/χg,wΐΜΗpΥ΄ >Τ%JΫDŸο:xΛfSƒά‘Ί{Š2δ\Ϋο΄€‡:ΥbΙݝ$χƒζ˜<΄B]ŽΌšϋΚΎ'[wΫϊ (˜Š@:σΤΩBξ{xτ BuΨΞcΖσ%hƒP½Ξ#Œ+Κ½°ΦοuQν\¦œ3QΩNΞ5  ξέO”!χ3z”QVΐ„객œ_»ΩڐσAλΎ²3œsE¨γͺ3‹ΰeςΎ•Γύ0΅άχˆOΎλŠα}v&T‡rδ\`9jk₯š» 0ž‘ϊ“0―:W‘n:ώAύrΞέ²)•κP‘:l'ηŒ‘:@r. Τ4 .χ⊹z0ΑˆΟu}Ό§e²‚Mιψυ;Κό έK”Γ{μL¨επ0PΏώ»~/㫬©Rέuκ’{Α΄³W-3ŸΛ#T  ²ι5‰MιžͺΓvrή(ΉπΤOλΊρδμπRΫlzΘ-JΗ&ν=λd1ΚαΡ}›2ž* T‡νδΌQRqPΏά3Ά„κγ¨m6=δ%TW©^'›% LΖ±-Š€Υa;9ΙΌWΥΛͺ?Vη αT+ΐΈro8κέ8¦a#TytBυ§ΜΏŸνε~Vπ\μ@¨ΫΙ]Ε₯J€iδ\¨-ͺC="tlRΝ\/-”)χ=’ϋC€ΖΥa{9w! Υκu˜yΖVm‘‚ P­=}b9Κ|4Ίέ4F¨ΫΛΉ Q¨P/σΤΗ•sƒ‚π ΖαX%R½Ό·PŒ(Q„ΝΒΐ„κ°½œ»…κυͺ'χΉͺΓΈφœO‹¦υReε‰NΊ‡`[6ƒ;ͺΓφr.¨ε ˜Ξ›Œηφ©² 8χƒͺPΖaSι“ESΕ|Tͺ0»orΨZΞ5»Ωκt’ωU™§>žΗŒΏj€υ;sΈοΊξΐ™€bD¨T?UU]`Υa{9Υ,τΤ)w¨^[`”σAY•:ΤΗηΊ~:ΫzλŒ΄EϋwΨ^ξE΅;1Wξέν΅Uͺη ΥU΄ΒΈ"TΥbQ!ΐμ„κ°½ά‹jΪΤΤ₯ί,΅—ωΥͺeόέͺ‘>6Λ»² 'T‡ΧΉΟxήTͺΤε4σ«Ή­μ|ζή|VΫΘ-Β†R›eκ§”EΡ³ͺΓλδ\tͺΤ%χjͺΓλε Υs1μζ,ΐω» p cΛέΙE₯:ΤΗf@¨;Θ½p~œωχπzZΏO#η΅ρ>γο†ZEΈίͺΔbM”Rέxη lBux½ά‘ΊπeκυEζ#Ώ―4(ΚymT₯•ͺΓλε#„κeϊ}ϋ™7+¨f€J Υa7·ϟVGειΏ»΅ΦογΣΖ *%T‡έδlυΊΧuέϋP”³Τo΅~Ÿ„φοP)‘:μ&χΊju€rτνΙί8Ϊ[Ώw™CυΗλV?0!‘:μF¨ΐ¦Ξƒœ©[ΏχŽ2ώnUκP1‘:μ¦_DΚx…κeθΗuœ8«J+ͺs_…κP1‘:μ.ηBϊχ g]Χ-¨ΦοΣΈΙόϋ€ ΥawΉU«ΔΆL‘zn‡Ώ*Ձ©δή΄ T‡έε^HΠN€ΟS₯>½œ‘ϊc₯-υZ:ΐ·ΝŸ؝Ju>'J•zο"ΐ1Lα0σ¦Uκ0η€€ά«ς FΗAα„κ°»UͺRΫΛt.Rh£J ž(UκW_'ro.σP Σ±P ΐsžm/= ΄Gϋw‡juž‹T₯υϋtTͺCέΜTˆΕ3YΥaBuž‹R₯ώXωz•κΐ”"|™ ΥaΉΤO2~ώ*R•ϊy€c˜Jξyκ·7΄β)ΐλ\8βΠΝ ABuΗCͺΜ₯ŸηΎο½γ"HucF]8Ž©¨R‡ϊEhοiΡ΄~ž₯€mΨt Π ‘:ŒG΅:]Z˜δLταώ*ΐqLş -ΰ²8Ο<ί{έmoξkyκ0Ÿ(ίgͺΥλ΅ίϊ €y`vBuΧ*-΄η€Z`^}Πς>Π9―}–zgž:P½^Bu(Ο]€#vΠ‘:Œ/w΅ΊP`^‘Z­·P₯ή·`~“ωr_λ‘5ff Υλ₯΅?πBu€ΖΥa|ΉΪχ,ϊΜζ,ΐlοuͺΤη‘Rζυΰ|±T/ΟNPžΟdξ!#T‡ρυν‡ž2ŸΧΣΜΏ ϋΑBμͺΤ»ΑΦ§ΜΏZ!TίSΡ\-UfΐkΈ7hŒP¦‘<@ύϊΆο‹@―²…*υΞΐ9wƒ;PοmϋήΉF=¦k6W”ΡJƒσ‡ΑœΩ΄ŒodΝuΟlu€z Υa~*ίΜ~ψo ~τ<΄Ϊφύ8Θ¬[UκP†Hί“ͺΥγ;kύ@ε’t2rΟP)‘:Μ/JUju e—υVΫΎw^wΤϋΐ_EΫcCN\‡A6mΣ‰²αςH+€: Υa~« 7yͺi€V]¦οΐ¨ZmϋΎδ}ΉjτόC‰’ŒVΌΡ *,cPΏ‡@χ†ξ=*$T‡<’T±¨VZ=PΨhΫχ.Π’ƒ*u(‹juΎ&Κ¦-ψš₯3΄³(ΟsŠ™*$T‡<ϊͺšΫηώΜ ;АθzΏ£ώ<ΐqδ° ²Ρλ1ΝΪΚqd΄ΰΐΖΥpZ½Άπ:9ο+’Ž(+I€MκξA*#T‡|"μœ\Xτ=Pοnϋή₯M^‹ΗaΡΚ±ZέΖΥU©°₯;'¬hA ™Ίtb4@E„κO”ͺ3~€Ϊ•¨ΨψβM„ ^O ·ή‡EΫ°Π> ο₯±1ow‘ξ mά¨ˆPςŠ°Θ³§Z¨X ϊ§ΖύOΣ΅(·λ†;@ιϊŠ€«`―AeR~ύω?jύ$PœCoΩ΍κοEN#ͺC^QvNͺVjTB ώhcS˜ϋ* l?Γ—ͺΝ²ŠΦΑ˜Η*X2£*!T‡ΌR…bn*i€Š, Τ»΄c½εκθ(Uκ·ιš ”+b΅ϊž`7›σ ΧΚs“ωˆ­Ο#†Λ=›Έκ T‡ό’΄όusΤ`™AJΤ[Ÿ£ή©RFρ³όFG’Ωυms?4φš€ΏzH›§£xoΓ@ω„κίMj›Ϋ‘ΉM@αφΣwκA/γͺρ9κ]ZPˆPEψ GΔjυ.}߻Ϟξ”Lπ:žhΟάFN¨1D©ͺ1[(Υaͺϊ.!PΏχ}ϋUκΐ"~¦Qgs^Θ½qεήp»ωδζ:H!Σ`Οζz€²}λύƒΣMΥ"σΑΌM QζΚΒΛΣ‚ψϊΞρΓ΅EςΥ³vή7/όoŒο4Θwθ&žΜQΓqꐒΫSΊυͺΥ£9HΑϊI€c©Υ±ΆοT`/­1΄ώΜ8–~σ—@Ησ6­ι¬P ‘:Δ°JP„E ssαϋiqφ8η›V=½YϋΟλŸιϋί€›WΖq‘f“•βΔ{‡(•€« JηCυ.έ#\ΊΧžΔ&)FαyνЈͺΡ\¦{Γ£Ηi}H@a΄‡8’μP|«Υ ΫOmΉϋ›ίnζ·#΅=H_ΏϋΑŒΥ,Σ"CIϊ; #ˆR₯ήi½Υκ―±?}qo…κ£ξ JθX@|BusΥΗm<Π"m4 0BuˆchUω²΄ζt-Hy¦Yœ{)ώwϊόŸy ΪΨ0?=J0»‰+νέώεs₯Jͺv‘FΎˆΟΊ§”E¨±τ•—·AŽHΨ@­†0ύ!Ν<Τ*t‘ͺΧKΗhΗςμ§]ά6ύβ^hςQ-ŸΜΆ‡&\Ί·~‰`}7—AgηPΎά³ͺΥG±Z½Kχ2ΊΪB¨ρD T«S£“τp-LΙ‡΅Άπ­;)°έ{—Ϊk1ώ'³Τ’_Gq­ίΪ2Ν!¨0•pmΌ_Τs*X/› 0Π‘:Δshη€juj1,Ύώ«°Άα‹Τώ¦ΡM.λο[τMΟ Τ.Κ5ε6}¦€6τ›²~ ώJΆΊ±eϊΧς€)εTοζrΖuΈ‹‘`½<Ηιoκί:MB;„κ“juΟIΪe^ςβλQz¨o©’ν¬ΰχmΤ#,ΔDqb–:ΡEΠvŸλή¦λ†ΉΟ;NχQ€jDx–ΫS;‰ΘλeΒτ_ΧΦ9|V‘Buˆ)œα%»(΄Κω%‹΅JΆšάΣΓΙΟΏogυΏ‰nύQ•:4iUH Υƒ«Lϋ»σ΄pYΓ=ρ­fι܌ˆίCπ.FoL q IDATSΗ>-γy)L·~r Buˆ+ΚΞDΥκ”hh ϊΎΒwοmzm΅=`-ΣχήΏ œΎξεsh삍bΠώΪω±€WΏH/,¦ώa?½w m‰ήύΐψ’w1zΣπΐˆNΣχΑKaϊ@₯:4B¨q]ΩΫ !(Μ¨—Μ~ΝPΙVΓMϋ2}Η<€ %¨Ώ,Κ5δΡϋΝ뿏ξ 9 οΣβ]ΛU/ύϋυ[εχtΔ‘ΓΥB΅ϊ$Jθbtΰ^0«εΪXΒ_6?d4B¨q­΅ΛU­N)†Φα-ΜΪ\€ΧZj°Ύ¦¨ «@ύegͺԁ@Ji?ΨK1׍݋Ÿ¬έ@.QΖF©VŸDώ~ ~Œ‹t/θYv>ϋi=ώ!%άt=£…uHh^'T‡πT«Γζ–iΡΉ₯ΩƒυΪΒτN ώYKUκ@@}ΕϏ…½1oRΕvν-α‡9• ΄! €vEhή₯gfkrΣ8 ή~π!ύ=*xšΞIZSό-uŒzΝZ•Π‘:ΔΆ2[62΄|oqΆ”`}?}ŸΥ¦wυ/: τ>[„Φ]P™τ’χι:z^YΈ~’ξeΎ4§r*…ΜΪ`~«@ccή›Ω<‰’Ί νΰΟώZΡΗΏFΦ]ψŒB„κ_”πΰˆΐZiωώ9‹τωŒΈΐ~šήŸίζœZΒτN ώEϋφU©/9-hΎϊΊEڜφŸτέVκ¦Χυ9•Κ87ύ$-¨ΐK’΄€οR­6πγ»)hƒέ"΅$7kύυ–ΟΦ©>ŒX #T‡Υ!Ύ~‘ι*ΘQΉi# K³‹ώp²#ι©ΙΈP>%ϊ—«R‚*“’ŒZz·i1π&½–θ νΓ"ζuΪ°ΝœΚ)ό¨΅/1EzΖήσ :™³Β6[€?%o°œΫI:_™pJ¨ ͺC"Β "9M ΚόΧQ°Οh­ Υυ/; τΉT₯|Ι]A-?Ώδ(-ώ'-ώG ΨΣBυυΪ"ζ­5Ηπ)XG0bΊ Άοη›ΙœΈΩrΨ`)\»εZΎJ‘¦^§Pπ ͺC’U«Ÿ88΄ϊ’:JΤψ°/PΊHŸKΑ€―ΉNΛ΅x³°ί₯οδ“™BφeΊ9Oη΅_ΐόwͺH€ξ+ΩLΐ<"΅€οR0uό[Ι ^ο\Χ[ξ0Ί¬+Ώ2Œ!T­•ϋΦ Ε8Tωw°Ν4νΉ¬l>χ˜.Ӎ|ξ‘ΧiaΏOι;Ϊ‚J4ǁΪύ«R6u¬ΛΖXΟϋτο{JAϋ]ΊGi« »Λμ―UAν?ϋ9,δΎμ)-Άš£ΐ¦ƒmλ=ΛaΊ¦e2ž›΄ΩςηBmϊΉ_[»­ωžgΨΠ9όD¨?τ™„Ί Υ‘C΅z„ΕΎ½tγ.¬ —sm•Ύh/£³ΜΗ± τ½΅‹§τ€ζΑθλ"]T©Ϋ*—k+³HŸ†ΝO2OΒΆu³ψA ΟuρU ›-ίμ/iMζ:ύ­”°G џS©•ΣώΚ) ΈΠjŠLφ„Ε%xδfΎτχυ₯ ¨R^γ,}οS§wΊmπ «@#Ÿ[€ͺκ£MFuZΡ=αΫΤύ?ι>謐ΰχωX‘‡΅–ξοΪΥ‘r*Υ‘,‘ͺΥιFL% s;Χφ}cζi]§Jοί³!PΧ"φλ–ΑMΐk¬χώŽ8ΥΉ²Ω €\―\ήKUΙηkmΏΧ0.ζp-$]¦ϋ¬wΑ―Ν5ήΎYeπ”^ί]ϊηC¦Ώ™—ώFφmΨίV”qxΐD„κPžH³Υ?€ΰ7κ΄‘Ζy§S:Z{Μ)ϊΔKμτίΚE ·‚`‚υϊΈ¦°«λΤ +zΠ·—*ΧN›Δ/Χ‚Σ),ΧΒΠυnŠξO:v²ZλZWjΐϋ%‹΅}}$ΠmzνΓίΜϊzέ†EϋΟήίυ>ό”œΉκP1‘:”'R΅z—B~‹TΜEυιφ.΄ŸΊ(,TΡLΊ­DΫμβ{Ψ•`½uΖrω,|Œξ …λƒΫ΅jδυpτ₯ t=]­)΄ˆλΟΛIΊ'l₯cβPi=T΄—τ7…P*&T‡2EͺV»Άσ¦΄ΏvSΟζT«ί²«i큙ΝEΪ€pλύF"X/ί­@€]0iMύ*wkχ„F²‰θ]€όŸ“EͺΥ£PΡΙTŸΎ^„s½χ}ΪM,έΞi°…ίΐ˜†`ύήY-Ξ}Ϊ(cY[‹c>C°ώ䜳c' κ%T‡rΊ™;PΒΔ–Fwr`§lδPύ*=τ<8–’,ƒmͺΊ²)˜ΐ¬[D/ΗUΪ(·ΙΜOΨ†MΌγΙ=¦n[‚u6UΪί6°‘:”λ!X˜q‘˜Β‰6[;;ΛόϋVϊυΓο¦ οΫ;φΉ΄ΐLe•απΜP`JΡ:G–¬Δ5Δ;]ŒΨΐB x¨—PΚvh‡δB Α„T©ο.Β9Œ΄θ>= GoKUΏσϊ} cϋ¨Σ0ƒ³΄K…RLuζpζ^ i‚u6‘Z*%T‡²­‚…TονΔcύξε7NμΞφάΤ_gώύƒι!ψ.Ζα)f„'›Ί€]ZH ι@€™D[‹c~Γx OΞ=Ÿ!T‡J Υ‘|‘ͺΥ;UŸL@•ϊxrŸΛUζ‡Ξώ»ςϋTY έϋλυηο Πρ\x?™έ™³FmΑ33;·Αy«΄Ζb</9vV NBu(ί*ΐ¬δuGBPFζFt<ΞeEοO©“ΖM¦ί_‹ύ`UαͺԁL†9λ?h›Ν0Κ%J'Ϊ’CΚnŽJ>ψ5ΖρkOP)‘:Τα2 Q\¦–έ0‘ϊx"<΄^Οό°ω˜ΥΜ£θ«ΒŽG δv6i9―OFΉY ϊΙ›ΐΪx Hk³δqΫuέ?­U@½„κPHΥκ 7Œd?Νg<6)ΜUQφ1Ν±RΑ6Ž~cΒ›@Ηs«έ/ΔΠώSΥϊτϊσϋ£ΝrqžžKΰ.­?ΨhΩ¦ΗΤ±ΐ¦O¨œPκqμFώ}Ί™„]μ;{£‹πΉΌ˜ψίovϊθ–l›·€h†ͺu³5§1΄{Ÿϊ>Άq’B™dΨh©|;žRNJ}›ώ‘ Bu¨K΄€ΑΝ»ϊ}|Bυ»‰†κ΅Cσ«Fw¬νϋ•χj•6u}§RiT?₯λ»Κ’‚T!κφj-€ΈLχ-ΊΤk=L·α"T‡Ίά[Ό;Φ–žς¨T_”s:φ¦›ι΅©^ίqκ>Ε“k P€‡΄ΐώ½՝ܦ +ˆμ.=7 Φ·SσšΟCϊ›ψΡίEUž‡ιΊ#Bc„κPŸhAΓΉ`”ψΫ_m‘ϊ§΄ΨΥϋ4"Ά}Ώπ^ΉI ͺΒυν¬Ο₯|(ιΐh–`—\€u˜+g§hΒtΰBu¨ΟCΊΘG±P9Κ–Nήθφ‚ΗCšϊZ·) 8±Ψ>©σ@3] YT+%ZΧ-ͺ~ήΣZ«w£€(`—τμ©M–E¦!T‡:]»“‚/Ψց3V΅Χ,–aϊ±™Ϊ“‹Φφ½K %»Iίeί₯Ρ%έΛ‚%΅ΈKΧ³]6‘S§a“ε»΄aœΈξΣϋ΄to ¬ͺCVΫΐ_ͺ:†0’|· Υ? Σg±νϋ'ο=P‘‡tΏΎL v­V-Y° F«Τuε£wχ‹Ϋ”.ΣΖ αzόίφ^y*ΧېΏσ.…ύΎ£`{CΈ~ΆφΟΧ^§Kvμoη«.ΣΟ2…λφ―ϋ΄Άξ¬#0ͺo~ύwgΪπμύ)-ξ©LεKϊΫghtίTφzΨέ~ϊΌEͺRw€ό +-iΐMζJο ۜ° 0‡ήfŽrfvWΘ½dΞλ½k}‡kUΙ΅μχi}r½»Πs{Λτ½q’ώΩβ†Œu·kNέ#“ͺC;ϊ›¬_ƒ½ΪOι>'χ"gξ,„OΔΟΪ»΄#€oο~ŒΪΘ²χLΦF`mh"0Α0˜‰ΐvΆ#0Dπpƒ"XΑ@EΰW½{τͺ—αςW’Ονϋ}U*{][5­–@ΠΏΎη²K’:Ω,β:ή~²-k±όjΞέΌ±;ΓχΛbβ‘}5Έ!γΒϋ xm’:΄ε<ሠߍ~ζ§φΫΊ₯kάς1Ω!χ)―hμ‹"’:YάzŒ}CτzΛ―nt“ΖΖ7Ό_6‘½Ά3γ=u1xωy ¨mΙ:ήwaάc_νΎΖ~mΠ%bβs€Χ4φE‘_¬²ΰ6ΫqΜγΡέΊ1ω9α}5ˆβWƒίΙ6±όΚοiΥΊύ~Y ώmŒλΔλΑΟ?…?Υ‘=V$R“ŒΑ―vt]χ₯υ“ΐΏΝβ—Ψl£α>ΕgΌ†±/Šό4ς`vk«ΐuΪ»ώύζžoO/́ͺ‰κΠ¦ώš½dΟ\θγ.ύυλΜl•ΥPldάĞΌ6Q€ύμA“2Ž~ώ,€p‡›ΨG‰νΤιβs [Pο%8ΪaZ"ͺC›.b_εlNce2  ΅=Λ©<^d72eσΙM@F’:΄«ί―vμΩοΟΝ”­q.™%}¬μ£@ƒV^t€:ˆκΠ›€cv»;Hpδa₯ϊφˆκτAή&< ΖΎ0†±·ŸΊωΏΐ#‰κΠΆ>°}Oxϊθ3Opδp“τ}Z›~%ΤUλ'‘q“ξ£nμ;c±υ"ͺG ΗΐΏ±’–[Ό^ξ΄φ'ΐ‹μw]χ!α)4φ€1ΥέTP QΈI4μ―ΞΠiΒ›?jγΖ„vΝΏώΖΎ0&γίxQθ"^/ž‰χφWgΐMΟwfτ{³fΤί$<ΖΎ0Ά±Wͺ‹κ•ψιǏ^+ ‹•Œ— ΓΛ:V‚τοΡΏš? ΟσkΧu58/ΦOy8Lx—1’Ζ4φ?£TΒJu`γ*ιψΝώκc―"a|W±βš§YΊXΫ¬“€A}mμ; Μ½<–•κΐm}|{—π¬œ‰0X­ώ,V@΅©_ώgg~+θ`L>+ωΏΐ#Y©άv«³9Υ‰Υκ_ˆG³J½Mσ˜π‘ΡwA€$#FΖίΉ(Ձ۲ށο}Kpρ‹ρ}tςΡ܈žYυ7 Ÿω΅χ$‰Œ=ώύ2ΥΩΰ^’:p—/±š0£ ϋ«7ο&φŠζ~Ÿβ&Ϊ―ίKϊŒβλ2ϋf]?§TDTJ²Žcœ5—NDΡ*ρΔ v§Ίψ-ιωύδ{7Ɉκ<š¨”ά$Σ»gO^Ί;0ΎΘˆνφτ―ωag½t“ΙΜl•bό;@EDuΰ>ύΎΌgIΟΠ‘ΰΝΛ|γǘώp‘Ά9ύ &ί’>ι΅―S{•zg₯:@]Duΰ!}ΈΎNz–>w]·Ÿΰ8ΟyŒ•ζ?ϊ›`Ύ8MY$Ÿάq$P†¨ξ&H€ŠˆκΐCnbdVηI.Š1ž‰'*Ό¦•ι Ν™Η>εc―-ωί£ ›±oΜ]ε;%άGTγ2ρjΰ7mf Ž…ρœ4~qr‡o ―cίϋ²u7yΩ»‘Ν*u€Κˆκΐcυ«—IΟΦΫX­I»n"*·ΦυφΜβ{ή^gΎN>α€Άύΐ“‰κΐSE,Ιh/ωΎΒμ^‹a]PoΣ—ΔA½³:ɍ=ϊ½Υκ#ͺOq±$«ΓˆM΄kΦ³NUΨ&A½M§ρ½.«OφQ 9Q€'Ձ§κcΙΧΔgν}ςπΟξmΒϊΩ„ΟυwA½I_’υel™ΥW~†¨¨<ΗIςΫί„uβ=p<Αρ)φ«v1Ά-GqΣPVΧφQ ύ~κoF>L«Τ*$ͺΟuxυ.Vt.γκGeΑ―vύΧΫ―V7ι(nΚ̍Τ Γ·’:@…DuΰΉ²ο―ή―@ΉΦ‰ —‹δΫ<€χ>χ4m©!¨ T"Γ~κ~ž¨ΠO?~όπΊ/ρ%ωHβuΔH+(ι"χοΩw•œλˆͺ.ΎΆ©† ~f» *ΡNπW‚Cύ)Α1πDVͺ/•}υ͊υY‚ca|—±Bι8ωHψλ8F«ΣΫuPAP_ κT$ΓgΦ2Α1π ’:° ϋΙχWίΦΉε4‚uΆΈ>Œι§ އq,*xύ―#ό@-2Du7KTJTΆα¦‚Έ"¬s—M\5ΖX₯ί3ύw1κ1e#«u|Ο·­΅θ?·ή&8ΦσΗΐ3ΨSΨ¦~όηδgtΡ ξ2‹‹1a—aσ{\X=' 5υ.n¨Iωϊnδγ]»Α ^’:°mύ*ΫΓδgυΜ>ΐ<~<ρxξ §uμη~1xΐP-AύSΧuŸΗγ.7Ρ;{gςϋ±ς;{Pχ}€eΉιχΨ6?υՁ]˜GPˆξΧϊVΑ9²u5κo\ϋ3ΙqΓ–?υϊΩkμΐUμIέ‘Υ"ΐˆj κϋ Žž*Λ–%ίu€Ί‰κΐ\ĈΓμ„u` ΅υu«@mϊΟ―wIŽω<Α1πΖΏ»–eΓ‡Ό–Z‚zο—ΨΞj2‹ιYYΆ£2ϊ rVͺ»ΦΗ£egيuΰ5|¬(¨ κTκύ ϋV”[TΛVν0¨XΆ-V»›'8^ΘJuΰ΅\F¨Αžλΐ–ΜβϋŸ »ΥίΔϋ%Ω9ΆJ`"¬T^[ΆΥ#χ±bx‰Yά ³WΙY\Vtσ eŠυΏKLƒ•κΐkλWk|ͺδ¬χ!μ*.<Ε"ΎΤΤϋ›ˆ·jκ]¬¦`’Du ›ώΒΩqe―JΦΏu]χ%Α±»³ˆοQΏUvŽujrΫC}¨h‚ΥΧΈΡ€‰2ώΘκ(BumΎΗ±ΫK¦ε(nœ©i{ŠNP "G±:ύme/Ϊ*>kύό0a’:Y­aύΊλΊ &a1ύ°Β'#¨έ<~ζ?ͺ0¦oόβ³`ϊDu »ZΓϊ:φU<¦Άϊό±Žέ( ΠQ¨Qνa]ό‚<qa|―βΧd±ΓΝ:γι?OΎT~ώ§ΎΒ|ΎΖ ²4FTjU{Xο}ŠΥ±ΐ8ϊ―Ώ•Ÿ{A ‡ώ{ρŸ^‹I;‹ίAhΠΟ^t R§1z±f}Μ»ˆšΐλYΔ€ˆΪƒϊRPHΓχβi[Y‘Π6Q¨YΦοΊn]ρsxqΟE:Ψ½Νήιͺ|ά{«εu€€τ.ΌDΥ;ΤΈ‹¨LΡMD¨³‰<··±τiDCΰο6£ήίOθά,γΒΎqΒ°{Ÿβη A€ΏՁ)λ/Š}Πσ;ŒΈv’ΰX ‹ύXΕ=•QοVΚΤΗMPuκ·YωέΆKάGT¦ΠΗzŽ}4όl$oM„ΰΙDu UύΕ΄Γ‰>χώ‚αLjλP«bzο_«“r5Ρ©H΅ϋδΖS^BTZΦΗΊΟ~ώΧΧ­Ζ‘&­ΔτuŒ{ΏHp,lO}ύσ™ΖYόK…tF%ͺά―_]ϋΉΑsd4<Ο5‹˜|ΰͺτοqμι Π&Ώd?ί:"ϊyόιηPRΥΆˆΐΌΧθΉZΖσ? ΉΗA„δΦ¦; ­γf“Ϊζ—μΗΫDτΝΓjtRΥgϋ"Ώoψ|­ϋXiM7œΕγMγgdηΑŠ:žΦςU„σM@Ρ¨‚¨π4•[ˆΧ؍‡oΟ&€ΆŽnΎ$8rθƒρ»Ζ_‹υ š_ B:TITxΊYεΦ/–n¬γαφiσb•C­DυM8ΏΔσ«ΑΏΐdˆκΟw+T[_΅>΄Š Ι§Bcυϊ€Ύ/€ίi+Σ?&<6ΖΧ>|¨πuX݊αWƒ&o?Ϋ‰ζ4GTx™yd«Φn3"ώ"ώ$·ω ’ο»Y€ΘήιΥΆΓͺυ‡}ΐ~a{ ³ˆη›Η^λ'δφNh”¨°=V­?ήυ °_Xυϋ*6}zŸ>ήχΈqΖϋ A’:ΐφY΅ώtΧ±zύbπ'/3ΏΡ­DΊλψzΆ}@ΓDu€έ˜Η˜θߜίg[F`>ΈΫ"ήs‹AHwSΗΛ|Š―α›šŸ/'ͺμΦA„Ή·ΞσV,cχΥ`ΒΗΧ IDATl|K#Ήηƒθ›ΏγΎ]ύ{μΘ¨w6Du€έ›Ε8ψχΞυΞ,cEρεΦf?Žw1Ψ}f|ϋΞυΐDu€Χ³ˆUλVΏυ _ΖyΎΛ?‹Χ~cΛ»ΑίEσρ¬γλ¨wξ$ͺΌΎ£XΉn$|~ΧOΊœΕΧ’Qο‰κγ˜Ε¨ιΞ?ΌΊeΔτ §€‡ˆκγšGά;τ:ΐΞ]Η€1€GϋΩ©ΥUDΎ_cυ,°}}L?Ž›XužΔJu€\ΊϋbΏu؊u|=}t:x.Q §£β:<έ&¦χη€—ΥrλΓϊIΧuoΌNπ 1€­Υς›EXΧαnb:;#ͺΤC\‡v!ύTL`WDu€ϊΜbΟυ{Σ¨λΨαΤ€]ΥκvqQ\§ΛX™~ξΥࡈκΣpw^O&θ,V₯_xqxm’:ΐ΄μG\?τΊRΉυ`Ώτ+/&cΥ¦i>ΨwύΧ˜Š,#€Ϋ/€Du€ιΫΔυ=―5I­cŸτ~eϊ₯ €LDu€v,"X½N›Uι}PΏρ’‘¨ОY„u«ΧΓυ`UΊ½HOThΫ|°zύmλ'ƒΩŒwί< ’:ϋ±ΊρπlΛχˆθ§Ξ(΅ΥΈΛΑΰ!°σί+ν“@υDu"°sŸΝhχ !€)ΥxŠM\ί·{Σo…t˜,Q€ηZ "ϋž³8yΛAHΏlύdΠQ€m˜Εκu«Ψ§cέjtš&ͺ° σˆλϋ"{5†ύΒήθπ’:―aΩΖΕ§°ŒrΡ @T` ³ˆλ›ΘΎ°š}§Vƒx~iOtxignite-0.5.1/assets/logo/ignite_logo_mixed.png000066400000000000000000001400201465426447700214510ustar00rootroot00000000000000‰PNG  IHDRΦι@ΖH pHYs,J,JwztM IDATxœμέέQδXΆ6`MΗάCZηZ‘€± ΕgAΡmAΡ mAS D0`ΑΘΠυ),PaΑ|‘ξMwvˆΏ­ά[σD5sbN¦RΚIο^kύνΏύo<μϋ'X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‚uθ!X€‰hλj»­«cΗβϊ»ύ γΦκEQ‡Ώ­’(NRˆG°#υ@  @°##P€Ν¬ΐH΄u΅[Ε‘@6K°™ ϊIQ+Ψ<Α:dJ y¬@fκΑ:dB y¬@bm]Eq\Ε{Ης#X€DB ήU¨Ώ‹ΈWŽ'Δ%X€ (P"X€ ¨ΐ8 Φ``u7Α: €­«έ¨°`ΌλY[WΫ!Phίΐψ Φ ’ΆΊ@ύΈ(Š-ϋ¦A°„9κgEQμ؟0-‚uxƒ0Gύ΄(Šχφ#LΣŽ+ΌNhϋ~-T€iS±/€ν;Μ‹`ž©­«νΠφύCΖϋμ:ƒm€I¬ΐ3΄uuͺΤ·2ί__3Ψ˜Α:τUκgζ¨ΐ|ύΰΨΐΓB•ϊ‘:Μ›Šuψ†*u`ŠuX£Jψ–ŠuP₯τP±ΐμ΅uuPΕ΅Pxˆ`€Ykλκ€(ŠE±3χ}/–«£ Ά˜λτjλκ€(Š#ΩKΉ„κ)+ε·>7L’`€G΅uΥ…ΤŸF²‡²©T_,WΧ Ÿ~,νϊ`4λ<¨­«ƒ’(~ΙήΡώŒ`€ο΄u΅_ΕωHφŒP”`€Ώhλj;„κ[#Ψ3Bu`p‚uώBυΛ’(vF°W„κΐFΦXwZΕήφΘBυ›TOζγ‘ΦψM[W'EQ|ΑήK₯ϊΧ Άˆ@°@ͺwAυ§μ νί€¬Μ\[Wϋ‘|ξ„κ@‚u€kλj»(ŠΛ’(Ά2ί Bυ—ΩΣΖ@ξλσ&TΞeΒη¬@D‚u€™jλκ¬(нΜ_½Ju 9Α:ΐ ΅uΥ…Υ2εBu ‚u€™iλjΏ(Š_3Υ7EQΥ_o¬9¬ΜH[WΫ‰g?Gͺ,–«―#?2)χσvΒη€Ι¬ΜΛyQ[Ώβ©„κΐ„Φf’­«Σ’(ήeόjοΊφοBυ(T¬@D‚u€hλκ°(ŠΏ»P©~ΑΆΔ’rΐ^Βη€Ι¬L\[W»EQœeώ*'ͺS{=0g‚u€ιΛ}ϊ‹εκ2ƒνx``ΒΒ\υœΫ‚΄Xr―¦₯ΆζΎ Α:ΐD`ϊηΕrušΑv ιjΊ/ ζC°0A#˜«~΅XŽ2Ψ€' Φ¦)ηΉκ7EQf°S§<D"X˜˜Μηͺίu‘ϊbΉϊšΑΆlΒυτ_"LŸ``BΪΊ:Θxzͺ,–«/lΛ¦€\@°πΉ`RλΡΦΥvhŸ«γΕr₯‚{sφηςB`h‚u€ι8ΛxϊΟ‹εκ,ƒνΨ΄Λy½\˜&Α:ΐ΄uu\ΕϋL_ΙΕbΉ:Ι`;ζFΕ:D"XΉΆΊ5Χΰϊ¦(Š£ Ά#•”3Φsν^£#XΏ\[ΐίEqΈXR†ΛI₯ž)ζξo$X±ΆΊJυ½L_AͺΙ`;ζL;xˆ@°0R‘ό§L·ώ§Εru™Αvδΰfξ;ΖN°0B‘ΕχY¦[ώy±\f°ΉHΩ ―]γ$X§\[ΐwΥΩΗlGNf;c¦B°02m]uUΘ3άκ»’(ŽΛ• ω―>·Šuˆΰοv"ΐxdήΎ ΥS†ΘLY–»EQμ=w/oΏ(ŠΛ¦i.€q¬ŒKΧ~'Γ-ώe±\g°9κ.š>%ΪύΌw @žBH~τΝΖν‡°|ύΏo=σΦFN°0m]νgΪώf±\™«ž§η^ΨπWG ‹%Ȑλγ‘c ψnϊaΫ‘­Εr•t5rXΌŠu€hλͺkΏ—α–vsΥΏd°ρ±9οΆ§i =g€išƒ©ΌΪnqHΜkΌ¦iώλ±€8λiœe΄ίοΊjυ Άc.Ί–±;‰^«9λΐB…ψυύœσ²,ΓyaА}'tt:v„ΘΡŽ ΐf΅uu”0X}Θ‰π•²»`xTΣ4ηMΣtαϊ’(ŠŸΓΜMϊX–ε#@Žλ›—ΣΞ«ΕrušΑvΜIΚVμ;m]mΟo—/Ρ΅c³γwμ9uv€?Φ6¨­«γΜͺΥ΅ΪάΌλΔΟ―jx–oφ_6΄Χή•e9™ΉΫL‡``CB₯pNΥκΏ,–«Τ!ο₯ήηnT/φnAζ?‹’ΈέΐήΛιœ~#X؜ξfδV&ϋϋΞ Λ4ΛUΚλ…Šu࡚¦Ή ηWοΔjέ9 Y¬l@¨VΟ©νϊΙbΉϊšΑvΜΥΠ7£ϋΈI ΌZ¨^ο:ΰ|x/Y@Vλ›‘S΅ϊΝbΉ:Ν`;ζ,e;ψΆvη~€·išζhΰpύ°,Λm‡ €\Φ–a΅ΊκŸτRΟYW΅ΌYΧoΪ“έ’ΤCG €\Φ†—S΅ϊΕbΉΊΜ`;ζ.u°~0χDΣ…ίwνNΑ:Ω¬ H΅:Y,W*Φ€IhšζΛ€η˜ Α:ΐ°rͺVy±\}Ι`;ψέUΒύπΞ1bišζl s›­²,…λdA°0¬\*Δ»φœ§lJZ΅ήΦ•›Τ@L'νMη,dA°0ΆŽ2ͺV?],W_3Ψώ”zΦ½›Τ@4MΣ\T΅ξœ€,Φ†3TΥΞKέ.–«\Ά…?₯ž³ξ&5ΫُΉο(Α:ΐB΅ϊN&ϋV¨ž‘0οώ.α–ΉI Δv>ΐcvsΦw)R¬ #§jυ!*‡ˆ#e;ψ­Ά„λ@4MΣt£‡.Ψ£‚u’¬DΦΦΥAFΥκGlΣ˜š!Z @r‚u€ψr©VΏZ,W)+’yZκγ#XbbαΰΆ£@j‚u€ˆΪΊκΪTΎΛdŸš­žΉ >ΌΟ~'£4Νη7ZΑœ` .ΥκΌΤUΚ=FΔtωρλ$χw‡ ŽΆΊ•2ٝͺΥΗγ2q—ƒƒ ZσˆnαƒE2ŒΠ—’(v8 WeY>΄ΐψΊiš―τ+Λrχ‘Eou­aΚ²ά`τŽοD€Φβ9Ξd_ͺV—!搾„ŠυΌύ§­«,–«ΤοΘ^‡Ίΐοώίέν=gΫΛ²\―7EQ| ‹…ξΊ ΙΉ9“T–εvψμά‡¬χξ>gΑά7ŸŸb­CίŸŸξ_Ÿ‘Ν ί‹λߍ―=¦χΗσzνx ߁Ω¬Δ“K°Z}\R/‚xΧu[X,W.„2³Φ¦ΤFζ:qG`Bx°φχ¬πόξο/ίg!hΊ ΧrΏύ –¦!t2X―Ζ~μ:μ:,Ί(Φ^4MσeL;"χŸ‘ύΊΝΌϋζίϋη-Βgθ:|†,X‰δ›οΕύΘηcΟ›΅οΒσMΏf€M¬DΠΦΥQQ[μKΥκ#ΣΪm]έ pθ%Ί .?ωΩ[Τ-~8^,W§sί!ŒF€©,Λ£ΘsΩΟέποgŸ³)!<*† _b/ό},ώ –ΞΒ{wTαjLeYΎe‘LŸmp[»ςp-€|Ιϋι±°ςo‘6ok‘λaψKyλώ3τΫHΕ²,οΒ}‰Λπ9²Xε™ΦήΛέίϋ›πΗχaX4qΡ} ف©¬Δq”Ι~T­>N—‰o  Φ³΄ΏΆQ'm]/–«Ωή€€θn0ŠΈΓφΓω7τΌo6‘Ώ0Οω(όΕ¨₯»žϋWχ·²ŸΝ0|ΛwοΥ&>ϋa!Pͺ2‰²,3 Σϋl…½ϋϋ΅,Λ«΅Ε*Bφ„γz”α{ΉΫžχeYή†cxκS"Xx£Άb·Vz-Υκγuy_鐈6γyZ―ϊΪ €Ž<ν,\±t7‡wη\…ϊ„Ψ‹nμkŠ?Ϋr0]Ω?w‹d½§Ÿe°ϋ*aqΖq!‡ –ozάW ‹žŽΒλΞuAJŸwαοΧπ9κͺΜώžW8Η™/4Ί·Ϋ—ey*`¦βGΰΝr™­MτH-–«ΤΥβ;ayωφΖo-α#θnΪ~ŽΌ›T¬?.φΎq]3s]EqY–έ(€L ͺΈ«ΎύΏ²,/ΓB6¨ ΤΛ²μ[ύ_XΜ>d΅vaΌ†–ό_1†κίκ>GιΎBǁΩωζΈ~Ωqέ ΫόeΗ˜Α:ΐ΄u΅ΙMΆΫ ΒYήζ*ρώs“'#= Ί–π1η—ΐΆ3Ψ«±Ϋ [άφ€P9;ψt]3S]πάΠa΄@ΚQYCx‚Α³P=Ν€ΦBΘλϋήSχ@πškΛχ·Ψ μΧsZ¨Βθ)Χ­pό.Γωΐ( Φή&—ωTf«_κ–fV ηε±`}ΛΜQF y'œΠ.φ6βCξ”e©ΓΟχb/2ΎΠ&v~BUρy¨PΟaΜڐΊχ: |#FXγzΒαςwΒ¬ν9½ζ½°Pε|ΚmwήΊwό:±γϊ.T―+πFI°π69TtΥκ‚ΆρK]™³:0‡ΎχZΒΐσ¨Z^μ`έuΝΜ”eyΑ±·|‰ίΪ"‡ͺ[ v" ΫgaΖڟ?),Jι’ύ{.―ωοΓχΗδ„™δ;ΑξχΆΒβEΐθΦ^)΄jΞαΧΝ§ X,WέΕΰ]βWbvh>žΊΑ¦%<<-φy²s₯5΄ΏkšFψ™!θe˜=‹ͺβtχώWυϊΫ… ³iϋ^όΩόz]ž’ΊϋίK|yκ»V₯ώ1«-Ξ―Ύ±¬Ό^+]{šΑvGκ B7‹σρΤΝ‘-Ÿ}fδUηHMΣt7°/"ξ¦-•UϋάQ¨>‘ύοΰ>™9ό‡·†ίΛ›AΕφFΖX¬UζO­=ψkι·£7XοεΛ W©?ζS¨ΠΑ:ΐ+„–Ω9„g‹εΚ ΒιH}Aψ^;ψτB7ŒηθŽ—Εδ(§°,vΥΊ`ύO±ΟCάTŸΠϊύ?Αοtί›—ZΓΏΜZΐœƒΑ[’w­ίCπ:›Κό'L¦ΣI–ηΌXβ£Ε‹ΐXΦ^η0““]7Ÿ¦%‡f/ Ί—άL;³€xυBpΓύ6β.z‚Y  όmΣ4“œ“ΛŸBϊ/»δQ{ΒυηY%0§ΦοχνξηVΝάgτ‘ϊZ‚Ή΄~οσkθh5Α:ΐλ䰊ςb±\=9Ÿ‰ρΗσ&ρ«€Nο%7Ά¨Δ€W(zkΰͺj=ΎΨηŒΞg&l-8Reϋ΄­Ου{ζΙߐ°°ηrN£Κ²< ―Y§‡Ώu±ΙΪ{ΩwγŸΞ-`r'Xx‘Άv3Ή€S­>Mζ¬σ@BKxr2ΔΝΠ·Ž>¬Η'XηYG―²*7ηψ]Σۍkνύ4›ͺνπ>ψ·Pύ;£ξt2Ηχς3)²'XxΉ.noΛUmΓ‰/υΔ–6ΉΧ,άΡ€\D―Xλσ¦iΊ@ρΆ¨Ψ™s«Ϊΐί„cΔ4εu]Βψ»Λ`ΫΦi‹ΌfΖ‘z.3δs3Ϊ6πBυ'ucwŽ3ίF`ΖώξΰΌXΑϊIΫΐΛΥu[Ww‰W£NaVΩ΅uυΪ0β~U·E€ϋ·(Φ|τ³ΘaπQ†R‰}Œu⚨Πώ=Upt>£_ξ}ΙŽho‡ΕBέίA’k΄-ςΑ˜+s_¨οzhn‘ϊA&‘ϊUΙςuνίί4MσΫοΰ @vΏωΫΰσ3ΚͺߍA’ IDATζ ‡κ·k߁_ΧFλ\7Mσ`7 ΅cy :~O9)ΛςάΒ; G‚u€‘ΧNβ}v'τœΌσΔ­…³ιΌ₯Κο·–π‹εΚχI„›Ε±oG “š¦ι©ۈης‡έλ}μΖτΔΕ>Wtξ2A‰fͺ_„χΣε[ØϋΐpύύY–ε}ΐ~΄Α€χ~ζϊώL¦Γ»Δ‹4ž+Ϊb«π^Kυέx^Λεst¬}^Ξξ?Co±x3ΖΕ&έ~ψ½|{Žί‹ΟQ;–α=yΞ6q_t+ΏdG°π29œΠ/–«9ήΐ›“ΤΑzΧώh±\™k΅yomŸΫ΅„ίυ@"C,Ξ‹yγΌ;·ωι±ΆΒλΥωmΰ/fΊ8aB ίM]Οά†ΟαΩΠΑsςΊΏΣ²,»JΞγp`θJΞ­΅ΚυΩ}^6ό~*Β¨€ϋύΌ^‘½ύΝυΪ[‚αG­U4o²Bψ&t9κ=χr}B¨Ž>|EX;ΦjυΣήΛwk߁ƒ-6έ}Γq;κ3°ζCY–'ͺցάΦ^&‡`]«ΔιΛ‘­θμngβ­ΑϊύͺnσΘHaˆίŸ\ƒυ"\Μν|)φβ η›—mΰUuzΈ$y… § ˜ξΟ½BχΒ½€ΙWo†κόλb3ο§›΅°χϊ₯ήZφnhΉύ& BυΟ!Mr"<οeψ,έWD?g±ΚX;|ŒψXΙΎΓq;ŸΟӁ»I¨Z²σ·ώχΏŽ ΐ3t-–‹’ψwβ}u³XήΌ1m]Gz…ΚηΝjλ*Φ‰Ω?ΛΥ\ηΎ<ͺ,ΛΛΘΥ5?7MsbΆo»PαxθEΜκΉn^gδs¬™S%UδΟΠ]Σ4Ϋ‘+ΉΨί/MΣόm„ϋ`7,†2μͺ3Osϋξ θIδΰμ!?5M“νbϋ²,c\Οό3΄ΜήauμχΣUXΤ3Xuφkmp„B·Žsm§^–εaX¬ςΠwκUΣ4ίΞtr[N"/Κ{«€‹Š*ρ‡όξ›ΥΉΏ#€gΛaξ΄jυωΘaΆYλΤΦUΜE3]KψΙά¨`†Ήn=b߈žM—˜šΖ\˜bΆϊτœ ͺwΥΕϋ9.hκΎ«š¦ιΎώΆs( •½spρύtͺ³»€k©–a¨~΄P½Ϋ/μƒlg”7MsΒσ Ηmέ\;ά……5»9…κΕοΗ«ϋξϋqΐ§°ˆȊ`ΰωR‡Œwn>ΝJΗZ;ρ͊yƒlΗΕ'›ͺ ‡’w_ιnΦ‡j―Xζ΄1φk΅hxBBUησvišf?χͺΕV<Ζ4υ`q7ΜUυ~ϊ₯{Μ¦iŽr}„…KC'^…ύ0šϋJέρκŽΫ7ϋο‹]…EEΩώn†°¨pύ0œkdA°π ‘ ό¦f\=ζ\[ξωΗϊ"ρ ήkλjwNϋ=±Ψ•'ΫΊΪX‹<fm¨ΕxC5‰Jν„–΅ssΖιmΞΥ’ΌL¨ ²Uς‘"rBυzχyωi νέ ¦κ "α«P‘~œ[uϊ†ξφπs¨Rε=₯΅€=κx˜‘Έ?vΩ·Bαϊί{[:*9¬!ŒΉθβ^*e=ϊ9nlœΒχnΓbŒQμ›°hi¨λ΅Q/L™ΉϋοΏ±ή< ―!¦χΪΑΉ¬ρσ“@&νΰw΄^[WCV›h ΐ ²:Q΅ώ21[ތ‘Š”§…c¨Pπx*γlόnF£(žγ&Μ‘Σϋζt ϋM“X˜2S7c?vα7~ˆσ8ίw@λOΛαΔΝJτωR΅>C·qT₯@TeYv‹Άώ5Π^|ώvh3ρ!G3ω₯hοΪf:† šZ•m¨ ώ<ΐCϋ<ύξ*„‘£i~Gίτπ“Y˜23έ‚ˆ£‰»ΣͺΦ Y¬<-u°~³XTtΜWΑϊsΊ7t°ήuΠ€(Β\ί!ΟQ6υ›3ΈΫ›πΌγΨΧCΊqM@Xpρa€Wr1–6ή―pyAOg§,ΛΉ/„Ύ σΤΗ6{¨ίΊ΅₯IuŸΗΨίε‚u ‚u€m]ν†Ε)Ή š±LΪΑͺΦ·‰ρŸn9ΐ „πψrΐQIw b?ΟTΟ—bΎ‹†_>c¨f«Η\°toς S&κ¦iš)/ˆˆύ»― œ`ΰa¦τ¦ͺH£’ƒϋvπ9ά„Τ~›Ύ0Τ€g zΦt =ίo`―l:AoΜ€kjηK1_P}Ίο…ͺΥοζTiΎηbα;\ΨΣηxΔm³‡XρσۈΟΕΤο³Δ^0ε^œ`ΰq9TηΊωΔ½Y|hλΚ<«ψR\Z΄ΐ£Ύ Τ? άϊύήMΒΉ°1Ÿχ}Go€6π›ξFΐ0†ΐ7Ύ¨&΅π}wy3ζ²8αb¬sΔΛ²ά €γΆi]ΙΖισΤD„vπ1ΏλR@Φz€ΦoB₯2tUλ—΄ | Uλρ₯Φ΅„ΰ;]΅cY–]XΡn0PΏ—ς#v@3•σ₯˜Υ―·ͺ)'#φϋ»{oΜuΡEμ ό]X3ew#ŽbρƒΉκγt7£Q«Φgπ=dN°πΈΤmΤT”ς-νΰ§)U+³O:Μ[¨L-L/Λ²[ΠωοZLOυ{t“I ۘΏ‰;‘έοh Πή9Η4ΔoΗΪ;’ΨίSΎVK92$†Γ~ku!―9»Ψ‹'λ@R‚u€‡₯n»Xζ²r•g  φ—Vsρ€ώyΧΦ•γ 0!] [–εΑZ€~Ϊ…θ‘"ύ>H”ΙŒΚ» ΊDύ&TόΕ¬ϋοkΜγr3£ͺΌ©‹ύy{¨~?kύ.βCŽ~aOί«uΊ0>sϊ]ࡠց€ώnχ<(uΨ₯ZΗœep#Ό›Ο}ζΎσ6©Ώk:'m][Μπ*ŸΚ²όiΧέ½’’'‡.Koq˜Ωε³°θ †, Ό6πόEh»Ϊv³ΥΏΥ}F>F|Ό£ .†ΎsˆΪΐΏό°>?γ5ΗίΕ«ˆχ²λ@R*Φ–:μXς˜σΘ ―₯Κ9Ž‚υ-7Ό²°n8ΎδoΜ‘ϊ†$1·Κ²eKfmΰyDμΕ"ŸΗ:+{±?#c_Ψ󐱇ΘCŒQP1Nw3=v1R ց€λίΘaΎϊbΉrΔƒΛΥΧL:ΌŸ^)‡οš5ZΒ°I?ζ8'7TΟ_D|Θ±†[1·ϋBx:±ίΟyƒ¦i#’Ψ d¦βn³ψQΰή\ itΘ&C°π½Τ€9ΜΠ&oΉ¬Φ?Ι`Ζ,·›ν]Kψν Ά€iΛ2T_sΫޏ4܊ΉΨNx:afwΜ6πs­Ψμ{L©j} !rμ6π‚υρzι؟©ˆ¬»o$%Xψžωκdm±\ub7lγAμ›δv³KKx†–{¨^„°/ζ؝Q…[!@ΥQg U¦ό.φ5²kήοΕή'9ŒœŠeΤί#eYΖ>7‘Γ γ€bύνbŽ«x1Α:ΐχφοσΥyŽ\ͺΦ΅…° α]†›Φ΅ψŸβLFκ‚κŒ(dΉc;WŠ9^x:Ϊΐ¬išΛΘ‹z¦¬ί†VωcϋXX° ΦΦ„°+εΚΗ»P ½ΛΥYδ/―u¬jύUr―ΟS"κΖνŽ,‰Ή€qg€jΕ!Ε,ΐ(„°[ΰ=>gƒυγŒBθXΏι·BΣIŠέʚηω1XO}―cΞμ{˜ T€ί$½ΰY,WnBK.Uβ[*Φ0΅ύπΎ­+Α:³f‡ίEzΝ{‘sARΪΐ³a±>?ΌΜ–ύ•LΜ…)WΟψί Xψ]Κ`ύΖ1 –Π’;—‹ξ‘Z{ΆΪΊΪΞ€ƒ@lgα΅ΐœΔ¬2ΟaLLΜ6π§‹i₯ €Ρ¬ό.εό2­@‰-§ ιΉW­OeΆϊ·t$`Žb†Η1Cν׊ՁζΖ<Ɋ5ώ€—ΡΡ S‚u`φΪΊ:HΌ¬ά'ͺ0Z —ͺυs­ZέS Φ‹Π‘ υχ'lLccm•e™l΄Jδ6πΉΜ‹Θ‰λ0A‚u€’HϊYΞrͺ&žλΝΦγΜ4Τφ€Ή‰y^“²j=ζs Φ!ceYΞzf°)9ΨkλJKx&/΄WŽuNΎ,Λ‘Ζ οo΄–ζ¦< €™¬s—ςβώλάw>—SΨω~b-ΓUmύΥρD»ΐ·b΅ƒ/6P΅λρcΎfζcΟ±Nβv†―yŠ,L€LցΉKY±~=χΟf…ΡͺΦ# ήOα΅D΄e±sΠ4M2ίEz©ƒξ‰ά^°>ƒ§sͺξΣ`a dB°Μ]ΚyΘ.pI!§ͺυeψQΫρVδ‡u] Ÿ ˆ4ο”e9ΤΒίXΏΙMΣ[η#κbπ Œ;˜ŠΉο€‰Έœϋ€)¬³ΥΦUΚjυB°N ‘jύηŒvώi[W£mkΧΦΥqFΥ]7‚‹ Άcέ¨/bWά ΦŸP–εAδ‡Τa"ΨΕ,@λΐœ%½¨_,W.pI"Όχrj_ώ)„ΤcsšxœΔΊ«ΕruŽmnAφX/ΌD¬ΐy+buω=ΥκδΒ9αΣb‡§:ε₯{ίΗ^tΌ‚`˜³”υ7ήy$Φ…Β·„QΝ)³Γίg°)χώ¨œ_,Wg«ζbQέΐԝGμsy_Ε ΦύžΟLΣ4±+Φ΅²~Zμ}$XO'v—BλΑ:0g)/JT«“T¨lΞ©ωϋΆF±?Μ ΟιΖrW­ώνMΟάZΒΏkλ*vHΩhšζkĊξweYFY± όν!+γσœR°ώ΄ΨϋΘΊDΒοBL>?Α:0g)/J¬'ΉPٜSΥϊXͺ Ξ2j_<΄@b±\}Ι° ΐiX”Sσ·7Φ‚4ΥκΌUΜ`vΗΡxRΜΞzw„»ΌLΜNbομ{HO°†`\δTEΌΣΦUNUτίΙ°όηͺΥ³XN2;±•Y—ˆͺišλˆΏ½‚ur΅SAY–ζDχΫ‹ψXͺΥΣ‹zο§,KU되`˜³”$V“…Κζ4ϋ8ΧͺζΆv3Ό©όTP}Ό‘νxm]Ήΐ”ΕͺZίyk± όMΣ4ΟWμc/XΔ‹ŒoH/φβŸHL°ΜYΚVΞVŽ““œΒΧ­ [˜ί;Ο¬όηΠςύQaαΔ/i7σ;Ή_ˆα<βLκ·V­ΗͺVχΫ=o±ΓY‹,;4uί!=Α:LŒ`fn±\uϋŸ3Ϊ ΪΊΚκ†A[Wg‘Ϋ2ΖπάΆκ'oπΗ𭫜F@4ažρy€ΗϋP–ε«:ω„Ώ‘Ά#Φλa„B·‚˜η’‚ΑΗ Φ'¦išΨ S|~ 1Α:0K©C»Ηf"CBΉ…―ΩTF…8֍ιX~~ͺZύήbΉϊšΩ,ύΞi- ‚˜η1―­:U­~ 0o1―_·ΜYΤ»ˆuk„C6n"nˆΟ$&XŠζΤζs―­«δ-κC¨ώkκνψΖέKΥbΉ:Οl–ώV†σί Цi#)―ύ½Œ¬ŸEzΖ-φΒπXοΟΙ(Λ2φ>±˜?>?0!‚u€ΝΛ©*ΦuaνmF{δ$eUs¦‘zη8T‘ΏTnUλŸΪΊΪΝ`;`±,ξ•eω’ίΛΠώ}„ηΎkšFx ΑΰFΦ§Λη&D°ΜΥ~ΒΧmΞY aνsηvoΒVͺ*ϊP-Ÿc¨~³X^U9Ίό“ήDSuqAνK«Φc….Bu~Ί0Δ\€»S–eΚkς Φ'j€J;ΪΑ@:‚u`Μφ…„Π6§–αΪΊΪθMƒPEύ―M>η Ό©}ϊbΉ:Ι¬+Α»ΆT\09a.y¬0ε₯Ώ•±~[sDz±ΓAc‚Οήύ·‘dωΖޘw σ\ Ζ© @ˆcΤˆcΨ4Ϋ‚¦,X*`@K¬ˆzˆ̍$»Ρlύ!ˆͺΚ“YίΑΨ½³sΕB*δ/Ο9© όAδ•ωκαΌλω€’u#€Ι¬ŒΟ\’‹T΅>»ͺ9hewηέ|΅ξ£ς$Ϊ"ŒE{jΥΧ=ξπ‘σ—{l“ͺ”αŽvΦΓιϋ\θ OίS^¦Ο{`d‚u`ͺr~¬Z oί:ΖΓΝr1j؟*»―ΖόίqΫWUλ γHΑt_Ο ήϊ θsόIjgέΧxƒΞAΣ4“―ΊMαθ˞Ycββšθϊց©2Ο Ύν¬η…³}¦νcŠ΄Πw–*ιϋrκϊΐ(ϊͺZhu’`!υύwaseα¨6π₯ρ }·ƒ?U΅γ¬Œο“sNt)čԒϋ CKψAZΒ_ΝWλ^―Ε|΅ώl!σΐΒ*•κ³Κχ››ώzl/˜γkϊ~οΖ<ŸψΩξ{3―M1qυ]΅~ jΖ'Xv²Y.N΄μέ›Y…”’ soλ³ξ3hΜ_€%ό •σ)¬ΤξώεfΉ˜ϊΒ*•IUŠ}…)ί{&θλ9)ζJιyΌΑΙ/€Vψ‡=³‚υΈϊ§0S΅γ¬–Ϊτϊ’‘ͺš£ν€?ί,c/δl SͺœJ΄λkγ5κ+¨>nšζ[#­ϊ ΦΝgζ[ϊήxρlΒ³Φϋ~φ}›6σPΟ­ξθό#¬’‚¬ΛτΠ^ΓnX3Φαζ«uχΎθ\޽p±%όUͺ˜Μ|΅~?›Ν~ΙπΪΎ¦λJ0Υ…U*Υs•οο“=Ά'˜γ;†¨Ί=›ZΥmΣ4gͺΥ'iˆοw―Ώ³ι θ‘`x¨nWϊqϊοΦπΐ~ρw[¨’4Ρ‚ΞΧ›εbΤΟ‘L-αΗ:οg,Žξγ,CWZ_UΎ_{>θ«Z]0Η7₯}W­NiVtΪDΠχλύΠΆνϋžMzΦΆνυ@Χ}vΐHλΐw₯κΑ—ΞT?nλ CόΝ^«jžeZ8sƒΑΠ-ΰ°ε€V˜ŒΎͺ|š¦ωRˆήG°~ΫΆ­6π<Δω3ίL¨κφb€Νώ‚Υr Q΅~œΊ ¬ί”ͺBοοFWIΣ­ͺωx³\ŒΎŽΨώΓΠ-ΰο›―ΦΑZώŸn–‹£Η½θyΆξŸ6ϋυΨ^¨Ξƒ T΅>›B8œ6Ζτρ~έvΣΆ­`½©³ΐί½ΊΝ)Ο«S Άm―όn-\€ց?ٚ«Ξ0>9―Tΰ,XUsyά}UάτΈ(Ύ·ωj}lͺuͺ‘‚ΘΎΎoφτpζ—Ή·0Q©ͺ9ΪάΓΧ©ΫΖhzj ί-’œ€sI€EΊΓΝrQλœM¦©―McέΖΌg=ό;6±Κ‘f IDAT±―‘Ζ έ…λ£>ηχ₯išξ½υλ@όYΪ¨CΑ5ς»ΞqMέf}_=O£ Α:π»ΝrqΎΓŒ―0aiψ‡`g Δ–π') eΎZw-%ί:¦σ±―- ₯mۏ=u‡yΘ†θ‡Π±Œ½€ŽCmΜμώΞKνΤ‹ΠU§ΰου@Ηϋ‘m[b*1`Χ‡;wαzΡ›•S ή}Oύm Ρ π ‚uΰ³4Γv¨/}@’}1?ΜTiύΨσπc °£ŠΤς@«K*%{§κ•>΄m{1p8ψsΣ4—ΡΫZ§Κΰχ·‘ΖHΡ›WiDΨPΊοSΏ–πΊ―ΫΠ4Νu Τ/*΅“ε¬]¨~ΤUzξx&΄‚‡‰›―ΦΧ=΄BοΫ›Νr1κηΣ#[Βw‘zθφuιϊFͺ„9U΅@E.ƒl`ΣN—> Ύ˜ΝfΧ+oS•z·1υR…πPNl†©OΊ¦cl˜Έ{E>‰MΣu£š¦ω”Ζ)~αΏζ»!YΦaβRHρΠΉκΫ<ΐ³ΌΉxφ9ˆw9αCυ;©Υ}”λ{`,΅H!Jξμ·©1τb+rΣΘ]εm˜Ωλ)θο6ΫΎψWύΤΆmδŽWμ! ωq„sΨ½‡ήtUΰ©<Δϊ^ڜrΪ4MwώΊj~k­RΑYցσwS›―֟Ά„?ή,£ξΐία<ͺo‰Τ‚ύeκ²5Θ½aL¨NοR88Ζσγ³4{ύcŽ φ­πϊ΅}κΖ6„2fi€ΒΫ‘NεaϊΫ½NΥα£Υ©2ύ4ΝNίt#vX£¬…`&l³\ΌΪcξΧ³όw€ HsΒ‡œ§ψoΖ`Σyψε•Cυξuu‹ξΚ ŠT!9;ΓθΓ R88ΦΘ¨γTΑώ©iš‹¦ik§Βτ“ξχl…€Cꝫ€›™HΫΆ―5ΛAͺΏ΄Qε|¨n]xŸͺδ/¦”§χΡcΦmΈ ‹Ώ9ν0Miρ―.?Π“ξΛυ#ΖJ ©[π»=δYjΉ½ΐΦ΅Β|žf±—κ4Ν‹Œ «ZΏH tη)TΫM φa]uuWΊΗfώ]€ίυ²išYΪϊ>΅hΏ~Μί{ͺΰ=J•±Ο3t›ož›«>9ΟΣίοΨ&ΣΟλ­χQχήω”ާσρ[ι}σ$ύά½‡ŽxθΎ @‚u˜ ­Ήκ{ιώΤώ˜Έξ³ ΅_Ο±0ό5Ο6ΛΕι|΅­+‡n“Αoι?κ* Nζ«υυXΗ0„nSΐfΉx;βΒθχœeΨ4CΈΘτόT\ΚΣUή¦p.Η3δ³ν /Ηm ο|Jο» πΞΣ †»γ=ͺOOwΝSΥxŽp}ΫφϋθΝέžήOΩu›wΪΆ-ϊ»6εΡ ¦ι’§veζΏKv€–ᝳŒ-α™―ΦOKΥ·œ¦Ε½ΊM‚uŠ—³±ζιn¬3ŠΤΦ:Ηίψ—l…έΟ‹ΎΈχŸG ՟λ,1]ιώπ|δΆπ₯Ρ€Ρ ΦabREι ΧΘi°{cαxΎZw•ςΡΞΕ^R‡’H³XΝZ c?«\©πcLΑΒυΥωLΈώ]6[0:Α:LHͺξ{Σγ+~ς€0!iŽψOΑ^ρη–πŽ£ηiΞcͺΦ¨BΫΆοGΎΏFΪ(ΗDΧ¬ P„κά“ŠuF'X‡‰θkϊ=ZΑ_)|½3zKψ₯ͺυH•βΪΨP‹1ΓξΎΏΒƒ€pύGgλ«ή₯Ju3Υω“ξo’mΫ§6§ό…οψŒN°Σρ>Ȝ0 r)|}μU¨ΞκΗ|΅Ύ4Kp³\Dϋ[€Ηk³Ψ;‘9΅mΫύ­Ϊσ‡ŸΪΆ=ρώδ[lNω ?ŒN°°Y.Ί0ιx€Wjg(πEσΥϊ}ͺΈˆδΕfΉ8qΕz©jέ¬uŠ—Β΄1*u{!»4ώΰi Νš9u ~hΫΦ3-’6§όCkψΟš¦1¦€Q Φ‘r)Dz=Π«¬ίς*`%ΚEΑΖ UλΠ―‘CοΫΆm΅'„Άm―ΫΆνζF4α+ς.ΝSΰX(H7ƒ?΅†Ÿςϋg–6ψ~ΐ¨λP±ΝrρTEKj μψ\μM€0[…ΕKαΪΝ€―C¨N8©Rϋο«^ΏIUκZΏ³—τώωΗD»?tγžv›t "X‡J₯ŠΜ‹ηͺ—:Λθc€c€I6ϋŽ–π=˜―ΦΧ#΅¬}UλΤβ|ΐΧ1δΏ ΆU½ώρ7—δv›Β@Uκτ&U―?O³Χk~άιΦώn|ΉΦ‘^CΝUί6dh?˜TE ŒGKψzΊΆV¨ΑPunΊπΕ_‘u£ ΊΠΉΒ€π6΅μ>2”nφz₯οŸ;R§‡ηͺΤΘI°Ϊ,]Πρ΅"H•Νѐ΄„οAΪ¨₯ϊMΥ:ΕKm‘‡θ£ZbTvΗώ―»@]ΫwΖpούSC‹ψν@]§²¬Ce\υŸΗzUιχρpϜ+¦hΎZw‹ΉWΑ^Ί–πύ8W΅½bΊωκg+ ό!m8‰ΦλkΊcύgjω~.P'‡τώyžf°RΠϋg–6₯ό’ZΎ Τεo.Τ#΅5{ΑD+eΰ‘Ίjβ vΆΊ–πGFD<^wξ6ΛEΏ p8Ÿ«ΦΣl€/ι»ΆV€ αyΟζmsG‘Υώ@R¨φΎišnύα$ύ<4žξ6­ΕtΗy9ρ ½† ιͺ€1 ]gΛΣ¦ižo½‡ƒ½Ξ›τ>Ί €_χψw=υ{±Ο  σŸόΗ•„Jl–‹ξτΕΘ―ζ‡ωj]άΞΡΝr‘νΓoΎZOί Ήm–‹³ μΆwσΥZεϊž6ΛΕuΕ™›ωj}ΰ8ΰQš¦ιϋžϊcWΉθjP›ήύ<1hΏM!ϊηŸ\BQš¦9Ίχώ9ωψ―†€»χΡΤCg !X‡J€Ή²Ώfx5?ΝWλβZοζ €λLέfΉψ˜αKϋχόsΎZk‘Ί‡Œχ‘/ωQΥ:%jšζι~ζZQ3)(|š~ŽΆ~ϋέΊ²ϋώς)€½Ÿ¨UΪ¬rχήyšΊTξσΊIUڟϋ¨ϋί―΅v dZΑCΊ6ΖiΖ-₯²¦¨kCχ[°Χ­%όžΊ ;u$ˆπΩΪ‡`€φ|Μo…€LEͺx½ώֈΌ~Ν΅ͺY¦μ!χwήCϊ7 d‚u¨ΓE Ωb|ΗfΉx:_­΅Šc²Ίρ›εβ—Ωlφ:Π98HŸ₯ZΒοη,HΥz7kύy‰£J˜ΌΎŸEtδ-B?؏χSχ¦~ t©υ/γ›;Uω’'N |`o‚†›εB°Ύ‡Τ~ύ*Θα7¦€ikšζUΟ¦oΫΆ¬τD°Ϋ,O΄€J”ZΏ xθiΌΧw ΫΗzΦU­»Ž€ο ~Ζ’τH°e‹ΠΎΤκk­« ³Τ¦ϋ—`Χαΐ"τ~uύδpT­P„¦iΊ}/z>VΟ4=¬C‘R^ί /qμohg*(α[Βw•ΞQͺK%Π~¦…θ»Zύ¦mۏ.>@λP.Υ@ρ·„?Θ>žͺuΨYί›ϊŒ θ™` ΄Y.Ίΰ0Κ‘:ΓφS€c΄„―Y”@ϋ₯MDΦ4ΝΣΎί]Ίθύ¬Ca6ΛΕ“ͺ¦(g[Dό•–π• V΅ξ:Yίχ©wmΫ^»βύ¬CyΞS%e$f†οF°χ€–πΓO-αχ₯jύUژ‘4Mσd€ωκͺΥ X‡‚l–‹EΰΛ€G\bX‘<3_­»EΰwΑKKψ=ͺZ?P΅@P'=oœΎ¬ C°e9z΄OΓNζ«uΞVπŝ/Ρ«΄ IΧ>Jεu‰ΒT­8Έ―οϋΣeΫΆ6 @°…Ψ,]»υgAVPΌ›h­ό!ŒΤ>bϊ&u aGͺΦ7Λ…p€0š¦9ΰ;žN;¬C9"WK:»φ&Χ/6λΎ.hKψ™…κ½DΉ‡i@$}ί—nΪΆ}ο  C°Ψ,'«Υο”XΙyρw«|…o‹ΨώXKψΗIUλΩ63m9N` ‚ήΫΐ»ͺΓ¬C’ΞVί&¨z£%|•ΜZ€€išWŒˆ*α{#@±λ\š{Xΐu*1hϊ˜ρw ζΰ;RKψ·Ο“–π0_­/‚T­Ώά,GŽ€iλ{£Χ‡Άmsvδ¨ž`β+₯νp‰Aρ§ŒΏΫŒux˜Σ a좝ΈŠ°ΗQ΅ΐδ5Mσt€Q_6ώ L°T­ή9ά,₯…Εf¬Cp[ΒΏ6«{w©j=ΒμόΣΗΐtυ}ΊiΫV°00Α:ΔVJ΅ϊB¦œΑΊŠux ωjύ~6›ύπ|]Έ‘(‚ΥώiσŒͺišnΙ˞§P`‚uj³\œT­~§΄`=g+xσ}a7g[ΒΈ*‚sUλLΨΟFԌ@°q•Έΰ_T°>_­?fόυ₯mš€¬΄„―GΊ–*λΊYωΖr0šͺΥίΆm›sΓ0ΐdΦ! <+πΪΨ9[Υ€@vΈ%ό₯–π;‹RY§j€1 ±±Lχ€‘Φ!¦’GJ«άΜY΅.ˆƒέEl `Άιnζ«υuWaΰPNlŠ` MΣ ±yΊ«VΏvΖ!X‡`6ΛΕQ‘ΥκwΜY8λ°£ΐ-α_l–‹“ΗQ’›‚ώ=P‘¦iž¨V(Ÿ`β)}q€΄`IΕ:&pKψ ΥΟ—㇇’<CλΎγφό;T«ŒL°€@ζeαΧδ0Uέ—"gΕziΥύI·@}옴„ί]„σΥέ·|0ˆΤώυΆju€‘ Φ!–ZͺζJͺZΟY±^%xKx­ΕhΎZ_™™οšΠ»Τώr€ϊΥκγ¬C,΅λ%Uώε\κ»$LΚ|΅ξ6Ζόπ5ŸΦΉ#·Uλ'ΪψΠ§ͺΏOmϊt«Z Α:‘*ϋ^tΙεE)Ε|΅ΞZι±Y.žζόύPΊωj­%|ωΞΌ‚ƒΒΊ­_ͺp”gmΫζg0Y‚uˆ£–jυ;%9C9U­°ΏˆmΌŸm–‹Ϊ>Χ‘ΪϊΏ p({λ*Υ›¦ω8P¨~ΥΆm„ i“$X‡RΥς /9•¬η¬ψP±{ άώLKψ‹»^μ£iš£+Υg6δ%X‡j\ )¦|ZόΚE°=ΠΎlisΔ‡/B`ΐ£4MΣέC†ͺTοόΆmΞο-“'X‡ΜRψό²λPJΥzΞ9λͺ#‘?έgΞm°σ©%όΓEΨ„`Ξ:;išζyΣ4]ΰύsΪT7„›Ž+—`ς‹8Έ/‚υο«md3_­―ƒ.:œF~π σΥϊ"ΐƈΓΝr!\ΰ›υΣ¦iΊgίΊtŸ±WmΫζ_0yΏ9 ]Ν•ŒŸΫΑΟWλθ‹@sώςΝrρ|ΎZkλ=˜―Φη)z{WF?†ξοη2σ1H€§ϋψσtŸssμOZΐCݚ¦9Κ\tqέΆ­Vπ?ωΟœ'Θ$U0ώ_εηΗT…ΪfΉψ4`λΖ*Ξ”b³\₯ 3ΉήΣ_σSšΟW€kχοηg^ΐ¦0Ύ‘išξ»Φyz&ΨώLΏώFΗͺ'[Ꭲ~3λmΫ>Οτ»‘t#%Rχ‹\|Φ<ŠuΘk swOƒΜΝύž+\U±BΊ–π›εβ,Ν:δΝfΉΈœ―ΦY»dD–έ‡N ΉwπuOύ$Z›‡Ί)h΄ΐ$Φ!“EϊDJŽ» Δ4ϋ82Α:T$΅„οͺ.^{UZΒί…`ώk«ύtN]{ΨθΟqP›Ϋξ^d:@,‚uΘη$`›β‘œPŸ³‚΄Τ*ˆξUjυι³ΆΫlt¦%όΧu£16ΛΕyζλφ’MaΤοiζΦ°Ÿf³™Ο,JTr(έ…κ:άσ\ΘζΥ„N} ―5kx’ζν=J3²#~ώΌρžΛΗ ύ.@Α ¦lΫφ}€γΰΑ:dΠUΑM¬Jω`³\„Χη«uξΕ+! `ΎZwν»€ηφ"αΛΞœ—)m€ †.T7Š (Α:δ1Ε*ΈŠ«ŒΏ[°Γy•f•Fr¬΅ςΧΝW동?“g©mQζc`:„κΑ Φ!θσΖ‡π¬€ΦΗ9ΫΑ?Οψ»‘j[ΒΏή,ήϋ_!\Π lΉ7i=D·ωοŸBu€ψλ0².NτΌGίPsγqΖί ΥK-α ψ:΅„ΊƒvπeϋόθoΊ ΆmΫ^8ΎC°γ›ς"ύΛΰRΦ9λ*Wapgi;’C-αΏ,uΘ=_;x†έ㞢m›ss/;¬Γψ¦ήV6rΥzξE-Α: HKψ"E¨ΰ›ϊ} d+Φ»ΦοjΫφ€mΫθυl¬ΓˆRp2Υ6πwΒλ)tΛYΝ}=oΎZΏΧΎσΥϊ"9iPhΥΰog³ΩQΫΆηŽ€ Φa\ηg³ƒΝrω<δ\|S± γΠΎ,Ή«Φ΅ƒ`_f³Ω?ΪΆ}₯J \‚uWξv²·©J"·ΘαQΞ9λέ¦Uλ0°Τ"b{o-αΏL;xJυ6κΟΝR(Ÿ`F²Y.ΊEωƒΜη» '.2Cη0pΥzξ/Α:Œ`ΎZwουŸžλŸΡ‘ΜWλΛtœ(SŽgϋ«n†zw Kκu€JΦa<ͺέΞΣ|α-CV­§σ““jUΙ|΅>K‹ί‘t΄„«νΰΝΐ(ΟmΧ»`οf³Ω³ΩμοmΫ>νf¨kωPΑ:Œ'w°~“*4;癏eΌj=gΠ&X‡qEόzc,Δ_D¨δΧ <Χ©CΝ‡τ³―«τοό΄€?iΫφ€mΫ‹Άm―ύΤλo- /$ΉΫΐo‡ι]@ρsΖcΉs΄νqW΅~œιwwŽζ«΅E9A·αh³\t‹γo‚οsmώSΧmε0γaœhΥP–t₯LΣ4G³Ωμθ/ζ“vξΜλ0š‘Ώ·Ρ―֟6ΛΕΫΩlφ2ο!ύ·j}ΎZG *Ί`ύuΖί€«LBΧ~³\œdάPσ%Ο6ΛΕι|΅φYπ‡Λ̟Ν/2ώnz”wYΨ‰Vπ0Žάνc―ΎP%¬‰8K8wEŠ*U_Δ–πgζzIφMXi0A‚uXjŸ³uνμK!zš·žs–ψp³ΦΣ&„›Œ‡ X‡‘₯ΟΔ;οΊWό!]£œŸΝ3sΦ`Ίλ0Ό‹π—_ωΟ£6η«2ίgόέiC0’ΤvύC°sώr³\Ψlσ‡―έΟΖβZΐD ΦaxΉƒυwέLυ/ύlσάΥ³T•yΰ8Άε Φgͺ"!›ƒΖm°Σ―jύΉΫΑΪψΣ$X‡m–‹£Ωlvœω―Ί/ϋΜΪδ4XΥΊ9λ0AiΔY°W~mdF.ΪΑΉΦaXΒΡοληAͺ3CΝNαMΞσς,`{|˜„ -α#ŽΜΘEG`t‚uVΨ6πw=JΥϊΛ`-vs‡7ͺΦ!Ÿh-α#ŽΜΘ%χœυc›`zλ0¬άΑθCΓ‡Hσ{#KξπFU$d΄%ό›4bdζ«υe€M6>Φ4Ν“¦ižαΗ&^μo. c³\Ϊρδ;X?Τ–¦«iš£*€‘ Φai±=χΤΗ„‘ΒšΧAͺ2sλͺ"!³%όl6ϋθ:<›zΥzκΘr•ω0Œλ€ι²^$X‡aδ~ΈΎJU–; V΅>Ϋ΅κ~ Ή«"UEBΡZŸ8†άrί#,€ΐtέ$X‡aδ^lί§Κ:RΥzΧj7λρ¨Šfl<Šfw›n¦>*BG ί`‚λ0Œά׏²X΅ώf³\δήœ»j}κα„0_­Οl΄Ω6ιYλσΥϊγl6»ΙxξO@ΉG@Φ‘gi‘ύ0γy½―ΦϋVρE k.6ΛΕ“ŒΏ_;xΰΞi 3q¨j]Υ:0¦i|€‰¬CŠ­VΏ“ͺΦινˆφwœ3μOU‘Ήg+k€K‘>']΅`γ“5˜ί`’λΠΏ’η«o; &o{½Y.rž[νΰ;‘>§^΅ž»b]+x˜Α:LΤί\xθ]ρλ³Ve~Ϊ,η݌σ>ώ½ž\v-Ρ»cΛπ»»πζe†ί{η8½φλŒΗόρωΨ΅„5Θωθ‚ώ‹Η1Ίt-2Ξ7<τΩ ΐžΊ.y?d<‰9ΦXJgƒ-L”`z”ζ«d<§W=‡Ξη©R:ηΜψm)<ΚΡύ2@ˆv’ Ω|΅ΎH•βΟ\‹ΟUλέ18–ήg ΦgiCέTΟ={jΫφS€NLπMέηγmS4εͺυœΐrΆ‘Ζ%X€ ¬COR%qΞKƒ… Αͺ2οŒtΟWλλnŽύ˜Ώσ rΜ—Ύ"}.œ9?Ο¦Z΅>›Ν>ζόε>ο0MΣt‡8L—`ϊSΥ|υ/8 T•y§ ‘.FώcΎϋ&Ϋξ;τωψ*ΐ1δ`Ξ:04λ10q‚uθOΥΑϊ|΅ώ΄ΝπΛΝr1f‘όTƒ3)}>FΣπ2uP™šάΑΊ6¨Ÿ ΅0q‚uθOΦ‡λη«oŽσ­ΠΏδΧ±ͺΈSΫη›1~Χ7œd˜/|Γ|΅ΎπΩp'JΘ?š΄Ή!ηύΙΤΟ†Z˜8Α:τ …œΗΟε`σΥΏ j΅τεfΉ+ΨΘ]΅~`Φ:„₯«Η«‰nΎΙ9gύΠ†'¨ή3—¦M°ύΘ]©6Z άωjέΏŒυϋvΠ…ΝοG 6ΞGψί£<¨j}ͺ›oΜYΡ4ju@°=©zΎϊœjyΌm”p=΅ƒΟέΩDη(CtQΪ°G©žSΊυ™`ͺζy¬COͺŸ―~οχ} \1}Θx"sΞ”Ϊ~6tΈ€όΑfΉC0©j=ΒgγΛ ŽŒΘY΅~œρwiš¦ϋ^uθό‚uΨ_ξ«ΩB„ΰ-αg#TGh/X‡˜’Μ8? p cΚΪ~³\¨b€ϊh|&X‡ύε^DΟY±½%όlΰp=B°ώl‚©ή|΅ΎR΅~ΰΖ”{ΞΊΟc¨ ΄ΐg‚uΨ_Ξ]«7©j<·³mΡΏε.\ο5πHηώ]οG»»(•±ΐŸExon–‹ΙTWΜWλάΑΊ7¨Šuΰ3Α:μ/η"zΦjυ;΄„Ÿ₯pύγmz/{ώχγdΐvχΐ#ͺZŸΪȈ·`κsμš3Α:μ'U@d<Ή+σ~—ͺδpΎζ Uχ2₯ΰμΆχ#έ́YλV„‘SΫ|sρwkišF΅:π;Α:μ'χz˜`}φߐωK­ψx"ŒŒ˜ηCΞ{δT:@νT«"X‡G P:XON£Ά¬ŠΓT½~ΉkΛδT!@iδ IDATa#ΑΛ ΅{†bΜWλnΞϊMζγ=Φ~>ƒ ΊQ"X‡ΗΛΊp>_­ίGΏv[σΦsΆδ}ŒnφϊΏ7ΛΕَνα£T­G˜η όU„ΟˆI΄ƒŸΝfŸ2ώnU-PΑ:π'‚uxΌœΑz1UΰiΆp©_DήΜf³λ4ύ»Χ;mvΘ]‘:KUλϋΜ‹†!XŸJ;ψœ›ΟΜ`€Β5Mσ$u6ψ`/gX|]u›―Φ]KήΚc€ωλN-βΏWν₯Zό4ΐ1[F£w™ΟΙTΪΑg½On– UλP6Υκΐ_Φαρr%ΜW“ωjέUjώ萣kΏ›εβS ΩOΏ0k2HλϋSUλe€ƒͺΎ|ΪГΟ_(›Ν²ΐ_ΦαρrΆƒ ?_ύKζ«uWΝύ6ή‘νμ …μ?Οf³ί6ΛΕRΨώ>Hh6KΗ¨j‚I›ŒroΎ™ΚœυœcS,Β@ΩT¬!X‡GΠ⡨VπΫζ«u7ίχCœ#κMd?K?QζλͺZ‡˜roΐy6‘Ο†O·Ο^(Ϋ3ΧΈO°“u>m€·ϋ:Ι\I8ͺΦ!¦σG5…ͺυœcST¬@‘š¦Q­|Ρߜx”œ ζΕW{ΟWλOi6yΧ:ύ8ΐ!Υ¬«Z?οΞωΤOD1_­?n–‹›Μ#EΊΟΰ‹Κ(T¬lωBHπΠΠΰϊ^Η¬mΫzΆ„έ{ν°Ωγφ3QΫΆEŽ•ƒ l”e2š¦yrοoώ‘χ™ν{Κ§Άmsnn`'gΕzιΥκŸ ΧGsW΅~6‘Χ ₯θΪΑΏΞx¬S¨Xοξ/o2ύn qΐ¨ΆDŸ¦Ν=Ϋ³χ1EMΣtγ6…vwΑϋηέ’*μiš»γωΦ{χ¨ο˜ι½;Ϋz~Ί>Άq>S±NU­»{M_Ο‰ϊΎ½uΉΪΊΏ|JίΝ»gΔ*Φ΄λπ8‚υl…λ3WnΦNΥ:Δs‘9X?Ψ,O»κyƒθ=ΔΈ“Έ»ύωPαω€ω³šA›U?€gόξη½…TψCΪσ|λ=œcŽσΑΦο}qοψnξ½UΉ3E6ΚR€­Ν–Ο·žΗ^s½+ Ί»Ο|ΰο=#ΎO›Ή<#Ε¬Γγδ|ΐ*IαϊIz D CΥ:€όImχ”{²ΎΆΝrq4_­-{KAϊσ­Ÿ6€ώ)pOA]χΌΩΆνeήCƒqmιΟΣσWτχπaϊιχ7)ΉJ—νT/έwPŒ¦iNΆξ3Ρ»‚ή=#~.4ΨzFΌ{NT„χ?ωΟ\%ΨΡfΉΘωΖωG†]‘Ύ¨k ?ŒΥί‘ͺuˆ£λ$‘ΉjύΓ|΅ΊΕaζϋυσΥΪΒ3{I-Λ|jΫΦζΌ‘₯kRHχο³˜Τ¦iξΪ’ζPTϋν­Άεc(²5y:GwAΗ‹ό)ΙνΦϋΧF™|aΎρΨΜFή4MW˜πsΖCψWε ?³Iηρ*ΏΗ\₯—ͺف¨T¬ΓŽRλςljmΫΫUυ™Ή>¨ƒτΠ}Qρk„δnl³\<©|ΓΝ•{ PЦΏJΟl΅wrz‘~Ξ›¦ι‚Ή‹ μη™Zrw~HίƒJρκώ\Uηζχpτ$u «ωω£ϋ|zΩύ4Ms²Ÿ fχς4σFΊ΅ΟΏ·yκξ΅nohˆT₯ž3ΤΣLδuφ"έc^₯Ÿšο1Ηι=πsΣ4w!ϋ…Jv Α:”ε¦ζλ΅5s]Έ>Œ3Α:Δ€όσ΄Z«œ_ΎŸ’€Š£»E)Άέθnσͺ6 l ?έΪσ2ΐαŒmϋ=|•6¨x3Šτή›έ Θ£†επ(©Νϋ« +Σb;dd#&€`!η.ήκ[ΰΧuΈY.^ΝWkα:Δq™Ήj½φ`ύ:cυ!ΐW₯ESŸQ…Ώ¦*φσT+œ#W{ώoΪͺ<άύξΨ{˜Ύ5Mσ*}gΉ?ρt]]˜Έt9πΖΛ/ωΣFΜΆm­mΩό?§Š2‰Φj]Έ>_­»/KoNmΜH…XrοΆΊεcζ ic͞ MΣtŸM+TͺƒΤfόΊiš³΄ΈΜtεœ;ύ]—‰ξο2=cό,πψ"οaϊtΧ βYϊͺS­tιγMϊuω«Ο1»ηι¦iNέc€λ°»œ!Δ€v{ΟWλξ Τ/₯&Ÿ«Φ§~ ŠωjέU‹ίf<œγnΞΊ?ˆAցϺΏ.}J՜If;œ;-α€Dˆη”­°γίιοRΈχ}ΫοaίAΎβή=fŠcEγ0mpϋθŒM°e™ά™ωjέ-’ύΰPj"μXrΆ‡ͺλ™ωk@Vi‘οZ·—ƒ4[σγΦ<]¦#λx°΄1ζ\Ψ±—ƒT]ψΎiššŸ;†Ώͺ%PοΕvϋI―(€`v§eγΘLπdκ¬Awώ~˜―ΦΪΑC,Ήgœ )†a&¬[ΨK-ί¨χ¦ XλBNm?§₯ Ζ~Αw&ƘΧΏ}ιΦRώ/Wx(χPͺ³uω(PοM°oΪΔ₯ ”` 2_­'[y7_­?¦J뫇S’έω›ςίfΞϊprŽP±ΤUcv zi†Ί–οΓxΪ~Ϊ6£.§Nuš̛ԁBπLNͺͺvN·‰λί6qC¬Γ6Λ…κ³Œζ«υ§ωjύΤάυύ4_­Ÿwη―°γ†I˜―Φ]%ΤMΖΧZm'–΄) `p[ν’O‡«Qͺ^Ÿ”QΨ­1ΏΪ3Έγ΄AFΫ^`RΫw›/Ηs·‰ΛZ>Π;Α:μ&η’ΝΧκΏάυj ]]Pχ­ί‘YΫΑΫ86ŒΝr‘ & UNΤ.:‹ξœ›Ϋ\ΏAο§[-ymŒΧAjΫλϋ*_€3 ΅hšζ4=+ΊΗŒλ8 9‹†'X‡έ¨†bΎZ_¦Ύμ]7ίW΅&#w;ψš‰œ›°λP±­*υίTeuœΒu•―υμ9ekcΜ›©ŸδŒΊͺΒ‹ΙΎz ZιY±ϋ³ΆοYύœf―[Χz!X‡έδ €χ€ΦπέBΘΏT―;?ΞWλ­ί‘(‚υαΈ½KοU©‡‘ς΅n½/„ΫΞΛΤ²WθT!mψ»V₯Fwu9ϊ X‡rIΏbΎZŸ§PhκΥλW³Ω¬›₯n·?&m„ΉΚxΤΎ\ p,ΐ~²Άƒί,΅V­Ϋpμ-…<οShK|ΒΉΚ€Yθ–ΒŽΛ4η–ΨΊχ―.l@QR7”6­γuΪ0 °3Α:P4{ύ,μo+ΎΒέζJ=χlf ζ¬Γ(`/i‘τZ…kqŽΝdφηΦο/œbΌx₯HσΤ»ϋΜ‘‹V”—MΣ|΄Ψ•`v“mΧ‘πtw©=|77ηο•μέ,ωΏw›\f έgVζNGώŽώ,UΙΎ7#³X©r]Έ^ΎGU¬o…6Ζ”ηejέVšΧmžzΉt9v&XͺWQΐώ!΅}ž8 >9Ϋ–›aΨ?A,-”ώf‘΄xΒυ:μΌΰ-μ¨ΒΟϋŽ h=‘5MΣuΛόΥU*žpΨ‰`Κ0…YαƒΫ Ψ積ϊM!‡Ύ¨λ\uΛω―΅b=ηF$_Μ‘P)³PZ»p]w–rν΄1"΅χΓ₯°ˆ&έgήΈ0Υ&X‡Ϊ,9wΚζ¬`¬Ξέ φωjέ-¬ύs6›½ ψoSuύίκ0)9?οk§Γ°‘z΅tE{πuKaΗΛ©Ÿ°Š|~οNύ$qΈΟTλ8s±PΑ:0iσΥϊrΎZŸ€*φSȞ³C@χϋœ―ΦOΊκz-ίar²n€ΚΌ‰ ;‘zυT#•λ»3»λΪ4Ν{aG•ž™·>I>« G¨^½γtΎκoN α“Λ4¬Š}6›]€Ÿ»pιξηΩ€Ώό*ν†|ί…όNQ·™f³\δ<-rΙJs|…κυ;NΟό'S?₯ιZω·mϋōΗi³Δϋ‡πλ¬išΛ―ύ P%οgB™X¨~σ•ξoC‘Fρ²išYΫΆ―&πZG¬ΓΓε ΄‚Yj½ώ{ϋŸΝrρ4Νυ;JaϋlΗ‡Ι»wS{wΰ+>dό²*Xο—*(DΣ4O'Ψjψ*mΰ½ήqlΖΣτωφ€ΰΠγE·8nΑ΄8G_ϊ[­+/†Ίη|Kϊώόwœž·OOiχŸΛξ™Φ`›`Κ <ΐtδόΜ―±bΰ[Ξ+κ.ΡUΈ]F©δL‹ΈΣ9ξUOΆU#mdΈL­L‰οOΟ)iΦmΤϊ›­Ν-Qή“w!Gτχδχ6Ms–+t¦#mMοΗ’ΪΕvŸι=Ω­yό˜6μDwͺzWP¨ήέƒ~κΦ¬».>ΎOΟƒ?€gΫΘ^§N/‚u€€\€a€Ε‹B»tt‹Ž?t‹QΪKο£ ΫΆ}(`'ΆƒTέaΦm>ΨΆν“‚-ΗόΪ!lμJMd§ισ o%Œ ϊ₯Τ@ύΎ­€ύΗΰχž χ`&X‡b˜±0-9Ώ›Τξ¬ΐΉκ7©Bύy€™™}°³ƒί2Ÿ¬»Ν-]˜q‘ωXΣUή§}οζAjaΠ›F]₯.)§΅ΓHχΥ£΄i ’ƒ΄9˜8Α:`ΎZ›0-9C;°j₯jΧ(-€κ§β_‘ώ=[ϋΊ·ΜΝV·ˆκ6·|Ij’ͺΧ£: |l@a τ―4v€Ϊ¬tοιF}ό3hυϊ -αΑ:<œ €)pΏͺ΄ΥΎ]eμί»ŸSϋ‹L-AŸŽšΊέ¦–οGS ΤοKΥλϊ^<p}>*θJ=rθί«΄‘τiЍ–ZΒΓΔ ΦααJk @Ήrξ@Χ ¨UPςΪ~J•±ΧŽ%›΄€uQ•ϊέΝ―|ΫΧTω9œΓ΄‘ ΰ›gΕ›@gιGγHε4Hχ’Uλ0-‚uͺ’ff> ϊšή Υϋ³5sΚΖ–~E:—ͺց‡ˆΤ1θ‘ϊγ€Νq―‚l°T΅"XˆI₯3ΐγ=wWζχ/…λ?ΦφΊ„P½gmΫ^jΗk“ πMiσε‹ gιCjiΞ#₯gΐηPΥ:Lˆ`€jVοͺi΄žHͺφŠξ“P}8Q63E Λ€Έ’|^έθ²Ρτ ψ.ΐ‘xΖ€‰¬pŸω”@Ι’V«ΏJU5 'Κ¬MβΉͺ'U­G5ξ6W|ισαU Ν—'6[φ*BKψΓτ7TN°ΐ}‚u H«Υ»ω™—Ž£j[³6aۍᣈ2³Ψ΅Ύ&Κζ˟lΆμWzŒp}΅ƒ‡ ¬P‹ˆΥκWζgŽ'-T4•ΧΛwέͺ GΫΆοΣ&†άλΐ_€JβΓg¦{.ŒΪ]©hm۞θ\tά4ΝΣΒO%π‚uŠΧ4ΝQΠjuΤ#K Φ>ς;U8ͺ‹Η ΠΎ$J˜νΉpX6³ΪP •¬PƒˆΥ?Z}ζcαšwmΫFz§$Βω>P-l T­ξΉp`©{Κ‡Μ‡q4Ν“ΜΗ H°@ΡβΥΛ`―A«ΟŒΒκ»Ιžnl_ΫΆΧΪπΞT­χDΈάx.Mξσ|Ѕ뙏`€jm– «0 4m σ;M3Ά™žWζͺgsΰŽ@Σ4ΟƒŒ ς\8’(Uλ™?0 Α:5ΛΩ‚Ν|_O΄ΕΚ·iQŒRυμΉk09οΌ²Š¬?p @ ž?΄mα³qJrW­ΏhšΖ&/¨”`†qνΌΒπR%R„Ή™wnU%…rj}RΌ2KσƒsΏηt,f)Ψ|ΰLh?²΄Α.χFwUλP)Α:%‹Φώ\ κ8΅P΅>η©SyεξpΠ4MΞE@ ž?θ’’Mξ翈£ͺ€Φ!>mcΰ Rpς2ΠΉΉↀj}n½Βˆ"©Z"t0Q­žΟEζίl“ΤI°ρEjk ₯ρEκ­Εβ™jυxT­O†nq| p$Š`š¦ιž2ŸΥκ₯g‚w™C;x¨`€ϋjZ”V­u‹4Kω¦mΫά•1|kS7Υκ ’λ0mΪp«VΟ/χσŸ`*$XΰΎUF5Pjš¦ MŽc‹§₯ΉΫo§~*¦Z=ž«ΜGds%LTjΏύ"σ«ΏQ­ž_ΫΆ—™Η=r.€ώΦαα>8WŒH s€o‹T’Z½ Q½\ΫxroΤτ, Σ‘Z]•8rnp8hšFΈ•¬Δ€ΚΰΫ",šή±xZ€T9v3υσP‘w©#±δΎ&ž₯aΊ"<#ΪπΗeζ#¬CeλP€Νrα !<Ž/±P‘`mΰo-žΕ&ˆϊxΕ”»ςAΤ 'Θ3β[γIB¬½¬C΄0`LϊaV= 'Υ…ΕΣ’δ^\₯_·i~*ρd\L0-FΉ/’žΣ―2Ρ³p'Ψ‹` ¦lέJζ«΅@Έ‚6N€ωκ*  ’Z†Ώ›ϊy¨ˆπ"¨Άm#ΧSξŠuΟ±εΌ'¦Q@λπp9oΎnΌΣb7s?λP™΄ uδU ΦΛfρ»|ΉΫŒDΣ4έwθƒΜG£Z=Άά›½¬σ@%λπpf¬0–œͺ,τC‹aF”jυ›ΆmUb,]ΏΫ©Ÿ‡Β ΦγΛέ ΙL[˜Žοw›φb¬½¬Δc°9ΏΈVΣR‚‰ςωxΰ؟Νde³Ή%>ΧKξgΔ«Άm}Œ-χ†<υ ‚uxΈœ7_7^€iΙY±^Σ¨Q*PŸ(•Ω:ύ &ΐ`Kξ`έ³apΊM©X‡JΦαζ«uΞ`ύΠu˜”œσƒkZ€ΦRκσ,ΐ+Ύ>«Λu3υΐ™―Ξr>?Φ‘‚u€@6ΛEξ.%5Ν+υΕ*4M”6πζgV’m[‹ΰε2_€;ΎχΩtY†œΟΉ7=¬Γn²νjΫ,Β€iΘ¬gξΠRηϊεyX°^—«©Ÿ€Bi_A0†ά›/»nFΎ•!λu ΄QΨƒ`v“σζkN,ΐ4δό’U[Έ3„³°ύ ¬«rŽΰ―L[ΜΑ·ŽӐϋΡ=©Ύ§{¬C9r·`9j«ώj κ!Xΰθ—V¨Χ±k “ϋ½.Xη‘T¬Cλ°›œΥ)‚u€iΘUS…™{„Κ|΅VΡ ύ‹xoΧΗ5-“VπDi­νY’°7Α:”C 3€Κm–‹ξ³ώ0㫬i‘Ϊ}*4M”ωκ*’κ£b½Lή‹Μ‚"y–ΰ‘’|§φ X‡έδ|Prγ¨ŸΩpύΙΉΐRΫ¬zˆΐ|uΡΆ­Εp(WφgDΟμ@T@°»Ιω δΖ PΏάmμλύОϊ‘ιC€c`-”)w°ξ’,Ή7AXί‡ Φa79Κ#Μ”`X9ƒυ›ωj]S œ3„S±ύ‹P±υ4Δαύΐ,ΐ3’MΥ Π]ΐϊ>T@°;˜―ΦYΏΌo–‹•: 'η’@ma°`κα9XW/-ώ ΣΆ­ €ΞAζ³ΰω`b밻یηL°P©Νrρ4σ’@m‘‚M P—ΥN‚hš&χ(΅™Šu€ι¬Γξr.¨ ΦκeΎzΏrnR¬Cš¦ 1‹°m[Αz½\[(O„gDΟμ$Θ†`‚uΨ]͈‚u€z Φ{²Y.rŸKΑ:τ+Β|υ«ΗΐpT›@y"<#01‚uΨ]ΞΰΑŽ6€z½ΘψΚnη«uMapΦΚ…ΚΞ%D‘ΙϋβΈq-ˆπŒΨΆmm#ΥψŽΏ9A°³œΥ !Ϊ`Π―Νrq’ω”š―ή‹ύΠΏΥHΪ|V¬[ošfκ§‘$6Ί0‹πŒΨ4ΝYξc`\‚uΨ]ΞE΅cΧ  JΉƒυΪ£œ£S,φCΌ·Έο30-ZΑΓξ².ͺm– σƒκ“{ΤGmλ9ƒuU­ΠΏγλ±d<ZΑ&ρ8pΤΪΐχΟίΔP« IDATs¨˜`φ“³νλαfΉΠφ ,f«Π~ZΑ@Ελ°Ÿά‹θͺΦ ‘Z•Ώ p΄Υ΅Orλ7σΥϊSΖί L°ϋ¬πPgAΞTmΰ;Ο2ώnΥκP9Α:μaΎZw ι·Ο‘` itΗI€#}[ceuš]Ÿ“`*'X‡ύε\L?vύŠp:›Ν¨6πΓxŸωχ¬Γώ².¦¨ΰR΅ϊi€sΤΝ―5V± Ισ6 X‡δ^LΠZ€―S­>Όœ‘ΧMνυ€?ϋ›σ{Λ]ύ§‚ ¨@ΥκσΗΠ»Νrρ4σΖΥκ0,ο1"ϊΙUα4(›`φΤU©m–‹›Ωlv˜ι\wΑj9€’T«Ώ­ψ>‘{ƒ™ωκ0,ΟΈάΧmΎ|–σ¬΄m{ζͺLVπΠUλόI°jumΰ‡£šκηY ›/ΘB°ύ¬p_”jυnxΝUΥYŸ[Ύ iš'Ξ ΐτΦ‘ΉΥO2~Ά«V―Ά=]€ωκ2ώn˜ŠΥHMΈο©30=‚uθΑ|΅Ύξ*3žΛΓΝrqδZ„q€Zύv6›]8Ž‘˜―•kΫ6ΒΈ…γΗΐπl ΰ›λΠUλΜF§—AΞΔω|΅yφœωκΐ(΄ϊœ( Χ9Φ‘?ζ¬0KΥκQ\T~ET¬Γ4άx•Z}Δ!X Α:τ'χβϊ‹4Σ€L6ΛEτΎrώί¦Q%UJη:g»ύ«Κ»@$ΊC»ΐ6/&H°= 0g}¦j »HΥκgŽaHΉG ¨V‡i¬°Mΐ Φ‘_ζ¬LΤfΉxh>kΥΥκ‰6π0ήo*’*Φ4 ΚPΆm} Α:τK°0Ai‡Ωκ#Ω,G61XȁiQ±ΐ6σ&H°ύΊΜ|>ΜYΖu–yήχΆσΥΊφΠ7χ½Ξ|uW„Ο΄(I†Pž[Χ €± Φ‘Gi‘ύ*σ9U΅0’ΝrΡ΅~θœΧ>[}fΎ:LNˆ,Ϊ…WM°εω˜ωˆ ˜ Α:τ/wΥΊ``\‘ΪW_­žΪξΏΘ|Ήου0)mΫζ^4½cρ΄^O¦~€EιZΐˆλп܋퇩z€m–‹Σ`νU«`­φ!’›Ηδ»^-”'ϋχ²¦i8‡MΣ¨Lͺ‹.Pμ›Μ•˜Α: 'BUΫ«ΗP…ΝrΡ)ηΑ^ΛΉjυΡάΞWk됗ͺu†`1Κaσ³g € ¬Γ@RΠq•ωόΎH³€Ψ_΄π·ƒώA€{YξNBuΘ/JΧΞ•Hέ"έΫ€έDΨhξΩ`Bλ0¬‹ηWΥ:ΐž6ΛΕYΐΩi§σΥϊS€γC„κPmΰ!Ώ(λ/š¦±y΅Β lžU¬Lˆ`†‘Ίν4ΐ1k³\t_’ί;ώ«ωjaσΦX"άΛT¬CfmΫvI7Aƒvπu°kΫ6B°~lΣ%ΐtΦa@AΪΑ¦P€₯δΥΙlšJχ°γΜ‡ρnBέ Ί(έ#λuP±εϋΰx¦˜Α: /BE‘ͺu€Ηι>Γƒ».δR[ς#MT«CQ>^€ωά*]Ώά·€ύE¨Z·ι`"λ0Ό‹ρ'©κ€Ϊ,έ¦€ΑΞΧν7K ցm‘6Y@-›Κ2¨C„`έsΐDΦa`©|ξ–Dώ.΅9ΰ);Oχ•IΨ,―=,'mΰ!4g=χ¨₯;ΊB•Νχ#¨C„—‡MΣΕ 0‚uG„vπgŽ ΌΤα#b«υ«ωj=΅ΟrΥκΐ—DωŒξPU'•Λ΅€ €—7^‰g € ¬Γ8",Κn– xίχ>@•τ—Lͺ22u xΰPλO„M«w"lbGMӜ½Χ‘ΌηB€ ¬ΓR ΩwΞ΅<€oΨ,]Xsπύ2_­#VΡ)ΒFmΰ! Άm»…ΣΫ Gφ²iš£ΗΑn΄€ΊDΨ}μΉ ~‚uO„Κš—›εΒΐl–‹.Θ}πάάNmœGjΗαZDͺŠώ,R7 ›WΛ#X€ΊDوξΉ r‚uΙ|΅Ύ RYγΰžΝrΡ-°τΌΌš`Υt„jυΫtοbŠτώέ›"TͺV‡΄meΣκUλ₯n› nο‚Ό:›ω*%X‡ρE™iQ ˜¬Νrq8TŸd ψ$ΚλŽ:sψ«hUλΒυΈNw©ϊeƒϊ©ͺu€: Φad©­o„‡Ό—›εβ(ΐqŒ*…κ/ŸυIΆ€Oχ€ΧενD[πC©’m„±ˆ—MPΏ(ΑϊAΪΤ@eλG”³ͺցI) TeŠ-ΰ“(­ςT«CAΪΆν6ΒΌ tΔάxόϋΓ©ŸŠ fιΩ0J;xΟ„¬CσΥΊ›ω!ΐΉ?έ,*j€I( TΏšκοt/аΩλfΎZΏpΐn’lZ½σΊiš§1…ΔΒ6uωL Φχe³z7&Θ¬u€ΚΦ!Ÿqͺց)( TŸM΅|rdξ­ΰ ΤΆm”M«Ϋ’…ύ“₯Z€]΄m›;XgOmΫvίoƒœΗ3c‚κ"X‡Lζ«u”‡<;'ͺͺ+u3™ͺ›ΌnU6»‹6Ζα™ ₯όBΆM”DۏH³Φ=TD°yEXδ9ά,ͺց*ͺΏ›―Φ“]τOχ •„—ξΕK•I7Α^‡ ₯ό’tD€‡:v¦zι;φ›¦i΄ψ¨„`ςŠRYcη$PBBυ#9Β΄_ΧΚν}| F>iϋΝT_?{‰FœGJ£‚Ώhέ•x$Α:d4_­»ΉMο\ƒγΝrρ<ΐqμm³\<)$TοœLΉJ:P΅ϊ‡tO ΄j]Kψ|,`πXYΗt5Mc‘ͺΦ»gΒ“Ηΐžλ_”‡<•z@ρΊP}6›½/$TŸϊ\υ™ju`ίΟ]Kψ§Žc2f†gS?Λ(™~\λ>paL@ωλΩ|΅~€²ζΩfΉ°ΰk³\₯P½„™to§o―©VV%ΗχυK7RΝAάΈ€ϋZwg±5ύ}’Ϋ†φΧUUνdpάΣY8ΘΒQ\θ­ϋΠΫvRο™3 7ϋϊιΙf΄d[œwΆΉΠ¦νβ›ΰ© φβω›«‘·ϋ^©˜ΣΓgθm\}ϊθΥκ9΄θ½Œο` GRΥzUU{™tΕX”n€ξ5McCϊΔyΧ€©X_’¦iΞͺͺ:Μl\ά~UU§MΣΈWP Α:d ,ν€N‘Π‡ '݌²s’ΑϋϊιΙFθ[ρ£φΆ•Π―ώ|ύžώϊιΙ(ͺ”O#l?~ώζΚ–%ˆΟΞχςΆΝKΧr •φ‡ΎΙz,uωw†OοCUUgΡ²ž%ͺͺj+“ίS”o݁g ΨJ²—Y°>΄νκ(ˆVπ\n½9Ε08)LϊιΙξΧOOθŒF£ίβΗΧ2~ΤΎŒ­τΏωŸ―Ÿžœ}ύτd?ͺΰΉ£vR?k'υqa‘ϊ;³Ό³ͺVeΨX’¦iR7Š“LΧ3U)ωώ_’XOHX–΅‡±aŒ%HUλ£Ρθ0³΅4& P‚uΘDT0ζr‘§=%ƒςυΣ“…0ύ—GΪώ"Bα?"dOώ³[όΌ…yκ%΅z=Og~4W.ί1‡ͺΥ‘χr½¦MUJΗΒυε¨ͺκY„κζͺ°,9΄θv°\9^¦1AξF°yΙ₯rNΥ:½—B쯟žμ}ύτδ"ͺΘΧΩjνEϊσ*vοΏh'uϊ1όG†ss»|OgFlδW­nτ\Σ4ΗV'Ν Χ— BυγΒ Θ\&νΉU¬/Q¦UλΙΫͺͺά/(ˆ`22žΞN3jY)p —ζz ±cgNΥMO£Šύ?ϊ«`i³O΄~/mvjš­οGςδςέςΩ¬{Œ4kύ2Σ'+\€…PέZVα˚Wυυšώ>Κυ^ηoΒu€rΦ!?Ή\δ©Z§wΎ~z²-έr Τoς!*Ψwσ;΄ΗΥNκν[Ώ"ΘΩnόΏΜVΦ!*Ξrή0:ΧU₯έAlFͺ°Jk߈[UΥφΊ‘O’jύc¦OIΈ^0eaX됙ρt–ngrTͺΦι…¨RO³7]X«Πt³ύ—―Ÿž±=|;©Ÿ΅“z~ήJ››*T^.ί)'ρ] DΣ4ϋu…ΊIϊŽϋέΝΤΫͺπHr˜³.X_ΎύŒ» Χ “ΞWUUiΓ†Yω0 ‚uΘ“ͺuX’¨R?+ΌZͺς=Rυz;©w >oσP=‡1Yˆf«λTΒwhΊ™z-ΞΉAUUι<ώQΰ†;Κ#Xο‘θf”σu‘p½ ϊoQΐcΓ' ˆ`24žΞT­ΓΓ}ύτdΏΠjη›Μ«Χϊ<{½Τ›1Kύ—‚ΟΫPύ;Ή΄^?W­ΓΤ4ΝiΖ­?½5wύ{i³AUUGq}!‡ίtO…¬ΛΧ4ΝAζ݌RΈn|Y†nΤd΄ ‡`ς•K Uλ'ZΏ§πμ}Οήυ χΎ…λΡφύ ͺΠJ›₯Ύθ]lŽ"΄“z'£ 6‹Α€5M“>Ύ°/#\L§š.q“ς΄πξC&ζqηΠ2\°ΎΉ_g½ΧΙ(±ΑsοGϊca 됯œfώ"(FΞΗ…‡³?“nΈŸ}ύτ€ψ‹φΤχ’νϋΫ ι!„κ7Λε;δάω’₯js5]wͺ©ͺj°Υλq3}nžΡ-†%‡ͺυW*a—―nFσNF žΦ ­{ Τγ~Υ‡[\ Φa 됩ρtv‘Qλ\Uλ!‚ζγΜ6z•λE^Έ¨θA»~‘ϊ bVΎju Q}VR%xΪ(ψGTΙ ¦biα&fι›ξ([.c€ό–YBΊ₯ϋ[§UU™·HF–ΨάωŸ;ή―¬Γ@Φ!oͺΦα–’Rύh ‘ϊ\qαzυ‘Pύfι\«Vrs5?vrwζYίΫΓ/Μ­μΛ5eΛ%X%X]™Zν§k’k Ώ:Ρ))]‡žF·€ϋlξύH4Α:d,ͺΦΝZ‡ŸXh>Δ6‘E„λισ#f¨χνfΉPύΗv3:Ο6‡ίΪ)dήϊ’y{ψ°χfήκ̟ͭ\•΄Ιβδ‘NʐC+ψ9‘κ ~ξ­κυεJ#—’:}~ϊ p|¨#œ`h됿\ΪΑ2 ωα[Ciώ#ιFϋAl0ΘJ;©wΪI}-΄ήφ¬ϊL¨ώ±+—ͺJΥκΐwš¦Ήˆp½„yλίJΑσoUU]”ά">ζVξ/άΘ\ΗΙσB*ΥXƒΈ^Θe#ήSχεV#ZΒ—²ΙξET―™½~?q Ί›:Xς½*Α: €`27žΞ—όa&GωͺΤ[όιλ§'Ϊ-]{­π³ΡNκ‹ΈQώ*§γZ‘z·=Υκ@ξ’B©δΦκO£ L­A³―^ZΈ‘y›ξή―ωϋb;Bψ‘œ~gΏN›κ28Ž>*mΓελt-Uς&ΛΗ΄Π!i^ψρˊ6u ΦaλP†œ.š]ΐ“―ŸžμάsξQ_½ϊϊιINοќΪζ-“P½C;©73z_ͺV:ΕΌυ_{°Jo£zι"·=Zlξ-„ιΏd²)ς_±ΉΊd΅=mͺλΣH˜\4MsVh›΄ΙςLΐώ½ΨΠ™Βττn©πC°πN2δ/U­·“ϊ0“ "U­o§³ά~X001S<§Q ΉψπυΣ“γηoŽ38žƒV« Υ.§χ₯Ν`ΐO5M³7"ϋ°Yοi<·UU’­ιq·"…κ[γιΜ£ŸΛι{Aυpkι†tUU[8χωγE<Ύ Α£Β½ο.ΝUΰr ΦGώ¦ŠϊέΎ¨l§Χ„―c&eΌ~SΘ^|‘@ŽAϊ 6z<odΖ:'§`ΏΤfχπθΎ~z²‘ΚθVήG»όu+ύΗύ‘ϊν΄“z7£΅ͺՁ;‹°u'ΒWϊηz£άP[£pZŸgΊ„ι7ΨΏ«ͺ:ŽM‚&θχͺͺFƒ˜;Ύ‘Α±uŠι[1?>½ΎΣyωOtF|›i¨>2gϊOΕ:$³ͺυ§nͺδ±νikϋρcpmΖΣΩQ;©s›Gw[σP]UΫOΔF«œΎ|7χsTη•λ7ϊeW[Nΰ(ΪlηκU„§'ΡIμ(‡- cdΆFΘlD(ϊχ\Ώ›ΏιfΤ—kΒyΘ~}_9FGuυυc―™ΌF6 ^w\ ηλPžœf­h'υA ό38 *°Ko+ώ˜^}ύτdλω›«u·ϋΚ΅m^—ΓρtΆ“οαeg?£½'ͺՁ‡χ»¦i|7πϋ™λs―βρ[ΜΩNΏΗWΥ±%*Ÿozά&ΝΊζΒ5αΞ*ΌX ΪG=Ÿ—²ŸΕγb±­ωmΫΙ/„εs‹Ύ΅πίϊx­­bzN°…Ι¬j}AΏπ‰Η’ υξφ3Έ¨ί/,XΧx:ΫΟΰ8ŠΠNκά6ΌψœLΈή+Bu,ΣQ ώͺ Υ|Εΐτ4Β?›Βo‚Ρyp>@(ϊqMψ.ڏΑΣ…Νί©ͺj Λπ OΣ†γ‡ ΏλP¦œͺΦίFΥϊΊ+b鹘­ώΪyΎ³—λZOσΙΫI}žρό«Ήt£aΫηΩε΄ αΔω–EΈή ‡Bu–(ݏϋ½Πύ60ύ0–vKΧ±FC ΧyΈΝ¨ψzθoN*”'Z―ftΰ*;y ͺPο/‡΅Λύ¦vš§Ύ)”½›vRοdV±αsXͺ˜ϋΉ›―(K ΥuΦ`i’²ϋ܊OlΤ{7τuΰΦ΄ƒ‡¬CΉφ2ΊΑχ2ΒX‰―Ÿž€φcΫVχή^EΕ:嬧J[±i‰[j'υ³Μ6VΪ¬B„λ± ‹2|ͺ°"6σ.ΟΦcύEΛ \ηλΠc‚u(T@9ϋ²ΐ*lkΑϊ`»λόΛγ3+·@"mNz7žΞvΖΣΩEΗSš½Μή—np+Σ4ΝEάό=±ΚΩK3Υ}'°Ϊl7Pqώ©›?!X‡¬CΩφ3Ί{*Τ`…T«?\k˜Σf /Q₯nξκ=΄“:ύH|ŸΡ!ύͺγ°j)\oš&…λΏZμl½3S€G°Φλ¬WΣ4GFρ/ͺͺR€=%X‡‚E…eNAΥϋvR―»έ4=mΰ_;―φβλ§'λή1{΄ζΏξΧΥOσ8œ"εZ\ΪΨ<¦¦ivU*e'‹Υx 1kύ³Ε΄₯{T­CO Φ‘|9U­2Ÿ£L™T«/ΟZΧ26­σζΓυMχρtΆ«υϋύ΅“:J/3:€}ηxlQ©΄ιfj»ΠDȏeΧ&»+Ί’w!\7*ˆ›lYθ'Α:.Β„œZP½j'΅ ”er!Ί<9¬εΊ6ί€@c<ΉιώΡ•$§κπσρt¦ZX‹¦iΚ¦IαϊGg`m>G¨ *]θœυ`ΕWτΔ€M7O‘§λΠ1#ψ<£grΠNjsdXΑϊςΌZχŒ§³£Gή՟>9žΞΆU5/Eκ’ς4£γq# X»¦igΡίU―?ΊMΣl§Ϊ{ήd’iš}Υʌώ7*θ.ŒF£ΓTΨ€¬CδT΅ώTΨΑ2|ύτ$UΗΎ°˜ΛσυΣ“6*<֏‹΄c|3Β|(Ί‘ΌΞhObcΐΪ₯Šι…κu7TWλ<ζ©ϋ½@Ά}χ3ϊουΰΉλƒvΧ¨;6~BΏ Φ‘'"8Κi—μϋvRί‰΅Ϋp –.‡χεώŠχΏ˜₯Ύ\Ρ…$·[ d'ΒήΝhQΞς₯uέ4O€\D€¦ΣΧ6[j ?םΣHΧ¨0 ‚uθ—άB•„<”§Λ·φ`}<h|EͺψΧx:Ϋ4K}ιφ2kθΉŠΩλ©zν*––ζ2nXjύ@vR˜mΐΉ›ήδDkψd6Ί“εJηφ]Σ4ΪΎΓΐΦ‘G"dΘ©:ζe;©sjQOyT¬/_.kΊμ7i7ψΖx:[u5όΰ΄“:mpyŸΡσΎΜlό ΐRΕJT,½sSυA~5§€άEpαϊέδ΄y{ι’zy>*ˆώΈ.κˆ@]Q `ϊ'·°a―ΤΒQξΛkgωϊ¬§ΝDOΫχΥΘ΄όΎs ”$έpK7ήμw6ŸSΉ«J€ΧωVΊ†‰QAΟl„'w7―PΦ4’0Α:τΜx:;Λl'δΣG˜§L=sn—ξEŸUi{sΤ·γ‹ΥΨΛε5ΞΗΣ™Ωκ@‘Ύ ΨέXύ±ωMKs*(Žp›Δμυ--‹΄Ψς]…: X‡žΪΆ4ΉxέNκm/6ξα₯Eλ΅ϋό ™κ[fl―V†-ΰ“ ŽΰA"`ߊΉ›‡VσOnZΠ ρ=φχΜξΝ‘xmΜΫΓ{}δνstOrm ό…`z(ZδζΦώ Z kφυΣ“\ή‹wωaςY ώx2mΩΉϊ$f°§ Cγ4§qΐΥKnZΠ;©B9F±ιRΣ‘ͺͺ­lnEΪΓoΨ³“ΞΕ―iδ`Σ4ΫΊ'7¬CO§³ƒΆY^Ά§†40T›9<οΨτω'g‡1C}[¨ϊ¨rk™α†1€₯ˆ›«ϋΡ&ώοq3―ο!ϋyl&pΣ€ήŠοψ­ψΞžςφ¬œ,ΜOίmšΖΘAΰ‡λΠoΉ…ZΒί:ΊαΏΗΚρx:Ϋ1CύqeΪ~ίλ‚˜ΏΉϋMȞΣfΩ‡ψΟηοQΎŸΡMΛ,6ΠOι;/Ύk~Ά±œϊ&`7ƒύρ,nτά9 Έ­³RΠ_©Ί³Τι’ύuFOrΏΤΗQ© \κΡNκύθj‘>―ΖΣΩMa; ZΐηΆώηγιl/ƒγxTΡBφz£lUUιFλΦΒ#§"?’nVΟ™Wώ<]η_b β{p;ZŸ§ί7―œv₯€=Ί}Δλ$ zk‘–κ<ξyΔ΅6ΐ Φ‘vγάZo-x? ΄τ…5yώζ*·›·ιΗ’ 7y8Θθϋbn'ΓXŸΈ0­TUΥ³¨|ۊ¦ΰύε1έ€<‹=έ€<ΥBΎ›©Άμz–Ιqd%^'ΗUUνΖoβ5_λ•μK\C Ӂe¬CΟ₯ΦΉQ ϊ!£gϊ>ͺΦU₯#Ÿyh'υNfN’C³υΎMσjπ?UU΅7¨·βΏm.ά°ήΌηζ©ΛΛ“‹…?§ΏϋΒ JΈ»…€}#ŠOv2άδό63μš–ΈζKχuχγ΅²-d©ΛxM₯χΨQ¬! !€½†IDATΐΦaR έLrj™Ϊ?o¨Pε'Ύψ±«—>γΗzN.u7λσk^UΗYΉmJb•Φόσ²,λώ+ΑΊΏο½§Φ(:Ό€ί=»UUmGpΊέγύ$/ηn\kήRΌVCφ­x­δΤ©t.Ώ?dΣ'°RO¬0 @;©ΣEΦο™=ΣΟγιl;ƒγ S_?=9ΦmιΎ<s΅Ω³ηΔ₯."ΎΧή₯ό=WUΥZoŒ4MσΔk €EΡ*~ώ(νΎΘΌΫΝilάΈЍ‰Yo^/χνRTŠ“…ΧΧ±ΧπΨλ0 ν€>Κ°Νο?΅ζGΎ~z’B΅·h©NžΏΉΪzΔΏΜ΅“z/³q!ΙΙx:σ:`ε’}ώλ\iΑ:?ΑιζΒcέέύΞ£ΪόtaTΜE΄ΈgΝβϊfρQbΡΚ—…§±9C5:°vZΑΓ°μfΨ(΅„ίL³ΰ38ςγu±|~„π§θf’[¨~3γΰ1<³Κδ.λΏ„ΦΡ|#ΒΣgρ˜w¨{vΟπύdαΟ§ £ζχ©™Υω‹ϊ/χnx½Μ7³―+tŸoΞΈΈaƒ†{W@Άλ0 )Όn'υ~f!ΚӘѧ2‘›gϊ•Ξf΅“ϊY|ώζfίf+δΔΙΰ>’φΩ·;άδg―—…ΰ}τΝ&E?ϊοgχ›>‘9P<Α: Μx:Ϋk'υv-£½j'υξx:ΫΟηΘ„‹νε󃛹ͺΏΘl5Ύ€ο© Žc!xŸ3Ίΰ³(0H»>ι_RKψ ŽƒŒ<su­‘X’ηolV U«§οΧ„π<6ΏAΈΑ: Πx:K«ΏfψΜ’51,Ra½ΗPγe;©Ν[ηΪσ7Wn)Ν @r=Zΐ°n/Χόχ Φ !XRΈžμ“ Wβ½yλ,°Ρβώ΅¦vR?‹Pύi†  <kUU•6πܚ`˜Λ±%όΘΌuhe~ΦnΈφ3¨Δ»Ι‰πd`sέ‡Π4Νq ΐΟ Φkγιμ,Σ–πΧσΦ£κ’‹ŠλC―;;yώζΚ Ϋj'υξh4z›α3ΏΤ€Lψΐ­ ց?eάώ₯6ΰwgΝ¨Τ[£Ρθ—LŸωnlζ€u[wΕzŽΏ½ψΑ:π­\[ΒΏm'΅ ǁ‹ͺυ_‡Ύw Z}€b|ΖQ¦Οόσx:3š€\¬½<嬑qKψδ·vR»ωΕ^¦›?rd3ΚΐΔ،££‘›s―I2³±ζΓ±  ‚uΰ;Ρώs¦+slήϊ°=su‘ZI}nαcTψ3,1>#G;γιμΒλ€Œ¬ϋ;Σχ"@AλΐδΪώ©ΚžΏΉ:0“²Σ—ηoΜV˜vR§χΕλLŸυΗρtζ³€lTU•C'¬Σ Ž€[¬7ŠͺΒ\[φΎŒ‰aΫΦώ‡΄Ϋ˜vR§sώ6Σg}2žΞlτ 7‚uξD°όΠx:Ksz3]‘·ν€Φ|ΐ’%Όω{zώζΚMΪi'uΪdς[¦Οψϋ€L­;XΏlšF+x€‚ցŸIαυy¦«τK;©·28Φδω›«΄ωγ£υΣασ7Wϋ™  Τ›1W=WiΊYδhέΑΊ…¬’%όvΖ«tΑ³Δsν¬π˜ΎΔF’Τ£Ρ(Ν-šι3ώ5:Ÿ@Ž^­ω˜λ…¬?5žΞN3 ~αϊ³ Ž…υٍ`y¨sߊφψ @|ζeͺOg6z₯ͺͺΜWΰΞλΐ­Œ§³T|’ιj½ˆͺM*孁†λBυ‰P=}ζ½Μτ™_fήιr'eT @aλΐ]μD`’£—ν€ΞyΞ0+6Πp]¨>Lϋ‡κ#sΥ(ΐΪƒυ¦il (Œ`Έ΅Jv2^±·ν€ήΟΰ8X“…p=Χξ Λ$T Ψ@τ6γgώΡ\u °ξ`}Θ#ŒŠ%Xξ$“_3^΅χν€Ξ9όgΕRΠόόΝUΊYzΨγ΅ώ,TžΨ8”s¨~cC [1_ύ随Ο|u€ ց;Og»™WYό&\ηω›«τxΧΓ…ψψόΝΥΆP}Xβ3ν}ΖOϊά\u ‘Γ|umΰ $Xξk;γyλΙ~;©738Φθω›«Τ6ϋοϊ•.½ίώρόΝ•Šΰ‰Pύ·ΜŸυφx:³Ω€δ°LΕ:@λΐ½0o=΅w<σόΝUΊqΉ™ωƒŸI­ί7žΏΉRέ40…„κοΖΣ™€€μUUυl4½Zχq6Mγ{ @‚uΰή ˜·>ןep,¬QΜ]ߍκυ“‚ΞΕyT©kύ>@…„κ‡γιμ ƒγ€ΫΘ‘Z½€kQց)`ήΊp?₯κυηoΆbφzΞναΣ±½{ώζJ•ϊ@΅“z»€Pύd<εάΉΎ•Γχ–k;€B ցeΨΚ|ήϊKα:‹μυZg°/κͺ€*FXδ~ώΟ3©ϊ€[©ͺj#‡6π‚u€r ցOg,ΒuΎ³°#΅΄^γ ₯ꨑϊqtΫΘUΪH΅ŸύPŠͺΥ/›¦¬J°,Εx:K7ˆώ•ωjΎT!ΒMR»υηoΝΦqT±~„. ŸγοΗ υ#'gΨ Υ“ρtvšΑqΐ]μf°Z~‹μΙΥΥ•σ,M;©S΅νΫΜWτΠ\`nγλ§'[1κ`3/ξΉp)€?›©Ηζ¦σ­‚Bυγιl/ƒγ€[«ͺ*]ϋ–ΑŠύ«išύ Ž€{¬K­Φ£:§k{Ώ3z@°<†ν˜Ρ›»·“ϊ™W°l±yηC! ›Bu!₯JmΧ_dtμΎSz@°¬\Μζέ‰Y½Ή{5„λΐR4c£1©ͺͺƒΈ¦ΟΕaΣ4^Mε3cx4ν€Ns(dΕS…ύVl Έ—Ψ€s<^²‚‡1ΒŠSUΥN†#WώΡ4ΝqΗΐ ցGΥNκovύˆpΈ·Cυ“ρtΆ•ΑqΐeͺŸ7M³‘Αq°ZΑ*Ϊ ,dΥSv•φ·Ÿg…κi#ΡvΗw–i¨žμep ,‰Šu`- ›7|•λ§ ΉvR§€:}Ζ=-δ\ιΞ@±2ΥU«τŒŠu`-b†οηBV?…cΗΡΖΰ‡βsβί…κηBuJUUΥ^Ζc¦T«τŒ`X§¨”,A Ι~?8r½Ή“ԍc[¨@‰ͺͺJί»2=τT­~Αq°DZΑkΥNκg©Ό 9ΔΙ―γιl7ƒγ2ŸcG£ΡθUAηÈ ŠTUΥF|οζόϋα` λΐΪ΅“:έ;-¨urr8vUzΒ°΅“z3ζ©—΄9H¨@‘ͺͺڎοݜ7œ4M³•Αq°dZΑk7žΞΞRΘaO)ήΖάυg^A0Lν€ή.°γ†P€βTUυ¬ͺͺύΡhτο6㚭ΠS‚u ς”§0ν,*Vi'υ^!7χ Υ(NUU[Ρέκ}ΗώkΣ4Η+ <•©(μ¬\F[xs‘η’KEz―Ώ.μ™ Υ(JͺRFϋΡ)ͺι»v£i£’zJ°d§Τ;£Ρθ·ΟΜ―γιl7ƒγV 6ώF£…­―P€bD Ύ’:Γό³iš£ Ž€¬Y*8\<vΖΣ™Jθ‘ψLΪ/μH¨@) Τ“ΟMΣlgp¬`ΘVΑαϊωh4ΪdAω’υ{Imh ΥΘ^UU›¦o¨βΪS x€ώ¬Y+8\7w ­ίΣ{ψeΟD¨@Άͺͺڈ }§ΠοΩEhšζ8ŸΓ`Uλ@φ Χ“ΓρtΆ“ΑqwΠNκT9·WhεœP€μDeϊv6M³—Η‘°j‚u …‡λ_’5όYΗtˆΦο©Jύu‘λ$T UUm₯ιι{)%nVλb:ΐΐցbk ™k'uΊιTπ‘:.*Ρ7"DŸΉ/ι?b:ΐ ց’'‡°» ™ˆ*υΤΖυ}Αηδ<:cΥXŠͺͺžEPž,ώysαίϋV…~Χٚ¦ρ 00‚u 8=Χ`‰vRoFλχ’+λΎD₯Ί ;kTUUΊFέ)ψ<@₯ω2ό³iš£ςŸw%XŠΤƒp=ω8žΞφ28€vR§χί‡ΒŸ»P UUυα{…n1Ϊ ` ώζΔ%ŠYεο ?yΪI}άNκ Ž#U©·“ϊ΄αΗ‰P +>ϋνP¨0l*ց’΅“z;Ϊ8—<ί1ΝiάOgϋ τVΜRίνI5ααx:+Ήέ0@οTU΅5~wf{)…κΎwNΕ:P΄ρt–ζnE8]ͺ΄)ΰΥλ°:ν€NŸ}¨R ΥΰQ ΥΈ&XŠ7žΞN{'―RπΧNκέ Žz!U©·“ϊ *_τΰ9½ͺdλΤ©ι‘: θ47y4υ$w‘Ίχ<@!λEKbvš¦9ϊBp³ΏY ―ΖΣY Ϊ~νΡΣK›ΞΪI½›Α±@ΪI½ΥNκΤ"ύ·ž…κ‡γιlK¨Pc;Κ”:Δl Υθ"Xzm<₯ϊ]žc i'u Ψ·28X‹vRo΄“:Uώή£±sοbcε±!ͺ<‡ͺΫ@'­ΰAˆϊ¨g­£h½cώ2C‘υ˜£ή§1s—Ρϊύ8ΓΰͺͺJ›:±pEΠϊ€;¬ƒΡNκΝΧ_τπ9›ΏN―΅“ϊYzΗ£odFΡ‚vΫ&€²UU΅έTΘΫυ΅sΣ4Έ5Α:0(Ξχ°uτ(ͺnφΣCΐN_ PΩΠ‚υμG•Ίξ0ά™`€vRτ΄•τ(φ½ρtΆŸΑ±ΐ½ $POώε½ ΠUU₯ο―Φ)ΝΞυυqΣ4ΎsΈ7Α:0Xν€ξϋ ΜσΨ28Έ•κζ©τTUU~dηγώNΪΎπP‚u`ΠΪI½sΧϋΰ ΨΙή€υQΜSίϊ ŸͺͺΊΐwYξκ,`ΌvRoDΈήΗΉλ‹φτ\zδ"ή)LίHρλx:ΫΝΰ8X‘ͺͺR7’WΦw-Ξ£ε» ₯,`ΰΥ²ϋ=ž»ΎθΟ ;λNκΝΤ‡πžΕϋng<ep,¬`}-G£ΡAΣ4F¬°2‚u€ν€ή‰Πy•³)θ;ˆ€ύ,ƒγaβ=Ά3°ΐαKΜSχ>€ͺͺ΅δ{ηzεΎΔ΅μvο<Α:ΐ7’’6U•ΎΠΪ\WωŒ§3U>,έΒότ½―’γιl/ƒγΰ‘TU•>χ?Xο•˜‡ιGMΣΨ°ΐ£¬ά ‚ΐtΣξυΐΦηKT°›KΙƒ΅“z+Βτ‘΄{_t­ίmVΑϊΔ¦Wa:k%XθΠNκTeϋΛΧH›xξ%6₯μD…ϊΠͺΣη>G¨--ΐUU•6–ύξάί[ڜvaϊ±6οδB°πΡ>…Μ/ΊV'σ–›‚B~€ΤΫ¨­ΛΓ’΄!eWΗ€a¬ίΩ/T§››@/Φθ$dη'ζmޏ…ιτ•`€[[Ω·Μd΄σy˜nf:C Xΰ^ΪI½ΉPΙώ*φήΙB˜~:τΕ`Xλignite-0.5.1/assets/logo/ignite_logo_mixed_light.png000066400000000000000000002561171465426447700226570ustar00rootroot00000000000000‰PNG  IHDRΥι«+}K pHYs; ;6Θ’tEXtSoftwarewww.inkscape.org›ξ< IDATxœμέ{œžey'πλ~ήΙ Ι„€Η’0I“I"E]₯‹'H‚’¦GνV[ΫͺΥΦΪju»‚mνω°΅]·Ϊ“Ά΅+mE’ˆΪn…ΆV· *$€@晣8…d2Ο½B^’Lž™{ζΝχϋωπ&3χυ 02ΏχΊŸ”sΰρͺ`²Rͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊPͺ@JuθB©](Υ  ₯:t‘T€.”κΠ…RΊθ+8zχ­9cώHžώ–ˆόΝyλ7}ΈtθJu˜ΒξΏdε){Gš7₯˜ώs)βΔιgKg€^’T€)hϋ+–OŒΖ;RΔO€ˆYΌ=ηΨ[2τ₯:L!;_yΦΒfίΎŸKoŒˆ™ώx”κΠ&₯:L»V­hͺ村ΣλΣ|ύr™Θ\Πλ”κ0‰m_³lYΚΥ;#ΕFN‡όΊνϊwh—R&‘/_MΌ#EυCΡ9܏K‘”κΠ"₯:L";/|ft»#Η«#"ιΗηδϊwh“R&kŸ9½3ͺ΄*ςΨΟqύ;΄K©}§L΄ͺσͺPͺ@›”κPΐ=«V\P₯ό+ιΉmž›«pύ;΄H©hfzΌΏJιγq~γϊwh•R&ΐ=-{Nͺ―₯Hu<ηt₯:΄I©γhϋ+—VMΊ΄ͺͺWGDοyM'»ώZ€T€q°σ•g-Μ£#Ώ”rzCŽθLΤάΎœmͺ@‹”κΠ’ϋ֜1_3ύW£ŠΧGNΣ&z~Σ7Γ¦:΄H©mΈ,U;―]φ#9¦n€˜ΉLŒ}Νn›κΠ"₯:₯]-?·ι,£ˆόœYfΈώZ₯T€1Ίο’gœ42χ?Ro‰œ«y""Fφ5Juh‘RŽΤwzοϋ½qRι8vοξ}{η•=D©G`Ηͺ•/ˆ4ψG±’t–ƒYxς³FJg€^’rΞ₯3ΐ€wǚs›ύΘι"bR\υ~£ύλ7zΑ΄Θ7ήΰv¬Zω‚©ω³ˆ΄€t–C°₯-Sͺ@ίΩNOιδέN΄½₯@―QͺΐAμX΅ς3Sσηiqι,G@©-Sͺΐ£lΏpΙ‰©oΖoGJ?©tž#΄―tθ5JuxΨφ5Λ_’:3?9N-eŒ9ζ”Ξ2©$₯:΄M©ΐΤ‘RΪΎzω₯‘ςŸ„G˜ŒRZ¦`JΨrώi3η¬όΛρύ₯³LZ9)Υ eJu&½ϋ.yΖIsfΟώdD<Ώt–I-5Juh™R€Iνή‹οkϊJKJg™όlͺ@Ϋ­ŠtuD,(ε0νHMzE§nψΧ ˜UδϊχPͺ@λ‘ΤlθEΰqξ[sΖόΡΞτO§ˆ“Kg9„œr~ϋάυ tΗ(Ή©ή„Muh‘R€ΗΨΆφΌYΗηιλSΔ’Y‘I‘~|Q:ȁRŠJ]B_₯°©-rύ;ίuYͺfοΎο―"βΉ₯£ΒώB}ύ “PˆhR.wύ{²©mRͺπ;Ύ<ψΎρͺ9!GŽ·LΦB=""E~°Ψπœ•κΠ"₯:±}ՊΧDŠw—Ξq9"½΅ΓΖ–ςDΎ‚ΟT›κΠ&₯:qΟE˞“RώhD€YžHΚωνύλoψ£9₯κ‹ϋKΝΞ©ςLuh‘RΰwχΕg>΅ͺͺˆˆ™₯³Β»ηnΨτ₯CŽͺΣΉ·ΨlΧΏ@«”κΗ°;_ΊςψN3}CD<­t–'”βΏχ―ίψλ₯cΩ}£;KΝΞ6Υ EJu€cUJiΖτζ#ω¬QžHŽΈ¬έΖ_+γˆ\ΎioDσKgyΧμzΰˆΛ/-δ¨TQͺTOχΟΪεΉκΠ₯:ΐ1δΈ‡ξ`Dœ]:ΗΈ!υυ½rαΥΓ•rΤr±R=š6κ xh‰Rΰ±sΥΰΟ¦œ΄tŽ'°y€Š—Μ½β«ΕΚθVεΨUjt5ڜTj6τΟ\8άsΡ²ηTUυ›₯st“#Ύέ£φ_yӝ₯³΄hG©Α© ›κΠ›κ=ξή— Ξ«ͺκγ1½t–.όΧίt[ι ­Jε6ΥS“mͺ@K”κ½μ²TN‹ΏŽˆ₯£t±;r΅jξ§6}­tΆεΫKΝnlͺ@k”κ=lΗ—ί‘^^:GMΚρ#ύ·AΖCΚωΫΕ†ηJ©-Qͺτ¨kVΌ0RΌ―tŽrzχά ?Q:ΖxΙ©sW©Ω)ΉώΪ’TθAχ_²ς”œγcΡ)ε`rΞΩΏα†ί,cG}ϋhΣyωμ«ΎRlƒ»€2?Χ”ž)₯"³ Η(Υzĝ/]y|“›EΔτY'ΕH•ςkζκk·–Ž2‘rŽRΟUŸqοK—υš =E©Π#fLoώ0"Ξ(γ šτ–9λ6}tŒ‰–R.Ά•ΏoΊ+ΰ  Ju€°}Νΰ«rΔλKη8ΈόύnψPι%δT•ΪTάt”κΠ₯:ΐ·cΝΰ©)§—ΞΡΕ†ώso|Oι₯€¦ά¦z§²©mPͺLe—₯*rϊHDLΊηgηˆΫR_ίkγ½Ή)₯˜Tμ™κ‘³RΪ T˜Βv~yΩ[#βE₯sΔ)W—Μ½β«;K)*₯o–S₯T€(Υ¦¨»/^yFNιύ₯sLŽxC†λ7•ΞQZmΕfΫT€V(Υ¦’σΟολδό‘ˆ˜U:ʁRδί›·~γΗKη˜ R*WͺGδ§–› ½C©0νœ}Χ»"ηη”Ξρ8)ž{Ιο,c²˜ΣμώfDδ2ΣΣ©eζ@oQͺL1;WΜ‘~ΉtŽΗIqΗθήΡŽ«―ήW:Κ€qΥm{rΔ]…¦?=Ξ=wZ‘ΩΠ3”κSΙΪΑι9G#bzι(Ψӌ6―œ™›ξ(d²IQμ ψΞSφΨV€£ΤW:‡oϋƒρž”bEιΚ‘ζ€Oέψ₯sLNi[D>»ΘθN΅0"†ŠΜθ!·άrΛ NgNDΜI)Ν‰ˆοό‘Ršύ~Ϋ£~μ7O;ν΄Ώ.•€v(Υ¦ˆνk–-K©zWιΚ1oύ¦—Ξ1i₯όΝROUM£§•™ 0u =―ͺͺDĜœsDΜ™6mΪXoώΣb4 QͺL—₯*5ƒir]ϋž#nkͺ‘·•Ξ1©5±-R‘ΩΉZPh2ΐ”•RκΟ9ŸU:“‡gͺL;―ό™HρΌ9°§ͺšοŸεΧο+d2K)—z¦z€Θ6Υΰ(ΩT˜δv^΄tA:ΏZ:ǁRŠ_œ{ε_-c²K)ΆεBΧΏG„RVΧυι)₯Ÿ/cΌ4Ms_JiίΓϋ`Ξω‘”])₯»SJwŒŒ|{ddδΫK—.½ΏhP˜‚”κ“\:ˆˆΩ₯sη9ηθt:Ριt’λqkDά–s~δΟ·μΪ΅kΣ9ηœ32αΑ` PͺLb;V-‘H±ΊtŽGKwE.Έ=…Μ™yΖΦ»oήΣ'~z~Κ–σO›Ήπκα‡&~60IυGΔs"β9ο)₯θοοhxxψ«9η/EΔ—#βK·ΜI«λϊˆxCιŒ―΅1Z:-₯:ΐ$΅kՊώœβwΣ‘ίu"5)ͺ>εΚλο,dΚΈόςΡX½|kD,.0=Ν>ρΔqKΩΐΤ23ηό½ρ½Ό‘λoηœ?[UΥߍŽŽώγβΕ‹χΜGΙ9/N)]R:γλΊλ«Ξ9η₯:S^U:Χ€όώqJ鏑β7ζ¬ΏώŸKǘ‚†J ξ4yQ©Ωΐ”wJJι΅9ηuUUέ]ΧυίΧu½*":₯ƒΐDRͺLB».Z~nDόD鏖"Ύά­—–Ξ1%₯¨KΞ©9£Τl §ΜŽˆWEΔϊ‘‘‘­u]Ζπππ‚‘`"(Υ&›ΛR•«ψγ˜L@)v₯T}\{νHι(SQnΚmͺ§\=£Τl 7₯”žοΜ9 }|σζΝΛJg€ρ€T˜dv\»μ§sΔ³Kηx¬τ¦9λ.bͺͺͺT¬TΘJu`ΌtRJk«ͺΊ‘λυΓΓΓ+K€ρ T˜DΎ}ρς'E€_)γ±Ίώu7|¬tŠ©,§\μϊχˆPͺ㭊ˆU9η놇‡?²eΛ–'—mRͺL"Ӛψνˆθ/γQξ©ςK‡˜κφΝΘuDδBγOΊoΝσ ΝŽ-œσ뚦ωz]Χo‹Ιτ8#8 Ju€IbǚΑηGď”Ξρ)Μ)WnΌ³tŒ©ξδΛ7έΕώ9ξkfΪV&œˆψƒΊΏTΧυΉ₯ΓΐΡRͺL—₯*7ιχ#"•ŽςˆqEΊM[:GΟΘαΉκΐ±ζμˆψb]Χ—†ο?0…ωM-ΐ$°σΪε?šRL¦-ž{φUρΣ₯Cτ’ρυr³›3KΝŽy}ρή‘‘‘«ΆlΩ2·t ₯:@aw­œ#~΅tŽΗΘω-}oWqs©Ω9…R(*₯τ¦iΎ844΄Έt8RJu€ΒϊLοŠΘO-γ»Ίώ ›ώOι½&Uι¦bΓsΈώ˜ ΞL)}~xxxEι p$”κνΌhι‚Hρφ9εξ‘*Ώ±tˆήΤάXltJ§ήω•Η›π]OΚ9s]ΧΛK€Γ₯T((WίŒˆY₯s<"GΈφ}œτ―Ώρq_‘ρU_ίΎΑB³4?ηό™-[Ά,,‡R ν«–ŸkKηxDŽΈbήϊ/£gεœSΑηͺW©:»Τl€₯”žΪ4Ν§7oή|bι,p(}₯«RŠ_‹ˆT:ΗΓ¬šΡŸ+’Χ59ί”Rzv‘α)Ud.τ[rΞΏW:ΔΑ€”:17"ζ€”žœsΘ9/J)=΅tΆœYUΥG"β’ˆΘ₯Γ@7Ju€v¬\‘^T:Η#rŠχφκ¦ΫKηθu)•ΫTΘ6Υ ]ίZ΄hΡ‡J‡87έtΣμιΣ§Ÿ[UΥsSJΟΝ9Ώ0φ—ο%½’λ· όΟΒ9˜`9ηΟGΔ;KηhΙ`Jι΅m–RzOΣ4ϋΪ:―€sΞ9g΄thƒR`’]–ͺˆΑ_)㻍σΎ5έ71'BJ7άΑZk§Ηε›φK΅tιϋ#βš‡ˆλ»nΪάΉs_RΊ("^§Šφλ·ί~ϋ?.X° ΰ ™h‹/ώJD|₯tŽ6Τu}ID΄VͺO›6νχŸώτ§οnλ<ΰθy¦:ΐΫωεe―ˆ•₯s<,§άόL\{νHι Η‚ͺI7?}籴ΰ|`’9ηœsF-ZτΉŸ8-"^RϊPD<8ΑQfŽŽ~8&Ο£‘ΰ1”κιΒ%3rΔ₯₯c<Κ_Οέ°ικ!Žsž΅qKD½ΰ|` [Έpαg#βYqΫxŽΩΌyσͺq<Ž˜R`TΥ¬·EDι)βΟη­Ώα‹₯s«ζή9σƈΨSj~'εg•š L}·u:¦”κρšQUΥ›Ζλl ₯:ΐ8Ϋ~α’sš4[κ;:Σφ½«tˆcڡ׎δKΟ)žWj6Π,XpΗΎ}ϋ^9N#.ΈυΦ[Ÿ6NgΐSͺŒ³ͺ3γ­1―tŽˆˆœγΧNψΔΝχ”Ξq¬KU.χ\υ\)Υ€£ΆdΙ’:"VGΔήq8Ύš6mΪŒΓΉ0&Ju€qtΧΪΑΩ9ΫJ爈ˆœ·Μkϊ£1ˆˆœ >W=/½χeƒ“βEΐΤ600pmΞω—Ηγμ¦i^=ηΐX(ΥΖQίCιm1ΏtŽˆˆHՏ«n+φ,oΎ«‰‚›κitz:―ΰ| ‡,Z΄θwrΞφΉ)₯g φΉ0Ju€qrΧΪΑΩ‘crl©G\ίξΖΏ-‚ύ"ΕH±9»hKSUΥ[#’iωά*"^Φς™0&Ju€qy(ύTDœ\:GDD“Σ;β½Ήνot2F ―~(rάX0‚RhΝi§vCΞωoΪ>7₯τ_Ϊ>ΖB©0Ξ=wZΚρΦ1φ˟>iΓ ·t γ 冧gΗ…Kf”›τš¦i.φ·ΥŸίςy0&Ju€q°ύΙ{^ίS:GD4©Κο)‚ƒH©`©3Άwf]p>Πc–,YRGΔηZ>φτ­[·φ·|&1₯:@ΫRJ)₯·—Ž‘#>2χΚΏZ:—ϊ:^t~d›_@Ϋώ’εσθθθ`ΛgΐSͺ΄lηκεk"ς²9"β‘”ς₯₯Cpps―ψκ–ˆψf±9{:ΠͺY³f}2"φ΄yfΞyy›ηΐX(ΥZ–s~Gι ϋε?θ_·ikιt—"}±άπτόΈ,ω 5OyΚSŒˆ/·yfΞy Νσ`,|3 EΫW-?/"&Γ΅ΪχΔC3£t!7%―€?ιžλ–Sp>ΠƒRJΧ΄|ή©mžc‘ThQŠό‹₯3<μwϋιΪ]₯CπΔFS|‘δό*KJΞzOΣ4_iσΌ”ΣΫ<ΖB©Π’]._)­.#"ξ­Fώ¨tν€;f~5", Η‹‹ΝzU«Κ9χ·yŒE_ι½"wς›"&Α3ͺSϊωW~ύΎ18 Χ^;«—9"^Xd~ŠσξΎψΜόχ29ν\³β{φ€zg― t8\9η­)₯6œΫζaΐ±eΛ–-3#βΙ£££³#bFJ©α?'6M3RUΥξˆΨ{š¦y ₯to§ΣΉΑ‚Ή`|(nΫΆmσvοή=·ͺͺΗ|ξDȜσ ώ<”sˆ{sΞ6MσŸ³fΝΊγιOϊξ’αyœλ»nΪI'τ΄ΡΡΡ“RJsώw8ν‘ošζώ”HDμjšf_ΞyWΣ4wqΖΎoJu€Vάω•ΗOŸž^_:GDά½ofcK}jωB”*ΥsLλkϊΏˆuEζσ„rδWM›žΟˆ·•Ξ‡kΫΆm;N=΅ΥΗ Χζa@OJΓΓΓ§7MσΜ”ˆxFDœO‹ˆωΎΨ'ηύ]yJι;ύθχΊχFΔ·RJ[rΞ7§”nŒˆΗwάuOz“Όπ•žqηwΐœ•R:#ηΌ(ηΌ(₯4‹"’ΏΣιτγόόyδmN'φξέu]ίߌˆΝ)₯›sΞ_―ͺκΖ={φά€€_Χ\sMί‚ ΞΞ9Ÿ+"bYΞyq“›¦©ω΅Ϋ―U΅o¨ΣιD]ΧΫSJ·GΔ֜σPD\7::ϊ–,YROάΟ  <₯:@ ¦Oo^“b‹&φΙ—oΊΏt _NqMΚρKηΏ8”κ“SŽsSΔι;V­όϋώ Χ[ι8p8N9ε”Άonjuνθ αααs"β‚œσ #βΩ1·ε[2""¦GΔœσˆxΡ#ΕΣ<0ZΧυ¦ˆψ|Σ4W/^ΌψήΆ‡31ξΌσΞγwοή½Όiš³RJgFΔ‚œσχ<ΌΕ;;"Ωβ½7₯4šsΎ7"ξύ;Ω–sή›-Ztu‘ŸΒΫΆmΫΌ‘‘‘οΛ9_ηEĈθ<ϊΕ&-9!"Όˆ3sΞ«""š¦‰iΣ¦}ηs("Ύsώ·E‹}£­‘ΗͺΊ—GΔͺˆxρ©§žϊμœσρώρ£όχ:/η½νVλˆJϊΝ›7oUUοkqώΏ \Ϊβy=gσζΝWUυ–Όb``ΐοkxŒ-[ΆΜΜ9Ώ8"^•s^σ ΖιDΔʈXYUΥ›#b_]ΧΧδœ.η|ΕβΕ‹ο*˜­˜Ί?c½ͺdγΐΐΐ΅™η‰ ?;η|aDΌ8φΏ(£/"³±{ΰvDτδm•ΟŸ΄νΨ²eΛΒ¦i.‰ˆWEΔsbΗ₯|ηs("ޜRŠΊ7GΔgSJŸέ½{χΥK—.΅0r†††SJ―ˆ΅±°@„“c‘Ώ*ηό‘‘‘ΟWUυχ)₯Ώ^ΈpαΞyΖ•Rΰ(ν\5x~€΄ΌtŽ”NΎ|£ίtL1OYwνƒ;Φ,Bδ8ΏΔόιτ]kVž6gέυΓ%ζspΣgŒž9u"φ;:~χύ—FΔ;Λ¦€C;ώψγ;»w·ϊ:°ζί+ρΜxψΚη<―λίΨΥy=§ͺͺŸŒˆ Ϊ:―iš_kλ,¦ΎΝ›7/­ͺκu)₯Ο9ŸT:O}qAJι‚”λΊώ\JιC·ί~ϋ/zΡ‹φ•7–ΕώkχΗβΔ6ƒΜm·έ6PUΥͺͺϊœσ@ΛΗOΚΗ<όb”Υ9η7FčΙ}ϋΛβˆXœs~σΜ™3χΤu½.₯τW·ί~ϋ§{ασ(μc΄mΫΆY###?ϋ_pΦ!?`βtRJ/Μ9Ώ0ηόώΊ?œsώ·½€νkَ9M•ΪάΚ«:±Η6ΗΤυΟ%‡7M~qΙω<^ΚιœΗΎ%Ώcϋͺεη•I‡odd€νΫwFŽδ/^Ό'"ώΊΕω³RJ―nρΌž²uλΦώΨ_Τ΄vδβΕ‹΅Εσ˜šͺΊ_5<<ό…ͺͺnŒˆwNβBύ@UμΏ–ώς άRΧυ›ξΈγŽγJ‡šN―ƒ‡‡‡_0<<όΙN§s[JιέγP¨GD<8gŽΩ­·ήϊ΄Ί£iš;rΞ—Ηώ>MζBύ@3"β59ηu§žzκP]ΧοΊε–[N(κ(ι‹gΫΆm󆇇߷wοή­9η?Ν9O¦Bύ@'DΔΫSJCu]ω–-[ž\:@”κGaϋ+–OΚ±¦tŽωONXwΛέ₯s069ͺ’₯zJΩπ“LŽ8ϋ€7U)şn9΄™Eΐaής‘GΌVU՟D΄χp¦œσ„]I<ՌŽŽ^ϋŸ;έ–Ώ‰Š¦¬ͺλλϊ–ˆψϋœσχ–t4.oxχξέ[κΊ~ϋζΝ›‹<ςkŠ˜sέuΧM;τ»Ύαααu]_žsώלσΕ1ŽίΟ9OŠR½λSλΊώΣΎΎΎ:φίt6·t¦œΏ>}ϊτααααχlήΌyάo59η1mΫ²eΛά‘‘‘_έ»wοpΞω—£½Ϋx&Β΄ˆψ±¦inλϊM‘¦8Ώˆ}ωΗ£ό£4φ6£ί/œ£0oζ_ŽˆbϚΚ).ˆ΅ƒmœ£s`©ρŒO8ώέžŽ@ΞΉΥ(η|Δ₯ϊΒ… ΏŸo1ΖσΆlΩrf‹ηυŒ¦i^Σζy9珡ySΗ–-[^ZΧυΧbM‹KηiΩΙρ»UUέRΧυ–3I₯ωση·RnέΊ΅xxψ朿­ώΥMJ©h©ΎuλΦώΊ/"nˆ7D»/všrΞ'εœ΅ΣιΤu]Ώ>¦Φζ}TU5–R½SΧυO5Ms[Jι=1IGs#βλΊώu]/)`¬”κcuYͺRJ­tŒ”γ―ζ]uύΆ98 —_>9K±ω9ζl Ύ―Ψ|γŽ5ηύΖ}Κι—v­ZqΞΑ~ &ƒ¦iZέ4L)ιν)₯΅™£išΧ΅y^/ΨΊukJιόΌnΡ’E›Z<)ΰΦ[o}ΪΠΠΠG›¦ωLD,/gœ-ˆˆ ]³yσζ₯₯ΓL6MΣυπu]ΠΎ}ϋnΝ9Ώ5&φϋή₯Jυ444τΊ}ϋφέ?ϋ―Mοi? βΟκΊώΧ‘‘‘ΑyΧ‘nͺΧu}n]ΧΧEΔcjm¦Κ³"βKCCC//`,”κc΄ύKΛ^ϋ―‘*)Vιw g  ©ϊΏEΗwβ•%ησ]3bdEtΏ£―Iρα8ό7dΐAu:γ[>rϋX>θ³wηar•UώΐΏη­^²/ Fš€κVB“ ˆ’όHpA ι(hDQ”QgF\PWDΕqPΩ‘]‚‚$aFΑW!$„$Tέͺ„HŒt'dιtwέσϋ#  KwΧΉυΦςύ€‘νε™Οη'…aψΉΐψrΧ――οϋo― ͺZμΟΗ …!a~ΐŸΜˆ·+oƈΘβ0 ?‹*Ϋ8@DΔnDDƒδœϋ€οά3nαc«|7A₯‹Tύή«2σησβ ͺΗξ#τU#Ÿ½°<έ ˜ιϋ"²i0Ÿ—L&»\oΨΚ‘Ή\ξM†yUOU-Χ*χ:ηn5Μ£ –ΝfΓpQί@l€ο~<ΰaή“Οηλq Ί7ƒ:©žΛε^W,πγ~ϊMU΅Ue°ςωό{UuΛm!Υhοϊ«?λίΓ0œEџ\WMΖΝψz†ΌΞ’ˆͺ ‡κDDƒπάGŽSθ\ί}D*|ρY#Ζ-^ώokόίΡ΅ς΅ΎκΣQθήξSι}qsϋQG•‘""’QΥCŒσ5TηάUΤ°s ³ͺښ5kL―Ί/™LώΓ0*T.—›ιœϋ+€9Ύ{©oVΥ₯…Bα5ΎρΝ97ΰ‘z†η‹Θ"ςΚ8z€²¬Οf³Ν}χΕ_`t9jV0­¦‡±T΅w?žΛεΞ°ΐΡει¨bœŸΛεΎζ» "’ώβPˆhzzηΐ]U+Ζέ΅άλιf²₯ͺ~Wΐ+WΐWŸ€ˆό@w/ζΠ(ŠΜησu΅₯Tu ~$Β0ό1€οhŒ©₯~SΥΨ‡κkΦ¬9Τ9χΗΎϋβ ψ}2™,ψn’Ώ’(ΪΧο—Λε.‘›Q§›;Dδσω|ώsΎϋ "κΥ‰ˆATήο»U|ͺ–'oΘ3Yδ³Ύ*Ξ€ο³ς¨0;5‚Ά~}°κρ›»žψdΜ- ”υIυB)Ÿ/"W΅Mο4Μ«ZΖ«ί·6l‘aU ΓπΛͺϊMΎ›©PΝͺz]†_φ݈GύzhiεΚ•#ςωόbŽΉŸ~sΞΕ:TΟεrSώˆώ=€]Tυ&ί= „snϋKΏ―οώτΫDδs¨σ»ΕUυkažξ»"’αPˆh€6·Οx €ιžΫxfλφm7{υ Σϋtyk@$ΩyΪQ3ΌΥ'Œ1|:΄'-Dρ΅Ms¦gODDDt˜e˜ͺζKω|Ή ΐ O»Ώ”ͺΎί*«ZυΦ·ΌΗχ—&L(ΛκdςΒεrΉ«\μ»‘* .Ξεrίφ݈'<©†αθ‘C‡ή§ͺo)GCύηIυB‘pRί†‡‰qΥ¨BέΝΝΝΏπέΔ@8ηΆνω7nά8<Š’…ΞπΤR₯7 …€οFˆˆφ‡Cu"’ύί₯¨Έ:ω@ήίπ•bqπ‚Ϋ ς Ο’Ώ σΙAzς Ω‰^…K„―鈈¨RΌΚ2Μ9–ςωΙd² €εjρcσωΌοl½J$g‚«ί©aώ·ˆ|Θw#ΥDD.Γπ»Ύϋ(7ΩοP½P(ŒπkU}m™Zκ·ύ¬φ.I6›EΡbΤιZπ}QΥ{[[[Ν˜+‡=ΌΓpτΆmΫώΐ›<ΆT‰ΖFQtΣ₯K½_ι@D΄/f_Υ…cmΔ9ΣsEΡβ5ž{ ΨD‹ρφΤ½¨Ό ΐ—|Υ―wΜψrbΗ’iη~CKDDDύΆqγΖα¦Xf–ΊώœsWFQτq­VUΥχψ‹¬j$"–«ίžN§Χ0*‡„aψοχTΏ`΅ͺfE$TΥΠ9χ—~PE £Dd8€!ZdD$£ͺ“$ΚΫφ >™Οη·§R©/zͺ_vϋ»S}ύϊυC£(Zΰψ2ΆΤo‰DΒ|¨†αs‹°ϋχ₯oΟ‰HVU7PΟ€ͺ6‹Θ0μώ³rHί·n(QΥmn,‹Ϋ`Γ† Γ,‘Χ”«4€ΐ?όCU7ŠΘ «θEd(€!ͺ:BUG8η0QUΗ•©Ώ—:‘₯₯ε|ίρTŸˆhΏ8T'"€Ž ]oΔΧ ΛέTΉkεZ―=Pl"mΈΣ‘ψCψ»Okκ³σfqНΛV{ͺ_Χ2sχ{ώΜol9mΪ=£ο^ž3oŠˆˆ¨ŸΆoί~lPλƒ ΨRjH2™\†αΌή 'xΟ₯K/š9sfQ^ΥΘf³;ηN2ŒΌ»ίπ§†α’όυ5ξWΥί466>8qβĎRΒV\Ω4lΨ°Ά(Šf©κlωΖΨ΄z`ͺϊ…0 Ÿ‚ΰŠrΥτl_ƒΨDwwχM°ϋ;ܜυIυ0 p;ό Τ·¨κοόFU‘\:ώη@V\Ω4tθΠ ŽPΥ#±ϋ»Wυ}k*±Ώη† Ά¨ΔŒ²khhΨΎrεΚ¦!C†άx/?)"ψ½ˆ¬θνν}"“ΙμhH6›%"3s―UΥΌeϊύ¨ͺ_, 7&“Ι—=EDδ‡κDD‘ξ]Α Ό [κε κΊ4nΡ£ο˜;ύQ@MW§DCT|€―ωͺ_·ζOmδ¨A~φπbB†Θ‘κχ/)""ͺ["rŠρ?CZ©κ5"bυ&φ!£G> ΐFyUΓ9gΊϊΐM†YT!Β0<ΐ…e*·ΐ­Q]ΙdώdάΦΦ֍έ= ΰϋω|ώu> ͺo0Μ²ή>\†αΪ ξ.C-ίZ°ϋͺhΟοΜησ?π6/υ“εκΩl6휻ε]ωΎYDn‘[’ΙδΓ(ρa§Ύ?;kϋΎέχόχ …!ΕbqfίΏΗ§`χpy@«ΎEδŽ &Δv‡}\vνΪ΅}Ȑ!Wx³q΄ŠΘŸUu€Ϋƒ XgšΙdΆx οΒ0­ͺσDδύf[Τ؏QQ}ΐΏΔ\‡ˆhΐ8T'"κ§ νΗ":ΧsaΛqίοΉŠ™j΄HDΌ Υ#Θ9Ή”ΓΩςΪ²]¦Γ ώ©}žΌyΞQlx=ωΰTuže ͺ.³ΚjnnΎ­»»ϋ{Ψ=΄)Y"‘8u8T`Άϊ]DI₯RΛ­ς¨2δrΉDδ{e(Υ‘ͺ™H$I&“ώpΕT*υΏώ7 Ï«κYΞΉΟ¨jcΝ€ςωό1©TͺΦ7Φ5¬Z΅jμ”)S6=a~ΐΏΖX³ΐΓ‘0Š’PDΦ‹ΕM{~Pccγ(£Uutί¦Lp8€Γ­ΦΏoάΈqΈsξvΔΏ>ύyΏp₯sξφd2Ωw±ΎθϋφΝl6;Κ9χFμώ·e€‘Κ‘ͺ[ύ@> ΰ\ΓΜΧ8ηH&“Γά½κΫt=€λsΉά Ύ$"§ΔXς}Ωlφ‡™Lζo1Φ "0Υ‰ˆϊiΊί `„η6ΔΕψΓ¨š%TEβο^sί?^D τυΞϋΣ#"Χ‹Ε/d2™gb¬³_}¦«–.]ϊΣ1cƜ+"_0>¦r-ͺz[6›=q0kœ«Ι!C° xαΔPf€›Eδ·Γ† ϋγψργ·π3Κdϋφνט^†R‘Ο¦R©ϋό‘ρι; };€ΫW―^=²‘‘α ηάϋUuΦ>>ec‘PψM2™,[VDδλ9ͺϊ΄sξλC† ΉΦΧ‰ύt:ύGoΙεrg‰ΘεŠ‘ŒK$ŸpV ΩDDƒζ|7@DT5TύΎτ46ΊλΌφ@e1ϊξKόέgEουYΏ>ι1!£$βDDδ…ει+@E±ΜK$W‘Τ'ΨώOCEο6Κͺ ΞΉwΐξpFΡ9w‹QU€|°‘oύπ‘qΥPΥί%‰#R©ΤΏω¨οiζΜ™=ιtϊκ(Š&‹Θe°ϋ;ζ₯Ž‘οΔ”]1’(: …Β˜ΎΙZ Ύ»ό,Š’ΩA€‚ ψl*•ΊΏ’κa~ΐ»b.³NUΟ ‚ΰXίυ—:βˆ#žK§ΣΧ₯R©Ω"2ΐcχυ/‘[g͚Υλ§Γ’vo(E‡ͺ^8lΨ°ΓS©Τ*a~:ώΉsn€ΏΖ‘―ͺg†a81Žl"’ΑβPˆ¨ΆΎej vίχδ*Έ}Ω?}φ@e’ͺP,φΪƒΰ»οψ¦rΕPPœήΩ>EQΩ<υΤS―‘wΗH§Σ¦›W&Mšτ€?FΦΥ]Ÿ"bΉϊύώz:ε_&Nœψ-f› ^’ΐΕιtϊ “&MΚΗT£$™Lfk*•:ΐ\± όEδ£Ή\Ξϊοڊ’ͺ@±XΌ €Εφ“.ΉΌ··7ΑΉ™LζAΌδΞφJΝfgψVΜenrΞΝH§Σ·"Ύ‡?L€R©Η‚ ψ ͺ&Uυ;vU»ϊέΒβήήήiιtϊ[•0LίS2™όΗπαΓOpw ρ ͺϊ±r‰ˆCu"’~θmΔ™ˆw…έ τZŸυ©ΌœΈΫ<·0s§œξΉ‡ϊq챍 L³ŠSΕχŸ9}κ+¬ςˆˆˆφ§··χ0~­¬ͺχZζν‘{΅aάQak˜W± …Β+TυD«<~―-Ή\ξdŸˆ#[UŸVΥYA|@1Ž–‚ Έ+‘HΜπPω"re>ŸkΝ|%88ŸΟΏ]Dζ—$"Χ'‰ •J}|ςδΙ^7ΑνΟΊuλΖ:ηnF|Χ΄vτNO2™μŒ©F,ιτ?Σιτ§E$PΥ/&“ΙXNDW°ŠH{s+ωχπψργ·GQtl\ˆΘ‡6lΨ0Μ:—ˆh°8T'"κw†ΧϊΐΖ±†ΔςΖ"U¦ΡΗ>φ|φ<ν\&‡ξœ `ˆadKƒsWζνU6›mUՏΔ}O ™hnnΎ ΐfΓHσ΅χ•HUΟDι«kŸ·½««k‘Qy–Νf›EδGΨ½ήΨZΐIιtϊ1dΗf€I’(z£ͺΖρϋ|ŒͺώW ΉADͺϊύc ΞΉ·€R©χMš4ΙλΧΤύΡΫΫϋmbŠΟ‹ΘkϋN§W­T*΅1N ~ΒήΨC―J₯R‹|7™Lf—ˆœ`qτθӌ3‰ˆCu"’xfώΤPε³Η’%=>{ 2»X#¨ώg œώ\ϋωμ‘^DκlVΏΏˆΆož3έlM+Ρή8ηΎΐϊΡΖΞΞΞίgZ[[wŠΘ†‘g―_Ώ~¨a^EŠ’Θrυϋ/ΪΪΪΆYε‘_"ςESbˆ^ΩΫΫϋϊt:!;v™LfΧ]»ήΰ1ğ†αcΘ­η8΄„ΟΏqψπαS“Ιδ―­ŠS‘P8 ρ]%²DD^›J₯VΗ”OρΉrέΊu³;μ°§}72©Tj£ͺš?lhω„ˆ¨Tͺ@b‡;Ά'HLϊ3ŸυɁο§Ι›zΡXςΪ=:0fΖ’+ϊγmgΜ8$Žl""’0 Οπ.λ\U½qζΜ™±=Pꜻv§έFοΪ΅«έ(«" …WˆΘλ­ςΈϊ½vd³Ω£DδΣ1D/ojj:±’ΧχG[[[χΊuλή…xξώQ6›mŽ!Χ·Αώ7\Α{ǏΏέ²‘Έ …!Q]xΆ<άίΥΥ5;•JmŒ!›βυΝ > IDAT€›,3EdΞƍ‡[f ‡κDD ’s½ΦώΪς«+}φ@~Œωψ<ε· wŽίϊuBρͺ˜’κι)~/¦l""ͺcaNπ“8²UυΪ8rŸ7i€'`xο§sξύVY•¨X,ΎF«ίUυι ΄Θ"οœΫ}έP“qξ3ΞΉφΦΦVΛkΌ™5kV―sξlkŒ£';η.2Ξ¬VΫEδ΄ Ύι»‘(‹_09†θ₯]]]gp#Hυ‘/APυ?`—aδ°;vœj˜GD4hͺνΟμΩ NχΩB$ϊsŸυΙ£‹5θm^{P=~Sϋτ8Φ9σv=3#ΎςξΞ9Skϊ•Χϊυλ[,06†ψΏd2™ΗcΘ}U½Ζ0λΝΉ\ξ0«ΌJ#"–«ίoΔξ₯Tεςωό^gΫEΡόd2Y0Ξυ*™LvŠH;€-ΖџΙεrυΎ•j‡ͺΆ§R©ϋ|72kΧMΕ΄ε!/"§s ^•~œJ₯.υέ„…Γ;μiU½ή23Š’7[ζ ‡κDDϋΡ9ό™΄xl!RmXΰ±>yVx¨"E껇ZΦ1κΩ6±ήΕͺNά2gzƒ""ͺ3«W―Ωέέ}7€i1•ψvLΉ/άάΌ@‡Qœ‘χeU”΅kΧN€αΰTDLWΒ’7’ͺ_΄UՏf2™­s+A*•Z-"Φ_W ‘OgV“ΪϋΦMW•b±ψΖ±"r*WΎW₯;‚ ψ˜ο&,‰Θ·D†y'Ze•‚Cu"’ύˆœσzΊS!Ž[τhUί#G₯·pΕΓ²>{P‘s7ž2ƒχWΕD"‰ε>υQLPΡοΔ^‡ˆˆjښ5kmll|ΐρqδ«κAάGφK΅ΆΆξμ;5mε\Δs/W½½½ο€έ{GΛR©ΤcFYδQ>Ÿ?ΐtγΨ{ιτΥΖ™%•J-‘;c?Ίf͚ƒŒ3«xOΏρέΘ@e³Ω4σkΦTυΌT*΅Ϊ:—b·Ά©©ιƒ0@W‚ žπaδάΜAD•€Cu"’ύUΟ+“#ο§”©"ψ]Œil.ΎΛs5KEγΊOύΕu€s7·OγΚ4""”0 ίΠΠΠ°@lƒ9美2Ύ©μœ»Β0ξπ\.w‚a^E0^ύ~ƒUy%ͺϊγΜ­ͺϊoΖ™©‘‘α<†‘#jκ„k?}5‚Ϋ}71‰DβKŒcšN§ωώQυιQΥ3[[[7ϋn$ͺz³aœΐώΚ"’γPˆh:NŸ> @ΰ­AOcc±*ΏH$cΞ xQω¨οj–Ζ7œx ΕΥΟΞ›2²Lυˆˆ¨δσωρaήΰ~―ˆ±ΤŠ΅kΧ–υ5Ο€I“žπG«<9Χ*«τ­~·zP κιιρώš–J†αfXfͺκgιτS–™•ͺοα/Η~< ΓΡΖ™•lQ—ψnb0Β0<\Uίm›λιιω„q&•Η₯Σι₯Ύ›ˆKOOΟ/τFr¨NDήq¨ND΄/‚Σ₯ͺ:βˆ#ž³Μ€²( >όkΎ›ˆΣ”)S6©κΓΘ©†YDDƒΒ‘:Ρ>τ >λ«ͺυ]kTΕψ©τ#Ύ{¨5›»Ÿ ΌχΥ+>Ρ>υυe­IDDUcύϊυ-ω|ώsMMMy `Lά5EδΦt:ύ@άuφ¦ΉΉωVFq#š››Ο0Κͺ\ύN/’ΝfpΌefEŸΗξϋ±λΖΜ™3{˜ΣT΅¦6eμΗ‡3™Μ3Ύ›ŒΎmσcοπυο'•FD>=~όψνΎϋ(ƒίX‰Θ«,"’ΑβPˆhoζOmR1[u8ͺhΈΫc}ͺ0‰ΖήμςάΖ;ώ9oΪxΟ=Τ§RΥο/* •Ÿf§†x¨MDD•)‘Οηί†α-έέέO«κ₯ͺ:L΅·‹Ε ΚTλeZ[[wŠΘVyΞΉšle³ΩVV[ŠΆοάΉσWFYδ‘sξ_Œ#N§ο1Ξ¬ A\`΅aδQak˜WqTuAΏτέG ή `˜a^7€ σ¨|–₯R©jώ½<Ώ5̚ΈqγΖςJ "z Υ‰ˆφ’s»{ Κ}ztͺX:nΡ£\H/yϋ› π½½ ©1‚υiu-χ*O₯5bδη=Υ&"’ P(^†αΩaή†α?Tυ>gh.s+žΙdΦ—Ήζ‹X€WΥ“²ΩlΪ*Οηά;`΄ς_UookkΫf‘Eώ,]Ί΄»―‚0#"Ÿ³Μ«2EωΆqfM<Τ³;ššš>黉Y-ύ£ ž4Ξ€ςψ*κdCGίϊw«VΩΆmO«‘WͺνEδτdŸυd‘ΟϊT™κ}<€ο»œ 8ΥΧωͺ-Π‹Ά΄Ο8ΖW}""*Ÿ5kΦT(NΚεrŸΓπΆ0 ΧFQ΄ΐΨ}rξ O­]Α-žjΏ ‚ε"ς'£8qΝc”εˆ˜­~wΞqυ{ 3fΜ‡Xε‰Θ#©Tκ­ςͺQccγΝ: #ΟΚf³ε~0ͺ\.;μ°ΓžφέΔ`εσωι,7 τDQτ]Γ<*ŸΏ―[·Ξχ‰²Ιd2[E$o•'"GXe Fƒοˆˆ*‘@O6:˜18-ςWœ*UΛqίί±dκ:=Ά1±³k՜1π~jΎκ=3κˆˆ―“κΠiτί8φΨWcΙ’}U«–\.χ:]ϊ@UνTΥύž‘¦έ­ΩΣΣΣEшD"1\Upˆsξ U=ΐα2ohhED<ΎΎ}ΉUΓ‡˜ο&žEΡΥ"b΅ξό}.ε•U.—;LD^c‘₯ͺOA`Ήϊ•<ΣSΠͺzΉe^5jmmέ†αΝΞ3ŠlI$σ,0Κ«MMMΦ§ϊΛ*Š’Yώ,"7ϋήςBƒφ“Y³fυϊn’œTu€ΐ(λP‹"’ΑβPˆθ%6΄;lδx-¬sχγΛ<Φ§Ju±FΪ>υ:Qω’Ο6"ΕΗΑ‘zΙΫρz8ο―Ŏλcͺ~“ŠˆΘ“"ςP>°Ώo€χφμ=VA"‘xQΜξ+Ε3ζ?~@Δ©ΉΉωΦξξξοk7)—ΛΝJ§ΣU9LvΞΝWU«ιΟ͊FYδIίΆo2Œμ:tθ­†yUKDRU«‘:T΅΅7TAkkλfίM”ΐ‰Θ|Λ@ωΎe•OEu·½EDV¨κیβΖε ΧΏ½DsΤu"€&o UΛ»‘T~.ΡψSx>υ$Π“7ϝnu’«~%ά)Ύ[θσΥMνΣy/•ΛΦ(ŠήΑߍ쩡΅u§ͺήd•g}ͺ·œTΥrυϋVYδΟφνΫgbyν„ vζU­T*υ€G #ί„ΪzΏ····χίM”" Γ™0Ό:ΐΙdςχ •Ογ™L&η» ΦfYώY""°Zz‘EDdBf{­ω΅ΟϊTΩΖάρHA‘ψξΠOϋξ Ϊ‰κί=τivͺWTΪN`""ͺI;£(š—Ιdώζ»‘½‘« γΞ, c σΚ"—ΛΰΥFq§R)nΰͺͺϊγΘ[Œσͺε°C²Ωμ Γ<―TυφΙ“'έw%:Υ2LU―³Μ£²ΊΛw>¨*‡κDT38T'"z Q9Ωcω’Dψ_υ© ά΅ώ{ΐ[7·u”ο>ͺΥ¦9ӎΔξ{n+Ε¬ŽΉΣώΥwDDTΣ6‹Θ)™LζAߍμKΛEδOFqC-O|—‹sξL΄γΰ§vˆˆεPύοA,5Μ«zQ-΄Μsb6bYΈw₯RUΛ‘zwcc£ιο*Yα»OΜ†κ"ΒυοDδ‡κDD{Ψ|Ϊα£8ΖW}U<2zρcΎκSuΨ²νΉ_xΦs‚H.πάCΥrNζωξαετ››O›Ρκ» ""ͺIy9!•Jύήw#’ͺ–k†«nΌαƒ‘ͺς4r X»vm †ƒŠΘνxέΩ2™Μ#ΦFΎΙ0Λ§¦Σιͺ>t°~ύϊ9Ξ0ςΧ'Nδ{FU*Š"ίογx1tθPΛmc ³ˆˆŒCu"’=¨ϊj _υΕιo|Υ¦κ‘| ίΐϋ½rβδμΞΣΫ&ωξ£*©žν»…—QŒ–Dt•ο6ˆˆ¨ζ< ͺ―I₯R«}7MMM?`2°PΥΧ]»φH‹¬r( IVßίf2Λ!!yEΡiΖyΏ²Μ« Ϋ΅Π―ΫΈqγpΓT‘ε}+£«VίUfΚTυwVYδΕφΦΦ֝Ύ›πEDΆEρ€:yΕ‘:QŸŽφ©}₯·Dώΰ­6U₯±‹—ύ^K|χ!"}vή”‘Ύϋ¨[–LŸ ΰPί}τΓٝνΣηωn‚ˆˆͺƒˆlp‘sξˆt:}5ͺό\ΐό΄ϊΉ†Y±°\ύξœγκχΡΣΣ3 €Ω¦αΧΌςW« U­φυοϋn T“&Mjƒα©Zη‡κΥ­jΒ‰CEV[J\΅l"’ΪΔ‘:QόR 0; CuΔ‰όΨwZ\±ρ_}7Q Šˆ*{υϋTυςΝ§>ΚwDDTΡVψΘΝ;“A|3™LvωnΘJSSΣΟa·ͺ΄}͚5eΕΕjυϋΖB‘π£,ςΟς΄³FQΔ―yχοo†YΣ$ σΚΝϋΓγ₯Š’ΘϊΑ†ίηQyΥσκwˆˆΩΥ™L¦Ρ*‹ˆh 8T'"κ#κ|ή§Žήž"ί` λάφά-žρέŸyfώΤΎΫ¨dڏ&ΐ™Ύϋ€Γ€aΘ7|7ADDGόˆ΄Apd?nkkΫζ»)k}+Zo6Škjll<Λ(Λά“O>°Ίχχ¦Y³fυe‘gͺϊ*ΓΈ§‚ °Z[«ž4ΜΊvνΪΙ†yeU,-.ΌΛϋΤ7¦R)³λΘ‹Ί>© ΗwDD8T'"zο±xώ {WnπXŸͺTς|ΧψξC€CvΚΗ|χQΙ†DέοP]'ΏΎ₯}κΙΎΫ "’аΐ%ͺ:9‚7₯R©EΨ=`―Y–+ΰU΅bWΐ'‰w‚«ίiο¦f­6ΜͺU¦?G½½½GXζ•ΩSΎ0`vŸ:vLΥ­Σwž™T'"ς‰Cu""˜??`¦ΏτOώjS΅+JϏ ρΤοgΆΜ™>ΦwKτ#Ύ[QΕληŸ0Τw#DDTv;όΐE‰D"‚ΰ¨ ΎœN§³Ύ+—T*υ€ΏΕ“Οη-Wi›«Υο+“Ιδ£FYTZ­‚Dδ «¬fz:Ϋ9w¨e^iCCΓί}7a`’a‡κΥo—ο<‹|7@DdCu""ΫW΅πΆΊZTΈϊν ;W= Ε/}χ`LQπ)ίMT’Ž93N0έwƒ‘ΙΓ»Ά^μ»""Šέ³ξSΥ/‰Θ‹’hlo‚ΰ›“&MΚϋnΞ#ΛΣκο·Κ²ςδ“O†+Ύ―7Κ‘Κa6”UUžT?€Ύυψf+Ύ£(z₯UV™u$“Ι.ίM”H`ψη‡₯Τ„zͺΥΥ‰ˆˆΓ±^λ+xRJ"Πo V° τόm§s°ο>*OτQί”Dε?:ηey§&Q-Ψ `=vŸθ&»°ϋΔΫ-.RΥS ‚ΰΰ NI§Σ_M₯RΏΟd2|σ@SSΣ-0ZΩ*"οΝf³ΝYV¬ξzTΥκzͺλΦ­ `˜UžˆTύΩe²Φ*¨ŠOͺWύΏ?kΦ¬ΐlΫ—ͺ²Κ"oΈώœˆ¨4ψn€ˆ¨2DSŒ£76/σUœjØE+–u̝v€9ž[ΩΫΠs!€ <χQ1ž7ε• Χψ6<”€‘» σηΏ }7CDT TυΪt:}¬_Ώ~hWWΧΈD"ΡEΡ8iQΥƒœsγ’(j‘qͺϊ’Π`Œq[[°{ΨΏYUŸ‘§U5οœ+¨jΎ··7?yςδ ΰ Ξ~kmmέ†αΝΞ+5KUΗ‰Θiξ(½3ͺj΅ϊύΑt:] w SŸb±x˜qήΣ–y5μŸVAͺZ­'Υ{}7P*ηœιŸη\-¬Γ―k"Β‘:Q ΰPˆ€B¦ϊͺ-ΐr,YR χaS•Sq—ŠFΎ‡κPΕG6Ÿ6γϋ-w/[ο»—Jΰ΄αί‘hτέG©8sΗη.χέ Q%‘žΘlmmέ‰έ§Φόo_6›mnjjV,G©j“ͺŽzI1θ{ϊΣ9ΧS,·=cΊ[§ͺnψΉJUKͺχe‹ ͺ‡a8ΐΡYͺzƒEUU5»O½Ω°ΈΖ=c˜U­'Υ«~¨žH$ZUMŸͺώ‡e•_EͺΥΥ‰ˆv;ΚWa}ΤWmͺ-- —ύΉcξ΄ί8Ιs+C$‘¨ξ•ηζOm•ωnÊ .έ|ڌ;ψΐ‘Ύ5λ»tψξ…φ.•J=†α_owκΪ΅k'Lš4iƒAVITuώΟ†”b§ˆTΔƒdGD&‹™Lf“UX³ͺWλIυͺί¦bόPJW2™4Ή†„όαIu"’Ϊΐ;Υ‰¨ξuΎνUcΰχ n~'3*ψΊοvΣuΎνUIί]ψΦ±Cζx…ο> DCτίM•›ˆ\cΥEΡΩFY%«ΥοΏ ‚`‹QUUmχ j`PZ"b9Ti˜E ͺγ γ6f‘?ͺΥΥ‰¨ξE=½m>λ«ΊG|Φ§Ϊ²pω}ͺXβ»MQoο—|7α•ˆ@p‘ο6¬‰βŒΞ9SΫ}χADTLŽψRu2dΘ-LN ͺκΉ9₯θ[ύ>έ"‹«ίk“ˆ 1Œ³Χ4Uέl—XΊtiΥ_CU₯†fqυ{mΨε»""*‡κDTχΔγ}κ’βΠhΉΗϊT‹œ~Γw ΐ9›Ϊ§Oρέ‡/s¦Ύ€ΟΏ_b£"—?3κί}yΖ‘z™0aΒ7Ε΅εσωWe ŠͺΎΣ(κŸO=υΤύFYTY,‡‚; ³jιΰmĈ–GP?‰ˆεŸŸm†Yδ‰ˆτψˆJΗ‘:Υ=υvŸ:€5/XΑ/ΘTΛΜΗοδqί}H8Υ‹}7αΡg}7£‰]ςeίMyΖ‘z‘«¬²TυύVYƒaΈϊύζY³fυeQ‰’Θr(Θšύ$"¦?W –ΏŽΤ–3πΟOmPί Qι8T'"‚Χ‘ϊ£kS­ΊX#|Ηw}ήΩ9wκ ίM”ΫζφioVΰ8ί}ΔIŸΨ>γί}•K*•z ΐ_βή½~ύz/Γ|>€iYQqυ{2^Ξ‘`™ώ\9η8Tχƒ₯Υ Υ‰¨ξ‰ˆΏ;ΥE–y«M5mΜΣM7ΘϋΘ₯Ύ›(7Q|ΞwePΔόω ߍω "<©^‡Dδj£¨Ρ»vνšg”5 ͺz–QΞ™LζoYT‘8τΓϊηŠλί=0^ήe˜EDDD%ΰPˆκΪsg9Š Ύκk=β«6ΥΈ%KzDυίm§o™;γ ΎΫ(—ŽyS_ΰ$ί}”ƒΗuξxβ<ί}yΒ‘z6lΨΟl΅Θ‘s-rΑdυ»ˆπ”zmγIu¬ΧΏƒCu/x}QmβPˆκZow“ΏSκΠ +½Φ§š6fXۍžπέDˆΎƒK€>^wDR§Τ_ ‚―mš{τ‘Ύϋ ""*‡ργΗop“QάΓ0œh”Υ/…Ba ‹λ―Τ9w‹AU.ΛΧξέ†Y5­X,šn*‹=–yΤ?ΖΫl"Γ,"""*A}ΌΉMD΄Šθpεw΄άΉb½ΗϊTλ,(*τKΎΫθstη’iοσέDάΆœ>νX§ϊξ£ΜF‰/σέQΉEQΔ“κuJD4Šr"ς^£¬~‰’Θdυ»ˆό.™L,²¨b©aVΡ0«Φ5[†566ξ΄Μ£~³\Ωήd˜EDDD%ΰPˆκšΗςk jωFΡΛ΄,~ό—<μ»PΰkO™1άwq*:ύκp°(Ξθœ3΅έwDDεΔ;ΥλW*•z ΐ_-²Tυ(οk“ΥοͺΚΥο΅ΟμkUαP½L‡κͺΚ‘Ί"bωσΞώDDD‚Cu"ͺo’)o΅kΌΥ¦ϊ‘ͺ ω²ο6vΣW67Eψξ".s§Ÿ&ΊΉ;ώ₯TδςgζOα»"’2βP½Ž‰Θ5FQ©|>z£¬ύΚεrSX\Υεœ»έ ‡*›ΩP]U9Tο?Σ‘zEͺ{`ό0ƒιο """<Υ‰¨ΞIWeuΊΪWmͺ/c=v7€ίωξΈpσi3Z}χaξq€^κ» Ο&6vUΚDDDρ6lΨ-ΆZd©κΉ9""&§ΤEδΞd2Ωi‘EΝr«7΄υŸυPέr 9υOͺΥ Υ‰¨Ύ ΌT—HxRΚGτ Ύ[θ3ΤΉθΛΎ›°Φw_όΡΎϋπMŸΨ>γί}• OͺΧ±ργΗop³QάόΥ«W4ΚΪ'Uεκwκ7΅½ͺl”aVMΛΝOQ&“Ωe˜Gύ€ͺ; γ†fQ 8T'’ΊU˜Ε+|ՏD9T§²»pΕCξσέ¨ΰάZΌf§†(τΛΎϋ¨‰b]…ωσΎ!"*Υ뜈\a5Ό‘‘αL£¬½ ΓpšˆiυLGGGEΌ¦€x‰Θ6ΓΈΓ¬Zw°a–ε`—ΖrCΐ!†YDDDTΥ‰¨n92 o†&9T§²r*ŸCe¬^tEΥoϋnΒΚθα#Ο0Ρw•BΗvξxβ<ί}Ε-•J=ΰa‹,‰uΌακχ[fΜΩc‘EοVA"Β‘zYPΝ~ i`œs› γΌ!""’γPˆκ–ƒΗΥοΐΖ1w<Β{©¬F/~l© ξπέτδŽφι§ϊξ£Tϝqδ8ˆ^仏J£‚―mš{τ‘Ύϋ "ŠOͺD䣨³ΩlΪ(λe’(z»EWΏΧΩ`•₯ͺͺχŸΩP]DΦ[eΡΐDQτwΓΈQ6lf˜GDDDƒΔ‘:Υ―H“ΎJ+Έϊ|‰Ύ θ» €βۘ=»Αw₯θνiόOc|χ ΐΟ}7±‡Q"ΕΛ|7AD'αP°sηΞ[l5ˆ’D"ρ>ƒœ—Ιησ3ŒVΏ― ‚`‰AUΛSΞ‡€οAφ‹ͺš­WΥ§­²hΐž² ΫΆmO«UΎ %’ϊ%Oͺ«p¨N^΄,|όqnρέΗnzTΗΘMπέΕ`u΄O}= τέGŸ[Ί€ωςΎyž(Ξθ˜;uο>ˆˆβE‡κ„ΆΆΆmnΆΘRΥs$,²φE‘Υκχλ,r¨:¨ͺΩIuCσωόa†y5KD^iΗ“κž8ηLξs,󈈈hp8T'’Ί%oCu8Yη­6Υ=Χ‹/CPwaŠκ%›O;|”ο>lώΤ&Dr*cυo±θά₯.Ω‘ψnζΕδληŸ0ΤwDDDq‘+’ZΓ0œm”υ9Σ Fsς`&•Coo―εP&η՜₯K—6HZε©*‡κž€R©Ψe•'"GXeΡΰq¨NDuK‘ώ†κj» Œh Fί½<ΰ'ΎϋΖ;Χόeί} TG—|‚6ί}τωωAw.[ c>v |7΄‡Τ°­ŸυέQL*αΑ*ͺ©Tj«΅θηε …ΒΡ¦Dύ~€I³‡βχτΣOoΠeΙ‘ΰ΄΄΄­ςDΔς^o`Ά~_U+εkO""’ΊΖ‘:Υ-Z}ՎŸ'Ώ{/†`‹ο>@E>ΦqϊτiΎϋθ―­σ¦f ψΌο>ϊDPχ=Ώ£Wυ|žϊyQT³—Β IDATωΜ³§Ν“IDTsx§:νID6Š:£P(Œ1ΚB±X΄Zύ~ƒEUY³fυxά*/Š"ΥΜτη(Š">γ—Ωa ηάQVYDDD4xͺQ}ΊDœγ|•WžT'―Fάύ·g ψ¦ο>ϊ4¨Γχ}7Ρ_QQ~  RVš/»xي=Ώγΰ»VόΠ/ψjh/šx™ο&ˆˆˆβ΄sηΞ[l5ˆR,ίi‹‘z—ˆόΒ ‡ͺΟ£†YΗfΥ$γz¬4Μ£[qΰιžT'""ͺ ͺQ]znιδ Ύκ«ts y·eΫΆοXλ»θΙ›ηL79I§Ξ9Sί§‚7ωξ£OQϊΥ½ύΐΨcΏ")wCϋqJgϋτyΎ› "2Ζ“κτ‚ΆΆΆmLξ“πΩlφ‡D-J&“³‡ΚGU—Ye‰ΘΜ 6 ³Κ«Q–Ϋ»žΘd2fwzΣΐ‰ˆεC)‡­[·n¬a ‡κDT—z£!―πXΎσ ;W=η±> ω@Ύ "ŸσέΗσDτ»O™1άwϋ²eΞτ@E*ζΔ΅ΧΆόjΕήOŸ\¬Šψ=enkŸTυ²Jώυ%"ΥιEDδ £¨γ³ΩlΙ§s\ύN%qΞYwμΨqΌa^Ν‘ ³±Κ’ΑQUΛ_)‹'ζΡ p¨NDuΙΉβ!Λσ>uͺc-Ώΐ}χΡ§΅©1ϊ¬ο&φjφμ†HτF£|·§+Jΰ+ϋϋ€±w=Ά~P†ϊabcsρBίMβP^$•J-°Δ"+‘HΌί ζν₯ˆΘ¦;wώΪ ͺBΕbq5Œ|½aVMΙεr‡H[ε©ͺε4Q-μrVΥ“¬²ˆˆˆhp8T'’ΊTT9Ψcy~§Κ‘ͺ½Άo– žΰ‚­σ¦f|·ρR#žω&€ΧϊξγΘe-ΏZώԁ>ͺ»Η}²βDε3•ψλKDDdEU―1Κ9gι₯ƒύό\.7@ΙζFQtK[[[w©9T2™ΜV«­ςDdΆUV­qΞ½Ζ2/Š"Υ=λ[ΏΏΚ0r–a ‡κDT—œ`Ό―ΪpFTNcxH ΏτέGŸζb$?τέĞ:ζL{B>廏=t&z’oφηΗzΩvˆ|8ξ† Ήɏ|7ADdADxR^fΧ]7Ψj5~μΨ±§ φ“EΔdυ»sŽ«ίΙrSΑ‰«V­g˜W3TΥlυ;€¨‘‘Cυ `Ό1ΰhή«NDDδ‡κDT—"'Υ#žT§ $E½@₯œB:₯£}ΪίMΐζφ―ΐδΔ™‘―ΊwΕζώ~πΨ…έ#@₯<4oξlŸώVίMΰP^¦­­m€[Œβή_Βη–Όϊΐ“©Tκaƒͺbͺz―a\CSSS»a^-9Ν0ki2™μ4Μ£ArΞύή2X,žn˜GDDDΔ‘:Υ%‘Θߝ꒼S*Ξθ»—ηZI'ΔΏ_˜ⳁιSgˆFwπΪΗK¬έ>t䀝ŠHœ›Ss&Tυ»Ύ}‰ˆˆβ""WEΝΝf³~8 Γγ`p7³ͺ^JΉ"ˆΌI$Ψaω6Γ¬šP(’¦Yε‰ˆεv*A±XΌΗ2OUίi™GDDDΓ‘:Υ'Cυ"8T§Š$κΎ`“ο>Šτθ‘#ώΓWωΞyG½J!χ¨¨υz’ψTλ‚?ξθη[τθίEρ…8z€Τ˜Γ/πέQ)’(βIuΪ«T*΅ ΐRƒ¨&yΧ@?Ιhυ»FQt³AUΉd2Ωΰw†‘oΚf³£ σͺ^EσŒ#ο3Ξ£AΚd2λΧΡ>ubΉΛnnŸ6_#χoΧDμ(ξ³xωνƒύό1Îό±³ΒU!m>mF«ο>ˆˆ‹wͺΣώ¨κΥ9"ςΑA|Ϊ™₯:όπΓCƒͺ –'Ÿ‡8ηΞ6Μ«z"by5ΦΝ›7Ω0J€ͺ–§Υ»»»­Β ""’~βPˆκ“`Ό―ŠΟϊͺMt cžnΎB k|χΡg˜¨ϋ/u'ζ‘ξώt|Ό€„ ŠpΡΏθ΅i©dΓΕι·|7ADTΥiŸvνΪu3l^™V(ŽξοησωW«jPjQU½±Τ ͺΞΉ;a{ΐ‡ ³ͺZ.—;LUO4ŒόΝΜ™3{ σ¨D"r―qδΏηQ?q¨NDυIύ@νΒΥ©r-YqŸρέΖσϊφŽφι§–³fː#ΏΰOε¬y@ŠΛΖ-|lU©1cξ|όQ½ά’%’gu΄O}½ο6ˆˆˆ¬΅΅΅m‘Ÿ[d©κΉύύΨ(Š,VΏwχττό ‡jD2™,xΐ0rZ†| @D> a˜gz‡7•.Š’‡l3Œ|}>Ÿ΅aυ‡κDTv―κα©ϊŽ —μπT›¨_Ζ,|μN…όΦw/PύΡ†φcΛwr|Α‚bΡΉs ψξςxΘΣΕDΩZώžaψ€§¬ςJ$Pω.Ύ&%’jΔ“κ΄_ͺzQΤΩΩlΆΉ'"ςvƒz‹¦L™²Ι ‡jˆˆόΜ8’§ΥwΣϋύΠL?t%‰_摁L&³KUο0Žύ”qυίΐ$’ΊσΜ;Žρ”:U)~‚JY˜‚/•³ΰAw.[­‚²ΦάύδAwzΞ*οΰ+Ά©ΚXε8fσ’£>ΰ» "’AΰPφ+‚%––š£ͺγœssτq…BαxΙRλEQtC©T{ Σ0ςO>ωdΙWT³|>:v_=eε—'Nμ0Μ##ͺϊSγΌ·―]»6e™IDDDΖ‘: ΜμΩ Ύ[(•ξ’αΛs¨NU‘eαγK€?τέΗ‘OuΜ™1΅œ+d ό―Z._`Ϊ²ψ±ΫϊλάΑΘ₯o{Υί}Y3<­~ΐΣ¬F«ί7°Ύ—j@kkλN·F6&‰ΟζU(ЬO_kœGF2™Μοd #½½½Ÿ3Μ#""’~ΰPˆϊ­0;5€sΔ3ίτέG©š{Ό­~‡μ~“Ѝ*θ!—ψ‡ο>ŠFHtUYΧ„ϋ_ίQμ)ž[z•΄ΰΰ¨XΌΨwDDΔ“κt@»vνΊ €ΕΖ™Sžzκ©WξηΗΐ™u~žΙdvδP rΞYmί—Οη0Ξ¬ …Bα9Ι0rm–χή“-΅ΎBADώ%—ΛΝ΄Μ$""’ύγPˆϊmτˆ‘—)δTί}”Jκm¨ ΆϊͺM4Pcο_²ET/ςέΗNθxxΪΛYΠηxQύδAχάW~Λ―V¬ΰ²ΈςJ Ω4gΪ‘Ύϋ "κ/αP¨­­m›ͺώά ͺ‘»»ϋ=ϋϊΑl6ϋ“J-βœγκwΪ§d2ω0ŒLDQT—§Υ£(ΊΔ8ςg"γL2ΤΣΣσ3EΓHηœϋŽa‡κDΤ/s§Ÿ θ‡ŒχέK©T0_qlρV›hΖάυψυ€ώήw/pϊ­gί6‘œ%[fψ.€‡ΚYΠ{Ζ,^q]άUz₯η@žŽ»NΏ(Γ·}·ADΤ_Qq¨Nύ""Wε|`_?朳XύžνšνΟΧ-ΓDδέυvΪ6ŸΟ·8ή0rWE?1Μ£Lž<ωοͺz—e¦ͺΞΚησo·Μ$""’}γPˆ¨cή΄ι€>FΠX̟Ϊδ΅‘iŸwͺ[¬~$*Uu’ψlŸ¨<ΕθDc’ΌƒΧ‹5*:χA”k Ό`‹&δίΚQκ ;W=ΰ3ε¨Υ/ŠΣ7Ν™ώFίmY ‚` €ΏDM. {ΔY­~Ώ€δP ‚ΰnF&DδJ Γ̊΅aΓ†aΎgϋΣL&³ή8“βρ=«ͺ?^»vmY<'""ͺWͺΡ~=;oΚHDΈΐ°Ύο’M;φΩSɜΏ;Υ!Κ“κTuF/\φ7Χψξcg—{πZΦ5π*iωΥς§ΚR ΐΨEέΰΑrΥ;'ϊ_˜?Ώ.ήT%’κΖυο4@&―₯’(:χ₯ί—ΛεN0Ρ ώƒ ͺQ]jyl†ey¨Τ·;w~UUΓΘηά· σ(Fιtz)€{Œc.‹?Γξ¬ˆˆˆ(FͺΡΎ‰HCΤx-€){~wƒhU―€w‘Ώ‘Ί¨π€:U₯D~ΐ³Ύϋxž½’0;5€œ5Λ²^qUߐ»¬T’BΠSξΊϋ0}sΧοχέQ?πΝkκ·a³΅κ¬Ύ“/‹Υο‚ΰIƒͺ™Lf!€₯Ζ±ωΤSO½8³’δσω>n™)"Χ&“Ι‚e&ΕKUΏϋ­ oΓΠτχ½‡κD΄Os¦^ {Y#X,ρя'ΥΉώͺΤ¨{Wl†–ι€vdFώΉ²VŒ όŠ.Χό©˜²χ«eα㏫β ΅χΖ).}vή”‘Ύϋ ""²ΦΦΆMUn5zηΝoέγ €·δήhAυCUΥϊ΄ϊ¨žžžŸ=ψΰƒ ΖΉ! ΓΡQέΐςΏ―Η9χ Γ<*ƒΎΣκwΗύ­0 ίC.υαPˆφjσάι―…`―_$;AUŸT‡:CuΕ6o΅‰J4φΈW‰νύ‰%• 7Ν™vd9ktη²Υͺψb ΡΫ#Εό —μˆ!»Š]_„`ƒ·ϊ{P`Ό+6\ΰ»"’ΰIu±ΊNη…πaΎ₯―~οξξξΎ­Δ ͺ3ιtϊχΗΎiβΔ‰—gV‚€[DΔτkΉv€IyΛL*›K`Z½ ΐνΩlφγ\"""κΓ‘:½Μ3§O}…ˆώŠΖ½ύΈVωP]]4ά[mΡ._΅‰Jv±F‘β°β°šœΰ ”ωNΫ–aG~ΐŸ,3Eυ#γ/Β2s Zξ~r«@Κ{ϊ?Dδ‚Ms>ΤwDDϋΑ‘: Hψ›AΤΙω|~`Άϊύ)S¦l2Θ‘:£ͺη°ώχΓΉ\¦ΦX‡aψ§ZfŠΘ¦žžžΟ[fRωAπ°ͺώw Ρ£œsχ†a89†l""’ΊΗ‘:½ΨμΩ NnbΒΎ>DDͺzύ»Sxͺ‹‡κTΥZ/£Š\ﻏ=œΤqϊ΄•΅β‚Ε’sηΒh Ό?³xΕuY₯³hωu0~` ΓD"λ΅’DD–8T§Α°8­ξ’(:€SΥ—]Χ5PͺzƒAOT‡ιtVDΎc+"ίΝησο±Ξυ!ŸΟ_ΰ1DrςδΙΟƐKeΨΨψcˆ>ΐ}Ωlφ¨²‰ˆˆκ‡κDτ"#6] `Φώ>FQέ'Υ#ˆ·;Ϊ’ˆCuͺ~Εbt[|χρ§ίzvή”W–³€αψΕ-CόƒͺκΔ}@Ρw+ ͺοέ>ƒλ ‰ˆ¨ftuuέΰΉRsDδάB‘p"€R·Ίt¨jwϋRhllόΊˆ„Ζ± U½>ŸΟWΞλδAΓπBUύΆuͺώ.•JέhKε5qβΔU=?¦ψIΞΉ‡rΉάμ˜ς}β<ƒˆˆΌα?BDτ‚Ξφισύτ>N’κͺ‹ψ;Uδ\Δ‘:U½ƒοZρ‰bΉW|p£Ε†—»¬ΑψG{‡κ»°`AE °Ÿ7zα²ΏΑζWŒαH""#<©NΦΦΦΆMUo5ˆJEQτ_9·f2™]9T§Z[[wΖ4UύN>ŸJ Ωq“|>߈!»KDώ•s%• Nί ›ΖˆΘ½Ή\ςΛκΑlΘησΓπ1π5yΒ‘:ΆΞ›šQ՟‘/LUPΥλί‘κo¨9“uΡDΎ9nŏόΩw/™·yΞt‹;Eϋ―”5π‚ š@ϋΑ Vl³o¬t‰ύ<€ŠX')Π“7Ο™zŠο>ˆˆ^JDψ†. Šˆ\m5³Τ~' A,VΥŸΔ‘­ͺ_ ΓπŽU«V‹#ίZ.—;$ ΓΕͺΧ½π—A°&¦lς@DΞ°5¦ψ&Ή. Γ›Φ­[76¦±ZΊtic.—;gβΔ‰Oτύ=sT.—kυέΥ'Υ‰ληŸ0΄ΙmΖτσSͺϊ€:ΰΌ½ZtEžT§Ϊp±FNάGP!kΒΐ‰^Ύυ-S[ΚYskΰ;ܜ–_-*–¦ ŒΊwΕf¨|ήwΟ‘oΰαλV""ͺ A<,"ψξ@.N—²u‡θ‰Dβc–ΕΦ¦¦¦ΗsΉά©1ε›Θεr'xΐi1•Έ+‚oΕ”Mž€R©΅Qƒx·Ό»··we>ŸŸc SaŽΓπό±cΗζDδ:™ηLDŽπΨΥ1Ύ9ID±σΉ8zŸrpU7D½υή Ϊν«6‘΅Ρ —ύMϊξγy Œοmrί-wέ–γV|ΐCύόπΞzJߊυŠ6φΈε?°Τw}ŽξX:ν,ίMν)Š"žT§ASΥJΈjεp…4I&“]Q `GL%Ζ‹Θβ0 ”ΝfŽ©Ζ ¬Z΅j\.—»\Dξ‘WΖT¦ΠΤΤt€Οή½ΗΗ]–ω_ŸI”š€,VΪLR mr¨ x’‚Šm’‚]uW»κЇUWWD\έΥuΏ»»žΟZμ.ϊS`UXΤrhJ‘Ν€`6“Ά@Σ&σΉ~΄` mi“™Ήf’ΧσρΰΫδ~Ώ &ΜυΉο;-ΡϊΤΪΪΊLR©―½z¦»/ΛεrWmΪ΄iN‰³†Λ6oήόβ\.χ IχKϊΌ€g?εƒΜN){3ΔPσϊΊΪήβ›ŽςΣ2όφτͺ8zν <πξ₯$αM+Œ*i2x™€-Ρ=gξo(ϋQα—{ZH’·θ鏁Ο'©^:yEχοΚQkΔ.χΤά?]γ iϊ)-œ9.Ί<Žγί1ƒƒƒί“΄3ΈΖ‚σ1Κ΄ΆΆήaf₯:φ\Ϊϋ>ζ;’$ιΝεrŸΎλ»Ž-aΦΣZΏ~}].—»΄n“™½K₯{Ÿu·€WO›6­―Dλ£d³ΩHΊΔ1&ι’$IΦφφφ~{γƍΩη‘Ν›7ŸΦΫΫϋ‰\.—KΣτI—H:ζPοξ Υ!ͺcX~qϋ\sϋχα|έΥ{―zΰNu/$ŸΛεn©­­Ν›Ωμ;αaϊ0–εNu@ˆšθ˜YΪΡφ “†}ΜS*UνPέάΒΞ`χΒ CuŒNζο’ΫIeέ!~(ζώξόβΆ7.λΎ±l‘K— ‹N»$“nΧγ,Ήn¬­K^9ρͺ5•­G‘M^ΉξΞ|GϋWdzGt“Ž―Ikί'ιŠθ. vͺc„š››ΧΫΫ{›»Ÿ^ζθΪΪΪ+˜‰1dκΤ©mΩ²₯sϞ=Ώ–4» ‘I χύSΘεr«%]ηξΏ–΄±ΏΏž3ΟMΣqišλξΗ™Yƒ™5Ήϋ4ν”O“4³±±ρIuEξϊ¬»ξΊλΨ}§ΎP6 Ձ1(ίΡφw&]4’5Μ­zwYΤ[ >ΔNuŒNΛ»ονλjΏΒ\Ÿξ²O’ΤΎ¦…3OΣͺ»Λ:εšΫοξλhΏΜLŸuι MΗψ΄t͞rε—JmZϋρΑšΑΏ«$;ކKϋΠβφ/ΏlέƒΡ]Œy Υ1bξώUIYζΨ'tRΎΜ™c¦M›ΦwχέwΏ¬¦¦ζ:I'—1:#ιy’žgf–€ΖΖΖB.—Ϋ"ιI‡{mžhο pΊ™33ΉG=’―•»vνΊXο!ŒAΩlφ—Ή\ξu’~(©6’ƒ™κξ§J’»ΛΜ”Ιdžψύ‘‘‘ύ?V\ΉκΥΤԜ,ι–r qό;0ζτw΄-τ‰‘γUΌS=n€.₯΅»ω£VΣΞ)Ÿ—΄&ΊΗ~NιΛΤΈά‘Mǜϊyw½ iΕΊK΅΄»κκ’4qΥ­+΅Šξ±ΟΔZΧίG— Ώ§ςσ+I23Ž~GYœ|ςΙχ™Ω‹$έ\%£½;g_$ιόΓόσν} ¬;bUš¦6{φμQρ³†'›Ν^%ιBIΡ]*‘™q―: μͺcΘΦΕ§œ(³¨§TXΥSv₯qύυCnΙ_©‚vS˜τα|ΗΌΆ²†.]ZhZΉwH–ΥφGwώ›ά7Gχ$Ήή–οj+ω–π4xM‰Ϋwtν2F>άΧΧwmσ0Ζ577?θξ/‘τϋθ.UβΏ.jmm-Ϋi[¨\Ωlv•™-V™Ύͺ ΥͺcΕ‚5™΄ζ‡ΕΪaξRυnφ½/γ5\»Q­iωš›%}%ΊΗ~κdώ͟rdήh2γϊήIeίωγ”ΪG’KΫμρ³NJ’δ«εΚ2³εέΐˆ΅΄΄<4aΒ„’VDw©dfφοΩlφυμPΗώš››.ιω’ξξRIά}VtΐΨΓP#ϊέϊiΙ^X¬υͺy§zβ^Λ2{υ¬¦ζΓ’ώέγOότόΤέέb4hΌζŽIΊ9Ί‡$)Ρ›ΆwΝkŽ`μJΣ”‘:ŠbƌΏ5³ΫΚ‘εξύŽ'œpΒ£Ωlφ"I,)μ’ς ΅Λέ/innΎTtκ*G6›]744tŽ™ύ_t— ΒNu@Ω1TΖ€ΎΆWΉλ}Ε\³šwͺ»ό±¨μ‘†κύΎ­ί₯χDχx’ΛϋΊζΜ‰.Qυάέ]οW%Όκͺ-xzYt ŠΑέΏV†Œ;³ΩμκRη‡QΘf³’τjI;’ΛTˆή4MŸίς­θ"¨l'Ÿ|ς}»vν:ΧΜώ=ΊK…˜))]0Ά0TFΉ³gšμλ*ώU»S]nQΡIjŽ1‘iΕΊΙ}YtύŒ3Ο|—cΰGiεΊ›Μτγθ’dΕ[ΟγΨ?!8ώEφ}I–2ΐΜΨ₯ŽŠΝfbfsέύ£»»²¦¦ζΜΦΦΦ²œTκ7{φμ=ϋN4θτ@tŸ`υ==='F—Œ- ՁQlΛ’sΖTσ#Ή&•`ωϊΎ…3+ΑΊ%ΉSέΌΐPcF!3τIύΡ=ώΔOΟ?sOQOν«LΙ‡$νŽξ!)“ρτ£Ρ%ŒY ΥQ4Ωlv»€•0"uχο•p}ΰ¨477ίΣrž»HRΨΟθAώ`f]ΩlvΙI'”.ƒκ“Νf―©««kΫw₯Gό)bεw—€σ[ZZώ]0Ά0TF±cΫρŸ’Ÿ^ͺυk2΅UΉ[έ’dWTv!#vΙb̘²lΓύr}$ΊΗΜ―ΰψ‘›΄|M―\_ˆξ!Ir½v[Gϋ©Ρ5©$IΎRΒεo`ψ€ ThiiωηL&Σ&ιšθ2e0hfŸ0aΒ©ΝΝΝ+’Λ ΊM›6­―₯₯εb3{±€΅Ρ}Κd—™}4MΣyΩlφ—ΡecCu`”ΚwΝ}»™½±”Kͺs¨ξ6T·”;Υ1Ά4>§ϋΛ’:ΊΗ~Ζ™'_Σ’%ά½6BV[σ)I[£{HΚ$¦Λ£K“Ψ©Ž’š1cΖoΝ¬$Η@οΫΝT€ιΣ§χf³ΩI/-ΥΧ@0—t₯€9ΝΝΝ<α„JzΥΖ–ζζζ_g³Ω3άύ’z£ϋ”Θ ™}E)ΝΝ͟jmm­„SΣcCu`ΪΎ¨}Ύά­Τ9–Ϊρ₯Ξ(w ͺ»μ˜¨l Δ垦–ΌM@t•ύœ•ίu'ΗΐPΓΥ·υ›ι’{μσκό’ΉνΡ%Œ9 ΥQ _/Αš ύ€λE•ΝfΡάά<ίΜ^/i}tŸ"’τ}3;-›Ν.Ιf³£ aΤ*΄΄΄|{``ΰ3{›»ί]¨H†$}3“ΙΜjnn~{6›½7Ί`lc¨Œ2;.hkJΝ―”4ΤY.UεNuή©žI4!*ˆ2yωΪ 2}2ΊΗ“|bλβy³’KT»†z’ά7Gχ”XΖ/‹.`Μa¨Ž’Ϋwοy±w±^5kΦ¬E^(•΄ΉΉω{ΩlΆ=MΣ %ύ*ΊΠ0όQ?KjΙf³Ωάά(ι Α=T¨ΊΊΊ5CCC/-Φzξž/ΦZΐγΆlΩδξgk=wΏƌΏ(Φz883»Ρέk½iΣ¦q_π~¦OŸ~§€χJϊ۞žž›ΩIHšΫL%ύ"MӟΥΧΧ|Ϊ΄iaWΝUwΏΔlδWήΉϋ˜ώχXlΣ§O@g%}Ά§§ηΩfΦ)ι|IηJjŒμ&i—€_ΈϋOjkk—ŸtIυΪjhhθ暚š’Όv, бN΅2³+άύΏ’$ΙΈϋqΓ]'MΣΖM›6 N›6­˜υΰˆ™{%? ΰHυwΆΝsΩΝ’κ˕馫š–―{UΉςŠ₯Ώ£m›]‘νζοkZήύ―Ω@%Θw΄V¦Ώξ±Ÿ]…4sΪ”knΏ;ΊH5λοš{‘»_έCPβ6kΚ΅Ήθ" Gooο;έύ?Š΅ž™}ΆΉΉωƒΕZ¨$›7o>ΕέΟwχ³$%©₯DQ.i‹€Mξ~K’$ΏKΣτfvΡ’Κe6oήά^(žkfΟ•4ΧΜ²ξ>Ή„™[%έ,ι7ξώw_έΪΪΚCD€ͺQ);Ōΐ]󏩗ύ@e¨K’₯Υyό{šdv™§!Ω‰sό;ΖΆdάευΪ}‘Όdox­ρ™€π--YςB-]Zˆ.S­V¬[–οl­άŸ\₯&•P_χ`XάύυE^’£ί1j͘1cƒ€ ’ώC’6oήά ι”4Mgkο.φi’ž)ι’κΝμ€ŸΗέ}§€έ’vΈϋcfΆΫέϋΝμ3ΛΉ{.I’άΠΠP/ƒ?ŒB…3fά.ιvI_yόsΉά€4M³I’4›Y6MΣιf6^q’Ž‘4N{wΈ{ςΙξ>(i›€>3Ϋ&ι!ν=ΡaΓΰΰΰ'Ÿ|ςΦςόΡ( vͺ£@GΫηάμ½εΞuicӊu'—;w€φνκΏ=&έ?έΈ’ϋΓ1Ω@eθοl?Χ₯λ$Yt—'Έύ]γΚ΅Ÿ‰QΝϊΝ}‘'ώΏΡ=$νN•i™Όβφϋ’‹p4rΉάLIw©x―‘nΟf³§i-Σ’θF¦―kήYnφξˆlSuξTO”>˜~l\6PV¬»Α\߈ξqσ+ςσΪ’kT³†kΦώJΟ£{Hg–V3»XΕ}θπ»E\ Ζ4†κ@5[8sœyϊ I™ ΗmYrΞψ μaH2;ΒΒ]MaΩ@1Ωdz ΊΗ~ΖΙokώόΪθ"Υ,•_έA’Μύm,<γΡ=8 ζξQΔυ I’όwΧ€1‘:PΕς5υ“tjd‡‰φ™?Ηί7/,ܜ‘: iΚ΅yIo‹ξρ$gτMέύχΡ%ͺΩδέΏ“ιšθ’ެ|Ot ŽΤζΝ›_$©ΉˆKώ|ƌ,βz0¦1TͺTί…m³%} ΊGj™gEw8j«WJz$"ΪΔNuΰqΛΧ­”Ό’vP™ι#Ϋ;ζžέ£š%©].Ι£{ΘυόKηOŠΐ‘HΣτβ"/ΙΡοPD ՁjUHΎ Wψ1Ε–ψτθΓ”uc¨μ―¦Άπn“ŒξρWmjώέΝ šλ£«T«I+Χή"يθ’ŽSύξJ; €§XΏ~ύDI―.β’;ƏΏ¬ˆλΐ˜ΗP¨BωŽΆΧ˜ό%Ρ=φJͺu¨sΌkrH.P‘޽κΞmr―΄Αη©“&{Et‰jfIαγͺ„έκ₯ZV]€Γ?~όŸK:ΆˆKώxκΤ©q=σͺUζωΗΘμ3Ρ=žΰμT?J“΄`AMP6P‘Vv/7Σ•Ρ=δΫΏhξ‹’[T«†ewάζO£{HzVώ1[]€ΓqχKŠΉ^š¦ύEΖP¨2υψ˜€“’{<ΑlFt…αp Ϊ©.ΩΞcοoΚ*VMMς.I[£{μ'IΪƒ/Ÿ7!ΊH΅²D—”FχιύΡ8”\.w²€sŠΈδ=­­­Ώ*βz1TͺJ’ΩΣεvitTιNuKυpTφ›• Tͺ‰W­yHξέc&Ν¬«+|:ΊG΅j\Άn­ΙŠξ!ι΄msϏ.ΐ!ΌY’k1wž*α‘6eͺUΔ“Μ§$ΥGχx’ι2+Ϊ›@εβς£²k”ž• T²Ζ•έ?4ι'Ρ=dομλh{yt‹κ•~Rp·z’°[PynΈα†I―/ζš™Lζ{Ε\°Cu Jτ/žsΊ€ΧFχ8ˆcΆv͚]βhY’°‘zκIΥύϋΚe0υwIaΧ3Œ™Ω—ϋΞ<.ΊH5jXΡ½F¦UΡ=δώς|ΗΌΆθμoϊτι %σgƒίΘ1cCΧμΓP¨…δ3ͺΠ―ΩLZwZt‡£εŠͺKΞNuΰžqMχεͺ¬k.€ιIRΉθΥΚ•|2Ίƒ$sΨ­¨4o*ζbfφέbψ“ŠΠ8P_GΫΛέτθ‡d~zt…£e¦?†e»³S8ŒΖ•λΎ'iEtύΉιΝωŽφEΡ=ͺQΣς57Λt}t3{έΦ fσύPz{{Opχ…E\rpppπGE\°†κ@HΜ>έαpΜUuCυLΰNu7c§:π4 ƒ…·KΚGχ8@’―ξ|ε©“£kT£4΅Œξ ©.©ΝΌ=ΊϋΌ^Rm±3³U'Ÿ|ςΦb­8Cu Βε;Ϋ:]zntΓqUίP}†8ώ¨`S]€ΉΏ7ΊΗ\S‡φΤ~!ΊF5šΌrν/dφΫθfz›ζΟ/Ϊ€αrχ7y½οs=ΐͺ•ΜΜ$ϋxt#ΠάΡι Ρ%ŽΖ”evJΪ“n? †•έίV…/σΧφuΆύYtjdiΏ[έ55́WE׌m›6m:CR[±Φ3³miš^S¬υOΕP¨`ύν‹%έγ˜††N‹.qΤ\J~Φή&<}ΗΐχEχ؟Ιώλ‘Εν'Dχ¨6 Χά±BυΡ=${WtΐΨ–$Ι[‹Ήž»·΅΅uw1Χˆ‘:P©ΜΜέ/q€RY5 daCυρ[_~κ3ƒ²ͺ2εΪυΘΌ† SjS})ΊDΥqw—ώ_t ™žίΏxNΥ][ΆlΩ€½χ©™}«˜λžŠ‘:P‘φνR―šέί&at‡£e-QΩIm͌¨l Ϊ4.οώI?‰ξρ$φwΆ]]’Ϊ4₯ί—ιθJ“J{P0Fμή½ϋ’&qΙί577―)βz€ƒ`¨T(w`t‡£t–,ΙD—8*q;Υe¦ζ¨l elΟ_™τ`tύΉΩΏη»ΪNŠξQUVmά-Χ’kΈτڝ― ŒPΓΚξλeϊθOrf‰{>]’LYΆα~Ή~\γΥο~mp@uKz{{ΝΜ>QŠΕέύ½ΝΝΝΡW¦ΐ˜Ε0φπ’ΆgšΤέ£Θ2{† ]Ρ%ŽΔΤε«“ϋ½AρΗlΏeξτ l`TΠΈΏs)π䉧rχΛΆ/jŸέ£˜τεθ’ή]PzzzžŸΛε~νξο.QΔ•---ί*ΡΪ€#ΐPV“Ψ%rΊ#‚ΝυΚθGΜtgTtκΞ½κ@L]Ύϊ1Kό…/.]—uίh¦ξqW{>S_Š{UGwwσ―DΧRζ/’;*Ϋ† &ηrΉwδrΉΥišή iQ γ ’ή0mΪ΄ΎfŽ@Mt`,λλj;ίR΅Fχ(‘šL’ΌNη’‹<Τt§e›ιτ h`Tjψϋ|fό’Ο‰ξ²Ÿn[4gΩδkξψmt‘J–djΏιCCŸ”tLT3ύ₯̐»GuTœΜ¦M›NI’δe’.¨««;WR]™²?šΝfY¦,|πΑ >ϊθΏDε›Ω­ΝΝΝ_Κ¨& Ձ@‰λ­£ω]{“_’*ͺ›ιNύ‡pg¨Υͺ»“y§ς›+θjL’$ίή²δœΣ§-½iWt™JΥpυmύωφ«δϊΛ°–ΎŽφ³š€ λ(Šήήήsχ©ξޟ$IΏ€~wοwχ!3{ΔΜ΅χ¬”ώύ>ν83› ι€4Mg˜Ω)’NK’dbΐαΗΩlφ3ΉΚhϋφνγkjjΒxpχŸHb¨pͺAYxΖ3<£ΕΡ=J¬m{ΧΌ3&-_skt‘Γ©©)ά94φν°₯oαΜγšVmάUm&-_skΎ«ύ³’>έe?³&ξΪρIIο.RΡΜΏ$·Έ‘Ί$3½ͺ@Υsχ™’^af@²χ.ςP’Ηύρ =00p‰υθ/ΰΙͺAφd†^oε;60LΑΣ7Hͺθ‘ϊ±WέΉ-ίΩΎE΄€xKlόi’~ ŒZCŸΘΧΤwΚΥέεq.{OΎcήOWωut—JΥΈ¬ϋΖ|g{·€Ά°%Zφ-νήΦΨ'—Λ}Ψέ'Gε'IΫάάόΕ¨|`„ͺςrwΏ?“ΙtΞ=ϋ‘θ.€?a¨1ωΕΡΚΑ€ΏΠΒ™Τͺ»£»–i0š­^=θ–ΎA@t•ύXbώu†Ά‡ffίPo5γ;‚;FΐΜͺe§ϊc’Ίf̘ρ³θ"€Cc¨”Y~βΆ—Ι55ΊG™Y"wt‰Γ™rΖڍ’ wΥN|τ‘η„dc@Σς;ξτ±θOrR’©Χθ•ͺαq+%=ΩΑέ,202Urόϋ£ξή™Νf]px Ձ²σ1uτϋ\χ_tzCtCΊάS™uGΕ{FηDecAγψS?'׍Ρ=φη›ςν‹’{T€Υ«]ϊοΘ &]ππ’Ά‰‘Γ—¦i₯ΥοH’δ---ΧE<=†κ@ν{s~qt ΒΠ[’KVκqχ.»3TJiιB&γoTΤ‰‡bφ•΄5EΧ¨DIκί 0>³ΛxθͺT&“©Τ‘Ί›ΩWƏά3fά]pdͺeT3 NIcφξlKύZ²$έγP,±ίƟ-3 ΜF½γ–uo’όCΡ=δ'jνί£[T’†kΊo—΄6²C"γx¨R…B‘‡κλέύΌζζζ·O:υ±θ2€#ΗP('·%ΡB™ΝθίugWtCIUˆͺOΩΪ5χδΐ|`Lh\yΗšTiχ–ώEgϋEΡ%*’Ω"γ]ΎπΑ—Ο›Ω0<[ΆlΙKςθϋδ%ύέΐΐΐι---ΧG—=†κ@™τ-œyœ€ ‚kl Ξ—»ήέαPšκηl΄3*Ώ&εx δάέΝί,Σφθ*ϋsΣ·wΜmŒξQi,“ω‘b"ΗΤΦ^˜¦sΟ=wH―νχιsχOΥΥΥ΅f³ΩΟ̞={Opΐ01TΚ$©©_,©>²ƒ›Xξ›#;ΘτόώŽΆ‘eι‚€[γ 0TΚ‘qyχ½žκ}Ρ=ΰšκςΟFΧ¨4 WίΆY›";Gΐ@5‹:ώIο˜ήςΡiΣ¦UβQτ€£ΐP(w½:ΈΒ. ν^jJΎάCnφ±θ‡δ ;ή] Ձ2iZΉξ’VFχ؟›ή΄½«ν%Ρ=*Žyθπ’mYrΞψΰ€α)η0{—€+Ν¬λή{οmΝf³ŸŸ={φ#eΜ”Cu  ϊ/:½AΛ‚k,kZ΅qΗΠΠΠΧ$ w9·Ράw8(Oβ†κ2ϊΠβφΒς1¦Ά6y³KEχ؏₯©ΎΞήͺ-Τ-Uμί[' μ`˜>βξo7³OšΩwΜμI›$εuδl₯ΪϋήI?τ3λͺ­­}V6›ΣάάόξΦΦΦeS§N}¬$@E¨‰.Œ©μB Μ7ιΑ†G&όOΏΰ_•«+°’Lv^_Gϋ9M+Χ…ή•ϋdΛ»οΝwΆί+逈|“'ιGΩΐXΤΈ²ϋ‡ύs_εςΚΉ7ΫτήώΕsώ»aΩ·EW©ζι\vAXO:dfrχ°€£–Νf/φ$ͺΜ½χή{œ™¨ςo&IςHKKΛVν¬Ζ0†κ@‰mYrΞψ ΑGΏ§f?ΠυΧ?±£±ώΤΙοΊs‹€i΅d¦IŠ’’F²ΧesΔ0Pf5…šwμΙ ΎΘ€γ£»μ“ρ4ω’°θrηM|Iͺ©]‘‘=’κb ψ‰ΫΆ9IZ“(‘ΒI'”ΧޝλΗΏ%6a׎σ%…ޏ›Ωwτϋ–.-Θυ_AuφχςΎŽφs’K<…ιΖΐτμφýωΐ˜³χxqGt'9»ο–ΆK’KTІ«oλ—ό—‘ ‰:"σΔa¨”˜Ι. -ΰZ?iωš[ŸόΛ™!’€GΐϋœΜ"OΗ σΠ‘Ί *°[(³¦εέ?‘Ϋ’{μΟ\ŸΩΩ5kJtJαf?‰Μ7‰{Υ€1Š‘:PJWX"iQh‡δI»Τχ9ξΪξ>™ΏάužΒύy}‹Ϊ+η.cI σοX'Σφ¨|sc¨¨©όIŒξ±ŸΙCiέ'£KTŠZνY&iθi?°tNο[8/τΪ1ͺ%”ΏuΞΩ.Ω!ς+υ{Λ|N’—±ΞA™ωg΄pζΈθOΈάSΉίοK*mχ>0{՝Ϋ$[t˜ήΊmќηEΧ¨Η.Ώk«Λ~XΑ¬Ζc”‚‘:PJiά`Ν€Uλzυ›S–­ΉKΟΛΨηPšϋ2γί]β@φλ°dιψ|W[{T>0–5θ^!ι '|I’$ωW΄ΩΛ, =^rŽ€Ζ †κ@IΕΎωnfW=έΗxκŸ/G—§cςξΈ ­)ΊΗγ4½.΄€ΫΒΠ|` Kά.•μώθϋ9;ΏhΟG—¨…=ιΥ’°—<Π5˜°|!ͺ%ΏhφtI§Fvπ‚~ΊiZuΗΟdZWŽ>O£q¨.Ή,ΊΔγ&?vό-‘χͺ+υްl`Œ›΄rm^[£{ΐμΣ›4ΧG׈6εΪυHΊ9°Βψqιΐ σ`¨”ˆ[ΝΛ#σM~wγ5kŸ~XξξJύΛPιi™ϋ;Άu΄‡>ˆπ„λ―’+ξξ^ΣY,<γaωΐΧΈbν*—Ύέc?Σ'MœψήθΑlEd|’ΨK#σTŸ|pΒ½χήΫΨΫΫ;}γƍٞžž3{{{Ÿ›ΛεΞΟεr {{{_έΫΫ;=Ί'8΄šθΐhεζD^€λ²#ΎwΆρ˜ΩWφοZ…ΛN.e§#P—˜Yf/–»w‘Ή_ηfQGψg†2{^!ι;Aω οQ¦ώϋ›©K>]"ZγΚ5έ’z+΄?Ό¨ν™ω‚ΉϋλΝμυ’^-ι’Ξ—τIgΈ{V{ΞnΤ“κ z1TJ „=gK:.°Β–Ι+οψύΡ|BΓuί“ϋζυ9*.—J8ϊΌqΥΊn“ŒΚwωZ8s\T>©ieχΟάύΫΡ=žΰφζm]sO‰Ξ΄22½Ζμόΐ|ΑΜμœθ Όͺ%ΰ½Oέ₯«ŽϊψτΥ«%ϋηU:ZM{j†>]Bξξυ &φΥΦΏ(0€€š!½_£{μ“Iά?]"š+t¨.GΐcUooο ϋv£€1„‘:P "㳫†σyΫ}δ›’ξ+ra1χ‹ϋ;ΫΟ­€Χ†HΥš@Η]ΫέηςΏ‰ξ±Ÿ%ύ‹ΪN‹.©ihΰ%ν ¬πβΐlάύωΡ@ω1TŠlgΧ¬)’N+`ΪήpέMΓωΤΧχΘνΕ4Lζ—6/h,±'cΧJJ£ςMβ^u 4­θώ±KWGχΨΗ<±OE—΅jγn“~Ψ`zE§ΟΜΔέώξʏ‘:Pdƒ^{$‹Κwι—{ržΖG'Γδw³ΣΜj˜0α# ΏlέƒξΊ5°BσφEνσσμ“&ƒο’i{t}ζ;ζjγ¬5 IDAT½0ΊD€Τ‚Od·:0qŸ:cCu ΘΜmAh‘W~ύυC©ΩeEj3bnvιφΞyη…–Hό"γΣDK"σμ5eΩ†ϋMϊXt'$ι'£+DΚ€Ιu‘Μ^š μ6mΪ4NΡ=@ω1TŠΝ:T7ΣΟFΊFӊξ+%έR„:Ő€JΏ½γ‚Ά¦°ž„Υ%½Ffa§ψ“†ϊSΏ(ΩmΡ=$Iυ/š;f»“VΝΙ}sTΎχͺc™))τͺB£&Ί0š<Ό¨ν™5‰Vΐ΅ΎqEχ½#_Ηέ;ΪώήΜbΦύ“gjν‹’^ή4ώ”ίεwέΉMδˆ|IΟήΆpφs'KΏ ΚπΈ₯K ή9χ&ύF•πpbβ—Izit(nv½I—Δ„«e[ηiϚΌβφϋBςPυκκκ†4 »‚ΟΜx-{”’$9Ηέ£k€ Ձ"ͺΙh<ξ>u+βύ²M+»–οjΏ^»σ~?―ΙwΞ]ΩΈbνχ˞ΌtiAm?“μueΟή'cφηb¨T„¦k―Ώ£ύ›nzst—Ξολœ{vӊ΅έ%‚Ή“ Υ%eΌπ€²c¨ΐΕP(*ͺοzlά±Ώ)ζ‚ +ΊΧΘυ΅b9B R²T gŽ+wp!3t€rηξηΩω9ηζΨΟ±ΛοΪκζέcŸ…ΫΊΪΖδpwςŠΫο3yΨq™.ΙοΐX΄qγΖ¬€©Ρ=@ †κ@‘lλ<νY’Z+\?mιM»Š½hmZ{™€ώb―;lξΟΛ'υVξΨ)Λ6씀²qw†κŒa ՁbIϊΒΊ ύ’Tk7έ_’ξ*ΥϊΓa¦/n_Τ>Ώœ™Cž.—”–3σ©ω / Λπ ΛΧ.sΩuΡ=$eŒΏ'ΊD„Ί΄ζI•ŸρτΉQΩʊ‘:cCu H’Ψ§Už|Mχ†’­Ύzυ Μή[²υ‡§>Mτγ]³¦”+πΧtQΝεΚ;“_™ΰ©2{w«‡ uΔ.ΩωΚS'G·(·‰«n}XΊ¨|ξUFΏ»ξΊλXImΡ=@†κ@lYrΞx—N‹ΚwΣ―ε^Nγς΅#ΧRf ΓτA―ύ‘ζΟ―-W ›.WΦAσ]]cqhT²IΛΧά*UΔχΗ CC5]"ΘMaΙ–0TFΉΊΊΊ³$q%cCu &<φθ|IuQωIκΏ.GNa¨πIύεΘ:R&;―οΔ=_•™•#/“ΪUŠέ‘:°§ζuω"£Βe’†’{Θυ.-œ9.ΊFΉΉλχα§iI[Ψk₯Η}ꀑ:P –Ύ 4>Ιόͺ9S]€€—#λh˜ϋςmŸ,GΦ€•ks¦ΐα$7½12ΐS·bύFΉΎέC3σIύ«£K”›ΉE~_·ύQ›˜ Δάύμθ Cu (μ¬ΐπ“κg­)WXγόξ―ΘucΉςŽ˜λ#ωŽφΏ.GTjώΓrδΖύ‹ΪΒpp©eώAθ2½3ΊBΉ5N8e½€G£ςӌ?7*@Ι%fΖk~Ζ8†κ@QD>­κ7jιBΩβ.χΤ“τν’φ”-σH™ΎΠίΩ~Q©cάk–JJKs8ib—DζxͺΙ+nΏΟΝΎέCYΫ»ζ]’¬–.-H~kTΌ§β^u`”Κεrs$5Fχ±ͺ#ΤΡι3$=#•ε>υύ5-ΏγwtΉs@Ζ₯οη»ΪJzδ·ί'ΣoJ™ρtLzwψ•'΅=Ÿ•4έΓ=s»Υ#―ζ03NF)ξSCu`ΔΒΰ™‘ΜΛ>T—€¦?ΦRRΨΐΓ/·kJ=XWͺθ#ΰ§τνRWpO2eΩ†ϋ%Zt—^»γ‚Ά¦θεδ7T—4KK–dσ”H’$ά§ͺ#en‘Cυ]C»c†«WΊ₯«vdΔqr»ΆΏ£mA©jΣΪK*ΥϊGΒdcn'*P ΌωŒ€έΑ5ΖΥι ΑΚ*I-r¨>~ΗξύωJ„κ@b¨CδPύwZ΅1lpΣ΄όŽ;άtYTώӘΰf+ϋΊΪ_VŠΕ'Ίυa™ύ’k…sσσΪ‚;x’¦UkΆHϊftσδΝΡΚitη$m‹ΚO š•  4ξΎϋξ)’Z£{€x Ձ‘‹ͺ›n Λή§ιΜξΟI1GЁcΜ΅,ίΡΎ¨4Λ§ί)ΝΊGΑΖή½Ι@5H ϊI…Ψ>gΫ’9Ο‹νPFξ.‹Ϋ­ξIΒPe’$yΎ$‹ξβ1TF ’ΣgHš•oΥQΩOΈάΣΔ“7JΪ]εκeΊͺ―«}I±~΄ώΈŸΚ΄½Ψλ₯ΏΜΏtώ€ΰždͺu=fΊ*ΊG’±7Ew('WwΌ;Cu`”α>uπ8†κΐ€…ΑΘ£ί•f*`¨.iΚ΅9“Ώ+ΊΗaΤ™λ‡ύν—Λ¬hOO[zΣ.ΙT¬υ†i’Έ$Έ€ƒ(Θ?έAn―y kώ1Ρ5ΚhM`6Cu`τα>u ‰‘:0"ζš–-=ΨτΣuˆΚ²†έίqχoEχ8 sιγύνK‹9`ςΤΎ]¬΅†έΑ읺Βψ~T˜ΙΛ»/ΣυΑ5Žοά‘|έ˜~*ί‹€Ργ–[n©U䡏 ’πΖ0"vzT²K·DeΚξ€ώ’έέγp\ώgγέ»­σ΄gc½¦•λn2ωέΕXkZϋ~7ηeΑάη’ €ΕΡΚ₯iKύF™ƒβΩ~ΛάιAيlςδΙgHK'€Γ`¨Œˆ΅G%»yΕ Υ§._ύ˜g%’ξr8fšŸ(ύ]_G{QŽπrί­n«δγχ1«ρΜξUrίΩΑdηn]|Κ‰‘ΚfυκA₯ΪŸ¦)Gΐ£Dš¦ύžΐP¦΄5I6€HΚΈOύɚ~Ϊ½ή¬Ό~’™ώ·ΏcξeZ²$3’•jτ]Ii‘Š ³„^±cq[khOuΉ§’}5ΈE&ρš?ξP6fGΐχͺ£ΘΩΡ@ε`¨ SšIΪ"σ VSq;ΥΧ°|ν·\ϊft#PγζŸΘοΊσ†­‹N;yΈ‹μ»ΫώΪ"φŽ€Ϊϋƒ;8ˆΑŒΎ.iOd‡Δν΅‘ωε”š―Κvw†κΐθΑP<‘:0LžIγ†κ¦&―ΈύΎ°ό#ΠTψkI7Gχ8B/Θ$…5ωŽΉ‚5Γ[ΒΏTάJΓςΖ‡·Ÿ]ΐŽ_ΆξAΉ~ΩΑ₯ημθœ=3²CΉ˜βvͺ'f Υ€Q ··wΊ€iΡ=@ε`¨ ›Ε Υ]»Kύ «6ξ. ^)©’‡ϋ©—ω§σΆιλh{ωΡ~rγψΩ«$έ[‚^G£Ύ6Υ₯Α„Uΐƒ7©ΧΌ&ΊC9˜+n§Ί”ΚP<ξΞ}κΰ Ձαrͺ›*σ>υ'›rνϊRσ‹$ Dw9b¦ΩfvmΎ³mΥΆΆηρη-]Z0·―•°Ω‘1½£oαΜγ’k8PΓ5wά iCd7Ud~Ήτ?ςθ]’ AρS^61(@‘0TOΖPΆΈκnU°S}ŸΙΛ»/Ω[’{={Eβφ»|gϋ5ύm dfOχC™=_—i°νΙ5Ι’ρΪΐSΉ»Ή9ΈΕΌν Ϋ[‚;”άŒλ{$υFεg|zT6€β03†κΰ Ձaθ[8oš€Ζ¨|O΄&*{8W¬ύΎΜ?έc˜ΊΩuωŽΆυύν—n]|Κ‰‡ϊΐ)Λ6άoεε,wP‰_ΊyAs}t 2%ί–΄+²C‘FE族…oža¨T±|p‚€ΉΡ=@ea¨ GM:;0}gΣ²ξ-ωΓΈβŽKώίΡ=Fΰ—>ŸIk·δ;ΫoΛwΆύSGϋ+·.ž7K Τ<ώAi’蝨’kκ€c}Ct š΄rmήέΩΑ|¬ ՏڷtFX6€{δ‘Gž'©ζi?Œ) Ձa0·“Γ²₯ rχ¨όasχΖρΊΔ\_t•2I§IφwnϊI&M7δ'n}4ίΩ~oΎ³}½₯ϊ'Iρ}άVK–d’k8P"}'ΈΒY[/˜=5ΈCxΨρος„κ@uγθwπ Ձα0ͺ»tgTφˆ-νή3”|•€[£«Y€gK:U™Ϊ;xΦΪ7pη«’K8PΓ1³%Ӂ’LMMg`~y˜έ–ν>#,ΐˆ™ΩΩΡ@εa¨ ‡+l¨.»'Ά¦,Ϋ°³ΆP{ΙοŽξ2Ϊ™ΫΗt…ρ}¨$K—άuehσW„旁'iάPέtRX6€‘2IgE—•‡»a€α™lJ«w§ϊ>WέϊπŽΕm‹ ©~-ι™Ρ}F/ŸΣϋΆ €«’›ΨλG2½;°ΑωZ8sœVmάΨ‘€weξ©«K£βgDΐAXOOΟ3’$i, MI’4šYSš¦Η$Irœ»φΊ wΟ›ΩN3Ϋζξ}I’lz ΅΅uΤώT’\.7I ξώ wŸ’Ιd¦€iZcf ϋ>$‘4I{― λόσάύ1I;Μl§€išφIzhϞ=͞={OΉ@5Ω΄iΣ©I’4EχJι†n¨9ρΔO¨©©iJ’€iίλΔΙiš&{hf…4MwμϋŸI’δέ=Ÿ¦iΎΆΆΆoλΦ­[Ο<σΜΑ€? ”•UγΥΜ@¨%muω]φ˜€ϋͺ3‰Ο㊜η’ξ“ΤkfΉ4M7™ΩνCCC·|ςΙχ9 υΆlΩ΄gϞ3$΅Jšιξ­’fšYVΕϊ•€­’tχ3{όŸM™Lfέ³ŸύμϋKT•ήήή·ΈϋW#²έύ ---ί‰ΘΖθΤΫΫ;½P(œ–ΙdΪά½E{_6Kš¦βnΈLέύI’άγξ[άύή$Iξ4³;4½3›Νn/b„a§:p”Ά=f-‰Ε Τ%ν>nάμή μ’›²lΝ][Ο[ƒυ:­Ώ³½«AZ]ΐ>ξΞφ+%} ͺBΖWHΥCuIχ(f¨nυ>φlI\s $zzzZΝμ…’ž#iž€φ$IŽ•Tη(M{߈ζξ/43IRMMrΉάƒfv[š¦7™Ωυω|ώ·μZώdΣ¦Mγ2™Μσ$=ΗέηkοΧqΛώσψΧT M‘4ΕΜζH{ΏoΈ»4U.—Ϋ*i»ί&ιFwΏ±΅΅υαR*‰»sŸ:ͺζΝ›4}™½hίί1§IjL’€―3;ΡέO”φώ]φψί/’”Λεώ`f·ΊϋΝišήΌgϞճgΟ~€Τ₯ ΨͺG)#Ÿι*ωΉgΊ[K—bΒKcΚ²5wε;ζ½L–^'ιΡ}F#wΏLfΛΩ­TŽΔνG©yΨPέe %½?*ΏLΪμ™ΩI¦0C ΥΙζΝ›Oqχσ$½Πέ_df•ό0κ ξ~™] IφττόF/%]έ2*NάŽ‚mήΌyž»ŸŸ¦ιωI’ΌΠݏ‰.uS$gfηIϊΩ»σx9λςlΰΧύ›³d%9 $ηdž™,„”@IάPVEΕjΕΊT+*υ}ΥΦφ­Š΄΅ŸΆΦΦΆλJΥΰF6©&.¬„$„„ΜΐΘvψ»f¬ήDY)ι’υο­iέΊumsζΜy‘™ΰ|Z |ΐχ’(ΪΘ.σ[…B‘³££ƒ2θ:ΠdwΤgΆmΫΦ[ ααᇛρΫΊuλΪz{{Wx»Ώΐ±μNU4ΰ§fΆ2“Ι|Ώ§§g7»P dϊϊϊh?d2™Η΅φώώώ‰Qa#ΐ9MγξŸ !όŒ‘]/I’ŒδrΉ°{4«;vt•Λεsέύ―0•έ©JφΈΡέΏ;eΚ”5zKD•Nͺ‹Œ‘%Θσͺγ>Nrνu]»aγξσNy Μo­ ’κ1ΗΗh¨.Pμ;€„•Ϊ’ΎΑΚ―9³ν ½;`ϊ>&"c•)•J/I’δ’žžžσLgͺ‘“G]Ηρ=fve&“ΉŠ=˜3³·ŽŒŒ|‘Ιdώΐ—ΩγρΐΜΚd2Εzde2™χψ\=²ͺ ΔqόwΏΈ§§η5ξΞΈ‚¦:ΌΒέ_122ςΉb±x€―>πΐ«—/_>Β.׌ξΏώΆΆ6Ϊ³ž$IΎΰu¬όZλλ뛐Ιdf v…Ίέύx3λ6³γ“$ιέώr<€.Η…HOό1³χΉϋϋ˜jΝ̞@zΑuqηwΆΟ˜1γUξώηαΠΧβ΄™ ΰufφΊύϋχŒγψ:wΏjϞ=kt‚]D‰†κ"c¬€ ‰₯w¨]kξΩ΄ηάE§{Θά`!»Oš8pΪξ –ΌͺkΥ†λΩ]D䐀代 Υ“Δ_‚4ΥοCνο$=,‡i늈T€T*-I’δo2³γλp—r#9Εέ}ddδ“qίέ?—Λεnf—’†’ϋύ ΧφνΫ»“$y›»1€l‹ύξ0³ \ΠΣΣσ`Η_Κd2ΡΫΫ»“]L­ΏΏ’»w u‡ώg8ώ ƒςξ$IBpθžgpw΄ΨοWiB₯Ri€χvuu½1Ε/kΞD―5³Χvuuν,‹_ikk»²···Δ.&"’‘ΊΘXΉΧeΥέα„²§ώ~ΦιΧnήΎο‚/AηΈ?Ÿέ'Uά?@Cu‘1}Ν½vŸwς―YΫ9Μμ%ŒάΊ1l§e»k¨."ΟhτώΛ‹έύ2§ι‘>&ΰΠKoŠγψwd.—[ aΊˆ]ΰ™Δqό2οΑ‘ƒνδ:ΰ/—ΛΗρW2™Μ?jψ!GͺX,žafo6³nw?Ζ̎sχγL ȟ<Χ \RŠΕβΩ!„χ»ϋΩ ]EΠ@ΊΝμ•Λ忈γψZw½„)"L]@€ υ°‚Νo@PGSWm}thΠ^ ΈΐΥυ‚]œό v εξξɏˆ zΏpqšξι}ŠL{™w_|€†κ"ςΏlίΎ½;Žγ+BΫέύλNcwj@§›Ωβ8Ύ·T*]=Hnu6T₯Rιuq―p€Χ@υ§λπξrΉ|Η_ΎώϋO`’¦Άΐ»έύB§»{„сΊHΪ¬[·­X,Ύ5ŽγϋΜμzw%τ9θΙ€σΝμq<Žγσ D„@Cu‘1ΨwΡ‰3L&Ε?>mΝκ]ƒυ4λΖ{φwνœp‘Ιξ’&–ΰcμ"ς$f70γGάΞbζΧΤSΆμΐΉΫΣ5T‘ί)•J½Εbρ?Κεr€˜EΤ ΊϋΧγ8Ύ½P(Ό]Fhb¨ΎyσζŽR©τŽ8Žοsχ«,ewjmήήΦΦΆ5Žγ+6oή<…]Hštv‘Z»σΞ;Ϋ‹Εβ[zzz6›ΩW,`wjgXΗρνΕbq»Œˆ΄ ΥEΖ ι ­~°ƒ˜Ν±~ύπτΥίΨe0 ³λ€‚ωγ8g^'»†ˆ6μ7(Σ 8Ξ eΧΪεžx”νΐ±Œ\i,…BavǟsχϋΝμ:؝šΠi!„›γ8ώ¦NΌΆ€)Εb‘ω=ΥJ₯λ'L˜p―»_ `>±K³š ΰc[‹ΕβkΨe€Ή˜™†κ’fV*•ήάΥΥ΅ΥΜΎ`»P:ΝΜ~Ηρšb±Έ˜]FDZƒ†κ"cΰpΪκw}ΔlͺΥ>ψKό†έ₯‰8pEΧ²{ΟΓuΫΩeD䐣nΨ΄ ΐ/YωœΞΚ Γ#œXΜΔ¦ΟΩ"-jλΦ­S‹Εβ'C—BΓτ#eώ°­­νήb±ψ.hΥg«‘\UΗρyqίνξ+YΔ̎7³οΗq|Υ–-[f²ϋHΣΠP]R)ŽγΣβ8ώΉ»@–έ'Ξ5³_•J₯έΊuλTvI7=μ wήIuoΑ“κO΅jΣ/d–p»KΪξ°ΟX½ργ£'7E€8p#1~ώ眚ΪUεξFͺΘμ»sώ RΆˆπX©Tz}{{ϋ½fφ!Ί[Xͺgš™}1ŽγŸΖq¬Γ-"„PΧπΕbqq±X\`5€%υΜnoκθθΈ»T*½˜]Dš‚†κ’*χί q_ΰv Ε[γ8ΪάύOΫΫΫοΥf©% ΥEΖΒ0‡—νΫiΩ bζκ»|bβΤε\Ιξ4άΎεε%3VoΈ•]EDžζ½κ6œz1Ώ¦ Ξͺc(ιHνΛ "ςΏ•J₯%£'ŽVğZΓ‹άΗρ»ΩE€φά½.Cυ­[·NγψSfφ+3;«™-lΆ»€X,~Ϊ ­ΦyȘΩ_ΗqΌrηΝ“Ψe€1ιNuIƒmΫΆEqί4zoΊΆ™ΥΟλ:::6Εq|»ˆˆ€‹†κ"cΰ Žη₯[K―Ίι«6όp$ρ%0cžπlTχ$fΛf¬ΩψŸμ""R•+Λpό7+ή`ΛXΩ΅fhCυ$$Η²²E€>Άoί~bOOΟ-ώZυΞςš‘‘‘»‹ΕbŠ_km΅<©^(މγψ{fφm3#ώ¬ί^wπΰΑu}}}Η±‹Hγqw Υ₯™Y±XΌ,“ΙlπRv™u€5qΓΊuλτœˆT…†κ"ca˜ΕŠNNͺ?Ν1ΧnϊMΧκηv€ƒμ>Α>»χ‰'^0sΥ†-μ&"R93άΒΚvΰT˜₯rύœ'Ό“ꦓκ"©V*•ή[.—οp»‹ ΗΜΦΖqόvv©ΎZ Υγ8>7„p€‹jρχ—19-I’[Άoߞe‘†b¦±KˆŒΗύχίtΗטٿ˜ΘξΣβ ΐŸχττόΈT*ўλ‹Hzh¨.26¬·§>uλoHٍΝέ»VoψL°p€5μ:D» Έ¨kυ†χΝ][`—‘±)Γo%ΖΟΨ{ξΙ©|ˆιΑfe[ΠP]$ϊϊϊ&Δqόew € μ>ς?:|ΉT*}Q'‘ΕΜΊ«Ή|τξτoΰΠώέΥϊϋΚΛ–Λε΅…B‘ζλώ₯9 …©2μ"cU(–·΅΅ύ ΐωμ.ς/vχ;β8Nν¦>© ΥE*τΠΩ§L0….χ„”έ¦­Ί§Τ΅zγωζ~!άϋΨ}κμΖ™%ΣWoό»ˆˆŒΟΜ‰Έν…˜²%§²²k)”‰λίέu_žHΚΔqυŠM_³iΥ@˜pŸ0ΘξScϋαxOךM―šΉϊξΩeDδ¬ά4ΰ.VΌKYΩ΅T6ήϊχLfe‹Hυ•J₯—ψ%€“Ω]δΩ™ΩΩI’¬ΥŠΟτΘd2GΌΎT*]ΰV ŽΌ‘ΤPOαΖ-[ΆΜd:½%M£P(tΖqό3ϋ"mΜilξώ­8ŽίΓ.""ΝICu‘ •‰χ©­~ƒξUλt­ΩψKΚ Έ†av§j3ΓΥ0_Τ΅fγηαξμ>"rδΜΐ[oα9΄μ*g°‹•νΌν6"ReΕbράύZθnΧfςwΏU«€ΣΑέΗύοqσζΝq_ιξ_‡^xk‹:::V …Nvα13 Υxα IDAT₯)<πΐΗ‡~ΰ­μ.R± €Ο–J₯Ώa‘棑ΊH…q¨ξ°GYΩΝlϊ΅›·O_½ρa_0ΒξtΔ ƒωK§―ΪxqΧͺMΪ` ’"‰ϋm΄pχΕ΄μςπ1^Cu‘ˆγψΓfφνμ.2fΩΒΟγ8Φv&gfγ:©ήίί?cβΔ‰7xG•+Iνnf_b—ž‘‘ Υ₯αυυυ-ΎΐσΨ]dμάύ#q3»‡ˆ4 ΥE*δξΗ±²ƒk¨~$¦­Ί§4cυΖ·g‚Ÿθf_kΞ“λv―Π΅tΣs¦­Ϊτv©r†7Tfο~ω²Τΐœυ£ $”pΣi8‘&J₯ό=c—‘qλπί}}} ΩEdόά}ΜCυb±˜ΊΕέ—Χ ’ԁ™]Ηρ₯μΒafΊS]ZΗΛ’$ωέΣ-ΝλΖqό/Πη}©†κ"2Oͺ‡δ1VvšuͦŒUήκ#!2Γ§<Ξξτ{9nv·‹»–m\2cυΖοΰrη ‡D€ζf\wO?€~VΎwžΔΚ™CΧc`D›λ€ΊH³8Ž?γξοb‘ͺ86I’ήΆmΫίΛ-4cZ^,W˜ΩΠύιiπιB‘π\v ©?­—FV*•^`-€cΨ]€*ώΟθ`]DδχP]€B£}Pϊχκšqέ=ύΣWmό:{\ €y:τpφp₯%ώά5Ϝ±fΓΥ¦‹΄ƒρΎ™§o¨~eΌ»Nͺ‹4)‹γψ³8τQγ„L&³ΆT*υ²‹ΘΈdQασ«8ŽΟ5³λθ”k:t˜ΩUύύύΩE€ξ4T—†ΗρyξΎΊξ+mήΗρΗΨ%D€ρi¨.R1§} Οΐ5T―›ΦονZ½ρ ]«7Ύ01;Ρέΐ]œPη ί6ΰ’½OΠ=\~Œ•-ΐ±Χl|ΐ £Ώžκ {yςΌpα>r”YΫγΣφΟά‡΅kυΓΎˆŒΙŒ Άmχ†αh―wΆ›e±bE[κΎviύ;Π‰eΛΪ±~ύ0)_D*T(. !ό;»G• Ίϋm!„Ÿ'Irs{{ϋνΟ64}’(Ϊ‹§žRzΊP,#KCg8Σέ—ΘŒ7³–Μμ’b±Έ-—Λύ »‹TΖέs‡ϋγqΏ ΐΠυGΜμ–$Iξ5³{“$ΉoΒ„ [fϞ}Ψαω‘(‹Ηf2™Θέ—ΊϋR˜ˆζ~Έ€··χύ>Ε."uρΟfv#ΨέΏχ/3ϋΠΘΘΘΩυήή>α-KΗσΝμ‡ξ>‰έeάΜξvχ“$ΉqΒ„ ·Wϋ{Ξ₯K‡lύυ?νnίΎύΔrΉ|6€WXΤΗ˜BψA±X|^.—{˜]FDK3˜©·.Jͺa/Ϋ¦Υ„κrO¦O~@9""XΉiηŸ\°°ξَφ½“λ™ΔuΟ!7μ79Δ=sΚ“§{8ι"R‰R©tJαΏΠ Γί1Ϊΰ‡ψΡ’E‹κωRQ’Λε Ύ…Bα¨L&σ w?ΐ98΄΄a˜ΩΗγ8Ύ3Š’λΨ]δχ3³θιlτ…˜―„J•xΐΟΜμ§εry]>ŸίŒ:mG< ΰΆίώ±;wN8Σέ_ ΰΏχžϊFγξΩ²eΛW.\¨ƒ)—ΝfΖʎγψΏXΩI’<2oήΌTύ<ΦΜ …Β1!„λά}&»ΛX˜Ω―’$ωV&“ΉzξάΉ}Œ½½½χΈΐ§·lΩ2³³³σ5ξώ/bτ‡^3»ϊΞ;ο|Ωθ‹""4T Ξϊw‡~Xi!ά댑:€2’yHΩPݜvRΙ`2ͺ‹4¬ΎΎΎιξώ=Ί²Y ΈΖΜΎyπΰΑ-Z4Δ.τ[ω|ώqίύJ₯™ώΠέ_Φ ΛOΜμλqŸΚ."yΚIυ8Ž_BψοΉΦίM’δ»ω|ώ64ΠέέέόhτΧ{γ8^jf»ϋ;ΜΰΆ«ΨτφφφΏπ!vI·ώώώ‰™LζšgΪ”€φ»ϋψbEw²Λ<Ωθ‹PWΈ²P(,2³KΝμmhό«ƒ^+h ~EΡϊl6ϋη“'Oξp)€-μR•0³χΖqάΓξ!"ι644τew!»GpωΠΠPo.—{W.—k¨ϊΣεσωΝΉ\‘‘ΉώΟ~½»_V*•.`χ‘ΖΡhoτŠ4€}]Ώ™†α6Κm”‘+""fΙf8ηZА„nJp YΐA'=VNΓ:i‘T*•J ΰ|vqΈΐ? |³Α‡θΟ(ŸΟbτ{±X\lfοπV€fφwoΊ5Ψ-θθ8ާΉ{ga X›δžκ3ϋLΉ\^9ϊίuSš5kΦ~Ί—ώ‹q_„Cw–χr[=« > ΰ½μ""’N₯RιƒήΘξρ{μ5³ONš4ιΣ£_Η›Κόωσpω–-[ώ­££γ―Όσ²ά“€, ΟΙησύμ2"Β§“κ"HΪ¦σ­‘ίΨ‘κ2sΪ)!žΊ‘ΊΓGXΩ6’Ρgm‘ΤΧΧχ|wΏ‚έcŒpχ·EQtbEΩ¬υ§Λεr›’(z·»ΟΓ‘‘λŸ+}›ZR(I’E!„˜K¬1ΰ*3{~EΟΟf³ίhζϊΣxEί›8qβ"w€Fώηz[©TšΕ.!"ιS,_βξΟξρ,ŸΙg³ΩO4γ@ύΙ.\ψXE°ΐΩ}Ηέg† —ζEDCu‘JxΖ§°² Ό΅΅""R™L²ƒξHέPn -;“θ³ΆHƒΩΉsη€$IΎ†ζΩΪ6θξλθθXΛ徊CRS'—Λ=EΡ₯εrωDw_Εξ#)„pqoΰΫNŠ’θΝΩlφRšλξξ>Λε>‚CŽ{Ψ}žΑΔ$Iώ”]BD₯T*υšΩwΠΈŸοπό(Šή3z;5’(Ί?Š’—™Ω[μaχ9ŒΗq¬ο;"’‘ΊH%Κ‰O`e'fͺ‹ˆ΄©ίΏο1ΩΟΘ­)η  lΔυY[€Α ό=€μΊ=I’SsΉάί̞=›ς}‘ήζΝ›ηrΉ έύ3‹Ω}€αdIΉ«ΝμΉQ½1Š’ϋIκ.Š’ϋ'Nœx:½LΠpΜμ;wNbχ‘tX·n]€o8šέε0†\ΎcǎDQ΄ž]¦–²Ωμ7ά} €΅μ.‡ρ·Εb1Ο.!"\zΠ'RLiα“κ""-ΗπkF¬#}'Υ^fe›­‡i qΏΤέίΗξQƒfφ‘(ŠΞΘησ›ΩerΉάυ<‡VΒ;»΄¬ξ~fEd³Ω μ2 έέέ’(z“»9oSFΧΑƒίΐ.!"ιΠΫΫϋ1β6”gSpFE½|ωrΪΥfυ4ΊΑθε£W‘4ηΐIΔ‘{ΦE€Ei¨.R„xRέ M}7ŽˆˆŒΛƒ”TΓqΈΒRυω0oύϋHΠϊw‘FΡίί?ΡΜώl=€S²Ωμ§Π^ j‹-z"Š’Kέύ©Zq* ο €+–εrΉ›Ωe€ηrΉOΈŒ]δ0ήΝ. "Ν/Žγ3έύ±{ΖκΆΆΆ₯Qύ’]„ œΛε>’$ΙkΠ@W£šΩYΕbρμ"Β£}"Αh'Υ-q ΥEDZ{?'νOάώά™”μšαTGYλίEΕΠΠΠGέ=bχx6ξώŽŽŽGQ΄έ₯‘δrΉ’$y»ίΖξ"-α¦$INŽ’θγ‹-b—i$Q}ΞΜ>Βξρ4Ο+ Οe—‘ζΥΧΧ7ΐ74Ϊ–±Ώ’θžžžέμ"Lω|ώ+<Δξς[fφ‰ώώώμ"Β‘}"p#ή©Ti=Ζ9©`Έ}8U+ΰ¦υο"-P(œΰƒμΟ’ ΰ=Ή\ξ-­rwϊXεσω~w_ΰ*vI­Aο‰’θω|ΎΘ.Σ¨²Ωμ'ό3»Η“….aw‘ζ•$Ι§τ²{<Ɉ™½3Š’ΏDc­>§‰’h}Ή\>@»Λ¨£―`— ΥE*ΰ ρ€ΊΩ +[DD8Œ΅ώ€—=UCu8oύ»eΌΡΧL‹΄ !|@»Θ3ΨΰΥQ}ž]€ΡεσωΑ(Š.1³O²»Hκμ!œ₯ί‡•Ω±cΗ‡ΝμVv'ω4ή SiΕbq€·±{<Ι€7d³Ω+ΩEΝΌyσbghˆίΜμR©t »‡ˆΤŸ†κ"0 “•ν­œi1 œ6T7Ψ1¬μZπΐ[n#:©.ΒΗρ›œΙξρ wχ³£(ZΓ.D<›ΝώΉ™}ˆ]DRcu[[ΫsζΝ{;»H³XΎ|ωHα<Ξξ2ͺ;Žγεμ"\vξά9)„p%€FyzΐEQ}Ÿ]€QEQ΄ΓΜ^ β!„'ΙΈ»^τiAͺ‹TΐwR= ΥEDZy†w_˜a -»ˆ'Υt§ΊSDΗξρ vxY.—»™]€e³ΩO™ΩŸ±{HssχOιΎΪρινν-ΉϋeμΏef³;ˆHs9xπΰίΊ{Δξ1ͺlfoŽ’θZv‘F—Νf·'Ir6}–f{ωθΆi!zΠ'Rsޝκξfe‹ˆ‡Y™vςΗS6T žT‡Nͺ‹0 ~@»ΗaμO’δά(Š~Ι.Μ²Ωμ?™ΩGΨ=€)9€+rΉά‡ ϋjΗ-—Λ}ΐΩ=ΐέΟGγœ6‘W*•–ψSvQξξœΝfΏΛ.,ςωό½fφGh€οαfφ7μ"R_ͺ‹TΐŒw,Ρϊw‘–cφ±²ƒc2+»&Œχƒv9$ϊ¬-B²}ϋφn3ϋ0»Ηa »ϋλςω|#έGά΄²Ωμ'|έCšJΩΜώ$Š’³‹€AαCx[~§;Žγ₯μ"άύŸ4Δ ΠξώwΉ\ξ«μΝ&›Ν6³O°{8£X,ΎŠ]BDκGϊD*αφΖs€ ²²ED„#“΄Ρ†κŽt Υ ƒ•Κ>ΒΚiuεrω£@γmήpχζrΉΨ=dǎ—ΈžέCšBβξ˜ΝfΏΔ.’sηΞ½ΐwΨ=FΟ. "―X,ΎΐΛΩ=F­Ιεrc—hVΩlφr?aχ0³³;ˆHύh¨.ΰ mm­ˆˆpLΑ>Ϊϊχ΄έ©n o¨ξm›aˆγΈΐΫΩ=γΏrΉάΏ³K€ΝςεΛG†‡‡ί`+»‹4ΌΛrΉ\£ €S#“ΙόΠΧ֝Ν. "mσζΝfφμ£Άx3cΫG³JFFFή`ΉΗσϊϊϊΞ"w‘:ΡP]€Aws‰ˆH]·m dSΆώݍyR= °²EZ™™ύ€Nv§Ω0qβΔw²K€Υ‚ φ™ΩΕ²»HΓϊxEŸc—H£ήήή€ο±{XZ(Žb—‘Ζ5qβΔΛΜcχ°ΐQνeivσηΟΠΜήΟξ‘$ɟ±;ˆH}h¨.R w ΥED€ήž`„ZΚΦΏœ6XKt…‹HέυυυΝuχ·²{<͞$I.κξξ>ΐ.’fΩlvƒ™ύ9»‡4€/DQt»DΚ}–]@[αLv iL›7ožβξfχ€$IήEΡύμi‘Νf―πsrsŠΕβbr© ΥEDDD‘;eΌ7ΰΔGˆwͺglXCu‘:sχΏρχύ3ψγ|>_d—hΩlφsnaχΖaf·ξή½ϋOΩ=.Š’_Έ›έΓέW°;ˆHcš8qβϋΓξΰͺ|> »DΚΈ™]€y…ͺ Ÿ˜‘ΪΣP]DDD€ΫGΙυt ՝8\Kέ©.ROΕbρXwΏ„έγiŠ’¨Φ"·ŠΔݍqΏ³π=š$Ι–.]ͺκΐΜθ§ΥCg°;ˆHγ‰γxš»€έΐo:::τ’W d³Ω{ό³ƒ™½Qאˆ€Ÿ†κ"H ;ΥED€Ξ %Χ0’[3Άώ}A'ΥEκ(„p€‰μO²SNλ/—ΛmπOμB—Έϋ%Ή\ξv‘VαξWά έύΉ›7on΄m%"Βχ3Ψ%άύ=³gΟήΕξ‘VCCC5³Ηˆ&‡ήLΜ‘:ΠP]DDD€1Q^θ2†ω5βΖ;©ήaͺ‹ΤΛΝ;'Ήϋ»Ω=žΜέί«§@+χ[Ϋ'sΉά μ­$Š’½fφr &LXBξ " dσζΝSΌέΐ·sΉάΨ%lαΒ…Ήϋί‘kό 9_DjLCu‘άΪΨDD€uΈYͺ†κζN;©Ύo”VΆH«x€£Ω=~ΛΜΎ¦§<³gΟ>hf—²{ΝΆŽŽŽ+Ψ%ZQ’$πuοyμ"8:;;ίώ)υ}ξϋΆλ`xxψKφ+,)•Jϊ>$’bͺ‹Tΐœ·Β¬L»„ώ €³KH]}-—Λ±W·¬l6ϋ€ΫΙ5ιϋˆ‹ΕΧΘ‘k<<22ςir‡–bfŸΐάχbΎˆΤ†κ"0sΪ7bom­ˆˆ΄ KΩPέI'՝χBžH«qχFΊ»pΛξέ»?Λ.!‡DQ΄ΐ΅μR7{†††>Δ.!ψ)9$Fξ " „Π+Χ?>zzZκdτ―o+Ηρ bΎˆΤ†κ"pγ=O ν¬l!rΪη΄΄žFΚΥP]€ΆlΩ2ΐkΩ=~Λέ?°tιavω$I>Vo ξώΟ .|ŒέCp39ΚφνΫη’;ˆY©TZβξ/$ΧΨΆ{χξ+ΙZΥΏσίHΞ‘ΡP]€–ν€z ή+""­ΗέSuRpΦPΉnN€etvvΎΐvQΧηrΉλΩ%δ©ςωό―ό€έCjΛΜsχeχ ­­ν―*—Λ‹˜ω"Β—$Ι;Ω\—-9’(Ϊΰnb…σ‘π"©€‘ΊHΖ;©υο""­Ι0™k);©n€‘Ίνα䊴œ7± ό–™}œέAΟΜώšέAj+I’Μησ³{ΠΣΣ³ΐ½ΜξΞΎCYDˆϊϋϋ'šΩ’k<Έ{χξο’;΄Ίo³)‹Ο'ζ‹Hh¨.R€„6T°I¬l‘" ƒ=UCu¦s’“]œ\‘Φ±mΫΆΘέ_ΐξξ~c6›½ƒέC/›ΝήώJj©G¦L™ςYv yŠ[˜α!„<3_DΈί ‹ΩΑΜ>§Sκ\!„ο€x™ΗΚ‘ΪΡP]€Iΰ­w`*+[DDHΜ ΄―Όν,ΥΦριA»FΕφrrEZGαMŒέBŸ`wggf_dwšως¬Y³φ³KΘοΈ;ϋ€zΔΜΒ‘+ &I’»ΤΙζΝΫgf·+œOΜ‘ΡP]€9`pΞϊ_αyτ‚S@Ίˁ݌άZ˜0Έ‹y:A'ΥEjΜΜώ€έάύ§ΩlφημςμΜμj3{ŒέCͺ.)—Λ_b—…:T “κ"-κ8ήέ_LqU.—{˜άA$Iς-bόβB‘0›˜/"5 ‘ΊHʞδ₯»Nͺ‹ˆ΄K&ΕΚξ©Ή άΚν€ϊ :©.RCqΟp» SκΝbξάΉI’|•έCͺΛΜ~4oήΌ˜έCžͺ­­ν>r…γΙω"B2<<όzgfφoΜ|ωw3?“Ι¬`ζ‹Hυi¨.R ³’¦“κ""-Ζ2#Όa0BjNͺρ=wT©%3»έάύΎl6ϋίμRw<ˆwkJυ%I’΅ώ ¨··w'Έ[{¦ξάΉs1_DHܝ½Ιθ—Ωlφr•Οηϋlcε»ϋrVΆˆΤ††κ"HΚ νΤ^€ι€ΊˆH«)βP=E'ΥΝ¦³²Σtβ_€AΛ.!„ΟBCΪ¦‘Οη‹nfχͺΩ»gϞkΩ%δma†ΛΜ‘ϊΫΎ}{Φ̞Ομ`fίaζΛζξ?%Ζλ€ΊHΚh¨.RύφΣŒ»ΦΏ‹ˆ΄3Π†Α0OΟΪrOhkτ‚†κ"5ίί?ΓέΟdχ°―\.ƒ]BΖΖΜawͺΉ~ι₯ΓμrxfV`ζ»»†κ"-¦\._ΐˆάέ―&ζΛa˜Ω:b|ΆT*υσE€Κ4T©ΐά΅₯ŒlwΜd䊈#9–m–’΅εF[ 5kτEΝΰΰΰ+΄±{ψz>Ÿ§]%γγξͺ§Η*vyfξώkrΎ†κ"­η|rώ-Qν w§ioo_ΛΜO’δ…Μ|©. ΥE*G9qf†Œ\!r›MΛNBzNͺ#Ρη|ni/eΰ™Lζ³μ2vQmsχϋΨ=δˆ ·΅΅έΐ.!ό=T7³YΜ|©―B‘p€1;Έ»VΏ7 9sζόm{Š™ΖΚ‘κΣP]€r¬!ΓΡ€\αι!f§ζ„΅»GΛ6O͏"ΖΜθCuwΏ½··WƒΩ&ef:αάόnλιιΡχΪff:©."u“Ιd^ ƒX!ιθθψ1_žέ/ˆΩΟ#f‹H•i¨.R)3Φ‰³©XΆ¬”-""˜ΓΚNΜRσ€ΪΪPξ:©.RΫΆm‹dΩ=|‹]@ΖΟέ5TorξΎ•έAž]’$Τ‘: ΥEZΛyΜpwΏcτD΄4¦ΔμSΧ­[ΧWW‰Hh¨.R)ήΓq{ψ„A­€i!Ξͺ†gNœJv-ΊYΡeIΝΛ "€­­~J@Ή­­νjv Ώ\.w€]μrDΆ³ Θ³Λd2μα’†κ"-Δέ©Ÿ͌zo·<»Β½ΔψI==='σE€Š4T©νΔY›ωLVΆˆˆPp†κ‰?ˆ•+Λ”μZpOJ>pτ5[φ‘²ERΝέW°;XΫΫΫ»“]BŽHΰ6v 9";ΨδΩMš4ιQfΎ™ιp‚H‹(‹y³Ι5~BΞ—g122ΒͺΐbrΎˆT‰†κ"•rήP= έ«.""φ]tβL“(αfi;υΕZΞ>™%’fg° ψ/v9rξ~+»ƒŒ_‘έAžέ¬Y³`Ύ¬9˜-"uBXN04qβΔ[ΘδYδσω~ΜΉϋI¬l©. ΥE*δπ‡XΩIpΪϊZ©―‘Α'Ζ§ζΤΧ£.œ ` %ά4T©…νΫ·wθ!Χikkϋ!ΉƒT™i¨ήάφ"`9€ύΔόNbΆˆΤ‘»ŸEΞΏ΅»»ϋ³ƒό~fv1[Cu‘”ΠP]€Bγέ1kΞZ_+""uf™@[ ζHΡIυ‘ Ό{–-’bεrωtv·υττμf—#7<<|Έ§heόΚ»vν lΝαqbΆNͺ‹΄ŽεΜpέ§ή’$ΩDŒΧϊw‘”ΠP]€Bf  ΥΝM'ΥEDZDH˜kΑ’ΤœToΛ$΄ο\ϊEjΐέ_Θξ`fΧ³;Hu,X°`φύΉ@Og IDATš2>.]Ίt˜]B~?wίΗΚN’DCu‘P(fƒ|Ÿza3_*cfEb|ΆP(hƒŠH h¨.R‘„yRΠIu‘–aΌ7˜St§Ί'Ό‘z’`'+[$ΝΜμωμεrωv©*­€oNϊ>Ϋ$̌6T!hx!Μμ4rωΉƒTΐέ™Οφ3!φ5V"Rͺ‹T(΄eh?Έ;tR]D€Uxΰ­sXjNͺ{€Nͺ‹€Kπr‡ίδσy=4M3[Οξ γς(»€Tμ V°Nͺ‹΄†ͺΗω|žyΥ…T(„@})ΟΜ²Μ|© ΥE*΄gΟήϊwθNu‘Vπψ+Ο€Σ†ΑΙ:R3T7Ηρ²M'θDͺ,Žγ€)Μfv#gvκrχ-μ2.³ HΕh_3uR]€e°‡κw“σ₯BξNύ9=I ΥER@Cu‘ Ν][°‡)WDDκ(Ιβκw”ΊW­?@Λ―6㽐6’dtR]€ΚΜμΉμ~Ξ. Υ522’‘zsz„]@*Fͺ»»†κ"ιgNepχ{˜ωRΉ‘‘φIυΉΜ|© ΥEΖ†uZ}κΎ‹NœIΚ‘z±„χ@ΐ±‘–] ŽΉ΄θΙ#ͺ‹TY’$§°;”ΛεΫΨ€Ίζϟ¨™=Ζξ!ccfͺ7ζv­IΉR©Τ`³CACυ&1ώόΗ +Μ%f‹H•h¨.26΄πΙPϋ\VΆˆˆΤ‰Ω™¬h7OΧPΘSR {YΉ‰v¨HZ™{¨ώx>ŸΏάAj@+ΰ›O’$ΊS½IΈ{BŒoƒž{Š€š»ŸΤ΄ώ½y8€‡XαfF»’NDͺG.EΖ‚xGjΩtHΪΉαt^ΊmβeWΧCgŸ2ΐ,JΈCχ©‹ΤΖ"rών˜Γ!©­μ26f¦;Υ₯RΖ. "΅cf'’+μ‹’θr›]¬ΰ$I8Ο(D€ͺ4T KΆΣ’aͺ‹ˆ€Ψήσ–Dpt³ς=IΟϊχŽvdAzˆκ0­~©²B‘Π  ‡\γVrΎΤˆ»k¨ήdά}»ƒTΖΜτ2’ˆΤŒ»³_Ίμχš »V°Nͺ‹€ƒ†κ"cα‘ΔΛΦ½+""iζH^DŒœΉθmΔόͺ²ΰœΥ/•-’byf3»“™/΅cfEv3ΫΗξ ""| pRvψJΖΗΜ㧏Ύ,,"MLCu‘1H€˜n“κ"")ζΞ Ζί‡΅kGˆωU•$žce»CΓ‘*3³ωμεrω^v©Ϊݚ2>εry?»ƒTL'8E€fά}!ΉΒrΎŒ‘» Ζ›™KΜ‘*ΠP]d ΪηT‡EΌl©9wζP=5«ίΐΪχL(°²EΚ̐+Θησğ€Ζ4To2!„'Ψ€bͺ‹HMΔq< @Ή††κΝ‡Άώ}Τ4rΎˆ! ΥEΖ`ΪÝ;”)α†Λ–΅S²ED€¦v½ϊδ90ΠVא΅ΖΪIυ ‚†κ"UffμM[θ^ΰτz˜]@Ζf€Iͺ7 ΥE€&BμΟ‡€†κ͈ΉώŽ"η‹ΘP]d,Φ―ΠOΙv΄?zΒ°N«‹ˆ€ΰ<FΛ·πsVvΠ†κΙΑv­©²$Iz™ωξΥο)EΡ^π°Jε’ξξnύϋjͺ‹HM”ΛεΉμξ;Υ›ϋ€Ί†κ"M]@€ •Pμ΅Ί+h+#[DDj(ΰ\β#Η'¦ν›±–^m_œΠÈvΰα7­ίΛΘI33›MΞΏ™/uρHί;dΜφCƒΪ¦αξnF{oTDRΜΜ¨/]@ay±X\Μξ!• !δά©#΄ώ]€Ιi¨.2FΔ,gd{‚…ad‹ˆHmτ_|ϊΔɎΔ ·`νΪb~UνΨΪ ƒ‘mΠ}κ"5BvΊ{ΜΜ—Ίxͺ7‹μRΉ‚“‡"’^sΩάύzq¨Ή°Ώ'…tR]€Ιiύ»Θ˜y‰–Œd!+[DDjcς}/0‰•of7³²k‘Œd1^Cu‘*λλλ›`*³ƒ»λΎΜ”sχ]μRw/³;Hε4Q‘:]@d¬’$™Θξ "GFCu‘1r ΄“*fΆ€•-""5p.3ސό‚™_un΄υ{f¦ϋΤEͺ¬\.SWΏ@’$ͺ§ί »€TΖΜv ΥE€&άύXv‘± !PΆκ‰Hυh¨.2FΆ…―“κ""i²bE›9.’ε†3·ΣςkΒiCuΧIu‘Z8†œ?4ώόδRcf6Μξ ΣP½Ήh¨."΅’‘Ί4# ΥEšœ†κ"ctν[ΐϋAΎkχ‹uןˆHJμžϊΨΛ˜Εk`wΝΊρžύΌόκ3ΰVv≆κ"UB8š™ofύΠ― ± HΕτϋ±Ήh¨."5BΠP]šŽ»k¨.δ4T£ξUλΐ@»Wέ<‡•-""UζΙ›Ιωk©ωΥvρΕ'²βΫ‡uR]€Ϊά}&9ΧΜ|©3ΣP½yθNυζ’‘ΊˆTέΊuλΪά½‹έCd¬ά½έADŽŒ†κ"γαΨΜ ΄x""R=\Όx `RK¬‘ζWΩ£ƒ[σ&’βwuΓ¦]€l‘Τrwκϊw3{Œ™/υ‘$‰†κΝC'Υ›‹†κ"RusηΞ=škH !h¨.δτΝGd<ΜyCus ΥEDR ύ^ `2±Βc]‹n#ζW]HΚ'σύ^^ΆHz™Ω fΎ»οfζK}θ€zSѐΆ‰Έ»ώ}‰HΥΉϋ4viMͺ‹ŒƒΑhΝxW¬ˆˆT‘wυ;p-VLΧ Uq¨6π²ERm*9_(ZΓ»€TLCΪ&BΠΏ/©Ί$I¦°;ˆˆHkP]d y-zτ…쇋""rv_°ΈΗΜnΈ–™_ΑΣ² iΩ")ffΤ‡¦f¦‘zkΠΰO€tR]DjΑέυ\TDD(4T‡hίή]n!ƒΆ%€l©χπNZΓ°μΌ‘–_+Δ“κξΠIu‘pwζ5Z."rd4T‘ͺΛd2ͺ‹ˆ…†κ"γΠ½jύ}¬|OΒσYΩ""r„–-k7ΰνΜ ξώ³›Φοev¨Ά‡Ξ>e²9R|Rž˜θ€ΊH °Oͺ»ϋfΎˆH“ΣP]DͺN'ΥED„ECu‘ρ£­€7ψσXΩ""rdvu^ψρΜΑ±†™_ mεE`}Ά5”ŽYΉι JΆHΚΉϋ$fΎ™ 3σEDDDδ©ΜŒΊΙHDDZ—†κ"γδζwσΒ]'ΥEDš”ήC”­νjr‡ͺ Ϊ gζΰ}&IΏNfΈ™ 1σEDšœNͺ‹H-t° ˆˆHkP]dœΜρK^ΈΝ}ψΒ“gΡςEDd\;οδαx΅„ُfΎϋAj‡Z0{1]«ίEjǘαεrYCu‘ρΣP]Dͺ.I’ »ƒˆˆ΄& ΥEΖ©<œ¬gζ·'Z/"l‚ω{@ΑρMj~ΈƒΉΕe1[$ν¨?³κ€ΊˆΘψΉ»†κ"Ru!„vviMͺ‹ŒΣΡ7lή €wΟM+ΰEDšΘγ―\<°·’k<14d?$w¨Ί}8Σ€<+ίάξae‹΄κ‹H!„23_D€™…4T‘ͺsχ6viMͺ‹Ϊ x7gΉ‘1J:ΒϋLavpχοΞΊρžύΜ΅02ΤφπoOL;mc)[$υܝϊ3«»λΞN‘ρΣP]DͺΞΜ4T ΥEŽ„Άή`/ΔΕ‹υOD€ μΌ`Ω$w»GΎΞξP#/$foΐεžσERΝΜΨ™NrΎˆHΣϊw©…$IΈWͺ‰ˆHΛP]δ8ρ€:€I»q1_DD*4ΑήΰrΣO»χ§δ5a¦ϋΤERŒ}§Ή^b? ΥE€κBz©YDD(4T9mCΎΜΛv-[DD*³bE`dΧ€α›©T/—ΛsΩ€ζf± ˆˆˆHeζϟΏ ΐ³ƒ»λNu‘€‘ΊH•Έs‡κΏ™/"κφœ»ψ9nx»˜ααξμ΅·";Α`gΠ Φ²EZL¬‡™eΩ€ζŽe‘Š%%wΠ y""-HCu‘*™1ΙΧƒx―ΊΞΪ{ή’.VΎˆH«σ`ŸFc|ΆΪ1ύםίf—¨₯£¦Ny1ˆ«zΝύ&VΆH«Y°`Α>»Θ5“σ₯†Φ­[Χ`&»‡HJ₯φ%O‘cΏx9‡œ/""πΰW$VnπcZΎ£=ŸKΛia».XόZg±{€Ή Φ―fχ¨%K¨χ©ϋHωobΎH+*σ—σ₯†²Ωμ1Π³‘fCͺ‡4TiAϊΑQ€ŠN½ΏΦ ―fζ‹ˆ΄’,›dnŸdχυΨπ$\Ι.Qsάοwχ}Ν–_σEZ{¨žΫΌyσr©wΧϊV‘ζσ9Ώ‡œ/""ͺ‹TS9s=ˆλΝ8»oE–ΆWD€MΐΐΗ4Δ}»|ζ˜•›ž`χ¨₯=η/>@ž•oπ±²EZΨ6r~˜4i’Vΐ§TΉ\>ŽέADDDΖΖέC ‘ΊˆH P]€Šf\wO? ›ˆ¦L›2™ΉWD€₯μ>wΙΙ€}€έcԞŒΫΏ²KΤZ⸈šŸ@χ©‹Τ™™±Oͺ£\.k|J…N`w‘1ΫΞ wχ™Ϊd$"z4T©:ξ x‡½†™/"2°€ΰG;»Κ¨œΆfΓnv‰Z³@ύ>78˜™π3bΎHK23φIu8]@j#I’…μ"""26fVbw˜Tww­€i1ͺ‹TΩτ}3o°‡Xα¨ιS§Ύ’˜/"’zœ»ψ8Έ}‚έγ·άόfΛ>vZ+#σ:fΎyΠκw‚… >`'ΉΖ‚xΰxr©ΩDDDdl¦NΪΗξΰξyv©/ ΥEͺmνΪ3ξ}«žψ™ω""iΧΒΏ˜Ξξ1κΑΗχν<»D=@½β$ΣP]„η.v‘‘‘3Ω€Ί …B'€Ήμ"""26³fΝΪΰfw_ΜΜ‘ϊΣP]€ά¨+ΰaΈ`Χ9σŽ’vI©=η|‘Γ©'¦Ÿζoη- °KΤΪsN™νΐ2b…G§-έp71_€Υ­gH’D+ΰS&„0@†έCDDDΖε~r>νj2αΠP]€†“δz ±Β . ζ‹ˆ€£.<ή _bχx’RΧΞΞ/³KΤCΘ$―`΄n7αrg~oiifvgtXΑξ Υ₯ϋΤEDDš—™έK°̟QED€ξ4T©cέτ~A-aΠ x‘j2³Œw|ΐ v•ί±bύϊav‹zpψk©ΦPσEZ\[[}¨ΰ€8Žη±KHυΈϋ©μ"""2>ξ~ΉΒ΄b±˜#w‘:P]€Vά¦ζ^ώΔE§Kν "’"»Ο[ό'p%»Η“όφξ<<²όψη>3I›%I[k‘KζΜt!$)ΠΊ°¨-‚"mS@) ‚(β†,‚ κο+πEEDdSTό’μ”Α&mA ˆ RΔ6!-mζLΪ†Ί$ιšuΞύϋ#)†–6Mζ>3σy]WKYςΌ[Ϊf2χyžηŸ «²ŽH…ζ™Εγ9Α,@Π!‘Πb³υ‰cǎ]`ƒu€ΩΦΤ§Ž· ""’ή ΐNuˆΘ‡¬ˆˆ(u8T'κ'Ύ(€€Y€"§½C?oΆ>QΩ:«Μp“uGκC/ƒͺZ‡€„γœΛΧ­Š%ωΏΪlΆ>ν„έκs¬¨oΌςΚ+9¦YweΈμx­JD&:::j­8T'"Κ.ͺυ“‘‹jήl€θE–λe„λΔρΕΏΐ`λ”^Uσ/λˆTQΘηLD˜ODyΡΊΐ «V­aA‡.??Ώ ΐ λ"""ꝉ'Ύ Ρ²AU?lΉ>₯‡κDύJm€&7Ξ.;ΞΈˆ(­5Ύ|Τ5€|ΔΊ£‡štΎo‘*[fυ!“ T;C•†λΡ=m  …fYGPŸΰΡοDDDιo©ρϊΗΤΥΥ 5n "’αP¨%;όΗψ– Žκ…–λ₯³Ζ9₯§ˆΘ³ξθID~VΈxYƒuGͺ8!η –λ °4›~Ύ‰‚,‰Ό ΙΊCΔψτ κ"Β‘:QšλάŽγ|ΤΈˆˆR„Cu’~4β‰Ϊ ώnΩ ‚³7Ο™<Δ²ˆ(mšYς~ρq‚υz©‘Ή?·ŽH•†ΉΗηAqeƒ―xΔr}"z‡$€%ΦNς€χ[§ΌƒκwFW.έe‘*ƒ[vœ ί0AM>jΈ>½Ϋ_­8ͺzΎuυ^"‘(ΐ#ˆˆˆ\vͺΐ'¬ˆˆ(58T'κg>ώˆ]5fDp‘εϊDDι¦iπ–8ΡΊc)XX3Ο:"•jύυλŸω‹jΧ7Ρ;α^uˆΘ—ˆuυŽοϋs¬ˆˆˆθΠ½ `­qFΙκΥ«]γ""JΥ‰ϊΩΘE5oΒψxή:«lͺqQZhš]2ΠοXwμ‘ΕIβΦ©Τ4³¬ΐq– ’ZaΉ>½›λΊ«Τ[wˆ$‰XGPοˆ‡κD) ͺjέ@DYΑϊ}W„B‘rλ""κͺ₯€ˆάkݐ½ΨΊˆ(θΆΝ.žΘ½ΪξC•λ†-Ž[g€”θ׌ ό€„­―p!’½‘ΏX7tΛͺ‡2ΕͺU«Žp¬uυ Y€>°GD”8T'JΆ6™`»eƒηl?σΘα– DDAΆuVYA‘*Φ-{X^πfξ/¬#R©ωŒcς!°Ύ―ψΉαUyΓΈˆφBrŠ„ͺ~†G}¦Ÿp8\Ž =TWՏv?ΈGDDŒCu’υ䲝XοvΛλμ]hά@DL3f„U΄ΐ$λ”=ψͺψ:–.ν°I%νμΌΐ`ˁάgΉ>ν›λΊΟxΣΊ@( ρ4¨τs¦uΡ>π½ϊ^˜0a‚ϋ끜p8<ΧΈˆˆϊΏP₯ˆŠώΑΊo`ξܐuQΠ4 Ω|»'[wΌ›όΊpaυ Φ)ΥυuκλΖ-ښϋ˜qν[RD¬Xέν"Οσ†YGЁY³fMΐIΦDDD{γ8NΨΊ!™οVπYλ""κ_ͺ₯HAeΝσVgŒoήU;ΣΈˆ(Pšg•\5βΎ›`ƒ„CΟ:#Υw­<@Δ4BπΗ‚§–n5m ’ύς}λ†nCDδΛΦt`’ΙδWΐχAˆˆ( T5ΗΊ!]‰ΘΦ ¦Εγρλ""κ?όf’(•Dξ΅NPQIDΤ­qVΙ'Uδ&뎽ςqQώγ―6[g€š@/³nP~' Έh4ϊ€΅Φΰϋώ yΦ΄΅΅΅ΉΎhέADD΄/ͺχ^KKΛbmΦ"Όφ‰ˆ¨Οp¨N”BIiΏ@§qΖ)›g=ΡΈˆΘάΦYeSE€@πŽΨ½«`aυ"λŒTΫ:«l*'gΌQ8ΰΘΏ7Ρ{SU­°Ž9Ό££ƒ\^^ή£¬;ˆ²‰γ8jέ@”NΗαP½—Š‹‹wxΦΊΐyuuuC­#ˆˆ¨p¨N”B#¬\Α“Ζβ8Ιo7™Ϊ6»x‚Š.Δov½€t~Ϋ:Β‚οθεΦ ͺz7**’ΦDτήTυ!λ†ζ¨Α¦ͺ_΅n ""ΪUΝ΅nHg"Riέ`ˆγ8Ÿ·Ž "’ώΑ‘:QЉί›7.ΨmςΪ*=ΖΊeΪΰΛy]^eŸ<ΏνB#3ήΘί>|‘q€βββvωuΗn"ra]]έtλϊ/U½|S›ˆˆœΩP]D ¬ΦΞΙdςΨαΏΫ”x<~Άuυ-Υ‰ t-[eέ‘+­ˆˆϊΫζ9“‡ ΤΆΕP|ΤΊe_Dπέ‚EΛ«­;LL›–£σ―G"r–,ι΄ξ ’ƒ‡ƒ`Όy β8Ξ/_yε•λκκκŽQΥrλ""J"b6Tχ}Ÿ;ΥQ,Ϋΰiλ‘ŸΤΦΦZ_qFDD}ˆCu"#ΎŠωύ"˜Φ\^φ1λ"’ώ|Ζ1ω!?ηIAώ³*Ώͺζλ+Ν£[Ο0ή8£­]τ·Ζ DΤKcǎ]`uGG\aA€γ8Χƒ»Τ‰,©uΡΑRU˝꣬ΦΞ0Zt‹ 8πBλ""κ;ͺΎpωΣj¬;TΥ|w QΨ:«¬O8ΞΊe?Φ„:τ¨fηŽ"’ο˜gΎoAυ[ΦDΤ{ͺz‹uΓ~ΗcΦΩΜσΌYfZwQΪ±ΌS} €αϊΑχύGl²ξθφ£U«V°Ž "’ΎΑ‘:‘) ΒΈY§—[Gυ₯sJGωŽ>«ΐ­[φ£ΝQωτΠ'j­C¬4ΟώE©uΛ~‰^1lαςW¬3,)δ»Φ ,Ι―ͺYfAD‡Ξχύk¬φ0uΰΐΧ[Gd£φφφQUΧΊƒˆˆˆ˜>τœL&ΗYŸ)Tυ7|λŽnΥΧΧΘ:‚ˆˆ‡κD†F,XΉϋ­;=oΗ™Sήg]ADt¨šζ”–IΟ 0ΑΊeΏ•5wZgXjš5ε#œ`έ!ξR'Κ±XμEU}›Kc IDATΊcίN$§XGdΟσ&ΰφDDΤ+ͺΊήx}Υϋ@,‹‹Θ_¬;Ί9ΎοίΣΠАgBDD‡†Cu"cΎκ―Xί₯;°½C/1n ":$M³ΛNƒηύMˆ:υ[/²Ž0ηψWY'πςN²Ž ’Ύ …‚Ά[έQΥ{γρ8`M ‘ί`BDDιΙqλ‘ϊ‘–λgUύ₯uC“ΫΪΪx‚QšγPΘΨπ…Υ+ϊ7λ~³ι”iΓ¬;ˆˆz£ivΩ7­0ΔΊε=μ€:g.^m}υ‡©¦9₯ePœfέ‘’ΏDEEΊƒˆϊNQQΡK[wμa΄ˆό±Žƒή~–H$TΥιΦDD”Ύ|ί7ͺΏΖ,Έ»@΅uΗn"ς­x<>ΓΊƒˆˆz/l@D€ω•7ΞΘG^Ϋ7όΨΈƒ(°κώ,7#懋ƒ|ƒαc0ƒ Ψ `'€*h )ήξ Ž³΄έ8;³Νjj]q €t8mCEδΌόͺe5Φ!ΦΔ—Q¨gl—–Ώ7n ’ώq €O°ώs¦§C‘Πo\`’©κλλ?¬ͺ?±ξ ’RUλSωˆZ(Zοϋ¦WqO±\<Γ(€<`Ν‘‡Χ­[wμΨ±c­ή "’^ΰP(ςσެlj]‡"j’ψΦ¦Ή%·¬¨ΩaΪA σ%/Wq‚$1‚cLAπίKvΏ]ίγν"Qΐ°)‰NΜ“€ΧxΥq°dΗ.ΌXtΆ¦ξG’Ή6Ν-n‘‡ΜΆn9’rM~Υς?YwXkš5₯’gZw(πϋΒ§–n΅ξ ’ΎηΊξD"Q‘ͺg[·τ€ͺ_π Ώξ=ΝSΰγ*ψΉ†±nΣ<ωσζyςΩ†ω’ΧOλeœ¦Ω₯_ƒ—LΆn9@―΄΅;_ΏDσΜ’£Eq†u€G‡-Ž[GQ‰Εb ~fέ±’ͺχΔγρOY‡dˆP{{ϋ}ͺzœue”ΛΕU•χnχ‘ΦΦΦί‹ˆgέ±‡Λ<Οϋ†uΥ‰bΤ“ΛvBρkλ(F|Ψ…ΦDύ­ρAΊiž\εδ` χpRu1ΰTΔڍσδΪζ{$?Ε i£ρ΄ C›f—> ΰΧεαŸ74ιœ>κΙeAά-™r*ΈΈγΨ'ˆƒ6"κcΉΉΉ7‘끹 Ι‘?yžg~Fš“D"q'€ΟX‡QΖYiΉ8‡κ}«ΈΈΈΐ5Φ{q›ηy§YGсγP(@rrΫΰeΉ sKr­+ˆϊΓΆωRΈižό4ι ]»‡[7u!ΐ5αm|Xk|P†ZΙΦ™₯Σ$<πίΞ±n9Ϋαΰ΄ΒΕΛLw9E󜣎HΉuDžVΉμίΦDΤƌΣ""ί΅ξΨ‡\ΔγρtϊΊ$ΗοRΥ―X‡QζQΥZΛυEδΈ 6 ²lΘ4‘Hδ!yΥΊcaΦΧΧΜ:„ˆˆ ‡κD2ψ±eEρ u€±­ržuQίΩψˆœί–Δ WA0ΔΊh DπΓd+7>"ηbΎ«ΧΤ΄i9M³KΏη;ψQλœ&θPΑg T/·N υλ€]κ’z£u₯N$™―ͺΟZwμCXDπ<οKΦ!ι€ΆΆ6ΧσΌEδΛΦ-DD”™Dδ5γ„άΦΦΦ“2οϋώ¬#φ"ΟχύJΟσ¦Y‡Pοπ’μΒ‘:Qΐψaύσ{wEq5ζΞ Ywυ…·”MσπwQά ΰ}Φ=h΄(ξέό0ώ²ω™hcaΛμ’6n{ΐOΠ΅£/]¨ψzQaeυ_¬C‚bλΜifYwψg~Uυ3ΦD”Z"r €vλŽ}Έ;‘HάφΚ+―δXΗ]]]έЁ.pu σχ6ˆzΓχύΦ ͺΚ―u},ώΐSΦ{1ΐSuuuΗY‡Π«――/ς<οξ–––*λ"JΥ‰¦πO5΅,Άξkn]Ιέκ”φ6>"η;!Όΰλ–ήPΑΙͺψΟ¦Gδ2λ–TΩP>mPSyΙOΘ ¦Xχ,|7aΝ½ΦAβ;Ζ.uξR'ΚBλV#˜χhΎMU/-((X²f͚ΡΦ-A•H$&9Žσ·n!"’Μ‡WHg”ΧΦΦ6nΘD#WoΎKΎγ8O%‰S¬ChβρψΨD"q›οϋ+| ΐ4pΞF”5ψ›(€DρsλPίΏ†w«SΊj|P†nš'σΊw§ηYχ’<(nέ¦ͺ•žηρ”‚Z·nέαρxόY­ͺ—Πύ·†zž—>ΧΡ!αP(€Ί¦}ΕΊ"EM­ΰ]…”v6Ο—IΙώ ΰlλ–Ύ€ΐyΪ‰—6<$γ­[ϊΪΦYenσμ²ωPTgέΣ’Έ» κ΅οYw±;\D~†kΤ·ξ "3IUύ€Φ!ϋ#"‡‹ΘΟσnhhhHχ‡ΩΪ΅k <Ο{@DΡQΰ,·‘+€Ώ2Ν€~ ϋ‡&φe €=Οϋ!ψί>Φ­[wΈηy·tttΤ‰Θ7ρίaϊΫDδƒ4"2ΐ‘:QP©c§£:?h˜{|ΦΏ‘Gιcσ<™¦I< #ŸAqΨΑ‹‘΄;}oΆŸyδπΖς²[|Ρ ύŒuO―©<œ?θΘ―B•χFφΠ<«€ΐ‰ΦΦε―Ο}Π:‚ˆlE£Ρ:ί±ξ89noo_ξy^ΦuΗOοθθ¨π9λ""ΚJΟ[(σλ–~6Z€g6Ν“X‡τVσΗδ7Ο.½¦³#\'ͺ—HΫ«&ψcΑΞαη£’ΒϊΞ½`™;7€¬3@?Η₯ΦDdΟuέί¨κ“Φ(ΰ)Οσώ°rεΚαΦ1©RWWw”ηy‘ΗEδpλ""ΚNͺϊœuˆΘχΑΛ}ΞuέE~oέρΞrgi"‘ΘˆMiΒI$³=Ο{JU_πYt=πΊ_ͺeΥ‰‚jΙ’NUc‘ΈjσœΙC¬;ˆφgc…œμϋx@v<Ε«ΘπΔΖ I«{W·ZRΨ<»τνμL(p-€|λ¦CT•ΏaΐΉX²€Σ:$h[W\A±u λ›·οΈΛΊ‚ˆC“Ιδ…6Y‡ pAnnnάσΌλΦ][`Τ_κκ꒞ηέν8Ξœ’Β₯Β΅ˆ² Oq’΄F`»u‡ͺηyήΦ™ΘχύoXcέρ&¨κ‹‰DβJp–ΣoV\9άσΌ«=Ο[£ͺ•N>˜ŸΗΏeώAL`…oΈΑxq7"¬Ήί²Ž Ϊ—Νσdš$ρ˜€ρnη^$>₯ΓQπ›g=±©ΌτΞdŽ¬Λa:,.HΆžΕΠοΦ0χψkέ(Š/oœ'ηYg@ώγ―ΦϊΌuG_R‘[ ?πΪ…¨¨HZ·ΥΦYe*.Άξˆό„»Τ‰θ½΅ͺκ™ΖkνC’ͺΓ|έχύ'ΗΩ’H$ώδyήερx|*Rt\l]]έΘD"QΗoς<ο6©κ|t ߟІ°ΐάιΣ§wZ‡Qΰ%FΣώ! ""J™G|Ν:’'U½ΤσΌ#ΒαπEγƍk²ξΙΡhτo‰DβUύ‘uK/Lpk{{ϋ՞ηύΐ\Χ]mΥΟ€ξΘP(t‚ͺ~rάΈqŸ0€ΥkΡρ+W>yςδ-‹Qjp¨N”&Ϊ;δ—ΉΉϊm#ŒSœ€κM>nάAYK$$ψ%‚1Έ ’Α"Έΐ©Φ!hΛ}ΫnΞOJ'ϊυΒͺšίY‡έΦς’“9έΊTτzήyOD#ΎP__¦οϋ•‚~7yo&"πaU8ŽƒΒσΌ6Uέ""ΫμάΗΏ?]GΆλ8ιΉ9NUΏF_Άξ Κ"j@t¨\Χ}ΖσΌήυfŸξμμ<17ήg“)"‘ȏ‰ΔUύ‚uK/½ΐχ\νyήσ…B?~όγCΦΠАΧΡΡ1MUOp<€γΗ)άύΪ6rssπWλ"κ?ιω0Qυ䲝’r»uτ€Ζ™%φ;ΚJ›Ζω¦[wšΰ“o="s¬3 žZΊU ‹¬;Α(ζp ~fΜϋ*·YgtKx―u₯Ÿ’’’'»ύΜΆcΑˆΘα&˜Ί F"½8Έ&ς묀ͺ.°ŽΨ‡Q"r―ηyOΦΧΧΜ:ζ v.ΡςyΖΊγ €Έ3™L6xžχΌηyW{žχ€θZ CρΦ[oζyή΄x<ώΟσnN$/΄··7«κs~`€BγΜwQΥc­ˆ¨q§:Q:Ι έΞΞ+Π΅KΔ”8rζΞ}Šw S*5>(CΒ Φι@·ΏuΏ<=κ<έ׎³…ΰ(>cΪΠ;λ:;aΝ2λtΠ4xΛΧ”Xw€¨^‡₯K;¬;ˆ(=E£Ρ?Εγρ/‹ΘΠυf$eUύΏh4ϊΏΦDD”žTυ!ΉΘΊc?>αϋώ'βρψ?E䎎ŽŽͺI“&m·ŽjhhΘλμ윀ͺUu2Ίΰ›`’ͺFλŒχͺΈΈΈ½‘‘αΣννν/ «7έ9Nθώ€ηyMͺϊwΗqώΰεP(τ²Υ5―Ώώϊp8<ΡqœbU= ΐξ"²ϋχ νFία½κDŽCu’4’ψ«ΝΝ³KnVΘυΦ-J[jΏTp'₯L2„«ŒΆξHŒCψ™eGώϊάΕM£Ϋ6ΓώκŠƒρM:³ /k°IΫN-)DŽ\kέTηη?`ADι-ήΗ‡‰ζ:4‹Φ­[χυh4jέADDi*‹=γyήreΦ-ϋ³ϋͺ—œœœΦD"ρ€ͺ.‘"‘Θ*τΓu 6lΤ2ΐ8)ς}ΏHDŠDT΅HDFc)ͺκΠΎξιKcƌi¬――?Υχύ猡ξιc"RͺεΠΩΩ Οσ6Xΰu‰ϋΎ€u‘Pθ ίχ›\Χέz Ÿψ•W^Ι9rδΰd29ΐ@)H&“ο0VDF«κ9BUG‹Θ؜œœΑ@ϊ Ν‡κDŽCu’4Σ‘‡[C-ΈDp—“ˆ\·inΙΓ#+jvX·Pζk|P†"ŒoπVΎ'‚+ζΛcΞ³ˆ₯K;0»μ@/6k88μΜςΕ1/Ψύœ₯™dX0άΊΰγ{=ίΪΪzΊλΊ|PŽˆˆ™οϋ9Žσο·nι…aNιώx{Wp(Τu΅φξ!hKK ǁͺΒqΊ<ο―o}ίόP\Χ]εyή)"²€ϋα‚lε(TΥΐέc0Ξ€ΚΌ`BDύΓ± ’ƒ·mϋΞ_Xgέ|»ρτL;‰fΓBΕeΦiIπά%9– …•Λώ©ΐjΛ†χ°ΩW9΅`ας3ιΜ±T8w iͺŸτΏkAD™ΗuέUυ‹ΈΣ9½ό£΅΅υSά%DDD}%‹΅ψ­uG τρο=Ή[­ͺŸ`rο8₯ΗqxΕW­;ΊνLv$σ€eΎ±cΗommύ¨ˆάaέBoλπ-Χu―ΰ[ΗQfs]w«ˆ|ίΊ#έ©κ`λ†ήŠΕb ΐχhorsss²Ž ’ώΑ‘:Q:»F}Q Μ‘·½fΣΜ’χ[wPΖ1Ώ<¨βTλ†P»?@›Ρς»ύfώšO ―ϊΟF ιoƌ°γ8ΏE@^C*δ–OΤn°ξ ’μR\\ά‰D.‘³l³ξΙr>εΊ.β%"’”‰D"wxΑΊ#Ν₯εNυέ&Mš΄έuέΣάhέBΑγ8€'ΚPxC”ˆz/aM%€Zwtv„/&©ΟΤί#8ΞΊ##f`Ύ˜ξψϊDM£ ,ύΟ€:¦ ͺζWP ½ξi§ρ°Ν—˜bέΡEΦ'σ|~Ν!"3‘HδQΗq¦Xbέ’₯j|ί λΊOΚ'qΗτυ‘ς΅ Q:ςC‘Π—΄X‡€±΄ͺwKΊ{5€‹tXΗP`¬u'nADύƒCu’L Ξw­z8―iNΙ Φ”Βqς¬;2‚"sŽΆΞp€pΉ*zEAή‘'ŽXτŸU)\7#5•—ŒΑ΅Φ» ό¨ΩaέADΩ­¨¨¨ήuݏ«κevYχd Ή·΅΅υΈX,vΘoXϊΎήRΥNΛυ‰ˆ¨wƏΏBD‚τ~\ZQΥ!Φ }Εuέ;/"žu ™ΪΰΖΦΦΦ£ŠŠŠž΅Ž!’ώΑ‘:Q(XΈμο*xΜΊ£›ΐwξΐάΉΌ›™οc†uC&ρC8ΙΊ!?O‘λ¨ΦώΆXΒα’Βʚ[PQ‘LΑz™O;γή;‘—ςΎvΏuQ7F£·ϋΎ_&"OXΗdΈm>‰D.(..ξ“«Η1ͺ‹_§P&γI ”Ρ"‘Θ―€}ߟδΊξΥ}υ•ˆ‚‰Cu’ ΦδΥΪ­;Ίθ1Ν»j/± τ'ο κKjΏS5ν*ϊoYΥs ͺͺgζ?ώj}­“]šg—žhΉuG7υ“ΙΛx”?M,‹G"‘Ouί΅ή`έ“iTυŸΙdςΧuκΛΟ˝κDDt΄΅΅υ|5Φ!ι&“vͺο6nάΈ&Χu?­ͺ—‚'eyΒqœ©λ~>‹ρυ?QΰP(C ­ͺ]­"wZwμ¦"?ήZ>%bέAio’u@& ΖΟ§*ϊ~‡± CΫ5ΩrdΑšy}ώω³XσΗδ+p‡uΗn*rίπE―½dέAD΄/‘HδΡΌΌΌI°ΥΊ'΄Έ:ž8aΒ„>?V5 YοTηPˆ(οH&“sl°nI3΅S½F£w¨κΟYΗPΏyΙχύ‘HδSEEE±Ž!’ΤαP(ƒ„Ϋύλ4YwtδΓΜ†Π]’ Θ:#£ψ˜ˆXg.ͺy‚CΎ΅‡ͺhqaUυe…‹WoλΓΟK4Ωy€#¬;Ίmχ₯ύϋΦDDοeτθΡ»\Χ½QU'Έ9Q*νόΝχύRΧuoΠ/Η€'“IΣk«T•ΗΏ₯Ή &x"r*‚σž\:ΘΤ‘: ΦΉ;]UΏ `»uυ yQDΚ]Χ=.‹=cέCD©Η‘:QϊDM£Š^oέρ6ΕΜΖΩ₯g[gPzΪ2Q9ΦE0dσ<ŒΆΞ€ͺͺβCώ<"/9’/¨ͺ.Ί ¦ΚhMε₯³ ψΌuΗΫT~γ˜|(~cέΡƒWΰ·άjADΤΡht]$ΉTD"n°ΩΊ) ^黎D@ ή°TUή©NDD}"Φ8Žs€„uKmΨ°auD*D"‘5λΞug:ž>| UυΔh4:έuέΏZ‘=Υ‰2MEM;DΏg±›£TτgΦ”†4³³"N0žΆΈ:ΰ`οΕθ ςŽ,-\Έ|>Tωdp?ΞΞΫœcί!"W`ρκ6λ"’C‰Dήr]χϋŽγŒUΥ ,΅n ˆ—|ΦuέβξazʎDΣ‘Ίγ8<ώˆ(ƒD"‘Χsss§xΚΊ%θZ[[ρώDͺ=λΊξ΄ξ#αί°ξ‘}ΪΰΆP(s]wv4ύ‡u‡κD¨°²ζž·ξΨM ›g—N·ξ ΄3Ψ: #ωΑͺχΘ?&ΐΛ"rzΑš²όͺšϋPQΑ7ŸϋYSyι,ηYwΌMδ‰όΚε ¬3ˆˆϊJQQQk4½ΧuέψΎ_ΰFoYw₯XΊŽB=ΕuέΊϋ0Ίv₯”υNuίχΉS2–γ8|–²˜1cΧ]{šˆ\€ΞοƒͺfγfŠd4½«΅΅Υεp=XTu€«ΓαπxΧu/?~}zg$ω‘οϋπΊuOeιPP\\܍FοΚΝ͝ΰ[ΦY7e©ν~ο8Ξ‡£Ρh±λΊ7Ž7Ι:Šˆ‚‹Cu’ 5Όͺζ_ͺz―uG“† όCλJ δY7d"u˜;Λ†<Άb €Ε{όεFά,αp¬°²ϊΣω•ΛŸ΅hΛf~2y+ ‡[wΌMπγξλˆˆ2ΪΤ©S;b±ΨΧu?ηϋώ(U=MU@ƒuΫ‘‘W\ …\Χu?δΊξ-“'OήbέΎο‡ŒΧη ‘MDύ+77tUG‡:€|λ–nίέ2σ¨Γ½Ζ*τžDΠ˜³2ˆψΨeέΠ“Š> *εPΌΘ}­Nξ£+—ͺ1›4——.ͺ_°ξΨM «ς;Ϋ~nέAD”j±X¬ ΐŸ»?P__?YU?ͺ'8ΐHΛΎ°ΐ_<­ͺOΉΨέWΈS;Υ‰ˆ2άΤ©S;άVWWχγ8WΈ @֟ζ …²~¨ήƒ‰DͺTΥΧΧ(™L^,"Ÿ‚³1"Νω^πΗΞΞΊ‰'ςΨ}"κΥ‰2ΨΰΗ–mlš]φ?€ήaέ-δ8Ξ= s?vLΕ -Φ1p>ΆC¬#2:Αz2Ύ°³mαΦπ Ψ°ͺeΌ«ΚΨ–ΩGα@ΟΊ£…8_ΑβΥmΦ!DD֊ŠŠVX ΰW°zυj7 }ΐ‡DdŠͺ»A{€jω·οϋvηŸ‘Hd9‚sΥ~‰Hžε 3ͺΚο‹ˆˆ²D,ΫΰκD"ρkU½ ΐ…@phK΅l>ώ}ΊwMΏτϊλ―_œ““σψΐwΙR'€Ώ‹Θcαpψ±±cΗ·"’τΗ‘:Q†+Θ›όλ¦–8ΪΊ₯ΫδΑ»ΆύΐΦ!lκ`»€Ε[±iΖΦP‹W· 8P·v8!”ά£ΐpλ”έTυή‚ͺjOD΄&LπxήύΧV\9|ΐ€ΕΎοGEd<€±ͺ:FDGΧΙUωz³#¬@³ͺ6‰H=€„ˆ$T5!"u΅έ;π’ͺfΉ~(ΪaΉ>₯^$YΰŠΊΊΊkC‘Πωͺz€©ΖY)'"ά…½“&MΪΰώ°f͚HggηgDd€γΐk}χεM‘?«κ_\ΧέjDD™…Cu’LWQ‘ΤY₯‹ΰyδ‰FΉ¬ΉΌlοJ¦ύβNυ~΄κ ―”\!ΐΙΦ=4ζ憲Ž ²ζ8ΞΉy† |*tίQώχξ} ­]»v(ttt φ}?g_`8ή)"[‹ŠŠZχ·n$ιUoPˆΘ`˝κi5TokkΫβ8Ξ)»Ώγ8Ϋ“ΙδAa―ͺ­»C?'C‘ΠΆφφvήAŸFrrrρ}Γ„ΐzΩΎ}ϋΦaΓ†Ν0LΨdΈvΦ‹ΕbΫόΐ/=Ο+‘Ήͺ:@©qZ_λ@Χ‰;ΛUuy(Z&"ΛǏΏΑ:,]Œ?>ΰ&7%‰QΚUu6€!‹O;Πΰ9ψΘ3ιtZ₯'±όζ‘ˆR§ivι½Ξ·ξθ!‘t:¦ŒX°’>Ϊ«ΖωRœLβ5λŽLJblαη΄ΑΊƒ‚£iΦ”ˆ2t§Ÿ Ύ\XY}·ue>Οσnp΅ΥϊΉΉΉƒΖŒΓ#ΰ‰ˆθmέΧΌ|ΐI¦ΓξŠ—ƒ΅@€8€:U­ …BΛwνΪU[\\άnά–‘žyζ™pQQΡTίχO0ΐρLOαιG>ΊΞx ΐΏDδ…H$RΣύΧ‰ˆR‚Cu’,±qNι¨+Ρuμc0~]PYύ λ ¨ω’»)‰ΰ©*}iηΘs0ΰκR?#2pؐΑ‚j'Δσ k> ΎH%"’H$·«κ%FΛ']Χεk]""Ϊ―D"1ΐU=ΐ9ZU#Hύ‰”-ΦΨ AUγκD€ΞqœΊ’’’7SάCος<―ΐ΄eΠCτh'€ΧTu9€jΥͺϊJχιDDf8T'Κ"Νε₯—ͺβ6λŽT|²pAυSΦ!L›ζI€¨uGyuδ9z¬uGΣμ²_z±uGm*ώΤΒΚΧxJ₯„ηyΏπE£ε·Ίœ‡ž‰ˆ(mΤΥΥ …BEͺ:VDή―ͺcŒp€Q EDTu(€€Αz^ϋŠ«~z~4©κV[Ηyΐ›Ύο―WΥ7ΗyƒχS§-gυκΥEŽγL‘Ι&ˆ©κ"2]Ώ6,Ό `½ͺ6X-"uθzHcu$Yξ@'’βΡDY$ϋˆ;›oώ€)Φ-έD|ά½uVΩ”a —7YΗP ^‡r¨ήg―['Pp4Ν* A°N \ρ:₯’ˆn6H«ϋΤ‰ˆ(8Ίwμ.οώ8`o½υΦaΫ·oοŒΕbmύSFδO˜0ΑΰxbΟΏYWW7ΐΗq‘BίχσE€ΐ0tx:ΐξ\°οSP}t=œΡ!";ΠυΰΖ6Uέ’ͺ"¨ͺ‘Phύ]»ΦσJ"JGͺe“%K:Q^ςM¨<‡Τ΅/cUτw>cB€ψ€Σ¬32†ƒeΦ  §—ŽΑ=ΞΧψwΑφ7ZGQvQΥBΓε9T'"’”5jΤΞQ£FYgP€t? QΫύADDϋαXQjTΦ<Ε]Φ=)πιΖΩ%YwPπ¨ƒ%Φ ™ΔIβoΦ 3f„%‰‡Œ°Nι‘Ση",YiBDDYgΈαΪͺ₯ Υ‰²ϊ­ίΠ`έΡ“@nošYVjέAΑ²kžGΧqQtθΆΟΑ+Φd―ω°M?p’uGOόhXε²[wQV2Ϋ©ͺͺ₯ Υ‰²PαβΥΫ ψΊuΗΒΡ‡ζŸgBΑQtΆxΙΊ#(π,Ξ€uΩjš]2[E.·ξΨΓςό<½Α:‚ˆˆ²VΥΒέχQΰP(KTV/Θ£Φ{(Τ²ύ§Φ8ΆΘŠ'­ΘΦΦΣJ£ΉΑΊG½ΣQω*jΪ­Cˆˆ(ϋ444`˜°Ρpm"""""":ͺe±ίΏ@“uGO\<«€άΊƒ‚Γ αάa}h:’@…u:mΒ?„G f“Šή0lαr^K@DD&ΪΫۏ0NxΣx}"""""":@ͺe±‘‹jήTΡοZwμATδξΝs&nBΑ0ό,}Šη¬;™‹GŸ«›­;ΘNSxΐν¦ZwμaΕΆν;bADDΩKUΗ'ΌeΌ> Υ‰²\aΥkwC°ΔΊc#BšσζΞ Y‡P@8Έί:!ωʟΏlΦ\^zTΎbέρ‚GεΌ’%‰Vλ""Κ^Žγ˜ξTWUΥ‰ˆˆˆˆˆ‡κDΩNU8ΨiςŠM-΅?²Ξ €p0»ͺ lΨ–…Φd£yΞQΗ¨β7Φο’Έ†ΗΎ‘5U΅>‹Cu"""""’4Α‘:aXε²T·ξx7ΉͺΉΌlŽuΩy–ξPΕΦιH7Η>₯mΦ”z›f–Ό_}§ΐ λ–wΏδω3λ """ΛΕΗYoΉ>8Υ‰P°sψΝyΙΊc’ͺχo)/›lBφ†qΫ­;Μ γ·Φd`Ϊ΄œpH`}Wμ; ΆJ8η|TT$­SˆˆˆDd’ας*"k Χ'"""""’ƒΐ‘:uY²€ΣιΤΟΨa²‡!΄bCω΄€ν΄€Tz–6Šp@|ny–νχ4₯@Σα­Ώ„β£Φ{ΰ’όΗ_­·ξ ""κ6ΡjaUέPTTΤj΅>Υ‰θmΓWΗEπλŽwQ”ΤΦίYg½άn°ΩΊ#Ml‡xd~6jš]φM¨|ΕΊcOό1Ώ²ϊ~λ"""hhh(TΥαVλ‹HΒjm"""""":xͺΡ;δWΥάΰIλŽw“Ο6•—}ΥΊ‚l =KψΎuGZ\Vp–n΅Ξ Τj*/9Π›­;φβ §C7θ'"’μΥΪΪjyτ;Τ―ODDDDDDCu"z'U…θW ή0NυΆ-ε%°Ξ [#^Ηέ^΄ξ2Q<=ςloέA©Υ|Ζ1EPy @uΛ|Gτό‘OΤ4Z‡ν …޲\_Uλ-Χ'"""""’ƒΓ‘:½KAeΝZρυ2뎽ΰ¨<ΎωΤβΡΦ!dθυαγ ΄[§Τ.8ΈΨ:‚R«ι”iΓ΄³³ ΐHλ–wQόbXeΝί¬3ˆˆˆzRΥc-Χ‘–λΡΑαPˆφ*aΝ½yΤΊc/Žε„n(Ÿ6Θ:„μŒό¬ώΗ|ΟΊ# .qΆ²Ž š6-G΄ΝPb²'^.€?°ξ ""Ϊ“ͺcΉΎοϋ΅–λΡΑαPˆφ)$m_ΰ-뎽86mχ@D¬CΘΈ³q‹ώdέ0Œ0ͺϋdπ)ΓΏSj>ΫΊ£‡RKύΠθςE­ŸB‘ΉZΉ¨~ Sςτ$ίl]³­5O=ζ’ϊΦ!b₯”±ν7}Έ&/kK)yγ‚ΥΓίhέ{θō_ΏŽ­qϋΐ¨μ›wΥnwΰ?%Ή³uʏT3PJωΔ–•KΟnB{ .ͺί8ζ–<₯–όL’ϋ[χμ‰šŒ¦δ-Ηά’Ÿ<φu}λ½Ρε‹ή—δΥ­;z©₯Όήκ mέ{ͺ”²’qΒ-§žzκ}ΨFu`ŸΝΎκ›ί/ξK’loέΓQέΪύτθKΡ:„Iΰ]΅{μEυ#ιΛ’$˜Ιϋλv[Iώη¬ΎœrΜEυyWνΆβΠ[Ύψ7KςζΦ½Τ”ΟΟίΊΰ­­;`Oέ~ϋνMς’– ΅Φ/·|}φQΨ/σΈα[5u?IŽ)ε3[–/jΒδpΜ…υ»ΗόTύω‰Ύ<‘&—$ΩΊ)IR³5ΙΣ—SŽώ©ϊΦ9ΦΡΦI΄1ΊbΙHΙ―Άξxw̘θ©\sΝxλΨS΅ΦΧ%ιoΩPJωjΛΧ`ί•Zkλ`ΨΌbρΧδg[w<Š;Kwβ™σΌρŽΦ!L.|’ΜΈ›W–šWΥδΗρΛΧ$Χ–šφυη―/¬“cΰ§™ΡKώGI}GλŽG±£SΛ3ζ]]λΨ eddδΦ$OlQΚI .τ#SQ8 n?gα¬9GΞώR)YΦΊεQά<0ΠyΦμΛ―Ώ·u“Σ}Ÿ(§Υ‰Ό* zV’Ύƒπ2γIΦ•’ΏλNδ/Ž}e9―Α4Άrρ»Sσφ֏’¦ΦWώ«Φ!°76mΪτ‚ZλՍ36 -iάΐ>2ͺΜθKŸP&r]’cZ·<Šυ}»κ9s>=μhmΥ–•Α‡KžUJΞI²4Ι“’»?Τ=In©Ι·:%ŸοŒηζ§ϊΐeΚ›O¨§€Ύsޚαίlέ{kddδ‹IžΩ²‘Φϊ['Ÿ|ςdΎή€GaT¨-+=§[Λgrpžπ=0JωΗ‰²σωG_qσΦΦ)L-›¬Μ›˜‘S»œ˜’£Νμ$³S27%›“lKΝΆZ³΅―“;Λxn1 ³;£+ύF©ε­;vγ―ΧΏ2>p`Š9/ΙΪΦ΅Φ§Ÿ|ςΙΧΆξ`ίՁnlε’_I­ΏέΊc7Ύ°sggωcΎώΑΦ!ΐαk ωž$_<’Ύ0— οl{©ŒŒŒόc’§4ξ:6ΙDγφQ§u0ύ Ωπž$έΊc7ž=cFχΚο―Z4»upΊ€tΖV,ϊƒ)0¨ί·«ΎΜ ΐT΄iΣ¦ Σ~PO’+bP˜ŒκΐWkέ²mΫk’|­uΚn<«{ΉzτάSζ΄#«Vυ[τ’rqλ”έΈΏ/+ζ|zx΄uμ­‘‘‘Ή΅ΦχΆξH’n·ϋ‘Φ μ£:pPœtΝ¦γέϊ$wΆnٍ§•ΎYŸΰE‹ζ·ηž2stΗM—•δ΅­SvcgI^>g͍ίnϋθύIί:"ΙO|β‘uϋΗ¨4Η\9όέ­η'ΩΦΊe7ž<1ΠωάΦ ž΄ u0}}ο…Kάά™΅¦Τ\ΠΊe7jj^?oΝ†/΄€}±qγΖη$ω™ΦIRkύ‹$έΦμ£:pPΝ»rψŸJ)―Κ€DR=k|Χΐg·<νθΦ%ΐτ³υ‚'-˜9£ϋωZςόΦ-»UΚΫΧnψ‹Φ°/6nάxl)εΓIJλ–$ιt:mέΐώ3ͺέΌΥλ―Hς+­;v―ž5žŸίvΑc[—ΣΗ}ηŸώΈρ]_¬ΙS[·μN©υ}ƒ«ΧNλΨχάsϏ•RV'yBλ–ΈvαΒ…·΄Ž`ՁCbpΝ†ίK©—ΆξΨ­šΕ»vuΏϊΐω‹žΨ:˜ϊΖ–/]ΤΧψjRΟlέ²{υcσžrΓ/΅€}ΤΩΎ}ϋG“όxλVJyλ £:pΘ ~gΦΕ)Ή¦uΗšθ–/m>oΡhL][V,}n:έ/'9±uΛξ”δsƒGδ΅yWδWuΐΆqγΖ$Ή uΗΉσŽ;ξψTλ £:pθ¬[·«ΏόΒ$7΅Nُ­rΝζσ–<³u0υl^±δ΅έύ»ΤΜmέ²ΎΊ½ΜΈzx*|‘ό_ψΒϊO<ρΔ?NςšΦ-?Βϋ†††~±uŽQhfσyKžY;υκ$³Z·μš’wήπξΦ!ΐδ³eω’Αn§~25η΄nΩCχuKωΙ«Χίά:φΦέwί=ηΝ—%ynλ–alηΝ§œ~ϊιχ·ΰΐ1ͺMm^Ύhe-ε“Iϊ[·μ‰’|xήυΏΊ{ψgχΏτ΄Ύnχo“œήΊemξΤςΌΉkΧ_Χ:φΦΘΘΘ©IV'9­uKΏ844τΎΦXξTšš·vxujωΉΦ{ͺ&―{¨|~ΫΉgΣΊholωβσϊjχ3Uυ’-έR_`P`*Ϊ΄iΣͺ$ίΘδΤ7ξΨ±γ΅Žΰΐσ€:0)Œ._tI)εΧZwμ±’έnV,X»α¦Φ)@₯”±σrJύ­L/R| ΫνΎ`Α•7όcλΨ###sK)Ώ[k}cλ–έxωΠΠΠ'[GpΰՁIclΕ’K“ϊ†Φ{a¬SκΛηώ|λΰΠΉοόӏκλ|$ΙKZ·μ…mιΤ ^1ό•Φ!°7FFFž›δO“œΠΊe7>344τ’$>Ι0 M•'«€Γΐΰ² %Ι_ΆξΨ ƒέZ[±hΚ_μŸ-η.>Ή―;pm¦Φ ώP©u₯A€©dddδ”‘‘‘Λ’|6“PpbbβΏΖ 0myR˜\Ξ9§τ¨ϋώΊΤ\Π:eo”Zί7οΑc~9Χ\3ήΊ88ΖV.^žš?O2ΏuΛ^ΨήIgΕά5Χ}λΨ7ί|σ‚3fΌ5Ι[’Μlέ³'j­ΏpςΙ'Aλ£:0ω,[60vάßL²’uΚή©_šΨΥ½θθOίxOλΰ:ηœώΡΩχ½£$οΜΤ:εggj.\»αΚΦ!°;7n<Ά”ς_’όIζ΄ξΩ Χ ύd’nλ£:09­Z4cl{ωT’s[§μςtΊ«³ ΣΓθKŸPΖσρ”<½uΛ^z¨ΦzΑό΅ΓW·€GsΫm·Υιt~>Ι+’Μjέ³—κλλ[φ„'<α¦Φ!\Fu`Ί{Υӎ8rϋΦ«’<»uΛ^O-ο\»ώ=­C€}7Άbъ€όY¦ΦqοIς`'σωΐduΫm·Νιt:Λ“όη$Οlέ³―J)?»pαΒ?iέΐΑgT&΅ο½pι‘3fLό]R~²uΛ^«εγ;w•7<ζκλlμ…©{ά{’l)ηΞ_³ώ«­Cΰ‡έ|σΝ Ξ+₯\˜δω™"χ₯χRJωλ… ώTλ £:0ιm~ιYσκψψη’<ΉuΛ^+ΩΠW'^6g͍ίnμή–εK†j©―ΙS[·μƒο—n}ΑΌ+‡©ulάΈρ”Sl‰dIDAT„N§σγέnχΗK)1ΙO$ιkέu€άΌcǎ§œqΖΫZ‡phՁ)α-š?ή_.%ΛZ·μƒ­₯֟Ÿ·vψΟ[‡½Xτ†’ςή$³[·μ½ςn­Ο[°vƒ;]8€nΏύφyIN›˜˜8-Ιi₯”3j­O-₯Ί3΅σͺΑ΅Χ©ul^Ύψ‚Zς‘$G·nΩG›:₯σάΉ«―ίΤ:ΰpvΛ-·5cƌ΅ξψQj­3j­GώϋΏ^J92ɌRΚμ$s’Μ­΅ΞωΑŸΟK² Ιc“Μ:”½“ά― ½§u‡žQ˜zΞ=eζXί—%ueλ”}4‘Rηΰwf½3λΦνj‡£ΡsO™Sϊgώ^jycλ–}Uk֍χeω±Wlψ^λ€Γέ¦M›Skύnλͺ?z]λΪθ΄ΨkW}ϋαΑ‰ν«’όmλ”}Τ—Zή6vάßίό³Nj‡›-+–>·τΝΪ0•υ$WOόX=Η 09,\ΈπϋIΖ[wpΠόύΨΨΨn@;Fu`jΊκΫρ€—'ωhλ”ύπŒ:>~ΓΨς%oΛ%ΕΏα Ϋό³ζ­\τ‘nΊŸMrbλžύπ‘Α{f8ζ²αm­CψέZλ½­#8πJ)_έ΅kΧKŸόδ';a ΰ0ζψw`j[΅ͺoσφ›.­ΙT?ŠρΛέΎΧ}ε?έΪ:¦£ΡεK.L©X’c[·μš|pώΪα·Δp“ΞΘΘΘ7’,kέΑSkύZ­υ…O|βhέ@[žŒ¦ΆΛ.›˜·lψ ΅”χ·NΩOΟθλL|sσΚΕΏΰ©u8p6Ώτ¬“ΖV.ω»RκeS|PŸHκΕσΧlx³A`Ί§uΤ7Ξ5¨xR˜F6―Xό暼7S †ν–ςϊ«Χίά:¦¬KJgμ‹6₯ώ~’Ω­sφΣΓ΅δΥσWoΈ¬u½mΪ΄ιC΅Φ7Άξ`•RΎ500πΌγ?~΄u “ΓTžώΕΌ5>”W'ΩΩΊe?=­Sλ7ΗV,~k–-hSΝθŠ%qlέ’o€Τeκκχ§ΤηΤ&ΏZ«'Υ§‡Ο”RžcPΰ‡ՁiepΝϊΏμ”ϊβ”liέ²ŸŽHς»›Ϋ1Sϊϋ/šχ©oω€>ΐ±iΣ¦•΅Φ+Zw°O&j­ΏxςΙ'°u““'ՁiiπΚυJO&™.χ’//}έ›Η–/y[Ξ9§Ώu Lc+­{άΓ7Υδύ™.ƒz©—n;ϊ<ƒ:ΐΤβIυ)k,Ι‹ κ<OͺΣΪΦ•§=^g¬Iς­[ ͺ5?7ν†k[‡@+£+Ο<³ΣνΌ―–LŸλJv₯[.\»ώΦ)μ½Ϋn»νψN§sWλφΚηj­―;ωδ“ύsΰQՁιοάSfŽυΝΊ4Ι«[§`kϋ:υΏΝΉbψΆΦ!p¨ŒΎdρ ₯[ί‘Z^Ÿ€―uΟ4Ϊ)υΒΉ«‡?ί:€}sέuΧ ξˆᦂνI.ϊ½$έΦ1L~Fuΰ°±yΕβ7Χδ½™NŸθ,Ω•Τ?έUΚ―{Ε†ο΅ΞƒeλΚӎΟΐ/₯–7'™ΥΊη@ͺΙ·»ΞŠ£―Έώ–Φ-μŸ‘‘‘ο%9Άu½ΥZΏVJω™‘‘‘[[·0uՁΓΚ؊%η&υγ™.w/«m5ωύ‡Ž8κ=Η_vνφΦ1p |Υ’Ωύu~.₯Ύ=Σοχm’¬-ύύ?νώt€ιaddδŸ’,mέΑto’_Ί4ΙD릣:pΨ;ρ’t³:ΙZ·w—Rή9οΙ>’wUGY2e}ο…Kœ1£ϋ¦$Ώ’d~λžƒ ›’_\3ό[ρΑΐ΄±iΣ¦Ώ«΅Ύ¨uΖφ$LςΫCCC[ZΗ05ՁΓΦ ž΄`|Wί$yvλ–ƒd$΅ΌgπΑΞ5׌·Ž=uίω§Υίx]-y[jŽkέsŒΦZ_9νπΥ­C8°FFF>œδ΅­;HςΘ]ιŸμt:Ώ|I'έή:€©Ν¨ΎV-š±y{ωί5y]딃hSjωγ:“έΦ•§½«ΞΈΈ$Ώd°uΟAt}§– ζ]?:€oγƍο.₯Ό½uΗan[’”R>ΈpαΒ[ZΗ0=ՁΓή؊%'υχ“ΜhέrέVJyχΌ­ ώΒΈΞd2zξγΣΧύ₯’Ό!ɏ΅ξ9ΘώrG™ωΖγV―{¨uΗ¦M›.΅ώAλŽΓΤ¦$š1cΖόρ£­c˜^ŒκIξ_±θ©”O$9±uΛA6RKύνΆ>ψ']³iGλ_cΛ—.*ιΎ₯–όt¦χ΄$%»JςKσVoψ`λ‘‘‘—%ω›Φ‡‘ZJωb·ΫύΰΙ'ŸΌ:ΙDλ ¦'£:ΐ­”ς•Φ‡;’όU’?ϊvλ¦?£:ΐ+₯Œ·ψ—Sκ»“τ΅Ξ9v&ωλtΛο ^Ή~C릧±η/›[f=όšZλ[RΚI­{•š|ͺWύΩ9Ÿv-ΐaβŽ;ξX8111Ίcš«΅-₯|dhhθο“ψd‡ŒQΰGΨ²bιs'ύXIŽmέrˆΤRσΉn­οΥ WΗ8ΖΞ[²8}έ‹SΛ«2ύοKa₯”_\½ώC­C8΄nΏύφYέnw{λŽiδξ$W&Y»cǎϜqΖ;[px2ͺτ°ν‚₯Ηξά5ρ±’ςάΦ-‡Ψ])υcIώhpυπ­c˜Zy*}ΗωIωιš<―uΟ!WscϊςŠΑ+6¬o@###£I[wLQέ$ίJ²ΆΦΊζδ“Oώf<‘ΐ$`Tx4ηœΣ?zΤχ­ΤςφΗΑ«’]©Ή2)5IiέΤTΙ•e׏Ύβζο΄N`rωh’W΅ξhlg’Ϋj­Χ•Rn(₯ά8>>~Γ)§œ2: φ…Q`/m^Ύψ‚Zri’­[λ¦ζ«₯δύ›}Υ7Ώί:ˆƒcτ%‹OθLδ‚ZsaJž–Γ}HΔζΤςΆΑ΅λ/mΐδ²iΣ¦ί­΅Ύ΅uΗ!°%ɝIξHrG­υŽN§sΛψψψπ)§œ²)ξB`1ͺμƒϋWό‡ΗχeβΟjςΌΦ-“ΔΞ$Ÿ)%—υυ_uΤε7έί:ˆύ3ϊ’Eg”‰r^Jy™'­š|j’[ίtΜ•Γίmέΐδ322ςί’Ό·uΗ>K2ϊƒ·c΅Φ±RΚX’ΡZλ=Nηφ$w”Rξ<逓6· €CΙ¨°―J)£+Ξ|K©εέIŽh3‰L€ζkι”΅™Θ•ƒWίΠ:ˆέϋή —9cΖΔsRΚ‹Σ­/>ΜοHοεϋ©υΧUλ&―[o½υθΎΎΎ'ΰvn)₯³―ο\JyΈΫν>τΟίξλλ›Ψ΅kΧόν™3gŽxβ‰cϋ Σ•Q`?=°βŒS&χΗIžΥΊe’Ί#%W₯–΅1ϋšγ/»v{λ qίωKO럘xq-εΕyδΧοΜΦM“VΝe݁‹]spψ1ͺ₯”±‹ί˜Τχ€fnλœIlGJΎ^»υ }₯ο*_=nυΊ‡vnμ·KJgμλ‹ΟL'ΟJκ3RςΜΤΧ:k ψn©ωΉyk7\ή:€6ŒκΠθΉK/}έ?J²’uΛ±35ίH'_¬Ι'fΥkΉlx[λ¨iaΩ²ϋ³ύμR:Ο(%ΟJςτ$σ[gM!)ω£lŸωΞΑΟΫ:€vŒκΑθς%¦Τ?,Ι±­[¦˜‰Τά’’λJr]-υΊχ}λ1W_`λ°ImΩ²ΡΗm?΅SΛ“»)O.5ONΙΩIŽh6՚u΅Sί΄`υπ7Z·ΠžQΰ ΩΊς΄£Η3γ}©yUλ–)n"%7Φn½“ςΝn_n.΅ή2ΈzψΞΦa‡ά%₯³εΊ%O˜θNœΪ)ετn²΄$g§δŒΤ ΄Ξ›κjro§”·Ν[³αΟγ$~ΐ¨pm^ΎθœZΚ“,jέ2Ν<˜δ–$·–RnκΦzK§[oι›9qΧQ—ίtλΈ}vIιάχΝΣΫ©3Oμt'N«rj©9­–œššS“Μl8 M$εοΤΌsξΪυc­c˜\Œκ‡Β9ητož}ίΟΥ’KR3·uΞa`{’;kΚ-©w§ζ$7₯ήένΦ{kζY}›}ηΐXΦ­Ϋu(‚ξ;τ£ϊj`©LιΜ«έξq΅t—’:©―5Orb’Η&ι?M$IΎV:έ7Ν»β†o΅`r2ͺBχžΏψ1ύέόvI^“€΄ξ!I²-Ιζ”Œ%K­–RΆ%I­uWJΆ%IjgWJwΫ?ΏSιfFνδΘGΎ_θ”ΜN’nM'9*Ιܚ &™—GήφŸ»³)₯ΌcpΝ†;κ€GcTh`Λς%Oξ–ϊ‡I~’u fFSΛοnypλNΊfӎΦ1L~Fu€V.)ΡugΎ>)ΏY’c[ηΐ4χP’dΗΜχ ~vέ–Φ1LFu€ΖΎχΒ₯GΞ¨§Τ·'™ΣΊ¦™n)ωdϊϊyή§Ύu{릣:ΐ$±ν‚₯ΗξΪ5ρΞ€Ό1ɌΦ=0 ¬©₯ϋίη―Ύα†Φ!L]Fu€Iflε’“όjjy}’ΎΦ=0Υ”δs©ΏΊ`ΝπΧ[·0υΥ&©Ρ•gžΩIη]΅ζΒΦ-0Τ$WvΊΉdξ•Φ΅Ž`ϊ0ͺLr›W,~v7ε%υ9­[`κ&Ή,΅σξΑ΅Χ·Ž`ϊ1ͺL›Ο?σ¬ΤΞ―5/ORZχ@cέRςΙ‰nή΅`톛ZΗ0}Υ¦˜-+—ž=‘ξ―–š—$ι΄ξCμΑΤόy__}ߜ+†okΐτgT˜’FWžyf©·%yE’ώΦ=pP•άSk.ƒ£.ΏιώΦ9>ŒκSάη/zβD-Ώ˜šW'9²u`_­%υθΛsΝ5γ­c8όΥ¦‰ΡsO™Σι›υښΌ9ΙΒΦ=°ΊIJ§ώΞΰΓ_iΐαΝ¨0έ¬ZΥ·ω‘›Ξ―%?ŸδΩ­s`/ά]Kύӌχ]:ͺλοn‰Q`ZΫΌbΡZς¦Τςͺ$?ΦΊ~„‰’\Σ­εω.ψ”#ή˜lŒκ‡­+O;z’;πͺΪ)―KΝβΦ=δζZς'3ϊ;™}ωυχΆŽ€^Œκ‡™ϋW.zJ§–Χ₯δ©™ΫΊ‡ΓΚƒ΅ΦO”Nώdpυπ—[Ηΐž0ͺ¦n?gα¬9G΅’Sκkςά$₯uΣΓI>[R?1ήΤΡWάΌ΅uμ £:Ω²|ΙΠD©―.Ιͺ$OjέΓ”·3%Ÿ-΅^VwΜΊbπ³λΆ΄€}eTΰί]yζ™© μμ₯‰Τ|­”|’ σqχ€0]ΥθiμΌ%‹k_χΒRΛͺ$§΅ξay €|&ΙUύύkg_υΝο·€Ν¨ΐ;ρ’ΝK“œ[“eI:­›8τJκ­IΦ–τ]5χžΘΊu»Z7ΐΑdT`―m]yΪΡ»Ί3Ο)ξσRΛΚ$mέΔA3žšLʚΪί]3o‡ol‡’Q€ύ³jUίθC7ύxIΞMΙ‹“œ•€΄Ξb•μJ7_O'_¬Ι'fΥkΉlx[λ,hΕ¨ΐ΅νά³ΩΥ·σ'RςτtΛ3ΙSS3ΠΊ‹žΖ“\ŸR?—š―dΗ¬όμΊ-­£`²0ͺpPž{ʜwΔ3’ϊŒΤ<3%OI2£uΧaμ»IΦ•d])υK[gΝωκρ—]»½uLVFu©»W=νˆΩn{JJχμZΚΩI9;©§'ιkέ6 ݟd]jΦ•NYΧ/λζ_uύέ­£`*1ͺΠά=+—ύΨΜΊsiIχμ’rvMΞNΙ™ŽίC%»R³±–άXjn©΅|«―SΦΝ]}ύ¦Φi0ΥΥ˜œ–-Ψς؝'Œ'C}₯žYK=£Τ2T“‘<ςΗαθαΤl,άΠ­Ή1΅άΠ—ŒŒ=Έυ†“Ω΄£uLGFu¦œ-Λ— ŽΧ‰Sϋ:ε΄”ΞI5έΗ'ερ©9!Ιγ’έΊq_”δ{ݚ»RrW’;Sκ©Ή«vλ]u’ήyτ§oΌ§u#nŒκL;·Ÿ³pΦό9Gίο<–zbMS:™Ÿd0έ2/₯;/)σ’ΜK2ψƒ·³pΖC)Ω’šϋS2ZkξοΤŒΦ’Ρ€ήWKΉΏS3šRF;uό;£ΫΆίεis˜|ŒκG†ψΑ#:’ΣyΈ―۝9'I­%2ο_ΎS)σΖk-}5;KΙƒ΅v'Jι<πƒΏ;–$s\°5Χ\3~ΘΐAaT€:­`²2ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ £:τ`T€ŒκΠƒQz0ͺ@FuθΑ¨=Υ ‡쳩 9ΰΚ8IENDB`‚ignite-0.5.1/assets/logo/ignite_logo_mixed_light.svg000066400000000000000000000130471465426447700226630ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logomark.png000066400000000000000000000652111465426447700211460ustar00rootroot00000000000000‰PNG  IHDRιιi=l pHYs,J,JwztM IDATxœμένqT˚&μΥύ_»,c@…h DPc: cΪ ,ˆ2ΰ ’@²`Ώ± Ω‘ϊ\uηΚλŠΰΧLο“Z₯P­;Ÿ'ŸόΏώϊ«οω ƒ!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:p0ΛΩτεlϊΒ'ίύ§η ­η]ם—ŸΊ{ηC!Π­p~δΩΐ―„t`ο„sXμΝr6}R‚ω™p€+αό’λΊ—ž.¬NHvF8€νιΐΦ„sΨ !ؘp»%€k[Ξ¦ΟJ8?υτ`w„t`e{ η_|πwΘσΏ|&Π†εlzQξ$Π ”J:Œάr6}Qͺη&Ά@8!Fͺ’sη_Φ„t™rξόΌλΊΧ•όdŸΦ„t­νP7!Fΐ•j0¦»@εΚΤφO:ΤO%*΅œMŸ–κω‰ΟΖA%*TͺηO@€qQI€Š,gΣge0œp#$€@Κ΅j}υό•Ο ΖKH€pΞ@;œI€`Ξ@[T κ9΄ι?ώϊλ/=YΞ¦ηεόωQ ŸΛdΎψ€e@•tQ†Γ½λΊξΤgmr&,gΣ]Χ}Π mB:Ψr6νο=Ώ­΄·χΣξb8p›J:ΐr6=λΊξƒ€ά€’*Γαϊφφ—ž;p›Ρή¬X@SJ@oατχ]םMζ‹―kV$€Ќ†ϊ?'σΕeΐ:Vρ$‰0!€&4Π―J{ϋ§€΅¬κΈŽeΐ0 Ž`τ θ}{ϋΣΚ:p‹J:£ΆœMŸ–€~4⟳¦φvΰB:£Υ@@ο§·?S=€ρΠξΐ(5Π?φCΧt•tF§€ώοΙ|q°`Η„tFeδ½oo?ŸΜoΦ쁐ΐhŒ< Χx½°&g…‘τW€6¨€P½‘τ·“ωβ,`ΐT¨ΪΘϊ?th‹J:Υq@w94J%€*8 vώΪ%€Pτ₯‚ώ%`-ΐιTe9›ώ1€ήˆλϊΧ=οΔUθ—³ι“€e@!€jŒ8 sΐqϋήΨ„…ΑqTαF@?Ρ'Φˆ;ŸΜoΦˆ7β€n‚;π νξDi@ΏΠ€»¨€ξrdύs θ‰gΓ€SI Φr6νΟjΏΡ'τQ@’’@€τ·Np*₯’@œεlz. 7ΕlPιDYΞ¦}˜ύ׈>•?Γϊ‡€5ά&€@‘έ€ΛΩτEΧu3’Oδξ@Φ‘’@„εlϊ΄λΊ1ZX›ΐΑ•€ή·aδΣΠ€hwΰ –³ι]Χ½I@Ώ.W¬} X P!•t¦τΎ‚~<‚OA@ίά΅.vMHΰϊ–π“|5τ/kΈνiΦrΰp„tb9›φύωž~UτΙ|‘€BH`pε.τ—#xςZά€ԈξBΠ€̈ξBΠ€½čIξ΅_΅6†€~°†›Ns–‡%€°wzJH`—#ΈjM‹;°wB:{΅œM/F0Ι]@!€°7εͺ΅Χ•?a}ΛΩτΙθHXΐ^”Iξ—•?έ±τ/kΈMH yΐ>”Aqο*7ζ zbH€ζuB:{τγΚξ -ξΐΠ„tvj9›^ŽΰήλLζ‹λh‰vwšΧ ιμRχͺς‡Ϊτ7λΨ§―kh^'€°+#ΧB@οiγ€PB:[Ι Έ? θ@0!€]¨}PάΫΙ|q°Ž–=kύ@'€°­εlzQω Έ> Ÿ¬cH`€PB:[Ξ¦/Ί{]ρόά`@ο&󅐑„t6²œMϋiά5Ÿαώ¬Ε:Šιξ4―ΨBΝƒβϊ€>™/―"kUΝ3 `g„tΦΆœMϋ«ΦN*}rΧ]Χ½Π»knXK9‡ώͺβ§ΦWΠέ¨‘€¦ ι¬lηΠ! Ghžΐ:j>‡ώΟΙ|QσΓΩ¬€@B:+©όzϊeΐ:’$žΙWI yB:ͺόϊΗοB―”@σ„t΄œM¨ψzϊ‹€u$tSλ9tW­=,ρΉ< X”ΐ½–³ιyΧu§•>‘ώͺ΅/λ`uxV΄NHΰNΛΩ΄―jώ«§γͺ΅Η%>!€ζ ιό¦œCWι“ω·«Φz  ΦΫ`g„tξrΡuέq…O¦Ÿδ~°ŽZ\·ώ ΐ/*ΎnΝ$χυΕ΅Ό—cΠ,!€ΏU|έZ_>3Ι}œK iB:7½©τΊ΅3ƒβ6’8ύ^H iB:ί,gΣ³λžWψ4ώœΜ΅Ή;΄Δέ€¦ ιτύIΧu—>‰χ“ωβ"`΅r<Βιt•ΆΉ_υmξλ¨Yβgk€ƒ·œMϋ+ΛN+{ ύ ΈΕc#€4¬΄ΉΧΨ.~nPάN$>ΓΪ6Œ`§„t€ΆΥΨζώv2_ΤxM\GHhT₯mξŸ'σ…sθ»u•Ά εljΒ;ΝTi›ϋ·sθλw₯@! M5ΆΉŸMζ‹Δ@Y»Δ–w•tš%€4f9›Ύ¨°Νύί“ωβ]ΐ:Ζ(qxœJ:Ν²œM(UτšτηΠΟύžξJ:ΪR[›»sθϋ§’A„t€F,gΣg]Χ=―μ§u}+ιξJ YρΧ_ωτF΄ΉχΣγŠ~·[Ζr6M|˜ΈΗ€©€΄αΌ²€ώΉ¬™a\>gηh’0rΛΩ΄;―+ϋ)ΟTQ•x.ύIΐ`pB:ΐψ]Vφώs2_$†Ζ1Kάh’0bΛΩτ¬²!\'σEm› cΈ)’έ€& ι#U†ΕΥx]·v8‰τ]Γ@“„t€ρΊ¨μNtηΠ'1€»† €& ι#T†Ε½ͺθ'{?™/ή¬£U‘3J74EH§šΪά―ϊ*zΐ:šάΑΰ\:ΝF¦ΒaqΪά3| \“@s„t€©pXάΏ'σΕ‡€uΰ6ˆ €ŒKMΓβΚzΙΰ6 €ŒΔr6}RΩ°8mξY'Ό ι4GH7ύ$Ϊάσ$†τ#ήh0ΛΩτYEΓβ΄Ή ή4QM )B:ΐ8ΤTEΧζžλ*peB:M*W\;δ§x«Ν=ZbΛ» ο4EH¨XeW]w]w°ξgΒ;˜P·σŠ\Σζž/±’^Λ¬Ψ ! RεΚ΅Z*Σ'σΕ»€uπ°ΔJϊίuh‚P―‹Jͺθ}›ϋYΐ:x\dHΧς@K„t€ •ΚβΛJV~1™/Ϋ¨Ή₯G0αHH¨S-W}žΜ΅ Άγ»Δ •gk€Aι•YΞ¦Ο*¦eš{}―ΘSI B:@}.*Y±;Ρλ”XI?2<€V驨ŠξNτz$€Τ₯–*ϊΉ;Ρλ4™/„t8 ! ΛΩτ¬’*z'z-ƒνΈΫηΐηbxMκQK½–urΏΔjΊJ:M*PͺθΗ,Υ°ΈqH ι†ΗΠ! 5T§ ‹ΤsιZή=! \EUτKΓβΖ!ΈBΛ;£'€δ«‘Š~5™/œE—ΔαqB:£'€«¨ŠΝ}|[ήkΈέΆ"€d«‘:έ_Ήφ.`μVδΉτεlκ\:£&€„REηΐ €rUπΩτW₯†9Ά`x†¨΄τΦpώΦ°ΈqK§’ΐ¨ ι™jΏNζ‹/λ`«ιGΛΩT5€ΡΒTREΏξοEXϋε\: LHΘSΓ ΆΛΙ|ρ5`μWκΉt!€Ρ‚,gΣ']Χ=LTΡΫPŽ3\ώ°B:£%€d©α,ϊ…*zSœK€ ι!–³ι]Χ½ <&σΕ›€u0η`@B:@ŽΞ’»r­=Ξ₯ΐ€„t€ι!]½A“ωBH€ ι–³ιYΞ6ό³PEoΧΗΐŸάΉtFIHȐ€UΡΫ¦šΞAυ™εφ €Ρl9›φAγ8όsPEo[κπΈk`ύίI…@„t€Γst©•τΣ€50ŒώhΓιr6­aΐ&ΐV„t€*ν›ΟΓ?UτΖ•{ρ?'>…εlͺšή†“ςS^h{ΖNH8,Utjα\:QŽύΠΨΌτIc&€Θr6ύ£λΊ³π篊Ξ©!]%}όnWΟλ ΖLH8œαΧ©’sSjH?Φώ>χ »νȍΐXιΓJ―’;ΫΙƒΚ&ΞUθSRM‘†ΖέφΚF 0B:ΐ°’CΔΗ2 “ZMΗeݐήi{Ζ@HΘr6=K°ꐺ™sΌAυ•\›|–ΗΪήΪ ιΓIς]Mζ !•Lζ‹ΤJzο,` μΖ¦.Ϊށͺ ιXΞ¦Oϊk‚‚Ÿ΅€ΞΊή‡>1-ογ±κΠΈ»h{ͺ%€ #=8Έvuiygovπj{ͺ%€ #Ή·Ώvνkΐ:¨‹–wφi-Ϊށ* ι{VΑέθZέY[ΉŠνsθ“Σς^Ώ]uCψϋTGHΨΏδͺήgΧ±-ομΛ>ΏώwAΫ;P!`’«zΞ’³δ*₯–χΊm34ξΆΧ6m€šι{T^ CŸρuψΉbΒMζ‹Oύυ}‘«Τς^©=jmο@5„t€ύ:~Ύο ŒcR7zϊ6gA½Nϋι'ΪށZιϋ₯՝±Kži €Χi_­ιΪށ*ι{RͺxG‘Οχͺ΄*ΓV&σΕ»rt"Ρ‹εlϊ‡OΈ:ϋ ΪށxB:ΐώ¨’ΣŠΤ–χ#Υτ*νrhάmΪށxB:ΐώ$‡Υ$v)y‘)ο¨]Ϋ;MHΨƒεlϊ,ΈΥύ½qμRxΛϋιr6}°V3TxΦMΔφ#ΉŠξΪ5φA5]*€χ›7Ι·o φ#5€_Oζ ­ξ샐Ξ. Ω†~‘ΛH$€μX9λxϊ\UΡΩ‹π–χγr…|ϋwΫ‘ω@"!`χ Œ£Uͺιlμ@Γά΄½q„t€έK ιύέθΦΑx%γzιΞτx‡j=ΧφDv¨Όθ„>S­ξμΥdΎψΤo?eΥτl‡ΊMΫ;EHΨ­δs―^BBςfΆζl‡όϋ©νˆ!€μVr«ϋ§€u0~Ι›AΘe;T%ύmο@!`·R€VwQ6ƒ>?m-οJ8>:πʎΒη*v€Tθύ’y­ξ )ωχν₯ji€CWΡxΎœM“oθ €μNj]«;CKίRMΟ“{oά’°;©Υ­ξ j2_|νΊξ}πS7 ,O&§iοΐA ι;Pͺ.^ƒ:~οŽ–³©jz–€Jz§ν8$!`7R[έ―'σΕ‡€uИΙ|ΡW"―ƒjΥτ!Cγξ’ν8!`7Lu‡ί%· ŸΈŽ-Fκη`Ϊ;pB:ΐn€Ύdͺ’sHΘ±ŠδΝ’—6s€‘ ι[rξVΑιcː‚΅½ƒΆ—ϊ‚ωΉLΩ†CJoΎXC³Κ&ΙqψΟμχ’°=ηΡα~οΒΘ½P%=¨Z&¨Ώφ EH؞σθpΝ}›IοUSπΥφ BHΨBςytW―$½εύ\ψ^yζΟ+Zς± `B:ΐvž†>Ώk€o* wTQΫυ˜ΤψΜ_/gΣΤΏϋΐHιΫΡκ«1@ŽΫjέIΏZ¨œ°Cγ`“ωβMψΉγεlκήτTΨκ~ΣΙr6΅©썐°ΣΔηWΪ‹!j:?Τ~Όΰ΅;φ}6|.ΡytR₯· «¦g 3΄½{!€l.5€;N€Ι|ρ₯λΊχ៎jϊž• t­­ξ7.gSΣށ6gh¬/½ε]5}Ζ4IBΫ;°kB:ΐζ"+ιξG'YωύLΎŽ­SMί»1UŸ*Ψx*#€lξ$πΩ₯‡θTΣΫ΅œMϋ€γ‘=€ηΛΩΤ=ϋΐΞι(/š‰TΡ‰Wc» _§jϊ~ŒuσγMΉV`kB:ΐf ƒν˜τޘb_Žτ§Φφ쌐°™Τξ~tjΡšλπ΅ͺ¦οΦΨ7=^wY6“―ΛWo2_|νΊξ]ψ:UΣw«…λΚ΄½[6“84N«;΅©‘R­šΎe°ΪΨΖέεΨο °-!`MΛΩT«;μ@ιόxώ,UΣw£…*ϊ―‚Ώ'€ ιλ34v§†a[*£[XΞ¦OΊ;­φΨLϊ`D ˜°Ύ'‘ΟL%κLζ‹ώχφcψΊϋjΊ ΎΉŸέ‰ί`SB:ΐϊ§χ^•A\P£ΒΜΉ`λ+Uτ±^»φ˜σςσ¬EHX_b»»©ξTk2_|¨ š~ΤΨΉκ]iω<‘Άw`B:ΐJ%ν(π™9NνTΣG¦<«Φ76NΛd{€• ιλ1Ωφ ’jz ƒξRœ‡njΝέιΐZ„t€υι°?5΄ΏtΞxe­WΡ°Ή¬EHXOd5€ά7 U›Μ}HΏͺΰg0΅ϋεnyUτŸϊ͝đ£@ !`=‰/Yι-Β°Ž°ΐυ8Ώ3DX‰°žΔ6WUtFC5½~₯Š~άϊsΈƒϋφ•ιλI|ρt±©!Ȝͺ¦ίK½ίk3 €Ηι+ZΞ¦†ΖΑJ5½†cΪ—oQE_‰ίΰAB:ΐκR«B:cTC5φΈ„R~REά©ίΰ!B:ΐκ"+ι“ωβkΐ2`§*Ή7½wαμοΚykUτΥ\ϊ½ξ#€¬.±’n²;cVE5έ}ΰίϊžΓZܝάKHXΙξ0 Šͺι熁} θξE_«ό€; ι«ax5TӏZ>‹]6(TΡ7cˆπ!`u_ƒUTM|ΔΎ]¨’oΜέιΐo„t€Ώ|«€Σ‚ZBLsgŒΛίΖ—K©™γΐ/„t€ΥDNαΜ*ιŒ^©¦Ώ­ΰημ―Φz°Ž!~Ά½#mοΐMB:ΐj+ιWk€‘¨¦‡)§­όΌ{Φβp!`5‰•t­ξ4c2_|©€šήΔγrεZ 5mfΊ;ψFHXΙξpx}ψ½ΰs8o l‡ΣΌ­ΏβμsΦ’ξuάς-ΐOB:ΐj„t8°RM―‘z{4ζΆχ2δμuΐRσΆόΜe/σ―Ύ%(„t€Υ$VΕ £E—•TΣΗ|%[-CΞΎU₯Λ€Ν?Ώœ•ƍVsψœΎ¬5™/ΎVbFΆ–³ιY%Γβ~TΡΈ¬θ|ϊiyΞ@£„t€z©€Σ€Ι|qQIΰUΨͺhX\wϋlwΩά©ι³0D&€K|Fε₯ZUΛ€­‹…­7εΌ}ΊΫUτo*ΊoΏ+ΟΩ9h”P'w€Σ΄Ι|ρ¦’©έΗezΥJGΐσJ~†‡Βνy%3 Ί2D.r“Ψ/!ΰq&»C¦ZΒολ2½Jeν΅΄ΉίYE‘t Υ΄ibˆ4HHx\βΛ΅VwšWΪ—?Vςj™ˆ~—w•΄Ήw«΄ˆ—.ŒZ~oN–³iυΐz„t€:ίΥ`ϊ!r/Φ±–εlzz»Ε]¬’ίRΣΉ1Ν5V €¬RΤ2 μx9›V1±{9›>­¬Erέ/*ΊΚ―χ²|&@„t j%œΥRiΤrK@gˆŒ—π°Έ ΜB:¬€¦°1DίΟ‡^Η φVυ/Cδji{™k얐ŒŽ‰έKo{ίΩ°ΈϋLζ‹w ‘;7DΖGHΦΦW|–³imηΖTv%[?±ϋι‘ήφ~=ΰ&ΒY%s \Ι#$€›ψ:υΌ{­"ΑȘؽ¦ΰΆχ³!±w•Ν5xΉœMf΅,gΣΛ οέ†Ν¨X© Χr%ΫΙr6MΩTHλ–z_ΪΠS6+j™k š#"€++ˆ_•­μΪ ιPΏσŠd»Ή;=©ν}Θ6χΫj9ΪuκŒ‡¬€œ•LΉΟ`e‘‹h³j{¬ΝύΆ2€ξύ!ώ·7pαJ6!xTωS^9°}O6†1šΜ—•\/Φ{žpwzqθκμΰmξw¨₯Γ•l0B:°Š»Ξ‘Ÿzr@ej 0—!w§²νύ*‘έΌ²!rdƒ•!F/=% v₯ ₯–!rΗ)-ϊl{?X›ϋm ‘s%Œ€ά«œCΧο-œ};ψ½ΕΐNΥ4D.βξτbθŠφŸG{jΜζJ6¨œά©πΗΞΆ`Γ‡©lˆ\twϊmοKε:JmCδΦlHHξσ΄[’ε£ΟΆSΩΉώξτ–Ϊήϋ.‡”‘yw©₯γ4hψ °&!ψMy!\e0œα4@­j"—4 lί-ίΟRΞ‘ί₯²!r΅¬ΈEH~QΞ±½^ρ©ι@•*"wΤHΫϋ?Κ?έe%CδŽΛπW λ|Τ IDAT2B:π·R©9τ}΄C©iˆ\ίΎ1ΈlOmοo'σEΔFΔcJ₯Ώ–π{ΡȐW!ΈιݚƒTjU8D.βξτb—ο'σE-“ΣΏ™Μο*™rTΩΡh^'€?,gΣΎ}οdΝ"€U«lˆάΫή?Wt΅Ωm΅¬;i¦°!θJ ε+OhTM!ρyΚΨ;h{œ>(ξ!eˆάΏsWψ·#W²A]„thάr6}ΊΕΨξIFT…k[?ΌAΫϋuΝύ†‹JζΌTM‡zιΠ°ς’χfΝsθ7mϊ¦–°Υ;N©ŒnΨφ>–€^ΫΉ*σB:΄n“sθΦΟv―„­šΪή_UΪφώ# ΧpΥΪJΚTϊζœ¦όΞ‘QεξΤ—ΫώτΎπ±¨hbχI•ΡU68ϊ ϋdLύ†jd Xπ!TΞ‘Λgπ›šͺιΗΛΩ΄–Άχͺ‡Δ=f2_τ]Nο³WωM_M°ΰB:4¦œCΧ2 p‡2±{W‹ εuΩx=ΈΪήߎ9 ίPK5}Σa±ΐ@„thΟ»|ΣξŒJ ›WύLΙmοœΜg τš6xŽΛΥ«@(!RΪ"O}ζͺ)ĜΆ½χ›5™/Z«Ϊ^VrK€³ιLH‡F”3h―χπΣ¦άΥ °3εŒρۊžhZΫϋΣ‘ˆ{PEW²©¦C0!°œMŸμ±2β₯`Ξ+Ί;½K:kάB{ϋ}Κ•l5—Έ,sj€0B:΄aΧηΠF―Β»ΣOΛυš^ Ώ7G »ƒ¦ι0rΛΩ΄ίΡ?ΩγOωΔο0Vޝ~QΊ§8 r\’†ί›sΥtΘ#€Γˆ•σf/χόϋ”γ0Ό³ŠΪޏ¦½·L5؈#UΉ u|T<``εj­šώžj{P~oj>¨ša„t‘ςeϋf¨sθZ+±+Λ?Wτcj{ΟpQA†j:„aœφ}ύ6/‚@ j"§ν=@E]ͺιDH‡‘)-ŽΟ}»Uξύώ³’Ηͺν=Γ₯j:°!F€œCΧ~"ΓΜ€V\VrφΪή¬\εWCVM‡B:ŒDωbύp ŸΖ—:Π„ οNΧφ`2_Ό©`sG5Bι0ο†טšE(w`Χ0΅ϋmο.*X£j:a–³iί~yzΐŸδوΎ¬Θs^Ρέ面χΓ+ΥταΛTM‡B:Tn9›ΎθΊξ•Ο±ΞCmοlH5x”»q:νp€BLζ‹ώ˜ΡϋŠ>mοVŽJ¨¦‘n)ηΠΩjpHgΪήYχ3¨ΰ©¦Γ ιP©R ލ΄½ΧΊ~Πφ~`• TM‡‘BΌύ^#ήq?Τ΅v@%&σΕe-Μ7i{?<Υtΰ^B:Τ)± b Ω@Κ& EΫ;+›Μ_TӁϋιP™εlΪ゚ψܚ¦²aJθφΞ:ͺ¨¦¬š#€CEJΥ#υ SEhšΆwΦQK5}9›ΦtΥ Œ‚uy|ΧXCϊ§€5υ¨-Πh{?¬‹ ŽIΤΤ!£ €C%ΚNΆiξΓϋΈ&g!T©ŽώYΡη£νύ€ΚοΛeψ2UΣaXB:T LWM‡γL:›Μ}ερsEŸΡi™wΒa\ͺ¦7 ιP‡‹ΰ6χG€Ÿj«<ΎvsΔa”»φk¨¦? X4AH‡pε₯ιUŸΣ(Ο4Nζ‹Δ{mˆ@ΈΙ|ρ©²ΆχNΫϋA©¦!_ϊξϊΗΛh‚jT ΒΆχmο‡QI5ύT5†!€C°Ϊ†Ε™ πmο¬ͺ†jΊr0!²ΥVΡkHO«„iw‡Jh{gU•TΣ_ڐ‡ύ!Ti9¬­…|¬Υ—΄kΨNΦ¬HΫ;k¨‘š~°5!•+ΧjόTαΈ›ΆwUI5ύ¬Ό§{"€C¦\»ΛXΚ| XΓ/΄B]*m{'ŒDz5ύΘΩtΨ/!Β”πUΓ•kwkpLkwοFό¬a΄*l{?vνΦπJ5ύ]ψ2΅ΌΓ 鐧ζ’cU€ΥV|εΪ­ƒH8.7Π{ €CREYωg2Ζ3ŒΦp›—f¨P­Σήmΐk2_|ιΊξmψ2…tΨ!²Œ‘­Pxx€ΆwV”ώΜO „ύ!ΔHͺθέH+ι_Φp›#¨[mο/ΦьJͺιΞ¦Γιc,UŠΡ…Ης’”Fλ)TLΫ;+JΏŽν₯ί Ψ=!Œ¨Šή7Σέ‘rΆ½χWo½ XG3ΚfΞΗπŸW5vLH‡ c;λ7Ζsιi/IΗkΆW[ΫϋsmοƒKG0@vLH‡Yύη₯P~w€Ši{η1“ωβCx5έul°cB:ή'掱’žx ›# ν€?o!vHH‡i½w°†ι05Ά½;‹<Ι|Ρ‡τ«ΰ%žκξ‚έα°F{ομr6[5ύSΐnσB#QΪήYΩOs!˜ *ύΑ¦ 숐RΞσyψΞΨBϊΧ€5άζμ?ŒΘdΎΈ¬`’χMΪή‡υλΊλΰυ™U»!€Γαœ—œ±ΫDb%έΛŒΟYx»νTΫϋ0&σΕΧπ{ӏF^|€Αιp8c©9ӎzy9J£’#3™/ΎTxJΫϋp;lΨΐιpεͺ’1WΡێzΪτε#­…0>•Ά½Ώ XΗθ•Mœ·Α?gΏAoΆ$€ΓaŒv`ά-Ξ₯οŸ—!§ΪΪήϋpΦΚwΫ‘%·Όwͺι°=!V¦ž7ςάΗVIwW:0ˆJΫή_«’ξ_Ή ΉΣβ…./؎Γki‡ωΘ Ϋή ι0RΆ½w¦½&ω9 [a@e°ΞσƞωYΐv%±’nΖν…Άwn›Μ}HΏ ~0cϊξ‡Α ι0¬Οii7=ρLΊJ:ŒXΉY’Άΐ£ν}ΙΥτSasB: €œΟjqgωx,_Τε`š“ΐ5;4™/ϊΙιο+{¦οœKή;δ`€„tΞ‹F]»Λ˜ͺιiΧ°u*VΠ„Ϊ¦½7t“ΙA”.‹δλ؜K‡ ι0œ–w”ΗΤA ε\₯mο―ʍ&μOrΛ{ίI'¨Γ„t@yIiΉ-ωdDgΣ ’΄½'WNοςFΫϋώL拉^7ι°!†aΚιxžΑ—€5ά&€C;ΞΓ§zί¦ν}’Ο¦Ώ΄IλaΟΚ—ΣKΟYHί#!‘ν;Ό ŸW škaTΡΏ;Γ€³Z˜ζ8pMΐž”ΏCμωšφΎ'eγζ]πMy‡5 ι°BϊOcω’Žk5U₯‚ζ\TΦφ~>δ¬vΙ-οcšKƒaJεΨ=Φ?₯εMΛ;pP•Ά½?7ν{?&σΕ'δ`<„tΨ/-^Ώ:ZΞ¦cθ,0α8ΈφώgeŸ„iοϋ“\Mχ>kaΏμn ΟD%ˆ0™/.Β+¨·i{ߟδr£˜KCaOJΕψΘσύΝσœMK ιŽU@»΄½SΓ93z`EB:쏐ϋUύE:αέπ8hT9¬ν.ΌKΑ{¬HH‡=(•βηžν½Ζ°›žΨ^ͺ•₯νξη&rκΤ-ο°"!φΓnρÎG0@ξSΐnσςm; >“|—η#&šΖ9¨œϋα₯γq΅?£ΔsιΪέ‘a₯νύ’²'pινK>—ˆ+aΗ܍Ύ²ΣΚΫήΟ₯;γ m›Μ}υcEAΫϋŽMζ‹~ω}θςŽ „Η ι°{ͺθ««Ήν-±έ½ΣςTΨφήoΪjƒή-Υt¨˜»ηΛgu/k­ό–«n‡σhy‡Ζ•JjmmοΪήw*ωΞtοIπ!v¨΄o{¦kQMί-!ΠφήΈπ;Σ΅ΌΓ#„tΨ-­ξλ;―ψubH? Xα…Άχ¦iy‡J ι°[ΎtΦwTρsKΧΉ‡θ~VSkΫ<ΦφΎ#“ωβ]πιΊΎΰB:μΘr6}άκώ9ψ‹Ί«πμδ©ΓγΌόί” –:ιϋ.Ϊήw+΅š~lCξ'€Γξ$W+.ΛΏTύ—uuGJ•κsΐRn›jœφ3m7’7<„{ι°;Ι/ο*¨L¨¦οސό­Άχ7Ο+‰1™/>wو{ι°₯eλ(τYΎν_ΠΚKZrΛc•ΥτА~€Έ©΄½Ώ­θ‘h{ί-οP!v#9\ήόrNnyο*­¦GSMξp>ŸδΆηeή ΫIήμPM‡;ι°©_2Χ₯zςΝdΎψώ‚V]5½΄&ςb όBΫ{›΄ΌC}„tΨRiΥJκ~ΧξΉjϊξ} \“ό¦lΦώ»’'s\:ΨNκw‰+χΰwB:l/Ή*qWHO?γWγΩτΔ–wηϋ\TΦφώΪί³­₯žKοTΣαwB:l/υΛεκVμξ˜><¨ΆjΊsι@5*m{Oο‹6™/Ύ„^Ϊω‚ί ι°…’•ΪκώΠyϊΛNmΥtηͺTΨφ~Zι IR7”Ÿ›;Ώa;Ι-ZχρRaOξfSna;©!ύsim{Hz5ύ¨²aA‘ Χχ©°ν½Άο…(¦ΌC=„tΨPΩΝ? }~ξ–—«Ω+(ηM}Mm#τβά«΄½YΡzmψVRΘΩP†„tΨ\rψYυK8}@ΫQECδ ͺ4™/.‚‡Šέ%ύ–’d©ΟξΨψIH‡Ν₯†ŸUZέΏ™Μύ—υυώ—΄•—5΄lŸKw-°ŠšΪήOεΩLxΛ»Ο !6—ZI_w—Ό†kmTΣ·γΕxP o5΅½«¦oΞρ,'€ΓJKΦQθ³[χΌΩeΥτZήρβT«²ΆχΪκL’z.ύΤτ~ψNH‡Ν€†ž«U[έ(mΪ5TΣkΈzG%¨]MΑΧ•l(ƒcS7η}_ΡΌNH‡₯†τMwΗk¨¦Η‘ >—~΄œMUӁGUΦφξJΆΝΩT†`B:¬©μڟ„>·Ξθ•p™ΪώvΣ« †₯>G!XIemο5]Υ™ΔUlLH‡υ%·ΊΪβΎ–αlι­ωͺΐΤφ^ΣUIRCΊIh^'€ΓFRΓΞVᰜe»»εμMϋB6™/>„p-°²ΚΪή_ vλ >žΥΩT!6‘ϊ屋]ρZͺι퍩Υt“u\ί©}›jϊϊ΄ΌC(!ΦP*‘Η‰Ο¬LkέφΏΡWΣ½›νΥQψΉbͺWͺ­΅lξ½Τ-΄6!B 鰞Τ/Žχ;όo]T0ι½+χ©¦NυM}ρ9Φ ¬£α©α(TWΙu’1Κ‘†ΤγYΎ«hšλs«ϋ7έ›ή»Hό"/ ©-’ͺιΐΊΞ+ΪΌU…]j:a=£w‡ξMοJΫ{κ F꺜KΦR6okΉάΩτυΈ‘ ι°’rΦν(πy}.•۝©¬šž:ν=υΕΗυ6ΐΪ&σE?δcON5}=*ιHH‡Υ΅REf2_\T4ΥχuΪΐ 2Θ/΅AΛ;° Υτ‘ ΎŠ­?—ώGΐ:ΰ „tXέθΟ£ί‘¦w_θbF£ «αΥτυhy‡0B:¬.ςΛ’LήέΧϋMθϋ]Ž―eKm#΅΄7φž/gΣ€³Τήy6QΡΉ—ζo¬,5€ΫL¦YB:¬¦©σθ7•Jύ›»r™R%>λΧ9—lͺ’.+gΣWό]u°8!VΣlH/jͺ¦…OOkΑαXΛ;°Υτq‰¬¦›-@«„tXMβ—Δuβ³w劷?ϋγ%ι|zrΛ{M›/@ŠΊ¬ό[–w"€Γ#‚Ο£ώ.+Ί’­+ηΣήκX68΄ΌcTC>s•ΧJ„t"€ΓγRΏ ύB­hXΠMύύι A4΅š~ς|€ •MΘ·α+?RM\πΉt!& ιπΈΦΟ£m2_τaσγΠ»[zpφΪ”w`¬Ξ+Έ’ΝίΉΥ$VΣOtBΠ"!—Έ‹{U*‡PΫΛN_EωpΘ/ω2; υ¨ΐs/@ΐ¦Jφ2ό‡]Ο™j97PM§9B:< „—“ΐgt°έξ ‡Θu A]5±Λ ͺιZή—z.έ„wš#€ΓÜGΏΓdΎΈ¨lˆ\W6[9ρ=υ*ΆΞΛ+°Jͺι'σzXΩ„OόnwΝαaΞ£ί―ΖκkίΪ}°ήςξΞt`+•lήκz\bΛ»ο'š#€ΓΓCϊ!Ο£­ά‘ϋοC―c/Τέ™ŒάΑ―½|Dχ_Uφa‰!=ρΨ!앐Kά½Mϊ­±ν½+/j‡¨¨$·ƒΎ0@ΨΖdΎx£š^½ΘsιŽ*Π!ξQvۏŸOΜh9‡Xλ Ο ΤKDβ=΄]ω]wg:°­τjΊώ0ή!€χs}·½w‡κΘcVA5½ŸΑaCςeσ=q3Ω1š"€Γύ"wmΛ²4΅Ά½wκΙηO v }»jϊΓ ƒα~‰_Φπ›ΚΫή»!ƒziyό Υt`[oΒοMn€άƒ>œφ§q+‚=α~‰_‘]ΊϊΫή»Τ‡ͺώ$·ΌΏ4@ΨF%χ¦«¦ί/uxœš!€Γ‚[~SΊ|3™/Ξƒ£­βΥ@Χ³%·Όw^^Έ ―¦ϋ;wΏΤw !fιp·Τ[IΏ‘φŸΎ’όnŸΥδRez»―ώhyΆRώΞ%w »Φλnε³Kœ3γσ’B:ά-q·φͺ|qF+ƒνώ™ΎΞG<ο7Dφάφ\M7ύΨ-ουJ<—’N3„tΈ[βnmt«ϋM“ω’1{Ÿ³’œτ/)ϋ:ϊ0™/ή…OΔWMΆRe&w ½0ƒγ^‰{B:Ναn‰νξΥ„τβ¬βkΩ~8κΊξνqς{r5ύΤulΐ$·Όχγu έΝ5lp@B:άR¦‡>—Ξ£­΄ζε姟όώf—τVPΥt`+εζδk'…τ»%Ά»ι| B:ό.²ͺΌθTe$ηΣxYΞ©οl'Ώ‚;Σ_Ίς؁δjΊ;ΣοPΎΏ©¦Σ!~—x½ΪkΝFr>ύ‡“ώ~±ΓfςΛkg°°­Ι|ρ&όψ“jϊέί=l¨Π!~—ΈK›ΨvΆŽ³ΚοOΏνυr6ύ΄‹ͺzyyMΎKψ\{!°Ι’6#οfΒ;ˆΏKό¨mhά/Κωτ³π0ΊUυΛ„Ψδr+»O΄Όί)ρέΓ]ι4AH‡ί>“κΞ£ίVΞ·±Zρͺ\բ͐΅τr»lοTfp$}²ω»Δ³‹&ιpCπ•SUW(wƒeάM}΅ω_ΛΩτΛ&Χ΅• ŒδrΗ{Ό†h‡–χΊ| \mb!vNH‡_%Ά»]•vρQ(ƒδގεηΉεΈ\Χφ­²Ύf|ϊ9Υt`+e£6u€œ–χ[Ro•1'…ιπ+Cγ0™/Ζ6HξΆ>¬«΄ΑΏY₯C£‚r}5];(°­δ Iγ~—ψ½δ6FOH‡_%ώα―ώ<ϊ=ž<¨w₯ ώe0χ#°Ώx  ^Mίζά=@§ε½:‰Ηνt<0zι#†_˜μ>Ύ…ΏœsώPΒμΨ—ΐήλΫυJ—Δ§ηώ[ψN—³ι³ΤH _?@n9›φδž.ΆoycLGΜv ž: [“Ξθ©€Γ―’Œέύ‡20νΩΘf[Υqyρι§ΓΏ.^V°ngӁm%_;©εύWξJ‡‘HS‚μhψjΆ±ϊVMoύ![yΌ9+€J»;€?%ώΡϋ™νoΚΔί,…Υ¨¦+νδ©Υt›ΏJlύ=!~2Ωύ€ΚtsA½ͺιΐΆRCϊ‘›,~‘XI?X앐?w`%¨³₯ŸΉbͺιΐΖJUjΛ»MΘ"uˆž»;!~J¬€7»ο/—]Χ½ X SMΆ•ZMWIΥΗ€ΕξJgΤ„tψ)±’ήδ50“ωβLP―‚j:°Τ~œ:Lhƒ?ŝqjω>jA½ ͺιΐΖ΄ΌW#±«ΟηΓ¨ ι{ύΪUΐJP―‚j:° -οωšμκƒCα»ΔήΜdχ‡” nκ{.Υt`bΛηt˜ίΜυlρΞZΐf‚[ήϋ«Ψ 'ϋΞ]ι00!ΎKΌΚC{Ω ‚z΄—†,[PMΟζ}&€Γw‰»ε͍»O κ¨Oζ‹ώ.Ϋ?γ;n}…εY™° η³9‚!σ_†k˜Μ}›υсpoK@·±l¬ό IόZϋ]βίxνξŒ–™!]ΰYSΉkχ©sκƒι_¦ΟdΎ8+GΆ•Ψς~l(f,(Œ–*ι£1™/ΎLζ‹ώKϋί­?‹=λ7Bž–€]Imy½—ΐ „tΘ€’Ύ…Ι|qύ}oώμ7Bϊ ‘‘ώ|ΐα8—žΛ{ HH‡Μ/_;Φ[*Uή'‘ΧϊΤ¨ίπψοrώ`ηΚζίUΰ“UIΟdσ„Ρ!!\»Q¦Ώχ_βTUίJΝέ“Ι|αŠ5`ίΜ¬αΠ`@B:džIg‡&σΕe©„ΈS}}μ―Ή3Hδfΰr6mΊšxΓ‘λŽΓžφμ=(Cε^”³κ‰ν”iϊαpU68†bx«Rda΄„t )7jϋΣ'―»ϋ8ηYCZ‘vFH§iΛΩ4q舩Ω{VΞͺχΠώ·ψ_\•αpηΪہJά u‘Α`„tΘ#€δF ό7~ΜΰΊ\­f8 ρξύ#€Νλƒi™ίbXΫΏ|ΊZ ’XI?ZΞ¦Ξ@‡YΞ¦΄ώ '!Φ%Ά»«dHcaύcim?+g@"wτιyt80JB:ΐ-7Βϊ.•ζ1έ±ώΎ„σgZہ`Ÿ—–Έ±?$Ί0τ ξV*Μg₯?»~ήuέI…«ίdθ§Ϊ_¨š•ψψχΆυJΊοˆNλβvΕU7σ”IηoϊΛΩ΄o­;+‘=ύϊ—eέοLk*Σ‡τ—aKn=€ΦPξο+κη%°Ώ(R*>KΥόͺ9P1Χ°Ν6T{ο’΄Δ?+ϊΉΣžλη2lπΫ?s` ϊ²εlšφ“τήπw6Κ3w#!Φ₯΅΅|WwΥΚKΫ»ςο›RiZ~Ο~­Ψ4ΌχaόkΩθ+δŸFξ*πXΡΣ†C‘Ν ˆNλΟS±•φί”Κϋc­“_Λ E_Ώ§[>—ξϋ"€@©Ό«„άοΓ€G‡Vex°wξI‡,}ΐw‰ί‰†Η{'€Σ¬εlšΈ.€ΐw‰ί‰¬9!–iY€P‘Γ1U½HuΆ£€5π“MFIH‡,7€Ÿβ&Ї—k•γŒ’Y\o?%n^·` B:-³Ω7―›¬ήNζ …ˆNΛ„tΘ–X½uΨ+!€Tͺ·@s„tR©€Ν!H蝰p‘η MφJH€B:Ι>‡­M»;°WB:-ΣωΞ₯¬1!–Ω ’ι$‹ͺΊœMuγ{#€ΐztγ{#€@!€d_|:@K„tΘqε³€ίι@S„tΘα%κπΔη싐끽€Ήv†#€qν DH ΦdΎψΰΣZ"€5ϊδScŒ„t F_}jŒ‘9 d€Ζ ιγΔgm „<Ζ±<ˆ<Ζ=ι0!¨‘ιξŒ’NΛΎψτͺεžtFIH§eB:EH Φr6}ζΣZ"€±Y!ˆj΄MH€υ˜*`2_|hύ0NB:¬ΗTq`o„tZfΊ;δ{κ3Šΰs€ι΄LH€|ψŒ"΅ώ`(B:d±K πΈΟžc%€CΥψΥ“ΐηΡT7ήr6M|?1ΌΡH'σEkGζtϊΑ€„tZf2+EH§Y“ω"±MΚN5ό*ν»ρ:` t;-!²8“ΏJ›*ήb'ή³€5@3„t"-gΣΔ‘q{%€ΣΊ΄λ;ΌŒΐO‰ί‹¦Šg0[ˆΡi]Ϊνqΐ EbHΧξžΑf £%€J‡Π!ΦΕνΒ:KόNlqͺΈŽNλΐ ιποΔ qΗρB―…H•vGz§‚ 원Nλwa_H`PΛΩτΐ;›«ΰ.gΣΔ‘qΦ{#€ΣΊΔέπ?Φ‡–Έivu+0BB:δ 3€·x:q.ΐ—€5ΐήι΄.ρΌvw0Q<…Σ Q€ IDATiΪdΎπG2%nZ·ψή Γ&€CžSŸ D~ΆXIOά,iρz"€ƒ ‘e9›¦ύRIφNH‡@‘םΐP"Cz£ΗδNΦp›»κ5!ό‘€4ξζPξͺΣΪ]υ΄GH‡ΜλTTh™‘q?‡«€5ΐ^ ιΰˆQͺ·Z¬3$V½·1zB:dώ±WI U©ί&»g=!2ΫέMR UBzŽ'k=!ζMζ‹Δ/έΔ6?BbHΏjtX™ €ΓwΧiΟa9›&~1ΐή8G»;€ί%~ω ι΄ζEθΟΫjH? XΓmB:£'€Γw‰πw―`ŸRΟ£XΓ –³iδg1™/„tFOH‡οΰ@k"+ι“ω’Ήϊς9` °wB:|η68 εlϊ4΄½ΊΥ`˜ΨΡΧβπ>$€Γw‰!έ™tZrϊ³ΆXEοBίCZύ,hŒί%„9X %uhœžC%&ιπύ¬ΩΧΠkΨ΄Ό0z₯Υ=usΊΥ~°†ΫZ²Oc„tψΙ5lp©­ξŸΛF~S–³iκϋ‡Ιξ4AH‡ŸœK€ΓΠκž%ςύΓυk΄BH‡ŸLx€iu”ψώαϊ5š!€ΓO‰_Δ‰ΧŸΐ.₯ΆΊw*ιQTΡi†?%ž9; >»?Άx½H,G3„t(&σEκ!€QZΞ¦ύYτ£ΠŸν]ΐε$pMB:ΝαW‰ηœK`¬΄Ί‡)3iw§B:ό*q—ΦΉtF§ηzϊs]wΨν[δ{Gß αW‰»΄B:c”\EoΉΥ=ρ˜Ιξ4EH‡_%ΆΆ/gΣ?Φ»$€gJ€_>ΓγUτ@eN@β΄}!¦ιπ»Δ/!€QΧ5ήκžΪΉ'€Σ!~—Ψβ¦έ€±8ώ9ϊ©ξBz˜ιΝαw‰_GΑχ–ΐJΚ T­ξΉ;χ>¬%€ΓοR[ͺ„tjχ"τΜσo2–q0§kκNs„tΈe2_€~8—@ν.‚Χό°wΑ{B:Ναn‰­U*ιTk9›ž_»Φ» XΓ! ιBH‡»%;)gω FΙgΡ;ηΡ3;φZξn ]B:άMΛ;μΘr6}zήω‡χ&ˆGV £IB:άMH€έI>‹ή΅^E/z'KΉM& ιp‡²›~ψl„tͺRAύz2_΄>Υ=υύBH§IB:άΟΉtΨ^z½υ€ή ιEH‡ϋiy€-TPEοLu&ρ<ϊ΅‘q΄JH‡ϋ%V;!€Š€WΡ?χMβFŠ€N³„tΈΗdΎH ι/Φͺ€Šή|«{ωœ₯Ύ‡Αή ιπ°Δ«?Ž—³ι“€uΐC«θWΖ}γ<:„αaZή`MͺθUQI‡0B:<,uWΛ;ɫ蝁qߏžΈ™ςy2_| X„SI€5,gΣTΡί ίhu‡@B:< ||FGΑƒ^h[ κζ«θ…Vw$€ΓγLy€,gΣ³~ΐiψ³ϊθώνΏ ιHH‡Ηiy€G”σΝ5T¨k8/Ώw妘“ΐ₯]Ή»žΦ ιπΈΤ~β*6‚œχΗ±Β?>ͺ~§Š‘„txDπΉτN5€eΣψu†*ϊO©Ηζ„tš'€Γjή…>'ηHPC›{_Ew7ϊO*ιJH‡Υ€~a.Υt©†κτupWά!hu‡`B:¬Ξ”wΈa9›^TpεZο²Μ˜α;!‚ ι°:χ₯@Q†ΕWπ<+93?ˆςΉ₯n¬ι4―a-©mrGΛΩTP`h—\ΉΦ©’&υΑyt(„tXQωβΈ }^B:ƒ)›Γ5 ‹SEέYΪ‚ 3 a=b iεV‘Z‚―*ϊ ε³;‰YΠ―΄ΊC!€ΓzRΏ@΄Ό0”Z†Ε©’.φ]a2_¨€C!€ΓΚˆ«ΨhRΉ_ϋU%?ϋ…*ϊoRί>¬bι°ΎΨ)ο₯ φ₯–Κt?„Lύ†ςސ:G@na}±SήUΣΨ—r'zκyζΫ.²–!ωAH‡„tX_ς‰ΐΞ-gΣ§]Χ½δΙφUτ7λH“:ΥέΥkp‹k*ηΫRΟN=Χςΐ.•ο•š*©aτ`–³ι“λNC—§Š·ι°™δ//'μR-Σά{'σ…«Ό~—άiησ‚[„t،ΐθU6Ν½w°†D©οΧ^ƒί 鰁rvκsθ³;)g`cΆΉΏΜŸΦ₯΄Ί§όΠαB:l.y(j:ΫzSn©Α΅‰ξχJξ.ΠκwasZή₯εlz|§φ].MΏ—«Χ 2B:l(Όεύh9› κ¬­™ͺ©*}Υ‡τ€uΔYΞ¦/‚‡ώ½/7ζ·ι°-οŒF9‡^S›{ο\Ψ»Wς»€*:άCH‡ν$Αœ–a1°ͺΛΰ!cwωh:ψέΚ†Kς‘ŸάCH‡-„·Όw’`Uε˜ΤΛΚ˜±ϋ%?­ξπ!Ά—|ΞΛ *ηΠ§²'υ§aqJή¨WE‡ι°½δ/δxP…χ‘w†Ε=l9›> Χ ιπ0!ΆTΪ΅ή?G!€‡Ό tw9Σ.ύ δ*ΊVwx„»‘>@ξiΐ:³œMϋIξ§•}.}Θϋ°ŽHeh¬qP1!v`2_τ/9ΧΑΟ9~Qι ΈkbJώΞΏ.οLΐ„t؝δαεΜ!Τ:(w‘Uϊ~ε»ήέθP9!v'y€Ν‘ΚέΟ€^c»x'Ίaq{QΎσS©’Γ „tΨ‘Ι|ρ©L›M₯ε q₯ϊ&<ΘέE›ϋj.‚Χve–¬FH‡έJήα?^Ξ¦/Φΐατ!ι€ΒηαNτ‡Upνš*:¬HH‡έJ?k₯šΠ¨2Ι½Ζ€Ν}5ιίρB:¬HH‡*»όΙw¦Ÿ–«YhH θ΅Mrο΄Ή―¦‚kΧ>κ„€Υ ι°{ι;ΕΙηΥΨ±J―ZϋA›ϋjΏΫUΡa ρΧ_y^°cΛΩτKπΉ°Ύ*ρΔ6γWzW­u₯ϊϊ,`ΡΚ0ΐ/ΑΓϋ»Ρ] kPI‡ύHή1>r6`ό*θΪάWwξΪ5!φ#ύ Ι‹ΐˆUΠ{gΪάW–ώnθ¬IH‡=¨`€άqy`d–³ιΣΚƒΡΫΙ|‘~[J„ς]ž|횁q°!φ'ύIΛ;ΐΘ”€ώ!Όύω!WΎŸΦb`ŒΑq°Gαδz=™/>¬€-  χώkς·w?ImeY€=wjΰ±έ P˜^©(LΝ<3^Ι$¬ ρ fΜ ‡P°‚6‘4Œ(YΧ}䔝ώβύΉχΎο‹ ²jφx2’~οœ{Ξ|ρ1ƒλΘήr6έmšζ__ηυdΎ°φ6 ’έΚ½šn@–³ιNύWύArο8PE‡ ιΠ­γ˜P›«—ΛΩΤSn€‚ΕΉδΠΣΩeΖξ)ΚΌΜό2½ž°!!:»Θs~£šP¨ ¦Έ7ρ0{7ƒλ(IξŸέ'ρΨ€έΛύƒτj:@y* θɎ@wρ™­Š‘c±zδ"σϋl@A–³ιQ%έ9τ‡Λύα…ΧGH‡~dΏŽm9›ώ’ΑuπΛΩ4Ν;yWΑ}ϊΰϊΓDύMζ—i`<’=˜Μg±ϋ5WOμ₯Θ[z˜ΊœMΟ iχq©‹k#ΉWΡΣΪ5!IH‡ώ¨¦°‘¨ žpω> Έ=ηΠ¦*ΊΞhΑΊ‰Π›γxžλŠœ'1]Χp(ΘΝιVϊβž~Ά›¦Y=h[ίλ9ΡU0ϊτΏŸΎΎ;χzηm9›nW°}ݞ3ΛΙ½Š~λ;΄cλξξΞ­„žΔ9œŸ‚§65“ή!SΘw"„o·XU½ŽΠž~Ξχ|T4Α}εp2_Xύω@QEίΜ/σύdΎptZ €C ω}λ<δγζtk7‚yϊο³/μCToϞΎΎ»ςO’<Ψ}¨΄;Ϋ9τ ςoαΏb£ πHB:τl9›¦!r―2Ύοͺι0°›Σ­νͺ΅—I‹σE΄±¦ΐξqΗβnϊ¬xQΡ―uiϊf yΐο ΄Θΰ8θ_ξCUžE{%Π³›Σ­½›Σ­T½ώŸX±•Λδ—Ρr}usΊumχt`9›ξΖ±ƒšϊ­€ώ(%Ё-RI‡,gΣάΏ€©¦CR8/β}Ά³?ΦIΊf­πνˆν•μ?_· θΕm *ϊΕdΎΨΙΰ: *ι0 Υt`U9ΏŠ*uI½‰σ±«²ώxkΣΫk θΙ€ώ(%TΡ „–©€Γ@–³ιUζ_ΚUΣ‘#qζό¨’Χ+‡ιwrfύa–³i 8Ώ•tΝ`ι#REχ]: ’ΓQM‡‘Ή9έϊεζtλ(ΜΧΠ›šoN·΄½ήCͺžΗΡ§Zϊ‘€ώhͺθ0R*ι08x•Ρ`¨oρ„ZΥσ³ΫΪ7ρ>Ξ««ͺCεΥσΖ€οΗSE‡qSI‡Δ”[Υt›Σ­ƒ¨ž! 7qΆϊ<L–³ιNuΠωUt1•t'εP·Τή«‰^τ₯N“½χŸΎΎuΫsΌΧΔ°½š]Nζ f©ο·“ωβ— ͺ€’šΜW±Ζ(gͺ鰁˜x~>β€ήΔqž?’“`t±¦hm8†€žV­ep5(α‘VP4!†§₯ *mή)˜½πΪ~ς[ZΥ–Αuτ&nΓε<{€ —± έ ‚GJG" *y+€C·„t˜j:Τ%ϊω‚ΩC½CPOο•qξΌΔέχ›ΠΫUΒCρ#―7tKH‡<”πDϊ &ί! T΅A}„αΌΠΫ₯Ь鐁Ι|‘Z"/2-—Ξύ ²$ ί[5A=̏1œ7z'Š8‹ξ5‡ξ 鐏ZάφUΣαοτ+:¨§ιΫΛΩ4UΗΞ½}q€,χGͺθΠ!21™/Ξ ¨¦?QM‡/­­YΠ&υ’ήO’j~λ±ήτ5Π[ΏE>!/ͺιPž3Sά7φϋΝιΦn ΊΦ>ζ•zz7φUсuB:d€ jΊjψ*ϊQƒžrw;εsw6ςΧI@ο@<τ.‘£Dz$€C~J¨¦ΏIg23ΈΜΝιΦN΄<σ8O ΐ£Ϊσώ½;G›PE‡ž 鐙BͺιlΖ,Ξ‘½²Ϊ¦7§[Y? Œ-Χ\JίNτn,gΣ4pςM—ͺŠ=!O%TΣ_ΕNW#ƒβΪχ[LΙΟΩΨNžLζ‹=­3%ό{RE‡鐑¨¦—P±)αa΄*ΪάΗ<<¬KΉ·”©{β0τ £JΛΩt·yͺθ0!ςUB~_4`LΖ|6Ήk©ν=Ϋ`8™/ 9ŽτXo'σ…‡°έREΎKH‡LMζ‹cgΣ!/qn:χUI₯;Š3Ήͺω!M eˆΟ:²œMKyQE‡鐷*Οβ T-‚c «’Jχ$σϋ\kΛϋu ˆ;ΟΰZͺUΠΚ΅kέ0!2VΠ€χύψβ5Ϋ7,7ϋΉVΣ£²ψ!ƒKiSZ±ΆμιV +Χ3g`XB:δ―„Κ'>Π©™*zοr―¦ΧΤž&Έokkξ^lD)aεΪ΅#0,!2WP5ύέr6}žΑu@TΡϋ—s5ύ,Ξo—ξ­ ξ½*e†‹‡ξ00!ΚPΚ¦'οΤJι_z(’σφˆ’Ο¦§ ­Zڟεlšτ½(ΰR/ό»€α ιP€‚ͺιV²Q›Σ­]έ“σΚR7[€Ο’ηΟχ'fΆ”ς°]2 €C9Jωΰ΄’Ϊ¨’ηΩΝιΦvŽ!χ:ƒKyˆΓΙ|±γόyοJwaΊ?δAH‡BΔg …­d£q&ϊ•WtP9?$)₯-x΅ά{sΟ Χx ω‘,₯L—ή7DŽJ8Ύ1Όœ_ƒBϊ‡hoW!F)έeiΚUΧ£ΧιP–ψ=)ΰ’Ÿh{§BϊπrnyΏŠγ9JΥσ_'σΕφφaDWY ΓβnE‡ΌιPžR>H_E›”L«{rnΓΝρdzpvŸ{X:θ&+₯ϋνHς"€Caβƒτ°«ΆΖ…bݜnyΘ”œ_‹άV±₯αpΫBΧΰŽ w­σ ς#€C™Ž’=-w†ΘQ2!=/bˆ_v’•<‡‘ž—±ϋά{ξΐbιΛB.χΐqȏŠΤRž|"G©„τΌdy.= Ω5΄:{Ύmχωπb'z)]d—“ωBΗdHH‡BE΅€„½†ΘQͺœCαeϋΠd2_œ ΤέτΑΩσμζήtfFGH‡²•4DΞ”lŠqsΊυΌ /Ϊc‘ϋC“>Ο¦§΄ŒΙνΞg"†₯Ύ+δr?XΛω‘`Ρ¦–λϊŸ―E ”ΐόδώšτΡ6|ƒαžGυžLΦζ~«Šy‘|₯|Π>³‡•‚8žŸ¬χMGU²Λ#H'ΡΪξ}4Oρ9W+Χ sB:.Ύζ0Yψ>ή-gSη|δ:α}MΥν‹˜ΪΎ'Xε©°6w+Χ B:Τ‘€Ά5“d)JzžrΘΧfψIαό“ωbΗΤφμ•zχ­\ƒό ιP¨Ό/δ7yaw:P£x/~윐ΥPΈƒ½ςŸgYΕXsa–”AH‡z ΄hv§΅Ϊ΄[θ"ΒΉ‘p…ˆγ[ΏtΙ{\pB:T"ΪΧJ©P?ΡφNζl"ΘS ΗϊήΆήΦ.œ"¦Ή—τzšiε‘"“ωβ¨ •l/—³©0δͺ”φU2Lο3Μσ$Βik/SIΣά ‹ƒΒιPŸ’‚w Bί«°¦°t˜²|Lk7@…Mso ‹ƒςιP™ΒV²i{ͺ3™/ŽΏšςaνΌωΐThs/ιsΛ°8(uΪ/hˆœΆwrTΚ±‘±))ά¦φβ_›¦ω―Ι|±+(Uγ¨ 6χΖ°8(ΣΦέݝ—*kaJ™:›(ljC.nN·RGΚK/HvώρτυσΫ b9›ξ6Mσ―‚ξ~gε)H%κuηK ν€lΨζ~- CΉ„t¨Tœy,©\Ϋ;Ή:‹Κ₯Πζ‘bqς’ ίΠ΄wr‘₯:CZέB<@.ιψΛ‰΅~P6!κ·WΠΉ'?X]½ZΞ¦ΫMΣό^Π]Ώ-¬‹ψ!*Γ؎ ϊ-_ΔΠ;’*T~Jκ ’žCOφ¬ψƒς ι01<¦”!rΙoQ½€‘Ψ4― }KΈ_tΧνD‡Jι0₯ ‘9‹*τξιλ»«‚މŒΕΗ±ίϊ³œMΣgζ›‚nω­aqP!F"†Θ|(θ·}–ΙepŒ—P˜―½ˆ¦%KβxP!Ζ₯€!rΙ»εlΊ›Αu0NΞ₯gΔdwzTΪΊ΅Τζ^ΪCΰ„t‘&SZuϊXΫ; σah½XΞ¦₯CΧζadβi{I_x­ecQΉu.=˜ΠΉ8‡ώ°;­Ν*$€Γ8•φΤύ₯΅l D8Μƒut*6Š”Φ2Ν*%€ΓΕSχΓΒ~skΩ‚p8Όλ§―ο £3kϋΠK:‡Ν*&€ΓHΕξτΛΒ~{kΩ蛐><―]+νz£Νκ&€ΓΈνφΫ?‹jτβιλ»4lρΔέ”Ώy:³œMχ Ϋ‡ήhs‡ϊ ι0b±;ύ}awΰU|©‚Ύ‰ΓΉΤκNWβΥο…έ`mξ0B:Ϊή― » Ώ;ŸN_bΚ{i#΅P-€qtͺΔΑΪάa„tΉΨ^βSyηΣι“νύ»}ϊϊN]9/lP\ςA›;Œƒ”ΪφώΜ@)ϊaΡΞτ~ #tb9›8(N›;Œˆ¬”Ψφn:}ϋsλ~Σ…εlΊWΰ Έd/:ί€O n{OϋΣw3ΈκwδlzoŽb²>΄&f™όQΰ}?™/tŽΑˆιΐg…Ά½'ΗΛΩτyΧAΕ"4κάθή΅*:m‹ΟˆΕ]{߁ρ―•ΨφώΔ 9ϊgΣ/έμN¨’Σ¦ψl8+pP\²«ΝΖGHΎPpΫϋ Υ7zbOw.Lt§%ŠK'σΕΗ 虐όM΄½xgή,gSŠNΕήτ…δΞτjZ·œMΣΓΫWήΩ‹Ι|‘ΝFJHΎ)Ύ”ΨΦϋϋr6έΙΰ:¨[‰ΗBr—Ϊά―Ζ~hOLrWΰ-M¬ D…Ω+t7τYLρ…NΔ™i_’Ϋ“ΪάW‘5Oro¬[„tΰ»β,\‰νvObβ»Artζιλ»τχρ«;όhͺ†΄*z‰“άλΦ€FH~f2_€κΦE7κELσ…ΞDυχΔ~”ΣάiKα“ά/'σ…Ή*€άΛn‘mο/—³©IΡtmίZΆ½Žx΄θ©‚ώ¬ΐ»©£ψLH~ͺΰ΅lML|71šΞDxΗ Ή{oέ-+uΥZηΠ N>{‰3r₯ϊΓΔwΊ΄6Hϓ!œ<}}§­—ΦDΧT‰«ΦηЁ― ιΐC”Ί–­1ρEΫφŽ ώS) λn‘5ΛΩ4}6½)τŽ:‡όάΫZΫ{‰!δIuί錠ώS:­ŠγLΏzWCΎIH€ΰ΅lM :ΤιZPwFύKοtΪ½Τ]θΙsθΐ·ιΐƒΕZΆ…ήΉ1\:A}ΫΤχΟή:ƒN›βψRΙύp2_”ΊΛθΨΦέݝ{ k€{G«ΰΛ“κ½Ί9έzUυ—•άωτ7tπτυέQΧBe* θονCξKHZQΑ9AAήݜn₯UmG…‡Γτ;<}}χgΧBe* θ“ωb'ƒλ !€­©`g­ Ξ nN·ίΞ~AA$ύ­œEυܞg:QI@ΏŒΟ±€{V-gΣΧM₯πρά*†•υύŒg<\G›ΎΚ9ͺ$ {π lDHZ·œM?ͺ|ΐζβΜϊn¬jΚαoι$UΟΎΎ;ΛΰZ¨\%=ωηdΎπ7<˜΄.Ύ`]|>½ΤΙΕZ`ίνqΠάu„€0ΞUΝιKEύΧΙ|a"°!θD ’ϋŸΒο Nv’%>ύlΗΟ³ρ"¬₯pτΡ 5†PQ@?™Μ{\P(!θLƒδAܜn₯°ώK„φ_ξqΙ)„§ΣWΏ‘ƒŠϊεdΎΨΞΰ:€‚ ι@§*$Χκέ©) ϋ¬Ϊ €«`\γΛ@ϋ* θ&Ή­ω·θΑN|)Yϊy_(x€Šz# mΞEυYPΰ“.zUI@+ m^Δ˜ύ ξΆ πΠΟ _ΣΉr8™/ŽσΈ B:Π›ψ"sXΑΤ6PY@O«Φ2Έ 2B:Π«ψBsRΑ]Τ ΦrΦΠ?Ψ…tEH†°ΣK'¨άCτ?* θισK@:#€½[$w]ΑέOAύc΄pπ•εlΊ½Φq³'LegνΘψΚr6M³HήTr_ΌΟ½A-gΣTQw%―‚/pν@?ΠN»;0¨Ι|‘*ιo+yžΔυέ `ΠΟ+ 荀τIHWΡjΆ&‚ϊΏbHΐ¨Δ1¦1―£ot OΪ݁lTvv1ωu2_ep‹γKg•ΜYy’z#€YYΞ¦ι ή«Š^•»tΪ­­X«‰€ B»;›½Jv¨―ΌIμRj΅œM* θ‡:0•t ;kC‡j:Σh·.P•x―>¬ϋ©Ρ MH²_ώ*;Ϋxέ4ΝD@ιb@άqeSȁvw KQqή‰έ΄΅xfEPΊx«­Ϋ©Ё\ι@Ά’β\[P_­hΫΟΰZd9›€χ°ΚΊœΘ‰vw {ΡVyξK!ΐ0*>ήx/r#€E¨t½Oc »ŠΟŸ7:#νξ@bΞΫ _­τ₯χ*Ύd%ΦxώΌЁ\ ι@1*κOb œ/‹@6ΦφŸΧvΤ¨ЁœiwŠSqλ{γ‹#0΄εlϊΌiš³J«ηχY wB:P€ΚƒΊsκΐ b½Ϊq₯ΥσF@J €Εͺ<¨§΅s»“ωβ<ƒk*ΣΫΣz΅w¦:PgbU|F½‰*ΦΏc'1@gΦΦ\ θPIŠWyE=ΉˆͺΊφw UΛΩt?*θ΅Ά·7:P!¨Β‚Ίφw 5ΡޞΊ‘^U~W'σ…Ž$ (Ϊ݁*TήϊήhΪΐ‘τ2 IDATΓαFΠί θ@‰TͺŒ ’ήΔτχTUΏΚΰZ€BDυ<ν>3‚Χμm<Ό(ŽJ:P•TΤ›Ψ]ό1HόΤr6έIο:@ώT*€’ž|hšfΟP9ΰ[F²Zm%ΝξΨ™ΜσΈ€Νι@΅FΤo#¨Ÿep-@&’zž*ΚΟFπšθ@5„t jԏ*_/΄ς>UΜTΥaάFV=obNǞ€ΤBHͺ·œM·›¦9IPΏŽ/«V΅ΑΕδφγ‘Όί5Πw<œj"€£0² ή¨ͺΓΈ,gΣηΡ5TϋZ΅ufrUΡˆ ~6’󙍳κ0ΛΩt?ΪΫΗς29™Μ6\UQ‰³šη±Ζl,T› B1ξhdοgΙ―“ωβ(ƒλ脐ŒΞHƒϊm΄Ώϋb …‹χ°£‘μ<_—ήΗφν@j'€£4β/Ή¦ CΑFΪΪήX±Œ‰ŒΪr6=aPo –ƒ²ŒlηωΧΓΕέΙ|q•ΧetCHF/v©1Βϋ u2SΫΣίθΛ‘ΎVfj£#€όԏFΨBš\DUέnuΘDΙImνοFόšΌŸΜϋ\@―„t€0Β]κ_;‰°₯α|?~Ζϊ^”ΌΥεŒ•°&ZKΟFΈhε6: Ž΄—BΏ’£η`€ηΞW ˆFOHψJT²RηՈοσκΠαό³Λθ£&€|Ηr6=ωyΠδ:Zΰ…uhYLl?qηΞΊ“Ι|±—Οε GHψO~šαrΠ’η#žΨώ5ηΟΦι?a ά„uؐpώ7Χ±άωs€5B:ΐ=Δ9υsm©Ÿ λpOΡ‘³'œα"Ίση_`9›¦–Μ7ξΩgΒ:|‡pίu8™/2½6€Α ιδœϊ7 λπWΧΝ^μ9ΞΏtΥsο? €lΐ9υο2 žQZΞ¦ΟΧΒΉχ…ΏΣήpOB:ΐ†’bvζœι7]Ηj©c_Κ©Y ƒΫs 懴·<€πHΛΩ4}ωόΝ}ό¦ΤޚͺκG“ωβ*Γ냍ı—}Γ$(=¬ΫΣήπ0B:@ ’šv¦Νυ‡>DXχ…"EKϋ~TΞύ­Ψ‡θ:iHHh‰φχ{Σ OQ¬P{Ϋ˜KqTΠ5dEHh™φχ{»‡©Ίώ±kf$TΝ7rΥsϏ €t Ϊߏ­`Ί7Υuέ0»ΞšoΔp8€–ι‰/ό)¨ΏrδC„υ³‚™‚E;ϋΏΥΠ2! cΛΩ4Uε΄Μ>˜vx:³œMw#˜οϊΫάΨϋ8ϋ EB:@β|λ™ڍ]Ηύ;ΨΩ”`ήΥs€ ι=2T;χGNvσV©žtLHθΩr6ݎ³κͺꏗ{ͺζ9ΓNσWΧΚn„sgΜΫ£zΠ!` ͺκ­»]φτίΙ|qUΩοΗwDϋͺbn£BϋTΟz$€ (V΅©ͺwβ2BϋΉ*{]’eΚ_Žύ~tΘήs€ιPUοΕΕZhΧ²[΅PΎϊqΆΌ[·±UΑήs€ι™pV½wŸC{Σ4΅ςζ!†½­‡ςm‘ΌWQ=w\` B:@f’ͺΎ/˜τ.΅φ~\ύ¨Άχ#Ž|l―ύxH5Œ4nίΡ€α ιŠ ΥΗΞΫξ‹ΰβΎΉψ7ύ<ͺγρ<'ΓdDHΘXL­>VUΟJͺ8^E›όUόο!Žmό²ƟkYΟΦETΟ †ȈΉ8£›Zΰίy­²—BϟQuόߚBΠZE|uv|υίη֟Ck;@Ζ„t€BD…ςH |Ρ.#Ό―|³Vdˆ³πq.|eΒ›―ώ·jxωnγ=δHη@Ύ„t€Β,gΣ½ψ’-0ΓνZ oƒ°=N'qξάΤv€Μ ιŠψ}»ΥŸΈˆpn[@!„t€‚ΕωΰTUεuΦ8wP(! q¦ψΘJ+½ΫηΗcΏ₯*ηΥLΩ†Ρ1 B:@…–³ιAœY7 κ&œTFH¨ΤΪp9aκτ>†Β η*ΓεReύΧͺ`@Ε„t€‘Φ‘xΒ9ΐι##¬CQœ9!`€„uȚp0RB:ΐΘ­…υ]ζ`pΧΏ…s€qψΔ4xΤeT͏½ γ&€π…λ{֟Ή;Π©ΞΟέf!€YΞ¦«°ώ‚Φ€σζΗΞMjΰ B:?΅œMw’ΊnΘlξ:ζ?œ9oΐχιά[ ™Ϋsnδ$Αiiΰ§„t6­πιη₯;s-νΗZΪx!€GYΞ¦ΫQY·Β TΝx$!€VΔTψ]ΥuFθr­jξ¬9"€ΠΊ8»Ύͺ[γFR;ϋ™ ν΄MH Sk“α΅ΓSΊΫζΪΩ茐@obΨ\ λ―άu ± ζimΪ™ € ιτnνόΊΐNŽs#€0(LζdAH ΨwΦB»3μt)Me?3ζέir €­:·Αύ…WŠ|ˆ`~f*;9(B¬u[νͺμάΗεZ(7‘€μ ιi9›n―φ—^EΒυ*”§Nζ‹?έJ"€P…hίΪGgU)‘\ ;E¨R„φν΅ΰ=Ύ_…r•rͺ"€0 q¦}Ϊ·UΫ‹paόӏ 쌁ΐhΕΉφτσ|-Ό«Έχοv=Œ δŒ™kbWϋzxίή[³Ζ\΅­kY€ΏιpkαύωZxE€›UΏϊκG€{ Ρ:ΛZx_ύο¦’ Ώ ΰΝZ5|ΖΤ’'€@bκόΚ*Πο7Q΅Φβ^FΈ^χηZψnΦ‚w#|@Ώ„tΘΔx! B:dBH€Lι !2!€@&„tΘ„™ B:dBH€Lι !2!€@&„tΘ„™ B:dBH€Lι !2!€@&„tΘ„™ B:dBH€Lι !2!€@&„tΘ„™ B:dBH€Lι !2!€@&„tΘ„™ B:dBH€Lι !2!€@&„tΘ„™ B:dBH€L鐃¦iώ泬±•#IENDB`‚ignite-0.5.1/assets/logo/ignite_logomark.svg000066400000000000000000000025131465426447700211550ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logomark_dark.png000066400000000000000000000644021465426447700221500ustar00rootroot00000000000000‰PNG  IHDRιιi=l pHYs,J,JwztM IDATxœμέΝuUΛ²&μykάΎφg¨v6DY P c: mΑΡ±ΰ‚XPΠΘ>ςY°Ώ1!Ω‘Ÿυ;WDζσŒA«κξ“šKCkΎ‘‘ρΧ_MΐαύŸΔ €@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€@B:!€SJω£”ςΒ'ίύ§η,mηΣ4·Ÿ¦izηC!XΠ­p~δΩΐ―„t`ο„sXμM)εI ζgΒ9“3ι@)εΕ4M_t›VJ™ο=?£΄·χΣξb8p›J:@)εlš¦:p“J:,¨ ‡›ΫΫ_zξΐmB:,D{;πνξ°ννΐ*T`ΟΪτφWž3π!φ€”ςdš¦wͺηΐͺ΄»ΐ”RžMΣτI@Φ!€ΐŽ•RΞ§iϊΏΣ4yΆΐ:΄»ΐŽΈ^ Ψ–;ΰό9° Ϊέ`KΟ»"€ΐΪύηΟ;‘έ6TJyγόωΦ>'_?씐kjβζσ秞έΦΎ&_?μ”vwXC)ει4Mt`T`Em@ά;ηΟ€}QI€,AH€G”R.§iϊoΟ Ψ7νξp6 ξw`)B:ά‘τy@ά‰η,E»;άrc‚»€,J%nΈΠ ˆ§’M)ε…€’?―Xϋ?:pHB:Γk}„+Φ¬x€ΐΠJ)o 蟧iz6MΣU€΅χV θ#܁ώg­υi­υΣ4M_¬Έ‡ιξ §έ~9@@ŸΫΫ_ΤZ?X °!€‘΄€>Βθο§i:«΅~ °`EB:Γ( ³Φz`«x‰°!€! Π―Z{ϋ§kYΥqŽeΐ2 Ž {ƒτΉ½ύi²€ά’’@ΧJ)O[@?κψηΜΤή<@H [τyzϋ3Υsθ‡vwΊ4@@8]Π /*ιtg€€ώοZλy€u;&€Π•Ξϊάή~^k}`-ΐιt£σ€žρz5`MΞ€Π…ΞϊGΧ«ΐTH―σ€ώΆΦz`ΐTH­σ€ώΖ’’@ZtχŸΐ TH©γ€ώΩωs—@:τ­‚ώ%ΐZ€H₯”ςG§}7τ―{ώί W‘/₯< ° AH Žϊ?·οM€MιΠ@ 7ϊIGŸΨ< ξΌΦϊ&ΐZ€„tΒλ8 ›ΰόB»;‘uΠ―tΰ.*ιDwΩY@άzΔ³αΐ©€V)e>«ύ²£Oθ£€}sd]8욐ΐ!Ν-α'|™ϊ—kΈνi¬εΐαιD)eθΟ;xϊ©*θ΅Φˆ!h„tΧξBΩΑ“Χβ씐ΐ’:Ί ]@vNH`1έ…. {!€°ˆ“ά³_΅ΦC@Ώ°†›Nγ,KH`οτpt@PB:KΈμΰͺ5-ξΐή ιμU)ε’ƒIξ:°!€½iW­½Nώ„τ”RžtCΐ „tφ’MrΏLώt{ θ_¬α6!€αMB:ϋΠΕ½K>(η zĐΓ›„tφdθΗΙξ -ξΐ„tvͺ”rΩΑ½Χ¨΅~°Ž‘hw`x“ΐ.΅Aq―’?Τ9 Ώ °Ž}ϊpMB:Γ›„tv₯“Aq#τ™6~JH`k Šϋs€&€° ΩΕ½­΅^XΗȞώ`ΨV)ε"ω Έ9 ŸXΗ’\ΑA ιl¬”ςbš¦Χ‰ŸΰηϊTk (!€”Rζiά™ΟpΦbŠιξ oΨBζAqWs@―΅FΌŠlT™gΐΞι¬­”2_΅v’τΙ]OΣτB@Ÿ>Xp‹ΐZΪ9τW‰ŸΪ\AwOx@ν MH`eœC‡€šΐπ„tΦ‘ωϊ?k­™7vΝf$€°’δηΠη»Π/¬#’ˆgςUžΐ£’ŸC8β]θI ι OHΰA₯”?ŸCŸοB`iw€€„t“υΊ«ΦρΉ< °8(!€{•RΞ§i:Mϊ„ζ«ΦΎX«ϋΓ³`tB:w*₯ΜUΝ%}:Z{\Δη#€0™»jνqAd½=vFHΰ.Σ4'|2σ$χσλΘβzτΡιό"ρuk&Ή―/\Λ{;fΓψ[βλΦζŠπ™Iξ]p.€‘ ιάτ&ιukgΕm$βτ{!€‘ ι|SJ9›¦ιyΒ§ρg­5됻C‹΅»04!€9 ?™¦ι2α“x_k½°Ž¬€`„t¦€mξWs›{€udρˆΐ³k€ƒWJ™―,;MφζAq/ Šz#€ ¬΅Ήgl?7(n'">ΓlF°SB:ΐΨ2ΆΉΏ­΅fΌ&.0¨€mξŸk­Ξ‘οΦU΄•RLx`XB:ΐ€’ΆΉ;‡`½qW:"€Œ)c›ϋY­5b Μ.bΛ»J:ΓSJy‘°Νύί΅ΦwΦΡ£ˆΓγT–0RΚ­ŠžΙ|ύάοιή¨€@ B:ΐX²΅Ή;‡Ύ*ιˆ0ˆRΚ³išž'ϋiCίΏˆ•tw₯0¬ψλ―Ώ|ϊkmξsΕτ8ΡOϊΦukΛ(₯D|ψάγΐˆTΖpž, nkfΧŸ³sι IHθ\)e;―“ύ”gͺ¨‹Šx.ύI€5ΐβ„t€ώ]&ϋ Yk{qCDH`HB:@ΗJ)gΙ†p}¬΅fΫTθAΔMνξ IHθT—)πΊnνp"NΠw Cϊu‘μNtηΠ'bHw C:Τ†Ε½Jτ“½―΅Ύ °ŽQ…œΠΊA`(B:@Ÿ2΅Ή_ΝUτλVΰηސΠ™„Γβ΄ΉΗπ1ΰš„t†#€t$α°ΈΧZ?Xa€„t€ΎdwΥΦK a€„t€N”Rž$§Ν=–ˆή…t†#€τγM’ŸD›{<Cϊ‘ οŒFHθ@)εY’aqΪά Όi’šΐP„t€>dͺ’ksλ*ΰΚ„t†"€$Χ\;NςSΌΥζZΔ–wήАX²+Χ§i:°ξgΒ;˜Ϋy’+Χ΄ΉΗ±’žeΦ섐T»r-Keϊc­υ]€uπ°ˆ•τΏλ0! ―‹$UτΉΝύ,ΐ:x\Ȑε€‘ι ΅ΚβΛ$+Ώ¨΅Fl£ζ–vΑ„w8 ! §,W}΅flΗw7TžX,BHH¦”ς,Ρ0-Σάσ‰xEžJ:ΓςΉH²bw’η±’~dx£ITEw'z^†Ηΐ ιΉd©’Ÿ»=§Z«$€$QJ9KREŸοDΟ2؎»}ψ\ `B:@YͺθYΦΙύ"VΣU‚@«’'Xͺaq}ˆ `B:@ͺΣ†Ευ#κΉt-οtOH.Qύ°Έ>ξ†Πς@χ„t€ψ2TΡ―j­Ξ’χ%βπ8!€ξ ι%ͺ’ksοOΔ–χ ·ΐV„t€Ψ2T§η+ΧήX»ς\z)ΕΉtΊ&€₯ŠΞ €Δu–ΰ³™―\‹ζΨ‚αqpB:@@­₯7Γω[ΓβϊqxœJ:]bΚ~¬΅~ °φ'b5ύ¨”’š@·„t€`’TΡ―η{Ρ¬ƒύr.&€Δ“aΫe­υk€u°_QΟ₯ ιtKH€”ςdš¦ηΑ?“+Uτ1΄γ ΧX!€n ι±d8‹~‘Š>η`AB:@₯”?¦izόσΈͺ΅Ύ °–γ\:,HHˆ#ΓYtWΗΉtXGτŠ> Z« (₯œΝηlƒͺθγϊπ'w.€. ι1DΐͺθcSMη ζΜvϋ@χ„t€+₯ΜAγ8ψ砊>Ά¨Γγ^X˘NΪ(† €ž³θD΅’~` ,c>ΪpZJΙ0``+B:ΐ΅φΝηΑ?UτΑ΅{ρ?G| ₯Υτ1œ΄ŸςBΫ;Π;!ΰ°TΡΙΒΉt’ ϊa°yι“z&€H)εišΞ‚?Ut~ˆUϋw»rώ\Π3!ΰp^ΏvM›’†τcνΟέ»λͺ½7m£ ;B:ΐαDouWEηoν\zΔϋ'ΥτξݏL{z%€@)ειAH]«’sη9„ϋ¦ψk{Ί$€Fτ*ΊΑLά%jHυΉOmCσ!Ϊށξι k/”‘«?ΧB:w©΅~hΏ©¦χ鱐ν莐°Όθγή΄σΗpSήYc!}φτFHXžVw2Y*!}φτDHXP‚qok­_¬ƒΈή]ΩQ)EΛ{ξwΫ‘)€^ιˊ^EwΆ“΅Mœ« OI5½#+ »ν• B:ΐ²"‡ˆm0<&j5]HοΛΊ!}φτ@HXH)ε,ϊΐΈk ‡¨›9ΗT_‰k“ΟςXΫ;°œΘUΎ«Z«ΞJj­Q+ι³³k`76έpΡφ€&€, ”ςdΎ&(π³ΠYΧϋ OLΛ{?Vwmο@ZB:ΐ2’Χ±.-ομΝ>Cmο@ZB:ΐ2"·ΰΞΧ} °rΡςΞ>νb£EΫ;’°g ξFΧκΞΪΪUlŸƒ>9-οωνͺΒί7 !`"Wυ>»v-hyg_vυωΝΏ ΪށT„t€ύ‹\ΥsmDRjyΟm›‘q·½Άid"€μQ{1<ϊŒ―ƒŸ+&ΈZλ§ωϊΎ «ΤςžΤž΅Άw !`ΏΞ?ίwΖ±Q7zζ6gA=§}„τmο@B:ΐ~iu§w‘gι9ν«5]Ϋ;‚°'­Šwτω^΅VeΨJ­υ];:Ρ‹RΚ>αtφ€΅½α ιϋ£ŠΞ(’ΆΌ©¦§΄Λ‘q·i{Βφ'r8PMb—" 4ε=‘…ΪΡ΅½‘ ι{PJyΈΥύ½qμRπ–χΣRΚ“λ`5K…gέD@XB:ΐ~D’»v}PMg– ισζMδΫ7€ ιϋ5€_ΧZ΅Ί³B:»°dϊ…. "!`ΗΪYΗγ ΟU½ής~܎ ί>‡Ζέvd>‘°{Ζ1*Υt6v anΪށp„t€έ‹η»Ρ?XύŠ<Œλ₯;ΣΓ;TλΉΆw !`‡Ϊ‹ήIΠgͺ՝½ͺ΅~š7ƒ?eΥτΨu-šΆw !`·"Ÿ{υΚ"oikŽν?΅½aι»ΉΥύS€uΠΏΘ›AΘΕv¨JϊΪށ„t€έŠ΄Ί³ˆΆτ9πΣΦςP ΗG^ΩQπΉ ΐ „t€iΊCΏdήG«;KŠόϋφR΅4€CWΡx^J‰|C0!`w’VΡ΅Ί³΄θ›BͺιρD ι³7nIH؝¨Υ­ξ,ͺΦϊuš¦χŸΊaρDΪδ4ν8(!`ZΥΕΥkγχ’šK€Jϊ€ν8$!`7’ΆΊ_ΧZ?Xƒ©΅Ξ•Θλΐ?΅jzA†ΖέEΫ;pB:ΐn˜κΏ‹ά2|β:Ά0’~¦½!€μFΤ—LUtΙ9Vy³δ₯Ν`iB:ΐ–œG‡»%Έ3έul1DΑΪށE ιΫ‹ϊ‚ωΉMΩ†CŠή.|` Γj›$ΗΑώcΏ'ΐ’„t€ν9χ{|€ά UƒΚ2Aύ•Άw`)B:ΐφœG‡{΄nŽΠΧ±™τ~P™‚―Άw`B:ΐ"ŸGwυDoy?Ύ–ΧžωσDK>Ά‘,AHΨΞΣ Οοc€5ΐ7 Θ%j»ξIΖgώΊ”υο>Π !`;Zέa5Θq[֍‘θW Ι ιΫ14VPk}|€άq)Ε½ι IΨκ~ΣI)Ε¦°7B:ΐvN#>ΏΦ^ Ρ¨¦σCφγ―έ±싐°‘ΐηG'ͺθmΒͺιΛιa€Άw`/„t€ΝE ιΞ£R­υΛ4Mοƒ:ͺι{Φ*ΠY[έo:-₯˜φ윐°9Cγ`}Ρ[ήUΣχ―§IϊΪށ]6²’ξ~t"kΏŸ‘―c›TΣχ§κσQ‚' !`s'Ÿ]τπ“jϊΈJ)sqgΰy)Ε=ϋΐΞιh/š©’^»Žν*ψ:UΣχ£Χ͏7νZ9€­ ι›14Άcϋ`Zˆ}ΩιO­νΨ!`3QCΊϋΡΙb4ΧΑΧͺšΎ[½ozΌ άe$"€l&bHΏnW\Ax΅Φ―Σ4½ ΎNΥτέαΊ2mοΐΦ„t€ΝD§Υl2TͺUΣw  Vλm`ά]ŽύΞΫΦTJΡκ;Π:?ή–ͺι»1Bύ‡WΏ'€„t€υ»“aΨ–ΚθJ)O¦i:Mϋl&ϊ`D 0!`}O‚>3•t©΅ΞΏ·ƒ―{¦ κ›ρٝψ6%€¬/βτή«6ˆ 2ΚfΞ [_«’χzνΪcΞΫΟ°!`}ΫέMu'­Zλ‡Υτ£ΑΞUοΚΘηω΄½›ΦΠ*iGŸ™σθd§šή™φ¬FίΨ8m“νV&€¬ΗdwΨƒDΥτ ƒξ’8Ί©Ή4w§kΦ#€Γώdh ~ιœρΚF―’`sX‹°žΥvί4€VkCϊU‚ŸΑΤξG΄»εUΡš7w"Φρ%+z‹0¬#CΈg#γw†Θ+Φ±ΝUn¨¦ηΧͺθΗ£?‡;ΈoX‰°žˆ/žΞ£Σ› AζT5ύ^‚θύ^›iΊΫUτoέ·?΅ηlˆ JHΘΙι ­Φϊ&ΙΤξγ6 =΅Φπ<ΙΟπPΈ=O2Σ`jCδBnϋ%€<Ξdwˆ)Kψ}έ&’§Τ֞₯ΝύΞ*ϊ­)Σ¦‰!r0 !ΰq_΅Ί3ΌΦΎό1ΙsΘ2ύ.ο’΄ΉO«΄ˆ·.Œ,Ώ7'₯”τΐz„t€œ ƒο²˜yˆά‹λXK)ε2θνwy°Š~K¦!r=Ν5V €<Χ»Ž!½vv–a`©Z—Ϋ¦Β«KYΕυ:6-ΜgΉ;ύHΫ;ŒEHx\Δ Ζ‡k€(² ;.₯€˜Ψ]Jyš¬Erέ/]ε7{Ω>`B:Z gY*ηΡ‡Θ΅ΦκLηΠ―·ψόSݝ` ΐ„t€ΗE¬^˜ξΏΊLR έΊάϊ‡vu\ηλVΡHvwϊi» 蜐πΈpΥ€5†#ΑZHKΡJ>ί7ρώλ=Λ ΈΩη6­}™ξNΏ4Dϊ'€]Hv΅Φ›Ha«΅ΰg θΣ.¦ϋ'Ϋΰ9J΄V`CB:ΐ‚žΝ2θ!K€9Žr}\ϋ;χ)a@ίΪΥ·Vk½L΄Ασ*ϊ\`;B:ΐΓ"Ύiu‡{$;cό:BΨjΗg²ύ]YλΚ΅eΉsJ6yX“τζ"Ργ(a+Ϋ@²Λ]ΟζhwξgΉ;ύ΄έctHHΘG%ΠΒ[–λͺB„­dυͺέqΎYn ˜ ‘ƒ~ ι 7YH‡•d [!†Θ΅ΰϋωΠλXΑήͺώmˆ\–Άχ0s €έ€ξ˜Ψ½±θmο;wŸZλ»DCδΞ ‘ƒώιΐΪζŠO)%ΫωE`0Ιd›'v?=τ"‚·½_/Έ‰p–d+Ω CB:°‰A§žb―U$θŒ‰έk άφ~Φ:$φ.Ω\ƒ—₯”ˆG³€ ιΐZJ)— οέ†ΝH¬U†³\ΙvRJ‰²©­[κ}kC_LΫ¬Θ2Χ@5:"€+kˆ_΅£μΪ ιίy’+Ω.‚ܝ©ν}Ι6χΫ²ν:u ϊ!€+ig%£άη °²„CδB΄Yj{_¬ΝύΆ6€ξύ!ώ·7pαJ6胐<ͺ}ιΏi/ΨΎ'Cj­—I›=pwzsθκμβmξwΘ‰αJ6脐¬βs觞L¦sδξτCΆ½_Eh7O6DΞ•lΠ!xPbτS²k](Y†ΘGiΡ?`ΫϋΑΪάoK4DΞ•lΠ!ΈW;‡ώ―ώίG8ϋvπ{‹Κ4D.ΔέιΝν?νΙ2˜Ν•lœά©πΗΞŽ`Γ‡Ž$"7Ί;}ΙΆχ­rJΆ!rΦlHHξσ΅[ΛGŸl'ΩΉωξτ‘Ϊήη.‡(Cσξ’₯γ4ΠπA`MB:π›φBΈΚ`8Γi€¬2 ‘‹4 lί-ίΟ’œCΏK²!rYΦ ά"€ΏhηΨ^―ψT„t ₯dCδŽi{GϋοGw™dˆάqώ $#€k•šCίG °”LCδζφεƒΛφΤφώΆΦb#β1­Ÿ%ό^ 2δΊ"€7½[sPšJ:VΒ!r!ξNovΉaπΎΦšerϊ7΅ΦwIf„%;ΪΓ›„tΰ‡RΚάΎw²ζΤ’ ‘λ±νύs’«ΝƒŠΌ‘ IDATnΛ²ξH3 €ιΐΤZ(_yΐ 2…ΔηQξΐήAΫϋηθƒβ†Θύ;ξ vδJ6ΘEH‡Α•Ržn1v„{Ξ΅ͺp†°υΓ›Ϊή―3τ.’Μ5x©šyι0°φ’χfΝsθ7mϊM–°5;ŽRέ°ν½—€žmˆ\ŠΑ|€£Ϋδ:‡υΑσ‡έka+SΫϋ«€mο?z†«ΦV¦g˜kpεwx˜ƒjw§Ύάφ§χ…τ"ΡΔξ"UFWΩΰ˜ƒμ“žϊ id °ΰB: ¨C—Οΰ7™ͺιΗ₯”,m漢Δ=¦Φ:w9½½Κoζjϊ‹λ €Γ`Ϊ9t-Σwh»wq΅ΨR^·Χƒ{ νύmΟύ†,ΥτM‡Ε a<οv<πM»;Π•6―ύL‘ΫήYk=  gΪΰ9nW―A ι0Φyκ3xT¦s°ν}ήδψ_΅ΦΡͺΆ—In p6aν Ϊλ=ό΄QξκΨ™vΖψm’'­νύi§β”θJ6ΥtLH‡”Ržμ±2ΔK!ΐœ'Ί;}ŠtΦx„φφϋ΄+Ω2—Έlsj€`„tΓΟ‘t/αέι§νzM/ΓοΝQ’aw0!:WJ™wτOφψS>ρ;τ*αέι­{ŠjΗ%2όޜ«¦C¨šΑιΠ‘φeϋf©sθZ+ή΅‰εŸύ˜ΪήcΈHΠ…‘šΑιΠ§}ŸCΏΝ‹ 0‚LCδ΄½¨ C5‘3­ΕρΉΟ`·Ϊ½ί&z¬ΪήcΈTMΦ!€CGΪ9τΰ'2Μ Εe’;°Πφ~`ν*Ώ X5‚‘ν‹υÁ~_κΐޝν=€Zλ››;ͺ鄐ύx·Τ ΈΑd, έajχΪήcΈH°FΥt@H‡”RζφΛΣώ$Ο:ώ=ϊ` @<η‰ξNŸ΄½^«¦ ΎLΥt@H‡δJ)/¦izεs†σ€Άw6€šmο֎J¨¦!·(ηΠΩjpHgΪήYχ3HπΐTΣငtHͺUC„c€jmοBΧΪή,ΙΰAΥt8 !:ΰ}θχκxΗύPΧΪIΤZ/΄0ί€νύπTӁ{ ιSΔ*ˆf i›4@,ΪήYY­υ‹j:p!’)₯Μ»ο'>·‘©l@0-ti{g)ͺιΦΓ!‘Vυˆϊ…©" MΫ;λΘRM/₯dΊjΊ €C.o_ΑΥkH` @ٍΆχΓΊHpL"S‡tAH‡$ΪNΆiξΛϋpMΞ€CP­:ϊg’ΟGΫϋ΅ί—ΛΰΛ·Σέ!Ή„mοσΥ[o¬cm3ηcπŸW5vLH‡z;λΧγΉτh/IΗΦl/[Ϋϋsmο‹‹ώŽ`€옐ΦYύη₯Π~w€Δ΄½σ˜Zλ‡ΰΥtΧ±ΑŽ ιpx=NΜν±’ρ6!: νDήB:쐐Τi}v` #‘ΫޝE^H­uιW—xͺ» vGH‡ΓκφήΩRJoΥτOΦp›"θDk{g²ŸζB0[Tτw›6°#B:H;ΟΧσπήBϊΧkΈΝΩθH­υ2Α$ο›΄½/λέ4MׁΧwfV손‡sή^pzΥΫDΔJΊ—!θΟYπ vΫ©ΆχeΤZΏΏ7ύ¨σβ,FH‡Γιύ₯ζ€§υφrJ:t¦Φϊ%αQ(mοΛ‰ήΉ`Γv@H‡hW•τ\E‘·υhΣ—΄B’Ά½Ώ °Žξ΅Mœ·Ξyƒή2lIH‡Γθv`ά-Ξ₯οŸ—!θSΆΆχ9œςέvh‘[ή'Υt؞ kSϏyξ½Uέ•,"iΫϋkUΤύk7Dξ΄x‘Λ Ά#€ΓςFΪa>ςΒΆwB:t*aΫϋdΪϋb"?gδ`KB:,¨ Φy>Ψ3? °†]‰XI· }{‘νΫj­sHΏ ό`zϊξ‡Ε ι°¬Οiυ΄›ρLΊJ:t¬έ,‘-πh{_Fδjϊ©‰°9!ΞgΈ³|άΛu;ΝIΐ5;Tk'§ΏOφLί9—ΌwΘA§„tXΞ‹A]»KOΥτhΧ°M*V0„lΣޏΊΙδ Z—Eδλ؜K‡ 鰜‘w”{κ Πς,.iΫϋ«v£ ϋΉε}ξ€ΤaB:, ½€Œά–|ΡΩ4Γ〃hmο‘+§wy£ν}j­"vxέ €Γ„tX†)§ύ<ƒ/Φp›γ8>Υϋ6mοϋωlϊK›4°>!φ¬}9½τœ…τ=aΪήΉΓ»ΰσ TΣaMB:μŸ*ϊwΗ= 8k­…Ρ\°'νοΠΏ“=_Σήχ€mάΌ ΌDSήaMB:쟐ώS/_ΤαZMU©`8ΙΪޏ‚9Λ.rΛ{Osi`B:μQ«»Ηϊ§^Zή΄Ό•΄νύΉiίϋQkύd€τCH‡ύβυ«£RJ&ΌΧΪήLφI˜φΎ?‘«ιή‡` B:엝γίυπLTj­Α+¨·i{ߟΘ亘KKaOZΕψΘσύΝσΞ¦E ιŽUΐΈ΄½“a€œ=°"!φΗ ΘύRQπnx ͺGΦφΞΌKΑ{¬HH‡=h•βηžν½zΨMΨ^ͺ•₯νιη&rΤ©ZήaEB:μ‡έβ‡w0@ξS€5άζεΖvψLς]žw2L4δ 9!φΓKΗγ²?£ˆη΅»ΓΐZΫϋE²'pι흋|.]V €ΓŽΉ}e§ΙΫή"žK?vΖΖVk«¨=mο;Vk7‘ί]ή‘‘π8!vO}u™Ϋή"Ά»OZށ„mοσ¦­6θέRM‡Δ„tΨ=_>«{™΅ςΫΊ‰8œGΛ; UR³΅½_h{ί©Θw¦{O‚Gι°C­}ϋΨ3]‹jϊn ι€ΆχΑΏ3]Λ;·Ξθ΅p΅ύν¦W †E}ŽB:°’dmο™κŒΔUl˜λ‹άκώi‹ϋ,ΓΩ’·ζ«N=ΘφžιͺΞH’†t7’0ΌIH‡D ;[…Γv–ύνξ–³7σxΨ²Zλ‡ GάA ¬,YΫϋKΑn=gM6•AH‡MDύςΨΕx–jDτφΖ¨Υt“u\ΎSϋ6Υτυiy‡ „tXC«DG|fmZ뢍Ήšώοέ¬h―Ž‚ί‘λ*6 ½VmΝ²ΉχR·ΠΪ„tJH‡υDύβxΏΓΦE‚IοS»O5κTί¨/>ΗZBu΄#<ŽBMI £iˆz<ΛwCa==·Ί“θήτΩEΔ/ςΦ‘΅ET5XΧy’Ν[UΨυ¨¦C@B:¬§Λ‘qwΘpoϊΤΪή£Ύ`D]—sιΐZΪζm–ϋȝM_I !VΤΞΊ|^Ÿ[εvg’UΣ£N{ϊβγz`m΅ΦyΘΗON5}=*鐐«₯ŠώM­υ"ΡTίΧΡ΅A~Q»΄Ό›PMοLΰ«ΨζsιX„«λώ<ϊ2½θΌ ψ…ξ*6 mΠX†@TΣΧ£ε‚au!Ώ,Ϊδέ}ύ·ίέaΏΛqΐkΩ’ΆžΈͺΨP–@lFNH‡`„tXAΰσθ»Όzν>YΪgΟK)‘^Μ’†τΙ ,°‰DCδ^šΏ±²¨!έf2Γa5CGΏ©Uκ—Ψ Ψ•Λ(Uβΐgύ&ηM%κ²r6}Ώ«N¬BH‡Υ ›LΥτ£`ηΣ£΅ΰp¬εΨ‚jz_BVΣΝ`TB:¬&β—Δuβ³w튷?ϋγ%ωτΘ-ο™6_€@uYω;·-οˆ|}ιπw™θJΆ©O?x«cΫΰΠςτ(C>s•ΧJ„tDH‡ΗEύ‚Xτ 5Ρ° ›ζϋΣ#Ρ¨Υτ£ ΟH¨mBΎ Ύς#ΥτΗ>—.€3$!7ϊyτΏΥZη°ωqιέ-½ pφΪ”w Wη dσwn5«ι':!‘‹Έ‹{Υ*‡νeg’|8δ—|›υ¨ΐs/@ΐ¦Zφ2ψ<v=gT‹ΜΉΩ€j:Γα-Όœ|FΫνN8DnŠΤUӁŽ]&¨¦ky\Τsι&Ό3!ζ<ϊj­Ι†ΘMm³εί£^Ε6yyΆ‘€š~β:―‡΅MψˆίνΡc8B:<Μyτϋe¬ΎΞ­έ ΛΑ[ήέ™l%Ιζ­‘ΗElyχύΔp„txXĐ~ΘσθkwδώϋΠλΨΐΛCuw¦;ψ΅—˜ώ«Κ>,bHxμφJH‡‡Eά½τš±ν}j/j‡¨¨Dn}a€°ZλΥττBžKwTΡιpΆΫ~πω„ωmη³ΎπόχA½u@DΌ‡vjΏλξLΆ½š.€?Μ„w@H‡ϋ9Ύ‚ΔmοΣ!‚Ίr@ΟTΣη6$οΡ6ί#n&;¦ΐP„tΈ_Θ]Ϋ6€,š¬mοΣ‚zδsι'Θ;}»jϊΓ ƒα~Ώ>XΓo’·½OKυΦςςslTӁm½ ~oϊsδtπα΄w8 ·"Ψ#!ξρ !δ@—)ΫϋΤ‚ϊR՟Θ-ο/ Ά‘δήtΥτϋEgc…aιp‡ΐ-ΏQΊ|Sk=<m―Ίž-rΛϋδε؁ΛΰΥtηξυ]CHgB:ά-jH[IΏ!ϋ‹Ο\I~·Οjr«2½έΧ΄Ό[iη"w »Φλnν³‹8gΖηΕ0„tΈ[ΔέΪ«φΕZlχΟθλ|ΔσyCdΟmί‘«ι¦» ε=―ˆηU†w‹Έ[ΊΥύ¦Zλόbφ>Ί6r2Ώ€μλθC­υ]π‰ψͺιΐVΪ ΜΘ]C/ΜΰΈWΔΞ=!aιp·ˆνξiBzs–ψZΆަiϊ{œόΉš~κ:6`"·ΌΟγu έΝ5lp@B:ά¦‡|.Ξ£­΅ζχςς3O~³‡ŠKτVPΥt`+νζΘΧN ιw‹Ψξ~€σQιπ»νTνE'•NΞ§π²SίΩN~‚;Σ_Ίς؁ΘΥtw¦ί‘}G€šΞ„tψ]Δσθi―5λδ|ϊ'­ύύb‡ΝΘ/―“ΑJΐΆj­o‚RMΏ[Δw* AH‡ίEά₯ΨvΆŽ³δχ§ίφΊ”ςiUυφςω.αsν…ΐDސ΄y7ήα@„tψ]Δ/€lCγ~ΡΞ§Ÿ£λϊQUΏάAˆ<@Ξ`%`"‡τ-οwŠψξαt† €ΓοN>“tηΡokηΫz¬VΌjW΅m3d-ϊΉ]Άχj38"}²ω»ˆ!]gCα†ΐWN₯€ΠξοeάMs΅ω_₯”/›\ΧΦ60";ήγ5tΐ8΄Όης5ΰj#R`η„tψUΔv·«Φ.ή…6Hξm/?Ο-ΗνΊΆo•υ5Ϋ࣐SMΆ6j£Σς~KΤ[eΜIaB:όΚΠΈΤZ{$wΫΦΥΪΰί¬‘‘`€ά\MΧ l+ς†€ΏqΏ‹ψ½δ6Ί'€Γ―"ώαOύΟ:κSkƒΩΜύμ/¨D―¦osξ`ςžNΔγv:θήϊˆα&»/dnαoηœ?΄0Ϋ»γΨηs»ήUλ’ψtγά_τΎΣRΚ³¨-@|σΉRΚ<@ξyΐΕΞ-οτtΔlζο©Σ`kιžJ:ό*β@’ξΪέhӞuv5ΫͺŽΫ‹Ο<ώuϋχ2ΑΊMΆωΪI-οΏrW:€Mԁ1-Θv«γ«Ωzυ­š>ϊCΆς.π欐ώ+νξpB:όρ~οgΆΏi`)¬F5ΨXk'ZM· ω«ˆ­B:έα'“έ¨M7ΤsPMΆ5€ΉΙβ+ιΗΦ{%€ΓO†ΖX κιgNL5ΨX렊Ϊςn²‰:DΟ]ιτNH‡Ÿ"V‡ ιΣχ‚ΛišήX SMΆ΅š’ώ«‘ΣΈ+ ιπSΔJϊΧΐΤZΟυTӁmD ιΗQ‡Ιcα§pgœFΎZPOA5ؘ–χ4"vυω|蚐q―_» °†ƒΤSPMΆ‘ε=Ύ!»ϊΰ„tψ.bHf²ϋCZP7υ=.Υt`b‹Ο]ι°0!Ύ34.0Χ³…w6ϊ6Έε}ΎŠΝp²οά• ỈWyh/»APν₯!KΐTΣcσ> Ỉ»εÍ»O κxΠΠȜM6υϋNHώέ±³ο4ΐ`o„tψN%=‰6ρώ™ Žj:°)•t€„tψ.\%=θΞuνΏπσθΟ"Υt`m΅ΦySϊcΐ'η\ϊOαΎoK) ,°B:|wμ9¨?’½ΤΝUŽχ‘:ŽkG4€-¨¦Η±»Ο έ^Π]UτΜA½Φ:ίeϋgψΕφm° ιŒ.b»»Jζ Φ?ΆΦφ³v „ΐ=Bz<:蒐pˍ°ώ?[₯Ή§;Φί·pώLk;Ψη€K‹Έ±Ώ$Ί°τ ξΦ*Μg­n>»~>MΣIΒΗ5o2ΜSν/T́$>ό{;z%έχ,DHgtαvΕU7γi“ΞίΜJ)skέY νΡ―ωΨΦύΞ΄v ™9€Ώ ΆδΡC:°!` νξπΉ’~ήϋ‹φ/JΕηc«šΏS5s 0,!`C-°Ο.ZKό³φo~‘;]θΉ~nΓΏύS1z0w••R’ύ$σ„χ?ό 噁»τHHgtΡZΧFΎ«;΅φφύϋ¦UڟΆί³G+6 οsΪ6ζ ω'G#€Ξ]@ZξI§KB:#€P„tΒ*₯<σι#€ΗΨ,…ιˆjŒMH€υ˜*@­υΓθΟ€> ι°Sٽ™ιξίSŸQ>XˆΞΘ„tˆοŸQG£?XА±Ψ₯xάgψ^ ι‹jόκIΐη1T7^)%βϋ‰α}tKH ²p!½Φ:Ϊ‘9~° !‘™Μ „"€3¬ZkΔ6);Υπ«hߍΧΦΐ4Ή#n ι‹3ιπ«hSΕGμΔ{` 0 !€J)‡Ζ앐Ξθ’]ίαe~Šψ½hͺx f Ρ-!ΡEϋ’=°ˆ"bHΧξƒΝΊ%€•3`8B:£ · λόό-βwβˆSΕu4ΐ‚„tFρΌίωNŒ!άqΌ WιΒNιDνŽτIΨ7!ΡEά…ψB‹*₯όπŽτα*Έ₯”ˆCγ>X썐Ξθ"ξ†` ph7­£]έ tHH‡x„tˆG<q.ΐ—k€½]Δ?ςΪέΐDρ(„tX˜ΞΠj­ώΘ@L7­G|oΠα !žSŸ „ό>±’q³dΔ»κˆ&„@(₯”¨GΏT½!  ΧΐRB†τAΙXΓmξͺ§kB:ψCΡΈ›;€vW}8£έUΟx„tˆyŠJ:#34.†ˆŸΓU€5ΐ^ ιΰ£Uo΅XΗ±’ξ ισ½J:£Šϊh»«q IDAT²{ B:έ!f»»IͺŒJHγIΐ5 ιtOHgx΅Φˆ_ΊΫό` CϊΥ ΓΚ„t8!Ύ»ŽφJ)Ώ`oœGG»;€ίEόςΝ‹ ?ο¨!ύ(ΐn鞐ίEόƒqχφ)κyτΦ°¨RJΘΟ’Φ*€Σ=!Ύ‹ψίπ8F²’^k.€}ω` °wB:|η68 RΚΣ νΥ£È}#οc@B:|1€;“ΐHΞ‚ώ¬#VΡ§ ο!£~ FH‡ο"„9°XJΤ‘qBz*ι AH‡οgΝΎ½†MΛ;έk­ξQ7§G ι§ΦpΫ¨SφŒ?Ή† #j«ϋηΆ‘?”RJΤχ“έ‚?9—‡‘Υ=–ο_cB:όdΒ;,L«{Hί?\ΏΖ0„tψ)βqΔλO`—’ΆΊO*鑨’3 !~Šxζμ(πΉ0Ψ…¨!ύγˆηΡ›ˆEC㆐M­5κ!€.•Rζ³θGAΆwΦp('Χ$€3 !~ρΌ“sιτJ«{0mF@DΪέ†ΏŠΈKλ\:έiΗΉžύΉwΨν[Θχށ?$€Γ―"ξ ιτ(r}δVχˆΗμLvg(B:ό*bkΫq)ελ€]cŠxΜN«;CαWQΏTΣθFυnτλZλ¨W―M&»Γα ιpC­uιΧŸ‰αqτD= 6' β΄}!‘ιπ»ˆ_B:]>0nΌΥ=j瞐ΞP„tψ]Δ7νξτβ<πΟ1OuƒiŽ0 !~ρ‹ΰ(π½₯°’6U«{\;χ>X,JH‡ίEm©ΘξEΠ3Ο?Ό‰±Œƒ9 Έ&­ξ GH‡[j­QΏ œK »‹ΐλΏ ό°w;φ„t†#€Γέ"ΆV©€V)ε,π΅k³Λk8$!‚αn‡Η΄³|Qδ³θ“σθ1;φFξn`\B:άMΛ;μH)εYΠσΞ?Ό7A™κώMΔσθΧ†Ζ1*!ξ±’> ι$½ŠώΡΐΈo"n€θ KH‡{ΤZ£†τΦJREΎΥ½}NE}ƒ½αa―ώ8.₯< °xHτ*ϊ•qί8Αιπ0-ο°&UτTT!!uWΛ;‘E―’OΖύ}?zΔΝ”Ο΅Φ―Φ!€ΓΓT` ₯” ͺθo…ΐo΄ΊC@B:< }ψŒŽz`l*ΤΓWѭ3εVPJ9›œVέΏύ7!αqZήΰν|s† u†σς{ΧnŠ9 Έ΄+wΧ3:!5€ŸΈŠ €@ΞηγXΑ?9ͺ~§ŠA ιπˆΐη'Υt"h›Ζ―|ͺθ?E=6'€3»“0 ϊ•Vwh„tXOΤ/-ο,%Λ°8Uτί…}W¨΅ͺ€C#€ΓΪˆ«ΨR»_ϋU’ŸύBύ7Qί>X„!€ΓϊΒNyoml°/Y*Σσ2UτΪ;BΤ9ͺθpƒλ ;ε]5€}iw’G=Ο|ΫE¬ε„ωAH‡„tX_δ/!€+₯<¦ιu’';WΡίXG4Q§Ί»z naMν|[Τ³SΟ΅Ό°Kν{%S₯3j=˜RΚ“išNƒ.Ona3‘ΏPΌœ°KY¦ΉΟ>ΦZ]ευ»Θv>/ΈEH‡Νιt/Ω4χΩy€5DυέΰΪΥkπ;!6ΠΞN}ϊμNΪΩAΨXΒ6χ·΅ΦOΦJku:πO@‡;ι°ΉΘCiTΣΨΦ›vsHΧ&Ίί+rwVwΈƒ›Σς@—J)ηοΤΎΛ₯ αχrυ$#€Γ†‚·Ό•RuΦ֎LeͺJ_Ν!=ΐ:Β)₯Ό<το}»1ΈEH‡νhy νz¦6χΩΉ°w―Θοͺθp!Άω ζ΄ ‹€U]2v—¦ƒί­mΈD>²ΰsƒ{ι°…ΰ-ο“«hXU;&υ2ΩΣ5vΏΘΟF«;<@H‡νE>ηε€G΅sθμIύiXάƒ"oΤ«’Γ„tΨ^δ/δxPΒϋΠ'ΓβVJyx`ά$€ΓΓ„tΨRkΧzψ9 ι<δ]π@w—3νŠ\EΧκa7’{`SJ™'ΉŸ&ϋ\ζχ!ΐ:BjCc ŒƒΔ„t؁Zλό’sψY ΐ/’Š»Φ!φ¨ΘίωΧν x€»ygψE;sYΕΝ.΄Jί―}Χ»’aw"°9Ry`ϊΠ3Ά‹Οw’χ°ν;?*UtX;RkύΤ¦ΝF₯ε`p­ϊ&x»‹6χΥ\^Ϋ•Y°!v+ςq)εE€up8sH:Iψό/ά‰ώ°Χ©’ʄtΨ­θg­TΣΥ&Ήg θΪάWύ;^H‡ ι°Cm—?ςι§νjzΆIξ“6χΥ$Έvν£NX»}§8ςy5v,ιUk?hs_MτοvUtXΓόυΧ_žμX)εKΰsasUβ‰+lϊΧzΖ«Φ¦V}}`‘΅a€_œοFw ,¬A%φ#ςŽρ‘³ιύKΠ΅Ή―ξά΅kΠ!φ#ϊ’€Ž%θ³3mξ+‹ώnθ¬IH‡=H0@ξΈ½ΐΠ™RΚΣδΑθm­5ϊm)!΄οςΘΧa’Ώ iyθL θ‚·??δΚχΣZ Œƒ{|€άμΏj­¬€-uΠg«ώνέΝuW’6ΰμ9³§> ΘYίρY@΄ΔX@ΠB΄@ ,hΠ‚,hb‘λ<,М«‰R—(ώ…Μ¬7ŸηuοYDU½q#ΖρSΧΡΌRΚΡ0 hψ:οΖq΄φv ’σj½šn@J)‡ττGi½γ@v$€ΓΌΞcBm«^•R<εH,Ξ%3y@―g— { x(σͺρΛτzŽ„t˜Qμ"o}ψj:@RLqβaφQΧ‘IλŸέρ؁σkύƒτj:@>τκP {ΈψΜVE‡Ž ι0³X=rέψ}ΆŽ ‘RΚY'έ9τΗkύα΅ΧžFH‡e4ΏŽ­”ςCΧΐw”RκΌ“wά§Ξ‘?NTΡί4~™ΖΑ ι°€q/cχk«žΩK ΠΆϊ0΅”r• €=č.΄^E―kΧ„tx"!–£šΐN’‚z•ΰ,ςCΤAqΗΞ‘?N’*ΊΞ˜ΐΊ‰°˜σxήꊜg1]ΧpH$ΎΈΧŸƒa6ΪΆχΆzNtŒ~ίγ8^y½ΫVJ9θ`ϊΆcg–wzύήw˜Ζί~ϋν7·η[~ ^ΫΤLz‡FE ?Œ~0aUυ.B{ύΉάΫΡΡχχγ8ZύωHρ·?_ζ‡qƒ ι° $²o'ƒv”RŽ"˜Χ>_πΒ>Fυφ2ΆT°°v«ξΞv}Iώ-ό—χ ˜† +₯Τ!r―Ύοͺι°gΡή|?-΄8_Gλ₯sΔσ‹Ίυ³βeGΏΦ}θ»Iς€ί˜Αq°ΌΦ‡ͺ<φJ`aυo/¦w+Vl΅rωU΄\ί֊^„fŸ: θχϊ“d8 &€’{PJiύ ˜j:,(Œ.άΞώTυš΅·N#Άkœv²|Ϋ& ·ƒ$UτλqΈθ†J:μ‡j:°©œίF•:S@β|쨬?έΦτφήzu$ ?I†*ΊA€01•tΨ“ψbής—rΥt˜I„²³Nv^oΌ―Ώ“–ζΗ)₯Τ€σS¦k~ƒHŸ Iέw˜J:μj:¬Lmi.₯œΕ™σžϊAσS)EΫλΤ5qτ©Χ€ώ^@2UtX)•tΨ“8xΫΠ`¨/ρ„&ΥσΛ„mν»ψηΥUΥΏ σκω`χΣ©’ΓΊ©€ΓžΔ—WΥtXeZI@βlυU<˜ Τ.ƒ8κ$ σ=ͺθ°b*ι°Gž”Cί’c¦ΆόΎ^ιK]'{Ÿ¬½ν9ήλOcΨ^ΟnΖqτ`ζ‰’|7ΈΗρ‡Ί€’{«‹. TΣaρEϋjΕ}ˆγ<ΏD'ΑκΔ ‚ΣΨ{ή}@―«ΦΈŽdx¨Υz' €&€ΓώiiƒΞD›w f/½ΆΏϋ©jkΰ:77ƒαZž=2…›Ψ…nΑΕΰΕΦ‡Jή ι0/!φL5ϊ²΅σΊχ`φXoΦΤ“οΎί…€>­ Ε­Z„™ ιΠ† O€Oγ|-πϊwuΤWΞ}Zͺθΐ† Η±ΆD^7ώZΤ/' \4I@°n‚zœ9_c8τY€8‹ξ5‡ω ιЎ -n'ͺιπWϊ£₯κu(`)₯VΧΞ}zq€¬υGͺθ°!1ŽγU‚jϊ3Υtψ³­5kϊγΤ žκύ$ͺζ—±λέJ_s}bρβ,:π!Ϊ’šω\šβΎ³ŸK)G.t«₯}Ν+υτyœ¨’Ϋ„thH’jΊjψΏΰv–`ΠSλΞc§|λ.Wώ: θ3ˆ‡ή:JTΡaAB:΄'C5ύM’/Υ0›˜ΔόΞ~²gIπͺφΌF@ŸΟY‚cͺθ°0!“€š>ψΐfΝ’ϊ΅φΚκ”^–Rš~@[8ξΈ”₯]θσˆ“o\ͺ*:,LH‡6e¨¦ΏŽJ"¬‘AqΣϋ)BKΛΦφpςbΗcm6ώ=©’ΓιΠ ¨¦g¨Ψdx˜“ЇSk6§Φ[ΚΧΤ=ρΎτ£K101Γ< UtΨ!Ϊ•!ΏΚ2™&΄ζ³Ιs{ϋ’›4Žγm’γHOυvGaη₯Š|•ΗράΩthKœ›n}URvg―yμω!M eΟf’θ}DφDH‡Άe¨d8­d£7ͺθϋS·G΄xarοΈ”Ηx?Žγ‘ση‹Λ2,ξΪthƒIΔg†‰ΒV²Ρ¨€½φŠξUΛI²΄oφŸ{o^X’aqƒ’Π!rΙ2]ϊΔ9:αψΖώ΅όdι£½]…t?²t—Υ)· \¬ή €C.ρz‘ΰ’Ÿi{§Bϊώ΅άς~;Ζ[T«η?Žγx€½}?’«,Γ°Έ{gΡ‘-B:δ“εƒτu΄ωAfZέΫΠrn‹$냃ΊϋάΓ=‰n²,έogͺθΠ!’‰χIΪς©)-Ώ­­b«Γα„½;O2,ξNη΄GH‡œΞ’=­u†Θ‘™ήŽ—1Δ―9ΡJήΒPΟ›Ψ}ξ=wΟbmγ«$—{κ8΄GH‡„β5Λ“oCδΘJHoK“ηΓ>»†6gΟμ>ίΏx˜”₯‹μfGoΠ !’ŠjI†½†Θ‘UΛ‘pš}h2Žγ垺›>:{ޜΣ$mξC’3σ°:B:δ–iˆœ)Ω€έYΎh―EλM–<›^ΠώwLnwφΌ1Ηβ]’Λύh-΄KH‡Δ’M­Υυ?Ÿ;kυL)|#νiύ5Y’mψ>Γ½ˆκ=HΦζ~―Šm!Ώ,΄Ονa%ηΡΫΣτΎι¨JΞyι"ZΫ½Άι4>η2°r '€CrρΕ°…ΙΒρ”βœ/°“έ8sT·―cjϋ±`Υ¦dmξVAB:τ!SۚI²d ’ή¦ΦςM~j8ϋ8އ¦Ά7/Sθ=±r Ϊ'€C’Ίς!Ιoςξt Gρ^όΤ9!›‘p‡{΅/>Ϛ>бεΪ,ΘAH‡~œξiΠ.μNz΅k·Πu„sCα’ˆγ[?%Ίδγx!:νkY*ΤΟ΄½Σ8›Ϊ”αΒcίΫΆΫΪ…σ$b>B¦Χλ½™‡Ηρ,ΡJΆW₯+`hU–φUL2Μσ"ΒikΟ)Σ4wΓβ !ϊ“)ψžj{:τ΅ k Kο‡aψ1­έ@Έ„’Ms ‹ƒ|„tθL²•lΪށξŒγxώٌ[ηΝO¦Ό’Ν=Ση–aq}:I4DNΫ;-Κrldm2…ΫΪ^όγ0 5Žγ‘ Τ³DmξƒaqΣί~ϋν7/t(ΦΒd™:[(jC+J)΅#ε•€9w~›})₯ ΓπD/@gε)$€’ύ:‹σh{ Y ΫάοtΘKH‡NΕ™ΗLmδΪήhΥeΰ~™θΫ‰a=² ‘ΉŒ*,.:P²Y‹OkΏ,§”R?3ί$Ίεχ†ΕA?„tX‰"σ1ΡoϋΌ’kΰ:X/‘°-^L3«Nγα"Π!Φ%ΣΉκ])威λ`œKoˆiΥ,(ΫΊ΅Ϊζžν‘π B:¬H “ΙV>ΧφΞ…ν04ŽE”R²CΧζaeβi{¦/ΌΦ²±QΉu.½ ˜0»8‡ώ.ٝΦζa²=ue-{"ΆΑƒ:fE²΅Œks‡N ι°BρΤύ}²ίάZ6φA8άΏ»q c6[ϋΠ3CΧζa₯bwϊM²ίήZ6–&€οŸΧ€Ήe;‡>hs‡Ύ ι°n'Ι~ϋηQν€EΔ°Ε w{―όΝ3›RΚI²}θƒ6w蟐+ƒ±>$»―γK,EHܟ­ξΜ%ŽPύœμks‡Ϊφ~—μ.όμ|:K‰‡YΩώFz‘ZΘ,βθTΖΑΪάa„tXΉhηΝψTήωt–d»ΐςξΗqΤΕΐ\’ Š«>js‡u¬mοΟ ”b)νL_–0Β,J)η Εis‡Œmοφ§³$‘q9χξ7s(₯'WGη°B:π»ΔmοuϊQΧAΜM_Μ™@ΒΤb–Ι/ oμ‡quŽΑŠιΐ’Ά½Wη₯” \‹Π¨sc~wͺθL->#2Š»σΎλ#€ŸΛΨφώΜ 9–gΣoάμYͺ’3₯ψlΈL8(:ςχλ#€’Ένύ₯κ ±§>Χ&Ί3ƒŒƒβͺχγ8~jΰ:€… ιΐ_DΫϋϋ„wζM)E€bV‰…΄Ξτj&WJ©o_'Ό³υ•6wX)!ψ’ψr±­χηRΚaΧAί2 i]msΏ]ϋM`:1Ιύ]Β[ZXˆ +&€ίrœt7τeLρ…YΔ±_’§S«†Ž«0™Δ“άλΦ!ψͺ8 —±έξYL|7HŽΩΔίǏξπ“©2©θ'ΉΦ­ƒ|OT·ή¨—1Νfξπ“ͺ2•δ“άoΖq4W9JΪφώͺ”bR4s;±–mgoM―f*ΠkύyΒ›ͺ£ψƒ|Wβ΅lCL|71šΩΔίΗ‘ArφΑΊ5&–uΥΪηΠ N~'€g䲝ϊΕΔwζ΄5H.cΗΙ>\hλeJΡ5•qΥΪΰ:π9!xŒ¬kΩί™[΄m κίUΊξ&SJ©ŸMo’ήQηЁΏΫj{ΟBžEP7ρΩκί% 3©8ΞτS»κ:πEB:π(‰Χ² 1LθJPgN[Aέυ?ϋ  3₯θYw‘WGΞ‘_"€k§>&½s/cΈΜ&‚ϊ©οx«₯—)Ερ₯Μύύ8ŽYwΉ3ϋΫoΏύζΥθOIWέ ΪnYJ ΄Κz^φ©ξ£Z(Œ0™θWIw‘WΗqΤζ|•J:°“­iΦY½‰aC0«xτv…ηΤ―‡ax! 3₯ϊ]╦ΐBT')₯Τ֟ίΕ·v5³„™χ8?FmευŒI•R^DWΦ€^ΤΖq€―'+₯\&ήO;κ,):8²N£ώžzXajqΔκ*ωC.Ÿ5ΐƒιΐ“uπεIuƒEEE°~YΥɝ―C§1T&ΥI@`x"πPB:0‰Ξ κ,”RW΅%ολοs*`RτλqΈ !˜L;kuφ"ώvN‘ϊ·rΥs{ž™E'ύ&>W<ΔLH&ΥΑΊ©ϋ˜Hν ‹‹ΚϊIΓ3ξ’M_εœYuΠ=ψv"€“+₯|Rω€έΕ™υ£XΥΤΒίE­œγxΩΐ΅ΠΉNzυίώf€]ιΐδβ Φmβσιƒ N+ΆϋΡ‚ƒζξ"$Υ€qεο€₯tΠ4HΨ•Μ"Ιύ+ωέΤiN΄Δןƒψy>Α5^Ηƒ΅Ž>iΟe: θγ87p@RB:0›Ι ‚:ΔC±"΄π€K!Όώ›Ύ5ψtΠoΖqθΐ”„t`vQ}Τψ]ΜQΈν$ ΏЁ) ιΐ"β ΜIw[Px‚θWΙΧtnΌΗρΌKz!€‹‰/2ο;Έγ‚:ΐ: θuΥΪiΧtFH_h.:Έλ‚:ΐ#ΔZΞ^ϊG»ΠΉιΐ>œΔ΄τμu€ˆ€ώK'½~~ θΐl„t`q[ƒδξ:Έϋ5¨ŠN>SJ9‰€ήλ8ΩΩ“μMggνΘψL)₯Ξ"yΣΙ}ρ>,BHφͺ”R+κμδUπΰί;ΠΟt€ΗΣξμΥ8Ž΅’ώΆ“WαYœQ?jΰZφ"ϊUG}Ё% ιΐήu΄šmˆ ώ’°*qŒιSΜλθΕ[X’vw ]¬~Ηρ¬λ˜]_ΊμdΞΘΖΫx °!hJ)₯~Α{έΡ«ra—.Π»­k=Ё½Πξ΄ζΈ“κoꃻԁ^•RΞ: θοt`_Tζl κιL£έΊ@Wβ½ϊΌ³ξ§A°oB:Π€ψςwΫΩΩΖ»aŽ ²‹qη=Lt Ϊ݁&EΕω0vΣφβΉm@vρΦ[·Σ  ­fEΕΉ· ΎYΡvΐ΅ΔτχZUΏmΰZ€$’z^wŸΏYΑkφ6ή€£’teυ!vŠίUJ9¬ο:@ϋT.­€’^}†αΨP9ΰKV²Zm£Ξξ8ΗρS—°!θ֊‚ϊ}υΛhDTΟkEωω ^膐t-‚ϊYηλ…6>Ԋ™ͺ:¬ΫΚͺηCΜι8Ё^ι@χJ)Γ0\­$¨ίΕ—U«Ϊ`…brϋωJήο†θ‡N=UXYPTΥa]J)/’k¨χ΅jΫΜδΊ$€«Aύr%η3gΥaJ)'ΡήΎ–‡ΥΕ8Ž6\]U‰³šW±Ζl-T› C1ξleοgՏγ8ž5p³ΥYiPΏφw_l!Ήx;[ΙΞσmυ}μΔt wB:°J+ώ’k 2$ΆΦφΑŠ5`M„t`ΥJ)η+ κƒΑrΛΚvž>\<ΗρΆ­ΛδLIDAT˜‡¬^μRe…χAλ(4.¦ΆΧΏΡW+}­ΜΤVGHψwP?[a iuUu»Υ‘q$§Ά΅Ώ[ρkςaΗ“`QB:@Xα.υΟ]DXΧR {αό$~Φϊ^T½Υ嬕°%ZK/WΈhγ>: Ξ΄—Β²’£ηt₯ηΞ7 ˆVOHψLT²jηυŠοσκ°αό7Π= VMHψŠRΚΩΚΟƒVwΡ/¬ΓΔbbϋي;wΆ]ŒγxάΞε쏐π +žόώ9Γε`"ΞOW<±ύsΟlΎΓ@Ή?ΦaGΒω_άΕώsηΟΆιηΤ―΄₯ώAX‡ŠŽœcαόO# ;π!ΰJ)΅%σ{φaΎΒ@Έ―z?Žγi£Χ°wB:ΐ#9§ώEΒ:ό»λζ8φœ ηvΥsοί €μΐ9υ―2 žU*₯ΌΨ ηήώJ{;ΐ ι;ŠŠΩ₯s¦_t«₯Ξ})§g1 ξΨ1˜oήπB:ΐ•Rκ—ΟŸάΗ/ͺν­΅ͺ~6ŽγmƒΧ;‰c/'†I~S}Xw¬½ΰq„t€ D5νR›λ7}Œ°ξ ;)EKϋITΞύ­ΫΗθ:iIH˜ˆφχΣ O*V¨=Κ}Μ₯8KtΝM&¦ύύΑξγ‘F­JrΝ¬„ͺωNn’zξοΰ „t€DϋϋΉL¦ΊΞήE7Μ‘³ζ;1`"B:ΐLβ  κ―έγGωaύ2Ρ5“X΄³ω[έ‰αpfVJ©UΉS-³¦žΩ”RŽ"˜ωΫάΩ‡8ϋ`BB:ΐβ|λ₯ڝέΕύ;ΨΩ•`>Υs€ ι 2Tn;GNσI©žΜLHXX)ε Ξͺ«ͺ?] 졚wι ;ΓΏ»VŽ"œ;c>Υs€…ι{’ͺ>ΉϋM`―ΗρΆ³ί―ˆ6φMΕάF…ι©ž,HHΨ£XΥv¦ͺ>‹›νWͺμ}‰n”M(΅φϋ1#{Οφ@Hh€ͺϊ"·B»–έDΆBωζΗΩςyέΗV{Οφ@Hh„³κ‹ϋ#΄ΓπI+obΨΫv(?ΚuΥsΗEφDHhLTΥO“ΕΥΦήO›ΥφeΔ‘ƒ­©φ£†;q4`„t€Ε„κsηmχξOΑ]Ε}wρoϊETΗ_ yK †hˆΠ°˜Z}ͺή”ZqΌ6ωΫψήCΫψa+ŒΏΠ²ή¬λ¨ž Π! qqF·ΆΐΏσZ5―†ž_£κώΗ{ A[ρΝΩρΝ_X–†Φv€† ιID…ςL |j7ή7~ΨͺΖngαγ\ψΖ&„ŸύoΥπόξγ=δLη@»„t€dJ)ΗρE[`Z‡ϋ­@?a{.βάΉ©νŠψ»ΥοΈŽpn[@B:@bq>ΈVΥ_{-Ν$%€t ΞŸYi«wαό|ν7 +! #q^ύΤ”mXCα:!€t¨”rgΦ ƒΎ η:΅5\NX‡>}ˆ‘pΒ9@G„t€ΞΕpΉZY㡆.X§Π1!`%„uHO8X!`e„uHΕ™s€•VJX‡¦ η+%€¬άVX?2`φξ.ΒωΉp°NB:Ώ3 φκ&ͺζη^€uψ“λΗ֟»;0«Ξ―άf!€o)₯lΒϊK7 &SΟ›ŸG87©€?ψRΚaTΧ ™ƒέέΕό‡KηΝψ!€‹!sΗΞ­Γ£\Δ 8-ν|—ΐN’ΎώΌrα/ξ’₯ύ\K;!€π$₯”ƒ¨¬[αͺζ<‘ΐ$b*ό‘κ:+t³U5wΦ€'˜\œ]ίTΧ­q£G΅ύ„v¦&€0«­ΙπΪαΙξ>‚Ήvvf#€°˜6WΓϊkw$6ΑΌM»τ’07!€Εm_Ψi‘`ΐήιμ•ΐN#sš €Ќμ‡[‘έvζT§²_ΕσOξ4-hV ;Šΰώ+Ε>F0Ώ4•€ ι€kέΆC»*;q³ΚMd yB:)•RΆϋ+―"αnΚλΗqόՍ !€.Dkό‘ΠΎ:›Jω§εZΨHMH KΪΆ‚»φψ>\ΚUΚ芐ΐ*Δ™φMh?PmOα:Βψο?&°°B:«ηΪλΟ‹­πβΎΌϋν0.°fB:l‰]νΫαύ@xŸΜvuΣΆeώMH€Ψ ο/ΆΒϋό_l‚ψνg?Β8<€ˆΦωΆΒϋζωMΆͺα›0ώ«ux:!Sη76ώkˆͺύσ ―π&ΒυΆ_·Βχ°Όα–%€@#ώΓ m B:4BH€FιΠ!!€@#„th„ B:4BH€FιΠ!!€@#„th„ B:4BH€FιΠ!!€@#„th„ B:4BH€FιΠ!!€@#„th„ B:4BH€FιΠ!!€@#„th„ B:4BH€FιΠ!!€@#„th„ B:4BH€ ΓπΏ †8υ―ξDωIENDB`‚ignite-0.5.1/assets/logo/ignite_logomark_dark.svg000066400000000000000000000024661465426447700221650ustar00rootroot00000000000000ignite-0.5.1/assets/logo/ignite_logomark_light.png000066400000000000000000000617721465426447700223450ustar00rootroot00000000000000‰PNG  IHDRιιi=l pHYs,J,JwztM IDATxœμένQ]IΆ&ΰ­‰ϋΪ(  -@mt-e( в ) YΠΘ‚XΠ`AƒLμRr…ηsŸ73Ÿ'B13qo'ϋМύζZΉςΝέέέlήσ@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t!€@!BιBH€B:„ „!„t`“Ά‡axο€―„t`Ζp~< ΓΥ0 G>ψκ<`BΫ%”Ά—7k€*ιcw6 ÁΟϊδL:dx? Γ•€}`σΖ«ΥώέQ{;π νξ°9†ΓίQI€Ν8†α‹€<€’ΣΪ.ννΆ· Γp°` „tZr@―ρz5`NΪέhEΛύάυjΠ!€΄Π?9ύ¨]ΛύηaΦLΔ™tjΦj@w9tJ%€Z΅Π/?€~ ιΤ¨Υ€~^*θWk6@H 6ۍτ©Δ%VθwΦ„tjj@eΒq‰Sβ…t( Ž χ}―‘Olw4 ΓiΐZ€B:5h5 ›ΰ|G»;ιZ θΧ:π•t4Π/'TH%€dγYν }Bη:π!€T­τ©X*&€θ¨Α€>Υk5rB:iΖ0ϋΟ†>•ίΒϊ—€5<&€@apIήΓπ―†>‘ŸέΜC%€ϋZ˜›@‚ύ†½ΥΘ§!  Ρξΐ¦mΓpΦH@Ώ-ά/ΦTH%€MΪ.τ>}qΫ΅.VMH`“Ζ–π½>šϊUΐΫΟZlސΐ¦Œύ]OΏΆ zbH !€Mο Πΐ“Χ⬔ΐΤZΉ ]@VNH`J­ά…. kρζξξΞ“` Ϋε(ξS9KίW°@(!€eŒΧ”ύZρΌμ0 B:δXΤnεgΈ/΅XG1έ€ξήάέέy,bœΎWι“».Σθ―"›Jβ ΐ›€5ΐF©€°ˆ“ŠϊmiΣο9 ΞΦ<"€0―1ΰ~¬ψ©½uOx,-οtOH`΅ŸCY@&€Π=!€yŒχ‘oUϊΔ~©|ƒaΥlV@ !€YΥ|ύSY?ί$žΙWI {B:³¨ωϊy§w‘ΧHH {B:―ΩΈMό²l0π#νξHHΰ5΅žCwΥΪΛŸΛ~ΐ`£„t^r4 ΓA₯OhΌjν*`ΜnΫ³ wB:Ο«š¬τιΈjνu‰ΟGH {oξξξzόh»„Έ ŸΝο₯€Χ%ΎΌ XlŒJ:O94 Ÿ θsΉ­h­Π!€Ηj½nΝ$χω%ΆΌ@Χ„tͺυΊ΅ΫrΊIξυs.€ ι†α,`Ό,±’>hy 'B:@½Ž+©’ί–*:ωRCΊ–wΊ!€Τi¬,~¨dεΗ‘mΤόθΖ„wΨ,! N΅\ΉvYΡ`;ΎJάPy°˜„PŸ· Σ2Ν½>‰Wδ©€Π ! >Η•¬ΨθuJ¬€o@/„t€ΊΤREw'z½ € κRKύȝθΥ`ƒ„t€zVRE?―h°O» |.†ΗΠ! ΅TΡkY'ΟK¬¦«€Π! c}§‚•׆Đnx]κPCuΪ°Έv€žKΧς@σ„t€|΅TΡO ‹kFj7„–wšχζξξΞ§ νͺ‚~­Ή9c5}/μ‡:WM u*ιΩj©’ksoObΛ{ ·ΐR„t€l5œE«›gλ`΅œK€ r©’³IB:l€λ°‚ΟζSp˜c9†Ηΐi¬ώQΑgσSlG›‡ΗWύm¬ΦB% S gΡΠ›—XMίRM eB:@ž·L±Ύ-χ’Σ6η`bB:@ž±ύ&`¬WκΉt!€f9“ew†„&Χ₯έXHοΓMi1Oβ\:ΝRIΘRΓYτc½+Ξ₯ΐ„„t€ceπCψη1VΡOΦΑtœK€ ι9j8‹^C₯ŸΥr.&δL:@ŽΔ³Ώ]—3στ'ρeΑΉtš€’α0< ͺθ];όαK IB:@†τμ,zί΄Ό³i‡:y€^ι›7πΟA½o©Γγή¬iΌ΅QτΒ™t€Ν;†α]πηΰ,:γΩο†>…7k`ύƍ’½a~†αΔσZ¦’°Y»α}PE§ 5Ό }ͺι}Ψ+?ε±MC uB:ΐf₯_»ζ,:χœKgS~Ζ[*ι@λ„t€ΝΩ.В©’s/5€«€·οqεόΟh™°9ο+Έ]{©!}GϋsσžΊjοΤ=ω@«„t€ΝIouWEη‘›ΠϋUΥζ=·l"­6cΑ €D·^€y‚sιlΒΑ3™Ϊށ& ι›‘^E7˜‰§€†τwZŸ›υTύ!mο@s„t€ιm‡Wn…tžρ₯ό~$RMoΣk!]Ϋ;Π!`zιγNΛωcxŠ)οL顐>h{Z#€LO«;5™,!}Πφ΄DH˜VϊΐΈOΓ0\¬ƒ\g‘+Ϋςή€η†Ζ=ΆεF  B:ΐ΄«θΞvςš«r‡~"ΥτΆΜZEΏχΡF Π!`ZΙ!β<Έ•™,©Υt!½-σ†τAΫ;Π!`:‡ ŒƒY€nζμ,μΘ΄ΘgΉ£ν¨0δ*ί΅ΞR+ιCΩ £ ‹nΈh{ͺ&€Lc·\”J@g^ŸCŸ˜–χvΜ:4ξ)Ϊށj ιΣH]c^ZήY§e?Cmο@΅„t€i$·ΰŽΧέ¬ƒΊhygV±Ρ’ν¨’°~ιw£kugγUl—‘ONΛ{ύVΥ αοP!`ύ’«z—]c ZήY—U}~Ϊށκιλ—\Υse$W)΅ΌΧm™‘qύjΣ¨‰°^ϋ₯’“θ6ό\1ω.Κυ}‰΄ΌΧkZΫ;P !`½Ž‚Ÿο™q¬@κFώ ^­u„τ=mο@-„t€υκNλ’gιuZWkΊΆw  B:ΐϊŒa+τω^—VeXΦY9:‘hόοΰΆOΈ:λ ΪށxB:ΐϊ¨’Σ‹Τ–χ-Υτ*­rhάcΪށxoξξξ|Jλq\I›σθ¬Π„ϊ@Ο‡ax°f3VќΰYύ]7J%`=ήτΟ:+–άς>VewΦΑl¦:3›ˆ%€¬Gr‹­kΧX‡δί+w¦Χcͺ~~ϋΠ1νξλqz?ϊ­AZ¬IrΛϋ΅jz5Ύ¬ωLϊC·eSΰͺΗ΄@%`υφCϊ ŠΞ%·Όο8—^©ϊPŽ$™φΔV/ΉΥέ )λ€εelβsmο@νξ«wQωI£ε—u›j2χ’άjmSG&΄½QTVk74 Zέ™ΐEΩ J₯šžm•τAΫ;FHX­δs―^B™BςfΆζl›όϋ©νˆ!€¬VκyτλRε„uKή 2@.Ϋ¦*ιχŽ ι«•΄Ί3•q3θ2ψikyΟ΄[ΪΞ7iόΟ?ιύƒ6OHX·/™ΟΡκΞ”’ί>¨–FΪtύή»π:€ι«“ZEΧκΞΤ7…TΣσ€„τ‘όώn¬蔐°:©Υ­ξLmΌζμsπS7 ,O&§iοΐF ι«±νκ5¨ζχnK5=NR%}Πφl›»»;ΐςΖ—Ή>Η[m›lΠMπœ†Λΐ`Ψ«qFΐφΫ²Ά›€΅QIX SέαGΙ-Γ{c‹‘ϊ9˜φl„°©/™_Φ@Ώ cΙ›%lζSΣξ°Ό±όΏ‘ΟρoZ5Ω°‹ΰy £Ÿ†aΈ XGΟΖηΏόσ_—£ώ–“PIX^j•εK%Ϋ…ΦΠ³έπ€>”υω=&#€,ΟytxήYΐ•κ½αŠUΛυΪށ©ιΛsžwSΑulξMߜš‚ο© ` Ξ€,'ω<ϊ›€5ΐPΞσώό$\΅΅Ι?Ÿσ›Φw`έT–“zΟςyΐΰήEψοδVEmΧ-©ρ™κ~}`έ„t€εhu‡Ω€_Η¦::½Z7F—Κ ιΛ14fs>@nΗ½ι“[έίUΊφ=›:ΐ:9“°œΤ?’Ξ£“θΈ΄ §Ί.gΣYΏqCδ_•?gwμk‘’°8ηΡa>ιmΒͺιΣia€Άw`-„t€Ε₯†tηΡI5V?‡:ژΧo·βVχ‡\ί¬ƒ°8Cγ`~'αΟL5}ύZš€μˆ°jΞ€,ξ’ Jγ<:ιR»sΟΩτυΊ*›!­ψμ ?`•T—2.Φ―QMοΧΫΖϊPZχ…t`e„t€Εhu‡Ε–ju2gΣΧ£Υ͏Σr­ΐ„t€ΕΛ1ι½?cˆύΠθO½UA‡P !`1©!ύ"` 0‹1Πά†?)ΥτΥj}ΣγCp—P!`1‰!ύΆ d‚ά ΓpΎNΥτΥκαΊ2mοΐ„t€Ε$ΣκNmj¨T«¦―ΖϋΖ=eΗο °,!`~Zέa5ΖΏOαΟR5}5z¨’ίϋό=T@H˜Ÿ‘q°:5 ΫR]ΞxηόAΝ?ΐ#Α„t€ων†>3•tj4ώޞ‡―[ σrz|v{~g€E½Ή»»σπζσ%°*tΌy―'bώ”nΛΗnΦR“ρ™ύ§ΣŸύΆt^θ ΜE%`~‰νξ^©Ω— ͺι[«^•žΟσoi{!€Μg»Όx₯qΪΥΠ|δz­ΉlΫΨψ«λκ}ΐ:€Šισ1ΩΦ£–jz ƒξR…njNΝέιΐ\„t€ωι°>5΄0af½WΡοΩάζ"€Μ'΅βL:-8-CΣ™ΪύΊCUτο|(^%€Μ'ρ%+½EζQCΈ^g#γG†Θ3ζ“ΨζͺŠNKTΣλwXξ–η{ξΫf"€Μ'ρΕΣytZSC9PM– ϊΌ_Ν4^#€ΜΞΠ8˜Ζi%Η8΄/Hύu~o€ ι³K­~鴨†jμN ₯|£ŠώΊΏ7ΐK„t€Ω₯VoΦ«VΓ½ιC ₯ξΐώκX}f'~o€ηι³K¬€›μNΛj©¦»όkΰτfηξtΰYB:ΐμLv‡iΥRM?2 μ―gΰ^τωΈΚx’0;!¦WC5}«σ³Ψ»ͺθ 3Dψ0;Χ―Ατj©¦ž[±nΗͺθ sw:π!`6©/ί*ιτ –Σγγύ²AΑβ—Ύ#€Μ&u ―J:=«ιŸ*ψ9Η«΅ή¬cJ†Ÿ-oKΫ;π0›ΔJϊuΐ`*ͺιyή— –Χγπ !`6‰•t­ξτδͺ’jz/gŒ·+ِ¨i3Σέιΐ_„t€Ω˜μ›7†ίΫ >‡£ΒΦQθ0ΝΗΖ+Ξ.³–τ,Cδ€Ώι³aσ*©ήn5ήφ>ώ=ό5`―ωT~g³—ωίB:ΐl«b†ΖΡ£“Jͺι-_ΙVː³ϋͺτψ·ς· ―e†ρAη„t€Ωμ>§›€5ΐΤn* 1-†­ΓJ†Ε}zΤmtRΡωτƒΚͺΐнΉ»»σL^—ψΗςo‚:»ͺδLτΟ ]―΅]žϋVΐZ^σΣG‚Ζσιδ-υI·εXΏρΠ!•t€Χ½ }F^ήθY-ΆŽ"wZI@\EΏWΛ}ϋCyΞ†ΘA§„t€:Ή#ήV2΅{§LB―έΨ~ύ’Ÿα₯p{TΙLƒ‘ ‘Kέ$ΦHHxΙ–πϋkθί‘YνVtΎώΉ*ϊ½›Κ6M ‘ƒ ι―K|ΉΦκ_Ϋ—Ο+y5ŸK?«€Ν}˜±Eό΄’ί›½F:1€9ιurύ|UK€'vΏXΗΌNBo·xΚkUτ‡jšžή\`B:ΐλZ½λZpQΡ0°ΪZ—ί—sΡ5ΈsΓζͺ’»Σ·΄½C_„t€Χ%V0Ύ¬RΤ2 l§’‰έϋ•΅θŸ,p θΈ’!œlC?„t v7U*"·]Ω9τΫ%>šΪήUΣ‘B:ΐ뫦»ΓχN*©Š¦·.o—N€΅Μκh‰aš5ݝ~PΩ¦° 7wwwžΐΛPΎ X€ΜΏ*ωTώxlε> Χ2(n(wε/»‘Ί]6>kθΈ-nψ€†©€­¨ιj­Σ°y»τaEΣύo*š°UΡZ ι/K<;ZΛ #Ψ„ZΜNΠυq»eJ~mύσ »N*ΪΰωXΑ\` B:ΐΛ_„œG‡ηΥtΖψאΏ1Wώ]™χΚ΅YΤrηώPΩδ}`NB:КγJd‚ΒVmΙNΦ°±pQΡέιε{ AB:@}TαeW]W•Άj ¨Χk<ΦPΛ-CYk\`E„t€—½ |>B:Ό¦°•2DξΈLKO·ΞͺMEmοIs €€™Ψ½˜τΆχU‹{ΞYECδŽ ‘ƒφιΐ"Ά+<Ώτ§¦+Ω>ΰΎοUHn{Ώπ»η°’Ήdƒ ιΐ"ΎΨΉί¨uW‘ %&vΟ/΅νύ°tHL‘¦ΉBf yTx—ξ2lF@έ.*Ί’m/hS!­[κsiCŸqEs TΣ‘!B:0χ₯%sθhΧ^H‡ϊUt%ΫqΘߝ€Άχ)Ϋά«εhׁchΠ!˜Υ~P+&ΐe›ϋc_JΏΗdƒ6ιΐ,ΆK@ίς΄"8“σ;©δz±Ρ»»Σ‡€κμ&Ϊά«₯Γ•lΠ!˜ΕSηΠ<9 25˜“ͺθ&Ϋή―CZΈk"ηJ6h€Όζ¨LŽ¨έ—ІΘν΅θoͺν}“mξΥ2DΞ•lΠ€7www>Gΰ9γ9τ?_ψ[Π ΤΊάΆωΏ XΤj»TFk9ΎσχRΝή΄ΧΎVν·ΐ°9Lύ#`³ψ‡£QP/•tΰ9Ϋ3œάοΰι9‡m©iˆά4°sΚΆχσΠΟ¨Ά!r@₯„tΰ9g₯έ’,η>XZMCδφ:k{Ώ šχ”Z†Θ„?GΰB:π”γΓNΤͺ¦!rIΓΐΦ=Θνmψ1ͺš†ΘΥ²Nΰ!xl|AϊuΖ§"€΅ͺiˆάV'mο?‡œΏΝI%Cδ\Ι•‡vξ£˜J-­ΛCιnJΈŽlXSΫϋ§ ˆΧάT~Cςζ €Ν9(M%¨YmCδRξNVΌaπ9hbVg•ΜΩRM‡ϊιΐ½“2 hB:P»š†Θ΅Ψφ~Ya@ΏWΛΊ“f3‘Όh|τ$€NΥί•Ω! –m{Ώ¬`PάKΖ!rΏη.οlΉ’ κςζξξΞG}Ϋ/”ΉόΆƒ³ni$Οƒ^Π‘%'mV^—Ώέ αv\ǟ όΟέ–κn­ύήv λ‹|‡Nν§²V œJ:τm»΄N.ϊrQΓK ΐ,Ž+"·T]€νύΆς ϊC5 ‘«e0tOH‡Ύ-rΝϊβωΓZάTΦφώ±Άχϋ€^ΓUk³:­dΑN,¨ƒύwώ?¬ΰ§χ…΄’–‰έχ’*£³lp\–χ–ϊ½šdΒ ιΠ§ρ α?}φ?¨©š^SAͺBh IDATΫ{νCβ^σ₯\%—n¬¦Ώ―`Π5!ϊ³­eΰYW+ΊZl*Ώ–ΧΟ΅½j< ί«₯š~°ΰB:τηlΕί΄»­9.Τk‘άφώKωk= mπμT|7=tAH‡Ύ—V7^VSˆΩ l{79ώήaΥφ€’[œM‡`B:τγ}i‹\΅ΦοIϊτ₯΄iΧ"­ν}ΏΡq―©εJ6Υt&€CvΧΨ™ςR°jGݝ>„U­{hoΞi%Η%Nl΄C&!ϊ°κsθ=¨νξτƒŠ†—΅†ί›-Ώ/IH‡φ–σŠλ²λwhXmw§ϋ»αK%Ώ7GͺιGH‡Ά;ωΦόξψš”γ0½ΓŠΪή·Β¦½χL5XˆνΪwj“T<`zW•ύ=Υφžαͺ’αƒͺιFH‡6m—JΚTηΠ΅V­ΫΘ/+ϊ΅½g8  C5ΒιΠ¦uŸCΜ‹ Πƒš†Θi{ΟPK†j:‘=γν;Ÿ+ΐʍχ~VΡcΥφžαD5˜‡mΟ‘s?‘af@/N*ΉϋžΆχΝ»©$«¦C!Ϊ±]|Ω_κ@/j»;]Ϋ{†Σ 6wTΣ!„ν8›pP\OjLγK%S»οi{Οp\ΑUΣ!€m8)/a›ςΆαί£›€5yŽ*Ί;}Πφa¬¦Ÿ‡―Q5ιPΏχΓ0|τ9vΓωΘ νE¨¦―‘nΫ^ΊΊγHδ}θσΠφΎy_TӁ׼Ή»»σ ^_6άζώΠ›ŠŸγK’žρ½VŸ5Τh»ά…]ΛΪmιΘΉ XK―Ζ#b„μ·εx„#_°*ιP―£ΐπΠ››JZ˜οi{ίΌͺ¦Γ ιP§Mέ‡ώ’VΟ―mκZ; '΄0?€ν}σœMž%€C« šMΗ³†<‡¦½3‡+Υtΰ9B:Τg|±ΪσΉuMeς\i{gN΅TӁ‰ ιP—έΰ/L wΪή™G-Υτš„&ιP—Σΰ Β­†τ‹€5υ¨-Πh{߬㠎IΤΤ!M‘‡¦ΉoDβυ3Ξ€C±:ϊ[EŸΆχΝΊ*ΙvTΣaZB:Τa»‚/qΑq:Ξ€CΆ±ςxYΡgt ZΊQ'ͺιΐCB:Τα8ΈΝύžΰπMm•Η_mΆnΜM%Υτ·λ€.ιo|iϊXΑ:[=ӘxOΊ ΘwQYΫϋ ν}£TӁ#€CΎτέυ{;Λθ‚jΤ‘ΆΆχ=Alcj¨¦¨¦Γ4„tΘVΫ°8‚Ύ§νYΥPM7@& €CΆΪ*­†τ΄J˜vw¨‡ΆwfUC5ύƒ yX?!rWΨBήjυ%νΆ½€5³ΣφΞ¬j¨¦¬š&€C¦νJΏUxž¦νYΤPM?τ}λ%€C¦\{J«e.Φπ˜vC¨KmοgΒΨF€WΣ·œM‡υ!Οn%W=₯Υΰ˜Φξ>ιP₯ΪΪήw΄½oΔMΩ I¦εΦHH‡<5Ών¨ΊΌ¨Ά δGΧnmDϊ»ΐŽj:¬YvΛδԚ΅x†ρKΐσ uͺuΪ» Ψi] Γπ)|B:¬‰YZh+^¦νY€?σΓa=„tΘΡB}hτ ϋ*` y1‚ΊΥΨφώ>`=©‘šξl:¬9Z©RιΣΠz uΣφΞ,―cϋΰwVOH‡ ­TΡΓγ&cΊ;Τ―ΆΆχ­Τ™ΞΈ™sώΌUΣaΕ„tΘΠΪYΏΟ₯§½$ν¬X^mmοο΄½O.ύΑ9X1!6―₯*ϊ=η₯§‘šυΣφΞkΎ„WΣ]Η+&€Γζ΅81·ΕJzβ5lB:΄AΫ;―IήB:¬›Υb}(Χ²°~B:΄£ΖΆwg‘§3†τλΰυψN‚Υa³ZΎwΆ΅jϊEΐσBνΖόRΩOsμοΠ€ίlΪΐŠι°9ۍίi-€ί¬α1g‘-'Lς~HΫϋ΄Ξ†aΈ ^ί‘Y°B:lΞQyΑiUk‰•t/CОΓπ φ؁ κdnΒοMί2ωVγΝέݝG ›qΣxHύ-΄½¨΄?˜·‚:4i ½¬θ»-=WkiέxΌΰ?Α?γ₯./XžJ:lΖa}hpG=mϊς–Mͺ±νύ,`=7B>œ{B:,OH‡Νhy`άCΞ₯―Ÿ—!hSmmο{}·mZrΛϋΰψ,OH‡ιΑu§“ηήZ%έ]ιΐT* ½ΏΪ8œΔEx§Ε{]^°!¦ΧΣσ–Ά΅‘]΅΅½¦½O&ω9 KaZc zΧΩ3? XΓͺ$Vm‚@Ϋήk{η cHΏ~0-}χΓδ„t˜Vη΄ZΪMO<“’m»©0πh{ŸFr5ύΐχ,Ξl0νrΖ°‡©ξύΤΠΥ<‰4ί¬X―³Κ:±KPoιΞ4γ{ΕƒΧχ»!r°•t˜ΞϋNϊΠX5=νΆAΕ ΊPΫ΄χmοkw~›sι° !¦ΣσnrKgΣ΄Ό›PcΫϋΗ―βL“άςΎ#¨Γb„t˜ΖΫ2L§W{ IΓγ€M9 ―œ>εΤu\kυ%΄Γ랐 a¦œΆσ ΟΦ ιЏ£π©ήi{_Ώ“ΰ΅}°IσaύΆΛ—Tο„τυ‘Ϊήyμ,|^j:ΜIH‡υSEj§‘0™ΨξΎ°`:_Κδ욜©¨ΝMyΎ©Lx‡9 ι°~Bϊ7­|Q'ΆšͺRA_Ž+k{ί rV»δ–χ–ζΐ$„tX―ύΞΖ=ΦJΛ›–w`Σjl{§υym. ƒvι°^ZΌΎ·ΥHg ο@‚ρoΡo•}¦½―Or5έϋΜAH‡υ²sό£ž‰J:β8Ό‚ϊ˜ΆχυI ΧΚ\˜„λsX^Fψή»Ξ¦%†tΗ* _Ϊή* gFΜHH‡υρςΌΪΏ¨ΫέΓγ [Ϊήyπ\Sy/‚ ι°»₯RΐΣZΨMOl/ΥJύφΞP6‘S§ώky‡ ι°v‹_ΆΣ@PΏXΓc^~ o‡Αg’ŸςN τZ •a=ΌtΌφg”x.]»;τν’TΤkrβν•K>—ˆ3aυ܍>›ƒΚ+Ώ‰ηwœρ„χΌ’‡ ν}υΖMδΟ‘kΫΤαuB:¬ž*ϊμjn{Klw΄ΌΆ½hƒ^9Υt¨˜«ηΛgv*όή„ηΡς\UΨφ~¬ν}₯’οLχž―a΅φKΛ1³SM_-!΄½w/ωΞt-οπ !VK«ϋόŽ*¦'†τƒ€5ήk{οš–w¨”«εKg~5ο¨'œKŠ› 7΅½―ΞYπιΊΎΰB:¬ΞΫΰVχΛΰ/κ‘Β³“χR‡ΗyωξOϊ~ŠΆχΥJ­¦οΨP†η ι°:ΙՊ“ς/ΥN₯GnΚH!x¨Ζiο:ΣV#yΓΓAxΖ›»»;ΟVγ¦Tύ­¬ιΏΑŸυu₯-ާeJ}’[χ₯Œ‘χί=”Ϋςp°–Ϊ]…vϊΥϊ½k§’«±Π?•—œ›π–ΗZ«ι‰-ο[ځGΞΚχA-΄½―Ž–w¨Œ«‘.~9'·Ό•žMO§εxμ(|>Ιcοό-[‰δΝΗΰ B:¬Fκ—Μν£ώ%ό­ΖjΊαq@-jœφ~κψΞ.‚Ώϋ…tx‚ΛΫžκώΤξΉjϊκIHž2nΦώ^Ρ“ΩqwϊJ€~χο9—?ayΙU‰§BzϊΏ«ι‰-οΞ₯Ο9¬νύWΟ––z.}PM‡ ι°ΌΤ/—λgZ±o*T[5έΉt &5Ά½§w₯» ½2tπ]?a9»Α­ξ/횧ΏμΤVMw.¨MmmοξΥ^Zκ†ς;sΰ{ξI‡εŒηδώϊ *;ηΟωR^zRΥvGξE9[—ζMΰš€ ΫεoWκfσcξN_ΞxdΰΟΠ΅ύoxK>LJ%–“Ϊκ~ωJ@*¨¦oU6,HΛ;P›ΪΪήkϋ^HcΚ;TBH‡ΕmW’gwVΑΰ £Š¦Ύ¦†t/>ΐKΖΏ]ΏUτ„~5 |)©ΥjΚπ€‹K?³~ §hΫͺhˆœJ:P«γΰ‘bOIΏ₯$Yκ³Ϋ1ΑΎaq©αg–Vχ{§εŒ_²•Ν›Π—\wΠ³¨©νύΐδΒ’[ή}¦Pι°ΈΤJϊΌ»δ5\k£šΎ/>ΐk.*k{WM_œγYNH‡Εμ—VμDσž7;© š^ΛΥ;^|€šΥΤφ^ΫUIRΟ₯ΈŠ Ύa1©‘ηzŽVχ{7•TΣO*ψςVIjWSπ­α{!ΡYπζΌο+Ί7鰰ԐΎθξx Υτ†Θ₯žKίRMfTSΫ»+ΩgS‚ ι0Ών2Œ+Ρ’gτn‚ΫίϊXΑxκsYΥΤφ^ΣUI\ΕΑ„t˜_r«ϋΕσ΅ gKoΝWZPKΫ{MWu&I ιn$‘{ƒ I ;Λ†Γρ,ϋ§­eφΒ_ΘΎ„p-0šΪή?vsK=ž5ΨT!‘ϊ届]ρZͺι퍩Υt“yœί©ύ˜jϊό΄ΌC(!ζ³_*’‰Vρe;VΣ―ΰwb+όŽ\W±-Έ©hsοƒn‘Ή ιJH‡ω€~q|^αγ &½ε>ΥΤ©Ύ©/>;ZB9}©δ(ΤPΙu’I.‚gω’kB:Μ§εVχ{΅ά›>” …Δ/ς«ΰQΥt`^GmήͺΒΞG5 ι0ŸV‡Ζ=VΓ½ιCi{O}ΑH]—sιΐΌn*ΊάΩτωΈ‘ ι0»ύ Σ\–Κν*ΥTMOφžϊβγz`γσ žœjϊ|T!³λ₯Š~οΈ’©ΎΏ : ξFΠς,B5½=©W±η·Φ!€Γμz8ώXM/:g_θbZrQΙ ͺισΡςa„t˜]o•τ‘΄7&ξ°?e'πZΆΤ6Β=W ͺε›‘³!Œ³I=ΎΚ«ΧžSK{γθ]Ψ‹YjHΌΐ ͺeˆάσ7f–m&Σ-!fΣcύαΖ›«rτŞzΦop.XB-]VΞ¦Ο&υ»κ ` °B:Μ¦η>TVMί ;ŸžΦ‚oG•X‚jz[΄ΌC!f“ψ%q[†ψLaΌβν·ΝώΈsI:Ÿžάς^Σζ ₯–.+ηf£ε‚ιπΊΤσθS‡Ώ“ŠdΚωτ„VΗ+-ο@£jΐ‡ςš‰A„tx]κΔΤ_¨΅ zθא šZMίԁ%Œ›ŸΒΰ–jϊLRΟ₯ ιtIH‡Χυ~ύ‘1lžoΰ?w§_ς¦Ό­:ͺΰJ6ηf“XMίΣ A„tx]β.ξu©`lBm/;[εΕc“_ςΑGήy–pSŽC%ΫΤg2՜›y©¦Σ!^Ά]vqΣlr·»Ά!rCHPWMZuRA5]ΛϋλLx‡B:ΌΜyτ§W6Dn(›-›œψžzΫΰεXR Υτ=aοUW‘ίνΡ£;B:ΌΜyτηΥX}}·Α°œάςξΞt`Y5lήκz]bΛ»ο'Ί#€ΓΛCϊ&Ο£?4nό°Žy}Ψ`Pwg:Π²„k/_ςAUφU‰!=ρΨ!¬•/Kά½Mϊ­±ν}(/j›¨¨$·ƒΎ7@X©jzυœK‡B:N “[ή/―ΐ œ„WΣύ{^껆N7„txZjHO€ί«ύΕηC Ρλ¬&U¦OkόίΏ,-οΐ²nΒ»†v\λυ¬›Π93>/Ί!€ΓΣwk―ΛgΊqώ— Φω’weCdA=Ήšnϊ1° Zήλ•x.]%nιπ΄ΔέΪτVχ‡Ζ³Ο9ΛYΘ^yIYWWΕYψD|Υt`YWα]CοΝΰxVb瞐N7„txZb»{M!}(ŠZ―e»·5 ßk¬Ά$WΣ\y¬@rΛϋ–‘gΉ† 6HH‡ν–/ξ45œG覑—Ÿ•ΝUW\[AUӁe} ΏvRHZb»ϋ–Ξz!€ΓRΫ©j ιC#ηΣο}(ŸΑ*wςΣοL ½XδjΊ;ӟ–Ϊ½§šN„tψQβyτš―5kα|ϊ½½ώ~ΌΒΙ/―ƒΑJΐ œ†RMZ⻇ Ί €ΓwiΫΞζqXωFΓcΏ–*Γ*~WNΓο>^¬@ς†€ΝΘ§™π"€ΓΏjχΨMy J£σΊ―ͺŸ¬ Δ&3X X…䐾'ό=)ρέΓ]ιtAH‡ν>“Ο£?vΡh΅βc©6,3d-}€ά*Ϋϋ>]…}²ω£Δ³‹.ιπ½Τ$΅Wο54Hξ‘±ΪόΟςΊΘFΔEψΉν ΐ hy―ΛMΰj )°rB:|/±έν:τ‹rQcΥψSKΥNΉνj³άιδTӁeΣςώ£Τ.>Υtš'€Γχ ›FkƒδΫyPY?ρχ*}€άŽvP`’7$ύϋQβχ’kΨhžίKόΓίΒyτ§Όm<¨₯ ώC0wΨίΏPH―¦/sξ`Πς^Δγv:hήψˆα;&»Oη~βϋ—f[·Sϋ‡ςs^—ΰ~ρΰ8Cz ίAΩ\iuγXΏϋrοŸυ^ω;ά³e]•ΏύI„tš'€Γχ’΄Ψξ~οβAθλ!¨?΄Sώ₯½όΌζΨ8ΐ’ΞBCϊPΊ»š¦δtΨνξπMκύV+ιχZ½š­UB:°€³ΰΞ₯O»;l€ί$ώΡoύΜφ½ρ…νηŒ₯0“ށeά”Ώϋ‰lB~/±υ_H§yB:|c²ϋf κΥPM–•·TΣΏ“XIί X¬•ί·ycP₯³ŸΉVͺιΐ2’[ήmB~“:DΟ]ι4MH‡o+ι½…τΡΙ0 ŸΦΑΛTӁe₯VΣUΏwž΄˜Β]ι4MH‡o+ι½^s(¨WA5XFjHίqξΨ$!ΎI<γΤσ}Τ‚z>Υt`ZήλΨΥησ‘iB:|•Έc~°†MΤσ©¦ΛΠςž―Χ>Ψ!ΎJ ι=MvΙ‘©οΡTӁeΈŠ-Ÿ»abB:|eh\6Χ³e;μύ Kmyί2œμΈ+&&€ΓW‰Wyh/ϋž žλƒ&` ͺιΩΌΐΔ„tψ*q·Όη‘qΟƒϊ?‚ υΜΩt`Q©ίwBϊW‰}k€΅α+•τz|)/N‚zΥt`Q*ιιπ•3ιuΉ(π²χF5XΔΈ)}ψδœK&ρϋ6±ΐ+!€ΓW[aΟA•ψu7₯Κρ9}‘ΈuDX‚jzΆΔξ>(4KH‡Μ]UτΩά”»l«a± »,/²§½?`aΞ₯gs&$€CfHχe8Ÿ±Νϊu lΔ§ςkc XΖEθίpΥΪ―Ζkw§YB:¨€·β¬ΌL9§>Ϋ²1rhS X‘Δ–χC1cΩ@‘YB:¨€·δͺ|iήϋƒX³ΛςœSϐuJmy½—ΐ€„tΘ€’Ύœ#νοkσ[ya½jτη6ΗΉτ\ήK`BB:d~ωΪ±^ήYι’HΌΦ§Fγ†Η?\³¬ΡΈωwψ€U3Ω<‘YB:d²c½χΧ΄ύ’ͺΎ”ΟeΓΓkΐΊ%ώ9XΓ¦)ΐ„„t0¦'₯βNυωύRΉσ‚LΑΉτLŠ0!!ΎNnM’={=JΨόίΠvΚ4γpΈΏ— €©ιΜJ‘…f ι@oξ―jϋΝ'¬ίέ}lˆsιΜ*­Θ+#€Σ»Δ‘#¦f―ίM€φ“ψο\—αpGΪہ Jά u‘Αd„tΘ#€OηΎώ3Έ-†Γ  ιήO`2B:ΐΧΒ·†υOεεΣΥj@ŠΔJϊ–3Π‘Ά{΄IH§w‰νξ*™›ΣSX?/?η‘κ&υ{PHϣÁ& ι?Ίλ?•JsKw¬.αό­ ! Ψeΰ7φ§dC&"€<οͺTšΗκΙΟ‘/³Έ-› ?•3ψΒ9.±ε½χJΊιvwf1N:?-mu/W”Υ0εφΌl.μjk*#€έϊ=ΐ\.ΚeG%΄Ώ/φBγyΉ ώL(*ζ6 [B:ΐβ.ΚΏγ2aφmω7ΎΘLτ\/KχΕύ?χ›-Hμ*Ϋ*λύΝaΎ Mι]ZλZΟwuΧξζAϋή~ω·ϋΰhΕ’αύ²όg\” ω… qγ±’°qΏγΏ½6'`"B:½Kϋς§-/΄lnΟΠ:yΪς 0…«ΐοιžΟ₯ϋ>‚‰ι›q£π’/š•αqΐΪ™ξY ϊ€―Ώ ΦNH§g‰»αB:|•ψΈ° qB:=Σ²Ή©€k'€κ6l][kΰ›&4IH‡,7€o'ŠλΔΛαψM!‹λMΰ›ΔΝλ^CΊBLDH§gvΒ [βζu―Υ[…˜ˆNΟ„tΘ–X½uX+!€Tͺ·@w„tR©€έ!K❰°)Ξ€έ „@²Λ°΅iwΦJH§gΪΥ _ΪΉτ­€5 陝p А@²Δ‘ͺΊρ€΅`>Ίρ€΅ „@²+ŸΠ!r\ϋ,ΰB:Π!rx €:μϊœ€u`>B:°6B:πΧΞΑD„tΰ5ƒ‰ι$ϋβΣz"€5Ίπ©Ρ"!¨ΡO ιΓ@蜐9φ|Π7!BιΐkΛƒ‰ιΐkά“€™ξN“„tzvεΣ¨–{i’NΟ„t А@²·> 'B:π›%0!²ψ€Ž ι0SΕ3|ιύΠ&!ζcͺ8°6B:=3έςνϋŒ"ψ`"B:= ίΆΟ(ΒVο¦"€C»Τ―»τŒh•YT ΰ{»Ο£·nΌΔχΓϋh–@2!}σtϊΑ„„tzf2+EH§g‰mRvͺΰ{iߍ·kΐι4LH‡,Ξ€ΐχ¦ŠχΨ‰χ6` Π !€T‰ηΡΦJH§wiΧwx€oΏMΟ`ΆΝι]ΪνNΐ EbHΧξžΑf ΝH₯à 莐Nοwa½ΐW‰ί‰=NΧΡι]βx!Ύς˜!ρ8žvwš%€*νŽτAX7!ή%ξΒ&ΎΐΤΆοH:¬ΰ&;X¬NοwΓ·Φ›–Έivu+Π !ςι{<8ΰ*` °6B:½Kό#―έLO!€ΓΔ„tzη<dJά΄ξρ½A‡LLH‡<>ˆό>μ±’žΈYγ]υtDHB MκΡ/•t`ν„tΘ”xέ LEHΟ±Έ&wΥΣ4!ό‘€4ξζΐZEοqΚ>!σ½J:=34.Cβηp°X+!Lx€$ΫZ¬c$V½·Ρ„Ύ‡τϊYΠ!ΎJ³°˜ŠVχ,‰!]%.ιπΥMθ5lZήθΑ~πζt―!ύ ` υ:eŸΞιπkΨ`3R[έ/;­ή¦Ύ˜μN„tψΖΉtΨ ­ξY„tΨ !Ύ1ᦧΥ=Oβϋ‡λΧ膐ί$~'^«”Ϊκ>¨€GQE§B:|“xζlKΛ;K ιηOO,G7„tψ&υΏ@«ή— ιDgΦν¬α1!nιπ½ΔσNΞ₯Π*­ξyRΪiw§B:|/q—ΦΉtZ4vн ύΉ;ά¦Ύw¨€Σ !Ύ—ΈK+€Π’δ*zΟ­ξ‰ΗμLv§+B:|/±΅mΌ–f;`°JBz¦ΔcvZέ銐ίKύPM %οƒοFΏνψ<ϊ`²;lžί»*_Ξi  %ͺθ™vC§ν ιtEH‡%~ι΄"y`άΠyH74ιπ£Δ7νξ΄β(ψηΈ#9“NW„tψQβΑ– @Ά΅ΊGKμά;XLJH‡₯ΆT ιΤξ}θ™η{§Λؘƒΐ5iu§;B:ό(υΛΐΉtjwΌώλΞ‘σθBH‡§%ΆV©€P³ΓΰkΧF'kΨ$!Bιπ΄Δαq{ε,Τ(ωΤyΎη IDAT,ϊΰ˜κώ—Δσθ·B:½αy‰•τAH "ιUτsγώ’Έ‘" Σ-!ž—ί¬^SC]«{ξζκ{¬/KΌϊcg†έ€uΐK«θΧBϊ_œG‡0B:ΌLΛ;ΜO½*ιFH‡—₯ξβjy Yz}00ξ/Ϋ‘›)—Γ0ά¬6BH‡—©€ΐ|ήWPE$ώE«;αe7e77Ν– @¨*Τͺθ_iu‡@B:ΌΞ”w˜Νapšμ\₯φιHH‡Χiy€ΧmWR‘αΌόΖ›bφΧuνξzz'€ΓλRCϊž«ΨrTŽc%»V₯ύ?ͺθJH‡Χ₯žKTΣ1nZΑ‡‘ŠώMκ±9!ξ ι0›³Πηδ\: jhsΏv7ϊwT!”³IύΒxWΞΐ¦Ό-ίGιTΡΏyz4ΑytΊ7ι0³1€ί†>.Υt6©†κτmpWά&hu‡`B:ΜΞ”wψήqW ₯&`)„t&€Γμά—ίμ–‰ξιn+93?•έΰ!ξ B:Μ%΅MnKP`N*ΈrmPEAκ;ƒσθPι0»«ς’HH`Jο+§Šώ£Γ΄f@!€Γ|\Ε@οΆ+ Ύͺθί?»½€= Υ !ζ“ϊ’倩Τ2,NύGΙο *ιPι0Ÿ3W±Π±ρF‘•όψΗͺθ?H}W8XΔa~ΙSή·Φ@»j©L_«’`;xŽ€*:< €ΓόLy GΗΑη™;ΞZN­ξP‰7www>+˜ΟΈύίΠgφYP` φ‡aψ³’{]ξη{c'ΰAΰ3ρyΑ#*ι0Ώ›ΰ³Sο΄Ό°bΫ•U:S―Ϋ€έΠ€>¨’τtXLςŠ—V©–iξCΩDw•׏’»μ|^πˆvwXΜΈ#ύŸΠgwYΪ`Yγ4χ?*zІα"`i.Bη άκ„©€ΓbJN΄'€°΅΅ΉП΄<πO«;”ο6!οyΙUt­ξπ !V#Ήmλ Tΰ±Σς=Q“1δ}ρI>k7όŽ{­ξπ νξ°:7ΑWΦ|RQΰ‘Γ Ο‘ί–ͺϋΌqVΞΗΠ΅έ–γΐ Tau’w†ίϋRΰōŽτm»κ'€Γκ$OyίRI Ψ―΄]ό<ό»6ΑϋΰΎΑ [˜vwX­«ΰα;Χ₯E€~m—€ΎWΩΈ-› \{™χh€J:¬VςNΩa _5τ‘΄Ή θ/{>₯_f$€Γj₯Ÿ΅JΎ’€υ:­4 ksŸMϊwΌ3ξ«w~υΙOͺέ‡ hmξ³ΫΘΌΎσRιf ’«—ΎS|°¦sXi@΄ΉΟ,ύ»]ζ ’λ‘<ΈΕ³ύ¨ρ.τ{ͺ―³Ω.ο©SέݍsRI‡υHή1ήr6  5τ[W‡ΞμΘ΅kΠ•tXτ³aAh[Ν}τΏ cM‘ά½7˜…σSI‡υΏŒ>?Ϋ €fνW> ύ“€>³Γπ€~. ΓόTa}Ζst?ίΛς"@;φΛ]θΙνΟ/Ή.?ƒΉ)³I―’¬έζ'€Γz₯yώ£ΌΜPΏΪϊθοΓ0\¬£ο‡aψwπ:­ƒiw‡υJo7t@ή6ΠΠη’>V€’λ•~-Κ`  @υj7ΈnmnιGκFsl£’λuSΑπΥt€z΅ΠoKλ6³Kξώ$ ΓβTaύ―cTΣͺΤB@œCŸ[ ο>SX‚J:¬ίUiγKζ:6€Ίœ4НCŸ_zύάg ΛQI‡i€O`½-;σZΣςΉ>4π9}Φζ>·ͺθ]ƒ%©€Γ4ΞΚU$©Ά*˜ Π»ν2Α½…€~©‹k!ιUτk–'€Γt―c;*/€δΩ-ύ ΟζΆtέ[σΩ­`ƒ&ύ]ͺ έ¦SΓulZΤ >»είώƒΆύg6έ.£ϋϋŸyΌύξ@θ+Έω$Qϊ1Gη`E„t˜Vϊμuω‚2ν–ϋ‘χΛΏUUU―KhΏ(aPpΟΡΚχ{ΏΉϊs!5œEέΡ9X !¦eΰ 0―χ%˜ηΞ„Oοs λghܘVΔέϋδϊΒjψ]p+¬ˆΣ_xί?wΥtΨΌύfCZœΟKH8ΣΚ:‰ές¬χϊ™.Λf“ίŸωΥ°ΑoVΘΰ8˜^ϊP•_΄°1‡₯zύη0 ƒΞ ”–λ«Φmδ­Οϋrμ ₯€~+ /₯†γ:π`…Ta3_ΐTΣaZ‡εE|Κvφe}*kΦήΊΫεy~lα‡yΰ> _Δ¬¨.5TΡΟΛg ¬ˆJ:l†j:0”ž]•*uM}(ηc£²ΎχΣΫ[ θΓƒΞSCέ @X1•t؜«π—rΥtXŸύ²YםΧχ~+?“–ζωŒηך<ƒH—SCέ»¬J:lŽj:τg»όwΟΖϊP‚ζ…ΆΧ™ν—ηΥj@M@_š*:tJ%6g»TΣSC=Ε9¬Ξ~™Ψ][[ϋ"~//οͺκOkΉz>˜τ½ͺθΠ1•t؜ΥtθΖq©žχΠ‡rΆϊKΩ˜ΰ›·esV@η5ͺθΠ1•tΨ,;εΠΆνςϋΣΟyœμ}€νω―Ώ‘ΗeΨ^Λ.mΜ¬D ο·εο°*ι°YW₯κL5³[ͺΙ½τ‘ηωWΗ·ϋkΥ.: θζ¬F ›Z靀P5•tΨ<ΥthΟύ•ZΙ3'¦Φ[twί/κ> ›A°Όρ9ώΎΖΫςNΰσ†5QI‡ΝSM‡ΆθOϋΠIΫ{Νwί/B@_­ΊN\΅k¦’Ώ½{ΏŠγΪς\sPOΒ¨pΒE  £"0D`ˆ` ‚‘#Έ³κzΧΈ^<κqφ9ί·KΎσΟTWΣMύΞήgŸ2¬c¨TΙnγ:ύa†oΠ¬ΦŠzK•σ€>.Utΰ?T‘ ύ~ΕΛΒί‹—1 ψ:ύajͺ¨―¬œτρeΩ‹ξ=‡‰©€C9¬ C^ϊγe¨οΔ’ε~£οΉ€>ΎύXθ)™g˜‰J:”γ"A5ύ…j:|a8fM@œ· ΏOϊ uΓ>ί θŒde/:°M%Κ’šωτ l―½oOφkίέ4ΦΞώ5ϊ4ϊ€ώ±πkτ·f€’eΙRMw>*όεX@Ά“$GU’ŽUt˜‘J:”'C5½χST– UY>«\ΗΎώ’e8…c*ϊtNbλGΙTΡaf*ιPž ΥτN5Ζ­TVGυ*Αžά«8в5§ϊdΦ z§Šσ‘LΘΌ‰7h‘Aqγϋ˜ šήΪβδ0_@›F†ί§Ey˜ŸeΊHR±Ι°˜cۍE*ΖWϊ9Ρ-uO%>"/ƒ½$σ,TΡaφ€CΉ2œ™Ϊ%šΜ c1ε{Zο λ-Lσ/ύ=¨A†ο{Ρa!*ιP{Σ‘8‡ϊδŽcΟ©j―}(ϋE@Ÿ\–οUtXˆJ:”-Λτθ#­ο4`Υ/{Ρ§WςwJ{πΏ\ΗΨn£ϋͺ—Uœ,ί#·IŽF„*©€CΩ²Lz?(Όςc8ΠgSςwJ_YŸLC'‰η `A*ιG–jΊ#Ω¨*ϊr^F.ΡU,"drϋ’τyew) C„tΘγ"ΙDα—†ΘQ‘ΎφΖΊ¨’I²΄ηŸϋnž_–aqI(‡Ήd™.}ΰ|U*QςžθV”όdιηρ}¬BΊŒ,έe§ΏB9„tΘε&ώ–ξ…Άw*!€/―δ–χ›8cΌD}υόƒύη‹:L2,n£ΛΚ"€C>YώΎ‰6?ΘL«{JnΓ-qAς:6,–.g'QχΫ±*:”EH‡|nbψOŽq!3‹Lε(ω½(ν4‹£θBΧ²N’ ‹»΅˜ε!§γhO+!rd&€—γU ρ+Ρ]!C=―γμsίΉΛΫKrdjΏ/ΆC@a„tΘι.ΡΚ·!rd%€—₯Τ}ιέΒ]CΓήσu Η²V‰ΊΘuΌA™„tΘλ0Ι½†Θ‘UΙ‘°E₯·Ό/Ρέtnοyq“΄Ήw‰φΜCs„tΘ-Σ9S²Ιd'Ρƒv+J_4™sozΏ@ϋk|―Ϊ{^Ž~!ι}’k=w,”KH‡άN >ώηΎγ‚χ”Β}Άh”§τχdŽΆαM †Ϋ)p`]λ2΅ΉoTΡ‘lB:δ—ε­!rdb?zyJ?oϊbβ-H§ΡMΰ{΄L‡ρw.GAα„tΘΙΒρή>_ΰJοΖ™’Ί}SΫχ«bejswδ$ €C2΅­™$K*ιe*}‘oΜπΣ‡σ_βwΡΤφ²e ½Ž\ƒς ιP‡ΎΊς)Ι+y₯]¨ΤΝsB†‘p»{₯p˜`+Ζΰ,ΘAH‡z.tΠS8;¨ΥS»….#œ —GίΩρ1Ρυξp ΐιP»DκΪή)œ“Κ”aΒcΏΫΆΫΪ…σΩ]ΩΔΓ—3c™š½ιΣ3o‚)μΔ>τlƒβ| AB:p_ΦiοΧ1Οƒ SΛ8p*έΫ*f―dόά:Ι€έΈ/kΫϋ+{X™‰sϊ§s) 3ŒƒβzG:΄IHΎζ"²y+@1ƒŒ§!d`z5Sθoί$Ό³—£B»΄»ί“΅­χ—R0•¬ΫBJφA7 #Λ:Cb{θmί‚F ιΐχ¬#μf΄³‰ύιΪ™RωψΣΕe|fa,™?ŸΏšζmΣξ|ΟUv»±qUΐ΅P―«¨ώς<Η(2²uβn*Η­*ιΐƒτ;―ή*Υ9ζpσxΣ«Sζ­(Χ±ΐ4N%xˆ½¨veσΪ€hfpΧ<ή; G­e θ:J€'€‘υXΆ.*œ&F3₯»θΨΈu—ε“E4F–υ¨΅.ώNέp@„tΰ‘Ξ;υYΫ;»Kάq²„SΗ%2²“€G­uφ‘χΩ“<ΖΠJ˜±Raβ;sΘz"œNu·0²~ΐιΗ€7Υ>tΰ B:πX™CΘm\Ώ³g™’ ώm:cΛzz‹Ηkmξΐ}Ϊ݁ΗΚz,[Γ„.ΝΖΔμQͺO:#ΛΠ»Ψ"# _PIžκ,ρώΏsSt™Aζν!c{gH#λ+Π&Ύ©G‰Ό‰ ιΐSe>‹ΆΣvˌZ>G}8Vκ’€k‘Ω·”X(ΎK»;πTwΙ2ήͺb0“ύ¨$·6ωύ²λΊ‘eθ·ˆηθ+ιίΑ–˜ΙIμSΏnδ†Ελ5€‘1ν$θCg‰Οπ]B:π\ΗΡΊ—ΥgA™\Eπ¨βή/Bό¬K… ¬bJζS <„=ιΐ²Θr†:sΫ‰κϊλJξό&‚ωqΧB}jΒψ)B:ΐ ιΐX²οΤYΒnΫΜαγ(^ƒ^¦PC@ΏŒΟ:ΐƒhwΖr•ΌJπ"Χ\ ν~ηή%Ϋ―Ύ‰~Š Ί€ΞjθΧ&Ή₯’Œ-ϋqS›hE:XΒn,v½)τξίΖg\圩ΥΠuhO"€SΈͺ ςa25KΪ‰κΫ~!Ÿ₯ΣΪuVΐ΅PΏzοWŸΰ)„t` ύΦMς)Ό‚:₯ϋތƒζn#$ΕΏ>Μ₯–€ώΑ Eΰ©„t`*ύ>Ϋ?“ί]AνΖΟ:~^Žp—±°v0ΪsYB-ύΤўΐsιΐ”φγςΜu2XGΐώύ‘«ψΎ‰XZ-ύΪRΰΉ„t`jΩΙu‚:ΐ€j θώVΟ&€sΘ>Hσπ0‰ZΊIξΐh„t`5 ’λu€QΥΠ{? θΐXώεN3Έ‹p»I~³_ΕεCφόπmλXΌ­! ΏЁ1 ιΐ\ϊ˜ƒ ξΆ π<λψΝή]Υ;ŠΩ+£9ΔMv‚:ΐΣΤΠϋ£Φ Έ 2B:0·Γx°ΙNPxœύŠϊΉ³Π©,‘¦aA†ΙόXh?WrŸ|ο“RI–0 ’»­ΰύφλ D:ΐΓ©€Kͺio’3rΎΤΟ"y[Ι}ρ=ΜB%XR ³WΙ;π"TΤώΪΦ$ <,ν"Θ­ΑΤkYxxŠaξH-½Ё9 ι@ j9š­‹ ώ»©Ώ@£Φfk :x' s²'(IM­‘½]Χpsθ«Νg•ΜΌ‹ΏM³τxo*zWNUՁΤtΔΪ@@‘έ(Ν~qS‹·±π°ς›TκΈΒ€~$ KQIJ4 ͺiO£³uΪ άkκ~κt@KRυ7•νmΌΙοΩ­# Χ΄˜Ϊ θ@ ΄»₯Ί‹Κσ¦’wθ₯#Ϊ€ μUΨνΤ θ@)„t dWυሢƒΰ±γ;¬¦.§N@J’έΘ`U…Λ¨uyη»(J:ΑU₯•η·ρΪL~J6,” θ3,NβΜΪΪΌŠykΏ‰@φ+έή θ@©„t “Zƒϊ‹xφ°”d8ΌΆ­F€”Μžt £ύxp¬‘G`i;]םUZ=ο|Ο₯¬jκΧ1Υώ€kΪ²]K5VΟ;Θ@»;U­­οέΦ>υέhΓ*ΪΫk<^m  )ι@f5υώ!ω8“`JΓτφχίeHC»;Pƒš[ί{—Ρ‚ͺύΫA,ΦZ=οt •t 5WΤ{―΅Ώ#[ΕpΈί*θG:Τ’φ ύΛ^,ό½©όŽΎσ d€έ¨Mν­ο]L²jχΆ;φ.oQIjS{E½‹ιοWZ8G؍ο  p*ι@­Z¨¨χΞγ΅*|Ν*ZΎkžά>Ψl-F€%€5k%¨o⡞p-@9v£’ό²χD@ͺ‘έ¨ΩΠϊΎ©όuφCε~½¦«XΦ°χόFϊ΅€ΤD%hΑΊλΊ‹ΚάFUύ’ŒΛfΆ ”-|ίu[έ– *ι@ β!φŠzU³?TΥ‘9;±εεχ†ϊΉ€ΤHHZ1υΫF^οϋ8’m―€k¦uίq΅Ÿ{Ύν4Ύίt :Ϊ݁֬’όUC―Ϋx¨ΣntΝ΄τ}Φϋ― J*ι@kξβΑφΊ‘Χύ&ͺκ\ π|«ΨwώGc}Γ@t j*ι@«†ιΗo{ύΧQU7r:ˆsΟ[Ωw>pΔΠ •t UwVO{ύ}ΥνOƒε έθˆω­Α€~§tθ@„t uϋΡ>ٚa°ά~λΏPΈ˜£ΡΚ™ηχo-P4AHψkoη»FŽhΫΦWγ>GΨ-η²€­-9ΣuέλFoΘ'܁Ω“π·uΦΦZI§±ΧUΕ –³Š}η u±pzRΐuΜNHψ§Ύ΅τ¬Α#›¨ή«^Αμφc‘¬ΕΆφq@σ„t€/ Η½iψήl’’§’ΣΞrέ!Π4{Ύtϋ ?5|o†ύκ†ΛΑt†Šρgύ?ΫmΦ:€π=N~ίφp9έξΦΔφV·Φl{g1ΰoΪέ~¬υrΫ.£-χ’œK‚4vγσΣκ΄φϋn£kΙώs€-B:ΐΓ¬"˜ͺzύEX‡‡Ϋαόo—ŽWψ:νξsυSχλ?^G«6xψΆύ˜λπY@‡#βΎM%ΰρφγ‘›Ώ©¬Γ_Vρq`ά6Q=χ=πB:ΐΣΨ§ώu·ΦέFkvΆΒΉο…/iox !ΰιϊŠΩ™6Φ―κΓϊq„uεΤl7Βω[ος7Εβ €<_πωΡ}όͺMυγΨ› ΅ͺζ†I~Ϋmά'νν €Œc7ͺκΪ\Ών<ΒΊv²Ϊ‰`Ύο³ώCηqŸt<’0νο£žl‘φp›θ.:ΞrΑ₯Ζ§ύύa6±¨Ρ?Μ_eΈ`š’jώxΧqΏ|žžAH˜ΖnTŠΑτ0ͺλ”`Θν5<ΓαF"€Lg‘σ{ό(ηqίΞ]3ΉνG8χY}<ΓαF&€Lο *LZfG;‡ZΕ|Α|<ͺη淎€©ͺώ|·QΝ;³‡°|ΧσQ©žΜDHXŽͺϊΈ6[½χ¦¦ΗwνmU̝¨0>Υs€ ιΛڍΑhͺκ㻎°~‘Κ^υV(έϊ͘sΟ €”AU}z—[‘]Λn.C(~μ-ŸΦ&{°! φͺΟk;΄_iε-Ζκ^(_ ε³ΊŒκΉν" Κsg« &󺎰>ό¨ΆΟcβÏEͺeάΖχŽ­! Κ΄Uuϋm—u?Έ«Έ?έNόμΖΏy9 †(ˆPΆ½λͺκ帍Vΰa‚όπώλ­σΙwΆΉίας\Fυά`8€‚ιε[E•λ½χͺx—Φ―Ύςo-†ΰ½Ϊ δλψΏ9ώ,­νςXΗΔe-πy]Gxίξ7χ†t-±~wλΏ‡~ΏUΓσ¦Άλό(—Ο~Ε‚œpP! ~;ρ Φ{ Upœ@ΕμI¨ίMœ­ώS<ά9Ζηx_@¨—J:@{TΦ!{Ξ#€΄KX‡r ηBΚˆIDATΒϊžs°ΈΫζ'Β9@›„t¦ΑΓr·Β9 Έoƒ©ϊ°ώ݁IG8Ώp›θ„t~`λ―ά(Ν&*ζΗ¦΄pŸΐCμF`7džξ6ζ?œΩoΐ·ι<ΖΞVuέΎux˜Σ¨œkiΰ‡„tžj?~^»ƒπ…Ϋζ'ZΪx !€ηZGeέn jΐ3 ιŒeA]uΦ\oUΝν5ΰY„t¦°³U]wŒ5Ίp&΄0*!€© “α΅Γ“έ&‚Ήvv&#€0§!¬ΏqΧIbζΓLJH` Γώu ζ,FH`i;%Μ(‚@IV±‡}Οvfp{Λϋ=ζWn8%(ΩΨϋ_y§Αyσ3SΩ(‘@;χB»*;q½ΚMd xB:Y­·ϋkο"αφ^(ΏscΘDH »[?B{;†JωUό«…€Τ„tj΅Υφ]νρUΉΌΚUΚ¨Š@+vΆBϋZ΅=…ΛγΫ?P5!€–­γgg+Ό«ΈΟoσ•0.Π$!ώiu/Ό―…χΡl‡ρ»­Άu-λ„tx˜ΥVpΒϋJ€ΒΔoξύγπB:Œc;΄―Άώ»«(ΘoΆΪΠ‡Π=„ρ;-κπ|B:ΜkwλΫθΏυΏ»¨ΪΏρ ―ΏRΡΎ°oΆŽ2Ύ`FB:β_ή(ƒ… B:BH€BιP! !€@!„t(„… B:BH€BιP! !€@!„t(„… B:BH€BιP! !€@!„t(„… B:BH€BιP! !€@!„t(„… B:BH€BιP! !€@!„t(„… B:BH€BιP! !€@!„t(„… B:” λΊQΤ#`;#s­IENDB`‚ignite-0.5.1/assets/logo/ignite_logomark_light.svg000066400000000000000000000024631465426447700223500ustar00rootroot00000000000000ignite-0.5.1/assets/tldr/000077500000000000000000000000001465426447700152665ustar00rootroot00000000000000ignite-0.5.1/assets/tldr/pytorch-ignite-teaser.gif000066400000000000000000014416301465426447700222140ustar00rootroot00000000000000GIF89aΠpχ  .  "00 ! !"0;$$$6+(+7'46,%-38+7)39777D3-J73S=54F-9M1=T3GH:[C9B\7PP?dH=Ig<*9F2>E)>RH5FV=TP:O4CL+CY9KU=R].Jd:Se5Yx0NiHHHWXF\AZYYYLSJkMAxVHdGYNo@Op@UyEZeTbbMijTuu\er^C[hhIfqNnyTvrOpKgvJfuhhh}}bzzz~~~wwwjwd‚]N†_PŠbR—kYžp^‘r_Y~©xc²~hƒ|\„Ka‹NcPg”Sxˆpp’Zˆˆj——v…•yΊƒmΏ‡p’’~Ε‹sΟ’y:dˆ>l”8_UvˆArœ[~‘NoƒE{§‡]„a‰‘dŽ™i–‘n£pŸͺt₯²z­·}³^‚–aˆœm€ŒK†ΈH€―e’j”«nš²qžΆt£ΌOΑR“ΙT—Οz«Ε~±Ν΅Ρ€€€†††ˆˆˆœœœžžžššš•••‹›…–ͺ‹ͺͺ„΅΅Œ€»™½½’½Έ¨¨¨···΄΄΄³³³ΊΊΊΎΎΎΉΉΉ―°Α„ΌΡ― ͺΑž³Λ¦²Κ₯ΘΘ›ΟΟ ΥΥ₯δδ±€³Ο„ΊΧΏΏΐΗˆΒ‰ΑލΖε‘Μμ—Υφ“Οπ‘γΒΒΒΖΖΖΚΚΚΟΟΟΝΝΝΘΘΘΡΡΡΦΦΦΩΩΩέέέΰΰΰαααβββγγγδδδεεεηηηκκκννν! NETSCAPE2.0! ImageMagick gamma=0.45455!ω,,Πo H°ΰΐb*,F aC‡Δ"6”‘‘D‹3jάΘ±£Η CŠI²€Ι“(Sͺ\Ι²₯Λ—0cʜI³¦M• -bΤI1'Δ…@‹J¨Α£H…M8±iFŒ#u”š‘*1«­b%&,β֌¾Rμz•#U±e½ͺ5ΛUβΧ­ZΧ²•›Ά-έ΅q5ζέψ6«ήͺnύή LΈ0Z¬hΙ&Ύ»pa°ƒΟ­K·1`΄”%}lx0g»‡?χ­Ό9²ΰXΙ:>­™rη±’εΒm ΅βCŸK"έm07Ӝ U“U‘ΈT`Η‡½μuφY΅g£—•~5ΉuΌΣΣφ΅Ϊy]`Δnμ=kάΈα_―N^ϋs±ΗC‡ξώ»}ΥΙٟΟ>ύϊσμΙαWί~ωyηŸ}yIe€ ž—_Zέ=XΪeVα‚"Έ^…ΜQθW| Ά§_{Šχ„eaHbs+²—^VRΧ{ š΄ΣmKρ¦£R<:HΦ)"xΘΕw`‘\iΰˆEϊ‡d 6θbϊ9£M.iΰrVV—₯–_b ΰ“^φ' —aZ©₯—Cφε“Q~ιf“n2Yeg*9f™C.y%‘`ήι$ŸwV(&™Θε)hvΛύy€–\–Ih’aYWi r©&hl*‰θ›ώ9©£ Šhu‘"Ή¨šN–7hšoŽy¨Z©‰$qιΥζ›ŽGε6QmuΧ‹Βjμ±Θ&›e±Κ6«,³ΞBλμ΄ΝJ›μ₯Τf«­±ΦfΊ­Άέ6‰m²α~kn΄Άž«ξ³λ;n»π²λ*fέ†£nΌυ_Izͺ¬/E\$/Θœ¬Αok0/Ωπ±7ŒπΓΐψB1¬Γpš 'ζΕ‡¬q–ƒLςΘMNŒœΐό­ΙΚf s–ΙςΑ»œsΚ'χ\rΟ8πΜΖώœ0ΐ‹ά2ΚE/ν4ΟΝ­σΓί υΥ@c¦Υw¬ΤDs«κF9ςzΠofαU#]²ΚΌψR³ΕFΏ­±ά Ϋ½0ήΧόΆήo8ΰ#/όσή5ί}ΈΖuΗ½ΈΰӍrά‰Ϋ]ψγ“;^8γ’ΗΝxΑ|_Ύ9ΣzOώ9ΓHoN°ίy«^rη/~·ίxΏώϊι- nϊΖ’γΎ7δ·λήϋίΈ―Ήθ‡ϋ=yθ₯#ŸϋαŽλ^:β€[.=θΚ?ΌκΜ3>½υŸ+ψΰ»>ΎκwΟ^1ρ‹Γ>ϋοu‹.wψywN{ρ”›ύƒάx ΚPΜ棌 E_Ά ˆ’ΤE•€WQ ©–“**Ν«JόY`€0AΥHƒRj ‹(8’>Š>jγΤ’(Έž ρΙ…κΚ™φ4¬FITSŠS€¨T‘J…r‘SΔΒ H:Χ!‘ŸŽT§΅½§M§ b†U«ιKJ}bΰ°΄E!šπƒ,’›Γ₯ΘPT鑦f$C4ύο†PŒcXd)qJvΪΠ4!D OΉΧ‹²§Ψf˜ΐ#ιEb’ŒXd$9ΙHZς’˜„$&7ɈFh’“ άδ'CIJO^”€e*S‰ΚU†r”Μ$,cyJZr²•Ά¬e.O9Λ\φ’–Έόe)wΙK]S˜Δ%1‘ΉΚ`2S•–|¦,‰iΜeŽRš™€f$•©ΝU:Β‘t$#ΐιΘo&r‘˜˜…!+²‚(d_αΕ#(€zΪσžψΜ§>χΙΟ~ϊσŸ ¨@JΠ‚τ M¨BΚΠ†:τ‘¨D'JъZτ’₯@#|±ΰ䨀zΑD=#@  €(M©RΚ–Ίt/uiI S™Β”₯7ΕiM#@ӝκτ§@uiO}š“¦4§GέιP‰JR€–Τ©3U*SQ ΥT•§RjS[zΥ₯ΆΤ«L5*UcZS°ϊ΄ͺW½jT΅jU’U¦fυ©XŸϊV‘²΅­AkYοŠΦΊ~υZm@Jz:‚#ΈYŠ^Šq X=€diΪSΚZ6²”¬fy*ΩœT²&Νμg%»Φ³œεli5{YΤ‚p-Ma‹ΥΡΆv΄ͺ%lfo›ZΨΚ6΄΅εμJ{Zά’V·¬­lj;‹[ΪΞVΈ©ύνqYέζΖΦΊΑli ‹ΩάR΄Ώυ-vŸ«]pχ²Σέmu{{]φfχΈη]ξp‘»[ε‚–Ήξ%οq‹+ίՊv½―mo€ίΛΫϋΞχ»4}ΐliκ/˜ΐΆ¬“KRτ:Έϊ/ <αϊF ΌvI…Kάχΐκ―uA aΚJΕΛ₯p3ΪO«$₯'nΑ•πψ†/ΐ(†&`ΩΙωΘHN²’—Μδ&;ωΙP޲”§Lε*[ωΚXΞ²–·Με.{ωΛ`³˜ΗLζ2›yΚ 8@š ‰bC,ϊ‚ƒ,R5ŸωΞxΞ³žχΜη>ϋωΟ€΄ Mh,§ΉΑΐ›z’ΦQ*Ÿ ςŒ MιJ[ϊ˜Ξ΄¦7ΝιNSš§ψͺ\Γ”ͺ¬un°§WΝj.+ Υ°ΞtšcMλZ―z͊ζM=0^C€ΰ鬳<μΐΛΗξς«Ώœl#/[ΛΝής³­\μ3G[ΛΣζτ΅³œmeKyΫJχ•»MfqGΩάU&·•Ρ=Yv3Ωέα>²Ί£ jE?Μ. |τΐ~MdΏϋΙΥήsΐ¬κ1Οzή^x“ ξg„£yΚπ^rš#nd…›Κ —v’)nhŒ‹™άΧ²Ε—œρqO–ά#οrΚ³\obπN\@v˜―λ<ι%7;δG^Ή­£ŒsmK–ά° ΈΞmΝρU}²Bou±oδ‘οόα¬nωΛ5•Jэ»FžπτΌΨgz—ύΝg°ϋδO·3ΪmξlA‹ήfgϋΪΙΜυ+Η=ήst²{.Ω»oΌν`{»νxΌ3™οGN΄χ.Fž&]`"5@ΝΣξηˆύ GΌΐΣ]eΑWZ𚧼θ±ϊ;_>ΡXoέ½η΄ψ]μΒ4χςΌ/ίχ#sœφ]§Άν!ρ&£ϋςΓ~uΙ}ζ£νΓ?ϋ˜)ϊjίήτbv>ο ΝqιλυίEλ5‘‘aέυΊΰEμ tς>χ^Gr²=Ÿδy—^δy—μϊ]ύχ,γώηκ/ο\mφKΉΫσ·ρ§gΑ—΅·Οv‡»w€Ψ&oœΗeΨ€)Ηwυφ}yc03g±Γ0Χ »Pg—‡pο7€„§d₯gy#¨rKV‚fζ‚9Gf0Ψ‚,ˆ‚y†x3¨νWƒ·r9θ€H6ƒΓ¦€ηZ†zΊ}Ϋ&¬σ}Ί„Œ i1h€ςΗgσζl7p@„;heWX|jGe?eXoeˆgg˜‡{Gχ…Μ†Hf}2(q`Ψζ†cVoO˜„·„4“Ωχ„!(…gζtG7„\„]hfkΨyƒŠ˜ˆλΦtίζˆU‰O¦nΩ6lG|PvˆXxθeΝ6t x‰’Ψdcˆ‰NvŠΖ&‰£(“He·Š‰Ά Ήΐ‡Ϊ—σ}»°‡IXg׊OfnΟgdθ†piHŒrwn HƒEX‚¦¨|PΦ` ¨ŠfŒΣŠ6h‰[¦•ˆŒΨh„³h~Μȍ‹xŸHyxΐ»Π ΊΈ‹“7ΪˆΉ‹@ˆ―θ…ΝH†΄–tP‡iΛH‡qθi e 7p©{έΘƒJηlog›Άwθx‰ Ι]F„’•hΊ‚Ψ‡Ό8>Ύψ„Ή` Ί…4ΥihnΩ–ŒS6m.YeΡVw§y2yxΡW„7“βyVt8ω“™iCy‘Eψxv”¨˜ŽΘ6‡J)f ΖΊ` Ή¨‹#فΰg’'™’0 pΫ–f«ˆiIkDx–{&”’ηn IijiŽΤ'e\χ–wφŽU ’!Ή‹ύみψ‹ωh (ΉEφed•J–|L6tvι$G‹ ŽaζpΥ™˜džG™Ωd:v:(†L¦˜Ι™’ f'š”pNφu€šήxe Φ'i•W)’ΌcΏψ‘i•„y˜ε¨geι―€@irθg™ χe:‡šͺ)€[Ζ~0Ι€τwœid9šά¦œcV–yf ›‚©—|¨z~™›»y Ά@˜OɊ—iβFœ\(ύΈšμΈŽ¨nrXˆΫyŽ'θiά9‘ŸΩ\φž’Ψ”hŸ©‰”HyŒ‘θ‰Ϋ6œK›Ά€ž΄)Ά ˆζ™·°‘·πόhšavpτιŒεφœEYœύΉiΩζ~υgŸ9’' &jfqYv ϊ€Š)Ί₯'Κj9…Ε(£όɘٚ^ϊd  Ά@ Mj•!™X·‡»9‘΄ΰ€І²Ψs9θtˆxƒg6†Χyq6pYڞɝ —~Iy£_Ζ¨™H—ΞωqMv˜κn’ze j€W™„Έ ˜³Ι‘pϊ€Λ„‰j¦X8¦€ι‰.J”ΩgŠ™9fΜΙ₯4J”¨¨² =*€²¦VJ“-:«€ζn n°Υ©·@ pž΅)’[Ω Ή‘Πz ¨:y•Άͺ…φ~#ηwcv˜Λϊ€¨¬θŠŽZŸ£w₯`Zf˜ λJf?J¬PrΟΆŒΞ: pΊ‘ω8­ε©›E ­΄€ ¨j…fΚ½κ«d:¨š––ΰυʞφΪ’ΘΉŠœΘ°φGwΖ‡$j« k¨jιͺ Ϋ+Χ¦ΟΪ―θω―γΉ•Ι€ΨΚ―ΫκΧm±j¬IΩ₯λ¨vFn;h8mΏ[75—D‘RVaˆY kϊ±Ε:ŸΟ€r΅˟R›°eκ΄Ω9eJ όΪ―αΉ—ΥZͺ Ά΄p°ΕY³@; ‹Ή‘B»΅σZiΟφ F0@@dζE{―6¦ήκgάΊe@ΐ’YΫiζF²6Kh 0ƒψ‰΅“•«JΦ¦³ΆyžHš}Ώh­‚‰§Π*³{j±!¬σκ§T[£}Άlβ ‡οΪqpp7`6p0…ϊͺΙ΅_z³°kΊn»PF@–{΅s;Ό—™‚0ΪmΘ*·Ώ©«fφ΅š ͺ{Ή‡ [ )›Ή³°P †9{Ύΐ €νz½Β{―P( NΰmYΐN 3pyK–₯Ή€}Vm³[€6ΰ6€šΤ«³λaΦΈΞΈtνKeΡhvIqmJ «Άq ’ž«  k ΅@°³Π ³ Ά| ―•:·n‰f)―εΚe0N€ΏN`J φΫ\eώ6J`<υ³ζ‹ΎζjΔαf3€»PΐWκ‰ ’ΥΌ8ϋΌΏ:ކJh§s±hyΔ‹e°΄`ΒΩΊ²z™›/Λ€£; £ΆεΛ₯ΊΊŒΕ`· —d7Έ‹Α€τ‹ΐΛΚ{ΐυ{P˜€±Hζ06 N€ΰo‘k~ €Λφ( ήΑv»3Pΐ#-Yυ­bήλMSξMOp»+pΰnίAlονΔ“U»0Y ήπX·‹»°°~ŒΈ‹» l`7`@<S|³Žk€™΅Qξ“· Υ άΝ(*e: Ώ½½f<ά+Ί™» œΤΰΩ_LΤΫάζΠ­°Z»ΘYnΕ­Ι³§ϋdχ]Γf}ΛPΙ€P"Mΐ m ^°‰€ΐœ•ΥLπθχΛ6Ο5|ά²mψ;ήP¦l {°qΰL γΦ)Y6[ &Ε’Σ­M ͺv>ΰφΛ^¬`v 7L0 Κnm§ΜS’§λ6 ΄Ε‡œ‘ΜήκσΛMΠ“>5<ΰM>}~†^κ؞Ώ7f³6Υ 6+°ι4ŒνbPΏ: έ"Νίpΐٞνω‹‰ΰ:όμJΐQόy–κmvήΤ½Œεkž~΅mžiΛΪ œ`Βόϊ¬ ŒΧϊΣfΎ O*XξŠ₯ύωζ‚šΫ iΞjF많 €Χvύ€Χm-€ΊžA ¦<ΡΠΦων{ΏϊKιLpq]ΙpnqΥ-Ώ:»Nΰm ΝΟL60ν,I3Π’ŽΧ Δήβωύθ±[ν^0δž~PΦ°Ωπ{ί<Œΐ ~ζ^ΓD/χPΓωνκι}Έ7σA.Ώnμ ζh―}.φψ ω9,υ^ίγ ` κ΅ΰL R0ή Υ:OλσkΌMη;‰Ό!χάWFΔ₯Θi ΖΏρeL›‘z’ΰ»Ζf~ζB­ζκ‚ ηΕ― ΅ΌŒeI½±¬Πψςœ»(`3ί»£…ΰΗ^ Ώάl>ΠmvνΘQ<ήΪ ξ†ldpMΙ–­Γροδx]­ν†}d "(£ °‘%  ½x±€”0ρrƒ€7Ϊ0™ Β…l4qrrΐ@/NœQaΒœ9"`CŒ " ΐΰΔ‘%0T8πΰI%. 0ΓΙ%88x‚5‚V™0šΣj%p6 θ€βnUΑK%md*™‘iNΐ:&|`.Œσ0α9?n\Ή1eΛ™3c.ΜΉrdΝ‘ƒΞL:πI‹:qκ4k-Ψ·nεΚ₯Λv/ΪΆdΓ^Υ›ΣͺEPŠ&Nœτββ’szΎ Ψtqδ„£—ήœ|zςΑΟž›eO"²nm¬˜Αa†,K"p0T‚EJ(ΰ$`#‘A“¬6Ήχ@bn ˆ`‰=˜ΈAΈ" ‚ Π:hΐP`,)!’Œ’(p*#hΐA F¬KtΘ‚$“PjC™ώ(&”@ Sd²ΐ$0Θ+ ΰρŠΚ‚“"x`€ͺ‹JœπbEύŒJΈ θιE ¨Κ‹8’<@Κ€i†ΚbK0€ΚΑ˜λΜ9μΦκσOΖ²+μΊδ΄T³Η¬2=±Km5Φ\‹ΝΪzΉ-[l©εZzσ­“ΰΦ΄.9ζŽΊC 3υP=]4°F=£ΜΠTae”p’ ‡²hbKθρ€ΈΊΜBƒ¦τ!  ppΏπ<,ΐ,€ŠS‰Dœ°ΰ₯€†ltΰ<ΐ,ZΑ 1l Δξn( @^Œ ‚φ¨o/PΈσ0`LΜdmhC ¦¨@‰l10ιC#3ΰH ^ʈ ˆ` #˜α† ¨€€€€κ―*‘’°ͺ6$ΰ<lΘ‰’ΨbI0G&Ιπς‚ bL‰OVkΕ.1νh­0Y_5Ξθ?•ήjΒεδ7IoΑ%SJmΛ­–Z`λτΣP₯ΌΒΖ\₯:4΅Χv1Ak-±U5s€`ͺ"ΐΰ†\³Γ‘Šΐ'š°!ζ{#°ΰ€χΟʊ§-ά†όΰ–4ΰ€χξC6²@!‹6lζtρ’C‰o#0@¨,ΨάΎ,2Z!DcAjΨƒζ]šY-:ΏΔˆθΙ‹ ,0`ŠjC ,)SRΈ*ΐ@ƒ†ΆΚ°'ΠJ,€&2fEώ½&”¨ ρΔSl_i•ˆγ €υ3³Ά‘φ,ΊΊMΝ2 ΝάUΐ£½m0ύSŽe¬Φ‰UHв‘Tmt‘­α‚³0Εj2Α‰PYζPk›ƒ¨΄5Ζl μ“ E3΄iζ‰^²·΄‘ 5€Λ ˜ΐ]Q Ίβ•»β’!χ½€K$ΑΣέP½˜ 1{Š»Nε…"XZΪε~6ƒΝY@K6œΈ%ΰΔ‰sK o­’œd†*iίIΦŸ+) @6€VΕP O€)@n0D™μjNξ3 ‚0= …εEλ1LϊΘR’’)›"ξ,ŒDϊΓN£\e¨Γ\‡.$ ₯Γ6Έ&O„…RΓ‰Άζ5œΊE½†©MΑΖ5‘pVθ#dΊM  +qB(Π`Fmtf2i +;Ι.‡1Vlΐ0Τ%$/J€ΖRN&ΨΰNUŠΙA$§ Έ4ΰn —:π²…΅k*JšΜ3~^εp]’YεΜŸLF’ΜΒ  Δ$ŽhPffΗtEG§β(`0TηΉNDYπΑΛ03ƒ΅‘ dQBξ#—-ΐ9 4ΰ+{©1$—αΒSNt¦E JπήεΜc^³OI…Ž2ΈΏXΎπ¨mZΔΥXΑYΰ‚‚]λn2Ε© b5š(ζšV½ΝTœ©¦­3B§Y†©J}εvΪZ˜\Ω@-ΞΉΨη t© : €4€`@)Ϋ»€Vl '\@ ϊqˆΌŒŠ,ΜiK€εΜͺ}ΐ(?˜’gN’+UgL[Ί%p­e§ό!K2ΒΕ¬€%8H|f”Ν Ξ`ΚVŠ$4 ΐΊˆkƒ,εB>yB*ΗΞ…e,]SHΤ€’άˆοx5`₯Έn ^ΐtξΊΒΐ΅£Ο€λېs˜»Rs–²\Ϋ{Eυ¨\F6›šMW/˜©Zhp˜Δ,[}ηj΄ˆQ™τέSeδ{¨ £j0" π…Έ–u‚΅ŒEͺτ¬)C μͺZM9 t+Ε;bE(‘\<’§θ§ MψΐΠdEœdθKΘCI}²§ΛeλiμΓκΒ[’Ϊ 2g-ΜΎ’51"©G)@^€7<@ «Ϋ«žrεͺμj’ ΨQfK’‘ϋΐ†€ UΠ³Γ¨Ή c`„ΥΚ_D[&ΓΔYt3-ΥϊVζ–Δ-pΆ[ψΐΆΐ…7Ψ‰±rBΨ£ΪcΜvœΠ\XьŽtS[­Β'AΎC Τ”ŸhΖ (ZN‚―T€‚<¦ΆΐvZIR`έχdKswΜΒ$ ?DfΈN@AŒc (a>π‘ΐ™°Ρ^‡±£XΒ”q―˜’“v[ΏΥ-ΈΡYζ~0½Θ ΐ€θπ‚–Ό${ £Λ^ ΡšŽξI1:OHτ²!nEHά&ΎξFu)€«2άhšΚ4(΄G•θœ¨Z4¨QD&(έ›oͺ«]Ε”n8΅ΰL5T\&ŽΛ_}Y£•JUqC £Ž^0{i6Œ'\PλDΡ ‚CJ’¨Y/σξοTΛOŽ(D‚σnΆL'sΆOθΐU”@0ΞLΗ~Cά\±˜‰μϋqΧͺ82©>η ^βσ½΄)€D ‹Γ¬{]Ή+Δkz‚‚`œθy.ΣsNœŸ)₯Ϋλή²‹hΜ₯“Ο θY}t8ƒ;ΑδΚ2Χ Λ£ϊτΊ>΅Τΐ‡ͺΡY Et‚¬”¦sa©Mƒub uιJ΅E‡χΏo ¬έft¦3-…ŠYψ₯― ΅―ΐ—,€«]9YΜ­ϋτfpžɜςz πošYΈq € ˜ &ΆΝΙ¨Ÿq‚°# x‚ο2π!²H§Al± xŒxŠβ²ΌΈ О i8ΑYŠΖ˜! )—χ! †1»Ι %£“h ψ¦R‚ ΐϋ‚"ΰ©“hˆs£’χPŠ ˜ ψ&ΟΉ‹ψ$ χ">ς”cBŽhZ€Ή¦SσΎκ [JΎ›0Z¨…\Θ4žC0±+\M5Q©ίΣΒ—k₯∡Cy0ξγ=zŒ•θ€"]Q„KΪ:ˆI7£@ D22j–„³@™θIΐ½(œ–"©8bŠDB$!£Μ°` m«ͺ  €Θ/ψ8Q€)IU|NT²|  ©y€%B1Š$©Α‘ΐ4ΙY„Š•hŸ +ΑύπΪΒ¨xې"AHΤ•!S‚ 0ή:=δCεX•<4šιΨΎ—σCCΙBξs0ͺ²Ή«ΑΉ5$°λ9ι›P»M:2?XÎηPgb9ƒ„ŒRb!ΈB›89Ψ1π•–‚ъ‡Μ0Π!™Έ?Ζ΄l#…8$&ΰ€ΐ«0ˆmYΠ€Ό²K$Ί΄±¨o䭘Ϋ5"0'0Ψ Β=£ŠŒ8A%L' ˜‹+s6]Ρ²‘Š Ι[·ΨŠΘ@€)Yψ!²¨ˆX©c €8 ΡιH„h$‚‚“p€" _Ι·¨€h5ω¦ΐωjΊξs+2„Ή C‘ώ’0¨b5·DΛ 9N «ί0ηΛGϋΉ~,LQΡ`Gώ9!Ό\:s,Γ·Y!| Ώ>y‰°π€Εx‘˜ψθr±Κ ”Τ€ ψ˜Ύ@i‘φΓ²ϋ𫰁˜ θtTZ²―Σ g£ (MαD‘@/”N “  €ysΆΨN¦XJΛP,Ώΐ ΰΈΝ“… NθΚœ€ N”¨ ¨€Εxξό ΄a·₯°£lΫ ΰ›Χό: ν‘Ξx°Ν€ΙτΜ ;&T*Η½ΏTAΎ «ΗUΘ9ΩΨΉΊ…°Ω ~τΗΗΌΓΜΌ&ζHG.\5Ύ ΘΛ π Π‘Šβ-tYŽk©‘Δk ˜ŠϊΡ6Q*IŒurχ˜ž»Π³%AΊΚΨ•@‹‘ΉR©ψ°ς(%€‹ >ŒurQ&‘ QY'=ΉžΔ³P’ဋΐ€ΚΑ τ$‚!˜‹¨!7eRϊh–“ΛΛ₯βSWZΠΛLͺYΡB₯”3tΜHΩ₯ ς₯^ °qςΗL°CΊt*»„Α,” ”ΆAŽ}›°ςWΗ€ΤeΏ k+u΅Μπs:œmXw«M­Œ›₯Ϊήσ=„ ‚‰€ΣS‚Κaͺ“`™2yAΏuŽΉΚ0 4C†•Ϊ·e—U*@Ռ+MZ0₯CΣK›΄PΓΌΧI©”‘εΧήπOΠ„I%5§…0sέΓΨΎŠšj₯LmΠuu!–ΫΜ_Ϋ+*XεX<δ‘}{4  Ί-šα«ΛZ9]ϋΪ―mάWSΨΰΜΜ€E8ά«ιSx |\G¦ΒΕ];4Y΄ »mέ§c «ZΌ…άΩ]W₯ΕΚN ΕΪΐ€ΟθΚΐT±ά£cͺ€jZΖε[Έ‘έβ`πm‘-tάΚlA:_œ€6Ίzν ήν₯|mΤυ”UπY€ύ>₯«λPWπ‹νx b]¨MέΜPΈ«:†•χu_<υΛx₯]-€`…ή †%r]kαΎ­9ΔυϊϋΪί›ίΰί€ν½œUGηMίEίζέ[M­Z…αK΅αΚΰ˜sΡΩώ. ŽΫεέαΘUέφ%X«άŒγΥa0lΧΈυΫL0a5€ ίυPaκΗ Kά φ`F:ΜυΜ&3n₯#_2Vί’=γΈ%Yͺ)b >㦙α8`<α9~c »αE1›XQβWγήͺ!αάmΨ°_ΫΘ4U0/Fάώ%^Ψ%ΘŽ]<Œΰ>tβ1žΜ δ–C¦ι cΚτŸd9.εK^eΞ€aCγηZ*^Hͺ‰β¦£9ωe Ež nTόνb"+;”Ιi²ήΐSKφγ#^γR>!B©@$ΰΗ `UVŒx–ΠΕΘΓ}Žε)ŽPeΉΉ}gl.啃Ynζm>ς₯\¦ΓDiδ6Dη~ta-GZΑ―p.G•sgLNΉvυTύςα%fθoffBŽΗfDΤMΰoΞf*ΰΐ”&€jE W{-gsξΠ}ύ4H‘Cv¦f§]!΅YΫNFζυΕ‰W†fƒξ`οΛΤΕx°@`ζmZzΞc ξΜκd˜u5VVH–¦ιi UbΧΆ]XκY‰5ή]ΤsfεζΆ[Y~:—ΔjzκU†i>iKi?¦dZv]Rfι²~\•φζΓlΊ…jaΥiMΨrή%Fƍ_j؍μVK ίσhXθ¦Fβ§ύ“Ε_—fή™ŽκO~άmη…ζκMfΫ|FγΦ.μ’ iŽώΣƒΒά„z…λ ͺŸvd’νΧ«Ω0ζfΤ.Ώ˜ [nβnΦαηx―«EΡΥ–›ΨξζξήνΤ6fxžΜx^4Ρ–iΧΦΓεν£{ΠδpλŸυιΪjt6Ϊ/žd»4]#ΎξπΆcSv₯φ.ζΪVh…<έ›?ΚΈ«/όθTΙmιTρTδeκΣΎπΕ½fC–Ωδ ˜yύ[ΐεšη£ .««Ιο»ήδ$.ν οoΦήcteAΓζλΰ6pΆ>ΰ8ζ7§l{nl=Τ“„VkLM•>šσY]ί^ZΰυWl¦bί~μβ•pΖVo™.h’ΞγDνY>εdΆn”φρΎ¬YΙΖΜρο #θ₯–αkiτ•/ξ]Φb]°o“Γ'νΥΖ €^oTW0—κΖ8^₯Vν”ξΤ”φrZ:tDξ˜ž Υc2t%·&ηE6g]Pξ&ŸC0–Xέ&δ}.rθef½ΤΩεπNπο(tάρΤ& ²NΠάΆu)ΖζL}ΏηWσ5ξυΧMγ\oR¦Χ$ίtJρεOgP·Cΐubsχώς4__­lSŸpKσοFY†^c ξr_O4”ΓνΖφs*ΗrξgNφεΥrGQ‰Nφή½σΑεμ'―ξGπwΎ―f^ήO₯%œ~WΆŽ%¬>ιšήΛmosWJοj•FSΧRοv‡Ÿvo―Β|λ]¦ΧG­Ρw»^±W+—Γq"Gε;/ν6x–ηBZ'o°V ψφξogθ†·xΦV”.|β‡Χyμ8TŽWr_ϊͺŸKηΊφlQΗp 5‘B³f7υoΞΤj²ι Gi3t@MuΑλŒΎ–₯v§n˜SW ηαJΏξσUχO6•LOς¬bάΐ° «‘φl + aϋινΌLGΑΔκΨξŸQ&!ΰ#χ@9¦Aο——ωοeχΧΎrΓγΌ†qNNκ―?ψΆ¦w:μieύ―ζ-jONόkgz<Εu£YZ©|Ονw_χ”oεθMϋaΧ|HŒWδΖ–χΣwlΙΟλεεw?vΛΆχ{η±qvz%ύj*λU§όVΫηξV>ζ}΄Ÿuιί~gζ=εΝύΓ|±cG!”γ^,¬ςΚ,x_ωφόޝϋΠω]zΣΆςg¦}4ˆ,x@ΑΐTΘπ‘@„ "˜8°’EŠ dμθ±#BŒE~,IaΙ‘I¦μˆς F‚,[.”x1αMšfκμΩγΛ…AeϊΜ8΄hD†PΔIS&N:Ν’Eλ–-[ΉΆf½uΛꬩœ2AUΰΐR†G-ςΈΆ‘E›Hη-(ΧγΛΆΫΎέΩςξŽ%ϋζΤ©—ΰΊ ¬Ψηa•'2nιx%ΔΚ#Χ}xωγη”š ζ,ςδDŽMŸr’JΥκU­ΉtuύJ+μTMΊΝ’Zr\€Λε 3°πΗ‚!Mz2δō[ξι\-HΕ"M©πzΖ»άk>‡ξ–Όω€ιEΟmͺ[“λͺW±nεjΛ6ξ±»Ο¦₯;ž‘MŸ‡™z:ύ·ΠLΤω΅^wΜMΆΦL28!…))xœa .˜^EV8˜>„„„Ή_|Vy••}Άέ&YœπΦ[-^%IθA;š”Ρr:fΦˆEςfyu–‡†ŽXcLS6ΆžK ωK€ύv`vηQ8˜%fΠR«ι6Υk*ΚF[W`‰₯›Œόih]†6THteY”C"UΆ§@X‰#•"BTfazδ‘”β€₯’s ΕhŽa*TQ$Aͺ€fNΊ—s’ΆtbTSΙ‡•l-Κ9§&Ό!΅)‡ˆΪ8M†ιΫ‡.ιTκ„AφΩŽκ“s>:μŽΖ6Ί™£EiFέxi:Uб΅η«Oν7ζ”Ϋ ©μ°εώT₯vΛ~τη¦ΞhnJΒFκ(Ήs (o’\ξ…Ό – ƒ‘yh­·lš•Vpzu[~ήΚΪ)Ož{lΏ€†)Ύ’&§ožμ%ToΉΐ’δd\φέs _ΩqΊΏRκλ–»ŒK*Wψ#½Ϊ<ͺDOΟ»α‘41IΩΤΔͺžΤ·Βuσ³8‹ω²]9{”» l­n™μ&‹>ά­Γge蝹Jϊ5Ί υ5‰Vηξ\AΪ$¨Ί`[Δ§βLC{1pšψUΣLρΨYw€ΧQœ­…2ΛYKVͺm²j‹.pήWU~mM΄ΦCWΡQo·7ΗS_Ψu»Q~θάKh'wβFΞ©οP^n‡λ50­Dϊ‰|Ωa‡nd—ΛOΐ"žhβ ψ«¬Κj}ά6\–•Oœ₯jγn=ΩΧ7ώ~ΐηώ$ΆzΜχζ•šηΉδβw€΄νvΨ‘žϋΦu<ΑU/yπžΔξη ξ½Η«lθΣ’[°V™xΨμ,–@ε­l~εBI½²Η²ΘŠjύ2žμψˍp:₯ ˜ C†ΣIš‘›πaP[ε3ŸXžςΑτ!‹}Œ‘ ύg#‚ŠQl‰ύDxΕhm€t9“[X½VG:2¬’N²˜ξyO,"ωfS›vb™ψ„'ΑȀ‘bγβςξ–f πc\\šΘ?4Ί°‘‰Μœ±¦Hͺ‚κtα•[Τ’[€γ8Κ<ά sVϜ X’Ζ‘ΐ¦ϋΊ*:Aϊ?[ H©ZΥ"Υv‡@ΐ|Tz΅΄g°ΜΜF §†εγ"’Ν¨\P>΅ΈΕVzΡ‹­υUx'ωΤŠι΄‡ψΤ*εOͺ4¦Vm,QO}h“ζͺκ#£ωUuΆG€kΝ­rΧ[θu―Ήθλ‹:ΡτυζfƒZκ5wΉYύ©UšP̝ ‹ΊP·‚½ΨΩΪ·΄ΑΔ~ϊf™Ζ“€ͺ•ι‘>Ε .F[ΪΣ©ύ+k­(-Ω"Ι‡Σϋν’π2Υ‘έ–„„Ϋ-BCΦΕÊ€\3©ΊvδΫ6@»ιœΛθJ)θή5―{υJ-¬–Ut‚,±Š₯y☀‚χ₯ek&εr¨XŠ―υ]?ΝΛNϋΒ7KΆ’Κn‡‘ΞIψ¬Ο Š©|d½Œ¦--]kα_κυ6£˜…~κΤΪσn¬h‚¬f³ EZΝχ: RYd ΥΛς’ΥwάqB¦š Χ6½9™―w₯μ8Ό½x*Em.τΚΧηΗΐHυnwϊ] “¬“½,Δ IΥχΝΫ­,h¬œΩ·Φσ¦S>γ?ΫΙ;β~u)Š.^Γ¬W[ε‚S13‚³³€ΚD@ ˜τˆ>μ'[䚞Weš§–Ο‰±ΗzB,e‡ ίΙΝVΞ^m―z0Ϋ―'›8wŒ±!ςbΧ¬‚Ρ•±^…ΚθΤκg‰;ΆX’έ“ο(ΰΣ5Ή0c€D$Β#βtx«P§ELo­v,― ϋmgΣΓPJfͺm;9βΔΩ¬TF ͺ,Z\ΰ"Ρb>m€‰}TsZυhG*S€p€@€‘pi\Q»ΩΥσt³om‡+ΰ–>“Dδμ ΰ.–φ—ΕρˆW„!XJΔ'm“Kcϊ 'wΆ·μTΒΚsMw\'©εsrJeBα/CH]ϊxΪ9¬›όIΉ2εZDμ5½‡Ϊ ‘β»[B‹τ”ΰp€ ΖP€ h \ΨBΐ~PϋΙ&Ψ.±d`$ΊKΓέ>Ί;Όν‘Άά ςφ^ PφθŽ ΠΒΧ#@wΏ?@ρw{ΐY€`ϋ%ΣΒtήξ΅‚'GdΡΝΊLήςYύσΈκΣ\1Lj>ι‰χ*ΐιλzΟxΨΈQν·h”<„L = 8P€3- ς=ΰ‚8°ƒ$;—+΄ … L€ιh‰@" t@ςe@Π?vƒS{έΎ\έoπŽ_ =ΰΎ\# ΔOΰϊπwt€LΐςM€όΉΕΨu Δˆίό Yž=†dακΕ–O ]z½Ε»‹¬UΝPμΩΣ‚”’TˆXΥΣZ TXP'X’αΥ½‘VλŸE hAttΑύΚ5†ύ@βq€lΑπ@trύ-!δΐτ@<^ΩAήΐ ΔhtD€ _hAάyΐύπΐΪ‘@ΰ δ]E8@‘jLtΐ<_t€:aFΐnDhVήγ9a$Ϋγ=PίεΙx°ΨΈΝRΪψ3IΖ‡‘Dڌ [)Ž α\Αœ‘’λ‹(.„‘y™hɘ’ΡXQΟAΛμΐθb MΐtΑ.*ί”@„€Xa€]ό!τΐ4 |At@ΆŸ\τΐvΑς 8‘ &_4jA@X£1ŠΔX‘”<γ„€;£v>τΐ€ΰ >ώαˆ#@r c’@€^•"ι(ξY.yŠνM „(NW Σ„i‘«…›ι™ q Ή„F)F`•`™ε¬ήNύμ„s± ΤΥ‚,NέP‘YΠΐΗλHΗΗΩ š!Φ…Ÿ.ζ κ $Ψd^Lβ9ΐ N€n‚‘¨£(ςUa($ςqΐγ}έέσEΐSͺc<ε>£&Ϋ„@Rςΰ9ή$ €S€a„D|¨4ήεπ`R^jμΐΨ!a‹ΐ3Ϊί`ZηΚΥ£5"@£r’ΐ†&!Bgψ]$ήv’€U"cΪEΐς#zcΧ΅ͺ©*ιx†ΐΰ vαBβRRfΖΞα< iXsx)ˆΌ—™ΩLך²©kEK+kΜP ›1›ΰO½ΰ,Vƒͺ֝bMšͺC€ΚΔίρI^ά ρ)ίL€ς@β…€ρΩ¦ φαρ%^%*`#α‰Όa½Ÿ2B* x_A$F.¦kΈ 'ΌΪ DbPΫaF‰δi^ζυΫѝʼnhΫΡۍα¨ͺ6fΉς!Vϊ R-GXm8@ΨξEζ-mήIΩ²-ΥbήR°¦F­ζ-…6Ɓ–)›ŠpΘ'NIF>f―J+xΑ‘)fhΘΕDf֟° ]λχό”hΚƜ.θ,Œ‚·²Φ$ΖΛ‘kό!ͺ*½ϊβ]$!rΑ#. ΚIΆ©ΝλrœŸB$zZ^Mθ`Šί2Θ’ΩYDκ¬Κ*&K¦μ e$πκ-Μ Žž± ΥΌTΪψ,εΪ€V¦€αƝ _Q8Šρ‰ςΚΥTβΒΊί’ƒ)U "mΰXάΖTbTΖλΆxIΝ½Μڏi:QEλύ†Έb…£Ορo 9fŸέμΣLF―V ΞΠ’YƒfΒ8ΦόΠεhήΈŽEΡ—άYKφŠKaUΉLU–ό‡šΞ™UύmΞ‘,^ /CyΆΐ©―­-\nΎYTJ°±a/Ψ4 ψŽΔη~DωŽ›π›)ίFΝ#±fτg¬˜²θ―˜ξ/]χ²žœdDœžk˜μ5Ž‘μZU…ΆN]W@πζfΒƒ¦„ΩβθZ˜ν¨ΖΏADڌkpΤ΁Nζ Ή΅… ³Χ 3ЍD+–hΔξJΟΊ^αn­9+ς¦„ ϊΤk ZΠκ‚ΟΘ Œ°Vk€Μ„/D)/‰B αVD,9Jδ§+.…ZBh³Ϊ”2՚wmΚ–zρρ’δ²ρα6ρ-k&β-jρ$7ΩP8/ƒt ™ΦηΠΔ‰΄,Š&}μU a”±]†‘Dΐ(;€ψE€Ωšm9λΚ9‹ί@³9?€97†9”³ψύ›ψIψ₯”;—σχ•3("TόρͺΜξΚ'0όž©¦}ʝPΣ"Ο"σ1(Τb-ς@œˆ&ΌMbE°₯±Q±V†Z Θ8€ αв΄t(Χσ,#XLαΔ„rPD@γ)&| @š ‘4€δ΄K!S45&ΜS σοŒβ ožΝͺ" ύΙ]όK #σ°(τ˜bώ²”ˆFΗS¨ΩK]Κ›•ZYWLb¬Ζ&Ps›Ψ°Π"LG0ηv„€ΐΤ€( €€  €X€€XL#v €(G D@ $ΆΜ ¨€‘Ό±@Tΐ `Β-āΜΐΪ€Ψ€  (`€Ξ€(j3B'(Έ6θz0Ι(kM˜BXΫoΛ:2bJBwΔϋf[‹uf€Ε–Ϊ/==ρ³zόhG¨W(ZWΠ-\Π(ν‘2S܁|αΰά؁Αΰχ¨~と₯ ԁΨ7Α€ΒΨ°tΒ©eiΧ‚-X”4E½Ω$0…˜'`Ε#TΕ-`4‚-tB-¬‚85 ην-3eςR—―[&Y‡±”€ 't>َ²~U„ LΣ)MŠVy£ρ}μυO°‡ξ…ΩZ€€?hΨΑΤ7ΰA ΐ+XA tΆτ7 Θ(¨(ΰAΑTƒΟ €φ‚ ά€#Τ‚"( Μ-Œ‚ `B.ΌΈθ-8A"8ŸΟk›E#μ$8A- 8;Η‡ΥμBhεpkŽ"ξυrUΓΦAΏpύŽΊΰώ.`隡§‹o† Ϊ΅]Ω6ν—Ρ–GTUΐb9H€Xԁ Ψl9SΜA€ΐΐ˜ΐΔ€XΑK:„‡2[i"ΠΒ ‘œ6Ψ‡€Ψj!άB45#ΠΒjŠγi"_GCΫ ’₯βΓη,τŽs­μ™r‰0;·Mю;i„cMυ€΅EŒ7εώL‚f3±ΉΏ-I‘F€―k<XAΤ€θΨSȁΤΐX@΄Oϋτ΄H @³αc„ψq£ƒϋ-8ψ-ŒΈ:4g·Ώψ,3Β,Dΐά‘N'«βLU΄^¦lΰXϋοCs$ͺηψ͊ΧW±©ΡsΗ0 Lτdόψν)BΫxY―Y3 *L'‘'S†R‡r<(ΗΑ²{€€?Έ\Βƒ(X;΅χτπ:΄?θ8“„Z*BΟ‘ΨB#@τj½Ο7ηδSΊk+½Z:}='fHž/!'s/.ƒLκ2±φ.†l7o‘Νp&ΦΟώ«U™²`ΊοJO¨`ιΔι,Štz³IŒδ:[ €Δ¬ωA³[€ό±³‚4|ˁΰί7 L;›!Σΐ\BXΑR3˜ZΪΐ-ΰΒ'Όψ'ΨΒ'ΰ'¨Άδ€€ B&&˜hEΐI€4tψβC† D΄x±‘ˆ%bτψ1bEˆΌ8ρ!Ǐ(¨Ωp"Λ—3i^4Ή±¦MšZFDΰ2€LŒ7_ …H4ηΡ‹@‡&uš)Rš(₯Ξ”i4'Σ§#P€IS&N³FΝ’E«Φ­[Ήzυ²υΆ.Z³:uβ” ¬"… #ˆ`E9sˆI‘βˆ #ΰά‰3ηΘŒηΘI!@ #(4t @ƒΘ 8xΨχ€GŒ”˜ι“#άX4;‚A ‹>}j@‰’Ϊd€+W§Z‰Vέz§Φ¬Ο©{\ ΤaςμIeJη^όB‡ΞΣw?ϋτπμέΧμώ²―W„™:­κd-΅Ψ%[n©ε,ΊμK½όz‰Ά³γh›γŽψ,Β½ 0Σ6œΆ!2­CƒRl@Γ†TŒΠ?΅φ Bο%ϊκk Ίηp΄HGΫ‹Ο" *B‰£·Ί‰Θ’„‘&ΟΫ#¦DR"‚tκG)ΕK)Η­°t(?Eπ€ΞJλ–Άά20Ήκβ‘=iΨΣ΄s‹@€ύ2ΝΤυŒΜˆ/7ΤrλLR?O3ΘΔJŸάT=ω–|Ξ$ ΌŒ’SšF}ςTκΖ\)$O‹\οΙ-‘|*TˆxΪΞUκˆuU\mε‘T‹ΌΒ‹ΞΊΜͺ%­^nΡεM[”³.°8qp¦ΎΨsΓ…Σ2Ρn³ΓΦ!#rΰV˜,ͺ1Rˆjt1·λN“5ΨτP’IΗ^g2Ιήꌚ(>©nJ.UφR΅ο=xK&gΨƒ³Δ¨KΜ3»Y}J―LΣ4 —΄ΨκE—·LpΞ:©ο³ΞςΝχ#q­‚΅Κ\?2˜a‚/~Ω£)ζ2Μ‡Ζ <#©ΊS‹Γcͺ\”Μ7ιŸgigS}=ΈLΌΔ2vM΅Ϊ .Ήfρο°\7'–rszͺ…=’J¨šονV?JΪνοzjf›•‹ϋ%†Yξϋξ? )¬VeΚ(ˆό›SΖ+–xΣa5ρ„¬\«—αLl«Oζ;^Π'bž©cΨ»¨o†Υ©WξY"Κq΅E/:hΐo‡™Χ§βc‰H/6€9Ξτ€ΏYfAv­ yΞΕVˆμ/Ισΰ…Η}¦¦ΝkΊ:φθΥ½Tϊ„uφ)ΑŸVΧΙ«Ϋv©KŠuw£λ·‘'ΰαsrώΗE―zr•SΣε>&²g}Ν.gϊ\άΰg½‘¨no§+›ΟΦ€ήΟ\Δ`ΡΞ§Ύ·©Dv‚SΪoΔΏΧ½ΗbŽƒ ξ³Ι]mbS»=:yξN6RR.θ£ψύ¬_iχΔ”AΉνNG{›…d₯τ¬πzhŠH\²4 ’0'μ“Ω¦ ψ!3……«ˆ!-:¦5s«[&Ζv΄§±Po6κ"… $Α …¨Aχ I‹%  «Θ7ΚoΔbRD΅Šδ±‚Dd«œ@±„Q†mZΦ›δ΅ΊxΒj‹ ήkηCςέ+™γν§ͺ-F0"*$ ΩJ .ς†„뎸;τΤμGU‘ε A²JˆΌ°rcΌάΦ (1&pzR<˜1]Ή*‡–ν)e`‡Λν$‡‡|{dι†žς(¬¬Ι¨„ι?Iš0Ž8s'•dΙdΛc›ΜE.: ­:±q”yΫ¦7Υy»T$<¨έPHΞ­pdq₯ΚζStΉΠž lUΊ ά<‡ΈH—P“/^΄'Κ’Ι·0‹ŸΠSΠ‚μd’§€τ«γ9ΡxRς#­eD4 ›Ž°£ςόi1›ˆSVUs‰›š—S:ψ+‡κˍA¦eψ[΄eŸΘ:‹’ΝW^‘a}b:e¦IζL©iEͺ6¦ΡΠΩ ‚UΤΙCIw»&i©(²’Ψ/εXΔΗΕΔaMυΘTΗXΖ“f.Θrζœp˜­ΉN0|ύ£ v,ΪMx>V¬ιq§@ Ώ#=•£νkΟ 7K3E*ŽˆWν¦.(WX• Aεuμ™<2¦ΕKiœhΡP‚E”.MΨh‰ΉΪκ@t9ΤqW/SΛK£φq­jύͺsR."­˜¬μΨΛ–o£ΣΕεΐ°‡‘Ϊ-VΕ*?qαLS¬β·™n]c ŸΦwΈψejCΙV7wΨ+Ž΄cSΎ± Α έ`ώzΦ‘βYmcY;¬ZnΡ^ZˆΎžˆfυ Η\μά—Ίϊeδ:EΜ_5Ήhρ~UR―ΠΥΔΝU-Q6Qύ%ΤΎ }νγtγώ,?‹8―š «[φ:SŒΏmιfE7&‘loG R“ƒž₯ξ2‘?D$ZMY…ζ4Ί0P`ήS&΅{Η-•!…¦ΰΑ Œ–ΓνUΫ’–8)ˆN›hiΛJμ4†@ΩF t“Ÿ{°?w’7™rƒΉ‰₯ͺ<ϊ„]Ÿ‡[Ηθϋ²ΏA W4̟Ί¬BΒtήg?ρœ‰ML+ ι\T˜GrΆœpΈ’ˆ‰[ωb(Ώΐϊ)Ž#QΪu”ΤhΈΦ±ŒKμΪ‚ryB6t½¬++ΙΨ”Žΰr%[\ijΪ–`ύq”yδ3EΈΘ(΅σb‘‰jΗζ\δa2r<Β'@aΔ@ώ€ ™:k}˜$΄Υ?ςu\G@ΘΊuP‚¨œ= ιoΘuΈ‘”h^ΙOΧGlςe«Φ^Ϋ”D#šeι@ρ$dΫΗ―™*,=YΏF±$ς [ «’”ŸœƒΪΈ’ΟHF ŸB’D•ΎηήbWΊ"` ύnq&n@£HI ?ΤΩ 2L΄&7˜x_έŸ+@ ΰΏ@vί—_ ίψ֊€ρ%Χ`Β ΄iBσ`ΎΈϊό~n*)γ+ΐՊ€Ύ€[GΚέ§Ίξ`ι;ͺ\£ΒΟ ‘ "7²/~nToδPΞwΆΒ]­Λ΄Œρ΄-ΩzΙΐpjγ'Ώ$°ο&0Ϋ°ŒLD Œ¨jMήB·Ζ͟L&ηΰνBβ€D`δ`Q$D$:dB2($—œœ fΓ "ί:ΔφPνϊOjFξ.B₯κ"Δhahc< hdFd A Ž#’Cj pACb„ ΉŽ6!  S€ ?!²n]θ6`OrθΘΓ n€pF0Α!A(€FœPωf`”` ΡΈhlΏBλWΞ\œ¨M)²”MΑœƒαJL;ΚΜΟ0kΫ@‚°8fΞ°ΚΞH¦«Μm$LŽΐ.#RΐŒ€¬€2#Š.C2ˆ τ* 3$ Tΐ –ΰθ€ˆ`oΰ”`α @Ϊœ@ (”@ Aœ/5α6@”lα² 5ϊ a6„«χa0aΎ08‘φ€€ ΰ4ΐia˜ΰ g@ l`ζρ gΑΜ±5ΐZ£œ`f€ ώC˜€‘˜`12>a>Ψ @3β`1(Eα@Ρ$tα ?Δ Af\#)™`Oš4lΑΪ@ V±ΩvŒ¬Έ Ϋΐ’ِhΕ€γρ J,a+ΐŽ(vϊj£*³ΦR]PP,FA™j±Tͺdς"Υ.’‰ΐξh„π1ρΰ@ξ1k¬@1ρ`’Pξ3ρ ˆΰ.αμ>5~ 4napγ*;nΑnlar! an! bSrΣ fA€pƒL\ƒr‘taL #Ι(ό€γ™2α$7A-nn6”ΰΞβap“6 ‘ΘθΒo>Α5LAl@ €6α€ <‘p‘FA>‘ίP£θδκΰθ %s0ε 3Δe #  i‘9α:iADI 4α>Αω  pA>›ςh!ή«)ΐ+A°γΠΖ;\qf>0'~.ŠJΕ+}Κ^˜Γγ¬iπA.2?+ΰΌ š2(@t* :‘” hσω* ϋ>dr! f`.”"k!7Ο°ΒO ˆ†8t‘p€ύΒ n‘) v!L`2ΐ’6j‘)gΰ4‘R  tφ>Αlΰ*@ la”NΠ²eR€ˆ0³PTΐˆΪβΐφ η" !B‘>aZΘΒ5l —˜ΰ0.w$>θΠtδp‰>Ο²\^-]_₯‹ΆsΘh‘ΧK₯ΤHHR ŽTμΐ Œ€Tΐœρ&Dμ ˜,ΐ1@KEB–0΅ξ\ h‘5‘ΒΟAmΐjΑ88rVA””Ο 8–6l-l²B_„ΰb(fA^τ’k‘€οC0Α>Dω¬³ "$g`D©#qAω0aXΥ΅C•ΰœΟ:Η°/”fαwΑ!s hΑΪΐ>ΥpA€½Β~cβnΐJψωϊώ .‘0―8nS@ŠηZ’ld―τbμxt‘)+€0Αf€ΦΡ 2‘ΎΠo‘N­.‘~BΊθ’Δκ…E0ΑLΤ― Mˆz'‹Δ¬E±™‹j™0颈˜Ξ”₯Ÿž ‰ωu\ΘqI/a‚­ žψž43‰&ψT•·ΨPΑ”=ƒEœ€<”hnΑ,―όφ7αfΐ6α|q!Β4Α8υ’ “2Žg|φ:α2Af!l`V!hAΐΡ2‘·8R ΊΣUγΖΠωlΐZ $¦₯ΥΞWo™UyvΑiετ6aΰξ5|£:τ³$₯PΣπ`Xύ΅Jρΐ@ΉΙ &t6qΑUΕΐώcZ!Α€ΣΊf`,(΄’.‹™½ —hΝοΔΛo0†‹Μβ•4 ^Ή-)f1Τ0Hλ’±¬Oˆΐ|ρRΐˆ γŒ3ΐ­ΐ’‘,`ˆŽQ4’η>δ!œ@φ@οqΐ$kΓ κ4 V2σωf`ζ‘!AiD L²λj£*Ρρf@ €[fΐ6Α˜” ’{vΫ ¦’ΊIΩ φΰic˜ΰ˜@ n LC ζ  Ύβ»•`¬a65p>ΓͺqM@ŠŽ`΄Εε‚o Έ™ »[’ αk›€ Α Ύ! °χ˜`ΏΥ™”ϊ:Σ­›td’ibΨ6 _bt@ˆ£¦HΔ]±‡σˆ]Ό&„ΈGm1_O hΒ '€BfC4$xΩMι~.‘N]œπ1fAφ°χBΚύ„ΛiγQ°PC²NΚ;DΠθ. ³°!Ψ°ΜK$Θ{³‚ΚNβlώ¬Ddd-%eΧ/e§‚­κœΞ'ڎ<€nO*‚ήVνq'¬K ΧƒεO’ι$B;ς$ΨΐGqμξ!‚mDΫRΝξhΛβ¦ΰΗ΅hTόcl²r ΌŠΙ΄p‰ξ‘Nht DdYΈΦ†άoΗΝ ϋνΏ΄%ΣΕΎθΥ‡oκoŒ°'γK\†Ι^ξΖ˜ψΚsΚ+€₯r”Gα― λ DyΆη’¬"ψήf ω‚Ύκ’―pόΟ%|l-\Ύ>aT[nO.NUΕ&Δ r?sΟΎΔψ¨μϋ -5έήΑj_Γ;φ^Z䌜Ώαύ©πGΕ4>ϋDΪΝς‚λEρg€S8ŸSb0ΏT¦χ!Ζ™‡BΧιςOΪς‘+ͺΟ½4 $ώΞΰDΞ0€Ÿτ‚Ι"ώΰ#Œ€5q,Γ"3φ,MaΪdψ?6m&4ώ[ ϊ‡ΐˆy˜_H¦ΒLtbƒ΄ nnΡ²—υΙO«”'V˜DΘ@v°Jnx;¨@sΐƒLp άυ pΠΉE 6 …# y kκβxŸ lp‹FpOrOfΠ LDΐxD.aƒLΨΒ_¨00 \8 ½ψΔ ξ€FuΉpBl³H œΕ)j.”pƒ[<’ΙTBvAEχ@Δ!) )P@Σ9ΨΑwHΑ@ ±x ŒΐŠbav@ @<A°U>a‹n)Έ<ΟV!qW ΰ©N°Έ°‰[Ψ@ ΆPj±Š ιβ§(‘°ήΫΰ¬žΰ„:{α„δ’_ΨΕ"l@Ξ*βM dΆΧˆ»ξ’Έ™i#PL2lŒ›δŽΡ“žA9Le:°ϊ¦wΏσίB-³˜7-B…rZΕ(y§‹κΒeΎ9‘l":‡€΅k/p°C€Κ‡;ΨpSvˆ0θP‡ε‘FXŽ~Ž7m2‚+Π#:ATL87« "[0‘‰7E ?5€->Κ‰YψG_»R.pρ Mΰ=M'ζȈYh ³xη~hQWseXγ'<ΡEΎDΈƒ{‡#Δa5°ƒc- €UΦΰD8¬a€‡j R) 3ꞒrB »ΐ –Λ\(Κ4uε&$Ι_₯…όz1‹M σ§Ύ ¨»„¬Ό`ΊuΔ, ΰ…\΄Έ·ί4ΟΣ )A™»bΒo>Α˜—IόMh<ƒ’– B†bψ}ŒψG_ύ*©Χt³Ÿ}G”Nō-Z¦‹άΐμ„(Œ(‘ψ€ vH‰¦*ΜΉ”tx$ Άι`… θ8ϊ1Α,”ϊb―‚¨Ÿθ„vVΡγ’Ίψ°ΧΚ'@­„hŠ‹`άlP &:6h›k L ΈQy{‘F•s5ΐeΨ’zx ΛeI#@f^sά<‡:Œ€lmΠξœg2—«‡uξŒ^  ’j₯§žJ„n©L‰κŠ…Δ­­%τΒ|„6ΑClΰ„Έ*šŽXE[*ξNP1ΆΈ.‘Υ9 I7’³΅ ²HtΒΔδ΅ΐά‹™6 Ϊκu!ίύiw ΜIΙώη΅fίΠ@r4Υ{ί‹νμ„FΠ5M™.šΡ;˜ήib²%‡;ΰ4;>š~b¨Δ”±D€7κ𬚀ĸ³ΖΔ”oρ<]P±ί{€" pΕv PΔ«ΈΑ;!a‹Bb}{ŠΨΕ*. ΘhN`₯`τdAζc›π?ΰ„V§D_ΕOi‘ ͺ8a~Χb‰ ‹DΔ:mDhμcSPX8@”€+„gΥr"‚œeQ’-Ÿ\Ο37€ σΊ΅»uw€LP ‹pځM€dͺR}0V”Nήa7 VJ°~TaEmETN@F֐=²f ˜€°8ώ‘ΦU7Χ?|·$PQx–q$Iyρ„ww(ŒΧxΒm©a…F(AA1jq’ Δg „y 32ΣQœW3\ρ_€Jv 7θ&WHsIw`ŒU¬tΰΠϊ1jτ«ΐgd ]Z†œ TΒt'«Πl±b$U€Zs— Ϋ3„p/h‡ ³ ‹UΕΡ]ώ‚ ΅€ˆœ@q™0 ΆΐN‹6 _U`k~’ Εαζ-%Cv°3QCnΆI@t*pY˜4ε€rυ DΤJ>α;˜Π ΆQvPε)^@k\„ˆz€œ`G΄°"8ΆK³ΰ)ŠΰŠ|D(Ÿΐ )M  ΆΡEΫΓΊ0 K·x»΅ Ypœ8€ Ά0 Ł|€~Ο€…ΎlgςO Ή%ΚFPΠ‘y—O °„…%k(Y¨Β6jυ…U΅€'Υ 3ŸXέR‚ε€)’`4›sX)P*  TΓpƒLΰ‚L8»U{ϋ5’f]σα™‘Ί(@30@μ2Œ-ΓΪΒνΡTl­Χς )/‹»£’o{\ǐۡ*lΆ©qΏ; xmž mσΐϋϋ­ι1 œ”…RΒOH›@lžpAΚΛGΈqΑ/Ρ›B‚a0‰`qpsΰΐЍ%‘ͺ r¨™’›‚£z‚E7ŽͺΧ••šΖ),©σA‘Jœ°¨R*qΕΔ"±>ψ)`"‘<ΒzRΉœΔŒf{$A!< ӚΚ„9ΤbΜ™< b%Κ©–\’•Y½#P‰ΠŒ @π<¬ΘΌ¬•Šγ±ΚΤ*©ά܍Џ0?Έϊ&BΎh›¦s±ό»ƒΟޱ†•„βi…³ΐΘ0«ω΄AZΈ1΅Ω¦yΡλ’™°žΗΊTQG€-ΝR.Zρ,—2Δ€'莣b+#±€€›€o¬ς++!₯S*+α’)6\3=*T˜πNΌ%i3}£| Z‡ ’BΚΫuM0Ϋs" Z²\‘€žϋUlfΥ’*²B£ =Ρ’(vp4\ό²ΨGΏ!>mζ..±/΄²Τ!: θ &ιΘRΣEθ₯Ε_Iβ?G’ΐΌΕ‹V:ΗxLžiϋΖl*Αrς΄|mσ3· Fφ (°q΅ρ,(°—:@S­Jrp4D0τž=ρfΪp-ΐxσ!V-9 Ίβς M *6 C‹†KΈ½=6ΰ’)@ρ»Τz>r ο4#ΉάοΔ¨υ ©NŠΠ)I ŽΠ§Ϋ„ Χ-.&QieŽρS5ɍ ς݌0ί#ι½ `eΐ R­NΪΏ’κσ ‹P ϊvQρD›σΑF0ps:E`JσIΌ‡pπ:)PG0r Dvΐ ž:Χr+Ϋt7=x7АŽ*kŽκϊΉ ΧΕ=ŠP<ŸP°ΰ€3‹–ήοtLਐπ].nΊΰŸP=‚SΰŽpίΧ«% Σ·>ې#1άΧ³«…jrΏm|‘σΐYκkΡΩ4m ΡΧŸ–½Έ~š†œ] r Cs8€CvP‹bvp )p—p Dp :U )q€GO~«ΰ PŽ Όdtw7ω ϊΡšp q4/6ΐ 5F JU^j‘"ω £€D¨%κDεΊΐH0 «p tZπ »0™`|˜€ £ΤΉΑE™°άμ­π8Ή Upΰθ ˜[ΪSΧ΄`LόmHΐqλ΄£X&‹ͺΆoπ]δ ea/‰BRz‘k p°r@x@!θn©t:v{,ΎK*΄ΰšΆcΆ`|·πSΩKK7b}i₯ ςœ Ίΰ/υα"ΰ2h& Ήΰ)°j»0/‡έ·PH· „„‚›ΌEEΘ§+&5i• Oi4λ[ιt ώΖΆ ŠΠ ώ1HVΖMZYp ³P¬6š6 }«π}n’(x€ υ·3ECΦ?=δ3[/§x qΘ gf˜ΗψI”@·BQ¦ ι΄Γ₯ΐE3೐ `ι°}σ‚~2%€>eeVδ6° ?υƒ£¦ 9¨Ua+S―[JΨP’“-'œδϊt`ƍ-^ĈQΕ=zl€ΰγH’%KŠ4™RεΚ‘(YVμψr₯K7ΚΔΣδMlQr…Yn”@E[˜0Α ’–ΐ Lr± €šΨ$—D˜₯κO8©Ν n(‹Q˜8,‚ΚΌσ₯Ά@sˏτT Ξ7IβNΉο)οΎ°›oΑΏΫoŠρDO*¬rΙεΠ¬žše”Yΐj”,J@Ž;PΩΉ’žƒ•jEPE];ΰ"   `†r1™αG΄VDϋ"ΐZμ–4%f €Lb;m‘ξvS„αEx™%‚TΜε ±aθO0Νv†2σΧ†[0Ή!=Ε( f˜‘_'"P’N4XH6]riΡZ’pјGμΒ9Γ—œ ‹E˜ιΔΈlLΰB `BC0° Λ`ΨΓi>q δHΐ""±€Žp #@BD˜Η.u< ΐ ¬  @1‡Πα/‹Γ4δΈ@@EP|‡.HΪΓN“4GτΒ ή@& ˆ](I6zNm0(b6Ψn`‹Ζ(‘ Ι$0 O(aΆΐ„nαMXΡdΈ@[μή&“Av‰otRPμ–7Γυι, α'Išroz“€EΠ€’°xbΓŠTͺΉΙ)κ+aqΞ&6’Ž˜¬ x ¬p©Ι€AxΐΓ$p;ΘV˜ƒ©Μ—τk+³`BFX"ϋhΘčpƒ‹[¬‚EQ-p/,d& Wz‘ ¨˜Πrπ±[ά¨ ¦0#¬%GθGI‘iΜ€Ÿ§lG¦-ρ@ 9xD'Rτ ϋ<Β\©Εΐ‰Ι #όf&>°«‰(θh-VQ ΕI1˜Α€&p± \( n‘j`<\tL 䐠9   ΈΓ%x(€8δkΰλ20™ΑT`—&6"M(‰[)Z'NsάΐXι„l<±η™`JŠΐT€Z˜F ΅ΰJlΦj ZhbΠ„-pa‹°F@4³ΨJΩVѐ ς‘*‰δGΎΤΘ³dς„|γӝ\"¦$6O*iΫΫ,«¦žŒι#›ύΫ›μΖ™Etς“³p T€ Φ"κ)ŸτJX΅’˜!’”PΰX€DАn%€‚’@‰ͺ,g‚γ €ΉœHϋl`žε.·"Έl΄(AΗ«lp .PB"”ΰέdA ΥΡ€Σ¬vƒ΅ Ή>5)»JΒrΥhi @ΏΚ 'ψMF qοφ;H@ΎQsBϊˆ2"νrΥNƒ0@€€o!j€νΤkΰΈ… @ jpΊh€Έ&H‘ $‡θ ] ŠP ΰΊu€μΚkœΞ˜˜H"`bΐ5ΰƒ6¨€‘Gδ&θfΠ"l1 ά0―ZlΠ†+šΧMh‚nΰ$6λfΚ Α2]0 ΐτ…Λ7 €άΔXΖΒdnŽEτ%1Z6΅8ΡiΒI#έΔθ9]„‰SήΈTh“  H‰Ο*Lα¬De*Ί(5\Ή² N`.©t4IdJΝZ• ]25 »Ε-·Άgξ³›L`"Mtž3μ²:έΊ>q¦@4Β&ΛͺCθW“qv°‡έ,Π nέ·³­}ν'…ϋŒφF~Cx_ΫΩhjeΉc]–Τ€Ζ-Ό²T!Ω9›ή ²N𚺬2LκΎΊ+ΕξDmž°3Ί[Ω0²τ[sΓΖφη=œl{ίv³€’9³•$–Σ‚KyK.ύhšΏ$±Ϋl¦ϋp6 rζΑ&|4α¦h³΅₯U’¨Y¬β”IIεζό†ͺ‹ Š&£:ͺ€*"~$_‡">°L0Β eζ†ΑώυЬ½νk—7Ϋ«Όv΅Ρ½ν!z€Yΰv΄‡ξΥ^{Gμ΄/`ο˜@Zΐφ―/`ρp'|ΪΑώvΏƒ=DΙ;%†–pUFЁ}“¬J‰Eΰ&ΛΘήQοΉ#tο*$0ρδ”~stGΰ'ow΄ƒ½σtΰΐ§ΐ΅νη’U¬ΰ sHΞL‰-δ:"i“μΫ‘nλω£Β‰MΖ+NΑW‹κ₯SΞιžY^ž­W=η €ΏΎν‘D $5 “αΧ&'CNm†§Ό•γΏ’H+Α[ΉΛΛΏpΌΛ" Γϋ’ΫۜžˆΐE³L²Ί‰ς 63=Ά&sΈ˜‘‰j{½Œˆ@€ΎζΓ—œFr‰υ ­IʈB2ΏY$ό«4‹¨–Ψ7Ώ$ζ«Ή $$Ύα E€Vϋ>£+”Qr­U{ΊL¨f#Œ΄ήk=AŒΨΏ»‘œРάΓΩΒD‰Νς<%JΉςB―S;i‰5”ΑΔA™€Aš«C$ΓDγ 8LΎ<λ[Α—ΈCAd9“˜3ŠΔΊ$ ?ρ‹RR΅ΚιŠLΨNp” ΜΓ”ΈB!”CNτD•λ9””8>œΨ°:! >ŠRd%B,CμΔCD,;\ œΕΓ: KkΎΉΏ9ά‰μ3 ψPŠH­£;΅ΦΚ ΈκŠΨκΎΩκ?!ΔO”ΖilΉšSEidΕC{ΚDš«ΐ?”Ζε‹Γ>TAΆΙA<|΄˜ΛFPŠΨΎ€π?[`ΒRZΖVƒKΔ6aΕh@ΒρGj„4$H~τEΗΊΖTΔ,I"ΎmόΕμ{HTdΘs, Ζ‰€\Ώ1T ¦X…§˜ΗQ*?Sβ„#\Β1Ύ‚HƒτC–HˆŒH•ΌEhτ¬Š|>l¬œδEW€H™άGδ›ΖuL ‘$ N‚ΗΣ2:ρc­«ΘŠc:Ώ°H?ž;1,μΙΞbGOLΘE‹Ε9ΜBtμΖƒœΙg„¬ΟΚ€­4KŸόǚ‰…δJ©”Ε΅,E7“lΜ:yIX΄Κ!tK– “"μΘ’Γ…π;F¦ŒDVs5}¬Ε@TΙIΣΚΆΔ$°,ΔiτG΄|Ύ–΄Ι\¬IJγ“›ˆ2ρ‰βΚrH’¬Ζ©œΒΜ$G:¬9λ«?lB N―ψHΒL:H4Ώ'tFΑ1ΝLΪC›ΤΉ½T͟Λ*ŒΜΙ|Λ΄,KMΗ ΌH0ωΝO\ΏHrAIZGžθMδΜΛγΔJœ ‰Ό-ŸpM69=Ψ<ΚO¦½J:‚°Η§Μς€E΅|IΛΤEΏ¬>΅ΒQl4θ\I3‘$Μ<4ŸψΛ’Οδ€9ΌΤIϋ„Ή¬”LγTΘ’<Š€ MyTJTC”cšΝΔ€?sάΕ6ΙΞ«DΞXd¬lΗζΤΛνΔΕBΔNμJηcΜΕΟνOΞ"ΘkΔΘ…ΛΝd₯οœΓΞ΅LQ•QΙŒψx$Ζτ?‘΄Ηe”-Ν‘ ΛΊΓBγ’lŒ›ήŒΖεΟ=ΊδΠΈ\ΙΚκΖM[M—άΉGCΡ-Rε,Ξ5ύONτQήlΎ#U ¦ΗBιςkΚUc5J‹ Ρq TeE ΤRDKS DǘˆS!ύΡ3…IΘΜQ.…Ρͺ\ΜΕΎ-%‰ρ\EEνNAuΞ5Lx΄S?ΙaΊO‹ΰPΜΗ,QΆτΞKœ­,ΓΏIAO6mΕAΠp|EΗ2œHjTP₯Μ!ΥΜ³μΥI•$˜@AΚΑ\ύ‘ŠΓ|Β¨,ΝΝO7Q εVG%8¬N\}K-ρLΥKί4V֌úδΛM}“Ό\ΓH‚©“aeΝΚL ΧΜΐ2i1:ιB.TΎ‘:ψπHΤR­€›V¦σ •Bq=W3•HmδΙW•‰―„XΗΊ΄D%Θη€Χ• DγTdΧ2υT^5Ω]-P5WKΥV?Qξ# I€‹œ^(”D-OxR]•X…ΨCυDŠ˜Ϊ>ΤΘ΄|Α6=ٟ Τ!dTdUSHΪ<‘ΑŽ%V$’uN‚,Β#\ŠNH-Sƒ] {\؝Εĝ#4<ΝHν“œcΠ­ΕΪ(mٚϋΨv]ΩlΫ₯•TXVlυΦΝΞZ\Β Ω½eΩc[6yΗEΫ§05z$ΫiuΚ>}O.9Ϊ»±Q”ΥΒ KεΜ¬ε]eε[Y ΒΤB5ΩÍΞOΛIΕUP<\“B’J·ά,­ΞΟ‰΅ Ζ#LΒƒ΅Φ’ά­ψ€U…΅XžTέ]‰Γ•]ΕΕΨXtν?η•“Ÿ‹N=±ΧL|Ψo΅9Nδ΄ΑεDyJΩΎJόΪ°-ͺΈY§<%V…N•ZΊEΤwmΪ •ήnΥΕήδΖθ…ΟJ•QRΌV’νΫ l$ΠjT‘Ό]όΓ^«œ1όΉ˜ΈC8,Β’tά°₯YβΦάdΨ΄MΝ]UZπνK6ΰ‹AκDά~^IM[“o ]V‰ΜΝ€ΆuΠGιٚ ΝΏύDΘ_œΟθBΊυ©Ϋ„=¦…ΊVΘϊάV5εCν^”¬ή«έΨiLZr|`ϊνΙΥάζ,}½ώΦ™»“:Εdε]FCœ¬_MέHσ¬ΣΗ^]˜\[PΨ―(IKœ_7žb–$γΩaΥνάG%Ξƒt9!ό9 $ββXeNκ%K»₯γde`ι b.ΕQ­SPj_›΅…=½ΗΨ„β˜Μ=0UdLγα4]^₯›1neFHVΖί‘΅dήεO5αΌ θ…e-6ΰ=J<Ξ „ν`SbMΨΝD;>”γvέ€bf^|›8υGζέKFaαΔ^ ξε0)4MSK -“υYϋΪCvΩΔ εΤ"C‘V>¦'ΞΗ@>ηήeF η ]ŽζG#_O”ΰΡ5d)^PΆ€D’ΖHώ^DήΑt΅ε’\zφ€Qƒ\š&&I ŽζFδ’₯αΐ•Υ+ήζAnι‰νΓ/viΌ­mθ!•ι[~iw]αΔυiqΦΓN~M£ΜO[ԊάͺxίΆ"Ί#,ιDvα_­eiφ\‡ΧŸj¨5ζuθΞQ­½Kοε4ΦιIŽeΜ»ι-怞ρ„ΰΫ<-ΫH\X’Ԙ$Κ/Li«άJ²ΖκNλύΝ_`θ^ >dΕι+ζΞbAAζ¬BCP’άWΏλ`.λtdG‘π΄L` §Sf₯$e>άΩ…DP·%K{εkΎUΕt.Ξοdi\FΕ:„ΑœΆhξΜλ©ώˆρΌUk|Ψ»ΝԚξ¬^”bΪφΊΝ`RSbΈζγTm΅ύkŸ΄WN#΄ΰ|ξ¬Ζζ9žhŸdg™$Κ†dθ,ώηγ;R$Δγ{Žœ=¦VΡ~ηžNμ¦Hβ†j!Lm4΅ήύm‡œιƒŽΨκNλ΅ε_ώnΆίΝΰžŠn榳ά?΅δ4tθ³ΎLΌi]InηBΖOD’ηΫl΅Œμ §iΏ}K/­jJVδ§ύΔaυνG5‘ˆΖwΌcφ5”ΟΖYVλa|jήD1ZΖmΤδνUiλ~Qψζn“ξ^CψλΔνξβIέnΙώV•}έCΊ4ΈΝΪEΆIGΘΕSi=:ψUοX–Χπ€oΒ™oΥα1YήΣδΫΉμρόfς-ωΚΧnπqπφμZβ†σ‘@ί—U_·~λ₯^F…:ΦΔΰλΠj{CO΄2ίa-I¬M4Εlζ―»€ Z΄ΐˆ˜t’ˆ€Βeμ~‰Nw΄RΤtλ«ΰNίτΑ©OχάRg½Ugυ‚”·Uηˆ Ω΄βpΧοώπΑfS _tlΒ`’sqȁqvn–ˆ€€Vdφˆ“ΟŒσΝ‚t“hΌP‡ΈkΖΒtγΑԈ@τF—‰ΙΣ€† €ρόΐξkΦ#9ΈΙ;t~^swΉρ€f– ‹3o»p·ΚΰΈ ­ZΓU«nky‰vkθ5…C %ΡίήΗdσ»1bΰ-ο%T:³υŠ'&t='Š`ΑΛΌyˆ€5?έƒ ΄(@}Ϊ»ΘΐΊΫΏί`;ΩΉv―«Žf ‘0/Ζk<ι  Π/}2―ΈQΥ[@—oΌ"„„ €΄"Šwww\o;™‚8χ―Λ»/C‚<@‚ 0·‘άΊDG±ΐ+ f €Œ€0$(sKτΌ Ύj˜˜{ϋλ©―{˜Π<}ΆΌ»Ό΄Κ;Τ€H‚ X{š_½―³tM:|qϋΕ'C½­γΌ?‹h6X0²šNτ pΓ-Ố`»‚ΌOτI»©€H‚,³? €Xƒ65$=³Ίηϋ˜ φΨ'’Ήo»ΰΗ­e‡6@‚€HX{Έα{qί0ςDΧΐsWLύU›VKPFbα]Κ&ΌGΊnΨ³H @>(Θ²f§ΊˆBΰ4€v„6€p`ΰX°ΰ`Β„@°ΰ0^*pΑΔ \€˜4HΡJ Dh‡Re|€8  ζ\π°'€³0xp @€₯DxΐTfΟ™.\ύΐ3€ .‚ε FW• ΟŒ€@€(²… ƒ$'g"yΥ¦l€šς ¨•Χ™ ”Ι΅'8hŒdγ˜L9­ƒ όΈΐ=8Πx:@žΉ6πά&–έ Tp y*ΚΙ< έ – „<ŸžΠ€FM@]ϋw@*C.£φ€Θeΰ?ͺDΗL ‰*X‡°VΧνΐ˜ψ> uuΥL+8Nί€W± EEš+{ΩφWeZeΒΙA`€dρυ „hΑ7„bα…)‘…z"ZϊV!HJ…Hβ*†˜"™h’`'«ΜB‹ΆΰΨK/ΉάrK-6ΞbΚ*œh’ 'Š DΠ†9°Τeh rb^νΤ|°PΒdΤΐ)εRAPt€g8ΉDΑLPd‰%.I°p„Φ3-q ZUx IΐΠL„±Nu΅ΰ‚\Χ D q .6 ΑsΈχWRΑ΅υCΔˆK\ΰΐc€K]e8SYI₯Ež KVΐC ’ΉgX €ΐZmόQΨΚύ_°gΖtšV˜AΘέuž)‡hχ€ -h@*ͺx֚KpυlKΝ”D dYΑiΈ‡©EΫSy₯bά±q5eβ=FnΧΥL¨rBLΉŠBkyφΗ+’d`C¨’Κ¬.ΩφΨV'9ar^pš©]-Ά”V§fH,mΐΰ€ˆΦ˜3Εa‹]M$ζ’ώ,β’ώV΄ˆGSˆ΄†hmh΄ώF’‹0&Έ 6ΦR ŽΊμΘc-ΈΠ2‹Υœ© ’ E‹žƒ\9H Δΐ!oΌw!|ΌΓS -A₯”B‰IAL2 ΰ†‚QŠ)“˜”…(€‡ΐ–œbŠ%”ˆ””bI²¦E€†Ÿ9LΖ$”,ώΑߝ^Ρε†°ΔκΣ€ϊλ“P@e”ΑzkΕ8. ͺΈrˆ+†xΘ+―rΑ§©Έ’J,YΉ`Θ+θΡ­―¬Šί„3΅Κφέ―`ˆς~ζ ,―¨H_‚¨bˆhC(υέρ- ž]@Ș!V=΄β©pBώ`—-U%’ θ AH/άή"`W‚[HH,`‘ŠTˆ& ζkΕ\β†Ίβkύ Αΐ΄@{ά€ ΤΧ Wψα$:Sύ‚υA‚z†8–n bͺ6Έ"Š-œήφόU(π‚ •»€<Έβ‡X Α-?ΒU‡P…_ΠΓ*žf‚ ίυϊ5‚ d?kΐb+φ‚1ψωΡ‡μs cˆ@<%υSώX$pε£@ £$ΐˆOPŠAJ„X€4aEŸΔ#(C΄$§Rh£Όγf^#NΜh³πŽr‘£[x lb[…'`d6}Ε§RaA!ސ†B "2(f ζ6°}pƒ Μ’`•α“%~PTΨ„KΘΣ$ΐ` JT„SΘfI^W†0Hΰ€ƒ%J‘9Χ€„` „6Γπ9 X”(œ GΟR˜“Π¦KΒ€ KdsΓ)ΒSDΒw₯8Ε@'ΑΠ)€Š‘Κƒ=˜',’"αρdDUΔBΦ›βT%ΑμΨι/$T$,’`‚’±Βc‘ @δ‘-y@,Ί7˜FQX ’h‚ψ!x_Φ‹T|O\I…,T!ˆT„Ο#Β’Ο_Βbˆ@‚†Εα†θ!†«Βb@˜ΐQΜν’YΔβ¬zaaα†Η„…~°@BJ€*ρ™‰ ZaΛ\ΰ°@ΔΙ…"Ο΄~z0ϊόγ@D’0‰°h!LυpˆΙ‚J[Eό Ρ ΒωΦZ`½?’©Ω*αq™Φ°3IxžRρ‡ §ͺ±XA­`αrTbΰ$Χ―‡ό"e-‚jξD„i‘5[vΝG`³šΥŠτKœ–h)#φ q7σ J—R ‘†,GX3Ή)"7ŠόΝ› –'qΉ2P€’₯Ε)‚<δƒ`‘”ς$žό/‰ˆΔ NT₯.‡ˆ€rC6…7 O‰N‘BΖΰ†L‰2΄Ζ&ΩΟ BΪfςͺ ­Π΅pˆVδ₯8 ςƒWO˜ °r₯¦’4’ L{±Z\A€?uAdg%*žAB,ΤΫ½BΣͺ` `\A[?ϊŠ_ύ–!ϊ-—ψ₯`‡:Λμ_Ρ=jυ~&~‰ΨΔFσ-W­[ϊ;Δ^|»*°ΖΩΗNΒυ‚•<@Oό-<FN” ,/)s‰Ώ_ 3ΰ,Eb±`ŸΔ(}j§–<[Β|ήΒPuš δ~©Π›*ΜΔ~^*‘TšWς‘pΐΗL¬Α±Κ σZυ= S<€τ¬Δ=›z9Z@hΒΖQΩ¨h4€ϋQAx’ΛΨΚeˆ( α¬ΘYΈœ’Λm EΔ\ŒxB'МLXŽά…νR† ‡ΕΌ,Ε‡Iψ-ΐˆ­Τ}<]ΆIŒ“˜x†y“gΤ“K„Ș˜BΉΙ¨PTξtD0€G΄ΖL)|ΞZ”D1Š}ΞEυ]˜Y”Β ^Œ‘ΣuΜ…β!@οŒŒ‹Yω*μ‘LΉ‚K¨B+€–uΈAS±DŒMΑ$4€ŽΆ![q(› ˜ΐ‘›¨Ÿ¨ΌΚtνΕν΅!hZ+πžJώY» —K G ΖΖL&μμ AHO­‡VΜΔ½M΄y†!΄‚œψΦ…ΩΕΖ³Ω¨XΗ,[ϊ-ΰϊ‰ΑΗi…'yET^”@ϊ=@ΰ p΄Ζi@^JνE_€Β”`]([(άo"xΪ³™šp―œKΰHάΖ,B#€…#ž†£e…£ι™ VΕ|ž_H^΄Π/~›Νΐ* ΕFT$0Β άβ€-ašRΘa*ω fHRςW΄Œx,M‘„αˆ-TXόHΨH!'P FΝoΐ “!8@3½ °K π@]₯E,T€Α$xEνIοPΤ$π`ΰ% B$jD ”N¨Ž7|ˆ„ œ‚%€A`–‚DΝD” ΐP)”„$RβR”?mӜtζ©PΔ#LΚ\h‘°+δo  $ …’,d…PιLνEΆΔΒ―‰Ζ Ψ‚.dƒ\‹Έ5 ­=6•IρPύΑ Ή€$"ΈΔ΄A¦υU $y”€+ηtO|Υ ‘gŒ[[xΖ"ψB&4 AD' ύΙ•§=ΛΘT’΅ω&kU@jιΕ€‚]ΤTmΐhy¬Α gX¬ΑO|ͺWh‚/,8ž…z$—!΄A«%–Λ±€Λ!ΰΩYLΒ$@+\› Τ‘μζ!$¨€U ™@­ΒΊΉΒΎ¬ŠšpbZχxUκ-@@'πΒΞ΄H̞X΄ ψAπhy˜g,ΡΚ‰Υ_ΐ@Ί₯BΈ{Ή±1A-0Αœ@ΰB}εΡH₯o@%6%Σ€RŸφן–(E(‚ΟIαβ‚ΦlMΞe Xv‚XΖΘΩδ ZPΩ@Ι•ΌΉ¨AΫ°ΑeTΐ Α].Q`€αNζ,%δŽ`άλ(^“u%œΞH怬ŽIŒΚ¨(Ηλ$Ωk.ΐ0ͺœjηΤSLγLΤMPͺ–ΒιDkδΘΔΤ­YWηB‚ΠΠσΠxΐTΖψΑΟcQY_‰"(-Μ‚-ζ ­@φlO QbQ kU‚Ά !\@_αθςδΠΑ‚υU ΒZ‚!@δL<Β.°Παb Β+0ΪU9WΘFTU Α‘`Ρ‰Ζx‚Κ¬*΄@  «¨˜ΐ!ΐΰ!ΨΕ pB/Ψ—°ΘΘΜώhQOB΅D―ΊΔ ]d ς΄^o’Ϋš~ ΊͺΒͺHΜ™QnOύ„I)Π‚šOωQ*¬ίLtΐ,δΒJώE΄AνδUΡ§B i @ \ ςœβwΤlΖT vΔ€`B&dR“ α**‚DΨd8͞ώμjγ‚„ Zξζ†H‚qΒ&I,a £κˆ…}ε,„εXSΠΑk d,Ε”€T˜ΛΉΚˆΐΦM„Y8ΐCP pβœά@™B|Bά@BNα¨ΐA€G@ΝΔ˜DDΌΨDΘΔ°‰T—ψ ΜΔΏΑ‡aΐ"8‚ψ…@ΐ±D)Δ,ΗΛ \«Μ@ pΕ|°…Έ@/Œθ•Κ[ΈΐU!›όΠNhΗ• “a€ΪH†ŠΈΖ•Nš[˜/tΫcF΅\]'Ψ‚Ϊ~ˆ«Δl_(…5i|\i¬ €FΗΈ€±†_ψ vhΔΌ p‹%Ζ±0ŠθB|E―oŒ°ΐ N γΒHO 0RRΜΫ\•Jtˆ@ΈŠ ΰoS[KIO΅ΔΚΏœ sΕqœ8Α. ΖήίZ< Λ~ ΐHΟ@D‘5AGJ΄Ζ„ΡΨ&Μ)>€“\εϊΰεNˆTj.ŸΎάd@*’‹ ΩHa,κVrιI’ͺξΛ9€ DjLΗrr # ¬ΪΦ؝ŒŠ…΄2Kd‡ ΈŠK,›Ψr)„AϋΞ€Rπςڊ‰ƒœ2C¨rJI`ΈD}l›TH˜D―ϊ‹@Fι©Ε΅°Eb σ+š°{X±"`‚QVjZ8 ­Ρώς„09ΗV0W¬―_€4‹$S€ί:7…\άLJhπ\8ˆ"pŠ$pόΕo”![΄‡v@‡5?(ΕsΌSτ nJ4·np(&ΨW8ίίmΐ `LOΖdLςάΠώB„_(ψνDχ‹«ΤŸω"„YάFO8KΏD³x8?b4TpE°(ΖutH=ן3τR¬σiH L D^G“Ό™ΰΧd<5"OΖ"ο)ζ a…,2e΅ˆ$Ψ‚iB’F£ΪBιζ€–ΝΟa4…@…2·^f†Λ5Ɲ0ΏXk4F]ίIdΔukL„ "Sg†€ϊDZΰ—\ίIex„B„ΔDxDH ’d¬Uζ*@ϋ*ΐAB‡R΄†Aώ†AfT΄†(A{ _©"!hr$A τ„βφΔhDpΘτ .0B†Η GEω栘°ˆk§EpvfKMTΜv3cGZΨώΡφo χsCE4³RSvμgώ-pΕ‹„\λrCGsΫίύ‘Θ rwt›phγ_l/χ .w©Dv;2n„}·f™7€0QΩ ”$΅Eƒ\Θ\Gε+ΝV§HA]HαΟ \T#ϋ†$Ώ'\ΝUaιz₯.…eِeΚ™6Q8AL„„/Ν]ίu~IΔ€G@ğΌ„ˆ€²‰3v^Θ’ψu)΅‰·5ƒKι!αr|²Kαύ 9’?.½L6’»XlcHZw’Cω(Y·“’|8x(ΩΤΠ3[Π4’ou3y[_χγ’―“Wψ„cu–7Έ0υ*ΪLuYJ5Ј\ΧΉ»Ήγ6ςʝο‚ΙH†ΧΒ„εB&{ε&Kα$‡xžk·o4́ bƒ6Š{H“k΅‚—δΚ·#Λ‡mdH‰:δRzŸΣ ¨s’δ†whK9©³ˆλ ˆ@ y[δxz¬s.SN9Ÿλωž78£cΉBeU{H`L|`ϊ’ ;Σ{½H₯±³Θ΄Ÿ:žοWšz― {ΈR‡ΰ%¬#2ΊWϋ*υΖ΅?8§―Ήx₯2{UŸ/ΥΐΥ\r£š.ρ\‘dˆΝ«§άΊ+%"?°½_n›ϋEn™“z°O·'όœΌv“HVguΈΛϋΓSόΚν©Σ`<γfΒO|0)ΛΧ9Ύώ†Π½Ε/8†°ΘƒΤ>ά‡ΎVCύΒD‚ρϋδcΝVκΘελάΝGj'Η»ν‹Ύή/₯κ«ύΡδ>ŸO=„pΎˆxoSξΎ·§ΊΦΧϊ―KέΧωέiNFφ―ώΠ#ψγ~‚{ύΘo½+’V!Ω'.ε<@(p Βƒ&DΨ@aC‡!:d‘bB1fΜ¨@£AŽ'fΌργƎ'CyPAΚ• KžμΣ!Η— S‚wύ²t‹UσZΏξ1;ꎁ§ζY½f_ΐ?FOH^αrͺ­Ύnΐ^#€9rk²«n³ΉΚRΛ7·:ιD“­θRm)Ύx 2ψβΚ½ιήΣn²„°P/ qΚh"Χ«© -€» •,E‡Ζ“Ž£’Ψ#ΝD‘†’1΄Ψ9P“;™Ε6²lΙE·oi«ΐΈˆΈΊ¬"Q*νœDο)–›‘’ #,q4»¨ΓŽCΑΜσ’(Δ4²9*sLIϊ¬#¬8ΩDN ΄-¬²„Τΐ"›εΘL6α„.Nв86Z’κb’Ι'ΕBs”Εν‘FΓhRξςn2΄³6Ÿ2ρ&ψ Δ/ŸΙ³QΛdκΤ‘₯τ΄‘p<°«:ΓZ+Θ\ ΠHΈ΄$A€(Š5΄€¬4φΜY]<Š‘WΟ£oBeQύ޳ВΥh±W ¬5j³¬Vά€ό άσΐό Ξy΄H!{΅%¬ίώœsXW< 4,Λ7LbejΜXhΣύ’`£$1¦!<Eιœ4Δ™­±Π‚jο©•$­ˆc.«ΥΦNjΛ΅,[zΡΣWz TX% γ 4OύYAY?}γs1 xKXΕ<€Πb)β› Wœ3Ί)ΣxΦΩc4+Jιΰ ”ΞsōΧ^ΥϊΙ— rˆ_‡+CΤͺU;ιM™ΆŽfͺ n:»Θ\½£†'Ζ›ξ΄ίVZί©­f¬πζ¦ψπ²ΧέWZή–°YξκΐαœuΫ9ψ†>κΕ4C#Β›εΛ°¨ΌnΒΠήϋ€Ο+ςΛΎ₯nkٞχ»ΦF+·Ά“–“uΡ…ΘΆVιΚ“­@%±­ K«¨Ύ’ψ5ϋμ[[άœD`ϋBίzŒ"8ŸπΞ`Ο=ΰξ‹Z@μ Λt(υœζ0βkν^{πJΥ6œ ζ"bŽ‘p4›Η eΌšάΌ„€L4o~¬ βR€ΈO% ’Α © DQη$6bΖƒG‰€ °Α“Đ~£αj¨ ZκSH AΗ BƒςŸΤ0¨1΄}h0Œ—Ίw*jν…h‡{MLΈ:•ŒΈ8ZNΖ'ΰtB.s€ΩΕςE¬`ˆ‰ΐ&πB•\DY@&@L@{ΰ@ͺ7?μ}€ŽςγK€½¬Ρκσ‘R ΰ‚d<ΘBP0€|)αΉ=ω%€;)τȁ»dhΪ›žυ&ΰ‚ΌHh€ι€ΚLβPSΥΓΣ:Џ(`ƒιγΞ/Y’!Bž&/dIΰGfΆ Θ܈ψ" *zΰΏeυ6Έβ„Ro©[T5φΊ&ξŽB~C—/:mα }ΝVΪΥ΅ ₯ lΘKž\φ0:‡ΰAHΛ€\Π‚<€ Š“Πz0l°= €υ4(Cƒ΄π#7Ωθ?RpV„Απ’ήˆ)(:°Β…Ц;Π‚wˆΓ>€ΠBHΞ;j°$A­^A΅Œ2€©θEy0,U¨©*†^Hhaƒ$AN‹ΉS@†0¨Uu¦WxGl JGΪBjΠ%!@΄PW΅βPƒ$κΑΙΤj‘g"™_]π²K™³(@»Lx|V‘{r₯N?ΒˆΌΰ$©«T!+0Vp‘›Ÿ+ΐECΠƒ.„@†ΰΆz€pah€b™Π<ΰΠ*GN Κ΅ΆΗΆZΕ!φ8ΰ\FΪ2ψ#ˆz 8Ξ² ΫΕα'οθK„@£ˆ@ΰ84Dΐ₯ΝT@t·Zΐρy«Α#oΓ‰GψŽ4ΊHίσ8ΰ­^€ˆβ rΜŽ΄-1Eω^>ζkˆ¨A&°Ό1Cϊ%&GΊ{ΰ4w­ΦΒ&ΐJLώρ<πV«ϋΰšLΔςÞmοΨ"Ωtͺn±ΣAέ‘Σ3ΟΗ€πn2“€E,Ο]ζ’ΰuΌίΌeltθ”2’;zΰ¨\ΨBzΠΝYΰ‘1th{ΐŒ¦˜]θ‚2Ϊ‡&΅l~θ:P€ Œu Ϊ]Pΐƒ-ΈYͺ†Φ³T{@‚…²™Εn¬¨lg¨f©½¨ώl!Ξ‘άA£α‚φ€ΔμρC‘Šη?Ά!w\@`?ZΤSΣVΑε-GƊjΪΝ‰.Ι 'η?ο±yv¨sIπΠkηV{§τBCΠf-μ‡ΜVv€έhU»™Βξ‚C³J€pCτΗ έ3C΅έƒ <{Φ@Έ`i-δ”yΎh]™έξΏ[ ρ·C=J°v”5VHzΨ?&ύŒωŒ­›Δ)+„PZ–‹'Ύς# Œς-ώIΪRŽwΉcyΛjςr{‘ΩuςΌ€‡ HΝeCΟZτ†€Υ Α gμ©€3b_„ΗTja θΐŸ;ΰf,˜@ί„y£F΅(θ»υ(`x μd}οΠA([=ΞΆ’F={K‘nθ±Ο–_θb3hQBOβGΕdՌα‘k°θqށx βδω¬(ϊά―^mΓ{€ΪKβH…ύγέφΐXπYšχ/Μ}©μ3°[ˆvΰŽγνΒ4HυΌG AŸsͺfYw` ώΞ6{ _χjsΑz; ŠΣ0}χE…s· Υ3לβhΆΑ+@ž}kqzNbκiς­ Ό6ΆKnHΉYŒX€΅ς™/άB` 2HΘΔ*όŽjοΈ`ΐΈ`ΰ·4¨£³« „ν°(p€ΨgμΒOƒςpμ0 ν.‡:,» €Ν MH C(0C‹ x@Ά<ΰ―ν£N% ‘=ͺΪΘͺ£*j €Š„^°ωΒπΔV ™ŽΝώπKΆx ‘€Jn’˜τ.*χΘƒ0Bξ~Pρmdη/ζζύήιœͺL&Ζ2ώr„]gxvEeBΛOΰ‚dnβΒ ,»x‹’š. ΠμJή"2‘bH0ΗΥDς‘0‘g~oΠ;`°Ή  x€ Wi1ݎ˜¨p«š‘ŠoŸ/“'ƒ’Π¦Ž¬4“ ‘’ ΦλκΚΗ5`~π‘* » L«JΗnκ2Εͺ ΚN& &8R«π /Κ*Ιͺ΄’ι1œ4,†^k Lσ―6θ&{―­Ξί 2†žκ΅0Ρ'“¬.(‰Ž\cPtK % 1 χ¨ΓNͺΰ&+03?Š&>&sΨ†ŠθIγΆς9D§ΙΘo}<§β΄C t(²fNˆxΐζlC.ι0ζ‰ ΒΧ’*ΣdΠ;ΰΝ¬/5- έq~†οέj·.¬Š.°.σŠΚ‘¬ ΨK σ ΪDρ―:Cή¦ΝνΒ.§ξhΑ’κπhd+°’M ‚’=ΰΥ8Σ₯„” ΐκνκΪCΗd«<ΰΧxΛ‘ Γ4!'@JαlΰΘΝ² σ`@9ΏϊŒΦΣ3ΉγKŠ3_ͺΪΰŒΆΎNG'OΔΪqΆ ΞZRθdK&―£ψξ&Opͺ £ΰΰό¬>ΎSfΟm΅ ΅¨.ΣFLΟH »8°βt²8Nž–Œ,i§4όg9Ϊ‡gς+•Edn…k 'rΔΜCιrΛF4ΓQI˜B.ΆψΤΉ\ο‘θν”δ΄˜²­£z PΙν†ά²ΛLa‚˜²-°Hΐΐ°―₯φΘ4imV;#Vͺ °―ΔΖ +€:j¬2jψ€prŠ^;jP‰EIδΝu’Z,’ 폊jS―JgRΤ6obmV<ΪΦμ‘v@ކoƒ^€bΥ[ • ·b Π’JΑˆν… -*hΔ²md!Φ[1/]5ΝυhKΥnv˜Dσ‘¦Ρυ0ͺα΄*ς•rͺfκΗ²ν] fg‰²€L"<Ε'`€YΠ`°–BΟςA‹±0’qςiή%ŒgrΔH?$¨yšΥujΉτPβŽ†"ι"€¨¦Š%BΚƒΚŠ°d¨oΩπ ΄3†,―p6ΧLc΄Σ«€Pt¬¬j*pΛͺB†07s‰Ij}―n³~4ˆ†Z(€ςˆξd2€΄Ss+w§J ·Ά*₯Ύj§Ί₯/K₯WΎτPvσj%vΘosw€7―τJ„ώvtΩJpσT;ƒ’x‡κƒ˜iwsrΟ/loΖ4 %XcĝhB&n«#DCU-ΚBOφDŒΎ‚Œ˜‡Χ©&8‡²i',T0dzTK”C΄ΗΎΠΡΗ>d™#[N#:$–Υ b’X’€ΐη4nξΠ2ͺΐc>„ˆ™Η€©Σ!BzΔηoͺΓRbόvb„^Ι5xK1Ά–֐ΪP{p+‚έȈLV€Β²E’ΘWΙ{‘ŒCΤγΙ(43’£€κ"VjQ³!NŠΥNpamO¦-€C‚Μhni7Α’; CŒβyLΈζ:Ŏ0γ—¦ŽΎΈΧ£c"d“R€$lK•·~V’|>gMαx|βιˆζ'&Ύx$ϊ7{Ζ‡1ΊrŽJΛ|ψ=μ(Εθ„oΣ/Δ o#l˜p ωIΜbΗ{MΛ‡ϋE+OηKpδCσιXί²ŸΖ,ζ2! Μ6R -GpSΗ(nΘγ<β†Κύœƒ[¨L\β”εΖ“Ÿε•/Ή`άƒk΅’“{x™™(žω“ωMx: rπ.γ²^˜u\†ƒΧœ™An‚’-Yώ8)ΞΛΝ27₯Fe~ͺΛCˆ ¬ŒIJ6Ε–β·tg)„xlw&fΞ2„YlΓ7‰ρ/όBΙ¦™WΛ Lb%V %Ιd9zάȞΦqΞŠέφWά—lΎd"~‹!Δω€KZ!IS\ƒ{ΦhiδYfTX!` Hš(€8’ζy2:ΔΆόk!fϊ˜g‡9ώΩΘΪ‘"δ—3‹ ―”1ΞM ²π9nJYN‚'Wή₯mΥΒG<4Xθ’¨Ϋƒ`ΐ l)(Dϊ ­!b«ΌΙ•ΪК\2qΒ'ns{>b…V"·§€F ‚€Υz"κω.Κ*K)F`¦{π2Όπvτns’0ΐ -Ή`ΊγD΄ŸΏΆlΩ©oB"Xqυ/Ί΄«ώ¦:"ˆ5«±9HΤ·£YΖ@μ…&'²η" ‘"`X@ *`ˆ+Ήη‘b bΐ QƒΔ©₯§ΫΏ¬ΫΊ x i DΔI¬ϋ€OxZϊ§ύ‹•ϋ"΅>zπ*ΐΏ‚‚Έ" τΩΏζϋ§Λz ς ²oϊΎηΉ–φ{IΊςΐτ `Ύ bΏ+ΐΦ+(ξ;*Ό"ά !ύ nΰeΖΙΏιˆ6|šA8$’{f΅G‡ž†'ΊΦ΄+΄ͺCtA#ƒ\fΌ'nb§Z]–˜-Υ-w₯W ¨^4An΅Γ°Ωb`N  ­ΟzΈ Τΐ £#C Β`0ηηs±Η\IΖJ!z°Μ{RΐΖό―@(α{Κ<›Κό―Ζπh`½$;Ύ Ου|Μ  ]\‘ΞΊΜ‘;²ΗάΌd` a0‘ΫžΖœ `Ra ‰Σσ^A4½σ:a Ο‹Σ…kg&”΅$Άι֘™ι)5ΰΓ~œ,ŒX:ϊ_RTxζw΄hΘ‚WΈZŒκ…δv O;Q`^ Έ€ΈcΰΙΰN`ψΰJ!°Η$ΰ,‘€€(€(@(€@‚ >@If Έ»?ΰh ΰž“ι£~ ~€/1 N»Eΐž(`ίαώ€@ΦΖnΑΐΡ ΦΐF}Z ½άΐVΐΒτ  όZ` `¦€δMž"X}0}ΐ¬  δ{pώ τΐZ€­ά άAε/ ,œΰšψ2fΰ¨oUw &€ΒΊTΫkMœ"x©7nͺγ^Ζ›šWΧ…³ΈHΘ΅Ϊ DG0Η:$<Ψ aρŸ A @ψ@ρωΐ Ξ:*Ζπ,αN‘JΑΞΡΌέO! hτA_Ν)`@zυKα,‘ί—DΦ L!χΑ&ΑσAΛE έMΑΊ›L!φ)Ύ`Nb ^!\‘ ΰ^‘`Α’Φΰ²ς ^Α.’ΐ\Αϋ3½!^Αά ƒ’ίϋ \ TΕrεͺΝC±`½rε@@±"Ά ΰj ¬C "˜1 “ÍœhΩpx €Ι“(O"HΙ²eJ.cΚl sfɚ)WΪD‰ΣdOž1uώάy@'Ρ Žͺ΄©Σ’Fg&}z’ιΙ&§΅J΅kU—P”IS&N:Ν’EλΦ-[Άrε‚λ–ν¬΄œ8i€ΐV”ZwFΐ‚Πƒ EQθM >ƒN4ˆaXΖ‰¨|ψa©Τ AU ˜ 4Β RŠ€4ʜΚβΠ*0aNΐΐ€4LQΒπάͺi &Λ)JH‘ ’{7…Nš< –‘!­^U$+PX‚„GbHΦ-¨zu…ς_Eπ# ‚PAa₯€‘ ± όΡFH,€Έ1w ΘΈΛ†ΐβFX°Κ'Ν@‹.#Eΰ@LΕΔ•W4Ρ¨’8>T3νΈ£S3šUŒ(ύΘRŒd7f•γ“.1ΙδL3NΣXeΥΙ*k΅υV\ΊΠu‹]xeΩΧ΅γ”T…œ@„\FcoπQH ΐΗc0I)π[Ί%κ”LrŠ%™‰Vš’’X¦„ΐ ¬€‘₯”†qΫύ`J‰~PΚ)“HZΚ–Έ@k`ΐ Š…†ˆˆ!j‹X­Β+†,ο*ˆ++ΨΗ,Ό2D*°€,,0h—¨ƒC,ΙKzyrA.Ψχ }Š+υ%Z² ‹ A&•TN`@€KDR•πNVRΥ0”ο4•‘Sά5-Œ£ΕJY¬1`P~Œ€Q8qlSO³d²b‘eV'œpΙV-΅δK/rΩ2&™0›ιWš6j…dtΎƒ”ΐ!h€‘F %ΑŸŒ Ψ†–’0Κ*ΧΉQF)–ΈΩυ)¬2P+p~*‘vM‰)§„AK¬š( d‡αwX2IΏΈ°W’ςJ ‚˜w@ τ Š!.Ό’^z l}nΌΒ/ 1 Ζ Rc@ΈIšδ¦Ή€ˆ»ψ}­όъ+νζ‹ ―*ŠuεφΕ’G’¬pX‰6€U5:|€6q`F™L1N­G―$Θ _Oγσ'₯ρK-}άdωRρεωπ…₯Y1ˌK-nΩ<]<λ₯ 'gŠJ£†=ΰ ŠA!JΠ§<  šΥNς*4n ‚ή&J κV”JΠVΧπΝS@Iΐ₯ΰΪw³)²%κ8€(υX% ³rƒD™‚TqˆΌB8OμH, Αsέ ’¬@#6ΰ&”¦ŒA©ΐ`‘@ΐ’>©xE ΰ†}ω‰ς’ *ΰŠτ !ό€ hρˆM@ŸπD τ0Ή―H”‰ϊΐχκ±OMNΚI$•˜ΐH (‘4YOVbΎYΟz•ά$&ΙζΉμ,1[Λύn!—^θb;» ^φr¦45R)@ Γ†B’!Ψ0ˆ7œ@jΝ¬Ϊ•TA€α₯˜„r–pŠ%( Ή©*4υƒIX›eΰŒ¦hP·~9κn@hlʐ¨ ˆβ9»Ήf6MEΫxπΖ€jA›$αηr…* 7)€Ε|dΡ=(N’~XC,2‘!˜λσRE€œΐ‹ ’)ft,.ς ρœGΨ’#|*rˆγ ‘ΐCΘ%­@>#©Ο zΑ γΝ’ͺŽΦnΰAέv†‘)r’"e±ΈSQΩtšΔ’Eq‰ς_¬¬FAΈ±€W‘Α³  ‹$rΤ'lΡ’”PYΚqΦr‰ε"0ΏΖΘ…"Ρ QgζΰΝTy*S΄BUKμΒPm0Rb,“°Rš“> , ΙUͺPZTMΛ™εΟ–tΑΕ-f‘Kμό―—ο£πƒ3 ˜Ί’”I©λT˜΄%e8!ΠΑ4iΈ…J BD†2ΔΆΩaθδe$:q‘€l€LΒS@6IαΦ€ ΨM p`IR€6άΞ:E"ΰΐh›I*χ°ε8Α ~Y0R4a’‰PhzΡΘ荀\W`ί Ÿ²’ T¨“[βUuͺ¬#ιh§XzΣ.Ω­GΜα¨ΰ„+SŸ'GήN{Z•ΜR^μ—bύΝ₯.muρ^1fSΒΘΦ@ϊ§ΒJ(+Θξ €φ€^'{P@Σ °ζD ΐθJ.Ά‘λHθυ±’“ 2²uιnΐLƒ# )SΞHqoιδ†G:±‘B [[­‚D7ϋυ’ώΰ(qΐ‹δΙ‘ ρ,Ή#]α—WΈΣ8κψ&-όԏ7ε'BS9ˆ ωπ`2/«,ρGKœ­•Υ»δeΟ[ήΟGΈςožΚlς"Α:Κθ—ξΡΦΩ§ω¦Ος6±ύω(…!Ώc(Iv€kŸόφUΎ)1Z˜ς±Wϊ-j1u-Γ€³§e/Œλ“Ά/ωGLκR½ι.ξ™τ]&q/ί_”Β T uKwTO±wβφ#p#$ΰyƒk$€φ‡m:ΡwDgwšΤΨχ–UΨ€η8,SΠGWW‘=$ˆ&€m{ηt'A:~άχhΝ·{θγΜηΕ7θ~(vjϋ£3kαVœ° œ°³'@€4kιcy’6€Y—\…οu "v πN^Χ(…b]52Ά%ψ|%ad+aduεΒΥm3†EΑ1Z6qY8xz†0@#0ΡEvF#."bQb% ‡†&w£‰ς<c17x{_ƒ•φ$—X—i6‘ƒ{‘α‡Vj%&ύ³pΥodˆy2˜I磇‹η…x|:Ad€X`6€o†…πŠ±ΨŠΣs„-ρ7 ‹7ρ--xC##\W=ζΗΧJx'?Ίˆ,1&0XpЊj‡7 X¨IΛΈ>gψvE7Ѝ&1°X ΏWζ8ΫX…2i'h=†@Ӎ†Άn7„qir†pŠ#fγ&adίγ~­δ/½h€3 ‰΅8³yMΥyžΦ‹|£XNα}D~«pV5‡jεΗ3–~6¨‘₯g#K7pνΨ€,‰[φ ‹‘ xΨw)d+4pβ&49’vΆ° JΠO  \N0 ΅Πρ€*tq)΄n"ž09t‰ΠKμF“R5π-’“Θ€‰"P‹@(0)lϊΈwM@σF wp+©Nΐ WŸΰΰ&7ΐ P•2ρ"°Y€&€K7 p“B‚™I˜‹p1y0˜` cd/4ΠTφ«ΆH)Ρk€•qgv+D(€ ˜p…Ώ1”ƒΉw…J P•€‰mBYiP‹”Νΰ"²xr€½ιX·’‚™CRΐ B9“£@•s)œΠ"Σδ| MJE‘’τ ƒΕ'Ÿ6ay1υY†Šΰ‰˜Ψƒ­—38'„²ŠξŸ2² ΚH9Νs…‡vT9IlZα&@ B€mkΖ<‹ΰcΦEŽ "auΜ ΅ΰ\s•@ € nRe„Oθ:ρ #Q•R¦0 (" ?΄ κ(ZD‚D ghFv7‹ΐΒh ŽΒ&%e‚8m]ΤE˜€"ΥVdΚ¦eΏ›Π 1*ž΅`§u›ZŒ;Β‘ FŽ7Ef6˜ΠGf?΄ Zζ[eahς•0 ‘π)nι·0™Xs©˜ ”ˆ†…@i 4κ&Π 4*’»rhc1 ‹TqφςCT ypŽ‚ #e‰’€Vζ&° Il; fμ6'β@Ψ!°΄ΰΎŠ †|&θ«7z‘%αG ¬gspan₯ DcΒ:I1J 6 d wJ0@P­&"*eZ‘Π 6ŠΠBi6ΰ ¦ΰΥZ(ΰM”‹0 φ³`R €ΰb0 ^Π*΄Πͺ'WWΌi ½Ι§αLPœnβ·@aαN0m›b―ŒΠ EdNP“qM6°J  ώz―a¨l°―@ 3Πq0ζ(‹p|‰ΰWη;3ΰY@±ΰŠ`R3“΄`„Σ `Π;υ‘±<–`αš€ -p΄Ck΄M€ Ÿ 6P)6ΐπ Ž€”LΠ"‡0­" • Ϊ&§W’@€˜p Š FͺY   « π³'λ)Λ/+`Jΐ{@ƒuJ0΄33Π΅ΰ΅i«$5‚΄―–(6L @K(`By΄„ζwcYΰ+P(‘›BωŠP IYn’·PΌb‘‘BY£2‘Œ£'¬˜§|Š6ŸΥ%1G?i±z΄d3δ§3$ι‰°†U.F««ΈpΠ+nα¦π«ΰšeh‹°Š ΟωvΉ†Ά0 ͺp‹@ @ ™€6 ΰΛ Iyΐc 9› la ρhΞ{XΞBbU?ρxOa‰™ΰ eΕΞͺVK½· ΟmUVœΰ3ϊˆˆUΆ‰ Ό Ϋ1—ύͺ`t žMΰIρ"Ά‹΄;x'ž@΅Ω·Ž°ΉΪŽΰ Δ¨" š(͜”˜ΰ BD’EΔ’•P ^ ’ ƒD£{ζΧμ―Θs© ™p7“«S{›L}›3ΎΓFjΈπ©U½ ‹`€·ωήΪ‘$‰"bρ ³πζ« «·π ŸπΗβ9γf\ž·Ι $^dŸ  ]» ΔλΆ·P'…¦R  ΌΒζ‡. Bjέ(’Ÿ@„λ­(P΅‰Ι[d˜` ΎγΎ@·‹ŽμnΜ`)’PMr0 9ͺ±T9H…$ζ{ΌpΉ‚ΣΙ“°Ί-S’gmšY€bΡ£ ͺΰcnΒ〴pΡ&œ₯Ή€"–~³Š«8-žtζ(6@3YΔ‰β žέΆ5Κ£ξ@)ΈΞy>GzΦΛ&β̟OβJ{ξ ~Vχ#Ή  ΄αvΙΎ ™p&‘ϊί8H{`!Œΐ š°μ030^)›ΰ ŸΠΈ'eFN€›Έω ‹ ˆΚ%Z€ f ΪAώ₯έͺe\’˜ fSΑ^T § `ΪΉ‹Σa1ΔJ έ&Pι;ε Ί‹;ηEŸΐ ?D BΙΈεiίέ\Šπ cβΓ7Ώμέ–Ω( ˆ›0 ‹»ž«ΰ ‰ rπP;žS(Ÿ ζΖ € έœB™‘±ώζbjH&0ˎ™δ[Κ(¦π έ ‰Έ·έ …δΠ1ήEŒ Δΰ n:d­Nί0ή"kWC/žΆž(“ pb^΅.ͺ3Ÿ+³ͺ+Q($Zž3Нν+: ‰&ϋΥ‚„ UkΥ>ξs jύΎ¦ΐUlΩίήRύƒτ Š b wsΤ<ͺ]΅Ν)P· ρ.½χ)ΰžοXE¬f‘ΰf… Έ bοά ρ,ΟυŒΙ–Ύπωl½αΜxϊxA„ ˆ`Ρ-L΄0 Θˆ–FhθΕ–­G lΘδΣ'L'8π€aCHΊšΨ4kΖͺOlΨbDΡ. Dΰ4 ƒΞ‹€ψδ‰EH6<4j†Q^(Ξ ΅ΐS ™la|j$Š2α0γVN‡Έ”dlΘ”Τ\sWњAQΙ­™f`g—WϋJ€ΑΣXŸΆ‚2eAΣ*Šn0πι–-&)~ΊΫφV&ŠAέκ ΰc'΄Δ¨ΠPΒͺ‰,B m…0͚ϋ`$Α†4έ2a‚§Ȑ cθτ‰%θ+ΕΔ©!§‰5MzΰC%I*T ˆVPφ3‘ψ ‹­6©mMT”KΡθLΨ‹ ΧΞΰOfΡ©—‰ˆk3 6cJ²Ζf™ˆφž°…“Ύ(ΰδ.'ti„‰(Ϊ /%:ι…C›‘΄h#΄fΈƒY6‘ƒ’₯$`Ο ΐZlh‘Z‚h!&ˆ ƒš”2‘'ͺ &›rK.²Λ)―$θK„Θ³Λ+5jOM2ρdSf‘—ZjΉ%—^ςΌε–:i™₯“N8ΙdΠ°”r3Š2Ρ&% »\r‚€Δ4& Ϊm ‘ V‘£„ hΤ΄‚i—Y2ι-Llωd–]B 6‰‚ςˆ“M:ΉA‘₯4αδ¨ψ’θ Q*!₯’Rσ € ψ_BcOMjΙ$Ω°ΘΪ’₯'"€dΉ\2Yδ†NhΩDZ0°α-΄HLFY €&n1“ L¨Ε—8Π‰Z4Ρe–ˆœε“o h—Y:ΘhN>Σ­E6dσpyυ“£(ΐ €ΨΛ#Žhd©§*˜…—Ή@E€6ΩE“Y$γŠ–OrΙ‹’Flιφ0ιEO&Βd•†: /Mΰ:ΐ‹JF₯!‚ κ)'xΆ,SjΩd.LrΩδN0πQ‘[0:`†ξrYX 'Άεe"“fι₯“GlΠdLjΑ€V9€!'€a’EVe—F~,w“ΔDG(Ί‘»^ΤUb€M\]₯§Dr©Ξ@nAK‚†>Y娣ˆδΐ%eRLΫΕέv3uΟ½Ρ&΅Ό₯ίEΞAE8aΠNδΔ…NŸ{ΡεN> ^e@3Ω$“BkύϋοRb‘Ύ"X$4nΩΜ{‚ Τ`ŸK²!H0Y€‘Ρ_‘ΉΔ €Dk”€ ύm'+˜U"ΰ£Eθ‚B$Δp‡)”ΚH*Π„seDTσjFΐ°!Œ˜…’šΐˆE,’‘±&±ˆ&DΰxΔ" Q@%0Β†sIΦπˆΆ( !&‘ˆ6ˆΟ˜hΔη€H8@αΓFΜδ„L{lΠ:!‘EΜΐ&=eš cvb”Œ$€ˆNX„悝)*B›!ΐ ΑˆD0&Š@ F”CdΑŠΠD.0q!ˆΑ ^Έ Cj±”†ά‡Χ Ξ‹ βfΔ ΈΜ`0δaPš€‰G;δα"0Π&‘2Μ‘kα @~‰ΐ$t9€,3(؁DP€‚Yϊs‘ε)βφν:˜θ„ Rc ”9‘(λ’ρŒ—»έm©w·CΘ;Ϋ2λgίzΰ%άχ‘‡>Υο9iι;_χΥη~χ­ίx‘{|Ύ·η;mίU‹Jψr’ρσδι>-τ»αu{£§Ώ}Ώ›^όϋ/ο܁Ϋχϋ“ΈδΏΑ‹=F‰-‰’+y Ώσβ§γ;Ζ㽘‹Όΰσ.φ»NC;δ““ωcΎ4/γ:“όžŒ@ΉC“C{Ύ‰#ΐώΫ’ήrAόKΈ\ΌοaΑΔ=ζjΈέιΊζj/1G Aςϊ’$ΰΛ„υ›βλΈγK(μι<άT«Αͺ;“η»;ΌΫΊάΏ.ΔΉ/T<RALΑ2<“σΛ9Μ;ϋ+=οs‰$ό²k?³Σ 9΅“Β’ΫΒ\Cπ1<α:B΄BΣDΤ»kΐ0ΌΊ6θ“ΐ†k.C4A5δ»E,²8ΜΈ ΌΌ^ψˆ΄[»)tΈK”8‹ςCΩ;CF 6Ρ£8ς­³§#T΄#¬’1Δ:“£Β}zΕF³'B|=Ϋ™ΔγXC»Ώ/1Ε‡ƒΊDΙΔ9lΒχΛΌΜC’£J΄ETΤΑUŒΔœ³/ΈkΊ‘0F.™D>|:ν<άΉ’ή»=ή9ΐD<€FQDΓΒ³@Œkž²»Μ{ΒξΕBQGπ[GDΖw“`lD6|ΐΓ;HtτGΌ›½Θδ;p|Aύ“md’E$CηͺΖc„H3 I½ΣΒ€σΏΈ+Ώπ±@κ>NΌC?=<d΅’œFoŒ;€ΙΌK=ŠCΙCcEKόE…dDˆJά’›Αˆ{DμΓΒ2ΤΘόϋȈŒ½€dG)ω§yάD{μD|Ή˜l‰Ÿ«Κέ “ΥλF£S="DFϊΉB“ G±δȚ4Κ?IŒΛͺϋ­‰<ΕiLΊ άK4CU³΄6οbΒ:€žg ΅Q›iόΔΌLΗρ[Α¦tΔ΅\JΤΫΘΆLHΆόɊ¬Ι¦σC„{Λ[€>ƒόΗΝΔ>ίSEŠ$KΦ³¨‡ΤIrCžK (z΄Όθιμβ\xI}”I§\GΓ˽ќ’δΗ‘‹Lq”8εΚcTΜTK_t8ΫSΉ.„JΩΜNΕσAΙ,.μt=ιΤLΎϋ'κΊMfΤΝd6Ρ„=4ΝΥ{Kθ<Κ’΄ΊΣkΞ²lAΗΔO‘tΞ±€Ί€$ʌΘΐ;4θ ©CλE”‹Κ†ϋ'Ox €ΓβΣMΝσΝa“φl’^\ΞΉdJΥΛPΜΑωΔIͺ$Θΰά§x‚M\tΐΦ O©ό>άqΖ#MΛτΜ«C.­λLεOΉœΜx„Αι|6yτΒΔΝχΫΝ…Y¨Ν}΄Eδž₯ΟΟμΗε’ΰ¨>jϋΓο Qπ@Γ#DTJ«S€LMδμΛ0ύΠwΔΖύ„vŒ΄χdS0e<©λ'‡΅]ΖZΘΝνzF†Ί΄ EΣ‹Β΅ °» Tœt6£±3MΞ'ΝΉψΤ‘ΌπP½½γ ΕΚ4Q5½>ύxJ½w2βJ7­΄E`7yPν4#ΕCε³ΠΖDΔ|H€›8—’9*±)θ+) :«\€E―R)ͺ8NΧ„TΥO7ΜΕLeΘΌΙΥΞήIΉ ΣΕL6}ΤώΤΠ,εT-…;”Ρ|#Ο%΄ΌέΣΝ›?NXRœ£Tme4ΊP€'ω;†¨Tλ*" •zͺΥcu˜σJ°™±%8€9CXP€Bk=•Ý/΄Ρ5ΕP­ΤkTX\T«¬ΦΠsRY»|ΎQNk/­ΖιL_“Ϋ@#νMPγO€ΥζKCΚ<ΤgS©ΪΠ•bX󑆠Ž`YωM „<ˆ Έψ»㈞]―5b€   Φαˆϊi‹Y ŸZ„χ 5YπΓf}SζPfSΌ,OνxEΞ“ν»’[2mΣ'}’Ά Π”4ΧκZUιAL?‘ΏΞcOΰΔΑσ)³ͺ©³‚ΐΊ±p9©cJBŒ”™ͺQΩ”΅ωŠͺQ©0x„$©9j›³Λ„θ-|»βς Jl}]‰€Qe…ΦΧ=11L…ΛΗ«[œƒυΜ΄φ;O#M(˜ΔΓMΦ!δΦgs E€„&P„E Uj/ˆ€Ξ:£θ3zG°‚ΐΚ„Μi>C±GΈφt‚†%x$β‘Yͺ¦­h‚Εb `ΕZʈκ ΰH <Υ…Σq”Ϋ³5`άΝΨiU=w’Ξƒ(NΌƒέ}*ΊΎέœεQp%Π”uΫd΄8€’Ό+Ύι9ΎƒIνiΧ‰[ΝΟ‹ϊ[Ψ4Zΰ O°…œΙ˜…Zθ]˜0…Uπ\ȏΆθ„ςՈj[O‘Ox„£x„^ΐ…β#žΩ‹Ή¨![Π„Ύ°OZ]ΐ„άRk[˜ ψΞΩ“VmUˆ‹ΜV7ήΤΚdαΌΕΰZδ>rέΰ5ŽRΔ½>ΰ]`θμ]˜;VΒŒΫ :„Ω υJΙϋΣξ,―‚ΣU[‘YX„Y€„Mΐ' ¦Έ… €„Ό˜[@²i# ˜£˜Nθ‰cέWŸ- XGŒ†x„XΑ%ΈpP„^Θ ˆ€₯A‘^Θ‰ˆ "±«”Q‚Z SλΙ½c|ΦΎ{Ύ½Υ’Ψ£ΈΜΧ3]ΈνΘd-[8f`σ«>sW;y? ύ4υτwέΖC£g{^…&˜’ΔΘ…UxmX…Zπbξ„ZπKβ1ƒΟθ €LQΕI8Š΅ξ — štι…ȁN f„ΏΘH0…i‚„© …Θ‘Ήν@,m˜3B½αdΗΣ&ιXlαΤζκΣH@[θγ]-`φŽΓ >δ"MΟΠΆΩΣώT ž]s %°ε°ψƒ,BΤΊH%°ώ‰ή6Έω!ˆϋIXΘε0€€P‚8P‚PR9³ ϋU‚6Χ‰,p'h'Πn %8©Ζλω‘UXaΔ`/χΦ.?Ϋ’Ω§|ΫϋlΰΖndDq^Ÿ’ΈΝ–&ΕR8ΜoU5ήƒ’Ω<¬ΩLh;„όKoF/Š(-Ν*ΐ4Μ:Φ«2ˆQY₯Β©ΘJ-˜²)œ5Χ°e:2?54@φΦTš&νΚ6[ΑΦΩύnŒ]`ͺGCcΌmOj$Tt>M,;=Md¦?σ:εR*I/[γχcυY~x’θYDu1‚Ÿ7#λχ¨UT™10£šTŠ(ςooR.‹§oοVKNMΦwήυ„γFF}uτ鏀ζomι“ΦγΛ.ΰαBω±MχίΛοx\τόDQ³χ•PzΒ΅ fˆwςΥ3Ϋu[ΉHΆs”(4ƒXπ3Όb4lŒΧγΣ›lpRU[ϊόRΧz—'ητ.ω\MΖζyN­OΏ'Ώ5Ο=αozM°ΌFT—½6lxΜ·m™Τ#읹'GMO[qό{ͺ—Kh?²gΰψ|χ¬”w<1(ήμ π Ζΰ±’€Ήχ9δXc»7”ϊ/Έ[oσφBWίt7φPΒ'Q@ŒςΈΧ»s„ΛG\χ΅L}iQC#OβEWVνJο…hΌw”ΎΓ?΄ΓvΌ+V="•^C+^Υ#œ2ΠΫέxO/{j,ο°·ΕGuυF9FιΒf―GJ`d}˜kΞaάEcYΫ4df,αȟΩε£|v'χœ»9Ÿ“7ΰηYrΜ+ˆFˆ0p`ƒ$Dp ΰ‡fhˆ π€3˜˜ °@!Αl8‰0ΰβΑ”*U:\ι2βΛ–*Μ|™R¦Ν8mξΜ™$LŸBm]IshN”=k¦,zπθA§H§RU₯Τͺ+AfΥκuεR„CQR…zυ«Ψ©aΏ (“¦Lœ:ušE W­[Ήrυκ•λΦ­ZΈhΝZΥ‰άLŠ<€Ϊυ§Π°4»B|hlΑΜ–3sζl€L7\>ΑΑΚ*;CμΌ€F"+p­iΥβΖ0­@ΊuALh9!vνY΄Κ—3oξœηΪηB ]P–ωΞδ_©§}½Ήv­Ρ»†wΩ•ϋK·‰ηvZu·V­½½tΩͺkpαΓ‰ε0ξω}ωc!€ΐ@@ XA:θΡθ‘„9Ψ†-JPΑM8ΰ€NFIθ HΆe oŒxΐ6@b &  ’ Έ@BšP`ΰŒqςΙ‚Σ©ΕΤsθIw$’‘UžML&yzUΥy.ύηδA`ωœ“ώMuΥwάIΉ€rni—'«¨y.zρΥK}πΡB‹at%Άc nΕ’PαmY@(2cM0AΐΦYhC"‹`²ˆH(ΡD"˜@‚‚p˜8R5<βˆ#¦hXšŒdƒ7,$±Ω $b` –Β΅£Ž`’ŽdβΘo°ας*J,2«Œ&μ«z>)žDUEVNfυy΅DB…άP2yά³α.χmLβ’ižΉε‚{Ί«υ¨'šx’ζšχΕ·}q¦f'™άΙXΊ^­₯β·ΰyΓ-ΐ6f‘"Ίά’I. ¨ -uα-Ÿh2‹†š<άK-Ν68C#Ÿ`‚‰Ι"/@ΆΠ .Ή02€&Άx#JΨ•Ι.šδL‹'ŸΠ‚§FœΔΨΦ'œ¨š-pΨ:aKΏρ™TF^b·CΡDε—C›Ή`IλUΦ|¦τυScSEξŸk?ɝΦb#™άREα¦ORš‰¦šξέχ_ωΪR˜tκWnI’Uv΅6`J&,’‘qŸ)bˍŸΤB(&ΊΔΑ 6pR‹Lτς‰½ΰΉI/*«8ƒ#› l»μnΝΗ(ŸnF.xbbΛ /Ϊ@Α-œμ¦Λ"JΜipl ΰ/‹B‚K]ΕшΛbͺ‰[wUδ‡}·έHΚχ‘θ%g~‘Ξi·w»I†fϊΟΆ/ΰ¦Ψ…W^ήTŸΓα§N‰iά”Ξ墁H@XJΠX@HΜβUŠ …†01 Ω>ŸπD-±ˆ[hhΜAJgƒή€)Q‘":‘„M(b›  …[„f€Ό0Π [œi™ Τ :q4\/Yš&€§ΰ8/|Ξ2ΫKf΅‘KlμΫ“KΎFΉ±kŒ T ΝΨ$si ~aΜ’•”“-(q-Ω P‡"ΘiE!gΩ_Ό4A—Ί°ι^}ΰ}· Δ0.OhŠ•Σ@ΜB΄°β€‚cB A‚„»YEhT LΜ@ £ι$`γΙˈd›( ' £²*bNψD«p²΄„˜π‘―4!DM¨;"°pτΛMr»ΐ„HfΕ’0p<_ωΈ¦Ν8Φ(` JSΆ)Ξξ`±o$ΫK²ΒΗ›(';ΰTs"‰k>iYBτ7M°ηπ‘.rq8ΑΖ0£ˆ—byΝ!½-"q/fA( < 30Τ&(0—Yύ$Š%‘š`%4MˆΉPY4³°E°T ˜:Θ,Η±B‚uΉΐ„j†Eθ‚ 6ΠΕ‡§!%0AAΨΔ*LIKOjdΈ\ŒzΔ‰V3%ω‘|’¨ϊΣ+n —ΦΨηF7~σŒ[+c9…2Η°|•'FΙζ[τ'yΆ“*ϋ;'ϊ9§ήβφ™S™ΠΖP‡tμΪTT€„›žΚA›#Μ-³›LˆD$JXΕ-Va <1Β³Έ-Tφœ A0€<ρ@EΤTm-n4ƒLΤbΉ 8αYœύc·ΐΔμf#4Β“ŒΐEqf@‹¨^±m… =£+1Iχ¬ιμ’tμ9Ξͺδͺ‘AΚύ)^―!E*Ya 7!HΊό―MςSœζT˜yeβƒΉinΊόΤ7‘,"ΕΑ€œ`’omΘ‚† €€Ψ %‘”f'ˆa…`‰X³|ΐΈ fpƒ ΐ ŠΠP0Ÿή š&VΒ N’ 8ΑmD'΅Β™mΰXU΅"FΓ*Gž^jhΫ "£οlο„'9₯›$o‘ΙΟέbϊΌ]%ίΌq Bϋi—[Τ§pq"haΤOΰι ϊJy@’έ'[‘ϋ„e YL0b―ΐ"€ι€D$"€„ΰ’Σ$*A*Y@@Z`ŽjFd…PšE€³@ςd*ΖΜŠΖouΗ+6-G…HsώIέΒ›j&…5ΥσδfZ‘N\瑝啲Έ,w&OΜev™S™η3@ΔΖ‹δΔ&2Ρ…~»Xζ5Z „VκVΒH•`JcMΤ4zrΝ2γψΡ$έ™Iχf*γšxD!žq3iMcο•ΘΦι2ίWΝ[Os½šΛٝ « W_ˆ»ΰAΚZ°»žiΗŒ-ψ"Πψ†.ΜΔ"ΰf[+Dk'ΐ0κΖ'=Q €!-ρœD`«AMW-cž„ΰάί^} ΉΕdŸ%CgxδTW³κš‘XΝjώ²βέ:’΅oΏ˜WΐŒWφΞ‰ΜŸΟΖΡμq„ζ&+Z.¬u_ς”°Fέ3':RP χ,`κMGμrψ†ΝλV}ΛGnNή°‚Ο}nwο{΄ΝU({³»Zω›\ΪsρZ|ΎπΑΗΟ€‰ϋš K«hΣe |¨ΊβCK$ΰΉI3y³ΥMcwς"<žL‡Ίtθ Ι―μr„WΊΑi/όtύ^Θ…7Ν»ΦΓuZxέ~=`šΧFŽρΕ·vD4€λ«‘Ξj'tHϊ~/£ ψ9)Y"}x―xν>aχ½Œ»}ΰŠwϊύ·γΆ/κ-Ι©~{t©?ισ‘™™qœSΖ™ Φͺ Ψΐ pHTθ jΐ^£aΗιE„E„`@H _\YT€>£™ΰAX0Aq,ΜPˆuœΫjDpλET¨`κŒZΔίϊα_χUaGπεuνWtM•Δ^ž;)Ηy‘QΓ‰“¬ žUύΰπΕ],\πΣςΡB²ΑT^u!ηωίΑ=ǍεUqxFkT€D°RψΉΔ‡4@EQ†nΖkΤ¦šΈ™[ ^F¦Fp(Β'Œmΰ`A(@†b†εL-ΰ j8Z†_Ί½Yf„ΰΒΌ‘F|‚@ιi€Al„Φ†Π•α]—ι_Ξ9™s ή=±M«-έψρε‘ω0™=‘"Ν%_\Xά^%[ΎΘIA-'œa’Δί›Ωΐ#δ―‡‰„‰P#ϊ₯Δ(ZZΘ„‘ڈ(š9Š —…˜HFŒˆH„ΖD©c¨cπ†„-HΏΉ„:vγ‚H‚8ЍT’ƒε h„‘FO˜M—wΰ":œ&”ž<%δ\…œΉ’[Ωίρ‘…F^]Ψε}α Ω³™!ϊPP‹a΅„EEW4Π ΜB4ΐ ΤΞ#ψF±  &ΌΚ0Α'ΰ‘0ȝJ‡DSMaB 2Α"@‚&4BΜΐ§μbaœXŠŽa‚&<Β¬€,‚ 9Β P@¬ ΐΆ₯ M.εΙό™rI ¬hHΞ@BPκ €ZΨΐJaB&hHhάPˆ₯ΙΜžxΘω%‚"΄R#ΐ%&δXE—”΄όEΩ΅β“Δβ³$‡Νε"R¦FFΩ·ψβ’δ¦ διΖΥΗσ FA†IΊ`*‘ώδΜ-πJ]vΒ-xά€š8'‡ΰ‚νhΒ¨˜†ižΌάˆ(Je}‚-$Νp}Β.τ‹&x&Τ– δ UfŒ#P@LNΟrυ&τ-dBR9ΐ#ΰΒ,δΠ8ΒmqΨ@}`ΒΓμΘΤxT€aΘmμ+Ρ$ε}Β-tΒh4@YRσΠ‚&`‚@g!Υ.Hbs}ΎΚ‹ΐ₯"x’κ=KΑ}Gœt™Σ­ήΣ‰€ŽŸn\σ ΧΙδ"¨Ι``Β¬8fm‘8‚Λδ&GmBe ,ΨΞΙ'`ά.‹pΒ΄A'όλjȎ@]ΜJc)Χ-Ψ#ˆ|,lL+:.¬.M#π‚Δΐ7B/G%€•h3m*kYΫί1€gF“ρrέP/™ΤŸΧ.°QδΡ‹ΰ³%ΰτm^ι‰ͺ„F@ ­ψ”€‘Žϋv[D„‘†›j…F(Z禃y+MΤe –ˆ 0A„ Μ>³Π A.@#ΪΜ@DΟ ΄€Ž€lŒP€$Bd₯-4ΒHυΘP@Žm„@€d})ih–h©„dB'4P0₯*ρ11’l•d,²²μ!j [Α™ρuρqΒqΗρΞKΰΌΗ^d³Ζ(ΜB %#΅₯μξ½U#₯y”ƒ@š½>&°ͺI§eΞcD:ŠZ…ΥΒ₯‘i# υΫ€ΐ@›J©ξ£ ΨZu" <€ΌcJDΐX'D…ΐd‚Δ8­tB.μ,ΐ€¬€„yΡFξbgjvPl‹Sp‹’‰“$œWEΪΐΝ=ιt­?Ιi7!stdš8Ϋ^Ε6«I7ηΖ;―¬SΈ‘ΊΡ[&έκqΖΎe kμ›fΜΫιuΖ Ί^ΝyHC”υ@:AΏζ ƒ•Nιt.όώ#ŠγzFt Z’H ΣΊˆ°Θ€ 8nh+δkWfΐD±WαMOρ,ώ[R/ω,EhB>‘np!ΰtBβΈ—TΛ ,1’7#5β=Ι ήάN°ήT€άνΎ`Œϊμ ¦Η6Ηϊ„£!ŸƒΡ\§™}£aώEΔ‘1―’ϊτχ000/sδΨπ–fB²Ά€Λu½ 0z€ΰ|dρn/\`5l†(Άωt9D$y‹ΏΥŠ†`"†DΫYψ Κ]¦Κ8Œ7­έΌO²ŠS8?KsΗ&•?xτία>½EΕΡŐΡjsσ>οƒkΉ™#³rD3ΚΆweb’ΨΔo·„ΛΆ4ΓΉŠ7ωFj‡‘άQΫl5sδΈsΈœ|cΡ•ΉyuΡΕ±!ΩKT;ŒnFš9ΈÝ₯§OΝ―π.γ›χψQ81Ÿ¬Ί@zΉŸΛNoΈΘlξ5ϊεχ2yΪ•ΉŸ Ερza¨ΗŒ!ύΕTss ρθŸΜΩ•:/ygλΈ“«β|Σ“­o—Sδw¦΄νΖί·sΙΪ  3ϊBΖU«χ,Ρ ΰΫ{ΔG_‘z` 7kΒ&(9ŸΧՌwužhΒϋΒe;Οκtμm΅Df8±‹‹±{ίν±Ol³dν]¦—CYύEl ΕΟΚΉ\¨‰?ιE_ψ…6-]ΰUͺ[ΣΊ»jΖ·μΓgΩή­Kα•œov0#-FδxEόλn»Β}‡kKόΙšί‹'Ό„y{Π;°’Ι?{ζ Φxw@ΕUu j‹‹ΈSύΑΫίΦ;ό’ΓΔΧaΓ]­{Ά0<Π/žΟ΅ΛwύΫ§=ΧpϊPΘ{^1}^Ό_”zΗF΄g΅ͺΓϊΞΖΟΒŸŠΈOd˜ύςρν<·ίΪόp½γ#<ρΩ*‘α„ϋάόΛ―=˜«{ςωK,Υ _έyΎχ}'tρ7»Ϋ;ΊκΗ}ΣuEρ}ΛΧ—ΗΠm‰μz„Sζx䚊ŽύΫb|―ψ˜3q₯—jO³ͺ.μρ†<½γ…ή?ύ6s1?M=Νw^¬ητυγtŸCόΕ·~Š;†έΜ\ΞfζΌό”Ώτ:]tlΙ°;d·ŸWT±ΘΧϋ{ωϋύ™πJ„_Ÿ­Δ 4xaB… 6dˆΐaD„ $VDΡβΑ 2€˜πcG‹1.δΨ°δΐ"žL˜’εŠ.YΒ€ΩπdH…0_Όyΰg̊u •©q`Q‚<Εy€’Lš2qβ΄j-\΅nέΚΥ«W΅pњ΅ͺ'OTηθΘΤ’S£sw΅»τnή¦OΒΥ;ΠoFΉH%*=€ζJ†ƒLiΈbΎr!W„₯PΖ{-,²2Γ’p#@•Jυ*VZ΄ΈζϊvμκYNΝ€ΘmιΉ‘9{~ψΧ%f0‹†ή‘·Ρ Ι=/Ψΰxέ‰oF™yx^λY2*Z:ΠπΧ΅ϋŸ7ͺmNT³ξϊΪυ­Z²Ρz²ϋ°ω£"‰dΎντ0;}2P‘“σ."τ ΐξzZΜΌΝ@+’δ,DH±„:TˆA“> ’τP£-«ZΈς ¬^b3‹6NξsλΓ† ΫΠ#½Žƒ Gƒ~κ1!C*I' ίΪ―°‘`Β¨F‘μ-―c2ςAύx H)AΠ/%*©Ι*(ΝΔͺP\­΅―tιJΎ²f₯6ͺπσŒ§ΗZzNΜή .ζΌτLΛσ0Τ/Pνϊ―ˆ Uh%*‹ΪŒJκ;0#Γ" s‘Κ$1Η “:ӈ’δΔφV„O¬ω̚­“ΗΜsΒ'΅+(D JΙΦ an7I9Υט50W»-pΚ] 2²Ψˆ"Υ¬ΣOΏΌ“Β¨89±“¬άK—5Sus•Udάδ6·t RZŠŽέ^υŠT7aσ ULΉμœV^—x{Ά"η2ελά`}Ϋθ.‘ΌuRε>2O2O33[­K¬6Ν wάr_U·J γ(‚«@·aί]— *XI>θed±[¨Yƒt2B^)5ˆή…ΑK8Ώ‚ztΦ™e :]ŸU˜γŸ]VY +s=SΩμΦ–¬U=‹6R3‘Γ\‹όβ7!ƒ}$8‘ "€tC,»p@%Br€ξŒlB[/»›β{ ΰ<‚"€˜“^$ ŒŒ»JΕv2κΜ­<ς˜˜"f|'οό θtΊlK€,vTͺh ΝZΜΪ².ΆΚUΗj²ΏˆB~ΰ€•Τ~ρx1°B^>ΈΈα†αxΰwπώ°°šϊςvϋΔYε XoΪΩ―Jβ ήωXD`g9Z­h4CΞ ΄BP<L–ζζ@β)βZš MΔΆ₯&­Ω.\°O&466‡(₯f !“ΫβΥΆ‹°Ή"%ΠΒ ύ€ ‚€ΰ˜°a0€H-ΘMAΪ–·‚ΐ‰DΣβ¦(5¨  | \†@Τ‚ ΖΔ8΅έΠ«ˆƒ+Π M4Ξ‡΄xDγtΗΑ ή…‚ϋU‚~cΑh)κ‚τ£ΐΉΘB"η2c˜BZW•U˜%v,νΆ†Ι)lŽdΘ‘"D· °Α-ΑCάΰ;όβΰΨvΈ¨ΰGƒΣ₯@‡ΈRž’ρϊˆ.'·#–†mΐ\)¦Α1(Œcβά¨ΛΤ’•ΘB-‚81bb(θ_½Ό8ΐΛaNƒ ΄ˆΩR—HŒXH8”!GCQήV†Y”Γe¦Qde+ο 'Α΅ŠQΈ X΁η\>7&UbbšPΒ+1‰VMtΘE'6ΡΚ<"˜ΠΑC9ρ‰Op’ >4© 2LhβšxD*Α‰Y`b[DEošSέ<‡/έΔ&ϊyβ¦ό€αˆYl’p„Έπ£ΕA% *Δ$L MG`bž°4.H€ύ-pˆφ0©dB.R*†&’ §S£ ω:‘M$Οl#™£Α>N#zUX’―½ͺtŒ΅ωIͺτT­.Κ‚–pε..5Α« PL؝ΈΕρΔ ZpbJΐD-6ш&4.ŸΈEΠ[dβ— lΠZ|‚m€D#0±‹;:α˜X-”ˆDηVt‡$+œ,°ˆF0Bπa-4‘ˆˆ¦²Ή«ΐΔ'τΧ Gh’A΄j•p O4B³Θi#v1 G|Β bΨD"0q άlβθ„.ΡΈ©ΈΕPe- 17‡4)(‡ΨΡ~Β’ψƒtθΎ“«ΡHƒ"ŽδŠ;ΒNαΣƒ Ρ;ΕΤ:M¬‡„Ϋ€ΦΐUrU΅o(ρBR©ΤΦΟMXεa‹ Ϊ€­ct™q‘D¬Β 2]Δ(rŠΔM΄-•n₯ΕD7‘‹F$bΉΘι&pΑΏLΰh"GŽΘˆ[ΉpD8‘‹‰x‡˜ΑS°\(Ρmp@πˆ[π/ϊ@#œ 8ΐNPD#Μ<[4‰Θn0PάτΠ³¨πφ«9§'’Ϋά]λrʚΦa `υI:5†Δ֍εƒzδ0RYεL%μŎk·΄ΔIcρZP_}#ϊQ•Έ€„ pq['Μ7υΕM`ν'ΰ‚·bΐς'±ˆUδ΄&5W£sΡΰχ›Π&ŒΊ OΠ2p@!Σ"rQa·ή"¦Iά‘EΐΆ˜bX‹/ΉQ£:5§Œ€ν‰[”΄ΰ6°E+λΫΚ \Λ†¨¦0;(δGv²Fƒ1bΘ ל@ƒ΅'ΤZώ@„ΈΈiI’δι"$‚πSί—Νδ-tΡ ‚Β(-€*o}=t₯ #χα¨ipd/ά"γΝ&™κ;Q&νή8?‘Λ,άΒΰΘΔ*JYJR±‹ΘDJsY_Fθ΄Πΐ3‘‚ NH ‡ƒVb¨{κ2’5ΐ&h‘ρNδtˆ¨ iшΐ=Πmλ'VΑh`½Όέη¨bbΡg7±υΞ7όb”έu/O'΄^ˆ{ +*kΙ„'ΨƒYξXEnŠΡ΅8δCΩHžν‘f1‹,?ΊΉΐ2'hαAŸE‘ L(aΈpΒ'‘ΡΨ*+аΑηm‘ˆE0!*ξΥ# ’ ρ€L6Αͺ p!ankΞΑ¨ΐ*• ―ή‘ΔΐΒ`fλ46*§0nŒ"ΐ¦d‹ώŽϋΪ@x‘­α& ρΐ©ψΗ†Δ Ιυn-j‚MΕ†L0bŒgœ¦&Ι(x#$j.†&Ε(§ηά₯GδGv 3€„n@lƒψrL œŽΗhαΩZεƜ/Ÿ,’‡œ V#άp+f!₯z¨ "m”`=lκvJ Ašΐ: f‘jΆνΖ" zθdΨ†Α-ΰp Α²ιDΘ¦ψ-ο0 !αKK•ΦŠለipΪ >6Ž;ΔnŒδΈ/6!ˆ ΝΪ­όΛϊθ=jϊ$ K`0bύJθΜ‰sj†Ckζto΄"ΡΨ°ΕψΈ › κ>iκ|ŽΕΞι —"ΐŒ ‚ΰΪ€> m#€΄GHfρΖρ¦|(€dHF $@C†m: ΫfŒ(CήmŒθ#ΐpH~Ϊf#tC|ΖΘrͺα–kΫ”@ l`4ApΌG&Θδxΰͺ‡βgqŒ* κvˆ#θζ\NLŠQ΄€£%a2u¬ˆ<”¦%…-―Πεu0&wO4'ψ,«ψ$ζψNH6bDκΌ°χθδΦHC—θKύ ή¨”Θhš§ž¨‰.—ˆι‰8qL€j™BΘ()gNB,oˆπ (?`š0’¬b=Ψ ’²EΎδLΡ²qεΜ-Lj l(!§GΌ„&h―Pƒ&³qn²u1’²kΊ0”Œθ:¨/θ"Ž“qTjt’Ff‚/:ΔKJmxƒ—‰˜€'t*Τ$6"!ΗsŠΞγσ bh6₯S0?]rχrPEŸ"Θ`Ο?[o°Συp0¨&\LΣ+LHk”5«ρ_"%€υ³Fι'η ‚syHΖ8)ΐPΧ#А±ό$°vR,gD—tΦxζdnM)S]QΕ:Š…B}C@Qγ*ŒO“8‰>p”6frvNKβŠMζ$Η<5θDΰ#,E"°§4Φ’#š)JI’oBŒδCώ$9N >9ƒ7z±ζd’Μ4θ&SMέSMƒQ=5#KrƏ’πaFaHcΗ5RS51‘@S>BŒt‰QU‚3 ‚ })eϊ±%ήη™όΕo’•E)‚βΣD@.5Ηd E%ΛκDlFι³Mq42[ο;šM2JΟσMGηΟΥ'σ’G˜CH ΤH₯‘kΤβO•œ–¦D” œΰΠRqΌG|Άhx|bΖ€nsL:Ÿσ†n@ π'dΚ')gy(|3BΗδ"ρ(­&j*ΐΒ2Σ”\@ΛMωeNQUγ©R!TL8TKΌu?€mGέtGc¨LόO5ͺ@ωτbΔe*”Τχ|Γ9:nŽ(˜ φ—`ζ—ΈS•’¬qΘ“–$1#q’z¨+bή>Π_Βr¦N ’ψ'•HΟ¨π5(%βC|t?YφέΕn‰`4J{MGΥ5j42λ$\βNύ―(•ΩrΥ*ΦiρVr#–‡ nΑ J G 2 .ΐ€Œ€Θ: αβeΚΈ 7,ΐ4€Θ-1ΐ!Α&κ0 ίHp0 ‚nΞJ ‘*ΐ¨TΠ ςΈŒ xa{Ήv‘ΊmΙΔ’R)Qmς[ˆυlο5οjU…x[%³< —uvgUΩ]ΥχLQφ”gΆ?aQ·jžρ5ž.…<Αq]Ÿ`Š Ęΰ0*ζ/6ΑX7Τ>ΝR‰Q=7˜^ι ±y} aLœ π‡ς.kfa‡ Α²Μ»8Αp ›λ8{αrKˎpθΈ‡„έŒ—,JΒΜs9+•3‡lμΙ8JΩRWy‡ CρΆε6d‰ΈWCΩ‰k–%Ϊ0t9OR“Ψdkb΄Ί˜f9Čΐ˜·­ς lna‚Θ.iΑ4A%# QMƒ' pnκ› ` ’"kΖ ˜`t‹*0.Ι’ΉΡfA©4oρ8jp4*NΚ“—feEZ oΩ”°?]V’ψ•δΓ¨Waφ{O5ΧZU”šψozr”FΣWC>lUκΈ°cf&Ωτ%Π ²‰ƒ'*za’ςGξH—Aφ(ΤVa ‚Ϋ”ΘΘΪΐvs*π’zœGΒ ‘Ϋ4,ΰF!H8x‡μl‡aTςξmpo’H¦q8ў—¬a₯N Χ<"ΊφΤϊ`nD‘cεJβφ€Δ”E­[ϋ) Mqp3t9qi:k(&Uτh…²Βσ–»Έ”ΰš:Apa@ ␠Q4 l7›0‘0ApDŽ•Έoš¬›σΛ* +ΌknώzαΛ6œ vαΔ™ƒ]vΘΪ6y‘Ί lyιΛΐXŽiv†GBω€Ό˜‡KuƒΜƒφ#¬Y6‰{c1 ‹–ιϊL3„U!Λ­‡ΫˆAΖ4Ό&5ˆΤ―)f,”/A›oŠ~Έ%pFƒΎ6‘Μ Έo&J 6!\>ΌΰŸf‘¨¨² š―₯Φ+\nΛ₯N‘ύΘqΎΝͺ~>a‡An 0aζ€ί πJΚψ'Α!ƒ*’βPm©άΆq@Η3gQjE” λf/:"Š›‰ΧLGyLAB3Y™€7](Šγ<μš’AψvΉik!kΰ#Ιa-ŽV‹γ₯Ζ)ϊKti-gΨζˆ0 ΛŽhΌ±y‡xιuS)s”|]Ββllš$Μ-@Š@Ϊ{θ‰PνόΪ†”pΘΗ]')e֟/ˆΣσ^D‡‘.=oασάiέs\(Α~Ή=ϊڐ°ίD§‚΄ΈΉaœLσ™‚σ<·‹’iL‹ qΚ¨,©v™8‚ˆ€6Σ…LΒ&f–Φ\σγΙB²5ΉyrI(½–Ί‡-GTεύέη=«$4k;BdΖwpθ0BΊmβν*<‘VWcΥ›.>>:N[g°›gey9η«bafy@f6σƒ$σj{Φ9ρ&C‚³7Λ)`Σ§#›μι©$ΥΙc^\Υι[Η7έ1}’q^{’C₯Χ } Ρ“ΖP^J«±8τ'ΩΎκ¦[‰‡DWώ蠘 ƒώV½E^$…›Όaή‰?…oΕ\Ε\α•γ‚`ς/†%ή…’gόώφ̚@r/Σ?nsΞ|w…ξ-_ςα>­qŽ€`Ž6\˜―U}ίΧδEVsWΊΕIΈ—X?ΓY%‡p=δχΠ©ΗΙ}¬θ#Œ° …uσ1? Cίψςμ_f?rBdiAκ”ŽΘΓβ[¦1€W4ν „K₯ώc~bυ<γ|2β@Ξjf β€@ ΊmcpUεh^ɜ‚‘ ₯ρΑ*΄8qφ 5θBKΠrΓ Τ‚IνEπ&΅Δ!@·`B‹'?:0ƒ"³hYˆΡΘ.{.’K#NΠΒ \›π‚Ι" \€­IK&Ι64b{‰@$r &ΰbOσƒΔ#z8hΒ8šf@ G$ΘEŽ:Qg88(Ž€€r ΙιΓ)ϊΙƒƒ\ ώΤBΫ\nS£‘ }W$½`£κD© r*]ηZΙΩ,V±Š―h"sθΗ2bB‹λbQΒ-ab  Ά  tvύ ^0Ε2‰Ep‚@ŸΨSšOΜbYšΘ&1 [˜g³PΜ⴦§daYjΊΑΫβΒ ;B"*Y[\’° F˜Α*ΈD"·a ?Υ±ΜM膔‰’&gH$φΞ1>ιds2ΚΨπ…Ξ1%­*3$~p2‘K&zcͺࠊv;:β|™»Ji(-˜ƒ%ίg%ΰ‹ΈhΓΤ©0V‡J@Ϋ.²π‰4fΒ<hγXΰ‚‰\ žΘ &‰Β)fVΌήβMΤ‚Xΰ! `SΜΒ˜ΐD"0`N(₯ εD½.˜ΑΔŐ5€¬I,o‰Λ„mς‰”Ρ₯N"ƒ[N”’]¬"B!FŒ,B θ8&ΞΗ(Šπ%0£B a¦ŠˆΕ\…IΟ ­’€Ώ+-η[ˆαΆ0Z"la₯l"Ž`Β…•²@ 5‚‡ΒĞΰ‰ZX.šp$\ό8O0νП“œb‚Φbͺ ψ%šΐ΅9Ν⫎ΐ…y" &+Jν0'ΘιJͺɘ~P Qlη:˜ΊˆΜ²2-ݐ ΕSf”"ΥKE0;E&6C=α‹›‘Ώ "½\bS`·*α\EG\ρ©3ΑΥΎr₯zqμ[$ bAΕ6°-A‹N˜š &Ό‰Oδb‰[6ΑˆE(— ά»#œ`ƒ\4΅~S³7 ΰG»2Κ&ŠΑ%ά½‹_w0ΰ‰νe!mΘ…&xθ|b^Ν…ΰbΕ—Iΰ-Œ`žDCΔ;‡6QAΝ§4UڍΒr(šπΓ&‹Jh ΔώLJw›–μdSIO8ŠŸ.‘9&ή0o;”‘·Ψ2BP6w³ ±‹ΗRSB1ή8@‹p‚ Hh’ ›PΔ Όϊ M@β-b0›–η΄Δ₯‰ΨΠ`Gόςα²οαVΐΨΔ(1†ζζ‹˜D-Q)»‘”|¨%Ιδυ)ΟX uŽ™‡-σθΠ~Η {,Γ< ‘¦xF>¬Q‹«2Ϋ"ς¨G@ΣH=³#ύΝ¨@3 `Ό—~b .s2Σ¬Pλ8)©p˜RPa ˜~€Χԁ5UΐλdbO ΐun” Ωΰj«P†+eaŽώΉΖ ;Νθ\¨8@=ζ` ΉΆIW{BFWΚ„*¬ M”M›­d8•έNkwΔ$fbΈ ͺJ+­¨ƒΰΗΚ„•£#5` 3€@€Θ0\ZˆΥ&N9 ΰ ° IΨ’%‚pγ˜Ε Fi' ‹Ή·ν\.b˜Ζh€±ΝaΧ,έ!”)ˆgΕRN=΄/?”ηXKS_θ7φ’¨σύ~'σέ «ΞΪz ˆ"κΙ ΓρD|₯ y€žœ½"ι)Θ“ώ€xΘ~΄#Μ “x™{Χښ[V#¨^,‡ών Ϋ½³]œΰΣ-Ή‡α$θ1τ‰ΗShΒΛσv’ΉY„/3Ao΅Ψ*Β¬…mλΛ&NζA+:Bϊω¦Žή\IΊ5Ν4ZΠG―ŒλKΉωΩη\荇I¦D’{Hs–ΫΚώΏ7ϋ{ΐW–#ςΎ).φ‰•αί^)΅ξ&œΉΈσέψ?aΠχUnκέ œ;©žωΤ>‡ΔίTςή€ŸΠ“εά`:φxύ§ψη|›E~!Y³ς1όΧs‹bsŸ±iœc°ED Ά};‚DOSj~Ζx4n*gušc$η·γ‡!Έ![Χ€‹Σl° αΈ|#uœ²ΆτY $|©DCh€Χ–|?7ƒθ'TͺƒI·Kw}Xq Ί  hDέ7cώ6R!Άt$w‘9J‚p‘QAfB΅—`£Ρ@@*wqbx…H‡½Εs6φ"€“vn$<6RΪ=₯oU(bxB˜‡85i΄,oww€Εq˜!wθ/‰`0~™δd pοQ  3ι‚ΥqŠλŒ[—Ώ˜  &<4o Œΰl,dˆκ¦~yˆ†F5ˆš…˜6”pq5€‡ψ‡΄dŽ=WŽQ}‘·OΉ0;RΘ#H4 ήW„x8ΜDS  qp kK2Kπ%&DE\Hw!pρ ›°$kΐš  b–wαkhR‚Xςe’S₯VY2kΤΡOάc” Έ df‘Žœα‰D±Ž$bƒ “|£Δ{ ²‹Qn„aΛχr>q9("‚XΞ!ožΠiR}O…—xzϊ&u|’8˜Ζ. )0εb0‡Eΐλ7 σE‹06sb–Λb 7πk2>π30 ˆs+fΙ‹π,p–Ίs_μπ2›° 6ΰ,e9—ε£wJ`…D ΠX•d τ”giFΈ‚θFφ7Ή΄! ˜Ο—YΕWˆŸ“γΆˆJD1›ΦZ‘[Ά}Δa «x[S‡Q―!šb#†ϋΓ36ς ΐ4Ά€ [30υu ΄π2‰ππƒ [T%  Π›ΰ jB‚άˆ!ƒ‡ˆχˆžΉ‰”Rb:š§iXˆηˆ³ΧˆƒaEB1فΤ76…Dž¦›•Ά#cύVqΝ‡"u’` Z Θ“‹ΠΐΘHf½€EŠπŸ½ΐfP2κŸp biG6ΐ ~u@аκŸ0 k‚ ρΕ—SeEbσ Ά`@Ό€€ uςΉΰJ ΟB5ΠN@ν’4šp αC?ο“ FVRπ8«πWAšBυ—š3΄θƒίy5“AW’–₯)Σ‘›‚’«©šΑ'{4(·Ι -2…3*œ|!F/XΆ `€Σ±EΆπ L°,€ΣGK"MˆΣ³`° ›Π‰Τ€ρ{8ρ£_ Vώ…  7·p ηD’€€N°jΥΊ$  šΰgγŠp σ~΅VmΆ?`¨Α’!sˆŽ›8QΗ‰/Yœ—0Ρ‡…z註%(Ήχ9’°€η‡Ηiž·D£: 8Υ”BTzΏι-³ͺ2ixΈa8ΝxMVBυ9’]·0  ηOR“΅`Žΰ.ΠŠ0w²^{ΒcΑrIΡʞΐΆΰ0‹EA³ Λς†‚©.u‚ΐ Άΐ 8šΠ‚˜p ΐ[E`£ Ψ,ϋƒ Κυ`?ω΅τ”S‘ϊ~–“g―»€s":„ ΉBŒ%‘uλ’ͺ³JΉ—aᝧb>Tͺ•Ψ +£>ς*NDažšΈ)κπ§cZdΠ€ #Η25ΉR‹ +P.`΄²7°Άΰ΄jΒGΑBž€C ςΥ7εΣ5pF¦pAΐ ,R ›P/³Ί0«σ7 Ίε³C½`%Ÿ@ 05· `ΠOϋrΛ’4‘g p¨ŽC‘jK¦Δ½­I“ϊ:€5ˆ“Ά―«5ˆ#oL8Y…₯—ͺ@$ΰ{K%WNδ @Iυ/Ή$‹° U –M—Ι L€Aˆ“ιŠ>σ»N0]Ÿΐ ™Ίe»@7‰ Ά° Y€€ Œπ œ€ w30PA‹0 ΈΰGΠ R–Up‘Ή ~s³P Œ°»ΐ Μs‚œ°'ΓF%b‘ς Ύ!Ϊ©-τ"CυRc”ŸI‘ζH”ƒΒ·‘™ˆC’;$#™P5Uͺ/j‰½ωΎΈC•›“  BΝ&@Ή@» Ӂ£ΥΊ ‹°R­lVhZ Ρ¦Η» °CSφD Œ π/•]/sešžζρdΐ’ްΜ;5v|p‚Ήο΄,;&Θή‰d`Ι;Δ΅ΞΆηηn9y½…©qK“‚·© Ψ0τκή(ƒί›1·l·Σ+š3InwXΆ“±Cž°DUγ±ΕΎƒΫ›Ε„;σΧ…½ό‰ ‘[xeBβe»α "Ik0¨­Jr$†\8‘qqk«αΝ+H|Bpρτ,$_rΟ°†\RΡΉŠppG̚ƒχža+R|·i»Δ”:Ηΐ oΑ¬Ε΄Τ¨Xl“Ÿ8}M:»χΆŒλ·f£”ΎΑ”»)ΝΤμ#fœ©„–ΎΜZ1‹Cζ7MP‰€0αΌ6B’A­Πί!€ηέa‚™„jΪl>έ Υͺ•ι·ΤE­&Š0 ΅&^R”—&Y ψ―ŒgΆΝAμ&B=¨Νuψ8!ͺΔΓ<1 ²"B Λ– >…S‘}OIΖσxL‡›~Έ<}°Ηά|kYb‚ύ~“-Ωσ!~‘½Τγ§; ‚‚–=Χ Qχ$†œΝΛε›©έΦ>Iˆft91©š±ΡΡρ{³­ƒhΨSR7gΡT§y,*Όz9EUAΈG€ͺgœυrΆΔ"¦^V8SΣ}ޱΙΡ±4Χ’σάΥνBYψ¨όš―q{6ΚΈŠ‹Μ/©YΌΦ2€AΔ›Ύ9Ιn‹*πΠmŽ ?υ Λ­Ϊmβ]cC΅x$u4‘γ”FΛάm€…e―ά\ίd+lϋ¨Ω½ΨD*Κ±t”(;‚έSMaΎέ%i;iβGX½«βΠαJϊېΣnΈήκ Χ•# Ko'#;Ζ}‰΅Ε ž` ^BΙ¬¨ήβΦ끈uΪ)("$ˆ³ŽΉ'αIžα±όD.½ΪfmΌDS’Ό„ο}#ν£Θέ ₯φ8 }ΫV~jΩ ½ΖŽlώΰ+^šA§ΛHώί‰ ›ΌΥzՈCš(x9N2( 7βγ¨JΨΑ©ά΄Y$βƈtžΠK|εώΝs1ŽΨSάιœσsiρΔ6Ξ©,NγΊΣδ§ΤΔΉΌηΩ†€ΧVε¬CSzDTά ^[τ€‡ή)ˆ%ξܞ€‡ζ=ΕŽμžεOξζΡ›ΫDˆΔCœιΘι ΫCNDNL+γ*ρ«m‹›€ΧΪ QsU\έ°-Μ¬νκDξ8jˆε5©8sύ!½m0ήKαVμψ~YŠέ)jܚΠαΈ.*#£?bΨηνh2-€Χ>λϊmι͎‘kΣΈΝξξπρΆνˎιέ;”’ξϋWξVxΪΪ aο5>κJ>­uθ¦’θNWL£0 @Β ΫΆ7Žx΄<μβžhu-|ŸTρŏτΛμ{nκm=― 9ΫΊ„{v~η)ΏsWΟτ›3$ΞiοΝνπˆoH„πρ»ς OΧ$Ϊσ€Ήά/ŠΥάs“›’½-ξΧΡ“V―β£SoΏά‘γ‘ˆΔ]π<Ε*I€DΰŽχΎMυU9οwορρl­ι'_ήΎCξσc±κ~Βΰβ8Γ(?/偎υžιQι=ρ€4’”·Ϋhkφ)Ši=ƒ}έgŸτ‰ΨaδSCΙήHΑo₯π­*§η#ΜΏωξ―aαςώζΏ^υ‰Η χWs#tιz~όΛgό;―Ϋ<Ορι(”? M½KŽsMo|Ζαq€"Nš2uκ΄j-Z·nΩ²•KΧ­\·jњ5kΥ*N™4iRΰΐH’%MžD™ReJ+]¦TπRζLš5ΤΔy¦Ι–+c֌ωsfϝ2‰βDš”₯M₯#6MΩ@'Τ—SWZ₯šU+Τ $ŸnE‰΅©P°$Ι’ψQ'N :„˜«WE‹ g!μh0δ%Ώ–υ ˜*Φ³HΕ FόΧ,βV>`άtΑJΕ‹O ­\ΈqIΝ.;k…X¦cž%+ύYλι“OYsvͺzζλΝ²Kφθρ`Β…Έj9μΥkbΕZοvΚ›io_œ©uώ²²νΪ&iSo^UftΚYΉ3EύϊUμ#uώMύεtΫμK›TOΥύΦω‡γC­άσΎάΩΊ₯ε7Š‚£λ"Œπϊˆ“½ΚΑΔΨΒΑLr€$ΖS*΄ςX+μ; 4j΅“>t𩣞Rο¬GŠŽ(šL΅ωbk­ΌSΒMέΪrΛ7ŠδšΛ!Cξ£εjϊ Εj`EφfL*)™LΚ­¬ Λ¬ \I—\1DΔHœι»»Ρ62ΝσJ;ˊ‚οM₯ZZs4Νξ,IΓ¬*l­0.ϋΛ„ήhρρ–ΰζ"Ξ.‰Κ:нΰ³K•*E‰΄ϊjΙ*•ROά‹ψ45‚–PTiFχXγR§3;γ2Ν¦jS%‘EμL—`Ν0¬p­ξ9 ΣδU0Θεq‘#PHγπ*$‘Ύœ“ΊGͺ΄B†Β”•L½–$*ΝEj  ―REŠρΉxωrΧ\nΈ€f`2b₯ΙΧ1“šΞOKiβ³0Ή+²©ζΕ6)Yd“<Ÿz₯QΎ2ΫDψ2šZbΆ-gΛΘE(Α#GƒΣΉΤjE`ΚIp`RJ T‚)ιΝ’Ήše¦tηcc`G>Y$ˆYh™­|GlpΔ€Δ@ƒ T=`Άvχi)‹ξ‘x„ ž.يΞx»›rΫΊ‘.Λΰ¬"%ψm‹#^κ%οΆUΊl CiptCP@“=Ήj)Χγ­hsΟ` ·Br¨ ζ bσ8iσΎ8œάΝωμ©ΤΙe”΅uvέΚάί%χά‘Όžz' ŽOJνZ ή]7•/΄i±š” Εμ ΐͺυ§‘Ϊώ%=>S*­Ξμ>nΨήPγΒwͺσQΒ²[_ EHδBB5q L$bmJ3Υ S*ΰΒ sgΑ/8!ΖΤD-ρ LdJΘ#ΰ…\άulŠΐ5―Η 5α“nζΣ t8Φ Ε@,Ž“5,Uv•Xxκ-ΑoœM@s'[ΚIΑR nρ‘Μš‚!ΠD„΄?tb=μƒίtΗ;O— mx〇#α5°j0ΫΚΑœΛmμ@ Tς°-ΒT ά6™(Υ :ΖΔT‹p’)n8ƒFxb©Α€”pŒzΓCζxMΥ[4‚ ‹pΒ ΨΫO8atuB-Β:%,βϊ£έ$“Ώe;<*Ω5Ύ'NΖ\βΦ%œe±₯¬iΰ(Ψΐ°ψb,K“kZI™\φ#IHDKf(DUT#A±;'­βΫw m©ŽŠ"˜J9ώhXpΚK`ΰ£­r=Κγ"ΰaΙηRηŸO5]ά`©S[$tAM«ΐΈXυhqCά9αM€τό<Ό©ΩBΎχ’σ'θμ„L˜­³γ$°.’†χŒžΦ'adPΐ KЎώ/j ΨLΛΣ2σQ˜@ϋ†ιΙ~FE‹φŽi’΅ͺ½I€\†£?‹†V£)NЁεζΡKXαjˆ@QLχsΈjuœsœ";Θ•δ1œΝδžωŸ³->.mLPw™ΐΐ ξβDGD »θE·•π‰Uœχεό₯&¨Ω\Nˆ3šw'θMW'Οbb-q5•+8αώ£J0D›Ξ$ϊΰ‚YΡMZDk@JςΣžpΓ¨€ρ£¦ΏŠ§ΒΙ  =I[ Q‘FC¬z‘ς΅”€Κ³§½‘‘Žρ'Α`(Μ»Ÿ Μ… Ό”ι„XΈ²ΐ +©Θΐ™Iρ”š‘ˆL±šq‰Α’ΰ*’πšž1Όϊ¨‘>4D±α Y€ζ‘ 4@ΈAŸΔ ¨λP‚γ/;ΐsB°Έ‘―ˆˆ³Δ<κDNkΖκ@).S[‹C*‘+C[Έ…Œ(±L@1 8R³œ—˜«h;t ;=, L1©x+•¦9 h›$―ΠσG‰ΚS `€8„σΖ$\EOΤ΄BΐqdEqΔ‹ .4@n ύ5s€5Md’ρΕ],Έ“θh‡‹Y΄ΐ’C1pμΖΏ+Ε½ MLΌQωΒζˆ€xŸA;ΕΓγ ;ΗrTŒs - K„ŸέΜ κˆς‘’Ρ…^€ZDCPξμɟŒLρtΌ³$Ο R‚ QŒ­ΏMΓι@Μd•΄ ͐uT›4.TΛέP U E T$«ΰ‚#Ώub_qq_r̎uϋΖ\“Œ ό‘¨L^t½“ο–“AΚQΦΟάVΎYΑΕf!ΧCY5\ΨϋΑ@WOKΣ?Zξ.(qθiQδΚ.•Ÿρ—φrbVŸŠ€aΞc)—žaξυ“ξπΰε]qbΗή`/w’&€jρ“Άbπ€-`vpμ–Άρ+?q/Ώv)h'NηxήρΚ~ιؐρ7—ςGLσβ.€ °q'ξp‘plv7ωxΧfΣυ#„΄ζΕTK¬=QXFΈΧ(­Š+pxέί~NΞ|Ώσ4ΙΛ~μ,Š˜tΒή‡Μ3R‘θiyr‡νy©υΠ”Ζž€)ŸbΟF%·βxβg—4hšη|i_βΒ8q’VVl €Ηe[_uΗ!žŸρέqbŸuف @ndxvib&φ σϊ%§νG¬l±ί|8i-ˆgΗ¦ΘξόήΆ]³VτΎ― .|ΐgaΩεΔ='αJV^…G9Oγο»χοχδJΉαΒ$Θ‘x€Θ€I“""L¨p!C 6@8 ‰=",Hθ°€–-xt!A Η– 8t8@€(ˆ0AΛΕ$<θ‘₯@..Q>δΙeΒ„+[Xΐqη„.= .™έκΖYΈKΎ†mk΅JζΉOΒkmΒy›νqž©Λ䢏Y»νeΜ±Ω¦t΄ΐyݜΉ\W ΑyŽ''ζyFd4Hρ– QL@ƒ©ξ§ρΠ~W|ΐ+ C62» ŠμρΗ+»Œςb-.ΖrkKς6SE ‰”sΗ7+P_‹*S σl΅‰»oΉμ²6άp΅Εk―Τ E­PΧ’Mϊυ·εΫre“MυΦcJ%Ϊ/‰vpmG¦ΐš@η&uΦa§έ-,^'ί½bΟϋYF0e™VZ -°l-€ΐ <`γ›§…€εaδ₯C›[žΦY)οfΊ‹.’9γ΅Fώψ!XδfNvNuι₯;πΉqm#ήξοΈ­νδΩΔIό”ΕsΛΌσυBO/•dΏ™l™Ρ-ܞ1Gx›LWvs^gηw ―9ŸΥr=ΫY yq’j'χ’ολvΦΘNW/ώΞΏ&{ΟCήάˆε΅/J4›’<ϋEοKI‹ΫδBs=K2XŽ"ς½ ;Ί Βξ„ΎτAL‚ΏSέΧΐ‡P‹_a’Ϋλ’Γ­=©6”^dΊΦΒΔy­jψbiξΕΐn‘ m™Qž·'šͺ2²β ύ»)bMyΑψ–]ΤιNα›RH@y=οΰy0ΟA0rΝnΨ­”Α―“šΤζXΑ2-Δ‰ElήνŒxϏKΌωασΠD.AΎ°m€ iω˜²±1 TήΎ7ξ`ηΫIXΰΖƒBƒά°~š„a*ΑΓ0"θ]h"Xr.ς#ύ$€Xς heΪrKbςP~ΐdω•AgN²˜]Έ$ωΒ&~Φ3δ§7@ΚP2‚ƒTαέπB/Ž|xZ;=Έ\2‘/„€ s^ΚωSDσήΤ³–Έ%Aπ§\,―‰H$™}ސžx@”€Μέ  ‘cfξ©X€ž PhέΊP ˆ(I06Ψ1ΉR0«˜ΜgκΛ_Ϊ΄)O{κ@q13ŠA|βω(ΤδpΠƒž`η*¨SZŒ”λ„NyP)3/J°F$Η―ϊ1ŸΆdB&b*°΄#=(Z’Π7.Δ–3€#ΑH`ΓΌ'DΧϊV,3@ι kXƒΐ ΈhJ p%8†­oόͺC hΒ ΊόͺA‰iΨ €JΈAY: QΣv–πΔ&–ƒL(Υt›@<ޘb«J„d/jΓ™’gr³Η3frj•Δν!₯išΰΡ]Dξ2ŸΖM„pKeηήδt°.lTε“y˜ϋ\Δ`ŒΘ¨- j^‚ΰPΒ'bZή‚:ΰΌ=/<%cK%Ψβš˜Ε'+߁šΧnqΐD^OJP9Κ—ψ'^@’ΈθAθ+_[bΰš}ο-'κ σV3XEAP_τ8£l±aΟ@’\_Ko}Za·˜…xσͺˆ^ά"³`‚:1ζ[ď ˜Em°Š^|βΐ@4a G0<―@˜&:Α«ήw2D&a?#V ΄ΐD ‘λΒ™ΘΕ¨a‹6ν’œΖ'«„[ΠBΆψnΠ‰U8‚ŽXN"\|Λ0‚·ΨΔ',:Zδ":tΞD±qΑm{β?&v±T[Ό|–-κQp[œ°Ε*h½^\xβΈxη'v!q―/`Αž°εkΩ ο‡υς|wΣ΅nΝ•zι}™A$ ΚςΞάιlΧΦ=>}―©β³. .εͺvuk–'ΈO$bŽρ 0 '4αT·₯Ρ#uΰΫΒNΠEΩ1‘‹D}Τ3˜ABξ;ζ1Σ:Δ]ο-p!qͺ/Bm€Ε žυζbψ!vΔ*t_n;’€Δ.‘„‘[Τ"ά‚E!X#ΜΒͺ±ΩΒΝ@άHŸ€Ο`,ή-}‚-ά€ΈΞ@ˆ-'ΜT€Ψ-Œš-}B/@ΑdX-ίΞ‘έ™B^U^QmžQα IΡš‰Υ`Iq5OYΩsُmρΰη­ y—41Πy aŽ‘^χqαŽμAUίΠ ”…Η”™Ρ* hŒΤ-iΒΫ­˜"ΰ‚E)˜€ ΒωsΠBΗΝΒ¨9Α-ΨΐΚyή¬cmœe”Bh€ ’ ήΐ> ΣzΡB$\€ θ$Π‚ ,Ψ'ά-ŒΧ lJΐ#ŒB ίϊ--Ψ€#τŸˆ‡E)Βκ•-AΒ, Φ„έ¨έ |-(^'ψΧ –&t‚Aτ^·Ω $δΧ&(Α@ΰ;¬.hΒRυΧ'ljByaΒ*”ζΰ\7‰!΅Ϋ—ΤTξ`p,PqΆˆ!λνΰ9n γžΡlψ†ΈtΝΧlΠέ|αBuΠΔΩήvQYξIΝH•E/κ`Ν‚EεΥ&Δα °έ/ίA^Φ²XBΒΞ@ή\„­š°ΐ0•)μœ Ċ9DT„ιΪ¬Y"··-G#pB^Α)`Ÿ#Ξ&€βE’\bΩc0Β* –\IδŠγ―}+~-΄Α+ι"›Ya!„[\Φ'Ξ‚Ωΐ-c¬‚&\$χƒέ’@4€A|‚&€5ah N*“l%!ŒνXπFΤ΄ Ϊ€ΛΈ]θ­M;JΙλ™>βwX—-δΤ­ΩΝ,*ΑLΨ"Τ‚”Hœ¬Θ άΐ#Ψ‚"D@V*άB-`€YLυ‘ZΩ ΄AΘf"(heFˆ)A-["π!- –@Н‹5B‰Ψ ΰ€H~DE’@τB$¬—"δΥJκŠ] Φ ˆšAdbτέ@>šΐΨi6Β&ε1‚οΥ`m€βΕΤ ˜'ŒVίΉΨ8ΑΟ}‚.8ΨΒxUέ-ŒZΣβeΉ\ΩκΡnΨ[ς]c‘[*’;ςe"Οm€[Ί `BΗΐ<ΒΠ‰aζW)ya·­Ν:)ΤΒ'¬s˜BLMX|‡) ZbuBΏ•&Π‘)XTEΞB-ŒBLA'θZΔΥ-½RA½Ζ}‰έ©5έ"Ψ"έqfε‰-<„…Φ)Α,xβέΒ)Ÿ1. –₯)œ'hΦ pB ^V'ž~I€Υ9}2‚&°Y&θyY€&ΠHŽZY:"-( (ά©qΫ'δΒ*θ—>‚ͺ%ρhγ—\LƒJa8z[†Fθ;ΞΟ…"DζΑYΣryγFU!μ±SψΔ‰vθ‚a^Η,ΐͺžŽy€κq|MjD„ˆ)A D@`ΐ \@z-Ηx*Αφ € l• lΥlŸX€ \ΐ-Ω@8χg*ΗoΔJ΅•η1   Hΐ―F€«VΩ@"lηc βVa hΐfβ/)AEqŸ-Ω'`‚9 ˆ`hb±Θλ.b²ϊλEΤ Μ@½:@l @Γξe–EΘ<Φ Δ—VUl ΐ&hT+©•œ•ήεω₯seκw₯ή*αΆXͺ2αΛΆήUR!•γςxΫeπX§¦(—ψ˜˜Ό^&\έΐΐ Te‡œ¦‰ΞjΑ-βδK=’—‚YΕ¬†|Ρ€Q₯°šxΩS)ΤJqΖyΤœŽκ’‘:€y Te’’‚ԟ`XVXA•-t™AΑν=ι&,¬ώi‘hΤJ‘-Ω”_Μ€Ηj«§ΝvΣΧ<ξ’7©žΎP­NͺΕ¬ΚrήoY\b‚–Ί`‘χDΗ› S.hΏ‘Ο@Ύ|ξή}ΥΥ·rZ­ηHα.X9ΐZng Z©‚ΝU’Ήοv–m(Tζ€iΘΣή Σqkχ­§ξΚΡJY―έΐ "πGΩξΥΡzφggΕ©ΙŽΒ₯ •n6it …ŠΙ7JjΛ2O5I(‘YnθbͺΜΖlΙ,<Ί,[’Fκ’*u͞(‘«–xΰΝϊ0 ‰†:lΠT"€Ψhπ`Τ.flpBh°Ωže4€υ¦Gκ$T ΑQhl°ή™­ΩφŽ…€εΌQjTN!)‡ΤbφΛ…°…ŠΛ^ξ££”d»8(qΕο\βPGΩT.?Ο<ϊRs,°ͺj‘λ.-žΘκbήΰκ…Ι?Q>Ι£Uπά厍/X —g†lΝ:qwξ―ε₯Jξypλμn^Ξ2ηϊ¬·-PΎxΙ8ήρ¦–κ ²?Gͺξ Žθ3L'Θ.Cn'Tπz2ε”ΞΎΚ΅@‘MΩο12l²χρύ2Ίˆ£αΨ€―Iς‡rqί<πu˜('€μΞo‘ι1»›όξo©‹Έτμ·!12ϋoρ€3ξp*+(§¬ 5ςkέ νtΙ^ˆ^2b‚1mΒΓ ¨IFƒJŒηsΏ₯ώΒοΚ°eˆ*Neσεβo9ΈόΦΉ΅Ρ1Ο η3$+4”άrT³#Ÿlδ:ύ¦l=j±t1UuΙΙv@p:CΗ·3kΤn0Q±q`MζφsGt(2”PƁΊ46†s!ΣΤπ~3[Ύτ3σ1M―#³7C΄}κΎ-YΩΙ‘(bΖϊ„47οΉ`sNσLC΅Aλτ,kξΊΨ[πDDql³=ίKJ4OΧρ;²±UŸQ~uU1=»²O#Η8σΑΰΒΏy1:ŸΠbrγύBŸt,-Ρ^‚Y φe :f’₯N5UχZ‹[KΧρ“ Χ璍[ͺ Θ^‘F‹R^3΅žlrΑqd/ΤΈs#KcuθΙ `‡υƒΊoΝv5:eŸ !›ήV³Ά;Κ3σΞΎ2`wςH³Ιΐ`‘%θuΰ¬ζΙGΟξCθ—φcqvS6Μ 2ddžm6?'SuOΗ΅Zχϋφ>aƒ.sp›5½rŒήˆ“)­/{t‘φmqͺ3ο qŸ7-+SJkυYc7l@P“8’aχφJO*/xΌΝσ’rB¬F ψήqPϊo΄—h¬J°«w7zͺnKΈ—˜ς—θ%,Χεv/¨QΩ›Ί”q€«4­Xo#_ŽpώZ±z?4Ύοy(p'hwˆθ—¨Gλ'KΈRl£t?λΠNτUC6m―ψ–#Rjws}»φ; ΉΟ7šWv7UψƒΖ±¦B³1iρ$/y»κΒυ7_vŠΛwzσy4+±1³r„Λ΅–'τ=_ βdy…ήŽPλ¬%-4Qy»ε‹n1‘² χΉœ;GΡ²%ƒφ/£xpdxyΟv‡Ÿ΅H«z˜GIF”ϊK›1rJMYj3#ϊ†>ͺk·ύΤκ«gϊnσΆ4³ΊŸͺ’³ΑτB/γ9Γ¬Ϋy‚”ŸΙι%v/j_£›™οΉv7²ΓυΨ 4x'sΆXΉΆk8δ"ψŽ7ρυ¦ΣV7βͺŸΠΠFΗΙgίy)y‚@<ϋOΉOη·αVw”‘ΏiΔ¬₯ΣΟιβzœΧσzsyš'ρΏ?²˜πF€_ή9Žϋ[XKLΖ£γ’Χb§ΙœΟ»ˆϋM^/Μ’ε;Ÿ¬@n‰ΗΉiϋυ…b³Α;<œ«9w_Έ`«‹―xΓk|ͺc;ΓΣx™Η<»k”ΌSrˆ*΅aΒ.;­|&,B$ϊ΄dΥgϋuΜOϊ˜λΈΊKΞw7@gsΖ[»£{VS @Ž€¨ƒGŽjs’že@…€”Μ ‚&L_Wφ<°ΑΥ&3Ύ:;€@A_#<0#Ρ Jr #τ8 ¨—Ύͺ&Fρͺ‚$ΐ‘νΠοNΔΞ>€8μPΓΠο1*‘ΔΏΕB0γΒMΕΙz±―ΑξbΡ³ΈnόŒΖyμ‘G#Ϊk±G{ΜΗ»€Δk ΤTcΝ5Ψh™-ΫpӍ7ίVι€IβφJ2H…&ΰ#p 8π8BžΒ‰%πρOApβ―θ\„Έ%e’Σ*'ΔΓ/!: %ˆΞžΘ―‘΄OςT‘\˜ “ φ›Ε‘ %Ο–,ΘΣK―N=(‚ „1D©Δ¬m±ΐl<Η‚†ΔUΧ_kL(W/ΐˆ±/¬ŒΗ^7λ•X‚rΆGΚ’X—ŒmIE‚sr(k©eΚΫr»₯ZzeNTΣ„K₯-V€ζ˜ƒPa<π˜Γ Λ* Ρδψΐ ξZ΄rb“O2=€€62YEh€[4ω€ ς zΐ*%2Ι“GόSβ“U>α’NrQmVŠΘ* ωdF0h„“U0αN G0ι€e±E+GΑ€E@«*ΰδ<Ζκ)€(³Š†QΔ@”Q|€ΰ +Lρ2hodv±jΫΪΛ²g1;nΧk… ‹YΫ»Λ„₯»YΉγV²»iΚξΊy΅ΛΡΠxD“ΥZ[e•Ψf«άάΞνΝ5v…γXΎr=́|γθ_ΰΈγ9Œ¨@€ΡVd•Z΄šZ©M+%0Ήε<l8Ε“E>Ρj‘M„gD+’ޜa–Y±₯—n˜εψY4Α€‰Mjω„―Φ†ƒNvιΰYD{ΤxρΤ–σΉ[‘Zδδ €O:‘!ϋμGgOD"4±ΧlβD ²ΚH!/ŒB^ΨΟ-xαx!I,~³‘ίψBΌέE„E"]Ό`Τ8!‘ΕG’Y\ήώςBΎy&[GΪ[ gŸΣ(brœhΝk0W*υB7貜kΪΕ%Šεt¨ΧWN#:ψ .8ŠU»Ωb€D.Ζ€ŽΡιΆψΔΤ ε†}'€N"rα•ϋέ`»ΐ4‘‹)αN2ΡP„(ΰ›EΐYXD&j±‚6θ‚TΒYΠ-fΡG«8‚π©@CP4NaΗfS$@ωˆE(a „D#ᴁΨB‰$Q‰°μh-9’‹`ψ+Ρ‡ny܍’΅p„7zΦ0‰Β·0D1Ν4¦2o΄­ΰηIAΌΕmtAs‘Λ7]&ή͈4#¨—–9Ψ_£3ˆUq ευ1iγ)Ο'脁ύέBγaΒmΩXΆΰΞ"naƒFδβ ϋ.4ΈΛ lΓ»Š'n± Ψt@ ΄ΰ&<€,ΨBJλN&gQ©9&“«ΰKP%8a¦4½fšS©¬’VB Ε("αƒ ŒPL‘ŠΈcύG2ηSρ’dβeͺG]ˆ^4#8¨‚ε0N§WΥvΛ–».p!ΔΝ™λJŸΫ’  磆t‰sΐμ˜C‡Μδ AAšGΠ[|l&₯“y"ş\ ― ςΔΟ‚6‘ˆN.Œθέ q  €j' °d%γD#UΨ₯αqXγ'B:Eh’’yZchu€1ς:3ΨΊzNOp“ μ‚Ύ&ŠV’β ž„D §+ˈU.aΡκ―p2ΙΠΝFΏT–ή¬ΪA¬%—q-o s8­­>•2%ΌX$§ O”Υr±I+mz‘MΞqΣ­«Qβΰ@ψΤ€w°RΠ“9°3`!ΐ œ€‰\4Βαα vρ;Eψ† 7ŸζG'άbάΙd1>ΡΠ’ρΌΕ @ά²E0Β?7ΐE&²`ƒϊΌΣlEUaGi [` žάΩ'Π0Ϊ€‘‘².Až‘έ’‹:injƒ ΫZΦ²lΐcΑ$•ΕΜ Ÿ`ΠAS­‹W‰I$]‚WΊΞ\ζzmTšυ–ͺ"Τ‹XγΜ6fΪ­mδύX€Ήš²šβ¬iW•Άι9$ϊWPΡz/I–β9ΈΞupβ ‡ ”™uςα1¨u],˜ΐ,aƒέΡβbψΔ,V‘?ΤΠ¨rB«ˆΨΠβπ9ΐ"ΎΥλS™ U >Q Λ}Β{GkΔy”ΐ ε­OŸ|¬βjpjΩ’Z*­|`ζJ!Ÿ+γŽQ½g]1+»jΫ‘a’ϊ]νHp6‘Ώ #ικE!Φv9s€$!@3lΈu}ίL”΅θ’ m¨4₯Hwσ›’σΡbζR H@¨ΐNςc+„T @Λ!5ƒ0Gΐ h9^nTΐ@°Š@bΒς“KΔ;lΑ©ogα4³Ωΰh”Ίƒ8Α”¦Τ Τςs¦@)Αν& ˜ž†SOςΎBfΓUΠr;Xα‚Ι Πΐi)aJ [$-d ΌKzQn]šΰ$dαΐο\ΎφB\…=2αrΑ\„άΝ“(皳†λΡε —€Aη.(6…ŸΖΎ2€F-€Rt‚N‘N©2EЧ±‡Pκ€žΈzwU& ΰ—€€NX—–?Έρ%1ρ ό"œε4XώQπ”7ρ3ΒL‰_DVΚθΗOΠrύήόx₯:Ό4܊Hx:λθ0%ό 8!B~§wΠ+ΜβΔΒ» οζ 0Ά₯]~γr’D\2ˆ@ο­°f«Žb©β@ ⊐bkXΒ%<„ƒ"(h(v’Mΐa”Ύb)8$dXBd0@( $@κΒQ ΄t"-ΓΚtb ’@v¬ϊΔ Zΰ)$ƒ%ΝmπξαŠΔ —j†ϊfΌ¨0ώύ ―…ζoFΨ/ͺgΊδνVzΠn5‚㇀(J0n­:§›΄d5ςΗΧ/ύ`dπΖ .ά)F\BεtHόΟͺΪ€M"₯-”‚οBd–-ψB$ΰlβΌΐ$ ΝPό βμ»ΖP γπ …8±¬0 sD‘I†2#ή°Πύ|ΚK0 «ιβ:ΟJzΓrΎΙΖp £‹p 5@„Ενΰ-‰Q ₯9ΗήHΠZ½°Y‘/€Δ―j±1ΞοΧk1ΟYφβ…γg`C6Δε6pcΏjΡ‡ pυOΉ9C3\χμ00ψn%μ‘'Ρ ‹—ψ/οP‘©6γώ‘ Eq†^ΗΠορσXΓrΐ₯ !ν ³€γΨθ ·π&ΈI£ ΰ L² X €§!\ς$%†hςΠ"²ƒe £P'O™€γ"‘q ―π ρ.ϊΡΌ–ˆ ί/)Β";#ƒh\τkγ:—2ΠΆ*(Nς$]dn,€&ΐ ΐ,³π_ΒξΨ*o%%ΆDΡ Ζ’.]θϋώ-ƒb8ΰϋ23κ’$Γ/ΧΓBΰ,Γ2τRΰ$J’&/ΆςΊ¨%Gͺ ‡1!)νŒ)?Nα~r=£W°Κ'νB}¨Ύ.ξšΘ…gaΌ ΅ργ1§8€v³ 4 €΄€ €= δz€~S`Ά P8ORCN­14ΐ$ί2d %SB7I`UόΒ+‹Σ+Ρςg’΄@;%#%ν2)ιƒzμ΄€ ζΣZΐ$#%Ϋ5ο­ χo©‘uR„ΰb—V±ήžΡ!s„0’qύπPZnςŒ"//5JζgΎ]€δšr7z£›2aΐ‰νΤ š E8C@ :€ Zt³ Ύ€Šσ&{ άsΈ€PβVŠs΄³;  % ΐ1˜/,†HQZ’, €Άΐ,όΒ$Ο²8 Β%—b9ν²Ά HΑς$'`U b9iς7ŸT €t΄`=™”%ΐ’ LR঳;ε‘ϋ’εNŸΙ„τ6”@α2^€€3ε*n€j3œE5ω”qdΞ‚bί¨j‡šDC3Rs6’›lqDK΄A₯«@$?9 Έ€ ΄  ΄€¬4ΟΤ>σ3xΐ>ν³9E•KC@KΧ£&@T· 8€:ΰF΅ Βtj΅<€€”:'J΅€ υII ‚sTΡtHΐZ{ EC•T}S8ƒu 5U³”KguUΐU juδsMiτ˜uWσσLS ²u v ;—U8νS7΅` Τυ.αΖAŸ2ί2‘ΚΉ²NΥ(#σ(Χ7³QO'_‘5Θ±*­jqΨ…DΓ)ς VΞW_UTwτ,έ2;o4[9x  v Ύ@9{  B` pΦVA•H b•Ύ v@f €KOrMί”.ƒsFI "h_Vi;  ~Y€_I€€΄>ω5WI΅ D•G\Ε6fIH€~• ώ² ¬Ά>ΐΔ–L•N{@ ΰΤn·vG]” †vk >=`k—6!ζa)b9«pOw’d 2Q―τ`Α°rυΞ?B>„R@17„z2*Sƒr¨²5mCrΑ°²<‘Ip±aVrUbS΄ΐz mΧΓ>š3e­–Φ΄;v4μͺ:ωŽ-φu ΊΤn_φFŸ΄ 8 j=ΐEW‡wHΟ΄yΧ³jw JO#['b4m;`G“3g9 Y©7w ΰUM2V£vm»ΐt”€n9`Έ&”ΧLςFWEMwΤnΧsb5N·ΐmσS% Χτސq$a4ΤoaΛΠ)=cα:qP%φOyρ‚Χƒ1ΈΒ"+'#MΘV77ΥIS%γ%;—5K5`ί‰θ6X»€`WaR\u4m9ΐo%T•J—M ΐy#` ΆMλυϋtΣo#{ΰFβUI•ΊJ΄Κ·ΚΒ|{`E•l·T ~Β‰ fuΈΤ4m₯V=­"oWεh΅ 6EyoτvB}αh»€ jU„“ E#W!5w‘%w%r=†#9Rο¦PΧ6ϋρy3.φ„9T#…Μ@TD!pHΞ?ΗWC  – Ψs]2f5JƒuŒy v˜x{χE%ΖnΓi…Hoτ%νΦ•£-¬7mQ‚€φŠ΅ΐ  V™GŸ4J €8ΐj`ˆŸΆŒkW}%*1πxHx΄yˆ=ΐ€εΨmυχ|WoMRimΩ'κcHwτ7ΙSM»HyYuδ½ £s 5Oyqtq'ΦB7}R†5G0ΠOGσrνΒ„c1sNWΘΒεJ²8( %ΪppE.λγ9εσšχўqτ~η—oy`h—gK•GΩ28­Φn“Ψ,°8F‘7UΩζhevm#ΐœow΅ χžΑXl³κsEέφF=` <œ?υ·ΰo{@H΅ͺ»ŽeV9zw˜€χͺi‘ϊ^υgΛxwiΤ/φ΅ΆUQSA»ρƒύ3’‹ς 7˜‘!Y’·ͺ½8s'9;ΉšΨΠ*Ux”3υ£Q¨—DΪ>L6k΅R:W‹³‘3XΥW€σΦ7/1?Ω`“σlΧ,vΐYmRiΧƒ1qU8w]I΅Yυ_ρU1`–[λ³v₯5—:έ²‹•σ|–™5o9`p=€xy WΣ•[ν3 oΧ΄V©½4Έ`‰ΣAΡπώΊSορs’!ο4 M‚Γλ25Ω―)9bv  PRWγ7*Υ6RW£ΘrF‘AΣs/Y!*1άΙ2ϊWι4?±ζ.zNƒ$-²•G‚1αt¨£Y_³³d™Β$Ωb,©τnr.†D9ΰTΎxn K'ΰΓΕ9šΐΔ›³J±j J·Σrηt5W(«Κ/ˆRΛ;@αο…‘\"ε›!ψξG KS™,z 1:ΏR—cqΝc55œ n„7C―₯₯LγΒ}BΒ$³U ²4δ2;«sJ"Nη&Ν³«ΧΜλΌ^—τJέ3YΌ3—p!ΔΌOαFF83ƒχΜQ€œ―Α|«ύΡQ9„ⰁH©d±1u6AΦD?xHΌ*Iθ†œ˜άpRβ:kό’w<ΧΊYD%ρΘΦ•r;/Π·Η‹ΠΠ.- η½‘‰(›Y {Χ;˜ΌύTƒcΧƒ1‡ά’BΓ»² ¦ͺΌ―ΌBy”?gšBφΨΒXφf° 1^²8u}؟ρ‘ ά•|E'ό°WχW ύ/κέΌΔ(•ΡΨ—άN{ΐ#›ƒ›άΘQ Η±iCΘr‘€D™Ϋ½©‡Ύ½ΐ7…όνm"ΓeθΦ“V―“ί^$ν ‡ό0έ1ΰh"Φε­3uεƒbΊY^d)3‘)ώΌ z4λβήQι›°7c@FWτΈΎα·έˆ~C5†ΓΣםΙ₯\„!“-f>.L£ ‘qS%ύŽ«8%D¦Ÿέ3‡΄ΖCtp9€0|π΅f=H‹)Δ–"γ# Ζμξ°ΓΊ90λμρμ;€Ζ…‘ζb{^Ρi‚C’0ξA TοΦ ’>\Ψζ›Θ›Jρ1wίDώπ@«=σί=!–δ2ozΠεByJ»­f38ώ+vK(Qs%¦†κϋAdb3Q~1.°'lBZο?Ζή“W„½Τ ρTκCR~―T B&ΜDRžŸPPΒ―π#&€αdqa’Pψd&FoχŽβ4n2ϊšίάZύŠJCΠγQB~‚P@ϋœΟοΙ D8!<`ΐ…#JœH±’BXάΘΡ"ƈ;ŠIRdΘ’()~¬x2₯Ζ•€μ@Q&Mš8uκ4‹­[Ά‚κ•ΛΦ­Z>gνδ„S“" gJεΨς€L…UΐU낃1:ΠZ°‚‚. @#½bEϋπ€‚dλF\p6nƒΔEπ€ΐGF˜`† λ¦%ˆV!ΪB|y`D +P]Α [((ϊt…³Ž ± ’1΄ΐ˜BA6lp…lƒγW!ž…jγ†B7lΰΉΑ€…o­ ρAξΡΩ)4~¬5υνts Œ$F#<@ϋ ―ΒωηW¨.?Βώ˜u–LH4p°ά@2xC|(ρΙ T0€{0δΩDΙy4EU₯bIΙ•Έ‰(±HβˆRΑ#J 4cL )Β”&;ρΤΣ-@Ω’K/A… -JuΒɎOέX‘‹Nπ4„Ζ\ Ζ\IY€BΕWD a”‚aL•σq5› πe—z©ΕfW2΅‰§0qK"\5±Κ,«ΠβW ­΅x)W‚0Γ#W WbFd˜(5Λ'J`B‹N«˜²‡<%ꨴμ€Θ ΰΔ*h*'«$Ίˆ¬ΒΙ,‰z .TΙ,N@Α'‰EE6h‚ .Ÿ`@€#ΈΤςIY¬²ˆ­δκ’³8’΄PͺΔ° cΟmΔsG5*ε?ΝG2Ž˜4I--]’fŠ4₯O>ύ$δE"…d8q$UC_U΄H_aJ)’”•₯LB€nφA Α €VΤE`€`³4<¨‘ π=ί•PΠnŸpB³{Ή4²Θ#LD dΎŽ7XΝΈANΤ‡8ΐΥ 3hψ—UR€AŸθ’I6( 'Ά8ςˆ $?Ίಊ޽€Α&ΐΠBA‹@²I.˜@βΔ όԈξυ²H#½@‚Ι0šT &›Yf)'ƒ.βˆŠμΒ$Ή€Δ"€‘ 8BŸ'h±ˆOμΐT”[`btM`^ωh HΜΰ· $l „\|‚ΉΠ„†ΐˆY`H[ R @$0Θ\°@Μ?(Α Ό£!  Ÿγ: IA£πXζ…JŒ5•¨ΔF!‰­œK`’@'θG mΔiv‰”†¦5ŽMDH“Θ-2NJ Qhp<š“ŠvG6Z€&]›ZO¬v5]ΕZK’p€7NČ™£#G( œbB)(†Rœβl“x(A S˜A(…*'!ˆ`₯(Cαh@JU†+YP₯%Φ€Q–²@ Ξ2C%Kœν–4°%Ja 0@κ΄huάC ΐη{ΰŠ#θW­}%F 8ΩW³Κg‹YŒ’X¦Β…&φ‘ΏD ΆhΦWά³ p₯|Φΐ F­δΐˆ’E³Έ’Z`¨nΐ'‚pΕžΐD/rΡ,ZΠΟ i ‘‹§4™˜W2Ρ Hθb{p & ϊ`λ\iΦZ ―K\ωΔ&8₯S%:αL]œΕ‰η€xΕ+Ta‚¨Β\ Δ!Π‚TΌΒ`H‘ Wΐβ€8D“ Š=h 8Αq]τζƒQ8‘£πΒ£(„Qᣆl%Πΐ%tμτγDœΦGΑD#šda΄4˜@F}¬cE Ζ‰Mπh'ƒ R.raΘ ΤβHˆRM2Ρ€•d±qt5JX‚°A‹OΘτ™ΨΔ”p L\˜~ ΩO‹κ Hd–ύ(&j± Λ*žγ"rbliώ‚hC,R±W¨BŸc€*b‘‡@ΐBp,`AδΑ°Θ‹6ΰo_΅ΰ„ph&†QΠΐ’x‚FA /xA>)H‘2‚%¦€‚D-’ 0mD’νΩa+ςΨ‰L2#it‰ΞΒ6j‹„€°‘‰LΠœxβΦ‡ς ‚²Ω¬%e’Υi;5΄±‘v²Τ±„•J1ΚRlΘ“XšNΑK€! “8%¦™&,ύΰeθ₯)ͺ„ J„¨˜Κp ,Anz ΐm\p‹ΰ·.–b7L[˜ Τ#pΑ8τ‚„ΆX…ϋzρxκ\RB_!₯^FΨΰAx§@;[Š€jα^Ρ €‚ ν-v‘-Β)^aΎ]7 ΜŠΊ^―6QΎDŒQ1ˆS¨0„ˆ­",Ψ'αΏO|ΚΉΐί-”pdκNPšΈ"hv€(3E8Β³MjΙ P˜“ ‹ |Ήm€†‹WόA²H CpΚ―8\‘Š8‘ Lp‚£‹€ΊW-«„*αθ–IΒ €xpBθΧEΜ}μ±ε6¬δ±ΥΓ„¬TNT•X»Υ™£λχH“ExB؞θΥ iΑkΞε(Ώ^hK;£¦Ϊ °-΄°„RŒ&–{3Hš”›ΫS@ΫΡ–~rπmλ™νμžΔ$(Q,•‘…@ύ ™Š% ΰ/S`I ΈΈ45“X!\,£m` Ÿp˜ ±ƒ>"g+ΈΠ,€+)$¦ƒ‘;·Π°I'aεσ ·£b·² €Σ Θ{7U>Βaς `b•S«{3ΐ^όT&VQ+&€β«°S… šP*N€ ;₯ Δ X2/΄ Q6NηS·πZΠ΄(@π †p†0±π]k ͺ`©`m°w― g†ΰ _¦ °|Θ‡qΠC>@ ’πW7 ^°Ev%™ωG4ƒ‚r(a|0²F£§Q’"°—zNΒ‰•Hz›ˆzhzxT6ZΉ—k„$$Db‰Τ+œpNAl#‘‰$ θ‰s!Κv~K`L°]ΫΖ h²}λ‡6†c Ϋ6iR8?ΐl½”\ap ­–³n€P8Σ„±τίmσσg=ϊf)9gεS8L(š@ Έ+A` ΅!‚,˜Π 5P!΄ λ1&‹  ‰AOγ2-?T`ް ϋ8`΄ 0u£όTB#hΫd Ή6ε,ΐ9žCž@ c>FL ώ!haM@\‘-ΰ§ 2RΔ€ψ˜` 3Œ―ŠŸv#‹υFUqj·(Έˆ"³gG3ј)‘‹@‹½ΒŠAb ΊπŠF‚$ΐ6‹Βφ5%‘X¦%fZ―΅L±Dΰ]“€s~Κeή%θΆm@άE Y¦pK`p 4@ΜγΧJ°T8È&¨` Rή•&ν6oζΨn:gMΠ ›€ Π(‹ΐ ·‚›Bΰ ˜ Ae*2¦ (C΅š`‡”œS .… 'ΥζyOΒ„‹ „H· =6u\±κh ‚ A± „ΪΩ`ŸP #8 .Υ@uSš`  ΰΊP€Υ€ΕKP@8J8?@Xžc„ ϊΩ+vœσo›ΰ%Τ ›  ˜0LπOθCyΐ†~€†`z rG©@g  pΆ±Uπ 0ˆ Uω§qΠP s ’€%’2•P,#‚¨7œc %ΰ,–ςs„qF‘Τ"zZz‰X’'Š€xX†™j/{†εH5A‹:a ϋςšΥYˆτkΑ6lrX,™7–4 4γ~“` e J²40?°L”ΠšΣHJ€ [kž A` ₯mεeπ:΅Œa°u«ΦCKΑ\")Yh+Ÿpž,Zˆ °0–’•˜ ‰π€3Nπ ž‡L Β Ž’›ΰβYΧRΆ5Z!R£Ÿ’Γ₯²tΦ€Ff+˜°Wΰ€ Λ:. ;1.οquο©DJ4Ԛ―‹ΐ‰Α`[ŸRΓ6€ 7Α  ΠAL5šΐ^А±#»4„Žτƒ1~  Π ΐ-`‚ 1°whfnC`H@01€π€‡° MT Nd\‘Π2wI’P ‘Аœχεz£Θšͺ©Ήψ΅΄₯vŠˆω‰ƒΊ˜‚IP³±‚T5@±YšωY[Σ ž0ZY gK4΅IΠ&]£DvA1 qΦD0)œ"0Οq uƒQ]rC“b?ΒΟ‘‘B O1a’ΈŽ"&[\1ΧΡ%Β)[‘ λẜ22'‘›Έ]1O]ς~ՁΈQˆ8Ί ΒhrŽ…©sΊΆΈ»74&Jδ&‰ΫΈ!°L¨DQ7ΖcΆ3&01A&R²Λ !2σq³Gͺ Σi°P+ΐ ρΧ’ΓQ!Ž 0B|h‹eΫFy+¨Ό¨F3‘˜t4X|Z6G…ŠΆJ3hԘ’ΙΆ˜₯k½ΧY›Ω+•ZfΫ<σF!2%U2~C°§‘Ή ρa'’rTαΊ ρuΥNA‰Ν `‚  πg1OQ‘B  ];Ό4Φ±Έ<ŒΆ?όΓ{!)>ƒ?L‰Ί{9–a N§Sϋ:MPΫaZqVΜΖS<?œΒRL‘τ 1>€ΖOLΉ+^ω…?‹Γ6"Wa–Α0 8†“½z3”;ΐyΑ£Ή3k^;ΐ)\ΐ¦f"•|Ι‘™#ŒzΑ„·›|s»’ŒT?§Α ,xkg’Dx;ĞqΌσΕx!^a&žzΡu!ΜΡΛ+A!ΜDΜj‘'h0–‘'y!ΜΑlZ“AٜΝtW!‘t‘Δ7„ΝbΞΰάF•±ΝΠΛΌ}·‚‘ζ|Ȟ"Ο_\³όzα1t|Μjμ¦eΏυ,5’₯A&-p0P’ΔύQΞσ,jΜ7ƒŠΐ­–Ι›L.R4·"š|¨&BΑ9‚+¦{πX ··$‰΄LβΚ #t±c«Β+lΡ)d»Σ1-<Φ1&VάΣ)1Λ)ρXA»8mΌ5mΣ’G\ϋ—F}Ρ–%μF ΛHšΰ ¨²/έ$C²ͺlNφ5 )­Χΐ2˜ƒŠj " pMX“ΌΒ±Χ`{Ι,rΞušC㾘αΥW½jα‘χΡy-Υ|ΐqlΗφΣ‰ΕΧ‡©Ψ€Šq-ΩlTLQ¬ˆΉp ™™Κ±(,/}©3aΩ<"w»£FάaΤEL~zΣeα8<g|8‰ "³ŒΡΓΩ¨ηΪh„ύΚ»<…©Ψ“£ίέ@Ϊb+›L‚ΝXΞέβ ΤFΝβ8βɚθGEγηή§†šΙ”Ψu”I³XNσ3P3²9‘Φ>Aήg]Ϊ›Zœp{΅(-*ήΣ€1120/A›1ψj@|`ία Έν1½‘Π+jΫΞΌi=o»½Œ» ›Ψ!€;Πϋ!œΦ³'œ2%Χ¦7Λ1ό(ΤNFΉ=Fς­η#qβVννn]Š8Mβl4{Ρν’ΐ†eξYάΪ#±)"»$¦lι½  ) |ϋ"‹΄ΨΦl$ΧCAt1021% %1YΚ€~ ζ,?π14π­tcȐ9\ρ©€σά”+Ο©ΝτZ.)Tς…#Μ ?@ΑnΚυ"€ Zn'τ#ΏP%Κ%τπο,`«4π8 ±Ά€> c« α:7ξQbΡξοZξβώΧ‘ˆZ™%„ώ˜W<Ω&aθ«§˜Ϊ–Υ#=ήfmή˜ή•κοήξ"6?|P₯|@ƒ }P¬ξκ°ΎΘTRJΜΏ$e` @«j³n¦$ v‹¬‘e`J₯0σͺδI·4i’JΌΤI²•o§πΌ€š¦nΣ&[kc΅΅6°ϊ²…"ΰ]²e ΑΔ90  dƒ2Mχ €’αφ$α€θηUΡ ΆγlΩέ ΒS-Q ώοžΩa;ώo?·'Φ\Φεο6žήK1|0-θžύ$A[¬ώƒ…X” Δ‡ΕB,"ΘΔ'Ζ‹8° €I§– C!B0@,™’ζTŒ§4˜,€”%"PTp1Μ©–e€Π8UΚe)YNMRͺ”ž–‚„  Μ)0¦,aˆPκT–2¨€9₯Τ(‘@ U“a±T Μ’*x`@ lΠ‚$€^΄*˜IΡπa‰ˆ7PLbΖ‡7¦™ςe̎)O€Y93βɟ s­ΉsiԞ7}Ω²α׊I§¦ψςlű蝷μΪΏ[ίξνΊψα¬ '?0ΐ"MΡ=uZ5‹­Z·rεκΥ+Χ­[΅ΟκΤ‰S&M™°-zψΔΦΏs§X!@ŒB1 )t‚?Ÿ4ψ(DθγˆΘ°ΰ¦I‚‹€Κ(Γ*(0₯ J‘€¬‘&Α0Šœk‹Pόᔦΐ(…†¬( C”S~0‰²xπ”žςϊΐC>0-Sp Γ Θ’Α-²()…¬R&!kKtΌˆN>aΌl0₯―XA&s 1ήθS7ωΠT³΄4ί€―MβzcξΝίβMΞΤξδS΅?{ΣσΝΧόTΜΠίPDΊι:±;πΈσ<ρh!―<τΤc²ΠθΔ³·PcύΤ(BHƒ 4NH°>`AΓ.ϊ`SΊΒ€S6tς‡²,‰Κ JΩp’IΐΘ`ΣζΘ²δCŠΒ+Œ3*c’2ΒX  SΐqΗSLA‰‚RΚ²\jEΐ$”ψΑ0š|’\)1*,°"πΔ h / jσ’ ₯Ν`γ₯θL>-P7!†Mβ‰1cΞaΜfΓ΅?CΈbŠ!³Έ6Ζ:MΝS‰S„.MΚsτΊμ΄λn»πΖ+“θ4Y―Ή‹Sx0 A6ϊ㏅ €˜5²’Ž`°Q " T€}*Ι,z-%Ά Λ£Κ6»,SΤΕΰ ΰ}πλ§β ―›β= ­iΔ©ΰ vSΦo&ν€^².ŒΛ9LfΙ+‚ h£–5ό²AL"©gΙ@^N9‘1ΣνcΞ3>T4”#}Ο‡?ύœ²ŽK―3bΩ=/nΈ4c—]εL9‘Ξ:\²ϋN—IΓοRNpΦ™YΪՌ3υΖΈ‹BΨ D ¨Oγ >^H>d₯5κή£-V΄δ©θ ”³Θ Β”RΞ§ΔAΠ_μ z*C©Ελ&"XRύžEr±ˆζŠΫΊ’@‚"πί)>#Jτ$ 4pαLρ‘uω(rB-˜07«Πφζ„_ά"r…9ιjηNμ†Ζαα›ηΓήiu”YξZw™Υ=†7Π“Xl†('E‘ΗΎ{Yπ΄#©οΤΜR.‹'v֧摆tCt€ƒΌα i(ANπX±α²rC d5ž` ”°„%–`0ˆbaPΐ0 `]„-Ο Cp€0f: )Aƒ„!IKQW%ϋ†ΑΠ@D”ˆWΚ0”αmαγPΙ(©K””˜-mΤ” ₯_-GHœΐAJΰ a.2G@"P€|όdD ϊμOK£ωg†Μš₯±ζ[#DlRŒV©Τ`‡˜mž&6–α]z|W˜iηΔ£Y₯§ΌΡ6Ί{bτπΟ--8c:«$HŸ°iYƘ‘ˆ=Ξq¨9ΙB5jQB£ΝYC±Ι$GϊθDzRφ”8IΡ¦ΘPΒHΤ£I+"S”ν/ΐŠ” ¦ (ΜΨL$–&4ΠΤaΘξ”Nδ\σˆΓ 4υδMίΜξ‡η”jfϊΩΤhβ櫇ig&’OHΙ¬xφ\…yθβ 9l bL₯MDfυ€ˆD@ifLΣp,Z€ 4η"2αΜP° „)E8$²‹ηT„2 [jΪ`yŒEδ"£&²—=i*²P‚•Θ£ ν*ι*Ίƒ΅φ8όδTWΓ1Ω&ΖΆθWkHŸ±nυ3Qtη(f<π¨5‹΅ΐ…₯ΪΊ―θδSbcM'^΅Κ< 5ΨŌEτi6Z! 0QKlaΫ‹šq*7 +Ž…'L1ƒY“»ϋ݌K—:»φuΆ{0S£Œήm"ΤA+.na [t§”²™yXœRn6ΖΘ»QjνX+š’έwι―Χ›±11ŒΐΪ>/ηΝ!+›aΞτΟ+cXvŽΜiΖ #ηLρ½fdhˆΧ%šA=d3C3hδτSΌcύgν"£ηΠ±ξΘ½Y³š…|ωl3ŠZ~ηqiQb―υxmΕ™₯ιβU»7Ρό5[œHΫέX4’j΄‘AM›ΩΈ2C›‘₯6μT3z¬ρΡ³Ά΅]‘ΰwuŽft·ΏΙθwψ2¨F·aΚ]8T4‰Eu‰P²Ϋ ©Jm7l'΅9ΣD8ί>Ω8ΐ˜Νή»7©κuƒGu›6ΨCο~G \ΰΜ'Φβ,FΌ _?;œ†ž“}‹ΔψžW΄"Ο ΑV½jœΤΠN X™Ί‹’2©σ:ͺΑGLh(Hπ„€(²€ίp9²H,•C‘Ex„Ή€Ώΐb€0dFΒ›~A@hΊ˜Σ;€‚(Ίό! ;'œΖxÁ)Θ ‚;Œmd‰"€”)X–i*ΘΘ3G2ˆΗ Œžx›3Θ€) ƒ  ‰ŠͺiΑΕ#‚θ—Θ!€ϊšF‰x$±Ι)θ3‚ ΨH™Yΐφ %ΐ0!’‹€„QPΉXˆ3˜\Θ™HΗΐ‚)©¨ΘΌ’(±g›―σIsR€d4±Ή‚*9ύI‘šΘΘq4*ζ8ΗfY€)XH±‘3Π~l!–γ“Λk8Ξ1™“»­*«ι¨λψ20Σ…ν°…μ(³=ζ ”i559“ ΐ€,ΈL°€»P €»X*hŒDːžRœ'€]ΙΑtΔ€6ΘG¨Ψs„NP%ΈΏ ¦E0&£RΚΤ‘°'ψA˜ΈΒ$ ¦M° Έ6Θ ˜€ΏPΧ΄€Έ,0ΚtMΑ'P‚½Α€Π„U Μ΅€F˜Π4€8ΤΞ] 4€h?πΜ p€ ΐ,Ψ°ˆφ@H Θ}£ρ“*`F Θj$+ Θ°AŠ Ԉ”­Μ hΒ+˜ Ό G* 2Έ©\·}μΗμitςŒΑ ΐ‹¨G Π€Ι€ ΐ€t π³ ΟΠ, xO”8ƒlΌˆGΐΠ”ωNΨ½ΖπDSΰ—( F­”Ι3XHUά€xΐΐI ΐ9t€yāˆ?°.MΏeΔ@ѐ ˜R΄:΄ΑΕ[ΒΰΠ½RΕ‹́φ3-lQοœF Qm!)84ƒ Bϊ`Œέ2Ή°ςC>±(E°8΅τ2ΆτŽ\°π°”KιD”< ™Ž‰αΨ½ΕΔLNNΐ8“œ¨Κ P‚&h&`'0™γ™RI0ΨZ¨Žυ€\Θ…S˜…Ύ€„[X…[˜–δΑ[€½½1L¨–l„[ΐ…Y8!EπΈΰI>aΝZΰ„ΡΌ\ΐ„ zŽζϊU–¬€Z€π„eGΠ‹M°ŽMxΥN€ΛYΨDΒΘ„M0*e|1 Έ30ƒ+*ΈH ΐ‚Δ‚ƒΕ‚*ˆ˜Ρ10ƒ`+Π*˜ΰG3‡UGφ"ƒ‹½Θσ$ƒY‘ΝXƒ½Ψ+ΰ’z”€1¨£š²εΈΠBm!ΈX2ΘΙ Έ(PΖ+Π€ ƒΕ) €e„Ψ1XΘ) ‚Ε»‚85X–έXŒ‚ŽΜΖΌP‚Z ΘyŽ[XΧΖΈˆEΘ…δcWΗp&5Τ™&˜42Θ0XˆέXe2 )xΏEXeŒI €GψGˆΕ‚ΌΘ‹­GΑ+ƒ(¨H–΅[ψX¦Y YΥΚ‹­Gˆ‘uΪΈεΚ­$ϊC‰‘Υ€j³Šα1Κ δ)λ˜\³T0»…2Λ_;=γYΣβ΄4σ0̘ ˜EΐG`Ξ°ZPL°–­ΦΤ„tΕ…UH½jŽςω„Ξlƒ]ΐ X„εδ„Y˜τ₯LˆΝFΨHp[˜W’…GθH°U‚Θ΄κxŽσUΏlME€ίΨΤ ΠύΥ [ψΦ–€ŠB»D'X„]Π’O°'°ίΜQ‚Mθ„εόA  -A₯ΝOφ€ϋ ΜI, P ΐX DOΠH5XΠJ UJΘ€ϋŒSύό6UΌa2Π€*0TΕ@Y )Έ[HƒΕ(ΠN¨ μ?ΗΫΐΠ;”έ~ °ά—8Z8T(8ƒ)Ψ€ €+ΐ‚wœ‚vX0–A €Μ)½XUΌ€DΈ…Άνœ‹¨€σ-Δ@B%LΒe3¨₯ΕΫ+xR­œ@3ΐΥ}ΐΏΈΘ₯τl!,8ƒXF)0”ubgΜ€½ιβ) % ˜‚1@βψ3›yc%€CΤX3;δ=ήͺγCΌόΓHu§ί™…AΜ΅νˆ™ρh«NˆM™&«Γ=„³βŒ½X½Έ…Ύ°|f]ζ΅Βτg ;Ο€OΘ…NΈS`I'ψLp–ΌZM²pZΠMΠ’όύΑΗXŒ&‹…=d΅EΈΠόMΈ θ„Ύ Έ…„NΝEΐ^³Νή“ŠŽ6*ŽNaΏ”EOΠL¨ ΏI‘l€―뗐ΊI υc^^P‚ƒ£€* P±»=\.Ζ€œνε1X–ΣΆ‹ΰγ‹ζ£Ν*¨”}\C5κ& §&‹GJ…)ζ°:φ(€1ΘI¨Nκ’&€βΊ‹°F &ΘVD0‹€8°b©€ώۍ†dj~Μ‹ό©RΥ€»Ε‚PŽSgΔΘe<ƒ~μ—+Hj, ‚Ό&Ψ‘ΕH‰-l2‹έHέY»ŽΑ2ml‚έΘΉ)ζ~QΕ»f…ΡΓ"KΔέΡ‘p6+Nθ20³· oΰ=..’K& ’ ΫYθ½ΧU­€Ÿ3HΐGpLxΨƒ±ω„UαΫLX„z…=Ρτ Fθ„ΑΘŒ¦hΠ¬ˆ,©κόΑE ¨π’>i½PiΉ?x„N πZ`IEiά³ζ4…‘ξL€hq}HP‚‹0i‹”Φ’ω3£šΓ›ΜIˆκΌΝIœΝΨΌ₯Π‹ڌ…m.ƒ‹Ψm‘‚τ$‘Πp)ΞX`@„Ντ|ά1Ψ™ΘΫx|γ£-›2Κ±·΄ψͺ½ΌΈςΉΩH xkΐ^H1Ώk(Ο‹+ΆO^Φjwr‚/Ϊ;“Κήη‹E€dΦmW0«z3ι5¨ƒ7tθνŒ,fZ†)PΒ₯g<\¦½HΨm²PJ6OܜΤ;‰}ς1Θ‹γξ[NŸ‰@Ρςξ‹tνZλ4Μuƒ6EL»μތà ή59^έρ@ΤέλθέρΖΤ2Sžv9μ&”?’lo²Πg‘d[~n͟ήSόK‘:€ˆ(EŒFH°… Ί^ΨΫ b,Fp`p²H„ZΈΎΖόΑ@€EΠ…δ“Eη΅NχΚζπ ρt‚\θ Lθ–T‚ΆM€ΰ °\ȜUψWΒ0xs„φ%ŒP!O ·ΖΚuk ύcΐYN‘ʝΖΑ­ΗΈ]?3π³œ-μ˜$ ‹(7Ναc ]Zq$©\΅&Σi€τ7ΞXD°IͺΞλΛ!’Nfεδ4ƒ‹δΗCΕY/έ'υγ1€a20€ΎH¨6±ΙΗ2*Ο>[€θtQΗΈˆ5Θ…9ΨμC1ΑΈ]H4uJf)6ƒ§žΓŽτρZΖT2Ε2˜‰{€Ηœ„νl‰% )Xu₯HgD@ΤήH±‘G …m½ξύm9ω&`Γΐ֍gΖk<_°vjdΗΈ/γŽKΕΤeΥTσΐ'VU7ϊ <Ψ-^ε- °P[θVYόxj€Vτ¨Ib3₯™χ!m€ΒΧ…g=œM°…MMFΐ…Ό¦βŒπ‹p‚[`ρΞΔλΐ„‹πμΧ„P¨lZh„jL [ΘHΠ€ˆOΆj9 DW/0±΅ͺ“.LΩΚ„i€…Šlqrdc1T@pΰdrœΉrΕLSΜTs&RΜ`™„3TΜ\!0‚η•3UAfL• P5p€† UxΘA4ι 6`ŠTΜ@€ΰ­Ιl–@“'χκ= ΰ‘Užf πr¨™ ΌΌΚ™1/§¬$ŠεŒ”œ^{f0 ·Aƒ 7uj€ $ˆπΰδΉ>™ͺ€·ΑήάΊ0F(–(°\‚LΜΖWƜκ²ΈΧhΙd ²ls’O)ˆ²•ΜPȈui`μ˜1T€ΈjJΞ —©€Χ€·qέϊO:Ψο~}θn¨[ξ— ‚Ήυ%ΰ κχŠh’ 'h8 -Έάr‹-ΆτKˆBΛ,rΒΙ…ŠΜAƒ*Π „1h£~rΝ°ˆ Ω0 &A*#J `ΐ `U‘ΈΕπΐˆρ &‹(2ƒ`r—‹π–Hxπ- ‰₯&Ÿ8rƒA˜l -Rgm¨„ffα#8I,β%-=ή $(ΰ€AŒ9WŸΈ©H&Μp^™lΐDFZW.ε@•S\!E PATHaκQ1Ea@qΕQ¬Ϊ€8PAΕΜx’\ΉV±«bD¬° 9ΒTœ•½E±gΌu€m3Μrː>`@R ΒT+E»1Ea†»RDΐnΏQΰ`­Άvfh‘t‹‹…NtKδ\NΨ’QFΨh0Ε³#tuVP€€ΣL@Ώ^R(Β\ΡSx¬Ί;Ό@±kΆ8lΕΏ9¬z$ΩΚZμ"@°Tΐϋ/Ύ/[UcŒΛŠ‹#Χ]{­Φ¨υΧW)’Ι…vΒ!-†Ψ‹.ΉΨb"Š*^˜‰‹­ΩψšX—ν΅ΨdOΜIΨΐπBxνG1γ¦κΆΠ^žψ˜–Έl'Ac"CΚ†yβ ežΉζs•ϊD0ΡI&Ά]υ’α0ш-w=€:Ε‘³Ό€A‰ ζΈή 1%ξy„{†ΐy‹€gεΤίδΠ_β LφΨSL<_Όπ['n€9ΝΈ„Ά9‘ #/ψ―χ’—\Έ%ΟΤNΙ³ ώb 8pΦrΓ;%(βwWqP9 ΰ ΰ’γ‘ά̏)Κ2Ÿ¦²€ϋ-ζΒ±?'|LL‚:ͺ€°91ψRΒvΕ Qπ^ ίΐΏέθ$δacδ·¬ρoA[&V΄ŠY0DΆΘE/δ6·Υ­+ήάWD‰m‚DτΟίάΰLΠbΧ(61Ρ΄F aœ^ˆ€ΖΦ`W‘XlξΌ9κM7Œ»Κ"¬¨‰εe3’‹ HΓ H(°P ‘ΨηΈ€1ΦOlΘXhpψ//βΊδ%”!¬?0$ I«)H‘•ΑΒVLNΩGL2r‹Π[f€±‰. 4PζΖaήrz›<rP °,/ύ1ζ^°IΏρ#δP‚ ¦”ΚFpΐŒΖ₯€qϊΕZ΅l)Kι?“\…S˜Β¬`3L”HΣzAΨ7AsΙb`’ KubrNqYkˆΰ[€ΊΦΕ“τ‹Ϊό[C7ΆEf‰œXΕ;δ‘'F1DS¬β9‘7ΰ‘l •θDC€·Pΰ_#ιΤhͺАԏ{<&³Τh­½,ΰ™}Œœ1wϊΘe\Šΐ Έ€8šJ(4<ΕιΰΣΩS7pι'Ηv"θu+”-w ξ₯ύŒyZΗ%,7 }ζΐjΤ·œBZάΘVΣ¦‘HδτΛ'―κ ŸjFuέ)CP ά€¦ͺ?΅κTίΒIi.€–μ€ ͺK Ξ$έ’ί" F·zM΄f³θE9δ!A1n%:QЬˆ6Mδ ˆ¦,ŽτςΩ”Š/…=τZίΗ[?†Ξ“ϋI\OͺŸ]*HBW5δT0›YɎ•*¨όOΒ$6Δbu―[ό“ψ΅qώυ±ϋ±\I€ΥQl§*+sc$Υ#…λ²ΓΕ-ο;^o*BΈ©‘Iu£5qIΔ(‡Ξ"(JρTŒ-‹Zd:ρ5ΈΉεšrέ«ξR¬?φ£~7›©6ˆ~ΔΐLμΗ Hΐ»r.5ι S©˜‘Ίe\(ΖNγͺΛ5ϋ‘ͺ‰o Q‡ΈΘb‡{ΙΚςw΄\³°‘£¬Ÿΰ ΔΚ–9aŠŒφm v0H#œ·*KΩͺύ嚎uCβ‘XΌω!™y3α-f GiΖn’7φαεςxz―Ϋ‹θͺœ±*ύ$ΎU(JΊά²Υ(ΎΝ-ν…mό΅ ΟΓJφ‘›‰#ΑwYZ+P_φ|i@Ÿ ‹Νh‡< ·/3QCHΫHΛόζ-ώp‘rξ#IμRŠ–ξ@ˆ©[έh^[ϊΠZH΅‘wmGύ:Τ—#UJ°#άsx}Ω$‘œ„—8Ά&Γ2ιΔFΰ žd`Φ .0Q4t§βcnΐξš™―Š>ΠzDζ―νΫΘ`χ™gΝο(CΉή€]g\vΈΤILν‰άΖΰΧΒVEbžσDΓyogΆA'½$0ζΖyΈq2ύ#š°ˆ6ήΥ–4Ήaεs8Vπ—*si2ΜάαSA …ςD`’ ‘wNךλ|ζ¦Z*σ<·q;κΡI±ˆ1ΕmΔ@Σιθ„Nδ$›Θ5$š<gŒ@‹—O4±ι·¬σp΅™‡x'7ΰ'ϊχ‡ϊZο„ίΈCΤp‹vΥΈXpG_ΫjAJxΨχxˆqC!’OΰE YHε€:Ε‘ξ@©L2Ι7y¬/]Ζ gˆNG“ς*κέMΰΉ¬ΖL‰+_ ’ΤH%Θ½ 0:†N,ΤζάύŸ…Μΰ[_ˆœΌΡƒŒ AΩB0$Ϋ@’„ό°m€ [`bψΈSI#p'ͺKk%ˆyνΏ†oj€a£ ήΨ8ˆ“ΩΘ•™‚ik­ΕA‹ˆ• ΐ%H Ž€Ζ`@"έB(—€$¦€Μ€ ά0RΩ@"4—`B'(A(„zINŒ @ΘA ‰ά@¦Μ€ Ζ xA@P…˜^Μ€8 8\0A"ΐΙUΨŒD™tψΞ]Θ•€ΐ X‘DΨΐ'ά r‰*‚Ψ 8.p‚(AP€(Φ9ŽhΔ ΞΒΦa€$‚¬ΫUά@žΰΐΨΐ#\ŒΨ€\(υ‘ŒŽΠBέ9Υ‘΅ΖΞΒ έΐ#F!|@αΨ.` v=βήή埀…Z­’h €ΰ’!\Y’jΨߜΤΦβi™Zγ©–ΫΨ‚kΝΝ-$˜έTž,Λm] ΐίΑ©΅‘-€H”_-άBF€-¬-Ψ‚‹,Β‡άBέaB.pB6¦K\H šœΛ#„)Μ‚)Π‚'t!&¬BΨΐ*ΰ.xœ¨ί*ΤΙ¬ί‰ΤB'P’&˜H(lιBϋ8AF}Β 0…%ήΕJ1‹f˜Ω`γ,pBA`-p-`Β8Α(θB- 4&ΰ½]ΆΙE"€9„Jb‚τ0Δ‰°8Β-δBŠΈˆΝΥ‚šβ'd‚iΈ-Β8ΞΒ*l]‚-hBFΊΕ…LΰαQ0nš+Β"o₯0nZΎ’ΖβYζ’Ϊ cmˆ1zY‰€V^G&^6ΩoρΜΐE@α?ΪF_$Β.ΰaΨΐα`€ &θΒΪBέQLŒΡ Τ‚&όcθ@δαͺ.ˆ.H„&Ψ‚XL²ˆ\1.<Β,(Β"μBηά‚&ΜΊάfέqΒ,Œ`/΄ΟΒάEI,@Σιd.(Bμ`&>Šδl‘ ¬_A(Α*h‚cڜ.@@B‰X˜@J &n¦† ¬Hά-4δb€ ˜γ"Ψΐ \…#0%Ih&˜B (N‘τ]k"Π'dB/(AC|γlp‚θ\[v\Α}MaΝΎE¨m•%α†…bhΰΧ_–YΞεΪDœ9 έ΄Z„Iΰ°±Ϋΰ Θ†¦€@‚)˜€F0‘τ$EτΘB˜£Žbί*,Dο}Ž\PΐC:Bd@j@‚&΄αnή(ά¨`-Τ‚₯άΒ&\…kΞ–ΔΑ((&x ƒͺί,όˆD¬.4Bυ­δ&ζBάθ.ΐηΡэ.!M-(‘|‚&xΒ-” xB€&δΒΩΝ.€‹œ^ŒAΨΒυ©'ˆ^œB€ŽDώασΡœH€~‚'^@JƒζX'Μγ\dΒ',Δ,œκB|ƒ²L‘uVΒ)H­mά‹^¨­β—‡ΊeΗYΪήΫZ.ΛZς– Y1rΩγ…H2ž¨«]maœY¦Z.”\0Β,(•"Ψ(£ΪipΙ"ͺο™^j¬‚#Μ… !έ€#tB/H$°ίκd’¬J•j]Lα‚Φɜ]¬|Β"<εy8Bp‚D|€&>¦½R’AΠΒΫδ‘ΔTΜ'Lι@#άιB°η*dΑ#τ)VτήB§mϊ!tΉ,κΦY’RΞF&,Dΰ£™˜†$ ^ΘΕ#xkI\…ιΙE^¬ΐ œΫβΡ*΄ΟIx‚ͺ‚ͺΕΛ–J­z‘°rh’Ρb4Αe~Uc‡ς%ώΉh¦V_“1™…Ϊ.Kθ”•Υ«ή—IΤ/~(’q2֎šΧ4άέ$1F-d-ΤEΡ‡Μ²ΫΦ–ί90zάDξΘωx€Y›N U•ΰΞθϜ‘Ξ―™!ΤΙθωžπbq}^υ0Ÿθ0… %QŽ_pŸθŒ^aΓNθ@B{>D†4*θΐ΅τα^ξT‘B @0 IϋZμ€Œ‚ͺΊ`@ΐIeε›&χ²ΦBΤQ«₯ό^ήΥΚZDY˜(χͺ½QνΨVΘ…x‚U‹#.hu.luqΛ2lmYŠΖΪkσ–ώέ—KQLεИ€ΜQΜεTiŒ°K^X7y·σ΅ΡΛv[yW )]ρtΐIlŒvRt›Κ/{΄GCB .Μω·υ³Ž5θν8!ω MIŽ0Šχηηe k‡-΄Ξο3’²€θr+šS㝆k\Sc`ύζφ…#ΰ"˜mpcυQŽH,Λ2. F]ΡΫξV'ά†ΟvX>Φz―]­7―5 JdόZMέza·’™XLq©˜UΡΨgΡ”ƒ±IΣ_1Χ%α^q‘ύψ²ΝΘ!™Σ²!9`YŒ“zV5ΐLΈ…ϋ%)‡xΫΈk ΩΎωW)ίͺžΧv‡Ρf₯ςnλjπ,BU―Β=πQnυQΊ8Œ―‚'ΜΦΦ•ΩΣςβƒΖέΒyYYœη—iΊ%ςyznx‚([υng2ΦΚν-'5Τ‡ήYw-[N­SG»UH„Ήšpwcq3XWΓ–£?:†0χD)—†ά¦Ϋ:ύ’2{_² ³ΧΊIY†až^HA‘%”ύέΎMc”‘8+FU³΄Ϊ¨–V―8,3:Fa³ŽYΩl¨r‰;h /{ γ;Ύ“xΏ15‡~œΎ΅ͺWΈ$ϋ§w;ΦώέI…υ+θp·’#·UbpΫ²X»vΖσ6Η|½Ϋ/Ύ₯TPΗΊΎ7SΓͺΎA0 k˜¬wΝν₯ε9ΗU{Θ;ΆΘΌΏΊΗ5ΟwβBIP­κ:K»Ίϋ:‹;H!‘±χo…hγ‘ZVwζ{υ²κeŸΟ|Υgh ΅œŸώRν§9Ωκ—8ΐη{z)ώΧ‡MΝχjς·βxJSίvͺ z₯[Υτ‹m«ΟόΚHεΗ=—u£Ίw-ΌψW£QΜ‡{œDƒ 4x‘@„ 6|°AC‰)V΄xΡ Β…rμˆΡ ‚‹" ’,£I”BiΡδK™="\9gN‰5'*ŒιP'Θ›kF8@Q&M™8­Z5‹Z·nεκΥ+ΥZΈhΝκτUSXE‚Rδyΰg Ο–u{0ν[Ήpehwa\’eυ‚Tˆwn`΅ ΌΈ²νΑΔ*WΤ»²/Ř=n¬sΑΫ³‘&Υδ©ιSZ΄¦Z½šυV­Ρ^Αjβ4φ€Q†œ]^&¨—6EΛ–eς˜δOΰh1χ-ρψΛδ0ƒλ~ωηςΪžλΜ]'v‘‡™Ώό{QϋB£H•2u Uj­\¦Χ§^ύ•§°‰ΘNŸνχnNιΆoξ7ˆ2<š~Λ©ΊG: §Ÿr«Θ?κ΄Ο6ΕζZΑ…Z".™ ΜOΐ™<iΑθ"D$ 2i<Ϙ -ͺ©ͺ:M+fqj•°2Y„¬g1(»λp.G¬pȜLτ#ΣθA •,i»΅žΤ-/"1 0‘6ˆ£ˆxτ!Ξ¦r ς2aͺΡhΉΕ–6­BM΅V‰―<Ψd³mΚ½²+ΟϋŠΔsO‰ϊό“°Ο­>™dπG+34kBŒΘΟ-#”ΚLεJ± κ¦Ί}Ά„7sG/ή’ΗG~ ΣΈHy ΕΉ₯ΝcΪ5mΫψ‘²-ƒJQ>€;§y½6©B{tUΉ[Ό_ή+Bω@ ˆ#ώQr ‘ω‹ιb’‘"@².zU2άσ’’Θ4€oȌJΔ’ˆv]2άhΘΙ[}δ@΄Δνr#W„μΘ]ΚUŚKes₯2ν22JΪΰ‰ΟxΒj’ΚΐΪd‹[ /g<­<2L€α:‚  ep A €€ `<θπ²€ΈωοŒ€κV'΄Έd\ QΦ(Α Fΐ« ·€p€(@ν87ƒqL π€t€( §ΘΌ-ΰ (@H½5βm σεA °ƒ4 |ΐ/6)–1Ž«, :Ω€šhŒZΰ 3ƒI Ε‹xΡ*υˆ:Ϊ‘wq{ΐ¨-p1z-Y#EΈ<}§WΎκI6eh½­1/4έDΧΝGι-0X„‚¨&Ο­Gζ»Ε,蹊΄‰Ea”Ϊζυ$…x@ ν (Α8` _πζW@ = ύ-ΐ~€$ΐF "Ό  ¨H‰σQΨ=d€ ιG‰“R‚˜τnA:αωρ£φΓ G3ϊŸ”֏\˜€MC9RΨΕ/ŽΘ@z ±Ÿb¦j€.`S¨n4€}&QSg>΄½Λ 8Πš2τ.% K3ι΄Τw°ŸC±ͺL ¨=iZχ ̘”–)§οz–Ζφ½«,S«·Δ©; οœAQ§3ΡN=k=Ή0β»₯h’t˜ έb':“] ΑO"@€l‘ <8ͺvK‰ ΅ΥFνZ'r2€:ΰZNΰ΄δ@€ϋΔIz Κ%^{?€<ΰApΣj\1z/”2ε-I€ά „€$θAˆk\ξή€x•.@i‚ί2\οά<ΐp²ΒubtΛ›Vw€%k@z@‚,—;H―Ω…κvΐ ΰ$ $Ι`τŽq!θ*` ―7­€ά#ΰέΰ…Έω/"@‚τŽqΥ₯ύ€ΰψ†Ή@oy)Αβ‹D$K]PιXϊN]Kή”C‚˜—τΞɍΟ:ΓB£ΛfΆˆ£ιμ=AKŽtΚJž^3»ΐ….|A €IrΜƒˆja¨ΰΒ΄`aμ€Οnζ’ύ؁6χy @j» .wΟ\xτ’»°Ψ.”mήΒxΰh-\”ΰ³3k>󹓝‘ΉΠgό“Ο= 1μΜκi€n³δBΆΐx ˆ&6mi@j!­Γ&ρdέƒΦrΐΝ}Φλ$-mΨ™€‹΅ήσΡ] •ξA’ Pk-μ άή΄ '“cS/τΨ΄ ‡migRΰŸŽhͺo³θ8“ 1ƒ·ΐE/F΄Ά<7 π Υ[hκ σΦXs:Μ0YζΧdZ•Bζύ0R(λ)S4‹fΊΠ¬ΡΦ‰ΝΑ†ϋΈ_Nβέb²τ#Ξ ν…:ΊΗ±=€ΔgΩ‡Z¦±%€¬9πgΥF вv@¦I° /Z‘mt\™ΪςφωΌ]X¨+)}λ Œ0Η†φ΅Y9ΠcθY ν³u£hX»;s ·6ΊYˆO »Ξ%B@ψI+€ΧφΥyΠ…4žh4πRΨJ€]@78ίψz` ‰‘IP ¬§W-AOΪΧΤο4΅|άg:PWΐ¬ζ=fx‘ύjg.ΐ‰†Χλ u)ΌτZΩΆ0^W?8»ƒ3γΏ8Ό¦_Ψuu ϊ@YΪ8ŸεŒυ¬K–’GώΑlYτΝΐV~Ύ1Η'a:£>Ώ*ΘρFԏΔσc¦{°χD”,zΪ^­χŠ$ά-ΰΞώl Z‹Šl*’2-ΞθDLμljι­Ν•6­Ί ι$ΔΰθΧ2pΔ<ΰ:ΠΪΚm °jH©ρt©ιvΰίlΑ$jι΄ vKβH λΗŸ­ΰ`π:PΗτκ6€‰Α@ŠθrΙ™Pή^MSKρκ:°’@m(άm `―ΐ»ΰ%ΞΎ(Mβ؍ΞΚ™"`ΌBΧš-­:M `Η Mΰ8pΣxk°ΆoϋvcwόDΙΦFϊŠ€₯fH8EY>%TЍ|6«εΒ&΄Έ{ώζ°ΪƏ¨ Ϊ¬J˜V ϋ Ο"ŠŽ―$ίΞN°ΤΆ`‡Π–"―z+ΠΠp¬άσΞΞτ€Πθ@κΨΊ€—B©΅τlC ΰv@μ$€θΚM Β*“ϊ₯<`7ιΡpO ¦J;pœ) I€~N "€αŠ0—Ύ1!ͺHv,O’h‘ΪNqHμ1J‚κ A §Π~VΒ‹~ν m P¨B ξ‘€πъ¬.Z+— ne­πž±Σ"0αz $―ŠŒŽΈΞ.;ŠΖ@ϊ€.ΒϋΠ)wά#N2†ϊ)²*q'fŸ&Η%CΜ3Δη²lATί/‰ψcV'ή.ΚGh x-Š‚*»„ΚΠτͺՊŽ·ΚθυŠνΐΐ+­d ŠTλZ-Μjυ Η͝»š.Σv`ؚn¦ξN`*w‘ΩΈ`Ί,Lx:ŒZ'ΐp― @›ŽΑŠ.Šv χΎ —T«Θτρ‘Έ ως0I μ¨.Σ&’¦6RβΈξ,μ,‘ΧvλMΪx@ΈRλΕZ-ήjΚΠΤΑΖ°Δ†&aK rŒΟ”M ]Π•ώΩL“κΚΉœ―%!δ±b2ϊΨΕγ¬O9„sHΜE^R‰s‰δ)8apr4JγMΜGΜDη'Q&‹Cp¦‹{#asΊή°ζ©ΪN-ΝθΒͺŒιΠ“lΉDjΔlMΌάs‘ ­d±Ρž2¨,m n­=ν>oC>χlυ”‘A‡/ΒˆΟΈΐΧBΰ‘Mή*t R«Βnν0Ϋ,ΠΟ@'Ο†ΐ¬ͺm΄ΟNxT‹ξΣd«Aσn¨ρΞ’*t‘‚κΣπματΓΚo £°ΡΡμΐά¬τRkΣ‚1΅>­@’Ÿλ9D7ζ%-ζJ ‘°΄F<:csο:©‚=΄σύ^Ž,”ˆ›g} Š&€ƒΰH‚κξƒ8/Ή + Α^I*•q‹< ‘¨ βk‹°R8/¨l/ΐ°(6άKŠ&ΐ8 +)5QχΚ  ΘO±ϊλ• u6O½D Љσθ缈,5Γώ(π ŠβΛΏβ ΑvΝ~όŠ,vΞ«πκ.6ͺˆθ»5ήL "Ί¨ΈΜ‹“–Λ‰Žk 0•„k‘RP£ T ‚πŒŠιVΓuV%hbˆ%<ϊ0]³Ο›ΐt$ƒ3œ"'G•“L7‡kΑE¬"žΤ”5Ÿ΄‰}HΛ°Ž*/KςΪ~η¨°jVJxΊΘ’«~Ž<*€fΙΛvz a±*Ωκg’ €Tͺ :j€: €†Ης <Φ~Œv„«‹„ «d©biCΆ‹`‡~„§¬lΦbnOx*ƒ(6£"‚c#‚bω abp8 §‡aI*Ω°ΚMΗρPOx<φwBΆ₯8φ‹S..ˆ…rˆ^±e&rCδ€L.,¨!ΐgβƒlΞΤlΤtMΥM·”\ζ†% "‹ΪDπ†u’+ΥX Žιb‰ΘSЍιn.FΥ-ώ–œbu‚ιqΕqύ&η"χbήhu°pΩΘȐI‹ ΕX‡r5Ζ(*χ6πgpV‰wδθDˆ§‘hΧp4&‹:ˆšp·š`s”B‰„ΠLL W^“σ›–μgΒV%lμ΅sς+δ }ΒG}18ρ‚γzβ]Gώ,Q€VeSrdI¨&).B(}IK‘ψ*~¬γVΤWnͺlXž,rΧηxΕ—leX₯^€―…’μ;Y₯0,e:ίΦLI£*nA¦—*pžΖ†Mωε8 ‘6.ddΑ4V²L°4ψO*Έ]KCtΔx %J’„#HxΓTC,d9uΒmαVf€’*j¦'EΗzσiζζUό0cqΗ%‚ŽJ„6vοƒΎV<>Șξ&”Ψƒ5.*ΰŠΖΟ" "@#’-–Ι&– 8Ύ˜pήr~Ό("œXjΜh N‹$8Χ‡ŒίxώZnjcƒnJ2±$yΛ–…ƒR­S©‚'΅3‚ύ5ώ˜x&’o?H‘)‹Ή‹«Γΐq«κs-b‘ΛhŽ)€# ’Œ 9Δt˜X.9!l‰(ΐŠX<¦8i¬l'Y6yqΐ–ΫΕ–ry# ρ iΐψ"ΰόͺ*3 ΰ ™@™‡Β.Ϊψ?”ωˆΉ&Œφ‘ΠBG”y΄9”VΈ  ͺ96 ͺD'EHdEs–β+œβLoα*™³p8ώ^Ε…*"3ΒΉͺ K6ξ$“Ρψ θ&‚ζX‰mIŸ7Y bh’˜ΔP œΰ€zWΫ– fω"βΘΉ’δX~dγŠ[f<:’[k“š LYΖΊŽέ' χf#"’ε/‘΅Έ%rωΰ€β“©C#~Ψ¦1‹ύζ!P9§ΐL@6‚z_d9‘["£[¨J ²X—Ή$‘©γ‘kΪ§#ΰ‡U•%4ƒΉ-ˆy”ΐΪΐ~ψΗ‹ˆωƒμΈ.μ8ηΐ&c%ꈘ#&"$ $@$Px(©?P”€šcŸB Α 2Γg  f £½Σ9ΑτAςYΒgl@;§w³ BtldΟ96²8"1"`"€ ‘ ΑκC‘•ψ­C:6Μ(€Cy‘i;Ό(€˜ΆΒ α΅• eι‹΅zΆΝΡfœα” ’πbΉ’lΰbƒ0@ f@g–Ήfΰθγƒ n€ΐΌ{δOΌy;6@0Α½ιxΆ§ωƒBYΖ$@₯Β«£Έ·Ή8’ ΐ!¨ΰŠUͺ—iV L`΅"ͺ‡ ‚ϊV)Š—ιƒ*ΰΓI<6x™"ŠUΉ‘Αΰ°ΨΔOόΊgΫ“1Ι«99 α N l)“<Ω(ˆ\•‚ ά 3Ι–* d Θ ͺ%ά&>θΓ½z₯OŒΐpαž;ͺ    $¦@ ’Ή·onbn@ $("Μ(•ZK ¦  ΰ‘‰‚™@ Ζΰ 4€‘ξ<˜΄ΊŒ½bΓ` ’ }W\ŽBΐ€ fΑœ0 Ό9Ϊt912b’šOβ8ŸΧ<Ίβ³σ†α#‡ϋWΜ‘8Α4Αˆ8ύ(τ9’« Χv=œσYŸΧΰ ΗCŸ`tΦ€ T™£«*Πάpαί0€Bš‹9œΡό2αΉ Φ»¨»’šŽΪl‘ά+ʁbϋ܁ b„=œ§½œΟṁ=œ‘}Ÿg9œ)"“†=’Ul!ͺͺό½’tz΅Λάΐ†ΰα{ΰaβOZ§‘½ί{½ͺΰ ήΧ‘ V δ©έΰMΎͺ{¬+ΰή`^€Κΐ–uz ‚>θ`ΰα‡<§u:Aˆ>8Ω ˆΉœΑ9Ϊ{]‰>Hn‘J Μ@¦μ ΐΧ#BŸωό‘ Κ‹ ΰ ― h B6  Θ`:šΔ0œΰqm ° Μΐμ ΘΧλΎ Κ9’Ούέ‘’Νήν=;μ·²Ο„%+³—ΒSF=€—'ݏ5V!>ΑΧƒ΅ή@” B} ¨­1!Œ‡0δΰ *Š š`>a$>ΑτέAί•><]lΚϋΦ_ί>τύ‘ ¬ Σ]Ÿό:ΰgA²w€ΐ Άϊ_jA"ΐ >!>±€ H˜09p@`#L0ά Ε“ "tΒD‘B’O½>A:(I“E˜UPRΡDJ 5R"€₯"’0PD‰© Ε L˜@ϊ΄(Β€ =ŠΐC†ΪΠΖι?IZzKП&τό1Θ€$zL(mc"*X©­πi€!€b½ τ§€!yς:”d C†ς°F Tm˜šͺ0€~ZΑ”GμA©ώTpΐ=Ιτ5 ΕΥ;Θτ"@ƒ hήΌA3 ‚6ijΗζσ†Ν›ΨJ€±Ν'ΆΫh„-ϊΰρ§όψIΨrb€G#XDλΕ)g4L1£ΐ,RͺŒ p`Δ”+S2oζŠ” 4ΘAίPETδΰŸάyΒ8 ζU‘Γ€ϊI`ΐ9TQށEd\@nY,2CEHyWΑ"LP”H"ήέ€ $Qΐ-‹T„wArG€QC‰$‘G°d’NΧ“R$Šp’‰&l9 -ΈΤrΛ-Ήτ’‹-Ά„I -³lιI&šxςγΫMI'wE1Y€u€wpEΈ|Β’-΅pB $7¬B 'Άθ˜E.[κ‚šθΙ,šάΰD«hrAš@Dˏ6¬ωΙ(J° -N@R‹Ž˜¬βH'«L€„™£ΠβK‰VwYά²κœ ΰέŸp‚Ι,œΜΐ'΅|ΪH‹8κ揋̂‰&³dC'Έlς-΄Ψ²‰-š΄¨Δ-:PA#«άβΙ&ŠPΑ&˜v’‰ ˜0λ,»šΨ‚ΡwΊ¬βI/::AΛ&ŸΠr/™δΒ Β-ΞYdΈ‹+–9₯Š*΄πΚ.€K,ͺ€²Β°ΐ²–ΘΌ2©¨bB ΐ cpέι©ΐ’²!5· Μ±ό‘‡+‡ ­‡Ν²¨‚Υ[ΐ¬ "¬`V­²B ¨ K "‹+¨rU―ΐbˆŸ|‚Ι'›,B@Iΐv˜ ΐ½A' 2!ƒςΖ|Βƒœ0ΐˆBH 'όMH τΛk”MΡ'Β<μ‚ArΛD@EQΔήXŒa\1Ζc\W˜ρ»R‘_οw»8€±QƒƒΑd`a†4ˆΕz PŸίWpx`1…˜ΛK±QPŽΨbƒΉ*.½βϋΎ‹€hNM2ŠžφD€;νID “‚tΐ:mΗJY'Έ”&0εbLd2Sšf1 S ΜM™B’η@%!‰DŠΰ”`”‰Y4‚Ίψ‘:`ΰΆX'Fao @ Ή ”₯„2‘#JxΔ.βЁ[TͺELΠ…ŽP0½Oδb`Ί˜‘ ”ΠD[άK »ψDqU‹Λ;νšΡvΦ؟|%Ά­`ο8:ΩΞ ΐΈ‚ΉX• f0ƒq}‡XΎϊ‘ΌΣ\Δ&’*€10GFδbFΐ@'Hτβ^œ TΊš°ΗY`σ²l€‘T…xΐl Dΰ" ΩΘξς”C΄bK[ͺ ΡΔ’fˆp…wτ‹·\)E š¬ (ˆΘ! Z€7δ!©ΐε† ³Q­f+2Ο]-jCΣ ΤΠ•W4M€PΕFζ67EΈ/|³% dB$gΛΉΝ JΐB  …@Γ * Ι± /ίQ<ΰN3A+\ρŠTh ΐE"RΧ–`BŠ€ž2ΰ€›"άΛ@Μ@h ¨‚”=)`z#0Γπ8Ύσlΰ§OΕSLq0@ gxΠΘ@½3@BΣ;Οψ|z Hΐ €Ÿ¦ξLžθ’&48βŸ8HE<θ₯P…Obα`­zXϊ9‚Ό`¦2(¦1ιΒLgϊΰ*FΈ‰LμAd`]˜X€ΠHή‘@&l‘‰L@BcN¨…_Ω‰ι=‚JXF$πI|1k5‹θ…)6α ˆΰΆΈˆxlΰ‰[pβΫD'ώˆ% $BMœΈΕo1# Pjt§lΡGοPdNΫβDuu’N0βzΣS‚$'pΒYϋ€&6ΑΈ MΈΕAœ°_w*Ά©H&@ΉΊ59*»φ-$Β3άOΜ ·Θ,6aΫΖβuR’3€•Q$―¨"DΦWβlͺππ ?Œ%~Πƒ+jvUxiͺ95Ε›cŠh³ ― ΞX¨ΆDΨLdp…Ωό ^!·œ™X W¬™ͺI…+VΣW¬Aπƒ*†0άΐ‡|›œΰ ƒά^ƒ7€!Ο&ΐ6$τ`Γ XΉAD”Ÿι4†YΐbΛX%BŠδ `]xuŸ…`„"λy€NDΌ @¨@πΝ2€νΗ}μCΘ’@½¬Ž§Dˆ‚ΪΚ½ygΈΓ‚>} H H‘b‰Δ#θ"- ιξ·‰UA¨”-dΨ<Ρi΄mh‹+qbZΒ -ΐ&])·¨Ε·Τ‰ ήKNR HnΔ> FΜ2JŠβλͺχΑΦ&˜…Έn½°ΰ‘"l‘…ψΐ<:€Ρ‘fc  Ρ‘))'| LΐΕ]ϋ>›ΨΰWk\δͺ4ΦD'ά2W˜ΐ€"n‘“Ej(Ύςkš°^ q-Ӑf3@?ο#j†GρE6`,_$C€jf°‘АDpHοK₯ε―)RSΰͺ7Ξͺογm °r―#‹I@3p°ˆΨ*―&Ktζr βAKi‘zqz£I+ΐ9°HЏI°4HΠ Pw- nΊT΄ΰ΄-m°`»k°U‹IPA 0H Hΰρδ0€}CPΆ-kΠh°0RΡρ‰Q3θΧ.``kλ+π·°kτλ•Ά'ω'PY%P“–ƒPΦv/,“p’2p'Pf%€Ά€·I MifCQ@720 §F‘•bˆ ­ΪC΅F!!9€€=@? ΌM²#@ΰ8@  9 ½iΎ8ΐ!£Υ¬6Pi ”W ―~©πsc‡GΑ έ«†Ή$Ιϊ‚Λ'3h«6Ψn΅η%πζƒ–ι›«`^nB¬'ΤBμ‚ό$1?ΰ9ΗlΔ,σ₯Α¬ap«q°ˆΒ ΒFάΑΡ`°FH°z‚k&ΌΒ)ͺΓ)|i»ΰ>/Μ:<^* ˆd;Β.<'ΝΖDΧ€—fΒ0μ"QM1 :ς―ͺ:Eœn«!υ³ވ’5™’PRΔ†`jσ π˜*)‚.\ΔœTΖΨG?€Χ€—Ε;υg+ xžSwφFH8°u‡~u'ΙEλΆβ ’|ΐΑ˜ȜΜ@DŒ}βeΕfXŸκ6`$’jΫeArΔΚvΓ±μ 摦jΉŒXΥδΒvΔΠ·¬]Ϊ…~‘F–$vL$ ΰbξDα,ΰB1?|¬F˜άan³ZVBB™Όκ«τv™Ώ ΑnΒ™—vΫΜΝΨμ@Θx ΉΟA?’ϋ©ΑΕ"'žŠΟύΌF7KkΠΟ πxšμBβu²φΔς\Π°™*ΉK,yωΟ­ΘHΠ ΜΞMΠύό"Ρ!ΝΡ ΡiΥNC1ƒš¬ΙP‚“]K³€1-@χ-ΉΪ·ΡݍIΤ@»89K0ύΊ΅δšŒ,Ϋyq,89?yωa.ΰ>†Τ}ΥN"s‚“πΥ“‹P yP’Ι  Γμy™DΥ"έΟΏ‹i*|‚L‚~ύŒ,s,  'τœ}DΦΉŒΙΊW­ υœ} °Χ‘kˆΨNrΡm=Ο ­ΠŒδ9pΝV'ξ Ονœ@v«‰Ξ7X1 ,™bB™?ψŸΑ*„\¬ 4Ϊσ\nG¨'r­γΕΌ ’Φ|’~ΏΛ‹ ΡΑ"ΖΎΝΊ-Z)}‘;$xiU)½τΙ(ΔlRR˜G«DΦΧ|“=ΘœΣτΥ 2$y}ΕTζΦ 5Μιύlwyέm'9-ZM’ m'ϊνΘωέΞΫ y@έG-ΩΞ­$yMΛSβΙ]'ˆi} ξBkΝB†΅Νβ Πνlΰtr@³ŠΑž ΟϊMƒα|Y]"™Τ Ί &@BΒ*Α ΟδΖίΪμΝτFΫΪ9nΫ:Ξγ/§5n‚έύΤ2hέP1ύΤ3.%J~ΰ=^$”ύίI’Ηv­ΝL.%žΰ!nεΪΌδ„B[ώΩ $«ŸΉ˜Θ:%§«³«“Y™ΐΊ&BHB0>n9ΞBžB!νδ]žη·=XvŽΫYΞε{bK{$Qb蝡η=nXΜζΩόΏή δ‰εYR‚Πθ*XΫιHβηu]'„ζ?€&…β*nΞΎΉ%œη¬ι‰˜;NζaΎ'Dξκ΅N%ΆήoΈnλˆΩι+Dΰ—NΫΖͺλŽΞαœώΏ½~ε)δηGrΝ3ξΝ#ŽΪ%Y¬έζηœκ$'ηVζž>좎μΌε ΄ι’NΪ,ˆι’MμݎΝEδγγ>%f^Αubn ΝίΘώΞ΅ώαα¦@.δξS‚οΆjŠ ΌζΤξΪAΘ/7(η―ώΏnιΆο1ΞπέρNπƒ΅ΝΙ:$2¨δMλ)θοΗΞνκZNςδVρIrρŸ9β©• :Hκ>hΞAˆ%D˜Ω°*ο?ς©<%ϊ=ι‰Ύς$Ÿ˜)θπ΅Zξ:ŸX τF/τ‡iςΒ.εοδ)OΐΩ]ς^Ϊηώι„μ”Žyƒ/―Ϊ άΪ¬&©^σ³MξΖξVΞδ ήι.t$OΏηKυ»Ύ˜ξά‚YŸλτνν#ŸςKπŒξ_υMΏλωψ°ϊ$΄%cΏβeοζψΆ™ Oι|OθΑžμsŽψzξωbυμΩ=^γ2žγTΏψ†)%Eδ§?Xήlχ―ς‰©τ…/ϊϋο>ϊD²Žσ<ˆβσ6ωB˜φ¬ήωtίωI_ΐ‘―ξA‚ϊŸΙάΙβ›/υάζ~Žόω°:γ-% žϊν<ξβξ °¦˜ZΏOφΥΎšΏΫ7hBόvnίεΥOίƒΏύιŽψυ~ϋq@ΰ@‚ D˜PαB‚ "0¨€aAˆ"¨hQγ‰:τX°cH '> ™`F•Yͺμh²$Ε–26©ρ₯Β‘kz (“¦Lœ:­Z5‹V-[M{υΚuλV-Z΄fuκΔih&E6φό©rηœ_‚ ›ΦeC +ζ,[0ηΘ±G’%X7­^»γͺ5ˆr ίΏ δϋΡ’LΌ#<<±1ΰ“ΝRζ©ΡςΑ‚nŚ”.¦MuAJΥκͺNžΆv=ΠσlΏ˜x܌°'Λ‘‘&n™;aLΪj_ϊNΫ@xMδΕΥ’} ±Ήξ™a—―Ν»xmηΨNοN°σg’FE/mšλi/©ͺ―f}νu{wΰΧ€Ÿ-υš=χ“œ―­ώKΙ>‹*ςo/ο³ΘΐμΒƒπ,†ϋΝΊ<ΘA 5δH± ,%ςŠβδΌZ˜RO©¦Βe΅U΄" ΆEšQAΚ¬1GΉVΜ$β$τIGρ’(.½XΒ‘ΐ έ’LΙ΄ΐ’ ²ƒpœ¨¬Βκš+Ρ<₯HkΚ–§rI­ͺY%ΎΨ„ŒJώ†TθΚΎΨ€C†ΠΊ2θ0s’»'rσ§> ΤΒο½―Jι0¬BεΜ3‘Κ;J)τlIρ–ΤZ<Ύ½2Œ,š0» 7’[0<Ω’Π lt86•\΅Υ ehPwόPΚώD₯s²²πzτT›ž .֐q€,-ML¨Ϊγ”5ΉςJΆξd(OC!…U2&; i.pmsNeΧbι°νŠΕl¬$eύΣΑΔ;w]6£|³%xΥ k<‘2)κΩͺp S—\š’ΚLΦ:Ιd“L5_Ώt΅8·—ΨV_`[ι°ΙΪνΡΧΕμ4ΧΞZ5sŒΗΕJ”Ξ—ŠΔpP{²Μ‘™[Άψ£²Š…((O4ρΔ¨NΎŒ*†o1«kaΣ–U€aF2Œ R€ΓΆ~΅IEΫⰁŒ „χέͺ=βζtξY\_or›T‹ω ΄±aŸ\™^;'`Mώφ€ͺJKqa[n™%ρŸφκκ©Sj o=h(4hά\ ο[ΒάTW{—τŽμ_Ϋ~ 1Οq;‰Ζ& ,ΗKΆΥd?υξ.(ΐ‹61L₯gz5O5‘QΐΣΊΝm€ž ΠV6“ςŒ@’Ξ’G(¦Ο^ ΞΈ?‚΄!Š` Δ3€΄·ΞhωΙΧέ£Ug=³Γή}ομv —Τr»ΉA.9*›Ž64M„ZNž-ͺb§©IHΡ3@Φ:3θ!@ ‚π”`#ήΊG"χ€`r›Af€κ-€.Œΐ €ρ`šh εgCωρ0‡0ŸόΦDΊ/U+ΉxEΟamWBΥς–4ŝΙΜ~ Iμro & ]ξ ”˜=Ή Q1‹ΛΰΕ~i€K¬AZiz‘0†5 +Γ֚F5HΫ…J8$pΘDJ)ΈC ΐwHŒ@·Iδ!=ƒHDΎdkp-lά§De*½R―4’ 4ό^*s˜J$@•P’€S(~I-%… έˆ,”EHvAΪbΉϊ7›₯q#ΰ2;0ImΕKƒƒ αFΑ¬pβoPScύΔYhΐ V¨ƒŒπH:άa(ΐμŠ:Μ‘8‚ 5άΣV0Βξ` ΐ!v C . ’Vΰ«°E&0‘P`ΐD'a‚Ep‚˜PΒ)€ Š΄˜ψθ °ˆ’@βΐ$‘ΡFx/j;YΎœ„#3BqY:K}:#]Υ₯9p‹έP§€Ό πq€ΛΩ―Ί#0k L˜ή6ίγΡof ‹±€ . :Τ(Έƒ:ο@‘x CˆΐwP€VΠapH(π <ΨΑ,Ι*ΐR[|ΒN€)'v‘‰O`˜ψΔ"fΑ €·" ±‹κ"ˆ‹Θ& Hΐ΄»ΠDegxSν<ΥΆ»ΒYζ|¨ŠΎŒ£2­Θ3Κ]Nhω­4ϋ²a2h,GB¨J)‘h Σj?υKή$z½Δ)8°BD°Γ%ζZƒ;ΜUh§]ρͺΧΒΎW…ΰ€xfO{ί eHΏ+NΠb†xΐ š‡Mά"€0₯&N [„ΤŸ8@'l‘ˆDΨbY…)JHΰ‹ˆΒŸrqΪ\Χέvœά…1Υτ'(6a)Ζ‘’\r³3ϋPΙΖ '6‘ £=Sdκ£'H©.δ»5P/'ε@Φ9ΤS’Dΐƒ$ €9ΨΑvΘ+ZΧι™ΰα°Βϊ+ˁr!ud>ŠΚ|›X-|pJ ¬Β606ρ‰(eCΖD"ΰgTΆPGJ.Πj‹hΧg€bœΒ…+7&³Σ/^1‡{gŽ‘™Kυτ±‚—`²©ΤS,ˆΐώζΡ'ξRκιE˜Š·ΥYƒ3Bί…$π]9άΑγu μ^ΘΑΛlXΊOeγαžpP3 ςI&8 °«D+*€8Ψ"€D-€pΚ ¬"΄α 1Π ‹Ο΅AŒ@ψ²Ο!Wyκβ₯_V«ŸqΪΤŸtM^­Λ:ΎqΥOTυ ψiβ*7ΣiŽŽ}G€œηΒγγαό˜•29§_«ΘwΕ:Χο!Ό(0ŽV:AϊEΜΝV<θσΙΦΦ/΅-6ΫΰŸpΒ(M0 Χ ½€„FΡ @ ‰Έ…&œ@GΜβ 0‘‹DΨ‰€ι,αU<Τnoγ΅ά‘-W% έη8m½τIΗvΧτάσ¦[4²8Ε ˜3α Oœ‡aB²Θ•ό7δU,B € θ m ΐxΈCx}€4O[v(¬:υJ‡3'»v˜«ꠁ‘‹hΔ™ΊbLΰ›ΐD-6›‰`ΰgJœAh±KΨψV‘Ek)YΆη‹d  p'σw/†'1[Z#mŠZcͺΨΤDšU²€λ–₯ρO˜6wν4oVžMŸ@μͺτεƒ°€ H4±mA@‡p€ `@–X[Β€ Ž€ °·°Θ·ΛΡυ™@ό«@€<%Ph! € °‰Ωξ›΄ίr—Tc±Φή2šΈTk2 ΈΠ1r±„»Αό²φ[<ƒ‘©ΐ*₯‘ \H¬θ„^«ΎM›1ƒU“FΊ$X€χr!F2€Rΐ‚ΨB‡ΨB…8₯ς 7$5[B₯ϋP₯ΓΚ–SB€ρ8%\zΓΓc”J«“―΅―‚*9Ϊ-8Y›€κ!T @d”θ(Ό³»Ϋ™Ε+KyΌτ@²μκ¦’“»ˆ‹ŒΉΨϊξΙCΙΑ^ι „EμͺQάœ€ΕˆΩšΫ€E”°œΑμψ ™πΓQ;9ΆΑNc΅ˆΫ’ΫωE R·SIόXΪ‘ŽΎ3ΈΊ€{e 8ΑΑ‰ *‰y?KqΒ\9‘›B’ϋŠ1Ή·+Βΰ" ½ΰŜ • ΕztΗ;—#9—,Α½+Ft±€ΤόИτΖπ'‚΄4β’ŒΟ ˜kjBΣ&%σ¦@’­ol1C<zT'ΑΗP™Ζ‡ΛΒΥI υΛ΄„»ύ‘ΈE$¦ D|LKˆΠ Ɵ;L7ΉŽJ,²ͺψ8M\₯ΰ΅νšΙΙFϋ7BF$Dΰš»ΌΫήΘΗ›$I•ΈήΰΘ§5ιΐB9‰„Δty*ͺ§»Ύ7bH0₯Iρ(¬ Η9Nδ*ϋΛΘ£¬#« Ό¦ΛΆΓΙξ€Ζš1?atFηΘ gκΖ#μ“γ€Η^τˆk8½IΟTUΥ eOTI.‚ŒAτa$‰k 9%$u*΄B)JSg%ͺIMM[]™ΈΙCνN'"IΥD€  qˆΏΛ )υΛ-šGοWήδΚ)Φ= 8ΝΜ£QŠ9–αSXΧPN=υ“λ ΖCν)EdΣi}."œ8Ρ―μ>ύY­ΤσtΧJ B^JΡ\MPœρ4*ΩΈ’œ‰4 $Ε…ι8}mvάKΦAΟ‰Uή©WeΨ--!u΅T ΨG­Μ)ڌhβΗ5έΘrεΧA’ν˜‘ΩηtT ݈ψ< „<φΘ{₯…‘e Ψ8Χ݈<ΙMΐcθΊYΓ$?«ΦοΘZ±X?΄™·Χ―%[”€mέO‡EZ^%Ί“U αt˟,Ώ%“$Z€ΠWϋΓQ/•‹± 5X )8KΤ”dάΰ I5}Ψ …£΄¬Ψ'S\]ˆL’½\J½QοDŽΘ \°Π ΜΔΫLΔ5¨€ZRU“»Œ[‚½Ψg…"^Τ1ALK₯“]έAΩ T€$Ζόά—ΤNhάΚMα \βe.€uQΘ΄XάuVόHD$L Brœ 2QVNΡ.ŒόΩη₯ΫKmSΦ W΄-I—-PG‰D‹¨Υθb”Ίσˆφ_œKC_a ₯%GΞΥeUΗ@’ΦΎΌ‘ύΩω*ˆεΐAMš¬τ%O― ωέʞή ΥΛ‚-ˆ.\Υ<&Tέ=ˆΕΫ©€ Υυ_’σ^ε]¦ι>ύήϋί‹HΫάi_>—EU–ϊ…άέH“0nΙˆ‹•mΞ}±Ybυ\ηU‹Ά¬ͺ₯Υ#]‘Zΰ^u΄ΏͺΛFΨMHΏ[ΧπO$ώWΜνάِ_€Ή~ZYŽδΥ’„C kΥΪ Ξ PήςΗΎ¨ΔλeZ½έ”;­ΏεSy56ξR1¦ΰ΅ν“ΠΰB†^:†Jέ}IΤΑΥ0ΖXή5Ν6ήΑΏ€ίK눝Ȉ“\BΆ#%aγT˜>~˜δ,YmΡ‹€ –4ΛK>ZΙνˆά,ΝL΅δl…[υυΣ°•ΰ‘"ΪTa£·CγFfdγύΰ¦c%ΦίΝ<:υίΊD;RSPŠPT¨ΔŸBςežέSD~4ΰ4Ϊ‘αXdoΆNρLΨ$–šM~ΜωυJGnηx6ŽqΆZ΄hfΕ5h€$v B-δp“VΖ_|qTΛεTσXζ‘ε?¦ŽΕ|Ωβ"θ?4ζYΎVχ…ηB‹sNnVbv-ή…ΨΈ·tb'Δ*hvjέUΨΫΒηυΓκ$`Εbau•ι_.S‡ύΎξέdΫpζπhΛϊΣc¦Υή½uΕ± 9~ιΓV€ŒηŠŽOζιˆ΅θ ŽκC΅κV[fJΥΚ ΞΗtήa^φN2% τ•5J9iM|Šφp˜Q“2ξι…kpζ•ΨΨ:φbΰΪ J–¨α\ΎŽ…φ%5ηDλ»NdjζαΦΝU5δ ζΩΔe sλύ=Rφ°Σ3‘k£d7-Ž˜l’Έe FλοΥε~έΎAm~nl½Ό—~g¦μ½δΈ+Ϊ”hkŽ•W₯¦SΉΎΣ§–άj–Ϋ›}Ρ}l’ή’kŽνά…ξ,¬χžh¬‰rΞbε­«ΙΩ\fΙΩΨ€Κ'€–σή.α†m›nΘϊΚΚΎiόή tFξ ™α΅U ηŽeΌUtežΫ=}γΧήY†jΙ^_ΛυZ5λ΄v²καψ[š)†‘’ρDΣ†ΕΒλhŒπάf‘ήΠ#Κ-Kλn›ζ}Έ…ƒD ξNΙΞγVm?ζάaαΘF8ž¬œ€EΖk<μεΜ₯Q’»KΕFŽNήeLŽcrψΖߚ–σ@ p$W85ν₯ƒ5ρ‘ιΰΕrAuM½fρ$.hΚΗ ϊ82α£]λbRΨ(fq"WVb!Vοkμηinp—ξοVgπ…4ϋž\X“h8—κUΟN%šDΗηΘ“Ό’\δόφYειnfh'q¦„φΰQͺτq ₯T—υπΚTXEFζφTνΗαV’/›Žγl21 R²ˆΑρ—εSύσg‡»,ΒiB §άΜ­ Ηu@v7vΗ_\Άc‘¨4€.χžkǜΣνSΰlLQn‚3gͺrήΩ6•έΜ›”αθ8Ώβ>q-™σ.V›νΆτrε7ζŽIŞοQgξ+G—F­ξ@χœι2ιO]τ㜿γ Mtv$uυ‹6κ6χ οeš4θ/•JΑ(qoWœίpdJ.»žξg₯Α\gsρ •ίγ##s?Fψ‰—χx7ΌkYμΖo‘ζΗixΧψy―μΪ]ίΏς"^σΈ©πωβήwη’I‰ΧΧ…Fy}Ε ω©~q†ΗλdnnΣζsΙΠχ΄Ξmο>B«mVο— υΛ°χ6―φ¦x€WΌ­© Σ$3Ζρϋθ‚Ζ7~{„ΰοΙΪ;ζqaτΈtεRγυΰΎήwpιMm‰‡—εΆyn.•Ζ€ι–qˆ’6š<# M1Η\K²GߊΌκΟy”ΐ<Ϋ”Pϊξ”o™yνΏ\Ά#±Α•λΧο&ݍ=?ί²ό7¦έςτ­ώ{IY»ΞΧή‚νkaΗwξ½8³η]ψ΅Ψ~>•—ΆΗϊq\‘OmΒS_ΩυߏYˆ ,hπ Β„*tp€"Nš8uͺ8‹Z·6φΚeΛΦ-Z"g­βΔ)“¦LŠx πε0g¬YΑM‚8ξ΄©°gA™@}-js¨Ρ€J—eˆΤηSš ™ώD(”jΞƒQeΜͺt'Χ‚Q΅b™Π«Y¨<Υ–%ΆνΑ·]Dx¨H^Š.ͺU+W―Ž7Ž\U₯¦• αF}:vlVΈίB–ΌΈ ΧΚ/5ϋDΫς gΛ39Ώ|ZtP„a’.;mk£±ΣŠ>m0sdΈΆ©†+75jƒΏB”h’H· ވkΦΕΓ)οfάθp՝―ۜ:›»πΆ^«ƒ?° lφ•Ώ+LΪ»nπ^έƒ&;:7Φ·τaΪf_3΄δUWqxU΄FεΨ‚ …DΛ,£trt,ΥU~ΐ]¦†Ωχ‘U!•^z.ΕE€3e·_Š= θŸR‘Ήcw ŠUšˆnιΈ!Š*ςΨay‘₯x[ΦΝΥN€ΝFΰ])ι΅J‚ζΡ`ΞR‘D›¨Δy’νgn Xέo_~Iڐ6nFΣ~μ)`[vλΥv–xΒTfM_…ŒIςδ‘€N–ž ₯i“žj^™xb”}-˜.T>xε„mΩfφHh§‚J[ŒDνΆθmœ~εS—9ŠšαΩ\¦ΥWvL‘ͺ©‚ϊκ*ΊY§šŸΆυ›g4k“yς¨aQζr‹`^„©DώXή₯ώͺ_―’·ΤX‡Že’²ώΊη 'ξΨ.wN­λ)©τΒΫ+»α;,†ιžz“B %.ΈLΨ`—bΙ‰–Š]ΘΫ²σϊΔPxΞJLΚέlέΪ›|‚v;dΊœmŒΠΙκΉ[δ|E™8ͺv«\/ΝΑ)€S·³ ‰‹ δθ*¦\”‘‚½θ’πH£ΜBα¦σz&³RP dz»οœΪ1•n­#κ+ΧΧ…ύ­_ΛΖ+UšΩz£MΝˆœ€ vδaΦΙΟ…Τj±7ΤΝE~œ§Χ’q-uΩοŠΈΈ€Κxα(Cž6M;ΉfεΈb5φΨ]C„ΧD¬ƒΩ2I&ύ<‡…’M>1Φ&ϊZCλ»­dΡ§ί‘·F»α”‡qAΝ suœ½lηλh3\ΚΞ£,½BΛ³IšiΡv^3A†‰M”[GόBE+&¦uδγͺhGσ™Rd9όXΘDXLΫeς“wΔα{,ΙΕθegŽQ;¦35§Βe†(eτΰAXkRεd‹"5a‘‰d#ΡΕΡ*8E b©QXLΚξFΈFNs˜ΑŠžΘJΒ¬’ΠσZ«ΆIPώS™%θΊθΙ?Ϊ%ΗA-άi „M ƒΔ”=YL4’{©νVIG…*”s¨ΰn83QΤΜGο“IΛ ΈΉ—nRx¨'Cƒzˆ Ζ{(`6rΑ]N(oΎ<%ρJFBX±τ4c\X’ΕMrQN6Eιg¬όP›ΨΌΌ΄ V΄zu₯{{+3Ρz@¦Ιœ`Ύf‰5™ΣζΒXq\ ²|ZNvn ƒ&΄ŒύYSȜŒΙξT#’Zλ 6ŠwI=υά―^zΡ•΅a€([κeΕ ύΌopg/_YΦώL]βζ~֎H±τϋbsΰ‹2ѐž.¬)κ λ;±ιœ›vθ5ϋYOγPN:8ΒZΧ佡dM{ڞ¬―·Ϊvζ7±­cišzΔPSήΤJ <¬p―Ί| ¬ά«Θ+™DΤ vD]m&iχMΥσώ°[Ω–E½˜^4Zn¬5ά¦kηJβΆ¦1›+[qB»ν8„Μθ-$Ε ’€$šΊm­½}ρKΪξ_VyΤJ,/«λͺζ₯υ iμrΓΌη{<ρ4_©•.γ“(αή³ …’fJŸ.9ΣξiT—™έ(¬½ςic\Φιξ/Χ•ciΣη₯ΦΜίς[nŠƒΪ…dΥ·-ΔV—ύΝβΖΉΖ“R €G+#Έ<6Ι s’L(ۜρΒ™τ₯ΒݟNq ΎξlS¦ίŠ€Š<ά$ς•™];ΦːGm)]‚,G`TŠƒlt˜œIœγ©†1€ΟΩ;‚δ2ζΡ‘$Χ ΣΨp9‚ X_m©b€h_EŠκ4•9κ ©KšUŸΡ^ΔνΧEήσΐΛ―ωή2ž0Zb4%J†dύ4ŒxpτΜ*xγ*|rά$έ\ Ώm$K¨Mr=ΫΊΘaC!–dT 埬©QRO’` ΎγK–'zΦ\κ’ΔJΟΰ '(]F <%"A–tΒ9:`zδ%0QFΈaœ+IΫΑΩ‘Όl^‰ή:r S2ΫF&W5JR\ΑΖ&i¦~ Z²•:Κ%η…ΝB‰6’ΗX `Φ+2Ga~eH ζI(枡₯bαΣ‰M’ΧΘ…Ÿα_dΩ]JΪ₯'ΆvgιαhώΦ^z RLξd§ˆ¨`dΨf&ΤWR‹Ρζ8jPIxp6€4€QŠvnκΚ{J pΩ'zθ‰{Φή|—~Ύ~vH€ςΖp” €"ΩΌΰΔ_z\±½Σn"έtW'@K §Zb¨†ZέsΒjn(€}θ{–ΠΡAΒ„ΐRUΠUJ"f•LΘ*„Χ~.Ξ_¬Μhΰ(>ΥgLxŒLθ¨)μ©[όη )α )’iΧ(©8)A)ŽHι0i”ϊhJL VRΔΗ]׊ξ‹Ύ"FHH`b‚€8DXθ 4,€Cœ‡KΰD]ΐ©AΠ"]ΘΔy< ΐ鏢§pD0„^Θ‘€C˜Θy*Aœ‡Cΰ Ή'{ΖŸΈ„ρ *AΜiΊ§Cΐ)`*‘>ͺ’ώιŸΖD{βjME]ͺ’²*j„¦šΗ[D₯V*¨Šj¬BͺΚLͺ§Zj¨*κ¨ž8 §ξj­ήκ§^ͺ°ξͺ°Jͺ²«Ξͺ©*WΤşžG΅’κ΅ͺGτ©AΠι°ͺ‘Fk6λ…π*΄Rκ²k¦’ͺl+{vkΆzλ©Ξλ¨Φ«žΞ*Ήξ)»J+ΊΒk―š+³Ύ+±ξλ°^ȟκΞΏž«Αͺ«5lΑŽk©*·« ΚkͺΖͺ ",²ζ)ΑΊ+ΕFjΔώͺÊͺΆzk«`λ·ĝ«Λ"@€VD&ΘVRQk-ˆ˜Žiέ f¦0XHDΐΤE -j)­‚+‘ΦΈ2νΆιR*ΣFΐ(ΐΥς*νΤ*m¬v­Τ²gΧF­¦&νΨ+]xν¬v-›ϊλ·"@Χf­zjΡN-N΄§­‚-’Ίg.-ͺ–m؎*Ϊ.٭Ӟm›νέΆ­ί¦­ΰΆνΪB.βN-αR-Zνΰ kζϊνζκmγ&l<ΐίΦ­Ϊ&mβ^.ε’ξζΊmΥzξ¬Ύ­­Β.Ζ2.ί–+ι.Ϋ&μδξιξξΰ&-θήΏ–.j.λJnαšnδςπΎnθϊm₯vnτ2ξπΆξγϊnσ―ρΎ,’š­έnπͺ‡œξΧΕΡ_<ι‚˜6Hœo2 `ΐΠζ―ώξ/φ―ώ/°0°0'°/07°?0G°O0W°_0g°'00Α&›Ξ:Q˜š§sŒΔΒH#(0΄° +( Ο0 Χ° Ϋ€ΰ°η° τ0χ°1qϋπρρ0 ρ31ρqK1ρ#± lqwq7qs1+ρKρ ±§1{1±›q—ρσp―ργqΗρ³1[ρΣqλρ2ςŸρϋ±"²;rΛ± “±/²ηρ#cρ g2'k2%K²'Gr Ϋ±Α Ÿ² Ϋp »p ―pˆA#t—ήΫΞ>Ρ.ˆi΅(Υ‹ΩDhΒ&lΒ'`B0c#313$4$,σ",$434G³"Ds3+‚5Oσ"Xs"`37[s5W³7Kσ6Ss7³4ƒ³6_s8§38oσ4«³;_s;c34—37£39―3>Ÿs6Λ3?Γ³:Ϋ39£³"Δσ:4=s?τ@χs:«σ<74@Ct?›σCWτ=;49[τ>Χ3Cσ5΄@ƒτCϋ3;ƒ4Gk΄8g΄I+4E{΄C#4EŸ4LO΄I#΄Dws8ΧtHtD“΄Lί΄9σtJϋs=υN»΄Q+uIτP3uP4=Λ³>7σ3Cσ3/3$<Β#8#|5&8&Œ΅0rYΤjΝR…iΟ&βƒ@ȁœΔ/Β&υ15#4‚2kυU3355A΄` Άȁ`·AL6U vb+Άc?φ`7φ;?vL‹A"τ3b/‚ˆdwΆO/vLsH7vasφbΓs`+ΆH{3h{vg§vj»ΆlΟΆNŸΆT3ΆmKvlΫ6mχΆoΣΆnKΆk 7DSΆb7φeοvm;φjwo;χo/υ4_΅U;3_?$|u#h7Yσ/o‚'0¨Ξξ,όή2<Ν H&Άx‚/s]Ϋ5^λυ^σ΅3ΧwVv=wev6χχLη·>ίφN·ΧφGS΅/tcs€O΅fOvUΗ4€λ6O΅…η·4g΄„t†Cxq#8hψ³v xB7ψ„+ψLυ‡;v‚Oφˆ88o8‡ί4Š«Έ[Έ‡»8Ž3ΈΏ8‰›ΈGCφ‚Ώ³ŠγΈTω€/5’ψAχ7σvd3x“8>·xBγ73χ΅V?‚|³15]›uxGP;)<έr[›Xb m΅·˜Γ·|'σ|oΉ}kyu[5u繞5“φžGs γ75:‘ : :Ÿγχt+:£v–;Ί€ίω€ϋy₯cυ’WΊ‘:’K:§Kϊ‰;ϊ§+ϊ¦ϊ¨υ©[:”+΄©_:₯»Ί’G:ͺΓz¦{:­Wϊ=Ώsͺ§z‘σΉ_‹zV_7Wo7XΫυ'ϋ=K5h₯Ήš›ηEζdwΥΦwσXƒy^Ο9vσυ–»uΫ:~GB}Sz_wz―ΟΊ―cϊΉ«;u—ϊΊ{―‹{Ήcz ·{6?³ί;”»»½«{­wϊžΫ»"ΰ;ΑόͺΟ;žϋ{ΏΏ»Β£{ΊΏϋ}ΌΑW3ΑόΓ›;Ό/<Ζ7<Δϋ{¦ <Ύλ»ΑcσΒΧ;ΊŸ:Β“{}ηϋΘ_ό <ǟ;Μ{ΙηΉΙWwΛΏΊΛ;|Ζƒ»s;·c7W{y±‹uw»w©η^Π²;»yέ¨·›³·&»΅“΅vΛw#l;Πίω―—;Ψ{½ΨΫχΟ{ύΌί7Ω{ΩίwΨ;ΪΏ}uŸ½Ψ³=Ό“=έ{»V;}syΐγ½½³}·³»ΪΗ½Ϋλύΰ[7Μί}άΫ½αƒ=ά―½αώΨ+>$4:βΏ½Ο}δ3~Ω§½γk~έώγ«}ζ~>έ›ύ·Oώβ§}δ›>β7>λ>ή7ώγSώΗ‹ώβw;ζϋ5—#ΊβΟ}ΰ~Ÿ>Πoυ°7‚#,ΏΡw·Υƒϋ†°Š:ύΣ»u›OΘ³ΰ0;Φc»Φο5Χw½ι»ύΟCΎωO~ν—ώνΣ>ξ>ι{~αΗΏέ·μί>η ?ύΗΎϊ«ΏδΟό§?@@ΈAƒ$ˆpΡA†  (Ρ‘Γ‰J€X°bΔ‰?F4ˆρ"Δ‡Mšτ˜R$Η„#_‚\h±eǎ KβDiηL$1„Ή₯F•@‹™ΡηΡ‹FkΊd S₯F°6j䈫#L^1aϊ$·vΣ&MœΠvR;‹­[omΩΚ₯KΧ.»ΌμΝ•+ξ-ZΈhΝά‰“'Oš4mϊ΄8l㰌 kΥϊ¨€G+[ ΥbF«,?k†ͺΩgΘΞGλL=Ί³ΣΠ«7£†νZφΗͺ¨]ίv)βιΨ½E«Άέ³ΆΜβOGN<΅nšKq“f.όvUεΖΗζόz9uήΣi—ŽΎ]Ήuξζ₯Ÿ/jϊυυΰο%Kv΄•«γ°‹Λ">»–m[Έrηͺk^! ImageMagick gamma=0.45455!ω,,Πo‡  -  " "! !" *3$$$6+(+7'57+&-28+7*39777D3-J74S=5T8,4F-9M1=T3/@)GG:[B9B\7cH=rN?Ig<+9D1>F)>R3AH5FU=TQ:O3CK8JU=R]+CY6TlHHHWXF\AZYYYKSGkMAwUHaD_oPDNo@Op@UyEZeTbbMijUuu[er^C[hiIfqNnyTvsOpKhwJeshhh}|bvvvqqq{{{yyy}}}xxxlwd‚]N†_PŠbR—kYžp^‘r_Y~©wc²~iƒ{u\„KaŒNcPg”Sxˆop’Zˆˆj˜˜v†”yΉƒmΏ‡p’’~Ε‹sΝ‘xΣ•{<Μ΄oϋ°³ΑT\ΜΕCrΜ€Η/ ς³ <ςΗ(W{2Η'«œ2΄W|²ΖkΫ2ΔΟ\σΝΕLΜsΗLκ\³Λ@kΚrΘΛN,τ·1#}ρΟΤώμσΛ<›\τΛ8οtΦ9²Ξkμ1ΘB—¬)ΨiNΝ­«5₯[Α ωX՜"c¬υΓΑΰ½ρ0>7μχίCη]3ί~ομχ0‚λ-8αO]xΖxσΝχވώxΰ7\ωί„_yί?Ύ9膇zη;WNΉζ€.xΘ‰ϊγ‰Cή8θ…ο»βxηξΊη§³žyκ΅žϋ晣~yςΒο^Ίσ₯λŽ8πΡg<ϋτ²k>ϋπΙOO»ι“[ί;μγ—:φΪ?;πΛη}=ξw“oόπΎΣ»ύέΗ>ώβΗΟ»μά‹τη;ΖΉz¦ΣZ²Ί°L!ΐbΚF"”‹KTΚTkd {y0H­Ρ“Œτ(?)μƒoBS±8Hͺ ω„‘ gEBW©ͺƒ0lα ε€&.ΡͺN'„Π½°δ’SΑhˆ?|aOX3Ι‰‡3TU¨”Ψ%6шοY‘”²BE‰‹E$’ΒPυΔ8 1Q k“šΈ$%²±Šίq’=ΕXjŽW •y`ψFγΈqPV”£υˆ'JQ‹.b;t©ο”Θ'Ή C–ρ”_€‚ΆA.6‘‰Njθ$(C9ΚRšς”₯Œ(UωˆUΊ‘h₯#‘JXΎ²–ΈT₯.mΉΛZς–·”%-oILXφς—»te2KHΜ—ΕΜ%2GΉΜcΣ™Γdf4kωˆjsšΧ|f4oyL_zΣ›°&4΅ΙΜrRσ›Φd¦:ΗΩNpώR™π\ε<ΩΉΞHΈ“•Δl%?… ΚV”Ÿœ%>ρiN}b³ŸΫœf<'κP…&’Ζ”θ=ν‰Λ}bTšm(:›©PHΤ€ύ&*W ΚO޲“£πd'7 „e’E‘ $9ŒH`@ ͺP‡JΤ’υ¨HMͺR—ΚΤ¦:υ©PͺT§JΥͺZυͺXΝͺV·ΚΥzυ«` «X‘ЁHγFΐΙ%ΨM5p«\η ΧΠυtuΐ]υŠΧΎF`~Ε«]ι:Ψΐή°†kaεΊΨΔΖ±Ž­λ]YΚΦ²–M,d+;ΩΘΞu³ŽΕ¬gε ΪĊv΄p-mbω:WΦzV¨=-jUXَ–Ά~΅­gqΫWέF–·}u­dιϊΒ*Š€―~3eπβ§ˆ€]@έ8€x€;έξJΦ»εx½KέΑΪ•x€u±^κrw½νo|§;_ρ†½κ½ξw» _ϊ·Ύώm―y#€_ψ ψ½ϊ π€<ίXΏ.„`ΨΑι50yΠίϊZXΑΞ/{7άα 3Δ’Ε―}Iœ`ŸΈΑ)Ξ0„YŒ]GΨΏέ]ππ_‡7Όώξ‡WL`xΌn±‰‡ ήσ¦—Θξ•p]Μd"?ψΘQNς”—όβ&KwΗFr‡|γ*€ θ0tyρ υ¨,ΕP'p^—χΞxΞ³žχΜη= Ο€΄ πηAϊΠ„F΄’]θE;:ύ~΄€=ιIGΊ‹Ύ4¦­ιMsΪӎξ4¨=jD‹ΊΤˆ–.8‘ŒY“;a’26€pΥΈΞ΅wΝλ^ϋϊΧΐΆ―Ρ,μbϋΨ‡&6²υ`­&’‡kWΡ:ΗΛΞΆΆ·Ννn{ϋΫά¦pΆξr—Zά¨&π³mh•žT…a³¦σΜMοzΫϋή’VΎsξ}ϋϋίησΌΧ½―³όΔ"ΚB2hmιφΟvξ3Ίνρς>|ΠϊžtΖΏ]q>oόΡίτΌMξ|W:δ›yΕ;nr£ϊβζFy°Y~h™#ΪζŠ†yžŽσbΣ\Πͺή2<φšjMαΧζξΟOΎιŸ|β}.ω’—Nέ₯λ|ΠNΏ3Τω,uOΫωκ“ΞΊΕΛKυΟάΡb§ξΦχlvσΉίvΞ8Ψέq™—½Χ=WtΪ°v=·ΤTΗtέ=χ;}θ Λ‹Θ‚ΑŒ€:βy§»ΛίηΘηΩζθ^@ -―θžΓœσw}αGνωΚw^Ο£G=¨KωΣϋνj7ύΝ]ΏgΠo^β²―9Φ1NέΏί9π|Ά:Ϊkόlξα©EδkΨ΅S_싃ψ„?Άσϋ ύœΗήΠ(―Έε§ό—Ίί]·ύΞΗίύs/έβί΄Ξom}AsΟΥGτΥ³o~κŠ?ύzΖ³7‘ΉΧύ‰LΜΡ7Α Ε@kΆ6hθχ{ަy¨†zΗt 8lΌ§u|—k(hρ‡l(h#·kyχpΜ‡i!Xl¨~€–wˆg:§lˆε5p›7ΐ93 “7H€Ž§~ϊΦo#xfx{d'y±ηƒˆ–‹yΧqσ'xAx‚ Ψg!—z+ψ„R…PXqP‚Ί7W8„@ˆ€c†a˜VθqXX†Έm\(pπl9ˆƒs/G;98ƒn…mΊ†„-Xη{yΖ‡wΖ€“ց‡†nφ‡»Χk‚ˆ{±§ˆ.j…ˆρ‡ˆjx€qžf‰bψ‚θ‰°‡imxœg‰H„•¦s2χƒ*ˆg†ψhΥ‡fͺ¦ qˆƒHΓ'8 Ίψ Α‡ΧˆέƊ-n8uΑ&Œ·gȘŒδnj©˜mΐθhΛψ{ϊ΄ψ Ί8ƒώ'&#ƒΐπ ؘ‡μgh̍ξηu–z7Χη„ΗŽd…’cθŽBH]#G-q¦rMWΊ¦|xqv§‰ίWuc珑Ψ}³ψΨ¨‹Ά(4ήs‡ΰ β‹—x΅ΧŠεhfΗcεhΌ6…ΤGrš’Ÿx‘Η‘πg’ ˆ’€wΓ؎f(hΉ†‘ΘŒ7 “…H’ h;ωxxFˆgŽΈ6Š`ΦθΩ(‡&γΨX‘nu€)'’1I”+©mΒ8‚ƒwl‘‡”Y^£Ψk ΈrGˆgeΙk0Ηͺ8iϊ(Z™ljιŒς˜ŽΈ¦j£ Ύ0•Ή‘γι } Pcˆ€Vxs·–€Ψ~υ8{Љ“ΉzI“h¨zuΩ{­g™rΩ‡A9yž–~ ¨™ρψ…™9š—I™jωƒ@‰•ͺω™‘™„,I“މ…LX“x¦jπ „ωΉΉ˜ΰψ›†y^ΐΦƒΌFuβfy„θoΜ ›}φœϋhšΗ“ΗfΞ9j#ˆά)hΤΉ™΅ilቝΛ6ŠΒΘ›ΎΩ—©―Ӎ»XœΎΐ ΎpœΉy…πȏc‰š Ω™9ΩŸΧ —Z™εIž¨Έ˜"X ΉχŸš•'H}«θŸκkŠ™Νθ… j‚:›jš z‘€7™¬ωu :’?qΝ½iŸΰψžπ˜ΔٞΌΐ Ώ t6ŽT'–‘Ιax–‰όI–-y :—§ €w&€‘is,wu:7rΪ“‰Y”AZ’ΆY€zˆ”ΗšJLš₯Ί9›©˜2–*ιˆ™†ͺ™_Ι¦$Z]WΪ‘ύζ€z—*’I  φhͺ Ώp£ΏωrH£σI˜υι :J₯^š’gv›©ωkPšgσ©kjoŽi©?šžΒyq©§πŠvΩ…lΉ§ε•‰›H©ΈFn.ZŸ»0¨„Z;9£ˆ*¨‹*ͺŒš–Ω–‚Hκ¨iZ¦[¬dzŽσXž!ψZznΐψ©4Ωq>ZnΨ–DΊkπw‰YxnIͺΒΖsΔΊqZŸΌπͺξœ4Hœ΅z£Ό°¨γ —©XΊ₯%z§ΓΪ“Ά§©Ή6ž©j’Ϋφ¬μjqόš¬y¦œzyΜͺŒͺ‡«)―†°Κ°οκkŠ‚:π)•τ)±Ό ‡ι°«Iͺ X₯j°ϊ› Λv]p*pz²δ¬Œ)ΎŠ€₯ΙoΉΆt4·t8Wxφͺ¦c:­xš§-;™ΞJ|’€±ƒϊ”Γω„iŸ7š [kλŠ›Έ‘κvθˆ}Ϋʊ>*nO:ͺωjŒvY“Φs₯ΦsΥΗyhκ‘"Ϋ¦‹v-Z΄NkŸˆ£π9ŸΎ)±Ήΰ΄ϋ‘‚ΆqβuτηΆ‡†―#볐wΈWΙ³Žͺ °κυΈ[X‚P°% x,x„Χ΅²b ͺtΙΉA•kΉ‰ιK–Ε} W W!ψ―Ρ謲'|@KΈXk‘iy67pr+±Gϋ—ζΊ΄θΚ·;Ί©ΰf³Ά š4·q΄Ϋ±¦'Ρ;ΐ ΐ««hΈlΛΈA{”±χgXh?Η΅ŽΪwνʈ 00hΈŒΔF n0βΫ’F‘†’ž{g`υ ύŠΗΌ€w}e Ί% E‹ s;±οi±ηΊ·{Ϋ·Τ΄ͺχ―’ι•,† 07p3ΰΝfΕυΆ*ψWΈx•›Ής“# Ί¦Κl΅mK³aψ±μΚc P7ά³#ͺΈ§Š]AlP‹‰@€Γ>»›g)‹7Œ^,‡”Ρ:Δ°GJ~ˆΑε₯jrΫΐˆ* „:ŸΒ ΌMΛΐ} Ε+Μ x)l Ι₯{Ζ°h6°N^πOΰK`pj‚&½Σω ¨ΪŒΰLωgW·ŽΤ7Ώ`N`K‰–ΤgLΔ Λ²ΔjΑςšΎ Η3Ύa«v07°KPvz|VΉg0N0μΖy¦y@Υ{¦Ι­<+°tό΅γGΊ`̎F˜• œ LΖ[£jΜ ½ΰΜΉ@Α7'»§<Ϊ©œpL„μΘcͺά^PcMqΰ^ +`ΩΚi(`3€@Ί}6Ο7P|7‚•λŠΆζ‹°ΝζΒjwΐNΐMv•¨uL{΄Ι¨ 0ΰgP¦½½›?ΰN`Οxuπ ]ΜFh6`Mpρ›zδf7`@]pKΠN  –BLΈΟθ™ή§Ε+­ΐΈπΜN» ―* »xΌ Αl\ΌHΝ§F ΆZύ³ψό·ό‘ @-ΠλLΟ€!pNΰ}ΰ0 πp’{q« 7πS0ΰΣΡ[*]`QΧΐ€€ Ψ·Θ»ΩpKΠ Ήϋœ>ΌS`FYqšw½‹©Ψ5ϊf§e|vΆpmM9mΈU›…—HAΰK€9mBPΙ&άgp^00ŽˆgΠQ€λK]”Μ(Gas|vΆΊ \ŒΕͺ¦βχΥtΩΜK½·7κΤfΥx«Ζ{»ΤΈΠtv€‹°Ψ]ΜΧ9³Ž¦»r½OΠ|-κΛ” ίc`r}–δv½€^„ΈΊ`O.`kΆc7{k ΐΰ•»…ύ“ o6°NpVYΉζ–™+‹ [ιΥqimdχδVΉsύΈhv”Φc©,‚[£{]μΥv(—]'\W`ˆ]δΖ¬{fqnΰ€eΠΦ6°Ύ2χΈEz zμ₯8Ψuαπμ Έ^r•[7#MˆβŽkΊ7ά3`Φό^Φΰ|χW>μΓ‘*έgΖcpεΧΟ·ΛY]ΤΊχΠ [ž‰Ε†&ΖΉ άέΎΥίΌΰjΥ € ،jγΫΥ9ό·`Ό²xuΓνPpόmk°Ί@άNP­Lά΅Ίκ ½ψ«€¬šΧSπSπœΎ ―τK–ΰΏ•k@φmθl?°ε@g|ΧΏ ΝΖήhβ,½ ½¦\^Aυηι»Ύ~νΗ>νwTΙM]Ιo€μP˜hq¬Ύ@•Σι›Σθ)ο@ο@Θc΅vf½κKξ ¨ΎΡϋΡ²μ·8 qσ{λψρ΅TΆq°cΧ ~Ÿοΐ^Πƒμpχ«ν†όάgFάΖm΅†fΡ νIaχνlλΫβh6ΏP½ι+λ~ށΛ𺊌ƒΎ ΉͺgKl{˜άgЏώΜΌ  α:ιf|¨ΰΊΖΈι›>―ͺΏŸξιο-yβ׈͹ΏΒ 3ΐΞ6Πp @lείpΨΔflτLτΞc/nΰ— γ  Φ@€. |§ΦΓ5M.0Ώ-ž€KτŠ€Ύ Β_v@3 6 Βpivχ_+°ϊ7`όN]Φv& Ν ŒΦΖ0ΒυόgpvΧΥp+p4@3 ξ~fF€ @0«?<Ϊ9ΚSπκ?ΠΑOgWΰ‘―Ψ€ώ7]^PΓ_7 xπΰ@}œ\ΐ  Ldpΐ@…4j„ˆΐ†',8°`ΐ 3lؘ"‚‰ήhβΕ P€ΑO'Q¨΄qc*p€a†.¨Ό1£‚bnεΪu+‚­KcV–kY―–‚M«Φ+ΫΆqεΚUwμάΈ$α…+Χ_]Όvωφ °_‰}ωβΥψ/.ΎΈ™V,Z»^΄έ,—AζΈ3£ϊ€ιΉ¨έβe½u€Ol°ΰηO΅)gh΅= ‚ 'Sd?qbCλ7¦@y₯I“%.Pbγ« ΑgΠi£:οQ’<Ξ·Ω6Ζ,‡ή€τQ–D˜α%Š­$χβ%Žύ%l "X"Š΄‚ν9§–. (Š›H+4ξ\ˆ"£π‚8Κ"8(€ˆγ *°‘‰`²Œ©τ’ϋ Σ !<ςb fpBŠE tbŠΤ€‚%œx"ηnZ’NR 3™ΐΐ (ζσm’pΑ‰&l Θ7–ψΟΏo2ΐ –(c NΊK1Ψl€–€βΏ,= ‘ސFRΐ ‚hB<ρ²$²#Ϋ‹’‰#H/Λ pΐ*pπ ρ€θ³‘‰ °ΕjhBЧ€σ€ΦŠlυΥ»ζ"m+*e…υV\Ή+2ΏrΡe`…)μ°_kΜ±\ψκKΚ Κ•ΦgηͺΥΥhΉRνΦY©΅­ŽVp"Ž!‘ΘN·h+Ι$M₯xt‰%ό{b  ΈΜ'ˆ+N:'v< .XAΆΈ;` FΨ%Ž]'κNP[±‰ζœp‚†°‘`’ˆγΎ¨`ρœ`w‰&‰Γ†) 0°`gP·ˆ&ƐΛ2βΈ‘²^b`ϋΈ$ŽcŒ&j`U­  xTβ)vόv Nλͺ’nMΥ2±ŒC ’ς(Ž0™c·¦VΰR,hχΡΕΞΧ†°‹$–XΔ  Ι τΖ€b;ƒΤ«cΗ¬MδΡ7QAκz d³LΊaŒΫΫL'0 ΰ% ¨θγέ%~XB6(Zdœδεž›Ο-Hͺ€ Ϊm’8v£¨ƒ |CΚnv½ˆpτ'dfΘ Έf½VκΤ&š6¦γ“o 5’ΈZΎΥl½"ν'QΆΧΐ€%LĊe ΩdAιk²ΚͺU괚«΅Y§©3ωΫou3νΩ(ΨWœιd+‹‚ (ΐ³ύ@Α&:€ <5LΐJT¨\C(ˆ½Η‚x γ?\ c L‹" "/4Α%ZΥ£žΓ 8@3€,Β ΄Λ Pρ οZΖ/ΐαpΐ~ϊ³„ ΰ¨];Chθ‘&Μ@'άΑΆ¦•¨ά`cpŠ€4 #›œ4 Џ29Ξ7|¬ |„„ω§– .ζΙw6@IΈ«Ω&@(Έ`gFKΘΐINןνD@?¨Γ, Δμq ¦P‡)ά`Šϋ˜πj3€% ŽXdΐ šP‡!ˆ>S(ΰ £Β»$Κ-'ΊLh 4•cXΧ*πTΩͺίϊθ’Ό΄434ΟΣ–τ Ω*Πdλ'aΎΎ$‹έ#Lbc,dAœΜJgάG½έJšσΣΜYlΟj9@*£‹ƒΒΈ„ΜΰQ™'g œX„) ™ !η³@’WςC\CΔ,`›ω„£‰H΄]“(ZΠMόGΰ[xœΰ˜+=}`ΒJ}ΒΨ@h(€Ν@Q„Ο(3ΊΜ5 :s…mg"΄Y‚Μ7Jv$€ωσBψε•—¬ DR• (ΰ„7! b#ΜeŒZ!܎…Ψ“^ |+ŒΘ‹IΗΞ*WKUi{Mƚ€·vύ±A ά.N„*Ργ&bƒ3΅a(U \wM1BLk"Iί2·9x …Ι Ζς΄"έΌΒ,‹ΚzΝg™8uε"¬Γ<λAΛZτμ •Κ’šκΙ5ΙUξWπb*±e)Ρ“VeΌ™‹OτΕ/ΌΘ…`c˜_c1γ{Œ²@>,bΣ™|}.ή­k1·+¦)d „€₯1Δ‘ Α£‚šΐΝΡ5ΑnmΔFIέ’Ύ!€œ`λ @ΑκpΘ ’H/lΗ“^–™ΫR›Ζ L™`Q%3ΠηDΊ)Τ(©ΚͺQ…z†Η9$œTB@,`‰Mubπl“\Κ# \ΑDuβ€a±Kυ9™½ΒΈ•HΐΕF5ΠΙΐb1bΎG+:A%H,0r3ardc4?v…ƒύρ@R*‚ΩΓrx.XIz»™Ι“ KνZΘΎ0PY ]©’άŒΐΈY·Ϋ D&4° Nsx„‡ΐΰOŠΙY£³dΤv …pψ'4d„π Oa;J‘”±ω·žΡ"ΝC-zΑθ˜ΪD»nŠ58ΰN0§Š˜qωϊΑΡΒ‚ά nbJ»ΉZόBΐ s¨ΣΘσ±q Β³.ΙqŽ5P‚°™œ*,ρ1₯ρ‹KΉ§‚šZβgΗˆγ'—€žRRΦΠIEXηδι œ°Dm4Θ™A~¬OMΕa X ρ‚V άœΚ±~`‡ƒR€[rΖ0 ΫζΏ73’mԍOD=J, €•ΐŠG *…X PΑ$Η’N@hΔ6pΔΣΚKl½:ζ.Χ~ΏnΆOS½`ΗΣ,Υtfφ@‘έfϋκW»VaŠu,ξ–ουη…O΄―§νkz…Ίπ n[@γνΈ,Ο}¨©Ÿ―Mˆ‘?D%ώy<tŸ‘eŸd2{Ιj°aIΞ Η ύ/B @ λ€£N¨ΐŒ'€2'τa ΣϋIz$>΅~„Δ ˜R΅1psz‚’ ΄"9“5`€h@ˆ2› s·%ΰ€€ %›Ο‰$Bˆτ’ »©“Μ ¨θ‚$QΚω-ΘJ! 8Ÿ €8λkω+I9+/¨˜“’€Cb‘πY“BQ “ρƒ€!(cœS­ΘŠ’‘πΉ“Ώ$ͺ?ϊP „ρΕA- €€Ν:€!8$²>'8 J Z‘$N˜[ΫB™θ‘9[ υͺΆ@Ύo³¦WρΓ{j oz=ΨŒ_ωe;–dQ§έC/ΦΈΠx§΅Xi“'Φ0=iΚ΅Ζλ+Ψ  k—)x8₯%ρDΡ¨­1π€Ν €+ρ­“p/aŽ"ΤIYŠZ[‚Ι«ŸτΨΌΪh’:r P΅`4ΰπ8UI’(r2MΩ‘–©—œψ>+DH£6‰ Yc);鈏 )‘Σ’‚8Tδ ˜!π‚:`’hό–ί²˜MλšΝ˜-Μ³>(`B˜πŐ€'Ι:>€ˆŸ¨9(ΠQ¬*φ³ΆΈ*ƒΟv‘%Β€P‘,Ί£ €BΐQH| P™Σ90ά‘ƒ“(Ψp·#5(0Ί€Υh©ώ£Ί›^¬CƒΌ5IΡ‰Μx―ΥΓΔLLΘ\a £΄6ΰΫ6ηβϊ/2a‰βz€žͺw©A7šΊΜˆΊ€K‘&™Νi°«[ε™’z³ΐ¬Υ©<©8@Ϊ ŠΈΜžA) KΩ»z‚Κ΄˜¨ͺΏα©•A@"@+λ½Œ"πFŸš@˜‘‰2ε-’z7A’x`€¦‚>ήΌ2‘—!¨Šέh·7±„Pœ-±3«ΑJrΈ ²€·ΉΕ³`@XΨΘ«:Θ1³Oš‚ ( P€Lβ£.‘€…€84ΊE‹ϋ1V‚8S*$œ3ϋˆΓZ£L* ‚(QρΘΤZ<‡£ˆ„ˆC\b ¦P\"±TŸ %>jΛωR=j[= Υ•oΚ.ν ορaΔf{=NψτY/ω‹ζ‰ζzΦƒŸ³Δ§iς ‡0€ p–iΞΎ’Β)ΘEΈn€Θ4²‘#ΰ0˜ί²ˆ) в‚Μ$’LΉ’*σ 2ƒLΝY°˜»Ή€5ω/ΈΙ%Έ€θ¦L£‘Ώ™²1l<š©-’b ή!‰"#@‰Ϊ δ•Ϊ„H‘ΠΝϊ[¬z[P;Ω !”uΛ΄n:«…™ˆΌΈΊ Θ̓ „K­Α‚‰ιqΤ'Y‚¨/Ψ‡΅»”TΉ$,˜AΟΒ€ΚZ+bΒ°₯¨ΏΙM)›P€$Υ8Q©>F)‘(ρΗ[08$k±C8‘ͺ»qKωEkLŠw4Ύ­ >βB₯ΌΆ|fZΚȞOXΡυοςΕΐ½ς2D₯ γΙQsΝP\©Δg±‹ ΅žUλ‘8˜Δ*rQ€ͺSΠ₯‰ θΈθΈ؏% ’eΊ³c N2’yΑ,,<ƒΆΊ”τ¨L󨨁'G–Ε)Ϊ)ύΤ ΒFˆœ’8I’ϊ―TšΏΧŒ ί6£!|*M:€¨α23A+ƒG@k¬‚x λθ™‹ PƒΈ“‘Μ³ψ° zν\Q1ιΏβ’”λ&$Gc€΅œ*€Ž:™e€ °ƒ&ψΘυ­°‹¨h{KNi«₯’xΑΈρm4œΈŽΠ€Ε[3ψtdάQiΰ‚Ήs€,Ɯ`3 u5XγΦ­xG?Tw’έβ㌴Œ P KΦ@Wu]ΧΖ―Ν=G^τa.γ.ω‚γ·}¦?Lή]Kέ#ΙΡ΅β©Πς”™dά‰„Q7Ή³”y‘Iy“θQ“Α’{”€©~ςΨ“" ‚|ŸΓ¬ΜjX‹©L„ϋ '› ˆ)”£χΘ”³E€&ΐ¨ Œ[(pv#΅)ρ0’JΈ&mŽ&ϋ―!¨ƒš€‰Θ‘\$»&FΛ'P3vσŽάˆ';¬4ͺ„H*ΠΚd=b {[°`GY_Pι˜+™bΰ)M‘ ΆˆŽ‚“œ \QNώΧ€°ΊzyΟψ¨ŽŠ9‰ψ‘ϋ@¬^^ϸށQ-[8@i²ΑΕ“Ε4B“°ψΕ‚I’pΧ}8uγΝΓ—φ ΫΝγ^9–οκγΏΠ½t Hl ε+ 96jΥ»i@ךnjδ΅Q΄΄ŒNΚdθ„‘‚:P!²CΊλΨ)“%‰Μ£°S뀍ΒΝ’29”A‘ej 3˜‚Ο] =y— pΏωŠY—9˜(‰KS6bϊκ$©Ž&;γMž}"ΎμŒ&ͺ¨14œ*Ž€ΣΘΣnꀫ‰±qb†cΤΪ—Έ‰•Π‘̍¬†έ”A!Ωx<΅λϋZTφβŠΆίrˆ³0Β“$B°]BF'«άΝΑ™¨&X‰€U!މO&XΒΖ>±a±LΙ乊 9†ˆ€§Ί;U‘4’‘Ψ‹ΖˆΤ‰ ϊΌΞsj|­QΟψΚ{υΠΥο8kaΰ%6\ΰ=vΧρBQeα„mQXQjX1ϊΙ¦¨†jαz£Όž“Β€!8μώxFu)†(» xͺ*άώΨ‘8™ƒp€πpbV™)ˆρΝΌ’‘WJZ‚ΘΟ’8i@2 -‘Ω˜_KΒC“P›Β=±ϋΈς‚ΜjΨ™%ώ›Ϊ( Ψ’5Ν6w!‰’ %φΎ|sΎ,ˆ!%iŽ0Ή’ΩήπƏψΝ,Ł˜€:7tΞΫ<32σT‘qy’zf‹εα&΅Ιߍ‹BͺͺΧλΐ˜˜ΏA H±,/$υθl¦εΨ°Μ—πD8Ρ”(¨Τ“b[/˜I ‚JJΖ‹G½Ή#μ&$j˜:€±!¨΅ϋvέ_'Ύκ>\qπβ}o …PΘΚbγιοbŒ]@–Uψ]gπυιΗ  g±ΔgD֍'₯œ•Jœ-–ΰ‘Σύ ‹θv X N·XsχL· ,бχˆΛBΓ¬ λJS«\λΊ„Š@ π½ωQ/d ΘYϊ`‰Ÿ πΕmζŠ ˜hΨmv ˆžpΠ2z’Žψb£:€©˜’ο©8πΞΉ(7vQ²+·˜ψ πh_˜'ω›  8wΝH‰…½˜Εΐ£s%ˆˆΏΙrͺΠ ϊ AπŸ˜€ •‚βŒ““Η€ωŽO€.9 @"‰‰”ΈΨζπ€:f\‚!` M2ŠH  J©A€”ΐΥEδ܎ΔhQjΜH‹mwžW/Ϋνmφv­Κtβ‹t­vΚzΙ‡ιχ‘?³LdCž‹Δί–₯~•Š0Π­Žd++ nr2Χ€K€`ΘYE‡ΟŠΫfi˜Ό•β©œ½E²‹άw²£)ͺKΜ姍Ί°ݏ ψ¨?­`η ΕΣ@€“’ žΩŒ$νV£ͺΰ8!Ÿ@gL+bρ…|τ/ιR+ψŒ‰P,Κƒθ£₯P εί—¨9),x@Α0hp€ˆˆΰ @ΔhHp‘F‚!ˆX`ΰΔ‚'@ΰΐ;”ψRαD0ΐ8ΰ$Η &T(€’Ar:lκτ)T¨ "Τ •hΒ¦SCάUδ@¬_Η’%ψΰ€FŸ8}ϊj\ΉxΡυeΧ―]Όδβεw-§88(kψpX²g3n씨UΗ­ž$Έ BSxξΘ32a’w>Xό€3Μ Ϊ`δ$‚ΜfΛ–ζͺl‡ Lέ­@聹ΗFζ9οœW Ή–…εz~»χ -Z²u΅\s™ˆβκΉ(Μ°Γ«’~bΈg6•ε Ω«UΛΎgφ₯‹lDα^{pυ6΅Λ}OiΟ€Œ## αˆiσ:ΧΣ6»Hν­R:9`ƒΗΈχ‰P€‘cΣ$T n₯NZˆόΨ"°₯E)B˜ώώΆΑt*(΄`猧4ς₯Μ^kB’ηή‡)&Žπz“9Τ³bhΉς艔š Υ¦@..†’W 'U%Œ!S.$R‡HΧO‘D’βZ©‚Έ°OΌΞ<[£&8Ύ*byφjžή bΘp•±„ζjŒ€¬Βΐΰ h‘πRΪίCFUꍉάΨ«˜²:Iιƒ— #/΅<δ@«„_Υ>0ήΡ.γ‹ϋ(;PŠ’l€ψR9΅`–oFžlbηΘ7F–Uͺm^T!0Sι•cξ{.4ήƒ’™ΕΖ}j€Β΄ž&ͺΝ~RŸŽ9β?χ)90Ξ³B?cήο€y½ η—t!:qκπtΫ…κςΨ°ι2vYω2Κ%6ΪS„Ω΄Ωlw£Œ}¦½DΜγΚ¬‚,2žά&κRτ§1έe?YHF+1΄‚/Ό`ό\Χ)r¦ΞψK'.IΪΏŠ­ @ΥbΕ¨Ipv榑|*1₯]¨•ςl*#uη>΄}PF*έ¬ˆBם.ξyΔ\ WκO~6NB(U#‘J5u”–£ϊaVΧΗœ&₯L΅ qΰΊ4€ŽρI%λKyιΞΓXR2₯%κW?λ³Β"ρ΄¨ε‘ψ$HP°>υΑρjjQωΪ†~…₯q΄9 v—ƒ%,—[5)_³ιΩΔ’φ¬-[ξ`[W§Ά·M€’WΤOΛΦ΄ΊΙ(ZŸkΕπ-Σ+Ӝ©C„:9q½όΡχn›^κ`M’νe+§aΪF| ΑΚoΗιQtž“T‘εγV»iVσYwe%¬N’ήǐO₯ž”’ψzΊ[ηξ Šρ”δhΪζJ™ b™¦₯ΔX˜·¬oSbΩΨϊΥΕ‡Φ£d· _¦AθnM[FλΕ\{κΊm ―‹7ά]C€₯άm|C έw|ΆU%mUkΣΟϊnΉfΧΩ:d$ΐ:ΔZΦ|±5Θβxˆ[*• rΔcΩ»Ί•/ν%_ΚΒ άβƒœ¬yyυΌ‚Ύs’CΕeω’~V0b ΝL-ΓV4³ι«ΊtU ‹Œp»εάF7ΡJζ/bL β,6ΊY™D΅hύ εQ79΄¨μ`Ÿρ5S*^’Ζsf_ ZΡβw” (χΜΛjΓπδ8.ΦpA cΝXm³‹#ιS}Υ¬ΫΪ€V`#š¨žΔh]›E„Hκožάφ=gt­|ΉΤcώΆ­­Br+1†Fr°Χγ`ζσ‹u68³0MΥΊά₯k½hs'8Ρ?–rΙΖ\f«T΄χ^Φ§¨ΕpΑί*λΪΩ‚'σ*§Œ˜zΪ―ψςŒp]ξ2OΨςžξ©>`;’€ΧιZ"ήΞ^ηΧ‚,we­χFu<ι§ξnΏ©ς¦‡Vϋv. ·ωkΗJ―ί½)Όαότ€n½κφ’q¦λ(ͺ«ξβ[₯b=Gp=vκ§άަ\φG’|6θa6ΈεΚυ|Kμ«LŸ;©΅ΗŸ³τ˜ο}7υŠ₯fw‘3f;WΗ9¬»ˆπ§¨—ΙjγhΪΣό aΨˆ@η„Π)NS³³~πF]:NQ=uK>°0Gοα#§!uά^y·χBnσWΚύ½Υ$r>ώΑΜίlY~;?rφβŽWι_zi‹H{ζŠƒNύΒΥRΧD–TΑNύɟ6)ΚΏρ­¬ΪδΦpΉν έ‘]*Ι~ ]Xqί†VγεΫT ς›ϋ”]φ<Ωχ†ΞaM5\Ϋ}MQc<ΰ6© ΏIZόνŠΕύΩ†Œ 6ŸQΥ0½·±Ή©` ΑΕ^βMΧχ Ν@UN ν%R SY‘½œαlΰΞΡE΅₯H ;©^\u©M" `ΎΤΰΧ₯Ÿώ…‚™ΰΜZΙœ©΅εΑ!₯!ΩΘ8ŽΣᜏjY”d΄‰²až ΦT_]Uύœž.©—]QŽE}ΟωΥ‘ηȜβν!ΤΡA’ ιΎΦΙQΜrY.•ΣμΡA.ΆπΉβiΣ»Eˆ,œΑ¨: .έ šΥ©˜₯υβο­ΰYή2”B#‚dΤ aœ)Y2B$Ξ5―ω`7b’΅ ¦Y"¦!QρGΤμΰΘbd#ΦΝc₯ž…€βώUV°(R`dΝwI ό΅ΚΊί7n™>V ŸΝβ'ΎνD(YQΡ qΤ,ΥHΑΰzΪqωύΑMCξb¦/αΦ7%€t•ύΕ 6\ΝYcF€#•β@  uβX <ΊΆ"mDT>Ν$©Uwˆ!-ΥRŠγG$ΥAδHάXEL¬A₯π%ήήβ)šš…τdΤ- "rεNАΥδ+Ω!V₯*ϊΫγeΥyΛHίν^ψ^tdŽΰΚ©%/VΡVΆβ„ω#Zeώa\sΩ€°yΗ %¬<"Bj#IξέbΦI:DyΉ%)’ί> ζ %X-€7F•€%₯UYΫ^|MŽM\wxeT"ӎ9‘0‘O9Ž%ΙΡΣEU“ZϊI³ΐbΰ‘%4‘–Ω&bš#jΩoη=ζ"ηLΕ3=£C ₯ΪmZG‚§La Q<έ¦6U9Ί\β¬βgξαl&a_ &2eεc:ηΕι”ΣδˆB&CξΣ捾ΈτM•GQ’9αΕ]šŠV Ζ›ρζ@‰EΨyΟπy†φe2₯γ!§'Ή¦zlFaXZ£}'X–eY₯€-Κ]cΆ^ΕτYhΖΜ u —Uq ^JΥ‹ΰζΨ‰ζψ•δ!†νθgnf–ŠU-6£Θ Πξ<„ΥεQšσ$ΧTˆšΦ#Φ§ειS’'Hβ£pζŒ₯ΩpρΒΓ©ζ (‡Ζœ€NΤ1§₯₯ƒΝ_•Š©€QΕμ€\έ²>ퟜΪŠιNNN¦ΰA‘ΧAiΫ( )MP Ψ¨ψ^jί`ό%nŠgeU“&DYoυŸzόhr’θ€ž)[r'ψIiˆ±'z±iβμδ¨=ΊJ…Š’‚κbΧšΘ]ΖhIΩγE@y`~Σ!’Μζΐ˜@τ@Τ8Ϋ||ΑtΏΐ½"D˜ΐ@|.€ΦΆkσάλ@°.Jt@xεΆ»zψ@νͺξΊΈS΄kόA°.θ@ψ€όVxΕ½²μ˜@„‹η^ξΈ+(ΐψΐυϊnπ¦nWΐεš8€@˜.νΒΔρp¬9ώh@ΆTΖΦT ½-_‚ΡO:r©οΌ( 6*¦ΠψN^9•X€·βΘ ιΡΕΓᘣͺVp$Iρšΐζj»ϊ€˜ΐτ@υ„ΛVFd―πμgWE-ςζZ„j @Έ¬η*ΐP€ ˜ΐπλjD€Χ Η|εΌμξ²0€n€@ sΕ/FΠϊΐDΐο&«$ Οςμ ΏμI°¬σ‚@ OΐΤπρΊπεjοq hnEΨ‡snaLρΩ"{ni΄ΆΚCκVόRƒzκ,ZŽΰκ-51‘˜1ηΡ™»Ψ=ΚoΊψγW€l]πBβ.e›•¬Ÿ`κ~„ˆpqEd/ΐφR€X²ψz%‡Aφ€ψ@€ τΐ|€ζ†A&—Yt£r&.+qΠ0ζ2η6oφvεB0χγςŒ@»23€ΑθFΐ(gο„›@悁 ¬πνF³ψ€6cξ°μT°,υξkΐ²6gξ5/€+‡1[±ζν k.%‹o;s³*2*χΐ€ (qυ2ΐπΐσoθj.&ίMέ§Η>l‰ώJ―DΣ—ΝŠ’@Ξ2OJΚY›&cϊa‰5]3ΑšU„έρXn­’+Ά—Γj°€ΑLϋΐ-Ϊ@`2 Λ(ˆΑDΐdξŒ ˆΑΐL£.&&.ςD€,ƒΑl1x€p³ƒ€5ξ2@δ*υKδsPψŽ-@u3£25$5 @.ρVΛςΐˆΑ\‹Α΄π•@ψŠA„.^Λ3[kσ0@$5Z@2 4δ:o΅ζξ0fΜpοkRίυhησN‹―Ί­Ο\fͺ'ΎnަφβγύΪrNwEτ˜κO]½ΎΚKφhΥ΅¨ύ<–Š'ͺ΅WΪΜfβ}™ύ—Έ8Ϊl!ήΛ τόέ*~αζ]Ω-Ϊ‘θj΄GΕ)J‹žλΦάe\쏛yQ²N€σβ3δJ0Aΰp Γn{ο+QΰΊγžω„AθŠA+2οZΐ:εϊ΅46zƒA€ζͺ0/ŸΉ£Ίv§ψ' ϊw+€XςΩή$/+x(5―/5B3xp8žCx”3€V/΅ZW―S·2otψRcοΐΗΣ°‚Ο9Zί7b_/‡/@v»wSΗx_§wψRξι£!ŸΆNΧ”΅―ΰye»1αCΛΞΦ΅*‘§š–:ωΉή%φiΥΓ(ΨhΊ4ϋ@{χSϊ@vŒW0ΓόNχ@7?ϊ«λ» Α«wσρ 4-χτ„ΑθoiSp_£ϋ’o16Φ‚s@΅wS0Ψ ΆαΧ.:GsQ“£ υšG—σ€AXR[“L.―£ύ%Γ|d.Έ,fσ4Ίs:˜ΐ­gχ‰·kRχΐP—xRg·crjσ7ψφϊύ9WξYϋ΄$ς§–†FŸF½φμ( ρψzE“žΠφ»βhŽ΄Vl’S%“w}̍αΒ©δ% fΣ-C.x@ „_γ³2Έζ²ςILΫ[1M„L€ρρ₯Η„ 4l¨ΰ@_|L @‘ˆ'ψ0(°@‡ƒ#A˜0A@’‚Žθ`&"!0Œ :,πΑcŒ2Κ4a±  pΈ°@G?|‘Ψ£C?)R訔b‡=XސiΥGΖ† φˆΠ‘ε—¬ΏΠ$8P‰;{>υϋχ€SΏσtΨ·π‰ύ2`œX0dΙO?Ά ΨρεΖ‘5cφ[Ή3γΜ‰G;δlψ€γΣ‘Y Ί4`Π¬5―¦ΝzΆmΛbΣΐˆ“'NŸ@αΒ•+/εΎ„ωrΞK—\ΖA}βt€ˆ–ξά™ΈΐN<―@AxΑΒ7τNΰ‚Β ‘½ύNΣ7-ΐ>¦κϋn#¦|ͺ/0ύ˜ΐ₯Δ8 =Ώvrΰ?χ #μσ Ϊλ!φPΣΠ½-lO@Dμ)Ώ4Π@ϊ΄‚ρ0Κ¬7ΪtϋK·ΩxΌ±-4-ΛqΘ$•\ςΗ?cς)ΐd ±)Ÿ²²3#/SΛϋ: π·λ†₯8δ’γΕΉη C2­.»ƒς©ΠCο;:\ 2<’―’τ’'!#ΨΚ0† Σ²ΓΓ’²Κ 5Ο =c@ΘΣ ,JΑ\“­Π†&]τ―<PTK:U}¬KΟPrΆΚMΜH!W-’ΥΏ¦΄ ΄To₯Λϋ•²Η|΄57< Lαˆ+σΜ4Υ”n:7ΕΜΌ-mmΘNΞN°§;‹p‘ 8u·ΘFυΥ=–Κ΅<θ€)>_}θάΚΘ ΜJ§Φ]€OΑ4΅c#˜'†ψ{h‘‡ξμK„ŒςΆ>Ύ¬4_iӘΣΤ ›σJ&…%φ²m]%™ΦMN™Σ•ιδΘΣ\M`"³uΗf9!ΪhI:ιΪ¬.8N²c@β$aŽ—/qQς?ψt›Ω΄§­fΩ2˜jΥX%£ϊζΞ֍™Ι₯9ήρλ{A&yι\«ΎΨΖ†ΊΔ”bΪΈ&τκΘΦ1Ÿ5N94Ρό%pj‡ώδ8΅K:ΘΕδ&έ! …]{+ωjUΫφψd‘5»;σŽΫ›΄·±ΞΜqΡbε\rbOΓQτ,C‡΅τΊ³žένΫV/ Lΰ†ϋΉε€υeΝj‰V\ΞΞr€ω_-O,ΖY‹^U°kΓ{AΏ½dvKύΖ‰moJ“ΣΦύ/πγ~ϋΊ»L}έ~A-ŒnbIwΉ4Ow{|{λΟΥod:Ξ™x±‹Ÿ―xΤ±v`kŠq&¨Ύ†XπJ©[Μ” €‹!μMh§!3;ΝΪΰ%Ύ$μVœΑΝώBΊπ‘―l7ΜαϊbΓΩM3}α•ιP&Δρ= l™‰ kχC›! tΫγ!`V3)ˆ|κs‘γa­εμBZA3ή›Œ¦ &@(B =ζE`1olžα8©CΉ‘y{γ.= „dτH=C> „†4α Pˆdfs“ΑXa\6§νa1sR$[t˜Β)6©‰“άRIεΙ_%ρ6š$–*ιδΓωρ­1E,–KI;n1Λw;`π„7-6Y yό‹ €‡;ΐ8‘˜L0Sp 3@.ΰ„ΜrŠπΐόΉ K…΄σ€œ$T&:=v@ΈXΐ IhJ*&‰•LόdμΨχJεΕ’’Κ"°π)I~-If(“βΨ@ ΠΝιoJ„Ϋͺ"γ²ΥD²3ώΒj&ΠMΪΖ1P&pœ΅Λh1η»ΨEYFΕ”,+0P΄ΐ,°€*SFS¨A   5Ψ©ψ`›ζ=/ € (sKΈPΣDΐ6Έ*0`ƒ%`ž   fΠΞφωE˜ͺB’F=w½)"f6¬DξήjPNZ £Ίκλ>»ΦPΪυˆτΓΪΥRΕΧΏš,‘Έ,πx9<–Ο₯MίP=θαν΄φ°>ΰαGψl&τ°Τ@|ΰ˜Υ<ΰAΆt0ΒHΑ=Π!™Ž3α 6‘‹]΄©ˆΓ*€Σ„3qΈΰ…$Β ŠδŒ’ΰΕ'x Έ΅3\ ¬>ρΆΏŒΞ3}!cCΩ=ήJK„Ιη―Ά7^€6uφ½“ςη5ΑΪLvˆΕ\?-vήήMΦ€γΕ/~¦œθE‹S\ύ‚$πα˜Πƒ1›Κ‡Πu(B&μ€Ψ²ΰ™θf H‘‰# Έπtΐ‚,`X‚&xΡ(ά@ΉΕ<±‹%ΐ ΏθΕ"$α Η L@$€ FμBν”^έ›»Α–/ˆσνg—Ε―NΊJͺ MύͺχεΛύυ°&Kh_γW;ΓΉ5ZL˜CΩ“ϊrŒΧj dœbBδα˜ψνξ°=θ€{Pξ ‡Μ+ΐτ₯ιpBeZΰ·¦~“‹­"yΩ±Α.¨»_4cΠΕ< HπB™ŸΨΔ »€₯ή λΌ¬p ½Ό$ύ2ΡWλΪΡΚΖΫͺ•YVgFsaϊ_ΡΑΜWΗΖ3|!GKo'Ά ,ΛсKj^ŽpΔ3\K‘τ†y€Vt†υPΥΒΆuΠ³*]ƒ= !Σ{H. ψΠΝT ΰNš;‘‹ο  ½€lΠ κ:M +쀋##£ΐΒ9±λ€2*•)p@'¦mRήΣ2{Ϋ‘DŸ¦Κ-†c4ly—„%‚UϋΎŠ΅§GaYμφ–ηBΫΚτ o{ΐ·!χ˜Όˆ¦0ŠqhNπ₯κα˜ψ-ςΐ=™pνg1€αΧ’b `Α Žp μα˜ `BFπβΘατE$ ώj$λBγh]‚0 l 0aΙ΅γt«­ΏOW’&aθf’eώΫQ__=ΏX°iIۚšΆΞ'ϊf¨Χl…ύ'Έ‘ήDˆ †Β7b€HЈPx"ΐλ…. hΐζ¨ϋ—D»¬·Γ˜@ŒΞ­κ}„=ψν°0&ά)M ;˜Ά―僴άΥ;`ψΙ\›ΒΙ \hβΘžΠ…&¦³U(μbβhη&|‘‰MμšώL(ΒΝΌ4oΏB"T°FτDiYΠ” ζJ 6X–ήjΩ^₯ΜΘKφΨμΞΈ‡ˆ΄‡Ÿ&Γε2πεͺe^O‘>H†Yμ hB‘8ŒcψŠοψ¬­8ωbnκΰ‚πŒΰŠ€Ž`Ά`"νπ LΘτΖžΙ耨.HVΐπΰ [βωΰ ώΟ ΰ6AΧΟα»ά !8²£ $ βdΛ€ΘW6pθ† Gp½:Ζ±ς¬ΛΖΜ1Ϊf5φFkžB•d‰xc³rg„Β‹ιzˆΓς‚-Ή eΤgΙ«2’ˆΏœYΑ …ψTκgΐθ²ή$<Μ‰³Ψι™jq(mΠi )›‚«’„šτNζx Yη„P"5Œ1›θι·Œ†–ξiΟ!21τθΛΜ*1±Œ$χϊπi.*t ΜΏpΗΎψpσ8ΡΪ4ρ0ž £ezοχ¨ξ8†O₯vAL9’Ο:v0N˜d1€ξΐŽ"Β  οz‚t ²!lˆz<ŽΈͺ2CbάIkθκ/FeΎΜq“D‡<ς“Δ=οMς“Žθ,Ρυ.’ό©ΌήΝW%\0Ψ4Rι6«χNq{‘ψ~AηΑ‡ψ‘-#ޜΒq y,ΐ F*ΑGΣazƒΈε!/h˜²*Iο½V2epέΗΪ–h Z/'7f-ΥQ½ΖWγ[Pi8€=p-p”‘V2†-₯Ν/J’†ΊΡ°’lUΐāOψRΡ€πqέͺ#q\J0-γ™Pυ0XσW\ξkολ’5“>ρiπe°Η3G°ΩD“lζΗ§J4c'Λ­'mЈyψ*q₯τδJŸςιΧ8p΅ΙgΜ±_E£κ 0Σk/Υ3 «/bƒ,‘·s4Ώ“Ρk9W³Ϋjσ2ΈΘwPθQ†r:΄.³ž“8)ffόR%σ²lιt”Σk%TXK6Η#{C5£“J“5…NΌN°:Λ•$/g¨φΌ“Sς*4qr[τVhnA-cκώ¦jPρ‘τQΠΎ Cirηf’ΔS8Γ?γjeBT†Ϊ4ƒ0t&ΣRΨΈς57³3Φ¦Ξ†$ΪΪ5ω“ΛΆeG%K7ΫΣ1o0EUy q±‚tΉHzT$§F­³SRLitΝ£2;4Zτ₯˜sq#؜Νrτ{n<λT‡ Λ?%5*Q²ϊL€JΤ1LΑ¬Τ₯N²6oHϋΚ4‘sLΜψςθΐSI?”`fNΐQFωT7Dζ¦UPξN;†M ³ΛΈΔ…δ‡2THLŸtJFT€€τ'ΥΔύT.ΟXbCΜ%ϋΗΝfM£vΕR‘D_²1yϊ‹6ί vΎt‡4ςXy€t©LάΣ©t:|³>nθ5H#γ8gΤ&›3FΙ³Ψb40‰\o: F_r7P08“U°,Λ+S²”45O@ΓtH&mRλ-C©J’ΘznTV·΅κ‘J«\ρπG¨΅“3άzE΅tHωπIi£GΝ”AvOΉΤE7ιΠ’P€ΔΌŒH]­f[„€'<΄Res*ΣGμwvΙD ΘXΡb­%W±tLχ5gνS9§ΖjξΖ)τΥυjL£Ξ[>v<ρ`τF‘u$λJΜ@Ό‚%]es‡θd5μ΅kk‹5ά:£‹hpJQQa‚fη_#t?1΅Sί΄`Qvf‡ΝΧϊ°'‘>O”\‰MΥΆLύiΡΤdYCjvo‹Τ9ΧMp`α6[)+pœ#((ω"lωŽ’†B΄q;ΣUKUg —I1·__WiU– Δ‡lEcΫ¦(ŸςφowWθmα”WU–m`Ξg΅u€|²€ ,v0+LχEευkο“YK#χΜqa―νp—Ά―ϊΘG=’Ty6gΛFφr“–-»dˆΔUvχ©d?f}Γ³AακGE51βΆ²h1«ΊξnrχFf4SΕiiοT₯3#ε”εpWY«cΆ3³HŠΎΤJΌ6ζ°sŠ|wvΎFΏ늾…8P“"v€>7ŒΜδb©wι˜L[ΧσZTe2~+χ”>C†Τ6˜‚MdΈ‘_aχlΡuˆ …0ζ€-3—D…Ν€€@χyυq2γdΎσ\Ν–ζ8‰ vrix‰ ΆU(τzc·Y)qaυK#ι4d]wk!΄-₯‘ZΝ7sbΟ‚5ψLyi₯l₯g>ΙH‹ϋ³Ψζ·‡«‡νT,3χ‘_Š—Y‡dSϋ6`ηw¨ζ}ΣΟD°4ΈΝ$C‡ύVVΝ->{ItU4W™OIΖzDym‰7rΩWGwxxΛK\9uσxmδΨj2HΟΗ“X6unJΤχΨlx–$Έ—υVyuŠ ΘlΏΥhΓU3|hN˜˜Sΐ/’§mv―”ic+w‡˜²C«r+mΉ+ν2ζ¨N&b~™5FHΠψ1ςKFe83<ΗXMgΈŽ53sφm­wψ‚α·’‘™~voΐ―ƒgVx9ξQMυ•|θY;DšR£@IΕƒΈRœι„ΑΨ“ί9…p¦iYœbˆB²‡)6"I}σFž]κ:Ήl?’Œ'γŒiωΝ'%wwuλ·m=Ο• ΑVa€|&(•#Η(‹aψžšI0˜‡ϊ’€ŸB€›Gš` `&I MP„Ή!›[Φ)*½P;:dVΦ‘¦Nˆ0ψ£/ζι( Ζ1"€Q1vΔλzV(&›l¬9G€yϋqNhPz±ω…‹Ύ|qΕ‘W%Gbyvw1 xZ‰x”-w8Αx.Y©qΉθ~T1yμ€ς1АG32ϊΘ*αȐ˜r* ςΈ fΈ£` /ϋ.œ$a« IR‘dΈ"αΘ’§0 Ί%₯§ήΉ4άι ­ΰ$αΘ`ΒΫN 0ΐ"βΰ f@»OΘ Α@‚ziΈγ{Ύλ›z Ί`a  ˆ#†y$ΐq’›w(Ž ΫΙ*`0@½Ϋ ’@jβΊ±;0ΐfz¨ω,ΕφΞ²sUΩlQΖ;±Mm±„#χ•Cι,IΖψjε8C{/ϊ©>wυ2 ν’+¨©Ï €y° °ιμ€ότ.6 Κ‚.ΰΉΠΙΩ)"ξ²Γ„lΐN-€ΗΠΰ)ΪJΝ₯@Λ(›J1ΛΗΚΡ α0ΰ` 6Φ©oάΚρNHoqœάψD°)Ξ{ΘΙ£ι—)uFγœ€4LȊ――%!τ―&Κτoyψΰ±ΰH&=|κ8ΐΰ€Ζ"ŒΚ…Λ Or™Φΐ’NΉDa`@R―UΌRFβΕ .IDΠ¨qΠ‘D‹5h4©R –6] 5jR€C3}JU*«D³JΪΤλW£bŒ=ΰ`©AEŸž= jά·tšJυnέΆ_ηu»—(Fœ€FΏΩΘωςΖ"^‹FoR(Dpƒ( ,aΓKKƒΛN8q€PπΒ‘c/žΠI'άΠ O6x ‚xΑή žθbΓ#»8Ρ„0vΔ”FE±kE ‡¬PΓQ>…·‹E|‚Λ ’ΓβςΉ|²€ K0€Α~φέ0ZAΕT€‘Uά—`Ρf`~d”Ucj΄ζRnΒ₯ζ[oΎ•fTw–©VRΔνΩΥ™f’Ιζ_@ε qƒϊτUž †Ωa‰-– NΌ8†)N&α’Ψe†iζ%‘h9€yˆfGΗ zQΗpG5μ±'Ttj# @ͺtΈg\˜°H.Μ1Β ƒρ‚ σεbΓH3μτNP;’ •n"Κ.ž;° ”θ&Ωm.fŒτΔ.ŸHΒάhςΙΉΗ.!νHl‡-θ"ΑΊx²α o²αH£όΚ& 4{ΨHŸxB?η€-ά‘™Ak&wa?u¬·Rΰν(± OφB’’θ²Ι"Ψ{_#­¬§Dqε’ržηUc5PP”p:₯ _iέg›K)Zγ’ƒz%–Υ†Ϊ΅Tf WQkσI`qώ©aˆ)f’.—ςς d–nš(‘‚ ΆΫΓμΐ©ίνA«5θQC¬φΦzλh°G°ΐǎ@΄γίa”WΗ6’μ|ΌΝμtΉΌ, .ΥœKJΗJ‘ΊJΌlE#QΨ ‘ƒ4Œ”ξKΕ·‡{$νœϋ&œTΐKΫ |7Τ>$ΉΌ€I..0 p…ΞΫ{o/œΏΔ‘œŒTΨ*cDͺ{μ±*ΆY@‡€ΰΑϋ‰ξϋ:•δ0c…Νξ… rΝ Ÿ`τ– ‘E@(œ›Ρ˜6€¬ΝlqQΪΤΒΦ j*{ωΰY(x–·1ΐ„H+JΫπ"*₯Pεm"Œ kx({ΖnŠ‘”ή.Υ·ΘπΒ$ ιTa8A8ΌJ₯ωŽθ€Θ½Š5,ΐ™΅fsΐŽ%?Ρ0Š-ςasψ₯ tωb:ŠέμΌe»ζ€$zΈπΠv΄S&’Xt‚‚‘!vn 'ψ’BH΄Υ¬Ρ΅ {ϊΕΐ©u  Ύ˜cχnΰŸτt ]½ΐΐ 4“•Œ™Fv›‘܁+έPφ%­k­―Κ–&@₯ΩqBΪαW$zB4ΖM™‚Z&3χRΊAΡP™{2Ϋ Ρ& š0kΞKS¦Ω5:Mm›…ΊZ`ΜR7Iα­?Δ”/ώVDΛ1‰ζŠ:V;θ!™ΐΓžΕΗα°ΨΓ>IΖŠθ‘–œΫQ2"€;Lδύ#ݜΰ \ψ›˜$| ½±±?’ΠΕ 0°‰OΌΣB›ΑΔ8ρ2fαbE<‘@.ˆ‘˜αBCΐ…l •Άd ΰ™b˜Ι–TΛ ‘|‰ RŠO,aIΈ…04Σa(&) @rQ  '£ΐδ§€1yFeΑHQΰ!4|ΈΓ:r—}yΎΘΕ&lΠyα’—ΰD.|1―t;ΣΎγ ^|"%‘!˜bθ4 >skέΜαfGΨYΜ†³mk !]ΘΙ—fr­hŸ§Τ°&•R³jQ‘a0s7^κ1ο"ΰ,σ‰N ±'…+JZ"p:ltΈQ ZP Α±’ƒŒ •!αtX`$h@iι˜ŽP‡ή„*-0“D#αޟEA š`QJΔAh„{ύ[­Ψ@τ‰ ‘ IT+Sh([‰H,’ $ΰ+‰ X¨—Fœΰ^νά  „ž…`,’›ˆΓΉ.ΠM0B Υς ˆ‘πlP8–Όˆ% €F@Žμ€ΧΐuΈΓRF΄/~ˆΐΦ#6ρήj5αΏ‘B  ,‡ [7hD$κ•Μ±Χ΄’um8γr'r~Σ²qB-š`XΑ<‘ΠΞFssj? ΪΊh-L₯e&ŸΗbœœk‡œœnw Ιψ–Sς.=£2’L+»x,­τiŸλW @§ξ©‘Ž…Ϊ8·Μ΄«%‘‰Fΰ‚/ΪHξκκ‘<*Σtsu―°ƒδzΘ΅±r‘hŒΣ?²±sέc$Ωξ!W¨­=’Θ£‰ΰjςΫή¦Ά­sM>^£ΕΧp£Λj—&ΒC›Iή€Άl½›Ω(-Ν‘•!67ϋξ~»M)lIUήΔΫ1·ykLίvρN½ΕΣSΓeՌ{ό$γ ΐμH )ΘΈ¬βœ(ρYyRβσΑxβύΞΡ²1˜Η§t:χɴ㳑’Γie@χ9Μ}nŸ=>Oϊ‘tή󝗼#°(Μ3Ÿ$ά3DηwͺΛ[έ3―½%̏ˑ’C=_ΌkΡΉ^tΨΆ».b xf/›6±ωΉ‚α,{ 3ψΜ½γι+kΞ{ΎohΓνΠ3τ{Δ¦πΓ0<zΓT€y‘‹ί^ΖΔuΌQLΑb1ΐ\ΠφΧQ¨v£ή(GgTOj€Ψ³œε’ZαZώ?°}eXw@XΔ~Ν‚T-α']ν=σ€αάRτ_l[ΙYύyTΛ~T…ίHΖ©βtλ—:ω gϋ‘/χͺ|‰ήε|Ϊ½=«΄0ί泞ύ­φ{Ύ†η»[ Ν ΔΟβ‡J:ώC8D’”Fq”U}tq~Τ–}灛•€ˆwbςoƒrM˜c'Π§fbwXV![$DwζΗ6`±6!XOb³Z^Α7) ·[™2i)”εuJΑu~²zύ7wNρq0}Έƒx²Bˆvgdq„"x~RwWIˆx_²6'Q~³5Χ4g!T6§uUαΫ4Nj³€Ά‚©§xΜyκ΄ΊPyΌ…™« O†‘<ΕηYD!…s_ΘƒxWπg0ΣW…jς„IΡ%‚η[ACfΓq&‚‡…2MΫΤ]ς±Ηˆ5T.P‚”„O“rP·MΑ‚A76}GCTan6\ρ&«e5δΗMw'Œ¨Ll1‹ή”…τ2ˆ7”ηpΏ° ’‘‡xDg‘h₯2Œ©v4?Xv½†4H‰πsk±nΆ4oIhηBήxK‡ξsj¬ζΕεŽerrί₯‰„⁦ηˆ’₯(Κη6^!v¬g\LQl M7pRΕφ5\±ff·–Špbz @4N§{Ω„ζ“Œ^‘Β†LC‘‘ƒ…ΐx6σwqf„΄Υ†-θ5΅ΨŠ‹’p3‡«P‡•Wƒ§yσ΄’Qα{Θ₯ue:—qΐupΗvx, /uWh‘P·nώe/W8ΥΣl0w…ό–peΉ{hιshYj0£ ΜαsB!vgΧ&€ιžqO%Wr‡j}ιtέΧrχdU—L«πP_„–:w…FŒι¦t…Bωr:η‘]·•Œ t[ mdΩz7w,S Ϊ1A\9™gΗWg /‘fkwt\g‘ y,  ž  1jχ¦Ή30Δ™™%™¬5Mρ Nΰq°PQœT—ΛιΌΩšΘ©œLwo·(i&ˆ8og&LjCζ …ό§=I‡ΉΐNα ~ƒyCd€SqRΑ^E`2(È6€#‘ΚoΠsžΐ1lθF.£° l›P!>Α ηk$ιΊŸπΩβj94Εu, p2{ilͺ–i+§iωθj³’xPEώΓ2ΉΖ<Κ δ=χB@Θd *Ιn†=ήΒ Ό ³#e%‰m™koΊc·Fn±xwδ§~Ɓα“πΈ(bh&Ÿˆ“ς©ΈŒŒ6yw( —7Τψ)›a‚QE QFP)$5°(sp°΅„UF€2:š†bΜΡ2’dΐcNτRl30’!XΌSNπ/ύ M`&9{ν₯`ΡγD…cΦ‚>K°/(Jπ«OP`³2UΆ—ΧΤ«β] ͺG [ΐ0E-pPΣ?°,°―Ϊu@ ιΕ’‘Ρ³’ Q‚ Λ_P`/ ‘P`°θ! P0<* Ωz›β_uπ?°c"’°Ϊq.N Œ 0K€­Ώ:;7ΠΥγΰ36[ΦK`/πΐ΅Vfq 1΅t‘K`±ωΕ¬ί±A@ε£χXiH@³P&X–cŒ   9=πε!`4ϋ^¬™P0ήςw Kp.(ΠΪAfV/4‹bΥ2Ι‚ R/1ΈvΠ’ψŒOa6‚WwϊNvηξ©€{Ή‡—Ή²X“oRhk“wyŸ[u8”‘‘‡78χ5F&QA²!{ΐ:ΠΆ++`Ή!­δΊΆ51s΄;₯Qi€ 5Dg4L› CŸ° ½@s€’0kζγ­Φ” ˆ„ ½€ Ώ €VΕWΦްS0šπ  ° Ί°Pœ‚ Ÿπ`€αqa˜Γ;0K±- [WΗb΅‹[°€Π#GpΔ¨3€‹0Σ CΔ š€RΉ !2ΉpΚς=z ‘ ¨ƒ$ž·1’e› "!10 F’RΊΠ½|Τ œΠ .AΈy5 v€ Έp(%Y³CΆγΌπ½ u9|… »L6ΓΫ« 0M°:, €$  ‘P ŽΠ ΰΰγR<± Ή€’0£§Οq9Α 9% }5D"‘˜eςH6€ špNP-)%e3€$Š!4ž UZ…±Σ  ΠQθ’§Ψ›‚η$“ρΙw–ͺLvfŒ‘μ†λ)cBŸ€Aτ7•!O™ΡS(ˆp{°P0[ w`§*QΟ• vάdxpβF'΅ΊFθ² V γ+ –dLΡcΑ‘p,`šμ$|τ ‘`‘ΐ Υ2WX0RKπΏΠQ’…ΐ ΐΏΰ(y=M  9΅ ΨL!`K°Ώ 3€5 Ήςt€zΰΐ+€€ΐΈQ ΰ°€@2H y 5ΐ  HΉ '0Ύ°0ΜaΎΠ 2`γ|‘0Ν3π6π<σέ³Ι9ΊΠ χ‘D·IΏΐ? ι2š |e%L=ς’’ΐΤ$ρ Ÿ`%6 &UŒε΅ΰΉΔ3π΅*!#5 Βΰΰ OPΤκR€Š‹±Qπ šP~5ΒΐM Θ #‘Ύ,K"Ϋ‘ Η΄M`ε,6p1+J€! ΉH£ Ž0Šό F1·;υ ΉΠ PΒ@ Ÿ€.W΅™œGΌpŒΰ ^3—1ω΅;b ΆŒΚ’|‚ƒβ-ΔΉΫθwX±(ξ gl–B₯6PX<„7viΡ[Eω©Ιzη’?ΆFΊό+Mx€[ : *},Β§t @@ σ γ[Γ€ d/ΞC7π q ’ T©ƒ₯wJy’Y…-P@-£ .›° ΅D;ύ‘I€ δp„,Ήπ.œs³ήΠ²!~od3@:RC*’+€MVσβ1~3^γΌ’5,Η’· l,s.?lœΖ“ P0Ν―nN@ΦδρB/₯>Σl» „.Z>ΥναεΤbΊ`¬O0Τ'2ΓΡΣ%œ Ηs:άr,JΛ «€šήN0Bk Π“.ό,|θ£Kp½ !>μ±3;έC.ψ.;»³•~$ν1+Ώ€šœ pπ1 χq(wŠ q ™Ά ¨0 ½€ρ–±ΧNœR­κ)qZokJΒ ΎΠ‘'i˜~b5Ε>Šυv46¦,BλG7……[ΣώΚΒqš2qώyiώΆν{ΠqΗ’?L[2 |`Μ{Pεž?₯PΘ`N<ςλΐΠBGidTΥΣ¦‹/10"αKŒ Ÿ=yΝτC-δ`―u€Υ™Ρ  –θj€(P0ΰ‚!Χ&‰Kl8ΐΰΐH¬ΨCΚ#uπΩΓβ©+2Υ‰ΐη€#€πδ£@„PάΑΑȐ Πδk l@P€$^NhXR*«ΌDIlΔ ΚW9R½A ΡάX`Ζ³xΝXβKNΊfΨψ% /Hoˆ“Λkωςυ€ [sεΕ°dEIΎl,& ΐ€%J/Α  D-|ΝΕ @€ͺ'8ύΚeΐ(_9εzlΩ” P{‘h¬‘ _%ύZΰ'\3:7ƈp―Pqu& ΰΙM†2 ΥΖFΐ°4αυλ­¨\ερF…#x‰hQΊ»`ΐ$Β”†z€) Cšπ*dJ$ 7δpΒ ;τ°B ;ŒΔAμpDWδπD_d %tqF-γΔN@\rΙE^0σE_vα… ε“O8αD< QŒΰA;τ@ )θΠc…¬¨=φΰc…#φ(B8θΘΓ`€’fΨaX₯‰pΡa8Ϊ€" rLPtρ—Hδ M!^>ι…†f»€BΙOœ!—ˆκΠεDΩ%•]@‰ΐOVI’“%΅h#α—O#: Κ^WΊcLψΐ‰=Ž γ%=d"E1[Ψ’2ρΠκ>jΘ ΈCΜ#8`©‘ŠΊAP@‰ƒ7¬:›Α^Žγδ‚Λ>ΙE?‰lXe—OΌjd]yρB"%j"sIΧ‰] ώ₯1Q~ωD\„‹D_\xyB Ι²"waς@ z}‘o]8ιΕ­4YυGΨ@™τVψ ]rωT΅­‚yk‰\zε\’³”]PΉΑ %qω₯:™tΘ:°Œ]6Α ‚O?ΩEgM@AO+Lu{) ¬ΚE\Κ‹‚O€‰£#>;a@yοΦ$E‘ΐ9!P;_m\±F(E+<ΓΕ%lΕΓ Ÿ1rΒ/Η€(*Š–ΰ‡:π±<¬ρ`˜JB‘5 ω!ŒH?(T ₯ŒDΛ ©ΘršΡHΎΙ"Ξeœ˜'†pΘ"‘LsλœP:IΒΈΘDžγP•n%:™HB"’‘’€€\0 vQΞ‹²TΘ‘ΈI;BΐΐL²Tτ‘uμ•iΆQHb»˜Dτ9š n`Ώ:iQ$2T€Γ€&41 ^¨Ζ=%}H[*°Ω1…fT³θƒ ‡\XR:€9ΐ‘F…g%ͺQ_©T`l‘΄Ί‘jτ^ `…V‘‹NτO`Lέ©HtΥ€fVέJG:0―ŠΤͺρ%ΝΈRΠΣιl``€ΐ°Mš @«V γ[KΒΚu`ˆΐSZ}‚²2ͺD+³­Φ₯C‘κ pΥΊ@~6*'ε2χΈsJnCίΔ'F;t’Ψ’ˆsφμΠαbK[Β±6F˜‹ν>GWΊIHCRέ.€‚Ύ.Gν‹;A81%ˆNΕξRβ$§ d  KzfΰOx"]½ͺjή_²w\U"ŠŒˆ‚Γ_’·WΪΥ $Q^Ih…½π­’œόήq^—( pœκ« ήNJ —Έδ€€ iuΑκκΈ–Y‘@ψ½¦ zΥ«ΥΉpψ—"AAβP)¬Ψ θ•œ΄ ί<@ΩΉ―}K`ιΆΎ"¦ΛΪY!W©ΘC>ΐκ/496ΰ&Qβbϋ:`.υ\οElί‡χ½;ɏ{eƒl+ ΐPj#εpΡε°Cπ”Σ+ε—$qL9gmοΉΉ鹞j­Tθ =€Π‚ŽηHξlΞξzCψΔ­„ΚΡ9ɟ¨/Œ„€›tM‚'Ξ«Π?K(ͺNmh;e»‘ ΐ)£½iο&4ΈοZnqρ=ά7Ε\!‰άΎ,φ¬3lκ†–ZBE΅u³ "άξΊBAœuNΫ]¦Δ·gεξ¬{άR!G»§³PUΕΙΨhK lIί n`~;ΊΥΆ•ράξ΍H$:εΌΞo7ΧΏ-u²eœhΜ:Μ¦8+δθ ;ΆήTxΔ%^Ήy―HŸ”ΦqOwά]IΉVs¨uΔ+wOœpΪ’H·;Τj“cVp-Χά°ύ9‰ODU―βΆsΒνXΛ<7Ή³>tq*Όœι<4ηέMٞ¨q~^mΡCδΪ“_ξΰR/΅™ΎΟŒ_ ˜†08ς'u’Όzψ³“ύ’S °υ om₯ u€Γ(ˆHQ‡#~"ƒS«}f'Œ€=ev }θς€p΅KNjp2όrK'ϊ<ω|9ΗcHF΅½:Ρ9WyE'|ΆŽΣzΎGΟ©cn‘Φψ?‘«ι#ρ’KkPΩCΑ+Ι¨’ W‡Φ~£Θοκξ‘P–s‹ΉΎ;ξzΜ½ζΐ•[™sΘ©Ν6|Δ‘ξjΊΟ<ςΧΗΎΔ3oοŠ?ΪϋΝόŠΒύΘq>τBsΑ±Nσw“C?ζ.ώάωΘΈIκΈΨ•ΫiƒŠξμ •.PͺνΪ78ΙT0‘¦©’Γq ‹, £ζi©Α‰•[8μ@³£‘qΓ¨‹ϊ0`ZΛ=μRΆQAέ·†BΎm 7§žϊ±~C―ΓQŠΘ‘6wC<φBΛ‹Έƒs΄<«;!'ΜBš?€3?Π §9Ί„ϋ7χcΏ' Ό,œΌžϋΌ‰»@=’4(I=L»Φγ?ηκ„P‹; ΰ;Θ€71° {Ύ RŠλΊ9Ωρ`―+³2/+ Ix„ΐ" ΈwS3yk7φ―Έ;€ 3Dό/NΩαP $s―4™ΐ–KΌΓ£‹d›―λ1;άA XΚH§Tb„ΌΨ°±²s/Ί˜ ω /;|3‰ΓB˜kBž»Ί_΄ΒΪc ψc‘Δ©>1F s‘dΔ(a\ΏΙΎ-|ξβΊ~²?2d½ύ[šΧω„Ψy9Ρ[ (p‘­€Ϊ,‰p€tLͺo Qτ˜ˆ’+­ΨŠM`ΪA)‰x“xΊ)‰H8›θ(ΗR,²Δ»")‰‘ΚX<ΐψ©u4*£‰0€VΫH€Π ·y„bΰˆŒJ)ΕΚ©—<+šy€γ£+»’΄κ-FσBi4ΰϊΎ%lΉ^ΤI«½’΄‘ΘωΕπ»-£‹Fž„ΉωλΊβΚ…ΤΙΏ;C‘ƒ.wӐ™ @‚<8–έ€(‚"¨:π°; @‚:ΐ ΄ H–"ϊ‘„ ©%ΠπYX‚(hM€‚`EIp‚ωα Ph„(`IΠF¨ŒΑ)Š8ƒH IŽ`M„ςX‚GΠ…Oh((Š%h‚&€„ΞŒ€(°Ÿ9АHθ!ΨμGK€Ή"Ψ―¬ƒ "!(‚’Λέ€ƒ;@‚‘ψ²΄΄,<Έ‰#°‘Ω"N†ξЎϋ€„HX‚9"Mˆο (ŽkϊMxpHΨΛΞ£(I€2Ί—E`ˆΕΣgœΖj„9ό”>Ζ{­.œζCΚόΚqhΖ‰;ΈΛϋΟΞΛ§ Γ~*.]82»ζΒʈ“Ϊr“θRΘ; Ι-–1Ρ2Ρ>`QU‰HΏq\蚎X{Ω™ι]Θ‹%p—MxE0]Ρ„˜ξΨ„šZͺ€) P]θ_ΰHΰ…M؈‚\ΰ„HhŽΘ…Uθ8(MΈ)šwΙ…&€MH\˜Gb;€-“" G2–LΈƒΨƒfα=¨<θS> ͺ!Ρ!a!*:EΖ’p‚Θρp _θQ(Šϊ\(/½Θ՘|YQΈO^Ψ„ˆ’KŚ'‘ˆ:q€α³-ά#Έ₯‹ΊΣ3y ?ˆΚO€†CPλF 9Π^ΥΰOc%Fe4JΌFλ…εε4« 9P5^i> Ό H- ;8€€;Θ ΐ<΅–3)Ξ00‚=@=XN=°€1NR0‚"€8<(“-:W/±–8€XuVH…#=‹«πρŠ&ψ…H°ŠνάΤθT‹ˆV@OΊ#5 κΰΌΨŠ]Ψ’\ΘTi[Έ(4Φ-P·E4ΐΣΟI?$ΜΊ™σœωUžγ­=ƒ-aPν Pj Bͺ΄`uΦΠρKσ‘΅ΡεΪ…_ψ…k\ψ΄ƒŠ›φsΎαͺΡ :Ψ’4*’’<Θ.IdΙ“˜ΫΈˆL=P@YX«Mψ„‘€ΨλάNΠ'­‘Χ5υ1Δ…Όπ5υH…&θ¨Fθ(Ρ‘ΐΡP°Z#H8‘π‚^Θ‹ΨTžϊ¨Px„Η(Ύ_AQ:ΩΈƒ-0Ο;Fe%VrbΊ£LΠgφΕdaa5fežŠ3PΉέ­Σf Α‘α2Θ•άj½ΠώΗ$FΘί€μ]/) sν >°*žd—pέλΚ X\Ψ„Jυ'€`”ŠΠ€μA hάΐ:—(€λι FP8›ΘpQθ$‰½‹O‹ΐVο(Š>~¬α Ž_θ1² €#…λΝ9,λΰr<˜E“I>›%“@-RP 2ιŒ:°Ω‘¨Œ’>‚6œ΅­ΐ›XQΐ€ΠΔ€ˆͺ― ΣΐhOΝ«- FψΒ@ΫπQ @ŸϋΐŒμθΰΌ…BιΊζά:4ίΊBΑΚ¦,aύ„8fnΠΓ…^ΕλlΖΎmαΓγIΗ glόi₯ΦM9 u’tfμ‘`g=xέ.U`1aΡ Šδ;° <Ψη_‘“©Μ(ΐΐΑ)]ΣάE3€Hΰ“\‰„Κh„› h HR˜ …‹Ξh­πPp‚~l„Nΐ€~ω^Θ ΰ Ζθ Hψ„ς(Š& %ροΰι…&ΐP0˜^PRΣͺ±tRΠ Υυι;x_iιΣ1W2ΩͺQκ ’έΜƒLΠƒ—­*=:• …PΈ•N£Τκ½™^Œ)Ψ…†ˆΘνy΄ £Rα@ΰ θB‚™ςPΪem[Ζ«<ō<{*§ΝΦY-΅Ϊ‚αfώ[dPeΈfά½Žf½Θ>—άiυ˜°ΫΏ"Nη‰Xh¨“`€!“0“#π’&—@δi¨ 3 ψΛ;‚‚Η8 Ÿ ,‚¬ xŒ%€F‚‚ψ™¦7"(Π`` ΐ°’%Π2;ŒΚ ŸV¬’8wŸTrŸX˜6_‚ιŒ π‚ΡΔXFh„Γ$~3 (ΛNoς ¨ δΉY;($X‘€ !:&g₯‘Οζt#XΉ 0,ͺ‹ψ6žŽZ’Ÿ8x ;Ίt2ŠFΚ₯Tͺσ˜ξˆF€’’ΐ[93¦aςλρΐΞ>ΎΎΎdŒρf^5ŸΔ½t’»»½aΤ’Υ\ufuFάdόE}j„PˆΚΙ’Κβ«|(‘’κ£λΊχ“‰Ίw£Ίw©“‘’ZNΨwQS‘²Θ‡}sΗ\©`+·rG:’« H”‚Ρ’()κύ,€Όašͺ€Š£ Τ›όο«J°{œœΛԎ€ Ο’«tt+\z« τ)‘&œ˜8@’ν!μαΣ?Γ'dΎœq§μK'y’;ݚn-/μ^Νφ$qn'°v'U\παh}½Κ–\ζBη¬d»uRΑ.w³\ϋ₯‹μ₯ΝMπ ϋβ²L4Εu«/*30YΜΔFL/₯g― γ±ω2ΌQΜ.‘@΅Ψ‚"HŠτΪ½ž7μzœ.0{/Μ7ό½Η!;Μ{’hD@d5ε\ΏήOYfkώ¦½ϊ&8ΙΫ3ΐφζ:©΄#œΔ~f£79όŒ[ „ύ›ƒPϊσ'ʞ\ΛΎ\ηJςjl;λ PxJ@™C5W{€‚Μ·)ϋ»T‰k@η―#|b[ώpΧϋΞaۻ醫CΜ’ΓΠxR|ΖΞ΅π―ΆΞ₯ΏΣ΅¨œ«a€8 p Α‚L¨p!‚…:ŒθAAˆ/΄HΠΖ;2ΩΠΰG…AF\€r₯Ι„' Ž<9’εΐ™4_|@“`CŒ8yβτ (\Έzιβ΅k—0aΎ–κΚ• ΡOœ2ΠζΒ’;>x0ΰ@„"/zE9“AZ_G:ΰΘv₯Ω―vWΆ%k7ο]…|uΔ9Q"`Œ\ωΒTΘ•dDΔ5.ξΨPcIΔ~ϋ2>9δ]Λ=_–(ΨΰfŘ šЈS'ND‹JΥ΅tΧ/aKyEZ(§¬zGvP–γΧ΄Βλ*([xa„ §ρ^,+t‰₯Φ-X6»aŒ–?ίΘ=Ό]ΰΣϋ‚ζά]³θ‚ιΙ» ΰ{΄(Ν;Δ9σΊΐψŽGZ~ρΕΥh‘€kB…K.H)Ε”S»ΰ&•Q X…•VΜΥXjZρE`B1@"{dqXίN H‡*Ž8@ˆτ]„B$ςε"O0ΐr69`Σf^ Gœ]0yγ| ω8ŸiωΑη$Ki݈ B* δ‰φΙΨ~Μqζ–•f%yj‚u€‚­ „KΥφΤ.ΉQ…!oY X`Χ@Jθ‘—ξ1PY#γGΤΕ‰ίΡWέ—Γ‘V—t @:΄_vT v˜eβFΔΝΕΐ’*Qušθj§ϊͺ’Δε%[½Ί9€ΨiΚbM4©lBγQ§^bRΎ%hΧE9˜”+iΉ’€χm»S·θ]ٟD– \O«JQΞI›mFu‘žAωvμ@ €A{άaΗ+°8π‡Γqθ-YΜ J#%n·‹­†ε¦#šΈYΦ6{±³ΟΆZ²³Χ…Α!KΡv —₯Ϊ&(`Γ&MP¬Πq0>££z)Λ0ˆ" Ε(wYu&sZpήΕq!lV’'tC0S}@,Xΐ@i‘ΝtΕΤ-€tsΗ•lrc-…yΠ΄j™ΫΡΈ…ԐW]gδYώ9"‚wO)α…?Χe‘Ρm8H‹†—Z#‘υšƒΉ$Eη„wς’†Ÿΰ«x YjD&uθ0¨$’80λ8 κλl2ρ‡¬»ωΊ±$J2Š@$nbτ†―—Hšν―/Οzσ¬WP3(K\Ϊ;λcpΖ&3°/R8opΎ?<ς―;ςΙϋύλρΑe»vϋϊ¬Ξ{ω0pμ³`z¨Ar…Ός•oTλγΧϋ¬§".dt’ιδ~δ’œδ¨MΫBw—‘Ό]49RΈjBRι3άz[DΨ;πΖ]F9Šlfγ‹ς’sž³Jθ Α ΐ[ΠC&θ`τΥΐHΈΓV€"0±άΒΆ@;¬@3±”! κΉi ›xD#pζ„FHb‹H‘ $‰&ˆΚ šΰ("Α ΤLE‹³>3DBŽΈΔ"Q<ξΩ ΨD$ΈηQ£x8;ш=j xq@χr± M@‚{-JTχ6± >M’€‚›f`ΘF0‚K€ΔI΄EpΒ&DU€¦ƒ °.5D:¨Z €Αv8ΒŠ €"‘Υ ’¨ˆE@­ΐF`b  HŠ;ΠΑšN³ ωB’ ΰž"‘‰FhBπ‚&ΘΈ‰_@ ¦€ήκΠHl‚zqI›pTΒ…Θδ-EΙœT )5tEZΚΦE27‡ΙM…z˜:’šŸ%NFιE„hσ _δP‡yΕUz£•‹vΰC&ξPτm!|ΠΓ‹ ’f‚HΘΔ˜z:­ΚMO/ŒΧ^ΰβΐΨ6ŒOΰ‚8[Β&|±‰Ł»X…'"€e½pkΛ\&=]ˆYΩ/8Χ]ώ"œ0«j@± Px‚O›ψEUlΰ‚Mθ"θn<Α OπqXΆs.8ΑΧ‰‰žΐ….¨ΗWΛ  Β'xαVΥ#π…ΡΌΠ‹Nˆ"Y‘^9! <:η<0ψpX`|XξP#`XθAΉ:xαQ‡ŠDž•G ’ξpx‹TΝ« ŠΎς’ΨDlwqF€BIι.*ΰ^€5C(~Α‰Ξ²aξq(KΊ(‹x¦4.Rd‚ΒZη4|Iw²–―ŒFlyΟf<:Q–H(ŸŠQ”9ΪΰP‡;άΣ†$R€κ_ΡΫ)θ¨܁ Ό»#μuˆρ3•d»δB$E/0pƒ]ˆΒΌΎ˜Α t‰ΐŸXή @‘dΤo<1›#υl0μBɍ`s/ /pbŸ„&8±j'p5Λ6¨€«‚Oΐ&όpγ0sŽΦq!<ο½αήΑ‰Ι3.ύΜ-&ΪqΣOΰŠT\ξΔ/₯P-΄›‚ΖRtΨ l·q ΄»$ΒΆ°δαtΐƒνΈ= ΰβΚ85‰@ΑΥM€βΜΈPrŠ6Α‰ΤXΰ£`]Y;Ρ ’A%•ΟIDΥπ‚zήƒ‚χ¨§ \po ½τς<ŠλΩ. @τ"v© υieh€ .D1OΐΈXDvA½«~6ΦΝλφψz’mŸuΑ‰1hϋBθΐ=¨Όšzπ5FŽό(φ3o€Υ΅€R,j  Ό Ί΄ΦρωΟι‰BŸhD$<Ρ„TΤ!Jΐ'Dα€TpΥΌ(;ΒVΈ„T0#ψΆΰγΎUαD x'ϊϊhΥ”—ε'ŽωνɈφΟc·Μl$ϊ ›Σς]αΣ((₯ ’a„„ρ ŠKeΕ­ρΝE8":θ#ώ³XΰA±€€άΙ•άΚνΒ'ΑάkΡ‰„ZW}Δ€ΒΠάΚ €Βξe.Ψ€ ܫԌΉ(€‚ν˜#D]χμΥ‰UW=υΞ,Ok”H0ΐΣEΒ'ΰΡμΒΔ\UVά€$4Ν\[]Ϋ ‡'D™ θΥΤ@μ‚ΐΠxί™™(lΝ]Ϋ ˆ`"₯‚έ•HC@ rݚθαALž‘Hw=Ϋq­8^μY€νΤΐ‚jˆJP€/‰Β„‚Δ(4Β#xΒ|‚„Β&@τž|‚’-A.€x†`΄φ!Άxί—”βχ©EΑΥυQ χY*¦Π ,Ϊ›ΆΔ›„‚J=KΡΙ Α”LνΖό΅„½ΠIτlœνߐ‚θ€°θ@Φ8ΐ3iFμ\ΐ hέφ$ψ‚AmU–ε\μΔΨ€P,Α ¬'δΒΗ¨†/LΜάLB0ΰ5‚˜ωΛί&TΪ”AΑ.Ϊ&τΆm‚΅‘H(|]ΘΜΐ δ™TΐC(TΪ .Am˜Μ‘ AΑkΌU.HBΰΧpΒ/ΰ 7z!I‚fάρΥΐΪš$dςœGXΐ3ځΨΪT£²ΐsԘμXBύ΄•Θ5Z@O­ΐ hD‚0H,‚΅^₯Ωέ&xΒ€‚xΒΥI‚#>.("¬E˜@..ŸJπGΏ•bƒΝbG œ_zK‚Q‰“θΝψΉ‡ίΨ'"¦σΑΗ{tK†5fγΨΔέXΚj΄†»ΘI 1ΕSΔ”ΕΕ‚δ‹‹Ή δ'mA8QτPιAl—x]£§@Œ'<ΘT<Αx‚.€B’u' Ν'Έ$HVA‚›ΨKmBYπUXyՁ0όœΐπ(p’œΕ”[ΕΑ*P$pχT€&D…ρh‘V€ΘK^Ž&lb/`N$ˆŠ Π—™ΐ ¨.d›ίAΜμ­}ρη¬ΧƒE4ΒΨωη όΊ•&ψBXmϊd‡ν¬@0ΧνΪ%)(—8Q4.—ΨΞ4J‘ͺI0ΥquΙβ]dX b#Π/δ h Μ@Ψΐ@L@Eΐ ΜP€›“`F–šίihιΐ Δƒ­ΈtEG†Xι‹Œ, ­Δ˜dΠΌADm…HυΕ ρ‰Α /’Ψ/ΚUd'LŒβΕ,‘Κ‹^#xq°δΟΐ ΐΌŠΣώΘϊ,AοΉ#υ¨Hο$YΘΞ†<ο,ΐΨv ΨιλH@Ψ’ΕΣύΞMε λτΔM= ς„-΄ͺ¦HέςNυ°Ž$|_mΒŒνϊΤ-ί^Κ ςΚηW`λ ΔυFtΘ|^DF.©XΟۊŠιΩ-ή>Ο‡0η&νφaΤCνexζ•ŠάX)~Ξb\ΛΉΠ[8ζ„α¬)šΓΥ”.>Θ™ϊbΕ­XPντŠ”±`G°t σ lΗΰΣ(PŒxJΫXΜΕtοv Δχ’­Ϊl΄ˆpœlΕ K§T Μl€” χZΜ­ΨΞΌΖ’ΜwDΐψ†oΩ|/ιTLΪ4I­@YΚϋ*ήG„E’,DΪ‡JΌ/χΒΫXpρ±―²( Κv_ΙF„–°ΙH¦ΞΊb|`β˜p…ETΐ₯ξΘB ω ΔαnοΞω9ŸŒ‹‚…‹Oτ,.@\rζ/8…Π)oόcΙ¦fά-bpοgΤι@¨¨„LtΘ sG“ΦΞt”D“@Jνθ =B,p$‹;ίΣrί₯Œλ,Θ:„p(ΐLΔρBτ ¦„Ώ¬ ΗbλΚμYς«p+©!H œ•._ˆ9lδΒίΠ„ož°i#ΐ‹2)OΠ1μή0ψ*― ϋρ•@ΏI³¬ρoΛ'OΗ(ςsΈrx8–d½θsΠ0υ₯π]¨b‡•T(OΚ‡ §1‹H•DΨHαμ›”ιεΔTΠΒ”…ΰΒ*άK›Ž²a⾘E)+²"/M2Ο‡θπΆ\_ΉXdOdKˆμr+2sg,ι6cΨΡσ_B„G!@Z†šXT“Ί »0H‰M2/TrŠchjΘ,v2(³0KI/{KCΛ°-ς^hŸDΫπ0ϋ+6q 71ψΙb e hΰD}<ιΰœ0ƒ½βCΔ¬Λ‚hζετ.ψΒ/ΔTB³ιhΪμ"1Α‰t?tΞυ ;τ)uR#„Œ²cσQ_)“GaΤξ·ψΘb„Ek4TS΄2£Δ˜ͺA'Ε ₯ιg/'”T/Iμ>fx”Ώ¬7―°γœ>³\ΛξΚfŸE³υHΣ ΝlΜVuH‘D(n4aZ΅Pο[H™4ΐΗ ΓΟzέP@\X%…RΈŸš‚&MυPRΣ’Ι*vHϋξ7› *λ›_Ά^›Ά8σ°Έόε9\ΝV4-#uG«φi{6QΣ΅iP^οφWœTΟ6ˆ?E›5&ΧOƒφ\χ4iΔhβ^ηυrm#Ν³nΟ0#3·QKdOfkwΙB©Z›HkχoD)_‡y„ΠS,«ξ σ‡J”χeπ sϋ6½εwP_τ³΄pKrLωbŠqgΏlς})Huu,>υm‡)½IυωΑueπ5w«χW(x ΫΆ„GŸΘΞvmΛΆDΘuwφ[|Δ>ƒwiuŠΣDE­v†“‰3[qρKχΕaσMπΔβ85‡σ8I`uzPu‹χ‡Α6‘ƒχ 7xsγ°8{uχ‰ΆŒ9|œDMρˆ—ElψPΏ³’/3@/wKKySŸ„3 oAqρ&4M-t‘o΄ˆcψt‡ia4xd„qέœt·ICGF“+²Ο’_"6sΏυΌz_―υƒσLΰG–²{x™+šwAτ QœN³/ψ‰χt^l8cΞΗbΰ5“ώy υ ₯Σω·ΊΎ F—C9Ml΅K§Δœϋ·Ι¦Ι)vΛa|v_μ0Λ‚Ι°[Ί$O2Ό_Ž_3ύ-v„ίE)Ο³˜CϋΏ…ΉΆh„Ί‰ϋ:οϊƒΉwίσŸš:D―°*Z†”8ž³:ΜΦ:_^”ΉŸFt΅“h)‚;€Έϊ ΈRψ4ψŽcΖ­›σ§WωCKτ~Ρ}’wυˆ`ζ3›XϋYrό!w'τ(έΙ³&@8p ‚(@Έ‘B†!Œ8‘’@R4˜°βÌ^$Έ$Α’”XR ΚŠ.KŠd˜ζĚ,-‚t@P&Ξ…0oΎΜ‘dЈ=1BΉΐηA€O6₯u"SBuβτ (\Ήzιβ΅kΧ/aΎvρβ•+Ÿ8uκΔΐ’\iS©T©T#ž$ αΣ‘~2­˜Ρ°T•@ή ΪqΘ ;+RΞ|t"εΌ|!¦<`ψ3ΡΚ,5;]HxτCΜBO7-»οή‡W9yβΚλΧ°cΛ #ΛKlΫ·ŸtΣ΅ 52σΓ΄k³6MQδlΔ.?Ώ>§ΘyŸ^”ρ3xθ1Ι{ξ(έ`κ…ΥΟ―ώ›4ώO“λγΧΫΊ£QλϋAͺι?ν$θ«Bρ$ΌbK,²„9+-]Ψr Έ’«λ.χpςξ½–δ㎑¨m:†8Τ9œ3,΅A,π<§QΕ¦ΚΞ'ΒH;‘₯ρψ[6ρ€8ι)ͺ€1°ό€―σX+qΌ&Ί;rΫͺ7\Β"«¬_†  1δ€xHƒτK&•>’q",}„ΞΞ©λJΞ@²3»= ;MFπT J—–όΣΡ(ωΜ&€eΡHEq:‘.<³΅ ”Έ »…“SΧ\ξQτX2ͺDϋ MΖΟΣOΆξŒΊh@λtŒuΥ"Ι›)€ϋ~…ΣW'εΡ6[W$Ά€: KTΏ›ƒΕϊ4ΝνΞK1ΝBkΤΆVΉ°Λ84τ³X Ίλ]@;Λ“Γοˆe4Ψyσλυa‘²Άή’huΚ¨>{υYV»14€ °Jσt’β‡Uσ—ίύά\7­ΈJε«\ Ξ\ SW·Fˆ^X™=²Ω)Ξ―V„¦Ο#ƒy&xγϋ8܈±˜e~sYηόΚK₯ž˜<Δ8'C– π-Ϊj£mν!’.ψηψ6’xG']Œ4i¬Ÿ”:* ?φ²·ίBυΕ—sΡμR9y-Xκ―q¬O‘ŒbMΰΎ§£Ρ‘{‘Σh1.τ£›w–ζΝΆσΩΨJΓ;»’Žιλ1oaω.mΞ­'j\ί>%Λ¬2ΧB9N”SοΗψ8χi0Ѝ½s[έλ)/kΩΣy_%ϊ±™[EϊRΙψ|π†ͺ½?VkbMφ,ςΪGΑω}切>k!qӍ·Ì;-΅Ξ|ΛξΊ(σόθ!;JνΠπ‡Ÿη€$Τr‡cγ’φΜ γ“m€9Ϊψ~b ή謉AͺFρ9VtΣ)q§\»@YΚΰr*εpof#οN(Όžυ;!’ΦΥPSAΖρ­„υy ΐβc?K`΅‹ x»ΙInw³σΛσ(vC(ΉgK ςD©PΗAQ±„οS΅‘Χ<†s  WC’­…ωSαŸ\ΒEIu±CJœά¬UjΙ…5‘ΣvXΖ‰t+ƒ½—˜"d΅TQ„π#ύw]Œ‚< δΠfχ€0k‹’ĝ&])“+4ca–φ«0)EB<δΖvuΙψ”ΟK"ΣΈB5œAΦ-CW O™Η!>’FŒ4`lrvJΚ鏘M±Σ΄ωΛζ̈•ƒa–δͺ5ο“=q£'…t”ΑΝK‰Ί`— –Τ™l}€ΊP‚`gH 3?Χό;€Ζ,’fΊτI0ωΜciK‰‰Bξ^xΖ‘Qx‘lHPZΜ‹ψΟ%9k΅ŠΉ-ΣuΕ7%™&dΞoΥ’ˆ1ΌΞρ …9eΞKtŸs™ΟY™hbm’¦Ή™hRHνňXΪ(’ΰωI0Ft'}Š€:iOfQ §·‚Ž›ͺζΛ…μd’θ+YΥ:χς$T^ ε$ E‘mΌ*Τ«RŸοœ§ ς€L2šΑ“לΦSvŠš›RVδΕ«Ω&ž˜i» Ί“ †RΰοΠ6ή„+}δœ%-ΣiKŠD`­ob@*β tβjπΖΠ²δ.Έf/ ΧŽ`Ά‘Ε₯2{‚Ωffκxf]{¨ΆX$Y€\MΘ΅…ψ‹°»Ok'άΞΥ¬ͺ4*sλ)₯1^$pYΞΆΈ%MΚ)IΠ²)]$ΌhΜhΏ ΰ&L@nyυŽζκ€y‹*ωͺ7ΌMAκ[•η ϋ€i€ϋκuΏ’…ξƒέγί!2{6ΜΜί—έt³tύDχ£―5ŸΚ»α–ΐω₯ƞEnjΡ¨];)ϊΰ1Xθ"ΰ€tˆ R0€‘,€ΘκE/p Z  hrK PΐMvrh%@ΰH9ή±ˆ¬ ΐŽX@„8ΐΑ» h+{΅VVΗsN°šαπ!»ˆ² u€ŽαόζΛvυ ˜’ΦΜ0΄ @ΐ΄Τ:­Λͺ•Π8ΐ ΰ„ ωJ8ΑώAPΝ΄$AΞμ˜ΛΓΓ² 0P¦Gž’η΅δ­'Ύ.s‰Jc›μC&'ϋΚΈ"’©<–vΕ¦6P), aάΐΔqd ά|lRΠ d B€UΑ Κ€ς­X‘,A„@ Ν€Τ(  0ψVΜ@Vα ΤΰΥΛ Z!YΑ  ‘°<4!f€ϊ$‘f‘δ‘dAhΑtOjaΐ^ΑΌ―δΔ°]BbΜαf‘βΰ`ωl^*Nα bαϊK"€*κ‹jA !φ¦’ˆΞΣh&]$ξ( * hΑ,m!φk@Κή ŒaHΝ Γ¦ΠJ«”m4ΔFŸ²H¦±bŽΘμfδOθhΆ@ηEvjώψ―9<Δ+ƒ*`­Γ „ƒδfξ^Œ£”‚φΞR€ζΰ"ΐη@ !ήΛά,gœL½O½P― XτΈ,.O VΑς!ΐ!=’ XαέΤΛ 3²:0ANAŒp9ΥkL& %ƒ’ΌΣμ2Nΰ|OΌΤΛ€M^™δ &+Nπ*j!˜Oΰj,Σδ‹·Jœ²=kh?1t?ϋ€ΰ@½!¬΅@ (€A“ΰ)λKpΑz³6βxρΦ°Uͺo’ЍΔΔ§2₯€4‡~4ΓzβΟ―@"Ψ.3G b6Œ!°ρ•IΪ2πB^ηnϊ"f³ζδΰ*ΐ6η LύξΜ έ Υ.π-"ΐ<σ--a9  Λ`rΜΰuP½;?RβΤ,!Tα '@F²$O2΅,Y²fΑ@jA ϊ `ΰόΤ“b‘,Υλ^2ύS=gΑόδ+jA!C™o_ (_αnBIMς $Ϋό0Όκ EKfτ3ψ65DΐŸΟD“Ξq!Rk’Mξ/ί‹αŒ¬λS`Έ¨—4iJ EΉ‚g3ΓΥe€„±DΈ.(ˆρ—ξŠ[؎S(jƒT-T“ΪξΞFΘ+LOf³6αγΜK>UPM ΔρUΎΜ`βυrP½N9-Oγ”ςΌΰO―“ΰ΅P»3bC #Υ«rαΜ$ Ύ04φ>U ά“^ΰυΨ%ΌP@d΅Xο+ ΑφD ³.UΜoΣd!ΜUc5RƒRύ θΤKκ@vQa€jΑό ,wΦhΑχΣjAYAP€ϊ²M ”ξtΥή lΡ"Alt˜¦20€¦οο4ΐšδP’­OΠn^e]ζ]η—Z Εtƒ’žν©ΘD5Ο„»Ne_γ%ρ Α@ dΐ άΰ@Α  ² $±*"™`κ ’ίPΟŠS D2:Λ€v+!‚ Q€:ߍ VΚ@ΆPΑS#CR ώΝTο½ΐ«dψˆ ET g‘A. ωΰ ’².ΐjd1ε„LΎ TUΛWιαTU΄ZγπRo!φ ΐ†a¨Ξ@ZRΰ JŽθt’=_ /`iΑVώ`ΐπ2ϊΐ^Υ,o%— ΦdΜ"˜0Ρk žKG4)t䑈D4£΄#‚MGmζG}qI·υdΉFi.z¬1]3,±6₯œJLvKWσωδΐ oΊmΫFp\sLί@ππ’` -A^Π¬Π{;ϋT¨°-!*τ‚ΐ‹# N‘UΑ @ Τΐ ΐ L‘N’αξ$)@)q%v\‘=±ωφ¦wζ*N蚏eνΛΎ$ψHεPc¦υ‘β α BαšΰΉ*±β@ Y ^‘UcΟqΑeΥž/ΡfmV \‘.Yφ'`>aλ'ΦxΈ……’Έžƒ“z†hB2 *λp {dXŒπδIν3σ™ΙωΫΞΎEΕ΄QξΖbΪ λnβ§5ΌtMKεΰΐKS κΡδ¨B™i@Ύόyΐœ¬Π)εpLΏІB€ H Oϋtκ–`œ™γ2.Ϋ.€¬χ`Z†Τ` ±ΦͺMξKE‘‘\ZΨ"δ«`@Ύ "ε Ν΄`"ΐ£ΧΟ8αίnTJ•žO€ΗΦ§uΊ©u:θ|Όd ^`=+4KΐtzuY¨(Ž‘4¬’–Tνκ6¬½ΩžDŒY@J3\Βpοφk¬£†[y’Dζ4UGξς5ž{s’\σζPnε$mό#αΒβMΏ$o« ΰέΈ¬ `ZβΝτώ ’…L ±‚`—3σF-[ol”kοΎξ‚Ι²νΐ.KΑ §§…ΙΦbA]AΑ’ bαVϋΎzz§’γ\{Δmύ Ά0;λ pŒ΅»,΅Ί΅{ z{ Κ+Ό Ϊ°XknΜΊϋ«šHɎ;θ`²ΩQd‚P¨ΩΓ ϊЎ¦Τirη&~-phγιΪ.‡BR“(°}μN«ωÎ" ΐ \Ώ$ ΄πΖ΅œΘ©Ι”Μ.rδ΄―μΚ.k‘v9έ ίδε§ ΰΟ,ΗJDΑC ΄2‹ΎZKΡ>K$’b«lKΡΝε MΞΤ*΅9·^εRbJΗDβύ,Ι(mNόPΊΠͺΚ@FψaΐϊlX2ΜYm:LWzFY„q%Ζ››»‰Φ˜”"πη$΄όE:eΚug’멌„ΆT:C³†ΟiŽϋH˜B:fͺΗμΛρ„ΞΎΩΥTnΊWΞ]ŠŸG#½E$ bL½|Ϊ‘»™niθ?E©ΜηΟΡFΈ~QVΒ¨°ζ―Λg†Μ„0Κ{Ό_ν–«^‘­\’κˆc‡·ΜΏYo+Cœηi₯’ JχΖkφ€ξe¦lp~JΒYΦΚ>4Gbρ)μΫΛ|>Ι€ΆYR”Θ­z˜ί£β›"p+\€MΦλκkύμσολi=†RDΒ:Ζp, ΪƒώW.³pγ[¦BbΥχΜO~E‚Hφ–h€Ύχ$I$0†mOΓkΏJίΎάK₯r•γή₯]Σy~ ]š“iΨΧ¨Oόk―‹š|ΐJˆΧQίγA^£WVή9t¨“Xž’Ώε“}‰τAADƒ^½Ώ³ >qςΔ‰€(\Θ°‘Γ‡*ˆE†)"Θ(Ρ!ƒ†/ŠI’δΔ’#9Ž ©π$Κ‹ Jfdωr€K5Q\y@₯HŸ9μ€x3θΕ’Bδ¨ΤhΝ¦BEMzqκ€Qkb₯hΥ« ‘2ЈS'N‘@αZΫK―]»„ωςΕ«n\Έ@HΠ S gώŒR,αÈk~ LπP€[Ζ$ΌX‘aΖ#,₯j3ρΕΛ•yŠ~xS3ѐ‘7# τddˆ― Ζ{pB²‘~‹+WΫ·»~ΙέU·wή½ L45W†΅_F/ys§asͺœv!͞³Vθά²Q₯—Γw9ηbηΛ?oόP>DϋτΫΗ ?1Λτ‡δb“‘7mv$·›Z½4œppρ’Λ]Η Δ 'q ήaψ±—i/±tSmmΈžzbmwߊ²ΥΧwRŝ‰.Žζ!` ]χSN02dV:$I"ˆV‚qφŽΝατŒ\ΘΙ‚½΅\ΓIH‘^|qΘr2ΆθِAυXŸXφ‘9£‘ͺΩˆζS‡IͺΦD²'D¦ΩG‘eδ•ž,²Y^žμ™yœ5₯(I·E©›Zlιrε/ΏD8!^« wΦ—θhηž5*‰X‘7υ¨SšΑΨ£KιwΪHθžA’i¨ͺ>™‰€N·’Ψ’“Œ:΄Uu£jε“k²9‘šPš5%(©τ–‹[p η‹[vŠ΄ β7b‘':°Bζ‡έΊΙώeξŽ>*fή©ήΉ*uΑšΪ!FΜjWlD•εzfxˆ”›‰zή¬KΞ{'Β έVΦYTϊf)–Yή…—ϊe˜K)šκ.Α!zXŸeŽi`Ώaζ{˜ "Ÿ˜²IΕϊo±_Υωθ½)Εϋ"Λ"•φ3lCχLlˆo*€πx-Γ;,»aFG–΄»­eρƒYς²₯§Κ`rͺ‡Η\­΄†]ͺΛ2+56Π=9ό¨sπ1Œ •2ύ(ψˆ¨2`EeHΐƒ/L€ζTδύz8Όπ|ε?2ΊγPά§ΔZβM@1d˜8xΈ―loͺ©‹QF½[9ͺg’δ¦E)+i[λ’_ΪAcΕ€_0’Ωτ@ ΘδΑES9  ˆΐœY„ΔD­cc#€Qc` =)ΠΨ @3Cz9‘€ iŒ ΐΰΠ’R΄2-mΰLB³Ÿ¬Lε0].¬i£Κ?’έŠ―ŒLλ₯{OΖ.FΓ©[έκl3«ΣHζZ1(ΗrΔ—4Χ5,&#=J#Oq 1Τ¨2ύ€˜N υΑ:ΠΣ0L6υxͺLΦΐΙ„£e”ωŠϊ΄>¨θ.:_σ€Β¦@‹Sό²κΐaψbΔ° T ΎW =ΈŽ&‹ΨTή΄§Nνls啝ΥQOγk«Μ|f˜uJ•Ί£ΰͺΊ?«ͺ•qΊ"ηίΊͺDχ†_¬[ yh^aΘ₯.Z£’^C9Ԕ쳂πFΰΜ…ŒX MfxΰΣ vΓ†=ΐψ7ΐπά<+d2“ιι|pafv`’ 5A|ΰ(σ₯+ξAIλƒw).μλΰ/xΰ€ΔEΐIΉΡs™ƒ&-† Ί‹ƒiWe?―*$žcY“ΉwOΣ]W¬μ Ζ“‰@IO €W£t<Ψq:φ A&κŽJΦylfέэ#zׁ5«E‹¨˜`ΰˆ%mZh:gν9d.Wω„YΪν’Φ#ϊ½†θΣm ·ΙΣt¦e›ΩΖ2νδYͺΧ ;qά-κΌ|υ¨+Ρ"̍'Θμ »¦/y±PΧ ~εšΕ3ž=ν5*SΠ4ό=‚4ξX¦’…Ύb zγP}4C)nρ•Ÿt²˜8J%iπ€Ά y⊢εX°|Ξcύ&σ²1A₯}pX€ς`πΉΠΞΩ}ώ‘Κf§§[U]€‡=λAΚƒί”λ₯σ\Φ%UjΌL."‹νΡΊPy՝5^¬‚sW²‡€’›oZΏ&0nC@Λ_KΤ@*ΝΈcΏƒΰΠ6&ώΓ°\‹€Ρ€π·h°hy( _ύυ>ΠE¨†R11F8vF~†p7@…g±EI%₯Z0zΆ'Z°qšφT=5lbVίTwύ;0ΗN?ρuhε!Hρ³|†3GVv4(A}¦mΥoF-“²5Pf¦)νΆ9GH Usζ('dΆ4b5{e_2g{_ˆ…‘…~b ΰg8f_ψeg‡Xd𫢁a5{?uXg_‘G’EL*uXœΆ,¦i_ L{Η†`!B(2G#ˆR†ζ&΅†ΒΆ[ΦGV.σ>j„ΖN©Α„Γ,ΓΜΕUZζ2SaƒŸ˜:΄1ƒrB|PC„L„}QςOΥ‚³γ2¨:wΩAŠ‚CΑ#Ή]TuK'©΄ΘVˆ1.HxHC2Wia5†™1p§˜1i‘4”$$aa2R˜UBk•'όΈΕδΖǏ%)Cβdω{S(<―#ŠΒ_αBPΑugid/(JΓɘβ%&Ϊ1Y?ρ|ΕΗgΉ‚žanž s-»ˆ˜ye!‹Ι›ό”/Sωd_‹o©'t‰Oϊ›’›”π%]…“frG΅Ρmi„1δ{Ω‚"Q@ΖΓ„vsAiΦ<›3]ZE$½τ£ψ!Btgv$ ?πω‹‘œ αRZ›R‘P •α7jSJBI•Ε˜πIG)΄(Ρσ.­XUžc>bu "Ρ’:˜U™ˆ‘FΒs"œΗ¦ž.ϊ3M€}ΌΡ ά§£;κ‹›Γ‰œκΧaVΪ`Ž*ƒόςŽρ!?π9¦K₯\z ?Z„Z$’Α©‘BZ*3¦ͺe‘56«Ί kc—₯Ίͺt7Ρ9 λyCς€|:NΊ«Ωυ\’š/9ΨOΆ¨ ΈP-Mx) dνv!Ο“?Sκ`6©J¦ tΰ£ At·‹DI γ¨pίj©ΊdΛβ ―ΈJα­²Š‘ΰγZ~§΄§T¦#A₯ρΑ­*„T"a­ρwΠK q­’1I ²J±0«Ϋ€0€ε Ÿλ#!Ρ'π9― η­ΐ­Ρ°`+HΝ‡–T%‹±‘!9G_ͺ«5±‘Έu½BnC‘fc&Χ-49Z9hΆ£Π™³m£Jγ¨P‘ΪͺQj΅―„`Œ0‹΅ύΠš0p±Τͺ”d΅kK6Π(π΅‘eX›j‹XY0’ M 4αŠ}Nΰ’`0€‘E΅ώz· }°rλ₯kΛΈδQ¦[―V»²l«¦πϊͺ”T°`Έ`›·‘Έ•υT3Π‘ ΉN …{²ΛŠͺ·6ΐ Rp±©;·½k€`ͺΆjZP ‹ °]{±Α«·7ΰ _¦Ι—žΩWίƒ‘rΉ#―£‰ό—FΡ'°€šΑb7&€6Ψ—’T„ΐ±@:ͺ1Ν#­q€`v ρ' _²`±€}ΫͺΈ Ή Ώ5··ΐ Ÿΰ΅Tk±Žj±‹v Ό Ή@±Œ°\Γ΅° Ό΅›° `°4@  Ρ`Α,l±mƒ« ›p± Α‹ρΊa±ΰκΒ{» †Λ»SΚΏ3  χK±P`Žΰρ·-άΏήΊ ΌΠ cQΐ Ώ°Βό Gυ­Έͺ Ήΰ΅‘e²>«d&ΫΔήΊ»π ‘p‹ ’k_ Ζό΅  €D ΅ΞU¬8+:‘±4’βƒξ*΄2«NlΔ'4D„ϋVn2fOΤ 2μφ’R8eXw`Έΰ 6pη3€K°07ΰNΘ1^ΐ!03ΠΚ§Bz  ΰ΅ Λ­LΛ`N°@ΗQAΐ΅ό­6†k °!ΠΛ̌ΝΕΛΌ 7°N€Ζ-Ό ‘0™Ά8Π Ρ;`KpίzΚ\Ξ€ΑΪ š3°Μ@‡»<ΚK0)kMaœΑyR΄ΚΜΛ7Π@RΐΊ 70sγΌΉΠΐΚN`0¬Μ BŒΚρΌΜq+ຐ±:Ή ‹«ςlΈp Π †{Έ _Κln,ΞK0ΔΐΛK½±@Ν l΅ ‹Θ@ΛΌl@ΧΌ°»a ]ω^Π–ΘŒ©:Œœ§7H:©#‘ΐG"Φ«³‰“RWN˜£Πκ-ΏΘΝ†tP€ Ύ€› ‹ ‘ΠMΰΡkΑ ’‹› ¦Ό·ž»  G΅6Α<Μί:žPžΰ΅’ΰ}½° qΪcΈ’P«Jdρ ‘0!NΘƒ}’ΐΙ‹ O0 pxό­ΰΗ-l«{Λ α Ερ·}Ÿ Ή6π ΊΨ£ΌR ›ΘΝύ Έ° DΠ&νPΠMK€@·@WΊπά©ΰPΦς%‘ Ύ6]π Mp-Έΐ  dΕ½aӌ ΌΠ ΈPΓM`5‘€Ϊ½Ψ Pώ\ΣPΑ^R°ŸΫρ7 ’P° ±Υ£ήΉΠιΝ 6mα»Mάψ Δρ ύŒ›0ΪτόΏ ’ŽΤύ΅!K  ‘­C4Θ2zC'"§ωΙ›uΓVnφ›G·ΦιΤΘά<5unς¬yέ΄κG5ξ Λ|ΰΐ QΠ­lζQ° 5L6`Ε̝ήK° Ύ`ΊΒμ΅0 Β°Rΰ ύ,₯+ Ώΰ7ΰ ›°€έΛ†œΐ †; Αΰ S`ζ_+ι tNΰ ρΊ`|»ΜΌΐ ό» Ÿ€«§t6€ΔρΧΒ Δkα6 KΠj’  N Α`Ӝ NΐΏ [k9°‹€Φ.ΧΨ D0ΠΰΑ‚` 0αB‚B< `ΰΔ‰5΄ΈραFCό8RcΗ‹!f4y0ΒŒ8yβτ (\Ήrρβ΅Λ—0_»xςΚ… ΧΝO391pΰeΘ’ Œ¨e>mj*!f― 0ˆΔk“$\ž<ˆ™k Έ$˜ΒλνSƒX5{a+’ψnβ /)Œ|ΩΠ(—Γ’"IjΔ§* `Γ’yaFΒΕW£Ζ»85ΒΕιΰMœγ«\¨ΙβΚά¨Χ’FΎDIΚ΅ι.MfΰzdCΧπΙo£Ζ@ہrIš Aι€§HΡε€^Nν‚$™c'½ €W(~ /Τχλx(*‰°y@‰€)Ωε,\D!€%r™K¬nΘ °E~;/)"ωδ³py«]ξΐ΅€©‰^δ…‘%pYI@a,Ot +Φ– ^ζ»οΕ¬@ακ€j逨<βθH&›L²I(UŠ ͺBƒθI©Lb J,§τςΛ…bšiC\R1J§ž~ϊE(žz) )₯˜“’'#NdΣ¬1 ±εΐrQλΞEά‚K. HO,ΫυŠΈ·π$—;qιd†\ aΠ—EœπE ›‘^cH@Y!«Ϋ„6§ΜE\ΎΫ$ΐώΔ*Τ\ΖͺΒFmS—δϋ₯‰Py™Α\K0‚ 7•]Έl¬%tA6"ŒDN6™±6y₯ΐ_–hB˜ωΔΛόΰ`ί5+&a’XΒσ$±K,\¬ ΩΘEΐβšKΨt)6Š_Pσw '~ ΨΎΤ BΥεε*ΨWΣ8„q’APIcμ€@XΦϋa—δ$HάoΛ9βy€*ϊ™Ι‘{F©‘ ‘μΜ€₯4Ri«¦T θͺ4Jˆj& jš’—Δ€Ι&œvβΙ' |ρ…'Žϊ3Ξ¦πΪrΛ.Uz€}αdZK³8 †«%6ΕnIΤTΡ·SΑ<ΐΕAΰy } /T~Γΐ ~α‰%\0ψD' €Ζiβ Ϊāx± όˆ,i ‰δΑ #‘XΑ(„Α ]ψβ €Ρ[*@‘‰tik YD~V‘ν#<ÚϼΤΔ+d‰`‚b–ž7©Q©ITb”Δ”'°εdV=ΩΕ/Μv6Όim4‘¬ΊD" M!XΥY°ΥˆΜˆg’πD{|΄ HDb‘°‹ΰ"‰  Ώ’@^‚4A£ΘLD!ŠE€/pžDαΰR;ΚdΖš¨^#Ζβ„FP`gFrl#G5§)ΰγ($;1$v<€#Ω(μlβwΛΜϋ(‰F€ν1OQ#HΌeTw‘H`€ΐ ψV.ΠόkΕY2Γ AΞηW˜€g°γ‰Ι0 ε€ cp4Β€„'ш8@ršτ‘£’PAMpŒ±@#šΰLda…Ό@–}j'.ε8"\©Μy‚¦œA €Iΰy œ|CΦ „ΤΆ‘d‹'1βFΰΆ΄$F­jΡHτF-FΙ§AυRG X4ͺΝ4ŠK:RΧdΒΎ0κDi*ΫPvP° $H+b¬ηΥ4dW‹kψ"PΈΠ$OœRfΖJ(ξefύX3/ΐK}γZˆ°fC7ΕΕ•ΉS\#‘Υ€lHDŠ++γ~ΧXΗ’υNτˆθ,<€k^„ΨzN,h6T\ŒB±ΦOIq&ϊέ¦BΦί˜,^[²Β„@ Λ"ξBZΡ66quμΛt+VϊΕ!^θD.2sƒŽΒͺˆ3UκVARέ… m¨:݈Q+•R€JΨ…š½Dή§ΕΡ$α©•Ί “§Φδ&bœκ.v! 3…FSžΪΨφf­―s Vn$ΌXVX‘$ωˆHhβ£ Œ@f»5Ό²k―μΜ^φ”ΠΝ)8½BΫ4Y ±ΝD„Υ­‡ @ˆ#ΊγˆGl‡1 hTm`’akx&Š€ElƒαW:$CμVcώΤ σ\ΦeH·Ίφ„ξDBΛ£hf†CL―|X*=v $aœ"s€Η ώq…όφ–>έ‚‰’© ӌ8 $fΘΫτΜ;€β‘@VAf£€š.€#|ζn”’ԟΠKa΄Υή %‹TZΐΫοw[išφΜ©J‰*/zAΥ_XυͺkδΔ‹–*ΕPkΔΝ²Nrmx¬δXDC¦ŸqΛlαZί(Δ‘²2Bζ>[·#a΄•+œ ‰~τ1r^f-lƒ,€Η/Ρυ‚isν3$°ΑXϊά(φΔΚΣΦφζΖxΏ²JΓΆ…»»ηΪΤΪέκe€‰I‚l€„ΡπvIgϊ=•Π cΦΎtKdΪh“”€Hrt/’Cκ%·δjZŠ)¦›”‘.’·Ό_βtHΎ(_œδdl?1›Uω»66₯ឞyΝΝ«^ZΏΪζ;g’heΞs ··ζΰ›ΝΔgΪΔ’S$ΐIzĝ$–ˆόΊ&Α8ΞΕmυ)a±#q£Z‘(―‘œΎΌ8›[N5f•0mz“€kνŽh;Ϋ~―ΑYόΘ₯iΈ3oίΘ­ΑDήP :=m1±χŒl(ρ݈ŠG|Γ5kνFf6/š6’vα|νΪP>$…g:’lσhžα_ ·/žq…ˆώζYoΫ%νϊ„έ&g#ΩΟ8”œ¨-)kgU0ήή)³Χ€yΦ»Yk‚χ•NΤ}"Υ΄l‚+~!q“ϊE@RΨW­hp}ς…‘Οƒ>$ΨΎΐ»ŽΦ8@υSίsX3Β’JοΚIGκ&‘2ˆ˜89[‰;AΙۈ§04Κς<³λϋͺμ Υ“Ώ©C€Ιβ™ΙΒ@*’΅»κ&…θΐΨ3u+±Ϊ"’₯[œ υΈυƒ·ΐ€xˆ*lσ;$ΉΕ!8$±ƒp )¬©?›«:¬ΛA£ˆ‰ΣΏ«Α” Γ-²4Es“=£3Z“³A;έΣͺΊkCa‹Ι7Ϋΰ³WZ„3h GŠ€ ΈŽ:Έ„…Ϊ™λΚ¬` 1I$3Ο¨`Β‡’°`‰•%·ΪΔ‚θΔΉγ ۈD難F!±mƒEμx z‘Pδ&Ϋ€‰«ΕEΌΕΆ)ΕCœDC$—=ΪFΐ€ s ρE9zΕD<={E™–2SΔΟ“DΨ£y I ¦F¨€—Ω6DΜ `α‘Ω»Š`3«H<"E {Fp5Ϋ € h±‘„ €Mό‘D€!1gšΪ€EE”€\Γ‘G λ±M42ΐ§Mπ™“‚F@Γ`σπLtΓ#)½!ΔÚ;5΄.¦ΙͺHš¦!―~»“ψΒͺ±³/³S΅Aδ½XΤ9’Μ‹πρͺΌ3Ε΅Π-)€>ψaz³š&c,0d,ΐˆέ8UЉ,ΖΒ (…·P₯ΕΙ° €±§d¬‘(«Ήϊ=…ƒΒŠ%…Μ ±]‰+* BΐP% …m)«Yœ)„Aεx^Ș½”«%z’ ο!-Ł„\?Ώš ΊμaŠΩPœ( P©Η€¬ΊRˆΛΪΔ€1ΐΖ²2ΝMΰ ¬ ρ8€άQΆˆ‚Oψ¦`'ΐ…δ ©Η*+zь€Έ\Ÿl›ΊΪ•MxŽ8˜,Hΰ„ϋλΐ€α|™œš'j‰8,>ξ\h3‰νL4«’7bΊ·λ0> ›Ϊ»=6Y΅έ[ !€Ί܈˜%€8¬¨*¨‘›€‚ΆTεπ/ψŽ ά`Š₯\>@(€·ΊX‚E(¦α„%XrœυΈ‹ ]ΐOπ°)ΈP—±&8™%πΰX‚ €ϊԁh/ΐΒXΔ p‚>X¬Π™(Xm„ο 7GО%ψŽ Šƒm %ΖΈ)ˆυ‚'Θ ° =PXΏ=L•Φ9€ ˆΝΒƒ³%ˆƒ)8C˜ΐ'ύP—•Q(‚ΜΈ“%˜‚1θ…:`b*·;9, ` ˆ‚>ΐ¦θRϋŒƒ πLΐ’N’pE²:XΖ½'ΠYZF0˜/¨ˆe„ο8€p‚3˜‚±π ΈΩ4Om„%°uΩΠ€ €‚E˜ˆ‚E–aυΐŠ˜R{š/₯R™'θQX‚3Ό ‚'ˆ/Hβ˜‘Αš?Σƒ8œ ΊκΛΎω„50΅šˆ*]˜ͺ?lΉ4ΔΜΙ9!ŠS3ΎΡ…^Έΰ\@£ψS ‚\xcc1Έ…©[Α^p 'HΨΐά„±0 ΑN@£υ λqXΐ œψ΄Θ IΈ“FXPΘ…]ˆMŠQΠ…\`σx‚\ΰν)£0XΞ]8Š:'¨Ωƒ₯°‘™ΖΠ P© ‹Υ…†ΤύŒA H`…­%MΝΨCΗ`…{ έ „™\˜*σXNΘ N` ™a ‚…i•EP8'π„^ΐ…φ Q8 Υp«+ΰ`Ι­ Iˆ  O` π„ύςO8₯œ±Ω Υ„;!\0ύ„ƒA;©Uԏ:¨ΩΉ¨Ψ2Ω„Y–ΓM\0ΜP₯…ε]PYΒΨ PPΰ d!Ž€ΕKαœMpΦΒ…^ΐ ΐhΌ„Χό£8>γ’τ2Aρ‰‘³:Œ›’/‘8w£ΞKΟ±³½Ϋ3΅’PB@œϊ]Ή( Pθ¬_ˆLΑς/ˆƒ_@Qπ(h^ Π%θ…Ά ΚλM†)p‚ΙωT_ˆ„XPΨάf} ΰ‘δ@€ΩΉ0”qϊ—Q’πUα°Οi^`θ„%x‚· Κ `‰x£›M˜œΠΥρΤαϊάΤ°€Λμ…χΠ€ ¨YQ†s±³YΡ‡Β€‰Ί]ώΡ—{ρ„c‘_ΘΛΑγšίύs •ax„)₯9{Oΰ@–­P‰ω…Βωβ]P1³ΐ€ψY`pΩ… Aμ •_π'Π…P`ΠUFpŠ•ΰυό―Η½€Pα·°\Ψ…S€(±αA™&ΘMπRjά#]`Pυ°›‘ΜϋΨ–RmkΑ}<aΠΥβ₯φQ₯;ρ_hψ¨)ψGXŽ\8€F†Gψƒ πbΈΰ„U(πGˆ ]0•ΰ……ιμZηO“#”ˆP‹±Žγ΄“δ86χ•*ψ5›φ|ΐ΅δξͺCΟϋ] βΚMxβΘ HΙΐX…MX\X`λ …Μhΰ†7ΐhΖ Œ€PP‹ω–ιO ikY€Χ€THŽXpΪF–DΡΐ€_x ›αZI(dπ˜¬μ2°αDLέY” RŽ\`PΐfSΙ–β8`΅€—Ϋ ±Ψί¦θ έΔ–‘ @”±ϊ™ΰL•˜PαՊΑΘ4M¨J†]°HΕ) ¬¨Ν•^0Ψuδ i¬ιΑUΡIMZ)P@˜»κˆ§V/υR ΝEπH x)pΰ D˜ύ< Θ<”Až‰ [u$ΐδ”ΜώΪYΞΣaŸSδXGΘ…οhaHf]HTQθ„;‘hΤ€άΆΜο‚ tf  AW&S=”Ο™;Χvφπu―€h9μΞΝƒ/RCΐzŠ_ |Ήχ”“vΥ8ΊI¨%ψ($΄θ »ΰ€O i5I¨ƒe^8¨c€˜ °Nž΄Jk…O ΔvθxρΠ€ΨFαNP\iF0Uj„ˆ‰Κ]  ‡ϊŽαάΪpπα„‰ΙpχΚZ}`0,—MXI(Vδ¦aQ˜«>pPˆ€MP ™‹ΐ€+δ¬Έ ¬vͺΓλπ€H…]π (H‘=ٍ̨LρgUΌž v Aμ±₯Έρ% —Op₯jΗΘ°FHM;'UŸΑ ΄™»LŽΝ«rrΨ&rai`¦ΠΧ§ΠΖhθ π0ν;YPθ˜HPθΚX―Pa:”Ω•½ΘŒ‰’e\)R Ό„ P GΠ…β>ξμΩ^•\½¨ΈηXλή5τΞ€^ί3ˆ“‹*?쟳D8α½7| υ…φ†Fd™ Έ• ˜1€h€˜λΈ^8—ςär‰bΦ ˆ€\NΠ πckaŸWΑ ‰Nί棑ιEψ—HςWa€k©ΧŒΫ ΠυΪςρW‡‹ο˜(rτι`œ>θΐπvk πrΩ–&;ŽΫ% ΨmQ LΉ]FθB—ΕΌY Ω €j ¨{Ϊapδ‘Ζˆ„^ΑOΨ=q °b‘Α€\8λ1I‘G_uΈ€ο˜μή|Š©.gͺž ίRύΆΖπΘ ˆmxIJ±(ŽΠ ΗlaŠμ™ ΘэZΥŽ<€ΏΠ QθΖΈŽNΐ…Έbbρθ‘Ωΐ α Ϋ>(Βŝ'‘Α…QNP ›gg a|§&^?ΖμΤΙΥ  Jˆ!ͺ·ΙόΚW>―ΩPX…œψn‘h9‘p6φ^Οn‡Π‹OhΪφٜ0ζsQΰ?ˆ‚]HQȝΉ¦ϊέΰ„bΘM$b¬h¬d±ΊΥwIΨ…UΠ”εaxΣ  NhZAf_@ŽNρ„`=`χΘGȐi'Έ]p\+—€d!χω€Ϋˆ\›œ°‹—§&$νϊ$JW£‚Ό"bpcΣ'^Ή<-YΒ TΖ(8q0C—$ ‹m!˜2#π(pO X ς§J pmbε‰&$_ž>΅Œ”«"I‹v­•+ε&_’x›’s—¨]»l¨\‚K 'Όˆ tIΐ€2ηύ9&'›p εΘ¨–- Ε a#65Lic(a<Υ XΔ²‚Z'ž 8ωΕ cJ››tm’y£W$τρj©  zyςi!―ŠžJΌ ΐΑ€Fœrν ΥHhs_ΈΘζόtΐεάμΪ·3Ψ½ϋ\ή½ƒ—‰`<ϊτ1Ο«€½wρsΛg§oΎ½zφπηξi?{χe‡#œ χ ( œΥ‹.‡ωβΛ/–K.Έ$ψ Iœ0ΐ0Θyψ­η@MPΜ Ε M,Q$›4r4±‰$Œ81@^›ΠΈ"M34 A3δΛ ΨέušlβUKI2‡XΗ#D€A#‘4"‰$K@aΓMΜΰ… 6D"I#Ubΰ—g’…Α“š0RΡu ΰMŒόR‡σuWS‹’ΰd#8Ή&‰–\’5ΐ\8@›h" Y30BM+dΉ%$dι΅Ιp5‘‹¬˜Σ/P9ΰuKœY‘Ohζ!h€Β 3`AJF‚“0’£5yΐ¨*%Ή#pΊx)‹£0B¦K5yηJ>Βc+φ‰žfΪΡ΄$h: €€B#E.Ι–‘8q;—[JrΓ £7.δΒ ŽŠ :\¨DšXhu*Ιν9θή~β·#ξωγ‡Χώχκθ ώKβ2~;ιˆ §#jEϋφ·“ψ}^ͺΉJxΎφυƒ“^7β jF/-•XAO?σ,uΪΪ%½?{Κ&΄ν˜-?"* b7υ -σAΪ\8“©eA :KΦ!_xmw"Ι†Ύε@Μρ's|S›φφLξˆ€f<  .²ƒ^¦`(ςΐd0Έ—½ …Ρ‹ K,1zΠ{ΐžχ’(v†U¬›‡δb€Žhζi¨ £Ες$1Γa‡$p€`E) ‘ηΒšρŠU ΐšΘ²Ώ™DOŠ˜@Π”/IΤ`alγσbˆD$φMmkt"rV88$’ ‹+| mxΖβ‡|‹χΖ#ΎdhT[YΗ*:1‰¬¬cτ&Η€ΑI.s±Δα!νψBπ±n€¬@" ‰O„b†’œμˆΐp#|¦ˆ8ι š2ΉΩ³ƒM ύ‡@ϊ„1Ψ Γl°kΒ……>Θ‰ˆŒ֜L ΓdvΘI“#«ήFOqΡσˆ2y£yϊ&;άΜ”`ιψx€™nŸς'?cβ3f&ŸڏΝDXEŸaSvΓk‡fιΒΖ’”\C- =ψDΟhS)xxζΜΊ½’7œIηΜΦFͺ=&υΟMIQ €Œ6ν§?mκŸςˆt‘!½Ξ*^:4DmΟ2Φ΄’ISj]5ZVΣӟ‰ν«^­ΟεTMAXΛΪ.6ΘA| $a‹ˆFΗ#Ν§Ετή±hΠ@d8Ώ:’f%lQ©Υ¦φ‰/D,duΩjNΆ²γiάγ:ΗM³ΝԚΰ kΙΊ’‰UDŒfΤ††XΠώl’ˆCΨΒI‘q>HBΫpβ06Δφ¬(z MαBΆ³…EcU=λΛ2S―Μ}.Πφχ’ $‚Φ”ιhIˆΆίB·ΣtZw›ΫžΣ’VDxQId‹5ωBΎΨΕmν:œF€¦νO3ΓΛ\ξκχ™Ζ,|ώ«U&ΆΏμωg\žρw„\njΑ αςβ§Α,πw•†ΰτ€­œ°ΪΥ2XΫβbς[^%¬?τ8ΑΚ|π;[Μ\βRψh2ž,}Άωΐη π¬}Ϊ~ώΣΧ;P΄θ­~¬bνΖv2~Ί εφ€‘θ'Τ+βχΞυœϊΔpBˆ6[ΣΒΎ=ΫxώΗΝλ¦ΩΕύ5³’Όd7_˜Ξ –°}@;ερWšPώ/™³+h―ΚψΌœΐ²–»φ‹u­uU§˜«Ϊ:SΪΌsyφΌbKsΪ²pξτΗC^ηY:ΐP#΅x7=Bϋό‡«ά±¬Œ[-KφCφa•ck΅·ς’Ά\3η£ΓΒQS3Γ,οŽ#ϋiKgΩΠδxŒ›UZXΉΚφntΓKlΥφgΩŽ2¨)›νWίΊΦ«₯3)Ψ pξz½½†P—½lWξφ™φιμwζWo»3ΌψwΈ“=gΌFή0‘ωC\'³VΣΟΎo›Λ-5²Ζβ₯Υ0· Ό?z³­!f―mικAas¨·όφ4ΆέZυόVΗ"r8ΛγIp©΅ΨwςŸϋsΛφζδf ΞKmώ\;*ΟΞΑ—yo[OxΦ?Λ΅ΗgϋξΪΖ{δaw“±]πεr’ί7·€gŒχΉΦϋ9”³‰jUλόšNwΆΟ·sπ·«=αψ Ξ·£γ°ύάƒq5M-ξΑ‹Ηεa?΅Ψ…ώΜi§Η›ιmw=W‘'$—Έ΅ύΗ4€W:;˜ς2w ;=Eυ™SνμΓμDvwG@±Γ™±₯ί9ΰΞtΠ―»Ύmn_³ ύPΟςyΝ‹]P=ΎVΫUΥϞξ£ό†}nΆ’ρ·ΑΕ―ΆΜΗΝ=rΦξ–Οχ~ψxnΧή4—Ύΐυ=Σ=^νώ%ύΡ–}q«Ω²Ή~Ό[­ΥΑ—σ]^ί!žd՟_νΡU­ž…΅žϊa_νGΫ²υίΐρY⑞ψαίΟ) dΑY‹εΧώMzН\ΧIΰr™ήΦ…U :Iέ»ύRή‰…PuύΜޝΤ]X§ΩϋΑΪ€±ΰΈ)^qi“λX ]Σiό΄E\όα^η™ΰš­šVSJMώU "_VσQΘ£}Pρ˜Ρτ˜uYα^›ξ‘Χ ¦‡θαΗάEΪ€ί]υ½άjAαd)ΰWωᢝΕ4A ŽuaNΨμmΗ‘‘8Mέˆα †\]Š_ξ½  b Zœ‚ ί!ΖašΥŸŒ© ϊ­₯Βή>ά;W "έͺΧa0ί&rβεUU€(€"ήωέ_ώaάκ9b‚ε~ΓA}8“ŸΕβ ή™ύιLXa`2’πqάeέΑy‘ΰ­Y㌩Η~UΗ±[ζ‚’1]UH:]^3J!š‰βνi£36βςγοQ_(2cμ‘G‚bŒ©ΗάšΝά$rαΐ!Ё£xΗo©£έQQZ]’/²Χ― ½εU1άι)ΰžT|dTB’2’GωΥΘ“AJi$2Φ’ΝDΦφa!ΰu‡υ›!>γ©QΰNšŸ₯ν’RΊ€έ^Ρτ™kQ &RHΧ@=’αȍδ†γ6~Λ2!ΐœKΝL*Z:ͺGΛ‘eZ›•žSςO[Nazμa± Ψ¨iΪ‚•™,N Rf 9ΎdψIFΰΪU":bζ=δ7Β$ΰΥΘ#0†œΌu"ŠQ‘ψΉ₯[zG@h€ ^S[ΒeΎ‡Ž•$3‰G\€Νt£œζkͺ^·€[ ή-&#bΣgbΞL*AE@\Φζ xdTT6w)βV±b6β%‘iδw₯€N.€v€E. P‚ŸίνΨυ«mη…ΝΤρ!Θ Κγ»Ή—me&˜‘ΨS¦ά-’wL@D@P€ @t€ όηΌΗΈζ,-ΐL@Z’f<1‘XΚ”Ν<(YΞdpΚSΐ˜ΐΐLͺM†v€ψ€ ΈeΈ¦(jŠεƒ>ΐƒΖ&3YhL@0ΑζΝ`“ΝgL¬hYjΣΝΔ%qfθ"Πƒςθ5έΜωhL€|†Ά¦|$h>ι2ΐ6¨gŽŸvj©>*fζ%!51˜8 ίάeU%vWθΙ„^Ž©!o•£tfv\Uͺ'Υ½Wz’~ΐ|A|δΟz€€A|A˜π'ˆζ,@(*Δ„[>ΐ]βf£Nκz$Yhf*i@¦Άfh€Œ‚j£ΖΔ˜€|ˆj“hF*A΅₯§’jͺ’%|€ΐh†ήjL„ͺΝΨjͺnG§Š&₯v*­ώ*,i†ξ~ͺ¦β¦[fͺ¦Fΐj…Ξζgžζ±jhš@πl«Lλ΄Z›’β€ω\‹)β`Β«?ͺ©—Ί’τS–βξfvR/ΆΫUΆW{’Σ=Ž€φGEŽτιτ€Œ‰ŠψDx@ΰ&ˆ«όΡ„πΐΌΔΐ(|€~ΐ˜ΐτΆ²μΚR@0@ŒΐΝ$ιRμόΡ~@Ήΐψΐ’vΫΖ‚ΑŒΔx€πDΐ\hxnF@Οf¨0νκg0ύ§ ΘEj­ ΐΔ6eθͺF*hθxΐ‚€Ζζ¬ThΞΐeώgΗRΐΘΦ Ζͺ €hΞ€ |A†@ψμμνΖh’Ž€ ”,Ξφ€αΐΙ^θ(~₯—αr­©šΥ™Β)@'¬iD~i˜™%Pς«Ίz‡ŽρΘγ₯ηU–SžΒgd…~€΄jΠ*3!Π†Απ6*‘~σ‚A(©„Α‡βη|ΰ‚Α|@τϊnˆΞΕΐ*ȊA@ŒoωN@γϊΰNσ~Œ€[.@Π~ͺΜυn«2©Ε²ͺΡ†dλϋvμͺj Ίo«Ά*ZR,ός¨²*ό‚Αο{πg€C-ϋЁ$©‘²/T¨*σΪηΓ€ϊ20σϊ@τ@ί@ΰžjΰjΓ€ ­ΡNψΐο6,Œκ0χΆ%6nΗ&δpν—f\RŠd^F^œζβo)j €wτΝyΆ›Jfζ0Βλoό2)…‡…―γφ°0m«vσΎDЁυ²*ΆŠAˆΒ――0.γFκ„°Πς€Lΐ¬q4ξ°ͺ €’ξ,0oΊΚœϋϊ@‡( k0~¨œ¬€x˜@ͺ„A(«Cο“<ΐσJ_l2«~€΄ͺ ς)Gΐ‘vΚ°{€-[π―qΨR€οͺ n[RlOσnμΓσθ%+*’R@³Ϊq&k¨ΡωOΎ±Wr.»’gƒ³°ζ?B€φ‘;βW}³ZΪ]u%aςζϊ›Gxf“uΆΤΤ₯\r8xeqζ‡Cg³•ϊ9<^MΐΪ °YŠuΥΙ}―ϋςͺ wsΥ4)?,tΐϊΪρDCΉYϋ°Άjο‘F³xYrψφ"Έσ΄³/±―τΦ ‘oν~\ς /wΪfh!#j'35”ƒΑ‹~€uλψ'υ ΉΜ)€ ϋ!;.Ÿ:ο―οϊΐln“₯fλ‘&jh2%KΜΐΆ+ˆ°²ϋ0πF°…j―:7ό†¨Ž ξ'Xƒ)]έEBBq6yψtώ`«C§8»ϊ8Η)Νίό¨»n£βμκZ>kβδyρHYgνOyLTζΨ§Sιv¬wΫRκͺ>.ζξ ,Ξ~@,'σ…R­τΩg€ΐv€x\¨αβ¬ `l…FΐΚ^}υ·μ‘ŒΥ&©$ ΩzW}ΥG›Γ&›Σκ…š@πxΖΖGΧ >›―yΪ·Εͺάίηw,Τ«jΙFMΤφŒ.ξΘς-Φ§ϋvΨΛΔΒώύΛr=,-9&"w²<όρΌk©OfxΚ›bΜ“.οΝΌ_OˆΫ:Θ-ί„XφΌmζ@βΗΝ^ͺލ&²Rͺ§²G§vˆ­Vk ί΄[Β8nRkυƒjhž«ςΞ/ς&¦zΏvŒζΉf‡²‚«΅z&ρώζφ'kz(«¦^*χ‹¦hB`χgTς?²fΞlλhD (`π@Β @P!ƒ…V΄xcF‰9r|πaG‘ CŽ΄¨`$Κ„OšδΘeL™3iΦ΄ygM%]ͺyfE‚ 7ςΌh4αGŒ85ύ \ΉtρΪεKΨ/_ΎxρšŠ κ'Nž81p BNŸ.#(PΉveΫ €u‚‘sš-Κκ~ΣΧΛ藁΅Ψx‰%ΐΫ΅uy<ΨΉΔ…(ΐ³ΘΒt @kβ&Š ΙτjmLΌZ]W5Œ)ΝNl‡R•΄Ξ«;V2φΥyZ·n^%‚ƒΰψμR‘zύφ‡κε[σθλΛΨͺCό fΐΐ.ΥVϋΞl‘"0™R•¬lΜ.Ύ`—%(n€ΫΗk‰Κ˜S|1NyOXΫ¦vμΆ>ΒθΣ.Ί"•§•+I3σž l šΦΤ ‚υB ’° \-‚m ά²AΛl-Π‰ ϋ"Έ)<ε 8ά"+u‘jXΐΐ&ΜβEξdUΔ(`AΆο O•ˆI;N‰U@”ΰ%Ϋ·Qΰ’ό’ ' Α::1oDή1β³μΐ˜χ‹–œW°˜°Np—ΆΘς”Uΰb>?ΪΕ/„€?°)q€3MB΄ΣL£`YϋΦN…™²–Όš; ΩΞB ΫΫ­³‘T΅Ga€g;ͺ°&`oLR;ΐ«:5"DD€4Ϋ)wbP“›X%;€Δ°Αq—=‰\\ˆτθ:f_ό§XAΐ‚ωΝ‹£³(ImŠT¬}MΕWjΠ€A"@Ξμ|’¬Sξ@?Γ“Σ«, 8cΔ&B Qh‚cV­ΣSχΥ>(ržφ©Β:E<Ί91ΎHκgΦϊΆ‹ΠΣͺ3ΰ…B•*Φ•n’μ,¨ "!Œ€¨ «$‘uÁ’ԝTD¨.$‘Έφ8‘½”κŠ ›j~ζ,Qώ^HΏύŒ&<α#':q'lN₯+W /θ΄°Ό§ •:—΅θ0Ί…$?, ΠΔ0ΠΗM<‘=`$H H‘ΠΔ5) OH‘X‚β0 M ρ5IΉhΞ@b7œUPhΟ’ …M@‘NΠΆHάχ‚ώεΕpaάHl’MTRϋf°PπΌn$±‰:D€ϋ-ξY  I qNhDγ°Δašˆbα„ ―² ΨDΐ.ΰ…GHbΊ=@6‰c@šˆD/Ό Ι>~X’ˆΔ'4FR9‘ˆΌA‘ Iď’πEB{ˆF<‚6΅A•!‰H Ρfv‚»f GH’²Β~# € @a }L°°ΓΞV *ΎZ’°ΥFD`f>ƒ%Α \7~38π•Ο2^Kβ͍#0`€4·Ηhœv!ρ4Άυœξ’Έlr#’0wMAEv ‡`24‘qi^σ³{HK7)­ε b€_\E\€Z… Z›ΫE±¨}NΰΔ.pΑ MΨtΎw/κ0\ˆΒΊΘ­"α•(ΪΎΰ/>½Mδb»Ž_#„Ρ‹¨ΤAY›ΰ6!ŠMτœΒiO#X ^–ΤΉˆJ–‹±δ"’š…&ΐ2'|Βќ ε >ρρ\$υ£›sŸ&zΔ QΔz) Cα‰Mθ−|°Ά `t=”D.< PœΌ+ €Ήχzkͺθ’* ΐ0ΛuΑMμ‚ΊΖΪ‹˜{Β“ΊMΣΒ>ŒΔΠ›`9/:!ήϋL|ˆΔ*vџETqJΏ`#vΡ£ωq X«EΡ‰NcΖNΘE'<‘‹Χc€Ώ€Jf―–œF@τœ±ΐD‘ό\|β3ΕΈγηOxΕβ@ώP``36Ψ$Λ/ˆMπ"Ί…xŸ|QΈ«kώfπ£η„ΐη‚”lGSά,„-Φlλ<κ`R.μΰε^Ξΐ¦"ω†mɚ(f¬ŠΎbΘξ–˜Ο ¨λ„ aH’–00’θϋVnΖ€ΰr!„Αΰκj/r 4A?.θDς|dΕfΐˆΞBŸFKš#›Δ~ΘI$’Ιί2Β=.iτDΆΘGŠX+ώ'BΒRb>a>ˆψ ϋ4 qž@Dažˆ.Šnΰϊψˆl  ~Α‚6αŠL€Α,ΠέT’–DΑηD$ˆPC‡t‘h¨€€αΠ²| š@Έœ` βκυΈnΖβG~!lΰ£huΰNJ“ε0@ύ–ΐ œ p‘` xΑ,Jl`t!P–€ψπ>αzlrλ+ŒrΔΛ$Α ́!q~Αl,1`Fš¬σ&ΐ5,IΑͺ~Α ~€γ*Šβ š€(`‚φ.Š!€ΰΡ4ΪΪ €0 D/Φ<αβΐ zPta "€†LΙX,)¨δͺŠ’h<Αœl†κlκΣ>‘τLρTl|!Šόp ΐVe".Θ₯f,›ΰxaΖΘ‘Œ₯Dhη©Zfΐ*`4α‚ ΑzΘnΐzaΨ2a¨όΠΕςl.+qΑΐ o ’JΌ~‘Λ*ΰ ψ0nΐψE"Ε’άEςPΌ0  „α4Αn`ίHlϊ°§}$Α.Θ ‘x!Š p¬>ͺZ€d¨=&Δ$&#κ$ΰ\ €²Άξ€Z k^8‚k†<°‰#f 0ς6tΰ zαδψo"—@„!:!*ΔΙ€ΈK’ήd. +―s<#!šήVΙ]Ϊƒ'γηy‘)rA0€¦ŒD^/>aχjš3*XX&“ν¬ŠβRaf€μ"ο>‹H7 pαΊ‘ο8aπΊQϋ‹€1ναΞβ vOΖβ€Ь ςn~A,R‘μ@σ>aŠgJ nΜͺbm zšNœœ€κ€ώ6“3ω¨ε.χaΙΨΙδ0ͺArkΜ:‘ββη-‘Š­άqοΒ‹c<Α^¦}"ά 7ε°ξ|A,žb ΰŠΪi7{8±Θl ΑtΑ,ΑLΩ‰_ p‚Œπš¨ι‚ρ]"£ŠBΑζ(MΫΙ“κ— ξB¦`>‘=Da@yς 7 O.‰΄ υAb-`‚d’°},`ΧΪIzα§:΄ :τ‚4!Ϊ2Ζv―‘f―7yS$1ΐ3Λ ΅Θ#FΨδ OD5‘†GzD\³ΆŠD,dSΦπν"Ψ¨š”ˆhυ§βGςρ>AέΕz!œˆž VΝ θzDι>±§cp°λ ζώˆO@ΞΰsΞ"+ΡΣh`Χψς,PxI 4 I½κτhE φŽ2?ί¨-i―,@r!Ό.πυj@Q`R‘"a–ΰ\Υ” 6<Α @Α :`xhCœ γ’ΰ~ΰ.`6&†P€ιP£>ΟT’€ώ‘MΝb xa ήb -PNgΞG?:ΑqΠv/νxi n  ZΑjS Β €¨nG”tA:―&HΣhWΞQρ† Vτ–ΐ\υ@@Uξ“Fγ€ώΨΜbp014Ye)έ₯ιŽ/{τH“Ξΐ“ RΫΓ’\‘@3iO(— Ι<s@wc*u)—bͺk V ~Ζ`G±g* qA§$Ϊ‡¦OaθΠΨvΑ  ΐ8;«-mͺЈ„W”43`n€²$Ι^Žcbτ™NkJΚΓ4DίrδΞG¬b›Ί‰€ͺb\Œ€?’w¨ζ˜ΨB0[p¨ˆVYΥ–ΐδ0x‚Λ, #ρlΐ Ј'/Θ‘œΘΫF¬œ †€%?-φΈ  g*φ‚ €ow!© α^ΟΊ+ωΘ^Ύ7‚θχAg@Ϋ‚Ι^%aΤ―z`8ρΚ$0;¬p‘ε`’θs«žΖ’=n`MSφ v0g ~‘Έβ°D] ¬ DιuΥΟτ@^UΓ}xA@~αl@:AφΦ‰vA\x4`‘Φ?ΑΜ΄Φ›σ$ΐ{²„EΟ2{(Ζf 4Ώq χύh "iΜn_$Β…ΙNdγWd`’Ρ‰ LcSF4 φš Ϊ”"`ΐqrE©Vΐp‘7₯}"ˆΗVΌx=qˆΦ–πfl9%!Ό€t{αˆ:4qvAn€Νž@³1(€―ΖH–ΐl`flΖΰ‚Ζ $1*νxaμlwΫC1αgfhΛΰϋ\ 3ζΪRJ5-P!ο` va¨>aVl:ƒdΕ8PB —c-ΪWQS(j³·ήχσŽX[Σ>^S”ΐ†·vΛ&n3 olͺώ( Œ.z>f O,/χή¨ ρyqΑζ’HB@k%(e½Θ©-Œm*œ‘ωΪ²§Νƒ3›xξ–€Eτhš&՝"ζVξΠNΩΔ –A!>%qΑ—`†­ Αͺ lO`/Π,$vSzθHΛ ΦώξjX8a@†W‘*b­ΡhzGέ§ œ@aRσlXΉGΤi"­πΰ’:·ϊ`¨"¬ŒrΌ+ΘρΦ΄ vAΈz‘€±n>ΤI<αRάe‚፧=›(ΟΒνPξ¨bך( ¨B)ͺmŽΈ9!!Ϋg€}ϋ<›—*ΐj pAα‚ŠρΨ#—ΒGθNκΟ 2Θ#`w—p.½h3&xΒ' ΪLd€ίΖΓ<$₯4σM&²i^ ρH /:}‘Ζα€žu₯꣖ݝzVͺ*Ζ]>ͺ>Šc’ΠF榩°fΛyΔκ’’ƒ©ΚT)›O˜μ  X jdπ‚žFjZzvn€^ζ,6F±¦³@§κν4‘εδ§(&j­ΜJV‰W².ͺ¬j_ά ±z βF‡τ“yT°@΅glFςΏ& "`μɞ4Β~₯Ώb†vτ\†­Fͺ‰œΖζr σ  @ tŠΚκΫ)nάiZž΄~o`_V‘n r­t­Œ_°ζ\©hζ’ Α uAά%π^fzΥWcΎ{΅χ‘KœUΪγhTΌX«bOΎε|1š, —β•C  #:hΑ*Βώ…’:EX"ƒ <  …:|1’Α‚<Π°ΰƒ‚'*μΘ€ΒKJšœ1ΐbA CbτxΐG™ UŠ ι²%1 .ˆ ³ηΑ› n~‰ΰ@ ŽJ4(€F6ψ,:Q¨Α1iœΈ1kΗ°//²Œ0#Β€“ή<€  ·­Ϋρ!^Ÿ|#`U8Jn#b [3MΪ(icfΛ¬ŠΛήt7kζ‘"o.>Έψ"$U`&L‹92xύ‘β‚œhΪΤθ‚U…= ‡Lγ{Xp~σN}&ΦΊŽΉΕ‹]x \2d¦ Ω΅¨` žΨDUΑˆΩ@6@#(XΛΉˆ)x²γˆM Š$>‘ ,w‘EN‘¬‰Pΰ<ήDyͺ2kF‘’Ψ„.ϊ0]h.θ…&@ΧHΰβ!ΰM#rρYGθ"³ΦQ0(Ί Ξl’ήΔ Π‰]l‚Π™]₯8 2‚αPBΕ[=ε`ΧPf;vv΅1: ‡½ev‚ ¦G‹© nԎ}βλΠνΤ Ώ ¨ήjf.ŒeΪs#Ÿπ ώ‹°„A ι.‘ ^Ε(%`εΨΰ€'–ήœΠNτ’*KΘEtOτBΘEΎ#hγ^`Ξ‹@#B rι](E’πE>YF£Ω‹ψ…2ΫΌβ}C!ŸηzρY  ^FΎ§ηX^ˆΒ*™•."θ‰KnΒΔ…­i=…FΔ›6πΕ'"  @›Ε%—Ά]Τa'šF3koPτ’h‚/ή*Š»'œπ#š@kl9―Ύψ­œ°τ2Υ;‰/2›thΰο F ›9±qΣϊ†Ης"€‰ηεtΑ"VΟ–m΄Es<Ϋθ½Φ}ΜD…ύ…Uλ}D¦2/’BεzbΖχf΅›/π3ϋΥ¬9ϋ²γΘF(t φMΖ'zœ’ ”xΒΉ@`ˆY‹y΄ UœΌ“Mΰ@Ώ3,Ατ/©ΤZ²΄M€"bτ( Ώ Ω23 fœ  ΰIS€sΧΨ‚ š c:Pφa~6Z’0t>Ά’ΐ x‡ Χ±  –"KΐušE@Ή0;αήρc:ε !h@ M#jUa/ρIΈ@hΐΆ ΰΰ΄ «:zφ @ψYŒ@[…‡ ˆwI} «0bŽ· œ ']Dx*]Γ–K;‘ƒ n#*Ρ±]κγF‚mk䆀βOθ%6Θ‘H&“>‘‡lΕB:ΰ–-4σGσ3ψE3ω£nη^t²/Τ± Sp3@Ž$j’0Z‘ 6d’°4};Jή7M=·bΖp½`~Πj·~7„ϋ"$2¦g4C3{ε?𐠙IŒF‚Hl‚‘š  N@7PΠ€Rρa0±S΄%‡N§–SΕfλqž°½πʈβdχΈc› 3 ΊJκηΟeaŒ;α„ŸυDŽδd(  ‚XΘ V#ΔfZ+Θ„‡ΕψEšΥ†yx{o({Ψ–4ž’Q1whGds1Υ.q #{"S^wT:³§9|Ψ{υH5.ιqQΕΧ.Ις\’ #%=ίH CŠ6O ’Π%»ζ6 }ε؎Sav3 \Ζ… 00 ΒΠn7„Œ6„(‚%°QPπPp€R•Ά–[Οƒ —"*ȏKΠŒρ WG@»  K0 fSR3wSa+:υ 0υ Jχ Œ°Ώ°iΫ<0u˜Ρ•ˆa ™‡rDRΔ u{Es7VΑ p] `ΎΰΐQ°4š ιv)dŸ΅ΊΆ u‹Α° (8‘’ΐv;! *fpΎΰ 3ΰ 9†‰xΈy Α]τβzξ₯‡Φ’ΥvFjθnγE]Η§žέc>ρiG*Y“Ε’/ΈW4»χ>άΡ Ύ7)”"ˆ„˜3²ƒŸ.Y: e?3#=°tqΐQ€ Ί€ ž·Έ k!Ά ½@3Αƒ€άΑ 4e2ca(3œrOΖσT“3 Ϊ}Ο³UN%M@ˆ 3@ ½° ™e† Ρe#† πψT6° ΄† ]f€»ΐCΈt@θ’·43Ί €Έ°b‰jΌPXN@‰η Kΐ5H€(ΐWCκ]ζVͺ ‘°\όχ 7 VΚ $H@Ύ Ž€qΧ© r0 Ί€sAΖ  0fs&’^*p#Ά₯O” €H‹^PŽV‘΅Ψ 4@†c$’ΓΡ0Y]"©]νi|πi{h”/¦jzΟfˆxΈŸρ‘“+#\<2s „t.kΡ5SΥŠΉq a%76ΰ+°Ο£8@73 N(0K ֊M<3"pp™5Υ %0a'\"ΩΚ›°Œb’"70¬ΰϊIN°‚‘ΐ70™ακS°8ό6u0°} (ΰOAV‚°?0›PŽŠiΟƒp7πP‹#5°°­€τΗ―6`πP°β€cMP€Ž4Τ*^ΰ}°^=ΊS@²-1€q`―3ΠηHΐ―™5φ*LcMp+ΐ8Θ²–(pQP aάΊή 'g9π4*y>vψ1«ΩΖn«χOΔQFσ3ι!…“s»ΆνU|¨Žr©2#QΏ` χ3ˆAyHrΘ?™sM αLHγ%<²K₯DKOΓΖτ'ˆΛ~Pb# ΰ!­!K~’²#‡Ϋ©;±R‚’ΨΫρ Ÿ5'q^±ς£ϋ~)BI-A‹₯ΤLMŽ›»bˆ?4Σ ‘PLρ4 VσL°»Md5πυ%B‹M³Α8©w’άΣm Χ$g‹ͺt{“βΆσ1“ΰΎ ₯«Βΐ«½j35“¨«!A1 _Α1q*”3Δ„#(θšϊ;vqΎbΐ£8"Λ/πβZ‘΅,‘ΎnρΏ π13q*€#Λ―7€oB“aΑΐBs*‘., "lφIήγ=ιyzk˜Ύ…[ŸυΒ,θƒΎoh"b[·ς9’ςR-}„«Όz7kQΔΗ)«Ϊ†’*_k†e’%σ”’΅G(χ„:„Β!OeJϊ™ *Β.ρ²O Q^ΚCzbςT˜΄?m²Α겁Ιρ΅$*]¬ΖA mClŸ„,(>ΜΔϊωiδ##ΆbλzOnz+\»»κ“ΓΗ_k$κ4φ‘Θg¨+ ŒΑ†Βb„A6|Ώˆœ5Ÿβ<(Μ†w\/ADΆω„ͺmC’Eγ:σiΘBlΌΦΒ{QQΌΰ·šlQιζ7ΉŒΘ ;πr0²4ΏΖq8¦³±Β2’Ύq"ICΛvΫ?ΙrPΩFϋ_AAε|OΑ'6ΉΘσ<,±ΌGΛ΅L^¦RΎο™^ΰ΅1‘<Ύ&i8*9Κβk:·κ‡ΌΠ Ίz_U¬?³Ί5¬wΘ#O’ΔD=Œπ/ sJsbp'½%₯β!0™(-­μι†?Γ4n1KKΫΰlφ±4"-Ζί6=Ζ;=τΆΌΡΓ4;‘Τ’ΡΩTΡsΔΐLΟ΅ΚFαΛ.­ΣͺV]Ώmr«z+Εxσ·°HH7“ β“ΥM2Τr8Έ,¬Β՚Rβ ΰ­σGρΑ²*QΝW’'l±A-ρ'χq8²"-A§  @ °Α ŒΩb#uΙ'%R‡1 ’Jt6˜{,P¬ Ί­«Τ¬KB³Ψ€c:|ΐiΒ#AΔΊγH7@R;α’ = ’ΰΙΥϊΜCeB4 q/°qd’Ω @- 1ρ-QΰϊψΊuέΗ7}$ρ΄0d$™Γ³°­!%Ά :ρŒΛ5Rτ"ͺΪΥnρ7&Β*#ΣΟqΝ‰\*ΥΘ}’¬ΠΐΥq3y»-R<)Ό*Ρ…θ0gK6ΐJΰ\ ρK3 ›°šU£4C]‚ς‡νΌβI ‘Νk!N0 U”€σΒγΩ Œ%€]°M‘©D<@‘JnQΒ$, ’`ε”―‹’'N] 8Π$R2Ύ-B@Wc`₯qηO’ΝΑMA9‘βš#D`‹Tν$­/₯  Y_ΐ@prποFπ§I •ήοΑ–ώrΡ1UeΖ©EΫa@   S• $hΛσ«=ύaŒͺ_“Π±:νP’"qΕ«°-Ήϊ{”"Hω%Έ@œ/M3ΘKNΠ%~Βf  N£΄ΐ(P‘ii9κήΈ‹ΐ‡SLβT…P…Ό€§Ξ”Žθ@M΄¬ΰθ~l@VΐS:θNΤ΄h§D‘#­Π±±ž»‘sρ0M»―[9Π;l°štΕN2œΘ€NΝλLΘ»…~bο‘4Θ«MάΓ»‘Qαiι FxΥ%"΄δ?± Δ N/PI Y[#RoBθ>J(-cš°V Σ%θΗK  ―ήKšXŠDω N·N[X’#Xφ/LA@€H†Žd‹50ΤM|ŸμΣ5iH‡B<ΥΫK/ΣQ•\αΗό ΙΌΙZλ»R(ήΥΡ©1ηžp5ηŸπUθ.bλ ŽTΐ& ~±ŸyΛP‚𠯐ο‚ΰ ‚/€³@ ‰€D ι… ΰ rζΔ―" 0ο”ž›ƒΰ ²0Ίρ»θ.Njθ^Oρn.\Π]©D8`ώY `9ΐh€  W €U A`Η•+]ΈdΨΐ₯K—ΐ‘₯K %H α ‰mvδ`³ƒ› 8ΐΰΐΚ•ΜψΔ — "4βΔI+… Ε£F0HrbT’€M $έ υiM$}ϊΤ(‚€’–@’Ω¨Χ"@J€HβESKΊuΟIδκΥ,?` ’υ* AƒξR Π«BDΚΐΛ' ɚ ΐΜ¨#jYn¡ãM’0|.ωΙ“—}:ωΒΥ:Β€,ΟV8 RMI 8yΰ%Š—š’†ΦDφμ M²›Τl΅ΟrΡ4 ΐΙ8"D¨›^ύzφΨΏ‡ίύJρνӝ_·>ΛόλUΎο½βπΎ•ΐ)§O@—\rα%B_&τe^zΙ\ό„O8Κ&χ3°ΔΊςS)Ώσˆ„P\δE’ Vae^<©‚Α1 ^6y„—H8›!΅šΠ1½³P˜₯ΙZd™ε?ha¬–@P €ΙD Z¨t…βp…–@ΐYj)ΔD£Dΐ \°ϊ—HΐΗ14ہ Υ€Ί°"‹5r‡5Π(hCΧΰ‹.4! I±@#°h,ΊαΠ*ΈXCΦθ .D(aΡIsΠΰU^έ, d@ω I•V„"—Hp‘"ωe“MD™O~TvOBΰaΚε—N:Ρ€$Q$Α… ΨDe7Ή`“^ έD—Θ₯Y &ΰΜ“OŒu©^ 0ΟX@½ΰZ ©ε–>ˆeAb‘BhIlβΔό(³―`h²MAx₯–A\™E p±b°Ό1:¦X}ΩΔ`Tχ»šDιE’o€B]€jd8Ο¦·`ώ˜!G‰Ρη%ΩεΊF|αw Q|q&]FαdHΈ4Ρ„—Eφ“^Ϛ!—QŽ4ΡΎ€Ϋf‰Δ•€Kξυμ6‘nΰΓξτφ+Πoίψd„“N8Y°Α!δ…Β]|‰πΑ τΔšΤ \pΊ2ίάΐ! \Q6aΚ‹d˜7N€υ₯‘(rYχ%P†ρ<$ι:KMAΪ„C2iρcJYxB$—\‚#N@Α%Žα,Zϊ(  ‘%Ž\Zb”Q$yd”)JΪ…“fΡ 0‚R―X# ²H£P Π[h3 ( I ςΨ@σ܏#π³Ί€·ά/hΰ΄ΐ@D4ΪΊfήπŽOšΐΕDΑ‰jυbœ‘‰°fž@x‰ž° —¬ΐ7Βžuƒψb-$@vα…ό¨^ ΧyF"ŠUp†/ωΔ.Dρ.έ©Η%^œΰΰ₯Ι βx-¨‡™œ% ΅θΛφjA\ΐK±€χqM<"€„>sƒœ™ηM΄ω$ ›E A3ΐŠ0@,ΞμΞh‹ΔΡ| Θ$ 0r±N€‚'/ιγP|! ` HΉX#\Δ™PΠ+²ΐ*Φ’HΝΥRn ΠK8—ž\Κ'nθ[ήj©ΛϋμD*Šα:Ι 1BΏψ……"—!εΔrIf‰z©M­θŸXΒ' 0ŠΦ¬‚&qΨ…šΒ©θΕα8‘‰fΉΰvζAOgvwΑ%ΙB‚pE\(ΉΒ±@„ Όε΅(Οg€η0Ξ’' g’°¦Y’3XBHCzƒ4BCΰ1€Cΰδ Y˜8€”yψ΄ΰ š PSTU]XC ͺšΨτ§$@ƒLWΊ¬δ,œΑ οΚpυBΚUUI“³@’ˆa±4ωc½ΔFΐE/@κ‹€<€3Ε&ό ‹€ γ Dρ‰‘ΈΕΉE#š…ΟΞ%qθ^—Ί7%Ι{²PΔΟtEΎp&²ΰ;)kΠX’" ι ¦“‹bι„ΘkMd34BΊE6£F&Ÿ1I„„­Hž8\±6ρ‰ΓΗ%isΈΦη•^7'Γi'΅Ή$\¬–ΊΫ0ν3 mvnΌΕ/ίπSΛςΖ'™‡K\3%D!ΘMsrϊΠΨ TήΘ­½p;K$ΐω‰E€νΌ ‹v±Τ|’°(7ρΌι=€ήμfL‚—h?₯O‰Y8ψ2σAjά„x!Ν έך!28]τ, υ3½1$Φ MΕ’X(rq€Fό’‹Ζ½"!ŒFΨ€+|μ»—p–M Ceά]οD6²ΰΑab~ Β όπ/puy*€(Αz‰HΒ Έ˜„@œ©ƒpΑΔβΤ.ΑgY+ΚS΄•8ΐ! ‘¨δ,ˆΐ "ψr@‚+h ”"Α£ά"‘€€hθ‚΄Π†+ψ” Ή‚jš…6p!₯νλS1Μfž8€ŽπYyBNπβ Np ͺ»„E+ΎB$€ΡΪ^ ι,‹°y yρΈ6a ΰ.!0Š2%θ"¬nY/ŠžM“卓Ž|ƒ–YΘB ΆˆΓ jα "8=1³"€$AqJBšχ %"(…,”„B$AN@­ΐ€§ω‘%ΐ€MΨ…'„`8‘`°Ψ±)˜NΠ6?Z…:X—h‚aΨ…w!—C{„`ŽOΘ…Ί3ΫA†M8‹d˜q °]'F9Ÿ δ /Ψ—²p ΫB΅χΨ₯Ύι8ψΘ#$ΈΉτΰ&TΊ 9)‘dϊψ’―†_Π8^œjϊq$„σ›'ό·”8 ¦( Ψ’FΘ]ΐδ8@I ˜uΑ…­Ρ°PΰMΰ™Α Ϊ> p…>θDH‚ΜΊW¨…Y¨…ρ E˜WHŒ’ ž€’Yΐ?p1„G¬DΈθŒΞx’"Π…)²€ψχ —z©.¨<ΐ‚4@ƒ4ˆ3-x4؟z”.Π·p`©ΨΕ7c”πEΘΣΗ p `€‘Κ €•H)L™‹”β h‹€Ρ·„kΌγŒ€@‘bΞΐN.HO‘L«*₯•œΎΔ›   —°δ £p»Ήx ΌL`Β€s;»Š·λΛpσp; P‰%I`€qO ·* ·@œ‘—`„_X (CνcΏ$h£¬ Ψ΄΅–@–HΝΥTΝ XΏφƒ©€$P[ΓΝ’‰€@ε‰œ HN  QSj!φTL²Ι'Sςρ΄$Ο  8‹ύ4ΐ‘± Ύ΄ͺpΝ|»€φ\L£‰OΑ%PP¬τΚ½²όΈ9χ°ΒΊ›\ΊΛ2%ΒAK‹[K_θΒ/ CΉ¬œASϋ Β―]bx€Οΰ“‡ =}:PΰβŒ+τŒνΛ(θ„:BμΫ€8‚ρ4ΟΠΎX?²Q ‚y€BΊQ ”Γ΄ι ί2=Σ‹€Bu€Ο˜@?U،”2ΨU¨)‚V‡H²beΜ”J8–@ֈ‰”Κ.`+ €¬RGM TΝVΞ0= › l½*ΞθTD >€€sΤ#WΞπ‘uΣ)τΐC$‰€M±$›:c{μ—ΐ9ΠΞπTQΕ4`RΫd‰u%VMX}ΤpX@S“Ό΅Ξ €,3I {ΤYE&l:IεŒͺjΧ šΝΑXψ»ϊXٌHE E’ΛD‰πŒΈσrΈχΐ±\֝ݯφ@8­ ΊΡYΝΙ§ΒQ;…ϊͺ/0ŒΛΙ “Σ”Πœωθ%{³ {Σν;Pά΄*υ’Q€^Q0Τ”uΨ‡1³Π³σ8U5t$Ά±SΡόΔΝ)Oe€?M8Xq ° ‡ \κœ3χΰΫόΰΫݛ\1ˁX)Vš½Ϊ―₯Nέι Α­’«νάσP‰_©[Ο]θΉ†$O!ύ̚GEUdͺΨ)tΫ”U ‡€ pΨ•ˆ1$!Ν­έ0‹ΠMΫ”%O©ΩΥΎΉΡεݝ­UΟuH―ΕΝω8Ώέ*š[ΞνάΩ[DΪ_’Σ65ή¨_υ2ΉΌD8ρ-‘r-œaΕΉSϊ²―χνSΆ!_@-9ΝΉ₯B}ΒπL±‡ΰΩϋθάέ4LΓόόS΅Ϋ»­ή)D\Δυ0ωώψ°Φ½܎Νΰ―Ό9£\ΛυΰΊx Υ§#ήB}ή― έ”€D 9TΥ³BΥV(LΞ•xΈq€φ ΆΙΊ{½­ΰ ~[Yαυθ»Ε_^²`ΑYΒ9=8°”bɜ@΅ΰ‘-Ϊ:…_Œσ/\Ϊ=Ε―k‚»1`– \«rΣϋ-_ŽΣβ-ήΖΜΙa_Ω7ζΚωP²6C ½Y›8­„c%&ΥVB6¦ο™caΒΰσΎ1&"¬β5φ·HΞίΐQίψ ά1Sπυ›YM&Δ‰―‹k^a¨q£Klς­άδτrδGŽZ†γ&–έϋ ڝ­Ηm/)άε.c#”γ4€aFnζZ֜dfd3₯ζjN―^ŠΣ$ό/½ `3Bυ8T,D;υβΆά 鳦΅&οΑΩQ0 K➝β―μ%ƒϋδ^ΦΊπfan›|Ύ…ΓK}9 vbτ%_…Γf„ϋ^…ξγ…ήδΞε4e‰3>&‰Ά€†Στ ηTv¦ΗqeuγΚ) ZgφΨa%y H ‹B†θ2½fxŽii–S=~bNή¦ώ‚b~ieΆβK<ΆK„fcυΕdR>_φHγ€Ύι6ξιL>Βlϊi‘œS.η.ž―hι Y>=œ’žιΆiRΩP]ŸejN¦b’Ξεϊk¨6kέ}η§φJͺf/Ÿnj·.&€ξgπθ³Φδ‘ ˜Ύ–kˆ»Λ(Ζh††ι¬Tk–θθΩΒ ie_ΠŒ‹Kγθ„ ¨Kς΅›ίC02hMΖh›^lτbcΊ>l^¦h%δ§Ξη"Œλ'ΎKΑTΈ‰BΉ–νo¦i_Jl½ΌφmΠΞίΣζ]ήβ,΄Έvœ―fZvžεaς/ψ@]’ ~ντ]mIi»ndlvν·Vμ‰ώξ‰α7ύg§Ύθ}δήξE%‹Φε»ήξλžΪ…6mΣo%œνό[όV:5n¬ŽΆ|e¦υΈΓ!Γ­Tά`ξ&Q+kΈ6¦{Φνυ†θ˜n―Ά†οΟ6₯ΞmΤΦξšξ ‡θΫ>iΏ jœ½6oφ_Qfc κΪΖΩ^’ζρ67‘ΖvlU†μt^H0Ό/ΩΈ&φηω6šΰ„z₯iVρΡNμ}Vν%wς'—k΄ξο΄–jhφpΟς!i)Oο/c0gcG6ν°pyBΊαζςμnb€nσUζ->Zbε^gYrμ–οτ@Γ±Ζ“ΆYz.oί s>7hΔVούΎο2₯λ3ηJ[bσC—`κn"Ηmύ&jθ-—rθfd_tσ²οΓZ^&Ει…ωϊβWΞs1ŒG΅qœλθgHT4–t%QOθ‚»ςΤFιΰn›Yτ‘ιο&jζtMφ?–θ6 ¦8Oρίρm—Έ7ΪrVKδNgtVg ™γΘ‰’pιj\x‚Cλ—CGdmηοO/m_t4΄›m²δ›n/mvn οσOmσ’mΌ΄B&¬cf/ ςAΟ%cbΈ\BvJηΆ†iQΧi*—φΞηβΎκ-Μ8<—œγςYΞ©ψΜa5ς\Δα\nβ&φiη&.·ΰ‘θNττ"jZ]χkf7μϋ΅πΆ.υ>―whΧr8‡sϋξ₯ουl&mcot3ΤΠφ y‡lWιiNΥYoχΨ„)ˆw{pzWπ)/εNsšφό\χvψΆ―kΈξφL‡zοxϋεϋ­ϋ…Ζ˜ιόœkΧοηžr)T_«φh/ΖSu>eš―»τς4Ν―ξ`rό7Ži`wl_H§ϊ8–σΩζw{fτΤφ‡Ηζ†ΎzΈsίυαΞh«WvpFυΙΟ8”H#Ǎ5*<°`bȎ5šœ(±dΚ–YΊŒi₯I˜ΐ¬˜’N™²μΉζC‘Qκ$ΊΠθ@¦'})₯&ζ|ΩΡfΔ‘1 `Δiμ'P pεΚΕ‹—/_Ώ„ωΪΕ+-.\f?εΔΐP—¦tϊχ+C…\«„ͺS‘`„«6Eά•’dŸD‰φČreœ~nϊ`γ‰;>hyΪεʌ΅RFhT©ΖΤ“+fh»sδ”»eϊ ΛΙ§²gΡ•λ ά΄Ήμ‚ΒK|οΥΌώώy0wΛ .~ΪΡAΦ›ΌGO¬Θ]»ΧšΌGφ.z½CΘ,0εŠώϊΜΏΦΛ–žcρYυPvόθ€λ}ζcϋv„σΘΠEΒgZi­ΥskΝ^cQwi 8˜BJ6F=9Ψ_Œ­uΖ"FžHΩe"d1ΆR와”ƒ=₯x‘% ΨQŠΕ&<•@4Υ— |ν9Ωίw`XάqΈ€ΘΛ.oν"—.tέ5œ^|5y@~ΧM)g•1eγvόΑ€Tœ°ΕT§{TFGζ'Šι$hŽKBΕ`?.$h{2Ιe|CNJ(‘Ί'Yfmβrω\›Σρε—KIuJΰ•Κ€η“€*y)DIΪZ'¨QuΩ₯­¬Εž—ž"‹ŽΑ'Y’M:ͺέ°Η&‹ wUΑͺh΅*BœX’κ[mύ/©Φ]^%ZJ¬–1νΘ$Q>[ženΫٟ%UΥ―h˜ζ+ A©iδ”`% ­yψϊ€0oΖΧM i‘ίΉb0gA4’WY«”Ϊαri‚¨ͺΊ¬φΥ™― _L%QΏΊ|θ»v¦D£¦-[hΖ ]-g°~°»vΦ3Μ•}&QΕ{†–bx‘ξΊeΓ‡›eΥΕa‡o™K—ˆnRηκu4[μ0’W₯Τ€Tώ΅{’Ϊ5yS³ν¬έaὴ̓56-΄αšk Ρ‹sW)>έ,…λY§0ΡΈ]ΝβΑω2Έgyν /Β|8—ΚŸ|Βr­ό©ΫΑJΆίδT―‹χswF9·ί΄'ζξŠψ’Vό=s―>•ΌŽSΩ7μ½WZUδς¨œ«υu[ž‹>6Λ*ίΔG3'gWΪΠΪ• •Έ|’olτkxυ Τv’ϋ )=σά*n@ι۝αxΗ ν/SJŠΡaΒw?;1πt<Αˆ·Ά\θΒLβ^χμ"7΅LcψیόζVΌ|eo-ς”ΔΤ=j‚%,` f>B9E[Rڎεdΐ°vμσY [†!‚dΜΰφΚ΅猍D|‰YΎωEθ_ΐ2h±[EΙN'$dC@Φuρ%―ϋ’ σ?j΅πjr #s†4Έ=OuPšL7·‘ ŽKebΣΚ@h6Ψx$LkΙ“f+Ν Œƒ±Q£Vˆ₯Έaki€Υν„HΓ‡4’x«ƒ!Εt΅ΙΆ}2Ž#,"'[η’0i(-€t‹E7:²΅jަ€έΦ§οXc ζ‹°¨;-Β«pΊΜ’$οθJ]φοUΊy˜ΠβV΄›uvžάΤ>ΩQ‰ {Lά 9"b3o+| :›yJ€ΡΡ›ό‰¦WΟζ“YΪD̜ήΩJx%πž@Δγ·ΘΓx¦QGβ'‹θIBˆΐ2\Ί$/ΚΥ–'ͺ Έ ‘LXΈ€Ζ$šΚsš?‘—O«Ε#Μ3˜ΡŒrL*=ΡΙoΈ‰R6&žΥd c%φ䦌1Iά#ͺLLq§‚c1‹8MVΛξ­ Ίšέ>­… »Q“G, %N?%O|ςτ¨¬Μ’X>Z“•:Υ§@…€—ΊΠ›r”ςΦ³žΖ°€A-IMD›JΞ‹vP]R,i:³i’QΪq‘c\§I[W†,`$z,a#’Wztbm«3½IYΟ„«•]ˆRΓ‰–^Œ³-rybΊ YΆv ERΊ£ ») ”‘EPd™šh·Μ,Θ΄ΗΏ<Φ& υ”„{ΐε¦% ˆΐJΘΟεOšq­Qέ‰Ζ mw­ŠhΧ0θΤΥς’·όžέ<9?™ ±τkˆCβ«ΰ—QΑ/UΣ qˆ 8υέ‰8ΎΠνjwΰΞ"&ΐ*@»h WψSA„SκEνΚ€Βο57;L"“ΑρV':aΪ\ ΦdΫΓ¨χή4€ά° q|z2έΘ*Frjn³h…"Ή)Ξ‰H<‚LW‘YΐLΰ‘4R‘GΘ! ΌΰTΩ>€mvKδή6wP‰Cΰ„φ?C&ς€ΫζR„ΐ‘….’ΰ—F ₯"Αl°¬ΖΆ{žsmrδŠtΞ|ζθAlsζ#ΉCI3R ϊr’±"βΏZlΙ„%.Ž₯yκ9(Fυ΅ΓΆϊπtΫρ­uΎ†/πΰ y°ϊΌmΏ›Ι˜L@€‘Λ&ž\ΙΘ€ϋ! Ιζ †Xί†χFοΌ»έύnΎδ.·α U°Γ‡l°#CΒπ… @άvzpHL`5oήρ-€|@€mG|Ϋy0J(>uƒaΘ-B¬˜  ΐπS_™ŸΈηA6ωΕ‘Ž˜ `θ@ΘCnͺΧζ6°i~gβMΞ(ˆε›ZΩ:μœ―ͺ…έi$SŸ$‰”‘`j„²ΕTήqZ4e£+£\ή ΫΥα#|! &θxε[d oH$―€ ΐϋ’74”%―πΞO~zήΝ?o>䍂Ο:πζŽ^θk–Θ–ϋBθm#ΐ_ ξn'0ͺΧ7υΜ*t뻀ۇPΛθ–όλ7 ‚R;zIθΐ¬ηνψT+ Ύ›όδ<θΚ·GΌ4p€kžψN’Όθ™\yψ€>η J&@h] <”΅?yWa™Θ λ_ύ€χήΫ™MdΐΖήt€β9@ €±Y,Τ?U ΥμR‰%³“₯˜Š=EυpΒ²]E ΓSρBk}» €ί|Π›ψΘ5 β}ΐ·^„œŒΐ΄\ š@€D€ |A†Y€δ t@β%žΞΡΰΒέ“‰Ϋ©ωΐ–ίz@ω€ ,ΐ6α„Θi\ω€ ΈΫx[»Τ Ηω4`άO‚z[BiL_ΊΫβE€΅}ΥρΗωΐ6‘| ž‘τ€γ½UΟω ΖW‘Υ&aθ^β™@€1!'z@€y@βι‘p"\Œ!πΐRDύε!Pΐ衜!Z‘·y›ΑŒCΰ‘ǍŒ'zάN.Ά›Ύb€€<`›€΄Η霿M"P€·…A/ΞbN]Ε"Ύβ5’‘n’œ…W?~ΨN…ΰhιGxŠ"΅Σ]ωDζXηLΤΈΈ…ήέ` `@Ύ'ίπ€τ4~šA@Rΐ¬#θήΊ­cΨΰΰ’>Š”5aβm$υ‰ΞδG† ŠΑ,ΐ·ρ’ώQΨš^Ο1^ΑΝd€AΜ€πΐΤβξXX%ΨΈœΚZN" ~AΑωEΏαΰΛΝ› L£ΛωΠ€»5‹θ±ΫΤ1Μ[€ξΩL~€)Ϊ!₯Φ$σέM:έ@ΰbVŽ@„ΰ€δU£ΗižΗΙΪ+β’ d€ Μ₯x@Α±Y0fΫxΐ@ŒεGζ\ κΟ‰žQ~\~@rβ„%.Žγ}€ξi^Ё>βšlΆ›•M£•5aώζ*j$ ^ljά<>€L6eιΝ›SŽΘω€ΒδMΙΝH*­~}ηΧΝ²€Φ\ΟΙX9ΉΰΊL;m C 'ΰΎa£„ΑЍ!Ξ%αQΎcœ‘γDΐΨα$ζ\ΛαWN€β½cN¦VζOΦΫ»­eȁAγρ€ΗήπζΠQ_·…A1|,‚AZε»hM@ΈάΞE"θˍ!˜Œ!HαΛ)\E(”lJhQΞdŒ€^.&ΐyΫΌάh‚Τɞt€8rά,κΐ)e»1R!€€β‰€\Ζ%m–ήΚ•δ8heRΐDtH‘‡βb€hƒb¦Τ€N°ε·}@‘ε@*ΐ·@%Φ’ezh؁Y[Nϊ Λα`!‚₯ <_ύ9θrΎža$²[4*ιpv€θ —YQ‰ΕŒv’aέηC½“Rψe”³Ν’Eq!iΤχπRS€b†Φ P)Ύ5‘8κI~AΒ©‘Β ή,Β¨¨Jς’JΊΛ}΄—ζdYφ€z€’J₯γT »Ϋ΅Ύ’€ Ί\~A·h‰žhΰjΛ!ή£~žnώĝ>«U‚I%FΐŽ₯ΛAWn\ϊ”žUŠδ,~Œφ€N²œΛυ„&ΊΟ5]|ω)Ξό\hJhxšΐ(N€rκ_ΤY'ΊœΗΊψΐbφ@ …γέt¨KbΫLr©ό₯Zΰ$£’¬°*@’ΉβΰΉ>œœέ$n›·™@ΐ&ζ.ζ4—ƒ†¦bι‰_κ§I!'²€@‰*ΈOξœκ?ΛΣΥ“Ϊ€Π2ύΣΤDL|b ˜|‹˜(QCώˆ EΑ`bŒJωYΤ½δΥ…\W|δ°ώΰ°ξθΜ$Lλ]"«@ά€v@‚‚…Qaƒφ :%c6ͺHέ<šZkZ%*5aΞε_Θ]1€‰]ώUΰQF€ΝF » +…ωYM+Iώο@·AY_Ϊ©Γ2κΛEbΠQa$§ΊŠ»†.ζ`ή‚6iΐΙIύ%g Rͺ~ΐ4~φ&m†/™A뺁8€ϊ€©1)ަhΠQ¬:θ4¦ΐΟVHςη<@ΐŸ²c ŽaN X£Θcιά€βͺq *fΞ›κ,£²eMΟθΙ¦Z¦ZERKl=Πg1|šͺ°ιیQ½˜y9δ.Μκza‘Hφhnφ@ ΪV­5‘2ζ4ΒhQVͺ€ξάbhS"θfβΰP’δL~ΜvΫ,ξ!Μ ίdίΌ₯‘Β"4ι’¦!μ'-zœ DmΆψβ΅Ϋo£›ζU™ΤI*£»­lΒρ+Δτ…+Β¨t, e€EθρPa1€T0άF}1a,Ύbšhb.¦‰φ¦kΞ›‡¨βμω*&Œ&zΘ!πΌ…"½aε*ξ°"‘ 3γςγ^eoή*ζGjf vEδ_αUπ !ͺd°"αbžaύΑlαy[Βjœ„ (”u0)­fΡ Χ-’ο˜TΣXs@ΐ@‹*C€¬~Ν/ΐ0΅Ι`pS ,|“υœά$μ˜¨μσ¬%ec²ΚΙ¬y@."šώυ›UzγΊ΅bLNθ¬UR]jŒΩΰa’^Ěfχ‘k‘A,4_αΗΞb_2uΑθΊαFσ#W”Ωα7Eφ]£C£Fα"ntWΖWMΞtlM.Ε*­Θ]Dπ€ξύ‘ΗΎ$?₯"N_+ΊaM/al"’Έa­ΔzτL/‘»υ›=φκΕiβΉβAβ+*Δ‘Ζ™±¬e΄SŸu˜J6α+re'/ϊ³@W8zc|©l†γK‘Ψύγb•go ΙΐΈDj  W]K dτSd @>O ›sά’sέ²³YlΤD–°gΛ €UœΐΕ€U`…Ιά)ζYφ­kγφΒ™›‚QΨ@ΐ …¦Όœ’Ξφlί\‡o“ΫΚυWφ_|M Γp‚Ρ\qgXRψΩv+)“Ρ\r‹ήΆ ά@\αˆΞί±ΐ-άPτΆ’&% Ψx;œmψ!ͺ„e_u#ΫτΈ±χΚ…Ÿ€™[{GŸ}Ik·Cδ/n7·|8έn;}WάΛρ ΖήΛ Έ'KnL‰[•ˆ‘­eΦAΒνB’EC…­–9mΤdΙ€TxΪτP n#ΤLhe 7Fˆ–±Ε™ YοPdζςα0Λ’l!YζυΨ Q­l—υX5S$i˜—ω£Ε2ΔΓ-™’YΗΧ5wΆcG‰P΅“AΜΈŠyη3•y†Xdv˜|žxzΚ’S]΄ΉV.!ςΈm˜ ρ±£ρ1žΝŽ‘σMίτ8i°”œ\Dδp«Žσ—·’t!Ÿ^aΔj\^’ζYνέt%5ŠL7ύΈZŸΚ₯ΩLΩ“’­^5³Ίlψ(›•p…Gν8NΙ:L…ωgΥψ;3‰\… ©¨ηφΚ K;sB€Ϋʌjϋίt̊86GPΨΩ7§pέ¬hΨ5P v•έ@uΉgƒΧˆλ9 r–½»{Ύ{πs š ͺΈ8q4‘ϋ΄έyGmuυΗ·#Š ϋK½¬šdI¬‚Π ͺ„Έ·­§<Ζϋ έ―­| ΙS₯ί;x₯yW₯uvuœΡ± ϋ7‰ΆΏ³Ε/¨³šΠΕ*¨‹‹ ΌΌ_Χ₯ˆ{dα₯ωN0@ˆΓΛ<ι ΔF@(ύšΘLˆc=™aύΤχEHΐjl=p)|s-ΛΦ»ΚΦ#€ DΗ;.ΦSvX‘ΩOWΤo}Χc½ψ™ΫΟ„ΣLήs½θρΕnό8fγ» εΈΏX—ΫζΠ―Q½aωΔΫόˆΕ{Ž7Φγs‹‘ C2ΡηΐΕΉ°S`(δνc‰μΜΗt‰;άγp_ΏόDβ8ιΒ<0†§‘ϋ €`ΐO >ις=}‘VDŒpί>πΣώ ΰDπ €_ι7 @p@ΗDςχπWΏΣλ>˜?™)ΜΒ!ϊϊ€ςΣΎΩ@τώKτΟ―Δzh@P€@080Γ&TΈπ‚ &t‘bE‹ !^\81£F„Nd(γ@$5‚< °βƒ…,KŒ‰±"L(ڌηΜ™0 Υ‰Σ'P pεΚΕ‹©―_Β|νβ₯4£Ÿ8eΐ'E• 3.8€,Χ 8A ƒ³Έ=aA]„09``ξY—ζVϋ°ο`… "¬έ‰ 0ƒ0ˆjΔ 7l`Όs³‚}φέΙvΐ\Ήs#F˜aγςŒfΤ°a!œ,y\¬&6ΐPz† lŽΡd‰Ϋ˜€bΖ]ΨΜΐ<ƒ,†<θsf ­1ί¨°βFz °mppΐ N[#|%͌ηz’³φ«ΰ³‹`"@N ~ψ!„ω°(ns(8±aΎδ*ϊͺ+…zB¨Δ½’I!–NDΡΕaόθ§‹DŒρΕk²q —hd¨’ŽJ*]x‰Κ¨€šͺͺ«²ΊΟ,šΐjΘΔ" /ΤP#+#Pƒ ²²²,(‹€Ί€«“(,k(Μ0Λβj‘ΊΚ:`κά ItY‚¬FtIŠIΘBˆ¬ΨL4κ€ΟMn€ΖΚS‘Ηlψ€\vωƒ%za₯Π8ΈΑ^teΘ4Q2Š%p‘€%@Α₯X€—_7©"7q@]œψS—E"ΰδS^ ΐ P’•`¬FxωtI‘*)Ple—₯pY %5Ρ€B@=Μ/²¨ΰݐΘb+Οΰ]x€Ρy LŒ€.9Εΰ1ψ<€NΚ€ Υ^4ΐ±‘tτθ$‹p€H€CDΘ&Ž_JΞ„0ΉbŠ@d“.ϊ+E† ;™b–ΚΈ€›4 ©\z!²Θ#w‘ŠΘ%AωδOœLγœ„sb—At_šδF6!&bPŠiƒ^<"άαŒΗ^΄²tdeNSQDtθΓι0DQΙh6₯Ή€‡$ς‘D\δ4Ι¬bΌjΔΒ€΄³!ύμHQa•R¬R4N m+J“™Mυ˜2°’ &,QU°bͺ¨Δ`†S¨b«BκΈ KΠAΨ£ ¨‚‘¬0`FͺBd‘$&X‘Š Q§&θb+OΠ’8Γ+Mψ’Rd™A.Dq\ˆβzχΑΕ/ΔgKΘδy¨²"ŠΜG‰’ΰP8b>‘D/<΄‰@݊[‘ \Q‹YΌβp˜¦γŠB ²˜Ε,ρ8Θ"’΅Δ+6 BΈb K`Nς‚H²Œα?θM/ΐ½^°ο,*HΚbf2Β(#D€βZ‘‰<J@$QRa€C£ζ§(B‰ΝBr€ΔaŒœ8ΚΞtα3_8Ε‹Ί¨J±‚΄ΙLŒ©+ςI•p 5,’”ͺΑ-!΄@ ­0ΕΜ!˜fp€ΰ„  L<&™L¬*°ΖJ,¨D+,ΑΒήF1 +NLώ­”d€ΓΖ Ϋ±)€EΓΕ",pΐ[ν’6Π…'Βε Hžhž(`ƒH|σ7ψΔήQΜΔ$ζV½ΰ'ΦΉ‘eΡ Ίh‚lΰ‰O,!Ρbτr]ήΖ!$@'>X BΠΐΦ €­σŸΐ…&V‰νIo 2”„0\;™ϊ€"έωΔsAΑ‰JP‹ΐ^Px!¨ ΄θChQˆΤ€-όΰ‚ZΔB ˆ°0όp‹YτAp@Δ,D8‹D8ΊXΕ0+`€1\“ ΐcμ±H ½ΰtΩMΊ¬ξ'7RbΘ²ϊ†”lΙP-Ir6V±*ŸθͺajΚH"’#W5ΚΠ #°¨3!‰υ)AcΥTΒ˜ΰ…‘‰DbΠU”Α˜&T1U<ςL|e Κ3TΒZ{/ϊμ°Ζ† «A%Xa 5Μq“vΨ{C"―±’YσBc+ΉιJΥaΙκ'$r' H$KΉ  .Π`tBF€al‚D¦±„τ‹M4‘˜ ( oΈλ‰F@b2Oπ…RΆuƒϋ’EŸpB.UJOάγΕd %Η­΄A. l’„b›†$B!‰ € Tœˆ@v! t‘΅Κdίψ’0ΈΥΰ€CXP Β,8lbYΰΕ (Δ,Π‡[Δ’ Ε PL Œ’εΓqH‚…ΠR™Ϋ€Ψ1*(‘ \ΰΑol€Σω ±D*©³”­άV€κhͺg|rDjDΔΆϊPι1*ˆͺ\f=]OGεš‘f”U$%¬\D«² 1" Uf¬ΨΡΥ­L””£ΰT‘L ‘›¦ΐ™€ιJLν‘cιs"KiUΠΣfPƒΚ0‘J¨"‚Hh5…d£VQΙΙOθ »ˆ$‰lΦΙ E:#α G8"βkDΉ NπΖ ΉH+σΙ‹O΄K™9¦ο봈oΞjΐ[Ψ»}N–mbΘ瀡S&Oΰ"mνΦŽFο%HW’ΐ(D1f ΨΙ’“#@Q'ήθoαη(Y†λ‘Fψ"YΑnY..‘‘ jΑd!@h‘A P¬(°*ΐ\!f‘lΐ !"ACf ¨ΐœraΈθ¬―§b$λͺN$ ΜΈ.‡Θ,J0ΖΚbB œ¦#°lf^‰Ύ‚©šκ ͺι\'(ΊJΝ”B¬ΊHhΐˆIΤ*–Ξ­6’©FO(`ΟΤ`*-ΠBΐŽ,ε16 ¬d -!UΝJ,Α¬dςΘ¦fB€ΖBMͺ„W Λ Ζ‚ k‹D―²h@θΚD@A30€7& †δτφOP@]ΊΕCt―•ZUJ£•zd{ζ#VŒ»2Z‰rΑCεraž‚₯v‘RŠΰΆ"vεγO„a £8ЦBv!ζ2‘;p΄‹–@Χ>‘6KQϋ8A:€5JBJ₯lAΘLA0Κγρ5ΰf(°Qκδ.(α.Aq`κϊ΄Ζβ† H"#β%A©:fuΔ}"#‘Μ=£NGξ3 q°!ί3‰*ςeΪS=K’F˜pOr‹Ζ* ߌ%&iθ³b kh@( Jh@ βθ1K~Œ―’ψ¬­ D`³kB„@M6τ(Ν-ΐΩZΤ κΖ³Τ€­°© Κ o…›,Ε κm$lΰΚ(U4Α$5‚ϊEN>c_"ΤPΦ_ή₯e@ *Μnγ@ξg%ζ_m F‡Mr³’υ!c€'ZD‘λ„ κ’h=­Œ#υ³ix0©Τ>Σ3ɞͺ$Ύ.Ν …!hΜj ΕhaΚΘiN ωu,νρ:1ΞΦDvβL&7‰FƒWΓ!"tEm `ΰ€¨"΄sλ&πScu7ΓΩJƒ-Δc[)טΖβu 9pWi€QJ7!θγΗ0ebΜwιc 4aw4ό€4$`{ &@u9—$FΓu€16Sv"{Mb.@’^vW^ό…3E<Β@n}]‚GaA^Ε$F·.’F"o64N6¨ά3ej05ςngd€-ζYψdœu@νV‰¦N©΄.%tDΨSF4b\ƒdΝΜΞ‹Ό… “=YB Έ550–,c^%V·sη΅.ΐ!^8#†υD%\Έ#ΞΒ0 C$ΓsΡ“†; ?γΞ>W.rβ†ΰ3κΒ%<D24`-ψχh‘ǘžΨΜάŠΕΒ- ψbζs7χz7γ%’Υ/|χΘΞχ/’8!(θVο¬.θΒwΛψrύχm—LZε΅Ιn€-b=b©ψ8=«DXn#xλ,ψmT#ώΦ$΅Hp½ˆ)X‹Κθrυ6&2bζ’.ώ3E²“+Β’™qGΉ”#βŽnκΖ,!ΰe•M€w"¨β’υΈYχŠ*ΈΑ΅n―ΠD>¦>™F–χ8«rΩ‚m"aYρ˜"ΰ5&Jh7%w%Ϋ•Œμd&2²¨Έ? Ψ"|φ%0r‘Id„€—/be’υD’ΈLV⬑Ί Γωn}Θ•IY#DΪ€+ζ‰&"ˆ‚™"mDZͺ§m$"/y¦=Ί˜ϊν:ϊ¦8(~Δ —"%Σ՚™qŸΔ?Ϊ ?bΒΦY \†&Lƒ(‚“ύ³#8Ωk4EJΓ¬’q£λ β…q‚υd0Κω‚`§d‚v"ώb¬eΌ£Kοφ+p" {°˜'Έ""cF§;&ήBe©΅Z=™­•§έJι<2§νΆG’zš€š™Ξ<ΈŒ6[³-β3 ήΰΒ#€A*ΰ ζ@ ϋ0 γ,„.π·/1y”σΆΛ'»΅“ͺΚD™³]$c„¨¨χΩΞγuΏΩzΙΦάκJb«Ίκ«Κ•ΑT’'›Α»½kΓηΰΑ ΑΒ;ήίd`δύά @β1K,Α$©RKh`’(ι2Υδ<5οBΙjι‘$‰ŽμΘ1,‘Žž-’ΛβΛ°@Ip0iŽ0‘< γλh“ξŒ’W6aηθΐMΧIlθ¨Ύ½Ϊ΅z—ZfΔΌoωψ%+;Ργω“‰™­­Όq—ώ¨ζΫ€― *θOF™Νό¨έϋθΗUͺΩl¬R[Ξέυ½\΄If&0\ AR ή#νη ή=τόζ R$Ψ€ ύ¨ε°V!σ½±0a, ΟΖBN< σˆΥlΌ@Z=‰²FŠ‰Μ°6ν -aBo“(ΰ >/“ψͺΚ κΘ6ΖPοΠΎ8ΑΩ^£>d Ϊ|Arž ΅]=₯?XιGΔΩΑœ—A"4Λτ;Ϋ%ϋκ£5ψCRΛ™ΎُoZ$”Ώ)2o… YšΗnHˆ$AΣέΟJ£+™χ}z ΓS€Γ ατξγ=ƒ€ξέ!ˆ¬±μˆ'@ΰ TY0ΑŒ%K¬0M@ΐ¦"`Hc•BͺZUbbe©’*V4""@°°Œͺ ˜Κ4³ €2¬„˜<& 'Z@U•"ΐ©‚ˆΜX₯I©…%K" ˆp «Χ―€KΆ¬Ω³d€{@Ϊ·pγvUv­ά»gέΒΥ‹χ]―ΟξKΈπXΆfς%<ψλβΊ_Η όψ1XΙ‘Ρ"6Lx3\Ο_Ή`ΔΙ§O @αΚ•K/^Ύ| {ύš5ԟ8ιf2ηΆfΕ2xΐ‘δRα搛η2NxπgN€ΎFBŒ™26i,ΐ I—?:q’QUen¬‚o‰#€Š8» ¨…D. ‰w–˜‘JJ^δd‰*ωԁ*π}'` Š½ρ$Κ'QEP5τID`ΐerYfcΏΝΥh ω…fom撍,’υXvΑΕψVeBvVy‰€‘™y΅#\8¦%£\žE‰—‹V–υW–ΎΕUcc£•vZj«΅φš/ΏόβKmΆα¦'Όuω’bA€ †Θΐ†D`\ p0pˆu[!Ά ¬$eTQ@¬ΒŠ*E=Ȟ*±χ`QXΚ]L°b“¬ttΤ@<ΥG„0A°F°jhNδ‘J©!@aC«°w@E€ι,$I/7D4βΊτ‘!6δ6CD}-°d‘cνΈZYn›c‘OrK₯–γ6ι€Ήš‘%.`b5Vξ[˜Ήοg`ι΅[\Ζ΅γΌ7ΦE^}Λ.Zaκ†šj¬ΉΫΓ΄΅ Jn¦ΕΙΥdœ90@‡jˆ!'Tπ‡!sT—Βt‡^·Ω ”—P}€I+ΊμS+@¨H`&ͺ΄R£±Rjo¬¬ς %ι ΐ7­b w”ž4@AΜ7σ)1©I–ΐ“y Ee/` ΐ&Έh0νΐψr-¬fιΥ―`LΜν»ξ–΅Ψ–οΈί„ΩΛΐ…©Εγζž/»?Ž%9δyΖ/ZΩ…iΪΒ«ιβΪkjΖΖζmRqo_–ΈλΒsΈρ† ²ΛA» # ƒ *o ”Q’4@@ΘO}A˜¨Q†¬x€j˜3·sIg”Ρ+!˜QI‘†%jόGΐΟeˆ0A”AώϊfpšQφ^hY*Q!(Γω†χ6\`ΐaλE$"Β©4‚ ΐΕ8³­΅Ξ0’» γBšŽ^eRΦ΅―F\!δ[ΐ§Bu9f/ˆΓαoR΄ΪΠuI"‹hH£025μLΫΕιά΄Ί#Αv± €―Ε): ER’g 5φ€eμ!ήΊ(¬•πDXd4›Ω3(`€CΨ£  >€ [ΆFΡ¬ŒT½xˆά€+ š β°l1€j½Ω β0—%Ζh0˜λ[·4Ω™NϊΘ\XjWg0°o―σ‘ UyΓ Ωhs¬‹%cΙ#ΓxŽd*“Γb# Σρ"ΈζΔήd1OQKΘN2»²LDHψ ¬ °•‹-oΈ¦€ΒX}λ™ΥΜζΕ"°Ίΐκšβ\@ό‚=οΈ3Δ#'ΛΔE–R+…όΦ5@Ό xεœε,$ʞ0@8Ψα1‘Δ­φ…/―shζ GK†'F5zγΐΕ­ήE2―CR&Ρ2 ^ςI1β›@ΜΧμB6Ύό%0™§HVΤ+Γ©ΛAΓ²SfΒEž‘ωΚ5Λ©#ƒ ‡œ±§ VΚ‘Κqμ1˜€ΊrNœ"υ/U‹Rο ˜„Ξ(•w+ εDΦ†Rp}Σ’Ώ"Φςε„Ζ4—Xs8Χ²ΜRHb)ι&§τ›=ΡK|ύΝ-Yš Ϊ@L‰2EΕjŠΧ9eμi’άκ΅-₯DL {Gήt’š«$ΓΚ½©E―eΝαi'gΚQž•“ΛλkρRʏvIΆRΒX\?{%Γ@N₯Ÿ3baaΓ‹4ωRb‹-¦Ίτ2YΨΦς+½$ΈΜxΠΊ&Ι©Χ$§Yj«ΝZW”hρκ‹B+Θ:)V} zγ"^ΝΙ…2(μ‹D΅:%ܞς―χνΜ|s›ZLς–­ŸΔ $#Ήmiΐ€-Μ`…kΨ$ς’ΐT¬˜”»Χό"£†IhπLέ†qa`υέΓ„τ μ‰ζ»@΅Μd^aDfζdΔV&dc‘s[FΒP:_–\b&$cel  ΐ 'RΈ° Ί ›K LΉ° °qm³Ÿ0°~γ΄—~’ ~S—uΥ² Π½ΐ ˆ Έπ Ή £°μ! Ÿ0"œ°ˆ’ Θ °œπ ΐ Κ'‰……t’ΐ ΈπO T•!žL»ΰ ‹c 6ΰ½:HΧΌμaΈ0AL!  ‰‘Π ›p •JJ€œI- JŠƒπ Χ‚`30K°Β«7πŠYΖϊ6ΎPΐ ‚‡!β8 ž€xVψ R}m ξh}5­•›? ?  mSΈ  7ΐ Ÿš@¦Λς§Έp¨Α­q €ξ ™ZA’ ΕBfΌE~ͺ49³ Z©FŸ.Z»ΕZŠγžώ’’ Ζ%˜JhJη’e2\s\­fYΈ’9τVga`axλ'ΉGo“ ± ŸNΐ6μ‘h p70cΠͺAΠp„ ²¨Α+°~ Ό  8Ψ—Χ" ΚJϊ:#Ή8  UΏ‹qkΔΏΐ”»~³x-Ά9Ώo”Š'RA+€ ‹8 Β`e ± Ÿ@±Ή0Aχ6Β€² –R`―ΏΠ±K }ΒnF( «~VΘ Ηϋ›K° ψκ 6°Ώ x £›  ’Φ7­‰@Γ&rd«JυΎύ%tΚZ’'‡^(”ΤZœ4΅z0΅hŸΈV&g² x˜‡ͺΓXπ;ˆ±“xΠ yͺ ’ΐ£Gκ Έ0 £Α σ * ΰ œΌcŠ ΐš¬σ†P₯uKUq^`ΉΑ #‚™Γ ΨŽΛΨ θuŸ°˜o“«½0μqΈ 3°ŠKι 3,‹vηOφZ ‘pw©ΘΑ6fxœ  Β }° –η»ι 7κ{¦:ά,3ΰΑψ ^I0  ›- XΪ šπ α»3°bι Y1ˆœπ d§jΑ½‘›‘DΗΪ{y§'ΐωJO+Y+Ÿ/’Yι™‘r՝€Κ-G+Ώžld-zR".*UD/ω0½„X«!a7 ‡¦Κž“lΚsaqš Χ’t ’\ζζNP=`ιw¬N0 šΠΙσΙ¨ΔKΰΉlT3‹°0NΛO0θF-’0 .SΠΜq`y7`v‹`™‘δŸH€fΗQH< Ηφ§tΠ–'P3 ‘ΰQ H)7)Ν{#H- RΝ2θW}F”3pΰΫΟ^@¬ΥΜK ‘PΡΧb‘ ‹0βœΛ–‡ΠI@₯A5ƒ¦ž1W—ΥXιbΏcΑk!.ŸΚΏA­yΓχΘ7d£Gkl†Ώ~Ÿ$‡Rύ·”/ΙkΒ° J”œΐ΄ Γ€qpάΚ9ΖdmΗvz7Higcε·tIwλVΙc‘"PΕ2RScrύix6cdΧΒ @tlT«lwi~ρT_ΡgΕhl”wZΑXIΔ‚ H«€:«1Ap έG[Ηh†MHRη6S·1NΐΈάω‘ ΖΙK Ν±ŠVŽ%tͺ8UςΏ•hyΠo’Υ|&ΒΠʏλs¦Ρ6c |B½#¦ΖήΔUλεLΛVΫLoμΕΥdYxsTχ8Λvm“­τhσmE^’δUhπΦxŠοΖގ–]`D}Τ§Ν&o’pΕUFqχτHμ 76'•zΥ€|Ϋ―φς’΄pˆ\bΆ50¬‘8rΙΎ†’χ ›Ν^›&^}άaΫ œ άzΕzχ «?ePžΕg^rΆOfΆ^ΩtY₯LΒS|q:iEΝq’sAisΨήςέδkΑ]!‡‹qΪ„W„φή\!\eIΞŸΪ}a‘Lε8ζF΅όr…ΦšQ.l.Tνͺ3ξ΄γ…α‘,8oΎΙΙQ9φZβ/ΉŸ½4:Ώ$LΉΡ ‘'J>j±48OZΆl΅³ΌmΫ&fff7έΖ‘vQιqϊa9Ζ.ƒΡ/”^a‘δv‘ΦqͺY’ycAΥ­WzH[r’NηΟ…§ΖWρ)9 Uͺ&yJΫ’ƒ<άͺ<ά\ν J„β†θqβΪiž“wqEІκΪεΟ$ݎjg³|SˆAb‰φδŽ8•BΒLŽϊY£εQ ώ7WαήJ¨ζάΟή\ηRλ–~ηC·8―–ͺΉζ΅0΅{-ή †8%ͺ#φ b8b6/ΤTιtα€κ6%xƒΦ–45lΧΣΰζ²nηξ\νΫωη}υP²}/2΄žθ©ς―MΛU»P΅eρ°¦#͝BU}ςο&..ά¬qΐ1ΉβΡͺ 'DΝ’LέΫd±π^At"T#hfY<h]±fݞMaρf%ί"έΦΝΒD/₯tΰ[ςυ<1#)ςH’έ,…”‚{($F™εC˜žσ+†ςτ-λψzφ_³VQNVκΟΕ8/Ϋ1―τKK<ž³Ν.*εβuΘΚΘΞβ°μ{€sœλ£ «W$G@χΗpzP€qʈš`}""€ƒ]! °XMp€71oš>q `­έΦ-n°ε°‚ές*±o―qP€ ΰΈΆž0΄i‘PΦDV6φg@Pφ>Ξν,ClR°nloΞλ°8‘zςAπΆmΤ΅=λ/5δςB0βΤ‰Σ'P pεΚΕΛ‘/_Ώ|νβ₯‹!„Ÿ8yβΤDŽ$YRAI”€<ΐεI–1G‚4 Ž"Π‘ιΞ :ΈTπ`§ONDΐŒ\’œ΅ ΐ€SH@£S§P"hͺ5‚­ Ειƒ `Ά¨΅ξΤ΄"ΠΔ—Η°N=…¨V /·,(Αρc3&ΉsŒ)Μ“D*ΐKwδ\‘+_Κ$]Z€K–¨GŠ^mΊ΄j•€Y». ϋ3ν eΞ΍ϋuiέ±“žkΫwJޞ›N.ό8ξζ‘gƌSAuά7LˆkaC^…ν’¨«W.Œ 9­χΘ@¬uΣΖ}σ–O FŽΤ8`ΐB<ψ@’† p €ΐΚ‰F™A€ώ¦„\<²a‘Fœ ΰ§‰ΔA–ΠΔ—QY€ΨVΪι($ib‰–ͺγ‘F*ΐ†G|Ε 'Hp$¦"Xb‰‘8ΐAΌΑ '&Τ /^ϊ`‰3\Q[ «xO$¦΄S+/τς’K* $•–"r†₯Rͺ―4μNΓmΞη~”.ϘπμΝΉαHB N>ν,4ΟβuM΅Ω‚SAEic€Π”-ΤΟ<Ŏ#„ΌΟ‘]~f’Š.Z8ŠΕ/}Γ΄$JsξπI ΜD:‚‚4/ 4aH)Ωe‘_£ϊПwžΞ΅λΰ«Ν$AIb”€¦7S ΅WΛΪΥγ4%ˆΣξr(]HΕ)’Ε·4ΐ ^ˆ’hŠΒ¨p•,`*‘/@θΔ4β©π(°t£\x+³Ω‰B!°©x|ŸΨΕ x"H€BKΨE0„A>I’pœUp£܌›»Α jpƒΙέΐ~œτP†>S i—˜ΔRVPΘω4pj”ši`r3Ί±„R¬A %“F΄ΪΐF4 ό“ύ5ΐ§9°jˆ’d[(>g%sRΝώR#±q"!ό”xH₯ ‚₯|DQ'‡cΜXΆΔ6MΉ €ϋΨA…³Ÿ s1Ώ%δβ†KΈβΑΈIxB›ˆz1ΐ…ZΒN ψDΔHΒupπΰ€0m ͺ2Ργ„UΤb]pb Ο/ζw.°yΘ # '‘@£ίN0 ‰O ¦rO X':ρEςRe©Bά·”r.Α$Υ¬&—$ηkQε-erc"M&he€@J[J*R€Νm†ζR–𴦓,ͺ*›ŠΦ/k„"ͺΨΆSΑοœ-"j;[Q΅š2OBƒi‘Ξr‡i@‰uΨΓ}`X’   ΌXΔSPU¬Θΰπθ0₯ #\ /Q p¦ΐ…@n- ŒβLϊΛRœ§θbˆ•ŒcΤROXŝΒπ" 3Τ\Ήpΐ„QO`<Β)Ω”Šr·Š.U@4e$"ρ[I,‘DΗLVΎΌDΐ§ΐΐP1„θyΒ‰±₯IΙCEU„=U₯1aƒ'BfͺžΉn2Π0O-e¬Nι3I²7¨¬τΝΑW6πψ‚i#ΥE„ΉN„•½$Qͺύ6ySψ²$$ ƒ2±+:Τ€zp«}άΙ‰†όΛR8V/ςZ=]μb°w>qED`βL#ˆ! 4₯βΒ…/Κ΅ a|Β;Kؐ&t± ŽΙ‹’]K(vΑ¬2BQ)ηr€„±ͺΝοxŸΘr-EŸ$S—ι• %Rαν›Dξ@Œš΅JQσaύˆ·7u»Nεkˆšή:ΟνkȜ QγΜ§ΟιΟ,±*Ωx©UQυ—m_%ζτ$)šΉτ™O.€Ž€$‘0@ j Η7¨Γ"š°ˆE¨₯ ’€Βe ΰF@α &Š€„$α€+€‚‰rƒ…:Εf”Δ.”8|Θ ΛXL„D[Ϊ!8ΐlࣝά@·φ]οΰdƒ% M€’pm<εΪ‰'<Α—χ4J,Ψ­Δ–`g Β  €˜ρdс)›Ε*ηςΖ­gςYš£ΎόΑΔhšœσ+I˜ΙŠγ,α°Ϊ8qβ“`γΖΰ'4JxΊ)ξ:<»Π ©βU¬'¬Χ…I£θλšY‰I.h©ΟNΠ2‰)+Z)‹S°%NE9€¨! I¬β(Έ `τ|k*’Έz’2₯j}*ΈΊ—œβ€² =ÎΡτ|‡’˜8€ήŽ ΅dd2 h*ŒY‰Ÿεv©Iηyp₯ή{œωδXK%ϊI€Κ»ο“œ>Φϊ„‚ψΥͺΙS*˜ƒ5„v½<¦ώ$φΎigQοž<’Ύ³YGύfμΗD¦/›θ„&BJχΗ€Ι1°A€(@αά^jνι>½“8f(ΐ γΔϊιyή_Z@μ{Ί?έ4MKε_{εΤxσ›ύ†ͺΌε-.Υt²“ΌΡnΘ[IΚΩDGρ­¬εϋMsς\ꔬ  β*‹½F+ΌžJΈ‘x€I9²Ž’X{“8Ίs‰‹η{½Ο8‰°sq ½}BΈ eB½.ƒ;’VΡ©»A›‘»Κ ·ͺ@’XŒΕ++ ¬€=‰)C°UςΏ=“€Ÿ)9Λ3ΤPΒπ:8!,B;Ž&Μύ»Ÿ±Θ³BKΉ…ΐ…Ξ“ςŽ―’9Έ;”ŽkΏΛΒϊiA‘¨ GsΩS3+TB¦:ΈBiŽϊ£ΒB‘8§*ΑKΏυ;½>ŒŒΉŠVd£hΕ„?>Ε˜ΈŠE9Ήμӟ‹C<ΪhŽ―α€R*‰lΔEδ\L ͺDΘϋCGDΑK”{ΘPB›:HZτ«Z]ΐπH4Š ˜Λ(k,?ΓS”|F~|sό0€ΘS½ΐ ‘˜Έ¬2lΑ0ΙΎζsŠ7 s 5o”ΞY ™δΎΊ# ’$p@‰'ΐ#?ΙΗ;‘B{¬EtΣΊ£₯¨ΫΚ½ΐ˜G‹€ θ> PͺΝ±€Κt=«=ΛΜ=Ι@œŸΪœ Η–ΝΗ΅M(­¬SΝyCœΗˆ±/‘@RΒώΓF‘H"Τ³TjΘ°lͺσΝ±$ΛCፆ”)§β³)΄” βOρB^`9aˆς*P°°ϊ’κX½αΔΒμΗ±Π»P€ °MKΜA§(%UΫ<ŸθH`1ΉΠPθƒΐΠ r,–P°‘:2‹©έ»¦0j‰’s &ŠQ!£Ί žθ^86ά$ΟβD844D­<ζ$N}\Θ€ΤέΘΖΊμMΧ@Κ5|<)ΤΖ] Ε‹•£y%¨z΄zFΞSKΆ΄HΜΘ’1N‚,+§ X!(3P° €!0ƒJ30 Π ƒ2Pƒ2X (L`…Ώ‚šXθΩ‰h„Mς‚ρ„Fp‹9ΥMP ‚OπGh„‰:•<:‘\5I8ƒHp‹ρΣω™Eΐ]ψ™: ’9‘²Σ₯ˆFΰ˜9€&MMΑuΉFYR¦ΜΈγt―H%E”Y2Q‚œU^}ސΖ:ΣJ[m ψc Ν“³TΉ ϊ…³±Θ·μΞD†λΥ¨μ©ά±„VP…UX°‚U`UP…J€2PVL0qU…V(ƒPtUK(­‰…λY1δΉ‘F…]ΨN©p(Q–&Έ¨Š…N@£ΑNP η[ +κ…^Π\ΐ€%`ΨNθ…ΛZ1]θQUςH…^…81ŠMΨ…PΐMθ‹\¦“™˜OȝEHό³Ρ6K°KΦθH] Ί©ΦC‘Ρ{€ΕXq”+LFUΘπΜ՜]ZWzH.ΤD,Rq =2œI§G‚œΛ”Θ‹XΣ 6νRq ‚σ‘ru 3xΧ W½0U‚ €¦θ„O°‘§ΰOȘB ΪΙ¬%ˆΝrŠs±Nΐ‘Όͺ€½δ W}„Qψ„:ΐ'؄؁’™•Ωˆ΅hN@A’‘Α€(†·Τω…ΉˆαŒsqXyO\­³[$Δ&-Λ¬Aέ=Ό­…ΪP»Qƒγΰ^‘`Œc³…σ !eΦ­*RτΓTA<#Zϋ ΐΔLp ον V(ƒ©ΰ P5pΫU°OK°„š8W ˆΠ[‰Mπ…O€„h ˜€ f±ŠΕ„“bPπ„Oπߜ+Œ Π!Θ}αˆ“MΨی˜q ˜ s]0`§€‰( ΰŒMXΫMδΟ‘(°¬¬ΕηυM_LΡΕΡ*μ]¬ ŽQΚYnœρJΚσ+V„όAήυ€•Ν»/^JK‡ύzΉ#•ΦυΥ©™/Ϋθbμ˜_P…οU ίΗΜτu[Uˆ‘φˆ2`XŠ88±πMπΫΡυ_½…\HάrŠH°§ha`p›&Β )7\Ψ6Op‚P`PΨp³°‘ ζŠ ˜’^(- Π’¨αΛ‘}Q ΞΰˆXŠά₯ νέΘ&<υκՏc§ΐ€AΎ\θ}ρˆYy‹­c_ `€Θ₯(Ά.T €β…‰Ξ‹^P(J\8Γr °’OU\˜Ÿυ΄€αΎ†p9]Π„}Ωn„^8Τ]ΆCτ;Tή©œΥY^fΟPš,¦eΚs8/Pθlk'P ‹υϋ¦€%x&©Ωj„8˜γh‚‡¬ΰ„–EΙ¦D%ΚΓaέmZ‘λΪZέΗ/ήq§Ξš Ζfx„Ό7³%LRfœžVBΓ₯«R΄ΑNκF,ς:³ νΥ %ώΪ₯ΐK˜ ΅jŠ29 1A΅’Ιmъxxp"Ί $Š ψ|I/—Ό˜P@;¬sσ¦θj1‘AΌ “2Q‘1‘σQUΠ° H±§NΓ†|Έ°Ξ8Kή@,‰J$ΖORIίΩ&FαΦβWAήν‘ΪΈN*4(ώŽόΚ μ¬n=‰GΛϋαςjšΩ0ΦX»(ƒ2`Ύ•ΐA˜P€Η΄»ΪS«ΙHΙτ\)Πά@»s T¬Ύd— „½έzŒr΄·Ή³ΑȐΎι”Ω“=κΗΊΘrρ€Λ²Τt¦κυͺε&jςαΦH‹;\>Qp―ς§υΏOΚIΗwe ΐ!]KΆΌ VΏnΐ3¦ό»ΏΊ0ŘΘ@Π€ ϊ 0Ϊ; s¬uε’ζ++—CΦKψn© .jŒVdn=ΓοδZ±dnβew‘ΦΩηaKΏτvί^“―ν\enω;€h„&η₯όJ΄UΟŒœΉ“ΟΡ@±ζ¦\FάΘξάP<—bΗ³qζεΘΏδω‘€I—[ š\5ŽtOrvκI)jœ΅α—oϊΰ?£M‰ƒ&_οΠͺ‰¬H‡CFΛΘ«ZZύεόY€y§q§Ζ™Lξΰ₯C<ήήZμHόf€mژac$nώazϋ yΰΌέ_ΆD 聖7‡2eΩ4dO€*SJZUhΚ₯.«΅9TλΛͺTŸ&%Ϋ΄'X˜1Ε–5K4$[·dγεvάΊ#|Ν @#N T¨‹WCaΒ&ςκUρbƍύΦΛTAZ—θϊδœu€g™œ±Rf»)P³©+«΅,zυg§—ΝŠ ϋη]‘™Ÿj…νY¬ΦΠ”ρ²Ή8mέ;w§Ό’9h―ΓO3uR(F‚ D˜λπ]#N| κΣ'=ϊEIΊύp³K­χΥΉ5wλψϊ}―ΎŸχ~ού§_ϋAG’pvΙ¦ά€ %ׁ2ψVs ŠυQv‘Χ]Bΰ9D^yΉXd'%§WΊV Ζ¦šLͺ(#nόΉFP.θ]4NSopΕ'Oιxΐ‘FΊΥZφ!¨βP²τΐjD˜wω"^DQ$"dκuτ‘ΔA%έ·S’gňœR’YŸ‚₯9Tš>Ήf}FύxγNοV£„O΅ηžΙ€UZJ ι$ jh_Ρ”¦1₯c‘˜Ε†Ϊ]Ω]–‰ψεˆ‰Y¦r6]‚.2g]›d]ŠT­”εD+Ÿ¬Ά%Ϊ€ώ½!‘•ώGgΉ’dμ™8z΅uΎΊϊά›tΒ'VΚ²9›UΥ6j‰œTc‰ ³εD₯ΩzdΎja[V8Υ£ϋ%ψ#X¨ΩΫ•’AM;lgΦϋd”R&»œ|Ϋϋΰ€ΗΕ chΪξw›Γ ₯–Z„~‹­KVrWΨwˆ9$Lx ™‡Q‰q ΕΔ%ΰΓmαJ-ΒΣŠδΏk2§¬Όzεœh³½l§Ε.΅8mΟzκ” Π(έt€§Ζ}:4ΓωI½$Νέήά±v%„‹wΰ‰wξ.&ƒy^dtΔlΠ’š e·½΅ζϋvSœ±]σΣw°΄,ηwΜ€*·Qt1]΄’Βξμ’Z―7α>ΟkυΤ@»ξ¨ +ΡC%λRΡ*h€6{₯έsŠŠκRC©mΤUχs䘯xyΦ η­’T΅ήΛ;ΥuUΎ ξΡQθ“ ΗΪΉΎΙc}§Xc™ΠDζϊrXy#‚"X('FJπΏ΅O/k‰k¬ΡΎVόψĚΆoθΆώΌLοeV$Μn[n­ύrw έΈ5 ύ€'%hΙ$Oτ‹£v.―qH!"S Ίr6UIΖUηs\JφΦ;jn6+“έrGBœ…„4:βγώΗΒΖΡm)",N^’‚?5Ιj… {TmHΏρ-lYάr η>ζ…h―l¨‚Μ@Ϊ%=Ω½+`Π‘‘Iϊ“£±Aξ‚ΤΤT(§žα+/—Bίσ4η¨ΡV1lmϊε?δ‰vΞ#ό¨’ΤXiC ΛήΘDG‘T₯§ƒ_¬bλ(7ΒpvΊΊš°·Ψ/œ#Ÿ2Δψηeυ+!ϊ&Τ#&πu€„S#Ώ:₯¨’Θ*]&¨Dμ]lf[ΧͺΎHΙS M‘*‰€aεK.Κ)˜Qž[`Lτ /‘%Yζνt‡"Ψ‘‰Y 8$”R©mβQahDα#·ΙΎ^~œ1»δ0γt΄‘$ρzL DΚ6:YeœP¨LiG«,…&Η Kžΰ@•lRš!‰ΐΈ)“8“ˆ!a(ͺ4†R¦ 6ω§\@Qε3EŠΠ%γΎD„ΊV%τΏN"Σ›o€cCΝRΠ§ΥiyktιΦς$јX―‚ܝθƒΛ{m8ύ9¦Ip€PτŸIe* ΠK1u~G‘Λͺzš£έ„Κ>bFjMhΌz;eΚ3…VωVšD`ύ\ΐV2Φ“|xs½ΙΑ,;…Ϋ ‰9L…―Εa"ς [Ξs¨qΣ΄0# Œ`&θ@–‰”ψΰ >mŒ²€œt DJJNΰ8ΰ¬"™€ΖzΌ")˜–’€W§qu©πΑWιδU Jšš{Ρ€ΰ  ]ΚŠ[\œa4OTνœJ’Υ|Α‘­_PRΫή…L+‰ΐ&p“€ Ȋ(\άΕUΌκ”#ψΒBϋPψ «}V‚»άΏZ5J‡½‘ŽΨφ`£Άκ)74^LqκΫφE,”K,zGS¦8dάγεy²΄­ q † f ΰ PIκ_1|‘`AΐΤ(•π ά₯ξV£ Q2‘AΌΫaJU‘³œ¦,3Υ$YV*_’ZΥL9ͺθ@>€./ͺ»ε²RΉ Υ¨b™Θ Cr΅Βe2S”©Y3CŸΥ‡Ϊʞν ,f”˜9ΘKm΄0ςNFˆTN4‘Ŝh¨JυΟC&ΔΠ1'u&k™»Μ€/Ϊ ƒE}gΞ46₯Ρ’rMaj£h‹z$ ‡su(Β’%C)Θ*Β¦₯ɊŽth[Տ*‡e˜ `ψ‚L0έ>τ _ &°νΤψ &(ΐ| †0τ ˆΐg @mtΐ=θq€’4y b@ς¨α}νQΧΫ¦CkŒδ@α`θL qs“Ι> S=PΪSSχή_QF`j0˜ΰ’ΑππΌκ΅'ωj%U‰ΐΤ₯}ΈGͺ}Z¦όΰΈΆΡΝsάΌχΆ$mo€€΄<ξΟƒξjΫφ,i?~ƒχxܞ5ν`1Xβθξr³κYϋαMG² F VΉ’³nnœήŽδ¨Κa½PŸ]Œ¦CΟ$tφK8‘ιYO Σ‹ŸN]‡Ω`!ΧsaΏV7.Ηφ¬έƒ§)SPwΠg.†v§ωλ`πA€ζΜ8 πzπο΄·SC|`  σΓ<ϋ±'ωΞ_@y‰…4 ˜7·πΝγ€ΰΪκζΝνƒκΆ~Ίs/1$ݟθΐ΅Ηn±“μΙυwiΕ€πνW `ι?ώsl«YψώΖύ€μX€ΐŒŸμ}ΤXՍΐψJΎyVό› άΨLΰΖ₯[˜@ξ•ΔςάϊU¨[ΨυΫDά™τ ΐήχ‘‡νΔδQ αN9ΥΤjΤNήQΖΞLLK[ρΤ g8GOΘ }τL‰)[—ΨRχ@†‰UΰΉΆ(W%Χ!uaΆ‰άτ€· ™€ΩŒAŒ@Ά€qήHœαύΐπΨ¨Ÿπ™ΐ‘…Ήe[GΡ^ζIZξ)ξ彍¨!„Z™ύ@Ταιuίφ1\β‘ϋα«|^Ά€Ώε›ΊεSežTe[ ώ˜ϊΝXΆΕYV•!λ}€Κu…ΑΤαθUΐι`‚A=Μ  Αe•ΪρCΣ|@…AΓ₯’άίΨY[q¨Ψ™εŽέύe!"RνΎι!0NŒήO8O€…‹ΤΚNž I!SΫ,-/HDγ•ME ΥzΘK›Dΰο©›ΥιΫQ¨-Z΅!Ύ}ž΄YͺY΅₯!€@λΪ@1€ΨSiyΫ#†œ‘1aΫι½[­™i1”Ή)Υ™™xΐ ]ΐ!ϊ^ "@±€†$LœWΆYœΥIΪψ‘ συ€R™–ZΙeδύ„•­Έ’©™ΐ菕ΦΗUλqβ"φ$ŽJd€0ž_S:€€-ŸΘβΟ‰AΎ΅ΩΨ‘π ά ’λU[Ί}Α°a•₯Ξ:#ι _ΙLCΙgMεΠYωŠ7^M:R/-R`!{τ‘;ύΤ‡θγŠ=!`QωDͺ›·ύ[ΤQ Έ‘buυ€€Pϊ@–αεF,βΨ!άMDš^*ΩΨ™WR}€ήΫύ)¨ίkF•i)ΙIΥω…Ξ‘δβPYΊ‘‘σ%Ω€δ*Ёš©αΓιΥRyΫGδD„šs&e’π€π=άG£FςV ΞβKς’ξU₯lΑ1ί†Υe•)u5%0r'€nό ϋU[ώΕ½yY’ύΙήLnίGœΥ|А_ ¦}΄I}Σ‹Ν‹„ιšήAΌxθV¦‚XGΟIήKEΝwDθ K>›!5 :υ„ΪilJ‹—Ω›ΐdͺ›xΦ$Ž@ΐœ^υΉήžΦ΅mc -h,ΐ”X½#ωY•'_’‘ΰ_,ηxuaζ‰ιg£·yΦΏ)Wr‚DΘ"yθM,hž›ϋ]"ΉœήΤ›mN€ΎM@q:ηpβUNXg€ΐVΫ"~il[ΰX™ϊ}j ¦’¨r§¦†A3ς #ϋ½ήΉ%κZ~@ΐ€„βΦθ©α\ΚΙώ–έQ^Μ`<ήΡW₯E ¦T‘h†½Φ MSl^K@DFfj‰C4Ϋ±K₯=‚„¦JœŸ\eΨ=ΞΟ…ΉͺΊ}žρζ•μ]›Μ‘΅d0‰ΤEi&]2Κb’RšΑ9"~Μ§Ήž TιCmaiίlŸ,&'ZΫJz@άΟ]›Gδsψξm^ž"ΎΒ^ξ‘ΰ˜λΓΞΨPζ›dΖ΅™€Ζ-@MBcΊε₯Fn¬„Ϊ­₯₯er)!ͺ.ίz:₯Xύul Χ!ώ,ƒf)·mh^hŒτL&νΦΆ‰BνΖίΤέp¬RKΙδμŽΕΔEZ`G`tŽ樊ek.Α¨_ΤU3«”ΆΦτ‘#~j¦`Y]Ω’dͺ—Š/Š[GΡK3.Ί΅Vt™•Gn’~jG €κΉVH8ξ\‰Ϋ’.umnή&ͺ]κ»‰Ί-ι2ι|κn*’„Υρ%κQ„Vk‘I]₯ fό­Έ‰›1ζ•]Ιn\hX=Σ0–‰Ϋ‚=‡d•”bγjW¦ΎJ”.π…—ΪYgξNΐh―Gυ]jJNmϋΔ…‡9+Tτ]J uD& Υΰ>U(Ω” ΞϊB †Πθ,…Μ=ϊB<έR=…‹ρPόEΒΦĐ—Uιn”‹]Lη\©Δ1)pV ™—•“ΪJTUN<ΰ+pτYŒUΥ[D–-”·Z›ε䕱ʐ=Τ p?f €¦a™ “ΓΟ–1p]$°»ζ ΉfY0”F0“=Ύ²μwfxΝΝ‹ώ]Κό+’t­†V¦ϊ0Ήo†O6%+T0•$^Ϋ^« R˜tπd…G1‡$Γ…Σ/­oŒΠ^Ψ?-ΧνŠΥqOoδ{½Δcšψ\˜„DiΰΨVπ%ο•/bΖλFΫ­GrςJ…Nρ,ΛyλαΘ1^2IΌ,Β‰――‚(NΕ9Ύrœά„½oΦ>H¬‘(°ΒˆεΘ‡ήΰΙ­ŠβΈt‚!„=ξ―-νγpσL¨Υ>νɟeX:ρj…AHΦ― Vƒσr€…’EU’\RAQA₯<†˜JE ϋζ2Ψ†(=k·Κσ6‹m Iσ,AΦώnfˆͺŒ°Rσ€άξ ±Fa­έΝΦΎI B_†7K ΠΦβ˜θ4_Σv5Xύ..cM+M=k46f4›CšΠ)δΈ1«ΠHϋE† †OYk— τ3Ip‘τ’D‚±HDoΞθŠ„Tΐv½[OΏΤπ,cŽΔD@Œ§HΙ ΟοO52΅(Η΄:βs<7PΨaςp¨;‡΄Ω σY†-£υWΛuŠJ¦O˜1-1³— ΚŠ ε†S·€@…@\Μ$ @P{Δa@¦τ%H6vΕ„pυ68ΐ ?vN6#—τH`ˆ+§4σσ%Θ…E›\5·±` l΄‘―!klλˆμ¬΄j‡SΖΌΤ[ί3φ₯¨p‡ZbόD„HΆzζhOρί Δ hΐA €Τ ˆΠG`€ Tc#ΐvw·$Eΐ Μΐ`¨$˜I ΰb?χnm²žuTIσΉwχφτ»5xƒw‚ w_@h½'Ψ€$,Αb_€$4ΑΆς‡½¦„bίδΔ5‰3K›‘8LjΉόjŒ°‘φ:·]Γ eSxrΦζ°P\CR‚ρ„υ“ν^[Π–8c<G¬±΅O,€ΐΨΑ`Ο$ δΨAΐevvΰ‚ @UΟ€€‚@x‚&t„2UΙ3ΐ ,Β `V?Ϋ0VΌ—ΏΈ#ά@GΔR_œyzΝ$¨ΐ¬‚XΉ86$8ωd€(€BX9Kδw~gΆ‘»KNΜdœΑ%P›Ϋ·gόI―5…‰ϋτΟ(k)X\ŒΫΚΧΖ jΐ©ϋ [scXμΙ|#ƒΙ„,a‰2‹ z‰ρcGT[8GaΐD+𬀠@paΚL.$°ω ΆπBžv#p†,Άh€䂁KRJΆ·—ΔaΐaK,A.δω_w»·―{•Xy»―{#ψvP€—γB–'5ΐ/x‘“ΔΊ?vΐ/xΎ%œΒœΒ%ܟb{Α/Œ€†Δ̌=ŒQ°jk΅”Πˆϊφ6ˆϋ²eBωΔ™+/ΡΎ|ύς%šh\7?qςΔ‰‘ΐ°–±Ύκ@F$Ή0’F–hδBI2Δ&X€!L™δ™Βΰ‘Ml p­ΖΈšKΖmΌ1¬˜Τ’-2―Ζ2l,ϊ†Β‘Θ"·²ΝΘΪfƒ«ͺΆ±ͺφ‚ς-°hΣ ΙιʌΧ8» \BγΕ—]L#M4ΥXΫ 6tόkH―²nDδ ΩεIz9iZB—aŠκ F”H`τ9"ΡƒEpAn“\yi„“\‚4R°θ“逝κ <-΄Oω€—0sαδ€ Xΰ R9₯ΔS¨@ˆΓ“PΖ1܎Ώ½κ°Ζσ‘]Žc s}ɍ‘HΘ$W·H‚#ί·`%,έ*»>Gύ΄Έτς¦ΟΖ$³4‰Eλ…βΥZ»XΆ(ονΚŒΠC"Z¨τŽ= Xœ>ς%–Θε'pΉ%±)‚€Δ 'xΩxε‰IBf“JΝ€]vavQΠƒ$¨t Ε Β[!Έ€„@°ΦρνƒBŽ'@€-ΑŸ’–Π I<‚Ί`Τΰ5|Pz6ΐ@CX¬±D@i—0ά%.‚™π‚€Zά[ζ•ΦMEUOR ”ΒUΓ¬ΌeucRκn¨Ή"J&\vαX—4°v6H*L’–8€*d%]zMΓ@3|1M[Σf06C":¦G‘Q‰μ°7©Γ°<ͺ8i;±Λ š ¦ΦΨ ΑΒI*κ`ΌεδE‘ΔjD3I`%Nh (rρ"FΠMAA@#ΒΤΈ ”ΨΔ# €ˆB hν§΅,αΘi( Σ’ 0·τΨJ@ΩKWyΛ`ψ /1„OŠςk0Jγ»$CΞΡ₯†σ‘ŒS&)ˆŒCWΊ¨$$ΕΈ…‡YΧγ°ΩΊ!nσ`4Κ¦ιΩ–1srχΜΑD7/‚‘nΫ]›2ΖΔ‚Hΐ°€Β¨-`ތ0P†d€<(C)ZTΰƒ$H₯κ7ƒV `YΒf \€!$€΄ € δg κr@*“Ψΰ‚ZM#ΰњ  Ksˆ|Dɜ~ͺ jIUͺRΏ—Š"ˆuΘ1‰k1υΊbX¦θ;„έE‰Lά*ιΈΊu6f¬6šζΏj”VΊδKXqkXζω%Ω‘†gš˜UΙ&ŒΩpICδXnψ$0€uΌͺXΫKρό’— €vF’΄¦ςrˆ­”P©`…"ΠΞ&€ƒΔ,¦e€JbΒA(f΄!‚@Π2΄l°‘’\½Z°Ή6f­3ΪfZΫA«¨$»€έΧy]`tζδΡYύ‰Ζž3s¨λξ[^Η°zv‘LΏ0 ^+ΦWή5ΌiόΧk‘怄feΎη]*A–j₯&T©vIκX ϊΝΪ€’i™ϊ@(@(@ Δ΄HMji<ΥHΝΉ0€·zη•ηqΕp3ιάi–ry»@>z·Λ^θFWν₯" οe›%f^ήΔΛZχςM―‘6ν4o‘κκ½ΝΞΒψΕ^ωΊO‘Tι½—A 0²™>T-H‚΅{\ΔRv$©²fκ>¬€Oφr`3…‹VAΓνΖF*΄6KχcnΩ»υΊj€Ι‰ IrΧ…4[Σu-³n¬Y’•”\°q¦·F―£η]iΖ4υ·5d¬q{ΓΚiTγ(_=±]ΪΩΑs6F.υ k—D++r>/f Wκ|Qz»ξmφ3³ͺΝ|mz\>²μ8Κm»Ίi&rXŽ}λ!Ι,xμ’}ΏŒš/’)5|…—Κ]φ²·†9ήJFLnz{ΨGkcξΌ*Ώ-ΫΧ UΆZvLίΔfz+ώ’O­#μœ8¬tΐ+.n\ βΠΌ‘\ M―ΞeΡK sΨhτ*1­ΖΏό”άΌδBŸ9iεΊΊν Gβ#PΎ—ΝΆΦΆΐmhδμ²yΗᜍԸsŸ»jRΆ. dF;εOυœζ$’Ό0 Δ΄( άώ—Ɲuκ‚Λ{WY6p³ϋ^Zωœ՝ςzΊ›Β€XaΎOŒ΅Ϊ·ΡΤ`ς€`€€X§ΚPπ„&Ψ`UPΨAcς[γ" j:ώνΰwœγ#ΆΑS5ξ‡κ•‹ή -•qc‚₯†½XΉMμ#πa«dKI₯’TΧΈφ’w@WΊrΘσ!uπŠ2ƒQLA™‡;άΝ·ήγ ;ϋY™$Q½ΗδEscz}vpoόγ·GΉ}Yί_μβ4ρξ»_BeΑ.¦δ]QYhFAP@ΑM0γ lΐ?Ϊgy2&ͺκΒcΈœξ€¦ηœδα*…Š-H~ΟbO 0—τμ“ ΰ“ό₯ηδCR₯ηpοZ*ϋ "Άl$tj&α$ ΒώgΖR—f¨ωA}H‚‚e2£rA0©Np N‹R>l³("α@$&Ί…π%!PξΫΠπ|,ΊΊPμ<θά.άΞΟ\c±ΰNΫ΄*Ϊ΄οwΐπΊμΎFώΰMώ,†Ÿ΄ Ώj ^*e3b‹iŒpΦjΛ*ΰ:CΆF €rK Šτπb/: 8τ(`₯$±ΐ— ΙcNλΰj~E>Nf₯b>B%d &^B(Fί‘<!€k%‚c;tA†(eρ(ƒό„‚xW’%Jqq †|!6„¨x%VΒNΛ"‘@Ph΄¦B¦Fi¨f#ΟάΟλπbcΈΞXgΚO —LΊΆ°6²©δ†LJθmγs<§Ύ8A(ΖέΠΔvΤD•>αΏΚ‰šήni<Αz!Da„¨G•~q±Fk~’j‘₯šΰ&6A‚‚“Ϊζ@„(iN‚‘!z!“€’+0`P@&=ΐ-δ%GPnΥVŽvΔ Mς λm ρb9 $‘$ΐ€!)—(„ ΰ0c+#$A„Α : |’Ln` „Α$α"  vaμ :a$:!b|$T6A=z”iix!6ΚΗ!±Π@α A ”%„D‰0uS)Ⴤσ–ΰFιrΑ)yE-:Ξ IσI‰ΝόΔp.|ˆΖ·VP½°¬΄ΙΪjϋ6ŠHqBLRvAbtA5V‘―6ƒ‚lΊP3JWp΄@ΕU†`.h|α ¦±Ψ" Xβbpa:<@‘|Ta~°0(d₯6αF9Ι&ΥlpFroΑ>UR\h`!t8Ι @"!I¬£K~Tΰ:Oo˜#'š‚¬Fηv|ΕU€Dόρ ήdit!F%Α›γ8:"$ š2¦>.h%a8§g€Εωx!(‚D°pT FΒΆέDδΚ‘«οFΦΡΊŒdμšt+†―N7nšτ‘Ηβ1\Κ6c³LvMΛΜKŒJΞκ T4&"76αά¬Ζ>a8₯9zΑ4@$X4 ΖGDa. δ!鰚ͺ+– Ό  κ ɚx%f"gxv–œ 8Δ’Φ BΑ ͺsZv+•4Bΐ–ƒLπUA–9@"i•φEš mβl½φ‚(€ζΦ,L&–Ž1BFB†σΰ·œζpα$’@’€gβ!έΣμ’”Άς€(¨A!30Aαc‚Ε₯;PβΪl$^κbuΦ)μ4sNοΘv‘”GʏKΑ/xWcΒΟ36βn³ ΩEΥΎ€έΌHTBvώ:‘ϋ”μ]„ƒi€f˜F@Wψ@jzjPƒe$f ^Wu’ >4!Rx":‘F‚³—αfTƒb˜ΓφGPD4h&U§zj…l/δl/‘>‘ ¦·$Š£&©δ΅μΖMFβBa~v₯B£b$Βf&dφZg [Ÿ&©&hz“%r‘8h\—*ƒΞU– Πu .@ΰU^‡ΤU"Vbzbc‘fΰz‘_saJ…’ΐ₯βNΰˆLγΩθ”θͺhνκΜμn3δNσ`ρbaμ 6Oγτd_Mw8‘ΚΆVΡR!‘"ΰΖ,(ι–Βc₯@šγHγ R}‘–³ , o°0S—?#α@!βΐ:š`Ι` vΑšGƒΒt~ƒE•3AYωΓ£šo5$l‚!>}a€¦β()z’βΰ9E=Tt#2Β<˜£(?aHGjl~Vzv‘‘’]`&Žν2u /–γΖψλnΔ0 Τˆ Ί«Τ:νqά¬4η”αΖ5ΥXLzκЍγMd₯Χ¨Ίτx†cΒi^β&XDn@‚ Ο—ΰ 4ΰq7!hβ‘R>Α$’£ι_Ντ>)F‘ώΞεo¬— :©)τk‘ΐEF !.d !!šcβuŠ%a#$@˜£98!w5ώ”#Μti# :#6l`nBΕ ΄pβ‚|‰€€ ?™£B‘ήu„Ai΄WaՁp%ͺ$A:ήu₯C‘γϊ‚l`’β \Dκ ©q!P `£Οw―ο©"ΑF-‘ΛŠŒWaΘμΒ6ƒ£½ΞζLNΙ­ϋ„wβΠJ’χ¦4NϊϋjŽmS‘oΫt¨$‰’νν|'d 4aΒGγ n`BΠD@£jRκPΰl" »bΖ6FΩ¬R0 Ύc1nΰ#»Ώ`bΛ>FΑ@Δ‰Α{!>G˜*Τ&(@WΓ{)³ΰ“π¨BΑjFΒ―εΈό1$]ΚΥ«₯Ε»5€χΡq-ε%lΰ&β5(κ€ztAŠγ΄FB€‚'ƒ"Q%vo7e“ŒΈΛ\ E 2-ΜΝ\K«MŒYΪΚoγΚG€¦3ζyΛ$Ξ ο8uΪJxe;ωp|'e₯  §Η7kλΖ άΔž ‚τ|O%˜N£#£β‰₯ΐTb,°‡/U~O86FΈξμΞ’nγ#ΨVžj §~‹Ύ \DbήςŒk₯nΎδBα7^+"` β  &θ,` Ξ` VbΑΐ €o* &l‡~ kwά#Z»Ί°™Μ|/.:KΠΒΙ*GNΥμKέ=άqWΜ)ϊΞQ'yUΞΉΓ,Mγœ`md#λΑ<άkνS'Άdλ%η~ƒC]Ε‘»νvα.θΨ λ3ώΫU=²Ββο‰`βκ ΩUήF-@ιM@Šh­.ΎέΚ=`0ϊέq$Οƒ·1Ÿ¬ͺ[FVίμY'ΐΨΜΒ ί‘7vΨ„9 Šυ‡ξτMνφv*Β\§Flθ# ΔΊ‰$`ΰ€ˆjJΗ” τ‘μΧ°τ+ΰΚ ( ¨ίwβŒΔ˜Ÿ*ΠBΈŒ€ρ/ΊΘ¦΄₯ΥέFΊΛ]NL£ν›Δx7JΨίOβFœˆ2BΨ”•Š—&ΫΌ|]ξm °ΠŸ.± 6ΉΧpU“T χ=<τ€βΗ%ϊ€|wmfΛBΓδ!…ΉRŒ8±βE\ 7lΰ@ζȈiSz—νέΙkoχ\'phη-{€ 0`@yX‘p&ixY©³E"χN@fη½ωΗθΘ~UŒ^dOλΛ+·λΈρXΖj|$Ÿorw Lέ%؟H Ϊv_Pύ•_ϊuΥHlψ‡0}fB ]δ/Ύψ"Μ.Y4Zk1ςZ31ˆ 'ΑWJoε([ ΐ%“ °#KΘfΐ T`€8F ΣI;6₯ŽΪE\H]Ε&3`H€C\Ή]YjιδœQ‚΄€uΦmn )™vTΝ©H2=§"ˆP”Qlpΐ ή­Y•ΰΑ£ …@PΣM%ηs[1Υ•wzϊt[E@€nπ6l²8EhcƒiiH…’iψ f&•k¬°Ζ*›KeY―Qρ6›‡ΒξΪˆ%DZi&’˜š.Ό0ΤΪ'Αlm³Κǟƒ*εΦ›Koβ…p1b œ] ήG) d‘$`YG/­Nΐ.±έ(Ών…4”8! “ }τI'°C;F.@ήTΝME8δ ΐG#‘G_{CAˆ·`{Ξ­dyνaLΑΕ9ΔO€Ÿ@xNΠp4pPΌ) ΐXa 8XOύ ™hΗ|gZ©Ιg}]!Ί8j YΐΈ€•5B_˜@_fsΕ«2”Q–U&£Γ—όŠo²ΚƒuDA%Y„σ›ή”¨’ Šδ3 IȈ€u"j©Θ"™ΫhΈu)qΖ2Ή•ΰZ‚Έ‘4n!Ÿp¦ ]€"zKθΔ&½'€ΒΉθ„$€Mΰb6Ξ>Ρ‹Px’UQR@ˆγ]lδ"‰ΔB6lΒD©θ„ ‰\0‰;`ΓJp=,ΰ kXƒVf,<- 9Θ@ZΩ.h ZΰΦ€=haΔBπΛ.t!pQˆΏ,ό ˜ͺΠPX! kΈ¦Ε°πΒμ€ Έ&Ρ$γΐ ŽΝ”°e7Ωv€,`oZTΨ°†.dαΊ €e§n™Ο.pΐ…-tερT•‹?Ζι[gŒV(.ί`4£ΒK6: JQ*TαMo(Οε…{ι HΡ%Η=λŠ%:‘D(r‘.n$ςΞe΅C(ςEuPπ…'’ ‰&`€!qΐE/.ΰ`€‚ΌΰΔf \|’N؞<Α‹Va‘^ψ0αͺ' Dš0>€FόB^ΠΕ&"ΰNθBŒ($ ‚%AaaΈ 0=Z² πe ѐΰΰ€Uȁ2ΠΚpa ΘΑϊ3ύσ 9Ψ€Χ¦bΎp3·ΔΑP(3ΐB°ƒ€fa±¬΄bΙVΩφ `G'1Ÿ° \Ag°@=ά"XΘr4d bm@ƒϋΊ@- ΑU ”,ekyΜDΐ ΜTέ p‘ ά‹ό γO?WŽ4*Ϊ ±2ΔC˜Ψ7YΑ/Wς&F!vΤΐ‰PHΠΠpŠ€©©0nZ"~‘s ¦θm"ΤΡm’I©’‚/ /ψb Kπ…@‰‹/ΰ›ΞMΈΔ 7:a’@„VvΙwΔ'BNψb’(Ν—²ΊW}€ ‰{ΊΦXf9žγ•€>sΒθ@iΘ6`έ4 \ΕZ¦†HΓ‚+œPigFC“…4Δ ²q+ΙDς°–Lm=α©3 Pf¬ΊΦ[.•±J'-Ά%Ξ—Ψ…ό, Uφy–$ M('$α‘Κ―†ψΗ .3ρ9ι‚{ Ά VȊ"ƒ3#χ=Ά~ |ן AΘ*’υˆ¨s¬ΡάΆbΤaΗΨͺΓ €(ΰV—Έκ’UAΨ…–@CM€βKEΕ2\΄Κ Ό¨ƒ–  EP<ρ‰£ΖmπE[]K~ ψχ'°’ι@₯±CkξΪ…&}ϊ„V6€ΠΰΫ tΑ j(Η!Φ΄§5 h{,ryB4ޏ 3BoGN²yΥZς–vΆάg\`ΐ€7P1W}Kž=¬ϋ6p\ΊΉ]qθ³–` «ξež―γΪΧΤ‰LJΞ•·ύ’D₯x)φ€άξDoi4ΧΆΙ―«·Δ“΄μ>εh‚XΧfCNZ§Α0[δNpλ6껇@šŒς.Ω„.nHHAc@~±zGO1Ž‘»ΏN0)Θψ~D\ M~’UDζsqŠ„ΐKΒsQHΉΐΉΘHˆβ€όψK\HƒΓ2ƒ +C Εfέ7@™ ΐώŸe”’lmΞνf)‰ΙJbVWk9CqΠ U†dNρ‚(PόΑπύ0<€τ»8Pi piαα>ΓJp‚¦ZfΦ\Τ§J n"L‚o4`š° ˜g8 ΖmΪVQMΤw‘v₯m·,ΖmΖΦ-±Β,Υ‚:!ƒWS‘"»px.²aψw·Ά‚uηXBo Π’π°Y… πΎΰFw”;ΉPc`6 žπ ›ΐšδ › Ώΰ3ΰ ΕMΐ ‘° Ώΐ k% I8 έU% ?`HΌπb”§FΓ\AwζYXm KˆυBV ΐMWΠ‡Y]pmΠG“Ωu"πsUγΏ‰JCdψď…6”γ•|jTyΔΰu~¨aaBkp\]›‰μt‹΄$Yl0riq₯”‡8P™ΖV`&&%MΦ*ΐ  —VTt‡F+e h7„ΏΦ‚ΆζRΫ`sW‚Γ6ƒqŸΡ 3mΣbx«α"Χ&5鈍ε8v5!M0aœΠ*Kΰ oσ„4£ΐ$  ¬η ž° œΰ% › ΊΰΣ¨ ’ ‡Xb žπ0 ‘πG1aΠ*qUvUSΚΤBΫ#>\Œω‰Z g£L]°Q €W`>°?c1αAααd”OƒLˆφ#YF‰Xlγ°•=%υHή !B(S#'΄LCOϊ”œθqβΓ6ί•K`63Y“‰\`Z%%οu…ͺcΌPzhaΖ+f*xŽ~cD–8΄67fδw`Ή7ΘΆwψˆlTkI SœΠŽ9+ΒΥ–xάςQ#ŒAvf”―¦š 2/™'e€½έ6Αa£.†T?°I@0›χ{}zΊ jΑΑ$1κBX²`|&ρeeχ3#fΑkΰ[!εΑ##3šeˆΗˆ$0tQ fτ‘ρΣ&ζ±5%±27°  p4§yΡΥ υαΫ©ˆΧ9$Κ*q#\x©*‘PH7ζVD‹|78 .ΗQ˜‡“ε"lΜ²š,ψ9'(™ Rl“Ρ_Ω‹μ莟iSΥr-€ιE‹χ7&ΑvDΈ‘#>Ηs/΅ƒh»b €…ο2ΐΉ Na2+3œ0’|μ2}‚ος‡"ΣΠαLΕjέ0m˜Ύ;β ΟΧ[Ξ$RΤ–#ήΩBˆ΅Υν;‹£:N GπΌΰ~:Ό° š Ή°;ΰ Ύπ Ί- ΈHVJ»° Ž€„³ ψη€Ή n΄·hήζSΌ΄>ϋC|mΣ΅nλΔ\ͺΣ „‰ΝϊʊkΪνΧ΄n€]—βε4β,\k“S9&²άCτ+ΞΝ_<IŒ° ¬‚Ο’Π*Ί, 4 ΐΚέ΁¬TtH’ήnκ*|y-Ζ‡β,mάؘγ˜<αΛ«\―w"–+˜xλ+‘מκΑ°ΞΜΨ‚»ΊλΐWŒ½.nΤΖ²°yΞ‚Gk’£.ά{Ύχκ‚ΌΉΖ"Σ{ΐa:½W ,!Cΐ ΕNͺ Μΰ’,φεΎ-ΈΗ›±”lθχΈάÞαf^ά –οbΉ£,l˜=‚θaΙO«ZœΞΥ¦ΠτΘ©˜‹Ώk'Έόι{χk₯ςI-·ƒp4{ wύκOͺΧ+pn`!υΙ ϋπAΔ“œΉΎφƒoρŠω9)Eοw{‚ε.Τ}Ρ[ޜμEλ_ΝΐB°Η]š―FΓ:‘ρ/œΤTΪκZξϊŠ,ΨK‘Π=Ϊ/±kA’„ώε?ρ2ΞQ•ςλpΗχ&ϋŸŠτ3Έυά¦"ͺ[" 1ή<™ΚςžOρΎ?υbq£i”μ%ΞϋŸœύ,ύ^#Š1k‡.ΔΫ,π/ϋd€ΌζŸ!% Ξmg™Qaμ οσ{Ο±ρι(PΈrρΕkΧ.aΎςβ•+.‚Ÿ8yβΔΐ<~RδH’%M‚TAΚ’>² ΩΡ#Μ“€D€ BM=M>¨ΤζG—$‹ΎτxS¨Iš"Ž€ωtθ“RMΚl‰”jP₯[Užμκu€UŽ6₯Šv*NaΕΎ…Λυ€[‘twV§mγΪΥϋ£‹œ”˜Π‘―_#N¬ΘI²Ζΐl½.Ψλρ¨Υjλ†,4‚ƒž>uΦtπ°ΟΚ`?ΟΌ‹’¨^ΌT7΅ZhνΦ%=ψέ›3ί‘]uλΞz2xςήqqWυŠΉά₯ΣαZΕ7@£Β‡ ζJΈΛ—°_!J€Κ"FΚ;›χϋ^ΎΗξoΠ±΄μ{Δ*‚ώpΟ½€n²ΛΐŸz.ΜͺkΝΊψΆb‰·±2ƒ*ΆΩHZNΆω4³Μ(κΦ2iΊKZmBΰΰ ιΔαzpC“,T/ΨV|ΛΕv Žξ@Yε»„xΟ±Ηˆ½Δ’‰₯h|ο7 Ύr²²Ύ³Œ€˜‘ό‹ J+w` F0 3˞Έœ‹Λ.= ­Ϊ „/Ζ·π²³²§π|1P IδˆNo¬ΜE©Πκs> νΝE k€ RAE ξ$#±ƒˆ,ς!‰ S―°φlU‘#λϊλ3X ‚4©£?/Έ)6š΅?%ωd‚έqXP-ΨT»π€V΄ΡζtΔqΪlιΒ6(K₯λ[±†Σ³¦)sόŠRΊ-B‘Κ}κI’Κ­I:Έxδ#ο ‚HΑͺ©F„Ε£eΜ`žδ¬€,ˆΝŠ@sDBΑ cMΰ-Iξ'¦ ΫΧθPΛ5.n‘yσ\Π‰φx•o₯n’ΌγζQΜƒ΄υΔ+θ‘8Y2qέ¨RφV™ ’ΉςFζ*²ΤΉφ§H‚J€L€W›€Bί>ς€ ΜιΪάζN ΄#Wyι5°ϋ¦/Ρ‡@QΘΨu]ιε….Η-vαλ «Ϋ ‚J”Ο¬|±ŒΌ”Θž2jήΝφ}a<ξΌ>ΜΙΉι¦ΙΣήσΰ‚`λαμP γΜ8‘€>Τ™8B}Ϋ„2‰ΐ―c£  όίq@j@Γ~[­'ΒM—Ρuνγι”VS6ΡΒM΅’`<ΖΣ+χC― hΟžΡ ΚQύh&7ηά"…ς¦‹΄Q½χΚΓ³΄2yΙ#ώtΌςR|U-ρ-F©zχ‘[6~ Μ&υŠžδ₯ν@/½lBφρŸϋγsa7λ^ΉŠΟ‡^˜οr!Ώί‘¬L―Υ$ΎίΧ‹—£₯\°mO+XτνmB ^·Ne‡r’Β+`3aΌKJ΄ωυΐτϋŸEš•š^ά† Š}RAλ؎^VͺΫΫΠ-Ύ3yBξ@o₯°žhbΊΫޚW€±5εIRΔ”Oa©Zθ0€”ΥUCό^+νŸj„7f_xœ\>6Vך]`ͺoΣ[.Aΐ$uζ°Ν™”Z Όηš·CxίΆΈƒθηεό’uUtŽΛ yq‡ΔeΤBώ5επ‘ΤT²œρΎρ8ΪKŠ4Λ ₯θ5 ‰bσˆίs°°š„ ˜˜ V3VΛ §Θ€X€Α;00: ό@m’ Θ — Ό ¬τˆPΑœ A\Ή―(ΆΉ’•gIΐB‘ τ3CΜH π*m \Π­#ΉPβ“ίΡ9jƒ(˜0šKrΏ•λ6S•οk%₯·,‰ΣΓ?(β΄…π4‹˜ J2Ί2ά³ο’š ¨΅.a€ Έ‰_ =Œ€Z(„D„/ω5χθ΅A€΅`; ¨ ΔATŠϊ¨5?Ό§Jt‰„Žπ„]x+¨ 0Ί;mΚ΅0€Θ, Z+ ΐ’[«‚ Am *ΰΘ΅ *Šȁπΐ rΑ[Γ΅+™ΕP€e€>'Œ€ί“-9Β©’Z#`Qx’ι>Τ’,ΉmΚ§3αΒ³=ΜO°¦Ι¬ΒΓT{ΌŽ»Γν*½ΣΌ0=%γ³.cCξΩ₯7΄ρ·SΩ³G‘4i+ΥxX‰€ΨΆA˜Yq€xB YΈ€„80IX [€B„9ΚHX) gi3˜”fςΖ¨6+Xψ)HΈ”EXA؁.XƒπfŠ.¨ΐAώ€.ΰ‚„ ‚˜Έ‚9@ΐ, ΘΕώ(Λ\4³‘4€.@ƒ@40€VΔH²Œœ€ϊ˜#7kEF^ΐBz–ώΈΘ5σˆiΠ€Σ@I”t•΅„•ΠNΐ¨@?“ ϋ6•=fs.%ƒΏQΎAGC5ϊ›:E˜  ‚Œ43$―oy9…$)Ƙ2σπΏ9œ7ωπ ωΐ„θ?xBT‚Œ|%€ ‚>%@ˆ)’€"x"€BŒƒ@€ƒŒ|>˜WH‚$°• €? ‚%ΉN"π8°χμ%P€3³•8X…Œi+πΙ+hƒ 0 κΛ€ p ؁*؁ΠEΨ€¦”$ ΐΠ$ Θΰ‚¬ŒF €Tμ‚4ΐ`E  ΤΕ PVΛ ΈEpKˆΛΉD€X‚ ΅ ™’F Dψ˜k[a&'Θ…&π–a“™ p?¨’a™Nθd£ͺ%ˆƒ%x€°h‚> ͺΚaχΝΛ,žΟϋΗϜ¬‚ϊίΉ¦€»³ΒΊΡό8±HHΕΩ%^2©8ό?ΖS—ΞΛΗ¨ΐκqHY˜…Zp… πƒYHP‚Y NJ•…ZπƒΕDp…@IS€p…B(ΥYˆ…Z@„θY …Z˜…WΠCE¨\… „Z°ΥZP" TK=h„e]V'P–:ΠΜi€Xƒ ¨‚5Π€θ,A,ΰΈ‚5`J.ˆ!ȁΈdFΨ4X4`ƒ,+ˆK4θ‚Tδ‚5W.(ˆΛ+@A ΨΧxJ,HxEƒ ΈΚ.8€.θ«ά„_ΰ› xŠPά*Z‚p&uς„Π^ψ„\Ψ}€>’R\ΘGψ¨ƒΞΙ…OΈ˜Nπ^˜ŒQ-\ΨH'‰π9€G–„CΓk.Χt±hΣ‘’ΐ“₯”œΛΜK7@Θ%Λ.ΑΒΈ4'Bu«*sΘDΊ΅`Z=Eΐx€ˆW˜8ˆZ(" B€A %ΈοTYT-UYhͺxYXΥY@„‰"HZH‚€ƒXx"XOA A€X΅DΈDpOΙ$@8h€E@\ΰH8H…€’̐Ψf‚4Ρ5 Χ Ν€p݁Ÿ:W§,W]ƒ―€,¨Φ˜W  εΟ―Τ€ ΘΖ4Π3»6 P4ΘΚ,hƒΐ5ΰV 0ίΰMP`‘\…θ\Θ7:Y(°H`€ώˆ‚(ν)LΚ °3°EΨΠ™Μς™Έ]π„@$Μ™‚_… p/@L]'˜€¨Δ³5žΛ ωΐ3`ZΨΌΗΚƒZLς<ΰρ ήΠΜ¬ΈžΈ˜M]ςž7ό₯*5ˆd1GΕΣK‰Ο[}…W WEˆp&Ž€@p…D˜Y(ΞR@ΙÐ…Ε…ƒ(ΆU8@ΙXpΥώHκ V%(ΥZΈKΐ\W„υd™”I ό`…ό2³Ή$ΥΚHΘ‚ mJ3 ^2 θ‚―ŒμA¬ ΐ¬,ήώπV3sB3γ‚μ.ˆX±\ƒΐ4ψ)4 WŸλ³€“q*Δ―gβQΘΨ\¨)Ψ¬FΈŸ4±­Βω•“`•­\Θ'MΈˆΡιH–t^ψ•jœ'Π1;<ς…Q¨ή›£{—Άhα΅]šΦ Šςλ (}$‘€JΎΞ4η“xΉN‘ρ@»ΫDTΗjη?Υ3fΏš°•N}…>?pγ@˜†~I? …DˆƒXΐβώ0ΥW €5φY(V?I3v4¦ΚΑEU½ucD…o.ΙπWIp\f-Qh„A„]Ș (Α+‘ €mΝ‚.Q4H―LƒΨ@@ƒίΥ¦ E+πVވ.ΘmΚkύJHδΉΤ¦ εώ eώΐ‚5€T*ͺψΔ›; ‰ŠQFhFΘiŒˆ˜‰`„H ζfΩ>fG p'I`3κMψBr]Θ…Ζρ\Μ+$Θ΅{Ί˜‡€ΣΌσΣθbg³Β@½/’ θy)ΘΦΎΆAυ”π`/²u΅@Υfšι8νΝ[ [qY`bxβ„[…ν,„ZͺX˜.nΙZˆά7Ž% …AHZ€φYˆ…7#Z0cΈεβ5€Θ h*?Έ?šή›†(8ζΫ! — €pέδsύJjUj%_G–€¨ώ).ΛΝ‚I¦Wώζd4Ρ§&€°>ήj|%-@X4ΰΦ’Eώ]ΘΊ{,uͺL˜03MΈYΎq_π¦Fπ…a^ύ€iώ•P€ΖΚ_Ÿ€^ȘΜΠi„_¨ˆήμ’Ν3œώyΣ‘λAέ H½šrίΖZ{³”΄Mν‰Λr'‘4ͺ°΄ΤγΪή?8\,Χσgƒ€ς.%ΖΓ=b„‘|…Z5Ά…Dθ>ΙXI.€$θΥD@Ο?Ώ…Aγρ€Θν‘”…B"˜FΟs0οŽ,„Y°bYXO0£c–r½o!6ΚGήΧ}e₯φδν‚Θ€Lfοs…Ψ6Έj-Xo©VΧxΝ P€+€Χ^ο^|ε^ΐpͺ€κEeρ„cΰG<κQΘv‘j`Ψ’Iœ\π^ψ…aΖ€q'˜)^π ¦GΨO`PΜ%ΰODχPπž€ter 6ρ‚`ˆζΓΔ·)GΌ#Ka­]ΉεŠω!ρ!“£ βΗ)gΞSaAνΪ'3ˆπ•€Q»R/›.6ΟZ2ΝΈΙED"p@"θ<€θD „>ˆƒ’lΫ$pΙ ?@AθƒMM‚™οƒ>xθBπƒ‚vϊŒ”\8x€gtBHDΠy·ΰ&Υ•Λόˆ\TΖHΒ ΛePΠE+ΐ‚ ˆ€+ΐ‚+Πϋ €Θ‚+ΘΠ ½‚,Fν‰ΐ+`ΕH|ΌοExϋΉLQΜPκσ ›…Η/ΘHΨ„ƒ `„&πˆΞΧ„EXsδ ˘%P°8π` ¨°EHΆpxβ“ͺΊ-= ήŸBI0±(Α= ?zmy κq”8]Ÿ;EŸφΎCΫ"Φ~%z²B•2“/[%!B¬‘ΊŠΚΆΤ sκϊ`ω΅Θl[dQ βK3”œσYy@ΠΘ9ΊΘώx@€xxΐ`"ˆ8`I€>@Œx‚P €@Bl40Π€Η’”$0%ƒˆ 7’LHAN °@ΑnjΒhτ(‚%}> πAΛ’X}Šΰ©ΟR:΅Vΐ§3$IšΐιNΉΤV8*w.]Ή5λjμxTήΎ~#ή₯xα_ΉTύ.|4±bΒ!η2Π«‘qDΎŠ%ΟΕLΧra͍?W.|Χ³FΞ η`ΔΙ'PqεΚΥ‹―]Ώ„ωΪΕ+v.\Έ@}β$œQΧΣIΧ5m΄ς…βxρΰα‡ž^XAzΩΟFά^Σaκ "0Pα xΒε0¨@™πΝμ;6rAΗ‡z9FΐΡFM!ΰη°€‚Dΰ€Α£!  "Θ J  ΔΰR‹χαQHpΐu‘Š ΦbFIΡ{½HγO֝wWƒ!E•PSD°Δ>-ηrΛw$]-y’˜)™’I6Φά”-p₯\zΩχdcΘYΩXj«qςΙk±Ρζ‹šjΆ[oΗqŽi‰Χ|vαe_œ!WΠAεVSε :β]΅8U…zG]DΊ˜sέΩ™γgeιΰ}qΪ©d.X JšΦ©~ ڝ#BΨβ`6jϊƒ:Θ₯“‘η^« .ζ‘“J1Uη₯WςeΪͺΒΫXMY.7²₯υu,΄y>+-^>&XrHbš€rA4¦pf‚[.mͺ‰mΌύ™sZΫ—fJΖ«XbυβιW˜z>«XCx…9ΨΌΡΕ,h€…Ω/ΑWβ+—Αη}ꑈΤά¬\ Ÿ†Ÿ”§a¬Q·Λ™–0“ oΌ'§1j―Κ™)œl΄Φ±Mͺ±FΉηϊΒΛmlΊΩnpp2g—0{k\Ό«ήϊ—ΐ-3έ4²"Mζτ_25t―ίN{₯€όΖμρd\ΧΆΤŠQ]ρfR‹=lΤΜωu˜r W›ο–x…«ΪΈgž[ۚ9―ϋ&pŸΘY\ps5°a£<6ΘU*žxγ+ύεΤ’ nv“–› ωΙΟGψ·—M΄Λ—‰~ωqΟκ%sΪtΥM¦™Ύ‘Ι˚ΒμΒwl>ΏK$duy~$rkδU6`°מ£~ΊζEλ»|θΒπ±ΡΟυ|Ύ”Υ«:οΜg>:ΓZ’v—υ»3ξ΄i˜ ζlΧ₯G>fΝx£λΛ/»θΆ›o«ΈΛZ#‚'ψ²“•VΟ{§qŠB‘ D§aΗΪ©0·Ό³u†}ˆΛΨζμ$―Ι¨ljσŸΦζb0f!dσ‹ž’w(–eΝ‚γ[\Σ¨7·))§„ίγ +8"Ψ­Lε2W›j·¦Ύ΅ ΒαΔώx%ΑεAˆ/l°–ι!‘†QD!ΣV9±ΙΠbSδ^ΏV%3ͺ­.ΣR˜¬ψΏm0tr!’π₯=$΅ξ}εŠ]mvF]άNdŠƒξ ΗΆκE)>Έ/$ᓦNcά’ΒψΒnPTΣzwΔK2²i”["‡eFM¬_˜ΑΨ—­Ij€G4ΣαΡ4»άπ~‹`D$‰LY—Š€JwΈ(ŠΝJΖ²‘b 6₯Ν±yT$¦β²HΎƒ3…ŸΔΣ(₯ΘF§USrΌ g°ΗΕδ₯²_Ζ€XG,Ο€‡C΄Yήδ ΪεL–Έ œ¬°ΆΆS&σ3ι&hΌ€MpΒ)FYZ(/˜IιπšλCγΥ$ ΙΘIΡ‚ΰ >ε2Fsξ…’Ββ‹B·‡$b΄rαdδGVήLoο„₯.μ'ΐ­₯DQOxΒ)q9h ϊBγ”Qœ}ά4‰―kFOfγ|d‡Ί©§0nS£ja”:{~«“?…&λ$Κ΄()[eλ˜ϋZΏΪΨ7υγ…oτHϐϊ΄dDCŽ?ƒσˈKZ«‹’­–Ο™”…$Δ*•ΉLsrΝ…ρκX « Ρ3ZΟwRυ©‘Ιg’ίμ ΆZ&ΆΦέmŽyΫ[nd9Λ!ΞibCυθc…UΜ ‘ΰŸγ*·LvτΆ\ν,ψ,ΛΫε)p·GυlGψ[ΜςYφΙ­7+₯.ρ nVjͺrƒ§N9ςНκrΣi‡#Sm¦ΡZ~΅-ƒ ^ )i”Λθ"ǘzζyӌ|׈ϋ„‘ΉS²JUΡγηͺ0μνVαš\fΆm·F"UΚΚΞv¦‹gyΜ_Lo©0N~F§ŸΨΔ]W ΚζώΌ΅ΥRdZhb©ΚlΉδ=0}υIš΄9ςΒ΅-ΎΪ XΗώΔώσΜaΌxΟ)]SZ 5λqΡ&Ρ~¦εœΐΆOΝ-Ε)p‚ZTk:šώr,°ŸL\ NŽ‘=u.#‹ͺΫFNΦ”:ž–Mw$R6g>η ρ£«Ε4ΗxΕ[υ­qΑ†ŸUv+Uς,a /Έ‘YΞLG:<6ͺ­p˜Η\°`Σ<ή½,pΝUσžEgζβTh¦sχ˜›6ύwΏQ'ΥΊυIUΊ.Πς›ί]κΤϊ$tΏꜩ–EH!8ΨΈ΅Χ (,δΡ™˜$uT[ΛgQ&ψρU΄Ρ€θkΉFt‘w³.Ehέeœ"΄’Ν—L™5 Π’ν/~Ψ3·VΨʍ3γ5ωS=~"+bΨή4·UΥSΛ4ηΣθv(5γΒ4μF«³ω)Ή­N-Ώ…ύμ-Z x8χͺ±+AΜΨx½₯ΈnΉTXLξΪΩ0Ώ¬•ˆΞυ+7-μ”vΉ—<μυ|sΆŸΧE)ΣEΏX.yˆq°e™ͺο³ΓXu:Έ¦¬κΉguρˆήϊΛ™ν-Κ\;α@ξήΗ¬Ε%}ΪΎ¨Τ<ΏReuΰώeδ­lgνΤ x”‘Ά‰wό˜Qω^NηXΟTΒbͺ!γvώnQ2•Lθͺλj˜ς½Η½ς›?ϋmkY· ΛssΩ¨ξμΦκ―Ηώ~ϋzV cΈζV·Ι4gΆάψΊύΨj’ϋdΎHΟΧΉιϋςpπΟ_ι£'ψSόeκήώYcΘν5Χ…O§©Πi\½RK­KqB'„Βœtϊ5ž…›Ϊέ’™[ζWͺ…”r4V±u ψxά°  β“v ΅™™άU’0ŸΞ [Y²` ’Ž ѐΰ ρ U…κΝΡ‘E˜n° ΌY ΨΙ‰]ΝΘ(F² ώ΅œσέΨ¨Ρ α佟εi Π ›*Ιύ½PιωΰEίrΰς₯ τ%G)X h\oΘ’Α»Ή ΠP]E!Œˆε –ԝΎέcΈδ\œ›QΫέ•Ž•˜‘鐛žΨbόBΫγ†j^#ZΡ\³aΩBΤ5h}Ι©T’Ε’­₯"=YFο΅Lΐ9αΥyΫi„ι½Ν ς.β›~Ρ!ޝϊbv]Ήδ™β˜!ΗΓ¨δu·Ό M­’*Ύ’nΘV JΝ|θΕp5β—υΫ2ζ(Jc::’&Œ1vβ-ΰσ™™π­c[Γά"δ"ι  ϊΫdέIΪΤ‹~QSΘm“—ΥcE*‹^Ω#±) @κύΌ+κB/ψ GYYΪ‘c3-X"Ž#EήΨΖ]ώ©£‚)¨eβ2…ž“ωcόεδ7J’ž,b_€†˜ϊ™:…μ΄TnμŒ6ήNχν‘μ₯UΦ †Δα5eγάUΗUšΒD"ςρ–9 "`ycˈd6•ίT&ŸΛμ•”lδ— %Ξφ…ϋ€β™΄bλΉή6RX#Ψ’7uΓ!£Heδ1ZΣSNήιΙίe\ι($σ$Ζ©ΥQΰgΦεP•ε¦αnΜ >ain¦qΜI™Ι*˜KKя0ΐ$AΖΫώ­Κηfνωγ² e“xg^ Ϊ8VGρ#δTΆ¦ͺu ΞaξΡY›Y]sόεf™ZZΦD@#ĚhιζK²”+Ϊ!y&Ι8δ[Zfγ°Ρ{'1^Ζ{Ξ™Nž#Λν—€'CΉ£†ŽHNσΔεE> ΔAyζ&ZρζΊbξTPθΠη²LG`q w¦ήnΡηA…^’’ΚmŠχ$ Λ§‘δt¦#„Π°S‘ηZuW…y΁’R@„.@‡€ΣdPJ6j*Q…Ό½Θ΄hJMδŠF @ IS Dtˆ\πdG=ˆΠ-ΐœjΜ,ESDΠY€Q”+a€ b<€Γ‘+g, RάWΔΆΘ‡ ApiA€ΖFKFpȜŠ©GH€L€όΟ·>ΘΕαp,ΰ*`ΚΌlj£m Νζ,J8€TˆH^d‰„\ΖS,„ΘkWΐVΠΐZh‘²a§\ΰΙeΤDI·hi4* N ί‘ cώc2™’2ŒΨ€ ό¦L°mYΘH'8Q˜HHȊ”‡ΏJ ΫΚHƒπνΫ./μDΜΐ`ΐO0Δί6„t8Ε xΒΰ)]`E#|B(8ΑZΤ-γ>ΔL@–’lΒΰή­tΈΘ’šLY”ΕzΔv8Dπ‘$숬ΗC€λvJ€ΐ/]8@Ώ‚ΚFln–`Š―Κ@l$ „‚pΕS\―ˊ‚qκ@Π«UTEBXΙ―ΕJ|XxΔ&€Bρ8Εΰ‚Z@ΔΔSτ+Tΐ&xA—Δ| O#ό‚θ>E›„?}D.pXΔ+ΔΡ=©>ER€©ο@€Υ”„wmΠρ@"ΜBKμq #Iqt|1«‡³‘ν@HΒ‰ΡΎθd²Δkέ‡ω„˜W/ΑG\lΐ¬ ˜„K κ@¬―J I€fHOΰ„N(ˆJ¬„^<+«ψj@¬HΐpOؘM)P‚)œΒ€ μ‚K‚.€—Φj ςπd}ξ δ0μͺm΄ ·Upi­φ…SP„/€B$4Bρ<&lΒ`@υn‚x0$0‚Z`€0‚#h‚5£€$ˆB$¨…ΛJA\‚&qA4Et@4BθΞΐ"8‘ 0ΐ6#lBZ „ δo°jμΒI HΑ84#T€θ³$¬5A$H‚Ήl#tt#<€P“Nα‚!9… DΒ&Œ4lωsΕ,ΒI‹ο@Tυ&Xσ 04uD—άΕΏ@ ‚ "$ΐA!$B!$ ΐΑ (dGM@$B"πΔA ‚Z@œ€ $Β Ό€-@ Β+ψ Β, ΒYWFτA" B €2 θs#\ΐ5;Bθ:…΅Sΐ@Α&Ό΄όΐ5£E€ρ5C$4BhF€Z˜΄$4ΐ"ˆΒB_s$θ.Πsρ@(x‚,§²Lχδ@\ΑdΑΐ`` T)‹€p7Τ @hA°Δpˆΐ¬JΐhΑ p¬ξ€dΑΐ AhΑΗwdA€ 2'³k¬xxΐ)L@'t\s.(΅d!T]ΜbJ’ήΉUα~ͺε8Χ‰mnςζίE 7ZXΣ<„ΛzΒnp‚&ƒ.€B/ΔAΰΒ&l‚ΰnp$ΔƐΨ.C'πΒG€(°1$ψB/”‹zΠλpΒ/ΐ†VηΒώ,/άΐόB.„‚/h‚T4/t1l=(πΒj@Α‚<γ‚(Α΄jB/lQ4‚οΟƒkψB`ΔQψ‘Οΐ'θ'μΉ(ωώ4‚<ƒ0<4/lΒ'δ“ΣFΉhΨ+]ΌΤΒ,Π¬ΏB$‚, ‚,ΘΒA-$BΈB-ΔυN„‚Φ‚+(B-LΆ+άΒ―ΟB^#-όΊ+œ-Θ‚+ΈBT;ΣB @»±»ΐ`Ί‘{‚!ΥA”·Ζ \.τB›($z.ψΒ˜((x‚½Ϋ€(πΒ†’{‚/δΒ 8-―€Ί/˜ 0μΟ6‹B(€‚ ,AŽη‚'h‚ZΨ@/|z¬ζ@h@ Aˆΐ Ι―A€ttAΐ¬@„ΌPp”StA¬A@°€AΝk33σV°2t0@°Ξ―Œw,}ϊΐΚGxƒDG VLΐ ŒΑ)ŒA?B/|iG€/Υψp~  Σπršε™1– ŸͺΥbͺβ χΜ.ε @‘^p"ΚΣ¦MœEΐ… Γ€%ύz@T/ £~Ωΐk™Ό¨‘(\ 4ςΥ(^3 FˆPPŸ<ω% /\KΣTφ“'©d—δjΰΑ Hr°MŽ.Wt‰@‰,kHΈ’¦ š8°ΐ€.kͺXΣεA—46€NΘΦp1p@„*krθEςš$,8 AΒπβšΕRΥ|Pσ¨\Juκ†Τ¬Ίlp€&€Κ›‡@όxΝδΓgΞά}ωζΜέΏΏ>|ϋψχρ·Ÿί=|ϊόΛƒ/ΎύŒF8ρ„“O@e§\rαe_„Ζ—]xαB\ό€.NΩΐ /§8iΚΊItYΒ)–θ„•OxiκDFrqΡ\$‘ ;I~©ΛΑ¨$Α₯:§Ntκ€+ψDElΘ%D)z™‘‰Π°α…+±Μ%»ΝεE 4Ι…“²`†\zΐ‘\ ΐQ@@8δNŒ2ΞGΆΜŠ—%fπ—Pjœ‘—Ή0θε4T0—Ή έ˩̜"<ΝȊc8^!ΔW^πc–Xd‘… ±₯ν¨b !˜dΙ•Y^qΑ•Wœ’ˆΰ ‰Z!‚Ψνœ"€²^a ŽYj‰₯0°ΑZk/Ψ±ΗœΪ ²κΕ†QpqΚI§–ΰ X»ύ„Ϋ4Α²Ί$ϋΜ({i$]\Δε^ΞΥ.―2€€: ΄¨’ .$ΈέΦΈ .JΉ"ΟΘl$θ"6.Ί€Έ‹,ΆCγŠ @άR»Œ$KγΔ,Έp95 ˌ€Ω~FξΕMίΰ*Ξ8ε @]j€‚νΊ3ΐΣ;ΰ?¬ΩγΪλ―ΑΦ:μπ.ok°:›ΏƒδΔmŒ0Γ -τΕ— 7μ0AaΥLmχJ,0šTρΔF-‹¨\œ˜!<8°— „€(Δ•dPk=Έΐi\²Γ OIϊθ Bi nΠ €:t™Α ]œΘ° ΜFΔ΄Ξ¬H¬[d—F0E\§fΐΕRrW―)O±@ΰz-}:»F°Σ„—Ζ?%ω¦•Hf°a†ΥΠe/ $0 'žπ€ι=θτΣD Δ•gA‘UWάΒ.ŠsκΰκD€ΑT\ΑΜI ύπ‚ZHΦ, A§ΐ ± …šΐ‘εbΙϋ—S΄IμβZΐ@‘"'@E*IΪZ‰^Tg s“$±ΊQJ}KΨ…$Κw>©tIn²—w"@’ @ #`.Ό, ΈΝe8€6papY$Οΰ0±p€³ACΞ€,ˆζ2’ɁpƒΥLΰ‚lΓΰFS ‰#·Έ„'€…hšy.q‰Α1`Y@a—%υGlρω›yΖ& ζl-pΛ™Ο}ΪsJRήG•³$,οƒΛW†G•TiΫΫ„ ͍Bʐ†r‘ΒOμ-D£\ΫΨցΘYe 7Xβ\t’Oΰ"KžP°ΝՁ~•G@©4 ͺCde܌›‚€²θΒθ„0¬΄ Ρ“ΈhΚΘ"_@,ΐ…™Έ₯•%T`»ˆš•x °Œ"dIPX’& ΰ’}‚0ΨŠ\Hΐ*έτ…]:1ΔΈ¬Ÿ˜Aα’tνe,Πΐ'„‘MH&ΠSpHD!α ?Π‚ƒ‰`,"’ 4¨ΐπŠZ(!p€C’„80υ΄pEA %LpJ ‚@ˆYœ"+ό`‹>p€}e„Ύΐ‰AΝ€ΒZFŠ‹l"Αž`ΔC±Μΰk²žΰ‹Q,AU‚Ρ/xQt’EF#p( T .Z\5)@3Q|‚I&@F1⠐Z`Cd&–ƒ5da6nŒ€ΰ;0Φ αζ@kΠ‚΄°†Ϊ  Ψ@ ±.Ν r§σ,Ιƒ›†ξL€©1Œαh¨ DΆCEΰ%_ΑZΰZ)°ψ>τΫ€ΛΧ2> 0€Ψ† ΑνA’Ϋ/0„Μdrh™nkζΧΤƜV‚)½ΠΕ&Bp PdgjŒθ,.j$“TΰBΉ…8Ρ£ΊHs ΠΕ[œφ‰κT`žŒψ'|YPΜe3Ε.„Ή%'6uŠζ²C–c(KŽ ₯Oό˜ xA‘"Τ P,A  ‹σ.™©Γρ’Ώ›θ¬ϊ.Χ‹^ΰΒMY‚žqρD™ΰbΟΌΨK”tΧEEύΒEWmYžD Β― BZ‘υ©$Œ3ˆ‹ˆΠ’`₯EͺHΥ‘ZΤ‚Τά‚ƒ@fqΦAΘ‚―ΰ•KjυŠ˜|F>° υ"ΠZ*"tαB `ΐŠτβH Ίπq ΥIt9(=g/άbh§x!ΊπžSž ‹u=ΐ‘διβΊΰ‡q.D0]X‘b ™Ώ’Οˆ t!F€+¬agW¨S qΩT 7ΛΏMΓ… ΐ>d‰@'†6ηD Δ).ŠKΠ€fQΰ…˜%mWςΐ ζΟΦ6η’DφΫ€»ζ΅»’”m›pƒ„yLΊΩν˜y; 3ϋfΆυζ'ηα ΐ –°„ΑU«'l³#ͺ9ƒΘn 6pΒ0pVΛθ:Γlΰ¬ΐ€ž­Π 9 ΈΨ7C8ψέ ξ\w“ "Π΄€b/³Β@Φg )σ `InZDΚ7–¬Ϋςz?Θί—ΠΡ;Aτb7ΐΜ^8aΩ‰άrJYnν e»›’΄ [pί‰šπ Θ§98 .ƒ €Έ@ϊ_ ΐ`ΰΥ8xΥ«k}~ΰpΈ"pˆƒ %<Δϊ'zAϊΠόJSϊpAΰ‚„49 (KΌ@λ Β ΑυΚ§ΐ|N/[Ίœ²nσ`ʎ@auͺρ¦ͺʎčuž@ ~`4£dΗŠCΐζβ;ΆΘ‘ @6ΰ/ώb^pv@4@4 6fcD€p ƒ°6"r€Ϊ§d€°}&ίxpp2ΐ}Ο8€*2ΐχ$€r`Ϊg¨8Jάbuˆo3Θ~€ † ΆήΕNDΡB‘GΔ’ζv kͺ.@zNQ Γf=Œ—FΔ—˜β¦ά$d~αn0B’Io:oœ©ζόƒθτγEΒ)(o”β,I.)r "rά‡-1I\iž”ΑœbO6‰#η;Jρ"PμBύ«Ήε’,‰Χ*/Ψ~l'vb]| IώΝΩΨζ’Θ#e±‘dVx'›ΚΓ<(rΐƒΐƒ^„1ΡTfA΄qJ-c!œ"’½CVžƒ=Θ9„;HVάΡ”CsQI’D8NQšό-V> 6‘6a‘S`E괆,Ξ@ EΔ1`ΘΓ>ΐ`¦3@κΔί†.rτ‰0€»B’Έ‰f@”D‹hζ`Ξ##™Ζ``r‰@ΘΒ VΑ Βΐš#Ξφ̘& ν&`@<†Ξ=Ž?–²>lD’ςkj)*Ηζ‚)ε°Mim r$lAn˜$„BρnI™8‘?lκπC+„‹βpI ‚δψO.CJ.Β "€`/G19LdSΰ. /ρRkš†/b0σ0ν²1ω―1I‚σ(3λ0€Oβ1υ223αρ.Εb)»\€-ΣϊR,€§ͺ §ͺŽς(_@ ds6a€$ͺΚΡΐoΐΡbz”£7γpzψDz*ΐ7³<ξ²33.—dOφ²1½@6!@SδRNδ$aΔ€’;™SkΙΚΖ‘¨bΣ2CO:Ζ‘$@Ό+>9ΐŽ<ΜS<ˆ&3G€cW’#Ζ?{’nI?p‰*ηΩΆ£έL©c υIΰ3υ0CƒT•6΅*NθŒJKΥ)₯ΞkΡmΐr‰IΚoρι:τo‘Φr·m3vm%w+Ε^χπGKUoQtnE΄bM•t²rVl‡n_…•r9χζ|nθ~©`#D ±B.DWΡRAa!΄lύF•ζUu΅fYUtέΆQ;Weα–xΓy‰vDNs½φy§·uρΠg;{©Ν6fkŽg—χwoœ–φn6δwΡd³Wy·Vr±rο—>ξ·οͺΧ^—ιΧb΅w€Si~O—kΞm Œ€εvΑϊw•ˆ.|=vh!8zΙ5}€AQw'$W}7G€™ΐ_37rzΦn»5…7—YΈ„χ…οkŽ@(ΈscimσՁ»φgi†OVΝ7†ΩmcΥU[tΛf›VF9ΈF1¬ιvu™Bx;φ—y“ψs!—t£>nψk%lΓΨ…·φŠΗFo©wˆ“—ŒGweΙZΏf?ΤXσφmsN—ώfVΔiyα‰λFŠΡΓ¬Έ[Έ~H·x6WTz³vŒ%6ˆΗ·‘aΨ‘ iΧΣ’eXlψP€ΑVm ’XtW* Δ9+Ψc§‹5Ή’iϋ°gυ肉} ·ιv„Q+‡Ξr΅2”'y”‘WmώFΔ°8˜8™³ψr{Y_Ռ΅ψkƒV’§y{Χlκ°XΥ†@9+ίr[Αχ/φUω„mΙ€‰78CμΓ¦vŠi΅™δw€E™š‘’•ωYΫ΅–ΞšΉχfy؞ ω’λΆhCτK €lΒ-ΏψXΉ˜n Ί€i•:Ή•}XŸ“ƒqWt·™NΓΰχWΉ5–ρَ±fθζ8t…9’Q£k˜₯xgSٚ19ŽcΊšω˜aZ M”¦yz¦γφ~]ΥΑJšδW Vw3ΔB&Δw9 κ6C€/5ny)₯%‘—λ7e[Ι{o:§_™’MUXχv‡“V†'–ͺ™­ušlΝ—R%·_ΟZ§£2&ΉΆŽ+ΆžύΩ‚±RΑδΈ₯™γ?k`”AV!©Ωω1Ctž«X*$p¬ϊ«?T¬»Ί¨mBAΒθ'e16²Gϊ|₯ω’[šf5‰ΙY²-»T“²^χ£="’ύΖ>ΜTˆΥZrgw jA φƒŸN±Φ§—y“MΝΉ@0—•SϋJWZψYΖ΅˜l©²Cc|…ίΊΔ}šY―f°˜)„Fϋq›ŠΝ½I„lΛΣfŸ™mΰK»IΥVΎ„'©²ρ[i/»ΛΆ‰™ΣV@NIΛύ·^œC՜kž»–f;Εσ;ΐ‘l¨"αmΦ·£ν†©w‘Ζ›aƒ¨K—?€Τ.Gl*Θf,ό3ΡΣ—Θ–>‡{mBΣl₯tYΌYη9Ε){CKδΝ§άl_;Μ‘‰v-uŸrηΪΌΌΙ KΌΗ‘΅Υν[ΜZΜη{`γ@}Γ²Β‘6j]ΠΡ²―φ†Ρ\INœβ]mΛBΫƒ9ξMv0IΌ?Ιn–όΣ) Z“D7©=ΑμΊΑ|©Π#ϊΏ»ϋ₯ έ]αψQX–Βx?@t‰²’ξW«‘YΈΑzDύŸί«E»Eω(³‚ΧΧYj™Z©7μι:ΑWφž V-ΐšCξ*€Z‰ι“ZnΐξβΠJΙ3"r@~AT8νς<ڍ*¨Ε)*Nd$ΑE¨eθ5άnqnL«PqSή«W|Μ»άΏgWsΙΨΐΩX;W^KΌ<šΓΪΥϋύ“7]p"ŠVϋάΘ™€Qβύ]…+—.]Όvως%lΧ.^sαZόιbF%˜κ¬ `qΗNZΨαΓΗΞ @†H’$Ν0hρ&^K8Ω΄iJhS:}ec@$PΎ>mŠ’r ‚ήKCξPM74ϊδ‹Σ¦E‘φΖΠH&P’~wήdΓ!$Mξυ·r@ 0KDτV(›„¦20€\8ΐ…jˆ—M½Ρ€Κ˜’ΚΎI’I£Q΄Ui}V–@{±5Pi3R”ΦV7αΨΥZ1ξ–γKυθ]^:*U#AΊ™Τ’v9ωΧW8&‰ΦQRVedT{I”B> ΥD rIb‹5Φ d“QζΛeΊδ’g‡qšhafωVR 8 @ udr‡±Ρ±Gm[TX½‘ΠH*†π‰.šπβKrKl’K„Ψ€ '’xQ#œπ²‰&­€*H δ2 /ΒάR(’ΰβ Rp’‹'štt@Wσ '’l’©&΅rΐ"ΐœ'ΜH‹θβ„&Ύ4b&½€Χ`F’€Ϋ„½Ν Κ* |‚K'^t²c’ 7Ρw qΚc€rΚ ιLͺ2ŠuTKz©gžSκ)°@^ΉΤYuUiεΐJ\€_XVu•ΓJa|#jjALΡΑχ«1Δ#g\™†©crBf©/ΏΌ‰™œ›•[§΅ ΄%’ δ'x Švΰΐ’IυƁOT @$»$ΐΔ΄Δ.›ΰΤ[Ή$GPQ y! w›μrC#ΐh„'Ώp·„΄‘₯5.Έ ΈB6Œ±Θ€τρ‹$ΌΰKGCi‚ΛpP€βt‡“oD"I$H²„$—GI#(tη@oT\rΖ%“\‚―šP'9Α‚uάWύ~™eΙ—,%˜`veŒK.`–Rκξ1A S\Ό” οd_½+U&b+7ζΨΛ”Y†Y/s.ΖΙχΦ&„UσQE`Πƒ:€wΰAh“­€.Ι5’K FmΠξ@Ηι…'ϊ%‡%1Q $‘‹ώ4"6p„0<QDΔ €δζ\@β 3θD.< ]   ½θΟ&>Q@_ƒ@ ΡD.†#§ΰ>xP%8a @\Β ‚D %!C‘*&Sΰ«7ώΣYΔLγ9oO<³ΔΒ='ΑO΅ίυdŊ%OŒP!_YΰΧELL,eΔJ‰#”ΥI1«°žΛvρ aΘ,Nš!Χ'κ‡ψŒQ)PΌΓަφαΑg#Σ"R)θB ؈ΤΗ)ƒά€ΎΰΤΊ’HXP=θ‘- Ιτ Œ ΐ 2΅ IΨΰ!œXB*€))l¦ 7°Α#€h*«™ 6ˆ‰&!ŠσΩ@ΫΜ/†( ώΤg87Π'š`7Ξm$4ΩΘ"–€ϊ0έZ–0–`ƒ_xβ#6θ…$T›«Zλ–! ވh ‘€nrKΜλ—π@5υΕ/βΡ1+[AŠA—BQ‹%TJύΨ5+ZΨM1‹¦‘?•η;,ΞΞE =—**˜9f6*σ4’?“V˜;¦©eΨ« H»7ΘΟΔ­΅YΚΙμ°‡ζξξ`€$oλkBυ<)Θ ‘°A6A7Ί5ΒS½ΐExγ‰ΝXK== @F¦ήV9nΊhWhj•‹χ^€{]ŸΈzŠTˆO`"΄PΤo˜pΕEθb˜-•”ζ"ΝTχΗ^b1 ƒ_χ•Μ1F] ’ξ¦EΣβV΅TΊgΟvΗZΕn‹Ηs˜πd; QμΆΗΫΛKΚΈ–9R±/qžψΎB&Iψ–eΧkΣGw‘™šuΖΈK<-° œ ψU$°c³Tΐ3Π@šΓ 4Θ˜P η`ΰ§ Ι2η Ψ€¨ΐΏ~*Ίdˆ6°Π2rHΐ ’hD}κ“œ@οF! «,° ¦ Θ„Q;ΔΙ€D1 τ)dΌ±₯¬Uυ«΄ψζ’H©Gcd_– }J°cœ£ήω˜’« <³Bd…AI8φ―έX±!E[,RτX―‡€8ΨQ03OG'ŒΨ~D‚15’|΅dw†’Qπ¦Mΰ‰&>cwm‡vX!b7y΅ζq Sv@N@V91η|΄F!f‡2’°gƒs $6~ΜΓcs1³xsH‘dι–#MBHO\XuTΒE±Ψ€³…\.X‹EχŠυāK±cvX€Χ'#:χeFZˆhe.„—ρC(uΜχ#e萠‡ ά!ˆυΒ X#Ηo€‘Α(‘5)·1`Γ(? 4Η ΓQ£spA&ΗuK΅ΤWΉπA9΄Nͧ₯F‘™d)XE‰§1Pͺχ…{RztΘ$Ι†ΞwΔx‡ξ‡\FŠϋΘsqYŒ({h’Mε ΌΠ—α‡"ˆ*χo9O“3ρ=a•Ύΰχ`‘ΐBE9!Mϋsp1ΕgC²€ @oλγ™*•r+@BI‰ ˜©x‘™™’Ž€ ιAη㠟π… c/†—ύt—Iœή—e`i~n)‚Πœh–Ÿ¬χrm΄…ai˜8Η‰`Θ0ΠY†‘y\’αtG\Ÿp&w‚~»E–ΗΗΑ ΪqgΉAP΄ ΚB ξu>Ϊ!š0ά€ω‘ Ÿ ›ΰ.  ›Π ϊ:r   Κ$  ΰ.`‘« 1ό)b”›q1a Mg§Ίp@ΏΉŠ§…·£­g}Ψ)£*HtƒΘ1œ‡Es6ͺΖ©œ0*ŠΨΦ[ωΗ‘‘Ρ&“ΡQά’驃σ&}U+Έ`9xσ Ό y””'fά τF-ΰ s…š! ‘1Dν ΐ p›π@ΡWΑΰό8•šπ,ΰ:0 jΑΎ°W’ΠS*2žΠ_ǁ?60•|ΥN  πΑvΩ;9H†―w’Ϊ9#Φ FY‹ŽwP0ψ•¦Ud?K²žIρΝγ0Ή… 2ΰGϊ©©€’΅Χ‘0γ—εY3 uw2z.ϊ’ZFPDAy¨DΓf-‘™ψ.M…Ό ^ΰ q7€¦ΓΑ Έ0^ΏΰŒ€ Ύΐ¨[ΕW/ACqM周©P‘Α  `б@Ύΐ β»  ΐΐ`Ή°K«© •m¨#^XˆΗΓbε{o$SyPeԝ5§Š6Ί%kΈͺ¨ΡPΙΙOέf& nό·€Ό{NjH„(Gή·[SqΞj5Ή8M  $₯§Υ’Π 4α) «ΐ €΄Šƒ δ…₯² ’ΐ+‚!1€WΌ q™3¨ œB^β ΌΠ #Ω± ž§βA“ͺΌΠ°'ϋyoιs•y ƒ#§H~hTYδG‡ͺ‰cΈ0Ζƒ«ΊJ±Οσ;%Y‹œ*t ϋ%ύhœ§‘‘ΥΓt–+XΪQ/«{θ±9z24a΅N΅W}ΐ …”§Άt>’ΐB α ΎΑ 𠻐° 3ΐ@γZϊJoΕη¬ ΰLΠ q6ΐ £@Ϋ^ΓQκbΑ;530 ΐ κΎ‘s; Dœ»5—‡TΖcE³H‚‚»–‡+–'eˆ‘ύRΈ>:€P1ΉB:³C}‘›±4K£ˆ”‡³§ ¬ΒZ8ˆP€BΗΐ!vΒ `Ν Π 3£α8‰Ϊ+γ΅ Œ  Ώ^ ΄UW*Β€ Π­Ζ2 š@‚sDp• œr›p¨u ι18ΌΠ Œp’π œ# Ž š°£ΰ­€ (¨d£°8xJέ9-J‹ΚΦ}υ;‘ͺ¬Χ‰·€»Ύ%h’¨JΊ=sw‹±C‚ohΖο;£8WF™Λ‘p€ΰφ&n"¬šA76³{ΛΪΎsΜ'}5.ž°7€Ή° …d,y½›€ p’ '’ž»”’Ӂ Ÿ€ TκA1ρdS4a‘8•œ ’ίQ+ŸP2t0?t# pΆtσ R³z5­k-‚œEG>ψ+[IΘΙJΖnό‚/zP²ΜΨslάyuΩΏAZΖΆH‘μ[’ˆ©PΑ6‡dB*±ΉkΒ‹mΊ!Θ„YΎbl±pTK Q]7€ KπŽπώ¬ ΙϋšsΫ)Γαj>dέbD?δ)’ΐoΛΤΜP47P]l’!“ ρΓbΉL QM7™y978Ϊ"žΝQΏmYǁΞ$›·ΠlΈ΄γ’ΩwŒ ;ΦL~(ˆΖπλΜΘ,Ν©WP™2+ \·ΗΗΓ:˜ΗϊΏbΌ3cΜ¬ό&@ uϊ* β”’‘ˆ4A^ (Π-Œ‘*Η|:±ηΣ₯Iη?SαΥrΉ·A™yp&”G4ΥέόΧr<Σ^α0]ά~)φii›UΣήWΣYœφKuΊΣH‡fΗ'I‹XρΨΝγ`rH½Ή{81γΞl3Α“oμΐGHk³–·4˜vβ΄27ŒΠΦe‹°ιΡufwv*΄΄έ"v²vάΊ‘΅΅f4MΥΎƒb·£Ώ3&P―κΧ€ύr+ΝΝeŒ…<Σ-¨ΖλΎψ€yΓΖEν’Σ“ΤQφ—ΒΠΉ‘³ͺ½œ8ht_<>τΆ|Oq‚½Ιj§o%Ӝυ₯‘3FAv;9’«•w«Η‰¬7M’Φ½ΏΑ ΐ>œχ»r;B|hΩ'ιζpΎ‚TΡΣ-ζz8ΊΣ3²c§έΟlΈΥg³v9ΖΡ#dEΪή΄·ΗJκ—0λΤ2Ϋ€>dωνέ2m#JξΝ‚Mθ uŽ[έίw‰Ϋ§1©qήr€εH-˜}°ήθΤΞƒlf>ΰ=€Tνε›{=–Ρ¦M¬ζΆ“žίτ«zb—€n˜œnε\Θλ<‡«3«δ“η3~‰-§ΎR2– ΞντˆΣ^γSm$[ΩζξκΧΣ@ξ끝αφ{Ι²€ύ‘Θ¨ϟnΖ΅Žθφ=κ(Έ‘ž‰j>mΥ²:θΙ 2tiλΞƒΎi.κVQ%κ»Έ.hdτœθζ=0+ώε?ΨΞ‘+ΊπQ£πh„λξηΟ—κ œƒ=κΐ,Ζz»Zo%±ZΏh™Ώrx#K’σύ!^ε'μƒ|αzμΐκ—yΪϋ.γΤ5ε ίΰ‰-ξπG1=ΏZU0ξ.–9–π0‡υυώKθv8Sͺ}>Τs0|λˆ(ιΜΞaγdžιWdρhξbα9ʞ …tρNυ7ϊφ5ͺ^2l/δσΨ½NσƒΡρ %yυ’ύO}ΗΰόT}Ո†ο*V~«—%'½n}Ίά#ΊRΟξGΣB‚"kγωγž%_D²^Ӛ¨«m΄ΞΨι£ρΘo˜|>l• φΤ©ωmΤ<˜Χψ2ΪF€ͺ+‡veμlΐzοόž†hπToν £‘xψΫOνπN0ΊšR^ώ”Ορ"¨δΌ#ΤqΤΣΣ$XΠΰA„$,ΈαCˆ%&D PAΓ‰5¨ΈQ Fœf)yr™ jŽΌΌ‘Αvt2―Ύ:ιτΟΎŸΧΟΏχoΟιpγ ΏT Ή<’Ώˆ+°?œΘ:‡δΛκ¨5ΛPΒ‰ L‹6χ6ΜO±‘JΒΕ±ς|Ζ—]VB)½šnΚ)3ςj.’‰‚ΟFκήjπΊ‰βIΎ¨ΘΒEδΞΑ4r`Gέz„0HbΙ$y»Ξ/ «ŠΚσ ¬6¦DCΚωΌ;€DΖΖS©+QE+δ|wΞΨ\θrν2άR5Ttίi FΧc˜tΰƒ§Β-°‹NbG‚ Ώ« ύ1©ŽC₯Š οB Οε7!SQfyaδ€NΪ#_Ks‹MΪΨΆ3ϋi¨·ζQͺΎώξ)Ά:³π»{λΨh=δ¬  ΅τϊn§―kψˆpH«_»άͺŽ€ήυ쏑>V\‹§ξΠΚP—m•\Šυ<ΉqΎŒΖΑμ\Μ?IR,Σ ·ψ‚ Ο<Λ‘"ήΞ¬‘B6𞞠š9“›>œOΌžϊiδ$•‡Jΰε%"δuK[€OΦu΅₯8[Τ%&?aοΦ$ΪͺΣ±—‡R5±)JzιNUŠ„΄½‘N)­›άΉ2Ίςm€rT;ι"Έ%‘ζ3ϋΟ‚7υ­ΝM)ΊΝζE«Ίαz‘žΠN—!ρ―Γΰ’FgCωŒ‚¬1ή†ZΨ³Π]0o)u>η©ΔνsόjŠΖ¦7Δ%1e‚Ϊ["?Ά΄eΙβE (‘ٍ°<ο’/NT™Z€SτΤΡ@ζΒ~Šqζσ Ζ&ΒΖ8ZюŒUΓκ‰μ…•Rζ^WΤyD[Έqͺ@ςR‡4Τ£"«ΦĈE$Œ­j›0J8+PΰΙV ΰ YHB&"ή)'Aϊ±O“ˆψ€Χΐ Rλ\Ϊ_Χκ(ΈˆΔ‘" Έ–υÍΡrhiΪγ,8•υ΅¬U0yΥ'λ„Β8δΔsΝ|β IIμk'‹δ7Ÿ9%*LH»Με™ΨŸIΕζ‹+τˆ0˜:tλž9ΤΫ;80A˜|ΜΟ¨“.΅΅ E,ρ€ΜL(·Zν©+κκκi΅$A›t<Θίϊ½~«cτωΥFbˆΈyβπ{οt‹ώΐ…L΄Ρw˜J’EωΙ½&D˜ύΚ£@’©PyΉνm/y(Sˆΰ)s\ŽΜœΤΆS?φ'}0Egωφ΅Ν(/ͺΕ )-©΅›>Η‰ώτR;»ϊe%)ͺh[Λ8a1Ί-~3£MμwΤU2(₯ο1šWN‘ΰ’–²μ)―υA4ν˞όΡΦS`³:D‰žJ•);Σtͺθ)ΚC}’{X}aj­£Α–:χιΝΆ.Ζ}mσEΜζdFˆkό€κ9;{IDΕPZ rjSf£)Γ Π•ω$ke£φΟΑόΥSσν%o›< ΄i›Βi Y€‚§}lc /Ί ž0FG-eώΖ5©Ro(ͺαͺεΛ^Πζ°½4₯0?šΜM%₯ŸaS<„Δ… ‡ΏCn±ΣX‚ŒΦδ"θ/ςΣΥΒ€΅·‹›Q/“Wpšv™ψui’ΖδΛ[7¦……Π|™7ΆC…Τ!ϋM%¨ΞkΣλfψ•|e–&ŠARΉΖIΩδΛΰu;:ΙMF ή±ŸˆΛ`7ΨΆ†εΘv΄ΨΧ²M°κ$W.’*Ω¬ώΪ 3·¬κngΎ&v°q‘|Ε†Œ™—~HΚZΙ wΞI ΐb‘)ο€Jι”―ΰ²VІ¨•*bγ¨f£θ‘ι™Γ)Ι(+±Έ2†tF'λU.ΛΖ]¦€V¦Ϊ“,~@žΥ'Bq?€~f9 sτmIL§©ΆsδLΠZ·"Ž- Ψ4lΩά¦™ ιŠ‚ :(X,O"†»θSρΡNKŒ[έ‡ ·VΞEUΟ]νF­ΪΦ”²3-Y,τ‹AP5φ„Τ#ΙΚ”ηΪ/³^ΰ’gβ» ΦΜM°Σ+Ί”W—‘ €4Jιž|Ίeqε…ka"^<펣%nΚmG¦:!KŸ±I‹!ηrΥώ]ι³jYˆ{hAHžΊ“Χ[ΪdΩ ½{ΔάηfuΛjΪ€¨ίΦ’šΡ9ΥΉή%ϊ”(Xs’&ΎΚl¦¬ο·Φ7Ό/ΤcŒέΌΏ“ξφŒ›½ηΆ‡σΔσ”ω›σq=€«Š0Kd›Y&'όF;Φνi>I·ίœΖ(›#„τ΄Τ¦ιuW3wΔUͺΒ‡‘KGXX/½ο )ξ†Ήμπ°" ;·Β%½H‘yJ-χ‘£Υ„ΨzχezWΎ’ ]Ω½κz@R*a4ύΩοnΥΗΗϊC“Βοb6Φ'™…-V ΫCTw΅δαG΅ΐ·rβΐώ9fρΜmSš>‹ύΠζ¬$™^d{Η2¬ΪΗύ!Ÿ.βςΟϊ| ζ „ΉΛ‹΅φ%tBOάQ-οΨΏΐά Sν³3z @iYΏ‰;†9*q6I ΪŽνӎδ’―;@γIΐσ{­;ΚR‹b˜bj€ό ΄’Όΐ$±+3+’§3{!/‚7k;ω…_˜Ώ »τ&€/λ€Ad±;hK(C{κ―#‘2‰Ή’H+ώ ³b@Ϋ‰…¨5§)σ"·:Γ < ψX΅–#ˆ3Δ”3ΞBΑ§p?1bσ2‘c²³@σCΑΑ#ε2'Ό½8D»xr¦M.ͺ­)ϊœ‚ρ“)Ӂ’¨ΰ ͺ² ,Ήˆ?σΐ£"²(Δ¬% "‘νlλ<-/oΓ¦‘:π«ΓΞ<ά¨£E*«ΕA€/iۏύ x‹ jΜ»ί[F&!»‚κΖ ΰ dλιγΉ„²ΒȐζ;*¬« \TC'Ό!]Ω―‰ Ό˜ΒογFθΓAPΔ>MτΔ&δΏPtϊ2wTBλΚ·qα@1’ :,·ΨC&±«1έƒ‘tΖvj Yl b’ΆμΗςΫ΄\ΪΎ”;=€CŽΨ ΑΆΙΒωƒD’8/Σ±œ "7 ”vC8χ Ό‰*,rH΄μ3ˆ ά’€Yΐ³IΖsΖ#ͺ,Ή§Ή8Γ’ΔBšW3Ω ϋΪΗ,Ȍ©ΒΖψE·{ v<£υ /αp‹ͺΔF«‹Ά“*“ΏΌ|«$„œ:D"γΐ•’Žά«±8Μόλΰ`Fn’ρ‰7Η;Ό+–hκΕ…rŸœ3.L‘P»ΗA%νΉGό#Β“ Ι‚Jύ#ΘS ₯»FNΚ…B@©9Δθ­T’9Η\ κ;”;°?œˆΩYvͺ_€‰^¨?‘;ΑΙ£–cΓhœ΄9$D·TH!ͺ ώ\DΖ9O½·γΤE΄#λŒ1³Aœ$βDˆhPkΔΘΖτ%T;©cT €Η@>μΡκJœF™€»h§ΙμΛλΜ"ρό;„+&όPϋ€Έξ¨L'tΕβωŽ8ΨΟΝƒ‰]M―ΛΠJτΌIτcKγͺΑήάΞύΛeω’$δΔ0LN Oΐ„Πφά=•Τ0Υ#Hη883 ‹y”Q„ύ$‰uA‰l£H^˜N»½ψΜEΏΌNŒ‘L Θ[ΣΝ EPŸ2GͺΊ"λˆσ\βH2=Σ#έJaΣΙtΣ»SКK©Ηςq@ŒKNκ.Ο Ίφ鍔-ΙϊΡβ8"Ά>S)Jh|LΥ”ΖJ$΄žΉΤu: SO"˜VσŒ|HΕ ›Άƒ aΘΒΊŒDδΜ€Ε“9³ͺ.=Η ΞAΌ‘ιAΖ㩃ΚNΌaΖ§ψ ΐΘQ―„J<΅Υ ΅Σ7"VΊ8J"ε7iu d-9΅LeR0Ιƒν2+Wm‰ΊŒ;’JLν\δΣ1œ}ΙDN]T>rR"ΫTΕE }Ό…"{Υ="VAšQώπ· UάRŠυaΥγΛ…ωω±C΅ΛaU,ɐƒF=\"TӁ ―s!w>ό3Θ{υ;Ώ€BÐ<¦ΙΥ}cͺ’%XBS·Χ€ŽCS’[UΡΌ” ΧΦΚBΜ»2›ƒQΪόη Ϊ©“ΠSXL›'²€ŽΝΊN­D€Q§ LM­ŽνcryΘYƒ‰½Μγγ$•€XŠ :%/›Ο06 ΞΩ¨Ϊ‰[(΅Π8=T%½JΑqΧ΅82 ; Εβω0α"YΡͺϊ  6ΡΩl[‘Ÿ”;IΤ‹Τ,oΜrΕ_λ·Έυ#Όšb >?UΚ(‹EήάΧeUŽPUD¦€€§eΤ-έ―έΘ”άΧl<}ΕΪ,I›šΨB•«ΡœNκLΤOPW Yή­™USe}Τ]‰L½Ψ2œFeœ²• ύΡΑν¦ν>’qœ¬.έB¬Ϊ}^— 1*A\ΜΡΜ7‰ίΧΆ©¦΄-ήΡΘ Ύ"J~ό/δΠ»Λ©4‹€Π/•ˆΌ)ϊ,,Χ3Ζ$IΰwεœΤƒ^‘]–G°γ:)ωŽ)]-•˜Υε“›Oh½ώΙΗι}Ά>²TΣνΤ*κΧm$φ=(+;1ƒΦ-³ΦΔ΅$σPΘaH…κ³:ΖΫg₯₯Εbα² ¦Άϊ]ξͺž­_ˆ;αœΨ/0s]/% $ Ι'•ΝJΕͺρZπKRύN3cšcpڊ/.C‰ΡΦ4nB₯ΣNZΣΥΙέΘSΚομŒ’³œeΔP!έm„_*=+£X!Χ^8£;ΑbΌΣί%άCφΜΪ=²G“š žW~‹[Η„`^φΝ’e%Ξc€ΧRvε©Q•Fb1‚—ΆbΦ™¦¦­.Xq‹ΓU΅~L ¬3Σ]Vqω^~œ²}du»ύΧ\’Σ]²[›ύe«ˆ€΅›eΰuŒ‡…,tDά±™P d–mαδ­%&εK†Ω{ δΟθ3>Α#cŽ΅o€]g­ΫL {V)πLΙbκQ:υ!τ€.+9XΩρζ*₯+[ΖΒ!AI.‰{Q'VgU†£] )ωθΠ5ΩΊΑ‡@X)=N]₯gAGŽ&Σ΄“vcΕ½A •i™4ΈΖ²dZMS)νΕρpθφI_˜D₯h2ΡUf›ΎΨδpoEyΦΖLn'bζ¦ΎΫ_³XŒΞκΏΟ₯„'mfκ‹!jΦ^Meέ6[oŽΛ…Ώ‘φY˜`dšI`Ά±ήkΜ-h§‘aΎμΞlΒΆΎηͺ)νΆPλ…^Π9ρ€qf‘smJΖκΒΎlΜΞlΝήlΞΫΞώΚΔvΖ^‰]xΥȞάβ΅kΌΐμΠJΛώμκ%ΊΝΐ†mΫΎmd\IPγmψ3m``Q 4‰Qp¨ Ι £ηf+θFΟIŽm’‹ίxψ  Ήξ|ϊ οΞξynJΣ5l?σΖτΊ‚3oήiοTγπο|ϊξ!oρNοΜ°ξ4]οχΞςVο&‘ έnή π‘#oΟ1“˜ξ5Zˆεvοθ&o€o?πτžοϋΖnϊζpŽΐŠλV€ϊƌς p OοO5βϊŠ /ο‘ΣπΔο·οχπ‡npΧq_Oο—π‚ οφοHq©p/% qίp‡ρν.oλFωqφ^ς#Χρ¬Αq oς_qω˜rύ6ˆ@τ©ˆ€MπmηΜ…Ρ.mΘn,U[SΛ&Ό^ˆ>'q€"ς·]ˆΜΐŠ>gn€r€πζ.t _τ4tHξ>sF7τE·tI―τ?'qLtFoPίtPwtJχtO·τMηsKOŽOTΗtBχsJΏt€"%WητT§τXŸtZuίυL7τQotbηuY'υ^ΟuU/υ χu>φSua—tbυJveΗudΧvehŸun7φewφkvrφdvu§vqΟtsοφNoφnGχμψqV'%€B=uowέˆΠάΌ‡…l,$jι€λφρ„'ΐ€xˆx‰ŸxŠ―x‹ΏxŒΟxίxŽοxxy‘y’/y“?y”Oy•_y–oy—y˜x €OΝ”ΰΌ^Q,nŽ -΅™…‡Fx(‚&€'Hϊ€_¦oz§z¦·%ϊ©—zΈz¬Ώϊͺηz―ίϊ©οz«ϋ―ϋ­'{³/{΅G{¬οz±gϋ·ϋͺ—{΅Ÿϋ³ϋ»?ϋ²Ηϋ΄Ώz­'{Ύo{½ό­ϋΌ_ϋΐοϋΔ‡ϋ΄§{΄·ϋΎGόΑwϋΓ'ό―§όΘg|Βw|ΞΟ|Ν―όΕϋ½―ό΅Ο|Ρ|gϋΡ7}‡όΛoόΤ_όΥ·όΊŸ}Ι§zάoz©¨wz₯oΰ—(€/°ƒG RωuXξα–\ι€Ξτιίκ§~MΨMH€„HˆIψώFhIς/F(ςg„συWτ_χoυ‡ψ'ϊGυ§υŸύF-X°Q#‚dΔp B… :L(ΡβB„)2|XQ#G‹Q¬ΨΠcΓ‹=j„XrδJ‘&M†„ˆς%͌'1FTYSε@3Ά$:4gΕ’aΊάΣι@œu5JjP‘![NΙ4ͺӟ_{Β;³λ™`}R+5‘Y”B―~d©΅m¬PΧ–Ε{¬]ž %Υ•ΤΘ0bI’"E‚δXδM’%{ςΤ)'NŸ@Β…+—.]Όvνφλ0`§}ωβΕKt\žA}ϊΔΙ'Κ“!;fI1p„†Ο-^Τ!`ˆΘ—΄©όySθΟ- ,etεΝƒB?¨άzvιΞΟ~/^ϊvτη©›·ήΌϊκί%–?ί}:Fκυ―S΅Ÿ|“›Ε<ζ2…9Η_²ς™OϊoΘ$C>+F™λΔe~Υ™Ψ‹4Žƒd0! ImageMagick gamma=0.45455!ω,,Πp‡ &   " "! !#$$#7,(+7'78*$-38+7*4:777D4-K82S=5@/>A'4F-9N0=T3/@)[B9B\7JB;dH=Ig<*9F1>E)>RI6HP:NU=S4CL+CY8KU=R].AL.Jc0Nh9Tf5YxHHH\BZVVVOVKkMAoPCwUHaD^iYQNo@Op@TxE[gUC[h\_bhIfqNnxSvrOpF`nLhwPn~fffaaajjjnnnhhhrrrvvv{{{yyy}}}xxxntgjg[ƒ]N†_P‹cR—kYžp^‘r_Y~©xd²~i{w]…Ka‹NcŽPg”Sp’ZzŠqˆ}ΊƒmΏ‡pΕ‹sΝ‘x”z7_:e‰>l”UvˆAr›Z~‘No„E{¨†]ƒaŠ‘dŽ™i•‘n£pŸͺt¦²z·}³]‚–aˆœK†ΈH€―e£j”ͺnš²qžΆt£ΌOŽΒR“ΚUšΣPΔyͺΕ~±ΜZ£ί€€€‚‚‚„„„‰‰‰žžžŸŸŸœœœ••••ˆ˜¬½Έ’’’ͺͺͺ΄΄΄ΎΎΎΊΊΊΉΉΉ―°²£±Α„½²Λ¦ͺΑž…ΊΧ€³ΟΙ‰Δ‰ΐލΖε‘Μμ˜Υφ“ΟπŸΰ‘βΑΑΑΖΖΖΚΚΚΞΞΞΗΗΗΡΡΡΥΥΥΩΩΩέέέΰΰΰαααβββγγγδδδεεεηηηθθθκκκννν… H°`0aΑ*\ΈπW0‡It8qbΔ‹3jάΘ±£Η CŠI²€Ι“(Sͺ\Ι²₯Λ—0cʜI³¦M•%bΤYρ‘Bˆ ƒ,H΄(Ρ‘ MHqgO”½~E:‘κΤͺR+ξ’Έu#U¬XΏ^•86λΧ_]ΉfL;‘mΩ·YΙΖE«‘mΫ»aσΚ›Υ֊gγžε ΈpΩΉε*»·°^΅xLΩpδΛ‘νžΛY°γΞ•?/ :£ΥΟ›ωn~\Zc―Υ­›{4\Ψ³!Ε¬qξŁύ²τyqiR£ΘͺΣgΙΣxw].u*υ«i·vέΥυ5Z±έ― 5;]΄[y΅U/‘{οβ«ΟΎΚm}χνλ·υž*&‘€šJj¨³Ϊšd€‚Zηw¬Κk θα§₯§y‚ͺi¬ŒRh§―†Ύκ묇‚J­vΨ’ΧηœΓΪi-­—& m Εzž’ί5Km²Z nΊι>/Ό›ΪΩ)°β– ­ΨŽ[l°\Mϋ+·΄QdQSAΧζ@K),±F¨ *₯Βf¬±΄wœ1Ζ‡μͺΘ$—lςΙ(§¬ςΚ,·μrΚ‡σΛ4ΧlσΖ7η¬σΞ<χμσΙ©ˆ›EΔ5ό0Δ Mlš‘-ίbg.άε΅ΘSΫ uΥUwœυ.[«|΅Φ;w ͺΨ“2Ωfkρ™Οwς³Ÿš0η?ν‰NqφσœΥηAωiΠƒσ‘ η@γΉΟˆ*ž­h?:QwjΤ’ιGEΪQy€π,)AАZτ£ίό¦&&aΞ„j3 Ρτ¦4―9Mirβ9qŽΡ‚rΔ_Μ HͺR—ΚΤ¦:υ©PͺT§JΥͺZυͺXΝͺV·ΚΥzυ«` «XΗJΦ²šυ¬hM«ZΧΊU(ΐ‚™ΕY“šͺŒZά€€^υΚ€½ϊu―}ύ«`Λ€ φ°ˆM¬bΛXΒ6φ±Υ«a#KΩΚZΦ²Έ¬fύΨΝjv²ž ­hGKZΕ‚Ά΄¨M­dUϋΨΣΆ²hμpƒZ#0ruΞn*Pΐ°ΐ=ΐ[X€p‰‹\εχΉ @ΐsKάLWΈΘ½.œkXιχ†ξsΗkΨκnχΰ=.^λΖ6ΈΫ=t₯ ήνΖΦ½γ%nrΟ›ήρ²»ούn|Ÿ+έδΦWΌ«­~χ»τΦw²Ε/|Ε[^λφ—Β«n~Αλ€πWΒΖ0ƒŒxw²Ηl‡Πα·7»–οzC|_λ΅Εή-,‹=ό]XΖoqŸ`σ6ΈΏ~q€L`Ι8ΐγUz7ΌcX» οŒΏ+dςΆ»|ε0•¬]ξΞxΒC³Œ! γsχΚ1n2—νλe"3ΨΑꍰ™ ζ Σ9ΑΞ±˜­μγ1Ÿ™ΖzΥςƒ5ΌθΛ8ΕΖ5± €Jσ˜D•˜†nT6§χΣ ΅¨GMκR›ϊΤ¨N΅ͺWΝκV»ϊΥ°Ž΅¬gMλZΫϊΦΈΞ΅wΝλ^ϋϊΧ±¦4r1F’ezC[ΉΕzΛe`;ϋΩЎΆ΄§­kPϋΪΨΞΆΆ·ΝmhΗOΈΕΩ­0νM譎»Νξv»{Τ}·ΌηMοzΫϋήοώvΈ₯UI0ε/Β²Ε²=oTΗ[ΪΚΝφΑ Ξp{/Όα‡·Β±mν‰γΊΈX‚-z50:I·m‰Τή[˜<½λΞ²­+qP³Ό)OοΑYώrŠΧΊζΉ~ωΓΫ[ογόΣ?GyΆƒώς˜WΫέFίyΛGmt|]Τ  ΄Ζ3ζŽ”'‡ά!9prZ―X贎n¨kώτ”έήbwΉΔ—~ꦣϊμ²VΊ¨εξkΈΗΪνjuΪamχyο=½d/uίOπΉ«šξ’ώ;x/s[λ5γΆ8ΰΘό6ων’?υΟΟτ^γέΥ1WϊηΩγΑ³Χνˆϋ­GjφrώπͺfύͺeΟκΤ»šε΄O5λcNtgηΥΏ―wπϋ+υZτ―nœRΜδ— Μ—\υ+·΅λ?mϋ‘·:ήλΎ¬ƒ―ύΪ›ϊ΅Ζσ΄+Žψι7Ύή―/΅ωΑ[ύ·»:υι'υϊUξμψϊ³~όjqAΘ!¬`…#?·ΰ|N{χ·s χsνwŸΧ}©ΧΗjt«F~ςΗvΈx`m…m ¨c ˆjβm·~!k Ψk'‚€jάWjΉw‚†LP θ:Ξr#(?Άp Έΐ½υu쇁·wrΧt2HkφGkI(xυww°Φ„MuΆΦ·„šwoOχtX„ΫG|‡ ·ΠƒΜ—512@­c =H @ˆ\BΈ0η~†§‚ƒχG„ŸΦ…ˆοG…Ίw‡^θ‡yxm………³Ζzˆ‚€ψk†Έ‡‹j…zs¨m…sΨW4H jH†·s6΄‰jΘ†ΜFoo8„Ψφ{F—{₯H€Φˆ·'}ƒhzΐΦ„‰8~£ζŠ€ΆŠS¨ˆξW‹Ίxo §}Ώw«¦šΈ‰85WΧ?<Š’Ψl΄¦\Φsˆ‹¬Hc'qΦ(‡§Ά‹¬Ψwφχ΅ζs‚ˆ²†‹'HŽΩΘw˜wή·ŽξhŽΠfκΗjƒ·ˆ‰L  Θ‰±“1Νh ΅P²Π†ΠΘs“xmΣhjθk΅¨j 9mI‘πˆήhj9{©¦χxΨ‚£’Ί†}·˜s (‘ωGiύX©†Μ',Έ‰.Y 9ŠŸΆŠ!Ɉ-jVHˆΆ6‚ i‘W‡±‡~=y”άXpHψˆ9mDωk/jίΦ’ΈP  hyOΣjθ’΄P ±Π†¨θ‚μ˜w֘‚ΐGŒrhˆΖΥWΙΥaˆˆˆBijΑ4—–mg‡x™—|ˆ˜–8χ^s9ˆ{Ι‹™khΙ—¦x~Jh”‡¨—ŠkpWqΉˆ)GwΧ’_‰•0Y†\3I ’–8Ωy³φpX8sΧ(koxp£χ”κG₯c@jqI\FψŽ‹Έ‹•I•­Χ‡’¨–πj­Ή“©Vœν¦šO‰œμ¦œ­–re‡‰7 Έ@ Wω ČcΨ•‘9š遉ח©m?ηvx‚ PŠ`ΰe@΅ΉŠ΄G†j°Ι„‡ωœ(χš§f0pŸςH–Ώi›βy Ϋ–~穟Ύ¦šmw„Z˜ŒιjU) ’iœ P“†άY ’i‘€IpŽΩxvη€7’N8 «Y‹yš˜ŸύεŸ7πK°WpLΐ4z=€0{½9‘qΈŸ&~Œ~hΑvPL0ΰj`LΠQ°PΖ…sjmπΪ‘ŸF\NΉ€LΪ’ŽH˜­˜’II€Y£rΊvnz’ΊΉjU9 z•/©‘Ϊ•j‘°pW )¦εθwΙ‡**k0 h€sapws QpΧ§mJ‘_Έ¦PX€€F[  νg\0T©Nπ¨?y§#ΚjP5ͺγψˆιΥaΐ« ‘ΐœιu«ΪftC ‡φφx7 ΄ Τι§Θxƒϊ‘ΤZ¨AhžljŸχ‘ΞΚ ) §ν&{%`a₯C£οΚKΰSTpzžΧgr ώ}ň%¦t0˜(Θ΄%Pp@™0WXqy€pQN€E°©gr gr ` ΐu.ψ—‹'”ώ* \Gi#SpžΓχr^*\ϋImvΪ¨FΚ¨₯jͺυEi7 Τj‘’™‘ΨJέ™΄²ΐ­‡Ϊ˜η؍?ϋ˜ŠŸqš~ Pΰaπ@ιU›uP@RP±ΠtΆŸX ˆ\±7_ ΰ― ²žφΆμ§¬9΅f7‚ ·ϊu¨;—%[x}•}Ÿg5p°xGΖbq°ύυ€Q0=@η² t™₯-[²£ΆΈ\g]ρ†pT ²ΊΦε²π…(e*u Ιu-λ±³{πΆ…?7»,—·Φ–YhΊ‹‹²nj{I΄¨:žΡWŸbΚr:9{, IΫ§/Ω΄9¨² ± ί©’δͺ€ΏZ½i΅³ΖœΈΆPPpb;₯מΰΊχ €’ζžΓ©³άafͺΏwΔU@ξI€€NJΆΑοY›£7¬vξjlPΐ ΆΑΏIΒ ¦N*A:j0[ž[ΆΓ™Απ¦— 5PwΐΆΒ` œ^θυžπždΫu-H<[Ί@[―{3ΜΊaŠNܞ,œ‡°ΕeKΑ`¦YΦbΰU0wυΒξωΔ"l±kΐd ^ΐž†^L<[ ½­Vžά†x‰yΊxŠkIh΄ή‹΄’‰ ~Š• ι‘ΣJ­ζ+΅ˆYw(Y΅Lͺ‡e7ΆwΠ]z{»ΌPR@CP›†u ’+spΐž»Z)0²±Ž—Όz5ΰz‡πΚc«³<P›‡ϊ\―ό[‘6Μ°œ^Γ Ή8ΐ«#ΛΖιΕΚΐrμ΅P^p^`°` `0 @ΓΜ«€Γ‰ˆzUSp8 WΦ6Μ“6ΓΪ«ž<€#ΐ«,p `ΆŸ6ΖΜ«ΌJμΙ^ Lΰ©5pΡμΠ =ΠΖ5 s―<Ή(ΠΌZΝ°žΰEΌ\aΠφΝPŠΠΚYΝ°Λ Ξ%&0Λ5P¬gΚ’³8L§„W§κ›«eΩ’Πϊ ζ‹΄Jϋ§=H“Œœ΄±0 ±π †*ΈL­¬²6‚ˆ7™Žιš«†^+ͺΟΦWΙ Ά«Ή ΟTΐ`m=KΜ…υ_Wπ©Q7ΧV#@LRRΰ7@Ό,(j)ΠU M‹§ΐPΰ―ΌQpž8ΐ^GiπQ05—ΧN8 Ώ€=Ά³Š©=prΠΨAΠ–,f°PpI}±}5ΐb&tOκO0₯PPp¬άS žj5^έ2ϋaL@€NΠπΪνJΕPh+ήβΝή)xx}=P―φΩ8 \ΰάPπ©Yκ—MN`4ΘήΖεz XŠΰ…^yέ£L―{Ϊ5ΰ{QΐُΪQΐ\ΆžpΛύΔp΅=KpUΐΆ±|Lΐ©— R*ΥᚫΈχj[h χ•ŸFΘ_ύ½z­άIΎ_= bέ[ωj½M ‹ym¨χ­'‹άN€œ Z%kΌο­ΆΜ Ϊ7π kS–WVK`v0Uπ7ΠνŠβR€Ϊ·­Ηy880hNp(~©80œ”VφzeΰP Ωq`OόΦΰw ²¦ΜΪCπι)PΒΠs αMΫ©ΎWfη‘ΐΙ/ @±xpμYO€Kspgpη;–‡ͺ*₯N8 ήΞ­β Ns5ΰžθύΨQPbϋޟξΰaθ)0±MpsMΠN0<^PΈsν0ρβ}ΠΏ2›ΰŸjπζ»ΉhM ΅ά+φ‹C ζ܏ θXJΏ—q°βg^ηN °ξ\g₯Όž) ή7°wπU€πΙݘJξΌν5ΡΫλ{pΝΎ°†g5砈z™ΊζvU= °`ΎΤΊ΄ʝΥΩΘ_ °ε˜΅d:§ξ«”!i°r§s Θ_ζwŽWl¦Ά°‹ΧL€€Ν₯,VΑMpΔ>±2[3ϋΚp<<αΓ;jΐΫ-]'S0νρ<˜*U@β―|£\π‘f]΄…Ϊ5@&‡Ι§=ΐ₯L@‰_&Wχ γιΥx`ZΌs}ΏΒ ^KΩUΫΎž‘κ€ˆο©$n0g€ΏP08 χ7ν²—ΎΎ,ͺϊ©°ΌΚ9fώuLpδ]»σκSpΐΚCp©G=₯pνκΨ=ΰΛ 0Oπg^ΆξC`ιέΫ«ΓΜψ{νŸΰΰwA&\8p`Ι' 8€`@'w† ` ΐC•)P€4ιQ£ aΒDΑQ!B…PDb ΰ ΰK˜1eΞ,¨ΰš9uξΜ‰³ CžAeΪ Σ§N’3ς„ΰF'X°bΙ’EΛ*Z΅lέ²Υ5+-ͺ²bE…υκEi.ΝΙV­Ϋ—GΥ΍™”ξ»?οeΐ`ΐ•M6TΈPψB†8žH‘rcΐ‚nPqrA@Z†šœYR‹(a¨8p€!g’Τ@ ΣfZKΠ8Ι CB7Yp @)aͺΰ`»τ*Q. H sAӐ˜όD  Ζ™37ΐ!Ν ₯@ΠcŽΦ8 s%­Λ¦€!i/ΈDJr h³―€ ξ¨bθ.9Φ ¬ΈΓ P€ͺ@―΄ lμ € ‰G:˜ ¬‚¨ 4‚Ψ'ΒȎΣn8Š J;@2‘¦ΐ Έ Δ&ή;@! œΔ±#ΩSNΗγ©b„βt ƒ8„\βA pi(P醛8‘Š3€`ωcbŽΥφ;`Α’ψ£‡‚\’ /₯φͺI¦ήξ‚ΛOžφ\λН ύ“.hκ)²b™ͺ*Z²κΚ«ZΐK¨^ρδ,šK”PRίβ³§ΉάRU Z΅Ώ½(`•’ˆ \‘ΈŠΰ†’!†Š $μφ¦k*(ώHΘΓP­ cŠZB¨kΑΜ@F&(rPš#Œ 0Έ?:;\p bJΎ₯i‰?˜`—β+r<ΰŠa—k©’@OψΓŠΘ ‚ΰ/( 避˜°ΈΤ%§ξˆΒƒ €b4ώ xΰΡ‘* ΰα:©ΐ‘ Ρ:‹Ύ˜H!c8ΆQΉЍŠ5K p Θz@Gζ0ΰ†ϋ˜ f… B£‰ψ„@ň‚(€ͺc‰’8(j07…(\>ΐ%–˜γŠ5vHΜ0&BΐΈ’€η ΠνŒ!n‹³% "‚iP™^₯ΙςSη’<§@‹‚Λ.ΜgΚΛ5‘φ΄<\H_™ERͺ¬ΚJ+―p±J,N_εΣΦJ έ՘ΨκΌΤΈF½T›₯x™ΎlŽ)ξ£" ΖξCγέκm€+[ωHζ@cΊρRγ»ΫB€€¨‚8Μ^ΊV€ΞcmσΉΫΕN;²§ €|Ηs·ŠjΕL& ΫσX Xα LPh%˜<μC€pBΠ²™'΄/>Νκ Β„”ΑL'2»HN4wQ‹’³ΙJ†0‡lU kBe σ°O^ΐΙvφγ¨ 8G€€ΤΗ„ P d€ΉE€β¨’sαHlθπg a(’ŽD 4k¦1ΟjP€ίA`ΐΘ· 2uΫZ Ήή@ ~#ΐ’€π¨Ν8€k ²ύ8e$ €πz·“γ yžCή  μΞ}3y”'^a;Φ΅+Zyέμh7‹²άTšά€Z.9Ι»°–sρIR’²”£ψΕ*qB |ωΛ€έ@#ˆ3ΐ`&aZ6$ΐΗL0!kž œ ψŒ€1Δi¬^*φ\½€)eλ[(τ<βΰ€Qν’΅. (6Υΰ>¬Œ>/3Γ9δΰWcΞ–¬Π΄°§H/Y€όxTνZ‘}4ј"_ֈ§ΣJΑΚnΛΎAvš‘π9‡΅V₯=€Βa°Ls%¦&@βΓ±ζ"ύBm0ϊδEZHΕj_`·Ζ&αώ˜±ΛVCώ±w2žΆ^»DΒ%f©8%μW’ Q='Bh*h*‡9‰N4'Ω8A‰P€p8πΰ ws6 ΒP`Bpss΄TG4φLhpΜ2p1ς\K2KΝQ 4λGGx] œUEΙ»xίΡSVρ’%ύΧ—vR#₯)[ξr˜ƒŠζvΥ‰‘ζΟ*7WΌ ―9£d5+¨΄ †¨"³[7ͺŒ;b—#š†ͺΰ@¨›˜λˆ‚υΙκΘX4΄p ,B¦q ©‘Ή#α4O#ΐ˜€¨—p.Ωσ(’Ω€―Ι€)ψŽqφ@/Ϊ['υaΨ’Y;žηpŠž:€τ‰―ήxŸʏ―©4 °“‚Υˆ—fJ&oΪΊŠyš 0Hš‚ "³3@ π Ϋ.|‰'¨3υΊόωƒ+ #)H5`Θp£”p™‹8`CΈ‚1xŽx‘!Έ£ Ύ³Έ–°»x€„'1ΔΜΈΏœk3˚€S―)›?ώ»+ΉNH?©XΏΑͺΩι²±ψ€UŒ9΄ ,AρœπD€θœ ΕX’ \,ŠΌθ‹ρϊ‘ϊk™o#œ08Ή‰঑ιŒψΰ1ͺƒόΩΆλ‰9xπ,ˆ8ƒ ͺŒ«|qτΩ³•‘6ΙL3’³Ψ°q4‘h| (RŸ`C€&H: ΐ Bͺ{΄„P8^{” q—8Α 7ŠŸ(H*› yτ±Β$# …zœν1 ˜°ŽwΙLL‹v‘ΘΉh·₯ΰ¦ν=΄ƒ)€8ΞΨ&ιλB¨œ(Ίlβ¦a΅ή€˜·y*pƒΊύa…ЍΑ{˜ίc'ˆ„gαΕJ*Ώ ΕIRC6ΛΝr OXEΐ’ŠΦyΕΓbΉNy…—γβ ³4Ώ_δΚΊβΚWΊ$½δž]β"λQΘλ!Α0°΄ΘŸ‚œPΠd€ΟΚ©C€&”*„·ŠΙ ‰!x‘ͺͺ΅βͺ*ϊYΙλj‰Λρ d–δ8Β±Μ߈›'¨·CBφ¨‰ Β‡ρ0πΠ".’$§¨— (IBŠH~ό(D ±!6H|σΠ'Ϋ ©&o ybsΙ kΪs‘qaΒ‘šΤΛ€„{ΐi«ݚŒϋHœ‚‚ηɁ9‘‘ξx1˜ Ω’‚G”Ζ8!x˜ΉŒΠb"€‹h ώΑ"@&―»w ™,Α˜ΐΙ!ΚΉKXΉ,Xr$έ‹&„%Τα΅΄2ΑΪ2ΩaΉYό$Oπ[„€W ½όKB‰$#ΏώΛΏQqG+!<Κ7Bš{˜’*2(θ!h)€™ΙΔΑ±;–šβ”‡1(4˜&HΨΆt‘JΉc ³Όλ y ΕΎΨ‘Ι‰'`Θ "ͺ‘(Έ_b;©H°¨ TŸ&‚0"Σ'ŠΙΚY‹‰u•‡:ΠΒωi Ή₯j©I‹:2 ˆ¬–₯3‘ˆ‚!H&°Β'П/ύσ  π₯A}$2L+X S«2‘a‘x8Bm‚οhΎ p‚΄Ԝ Ž~ρH Y‚κɍΠ؈!-Ψ•π›H F›{‚N[‚ΐA0&/>ΑQ- ΆϋJT$΅α9Š‘KKVtΕR’Ε/λ]₯t Ρ—HŠS!›ΣvύPχΩR•Θ ‘z*Jsa―”(2‘ ‚&Έη’'8)ΈŠp˜όΉ§š‰cΊ1]ͺη ΘΑΔΚHMτΰΛ±΅Ι΄1+ˆ°@υΉ)°‚hL,€‚9 ­3 ’Εƒ  Ί!€XΨθ Ι,‘*°Θ;*ρ‰§‰όˆΥŸ*œα“¨“‰}žΆ‘'*Θ xA³Zn›πΰ Ψ")ΐƒ‰hD;}I…―”™Gx*X‹.ͺ“ °!;ƒ*x‚rρ Ιxž‘°£Ϋ?@ƒ3˜ƒ%¨€'˜ƒΔ©ˆ ‚?(« ΄ϋο—κΉ#FΩ8ό#Ε•,` 9)«έ tΡδq NˆΡ—39{5,ΈT,}ν„e»ΠρΛΎ’ΏΊ:³ξ ?ΊπP˜ψ@0©P γ$0­€l€ ΘgεDΐYΥ‚xˆ€‘8›θ ΐ ƒ €™ls'˜©C#Ϊ;€ XΥ‰‰π₯/ Š™'(–FΊTψ₯Υπ"G»·b‚Pm“Κ Λπ§el«³_<έ`˜Θ`ήί@κ΅ίU•€‚%Τ’Θ’ Θ™s˜`‚ψ΅+ΈŠ Έί‡σͺ‹αθSΘΘξΕΣ‚0)υ΅(˜©α'X«ˆ Qi7‰«95œœa)Ϋ œΨ_ΐ ₯D|©+h‚'x‚ΰ…-X`¬έ~ΏΚ2Vͺ₯eULΡVΜ2•ϋ]ΉΤW5ΣvUΤ e2ΥŠQ|²9Ά%•œβ ‘WΡΎƒ΄Μ‘:ύF9y‰β ‰N¦Ή ΕΔc"ά2 ΫΨ°†XΖN–²#PΘ<&hŽΣ€εΉ±½ εp£ΣИ9€―έ«ΑYeWι‹aŽ cn¦eήΊΉ‰±aCs1˜PΙ"I • !ρ‹f†‰‘ΊNnŠρ Ž9Θ±‘+Π’Σ_ΞOяŽυ ΫYΙ<΄ό, EΖ㍲€=d?‘cAY§άMΛ΅œ MEχ‹KA1›cύ£ η%&’žP±‰W ½ ©άΛΌ‰YΞ₯u•4 fŠπ₯-©βα‘£ Š’Άγβ€mrŽΝt€ίAεηP… 'VΚhΏ*ectΉp‹rPα΅ΞŒcVΑ†ΐ>‡Ι Λtι›8™Rφ«@—Ύ˜e‘~ ,ς‹ŒIjΧ¨=—x€k±(“©‰Νqϊ:±œ6υ"2€hπΛγδ5 Wςш†h―~PΠέzEθΑZ9/£Ε^ΎNl‰EΨŠΪ΅ Ά%ο‹l§Υ,žFHr‰$U—W±¨"Άε™(ιΥ-X;ώΚΉς1_v•’ή°η8”\$~ξG)Σ1ιΕ?ΖG½ΦΕ€Ζ?γ!FΩνΧ΅KΊ0ŸVΩ ΏΦέƒ -3,Z¨υ„OBFδY›θN/ˆ¦lHΊΏνΦ,Eq Έ!xΥh©€Љ&ΨΫ~ Πζn̞oΕv³φVdβζ‰H γ οΨR Τωkz,Φq·„ξU”n‡Ζ@ΖQ5»oΎxoλNW ‡θπ–΄Œ‚‹ΗhΣΖΎp‹ρ^ΜQ‹.n€ΖkόξWχEΫ½Ήϊ¦%―\ρIZ'Pψ„O0hΥ9πJiQ±H,Ή”ξιfŸUΙp4‹ρB†ρ(γΕK}Vˆ›a#Gr*οQΎV'#q­θ);튳€9–₯Uρλ_Ε—[I‰…« lT’E}r ¬r&/qωζ«U©σ‘σΰ–‰%rWD2.§έέζs ₯rœκΉ)w΄έΙ FξηΗ2Λο³k/ η„/ΉYXΓ2Βξ”QπMίτΖξmΊ‚τ>o%‹‚2=WμΉ’tC_ΝΧ»8SιΧKδζ%tπΔnτCgέ­u?‰uίIςΚ!σ2ητ©Pσ?nΉ’ς ‘h›xυΛφηήxυ±>j;W%[ }2’ˆνώp€AΏsδύυ\ςgNμŠ^χF_•²4vŸ9eΟK§γμςTIW,OΕvΉρO0sΥΑ²5uΰςM0SEΉ$!qβ‚8Hnš+WΰiLLBΟfGώξTg^/ Ÿ€‰Οφ ζX―?χΛo2“ΗwύήsUψ~ΈEaκŒΩιΘπ 0{Goί,΅Η‹ΉΟφς-_Θ Cm·ϋv³ZŸ€ Λ„Œ‹Ά θέjΒ瑋퐖θΎ/|Λj_(uΓΗΎ_{p·ω½ΜkδΉΛΎ χΔzΠΗυ\v+/τχvΏj—€/h¦WψO§Y\p―v₯( ψ€ΰ©uŠ ζ›@#1(Fκψ”—Ύ«’ψ (αΏ· ™ψœšlή‘«y‰OωŽ/ηwb!!€ψδΗ 9’ 9~!‰Œ‚’Οˆ8 @„`ΐ‡1@X°CŒ Š™Έ€`EŒ-2,iς€I(W²$Θς₯Λ—)eŒIσζB›8wςμισ€ΚŸ6π$ΪS'J£?e-Ω”ηΣ§•-©ιJ¬Y_BpΤ§Ož<½*;+–,΄΄pΡ’•v¬W^…ε ‡2@ψ@¦„ ”SΈΔ@«ƒ¬ΰ± ahR„–Τ!zJυ!‰4˜”S9™΄αN²θ‘Š;u…Γ&ay2Χ+°œ…–,Έψ ³”υΚXŸp²Ι yΡ$e”AΖ“@4I”c| Rˆ $Am©ε–‰ΉτΫe|ξ Βbˆ P dˆQFGx0gvoΞf˜šlŽρ—€1Š η_t •@ΰΧ“c”±›c8*"!%q@ Nfχ>ΘΨΨ=|] -0₯'’±&T¬t’!Q¦’ρf`¦ΐ«ΩΙΊάTΦ)Bvcψp[Fq)ν΄a&£L1uβQ0J“QA9ˆm–ŽΣNΥ-Δ-C/ΚΔ.T'±8Ή'xαOκN΅’„MΨΥWžp2ްπΨ[iΕ—\cqbW’±Xΐ‘Ή‰RŠq^» H0ΨΗ—&2±Œ¬C Μ†ηsδ ZBš>”αƒeό@’ ”`ΜH[ftJΠ)¨(_ΤAΖ¦]‰¨;Π)ԁIπ$“eΠF¦@ˆqΐΠu0Ϊ"L@4ΕΩuЁΚ+ši΅mF@“%”‰Civ霠9w(ΦqΊ–έkL’1QΟ•π΅œ 4wε€&{¬ γ₯)θ±ΘeHΤΉήΞ”"KπΦ»’Ώ8eώ.Š;ΉΫ.Ά™’ΎŸώ”η τ3bk–a؜0[~Qœ0u> <ψ {6¦)H ΦΰΆ5ˆŒy™΄ζœ4iΝ"ΏΑYυ"U―?CšΔ`Ώ,) R@§†F'ΐ˜©5ά`Wόχ !.Γϊ‡‘ΕΜΖ{ά³χ€Έͺ$ ¦\(1MN—­}uk]ό‚‡\7!‚¨D+£3Œ΄"E-Nθ‹dΐRc|ΚΙζΠΖLhβM§œ3j!δΓΤhj&δ…y!z©$λΕ4&ΆλΆζP,–‹ ϋ‘ΊE–dΦ^W”Χg%+ΊΙnŽ!%­Irg€‰R”GrΔ‡7$O JjΙω4΅*š@{b¨ΘΪ™α·ΈΑ v΄Ί«&QΥίΐΩ)DιUeƒΠ$οΕ=ΔJHžΗ6­υmpΟ“j’δΔ§j•N©AlίI!D3 ετ€e§P$Ε P̌9Ι>αUSΛ`†φΰ$α<°+­}Ύfƒ«w+C,b9¦¨.MN‹ZΧ‰td„‹τˆΫ„šΘĨŊƒ0dPŸ%v5φ§ηJ|“Ν(’Ό{#.Κ·ΟxΗ{’n»ˆ@7žiΜα>πτœΘΈή ‘q rΒHιp³Ρτ€p6(δ–)δ€€‘•ΰM„Ι¦¬Šϋεΐ0ΞRρ5ΤsD0ύFJ²b:}0ε‚t νι@—W.—Hd˜―δ`G$l)ΑwL2YΆYV:ӞB˜όδρ…ω9†κ2`5υΌc­hL’p$”•¨8‹ ₯P‰^RkΛ’ξ$΅F舝ΨP`ϋ$ΌΖΦ±δeΏDΔ²»§I‹ ε72 –0 1μxλ¨’A{Œ`)LKaΆ—H‚Šh =[zšΘχρIReιΆ»½$›-ύ†άωͺ• ˜˜-‘€KΥ:C$9i΅πKνΦ¬Cπ}#|$κ’eγ% „ !†%­Ž§lΚήΪu°συΘ“Mi—ΨhTΉP`ώ κ8ϋv§­φΐ:£½6xu” ‘Œt—p³ψΚ!ΗIL"^—<@ew’Τ›ΆŒ 5ΓDιK/‰k&pηΦ0HΦVLΚ¦­e’£Ηκ—Α—±ς ιΠRΐΈΌΎΠ~>{)5lνκ‰Οj6Œ%'ϋ?KKΠΜ’=Δ¦Ϋ»­[>w†°œ\σ„—Υ«Έ[θg‰cπh–"‰ΆFJr䑍:p‘qΓ"—ϋrX¨œ א}¬?,lW³ώ%ΑEΙΗa‚ϊ¦³e^ΏΚq+t“£74τB»Μ=”γzawημΘŸ:zήδΨ3Ž—±²-ΘreΊΛyΑ‚œy… i£΅zξ³|‘ίCHωύOB"Y›Œ2ŽώŠΟˆzφΏδDT‘Κσώ½ˆNΕ<ρXΊάρ ΫAIίN,ΰ?±ˆρ= O4ήrxΕχέHψΕΡEΉ…ζ1LΠ}ής KλΡ„Κΰ›„άίπρEΡ‰O†Χπ­_@% βœ ^ΰ ήJθSϊεαςίBH`ŠDˆRTΰBόšαeŸ²‰ΫΉE›‘gIˆ…OΰΑ΄π΄Ε[”_Π!™GιžB|„ι‘DΈ†Ψ}ΔtQΧ•ΔrŒϊήbΈ‡‘Μ‚„H_€ΐ@>9eh™ FΦ¬Αž!Ύώυ„ŽHςaί>!αα!]M‘Œ ^a>b&ζ a…MPψ΅ζ ωΩΡ·BΒ„{Θ τ¬ήBQ €"˜ΐάF¨J«ό…νKH4†–œ¦™ΫΒ•]8ΉΙΐΙίJ HΔbτι„ˆ‘^ώ=!%Z"$Ϊ“6j‘F»(…hΥί^Τυι .bAT‘ˆœ‘R8›³ΝΘ^Ϋ+\ή lmmI fΛψφ\‹w-Š£dL¨™Si|MBH€Kˆ hΝΧpΝ_€Ctΐx€~ †IxΜΧHδrP€’LΗhKqΔي°ΖΩ„Ι,Δ| £Kž£λp"γ‘‘y"υΡN``:Ύ€BHUΈ˜O¨C© ίe‘Mš–„Œqΰ\πά‘ΕΒΜVm%ΩήFCφ‘ ŠBďφθ‡I€μ Ϊ“ Ε¬ΔΚΟHŠ^qΚ©΄φˆεڟόI›΄XIŠ'aΟwΜJ›ΐ₯ќ!ωόΙΝΖm,Fa‹Ή$ˆΈ‹žˆJ,`SΈ„:†ώέ"ŽŽL2"OZζΌ‘u`bυΥ‹M–(vaŽˆίi^TšŸΠνcK¨«όΚq,„ΚS`t#m²Ν ’Œ0mJrν—Ημ’YM™τ¦œ° Ι{@„RƐΚ-P7}™Mō}ω‚,”x€Μμ†sTU{0aPφ]5Β€₯‹ΡŽϋ©gbφZj!ŽEγ$ξ„yr#bξδMϊd~"Β'ij`ι)φ\l•Ÿ·‘!Ρ΅Ϊl`Ύ¬I•ΫΥ Ϋδω€„‰€ /…„Sq’ υMtE2a™Z¦›L(’Ρΰ 6εO²T„Vπ[BŒΑό8•ΠoΛr”hYVΈ¬§gZ!•}{‚fΚ!^“Φϋuˆ6!Ϊ'Oβde&Rb!|`•>H΅‰‚ž&ψή£·΅ζƒZ…)=‰“ψ@A.ПPJρR.Ε‰BτΩΦD…W #‰AWίˆ8Ή¨ͺH„φˆ™€hΚurx™ΠπθY­YiόΖΟ ip¦h5‘Οθfφ„eΕ]°νLζ–^£έ•ΡƒxŽνHQΝgQ^:Φδ j"­ήΣΉŒΘΉ”fšγZl››ΈU₯πUM5y€Ρ\pG›ΚΌθ ‘Otv  ΄Pݏ/Ϊ#Y ‘Α›ύΰ°/J"}M@Šϊαk`šŒ•vΝβΚτT/)Ρ‰Fiͺϊ'€nγ­5Ÿγe’Αž,6J";φghΖd7:©z‚)Cd)Δώ$Œ<Τ θšξjΞ‘F½©m9kA„Š›ŒMύψPυ’υΔΥtΕMj8‰¬`J™Fiψb§ N`lPa¨Œ‘ŽΙ4ΑR! ˜dΠώόΐœ3ι+˜Α¦€ΧfόΙΐ Ο°`}JαΨυ½€*¬*^gšcτE¦fΖg:™"b~κ€eBΰΊ­τ)φ` –ieZγδA”΅!(²‚‘ΒtGQεMΤFΣ €ai™‘vΐβ‹fŒ#UBd \Ωsš©ΕΫσ¨L"•Ω›΄‹zδEfΧ€A<€,½.ER› „ƒωƞτΩwl„}|e³%"Κω-ΓΚj@ݘͺ’KTLΕ±aˆΚεSιm¦#b,ΒBΰBi―ώ§Œxίΰ&θψύ\Γ< ϊ븝θd D €ΚνUnt 4 ¨Δ„ΒA—€‰{¨ΜΎ­uT YYΛHψΠΓ Δ`„DΪψ’@L†}‰Κμ'žm$J©ήQl¬~’Ε¬―hZpOΚ-z’ͺίI―ΒΆ­K°e‘RhψŒΟΉ)G©bœri«qΗ`Θa¦pΖk` RVUΩ]]–TΩ΄Κ‘daL4$έΈ“Πlv¬πϊθ<…Υρ“Mf)}Ρ#R±aqυŽπΖv°OπƒΡ†d!Glήlβ@DνNο¨i=‘Ά°kŠ­Ž \]…‚œ]KΎ_νQςqΉHLU°]ΫaΡλΡ&!ήΗoμίNˆ‹œgC9°‚ιQΒ*fJˆ“˜nNαύνsp#%‡iέbEλΐ ±Βpfq‘< ζ=%ηι\>*nUΖDΧq S0–\…j…c‚ςL-§'&C f3·ΜNšιΔκjΕ."KςIθ€V ΜήθfΥjφ†μΓ°VŽ\ΒΘΡπ0¨Ώ0 ΗZKŒ-ˆIΘ.γ[;»eτδ.gss_(££34Wί^μRόΪhj3υF3mξX€žPZ)NΎg1«->'₯ΰΪȐ.[Ι²~-Gγ;3ŸΔZoΨe%Šο;πΩ²ΛιpejŸ'SοΥ3)/΄0k‘"Ε%§3I_π¬#Ώ°Λ ³1½²)žμ…/?– Χδ`”v΄ϊ5ρπvά3V”£ilB£§Ζ*‘}F¬:47#/8z1ίσρjπXgΔRžτŽE}ΰ)Κ²F―bοΖ•vsβ'}ζ΅ώi2KTe²‹σΞ΄? ΫR5#›ν5–"BσcmS?΄'ŠQN“\2ί„±ΎΡ,Ό²αήγχ¦, φγσ¬+ύqqΓ*ίπσC3°(OοK”UoσLξ4k―Άέβ-962ÈNγSsYκH»Ξ™š&²š"·‘’Π% ΕV’%@τ/i;qφaάΙqp?tί΄wΧφLKo†1:rˈ¨ΆLσWŸΔp·rΆ³[d4’Νq3VŒΦŒΘχxKήUwiW)Μ₯­Aσt°IΕb³’’Φkο·XΧ-4S#»6yλS‰% J¨\ܞ5QΒ# {‘©f,·°\Λ _HθΦ$lχsΨc[7.³ίξηK?8K‡΄tGυΎ8ΒΪ4D―H;6Ÿw(ίέ}Qτώχέφ³±’μΑ Y9ΟV>υύF~9I£9‡7WwγxΑn9βYqI°·†/Ά5žκƒy°© JG H'Ά˜Φ ¦©+χœ=v³RΉΘ%q§τ¦ΚŽΨ#{9NσͺmΫΈ˜―9ςrω"bŽbNw‹XθΐxοΒK γ*ŽKX5Α~+§0žΓ±‘ΕuΈΤ%mŒ’ζ&b3zK{#g:η$R.Ÿ~²z‹ηZ&C2₯ΫϊRφƒŸŽ=·ϊSιŠ71‹E“›Ef‡ϊπ n*Ϊ7Ώ(€”5Ν<@›·'³gvΫxW5^{3ΰοB —3uΏ˜°£6‡zAAτI–―kΞPή4‹ εjοΐΐ7πΐ–ˆKΉƒ²·ψ8yϋχdmxΊΛ4―η3_'<‹ϋwƒ›u»Όo›Έ¬R<|n+4ξxΕRΪΉ _τ[ w³z0νΌ#:±―mυ>ΌG|· Ήƒwι”yΓKυx€ΌŒ“υo׍ΰζ;ν{F9;ψB;g}œΠm’Ο5CίΖk³°7Δ•5ύlΓHk<–σΡykpEΓ|‹εžρ¦κΦ#/]z€opμΤψœ‹7Γ+ϊΝ―7Ηψijφ|svβ} J… ΊΒo;Ξ―ˆB\\Κ·ˆ£ …\άα'Ÿ΅ŸN;…d8,γ€ΤC<ώρ]ύJμ=―U|cŒ½Τ³έdxΞdπύJLŽL΄ι{πθ›„ͺσd²σGσυcοίcΎwυΘf›σ,—8K8€δ¦γΏδ›§½aςΆw†ΐLΙ€@n./σ@!χ:@˜―KοTΐ,ΔC Ώ;ζ€@Βƒ…(@€πΫ³n˜ 1ͺΒ‹€ΐ‚ΑΏI8PΨ"ΕΈ]A±V­±‚Ε΄.ΐΈΨς$v 0ΰ"\Υ¨\χΑ2F|«Z VΈ¬l ΠΓ=xHθGŠ!€ M„–k3ΝΊH“³•€“Ο Š€.@ΰ‹4 8₯2€Υμ€D]Θ 0 Ρ„2 .Τ€ΰ 0bJ’8UNSQU ΆSλd€ωJ=5€Xu€Vƒj…C†0’ΏΨ’„ x MM%2«YbB¨@γ\Dδ«Ω˜$‰ε)+%κ UΦTυΥEς‹%„bjβ•c‚B bbB ˜jΠ„ „K“€ιζlΆ±f€$–'ΦU&8Αe“›e€ε  ·‹1Nsš lΨWNwέΎvlǁ …q’2ΝσΘV‚v\9₯2sŒ9"^~y •!ΊeŒbΒaHNnκ䨝xZ²§‘`²H¦œχE‘s :"όΐ#… 6θ„\Pβ„Z)‚!L5α$\˜AˆNŠM%Œ<ΝΎΰ‹5#ϊ#hΕ4Ar 8ƒΒLk,‚tˆΰ΄$Αq‘~δ4ρR' @Žb{ Pπ- b@ᑇb0AXe•σ΄Zˆα€‡0Aj… †Dκ ΰτσ–J b € β$¨aƒ†0 Ά  †'n `Ξ–B.—€ε(ΰ‚%œ¨I`βUW( ƒΔΚ ` bΐ>`‰δ5xΜ_"¨€4Α=\Ί€&bα„8`ωΒΑЇ‹@΄°D j Έo1‰O "Ψ„  87°abΐ§ΐp±<Α ME`Njp? Τ€ˆΰ8§, sjJ ˜pϋ` ±ΨΦ_jPƒΏ8€h6£QΊ2’Ζ’½±h:[γŽδG—ΩQγκp@₯I'<ρ “†Rͺ)₯)UB^“ά‘zP`?d"’<ΐb`b*C¨"«(…ί‘ S2ƒ`+R‘ UΔ…0e*` —‘ ζPΠ₯.oK'8A—5(Ÿ@ΐΈΕ κqω‹Ά 50NT:HΦΠ… Τ'T\˜0ΰ§4¬a —[δ;₯†ψ)ΘζS‡D bo@ ˆE$Β tg !ˆβŽx?λ 77 "ψ ΐAˆ@ΘαŸ€ΐ#dρ {1Α― „‡π‰£ΔΒ#bȜ€Π‰Xœ Κ&.0§ΐBD¨(¦φŠG€ ²xΕΤ’€5ΏόL„(€ TrX^ΒΒπ‰€!dšX%`Α όά@₯:υς Y„”]X* Z%€5Pι,6ρž l’H΄ΰΤJOH :…E,¨Pœ¨H@Mœ¨Xq(‹†τθιFq(ΌΒ³˜…ςˆ‚tX±π„\ί³œWT,& VΐΖI³–₯QŽnΔγjοΗ:R„_Riγ‰p€€-­iDQRPzbH€$e)W+ν‹ Θ+PaX! –PαεΒλa\€ρn‰|¦€*Α + Ξ  Ÿp ( $@+ΔjΈ2nPΎ€ t H °@ Ψ` ΄@ ΊΞ@ ΐΒ Βv@ r@μ8i3J"R΄πΓN κ κΐνšGδ.κξξκ bp €€*Oh`bd@‘L`ΰ ή"XΌ% .@<Α‹š _x(; Bωͺ€K. zBiζd~τεςFΑތπΟaΎ₯υπ¬{L@ρ―žŒ*žΘZ"& `l"π©­υ$Ο^^JDϊςCύ¨­―>€ΒOϋ>Δ"Mςp Ν¦ε[M:aO μeΨλtβύβ/ξ@$aRΰ`!`ΰͺΙfΑ‹b"dŒ¨p]Šˆ2¨₯Ž’‹Ι"-ކΖί2BίVβ΅*°#8’UD™ψHΰ8Π z+Ύ‰)6α)2r"ϊKϊ`^x Zpœ€…/ΪΒ,Ψβ-Ψ'fL@ αVΐΌζ R€αX½ΐ~.|+ƒ! ΙH$‘’„)>a ( pτb3\¦1`3ψ‚Ώ ¬ ΐPΓ΄ Ύΰ…ΐ)!. $/ΰv θ06RI+ξp-!’¨ά€ΗΑš'ξδκ.|eΑ7NΜοδb πν `ΖβΞοκΰT@ί˜Μ dαŠcZ(ο]0OϊΟ~δΒ‹!܊̒βC`Bώ¬§ΙpaK8€@[D\^Θ ΊGΗΑ*i―yδ‰+χHlΑΊ$šΛŠΓυΒ… ¦-δ’K˜ 7‘Β£’ͺΌ1b’`ΑΪΠg’ςά*=Ξ"cjbN¦@Β h j€ꇃ2 όQpͺ9™θDζ Ο¬`Šc5Α©|j#γΝ΅D45&#TλD1Βή&"[b"ί(H4pΰ$«ΰ‚( ©¦pbαXΔ`ξ€DΎβp=‚VΤMhΕW’TN@α\i*]εh)‚°^ΐ”‘J2fI”V~ΕDΗQše“ZβGεrηrε% Έ`€ Άœΐ  Έt` Ύι °@Έ.0Χ μ`Pθ΄N R3Ξ6ˆρ‘A&S*sΐΡΖ‘οR34αοœ'Ȋj|¬ήΐ†Ι/"τB̏@ ¬ Ωš 7½M>„da8!$‘ΰο,—dt)Œ΅b!¦ΰ`Aha@βLΰ@^%ρ:ΧX€Cςœΐ6! n!˜ΐCw­žB dα{Ι6³X‹ξΞ€’.)ΘvVo @! @Έ·A(`,@°77ΐή ζ†WXbJδL Œ’J 8;!ͺnΰ,!ݘΰz—EyΑH6‘ψœ—)aN,@Ξ/` )&aF `.‘KώΒ3#&Œ,’€)δ)²l€Ϊχ=VMςΘW°(kΥ>Δzκ–"Q$Δ²i!Β%o$gY€#[‹tflEs·g)ΒΆˆd( GEpG—ψ"@a4ΖK22&„`LΫ؍έ8)­Δ]’MLEMξ˜<σPαϋΈj‰ .dY:’Λ4 `κΎ T™‘ Άΐ…¬eQ!4ccfQ`R™“ ΄ΰr,5"Π΄x|…ω—”mFIΧDoζγTT…5œTγΤEƒ«π`šΕQ¦%˘‚)<‘ΊDb3CόLY¬šε’γΔQ€5-_π\j₯U’°g”£θςXa€!ŽΞ]e x™)~ωF¦ΌΔMΒ]δ’½re9*‹›™BD¨dΞ‡.ΖM¦eVƒΉœΣΔΨlY¬¦ZNKŠ#π#³Ψg Ϊ ƒ†efY#L„κθh’ζf”( i}Kα¦$7%#'2‚HZ@tP€£R*Kšτ ˆNξgg!Ј5ώ’V JZIΪ€! 8f™bW4ή" ,—¨‹š¨΅tPC8ƒ4ƒ“ B$ψ ΄ΐ¨‹š ,wBω"l‰©½Υ[ χd‘ΞU•ΡHMU1¬yΈb`ΰU(A*A$!:ΰ;tθΐ£1 c‚2Ζ`βcNψkh°P9Ά66¦B¬΅x€ό–5Μΐ3deB ˜iM6Εκ― ¦΄XEšΗΪg¦ x cσ”Γ³Y"3–c< ²΄˜L\#@"bE<2Š―ΈέφΝα(yeΔζ˜ψ ‘‘%’­qδŠ5"F{Y’Ÿ(„αT²)2#-D»O€/ΘβL‡plI!H$Ά%Ά D.ΐ{p ωFt¦MΥϋθ ηDΰ5`zkFJ½qΉ₯…5ΐzg€E‘ Β₯₯G-†¦ΐ΅CT˜Dό—p>Β-@} )‰JΔ…ΗOEŸxyΫLΞUzϊ{΅ϊ·Ώϋ»Έ»ό ±<νx„F¬ό" šί"¨/b¬ZG¦ΌeV„hx|ΈΝΞσœ΅&PtζeŽΖl’huk’Ζ·ŠDJ©G§˜Θ;B<ΤB5JD5ΠΌ«γ’5βgάΡMB»!C»  Νu»6C»9# Ι\ΟWK:^KΞmh4Όf–Ϊ-&CΗeΔ1l=ΈoδΥΠ$@hTέD_’‰wv)Η}ά"ƒCHjΒ&8Ij”Š’¦ k){ΡW]Ϋρ­Γ: wΚ“ϋ!qd"{έ$}ΫΣ]έu֎Μύfέ…[ΆΪ}ddή„½ήχ"‘›$ ’ΦΪ§€iGί;’ά³Ψέ!0ށ{έέάf ~΅v»α…β{ΆΉof$ώΦέ$ώαs„,Ζ½ΪΩ9°₯ύΰRς(I°°›"σ¨α zΚ=ήΧšΉίˆζάέμθ%*>ζη=ΐW½U}αι("Š}%ψΕη]ώηžΩhιiώ]εΞj\ώι šήΆα[ζέΌ^μ3~μρΘέ5ηΟύεoδ³0ηΕΌζρθ ^θενι‘½ρ+RςCυ9^χυ|ΚyΦλƒ}Ξ‘ΫρsφυHΉErh•|'l΄Ιs΄j}ΉMhb"iNγής7h!·vψΙ]ήם#²ŸΤ“Ϋfe½$B>ΝΧήβρ¨ςσηCβΚΩhή`žΣe‚&ž½ί"V,ZΈhΡ’%kΦ¬W―:uςΔ‰Σ¦ Έˆ1£Ζ;vdΰ1€Θ‘μ¨ δ‚“MbLΙ2&I˜]n©1₯M™<{rΔ‰“gЌ4…ϊ<0tδ‘Ejάι4jΜ¦3/&•Zυ"TW±²ΔIsλK―©†„Η¦ˆž<1|₯PΦA\e \Θ°mDP8*’έi–lIΑ„“ |ρΧΒ"Ε&vΜψ©δšmv΅Šr#ΤΛ‚ΝB>Šx₯V€‘Iwό| )κΙ‰){\j΄gXΦe―.}ν Pl=ub8K \‚ο2tQ"E‹QsώϋqδσηdŸS½>–δfά!osυ©8uΘπάeŽΉ½ΌF°9SΗκX΄z–bAΒΞl˜όOΓεΧ~’nkqΦ[Α!dAΕ‚ΧCž|Β _~Ιdaο½G[Hυ]†ωuϊ΅ΧIΞ‡’i)rx^y8’'*6YχΈβˆ8nD“~ΎηŠΉ₯ΕΫ'Ύ9—p . ,Ηι₯ά„Έ‰₯Ze+–xR<¦cTŽi)dŒ,†‘s-"SΑT”I`JεRx]φζ›'Ν)έ–Ω΅db–Έα©ž€½ύφ ,ΑTΠAv9ωδ^}1w˜…‘‰…š,ήt₯Sαuct±Υ¦iž™βv£f˜αΦ) XŠ VΨeΪι~jZyκH‚ˆd’v§ BO&ΚrcG‘§gjXaE) κ¨ ZκlV(^†Sš fkaαI^³­y˜MΦV‰{2e«gΉNFW±’₯'FΊΕ,Ν₯ ƒx½₯„6&’1uj©·;Λ£Α^A‹•΅£ U›―H]W OJ"ŸS2­ΓW1ΐGm»ΞΡ‘kͺΆ˜~«κ­F ‚ ’﯎ή,•ΐϊ}ΰN1ΰu& ΞΤV_}'³('Ό€ΟˆfΣΏ2}gˆ݈ζ9l'Ϋ΄ͺ u­ρŒp˜Χ^δπ|kTκκ™Gυzκ³f ΣΦ2Α»Φ'sΧ{/’xΧP'ΎGΙΈΫA}(~€ΐ€;@ύP‚S=Ϊ30@ΧΫ£€FΉ™H89@ϊΜ >β%mΛ@ϊKO€|­=°όηŒ@~ρ ŸΟš2ŒΔ$ιkφb²€JΙ"ιΛ_SV.ΐτΙ….u,YνI<&sΥέε5±™M$I‘ NtG’Ψ…πZ›r͞²5α}8XΩο’T7‚$*! zΠή’§Ώ ΐπB @=©IΝ"R€ήαŒ)κA@j„cΐ<‡­ψEA @n°854n‘Ί±E( ΐ+Q£c”v)άAΝc‚$ΕF,Ξh0šIΤΈΕ΄X‚ @Ε‹0-R£@ yΖH€Ή‰„ฌLq‹3šΤξ€Hb9F+€$ρpoŒ"ΟhI0&Qu,T`Τ#:ψ¬i#ξΛJ}lWΒd’@ϊχ©ΐή9ωΘ£„4 Mίb œ0i>‰–l‚¨|aΔΐεL:ν’„XΡU•©Lς )˜ ΄‘2Νtξ\ŽHlipκ6œeS›Gμˆ MΣΊ‘€€Ex"φΊ‘Ψΐ^‰> `EX™x a°'π‚Ό°‚(01Μ*ΐ†)PπM€Β p ΰΰQ`B!ΐZIΤ¨'bA…Μ6•T€‚I7Hx CE'̈ƒGΞ^Rˆp&Έe 7θ§jkΠ„(dΐ8€Β*UΚ‰%@aΆΠ-$Pέ <α!L¨nϊ–@F²―QX‚DP€n <8Κy€Εa°HpP…H,7•Pp,dέΠΊΔLΒxΐ‚GΔB7Έ yCξ|Υ&=BGςzŒ5'*(ώV)ΦKώΣΕ̜|jΧ5H³-„ N‡H<δμEX·‹ŠEp‡>πΑXόΰ‡>ψayˆ²(ς€#ψ!~°ƒ9ΐ>d"EΈΓ–•|„Š,ΐ%ΐ>1‹Mτσ–\ ŠΩZ’^—H₯§_A M„#€ϊ ep%bAΥMΘ’ 5Β" νN< ³…B-`*Dα5¨³$TZ I8!ΨxN™ ‹»:ΌK5-& Yά`΄π-pΚ‘ΙΞSγT²VΐƒAΐ(ϊ,¨P‘ίά@·Έϋμϋ λώ9O€‚F‰ ·—ΖΘL‘Ɏω'hŠΞ:dΣΩΏγ½ΒHqμ$Z#Ύgx²wηLmCκaD~ψ²%!ΔWΪ4"7ΝjΊΦ(#ΡξCΔϋP„<δ|PΑς>?ΰΑ~'ϋ½Λ2Ωy°AVΠΘ£ν„‚•ΐω·cQx˜ 5p³ΐHšΠTμΣ±€t e ΰmQ@ ―€€;>ι“@ιγ;=…QpχQ‡χ5`*υ ε² ηdR70 w›π mF Π 8u—>χ•>XwSŸxH~g@γ x bV W‰₯86a’φ wL0 !•ƒ2Ε>•Π PRœ “D5π 06RΑτF6Ω‡|=a8>:c“6²γ†"€UΝD{ψQd‡Ψ ©Τ;χVp…MΤΗ/ρ ώ’ωF2Πdΰ<ΰG€yPεw~Δyΐ}ΐdφvΐ)€£ΘdψΓKΥ – ŒTg!°ΐH›π #`U†»υ²  ’P ‘0qOΰmi /υ°°Qχ³O΄Π qΠOQ0 HNJh±³°‚1θ &E ΰ Βv±pwp_Ν3i– –07!%ε  >E# eF`fi6O} x =%>P―pπ³ S8 2…>80mΑ¦°pwH€ΕΒUΛ’|σ!1Ώw:&db(ς*&cxx{Ό“}"&ώζ’:ΖVΈ2pΡ‡ r±(3,ΛAVw²θ“}0N˜¨‰œθ‰}P™`)0q&Gypl*€Pmf™`ν³O5 ©a€ ’‰{°@kA‹%Œύd ³K©΄‘F5[5ΰia `”vQa …5Π<’P  ƒ― ΓP Ÿ”FŽλ(v £@‘F΄pw@ υm²pPpΐ ³hK%>+Πqp’Π„ͺθ„~@‹ΠsH“ω ŸTq¦PΨΦH@ žm»„}ΡsšpW5Ι|κ(A‘#IΩb#Τ†+IˆyojˆΟ„34ΡpχΖ|#Iiqˆn₯+A1Σ δ¦’ …[•Jš€’~w•p ςB Xht7g 0( άH Oη ±° ±U r 8eΜ‘XπdUv D0{Pq~€eΟsχsi+ōš€S ―p ㆑v 7@ šg ΅ ΄ΰ — @I™“šσ‡πΖ-ϊF8γ{Κ§©΅G“2‘ž"10v|)bf2ƒX–©δCΤ$”u‘MRW †)Ÿ‘X*`xp«vΐF <@*P·w0‘I¬wπD‹εqΟSl+`’(Μ3 E –` ”`z’€Zͺ4΅GQZ ΧκF•P ’° ›` }qPΝ#›€­Ÿ$δZN  νK‰u  –0[ͺ΄i •M Œ pΝSwξϊ]5χšp ³Utν* &5 P ’fδ7)!6 ~^`Odβw•š2©”°θZ` Λ0Υz­p’Π―•°`}J sΠ=MƒŸ«©Ξ)l3“Γ„ž#δ¨ZMρTΫ:Ήo<™ͺJ'/Τ‡3Γ3ŸΙq}=*Z±Sθδ<πT‚ΠxpNC³SPTNdιCσSξC‰$ 5°°i铦ιS$UμQ†KAςs|kΈˆ{NQτOΆQ A†KRω₯Έψ>ηΤ=ΫNHρO¬bo\U»ƒ$$c“B‡YB΄£»IρKΆΗ*i,TΌvΈ©υ¦»rθnΌΣt<!'dQp—Ρ%]EέΫ½c™₯DEΜρ@V@η@χ@0ϋtƒ¬$Ijj4„“h4Ώ―ed5 Δ4h$5EC³u€IRscXΐeKGs4 lψ{F„Eέ£KZ‘¦ΰ4ζ›<[„ΏF3lT8υϋΏQ?bJ&™{#«'α7/Β“0„{O{‘zB΄72; ':<‡+–ŸΞΗ2AYpKB}4S3M}(Jγ`>F³”κ[L[T HGc ˜‰ΒVΑF•2CaJAρ/ι+­σk5ζL πuτ@ΑIHαΖLΣΔ€Q8t¬IσΫ1ΐ“sΏwά#¬"e8Ή148Α4χaχΣΓ΄KBs²}ξ¦6vbΕWžQƒΓ±SIΛ5Ξ+mXη‡y";–+Ρ‡MΗ/ η/3&Κ1O‡Œ“£P* R›b{x΄·›Δ£#ΉCΓΕ +~hΜ·,ͺ]ΣΗ“ϊΚΌΙ…ΑCΎΘ2oa/Šxpc[ŸDv©σC…δ"iœΜ"ΖBIi.ˆ'bΚ²|ΚΛ<ž»KzK©Z[“- ˆ S:–ˆ½|ΞJάΝ=‘2ΟG/ΥD­\DGyŸΜΓ’-©³“LqςΘΓΗoΖ‡ΡΟ<;[ΡνœcjL a0έyΜσ¬­£Ιώ\wžΟkˆM/¬<”QΔτ!HŒ΅₯η{'ΌLZ2ˆI @]ΌΎ4-%ΣΜmͺκq# Γ0oςΞnΓΓΛϋ5ȌπR$-σVvSw±ΠΫάΠΊ·Ϋ‰Τ=Ρ4 Κ7¬ΡžΪΦψA&ΐχΦνV“kMž!=Πt}΅(ι„Χ)Ζ{½:or+<‡"‰B<!"08f»θΌΡhΧݜJΩ|θ΄Άμm˜Ν’Ί>"i"' ­#Ÿ=ψ\cœ,;ΖΥ>60Γ Œr½φ©Λ¨ΝJAΡΡ+Ω(•ΚΌΡ|Φ=1Υλ6Όg’ΪYKΗ½Ϋ-<Ρ Γ³œ"ΏΫ©V-‚CΪ+œaΓ· ½σbΝJ"}ά5ΓΝ/ωΟgϋάΛΪάѝvνΜΧmΥνX-Νς4<1.‘MΙ™\’ΊΜέ›­‡^bΜfQΠA .$Ω>&ή!7­ -WŒhίώέ*^aΦIξήo˜β ε s2!ŽΔ ΰήΜΓ£½Ϋϊ¬β…/Σ4ήnv‘Ν9=αphΤY‰JΩ½#&Nΰ•-- ­,νΛ> ΠΘόB]υΧW.䣓δS*©RΰέoΞ»ΰ?d/N½-ϊ$ΗSΆW©«'Ξ/ΆΒYnΰΚςhσα^Δι̜θn~ΰ,~o—|ηQΑCE"ή…"ΓΑ$ϋbDhžΫAΎΤΆQ·!‰χ έ₯ήδ›γb0Φ=θΟόM’:ΙχΆζώ‡A²ίͺˆΏΞZέ΅ξy qυΰ‘Žή7sW_“j2'»7ͺ`5ΙΩΨ½ηoŽεrη¨ΜF-ί§žA>ηMηψ.ž_žοράΌσQΨ±Mήωb½>ι'Nθ2Κύή€ξ"₯#'ςμT~ξ©νŸιώ#I,ίΓnι£μ…½Κ؜ΝoAŸŸ€ΫΩ]̜Σκ;ύαΙΞΤοη ίΎBΑ.$5Τ郁ͺWa΅ˆ.τΧ κ`’dε¬Ξο/Υό>ΖνuιŒέΨι­Χ n₯n2Ÿ (ΟήG‘κήA&χΜα):·ΌIόέϊaΡZυLΏ2Gΰάnζ­p+?Ω=?ίΰl+ΉώΠ#εΞλξώ!‰1μ4Fΐ/‘‘4E3©A£*έ™ψ+ξ‡Ž£KΑΛ³ρ^ςΏΙ±ߍ“X諍ρςό-Π"ϊ‘Jς7λ΄ΝˆΒγ€_Υ £ L?²=zΌ½/ςŽΧΆβžOΜ2δΒ—| °mόΒ―σ7Ÿρ„ή;‘b|ŸL]²ωVu;ϊ.°cρ„1π°γŠ‚χbDvέfαS*6,Pbœ ’K‹K‡πΊΰ@‰ΑΰΐΐxP‘‚ P P’Ĉ6|ˆΰΰ‚‰>lψβΓƒ'*`2$Κƒ)Czœˆq%L‚*TdY³aD“+R|Ω1"Ξ‹)iNμyΤcR₯“&τΩTκ@¨SO¨ΪκΦ…\fυŠ4μX²V!ΐŠ'O:½z+–,Y΄pΡ’%+Φ¬Yp;yς΄Τ ΚJ=Ε CˆΰΨπ@Ι“%I*lAεǜ @ΰ‚%'0eΰΨΑδƒLΘ01ΰŠX!€Ÿ`ϊш<”€π~AαΉ(ί!θς› žψ 䈻“’  Pp'” ˜―ƒΔ8―;½;Π±ŠxΎ‘PΚ©„σΦ;¬ΔŽ˜ςˆΏΓP„©*₯B+ƒΆZŽΕ8²ΡΔ©rL±$‰ΐO‘ JΘFΠΪd-ΐήze–ΉκΒ ―Xφ‚λO>ω„“Mp(¬)^Dμ,MFΉ8ΛL3WKSMΪ:ΐM5ΟlΣΜΟβΰX*Ιμ Ξ#·ΰP€Ž¨C8τΠέut FR!ސ€(€œ"€€  υ&ŸC ΖB€Rk υ₯J-„Κβ!Rέ5W4Sdθ22Άfu ςΚθ΄’Y2)V’ €(–΅‰Žν€Y˜ %@(W•BΥΐS BΞU\ˆRR UΘ#(*ͺT’Α, :O„±E‘vτ¨ίJΘ©RxaSφOnPλ“ΆάjrJ(σ‹JΈŒ0m›`Κ°€*Π`R€B’Hj( €ͺ$ ΓΦ:3 Β(B’Πb’ I˜ΐ–x„ŠW,ι“ 9έ€κ€AQ$DA €ή ‚ h܈mQΘf`ί–`‚ΘΈ>K! °¬  ¬“`b‡CŒR-:ψ€:¬ Ό>"W„Βg#Wcρ]`Œ1τ•θ[%8½‘DnZ ΔhφΖ= h,?€Z2vΝ¦½e–€τ£άƒω`| a>΅Ϋny24υ€ /AΏκ¨ƒηπ½ΧWu&ˆ)σό½R_bχ›&•xΉω;ΰ„;:+-%Ϋ‚‹\ζb—(νU '>±₯.q₯}%9‹%d 'E—˜…'`α ΒΤ€²€‹Χr€MΔΒ ΠΔc vbJ€‚\`A Μΐa0ΐœ`‰ΛHΒK8q₯ˆDͺ€ ±ˆDB7hb‘€7,"‹€ΓδV)†€ Ze ?@:l‘ Χ!€DgΖxJ!©Zœ0%†2Π €D—ΈωάMt?pΘ:χΠ‘PJΚ• a₯_t,ΑC&0†f)ŒΰZ@Ιπ`λZͺ‚ˆο„‡·o•w#Δ TyN:ψš+Ÿ…¬Π_>H#Ν(jεjW‘μ\½ΔΗΎό‘₯R€Ιύ!-E+b)NωΘςσΙο}YKζ@nH“ˆ‘™η; Ζ”Δ±Έ<‰€t™R_^α’mΒdήτΘ6 –ΩΒ5Xg˜‰H|šD-$qH al)α# ZTβŸE ,!Π!ΘBπΔ+j` {φιX,ƒ“`QΓΫLX\D Ž8A,Β4PĐˆD˜€PiS„ LPEΠ ΎI­π¦JΑm@Έ:ΆBS3aΠ†w€αQΌΧ"Γ :$θ8u \σ7ΘΟtΰrSνO1 ²ΌγΠ©JPπj;Qu« (Α$ΰfνj €σ€@° Ϊ½(" π€ π@$UΨj#CI| Χ1+4+t€ ?¨[Νπƒ€*©r„ή„Χ υaΞFΆƒL‚]“)ς€_‰h˞-¬›ιfYh«ΜkΧb8H’Ζ2@Ιβ.xΡ‹:N€‚K'λHpr–JΜ‚0“ˆE j°‰,5Yš8a [π › …–:!‹XbgΡR `qΡΔ‚jšΨn0ΰΧ€HS”C"bˆ:X@Q@X‰Α`A(Β ?Eφ:ΤV…<¨% ‚2pςn‘yHˆΫƒHR½Ξ”ƒΰΚΰ.R}€ Uγ9‚$λ!C!Ι‰fεΰ ΐΫC:@W—Απρ{Θ°€Sώψ]A€©’φ4$^Ÿ3C³$Ϋ*e©’ŽΐqͺΔ ZAš2wyνΐ)υϊƒ\Ω8ΘΙΡ¬z‘Φ$λ((β"B”Β·DΪ]fnΆ"fΊo·_ινaΒ©ΆΣI±ˆ]B&έΏdɝ Ό&AΈϋ .u7-+”D,ψτ P˜©…)!'`APŒT(%`Q¦όξχbώ‡Π4€…jiI’B‡šVqux0Ε` B †ίSΠ ψX*RΛ2ŒŒ%°ŠΙ b»x•hzΡw8D9Ψ­x ‚;#Q< ;„#oύA²P mO±KρΠ| lΚ‰?δuΌLγΏ ε»qωn hLTίH œ»;uπAbJt:c‚¦S₯|εWρ‹Λγ)Ίκ;ψλ€ρ~#°v­Œ½t¦kλ―°€O)Y!nϋ’n°83!›zv…»θfN₯F[qΐΕ’»$Έ8‰.Q’’ΘJ-˜λ¦ΪbC>Ρ |nβiζέ„,ž€!805ˆΕ+X&‹˜A€0•6F7q+ΰ΅ψ―ab€GlB–ί„Ξ΄“&„#κ@D ±АΓ\X2ˆi„Q›ίxδub–恍3«“dθŠW iG¨¦έ€§Ψ΅ΚQ"Η@W¬Η*3{χΰ«•S‰ #ύX€<ΒΝ@±¦‚·³ GΓ4Ω H δ­ͺ“¦ ”yβ« Α±θŸ$ι4Žω΄‘…Ή˜…Z§’w‚@Η`™ZΘ M]k/ΎY…WΠΌΆ€(¨JHOˆ]σ„@Ό2 Œ…’…·ΈΜЎξP€«±ͺ0©‘"G@"˜‚"D0 ϋΆpσ©:h"D@―©=‹x+šΛ7:•]©#s>VŠγ³1»²r‘3VΊ›9c³3‚7놂4#A ”σ#H ³rΙ>:²#c‘3p1•Ÿ-_I&†(?δ)AΔkΉΓΰ‘α‡(JΚ₯;μρK•ΰ-Έ2(ƒΰK@0ƒbι#\:"ρ‘a΄ΐφs¦‰8F₯σ 4¬ƒ@”&«ΐ­Γ¨Šώα4²+§³{Q«’Ώ`;TS΄hz¦–x‘³`‚0M€€I  ΊKΨ„Kΐ(° ‚3xGKΠ„J° t< (€‚3y„x|Βΐ‰OQΖΈ‰70 pΠ"9h³1·x) p9€‰€”D[¬½ ,μBšΣ›P“`‰i¬εa₯ψ>ϋ€c±š£‚xπΠΔ]€ωa χΈ(λŽΫY>Ό’ΉΙ —v˜šΈ•Hβ­q«)œx³›ι`,c1ΗΝΈ^ΚšCΉρρ‡”4°έγˆ‘Ι›¨•μ‰ΖυiŠe”F†ρΊ­+ˆbμKŠ9L˜¨ΖΔ 'άζ \ΐ…ΊΎπ <5μzŸΝΈš¨3‘ΑτM<ωL°Σ, ΈμJΦ„€¬x€C’H©Ν³aΟd”I™Ÿφ ΄Ž@9tΡ‰q€‰€Dˆδ @€X1œ:[4χhlΡ*––Y2Κg‰NSAΣϊN †³€Ξgω3±ˆ•.“€/sDšŸž΄žH$K—rΤΟξ¨έ LJ‹4ύΉΐ§cΊdμ-΅²”hΜbΤΖόŸ*IAη΅tB κ².qΤΊ5Μύ”Œy2@ιPΠ Ομ 4™ Η64©…Νό ˆpΞ››ΧL·Ϊϋ ΐ I{yΝͺψΉI“­Ή–(ž―¬ΞMιœε«Ι†ΫJΓŸΔ ‹#]€/Ή!Eη\8C-cY…‰σ1νΟΓ„΄ι d―XPlβŠΰ’¦| „ lό‘2§s’ΠuZ»ΜLLjΝΣψŒU5½!Υ FE€Œ+ε¦ΏDˆͺΰ<ηό Ξ A¨Lͺ;‰[ ι‘(u­,³5Πς! ‘Τ@uez‘Β@dr4ܟΌ“ύ4¦@ ΰb65 $'= ΄3 Λ΄ΠΆ+υQ‰iΥ[%Η‡άΤ\}ΣtσΠyΓ ₯‘R‹σTύΝVlΖl‚ηΌE,ύTW-‹ψ ϋAΣΎμν‚ΖŠιΊ‚ΡΥTέKS υΩ΄a  Y8»κSv25$Nr•@ŽΐΡςaΦβP5‡±.5Ν8™έ‰0¨Q‚ΐ­…c6p€…»TMƒ€-ΚV…XKέ Œ8#!Oτ3γ9/αώP‘‘Λ¦•yAΰT›S}₯‰˜W3έΐEu hέPx‚V)=4\eΥi$‹™WU»˜l Ž‰Μ(©L\»κRVf¬Zͺύ₯CεŒΤŒαŒΕ„€Ά]QΟ°Κ‹Ή5ΡE ¨Η‘‘ ΅B€‘E€#ڈ @  ”ήΐΤή*ή DŽΰ,€πžŸ…€Rο9ϊΈΕΝΕΕηιθшΞE]πΨά†“ˆψ˜ |›­žxέ›π“ KG΅?юŠpΞOΡ7ϋΐšΨZˆ…Τ\₯©˜Ÿj…Σ¨5Yuή©ΠΤ’ΌWSˆΕœή"α΄Θ˜ΗάFτFv²PƒέΧ¦³‘«YίτφΕπL‡‰03’Υ4ŒτZ”ϊ5“ψ©φ­Ρ9ω3iZˆΆ6 9K‘ »ύ‰Έ€@θ)hDxΪl¬ΨMGy”FΉ:˜@ΉSR `₯ρAdAΏ‹ˆ¨`€ιl€CŒ*œx,kD:ΈRy‘Ξ2S8d9³PςMR!ca±V%η‰ R‘O–O.΄σ4agNτ|•KI—ν`bΒL_|΅UΏΤΐ DΖ΄%WεΝ^¬₯^xνb¨5‘τΧr*VU§\ ΧϊIΐΈ& ‚˜9Έ'xœA“¨&@ƒ!0¨y‚ά1Mƒ9ΐΩΨ^>v*䋉š29€ δFHΆ‘°c¨!Œ8Α*ˆL'¨™Xƒ3Y£9 mI@-τΜΏ =ΣKm;€ σš0Ϊpƒ ” HΆω©ˆœ)ƒσʁ`8δπέ;Ύς½C²}Li1Ππ›οΔ‘Θ‘fΚ™€М†Ψ+‰Ѝ@Ž Xž l π]Ό2lΩΩ Αά  τδ€3VZ¬u&u6‡ΐ˜€*ωJx…¦i,†ΆŽΛaΊž-c·K^fύb1vΧβ YΣ8Eήβ»U m” Ίψ˜![p¬.'ΐ .Ό„ΐ›’ƒΤΑWΚ]jNˆI¨LYƒrΪ„X~3ωι & )ˆ‹YΨ„ €' Y „PyŽόm‘ j€‚W˜N(K …Έ ²„²«„ά ³¨Hθ!y,ÈM\¦)Ψΐ’A‘©Eψ°7HD )ŸŠ5,=4Œ~Q$:E°21†˜23>¬r·;j Οj7π1ΚΑ–:R>G #63ξΈ›]κ23ϊ1y³£Lι”άΑ±δ#•31ι,sιΈ‰‘Έ9³#”Σ£9#H*3"Έ†xΕ€‹³X8έ~₯9λbƒ1h£Λζ•έ~ΪΔόhοπΠ!q; ™Ίy…ήτ<ν4ΌLΚT»NΘ-9ΫΑ܊ΊK‚X°;P°*(`»»€W¨'‚%ˆP`Mΐ…!¨€ΐλcH¨€: …Z˜'h(€‹+@ƒZΰ“'¨…X0Θ)€€ΰƒΘA[„&°(ŒŠ…~¨ XBͺ…&Έ ΌM¨ :Q`‚NpAXΰœ‰υHc0H„7@By(zB'―PC€½:Π’……ΓZΚ›ι«Ι!>ρ«ξ0gΙ)²υϋJfϊhy¨έΤRœri£Υs1+|f(ΛΘ‰«P₯ΕbεΓo–Όξ7ly18– ±ͺaΡs,«£Κ²›τ£­¬9#—ΰIœνY>(Λ•’«²˜Σ*—@¬ΒαφQ‘‰Φ…YΥf₯Wgή,.`5ξmΣ3εΤΨ»<}‹•Μά ιŒ, % aG@<œ…ZΫ„N0Pΰv·;3‰‚·'ˆ…hΫB‚\…O0ZwXHY°»&X!5©ΙόM!3ι„MΠJ0“ύ‚‚tηGZπγZπςΒΜΚ °ÁǞ§[ž0X„7 `7H)p3lΣ<"+"5 „Ψœcys Ib½|„C9 ΐΏ ˜œm¦CπΠ3ήs'k²•«~Γ™Δg½X₯LQ₯Mͺ₯C¬₯1pc₯ ‘7€"NJ霸'\Z?N • ‰“7‡₯ϝYΏι© Нv9 Ό!Κ·Β ¨ϋΈ‚«ŸOκ½HvόΗδέCίJΖτnήe%GΪBφΦ‘Xψ~>΅’d•φ¦γ.Ž Ί-y/nύΝθ>‰~œ…x‚X€'HύœΩ=ωšΟ*ˆMΐƒK˜CvXˆΆ Π–ΟAΑƒ€NΠ„ ˜ͺ€WΘΌXΠΌqWZΰ‘žιδί§Λ{6N¨œαλ[Ύ6¨ƒE@7Πxπx_³a0 °" ›ΐTώ[ #εZ†Ψ\z+Έ§{€πA‚θ@¦„2bΖx(°ΐΰJˆ‘P ΐ‡24όA`βA@S¦c$΄Μ(fa 2":Œy(FL‰ c>\ΜX@ΑΑ‹e:ˆ(³SBΕ,*d)AŒ 0™ς—~ˆ90”@ΗJˆΠ(‘Δ2@$ΔΈ°ΐNv=˜‘r ˆ‘ ˆR ,x°`ΐ 6,A`Ζ„C6ˆ8rbŠŽ)cΞ¬Y²ΰΙoMΨsfМE£.ΐMœ>yκΤιΥ«Y±nΣΒEkχνY΄e{βΔ Τ )“N au₯W5pΪ`- `qpαU%<©E €€ZNjΠ’α†…Λ!DΰΊIV±4αˆ5@ œΐ‚,π¬¦Ι+ΰ‰t―xΒ-•ά Kw•Τ²΄<8\0I«έ Ι&'‚RΙs0πΐ,Hn(’ 2(ςu$bΒ‰P@ u)γ€&dE|°@tΐ`€νT€+D ΑΥΑJό`ΖQM©€Ql‚[V}yœAH@ΐΤRXv$Β*ΥT†8}T“F ,π—Q‰a†ύU‘•tzP†d‘&gPe  œk‚Αq„ŸL@]b€IL0%Αl:i‘¦δi©9₯™Ό&IΩ―ΐ™ΈVVlhJ’dΠe’%Wc EΪj8€"œ'±Ρ6‹m΄Θ²Έ²xϋ['ΑEηAΥ.F,sΞA—&ΆΔ& ΪΑ’‰wξΝΗ‰,œD%΄ΐΚj"<-Ÿt" T‚Λ'œΜ" PΔ 0Β›,xΐ( ` -œΌKqύΚRΛΓ όλΙ+MgE0ΐq@"2B€ˆ#n©DΒ±HuΘHC"ˆΤ± π@―…‘%†<1ΨlAΤ΄Stͺε­o&„₯—Gω•$\jΊΥ˜e˜*”b'νd*K›:4—J¦rͺTd P J€ΪEfx@kc δB όνPœM’‰BO~9xJ%΅“M«α–•cŒQ:θΜ”’`»΅S_*ϋYdΓ"GΩ³›νYο‡Υξ–aφ»πΙnΖažf|jΖ;O‰Α&[··…+,±”ϋΚΉθ‚’ξ)†ϋjLPqQ< ²%šDα!T,αέjX²‰%Ο$›h’ Έ@ j@ΐ \`žx_:v€0hB–πO QH`$ΰ "Π4„ ρ[4A‰ϊρη}’xDqF Jβhνγ’Π€T“Αbΐ‘oR άΰ’ 2"b0€°λ3πΐ$Ϋ!‹#?ψAD*ςˆpΙ=%@ΣDP‚”― (Α³R 0€m† ‹€₯>NΒF6’ΙzdEr’„$]ͺ’Kπ¬·=Ι?Π¬Y‘.ύψΪZΰ80@™dHίΗΤ±)ΐLωΈό iVsG¬α! x˜aW-ΕΞ΄k0V 1―Φ;%!34ΡΜ2YΜ7}([œΨmjc›μ‰‹{ΎρήΉ„³‰β+4½„ΜΑ ‚0NtaξωNΝάγ±εxLά€Ν…£Ξΰ3NώΩΜ¦;ϋ’ί>=δΞwβΜMI‚ΐ± π€δX-`$:HΤ’<›hEьNTX ω಑Ψn#0 Q6²¨κ354HSœΤkΑiMΉRΊΔ΄±ιPFΪS’š₯ΈBJ­vT›ΐK,yͺRS:TšU©ͺ"*O7B’ͺͺP5+BT5RΝ S3ˆžρΖ‰θa&­ΔΤΥ#s γ)©™Οά+_νIs[Φ»¦ΈΖΥs‘λ›νμ«`–£šοH’;r ž΅œ8`gΗ!@.! KHβ³N°„%Π)Δ,η‰Λy)‘fΕ„ΟΒΦP Hfέc,·DYj) ΪΚ’ζ@E€˜Aρ‘]ξ±ΐ’δΊu‘`^zβŠvΡUk%Η(μΪl‘d‚FeήσnW¦ X©\U&Иδ+―L/Γ{ΙƒεΌψ•yIR υ ·Αb,°’K`δ«wp-¦#³ΰ‚D1Ί hpjΪKΞhjk6Χ‹6ΗΥ½οMlβΦ€ΣΛή)Τ±yC‹˜‰ gͺ9ΞrYœHΰψ 2VθŒo•_’f9Θ1΄L΄œ¬ΛΟ~fK%-ηΛ.¨.”Ÿ5j8ŸZΟΔ¦in-e:ΏZZ°†L}ζλzΦΔ&Μ΅²BΫ&⍑Ή‡Xo‡ΗΞ ^-?ύd ΐΜ¬3­m?ζ= g²χjj^½yΨΚΆ―ΆάζΤΨΑ™΅bή¬χΆ%β,v֞Qθ–E%­c!Μ™f'qp§π' C7j$ήπ›Ήvk3_σσvϋςΞ„ωU΅˜‡š\Έ–67Έη£Ϋς1Ξ ψ¨›=h 67Ωόp7ς‡„έ6Πgΰ€bΔ±NΨD%όs€ XΒ @-¨Mμ\ΰ†D£Ei vd“†?Ÿ+΄ϊ eWσΝƒŸχ2½ΆseΫwξψ^_˜¨ϋηΡtυ‹=YP»Ϊ°ψΗ‡“mΒ<^ήϊ&HΒΰ€„±φ$=…Ψ]>ΈΓsnω‘“˜ιB§ˆΧ–^,β‹³ωͺΟόΎQm}©ƒ?αJ§cΎ/= OSf΄Ε,­pqB‹NΧΧ n !R¨A>qp*¬Θ ά@<Βs\ΐ Tίέ@ |ˆHBΆ}Θ#D4ɘNŒ$ΐ‚0Eς™Ψc˜ε)Ϋσ)߁‘௝™°}_΅<Ÿ±`Ξiή“…] ϊΞΏύœ *ž΅°F`AΫmH[n„K’ΡΣό…Oύ‘›¨‘G,ΐB,L0Α+ά†'<'ΔΒ+œ ω‹,Ό'0AΙ€LxΘ ΌΚ‚Ύ\ ‰„ΦFΑc‘Φ,aύ\Ν­ΪςνԁEάς b”ŸžξθUσ|) φZ"ά„ρŒΎ1“AΘΥ11\Γεa 6cίωaK†UΣ5eOθY[Η%ΦιΡf¬Ζΰ(ΤΜ ΰΒ6ΜH-HT,HΑ „Θ PΑ,u,ΤΙτJfΐ#4αlάGΈν kDB'|‚ ›%.ή­½ ŸEοΛο,^žΎM’²œ ]Y#ƒατέ•φEΖZ=]ςΥ’…γΒαœ’Zϊy‡νΖΖ1!ιΟˆmξ—`όž$ΘΒzΘΌ‚t€'€Β8ΐ‚Ő,<Ηόή ΌBiEΐB€tΙ¨œ°  ` αj8A'ΨΒxΌ8r#σ…ΰσ β^-EωωY6²±Hœ^=‹ΔEή"–ΨLF_ΐαΞ7“­1†=›†±ίΎ-!p`›Žγ nFͺŒqπΗ(HΗx‚ΎάΐDzˆG\ΛFˆG"@pδΜ3FΑ‰œ'X‚XΈF&Π+bΣbM>b_½œ$v£#Ϊδφ!fΑqaܚ!~`8²γTšAζf€° žQΖ$cρδ…΅F†a‡IΫϋqΨ‡mKˆΌIfg¬FΰBw ŒB,|H,HG'˜%ZVdΆ‘ˆ[BG,Τΐ€‡ύ”έŜˆ‰l‚$€X—S<yΜ‚ofeψՎ͍ša‚έ`V&dˆ«Y_9VηΒ$ύ ςΥy6"j@fΏm#Π‰F­±¦» Ÿ`uΛ·tΨmŒ7ύ#VξτOΏΌ‚Ύά-0cύxδ ΔEJB,Η‡hB'Πv<ΑΜ,t.HGSΞμ ‘@Κ‚žcε:j&wΖg;JžuF¦&e’cν\&ˆζyφgΆ¦τ1¦b&β}掚"Ε½Ζ?έ§>"Χ%@Ύ#ŠBSH‚&T‚ά@˜Ν,€ΠΜ°Π>Β|GDΦgYΒ2$h Ύΰ]:Εj4χXŒtY£Σσ棑α(ξηχ|œ¨ςρ+ο0Ζjμθΐ&οΐG& 0Ζ„‡dΐ|ς¬”`ΐ¬Ap pΑDΐ¬A Β<Τ_@¬ΑdhqxoΚ΅j£œ‡ W€\―ά`@hΐG€pΐςχfΑ¨Α€|¬ADp΄-β"m±&¬₯Ϊmή&f΅.ΞΖ«#Ρκ­OοΧ.;λlζ*‹γRΣΆ~’ Ηί’]―_;'Ži2€'€θ€Dtˆn`Α4qsζ@£ςG"±D1€d3ΜςΨ2.@ 4 iŒ/³0{GΔπFL+c.;@5ch@h€΄qGqδ@Aτ0l L3J§Ad€qx3θ`„s¬A9›m%―ͺ‘  ‹σ,/!λρΏκ’ΐδYη.%G[ρhΐ>π?,Οσ^n‹Zςω…&>nΨV(J²ι­0ς*›&―AE?6€A7§Α|„ΐd«`ΐIΏre2¨AUoEΐ€AΨΤ¨A-«F“‡-0$C9Fΐhΐΐ0n{HTu7S1T5„ΐd§Α8Ό²e7'Jƒh τ+1`τ€Α4G@tq£²WoX‹56&ς€rΠΪszS ήzΰοΌ™ o0σΦNsέ1 怡ώ5ζ‘X}jΖΆ “K$wΦΞx2+“`ƒυtAπv|Α-»²€||DŸς`€-ςIgσŒ @€˜ψj\‚l{Ȑ…“ϊB@d@θ@|‡΄Ad€Tw'ϋ2¨τhΐ@ˆͺAkΫςQ[6Μr€+c‚7§ˆγ2Έre³HυHυHΒΗZ˜χuφΎ§^QXkΠΞcͺ!ezS†˜ mρœ6>šsΖΪr~Yρaλ` ΦlD―φx«(‚+ζŽ*Ύς)?λŽP³‡`@쀃“ΐθ@”3€Αδ€θ€wηΐVƒ(χ0Ÿ4pΜ₯̐©o 0˜h›ΦjhΑtΆwTvt7€+Ls€Α0“€„°Αtrςm“€w @ΐ 4.+€-?xΠ0¬c(s<οθ±ιyϋ3۷ǝog³*―όέμ:+~“.χ6π+-[e†@ϋ}’i"φ€c―’οσR6†Ί:@O@`ΑWΊ|Α˜t¨Α'“ΐD4n·q`ΐ¬lA¬Fwe]8›ρi§4磃ΔqDρLxkoχ0ο±ΟϊFο@pΜΔwϊΙœ<Œ€nC€0|°V³τGζhL–Z…1ί2†Ικ*αn@]°^¦Ή7ι²ν ο%Έh0rakόνϋό)–‘ϋ{bjί:όΑSzδΐ€sxςI· ψ28z(α¬[ρCSƒŽ‡`ξS˜όˆཇDΐ(@¬†±›ΈΡ@Ν‡€„τDΧ΄nΛ­ φpίv9Ϋ΄9ηX„Θ_†°αΪ©n:Τ…Yt5ΨΣΣΙ9\‘ΰc~Nοφ|j ψοΣώf\ ¨έχηΆ΅«4<7'9χpWσ­c€ύΆiΙμBv ˆƒΝ JsŒE ϋqχ=k?Έ©Ο|η«@πeΝ—4i4ˆ@πΛ!Y£Εΐ6`¬ A`Α, PΐS.* @8°’eK—/W2€9σ€š7=Ξ” r&Ϛ3mΊδ)“fPœ0‰UͺΤ(Μ¦-}ή|Š3ι’J«ώ΄ΚrκV―WΏΆμViT²,³žυ ΐMœ8yκΤιΥ«Y³bΙ’΅WVίY°κvςδ .¨(Υ4λjβ— !μΘ‚†δΰ²%„vpΩ!™@δ-[vDπh@ƒ- De{CR“:βD@€Δ•+ „8ec-\΄lŒ@Ι ±œφ}ΐ†θ:Dˆ}‡Ρ9Θωρ[±^Υ@|t¬T‘,;‹ mYσ™nm/ŸΏΧύŽ}ͺ-ϊ{i¬ψώγ/Ύό|¦Γr`-p…“O«ΛΌτΪ‹Yb‰e ƒkΦ³ ΒΣκ**<#ΐVΐFΚ›ΡF!˜‘cΞƜ\bΛF ΛB`FTΰFPΰΗ;‚qdt@Η!C‘£v΄±Η0…Z€Β¨Ε;kΕ­ˆjοM­ €Ξ:ϋjN—šπΞ:“Ϊ“?›Μzΰ¨Ε])Α›ΜjoͺEYΔΙPhšν­Έδͺ Ό<τPΔ_Œ0N KQ¬›X1($•šΤ+ςϋHVYu₯$\ΨΥV|E΄Χ”όμ ͺάψΘ•zε•'l‚ #XX V^kέ€ύθZ— (*ΐUTρTL7;—‚°>HΛ @š²βΥ@«Š₯TΕϋςδσΑ»w«Dωύσ«|Υ}U>xž°BΈ2­ ―XφΒ…/A}e°ΒPl“&‚έ˜Q’ΥδXaU—Ϊ_=bY¨]‰Uϋžd…ά]Q^9e“y’ΧH<މQœdιtέΜSΐ©fξOΧυwΕgeZλ—ήΎXΏ₯BΨλ—,…8β»B€Εβ? L°O8Ωδ°’ΟΠY$©%²ε”ύΎ™`ΐΙςΩMΒΝͺΦِ¬ :%Ώš9難>5ο‘ΘbUιΌ΅]£9o©XΟΑ*π)9―Ο< 1\{½dΑ½βucR;]lφŸ1Ζ [Ζθ–Δƒ qΑ_*8ρd4›:±¬ω±έplιΗκ~l',«ιϊ.e< KΗ6?ͺXηΓV Ρέu;ί΄δ₯χk€B_t*τΝχ ͺŽ’ά±ύ­²(μ'*›K[\ζ"±uΘb!Ί‹άFe·-€–ΫQdœ d@ 0€ͺ5šΨμκZΥJ Ι°ΥΈ–‘0X&τ–tuμ ‘Ɂΐ-Ό±Δ$ΐΒ|’‘ΠV"lΩrp!žg'”–ŒB±f!5-h‡r‰LΖΒ°ΕΔΟ`]3#cΞE3‘ωkj4VΓͺV0ήQ°?ξJυE>8Ζ±}jKΘ6«¬NmtΩΕ*Ζ—ΪΞtEξ.(?ό,%\;X tΐΰJ6ϊΒ`΄£ `[°‘χvΔΈ-@„’΅HΉ0eG ]ˆ@Ah&(½DBΨΒ"Π…5`1’“Ύ€CΆ@ `xΝ–ΐ,‰"kθ‚M°5lS ΘΑ°@6`6ΣSϋ³~m*‚*ϋΥΎόεq)Q ΘβΣN–€‘,ό„c±μχΖyςΗyiΓΠ\θ2±ρفΉwΘ»€ae~’tIH©Ι°Α!ΥΩ >‰κ ΩΡFH@Ψ`@αwrN•@£IH2Π5T1·μ‚Τπ)ΰLΈ@HDΗp˜Β$&u|H‚E 4€N4 Ld@5U%ΝJ0€ T±"[" †4D #@δ¨8Ιι?=ςOžLΛJΫ΅ΗΟ‘νhHJS’ΖFϑ΍ΕΰK §Ίͺ±°oz—Β8GHLihS ΌΨ"mΗ1SE>ƒ» [,‰Ι58$iP«5€…5€a΅XΎ€|‘™jΨB4…ΙΪ΄]m…Ή†4|A"pάE€Έ‚©dβK5D€ jΘ€B˜ΚZV–ΘͺDΐАΰ i d΄…ƒW²έΒY ƒ5θkh BΐΡ€3—‚€ί֚BΨ= Ψ*r•c€θΉΨt½tζ£ώ…W»†e6Β”!'†H†Ζ0Œ4Ρa \WHυˆ₯=έ1™ZΥ6tα!’ΑΒ8―ψ0DQW;Ψ*A°Ί†Ϋ’ΰΊΏόhP@]0䀫ΐ―r@‚ Ÿ°ΕPΒ* ±F   F΅°†,€¦3€H<ΣSη`pŽrT(u‘ ZΑs– r΄ΥU °ΥΠ76ˆΐγJη_Ύ*8phΦθΊΧCˆΑ„φλ\'*β³4ϊΏwTΒD΅Ηrm%’Ψ†ϊR1Ψ‰(0s$$ΧΙ―ΈΘw>Z@XlΨ6‡ ŸœˆΆ TΨD]0ˆuo™- ι‚N­ -€£*œ£9ά  (ήDB£Ι Χ3€f”kρΜω½J 22ς£nCιƒΰ³IΩΜ†€Α”0ςy†βϊqΦΡl”°+N½Ά1…μέ>„©³ίo ›˜& M€A5˜Oœz³ k0bΩUθtω$°yu¬gM,¨Ά›ΎL¦”φ †^§9$Πιh0ά`aYΐ{›]žZ5ξ#ΔΚ!L@C|RFXΊή-#ΆΌ3Ύdj† %.tαƒΣ{gτM6YΛ IΦΆ SƒHHίOυΗϊ%p‚œΠF!₯λ$ΰΕμοg3ίωνρΔH­ίw,8…)Δ:ŠkŠSn{[νL]˜»JkΕZzΈ.@ –ΉυΟΣ€m4!ΏΜΐ \rσ4š[T+i‰-ΨΔ, Πρ―υκη—δ-0£wσθηπ6€Œat(}λŒλQΰ5¨‘χΜρΨlθ†κ{†es‰“ αO¦6(wνkƒώ`ΜφόƒNψ£Γ―–γΣο!ίψ‹Τ–KΙΓy‘ΨΫΰ¦ΓLnNDχƒ(†r Œδ ΐ  n‹!ΖβKΈlI, †)‚JεΌΙΌ b f„aM8Β'0*^‘ξ€h"J1 ΰŠL« ΐ!° "Ύ Θ-τ`$Λd¬ ΐ`ω„κ32##Ψ •m΅¬Ι3βg6jA΄O-~#šFδ\’νβξœ(Ο’ ğΆΟkžΒ m+°βHiΖ0ΰιώΠ&ρ Ib8e‘@„Τκ’‘>Μ!§Ž2‡:v  ΄ œ™x3r(‰^ƒ76c4zJ Ά@4΄Δ’θ ΄ΰ†@‚Nƒ‹p&G   $! gB$Zc3<¨”\c t@|z£GΚ# όΠΖ<#₯…Z£‰νŸ)eΈ‘6MψͺοΪcΌξΞh)ΊΒΐ͏βoߏϋDgΰςκΐ"N’βςpО’>¨πΝΙΒ ψσ’S0TDEς#_2QwΎUr(L ΐ¦HX"•tiJ¨γIγIΚI&DiAvdω$Ϋ~$6ζq—΄$—”Jn›’D1ΆJΖH~…[ΐDhΑ PΒcϊπؐΩžζεύ &R- –QΥ&Id‡s εjπ( =€άp²(Τψ‚ͺν°_ΣVαόnY<’#–EB XxfYŠnθx‚o~ƒdόΚ)yf&Nh&_ΒZb₯eI€UjX ₯,oΖZTΘ(Ι`žΐ ώ",Ρ.dPraΊ1έ.ώ¨ΠΚ§#Y"(& 0)j Nπ@Ηξ'*μ _aS4¬zRTpς@RkSβ~EqΜb,»gpkδrŸVD&BT($NΖ/y&(t†O\ΕhBΐFb3/e&\%>hΑ¬([rƒ“%3³ΣπΠτπν€ΰ 1ίnφj +ΗΣ ι*ζmdα/*‚0Sk¦b)cA¬Ρ#Σ.ϋ§d> rS+‰&Ν=ρ₯H§‚λ8υ²€s%N8υΚ'¦Β 7Σώώ'>—bβ\§m΄³2Kwπ°Ωε) ‡Δ^ΞfO&9“³³¨’<ε/Πώƒ17”ίπG…R7CRžώς9 T%λ#λcAϊR,€₯Π [Γ^ηC°25nΎσΞbΙF n@πΘEΛ0 -EεcD!T9OΐCQ΄E΄$ΣIΣHςC["~ tΥ†R>Kς .ύ°R &i‘ΰ†Ο‘T@ θ¨Σ` :A$z(ΒΤ<™Τ τ<Μ@EK³K ‹s>·QQαsξ•Q5uΚ¨QϋSπ*΅NuvζΠηFNτEa"%@`‘  G~#V―π[kυQΥGXΫο0Ε¦+ώ#*œ'»qS A†VEσRhA0;jηu9ΗΥ#yŸόd,¬SCπB'΅s‘°ΥY΄,Ψ ϊ’(`v(@†sbρVΑ ―Μo7ο6i?.ΓƝ kCίII™†IΟuW ΅qΗα¨6]Γ’?‹qύbŸΥ- )‘¦Υmφ"D΅A–YκoW@f‘ ώLh§ρtLηJ ·0·ίbζKΥΠkί'Ά}ξηdU6Y ΔhΧruδ(·π)G‘”ΓΊσƒr3mf„aQ‚ώ΄"kΉ°m΅u7•xƒWoۏov]«°vΛ5kXwXK“ωΣ)|³ξH‡4ZΓΤώοCϊzCeTƒ”]σ@mdγ€ΦVΖ°vŒJΡθXυ,Zl9‡u€o οΨWf$M Mΐψα―€»ΧύPηpΟ’Su”bδt!H³‚²~γ.-*Œ*MΪΞ(ώts@†1α—Qύ6bί€+ˆW_}}ξfQ.ΨW•d½Qυ|xƒΡ7ˆ•†€OV€ΆΩ”m¨Zx."ˆmΙ΅RΪ’$‘ΐœxY urΥdw_=ψ#87VξΜ/¦οXW?σΣW:/Ά}ή sφ&ΤΦG2H·&‡`vD|•Ά?˜ψ‰ιψӊŽt(rΥqVžφξqδ …i±2ˆ ™R@”;§–%-,lρ"³ρ<χ―υvJε54gρfNΛjw'QήΧ’–9> €Tα€y'*ͺ7–΅NΊxaԎοθvqгlaΦMύ"cj–TΫ—’iuψŽ΅’l ™“£±F;ΩΏ\7β€–CibqηΣπͺφž₯ؐM9Š!m’*‡φΩύA 8€Cώ— ΦAv“ί5K[ “XLI˜›]βšΖ‡%E}#Vxa™8WΦΰtΗ•³9 σΆ™S{αΈd™Ω@μeιωIοa˜Χ.xωbθ0ςlΆ§Α>›Υ+DzΊόΞψ°ψ UvV·r©ωψ”kU*$ π8-ŒPš8ΙOrυψDΫ΅“'ξ‹§U;1FC‰Ω–ΐŒXΑ0τ€ο•}”1- /ΆXO…jδψ£Ε91ό©š±J•’°Η·€™š,Rεo»Q™ }U8'ΝYDЁτfΛx75 Z«ύx₯Εο )•Ώ·*¨ΠQΉ_ΐΪƒq•§Gϋ][¦i{«#KMJZΗ‘ZΫΪÊ:];ŸfŸίwƒΉΦ O[₯»—–‘S 5Βΐ™hίuΣΜZώπ‡€SΣ“ύdΒ:Ίρdg’3ζGΥΉπp[„Εi΅4ΊUΉp–4}xΨ»[wιΣ΄νϊxσd0Ω$»aͺ[‹Ω.­ Α[ •tσΒrς,fyT‚9΅›»ΐ¬βΏ•šŽBζsŠ%›Έύ*Χ£a5ͺωq“Ϊ–Ϊ€c^&Xd Μφ·eΗΗXt͘cλ“hMT‚cά¦Ή4E“"+$΄΄Α$Χ»ώ’ΩΉ ukπwj3ΉΆσX±'Y›_ _Ϊ}>KΓQ‘bgΓ6’={«“ShΓTd§;~3|ž½†<»<·qΦΚΏ–Ξ―˜ΰϊΨΞ»Νοω>ί;«½ΐΩeyuΉ²Μ9ΈΙ†iUeθ5Κ/\²›€wZk4ΌkΫΗ¨Kغݜξ\ΫΡ*¨±εΙaRΊ·&­ϋC:…A½σΜƒ5Πϊ3+°ά€=Ω›iΖ½MύlD9οΊΦUmΦΗγ{#½Λ)ύΥyΧAš@s~ šΦ›ΏΥ₯ 9A=Df]˜‘8NΣ‘=Π75Ÿψœ Ω―0Λb±|C‘»s½”IΩ­ΔΧ]Ώ…2FΙϊΌx…υ"Η}Ω‘θfΈνο❴iwПΌΨ7<Ώ+=ΰQ<Οws™ΦΧϋ΅WG|°So<ΤτύΪC₯ίΣϋ,€išžUΦ^Γ}τιŸΣΩWΉKεΩΩΝΊR]tε!έdκΰŸ]§ΝPiΦΫΓ]>xι=M5ΧΑw™…{NJ’ικQζ[·%ψAbUPŽN›Ύ¦Ύκ έκσN•›ό΅g²«OΘ¨W¨Ο›Β{\Ιε·Σρ{ΙΣsz:Ω±>ξγ³DεΎW+•δŸ“² Ν‘aΆ‚ ιΟϊlτ Ihσ&ΰξj)ΏΟžX$Ž‚vXvθθœ*ν( Ε`@λ£σuB±‡E‚AOPΗwC‡ίΦ βΦRβ ,%šV!@rBS"7ŸBς?~ŽΤ^Ο«Κν΄Ζ_¨a§ΌCuΒMδμχΎ˜Γ'&’Ώ%¦Ÿ7ΕΣγ(ϊ½ΒF¦!ϋ+©ό 1lD& ϊΝ‡(Ξ+ό ύoFy~£ ϊuI«i \Ύωγ H° ΑƒTPA‡ B4θ ’Ε‚„ΐ/ŠTXQ$ μX@ΓƒtΌ8q€M„/Šdp³'L76qϊδ©S§W―fŊ%‹-\΄˜Ξš…Τ¨'Nœ6έr ρ9„MψΥηCΔ4 ``EΘUΘ  Ό>8pΑ‚38D‘dE ΚdΠ1@ΰ 08IgWΘ]AΚδJmF‚‘|} ΐp`oAc[\-91AΧqo`@Ι‡2 Τ.{ωλʏsΛPΑ‚‰§^v¬ΛΨ•a>ΠνυφEΙpΛΧυά»Ϊυeœ’£»Wπ~γϋεŸηUΈ ώδšύ&άWv°_PΓΰe9$—€ώE–e }Ε@}nτΥs|₯5Π^3)–h©€ŠεTή@&ΔP4šuӌ6q„(XyRRJΕβΤSNΕ2UUB~Β (8p6Ž=υχΪ@Δ)ΑT™ΨA„— nΐš0Α˜°`I\πH%pٞ˜ΥpΑυ94ΐ RΜAE”˜ν9μιhd@mŠ$0( @‘VŽ d 'šΤ 'P\@ƒ A@«—½κjςW΄+{Αϊ<ύ †$A:D%[5Še£|~YHbΙ@Έτ(f―Ύšh—HBΐG<‚h· ΉΪ­{Ȋ^»‘νu.¬8ΑΛkk²+¬Ξψ!―μυ/½ P †Μ+½­A”.£{nηθK:π΄‘9 kΐΉΤŸ£’‘ R#TΰΖ‰ςy1P•,±pdπΔ+”B@αCršWΞ‘Εv±£σ™ς£Œr% ¨QpΑ$œTrΪ: @B…‘R^Bwμv:κdήΧ’TAcΏιPE•ΤRM)ΛRT½‰Xi%%•fq½Z/ζ%Dπ±BFΰΡ*ψαEGŒG8tB'H]K%ΐ%œXPηαδΙ'š εšΤςΚRS€ήlΈϋαέP‰,œ€5uκ˜CVβL α -N„ΞΧ$°D@#¨ޚλΫ=ΰΊ ¬4rx9/=θ­m–+€`Αž€-C0ž½σΊ'°¬θλΣώ»'ŸΌΡŽ]Ο?θ@θBΏη.5@:ΐνuPΏ›Ιιxͺνpo~8A*ρΉΧ­~―sοDΘ—ώ₯‹{Μ₯£ΏΝτΟ/f`@'žΝά@‘¨ύ:Β Oδ Y aΡsΈ0€$Œ G\g „α²(ή. ‰ΥE R΄&‹MΐK °_ΧΖH6­uJxϋɏ‚δ €Ό³hTh! Y,‰IX’”Ξ8 6I^V ‚πΰD¨™η#)πƒŒ`EΞΘM„$DΕ'H ―°R IH‘4¨‚%$±ΫαBRXΒgΓ—MΌβNΕ'€kIβi¨n ‰KάP°„%\–=Pxqε@'zΧΙU>­€,ŠηΉΌBY^)ώ@$¬f€(Δ \P'€*S#βτ‡ΐ…PΒ©’„9”s5˜ ‘ŠπΉo ³Πδ)p(¬² Ί‹,ρˆ§’w™Β2'KD›ΒΜ$"»\’ WΡ_Bψw%(8Α=ιBā7Hθ@ˆ9p$ … ΪωN °2xMmځ„‚G( SαρΚΑ\ S¬Ζε gˆTβTJP';έη &@A#J Q@` Lp‚% ΠΙKΜ!O|!¦$–ΰΑμ…7h‚*7*&¬QhΒ ώp &ΰ… €Α[M!Θir+`4 *xΔ‘Ώ6‹ΙIΔ(‚μΠ%Α^Xd£¦ΜΥ”|iθ%,ᦁά` zˆi H<-OQΨfθ€WΕf9ΘZΝ^V ά ’J“Bh‘ρΌ"©z8€΅-εHt„›ρη$»‰W# !―ΩΌΐΌŽvΐό 8¬ ™ °RP?Xzn"Jΐ₯ƒD,`ρŠZPjœˆ'žFKΜΒ³ΐœ%^A Ή‰ςϋ„ΒΓWΤ@°€ί&ž…7²xN―(Ji_·έ”―― Δ%qbXμ˜/T˜EρςΤY@#Z‘ V¨ΒXŒ`E)TQ v&‘ΛͺH…"ΐŠC° ©p Ɯ U(Œ«HΕ*T"Ο«XΕP eZ’L€ΒΫ ˆΉ*œΨCΎ(dρFJβΨDkP‰ΟœŠF -DΉXΔ’Γ^άγOΎΗ =Οs{VΕ*ΡSxΩΛ.˜ƒ—WQŠ‘žΉΥ_押8ˆX―b œα¬Ο9Ί2‰ιΰeYŸυzV+β€b«BΦ…ΐ ¬ŠFΐ ™Κ¬D%†Zp’”„κLmZ „˜Εž¨$ά-‹MpD›³€…'Ά’ŽX’Ε«kδφŠO΄ς¦ήΔ ν‘α Ž%Q‰ZHά QΈAκŠξ„'v „Z‚6A!lwy’ΐ+0Y ά΅%’\ΌςQA$wΆ<!°Βθ§ ъπ•‚J` \`‚T”’©θ3ž„oΐ­ ƒf}οΟqJiσ ‘Έ  i7ΐah"VrQ°Q πM°@)M@  p”P PΰΆ  π ―0c²X΅ ―Ήrε³₯`Ά6sΠ ‡€¨  CU @3@Bg0³₯° tp0¬@` „Gqΐkβ#kq qΰUςR>qΠ @c6, ffP0ΠjH@­P’ sca!$XrŸwHΡž€ apOΐ"vΠG' 7P‡ΒΖ—; RN@‰ Wρ ² d³ )yB±Pt(a ©ΐπ‡Jπ~₯Π sς:. ΰ αcGX ¦f,Π©ΠͺPIplks7`¨w ± )Q0r  « *Έ u80v·jη @" ’`”Ε³”5€Ρ Ή£;&’@ ¬p+%€ΐ ΖB΄i„₯Π?BP„kx   ΤΈ!,Ά)U… s gοΗ Ν³†ΦΓ@Ϋ‘νs…άfͺ`Œ Ž‘qΐ gε}ƒ°εv„Œ0¨‡8°w ₯ @LV0 ±Rα±`Z’ΈIGy@£&φ4ξχ™^„± }«©&LΆBa¦ω>œΐ˜”‚yP0ΈΠ  ΰ ² }5dFχrρGŠ·™pp™`]byΒ•tς΄Π  L™š=:R0£0rρ%&W·ΐ 3ωt·Δρ8€zv`aϊ΅62₯θ₯_F9@ς DqoGN1Go3wHΡ$O’ηΕ5„¨‰œ€ΨH'Q υ‘NR›?K4c"†“œšU@š*°ΰ2”π ₯©‚χ™š‚Q>Τ¦0…  k΅y›¨P Hΐ ΄ΖςΞZBΓY>ΥgΗ™œ€}φfd-x"ѝάv©pΜΓάιΓrlt° ‡ .π)βϊ Upe™% ’R ± S`ΗPΩDͺ+Y )¬w‘.˜Αi°π4”Π Q¦ PπPπp”"&αQ>Uδ&BOBe”’Ÿap>’P―KP>r9X6Y"z ˆ„s_dΦŠ+v2 t‚²ΐͺ¨ΩΞΤ ’ψ Ι„Aš―£²b’rBgP7π40•‘+P°[t‘#²U6яA’6ξe$Έ€ Mρ6qdu· Wt\£fc§ Β›„ƒ‘wZx)‰’G ‡¬©Ÿ9tsS-Ρw,hΰΣ«T>” Pπ0O@XŽ{hQ`ςp~¬T'Δ ’bR‡>ΐπVQK0‰χώlFG^F=aΠDΡFDΒ6q·v¦^šwcsγ4‚šΞqτ;2φϊ™σBw‘DΈ―ϋX2@(1ύ1ƒρϋ;€?—κ:‹Ξ›±)XE;³s8y‘B!YF'B $œ―³ ”=<ρ:„=„α>»ίύΐBάΣ—"žΰ”ρ?Ψί?D(UT"Νψ?‡P@’TͺT₯JΕκΠ!V/ €@Π €Š-@Rj!CV₯X‘ΰ<p‘bKƒ@x@Σ$7h‚U‘`I‹θ,(τ’X―”ΎšeIΣ, ?3^„P (€%–v‚κΖ›\zρκEp8ω*τΐΫ·\0@uᾍ@¬'‰dΐΰ$\³P·θΓsšU ΰΥ“:0ήΫΩσ^Ÿ;#]Ϊ3iΟ L›V½Ι›8qςδ©“ΦY±dΡβΝ;ΦοYJo{š½ιFΧp[NmΪΑσ™›<‡}zuθΟ―Kχ Α»wή‡Šaj‘5CΟώ-πp¬χN>jβkBh Ώύ( O¨φόϋο1(H πp (x ‚ΠhB‰&ΌpC”|ΐ2 Χλlΐρά+q¨IŠΊΝΒ+qΏ‘˜ΐΉΟ\D)ͺ$ ‡‚π­š.¬¨¦xα$ω%β8Δ+JȊθNXΙ%η°Eυ‚ŒpΑ!5lΟΒξ Ν;¦°€°&t«Δ3)(l€y„Š9„ **iKJσRΜ¨*τ|ΔO(*@QEΏKq›(L΄θ’ Ο΄«JŽ‹€P!ε|ΐΚ“s@RWEuΞδb•uΦi₯Υ$@™ΝΆ₯rΣ­7ήd™%ΈW:©νNŒ£mύ 5Ο<ε.;i=•u&ϋ&ΝΌσ†u½π$}m/UA›ξ4ΖςSm±½f‚k¨J=[Ϊ©|`=<{@ΓK²’JΘ ₯ n4XΕΡέr—\5ΕςŽ» χuρ±ΐ΅²%ακχ­€χ%W Ό V€_ S6«΄‘Ucp/Π4-άΜ`έ_”Β3KfΰS ΅ϊ”{k΄;hSEώΘΊ-14¨­;w:­;sΐΆ&Ω<1?›ϊ雝Sάw[v›³X—snΡ~œνδ&€ΨvευXt“e·`cv)Oε”}ΎϋqŒαϋqΡ^nΙ€½ƒ ίZ" V±LΊsœͺ<;tZ›ΡRYE¬Œ1»!‡δΙχ+%.-νμΪχ€ς $²ΘΥ䢌HοFξLnΰ%νwΰΛ“ϊXΟ“^ηX{οΨφvρF9κ›_tΟ΄½3σ%Ÿ;}ΣpΥυ“Ϊ΄b*7`};ΌΨΔ‘UΦq₯Ec_|¨ͺ3±«ά[^fκ@ŸYΨ4':ώλ=CΉΑ ~w“…MMnYΐO ₯;Δ„-4‘aήζlΉΥ,Ζ α7‡ΤΰΏϋŸ¬"X@]ΙdosMet˜³ρeο†6ŒNΕl$«—U$‰A€œX …―‰1QŠΛcŽΉ hΒ6―5%œ`a#ΪάF)ΎΪ . g8αΤf6 8Ž[Έ(6Ό]qgs ϊΚc=ιM(b„ςN>' N„ͺ 5¨',α>² ›ΨDDψ,ομBΪγLόςŠ6BΰW‚—4“8A‹@Α I@‘τ$€Ύ# Φερ•‘Τ‡b€!hPΐHa‰Ω•'b8Γ+š@£)Ξ1™Ÿ!ΰ2YΎgΆyuœ5£ΩΔ½Ό‘|׌£kάη7ω ‹pΈΐΕn„E,ό§qά„ζέS–‹Έkf1 €ΰ Z8ς5°DRΰΔ&Α  ›ΐE%κY>˜Μμ&Phξˆ“»‚TB™ILΣNB)DΑLΐΘΜ$PIlbŸ3‹ ©Β𱑅(πTΰM8 Mπ² –ΰDTc’ΌbΉCakΈΜf>Ӛβϋ©­ΘN€v³9Ο’\Qƒ8Τ.6u5_δόΔΘ”ί Žf±Œ•Έd΅±yƒΪcΕΠ,‘ ’pBZ.Tg:LΈΑZ°ΟGHβ_‰J`!D 1–θœ’RTrτ&Ÿ˜(Mr‚τ`’ΐAZϋrƒKpŸ:YˆB'f!(|E†7π WΟ`ON€& A ”@jI@ X"!…ΎπMQΒ Y£Γ VM0IvΎqVK`$!‹M8aF€kήX*@b CΈ@KϊΩ8§&5šΪ}ε{_ΌΕ—¨΅BbΩi_.BΥ”T΄Υ7iγ‰₯ΐbZ%§oЈ?β|‚qΘόŒ}Ρ'»&4Τ  YH˜W:αL`±x…,‹ δ‰ RˆΕN!ΐ‰ZHβR¨€pƒIΠβ AŠ#+`’JΌN;©EžPβΎ™υœ ,ϋŠ‹W\Α 7°D,Ž O`΅8Γd±o…χ8A7€fΏβ[ŒβNhΒ ¨ΐ„(Δ"ΚΈ@%bβπω’¨·›Μ‰ΎD‘^y©4A‹!Θ|§ή’PwΒΖ Y4±B™‰ TΒ‘`έL…¦TΆΘΥ+n+…‚^`΅8Ξ–Ν£+B»y=½}Ε.ί_31ΦΚtV†}-Ε³/saiχܝeΰΏaU«½‘pHœd­s{._†όΖτE°8¦$b±h‚8"².β„χΙβύ+$οNΜ¨ Εβf‹γl J=ΰ„§¬ŸŠŽ²&^QΥdψΚWώ‰‚τ ΄Ψ<9yPtT ―@1tjό―D6}©B,¦KΌ–gΐ+’―Μ(W³0¨A& 'Η3‘ŸLVApπŠQσh.”E °άμΛby,D<Δ ψ²0§’»ώΉ/²“¦₯:,b»βα/όrΈ;΅³φ™ΐmj'Sϋ”Ύ901"#`AΆ€(cY#Αƒ΅»Ι ΊK©Ε;¦HxΌJKX>ok?Ÿ¨J ƒG v{^bS­/ <˜ƒθ½N(ΏŠΈ)˜α{…9p3Ώ˜8Ω„„“<7Λ½ΠΎ˜ΰγΌλϋŠJ(3)ψ²Žz„W Θ½¦1ιγ° Ήλ‹7Γ…(€l«Οπ €Kθ(,ƒHxΌμσ#Ζ*ˆ%˜…H‹‚Π„O€7ΤΛΏƒ‚Xx„ΐ¦’‚ͺτΑΐκž)2@ω’΅΄’‘ΐ Δ&Œ›Pl'¨i΅ρω&ψω‹ή0£cϋόͺβ«SμΔ¨ˆ\DPΘ²‡ΒΑ(ƒOπΆΧ£I€K¨…(ĊX0(NΒΎXΰ₯x)“π€h ° Nb¨M°ϋŠ3[·―Zh‚€…(³B¨-ΌƒXΘ±Ήy3€―˜‚X,φλ7£<“X<^ͺ€η‚―3 Ωπ )…:|… X΄hZΨ©ΧΣ4‚XŒ@08ypΗQ[΄’{…ϊd‚Y1y’<89ƒ2+€.λΊ‚ΖY@[‘¦K¦g3*Y»΅Σ@€όȞLΜ’Τ&(!Rl@-š"¨‘ͺ0 'έΐE3B6DŽ +H@¦ž¨€€\˜Nθ3μ+½W¨o넝€°3 «…Q X΄NˆΏh1NH«ίΰM Έ„Ύ«„–ΰ„]DŸXΗzδϋ„™ΫBΡΒ€…3‰;¨2eα6ΡΚ?Ϋ°…δ‹‚—8MΈf&…G¬„Ls1IΝ›… ψ³Y[ΠH)Έ…NθHœ1 €| »θcKΫ‹ •,ˆ?ƒ’8%OȍN°„Šœ²Ύ•‡β‘fvq–ώΠ°S\ΐ]ΌρΔ°ΥΠϊ*K9’ΕσD©,O’¦ΉSE ;ͺΆ\§1’cA―Ό @΄3šΈ$K¨IΘ7IΠ„ΩD±€…J¨*‚Ζ1>I°ΕbMTΊ­¨Kΰ¨0ˆKˆ€&ˆ„62Ύ*+€‚J°„)pΉ•ˆ‚%訛Δx(°H€ 7 €HpP)@±ΈI€K€‚cΚ€9³)έP'¨$”`"„©ˆ²…At,‚X‚J „Gψ p I(΄*@€°R°ι€sϋœp‚-΅* λ’‚MΠΎ˜ƒX¨‚8Y&P€›^O]3ŸεX²¬#φtΕULΟ©LŽEε¦ΙΩTςΌ•`«*Ϋ§ά0Άcλ;―ϊΚM8AπΜ¦Δ‘ψδ μ«Δ³8©ΗψΔ0 Αh½’0‹Β`€„" Α`Œa=―x:Œ’0‰ ˆ8ɏ„κΥΗ° ͺH ˜˜ZΝUƒ`‚M„γΑx©jΐΦ+³Έ‰§)ˆNΑ ]% §Έ„nsNαbρ‰J±dTZͺε¨Τχά@ $ΚKEDOτ/€ά/΅c',_Γ»«*ΥqΪΕd;°$P©‘ή‘΅N5 (˜„γ€%Ι—όX•±II9“ “εΥȏωˆ >š T™ΉΘ‰₯‘ “Ša”½˜πΈ:ω$5΅°BN%«έA5©ψψΞ<ς dΡ„: r5σŒΥ€Ό&ϊ$X~eS¬@gC@₯[W…OυyΥ}eΫ€έΪφα]ρ@₯ΈΕήΨJΏƒ°_lΆΊσΤݐ)”χ¨Ž‚ "אZΗY›ažx™₯ΙY†y₯™šΒΨ wαŽ9±›!—–’ˆd%°Χΐ˜ψθŒ،ΞUŽΤ˜°Ωˆ°‰XX%ΫWTX΄™Ά΅Χ.―±UT~&H}[g ͺΪ΅ΤγMŽzu'΅˜ΫΪH0Α ATέ °Πk*!k2ŸΠΏe¦χ$Πk20™Σ]¦7‚  ΰ‘OU[[1»#OZΣW‘B5M5ίέν―³₯£TΔ]VτΧ½ιΐQνΟθ=ΥΌ=–ecUΫΕΤ±τ)Ɂ‘ϋ}ూ€Qq ΥΑ_Κω—³YΫϊ Ζλ΅"γUΰΘ1»~]ίΰM*ωeT Ω’ ΌW):α²CΕYl^Q΅Ε–sBΕa6ώ»΄ϋέ±:Οε%ήF…`­­5ρL¦ε5Ε_sα`₯|£Xμ&¨Τ] ”ͺf_₯B›ξΕ!πu¦ψ²ΚœθΥEUŠό <Ύ=βΥΨβω"β΄uc!ΞΤy5Ο·S`ώΝβϊδ55–ΚδΥ/6†cUdΰύJ|–)ζc„`†ΕJ\άͺ3ΑW«‰X&ήγAdLΞd)κΤ8ώŒΘωc΅5Κρ!f©dήυί5vb vΫ7fεή5ζ1εA»ίεΘ–Yσ¦Pυ@άœμ»^T£ΕΑIYλIήυa„…m’eM6X²όΫZaϋε&e>eύ­ζVν @„νd;f»:Ž‹θ‘a«’ŸΐΩ»3B§3^Υ4Žf©œζϊO&!€c~ͺώ½/wβΦηυ5ΐE5+ΰρΫ|ΖδΈc`d;½ΥŸγβΩω|εUΎέδ΅β ^ΚνYbTΖhΒ»δˆN*y^f>θ‚mΥΆ°'ͺ¦6v5F—w†aΨiκθ©Ϊ†^Α!γιΥΫΕaUσε£Β@‡Φζn_kΖ/P$fόΙ»A‘ZΩj>ᬽζ€N!Έ-Jš>b[¦έgζZ ŒTfžh±–hžΨp^6gξEUΕIω‚6P.e‘^`ν_ί₯jKΎγ}….gfa’v ZŽ‘NAδ₯hΓ.kšn §jͺbe ž«ό„« œ_qδΎKΆNΘažk²"lX…μΉΎ›‘δκ!.jτTΟyvε@&k{Ξ",.b"ŽλΡψcSԞ-–kΊŽ\‘O€Ÿ^Y°‡ΝμTΌύ!ή…©gχεηΦξkϊ=ͺ[Ξβ₯,‘δnnŽ&a9kΔΞί’~λΩυaž|iθφκΌΎg¦ΔfνFδSτgςΆ!Ή ΰΫ¬’ήˆ­ήΞnΕvΟUΛj£ή`φωΰ–ήhΖήέzfνή‘gΧ.mmΤΈΨέ>o’&i θίξFEfYωΞTvν™φΉΎωνηγΑ!όeγvkNζΡvιλ~œϋ|ίQφλΏ.ΕϋΊ@œΑkT&Eπ Φc~hε +πoVeerΚΒ †ν•^kκ5ΑuΎ―:m $@ΡNoζ"Nδpθ^kJΐW οά•n)Vﱎΐ-ΦpZ¦•Z6ςψph>lώvγ’’ͺZddS=ΆϋρΕ`Žr½οa΅9Οκ6·TU«!Wen5 Ηn±>;θοf3'σΣfτθχόζΘ9p6gm™>@*wonΨ&GUtΠϋ6βρ荆œ£¦fš6<ιδEύ΅Ιζ8—sHggbU³&ežΐογVΔ5€Vι‹ήο²5›ΎJ6Uβ^θ>οbί 5—ρξAΟrλ†υ.££„»]φ1Ηr8ΖpJηξ+žqgJΟjνqηίερ»“aiρ€Γρ*`Vη!zTΣuΝηzΖχlοφ3χXωΰ$·τ?nΫΥoχpoo‡wsΠqg8¦mίpυτΧΘε0–1φχΌ޽Εv†/ ψέψL»‹χItλΈΫπ„νφ–ίGGπΨΦx χZΗξ@v“ž"ƒ&ηωvd=7ρφσƒνq,σδŽΆΤ-ΏtίλN°Έγλ,Ζ—NlΫ¨œτΣFd|½¦ίUαXηmοξ"&fxΚήω©E–o΅vž>ξ‰―τ…?ͺ­/Π€_ρBήtυ&žcσ^Κ­Ž{Œoκ°nψΘo|ό‡#Μ‡hΠ.a άνήζO¬Ίμήψχ'οiŒXO+’Tοζ/²'ŸG―|ާ"ϊ²ˆŸύKΥWOά]’—θη}‰Ο|ΤΖρBzG]Θ'δ^Oώεχu?kQ½]ήϋ•—Xf#;\πεtruτΎω θΠyuΨί§υσgvZΉ}π?«lπ.rηOc–›\Ϋ|QO|GkrˆY²dΡ*X0V¬Y―zςΔ‰Σ& ¨hρ"ƌ7rμθρ#Θ 0Ž Y‘Ι”*/"Xι²bIŽ1-’|ΉqζI5mςτΈΣ"ΞB1ώΚ³₯Ζ ‘hΙδS’qFz±¨T£*«vTϊrV“άΨτΠS§N g!Xp ¬Y°vςτι'P7&T΄θӘ?cr Y8,Kއ›2Fœr±VΘ†³bϋ+ǚ\c*΅μ8±O“’U’tΰσηΤC―τ|΅κ€―?υšr,³ŸΠͺ}+–[ƒ²*dˆ7―Dб—[et΄N“3a3<ΣΆh£Ψ5“^yΈφEμXŒ ½βyLΕ£—m“:ԏ›«wύ¨~ϊΘρ―fΔ<φ(g₯΅Πonα"\,s½R—] θΕ}ν½Δž{.yEa„έ‰Τ—z)±‡lπu’L‚„αRΝ‰˜bO+š$"u.VGέaΣ=Άau£Ω†"O₯ok!TЁ΄ —ΠB―4τPDEXFʏ*ΉΦ!M,FΩߍtŸcU=χ%L&š!x­·Ρ”ε΅Έ\~-UyζdΝihnfqΠ€lΑUδpr%Ω^ $ηa…ŽΥD!{s~„UUmzΉy7YšΩQΡΡ©Ψ–›Φw)F•Ϊζ’ςδ(– uT©τΩFcNœΞ¦j¬ταΰžhΨ–p΄GΧ’ν₯ά¬α₯&ιT™ζi«]*…}gΣ•ef€#s-U:ΣyHΩΦ,›[V›μ¨D•[*¨‘rZG˚λέ‹j&Ϊ“»B-zۏφV ΎώΊ`]Lkβœΰ~f°Αͺδh€ο¦KΩ„%!˜¨z oOγ†ΔνVδfΥ¨±vf~ΔjΉ’ˆι€o~ω–  Ϊ…W“ΔN•›rVŸΕΣρΑ§Ζ&Yz;εόξΡΟ¦z'HυZ;’}K?­”¨ΨβρΊW_Ό΅o.¬Uš+έz–―°ΛΛFώ«δq†:Ω“ΕawΧ\/7XΤ?Ÿ,bΕC+ςΌ΅Ί„πΧ~Km·ˆ₯8ΰ«+”>KˆqFyκ»kΏ! °CΒΰτ£SΩ΅₯7Šέ©ΏδξH¬iύΈΘ‹n*˜έͺΊέš¦‹!έΊη^ΗΛυ>xμ…ΰtIr:V²*ύ‡+ΛΏ‘-  2ψΠƒ&λ Ϊ£‹iOή–ΤψPQγ`ΫωY³Ή€iΜ]zκ¦Γ΄ΐ΄ͺ Ÿ·³’»)λ†L…1φ @rΦ9'§5Χ!¦y”“WΈdWά1«›bΞ>’'Ό4$I°p™A|5‹β€₯snσ^ΦΠΧΎŠ¨}ύϋH ’†§$ θž`Μw•EωePέEg>Πpˆ ’ΞWΊΪp(¨1ΰλžζΔ•ˆxpλˆ%>yμFΜNάΕμ ₯yϋλZ·Θ@)R±cώϋžΘ έ”νlyΛ@¬Ξmb`q@ι: x`$ π€:Ё”¬%ρ€P€”λΙ%1”€&˜€όΘ“ΔαŸR‡€h’“žIεP–xΐ?ˆδ>P‚]J€–δ>0·xY°˜ŒόTθΰ'°aMf&.vF£@vQά₯$δζ!Ÿo€sΗ·¬PΘy›L μς@Δΰ ˆ@†”ΝΔ`†@ e( IτA dƒE  Hΐ€ œ±"ψΐΘΠKQ†OiIDpP1‘ ΓAΛ †uŽa(AzIQ‚3,bq2MbŽ2JAaNMtžϋ,Ӎ׊fv·±-²Λ&d|Ισ.ΞΜ‰°8Jβγ‘>rH˜nRžσ$Γ*(₯R~υKέ$J΄¦uφ+‰?Z†2ˆu₯₯LωR„²ςώάeX)‚δ΅Ήάe z‰” ₯`ΐ$Ωωβι”dCE>  Œ 0%₯@€°B`’€όEtͺ€¨Υtl•@χP [ΣνtyG­›ο„φF…AΚ³Κ=¨TŒ|±SiNƒ[έώ6ΉΙtf3΅²¬ΰΖ±,dλΝ‡¨@ Κ.ž*F49W2¨τ@(JUκυΕ„’=@G;κގŽo| ΒA;ˆ` ΐ&My€MšO=(<@ ό@ b:0†2ΰW ψ+@c7OΣΥ°•ιpDH€“$&h!ŒίlΨΑ–ΌΞ|‰θ^Η‰΅m}°"D-F·ΗϋΉ¦pIΖF‚5†>²v¦θγ₯)i\Q‡lQnβκ›Ia-ΘΉ9sζŏ9ŸΨωΰs΅ŸE@L3‘Α\³Ψμ93‰ωάdΜΛί’ΨΒη#π)1LΔrC›„0TϊR2ΤΓb ΐŸιꁃš,₯{i:°€ψΆωυ§μRƒbΈ ό„­F$πζ`‚@Ν«AΦ<η±JG™ˆy2АZδήχXΩʐΡUM#CQO²υ΅9eλή₯lœ^’ ΅ά"YυHDζM*  ~0{7€ƒ’t bXθeΕ`nm§[¬—4dgaͺm`τΏ›,m,’±”`Μsν˜%\€ ³Dμ7„KŒ`so“‹6ι_!Q— χ&~O•VάXπλAQΊΛ1\έ>¨0IΕΨ„‘κ^GΆ)2‘ -™oΙΖN2Ν΅‚‘‘υt·?ΦulΖFGμž Aάεφ}A«½?+zΡΫIqWd³fΥ<η«ΗyΞ^₯a9™HœΫ*οσ@7©ΔECX~πνχXβ9pόσˆύ^ΐDνœO΅ΈΦZ­[±*]DΨU€?Ε•$±X\%\ς“β9έΖύ•E(άƒ9!…Q–ELJe” q)IR<₯Ž”ΌX Ρ–[έΰ⠊άXRi^=ΧE`Z‘}bŒΙηΥ–θ­α°½t B†„Κ€` ΄! ΝΜwM…Eή eD^δ ”₯Τ&Y‹eˆΙ΄ZE,€ Φt‘5E_y€e¨šfMͺ)ŠΣ+φU hΦF–,’ƍΥH8-N@EΔ/…[ΘΠ–ς€[΅ΞZ k0ΕO€Λπ`GΥD Α !ΤԚΎ!sΉΔϊaιύNφΪoYΞ€ΣΩ  -Θ‘X•w%"HΈeΦat©Φ ιΠΑ#ŽΔΠ;ΚXΙXΐSόIaΡP?κ£kؐ>Ί#{•„>ΚPEQ@q6RΣRΙ!Ndξ|cύZE’ž­ΑΖyE΅ΐˆQ™ :[Ρe™ζ¨c΅ΉZδj-Y…[!ΐA’Υύ#&™+•@`ρ_ nβόYΉ• eΰψ@€»΄ 5ςΦEb$―ΥT¦δš^#TnΚΈ|ΛΝ₯a΅!Z£ΨδK`WνE[\L[°μx9Uθe#m„νΘ<₯Gπ]mbdeϊ˜‹4%NY$Νααγθ}ˆEE OuJ€ej$ ΕΨδŠ΅Ε8₯cw‘ΰZvΚ4uΖZΘuˆš]žu\ΗLΞ!ryH=ώ2Jι<·DΘΟaΈέ^φ\“m%ŽΕζe L*Y:aWŽUNΎ„ ΈL‘¨ KŒΥG m†!yQΦWP €gX†Qκ¦@ΝΰMΤζ,&…w’OοPΦ[κ Yνex6\nΙutEiΒ„jeΰzΌUE<€_Τ~’r&zπga²%ωΈΟΝMBΖγΒ…₯Ν z6‘ˆPηNξO1JεW^%θΥ\„ψ³νYŽΣJ²€ΐ€ Y±Xδu@U ”f9䡜mΑΔ ΔfYFA­—κcύ˜Ξι₯~ΎeuΖl‘[‰αZΑg*}\bl”–&­WEμRN’YZέhK Υ ±.!©¬PŠ„[ΐ‹^Δ½UiΐΦ•@@ƒIΤΎ™v–η—1Κ‘BΈ2…f –Oy>¨ =ΐ–n"NnD–Dnβ—†gχΥ׍φ)’ώ€ŒςiŸFι†Hΐ`ωδ<ζη[YZ –*Aΐa,€£ i}Y,½Ύ₯»ΤdΥ'X,jψNγ_H’„²WdΡkrc–HYά€fF8ΐκI`Xβ@•yΒdG‘$Δ!š—Ι„h­ ’(Fψ,ŽΔD€#Εe 1cΕΰ%Ϊΐiλ‘O?v”˜ ΩkD’<=˜CqΤΊώŸ;ͺ«A…–Ι?Bΐ?)‘«{‘™ύ—a ”vkΒuh+ ­O~α»–λ%™@ΦΣ•δIυ’.ΚΧΒΒe +LΜΤ’Ω+©e2€|q¬™ΟΑ«a₯kEΝ’Η²μΞΜΖμLOΎŠ0ž|α$ι¨Τ_#| εtRέΌ ΤΏΊμ½ZDΟ΅.ΊN4€Cώ«[ΡT\Ζμ΅Θλ@βlΔRhWώα±ΡejD "Ρβν©£wΥ H<€TWњ΅!ωi`MΦE‹}€Υ‘Τ.A@‰!ΦFX,šO¬ –H‘ΊΥ9.‰4ݞΧ-nέ&Ay%δξr 2Έ†eθ’ο-Ψ`Qk,•ΐ֎U¨QX-6…"eξ<€.‘+‰Α֊nœυ!qβyΡΣ"Ρ.­ϊ –π“φ<DiϊΨΦ"‰"ΐœρ ΐσ Ϊψπ]ιΨ§«ΚΟέθ Σ/šβ€*ψ² fΦ/JμR$mSH*κͺ°αBιΦϊ…ΧΥ‰―iω€ Α.'ΙΠ<‰nAPŸ$eYέ`χψ¦ž’šI’γ©σB0GLj/™β/~b/žbΩU,V/…ξτUω’pœ}@ύn’Δ¨ί/ͺ™rPΈήn&S½†c~†Π±L9F[9ρΡ^ΌδH˜ιxqy²ή–Z©/¦]]1ŸσYœΚ…Uσ1”W―JΕL9Ψ/PЈuL‘Jύ`mΪ„…Y=mΉμe5lίH=€-Šγ½ρ\ΥSAσιΠw†MXσUœΕ•AΙM€T˜Ά±ΠR€β1‘ΔρΗ!!P8αδO^y–Xd‘…–*«”e–YžμΔO>α€Θ~B&…xΓh( Θxs¦Όλ­ 2Ζ C¨‘ή”€§ξœΙln ; $ 4}zQ― x΄Γˆ> €sγI:1RΑP5Liό΄:<΄ Dλ¨:¬₯ ½ΣΞμϊ‹#ͺpOΟ¬2H ™Κ¨σ u n­»Œ₯©(RϊNŽΥιΧΡz2Cτͺ%ˆ ΞY’ΈνHŒΕυς`„D•`Ό`—Χt―>8ο οJψΐ2;ADθά—Oh€ιΪ«Dψΐsx«ψϊ<ΰόβ/|Jπ`τκ?ΐ-·Έ=ηsRΰ:H~oΑMβΌ2y%xΓ;€κj΄¦όar|‚έO$r9„t w Αωςβ• }G‹[œKσAƒ pyΊγΜgžΧΑ…Γ+ΐr—ά} t)_σr£(ΕsΣ»ΪT#ΓDΟt Ÿ©" έvo1ΟK”7Ώ€„nq^SΫfΧIv ατš§DζAŒβ^μ:‡Όdy–mΈΖ#"‰EwμάΕG?ΚH$ŒŽ„ƒM0ɝx+f‘7+UΙoZ ά’ΒdΈ2Œ‹ρŒω*E4™d€8³Θ`;―Q₯;έΛL^B°<ΐ3Ι+@ ΛζFkωŒœv)§‡ωNTΉˆE<³¦XΣ•ψLwRΉΜJ©3²d“{PΉKYΊ2yγ33ΓLƒ|δ3 Bf'wٝabΣ3+1ΐLrJΣl>Τ₯8DŒ˜ε9YΤΛτ”`ϋAŎ΄’rr(Έ˜Ήώd™ΈΕ•©Μζ1«ΩIqn³=εγGΌ™M‰Ά2œn²‰Ή<Ρw&O“Φ’Ρ Rˆφ²™―,ζΓ:Έ “NAΟA Rm<Κ$‹ήφ£·!δmG•ΡQΕ6TΈΙMIœθ’"ι7*αTκ›$Ήδ JŽeΉt\O1‚½=²‘ΥP." ”΄§λaγΦ΄€δd%¬8‚@V#»‰s*[–σ@ΐ+v%lb»»z€Hν kΩΞΪ.„J/κY °XΟ:eιQe·φπ――α’iO«Ϊ?f6±:$Φ6Ψ•μΥ¬£ίn=‚I‘‰F‡=ΘnΠΓ[ϊ1NΈsΝJc—»YΩ‘vuτγ_ϋ“Xήχ΄ πνn™‡?τ\Δk°UΟ‹j{Xy φΌίεOBζ·N―ό yκ|O™ZNΏDtͺΩ”zQΞ(!υ!pƒCڍͺ”-°Κ·H.Rp`“|ΈίηšlžΉDs\Ά‰wΎB΅T_+άGυš Γ#Φ mΣ&WΘz{C Υ}Εͺ^ΚΙΒτ₯ ‹»φacφ–#žkŒ –3!›•EυœS“3_.’ՁνXYΏvcΨΗkΊrPGŒl(1ϊΛ"œ²Μ-σšRΘCJ΅T”ͺ„ mK\ϊα,yΈχ5Έ)ΦμκΐΌT³]™Ν‰ρΩͺ¬hόŠΨΡσEτX­kb1/Yž‘>\Œ”|αέ¨΅CΤτ₯ ύiΏϊρΟiK³}GνιV ²QM€œωΘΏq5Β•€πŒ²Kj^Ÿ8Υ―n΄°‰ΝΗLΗm[΅š9ύZ${Υ$.u΄σ7dηrNΕͺ€{X£IΗθΏ– φ²§έΆo“:؁$χAδφζY?)K΅¦…ίπόŠ8{•|ήuŽnymm+›ΪΈO…½nEϋ{ΰΦσƒpK70α8β6›υθpͺπf¦Dlήκνr ¬jDΆΒ^˜ς„p©mνΖ*Oγ„ŽFΞνGАσ:ΠοΟΤT¬ΨΦοθώHγ@Wο­°όqΟO ―ύ†Ϋͺ–€I IΞo†―«>tmη|@Sγ±p„ΟΞ ΕΞ Jο’ϊ%β8‘ ©Hpo OpΝΔΔΧMŽ–Φ Ϋ ‘OΑHnJά0Β΄β` LEMrΡMόnρ0ΛqΝbρύΞ1θΠΡέΡξ6QΓE―Ր/ƒπσ€ρŸŠ §.Ξzoδ€οΦ§nHΎhx0Šθ °Ωϊ.9°Ϊx±"§οωβ―ʴЎ1Δ@Ε‘α/ύ,lδΡ‘¨† 52ΙdΞΒ~dβ0R―DΦ¨1 λΜJώfψήπKςνψΰ±–Xj ‰±ΩΡ£oΨN©ΐλγqΙ$‘Ψ,1β’ΚΛfόό(܎―†ξΎoG€Ξ¬νμλνή'Οζ#άΉ/*Ν␠m.Ώ/%Ϋ1Ρ―Ff’YmΑ%mρ"[„ΡŠνΟμ"έΖτ ξοrΟΐo‘ς†oRΣh,υω ]R0=“τrlσί>φh²Η¬ϊς² .“ 4‹²&“δ‘Δχκμo-σνΝΖ|ΔΜΨIFΰ’ιXS=V‚Η­dΆ&ϊK7 ξ©ε95ρ…G Ό“Νe;νnΘo$'Ρ΅ΟΙB ‘;Α&mΣ#Σ¨ ―,OρμlOξ9PμΛόΛοπ’Gn ΰ 4 VB BτΚ¦“Σ`Z `ME”¦sτ;Λ“G>t4‡+ŸT>‹ΡDΣη:SΣ8RFΤΣHΠ©Ύ- c³ΨBςEZ²07ρΟξ+“>1?)'u2ψpν'A‘-Νf@€Θδ@#ΰ†SH%nΈˆ«KδΒ4LE_tσšΣ1'΄9i‹Η~€BΥƒMΏνM3$§SCM {T3HυR΄`θC!ΰF @LΗ¦Η€HEβωΔΣ;(ΰΨIC5―(ŒLδkΆΨS₯mΟ.ΝΠSFΙΞF‰θ, G1OGŠρS0*[7₯ŠGŽ?ηρμν 7!8ΏSx T`L ”φ€l@†σSŸΠE €(ΐQΈ†Y΅S;ΕYA2Z) LύJPγ†L;΅ˆ @ ΄ΰ²@\ €MιQ$K…ΆŒ³v  "ΐ\ ³ˆ",bΆ°@_  ΣΔ4L§`Ήf]`ή:΄lΥEΰQ,Α `L `jΰQ@ 4‘ <ΟΟpΰΘ3nΘ“eθΥdγFΔ³$α@Ε³Ν€,Αt΅bM6SYζQMφΆΨ•>ξ *–έ`vΨ„.C4ΐfOΡhŒώD2B/lJ€k5Ε τ‚MΙκξCQΞv-―Ρα0@Α­U`V~–ϊ Œ Ž΅mΈζCηφ•ζ6PνφCΰgη6ΈΝΰDΤ;‰Βaaφ-β Τ` `^q„π ΐn`%@ΊΜυq?”ι\ΰ Φ Χ2B…E u`PΧuΉu CCτΥa?Τ@€(ΑA`8Αe?΄b‘c•E$€x7AEΔn­r77P_y]”€€ha Ζoΐy=ξ@ρAρ d‘ ζ6K)6FW²6›nνΣ}WTjCo«P" ρΪ’–π“κvs ―δΑˆ/εTGDΙŠΐ Ž l ό ˆΰmΝq…8T ώ!P7  A@Αώ€ΐ αϊφ(sokyik €Ύ @quXΎ"λ B€\σu²€ Ά€ ΐ"`΄@r8H@΄` 2ΐ_επvΉ@tC7TΒe@κΰ , L€h@ΰΐZ7δΰ A8Τ΄xB Ά·ξp@b‘ΰv› hAx$α$‘e$¬˜’ω,A:φ$A$Α€χ€ *‘ΐκ<9  f٠਎ `a{ΰ ‘wηΰ  ’ΰH’` ΐ €ΐ*‘•€ ,\Ά `Ab-‘cΰ¨@ &€²U1k¬βd.~Y5aωψΨ: Hs3[΅=ύ―κψn•Kΐ„€kΔžΨ ΨΦΖΔϊ ψ ‚4m(uΑRV€T‘T,€VαŸUaJ!L! U‘ΚJa4£7!$a6z£Ο\„£Ά    Ί@ `; tΧ` @ 2@ΰ ΐ t0` Τ 0 §Α` ˆ δuΖόj–· € ΐΐ2ΘΔEτ™κ¬Ί@!A²ΊaΌΊ84S4ίζφbα ˜€danW<ήPΉFαjΑe½s]uΟo:‘’6Aα4Α8:αo’΄dfa{ΐ ^!eΑ±5‘.<α9‘>A^‘pV9œδn€o:6Arm[Δ€¬ΩLu‘T…ςiη22-+ηHs '3IloΨ7³Q³ΡUŒΐx*ˆΐŒ@"ΰν ua@& ΰV! !‘^ΨAJa’ mω«DηzI–D,α'Ώ$ Ζ€Ύ0  œ‚νΛ‰Α  ΄ v °ΐH v` Άΐc ΰ§3 §Υ  Φ€ ‡–" ΐΑ_„u bκ P Ύ:κ`ΑL@!ΈΥJ5Ά/α,(9ίnn*Α•ρZ ΰ>y9΅@Α.΅‘ *α±qa{#‘6A˜ œ€ξϊž8Αx‘€\–ΌΫμHΒ`‚φF ž μν±O;΅™Χbαͺ@Π>an` ΰ– ξz`! Μή:š)2ο² ’*ο~}nΥΒ/ G•8Ξ€.Νψ7ΞtσχX-‹O3υ2H[ϊ€»½{ϊ ΰΜβ6uM!P9ώ ¦}ζ RRαΑβ Z”`lΗζF.ΰDφά/`ΞέDφΜ1#¬e!,ŒBΑ` 4<Ύ 2€‡CWď$ j2 ΄r`§=–H—),jί ΑΆZΑP·ΚΪ’«τH$‘$!·in•δ Ί;’ΓΧŒ”„‘ΫμCQώC%• | Yb ζΦ`xΰ< Z>―rw­ƒvj€ΙράΛ)AΡU;΅ώω^ΝηΦ baΑyΒ$ΰ·s₯σ՘Τ«0τ3ρπpT›q “;4Σ›ΙΤ&Rυ«¨€ ŸΔΊΗέΜ†σ»ύ ž#ΰ»Ϋvά/‚`ΙJŸΐPX@ αX‘„ΰͺύΪγ6Ψš’ \€π^7θΙNΙTrƒ~ͺJΎΊͺKͺ@ΐ:λ]Κ/‡ Έ@ΐ€ Ύ X<Τ@Δ² ¨> ^Γ[9 V†¨bx«λ€2žΗ0ͺ:<žvCΎJA]‘©λcώθ?ZώvƒΎpd>ΐΩmΐζyΞ7 B’`έp€₯Y€ΰi€°$ˆpΰP1@%Z’npκ$² p’ΈδΥ£°&… ι$V…―p drCB‹=Š4iFJ3*hŠΰ肦T«*}jUcΦ­\•2ν 6,R¬Z·’MΥ)―bN]z4큳mΕΌ±‰'O:½z+–,Y΄pα’+Φ¬Yϋz»ι Ρ¬ Ed@<όy8ΉθŽPmΊ΄…©`‚Υ!« 8΄jΞ‘TtRbΔΠ*@fΜ91€ιΚ•—fύ„ X’tέR“(Χ±_:Z ,€ΰΰΌ’ζH³e_΄€ω@.hY£ΐΐiδp‘Fθ9€€˜‡^Uΰ†"4P‡"&Đȅp,ς‰ΔΠ‚" 0ΐ­A'ΆXI-NPΓŸpR#Ό‚c Εr^\΄œC“ΔℏMΠ’ ›Θr$ 逴lrΐQ@$Ρ ³X€sΐ²PRΓšΔΑ³ $ -P,Q‹Dž€ΐΐI,MHpΗMθ€,>έ ˜OU%Χ\]‰W€\IκθX¨˜Q£J…—QšΦ*X”ZZV¨€š•₯Ÿ’ej«G±uΤ]yνΕΧ_‹ VΨa΄Θ²Xcžxr#(>MGΥzΑG’τΑ‡ œυρ±’pS΅Φ†Τ*°₯r¬’ +«ΔQ*J”ς›)˜²J*¬”’Π΅Χ«Cς^ ΑͺN)@!υ @Ώ‡Ζ:€Β;μ°Fi¬‘E`¨±Ζ\hP_~`€Ώ °We4‘ $rr".β!"˜€ʊΤ1ΐ_M€& m‹šΌ’,• ,°4YO p"oUΝΙAšΘςŠ,– ΐ#@&X4`M~ε+]Λΐ<ω ƒΎ‰Λ'ΰτ+΅TΒg—{ΖΛ(1ΛN–ΌrΠ ²τόΠQ£žΊ•Ύ¦Ίx₯]Ι%ήαV‘Ε©Xυ6uΉZIen•⍃šΉβœSKοΥΧ_ V-»&ΖΨ_ΐB6¬UDU@D<ADT°ΒΠ5ΐ I(‘ΔρJ,|σ/Μ€D !l ’,Ό@Γ B° DυΜA BΈ@ςΙ+‘~ςΙΣΑΒ°.Gr•'΅€!μ‚ώόσ―Ώ D А,@0€v μ€0@ θoƒϋ_²2Έ1ˆ( `CXα[€£|e8Βj`Γ,A NpB˜€@ΰ RX˜@‰άΰMxBš°„&ψθmR€BB IDΈα"` $MD$pP€%κˆ 8`βήΨ&\ΰΈ€’ΰ£%HB @΄x@`B όUƒHXΒ °ΐRpΔ•P` L¨ΜtFΗL~n“‘bΥδLΕ–ΘΕsEΡd©κbJΝm.+‘ˊ\RiΉ‘™j%8˜Υ―ό˜ΔΖuƒ―>q£Θ* €Ρͺe€Κpμdaΐ UHS©˜¦4«© Ϋ.$-¬k€5j=Dœ!!+¬yMtΞΞ4Šΐ‘’pd#ο€Κ .¨ΑaόμgΤπ…•8δ0nRPΐZM¦0ψs’kΨ‚ 0*`£ΝH.ΕθP‹£› ΙA‘k5θ˜ ‰tB²&X¨YIHΜV-<ΐ.M °v““:ˆF}ϊΛ+fα‰!΄τ&φbjSCΒΣ‡'½©C`SιΨK«‹•η.W/iΕ%T°\ε£8iVΖ™Š”h₯Šδ:UJ€€Vl ήb8ΎτKϋ_p\΅npŠρΥμ„)Vͺf=λ9€ƒ0e” ± μ£l.K‡Μ^V\'j”σ€Π:žΣ9‘Vg‡Μj³ͺ ΐΜΟ! 9 AjK‚άκ6!˜N{ΜΓ’€gb4q§#Ζς Ίmnsi«¦`R‘­ξ₯0ΥNg’:Ρ1 GΦC¬ϊ­ˆ4!Φhn…ͺΧGτ+―{ί+ΟΚW«`BzΥΫ„ „QΌδ₯Qβω^ŽŒ&*α%ΦyJc3FΉ•*eε«0—ΧL΅ε­TY[κ–wEΓc­J*)μΈ³NΚ*φ-OwKΥιuΈ ΜΰbχŠ_ιEX…«S>ΕΨΖ6…ΊδΌΧM8%έΠ&:QαΝΈkSίΆΕLlV ¦xΜ_T˜• P©%˜#δ‰ŠΕ(αŒάsΚWφWǁ(GΈ”Ρω XIKΥM5ˆS—λF4BZέ =σΌY„ͺςέΉœE^ςK°wγΌ”x W)σDŠ΄œΌfWΓ$n«*Œ*€ά―. ή1TNΙαR…Ϊ€&_υςW φ0°“©μ€ωπ nSĜΛh\Pw4reπ¦ΖDš[/GE ΐ€©β΄CΌw%³Εψη”bΉ((U˜Ώ_—ΈAyPΜ ’ΤΓΆ Ί¨”¨0hÁ3i`ύ WΉΥš©ϊQUΊ₯Άt½ΨΪι~ \T—ώ ₯=ύΰZ+a ₯WpOAψ“bαi-9αΧΤU0»Τ•/_Ρ‰Ωq²vx€m³κ>:R€Θf/O<2?@§£ςΡ`E  8£ςΜj—ΐΨ>Κ>€`»θ6εφ—Ε8™§pŒX5ΛVNŠh1Ηjΰͺ\η,q·:­fγν$ΏP ζΌr“+weΐ]Wn䁓uξλ$ΑγBαˆ'\ξ§ ;ί]U/Hι}Ωv€ΎWχΕ/³Πε.{Ω«W³v–¦ ‚<Ψ@βs½;Ώ ςv^Œ€ΝqRΐε—— šΨŒΎΟ•‚Pπ—P J’ ASžΐ3rNP{08ΐ!6gIΫH ’°ΠΧ(epχ€^€vp0@ŒΉ¨†xυS`θ‚Tp°&5€Q@°ςxLP Έ "³VrχŠŸFJˆ7xϊKΆiŸ3xΨ€ΦUv5‰N‘•ˆψ€ήU:y‘qΈΤxg„‘0,“7L•'fr ²P{–Π3ZsyX㳦ε#,R@5z ”‚ƒ5fΘΎκ‘Ÿ_ϊ šΰNγ$ϊ&±0!‘Dˆ’¨ž0Fœ0 p’B«…S(Ÿy°πzR'‰P|€΅6 yΰ|π‹œηh°yς%₯ӎ X žpEOΒ •PXSbNc™ˆ™8­Ϊz‰zε‘Y1xγ*­ #Kαͺ`D‰M1’e9‘}Λ*ˆwb)ͺ:χx―SX/ϊ1―`Α9 Ψ ,ΨzΩĘGΐύšΤ°DΠρ²!αW(ς›F΄P@ °0 °ΙKC° QΆ HΈ{Q`3³`π7‘3TΠPP5`†-‚'ξ„y]«ω`ΠΘΖ$Vi“'i‹Vce”Π 8 ΰΆ 1{βv…»a‡(Έ8ΈΤϊ¬*piAaΣ%―+μ·ψ£ˆ’–Ά¬άΚ·η¬Ά"gijΉbƒε’16;πj­a‹°5*Ί€Λ£~°< qp™π―xP€°Ϋ+ v€O›c₯΅  0 ²°‘SBΌΔς²Ώ 'gp¦SΨ1·΅π³š §7€ žB!%λ[} kΊΎN2 =p œa:‰ N›P Rτ¨|2 ` Ά ¨‘T@gΣ3NP'ήηX ~€°§J@IĞw@h€ΏQ« « ›Πͺ Ρ'ιΨ«“ΜΈ„›nšΨ*EΦΓ3'KЬΫΝzΫΝ<Μw°tЧ’wŠη˜λ /΅Ι" ~ “Yw€W«‚I˜†I€‹™Οδ₯ ψ€]‹°ζ)G³›²³Pgπ J•eβ °ΐ+œP{CžΠƒqςοK#―` ?KΈΙ4P FΓ 8@ ²PΡ8ArΞΫ7ΚϋŸƒΓ OP ΅°ΠΡ€Y5‘P²± >β™ΙΌˆς&j o­κk•raΧ`YΉΉΧΜΒ›€ΝOF–9Ό·~½Γjˆy;­VΩ‘­ΈMaqωH+F%Ύ¬S.y!wΔ”‡ΝΡ:Νή%pF@·θŒ *<ΰ―Eΰ“@vΐ€πζŒ`΄ ΏσΩ*Ά₯4L UτN@”PpήY#V°70Pa@P@Rΰ#zsΠΌOpQpEΡ‹wa ΐΘ5πaΐά֍p΄9C QI Κ^ΐR°άΝ}|N0–P{Ι”EN Edw’`EQΧρΪνΏ7π;²HΑ#6`]+'4>R@²ΦRd› aπMPzd Rΐ"šαπ‡‹J‰=ÜD)ζ9[i(ؚR’Ÿφ”₯Fγ™TΨkf€JqΓ™­γь’~5Š· ,†oiXΡŠaω)vy!ΤEηζ΅!Q“lˆU6‡Rλ–ΗtΫf9†šΐ » 8‹Sμ$/8#Nd…φB§)5„ΧTNeηSwoα1σ‘η&E7ΡζNe-u*F8XOfξMO΅TήT-#F!A-CώΝΈύΦ€€mΈHΨζ™2:šς‰‰Λι-,p9GK³ς ηš¦ΨK•ϋ’3fΩ₯u βyΰE,^Pj˜/ βλbιhχ+Eςͺya πΞξ–zφ£ p` ς Φ^'DU±Α2©'hτCZΠ6 ·oε₯Ρ7_F^žmΐnμuI—C?»w}ϋ.ξΦ&ο™Λ‰$ΣιŒhO&χw’γ‰$\VlQ9°²Χͺwš.κάΓ8‘ϊ>δl+ClΌ’Š0ͺ‘~·ξ4di's€nξτθxΛhΨ U΅vΞν€κρe“ΙNο)έ&ω"6Sξί'VΑ₯ο±Rρ„κiς+BJυvg+β]I`g[/γ›Nδ{‹­·π8œΩ/Γc9j’£)vτZ―XεΪΨΆRŠLΎpYΩ2ϊβ.μβCip †5^§φκ›ξ†•ψωΧγ5όχΟw _ςοΝ*\­uα9ψ:|χ[ŸiMρΈiΙxC|Ξ•›Ξ#Ώχr§cύ&l—ΟvœTω‰oω‹CJξ­ίšVš3ω5ŽΩ‰8γΝΝ$₯Ύ­­Ψω£žφ/Nw‡‹’΄’–oΟKqδ#·λ'φΑό¬_7Ώκgyλ–’¬=Nρ/ωAJίΌϊ³Dj°tψύ‡κŠ)χΈ¨³ό+jθr3ε^ρϋ€φ)ρΰΐ@‚ DΘαB† >„ˆADŠ-^ĘёΒ p,葑ȁ 74y‘$A+Y.L©’ƒŠ1 Ϊ4θγΔ—8 κ)³ Oˆ8 }x©AplβτιS§WUa͊EK«VY²fΑͺΪΙ“§Oœ6ααζ‘K‰²…[‘&Ζ?γ"}{7οΑ½@‰*Eκ“­R‘€‹"5μpe^—:χ$IRαcΈ‰!RΎ‹2sIΉ!— vΨτ(NQΗVΕK–V\]cŚvlιM7^΄i9"e›˜! άΌswΌ …&֝Ypd†ΎOwθϊΪ‡)ηž~@:FέΖ_V΄œ| γμœΦmψΧξ@ΡP?F­z5-\\gΕ–]Z7ͺ<Θΐ‹θ(οD»)2n;ΟrP£·oΌŠΠ[°£₯t«0:‹’Р©#N&—FΜ°©§J{―ͺWʊ5Zdy ΏNΔΟ6΅[(±5“h=耓EςξΗΚLl!3¨C€d:ωΚ"y|(ΔΒ’ΛΝώ{NΓeŠ 'έ‹ͺWξSm+­j «“²ΜBλΊ ―Μ(*Œ‹C„ώ$hΛ)K„²ΐ ΗLΤ7%l+)‡Ύ4ˆ#G‹ϋΞΓκ–2͈PΔμ†RR/½Π­¬6γλjΎV,³t΄θΡΛ LT₯ιlν±Ο\=: ›¬ς#‘&ΫXDύΝ νψ$ρ9ηx•ΞΐH•eΚ)χ¦rN9g€³ͺΩ>Ω/-L²U'hυͺ©ΨγπΒV@ŸsP{y 6»N28’Φ͈'uγEΠ'Μθ…h1L14Σ<‰/N9_λ•=ΙρΆˆ(%X;!Œ–X)κKWσ½ΆγzIVω!ςœΝ΄εΖP±˜ΦΤcHSvK ¬τΩT‹@u[ˆ­Βκ[ΧlΔO[ώ8C„γ΅t:δDΦh]+…ξ_e‘D2|C†‰ΰεXΆWεή52θ² RΡα#ž+Ψlœ“rwά9^%Ηfwδ^mΖ•ζC³NΈζŸyΆhD¦6YΤ0Ν,ˆγΎ+zt%h!6.=1wϋ"Κ _“EOάΌo>\Z£%ά‹i££+-γiDΗ§ΓκΟΚ³Ό< |εv=<μ{690Π'ΠάίφΐφL»΅Τθ«O5Ψb-«Ά§Α΄0΄θ‘N±uGΜ%|ζρyΔ…ΞRx~μN&―—œ·βΡ_kΡ-š'N‡ΊΧ̈>sϊŠ‹ςV.<TθλPπ†“©­δq4ϋ]Ό8χζΑŒ"ΙqŸΰΆv9½o‚ΜΒίαDš³ΙΟ2Οσ‹y°Γ§8l€H“˜έΆ'.Œ9oΆϊΡ ΐ·Š ‘ˆ\• €ž#ώC$Šω€ψ–Ε‚*Yb—Α$^d½[β£€ήuP;θΙ`HΎXFόu±„Ψϊά­N8*3*q}{LLΨΨ8ψΝ$YύϊΰΎΗ– πtt“Σd#•Y}.‚\πFρ`’#«  FŠ` ž Ψ$ Κΐ0₯ΞΆEΚΕL%π• 0ˎό–€e…nΩJΜr—€””z9 ΒψrY=ΊB~Ή(ΓA˜šΦZ)8†\©ŠώΫ Ύά'†•ζ†/Κ‘ρv'PΔLΛ2L] <€ηβ›hΒ·!²ηpζrΟeπ '?ψ»Ί˜o ؚς2E`ΟΓ§Z.s=ΓΚ\>G©4ώD$ΐΆ¨E2δ‹α(A$ VFΙ‚…€Rƒ€.&q€YΐJCR——΅ΤŽAqυΔ„HJ œGFBίζeD!¦¨΄AΆEŒTKIΓΡxσozMέˆ‹1ς,ŽœNS"‘‰ j’ ΧU’iλσ™W#Φe@ 4A…΄δ₯žυl v°…μ€ Ψd\'BF„Ζ΄#q5@Έ.@ΐ”Xθ,h#pJ”y€$P€ΖlΡ²΅΄)S 1¨(€MΙXΉ5Φ’ )ΔЁYvΆυ@ncΖΚ”  B `Ή£šώ@ @XνHΣ8μ:?.D P‚@€ΌΘ­GN:^α&w"6’GϋΔT½~EγdΡ  t€ΏΔεδΜ>υ΅;NSS‚*œ²&ΤGl=•-%Γ& q@š6ΉιΪΫJ«bQ1±τ°œΫκA†Jΐ’–@S,iΙΉͺxΕΈΡ^ΌbKΊΕ$&πŠ»Ξ•" Φ Ω5d ±vγ#«…Ζ™ΥAΐ0ZtaΘV6²@R”ΰΆbΘξA @°Ά—c.3N π2”ΐm†e™Σ<4—Ω–rf­qΛ ‚Y²ΩΝm&€εZA 04&Bζ4Cΐb CveIζ\⒐€2Α’0#ΘQ―v–u±sJ°η@‹’Ρ»Ό)> †¦ΠωΥt>€@Ζόf°YΖͺEΚX΅’„ψ.ΖΞL&AΕ}P~Η:ՊX=°Ζ(ΓKYΘΰ(»KM±Δ+,‘ IΘψ–Ψ„&œ’α š°D[XK4Α)•ΨΔ%Nό„HH‚ά€…€Ώ+!ξI‘Ζ/.”ŒΏ°† l‘ΘΘΑ²πx’ΨB°0Zˆs‘ ;Θ€¦Lf+GΛ›|ˆͺ… ιηjh·ψ~@܎|ΐ^ώ€šyέ@ƒ@"‚θ,/—`Έ$ztc €ˆαeφυ›KΠκA}1·†^€¦g™τ|ΐΙ³Ξn< sš ζ%2]2όΰӞ)@©E½Δt Πn–1Θπk2:WιE©!0λ2€Wψ9yA@h¬V9χ³Ÿ}<ώ%NvΝDΫ3 |ΐ1;"ή¦Φ]:D΄Ύη«©YM}fD#¦y؜Π>•%j OΠB·& 0αœxοΛRƒNΜβ5ώ&bqWKΰb― p/ ˆΩβφ‡5$ŠMt„ε’ŒE,€UfΓΒΧ„@ iψH€¬ `ψBΘΌ…4Hΐ”γΉσΣ2:1(2@@μ2³^Cƒ2x:0@H‚Ί(¦¦ϋ $€Uœ:  ΐ1˜ΊC«­>#ά*ό½{:ŠZ1(R›: ,H#ƒΕc―Γ»„4Ψ@ p1π /a―ζƒΊ.ΔΫ³Yς€½#€Αλ"ιb42€ζ"ƒNλ―˜@\©½Β Πΐ?‘)—α£ΜΘ‹˜ψ›Εќ;™9κf;ΟλΈˆo²0¬θŠDr¦9«€#Β½ZxπXˆp‚'Z ΨY°7&ΐΎΣ± Ω«„π„ZΐΩ‹ €…M€WπΈƒZ°„΄˜§I  Έh₯ΐ€ΖHZΈ Θ€5ΐX8 €Ζ4HΟ ±-9FlΔ 8C§‘λ'‘ƒ1°B@ΛΊ2XGΟP ˆ©•*€(`€λκ2V“GQ[Ό8<˜Β§##x΄B Y’‘X©w”hΐ©3@ Υ:  ΅L1€$P»Γ#Θρ€ŸΘ©œ’€»rl»ά;*4ŸpIHK­“Ι…,2¨―’‚΄œΑ,<Γœ­x©Η‘¬(r‰ή*P©<Κ㠊€_Ω£:ŠC‡ˆ#Κ  «6±r kš½)^1 hЁC‹Jˆ…hͺ¨½»* ƒPΈ…[ΠKΪZ0W87Xh <…Έ X¨Ε*ˆ ΈΜΈΚ1Ÿμ+%0₯/θP€4Ψƒ-82$Σ€4Θ@€*$k-Ϛ$Ε„ˆΗh»~!#BƒΠ$αΊΊ©£₯ϊ)\š₯ƒ1 51ψ©@€έ¬BXŠ€GΓ­aͺM:{»Ž˜%YΒ₯ˆμ2Ÿά@0cΝ 3α’€1πIΊ.Z’₯[b€1Sƒ0I֚Ν53ƒά$4δ³’‚150«Ι•[Γθ4΅‚΄Αμό΅ΤA\Jρ$ ρμ2€Π‘$¨40dƒΓΡnKž’0hσC™DΣsaΦ ‘ ‹ΨωΪρ 7X°J0QN0Ρ&€…»ΒΆ>MΒΪXX‚8>Έ ³¨½D•X¨E}š+I²X‹Ή½\c‰ψRj$€.x̐L€?M’± PΛTΜΟ$C@(’zL‚όΒγ23ζ„ψΌΞάΜ:ι:)Θp-YΒ͏ΐGŠ\²ŸΊ2›5ƒ@Ξά- e6τ‘$¨HͺIΘGS ¦@ή$€λΚΞνT€>)£<€@-{Y£9=€U³ΙMΘΠ€U›ΑΒ π€VmUšŒ΄SΓΗ8Ν:5Ÿ΄@?‘%U뀂ψ€Ί3©_•ΘJ°¦μœˆPDyΠjYΔό9P‰°cƒ*ΉβQ“’D’μ΅˜Όρ1‘K[°„  ½ xPΘΕZΈ+JΐI€*°NΰH”… ΈΔHθ=ΒBQ- θXθK0WΜw€&„†mX&Έ$†hΜ)UƒΝά6Π؁°R5˜Ζ˜$Λ6؁ F%YΑ,Ό#κ₯3M-@+΄$δ‘ρ2G1δMTέTβZ5<”€NϋΘ‚@/‹ 3tκA  ­205?;Ό3υ―NC2h.t3zlOίθ%T-GŸ₯ΤPUGƒ!|52C˜k3xΌT₯•Yxή[Λˆ…M€€Mό½·γ>ˆ‚²=Λ’X€ƒ«1‰R.p«4HF ƒ5xΏω h”2 ¨Bα]ƒ/ΐ’ˆβ<ΫͺœXAH»ΑՊΣκΩΰΒ%αTzd9΅5L.;%ƒ1Ψ[’0Ι7#ƒ`­|ρX5”H 8S0ΛNL»@@Mσ+„0ΐ_λ’ΩβI½s;τέ»ύ-AZ›+h§ΥACΓ­ Μή ,ƒ$ƒ ˆί¨©‹ρšΫψ;8S§/N6δwμ QhGΎe›cρagαψA\JbfFœ0―κωH$Φb#ι°<ΈΉ€ƒ±#’±]{&³]“±Ϋ8Έ˜h§/bεO"-ΖT($c±‰πη*”"Ξ*\{»AO‘XΞ†Θ₯Ω΄Ν\R ?υ-K[ˆy€NέB¦ΨMQ“.šB΅[š%;;3‡‰“\_ΛΨ%’φ%O‡ŽŒ^’³6ΝΟ\ϊN_ꨆ(Oΰά"’ΆΝ"q%¨‘ΓΈΐΪ¨*jΒΕ)ζΒ 6r‰©άCϊ* ύ–ώVΧC«Ÿώ#5Aγ3’‰@γΌbΎŠ«9,4’ώͺ‰πh2+σaλƒϊ"&κ`νj©›†7Ϊ ,ŒΨς(ΎV)Cnf@ϊ€:@β©½†/6μρ)Έ1ψ*#VR€^Λ- I"Pνk7:¨Žβ©ΆQ₯ΏέŒmRM&y!ΣκPςΜ‹6ΔΒΧΨ!X”•DŒͺεκ‰:’Ϋ bšx’λ˜)ΏE·ζ ‰b‰ εŒΒ`fΡ&l ¨4Νƒ 4Λnλn6β€₯κΞ‰ jΞ+J!jςjVΚ IolAaΆXaφN›Μ¨ΚΣ»žΥ\[ ΧK\`‘’ €ω.Š{ϊνb{α@Iν ’MMyΚŒΊΦξγh-ςΞ ‘œkŽ”+Qξ…q—ψ rζο&νέˆ ]•7™…ՐύξPX¨˜lϋ„³ΊŽ#‰‹ζ₯€Ψ'‘vβΔ‚ R¨—l’bπΑf˜WwΙ‰/’n ZκgSΚ¦Rκ#ρύ pέα‰Ο1 ’π κ‘Ά£Mql6 §¬δ‘βν=ρ±‚Θ'‘νΆ!W 0  ΠskΎωΤ½(šΈ]…Ψ)Κ΅v‚€ x·s€@€HWˆ{z§L7πw‚`Œ€₯ε€diφˆ2)οά©ο„ M₯Σ4Z£Ώ8˜P'O“ισ&υQ₯νκ©ΓΎ -σφπΑρΎ+ξ2Ώf^ DCbs₯Ακoν–! 8 #ϊ'³†ΰ@γ½K΅x’ώ ςαώκ!"z<„k°†’Ή,&…'€€ϊv„X€nΟ§4‘700pM' ΘτJ‘ͺ°dKΊ›B©Ά σΚΉΩj<ΰ”―>Ξs ςlς$£C=)τψxόϊ )—ς2IUK.HώXο©ν"£–P(˜Χλ’ςψί’yΚ9©A­kΛy7Œv ₯φ<„”Ι"νiUm’#(χmεu`gœ_m©Ύ6Ήͺ@½nή‘˘|f‹ƒ+Έy^1±·€|ΒΕ± σ)g€x1+ηl‘±―χgs±'…^dΆ$Ο›0‰ GxhEItIg€ΕtoόΕ/-@―.ϋ²… σΉ5[βξ&%ž+ƒΘΗδvϊFγˆWϋ’υΒ³I£4[{ύσι[ L>΄P“Ϊ&ρ,³©3•d΄Z i;λLJ£)ξΞ²έBζ ~˜6Pg&p§wοω1ά†\₯‚ΐy€„šd‡iρ Εm²Κ6J¦X‚†%7 €%F7ήs+)ˆt»½ Έ„Mˆ7(€˜€Ψ΄©Κ20€Š€J›œPΠ&ML"βx$Ε!@8 ‰$I› AπψH“Εˆ,Qͺλ –6Uͺ δG"0`ΑΑ(r„(ŠEp˜€Sη …1άΈ™ϊ`€Υ:uh8πΰ#ُ t(1f 2%Κ.@P@ €όΰ‘ X€ΆŒ™DΉKτ€\ "ĐρQbB|KH( ΐ¬ΑJˆΑŒV_Πςβ€ΕOAσΕ(AX b2oώαC‰βJΠ H€”0}φ3tΚ¬λή=@½D‡ƒ @O>=aΉˆ³Χ˜Ύ]v=ϋφξ{– ώ~>}ψνεί§Ώ>Yό?2°ή~Ω§ή–είAΞΗ Yώ§ { @ˆ pά 'œxβI'―Ό2K,#B .΄Θ2", v‰'nrΓNX[J–ΤςŠ'΅Hΐ&ΆxςŠ,UΤδ .‚Rƒ&²| ')UBΛ'žlRΑŒ yτc±tTΙ, yΡ±Π2Κ,š0@@H!0‰-£ΌBΛ\B‹'³ΐ"γ&΄p" .mΛ&―€²Α•)έ  'qB‰N8Α’H"n˜ΘTZ‡"rπ†"ˆ’ΘS4$βU"`1Πj€$ΨceA+Η}$kbˆ1Fs@Φ+!mvVd λ°Ψt% +sΉνJ†<υτd@ŒΑ›eŒY ψ0ΖΌz°δ&†cD@ΐU΄Φp.Ά·0A­mύFΐ»Š μZnlΌcŒ šob€Πη–P·Ύ ―m+ΒΛeΆ€m "” ΙνIX_ΚσΑjY s3ίΙd9H3Ν9³Χ²Ξ?#˜sJ8hΘα‡ Š(‹,%ž¨t,+Ύβ’'Ÿp W֘2ΟXβ(―lβ#-7T 'TπJ,CTPƒ΄P€%΄8Q-aWπ„πAD ΘrΓ±lRΓ,―η*hˆρfΉβΕ+”aΙB Ap œε[n}°lef ¦ΦβΝ bΌkΒσ6 ?”ρΪCΐψ–Ξυ™΄ˆΑ|@Xfr•·Tοc¨άψ^c-υ―&σ Υœ^Ν₯ Ό‘ ­•–2Œ‹W§Ι π·ύρ;b(CΛπ«‘ύ zοa‚tψŸ­­geο’€ΚβCρf8’ΚΔ$Φo=­’„€‘$’EvκP‹B4’₯•E#:‹^΄(νλ@L\ΟnτŠ π‘'ώζ Ό‚q™B, ²„XHΒ \ςˆG^…%l("‹’B,^Α‰Oΐb#™E"’E‘hβ‘ `a‰Mn" ± Rha…HΤβEž˜ΙN°ά –7ΐΑš@2 OˆC °’; *oXΰ\¦ͺΖ«JΝςšψζ‘!Vm<# *€•MΌŒζ+ΞΚεΚŒ7jLΜχH`b Ι 0Μ΄K(WrΨ2ΎK7 ωΖπΞτ…lAΤJ— Έ>~΄πd˜8“ΝވϋœΰΉ € ςJ\φ²•bδΥΠΜΜ0€Ώ9–΅όR3 Υhύ‘Y3ψ ΡB2™«SΖΤg§.›)Ξ~ϊž‘ihJ,DΔ΄9ŒRېհƲΘΜBPz…Nε#M€£ΨI'Jη7>FNš ―E„˜bJπȈ|Q˜…%j0„\@­° .ΫHκ«Cι„&.0 I~mPˆa₯ ’Πb 5ΈA (P‘”0αC]δΔ£–xγ –rΓΡΈ!Β\„8U ,βΆ(°\=Αt`†Θ²Φ9‹%”S"lIΒ€cΉeρ7Σ™›1H€βD!@ Oې/ΠάΤ’Oό&^0Ÿ$/^‘α0h>zšΟZ!!Jxγ郉Ž+}έ9‹o4Z.HPμς Π ₯ΠšΰΊΖ „ψ†„8lΒ@“˜υahΑΙjЌΚlM¨&Σi~œθβš˜,Q<ρŠί+-νhI#Σ‰Δ ©ΊFhlΟΔDl΅«gΫD-¦ΐY„ν°`œHn N,`Έά,:Qƒ„α|C² ŠZ@‘ ‘‹ΐ+>! œα jE 9ΟΕΤ,`€N„­I5€·‰ €ΒMΈ-‡I K5x„$ Q*6$[Αe Π;GΠ ЍΓ‘ ΐαΤD§U‹‚Π@xž{ Λ—ά&§iΛzΛπ_`+εγnl8OΞP«½ˆ'π-f₯Ρ1 θ¦rcΜ°…ΩΤW­ U xWε%CB²Π™A ‚!_g^ψΜΆΏ'† ¬ ψ@€{-Φt§½&Cψ>π*Ωhρΐ<ΐ,έπΖ¦όabΛ$ΞŨΈFψ qŒηΓρ!±γΝ$ςω u‹K ‘S—†‹₯±ŒS«Ϊ՚)rάΘ:EΨ4Q‹N4ς"ψDιΰΉΙ±˜Δπ‡YΜB hzP"’e΅uBFshjΤ{δXΜ¨:P(Ρ ‰xu―J'­άhαŎXB!zΕE\Iv‰πδv8ή<ε†Θ!XΔ¦Z[―0‰P<ΒBbΈ¨ήΊδ^–Z+»ΐnΦ~Π‚°x–Χ[Πt‚Ε,! Χ/} ΌZJ-ΘΔ·ό›DΉ΅n  ώ{Wfbχ@Θ{WόU4Ά«yωΔΤ­œΒ c=Θk-ΌIίΑD0pxULaΘςŸ6―‘ΒkX/½κΙΛoώσט>GYΙLŽΣφΟΜβj¬ό/tƒMΎΒŠX‚†…ΡiTP$Œ$μγAΖ‚±ΙNdDΰYΣΉ#¨Ι:FΔΡ~)ΐ°›4@0pίh`G.Wΰ\GB Wtδό^€Σ„°“G©ΗKΆΗKΚδ'βLdPι$M^Oͺ,€G‡GΙδ-ž^œΖLώβΊάβCŸwI”Sn†R’O„νδGτd5υ€RzTVžΖ7EXΚdOVήϋύ"0’ίZJγω=W •{ψ[Μ1ώ”A# JΡpS9U•H̍£ň‡„D#HΔ»LA$H`μμΛ΄ε`ΰΩ @ ,hffΦ€P"„†Ξ΅ΚΤ€f’ζΰ@€<ζJa€ˆ&Qˆ¦9ŒEoAΐ«<ΐnΊΚ\‰ΕXμfpςΗ9Χm€W|8WqF­ηmά}°[±Π“ƒtΖUVq…³8WFJηmŒΕFŽί_`K0‚D 0\Y[tƊs§ΘPaηvR‘{ŠL5yςT­₯ίόΩQY£…ΜXP•Ÿ]R£Q%¦Η±Ÿ\Ί‡6œ‘‰‰@UА‘ސcΝΡ~¨±` %`¨xR@DΐBޝaβ€ΌJCVέέaAŠ Η‡˜‹ϊ–«°Η\h2"¨… ˆMUΠΊc†Ν€ T†'5ξΗ{ͺΗs-i’&hΝψ ΖΤΜ@ƒθP^Β%].Q‹Ρ_ΘMH‰±˜—•~κ Žυ%Λ‘H₯ȏ±ˆ‹PMa&ϊω’ hD(ΔAΞΝfžύG€DŠ‰Ξ©™²εŽr©ωUxiŒΙΥ‘r)^Ί₯~iό‘eZ:jΟά”‰mM€n©–Ÿ6NΙώ-ŸΌ-όΤLΝ&ΝΠθŒϊe6HΣI@K!B `0•2†Μ<%€Υ^*”ξL™vι‘2HύΕ‡’:*²ΎXMj„¨††ιΙιͺ΄zi΅VjΗ1+°n¨3bͺ‰%¦…ͺŽ}ΡSy#Τ½)aFš‚šP@ڈ*¦hH ΙΤΐ&„žI!yΪ©²GJ4žτHh+μθΆ.ͺ³–Γφg”šΔΕJ,‚¬ ŠκZ’ΨΦG…Θh\²λOρL€`«ϋ +PωηΖή!ςεΚ‰ΘƒB¨©’λ`RM9Ž¬Θ (zV‰ΞHΟ‚–ΤIB 4l0dΥρPp˜£>IΒe­j°‚©Τ’i°z,΄Š)ΘQ­Γκ ³θ…,Κ*cΥ^,3ζl˜Jœ$Λjm°¦Μ‰«ώ}HΜ‚T fͺΚi·¦₯φΜμD$hB%4AD@&PΒμDP%hΒΰ^$N%PN@%XB€FE&X<Α±]Ω ΘΨIBžDνΦYŒΡ±vmΕzjΆς-κ‘Δa+U\€κν·b,όjΚ`ΡΙNœΞk~ο™Ί¬Κ‰cS›ΚB͎#UYθω΅ΚVΐ’ γ0>ΖΒEμ'V@)Ρΰ#@­~Ž'),\ΐΠΒHJTAΥΘ'X‚\\J,&ŽίΌa³ξοÚ­πͺ,*,‚΄Μ•>p[z©Ε’ξ4κnξ6ρ2ςo±r-μξ-Π,pπ «ΓŽρΙω ƒ}#`ήm'PΝ’\¬‘Ιjœšο,ȈH€•ΰΥ“|BΨΰ,TR$ΐ‚N(€>Υΐ+|€GδQ.ˆTΐ,ΑΒ‡3™&菦.gMNΉ­…Όνλ–­ƒρ_ρΜΨF–GbΚTˆ]mU‹2Χςξ£’©ώ9hέ*Mσ’j‡Διοηϐ’ZDt 3Ξ rD”ŒΌ+,ς'=ΐ(œ<3ή9' Α‡p£&ΜΆΔc%Δ‚5‹qρ‚k΄2‘~ς.{1)Gˆ+7μΆφT*oqΫΝΗΙr5"πΚΐŠPΑΚΙ §*#@ b’νΨφ³ό₯œRMS=(› &…>Ύ©*“…ί¨(Tΐ@ΌMι4σ P5›.Lΐ4,TΒ€–YΑ°―GΔΞη”ΔOWϋα™ωΎ4Η³QΙίo†-'ρ₯Ύε|¬ί5π*Ÿ1Sκπz+DρΣΖ™rΛ|œ₯ švσX½± ΰیά4™ΐδc,tΒΥ|B4ΓB$Pσ+Θ†€‚ΡuΤ€'4έRθV‘,xώφn]žm=SqNlΙ4Vk1ΦBφCgφΞB°€Β_ύ±΅‚€νTΓ[#±)£ωYuVwƒΒlΛ]pσf0ŒDοZ*.Α%ά4έ HΒ#<Κ,€ `Aœfœ†4A,6†<ΑΠ΄φ©!ŠΪ|’ϋ:°ˆI΅KmƁχ1ίά-{·Q»φ,Η3i*jϋoο2τΐŠ1ώV©}/(†ΰίΈ" ]πIU‡@/D5?e~l†@RδΟ28€ΰιC’έp‚’ΐΒΰš#žα*{LΑ°€.o-Cχ/W·G!.5f5ξšw·nŒ)4Ίφ?𣱁‡Bƒv{ΐΆ8&ΝςΒ\ΝΆˆΊξcΖ»!Y­‰Ό‚Μΰ™ΜΨι«Javy€C<O׈ƒΛ#*ΆGλΜΖͺ·<γ·—―%Λ:φd‹ΉΨ‚ςiχ3γ²d»³iM—oυ}£9«X·x˞ΰ6Vτ_B(Λ\1―ͺ{γŒΐRq΅ζvPδ’x„Όjk§x(“ρΟ°n›7΅T—ΕwJͺ|°wˆΣςz_1όχ³Ύ2™W)RωQ―ΡπxΉβB*ͺjHό9OΕhmό…ΰ’\噆@y„V`/•f8V‘§‚(;c˜c©'πPωŒ‘OΊ}οG΅JΊ}΄i―Ά¦w*]>zY”;Ζ%Η1ΡΆN)œΣ³Vι7χ·7Ξ¬ GMΙ±Ua{ΗΔτ»ΏΪœυ»ΙόΔΐϋϋA<}€BDΖ&eΪ%Δγ*…8zh.€|Ζg±ωG…l;ΊΗψͺ“ΜᐊuϋŸ:N •ƒθꉧ8Žw\ΗBτΉ«΅6t[μD§)ԍ*σΊ©ΝžΡι’·‰¨Λ'ˆΓ ΄/@`ΐ…wυΡ+±χ¬ζΚʐP€πnΘ£ό`D¬KŸό₯6;겡‘~ϊnΊΈ‡<Œω/αǍ}΅γΉJ΅χθu/―xƒ‚1“7‹ ‘έFJδ@h@tA€ˆΎP`8§Θμ:’γ“@ώ@lAlA,όpAώδ(΄ώ`μ@t 8HΔE±';Ζ#Ωαsθa‰Œ”ί'`D@D@g,ΐγcΑ„DηcAlμ{ώλ»~†ϋ|βNΩFo!H«Ž{Ά³ͺfsvjΉ³»=«yg‹Γ³ω·₯‘mΌŒ‡:[Βvf`:/ΗιmŸ7‹G#e¦@μ`£Cΰ$<¨ΰ€BH˜a  8Dš4rYa˚  (<°’偔!ΦlΡΐF fL©ς¦Β‹rDΠS' iBΐΩ±Mš K~I£&5]&¬α‚• Z†eΙPlΩ°`Ν¦U«–lΨΆkίΆτZ6ξΪ΅μB,Λ o_ΏsΣl7n]±…φ»wqγ• ζςνΛ·­`–’'ΞμXqΛΆ˜7ηMyc§Ož:₯~5+V,Y΄`Λ’ Φ«WΔo‹6H˜ι ,DΥ p 6Βΐ”ώ…’Ϊτց "¨84lc ^ώ‚H‘ž45ΐ Y Hhγ‹ Έ€ΦΨ%―4tŠbƒ?ΰž`‚žλMK^ έ7,{ӊ˜]n·₯ΛZΕuRoΉZmp³χ;ΖqoΌEΎ67ρ–Φ]«ξ΄°Μ΅.Y“ Ά1e‰…ΰ3Σάmίή{%ΌσZ@’•ΊU9.H£Nόψ‚ u iCΩRštBp:ΰuxΈ«Τ`Q)  X@Γ‘Z ₯ΓΦΡ £jΚ),>‡ωςδj¨°Ÿ‚@Yε0θΉ†@ m…ζΞ 1΅X7–wN€\γδdΉΒ©ξr?  ΔV§-Υ½θ2΄`Έ7ΑD‚™Miτ…~ω+L +ιΤΔ‰M(l1>j Y,Σ™ηιoB·Β‚ΎP'€a+ΰazG‚EjAΟ¬7©”teC€0€8αή˜ΨD -Ky^40€DγYƒnU“@i@ Ξ2β DχYΟXς‰Eφ΄Έaq.KˆB ½Υ-2<Œ@3%»)]ƒ{αβ$rAζozΉΫ·όr8G:Π’- Ν# x%dΙ4ϋ²Ν—bUBt»nxƒΊΠlЊΓRWΌς`@ XΨΒΜG‚.¬a9 ‰^u€.Œ"ψ‰ΐ2 ‘fν θ€K ‰[lβSέj’WΔh$wgܚžξ$΅EA ψ `βLhΞG+Ռ™Ζ"@‘/‹&\ΡΛP@NΠb 6韍@9€s‰λ30ŒSΣυ–Ι‡žδ‘κβR#Κd0I΄,W_\(>r’$Ν–T³šΦx6­ι`y:d g€ΦΊ‰oΨ…Žh jPƒ žΖ5ΰ*CYjŸBπ/•Υ"N6mΑΝί ΙV[ΙM2°=\Υ€$`H¦kR§ ΅ρ§i(Ίš…ωl/|Ck#ΐΝ°$%θ„-’`PD0I“ ΰδτ6ΡkρΕ2…ΝΆg#n‰Ϋ’ς1³”%€™τ'RvenK›[ kV›YΤζ•₯KXΊ„Α~΄/ @#x¦Qe`:˜ ‚„ΥΡν4Π$‘€·-œ™PƒZƐν ͺgΦvB ˆm € 8­·ͺmpWύ4ˆ#Δ%nu€gΫ―Νε}Lΐ…'δƒΩuΥ…²ŽΝKM‹TίΖFΦ€„ 7ϋ†-ό>Ξ‘Μμ5hίι%ϊιZΌPFZKFΌNͺ―”Μ5b"ΣK S.F‘‡…Λ!k—η$ο!’ΚΘ\2Άμ 'nB ».<@% ‹ΘC$C₯8 (Υ£ρŒŸ#½„<Δ+Q œ–|(*d@rIIfρ½^r€%ε/ΊšP.Oήοƒ ΉΪΠ„‘‹\ξ‰αœΰ3s”Ξ‹αμi<ΑΉ•zΈ₯£{ε'Τ$SΜjvΞ‹‰n‘N>’εΠ‡†HŸhe\ΦhŒƒ>RεψψDΜΜ`t$!ΐ8`(ˆ†ˆ¦›DšΣͺNρjΰ•SψΎ Eΰ—ζfξrƒ3sδli‰ωHΝ?*v‘ }lWΦ\μ,ΏΌ&ZΘbLΣn iΡhY²؈%τ²m}ΛpWVΜv1¬ΈLκΝΤH0LUόζu›Ψάά¦Q€I|£8§ΨΫUpώΫmΧ›―‰a­ž@+\Ξ—θ˜9 qΞjXΟ©όœΐ@όΚݜVΨωΎχΊΑN±,`΅bΖbτfme—€FΡ9τΉιΉ(`Œs’²‘ύoŠfΖΜε–7™ύMof{ί?ސ’n{7Όΐ_ϊ-ƒΥΤΩ!„6‡;<&—,7€^jWΗf\ƒfΐsP•!‘κ±{ӁR“έdTΗζv™;ΪΛR–°hlrAΜNžκ7y%xpε.8IΘύ:“>WΗ-l-wωΪ,dΰΎ£8EςΦ`vϊ~_xgS~6L|ne—JK°ΌΏhž·ΡαέΉT«+Ι«Μ\m^χ΄3yΰœ+ͺwίτ«y²ζ7Ω ,ω+NžtΫ,p‘ΗΫρεV³».©ΦσΔ9€#NӜŸ3ΤΟyΥEΨ/ΧX\•ΧF½ΧWΈϊY^ψξ"rΎ‚θΤ&7Yΐrš*Σ:mm4€\"‹ž'Ί"Ν% Mδ0 ½­°­΄ œθ ’KΘζW°€ JΥ­Ι΄`h /΄€‡&DΥVmζff("΄@ Λ::0 μH§2ΰ H ©$iΝlιυΐΐ‹ώZΟ\Ό’-:γ-FΎoάκμιζL£άΜΣρ& ί` YοZ,λGDKl#•JoΪBΗ•ROΠ–mpˆΝ £8Φ@t9l"'`ε |’'6$!ΐ†ΚΊ’ΘϊP!ή§@πηi εUάG! Ηu`˜"@$0@‚₯‰­'PΆ€XΖ'4#( Τ  ΐ@-d{TDŽFˆ,ΒΤ+ιΝ+Lμ0iϊ†Žόtφ,Œ g)3ΘB L0΄θ:οΛ4i^όB[Ψλ±°Pσϊύ M₯ώE•ΚΫrcγΆΝ“>o1¬€-δΓ8βΠ  £ ,%DΨθ ψ/°ΐ«΄ 4%:ΐqB @D 4…B@Όζ™pe90@D^ε9ΰ .Aaΐ ϊ–f$†ι)ˆfAδq—²@ ž…h‚% ²šΊ£ d%τ# ΐ­Ί  ΐ %(BEΐ€ 8bDPTqηρZšΠ\ sΞ羍qΞXχfΐ~­Ψ^R,°dΤ Io•^γ„l#MmΔΞl€θ H lΐ' Jr+ΖcRΤ 0  ~Š#`@R$ΊAΕQ2€#h₯kΠ WΘQ Zδghΐ₯, eΒ'B8‚‡Ύ@;”"kΐ 2©CRΐ ‰‹ Ϊ@HEB€Ušκ“¦ Y’ƒvA³iΝρΪ₯1Φπγrmƒ°ΰl24yQί<.ςfSι–Γ4Η³όΕβ΄ aΚtͺQr ξ G3fΖ(¬G*rΛD`ΰI ϊΙ<Ύ€ Λ4ΰNŒ„¦ρϋD>&%šΐ¬ =S"6œΐ&κ"0ΐV0 ‰Φ`}4 ΘBYͺ#%Έ`Y¬#Bx@δ –I@F {₯8(V0ͺBφQΤ €h6)5χζB$ε”ΔErς…˜„ρφJό@Τ/¬9+ΟΰrQΡI‚ Γ@(ύΌdΟLo΄Ξ76Ž)£tΣΨXβup‚Ό(D @x¨rP₯&$ε ’΄ΰUΌΚbΆG.Ω D@ς ΡRδÚβΘX’b“Ε.‚τ9ZF"~I#RB‰”"€"QΎ!8„ω ΐΥsͺMT'VGU¨8]τέeƒDE„%&Η#Ίζ9:DΠ3QΆG p¨A(` •|©'ܞš‘Η_SϊBΉDάΉϋ[Νi›ͺ•‘<Άg“±’ϋ8–ΓŸw5§{FφΦ«CΥύβ[υŒΨ S" dα,‘³Kz―ι Œ§ΈΨ2όα9Ξ§ϊzΧ|`©Ο΅Οlΐך―SKoeœϋόΊݐΐβ° “όœυύΗ―{Ή½¬Η•55Α aƒΞήΡaGΚ £7ί=:9S”\„”±Ψ¦[*γtz²%Υ/ΰ8!ŠθχΓ;=8`δΟoό’> 1yΟγ(ίκFΜœnO}ή…œ%ΗΆeh6w˜€LΤazΆλL²Δ‚μiι“+;αSZ―‡§ΉάβΊΜΓί„ž»_ΐ8­MŸai§9=3κkΥΉεΟ›μc=νe΅5νs^G΄΅όΫ›τυχΫΗΟπ“Rε]6·σe›Ψ«έλiωC„>aÞQΚΓ:Έƒύ――~ŒhЧΈ'?ӟΏDλšπUuσΟ&ά[b^Ξ­½qLϋ΁πMϊθ¨°ΔϊUŠΕ 8P Αƒ*\Θ°αBp'Nž:uzυjV¬X²h‰€υ1Φ,Ž=]άt„ˆ„yΰ₯Γ™4sκ„©!Ν!Fόι°ηB’9]ΊP(B§2“2΄Ιτ §9‘ΈκS'ΧͺΏ‚ΛͺN³0-Ω­dΩςdͺΥjS„rNΌ±ι’§Œay9RΦ,X(Δας-A·0!‡¬0ο܈–+”¬Ή³QΝoRξ:ηΡ ―‚F7ακΆ©i.Έ<6󁺀cG.ΝωτγΚ›½v}}tμD9}ΪΘΡ#HΒ²>ž|•ς'PŒ©ή†‰oι »Χ‚'h»!Wˆε™Ο9ϋ»ϋχ™―vOΌB€uΡΞ?ΰ»ΎωΰŽ­ΗΣOj–^UήΧΠ^}}ς `― a"I—˜Jœ°€ZU΅η™fnθZL4SOϋύ†YB):fQ_9%ΦW8΅θ€".Τ_YΊeΧh;‰˜γ`…¨Y]C條x%6”`hέαtœEBθQt!‰I½’Ψu-iwY―ΕHdgOž9T“DœPy%Ω™,ώ‡‰j†χ‚Eζ \hNHSŽrϊYΰjκ84Έ\—³ &.!6—n’Ntrjb€κύ©ΰR\uJͺŸαΔaUι Yšδ9ω–X¦ξ‰κ@Pε•«}©.ΔN°’ec‚Έ%IQα$W‘*&΄WrU6wε€$™4]u`6ζ^­RΩΚνKΪΪ™‡Ό‚k—dώ‡.~ΎθݘΒνμYhήښ½mζ»Σ|σβΫk¬ΎΖΛdg *χ€ e‰K…\R§Ψ'šj[g·βŠ ›cΆ};*P;Τoq@F₯η[»ϊ»’Ε#—W—²wώ‰[Ηp·*BδβY.Κ!³ΚšΈHβzρ»&3•ήq}a€Q`’fi—Y‡Δμ1Ό7– 4½=R}λ·O2ϋ1Μ]Ÿ°’6“ΌsΞγ¬οΦώI=²§Wg•¬VD΄ΑV~”₯–!ΦΙ—Š9VΊ¨> shΜώψjžnXΫRλngΈ15Ύ―iS£•cΟcΑΩξ @‰YΝμω¬u1 H²°,Ρ!ζ0†O £3ƒ»Ή1‡4›ˆ'€–ε —.7ΩΌύsΪΐ«}³ΙΔ3ΔmΨe_ίΚ>ώ[±Bw;Θ\GIσ‹μ)­&XBn‹/NδF|θ’S ΤQςŽ6άΝlύΨωϋ?‘P‘ΪŒμ'«Έ ¬Y|œžu‘huDoJ³Πμ¬ΈtŒ3ξS^Φ–2“ jπƒ ,`!'?ϊξ€λϊ–G‘0fλ1JΑδ‰.IˆB°; Jώv‘ΪID,4 ώDX<ζ%wDJ\_θ₯ˆ¨;w3s"₯°…UλZ<ΜΠωΦ„$ΎK+q@tŸι7ύ2 #ŸhE:Ά’>–ΉJ( iΚ@ήoΑ Ιf©½Ω(E0›aF&ιΧ½N‚σ„Σ6Y@yPd`‘“δ`ZYf? Μ“xΩ2nNΜ–ΰ‹ΣΓΐ½ϋŸV•„• vδη~Y P{ΐUŸuWm;ΒO ˜}όχ}δρΨΣ…aeͺp{…Ξ’{οΗvΠ[nU{WV—…%Π·€1ψY$"ΈkmuΖΦU"ψz0v‚(θV0„{•;ΰ‡xƒΉ·kL ²°hŸ Ω±(te8 ²° π7³₯5„49cx#σ!LGυ ¬C-φt!=ΔLϋ£E{e°F PD FpF€t)`} x`~wz¦P ”` 8@Ύ& ›l΅†–@ ΠOŒR ›  ρ% @ œP ¬Χ\―χ pN° ₯8a%|TP ™W”Ά ’Pa΅  ΠUΗΧ ύ6` œ  -a°°hZW Œ †Π WtΐΐJΟEΠ…€\ͺΐ ‡ οΨ¦0Ο5„`¦πΟu†ΐŒ  Π„R ”°‰cη‰  ‘\…€8 Œ ΰh•PpΜH Œ!|šX ŒS –v\E\.0ƒς(„P@&ΠU„Π†`@¦ΐH iᨎ' YV~19“ΠsŽsΥv“29Λv3ΐ’p/ΠWJΐχ\ “‡  …pnƒ` MH’@i•0vNπ–ΐ8pw œŒ@i‚R`‹’YZM@—’Yπ ° ‹# R@Š‘FM1C@—•`iΆXη‹₯ T‘– Θ‘ ‘;R„)p{D ζyE0‚§~ΒGi–`ižHŒΑWQ zœQ  œ@ -kPπ ρu‰% ―π}Œό—!]uhQ` pθv"gΪSH€δ‚sgTςΤ:Υ0L₯FKM4eWFΰ6π}€ΰ} Ÿ—‡~ ΉΩ`~ zΰ|€‡&ηi–0 ΄0ae ΅Π £` ΅Ζ°Π '°Wš šΠ ΅& ž *‘k<ΗΟΥa5k5  žvžΐN0!5d QΠ ΆΈƒηv8x―Πo 2ϊ -a0 ρ²PšΩΘ€ ©° Ή‡ ͺ ° ©Π©ΐ ‡ ¬P ͺP Œΐ ΨΦ«P ͺ° t¦§¬° qž@Œ!P@œ ^8―  › ͺ† π Ί†5vL0 `€ΑΖPP ³ΐ Έ  ²°wΆΰ…σΙmοΈ q§0­°¦«ΐzU ^Š ¨π…§ͺ°₯π¬  ¦ JΎayƒΰ ‚ΌZ ¦  Η©Π rΪ,~–«p¦«ΰ}jκͺΨfΈΊ Ψv¬ΐT*°QP ΎW žj‘ΑV ΅œ` Α ©Š±Π –6|*ρ ›$t•` ΑF Ίf „švρu°ͺa§‡ 5’ΐœP ύ²π £ ¬§ ͺ8 ΅―g€3vŒrTV‰e|€|ΰGv` zp¦φ‘uT@±΄ΰ…Rp¨‰ͺ’›@°±|žlŸΠi`ρΥr“†€aεΑ΄]}ΊWΘ »0―• fa’γMκY~‘7lfOΧς% 0žo!R†ηEP^°~ hψι<Hη²x(Ѝ) Ή3P  zŸT€ σΊo―0vBΪ ‘˜\°j—~ξ6ϋ&’υκ©7N  ΈPšN  ΐγuKaπ Ÿπ\ °]kπ ”VL€’O`‘DJ°_:  Ywа¦ΰq@‡Π Y ¬π‘Hp' Zj Πx§„@ͺΐ §.ΰΰ*Ύξx«0PИΆΘ P¨ύf ²0©Nΰω{•@ "{Œ± ³0 ―°Š‹ œ°š` Tΰς}ΐΏP΄PŒ€S=6Jπͺ 0«p–pΪ•²ΐBp¦@«` ₯ӊ,0©2„p~vͺ .€ ¬π]š !—«.3ΐ“uh֊Β9ζ”Φλk €0Ύ^J„Π ‡κk‹NP Ό ―°΄΅ΐziχ\ž 7€\O ’ ΅@ΰ%0C0­O7χ_aΣ( ΈPŒ8€’c  uΓ§kΚτz²P0 šB¨“V N°±χ•ΐŽf»uiQ+ΐF` π²–ζ`ρ©Δ” 7pσK±π{Š {70Ώ+²£χ»›7%™€Μ' N°:c·W›Uς ¬Χcν/™ΑXη©&3τ ͺSL΅`Fγ³C΄g©₯x|p/Kˆ+Π[ω™·Zη²θ·}yGΠD€Ή™°pΈL0 ·{³ΠΈΐ6vΏΎΧ\5―0{₯}­·o΄π›)o^ς OΪ™³€9ψ ›ΪΚΚxΨh—£p»L‰ p°Pk·_Πͺ¬GΌ₯π\₯ ΐ«©€ Vͺ‚ΰ©ΰ €~' «Υ— ₯p`}Η[ζrqpΓ ΐ7pΤcΜΚρ…±UPτΗ ¦ϋzάy0΄·@ͺ–PΠρ R±ΐ”ΰ N ΑV1(8°Ζ½Mͺ`ΌΚ–ƒΐ ΑZ}m…nš‘νHͺ€Β\εWkl-lύ©p¦'m ™ ξVΤΕB¬§¬ ΠΣz•₯C}–vM¬Σ¨`–pCpΤC w OΰΈP’cW ±`ižΑΡ ¬§ƒ–P;ψ\ΨΞrό H7 £0γs–Œ>κ[κ' °Π}aύʜΐΚΊVΈ¬«Ρ[M{Φx»Ζtj!DΠ}°’`wΛ ΅Ή’ΙwΛ‹v²°7ΰ Ύ' lpU °π²@‘­·Ί ΅Ս― Μ^ΘsfMc?TK%”<Fƒ0{COm8AN†Νμ3Ϋ£Qyΐ |Π| „ψΩzkx°Οε·~ ήαΑ3!±6 Ν°ž«¨π7iπ\\΅’°―cχ°€ΰiQ ‘Ψ’žΐ™ˆ š@‘@šω g š› N°ς\Πά1CVa ’°7\°v²pΪ±`ΰvŠP}3ΰ« Αί¨ ήΧWΐΎ §lI₯"\°V}ΰ„€2ά₯ Ϊ’ΰΥ¬7QH ¦}ώ· €…aΥ¨• ΅†°R Λ–ζ»,£#€PΦόliΝ ]ͺsΐ uJ¬ΐ–Υw0Βg©ηŒ0νHW…p`λlY©0_*Β,P“Ξ ‚όE?χRͺΠYϊ½©XΙ½ hθƒPΑ„`B`` nfΜ_#:iV(o­ Wki…«k7ζΆνΡ»Ζjο–6’az ni «kΜυkȭܜΚρ’컃_s a8\ZGΫPS„π²‰ΨŸa₯„θ) 1°ΖΚ" ΄@ΐ±ΐ5ΰ― ηύ΄°δ\ˆίΎ«yB§Ϊ.ρ5Π]ΐWλΐUgrEQ[E€“"ΟlΆ°γ: ƒIΧ\ͺό32a§vπυz[vP·€te`Ѝβ~°ΞΉ3^\X °œ0 5P ·PkA_©M05 νwχŒ° =P… · Ή™ξ §ue\kC[šU w i³ΆiΈπΊa₯ €9ζD Pτ›Κ]’€‹Π" σΙ£]¦ΰ `Œ Ύ (₯y§s°’.pd:¦(ν­ <Οk}πp¦0` ­ΐd’T@’PλΚ 5 xΏ °pP ΐ\Ό™h_ρz΅ΐή7ΒWRπՎk”€ M°³ŒΖœP§6Κ&<…¬,ΜqňE*U'€*ΐ‘…T©\Z5€©UXš€Β(Τκ U© ˜b… 9P2α@H GΞYσ* „ZύΒͺΤ‚ˆ.Ή"A*0!aςθΡ™;gj@’ΐ¦N$Ω²„–§šž@Η,O(αjΐ“¬'7$ᨉK΅,݈ΕΙΑ§W5.HͺKX€ όBˆx“―h)Υr„–¦°8ΥΨdΛI Y› θ½€$X^) }ΐ|ψ0r €#<ΰΙ€’&mΙͺΤΪTcΤ,›^U€B‹“kNœΧcP΅’Έ^kӍΡΠͺtÁ&YQ„ωS'XUn *Χc›j; 4π@LpA T Aiϋ P²σ€“N^y–Yb‘…Zp‘E–Xb™EC =ΙξΌγ"DπA¨ΐΏlΘĈό0"ψπγG=R`ωH‘‚>Ό ˆ>„‹€6ώ‚Β“WLτdˆ'8¬ς1K64Q“8‰eCK(0Λ€ŠZ8ω €I8Ή€€Κ.ΨdLX`ŠQͺ ’€eLσh`‰NhiΞ΅*`‘eζ˜…ΓYΖsΰJdΡΣ5Kdi-CVIET!`DTUTω!JY%%!Hεβ`₯ \•¦F© •B„•TU‰Ι5dέΠΡ2£(ρ•Τ0@BΫδ.x…“$Ρtœx³J8AOέD.Ρenp$%T‰ƒ€T,ˆγUU2r­W‡vJ…V1UWSE"Ydα—•U‘@…ΨU €…R,¦`†]£#:(•r]…ؐmM•‹ζ VVξE–έ5_©‹’OΈ„–<7­Mι΅X­δ/&^™Τ“: —ž@ά’eyμOΠ¨‰»Žι€5MCΧΓ―_›΄Γρ$)zPΩ>ω„γ‘;@#όθ£?μ »ύΈCΒΪώ ƒDh £ΔAαύj“ (`‚MdYΦ«›*ΡT ΈZΎΎ€ΙeΡΔ&š¨rτ―p‰€']t½6”ρu €½Α 7αΔνW2TΪΓXBQOμέO>αΎβ.pφo—0…8ς€ l°aV°Ι€ V°Ž ‚œ?@.‚‰zΈβn ‚ F ‡'†Έ‘‰@ PΈŸ0ΰ5 ΝΠ³ΪΤ€΄QΐŸ’ΰ€~<p€ϊQa ¬MΆ–@CΥΰ„Β0ώ7`Β&δ‰2A€/PΒXΰΔa/xΑ @¨/’ `3`Α0ƒR= PΒ ΰΨF? @ζ „˜ΰ€~9ΐpp),άΉAF˜žΜ]aMΨX pπ—ά`$φΓ`q°±ά5 BpPƒ3q’^Q@X 0(Υ°ώ$`ΐ"m>ΘͺK>ΐ#@β…8T₯¬˜&γ•­9ό! ’€ΐ š€œ•­<$ΉΓ‘ Ρρ €ώ€°€c.ˆ₯$€€Ι`€Κ#`S˜Gζρ¦ψ`‚*z ΨI/B0Šκž=Ψ!h¦7¨Π‘}HxΔ“Ε€P„Ό΅F}RŒXŠΰ6 « Νh#ά € ΐ±dΰMΘ,²@hX=€k@ΰšΖ+p #8F€Ζ*Y2ldΰώ Λ2²,²d4€ L0Ιr€(“¦² lΰΘΆΆ· €[a{XΧ ΄ P7 KΊΝZVΆ°u q›ZΘrΗ>eμLΆΉu ΐy2zΗθ’¬baρ|VΛ=YΏu­kβ0°b±β?)yΫ»[ŽRCBJ1ΜΈφ&ΊpkKΎΧΪ„LUΨNΧPβτ‹› 8d` NΦ`ΦρU°vDs&‘‰4tΌμ0―E.ͺ*T₯8΄Ά™Μμ$#hΫ€Ά±}n0N"Ώϊ僓qq"#4:$4 IΰœΏDF2β4%„Ow:J—>z@œ χƞ Ι(€€ϊƒ ή4qw½ιZ3υ&MΝI€a½i¨ϊ…Τ‘>υ₯UέιΙ4ΆΈΆ_ˆ› ΐΘi^p±™ΚͺAΈΐ#³vml js‡D&„πnd&?όm>’bηdhwΏέMτζu«Cς‘IηD$^†]¬‡φ„Hœΰ€Rξtͺ!°αυαδ€ί <>„ θAW?Pξ,D%°–(xs¦…‰ŒΧ ΄.O­lυ±T­ ͺΫξν΄α:έΣ\ )·Ϊ@™=ΠΆ΅z©¨C΅ξ΅{*ίρnτν’TΚj¨šΜpCώπZλTcwυ¨[8ΕY§ ˜]€Κ¨άFw€Σ‚Λπ”s;ΐTή,‚FOp†Wλ΅{S„Yi,ΣΥ@χ{i;&―γρ‘§zψ Vφχ;‚lΒyγΓ.υΕ―MσΩnf«/ϊ{—ή„ΊŠ<ίq¨D΄¨ΕπŠχαW€]ΟΔσυigxχwž2°4+ΐ~‘<ΪuΫO>ϋΧL>©8ν“ΌΌ½‹ϊ;΅T°ι΄ν‹ͺs»ΎƒΣ8‘¨Ίέ#{ƒ΅Χ‹Ώ@­c¨’4Sk+¦AδΐΫi: DΑYΑύkA>Ϋ=|η«7»ί +²³C΄S ½ΩαΏΞ»>" Ι;ΧY%‚ΕνΊ ’r«Τ²€#«Cό « Λ’Γ9”*lΜΖάFΆ“oδFnLΔD”E«r«[ΔΫ™:θ GΚ«Ÿz³;?±™…³C»΄Ϊ³qG©"ΒU+:ŒT#h«Œθ’OP£AΪXΨ‘ΊΒ›‰*@ŒΗ°€«Ύ“Σ4,Hœ€J€…΅Ϋ©›P“τΘβΊΈΆN‚Ύ€ΆNIM!g{:¦sh’Ά ƒΙ—##-|*‘‚W²P¨ ” ”XΚaDΔΧ)3ό@ιyJ§Ηψ“JΆ G«tΏrδΖ¬δΐ¨ΪΚΙj³μx3°ΣA‘²ΓΗ³JLδGξs?ιΚ'd,Σ;†Y,Θͺ;ρΈ€)IŒŸ‚x)π– 9 ™«ί{κRB<³«€JίόMΰ Cb€J°¬Κυ’λσΒ«‹*ΫαΊΑsGοσ*ίωβ!»:;»΄ B¨LNαΒ&„JΨ„J Ÿ¨PΨH I*ˆKΰKˆ(ΠMΐŒΚX±ρ€Fΐ脦‘έ‘σJ±δ«IΈƒP…&Oϊ‘‚G˜K°„M9ώx„Xš8Ο©„²0PH›€*— ύ‹ΕΠ„KθΟHMΨΜ€!˜Jˆ‚Ÿ“IΨMΰ‹xς”ΚAΎΆ Κ΄¨M…ψœI ΚK¨Œ•ψT#¨MψΉ₯Q‰#5Νΰ”Α.ύRήS1SΰΜJ/³DτΗ¨")/c3έyΔ ‰³ΰ«)+γΑ³ΆΔΒεtm„Αω‹H¨…Yΰ„Ο€Gx…"…Η¨N°΄²RO˜*α‹5Ω”GIώt ( jy Έ€Nšιj5’ϊ 'ˆ\ψX°I˜…ΦΨ΄Π[ΰ„D9MxΎ € Έ“ΒΠ„Φˆ‚α„W°„(π„…Η¨vz5š€Nh“i&Έ“’ ”ZˆΞY )θOΈ… ‘ΤXPOΐ'₯ΡIGυ\€„ΧΈ O`Qθ;α„ €N(Œ²kξ…ΥqΕ퀝β$SŒ%X„m?Ά‚uδΣΫAΣœΌ‚uΨ„UX7υͺ8ύρ£3ΔYKε΅*³†υSό I …KψŠXΐp(ˆ„Βˆ1y·0#—Z8ΧΜ‘€Ώ¨„L=B•A™…Θ%P«Œ&p8 °‘ό lΡ„Zΐ'Xš―θϊi l9 ˜EΡΕX(@ƒA•LؐšΘπŒΥ±¬k‰(`ΠXΨX¨ŸΤ1Κθ³Ώ€ή1Οn©ΜΩZΨ€Jΐ…%€¬u &€…;` Ρ} YxPΞαΧ%€‘Λ§Ί<8d»ΩpΜΊΊ Η‘νR¨ͺE<ӊJΣυRt|Α»;NμΓͺ³A Α+‘zόβρΑKάΎΊ9dΞ"΄Ί`RfHˆ…%*xΪ΅@–.A;Y¨\‚MρEτΎ¨|͎N‹ι„…&ΰ'˜‘δΨxΥλΨ„QȜPΜL”ώΈΦιŽYdi*…˜ύ‹C• @T·@ΦWΪ„j‚XπŠ.ΉεΩ²WΘ^‰Œ©ŒXΥ-sTˆι]‚.ρ©OPœΦ€3‘¦Ι©΅„XΰΧ'PTΦyCl]‚XάUD'ΤΎΩN’…€Ψ¬σα¬bοιa^Oj“bτ0W–€;°ŽxYγΏxY¨„Ψ„Z8Β…TZŒ€(€€9ΈΊό؏ϋΨ…2‘Ÿ(˜…₯4¨Ip\ΘίHŽžYКˍ)Έ{Yˆ ΪΦ ΈΫλ°#–ΕxΘϊ‘…«ΡΰNxπiΜ©„X¨€I¨< Ł‚Zπ„Ϊ4:ψZZΨiIπ€ε¨„Pš˜„W‰a6ε‹„€3’'€€κΨΣ‘~ Ιώόb1­(Cδ]ε@ΞF!¦fξl#Β’υέyΞΑY¨N΄ΌNΞnγδν(ζέ Ψ'ΐŒ&‚€)˜ϊ €‚*  ­M’‘°L θ|ͺ ’Z‚|Ί”Az)Q*Α2€ ΐ «™ͺ(x£H 3ί+9ψΩ ¨!ϋΉ€θ8ψ© €ΐ§ !{© Π 8 q­-˜‰mν p‚‘h‚zZ#‹  ’k£Š©tP‘6!Ήƒ²αRD/φp)fΗ[Ύ‚ž 7Ηβw~uΖVμΞZlΚ¦―»lΙμβΑΞ}ΞD\Ÿ‘έύυU~΅ΛΦΓ-(aႦΕϊ (»γd!ΠB–(1­›πΙ:1Θ:,Q Ξ‚¬nθa˜KΐB±Ζ-–Š1°‚Q€UXP£Υζ£ά;€2£2Ρn²,Λd$ψΰ‚ΥΘ)“ ȘΓ1Ύu _ΗΫυλζprώgΙN ω…„™kΒΔY‘AV―ΉŠ-kφ,°^_ž=°ΰAX™G’mλ΅εH”vΩ¬©―H–λΤk·πCΐ‡W4άΦγΛŒώE Η&NŸΪ‰sΥΥqΆ}Soνηc}g'.ΦΊύό ε\ψ#~ΉXϊ!Δ–AΛؐJ 9πΪBΝΥTΰ@ΕΤ\}Ξ•΅]f›5TQG‰6Ϊ,₯VΥUλΡ”… š5ΰC0ώnΎ΅$#e ‡γZΙΝ‡oρx—l„α7ΰ.u՞] EwΨJΟα—αA!Ιήm:aΦέwΰ}6βQMΑbzœ¨Ζš5vδW.Š•1.ι&”t^’\Uβy_(΅xXenώ)$›v.fXœ8ω՟‘9]ΦΣOεΤQJ1EZTœQeš.až%Ϊ&{2)FQœ£.¨κ@‹φh ŸΔ%Yj…™Ίζl½Ϋ€žΔ*« λœξyΕ!—B'.Έ…©iηmͺή‘%vΰb|=ωγ›`†sΡJ¨’ŒNφi¨:κΩP°{6ΚJ£ΞJaΘ+“ΈΘ—«!ϋS—α1•ΤR²”H&jf¦X«±²y5o½·›€!hkΆΒžυ§‚ρ¨XHzΑ€œ3"δklς‘Ε―Ί 6#ΊδΥ±` ž<Ξ+jχhw’ΒςYh–:5f΄ sͺb΅,Ύ;E/mσlυρ„OοΗp£‚[3sPsδmšgαΧΫ ; ‘–™¬lx‘<4Β©Q«ŸŒg7}»²ή3N#—l²Μϊr-8ΖΊΥvwjaΉ#Ά|Ϋ°Υ„7)Σvz’Q`>Kτ‰fΞΆog»„xΊ―VޡƎ΅±±GΆLϊ‚[ΣX¨ιο€js4OχΊΕ…νΠΆ8Ρ\(Ι«’ i UœEυsηγΑ]4ŠψZ1ήφέΨΧβΆΘXK‰ώI‘AΏ—ΊΓ“±Ό΅z>ό`sλγm|OΌΏ‘叛3ΕvW*dyˆm³hΚRœυ9σœ'5 › Œ^§?؁o7αk\ϋVw5±ŽvŠkΥ‹⚘kEt\‰εA@Aˆ0l_Ο.³­«†v™ £Ά€™€9E4B+i4%ΊNIμvbΣΰ– ^PpοΛO’Ά·Ε‰‘’ε$‡Bj‘‚,dΘς‚W $ͺ~;γΞΪ†Ά2ELq"ώg5؍xtΒΘtPCR5Ρ!aaΎ²ˆΌάY±.Ά+δotώ‘κj•;Ž­8“IOt[f©lꁕˣai: 8eρDG:&D!!»#‹UΒα’iIlW§G¬UρZ©› {iŸ?ώrpχƒœύΜ’―•Š˜h㙇6ΉΖ‚‘§4šκ$}VRf•Ϊ,β6B€ΰ hšB ΐM‚H¦γ€"-ϋrJB1˜²”$2ΉΎ[ζΜSΌ<EždFΩα“Ÿρ=»΅·―υσ˜‘€€J‹QS“œLO6!TNr„ΰ¨V,ΒQ³œ$Y$ ‚Œ΄›£δ&’£•trΰ#)Ζι΍ζtœ$UηO ³ΞGRǞ‘ƒ§B’Κ±΄‘Δ M‡ε½|n,„υ<(αrYL}!`—ξΞ2υ<:δyΙ²$“‚”λq’*›π€#ςtΰ‘ΐ&ΰLήτf8eS‚@ (A Œ²J@ x`±t,@ Δ°€,§t‹c0 V!qΑγfE ”`΅%ΐ`Y›ΨΓ’”Ά­₯PΡ9Τ‚ “™F$ˆ‚Έ’P9ή‹tYh[άΎ%SOWςΧC–Ι}±λNϋl”.Σ‘O(‹(_bγ‡2Ήet"ΐŠ>„H/k=Έuv+!ιΔ`†@Ώό₯ G!π1‘œ @f!ΰQ…@%p;uΚXˆA PμGΗ)ίΒ€b(ΔπZ2”αΓdx¬@Θ^x§ ^}‡ΊΫέσ›]b^(ΘXroE"ƒˆ@“ϋΟ{2x1QyάΌάdΞ'Ρ\Vυ”RΝ7‚btemm‰KόTψΓbW©€rΜ3pfΖήM‚ΚPΐφΒ[ή,‚ΕπQΨΎω‰…m D°Y 8x΅>pf/\XΈ–!›AdΗIαΰeh­\2V΅"^l+_ͺ€2Νi† `£κ‘η˜Δ#ZΝ«½λΗs…cEH*―K§$ Ο\±*ΥtG:ώδZUΟ­.εXΙe‰hDO)TΖϋΦς"> CˆKŒε‡Ψ&Θ €žκtά=u§Ήsz.{˜ pΰαΒζWώΝlΦλHΰΪ&ΐH Y 4ΡδόV;p!όC Ζ)Θ˜VπΘp$όpVg7qJn ·7§Ξ鸁Ϊ2§!ͺ½ξbn–Uφ 9~Τ%}\ιH—Ϋ<…΅>L…¬3£"ο™:ܜw':žπž'agŠ£9ΗΉήΜ½ƒύΧyXΊƒμ:ΐu°:"Šρ‡3+‚Œ!ή«-l<άΡMƒ€§d~0ƒ ί•. ΰ ——ΑφΞΩθlΆ'§_9w@΄ Xq'Ο_R.ЁFlΛuφλ―ύΆ”Ωc^[ρΉίCvo©*Υ9•  o_BζYυ!f}2”1IΠI‹G«ˆ6έξΓf|ΰήNυ¦»,‡ΈΛžpˆΝJ@<³^{ΫWœirΚύη-Α$`wΙ`πκw<₯!νƒq&˜ί^­>ήΩΒ—ψ$\z‰ίεmΪH€‰=˜[ό†a‰Α`ŸlΪV¦aŸx¨/αΔKH‰¨ΜάSυ“c`Δ‘ dπ–SўΟD}ΔΟρΞ` ΞD»@”‰GE™Hίj8@lhD ·‰Ψδe™ˆ…ά]MMΐH@JA‘@€Τ_Ή…ˆ!€JMΫΉ]Š‘ŸΣΐ¦©ŸkΐθYΕQ\Αό‘a¦‘—8ΔΡ¨@–δύ_†Ι‚ΑεA£]šέ)MUα!6α!ΰΞωΦ φž 2κˆUμΑάGΔFPΙpν˜›lΕε0”†”Χ[μ₯MτtZyNS˜H™LΤD€!βν[ᗁ,–Gιβ.ςbλpV…ε”ΡYψ@”ΨOi(˜\šJ€JAVeά‰AVbaΦ₯Ω䉀ˆ€„L©ΨΔEœcA€Φ6:ήΰ‘dYZď.κ/Ξc91b1Q _tŒω[AIΘ¬EΥ#ΦRJUς€b Φά"•ΜΨc(Ϊؐ¨ΜbHΘ ­ ζμ€lΫP xAΛiL ΅ ΔrΔb Αε-ΐτ΅9‘*Ν“©)‘7mkA^zΕ·@8–—)šαeΆ%ά{₯ ž…-d`Q ‰NκαS4BŒΑΎE_Β]ΨΆŒZŽΣ¨‘Ϊ(e Ž5„3‰’νm εN€όΙ?ͺ₯AΊ 1±@²%D€εA&Ο¬ΰ ˆЈ΄ŸΒ|$;M‘Jq₯ e Η+V+1Δ3ΊΕbΊEDα6©SJIΔL€dHΐe‚&δ!hΞHgβWΠUrL!xΦbŽ„b₯ζ…Eey€dμίpΈd`ι¦ύ¬[Œ0dAβ‘=Qδ^"W#ζMB`HdsYΘΟq¬I’ Aζι…YνgPJh„I,€N+Z™C˜”}TNΞ$6δyβW:ββΌΣO•Ό₯NK•”Ν ^9-SIyΦGΑ§εΘύ(™@έΛ!d`Œ„I`"΍`[~)–ε,ρct*$%ΗZ'3IθZ2 ښ9νΔvωΜwYEυΰρ©‰"’Έ$šIF›mŸ°š˜Aγ€κΡΛ¨-`rΠEkΆg%$ZD\βœώlbCη†ΊHώˆ¨X(H…6δ…*η@VβΜυ Ξ§t’(r²esޚu–•‰ž³U‰°’ѐg0₯dZΧ’ΩΨEΌ'`g•Χ¬΄ˆ-Υ‚…Κ©%~β "hΉP„“βe@V¨u'’)δ“jh]ΤEΪhΖ²…-E[φΌβIάiȍnφ*Ι†~Δ9Υ ’&ΞLθε1¨‘ς‘%“6•ω])‚ζŽ]ΎjX)¨Έ -*«ZdΟ( υGίΣy œΆJϊΔΛBμΤ°’Κ5ΧV΅ &IφΥĞή₯μ-Ζ’Ίκ|θΟ―€°bgΞΡ)† FόΛftg³9 -<…x \.ŽΙ½“kͺΩιbX¬“> η½$XgήπΔ†OΛ™ κͺΙ+"ιŽ\Κ«•ξ^šˆ ½`\υGΉμ­ςͺκ‰Eͺΐͺ(@…ΦF¦~Β½ZR§*…Q|κTΈ•›Ϊ†ΜUθρfA΄Ρjεmζh7υίjΓ}ΦgaV·€Aμί)a–f€¬Φ·Ύ+₯jνD’‚“@„Υžrb-Δ„^Ύy[:ΛαΉΖe5#œZ~‘²ζΡδ>@Ζu@Ύρ˜b…ΨΆf"§¬’KΚ t?su~-ƒŒiΟِΘ.΅€’›`σ„23ι³2ߎιΘŽl'-k`>ω«a„HͺΧGqζReˆύμΐΰ•ς Δ¦a[Δ!ΆωZίυŽzYΒA-΅]ΓiξQs07ΚΗΜλύN5¬858FbκYh”ήcΛ0rYI$ϋ(b°=ΟqΜμ'lRšŒ`ς Σ³Τα6©nζLI†cΡU:Q˜ρŸΦΆgRΦlRюluUΙiΦΦρkS 5sތe±’€+fϋp±ΚξΏ/–r¬dOΥv{ Ί4™¦’"7[Κ*²)ΰjEψ"z¦“c`k[WU}’瀦dΤάalq» 2Gj@ιsKz¨ΪŽνμbθ”•Vƒμ‚o‘'7Χ$ΙpKλ%/›DζΎϊm¦€φY‰c¬$η…YδœRWΕΘφ­RΓzεˆ;sΔ4Θbwkλ%σπH7·¦ε€Τ48Ε懫-„οψš\:ΝP;Y,3F¦FJwφΠ&;±΄©vς]nbkβω‚bD¬Ά5gsv«ΘqλΖ$“l>1U kiοβ€ζ h&WΤί_©ιΰΘ!ωχ Ή.Ÿ_lΚΞΚΩ€ ΡΉπf7v@Φј†Ι‹εdAΡ8΅ω"­…Τ\χ£νδ%ρ&51j;Η.ή\5ηw%‚θ…†ΡΆΈ)zgΧ’‘D’ΆΘsψi·΄oΌ―Ϋ^ΊlCχV°Ψ/οΊΈ U4°™)fΠ¬ή.1ߞ6Βπlηε @؁€/΄΅‹/7Κr_ϊ sΊ‹„yρVSΡρž+e—©°―¬γ)₯+Ρ±’Ρ³·¨“ Uψ a†ŒΥ΅Φ†ΥήΦζN’£nσ\tλrχ ζŒΘR)~K5rWψΚΪ”'ϋq&”>¦–ΓS˜K<Ψϊ.gˆ·š*7›ΝζΊη„j%\ˆu@œ2T*MΈΧr¨v·n˜ϋ 3΅­ζΌ”²ΣΈ¬š»™ ?M4#χΗBΈeΐΉ“uWˆˆΞrd™@qΚ[‰aΫτΙ§¦Ο8 i_΄μΗn=E7βυ°ωπqΌΥ1p]vY€c΄₯χ|άkΡ·Ο|Q?*·’…%GTŠφ-›bΤ­ΔεΕέτ‚#ΪΫI«-ΒΫό0―ύœ2ͺΠ%8‰Ίo!Σ°YDIΊΜΠψDΟ{ΧΦΕβ·N ±+toΘ…G”Stκی:Κ_wV€r»ρ•θη|v¦=ͺ λ†;“uΥκΨ':Ύύ27TΝ― +·Σqδ3‰Άδπή{†ΐ7Y‹W”Ÿ5Ir–E–Π.ηΑ― †βγ†ϋ—"‰ŠρΛ@|hί(;[θŠT‡“»Λά<ηWDΦj3Ύ-Z΅ʊkΦ«Wž<}βΔ Τ T΄xρ€‚Jˆ1¦CI–ΌˆΐdJ•&QšΉfE1-Ά€yρεM'wφT™ΣβΜ”@}5zTθΡ’D•ϊ΄Ι³iR˜6™6΅ ³ͺE7\”ΊRκΣ€O―–…ΰΖ¦‡Ÿ›wς’Ο¦εΔΆSτWp Δeχ ήN ‚ςKgIΘKΘXΥΈpεΌΣO=Στιε­C[|‰[¦NδγχφΩ~>υ\²-£υ 4κΆπ\π=ωά―8ϋt"λ)Χφc¦³pPk/Oš.Ί¬+hXςjˆ/‰ΐƒ©€ZΔj( {Ίp'ͺdTŽF£ͺ" ΐs4ιG€J,Έ+*R5’.l¬Gϊψ£­§ώlrΐ”€„κΖδ¨4Ι΄@YΛΓ·ͺ¨ μ>Τλ!οώŠΙΨ²Κό²„ιG*ΫγΛΌrN-„3&έ†[5;μSG(]ΟΈτLΓ3₯ζ8d+Lκζ"Σ.ΈNτδ‘MT²@ ωΌjTƒάSΒδJm°’β„”$$¬‰³UΚ]Ϋ±‡…Άχή(KΝQdoJ β¦.ώΥhbS Κ"IΊVL 2¨Δn9ρ€†‰D‚ ZΪJ€ Rˆ@ΌΈ€οΨ…Iή$Q‚‡2 H¨ΈΰΑΥ»²π_1ϋš8…VYke „Ϊκ5Κ±h+›Ν_’V©Τ§ΑΖh‹δMjυˆy}]πŒΏ΄6ΜW`9HνΉ2qδ†J^σΦ.yΨΓ†‰ΐ>ψΰωŠΞͺK&"—’Α1β^πξ»§€6eΆ/¨D XW&$»σ©qGκζŠχ³U³{ŽΆ‘ΙθJ-ΑάUŠD ­?Œ9MЦ?•₯rtŠ]OΜF)·ψ..²P]DΖN½Νd0q@—R‡ΰ,θΓˆΰ+-£„$&3VΟzgω‘}h€ 4Α°¨*πC›9Δ‡x@Ξ`ζ8Ρ”*Wλ‘PLέg3QŸ*sEŒ δBΌΰΧ™,ΞJVYΰΦ&VgqΞgbVώ”b6ή}0„rΉŽπ4u’!60ŒP8 z…Ό ‚GbPΠD%˜³&HΒ ¨Δ€x&h‚•πK *Α J|–θ„_pƒV‚‚‡ΨD'(Α *΄,“•pBΛ7'Ρ₯‚γMνHU:±lB0Β£zζΈA”€fWӜWύv”Fin€z FΪDA:JLOΓ ­§»΅|D""!‰·Fˆΐ™Ÿψΰ‡Lδ{π\(€έ@ œ …φbi‹Np’ZΤƒέ˜’1‹φœ³]§š΅Ζ-€Δήΰ°ΫmΩ»ίζ’΅]-ΥκͺB~'Β=“IΈ―°gwΚ:”χΣύ'ψ°VΗm΅| €ΕΌ3* PvΌNΐRϊ;J!±ΠŒSΪ‰DΪ’± )%bΡ‰JδΪΛ5°mΰυL•2”θ8ˆ(sΩΒ‘Sζ©`σkβ―ͺŸKΉkΓφ£ΤYPΩ½ξcΖ&Υ»<ΟeYtNh F`*HAΠ# €μ 8‚»Α 7Ψ Τ€"5Έ1‡0„w_™ …!P Ώ7π:_Η5‘₯ηπΰ7 W&@”ytδΘsBΠξqFκΙe§^Sl;€ά¨κΡ$`90ξ" ¦"˜ρ»Ιaΐ~ΞΜπ¨ΆIœ– aP9T±6dYͺ Πk€ œ>&0ΜZ€ƒ Αo[΄c;i-¬ι°ΆBπΤο7|PύjIΆbf@4o«Vr¬§7\…v.ΒU(ΰGˆ\aΒUN r4b6€"FΒq¨θ\vΡ~ ΰή₯νf&Ί€"k]ΤO*ΐ¦R >‘)7‚/< ΰ(b+Ί§T’ G* `Šh&ΔΆ /Β€π:±[kΉP#Χ/Ž(ρA Η©AƒϋΞFΏά(OάPMς1+}"φR@¨ »gŒrp…κ c…n―+*€*ΐ ι0–@!ξdqϋΟ!Ο !Š„θ ίlFB'Bσμ ³€H*œΘ tΜ°-4aΤrf.@αψ 5{θD/ „L-O#Hζp-•πΜΠh<½±‰°oΨiε$Œ;­χ…ƒΦ󏸭 ΝPΪζ,'-•’T `‘μ ςΖςφt­Šΐ ς@ˆ@ςζψςTlΐŒ`\ΘQE!ξ€P'*c(A$α―B”$‘nΐ2΄–($a,a•°«£8 Ε2t€“©€4a―ΐT-a‰ TBΰ4aόNΥ/nΰL•ς Nβ4—8A`$α—jΐ–XaAp5cPι•Z&fΥ$«ApCˆ κ… 5•sΞ’T…U~"@TaA{lIaS{iς*‘pΑ2un¦<©:ΡΡω,nέ1·Ό)K‰ΕδΌ+ŸΣ$"φΣsQΒ2ρ,1eΜ9Λ‘’G­ΐό Νφΐφΰς e_(2!ͺ‰Œ@ό@ψΰ’'φάν"šCfΑ< |ap ^m« .¦Tˆ6AF€|  B·‡˜!¦δ²p “§Cΐ½<αΣδΆ-oV ες"μ™Ž” MνŒ>θ§²jΰ ’@"¬δ―²¨“‘M%αpεξh$Ίlΰ΅™ N΄\"5GΆβ#y/y½6*#© s.ά>š¬ͺ‡Α΄’6oσR¦P_ΖΥfZBφTγχS…σ–˜θv‰£*ϋ Ώ~ΘmF%T$jΉ~ΘV΄φfTτpTσΦo¦Ώˆl―+~θ‘zGkG(az_pd/ezšBeχ‡ΐ‚™‡βΐ 8x ‘Β„:|bΑˆ$\pβΒ†9R<ΰ1’Ə7* I2‘E)[&tπqeK™+ ’4©Pζ.{ΒμΩsδG‘ ‰=Š4iKplβΔΙS§©―fΕ’%‹–VZ²bΝ‚υκU'Ož>q…€7?ή„θ.X €ˆsaφ«£CrEΖ…Kΰ‰₯JR€›ςaΈ ,€|`ςΪ̘9Ηepω°ƒΙ GΓU ΰAgΟr!Hˆ™4ΘΈ MΓe€ΰ0ΑŽΆ7Cψ 1·fΝΒu,φΡ•:Ϋ’t”η£1qF„4»vδΦ§kO*ϋχΰH₯_ίS<υ”<ΝCdŠT²ΒΒΊš•¬±Ό†}UT›άΐOθE·`9K#Ρ5As-pΠAά%ΰF‘j)mHFάE¦έz™½ΗΉ©¨,RτβCvL•ρυSC›Ι4β‚έ₯w vβig‘‰ ι]θΉηR‘J2™O 5δr5—’ίUI^dάπTTT½r~ϊΡr•b‘eΦ€j)%“–ξΥ—η₯Tάj,©$QpζIiεxvξΙITgFJ.Κ(Ÿύ ”–@Ψ(‘B6*ι•C-ΤγPVͺ”‰Ι€ήQL9ߘe懋V^ΝςYP‘₯֐Ÿ:z”uλ£οA€Ρzƒ‚ŠηAu4θ°Yώ8jK‡:db―(ΩλxΥΦH΅–’Dι±[ΞD¬’=i»SΈε±eξ{MΙ•Tφ™ΉUWjN剀im–δ’ιFΊοGέ2šiΏΩ,°H …WπΑ}*₯,z#MΙE’\hΏ+όœΈϋΊο΅Rδ@SaJU™Vε§Vσ–Υ&ψώ˜pΜ2[*‰Κ^άΡ“3wYnI:+ŠRΠ;‹σwδž[ΪG*Y%ΒJLHΘyΤΦΡ+u*»$‡u2Κ\υλšfε2±B'i5£!έ° n9ΨΡi#ŠTA΅ γΠG]bΆΡqμ­ήG6:7x@ {±Fζ ͺ’πbY­z¦«³„-Φ'mή»ρΆ/υμωΒI­=nΔ>°ΡλέλΕUξJϚΞt£ψήz«P!ασQK‡Ξ©ηE Μ{₯ŠWŠχ©O}Bί»X‰UW`­Y/'nΎ 5¨ΊΏlΕƒή’²7EK{v7aGή2 Έκ0׍:αzžzν{rϋϋη{8E ;"ν/~π Σ'TΥ¬΄κk+ (ΚΆ¨β!/fξiœΰ¨* φΝX,Š|F»B€Gr”Oγ>όαΚƒϊϋΘμD-γ½νjαΚZͺJΦ΅­€LMk: ­°G·Ο}Π|ΰb‘Μ>Φ>Αu°ˆ€ƒΞz`Όώ)„S,£dΈpΝΞW,\MάΗΏ(o>ξ2YhQ‹^.,c©ήυ6.(Fd‹ΕΚίΠEE#ΪIn&T"v°#G;0μ “,πι«…aΔ™'ΈΑzΟGπӞ—β•ώηd:d`ΨΪh–IRs!οTθ©E~/~Uό™"gΘ–ό+–A€‘ŒZω›E­s\Τ­P§½₯dŒš+#ετß5†EVΦƒ .Ÿ)Θ!^ʏAjH―hΩKjVkH!‘ΩΗΠ]k}BDdΊd-(AŒ’'&ΟΤ6žΗέΠ>9lΨ>9ˆœ»”dK&’Ύή­ξ γΘ6G9Iw2œ¬,dސVPΡν  Ά,ŸPΉ-«½.TV<Πψ  ₯rBs%«Jšτ³@Y(”gαœB )Μ—.Š~L”_GAΖΑ ΅§Ÿͺ4ηCcϊ­ξ Rαu&†Λ.].Ή‰“”²°‹yžΰΪ,ς“FOΖjl›p)άVў>Η©W„©M;wΝ•¬­jqS’ZAŠ΄Κ΄M'4})QΟ:ΠρΠQ!αR]#ι76Ι#Dα§—PEΥMžΡk―b#˚ω&‘Φ”_?%^;›ΚQsaTš’U 6΄Ω:Ž.|ζšV9•CΖqšee'kΝΞβR€#­*Χϊ ­΄J^Ÿdζ#ΛΣxvf0“©€˜ŒP&" ˆΐeVι»Xζ―ζBuQ8»Π5*j(r—ξΊΦΕΛuI²ϊYχΌM†Δ[Ι&ΥR‘‰9b”Ν†VIsˆa=*Ρ‚Ι³]%ƒ…Ur[‹ύ|ν“Ϊp])„Όl70BHφ(r½.Ε8€πJΰ @.E–+_ ƝgΏΛY—  (@ˆgR€Ζ+‘±ςcKg9Άρ l<γυ†3Θ―LȎylΑq·Z)@‡…ŒW™2υΜε 1XΕΒIJ<Ÿ"ζΦLŠ2{6@ύ­‰ΛuΎcλ5ΐ@α„<@5aA Z<γfCιυL .Πδ”4ˆ{W‚d Q †1”ΐΖ(A ¨>φ(’¦%ΓJ _δ-€Ζ0@DQ€`@$]Ά‹p—;”ˆ 1|@Š/F,r—x@ dH;©αΛ§Y·z%x φ`ζ„@ τ?·;‘K.ΔΩo΄GΡp„ T#~›;Ψ±am'ΗΙ.x«6ρ§ΘEhβ¨S*€3ΘψυaPf―θG €E%Τ‚½`Ϊw<_ …5D` kΘ@ςcG lΐΒ›2β DΊ*BZ‰ώ(ˆŠΐa@l$°Z1r% “7y%s©Vd;–3Άc-φ]}'b d HφdB*ΦRM168Ή"{±Υ3ŸεςΔ<%u9Ο/^1=m4+ΞF^'ŒX ―° Έp}—ΰ – ³0°’  L p7 –0 ›–` υR W ΄° ` ±hq’π šs@  !r]Pr'w‹jXΐΨh! ξgs_ΠZ_p|Θw-Σ`Π_πkĈ€; $E—ΧHεθYA(Fθ*ؐλΕ‚c Ž@Pj%`c  Ή#;zhg†d ‚d0(Yλ(™‘Žyή9c†EhyβTcpχvƒΗv*ˆ"°c†@”g„Xχ‘ήΩ„ ŸmGdχ'π¨x‰χπM(*XjτΉ‚ wmǎ:&’`‘Fxc·ž Ω„7)fψ‘7z%##;΅u$C:’5T‚₯e <Ό4GRι–€.Ψ<&•[ςΖ<Δ&ΦsoDÈ΄ŠyiQp ΄@ ±@ 8pΐ ° žP|•P ”ΰœ€ 7` Έΐ —π œQ€ –€}©Q0š@ ƒ Šηqkaœi Z…πš1w7§`!@Z Y ©ω·Βs`©%Ά[i°χ—F*,1α“πŠ>@ Μ‘„)(2y„FX‘―k~g p…2IΣ¦‚;&w ½Fd vŽηwδυ\Ρ)ε₯i,¨‚Ό    PhweπΖ*>P”—~']σΧy’] p(lηbpƒ °§&Mχe egvf§wΡ …JΈžγJy£‡…ŒW°Hνa_Μ–e εZσυ£΅•[±£efet`Ήu&χδXcγfύΒ•π iQ ³PR ΐ ΄ΐ§ž !j Ά` Œ ›@ ™τ 5` °ΐP ]z±ΐ§Ή±5°L΅LP  ρab’(Žiπa’θšYΠ Πj`©`[ΰr–šۈkΛqπ\@’Ι(Ε: 9Π bψeB:y…θΌΖ  "@zΧv₯Vj0ΖA&bΔ ˆ[k‰K cmgx§†―c‡L¦9FAV’ Py3ΦΡΚ bπdπ i%p¬YΘΈ’Ή†!d½[ζΩΊ™Ά»² vΈPΘxΆŠ’>`―δ*. …Œ»»A|B‚‘»½Υ8SB²uG€_”P£z3Τ•@1FbR` €[)£L™JQJ,Œ¦@ °pR170 ]Κ<ό§· ) c ([|Ÿ° 5 w²ΐ§w–#V ±πJΫ ”2α~ksJ¨js& ΄© €3,‰ŸG΅I’iΐ `·9°zKiΙXΆ»Žλ(q Z―KΉ2(斐ηƒί »bPk1ic…k“οˆ―X莀Φ #Κ‚•Χ€©K 0»κΔθ»`»LΡ―r·Rv0u]Xcˆ«‘?Ά:†Ί?`‘©Λj‰,wΝΫ :θj»Ρ)p†P(#"εκr‡ήjv2α ΉnABSUς;#1<$DH₯’Zb•4{H…±θ%2σTWε5†H=ˆhb8Γ$Œx ”°±ΐ @¬h ]j ΅P 8` s ³^Z 7@tΉhΐ§\|υ"˜³°”p K»ρΏPΰP€Ξ8@pqΖ/Ό:@~ΤXb.—€k€ ¨I’πלXͺ!€rΑ©;Π~ΰrπl°·Cf5&mWc„ “q74(Ε=‘„¦k»Iy@Η€ΊΫtHyΠ‘(t“ нrFΨ­)°  ‚@y p‘>@¬Sόt‘{‘XΧd](yWΤ>f»ŠΊ@P„ώ‚$X³:ΣΰΔ?0ύιύ …Λk₯[ηκxj4ψŽ?`BMc6AM³¬ΎfΎ)’±rΨ–I1`gv` 4o TΏ‰h€ήƒέrq’`ρό /ϋ |ZšΨ°ΰ=[³5Π ›Pό ±  hΪ³ ΧUA&˜© }"F@‡ͺ1—]ΰa ›XΑιr'g,qQb[ /΄­$wkΆ έ^56«υ˜v*m»x'3wΉKDΖ°YΌŠžΪI―ώ˜vήjž2ͺHŽΟΝΥΌ›xcπžawύάΆλJuυZΌΛXΗ$Φecς(2©Ε6†έ@ΰ‘θ‰ήN,ͺρ]_‡w†œ’xέ”·NWή9‘Ζφ:wE ΰ︞Λ=Q£<•°ΌZ7U?θ!UYΎχ%Λ“€χρ<Έ°[`ΓFωY’Φ(p8f8ΰ‡†hqPp Aγ Xγ9δ04.δ=^M ¦π+²A0VŸfεsZŽΫ#Τa5 ›θafΞ5ΛΪμ₯½ΰω˜ΊΦ$ΞΆΠFc΄fk,ΨΠw5VΣvΊ:Μu)1le'{‡Σ†sξ},θ>Θl›a„IS}‡η‘ρxs·m°θ―Qή,Θj½ ΐj?6κγLΧ Αj4Aκ-ς.!)nΘ‡ςe`Ω=qMEϊ†<ΕS8¦`Q52cR–ς¦`*Υ[dΏ%#AE5b2Π§’vk|p³έ^ · °8'qκ–…Έb‘c€$ΚaΧΡρn`Πο*ΦaV3Ρ>Š&ΊIekHποΨ½ε²π*α­cΰtš7‚7ƒL-%˜D–½ƒzξ76ΆXVe€K‚\½v6>0ιy#αΡπkXeμD.HRJ΅iKυα­ Χunέ&gf£•v½.dτΎWRh²fjγ&¬α"±a|2±AυΏρHυ,"WυηͺdΦ]9@XΟτ7W]δΕ#Ώt00FχΗWΜk(hv*u q^Žy3!°]ؚhΑ^πψk‘ΪαU±sO€LΕ?ΌμλΈ>4dζ•ζ$΄•βπ[9.ξXφζΧo­έ²υ<κρvφπ„,`$ΚΞBτ‡δK #χn‘c:vρ?βXwa?Ά]‰uqΝ(—AC/‡Q•vψL\ζ£ΙΒΎ_"cωΎfΉMο[lΉΎsMP #πεJQ­ΌF?ΒR•~'φG|n•D’ωA$¬q@ @ D˜π… dxπαΔ„ )>΄xQ‘D=:DΠ±`Ζ‹$?žδxςΖ”;šTPœ8yςΤιΥ+X±bΙ’”–,Y±fν|…Σ&( \ Ω0κIͺU‘Zˆ`jCΨϊ1쁧Θ>}Ά X.X .Ε–nι*(ˆΧ ]Ί|ύϊ­ϋk`„c ‹EΘ±ν@‰†]>$ Ψγ—‚-{”y£ζΝN:yώŠ+hQ£;;{ϊΔiΣ §na^Tχ€μΆΠ D{ϋΑƒΫΈ'B`+;+„Ε !ΎVΜκYͺ ιΔΏLό ξr“%7XΌνfμ’Μ`”1§z"κΖ tδ5/FP0ΫpΒ’J8ΡδΒ dO$Ω·I$ΡΔ“J¨!tqΧ΄$FI `±6η¨D“O q7K<ညνnΈδΡΨs ’¨€O,±œ‚ΤA‰b»A%)ΈΑτ!œ2Ιί‡’ ˆ‰Έb”34&² J£ ΘƒΔ ύ5ίT1€π@<½ (ΑŒ2< ΐΛώ3•x`}/σΑΜ:1”`f-ρK`Sβ) σI fμ„™jdb0 © ?θ€ύΨ²ŒP~Ί_ώh(†’Jτΰ>ΐC €ΰ?‹Γfvτ‰A‡ͺΊίτ'7Όm¨2½ͺ"Fͺr,Κ&#ﱐˆβ¬ Q„Œzƒ έμβ"qΖ3³¨‘PFγ“£œwͺa ΖC™XΨD-,€MάΒ&΄Rπ [ΰd5ΰ„,6‹NXn΄€Ρ&*@Ύ€ €†δ-Β@ΘYTb³pΒ™€ŠOXΒ]ΛqW%@‰‹K ΈΨΔ+dΡDR±¨…ΰ‰WάŒ Ψ n2£GbJθž‚p'Œ«!€€Ψ72α‘MϊJΐ>T‰  κC τ‡Έίύぐ!‰άΨύԷ΁@έό !Ύˆ €€Ρ‡?2xμ?χ+AΊ)5ž!€?0hC%ΠPζef0ƒ>YΦN‰Z0†θ$CόY†Ša C:Η †`΄₯τ@7}°Aώ54¦B: NKQ¦.|ΛΥDΎ’„!=±Νη‹έbΑΛ%ΜP˜…0e’™ΐ&Ϋρ‘0£γA.02RMΌb;žΠ„`1HXVΞa@d…HΤ"57Ρ]—R€ 0α K`ΒnπΨΔE€ΐΠ0 2Xs#X/Ε)„ψ“ ν@CπOΆμ ^c F5Ψ²ΫΰfB'‡?πjά&Qό΅§:1ꍍαX_PjΑ£/†bΰπύl›Šχγ¨°\݁Y§τΑ4EΟFŸn2` >ΐz|ΐRЁR!ξ¦1J2<ΫΎχγ‘:KΐM'ŽLm‰ςU8βE1>$α"‰k±ϊΒ’0nQ#ΩRH¦ϊ㓨Ρ*0INKš·ΐٍƒσ‰η-p©Ζ­Yδ-­άΛΞζΞ[¦@'F'E ²@Γgρp.9‘U`εv>ΑT Ψ>ζ㑉ΟIΤΉ:°š?7±@@fC€’IΪ{Ω Yρ€'~ϋόΨΛ u;f©7aΜρ2B‹n_΅Κƍ5ed…ŒŸ±Uώ~€‡ƒίmXλΛ # …(²˜ΕŽΎΥ£'›zBZ•ΈC°JΜβΚ©!$έ’ZπΊ ψ2=›‰Xπe’…@φk‚(ΛA‹0P¨I@؝`‚¨έ;<£ηx 7M€(Λκ%YˆœZ€„˜…O`‚O°…&`-¦€Χ0€ x(p‚"\²…P55?v’ '"€Β3Ÿ™ϊ‘QΌŽκσ ϊ5ύh™υω€ "υι€™²1Eq ˆ’"nb±h°SφΚ°Uc)¨'T™)ΠώX{κ°20ƒ3h0o›)c ‰X«¦j‹! ˆ΅ ͺ! ˜€˜€I¬S‰CσjŸψρ&ς€:¨‘Α"Š2TΔ‹¨σ[8λ±TŒ”ΐ>Ψΐ˜2lΙq?ŸΏ€PœΉ«Šό Iΰ„+Σ―+­N˜»¦ΘP€€y„žˆ…D(…žπ:Α+h…+k‚N€…sŸ'π„) ΗΙ1‹Mπ:&πφΫΛ‘„Έλ5‘ž $&ΐp€ƒα—§`;8ƒŠ…K@Ώsˆ§(€¨ κβEᦆ!ΪͺΈ0! Ο`?ŸŠ9‚£ΔΑΛb±ωψŽ$―²Έ(KΈ Η£”on%9E…hONIˆ€Ÿ0ΘW1o₯τlW™iΟXI‰B‰gup€ŠΈΆΝEˆA^ˆ8–§΅\‹3Ζιυ1υ܁ QΟu€™¨ ι 0²X`Q‘•;Ϊ„—Ϋ±ζ`’Ρ β€^ΐά0‹Έκ ‹ΰMc΅Ί`©Ϊ½€IΨ„H0‹‡“²N•XJ Ύρ]K=Ψμ}^ΒεάNάΛeX̡ފθάΦΪ¦…ΈΦ= ¦±ŌΠU?ΉΫΡ([»D_( ήΜ₯Ϊ˜Ni-_(a€uΉ Ψ„X°Αν€€D’U1m–»Ε˜¨ƒZπ„(ψ>‰ZτΪZQKψπΰ>ή‘e`,†*‡λ‹Ιήd©ΠŒ³"»Ήb,ή`Ζ­8V\X}HοΛ"Ӑ5_&»£ϊΓ[ΑR§ Θν˜v‘‰Ÿ›„Ϊ|%JhvρR… ― €Π…°ΐ|Μ£SγβMͺΚΝ’₯mγΏ•–ΛΛ ŽUψψί^ ^ ~؈Uήήδm­’MMc§εd₯ͺŠύ„ŽEŠT χƒ?ωkΉτΡNέ „Τ §ά9ζ6%Np:JθI²„¦x„M €<€„OΨ„J₯ŠθγDžd„Φ(ΝƊ3aY€βVVΰ γ­^K¦QXΒhΰpUΟΕΠ1"εu¦T2ΫΐQџ0Ÿ`9ϊΛ#-Վ‰ π%NΓͺ YhžN°…M€Ζ€KΗI` *₯Z€Hΐ…šΘθΰ *Θ œθ„IΘf΄ΐ™¨„XΘ#0gXLε†ΛΪ[lΨΞ΅`ͺ¨EοfeΑ>LΎVζ1ΎXžώΈΛu `Ag·PηΑ₯ίœΡΥ–ΩV=_'SίΖ‘ά˜ *Θΐv¬ ¦5‰…Ξ κ‘&RXΈ˜¨ΓAcΑŽ%XΘ2˜'ψ­J˜Mˆ„0ׁœP„βHΈ±8κλug» ήͺU ξβfZOθœήU–αί•εLνˆSΞΰtž^Κ`ˆ¨δYώˆ₯³\ž…UeaσF°ν{ Š₯_IζŽ΄―° π„ΞΊXΠΖ~Μ#».&˜Xθ¬π„,γQ² €X‚K{‚'Έ…ˆŠΜ°Ύ¦@ ي©Žg`‘€mWζZ§α (6οžfήσ"‰ˆ(nοίΕX’l¬Ψ³™Ψ„[ΦjU5œ‘HθζώˆHή₯s1ΐΎΪ+N@€αNξε.gxQ$εώ άqŠWθkτs,²MΘζΕ@AK˜…λΑΜ†gT†Xϋdψ¦*«ŠUμeήψ6^ΗΏ΅eοΙm§η"·ρčaα₯oGKΏΆ €ˆν₯ °Ε bϊŒ’H𺜿;kOEˆ¨»Xθ„%x„D*­*A*4δΞΖνξΈ€%ˆIz‚ ¨Aͺ„”ΞΩΝl‚?o‚οΎ•ΗιΗ.ΟlΞ¦εT„τ6ς»q`‡Ψ^&—Ρ%/Ρyvg(Η`νοMwo nτΎ ·ά1[Ζe9&ίς_~Ρ΄5ν‘ )πΗΡQ&ŸΈΗ$ešxΑtPπε*X€>σ₯A…˜š-Œ¨“Ψ-ΠFκ­pνΤFcFηqˆνgyτΖ•οΟ•1Uοqg΅ψιŸv°δμθ²Ϊj^FέΔAΫ…wz–5 τt Ψ|₯Δ$Ώ  ˆ6Αf­ € Π΄(ˆ…+Žχ½Ϋ– HŠ…jΜφϊŽxN—τ’²±N–­’φ!υΝντWεΉAΰΟVΛδ ψ€›ΕgkOˆξΕκίΑ)έΫVu.oπŽ§ˆ!}¦e0ηN a‚Nΰ„oqχΆq€Ϊ Χνt ¨ΏπΣkWmŠ?£"α’‘«Β1ψ€+†μ&Χ`₯ώψŒ₯ JΧ?ΧιqgchGrM·ϊq?‰τ›ν‚ΫχsQτu+¨}τ8‘V^…V²ΐi]Uψ&Y‰ ¨K„.‰©/ 0Εω˜*'—χlmν‰xΈZŒ‹°Ορ²Χρ υΟtd‘βΈ§ϊΜ·τy–μΧ^ΙΈΤΤςW¬x™!p˜GχΪΎ‘Συκ_NzΝ­άγ؍/ Σδ να¨PF—,^‹*”–o’pΘ&ιΫΨ֊θ—1gwvΏνΫb χXVτžj‡ύπ_{ϋΆjΎi‰„ΝvOττ—Χt―=ύ‹σ· “#2€x5kV¬X΄hα’%« ¬W=}ϊΔiΣ `Μ¨q£F?‚ )ς£‚  `% .Ž4i€£GNzL‰ςdɘ( ( `ΐ£Ο’@pQ„ ˜ Α£ΠŸύHtcΟ¬^Ώ‚εΘ μX[Ώvυͺ lΨΆnΣb<{V#ά°sέβu{·-ά½yE–¬λ/76qβδ©S'‡° *&}ϊZ³ gŸO[Ι——a9ׁώΥQ ( M †(‰y²˜cΙ"™B² δP'&Fg΅ΰFX-€`„@$XTE ŒSS8|A\„ΐD°Ε]ΜF€_D”CΰŠdΠΕ|±W%ΕV7Βd€r)TLaĚGΑp ΑZ@`€lρE—TπEϊ%i!©x@h v„"Fϋ9*V€΅­š9—UZ’τί€brVOβΕι}y™:aL©†Κί€ˆ>J!8 ¦cqΨαA²,KeEΔ (eZι«FΝW˜μ°Ζ:°α%βΩD€RΥΐ΅8«έMήEdˆ§d\¬‘E6ΗQa¬±…lhaxμΞDνxάkFϊ`€xΏ›0«Fj¨{@kpΖ@qlpa¨Hgqz豌*Ϊΰ{f…TlŠΏUίΗ£,y!]Η²]*« rHœ&:ΛYiTa7\hkc―±˜‘ΑB{GSˆ―~5"Od¦"CδbFœΗ£₯)OHL˜ƒ§Ϋμ‡…6€K Αθe“΅‘‹5ι #OXB;sμ‘$ΣΗA/9€PΞύ €X„PCκšh‰ Y#t`(ΐ…˜ΦΦ€:”Dΐ# (pζhD:ϊ€g!γέν6ζEŽPev|¦}’Ω–Ήδμ‰Χ\&` i,fzsd ©‹5§I)ŽΖŠΡ™Υυn%XθΚC”±L†$² §“#Ε+Ž6Υ)₯œd'HΓΆΠ½ˆpCtPKυ­ΠzaΏ€-€a6G:‰ž*Y›ˆ ›AΚIZ€5Λ"i@γΈΐ€Μ/ Y @λ₯ƒ4„ j~bB°[.K—‚ ΄°,hg&m»Œ©°ά%U~a•5›‰Ε£t³Uj§Ν —ΫdD™ω£3Ι“½TυXτ™¦ΣΚ<Άϊ€,?»ž†ήY]ρͺΰƒ£°ˆUΔ+vU/Pa MΥPΠ†¦α]ΈIΆ H/‘’Ν"Ϋl°sQ0¦“•Ža$Ρ„½‰•)ԁJ.γΜι4€ψ§€‘^;ΐ)ΤΰΆΩ…–9Oϊ²Qψ©PCƚ‚€` ’ΨŒWϊ Xΐ5Riυέ_?VœEJwε2ρR<¬~υΉ`T’V©N ™―3c< '"RΧ4noW ωcψͺ™qΊš2 ‹‚‚5Œnl:ŒhXg€4€!_@δ*‘D,lŽYρ œ6RKμB‚‚ά˜‘.šΉEI9ˆΐvΐΉ@Ž ―Uα"Λ­/` ZPΧ‹C°98=L ―₯ŸͺV―"y 'jA‹8ΥUδ‰Xm§_άuΧTŸI”ξTT–ε̎π)NU£ΫέθEμιυcFΛ¨ρhΌZˆλ99RσͺYεͺΚJr—C±I]έϊ4A_2)aυγ‘ Υ£“@]¦RF # YPb‚ΑΣ'.₯€Q$u!~k¨—’VΊ…=QF4ΚΒΐ`hŸ”ΐ•˜/·@€¨!~P2@¦ NΤ qξV'Ν‘₯Ψδ]Ώ‚N™yy¬Εf:Υμ•3Ϊέε¦8Ώ9g:kdΚΦ.ΫkΖμA¦C ‘ERίΜΰSBaώκUς›ί GZ B€”`€²‘“*λ]α¨ ψnjpδΉD94@‚ \ΈΡJ#§Ψδιr9 πw0πΪαΐ€I&@ŠΣΠΒx.8°9ΫΌ]4ή~Ÿ*νkSwΝώέ±vŽ"@ΘΩΔ–³QšmΗcΏͺΜBΫdΈΧ+7ŽΘžpζ.D₯*΅6ΰΚΥ“ZDE<3 ²IΪ%–{ι\λ΄ΑΟMJšο`€£χΎ ΅hC‘8eZΰ‘5ΏΰξΕΒD‘Ί–Ξœ§ΫΈΚμPIτω6³=m‘}Ϋ§*v»β͜θŽΒ2tKuή,‚E³*γ'^ξxΚΧWΰ“ˆ°έψΏ0;qiwszδ#%e%{sb&ΙgΗ…H£Q¦σ?ͺ³ ό‘‡|Μ•ηψ8+gςx™ΛXΰΪώΞ/ΡSΌΆnY½ZΗaGŸay„‡¬™χμU‰L¨PήΞ]Ως ²P I€…xYρM V΄›±ωψ ΰH``QμZ<žϋI—ζ΅L²}ήϋ΅ΜύΡΡm…©Δžη!‹’9ΚΟ”Q† YΈI›ύŠιΩ—λΑί§\ΣτΉΙŠhΰσ@v|—V8τqΨπyπ%”Ε0 ᑌΗΘ  n FŒF”‘ zE“iΫ`@Κ^ΜŠʟ±9 _ύ BžϊšώG²ιN…ΤŠβJAΔΉΝ}ΉΩ°ΰΧζίπ`EU”FTI ϊ5‘…‡P(€ž GJlβL<‘’€…'NΒDβYWF€]σh‘L˜ΔΞLΑ‘?©U\₯ΰ –ώΘϋΡαxY˜YρΜήbZΘμ!aV8ΐθ΅— ΥBκ !ΣάΣ"RήGœ`΅IαpΘo¨GrπΝtL ΅½Œ‘œ‡2€NdDyx#ΒΗo0…œl9jDr”Γi@°Ε%nD΅ΤγΦiG%ύΖi$™δω-Ϊ! RQ^4Ρω€yεΜ,ΚΜu΅EJνά’BKRΥ‘_ζ­(Hφ b‡ΔΣΣ‰Θˆ0 5£V›¨ΟŒδΐΨXΓm«Qα€Γ9LTβpDτ™FEEΔ 0u t NΘγGh ”Xڐ@ΕvπJŽžδIdΪL€TΠN>8NT$ ΞͺΥθΐ)φ\―ΙάJ€GͺS/Ά€x]„lΆε’ι!_κβΟΕαΠα"WΡ%Ξν₯}’™ c4B$Ν!.`λ©€Gžΰ]„YaTd±-•0Ξ·LΛ— LŸΨDv€fή} =ΆX–”΄’,Ιι€FTKρΊΤΊψhζ ³hPΰR³θXJ…&­‘Ά8‰°D…  Ί€ ΄Α„’Dϊ’^6’-.Άρa…Ff§A*ΫΝ‘W\–ηλMΘ,’ηšΧƒψ_’XGΊ§zfΕvΝ•b’Qš%<©žι‘δ›MζDΪ§₯ΖL'‚zΙύp Ϋ¨ΟN}(‰tΑlεΦdŽθΙϊdhJ΄–Ρ”Q-Iΰ κ4HΒ$TDΟdΗΓ`Ίμ’„@d(–Τ€˜DˆhθDŸPδΙμ@ΈΠDHΙΌΛ¦@΄AΎ±N°Α…b`ΖΔ5Β"Νuδ±H {2QΦg¬ίέηEn$Bšη_FzΎ₯―νRt›bΤ‡HΖΈω "bΖ} ‘~T€€,KLΆO0Λη,˜!ΑΦDΤΈPpΌDtAΌo Ψ“ΠˆCqΑeψΔΘ‹ΓΰIΧ4 ΌΒ.H‚Eτ d“0Wότ‰—H(+GPκ αIΔ–’Τ‹sΆΨ°OΉ€ΑFΦDKmδŒ…6©ˆαLzœ©ΝΑeζ ›ζεšVQqΐUtM[Jϋ±'ν ;™ΩΠΔ"ΰ<Υ_‰[jλΟ‰°ΙBL+Y„Dωκ#}AJ\Δ|xάΰp”xN‰Ιί`¬^DkΤ‘XD%|B¨ͺW•O»±p(Ό₯DβeeΦΌR³|Α΄< *½xΨ¨ίΰFЏ΅ΙŒ`½ͺΫ›ξ’_ζ«΄™ γW°U˜έ Υ±)Άͺ§–Οa:Jjž”½$#­x[!4ZF€ςišΒaΠN‘Οb: ,…j‡Ψh‘ρO½xμόV’ŽόŒπqMȏŸ˜%¬>¬uώΔߚ&G]p"'.Tκ(UI˜HΕeω XΦΟΓ¬¬g¦NU,ΐβ)Ε Όόjά5φωΛ@bιΝP§˜SΆΒEΪύ_š&νΟJ‘—9—~1νvΆ'Ϛ)ν6$ δωl›|φεͺπΰ2bmc²ΡΎQΙNΨ2™N %mΦ8θuΑεk¨ΫFΜ½`—•β4ΉšΨPΙvδΈψ­qQΗ<@,ΧΉ‹τM…g2nRν¦ έD‹`ΠlΌMpTτ&F‰‡"­XvKLa%a‰$@ΒX§>†Χ‚Κ’ Τ2J/Ϊ‘ι­ςώ©>©)ΜL›˜–+λ’Z‘.«œΥ e κ‘Ϋ‘=ακ:νwnπSTΚEύT΄@/”lA°­D‹Ϋ4KμΡˆάŒΑΛb)ɐشH³lǏί\@'δΒ (R ΔdόOΈΟŒ œΗΖΝMδP θΚ@μΨ²±©m τΪ–©MΐΫ¬Σ ΰB,Tl)σ¦ Τ"]}ήpzb£€¬›ƒ ι`^«\r' "rόU«Š©OˆξGδ'’<•$―„Θe@„D(b&£}πKΕ‹‘ύ”P(κ@ΤOάhΐJ½Λ>Œ§•M¦α”7šE€B,„Α€‚ΥμPύμΦΕ‹α’0‰Pό‘+š)}Zm0‹όΠΟέύ| |FaΟ―·„Ί?Ί]‚‘ηn “Ζ/ύσHΊHΝ]u‹r‰Μ°Ηϋ Β€Β+œ’}α:οG4ΗΞ(5|Ό»€@+“ciρμΗ#:Έ<Σ«WΉZΣT-Ί΅ H/¦άΛyΊγύ©ψ€?½' }Eέ'hΊœ3"ΰyO%hŸn3ώ ϊ·οζ=vΈ1‚g»?5ΝWW ’χΌrΈ’±!ηoϊΣ+OΪί\%&'bB»ρž|ΦΫϊ$Θ(HΑ$ΡΜΫγ³›·iάw{ΐ³Ή΅fΫ«σηsπΆŠ~ς矘½$ΧN’η₯ύi>Fφ.Τ ΰ22Fc|½ί6Ό~! 'tB‹r fΉ¦wϋίχ{ν<3z«Η:{_θOe>³{z>@Θ@`AƒThΓ.L‘bE‹'Μx’Β†%^ωp䁌KFDi 8qςδ©Σ«W°bΕ’E -Z²dŚeσΥΜOœ6έ!bG‹N)Bl ”§KStϊρΰΚ¬$›~½θUΰ±8θ:’λY·"Ι:|kqeΗΈsρV<)–λέ”mί†[jή΅t +,|6γβΓ-rνydΛ0evͺySηΞ?s-κι('PJ™&yα ,N€V©Z1^ΑQ³:žέρ£nΪoΏEιΫ7ڊδž|78Ϋ…ΕWlžzΦιƒ)'ύ·ί¬ήK‚_ΨΗ&NŸhnΖΩω3-‘°lΦόttj­›¬]±e“šR`“-’Άβ‚HΌλς«1Έ‹N<άΔ"θΑBΠ° ΚΘ¬”0 O΅γΪP―°h» * " +Δ(±ΰXŒΊ‚,Γ,=›fΙΙ'Ÿ€J4Ν<‰ ϋ<¨!θX„` n¨Άξ€£-FΘ(œ«‘Ό›2;,=l°Ή‰fόʁ(δ*Lδΐ± ΑV‹,-ης‹8·μŠrΜΌ *ΈΑΌΜ6Λ¨}ς1>θCν­β €'έLŽCΖξΜ°Ε…ΰ4 ΏΩ*Νt¬5AukΊΊ*UQ»άττΓRŸc5ΚχIΥPΑ’<˜Π»1GvμQ(’H’HW ‚"/Κ”Ε`ύ΄J4%u―f]­HΔjU σRY/Δ6NTΟjs»m#΅ΚΗ.Υ–VL)‚V!ςώœI½ΞxϊL–Y~D)EΕδ”΂ԝ«Ξ„f­΅ΛE³ύ]r΅Κm@€iΣ-!§΄₯6!π:4³αTΥRγj½’ ±#δ6°ˆ6έ8±kI$ω-ΛβΥΜ¦υ<λ)¨__ιd&!ω­r1έ<ΩekΗ-Ψ[ާ•Ni„‡>ziˆG>•ΑEmzΜ7ƒΞέ’)άθΊŽ΅¬’š3zaϋŒ9М€j/4’t¦oΨό¨DZ€Υ-π`Ά:ZSΛ5ΨlΏΑb‘εά|cΞΥ”Χ₯”iΆΝΕ‡±£Z‚ΒVhλ‘°>[l_vΙFšf¦wGp6*Q¬τsšLΧ““/p[ΧE¨ivΞ·T΅ΰ6b<αέkoPβL£vƎ‰ΩI+sIνyνυm›‚5mξ–'kΎw2Y˜\ρΐ―˜|Bfœ1]‘p6Ήq\•„\ΛHIυQŒ(”Ÿ·ΤdK%Ά‘vψγ%,_Y‘κx%.όΚ%…ΉIΧ!Σ‹ό‘Ή"b@@Ιq'@ Šh„"" [GLΑβηΚ_rǘΊ ¦2Ν™Ξƒ@+Lž’V9K΅Gu>Νγ“ŸΞƒυμŠ΅8έ,ΰƒ=‰•_ιθΦΜyκ’7ΫŸϊ(HΪ=4v •€!λ)Ξζ½ΠUY’ Υ€†Frή’"·₯'zX=έ,_AΪWA&fZ”ž4΅i^L”Ε½©‘§Ž4θξ3+_β₯8ΜchΣP£ΜIτ1VΜ¨N݈Οωξό¬&[z‚rΣK$=ΪFfΪΚI±“αBω(‹„υhφ»i2™"ΖiΠBmŽW˜ΊΛ²2­>­ η(Τ“N3:²Ξ€€Ν< R―0Dβ8yL§‰ˆη[#`χΪ·‰FΗS3•η[?ψ"Πς*^ι`ε"«ΙΫL”σΩLUQΗ“fU{0ΕΛP‘7ΪόYžšτκΗ²ύυV·P­Š#!ΙςΥ·nΕμoγκΧΰΞEšΉΒ‘}βOχ% :sι6‹ΛKm±•§Λͺ₯‘^sΒ‰\­ι:}›΄―x…Ό_q.\C Μ„ž3ΎΈM­-Σ«€Οb‹bν3°VξiλβHGWe)ά\ΊΥΎΒИΗ"‹Žeά‚8ΐX9SΠ^χ–„)ΩZہ ¨€{ D@2€ΐGd,–wHΖά”1›,’a·KDυuΛD04+X‹™DνG&+DΐΉ`2Q)ʟ ω*¦rI) +‡OJͺ%aw BΉ±w<mI:Kˆ^D°pZnœ–« ―iqς(΅0ΰQ^ύ°¬Ž5%σϊQOšΚ£Έ™FΰΛBΞ£[θ§`Ž$ZDΜ«α‡Ψ0nώŒΡΒ u§ή§&θΞΟ) ζηΨ0:φ0 QR©‘bdΕp#ς$ΆPg g#pœ#κ€ι€—M3"Θ€ iM/dΐΚΩ¬›Yzp€*,ψ©έaΣΝδυr½Κ• l 5¨3ԁT 6w©&@£cαΰA X"d¦@š"ή~”Yΐε KΌ ΐ–°„@5x žπ έΰ 7`J{—r‰0.xΑ&˜Wz °2A0 69YŒ+ΐ3°ΐ 2P 6C@{iΞβcΡΌW/žOn^"Wˆ)U/I₯a.t+ΛΛ*;ζΚ•™3ΛΚa'ΙΝAŠCεηn?ΐΜΡ„€pψ'ΰyl†jγΨlκΠAΞ± γk΅ΧΝvŒΙ.δ†P;νΓώtΒC­– άΰ<ϋ(Π'K(Κ+hό¦"ήψ₯wE–;T$nbίΐ Kg1š€ƒ"gΒΖ2ζJ‚1³–}.­p[£RUPk~pΞβφRαsΦΧ8V°¬€L@ φ`–#‹ΐ:…₯ 5ΰ„$–K|βλΏ ‹p*(%" Β&6$!τ˜"zŽFιΚn(­?MIšŽύ`4αŒΛμx.νbΞσ πxNΔΘP ο."ΖΓξNIxi πη8’½ΘΠζ”$c#τ\ A! xΠΖ>,Ο¬, ƒNΥpYl ΜβXΐbŒ§˜‚dνX n ǐ΄lΞٚn" M€ 0Υ6`fœ€Δ°Xΐ ΠR)CΨ²lΊ0κo€΅Πƒ(hΖ3vβ=%ΒάΝVκ,-K %TΐR`ΐφ Ξ 2Aόήj―ύ4ν`!… *Ξ2^@XΙ,Ά6Αl!nYžΝἍ.ΐ ^α5 ΰj` d‘ cΓα j`d ςοQ6‘"L‘-¦‚Τ`ΓΩΞX‘νvς|ςQx²Ρ’€αΫΝΰ dA) Ν#Ξα8α¦β$ΰ!;ψbΒ έ0,ΐβς’2ΥΪ26Β’'Χ©-y2,)ν*Όν. bΠ2+•2τRαRΝΫ‚%ϋ+ρ²ΡνQΰp°’%!@* “bϊ2EΥνdα<Κ@`‘ Ξδ ΐή 5‡-1Χ#Ξ" 4!œ@)ΐObAQXr `6αQ˜Ρ Chœ„hͺΊPjfšzB'ϊΎk±ŽL˜ψ„μ rΡΌΰ ΐςΐ@ξΐD!π`Rΐτ@ψ€ξƒ%TM8‘¬ς4Α Qo@pαό€8aε$Αp‘6αd _Pκώ€”@A&EΟ@‘€4a:a Ž&A!ՊB)A &@eς+‘r³ϊ΄€R‘PΊνJJa1|4Α,@ώΐ„ζ Σ‘R‘BOLHUα)ΐν*ζΰΜƒˆόd>,‘ώΞ―*@k²O@ဇ@Aπ?+?•Βt`aE6£%„ΰ‘JA GΑRm GΑ(ΰR‘β6~τQMνΞZB ΑQY6RaΒΑpTK€ιξ υPΑ’ Τ’4K©”‘LA Xΐ25+±ƒq)<αΝ’€φ“κ/$Α6a&ARΰ"Aα Z“OgbMY'Ζ` 4A:‘d4,a&"αQj μ³΄ΡΚN4› 4αˆθτύ άό” ’@cτgώdΟ Ά/ψ€Ό `+&ΦίΠf&α_λ#mΚ΅ώ ,^AFΰ^A!7C ^!7%€O$αˆD9‘]ΉσQbΰ6‘ μoΒ< £c%8 pBGͺτ‰Ακ3κΘ»΄j{ )VkΚΐόΐ%ϊ²–ό ϋRΐ ϊΰk·³όΐπΐϊΰψŒFτΥ>eaGφΣΰ*Α&F`)6!0ώ¨€d4a›ιΆΠ₯&F@/α`A) €'6α$! 8&Q-LC5Cο^αD…h”`! FΐEλ–εnΤ„u‘JAuV‘‚ "€ aV‘yΑX0MΑrr6΅VαXzΡΐŽhΒ (nΣq«ΰ,‘ pcαt=ώrvmV<τ. l!eqaD%‘@ala8‘-τ”`XX˜ΤTα’—ΤΑrΤI‘p”v•‚WwMDs ˜VaI ‘€ 8Y l·X§%β  8x VΑHWG]a Œ·w•ΰ O3Βΐ~SΦ"εΟ:Aπ6v?Αkπφ&œ€p9_ΨΟn?e!)‘ao jΑ<4ΑΩΐζŠpΈ !αp9Ψ7%aΑΤo+-a+­`a†Ά ²6ός Όςΐξξ`V³ BO l!4AFt <‘|eAl?9‘ 4aAiΒ*%v_Lώ^Α*₯@6ΑΞwωσIΘςΆΜΒk°ΚΡ9ˆΪ¬:‘6θΡŽΐ ξΐˆωQ΄– ρ`φ¬=σ kύ@>{Q— @³\γiA[’o€lbγ,#Β€―eα4Ά²΄±€ΰ˜8‰ ΰ"` ξΰ”?O gυ΅™iρQš€>! *ΑΊΠf!7‹ dAύΊΝXR35,`ώ„K0RΤ\N8{—¬—ζ@Xα,ΪXX‘^ΰ†ƒ (‘|-a–ΰr-!$rΣ ζΐŸ daς―ώ6A`Αj@ξ€£@lαξώ6+AαΐbaD›™ΛΦdT―  yŸ€Ÿ΄XαI@XΑ Ξ€[ΒLΰοZ°¦W!A„Va€WΎZ―ΰ\’gw€TA@ψT₯TT(ΩZjx !„‘ *‘|' Β€Ž·@pA&U·%:aNΐ Ώ8]k! ¬ι΅σπc‹ke’κ.]βpeΛτΜό‚aΟƒ,YFrbαDχΧ š 8‘ͺα™^Ϋ5@ήΕŽΐDlΕV€` ’©ς䏔’ ¨@bα’6€j€ Β€‰%ς`WΜTY):,A ^!μc6@Z»»†ό’Ο C\φ‡˜.Κγ€ΦFΝμ^°Ig„%˜k§³l,ωΰΔΦϊΰ©™™[β™ννϋόΰ‹ ¬9αΠ4™`Nτf!ΓωR 5OY<‘ ‚ `‘ ΫP +FΣ•T *y ’ uͺ?A¬ƒ€Π M@@€U! A,ΰ,Έ¦YAQ΄Ρ€xψ””²*ε²kš°k:ώ T!'…·±΄ΤΆmβ€6S-Kεr=¦οš†τG Α–ΰ 2 bA\;”,αœ–7bύ>ŒpΤfΑjΐγoΩά¨oe΄C@FW΄‘ΰαoΫT±f•Β<* g©‚¨ a0&];HŽΒnΉωD· @kω@2N‰ άΦxξ·[β^A&A.>8·;ΎΡ |»\ύ^WhS9ί•βΊ\ΑBΒ‡smϊήKΤ6λFE˜ίHŸB\Ν‹Άή ΓΡ§€ψ$‘ϋ`ό` Ξ΄V@F16šϋΐ¨Y>ων ft \βOΐΊ΅ρQςέQ’~oΒ>–@~―r @Α Άπ4s 6Π`v«@CΏš*`ΑIbβώ@A¬["ςQΪ4S£%ζ€ηQTςα―±4τ•—”Vα G•\ GxSUUI-'g•Xρš‡!°Ρ }mΒ‘@J0 „š43ΐί_c«λΟ'3TR.A\Ά`ΓΐΥχσdβQFςQn`Α‘-BX‘ A"ΰ¨­Y PΊΞVŸ Έ`u(€ͺF8Βƒ( ΄J €Cͺθ€B8€!©°@Α‘I‰qTΕΉ˜ΚB#U4J•„ €$«Υ$€B•f½zk$*³œΨτ €$Y7LŠu@§Mͺ:‘% dUJ`³ !Uci''°ΖBπxVW 2h(Q«¨›8Aψδ)!'NNbY@…)² €`A7d-nx 3ψπP‘ž„Vπ₯b²ΟΞΘϊΰι¦xβ”(Ph-¦KJΒ9±¬@ Φ¬Ά 8y"0€Α˜πzΌψρθΡ—OΟ>ύωφπΣ?ˆOΏ~{΅7KοΤiθ¬X±Π"ΰ€ υ »q² “Ωη`{덧Φ§δΗ)§₯`Γ’x‘B!Š<‚v„θ vΆ54a -” Q(³@‘I.‹1α'±Db£%wΰΰΙsΤπΚ(U Α€SΐŒ’ΦRž¨UΥ²Lrƒ'΅PΑΨ,hpΩ&°Α‰-Q\‹'78+­ΩŠλ™πΡG v`€Fœ‡­ω-Q΅pΔPΉkδ†ωjMˆ΅%έ υΐη7π+-›DΑ%Βέ`‰$SnΒUjqKWœΕ§ρx»?ψ`οζ©η{gε½Ÿρ°αΚažxίP ˆ -²T? ,C!ψ ' 0θ·{OήΨΓwζͺ±BE@Dπχ‘G €°8)Tΐ‡ξσ±B‹q‚'†ς O0α˜E15ΒB,Θ,:α%ΣIΒV‹@`±‰)Ub Šh4!‹‘xB2Mΰ„dΤς„NΔb―ΠDg0ŠXlβMMπD,Ζ2Ή£u ܱ⒐§(e„@UΓ^C°U¨8— ^Β TΜΰ₯0ΔMRQˆ0B‰"a#Rπ$%P\ YΘβώ- pΒ+bΡM4ηz°π%ˆΓ@ D…'bΔ‰¨Xb `X‰LνšΫχΤ’„R¬₯ ΐV‘ V€Bb€Ήπ₯ C¨…/A•ΦH–±μ“1ΕUΑ”’=q$+ T$a₯8AVE%ᕨ€H©’]  œV%ˆv¦W(PZΨΔ$ΰ΅L!vq$€4 NΠo—3ra'’rNΘ±πR;=]²… V.€XtS°f$…91OθΡμΕχυΑ‚γό?#ΞϊΥυ†R,9ΞbqIˆ&(!€κ@@±8'š6H{D<(!ΘQΛ…•˜α€dG Μ‚žΘ+ŸP…7Τ’wρQ τγΌηύ'zΣ£^²ΧΌΓ€βOF Ÿο Ζ€ ΐ(ςWό!0ΐRΰ€ΞΕΐ¨0*‘Τΰv½Μ˜PΞΰ•x½€ „%΄…!¦«ΐ]=s ˆΛθ s@€ά @ p H'hB P…νs‰ +&& ‘`ˆ#ρš—$mw€ΐ ΰ“`I €p@/ΰ²` ‰Z,ΐ‚Ÿ! .@ΐ,`±‘Δt,H „Λœ†4„9Ψλa'Œv/J’h;ά ‘VZΒ(`― Μ₯½ ˜ l lξΈθ[P![™š€8Ω \€³RΧ|η³@„ J…<Χœ¨ AC΄μ †½ž{άλδ`Α ±bBκΧ₯ˆπ\‰¨εI`pMG$ Αφςνk€ T…―8ΰΚ² D= }ƒ<2€0»z$,a‰%T–­ŠZpƒ%\ :Έ@žTƒ-_βΝ–ƒ}ŸL δχ4]~kΐ5Ο%+OΈAm› ₯δ.=¨ΐ žόd€`τ;] αg¨Α”AkXδζΘ ΞW€\/~ΛJ ž|€ŸΰU"ΐaΗsΎΥ~:Ό^ ͺP#”UςυϊΧtYή~žOY Ζ–Ε, „ «b΅>ΊΞ*ΰ8ι ΘφΞj€kw&­  v{€ΛJ₯:»TΐΣC–ρ$„xοΧ|Φ8€y›gJνώΫ»aοu{Ζt¨ p t†^ !£u^/<ΐžβ‘ΧC$p…0€^“8vΒPΔJΊβ’yΘΫ=₯€Χάϋ€ΰΘn^ϋέYΩΔX:ŽžpΧ‹ε?+f―ˆ@cϋIΨ¬SO²h$Hg#<ΌΚπ=!υnu$"„R *ι₯`AΨ@/±%œ`(NψΊ)τ£g.β ›šY‰N,ٜΩ7ΏΓ&֐E 0δΟP,ΡφͺΤ{/k’{ΐΥ²„φΗ…7œLɟΎY”ίj―-yxM΄bΫX@·±έžΛΜαy"sΞ·Ζ?«έέω&ΤS pĞ{>('Ϛz.ΤhΧ‡ς5/*ξ­Ta7Ψ‘ήτd1Υu"A  °DΧn>€!sEϋY!@W؟>²gΌK0!7Dfρ„ΔΏύρ§Ηϋαή‹Έ¦ούρO2wνw:υ·ν»S:ϋ!˜ΑL’±”δ,Χ1ρ ππc3κwB&>iA~ή―Ρ~œ1Xo₯} ΡV3WݝρpCHt"φqΰYΨ;κw€γαw2(ƒ(3'‚ύW.Έ°χ3„ρΘ€αΩG0cμΆn2Xζη~πΗ}'ΰΰ yσd¨~‡ΦMQs#ppj¨3ϋwΘ}ƒ›γqγ}0}ψ=950·mρwhhˆκ{ (. xoUθ€D΅|’¨{πα€ψΏηTOE Έ0|±°Q*…|ήƒT”8‰ΧW>Θ‚μ±{“ˆ§ΘΘΓ‡Η<σ—,X0α³Biτ1WZՊχ‘ΎH±ΕU•Έ;SBFθ‰ρaO ρŒΗΐ#σFB—λΑU£„ΎΦφ±PG€¬ΨHvΗJ'6γ±  ki·Kޏģgwv†Hγxvdρ=g5Œ.²Uυ‹C…<ω8‹ΐV>Γ!½ΗKα[ή5-H’_P@D‹”\yHYhqw0 }ƒX aŽ€ ›`:nΨXϊ"τ©‘κηHfΑNʈjb¦#D―PA@Α 66A¦[;-Ί|‰ˆ £Άw‘Ψψ’ΓSΡ)|ωš»8+Ωk瑍yTφAby,z‰‡Aΐ ΘI‘;z|Ν©—άτ‘,z~ Xz»dzdxηΆZ• U0p π mA_¬Δ±Ip'›%W¬±6 ›ΡΎ"IΞθLRΣ5ήSnS²e@p¬4¬©—ͺςšΗ¬€π …†jΒ–πpχ;žΐ§—¬²Š°β β£’Λ'ͺΉ ±ˊΡ£ΏΉ;―–σ ΄j«N‘9 Δ·«Ν³=Ι“@:<ΡmjΡš  ΪΡ·Ρ<–/ •0 1t‘ΐ ΐ Ν*Oπ DTZS3HάρT ¦χ ”6Ζs0c >KNP m! ]A/Ϋ •Nq6*—4 š]C΅ Ku|_›•ΐ –Πΐw ΰ ’°&I³ €”@ ΫΣ7–p•PA£Ÿ@ „A m>« m!”  ―πΆ’ΰ ΄π š ω °c:)δ ”0·E ,΅f―j’Κ–ΛTλΊ ͺ8»»φ `©–僐k»[Yx>K%œΔιΑ'=ΙΆl„—>š‘Ύλ jΑ+—‹:€r;›17Ϊ‘—q+ œ0 Qρ%D4’R!­ ρΩc‘14xcƒ‹—Ρ9¨Γ [fp Σr ΎQ ]1-ζ[e4υ@–ΐ Α ! Q ·• IrA¨K―,š›']SN—΅ ”€5Naΐ›p Xρ€°Έκf Έ`ΆŸ0'ΨS Τ[ Ϋ’4‹ρ@Β šD7πežPuρ ” α›w‘š»Ή” ω›”»ΟϋkU™’°x»ΎƒΔ“Ψ»«8”΄ ΕΎƒΒVΌ7zœΣS ΜVUά³—2ω₯dLΔ΄«”E%5’@ ]±ΐQα‘ AsŸ b_5P‘  ΄ΐ@Ο ΖQ[mη=œΐΏOmqν wΦΡ2Ε9΄IdΏi3-²0π@†Ρ U"T’ρβΈIYAOrΜjρ° p|˜ ^ΊͺAΒ·Β MQ6`Ÿν!Š\m1#BB5ΰΖπ Ϋq―piŽ„dτs ²P,²ΎK6yθ°UΌš©hTŠΨͺΰ£δ¬²E¬°!Ί{`9Žγ|Ξ©ο\‰ ’Ε#TK΄Ε# Εw|ž`²?¬ή¬ΖIΆM―$!ό Ϋ6(Υ<²ΰ%ŒA΄=‘mΧ5ΰBΛγ ’›€ΛM°™€°ΰ%Νρ RΙ0;LΡ`άrP0 Εb:S  ΄­ά̌±ΠO ’!D[’ΚΪ Π­&w~αΊ°V ζ‹Ύ2ς ΅CΚ70 ‘0r”ΓεrΎMPΤ=Α˜2*€# Εήl– msΔ kΧ‘Zͺm»υ±‘ «TLυ<ΠC=Ήϊ‰b‘y9Π|ν qν } Dd ³ΐ 0 έ€P“‘ bβ ²ΰΗ( Ρ― u(ΎμΠΎ“1’ ’/PΠ¨YΆm!œΣR§MΚ’žŒΫE³ΰ%c ώ(›CѝIL0 ύKΛ ΡΣΕ‚Υ5ΰ³ °@4˜g,7Ξ—‘$Ϋ±9– Rή3 —Σ^ a}0ΣΒ kr ±'ΎΔAD¬&Οy ¬Χ ŽΧ§Ϊ~mT½‹ͺxΰρό₯γlΟ’nΖζ|ΖeŒΧ°9ͺMlja›°=Ν—πΔαΙY|%λl 2Ž%>ΔͺNΥrL― ³-H^ Ρc16` ±0Až@DOβ―ΦJ-ž€'%³0O²uάH@S tOΫ›+)ΥάSƒ° ‹awQ‘³€‘)ΔR-;G£ίD@…$s˜΄@α@—π#Jα½€HΖS  Ά°|(5+εdHEρN ’ λΫNΕ2 Dz'CQp|ΆΒN;4άΈΨ,ŠgωκςΑΰΖΎΣι [pM>b±Η «ΧεΨΔϋ{žlΘω‰ΛΩ½ͺؐ«²>ΖΎ£ˆΡΦ° Zγ•|j‘YαγH–•Y©v@•‘S"kκncQg*Θ €j6"S ₯@ƒGω$5€Z|€¦sKΐhwX˜…vφ…u€™/S@vP€U0σpR +4ΟSbe₯΅9•^2₯‚NF<φEi Πω‹E‘ΊμpΔ“«σΙNΟ³žυυκΟğέΫόΜοΰΏ»Χc .œ‚ύT9καΚk|©Ψ«ΉοA™ξΨyNaΏΉΘJ―ο5 '!WSo' qρegηŒ (8@€ƒ@€pΰ‚8,x`C…|`@γΗ‚ @π$€ °δ§Wžn`@‰RΑ† (RlBI?@P’€‚)šόΈιΥ§Y’<ΈPπβN¬Y΅κΜJPλΧ¬\Α:τ:ΦμY΄iΥ:D°VkΫ―eέ¦…KQξXΉ\λΞ= χ.Ε½_Εv5ΫvπΏiEˆv±ΦΔ‰Έ±‰Σ§Ož:½z+V,Z‘Eǚ5‹s'O˜9mšΩp\¬ωΞ>ΰ('@Πω€!Γ« ‘ςόν#Ýȏ+ψ;‘sžXŽQvΕ«Ο!xeω‚βΌ8`ΰΰ'‚π Π“_ΐB”K’j,dΰρΐ³Ώ‹šžΠA[ΧڎΈβ`BK–  ‚²£-0¬${ˆ6°$dk- 1τπ¬ίJ ?Š3+2ΪΔ*‹Βa›-ĝ`K'ΫιΊ³p<ΐD¬ΒΑ2N<ρ„³Ξb‘4ΡhωΜ4ΞRγ„PpX«ε’±E°2€Δ5ΔςKγΚΒρ' ‹ΚŠ<ΝR‘>rm€„ϊŠΝKΌ€{ΐ€Ϊj3.MΪdδ*±ΐόT‹G9ΥΊRΊ΄U‹ΕΧLG*5λ±ΔύςRLAΔTΐΫ@yRΘΝ`ρL–$C#IΤTcmJ,λRt.¦c(VΘ2 Λ­°DΎΪZ€‚"0Ξ8K©Τυ¬X!–Μ³:ΦVΑ6u ,•μUgΙ‚ΆΦm=„TΫIΑ:ΆΨ±­0Σg ¬²Λ@ υ3$M=’Ι˜Tmm+Ύ^+έΥ΅Ϋ΅ Œ_hΙuτKB³_‚[uΘΰL!žK²baΜnΕ[Σ₯”Ϊs,‰ιŠv†[΄έ ;Ω¬H#E#U–ˆtJ)χT‹Ξ‡Ο-€»}νRƒ{5Δ«τκΧC.;φ™[M%Ul[Ω«ρΫ―JΆziLΞΆΕ}›ξ56Žqέλδ:ύT3Ξ<‹ΧΤSOςΙUm&[μDyΦΩ.q—ξYέ’έzΆοœρ}ΊξΑm}Œΰ€#ΝτJœ=δp²CζλjΏ„‹\Ι Λς6 5[YνR•ŒΉIOžŒͺηζUσ!‡ΦuΥ›υφ‰gK\vΕ)ʎφΙwΊόkw„δΨσŽΡpΥ!‡xοΩt½‹\…nπ4εύ”…ΤΡH“Y՚oε‹ΠΌRD‹χ½ωΕ–y,3/žλ|1TΕφΧWσh—ί:wd˜ώχέ’Ί,τ}ΕK·‹¦ηΉw΅ΜeσΪάξe<ί ―y^KWί(?Ώa0vΗ²\'1τ…OiΗ›άbD¨ΑΐαŽiϋcίμπVρ}θ‚ϊΩ]x§•θPeΥΪζ ·•JΔΰ Γζ5nθ…΄ά o˜Βͺ9­n’{`†η’>%‘†’Hκ|˜ζgη”ΉˆΕ l‚ωαάΩV―Π-If₯ϋΔ&ΊwDž a+$‘ޘ¨Aΐ¨XύΣbπΦΘΊ]U‚F$œρˆΔ2ι/`>3’_–hF»`ƒ1ΰ'‚4€΄}ζz/3’φšδΙ:ή±ςb¦η•½€‘1|βΟ"!υς_D#ΐΌ’ΑΖu&όΚκ(rm•ΛTΛuΚ’K­hˆŠβ»•/“™••fm¦š_±Υ€‚ˆW΄HνξΧΘCφΞ‘j!ΰ#η> NuπT‘χΧBs22‰ И;1ΩΗ4’Νy«ƒΦσͺ–>ι+{Ε,>“€λ-‰IoK%«μΉEO wΝpΕnhR[!“.A‘…Ε(3]ΪΊ₯IŽB3œF﷐ζο₯—ς‘e0#$Ξ84Ψ Ώ)$Oƍœ*&ώvzF*q£!½Τΐ©Σ—* §fό›[§]f°€$½€T9THŒ±”p‹ωκΆ~‡N«bU‰JhˆT‘†΄8’)Š₯:υ©λΖͺΙU"S­uΛV·εXΥύE.^Li₯ε>ΒB–6Ου>Θz¨§žD[PEI‹½ς•£S™O'·δeΆžύ™[0ψ­“šηŒ_&£Cͺ–υͺ† +oyΩΜЍΆb₯Ϋ:•ΣWΥ²–ͺџ†kΩR?-­CU›Zx‘ ©u§MΫbΓi}―œdΫ[/JΒ»T’Ή~4δr›;8τŠμ°{Δέ1Gάυι€RyœκJkˆ¬Z–ΎΚ½”£ηSPšv›JjΫ_ifΡ{ Ž3ξ}±»Ωw8·š-«Δ fA¨ž…€ŒΊ­z§OsζΖνΰ’ΦNΧwΏ%±YέbΝOΥ‘G*Υ’Ό9ήΐR2Η46°mεZHΝψΙMώ/i*Ε2&ΆRf&Œ.xΓ­†Ά₯TΎ.b9ZΣum73hΣfθ"ΪM·aζ΅™³pc ΰυmΕMqξφB"`23΄ 3A‹»ΣbEmΓ †²n9λBϋή™2h€Ο²e„š-3ί”°^kΑΧΎz3UCΔπs€α$ςη ά±κBΜΨ$M̎ޚ‰'έβˆ}H—ΨJ0₯#ν^TXΔ΄g‘ƒϋ[ vθP‚μΦt:υΣ»ζ΅Tσšhͺ^Λ^L™ˆEWš΅°M&άx&‘Λ½M.‡΅ΥΥE½wΏ8αΈ³νQpΟΫι\ςΨβ‹fC—{–Ψή6Ό}{¦ ¨ 2©R«$˜±΅™g©UΨΚ§Υ™Ο‡k―cg)B’«Χ6)£Ιέ­³BχnIοb_7Ί|ŽmZ ξb6JΪ›)Ν(iQ‹ƒΛ1ΞΧ^n―Ρsυx°Δžͺ΅μŒςtϋΨΫΊα/\UyFΧKΟ³Τ)ˆη|ϋΪa¦ζμΖuœ’N.τ§Eν^#jΚΦ–Ό:vmέεoΛέP―q·Ρ©A”Κ;£ƒzΛ±žτyΉΑΊŠy΄λ. #©Ÿζ«Ξκ‰ΈΙ §ΆK6Ϋ!#1ώ›~ϊέΥ’}όΜE³(˜ϋuςΌόλ½;β’Pˆr₯w¬΄υΠe¦ΊηΟi"Ι΄Ύwφ³΄Ίζ>ι/%ΰΧ¦qΑψΎΒω¨ΰDΝ^>tKUΧκ₯_,έY~V[‘Oσ7»>²ϋχήδgή©Œψ{žάζ“Ÿφ_Τ#‰*ˆœhΝσΏίω΄ΘΎiύnφμΩ««3―ϋ’ΰΓ"­±= Z ]‘τ«½ϋϋ:ΆKΐθYΏ΄iΏΠxΏΡPΎΦ’?‡ΏC!΄ A,y=Ϋ>ΖβΌ`ϋ;L―U’¦BΣΏφς>σr₯Αš@•©λΉ@δ ΅9β@Ψ:A¦Λ>— ™L5&Γ\šgΑ±©;Bή=θ{§ ˜\&Œs@΄˜ΐc™λA- lΌΟPΈΦ’‚… €‡0¦κpˆΖΡ‰a1+εΘ<ŒΰІΥΫ ό€ iŒ«ΐCΧΈ Ω >|‹’@ΐ8 πΐˆ<Ιx9\―ΖHšέΉ† Iά“½@ ΧΘΌA (š8‘!πΈΓP€NΤ „Π*iŒN½ζPΓΪX5έΙ c)ŠG,ΌΐiR\/ρ%JΔFιC ΒCΈΈ‹FDάDΆ(ΔI-’Ε8Ή i‹Aδ§–b²ˆ,'dόEΈΠ‘‹ΐCόΐΖΨ Ε‹`E²GCFYTÜh=UœFE|GhΜ it€ΐ w„₯D|Œc„ΕλΗ:\Δς0G@ŒŽ„ρΪC €)"Q’ϊΒδ5ΝΠ„ω€“†ψHŒXσ@ίE@œŽΪXƏLΖΧψΘJΤXDŽ9DκxΙ’Iδx‘„\F—¬@TΰΙύψDδ@˜|HnόHΨǘtކ€ˆšδ~JDαω‰1DšLˆ „€$ €Ι4&©tȟ€ζXΚ””ΚΠD‘TώΠI›δΚ―œCοΘ@|Ι8!K½,Κσ0D›μΚ„€ˆΙΌDΜ₯\JόΈI―δΛ΄„I‘€JεXHΘJΘ€IˆθIή J‡hLΓDI6D«όΚκηΨGτ0¦±\LΉτI›TΔΘ”ΙΌDΛηPΪ΄LΩTJΪό Ε ΚΎΔΜΏ€Ι·$ΚαΜ†pεμ˚τFΌMΤ$ΝΗ”MαΜʌ;δJήτΚγHHiΔΚc|ΞΒLDσΰŠΨ„¬ΐΌΉΕΫA5ΤπJΈ‚` όΜOύάOώμOόO PP-P=PMP]PmP}PP P ­P mΠΈJ˜OμBχΔHΗ›OOK *)ˆ…(pu‚&ˆΡ%˜Qee‚X]‚°ΡΕΡνΡR"- R# R$e‚+0R$UR %R%MR…R)­#%(½R.,έ*‚-ΕQ2΅&Σ!ΠR4S/]&ΕR9½2S&₯S*Σ/Σ5eS½Σ; ‚'uΣ;ύΣ.-Τ*Τ7ΝΣ,UΤ4υS;έRAE3}S8ΝΣ4νCύSFS/ETHέSQΥT7}ΤLTSΥRT!¨TLSU-Τ%uΤD=UQU[ΝΥ"ΥΡ½Qe‚}‚%x‚}Q'`Q(PQ₯‚G°„M(QrΏZ°Ζ£°ψ< ΤΈŒ'PΨ„MΠqΧJ(ΧJ°t΅AumWIxWxWy}y„w΅Χw₯WIΐWxΥΧ}…„wE4ΈWyΧ‚ΝW„-X}΅W€έWIX|εWx΅ΧHhX€EƒHX‚έXz•Ψˆ•<ΈŠέΨ‡-YuX‘ ؁­Ψ‚ΕW…~ΩH8Ωz}ΨK˜u،νWžMΨ†}Χ†ΥX‰ύY‹Z‡WuY‚XxΝو΅ΧGψYXžυΧƒ•„€MΨ«Εښ•Ω£εW}΅Z|…@@Ϊ©uY‘%YεZ«νY…έΪΆΥڏ}Ϋ΅ Ϋ­ΥΪx₯Y€•Ϊ…ύZžΝYͺ•Χ½šΕƒ˜ΥZΐ-Ψ†}Y΅…΅[Θ][ƒΧ‘₯Z°•ά»…Wwέάt΅s­„qΥp’n…Φυ”VrOk…ΟXΟ·›Ρέq5ΧΞνάΜ5ΨG`άͺνΨ|ε]ͺ}„•„;(یΩΗ₯Wδ­Ϋ|Ϋδε]{„;pΨ½eX„ν[€ήK0άHhήή][¨uΨάM؝-^¬ύΩαέ׌Ετθ=ΪκM^‚eYω…<@@P_ψ^…Ψΰ^Άνήψ ΫΗUΪ…₯؊…Ψ’}Ϊ΅[α-ΫυE_η½W—eΰόύ__εΕΪΘ]Xψ…_ςεΰ’ύ_~½ƒΚ%ί|ύΩδΝXξΫπ]aΆ%`‚m^ξXf[ήΧό…άV^φήζZΗMXΖΰΘ=ΪθεW¦Υ`Ιe؜X} β¦αžm[ί­^ε _ζΪο _³Ϊ±Νάv cΟυ\s έΡ]OYO.€V[°ΦΤz3ωάVΣωVp έΟ­έuUWΝ½]>ξc?ώγ?ΖΨΉεcφMb@Ύέΰ=dE>Ψ”εγ]dHŽdI\IŽΫƒ΅d΅dMήdΊεδIΦΨI–ZJφδ?Ζdχ%e@FWvEΧsύ\q ΧΡΧυšV¬ΦχT­ΦΤπ€Υπ”Ψ%Χ;ΖcUΦcUFedΦγCΎ„ψPdfVζ«…f?nζΜ₯ζw΅ζHnfiŽζƒέfdζcoώζ?gq.η­%ηoFg06gg&euNeI~gyε\v]eV.γW>cEΌZΆΉ›kγΥE>xρ& ƒ›Υ¨γpέa&ζuΝγ=†η>vΧ‚υfr–θnΎ[y~׌žd=ΖftΖfn~θ‚ι†žηžθ’Fι»υhHΞhc>i‘6ι”–ivžiŒΆi›Vfi~iMΦipΎhI`ι›h•ŽΧφιš^ηH~ι0ΞγΪ%c|–]Λ έ4ή!Q*μ9>€^]Υ /…‹‰^ξΦXNhq₯„I(W2~j¦fκzηbfλbvhΉnh‰>f‹φi€k§¦λ’ŽλzΎ„¦ήk‡ŽλtukΓ&μ‡Ά„ψ°kΐ>lΉ&μŽ^ΧΕζk»nλcNiΕ¦μΎΦhΝφkzήμΗή\Ξ¦gўkΆΆlh^λΔή릆λ·ΦθFμΑvμΣΦlΛmžξl1ΦkΟi»kcξΡξkΔΞλΞFΙlαVm€~lΗFm؎nεfνιvνk†λαήνΞύάr5cэεYή‘ZNέΕΫκΕ{c―ώ¦΄3θ±&k›ζsUλמνε^εΠmbcι~λΦΆoΘ–mύΦοΖΞνεpϊΎo–mΫmοοΗοߎξΒ~νΣ¦p{vnΫmmώκΨΎpΰ†p§Φoθžpϊ.ξΟπΏπ§lξŸp―lχowp ο§φοΒnkάFξΒl·pοoθfq ―ρΧρίπ$gp oςΧξ§ζξΠύnπo«ΆH-oσf]ε{<_foXΧχζξV–o4Οqtπ4ΗqδVς%ΟpΗρό–σ6oW wσ9ίs·ζο;χs?‡sΕt<ŸsA·gωφp)oqCίσD_t5·s8WrDίν>WλgςJWσMηtIησF·σ8χτWτΰ†tL·]D7u&ΞυAGuu u&ΧtWοt σ)Ώg3χn}ΖςŠΤrθ€;ignite-0.5.1/assets/tldr/teaser.ipynb000066400000000000000000000352171465426447700176240ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## PyTorch-Ignite \n", "\n", "Setup the runtime to any of your choice:\n", "- CPU\n", "- GPU\n", "- TPU\n", "\n", "### TL;DR\n", "\n", "[PyTorch-Ignite](https://github.com/pytorch/ignite) is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Install PyTorch-Ignite\n", "!pip install -q pytorch-ignite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Setup helper methods\n", "\n", "- dataflow\n", "- model, optimizer, criterion, learning rate scheduler" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "in_colab = \"COLAB_TPU_ADDR\" in os.environ\n", "with_torchrun = \"WORLD_SIZE\" in os.environ\n", "\n", "if in_colab:\n", " VERSION = !curl -s https://api.github.com/repos/pytorch/xla/releases/latest | grep -Po '\"tag_name\": \"v\\K.*?(?=\")'\n", " !pip install --upgrade -q cloud-tpu-client==0.10 torch=={VERSION[0]} torchvision https://storage.googleapis.com/tpu-pytorch/wheels/colab/torch_xla-{VERSION[0][:-2]}-cp38-cp38-linux_x86_64.whl\n", "\n", "!pip list | grep torch" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "from torch.optim.lr_scheduler import StepLR\n", "from torchvision import datasets, models\n", "from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor\n", "\n", "import ignite.distributed as idist\n", "from ignite.contrib.engines import common\n", "from ignite.handlers import ProgressBar\n", "from ignite.engine import Engine, Events, create_supervised_evaluator\n", "from ignite.metrics import Accuracy\n", "\n", "\n", "train_transform = Compose(\n", " [\n", " Pad(4),\n", " RandomCrop(32, fill=128),\n", " RandomHorizontalFlip(),\n", " ToTensor(),\n", " Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)),\n", " ]\n", ")\n", "\n", "test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)),])\n", "\n", "\n", "def get_train_test_datasets(path):\n", " # - Get train/test datasets\n", " if idist.get_rank() > 0:\n", " # Ensure that only rank 0 download the dataset\n", " idist.barrier()\n", "\n", " train_ds = datasets.CIFAR10(root=path, train=True, download=True, transform=train_transform)\n", " test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)\n", "\n", " if idist.get_rank() == 0:\n", " # Ensure that only rank 0 download the dataset\n", " idist.barrier()\n", "\n", " return train_ds, test_ds\n", "\n", "\n", "def get_model(name):\n", " if name in models.__dict__:\n", " fn = models.__dict__[name]\n", " else:\n", " raise RuntimeError(f\"Unknown model name {name}\")\n", "\n", " return fn(num_classes=10)\n", "\n", "\n", "def get_dataflow(config):\n", "\n", " train_dataset, test_dataset = get_train_test_datasets(config.get(\"data_path\", \".\"))\n", "\n", " # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu\n", " train_loader = idist.auto_dataloader(\n", " train_dataset,\n", " batch_size=config.get(\"batch_size\", 512),\n", " num_workers=config.get(\"num_workers\", 8),\n", " shuffle=True,\n", " drop_last=True,\n", " )\n", " config[\"num_iters_per_epoch\"] = len(train_loader)\n", "\n", " test_loader = idist.auto_dataloader(\n", " test_dataset,\n", " batch_size=2 * config.get(\"batch_size\", 512),\n", " num_workers=config.get(\"num_workers\", 8),\n", " shuffle=False,\n", " )\n", " return train_loader, test_loader\n", "\n", "\n", "def initialize(config):\n", " model = get_model(config[\"model\"])\n", " # Adapt model for distributed settings if configured\n", " model = idist.auto_model(model)\n", "\n", " optimizer = optim.SGD(\n", " model.parameters(),\n", " lr=config.get(\"learning_rate\", 0.1),\n", " momentum=config.get(\"momentum\", 0.9),\n", " weight_decay=config.get(\"weight_decay\", 1e-5),\n", " nesterov=True,\n", " )\n", " optimizer = idist.auto_optim(optimizer)\n", " criterion = nn.CrossEntropyLoss().to(idist.device())\n", "\n", " le = config[\"num_iters_per_epoch\"]\n", " lr_scheduler = StepLR(optimizer, step_size=le, gamma=0.9)\n", "\n", " return model, optimizer, criterion, lr_scheduler\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Setup your trainer\n", "\n", "Trainer is defined as Ignite Engine with user's `train_step` logic" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def create_trainer(model, optimizer, criterion, lr_scheduler, config):\n", "\n", " # Define any training logic for iteration update\n", " def train_step(engine, batch):\n", " x, y = batch[0].to(idist.device()), batch[1].to(idist.device())\n", "\n", " model.train()\n", " y_pred = model(x)\n", " loss = criterion(y_pred, y)\n", "\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", " lr_scheduler.step()\n", "\n", " return loss.item()\n", "\n", " # Define trainer engine\n", " trainer = Engine(train_step)\n", "\n", " if idist.get_rank() == 0:\n", " # Add any custom handlers\n", " @trainer.on(Events.ITERATION_COMPLETED(every=200))\n", " def save_checkpoint():\n", " fp = Path(config.get(\"output_path\", \"output\")) / \"checkpoint.pt\"\n", " torch.save(model.state_dict(), fp)\n", "\n", " # Add progress bar showing batch loss value\n", " ProgressBar().attach(trainer, output_transform=lambda x: {\"batch loss\": x})\n", "\n", " return trainer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Setup training and validation\n", "\n", "Assemble all parts together in the training method configured with `config` dictionary :\n", "- instantiate dataflow, model, optimizer, criterion, lr scheduler\n", "- instantiate trainer, validation engine (`evaluator`)\n", "- setup validation phase and print results \n", "- setup tensorboard logger\n", "- start the training" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def training(local_rank, config):\n", "\n", " # Setup dataflow and\n", " train_loader, val_loader = get_dataflow(config)\n", " model, optimizer, criterion, lr_scheduler = initialize(config)\n", "\n", " # Setup model trainer and evaluator\n", " trainer = create_trainer(model, optimizer, criterion, lr_scheduler, config)\n", " evaluator = create_supervised_evaluator(model, metrics={\"accuracy\": Accuracy()}, device=idist.device())\n", "\n", " # Run model evaluation every 3 epochs and show results\n", " @trainer.on(Events.EPOCH_COMPLETED(every=3))\n", " def evaluate_model():\n", " state = evaluator.run(val_loader)\n", " if idist.get_rank() == 0:\n", " print(state.metrics)\n", "\n", " # Setup tensorboard experiment tracking\n", " if idist.get_rank() == 0:\n", " tb_logger = common.setup_tb_logging(\n", " config.get(\"output_path\", \"output\"), trainer, optimizer, evaluators={\"validation\": evaluator},\n", " )\n", "\n", " trainer.run(train_loader, max_epochs=config.get(\"max_epochs\", 3))\n", "\n", " if idist.get_rank() == 0:\n", " tb_logger.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Run on your infrastructure" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext tensorboard\n", "%tensorboard --logdir=output" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2020-07-24 08:44:07,245 ignite.distributed.launcher.Parallel INFO: - Run '' in 1 processes\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./cifar-10-python.tar.gz\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b71e1d83d024410ea3692ffbf444abfb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Failed download. Trying https -> http instead. Downloading http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./cifar-10-python.tar.gz\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ce0c2f1d11af49ae85d5c2f657533ef9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Extracting ./cifar-10-python.tar.gz to .\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-07-24 08:44:17,932 ignite.distributed.auto.auto_dataloader INFO: Use data loader kwargs for dataset 'Dataset CIFAR10': \n", "\t{'batch_size': 512, 'num_workers': 8, 'shuffle': True, 'drop_last': True, 'pin_memory': True}\n", "2020-07-24 08:44:17,933 ignite.distributed.auto.auto_dataloader INFO: Use data loader kwargs for dataset 'Dataset CIFAR10': \n", "\t{'batch_size': 1024, 'num_workers': 8, 'shuffle': False, 'pin_memory': True}\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=97.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=97.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=97.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "2020-07-24 08:44:45,937 ignite.distributed.launcher.Parallel INFO: End of run\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'accuracy': 0.513}\n" ] } ], "source": [ "# --- Single computation device ---\n", "# $ python main.py\n", "#\n", "if __name__ == \"__main__\" and not (in_colab or with_torchrun):\n", "\n", " backend = None\n", " nproc_per_node = None\n", " config = {\n", " \"model\": \"resnet18\",\n", " \"dataset\": \"cifar10\",\n", " }\n", "\n", " with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:\n", " parallel.run(training, config)\n", "\n", "\n", "# --- Multiple GPUs ---\n", "# $ torchrun --nproc_per_node=2 main.py\n", "#\n", "if __name__ == \"__main__\" and with_torchrun:\n", "\n", " backend = \"nccl\" # or \"nccl\", \"gloo\"\n", " nproc_per_node = None\n", " config = {\n", " \"model\": \"resnet18\",\n", " \"dataset\": \"cifar10\",\n", " }\n", "\n", " with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:\n", " parallel.run(training, config)\n", "\n", "# --- Multiple TPUs ---\n", "# In Colab\n", "#\n", "if in_colab:\n", "\n", " backend = \"xla-tpu\"\n", " nproc_per_node = 8\n", " config = {\n", " \"model\": \"resnet18\",\n", " \"dataset\": \"cifar10\",\n", " }\n", "\n", " with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel:\n", " parallel.run(training, config)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other links\n", "\n", "- Full featured CIFAR10 example: https://github.com/pytorch/ignite/tree/master/examples/cifar10\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.6 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 4 } ignite-0.5.1/assets/tldr/teaser.py000066400000000000000000000143571465426447700171350ustar00rootroot00000000000000import os from pathlib import Path import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import StepLR from torchvision import datasets, models from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor import ignite.distributed as idist from ignite.contrib.engines import common from ignite.handlers import ProgressBar from ignite.engine import Engine, Events, create_supervised_evaluator from ignite.metrics import Accuracy in_colab = "COLAB_TPU_ADDR" in os.environ with_torchrun = "WORLD_SIZE" in os.environ train_transform = Compose( [ Pad(4), RandomCrop(32, fill=128), RandomHorizontalFlip(), ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)), ] ) test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.23, 0.225)),]) def get_train_test_datasets(path): # - Get train/test datasets if idist.get_rank() > 0: # Ensure that only rank 0 download the dataset idist.barrier() train_ds = datasets.CIFAR10(root=path, train=True, download=True, transform=train_transform) test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform) if idist.get_rank() == 0: # Ensure that only rank 0 download the dataset idist.barrier() return train_ds, test_ds def get_model(name): if name in models.__dict__: fn = models.__dict__[name] else: raise RuntimeError(f"Unknown model name {name}") return fn(num_classes=10) def get_dataflow(config): train_dataset, test_dataset = get_train_test_datasets(config.get("data_path", ".")) # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config.get("batch_size", 512), num_workers=config.get("num_workers", 8), shuffle=True, drop_last=True, ) config["num_iters_per_epoch"] = len(train_loader) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config.get("batch_size", 512), num_workers=config.get("num_workers", 8), shuffle=False, ) return train_loader, test_loader def initialize(config): model = get_model(config["model"]) # Adapt model for distributed settings if configured model = idist.auto_model(model) optimizer = optim.SGD( model.parameters(), lr=config.get("learning_rate", 0.1), momentum=config.get("momentum", 0.9), weight_decay=config.get("weight_decay", 1e-5), nesterov=True, ) optimizer = idist.auto_optim(optimizer) criterion = nn.CrossEntropyLoss().to(idist.device()) le = config["num_iters_per_epoch"] lr_scheduler = StepLR(optimizer, step_size=le, gamma=0.9) return model, optimizer, criterion, lr_scheduler # slide 1 #################################################################### def create_trainer(model, optimizer, criterion, lr_scheduler, config): # Define any training logic for iteration update def train_step(engine, batch): x, y = batch[0].to(idist.device()), batch[1].to(idist.device()) model.train() y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() lr_scheduler.step() return loss.item() # Define trainer engine trainer = Engine(train_step) if idist.get_rank() == 0: # Add any custom handlers @trainer.on(Events.ITERATION_COMPLETED(every=200)) def save_checkpoint(): fp = Path(config.get("output_path", "output")) / "checkpoint.pt" torch.save(model.state_dict(), fp) # Add progress bar showing batch loss value ProgressBar().attach(trainer, output_transform=lambda x: {"batch loss": x}) return trainer # slide 2 #################################################################### def training(local_rank, config): # Setup dataflow and train_loader, val_loader = get_dataflow(config) model, optimizer, criterion, lr_scheduler = initialize(config) # Setup model trainer and evaluator trainer = create_trainer(model, optimizer, criterion, lr_scheduler, config) evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}, device=idist.device()) # Run model evaluation every 3 epochs and show results @trainer.on(Events.EPOCH_COMPLETED(every=3)) def evaluate_model(): state = evaluator.run(val_loader) if idist.get_rank() == 0: print(state.metrics) # Setup tensorboard experiment tracking if idist.get_rank() == 0: tb_logger = common.setup_tb_logging( config.get("output_path", "output"), trainer, optimizer, evaluators={"validation": evaluator}, ) trainer.run(train_loader, max_epochs=config.get("max_epochs", 3)) if idist.get_rank() == 0: tb_logger.close() # slide 3 #################################################################### # Simply run everything on your infrastructure # --- Single computation device --- # $ python main.py # if __name__ == "__main__" and not (in_colab or with_torchrun): backend = None nproc_per_node = None config = { "model": "resnet18", "dataset": "cifar10", } with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel: parallel.run(training, config) # --- Multiple GPUs --- # $ torchrun --nproc_per_node=2 main.py # if __name__ == "__main__" and with_torchrun: backend = "nccl" # or "nccl", "gloo", ... nproc_per_node = None config = { "model": "resnet18", "dataset": "cifar10", } with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel: parallel.run(training, config) # --- Multiple TPUs --- # In Colab # if in_colab: backend = "xla-tpu" nproc_per_node = 8 config = { "model": "resnet18", "dataset": "cifar10", } with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node) as parallel: parallel.run(training, config) # Full featured CIFAR10 example: # https://github.com/pytorch/ignite/tree/master/examples/cifar10 ignite-0.5.1/codecov.yml000066400000000000000000000003331465426447700151630ustar00rootroot00000000000000coverage: precision: 2 round: down range: "95...100" status: patch: default: target: 90 project: default: threshold: 1% changes: false comment: false ignore: - "tests/" ignite-0.5.1/conda.recipe/000077500000000000000000000000001465426447700153515ustar00rootroot00000000000000ignite-0.5.1/conda.recipe/build_and_upload.sh000066400000000000000000000017401465426447700211740ustar00rootroot00000000000000#!/bin/bash echo "Build and upload Conda binaries" # ANACONDA_TOKEN should be provided # How to generate ANACONDA_TOKEN: https://docs.anaconda.com/anaconda-cloud/user-guide/tasks/work-with-accounts#creating-access-tokens # https://conda.io/docs/user-guide/tasks/build-packages/install-conda-build.html if [ -z $ANACONDA_TOKEN ]; then echo "Can not find ANACONDA_TOKEN env variable" echo "Please, export ANACONDA_TOKEN= before calling this script" exit 1 fi if [ -z $UPLOAD_USER ]; then echo "Can not find UPLOAD_USER env variable" echo "Please, export UPLOAD_USER= before calling this script" exit 1 fi set -xeu conda install -y conda-build conda-verify anaconda-client conda config --set anaconda_upload no conda build --no-test --output-folder conda_build conda.recipe -c pytorch # Upload to Anaconda conda config --set anaconda_upload yes ls conda_build/*/*.tar.bz2 | xargs -I {} anaconda -v -t $ANACONDA_TOKEN upload -u $UPLOAD_USER {} ignite-0.5.1/conda.recipe/meta.yaml000066400000000000000000000012621465426447700171640ustar00rootroot00000000000000{% set data = load_setup_py_data() %} package: name: ignite version: {{ data['version'] }} source: path: .. build: number: 0 noarch: python script: python setup.py install --single-version-externally-managed --record=record.txt # https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#export-runtime-requirements requirements: build: - python>=3.6 - setuptools - pytorch>=1.3 run: - python>=3.6 - pytorch>=1.3 test: imports: - ignite - ignite.engine - ignite.handlers - ignite.metrics - ignite.contrib about: home: {{ data['url'] }} license: {{ data['license'] }} summary: {{ data['description'] }} ignite-0.5.1/docker/000077500000000000000000000000001465426447700142665ustar00rootroot00000000000000ignite-0.5.1/docker/README.md000066400000000000000000000064631465426447700155560ustar00rootroot00000000000000# Docker for users We provide Dockerfiles in order to build containerized execution environment that ease the use of Ignite for computer vision and NLP tasks. These images are also provided with the following Horovod configuration: ```bash Available Frameworks: [ ] TensorFlow [X] PyTorch [ ] MXNet Available Controllers: [ ] MPI [X] Gloo Available Tensor Operations: [X] NCCL [ ] DDL [ ] CCL [ ] MPI [X] Gloo ``` ## Installation - [main/Dockerfile.base](main/Dockerfile.base): latest stable PyTorch, Ignite with minimal dependencies - `docker pull pytorchignite/base:latest` - [main/Dockerfile.vision](main/Dockerfile.vision): base image with useful computer vision libraries - `docker pull pytorchignite/vision:latest` - [main/Dockerfile.nlp](main/Dockerfile.nlp): base image with useful NLP libraries - `docker pull pytorchignite/nlp:latest` - [main/Dockerfile.apex](main/Dockerfile.apex): multi-stage NVIDIA/apex build with latest Pytorch, Ignite image with minimal dependencies - `docker pull pytorchignite/apex:latest` - [main/Dockerfile.apex-vision](main/Dockerfile.nlp): base apex with useful computer vision libraries - `docker pull pytorchignite/apex-vision:latest` - [main/Dockerfile.apex-nlp](main/Dockerfile.nlp): base apex with useful NLP libraries - `docker pull pytorchignite/apex-nlp:latest` - [hvd/Dockerfile.hvd-base](hvd/Dockerfile.hvd-base): multi-stage Horovod build with latest stable PyTorch, Ignite with minimal dependencies - `docker pull pytorchignite/hvd-base:latest` - [hvd/Dockerfile.hvd-vision](hvd/Dockerfile.hvd-vision): base Horovod image with useful computer vision libraries - `docker pull pytorchignite/hvd-vision:latest` - [hvd/Dockerfile.hvd-nlp](hvd/Dockerfile.hvd-nlp): base Horovod image with useful NLP libraries - `docker pull pytorchignite/hvd-nlp:latest` - [hvd/Dockerfile.hvd-apex](hvd/Dockerfile.hvd-apex): multi-stage NVIDIA/apex and Horovod build with latest Pytorch, Ignite image with minimal dependencies - `docker pull pytorchignite/hvd-apex:latest` - [hvd/Dockerfile.hvd-apex-vision](hvd/Dockerfile.hvd-apex-vision): base Horovod apex with useful computer vision libraries - `docker pull pytorchignite/hvd-apex-vision:latest` - [hvd/Dockerfile.hvd-apex-nlp](hvd/Dockerfile.hvd-apex-nlp): base Horovod apex with useful NLP libraries - `docker pull pytorchignite/hvd-apex-nlp:latest` **Deprecated images** (no version updates) - [msdp/Dockerfile.msdp-apex-base](msdp/Dockerfile.msdp-apex): multi-stage MSDeepSpeed build with latest Pytorch, Ignite image with minimal dependencies - `docker pull pytorchignite/msdp-apex:latest` - [msdp/Dockerfile.msdp-apex-vision](msdp/Dockerfile.msdp-apex-vision): base MSDeepSpeed build with useful computer vision libraries - `docker pull pytorchignite/msdp-apex-vision:latest` - [msdp/Dockerfile.msdp-apex-nlp](msdp/Dockerfile.msdp-apex-nlp): base MSDeepSpeed build with useful NLP libraries - `docker pull pytorchignite/msdp-apex-nlp:latest` ## How to use ```bash docker run -it -v $PWD:/workspace/project --network=host --ipc=host pytorchignite/base:latest /bin/bash ``` ## Building the image yourself Dockerfiles are supplied to build images with dependencies that ease the use of Ignite for computer vision / NLP tasks: ```bash cd main docker build -t pytorchignite/base:latest -f Dockerfile.base . ``` ignite-0.5.1/docker/build.sh000066400000000000000000000050571465426447700157300ustar00rootroot00000000000000#!/bin/bash if [ -z "$1" ]; then echo "Folder name should be provided. Usage, for example: bash build.sh hvd hvd-apex" exit 1 fi if [ -z "$2" ]; then echo "Image name should be provided. Usage, for example: bash build.sh hvd hvd-apex" exit 1 fi folder_name=$1 image_name=$2 echo "Build ${folder_name}/Dockerfile.${image_name} PyTorch-Ignite image" # Start script from ignite docker folder if [ ! -d ${folder_name} ]; then echo "Can not find ${folder_name} folder" exit 1 fi # Check Dockerfile exists if [ ! -f ${folder_name}/Dockerfile.${image_name} ]; then echo "Can not find ${folder_name}/Dockerfile.${image_name}" exit 1 fi if [ -z "${PTH_VERSION}" ]; then echo "PTH_VERSION is not set. Please, call the script with: PTH_VERSION=... bash build.sh hvd hvd-apex" exit 1 fi if [ ${folder_name} == "hvd" ] && [ -z "${HVD_VERSION}" ]; then echo "HVD_VERSION is not set" exit 1 fi if [ ${folder_name} == "msdp" ] && [ -z "${MSDP_VERSION}" ]; then echo "MSDP_VERSION is not set" exit 1 fi retry() { cmd=$1 msg=$2 counter=0 limit=3 while [ "$counter" -lt "$limit" ]; do echo "(Re-)Try: $cmd" bash -c "$cmd" && break echo $msg counter="$(( $counter + 1 ))" done if [ $counter -eq $limit ]; then exit 1 fi } curr_dir=$PWD cd $curr_dir/${folder_name} set -eu image_tag="" pth_version=${PTH_VERSION} opt_build_args="" if [ -n "${HVD_VERSION:-}" ]; then opt_build_args="${opt_build_args} --build-arg HVD_VERSION=${HVD_VERSION}" fi if [ -n "${MSDP_VERSION:-}" ]; then opt_build_args="${opt_build_args} --build-arg MSDP_VERSION=${MSDP_VERSION}" fi echo "opt_build_args: ${opt_build_args}" retry "docker build --build-arg PTH_VERSION=${pth_version} ${opt_build_args} -t pytorchignite/${image_name}:latest -f Dockerfile.${image_name} ." "\nBuild failed: ${image_name}" if [ -z $image_tag ]; then image_tag=`docker run --rm -i pytorchignite/${image_name}:latest python -c "import torch; import ignite; print(torch.__version__ + \"-\" + ignite.__version__, end=\"\")"` fi docker tag pytorchignite/${image_name}:latest pytorchignite/${image_name}:${image_tag} cd $curr_dir # Test built image echo "Show installed packages:" docker run --rm -i pytorchignite/${image_name}:${image_tag} pip list echo "Test pytorchignite/${image_name}:${image_tag}" docker run --rm -i -v $PWD:/ws -w /ws -e HVD_VERSION=${HVD_VERSION:-} -e MSDP_VERSION=${MSDP_VERSION:-} pytorchignite/${image_name}:${image_tag} /bin/bash -c "python test_image.py pytorchignite/${image_name}:${image_tag}" echo "OK"ignite-0.5.1/docker/docker.cfg000066400000000000000000000002301465426447700162110ustar00rootroot00000000000000[DEFAULT] build_docker_image_pytorch_version = 2.4.0-cuda12.4-cudnn9 build_docker_image_hvd_version = v0.28.1 build_docker_image_msdp_version = v0.14.0 ignite-0.5.1/docker/hvd/000077500000000000000000000000001465426447700150475ustar00rootroot00000000000000ignite-0.5.1/docker/hvd/Dockerfile.hvd-apex000066400000000000000000000061001465426447700205510ustar00rootroot00000000000000# Multi-stage build # Dockerfile.hvd-apex ARG PTH_VERSION # 1/Building apex with pytorch:*-devel FROM pytorch/pytorch:${PTH_VERSION}-devel AS apex-hvd-builder ENV CUDA_HOME=/usr/local/cuda # Install git RUN apt-get update && apt-get install -y --no-install-recommends git && \ rm -rf /var/lib/apt/lists/* # Build apex RUN echo "Setup NVIDIA Apex" && \ tmp_apex_path="/tmp/apex" && \ rm -rf $tmp_apex_path && \ git clone https://github.com/NVIDIA/apex $tmp_apex_path && \ cd $tmp_apex_path && \ pip install packaging && \ pip wheel -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . ARG HVD_VERSION # Build Horovod RUN apt-get update && apt-get install -y git && \ git clone --recursive --depth 1 --branch ${HVD_VERSION} https://github.com/horovod/horovod.git /horovod && \ conda install -y cmake nccl -c conda-forge && \ cd /horovod && \ # temporary -std=c++17 fix sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" CMakeLists.txt && \ sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" horovod/torch/CMakeLists.txt && \ HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_LINK=SHARED HOROVOD_WITHOUT_MPI=1 HOROVOD_WITH_PYTORCH=1 pip wheel --no-cache-dir . && \ rm -rf /var/lib/apt/lists/* # Build runtime image FROM pytorch/pytorch:${PTH_VERSION}-runtime # Apex COPY --from=apex-hvd-builder /tmp/apex/apex-*.whl /tmp/apex/ RUN pip install --no-cache-dir /tmp/apex/apex-*.whl && \ rm -fr /tmp/apex # Install tzdata / git RUN apt-get update && \ ln -fs /usr/share/zoneinfo/Europe/Paris /etc/localtime && \ apt-get -y install --no-install-recommends tzdata git && \ dpkg-reconfigure --frontend noninteractive tzdata && \ apt-get autoremove -y && \ apt-get clean -y && \ rm -rf /var/lib/apt/lists/* # Ignite main dependencies RUN pip install --upgrade --no-cache-dir pytorch-ignite \ tensorboard \ tqdm \ fire # Replace pillow with pillow-simd RUN apt-get update && apt-get -y install --no-install-recommends g++ && \ pip uninstall -y pillow && \ CC="cc -mavx2" pip install --upgrade --no-cache-dir --force-reinstall pillow-simd && \ apt-get remove -y g++ && \ apt-get autoremove -y && \ rm -rf /var/lib/apt/lists/* # Checkout Ignite examples only RUN mkdir -p pytorch-ignite-examples && \ cd pytorch-ignite-examples && \ git init && \ git config core.sparsecheckout true && \ echo examples >> .git/info/sparse-checkout && \ git remote add -f origin https://github.com/pytorch/ignite.git && \ git pull origin master && \ # rm very large .git folder rm -rf .git # Horovod RUN conda install -y nccl -c conda-forge ENV LD_LIBRARY_PATH=/opt/conda/lib:$LD_LIBRARY_PATH COPY --from=apex-hvd-builder /horovod/horovod-*.whl /horovod/ RUN cd /horovod && \ pip install --no-cache-dir horovod-*.whl && \ rm -fr /horovodignite-0.5.1/docker/hvd/Dockerfile.hvd-apex-nlp000066400000000000000000000003571465426447700213500ustar00rootroot00000000000000# Dockerfile.hvd-apex-nlp FROM pytorchignite/hvd-apex:latest # Ignite NLP dependencies RUN pip install --upgrade --no-cache-dir transformers \ spacy \ nltk ignite-0.5.1/docker/hvd/Dockerfile.hvd-apex-vision000066400000000000000000000006651465426447700220700ustar00rootroot00000000000000# Dockerfile.hvd-apex-vision FROM pytorchignite/hvd-apex:latest # Ignite vision dependencies RUN pip install --upgrade --no-cache-dir albumentations \ image-dataset-viz \ numpy \ opencv-python-headless \ py_config_runner \ clearml ignite-0.5.1/docker/hvd/Dockerfile.hvd-base000066400000000000000000000045001465426447700205300ustar00rootroot00000000000000# Multi-stage build # Dockerfile.hvd-base ARG PTH_VERSION FROM pytorch/pytorch:${PTH_VERSION}-devel as builder ARG HVD_VERSION # Build Horovod RUN apt-get update && apt-get install -y git && \ git clone --recursive --depth 1 --branch ${HVD_VERSION} https://github.com/horovod/horovod.git /horovod && \ conda install -y cmake nccl -c conda-forge && \ cd /horovod && \ # temporary -std=c++17 fix sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" CMakeLists.txt && \ sed -i "s/CMAKE_CXX_STANDARD 14/CMAKE_CXX_STANDARD 17/g" horovod/torch/CMakeLists.txt && \ HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_LINK=SHARED HOROVOD_WITHOUT_MPI=1 HOROVOD_WITH_PYTORCH=1 pip wheel --no-cache-dir . && \ rm -rf /var/lib/apt/lists/* # Build runtime image FROM pytorch/pytorch:${PTH_VERSION}-runtime # Install tzdata / git RUN apt-get update && \ ln -fs /usr/share/zoneinfo/Europe/Paris /etc/localtime && \ apt-get -y install --no-install-recommends tzdata git && \ dpkg-reconfigure --frontend noninteractive tzdata && \ apt-get autoremove -y && \ apt-get clean -y && \ rm -rf /var/lib/apt/lists/* # Ignite main dependencies RUN pip install --upgrade --no-cache-dir pytorch-ignite \ tensorboard \ tqdm \ fire # Replace pillow with pillow-simd RUN apt-get update && apt-get -y install --no-install-recommends g++ && \ pip uninstall -y pillow && \ CC="cc -mavx2" pip install --upgrade --no-cache-dir --force-reinstall pillow-simd && \ apt-get remove -y g++ && \ apt-get autoremove -y && \ rm -rf /var/lib/apt/lists/* # Checkout Ignite examples only RUN mkdir -p pytorch-ignite-examples && \ cd pytorch-ignite-examples && \ git init && \ git config core.sparsecheckout true && \ echo examples >> .git/info/sparse-checkout && \ git remote add -f origin https://github.com/pytorch/ignite.git && \ git pull origin master && \ # rm very large .git folder rm -rf .git # Horovod RUN conda install -y nccl -c conda-forge ENV LD_LIBRARY_PATH=/opt/conda/lib:$LD_LIBRARY_PATH COPY --from=builder /horovod/horovod-*.whl /horovod/ RUN cd /horovod && \ pip install --no-cache-dir horovod-*.whl && \ rm -fr /horovodignite-0.5.1/docker/hvd/Dockerfile.hvd-nlp000066400000000000000000000003521465426447700204100ustar00rootroot00000000000000# Dockerfile.hvd-nlp FROM pytorchignite/hvd-base:latest # Ignite NLP dependencies RUN pip install --upgrade --no-cache-dir transformers \ spacy \ nltk ignite-0.5.1/docker/hvd/Dockerfile.hvd-vision000066400000000000000000000006601465426447700211300ustar00rootroot00000000000000# Dockerfile.hvd-vision FROM pytorchignite/hvd-base:latest # Ignite vision dependencies RUN pip install --upgrade --no-cache-dir albumentations \ image-dataset-viz \ numpy \ opencv-python-headless \ py_config_runner \ clearml ignite-0.5.1/docker/main/000077500000000000000000000000001465426447700152125ustar00rootroot00000000000000ignite-0.5.1/docker/main/Dockerfile.apex000066400000000000000000000042151465426447700201420ustar00rootroot00000000000000# Multi-stage build # Dockerfile.apex ARG PTH_VERSION # 1/Building apex with pytorch:*-devel FROM pytorch/pytorch:${PTH_VERSION}-devel AS apex-builder ENV CUDA_HOME=/usr/local/cuda # Install git RUN apt-get update && apt-get install -y --no-install-recommends git && \ rm -rf /var/lib/apt/lists/* # Build apex RUN echo "Setup NVIDIA Apex" && \ tmp_apex_path="/tmp/apex" && \ rm -rf $tmp_apex_path && \ git clone https://github.com/NVIDIA/apex $tmp_apex_path && \ cd $tmp_apex_path && \ pip install packaging && \ pip wheel -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . # 2/ Build the runtime image FROM pytorch/pytorch:${PTH_VERSION}-runtime COPY --from=apex-builder /tmp/apex/apex-*.whl /tmp/apex/ RUN pip install --no-cache-dir /tmp/apex/apex-*.whl && \ rm -fr /tmp/apex # Install tzdata / git RUN apt-get update && \ ln -fs /usr/share/zoneinfo/Europe/Paris /etc/localtime && \ apt-get -y install --no-install-recommends tzdata git && \ dpkg-reconfigure --frontend noninteractive tzdata && \ apt-get autoremove -y && \ apt-get clean -y && \ rm -rf /var/lib/apt/lists/* # Ignite main dependencies RUN pip install --upgrade --no-cache-dir pytorch-ignite \ tensorboard \ tqdm \ fire # replace pillow with pillow-simd RUN apt-get update && apt-get -y install --no-install-recommends g++ && \ pip uninstall -y pillow && \ CC="cc -mavx2" pip install --upgrade --no-cache-dir --force-reinstall pillow-simd && \ apt-get remove -y g++ && \ apt-get autoremove -y && \ rm -rf /var/lib/apt/lists/* # Checkout Ignite examples only RUN mkdir -p pytorch-ignite-examples && \ cd pytorch-ignite-examples && \ git init && \ git config core.sparsecheckout true && \ echo examples >> .git/info/sparse-checkout && \ git remote add -f origin https://github.com/pytorch/ignite.git && \ git pull origin master && \ # rm very large .git folder rm -rf .gitignite-0.5.1/docker/main/Dockerfile.apex-nlp000066400000000000000000000003471465426447700207330ustar00rootroot00000000000000# Dockerfile.apex-nlp FROM pytorchignite/apex:latest # Ignite NLP dependencies RUN pip install --upgrade --no-cache-dir transformers \ spacy \ nltk ignite-0.5.1/docker/main/Dockerfile.apex-vision000066400000000000000000000006551465426447700214530ustar00rootroot00000000000000# Dockerfile.apex-vision FROM pytorchignite/apex:latest # Ignite vision dependencies RUN pip install --upgrade --no-cache-dir albumentations \ image-dataset-viz \ numpy \ opencv-python-headless \ py_config_runner \ clearml ignite-0.5.1/docker/main/Dockerfile.base000066400000000000000000000024751465426447700201250ustar00rootroot00000000000000# Dockerfile.base ARG PTH_VERSION FROM pytorch/pytorch:${PTH_VERSION}-runtime # Install tzdata / git RUN apt-get update && \ ln -fs /usr/share/zoneinfo/Europe/Paris /etc/localtime && \ apt-get -y install --no-install-recommends tzdata git && \ dpkg-reconfigure --frontend noninteractive tzdata && \ apt-get autoremove -y && \ apt-get clean -y && \ rm -rf /var/lib/apt/lists/* # Ignite main dependencies RUN pip install --upgrade --no-cache-dir pytorch-ignite \ tensorboard \ tqdm \ fire # Replace pillow with pillow-simd RUN apt-get update && apt-get -y install --no-install-recommends g++ && \ pip uninstall -y pillow && \ CC="cc -mavx2" pip install --upgrade --no-cache-dir --force-reinstall pillow-simd && \ apt-get remove -y g++ && \ apt-get autoremove -y && \ rm -rf /var/lib/apt/lists/* # Checkout Ignite examples only RUN mkdir -p pytorch-ignite-examples && \ cd pytorch-ignite-examples && \ git init && \ git config core.sparsecheckout true && \ echo examples >> .git/info/sparse-checkout && \ git remote add -f origin https://github.com/pytorch/ignite.git && \ git pull origin master && \ # rm very large .git folder rm -rf .gitignite-0.5.1/docker/main/Dockerfile.nlp000066400000000000000000000003411465426447700177720ustar00rootroot00000000000000# Dockerfile.nlp FROM pytorchignite/base:latest # Ignite NLP dependencies RUN pip install --upgrade --no-cache-dir transformers \ spacy \ nltkignite-0.5.1/docker/main/Dockerfile.vision000066400000000000000000000006501465426447700205130ustar00rootroot00000000000000# Dockerfile.vision FROM pytorchignite/base:latest # Ignite vision dependencies RUN pip install --upgrade --no-cache-dir albumentations \ image-dataset-viz \ numpy \ opencv-python-headless \ py_config_runner \ clearml ignite-0.5.1/docker/msdp/000077500000000000000000000000001465426447700152315ustar00rootroot00000000000000ignite-0.5.1/docker/msdp/Dockerfile.msdp-apex000066400000000000000000000055401465426447700211240ustar00rootroot00000000000000# Multi-stage build # Dockerfile.msdp-apex ARG PTH_VERSION # 1/Building apex with pytorch:*-devel FROM pytorch/pytorch:${PTH_VERSION}-devel AS apex-msdp-builder ENV CUDA_HOME=/usr/local/cuda # Install git RUN apt-get update && apt-get install -y --no-install-recommends git && \ rm -rf /var/lib/apt/lists/* # Build apex RUN echo "Setup NVIDIA Apex" && \ tmp_apex_path="/tmp/apex" && \ rm -rf $tmp_apex_path && \ git clone https://github.com/NVIDIA/apex $tmp_apex_path && \ cd $tmp_apex_path && \ pip install packaging && \ pip wheel -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . # For pip --use-feature option RUN python -m pip install --upgrade pip # MSDeepSpeed ARG MSDP_VERSION RUN conda install cmake llvmdev=9.0.1 -c conda-forge RUN git clone https://github.com/microsoft/DeepSpeed.git -b ${MSDP_VERSION} /tmp/DeepSpeed && cd /tmp/DeepSpeed && \ ./install.sh --allow_sudo # Build using devel image FROM pytorch/pytorch:${PTH_VERSION}-devel # Apex COPY --from=apex-msdp-builder /tmp/apex/apex-*.whl /tmp/apex/ RUN pip install --no-cache-dir /tmp/apex/apex-*.whl && \ rm -fr /tmp/apex # MSDeepSpeed RUN conda install cmake llvmdev=9.0.1 -c conda-forge COPY --from=apex-msdp-builder /tmp/DeepSpeed/dist/deepspeed-*.whl /msdp/ RUN cd /msdp && export CUDA_HOME=/usr/local/cuda && \ pip install --no-cache-dir deepspeed-*.whl && \ rm -fr /msdp # Renew nvidia signing key # https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key/ RUN apt-key del 7fa2af80 && \ rm /etc/apt/sources.list.d/nvidia-ml.list && \ apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub # Install tzdata / git RUN apt-get update && \ ln -fs /usr/share/zoneinfo/Europe/Paris /etc/localtime && \ apt-get -y install --no-install-recommends tzdata git && \ dpkg-reconfigure --frontend noninteractive tzdata && \ apt-get autoremove -y && \ apt-get clean -y && \ rm -rf /var/lib/apt/lists/* # Ignite main dependencies RUN pip install --upgrade --no-cache-dir pytorch-ignite \ tensorboard \ tqdm \ fire # Replace pillow with pillow-simd RUN pip uninstall -y pillow && \ CC="cc -mavx2" pip install --upgrade --no-cache-dir --force-reinstall pillow-simd # Checkout Ignite examples only RUN mkdir -p pytorch-ignite-examples && \ cd pytorch-ignite-examples && \ git init && \ git config core.sparsecheckout true && \ echo examples >> .git/info/sparse-checkout && \ git remote add -f origin https://github.com/pytorch/ignite.git && \ git pull origin master && \ # rm very large .git folder rm -rf .gitignite-0.5.1/docker/msdp/Dockerfile.msdp-apex-nlp000066400000000000000000000004461465426447700217130ustar00rootroot00000000000000# Dockerfile.msdp-apex-nlp FROM pytorchignite/msdp-apex:latest # Ignite NLP dependencies RUN pip install --upgrade --no-cache-dir transformers \ spacy \ nltk \ torchtext ignite-0.5.1/docker/msdp/Dockerfile.msdp-apex-vision000066400000000000000000000006671465426447700224360ustar00rootroot00000000000000# Dockerfile.msdp-apex-vision FROM pytorchignite/msdp-apex:latest # Ignite vision dependencies RUN pip install --upgrade --no-cache-dir albumentations \ image-dataset-viz \ numpy \ opencv-python-headless \ py_config_runner \ clearml ignite-0.5.1/docker/push_all.sh000066400000000000000000000045741465426447700164430ustar00rootroot00000000000000#!/bin/bash echo "Push all PyTorch-Ignite docker images" if [ -z $DOCKER_USER ]; then echo "Can not find DOCKER_USER env variable" echo "Please, export DOCKER_USER= before calling this script" exit 1 fi if [ -z $DOCKER_TOKEN ]; then echo "Can not find DOCKER_TOKEN env variable" echo "Please, export DOCKER_TOKEN= before calling this script" exit 1 fi if [ -z "$1" ]; then push_selected_image="all" else push_selected_image="$1" fi set -eu echo $DOCKER_TOKEN | docker login --username=$DOCKER_USER --password-stdin set -xeu if [ ${push_selected_image} == "all" ]; then image_name="base" image_tag=`docker run --rm -i pytorchignite/${image_name}:latest python -c "import torch; import ignite; print(torch.__version__ + \"-\" + ignite.__version__, end=\"\")"` for image_name in "base" "vision" "nlp" "apex" "apex-vision" "apex-nlp" do docker push pytorchignite/${image_name}:latest docker push pytorchignite/${image_name}:${image_tag} done image_name="hvd-base" image_tag=`docker run --rm -i pytorchignite/${image_name}:latest python -c "import torch; import ignite; print(torch.__version__ + \"-\" + ignite.__version__, end=\"\")"` for image_name in "hvd-base" "hvd-vision" "hvd-nlp" "hvd-apex" "hvd-apex-vision" "hvd-apex-nlp" do docker push pytorchignite/${image_name}:latest docker push pytorchignite/${image_name}:${image_tag} done # DEPRECATED due to no activity # image_name="msdp-apex" # image_tag=`docker run --rm -i pytorchignite/${image_name}:latest python -c "import torch; import ignite; print(torch.__version__ + \"-\" + ignite.__version__, end=\"\")"` # for image_name in "msdp-apex" "msdp-apex-vision" "msdp-apex-nlp" # do # docker push pytorchignite/${image_name}:latest # docker push pytorchignite/${image_name}:${image_tag} # done else image_name=${push_selected_image} image_tag=`docker run --rm -i pytorchignite/${image_name}:latest python -c "import torch; import ignite; print(torch.__version__ + \"-\" + ignite.__version__, end=\"\")"` docker push pytorchignite/${image_name}:latest docker push pytorchignite/${image_name}:${image_tag} fi # If use locally, mind to clean dangling images # docker images | grep 'pytorchignite\|' | awk '{print $3}' | xargs docker rmi -f # or # docker image prune ignite-0.5.1/docker/test_image.py000066400000000000000000000036771465426447700167760ustar00rootroot00000000000000# # Tests : # For all images # can import torch and its version == required one # can import ignite and its version == required one # for all -vision images # can import opencv without driver issue # for all horovod images # can import horovod and its version == required one # import argparse import importlib import os def check_package(package_name, expected_version=None): mod = importlib.import_module(package_name) if expected_version is not None: assert hasattr(mod, "__version__"), f"Imported package {package_name} does not have __version__ attribute" version = mod.__version__ assert ( version == expected_version ), f"Version mismatch for package {package_name}: got {version} but expected {expected_version}" if __name__ == "__main__": parser = argparse.ArgumentParser("Check docker image script") parser.add_argument("image", type=str, help="Docker image to check") args = parser.parse_args() docker_image_name = args.image name, version = docker_image_name.split(":") assert version != "latest", version torch_version, ignite_version = version.split("-") _, image_type = name.split("/") check_package("torch", expected_version=torch_version) check_package("ignite", expected_version=ignite_version) if "hvd" in image_type: assert "HVD_VERSION" in os.environ val = os.environ["HVD_VERSION"] hvd_version = val if val[0] != "v" else val[1:] check_package("horovod", expected_version=hvd_version) if "msdp" in image_type: assert "MSDP_VERSION" in os.environ val = os.environ["MSDP_VERSION"] hvd_version = val if val[0] != "v" else val[1:] check_package("deepspeed", expected_version=hvd_version) if "vision" in image_type: check_package("cv2") if "nlp" in image_type: check_package("transformers") if "apex" in image_type: check_package("apex") ignite-0.5.1/docs/000077500000000000000000000000001465426447700137475ustar00rootroot00000000000000ignite-0.5.1/docs/Makefile000066400000000000000000000030131465426447700154040ustar00rootroot00000000000000# Minimal makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = -j auto -WT --keep-going --color SPHINXBUILD = sphinx-build SPHINXPROJ = ignite SOURCEDIR = source BUILDDIR = build # Put it first so that "make" without argument is like "make help". help: @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) docset: html doc2dash --name $(SPHINXPROJ) --icon $(SOURCEDIR)/_static/img/pytorch-logo-flame.png --enable-js --online-redirect-url https://pytorch.org/ignite/ --force $(BUILDDIR)/html/ # Manually fix because Zeal doesn't deal well with `icon.png`-only at 2x resolution. cp $(SPHINXPROJ).docset/icon.png $(SPHINXPROJ).docset/icon@2x.png convert $(SPHINXPROJ).docset/icon@2x.png -resize 16x16 $(SPHINXPROJ).docset/icon.png rebuild: rm -rf source/generated && make clean && make html clean: @echo "Cleaning up..." python -c "import shutil; shutil.rmtree('$(BUILDDIR)', ignore_errors=True)" python -c "import shutil; shutil.rmtree('$(SOURCEDIR)/generated', ignore_errors=True)" python -c "import os; [os.remove(f) for f in os.listdir('.') if f.endswith('.pyc')]" python -c "import shutil; import os; [shutil.rmtree(f) for f in os.listdir('.') if f == '__pycache__' and os.path.isdir(f)]" .PHONY: help Makefile docset # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). %: Makefile @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) ignite-0.5.1/docs/make.bat000066400000000000000000000014121465426447700153520ustar00rootroot00000000000000@ECHO OFF pushd %~dp0 REM Command file for Sphinx documentation if "%SPHINXBUILD%" == "" ( set SPHINXBUILD=sphinx-build ) set SOURCEDIR=source set BUILDDIR=build set SPHINXPROJ=ignite if "%1" == "" goto help %SPHINXBUILD% >NUL 2>NUL if errorlevel 9009 ( echo. echo.The 'sphinx-build' command was not found. Make sure you have Sphinx echo.installed, then set the SPHINXBUILD environment variable to point echo.to the full path of the 'sphinx-build' executable. Alternatively you echo.may add the Sphinx directory to PATH. echo. echo.If you don't have Sphinx installed, grab it from echo.http://sphinx-doc.org/ exit /b 1 ) %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% goto end :help %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% :end popd ignite-0.5.1/docs/requirements.txt000066400000000000000000000002721465426447700172340ustar00rootroot00000000000000sphinx<6 -e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme sphinxcontrib-katex sphinx-copybutton==0.4.0 docutils<0.18 sphinx_togglebutton sphinx_design ignite-0.5.1/docs/source/000077500000000000000000000000001465426447700152475ustar00rootroot00000000000000ignite-0.5.1/docs/source/_static/000077500000000000000000000000001465426447700166755ustar00rootroot00000000000000ignite-0.5.1/docs/source/_static/img/000077500000000000000000000000001465426447700174515ustar00rootroot00000000000000ignite-0.5.1/docs/source/_static/img/concepts/000077500000000000000000000000001465426447700212675ustar00rootroot00000000000000ignite-0.5.1/docs/source/_static/img/concepts/timeline_and_events.png000066400000000000000000001775151465426447700260310ustar00rootroot00000000000000‰PNG  IHDRΧϋΓu8 /tEXtmxfile%3Cmxfile%20host%3D%22app.diagrams.net%22%20modified%3D%222023-02-13T15%3A58%3A45.730Z%22%20agent%3D%225.0%20(Windows)%22%20etag%3D%22Wm1ubjC-XXmvffxp09Gz%22%20version%3D%2220.8.20%22%20type%3D%22device%22%3E%3Cdiagram%20name%3D%22Page-1%22%20id%3D%22-fa-0hSAb8tBz9avfB45%22%3E7V1tl5o4FP41c073w3gI73yc17bb7Xa2M3vafvJQiMopEhdxRvvrNwgokKtFgcSOmX4oXDBqnic3N%2Fe5kQvtZrp8G7uzyUfi4%2FBCVfzlhXZ7oarIsQ36X2pZZRbHzA3jOPDzm7aGx%2BAnzo1Kbl0EPp5XbkwICZNgVjV6JIqwl1RsbhyTl%2BptIxJW33XmjjFjePTckLV%2BCfxkkltNRdleeIeD8aR4a7W48t31foxjsojyN7xQNd9J%2F2WXp27RWH7%2FfOL65KVk0u4utJuYkCQ7mi5vcJh2btFv2evud1zdfPAYR0mTF3yN75%2B01fWLef%2Bnfjv3Vh8%2B%2FHNzmYP17IYLXHwNM6TtXX%2BnB%2BP04CmY4sJIW9%2FY82%2BVrIquTPAytU%2BSaUgNiB66YTCO6LFHPyKOqeEZx0lAO%2F8qvzANfD99%2BXWM58FP9%2Fu6KYWez0gQJWtojesL4zZta5GQeUaftOl5EpMf%2BIaEhLZ7G5EobWUUhGHNxPZS3nHpR8HLkinvtbeYTHESr%2Bgt%2BVXVVgZK6S9vICe8XfDhZUsfIzdNSsTRcpubE3a8eZ8tZvQgh%2B0ACM2dEI4I%2Fc5liMz%2FFqS4cJl15hW9Aamz5bqriusFxI9PV5%2Bf7m5L6GdNnhkBtMLJFT6ORdzmibjFIB4vImogkYfX%2F6X%2B2E3cOU4YjNYOC%2Ft5L79MggQ%2FzlwvvfpCPXwVvnJ3Uvemu7YxGjF9T69kAyNnVsk%2BWv91hIKpVFBAOgsD0gAc1L5wsPsbeXcPn27eDeX4g5E3GyLf2wh0GOQzwG4%2BfXz4624N2blgY1SxUSFsuM6HRWTZYlg6zKhURpmP3Nre4fAZp3ixg%2Ff9093nq6f3n%2F6WA7gYwNUJFNkASVSuJEE9kKSOfskbnDv%2BNScBxMx8HThSJf4C8W8auvWHv8YBf%2Bn9Qe%2B%2FCcjFeX%2B9feSu74A%2Fid0gwvGALsnerI%2BHIXF9ip5KP6sSLaZDPCPeZP7Hb02L9BPnyTzamZ3QxKr6CB3wEZvgkg9LdifHWq%2Fv6NJ8GMZvXg8J1PR1M9cLojE9vUTdcMLQf73ygxYXvS35UY%2FZNpw26iYk8x30JPccr5UkSjccMTU0qM8wijUw2DmGK1M0Nksns0M8gkvNAKDnGlxqbGJQpofyWR0Ch2t6SGNzdzLy5xT5axaAPtfIv4gn5LpfiGt2RLtmXeb9BOKva8Lx55H3k94f9P46Eu79O8j7yJj8iIFvQIIP34HPJnNkTJ6dmxA4XGNyvX1WRXrlI72yCWlxfL1y%2B0yJjMmOds0mpMbwdc3t66gk%2FsfjL7yYSpcZGXHeH1LiuXp%2Fg1Xiz7GaVWu6NO5NsDDYxdE5AmE09Yf9AcEuVc5wkWIZezZdWBYAksLVbUFBa4eDwnexPfL2Dgo%2FiLGXBCTFdE4WaT90oqcik9FTAecETRKbVWP33c3GiOfgnEytERZ8%2FZPZPoeOlFe846jzCgfLUZqwACqO6o8E7RPpO0nwOtZq3dPAZpyBZkKFLtBmtP6I0L6SVubUj50LhJe6mO0VFZm7aU4BnS11c8BSN74kaF8oKxM4LShggRTgmsUxpYIjkgIaOgEKSBlHMAm0E5gKZOnrnrp0zWhcl94fQrvVFj94Bkdp%2BUgpwNkaQzxK2DHb3bYINw5Xw3lCZjO6nNqzZWZjXn%2BPg%2F3B%2Bmu8yh0SDkIDrRETEc%2BVo7U7hXCaTIyxv%2FDwMIyHJBrOQjfB7kLy8Rg%2B1rQvOIDVeZIRdVAZLHd2dbyzS2UyHmANKd8dgGAJcYeKw0kpP%2BAuXK7KD9LPs0AASPdBYPCVflAXFdRS%2B2mn%2FUC7KLhqPwgoppbiD3fxByqq5yr9oA7qtqX2c%2BxkILxuE8nCbb4ZP9YDKKLzfYhL8bb0AhkDDCajqNui0%2F5Ilm8LZYChCmdAsfaT84CoeUAXPg8YbPrsfIUfFiBTtOyDjN8t2y51n7ZEBHQfw1KF6z4I2PJz2lSUwk9%2FhLRPQPsx5K%2F6nRpVMu1n1%2F4fEwHJD74y0GvfALSz68UrQme9GegQXDiLQ0b7TIAUhw4Th5iVBkQDvuKQ2T4bIMWhA3lg7%2FMM0GZZvjpRFzsGpU7UfooQLxl1sG1Qpgo7ooMl%2FiksHWwelNrBQTsGdvoG8Y9k4rKXUJKhARks8U9o4bKnUE4UzSYK8Y9rAvYXnq%2B8tHfoin%2F%2B4p6NgKeZ3pdKU1tOOmjfI7JBTvKVnIB9iafNSSk5cWEmFPX2pT3pgTn81x5%2B%2BTbHwa0RLSePX6BneTOw4ci%2FimPyks5coTufB14VxGpGO3s59se40mNMJ7I99otnahW2GFM2Bs%2FV5qF%2Byd%2FhIeXKFhBN1wcWKiGi1xCpNjgni9jDeRvbvgaareZB7br8kLjxGCdMQ2vQNp1wPI5QXqON8gBpOzU1wtMxKmkLzJhoBHrRfUU4UDxoDVgBQBGfafU1MMAnrbUaGamvuXenQZh%2Bx%2B3jm1knRPssXn2lZ5fUd2h6YfmWtjMwdbsw3C7zlrOzVfnsAccB7Yg0zDxoWKpKRtR9k5khcvzqTo0pdo0BTUcs82y%2FekTa84hFHahV8vGOrbxOnQKaDhWD9KXrw34cUq9endsp%2B5i9g%2BNkwoa62yn98l1bx1P68RxewQKkh50fyYpvfbIkMxy1K5IZOtNU3ySDQlI5v4mc3%2BDqW77zG6S48XE9O9zEyYx%2BQ6miVfpdvUNH%2F%2BahKvVH3vMa%2B5CUJmCCQag6wWiqKXrxpAueYYCNvMeSDPi5DoV7KAPpdAKYphhVptlIF820rKr8VGIZ09GOpZldL9o3eSfXoOy9nLTSO2yT%2FVHw4%2BctR2nSWs9oa1DgKtHegXaLNQqANtBa32jLgPQAtC3LGSjdwQ01dzTe9DQm6TJxe3vsziYfiY%2FTO%2F4H%3C%2Fdiagram%3E%3C%2Fmxfile%3E5œΒN IDATx^μ½π5ΥYηyΗ?QγΔ1Cή•QŒqW,²–Ύ! $T²Δˆ» [ΰBLU"Κ¬[[ Pλ,(TνΊ›B” θΛξ’Hƒ¬aέ7;j@X5Œ&Μ›H$PΑD£Ρ‰Ι²Ο—χ>yŸχpNwίΫέχvŸώtΥ©ίοή>}Ξs>ΟιΎύνηœΣoΕ@€ @€@/―ΧΡ @€ @€ΐ qM'€ @€ τ$€Έξ Γ!@€ @ˆkϊ @€ @ 'ΔuO€@€ @@\Σ @€ @= {δp@ΰ ^j}€ @X"Δυ½N›!0<W[‘oΆtΞπES" @€¦Oq=}a!ζ@q=/a# @€ΐhΧ£‘₯`,Šΐ«¬΅—Z’Θfƒ @€ΐβ ηr Q GΑJ‘€ @s!€Έž‹§°Σ&€ΈžΆ°€ @`dˆλ‘S<Bq½GΣL@€ <Δ5=‚βzŠ”@€ 0[ˆλΩΊΓ!0)ˆλIΉc @€vMq½kβԁ: λτ+­‚ @θHqέΩ Fˆk: @€ΐ’ ν~Α CIA€ @s$€Έž£Χ°Σ#€ΈžžO°€ @`‡Χ;„MU¨˜βΊbη4@€ vˆλvFδ€Ϊ œmY~ά’D6 @€Gq½8—Σ`ŒBq= V … @˜ Δυ\<…˜6Δυ΄ύƒu€ @#@\ ˜β!°ˆλ…8šfB€ δ ι€ΐΧCP€ @€ Ω@\ΟΦuI@\OΚ@€ °kˆλ]§>ΤIq]§_i @€@GˆλŽ Θ4@\ΣA @€Mq½hχΣx Fq=J ‚ @˜#Δυ½†Ν˜%ˆλ§μ~ύ|ΒΎaΖ%OΪw'X:Ν–²tMΘ—–η»N·΄ΤVnιψ μΨΫ,εφίkίΛWl€ @@\ ”β °PgY»yΕΒMBχNK—¬ύ{“ύ½ΨRΌ†Ίˆvqμ]AyΟ°τxΒGβ7άχΨw,ϊQ©\οB:Χνrε«ξμ…ž¨4€ ρ ΗcKΙXšΕu“ΈβΈ”O‚VbVΡλxΝΝ‰ίσ-Ο­Eϋ6βΪΛO,©―V@€ 0 Δυ(X)‹#P³Έ–3²tŠ₯4Χϊξ%E’•>lΙ‡†ο#r-{ΫDωβ:/ † @C@\A‘2 ΪΕ΅<|₯₯«ƒ«S‘ΧMΓΙuόAK>$»4g:½.7EΞӞησΌ]Dη(’~}ωτ^@€  €H€ΐj β:ΊΩ‡WΗ9Ο9μοx¬_wcδΊ΄θ™ŽrΞ΅‹ξ¦ΉΪtg@€ - ·€Ζ!€ΐ³Τ,q>ΟR\dLp*‚s’8“ χΘx:zHq›ΣMw† @€βzˆTΉξ"„Sμ«„GQyΧΪ44<7ηZ‘nmcW=§λB€  Dq=HЁΐΒ ΤΉvΧ¦s€Ϋ"Μιλ»TŽG§uνΝ‰kθ7Ϋ~νΧ&sU‡Ο³ΞΝιŽε.ΌΛ|@€ 0,Δυ°<) K%°q½Tίn@€ Χ ‘h%€ΈnED@€ š kφ.mƒΐξΌͺϊ KΩl€ @XΔυβ\Nƒ!0 Δυ(X)€ @`.ΧsρvB`ΪΧΣφΦA€ ŒLq=2`ЇΐB βhš @€ '€Έ¦g@C@\A‘2 @€fKq=[Χa8&Eq=)w`  @€ΐ wMœϊ P'Δu~₯U€ @ ;‚" ΠHqM @X4Δυ’έOγ!π,Oο‘ Χ£=Β§j@€ ~Έ™νǏ£!P§dχϊϊΰ7>s)βzT[o’=€ @`AΈ™]³i*:@\w€D@€ €Χτ @ @\Σ @€ °ΔυΠ8@\Wμ\š@€ 0Δυxl)s$€Έž£Χ°€ @`οΧ{w@`RΧ“rΖ@€ Μ…βz.žΒNμ†βz7œ©€ @ 2ˆλΚJs Π“βΊ'@‡ @X&Δυ2ύN«!P"€Έ¦o@€ @` ˆλ- q*&€ΈΨΉ4 € @`<ˆλρΨR2ζHq=G―a3 @€ΐή χξ €ΐ€ 'εŒ @˜ Δυ\<…Ψ Δυn8S  @€@eΧ•9”ζ@ 'ΔuO€@€ °LˆλeϊVC DqMί€ @€ΐΧ[@γTLq]±si @€ΐxΧγ±₯dΜ‘βzŽ^Γf@€ ½@\ο݁I@\OΚ@€ 0ˆλΉx ;!°ˆλέp¦@€ Κ +s(́@OϋΧ=MηπJπ»T‰#i @`iΈ‰YšΗi/š μM\ΏϊgžΖ7 'π?υΜOΏK ο4€ 0WάΔΜΥsΨ q ΗαJ© ;@"  @“%€Έž¬k0 {!€Έή v*Δ5ύ€ 9@\ΟΩ{Ψα ‡gJ‰ ;‚" @“$€Έž€[0 {#€Έήz*F\Σ @˜3Δυœ½‡νžβzx¦;/ρŸ\­~ϊWV«ϋ?TϊŒ—XžX­ΞωΩqΜΫ¦|Δυ8Ύ T@€vCq½ΞԁΉ@\ΟΕS v"+p"M€ @`vΧ³sC`T“Χ}δc«ΥΙ_ΏZ½ρΖΥκΖ7ύϋΨS«Υ‰_{μ³HiίαVΏυ(·χ|`΅zϋϋς %J}σΘ―—ΧTF<.F‚γχn_ζmλυ²άF}v;έώמal^q¬VνΏφέ«•Χω‰O―V^ΏZ•ςιΘ7Ό|΅:χ₯ΗΚΈρ7W«χήμsiω]z-‘λ.”Θ@€ΐT §κμ‚ΐ~ΜF\»ΐ‹bΊI\KPΊ€Μ …Ύε£ΒTΒΫσIksž+CΗέρ»GΕ¦Dθ žwTΌζΚ²ήΨ=ruΉΈŽQμΨΟ?~Xx)Ÿ·ίmwήώΉΤN†…οη¦V@€φGq½?φΤ )˜ΈΞEͺK⺔א t}ο’ωGΛ‘ρT κ8••ϋ>ŠπΎυͺMeΈP~ό“G£ωΉΌΡFΩ\Κηβ:yΟ ho§κήtN7‘λ)^° € Χ]I‘Λ °Hq‰?wαj₯‘ηw?Έ™ΈV7ρς.“IίΆή(„Kχ­w]Π,-›$”Σ₯|ͺ+mhjηοA\/γ’A+!@pˆkϊ  ,R\Ήvqύ£―::—ΉiΫΆή‘kΥ­θq.rΕ΅‹δΆΏΚ‹6«ŒR;Ξ…€ ₯@\/Νγ΄Νf'Υ ƒφhͺG`γ|ι.’±mΞu©Œ8WYukα4‰κ8 ά…fξυXΫΦέ¨2yμθ\oŸW­Ί\\ϋόhEγ}ΈœΈΞε;ύΕ«ΥλΏσΨƒ‚άœkŸsΫ™ΦέεΔcXxJδ @`ͺΧSυ vA`?f)γJΧz­•­7Χ.{ΊZxΫo?΄ZxΊΒvtoΣjα] DΫ5”]Ϋ;ίtXΈ j}'$”] {½²Ή)ί―;ΆΪϊ3’9y‡v΄?Ά3–ί₯;#»P" @S%€Έžͺg° ϋ!0yq½,ΤΊ ˆλ]P¦@€Ζ"€Έ‹,εB`žΧστ[V#«p#€ ,–βz±§αΘ@\Σ1φFq½7τT @€ΐΧ@€TDq]‘3ηΦΔυά<†½€ Dˆkϊ  ι{#€Έήz*† @`ˆλ R*"°7q]CšΏKύψq4 @{"ΐM̞ΐS-&J`ŸβšλΡD;fA€ ΄ΰfΆ9 °$ˆλ%y›ΆB€  Fq=J ‚@ΧUΈ‘F@€ μšβzΧΔ©Σ&€ΈžΆ°€ @`’Χu fA`OΧ{O΅€ @σ&€Έž·°C@\M”ς ПΐωVΔ­–Ϊ~³O³<XΊΐm…joZŸύ½ά©ύΝ£@€D ν‡J€ΐ² —εoZ;C‰k‰οCAP»ΠΎd°€ 0mˆλiϋλ °kˆλ]§Ύ₯ ½84ϊ*ϋšπωιπιφƒ–ό»'ν€ΕΘ΅²)Ϊύ°₯S,ιχώK‡3υq/°΄^H{!@`ό Ž‚•B!0[ˆλΩΊΓg@ΐΕ―φ¦ŸŸ°6άiI‘δ+-]½ΕΫD]\Gρ.‘žώξ?dί]g©4Œ|X1€ 0 ˆλiψ+ 0ˆλ©x;¦Fΰ2ƒ~Λoτ0ΜΕ΄G€cQ9-±}½₯[ΪtΞ΅‹k―KεΏΕRωfhx‡r( @ @\Σ H`Žβ:£mρErϋg‡Μ%τ―nΆy¨.ŒΌ¨ε,»Μς3–žkι–Ύ»-IhڍŒάOΆγs‘eΫυ!MnΞ΅χkν“ο‰\oα( t!€ΈξB‰<X₯ˆk‰ŒΗ,):©ΨL…―χ}/Α₯ωͺ}Δu“Έβ΅”OvHΜκ5LρΊήΥ¦!Ε΅ ΑάΠηΞ$=tyeOΩη―²τK?nι“…†κAΞ₯Aΰζζ\kΈϊΔ:*oδZe0ηΊ†H @`²Χ“u †A`/–"]P7‰nί΅­MΡq.}†…ka)­κœ–;BNΗΧ+₯«Aο#rν,Ϊxν₯ƒoP©†JK’^bŸ±%ύv~ρΊ, "K% γΆM>:+dJ9Ε‘ψιbd:¬ιw»)r­cY-ΌΝ;μ‡ τ €ΈξC!P!ΉŠλΤq>tnή°Ο©nn+±{Ώ₯,)"ά‰-ΝOnDΡφtξw*΄sβ:.H₯γZς!Ω%›kS亍mξa@v?εΣDC€sZίύ₯₯?Y§…_f–žoιΣ–ΤO.²€EΗ¦Ύρžλ©{ϋ @`ΦΧ³vΖC`psΧ›ΞΉvpMβ: ΔΆΉΗ*―λμNΛΝσΞ‰`xΗrύΪm*-z¦γ†ξ,¦Ήώ3( hEŸύσημœ€ΦwΧΉνύφεwY±zU–„φΆtQ½΄ήΆ@Κοc΄HZiŽχΪC=€ ͺ «r'@oKΧ–Ε©Ψτ(vΊ‚ΈΎΏέ’ζΘφ׊8Ÿg).2&ΫpjWN§bd9·x›κR\w]|«wg <Οώ/ θηΨ>‰ε}vAύΤ†FhΕv-§(υYϊΐ†Η“€ Š +v.Mƒΐ–(§²Zx*Ξsv₯"ΨW ’\σj΅ihxNπ끀Ά1W Χ+ͺ[tΗγωrϋδ:FŸυέW[* θχ­8ϋ›-]>`™@€@%Χ•8’f@` sΧΉζ{ĢːξτΓΉχ\§yvρžλt˜o—UΜ]”λϊή•mάdΞ΅XGΆ)ϋ»MΊ§^I•Šg θΔR.ϊ,Qύ§›TΠ#―XψΓ‹Εp( @5@\ΧθUځν ΜQ\oίZŽœΑ pkΆηCΟaΑ°©ρΔ@€vHq½CΨT@\γ€!’Η2J… @„βzŒj «q%  @Ψ%Δυ.iS¦Oq=}a! @€ΐ 'θL‚ΐ χŸͺ!@€ζKq=_ίa9Ζ €Έƒ*eB€ TOq]½‹i 6"€Έή™!@€ p”βšžDˆkϊ @€Ά €Έή‡@ bˆλŠKΣ @€Ζ#€Έ-%C`ŽΧsτ6C€ μβzο.ΐLŠβzRξΐ@€ Ή@\ΟΕSΨ έ@\ο†3΅@€ TFq]™Ciz@\χΘα€ @Λ$€Έ^¦ίi5JjΧOXΟΆτ@¦‘Ψw·&ί_eŸοΚδΏw]ŽgΏgύΟ…²uMUέ'¬σŸΤ₯Ίo³tΪϊψx VΩ*χΑ‚s΄¬υ>ΩΥdƒΫ)ΪΌΎXtS›0ς6qVA€ E@\/Ϊύ4Ο"P“Έv«F¦‚χBϋΞ…§C½6ωώ!ϋ|QΌ*G[©μXWN@?mN_—!α°₯Sן›Δ΅Dz΄Yyo±$‘žΆΟ?G;»Ά->θΚHmβ·„‹  @‹'ΐ Ρβ» pΔυρ’Ϋ#ΰŠ&ίH±―iΆ©Κσ)ϋ•–N²tƒ% ω–n_—Υ&/·|.ΔΣnδμΜ‰λΨ6•·νˆ\;9­ @€ΐβ ηr FKΧι°πMŽ€nΆ—νΡξCAθFQEͺDη}–<Ί¬}Š@ŸiΙΕ΅ΚσΘoΫ°π8Δ<mpΡ¬ϊάΞά°πΨΆœΈ.1J£ϋz` Ν6pŠA€ E@\/ν4EKΧmCž%F%vKs§P‚\ν&q}$iδZβZߝgιqKMs£Σ<:…ΏlMηx»ϊλ’8m›—Kδš  @θAqέ‡B BˆλcΓΒ%zZ’–Π>„²‹d‰Ϋ’Έn›s#ΐšΫ}Š%μiΧJΕt-vJvΖHΉΚŽmλ+™s]α…€&A€ °9ΔυζΜ85XŠΈN‡ν“Έ=Ι –$δXΊ}]V“Έφγ›[έ”ΎΉ‘Υ―ϊN΄€HΎGήΫ©ΈV-νR\ηM£§cΆ#0„Pœ’ΈV{Yς‡€›PιΚ’kΎMκVήmΔ΅ŽΫφaΒ¦φ‘X ΔυN“!Π@ q ΡδΨό›νƒ ZΪΪo6›Δυ}–WΓΐ}ΣMσ™–\\KπzτΆI\7‰Pν+Υsd]ρyλ›cEβο·€οϋ ³Ρ/ …— Ξ7 A―Ν‡·sςA`Ÿt.ϊζύ[ηwωαΣ,|Κ…ηχ)$Q(>b;5BΕΛς}ώΉT†Ϋρ€ληU΄Ν£±.Β5ζK~Ο–~―ϊJvΘ~ν“ύg­―{Ί.ιaœΞΡ>,βu0υqN\ηΪ«γJΜ΄/NρφΔΘuΞΏ%†ŒͺΩη™Hέ¨˜βΊbη4lA qέ6,\7iΊ©lŒ—}"ΧΧΊY”ψ}άRiΞu.r­›BέΌ·EεfE€ ώ>b§‘kί]šscζΗl;,œΘυ'!‡ŒB@}ψNKz˜Χ*Πu@玾χ‘ώPΜ…›ηι΄―M\ΗΘj,γd;Vύ,g›κς|qύΑqΑθί§’>~V~Χ~=Šλ4D‘Ω‡Ε&βΊΤ^]oKΜόZœϊΠ}TςoΚΚ;—D^g©ΙξQ:"…Bu@\Χν_ZM ,E\‹‹“φαΤ½ρ}'­oΈKβΊmΞuŒβκFN‘§ N}“ΞΉφ›EEΑus\šsνεθ†Y7šŠœ±4qMthΣ3όcΘ Γφ(­κΣΓ)]τέe–$šγΒƒ9±Ϊ&Un©Œ(Sa¬γά6}’^7Ό=₯ˆyΞή\^ΩρKώ1^7eΡU\§$b{΅θdχΘΒ…ΈΚˆ+Ί0dhψgeB,4C€Ž#P‹ΈN‡…kdͺ퍖θ}ΤΉ–‡. KβZe€+|ΗΨ(s7ΠiΧkZ-ΌT»φ•ΠՏ7‰λΘGCNΑΙ1‹Cζ›’όΞ7]½}ΣΕ†8!0άjψͺΗϋ­"ΆώΝϋΉΞ£‹c6\—Κˆβ:'ό}z‡¦ƒθΌά•Έφ=Ϋ°θ*sBΨΫ«λMfξΰe¦}Gώ-1T=ΎVΕ}Ž2!… r½PΗΣlΜE\γ@@`~~ΒLώ.K_kIσ?cισ–ώΞ_[ϊάϊοΆΏtΐζIΐΖmZ΄€IˆΉΨjŠ λX=Dj‹\»€.EŒ=ΊΟΘ΅Ϊ§ΗθσΆ,ΊŠλ¦Θu©oŠΐ»­ςƒΆ’S_Ίο‰\x‚Q pŒβšήDˆλqϋCφښ†‹k₯C`·ώ›΅ΝΥ*q\κB³ IDATύΫ–^>‚Iq±.\>²Β§m€ ‰ω=RœΦ!Σ\\KPϊ{ε΅ ˜G]γ|ι\›ΞΉn‹\»Πτ9ΨΡ··4„<ΊΡ‡EΙmι‚fmsΜsΜ|Ξ΅ώΖΉγqΞ΅/Lύ+›rΡζ\p’Q$ ΐϋGι€ΐρΧτ@`lgXο΄τβ€’Ϋηo΅τ©‘ ˆ«IΗEΒ\ŒΖ€ƒ‹L™’ΌώώxŸ‚‘.v¦|Š~k(Ή ΩRβn‹ΧΩ΄ZxŽόΉhl\e;ΪΡ&γjαΚΫ‡EΙm›¬ήΔLε;'MgΡ%Λω·Ήf=ˆ‘N2Š…ΐ Ή^z ύ8žβšŒMΰ{­‚nιU–Ύt]™†‡k(ψ=vε” ίC–ΆyΟυ\Q2$|žΓnΜ€βzNΒDμβz‡°©  #πjkοYϊ&K-ύg–4χZΡαea<¦άΎb³4έΕΫ7₯i/mσο§βμ€fJq=SΗa6F"€Έ ,ΕB`Α^ΏΥ_΅ΥΏ΄fρGφχ%–~Ω½`>4€*!€ΈΔ‘4@\’b g³"ΥZ ό[‹θˆEs¬΅Nη^ƒ€ 0KˆλYΊ £!0Δυhh)‹!π#kQ-ρ¬αίο-΄\‹Wύ€₯Ώ24€ͺ&€ΈΪ½4@\oŒŒ #πEkA­HυZR€ϊ}-dΞ³ύ·C€ P Δu-ž€†βzŽ”₯ψΚ ͺΗώW€ϊύKi<ν„ Dˆkϊ  ι€@_Dυ»Φ’ϊΑ.’€ P+Δu­ž₯]؎βz;n₯ψ†΅¨ώqϋϋvKώ͜ι₯xŸvB€@#Δ5ˆΧτ@ Gΰ䡨~ΓZPkψχGA@€ΐ1ˆkz P£Έ~ΒuΆ₯2ξ½ΐΎ»5ωώ*ϋ|W&½λr<ϋ=λ(”­kͺκ>aοό€.Υ}›₯ΣΦΗΗk°ΚVΉ₯‘΅ΪΦΊ\ΩΥdƒΫ)ΪΌΎΨμ¦26aδmβLͺ“€ϊŽ’Τ―³$A­Hυ'κl*­‚ τ#€ΈξǏ£!PZ"ΧQΰΚG©ΰ½ΠΎsαι>”ˆΈ6ω^― ΊΘ’ ^•£ΝΕsZvόœΠO[†ΣΧeHψ?lιΤυη&q-‘mVή[,I¨—lˆvvm[|(Π•‘ΪΔoImW‚Υκ»­IZωϋe–$ͺ•ώΊΎf"@€ΐpΈ!Ž%%A ˆλγE·Gΐ%o >b_Σ l%R•?ζSφ+-dιKς,ιUD*«M\_ny\ˆ§}-><ΘΩ™Χ±m*oΫΉvΦp.,΅ ―°†KT›%E©%ͺυeΜM£ή1f”½L_όœηήρωΟ~ζϋ—ΩzZ μƒβzΤ©Σ%°q Ρδ蝛νΓ%λ/\Œκγ!K.tKQr‰Ξϋ,ytYΗ)}¦%׊ž{δ·mXxbžW6δμΜ m“mMΓΩ΅ί₯Ρ}=0Πζ¦Ϋ»±¬‰ΐkm§Dυ‹,IP«βΊΰ•―>χήϊ‹ΏϊΌ!κόW\Ίzίο}μsίρƒΏφ%C”Gσ$πgέΊϊ£_±;?ϋ™§Τ·Ω μ„βz'˜©³!°qέ6δYbTb·4wZ•ΨTD»I\IDgΉ–ΈΦwηYzάRӜλΨ‰<:…ΏlMηx»ϊλ’8m›—Kδz6§ι †ώWVšDυ—ZR€ϊ_Zz·ΒΧέ8‘kˆλ `‘Œβz0”*  —θ=hIXBϋ°%ΞΊH–Έ-‰λΆ9Χ1¬Ήέ§XrΑžv¦TL§Ρb·‘dgŒ”«μΨΆΎβš9Χσ<υx-ͺώ*R}Η›Έή#όZ«F\ΧκYځi@\OΫ?X]XŠΈN‡…kˆt*@Ε^’χQKηZJ―—.*›OK‡c»xNη@{Ύ’Έv[$ΐ΅Ε…Πτ9Žž³Sεζk»ίΎO£ί*/wFι 쬾보_}oΆΓ©VΏ–¨Ύ»_qƒΈ#…Dˆkϊ °ˆλ}P§NL—@-βzΊ„± »'𜡠Φ+΅τ@EΓΏ{χfkD\OΘ΅˜‚ΈΕ“΄σ"€Έž—Ώ°c@\MΈΉόάΒc:’)’½_‹©}ΚΎz-ͺ©Φ”Eͺ?0AƒΧtJ4ιŸ\­~ϊWμΙΜ‡Κ†žρΛσ«Υ9?;Nc6-q=Ž(h&€Έ¦‡@‘βšώωΠ+ή$¨©Φ+©ώƒ 7 q=aηΘ4ΔυΔ„y€ΐd '㠁ΐ$ 'αŒ€ΐVΎy-ͺ%¬₯VϊπV%νφ ½Škˆ>ς±Υκδ―_­ήxγjuγώ}μ©ΥκΔ―=φYX΄οπm΅Γo= ι=6ΰνοΛ“(υΝ#Ώ^^SρΈ Žί»}Ήš·­ΧΛrυΩνtϋ_{†±ΡΫΠΧ›φ_ϋξ£\Ϋ'>½Z]xύjUΚ§ŠπΎυͺMeΈP~ό“G£ωΉΌΡFΩ\Κ§ccϋcΜ ho§κήdNχ"Χ΅Ι'΄œf©ΈŽΗΕWξJ\+Ϊ~Δ’ΏzrW ¬€ΐL gβ(Μ„ΐŽ wšj ΠƒΐχΪ±Υ6@χ ‘κΟφ(oί‡V's"ρη,樑ηw[Μrq-ηxy©£!ιΫΦ…pIΰΎΥ^Ϊ¦Ν!έ²I₯|ͺ+mhjηο›ά›™Έšt‘J½Π#ΡξΞT\Gqo»FN¬η†…Kδϋ•φύI;χ} ~Μ‚βznΒHμŒβzg¨©xΥZTΏΨώ*R­w³Χ°U'‡Œ\ΛΑ?jήΧ\ζ¦mΫz»FU·n.rΕ΅‹δΆΏΚ‹6«ŒR;g8,<η*E²[ŠQαT +Z·'νƒ’ίQ7EΕsβϊ‡§{ω9qMδΊ†«*mΨΔυήΠS1&Iq=I·`ΤΒ ΌήΪ―HυWY’¨ώ₯ΚxLJ\‹­†A{4Υ#°qΎtΡΨ6ηΊTFœ«¬Ί΅pšDuξB3χz¬mλ}Jeη<Ά3­»ν˜ΐ°pE€Z΄ ίΪΔuξŸW­2βœλ\^ει+™sέֹ؁ˆkΊ  ι˜2S΄PΩίYBeΏ<Σ΅drβ:t­‘ΧZΩzSq-BM«v·ΝρvΒ₯ΥΒΣΆ£GΆ©7υ¨—‘‘μΪήωώ£ΓΒ](λ;Ω ‘μb؏‘ΝMωxέ±ΥΦUNϊ ΪΫΛoλΧ2Qbϊ¬`kΫ°πά‚gΎ0š.K4SωqΡ3UΥuXΈlΉΟ«…·u&φC`ˆλ `‘ €Έ^€“iβδ όˆY¨HυΗ-)RύήΙ[άΟΐ½Šλ~¦sτT LD\OvA#@\–b!0Sˆλ™:³gO@ΏΗԊT‘%Eͺ oOž}[Σ «sιώ„ΈήΏ°K$€Έ^’Χi3ΚΧτμ–ΐWQύΫφΏ"Υ6wQβzQξήMcΧ»αL-€ΐρΧτ@ ˜‹ΈφyiΉΧ‹\` Jη]eίέe)Ν―}—.6#Wdςκ{]3γ|ΆτΥ(ͺϋ6Kώϊ•xΥά8•k/βΙnι+[d³―([ͺG Ϊ\½ΆΛ Υb4:φΓ₯W―δ^ρς6;ώMK7αλ<8˞Mΰφ•’ԊVΏΛ’Du©oΤΞq]»‡χΠ>Δυ S% π̍" /³ΓIί2>œƒίψΜ₯h“λQΊ`K*xΣE_TΎΔλ΅–’˜Φ*¬Q£r΄ι΅'Ύ•κΚ h_eUΗJΘ?lΙ_&ΣZΣ²"ίwŽ•oλϊτ‚ q‰m,q9ψ+WnIΎ—­ΉΧ±DΗoΛWvnβΧXg­ƒ5Μ‡Ώέώ—¨~€ΦΖvlβΊ#(²u'€ΈξΊœ€ΐpΈιŽ%%A sŠ\—pI(ζΔu\™UοφτνˆύγQγ’ΈΞ½ Tβφ$Kz°„όK·―ΛjΧ~ά%I'’ΝoΆνQΟ―οUί‰–τΠ@uhΣ{TSqν―mΩ₯Έζ}©Ηz²ύ+QύKšO-QύΡΔίKύ8ΈΈ~Η/ύόRYξ@ΰ‹Ÿσά;>ΩΟ|?P μŠβzW€©σ P‹ΈN‡…ŸΎΖŸ ―Eq‘­¬‡,yΔΉI\λ5&ξ›„ύ™–\\KπzτΆI\7‰Pν+Υsd]ρyk{‰Ώί’Ύο;,\Μ|˜rΣPx™ΰ|Σ‘τΪόAΕ<Ξ‚a­Τ‰κο³$A-aύ‰a«˜}iƒŠλ;ίuΫκꟺμΞO}ς©ΧΞ € Y@\ΟΚ] Ρ Τ"Ϋ†…KπHμzτ;7ηΨΕeŸΘ΅Δ΅¦Δογ–Jss‘kΩ€αΒm‘kuŠƒ–τSߎΨ?iδΪχε"ϋc _rδϊ» ΈDυΛ,IT+ύυθgπ<+@\ΟΣoX @ Δ5]ˆ–"Υf&νΓ©5”Ϊ#¬Qμn;η:FqQ>ΕRŒ§=/s­zο΄€(Έ"ξ₯9Χ^Ž6ΣbŠœ±4q½Δ9Χ/7φZ¨μΫ,y€zχ ΜλΊ†Έž—Ώ°€ Χt @ Fq Χπο8TΫΫ,Ρϋ¨₯sρͺύ. ›OKWψvρœΞοφ|MβΊi΅πR=>μΪWBΧ5έ£ΕMβ:ςΡ’kΧYΚ1σ9ΰmÝo:μ~I«…k²"Υ/Z‹κΕ₯₯3ΔugTd„ )@\OΩ;Ψέ˜Kδzχd¨y₯}­Hυ—Z|κ ¨ 7FΖ€ 0Eˆλ)z› °?ˆλqΩ§h―­)’=E”Ύ-^‹κΏ°Ώώ}ΗΆqά qM'€ * «p#€ΐ`Χƒ‘€ J h9 Φt‰κ»+mη.›…Έή%mκ‚ Ρ GCKΑ˜%Δυ,έ†Ρ#xΞZPkψ·^u&QύoFsIΕ#—δmΪ @ bˆλŠKΣ °ΔυΠ8€ZΐZ&A­H΅^έ&Qύj[»Ώ†!χǞš!@`@ˆλaR* €Έΐ‰4‘7kA-aύKZ¨μz—J%ˆkϊ TAq]…i#€Έ %͐ΐ7―E΅"ՊR+ι•flγ˜šΈ.½—ά_-—Ϋ―!:;`kςτξyίτΊ:΅—.pψ€ν8!£z²tMψξ|ϋ_―Νλz–ΪκΗιυz/ΜΈΥmpΫϊKl|QΖΆr‡`;no€t@=t½8χ¨‚C!@\ΟΘY˜:o·’₯ώAKԊT?>XιΤF`ŠβΊινˆι~‰ΚλΧBΨ…u| €Ž‰άEr,G嗀%Ψ}Ε΅lΊΣ’‹z•±₯xοη":}cςž±>βCƒœMš2‘Ρ§G—ΚΝ±‹ύ#WΎΪρ ₯hG[Ÿb? ½@\ο;•B`²Χ“u †@ΰ₯V¦’ΤΊiχHυ§F¨‡"› Τ %0[ ٜ€LΕf*|ΎΏΜm–ϊˆλ&q£Ρ₯|²CηΕ–β½bW›†Χώ ‚Wr%&Oq=ya vJq½SάTΆ'ίcυ*R­Θœ’ΤΦŸέ“-TkQΰWΎϊά_xλ/ώκσ†€qη»n[]ύS—έω©O>υΪ-Λλ]M#Χ~Œͺ, Ϋφθφ]kΡΪW9]…l©™َS,₯C»cώœΦw‡,)­‡‡-ωΠτ}DE―-έΝa€†#€ΈŽ%%A ˆλΌHJ^e;$ͺΏΙ’υ  š)ŠλLœ›7μsͺ›ζDKμκUnκwŠ·EbKσ“e[Χϋ·tξw*΄sβZCΒ΅i8ΉŽ?hΙ‡d—lJνiŠ\·±Ν= ˆΓξ'Ρi1€@Ž@Χ‹3τ e˜’Έbα›©,*ΤΆp‘zW“­Ύ/]4Ι#S]ZjΊAmβύ³―iρ£!|5ζφz+\ΓΏυj-EͺiΜΚ({cSΧ›ΞΉφF7‰λxώ΅EΗU^ίΘuκˆά<οœφλJ<ήο£M₯EΟtܐÝ‘λO-€vMq½kβԁi˜šΈήτwŠ‹ uYΈ¨m$νΏt-pΣωŠ¨Ε9šM -΅‰λΆ›Χ!o˜w±HΡEͺΞ’"Υοœφι·XλjΧ%Qœž;ΕNWΧχ·[0μ>βZ׌σ,ΕEΖd[z HνʝγιCYΞ]»†Χ›ΎΨ‰†Cϋ'€ΈήΏ°S"0wq=΅E…όf6ΨλώN.J…mΌΙ=g-?n―³€ΕŽtΓyΉ₯YjΧ‘Ι”Δυ˜‹ύˆ1Q€ZΌ$ͺί;₯“ [žE 6qέφ°LΊ/R―ξiΧqψι”Δ΅ίό·EΛ»žϊ=“ V€ϊ-ITfΧƒΙ·WSΧ9 ±ν2€ΫΟk/'χžλ4Ο.ήsΞσΉ‹rc9qνeΔ6n2ηZŒ"Ϋ”}Žέ^;,•C(@\Σ7 H`jβ:υΞά*έ`ΖvuYιˆ q-­h΅"DŠ)Š­ωΠQ\7ݘΆ‰λ&ήΪ·Ι sκ«±)zΩ%A­τΫ–$ͺίΟi=+SΧ³‚‡±€ 0ˆλιψK 0SΧ›ΞΉv†]’Α>§±-r:ΔΠΜ‘"Χ'XeGτ·mxyμWm⺍ŐseW—`ιΌxΑZP+ZύnKZ¨μΑ)œDΨ°1ΔυΖΘΎπ «tdΫJδ›ΧΘ€ ΠJq݊ˆ XZΔ΅ ·ΆΧΌ½¨μΨΆŽάœk‰k/OοhV{βΊΟ"E―°v†₯·[R€ϊ‘E₯υ5q]ŸOi E@\/ν4E5‰λ©,*Τeα’6[}΅p‰kΝ΅ΎΨ’ΟCœ«Έ–έ})ϊ;ώ£œΛU@\WαF@ˆkϊ  LM\ηΌ3ΗE…Ϊ.R;›@Šβ:λ›Šλτ}Υώξμ»ͺcτ“9Χj‹q}ιBqέ…y @`ςΧ“wB`§¦$wΪp*ƒφFq½7τT @C@\I“² 0ˆλΝ|θ‘άQ,*΄Or/“βz™~§Υ€ͺ#€ΈΞ₯4½ {αγ`@` ˆλ- q Lβzz>Α"μ“βzŸτ©Λ$€Έ^¦ίi5 κ «s) ‚@/ˆλ^ψ8Ψ‚βz h@Σ#€ΈžžO°ϋ$€Έή'}κ†ΐ2 —ιwZ @ :ˆλκ\Jƒ Π‹βΊ>†Ά €Έή‡@€ΐτ §η,‚ΐ> χIŸΊ!°LˆλeϊVC¨ŽβΊ:— τ"€Έξ…ƒ!- ·€Ζ!€ 0=ˆλιω‹ °Oˆλ}§n,“βz™~§Υ€ͺ#€ΈΞ₯4½ {αγ`@` ˆλ- q Lβzz>Α"μ“βzŸτ©Λ$0qύ„ΉζlKd\t}wkςύUφωLώ{Χεxφ{Φ\Q([χiͺϋ„uΎσ“ΊTχm–N[ολTΆΚ}°Π­΄¬υ>ΩΥdƒΫ)ΪΌΎXtS›0ς6-σl Υ€ΐ¬ gν>Œ‡ΐΰΧƒ#₯@@ …ΐ\Δ΅ \5'ΌΪw.<½Ή Χ&ί?dŸ/²δ‚Wεh+•λΚ θ§-Γιλ2$όΆtκϊs“Έ–H6+ο-–$ΤΣφωηhgΧΆΕ‡]©MܟrΩ€fI€‹Χ,݆эβz4΄ ,I\{\βϊ¦ΐγˆύMƒ°•HUώ˜OΩ―΄t’₯,IΘ°tϋΊ¬6q}Ήεs!žΊ&><ΘΩ™Χ±m*oΫΉvrς@˜Δυ,ά„‘ΨΔυΞPS °&PƒΈN‡…ΗhrtτΝφα’υ.FυρPΊQ”F‘*ΡyŸ%.kŸ"ΠgZrq­θΉG~Ϋ†…Η!ζιpυhCΞΞά°πΨΆœΈ.1J£ϋz` Ν6p’@˜ Δυl\…‘Ψ ΔυN0S  Τ Ϋ†‰Ϋ“,έ`IBώ€₯ΫΧe5‰k?ξ’€7IΐΏΉ‘Υ―ϊN΄€HΎGήΫ©ΈV-νR\ηU}ΒΠ8@`ΊΧΣυ –A`Χϋ NX6ΉŠλtXxŒ&Gήl\ΠΊΠΦώC–<βά$ο³|ξ›"ΐgZrq-ΑλΡΫ&qέ$B΅―TΟ‘uΕη­νU$ώ~KϊΎο°p1‹ύPx™ΰ|Σ‘τΪ|xϋ²Ο&Zμ•βz―ψ©“#€ΈžœK0Υ˜«Έnˆ°Δn›`”ΈμΉ–Έ–ΐ”ψ}άRiΞu.r-‘ώˆ₯ΆΘ΅:‘"…ήxΔώO#ΧΎ»4η:Η̏ΩvX8‘λκ/4σ!€Έž―°» €Έήeκ€"ZΕ΅ΪθΓ€}8΅†R{„5Šέ’Έn›s£ΈŠ(Ÿb)FƒΣž–ΞΉV½wZR\σ·Ks½-l¦Δ9ŸŠΈfΞ5Χ@`2Χ“q†@`Χ“pF@`Qζ*ΣaαώnΜ‘Π IDAT‡j»%z΅tn"^΅ί…aI\+OΊΒ·‹ηtρ4ΟΧ$›V /ΥγΓ}%tέ;z΄Έ)rωhΡ΅λ,ε˜Ε!σMQ~η›ήΞjα‹Ί\ΠXL›βzΪώΑ:μšβzΧΔ©˜ͺΈΖ3€  7ΒEfTOq]½‹i &Gq=¬K΄—ήΡΦJƒ °Pˆλ…:žfC @qMΧ€vMq½kβΤ@£@\‚•B!0[ˆλΩΊΓ!0[ˆλΩΊΓ!@ @\Σ HqM€vMq½kβΤ@£@\‚•B!0[ˆλΩΊΓ!0[ˆλΩΊΓ!@€Θ5}(@\Σ7 ]@\οš8υA€ΐ(ˆ\‚•B!0[ˆλΩΊΓ!0[ˆλΩΊΓ!@€Θ5} rM€¦Bq=O` τ"@δΊ>†@uˆ\WηRΙ@\OήE@] »P"–Cq½_ΣRL…βz*žΐ@θEqέ C :ˆλκ\Jƒ 0yˆλΙ»!@  ΔuJδΐr —γkZ ©@\OΕΨ@½ {αγ`TGq]Ki&O`βϊ £xΆ₯24/°οnMΎΏΚ>ί•ΙοΊΟ~ΟϊŸ+ eλ>MuŸ°Ξw~R—κΎΝiλγγ}ΚVΉz€φŸ΅ή'»šlp;Ε@›Χ‹n*cFή¦Ιw\ „ @\Σ' HqM€vM`.βΪψ€‚χBϋΞ…§σ“½6ωώ!ϋ|‘%Ό*G[©μXWN@?mN_—!α°₯Sן›Δ΅Dz΄Yyo±$‘žΆΟ?G;»Ά->θΚHmβώtΧg!υAƒΰβ5F @5ΧΥΈ’†@`6–$=.q}SπΠϋša+‘ͺό1Ÿ²_iι$K7X’?`ιφuYmβϊrΛηB<ν,ραAΞΜΈŽmSyΫ>€Θ΅s6C!e@\/Ϋ΄)Δ5}Ψ5Δu:,·37,<Ά-'KŒθΎhσ‡ »ξΤ@`kˆλ­Ρq ͺ$°Oq]%P΅1~—6F6ϋjΧmCž%F%vKs§εD rE΄›Δυ‘Dt¦‘k‰k}wž₯Η-5ΝΉŽΗ£ΣQψΛΦtŽ·Ϋ©Ώ.ŠΣΆyΉDgj@`SάΔlJŒό¨›ΐήΔυ«FΑΆ%ψŸzζ'‰ί₯εu‚%ˆkyU’χ % ` νΓ–<:λ"YβΆ$Ϋζ\Η°ζvŸbΙ{Ϊ«R1F‹έ†’1RžΆ­―ΈfΞυς΄Υΰ&¦W Bq=F Ω†βzjUSƒΈN‡Žνβ9νωJβΪm‘ΧBΣηΈ:zΞN•›[¬ν~ϋ>~«Ό\ά₯+°³Zx§5€ΐ2 —ιwZ Δ5}coΧ{CΏοŠη χ͈ϊ!@`Χ3p&B`‡Χ;„MUΗ@\/ΆG Ηs}nα1ΥΦΡΟJ† P9Δuε¦yؐβzC`dŽβz8–3+ q=3‡a. δ ι€@$€Έ ?άυ“«ΥOΚju‡Κ9γ%–ηV«s~vœoS>βz_Μ TΔυ œ„‰€ ΠNqέΈXΔuήF\WΰΔe5q½,ΣZ@Υ@\WλZ­L^\{Dτ‘­V'ύjυΖW«ίxτοcO­V'~ν±Ο" }‡?hοΏωΦ£<ήσΥκνοΛ³‘(υΝ#Ώ^^SρΈ Žί»}Ήš·­ΧΛrυΩνtϋ_{†±yΕ±Z΅Ϊw―V^η'>½Z]xύjUΚ§#ίπr[Ϊψ₯ΗΚΈρ7W«χjMΰυ–kgZ~—ήHδΊ ₯*σ «t+‚ °<ˆλεωœC ‰ΐlΔ΅ Ό(¦›Δ΅₯ ΘάPθ[.=*L%Ό=Ÿ±6θΉ2tάΏ{TlJ„ΎΰyGΕkΌ!λNΜΥεβ:F±c»<ψaα₯|ή~·έyϋηR;Ξ…fˆλ `‘€¦Kq=]ί`φA`6β:©.‰λR^œ t}ο’ω{#m)2ž T§²rίGή·^΅³© ʏςh4?—7Ϊ(›Kω\\η"ο9ννTέ›Ξι&r½S~u"'αŒ€ ΎΧ} r<κ"°Hq‰?wαj₯‘ηw?Έ™ΈVwπς‘IίΆή(„Kχ­w]Π,-›$”Σ₯|ͺ+mhjηοA\Χui΅5ˆλQρR8 μŠβzW€©σ °Hq=dδΪΕυΎκθ\ζ¦mΫz»FU·’ΗΉΘ}Χ.’Ϋ"ό*/Ϊ¬2JνdXψrέ·?]ˆλιϊfdΛ¦*Ÿ°vŸmιLϋ/°οnMΎΏΚ>ί•ΙοΊΟ~ΟϊŸ+ eλήLuŸ°Ξw~R—κΎΝiλγ㽜ΚVΉΆcvσc|§lΎ¦₯ž+mΥ–b=OΫgϋα ε“Ν6ε~Ύ₯νΠχo³τ¦Œ₯›πu…&σ5 έ@\οŽ55A`ΧsπR₯6"+ul{³¦,]ΰͺ©ΰMΕ£ςHΌ^›ˆΚ‡μσE–\πͺm₯²c]9-a{ϊΊ ‡-Ίώά&ύX·%-+ΠͺηKΆ²ΓJK4JˆKlϋg‰λΘΑEυ-Ιχ2/'ΈcοΨ–―Ϊΐύl$Ι€ΐήp1Ϊz*†ΐ$ 'ι–e…Έ^†Ÿ3­¬]\{\‚φ¦Πώ#k±ͺ―’°ŒŸ•?ζΣ>‰Ϋ“,έ`IBώ€₯ΫΧe5‰k?ξ’Δπon¨Gυ«Ύ-)ν‘χΓφ*UΗAK»Χ9F‹=™h8 °_ˆλύς§vLβzjY=ˆλ’³}8mΫoΆG9›†ΙΊΈ»Οj»ά’G<χΩΣζ*Σaα1šyήl\ΠΊΠΦώC“Έ–―4 ά7υ‡3-ΉΈ–ΰυθm“Έn‘ΪWͺηΘΊβσΦφ*Ώ%}ίwXΈ˜Εˆ~i(ΌLpΎιΘ zm>Ό}Ÿ}™Ί!…hϋ‘^8šΕΨ›Έ^i\"ΐο³Ι %%Ύ­’jq‘F2wέ;η*Ϋ†…‹·Δn›`”ΈμΉ–Έ–ΐ”ψ}άRiΞu.r­Ύυˆ₯ΆΘ΅ϊ„"φΏ/lGμΏ4rν;KssΜό˜m‡…ΉήυK}€@‘71t@ Ψ§ΈζzD_\ ‹CCγ‚RϊZHί<ͺηί=i;β<έ”WŒ\kŸ"«š{Š%_zΚ#|S˜―Z«Έ–|˜΄§Žό£Ψ-‰λΆ9Χ1Š«ˆ²|£ΑiIη\«ή;-) ωΫ₯9Χ^Ž6ΣΘEΏXš‚ΈžBN9σX(nfκxš Δ5]Ο&πχν«Zz΄'œT(₯Ÿ]θ(’Whή&r-S%£xΟ‰ ²λ,ΕaΗ=›ΉραsΧι°p ŽC΅„«οœk)½οrŸ”Δ΅ΚHWψvρœ.žζωšΔuΣjα₯z|Ψ΅―„6x΄ΈI\G>zΘ£~–c‡Μ7EωoΊz;«…o|Κq 0ΔυXd)σ$€Έž§ί°z|jϋ}–ήiι=–$*6ݚΔON@Kpi…fŸΧΪφ›‹\»ΠRωo±”FΎ§04|ͺβzS’€N ν‡zαxh>Gq½8—Σΰ όεύΗ–>kι?XϊίΧBϋ7(#}Χ―G–sοV±ŠΦi‘)EόΪ~³·ΧΎ τΝ4+βzPœΟŠt{ιMνa- 4@ %ΠφC½P,4‹%€Έ^¬λixΦΨ_²Ξϋνοη,ύιZhšύύ£εx–Ι>ΩΎΜE–•·Ο°π8„8.ε6Ήήΐad… 4@\Σ? HqM€ΐ³ hΞυ·¬“ζwώ3KΟ Ω$°Κ«-ύΫ€š»z©%š›s­aΰZpΜ΅κΣΦ7r­2˜sMο† ŒHq="\Іΐ gθ4L„ΐ—Y). ύοKΦί}ύύ“uR΄Z"ϊ«Χ΅ώ­ύύ?,ύHG+=>+δMcŠ«…§‹‘ι°¦ίν¦aα:–ΥΒ;:‰l€ m ·‘Ζ1¨—βΊ^ί²Υꋴ滀Φί…Ο πήfπZδ*Z}‘₯_Ÿ \ήs=Ga& Μ“βzž~ΓjŒEq=YΚέ%νΡgF»hŽβYbΊλκίnyεΦk‰τΎκOο°aι«’ͺ»,Xεs¬΅HZiŽχ›τLU,hΆkβΤμ’@U4δk»Η±m[‡΄;ώφ\nΊ­QS?q=uavKq½[ήΤΆ=Ψ  Μφ₯βΩ£ŸίΎΚΥΛμΨί²τ£–~ΎG9z<Δ5=¨™ΐ"5r[\ε“©Žšͺ}Η•ƒΈ+…B`Άζ(γΥήη²ζφίkΟ™΅ΠΤΥα³^tIβΕ4jψ€νο V=qެίτ‡/΅Υ―Ρzίρ 3½ΚmpΫϊKl<ΒΩVξlϋœ /²ƒqN£ΟϊξS–rZίύMŸJŽύοmί/[ϊΘHε/΅XΔυR=O»!0ρ·0ŽJοόήΒϋΆζbIΗ<`Iχ%1t™%E°uόAKρ~$GDQ_”ςΝλέx?mυϋ ΏGΠ½—γetΩ§rY·AmτuCβ½R|€Χ㬦ΊήΗ(½q= V …ΐl ΜU\§‹BEθ‡&έ/Qι«2ϋcόΑΤ1Q€Η•›}H—~μ^cΙv_q-›ξ΄δ’ήLγu:ΎΊιΑΠHε=ΓγɏtΞ&ύΘ°‡d•ΚΝ±KΩ¦‚^νmm7 Ή“δφεΏ΄δCΈΞώσ ύ 远νY†α)Δ5}˜*ψΫμχ ώ»#㽄^­¨7<€Vχ"gͺίϊœθL9€o•ˆŸΣψ9[uo£Mβ^b_Ώύ~\Χ}©ΈΦο{Ž…·Χξτϋͺ©Ύ©b”>‡Έ+…B`Ά–"uαΜ’~άr2›©πuλ{έG\7‰Ϋ(^Kωd‡~μτγ―λ]mR\Ηνψ λIρC–Ρ#Ou=ˆ|³&€Έž΅ϋ0Υȍ>σ‡σZw#ώΖΕίQΧ..Σ79ψœc•Gΐε@–~Ÿ•7Ϊ—ΛmυΘΉ²γο·tΓϊή!!rϋƒhέ6φ-k˜VeκJΫνΧ ²n:FΧΤ8J§iͺM›Έnβ­ώ3δHš>ΣTΆιΛSW₯·*€£΄ΊF%υ \› Ϋ„Z―›F›Ή}ΫFΥ6΅7ΠΉήΔλδ…fK`βzΣ›cwP“ΈŽ7ˆ]"±}#Χi§Ιέ,η~<=ͺσΑ9_91<δΝ¬μθΒkΆ' †N`nβzjΣJδSWke<χ=ϊτq+ο:KΊi«lΧ‘Ι”Δuίi*ƒwv œΨŸγο²GΎωoq—Θ΅?θj{Π€:ό‘—‹Σ>sΣΧβœλ¦}m‘k χ@ΜΉž]7Η`@`,KΧ.Ϋ"ΔΕNηιϋΫ-]“ό°ΈΊΟσ,₯ΓΓ›ΤT7=©ΞΩ”‹\ΙΦ!ΕuΧ6Υ‡)w~ζ&§6­$Ξη,½C·ΛƒDυE΅°’6]ο<Ί€Ε›Δu| 6%qνΧψ."f~gοŠ@οβΓm}―σG‹₯~Ψ’„wiXΈΞΩ\4·Τ«Ύ?φg·->TOσω5"τ$ή΄―‹ΈŽCΧ½,V ίU₯@`²–(Ϋ†JΚY]†\φ\§ΗημJE°―EΉ7Σ<¦œMΊΠ6ζjαqΥσΙvv › }‹λΔά¦•”ŽΕvu™sd-$’}Α%]/Ŏ―ΚM7‰―δiΧMΌ΅i*“95«1δλ¬%Z₯ϋiQ:…kl³š]›Ϊ—‹Ά χΥ ¨σ7…J~@`žζ*s΄γ{ Ϋ’ιb!Ήχ\§yvρžλΈψHξ¦374Ύ#'ύ‡4Άq“›YΩ‘Ύc3ςΟ±›ηΩ€Υ»"°oq]Γ΄’Ά©›D5όΤ_γΣ7#41kΧmΧγ!G¨·±ΩU?§žύΈΦͺKo²τΛ{4%}pξύ½dRz°ιc‹λ\R»]Pίg (Νcί¦m“;q=9—`φJ`Žβz―ΐ¨θM`βΪ…ΫΎ§•ΘŽm§δζ\K\{ygΨε2WqΝ4•ή§g5(z­υώzύWην>Ev5`iΘρΧτ@ @\ΣvρdzΛ)γ˜³ΈžΚ΄’.SWΪlC9ύC>eβΊ΄Πۘ½:½ή§£ydS|εXϊnΰτUhΡo²[ο+Ž›’R½‡ΦCβώοFhΣάΰt“πΤ{œΣΊ”―t\ۈ„1™w-ϋ΅Œ[zž₯Ώ°$vˆμτΘΧ‰βΊ&2A`1Χ‹q5 …ΐdμ[\η@ΜqZIΫΤ΅³i LΧ©XίT\§ο«vΑXz=`ŒώΟyšJi‘I_ .2#λ.ŽO1?Εϋs"Πjνώ>ΰCφ\3Γ‡Ϋή`ί§ϋδσ’θNϋ½l‹―Kj:Nv_lRYώξf­]Ϊ$ΐΡ―<Ο΅ΊΒ$²?cιΏ΅4•9Ω{DDΥ} ϋδxΤEq]—?i ζ@`Ÿβz|°q>τ€β$Kι›%$Tυͺ³άΎT«΅ώ*4§ΉΒϊ;uq­v±€7U”6Δυ|ϊ2–nIq½%8ƒ@₯Χ•:–fA`ΒΧΝΞaZΙ„;obZ“ΐ,νsAξ‘g½ήρΰZLλ_ΚΕu:TϋaΛ£Hφ¦ΓΒS ‹\η†…λΈ\δΊτ`aJήcXψ”ΌQ©-ˆλJK³ °%Δυ–ΰ8 ؚβzkt819)!ϊˆ₯‘k e_₯]CΒ}AΉRδΪ4‰λCλršpυή%r½Ow± Ω>ι/¨nΔυ‚œMS!ЁβΊ$²@ƒ@\Š“ΒφL {,ΡͺyΘΗ]ζ\KLϋjνGμ ³ΦqSΧ]ζ\οΣ5SyΧ>Pχ w™* 0#ˆλ9 S!P Δu%Ž€Οθ³Zψ!;^βΪWχϋτβ:7dό"+/7Ό;·ŠyΊ Yι8 UOWŸςjαŠZŸi‰Λ8IG'€Έ1@`VΧ³rΖB  ˆλ*άH# @qM€"Δ5ύΨ5Δυ‰S 06 “ίu4ίGMμΊήMYv΅3ΎͺnΣ:6Ιο+φkDΖε–β«ξ6)η™Όˆλ‘qͺ&€ΈΪ½4“$ Αw iΩW|Εsοψ›ΏωΜχY&eAΨ€βΊ kJβ:]Π…vϊ:½ΞG\wFEF,‚βzn¦‘€ 4π¨©^uvŠ%ΧLΝΎnh±:mqύ½φω,Kzp¨•β5wέσzΎxl,3j³R]%³£hUΝ‹Oνorz¬Ο£ί^¦·IΗ§συseϊqΚ{ρ:ΓUφW τ₯βΪΧπrT—πs{ž΄}=€“R)οτσ=Vφα΅]^Ώ―ΦίΔͺΈq½6‚@΅ΧΥΊ–†A€ Π‘€‹k„:L ΛέiIQΝά’sιΎ.β: ―¨ι‰kaΩTW© 9qνojz>=Π¦‡.xΣv·Ωβοawž±Lπ1Κοε+ίΙ–τ€ .μWβ_*Γν/=άΘ i­Φ₯Ϋ:φ•γ²!·‘Ζ1¨—@-βΪWVΝ­tͺ‹yΊΚ©~|ξZ€Dοϊ‰§'œΪΘδΥχΊ¦Ζw…ϊ‰Ÿ> ŽΧ`•­rύ)xΪΛ΄_OΒ΅Ι&άNuKΊzm[›0šϊάzΟVZ@cˆbPΏΛΉωΏ.Œύώ!F·‰λT<ͺ-ϊ½Ξ}ŸΎΖ-ΧŽ6•Xε’ι₯ΆεςΆΩβ"Υ_1wΓϊΚωΔϋžX~δΠΖΏT†l+Pωo±WΙWώ^CΓΧc’” y¨I\Η‹e*x/4χΈπtOι‚χ`ΖουCp‘%Ώh«m₯²΅ΟλςˆtˆW|jλOtu\“ΈΦJ΄Yyo±δ?X±}nC΄³kΫΌ]i}MŒz Ÿšηi‚Υ€ P9’ΈN›­aΟώj²ψ{―ίεΛ,5 Ο‰h•Ÿ>˜χ:Ϋ†co+sΒ5ΒMΓΪs]!'ΒsβZχ1³>tάΛJ#ΧmLJe¨ΌmΔ΅ ΨΈ›#7FΖ¨šβϊxqνp‰k’©pΔ’ζ iΛ [‰Tεω”WÝN²€§Άς,έΎ.«M\7­`mΘΩ™Χ±mi;6ΧΉvV}’Π8@¨ž@N\璜QšG½MδZε©ξR]Mΰ·Χ»Š\§ΡpρΡ¦Ρ„9ρžFKLR_Εφ¨ό’ΈΦ>έ{Ήώt¦Ψ₯ˆλtXxŒ&Gϊρ)±‹Qν?dΙ_ΥΠ$υ4;ΞΩΡΐ™–\\ϋ‚zΠΩ6,<>΅M‡«Grvζ†…§Oΐ›†³«ΝΞ(ξ끁6Ψ°ΏήKΝ€ a€‚M₯Ζ‘ΩΎί§FiŸΔλwέη Η9Ε>χΩ#¬.&γ\aν{%‰½¦ΊJ-άV\{ΫωΜρήhΫΘ΅ί―”ζ\«ξ8―ZΡm- Wšs}ύϊ~#ςo*C>γ&ώi°™9ΧÜC”θtψ#q!Ζέ09ψΟ\Χ†ISΌͺ§KTV?Pρifn8’Πτ‰\ϋπyVίγ–šζ\Gg€σά†’:ΦEqΪ6/wΫ‘σDwsšP  μŽ@N\«φx“”.ζϋ4εK›/ŠW²φΥ³S±κ-+­ήea²>β:m[ΊFLqνλΕ€eϊgΤ²AνΌΤ’‹hgš[­=2i*£‰?«…ο&,’βϊΨ°p]ŒZ’N/Ύ>Ό[+†–ΔuۜλŽOjs š₯b:» %;c€\;Ά­―ΈfΞυ"/4€ P$Πuα³}#”‡,ωhΔ^‹™©1CFŠφ ‡ϊ!ώ–"Σaαz’œ PΡ”θ}ΤΉ™λ₯‹Κ¦(y:;>ωβΊΛP|*B“quττΊ.;Uon±Άϋν{= π2β‚f%Fι μ¬ήΌ£@€@ά―xLieπmk²§­LλH—ΥΚΫΪ=φ~ԚʷΝ\χγμC\ν.Κ‡ΐΌΤ"ηEk!@€fOq={ Jq=(΍ += žΓ“ߍΛ€ @ &ˆλšΌI[ ПβΊ?CJ€ @X ΔυN“!Π@qMχ€ @€ΐΧ[@γTLq]±si @€ΐxΧγ±₯dΜ‘βzŽ^Γf@€ ½@\ο݁I@\OΚ@€ 0ˆλΉx ;!°ˆλέp¦@€ Κ +s(́@Oˆλž9€ @`™ΧΛτ;­†@‰βšΎ@€ - ·€Ζ!¨˜βΊbη4@€ ρ ΗcKΙ˜#Δυ½†Ν€ @9­ϊ[ IDAT{'€Έή» 0“"€Έž”;0€ @`.ΧsρvB`7ζ"Ÿ0g[z ƒεϋξΦδϋ«μσ]™όχΛρμχ¬Ή’PΆ™ͺϋ„uΎσ“ΊTχm–N[―±*[ε>Xp₯γ»eσ5-υ\iϋ―ΆλyΪ>λΨg8(ŸlΎ0iwΪUϋ6KoΚΨΊ _ηQh2_C€ z λρ%-ΐζ$]ΰͺέ©ΰMΕ£ςHΌ^›ˆΚ‡μσE–\πͺm₯²c]9-a{ϊΊ ‡-Ίώά&ύX·%-+ΠͺηK—ZΊή’„ΈΔΆ–ΈŽ\Tί’|/σr‚;φ§mωͺ όΞD’ό@€@΅Έι©Φ΅4 [XšΈφΈνMΨ‘΅XΥWQXΖΟΚσiŸΔνI–n°$!ΐν벚ġwIβ5 ψ77Τ£ϊUί‰–ΙχΘϋaϋ?Χͺγ ₯]Šλ£­:&A€ ©@\OέC؁ݨE\§ΓΒc49½Ω>Έ u‘­ύ‡,yΔΉI\ίgω4 ά7E€Ο΄δβZ‚Χ£·MβΊI„j_©ž#λŠΟ[Ϋ«Hόύ–τ}ίaαb#ϊ₯‘π2Αω¦#$θ΅ωπφέφfjƒ @;$€Έή!lͺ‚ΐ Τ"Ϋ†…+",±Ϋ&%.ϋD%%0%~·Tšs‹\K¨?b©-r­n₯ˆτc‘±ΣΘ΅ο.ΝΉΞ1σcΆNδz'=&B€ 0 Δυ0)΅XŠΈ–Ώ|˜΄§ΦPj°F±[ΧmscWεS,ΕhpΪg9ΧͺχNKŠ‚kώviΞ΅—£…Ν΄€˜"ηSΧΜΉεΚ@; @h%€ΈnED,Š@-β:αίq¨Ά;U’χQKη&βUϋ]–Δ΅ς€+|»xNOσ|MβΊi΅πR=>μΪWBΧ5έ£ΕM‘λΘG‹]g)Η,™oŠς;ίtυvV _ΤεƒΖB€–Mq½lΣz€ζ"ρ @€&Eq=)w` φNq= ΄ΧΦΡΧ"J‡ @„βzŒj «q%  @Ψ%Δυ.iS¦Oq=}a! @€ΐ 'θL‚ΐ χŸͺ!@€ζKq=_ίa9Ζ €Έƒ*eB%?h;΄bΏV·L€ 9@\ΟΩ{Ψα ‡gJ‰€@™ΐ—Ϋ.½Ού{,}ޟZϊKzEœ‹n ομ’/@Ψη•rη›έzΝέTξ·τͺ>mώš½X»²θš―k½žO―FάΤbΉ₯S7­Œό€Ά%0•‹ύΆφs 0,Δυ°<) h'πΛςo,iΥό/ ΩΚώΧ}Κ'-½Ϋ‹4ΗBqJβZν9΄₯ΨμΚ’kΎM΅ΈVΫ>LΨΤ>ςCx†βšŽDˆkϊ °_b•~ΐšμ§μσχZϊƒ ’σΝ_uχ„}q½₯k,]iικυ}οωο΅ΞΆ…β#φωK^–οσΟ₯2ά y?a]A΄Ν£±.Β±?em—²§ί«Ύ’Κ―}²¬u]7Ϋ_Rίc^·Ώ‹Ϋ|‘ΧΉφͺˆ3ν‹―-τφΔΘuΞΏ%†ΚΛύnƒΣΨ G€‹Νp,) 5@\ΧΰEځωx‰™ϊ}λt’ύύjK½ώsϋ{-ύΏ6GΒQCΝ%*£ˆ–Έ|lύ½ώΧ&£’ž_"V›ΔͺD]›Έ.•q²‡…ηlS]žο*ϋ_βί7Œώ}*κγg·ΧΔΆk_™}Xl"Kν}°»φεŽsq]ςoΚΚ>d\g©Ιξ€œ!lOq½=;Ž„@Χ5z•6A`ZΎΙΜ‘ ~₯o±τuϊ[ϋϋK_cICΑ©% £MΆά0lͺœƒ–$¨υέe–$š%ζ|Λ‰Υ6q­cKeDq cηΆi^ΉDΈGΒέoO)bž³7—WvΌΕ’GΟ%Ό·eΡU\§$b{οκΐ=²π‡*#ΓήƐ‘α›œAδ…z@\χΒΗΑ¨ŽβΊ:— L‚ΐ?4+K»ΧεΫ²θ*…4Βή^*θΒΜέβCΌΜœK UΟ‰kΏoΡ₯8€@wˆλξ¬Θ %@\/ΑΛ΄»!pΐͺqAύφΏG¨½P½†rΏάw[pμm6 Ψ‘MΛPTBΫΕVSdXΗvξΊ1vΉΟΘ΅Ϊ(θσΆ,ΊŠλ¦Θu©oŠΐ»­A ­δίΤ—ξ{"ΧۜIlEq½6‚@΅j׊r(:•»AΧ šnvγ¦ωŒ¦˜ζχΉ‹žΧηi^Q([ΧTΥν±4ŠζsύF2^ƒUΆΚΓK£Ϊο‹Ι&β|R•ς2›ΚΨ„Ρ¦―Η©φδ‘aΟψ:K.¨%’]PkΈwΫ&Ρφ?[ϊwm[φΗΕΊότ~ͺΘ© KσsΡχ§‘kΩ&1κsŸ=κηKηΚΨtΞuΫ°p5½d‡φ5-Ί–.μΥ‡EΙι‚fmsΜsΜ|Ξ΅ώκ:ξsΗγœk_˜.ϊW6ε’ΜΉξyBq8 НβΊ;+rB` jΧ.pε·Tπ^ΈΎi‹>ΥMα΅ΙχΊ)»Θ’ ^•£­Tv¬+' usoΪ΅2°Ώƒ΅I\λ2Ϊ¬Ό·XςRlŸΫνμΪΆψP +#Vβ]Β•‘ΉΟ·έ.¨Ο΄]Pλο·E·ϋ k―.& sQο\dκXε½Τ’Δ›?psQW·Vτ[CΙ] —ΚΠβdn‹ΧΩ΄ZxΌ>(.[²Cφ7‰λΈZΈςφaQrλ&«…71SωΞIΧImqQ²œK‘kQœ„d…ϊ@\χγΗΡ¨βϊh€Δ7€K\ϋΠBν;bΙWτΝ [‰TεωtœnŠO²€ΉŸς6{ϋΊ¬6q}Ήεs!žφ»hCΞΜΈŽmSyΫ>€Θ΅³Άσ‚φ<›ΐσμ+ΤηΨQP`“$ λΐ‘†λΘ$ξiCΒ{δp@`3ˆλΝx‘΅XŠΈN‡…ΗhQτq|G¬‹Qν7¨MβZ μΔω‰Š¬(²ηβΪ_€kqΫ°π8Δ<mΘΩ™Ϋ–Χ%Fit_ ΄ΕΧΥ~ž,΅}_a wA­ΏZΜEυg– efνξ+6sΧ’ˆ ΦΎOαyVήγ–šζ\G—¦7ΘnCn₯dpΰ’8m›—KδzΛ“¦ςΓΎ4ΤZέΫυ_Vήvš@؈βz#\d†@υΧΗ†…Ηχΐ¦s}x·^'SΧmsc8.’”[Π,Σi΄Ψm(Ω#εκΔ±m}Ε5σλ»,θή F¨+κ?――Ή΄€ 0 Δυ0)΅XŠΈN‡<ϋ;ps š=jΞ=ΧRz½tQYΧκιΚψͺžXWξ=iŸŠ‹Δ…Π”/Žž³SυζΪ¦χλꁗѩwFιŠκ¬^ΛΩΏZύATΫ ¨Ÿ¬§‰΄€ 0Δυxl)s$P‹Έž#{l†ΐ>h12RkΤ„ωώ³}C€ 9@\ΟΩ{Ψα ‡gΊI‰₯Ε‚¦΄HΠ&ν!ο4 θ}ι.¨?υG§i.VA€ζAq=?a%vEq½+ԁέΠ*υ.¨CԚφΐ@€ΐΧ@€TDq]‘3iΚβ |OΤZή‡|ρβΙ€ 0ΔυP)3&€Έž±σ0Fໃ ώdΤ@€Ζ%€Έ—/₯C`nΧsσφB`΅ϊΟƒ ώ› ¨΅ͺό6­8Ž9Šσ"πΕΟyξŸμgΎ^Vc- 0gˆλ9{Ϋ!0<ΔυπL)cψŽ ¨υZ8ςΎ*mŒΊ‡.σ‚WΎϊά_xλ/ώκσ†(ψ_\qικ}Ώχ±Ο}ΗώΪ— QeΜ“ΐŸ=tλκ~ύΗξόμgžzν<[€Υ€ΐ ηθ5l†ΐxΧγ±₯dτ%πO¬€Χ­Eυ—AύΎοωxΔυžPcυˆλ½J› 0}ˆλιϋ !°Kˆλ]¦.΄ψφ΅˜–¨ώAP?ν‡Ξ&βz6š‘Χ7±‹΅«μk,oιΦ Νt| cξ˜{­Œ³[Κ»ΛφηF΄h:†ΆΤ}Ϋ|<₯˜Δυ΄ό5Ψ7ΔυΎ=@ύX­N6zm–υ –|ΘχοT q]©cχΩ¬ ˆk‰αΛ-8<±Γ&ίι<Ϋ=λΩίKΦ«Ό ΧΗ{ή‡μŸλ,E1¬:by§ΩηC‰~|LM3‰’~Ÿn€n̎βzv.Γ`ŒJq=*^ ‡@‘ΐKl κo°ίmI’ϊZ3ΔυœΌλ&N@\KΤJ$§Β9E‘Γ~œ„ί«οJ\+Ϊ~Δ’"μl€ΐ†Χ#;*'€ΈάΑ4oRN ‚ϊ­Ε΄Dυ9)+Η7q=>γ^5άυ“«ΥOΚju‡ΚŜa‡~ϊV«s~ΆWUΕƒ7-βZm‘ΐŽC²oΆΟ‰φΆ¦β:ŠΫψΣ°πΘ-'ΦsΓΒ₯r‚ύJϋ^Χ¦ΤΞqK©¨ŒβΊ2‡τ$€Έξ Γ!ΠBΰΔ ¨O ‚ϊ7Lq=qη#s"‡-Ε¨p*†­ŽΫ“φAΡο(„›’β}‡…ΉΜέ΄Dˆλ%z6C L`.βΪη­•iIhΡ"1ΉE]|1'βσά°/JOϊγKIπ…`»nkΟ06―8V«φ_k½ΩλόΔ§mbπυ«U)ŸŽ|ΓΛW«su&¬·ΣN†ϋ}Ξ΅3-Ώνά™@δZΧηƒ–΄ΰ˜omβ:wŒΟ«VqΞu.―ςτΧΜΉnλ\μ‡@Δ5έˆζ$γ<ΆT𦋾¨―Χ&7:ΊiΉΘ’ ^•£­TvΌqΙ hΏ)Q>‰σ‡-ωb6mβ:½‘IΛJ΄œ9Η₯–μVφ™HˆnΆό³ΔuδΰQ[’οeknh`μΫςσ—v¦½ΐμ‚ϊeφΏ jύe;žΐ$Δ΅ Ό(¦›Δ΅₯ ΘάPθ[μL”π”πφ|ΔΪ\ ηΚΠqwόξQ±)ϊ{ϋ·ςεΚ²ήθ’\].c;Άλΐσ^Κηνw۝·.΅s¦ΓΒuέ?+°mž[πΜFΣΒeιo›Κ‹ž©ͺΓΒeΛ}–X-œ+2$°­ΈΦMe)ϊ2 y³+ .³s'–&㍌†ΒωvΔώρa{鍊Ξ σΉj7Ψρς,έΎ.«I\—ζΈιšςfKΡΩθωυύI–4ΤXяΌkΨa*=Κ±Kq½΄α…_mά]PΏώ‚ϊs\mŠ&!s‘κ’Έ.ευ¦]ί»h~ΰΡrd<¨:Ne徏"Όo½jgS.”δΡh~.o΄Q6—ςιΨ82 φŠœ€φvͺξMζtO rΝ),ΐ6βZ7–wZΪv‘φΤ0\PQ/Ώqž—±ϋmϊΟO³­›¬¨ίΆηΙΆΓΊjΧι“xEy΅₯C½cΑ…Άς²δη&q­§ώρ(:7Ξ΄δβZ‚Χ£·MβΊI„j_©ž#λv·ΆWΧ$ Τχ}‡…ΗW±4 …— Ξ7 A―­ζUgΎ΅O‚Zι5–’ ώΫuϋωΣL :q‰?g1G =ΏΫB₯aη9-t^^Š1’Ύm½Q—ξ[ο>Ί Y:€[6ιaCj{)ŸκJΫγ£šΪωϋvUC\s)¦N`qΤWDNIWϋtΓλΡ"3%.ˆλ^œvΎ>βΊλ+@R΅ˆλΆaα)Ÿάœc—}"ΧΧ˜Ώ[*ΝΉΞEeΣ#–Ϊ"Χς‘ζυih ovϊ¬Θ΅οΛ kXx­‘λ/7˜.¨υ.j͝vQύWΣΎ¬LΊκΔυ‘kyL’σG_ut.sΣΆm½]#Χͺ[7ΉβΪEr[„_εE›UF©3>Ι£ ρl*Ρκ¦Ϊ|! έxjˆΈΟ)Ρ ιΙ–r ή(z‘ ? E.ΝL_^―:^Έήο«&zφ\ύqΘznΏ’W1"˜Fb»Ψ#ƒϋβRκ9qέΔ0',βbJͺ'^ιώŠύ§v΄ρOEgτŸ·=φ)υU …υ>™.bΥv†5΅Ν’RΎ₯ηUΣρ:&ξstΫ8HΈΔσ&rηζb΅΅u)βZβb0ι"3Qμ–ΔuۜλΕυkDzm‹ώHGψ;EΑuΝ*ΝΉφ2ΤΥ9?b)ξωv)kšsύ%0 j½.Λυ§ΪN,φ7˜”Έ–₯νΡTΐΖω]DcۜλRq²κΦΒiΥqΈ Νάλ±Ά­7zHeΈ4υ‡”qΚ0eάδ―\Ϋ\h{ι룴-*Ώ‰qν"Υ}›~n9iΡÚRKYδϊg<Ύ­Ησ+ΗAsx5\9ν³ƒιͺΡΚσ–†s#Χ‡jΧιΓ==l‰C΅½ν½6ru₯τzθΒ°$UFΊΒ·χ«tρ4ΟΧΤοšV /ΥγΓ}%t΅Α£ΕMβ:ςΡΉ‘…rrΜ|ϊOΫ°pη›»ίvZCΣυmΧϋ’ ώ«άυ'vmHΕυMN\Η•5τZ+[o*ε―¦U»Ϋζx»ΏK«…§+lΗώ±M½iς24”]Ϋ;ίtXΈ e}'$”] ϋ1²Ή)ί6ήΓW[W9ιC‚hlg,Ών|@\·b? 0‘Δuœƒ[Τ+Yτ›.όωœΌ˜·$t£w™%ΝulŽΫί$ΞΔΉΙ&νs­έ/Ή‡cqiλ Q\+―nšsΒA>Π°ΣtqΊΤιρQΘ α£΄=mό»ˆλxSŸζο:άΊKΫR[cρ9―%φ%ίψ9ΤΔ!'¦sύ’k[ύΨΉˆλΆs€ύθCΰ΅v°/Lfκ ‚ϊγ} εΨ"½ŠkόR'Δu~₯U˜:‘Δ΅Ώ&'’βw₯Θuiˆv:μ5–εΓ–%jKυ+nqέ6l<ΘδΔυX\ΪϊUΧίl™υjž4²_β’ϊ+₯β{εϊΝ&όsob„p[qέ₯m9ρ•jb―vηφAθΪ?MβpςtΏ—Ρv~<‹ύαΔm]m˜ύΏρ™KΡ6Χ£a Ψ])iΪkξ:’bw–.―¦W[“]P+šοκ8—}yTvΣbΔυn8/ͺΔυ’άMc!0ΫάΜv‘~wξ+ρΆE›ΔužΧ&¦$‡βց6ΧMvuΧ}}4eqέΦΆtž¬Ϊ²+qνάβ{4S‘ζΆt]ݟΘuΫΩΕώšθuY.¨8κ#55rmA\ΟΐIs3q=7a/κ 0†ΈΦpΥ4‡°ζζ\—Δ΅‹ς¦¨ΞΆβ:Fϊ!Ά›FΆΥΪ: Ι₯­χm2,<ΩN‡}· Χώ>>ΪF\—ό—›ΫΊmδΊK+ WŸΦΦ4$Ώ΄ίy΄υΓ”[ξ\h;?žΕžΘuΫιΕώ™ψgAP4j›MΚΆ'ˆλ=―ΉZΔuΝή₯m˜.mΔu Koή]˜Ε…}|‘›ψΩ8ηΊmθ«ζΉω;g]πψ1mβ!·_mΠkq|‘*^λ<ΪDM.Έk.M½*· YdΥjσ—ζc§ –ε4λγ£MΕu“†Χ²Kmoj[Κ"·`Y‰½—ηζλx_΄¬©ϊuﳩΟK½νjD亍ϋηHΰeAPk±D ωVϊχslL…6#+tκΎ›„Έή·¨Λ$°Έφ›z_}9'^γ0U‘•¨–ΐV΄ΡW΅ν*]€ψ«Έτ9Šρ΄ώ6‘«γs«ςΖ•–ΫΔun¨τ>Έ”zmNhΕωΉιλ̚όε ΝΕγΫ^Ε΅©v΄ρoςίΠβΊ­ΙΦψΪ―”mz|ΫώτU\MžRΏ₯σk^-|™WlZ½ οZ j ϋώ‹ ¨p“BΘ»ƒ‹λwόΟοΔp*™6/~Ξsοψόg?σύΣΆλ šl#kjŸΆδζΪφ)oIΗJΏΩRΧyΐSf³ιjά»lKΝοΉή%Gκš{aήEύƒ ΦCWΆιT\ίωΫVWΤew~κ“OiΥw6@€ΐΞ ·G­Hυ‰–|hωφ%-οH‰Ύ+,₯―›#‰©Šk=ΐηϋίK¬>Η^Έl›52ΚίE­ί4ςύeV­G\ΟΚ] @%ˆλ~}#χΎλ~%ΆνsΞ›r¦― k/uy9†β8Uq½­]ˆλε sl±ΦΰxέZTEΤΏ7ΗΖ`σ qM'€ * «p#€ΐ`Χƒ‘€  |[ΤΟ‚ϊύΧCq»'€Έή=sj„  G€J‘˜1ΔυŒWΉιw[ϋό]ΤΏ]y[—Φ<Δυ Φά;Δo΅<]‘]λHΕi΄υœ΅ΈώΈύ½n-€%Ϊ/·τ’q™LI\ϋC­φ]Γ›; XβzN§Ι€j$ΠεΖ°ΖvΣ&@ O`ξβΪ΅ZWΏ.0ο²<Xj‹Φφ‰\»@nͺ£iˆΉΫͺφ(r­Ϊτ0@vmв7EγC†)‰kΩΎνͺφœΏu@\ΧεOZ@`±Χ‹u= ‡@–ΐΤΔujdœ›ηλsͺ›«ζ)ίoιKΧm‘Σ|bΩΦv - £Žνκbλ;@βZ"ZΡj½ŠJνP[σ‘£ΈN™ΕyζmβΊ‰·φ5 oσUύWώ&{8E—Cq½_ΣR@Uh»1¬Ίρ4x©‰λΆyΌ₯ύ]’ΑΧXλ»DNϋDΈ­Ž.Άͺ‰kΝWyΊvϋίt{³6qέΕrΞu6œ’Λ 05q=Δ}SYL1m‹ίχιZΠ΄H‘ŸλιC±HΩVξl—qVΠJ@`–Χ³tFC`4΅ˆknιa*=ŠΞΉΦχ·[rήgΞυΆuδζ\K\{yg؊`ΟU\oΊβϊhž‚χN`ŠβzΣ{S\L1]οASI.^?œs§—˜)―1[Š‹ζ6j]‡λλQ[Ήmsε³ψαήOQ €Ί@\w%E>,ƒ@MβΊmny΄ΛJή}#Χ]κh³ΥW —Έφdξ=Wq]Zθmg­ŒjΧS[L±i”I|XXΚ§σS’ZSg7tyΨ8δ(?δzΜ†βz6ΒPμ„ΐΤΔuΡ~cΧ‰βΩΛΙ½ηΪoά<ΟοΉn«£ΝΦ(S±Ύ©ΈN‡‚ϊ«ΙJΓ5»άˆ·Ϋ4?~'›J&M q=΅Εεpr9ΕRn½ο9¬οYΘ=48lI£x΄ν#rνυών½π?Η]ίχlHμb~‘’N4”$Ξ4#UJLωCι΄A % t€6•¨EhmDM;ΣZDš‘Š4Ip"dΗE‚―šXrP\Hdi‚:0#¦₯R’P€~!!ΑΕ6ϊzZχŠ^ZοήέϋύΎ{{›ΩωΌίοΫΫ}νγ΅wŸ{ήkwohΪJ՝㠁}@\οΓΟ΄c Τ$ΗΪL>@`ΫjΧ)Ρ­-¦θφ§sΏ‡¦Κθ8¦Λθψ+,ωΠπƒ΄τ~’Ε·}Nb= p$Δυ‘ΰ8 @\ζXΏ,5΄ωa΅‘m¨Q\:ηΪ=3fΒ₯SL{KnŠJN{Δ;οχ‹1r]ZτLΗM9,\卩ΤζΩA« M@\oΚ] Ω gGL€@B %qΑ : IDATνBp(B|μB‡cTΔωZKΪ·τ©Ξ‰βxL:,<·^ΔΤβzl›9± ¬Nq½Ί 0U@\WεŒΐ.΄&‡(”SΗ,txκbŠc„p*¦}•π(Κ5οZ›††ηlƒmρ˜)#Χ,~Έ‹Λ„@Χmψ‘V@`*ˆλ©HR 0–@β:gϋSLηH§SURœ²ώ°@χŒ9qνeΔ#™s-Φ‘mΚ>·εΨΎE>@‹@\/Š›Κ P=Δuυ.Β@4G 6qέ`@Λ@\/Γ™Z °ˆλ­x ;!ΠΔυαΎd1ΕΓ™q Ω gGLΨΔυ¦ά…±h‚βΊ 7@@\Σ HqM€–&€Έ^š8υA€ΐ,Χ³`₯Pl–βz³Γpl–βz³Γp@ˆΧτ@€Θ5}X“βzMϊΤ @“@\O†’‚ Π"ΧMΈ‘F@`SΧ›rΖB€@‰βšΎΉ¦@k@\―IŸΊ!@`2ˆλΙPRš @δΊ 7lŠβzSξΒX@ rM€Ζ@\‘D@`Jˆλ)iR ¬F€Θυjθ©U@\WιŒ‚@ΣΧM»—ΖAΨΔυ~|MK!0†βz %ς@S@\OI“² @`5ˆλΥΠS1ͺ$€Έ-¦ ›v/ƒ °ˆλύψš–B` ΔυJ䁦$€Έž’&eA€ΐjΧ«‘§bTIq]₯[0 M@\7ν^@`?Χϋρ5-…ΐˆλ1”ΘLIq=%MΚ‚ Υ WCOΕ¨’βΊJ·`š&€ΈnΪ½4€ΐ~ χγkZ 1Χc(‘˜’βzJš”@«@\―†žŠ!P%Δu•nΑ(4M %qύ²yκjKOeίΡ#l%R•?ζSφ[-]lιKςZz¨+kH\ΏΧςΉO;g|x³3'cΫTή± rνάέΙCƒ!Ί λςΦ@`mˆλ΅=@ύ؁=‰λtXxŒ&GΟίg_n "Ϊ£έη‚Ѝ’4ŠT‰ΞΗ-ytYϋΎ’‹k•η‘ί‘aαqˆy:\=Ϊΰ’YυΉΉaα±m9q]b”Fχυΐ@›?lΨί™C‹!κ «s A`UˆλUρS9vI`OβzhΘ³Δ¨Δniξ΄:ˆΉ"Ϊ}βϊ|":ΣΘ΅Δ΅~»ΦK–ϊζ\ΗNιΡι(όek:ΗΫνΤ_ΕiΫΌ\"Χ»<νi4Ϊ$€ΈnΣ―΄ Η@\KŽγ c _?,\’χ KΐΪO‘μ"YβΆ$‡ζ\Η°ζv_bΙ{κΓTL§Ρb·‘dgŒ”«μΨΆSΕ5s=γ8˜βz6΄ M@\om MΨ“ΈN‡Žνβ9νωJβΪm‘ΧBΣχΈ:zΞN•›[¬νIϋ=~«Ό\ά₯+°³Zψ¦O{Œ‡@›Χmϊ•VAΰXˆλcΙq p,–Δυ± 8€ €Έnΐ‰4@\O“’ QΧ£0͚)·π˜*μ‹hΟj…CΨ"Δυ½†Ν˜βz>Ά” δ ι€ ΠΔun€˜Œβz2”Œ$€Έ Šl€ P7ΔuέώΑ:,Mq½4qκƒΧτ@h‚βΊ 7LFq=J ‚F@\E6@¨›βΊn`–&€Έ^š8υAˆkϊ 4Aqέ„i&#€Έž %A# G‚" ΤMq]·°K@\/Mœϊ Δ5}€š €Έn4“@\O†’‚ ‘Χ#A‘ €κ&€ΈΫ?X₯ —&N}€βš>@M@\7αFΙ 'CIA€ΐHˆλ‘ Θ@u@\Χν¬ƒΐΧK§>@qM€ & ›p#€ΐdΧ“‘€ @`$-‰λ—­MW[z*ΣΆλν·’ίo³οdς?Φ•γΩν>άR([χkͺϋ‚.ίuI]ͺϋAK—uΗΗϋ;•­rŸ.ψÏρέ²ωށzn΅ύ·[ŠυΌbίuμσΚ'›oHڝΆCΥΎί»2ΆΒΧyšΜΟ€ζ!€Έž‡+₯B`«Χ[υvC`»Ά&]ΰŠx*xSρ¨<―w&’ςϋ~£%Ό*G[©μXWN@KΨ^ή•!α¬₯K»οCβڏu[²R­zήnιfKw[’—ΨφοΧ‘ƒ‹κϋ“ίe^NpǞ|,_΅{άH’Ο€ΐ"Έπ,‚™J °ˆλΝΈ C!Π =Šk€KΠήν“Έ½Ψ=–$δ/΄τPWVŸΈφγnJz“ό»{κQύͺο"KŠδ{δύ ϋœŠkΥq…₯%ΕuŽQ3' κ%€ΈΧ7X5 Χ NΨ7–Δu:, χMΰ+-ΉΈ–ΰυθmŸΈξ‘ΪWͺη|Wρ΅½ŠΔ?iIΏŸ:,\ΜbDΏ4^&8ίtd€½6ήΎο3ŒΦC‹@\/†šŠ ° ˆλMΈ #!Ё–ΔυΠ°pE„%v‡£Δε)‘k‰k L‰ί—,•ζ\η"ΧκΟYŠ\«*"ύbθηνsΉφέ₯9Χ9f~Μ±ΓΒ‰\7u‰ 1ΨΔυv|…₯X‚βz ΚΤD{Χj·“φαΤJνΦ(vKβzhΞuŒβ*’|‰₯ N{_:ηZυ>lIQpΝί.ΝΉφr΄°™SδΌq͜k1€ΐ*Χ«`§RTKq]­k0 ΝhI\§ΓΒ5ό;Υv'JτΎ`ιšDΌjΏ Γ’ΈVžt…oΟιβiž―O\χ­^ͺΗ‡]ϋJ躟τhq_δ:ςΡ’kwYΚ1‹Cζϋ’όΞ7]½ΥΒ›½\Π0ΤMq]·°K@\/Mœϊ -‰kΌ@(@\Σ9 HqM€–&€ΈžŸxφϋ"Ϊσ[E €#€ΈnΜ‘4'@\ŸΓ!ƒ FΖ€ P#Δu^Α&¬Gq½{j†ΐ^ χκyΪ @ 1ˆλΖJs p"Δυ‰98˜βϊ`d@5@\Χθl‚ΐzΧλ±§fμ•βz―ž§έ€#€ΈnΜ‘4'@\ŸΓ!ƒ FΖ€ P#Δu^Α&¬Gq½{j†ΐ^ χκyΪ @ 1ˆλΖJs p"Δυ‰98˜βϊ`d@5@\Χθl‚ΐzΧλ±§fμ•βz―ž§έ€#€ΈnΜ‘4'@\ŸΓ!ƒ FΖ€ P#Δu^Α&¬Gq½{j†ΐ^ χκyΪ @ 1ˆλΖJs p"Δυ‰98˜βϊ`d@5@\Χθl‚ΐzΧλ±§fμ•@KβϊesβΥ–žΚ8σzϋνδχΫμϋ#™όuεxφG»·ΚΦύœκΎ Λw]R—κ~ΠeέρρώOe«ά§ Pϋ―κφΙ>άN1ΠζυΕ’ϋΚ8„‘·i―η ν†*$€ΈΠ)˜ W„OΥΨ)ΦΔ΅ \Ή3Ό7Ψo.<έέ w&Ώ?cίo ‚Wεh+•λΚ θW,Γε]ώΟZΊ΄ϋή'%£ΝΚ{Ώ% υ΄}ώ=Ϊ9Άmρ‘ΐXFjχ±;½hΠlΤJ€‹R­žΑ.¬Cq½wj…ΐž ?_\{\Ρδ{Cη8oŸοθΆ©Κσ)ϋ­–.Άt% ω -=Τ•5$ίkω\ˆ§ύ4><ΘΩ™Χ±m*οΨΉvξω<’ν€@Χ8 PΔuEΞΐμ„ΐžΔu:,q}>iδZβZΏ]kι%K}scτθtώ²5γνvκ―‹β΄m^.‘λ½_h?"€ΈnΘ™4@\O‘" ƒ _?,\’χ KΐΪO‘μ"YβΆ$‡ζ\Η°ζv_bΙ{κΈTL§Ρb·‘dgŒ”«μΨΆSΕ5s:ΝΘ ,Aq½eκ€ΐv ·γ+,…@+φ$Σ!Ο" PωU’χKΧXJοΥ\T–Δ΅ŽO‡c»xNη@{Ύ’Έv[$ΐ΅Ε…Πτ=Žž³Sεζk{~O£ί*/wFι μ¬ήΚ€v@ !ˆλ†œIS 0Δυ)8ˆ@Kβϊ †“€Ϊ"€Έn˟΄§@\ŸJγ!C %6}ώάΒcͺ₯/’=½”@`γΧw ζC`bˆλ‰R 0Hq=ˆˆ € °ˆλ-x !°Δυr¬© x•βšž@M@\7αFΙ 'CIA€ΐHˆλ‘ Θ@u@\Χν¬ƒΐΧK§>@qM€ & ›p#€ΐdΧ“‘€ @`$ΔυHPdƒ Ί λφΦA`iˆλ₯‰S €Έ¦@€@ΧMΈ‘F@`2ˆλΙPR 0’βz$(²A€@έΧuϋλ °4ΔυΔ©@\Σ @  ˆλ&άH# 0Δυd()Iq=Ω @ nˆλΊύƒuXšβziβΤ ι€ ΠΔun€˜Œβz2”Œ$€Έ Šl€ P7ΔuέώΑ:,Mq½4qκƒΆ$_6w]m驌۷ίH~ΏΝΎ?’ΙXWŽg΄ϋpK‘lέ―©ξ Ί|Χ%u©ξ-]ΦοοTΆΚ}ΊΠΥόί-›ο¨ηVΫ»₯XΟ+φ]Η>Ÿα |²ω†€έi;Tνϋ-½+cλ!|G‘Ιό @`ˆλyΈR*ΆJq½UΟa7ΆK`kβΪˆ§‚7Κ#ρzg"*Ÿ±ο7ZrΑ«r΄•ΚŽuε΄„νε]ώΟZΊ΄ϋ>$ύX·%-+Πͺην–nΆt·% q‰m.q9Έ¨Ύ?ω]ζεwμΙΗςUΈΗ$ω ,B€ Ο"˜©›!°¦Έή $ •—fΕ[eα{Χ— ½7xε|'VυS–ρ»ςΗ|Ϊ'q{±₯{,IΘ_h鑬>qνΗέ”τ ψwχΤ£ϊUίE–ΙχΘϋφ9Χͺγ KKŠλ£*;?FAmΰ&¦-œJ`5qύMƒ l{&πΏώεΟύKβώ:AKβ:£ΙΡ³χΩ΄.΄΅œ%8χ‰λΗ-Ÿ†ϋ¦π•–\\KπzτΆO\χ‰Pν+ΥsΎ«ψΪΞ^E⟴€ίO.f1’_ /œo:2@‚^›oίίYE‹!Up³ v*…@΅ΧΥΊ¦}ΓΧνϋΈΠΒ–ΔυΠ°pE„%v‡£Δε)‘k‰k L‰ί—,•ζ\η"ΧκΟYŠ\˝ŠHΏόzή>§‘kί]šscζΗ;,œΘυn/'4λ@\―˟Ϊ!PΔumΩ‘=ˆλ9ϋυMέ“ΈVΛ}˜΄§ΦPj°F±[ΧCscWεK,ΕhpΪΡ9ΧͺχaKŠ‚kώviΞ΅—£…Ν΄€˜"硈kζ\οφrBΓ!°.ΔυΊό©΅@\Χζ‘ΩƒΈή‘³ΫΧι°p ŽC΅½ε½/XΊ&―ΪοΒ°$•']αΫΕsΊxšηλΧ}«…—κρaΧΎΊξ'=ZάΉŽ|΄θΪ]–rΜβωΎ(ΏσMWog΅πέ^Nh8Φ%€Έ^—?΅C 6ˆλΪ<²#{Χ;rφvΕυnDΓ!@`˜βz˜9 °'ˆλΌύΘχœ}οΨκBΏXnΜΫΎΦςό{ŸΞχΝΣΰcΚG\Ογ‹ ”Ί₯aαΐ™51@{¦ΎˆφVۊέ€V#€Έ^ =C Jˆλ*έr˜QˆλΓx‘{uˆλΥ]€€ 0Δυ)ν¨^\{DτΉ_9;{λWŸ}ΗΟΞ>ψ―ώ}ργφΥ/ν»ά’}OόS[φ½κ€ϋΩ³³ό‰ΌΓ$J}σΘ―—ΧWF<.F‚γοn_ζcλυ²άF}w;έώo~›±ω3―ΥͺύwώθΩ™Χω/>qvvΓέgg₯|:ςΫΏΑ&†~έke|πžύ½t§ΫrνLΛsŠΉC©Ι<ˆλ&έJ£ μβz>§Εθ#°qν/Šι>q-Aι27ϊώ›_¦ޞO‚X› τ\:ξ#?σͺΨ”ύŠ·Ό*^sεMYotb.Χ1ŠΫuα—Ύ~Xx)Ÿ·ίmwήώ½ΤN†…s‘9€βϊXd… z λυ –A` ›ΧΉHuI\—ς:ΰT λwΝOΩzΎ₯Θx*PuœΚΚύEψ©υͺ}eΈP~ι7_ζηςFes)Ÿ‹λ\δ=' ½ͺϋΠ9έDΧ8嫨q]…0€N%€Έ>• ΗC -»Χ9‘ψΧn8;ΣΠσϊ0q­ξΰε₯]#’~l½Q—ξόψ« š₯CΊe“„rϊ ”Ou₯νρQ}νόΉσˆλΆ. ³Άq=+^ ‡ ₯ —"M=؁]Šλ)#Χ.ΏσΟΎ:—Ήo;Άή±‘kΥ­θq.rΕ΅‹δ‘ΏΚ‹6«ŒR;ΎΎ+Χ•83 @ΰ4ˆλΣψq4Z#°9q-h΄GS=ηKCsKeΔΉΚͺ[ §ITΗaΰ.4s―Η:ΆήΨρTΖs/Ύ:ΧΫηU«.Χ>?ZΡx_.'sω.š³³oωϊΧδζ\ϋœσΨΞ΄ξ1' ΓΒΗPj2βΊI·(@ϋ#€ΈήŸΟi1ϊlR\Η•5τZ+[*]€;œt΅π‘9ή~\i΅πt…νθ„ΎΥΒΗ<ˆΆk(»Άτ«ΓΒ]Pλ7Ω ‘μbΨλ•Ν}ωnωs―­Άώ9ќΌC;ΪΫΛsΪ!ΗPj2βΊI·(@ϋ#€ΈήŸΟi16-q_»Χνϊv eˆλέΊž†Ch‹βΊ-œJ ϊΘυ© δψz λυΝΜ–Υ&_)΄χzϋύAKΉύΩοW‡γn΅Ο·‡οχΩη›’r/³οO…ί>fŸ/ίUΟm–ξΏ]gŸ°4φώm¨έg«οKΫχŒw‰₯±L^ΆΌZ…"ΆΕ›ΥΗϋ}–ι+3ώpVSψjζξMρ€ΐžŒ½8ο‰ m…ΐž χμύ•ΫŽΈ^ΩλU_£Έvј£"A—ξβΡιε–Οή7πΉMΗDκ"9–s―εy‡%Ψ§Šλ1u ΩͺύΆͺΓηnΌg”mΈο±δϊ˜ ‰λ>ήβη "Sη:δ«τ…l‘_βÐυz?5CM@\7εN“ OFHΗ@\KnσΗ΅ 5/Ψ²‚Ÿ‹NηΔw*%πξςGκχ(XO‰\­#§ΡΦ·wβϊΧμο]–h―₯―JlMΛ‰LjΧώΠ!κ›?‘h °>Δυϊ>ΐΤDq]“7vf βΊθπ±C]υEςΥφx'.­ ›΅ ]P giΨΆ ΜG,†ƒEkO‰\ι }ύΚmU{ΉΦƒmzxΰ}HQφΎΘu|ΘP“ΈV;r@*80‘QcΞΗcš>φΓ1eλ˜)νρΟ±\zC\Ο‚•B!°Y«‰λΝΓπ© πισ‰Ž½Ίώs–\PϋΝN:xjŸ•W£ΈNmŽσ‘sσ|}NuŸ―4OωIKχX’ΈŠœ–ζΛΆ‘σ€4Œ:ΆkŒ­ην‰k‰hE«ΥwΤE±5:Šλ”Yœg>$ϋxk_ί°π!_₯Ρεο³g¨Ώ²‡Ί6ZžηϋΏαΨς§:Φ=S΅οuε ]œg©”B!j ¬)ΉUΫ-0lB΄ο ε₯7ώQPΉψςί―R³β œφ)‚ϊ¬%-<₯σKΓtŸ°•RΩkŸ{5Šλ‘yΌ₯ύc’Αβ?&rzJδZώͺcŒ­*GβZσΐ½―ψίt{³!q=şrΞυ6žςՁάuYΝJτuόάςλ―ε>Z%>”ρWXš_ϊΏ‘ϋίmυσΚΟ=πς?ώΏgΜ>•σ\Χ΅ρͺΞ§ρš·Y»ΌVλžYΊζΪPgi…BG@\Ž&πΕΦΆ/·τK'ΆΡobόoϊ=Ξ‘υ›6εΘ‰λ(ήsBΪ£Z”j­­%q-†9QœŠCb§£τϋC–\€Ÿ2ηϊΨ:rs%½Ό·ΩgE°·*ǞOkΤ[uΩΟu°qqΐ·ΪN=άL¬ς^Ω5Oη~Nt¦­οϋΏ‘φ圭ΈΪ$ξ%φuξΖuΖμKΕ΅ΔQιuO풏ˆSΝYÞYzβz¬ Ν@\oΦu>3[¬ό?oιΓ–~ΜσGΤΧ7T7wΓοΡ>Υ5ζυK9qν77*_“ψͺ'5‘†‘α­‰λ‘ΈΕ}ΜJή§FΗΤ1d«―~γΡ3VmU\—z;β”ζΖ τ]—΅v‚Ώ @βυέΕ΅_Σk³O±P_L―Ι)±7rωϊΦyH§©ΔΡ#Ή}ΉNΫ€οήήτΑ±ο«υΟ,έq= V …ΐf 7λ: _€ΐeuόQKŸΆτXϊŸ;‘ύ Τ‡Ξι0l€Ώ{‘2Z|lNq}‘•?4,ρ€&œ΅Fqk„ϋjhΈ΅ŽMύ™{ΟušgŽχ\Υ1dkΧ©X?T\§ο«φ!΄₯Ήε1jȜλx^υ͏?Έ£rΐξτ]—}qΏ8ΝG€’ΨΜ‰kuφ³4fQΙ‘₯N}λ<²/FsβΪί*θάΧkο™₯C#gΑJ‘Ψ,Δυf]‡α °–ΐ~cWΧοΪίί³τΟ-IhΔ!B;tδžξGρ3τ?»/r­}ͺGδzŽB€@J#~βuΉ/’[ΧΊkσΧχ+!Χ†C#Χ}QνάΎc#Χj[­{α>:οΠ?κΡ‘h‚βΊ 7ˆ‰ hΞυξ’žΰiKo uH`Ώ–τj"-VΪbPyrsοΆί5ί6F •χΤΘ΅Κ`ΞυΔcΕβΌο”LZ‰|EΣ©›"γλ».+¬Ε#ΗD}:ΖΠB~ΥχγΠ9Χι‚kq>vίΎ‘Θ΅†ΗΗi,ΜΉήTΗX@`Nˆλ9ιRvΝ~ŸηΪ~mχΫ—Ωί»KŠV“₯?Π5ζ_ΩίΏmι/lœίtxφτζ*cM#Σ1}Εϋ"Χ:ΆΦ[k>•dƒvB t]vA- Ί^ke}= υu2J‘λH’ΞΎn›oθ[-<τ$ή·oŒΈŽCΧ½,V ίΙ B3!2Δ5½£e_Π‰ε(’]@kξ— hύύΕπύ—”χΫηoλD’Υ7ZϊθF ι†ξœ%ήs½‡aζ& €£ ωφŠ„Ζωηι"PAτΖΗEητ›V}Ž›ΟΥOΟoΟSε Α€M£bMBQ v₯u)_ιΈ1QΨ΅ϊ­b­­)kΨΖΎ‚k*[ϋEλΫwlύΉhϋ9+¬Ά=ΗΆ―χ8†…Ο‚•B!°YˆλͺÁ―±ΟiτΩΏ»hŽβYbzμκίΏayε֍§²ωΔ‚δ§ 쫃k‘΄ο›τΉͺˆ\/Mœϊζ"Pšχϊ«P Y₯οϋŽΓz]ϋ{ιέFEGΏΚ’/:EŠςψ9}}NχiIt§ •«ϋŽ“έ7›T–/`WΠρ±rn IDATž‹σ1εήii„Ρ»,ύέc ˜θ˜t…ώ)λC¦Ν-smH§¦ΤψΏgˆΫQϋΧGaγ 4Kqέ¬k›kΨΏm-* θ_΅}©xφ¨τgO ρ§μ؟΄τ–>pB9ϊzŠx}hJ(ozΣ›?ς©O}ς[§,“² 0‚€„ΣΕ–χ—K|hEεάΎT«š»,IŒλ8‰Bύ­]\«η-i͈7E―Νοt_SdΧΘ›& €Έž"E@ ![Χ₯ΧΈψ΅άώ°;weξ΅9ι“Ω9^›“ΪκΧθt‘Ϋ‡jψ^œ£«<%6ώDy¨ά)؞rz(Z#νC·γpξί²ίsZΏ}κ”J{Žύοlߏt73UA±€ΐ† τ Μ>δy~ΘΪ…%‰iγ£L\\§C΅Ÿ΅<n{θ°πTδ"ΧΉaαώΪ§4r]z°P“;ΏίŒΡˆ#-Hω/-ι("»&5` βΊ'LH`«βΊoWqh^:DK8uLΰιϋ]•G7=ZΪ_mWΚt—€+yφΉJ6=lΙ#*_7ρ:]Ϊ₯Όo³τRwCζυδlΒ(v7cž―TξΠϋ|sε«xΜ{“ΏΒŽϋ›–\DΖ>ΗyΠώYϊ·'μχ@` 9©zΡΨΘ΅„²―μ―!αϊλj)r―γη’k»φ-5,|LδZ«Θ ,γΝvάkIλoψ&‘ύIKίm‰Hφ‘`9μ5ˆkz  μE\K`ϊϋ%s2›©πufϊέη"ϋΔmŒF—ςω—’ ρΊ>Φ¦)Ε΅?P8φU@™΅Α#ητ„ °1ιάγψΐq̜k‰i‰κ'-·€aΦ[Χcζ\#7Φ™1χpˆλΓ™qZ&°qν‚ZΎ,½?Ψo‚|ΕΤ‘•PΗ ΩRΡΝ”²I‡vΗό9£ι«–Φˆ\Λή‘ˆwΛηmƒφM BtΘjαη Δ΅¨ŠSƒΖDsCΖo΄ςrΓ»svωH,y°΄Π–ŽΣPυt•ρ‘‘5τŠ₯‡…―ρΏΠύV»?ΖΪyΘΐSϊX\pν½έyxTyˆλ£°qš%°Uq:$Ξ‡ΞΝφ›ŠΎ‹ΆG4N7&C‘ΨόdΩ6φZλ7TޞThηΔ΅CΠprοsυ\δζ:kjO_δzˆmξa@iφ„‘a€ ° k,h†Έ.wšΔu:u"ήWάΉΗήπ\0@›$°Uq}θœkwNŸΈŽqΜ?ΘS#Χi‡ΙΝσΞ‰`xΗγύΪmςcsbxΚaα.κkjΎΙ£!@ΰ(ΗΌŠΛkΡΈψŠ΄ψ0=>xΡ~­Ϋr•%ύ/Ԝϋψ>χ?7–™Nος=δWΎ(Zυ]# RϋϋF;όΈ—ιmρΉ…_Σrύ8εΥ2Ϊό$ΧipΑΧ½q{JA“Θ€TFΚ;ύžŽϊσϋ˜£tςQΥ₯9؁½‰kΏ€Eˆ=ŠΎ^EΏkeWΝ‰;E\λΒ΅–40nixθ„ŽM ΔΆεoΣ1SŠλ₯†pmα|ΒF@XŸ€’ΦΪ‘ –ω³ψ4Α’Ύο “ϊΎ1β:ώίVΤτ"KšΠWW‰jN\χM7Kο9Rϋ%^΅ια€ ή΄έCΆψŠφqM/3ΎΩΕ?Η{•·ZΖ8}―I „Δ2Ό.βι=/ Ϋ‘ϋ;%ήA=q}.2C y{Χ΅¬žŠσœ]ι?_%<Šr=Υ¦Μ9Α―Ϊβ1SŠλβo͟<4€š".Π™{xœΟ#©.φϊ"Χ©x@ύOΞύ>fΚUN\ρŽyKm+έ3€ΞΟ ύN§άωΓ½eΔ·X~δ0ΔΏT†Κ-Pωο³ΧPώ£‡†#›ΊΠœL`«β:ΧpR;fH·_°½œάp§4ΟοΉN!¦ΠrB6>QΞ‰λ8LΛ#ρ}βzˆmΊΜP±“;*@€f&PΧΉ{ΎΘ[ΤVώF‘CΕ΅ΚOο9ϊξO’=NJλœpM…p)ς[rCξή"'μΔ¬χςT_N\—ξ;ό¦qŒΌημοΧ>‚ΰ n†Έ>™!Π<-ŠλζB!@Xœ@N\璜2¬4zhXx.BνβΊTWˆcΕuΞώ9"ΧΉ7±¨=ϊ]Ώ>,\ώ(1I}Ϋ£ςK‘kνӈ?"Χ‹Ÿ^T}@\ΟγgΏΘ—J3dkΛ(€ T°)Oš.<ίiη\+2G’y„ΥχΗvΪχŽNμυΥUςΨ±βΪΫΦ7ηϊΨΘ΅ΟΥ.ΝΉvqνA_E·΅€\ΉξγίW††‹ρOΞΜΉζšLBq= F  @`γrβZMŠ+j§‹…ω>-β₯ΝŊ+YϋκΩ©Xu\₯ΥΒΗ,LvŠΈNΫ–~ŠΈΦΚιΪ2ύ» jεQ;oΆt·%_0VΏΗ7‘8«Θ€―Œ>ώ¬Ύρσ!P3ΔuΝήΑ6@€ ° c>[»5²σœ%_θυθΕΜ‡Eύ€@Χuψ+ @€@JΰΨifΗΧ灑2•Žs©kφ¦ j-LwΜ\χέ64«ΩΝΨε —gN€ @ @\7ΰDš '„IQ€ @ϋ!€Έή―i)Ζ@\‘D@€ $Χt @ @\Σ @€ pΔυΠ8 @\7μ\š@€ 0Δυ|l)[$€Έή’Χ°€ @`uˆλΥ]€¨ŠβΊ*w`  @€ΐV ·β)μ„ΐ2ΧΛp¦@€ Ζ s(́ΐ‰ZΧ/‡«-=•αq½ύφ@ςϋmφύ‘LώΗΊr<ϋ£έ‡[ eλšͺΊ/θς]—Τ₯Ί΄tYw|Ό«l•ϋtΑ‡ΪU·OvυΩΰvЁ6―/έWΖ!ŒΌM'v=‡ @Ϋ&€ΈήΆ°ShI\»ΐ£Tπή`ΏΉπt† w&Ώ?cίo΄δ‚Wεh+•λΚ θW,Γε]ώΟZΊ΄ϋή'%£ΝΚ{Ώ% υ΄}ώ=Ϊ9Άmρ‘ΐXFjK¦>)€ Νΰ†hs.Γ`ΜJqύzΡνp‰λ{ωσφωŽa+‘ͺό1Ÿ²ίjιbKχX’ΏΠC]YCβϊ½–Ο…xΪ βΓƒœ9qΫ¦ςŽ}‘k笝”Β!@€@Χ5z› °½ˆλtXxŒ&GϊχΩ—›Ί\ŒκλΉ t£("U’σqK]Φ>E ―΄δβZΡsό CΜΣακΡ†œΉaα±m9q]b”Fχυΐ@›?lX―χR3¦%ΰηΝ)SόΌ­ε~ΛΎωum,±±,Ζζ[―ηΣuςP?ˆ}ίCΙCm ? A΅\μ % °½ˆλ‘!ΟΊA”Ψ-͝–3$ΘΡξΧηΡ™F%υΫ΅–^²Τ7η:v€τΩmHηx»ϊλ’8m›—Kδz‘SŒJ6D` ‘X“ΈV{ΞY*€ιsΝXcσΪ ŽΧͺγΨ‡ ‡ΪG~@Ÿ#€Έ¦#@‘βϊ΅aα½WX’–Π~Β’Gg]$+ϊSΧCscXs»/±δ‚=ν•ι b-vJvΖHΉΚŽmσΊŽΧΜΉζR#υKίβƒ°»»σXηΐνέ}φό>2$ Εηl§ΦIπ²|Ÿ/•αv|̎υ‡uΡ6ΖΊΧ: ΊψύYϊ»κ+Ω!ϋ΅Oφϋβ‡q„JΌ>θ|?–E“ϊ>'sνυλ|rΧχ8ΪΖΫ#Χ9–rͺρ Ε&4Jqέ¨ciŽ$°qyΦ h*@…P’χKΧ„›]Gλ7l%qή κ{Ό1β:½QΟΉΟΈφΕ…Πτ=Žž^Χ}΅άbmOΪ±qΨ{_€ή₯+°:TσΘΙaM@ηΓΓ]ߎ"ZβςΕξχΈ’~ŒŠzώ8UD}|H\—Κx««λŸ—9ΫT—ηΣ› β Œώ{z­ˆίΘΕ΅ŠρΪEζ),Χ₯φjΤO‰™J}θך’SVήatνΌΛRŸέ£;!τ@\Σ? H qW!}Θ Γφ(­ˆψhύφžN4ΗΧίεΔꐸVΉ₯2’ΈΞ=Ds۞οDx:zΕΫSŠ˜ημΝε•ο³δΠβθ•CYŒΧι qςφκΥ‡Cά# β*#>¬ˆe–24|ŸΧZ U WΑN₯¨–βz]Χδ“E₯αβλZKν¨@nέYι#/±υ©.4%Ύή™4εΠΘu©Œ(sΒ_QU Ρ⇍K‰k_{αcΕuN{{5bf 3w‹?π2Ӟ'–ͺž‹:ΏΧΧc±hŠβΊ)wœLq}2B €V$ #΄©)Š€JˆΉΨκ‹ λX ³Š\»€.EŒ=ΊfδZm‰‹4κϋ±,ƊλΎΘueξ‹ΐ»­ςƒΆ’S_Ίο‰\―xBR5φFq½7Σ^τ@\ΣC ­ˆ‹uΉΰςωΊΎvAΊ˜ίΕΕ£Έ– ”υΉΟuσ₯se:ηz(rνB3g‡Ϋ[Bž.μu ‹RI4šcžcζsυ7Ώs}1Άθ_Ω”‹ώ3ηzλg4φC`CΧr¦B`ˆλ S 0;Έšt\$ΜEqΌ‰‹*οΝ–$ή4/Ψ#ΧΧqEpEΏ5”ά…l© -NζΆx}«…Ηαθʟ‹Ζ–μΧιΫNa1V\ϋΓΟ@μcΣŽΪβ’d9–"Χ¬>ϋιF€€@\Σ HqM€ Π&Sήs½U" ίͺη°%€Έή¨γ03@\Ο–b!,7Ψ―ίdι3–ώ?KŠ2κoξ³ ψi8žDΰT±YZtэͺiρΕ‘ωχ'δ`@9ˆkϊ  ι€ΐ.Ά ΨΏoιw;­ϋ“ί³€ΏΏί/Xς!ΣKΫG}€ QΧ£0‘ »!€Έή«i(ͺ#π7Ν’o³τΕ‰eŸ΅οŠ˜ώŸΥYŒA€ @qMw€"Δ5ύX“€ »ΡtF|ώώ7–>Έ¦QΤ @Cq=†y °ˆλύψš–B &ο6cήcιŸYϊ“–.°τ;–ξ·€}l€ κ «wB`QˆλEqSvOΰΏξDυΟΩίχYϊ)KΏΤ‰kΝ³Ύdχ„@›!€ΈήŒ«0‹@\/‚™J °kZ!\Qj₯ŸιDu\όcφΫ—Xϊγ–~qΧ€h< lŠβzSξΒXΜN`+βϊe#q΅₯§2D·ίH~ΏΝΎ?’ΙXWŽg΄ϋpK‘l]3U·†¬jΣ«^b]ͺϋAKώΊšxUΩ*χι‚ΣWάΘζ;κΉΥφίn)Φ£WιΨη3”O6ߐ΄;m‡ͺ}Ώ₯wel=„―σ(4™ŸwFΰχY{]T€}ώ~K?›a ‘α°€H6 @`3Χ›q†B`[Χ.p&Ό©xT‰Χ;-I”ϋφŒ}ΈΡ’ ^•£­Tv¬+' %lύuAώΟZΊ΄+sH\ϋ±nKZV* UΟΫ-έlιnKβΫώ]β:rpQ­9¬9qc朎ε«6π&tΈ~ό7¬έ.ͺuHTηŒ9οΛ;ΕE³!@`«ΈιΩͺη°σΨ›ΈφΈν½ιωN¬κ§(,γwεω΄OβφbKχX’ΏΠC]Y}βڏ»)q«Όs*Υ£ίUίE–τΠΐ#οOΨηT\«Ž+,-)sŒζιΉ”Z#ӌ’¨ώnK?jI’ZœΨ @M@\7ιV£ ΄"Σaα1šαθ΅?.h]hk9Kqξ׏[> χMΡα+-ΉΈ–ΰυθmŸΈξ‘ΪWͺη|Wρ΅½ŠΔ?iIΏŸ:,\ΜbDΏ4^&8ίtd€½6ή~tΗδΐMψr³ΦE΅Ξ‰κŸίT 0€ pΔυΠ8 hE\ WDXbwH0J\žΉ–Έ–ΐ”ψ}ΙRiΞu.r-‘ώœ₯‘Θ΅Ί£"/†~yή>§‘kί]šs=Η°p"Χ _,2MΣωδ’ϊ‡μ³ζLkΕo6@€ΐ. wαf Ρφ"Δ‡Iϋpj ₯φk»%q=4η:FqQΦ+…b48uJ:ηZυ>lIQpΝO-ΝΉφr΄°™SδόΌ₯Δ5sGŸz›ΞψΥf½†~KXk!<‰κ6έ"Œ‡ Aq}4@ΓZΧι°p ŽC΅έ…½Χ$βUϋ]–Δ΅ς€+|»xNOσ|}βΊo΅πR=>μΪWBΧ5έ£Ε}β:ςΡΨ»,ε˜Ε!σ}Q~η›.RΕjα _,¬i¨ΥzW΅†~+ύσΆ›Lλ @eˆkz  lE\γ5@`=_kU+JύATkΪΓ±›Β|θΨƒ9%oψ’7䳟ώδ·B€ΐRΧK‘¦lƒβz^?₯h―­/’=―E”ρήΪ‰κάώjθ·"ΥΏ>ώπbΞλΏρ›ω[?πCο-”uφWoΉωμ'ώΡ―όޟψOώ§(2ΆIΰWŸyΰμη?ϊ]ϊ“ζmΆ«!-@\oΡkΨ ω ηcKΙΨ*?ή‰κΏDυoNΨΔυ„0)κUˆkz °ΔυΤ©υ@\Χλ,ƒΐώ½NT+ς§(΅’՟˜ΑΔυ Pχ^$βzο=€φC`ˆλuΈS+j%€ΈΥ3؁εόΙNTc՟š±zΔυŒpχZ4βz―ž§έX—βz]ώΤΪ kσφ@`9_oUι•Z*ˆκΟ,P=βzΘ{«q½7Σ^ΤAq]‡°΅@\Χβ μ€ΐrθDυΫ‚¨Φ«θ–ΪΧK‘>²žGΎημμ{δμμΙ_,π6[Cώ{mVώΫΏοΘJ;΄|Δυ<~ T@ ŸβšDˆkϊφCΰ?²¦κ•ZZ°Lσ©ο^©ιˆλ•ΐ­q=–ω ½@\ο½Π~Όžβšφ ό™NTλ}ΥΥXΉΙ«Škˆ>χ+ggoύj{yχΟΞ>hoπΦί?~vvΡ—Ώφ]œ΄ο‰zvvΕ{•ڏύμΩΩώDž D©oωυςϊʈΗΕHpόένΛΥ|l½^–Ϋ¨οn§ΫΝ6Ύα;ΤƒΊMϋοόΡ³3―σ_Ψ’w7ΨcšR>φνίpvvΝΧ½VΖαΩΩ?xς΅οΉv¦ευΩΚ#Χχšύο mΈΝ>ίaι:KdږoΜσ˜•qυ@yΨώ§2uι½σΪR;τϋƒCάف½@\ο½Π~Όžβšv όYkš"ΥYκίΊΑ―a«B\»ΐ‹bΊO\KPΊ€Μ …ΎζW…©„·η“ Φζ=W†ŽϋΘΟΌ*6%BΏΒήώ­|Ής¦¬7v„\].c;ΆλΒ/}ύ°πR>oΏΫξΌύ{© —~―₯Kσ—ν³ΔπΣΙo$'θ£έχνοMέg•wCwΌgΖ>άe)ŠaΥΛ»ΜΎŸKμπγsejͺHυ5\;°Υ@\Wη ‚ΐͺΧ«β§rΜBΰVͺDυWX’¨Φ uM[β:©.‰λR^‡š tύξ’ω©Κ‘ρT κ8••ϋ=ŠπSλU;ϋΚp‘ό’½έΌ”7Ϊ(›KωTO;bN@{;Uχ!sΊ+Ž\KΤJ$§Β9='sb؏“Πυ{ψ₯Δ΅Ɲ·€; P €Έ¦k@‘βšώvό9kŠDυ[’¨ώ;•6­9q‰Νb‹zώγ›, ;Ο‰hωΜΛKύ—I?Άή(„Kχ~όΥΝ!έ²IRΫKωTWΪ5ΠΧΟ3Y׈Έ2 μ8$ϋ>ϋξ‘hws*£ΈŸϋ†…Η.“λΉaα9Α~«ύ~qΖΞJ/+˜u ΧαN­¨•βΊVΟ`ΖΈΦ²κ•Zo°$Qύαρ‡’³9q=eδZ‘θόNΤ―ΉΜ}Ϋ±υŽ\«n ά\δ>ŠkΙC~•mV₯v64,<ηBE€Ÿ°£Β©NWπ˜εWτ; αΎ¨ψ©ΓΒ‰\―ry€­@\oΝcΨ y ΄"}ώZi±–t‘-“[άΕ…qκ>ίνϋ‘τΔ?ήΐ€_Ζ£ρ¬²Unœs½­ύWu?Θ>άNΝαΣ–FIτ[_²s,#Ή™χœ<€tυ7‰κO[BeWΜ[•Έ ƒφhͺG`γ|ι1’qhΞu©Œ8WYukα4‰κ8 ά…fξυXΗΦύ―2ž³Y½qNΈκ£ΗŠΖϋ"p9qνσ¨cΎΛΏζμμ[μκώ  7ηΪηœΗv¦uυ׊‡…+¬ΧίωυYMΧΉc|^΅Žssy•ηTq͜λ‘NΗ~Δ5έˆZΧq>[*xΣΕ_Δ@τΞδ†G7/7ZrΑ«r΄•ΚŽ709ν7'Κ'qώ¬%_Τ¦O\§Cτ”χ~KΎXMzΣ”Ϊ9Άmήܐΐ£8χ³iΡͺ•¨ώmKΥ?ΆŽGΧZΈŽ+]kθ΅VΆ>T\‹FίͺέCsΌfi΅πt…νH˜zSοyΚνΓ?ύκ°pΚϊM6H(»φcds_Ύ[lΒ‚―Άr‡ΡώΨΞXώPo«X\Λτψ°Tί‡†…η<σ…Ρ΄pYϊ?MεΗEΟTΗΨaα²εqK¬>ΤΙ؁ Δ5έˆΧ―&ΔšΈ²ςyƒζΓχrΒV"57„Ξη¬έcϋ%δ/΄τPW֐ΈNW—~‹6δμΜ‰λτfνΨ \ος_X՚S­α‘Υ]Ο”“j^U\Ÿd9WK rq]-7 ƒN#€Έ>GC 5{Χιy½^D[:Τ;F\Œ*ί9KqξΧzϊ_…’HΓ•–\\kX G~‡†…Η!ζιpυhCΞΞά°π4R7œ]mvFit_ ΄±‚μrWƒΏdUIT²%Ν©VΨς†Έή²χ*΅q]©c0 @\7ξ`š μE\ O…Ι­Ζκοϋ<%r-q-qͺ¨^²Τ7η:Ί£ΣΎΊ¬ΫP²SΗΊ(.-xCδϊΐ“e…μοκDυ/t’ZoZΨΧ-x±²6 +sζ@`'Χ;q4Ν„ΐHˆλΧ†…ΗEaΕfβ+IJβzhΞuŒknχ%–\°§ξJΕt-vJvΖHΉΚΞ-xs¬ΈfΞυΘ“λ„lίeΗjN΅ϊ‰"Υ?uBY5ŠΈΡ+· q½qb>6Jq½QΗa6f"°q ΧιT€ ±ΔΜ –±”^/]T–Δ΅ŽO‡c»xNη@{Ύ’Έv[$ΐ΅Ε…Πτ=Žž³Sεζk{~O£ί*/wFιΠyV Ÿηdό+VCΏ%ͺ‘%‰j[RͺΙ qέ€[Χmβz]ώԁ½@\οΥσ΄y­ˆkό ­ψ’ ͺ>k‘2‰λ–·ΙΕυ‡~ψ-σ’m# Όα‹ήό‘Ο~ϊ“ί:2;Ω œLq}2B €@SΧλΊ3·π˜,κ‹h―k1΅OEΰΝATkxΏDυ1Uα•—3©Έ~ψyπμφΏόž‡λ7?ώΝ•·σ @ 1ˆλΖJs p"Δυ‰9ψΛ―‘ίχSKTk:ž6ΔυžΌM[!4Lqέ°siŽ €Έ>‡@ΰ_Dυ‡;QύOŽ(§…CΧ-x‘6@€ΐη-Π@`ίΧϋφ?­ŸŸΐWQ}Ξ>k‘2½ZkΟβzΟή§ν€"@δΊ!gL@q=DŠ€@†ΐWΫoΎϊ·VΫ’¨ΦJτlggˆkz 4Aqέ„i&#€Έž %AΰsώP'ͺ%¬%¨5§ϊ—aσ:ˆk: 4Aqέ„i&#€Έž %νœΐΏΣ‰κ2ˆκ_έ9“RσΧt @h‚βΊ 7LFq=J Ϊ)?ډꃨώΨNYŒm6βz,)ςA€@ΥΧU»γ °8ΔυβΘ©°΅C―ΤϊO‚¨ώFΪ6w3Χs¦|@X„βzΜTΝ@\oΖUZ K;QύΝφWσ©•~»ΫΆbβz+žΒN@θ%€Έ¦ƒ@‘βšώqώD'ͺΏ1ˆκOŽ;”\ ΪΔυ+]oΏ?h)·1ϋύκpά­φωφπύ>ϋ|SRξeφύ©π›¦\Ύ«žΫ,έ~»Ξ>?`iμύ[j«χ²•‘ΧΒ₯›ΫΰΆ₯υ—Ψ\n=mi¨ά)ΨrA¨–ΐΨ‹s΅ ΐ0@`RˆλIqRXƒΎήΪ€•ΏKŠRkπΟ4ΨΞ%›T£Έv!γ ˜ξ—¨ΌΫ’„° kœ*CΗDξ"9–s―εy‡%Ψ§ŠkΩτ k= IDAT°%υ*–β½Ÿ‹θh«μUή·YzΙR|h³ιQΛs‘%βπ­TnŽ]dœ+_νpv,Ω?© €ΐhˆλѨȁ]؊ΈΦΝ–n΄bΤΗ€›UEvβ¦θΛ#™όi΄I7‰Ϊn)”­k¦κφ›_ΏAŽu+²ε7–ρ«²Uns[Ŋ£R=~λρ›Ση3”OeέΠρs;ςυϋϋ-½+cθ!|ϋJC΅?_a–IT%Υ₯(\΅¨Τ°Δ΅Ξο-IΘζd*6SαλΡοκg!?6rέ'nc™₯|ρ›»Ύ EΣ§Χ~}JTڝ1 Ψ3Δυž½OΫ!πωΆ$γπΙTπ¦βQ-ΥΝޝ‰¨|ΖΎίhΙ―ΚΡV*[ϋΌœ€ΦM΅n΅Iψ?kΙ£9Cβڏu[²\ΥσvK7[Š3.q9Έ¨Ύ?ω]ΆζwμΗςUΆώζ?΄6Hμ\bIQj±f›–@ βΪ΅Θ”†m{tΫτ =|:5r­λ›ϊm*Π£χr"XΏλ]Ίn=aΙΕτ‘kΩ;ρžΆGR # lύ¦ηΘfs P °7qνΡ Z ƒτν|Έ™ŒΒRϋύ»ςΗ|Ϊ§HςΕ–ξ±$!―‘’ueυ‰k?.7'σέ=υ¨~Υw‘%Eς=ς›αT\«E_—Χ9F[9ωΎΑ ΥκίΨ’DυΆbψν¬Q\§γ|θ܈ŸSέ7'ZbχΙξϊ ‡oC‘ΨΎ‘cοίΉί©ΠΞ‰kΏκzδΧ ’]²)΅§/r=Δ6χ0 »ί`Ηd@`/Ζ^œχΒƒvB`οZΧι°πMŽ>Ž‹ ΉΠΦώs–<βά'·|Ύι›n¬―μnž=JξΡΫ>qέ'B΅―TΟωβk;{ύζ]ΏŸ:,<ήψχ …— Ξ7 smqiνη˜D„D΅XhψχΦnpφΥ(s―C‘kc"±§FΣ‘›ηΑρŽΗϋύb΄©΄θ™Ž›rXΈΚΓ«S&@['€ΈήΊ±ΣhE\ ׍ŸΔniΖΥosΓΔΗD%Τ$0%~΅0PiΞu.r­αη, Ee«"šοιΫyϋF}_iΞuŽ™sμ°π-Eck¬DυWX’¨ώαiO-Jλ!Π’ΈV3s’8›ώ ,­’ί}΄Λ)βΪ―;q‘1Ω–F€S»r’8“Ϊ”[ΌMυL)]!“ €ΐjΧ«‘§bTI`/βZπγpΗt^a»₯ΘυМλΕυHPί0ΠtΞ΅/x€!ζBZšsνI―ύQ΄M‘σσ–jΧ[˜s}±’¨ώbKΥ»Κ3³m£ZΧ΅¬>F§"ΨW ’ά§›θaaNπλϊ¦mΞΥΒγͺηmŸ ΄Ψ4Δυ¦έ‡ρ˜œ@+β:αί>:ΎΞE7…/X’ΐJ―‡. KβZπύΖΤαβ9]<­Ε‰LΛΚ­θ›ΦγΓ}$΅Α£Ε}β:ςΡ’kwYΚ1σ¨ΪΠ°pη›ή>΄`Σδψ€5š@ •½Ρ’Duή@1d€@β:Χ,?'Η QNWΰΟ½η:Ν³Δ{Σ|ι΅)·Šy|+A_T>Άρ9ΧbΩ¦μsμ&θv@`zˆλι™R"ΆL`+βzˌ±}]4ΥΏΧ‰j Αe[—@mβz]Τ@›%€Έή¬λ0³@\Ο‚υ_šF§}ΗΠͺΑσZ΅’5SΓΏ?aI«Ψ>š½‰V"wSιZΒ5εp–@`2ˆλΙPRš €Έn4"ψΆNTz'ͺ? κ «s A€ΐ1ΧΗPγ΄KqέoχΦ²oοDυ/Ϋ_Ν©φE™φΖa νE\oΑKΨ@ƒΧƒˆΘ]@\οΚέM6φΏκDυ/t’ϊ'šle[B\·εOZ@`·Χ»u= ‡@–βšŽ±Uίe†k‘2­~HυOn΅!;΄q½C§Σd@-@\·θUځ㠏gΗ‘ΛΠ0-R&Qύ³¨~by3¨ρDˆλr8 ΤAq]‡°΅@\Χβ μθ#π…¨–°ώ©NT Θ6Kq½YΧa8 Dˆkϊ  ι5xSՏu’ϊΧl0Ά"€Έ…‰L€ P;ΔuνΒ>,Kq½,ojGΰK,›†~+Rύχ-ι=Υό;”\ €Έή€“0€† ‡‘{"€Έή“·λoλ—Qύw;QύOκ7 $€Έ>Ω!@ Nˆλ:ύ‚UX‹@Mβϊ•„λνχ-εφk¨πΥαΈ[νσναϋ}φω¦€άΛμϋS᷏Ωη ΒwΥs›₯;ΒoΧΩη,½†Υ‘’ϋlυ}iϋ½½ΔX&/[ή»“Άx³ϊxkυν―ΜψΓYMα«XΌκς…ΚΞΩgΥΟ ύŸ·Oq½}@8ΰΖX€ΐ>Τ&]4ζθKΠ₯ϋ£xtAzΉε{Ί+@ΗDκ"9–s―εy‡%Ψ§Šλ1u Ωͺύ7w7 zΩ&«!Σώΐ‘ΙΈξγ-„ώ 2Υο9_DŸεΚω%> y³}«]{ώ–ύ•¨~~§ή[‰Έή΅ϋi< vŒΊ΄ΣbZτΨΊΈ~Τχ’%E§s‚/‡xwω#ύλ)‘λ±u€Β6Ϊϊv³GβϊΧ,έeIBZ’ύ½–Ύ*±5-'2©I\ϋC‡(Ԋ΅εt’ϊ—8UwC` βZηŽΕQ.ξ sΙ7]3ΙδOGŸθόΤvK‘lέ§©nΨηηM¬[ΧΏ^Δϋ:•­rύαbΪ‘΄ͺξGΩΥgƒΫιΓΡ8*¦―ŒC =δΫΝ‰AC!ν@\oΟgX 9 l]\» £°m˜~γ;t#wJδΪo@ϋκθbξΆͺ=Χz MaΧ¦({_δ:>d¨I\Λφ‘ˆχœ}²λ!°q§‹€‚χΓGaˆΞ;“ί5•γFK.xUŽΆRΩΪηuε΄Ξ!= &α¬₯K»ο}βZםh³ςήoIB=Φι½$΅slΫβC±ŒΤ&ξO<!Mΰβ΅)wa,f'P›ΈNηCηζωϊœκ>Αͺ›Ϋ'-έΣ݌¦CœΣ:Kσ‰•oθZFλcλy;@βZ"ZΡjέ<«ŠbkθtΧ©ύqžωΈξγ­}}ΓΒ‡|•F•ΏΟžΩ;;TC`OβΪ#ΰΧώ€LŽΠ9ξλ:Dαξη‰DͺςΗ|Ϊ§)#[υLBώBKue ‰kΏ–δ:B΄!ggN\ΗΆE»υ9σ^gœ\;«ι¬@ ΐЍ!τ }¨M\:ηΪ½5&¬Ω1‘ΣS"Χ²g¨Ž1Άͺ‰kέ`{TΗ¦CΨϋ˜ ‰λ‘(ώ”sΗ°ΩΧΩ·ίΦΆ Σaα1š=›>μςhχ9Λδη>qύΈεσ貋Φ+탋k•ηΧ†‘aαqˆy:\=Ϊΰ’YυΉΉaαι‚‘}ΓΩU–3J£ϋz` -."Ήί³ƒ–C›"€Έή”»0³hE\»pK£₯©8τ(vΊ‚Έ~χθΟ©βϊΨ:rs%½Ό·u7γ[Χ‡Έ>{η§‚Υ΄ ‡†<λ|–Ψ-͝v±©ˆφ)‘k‰k‰Σk-½d©oΞutΈG§ύZθ6€sΌs’8m›—{μΠy"Χ«ŠT œJq}*Aއ@[ZΧC+pΛscVς>U\©cΘV_-ά‡†ΎΣlχ(ΡVΕui‘·ΆΞ(Z3†ΐΔ΅8θ<ΎΒ’°„φ–<:λΓ»%nKβzhΞuŒϋkϊJΣ^R1F‹έ†’1RžΆνTq͜λ1g y * «t FA`5΅‰λF ·ŽβΩΛΙ½η:ΜΜρžλ‘:†lβ:λ‡Šλτ}Υ>΄4·M‡@†βšn,Mq½4qκƒ Y gΑJ‘Ψ,Δυf]‡αΨ,Δυf]‡α€  ι€@$€Έ¦?@K@\/Mœϊ @`ˆλY°R(6Kq½YΧa86Kq½YΧa8 Ή¦@%ˆkϊ °4ΔυΔ©€f!@δz¬ Ν@\oΦuΝ@\oΦu@D逑kϊ P Δu-žΐ@8‰‘λ“πq0š#@δΊ9— TOq]½‹0€Ζ@\‘Dμ‡βz?Ύ¦₯¨…βΊO` œDq}>†@sΧΝΉ”A zˆλκ]„€ 0†βz %ς@`?Χϋρ5-…@-Χ΅x; @ΰ$ˆλ“πq0š#€ΈnΞ₯4Υ¨A\Ώl”ΆτT†ΦυφΫΙο·ΩχG2ωλΚρμvn)”­ϋ0Υ}A—οΊ€.Υύ ₯ΛΊγγ}›ΚVΉO<μΗψnΩ|Η@=·ΪώΫ-Εz^±ο:φω ε“Ν7$νNΫ‘jίoι][αλ< Mζg@λ@\―˟Ϊ!PΔumΑ΄O qνWΔSΑ›ŠGε‘x½3•ΟΨχ-ΉΰU9ΪJeΗΊrZΒφς g-]Ϊ}Χ~¬Ϋ’–• hΥσvK7[ΊΫ’„ΈΔΆ—ΈŽ\Tߟό.σr‚;φδcωͺ ά»F’|†ͺ"ΐͺ*w` V'€Έ^݁έhI\{\‚φήΰΙσXΥOQXΖοΚσiŸΔνΕ–ξ±$!‘₯‡Ί²ϊΔ΅wS›$ΰίέSκW}YR$ί#οOΨηT\«Ž+,-)sŒvwΒΠ`@ ^ˆλz}ƒeXƒβz κΤ }Ψ‚ΈN‡…Ηhrτή}φΕ­ mν?gΙ#Ξ}βϊqΛ§aΰΎ)|₯%ΧΌ½νΧ}"TϋJυœο*ΎΆ³W‘ψ'-ιχS‡…‹YŒθ—†ΒΛη›Ž  ΧζΓΫχ}ζΠz@ :ˆλκ\‚AX•βzUόT]Ψ‚Έˆ°Δξ`”Έ<%r-q-)ρϋ’₯œλ\δZBύ9KC‘kuBE€_ ½ρΌ}N#ΧΎ»4η:Η̏9vX8‘λ]^"h4ΆCq½_a)– €Έ^‚2u@‘@ βZνρa>œZC©=ΒΕnI\ΝΉŽQ\E”/±£Αi―Jη\«ή‡-) ωΫ₯9Χ^Ž6ΣbŠœΧ"™sΝ΅¨šβΊjχ`'€Έ^9B`χΆ Σaαώ‡j»%z_°tM"^΅ί…aI\+OΊΒ·‹ηtρ4ΟΧ'ϋV /ΥγΓ}%tέ'z΄Έ/rωhΡ΅»,ε˜Ε!σ}Q~η›ήΞjα»Ώ\u@\Χν¬ƒΐΧK§>@ q @'@\ŸŒ ΠΔuSξ€1ΨΔυρnJ#Π^R_DϋψΪ8€z ι €@$€Έ¦?@K@\/Mœϊ @`ˆλY°R(6Kq½YΧa86Kq½YΧa8 Dˆkϊ @δš>¬Iq½&}κ† Ι 'CIAh‚‘λ&άH# °)ˆλMΉ c!@ DqMί€ˆ\Σ 5 Χ€Oέ€ 0Δυd()M rέ„i6Eq½)wa, Ή¦@c ΗP" 0%Δυ”4) €V#@δz5τT * «t FA iˆλ¦έKγ μ‡βz?Ύ¦₯Cq=†y ) §€IY€ °Δυjθ©U@\WιŒ‚@ΣΧM»—ΖAΨΔυ~|MK!0†βz %ς@S@\OI“² @`5ˆλΥΠS1ͺ$€Έ-¦ lA\ΏlΈΪSO\oΏ=ό~›}$“±Οώhχα–BΩΊOSέtωKκRέZΊ¬;>ήΧ©l•ϋt‘χhUέ>ΩΥgƒΫ)ΪΌΎXt_‡0ς65έιi Π&Δu›~₯U8–βϊXrK`+βΪΪ™ ήμ7žΞAτΞδχgμϋ–\πͺm₯²c]9ύŠeΈΌ+CΒYK—vίϋΔ΅Dz΄Yyο·$‘žΆΟΏG;ΗΆ->ΛHmβώτΨ³‰γ U pρZ?•C :ˆλκ\‚AhžΐžΔ΅Gΐ%ο ž=oŸοθΆ©Κσ)ϋ­–.Άt% ω -=Τ•5$ίkω\ˆ§,><ΘΩ™Χ±m*οΨΉv6Π@@  ˆλ6όH+ 0ΔυT$)K q ΡδΘα>ϋrSχƒ‹Q}=„n₯Q€Jt>nΙ£ΛΪ§τ•–\\+zξ‘ί‘aαqˆy:\=ڐ³37,<Ά-'KŒθΎhσ‡ cϋω ¬Nq½Ί 0U@\WεŒΐ.΄ ‡†MΕt-vJvΖHyΪΆSΕ5s—>©˜Œβz2”& ›p#€ΐ¦΄ Σ!Ο" P9E’χKΧXJοΑ\T–Δ΅ŽO‡c»xNη@{Ύ’Έv[$ΐ΅Ε…Πτ=Žž³Sεζk{~O£ί*/wFι μ¬Ύ©Σc!HqM€"Δ5ύXšΐΔυL¨€6Hq½A§a2f$€Έž.ECYˆλω:Fnα1ΥΦўΟJ† Π8Δuγ¦y8βϊ@`d‡N&€Έ>!@€@ Χ5x PΔu=Ύΐμ…βz/ž¦€'€ΈnάΑ4@\Œμ€ΐΙΧ'#€@¨βΊ/`κ!€ΈΗX½@\οΕΣ΄€@γ׍;˜ζAΰ@ˆλ‘8™βϊd„@5@\Χΰl€@=ΧυψK °ˆλ½xšvBhœβΊqΣ<Hq} 0²C'@\ŸŒ @ ˆλΌ€ ¨‡βΊ_` φBq½OΣN@@\7ξ`š Fv@ΰdˆλ“R Τ@q]ƒ°υ@\Χγ ,ΐ^ χβiΪ @ qˆλΖLσ p ΔυΐΘœLq}2B €  kπ6@ ˆλz|%Ψ ΔυΛϋjKOe _oΏ=ό~›}$“±Οώhχα–BΩΊSέtωKκRέZΊ¬;>ή·©l•ϋt‘£ψ1Ύ[6ί1PΟ­ΆvK±žW컎}>ΓAωdσ I»Σv¨Ϊχ[zWΖΦCψ:B“ω€ΐΊΧλς§vΤFq]›G°ν¨E\»ΐρTπ¦βQy$^οLDε3φύFK.xUŽΆRΩ±œ€–°½Ό+CΒYK—vί‡Δ΅λΆ€e₯ZυΌέΝ–ξΆ$!.±νί%#Υχ'ΏΛΌœΰŽ=ωXΎjχ‘$Ÿ!ͺpͺΚΥ Ww@`wZΧ— ½7xς|'VυS–ρ»ςΗ|Ϊ'q{±₯{,IΘ_h鑬>qνΗέ”τ& ψwχΤ£ϊUίE–ΙχΘϋφ9Χͺγ KKŠλ£έ04¨—βΊ^ί`Φ €Έ^ƒ:uB`ίΆ Σaα1š½wŸ}qAλB[ϋΟYςˆsŸΈ~άςiΈoŠ_iΙΕ΅―GoϋΔuŸΥΎR=绊―νμU$ώIKϊύΤaαb#ϊ₯‘π2Αω¦#$θ΅ωπφ}Ÿ9΄¨ŽβΊ:—`V%€Έ^?•C`—Ά ‡†…+",±;$%.O‰\K\K`JόΎd©4η:Ή–PΞPδZPιCoZtν.K9fqΘ|_”ίω¦«·³Zψξ/€@έΧuϋλ °4ΔυΔ©¨A\γ@€ΐΙΧ'#€4Eqέ”;i 6Aq}Ό›΄—ΤΡ>Ύ6Ž„ ^ˆk:  ι€ΐΧK§>@˜…βz¬ Ν@\oΦuΝ@\oΦu@‘βšώΉ¦@k@\―IŸΊ!@`2ˆλΙPRš @δΊ 7lŠβzSξΒX@(@\Σ7 "Χτ@`Mˆλ5ιS7 0'_tpκΧΘ]gFλuwsiΉ)νΦλό΄=nι½–.ψΪeΟ吡ΫEύ€ΐqˆ\Ǎ£ γ gΗ‘€@έ¦©±₯s‹λ©¨ͺύη‚ v‘ν?ͺžjΚA\W㠁@ΧUΈ# °+ˆλ]Ή›ΖB`S^ ΦΖWάέjΏίφ=fŸ―Άδ’χYϋ|‰%σ”%Eίgι=–΄€γ―θŽι"1ϊΐα6ϋ|‡%·λcφω‚n΄Υ#ε.ξο εxcφ©œηΊ6¨Wuu©<ΘήfνςzœΥ£φ۝Νή ΩΩ¬mΆa}½”}€@‘βšΞ,Mq½4qκƒΖxΩ2=ά‰Hӝ$]ΐϊ> Κ·ZpνTΐ*ο•]₯₯9Ρ™ΪδβΧλŒίΣΘuΞVΩ£Mβ^b_Γ±ύΈ±ϋRq­9ή^΅KάΕuNH?cϋο²€‡ Νmˆλζ\Jƒ pΔυIψ88‚βϊhΜJ 7μZφnKXz:Τξ’7Šk—qXΈρ9Η*Λ#Ξ₯†Δrc}ΚνΛε‹ΆzδάΕ¬Δν“–ξ±4fŸGΣ6Εφ¦|Ÿ’υi;›ŽΈžυΌ€plŽβzs.Γ`lžΐšβ:£Œ ="•ΫοΓ?=:<4—τ<~σλίγPNύ¦z<ςγyS9T‡Κν³Υχ₯νӍΈ†·Žeβ7υΊšn}Όuώ•™cœΥΎΪόΙB#‡:ΗJύόN‡k+ϐΈ–ΈU?VΎs–Ζ,μ•ΪαΧ‰x}Θ]+R‡΄²/Fsβϊν֎›-EνmTΏ$/²}Š‚7·!›s) ‚ΐIΧ'αγ`@ΰk‹λΎU|γΠOoZq8¨G–tL¨~γλэω;Β ι©βzLCΆjΏn’%pγύ‘l“ΐυΉ’CL†ΔυΠͺΙ₯h]ήΨέr e‹όδMόη‡Œ' s*' UBZ­ώ56r-q­aΣΪ^΄tθ’^ΉztΉξ‹jηφΉV;Υ^"Χγϋ9!Ζ s(́ΐlM\λfΡoŒs‚/½Ρs!£;τ{¬§DΗΦ‘ Ϋh«G ~ΝμςωΖϊU‰­i9‘IMβ:A80±"±/ΗX21ΎΛGwŒ‰\ϋC‘‡LͺΓxΉ8=eΞuΊΰZœsέ·o(r­‡ ρΑs+κΐ˜¬Oq½Ύ°{#°5qν‚:½ΑN…³ΟΝLη4ζό{JδzΜ«~ϊ†˜»€]Š\k'mŠͺωάHEΩϋ"Χρ!CMβZνŠxον|Ϋc{ίhώ½#§#Δ`.¨U¬~ΧΉ£sώyKήΉ9׊\λ|ΝEsKζΉXυύQ”»mq‘΅4Ÿ_βJίιJβ}ϋƈλ8tέΛb΅π#;‡Am@\·εOZ-X[\§ŒJ―Άρ|>η²O°φΝiΜω€4ŸXy‡¦πυ-zδu±υ|'$’}Ρ%_Υ7ΎB(gkœg>$ϋxk_ί°π!_₯Ρεο³g η6NC@ΒφC–>:MqG—2φ\GWΨw}sν8Ԏ\΄ύœβσΛ›^ΜlΜϋP δ‡ΆMq½ma=ΆH`mq}θœλ1‚5 Ί1‘ΣS"Χ²g¨ŽΪ gf…IDATC"Χ‚κ―ΟρΏιφ>fCβzh8μ”sΗ°Ωβ9ƒΝ‡ψ–N\k$Ιχ­$²ΣuEΣVΕEΘoρ«GΜ-smHνvAύΈΩSšΗ~lϋͺ;nθihuc 0+Δυ¬x)ΘΨͺΈvα–FKΣ›Yb§‹ιχ‡,iUνSΕυ±uδζ\K\{yo³ΟŠ8mU\Ίβ:'hΫ~λΟώώόŠ"»mΚ;oβzη€ζC !€Έ¦K@KΨ²ΈZ[,Η¬δ}ͺΈSǐ­q8§ΏfΘ‡{oU\—z›³§‘ΌτΥl²)Ύr,}?pιUoqͺhΏOcP½η:ρχ—’£A MσƒΣMŒτ.gEyΣ­tάЈ„9™-[ΡλΙ—u ²Η’#ίhˆλѨȁ]@\οΒΝ4UX[\η`x4zhΈ΅ŽMίC›{ΟušgŽχ\Υ1dkΧ©X?T\§ο«vΑXš[£‡ΜΉV›’―R_ζ|1gη/½ΙƒK‡ΜΗΘΊ‹c½S<ޟkVkχΧ‰³ΟρύΘ>δφϋ=έ§Ά–DwΚAΆΕW&υ'»o6©,·±Ώ’.ΗωۏdNŒ(ϋΝ–η IΎeίwKέΪs²G4,5@\ΧμlƒΐςΧΛ3§Fμΐšβzομi΄τ€βbKι U½κ,·/Η²Θ_…¦γξ΄€Ώ΅‹k΅γΌ%MsθΫή2-ςƒJϋΛ­._ΪυφχΣ–4[+}³Aΰdˆλ“Rš"°Gq™K#Jr°§tgΗhˆοK‡ς)Ϊ „•ΛElβ1C‹ε:šΚΦβ i”Hy½₯HΡX»šκΰ4¦Jˆλ~·,±θQ•cƒFυ Μ>δyΦ<ό+,ILλ_ΚΕu:TϋYΛ£Hφ‘ΓΒS ‹\η†…λΈ\δΊτ`‘&7*:ύυ–Υ5y₯1[׍9”ζ@ΰD{ΧSΞS”ΐΧT‰Z άΎwΓFA=$‡ζ³MΉΒlΡΠ>Ώ™;±[q8z ι ­Θ LύŸyΞΨΘ΅„²―‡΄Ύ \)rνμϊΔυΉœ>Ξ§ Ή^ΛΧβχ£–~Λ‘κ΅Ό°ƒzΧ;p2M„ΐφ&K‹έ Ν/Μ­°ϋkΖΩ‡ςιfJο‰Υ<Ή>qύ¨νΡ’†Φ$ύ‘Γ―9 ϋ‘u§Χ;u|£ΝNηΗ‡•cζ\KLϋjνην³†YλΈΪΕυ˜9ΧkΊ\Βϊ³Δπο5½°ƒΊΧ;p2M„ΐφ$] χE„y7μΓg eŸCχŽqKͺI\«)cr: k‘Eˆk:GKNY-όœΈφιF~Ÿ>V\η†Œίhεε†wηV1O4+§‘κι*γC£«Φτ±ζybM¨{?Χϋρ5-…ΐ{Χ}ΡΩ>q# 7w"ZΡj:(Š­ωΠ1rϊ ήά ‰λτΨtnψ!+μΖcs―R]}φŒιKδΐXˆλ±€Θ@U@\WνŒƒΐβφ$w(:{HδZOό}žœ^<$‡’SΞΉΓfρΞI…Ν@\7λZέΊΏ˜̘ysΤ{h™cνμ»;΄ΞΎό>ΪP#2ϋ"4}skΧKύCkς$’Q@\ŒŒ Κ ΛͺI\§ ΊΠNο Gw7ΔυhTd„ΐ.μM\OΉZΈΔ΅.Κο΄δΓ½·Ή.-τΆ‹“€F.Nq½8r*„ψύ^u¦ΧjΊfŠ―·ŒΣΚβ\{½fσ*Kq¦•β5wέσζF™Ε2Σ·ŽΈ™c’UΗi^|j_³£>ZΞΛτ6ιψtΎ~L?Nyu_€ν6K Z€β:}έ©Ώ¦ΤνI§²ε˜”ΚHy§ί΅°μ]^><κ$A\…ƒ Π,½‰k9ΊSsοΉNσ€οΉΦœk‰λT¬*ΣχU§`Žη¨τϋ!sγ?Ήά{°Ηόγlφ$ a‹@\/Žœ !ώ<ώŸžs‹ΞiaSE<}ίq§„ιύE–΄2|_]%Σsβ:ΪίΧδ\}τΪτpΐοGvΩβοao!ρ2]ΐΗ(Ώ—―ΊίjIβΒ~)γψΠΓΛ‹ex]₯‡9!­Qˆώφ—ƒOΔυΑΘ8MΘ ­₯Μυh)ԁΊθ†θCSšτ¦7½ω#ŸϊΤ'ΏuΚ2) ؁τ•”ΉιR.ŒιhŒ.»`μ‹\§βQ€%sΏYd4'‰xΗΌ₯Ά•䧝#7τΫ§ΞέΣρς‡O‡ƒcω‘ΓR}βZεkαΩΈJΎςŸ44œ›Ω]]'h,f#π…VςοXϊ’Ωj `@€ ° ’ΈNkΧH/5YΤU>rνPq­ςΣΡr^ηΠ¨²cΕuNΈ¦BΈoX{Ξ#9žΧvbΦ‡Ž{Yiδzˆ‰OΛ‹ΆΔΘ{Ξώ>qν#ξmˆλƒ‘q !€Έ¦[@€ Π œΈΞE9Υή<κ‘aαΉ΅‹λR]}|Χ9ϋηˆ\§eŠ6 ύ.‰_.”˜€ΎŠνQω₯9οΪ§9ΧD[9ki"€ΈnΘ™4€ °s©`Ž84;·ΖІ&kΎtœs­Θl|λˆGX]LΖωΖΪχŽNμυΥUrΝ±βΪΫ–ΞgŠόΖ‘Ψ©Mq!41)ΝΉvqν_E·΅€\iΞυέΆO‹’Eώ}eΘΖ!ώi°™9Χ;?ωi>j €ΈΑ Ψ@€ΐrβZεΖ΅iΕΒ|Ÿρζ‹bΕ•¬}υμ4Rλ6—V ³0Ω)β:m[ΊZψ±ΓΒγ*γi™ώέ΅lP;΅H¬‹hgš[­=2ι+£?«…OqΆP 09ΔυδH)€ l’ΐΨ…ΟΦnœμ Ce**ηRΧIτU«\PkaΊcζΊΏmˆλš]m؁7š©Ÿ²$‘Ν@€ έ@\οΞε4³@\Ο‚•B!@€ΆBq½Oa'κ&€ΈΫ?X@€ 03ΔυΜ€);!€Έή‰£i& @€@žβšžLAq=EΚ€ @Ψ,Δυf]‡α¨ŠβΊ*w`  @€ΐΧK§>΄Iqέ¦_i @€ΐHˆλ‘ Θτ@\ΣA @€vMq½kχΣxLFq=J ‚ @Ψ"Δυ½†Ν¨βΊ>Ÿ` @€ΐ‚Χ Β¦*4Lΰ ΦΆί΅$‘Ν@€ έ@\οΞε4³@\Ο‚•B!@€ΆBq½Oa'κ&€ΈΫ?X@€ 03ΔυΜ€);!€Έή‰£i& @€@žβšžuΌlΥ~e¦κΩoο±τ€₯Ϋ,έ±Žy׊Έ>@€ ΄Dqέ’7iΛ άjFίnιzKn±Νˆλ ;Σ!@€N'€Έ>!%@ΰ9q}θ‘λη»ΟΩί«ΊŠέ~:|ΏΟ>ίΤνσcέ¦Λ»Ό§Ψ8ζXΔυJδ @h–βΊYΧ°+Ÿ΅φ\jι^Kο΄$±}΅₯G;‘-­ν)K.Ά}ίη9βz#3!@€ζ!°ΔMχ<–S*Ϊ 0V\»`φό>ΫΕΆΔυ»;ανΡκŸ{ξ6⺍ώH+ @€Ž$€Έ>‡A`"cΕ΅‹ι4N\§¦Εaγ™ύyΕ η"KΉ€ @› €Έή„›0²asˆλ₯ζYG· ξ€4 € @`˜βz˜9 0')Ε΅μԜλά|l-€6ηφVψg,Id³A€ @`wΧ»s9 Œΐ”βZ:]-|©W|!+λX˜@€ °,Δυ²Ό© ­@\·κYΪ@€ 0Šβz&2AΧt@€ ]@\οΪύ4“@\O†’‚ @€ΆHq½E―a3κ#€ΈΟ'X@€ ° Δυ‚°©  @\7μ\š@€ 0Lq=̈€ΐ0Δυ0#r@€ 4Lqέ°si$€Έ^6UA€ ΤGq]ŸO°[$€Έή’Χ°€ @`2ˆλΙPRvM@Χ’ΟZ’Θfƒ @€ΐξ wηr Y gΑJ‘€ @[!€ΈήЧ°u@\Χν¬ƒ @˜™βzfΐ@\οΔΡ4€ @ OqMΟ€¦ €Έž‚"e@€ l–βz³ΓpTEq]•;0€ @`iˆλ₯‰SΪ$€ΈnΣ―΄ € @`$ΔυHPdƒz ι € @»&€Έή΅ϋi<&#€Έž %A€ l‘βz‹^ΓfΤGq]ŸO°€ @`AˆλaS'πŠ΅kJγN¦y€ @yάΣ3 © §"I9€ @›#€ΈήœΛ0Υ@\Wλ ƒ @˜›βznΒ”6 |‰5λΫ,ύΠΌT\ΏΗφύ₯ίn­‚ @€ΐkΧτ@ΰXΕόο-}₯χYrq}‹}ΎΝhι{-œγ @€ °%ˆλ-y [!P·˜9ΏnιΣ–>cιΛ,}Μ›,ύ~K_nιu™Œ5€ @˜‡βz” ½ΈΣϊnKΪΨ_Ψ‰νΏnΑfƒ @€ΐ. wαf ΩHTΏlIΡjί~Χ>όAKD­gΓNΑ€ @΅@\ΧζμΐφΔ衆ˆ΅ήž±€ @ΰDˆλr8 πΉ!α½&jM‡€ @Ψ%Δυ.έN£!09E―ΏΫχ[bυδx)€ @ vˆλΪ=„}ΨE―ΥΏe‰ΉΦΫπVB€ LHq=!LŠ‚ΐΞ |―΅_‰ € @»#€ΈήΛi0f# θ5QλΩπR0 @€@ΝΧ5{Ϋ @€ @`Χ›pFB€ @€@ΝΧ5{Ϋ @€ @`Χ›pFB€ @€@ΝΧ5{Ϋ @€ @`Χ›pFB€ @€@ΝΧ5{Ϋ @€ @`Χ›pFB€ @€@ΝΧ5{Ϋ @€ @`ώF|? ίlŽαIENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/000077500000000000000000000000001465426447700216125ustar00rootroot00000000000000ignite-0.5.1/docs/source/_static/img/schedulers/concat_example.png000066400000000000000000001254311465426447700253100ustar00rootroot00000000000000‰PNG  IHDR©\Βͺ2ssBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœμέw|UυύΗρΧ'ƒ„@Β {φSŁ8ͺΈ€ŠΦ­hU«Ukm]8ΫV«uΤZχήWUͺ€¨ Ad°C aάϋύύqNπ³Θ:Ή7οηγqδžυύάsη{Ξχ|‡9η B\ΠˆˆˆˆˆˆˆˆˆˆHέ₯Bj Œ ©EDDDDDDDDD$0*€‘ΐ¨ZDDDDDDDDDD£Bj Œ ©EDDD€Φ1³ 3sf–PEϋ[ffΗVυΊ•ef‡™Ω"3Ϋjf£J‹ΕΜώbfOΦD\΅Y]97DD’A]Ή&+Ώήuεܐͺ£Bj‘(cfg›Ω Ai™}lf‡Ο³fvwPιGΉ;Gœs sο–Ά’sξ^ηάΕ5W©Μl’™ύ"–ˆ­ώ΄ΜΜn "F‘ )ΏŽ)Κ―Eͺ™ ©EDDD’ˆ™]<ά ΄:#ƒŒK ‚5…ζTu,UΙΜβ+°Ycη\Cΰ4ΰV3ϋU‡Uͺͺ™ˆDεΧ΅—ςλ}(ΏŽ ό:X*€‰fΦ―&ϕ鷝sۜs{œsο;ηώθ―“dfšΩjzΠΜ’όeΓΜl₯™]ofλύZ]FμΏΎ™έofΛΝ,ίΜ¦˜Y}ΩfΆΦŸ?ΩΜ2ύω—η7ϊ5qή/&n3³ψin6³ΩfΦ»¬4}η˜Ω 3Ϋ`f7Gμ3ΞΜn2³%f–kf―›Yӈεηωϋ̍άΞ_ΆOM²ΒγRΒ1/1ˆZHΏ5³ΐη%μγ3[lfΝlΌ™΅ρη/:οϋΗ.©Έν#φ3ΦΜ^,’φ<>ΕώžΗη_fφ‘™mŽ*-8ηfΰ=Τχ/α;ΥιsCDb“)ΏŽΚk²)ΏV~­ό:P*€‰C€dΰRΦΉ8ο!£0Έ%by+ Πψ-π¨™5ρ—ύ 4nΒώ²@ ΰ;ΰ%ηάώίγό&°§ΣqΐP ›Ÿφo€άr€ p8Π8ΈΝΜzϊσ―FGm€Mΐ£fΦ ψpžΏ¬Π”cVšΣ‰p$Π8ΎθΖfv4πWΌοάXΌ ΰœλ ¬Nρέ Δ·ίΗΗWμοαlΰ ˜RΈ0³C€ήΐβV©³η†ˆΔ4εΧQvMV~­όεΧΑsΞi€I“&Mš4iŠ‚ ―ΤΪ2ΦYœρωx`™χ0`±|=ήCrœΏ¬_9βh 8 ‘ωYΰξRΦ?XX˜NΔόΣ2ό4ΪEΜϋ8Σ{pLΔ²Φΐ Έ x5bY`7plqρϊΗeeΔηeλ––NaŒJωξOα~nθoŸQ4­ΆŒe,πbeO9ΟηΛ8&—ς»εωΏ­Γ{x5š4iͺ+Κ―£ξšŒςkεΧ•ό―©ς“ϊZ‰Ή@Ί™%8η JX§ ^νŸBΛύy{χQdΫνxbιx΅Ύ–έ‘y}ήœ4ηηΪ1ι@~YA;η>7³Gπj­`fo7ψι›f„΅ΕΔ ^ߐο˜YdM^ΏŸm€μˆτ·™Y.SZ:…²)YΌšO…±lυci‹χUYϋ}|Μl-ež₯}§ςHΗ{θ»―–W"ήΓε>κψΉ!"±Kωuτ]“•_+Ώ–€©»‘θ1 Ψ…Χd±$«ρnΖ uπη•e°θ\Μ²³ρz:―‰g†?ίό]Y;wΞύΣ97θ…ΧTτe€Y–lΰη\γˆ)Ω9· X΄/\ΡΜRπš‰Ϊ€D|nUΑtφ~½RΆίηχ0³~,«Jά’j”wYΏ'”γ7-‹s.δœ{ο7ώ])λΥΥsCDb—ςλŸEΛ5Yω΅ςk ˜ ©EDDD’„s.―ωγ£f6ΚΜRΜ,ΡΜN0³qώj―·˜Ys3KχΧ±ϋO˜Y3‹7³!ζ ”Šχ°‹χ@po‘ΝΧα (T,3;ΘΜ6³DΌ‡Š@ΈŒ4Λς8p™ΰ§ΡάΜFϊΛήN6³ΓΝ¬ήΰU‘χ½Yΐ‰fΦΤΜZΧV0ςxΈΠΜϊϋίλ^ΰkηά²ύΨGE”wYΏgy%˜YrΔ”XΒzΓ¨+Ήθ‚:~nˆHŒR~½hΉ&+ΏV~-S!΅ˆˆˆHqΞέ\‡7ΈR^퐫€wύUξf?³ρšήύΛ=λ›oΐαέ/>Χ y0˜^d»§€^f–gfοςKiΐπͺYŽχ°u_i–ε!`<π©™mρc:ΐ97Έx―&Ξ& rΔχ€YxΝw?^«H:εαœ›ά ΌεΗ8³ΌΫWBiq—υ{–ΧΏπϊ‘,œž)a½ρ~ƒKŠYVgΟ ‰mΚ―χŠŠk²ςk@ω΅̜Sv †jR‹ˆˆˆˆˆˆˆˆˆH`TH-""""""""""Q!΅ˆˆˆˆˆˆˆˆˆˆF…Τ""""""""""RK­gffζΜ,‘Šφ·Μ̎­κu+ΛΜ3³EfΆΥΜF•‹™ύΕ̞¬‰Έ’…™}lfGMΡω "5Ν̞5³»k(­#ΜlAM€U˜Ω3›ρy«™u 2&‰NΚ―«ςk‘κU%…~3;Έθl²€{œsSJέ°ϊβyX霻%ˆτ£άΐ#ΞΉ‡ΚZΡ9wo ΔUœs'CPt>ˆH¬qΞ} t:Ž 8ηC¬23tuΞ-:‘h§όZωuuQ~]7©&u3³λ€{–@ΰ1`dq T°ΦχΐœͺŽ₯*™Y|ΛΗψ/*DDDDDDDDDΚE…ΤQΚΜαΥΌ½9χΆsn›snsξ}ηάύu’ΜμA3[νOšY’Ώl˜™­4³λΝl½™­1³ #φ_ίΜξ7³εf–ofSΜ¬ΎΏμ 3[λϟlf™ώόKs€ύf/ο·™Ω?ό47›Ωl3λ]VšΎsΜl…™m0³›#φgf7™Ω3Λ5³ΧΝ¬iΔςσό}ζFnη/Ϋ§)Tαq)α˜—˜ND—$Ώ5³ΐη%μγ3[lfΝlΌ™΅ρη/:οϋΗ.©Έν#φ3ΦΜ^,’φ<>ΕώžΗη_fφ‘™mŽ*-ύafνΝμm3Λργz$"ή[όίl½™=οŸο˜Y²™½θ―ŸgfߚYKΩD3»Ψ{ŒώόέΜ6™ΩOfvBDڍΜμ)Ό_efw[ πf6ΨΜ¦ωι­1³GΜ¬^Δrgf—›ΧUKž™=jfVΩ8Μ¬³™}ξΧ fφ’™5.!Ζύ9κ›Ωs~<σΜμΖ’Ξy‰~fφ™e›—ηΞ4³#"–υσ„ηΝl‹™Ν1³AΛ˜Ωwώ²Χ€δ2ΊΔΏl1³Ήfv ?Ώ§ΞσΣ±Ν‰ώΊ[όλΰ ώό}ςcσΊ8ΊΑΜ~πσ«ΧΜ,9bωΙf–ε§1ΥΜϊVΣ1©pφs^\x|~]JŒΞΜΊψ?λη-ϊΫ~mf#Φ=ΞΜψρ>εό=σΓπ^j%—q^Žž-ΗωΜώα―dΰπˆxγΪ7ή^π—]Ό€ψϋ€ωΛ&GΔ±ΈΔ_ο `5`ώςwόγΠοΗ7ΐe%Δ:8―{€ `pmΔr|€wNwr€α•θόΚ]𓁫ΰ|ψ0 hβŸ?qΞk€)Ά&ΰ\ ™ »X[x-χ―;ρξⁿΣύeυ€εΐπξNσ―gΕζρΐιΐ*ΰ Όό½ ^ ‘DšώŸGγuOΦέίn p„wΰ@οaό2?ώh4υ―Ε—ϋΛ끃ύοqΏ~RU“ΚΖα£6xωιΐ6~ΎL‰HΗ]όΏŸrΑ~Μ/―ϊˁΝΐ©ώ²kόίιβΎ{…ο ‹ΩΧD·ν 4ζ cύXžžρΧm lΞσ—εnV}5² ύeπξ―z•uΌŠΫβŽ} Ηήύ@2^E„Ÿ€σύίωnΰ‹ ―k€)Ί'”_WΩ1©l(ΏV~­)ΈkaΠhͺΰηΥX^[Ζ:K€#>,σμ ’οB}ήΕxΠ―q4φ/ όΟΟRz!υΡώEμ .b~‰iςs‘[»ˆyίgϊΟމXΦο‚ŸάVδBΧΨMΕ ©KK§0ΖN₯|χ§€qŸϊΫgM«„ν#cΛ/ %χϋψ”σχ|~?ΞΛ1”―z^anq1όψ]ΔηξΗω"Ό Ίo1ΫMdίBκΕΛRόοΥ ―kœ]DΌHΐΛ|Ώ(ηwΌx'β³Γ/`χ?ΏάTΥq£€ο«ΰ|X ±μbTH­IS™π4ϊω&D,λμπJΔK5ήTJ~θύΈ¦˜ωGΰ=TFζω―cύΏWΰ½€L+²έ0~™ŸρyπΈχΏπά"–/ެΚcRΥqΰ#2{ ₯?τ>±μD`Ύχωΐ΄ˆe†χ@XCo…ξ KΨΧDΰζˆΟχG|>Ε7ήΓξ7EΆŸŒ©ΐΎΞΎ,²―·—uΌŠΫβŽ} Η?ΛζE|ξδUζ₯&Mš4Κ›7‘όϊΗ€ͺγ@ω΅ςkM56©»θ• €[ι}·Α{«ZhΉ?oο>œsŸ·γœ¦γ½yZRt‡fofσ›ΏlΖ»ψγoS&ηάηΐ#x΅¦Χ›Ωf–VZšΦ+xo~ίρ›κδαΚ†π Ϋΰ]ό Σί†wμ*’΄t e»₯gŸίΓ9·Υ₯mγ)jΏO9ΟΎ~“šΒ}?œ]ψΩΜ~(a³φΐς"η_‘βΞΫΌγόލի~³§qf–XB{‡sn»gC~)°&"ξγ½₯.ξϋu3³Μλe3^πEΟχ’Ž}…γ0³–fφͺyΝι6/“niJŠiŸ”ρϋŠHt3―©λ<ΏΙf^­—ΘkIΡkE²oΡXεό»z_δ΅Ή¨φŸ‡·²sα"ϋ)ΜϋFγ=”,χ›½)%ςΉλ#ςžΏ‡™5πcYUβU£΄ΈΛϊ=‘ŒίΤ9χ»ΒύΏ^ŽH§€>Ζ²%Όd)ξΌ-Φ9―ίυ;œs½πΊƒ9ο­τώΘΖϋΏ“gšs.³„υΜΗY8 ― œ•°nUΖq/ή±ογ§{n₯»―›BνKZQD’›y}7ήό― hcΌ.œΚs-Y΄5³Θu;”²~6Εη᫁φfyΟΩ?οsΞ}λœ‰χ‚ξ]ΌΦ(ϋ+Έ§H>—βœ{₯θŠ•<&ŽΓΜΐλ†ι*Ό&³« έ}ιώοΥδΥ+|oXYEΣ-L»"χ@Ωΐ€"ΗΉ‘sξŠ ΖΆΟ½ ™•v/("Rε”_+Ώ.†ςλ_R~]¨:J9ηςρΊ²xΤΜF™YŠ™%šΩ f6Ξ_νΰ3knfιώϊ/–cίaΰiΰ3kγΧΆb^Gύ©xkΉxˆ{‹lΎ―/αb™ΩAfv°_ϋu^ΑtΈŒ4Λς8pŸ‘ΰί‘ώ²7“Νμpσ»»“}Οϋ,ΰD3kκ_δ­`:ερ p‘™υχΏΧ½ΐΧΞΉeϋ±Š(-ξ²~Οκς ^Fύ73k`ή€ˆ‡ωΛ^ώ`fΝ¬‘ΣkΞΉ3;ΚΜϊ˜7ΈΰfΌn@ΒΕ¦PηάΰSΰ~3K3o ΖΞfvd ›€ϊim5³xύJWZ9βHΕλO=ίΜΪβ½Μ© ―6³&ώ~―ͺ’ύŠHν“Šχ’/H0³Ϋ€΄rn;ΝίφχώύΕ©x}–δIΰ3hž.~Ύσ5^͘ύύ Γk ϊͺ™Υ3³sΜ¬‘snή΅vΏιΎ—ϋχζη+'™Yj1λVζ˜T&Žx/sΜΰ¨w€ω!ΠΗΏL€τξΊ7¬έΜμl3K0³3π*+|P}}ΰολ<œJτο/{–sϋ’χͺ³€Lώ,― ΉˆHMR~ύKΚ―•_+ΏƒTHŜsχΧ·ΰ]D³ρ œήυWΉ˜70Ϊlΰ;^yάΰoσ-°ψ?ΌσεyΌζ«π:ɟ^d»§€^ζ5ηx—_JΓΛ6ωϋΙξ+#Ν²<Œ>5³-~L8ηζΰe/γŠnbίf5/ΰ]μ–αΎV‘tΚΓ97Έxˏ₯3pfy·―„β.λχ¬ΞΉήMOΌώΝVβυYήˊπ ό οEΖΥώ²Vx/6γu[2Ι_w7 Θ\ΌsβMΌΎΊ‹s^σ-xηniηHUΖqή ›ωx75oWQšwβοŸ€ ~š»ͺhί"R»|όo,ˆεxΧΣruργœΫ7ΈΟΌ<ω JΉ9ηήξΑΛo·ΰέ‹4υχs p^«©Η€σsσύMΟ–™Χ­ΡεxΝ@χ‹snή΅ΰ]Kϋq§ΒΗ€2q8ηζβυΫ8 ο‘«πU€Ήo€§qxχT½πξύJΊWζή°2qζβ΅~ΊήσFΰd?ώύέΧΰ8Ό{¨ΥxM…o ας <ηί«ώΖ9·/oœ,¦μoL""•€όϊ—”_+Ώ‹ςλ:ΗφνΊHDDκ3»oPΕ’j’‹ˆH”0―™φJΰηάAΗ#"""Ώ€όZ€xͺI-"R‡˜Yk3;Μο^€;ή[ςw‚ŽKDD*Ζ̎7³Ζζu%V8nB΄Œ‘ςQ~-RΆβ-‘ΨUψ7ΠΘ^ΕkΞ'""Ρi^³νΒξ£F9ηv’ˆˆˆ‘όZ€ κξCDDDDDDDDDD£ξ>DDDDDDDDDD$0*€‘ΐD]ŸΤιιι.###θ0DD$F͜9sƒsyΠqD;εΧ""Rέ”gW εΩ""RΚ›_G]!uFF3fΜ: ‰QfΆ<θbςk©nΚ³«†ςl©NεΝ―Υέ‡ˆˆˆˆˆˆˆˆˆˆF…Τ""""""""""R‹ˆˆˆˆˆˆˆˆˆH`’Oj‘hΆgΟV\ΙΝ;ƒ₯ΞKNN¦]»v$&&ŠˆˆˆˆˆˆT!={ΧΌΚ>c«ZD€­\Ή’ΤΤT2220³ Γ©³œsδζζ²rεJ:vμt8""""""R…τμ]³ͺβ[έ}ˆˆΤ ;w¬Y3e’33š5k¦·κ""""""1HΟή5«*ž±UH-"RΓ”IΦϊDDDDDDb—žωjVew΅R›Ωp3[`f‹Νμ¦b–1³3Λς§‹«3† V{γǏηoϋ[΅§iβΔ‰L:΅FΣ©IzΖ‘ΚΘΚΚ⣏> :ŒbU[ŸΤf< ό X |kfγss‹¬ϊšsξͺκŠCDDͺG(">>ΎΨe#FŒ`ĈUžfAA Εg]'N€aΓ†zθ‘UžˆˆˆHΠτŒ-""••••ΕŒ38ρΔƒεͺsΰΔΑΐbηάR3{ Ν@₯δnέΕ rh˜OZύDΥO€mγϊ4N©th"ΥbΒάulί’QύD’Ho˜DΫΖυ‰‹Sσžάwί}ΌώϊλμΪ΅‹_ϊΧάqΗŒ5ŠμμlvξάΙ5Χ\Γ₯—^ x΅°/»μ2&L˜ΐ£>ΚΉηžΛ\ΐϋοΏΟž={xγ7θΡ£Ο>ϋ,3fΜΰ‘Ga̘1€₯₯1cΖ Φ]ΛΈqγ8ν΄Σ‡Γ\uΥU|ώωη΄oߞΔΔD.Ίθ"N;ν΄}b6lύϋχgΚ”)œuΦYtλ֍»οΎ›έ»wΣ¬Y3^zι%vμΨΑγ?N||}:ό1mΫΆεύχί'11‘™3grέuΧ±uλVΣΣyφΩgiέΊ5Γ† γΰƒζ‹/Ύ //§žzŠƒ>˜Ϋn»;v0eΚώόη?3oή<6lΘ 7ά@οή½ωΰƒʌ}πΰΑUzΌͺ³Ί-ρy%pp1λ6³‘ΐBΰΞΉμ’+˜Ω₯ΐ₯:t¨†PcΟC[ΔσΣ–b~ΫΖυΙl“F8¬K3΄o’B<‰zkςwpρσ3~1ΏaR½Z§‘Ω6;4aXχζ€&'aντ駟²hΡ"ΎωζœsŒ1‚Ι“'3tθPž~ϊiš6mʎ;8θ ƒ=z4͚5cΫΆm|πΑάύ{χ“žžΞwί}Ηc=Ζίώwž|ςΙ_€΅fΝ¦L™Βόωσ1b§voΏύ6Λ–-cξάΉ¬_Ώžž={rΡEλξέ»™1Γϋ7mΪΔτιΣ13ž|ςIƍΗύχίΟε—_ΎOζzφΩgσ‡?όΓ?œ+VpόρΗ3oήΌj8’"ε·'ζ‚§ΏaϋξPΠ‘ˆˆ’{ΛTRWœž±τ§·f3+;oŸyq›7€W›4ϊ΄mΔ°ξΝι"5 EͺΞ{Y«Έω1?½a™mΘl“ΖΑš1€S3κ%hΈ»,^Ό˜7ήxƒ§Ÿ~šƒ:ˆ—_~™)S¦0~όxξ½χ^Ϊ·oΟ€xχέwωόσΟ9όσΙΚΚ`Ι’%|ρΕ̝;—!C†πΦ[o1nά8~ύλ_σα‡rI'qυΥWσή{οΡΌys^{ν5nΎωfž~ϊiΐk‰όΝ7ίπΡGqΗw0aΒξΌσΞ½ΚƎ[αΨί}χέ*=VΥYH]ο―8ηv™ΩeΐsΐΡEWrΞ=<0hΠ W³!Fη_,XΟ]ΣΉι„lήQ@ώŽ=,ΟέƏ«73gU>ŸΝ[ΗŸA‹Τ$ŽΟlΕ ½[qH§f*°–¨΄Γ/μωΣπ ξΨ„ό{XΏysΧlζΗUωΌϊM6Ο|΅Œzρqή5α™­8>³R‚-°Ύγύ9Μ]½ΉJχΩ«M·Ÿ’Yu?ύτS>ύτS ΐΦ­[Y΄hC‡εŸό'οΌσΩΩΩ,Z΄ˆf͚ΟθΡ£χΩΟ©§ž ΐΐyϋν·‹MkΤ¨QΔΕΕΡ«W/Φ­[ΐ”)S8ύτΣ‰‹‹£U«VuΤQ%ΖzΖgμύ{εΚ•œqΖ¬Y³†έ»wΣ±cΗb·™0asηώ\±hσζΝlέΊ΅Fϊδ)Ι‚΅[ΨΎ;Δέ£zslΟ–A‡#"RγβυΌQέτŒ]Mvξqx—tnޝΝ; ΨΈ}7‹ΧmaξšΝ|σΣFήΛZΝέΞ£SσŸΩŠ“ϊ΄¦wΫFA‡-R!…ΟΨo]1„‚#ΗVnΪΑœΥ›™»f3_M^Κc—š”ΐQ=Z0Όw+ŽξΡ‚δΔΪΩ² ΘgοŽ;§O2339ζ˜c03ϊτιΓ²eΛXΎ|9o½υG}4ΉΉΉlήμΕzΒ '˜˜HŸ>}…B >`οΆ ,ΰΗδWΏϊΰuΙΩΊυΟ/‚#ŸΥ—-[Άίί±¬Ψ«ZuR―ΪG|nηΟΫΛ9—ρρI`\5ΖSg,ΛέNφΖ\zD'2ΫŸ)ζοΨΓΔλωxφZޘ™Ν Σ—Σ©y~{xGFΨΦ^XDŠ {χΥν›ΦgΰM‹]ώύŠMόχΗ΅|όγZ>ŸΏžΫΗΟα7ƒΪqΡα9 YƒšΉVpΞρη?™Λ.»lŸω'NdΒ„ L›6””† ΖΝ;HNNώE?ΤIIIΔΗΗSPPPlZ…릻Ώ4ψω7Ίϊκ«ΉξΊλ1b'N,ρΝo8fϊτι$'«IšΤ³Vz5°†vmN«F:7EDdΏθ;@α0RιΫq±ΛΧδοΰ³ΉλψdΞZž˜Ό”M\ΒΐšpΡa9>³% ρͺm*Ρ£π»WλFΕvi³sOˆ―oΰ“9k™0o=γg­&½a=Ξ=δΞ9ψš§&ύb›Ί*ςY8..nοηΈΈ8 HL,Ής\δΊ‰μ IDAT‰‰˜Ω>Ϋ:ηΘΜΜdΪ΄i₯n_Ϊ³zBBαpxοηΒgςΔ^Υͺ³ϊ[ «™uΔΛ8ΟΎ\ΑΜZ;ηΦψGj‡]&/Μ`h·ζ%Σ¨~"#ϋ·edΆμΨβ“9kyrΚRn~ηGξt! Ιΰβ#: )θΚφ"e+π3Π„jζΔΗƒ2š2(£)7ŸΤ“Vζσά΄eΌόΝ ^˜Ύœγ3[qΝ±]ιΡ*­£¦ά5ž«ΛρΗΟ­·ήΚ9ηœCΓ† Y΅j‰‰‰δηηΣ€IRRR˜?>Σ§O―–τ;μ0ž{ξ9.Έΰrrr˜8q"gŸ}v™ΫεηηΣΆm[ž{ξΉ½σSSSχΎq8ξΈγxψα‡ωγxDτοίΏŠΏ…ΘώΙZ‘GΣυhί΄~Π‘ˆˆHτΡ3v€BaWβσ@λFυ9HηΙ oϋnήω~Ο|΅Œ+_ώŽΆλsΙ9ηHTa΅DΒgμ’ZΏ$'ΖsLΟ–Σ³%‘0S—δςμΤe<8a}±„QΪπϋcΊIJM†]’ Ÿ½KsΔGπK/qλ­·2qβDΣΣIK+_ΩDχξέΙΙΙaΪ΄i 2„={φ°pαB23KώΎ©©©lΩ²eο猌Œ½}PχέwότΣO•ϋB•PmWGη\pπ ^ΖψΊsnŽ™έif#όΥ~ofsΜlπ{`LuΕS—LZ˜CF³”rΧ­_/žQΪςώU‡σΚ%‡0 }cώ1a!Gύ}"oΝ\I8¬Φ_R»…φf e_̌~νσΐoϊσεGsΩ‘™²x'>τ%·Ό;›ΫvWwΈ΅ΖqΗΗΩgŸΝ!CθΣ§§v[ΆlaψπαΠ³gOnΊι&9δjIτθΡ΄k׎^½zqξΉηrΰ¨QΩM"ǎΛ駟ΞΐIOOί;”SNαwή‘ώ|ωε—όσŸdƌτνΫ—^½zρψγWΛχΩYΩyτoίxo-‘ς3v° ΒάέΥ4N©Η…‡u䋆ρΔyiΫΈ>cߟΛρ˜ΜgsΧU¨e‘HM •Q,RB|C»5ηι1ρωυGrζΰφΌ—΅šcξŸΔ}ŸΜgλͺ―qKƎΛΜ™3ιΫ·/7έtΣ>±ΚR―^=ή|σMώτ§?Ρ―_?ϊχοΟΤ©SKέ樣ŽbξάΉτοߟΧ^{Ρ£G³qγF233yδ‘GθΦ­[eΏR…Y΄] δ Ο’_ΪU’Ÿqϊ vά9²w…χσ݊Mάρώ\feηΡ―}cƞ‹šTa€"U'+;Q~ΕΣcqtύογuΣΆέ<8a!/~½‚υβΉφΨnœ?δ€ji’7oή[Θß/β§ΏžT‘νWηνΰΎOπΞχ«Ho˜ΔΗwητAνj΄’†ž½ƒQ™gl΅3‰13–mbǞG–ΥGyΨ‘ ο\q(χŸή5y;ύ―©όύ“μ …ΛήX€†…όώ“ΚS“Ί8MΤγŽ‘½ωψš#θΧΎ1w~0—3ž˜ΞŠάνU¦γδ“O¦ώqΔάzλ­5Z@-RΣf―ΜΗ9θί‘ψΎ,EDD€φ*;β+VΐffΥ£½v(wŽΜdޚ͜όΟ)ό{’½5VEj“P8\ZΤ%iΣΈ>8£?ο]yΝRΈρ­σΜ·¬ΝίYφΖRg©:ΖLZ˜C½ψ8ιΤ¬ϋŠ‹3FlΗη7 cτνxδ‹ΕœϊΨT―ίZ‘ŠTΒw'•ΙDΊ΅Lεω‹σΠ™ύYΈn '<4™ΧΏΝVsΌj4qβD²²²˜;w.cƌ :‘jυ}Ά7hbΏvewk#"""΅Kx?Ίϋ(Ib|ηΙΰ³λŽδ¨ΝωλΗσ9σ‰iͺ#΅ΞώtoSš~νσϊeCΈsd&_”ΛρN潬UzΖ–b©:ΖLZΓ Œ&U:ΰaΓ€ξ;½Ÿ{ +7mη€~Ι«ί¬¨²ύ‹TVΑήšΤ•ΟD͌‘ύΫςίk‡·]cn|λ.q&[vξ©τΎE€n›•GΗτ4N©t("""²Ÿ Ž„ Άά,*½aŸ;~ӏωk·0ό!―ΰN€Ά…ͺξ|‹3Ξ’ΑGΏ?‚NΝpΝ«Y\ϋZ;v‡ͺd;THCΦζοdΑΊ-•ξκ£$Γ{·ζ“k‡2ΈcSnz{6·Ώχ£ΊZau(―ΆλσΕsσ‰=™0o=Ώ~l*Λ6l«’}λ­qν ίAj’snο ‰"""}BUT³΄™qκνψδΪ‘dΆIγšW³Έχ£yθ[jͺͺI©Sσ†ΌqΩϋU7ΖΟZΝθM%{cυΆ"Π3_ΝͺμρV!u ™Ό0€#»WO!5@‹΄dž½p0—Ρ‘η¦-ηό§ΎaΣΆέΥ–žHyψ…ΤU‰ΖΕ— νΔ ΏLξΦ]Œ|τ+¦,ΪP©}&''“››«Μ2`Ξ9rssINN:©#ΦnήΙϊ-»TH-""₯ *ΩGoIΪ4ΟKΒωCΰ‰ΙKσΜ·zΖ–ΐ…ΒZΞχ„ψ8~LWžsΩ›Ά3β‘)|΅ΈrΟΨ%Ρ³wΝͺŠgμͺλB7iQ-Σ’θ^Ν#ΗΗ7ŸΤ‹­ψσ;³ρθž3˜.-VkΊ"% … kRWΟ{·C;§3ώͺΓΉψΉœτ׌‘ΙωC2*΄―vνΪ±rεJrrrͺ6HΩoΙΙΙ΄kΧ.θ0€ŽΘZαχG­Bj‘¨TΥ5©#ΥKˆγΞ‘½ιέ¦·Όϋ##Βs¦Ss=cK0ͺ£&u€£Ί·`όU‡sισ38ο©―ΉsdoΞ=δ€*MCΟή5―²ΟΨ*€Ž‘0SmΰΈ^-1«Ύ I€ΡΫΡ©y.y~&Ώωχ4žΏh0½Ϋj0(©yΥU“:Rϋ¦)Όυ»CΉφΥ,n{o·νζšcΊξχ·ΔΔD:vμXMQŠ”ΞΜ†ρΐ“ΞΉΏ•°ήhΰMΰ ηά 3Λζ όU¦;η.―ώˆcGVvυβγθΩΊz_$‹ˆˆHυ(¨¦š₯‘~sP{ΊΆlΘoŸ›ΑιOγΩ ΣG.KBΥΤr RΗτΌsεa\σΚχάςξδnέΝοιReeZzφŽ>κξ#FΜZ™OώŽ= ­¦ώ¨K2 CήΈ|υγ9λ‰ι|½4·FӁˆ>©γ«7m˜”ΐγηΘiΫρΰ„EάυΑ<Βa5’θ`fρΐ£ΐ @/ΰ,3λUΜz©ΐ5ΐΧE-qΞυχ'P溺μθPDDDd?…Γη ΎšZnFΠ‘ o^>„δΔxΞϊΟt¦.©žDJSvΔWσσ5ψΟΨη dτνψΗ„…Œ?GΟΨu˜ ©cΔδ…9Δή%½ΖΣξ˜ή€7―B‹΄$ΞϊΎ˜ΏΎΖcΊ­ μ .R5© %ΔΗ1nt_.<,ƒ§Ώϊ‰?½υƒ7‘h1Xμœ[κœΫ Ό Œ,f½»€vΦdp±,vΜ^•―ώ¨EDD’TA UŠ)Τ©yCήΊβPΪ4NfΜΣίςίΧΤHΊ"…Ό>©k¦Θ01>ŽϋNλ»wμ³k_Λbž±λ$RLjI sθΧΎ1MΤ $ύ֍κσϊeCθΪ²!—ψΑΜ²€7Λsj*SΫv°pέυG-""Ε‚^Χ/^|04Kαηg0νζΐb‘ΨdMκBΧΣ•+†uζε―WπΠ‹Τ RGΉωk·°~Λ.†v«}ΝͺΫ4Ο ΏLΘ9Ζ<ϋ yΫw’Δ¨ ϊ€.ΚΜΈηΧ}8WKξό`.ŸΝUqRϋ8η>rΞusΞuvΞέγΟ»Ν97Ύ˜u‡9ηfψΏεœΛtΞυwΞθœ{Ώ¦cV³Wεv0@…Τ"""Q«`o₯˜` νš6¨Η³¦ARcžώ–5ω;GbW(μ«VΘΜΈρψξœ6°NXΔλίf—½‘D5RGΉI~TGΦΒBj€NΝςΔyƒXΉq—½0“ݝUͺ^( LŠŠ3<³?}Ϊ6βχ―|Ομ•κκF€Λ ‰"""QοηšΤΑ‘΄i\Ÿg.<ˆ­» στ·lήΉ'θ$Υ†šΤΰTυΤ>Ρ5?Ώ3{o˜Δ¦ΰ―°R)“δΠ£U*-Σ’ƒ₯Dƒ;6εΎΣϋςυOΉι­Τ—TΉΪP“ΊPJ½žΌ`MΤγ’ηΎeUžj7ˆΤe³²σθΠ4…¦ κŠˆˆˆTPm©I]¨gλ4?w KrΆrΉ*ƒI5…]`}°•ΗcηHχ–©όξΕ™χ,†©:ŠmΫUΐŒεkm-κH#ϋ·εϊ_uγνοWρπ狃GbL(T»n[€&σΜ…±sOˆ‹žω–­» ‚ID’•§ώ¨EDD’\aΛΝΪP)¦Πα]ΣwZ_¦.Ιε6 ,'U¬ΆΤ€.”šœΘ3Dγ”z\όά ΦoΩtHR THΕ¦-ΙeOΘEE!5ΐUGwαΤmyΰ³…όožϊλ•ͺS›jRκΦ2•3Eλ·pγ›³tΣ(R­ΫΌ“5ω;ΥΥ‡ˆˆH”«m5© z`;<ͺ3―~›Ν‹Σ—ŽΔP8\λΞχ–iΙόηόAδοΨΓ/~Η‚PΠ!IS!u›΄0‡”zρ Μht(εbfά{jz·MγΪΧ²ψiΓΆ C’ςίςšΥLτπιάtB>š½–O^t8"RΓ ϋ£VMj‘θVͺ}•b ]χ«ξΥ½9wΌ?—―—ζŽΔˆ‚PνͺI]¨W›4ξ;½/3—obμψ9ͺ cTHΕ&/ΚaH§f$%ΔJΉ%'ΖσψΉIˆ3.{aΫΤ ‚T‚°#Ύ–PΊδˆNœΤ·5γώ;Ÿ)‹6ŽˆΤ ¬μ<βŒΜ6iA‡""""•ͺ…-7 Εǝ5€MSψέKίiL©‘°#‘ Zœ“ϋΆαwΓ:σΚ7ΩΌψυŠ Γ‘*T;Ο8)Σ² ΫXž»‘QΥG€vMRxψ¬YΌ~+7j E©‘pΈVή0‚Χ‚`άθΎtm‘ΚΥ―|GφΖνA‡$"5$kE=[§‘œ=/“EDDδ—jcχ‚‘’yβόAμ.sΩ 3ΨΉGέ Hε„jYŸΤE]œί‚`όΎωicΠαHQ!u”š΄0€aέ£―ΌnnήƒXΓΣ_- :‰r‘pνλ.Rƒ€ώ}ή@ Ž߽€Ύ³Dκ‚PΨ1{UΎΊϊ‰aWΨ'uν-Bι’!žΩŸWmζΞζŽDΉΪ6pbQ…-Ϊ7MακWΎcΓΦ]A‡$U φ^a₯T“ζp@³hΦ θP*첑ψU―–όνγyΜ^™t8ΕBα0ρρ΅7ΘHoΐύ§χcφͺ|ΖύwAΠαˆH5[’³•­» TH-""jsŸΤ‘ŽιْˏμΜΛ_―ཬUA‡#Q¬ΆΧ€―Α£gΘ¦ν{ψΓkY„Γj₯νTH…v„˜Ί$—#£°«HfΖ}§υ₯yΓ$zε;ΆμάtH₯ ΒVΧ€.t\f+ΖšΑSS~βσωλ‚GDͺQΦ oΠΔ~*€‰z…}R'ΤςŠ1Χ׍A4α/oΟfiΞΦ Γ‘(UGΕ3v―6iά~J/Ύ\΄MZt8RI*€ŽB3–mbǞC»Fw!5@γ”zΞxπ ―IυoΜ’ :$‰"Ρτ–·ΠiΫqJΏ6<τΏEόΈJ‡ŠΔ’Wη ;R‹ˆˆΔˆŸkRGWΚυΏκNf›4nzλrΆ¨v©”_AΨEEμ‘2Ϋ4βΗwηΣΉλxc†ZιG£θΊΒ “ζDύ ‰ΕiΥ(™»Fυζϋyό{ς Γ‘( ‡£ͺVxM’ξ™IΣυψΓkYκ+N$†hΠD‘؍5©κ%ΔρΰύΩΊ«€?½υƒj—JΉE[kεBΏ=Ό#C:5cμϋsXž»-θpd?©:ΚLZ˜C‹Τ$z΄J :”j1’_Nκۚ',dΞjΥ.•ς)EgΪ8₯γNλΛ’υ[yΰ³…A‡#"U$+;ΆλΣ<5)θPDDD€ „ό£­υ&@Χ–©άtB>ŸΏž—Ύ^t8% Βα¨<ίγβŒϋӏψ8γ―e©•~”Q!u …Sm`h·ζ˜EίΕ’ΌξΩ›Ζ)υΈξ΅Yμ*PνR)[΄ΎεΦ½η܁|Ή”―—ζŽˆT¬μ<ϊwP-j‘XQŠΞšΤ….’Α]ΣΉηΓyJΚ;Β.zΟχ6λsχ¨ή|·"Η&. :Ω*€Ž"³Vζ‘ΏcOLvυ©IƒzŒέ—λΆ¨v©”KΘE_ŸΤ‘ώrbOΪ7Iα†7g±uWAΠαˆH%δlΩΕͺΌτo§Bj‘XŠξ> ΕΕ?½I‰q\χϊ¬½ίG€8!WΨ{tžο#ϋ·e„Ζ€Š:*€Ž"“δ`‡wI:”jwTœ5Έ=™Ό”¬μΌ Γ‘Z.škR4HJΰίτcε¦Œϋοό Γ‘J(Μ³T“ZDD$vΔB‘]Λ΄dξ‘IVvOMΡPR²Ÿ_ΚDw‘αώP|σv¨Ϋhέg\3yQ}Ϋ5¦IƒzA‡R#ώrbOZ€&σ']P€ !u#m5(£)cΝΰ…ιΛωvΩΖ Γ‘ š•G|œΡ»M£ C‘*ν5© θΧ†_υjΙύŸ.T·R’B£ω₯ xc@έ3ͺ7σΦlζ_κφ#*Dw©N²iΫnfeη1,Ζ»ϊˆ”šœΘέ£z³`έ]P€TΡ^“ΊΠ Ηu§M£ϊόι­ΨΉGύ±‹D£¬μ<Ί·L₯~½ψ C‘*RΨ'u΄WŒ13ξΥ›δΔxn|σuϋ!Ε Eyμ‘ŽΛlň~mxδ‹EΜ_»9θp€ Ρ}…­C¦,ή@ΨΑΠ:TH pl―–œβ_P­Ϋt8RK„Γ$ΔGΪ )ΏžΪ‡₯9ΫxδσΕA‡#"ϋ)vΜZ©AEDDbΝޚΤ1πΜΡ"-™ΫNξŌε›xnκ² Γ‘Z¨ μ΅d…gl€±#2iT?‘?Ύρ!΅―ΝTH%&/Μ‘QύDϊ΅«{Ν‡o?₯ “Έρ-½ι•βΕJMjπ^D>°OZΒάΥzΣ+M–nΨΖ–τo―Bj‘X+έ:υΐΆΥ½9γ>™ΟςάmA‡#΅L¬toS¨iƒzά9²7³WεσοΙꏽ6S!upΞ1ia‡wM'!Ύξύdι “Έν”^|Ώ"η§- :©… Β.fnn=Ή'SωΣ[zΣ+Mφš¨Bj‘˜ςk–ΖJ‘™ρΧSϋ’ΗΝοόˆsͺ &?‹΅—2'φiΝ‰}ZρΠρΣ½˜©­κ^‰gšΏv λ·μβΘu««H£ϊ·εΘnΝωϋ' X“Ώ#θp€–‰₯šΤΰ π0vD&³Wεσό΄εA‡#1ΔΜ†›Ω3[lf7•²ήh3sf6(bޟύν˜Ωρ5qt™•GΓ€:7ot("""R… νβ-vž9Z5JζΖαέ™²xοf­ :©E~I[E†cOΙ$)>Ž›ί™­3΅Tlq1jςΒ ξυGΙΜΈkdo Ž»>˜t8RΛx5©cλrvRŸΦΩ­9|Άu›wŽΔ3‹Nzg™Y―bΦKΎŽ˜Χ 8Θ†ωϋ“YΩyτmΧ(¦^š‰ˆHνR™ΞRq‘°#Ξ .Ζςψ³>€ώνsΧσΨ΄mwΠαH-‹5©ΑλύΖz0uI.o§3΅Q΅–κ(­“ζΠ£U*­%J :4Kαͺ£ΊπΡμ΅|±`}ΠαH- »˜»a43ξ™ΙžP˜;υbFͺΖ``±sn©sn7π*0²˜υξώˆ|;2xΥ9·Λ9χ°Ψߟψvξ 1oΝfϊ©«©&•yα,•Sc-7 ΕΗ=΅ω;φπ·ηŽΤ±Φ½M€sw`@‡Ζάύα\6κΕL­Sm…ΤΚ@«ΖΆ]|»lcEι#;Ρ©yno;χ„‚Gj‰‚p8ζήςΠ¬WΥ…XΓ$ΏE…H%΄²#>―τηνefνsξοΆuέœΥ›);υG-""Υ©2/œ₯b­{ΑH=[§qρymF6_/Ν :©b΅&5x­!ώzjΆμ,ΰޏζŽQ5©•ViKrΩr©Bj’βΉ{doVlάΞ£_,:©%ΒαΨ|Λ pΩ‘θ”ή€ΫήϋQ/f€Z™Yπp}%φq©™Ν0³99uλΕJα ‰TH-""Υ§2/œ₯ B±Χ½`€kιF»&υωΛ;³ΩU gŽΊ TΨ'ul>cχh•Ζ%C;ρζΜ•L]²!θp$Bu^e•VΙ‹r¨ŸΟ Œ&A‡RkΪ%QύΫπψ€%,ΙΩt8R ΔjMjπ^Μά5ͺ7Λs·σΨΔ%A‡#ΡmΠ>βs;^‘T 70ΡΜ–‡γύΈΚΪηάΞΉAΞΉAΝ›Χ­—«³²σhέ(™iu»k. ΞώΌpΛ/–+"μb·&5@ύzρά=ͺ7KrΆρδ—?Ž,μ*˜»ηόοξJϋ¦υΉν½9μ.Žψ{¨ ΄|&-ΜαΠΞΝHJΠψT‘n>©Ι‰ρŒ?G£²JL7Ώ8¬K:#ϊ΅αρ‰KXž»-θp$z} t5³ŽfVo Δρ… sωΞΉtη\†s.˜ŒpΞΝπΧ;ΣΜ’Μ¬#Πψ¦ζΏBν••§>DD€ΊUζ…σ>κς‹εŠˆεJ1…†uoΑπΜV<όω"Vεν: Pawρ1άz ~½xƞ’Ιβυ[yvͺ^ΜΤΥyΖ)­€eΆ±ζ―;ηζ˜Ωf6’Œmη―sW:ηΤΤ—»u+6nW!΅ˆˆT·ΚΌp–JˆυJ1…n=ΕFμn ά^§…bΈOκHΗτlΙ1=Zπΰ„E¬ΝWΔ΅AuR+­€Ι‹ΌZ…-ͺ IDATγꏺxη 9€-rΧ‡sΥWo Ή˜~Λ Π2-™«ξΚgsΧiE©0ηάGΞΉnΞΉΞΞΉ{όy·9ηΖ³ξ°Θ<Ω9wΏ]wηάΗ5wmχΓΚ|ϊ©ZDDͺQe^8Kεx}RΗv@ΫΖυΉκ¨.|όγZ&λ™£ΞŠυ>©#έ~J&aΗ=D±V¨ΆRe •7iAš¦‘ή θPj₯Δψ8n?%“μ;xςΛ₯A‡#*»˜ξ/«ΠE‡gΡ,…;ήWΏY"΅ΙχΩyΔτiΫ(θPDD$ΖUζ…³T\(숯Ο— νDF³ƎŸ£Aλ¨ΊR“ C³8²3οΟZ­Akj­z¨ ΄βv„˜Ί$W΅¨ΛpxΧt†gΆβΡ/–°ZύfΥYu₯ω]RB<·‹₯9Ϋx~Ϊ² Γ_VvέZ¦ )!θPDDD€xέ ΖvΛΝBI ρŒ‘Ι ΫxjŠϊκ­‹ Β^…¨ΊπŒ pΕ°Ξ΄oZŸΫί›Γž*ƒ©n\e£ΠΜe›Ψ±'€BκrΈω€ž„γ―Ο: H]Θ€ΠΡ=ZrTχζ<8aλ·¨ί,‘ 9η˜₯AEDDbZ]©ShXχŸΩ’‡·˜5ωͺ VΧό\“Ίn&'ΖsϋΙ™,ZΏ•η¦. :œ:­nœqQhΒγ!›J­ΧΎi —ωΝ3ΎωicΠαH ‡aWwήςάzr/v„ΈοΏ ‚E€Ξ[–»ό{TH-""ΓκR₯˜B·œΤ‹sŒΣ3GS;}R:¦g Žμ֜‡ώ·ˆά­»‚§ΞR!u-5iaƒhͺ¦ΓεtΕ‘iέ(™»>˜KΨΏ Jέr~ju'νΤΌ!cΝΰΝοVςγͺό Γ©Σ²²74QDD$–…ΒŽΈ:τΌ^e°KŽθΘ;ί―β»›‚GjΠޚΤu€v3γΦ“{²}wˆ>[t8u– ©k‘u›w2νŽμ>Κ«~½xnޝ٫ςy7kUΠαH *Μ@λΚ@&…:Ί+λ'rΟ‡σpN/fD‚2+;Ÿ”zρtk™t("""RMκΚ@νEύnXZ€&qΗϋͺ V—ΤŚΤ]Z€rή!ό?{w_U}ηυΉχf_ΙB€$„,7(VE­Λψν΄ΪΝVλŠ‚ΞLΗ~ΫιΜτ;N;ΪΪ*Z·±ν8κX»LΨͺ(‹  ¨(Ad»YXnΒ’›ε&!ϋ=ησϋ#7Z–,χήΟY^ΟΗ#’›{ε=άΟ=οσ>οώ烣ΨΌCu[b‘Ϊ€*=>@Ή›EκΡΈav6fε€ΰα7’§Ÿ»Ϋ…v.%. χ―,Ζ{υ-ΨΈΏIu"ΫΪευcfvŠν>ΔΩ‰έfRIˆqα;«¦c·ΧΟf0Ρ‚'Ϊνξ_QŒ”Έ(όπ΅}lS€Ejͺςψ™ƒ“Ω•5‡ΐχ―-Ε‰Ž^<·΅^uА3Wyνχvφ₯ωSQ41ώϊ~τΈ 1Q€υ4μ?ΦΑyΤDDD§ι–;ΈiN6fη€ΰ?ή<€Ύ€κ8͞Τ…‚Ν`φžTΗvμWΥ18M—ΨZӌrw&„Νf^…Βόό4\}ρ$<υNNvτͺŽC`ΧNjp9ψή53p¨Ή /½Du"ΫΩΌύšΞ"5‘ΕlΪI 6ƒύΰΊRœμθΓSοΤ©ŽCpζ۞%Γ[ζOEIVz}zx—~$Ωσˆ3°έ ~΄χ pυ8ζΏ{Ν tυπΨ¦ΥQlƒEjρwχc·ΧŠbŽϊ―”ψ(¬^Z„JΫk›UΗ‘0:}•Χζ θύ+‹αp?egQDψ»ϋq¨Ή ³9šˆˆΘς;©ΰΫK 1!> φη}RͺŽCa’GjΪύΒLqVnž?/ξ8‚CΝ]ͺγΨ‹Τ²­ΆΊ*Š9κ#Ύzy²Sγπ£7φCΧΉ€ZΥ™yYφ~;›œ‡ΫζγΥΗΨΩ@Υ^?`‹ΤDDD–§ιφM1…΅+б£Ύ›4©ŽCabχ™ΤΓ­]αFŒΛxƒwιG‚½«:SyΠ‡δXfηπ„7b£œψ»+‹ρic^ϋδ˜κ8&CΤNήn»— v6ό˜ (QΨνφΆC`fNŠκ(DDDfš.αΰωΰK—MEAFώύυύΠtΥq( 4mh&5K†“bqwE!ήά{jUΗςxΔ„”U5>,vgΒεδ-‘rcY6fLNΖ#’/ ©ŽCa ρ*οiΙ±QΈw™Ϋj›Qερ©ŽCdiΥή6e&")6Ju""" ³€.m?ϊ`H”Ӂ―žŽ:_^ωΠ«:…ΑP'5ωAί\\€IΙ±xθυύsf¬†ΔΑ“8ΩΡΗyΤ!ζp|χκιhhλΑ‹;ŽͺŽCaΐ‡—LEnZ~τΖŽΉ! )ειM‰ˆˆΘϊ4]Ϊ~Όΰp+K³0?? m¬AW_@u 1-xQ†›ƒŠ‹vβ+‹±ΫλΗŸžPΗψ.k•»suΘ•gbQQΦmAgο€κ8bΰ¦vίyxHŒΛ‰ΏΏ²ϋw`ύnŽΉ! okZ»ϊΉi"‘Mhμ€ώ BΪΕΫ‘,βτLjξΆ}V₯S’qCΩόjϋ!4uφͺŽCŠ !V ! !j…žεηw !φ!ͺ…Ϋ„₯ΑΗ§ !z‚W !žŽ|zcΨευ##1Ω©qͺ£QH)‘±hw^Ι±QψVE!*=>Ό_ί’:7 ½°ϋ–»!„ΐΟy—~H±H­X•Η‡©iρ˜–―:Šm€%DγΆEωxγΣΌΙNΟ€\DΟeνŠb hΏΨΒnj;B8< ΰj₯n*Bσ²”r¦”² ΐΓφ³:)eYπλξΘ€6žέ^?ΚrS!ψžCDDd χΐ‘[―˜†¬δ<²α €”ͺγΠ8°“ϊΒ&§Δαk ςπΏ»Ps’wι‡ ‹Τ υ4Ό[Χ‚ŠβLžμFΨν‹ς‘…Ÿ½Νnj³Σ%?4^H~F>I^~(Žω{TΗ!u樕RΦK)ϋΌΰ†αORv ϋ6Ο0†iο@―‹£>ˆˆˆl„΅Ll”χ.scη‘6l9Ψ€:Γΰx– /δΫΌK?δxΤ)τΡα6tχk(/ΞTΕvRβ’pgy6hΒΗGΫTΗ‘qšIΝEτόξ]^ ‰uάάΑΞ²x‡}ί|μ/!ξBΤa°“ϊΎa?ΚBμBT !‡7ͺ1νiΌϋf6‹ΤDDDΆ1ΤΓρφΕKs‘—G6x λμu0+vRLZB4ΎΉ8oξ=έ^Ώκ8–ΐͺŽB•5>D9./LWΕ–Ύ~Ε4€'DγQ^υ2΅Σ·ίq&υyεLˆΗ-σ§β·;½8ΪΒΝθά€”OJ) ό#€ο>`ͺ”r€Ό,„Hώμk…w !v !vϊ|ΎΘ…ސ‘Mgε°HMDDdμ€Ή(§¬,Ζώγxν“cͺγΠiΊδžO#tϋ’|L঑!Γ"΅B•}˜›7‰1.ΥQl)!Ζ…o-)ΔΆΪfμΰζ¦5τ‘‘ vΟ"8mβζ6Υ wΨχ9ΑΗΞε7€”²OJΩόυGκφRΚg₯”σ€”σ23­w—P΅ΧΒΜ€ΔE©ŽBDDD’i<ߍλfMΑτIIψΩΫ hΊκ84μ€Ή€Ψ(ά³΄Ϋj›ρnm³κ8¦Η"΅"';zqΰD'*Š'ͺŽbk_Y‡‰I1xτ-7w0)MόΰΓEτΒ²’cρ΅Λ7w¨m:₯:Eή‡άBˆ|!D4€›¬ώ!„{Ψ·Χ¨ >žάxBˆnυImRJT{Ϋ9κƒˆˆΘfNwR;Y> ‡Cΰο―,Αα–nόώ£Υqh 4]ηE™QψΚ‚d&Ε`Ζδ$ΥQlο‹—NEvj~Ζ«^¦€qFά¨€'Ζΰ §αυ=ΗqπD§κ8aRΚΧ₯”ΕRΚB)εCΑΗ~ ₯\όυ)εERΚ2)εR)εήΰγΏφψ%RΚΧTώ9T¨n†R–;Aq"""Š€οά5!»©΅χβ•Ό~ЦKΈ,ŽΖίΞΝEnZ~ϊΦA֕ƁGš.±­ΆεξLΑ…N΅h—χ,-B΅ΧΟ«^&t¦“šog#uΗβ$D»πΨ&vSΤn―Ρ.J&ρβ2‘°“zl₯γ²ό4<±₯=ύμ¦6Ξ€½h—k–γΣΖlΨ{RuΣbUGOόπw Ό8Cu ϊόάvS›;©G/5>:ΨM}ϋw¨ŽCd Υ^?.ž’Œh?:ΩI€ηc"„ΐί]Y_gώ{ΗaΥqh;©yΌΦeSP™€Gί>xΊNA£Γ3-*=>,vs΅QD»Έoy>ihΗζMͺγΠ(ΈΫφ˜|sQ’b\xlcκ(D†7 ιΨΣΨΞQDDD6€ρΞΝ1›ŸŸ†ςβL<υNNυTΗ‘b'υΨΈœάΏ’ž“§π§OŽ©ŽcJ|—U ΚγΓ¬œT€%D«ŽBΓάtI¦¦ΕγgΩMm&Zπ+ΡQI‰Βm‹ςρζήΨ{¬]u"CσœμDο€ŽΩΉ)ͺ£Q„ 5Ε8Y=“Ώ[YŒΆξόrΫ!ΥQh„4]‡ΛΙσλ±ΈvζdLŸ”„Ÿ½νA@ΣUΗ1ΎΝFX{χͺ½~TΈ9κΓh’œ¬^V„O;πφ>Ξ2 MΧΩE=F·-ΚGR¬ ?g75Ρy mš8‡ΤDDDΆsfΌ Λ'c1;7+K³πάΦz΄χ ¨ŽC#0ΨIΝγ},VγpK7ώ°«QuΣαQaΫj›‘K ’„£>Œθ¦9ΩΘKΗΟ6Φ@η !Sΰ­Hc—…;ΰν}'±§έΤDηR}ԏ΄„hδ¦Ε©ŽBDDD6tη&cΖξώΕθμ ΰyvS›gRΟΚ,ΜΜNΑΊΝ5`7υ¨°Ha•ž&$ΗΊ0;'Uu: —Ӂϋ–Ή±xήήΟnj3Π4. γρ…Ӑ…Η6±›šθ\v7ψ1;'Bπ½†ˆˆΘn4}°ΘΔƘ±+’ŒkfNΒ/·‚Ώ»_uΊ€€ΖF°ρb°›ΪΫΪƒίΤ :Ž©°HARJTyš±ΘZΦ eS0-=m¬αlj`'υψ$ΕFαφEωΨΈ$>md75Ρguφ ¦ι7M$""²)nΤk–£«?€ηΆΦ«ŽBΐNκρ[R’‰²άT¬Ϋ\‹ώ»©GŠ•ςœ<…½¨(ζ¨#s9X½Μ}Η9›Ϊ 4]ς’Ο8}}α4$ΗΊΨMMt{Ϊ!%Έi"‚b•β ’VρΰY~~·b’Z±MQͺ"§•œ™IΝ’έx”LJΒ΅3'γWΫ£΅‹έΤFΖF°ρBΰώ•Εhτχΰ՝^ΥqLƒ•ͺτ4ΚY€6ΌΛ¦ /=mb7΅ΡqΏδΨ(άΎhp6υήcμ¦&ΊapΣΔ²\Žι"""΅„NOΈ@)€[ΞR„~YJ9SJYΰaF8¦ε‚Ej—“ηγ΅v…=ž©ͺS…ΞCΣužc‡@Ή;sσ&ΰΙ-΅θΠTΗ1©#¨γCqV"&§pγ%£s9Έgiφλΐ¦ύMͺγΠyhΊΞ[‘Bΰλ §!)Φ…ΗΩMMτͺϊ‘Ÿ‘€ΤψhΥQˆˆˆζ¨•RΦK)ϋΌΰ†αORv ϋ6;nΖιL'5Λ'γU41 7̞‚ή=_gŸκ8tl ‘ΩΤΗΫ{ρ›ΩM=a}—ε­Hgtχπα‘6Žϊ0‘Ώ™“ά΄8vSΠΠH‰‹Βm σ±aοIμ;ΦqαΩ€”ΥήΑM‰ˆˆ ΐπJGCπ±Ώ „ΈGQ‡ΑNκϋ"”Ν²NwRσœ#$ξ[ξF_@ΓΣ•μ¦6*Ξ€+ Σ1??έΤ#Ά"5oEϊK;κ[Π―ι¨(ž¨: P”ӁΥK‹°§±›°›Ϊ¨Έ€†Ξm σ‘Γnj’!':zΡΤΩΗQDDd*RΚ'₯”…ώΐχΟφ!ĝBˆBˆ>Ÿ/²MFΣ7=ccLhd&βΖ9Ωxιύ#hκμU‡Ξb°Œw„‚χ―(FSg^~¨κ8†Ξ£Ž·" SyΠ‡Ψ(ζM› : ΒM—δ g»©LΣ%όΐ)ρQψΖ’|ΌΉχφg75QυΡΰ<κ©\»‰ˆΘδϋ>'ψΨΉΌΰΖ³ύ@Jω¬”rž”r^f&οφ=Ÿ7N Ήϋ–Ή1 Iޝ<ήCmνŠΑnκ—ΨM}Nα,RσV€ JΉiq˜–―: Ρζε`Rr,ίlΙCΤΤΌ)δ’ρΥΛσπΪξc¨χR‡H ΟΙNtχk(›ΚM‰ˆˆμμLg)οή ΅ΥK»©Ÿ~‡έΤFΑNκπYPŽΛ ρΤ;uθιg7υΩ„ν]–·" κθx·Ε™‚ΘΝ*ΖεΔ]ψΰP+vΤ³›ΪH4]ηw,.@΄Λ'·Τ©ŽB€ΔnopΣΔ\nšHDDdgμ€Ÿ‘nκ—ή?‚¦vSΑ™γeΒaν 7šOυα₯χ¨ŽbHa=κx+°σH+Ίϋ5TsΤ‡Ωέ2*2c°ŽέΤ†ΠΨI‰1ψςeyψcu#Ž΄t©ŽCqΥ^?Rβ’x‘Νiš€₯α24›ϊiΞ¦6vR‡ΧeιΈ’0OWΦ³›ϊ,xi$Μ*=>Έ—¦«ŽBγεΔ]εΨ^Ϋ‚Ž΄ͺŽCAš.αβΌ¬°Έ«ΌN‡ΐ/ΨMM6Tνυcvn*ο‚"""²9Ξθ ―ΌτaέԜM­\@Ό(ΓF°πY³|°›ϊε8›ϊ³X€³*O3ζζM@bŒKu //˜Šτ„h<Ά‰ΚΕΰLjΎ•…ΓΔδXάri.~qΪΊUΗ!Š˜Ύ<';Q–ΛyΤDDDvΗΞπšMύ »©•γρ~—gS?]Y‡ήvS7ͺʎΒ!„HW«iκθΕώγXRΒQVνΒν‹σQερžWJjiΊδFwUBΰιJvSΧεπΨΣΨ]eΉ)ͺ£‘Εq-7>Ξ€Ώi Έ±ŒέΤFΠxΌGšnψ:ϋπςϋμ¦ξ‚Ej!ΔΛBˆd!D€OμBόCψ£™_UM3 Ό8Cq ₯―]> )qQX·™έΤF0ΨIΝ4\¦€Ζασssρκ‡ 8ΡΞŒFΐu9ό†.BΞΞa'5…Χrs9ΣYΚ»7Γiυ²"τt<Λnj₯NοoV ±  O±›ϊ/Œδ]ΆTJΩΰFoΘπΥ°¦²ˆJ™I1(Μ γV’γΒm σ±qIμ;Φ‘:ŽνιΊ„“3cΓκ[…Π€Δ³Uόΐhc^—…«„…΅BˆΟςσ»…{„ΥBˆmBˆa?ϋnπu…W…κcDΥ^?¦¦Ε#=1Fu""²&žc›ΘP'5ϋbΒ+?ΨMύβϋGΰλμSΗΆΞά9ΐ‹2αΆfy1|}ψΞ¦>m$G]”" ƒ θz)εήXζ§ι[k|(wgrΣ% ϊϊӐγΒ“[ΨM­Z@ΧΉ‰I˜MMΗeΩxωƒ#h>ΕŒ0¦uYαπ$€«”Έex:θe)εL)e€‡<|m)€›\`€_{–4΄i"Q˜πΫD4]‡Σ!x^CέΤΟmesŒ*œI9—¦γ²ό4<υ»©‡Œ€Hύ €ΓT !ς°}τφ4ΆΓί=€Š’LΥQ( Rβ£pλyxύΣγ¨mκTΗΦ8“:2ξYZˆ>~`4бΛσΤJ)λ₯”ύ^pΓπ'»Ί†$ΰΜ σ ^‘RφI)¨ ώχ,ηdG/Ž·χrΣD"" 'žc›ˆ¦s>o€d&↲lΌπήa6Η(Πu<ζ#eΝ 7š:ϋπ »©Œ H-₯|\J™-₯ΌF:`i²™ZεA„q΅UέΎ¨qQN<ΑΩΤJq&udd&βs³¦ΰΏί;‚Ά~Υqlmλr6ο°ο‚ύ!Δ=Bˆ: vRί7šΧZAup5‹ΤDD.<Η6MΧΩA§»©9jP vRGΦει˜?³©‡ŒdγΔ,!ΔσBˆ7‚ί—Έ5μΙLΣ„Y9©˜­: …IZB4Ύ² λwΓ‘ζ.Υql‹Τ‘³ziΊϋ5όrϋ!ΥQl-άλ²”ςI)e!€πύQf»S±S±Σησ…*RDU{ύp9.šΒύ$ˆˆ(~ `€)Αο=Φ†+΄w ΪλGE1G}Xέ7η#ΚιΐSο°›Z•ΑάΤ!J&%αͺ‹²πλw££w@u;ϋ5ΖΆ.7Θφ}Nπ±syƒ³2GόZ)ε³RΚyRΚy™™ζ\w{ύ˜19±Q–ΉMDDκύ<Η6 6ξμ IDATΕD޽ˊΠΠπάV6ΗDΪ™NjžcGΚ…ι˜—7O½S‡Ύ€½»©GrΤeH)_ €”2ΐήk°­ΆΊ*Š9κΓκ&&Εβ–ωSρ‡ΡΠΦ­:Ž-ρCcdݻ̍Ξή^xχ°κ(v6ΦuωCn!DΎ"ƒ!ώ!„{Ψ·Χ¨ ώz=€›…1Bˆ|nŒοa<š.ρIC;G}QΈρΫDΨyE“πΉYSπΒ{‡ΡΚQƒΠΨIiCέΤΗΫ{ρ۝ ͺγ(5’wΪ.!D:‚›' !hk*“«ςψλΒμžδΪΑεx¦’3³Th:ΠΊ8;KK2ρόΆCθκ ¨ŽcWcZ—ƒ'ΐ«1ΨΉ΅ΐ«RΚ½Bˆ !>m΅b―’ΐήz,₯ά ΰUϋΌ ΰ)₯εN¦λ}§pͺ/€Ω,RQxρΫD4M1*ά·¬=žίΖσμH:έIνδ1I‹Š20gj*žz§ύ]ueFR€~ƒT…Bˆν^poXS™˜”•»3αrςj«LIΓηηζΰ7;½8ΩΡ«:Žν°“:ςV/s£­{/ΏΟˆσΊ,₯|]JY,₯,”R>|μRΚυΑ_―‘R^$₯,“R. §‡^ϋPπu%RΚ7BΗRo7M$"’Θΰ9Ά‰p&΅ξ¬$\3s2ώλέ#πw³›:Rϊ`”Η|d !°fΉώόξ#ϋvS_°Š*₯ό@€+άΰ")ε'αfVž“§p’£ευa+ίͺ(‚¦K<Λˆ#. K8y•7’ζζMΐΒ’t<»΅ž;+ΐu9|ͺ½~$ΕΊP‘ : YΧrsΡt]₯Šά·ΜS}<Ώ³©#εΜLjσ‘VQœ‰ΩΉ©xrK­m»©/X€B| ΐ—Μp €[‚ΡYTy|€rnšh+SΣγqCΩΌτ>w Ž4]J8ΠH[½Τ _'w Vλrψμφϊ1;'~('"’0βZn.ηͺ”LJΒ53'αWΫ£½›·GB@ηLjU„Xμ¦ώΓΗφμ¦Ι<ŠK‡}-π/?ί μ¬γCIV&§Δ©ŽBφν%Eθ θΌΚaŽϋPbAA.6OΫ|f–"\—Γ §_ÁυADD‘ΐ΅άD4ŽϋPκΎεΑnκν<ώ„3Τ_«Β’’LΜΚIΑ[j1 Ωο<{$γ>ξφu―τ&†?šωtχπΑ‘VŽϊ°©’‰‰ΈfζdΌπή^ε]—άm[!V/sγX{―m―ςͺΒu9<>=ΦM—,RQΨq-7©Υš>)«.š„_m?„φžg‡;©ΥšMέΠΦƒύΈQuœˆKe§ @~¨ƒXΑϋυ­θΧtTOT…Y½΄§ϊψυ»‡UG±…wVͺܝY9)ψΕ;uΨπ*―p]έΑMg³HMDD‘Η΅άΐ4]ς|C±{—‘³7€_o?¬:ŠεiΑy·²:Λ¦OΔΜμΑnj»gd&υkBˆυΑ―?8ΰΓΝ|*=>ΔF90oΪΥQH‘““±²4 Ώά~½ΌΚn―ς*%„ΐκ₯E8ΪڍΧ>9¦:Žmp]]^?²S㐙£: YΧrs θ’wn*vΡ”¬,ΝΒσΫκΡΑσμ° h<ΗVMϋ–»q΄΅¬ΆΧyΆkΟωΙ°_‘RςήτψpyA:b£œͺ£B«—α†}Ϋρ⎣ψΦ’BΥq,-ΐ«ΌΚ­˜‘…ι“’πΔζZά0;›ΞEΧε0¨>κGΩTvQQDp-7{ΰšεn|nίIόΧφΓΈwΉ[uΛx·²!¬˜1₯““ρΔζάX6.§=.”d&uε°―ν\<ΟξhK75w‘’8SuRlvn*Κ‹3ρŸ[λΡΣ―©Žciμ€VΟαX½¬uΎ.ΌΉχ„κ8Άΐu9τ|}hτχ ,‡Ej"" ?εζΠužoΐΕΩ)X1c"ώsοZ'Ξ€6†‘nκΓ-έXΏΫ>έΤη,R !:…gωκBtD2€TΦψε,R€{—‘₯«σΑQΥQ,ντLj. J]}ρdd&`έζZH)UΗ±,Λα34šΤDDN\ΛΝ‰ΤΖqίr7Ϊ{πΒ{GTG±,]cΫ£sΧΘ,=sΧςPƒžΥσ¨“R&I)“Ος•$₯LŽdH3¨<θCnZς3TG!ΈtZ€α™ͺ:τΨM.g:©Ή€ͺδtά³€ϋw`Σώ&Υq,‹λrψT{ύp:.ž’’: YΧrsœIΝ"΅ΜΚIΕ²ιράΦzœκ ¨ŽcIœIm‡ΐΪnΤ7wα5›tSΈ²#„˜(„˜:τΞPfΣΠρ^]3*Š3!!Σ {—Ήq²£Ώϋˆwο… ;©γϊ²)ΘM‹ΓΊ-즎Λ‘³»Α’¬$ΔEsO ""ŠεζΐNjcY³ά χ^xο°κ(–€ρΫP,„ι“’πψζ[tS_°H-„Έ^Qΰ€J‡Όζ\¦ςΡ‘6tυk(wsԝqEa:ζLMΕ/ΆΤa@ΣUΗ±$Wy #Κιΐ·*аΫλΗ֚fΥq,λrhιΊD΅—›&Qδp-7—€&y禁ΜΞMΕ’’L8܊υ-ͺγXΧε⦉DD€Χr θ:7‘3˜9S' ’8Οme7u¨±“Ϊx†Ί©λ|]ψσžγͺγ„ΥHήiύBˆD[Ό$„x @Wxc™GSg/φο@E G}Π_B`υR75Ϋγ֌HγLjγΉyώTd$Ζ`έζΥQ¬ŒλrU{ύHŒq‘03Qu""²ε&’KμŒhΝ 7Z»ϊρβvS‡’ά(”ϋ­ΛΥOBqV"ΦYΌ›z$Eκ-R¬π&€:Χ…3”™Tyg―r5Λ•₯Y(ΙJΒ›k‘[ψΝDξ”gΐΑΔtΧ̌‚Μ¬Ϋ\ )­ωf’Β™yYœg$ 1.|sqΆτaOC»κ8–Γu9tφλ@@—˜ΝM‰ˆ(‚Έ–›K@—lŠ1¨Ήy즡/Κ–Γ!°fΕ`7΅UgS¦²Σΰ€ΓΗ\φ4Ά£­{ΕυAηηtά³€ϋŽw`Σώ&Υq,CγLjΓϊΪεyHŽuq6uxq]§κউsΨIMDDjp-7γ έΤ‘₯qΌ‘ ο¦Άβlκ ©…ίBΌ`€twH)g…;˜Ty|XΜyΤ4Χ—MAnZΦma7uˆtgRQRlΎΎ0oν;‰':TΗ±Λ‘³ΫλΗδ”Xd%ΗͺŽBDD6Β΅ά\Ί„‹wnΦP7υ3Uυθκc7υx Ξ€ζρnTΓ»©­8›z$G^.€΅RΚ‹€”"₯άξPfQιρaVv ’UG!ˆr:pΟ’"μnhGUM³κ8–ΐNjc»mα4$ΖΈ°ns­κ(VΓu9Dͺ½~Žϊ ""Έ–›;©oν 7Z»ϊρ»©Η3©οš‹'£8+Y°›z$3©Ώ+₯¬ŽD3iοΐ£mυA£rΣ%9ΘNΓc=즁33©ΉˆQj|4n½"―ο9ŽΪ¦NΥq,ƒλrh΄vυγhk77M$"’ˆγZn.Ž?0ΌK¦N@Eq&ž­ͺc7υ8xQΖπ5Λ‹QkΑΩΤμα£νuΝΠ%PQΒ"5\΄Λ»—βγ£~Ό[Η ΌΗK?έIΝ·2£Ί}Q⒜x‚έΤd0»ƒσ¨ΛrY€&""’sc'΅9¬]αF[χώλ½Γͺ£˜šΖBMακ‹' vSoτXͺ›š•1ͺ<θCR¬‹· Σ¨}a^&%Ηβ±MάPnΌ†:©Y£6΄„h|uAΦο>†zί)ΥqˆNΫευΓ!€™Ω)ͺ£‘±³ΤζL€%%™xͺ§ΨM=f<ήΝa¨›ΊΞΧ…?}rLuœaig €”¨ͺρa±;.' itb\NάUQ€΅bG=»©ΗCc'΅)|sq’]<Ή₯NuΫB¬BBΤ !<ΛΟBμB|"„Ψ$„Θφ3MQόZΩδ‘·ΫλGqVb\ͺ£‘AιΊ„”/hkWvSΏ{XuΣ8ήΖ4ΎxJ²’,5›š•1¨i:…γν½œGMcvΛό©ΘHŒΑΊΝμ¦Ξ€6‡Μ€|i~ώX݈£-έͺγΨ–Β ΰIW(p‹’τ3OΫ`ž”r€ίxxΨΟz€”eΑ―λ#:L€”Ψέΰη¨""2ρ\p¦ΡΣ$7j7“²άT,Ÿ>ΟVΥ£³w@uS hN6™‚Γ!pJ7κ}]XΏ»Quœΰ‘7•}€r©iŒb£œΈ«ΌΫk[°σp«κ8¦₯ι:~h4ƒ»* ΰt<Ή…³©š VJY/₯μ𠀆?AJΉEJ9t%a€œgŒˆΓ-έπw`6‹ΤDDd"!ΈΰL£€nŠaιΔ,Φ(F{Ο~΅ύ°κ(¦€ι’ηΧ&reι$̘œŒΗ6Φ  ιͺγŒίiΗ ͺΖ‡β¬DLN‰S…LμΛ ¦"=!š³©Η! ±“Ϊ,²’cqΛ₯ΉψύΗ πΆ²›Z‘lήaί7;—ΫΌ1μϋX!ΔN!Δ!čα)ά4‘ˆˆLŠœ#, ³“Ϊlfζ€`eižΫZφvSgR›‹Γ!p 7·tγw™Ώ›:¬Ej+ފΤΣ―αύC­(w³‹šΖ'>Ϊ…;Κ °΅¦mSΗ”NΟ€ζξΓ¦pχ’B8„ΐ/ήαlj£B|ΐ< {8OJ9ΐ—ό\Qx–Χέ,dοτω|J;zΥ^?⣝(ΞJR…ˆˆh4Ζ{Α™FIcSŒ)­]αFgoΟo;€:Šι°“Ϊ|V–fαβμd<ΎΉ&ο¦[‘Ϊͺ·"ν¨oA@GE ‹Τ4~_]‡΄„h<Ά‘έΤcΑ™Τζ29%_Ό4ΏϋΘ‹†6vS+Π wΨχ9ΑΗώ‚b€οΈ^JΩ7τΈ”²1ψΏυή0η³―•R>+₯œ'₯œ—™iάur—׏‹³SψήADD–uŽ ΞΓnŠ Λͺ†Ζ ²)ΖT.š’‚«/ž„_n;wΏκ8¦Πu~F6!XY ok~Qƒκ8γΞNjKފTιρ!6ʁK§₯©ŽBγΒ7η£γΓ.vSΪιNjΈ3o-lΎe7΅p !ς…Ρn°~ψ„s<ƒΑuΣ°Η'!b‚ΏΞ°ΐΎˆ%‘Ύ€†ύΗ:0‡£>ˆˆΘ|ΖuΑy8³\XVMcSŒi­]QŒώžΫZ―:Š©hΊδEZZ2³sS±ns-ϊζν¦geΗ’·"Uy|XPŽΨ(§κ(d_»|Rγ£8›z ΨIm>SRγπ…yΉψνN/ύ=ͺγ؊”2`5€ φxUJΉWρC!ΔυΑ§= ΐo…ΥBˆ‘"φ ;…»lπc)₯)‹Τϋw’_Σ9šˆˆΜhΜœil8“ΪΌJ&%αΪ™“ρ«ν‡Ρrκ¬Χjθ,gR³ Μl†Ί©ύ=ψΝNο…_`P†8ςΜr+’·΅υΝ]¨(ζ•f ΔξX\€wϊPάΜ‹FFη‡FSϊφ"ΐSοΤ*Nb?RΚΧ₯”ΕRΚB)εCΑΗ~ ₯\όυ )e–”²,ψu}πρw₯”3₯”³ƒϋΌΚ?Ηx mš8›Ej""2™q^p¦18ΣImˆ Ϊnτhx¦ŠέΤ#Ε™ΤζUξΞΐΌΌ xbs z4ΥqΖ$œο΄–»©3X g‘šBνΦ+»©g7υ¨°“Ϊœ²Sγπ·σrρκ‡ 8ήΞnjЬj―“b09%Vu""’Qλg›3ηŠƒΠ˜MLs²ρ_οΖɎ^ΥqL! Iž_›”U NvταΕGTΗ“pΎΥZξV€J9␟‘ : YLbŒ ί\”ΝšNwωΡ…iΑLΈˆšΟ·—BBβ[8›š"«ΪλGYn*„ΰϋί™σ V©ΝjΝr74]βΙ-Ό‹s$ΨImn ±¨(O½S‡Ύ€κ8£ΆwZ«έŠΤΠρnm3*Š3ybKa1ΤMύσΥQLγtgMšNΞ„x|~n.~σ‘Η8›š"ΔίݏCΝ]υADDD#’χcΡΞΌςπ·σrρ?EC[·κ8†Πu6™άW£₯«Ώ~χ°κ(£ΦˁVΊιγ£mθκΧ8κƒΒ&)6 w,.ΐ–ƒ>μ:Ϊ¦:Ž)hΊ„C.’¦΄zY$ΨΥ@‘³»‘0‡Ej"""οά΄„{—A@`έ&žw\;©Νο’©°|ϊD|t„έΤ’ιάΤΑμξY:ΨΥΐnjŠ„έ ~e&r-'""’αFνΦρν₯…ˆr ŽΧΌvR[ΓΕΩ)Έfζ$<Ώ΅­]ύͺγŒ‹Τ#ΠΤΩ‹}Η;PΞQ_»<ι Ρ\. –0)%_š?8#ξH gΔQxT7ψ³sX€&""’‘9έIΝΖKHΖ]εΨΈΏ‰γ5Ο! ιΌ(c!kWΈ!₯Δγ›Μ±ο‹Τ ι[k|(wgΐΑ¨!qΡNά]Q€wλZπ^]‹κ8†Ε™ΤΦρν%…p9ηŽΫ&ΥGύˆr`ϊ€$ΥQˆˆˆΘ$Ί€ΤVς…ωΘHŒΖ#@J©:Žα°“ΪZrΣβρεΛςπκΞΤϋN©ŽsA,R_ΐ§νhλ@E G}Pd}eA²’cπθΫΉxžΓΰΚ·1+˜˜‹―]ž‡έΥ€Ϊ&γ/žd>Υή6ΜΜNΛΙχ """™33©Y΄³Š„V/-ŽϊVl­iVΗpΊ„“ηΨ–rΟ"ΔΈψΩFγwSσΘ»€JB‹Š2TG!›‰rbυ27><ά†*.žg₯ι\?­γξŠBΔF9Ήi(…ά€¦γΣcυADDD£©‚Ej+Ήε²©ΘNΓ#ΨφYμ€ΆžΜ€άΆ0―ν>†½ΗΪUΗ9/–w. γΓΜμ€'Ζ¨ŽB6τΕyΉΘNΓOίββy6vR[Jzβΰβω§OŽcqξΈM‘sΰx'ϊ:7M$""’QΡ9“Ϊ’b\N¬]αƞΖvΌωι Υq CJ‰€.9κΦ‚ξ(/@J\”α7 euη<Ϊ»°λh*Š9κƒΤˆv9°f…Ÿ4΄γν}'UΗ1Ξ€Άž; )ΦΕMC)€ͺ½ƒγ°“šˆˆˆF#ΐq–uΣ%9pOLΔ#" ιͺγBπpηρnA)qQψΦ’Bl9θÎzγξ{Ζ"υyl―k†.Α"5)uӜlδg$ΰΡ·=§―δΣ €s΅˜”ψ(άΉΈoο;‰έ^Ώκ8dΥήvd$F#gBœκ(DDDd"C3©9£Χzœο¬šŽϊζ.όf§WuCΰF‘Φφυ+¦aRr,~ό†q7 ε;νyTy|HŠu‘,—W€ŽΛιΐΪn8Ρ‰Χ?=:Ž‘°“ΪšΎ±(β£πSvSSˆT{ΫP–› Αy’DDD4 μ€ΆΆ3&b^ήό|c Ίϋͺγ(ǍB­-6Κ‰V£ΪλΗ†½ΖsΓ"υ9H)QιρaQQ\Nώ5‘ZΧ͚‚’¬$<ϊ–‡·" ΰ¦–”γΒέ…¨ςψπΎoE"shο@―‹£>ˆˆˆhΤ4v–Zšί½f:|}ψεΆCͺγ(8}ηw«Ίι’lΈ'&βα79ζ†ΥΧs¨i:…γν½υA†ΰp‹‡ZΠΠQQΒ"5Ο?\U‚Άξό§Αx©`'΅ε]7k fLNΖOίς ?`ΌΘΨύ=h>ΥΗ"5 gRΫΗ€”XάΉΈϊδ8>>Ϊ¦:Žμ€Ά—―žŽΎ€ŽŸoτ¨Žr‹ΤgQyΠ‡Ψ(.–¦: Ρ_™•“Š«/ž„άZ–SΖΉβ₯‚¦λp . Vζp ŽΉ9ΪΪmȍΘΨͺ½~`‘šˆˆˆΖD v–:xΞa wU"#1ώηύΆάΌ=ΐμΆR™ˆ―,ΘΓ+zQs²Su,RŸUU εT…θ¬ώξΚbτ hxbK­κ(J4vRΫΑ’’L\:mίdΌΘΨv{ύˆv90}R²κ(DDDdBZπF>v–ΪCBŒ we1viΓ›ŸžP'βΞtR³Thχ-w#>Ϊ‰½aŒ17<ς>ΓΫڍz_ΚέυAΖōi:gRہ^m̍ΜF±JqPQ+„xπ,?@±Oρ‰b“"oΨΟnBΤΏnlς±©φϊqΡ”dD»ψq‡ˆˆˆFOΣu1xwΩΓζε’$+ ?~σ€νΖ mΚF0ϋHKˆΖκ₯EΨ|  Ϋk›UΗa‘ϊ³*=>ΰζf¬„NOΈ@)€[„₯ŸyΪ.σ€”³όΐΓΑΧ¦ψg—˜ΰŸ…"•},4{Ήi"]@—μ’Ά§Cΰ»ΧLΗ‘–nΌΈγˆκ8Ε™ΤφtλӐ‡‡ώΌΊvΜ «;ŸQερ!gB 2TG!:―¬δXάΎ(λwކvΥq”ΰ‡F{ωΞͺιθΠ°nSκ(f5@­”²^JΩΰ7 ‚”r‹”rθφŒr‚ΏΎ ΐΫRΚV)e€·¬ŠPξ1ρœμDο€Ξ"5™ΖΪm©’8‹έxlS όέύͺγDL 8ƒέΙ»•m%6Κ‰ο¬*ΑΎγψύΗ J³°H=L@Η»u-(/Ξ„ΰΖdwU"-!?zÞ;πC£½f&βζKsρϋGqΈΉKu3Κ0|χΙ†ΰcηr;€7ΖψZεΈi"Χ`S Λ&v#„ΐχΞήό|£}dΨIm_ΧϞ‚²άT<Όα Nυ©ΫŠοΆΓ||΄ §ϊ¨(ζ¨2‡δΨ(ά»¬οΦ΅œUc']ηj3kVΈνrΰ‘ φs BιU˜5 IDATˆ―˜ΰ‘QΎξN!ΔN!ΔNŸOν{n―i јš―4™›bμkϊ€d|鲩ψοGPs²SuœˆθœImWBόσu₯πuφα[j•ε`‘z˜J.‡ΐ…ιͺ£Ψ—/ΛΓΤ΄xόψ§―|Ϊ?4ΪΟΔ€Xά±Έήs»ŽΆ©Žc6r‡}Ÿ|μ/!Vψ€λ₯”}£y­”ςY)ε<)εΌΜL΅|«½~ΜΞIαQDDD4flб·V– !Ϊ‰ώiŸ-ξ\>ΣIΝR‘Ν™:7ΝΙΖn=„£-έ~AπΘ¦ΚγΓ%y₯: шE»ψ‡«JpΰD§ςωA‘¦q&΅-έQ^€ŒΔhόθυΆψ°Bp !ς…Ρn°~ψ„s<ƒΑuΣ°mp₯bBpΓΔ+ƒRgοjšNa6G}Ρ8°)Ζή’±fE1ΆΦ4cσ¦ ΏΐδΨIMίY5N‡ΐΏΏΎ_ΙοΟ"uPSg/φλΰ¨2₯Ο͚Œ²άTόdΓAtχ«›i]ΒΙ«ΌΆ“γΒύ+‹ρΑαVlΨ{BuӐR¬Ζ`qy?€W₯”{…?B\|Ϊ#όVQ-„X|m+€‡ΑBχ‡~|̐φ4ΆCJΞ£&""’ρ hlб»―]ž‡ΒΜό۟χ£? «ŽVZpγDσφ5)%χ,-Δ›{OΰέΊζˆώ¬ξmυ ώε³HMf$„ΐ?}nš:ϋπLe½κ83ΨΩ :©πΕyΉ(ΞJďή8€Ύ€¦:ŽiH)_—RK) ₯”ϋ”r¨½BJ™%₯, ~]?μ΅Ώ”RΏ~₯κΟ0ά4‘ˆˆˆBAΣ%,ΨΩZ”Ӂο‡š»πΒ{‡UΗ «€ΖNjΎΉΈΩ©qψαkϋ">R–坠ͺ2£Q:9Yu’1™›—†Ο͚Œgͺκp’½Wuœˆ`'΅}Ήœ|οΪRiιΖ οQ‡ ¦ϊ¨Σγ‘­: ™˜&ΩIMΐ’‰XZ’‰Η6Φ ©ΣΊηΪ§gR;yΜΫYl”χš¨m:uΊω'RXέΑΰ?Δ*εξL^%%SϋΗUΣ‘Kΰα TG‰Ξ€Ά·ŠβL,)ΙΔγ›kΠΪΥ―:Θξ?»¨‰ˆˆhάœIMA?Έξ"τtόψuλžkNoœΘcήξ™9 [ώ~ ζζMˆθοΛ"5€OΫΡΦ=€rŽϊ “ΛM‹Ηm σρ‡ρICd―xEš”’™ΎwΝ tχkxl£Gu2ˆγν=8ΩΡΗ"5›¦IΈxη&ΘΟHΐεωψΓF|pΘ°[³Œ‹vzγDσv'„@nZ|Δ_yͺ<>,rg¨ŽB4nί^Zˆτ„hό۟χCΚΘΞŠ$Wy €;+ ·ΜΟΕ‹οEmΣ)ΥqΘvoI›Ν"5;©iΈ{–!;5?ψ>E@³ή&Šμ€&ΥX€Pιρafv 2cTG!·δΨ(άΏ²jΕλ{N¨Ž6C ¨“σ²loνŠbΔG9ρϊžγͺ£μςϊνt t χ˜ ""’ρΡtσyι΄ψhώιs3pΰD'^xΟzϋβhϊ`αfHΫ©Ϋ{°ΛλGΉ›£>Θ:n™?3&'γ‘?οCOΏ¦:NX°“š†d$Ζ`ΓύεΈoΉ[u2€κ£~̘’Œ—Su"""29vRΣg]uΡ$,vgΰgo{,·‰";©I5Ϋ©ί­m†¦KT”°HMΦαtόλυαX{/žͺ¬S',œ—EΓLIS @Σ%φ4Ά£,'Eu"""²nΤNŸ%ΔΰΉvo@ΓΏyΏκ8!uf&5yRΓφ՝JI1.n°D–3?? ΧϞ‚§+λΰmνV'δΨIMDŸUΣΤ‰ξ~ eSΉ¦Ρψ±“šΞ¦ 3wWβΥΗ°΅Ζ§:NΘ΄‘slΫ— I[yRJTy|XX”(§­*Θ’Ύ{Νt8…ΐΏύyŸκ(!Η«ΌDτYΥGƒ›&ζ°HMDDΦ$„X%„8(„¨BB„ŸW‘ΡJ;©Y+ ΏvΟ"LKΗχψ)z¬1bSγΎO€˜­ίmk›NαX{/G}eMN‰ΓκeEΨ°χ€₯πμ€&’ΏΆ»Α”Έ(δg$¨ŽBDDrB'€'\  ΐ-BˆΟ<ν(€―x9²ι¬‰Τt.±QN<τ73q€₯λ6Χ¨ŽœIMͺΩΊH]ι,Ϊ•³HMΦuϋ’|LM‹ΗΏ¬ί‹ώ€:NΘ‚;;Έ€QΠ£~ΜΞM…|_ ""Kš VJY/₯μ𠀆?AJyXJω λ|πWHΣu©ιœeΰ¦K²ρLe=<';UΗ7-xŽΝcžT±}‘Ίhb"²ΉαYXl”|])κ|]xnk½κ8!ΓNj"«/ΟΙNξ1ADDV– ΐ;μϋ†ΰc&šΞ‚ίχ―-ER¬ ίύΓθΑsT³κ€v²αƒ k‘ΪΘσ²zϊ5Ό¨μ’&X># W]”…u›k,³‰b€3©‰h˜OΫ‘K ,7Eu"""ΓBά)„Ψ)„ΨισYk,`(iΊΞ¦:―΄„hόίkfΰ£#mx郣ͺγŒ‹¦K8οV&uΒV€6ϊΌ¬‡ZΠΠ9κƒl㟯»!π/λχBJs_α†wRΫϊ†" ͺφrΣD""²ΌFΉΓΎΟ >6jRΚg₯”σ€”σ23yN|.œIM#ρωΉ9XμΞΐ_ߏ†6σ6…ΈQ()Ξ£ΟΠσ²ͺ<>ΔΈΈ,?-Ώ5‘SRγ°v…›4α­}'UΗ·€ΖNj":£ΪλΗΤ΄x€'Ζ¨ŽBDD.p !ς…Ρn°^q&KΣtΙNjΊ !~tΣLΐw°Η΄Ma/ʐbα,Rz^V₯Η‡鈍rͺŽB1ίX˜’¬$όλϊ½θκ ¨Ž3.œIMDΓνφnšHDDdURΚ€Υ6ΨΰU)ε^!Δ…Χ€βR!D€ΏπŒb―ΊΔζΠ$œμ,₯Θ™―™­5ΝψΝ‡ή Ώΐ€/ʐZ¦x·ύΫ»σ0©ͺ3γοιnšΩ ΰΖ"ϋβŽ[Tܐ—ΙΘ·qIά’θLŒΖ,“˜˜ΈΔD5M4£ 1N4‰Ρˆ‚l*@ιFDA¨ͺ3t±Yͺ‘«ouΧϋ{ΊͺoΥύϊΤνϊϊ~uξwκ»_Φ‡«Χρފ΅ΆϊPΡiVZΒ·ώεή]±–Ϋžύ{αμ’Τ†•‡KM’R±[²r-οXλ’‰’€&/ΖψTŒqΏγή1ΖoeοϋZŒqbφλ)1Ζn1ΖV1Ζ1Ζ~ΙFάΈ9“Zuq8¨W{Ύυϋ9Ό[³&ιpκ,Ιx~­Dε³H]°ύ²Ϊ·*gϊ׎εμέwΌ±ΤΔ λў³GtηώίfVuMαμ4gRKΪ`zΆ΅‹&J’€ϊ”ΚD‹vΚYIIΰ–±Ieb£lϋ‘ςC%,ŸEκ‚ξ—ΥΌ¬”–εeI‡!%βΊϊΠ±²9_~lλΣ ήΎ^l(RΫ3KΜͺΚJύφ΄H-I’κO:“±h§:Ω«CKΎ2jώόχ₯<ςjγjϋaOj%-oEjϋeI…«M‹f|sΜΜ}ο#ξωσ?’g§lšIέ(ΊIΚ£U5τι²›λLH’€z•²h§πoχΰΠ}:π'gσφ«“'g΅3©=ΏVrςzτΩ/K*\ΗυλΜIύ»pΗsσ™ΏdUαΤYjγLκ„‘”¨t&2«zmυ!I’κY:) ©U7%%οŸ1f₯«~9ƒT#Ήz9γ‡2J˜ε©ˆέ4Ί-ΚKΉξΧ³ΘdWΏ¬Mν>|“ŠΩ[KW±κ“ƒΊ·K:I’ΤΔ€νI­Τ₯M Ύ}ZfTΥπ£ηη'NNμI­€Yέ‘ŠX§ΦΝΉαδΎL}g9^^t8u’rαDIΈh’$Iʟ΄E;ν‚“μΙΏ ξʝšΟτ…Λ“g‡μI­€Y€–ŠάΨ!]9jN|ηζ6ͺΆιLν%S&Q©ΈΝ¨ͺ‘uE½:V&Š$IjBbŒΩžΤ–M΄σΎ~j?:οVΑ•ΏœΑGkΧ'Ξv₯2Ο―•(ίm₯"Bΰ»cΠ’Ό”kώwf£ι—εLjI3«jΨ­-%ΎH’€z΄‘’ηΪ»U4γΆ³Q½| Χ?ώ:1n›Νt&Rf{%Θ"΅$vί­‚oŽ9€™U5όd?’''›zR›D₯\…F…ώB˜BΈn+ίB˜BH…Nίβ{ιΒŒμΏ‰ υΆ­Y—fξ{Ήh’$Iͺw)―άT=ή£=Χ·OΞZΜΟ_Y˜t8Ϋδ•JšGŸ$ Ά_Φθ{rϋsσxcъ€ΓΩ‘TzΓLjίΖ€\„J»€€ΎΐΩ!„Ύ[lΆόb+O±&Ζ8(ϋot^ƒΝΡο ‰.š(I’κ]Ϊ+7U.Ή7GμΧ‰›ŸœΝ›οζωΆ=Ψ•4«;’6ΊωΤ~΄oUΞΥΏšΑΪυι€Γٍ3©½IΚΥ`~Œρ­γ:ΰQΰΤΝ7ˆ1.ˆ1ΞEߟ™ΩEI-I’κ[Κ+7UJJ?8s νZ6γς_L/ΘώΤ©΄ '*Y©%mΤΆe9ί;c ί~jNαlW::³Aͺ£@Υf·«³χεͺ"„05„09„0fk„.Κn3uι₯»kN¦WΥΠ΅m vo]‘χ}I’€β’N{Ύ‘ϊΥ‘²9wž=„w–­ζ+ΏžUpύ©I­€Y€–τOŽΨ―Φ“Ÿ½όOΏω^αl“3€χ™γ0ΰΰΆΒή[ncΌ7Ζ8,Ζ8¬S§NyhΖΒuo›χύH’€β³ρ|£Τ²‰κψžνΉξ„ή<υϊ{όΈΐΦƒJe2ž_+QΎΫJϊ”/κMmψςc³XT³&ιpΆ*νFΰ'½RΞέ7»έ-{_NbŒ‹²ΏLΧgpu΅τ£OXT³Ζ"΅$IΚ {R+_.<Ό£ξΙχŸωšϋ~αlδLj%Ν"΅€O)/+αΞ³“Jgψβ#ΣI₯ ―=톙 %&Q)WS€}C=CεΐYΐΔ\BhBhžύΊ#p(0;o‘ζ`S?j‹Τ’$©ώ₯2΅η@₯Ασ Υ―ί;€~{ξΖ™Αό%«’ ¨=Η.-±L¨δxτIΪͺ[ρνΣϊ3υεάφμΌ€Γωg6HucL—Os€_Εί !άB BB¨Ξξ !Ό™}x`ja&π<πc²EκκJKύ»Ίh’$IͺΩ΅ν”-ΚKΉηsΓ(/+α’‡¦²²Rt&΅’V–t’ Χ©ƒΊςβΌΈk|†|¦-Gχή#ι6²'΅Tw1Ζ§€§ΆΈοk›}=…Ϊ6 [>ξ―@ΌX3ͺj؏ִ(/M:I’Τm˜I]Vκω†ς£kΫόδ_‡rΞL懧ρΐψα”—%7—4•‰”zΌ+AΞ€–΄]7Ÿz}:οƝΑ‚V'ΞF›fRϋ6&›L&2£ͺΖV’$)oNŠQΡ³=ί;€ηΐuΏžEŒ1±XœI­€Yέ‘΄]΅—! ₯΄$pρC―±ϊ“T!›υ€6‡JEηνe«ωhmŠΑ©%IRž€l/¨2vh79v?ŸΎˆ[Ÿω{bq€2?”Q’,RKΪ‘ξν[rΗYƒ™·δ#Ύ’𧻀3ΚJΑ…L€’3caν’‰ƒφ²H-I’ςcΣLjΛ&ʿˏއ³GtηGΟΟηη―Ό“H ι΄3©•,ίm%εdδ~ΈφψύyrΦbξ}α­€ΓΙό8‘8™HY©oaR±™½x%λΣ‘έ,RK’€όΩΤ“Ϊ’VλŠfL8ϋwnΝΕ½Ζ‹σ>hύ:“ZI³Β#©Ξ:V6η§γ‡³.•αό§°bΝϊΑOy₯β΄aΡΔΑΞ€–$Iy΄±'u©ηjxmZ4γ‘σ€WΗV|~Βžύ~ήχ™Κd(υxW‚,RKΪ)ϋμޚ{>7ŒΛVσω§πρΊTƒξ?Ž”¨TlfTΥΠ₯M{μV‘t(’$© KΗΪ"u‰ηJH»VεόβΒƒθέΉ5?ό;΅*―ϋs&΅’f‘ZN;xοά~Φ`¦-\ΞE?{΅λΣ ΆogRKΕifu­>$IRή₯7φ€Άl’δ΄oUΞΟ/<ˆƒ{uΰKΝβž?#oϋͺ=ΗφxWr<ϊ$ν’ϋwα–ΣςβόΈόΣXŸΞ4Θ~Σ™Œ—ήIEζΓΥλxgΩΗ.š(I’ς.eOjˆΚζeά?~' θΒί\nώέlRυ|ޝΙDbt‘P%Λ"΅€]vϊΠn|γΤ~<;g WύrΖΖEFςΙ™ΤRρ™Y]ۏzPw‹Τ’$)Ώφ€Vi^VΚg fό!=xΰ₯·Σ),_½ήžίeT,RKͺŸ;ΈΧŸΠ›'g-ζŠG¦ρI*Ώ­?μ—%Ÿ k( ΠΏk›€C‘$IM\*S;SΥ’ EiIΰ¦ΡύΈeμ^}ϋCFίυ"³ί]Y/Ο½ρCw%Θ"΅€zsρ{σΥ“ϊπΤλοqΑ„©y]LΡ~YRρ™QUΓ~{΄¦Uσ²€C‘$IMœE;ͺ3‡wη—ΔΊT†±?ω+ΏšZEŒ»v5³Κ¨Xα‘T―.8Ό·ŒΐKσ?ΰsχΏΚŠ5λσ²gRKΕ%ΖΘΜκ[}H’€aϋ²Α{΅γwWΖ€nmψςc³Έπg―±τ£Ovϊωο*©%Υ»3‡wηGη aVu γξy™E5kκ}i{RKEεeSσρzZ€–$I `ΣLjΛ&*L»·ΰ‘ β«'υα…yK9ώΆψΏΧοΤs₯Όr@ΐw[Iyqb.άήp-_Γ©?z‘) >¬Χηw&΅T\fTΉh’$Ij8Ξ€VcPRΈΰπ^όώŠΓθΪΆρσiŒι«Μ{£:=Ο¦™Τ– •›:JΚ›‘ϋuβ‰ΛεŸMεœ™Μ7ΗΐΈα{ΥΛs§2`”ŠΘŒͺZ4+eίέ+“ERXΏ~=ΥΥΥ¬]»6ιPTTTΠ­[7š5k–t(*"ιtm^'Ζ¨1ΨwΦ<~ι!Lψλnn£n gθΞ•ŸέŽ•ΝwψxgR«X€–”Wϋμ^Ιo.=”Λ™ΖW~ύ:―/ZΑΨ—ε₯»τΌιL€Y©ŸςJΕbFU ύ»΅‘Μί{I  ΊΊšΦ­[Σ£GBπ„=I1F–-[Fuu5={φL:‘ E»‹vj$š•–pΑα½8mH7ξxnM~‡Η§-⌑έψχC{£c«m>6φΚ%Ο3=IyΧ¦e3~:~8μΕΓ“rςαE+vι9Sφ€–ŠΖ'©4³ί]Ι`[}Hj kΧ₯C‡¨ @:8«] .YͺΖ©}«rnݏ§―Ι¨:σ‹WrΤ­“Έ`ΒžΫΦ₯2ŸzL*“½r Τγ]Ιq&΅€QVZΒžΨ‡ΓχνΘ΅;“1w½ΔUΗξΗ%Gμ½SΕf{RKΕcΞβX—ΞΈh’€eΊpψZ( φ€Vc·Οξ•όΰΜA\7ͺ7O~‡‡_YΘ³s–ΠΊyGυޝγϋuζ ^νιPΩ|³žΤοJŽEjI κπ};ρτ•#ωκoήΰ{OίΟZ̍§τεΐ^κτ<©ttQ©HΜtΡDIE¨²²’U«Vεu'NdφμΩ\wέuyέΟζ&MšDyy9‡rHƒνSΪΪ81Fέξ»UpυqϋsιQϋπόxϊΝχxvΞ&Ξ|€Ξ»UΠ΅] ΐγ]Ι²H-©Α΅mYΝgζ„Ίπν§ζ0ξήɜؿ3ΧŸΠ‡ξν[ζτΞ€–ŠΗŒͺ:΅nN—6I‡"IN:¦΄tλkŒ=šΡ£GΧϋ>S©ee[?՜4i•••©UπœI­¦¦’Y)ΗτΩƒcϊμA*azU 3«jxσέ•Μ~w%­›—±Wϋmχ­–ςΝiˆ’Bΰ€]xξš#ΈϊΨύx~ξRŽωΑŸωΟ'^ηKw|8Γ‡η₯—^ΚηPJ9KgΧΐρο5Ee₯% οў οΕΗ βι«Fςϊ׏§οž»%šŠ˜3©%%ͺ’Y)_8f_ΞV»ρc―UσΘ« 9¦χξœXOκΩa«+j;“Zͺ»Β(ΰv Έ/Ζψ-Ύ?Έ œc|l³ο|5{σ›1Ζ sΝΗλxϋƒΥœ>΄[CμN’>ελΏ{“Ωο¬Χημ»ηnάxJΏœΆ}ζ™g˜7o―Ύϊ*1FFΝ /ΌΐΘ‘#yΰhίΎ=kΦ¬aψπαŒ;–:°zυj<π@n½υ֍ΟΣ±cG¦M›ΖόcΎύοsί}χ}j_‹/ζΕ_dξάΉŒ=šΣO?Ηœ 0{φl–,YBŸ>}8όσ·λΊuλ˜:u*Λ—/gςδΙ„ΈοΎϋΈε–[ΈυΦ[Ήδ’K¨¬¬δΪk―ΰœsΞαͺ«β°ΓcαΒ…όρΜ™3§CZ4rΘέŸCeΐΈゆ޳)p‘vIjX©%„.mZπί§ ΰκcχη‘ΙοπΠΛ xvΞ:΅nΞρύφ`TΏ.Ψ«=ΝJk/IGh”κ"„P ά TSBcŒ³7Ϋl!0Έv‹ΗΆn†x-ϋΨεωŽ{fυ ΐ~Τ’ŠΧ3Ο<Γ3Ο<ΓΰΑƒX΅jσζΝcδΘ‘άqΗ<ρΔTUU1oή<:tθ@ii)cǎύ§η9ν΄Σ:t(?ώψVχ5fΜJJJθΫ·/οΏ>/Ύψ"gœq%%%tξά™£Ž:j›±Ž7nγΧΥΥՌ7ŽΕ‹³nέ:zφμΉΥΗ<ϋμ³Μž½)­\Ή’U«VQYYΉ£‘):9ζςΟΛcŒϋ„ΞΎ Œϋτ³iG™Œ“b$©Y€–TP:΅nΞΥΗξΗ±7œσ>xc1Ώ~mO^H‹f₯τξšφlCΝΗλύ£Qͺ›ΐόγ[!„GS'ΆfZ…2[<φxΰ1Ζ³ί#0 x$ίAΟXXC0 [›|οJ’Ά*ΧΟωcδϊλ―ηβ‹/ώ§ϋ'MšΔ³Ο>ΛΛ/ΏLΛ–-9ςΘ#Y»v-ŸκCέΌysJKKI₯R[έΧ†m6μ·Z΅ΪΤΛτŠ+ΰκ«―fτθΡLš4‰›nΊi«Ιd2Lž<™Š ΧΘΑsyφφMΩ―~Bqg^Π:X²rνΖ–›Š·?Xν€Ij@©%€ε₯ŒΈ'£ξɚuiώόχ₯LYπ!o,ZΑΣ±κ“ν[5ίρIΪ +P΅Ωνjΰΐ]xlΧ-7 !\\°Χ^{ν\”[˜Y]Γ>*i]Ρ¬^žO’›γ?žnΈsΟ=—ΚΚJ-ZD³fΝX±bνΪ΅£e˖̝;—Ι“'ηe‡z(&LΰΌσΞcι₯Lš4‰sΞ9g‡[±b]»Φ¦Š 6uˆjέΊ5+WnjŸrάqΗqηwς₯/} €3f0hΠ zώ)šŒ\rωΖmbŒ©Β  πΑζΥwΞΆp9—<ΈWGžΌβ°]Ž«Πtiγω†$5”Ο«~ς±¨Γ°aΓβ†Ε8$Iͺo!„ΧbŒΓ’Ž£Ύ…nŠ1Ÿ½}=@ŒρΏ·²νƒΐ“N !œ cΌ8{ϋ`RŒq›ν>ΜΧ’³9sζΠ§OŸ€Γ(zD/[ΆŒ#FπK/ΡΉsηak―ISΝΩΫ’K.!<έζεBπΠi{ν>ΜΩ’€|Κ5_—δ1€ ‹:œτΞ!τέb³‹:?€vQI’T¦ϋ†z†ʁ³€6έΊ/ :IDAT‰9>φiΰΈB»B;ΰΈμ}’€"pςΙ'3hΠ ?όpnΈα†/Pk£\rωDΰΌμΧ§Κw?jI’κC>Ϋ}μ’’$›l_ΚΛ©-.—Δί !ά L1N ! žΪ§„Ύcμcό0„π jOŽnή°ˆ’$©ι›4iR!ˆάr9p?πPa>π!΅…lI’ ^>‹ΤυΆ¨ƒ$IΪu1Ζ§€§ΆΈοk›}=袍Η><Χ%IvεΛΧg4t\’$νͺΌ΅ϋ¨O!„‹BSCS—.]št8’$I’š8/ξ,Ύ’$5}ω,R/Ίov»[φΎ­n“]Τ‘ ΅ (ώ“γ½1Ζa1Ζa:uΚSΈ’$I’,[ΆΜβhˆ1²lΩ2***’E’$εQ>Ϋ}l\ԁΪbτYΐ9[l³aQ‡—qQI’$I [·nTWWγUœ…‘’’‚nݢڍJ’$5y+R»¨ƒ$I’€Ζ¨Y³fτμΩ3ι0$I’ŠF>gR»¨ƒ$I’$I’$i»ΕΒ‰’$I’$I’€¦Ι"΅$I’$I’$)1‘±­SBX ΌSOOΧψ žž«©s¬rηXՍγ•;Η*w»2VŸ‰1vͺΟ`Š‘ω:1ŽUέ8^Ήs¬rηXՍ9;aυ˜³=φλΖρʝc•;Ηͺn―άε=_7Ί"u} !L1K:ŽΖΐ±ΚcU7ŽWξ«ά9VM‹―gξ«ΊqΌrηXεΞ±ͺΗ«ιπ΅¬Η+wŽUξ«ΊqΌrΧce»I’$I’$IRb,RK’$I’$I’SμEκ{“ q¬rηXՍγ•;Η*wŽUΣβλ™;Ηͺn―ά9VΉs¬κΖρj:|-λΖρʝc•;Ηͺn―άε}¬ŠΊ'΅$I’$I’$)YΕ>“Z’$I’$I’” ’,R‡F…ώB˜BΈ.ιx M‘{αωΒμΒ›!„/fοoBψca^φvIΗZ(B₯!„ι!„'³·{†^ΙcΏ !”'c!!΄ !<B˜B˜B8ΨγjΫBWeί!<B¨πΨͺBx „°$„πΖfχmυX ΅ξȎ٬δ"W]™³·Ν|]wζλά™³sgΎή>svq0_o›ωΊξΜΧΉ3_ηΞ|½}…―‹HB(ξNϊg‡ϊ&UΑIΧΔϋ—eΗθ:ΰΉγΎΐsΩΫͺυE`Ξf·Ώ ό0ΖΈ°ψ|"QžΫ?Δ{©3«­!tΎ ‹1”gᱡΑƒΐ¨-ξΫΦ±t°oφίEΐO(Fν"sφ™―λΞ|;svΜΧ9ysv“fΎή!σuέ™―sgΎΞω:'’pΎ.Ί"50˜c|+ΖΈx85ᘠJŒqqŒqZφ돨}“λJν8MΘn6“L„…%„Π 8 Έ/{;Ge7q¬€B`$p?@Œq]Œ±«ν)Z„Κ€–ΐb<Άˆ1Ύ|ΈΕέΫ:–N~kMΪ†Ί4L€ΪEζμν0_׍ω:wζμ:3_o‡9»(˜―·Γ|]7ζλά™―λΜ|½…―‹±Hέ¨Ϊμvuφ>mE‘0xΨ#ΖΈ8ϋ­χ€= «Πά|ΘdowjbŒ©μm±Z=₯ΐO³—nέBh…ΗΥVΕίR›Έ€Ϊ>OEl…Ž:ο7Ώa+ΗRφQ{9ΧΗΐΏΗ§&·κΜ½mζλcΎΞ9;wζλν3gσυΆ™―wŽω:7ζλά™―·―ςuQ©%I’$I’$I…‘Ϋ}H’$I’$I’ „EjI’$I’$IRb,RK’$I’$I’c‘Z’$I’$I’”‹Τ’$I’$I’€ΔX€–Š\aL‘oqH’€m3_K’Τ8˜³₯c‘Zΐ*IRa3_K’Τ8˜³₯bŒIΗ iB |(^f=bŒ_Κ~<0,ΖxωVΆ½4Ƙ!¬nNΦ§{O+²Ζ'—)`vŒρ¬†ϊ9%IjΜΜΧ’$5ζl©π8“Z*p!„>ΐ8ΰΠγ ¬ώe³ΝƏncΫs³Ϋ΄&Η/Ζ LΎccόp08Ζ8€ΪD*I’vΐ|-IRγ`Ξ– SYHΪ‘c€‘ΐ”@ ` πVα `Πx ΈlΫ¬£φ]€Χ€c·±ΏYΐΟCΏ~Sί?Œ$IM”ωZ’€ΖΑœ- ‹ΤRα ΐ„γυtgηgs'bŒ1ΤfΝOm›΅>nκο“fΫΏ'#S€ !τ1¦κγ‘$© 3_K’Τ8˜³₯d»©π=œBΨ „Π>„πΰ j{^ <Ίƒm·η# uvϋ {Œρyΰ+@ ²žI’š"σ΅$Iƒ9[*@©₯cœ |x&„0 ψ#Π%ΖΈ˜|&ΖψκφΆέΑ.ΎB˜μ <Bx˜άc¬ΙΗΟ%IRSbΎ–$©q0gK…)lΊ2A’$I’$I’€†εLjI’$I’$IRb,RK’$I’$I’c‘Z’$I’$I’”‹Τ’$I’$I’€ΔX€–$I’$I’$%Ζ"΅$I’$I’$)1©%I’$I’$I‰±H-I’$I’$IJΜΈ‚,ή§^τφIENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/concat_linear_exp_step_lr.png000066400000000000000000000614151465426447700275340ustar00rootroot00000000000000‰PNG  IHDR‚MU(Ρ)sBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœμέy|\u½ρΧ'ϋ2Iš΅[Ί§{K[Z Θ"Κ¦‚ή W―Κ½TΌθ. zEΔ«ώδ ^΄e½  ˆ°/₯έ’ξmJΫL€i’fο”&mgrfy?<š™sΜOf¦σ™ΟωnζœCDDDDDDG’ΧˆˆˆˆˆˆΘΰR!("""""’`TŠˆˆˆˆˆ$‚"""""" F… ˆˆˆˆˆH‚Q!("""""’`TJΤ3³±fζΜ,%L·ΝΜ>ξ}—™ffΝ¬ΙΜ.:R,fφm3ϋΥ`Δ%Η.τZŽΐ~a}‹ˆεέΗ’Ό+ρH…`Œ3³+ΜlYθCl·™=kf§{ΟCfv‡Wηq·?uΞωœs<ŽΞΉο;ηώyβŠˆP‚=zοvόΤ븎•™•›Ω^“ΠkΉ%ΊΏϋΛYχσ΅ΝΜn:žΈEδθ(οΖ•DΛ»§›ΩkfΆίΜφ™Ω«fvRhΫUfφJΟuΨχe(5‡ών2³›YrΈΞ-§B0†™ΩΧ€{οCΡΐΟ€ ½ŒKΰ―’ŽΦ†;–pκοƒ:”H:ЇόT(w\s|&Œ!Ξ9p p³™}άλ€DςnτRήνχqr?χΐHΰ6 - a‹Y‘<ΆΈ ψ‚Gq$4‚1ΚΜς^Ιϊ7ηά“ΞΉfη\‡sξiη܍‘}Νμ^3{/τs―™₯‡Ά-4³j3ϋΊ™Υ„jώSΗΟ4³»Νl{θΚΡ+f–ΪφΈ™ν έ’™Mέeΰsΐ7CWyžξ#n3³{Bηl4³wΝlFη ωœ™ν0³Z3ϋ™df7™Ωf3«3³ΗΜ¬ Ηφ=f]ΟγBΫ>pΕͺϋy9Μs~Ψστh©ω’™ν^8Μc|ΙΜ6…Δ=ef#BχoΖO‡ž»τΎŽορ8·šΩ#½Ξ}ε1>?}Ύž=žŸ6³gΜ¬8λHq…K蜿οqϋfφχΠϋ§ϋ½ϋνΠίΊΝΜ>Χcί<3ϋ™ωC―ϋwΜ,)΄νͺΠϋκGfVof[Νμό^Η>ϊ°ΛΜξ°P>±fφ=ΰ ΰ§Φ£e3τΊ”…~„™­½οwšΩ­Ηϋ<9η–ό3ϋxKDŽΜ”w•wc;οNpΞ-qΞu9η:ηžsΞ­6³©ΐρSCΟEC(–τPΞΫaf{Νμη=ή“GΜΕεœΫΌŠς˜'TΖS ΰGΨη?€SώηšΜΎΣcϋ0 ΰU‘/˜Y~hۏ€ΉΐG^9ϊ&m{˜”ˁί8η~ϊύPλΞ§ϊˆιΰL‚HyΐgΊœΰt`2p6pKθƒ ΰZΰ"‚W•Fυΐf6 ψoΰBΫ #ΟΩÞ>b…`?˜YΟ«˜]ΏΨvφ8³™ΥqlŽtžn;9Ό―όuΗŠe$ΑdsΌŽϊω1³=τzιoΒΜ~Fπκ%@£₯k‡sξ„#~‘sξωΎ68ηή4³-―˜>Φks½sΉΗνξχvΚ‡ίχ#{ά>τ<9ηZB>‚WΓSέο7’ΔώΓΫ/3;™ΰΥΥŸ§tΰρΫ‡"‚Ισ«ŸϋT‚_΄D$r”w•w{‹©Όλ‚-W…c πΑ‹’—χ±{1Α žοτΘ‰Fπ‚k·Γεβ8‘ΰ{οR‚Ή1οΖ+&,u ]―όs€eοό0κ6:t_jV`BΫ 8(ώc»˜Œ έίύ)αϊ8ζœsχ9ηζΣv9Έ±Ÿsφg'pΎsnHŸ ηά.`70ͺ{G3Λ"ΨM₯[3ΑΊnÎρ<‡ώΌ#ΧΓΜ²C±μ:μαq€Έϋ{=‘ŸΧΤ9χ―ݏ ό+π»η9RxDfφo‹₯χvWκ)?τόuλ~oΧΌκΪϋ}?ηx'ΑSE=βΟuΞMοοΐώήϋΏ#xυu”s.ΰx ;ς!G8YpŒΗ ώΏωΧc}0εέχ)οYΤη]ηά‚­v3sΞZ‚-ΖΣ{π¦snΫQ<Ζ±8Rάύ½žž0³Iΐΐη Ž3ω¦™υH~›™₯…Ζ~xά9ΧE°υπ{f–ϊ›ΏΖΐήχ»η€»Ν,Χ‚ƒύ'˜Ω‚†}Δχ>ΑηzŸsΥΜζσώΥάΓI1³Œ?©‡ΩοN‚ΟOΖγ‘c ΌϋΚ»GuyΧΜ¦Xp’’ΠνQ[ίν²( ½fέοΙάcf%‘cFšYﱘΚΕ=Ά%χΚci‡ οNΰK‘χƒ "‚1Μ9w7Α/Ήίό―@]t―…s° X ΌK°{Δ@ΧϊF蘷 ŽΣϊΑχΛo6ύοΦρώH·ifΦ`f}­Ι“Kπƒ₯>τ8uΐϋ9g~B°₯ε93;ŠιdηάZΰίΆΖ읷ημd ¬"ΨEδ9ΰΡc9Ο@„Ί@ή ό>Λ`ρ@?GŠ»ΏΧ3Ίgkλώωƒ§ψsn•sn#πmΰ{|AΩCπ΅|ΰ ϋ«CW7!8HΏΨBpύο~Ωˆ$ΨΝf]θρŸ 8Άc ~\bΑEολcϋΏ·‡^ƒ[ψpwΧήώ›ΰΥΨξŸ_fΏ?‡bύγ‘c€Ό{ˆςξ‘Ecή=ŠαM ΞFϊ°†ΰδlœuu-°ΗΜjCχύ;ΑI\ή0³Fΰy‚“γt;R.Έ‰ζ±>gvuΞ½ ΌD°₯Z‘9Χo‘¨af Ψ?ΦYθDDDδ8(Η΅Šˆˆˆˆˆ$‚"""""" F]CEDDDDDŒZEDDDDDŒ A‘“βuαRTTδƎλu""2ήyηZη\±ΧqΔ εH‘Δp4ω1n Α±cΗ²lΩ2―Γ‘A`fΫ½Ž!–(GŠˆ$†£Ικ*"""""’`TŠˆˆˆˆˆ$‚"""""" &nΖŠˆ„CGGΥΥΥ΄ΆΆzŠ”––’ššκu("" O92z„#?ͺι‘ΊΊšœœƎ‹™yNBsΞQWWGuu5γƍσ:‘„§Β•Υ5TD€‡ΦΦV •ΰ’€™QXX¨+Ο""QB92:„+?ͺιE .z衉.ϊ\Žαx"ZšΩyfVif›Μμ¦>ΆŸifΛΝ¬ΣΜ.ι΅νJ3ΫϊΉ2’qŠˆDŸΟρs<υΤSάyη?OOεεεΌφΪkƒzΞh₯ό("rl”#Γ'bcΝ,xψ8P ΌmfO9ηΦυΨmpπ^Η ΜπNθΨϊHΕ+"oΊΊΊHNNξsΫ’E‹X΄hQΨΟΩΩΩIJJί©₯ΌΌŸΟΗG>ς‘°Ÿ7–(?ŠˆxO92²“ΕΜ69碘ΩRΰBΰP’sΞm m τ:φ\ΰoΞΉ}‘νΞ–D0^‘ΈΠΩ ’ΚΟΒΙ%$'©ϋF¬ϋαΘc=F[[Ÿώτ§ΉνΆΫΈθ’‹ΨΉs'­­­|υ«_εΛ_ώ2ΌRϊ•―|…ηŸžx€Οώσ\yε•<ύτΣtttπψγ3eΚzθ!–-[ΖOϊSΊκ*rssYΆl{φμα»ξβ’K.!pΝ5ΧπΒ /0jΤ(RSSωΒΎΐ%—| Š… 2{φl^yε.Ώόr&MšΔwάA{{;………όφ·ΏεΰΑƒόόη?'99™Gy„ϋ￟)S¦pυΥW³cΗξ½χ^N;ν΄Α}‚½‘ό'ZΪynν^Ίœσ:”~ ΝMη£S†z†HX)GŸH‚#=nW'Η±#{οdf_Ύ 0zτθc‹R$Ξάσ|ΌΈ™__ugM)ρ:9Ο=χ7nδ­·ήΒ9Η’E‹xι₯—8σΜ3ωŸω 8xπ 't_|1………477sςΙ'sχέwzœ’’"–/_ΞΟ~φ3~τ£ρ«_ύκCηΪ½{7―Ός 6l`Ρ’E\rΙ%<ωδ“lΫΆuλΦQSSΓΤ©SωΒΎΠg¬ννν,[Ά €ϊϊzήxγ ̌_ύκWάuΧ]ά}χέ\}υΥψ|>Ύρ`#ΧW\Α 7άΐ駟Ύ;8χάsYΏ~}žΙ¨ρόΚ‘ƒα7ρ^ήκuφΞw>F‘/έλ0DΒB9ςψΕτςΞΉ_Ώ˜7o^τ_މ°Χ6Υς³ςΝTξ= Bπ8έφτZΦ½ΧΦǜ6"—όΤτνϋάsΟράsΟ1gΞšššΨΈq#gžy&χέwψΓΨΉs'7n€°°δδd.Ύψβ<Ξg>σζΝ˓O>ΩηΉ.Ίθ"’’’˜6m{χξΰ•W^αK/%))‰aΓ†qΦYg6ΦΛ.»μΠοΥΥΥ\vΩeμή½›φφφΓNmύόσΟ³nέϋ½!ijj”ρ‰@92ς^¬τsΚψξ½lŽΧ‘ΡίΦοεζ?‘Ύ₯]… „rdμηΘH‚»€Q=n—†ξθ± {[–¨DβΤΎζvt%㊲ihι`SM“Χ!ΙqrΞρ­o}‹―|ε+ΈΏΌΌœηŸžΧ_¬¬,.\xh 錌ŒyHO~ρKNN¦³³³ΟsuοΣ}ή£•}θχk―½–―}νk,Z΄ˆςςrn½υΦ> ΌρΖdddυωbœςc¨oaSM‹OšΚ°Όθ~ΚΟ`ΑΎ‹Δ"εΘγΙBπm`’™#˜ΈW πΨΏί7³όΠνs€o…?D‘ψΰœγΖΗWΡΠΑ―ι$Ύϋ§u*Γ` W%#εάsΟεζ›oζsŸϋ>Ÿ]»v‘ššΚώύϋΙΟΟ'++‹ 6πΖoDδό§v?ό0W^y%~ΏŸςςrΈ’ρύϋχ3rd°·βΓ?|θώœœίΏz|Ξ9ηpύχsγ7°rεJfϞζΏ"*)?ƁŠ*? '{Ir3S8ΠΪαq$O”#c?GFlωη\'p Α€΅xΜ9·ΦΜn7³Efv’™U—Ώ0³΅‘cχί%˜,ίnο/"φπkΫψϋ†ΎuΑ¦Θ£¬ΔΗfΣ1]΅’θqΞ9ηpΕWpκ©§2sζL.Ήδ8ΐyηGgg'S§N妛nβ”SN‰Θω/ΎψbJKK™6mŸόη9ρΔΙΛΛλχΈ[o½•K/½”ΉsηRTTtθώO}κSόα`φμΩΌόςΛάwί},[ΆŒN8iΣ¦ρσŸ<"G΄Q~Œε•~FΙdBqτweΞΝ‚­j”ψ‘yό,^Ύ(Ξ›7ΟuΒI$λήkδ’^ετ‰EΜTŠˆUΥ 4Άv² FΗδe†Ί†Άͺk¨ˆ©‰2]_Ί‚€ƒϋ.ŸCZΚ±7ΝLKfδL‚""Η‘ΌO’Αe±[ͺEPDzΣ:‚"Qζώ6ρφΆzξ½l6c ³ϋρ4s¨ˆΘρ)―τ3gt>yY±·lD7‘ήΤ"(EήάRΗύ/lδ3'Žδ’9#Γς˜eΕ>ΆΤ6Σpay<‘DRΫΤΖ»»φ³0Fg ν–ž’DZr’f ‘CTŠD‰†–vt%£ ²ΈύΒa{ά²νͺλ[Βφ˜""‰β₯Π² '—xΙρ13r3SΤ"("‡¨‰Ξ9ώύχ«©mjγώΛOΔ—Ύ^Ϋέ3‡nφ«{¨ˆΘΡͺ¨ςSδKcϊˆΨ\6’§άŒT‘CTŠDίΎΉƒΏέΛ7ϝΒΜΌ°>Ά–96]ΗKU~ΜXLRRl.ΡSNfͺf ‘CTŠx¬rΟΎϋ§uœ9©˜/ž>.μ?$+"_š A‘£΄ΊΊϊ–Ž˜^6’§άŒ΅ŠΘ!*E<ΤΪΡΕ΅K–““‘Βέ—ΞŠΨη Ś9TDδhUTω1ƒ3&ΖI!˜™ͺ1‚"rˆ AέρηuTνmβξΟΞ¦8'=bηι^BΒ9Ν*"2Pε•~f•‘ ;ΝλPΒ"8FP]CE$H… ˆGώ²fΌ±ƒ/Ÿ9žž–Ό¬ΔGck'ώ¦ΆˆžGD$^Τ7·³ͺΊ…q-Π¬‘"ς*E<π^ΓAώύχ«™92oœ39βηΣ„1""Gη₯~œ#βκSnF*νZ;ΊΌED’€ A‘AΦp\θJ:»άwωR"ίπΠ*ED€’O~V*'”ρ:”°ΙΝLP« ˆ*Eέ/nβ­­ϋΈύΒŒ+Κ”sΛΝ ;-Y-‚""8^ΪθηŒ‰Ε$ΗΑ²έr3‚kΤjœ ˆ€ A‘A΅lΫ>ξ}ΎŠOΟΙΕsKνΌfΖ„›΄¨ΌˆHΏΦΎΧHmS{\΅ŠΘ©$ϋ[:ψκ•Œ*Θβφ §ϊωΛ΄„„ˆΘ€TTΥpf„ΰA@k Š BPdP8ηΈιΙΥμmlεΎΕsΘ %γΑ4‘ΔΗήΖ6θJ°ˆΘ•Wϊ™92"_δ–υρB^f¨kh«Ί†Šˆ A‘A±τν<»fί8w2³Fy3ρΐ‘ cό͞œ_D$μoι`ωŽϊΈλ j‘R!(aχΰΆ§ΧrzY_>cΌgqh ‘ώ½²©–€#> A‘TŠDPkGΧ.YAvZ ?ώμ,’<œ}nLA©Ι¦BPDδΚ+kΘΝHaV-Ρ-=%‰΄δ$Ν*"€x€H<ϋ―gΦ³aΟ~}ΥI”δfxKJrc ³UŠˆ†sŽŠ*?gL*&%9ώ•›Ή™)j@-‚"σ·u{yψυν|ρτqœ5₯Δλp€`χΠΝZBBD€Oλw ζ@ βlΆΠžr3R5FPD‚"±g+7>±Šι#rωζy“½琲Ϋλšiλμς:‘¨SZ6ba‚9™©š5TD‚"aΧp\θ Ϊ;άωS’½鐲Ϋj[ΌED$κ”Wϊ™6<Χσό‘”›‘’ATŠ„έ—oβ-ϋΈmΡtΖϋΌη&kζP‘Ύ4Άv°|{= βpΆΠžr3S5FPD‚"aυΞφ}άσόFΝΑ%sK½ηCTŠˆτν΅M΅t\\w …ξ1‚κ*".Νμ<3«4³MfvSΫΣΝμΡΠφ7ΝllθώT3{ΨΜή5³υfφ­HΖ)ϋvpέ’•Œ’ΑŸž™wKENfZ2#‡d²IƈxJω1ϊTTωΙIOαΔ1ω^‡QΉ™)P‹ ˆΑBΠΜ’€σiΐεf6­Χn_κseΐ=ΐBχ_ €;ηfs―t'A‘hδœγΫOΎΛήΖVξ[<‡άŒT―C:¬²›Υ"(βεΗθ㜣ΌΟieE€Ζα²=εf€Φ ΅C“†‰$ΊH~ΪΝ69ηΆ8ηځ₯ΐ…½φΉx8τϋΐΩlFq@Ά™₯™@;ΠΑXEŽΛcΛvςηwwsΓΗ'1gtt_M.+ρ±₯Ά‰@ΐyŠH’R~Œ2U{›Ψ½Ώ•…q>>‚chζP‘„ΙBp$°³ΗνκΠ}}ξγœλφ…“^3°ΨόΘ9·/‚±Š³M5MάϊΤ:>2‘«Lπ:œ~••ψhν°«α Χ‘ˆ$*εΗ(SZ6"ή'Šΰ¬‘€&Œ‘¨,f>ΠŒΖ_7³ρ½w2³/›Ω23[ζχϋ;FZ;ΊΈvΙ 2R“Έη²Ω$'EίΈΐήΚJ4aŒH P~εΘ£Q^ιgςΠ†ηezJΔu·j ‰d!Έ ΥγviθΎ>χ usΙκ€+€Ώ8η:œs5ΐ«ΐΌή'pΞύ97Ο97―Έ8ώ―βIτωΑ_6°~w#?ΊtCcdέ©2Ν*⡈ηGPލ¦ΆNήήΆ/!Ί…‡Ζ°kQy‰d!ψ60ΡΜΖ™Y°xͺΧ>OW†~ΏxΑ9ηvwω(€™e§"«ΘQϋϋϊ½όϊΥm\υ‘±œ=u¨Χα X~v…Ωi*EΌ£όE^ί\GG—cAœ/Ρ-/3Τ5T-‚" /b…`hLΓ5ΐ_υΐcΞΉ΅fv»™- νφ Phf›€―έSh?ψΜl-Α„ωkηάκHΕ*r΄φ6Άrγ«™:<—›ΞŸβu8GmB‰OKHˆxDω1Ί”W֐–ΜΌ±^‡2(ήoT!(’θR"ωΰΞΉg€gzέwKί[ N…έϋΈ¦Ύξ‰]Η δ`{χ_>‡ŒΤd―C:je%>ώΌz7ΞΉ¨\οP$ή)?F‡ξe#>RVDZJ΄N›^οTΧP‘D—Ÿz"aτ‹—6σΪζ:n]4νΠΔ+±¦ŒΒ IDAT¬ΨΗώƒΤ6΅{Šˆˆg6ϋ›ΩΥp0aΊ…€§$‘–œ€AQ!(r4–ο¨ηξηͺψΔ ΓωμΌQύ₯4s¨ˆH°[(0Ř9)#("*Eͺ±΅ƒ―.]Α°ά Ύι™1έ₯²»ά¬q‚"’ΐ*ͺό”•ψ(ΝΟς:”A•›™ͺYCED… Θ@8ηψ?¬α½†Vξ»|6y‘1±jx^YiΙj‘„u°½‹7·ξK¨n‘έrΥ"("¨'ή©ζιUοqΓΗ&2wLμΟ,gfL(φ©EPDΦλ[jiο $T·ΠnΑA‚"‰N… H?6ϋ›ψΟ§ΦrΚψώea™Χα„MY‰O-‚"’°**ύd¦&sR‚,ΡSnFͺZED… Θ‘΄uvqέ’€₯$qοesHNŠέq½••ψΨ½Ώ•¦6‘ΔS^εηΤ …1ΉΠρΚΝLΡAQ!(r$wύ₯’΅ο5ςΓKf1,/ΓλpΒjBqhΒ΅ ŠH‚ΩZΫΜφΊ–„μ j‘ ‚"‡ρβ†|e+Wž:†Oκu8a§%$D$QUt/1©ΔγHΌ‘›™J[g€ΦŽ.―C©ιCMc+ίx|S†επ­ ¦zNDŒ)Μ"%ΙΨ€ cD$Α”Wω_”ΝθΒΔZ6’[nF Τ=T$‘©ι%p|ν±U4·wrεsβvόHjrc‹²Υ"(" ₯΅£‹Χ7Χqf.Ρ-7΄’fIl*EzωεΛ[xeS-·|r:‡ζxND•ϋ4FPDΚ›[χΡΦ`A‚Ž„ΰA@γEœ A‘VξlΰG­δ‚™ΓΈ|ώ(―Γ‰Έ²Ϋχ΅Πήπ:‘AQ^YCzJ§Ž/τ:Οδf»†jζP‘Δ¦BP$δ@kΧ-YΑΠά ώλΣ'`?KENY‰€c{]³Χ‘ˆˆ ŠŠJ?§ŒOΜe#Ί©EPD@… Θ!·όίZͺλ[ψΙβΩδe₯zΞ ΠΜ‘"’HvΤ΅°₯Ά9a—θ¦1‚"*Exry5X±‹λ?6‰yc ΌgЌ/ΞTŠHb¨¨ .± 'Ёž-‚κ*’ΘTJΒΫZΫΜΝ\ΓόqόΫYe^‡3¨²R9$SKHˆHB(―τ3Ί ‹qEΩ^‡β©ŒΤ$R“M-‚" N… $΄φΞΧ-YAjJ?Y<›δ€ψΨΫ„ŸZE$ξ΅uvρΪζ:N.Nˆ1ΰGbfδf€jŒ H‚S!( νGΟUςξύόΰβž—ιu8ž(+φ±ΩίD ΰΌED$bήήZΟΑŽ„οΪ-73U³†Š$Έ―ρJE•Ÿ_Ύ΄…8e ηNζu8ž)+ρΡΪ`WΓAFdyŽˆHD”W֐–œΔ©wوžr3RX]έΐΊΑλPϊuΨN.ρ: ‘Έ£BP’@_l%“‡ζπŸ˜κu8žš6"€wwνW!("q«’ΚΟόqd₯ι«ΐœΡω<ςΖv~Q±ΕλPލ3ΰW΄G… HθΣPN ΰψϊγ«8ΠΪΙοΎtJB―%0mx.ι)I,ΫVΟ3‡{ŽˆHΨνj8Θƚ&.;i”Χ‘D[MηΦEΣ½£_·>΅–ίΏSνu"qIc%α<ψΚV^ͺςsΛ§¦1ihŽΧαx.-%‰Y£†πΎz―C‰ˆςΚಉΎ~`,*ΞIη@['­]^‡"wTJBY]έΐ]έΐyΣ‡qΕόΡ^‡5ζŽΙgνύJ΄"—**ύŒ’Ι„bŸΧ‘ΘQ*ς₯PΫΤζq$"ρG… $Œ¦ΆN[²‚b_:w^<3α§οiޘ|:ŽU;ΌED$¬Ϊ;ΌΊ©–Z6"&f§PΫΤξq$"ρG… $Œ[ώo ;φ΅pοβ9 ΙJσ:œ¨rβθ|u‘Έ³lϋ>šΫ΅lD¬*Κ ‚Τ"(n*%!όqΕ.ž\Ύ‹λΞΘόq^‡uς³Σ˜PœΝ;ΫTŠH|©¨ς“šlœVVδu(r Τ5T$rTJάΫ^ΧΜwώΈ†ωc Έζ¬2―Γ‰ZsΗδσΎzœΣΒς"?**ύΜ“/]₯Η’"_°E°Y]CEΒM… Δ΅φΞΧ-YAr’qΟβΩ€$λ-8sΗδΣΠΑf³Χ‘ˆˆ„ΕξύΩ°η€Φ ‹a©Ιδ€§ΰWΧP‘°Σ·b‰k?ώ[«ͺχσƒ‹g2rH¦ΧαD΅Ήc‚]f—oWχP‰/Uω-λŠrΥ5T$TJάzy£ŸŸWlζs'ζΌZ(½?γ‹²’•Κ²νϋΌED$,Κ+ύ ΛΝ`²ΦŒi…Ωi*E"@… Δ₯Ϊ¦6ΎφΨ*&–ψψΞ'¦yNLHJ2ζŽΞη΅ŠHθθ πΚΖZL²±Θ—ε#D"@… Δ@ΐρΗW±`χ_1‡Μ΄d―CŠ'ŽΙg³Ώ™z Κ‘·bGΪ:Υ-4ε¨EP$TJάωυkΫ(―τsσ'¦2eXΧαΔ”yc‚λ .Χz‚"γΚ+kHN2N›¨e#b]‘/†–:Ί^‡"WTJ\Y³k?w>»žOΚηOγu81η„!€$™Ί‡ŠHΜ«¨ς3wt>Ή©^‡"Η©{ ‰}κ­"V*%n4·urέ’f§sΧΕ'hLΘ1ΘLKfϊˆ\–©‘Vs •΅ο5²@έBγBw!¨%$DΒK… Δ[ŸZΛΦΊfξ]<›όμ4―Γ‰YsΗ°jgƒΊΰˆHΜz©ͺΠ²ρ’ΘΜι'(^*%.όίΚ]<ώN5מUΖ)γ ½'¦Ν“O[g€΅ο5zŠˆΘ1)―¬‘8'iΓ5N<t·jζP‘πR!(1oG] ίωΓζŽΙηΊ³'zNΜ›768aŒΖ ŠH,κμ 𲖍ˆ+E9έ… ZEΒI… Δ΄ŽΧ-]?Y<›”d½₯ΧΠά FΙdΉ A‰A«ͺχ³`‡Ί…Ζ‘μ΄d2R“¨S!(VϊΦ,1ힿU±rgw~ζJσ³Ό'nΜ›Ο²νϋpΞyŠˆΘQ©¨¬!Ιΰτ2-/ΜL‹Κ‹D@D A3;ΟΜ*Νl“™έΤΗφt3{4΄ύM3ΫcΫ fφΊ™­5³wΝ,#’±JμyuS-]±™Ληβ' χ:œΈ2wL>{ΫΨΥpΠλPDβ’ςcδTTω™3:Ÿ!Yš4,ž A΅Š„SΔ A3KΞ¦—›Ω΄^»}¨wΞ•χ?›<\νœ›,:"«ΔžΊ¦6nxt%γ‹²Ήω“½ίVrΌN­q‚"‘’ό9uMm¬ή΅Ÿ“Τ-4ήω΄|„H˜E²Ep>°Ι9·Ε9Χ,.μ΅Ο…ΐÑߟ΢ΰΘξs€ΥΞΉUΞΉ:η\Wc•βœγ›O¬¦‘₯ƒϋ/?‘¬΄―CŠ;S†ε–¬BP$2”#δ₯~œΣ²ρH]CEΒ/’…ΰH`gΫΥ‘ϋϊάΗ9Χ μ I€3³ΏšΩr3ϋfγ”σΠkΫψϋ†ΎuΑ¦ΠΤΰ‘’œΔμΡCXΆM… H(?FHE₯ŸΒμ4fŒΘσ: ³"_:ϋšΫθ hμΊHΈDλd1)ΐιΐηB~ΪΜΞ™}ΩΜ–™Ω2Ώί?Ψ1ŠΦΎ·ŸzfgO)αͺŒυ:œΈ6wLφ4ΤΦιu("ςΎεGHΌ8^ΪXΛ™“ŠIJ²ρ¦Θ—FΐAC‹ZEΒ%’…ΰ.`TΫ₯‘ϋϊά'4ξ!¨#xuτ%η\­sx8±χ œsΏtΞΝsΞΝ+.V7xΧήΙ΅KV0$+•^:KλCEΨά1ω¬άΡΰu("ρ&βω/Gή΅Ÿ}Ννκ§ή_KP… HΈD²|˜hfγΜ, X <ΥkŸ§€+CΏ_Όΰ‚σΥ˜ifY‘ΈXΑX%άφΤ:ΆΦ6sοe³)ΘΦlp‘6gτΜ4aŒH(?F@E₯38c’ ΑxTδΣ’ς"α±Y6œsfv Α€• όsn­™έ,sΞ=<ό―™mφL†8ηκΝμΗ“₯žqΞύ9R±Jτ{zΥ{<Ίl'vΦ>’΅‘EnF*“‡ζπΞ‚"α€όεU5œP:D γT‘/ψΊͺ ŸˆN·θœ{†`·•žχέγχVΰΓϋΑ)²%ΑνάΧΒ·Ÿ|—9£‡pύΗ&yNB9qL>O―|€#YcnDΒFω1Όκ›ΫYΉ³λ>:ΡλP$BΊ[΅„„HψDλd1"ttΈnι ξ[<‡Τd½eΣΌ1ωhλdcΝ―C9¬—7Υβ,ΠψΐΈ•—™Jj²QΧ¬1‚"α’oΥΥ~ςόFVμhΰϋŸ™Ι¨‚,―ΓI8sΗ–Χ2"ΝΚ+kΘΟJeVι―C‘13 ³Σ©U‹ HΨ¨”¨υΪζZ(ίΔgη•ς©Y#Ό'!.Θ’Θ—ΞrM#"Q*pΌTεηŒ‰ΕκΒηŠr4FP$ŒTJTΪΧάΞ d\Q6·.šξu8 Λ̘;fΛTŠH”Z·»‘Ϊ¦vLR·ΠxWδKΧς"atT… ™%™Yn€‚pΞρΝ'VQίάΑ}‹η•Ρ9€σΖ°c_ 5Z½E$ͺ)Gz£Ό²€3UΖ½Βμt΅Š„QΏ… ™ύΞΜrΝ,X¬3³#š$ͺίΌΎηΧΧpΣωS˜12Ολpή‰‘q‚κ*ςaΚ‘ή+―τ3sdΕ‘Η%~ε€QΧΤNpIM9^iœζœk.žΖΡ¨$a­{―‘ο=³žN)αŸNλu8Μ™KZJ’–ι›r€‡φ·t°|G½Ί…&ˆb_:ν][;½E$. €L5³T‚Iξ)η\ΑElEΒͺ₯½“k—,'/3•^rfτ S’9adž A‘Ύ)Gzθ•M΅,Τ² ‘{-Au ‚ΏΆΩΐKf6hŒdP’˜Ύϋ§ul©mζήΛfSθSŸh2wL>kv5ΪΡεu("ΡF9Cε•5δf€0{”–H‡ A-!!ύ‚ΞΉϋœs#sΈ νΐYƒ›$?―ήΝ’·vrυ‚ œVVδu8Λά1ω΄wX³kΏΧ‘ˆDεHο8η¨-‘’¬IΠA‘/ @3‡Š„Ι@&‹jfšΩ³‘ΫΣ€+#™$Œκϊnzr5³F αkŸδu8‡ξ c΄Œ„Θ)GzgύξΤhΣψΐ’‘"α5KhΊWτT@’X:»|uιJœƒϋΟ!UWu£R‘/qEΩ'(ςa‘ι‰ςͺΰ² 4>0ad§‘d*EΒe ίΊ‹œsη\' Bχύ}#οl―η{ŸžΑθΒ,―Γ‘#8qt>Λ·ΧkΪn‘RŽτHE₯Ÿ©Γsš›αu(2H’“Œ‚μ4u  “‚ΝfVHh43;Π@!9nol©γώ7qρ‰₯\8{€ΧαH?ζŽΙ§Ήmu-^‡"M”#=p ΅ƒwΆkوDTδΣ’ς"α’2€}Ύ<L0³Wbΰ’ˆF%q―ΎΉ]ΙΨΒln»pΊΧαΘΜ'Έm㊲=ŽF$j(GzΰΥMutœ–H@*EΒ§ίBΠ9·άΜ“*Cλ$‰ηώϋΥΤ6΅ρ俜†/} Χ#ΔkeΕ>r3RXΎ£žKης:‘¨ 鍊ͺ|ι)Μ Md%‰£Π—ΖφΝ^‡!ϊύnfΨλΝ ηάo"“ΔΉGήάΑsλφςOLefižΧαΘ%%'ŽΙΧ„1"=(G>η•~N++Τc ¨Θ—Nν ‡4ŜΤγχ ΰl`9 $'GmÞFΎϋ§u,˜TΜNηu8r”ζŽΞ§ΌΟώ–ς²R½G$(G²5MΌ·Ώ•kϞθu(β"_:;Ίhnλ$[=ŠDŽΛ@Ί†^ΫσΆ™ –F,"‰[Ϋ»ΈnΙ r3RωΡ₯³HJ2―C’£474NpωΞzΚ\βq4"ήSŽ|ε•‘e#4QLB* -*_ΧΤBPδ8KŸŠf@M9rΤξψσ:ͺφ6ργΟΞ’8'έλpδΜ*Br’ρΞ6u9 εΘ«¨ς3i¨C2½EξΉlc΅y\X0©˜τ”$ώ²f AIXΚ‘ƒΟ9Gy₯ŸL("=%ΩλpΔ#i)I<ό…ωμΨΧβu(ύΊοοYσή~―Γ9¬Γ‚ΞΉœΑ DβΟ[[χqίί7ς™9#ωτœR―Γ‘0ΙNOaΑ€bž]³›[>9M³ΏJBRŽ|[j›©?ΘΥ &xŠxμ΄²"Nσ:ˆxnνͺλz†Θa ΈŸž™•˜ΩθξŸH%±oKΧ/]Αθ‚,nΏh†ΧαH˜]0s8{ΫX±³ΑλPD’‚rdδ•Wϊ-!±cTA;c εRWΏ… ™-2³ΐV Ψ<αΈ$†9ηΈιΙΥΤhγΎΛηΰΣ:?qη£SKHM6ž}w·Χ‘ˆxJ9rπTTω™PœΝ¨‚,―CόL[;Ω°ΓλPDϊ4Αο§UΞΉqΐΩΐJbΪ’·vςμš=άxξdN(βu8Ή©œ1±˜gΧμΑΉΎ†I‰$ εΘAp°½‹7ΆΤ±`R‰Χ‘ˆ Ψ¨όΰE‹κz΅ JtH!Ψᜫ’Μ,Ι9χ"0/ΒqIŒͺΪ{€Ϋž^Λ‹ψγ½G"θΌΓΨΥpwwi Ό$4εΘAπΖ–:Ϊ;,œ¬n‘;Ί[―wξΣ8A‰N)ΜΜΌ όΦΜ~4G6,‰E­]\·d9)άύΩYšD$Ν3m()IΖ³kφxŠˆ—”#AE•ŸΜΤdζ+π:‘+ΝΟΤ"(Ρk …ΰ‹@πUΰ/ΐfΰS‘ JbΣχŸYΟ†=ψΡ₯³(ΙΙπ:‰°!Yiœ:‘gίέ­ξ‘’Θ”#Aye §N($#UΛFHμΘΛL%'=E3‡JΤH!˜<”9ΐ£‘n0"‡<·vΏy};|ϊ8NΦŽDqώŒαl«kaÞ^‡"βεΘΫVΫΜΆΊΝ*1ΗΜ™Ÿ©™C%jυ[:ηnsΞMώ T˜ΩσLbΖξύωζοW3cd.7ž7Ωλpd3}(I†f•„₯yUΑe#4>PbΡ¨‚,΅JΤπ:‚@ °¨Τδ#tΧ/]I{g€ϋΟ!=EέvI‘/“Ζhœ ˆrdΔ”WΦ0Ά0‹1…Ω^‡"rΤFεg±³ΎEC($* dΑ5³rΰο@!π%ηά ‘LbΓΟ^άΔ›[χqϋ…3_μσ:ρΐ3‡³±¦‰M5κ*‰G92²Z;Ίx}K†HΜ*ΝΟ€₯½‹ϊ­%(Ρg -‚£€λsӝs·:ηΦE:(‰ ΛΆνγήΏoδΒΩ#ΈψΔ‘^‡#9wϊ0ž}W­‚’”##θ­­ϋhν°@έB%F½Ώ„„Ζ JτΘΑo9ηVF0;φμΰ«KW2bHw\43-‘¨†εe0wLΎΊ‡JBRŽŒ¬ςJ?i)Iœ2ΠλPDŽΙ¨‚ΰ;΅„„D‘£#(€sŽo?ω.{[Ήoρr2R½IllQ6S‡ηͺι‡ςc–m«§₯½‹…“”o$φ•ζgή Ά©ΝλPD> ’-‚σMΞΉ-ΞΉv`)pa―}.ύώpΆ….ύ™ΩEΐV`mc”Ψ³Ώ•ŸXΕΤαΉάtώ―Γ‘(vώŒa,Ϋ^ΟήΖV―C‰fʏύ(―¬!5Ω8u‚–ΨWΪ½– Ί‡J”‰d!8ΨΩγvuθΎ>χqΞuϋB3σάΑψdΊŽ]IkG€ϋ/ŸCzЦπ–Γ»`f°{θ_ΧͺUPδ”ϋQQεgώΈ²ΣSΌE不Κ­%ΈOΖHt‰ΦΙbnξqΞ5i'3ϋ²™-3³e~Ώp"K0?―ΨΜλ[κΈmΡtΚJ|^‡#Q¬$‡²ΟΎ«BP$Bneωb7GΎΧpͺ½Mκ*qγύ΅Υ"(Ρ%’…ΰ.`TΫ₯‘ϋϊάΗΜR€< 8ΈΛΜΆΧί6³kzŸΐ9χKηά<ηάΌβbM/nΛwΤσγΏUρΙ†sιΌR―Γ‘qΑŒaΌΉ΅Ž:…9œˆηGˆέYZ6b–8‘‘šLqNΊZ%κD²|˜hfγΜ, X <ΥkŸ§€+CΏ_Όΰ‚Ξp΍u΍ξΎοœϋic•^[;ΈnΙ †ηeπ½OΟΤ¬m2`ηΝNΐΑsλφzŠH΄R~<‚ςΚFδe0Q½P$Ž”ζgRέ A‰.+Ccώ ¬sΞ­5³ΫΝlQh· ŽyΨ| ψΠΪ2ψœs|ϋΙwΩ½Ώ•Ÿ,žC^fͺΧ!I ™:<‡±…Y<£ΕεEϊ€όxxν^έTΗ‚Ι%Ί)qeT~–Z%κDtΆsξΰ™^χέγχVΰ~γֈ'‡υψ;ΥόiυnnŒ?ΨES['Ύt}δˆΘ‡•WΥpβθ!δejΩ‰_£ς3q~Q±™Ό¬θ~―g€$sαœ€§hΘP<Σ·²δœγζ?aWύAϋΚ©JΌQŸ7Šί½Ήƒ₯oνΰŸΟοu8"eόΪX³«‘ϝμu("5}DIw­ΚλP$3-™OΝαuA*Πο—οβVΎΗΧ?>‰yc ΌGβάμQC8e|Ώzy+xκXRΤ#]DήχRUp ρ‚IZ6BβΫ΄Ή¬ϊΟs’ΎkhWΐqΪ^`έξF‚qN…`‚Ωβoβ–[ΓΙγ ψΧ³ΚΌGΔΥ &pΥ―ίζ+wρΩy*"ο+―ςSδKgΪπ\―C‰ΈœŒΨθ…5‘ΨΗϊݍ^‡!¦Kσ €­³‹k—¬ -%‰{Ο&9Iγep,˜TΜΤαΉό’b3€σ:‰]whو$ε$‘¨1mx Α B0όπ/•¬}―‘».>αy™^‡# ΔΜΈzΑx6ϋ›y~ύ^―Γ‘(±ͺΊ†–NV·P‘h2ex{ΫΨΧάξu(A*Dye Λ½N IDATΏze+xκΞ™>Μλp$}bζpFdςί›qN­‚"\6"ΙΰŒ‰Z6B$šL uΥή VΑΈ¦B0Τh可bΚ°Ύ}ΑT―Γ‘•’œΔ—Οϊ Ό΅uŸΧαˆH¨¨ς3{Τ†d₯yŠˆτ0eX°\Ώη€Η‘H$©Œs€γ돭β@k'χ_>‡ŒT­#ήΉtή( ³ΣψyΕf―CΥ5΅±ΊΊ“JΌEDz)ΞI§Θ—q‚qN…`œϋΥ+[xyc-·|j‡ζxŽ$ΈŒΤdϊΘX^¬τ+Ήˆ$Έ—7Φβ(₯¦ΟQŽs*γΨͺ άυ—JΞ›>Œ+ζφ:ώαΤ1d₯%σ ΅ Š$΄Š*?ΩiΜ™ηu("‡©ΓsΩΈ·‰Ξθ^χPŽ Α8ΥΤΦΙuKWP’“ΝΟΔLΣrKt’•ΖσGστκέμάΧβu8"β@ΐρR•Ÿ3'iΩ‘(5uxν]ΆΤ6{ŠDˆ Α8uΛΧ°s_ χ.ž£AψuΎxΖ8’ |e«Χ‘ˆˆήέ΅ŸΊζvNΦψ@‘huhΒu[*γΠ“Λ«yrΕ.;{"σΗxŽΘ‡ ΟΛδΒΩ#YϊφκšΪΌGDYE•Σ²"QmB±ΤdcύnΝ―TΖ™m΅ΝάόΗ5Μ[ΐ5g•yŽΘa]½`<­~}»Χ‘ˆΘ +―¬α„‘yϊ½ED#-%‰ Ε>΅Ζ1‚q€½3ΐuKW’œΔ=‹g“’¬—W’WYIŸ6”ίΌΎζΆN―Γ‘AΠΞʝ ,P·P‘¨7mx.φ¨ŒWͺβΘέΟU²Ίz??Έx&#‡dzŽHΏ^0†––Ύ½ΣλPDdΌΌ±–€ƒ“΄l„H΄›2<‡½mμknχ:‰‚qβε~~ρ>wςhΞ›1άλpDdξ˜|ζ-ΰΑ—·Π‘ι©EBy₯ŸΌΜTfβu("©ΓƒΖlPχΠΈ€B0Τ6΅qΓoοΞγ£ͺούΏ>Ωχ„$¬ kΨd‚¬‚‚X«‚Z7V[mυφΊ”Ϋj«½ώμnΫ_W·Φ_λRm-Έ[άΪkU’Ω4,²$„}HH !dΟχχΗ 6Ev29sfήΟΗƒGf̐χΙ™œ3ŸsΎΛ³ΛΠ%{/βu‘ς΅)μΨWΟάe;ΌŽ""!ΦΪκ(*-η¬ΉΔjΪ‘°w°\­B0"©τΉΦVΗ7Ÿ[NM}Η(’b½Ž$rB¦ κΜΰnι½yYɌН‘ˆP²«†ΥυL¨f‘"~4€{o~Ό“k[θu”cΚΛJζ§—ŸNŒζ*=&‚>ς«·JYΎmΏ½vωRΌŽ#wœ;€ΧW|Β]/,ηΥΫ'‘§Ή1Eόn^ΙΑi#4PŒˆ}αŒ|ΆUΥΡΠή#‡VΧ71ΏlΧOθΓ°ΌL―γ„=‚>ρώΊr-ZΟΜ±½ψόπξ^Η ™Μδx~ς…α|ωΙ%<ψφ:ξΊ`°Χ‘DδΝ+ΩΝΰnιtΛΤ΄"~4±.ϋ‡όŸ»ͺλwΫ,X_‘Bπ8¨m‘TμoΰΟ-§—4ξ»xˆΧqDBξœA]ΈςŒ|-ΪΐŠm{½Ž#"§`C3K7Ui΄P ΉItNe~Ω―£ψ‚ Α0ΧΪκΈσωεμ«kβ‘™…$'¨™œD‡{/BnZw>Ώœ†ζ―γˆΘIš_VAs«c²š…ŠH8³ —%›*ilοf¬α@…`˜{rΑ&ζ•”sοE§qZχ ―γˆt˜Μδx~zωι”ξΪΟCo—yGDNRQi9i‰qŒξΣΙλ("&φΟα@c ΛΥ’θ˜T†±·ογ§oαs§uε‹γ{{G€Γ3Έ Wœ‘ΟοŠΦ³rΫ>―γˆΘ rΞQTRΞΔώ9Δk€kιγϋε` Τ<τ˜BzT6³ifVbfefvχa^O4³gƒ―/2³>Αεη™Ω‡fΆ2ψuj(s†£Ϊ†fξ˜]LNj"?ΏβtΜ4D§s‘šˆJδ‰–σcΩξύlί[ΗdM!"$+%‘=2˜ΏΎΒλ(a/d… ™ΕC€™fvθH'7UΞΉώΐ―Ÿ—W—8η†7 UΞpυ½Ή«ΨΈ§–_]=‚N© ^ΗρLfJrΞ5ϊΜμf3[jfKΛΛΛΫ-Έ—ΆVΰ^ZΙ¨^Y|ύsΌŽ#6ξk3ЍFŸ ωω1Τ64³xc₯ξŠH‡Ϋ7›ΈcΑzυ<š°ξΉmfC 4‡Ήεp―;η~οœνœέΉ³O4M-­ά1§€)TΗz‘66]»³†‡ίYηuOλό\ΗΣ‹₯ 7μ‘±₯UσŠH‡KIˆ£°W ΤOπ¨BYilzΆyž\vΨuΜ,ΘφŸη/Χ;ηΦ‡0gΨψΝ?J)ή²—ϋ/NΟμ―γˆ„©ƒ»rω¨<QQρ·9?z}±t^I9) ±š6BDϋ#²Rβωω§cf^GρΟ Œ"ϊΠ;λθ››Βe…ω^G‰zlΨCCs+“5 ˆxlH 2“γωΩ›kyfα―γSiάΩπϋy*=ςƒWW³‘’–?ί4Žœ΄D―γˆψΦύ— gηΎzξ|~Ιρ±LΦέλH"Q­¨€œ€ψΖυΝφ:ŠˆDΉΨγŽsπΥ»ΌŽr\b;ψƐ AΌΆbs–lεΏ¦0±ΧqD|-)>–?\?šλŸXΜν³‹ωΓυ±šΐZΔCE₯εŒο—CRΌ¦οέ4©/7MκλuŒ°€>‚lkεξyi%#{fρίη τ:ŽHDHMŒγ‰/a`ΧtnωΣ‡,T_OlήSΛƊZ*"β*;PsK+³ž]šYH|¬~ύ"ν%39ž§oKΟμnϊγ–mέλu$‘¨σι΄Ί+/"φT‰t ί^Η‡›«ψΡeΓ4€ΆHδ€%ςΜWύnoxb1k>©φ:’HT)*-§wN }rS½Ž"""Η B°ƒ,ά°‡‡ή-γΚ3ς™12Ολ8"«kFΟ|eΙρ±|ρρEl(ίοu$‘¨PίΤΒ‚υj*"β*;@Um#³ζ,£oN*ί›>Τλ8"―gv Ο|uΧ>Άˆ­•Ύˆ}uM^G‰8[+°ΎΌ–Ικ("β*C€±…ΫRLFR<ΏΈr11ζu$‘¨5‘ ‡GΏx₯»jΈρK8ΠΨμu$‘ˆRTͺi#DDόF…`ˆόπυΥ¬Ϋ½Ÿ__=‚ά΄D―γˆD½suαΑk )ήRΕυ/VŸA‘v4―€œόNΙtΦ΄""~‘B0ή\ω Y΄…[&χγ¬j&#..ޝ)dՎj.|ΰ}ή-Ωνu$ίklneΑϊ &μŒ™ZΏˆˆψ… ΑvΆ}oί~q#ς3ωζyƒΌŽ#"‡ΈdD^½}]ως“Kψρλ«ilnυ:–ˆo-έTɁΖ5 ρ‚ν¨Ή₯•YsŠiuπΰΜBβτλ Gύ»€ρΚ­ωβψήόαύ\ωθΆμΡ\ƒ"'£¨΄œψXγΜ‚―£ˆˆΘ P₯Žz§Œ%›ͺψΡ₯Γ蝣~"α,)>–^:Œί];Š ΅\τΰϋΌΊ|‡Χ±D|g^I9cϊdkž\ŸQ!ΨNmΨΓCο¬γςQy\Z˜ηu9NοΞwœEiά>»˜{^ZA]c‹Χ±D|aΗή:JvΥ0eϊΓ‹ˆψ Αv°χ@#³ž]F―μ~0c˜ΧqDδυΜNαΉ[&π΅)Μ^Ό•ι“’5^Η {οiΪίR!xŠœs|ϋΕTμoΰ‘™£HSΣ_ŠαΫΣστc©:ΠΘτ‡ΙμΕ[pΞyM$lΝ+)§{fΊ€yEDDN ΑSτΜ’-ό}Υ.ξΊ`Γσ3½Ž#"§θ쁝yγλg1¦O6χΌ΄’ΫgS]ίδu,‘°ΣΤΚό² ¦ ΄""~€Bπ”μ¬α‡―­ζ¬Ή|eR?―γˆH;ι’žΔΣ7Žε ρζΗ;™ϊ‹"žœΏ‘ϊ&υ9θ£ΝUΤ443y š…Šˆψ‘ Α“TίΤΒ³‹IOŠγ—W &FWCE"ILŒqλ9ύyρkgRΠ9•οΏΊšs~1Ώ,ΪBS‹ζ™WZN\Œ1±Ώ¦ρ#‚'ιΗ――‘dW ΏΈr]“ΌŽ#"!2²gsnΟ3_G·Μ$ΎσςJΞύe/~Έ–Vυ”θUTRΞ½;‘žοu9 *OΒίWνδO 7σΥ³ϊj€4‘(`fLμŸΛK_;“'Ύ4šτ€8ΎωόrΞu―­ΨA« B‰2»«λYύI5“5m„ˆˆo©Δqš[ZyΏ΄œiΓΊiΪS!xœ–nͺδ7(ε‘=Έ|TžΧqD$ŒΔΕΖp՘žΜ(μΑσK·ρά­όθυ5άΖ& θΜe…=8H7RuΘ[Άu/Υυš6BDΔοτ©δ8μ;ΠΔΧη,#ΏS ?Όt˜€ŠΘa%ΖΕrέψή\7Ύ7e»kx₯x/o翟]NJΒΗ\0΄—ζ1± ‡ΈX5-**-'6Ƙ4 Χλ(""r TƒsŽ»_ZΑκz^ψΪ™&[DŽK.ιάyΑ Ύqή@–nβεβmΌΆβ^.ήNητD¦θΑe…y ν‘‘‹Kβ+σJΚΥ+‹ΜdEDόL…ΰ1ΜY²•7?ήΙέfdΟ,―㈈ΟΔΔcϋf3Άo6ί½d(σJvσGΫyϊƒM<ώύ θ’ΖωC»2Ύ_£{g“œλud‘#ͺΨίΐΚνϋΈσό^G‘S€Bπ(Φνͺαϋ―bR\n>«ŸΧqDΔη’βc™6¬;Σ†ugοF^_ω -ήΑ£ExδέυΔΗ#{f1Ύ_ϊε0ͺw'’βUJψxοΰ΄šCWDΔχTA}S ·Ο.&5!Ž_]5‚˜5έ‘φ“•’ΐ΅γzsνΈήμohfι¦J>Ψ°‡…λχπΘ»e<τN ±1Œμ•Ε„~9L(ΘadΟ,†β©y%εδ¦%0€{†ΧQDDδ©<‚ŸΌ±†΅;kxςKcθ’‘αίE$tγ˜2¨Λ§wYjκ›X²©’Φοaα†J|gΌ½ŽΔΈFυκĈžY ξ–Ξ nιtNӜ¦!ZZο―+ηœΑ]tqTD$¨<Œ·Vοβ©6sΣ€Ύœ3XΝ_D€c₯'Ε3upW¦ξ ΐΎΊ&o¬dα†=,ά°‡ΗΉ¦–ΐ€υq1FAη4 ΓΣΊ§3¨[=2“4΄«ΫφRu IΝBED"„ ΑCμάWΟ]/,gh Ύ5mΧqDDΘLŽηΌ!]9oH 0llnecE-kwV³vg %;kψpss—οψτ{“β>½kΨ''•όNΙδe₯ί)™¬”x‰rΒζ•”cpVM!" TΆΡκ˜υl1Ν­<4³Δ8υΕ‘π“σιΐm–ο«k’tWM°8¬¦dg ]Άƒšϊζϋώ”„Xς;%“ί)…Ό¬δ@‘ΨζyNj‚šώΙg•–3’gRΌŽ"""ν €… ™MbΗœs?=δυDΰiΰ `p΅snSπ΅{€›€ΰηάίC™ΰΡ’υ,άPΙΟ―8~ΣBύγDDΪUfr’Wœ‘ͺ#"‘ΜŒΜ”x2S2–—yΨuͺλ›Ψ^U,P±Ώ‘=΅ ―ϋXΆu/5 Τ6ώkd$Ε“žGFrπkRΫ―ρd$k٘>ΩQWΙoJί_WŽs0yPηP(ι ‘Ό#8(sΞm0³9ΐ  m!8ψ^πρ ΐΓΈ¬<˜γœk6šYYπϋ TawΛΰ;Ÿ?+GηλΚΆˆD•Œ€x2ΊΗsΪ1¦¨klaOm{ώ­Pl€ΊΎ‰κΊ&jκ›©|έ]½Ση) _ψΟ ŒNΝ>ΒO‰|~»P PTRNvj§αb‚ˆˆψO( Α<`k›ηΫ€qGZΗ9Χlfϋ€œΰς…‡|o^θ’BlŒqΣ€Ύ‘ό""Ύ–œK~B ωRNθϋšZZΩί¦Hμ››’„Ύα« ₯ί›1”ε΅κ;*"A|=XŒ™έ ά Π«W/ΣˆˆΘαΔΗΖΠ)5!ꛃΆα« ₯Έk<’gV¨Œˆˆt PΞBΌθΩζy~pΩaΧ1³8 “@_ˆγω^œsΏw΍v΍ξάYύDDD2³›Νl©™--//χ:Žˆˆ„™P‚K€fΦΧΜτi˜{Θ:s‚―ήqΞΉΰςkΜ,ΡΜϊ€Ε!Μ*""QB~‘t±TDDŽ.d… sΈ ψ;°xΞ9·ΚΜ~`fΣƒ«=δϋ8|Έ;ψ½«€ητ—ψpk¨;Β‹ˆˆt](Ο…΄ sξ ΰC–έΧζq=pεΎχΗΐC™ODD€£ϋόΌP ξσcΔ‚νΕΜ–:ηF{£#DΣΆ‚Ά7’EΣΆBtmo4mkΈσσΎPφŽηΧά μ^ρkvΏζ5 ‰:*EDDDDD’Œ ΑΟϊ½Χ:P4m+h{#Y4m+DΧφFΣΆ†;?ο eοx~Ν ΚξΏfχknυ‰6Ί#("""""eT™Ω43+1³23»Ϋλ<‘ff›Μl₯™-3³₯^ηiofφ„™ν6³Ϋ,Λ6³·Μl]πk'/3Ά—#lλχΜl{p.3³Ο{™±=™YO3{ΧΜV›Ω*3ϋzpyΔνί£lkDξ_3K2³ΕfΆ<Έ½ί.οkf‹‚ΗηgΝ,Αλ¬ΡΖOηHΏύ|lσϋί™ΕšY±™½|ξ—άŸω,η‡χ €™e™Ω fΆΦΜ֘Ω?d7³AmΞ½ΛΜ¬ΪΜfω!ϋα¨$p.†3Νlˆ·©:Δ9ΞΉ‘~ςφώL;dΩέΐΫΞΉΐΫΑη‘ΰ|v[~άΏ#sotp¦PjΎιœŒn ώ½Fβώ=ΆBdξί`ͺsn0˜ffたΨήώ@p“‡£ŽΟ‘ğΗ?Ϋόώ·ϋu`M›η~Ι Ÿύ,η‡χ ΐΐߜsƒ~aŸέ9Wrπά œ^ΖΩG…`ΐX Μ9·Α9ΧΜfxœINsξ= ςΕ3€§‚Ÿ.νΠP!r„mXΞΉOœsΧ8yδϋχ(Ϋ‘\ΐώΰΣψΰ?L^.ˆ}λ3Ύ:Gϊυψοηc›ŸvΝ,Έx,ψάπAξ£ϋχ‹™eg8ηs{ρAφCœ ¬wΞmΖΩ‚ε[Ϋ<ίFΨ rΐšΩ‡fv³Χa:HWηά'ΑΗ;^†ι·™ΩŠ`3)_4Q8QfΦ(αϋχm…έΏΑ&ZΛ€έΐ[ΐz`―s9ΈJ4ŸΓM$œ#}u|πγ±ΝΗ»ΏΎ΄ŸηΰάpψΟr~xΏτʁ'ƒMr3³Tό‘½­k€ΩΑΗ~Λ¨Œf“œs£4υΉΥΜΞφ:PGrαr#yΘάίšθ|όΫ8νΟΜ€YΞΉκΆ―EΪώ=ΜΆFμώuΞ΅›άδΈ5ΨγHaΒύψΰΧc›vΝμb`·sξC―³œ€£~– γχK0 ψs¨ε¦”aœ€`ΏΡιΐσ‡ΎξΩΫR!°θΩζy~pYΔrΞm~έM mσXouˆ]fΦ ψu·ΗyBΖ9·+xRnώ@„ν_3‹'πAιηάKΑΕΉ·­‘Ύ‚Ν„ή&Yf|)βΟa(Ξ‘Ύ8>DΒ±Νg»ιfΆ‰@“η©ϊ…{nΰˆŸεόπ~ΩlsΞlαςΒΠΩΊψΘ9·+ψάOΩ?₯B0` 0 8JT[½s=Ξ2f–jfιηύ»"Β\ΰ†ΰγ€Ώz˜%€Œ‚.#‚φo°Ζγΐηά―ΪΌqϋχHΫ©ϋΧΜ:›YVπq2p~RοWW‹ˆ}λ3‘pŽ ϋγƒŸm~ύΫuΞέγœΛwΞυ!πΎ~Η9w-ažŽϊY.μί/ΞΉΐV3\t.°doc&j ώΚώ)M(dαΧΔO8η~μq€1³~Aΰφό_"m{Νl60Θvί^žz›«œsΎdεΫ:…@³AlniΣvέΧΜlπ>°’υιψΎ4΅²­3‰ΐύkf§θdKΰBεsΞΉYs€l ΈΞ9Χΰ]θγ§s€_~>ΆEΒί™MξtΞ]μ‡άGϊ,gf9„ωϋΐΜF 'Ψ|™ΰ{‡πϞ lϊ9ηφ—ωβχ~(‚""""""QFMCEDDDKŽFIDATDD’Œ A‘(£BPDDDDD$Κ¨‰2*EDDDDD’Œ A‘ff—šΩ―sˆˆˆ„#%Ϊ©‰l—:Ι‰ˆˆ|–Ξ‘Υ4 ˆΗΜμ:ΰ“ͺ.V}œsw_0Ϊ9wΫaΦύ/η\‹™ν.κ€@π°/ψο ΐEΐΝΐjηά5΅"""'JηH‘ΠΡA™ΩiΐΥΐDηάH Ψ\Φf΅«9GXχΪΰ:©ΐBηάΰ=ΰ«ΞΉΐ\ΰ.ηάHηάzΰn Π9w:“ˆˆHX9R$΄βΌ εΞΞ–˜@2°Ψ`fγuΐ``>pλΦh$peΰCΰΌ#όΌΐ3fφ πJ{oŒˆˆH;9R$„TŠxΛ€§œsχόΫB³«€΅ΐΛΞ9g3ΫgΦ jrjηέΒ‘Ά/Ξ.ώΗΜ†;ηšΫcCDDDΪ™Ξ‘"!€¦‘"ήzΈΒΜΊ˜YΆ™υ^&Π‡a&0ηλM \?θιœ{ψ6 €΅σφˆˆˆ΄#EBH… ˆ‡œs«{5³ΐ[@wη\°θνœ[|΄uρ#ζw™Y10ψ³™­Ёs{C±]"""§JηH‘Π¨‘""""""QFwEDDDDD’Œ A‘(£BPDDDDD$Κ¨‰2*EDDDDD’Œ A‘(£BPDDDDD$Κ¨‰2€<ΉΫΟ.ΜIENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/cosine_annealing_example.png000066400000000000000000001556611465426447700273450ustar00rootroot00000000000000‰PNG  IHDR°MΡ›IosBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœμέw|[ΥύρΧ‘Ό’x$±;Žγμε ‡L a%PΒ(J«-«ύAtRψφΫφ[ ΄…²g˞%@I€$dE†³γμiΙ:Ώ?δγ!Ϋ’%]½Ÿ‡‰Φ½GWWέ{ξη|ޱΦ"""""""""""’h<ρn€ˆˆˆˆˆˆˆˆˆˆH}ԁ-"""""""""" IΨ""""""""""’Τ-"""""""""" IΨ""""""""""’Τ-"""""""""" IΨ’tŒ1K1“βݎΆbŒ±Ζ˜ΎΑίkŒωIΌΫ$"‘S̊_Μ2ƜdŒω΄‘Η{Ϋ›Φ–ν [mƘ‡β±ξϊc.7ΖΜ‰w;DšC1V16‘cώaŒωeΌΫ)cΜ:cΜ”x·CRb·bwλŽι±h²λ&ΫoJ¬©[bΚ3Σ³ΐsΐ³Εσ²1ζΔΦ,ΣZ;ΨZ;+JML*ΦΪ+­΅Ώˆw;DάJ1+Ίβ³¬΅οXk„nλD½yΒOΆšωΊ cΜSΑνm›:A5Ζ<όΎν3Ζ¬4Ζ|£Ε–„¦]©c1“Œ1•QXN‹bZͺhΝEUcL¦1ζώ`ίjŒΉ‘‘ηήŒ‘Ώ£Ζ˜ύ-oΉΔšbwt₯Jμ–θjνo‘1ζϊ`|ήŒΧ™ <―YΗρmIΨ3Α—~ eΐέΐ9ρl—ˆH}³D’jp)°5‚ηήτ΄ΦζӁ_cFΖ²qφc%^R)<Žnϊ=€ΙΐŒ1§ΧχΔ`η]vθxx²ΝZ*Ν’Ψ-’όŒ1S›SpβtoΰgΌ€9ΗρmΗZ«?ύEύΘ4ςœLœΓΝΑΏ2ƒ/{€]ΐ;€'ψΨ:`Jπ·OφKQaλ(žvŸίm€=gϋ€ΐmaυ,p°Ψ ό(μρ·Μ ΎΧ-ΐa[ oπ~ό$ ΈΨ|νΧΒ^—<|?σ_sβ½oθO‰ψ§˜•\1 xΈ1ψnΑu^Όέ'ψxBλ ή/ ~Φ?hj;Υ³ήvΐ]ΐz`/ΞΑ];ΰEΰ;už»ψRπƒΧƒνΪό0μsx(μ5Ηο·ν"`Rϋξ¬ΰΆz/ψΎžnΛ‡ΓΆeΟ:ϋEZΧ#ψΛCΫx;ψάƒΑε^ΤΒοVe$ο#μω‚ϋΖ…ρŽ ϊ‹ήбб‘ΕΨ3eΑmΆ Έ θ\f ΈάΑνΙvΊXάΖΗ4`9pvΨν΄ΰg5"xϋIœ“ϊ½Αε{nψgryέm\ησΛξ n›mΐ½@»&ΎK‘ΟωaŸσΉΑm·2ψΩό°Ύφ„Ώ>μφ:` p:P ψ‚ΫgQ3Ώγ›ΣΒnx,‚Χu~ήγŸτΧθη£Ψ­ΨIμn0–Eψώž ΎΏpbG£}ΐ=ΐuξϋpCπ7k‚Ÿα2‚ΗγΑΗ.ηΨ±nθ}Φ{\Ό}ΞoΒnΰU Gί \σϋ³?ψžϊΰ«οΓΩΗ2κΆ§±}…~ ›ρ]~ψuΨνS€­ΌYΗρ±ώSΆΔΚ8 xΆ‘ηόηd}8Pτ|μFœ/K!Ξ•ήβ|‘λ3x θˆόώΐγΑ φ‹pψ)ΐuΑ«Oυ9|5Έœ³€«Œ1ηΦyΞ‰8'Χ§?5Ζ ŠB;j€λq~ΰΗΏΊ6ΦUŒs`Ρ ψ:πgcL§ΰcΎ§bœŸΛ"\¦H*RΜJ˜5η€`"°˜vϋkm όΦΪ―ΰXO³NΦΧa7ΆΒέ ŒΖqς8' —†ždŒ©ΎΗ19ΐΐ+8'>}7λ.ΨΣ §#ό—Αeί{Ξ>όNpέ‘˜Š“Η9_Έ'NwΗω}»Έα—~QCΏ…Ας>›—1˜/Ζθ"cL~sΪoκΐ–XΙΗ9Πσ7ςœK€Ÿ[k·[kwΰ—―σα±ΦZŸuκ45τc7ΗZϋ’΅Άη bEπώΡ@‘΅φηΦΪjkνZœΌ/Χ·kν,kνkmΐZ»'8M¬σ΄ŸYk[kα|ι+ΒkQ;¬΅ ­΅σ¬΅~kν:ΰ/υ¬·!>œmθ³ΦΎ„s%n€1Ζ‹s@x«΅φ΅vN‹ˆΤO1+ΉbΦlΰΔΰΙΔΰΰ„ΰcƒ7GcΫ ¨=qΉψž΅v“΅ΆΖZϋž΅φ(Ξ NcLΏΰΣΏ‚Σ P œ“αp—΅φˆ΅vΏ΅φύzΪp)πRπ3 Xk_ΰdΥ5εkνkν^œŽ•5ΦΪ7‚ϋσ“ΐqΝΪ °Φn°Φvlδο‘V,ϋj η„γΰh4Ϊ, C1V1ΆΡΦώrcL΅v·=Φaόn§Ϋ­΅»¬΅‡›ΩήG€ιƘφΑΫ3 λ΄°ΦήŒεGq26+Œ1yΝYA°γε[ΐυΑ6ξΗι@w¬ΓόΚZλΓι°)ώlΣRœŒΓ†Άq³Xk―n$ζ >-;ψοή°—ξΕ‰ιMΉ ψg#ίg‰/ΕnΕ#‰eM½ΏŸZkZk?iβύ…Όƒs!δ€ΰνσΉΦΉΈ‰΅φIkνζΰ>π8N&τ˜fΎw€+q~G–ΏΏ†czDπΪ;¬΅ϋ‚1ωΰ5kνΪ°cυh›?Δ±ω†ΰS³ωbŒ†ΘβtΒPΆΔJPΠDΝΉœaΨ!λƒχόX ΌfŒYkŒΉΉ‘ε„Χε9dΧΫ( Ώ…s­¨Ύ…cΖcή2Ζμ0ΖμΕ XM¬+»‘Η"j‡1¦Ώ1ζ…PA}œΐXw½ ©ͺs@jS!ΞpǍa…_D>O1+‰b–΅v N6ΚpœƒΧ€ΝƘ΄μ½±νR€“…΄¦žφ. ž4\ŒsN¦Ε^SΐuΆϋ‰8'~MΩφΓυάού$λ\˜”WΕ»=UббuΫTŸ8νΦcfcΖ5΄ΐ·S‹Ž}­΅«qF―L vbOΗιΤΖγ5ΖόΖ³&ΈήuΑ—Eϊ…큅aϋΑ+Αϋ›Rμ\'ΖC|γώΰΏΉaχε⠝oP03pNΉILŠέŠέuΫTW$±¬9ο/|_ͺWπ"ΘcΛbžIΨHcΜW1‡΅g͏Ρΰ|ζ[Ξ.ΐΰd’7%юΝπΕ MΔιD£l‰•Ή8ΩSu‡λ„ΫŒBΚ‚χΜ ΈΡZΫη ρcΜ)ΝlΓFΰ³:W r¬΅ e³=‚“EΧέZ›‡S»Ι4s-iΗ=8C¦ϋYg«Fa½;?N'@HχV.SΔΝ³"oG’Δ¬Ω8ΦΪMΑΫ—€xMk2Όvβ qμΣΐγβd!²ΦΞ ήΏg’”¦lώUg»w°Φώ¦mλ`πίφaχGϊbγ”9ΠΘί%Qjg ogINб‘·#Uc,ΦΪωΦΪspJsό§NhCˍd;΅¦=‘2"ηΛ‚Ϊΰt”œƒS7:§†*υ¬œ˜[o1αρv'N'Ζΰ°ύ Ο:“FΣηΪ@γ1 ΫΛso#1)€΅v7Nι§πμΜ œϊΑω πn0“U“bwδνHΥΨݚXzα𤋮ηΦυ(pΎq²‘ΗβΤ&'xϋ―ΐ΅@Ύ΅Ά#NtC1Ž‘qΚZ…ζν¬΅οEΨΖH4φ;QW}1ϊ’&ŽΝCΫs)_ŒΡΫ¬΅UΡxmEΨΑ‘?Ε©ot1¦½1&έs†1&TWιQΰΗƘBcLAπωcΞ6Ζτ5Ζœα 58uF›γ`Ώ1ζcΪ3&†cF7πό`—΅φˆ1f Ξj44ՎœbώŒ1‰BΦY0+γΰΆΰΆˆS LDꑘլv$J̚spͺ›9+x{NXfZ]ۈ¬3ΉΎ6€ϋ1Ζ”·Λ8cLfπρΉ8Ÿω]ΛΎ'ϋ₯«1ζ:cL¦1&Η3ΆžU<„“ν75Έμ,cΜ$cLi=Οmλ νέ„“)ξ5Ζ\AγşΫ^Φ)!’έΘ_xφK¦1&+x3#ψ~Ύpς`ŒιbŒω²1&;Ψ¦©8F_¨.ΙK1ΆYνHΙkŒΙžˆηY§4Ζ>Ž}ΖΫ€|σω2-ΩNΝiίc85U―"˜}Άή£8™©νq²,²lŒŒ‡·…ώ¦όψ½1¦ 8s!˜†λϊΆΤΗΐ™Ζ˜ΞΑŽ‘λyξ6 §qF…Ϊye#1?ΌΖυ?qΎΏ‚ŸΗ7q&kΜW#xŽΔ‘bw³Ϊ‘’±»5±¬žχWN„σvYk?Βι<πͺ΅vOπ‘8½;‚mωNv}ΛhκΈψ^ΰcΜΰΰ²ςŒ1DΎfhπw’_ψ-΄Φ>άΔ±y¨„Θ?―cʍ1qκΤ£‘EzίΦԁ-1c­½ ΈηΛ±η Φ΅8ΰLT΅X ,Α™ε—ΑΗϊαLzuηΚοέΦΪ·šΉώœΪ£Γqf Έ†jΤ] όά³η‡χ‰žΧ,΄γ&œΦύ8ΑΏ±IešγΪΰ:Άβt¦<ŠjŠŠ4H1+βv$J̚s²:@ŸƒΣ™ΠΨDP·γœdν1ΖάΤ‚6ή„σΩΟΗFψ[>,υO`(Α7p²€Si8οm0Ήξ‚­΅q²ϊ~Θ±ύοϋDXν›ΑεVαLθXΙmΐƒΑνua3Χσ)NFN7œYΫΜΠ2ΖόΠσrπyη$―g†χ;λ¬΅Ο5s}’ΰc#nG*ΗΨ―λŒ3όώJœQ-XkWΫ»6ΈμZΆn#˜f­έ‚³――³μβ qί„Skz^#ΛX όgί]…³ Γύ?œς σ‚οω œ Σ’ι_8$λ€Χh|;=ό·ΚΣ`ύρ܊S.k=ΞΎσ;λL >z§6³8εaJΓΦ) J±;βv€rμnM,»§œΖVœΥš±ήGpFΓΤ^d΄Nπ»pφ·m8Ηεο6²Œ‹­΅Οβλ?|_ŸΰL€5όN„?·ΎίΒHΧσ NMτ·p&ν\OΨ$οƘ₯ζσ#)<Ž'c5_‚HJ0Ζό(ΆΦFtUSD$ž’1fcΎ |ΛZ{bΌΫ""˜dŒ±""©N±[R™2°E\Κ3Π3Μ8Ζ_žw»DDκ“μ1Λ8}] άˆΤ•μ1VD$)v‹ΣlcΜιƘO1«M=3Ξc&c>4Ζψ1η‡έ?ά37˜ΖΎΨsQ,Ϋ)βR985₯β aΊ ψO\[$ KρZ@Ζ¬`Ώ8Ciβι-Y~C³œνuIβSΌ–JΪ ΑRFυΕΥ—›~uκΆMšGρZ’ %c·1怆ŽΥΆΤ³"Ζ/°§ξc%N½Θ‹ƒ5iBΟι δβΤ zΞZϋTπώώ€΅Φ ΦuY +Μ.""Q’x-"’―ED’ƒβ΅ˆHt₯ΕpΩc€ΥΦڡƘΗp&'ͺ ΨΦΪuΑΗ>7m°y蛍1ہB@[D$ϊ―ED’ƒβ΅ˆHrPΌ‰’X–ι†3CmHeπΎf ΦωΙΐ™ΥXDD’OρZD$9(^‹ˆ$Εk‘(Šev«cΊ.³Φκyό[ΐ·:tθ0rΰΐmάB‘Φ[ΈpαNkmaΌΫΡŠΧ"’ ―ED’ƒβ΅ˆHβkN¬Žeφ& {Ψνΰ}1Ζδ/?²ΦΞ«ο9ΦΪϋ€ϋFe,XΠς֊ˆΔ‰1f}œ› x-"Εk‘δ x-"’ψš«cYBd>ΠΟΣΛ“|x.’Ÿ,πΟΠD""3ŠΧ""ΙAρZD$9(^‹ˆDQΜ:°­΅~ΰZΰU`9π„΅v©1ζηƘιƘΡƘJΰΰ/Ƙ₯Α—_L.7Ζ|ό«ΆŠˆ€2Εk‘δ x-"’―ED’ΛXkγέ†¨ΠIVƘ…ΦΪQρnG[QΌ‘d₯x-"’―ED_sbuBOβ("­γσω¨¬¬δΘ‘#ρnŠYYY”––’žž麗H‚QΌN,ŠΧ"ΕλΔ’x-" QΌNшΥκΐq±ΚΚJrrrθΩ³'Ƙx7'₯Yk©ͺͺ’²²’^½zΕ»9"’`―‡β΅ˆ4Fρ:q(^‹Hc―C΄bu,'q‘8;rδωωω Φ ΐC~~ΎώŠH½―‡β΅ˆ4Fρ:q(^‹Hc―C΄b΅:°E\NΑ:q賑Ζ(F$}"ňđΟBD£‘’ρ9¨[Db*;;;ζλxξΉηψΝo~συ„›5kο½χ^›SD$–―ED’ƒβ΅ˆHrPΌŽΥΐ‘€PSSƒΧλ­χ±ιΣ§3}ϊτ¨―Σοχ“–V˜œ5kΩΩٌ?>κλIfŠΧ""ΙAρZD$9(^+[DΪΠο~χ;FΝ°aΓΈυΦ[kο?χάs9r$ƒζΎϋξ«½?;;›oΌ‘ŠŠ ζΝKϞ=ΉυΦ[1bC‡eŊόγΰΪk―ΰςΛ/η»ίύ.γǏ§wοή<υΤSΎϊjΘ©§žΚ™gžYϋXΈI“&qέuΧ1jΤ(ώπ‡?πόσΟ3vμXŽ;ξ8¦L™ΒΆmΫX·nχή{/Ώύο>|8οΌσ;vμ`ƌŒ=šΡ£Gσξ»οΖrSŠˆΔ”β΅ˆHrPΌIŠΧ­£ li―½φ«V­βƒ>ΐZΛτιΣyϋν·™0aχί?;wζπαÌ=š3fŸŸΟΑƒ;v,wέuWνr ψπΓΉϋξ»ΉσΞ;ωΫίώφ…umΩ²…9sζ°bΕ ¦OŸΞωηŸΟ3Ο<ΓΊuλXΆlΫ·ogΠ A\qΕυΆ΅ΊΊš °{χnζΝ›‡1†ΏύνoάqΗάuΧ]\yε•dggsΣM70sζLΏώzN<ρD6lΨΐΤ©SYΎ|y Ά€ˆHl)^‹ˆ$Εk‘δ xέzκΐI?{~)Λ6ο‹κ2ΛKrΉuΪΰˆžϋΪk―ρΪk―qάqΗpΰΐV­ZΕ„ ψγΘ³Ο> ΐƍY΅jωωωx½^f̘ρΉεœwήyŒ9’gžy¦ήu{ξΉx<ΚΛΛΩΆmsζΜα‚ .ΐγρP\\ΜδΙ“lλE]TϋΚΚJ.Ίθ"ΆlΩBuu5½zυͺχ5oΌρΛ–-«½½oί>8Π&5―DΔ]――E$9(^+^‹HrPΌNώx­liΦZnΉεΎύνoξώY³fρΖo0wξ\Ϊ·oΟ€I“8rδYYY_¨σ”™™ €ΧλΕοχΧ»ΠsBλm:Τώ;ίω7άpΣ§OgΦ¬YάvΫmυΎ&0oή<²²²š½>‘D’x-"’―ED’ƒβuλ©[$EDze0V¦NΚO~ς.Ήδ²³³Ω΄iιιιμέ»—N:ΡΎ}{V¬XΑΌyσb²ώN8|Λ.»Œ;v0kΦ,fΜΩδλφξέK·nέxπΑkοΟΙΙaίΎcWpO;ν4ώτ§?ρύ?ώ˜αΓ‡Gω]ˆH*PΌVΌ‘δ x­x-"ΙAρ:ωγ΅&q‘6qΪi§1sζLƍΗΠ‘C9όσΩΏ?§Ÿ~:~ΏŸAƒqσΝ7sόρΗΗdύ3fΜ ΄΄”ςςr.½τRFŒA^^^“―»νΆΫΈΰ‚ 9r$΅χO›6gŸ}Άv‚?ώρ,X°€aΓ†Q^^Ξ½χή“χ!"kŠΧ""ΙAρZD$9(^·žiI:y"5j” ΗςεΛ4hPΌ›‘0B5˜ͺͺͺ3f οΎϋ.ΕΕΕmΪ†ϊ>cΜBkν¨6mH)^‹|‘βυη)^'Εk‘/RΌώ<ΕλΔ x-ςEŠΧŸοxέΪX­""’2Ξ>ϋlφμΩCuu5?ωΙOΪόΰZDD"£x-"’―ED’C²Ηku`‹Hʘ5kVΌ› ""PΌIŠΧ""Ι!Ωγ΅j`‹ˆˆˆˆˆˆˆˆˆHBRΆˆΛΉ₯ν賑Ζ(F$}"ňđΟBD£‘’ρ9¨[ΔΕ²²²¨ͺͺRΠNΦZͺͺͺΘΚʊwSD$)^'ΕkiŒβuβPΌ‘Ζ(^'†hΕjΥΐq±R*++Ω±cGΌ›"8? ₯₯₯ρn†ˆ$ ΕλΔ’x-" QΌN,ŠΧ"ΕλčX­lKOO§W―^ρn†ˆˆ4AρZD$9(^‹ˆ$ΕkwQ IHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„€lIHκΐ‘„ΣlcΜιƘO1«17ΧσψcΜ‡ΖΏ1ζό:]fŒYό»,–νIuŠΧ""ΙAρZD$9(^‹ˆDOΜ:°1^ΰΟΐ@9p±1¦ΌΞΣ6—ΤymgΰV`,0ΈΥΣ)VmIeŠΧ""ΙAρZD$9(^‹ˆDW,3°Η«­΅k­΅Υΐcΐ9αO°Φ³Φ.u^;xέZ»ΛZ»x8=†mIeŠΧ""ΙAρZD$9(^‹ˆDQ,;°»ΓnWο‹υk#Άpύnš·ž-{G{Ρ3λΣνΌ»z'ΥώΊΏ­n灣<ϋQ%›φhŸjΚ;«v0g•φ©‘πρϊU;xbΑFvμ?νE»ΞKKΆπΚ'[Y_u@ΐΖ»9)§&`ybώFώύΡ&ζ©β³9⫉w³Δ=>^ΏΊt+ώh{UG{Ρ""Ι$αγυΏ?ΪΔKKΆ°ˆ/Ϊ‹vM€΄‰ U‡βέ”„·|Λ>ήXΆMηψM,ωxλ«Ζ»)I%-ή h cΜ·€o”••5ϋυ―.έΚ}o―εΗ†ςΉLΤ…#Kι‘ί!ΪMMj5Λ7\€?`ΙΙLcBBN\Δ΄a%x<&ήΝK(}°;_[ ΐΐβ¦ *bΖΘRzhŸͺλλ. Ϊ ;3 ύ 8΅ΌˆιέπjŸr₯ΦΖλg?ΪΔ3nΒ¨(νΘ)»pΑ¨ξηeE»©I­κΐQ~ψΓΪΫν3Ό )Ιγ[zsΚ .£οW¬-άΓž^όΉϋ2<œΨ·€ΣΚ‹˜R^DAvfœZ'΄ΦΖλGήίΐμ•;πz #{tͺΧ;dD»©"")­΅ρϊ―ο¬eιζ}€{ c{εsΚ .œ?²”œ¬τh75©Ν_·›λ€Ρ=;qވRΞΪ•ΌvΪNuύβ…eΌ·¦ŠNνΣ9gx7ΞYʐnyρnVΒωhγnΎχ˜³OιΩ™σG–rζ°dg&umΜΕ2{Π=μvi𾨽ΦZ{Ÿ΅v”΅vTaaa³xΛyύϊ ά|Ζ@:dzωΏ·VsφŸζ0wMU³—εfΎšώ€εŒ!Ŝ5¬+¬ΫΕχϋ˜ο<ϊ‘²Κκ8μ«Αcΰ‡g$·]:χΜ^Γ΄?ΝαέΥ;γέ΄„R°TϋL\Δ΄Š,X·›λ_ΔU-Τ> ―οΊ ‚Ώ{"ΧOιξz}%ΣώoŸlΪΫμeΉΩ‘`ΆΓ·'φζ·3†rα¨ξlΫ„oόsηί;—χΧκχ-ΦcΨηγαoŒε *ΈtlVnΫΟΝΟ,aτ―ήΰk|ΐ’Jν»" ―Έ|4Ο^=ž«&φa?·ΏΌ‚sώ<‡Οv*ΛHDRJΒΗλ\sλx8‘[φζgΟ/γ‚{η²uο‘f/ΛΝϋό\8ͺ”]«Ήε™%œ|η,Vo?η–%žΓΎϊv`|ŸygiΏ|aΦjThΈΓΥΞ9Ϋy#Ί±σΐQ~πτb&ύξ-ΦμΠ>՘Xv`Οϊczc2€/ΟEψΪWΣŒ1‚“œΌ/ͺŒ1τ+ΚαΚ‰}xςΚρΜώώdŠr³Έμώxaρζh―.iωjœ/׈²NόfΖ0ήΏε~tζ ^\²…―ή{iΘQˆ―Ζ’‘ζα[ϊπΔ·Ηρφ&Σ­c;.ΰώσq€Η+ξΪ§†•vδφσ†1ο–SΈuZ9―/ίΖ%{Ÿέ5츍%EΌ\’ΗwOιΗ9ΧŸ@†ΧΓE™Λ;«vD{uIΛμΐP”ΓE£ΛΈmϊ`ήΈa"ΏώP*wβ’ϋζqεΏrπ¨?Ξ-u/_s€ή» 'τ-`ΖΘR~:­œw~0™—Ύ{ΧNξΛG™ς"’ IDATχ0νζpεΏ²jΫώ8·X’LΒΗkΗp\Y'nš:€—ΏwΟ\=žƒGk˜qΟ{|΄aw΄W'"’¨>^§y=ŒνΟ-gβΝ'ρΰcΨΈληέύŽOΒTϋc»―ŽλΙ7Lδι«ΖcŒα«_εhλ¨ XΚ:·ηΟ—Œ`ώ¦pΙΨ2ώ6η3ξ{{mΌ›–Pόηœνγ{πζyβΫγ°.»ΆοΣ€†Δ¬ΫZλΕ ΄Λ'¬΅K1?7ΖL0ƌ6ΖT1Ζ, Ύv𠜠?ψyπΎ˜κήΉ=O]9Ža₯y|ηяΈΞg±^eRπOΖΣΌΞΠsΗπΝ ½ωγΕΗρΡ†έ\π—χΨ¬šΟ€Σ1›ξ9φ΅κΦ±O\9Ž‘=:ρ½Η>ζ/³Χθκ#ΰΦεΝπ:ΫΚγ1|ν„^όyζ–lΪΛωχΎGεnΥk+Ι―ϋεπΜΥγιήΉ=_{`>Ο|XλU&…ΠΑPšχXJχz˜9ΆŒΩߟΜχ§ΰυεΫΈθΎΉ:8Šπ]Ίχσ‡XΖΚKrΉρ΄ΌύƒΙ|ο”~ΜY½“Σώχm~ωΒ2Žϊ5ϊDš–ŒρzDY'žΎj<Ω™i\όΧyΌΉ|[¬W)"wΙ―'φ/δρoΓ°ΜΈη=ζ―‹ω*“Bθψ:έλΑ§<Φ?Ύ6šύGό|εο(ω*Œ―Ζ֞‡δ΅Oηη αμa]Ήύε:_ SμIσŒ1ŒιΥ™ϋ/ΝƒΥ\φΐ|φ©.}½b™΅φ%kmkmkν―‚χύΤZϋ\πσ­΅₯ΦΪΦΪ|kνΰ°Χήo­νό{ –ν Χ±}}c,SΛ‹ωω Λxπ½um΅κ„ε«§C`zE ~m [φα‚{η²χ°Ύdώ[ΫΡ’Χ.―ΓYΑΐύw]©νΰ©»­ΞΪ•]1†ϋrΑ½su0Π†’1^εfρΔ•γέ³37<±ˆηiδL(ϋ7ΓϋΕZΧYι^™ά—Ώ]6Š΅;ς₯»ίc₯²k’ΞWη’o}r³ΉώΤώΌύƒΙΜγd¦œwχ{6(IΖxέ« O_5žώE9|σŸ ˜³J₯ΥDΔύ’1^ι–Η3W§ '“KώφΎΚυq,‘/=μΨnH·<ώzΩ(6μ:ΔΧώ1ŸCΥέP6§•ΗcΈλΒ ΖχΙηO-fφJœ…°σ…°δNJξΉη‘¬ΪΆŸ+΅PΙ-υˆiv²ΚJχςηKF0y@!Ώ~iyΚΧ6ͺ ΨυL7Ύo~} [χαgΟ-mλ¦% π…Ž~€Μ4/ϊςqœV^Δ―|ʊ­ϋβΠΊΔq¬ƒη‹Ϋjlο|ϊΖXvμ?ΚOώσI[7M’LnV:Έb4Η•uδΗΟ.Iωš}ώz†κš<  O|{Υ5fάσ|¦μšh ΟiJηόκKCωλWG±yΟaΞώγž˜Ώ1ΦM‰‹ΒœLύζρτ*θΐχŸZ€Δ‘Υ½s{žόφ8:΅OηϊΗ?Nω9Š| Œ;Ύw>Ίψ8Wξαζ§—Δ£i Η°xλτe¦yωΛWF―(‡«ZΘ:Ν‰q,»NΒΛΔώ…άqώ0ή[SΕmΟ-‹GΣš:°ΰυ~;cν2ΌάψΔΗ΅£©¨‘€2’¬ΧLκΓ3mβ•OΆΆeΣN΅ίΦ–Ε¨Λγ1ά~ήPr²ΈαρETϋ΅OΥ—% NmμoαyeΥJ2ΣΌόΟ…Γ© πž^œezͺέPאnyόϋš(ΜΙδ›\ ΙΥ’¨©ίΜϊœZ^ΔΛί›ΐqeωΑΣ‹ωυKΛSz?χꐙΖ\8œνϋς³η•ψ "’¨ς³3ωνŒa¬Ϊ~€y}eΌ›W›:Έ˜kOξΗs‹6³p½’Bό5φsΨ!9Yι–ΛΖυΰΎ·ΧrΣ“‹SϊβΉΈWEχŽNβΓ‡J|Id“taζΨ2ώϊΞΪ”±ΧΤθΊ+'φ¦KN&Ώ|Q 5[ο(kpŽuΏ5‘7/-ΩΚΒυ©=©sx μϊ|η”~δ΅Kηφ——·e³ž:°›pΦ°œ3Ό„?ΎΉŠ%•©Y)’αΠi~ΡpφυsΛ3KR6p7tΕ1άΤΑΕΜQΚέ³ΦπρΖ=mΤ²Δr¬zΓΫ*Νλα.¬ΰpuMΚgΥJdΎr|Nμ[ΐ―^\ΞϊͺΤΜ(φ.ΟSŸ²όφάsιH6Tβ;~€Σ(8V'±ω‡X^αΆιƒΉnJ?žώ°’+Z˜ςΓvŝ=ΉCΊ)ρAD$ΡύθΜAtοԞŸό˜GS³Ξ³―Ά€jύΗvν3Έiκ>Ϊ°‡oiΛ¦%Ψu}σ€ήζdr{Š6lκœ-―]:ΧNξΛ;«vςΆκ†ΧRv~>}ωΩάπΔΗ)YHέημdΌQ7ΦŸΧ—mγ™7΅EΣNuM ’N‹[§—S”“Ι O€fM1_„Y’} ³ΉωŒΌυιžX Ί°8ΗpΗωΓπz 7=Ήˆ@ υŠ"-!ξψήωόβά!Ό½r·Ώ¬!}­εkΑgΞΓuSϊσ‹sσζŠν\v)ω;!ξ–‘ζα.t~τ¬κ†Šˆ$ͺ™iάua•»σλ—R34’c»#JΤ5—ίΌΌ"₯Ϋό5_¬CfΧOιΟ‚υ»yuιΆ6lYbρG0bσ+γzPΪ©·ΏΌ"%Οkλ£μδ΅Oηφσ†²jϋžXPοζ΄ΉH²eCΎ~boŽ+λΘ―¦fΰφG؁›•Ξof cνŽƒ<ς~κ•;π72‰c]—λɘ^ωέ«ŸrΈ:υφ)iž’ŽνψΙYεΜ_·›W—¦ήΠt" ΉxL_;‘'Ÿσ™κΞ·RKj`Χη+γzςϋ ‡σΑΊ]|WΩρβBύ‹rΈnJ?^]Ί-₯‡¦‹ˆ$ΊΡ=;sΕ ½xτƒ ¬ήΎ?ήΝisώŽνΌÏΟΔ¦=‡ωΗ{λΪ¨e‰Η°M_8ͺ”Ύ]²ων++j›SMM#5°C2ΣΌ|κ–oΩΗ³₯f‚h]κΐŽΠδ]έ³wΏ΅:ε²°›Σ!βυΎ?uΫφ屬Cλ؈³ξ&τ/d\ο|ξ™½&ε:ϋ›“‘θ ξS;TσΠΌυ±nšΈΐŒ‘₯τ.μΐΎ±*εVΧ`§5?ϋχGg’’{Gn}n)Uίb‘!ι-ΜΐwξqέΈυμr^[ΆŸόη“”j)ξtΕ ½(ΜΙδίHν ΒDDέ5“ϋ>έΛή\領ΉΪ"M۝爓vαΟ]²Η5Ζ3°ΑIb»ωτ|Άσ`JφAX ‘&ΆΥ΄a% +ΝγΧ>MΉ>£ϊ¨;B‘!½[φα‰ω©UΚ ΉΓ‘ΗυΞgL―Ξά=+υ:f«ύfe>^7₯;φεαΛΒnͺŽX]£{vζΔΎόεν5ͺNΝΪk9―Ηπ½SϊριΆύΌ’bYΨ΅%D𙁠ΞΑδοΞΖώ#>n}ni΄›–2ό­ψ κsω ½Έfrύ`#Ώ]|β.Yι^œΨ‡χΦTρώΪͺx7GDDΠΉC—οΙ ‹7³j[jeaϋjx=cšξωα™9XνOΩ,μ¦j`‡œ2¨ czuζo¦ΪŸzYΨ5Ξ[δρn9c›χαΡνμ§μfί'ŸΡ=;ρη·R«cΆΉΓ‘1\?₯?ΫχMΉ/™?`›•ω8Άw>γϋδsΟ¬5)UγΨ0¬Θ·ΥuSϊ) ["vφ°ϊvΰ)–…ν0C€!ύ‹rψξΙύxaρ^ω$΅:£₯Ί•ŸA}n:mŽ*ε]ΝΓο+Š»\2Ά,˜…½*ήM‘F|σ€ήΑ,μԊΧώ€¨S o—&θΒcσ7¦dy Md#1\5©;ε΅e©wΞα‹ vΘΈ>ω οή‘‡ίߐς£1Υέ ‘ŽΩ­ϋŽ€Τ„r-ιΧ'Ÿ±½:sOŠeaϋkΝΞΊ»nJv8šRΎ―8†Υ³3'υ+ΰ/³Χ* [šδυΎΜΒ~9…:bύΦΧ_ΎrR—δςγΒξƒΥΡjZΚp~"Λ‰”1†_i(“rΫsKYΈ~wΤ–-oYι^šΨ‡Ήk«˜§,l‘„Υ©C—ŸΠ“—lae eaϋjd4γΨϊ’γΛΨ±(―₯Ψ$…ΦZό‹7Βώ ύ ιΦ±]JΞ I μp3Η”±zϋζ―Kνsu`7ΣΈ>ωŒιΩ™»S( ;Τ!’ŽΩTΛΒφΥΨfgݍιΥ™ϊζsομ΅)“…έ’ lp²°«* ["sφ°ϊvΙζoL™,μΪ«ω­ΘώMχzΈγόaμ9TΝΟ_X­¦₯ŒζΜ…Πi^Έθ8Šσ²ΈζαΩ™’΅ŝfΦfa«LŽˆH"ϋΖ‰NφS( ;¬β‰ύ»Π­c»”;g nEš­ξυΎ<Ί;ﭩⳝcΨ²Δi 쐳+Ί’“™Ζ#)”τXu`7“S »[χαρ©…ΡΜIΑΖυΙηψή©U ΫWhQζcͺea7·,MΘΘΚΒ–Θ…²°Wn;ΐKŸl‰wsΪDνw«•υ——δqΥ€><ϋΡ&>ψlW4š–2|5Ν› ‘9ςΪ§sΟ%#Ω}¨šο<ςQνΕ@‘dΚž·vsΧ( [D$Q₯bΆ―&Π¬‘Γ^aζΨ2ζ­bυφ1lYbiξάiŽξŽΧcR*ιŽMvιˆΝφi|iD7^ϊdkJUv ŒλγLRxομ5)qςؚ ©ŸŸϋςdŠ”\q2ŽMRΈ6%&1ˆt&ηϊ\7₯?U«yμƒΤΨ§€uΞΪ•~]²ωσ[kR’fXmΙ§΄ΦΌ_=©/EΉ™όϊ₯ε)±ν’ΕWˆΚφoȐnyόςά!Μ][ŝ―)[UάcζΨ2Ίδdrχ¬ΥρnŠˆˆ4β›'υ¦CFwΏ•ρΪWc›UBΰ’ΡέIχš”*QΣΜ¬b€’ά,¦ κΒS +9κO€Gpφ©HΛ‡„\<¦Œj€§?¬ŒQ«Ÿ:°[ΐΓΧOμΕ–½GψοŠνρnNΜω[1$}lο|†tΛM™‚σNζ]Λ†ŽύΔ^μΨ”7–»ΏVVKˌμΡ‰γΚ:ςπϋλSbŸ’Φρz _;‘Λ·μ㣍{βݜ˜σΥ~·Z_Β’]†—OΐΗχπβ’ΤΘ`Mδύ΄Τ£Ί3slχΞ^Γ›)π›!©!+έΛ₯ΗχΰU;Y—bC‰ED’IΗφΜэ—–leW dƒϊfχ…dgrϊ<΅pcκ” v`GZ;dζΨμ:XRΘΧΝ>_Τ5—γΚ:ςΘ©Ρ·Vu`·Π)»P”›Ι#)0Τ‘:˜έά«Ž!3Ητ`ΕΦύ|Έ!:ZXB`BgƒT(#βσ·NοΜ1e¬ΩqχUΪ@"0}x 2Ό<<Ούρ:τέjΝ$ŽαfŒ(e`qΏ}eEJeE΄†3Bμ―nVΞ ΉόΏ§S₯zΨβ₯θPb‘d3slͺk<½ΠύΩ Ύšζw6\2ΆŒ}Gό<Ώxs Z•xZ:ΟΥI} θή9΅&sτšŸ N?ΘΪξQv ₯y=\4ΊŒΩ+w°qΧ‘x7'¦jKˆ΄π„|ϊπ²3ΣR" 5w‚‡p^αβ1έywu•λ3BY’-½(rφ°r³RcŸ’ΦΛΞLγάγΊρΒβΝμ=δ‹wsbΚ`Lδ3Z7Ελ1άrζ 6ξ:ΜΏζΊβZ482c› ™ζεχU°ο°Ÿ>»$e31Δ]BC‰ŸL±‘Δ""Ιf@q£ztJ‰lΠ–&'ŒνΥ™~]²y8E&s¬©Νΐnήq°Ηcψςθ2ήlWΚΤ ― ΄lŸ:{X 9)ά’μVψςθξΰ±ωξήyjgHmα yvfη /I‰Ξ£Φd`\8ͺ;i)yt¬,MΛΆU» /η(ε•ORcؚ΄ήΜ±eυxζ#wg‰Δ"ϋwbBNκWΐŸώ»Ϊυ1<œa¦msx5°8—OλΟ«K·ρΜ‡›Ϊd"±JόκR•ΗId3Η–ρΩΞƒŸ|ΧίΒs|c —Œ-cQε^Vlέƒ–% j`‡\0ͺ”4α1—χƒ„΄€6ϋAŽλΖ+):™£:°[‘€c;&θΒ *kg\u£Ϊ χZP―8$Τyδφ‚σώ@λjŸvΙΝbΚ "Χg΅d†βΊ.[FuM€§j2GiΪΰ’<*Ίwδ—Χγχ·’c~xζ φρρo­Šϊ²έΖΧ5°Γ}γ€ήŒιΩ™Ϋž[Κ¦=‡Ϋl½"±rl(qjd¬‰ˆ$«3‡v%―]:»ΌΣΡhω(볆•ΰ1πχΧwMRkAΏQ—œ,& (δ₯%[\}’Ψ!ημNuM€Χ–ΉŸͺKΨ­tΙρeΞΔ{Λά›%βka-£pƒKςήέύη}5ΣZχ΅Ίδψ2ΧObΊ("ύŠrΣ³3ΌΏ@ΐ½ϋ”DΟ%cΛX΅ύσΧνŽwSbΖW›μίA]sωπnόkήzvͺήr£Zš₯ΣR^αΞ *XΛMO,R<”€ηρ.SΖΌ΅©3”XD$e₯{9d)―-έʎύξ=>¬φZœΜW˜“Ι˜^y)&DχZ—€vϊlή{„E•{£Ω¬„ΤΨCΊεRΪ©«ϋ‹’μVšΨΏKpβ=χ^u ΥΐnmMΥ™cΛX½ύΈ΄ΰΌ΅ΦΎίΚνtBŸΚ:·wu]£ΪΊκQΨ§ΦUbξZw[“θ˜V[3Μ½Y}ΎΦS‹Δ5'χε¨?ΐίη|“ε»…SΖ₯ν2°ΚςΫσγ³Λ™»ΆŠ'hTŠ$Ώ F¦FI5‘dwρ˜2|5–']<*Φ°€§΅όΨ]Y½ύ«Άνb«OKk`‡LΤ…4αεOάίΩίΨΰ”¦9}p1sVοdί‘Τ*ο¨μVςz ξΜΥ;];ρžΣ!b0¦u'䡝G.=© ΄sH(σΘΝ“ψZωγrϊb:΅OwugΏDO¨fΨK.ζα‚} ³9sHWώ5w½ja7"VYπMωςθξŒιΥ™Ϋ_^‘,yIz…9™L\ΜΣVrΔηή’j""Ιo—lΖφκΜcltν(0M Ee1B¦.Ζ€@_+JˆtlŸΑΈ>ωΌϊΙVWΪ§άJkϊBΞZŒ―Ζς֊νQlUβSv\4Ί;^α±ωξΌκθσGg8t¨σθε%ξμ<ͺ­…muΑ¨R½ξΔΐW ΓλiυE‘¬t/3F”ςκ­κ°‘ˆΜΫƒjΧγχΥ΄ΌF_$™ά—Gύ<8w]ΜΦ‘μόΆΟΐ'γΧ_Β‘j?Ώzqy›―_$ΪfŽ-cΟ!_J‘I&3Η–±aΧ!ή]³3ήM‰‰κVŽλ’›Εθξ/#RӊICNRΜΊͺC¬Ψκξlu+j`Χ½]r2yΩεEκRvεf1±!Ο/ΪμΚ«Ž­˜0ά£œ‚σ―,uίΝh}­π‚μLNΨ…ηmύ!pM jlŽξŽ?`yΩεŠs¨(ΝγΉE›γέ”˜πΥ΄ΌF_$ΚKr9e`ξχ3υΗl=ΙΜΧΖ5°Γυν’Γ•ϋπμG›˜³Κ'‘’:ΖυΞ§[ΗvόηγMρnŠˆˆ4βτ!Εδd₯ρŸέy|ωMΞZΜ§Ϋφ»v„5«νmΕyώiεNΆϊΛ.Ώx]ӊΨΰŒΪŸ:Έ˜Y+·s¨:uΞΙԁ%Σ*Ί²iΟa>ΪθΎΙΑ’y2>Έ$—ήxή…GΗfݍNΗ촊Άο?κʚᾚθ]ι_”Γ€’ΧvHJτM«(aqε^>saΩ'Mμj`‡\sr_φςρ°‹k‰·†ίβwxuΝδΎτΜoϏ½D₯$©y<†³+ΊςΞͺΉ'"β™i^¦.ζΥOΆrΤοΎcΐΆΊ<άCΊΈ:ιΚLΌkM2MaN&£{vζ—ΧΑŽΞ>UΜ_€·WξˆR«Ÿ:°£δΤςb2Σ<<ηΒ«ŽΡμΐ6ΖpvE sΧV±}ί‘¨,3Qψ‚¦§Eg[2°ˆφ^ž_¬}ͺ)Σ*Ί2έn6ο9΅eŠ{5¬+Ζΐ .Όθα‹β膆Œ(λΔ }σωλ;Ÿ©ƒ΄±¬C‰¬t/ΏΦv`G)σ]†—SΛ‹xyΙ–Ϊe»E΄³D§U”πβbwνS]σΪ1Ίggw^ŠΒΥόH\3Ή/;φεΙξœϋ‘5’‘QΡZ'φ+`zE χΎ½–»Ε΅-"­1Έ$—ή…ξΉ'"β&'τΙ§s‡ WΖk :ΙWg )fω–} a5°[Ωw4up1€«ηΐπ­ξθOσz8΅Όˆ.ίξΚ‘υQvMVΒΞΥΌο²’Ύ@t;ϋvΙaPΧ\ΧύΈΥ–‰bg΄a%μ>δcΞjwΥ2υ’›%Ϊ#Ώƒ«λKτM«(aεΆ¬ΨΊ/ήM‰*M€Œ6ΘώΧ;ŸŠ<xw+η~hj|3°Cn9s ^cψΝΛ+βέ‘3Ζ0mX σ>«b›ΛFξ‰ˆΈIšΧΓ™C‹ysΉϋjςF+‘N·Nζš¬΅™Ε%ΫQΡ½£«;°k’4ΟάCΊ²¨ŸχVWE‘U‰OΨQ4y`:dx]Ψ1ΫΊRλ3­’+nΨγͺΜ°Π€ΡΜΌ;©ΉYi.ά§’_§wZE K6Ή³±DίCŠρzŒ+Ώ[mQΩΓΧNθΕڝy{•ϋ†ŠΆ†?Ϋ‰4#Υ5―WNμΓ‹KΆπώΪΤ8¨wšΉ§QV"" mΪ°ϋjxcωφx7%ͺ’Uώ²[Ηv οή‘—]ZίΉ¦vN°θd«/Ω΄ΧUύEαό­œΔ1d|ί|r2Σ\»OΥ3,ΙJχrΪΰb^ώd+Υ~χ”|ˆv½bp~άΐ]eDͺύNΐŽfφcfš—Σ‡σΪmͺ5λ‹AΨ³†9W΄έXΧX’― ;“ρ}ςy~Ρ¬uOquΤΐ9shW s2yΰέum²Ύdν²[­ρ­ ½)ΙΛβη/,«Φ)’ljGξΉ°μ“ˆˆ›ŒξΩ™’άLΧ%ˆψ’P―8δΤς">Ω΄νϋέ7ͺ(4‰c4:fO–ycωΆV/+E+‘/3ΝΛΙƒΊπΖςν)1*VΨQ6­’+{ϋxΗEiΎυΞΖξΫ3Ό{GWMzY›εΜ»i%pΩ„Ύd‰vΝkΗ—Φ5–Ψ˜VQΒ†]‡X\Ή7ήM‰ @FΥ_ΞHσpιΨΜ^ΉƒΥΫέ;ΙJsUΗΰ’oK΅ΛπςΞΘΝϋxzaeΌ›#bΣ*Ίς‘ΛFξ‰ˆΈΗc8{X ³?έΑήΓΎx7'jόιiΡ9Ά›ΨΏ€wVΊ«D(λ‰FίQΟ‚τΜoΟΫ+έΣ.ZΨ“²λ`5K7»«4f}γ ΛENμ[HΗφιΊκθb2!ΥτŠ–mΩ皎_ j`ƒSkΆ Ϋ]b8aD?CqΪpwΦ5–Ψ˜:Έ˜ ―ΗU΅ΣΫ:ϋwζΨ22Όώ9w]›­3ΡωcpΡ·5¦W”0’¬#wΌϊ)ŽΊ«&₯€ŽΠΘ=]€IlΣ+J¨ πκRwΤ/ΆΦ: }Qκl,οšKAv&³]Ψ1[Ε l€ ύ ™·v—+'(¬ D―Lο‰}‹"©PΦQΨQ–‘ζαŒ!ΕΌΎl‡«έρEσωcs2~Φ°/ΈδdΔWγ\qŒvφ£3!FWή\±Ν5ΎšΨ\qk]c‰ΌvιLPΘ ‹7»fΘUuŒΎ[ )ΜΙδμŠ<΅°U™6­«‹Ύ-eŒα§Σ³σΐQξ™΅:ήΝi‘ξΫs\YGž_δžs""n4¬4²Ξν]s>*‹­c;Η0‘ο¬ΪαΊςnώ(Φΐ˜Π―ΓΎΫ•ε%’hf`ζdRή5Χ΅Ωκαη ΛE¦ +α`u ³>uΗδΎ@l†Cεf1ΆWg^pΙ€<΅;ΫjZE G|ήtI ¨X”₯cu_XμΊΖ;Σ*JΨΆο( Φ»γΐΘΕ ‘H]qB/UΧπ䂍mΊήDν,hή½#Σ+JψϋœΟΨΎΟ}5%5LVΒς-ϋX³Γ#χDDάΘΓ΄ŠΌ·¦Š]«γݜV γG³?dbBvς±d“{ΚΒ±"ή(ηλ“OΊΧ0Ϋ…™ΕΡͺ2‘! ΧοvMΒcCԁczu¦cϋt^_ζŽΞF'-¨λτΑΕ¬ή~€΅.8ρ…j`Η cvdY' ²3]΄OΕFμιCŠY_uˆU.)M#±uςΐ.dx=ΌΎΜΓcωZŠΪI IDATέjȐnyŒξΩ‰Ό·Ξu™$ΝΚI”Ψαn<­?ώΛή\麗΄ΘΤ!Ξ„Nn9q«Σw₯&`ωοŠδOθσE±sΘIύ 1f»hŽ+;ŽRίQ‡Μ4F”ure½πš(f`Lθ_€?`™·¦*jΛLD‰w†εi^'μΒ?ݎ?XV"™ωbΨ!2₯ΌpΗμ²>lJˆ€3ΤhΚ .ΜώtΥ~7μS±»(2e³OιW"‘™ΖΈ>ωΌΎl›+²φ«kl\ΚW\>Ύ•»σ– NTZ#–#qZ«G~fŽ-γ±ωωlηΑx7G€ΩΊulΗΰ’\ύΎ‹ˆ$Έ!έr)ΞΝrE‚Hθ?šη;d0¬΄#³WΊλΈ9Ϊ5°ΑΙ,^Άe;φΪ2?Š5°FφθD»t―λλ`'ή–Kœ:¨ˆ=‡|ΜwA½žXv`—vjΟ ξ89V+v³ϋϊ™·6ω―ͺΕrŸ*ΚΝ’’4Χ\°OIۘR^ΔΊͺC˜P6V€6ε΄ΑEdgςΨό mΎξD‹,hϊΞΙύΘLσpηkŸΖ»)"-rjynΨνΊY71Ζ0₯Ό o―άΙ_rΟ V›UœέsΧ‰ύ ωxγφJώ2+!Ύ(Χΐg;Όγ²ŽΩhg`g¦yΧ'ŸwVΉ/[=œ:°cdBB2<Θ,φlΜ:eΑ9YΈ~7U’ϋd$4‰c4vΈϋΠ.έλš}*–CμO-/bΡΖ=ͺυ*95”΅ο†οV”λ©E*έλαΒQ₯όwΕvΆμ=άζλO‘,D,!Ξ$/ί8±/.ήΒ’JwΥ]”Τ0ePΦ’ς£=DDέ©εΕφΥπξκδξP γ§GωbBζ$ωφ Wƒ’ͺε]sΙοαΊŽY_ ΞΩNκWΐg;²qΧ‘¨.7‘Δτ ΛsΊ1ζScΜjcΜΝυ<žiŒy<ψψϋƘžΑϋӍ1c–c–cn‰e;c‘Cf'ΈdXΊS;v»ΚiεE,I_#λΨ±ιμΟJχrRΏήpΕ>ˆρE§NζΛ“{ŸjK©―‹σ²VšηŠ‘ Ύ·sΡθξ,<Ή 2.λO±‰ ίœΠ›NνΣων++βέi‘TŽΧƒKrιΦ±FY‰HRHεx}|οΞdg¦%}ςΥ±ςpΡ=Ά«(Ν#―]Ί«κ`ϋcPBΔγ1œΨ―€wVν ΰ’Ήv’ N-ΰκ2"1λ•4Ζx?gεΐΕƘς:Oϋ:°ΫZΫψ=πΫΰύ™ΦΪ‘ΐHΰΫ‘`žL¦”±aΧ!VnKξaιΥ52bw2>Έ$—yYIίyT{u6†™wSΚ‹ΨΌχK7ο‹Ω:ΪB,8†λ_”MχΞν\Qw­-(^;Y}oάΓφύɝ΅ο« D=C$R=ς;pbίŸΏ1e'sŒU–N4εd₯sΝδΎΜY½3ι³’RQͺΗkcœ9Aζ¬ήΑακδ–."ξ–κρ:3ΝΛΔώ…Ό±|{Rw<֎²ŽςΉkšΧΓ‰ύ ˜½rG'§…ΤvφG»cΆ_!;T³lKrχ„‹v l€ήθΦ±o―TvKŒV[kΧZk«Η€sκ<ηΰΑΰŸN1ΖΐŒ1i@; HΊ½54™\ς_u Δ4Ϋ9)βUΙ]#ΛΧ™w§ μ‚Η$…N μΨm'c §*ζέ5U<κΩz\$εγυ©εΞ°τ&qΦ~ ` Ψψf^<¦ŒM{»ϊΚcb•₯m—ίƒβά,~ϊJל4₯ΕλςbŽψv-"€x]^ĎύGωΈrOΌ›b‘ΊΞ18Ά›ΨΏνϋ²bλώ¨/;b‘ Ni ΐUeDb‘mŒaBή[]U{αΕmbΩέ Ψv»2x_½Ο±Φϊ½@>Nπ>l6wZkwΕ°­1Q”›EEχŽI?ΜΡ_ΫΨΰόΈ%{,dήεgg2²G§€οΐφb[–œ}ͺΪpέ„1’ςρz`q₯Ϊ%υwλΨ‚ρΛώ=΅Όˆό<ϊ~jNζΨ#q’!+έΛ5“ϋ°`ύnu&Ÿ”Χczu&'3M£¬D$Ρ₯|Όž<  ^Iκγk vσ\…&(œε’2"5Α¬bηLτtΙΝb`qŽk2‹­΅ψjlΤ³ϊΑΙVίΤΟ’Ι{Ρ¨1‰z†5¨J€^ΐΖ˜ήuŸdŒω–1f1fΑމΉ3Ÿ:¨ ‹6ξa[O&W] #Ζ'γcƒ5²’ωΗ­Άγ"Κ3Χ5ePΛΆμ£rwςηχωc_§wtΟNδ΅KOϊ HIΐρ:4dΞκͺNΞ¬}_ŒλπG"#ΝΓω£JysΕφ€ώέk©Dψ "uαθξ”δ) ;ΕΈ"^g€y˜4° o.ߞ²εŠDΔυ\―σΪ§3¦ggήHβσ±c%D’lW”›Ε€’ή[γŽdMτ³ŠC&φ/dΑϊ]I{ž.tθν"γϋΰ1Έ¦³ΏXφ΄mΊ‡έ. ήWοs‚Γcς€*`&πŠ΅Φg­έΌ Œͺ»kν}ΦΪQΦΪQ………1x ­šLξΝ$–ξΔ>;3ΝΛΔΙ]#Λ£šOuZIζ}ΚˆύE‘4―‡“vα­Ϋk³γ₯AŠΧ8Κυ’vxZh?υ膦|yt5Λ“ 66ύd—‰e–N΄e¦yΉzr_>ά°‡·“tŸOQŠΧ8ΗBU«ωxγξx7ED€!ŠΧ8ρzΥφ¬Ϋy0ήMi‘c%Dbslw|οΞ,X·Ϋ%όΨΝsuBί|5–…λ“w?tΎ‹ΞώΌφι -νΘά΅UQ_v"ˆεΦ| Ÿ1¦—1&ψ2π\η<\όωΐ­“΄8ΐΣ8XΓΆΖL’lΚ:·OΪaŽΦZjΪ ά8G;$o,mζ]l·UοΒlϊvHκlυΆ(KΞΣξC>WόΠŘβ50ΊWgr³’w$HmφoŒG4₯WAΖχΙη±ω“φ‚dK%Κg© Gu§[ΗvΚΒN.ŠΧΐ€…€yŒFY‰H"SΌζXςU²_›ί$VΨωφΥ°ΈroL–ί–bQΧ9ddNx=†y.θ˜ ‹Uβγρ½:³hγή€ž_!1;Γ ΦpΊxXS3H”)₯5”*Jι_&>χEJισ‰?ΟRJƒR‘”n₯”v$>?™ψόJi₯τoΜ§Ω<°>1U2(₯<Ÿ,،ϋ3h*ΛvΣtΣ‚Π|X—U§Ψ'`σ-+E|nΆUζ ;§¬DΖkƒϋΧεad*†“ύβ© βͺΉ‹‘επp]|n~px~₯lzcΆJΗ o*AINΎς²Ta‹‚ŒΧχ―ΛΓεΑ)τŽˆΫD"‘€72^άΏ.‡»o)ΎŠ«F>Δ, ‘\― λ ²„ΜΝG3Ωzv[e.Žχb&&Ά²Ψlφ–ς\Ψ"Ω?qvX³₯<™.»I4«7γν΅y830Žλ6R5j™κnsiY‡˜sJ·ξP0>\Ό>‰ώΡK'›Υ!Όv^<ω€B„‡‚.;ΩTˆ—N Y}΄RΜV阁ΣnΓgο‹ΰDߘτΒ–E[­αχϊZš6*’H$’t‘½6šN±Wΐu†šL6šΈΆΫ^Δ‘ˆ©bϋ`›]e½½"ˆΈFqTpe±™Ψ€Q₯VW”ƒiX +ΨΰvΨΡ\Δk §n²:!V#ξfD΅Pν°Ϋ(xνό xsΚςC‘Δœ0!)±ž― υ%1‡,ςα_*7•`:¦α₯Sbφ€X f«tΜβ}›KPδχΰ«―\d=‰dΙT*^„s3°KΎί%‰„kKΘr;°Kΐ=~ά‚&ιΫ+s1Χp²_Μ^`IΜτΐ a¨:ΕV›­ΐ€mAνŜ*ΆZ}>bν°¦­6½#3θ¬ϋnΚΟΣ’ΝψϊΒ,δeΉ…|ΉΕ4σΊξ.D{mWΗgqαΪ€eΧ\ nΞ)kEͺB>2°Kΐ„€„ ν΅!οō©λ‘, +-Ÿ–BSYΚƒ™ψώα^ΦC± +T:fΰrΨπ©Ά*ΌΩuΣ „U²6 „ ½&ϋ.§έM"‘H §έ†h΅Ψβ+3χΫ* μύ—Ε^ƒΕ5έΤ5p–Η‰ E~αΧͺVΈl«ΘŜͺγx―xΆ˜wB&°-’=©,,‰–zΈ,JˆBΠVΒξ ƒP5±JhTM·΄tg˜Κb«U’„΄Υ†°χπeYkh« Rΰυ‹bΕk«ƒ‚χo.ΑŽ‘5γQk…JΗ,~σή0Ÿ_}υλ‘H$K¦­&„ι˜†C]b—K$IΊΣVcˆ―Ξ_›`=”e‘Z°ΎΞIω`‹―,6;o΄­"G{G1χΰZ΅@½΅"„OφΟGΌ– „s3Qς gΑ"!^›‡ρYΗzΕ*‘QMnZ0ŸBΦd w(ΒB%Ϊ^ΒTLΓ‘n±kΨT@N¦S8Υ~r1ΔKήΧTB€8²6š9&θD³ΣŽOΆV`χΕ!αήΏ’΅ΛŽͺ \v›p‡ω‰D²ΦHφ-m}·¨Ίn{e‡ΊG„\©:…έdΗΆΚ bͺŽγ―U5“=° iŠάne>βν°¦½&;†…:-Š3πTV+°Ϋˆp6"1M·Χp’/}|°eΫBΆUδΒγ΄ •DS%DΪkC8Ω?†Α‰9K―{7¨š΅"°₯,^—](kV ΕφΪΞ]ΐΐ˜άΰJGDy+<ϊVΒΫο)€ΧeΗχ±Šι€~z`'ωhs9|nώAzaK!Y–.šπA"‘HΦm΅β‰―βυ3,²q@ΰΔ¬ΨΐMe±¨v+V)°S>ΨΟ©ωˆ»ΓΣŽ•A‘ΚY%DΪkσ»j’Χ©εχΙε°‘%’`—@U :9/DrN½.Πσ'a‡βscS‰_¨x}sΝΧ«=ΣεΐΫο)Δ‹'„²ΠZ )‹$“U:fΘtα··—βΕ“θžb=‰dQͺσ|(ς{°λ‚8މD²IŠ―DZ_«Zͺn―4³sͺ˜λeU£–μCΆWζb6γdΏ˜v+Vx`Ζ~6’ηΓAΑ›ƒήŠΈ;,Ai« ‘shJ˜Ma,ΥpΟΪ©RW˜ ΕηJMWΝχ|ZˆΆΪϊGgpypςk―„8£9U“οCAΆG¨9%aK[MGzn`l:Ξz(Kβ¦Ώ<φοi,ΒĜŠWΟ₯w‚Ι*•ŽΩ|Ό₯› _ίέΑz(Ι’BΠVΒήKΓΒͺ±$‰d-ΰrΨΠQπš@β«Έ¦ΓFΜO67}°χŠiω κΊ%UΦ[+‚€‚&fU χ Ϋ*rq¨k$%L™ΐΆ˜€ T”SGVjY[’‰ΪΠi’¦κ:εc[X₯³,ƒΖ·½6„=‡ͺ‘Δ<ΪkCΠ)°G2Η”Gg"Π\₯ ”εƏŽυ³Š©X©1“Όlή·Ή~¨C“βXyIΦ.m5y˜œSq€'ύ½φ%‰DdΪSβ+1}q]7έ«8ΙΦrΓςαΝ.1³šؐλu‘&ί‡υ–»•”…ˆσj[eS1M¨ΎNwBμ–€”+^”3…I6&"Vν[i« αΖt\˜NΌqΨP’“‰HžOœCJ΄­&„‰9G{ĘSΆΤ—νqポRr¨ΐΆΫή]_„WΟ £h_ ͺnJΗlžάY‰˜¦γι½]¬‡"‘,JK$‡³Ύ–H$’΅J›`}fTΒiΡΊ.ΗλB$Ο‡ΓέbΖΖ-² η£=£Βˆo%™ΐΆbΏ°­BμC‘ωΘ6vV‡p CŒ2ǘΚF ­Υ!μΎ(†ϊ1ιp1Rέν¬α`ηˆώ²7›8Z―Zͺ؈Xήκv8μ6D«μΎ8$D™cœΣ&ŽIήΣPŒ˜¦γΕS¬‡b1Ν:•ŽΩT†|xϋ†|k&ηTΦΓ‘HξH–Η‰Νe9ςύ.‘H$œS’“‰ΚW¨=Ύ•½MΆ”εΰpχ θ&f­jβMe9˜œSqαΪ„%Χ[M’ΨVά«όlŠiS‘–»,ΑˆV+˜ŽiBL"–%ιΉ^6ec /7•‘Z«ΔT]ˆ“΅8#[Θφ8Q³`’°' ακψ¬σVϊ©­„{гQςβ‡GΣΧFΔJ•Ž|Ί­ γ³*ών`λ‘H$‹QpϊΚ8†₯νD"‘pMkDΑΑΞa!šZ©*ŒΔμΨL—Ψ{ΜGΥuΨ-Ϊγ7•ΚbΥκΙ=›U›M‰CY‹!Ψ ΨQ„έF„HΜ²NˆD#F5Τ_VϊcΝg[e.œv±ζ+•hkDΑ‰ΎΡ΄Ά1¬­Υ 1*AR l U"ˁ‚χ4γΞτΞ°Ž)¨i€ΐ€ϊp;*ƒxjO‡›LΙΪ&šˆΧ{/‹ι‰)‘H$k…hu³q]ˆδ£ͺι– ―Ά$|°uρoζ£κΦ 9ΒΉeΉ…˜CσIZˆX•ΩRžƒkγsi±JŸ]–@d{œ¨/ρc·ΑX—€·V+PuŠƒτ«ef!’ιr`siŽI6ΥΒ’™…ˆVωφwπ―$μ ηf’,˜)ΖαPr1Δ ™μRy¬‘πό±+ŒGb1rkα²R>έ^…kγsψρΡτόI‡M‰Ύ{€ˆD"‘pΝφΚ\q}Ί΅UΦεΑL(>uσ_Y=U£°[΄!„ ©4GθΆU μΝ₯9ΔT«Ο'½vY­α€*Π8c΅lSYά›‰ΩΈ¦3-έo­Vpf`Cœ—Ξ&½ίYΝ©ΖΌ.»sJΒш‚Γ©=^‰«Iy~-,Jƒ™h*ΛΑΤFΔj•Žμ¬V°Ύ0_ίέ‘₯‡’τΕn#hR°GΎΊNρνέxώψ\œ²•D"‘¬„,αφ θ‹iΊ₯ϋVBHΚςA4¬τΐŒ\QΟΘ4OΜZvΝΥΐJlXW…L—GœSσ‘ lF΄V+Π)°ο2ίA;₯–e΄!χ8νΨZ‘+ΔΛ-Q¦₯γΡj££σ^Ξο•Υ%3σqΪmΨ^bNIψ ΅ZΑTLΓўQΦCΉ#qoμ$οi(Βωk8;0Ξz(«ŽΥ*+ „ΰɝΈx}―]ΚV ίD«\›EΗΠλ‘,Κ…λψ³ΒοΫQ<πΏvαžφs|ΰk„¨:”H$’»%Z­ΰdnLΕX厨šnyuγ–²\t‹—˜΅6—Κβ#έ|οΡζc΅ΆΓnCC8€Γτΰ[ ™ΐfDC8ŸΫΑ½k6`$.]ŸΔΐߞ=ͺΓΕ0q±±Ψ†“ϋR,Uc―V+θžFοΘ4³1HΔaG•χeιIυ/!|'Pί΅©ΑΣΠF$n±JΗ*ΩT„‚lΎώzλ‘H$w$Ω·€χ΅LΝΎς_|€ϋυψΐΦRt Oα7ΏvO~λ:lΰ%‘H$K₯΅Z₯ΐ>Ξϋ¨šυβ„-ε ΛΑ|°­τΐŒρ.‡ GKΜ²τ5•εΰμΐ¦θ-w'o—%† 4—ϋφMl†Ιƈ‘,ζώ^©l›w₯³†²˜η٘Ζή§W€Ζ|φψ3œΨTΰΐQ·΄KϊJΙυΊ­VπΒρ+\Ηͺ•g ±§έ†EΛ±ος0Nυ±ŽDr[Κ‚^„s3„xΏ'£Φeγρ¦|ρΡ:ΌϊGνψγ·Υbίεa<ό•Χρ7??]Z‹H$’4€Ύ$€,·{.ρ-±ΪB6ωαvΨpH0ΛΝBlp;μΨTμΗ‘.±όΒ­φΐ ΅Ί¦SοK­>ŸτΫe D4’ gd=Γόͺ@SjY†ςuYP|.ξ-β”ŽG« ŒΝβς Ώ₯³Ι9εt°»WU! ²=ά/˜$όΠZ­ΰxο(Ζfψν[g Y)n*Bθ ŽpnΛ²\X¨t¬β·Ά–ΒηvΰkR…-αœh$$Dί‚ΉΈ1>·γζΫγ΄γ3χEπΪ·γ=Εψ‡W/γσΟγώE"‘H–‹ΓnΓφͺ vsή·@Υ¨εb>—Γ†ϊp@Έv\Χ-_7•εΰT8fγš₯Χ½4ΝZlΨNΪ­ˆ5§ζ#Ψ Izοζ8‰vΣB„έ†άf#h‰(Ψ{iˆk ¬ω΄¦ΤκόΞ)5εΣΛξ^B­V°χ°lš$Yшѷ`?Ηeކ‘―υ‡7δΓν°α…γιe#bdŠρ;X.Ω'>°5ŒŸž@ί ~ή%’Φj“s*Žχς}@–T`{œφ·|MρΉρ7oΒΏ­?:vŸxζ¦cb—ύJ$Ι|Z«τݘA7Ο‚>M…γ–²œξΓLL Δ¬ΕMCYΣtœΎ"N…`JmaŽΝŸιDužOΘζ ·’ž»,A¨ yQθχpma”€³χTF MΖpξκΣqάM§Π)[―p( f’47“k΅zLeoK ¦±™Έ,‡—,‰ΖdΊμ\«φγͺ8κί,χ―ΛΓON €Υ!R\eΫ Αl~§₯ΐΏμνb=‰δΆ4WA6a³ (°o…‚ΟάΑ|ίFμΎ8ˆ~ύ χΝΞ$‰d9D# [Gžχ…σ6qΪLξ-Ο…ͺSγό0φVT μ¦D#G‘³7}Φί«#=£\‹BC&°BA4’`ίe~U *ΆКP«σš<ŠsИ0I΄ZΑŽnΛMSlφ‡"-‰ΟΙ~ ?Έ6l― ς}ΰΘH!²R­/ΒΠδtπ«j_.¬T:VQΘΐ#› ρμ=\ΫιHΦ6L6ϋΉΏίI}+Ώ΅΅ψ‘&œΗ§Ύs˜ΫυD"‘,— Ε‹β@ίΥÚnicΒ$›K“‰Y1ό5‚RXκ KεΑL‘Ψ£ŠτΝe9›‰£cHά&Ρι»Λ„hBz’S(/ © όDς|άͺinv’eŸΐn₯³ΌžΦςβ«ψάX_˜έ/˜$|(θžFοŸeŽͺFαb Y)χ―ΛƒΧeΗσΗΗFD$ς•ς‰ΦJLΕ4<ϋFλ‘H$·%Z­ΰXο(Ζgω=hYL}+oΫP€Ώ~&ΌΡ9‚ρ“3fM"‘H,!%θ»4œκ“Δ¬φώL'jς}Βψ`«:;Aίζ²ξεΪKύVT{KB­~¨KŒ9΅ΛΪιBl„l³³I–Νπzκ¨2*™YˆhDΑ#\τ§rΰ}Ϊ\₯ΐΖqιl\£\ІΘαξiι+)γυκΣZΝ·j?Yέ §o(ΐK§RΦB’#’ωJΉ§Ψ•A<½―K*AW ―WŸh$M§8ΐqί‚₯*°“Ό§±ŸˆVΰ™ύέxξP―™C“H$·AΖλΥ'Z­`bNΕρ>N}ΊΞ¬ΏISY.wίΒςAcd‹ΦC“sθαTd4MΧAˆΡλΝJ*/r2B©Υη³θ“Hω.!$›βp ΐBΘ›?΄΅A0‘έ{‰Οv›’sͺŽ#=ό=p±”…ϋΔ…?Σ‰Ε~μγ4ΙΧ¬οN|;Z" βΕ›ŸBފŒΧζΙσ!/ˍ½œ>[1UΌ‚ο/Βψ¬ŠΧ/πyˆ»\Dς!Ώ>Ή³c³xρδλ‘‹ŒΧζ²Ή,Σ†}'°—£ΐNς…w¬CK$ˆϊΓSάVΪI$ι†ŒΧζ\χ¬Δ&˜D¦ IDAT [Κr01«β –ρ„ͺΨΞ w΄₯,€8>Ψq^α€QρΠT–ƒΓζΣ–ΚRžΔ:Jι8€χx @€'LΥ£₯*ˆΓ=7ΈTΗ5Κ…ͺΆUζΒn#ΨΗa²?YΒΒk!š#FιμΤΚbUΧΉ™Sχ–ηΐi'ά.˜V€ŒΧ&BAKDΑώΛΓ\*! υ/1h©D«2xαDz؈°TιXI{M*C^<΅»S˜rM‘ρΪDά;ξ-Οεφΐ0ΨYVΜpΨmψκ6#/ۍOϋ0†'ηL‘D"I 㡉€}—ωŒΧͺΖ&ٍ₯ΐQŽZΚRΥϊupužYn‡0 lM§Μzζl.ΛAΗΰ”°M‘—rל„'Œ€ύ<₯4@ξVV‘–j1Uη‹ΖH6ς‘Ις8Q_βηςε–J`s’ΈˆF¨:ŝό5}ΰιP$Σεΐζ.ηΤ ‘ρΪdZ" †§b8m‚υPή‚αΡΗΗ³΅TœvήqO!~yζZZXω¨εζ ΣLl6‚G+p²ŒΛχŒ Θxm2ш‚‹Χ'q}|–υPd6/K}$ΗλΒ??Ρ„α©9όω ["±―M& βHχ(fb| ϊX­―+/™NναΏβ&ιΝBm³Τ‡ΒT&±<i‡"ΗϊΔΈWσYΚ“ψΟΊxΌN)0nζ Φ[Λsα°.}U »~"-Η9lΚsΣB„ΔESY\ΗsŠϋsκτ•qaO!η!γ΅Ι΄DŒ2GU}1Ž,Ÿ–Γ£υ…˜ŽixεάuΦCΉkTŸ ³y_c r2xjO'둈ŠŒΧ&Σ’θ3Γλ!υœͺ-Ωz>ŠόψΜ}<ό ~uφΪ*L"‘ΜCΖk“iŽ(ˆi:uσw(nXˆ°Y_BΠpi‘:V “4„8wu‚ΛCωhΊ;£9΅©$Ž p(²‹ξ²(₯O)-¦”Ύ“tΈΟ‚±­ΌnKΨΗα;Ξπth!š«θ8ΨΑΧΛ-yβΘKβΒγ΄cKY—I6•#6`$$)φwπgM³\dΌ6ŸB*/§Ο–˜ΙΣmA„²άψΙqρύ”cͺΰWJ†ΛŽ'Ά—αε³ΧΠ94Εz8Β!γ΅ωΤf#ιδΆΟΜJΨI~·=‚š|ώλNa‚3a‡D’NΘxm>< ϊTΖ‚ΎΖ\Ό>ɝ€o>©&ŽŒξUcišNq²ŸΟf ·ΒΚ|njς³„Q«Οg)Mσ !ί „Ό”ψ{€˜>²5FKDΑΙώ1ŒMσ˜xKˆ$›ςπ–ήZΩΈŽοΎΡΓz(’!γ΅άτΑζk} ά½;Ι½­%9ψΒœΰ2H"IdΌΆ€€ οGΆŽšNA)˜ͺe³=NTηωp”χvBΝr/Ξ’α₯¦³έ/4”&Υκόί«ω,εIœ"„‘θ΄KΩ€οϊq9lΨV‘Λ]£"Q•Ε*gMγτsGe»9Εη‘Ώω–‰ŒΧΘtac±Ÿ»2Gή,Ÿ–ƒΝFπM…xύβ wVZΛAΥt2­`]A6’ΟμλBL•Ι³e γ΅”3Qδχpw˜ μ»ρΐN’ιrΰΟί½ƒSψξAy$‘˜€ŒΧΠ6lyςΑŽs²Ηo ηΰ(η–Il;ckŒ±Y\γHθΈqΖ μκΌ,x]φ΄M`ΐσͺ!{| ΐο™:ͺ5JKDAΗΰΖψQς˜ΉΩ”‡£—[κΔ‘―{ΥQΠ;2ƒžαiΦCI‘rfK΅ωYP|..7ΈΛDΖk‹hRp΄χ¦ζTΦCIgμ§v·`₯τΔR~8!δ턐σ„K„/,πu7!δ{‰―$„”ίς΅M„ύ„Σ„“„ΟR§D₯Ή*QζΘQЎq˜I6εΩΛQSžxBuΖϊε6Ÿ”²˜#ΆΡΔ‘―9EAs•‚½—‡Ή™S+AΖkλh‰Χ(ήθβΗsΤπ—η+-‡Ε~”ζfβ…WXeEΔυδ{€―ψfm5!T…ΌxjO‡Π1ΤJdΌΆŽhDΑθtgŒ³Κ―1·J lΐXΗόι;Χcd*†zνςͺόL‰Db γ΅u΄Dt ρ#θ»ΉΗg»Άk,Νΐwb6yHΜRΘQW˜ §ΰ(ηY{`F²Μ•qΜΖΕrCZτI$„|ΐ4Ψ ΰ‰Ο-φομώΐ;Τ%ώ]έΌoϋ8€”€―ψrβί:|ΐ§)₯΄H{9ΑΊ‚,½|©@UN"Ι¦<]œ(‹U=yβΘWβ’*δC~Ά›/΅:§MΞZ"A NΜαβυIΦCY12^[Η½εΉp9l|ΕkΖ]οBΩTˆ}—‡1<9Ηz8Λ&ρ‘aΝFπ±hNυΛFrKDΖkλhβο0X]6l,ρ㽍ΕψƞN\Ώ§‡DΒ 2^[Gͺo'‚Ύ€8΅ύe$δC–ΫΑubVMYˆ°[{œvΤωqŒγD?ΐή0μVTβτ±ά–ς$ή{ΛG+€/xχώέV—(₯”€g<6ο{πLβΟίπ!„xΐ Jιq ”SJΕ:X6ΑŽ*Γ³˜“‘α1٘|Ήρ±α5qAAK•‚ύ—‡‘sR:«κ|Šά¬€ΰcN­―-Βγ΄£©4‡›6T`σ―—Γ£υEΠtŠ—N‰g#’κ…ΐΩA¦UΌ―±L'Ύ±§“υPDAΖk‹ΘΛφ :ΟΗέϋ}΅<°oε??\ ΰoq~UD²Ζ‘ρΪ"jσωτ©Ι=>c΅¬ΝFPp­ΐNή+ΦλΰΖp'ϊΖRλrαAέΓne>K±ω½[>> γΤΡ·„Ÿ]  χ–Ώχ%>·ΰχ$Ίωލ@ !?'„!„ό—%\/-h‰(Έ6>‡Λƒ|¨@c*ŸΙΖdS^6#IΟ'“GΝΓS1œ»:Αz(>½ή§pn&Js3Ή™S+AΖkki‰qf`œ΅p:$°Χd‘*δΕ ΗΕ³IdrBJ2\v|h[~yφΊ8φhδ―­₯%’ΰΝΜ©όδV[ %9™ψ–rόπhΏpͺ*‰„WdΌΆŽ€ o'V‘<νρ7—pξκ¦cότίΉ•TE:Κβ™Έ† ΧψΘ§-„ΚΨ0χ‹Βω`―δM¨XνΜΓ ΰ·}/!δωίDy’rˆrhppΠδ!YC”³²UΧ™?\ AAK’)ΚβΤ‰#‡ΙώδœΪΗIι,Ο>½-;FΈ>±]&2^›H²d'ρZ£L§¬„ŸΤ&GπίΑέπαepΨžήΧΕz(""㡉΄DΜΖuιζg£f†~·=‚@†ύ3©Β–HLBΖk‰F\ŸΰCΠηhίXšM§8ΡΗηαdΚ›΅·sBYΜsbVγ@ χŠηϋ΄Kρΐ~ς|βγ'Ξψα~v?€π-/I|nΑοIψ<ω Γ8|R:D)π"Œ“Ξ_ƒRϊ5JιJι–P(΄„!ρO87αά nT ͺΖ―§jK²)Οϋ¦<<7ο*π{Pςr5§x< EνĜŠύ|. CΖkkΩXμG–ΫΑŁ#₯ͺΞ§ΏόrydS(^<9ΐz(ΛβζA¦ψΏƒ•’—νΑ£υExξP/ΖfήͺσρΪZΆUζΒFψ9ΜΜQ`€?Γ‰'wVaΧ…Alc*‘πˆŒΧΦΒ“ΆΚΡΏsΛ<° ,˜‰œL'ŽφπμΞή0ζTߍ NπQMΌ–ς$ώ-€•ψψμ€”Ύ₯ƒξΌ  šRAqψ-ΟΟϋžη|$ρηΗΌBZ‘ŸΨHΙLς6g–pΝ΄ ₯ΚPσ εΉ$=Ω”g‰Ω”?§χͺ₯JΑΑΞΔTφsŠ—€½;*9Ε‹οΪ ρΪBvΆUΉ8J.y­nX‘<Φdα''ΔJ`ί<Θwp7|Ÿ­εςh}wί@θ λ‘,^ξ¬ΩPδΗŽΚ žΩΧ•š—’·"γ΅υD# Žχab–}uΐ\BP`†|n>­ΐΛg―γ” Ue /Θxm=ш‚ϊbœνρ“‰YόΑη“T«σ˜mηΰΰ$Ζ9xί/D\£Μ›]ΐ=Ε~8lΗzω<YˆΫή5BΘ!d| BΘ’2«”)₯5”*Jι_&>χEJισ‰?ΟRJƒR‘”n₯”vάςoΏC)έ@)½‡RΊ&š$I*‹yHΜjYφΧνhβ£)Oͺyh!vT* „—9Εο‘`$$tb&ΖO£§ΕρšΌxΜΗΣ,yϊθ¦"ΐOOˆΣΜ1uˆΐΑ5VΰΚΨ,^:u•υPΈCΖkv4G‚ΠtŠƒ#¬‡‚ΩΈ±Ζp;Ν‹Ωn.GΆΗ!UΨΙ ‘ρšΝU|ϊTΞφψ ₯ NΜαΚ}bxρΐŒϋD)p’—Ο\Mη£o‘ΗiΗΊΒ¬τP`SJ³(₯Ω |dQJ³­δZ#θsc]Aσd#₯4‘ΐζ#`//MyTοq¦‹ύΜητUηwN5GΔ4‡ΊΩop—ŠŒΧμˆδω—εΖΖ>}ΌΗ εRΜΔ¦ΏP6"Ψ)ΆΓ6`Ψ¦όNK~~ϊΞrΠ/F" ―ΩΑ‹ OεP Η8τΑζ©L}‰Έ¨>_UΧaηhNθƒ‹±^_ςμ"„δBJ“fJb¨ϊuίH)4XςTεΰtθvl«Μ…έF8P?ςS2s;š«νΕԜΚl ”RΔ4λ9΅΅<N;ΦFρΪJ!h bε!¦‰ΊT—tN"«Α£›Šp’o ]CS¬‡²$nϊ§Οο`₯Ψlk)ΗρΎ1ξ§,‘2^[‡ΗiΗ֊\ζ ΐ6|¬₯>·_}ε’©Χ‘HΦ2^[GΠηΖϊΒlζρ:Ζ™8a]A6\—–*G μ@¦ Š—ΫFΖΌ(° Ύ$€‰9‚μ·} !ο&„\Π `€./™<5OKDALΥ™nόx:E»FSφΚβxΒƒ>ΡB΄D‚PuŠ7ΊΨ)‹5<^·αμγ συr‘ρš ΝC“1œΏ6Αl Όϋπ―„wm*ότ€*츚~Ώƒ»αύM%πg8ρΤξNΦCα―ΩΠ\₯ΰΒ΅I\Ÿ`[~=7β…ΫD6`Tΰ}΄Ή/žΐ†ο(‰DddΌfCKU½ Oγ«IΊΛaΓ=EΩ\Z>hy`† ›W6/ΨPŸPυσšμŸΟRξΪ_Ψΰ₯΄ΐ˜:* ΆVδΒac«λb”€·T±oΚ£j:7Aθvά[ž —Γ†½ΩΝ©ΤΙ,Η lΐπΙ‰mrXσ‘ε°‚Ω'UΨ γ56ω‘νq0―άK* ΝτΐN’γuα7ο γΗΗϊΉάΘK$ γ5’‚>–} b‰€¬ΛΑΟϊΊ‘4€ΩΈŽσWωZkœ Υ’ΚbΥκͺNΉρΐΆΫ6–ψq¬Ο†—σYΚμ%„ψμ𯄐@ ƒΑi‰(8Ω?†±i6Κβ›jY>Ϋ±Ή4'Ϋ¦ΡΚ£³γžœcrύ›eX|ί«†p^—]Dl―Ρ\ΔΑŽafjˆxš&OίΉ±„ΟηίF$.H|³’ΏΦαΉ7{16ΓJŠSdΌf€έFΠ\₯`ο₯a¦} ’M­P`†Ά¦S<½―Λ’λI$i†ŒΧ πΊh,e+θγQœΠΘib–'l¨+Μ†ΓFΈ΄Ρt›ϋΙώ³WΖ1§²³λY*Ky_ΰπ9?pΐ£fJbΠQ S`?#h2!βδ(`/„ΗiΗ½εl›ς¨ε>Ρ^½˜)Eyλδ|;œvΆVδŠθƒ-γ5#Z" ¦b30•C…Θj—νΑφŠ ~rό ΣdΣRˆ Rab5V`*¦αΩ7zX…7dΌfDK$ˆώΡt3΄Ά™³P ₯ΑLΌγžBόλΑnL2lζ-‘ŠŒΧŒhRp‚₯ OγOΠW’“ ΧΕ_[γΛΫγ΄c}a6—ήΞ*GΨΠP@LΣqn€/UB,ε9όΐk²|/QB#1™†pN;φ1R§Τ²$DX7ε‰λb(°7ϋ‘εv0›S)XŽφνh‰(θšΒΐΨ λ‘,―±£2B€½Œ=xτθ[-ήέP„Ž‘)œΎ2Ξz(w$υ;ΰ]`%χϋ±£2ˆ§χuqηΧΘ―‘<ΜgYΉg΅žάY‰‰Yί{³Χ²kJ$i‚ŒΧŒHΪ:2τ%Φv<υ˜!„ !ΰ/Ν™κΓ~œμƒσ%‚QuΎΔ›’9T«ΟgΡ'‘Rϊη” > ΐ.BΘΛ¦L—Γ†m•ΉΜl D*I&•ΕŒ’G†6χΙa·a[eέœRΕP`|4ζ[.2^³#ΗλΒ†’lf• 1•?…Θjρφ pΨχΝγœuͺη‰Oξ¬ΐΐΨ,^<ΙΏŒUΘx͎JΕ‹BΏ‡iε^ΚΫi0J„·Vδβ›{:SJ9‰D²82^³£!@¦ΛΞ,^ίά»ς΅Οopypγ³όΨ³i:…έF@?λΰϊ’&ζTt ρεψ“ΌWΌPδχ@ρΉΉ;Yˆε<‰Χ\0 ϜαHζΣR₯ c T€Νx]Q6™Nf‰YUγΛΗθN΄D‚θ™AƒΩ€BQ„dm~Ÿ‹y£§"γ5Zͺν½)εΩ*‡ ‘Υ"ΗλΒΚ~rb€;Ε­ά΄IΏίΑέ^“‡Κ_ίέΑ½ dΌΆB μ}—‡SM§¬&₯ΐvX/žl­Dθ ~*“$’• γ΅ΕΈ†­#«ύ―=ΑJ 8ΡΛOγ½Έs•”ŒD?ξlDTΞ<° UΏŸ»ϋ΄‹š!ΏKy ΐ―|’RΊΙμI ’Υ† t7¨HΙF£)O{.1Ω‹’ΐ€Φ䜺4hω΅E:±%=νaάθi9ΘxΝ–h΅‚ΈFq°ΣϊJ›}bΔ‘εςh}!ϊGgp€ηλ‘ά–Το€£)/ΨlŸˆVβT8vްΘxΝ–Φj£ΣqœΎΒfσΟB χ―ΛC•ψά¬1tB§όΉΤ—Π14Ε•ͺ!–rΧΒώ€RΊRϊ%Jι³%ΉΙΊ‚,(>7ƒ”…ˆ ‘h$„«γ³Έ<8iω΅γš.DRͺB>d{ΨΞ)ΞφνˆV+šœΓΉ«ό74H γ5Cξ-Ο…ΛacrΰK=[bΔ‘εςP]άžηΨFD΄w¦ΥΌos1r½.<΅»ƒυPxAΖk†$mΒXΔk˜‹³Q`ΫlŸh•‡IΙ2‘ρš!­Υ!ΐž‹,ΔW|6θφg8Qςreω rf‹"ǍΕ|)‹yUυΧ‡ U©>~Tύ ±μ‡Rz̊ΑHή !ΡH{/ Y^:}σΔ‘―‡λv΄2V«‹’΄ „ ZΝ¦t65§,ή°­”δœΕ[ΖkΆxœvl-Οe2_RMw‰CΛΕηvΰυyxρδ·ή­Ιi:ΪΈ¬§Ϊ^†—Ο^grΠΜ2^³%”εΖΊ‚,fοχYUƒέF˜Δμχ6#ιΔΣ{»,ΏΆD""2^³₯&ί‡Ό,7›=~bΝΙ[b@ͺ‘#/Υ4ΌζCκΓœǜͺ± €ς/ΌΝ©M%~ΐ1ŽΤκ Αί “Ό…huΓS1œ½:nιuE+Iηf’,˜ΙHYL…R>ΆV+›‰γdΏ΅'lΙE€(‡"…ώ T…ΌΨ-¦Ά„Ρj―OβκΨ¬₯Χ½iω$Ζ³΅ή]_„‘Ι³Nτ‹!R“ZV|xGά›TaKΈ ΅ZΑαξ˜‰YΏ©‹λ–«―“xœv|`k)~qζ*zG¬ο‡"‘H$ΛΑτβ+Λ}:…ΣΞWcΒ$α†&cL¬UBΣωΜ‡4„ύˆkgψ¨¨NξΩx»WLΚƒ™\©ΥBŒΜδ'a£ ˜‰FθN•ϋX…ͺιp ’*n–ΞZ]Šu³dFœ{ΥZΓ)ΏJ‰δN€β΅Ε‡ρ4W`@{m|n^ΰΤF$KμΕP|nΌΏ©?8Α‰9ΦΓ‘¬q’Υ!Δ4Iί‚YU³άϊVžΨ^BΎs ›Ω$‰d©D«ŒLΕpfΐjAŸΞνΪΊ!œά؈¨œ ϊκ9kδΘsϜϊpΗ9j Ί|>’_£ΐοAužΟϊ„ˆ*NΗ$­Υ ¦bŽφX DS`+>7Φf[^Š•ςιμPd6γH7?M2$όRW˜ ΧeωαP\ΐgkΉxœv<Ό!/ΊΚMΰ­¨‰^<ͺtxβΡ Δ5ίΪίΕz(’5ΞΦς\Έμ6&•{,ΨPΘΐΫ7ΰίήθΑtLe6‰D"Y QF} xήγ―+Μ‚ΫaΓ1‹σ·CΥ)μξC ²=ΘΛrσ“ΐNZˆp˜c«/ ΰκψ¬ε•ΔˁΏ»&Yh΅‚7:G,Uςj0'vT)°λ•ΕqOΟ§;±³ZΑ‘ž˜š³nγ’Ύ} [&Ξ$LΙpΩ±₯<ΗrΜͺ:S6|΄₯γ³*~x΄Ÿι8$‰d1ς²=¨ΝΟžKΦορy][;ν6άSμηG­S89\BPpγν¬q\±™R«sr―‚Ώ&YΦjsͺŽC]Φ©@γ&DόNl* XžlTu*TR0EβΕv‘WT‰ϊάl.Ν¦‘£„=ΡjC“s8wΥ:―΅›MwŊCΛ%QτΊπό1ώlDbͺ.TlcΙ§Ϊ*1:ΗΏκc=Ι'Z­ΰάΥ \Ÿ°Vm4ט*°`KY6eγι½]ά4“H$’Ϋ­VπfΧ k}ε:ΰd˜εφ© ‘ι:w “4„θœ(ΠΦl IDATΒΨLœυPRΨ<ή« EΩpΨ7jυ…ΰχi”όΫ*‚pΪ v[xκ(jB€΅ZΑρήQK”‘ΐζ/έ‰{ΛsαrΨ,-ΕJYˆ6§’Υ N]Í©λ‘H ΅ΪϊΎkΑB0όσΩTˆ_ž½†ρYφ‹Π[Qu~U:ΌΡT–‹¦²<΅§#u°)‘° 5μ΅Xψ0«κp3V`BπΡζr\Ό>‰½—ψlŽ+‘H$I’Υ bͺn©ψŠχ=~C8€9UΗy E3·#Q.“²€a§ϊΩϋ;«©ΎEόέ+ΣŽΪ‚,œθcŸn‡άi ‚Χν@£Ε*PΥ²€‘ΠΣ)°²u‹q£iX“ΗiΗΦς\KK±D΄Œ₯ΐήΛR…-YœBͺB^K+AD΄|Z)οi,FLΥρ³SWYεΧ0T:ιW‹'wV’wd?;ΝΧοQ²ΆΨP”œL§εΎͺ<(°ΰΡϊ"½.όΛήNΦCΉ#΄λ2ΆΥ―πΨWχΰSί>„/=?>֏ Ξ2%‰yl«Hτ-°p}ΧωW`ΐQ³Ηχjc‰ /S؜ζŽκΓο…σY™Εη]“,HkDΑι+γžœ³δzq=y:$Φ4i,ΝA¦Λnib6ιp9ΔK\D«\Έ6‰kγΦ”Ξ&KfDK²m*φ#Λγ6"’%ΣZÖ•9¦,Ÿ8] ­& αΚ‚™ψρ1Ύ|[cš.άA&K\ŸJΕ‹ήΥ!ν $Μ°Ωš# φ\²tςΰ b†l-Ε+η―£wdšυpnˁŽaΜ©ό™.tMαϋ‡ϋπΉg‘ι/^ΖǞ~Οκ΅ΤV@"‘XO¦ΛΝeKUMη«8IINŸ‹‹FŽͺΞ―۟αD₯βεΒƒglh( `bVEηπλ‘,ˆάi D4Q–ΎΧ"eq\Mz`σωpέ—Γ†ν•AΛΛχEL\$;:[u―bš˜*Q‡έ†ζͺ v[ΌΑ•ˆK4’`6γH·5} βšα;gγt1΄šBπXC1φ]ζͺKΆT`/»ΰ“;+q² ϋ,¬˜’HζΣQp}b―OZvM^ΨπΫΫKa#ί9ΠΝz(·erVE]Q6Ύυ±­ψΕΆαΔ{ίτ<±£ η―NΰΏ|ξϋΫΧπμ=–H"IcZ«C8;0ŽΑ ‹}7qŒ5qC8€c½ΦυI»Ό'ϋ“ΚbΦπμ άΘ‘ƒdBπϋ4JήΒ¦’²=μΉh²ψ¦ZVΌi(θžΆLM’jTΈ€,Τf#θuYVŠ•άTˆf!ΡκϊGgΠ9Δηi€„/ΆWα°ΛlD #ρbΠJyOC(^8ΞO3G遽|ή·ΉyYnόγk—YE²†I D^Ώ`]εή' lΐ°½zΈ.ίγXΕ<1«Βηv€ώn³l)Οş=R‡=rώυېŸνΑώγ$ώί―γg§ŽV"‘˜ER|΅Ο"[Ǹ℆p—9hP¨κ|ηCκKόΈ6>Η\ό’΄TεuίΙσ!Σe— lΙέc·΄DΌ~Αhœσ‡λNμ¬IlF,JφΗM\ΨsjχΕAK|ŽR[ΐ{ΥVm4z²rƒ+ŸΫΝ₯9–Ν—ΈF…<Z)•!κKόψG6"q ΫXβvΨρρhφ\Β T1’΅IIN&*/^·°r'6|xG9F§γxž£CΑ[™˜#Λγ\πk„kΩώn3ώω‰&Ψ Α§Ώsψ½c#["I3ξ)φ#'Σ‰]­―U]η~mΧΞζλ(Mη»'XRYΜΪϋfί">ο•έF°±Ψcœ6rδσInK{mWΗgqώšωfovHošT…|(dΰ΅σ½ά8½ν΅! MΖpϊΚΈι׊'UύŠ”3Q‘xρšL`K–H[m§―Œγϊ„ω'ύΖ[Όηκnx¬‘§―Œγ’οΓ₯`”™­ίΑjπΑm₯Θς8πO»€ [ŽΆΪt c&fΩπΐζg}½½25ω><³―‹K«΄‰9YΗΏ‡‚·m(ΐKŸkΕ>XƒλΗ»ώ~σd…D"Y=μ6‚Φκ^Ώ`ψJφ¦°„€ΉΆš°3δ•υ…ΩpΪ sή=°CΥφΚ8b*–\ό¬œ$K’­&°Λ‚Δl\Σa#όϊσά BΪkCΨwiΘτRj”Μp|βx'vΦΚβ]›~­Έ*ξ‘΄Υ\^Kl%|Ρ^›Tν›―κ‹kό+DV›Gκ a#ΰF…½Φl\V‹,ήQ†—N]EΗ uΔΙ­΄Χζ!¦κ8Πi»‘ΐζΓB0ΦΝOμ(Ηι+γ8ΒA3°[ΡuŠΙ9Yξ;'°“8μ6|ξΑj<χ©ΠtŠΗqžΪ-›ΕJ$ιBR|ufΐρηؐνq’*δc~X§κ|'ϋ=N;Φf3·Ζΰέ0¬‹cšŽsWΝΖ– ίO£δ-ψ=XWe‰²8.@Ι̝h« a*¦αPχˆ©Χ‰§”κό‘;‘ψάΨXμ·dN©ΊΈ‡"€‘Кλ8Ψiξœ’€u…ΩeΉρΪy ‡Φ˜…δeyΠQπ££W,Qα,†›^ωhs\vΎφzλ‘HΦ(Ϋ*rαvΨ,ˆό)°ΰ}ΕΘr;πνύ]¬‡ςkLΕTPŠΫZˆάŽ-εΉxρs­xp}>ώΗOΟβ/~r–‹w…D"Ή;ZΆŽV¬―E'G™Τi:ε~__ΐ‰Ύ1¦οή=° >μΐg#GΎVN’%ΡVΒ‘ξLΞ©¦^GGͺ¦Γ%@ΐΎm©&jζmFTMμΖ„€‘o­aΧsηT\ΰf—I’sΚμ$IzΘt‘!0=!b4NϋΩZ)7…1Σπ³SW™ŽCΥt‘2yΰ3χUaVΥπ=R…-±ž Ε‹²`¦ιeι<+°ΰΓ;Κqu|Ώοm,Αί G{nΰ“ί:$›rK$‚’_νΊ`ΆψJŒ½«ΣnΓΖb?Žυή`6όΒm6‚Ε~¦ΚβΈΨ€‘ΐ¦8erρrαi”,H{mϊGgpyΠ<ΓBDμ)R›Ÿ…‚l©›‘xB‘Β{ZŒΆΪOΜαμΐ„i׈«β'x*/ΒΉ¦+j%ιC{mNτaxϋέ#©uΌD"‡έ†ΦσΕW1M‡Λ!ΖϊΊ!ΐ©+㈩lbš‘Vη\ΰμΐ8³L<° Ύ$a·Β™ίwMr[R*P3³‚”Μά BΪkCΨsqΘ΄jςηŠ~l―I*‹ΝK̊R†u'!h―ΙΓΎΛΓ²dI΄Χ†@)πϊEsœk4yJΑϋ7—`Η0ϊn°³φ1šΤŠίxΰ³χG09§βι}]¬‡"Yƒ΄Υ†0Χ𦉍agγ|+°ν6‚m/ΓώŽa\Έfž¨a©άT`―άBd>7•ΰ/Ϋ€—Ο^ΗηŸ;žJ(H$qh« αΪΈΉβ+U qBCi1UΗΉ«γL―ιΊ‚Ύ†°qβμ›ϋ$‚6`T—3q‚³FŽb<’·PΘ@užΟΤ²t5M"m5!LΜ©8j’'T* žΈΘΛφ`}a6v™¬V=Ρsj:¦αP»2-‰8άSδGΠλ2υΩR5 § 3xίζbP όπH?³1¨ΊWΔ7Φ¬/ΜΖƒλσρΝ½˜œ“΅kΩQ©ΐε°™―“‡ίΌ*°ΰ7ο Γε°α[ϋ»X“sIμΥQ`'ybG9ώδνλπΒρ+ψŸ/]՟-‘HΜ')Ύ27"Ž8‘±4LΛy,†ͺρο  lΜ|°Eρΐ€M6r”;-i― α`LjiMH%!R­ΐn#¦5(L6`Μ©Γέ7LλΞj4-EvTα²ΫLoz)Il6‚5!Ό~qΊI*―tπ—ΏΒΉ™Ψ^™‹ι3΅”τNHφκρ{χG06Η·9±0¬2\vl«Θ5΅ΟERνζT Ή^ή]_„8ΟΌΣΔ¬ 2]«ŸπOνUψπŽ2|}w'ώ퍞Uω‰Δ<ς²=¨+Μ6u?HœPδχ ?ۍ£=lVͺΞΏ6d{—εΖ1F lQ<°#Ω?06‹k㳬‡’BŒ§Q² m5yˆi:φ_6εηΗ*™ΉΩ'šJsL³[‰§š8ς„£­&U§ΨkRGηtριυΊΈ·ΒΌ9%I?ΪjB™ŠαDΏ9eXιΰ/·<ήFΧπ4w³YΈKμΥ£>ΐΚžΪ݁™˜΄j’XK[M—OšfI$‚>Ό£ Σ1 ΑΈΏΐΔ¬ ŸΫBΜyΗ}ρ‘:΄Υ„πg?:eΪϊW"‘˜C[B|eΦA›HβBΓ98ΚLY,†6!υαŽ3jN(Š6`Ψ­`–μ_Sο!δ턐σ„K„/,πu7!δ{‰―$„”Οϋz)!d’ςGfŽSTξ­ΘΧeΗ―Ξ™sκ¨j4m"χ­ΛΓ™q ŒΝ¬ϊΟVSMωB‹ΡT–ƒ,Ώ:k’Z]§i‘T€ϋjσpρϊ$z†Ωyξ&2^›ΛΚlxεμ5S~ΎͺΛδι;ξ)@¦ΛΞ¬™£ͺQΈkϋw°šόώύ OΕπR…=―Νεώuy€WLZ_σdSI αΎu ›Ye ŒΟΖWΥz>» χƒ¨ yρŸΎs—Ošv-ΙΪCΖksΉ]Tbχ…Υ?|’”IYΦ׍₯tO›Ϊ8ώv¨‚x`FΓΛΞ‘)ŒNΗ,Ώv~V ‘ E~8ldm$° !vΰκ|€R7οΫ>ΰ₯4ΰ+Ύ<ολΰ%³Ζ(:n‡m΅!Ό|ζš)eιͺž~ΕπP±yωΜκ'n*°ΕΏWN» χΥζα•sΧMih£jι£}¨.πK“’V"γ΅ωδz]ΨR–‹_˜ƒ€€ε“ψ1θnπΊxΧΖBΌpό ¦x'‹΄p-εΉh­Vπ».3ω}ςŠŒΧζSς‘2δΕ/MŠΧ’(°ΰ#ΝeθœΒ†ΚδΙYuΥύ―η“νqβΉ.‡ ŸxζMŒΝ°΅M‘€2^›Οζδz]ψε™««ώ³“{|‘Δ ›ΛΨψ`λ:…NΕHΚF’`£,Nz`‹°gπ8νX_˜cŒ|ΥΒΜ§q+€K”Ji ΐ³›χ=x&ρηοx€$κΓ!οРഉcž‡κςq}bΞ”²τ˜&FΘR¨ ωP‘xMIέτΐζ?-…‡κς1<Γό³©ΔΎ,θEMΎΟ”dΌΆ€‡κςqξκzGV_΅Σt8X™Νom-ΕTLΓ Η―Xz]Ji’Μ4=β/|ώ‘ŒLΕπτΎ.ΦCα ―-ΰ‘Ί|θ6₯,}N6Όsc!Ÿ Oονb6† Ψ€ΡK៟hBߍόηηŽ™Φ³B²¦ρΪdμ6‚ϋΧβ«δž|΅ˆkβ$“ά“PΜν΅ΦN/©*EΠ·©$BΨ4ΌLŒˆ’μop’oΤqγJ0s†θ½εο}‰Ο-ψ=”Rΐ€ !ΔΰOόΉ‰γK ξ«ΝƒέFLQ«i”!„€6#«έ PMž’ °£­6§έœ9%’ΨRx¨.ovέ`R~΄ΚΘxm&Tϋ/› Ϊ©KΊ™l.  6?Λςf\©…{šΌ3y‘±4χ―ΛΓΧ^ο0­Ή°€Θxm­ΟG\£¦τΊIνvΨρΑmexεόut M1ΓĜΉ"·T–‹?{€/Ÿ½Žxυ’%Χ”€52^[ΐƒλσ1>«βΝ‘UύΉͺ&ŽWq’ —‘˜΅:1« d‹>·5yYŒΨb%ϋK˜ŠiΈx}‚υPπΫΔρKΎB)½£ !δIBΘ!BΘ‘ΑΑ΅ΩL-ιΒ½ε9¦”9ΨΌN‘εσ`b3²k•;Λ§SGΐ(£ά^4gN ΤΙy)<Έ>šNρͺ‰έ―ΰKρzIT(^Dς|¦=[ι―W !ΨΖρΎ1œ2©aζB$79kέΖΕ ώπΑŒΝΔρΝ=]¬‡’| 2^/‰Ζ½.SσEρΐNς‘m₯pΨžΩίΕδϊ“‰&ŽVραexoc1ώξε «ΎgH–Α— γυ’ΨY£ΐν°­ϊϊ:‹Ye½Ή4€γ½Φ*fγΩb$i, ΰXο¨ε=’’QnUC8a·Β‰ˆ™+§~α[ώ^’ψά‚ίCqπ° ΐ_BΊό€?%„|vώ(₯_£”n‘”n …B« Υΰό΅‰Uo&Χυ΄Rτ5•%=²Vχ妦‘v’‡κςΡ14΅κlM%Z_@^–Ϋ4ŸL ‘ρΪ"ͺΛΗΑΞŒM―š4žfŽwΓ{KΰvΨπμ›Φ©°E\Έ‹ΒΖ?ΛΗS{:VύΉ―-ΐn#x`}^=Ώϊeι³qqؐ—νΑ»6βίυa’½U"I!ψ«χnDm~>χμQSlΏ$k―- Σε@4’ΰ—g­j2RΤ=~ci¦b.\³N1«%Υκ­ƒΒŒΝΔΡiqu‘–θ™“p ➠І“›FŽf>o¨&„TB\~ ΐσσΎηyIόωq―PƒVJi9₯΄ΐπW”―š8V‘yh½9ΝδβZz)ϊ’Y―²G–ˆώX‹ρΰzs¬bš.TΦbΨl¬ΟΗ󃩒`A‘ρΪ"ͺ3Tϋ―]X]ΥΎα/Ÿ>1θnπg:ρM…ψΡΡ+˜ŽY“l‰«I•NϊΔ7žψΓ‡j01«β©=¬‡Β2^[Δƒλσ11«β`Ηκ–₯Ο©:lD,UίG[*09§βϋ‡zζUΖH`[c!’$ΓeΗ?}¨ šNρ™ο}'a‡ŒΧρ`]>ϊnΜΰό*&mEέγ'Zi#’TΫZ7– /­NΜͺΖj0uλÁτO`'<œ> ΰηΞxŽRzšςί !οN|Ϋ7`x<]πy_0k<ιLi0΅ωY«ήLNΥ¨p{1RY«·ΉΩΔQœ€½E l(Κ6E­žN"πP]¦bφ_f=”#γ΅u4” ψά«ήPVΥ¨΄―Έ…n-Ε䜊Ÿ°δz’5―υ…ΩxΧΖB|sO'†&ηX‡)2^[Gku§mΥΧΧ³q n‡]υ`(ΥKxf·₯Ν ηT 1M·T€\ρβo―Η‰Ύ1|ω₯σ–__">2^[Ηλσ@πΛΣ«·Ύu_š›‰ Χ…#=Φ5rT¬DŒδωΰuΩ­O`λβUΝ6„Έpm‚IΦ|L½s”)₯5”*Jι_&>χEJισ‰?ΟRJƒR‘”n₯”ΎEZC)ύ₯τoΝg:`F3Ήx&D’Y«™ΨΠe―™θ l€».Δ°ͺ|ΎρΤBΆμWΆH²:gp‹Ά4°£‘)&ΟΧβ±ο1ώθΪ"Φξ>Τek‡Œ΄ΫΆ][Θ²m­kStΟ~ }£ͺ 9&AŒˆŽvbDUAΜ“σ8,―8θά@F֊±ΙΘjΈp9k[ ©Θ§ͺ0'Ζέκ>2mφ‡-η )cgc3‹·6$z(b“ϊυ '#v]ϋ›ξ4ΖΫcͺΘJwρYγώZžΦœDgύH6·NνOΊΛΕΟ_Ρεό5ΞTζΏ,=†ϋBvνΐΞLwρΙ‰uΌ»jw—-v08Υ΅Ψme₯§qucπϊ,ΎϊΨό˜/κ)"±qސΨαt΄Ϋ~ϋΧΑμ]Τ1ŒI³Ω~π¨šB<>‹₯ΫΊξήnΨEέ2ιU’Λ‚.ΜUήa‘x,&ηΆa>O(ΞfdΕjς(˜•n―BΤcόQο―ΩΝ‘–ΨΌ§<μΐ8{P).―λςR AvFgτέ• Αƒi§εΛG«07“ΛFUροy[βށβΆιJυvSšŸΝgΟθΝσ‹Ά'ΕeŒβ|=σ²]SΣ l»v`ά0±Žμ ~―kT=Πδ―έέ؁ ώ<μ_1œy›κωΥk«:i_ΏξΤ•δΖώί†ϋv#ͺ q˜·±kbDZ'ϋm61;*A ^Ϊρ=5*°c’―8·ί–“?΄ŒC-^ή]΅'&ΟηφϊlyΖ±3₯yٌ©-βΕΕ±YάΛνΰΞ»σ‡–ΣδφΕ,š¦Ελsd—hq·L&τ.agcj/.&‘;h9Ϋš˜ƒK±ά6̝λ*ŸžΤ‹&·ΗηΔ7 ;ΨyβΔΏ™ΙζζΙ}(ξ–ΙO^Z‘πhI η-gιΆΖ˜EΧΨ΅όϋ;W­αΏσ·±«16—ιŸLcDˆMYΙ΅§Τπΰ;kω`MlŽ΅D$vŒ1œ?΄œΧξ‰ΙΊ`-6>Ζοž•Ξ€²Ό˜g„"˜m·ΞβΌlͺ sΊl;=3°Α?½λ@3ΫcΡ)ϋ}₯C“ϊυ (7ƒηn‹ϊΉZ3UmX°C1}D+v`u .trφι„>%τθž“χψΟd;-j%θ‘›ΖσΣ#= ±‰s‡–‘™ξŠΙg«5ΎΒ†gσγmpE>ϋσχ™[·S<Έυ;θ2yΩ|εμ~|Έv/οΦ$’ΔίE#*x~Qlμ܁ pΣι½qϋ|< ŸeΟΛ°B‘‰+ G~vg μΙ ‹Ά·.|)wΰρŠiίg&υfkύ‘˜e"ΆΗΙ'2“Ρυj©-ΞεG/,λ‰ €κ’\ΖΦΕμd~³ΗG–M;°Α§qώrώρΡ&5GwΌΡ™Φ‘¬Δw`ƒ1ψϋMύa7ίϊΧ"]"’d†UεΣ«$—ηΖζμ{Œ7ˆMVο:χΧςϊμΫ­>Ί¦­υGΨ} kNJzΌ>[v`Θ'3έΕόM]KΣϋ½Γ䀦¨δˆΫΛ›+’‹|8ν&ω IDATšcδΜ·Hi^6ϋ”πόΒmQο|ϊsνW„B5}dΝ_Τ“?nŸ}Wr‰‡ι#+Ωu ™ΩλχEυ ^Zν±«}q¨-Ξ₯Gχ,ζnˆΗl°ωюΕC+ ΘH3|άE ^zm!ώμΕ[Z?‰`ΟO£t(ΝeΈhDo­άMc‘n›_2ŠiCΛIw™¨'ϋήν ĈΌ»jwT“v^ΙY$r3Σ9gp/-ήՎ@πδP¦ƒλP΄>₯†άΜ4ώ§.l»δΨ‘1†>”ƒΝ~υΪͺDG4/›Sϋ–πl άsB6ψ»°·μ?ΒΛ1ȚνΘΑfORu_cψωŒζdπ•Ηζq€Ε›θ!°t[#ύ`=Ο-ΨΖCnΰ—―­β»Ο,ε™ΕΔΏΑˆο½ΚΥ˜Ιo^_Ŝ ϋhρ(‚Iœ§YƒΚσxvAτΗψ`ίζc §τ*κšμΦ lϋνgg€1΄²€y]α±ι"Žΰ?yέδφ±|{βNάΪο&Ίdd%-―.<ςΑ“"Eέ2™< 'Ο/ΪΥβŸΟρ“ΣGVβρYQ€'Ωμψ‡M$^.YΙώΓnή_ωbtGw°υΩκHANWŽ©ζΩΫΨ‡…·Zc·TίΊΤΐς<>1‘–GgmLθΞ΄€†ι#*Ω°χ0KΆFχ^kv@6ψγ™zχθƃ﬍[goc“‡Ό$œΐ(ιžΕ――ΕΊ=‡Έηωe‰Ϋκπψη'²ς°ϊ‡0λΫSωηg'π—εŠ1Uiρrο«ΉκΑ™ŒΊηUnyt―.έ‘Ιlq”ι#+™»q?[Ÿ‰H8‘9al]›χaWcS\_ηhΆ=ηŽΖΦ±ps}—t{Ό>[o' ΛΊΥΫcίO£thTM!ΥE9Qu½ΪΩo‘ι#+ΨZ„ω›#Άx,[a ΕΠΚ|ϊτθ“χT†M ΆH<œ1 ωΩιQ}ΆZ”’ΟLκ…Ϋηγ―﯏ωs»υ;H˜ΫΞ@ANίn©.—Έš6¬œŒ4uμ“S:°Σ\†/NιΛ’­Ό½rw\^γ@“‡ΌμŒΈfό^η;Y̊:(φwρˆ ^ˆ’^»°ΎΙΈ^Ε̍σ„cp[ΩΉ³ΈΩγ‹:Z6ώ l{n§Š‚* ²5-±\Όΰύ5{ΨaδΓΡnY{~ΈBuΞΰ2²]Qε;{|>Ηo'c ¬dζΊ½ŸΑυ¨[δYιiLVΞ«KwδŽμdΕσ„¦OΟξ\8Ό‚ΏΟάHΓαΘ#ΆΪΣzγπ“ΎΙ¨07“ΫΟΘGλφρό’ΔO ‰sζf2ΉOž_Έ-ͺ+χœ pω˜*ͺ sΈχΥq9t°ΙM^Vrv`}ύάŒ¬)δΞ-ŠͺΫ3ΆΥ7‘›™FAΞΙ'ύ s3™6¬‚]>œYߞΚί>} Sτδ_σΆ0ν7ορ‰?Οβ­»’zŸ‹$R]I7FΦF}ŒφžZ™Ov†‹9β#β΅ω•ˆ]ΩYμΟΐΆηvΫ«˜yšΐ–X›>’―ϊxρ‚`ΑΞ΄i U^vg*εωEΫ[ oΈ<^ηw`LQeq‡I0W]‹8ŠkϊΘJ6{"ξ`S|EθΎ|V?6{xxζ†˜>oλI„tΥ·DΈn|-Γ« ψώsΛb~rB€­ι#+ΩΦΠqV¦ΗλΓγ³с ώΏ;·œΥ›λyouδQX9Δ"Ai.ξ»v> ΎφΨόΈ.jΩ™mυG¨,ΜΑ˜Πe€Ή8kP)χ^;šξšΚ7§ dυ|ζ‘9œχ›wy!Κ¨E‘D™>’‚Ε[XΏηPDwBvFš‹Q5…qŸ˜΅σ"ŽeωΩTεtΙΔ¬3°ΖΦ²­‘©υŠŸfίO£œΤΰŠ<ϊφμΖ3.^Jέ²ΣGV²η`33Χξθρnη…#Έ Ζ3Fx° §φ)‘GχLž]Έ5’Η+Ύ"tƒ+ς9gp)ύ`=‡š=1{^·O9䉔ζ2όψŠαμ?άΒO^^žθαˆƒ3Δε^€ϋΧ́œa§t`\9ΆŠΚ‚μΈtaΫaόݞ?Ό|s7ξηΧ―'nQΩm ώ μHζfς₯3ϋρή7Οζ7׌ΰ–ΞγβίΎΟ›+v*¦Ilεβ•CΔ‹9½ΒΡήϋΧγκŠYΊ­‘Γ-±Ϋο=žΗkο lπwaΟέΈ/ξuΞΞΨcλό±4‰ŠqΞή“ΓΓcͺ™½~λv ϋρ©”©zφ Rς³Σybξζˆοφ:Η +ΖT1S=«vϋ±nόa‰‡τ4ΣGVςΪ²-0¨ψŠπάrV?κ»ytΦƘ=§ΫγŒƒ;VUΐM§χζ±Ω›™΅.²"ιž•ΞωCΛyfΑVŽ΄„ϋŒŠΚJwN½ΞJOγ‹gφεγϋ#nιΘΑfέ³’7»­KGUqν)5<πφZή]ŸLπΞl«?BeAvΤΟ“™ξβ²ΡUΌrλd~uυH6{Έρ‘Ή\σ‡X²΅!#‰Ώς‚lNλ[ΒSoŽθJk§¬ 6ΆW^ŸΕ‚Νυq{`ΆηŽΖΦ±³±9ξQP^g` ͺΘ#'#MΨ{W­&έexlφ¦°μ–uz„@vFWŽ­ζε%Ϋ#š<ςψ¬”™΄ΈrL5™i.ώ9+όχTλ"Ž:h‰•λΗΧβφZ<ύρ–°«ψŠπŒ-βτ~=ψΣ{λ#Ξ?ήќDΥ·DΊυœώΤηpΧΗμw+rΌλ'ΤΨδαω;ځνŒ‘ «ΖΥP–ŸΕ}oŽΩsz}›νсτΏΣ‡2 4ΫžXρš1‘jr{Ωs°%ͺμγ₯Ήό Qoά>…\6Œ5»2ύώχΉλί‹ΩΑ1“HW»~|[φαέΥαŸT:!bούλ1΅Es7ΔoΒΡλ€+ΗΤvMΆΗζΨi.FΦD₯-ϋn9ιTi~6η)γ鏷„} η„Λ@ΒqΓ„Θ'ά^_ΚLZ”tΟbΪ°rώ5oK؝G­9½6.Ψ"ρΏ,ρ½Šylφ¦°³&_Ύ[ΞκΗξΝ<α•7ΗsΚAŽέεf¦σΓΛ†³nχ!x{m’‡#5‘w1}{vγŸ4ˆ΄v`;(Bός_˜—Φν‹Ω1OvšΐΞΙLγώλGsΈΕΛΧ_ρϊ:‘ΨΡΰŸ0εvPFš‹OL¬γ­oœΙgNλΝSs7sζ/ήζ‘™”-Iνά!eτθžQσ•Ηηz'S>δd0°,Ήqœ˜ ΞΩ9ΫyPyΉ™iqΟΑφΪ<όέκρŽ₯鈳φžδΧO¨ea7―,έΦγŽFˆ€Ζ[€_i“GήΤιΐ{κ@GΑKμν|ɌH<]?‘–{σa˜—`+Ύ"|ϋ3ΆˆίΏ½6&ΊΕΈ$Ιzrωθ*~φ–mkLτpāŒ1\7Ύ–ω›κΓ~΅v`;dΗΆ_Ki^?}yEL2Dν8 ώχ\:”™λφroζaΤͺ,Œ>B€#9ά=}/ίz#« ωξ3KΉςΑY±C΅V’SfΊ‹«ΖΥπζŠ]lo/Βν΅wΤC[c늘ΏqάNͺ]PήΎΫ+=Έΰeœ;‹°~ΪΨ:,Ν’-])₯#-‡›Τ·u%Ή<ϊQxg=)ΨMvΓDδΡkΓ[Eέğ:₯`ηΡ£ažΙvϋ΄ˆ£ΘΙLVNQnFΨΩ̊―Ÿ1†ΫΟΐΆ†&ώpCΤΟηφϊppΩ|‡Τ)Ύ{ρ s3Ήυ‰ωŠ‘Έ˜1ΆšΜtœ^½vj6ψ»°o?oσ6Υσς’πgΪs Ι @^Ά=2°ΫΊj\ 3ΖVsί›kxsΕΞ.yΝ`nkU:°Χ―4GnΟ――ΙΖ½‡ΉψΎχωΩΛ+To%)]wJ-^ŸΕsΒ»κΞνυ9¦1a\―"4{XΉ#όu¬Bœ·{gρΈΊ"–o?Ӆޏgχ lθΊΈ•φ8γ)rΉό]"³7μcu ο'DRi²18yξ%FώμΤΩNΖŸPΗ‚Ναu9e%g‘xΙΞHcΖΨj^[Ά“]BΟΞT|EdNλΫƒ³•r[kΨ¨%ͺηrϋRg1_;(ξ–Ι/ΙͺωΙK+=q ΒάL.^Αηo λ@ΧΙΨ3ΖΦ0°,ŸΎΌ‚–ΐk€4Ω³;θ— cHE>·>Ύ€{ΕύυΆΥϋχΚc°ˆc(Œ1\>Ίš7Ύ>…ΛFWρΐΫkΉθΎχ–‹*‘Ϊ’\Ξθίƒ'ζln= …Ηk9fν¦quΕ|Όq_\ž?x,bχ¦Ύ1Ξβ…q^π2ΝζΫ©07“~₯έγ·{o9 Ɍ±Υd€™°²ϊZRpB$+½ΝδQ ―Έ½Ύ”ΪNWŽ© »σΘ)+9‹ΔΣuγkρψ,žšzλ©ϊl…ν q¨ΩυΒcž;‘iSτδΣ§υβ‘7πΞͺπoιΜ j9ΨμαΉ…‘Gͺ9Ήόέww^8ˆ {σΟ0―&:ήΑΐvχ,{N`gg€ρ‡OŽΕΓώ1/μ΅cΒ΅½α=Ίg‘ΥΕ'GŠ' ~γxŽ΄x™ρϋωΡ‹ΛՍ-Iε† ulohβν•‘ο8!κ!¨Ί(‡²ό,ζΔi!G―ΟώΨΰ_θβΫYμυYŽx_­-βγMϋcgξ=Ι1ztΟbΪ° ώΖbŽžl N=ΖΒ^Ÿ•r—ξζfrρˆπ:Τ%*Ή>=»sZίώ9kSΘ9uΑΘ'»_Ž–ύΛςΈζ”Z™Ή‘ {"οσ/ζ«νŸlξΌ`ʺ󍧲/Κ.{‘㍭+b@Yχ°"Υ‚Ψ]=ΙΨ•ΞΠ“IύJΈχΥ4b@"Ρhγ‘ šβ\~sν(Vμhδ;YΧύ­υG¨Šcώug&θΙ+·MζΪρ΅όρέu\x―Ί±%yL\Ji^VX1}NΊΚΪΓψή%ΜZΏ7.uΘΣΊ Ό½χ… r2PΦ=9Ψn―Οφύΰίͺ?μf]ΗO‘pΖ'R:uύψZ›BοiΝΐvΘe3‘ N=6{sΘ“G©Ψ G;žYβ{*ciD"qύ„ZΆΦαέ»FέϊlEεΆsϋ“™ξβg―D5αφZ)wΒΧ²3ψΝ5£i8μζ[ZΤε]"βlΖ_Λβ­ ,ΪΪεΖΑF’l‡v`ƒ»άuΑ`ꏸωύΫk#~ž`„HΎM#D‚ΞXΚ­Sποω[ωΛϋλγφ:ΫκPΩωΧ'“—Α.Ξ?nš@“Ϋߍύ³—WΠμQ7Ά$VFš‹kN©ανU»Ω²pHρψœuŒjŸv66³aohαπx-Η¬3Άˆyχγ‹Σ‚—NιΐS—˜lηξ=Ι1&φ)¦iwώτήΊ>Œ­"ψp…λN­ckύ^XΌ=€ϋ{ΌVJ^Ί?¦Άˆ!ωόω½u!Mφ»Υ%*’σ†”Sš—Εή νΐθ’»©W‡b‘4/››'χαΕΕ;"Ξτx}dͺΆ%₯!•ω|λ‚AΌΆl'D1™&žΛΗTΣ-3?Ό».€ϋ§B6ΐ°ͺ.UΕ_ή_Οζ}‘M–'°»Ϋ|ΰ+gχcΪΠr~ψβr^_ϋE-Λb[}SΒ'°ƒNοίƒ—o›ΜŒ±Υ<πφZ.½–nkHτ°$Ε];Ύ–4cψSˆυΪγuΦUΦϋψs°gέσηφψœΣΘ1¦ΆˆΖ&«wŒΛσ;εκύ>=ΊQ˜›ΑΗqŠ₯ιˆύ·œ„ΔΓW¦φgΥΞƒΌΈ€σ‰Yw`Ϋ p7€œeέΉχυU!NΜ¦ζ₯γΖΎ:΅λφβΩ…[;½kNo Ύ§DΒ‘™ξβ‹gφε£uϋBΪΙt{}cάΉDΊyrJσ²Έϋ™₯­΅*NΩuͺ'υβQ•όβΥ•Ό΅bW’‡#R“Α§'υβΕΕΫYΉ£σΕ›žέΦΣ’α2|;ΒθŒƒΝn\†œ ϋOφ»\†__3Ša•|υρω1ŸΜ­?μζˆΫ›4ΨωΩόlΖHώς©qμ=ΤΒ₯χΐoίXΦ"z"±TU˜ΓŒ±Υ<6{3;:_οͺΕAΨ½{t£4/‹ΦΕ~ΫλsΞ|Θ„ή%Μ^ϋνΞιΐvΉ γꊘ½!> ƒvψΊ]ϊj’P ― _iwξ}}u§]ΨΑ#']6*—Λπ΅©X»ϋΟ/κ<Γ!’š₯σ†”3¨<ίΎ±¦ΣRu‰Š„ξΊρ΅”ζeρ›ΧWuz_'eτ%Jnf:χ\:”₯Ϋωcˆ9m΅€θ‰L»0Ζπ“+F0Έ<Ÿ―>>Ÿυ]œΧ'ΞφΩΣϋΠ-3ϋήθ|1Ψ`vΆ&e;SQΓ·.Δ{«χποy7:ο@“‡ΌμtŒqFmΝΙLγϟGANŸ}xnX Ζwf[Γ€„f`wdκΰ2^½u2 ―ΰ—―­βΚίȚ8u6Štζ–³ϊα³,~φšNολqΨ1Ύ1†‰}Jψh]μs°έ^Λ145Ε9TdσΡϊΨOΜZ–…Χηœm5‘w λχŠιί³Ξ8η)JsΎ6΅?«wuή…νNρΙΖ †•3°,ϋήXέiΆΗg₯δD?ψ'ϋo=gλφβΉN&ϋƒ]šδι\vF_:³/³Φwή…νρϊR2ξ)Φ¦ «ΰ’αάϋϊjVνμΌ“²-„Hjώ½΄‹œΜ4ώπΙ±€» 7}.C\€X€3Eέ2ωτi½x!„.μ`vVЬ1σ‰ uŒ«+βžη—±ϋ@sX=Πδ‘{–ύγCΪ*ΛΟζϟGΓ77=<—Q,rΩΦΆzδAEAςt`·UΤ-“ί^7šϋ―Ν¦}‡ΉθΎχψΣ»‘EŠΔRMq.Wσwaoœψιˆρ'φ)aׁ星ΘwJW1ψ'ϊ'τ.fV&ϊ²ΨeΠ„@,M<&ϋ;’{OκΒατtaŸl§‘u²Ρ!pΉ\†―Σ?€.l„Hκ~”ΞRΖΰŠ|ξλ€ »υ€ˆCς±DβνΪ@φ―__u¨T―A±τύK‡-+;ž^ց΅?'15^ΪIMq.χ_?†΅»rχ3K=qΟžΡ›ξYιάϋΖΙ―šiφψ#ŸRε„—ΛeψΙ•#8βε{Ο- λ±ώμŒ8,q†Vpυ£YΆ½‘›žΛ‘–θ8άVK¦‘φ\<’’Wn›Μύ{ςΓ—3γAucKΧϋ™Α.μ“―‹Ρβqήώυ©}ύρ3c#β΄(½ }JΨs°…΅»c?ΡΞ‰ιR‘Oχ¬tfΕ!–¦#ΞΨr²4—α«Α.μ“,RœˆtΚε ‘˜6ԏqοIΊ°-Λς_ΎŸΒΫΙθμ_ΏηΟ.μx²ί£l‘°»°g―ίwM·;D₯Gχ,ΎwΙPnη/ο‡%βvΠβ5N7©_~qΥHΎrvDE€07“ΟLκΕ‹‹w°bGc‡χkr{ΙJw9&#ύJ»σΥ©ύxaΡv^]Ί#δΗhr“η€Ϋsφ 2~uυHζlΨΗώρ1͞θ&±·Υ!3έEI·Μ0~Jσ²ωӌεήkG±~Ο!.Όο=|g­²±₯Λ»°Ÿ½ΉυδO{œΨέ«$—²ό,>ZێYΓςΒ'τφwϊqΆΣ:°ΣΣ\ŒλUΔ,u`K<]θΒ>Y<†Ϋg‘™–Z;ΨΗ NΜ;IΆΧ—ΪQ+Aη-cHE>Ώ}³γ.l·Γ ΆHWΈv|-eωYόζυΥva;-£/Ρ.YΙΉCΚψε««Bξ s{|Ž;Θq²+ΖTΣ»G·DCζ¦Σ{“—uς,μf/%ς―χω)}TžΗwώ»$δ¬ΜMς!Φ₯£ͺψΙΓygΥnΎφΨ‚¨&p·Φ‘² —Mφ±1\:ͺŠWo›ΜY{ς“—VpΙύ°ps}’‡&)βhvΗ]ΨNάΏŽWΆ“rΑΏΰeΟΌ,fΕa’œΥ$:‘w kvdΟΑπbΒ"ε¬O€„$±zΧAž˜³ΉέϋΈ=Z ΰό@φ/^]Ι‘vς2ƒ±NΉ $RΖψίSλχβΡY›Ϊ½±K“'EDΒεοΒξΗμυϋxuΩΞvογV|ELcψαeΓθ–•ΞΝŸKΓαΞ3J=>ηδˆHxΪvaΟέΠώAo°;Υd€ΉψΝ΅£8Τμ Ήγψ`³Η±ΨAלRΛέαε₯;ΈνΙ…΄x"›ΔήήΠ”τρ!ν)ΝΛζΑOŒεχ7ŒaΟΑf.ΰΎάR­Q qW]”ΛUγjx|Ξ¦Χ=iρ:σκΊ‰}JΨ} ™u1ΜΑφw«;g[΅ζ`―νDkΆƒŽΫ‚9Ψ³»¨ Ϋ9ο2 Λ…Γ*8΅O ?|a›χ>αηρGΓε2|’‘lΩ„Ώ΄ό„Ÿ»}ώMuήω³°'πwQ΄·0„"•‘p]7Ύ–!ω|η?‹ΩΫΞΩm·Χ§lω+ΝχToή˜/?6―ΣΞ8IύDRέΝSϊRSœΓνO-l·ρ!U;°•ησσ#™·©žο=»¬Σϋϋ#Dœ—}ΌOοΝ] βΉ…ΫΈρ‘9Mήn«?’΄ 8vΖΓΓ+xύφ)\?‘–‡>άΐΤ_ΎΝηoωj"mέ~ής²3ψϊ“ ZΧjΛγuζΥu§φ δ`w²H|8œΦ ώ읍Νlά{β\Y€Z3°tά6Όͺ€άΜ΄.ΛΑvΞ–“°Έ\†Ÿ_5c ·?΅ίqQ"n―ΜμiΟ„>%ά4©7ψhο¬Ϊ}ΜΟ<^EˆcψΩ•#ΘH3άώδ‚βiά^ηεˆ‰t…ΜtΏΊf$G<|η?KN8 σxΥυ,Ζχ.ζ— γ½Υ{ψΑ 'žΐlΛAυM$ΥuΟJη3F²iίa~τβ‰u#U;°ƒ.QΑΟμΛc³7ρ謍ήΟ²,4yθξπμ ΟOιΛΟgŒ`ζΊ½\ϋΗ™μ>ϊ₯Ψn―MTfΗq„ρ—ŸΑ.ΞΣ_8Όln}b3œΙβ- ‰š8TξYόθςa,ΩΪΘoί\sΒϝΦUTW’Ky~6ΕpΒΡν° l€‰qΘΑvZ6ψηΑΖΦu]Άσ>‘²κ’\ώwϊf―ίΗ_?XΜΟ<½d&Rί8 ύK»σΝ§s9Ή&4ΉS·;θη dΚ€ž|οΩ₯Μι j₯ΩγΓγ³!ΦUγjψσ§Ζ±vΧ!όύ‡¬ΩΥ~¬Αρv66α³°e„H{ΖΦρΜ-“ψΩ•#ΨΈχ—όξύ“ζ‹DcΪ° .]ΕοήZsB»ΫλΜύkv1­Ϋ³«Ό>ηΕφ+νNI·Μ˜ζ`{͏ŽλVο]̊Ψ¨%ξ―₯£­7cl5η .γg―¬<&Ι©;RΩiόκκQμ=ΨΒέΟ.i½½%0­ΛχΊdd%/ηΧ―­bωφΖΦΫέηύaιJŸ;£γꊸϋ™₯lo8Ίjz‹β+βκΫfΚ€žάύΜRžμhݝD‘6n?―ύΖ‡f—μτԞΐNsξ»v4ΥEΉ|ϊ―³ω`͞ξΣΨδίf©!ΦYKyμζ‰jφpρoίη±Ω›:`Ϊήΰ_Σ)ΨΰΏRψκSjxσgςΩΣ{sJ―’DIμ{— ₯gχ,ΎώδšάGσωΡ7±O {6³vwlr°=>‹4‡m+c ϊΗ΄³8?λ΄c†ρ½ύ±4³;8)KΞz—I،1όψŠαtΟJηΆ'p °Γθvθ%3Ρ^]ΐWΞξΟ3 ΆρτΗ[€£"N+BΡ0ΖπƒΛ†S“ΙmO, αHπ=₯l‘h€Ή ΏΌz$^ŸΕןXΨΊ“νρϊΘT Š›4—αw7Œα΄Ύ%|σ_‹ψΥk«γ""'ΥΆραΞ/j½b―Ιν#+C΅’ 7ƒΗožHuQ.ŸωΫ^X΄ύ˜Ÿhςη@ηe₯NvΠ¨šB^ϊΪŒ«+ζ/ζ–Ξ;ιbΒΫκύ'΄4”ŸΑw.ΒΈ^Ε‰Š8XAN?Ώjkwβžη—΅ξγyΌHϊ©}ύŽ=ρb$<>ηEˆLθ]ΒΦϊ#ν 'f`Œ¬)ΥΜΦΠΖIDAT +έΣnυŽ8kΛIDzζeρσ#XΉγWα#v669vΡ‚h}ι¬ΎLθ]ΜO/δo¬ΗΣΊˆ£>JmwΛδ—Wdνξƒ\ύΰLΆ7яH Τ•tγžK‡1sέ^ώη/³i8μVδSθž•Ξ_?} W­ζΎ7VsϋS iρ]πΗ‰Ω"αΥ|kΪ ^Z²ƒΟ?ς1‡[<4{|d₯xvPY~6O~ώTFTπεΗζρΘGGcš'°S(B€­όlώ~γxξΌ`―.έΙ΄{ίε?󷜰Ύ ΐΦΦ l{g`‹$ύ{ςωΙ}ψη¬MάώΤBά^ŸΏΫ‘Η΅ΕΉΤηςξq1W‘ς‹8o?xBŸ`vl&f=ΙJOctmaLσΒ;ΧO€1fš1f₯1f1ζΞv~žeŒy"πσYƘ^ΫΟ5Ζ|lŒYψοΩρ§ΐΤΑeόεΣ§°qο!xΰC6μ=¬ ‘vd€ΉxψΖρœ7€Œο?·ŒŸΎΌ2p»³ŠP,LΠ“‡?3ž­υGΈβY·η #°9…κ΅}Μ[Ν}׍fΑζzf<ψ!»49ΆC$™d€Ήψٌ|ύάό{ήVωγLζ.•s{-2Rxa6ιZͺΧφρΉΙ}ψΏΛ†ρΦΚ]\§Yμ?Τ’μ6 r3xδ¦ œ=°”οώw _}l>[φ>ځb"mΉ\†/LιΛΏΎxEΉ™άφΔB.Ίο=ήXΎσ˜«€ΆΥ‘07ƒάΜԜμOvͺΧφqηƒΈ=°wγCshφ8·‘ΟΓ”=ωpν^š=ήΞΠ 'f` (Ν£07ƒY1ZπλΐEƒ&τ.aΩφΖΦ«ογ%n{PƘ4ΰwΐΐΰ:c̐γξv°ί²¬~ΐ―ŸnίL·,k8π)ΰ‘xSŽš2 'Oά|*Ν/Λ·7:Ά`G+;#nΛ''ΦρΪ²€σ.‰•ΣϊυΰΙϟŠΧg±dk£rz“”κ΅ύ\2²’‡n<… MlΨ{Ψ±"ΙΖΓW§φηήkG±ef<8“›šΓαά•δ£zm?ŸœXΗο?1–εΫΩΡΨ”ςΨΗΛΙLγŸΛWΟξΗ«Λvpφ/ίၷΧώ«_RέȚBžΚιόφΊΡ4Ή½άτπ\¦ί>Ύ³–{±­Ύ‰ΚηΕ‡8κ΅½cψΚΤώόlƈΐΔΟΡΗSτδp‹—7μϊΉάΜΐ‰Δρ½Šω(FΕΑ μ4Ξ³MθSŒeΡΪά/ρ|—ΦX–΅Ξ²¬ΰqΰγξs)πpΰίOS1Ζ²¬ω–em άΎΘ1ΖdΕq¬0ΌΊ€q}zt£gž.EλHšΛpΟ₯CΉγόγa‘φ ©Μηί_:~₯έ)ΛΧvJRͺΧ6tZί<υΕS)ΟΟΦg«‹]:ͺŠwξ8“;ΞΘμ ϋ8άβΥIι*ͺΧ6tώΠrώωΉ ζfP^ M~Ότ4_?o o}γL.QΑΜ@·[~Ž&°Α?‰2}d%―}} ?Ί|8.cψΙK+˜ςσ·y{ε.Gζ_;„κ΅ ]=†?jΉ™i”:ψΤΎ%d€ή‰AŒˆΧηsl#Η€~=ΨΌοχFΏΰe°Ϋ‰‹ƒŽ©-’¦8§υ ͺx‰η^A°ΉΝχ[€ έΗ²,1¦(ΑΖ1θJ`žeYΝq«΄Q[’Λ+·MΖΧΙͺΧ©ΞΓ-gυγΣ§υ’›:DNͺΊ(——ΎvF»Ω}’T―mjPy>oίq¦#/EKvΉ™ιάrV?n˜PΛSs·pΦ DIRƒκ΅M­+fζSΙRάP‡* rψΥΥ£ΈqRomi J³ΗΘHsqύ„ZŸPΛ–ύ‡yyΙήZΉ‹ ‡—'zh>Υk›:k`)sΎsΉ™Ξ½b¦[V:§τ*ζU»ΉλΒΑQ=—Ηk9.Χ9hς€žΌ»j7Ÿ<΅[TΟεΤ lπ§ΌχΝψ'%υ¬›1f(ώΛhΞλΰη77ΤΦΦvαȜOd‘Σδuh2\d8w ε©^'NΆ>X U˜›Ιη&χIτ0DB¦z89ž ‰₯aU «*Hτ0’ZuQ.Ÿ=£Ÿ=CœLυ:qRαΚ€žόψ₯μhh’Ό ς«ο=ΝΐθU’KMqοήΓ'OνΥs΅f`;t[u…xΞRnjΪ|_Έ­έϋc`oΰϋjΰ?ΐX–΅Ά½°,돖e³,k\Ϟ=c<|‘”‘z-"bͺΧ""φ z-ImΚΐ£έΕΡπϊ,Η fŒαŒώ=™Ήv/n―/ͺηjΝΐv`vW‰η»lΠίΣΫ“ \ <{ά}žΕΏ(ΐ ΰMΛ²,cL!πp§eYΔqŒ""’z-"bͺΧ""φ z-Im`YεωΩQη`{|>GΗNξί“ƒΝζmŒnΑK―ΧΉΨ]%n[Ξ²,πeΰ`9π€eYK1χc. άν/@‰1f πuΰΞΐν_ϊwcΎ.)"ͺΧ""φ z-"bͺΧ’μŒ1LΠ“χVοΖEw±“3°NλWBšΛπξκh'ϊ›έUβμcYΦ‹ΐ‹Ηέvw›7W΅σΈ?ˆηΨDDδ(Υk{P½±ΥkIvSφδ‰Ή›YΈ₯ž±uΕ=‡?ΫΉ]ΕωΩŒ)δ½Υ{ΈγόȟGΨΡsξ»LDDDDDDDDDN0©_\†wVFή]μΟΐvφ€μδ=YΌ΅}‡Z"~2°£¦ l‘Rγο.Ž&Ϋνυ9~Rvς€žXΌEŒˆGΨQΣ–I1SτdΡΦvhŽθρ^ŸE†Γc1†WP˜›Α{«χDόΑ‘4‡o«xΆˆˆˆˆˆˆˆˆHŠ9gH–―-ΫΡγ=>‹4‡w§Ή “ϊυΰ½Υ»±,+’η.βθτΈ•xrφ»LDDDDDDDDDN0¨<ή=Ίρββν=ήγυ₯Δ€μ”ώ=ΩΩΨΜʝ"zΌ2°£§ l‘cŒαΒαεΜ\·7μE }> Ÿ•“²g θΐ»ζ…+;zΪr""""""""")θ‚ax}―-ΫΦ㼁8 §g`Tδ0°,7–οŠθρΚΐŽž&°EDDDDDDDDRΠΠΚ|j‹syaqxΨΑb§g`?΄Œ9φ±η`ψ ^*;z©ρ.‘cψcD*ψpΝκ‡#ΜuN•IΩiΓ*πYπκπΌτx•-M`‹ˆˆˆˆˆˆˆˆ€¨ ‡—γρYΌΆ,τΙΩ`,FzŠΔb Θ£$——–„Ώΰ₯:°£§ l‘5Όͺ€κ’^ZzŒˆΫ›Z“²Ζ¦ +gζΪ½4v‡υX―Ο"Νe0&5ΆUιύ‚Ψ©81;mh9‡[Ό!Ljψ#DRo;Ε’&°EDDDDDDDD„s—RžŸΝ?>Ϊxϋ3°S1Ϋω΄Ύ%”εgρΔάΞ£V Έˆcκm§XΦΣ\\;Ύ†wWοfΣήΓή/1’ŠΨιi.WΓ;«v³y_ΗΫ(Θ« μ¨i[DDDDDDDDDΈφ”Z\Ζπθ쎻°ƒ"©:1{ΝψZ πD ^Ί•5M`‹ˆˆˆˆˆˆˆˆεٜ3Έ”§ζn‘ΩΣώB…Α‘ŒΝv*Μά₯<1wsλ‚–Qvτ4-"""""""""­>1±Ž}‡ZxiρŽvξρω'mΣR8Ϋωϊρ΅μ>ΠΜΛwžτ~Ÿ•’Yα±€­'"""""""""­&υνAΏξάχζκv;Œ=ήΐ"Ž)άY|ζΐžTdσθ¬M'½ŸΧg₯τvŠM`‹ˆˆˆˆˆˆˆˆH+—Λpη΄A¬Ϋ}ˆΗfŸ8AΜΐNOΡ,ζxJ ο­ήs/έ^Ÿ"D’€ l9ΖΤΑ₯œΪ§„_ΏΆŠ†#ξc~ΜΐNυΞβkN©Αeΰ±9wa«;zšΐ‘ccψΞEƒ©?β恷Φσ3e`ϋUδpφ 2žš»ω€ ^*;:Ϊz"""""""""r‚aU\1ΊšΏ}°ΝϋŽΖd(ϋ¨ΟLκŞƒ-<2sc»?Wvτ4-"""""""""νΊγόΈ\πΣ—W΄ή¦ μ£&υλΑύ{πΫ7ΧΠpΨ}ΒΟ•=M`‹ˆˆˆˆˆˆˆˆH»Κ ²ΉωŒ><Ώh;o­ά€;0­‰YΏ».Lc“›ί½½ζ„Ÿ©;zšΐ‘}αΜΎ ΘηK˜ΗόMϋρzύΨ)ž4€2Ÿ+FWσΠqQ+˜ΐVvT΄υDDDDDDDDD€CΉ™ι<|γ)”ζgρ™‡ζ°rη!κηΐψε«+Ήέ£μ¨i[DDDDDDDDDNͺ4/›Gnœ@Fš‹Ηfo΄ˆc[9άtzoώ»`KΆ6΄ήξQvΤ4-"""""""""ͺ-Ιεο7Ž'/;PφρΎpf_Š»eςέg–ΠδφκΐŽM`‹ˆˆˆˆˆˆˆˆHHWδσχΗsΫ9ΘJOKτp’J~vwι0ζoͺηΆ'ΰυY lM`G#=Ρϋ][ΔθΪ’D#)]4’‚CψΏη—ρύη–βφϊHΧb—Q‰λΦ3ΖL3Ζ¬4Ζ¬1ΖάΩΞΟ³Œ1O~>ΛΣ«ΝΟξ άΎs~<Η)"’κT―EDμAυZDΔT―ERΫM§χζσ“ϋπχ™ilς(j%Jq›ΐ6Ζ€Ώ.†Χc†w·›€ύ–eυ~ ό4πΨ!ΐ΅ΐP`π@ΰωDD$ΖT―EDμAυZDΔT―Eΰ[Σqωθ*@‹]F+žΨγ5–e­³,«xΈτΈϋ\ <ψχΣΐTcŒ άώΈeYΝ–e­ΦžODDbOυZDΔT―EDμAυZDpΉ ?½rŸ;£7η -Oτpl-žΨUΐζ6ίo άΦξ},Λς @Iˆ‘ΨP½±Υk{P½2Σ]|η’!Œ­S^x4l½ˆ£1ζfΰζΐ·1+#xšΐžΨ*&’qLœγ˜B—Œγ˜όκΊψυΊœκu—KΖqiL‘IΖ1ArŽKυ:T―»\2ŽKc M2Ž ’s\ͺΧq zέ₯’qLœγ˜B—Œγκκ1…\«γ9½¨iσ}uΰΆφξ³Ε“{C|,–eύψc4ƒ4ΖΜ΅,k\4ΟkΙ8&HΞqiL‘KΖqiLICυ:BΙ8&HΞqiL‘IΖ1ArŽ+ΗΤT―#”Œc‚δ—Ζšd$ηΈ’qL]@υ:BSθ’q\Sθ’q\Ι8¦ xFˆΜϊczc2ρ/BπμqχyψTΰί3€7-Λ²·_X•·7Π˜Η±Šˆ€2Υk{P½±Υk‘Š[ΆeYcΜ—W€4ΰ―–e-5ΖάΜ΅,λYΰ/ΐ#Ƙ5ΐ>όEΐύž–ΰΛ²Όρ«ˆH*S½±Υk{P½‰­Έf`[–υ"πβq·έέζίMΐU<φ‡ΐγ9Ύ€¨.Ή‰“d$ηΈ4¦Π%γΈ4¦$‘z±d$ηΈ4¦Π$㘠9Η•ŒcŠ;Υλˆ%㘠9Η₯1…&ΗΙ9dSά©^GLc ]2ŽKc ]2Ž+Η€ρ_‘"""""""""""’\♁-""""""""""±”žΐ6ΖL3Ζ¬4Ζ¬1Ζά™ 1όΥ³Λ³€ΝmΕƘ׌1«-κβ1Υcή2Ζ,3Ζ,5Ζ|-Ργ2ΖdcfcΖτύΐν½1³ΏΓ' dt)cLš1fΎ1ζω$ΣcΜbcΜcΜάΐm‰~_cž6Ζ¬0Ζ,7ƜšcΨFΑ―FcΜ­‰—œHυΊΓ1©^‡76ΥλΠΖ”TυZ΅Ϊ^T―;“κuxcS½mLͺΧ‘d¨Υq¨^‡6&ΥλπΖ€zέωxlW―SvΫ“όΈ\gŒ’€‘<L;ξΆ;7,ΛκΌψΎ+y€Ϋ-ΛLn l›DŽ«8Ϋ²¬‘ΐ(`š1f"πSΰΧ–eυφ7uα˜‚Ύ,oσ}2Œ ΰ,Λ²FY–5.π}’ίWχ/[–5‰›%tL–e­ l£QΐXΰ0πŸDKŽ₯z}RͺΧαQ½MRΥkΥjϋP½>)Υλπ¨^‡FυZΒ–D΅T―C₯z>Υλ“°e½Ά,+%Ώ€SWΪ|pW‚Ζ Xζϋ•@EΰίΐΚo«g€s“e\@.0˜μΫϋvΡXͺρ¨ΟžL’Ηxέ @γnKΨο(ΦΘέO†1΅3Ζσ€’m\ϊR½s|ͺ׏Eυ:΄ρ$u½V­Nξ/Υλ°Ζ§zέρXT―Cκ΅Ύ"ύέ$M­ΌΎκuxγQ½ξ|\ͺΧαΟυ:e;°*`s›ο·nKe–emό{P–¨cz£Y$x\KS»€Χ€΅@½eYžΐ]ρ;ό πMΐψΎ$ Ζ`―c>6ΖάΈ-‘ΏΏήΐnΰoΛ‹ώlŒι–ΰ1οZΰ±ΐΏ“i\’zΥλN©^‡&Ωλ΅jurS½κu§T―C£z-‘JζZ Iτ~Q½ξ”κuhT―c •'°mΑςŸφ°ρΪƘξΐΏ€[-ΛjLτΈ,ΛςZώΛͺρΐ |ύγc.vY–υq"ΗсΣ-Λƒ²°[Œ1“Ϋώ0ΏΏt` π{Λ²F‡8ξR”ΏΧ3K€§ŽY"Η%φ’z}Μkͺ^‡Nυ:DͺΥ+ͺΧΗΌ¦κuθT―C€z-±’z}Μkͺ^‡Nυ:DvͺΧ©<½¨iσ}uΰΆd°ΣSψο€1&±~Τ²¬'ΛΈ,ΛͺήΒ9J‘1&=π£ώN.1ΖlΗΩΜ½ –em όwώ£ρ$φχ·ΨbYΦ¬ΐχOγ/ΰIρžΒ‡mžeY;ί'ΛΈΔOυϊ$T―C’zΊdΧͺΥΙOυϊ$T―C’z:Υk‰T2ΧjH‚χ‹κuHT―C§z©<=θoό+€fβo™6Αc zψTΰߟŸΉΤeŒ1ψ °ά²¬_%ΓΈŒ1=1…ηΰΟ ZŽΏpΟHĘ,ΛΊΛ²¬jΛ²zαΌiYΦ ‰€1¦›1&/ψoόyFKHΰοΟ²¬ΐfcΜΐΐMSe‰Σqγθ%3<γ?Υλ¨^‡Fυ:tI^―U«“ŸκuT―C£z:Υk‰B2ΧjP½noLͺΧ!R½›}κ΅•Aά‰ϊ.VαΟϊN‚Ζπ°pγ?+sώά 7€Υΐλ@qιtό— ,Ύ.LδΈ€ΐόΐ˜–wnοΜΦΰΏδ!+AΏΗ3η“aLΧ_ψZ|o'Αϋj07π;ό/P”θ1ΖΥ Ψ ΄Ή-αγΧ Ώ'ΥλφΗ€zώψT―;WΥkΥjϋ|©^w8&ΥλπΗ§zέωΈT―υιο)α΅:0ΥλΠΖ€zϊXT―C“­κ΅ PDDDDDDDDDD$©€r„ˆˆˆˆˆˆˆˆˆˆˆ$1M`‹ˆˆˆˆˆˆˆˆˆHRΆˆˆˆˆˆˆˆˆˆˆ$%M`‹ˆˆˆˆˆˆˆˆˆHRΆˆˆˆˆˆˆˆˆˆˆ$%M`‹Δ€1ζ2c̐DCDDNNυZDΔT―EDμAυZΊ‚&°Ebγ2@[D$ω©^‹ˆΨƒκ΅ˆˆ=¨^KάΛ²=‘.aŒωπU ˜,zY–uGΰηŸΖY–υεvξϋ%Λ²ΌΖ˜ƒΐ½ΐΕΐΰR /π<ΠψΊΈψΰ–Y–umWύŠˆΨκ΅ˆˆ=¨^‹ˆΨƒκ΅Ψ:°%%cΧ“,Λxƒΐεmξv πxχ½!pŸnΐG–eή>gYΦ‡ΐ³ΐ–e²,k-p'0Ϊ²¬ψ ·ˆˆ„@υZDΔT―EDμAυZœ =Ρι"S±ΐc @° XgŒ™¬·tp_€όg>Ξνΰυcώ ό7Φ3""¦z-"bͺΧ""φ z-Ά§ lIxΨ²¬»ŽΉΡ˜«ΐ,Λ²ŒΏJŸpί·u4wΗKǟ‘‹€Ιΐtΰ;Ƙα–eybρ?""βpͺΧ""φ z-"bͺΧb{Š‘Tρ0ΓS `Œ)6ΖΤΑŸΫtπx'χ=™@^ΰώ. Ζ²¬·€o@χˆˆ8•κ΅ˆˆ=¨^‹ˆΨƒκ΅Ψž&°%%X–΅ ψΐ«Ζ˜Eΐk@…eYϋε@eY³OvίN^βqΰcΜ| ?πcΜb`>pŸeYυρψqΥk{P½±Υkqs΄ϋ_DDDDDDDDDD$y¨[DDDDDDDDDD’’&°EDDDDDDDDD$)i[DDDDDDDDDD’’&°EDDDDDDDDD$)i[DDDDDDDDDD’’&°EDDDDDDDDD$)i[DDDDDDDDDD’’&°EDDDDDDDDD$)ύ&αΪ•―Β²8IENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/linear_cyclical_example.png000066400000000000000000001655771465426447700271750ustar00rootroot00000000000000‰PNG  IHDR°MΡ›IosBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœμέy|cwy/ώΟ#y·dyΌŽmΝdfbOf³<Ω™„π+ d $)4…›”_ όΈ΄…½@/MJ—mI)΄ε¦@‘𲄀w‘„\:If’…Δςμφ,™‘νρ:–%ο–Ύχο9Ά,K²dKΦr>οΧk^3£εœ―ŽŽ=η{žG”R """"""""""Κ5Άl€ˆˆˆˆˆˆˆˆˆˆ(&°‰ˆˆˆˆˆˆˆˆˆ('1MDDDDDDDDDD9‰ l""""""""""ΚIL`QNb›ˆˆˆˆˆˆˆˆˆˆrΨ—ˆά$"'³=ŽL‘{DδPΔƒ"²mΛόWω‹΅nayχ‰ΘwΣ΄¬[DΔ—ξΗε Ζ«”—Ιx΅"ςSΉ;ΑύiέΎ©%"­ΩZ49'"oΚφ8hmgS^&γμδzœ]o"²ΕˆνEΩK2’?S”=Œέ)/“±{ r9vgϊx4ŸŽwσν;ΕΔ6Εύ )₯žQJ]‘1­7₯”C)u&Ϋγ ’Δ――rRκmJ©ώHOΥZ~Θ‰ΘoŠΘ³"2)"WxμE€KDΖDdDD‘–U ΪbggsΑzΕY9("Ώ»Ζe€-AU¨ΦrbUD~MDN±ΏDδ²8Ϋl$0#(ωΔΪFŸ»»s‘σΣZΎ dψ1ϊD’$~*Ης±0M9'ίΞΡ"Ύwd5άησί»Ό4 ΰο|!‰Ηp«Rͺ@3€n+ƒc£ αg5Yα½³ΒkΜ&©π€Ο¨π€οΗz¬RκΌ‘ΐt(₯Ϊ„όh½ΖK‹ψΩΘ_|ο(Eΰ΅ώΐΓ"R籩Λ/Γ6Ε}Ω‰qVχ“"βΏˆ|_DΚ"ξ‡ˆΌjΜvzVD<χ}ZDN‹H@DމΘoDάwˆ‘/‰Θ€ϋbŒΕ."ŸXΖΛ"²IDώIDξzμωΈροM"ςˆˆ 3°ώ1Ξk]˜ "ε"rΏˆΌfΌΞC"RnάχCΉhάώ΄ˆμNr[ΆŠΘSΖσ†Eδϋχν‘Ÿ‹Θ¨ˆ ˆΘg#žZ""ί6^σQΉ&βyΝ"ς#㡝‘?ˆΈ―\τε9—Dδ€kγ½^γq/εYa=χ‰ΘΓ"ς]pO2Ϋƒ(έ――’XOΒx%"[ύΑfόλ"2qwDδcΖΏŠΘοŠΘNxθ™^c‹ά "?1ΆΗ/EδςΫ|Ÿ±މΘc?»ΦΨΖφˆΗ½[D:ΗάΟb,»TDΎ("ηε=`ξ# Ζs‹ˆψDδEdPDϊEδ]"ςv9eΌŸxό’χDβ\Ά*"oπYο1ΆWg’qDSJ=©”ϊ€Ύ$; ”Š|\@Ξ”UΙGΡο«0Ξ2ΞζIœ‘2cL#Ζϊ_‘FωK7ψGcΩh<ώΛ’cρΈ±oέ”ΰ5~IΖ5yˆΌuΫΗEδ€ρο_‘WŒυ^‘ϋ,kΙl[‰š."7ΘβχJ§ˆάoYΟ9("a•cωX˜ΐ¦Tύ&€·Ψ ΐ#Έ‰Θ•Ύ ΰCΠg^ώΐ)5žwϊCαπgΎ+"MΛ½ΐώ2Ζzΐox;€*0 ΰAΏLλΌ ΐC’τΐkΆhπ½$^γ\ ΰυΠgϊϊμ=ό@€ΏπoI,ώΐ6pψcΌNOψOθb­ώOΔσφcp€y`mπ€Nγuύ€‰Θ­ΖσξpΉρηVqλP%’Δzΰ6Ƙμφ ZŒWŒWIΗ+₯ΤYγ4nΊ@Π8€7x*κ9Η‘“Ο3Ύ"bί ½lΠƒΨϋ D_ ύSθν\`/€W•R/π–ˆ‡Ώΐ·ΗΫΟ’}ΐvcΉ­ΠΫζOc%ΚFe:€χAοo7ψœˆlMb9 ”R ΰ―|ίΨ^ "_5~˜ΔϊγMe‘D_N>` ΐ'όΝj—Eq1Ξ2Ξζ|œ…~½.› χΗ˜RJύ €g|ΤXφGΗΏ3k<ΰ‡‘ΰ‹z‚q-ŽΗ\!"m·έe¬& “Υ~ΐ'"οJ°Ό˜D—Kϊ €Ώ0^Γ'όHβψ‹τ^θοšθύε9ί2–sz_J‰RκfγŸΖ6ϊΎŸόΉΛxΞnθύΝ\ΦtόH˜pή–¦:^‹`μfμΞω؝d,» ΐο@Ώ—%Ζc "» ―Ό{?τ{R ύžΕeL|xK“―wxX)5@όΖςvB§ά—h™q^W2οG<·ψτΆ{ΐΟ σΊ->ύ™MIΌοBΡ'ΉβΕθ―Oί ΰŒR*±ΘN¬£W‹ lJΥW”R}J©Qθέ^γφψg₯Τ/•R!£ξΡ €ΐ8kή§” +₯Ύ})οuΛνSJύƒRj^)5c½Ώ ΰ*₯N*­S)5’”z€ϊCθ`xP)5`,Ώΐ§”RJ©i₯TΒLF0ω€?TJυ―εY₯Ԍρ:Ύ©” Ώz€+‰ν6ΰ2ΝQγx€‹J©ϋΫJ©_F<οRκq₯T:P™ΕΧ¨WJ}^)5kΤϊϊΊρϊ}Pς—J©Q₯Τ_IbŒ±¬΄@)ύ‡ρήΖz…ρŠρ*Υxυ€7ˆΘFγί ύC+•Ï*₯^PJΝCΨηqwxR)υοJ©9c_yΥΈοAθ€1DΟΉ‹‰Ž˜ϋY䂍ππqcϋ -‘Ϋ$ž9θχeϊGW€/οϋQθ‰5ISJ}D)Uηgε%Δ]ξy₯0ΥψŸN€cΌ΄γ,γl>ΔΩ9θδE«ρΎ¬”·P₯Τwύi^)u?€R‘5„Wuμ«”šπΏ‘x0Ω; ZPJTJuΛυB_–ύ†d—α}7φ•°RκηΠ₯7ޞΔsΏ₯”:­”ςC'ωN+=cnΐ±˜ΐZ3>'ψc~Χ9 ?Σ‘όœ+¬btυαtŒ·1v3vηCμN&–}K)uΚσ"–u€+₯ž6ήηΟaρF"a1F τ6z”R=J©Ÿ+₯f”RCώ«‹ΡΙΌρ<£”ϊYDLπ΅xΌΎEβΜ O•RΚ“ FΔxΨjcτͺ0M©ΊροIθЁό‘ge ΟH5€ˆό7YΌi ΐ蔦 +¬wτίX~ΰ'β9―ξdΥAΟ8[Ά.Ρ—<}Aτ%OγΞEνΠ΄Βσ€εq>Ϋq?‹T 㱑ξπ#₯T0#£ΚŒέŒέω»“‰eρ–΅dΫ)}υΖ’‰qόΊμIτk CΟN†θSί‘^cίω.V£Wz?β‰ŽΙΓ1ŽΧΧ3N―6F― β)].@Ÿ\vω‡θΛ£Ώ}Fυ9₯THD^…ώ&•Δς/p$Ζ}ίpDD: /εψˆηl‘’Ύπ†LλŠ>‹xτ₯5o‚ώ’sΈυ:bRJ]π{ "ϋ<)Ίά$w¦-Ϊg•Rmqξο‡ώ"=jόsΤύ“ΠI ΣFΛκ•&±`εχŽ(Χ0^%`ρxυ€Ώ5–€CΠυϋ¦uid Λ\Ι,½΄Έ`₯zEδ9θ οΗ&„‰φ3Σ0τΑμn₯TοΗ™Θ–ΏGρ,Ϋ^"ς΄F{M)•ŽΛ‹ //­‚n C™Ε8›γμϊΖYcfڟψ3Ρ5œpΊόΗ’e‹wύΗΠϋηQ₯TXD’ίΧθρ€2ΎŸ¨‘½Π‰μGάχti·)₯¦Eδο?9’(ξ^π₯Το₯0TMW@—ˆCB"²ϊJžx>€”ϊ7θ}v‘l‚qBχr,ξΛ±–]ΰNΏο1cwŒέY9F^m,λ‡ή"R}%NBJ©K"ς€χϞRΚ|ύšΪ•R£’K<Ε«½RŒ^ιύH‡΅Ÿ…NΆΗς]₯Τ‡‘χΝm"βT‹eD:°xΕhZq6™ŠE781€zrγλ>lΜ©έˆΔ  ϊ1"ς;ΠgkSρ ."mΖς="R J)t­Ίο@Ÿi7Ο<½ΈΎ`Œ§LDnL΄γΜα7όθΒϊvyθΊ_NθK¨F Α_%;xΉSD̚K— ·GΊžW“ˆ|Lt£-§ˆ\ŸΔ"_‘!ΊΉƒ]DφˆˆΩΨα>#"Œυώ~Τσ_p—ρΌ·"ώ₯/+­‡(―ΐx΅Šυ¬H)Υ π}€§”ΎΔ|Ί^Όƒσn)Iv=Qώ ΐ›Dδ7E€HtΓ¬ΘK)Ώ LiπHΔνqχ³ˆΧ†ήίΏ$" €'(ΙΥΨKΕ«ή."5’/-ύX‚Η@_ήΈp ͺ”ϊ°5χbύYH^οit2Ϊf|NbΞ’έπς ±‰•ψw^1fcΣΚgΑ8»Šυ¬(qVDή("ν’kιŽC—0g Ψρp'€yθύ³HDώΛg—Εί’Έ‘L!t"¨:‘ΉξQ#y}t’-žWΌWtc±k /—7™WοάjΖMΡ ΔΦM…qω|/€χλψt²0ž%ΫYι"ρβΎΓH^ΐ£φˆΘνFόS^₯T’’PΏύΉϊ―΅ΌΖ<ΕΨ ΖξU¬gEY:F^K,{ΐ;D7J/lώσ!θϊw`i"Φ =γΨ/Ί>χ§,#Ρ±ρzεX}OD‹ώ.„Rjw‚ύaγ1§ŒυάkΌ?Ώ]WG±V")ΛΗΒ6™‡HζŸϋRy²Rκ%賑Μ{`4ƒPJp?tAόθα‡SίίAπ' <@yΔύΛ5/5‚q)ΕmΠMΞCŸ-L¦λυ'‘;§Ύ=Kλ―‘?+ί†Ύl§zΖΐσ)ŒZΏ‘ t»?TJ™ΕξίlŒσ"t±7΄0γ΅½ΊΖΣYθ³Μί€>ƒ θY&―χ=ˆνbψCcc~‹gΈS]Q60^-bΌJ~=Ιz Ί|Ζ…ˆ t“ŸX~=ϋΰ’ˆ §Έ.(₯ΞCΧςϋτ{ψ*–Φ–~zφΓ£ζe憕φ3Σ€ήǟ}Ήγ“XZΛ5Ύ=Γιœ1žο'x썿GD$ή6ηύПωέDj ϊΗ6@tητ›ŒΆ@—K @FΒΰlΌT0Ξ.bœM~=ΙZΧ8 =λμaθ}εΈ±>s|ΐ"rIDΎ]jδ?œ‚ήfΣXωϊTγΪCΠ³?5£τ#>/"θDν,γsΠ γKΠοοB’ΕΨο„Ύ$}Θ§ώίώΏg,wΊaΧ³ {€E_.›ΙΐH”ίέδνt“ΐ…™"ς€θ«x"έ =kӊW‰2v/bμN~=ΙZοcδUΗ2₯ϋ΅όwθΨΨ½?ǚΛθ&Ÿ•R‘3ψ ΐUΠ5ž‚₯K’Ε=6^ΗKάο‰’Ώ Sρ^Χλω€;ŒΨ ωmΡ3ΉM εW"֌λThDδfθ3t—Yτ`…ˆςγ₯JDNC_NύdΆΗB”g‰ˆςc7%ΒΨ”χŒKώΐ7ψEGDΉŒρŠR%"·C_’ϊ‹l…(0ΞεΖn"ZIFΨ"ςV9)"="ςιχί,"Ώ‘yΉ#βφ½"ςœθΞ^Iζ² Ω }ΙL€ΏΟςpˆςγuζ1^QͺDδ τ%v]₯Φέ=™eΦ(Ήύη§ι\₯γu|Œ³” βΔΦΘG›E0^'‡±›Φ“ˆό4Nό,Η–Ϋ2VBDt“ŒSΠ΅€Μ‚όΏeΤN2³Ί)Ζ'PJ=lάΎ€RJu‹H3€—μTJed°DDΖxMD”―‰ˆςγ5Qz₯Ϊ•6ΧθQJωtφ…€­”:gά·dV‘ΡΙόwŸˆ ¨‡>+GDDιΕxMD”―‰ˆςγ5Qe²„H –vlφ·₯DDPΰtšΖEDDK1^εΖk"’όΐxMD”F™œ½f"ΰ;ξŽUϋQD>ΰƒPYYyυŽ;Φy„DDkχςΛ/+₯κ³=Ž΅`Ό&"+`Ό&"ΚŒΧDDΉ/•XΙv/€Mw·%EDͺόΐŸ(₯žυ₯ΤΧ| ΉζυK/­~΄DDY""―eyŒΧDDI`Ό&"ΚŒΧDDΉ/•XΙ"/h‘­"Rΰ½$σDγρψΆΩΘ€ˆˆ2†ρšˆ(?0^εΖk"’4ΚX[)5ΰ£~ΰ8€(₯ŽŠΘηEd?ˆΘ΅"βp'€‘£ΖΣΐΝξ‘W?{35V""+cΌ&"ΚŒΧDDωρšˆ(½D)•ν1€/™!’|%"/+₯Ιφ8Φ γ5ε+Ζk"’όΐxMD”ϋR‰Υ9έΔ‘ˆΦfnn>ŸΣΣΣΩ (++ƒΫνFqqqΆ‡BD9†ρ:·0^Q<ŒΧΉ…ρšˆβaΌΞιˆΥL`0ŸΟ§Σ‰-[Ά@D²=KSJadd>Ÿ[·nΝφpˆ(Η0^ηΖk"J„ρ:w0^Q"ŒΧΉ!]±:“M‰(Λ¦§§Q[[Λ`D΅΅΅<ϋKD11^ηΖk"J„ρ:w0^Q"ŒΧΉ!]±š l’Η`;ψ^Q"ŒΉƒο%Β‘;ψ^Q"ŒΉ!οΨD”Q‡#γλ8pΰΎπ…/d|=‘<ˆgŸ}v]ΧID”IŒΧDDωρšˆ(?0^§k`Q^…B°Ϋν1οΫΏ?φοߟφuΞΟΟ£¨(v˜ ΈpαΊ»»Q[[ »έŽΫoΏ}ΙrήύξwΎϊj<ςΘ#1Χυw½ 6› »vνΒΐΐΰΠ‘CΈσΞ;a³Ω°qγFΌρoŒ;ΦχΌη= φω|xΟ{ήƒώώ~ΜΞΞbλΦ­1Ÿσδ“OβΨ±c G0\—šWDTX――‰(?0^3^Q~`ΌΞxΝ6­ ₯>σ™ΟΰCϊΠ’Ϋ<ˆ'Ÿ|Ο=χ***pΛ-·`zzPVVΆ¬ΞSii)ΐn·c~~>ζΊΜǘλMUeeεΒΏχτG„ύϋχγΰΑƒΈοΎϋb>'γωηŸGYYYΚλ#"Κ%ŒΧDDωρšˆ(?0^―ΨD‘μ™ΑLΉυΦ[ρΉΟ}ΏύΫΏ ‡Γήή^ΓοχcΓ† ¨¨¨ΐ‰'πόσΟgdύ7ήx#|πAά}χέΒΑƒqΧ]w­ψ<Ώί––ΐƒ>Έp»ΣιΔψψβά·Όε-ψ‡ψ|κSŸΌϊκ«Ψ»woš_Yγ5γ5εΖkΖk"ΚŒΧω―ΩΔ‘ˆΦΕ[ήςάuΧ]xέλ^‡φφvάqΗxλ[ߊωωyμάΉŸώτ§qΓ 7ddύ·ί~;άn7vνΪ…χ½ο}Έκͺ«ΰrΉV|ή}χέ‡;οΌW_}5κκκnΏνΆΫπ裏.4-ψΚWΎ‚—^z »vνΒ<‘ΧAD”iŒΧDDωρšˆ(?0^―¬f:y.Ίζšk”Ydœˆ΄γǏcηΝΩFΞ0k0ŒŒΰΊλΓαΓ‡±qγΖuC¬χDD^VJ]³Ι"Ζk’ε―—bΌΞ ŒΧDΛ1^/Εx―‰–cΌ^*Ϋρz­±š%DˆΘ2ήρŽw`ll ³³³ψάη>·ξΧDD”Ζk"’όΐxMD”ς=^3MD–qπΰΑlˆˆ’ΐxMD”―‰ˆςCΎΗkΦΐ&"""""""""’œΔ6Q+”:χ…€ο%Β‘;ψ^Q"ŒΉƒο%Β‘ρ>0MTΐΚΚΚ022Β ”RAYYYΆ‡BD9ˆρ:w0^Q"ŒΧΉƒρšˆaΌΞ ιŠΥ¬MTΐάn7|>†††²=‚ώu»έΩε ΖλάΒxMDρ0^ηΖk"Їρ:w€#V3MTΐŠ‹‹±uλΦlƒˆˆVΐxMD”―‰ˆςγuaa """"""""""ΚIL`QNb›ˆˆˆˆˆˆˆˆˆˆrΨDDDDDDDDDD”“˜ΐ&"""""""""’œΔ6ε$&°‰ˆˆˆˆˆˆˆˆˆ('1MDDDDDDDDDD9‰ l""""""""""ΚIL`QNb›ˆˆˆˆˆˆˆˆˆˆrΨDDDDDDDDDD”“˜ΐ&"""""""""’œΔ6ε$&°‰ˆˆˆˆˆˆˆˆˆ('1MDDDDDDDDDD9)£ ly«ˆœ‘ωtŒϋo‘_‰ΘΌˆάuίέ"mόΉ;“γ$"²:Ζk"’όΐxMD”―‰ˆ'c l±ψ'o° ΐo‰Θ¨‡p€‡’ž[ΰ^ΧΈΐ½"²!Sc%"²2Ζk"’όΐxMD”―‰ˆ+“3°―Π£”:£”šπ=οŒ|€RκœRΚ υά[ό\)5ͺ”ΊΰηޚΑ±Yγ5Q~`Ό&"ΚŒΧDDi”Ιv € χ·eϊΉI{ω΅KψϊΣg½Ψ‚τΤ©!Œg²=Œœ7œΑS§†²=ŒΌp¨{ƒιlƒ΄œΧ‡{†ρη_Kχb ώ^Dpf>ΫΓ°¬PXα@gζBΡΏE‰"ηγυ“ΗππΛΎt/–ˆ(ίδ|Ό~¬³?ρφ§{±g>Ə½}‡UΆ‡’σŽχγΔΕρl#η…Γ ?φφ!Δ}*%yέΔQD>("/‰ΘKCC©' uγ―~zœ?τWΰŸœΓ=ίzτ žζδΗ”d2έ `SΔέΖmi{RκkJ©k”RΧΤΧΧ§<@Ϋ₯€#½ώ”Ÿk%ήή1(t^ΰvZIη?”ΊΈO%t€ΧPXαΥ cΩ i9―Ϋ[\ΞΜγΜp0εηZI§ρ™βvφκΦ’:ϋ²<*PΉ―έ.\ΒθOζ‘₯ε|ΌφΈ]8Φ?ŽΩy^5–Θ«FδδΕ@–G’ΫΒa…“œΊ€Rœt”Θ©½/ΰ>•ŠL&°_Π&"[E€ΐ{HςΉ?πΩ`4+x‹q[Zyά.@—ΙΖDΌΖφ9ηη% „Β GϊτΆςrŸJΘλΣI60匜Χ›ͺ𳡒Nγ³υΚωK˜ΰΥEYρŒqς“۝ IDATΰΉΣ#,“D™σρzαψš'σ‰ΘΪς ^Wcv>ΌL£ΨΜίάN‰]Έ4‰ιΉ0&fCθσσ8‘ξΰ’Ώ)9K`+₯ζ|:Ππ₯ΤQωΌˆμΉVD|ξπΟ"rΤxξ(€?‡ϊ/ψΌq[ZΥ:JΡR]ΎπƒŸb3φδl§‡ψ‹ητP“³!‹ΫŒb3“<`Κ ω―/―w ’ΔΞφ Ί|~”Ϋ1RxαlΪίZAίΨΞ Mΰ½ΧnBXu%)νς!^οiΡ l/―²"" Λ‡xmžpδρu|α°Z8!{jΉDNE$c»ω?!s_κδvJEQ&”zΐγQ·ύiΔΏ_„Ύ&ΦsΏ ΰ›™ ƒ6vb^Ÿ»›«p΄oΖ°½Ρ™ν!ε$σύέΝUά§VΉOy}ώ…»”=Ή―ν6ΑžfO8&0 γHŸοΎΚ‡_φα™ξaΌqGCΆ‡e)fι–{nά‚W/Œα@g~ηΖ­Yš\ΧUeΕΨV_ /g`‘ΕεzΌή\SκŠbtυŽ؜ΙUε­s#LΟΓU^Œž]CD²=¬œ91­g0ˆ[ΰοX”Rθ1ΆUχ`α°‚ΝΖ}*yέΔ1<ξjœdΣ½8ΣθχOγ]{[ΰ(-bb6―ΟGiή΅·ύώi^:Η₯‰YœΔ―{šΰ*/ζluJšΗνΒ±ΎqΜ…Xv&–ξΑ ¦ηΒΈnK ΫRƒΓ¬ƒ½ξχ £ΞQŠ+ΨΏ·―œΓ…ΡΙl‹hέuΈ«ωύND”γDν-.φΊJΐΜάΦΡ„‰ΩzΗ¦²<’άΥ=@³« uŽ–ΖH ί?‰Ωv5Uar6„>?χ©dY>έΑΛf2λƒοέ\=-UœM“€·Χ=-UΨ»YΧκemυΨΜK°φΊ«y₯€ένΒ ΛΞΔeƏۅ[λpr ΐiλH)…Γ=ΓΨΧZ ΑmžflζHΦΤήβΒΐψ Ζƒˆˆr™ΗνΒɁ¦ηBΩJNςϊό(+ΆαννMX³8‘SA΄5:ΡΪΰ@7KcΔΥm”y{ϋΖ%§•Y>½Ϋ¬ΣΗY"1uϊό°‰.‹αqWγx›ξΕ2;ΖρΎqxάΥΨέ\›θmGΛ™Ÿ΅έ-.0QJ:άlδ˜H§o Ξ"l©­ΔMmuΐYΨλθΔΕ†ƒ³Έ±UoϋM5Έjs5c›,¨c'ˆε»‘°Β±ώρl%'y}cΨέμΒ¦*`b6ŽPXατPΫhkp’{ ₯TΆ‡•“Μϊΰo3NŠτπ€H,Ÿΐv•c[]%°γθς‘­Α‰Š’"xά.Μ†8ϋ1–SΜ†ΒπΈ]¨()B[ƒ]<)“ΧηΗΆΊJΈΚ‹yΐD)Ή¬ΆUe,eOW―νnl6Α¦*l¨(Ζ‘ξ‘lΛ2Μ“ϋŒ“°Ώ£'.ψ½I–³«Ι»M8A„ˆ(Η-4rdγέeζCaν‡ΗνBuE κ₯K’σ£“˜™£­Ρ‰νfζ10>“νa倞Α j+Kpy½uŽRžIεΨ€Ύ, ‘ε”Rπϊό _jζμG6Q[Ξά&ζ62Kcπ¬γr‘ϋ˜("λͺΖ43Βρ~}Ψl‚Χ·ΦαPΟγΠ:y¦{—ΧW’ΙUΎpΫ―{šaΰΐ«œ…MΦR^bG[ƒƒΗΧDD9ncUκ₯,CΟPSs‘…ί¬Ϋ ³gi)s²ΖφF'Zœ8[=žS΄68m –IΨΠ—Ν\ŸΖ λτ-Ρ;6…‘‰Ω…€νήPŽ Επ²ΙΓ2ή ~l¨(†{ƒN\xά.ŒLΜ²ΙC”Αρi\ŸF»‘d[8`β\J’ΗνΒΙ‹,;νDs!΅―`_kΖgpzˆE™63Β gG±―΅nΙνυΞRΌώς:θμ㉲³‘#χ}"’ά%"θΰ„Ύ˜ΜΌ‡9A€­Α‰ξΑ Βa~―E3ϋm ΄5:ŒΫψ$šR έƒΑ…mΤΦθ@Λ­$ l°‘c<‹ Αtΐ΄»«yv6o―νξjˆ€ΕmΖFŽK™Ÿ1σ3'"π΄ΈΈOQ?φ΄θώ2€.!°4F,§ ΫGDŒFŽάNΡΜYιm%D°_N’˜ΐPQR„νN&£x}cΨ±± ₯Eφ…ΫΪ[\FΣ=n+Σ±~?Ba…φ–Ε€li‘;6Vρ€H”NŸΫ(/Yά§Μ&ΞV§d4ΉΚPη(a-ώ(^Ÿnΰh^bΊ±΅ϟΕ\(œ₯‘YΓ3=Γθp»PUVΌμ>Wy1ήpE=~μνCˆ—œ’…\±Ρ‰»ΗBDD9ΞΣb^‘ΞxmZθ/³iρ7~[£žΨΗFŽKΝ‡Β834ν‹[umg–ΖXΚ<ωΡΪΈ4ΝΩκΙaΫΰq»ΠΥΛ¦{¦pX‘«ΧΏδrtθΨΔΩ4ΡΚbΫΖdξS¬‘₯){Ÿ2˜ΊzyΐD+39ς„Η’ΙΩytf§GΊ©΅Α™yΌΚF©㟜C—olYύλHϋ;š1˜Α/ώ¬γȈ²«€Θ†MN3εΈZG)ZͺΛ―#œΌ¨ϋΛtD_»Κ‹ΡXUΚΩ²Q^Δl(Όΰ€ν ψ§ζ0diŒHέƒATW£ήQ @φj*KΠΓYύIaΫΠξΖθΔ,λτ΍L 0=Ώ,ΩΨXU†6έ[Βλσ£ΑYŠΖͺ²%·{ά.¦ηqnd"K#Λ-ΎKS˜]hΰh2˜x%Λγv‘‡egνGXaI#Σλ.―…XF$ƒž;3‚°BΜϊΧ¦7νlDE‰u²ŒY‹Η]#<™OD”σ:6±‘c$σ·iδUΦ€ƒΝζ„K™₯BΜ"ΐβlυn«%Ίhkp,ΉjΆ΅ΑΑ}*IL`ΨΘq)oTΗHw5/ߏΠι‹»ξS¦θŽ‘α‘叻GϋΖ-2ίLβ_šd9'"ΚM·‹Ώρ9ImωρuUY1š\elΊg872‰ΉΒφ†εeB[œ˜ΕKcΠ3՝eEhp–.Ήέ,·ΒΩκ+c;‚‡—ΝΐB•Xe1Lž6rŒŽ-ρg>šΫΠκ₯iΜΟT’$[;9R ΜϝΥga›q8Q ΨΧZ‹žΑ .ϊ§ΧcX–+<{zϋZλ–ΥGŒηϊ­΅hp–β1–! ρΈ]˜™/4y²*σϋΚκ'^‰(w΅»«qq|ƒγΦ>^τϊΖ°±ͺ U±ϋΛ΄5:9[ΦΠml‡θYΕ@δΜbk›N ΠΦΰXφ»AD°εV’Βv„ΦzΦιtBΔYZ„­΅•qγq»ΰ»4…Q 7έ Ξΐwi*aRvkm%œ₯E–oΪyΑςb;ZλγΟRτΈ«10>ƒ‹0QrX‹_σ^πγ²Ϊ TWΔΎ Δt£Q£ω0ga§Νρ‹γ˜]ΨΆΙ°Ϋοπ4γΰΙ!ψ§8 “¬a±τœ΅…8›ˆrΩ—ΘκeDΊ|ρK_ΐφ]#dρ³€NN‹θžΡΜ²"έ,·@—i‹1SΠΫͺ›'EVΔvέt―Κς ‘^?φ΄Έ`³ΕŸQΦΞΩκ ϋIΌ²`³ φ΄Έ,?KTοSU1›‚š9Z|[Qr\εΕΨZW‰N‹ΧMΧγΗ Σ΍U¨­,a‘4:ԝ|ύλHϋχ6c6Ζώ^ΜΔ°ˆrΞ–Ϊ 8ˊ,]&,V8;@ΟΐVŠI"Κ=»›]° Πeαίψώ©9œžHœΐntbf>Œ £“λ8²άtj0€M*P^b_vίΖͺ28K‹XzςγΘΔlΜZα€.·rirŽεVVΐv]§ΟΊMχfζC8ή?Ο¦Δ—£··Έ KΧΘςϊόφ΄T%|œg“ ΗϋΗ13oΝ¦]σ‘0Žφωў Τ μj²ό₯¦½ΕeιŽΓΑτŽMΕμΝfΌΎ΅‡z†™8I“C=Γhkp 1Ξε₯ρtΈ]Έ¬Ά‚eDΘ2D‹— λ bj.„MU˜ )L°‘+ε ς;Ά7:-=ϋH“Τg31Ϋ=ΐφ8IYAk£ƒυΒ±Ψΐ±-F©`±ά χ©Δ˜ΐŽ±Ι…ιΉ°ewœ“˜ ©Έ MNv)†ΧηΗΆΊJ8ˊ>Γ]ΉΒΙ‹ΦΌ$€{Πh ΊΒI‘Š’"Λ0Qj΅&°£l©­„³¬ΘΊΙΖ c¨©,{CωŠυΈ] X³ιήE43 ΅ΐqo(GMe‰eKctϊόp–ᲚŠΫξΖ₯Ι9Λ0Qjveg¬ZWΥλσ£΅ήΚ’€ίR]Žmu•8Τ=”α‘Ύgz†Qd\Ώ­vUΟίήθύN`²ˆv‹7rτϊΖ°§Eχ"ΨΘ‘ˆr—Ηβ}‰Ό+4p4΅5:,U£ωϊγ5&€VΞ, _k£"±ϋΜ‰ZΈO­„ μ(6›θΊͺ Ψ]½~£ΎuόŽ&3°[±‰Z*³ŠEτ>eΥƒ³‹s’¦ &6r€TT”‘­ΑiΙ„ˆRΚ8ΐ^9EΊ±΅Ώ<;ŠΩykφyH—Γ=ΓΈrs5Iž<ˆεΆŽfΌόΪ%ψ.±ΎfWκ%–ό~Ÿγxξκ…}cœMD9jΗΖ*”ΨmπφZοψzΔμ/“L»ΑΣCA„ΒΦ½rψΤ@6Zγ”Ε"k;[{fqχ`0nωΛ­¬Œ μ<ξjœΈh½¦{“³σ85XH"dW“ v›X²‰šΧη‡έ&ΨݜΈ£©ΓνΒ©¦,Φ΄gf>„Η“N²]±ΡiΩ&Z[Ÿp΄ZΩ™~4†ƒ3+Φ–Ά―­“³!ΌjΑι269‹^?φ΅Φ―i9ϋ;šu²Œ>έΘњ₯ηN^ `6†Η]sΆΕ/₯&’άURdΓΞ&§%Kτ-ΦΏ^ω·k[£3σaœ΅ξD„ξΑ6ΧT ¬Ψχ1-Υε¨,±[Ί‘γΨδ,†3 K­zV?Λ­$Ζv fΎγύΦ:Kt΄oa•\ΐ¬έ₯ΈΣ7†νΞ„Α:’Η]°ŽφYk[οΧMA=IΦθ--²c‡E˜huΫCYW WνΉΰ*/†KˆQnkw»p€Χ°Εf{}ώ€ϋΛlg#Gœ&lΰ,–Ζθ±πΜβžΑ•K­‹ΝA{†¬»­VΒv f]c«Υ,N¦γn4O‹υšξ)₯ΠΥλOz¦:QnΕbΙ~σ3δΩ”|™E˜hu< uU­υΩςϊό(² v6%wˆΙU^ »šΧΰPΟ0₯E)—o‰eG3Žχ£Ηβ—U’5tlr'σΗ³=”uΥεσcCE1άΚa· ͺʊYB„ˆršΗ]ΐΜ<ΎLd{(λΚλΓευŽ€JΔ-”Ζ°h{v>ŒsΓ+Ξ*€Φ§εύ@βR+@δ>ΕvE«WZdǎU–Ϊ_tΗ±…dPͺnl­C(¬πόι‘4¬π™ΔωΡIμk][ωSCUnΨV‹}–Ί’‰¬©ήYŠfW™₯&ˆLΝ†Π=\rΜX]QΒΨD”Σ.――Dy±*λxq|C™€K_ΐφF‡eg›―{₯²ϊ1zfqϐ5·UΟ`­ Ψl‰s"6Λ­¬„ μ8<ξjKΥισOΝαμπDJe1€Ε¦{]ϊ1ΥλGI‘-©³‘:ά.œž°Μ¬Η‰™yτ SΎΜΎ΅ήςb»ε’ύ΄z· ]*;σΪΘ$Ζ§ηSŽΧ¦+7W£ΌΨŽΓ,#’2³τΚΎΆ΅5pŒ΄Ώ£ηF&-Ω™¬ΗγΆΤΥhΗϊύ…Υ’c‘ ΕΈΔ6ε°"» {Zͺ,ulb&λS)}Ή½Ρ‰3C˜…35¬œΥ=€M€mυ•+>ΦΜ›X΅4Fχ@mI”Zt™«n§d0G‡ΫZuϊŽτ&ίq7RI‘ ;›«¬5ϋΒv6U‘€(΅ΉmX$1»Ψ4΅$[‘έ†έΝUL`SΏe’³]½c(² v₯Π_¦­Ρ‰ΩP―NfpdΉιΤ@[j+“*gΨR]޲bΊ-8³x|zΗ§“š©θνΗ§αŸβqB,L`ΗΡn±2 ‘.™1yZ\8;n‰Ω‘°Β‘8šΜmk•Kg½ ₯VR/sΰq[뀉ΦΖj½>?JWqH€}­u834Ύ1λτ/X«PXαπιaμk«K©,J\ΕxΓφzόΨΫo‰οQ²Ά…Ίͺ½Φ8ΎφϊΖΠXUŠΖˆώ2,!BDω c“ ΣsaΛΤxφϊόΨޘZ³‘9ž $=«Ψ,aΕr+ζlκΆ8šΚ­X0ٟ &°γhp–‘ΙUf™„H—ϏΝ5ΨPY’ςs=n‚3σ83\ψ³Ο11ZURvCe 6ΧT Λ2?Ϊόhv•‘ήYšςsΝ&+ž₯₯Τ΅58PVl³TΌήέ\΅¦&‚ϋΪκ€eDRp¬oc“sΨΧZ—φeίΦь‹γΣxράhΪ—M”KΜ“ωV‰ΧΊ!ΨcƚΚbLΜ†0;Ο“τD”»ΜΨe…ίΊΏŒ›R›€Φj$­’δ7ΝΜ‡πΪΘdJ“iΪœ–LΚφ “Mφ›Ϋ΄‡cb;φλ4r\MG“ΗB]Šc] šŠv·Λ2Ν0ΌΎ±UοS‹?p Ÿ’΅Σeg¬―Ca…#}Λ"©Ί’Ρ‰:GΙBMgZΩ3=CtΜt{σF”Ϋq “eD¨°Ή*б₯ΆΒρz|zg†&–5«Π“E8 ›ˆrΩe5p–Yβκασ£“πOΝ₯ά ½’€›jΚ-7³ψΜΠBa…ΆΨ­ τϋ§°H?0Sχ@₯E6Έ7T$υψ– FΉ‹IΨ tlͺΆDΎαΰ zΗ¦Vέ¬΅ΑŠk4έλκυ£’ĎΛλ“;ƒ­ΓνBοΨF‚3iYnρOΞαάΘδͺ“l[j+-sΐDιαq»pΔegzƒ˜œ ­ϊ$šIDpckχ C)–­HΖαžaμΨθ\ΥU%+©()Β›v5βρ~Μψ>LδqW[β˜Ρμyέlƒ‘ΐΎTΰΏ/ˆ(ΏΩl’₯[ ^›Ώ9Ws|½½ΑiΉd£™°ίžδ¬bύXsf±΅ΆUχ`­ ΨmΙ•΄Ϋ—Χ;x%zL`'`°BοΎΫε[]G“έ&Ψc‘ُΎ1μiq%€’-ΜV/τ}Κx}«ά§¬tΐDιΡαΖτ\=C…ύeΏ–ΪςΡφ΅Φa88‹“›5²Σs!ΌxξRFf_›φw4γδgΕSΑσΈ]θχOc00ν‘d”y¬={CE1`t‚3°‰(·yάΥ8qq3σ‘l%£Ί|c()²αŠ©χ—iktβΜpΠRΊ‚°Ϋ[λ’ojnΦvΆZbΆg0˜tύkS[ƒΓr‰ώd1ΐbΣ½ΒNΜvϊΖ μYEGS»Ϋ…£}γΈηBaλ_φC${Z\Ό^Fd-MAMν-Φ8`’τXhΌ[ΰŸ-―ΟGiΆ₯pΐ™Œ=ΤΝ„ιJ^<7ŠΩωπBνπLΈy{ͺʊπΨ«,#B…m‘jŸ€φϊΖ°©¦|Y–!’|αiqa.€pΌΏ°';tϊόΨΥ΄Ίώ2Ϋ˜ )Ό6RψύΐL§ΨR[’δ^nͺ©@I‘ΝR /ƒ3σθ›J©Τ  OŠτŽM!83Ÿ‘‘ε―Œ&°Eδ­"rRDzDδΣ1ξ/‘οχRDΆ·‹Θƒ"%"ΗEδ3™g<Υ%Έ¬Ά’ΰ°»|~\^ο€£΄hΥΛπΈ]˜™tύ§SΜΜ‡—] š Gi.―wόlu―o [j+ΰ2f­F‡ΫLΉ"ίγυΦΪJ8K‹ ώ„£Χ7†=-U°­ς*HΝΥεΨV_ΙΏI8Τ3Œb»ΰΊ-5[Gi‘oΫΣ„Ÿ½ˆι9žΈ£ψς=^οi©‚MPπeΒ:/ΔξW°‘R±„QαΛχxmώξν*ΰγλPXαH―ΥεTΝVjδΨ=L©#`Νζ,κΦg`›?m‘m•¬Œ%°EΔΰŸΌ ΐ.Ώ%"»’φΈ€”jπ%mά~'€R₯T;€«|Θ ζλMΧι+ά€­”B§ΟΏζzͺ˜McΦk\Λ l@'ϋ½½ώ‚;Ϋεσ£}%¬pΐ”+ !^Ϋl‚v·« K>ΝΞ‡qΌ?–ς!¦›ZλπΛ3£Όa‡Ί‡qΥζ ¨\Γ‰ήdμίی‰Ω~qb0£λ‘όUρΊ’€m Ξ‚ώ~IΠ_f±6g`²BˆΧΝ2ΤV–τ Η3CΊΏΜj»^TͺTͺ IDAT^ο€ z"_€ιΉ^™HyV1 KcX©^Έ9Ϋ|5%DλμS©Θδ μλτ(₯Ξ(₯f|ΐ;£σN~ΐ―‰ˆP*E€@9€Yγk\žϊόΣ fΣ½‹γΣΞ¬9){Ymͺ ΌιžΧηGUY.«Mƒl<ž†3Έ8^˜΅‡3θσO―ϊ,ΆΙ L9€ βu»Ϋ…γύ…[vζδΕfCα5ŸpŒtck¦ζBxε|α&’ΦjtbGϋΖ±/ƒυ―M7l«E½³XF„β+˜xνυξΙ|³ώu{Λς„HY±εΕv–!*|y―Et_’BžΠgώΦ\νoΧς;6m¨°LbφτPa•ZGΣφFzΗ¦0a‘=ƒA”Ω°Ή&΅όΡζš ”Ψm¬ƒC&Ψ-.Dόίgάσ1J©y~΅ΠΑ{@?€σΎ¨”ΝΰXγZlδX˜A»σBμι©_n…=[έλƒΗ] }L±zζΆξ,ΠZ½ή4ΤΏ¬qΐ”C "^wΈ«1R8Q egΜς(ž ‘ΥΊαςZΨmΒ:Ψ <{Zo›LΦΏ6Ωm‚_ooΒ/Nb|šε(¦‰Χ.ŒLΜ’wl*«Ο8ο?Dϋ3DΫPQΜ"D…― βu»»=ƒΑ‚M:z}c¨,±c[}κ YΣφF‡ef˚‰ϊTKˆ@kƒ~ŽU³έƒAl««DQŠ΅Υ‹μ6l«―΄Μ>•Š\mβx€€f[|BDΆE?HD>("/‰ΘKCCCˆΩt―“E6Α¦ͺ5/ΛγvαδΕ@AΦ αδΕ@Zf>ξjͺB‘M φ€ˆΧη‡mMAMž?`*9―ΝΟ§·@ˈtωόΨPQŒM5εi[fUY1:ά.ΦΑNΰPχ0œeEk>)—¬ύ{›1;ΖGΦe}d)9― »τ\WοXΒώ2Υ%œMD‰δLΌξp»VΐΡΎ¬\°“q^Ÿ»[\°―‘ΏL[£g‡'0;NγΘrΣ©Šl‚-΅©7”o3fm[₯φ©ΐͺJ­zŸκ²ΖvJE&Ψ½6Eόίmάσ1Ζε1.#ξπŸJ©9₯Τ €Γ‰^RκkJ©k”RΧΤΧΧgΰ%•₯Eh­wl]Υ^?Ά7:QVœ|Ωx¬pnd"M#Λ]§‚ΨZW‰’’ԏ‹/«©@±]Π=Xψ3‹'gηα»4•rύkS[ƒΎKS˜œεDΎH™ό5φ"€6Ω*"%ή ΰ@ΤcΈΫψχ~‘t1Όσώ‘J78‘Α±&d–Ζ(΄:}J)x}~tlJΟ¬²…Ω4˜μ_hΰ˜¦Ϊ³› ³φ£R ]½ώ˜5W£˜rLAΔk³μL!Ζ ©ΩΊƒkξWΛΎΦ:„πά™‘΄/;ߝDοΨnZ‡ς!&ΑmΝ8Τ3Œ‘`aφί 5)ˆx]ZdǎUy5Ϊΐψ †3 υ lž4$*p―œehr•δδ«SΜΞ‡Χ ΰgŽψRꨈ|^Dφϋ΅"ΰ|ΪΈύŸ8Dδ(tΰ–RΚ›©±Δγva88‹~a5έ;?: Τ\Ϊ’M2Τ9J ²άŠΧηG£M²΄,―½₯ώ©9œLΛςrEŸΓΑΩ΄)δ¦\RPρΊΕ…S‚;[}¬ίPX₯΅£ιΚΝΥ¨,±γ0ˈ,σŒQόΖuhΰiG3Ba…Ǐ\\ΧυRξ+€xm6r ‡ λdΎΩ― =ABDΧΐζ l’BVHρΊPϋ₯k’Zkƒ6Ρ³“ ΩΤlηG'J¬F[£Γ%DΜYζ«/!b–[)ό“"©Xϋ5ώ (₯πxΤmροiwΖx^0ΦνΩβ‰˜Ϊ\ΎΪ£ΩΦ™ζYΕ…άΘQ7pt₯ν}s›wϊόΈlυ£r•YΊ!΅b υ€)ΧNΌ^(;sν–šl'mŒQ΄b» Χo«eμχ £ΩU†­uλ§wlt’­ΑΗ^νΓϋoΈl]ΧMΉ―Pβu‡Ϋ…‡~yηF&ΦΤ<+טύev7Ηο/³‘’ώ©9„Γ Ά5Τ]%’άV(ρΪγΖώΐ?9WEqΆ‡“6^ίͺ+бΉ¦bMΛ)+ΆcsMΊ |φι‘ ”Z]GS[ƒ?ικΗΤlε%k/c›«Ίƒ(Ά .«]έΎuYm%ŠlRπ'ER•«MsΚN£ι^‘Υισ^CI‘ Wl\}Šζq»Π3TXMχ‚3σθ ¦uζγ()²‘«ΐ³ή^?Šl‚ih jςΈ«qnd’υy))‹' +^wυϊΡΰ,ΕΖ4]νΖΦ:œž€οRa]²‘°Β³§G°―­.νuΗW""Ψίь΍’olj]ΧM΄^ ΅τœΧ·r™ %+`|šΗ6D”ϋΜγλB‹Χ>?Ϊ[3I­­ΡYπ%DΜΧ·}3°•ΙπBΦ=ΐΦΊJ―²‡N±έ†­u•θf{ &°“PVlǝΧ)έΫλΗ¦ͺU¨bρΈ]P 8R@_nG{ύP θHγΜΗb» »šͺ o ;šΣΤT¨L” UeΨXUVp³φ;}c™}m2k<³ŒΘ’#½~ψ§ζΦ½|ˆιΆŽfΐ½lζH…©­Α²b[A•ž3{¬4ιaC₯žΑx‰'η‰(xŒ’£t|==Β©@Ϊ&©motΰάΘ$fζCiY^.:5`Ξ*^ύ•‰fMθB/Ρ=\¨ΎZmτψvJΨI*΄FŽ‘°Β‘^š;ξF3,…4ϋΡ|-νiήVnŽτκΊΆ… ΦMAΣUSέTˆL”Y£j‘ŸžΓ™‘‰ŒΤΏ6΅58Πΰ,Ε‘6r4™%U²•ΐήRW‰· :™ΐ¦ΒTd·awsa• ;?:‰±ΙΉO8VW”λ`Q^pUγ²ΪŠ‚šΠw΄oάθ/“žί۝…ΞnΣ½΅Ξ*ΖeοέƒΛξόΎοΑ›x]’ϋΑΨΣM½FtΟJΪ‘Fκ–¦'qj½©μ¦ΚeηΉ΅Άσ¨΅+›rβM6[IΦvͺΦUq•“MΌNΌ.ΗνΡt€ΡJ#±₯i₯μΑf?>‚$.ήο›?ΐ φτπΈχžžOU—FΝnάΣχώξοώΞοχύbOc;‹+υΆVxΰ˜Ž2AΟΆK¨ΤwS€Wx»K"~ΉJOΆcΌzy³€R­y¨ΑΜqpΫΝπΉ†ͺΨ[1)XΰΆ›ϋϊΉaΏ ₯Zs`Ζgžn—―4ϊ^d¬Fœ΅Τ .GY"S.<Ξ!–£³Mžhιχ&ΪσBp5ΰƝ₯Μΐͺ—ωD—&œ}ύ½πfd «9,Θs‚V₯9EΒ~ k"Ν–ΦKι έ‚ Λμ"/`s864―+ωί―)kΉΫv5‹Σωc›ʘ »lδΨ­p έέ’€εΝΑέι^ΐξ’ΠsFŽƒ€,]Ροl mΰ7Hr1…FχM«WΎ7”θ ω]΅γΟQΩDtP€Œbx­œ„Πξ4ή.Φpo=§θqX \kβOwp50ͺι:ތL‚π.l…Q[㜳GΨ/ Roai@6ibΙξόe†­\B„Γα°EΨ'`M¬`3_Υz)}!ž1ζ0ΓλμO£Βτ˜ :‚5r,ΥXΩ.cζ„²€,1ΟύύmΑh…{›"ƒ.· Ό€έ%3^Μέ@m&½"οα)O·JΘΐXdΆTΓΣ­ΒSύ/ΚNΩa3ιgSdE„Ω ;ρNγ~Dόƒ•0q”EήD”IX2 πFl&Es•λ`wψΩ“mԚ-ΝδCdΌN >~7£kΌKX!ψyΥ–Žτά€θ`G“έωΛΘ"ƒ+s8œΣΑž/Ρ`δΧΡd ΆoΪΉQΫΐ9ΚEΩ“8Κ<<έ*¬4Ζb*½Žΰά ΄ΒΰœΫ ½Ž t±ΏWx»KŒzf'ΣKŠ˜σ Πλϊίu Wyωί Dη£^G0η­ήψj³“ύ5• w©ΑH˜8ΚⲚJ§/–οΎΪΕ ΗήΡ~>ΝάYΚΐ€Χαση΅νΐ€–7‹Έ»Ζ;γ•€w_kΛωQfbπ|oΆ$άν_Ζi1@―#\›Γα0ÜO!γέ|₯ŽεL±οSΦA―}`΅ei”“JˆmοA–ΖH€ 87j…Ιp²ΊˆΩ ΗΩQλΐ^Sǁ°{ μwaa}Σ½Z£…{λ9Ε Αζ|ƒ#!δSΏ ϋά[Ο‘Φ`[ϋ±Ρlaa5§ˆΤ ΜN:‘„‰£‘ΩΪ*T‘ά)+ͺύMj «9HRύefΌ<ΠΞβD*“^‡s£Φ–<±=¨KιBί¦ƒ;τ<^ΐ_@©ΦdΎ…1•G­ΡR¬Ψ( qήmCt…ύnšθJηέ6CFE>?μw‘Φh1?jτh³ˆr½©Ψ¦ˆΝl@ΐcΉŽςDό.¬fΛΘΨ–‘_”Ί·^δjΐJ½…_>έQεx4’)Tqo=Χ‘Tњa› ―έx+ΊΖ 69IxJΐύυͺ Ά_ψ{υ—Ά™Έ„‡Γa ΩΘ‘uω­~8Κ½Žν,^Lε1=fƒ‘ΣΦƒ,Qm4ρd«ˆ §?R½AO·JΜηHύ‚°{ £ΣΗxM C°°0Œγ«’’…£Hηšbϋ\E;ŽJ^S.ΔWEζ&Ž:ttϊΏ·δΨRh δE>?= ƒŽœj‘Ÿ<ΪΝυ―ŸηΖΛ“X+ψΕ³Σ»±ΐ\Β>κM 7Ψή̏'³°φΰ/3l5b§Θ;°9;D¦d 5¬‰­—r"b«’"ώ2²>τ v/¦ }‘[γq¦ˆ–ϊΥν΅£Ω’π$SκΛη±/`χΐ΄Ϋ»Ωΐ|±1–ΜΒe5bjdH±c„|ΦΕ yvnι|λbEΡΒΡΤΘ\VγlŠda70ν>™QΑa„ύƒ‘0qΤaVΦι€{kzΜ‡E™)±› ψΤΧ©.`Ο'6α΄TΫ4θ†―]‡Ε¨Γ͏ΈŒH?˜Od˜ΞO=γ]Άσλhώ2.«‰k`s8¦s£ψδΧJ4©wΫ Χζ§«_€Xm`5[ΖLŸΊŠΑ•Ζθh…χ±ΜM‘γΐ Ψ=ΠΦιs2_lŒ&E„|ύsάݏΘϋςςΪε‹Bς ΜΏ΄Ε“"ζ|Nθ0•ιL@ €4 Gyμ»:}μo8ͺcΰψΨνΐ>…q–Γα°Λ₯ ' :Βτ»λv±†•ν²"“ΓfƒηF­"栐HχΟΐQfP₯1–RyθH{3£LΩ #Θnυγΐ Ψ=ρ»p=Ο¬ι^₯ήΔb*―xAD6έ‹1,#[‘#ν‹’Dό.,¦ς̚=Τ-ά_WώšΊ4α€QO˜Ύ¦8κΦιcWvfC¬ ―ͺ¦-σZΠ IΪ“8M<Ξ±&V¨ΡΏ~ž‘IlkΈs Ώ—~ςήΓMδ+ ܈Lj½Ξ.ςf>Λs²ΏL7Ž2ΓVvJufŸQητa1κρ„ƒi‰>₯ύefΌ$¬[ξ(—%RϊΑ Jc$œ΅Αb쏼ŨǙλ@κ…^ΐ_@­ΩbV§οξZΝ–ΤwΗέ±š zLw«Η’Y=XMEς hΆ$ά]Λ)z₯xΈ‘G­ΩRόš2τΈ8Ξφ5ΕQ—ΆμLλŒΚΞΔ:Ϊςκ°Γ~μfΓ©”Ή³ϋoΎJ‘ώ΅Μ—/ŽΑa1p‘r3Ί†›‰*sNΫψp1•G©ΦΠz)Η"Φ£#Π–©5Z(3ΪΐΐαpN'!ΫFŽς΄ΟœBRqA―O·KΜ6§νG"•‡Ι ΓΩΡώΙ…ͺ4F"]@ R+π8ξ<^ΐξΉΛ”U]U₯wχ#μ˜ν~”$ ±€²Ž2ΖΝA£ͺ^SνŽΪV‹½kŠ£>ςύΛκ½KŠΠλ.O¨[ΐ6κuψΒτ(ζ§―€ύγDώα!œ΅j½”O`6θρΩq|χξΖ@½©I±Ϊΐ»χSΈ‡QΟS`šω]hI`v3?–ΜB2βΜHχ±cΨΪφ6Ψ)q#G‡ΓΏ€\₯'[lvΞF“"¦Ηlp*δ/3γ΅C’0P³‹©.ŒΩϋ*―7ˆ΅F O2EϋΨ©΄»ΥgЍsA^ΐξπ†­FfΗfβI‡γ‚Eρc…§\Ψ.Φ°š-+~¬~³š-c»XCXAύk™qΑΓΜτ55l5Β?¬œ)¨LΔ/ _iΰι6› G]d>Vu°c«"fΌ ™ϊ3‚Φ W£xΆ]Β3F_NŽC£ΩΒO—·p5ΰVΤ#β$άxyωj?|˜Φz)Lςξύ*υnD|Z/…σ‘Ξ†#£ρz·ι‘—Ψ1l3vŠ\›Γα°C˜ρζ«ψjVΡΖ«οΰu'RωΎΚ‡{ƒtžžlΡhIξς~τΨQoJxΊUμλη²/`χ!!Ώ‹Ωμ¨BŽ»ϋφ±ϋ2"―9¬ΠhΡ‹„ύΣΧTΘοR₯ΰς±0qΤΕb”egΨ‹Aν)¬j1θEd θΣ$#[‘―4¨––ψβτ(άvnFΉŒΘqΈωΡ& >{vXλ₯p^ΐγ΄`άiaςω^©7ρ0•ο9ΏΆΆ ΨYށΝαp"θ΅ΓlΠ1™_§r€rU„̯ύΪ`Π‘ι,ΞWκX+Β|? xex)ηύ–ιΘ­ ΠΉ:.Ό€} "~‰tε[#ΌωJΛ™’"Ž»ϋρ’lΊΗΰΓ-–aΤΌ4Ρ@½aΏ Λ™"ςΆ^bΚ΅&ιBOš'aΖk‡ΕΘfΒΔΡ†Άμ {:}+ΫedKu„§΄)`_³cάiιhBŸξμJ¦Π\ΐ6θuψfhίΏŸfξy‘5ΩR ?JlβΝΘ$t}ετ_`rνήϊΏŒ―·όΪ·;Ήφ`ƒMΩ‡s:1κu˜t2ΉαΨρ+P0Ώ6t8οΆ LaV–B φΉ( ΄ίνŸ 4F"!ύ/`_π΄΅Ηεš: Ό€} Β~š- χΦΩJ²Vs$υ ΑΜ=.M°ϊpΛβ„fƒ:£ϋaΏIjG,qo]D³%©Ά)bΠλ0;)0yMq΄AΦι{ʘFlU=mωύ „ΰJΐ;2§Fs~~)ƒΩI'FvΗϊiεΖΛ“¨6Zψή½”ΦKaŠΫ ¨7%܈Lj½ΞDό–3EˆeΆ6gdC°^ ">Χ.O8q{aC‰eq8Žb„ύ.,¬Ά7οX"–Μͺβ/3γΣ=ΉλW‰μ ΧŽFkp€1ιΌXa1φ·†d5ΰΒ&/`σφ1 ΐΡΆ ΨrΡO­b#„|νn– ­–„xRTt΄θEXΥ“ο΅6E€φ5΅°šCc@vj9Κ’γ5cχV,)Β€Χ)’,vΛkA7²₯:³¦j½P¬6πΛg;ΈJqχ΅Μ§Ο ΓηΒ[\F€'n~΄†i· ³“N­—Β9€Πn.΄°ΚZ~-Βm7cάΩ»ΏΜυΠ8~ρtλ"{~1ητφ (Χ›ΜF“"‚»βώ2A―ΟΆKΜMμοΗb*³A‡©LŠ»eΠ€1–RE:ՁέM‘Τ`lŠœ^ΐ>^§^§qΦμUώα!U»Λ"~ςΥž0΄«φd«ˆ|΅‘jηγˆΝπbŒ]SρU^§ήcΌ΄—ΘT;az΄ΙΞ5Εю―fƒŽΉ±τX2‹K“N˜ Ϊ=¦_ Œ8:Ψ?{²zSκhΣ !oF&ργD†›ΏuI*WΑϋ·πfd’ZƒN»ή)±U‘ e…&οπ.l‡Γ,6_I’„xRYG™―’<€ŽΩΕtzδΧ.ŒΩAH»s™uΝ–3ϊlΰ(τΨ±œ)žϊ&>^ΐ>&ac*8ΚΘϊ­,½ŒΘk ©|"»Z½,Mf{Φ|<)rΒΔΪύΗΡ†=>vbP«%aa5§™£ŒΗaΑKγΜ/mjΊ5˜Od`2θπΉs#Z/₯+ތL Ρ’pka]λ₯0Α·c됀Άό ‡^†m&œ±2• ͺ <Ϊ,;gΌ0fΗKγ܎σ6‡Γa‡i· v³©ό:ΉSΖN©Κ;ώŒ·έ…»8³‰T^±‰Π!“ώᑁ8OOΆJ¨7%Ε:°;jVvNχΔ/`“°Oΐςf9FL”Ά‹5¬l—U•€ΐXΫt₯bc4™…Ε¨S,ψDΘ/`e»ŒmF:κr•:–7‹ͺ8ʜ΅Αa60υ‚ΛΡ–°ί……5‘ΎεL…jCυ ΗύΈpγηOvP©³?yw–2ψάΉαΎkΦ)Εε '.ŒΩpσ#.# 7£k˜σ9qaLέη:§wB~©‚H<)B’NζWpmn?ΊtΗ•q8Žrθts>ΆΌδz„ΨgGm0κ σ¦{ΉJλbA―rωӌΗΑœΝ~,νjž+UμzeΉφ‹ύ'°IxŠ->YξDν‚ˆA―Γά$[ςρ€ˆΉI½Ί·‡όέ°"M#_ϋς½ 턉­kŠ£-aΏ€R­ΙΜߞCΊ6ŽΟs5ΰF­ΡΒϟlk½ΕHη+x°‘Ητ―e!ΈραgOΆ±!ς’Χa<έ*"Ί’ε捌ρ XΝ–‘)T΅^JWΔw wOΡw=4IήΉΛ»°9;Dό.ά_Ο£Φ`C Ύλ/sq\y£^‡i·ωbcΗΐQ!Y xνXήd_C>W<6E>?°Ϋ\9r+'°Iˆ1>Ω!}Nƒ‘τ_ΐšΘDPj4[XXU—φΎω»’ŽΤŠΧTΨ/0•0q΄eΟx—{ΛjSΡ-ϊΚωυd u°²΄x-0¦ρJzγΖΛ“$p3Η#ΟΟ·ΒΌ€Ν²,+›ΤΡ€Ÿkn»ω؟τ:πΨq+Ξ%8;„όjΝn°Q€&³Έ4αPΝ_&θ΅c1ΝΖΉ9Ή―€©|Πγ@­ΩΒ³ν’bΗPƒDΊπ¬&ƒ"Ÿo70)X’[ύ$τtχBt„nߎΆιήΤΘ3c3Ρ€ˆι1œ£κǎψ]¨Τ[Lμ%Tκ-U eœ#¦Ηlˆ2ςKf15’)¨LΨοb*a―χ˜vΫ™ι‹&³˜›1Kι›Ω€OƝ.`Ο/eΰ²qy’­ΫεΌΫ†OΐM^ΐ>”›Ρ5Όrn“!­—r <^ος „‘xRμΛtγυΠ~φx›y6:Ο9œΣ Χ{Dς%κψΛ¨ψŽ?γu`e»ŒR­‘Ϊ1ϋΝbͺ€!c[§Z)‚YœH—  xH0Ύ)rRŽ,`BώBˆ“b°ΰ!δΏR~iτφ»ΨI°WΥqάݏŽ4ηJ^£VΪ³Ώ«3ŽJ;±€¨Ί¦ΊL§£–„IMxΌήŸŽNς<υf χΦrTθ_ΛΌpγξZŽ}ώ^$ σ‰ \pS±aΠ+7"“ˆ―Šxœ)j½*y°‘Γbͺ€7)4oδρzμf.ŒΩ™hΩ)Φπl»Τ—\θzh- ψ—αp¨ƒΗλύρaΨjdβ9STέ_F6rdΉc6‘Ξ#ΰ±C§`Ž,Kc°|žš- 6 j₯zμXJΠbΔΧI ΊιΐΎ,IRΐΏΰ6€σώEWΕaŸ€δN[”λτ₯r€rUM€ΰάι ΕΖh2 ‡Ω€s£ΚhEΘ' •«"EΉ‘ΟV‘ŠδNa)9abαWexΌ>€°ί…ϋk9κegSyT-MdŒβJΠ I~ςhπΊ°m±‘«0₯ύ<ߊL€p3ΗΈωΡτ:‚λsγZ/e?xΌ>€°O@4)B’θ~A‹υΡ_ζ’ׁi· ·ΈŒΠή\άΐMS³πx½„„ό.&ήρεwF5›―δb&ΛFŽ‹©Ό’Ž@{ΪΣηΒ"ΓzαΟΆK¨5ZŠw`=vTκ-$wʊ‡fΊ)` !F΄φMI’κθΞ(UB€΄wυΙΊ―‘)m ":aΖU>–lλ_+ΉΛxςwD»VοήK›6Ψ„¦& T„Ηλ3’ΣΧ1pΤθήڏ°O€Γbΐ|bπ Ψσ‰MΐkA6 ΨΒ>wn7£«ΤϋΤF’$Ό[Γ«F1z}bαρϊΒ~™ΎzY¦ IDATB”oζΗ“ύσ—!„ΰZh?}΄E}cŒό«_$ρωίώ@Nώp˜„Ηλˆψ$”kM­—r(±€ˆ!£ΎΣν«gG¬0ιuΜ9Šε:RΉͺ’ϊΧ2A―½c‚Θ"ςw¬xΆW–[aσšκέ°wOΨόˆr@NΙE±ΒœΟ Bθ—Ζˆ―ŠΠλ.OhΧΡφ»π`#‡jƒή‡[΅ΡΔƒ u΅±^δςD[χ6Nω¦H<)‚φ= aF&•αρϊΒ>yΓ‘ςΝ‘€§Ε€³£V­—Α Χα‹Σ£ψq"3pEω₯-œ±bj„žσέ+oF&ρh³ˆϋλ§7™έW²XΩ.γF„>ω]xΌ>€πΤκ έΉP4)bΪmƒ0Τ™λ‘ ΄$ΰ{χR}ω<–ω7’Φha…qS/Ξΐΐγυ„ύ.4[ξ­Σ―cΙ,ζ|NUεβ z¦ΗlΜvο8*_τzμx΄Y@“Qi YΏ[ι ’ΐ˜γcΗ;Yΐ–$ι“$Ι'Iu©ΝS_QamΤγ°1νΆQ/cMŠzμ2ι5[CΨ/ ή”π€βμλyΤ›’¦Ϊ³C&=‚;υFޱdΣn˜‚Κ°’0© Χ35²+;CyA$–Μ"μwΊτ˜_ Ί±š-γιΦΰκΝή_ήΒUF»―eύC―#άΜρފΑdΠαλtΚ‡πx}—'œ0θυž ρέ©½~qyΒ‰³£VάZ8έ:Ψ™Bο/oυ’zœΣΧΣρ%’8Ώ7[Έ»¦M“ΪŒΧΑ¬„ˆΌξ G…lΥF Ι6ί3–L ΨΝE#Xπ8ΜLw«Ÿ”nL½„JΉ½ϋ/ψMΕWΖΚe $IB<©£Œόp£Yn₯ŸZ†'!βw!žΜRέιKŠΤ\S4'LjΓγυΑΘ:}4Η J½‰‡yΝcΠ~ΘΡσKƒ##KfQ¨6p•Qύk™Q»WnΌ]£ϊΉ‘&Ν–„oΗΦρ•‹cpjΈΡz<^ŒΕ¨ΗŒΧAu~ΞU°‘«τ΅ BΑ΅Ή όd)ƒlιτJg|χn r/`sh€Ηλƒρ:-π:ΝTO'RT-Mςλ―«Ω2ŠΥ†κΗ>)‰tV“>אβΗ ΘŒfι<*H­νM‘%.!r( ΰ;δΜES©±FΨ/ ―bC€3ΑJξ”±Sͺ#¬‘ώ΅ŒΟ5„Q› 1Š΅c+YŒΪLͺιΓωμ”κԊσoˆ€σUΝ‹lrΒDϋ„Κό1xΌ>°Oΐb*O­μΜύυ-IS£ƒ8οΆaR° ”φ|b „_œΥz)'ζFd«Ω2~ωlGλ₯PΑΛ[ΨΜWq#βΣz)‡ρΗΰρϊ@"SmοZ7e’Ώ‚ώζBΧCγh΄$|χˈά^XΗ™+τ:‚TŽλs¨ΰΑγυ„)7rΤΒΐQFΦD^bPς!‘* 豫β &›²(ΡjIXJ0£’ΎzΐcG"] 6?Ršn ΨnI’ώ%€H’Τ@ηΫΏ„v!­A[^—¬ͺνξGΊeG­Gχ#Œ\S! ŠlaΚ;j5€ΗλCϋͺegδψ¨υζΠ~Bp5θΖO—·˜Υ§{‘ω₯MΜM Ά™΄^Κ‰ycΦ ³A‡›qΈ]ƒΝ€Ηλ—„Ο±\Η3J5γΙ,tΈ<Ω_/O€x·γλ}ύ\VΨ)Φπ“G[ψfxcv3οΐζЏׇφ Xή,"W©k½”}‰&E8,œΣΐ_F6@dQ{1•Wά”PΖa1bB°0ix™ά)£Rou •&θ΅£TkbZ₯馀]$„ŒbΧi—ςtΎύkΐμδN₯…ΩxR„I―ΓΕqu‚Οa„ύ.$y”jτΠ”j $y*:/Ž;`λ¨Ύ¦ :‚Ω>Ώ΄Ϊ& ΰρϊδϋ›Φ΄XR„ΫnΖ„`Ρz)ϋr%ΰ†Xca6 Υ>|–e^ZΖa1βυKΌ_G£Ωz9šRk΄p{ao̎ΓbΤΞϋ£ xΌ>„ŽL₯ρ:š1γuΐjκ―ή%!ΧC˜_Κ@,ŸΎάζ»χ6ΠlIψfh^§©<οΐζPΧ‡ οšΖW³kΤ€vfΔ “AΗ\g±Xͺ#―ͺbΰ(#w³FbWΞ# ‚V8°§IΞb±ΏtSΐώΫnΈ@Ήΰπ[ŠŠ!d>š»e/M:a2tσU+KΔ/ %wΧθ3mΎ»–CKκ(θq0tΈ4Aχ55γuPQ =a―a\°ΐγ0S\ΐΞ"BΑΘA ’φΛ[h΄$ΌΖΈώυσ܈L"S¨α§»ζg§•-nB,Χq#2yτΦ―αβΈ&ƒq s!I’_›–Ή67ŽzSΒχοŸ>‘[ρ L av Σ‚Τ)ν0γPΧ‡φνz]Q˜_WκMΎVKΒΒjσPњPΗtΎ—yMύt“? !Ώ€…Υu\ι—Ά^ Qœ0iΧGφ Tnͺ ,m¨‰AϋαΆ›qiΒ9:ΨσK˜ :|ϊμ°ΦKι_ΎθΓl8υ2"7£kΆ©οηρϊpŒz.O8©μΐNξ”±]¬)&₯φς” “‚·βŠ|>­ˆ₯:ξ,ep}n„Œ;-Hεy›£=<^Ξ°Ν„©‘!*}‰:ώ2ΦCfΌvζΜ ε‚»Z²ς±Κυ&V³tϊ€D"U€Χi†0€Žiψ°Ν·έΔά5Υ/Ž,`B~ΐ―ψ €Oψ«»ΏwΤίΣψ#Χ\ήύ{—_ψc ΐŽ$Iΐμώ]€?πK’4 ΰΛ¨£ ϋ]Θ–κXΩ¦λf[ΞQ¨6¨)6zL*]Šγ«"& <:ς‚°ί…B΅εLQλ₯|Œ•ν2²₯:R+0²›0Ρ*·’6<^MΨοΒςfyΚdg€= |ZΉΕ/žξPk„Ω-σ‰ ^9?BΕ$IΏ°υxcvοάέ@΅Αφχs\J΅Ύw/…k‘ υΪOžΧGρ Έ»*R§»/η±JMνBp-4%6©{V)Ιχξ§ΠhIΈšxfdKuTκ§3žqθΗλ£ ϋ]T6ΙρZžΪΥ‚―«Ω2 UϊdT"‘*ΐfΓηR혲\ kΕKι|Gλ\-Ϊr+luυχ‹n²ϋΟ=χλ5ΐ.ώή+–$IZ–$©ΰ_ψK/ό™ΏΰΪύοΰuž~@L’€(H’΄%I΅Ω˞N]»Žς.hDΓ€ύ"aJcIzΊŠ½"m;ΩSPŠΞνΞΧ*ΓγυΘΧ.mir\€ΉΗPkΆπ³'ΫZ/εΨ€r$\ ω™/O"_iΰ‡7΅^Š&Ό{?r½Ι‚|ΐγυ‘„ύ.kM,oυ2Mfχ—ΉG­ΡŸ?H+v ΪΈ_‡Ο5ΤΩπ8ΫM%ιΧΑζhΧGρ Hξ”±U λ~ˆpΫM˜ΤΠ_F–|`I³x1•GΐλPUΦ00Ά«νΜPaV’$$ΥδCd‚ιu jЍ„Θo=χλ―£½λΨΝ7δ°ςάOξώήΎfΧΝW0 `€Dω!δ—„Ί‹γi†¬ΣG[±1–a5ιqaLέκ0Β~gŠKτl ‹ε:gŠΤtΐ…1†ŒzκŠύ±d&¦ 2a “πx}4΄9F“Yψ\CpΫΝZ/εP^97“^‡; λ`Λ(΄KL‡+F1b3αfτtʈάόh γN ^97’υRŽ„Η룑ΥΘ1Ά"β₯ Με&8>55 ―ӌ·cλŠƒ&r•:~œΨΔ΅ΉρNΑd|·€ΝeD8ZΓγυΡ„|»ω5u "Y„|ΪϊΛΘέΉ,I>,¦ ˜QΉ(+Xπ8ΜXdθ<­‰”jMυ Ψ^;ς•R§pƒχ8σ•Eηϋ½0Έ ΰίίύίΏLyύΕ?Dω„Ώ „όΕζ¦vέF²Nm‘X2‹ΩI'τ:z Αδ—‘…5zΞ•l’D+ zζ|N*7E.M8©Ν– ’΄uΤRΧ/0b3Α?LŸμL|U€*ĐIΟœfZϋΞR£6.;΅^Jί1θuΈΗχο§PdhT΅ˆ₯:ή[Lγ[α θ(Κ{z€Ηλ˜³ΓfSeδΨφ—Q>^λtΧζ&πήβζ©Έ—Ώ?…zsO>Όr;Η ΨκΰρϊB~„€ͺόΊΨρ—ΡΆImjΔ ³Anj‘γN±†L‘ͺΊ,Π.Μ&’‘ΏS-$DΆΊΥϋE7ΨoBnξώϊ6€‡ώMŸ½ `κΉοίύ½}ΜΞ“` νέΙI’”‘$©ΰΪ;C’€"Ig%IϊμΨΨXKRް_ΐE:}υf wΧrTu{Ebš$h”ΕΪ;ΩwΧr¨7[Z/Πά}iSJσρΈΜωœ „ΎŽZ-ΰρΊ;h3rΜ–jxΊUBxŠ{λ έΈ·žC†Α©I’0Ώ”Α«7«EΞ#Ήρ‘Roαέϋ)­—’*οά]G½)αΖΛLΘ‡πxέzΑ¬O ͺϋρVωjCΏ‚ksγ¨6ZψΑΓΑ—Ήίΐ„`Α§ž“=τ:ΫI"/`s΄…Ηλ£±› ˜vΫ¨jΎZθψΛh›_λu‹Œf΅0p” zXJε™‘ΖXΪνj !°ΥΥί/Ίi£ό_ό―»Ώ~ΐ―H’τ έ}ψ9€ !δ€)I]BΘO‘Mώ)€QBΘ€Ώ ΰwvξ€?D;θΰ—’$½έλ?NMδ=ZΊ@γDhs)Ž―ŠT<Ψ^$L™‘γ^‘Ύβ@„²kJ+xΌξŽp'^ΣqoΙ φ#…·O€Σbΐ|‚=£@YϊδΚ8ΚθtoF&ρ£Δ&²%:6i”&―৏Άp#2©©Ξe/πxέaΏ ΅F‹šΡλXRĐQ€ ώ2zΑ7fΗρη(Χ¨υn;1ώ Z£…λΟΙ‡!^§…Kˆp4‡Ηλξϋlζ«ΤθςF“"& ΖΪϋΛ½v¬‹δ*τψ€D"•‡Γlΐ„Ζ—ΞbF ³‰tAυξk ύ| zX:…"†ƒ~@ΙΨoϋŒ$I:RDfv‰i· vJdDnFΧpiΒ‰€GύqΧ^αρΊ7ΌXᲩ˜˜i4[Έ»¦ξΤή+ηF0j3αΦΒ`ʈ”j όΰaϊς!2§…šnNΞιƒΗλޘtΒ #TΔk±ToϋΛP2e-Λq° #’H:w΅Ά™ΰΆ›¨‘P=Œ\ωj €V€v±_,Χ‘)œŽiK™Ϋ!BΘω—’‹b•°―­Σ§΅ι^₯ήΔÍ<5;Ž/2λk»ΣPlŒ%EBοθ~ΨοΒƒυ<*umGGλΝξ­η¨”Ϊ “^G¨Ψ‘―¦-;£} Jη*ΨΘU¨I°»ε΅] –dD>|–E©ΦΔΥέύ€ΆŒΘϋ·Ύ{qe»„Ÿeq#Bχυ~πx}8„„|މt•z  w zޘǟίOiž *Αl’R€|ˆΜψ„-šΊœΣ Χ‡c1κ1γuP―c» `΄Θ©ϊ‡‡0dΤc‘ςΒμV‘Š­bMG™€ΗŽ  eφδVθ?WύδΘ6!δ!$ΰ1€χ<p[αu1Ixͺ­ΣχpCΫ‹θώz–Dm±Ρn6 0f§’ΨKŠŒΩa3¨¦£)aŸ€FK―©‡yΤ­ΞhmΘ  ›"ZΒγuχ„|ωͺζΕ=9Ιg­ϋμ¨>Χζ—2Z/₯kζ—2Πΰ‹Σƒί ΄ε4$ ψvl]λ₯(ΚΝh»ΛόΝ[ς <^wOΨ/ΰaJϋΝ|yΣSm£Πλ‘qkMΌ·ΘΞ†a·άZX‡ΫnΒη΍μϋs―ӌR­‰B΅‘ςΚ8œ=xΌξžφτ°φFŽr~M‹±³NG˜(ΜΚv- efΌ$Ν―‘£uΊ5+`{eΉΊ7EϊM7Ψΐ,J’tΐλήWtUŒB‹‘γ^A„Ξb#Π^›Φ.Ε’$u€Vh%sv˜E]s―»$μw‘Ω’pw-§ι:’I‹ηFmͺχ Σ£pYΈ¬Ν¨r­‰¬&\B„£-<^χ@Δ/ΰξͺˆfK›‘XR€_Ζη‚Υ€§V;S¨a§TοHxhE[Á%Š%D΄6p” ξj•Ÿ¦.μ# Ψ’$ύw’$ΝψΟLxςβ+cΉpΣΘlΟq—ξb#Π~‰idδ(8²pžδ5jΥY,_Λ΄w`ν5.h˜0i Χ½ή½·΄κκ‹&³0κ .Žk›(ž„«A7κM <ήΦz)².–ρh³xκτ―eΝM@G€› Vφ͏Φ`λπυΉq­—r,xΌξ_€$ «ΪlΔD“"Fm&Ljθ/s=4Ž\₯;θŸz9ŠΫρuCF|ρΒθ‘Φλ΄p ަπxέ!Ώ ΕZΛ›ΪΥbΙ,;lfΊόetΊ]ΝbJ ³²΄‰ΦΨ€lxYΠlJφ(δsΠψ\Ιtš»ΥϋM7Ψ2iΆx”YϋŒ;-pΫ΅Σι‹&³˜,sh'Όί-aΏ±\ΗΣ-υ]ŠŸl•«4˜θ|s˜1)X4Ŋ%EŒ9Μw?’Φ8a’―»ΰβΈ&½N³x[qiΒΙtWπη΍ΐdΠαΕ2"σ»k»<μ1‡WnΌ[£φE Wš- ߎ­γKΗ ΅^ΞIαρΊ d#GΝ6σ“YΝ½@έp˜ Έ_Χl ύ Ϊhβ{χSxγ²ΖCδCdΌN3/`shΗλ.ˆt|‰ΤΟ―eZ'‡ƒ^΅"‹Άφ5AbΉŽMJ₯1ΣCFŒΩ΅­ΉMΨLzށύ<„”ςCί0 ΰ―K’Vza¬"λτie _₯7`ΏHΗΘQƒs%Ώ±s\ρU΅‰­ŠˆPnΰ(‘ΐTKxΌξ “A‡K“NM "­–„…U‘‰Ι†Γ°υψάΉaΜSlδxg)·έ„‹$δZρfd+Ϋe|¨ΡtXΏωΩγmlδ*,Λ‡πxέ##6όΓCšδŒΕjKι‚ζ9£Ω ΗW/{ρέ{)Τ›μʈόdi ωΚΡς!2^‡).!ΒΡ―{czΜ›I―Ι»λšXΑV±Fm“ΪŒΧŽΝ|ΩRMλ₯|‚ΕtN‹ !;”ϋ—RΜxνšΧG!xΤΚ(A7ΨSώ¦$I³’$ύ=I’ξ)½(Φ ω<Ϊ,  ²ι^ΆTΓΣ­B”μ™ρ:`6θ4‘[‰%E˜ :͝c»%δπd«±€φc‘Ϊΐ£ΝR+@;a²šτ§ΩΘ‘Ηλ ϋ,¬ζΠRYvζρVωj£#cΒ2Wn<ΨΘ#§―CN’$Μ/mαJΐ ŽώM8₯ψΖά8LέΐȈ܌Αjγ«—ΌZ/ε$πxέ#aΏ ΙσύξZ-‰)΅ksγΘ–κψι#vεwߎ―Γa1ΰJ—²N^Α‚tΎ’ϊsšΓy―{@―#˜υ št`Λu…₯Mjra–Ζ.좁£Cσ’,@·4†$IXLη5Χ —iΛΠwž”’ μΏ#IGj,fPˆψ]€=\΅Ψ3£3`ΏˆQ―ΓεImLχβI³“ΞFi 3:»ͺξ‹ΫΒ)h˜rSP½Ž`N£„ιwώΏώα»‹ͺχyxΌξ°_@‘ΪΐrFέΗ!‘{λ0^ ŒhwΥΡΖΓT™B΅λBΙ β΄ρ•‹cx;ΎΞΌG@­ΡΒν…u|ν²C&vεwxΌξ°ί…•ν2Ά‹κvΙEsD~ef 6“·Ψ”©5Zψξέ |ν²&Cw9ΈΧaF½)a‡ΒŽEΞι€Ηλή‰ψά[Ο©>-[aΤ\š £Έψ"36]³’$a1UθΨ΅fΜa†Σb ξ<ΐV±†l©\9Π§ IDATΉ£ Ν]ύJΐFυŽ1δ7r±qΟΐQϋ»[Β> kκšξ5[ΦΨ‘ZφΎS΅‹ύ©Ζ©ϋ*'L­–„·γλHηωˆ+k„;Ίͺκή[Ρd£1:’Ÿ“py —ΥH₯ŒHGϊ”°ΰFΔ‡Ν|ο/Σ·ΡΠ σK›Θ–κLΛ‡pއœ‹ΔU–‰%ELxΪ{XŒzόκ%/Ύs7…ƒ2"?]ήBΐυΉξδC€Ά‰#lpl‡B~jn¨[€Œ%³Έ8ξ Φ_fR°ΐn6tLia3_…XSaΰ΄₯1fΌ*;‹»έσ΄Lςw;ΑO‹6/`+€Ϋn†Ο5€zht%‹s£VVv Β~J΅&©hΊ·”. TkR1 Ϊ-‚Υˆs£VΥGg£I>ΧF56(θ…π” U•¦§Ϋ%δ1ε|œ€G–QΏ 27)ΐΐΘΘaθuW.Έ1ŸΘPg8Ώ”Ατ˜ “!­—’9―_ςΐf3/#rσ£5CFΌΣz)•™“}.T–ž“ iα›‘qlkψΩγm­—3·γλ°› =™κz…v;Νu°9fΠΒ—¨Υ’ΫΐΨΥ,φΨ©“‘ΧCƒ£LΠk§²(›H·k AJ$DΛ­(ϋoΞ”φ šHˆΠ°χ#2₯ώÍ5G™Ά‘£ΚΧTRμ|G¬ρ«ί‘Υ/=γΣ†^G07©j£ΩΒ]Ζ¦@ŽβJΐ\EΥΝΘ£¨5Zψ`y›w_οb1κρΖμ8n/¬£Ϊhj½œcQ5ρέ{)\w-?ΐœ#¦Ηlͺ9Š₯:žl•¨ŠΧ_šρ`Θ¨ΗΫqΆdDκΝΎsw―_ςΐbμΎ;RξΐNρl‡ΌX! UHg₯‘hΖkοAiA–κ ₯«Ά‹5lθΪΌL€ p˜ π:ιhπσΉ†0dΤw:Γžύ+DΘ/ΰΩv ;*ιτ₯σ¬‹ͺ:DΊαΌ»νR¬fρ(–a70νΆ©vΜ~φ X+ΨTI¦b§XΓ³νsEY9aR󚊈°uԌ]qz#δpwM=Ω™DΊ€J½Ε\Ό>ŒΧv»ιξP€ƒύα³”λΝS―ύ<7"“ΘUψΡ"}r/έπύ)”jMΌζς!§•°Oέ Gy3œ¦x=dγW_ςΰ;w7˜΄`y;₯:υ c»S€\B„ΓaBΒ~ΡήPτ"3^2…šκ~‡‘Hηα²;ρ–diΪΊΥι<‚^;f— Σ΅»ϊiΫQ ^ΐVΩtO­.Ў!E"έ …ι^lUΔœΟ ŽŽ Σ-{Z½κΌΈΕ:¦ τΌ΄uƒ S|5‹Ω‘ƒ8„ύͺ–jF!{S lέ[‡15bΕ™+~œ §0:Ώ”Ž_Ό0ͺυR¨αjЍa«7£lʈάόh ‡ŸŸζίιi%μw!•«ͺ֍νxΠ•__ #S`KFδΦΒ:¬&=Ύ|±7ω“A‡Q› ).!Βα0EΨ/ΰa*J]©/VŠ‚9.¦ ˜ρ8¨)Κ{έΰK”f—…Žl-=vށΝ9sΣ=uŠΡ€f'ͺ―ŸD¦\ΈΏžC­‘|χc­ΡΒύ΅s…~ ύέκˆzr+ρέkw–!G™°_ΐ’J S£ΩΒΒjŽ)σTΞΗιl8ͺtoΕ’"f΍²5rWnΌΏΌE±ΨόR‘)œv|!”Ζ¨ΧαZhοήK‘Tkh½œžΛuόπα&Ύž€ž± hNP[z.ž©τ—ωΚE,FήY`CF€Ω’𝅘𝅥𝅮όκK½Ι‡Θx€y6‡Γ!Ÿ Ν–„{λ9UŽΗJC‘\`§ΕΘQ’$,¦ςTΙ‡ΐΈΣ‡Ω@•Άσv±†L‘F•V8Όvlδ*ΘUκZ/EqθΎ»F2βΌΫ¦Zgq,™Eΐc‡ΝlPεxύ$δPS©ϋραF΅&›£ϋ6³]ΥM‘i· Β]/mέςΉΠP)aZΪ, \o2§ΞΩγμ¨N‹AΕx-"δ˜›9ŠΧ‚nͺNΗ’–ˆε:’+YΌΖεC>ΑΘ$Κυ&ή½ŸΦz)=ρ»¨5[Έας!§™Λτ:’ή4Z2‹…M6³_žρΰφΒZ Ȉ|πx [Ε‡z“‘ρ:ΝxΌU€Ξ(˜ΓαLgΓQγ]–Šh+Μ¦σUδ+ ꊲ„ΌtuΛ›τu`·Ώ;M/ϋ /`+ˆZFŽ’$!NΉγξaΘݏj=b»FFΟUΨοB,)ͺ’ΐΗ’Y& ύ€Ί SŒQωΞmΩ—*‘j£‰lNΕ§GA0ŸΠ^ϋύε-΄$pύλ}xεάƝάόˆ-‘·’k˜ΒΛSƒwοpΊgΘ€GΠcWeΓq3_ŚX‘VJνZhι|ΏxΆ£υRŽδv|£gω™―ώcy³ˆ[ρ>―ŒΓα(ΕΈΣ‚1‡Y•‰–Š!zνΤHˆΠhΰ(τΨ©)τθ¬%HY±_ξκ_’¨Ψ―Ό€­ aΏ ΉŠβ#o«Ω2ΆŠ5j죘‚ΛjT₯Ψ[1l5Β?<€ψ±” β°U¬aMTφšJε*HεͺTvuC'aRAƒ>–ΜΒa6ΰό€ΙAœ6Β~7”—y°žG½)1»9tΓ6B>σK›Z/σ‰ ¬&=>ufXλ₯P‡NGπ­πή[LC,±1j˜)Tρ“G[Έ™€JŸ‘£ Ώ ρdVρΝόψͺμW@g.τϊ%/LnΕι–iΆ$Όsw_ΉθΥtΌIΡΏςΩ)Ό4ξΐοίΎ―šž.‡Γ9„Άρ*οcl5ΝxΤtΛ&‰΄u`νΞβL‘ŠJ /—ΨLzL ­—ς1όΓV˜ ΊSaδΘ Ψ "(”ήu” Ώ¬ !©dδ[ς»˜}–Ώc₯;‹εk–ΥM‘NΒ€Ζ5•1η<9ˆΣFΨ/ Ρ’p_aΩ™A4p|ž+7>|–E‘ͺ­Ύς₯ >~&OsφγΖΛ“¨7%Όs—ξΒ—Μ­ψ:š- orω€_ΐN©ŽδNYΡγDWθφ—±› ψΜή‘\FδOw°™―[>h›Ύξ·.#ΉSΖqηqWΗαp”$μwαΡfAρΌ΅†’€ΗŽ­b [νΝi©ZÌ׎—ΖΩ}&qϊ‡Zs,ψΛ\c]¬ΰC$ӎ˭ψ:ΜΎς’ηDŸs%ΰΖW/yρπ›yν‹>ηhΒ~’€ΌQ:k Er·σ"]Ψ‹©<‚”i:ΛΘλ’₯³8‘*Π{(Σ W ^ΐV«Ι€―C•bγKγN˜ ½»zΣBΨ/(ξR|o]D³ΕφθΎΩ ΗKγΞΞX«RΔ’"fΌŽcz@xͺ0-(8ΆφpcWΒΗζτg Α·]yΎΆ_@έΞ}ΏψτΩa˜ :Μ/e4[ÝDϋΨWΉώυBp#2‰Ÿ.o).svR’;%όβι7oδtΈ8ξ€I―S΄ "Iβ«τϋΛΌ~Ι £žΰ6₯2"­–„Ϋ λψΜμ}Ψψ»Χ_B₯ήΔ~οaVΗαp”F~οVςέ•Ε†"Ή€­uaV’$$R*εCΐη‚Ν€§’0+–κHη«τ°=v¬fΛ(j<«4Ό€­0!Ÿ€ψͺr¦{­V;Α1\”žο~TξαΦ‘Ε`ά*δoKc(5.*IΣŽ2r§½’ΧT΄£·ΖφΉβΘFŽ‚’ΧK©Φ@"§Ύ r,F=^9?‚;°η—2s˜;†&œύΉρς$$ x›Β—Μ[ΡφϊnD|―„C &ƒ—&Šv`―‰d 5κŸοN‹―Ηp{aCƒο^ωpe©άΙδCžgz̎ίψβ9ό‹Ÿ―ΰޚ²’_¬p=GύF$ητ2j7ΓηR΄‘Ε†"―Σ ‡Ε Ή‘γF‚|΅AmΞLAΐcΗςff—π΄7!h8WJΒ Ψ žra»XSL§οΙVωJƒY­b™qΑΒ.Ε±€Γ ―“.Ρύ^‰ψδ+ <Ω**ςωɝ2vJuf5ΥeΤH˜βΙ,Fl&fMA9'μ°€ μΜΒj- LΛuΓΥ€‹©RΌP·Zξ,ep5ΰΨ.χ~π8piΒ‰›QΊeDnFΧπς” gF­Z/…CaΏ«SΪΜ—½FXΨpΌšΐjΆ¬ŠοG―܊oΐ€ΧαυK'“yžί~=aȈί{ϋ•E{5YΛψΛψώΰή‘Ξ‘₯DXl("„`ΖλΠ\BD>~l ―jέ©μιp=tž« ezαJΑ Ψ #*β ΙȟbhΗρ ”~Έ΅»ŠΩ?Oςw­Τ5ΕΊγσ„ύ‚’#Ζ±€ˆopε N²Nί]Εξ­Α6p”Ή²+έ‘Eφƒ<ΆŠ΅Ξ8‡s#2‰Ÿe±²]z)ϋ²”ΞγώzŽΛ‡p>AΘ/ Pm`9£Μf~lU„AGπ8/ͺΟσ΅K^t·(›¦h΅$܎―γWfάpXŒ}ϋ\ΑjΔίϊκ ~ςh οήOχνsYδ~η!*υmvΑ‚Γ6aΏ +ΫeμkŠ|~<™Ε°ΥΘ\Cь׎D*―ιF\b·œV  ]˜MεͺΛuMΧ‘H0dΤSλctvΔ “^GE±_Ix[a^κ˜ξ)S˜ˆ°uԎ}τBΨοΒr¦ˆ|₯Α)_©c9SˆΒьΧ‹Q‡θŠrE6£žΰ"/mGφ»πl»€HΒTͺ5°˜ΚD‘ŸΣFi#ΗXRΔΈΣγS GqyΒ‰› σ υ ΨσK›Έώu·|+άλ§΅ ϋζGkΠ‘½ur82…₯ηbΙ,^špΐb€ί_F°q%ΰΖ­…uͺ:’£Ι,ΦΔ ΝυώύυϟΑ…1ώΗ[χQk΄ϊώω,]Ιβ_Έ ³A‡§ Mer8ύ@~Ž)Ψ|φ»˜k( zΨ)Υ‘)(SΨο†ΕTn» #6“fk8 YszIγΒl"Gΐc§Φ(Τ ΧazΜ†% τΒ•„°ΖlΠγ„1‹³“ zφΏJΉϋqa΅švmςΑθ|4θu˜3È%E\š`ΫT&βWnβήΪΔtυsΪΈweg”J°Ϋ†`μΗ £Πι^½0Šω₯ŒκΕ”ω₯-VKŠ0Ψσ—Ή67'[%<ΨΠ~šβV|Α—ϋ/ς<3^~ύσgπ'<Σ\U-ώΟ;Oά)γwΏuzΑΩQ+ΰ₯fΌΠ~wMεͺHε*}ύά8Γ E„Ž‘£,2`ΰ(τ8°€α€ ¬+€ŽnkXΩ.#4@…£σ£68Μ†ΎοdΛ¦ 1Ίƒs/„ό.lδ*Hχ1aΛƒc Κω8sΩ™>°WDœ±žͺbάΥ ο/oυ½;ς ξ,eπ©)eΖΥ™‘I<Ϋ.)2­r~φdΉ ήδς!œCPJzν/γdΞ_ζY/tšΛˆH’„Ϋ λψβ…QUžyλ«3°šτψήΎ―ψ±΄f3_Εύ` _½διL:YMxf<Ιπl½tŒhθcω?θu`1UΠ€ Ρ)`ΣήπΨ±&V―h£υŸHηa6θΰΆjrόn9;jƒAG4Χ WΆ23F1θu˜› Ψs>Z'Τγ°χpλίΛΘή((»·Ριζ|ύΏ¦β«"ζΔTF)λgaζξκΰM?pΪCFœwΫ]ιoAδ΄8>ΟΥ€₯Zυω\ξ‡Xͺ#Ά*v^θ9½ρυΉq˜τ:jdDnFΧ0dΤγk worΨζά¨‹‘―ΟχF³……Υ“Οw·έŒΟŸΕΫˈά[ΟαιV ίTP>δyFνfόΦ―πƒ‡›xoqS•cjΕ~o•zχϊ₯ύώΩQ+žr lΕΜN:‘#ύ5r”ŠX”‘™ρΨ!–λΨΜWU?φbͺ€1‡™‰ζΉ³xI#‘ΕTΖμΠS^w3t8ηΆ ΄‘γΰT©(§­Σ'φΝt―Ϊhβώzn €€=}Ψ~J> ͺφlxJΐύυͺώˆτ·MAE&_ΪcvRθ{ΒΠkŠΣ&μϊ*!’)T±š-”ŒQ7|qΪ ~¬‚φOe ImσHNοCF|ιβΎ[C³Ο†Σ½RoΆp;ΎŽ―^φΒj2hΊέBvγužο6‹(Χ›Μn8^cy³¨ιΛλνψτ:‚7fΥΣ―ΝWΟαμ¨Ώχν{}78§…ϋλ9όιϟα7ΎxΣ/LJž΅αι6οΐζΠ‹ΥdΐŒΧΑŠ^@–οXΤ c6‘Κ3Ρ} μ'­žmKιυς!2A]³BΏ(Zΐ&„|ƒς²Dω}~n&„όιξΟ? „œ{αηg!BΘ©δ:Υ μP©·ϊvΣ=άΘ£ή”ΖlOΖa1bz¬Ώ¦{Ρ€ˆι1Ϋΐ•‡}.Τ›φIλp1U@₯ήbφ₯ν †LϊΎ'L±dgF¬SP€Ηλη ω¬‹€σύ‘‘§@Xq<‚Υˆί…;*θ`Ο/e`7™¬g’šάˆL"―βƒΗ[šc~)ƒR7Έ|ȁπx½GΨοΒƒυ<*υώlζG4p|ž―ύƒh(#"InΕΧρ…ιUΣΝ=ώΞ΅KH€ ψΎ’ΪqΥB’$όήΫχΰ2β·_~βηηF­Hεͺ(Υ¬Žs<^ος΅ϋ5!2 EΑN[]ΝβVKB"]@rSB™©+L&…ΩB΅Υl™ ­p }M=έ*φ-/’ Ε Ψ„=€?p ΐe•rω…?φΧμH’πόΑ ?C·•Z£šόμέy|[yy/ώΟW»΅X²-K^δΨ±%'qlyfΘd†ΙΜP–ιL23™ΪR m‡Bιε^Z(…(½t£ά(Ѝr/:-m˜Ifa™dφΝrVKqβX^$Λ‹,Ι‹Άοοι8ŽcΩ’¬εθœηύzρ"±eω;ŠτΥΡsžσyJ1΄6ΐ±v7μ\–’GˆH±σΡ]βhŒa ™s;J{ΐδ‘ΨGΪ――%A=γ₯ymyόa0v5_[NξpZρΪψ˜Yw­ݍPK(ώ¨ή²Ο½F‰U7Fδ‡―M’^§Β½ΤMΏΪ――5θ0#™ζ87΅X’ϋσψ`ΤͺΠm­Νω26“7w5βΔπtU~…@£‘χW&>d½»χΫqΛξF|ιρ„—«““Z.Ož β”o~³ fύυ 9»²σh£ΈΠ~}-w‡σK ψη—KrRh(²5hΠ«+>tobaKρTΝt+ =ΝΥxy1[4wΪjγ±rٌHsΰ’Dη"”σ“ήA>Ξω(η<ΰ»ήΊα6oπ­μŸπfΖΖΨΫ\p¦Œk¬˜&L:UΙ2‹‡ύ h4hΰh¨+Ιύ‰‰ΫaF0Rš)ŁΕ#«’*6  uh4hJ1δΓ€S‘KBCAnGι˜f³q{NΡ~½ŽΣη)QŒˆΗ†³Ω£V~q‡œV€ϏΕνwŒΟ-alv‰ς―w¨N“Ιœ>><x²:—ΰ―$RxμΜ4χ·B«RVe 5€φλu² ₯Š}φ‡Ρί^_ΣσeŽτ·ΰB R•N΅γΓΣP0ΰξ Ζ‡cψΤ}}˜_Šγ+?ρUόχ—K<™ΖŽŸCO³Ώ~kη¦·ιjΚ £lΡ‘ύzΑr”BCc .›©β"BΑΌVΊŠLaΆ"BwΌ«V ΨΩ“RΝΑ.g»ΐϊkΈόΩ―mzΞy@@cΜΰό―2―’ –½l¦tφ@»Ωχ7IYλ,.Αΰ/α>jύΝm3Œ•φ95œ}NΥς‡Ά\J9ωΪ#Ό΅MΠ~½Ž^£‚Λf*Ι• œσšŸΎ7uZP§Vβ€·|ƒ΅Nf#J(zηŽΆ!ΌœΐΣeόχΪΚSηƒˆΕSΈŸβCΆBϋυ:mf¬F †JpΕL<™ΖΉ©HΝ_΅wOΆϋωDbDN OαΰξF4›΄έ@ζJ§nrΰŸO]Βe‰tŸύίηΖ0Šα“χξΛy•Qgc¦ωdlVΝBϋυ:{ZLP+<%˜[ ₯†"—έˆ‘@€’Γw…‚yoDˆ™²~±ΥΚF%ω‚Qh” μjΤWτχk·ΥCΕ»Υ“©4ώθaž-o‘X―΅ύ €/qΞ·d½έ½j₯vβ\UΧQ σ±8ώζ‰άα²β{l9ogΦ«aΡ«q™:°₯δ3Ψ~­U)±―΅Ύ$}ΏtŠzν&DV’,VμwŽ"°™΄›F‰•~q¦έκQt7 ͺ‘˜B­J‰&Όξκ›[Βχ^Ηx‰"‚r)ηΏΒ€ŽuwdΏΆιmc*f³nπ猱Λ> ΰcάψ 8ηίΰœΰœhnn.ύA‰ :ΜH€8ΞOνμlΘΩΙE€Ή46μΝCχJqωΎg"Œ^» ui^ŠμvXζ™ηΔNœ›Κ •κIJ}­¦Y@τβ hΏήΐέaΑ\,މ…½ {ό½ $_·;­Έ8ΓTΈτ4ι4Η3Ύ9­’Ό"©4*Ž ΄ΰρ³,Η+;όeq%§.qŸ»J ^ TB΄_o0Πn†o&Ίγ,„ζΛξoΑΉ©ΕŠf`žcΐ=ύ•YΟV―Γ~‘ ΰΩ‹ΥJ»S_~‹θjroίΆοqM\‘ΆΨΠ~½ΫaΖι‰0ι5ˆHiΎŒωPΙAŽή@΄¦βC€uΡUˆ[qΥΨcε΄+ž«.ό»”;j₯œμΈc»cοplΓmŽxwφΟxŠgάΑ9οβœwψ_ΰœ]ΧZ%δ(εŽw ¦g.έ_€[olΉ”j££-ε˜ƒ0qΞᙨύΌ΅MΠ~½°oμτ€‡Η†JΑ°―΅ΎΛͺI·g£=NzKί…}vjσK Š)‘ϋΫ°Oα‰sŠώήŸ žLS|ΘφhΏή`°Γ ΁Σ;l|πψΠ WKbΎΜαlŒΘιΚňœ8=… °Χλ*φ;sω;ΊΡn©ΓηaςI IDAT=‹Τ eΥβ FπνηΖπΞƒ»°§eϋβIW“—)BDlhΏήΐέnAd5‰K;|J©‘H($Wͺ€Nsψ‚Ρšΰ(θlΤC­dΝv^Š'αŸ_™όkΛnΔεΩ₯ŠΞ΄ρe ζεvYΆv6Γιƒpΐχ9ηgcŸeŒΝήμ‘Ιxςψ(€—k=bΠn©C“A³γb£ΗΏ€–zl"8@,w‡ K ŒΟί±7>·Œ…₯ά’+6±ΥλΠR―+ΙI‘&ƒν–ΪΠ–‹Ϋ‘9`έA7τβ f"«’;)BϋυυφΆfrϊ†vψΪςψΓΨΣb‚N-Ν«@ς±Ηn‚Υ¨)KŒˆpŸ‡z¨€]*·μn‚Ν€­xŒΘ±‘I8κpΣ.i^]V*΄__o =σœ)Ε Η‡EWs΄[κpC‡'†+#rq&ŠσΣ¨n|ˆ@§VβοΩƒ3“‹ψWόΥ^NQώτΡsΠ«•ψθ]½yέΎ³Ι€Ι…εͺ α%Χ£ύϊzΒης|vεœcHV£MΕ:‹ύσΛXN€j[₯T Ϋj\+”VΒθL œΧΞGΛfB*Ν+zRΣŒ’έRC™O*•υή9ηΗίπ΅O―ϋσ €·ΉΟ”eqUΙι3cxΗέ²Ω°sςb= ΨΥT\`Ύ0 BκΩ³₯|NIαC[.Βσ`xb‘θ3ƒk—wHο9Eϋυ΅„œΎΌΆ„«@ξuΛ»£T‘`8δ΄β”oœσ’ξ3'½!μ±›$}B·” †ϋάmψΏΟ!Ό”¨H>βlt§|!„i§ƒΟL†%7_F¦X‰‘γΓSΈi—­fρ\ΙΗΓ§ξλΓLdΣ‹Υ^Nή’©4>θYμjΤγ·uεύs]ΦΜIŠ1ΚΑ&"¦R*°Ώ­~GŸρ…ΟrRŠΎμ΅›ΰ Dw<<>#kQ΅W#ι΅™0>ΏT±9-ή`j%Cg“‘"Ώ―Tzš` ΛΑN₯9.ΞD+©Nμ t˜‘ζΐ™"‡ξ™ΞΔέ­hT μk«ίΡ‡ϋΪκ‘QIϋi.<ΞΩytz"3Tͺ*₯ύνυήA‡–ΗŸ *η89ΜΖΞ{ωΥ p\s»³τ9Ψ/]žG<™¦όλ2t˜ΡΩ€Η=•‰964 —Νˆ½yδΌ²™‡c³K/w2_Jz ΄›qόtyODΝΖpfrQ4ρ!λέ΄«o½‘ ί|ztΗC™+ε»/Žc$ΕΩ ­*γM‘ΐB9ΨDμά ΞL†‘Lw3Ϊ,uθn6”4ϋ€/΅’αΰξΖ’έ'Ι`Œα~wNωB˜‰¬–υwM,,γΕΛσ8:ΨFρ!€hλ£ηŠαρ/ΐ^―ΕΒR:2Њ‘ρψηΛΧ•{<›³}X„lψΓ{φΎxβ|•W²½Ε•ώϊρά²»wο/,Ž₯Ι A£€l"zƒf¬$EΧ€8_ΖUΑAŽ#HΝEb„__… ³Ύ`€"EΩrpٌπU(W]ΘowR„ˆτΨL:΄šuED<ώμjΤΓ’Χ”xeβ3ΠnFt5‰ΡPα/ΌΡPΡΥ$$6lo3½»υEw«{όa΄šu°™€υ‘m3nGζ€i€ˆΝόΚάΒΛ‰΅aQDϊœΝFθԊ’9zόaτ΅ΥΧάYϋrΉέiΕσ£s%0u7ƒw5”}Xˆ\½‘ iž‰(§G²Γ"ο§ψ²Βρ^ρΗΧaIΎΏΞfR¨Œ]Ψ'NOa°Γ"ΪAΰν–:Zθμcώυz­ σξ=xm|‘bΩώ…ϊ³γη‘V*π±»χ}» Ÿ[BJ€EzB@‘`p;2ƒ %ε8U—Ν„‘2GcrWv`ΩhŒ Dˆ]ή5!’-Ό—»«_ψ•*τS» „ ·ΠM[θ”CV1( ύmζ’.ίς/ ΏΝ ₯ByšΒs’ΠNΡa l†1VτCώ0ϊZ)Bn„Ψ™Bsϊ„.@ΉΌΆςQ―Sc°ΓR’φIί LZ•$;&ΕδhΆ°όΓ‘ςtoώphŒQ|) ·ΓŒ©π ‚‘Β†` ©ΖΞ ΕεΓ₯9~z ύνυθhΤ—όΎK큛ΨίV/ž8εxͺΪΛΉΖσ£³ψΡ™iΌ =°ν ‡½«IDŠc²FVωh·ΰότ"V“…½=γ ’/Σk7Βˆ€σς€>ΟΈj4ΘίΗfcXI”wχ’P*vΧθ‚B#§―Μq+ιl,M₯ ύT‰©w{qƒf<ώ0CΡ—•Υ"·ΓŒ³“‹HΠύ˜H₯qvrQV…£ώv3+Ό€-<έΜ}ΜΕν°ΰΒt€ 7½TšγΜD˜Še2Tμ Ηα‰0 %Ί­΅{€Xw8­_(ψ €NϊBΈ΅§ *:‘TVzάΈΛR–Ξ9Ž Mβ–ݍ’œGͺCΈš¬πύzuh4HsΎLw³{[L8qΊ΄'’&–ρκ•Ρw_  †OίΧ‡Ιπ ώαιΡj/gM:ΝρΉGΟ’Ν¬ΓοήΩ½£ϋκlΚZ.L—?–t˜‘HqœŸ*μΉκ™ξ|—έ„X<…‰2ž€ DΠfΦΑT¨‡rqٌHsΰR¨Όyή`]MzhT΅ω\3hUp4Τ•=nebaΛ‰u`K™Y―Fg“ž³=ώτ4a”Ρΐͺ‡«ΙtAyP#V“iΩtͺ€Q«BO³±ΰΞbΟxMz˜υ΅ϋ&V(w{φ€©€ƒϋΡ™(bρd΅Bκj2ΐ€U|%Ȑ?Œώv32Ή $_‡œV€9πάθlΡχ16Γψά2ξpQ|H%άοnΓΉ©Ε’wpœ™\ΔθL GΫKzΏDΎφ·ΥCΑPpκΠxXς'ςχ·β₯±y λNίΚ‰l|ΘαώΪ(`ΐ-έMΈg Ύφ³‹%},vβ?^ργτΔ"ώθπ^θΤΚέΧώφzΨLZ|τϋ―α™‹;ΏΪ‰rΉzυpώΗΧ©4Ηι‰0άmζ«Δ Η‘@΄¦γC€uΡeŽρV°«Έ\\6cΩ'_…»ϊ©€]%n‡₯  ›sŽ! p έΛΓΘΪG™έ3†όα‚.;ςψd“-2.‡ xύ ­=§δυϊ#™Ž­‡€Ζ“iœ›\”ΝΩBάΈ«z§v#"DPώueάηn…‚Η^+mφ‡&‘R0ωπ7R; Zœ6cAοοΒ|©_hηΐcgJ#rbx ϋZλkξςκOΩ‹dŠγ/»Pν₯ ΆšΔŸ?v7E6νD½Nόΐm°Χλπξz?xΥ_‚URzν–:44pΌ:_FšΗΧΒ`Εr rL₯9.ΞDkv€£`·ΥΌexΉšLalv©f8 \v.ΞDΛ:AΘ wR[ΪfL†W0Ιoθήτβ BΡUΩe;›τ¨Χ© .`ΧλTθl_)ΉΫΝEW1gGΙLd“αΩeΫΜΊ‚˜†ύ ™8™ %Χp˜ Κι DO₯%_)†F₯ΐ-»q»ƒΆ7„6³έ5V4©UΆznνnΒ±‘Ι’ε2¦Σ?šΔ.+$Ϋ@ͺ#Σ ’Ι|a¨³T "—έ—ΝˆγΓ₯‰™―ΰ₯±y©ΑPMόΦ‘lηsαCδJιοv3‘U|κΎ>0Vš+Ά z<όώΫp ³ωήώΟ“ή²fκR a.Q!‘O‰Οn²θ5h6iΛω06C<™ωl­J‰&CY;Υ/‡2Γp+U”-§Νˆx2ρΉς c2W 4›΄°θ+sCAΙ΅–‚rϊ„Έ©_’^¬CN+FC±’2ώRiŽg.ΞβΣ*»=ΎšŽΆαςμ†KTμyωΚ<&Γ+8z o$₯εv˜1‹c2œίΙόα΅ω2υe^YυhΕ —ζςnžΩŠΠΙ}ΈFς―7ϊΰ›œhΤkπΩGΞV­Έ;±°Œoό|GΫpΣ†’ή·ΉNo½χ ή~S;ώϊρόαނζ R  ΌΑ–βΙΌnο‘ACQ―έΈΦΡZjBa\ 0]e|œ€«]π΅ώX ±εŒΙD­Tξ5Iμ*ιo7grϊς,6zό P)ϊZ₯€½‘ΫaΞ{θήJ"… Σɞ™έJ_k=T –w±h< …Μ†‚ ά0Ε“iœZ”]§:ΉΚ]`NŸg<Œ½uε\VΝΊΓΥ 8UDφ™Ι0ΒΛ άNωΧuΈΏj%+YŒΘ±Χ&‘U)pW_νuoq:©=γyξΧώt[ 5=Π*_GZ.QŒΘ£ΓSΨc7ΥlwZ½NάΥ‹.Ν•4V₯ώ£σ€?:Ό·,χ―Q)πWβCovαί_φγ=ό"Wv6@™Rt˜‘ζΐι‰ΕΌn/Μ—‘rC‘Λf‚7EΊ ‘BδF%‹εβ²™pyv ρdyNΜyƒQ(j."k#ηZ»<Ε~Ξ9|Tΐ–‡΅œΎ<»™†'ΒΨΣbΪρpZδvXLsœ›ΪώΝνάΤ"’i.ωKA7£S+Ρk7τœrڌ0Θh(¨ΐ]ΐΣH ‚x2-ΛηΙh·Τ‘Ρ Ι;ΚΘ3Ζ€ ―ΙW―݈f“v-ΛΊOg‹ή·υP»’Μz5ήΠیGRyεΚ<ώϋ΅I{Πr<…‘@D²K1†ΫVœς… .†žς…°·Ε„f“ΆL«#Ήά?Ψ†ιΕΌpynGχsκβ,fcqά_‚e„l€U)±§Ε”WD_`q3‘UΩΔσ1Ζpx ύΞa6Z|ŒΘcgΰ8R£ρ!•R?Ή·Wζ–π­g.WμχrΞρΉGΞΒfβχήΠS‘ίωΰ|λ½1Ή°Œ_ϊΚ©ͺg6“­f]^ΗΧri(*η Go Rσεξ,φ’5{…ΡFN›±l"B9u`ΛΔ`‡‘hSΫδτ]™[Bx9!ω ;—V³V£6οΆΥ¨E«YW•‰Ο@»αεlΤ?^A(Η`‡<>΄mTΘΣπΔ,z5v5Κk((Ή–»έœWμΜΩ©E€œNxlγΣŠΩXη§σ?π\ާπεyάAρ!UqWŸuj%Ž ν,FδΨk“0iUψ…=Ν%Z!Χ9nw‚lm^ŒŽ― ΄"•ζxόl θϋ81<…žfƒ$.CΏ³·oάӌΏ}‡ΠŠϊ…864‰W―,ΰή½§’‡œV<όώΫ R0όΚןΕOΞ+φ» ΙΕν0ηuυ°\Š„‹₯δ˜L₯1:«ωLgAO³ †² rL€ΈŠIβ=Θtυϋ‚eŠ₯ V>W ΨU΄–Σ·MθL6μ\ct˜σμ–]ΐ Γ,ΫKχ…ηΘv—Ξzdψ‘m£|˜†ΖΓh—οsŠdΈ€9pfrλΨα΅5Ψ!ίΧV>nwfŠΠ§ ˆyρςβ©49©€] z oι³γΔπTΡΓΐV)όψΜ4ξξo©ωΛ2‰x :̈¬$1ΆΝΙόaJΓώ6ωΜ—ιk­Gg“#ŠβΉΡYh•ΜqΡ'οέ‡₯D _z|€μΏk%‘ΒOœΗώΆzωƒΣψ³ηΚ™GH>„γλαmκ!C~ω4υΪM%ο,8J%BΘμέεˆZY‹ΕFD(Δ—#nΕ¬|Τ °«H§Vbo«iΫ Ϋ3F_[=ΤJωώs :,ΰ8³EΗ왉08‡l†ρlF­T ―΅žm:‹‡ύaμm•Χ‡Άς9`Ί!ίηΙ°ΥλΠR―ΫΆkίγ_ ηKžnwZρΒ₯ΩΌ‡g=ν α¦N τšΪ>S«ξμ΅’^§*:FδΨΠ$š άΦΣTβ•rU―ݝZ‘ράϋ5ηΓa Κπυ‘–LŒΘΉΒcDNœžBW“ϋZ₯ρΑ^π‘7»`©ρωGΟn;G¦XΕ|νgqχ~;nνξhΠͺπΝί<€_ΏeΎώ³QόΑw_ΕJ’²ƒ, ·pΒq‹Ή+‰μ|™μΧ.[ι#„’¬TrLaφςl¬θ«sρ’`,S"ΞζΜϋu©OŠpΞα D¨€-7™œΎάƒSiŽΣς™žΛ@ƒ…οΙΉΘ\:{z"ŒTŽ7=a€£ά‹lω0 μrύ‘Œν9FV ΕdY)ΖνN+ViΌ<6Ώνmg£«8;΅Έ=BͺC«Rβp+~|fΛρŠ‘•ž<Δ½ξV¨d|Bž”ŸJ©ΐώ6σ–ƒΗη–±°$Οω2νf8κp’ΐ‘ωXΟ\”V|ˆ Α Αχfžφ†π“ εΙ†ώΛΗ. ‘Jγ‡χ•εώ ₯R*πω·υγγ‡χβQΟ~γž/ͺ+Ÿ0λΥθjΓ³Ε Η3“ςj(κ΅g"όσ₯‹| DΠΡX'©&—ΝˆDŠcl6Vϋυ#θhΠ£N#F?³^ ›I[ςAŽ3‘U,$+žAŸ ͺΜέnΖβJ—g7Οι»8ΕR<…vyD¬F-Ϊ-ukw63δ_@»₯V£Ά‚+Ÿ‡Kρ.ΞlΎI]ž]ΒβJn™?§Μz5:·9`ςψΓh6ia―—χsŠdΈζ-cg†³WΘύ$ZΎnιn„RΑςΚΑ>uqp»‹UΫΡΪ‹§πTΐ?ΐj2Mρ!€"ΪΝ8=±ˆdŽΞ¬«ε·_3Ζpd '}‘msgΧ{όl©4Η‘ιΔ‡¬χ[;±Ϋjΐη=WςŽΎΣa<όŠο9΄]VCIο{'cψ½7τΰο~νFx&ΒxϋמΑεPi‹A„lg ΫΠ—‹GfϋυΥAŽ₯‹|π’θ•H$†@ˆψ(ug±/•ΜGΛn,y[ΈΏJ?VTΐ²ν9 έ~ƒςΨ°·²έΠ½α‰°lήΨΆ2ΈM·: pΌΚν°lωœςd//–Z§)Žπš9γ93Ό6p—^[ω0ιΤΈ±Γ’Wžς)o&Jφ'sΕΰΦξ&4›΄ψοΧ& ϊΉcC“h·Τα¦] eZ!W v˜±œHαβΜζΕΈα‰04*φΘtΘαώ$ROœΝ?FδΡα)t4ΦIvθ₯F₯ΐ'μΓθL οΉ 7δœγ³œEƒ^ƒΎΙY²ϋ-₯ϋάmψΞοά‚…₯8ήώ΅gςΊ2АRt˜1^ΑLduΣοgŠZd2_FΘ,)Qfq"•Ζh(*™Ž§ΝΖPΒl2•ΖθL N e…ΩXš@€€YBz₯+*`WY―έ­J±e±Ρ Q’Ϋ*­Q1ά Ζf—°°tύεm KqŒΝ.Qη#€ξf# ε–'E2CAι95θ0cbayΣ¦θjg’kΓ YδΈΕkΛΡPWΡIΜ΅ξΣ ΟDα₯ά]€œsœτ…p[O”UzER*ξhΕO/Μ`q%ΏξΝΉX'½!ά7ΨZ΅ΑeD^„‰Ήφλ‘ρμk•ο|™:,h3λpβt~1"α₯NωB8/½ψυήΌΟ†CΞ&όΝ“ή-ί— ρΨ™iΌpiΉ«υ:uIξ³t5β??p& ΏφΝη Ž˜!€XΒ~+φiΘΏ·L8@½NV³dΕc³1$R\rŸύλ4J8κJZΐ›[B<•–\·ΊΣfD,žΒTx₯dχι FaS£ΉΒις7΅ˆxςΪ ΏΜ‡ΆEΩδίnc›ŸŠΪrΟ 'ΧΚe4‹Γ?ΏL1Fμ°ΐ Qβι-bDNf3²i€£xάΨaAGcŽ Mζuϋc―M’§Ω€ΎViFρQ(ϊΫΝkΡNλ] E‹§d,t―»ρT:―<ϋΓSh·ΤΙ’θΏ―΅ΏzsώυΩΛΝ1O&_ίzζ2Μ-α“χφΥLγH“Q‹οόξ­8ߊ?=~Ÿώο39³δ )ƒV§ΝΈιρυι‰EY6υڌπ£ΧΥ‡Š1ˆ€1 §YZEY S˜ ΕJΆGω²±-R{¬„ψ˜Rϋ9ηπ"U‰₯©wR‰s;29}Ύ gDFΔ“iΚόΜ2Χ©±ΫjΐΠψυέ4Cγ Ψm5ΐ\'ήKσ*iΐaA<™ΎξΜ­/Εr"EEΆ,ƒVg³qΣφ?ŒvKšd>”\˝ E―Ίό(Ζ¨0j₯·v7m9Θρ”7„vKΊšτώ}Λ< IDAT\Ω c χ»ΫπΜΕΩλ^ M‡WπΒε9l—ΝεΏDά3ΞME;™/tωΙύXθƎΨλ΅xΤ³uTΔβJO{C8άί"›ΧπGοڝZ‰/?_τ}ΜFWρ·OϊπΖ=ΝxCom]A€S+ρ·οΌο»³ί~n οϋφˈ­&«½,"aν™AŽ;ώΧf7Ι¬k7a5™Ζψ܎οΛˆbW£ue V&.N›ρdWJπ8™βvK ZUIξO, XšλκΕšΕ1Ώ”¨Κ°K*`‹@AŽBn]’~UξGŸ8—kγ pΌŽΫ‘ϋ€‰†§’Φrϊ6ΌΆ<ώ0p,Βν.+.Ο.mzžJsπΖ|ξ­ϋρ“ Aόκ7žEp±tω©ωzylŽŠη20ΨaF(Ηδ†Œ^Ο„<ŠΦ9– cv$Kb™Ξ!₯TΡ#¨δβCN›±dS5£V¨€-έVŒZΥuΕΖa½uUZ™ψΈL…WŒ\}s .`zq…вλμjΤΓ\§Ύξ€Θ°? £V…n«‘J+α€iύPƒωXγsΛτœ"Χbg6σψΓθΆ`ρ€&±’A6+ O„±Έ’€όkΪΫR^»qΫ‘cC“h7c7½ο Λ5;Ε3‘™/CCaΓύ-ˆ'ΣψΙ1"Η‡§ΡR―Í2‹4|ο‘έp4Ταsœ-ψ2ώ ΣόΫ Wπ·μ‚³Ζ Gοz}ώαέ0:Γ/}υ™’εςζγ?^φγίxωγ ϋ€:6ˆl<Ύ–gC‘«D…Ωx2K‘˜δ8 z²ΐ₯θ,N₯9.ΞD«U\ .[&W½s „¨•jœ‘Άdrϊδ8δc@Fwσ±φadݐαƒ u`_ΕƒΫqύ Gύνυ4t‘cvύλΟ“νς—Ϋεjd{F­ =›ΔΞxό tΒ£HN›φz-žή€€};8ΤΣTιe‘<lΓ‹—η1±°Όιχ/…bπψΓ4Ό‘T…£‘ ϊkOζ'Riœ\€χχ¬]h6iq<Η•ΡΥ$~62ƒΓ-²;vΤ©•ψΔα}8?Αχ_Οϋη8ηψό£gaΤͺπα·τ–q…•σ¦½v|}―G<•Ζ/νN₯ΘvŸ[B<™Js%ΈμFDV’FΆŽώΛ‡7…I«‚½ΎςWFP[$–krϊ–γ)Œ"²0₯Ψ3±Ύ€½Λ|\εv˜1ˆ`%‘ ₯ηΤFϋZλ―;`ςdsΦϋι€Ω„Ϋa†Η^;ƒ=^A0²J'ъΔΓ!§ΟψBHoθr;ι ‘―΅^v—ŽΦŠϋ³…ιGrtaphŒχ Κ'z€ˆGζdΎεšŽ¦#XM¦α–Y7q.JΓ=ϋ[π“ A,Ε―ixς\ρd‡ϋεω>2Π‚›»πW?Ύ€ΘJ"―Ÿωι…<ν αCoιEƒASζVN»υϋ‡ΠjΦαέτώσY~O<™ΖΗφΰožπβΧ9πΟΏuυtu›διΤJμm5]sΒQˆ •ΓπΨΝΈμFŒvΦY,ΐ₯‹”.CΈ©v`;³]ή>§„ϋpڍUi΄₯ΆH 8̈§Έ0ΩdΞN-"•ζ4l½F—Νt]·l―έ½FZaϋ;εvXJsœ™Μd?^˜Ž žJS—θΒΣϊLcΟDέΝ:`&›tXŠΕΞx([~ΗξpY1Ώ”ΐΩ©«Y΅Kρ$^›Η.kWFΆΩdΐ ΓŒzmςΊK9η864‰›»Ρj¦(4RƒΩ“ωΛρΜΙ|ΉD6sx +‰4~zaζΊοž†Ν€ΕΞ†*¬¬ϊcψ“{ϋŠΖρ՟^άφφ‰TŸτ,v[ xΧ­Xae΅[κποΏwnξjΔGΏ?„/?α-Ιεθ‚πrοω—ππΛ~|δ-½ψ‹άΠ¨¨\!Β Gα9%χ†’^» g’G­7ˆBΑ ι™½v#|Α=NΐΥbΏS’l!ξΓάy·Ί7X½¨zG ‘+Φ3‘Ω¨=4ΐ1'·ΓŒαμ›ηžlΤ Ή–Π *d‰]ΰHΥF'_{ό ty1Ιi`CͺΗ†RΑΠΧJWλPO¦H}r]ŒΘ —ζHqrR[Μ<ЁsS‹xylώš―Ÿ›ŠΐŒR|©ͺ‡iœ™φλ˜λΤΨΥ¨―ςΚΔγ`W#š šλbDb«IόδBχτΛ/>d½Α ή~c;ώρδ₯M‡ ―χη―ΰβL |dŸd ―ζ:5ώε=ρφ›Ϊρ₯'Fπ±‡=kWοΔΔΒ2όϋgπόθώκΑA|θ-.ŠΡ”w»‘•$.Οf^gž‰Μ|Ή6ΉlFΔ“iŒΝƊΎo ‚Ξ&tje W&..› «Ι4όσ[οΟΫρ£h5λ$;ΟΘjΤΐ’WοΈ[}>G(ΊZ΅Α |g­Ak9}γW "Ν&mUreΔΞν0c6ΗΔΒ2όσ˘‹ΕιRΠM΄ΤλΠl+²- A―†£:α6t˜±˜=` , °ΈJέ΄$§ΎlμŒgέΙ‘^» uι–›­^‡^»ρšAŽ'½!h” άάΥXΕ•‘νΌύ¦vΤλTψ§S—ωϊ±‘I¨ Gδ=@ΔAθ΄bΒ†ΖΓp;hΎΜz*₯ΏΈΏOΕΞ™(ŒΥdš^Γ>vΟ(Γ>q>ηmΒK |ι‰άΦΣ„·μ³Upu•§Q)πWβΓoqαα—ύxΟΏΌ€πr~+›9=ΖΫΎr Sαόλ{β—_η(αjI­>{ ΗΧ™ω2ςm(κ-Α ΗjvΚVŠΣ^šh o0"Ωξk sE‘Λf„oǏS6j₯J±4Tΐ Ζ–΅lgƒt€½©«SŠΓt)θct˜Χ=§Βp;,τœΪΔϊ&‘ΰ/Η‰Χ$?:΅{ZLžΘ\ 2<¦=¨nw6γ…Ksk”“Ύt5Π‰‘ΣkTxηΑ]xμL`m˜#η?šΔν.+%”Kj­^‡–z†ύ XIdζΛΘΉ ’Λ½­XŠ§π³‘«1"ΗOOΑjΤΠID­ζ:Όο έxtx /^žΫτ6_~‹Εε>u_Ÿ,Ž΅cψπ[zρ—βωΡ9<ψχΟδθ»•§Ξπ+_₯ρώΫp]u%[½v#΄*<ώ05a}fqq‘ρd—C1Ιp¬=N;(τ§ΣΎ`΄j]Ε•β΄™0Œμ(ϊIˆ ©Φ°K*`‹ˆΣ7YΕh(&λ {+{[MP+3Cχ†ό P+φ΄H{³)Φ@»g’˜‰¬ΒŒ‡Ά\λ˜<ώ…l=V$7aγ•Ή%,,%h^A άξjΒj2—Ηζ1YΕωιΕ‡ΤˆίΌ­ π―Ο^Όre ΛBDa »_ŸZD2Ν1ΠNΗΧέ݈½'²1"Λρ~r>ˆ»χ·@)γψυήwgZκuψά#g―8<:ΕΏ>{ΏzsφΙ,NμΧ9π­χΔΤΒ ήφ•S8=ήώ‡²Ύύά~η[/‘»Ω€|ΰ6ΙΪΘΦTJφ·Υ_ΣP$ηΟ­ ކΊ’9^ ŐLsIp€z-υΊe;O,,c%‘F―Δ+—Νˆ…₯fcρ’οΓˆΒ Q’Ν¬+αΚςGlh7#•ζψώKγΰTΙA«RboKφΝm<Œ}­υΠͺ¨Co3ξ38Ύ8RiN'ErP―;`ς‡α²©λ“lΙν° Όœΐ#žΜ‡}šW°s·μn‚JΑpΒ33Q"4ΐ±6΄[κpχ~;ΎϋΒ8–βI{mZ•wυΩ«½4B0θ0c4Γ)of_‘+¬§V*π‹}-xβ\&Fδg#A,ΕS²NF‰?Όg<ώ0ώ롉kΎχ…γη‘S+ρΡ»φTiuΥuΘiΕΓοΏ ₯ΏςυgρΤωΐ–·O§9Ύpό>υ_§ρ {lψήC―‡­Ύ:Ε".n‡§'ρκ•y( ϋΫδ½_χΪMkΓ %όœN Ή²ƒ‹%§€LVΈΣf¬Ϊ•FTΐ‘ΑlŽσwžΏ4Dn Β ΗΣaYŸ™έŽπZ{NΡc•“pΐ”‰ο‘b$ٚπZϊΞσW Q)dqpXn­ 7νjΐIoO{C0Χ©eΑ₯–ΌηΠn„—xψe?žΒ›φΪ$;‡Ταδύw_G³I‹*”mκπ@ ’«Iœτ†p|x nΩMρ!λ½ν†vΈf|ρGη±Ožρ…πΔΉ>πΖ4›δ;»hO‹ ?ψΐmθn6ΰwΎυΎύάΨ¦·[I€πφ*ΎρσQΌλΦN|γ]―ƒA«ͺπj‰X v˜±œHαΏ_›€†"d Ž£31$S…Jυ"P0 »ΩP†•‰‹Λf‚/½ξκ˜| ρ#Ξfiž"RvRμΟd…Wοq*k›1vcμcΜΗϋψ&ίΧ2ΖΎ—ύώσŒ±μΧοbŒ½ΜΞώ›ΚΉN±°Χλ`3i1±°ŒvKšŒς=ڎΫaFd5‰ΘjnΊ4§&£ν–:L,,Γ^―…>΄εδvd˜δAϋuazν&hU L,,c_k=4*:\ ·»¬8=ΖSηƒ8δl’KΧkȁΞτ·Χγ‹'Ξ#S|HΡ~]˜μΙό‰…eΈΫiΎL.·υXQ―Sα―MΰΙsά½ί•’ήΫΦS(>}_‹«ψϊΟF‘Js|φ‘³p4Τ὇vW{yUg«Χα{½oθmΖ§ώλ4ώμψΉk Js±8~ύžΗ£ΓSψδ‘}ψμ[χKώ9Fϋua„ˆ§‰…ejΌΠk3!žJcln©ΰŸ DΡΥdΕ•κ.»KρTQ9ό@&ΓfΒ¬—vγ…½^ “NUτΐΛπrΕΥͺvͺ—νƒ1¦π‡τx'c¬oΓΝ~ΐ<ηά ΰKΎ˜ύzΐύœσοπνr­Sl„.ΊΌqkλ£0άτXmIx.Q|ΘΦΦ?>rλΐ¦ύΊpj₯}m™œKΰX:‡œVpžωKωΧ΅…1†χڍX<£V…7ξ΅U{I’Dϋuα μjΤ c‘­hT άΥΧ‚G=SˆΕS8άOρ!›9ΠՈ{έ­ψϊΟ/β<ιΕωι>~x/tjι‰ςaΠͺπΝί<€ίΈuΎώσQόΑΏ½Š•D —C1Όύ«§0<ΖWύ&όξέ’?™DϋuαΊ­˜²ω΄__|(fγH0"ωH +;Θ±ΨΞbŸL+Ζ\6cΡyαΒγ+<ήΥPΞSžψ8磜σ8€οxλ†ΫΌΐ·²~ΐ›cŒsώ*η|2ϋυ3κc²hG !΄aoΝe3B§V N­„³Yϊ›ΝN¬‘"Ϋ–Ί­΅*h” 9₯ύΊΒ‰Ϊ―KgΠa^ϋΰr;°kΞ½ξV΄™uΈ°Š9εCϋu„N>jzΨΪ½ξ€E―Ζλ{šͺΌρϊψ={‘ζΐ—Ÿτβ@gξ₯¬πk¨” |ξ­ύψγ#{ρθπ~υλΟβ—Ύz ‹+IόΫοή"§luΪ― €P0τg―š‘[CΡfœ6!³Έ°Βμj2…±Ω%ΩD ΡΕf9ηπ£kχ!uBάJ1|ΩΗ·šU9 ΨνΖΧύݟύΪ¦·αœ'„l·v7αgϋϊΰž‡―όΪMΥ^BMx]g=§ςτε_½i^άπΉ“γ~}d ?m§ΧV©ύο·`%Qψ°"υ4ΈQτδΈ_ΪΑ]xγ šj/EΤ΄*%N|θNΤΧ‰ϊ#’(ό_μΕoάΪ‰3Ν—ΩΚ½ξVάΈΛsš†5AŽϋυ~‘ο<Ψ!Η†’MυΪLg ο^Δb\vcQΕΒGΉt«;ΧΕ­,pP³7…Σf¬κŒ’rξ :Φύέ‘ύΪ¦·aŒ©˜ΜfξπΏΙ9ΏΈΩ/ΰœƒs~€s~ ΉΉΉΔΛ―*†δΗ’Χΐ’§"ω ηT~Μz5δωα–φλ"0Ζθ΅U&Ν&Ι_%+iœsp:X.΄_A₯T #›ƒMΆΦbΦA―‘BγvcTΌΞS›₯NΕkΪ―‹ S+Ρj^‡§ΨΈμ&Œ†’H€ςoξπ’P*v[εσ9EˆΖ(τψΣ¨~s% ]ωΕΔ­ψ‘ͺG­”³€ύ"cl7cLΰŽmΈΝ1d†ΐžβœsƘΐ£>Ξ9?UΖ5B‘ύšRBt9}YΡ~M!΅φk²c½v#)ޱΩXή?3ˆ «I­J>σHœ6#’«IL…W ϊ9o0«Q#›&Ά6³²ΰώΘJ“α•ͺG­”­€Νpϊ €Ηœπ}ΞωΖΨgcG³7ϋGMŒ1€ψxφλΰπiΖΨkΩΡ8{B)Ϊ― !₯FEμς ύšBjνΧ€„h‹Bς½Α¨l"1B΅·ΐ!C.cpڌw`_œΙœ@©v§zY―εαœp|ΓΧ>½ξΟ+άδη>ΰσε\!„«hΏ&„Ϊ@ϋ5!„ΤΪ―ΙNυ4ΑX¦«ϊΘ@λΆ·_I€06ΓύƒmXx¬Ec"xCo~q:œsψQόMg«J›ΣfΒΣή™‚~Ζ›ΝU―φ`PJΖ'„B!„B!DDκ4JμjΤηωpq&Š4—ΧGh4h`5j δ8½Έ‚Θj²κ]Ε•Φk7"YEx)‘χΟψ‚QhT t4T7Ÿž Ψ„B!„B!„ˆŒΛfΒH ΏΘ‘Π-·ΩhŒ’V²•³Κƒ +Ν•=Ήα›Ι?FΔŒ’Ϋj€JYέ2° !„B!„B™^»—B1Δ“ιmo;ˆ@₯`θj2T`eβ"ϊ9ηyέ^(v»dΦ­ξ² q+…δͺGͺP›B!„B!„Ρι΅›Ls\žm{Ϋ‘@»­hTς+υΉμFDV’FVσΊ½/Aƒ^&ƒ¦Μ+—vKtjEήέκKρ$Ζη–E΅"Ώg5!„B!„B!"'tη#β Fdd"D€ό;‹½(\vcε\–θ(¬ Έ•‹ΑΜ‰*`B!„B!„BΣΣl„‚eΊ«·²OαΚά’μ"1kΡΑν ύœsŒ"’(ΚVƒΛf‚7ί\υμγI"„B!„B!„λθΤJt6Ά-8^œ‰‚syp«Qƒ½:―Ξβ™Θ*W’²-`;mFL…WYIl{[o0 ΅’‘³I_•m Ψ„B!„B!„ˆΛfά6BDψΎ\‹²Œ±Ό;‹―p”g±_xŽψς(φ{³ΉκjeυΛΗΥ_!„B!„B!δ:½v.Ο.a5™Κy›‘@¦SΆΛj¨ΰΚΔΕi7b$η|ΛΫye^μΊτσιVχ#kρ,ΥFlB!„B!„BDΘe7"•ζΈŠεΌ7M§l΅ΈlF„—Eγ[ήΞŒΒ\§F³I[‘•‰KG£•bΫμ•D&Wέ)’BΏ|ŸΩ„B!„B!„ˆ˜Π1»Υ Η‘`DΆ‘‚|9zƒQΈlF0Ζ*±,ΡQ*zšΫΖ­ŒΞĐζΝ`P*`B!„B!„"BέΝ(,gΑq)žΔψά2zEυP-B‘u«ΞbΞ9ΌˆhвΥβ²·NP„!„B!„B!$'­J‰Ξ&}ΞAŽBΑΆWζEY›I “N΅εΐΛΩXσK 8ER”­—Νό2–βɜ·ρ’P*Ί¬ϊ ,7*`B!„B!„"R½6Ό9"D„hΉGˆ0ΖΠkΟύ8Xϋž\8 ςιVχ#θlC«RVjY[’6!„B!„B!"Υk7βςl +‰Τuίσ"Π(θjG§l5ΉlΖ-‹²Ύl,F―Μ‹ύBϊ–ΕώlVΈXP›B!„B!„‘rΩMHσΜ`½Ft7 RR‰Οi3b6ΗltuΣο{ƒQ˜΄*Ψλ΅^™Έt5ι‘V²œ9Ψ«ΙΖf—DUθ§g7!„B!„B!"%…ΑzλyƒQΩΗ‡\kSΈ•zlF0Ζ*Ή,ΡQ)θΆs½ZB*Να€lB!„B!„BΘvv[ P)Ψu c«Iψη—Ρ+’Bc5 ‘Ή ΨΎ`TφΓ.N»Ύ™Ν'αD ° !„B!„B!Ϋ¨θ²Φ6 „ΌgκΐΞh5λ`ΤͺΰΫ€³x.G(‡ΛF)φ_™[Κ‘«…‚=ΝTΐ&„B!„B!„δ‘Χ~}δƒΠ‘M]ΕŒ18mΖM;°―ϋι±—Ν΁‹›taϋ‚QμjΤC§VVae›£6!„B!„B!"ζ²™0Ά‘cΦŒB£R ³ΙPΕ•‰‹+G[ˆΕ nυ ‘οΫδ± DΰY§:° !„B!„B±^{¦cv}Αq$AO³J…Ό‡η²1YΕΒRόš―{Q4J΄™uUZ™Έt5 ά$W=‘JγR(&ΊNu*`B!„B!„"bBAQθ$2EYŠΉ–q½± ΫŒΐi3‚1*φΩ\υ&=ΌrΥΗfcH¦ωΪ@L± 6!„B!„B!"ΦΥd€JΑΦ9FW“˜XXF/Eb\Γ™-Όn,ΜzQΡΕbT[―έt]„ˆπΈ‰νyElB!„B!„BDL£R`·Υ°6ΘQψ±uΚV[»₯zςšNυπRΑΘ*u«oΰ²qy6†Υδ΅ΉκŒ=Νβz¬¨€M!„B!„BˆΘυΪMkΨbν”­6…‚Αi3^ΣY|u€£ΈŠ²Υζ΄›ζΐ₯Plνkή`ކ:Τi”U\Ωυ¨€M!„B!„BˆΘΉμFŒΟ/a9žΒH ­JŽF}΅—%:N›ρš!ΫE"Χpm·β DDω8Q›B!„B!„‘λ΅›ΐ9ΰ F1ŒΒi3B© ‘„Ήl&L/`q% S Υ©h·ΤUyeβ²Ϋj€‚]-π'SiŒΞΔDKClB!„B!„BDNΘp Dΰ D(>$‡Εή`N› *φ_C§V’³Ι_6bεΚάβ©τΪ L1‘6!„B!„B!"ΧΩd€ZΙπΚ•yL…W(Σ9‘°/f½(zE‹!λγVΦ’VDxb„ Ψ„B!„B!„ˆœZ©@·ΥˆΗΞLesho¨ƒN­€7ΕβJΣ‹+pR±S.›—B1$Rι΅Α—ԁM!„B!„B)ŠΛnD(ŠΙA©`θi6ΒŒeΕ8˜P zν&$Σ—C1x΄[κ`Τͺͺ½¬λP›B!„B!„ ­λΤJ8h(a..›Ύ`Ύ@tνοδzB·΅7ΕH *Κξk€ Ψ„B!„B!„Τa# %ܚΛnΒΔΒ2^_€V₯@G£ΎΪK₯žf#ΞOGpq&*ΪB?° !„B!„B©Β€=ΰΈ5‘ϋγ3Σθi6BIΕώMΥi”θhΠγ§‚XM¦EϋΌ’6!„B!„B!5 ³Q—Νˆ;]ΝΥ^Ѝ …ώΩX\΄EY±pٌπψΓ§H³ΒΛZΐfŒέΓ»ΐσ1Ζ>ΎΙχ΅Œ±οeΏ‘ύϊΖΨέε\'!„ΘνΧ„RhΏ&„Ϊ@ϋ5)•RΗ?ϊΌνΖφj/EΤ:κ QeʞbΕ ηΊΏμ2°cJ_p@€w2Ζϊ6άμ·ΜsΝΎΰ‹ΩŸνπϋάΰ«Ωϋ#„Rb΄_BHm ύšBjνΧ„TŸJ©@·Υ@Ό]ΕbαΚ>>φz-Μuκ*―fsεμΐ>ΐΗ9εœΗ|ΐ[7άζ­Ύ•ύσΓήΜcΩ―—sΎΚ9Ώΐ—½?B!₯Gϋ5!„ΤΪ― !€6Π~MˆτfcDz)BdKΒγ#<^bTΞv;€ρuχgΏΆιm8ηIaMyώ,!„ΔΥΒ ˆIDAT ύšBjνΧ„RhΏ&Dξn„½^‹]ϊj/EΤzš`LΌρ! ͺφv‚1φ€‡²2Ζ.q7V‘­ͺ$ΔΈ&@œλ’5εOŒλ’5etVψχUνΧ'Ζuњς#Ζ5β\νΧe@ϋuΕ‰q]΄¦όˆqM€8ΧEϋuΠ~]Qb\ Ξu‰rMκOŠnM€«ΟΦΟTvMyοΥε,`OθXχwGφk›έΖΟS0˜ΝσgΑ9€oμd‘Œ±—8ηvr₯&Ζ5β\­)b\­I4hΏ.’Χˆs]΄¦όˆqM€8Χ%Ζ5UνΧEγšq‹Φ”1 ηΊΔΈ¦  ύΊH΄¦ό‰q]΄¦ό‰q]b\“ œ"/p1Ζv3Ζ4Θ !8Άα6ΗΌ;ϋη<Ε9ηΩ―Ώ#;•w7€ΚΈVB‘3Ϊ― !€6Π~M!΅φkB)‘²u`sΞ“Œ±x €ΐ?qΞΟ0Ζ> ΰ%Ξω1ΰی1€9d6udoχ}g$ό>η\νu‘λΡ~sM΄_Ά6Ϊ―σ[“¨φkΪ«k νΧ9ΧDϋuak£ύ:Ώ5Ρ~MŠ"†½:»Ϊ―σ[νΧ…­‰φλνΧSsϋ΅l ،1%€―8  ΐ;c}UXΚΏΈgΓΧ>ΰIΞΉ ΐ“ΩΏWRΐΰœχΈΐοg›jkΐ›8ηƒnpcμV_π%ΞΉΐ<€ίΰšpnέίΕ°&x#ηόΞωμί«ύΌϊ2€qΞχDζ1«κš8η²Ρ ^` ΐͺ½.r-Ϊ―·DϋuahΏΞ¨φkΪ«kνΧ[’ύΊ0΄_η‡φkR0νΥνΧω’ύΊp΄_o‘&χkΞΉ,ΰυ[χχOψD•ΦΰτΊΏ_Кύs+€ U~¬ώΐ]bY=€Wά @΅ΩΏi…Φβ@ζEύ&`Υ^Σίή½ΎZ6‡># »dd\ 3HŠ€Δ w‘K Ι›q‰ό ΒoHŠLΉM“W₯Θ` ƒΉ—ŽdάRΜxΌXΏiΞ³ΟYgl{ύΦΩίO­fο}V­g·φ|§~g―5εΈ_ϋLy­³σ,Ύ€άwΏ†™Ά3γYΐλ΅Νεf―g9Ÿ½<‹½n7OΥ½ΆΥuoφzVσΩλΑ³ΨλvσΨk·=7Υ΄Ίί^Οn{=σ\φzvσυ’Χcϋ lΰ@ΰλIΟ7”Χj°f~[μίΥ ±X ¬’γΉΚ₯)οΐ‹ΐηΐΖΜάTvιβήάό]žο]ΑL Ό«#β†ςZ—ηοΰΰΡryΡΓ± γ™¦Ίx²"(NŒz€ˆΨ™&ΦOd泡̐™Wi.GΩ#"敍ϊžœ_Λi.›y γ™ΘΜoʟ4χ1:‰nΟί`Cf*ϟ¦ xŸ)šΨήΝΜοΛσZζRΓ^OΓ^·b―Ϋ«ΉΧΆΊ~φzφΊ{ݞ½ΦŽͺΉΥPΑηΕ^·b―Ϋ³ΧC0Ξ Ψo‡Gσ?€Ξ§ωΚόʎgΪb%puy|5Ν=—F&"xXŸ™χΥ0WDμ{”Η»άƒj=MΈ/ιb¦ΜΌ+3eζbšΟΟ+™ye—3DΔ‚ˆΨ}Λcšϋ}H‡η/3ΏΎŽˆ#ΚKg뺜iŠ+ΨzΙ Τ3—φz{ݎ½n―ς^ΫκϊΩλμu;φΊ={­ ζVƒ½ήήLφΊ%{=kύιuVp#ξ6ΰlΰš{έέΡ OίΡόVζ:šϋ½ | Όμ5β™N₯ΉL`-π^ΩΞξr.ΰX`M™ιCΰήςϊ‘ΐ[ΐg4—<μΡy<xΎ†™Κρί/ΫG[>Ϋ|–ο”sΈΨ³λ™Κ\ €…“^λ|.·'{½ύ™μυμη³Χ3ΟU]―mu6{=p&{=ϋωμυΜsΩk·=O·ΊΜa―ΫΝd―ΫΟb―ΫΟΤ«^GP’$I’$I’€ͺŒσ-D$I’$I’$Is[’$I’$I’T%°%I’$I’$IUr[’$I’$I’T%°%I’$I’$IUr[‚ˆΈ0"ŽξzIτμ΅$υƒ½–€~°Χ°₯αΈ0Ψ’T?{-Iύ`―%©μ΅ώw‘™]Ο DD\ά ΜVkΕ™Ή¬όόΰΔΜΌe;ϋή”™›#β7ΰΰ\ΰΰΰ0ΰyΰη²] œάlΦeζε£zŸ’ΤwφZ’ϊΑ^KR?ΨkυίΐΦXˆˆ£€Λ€S2s °ψ Έhn—Λμ{eΩgπffΌ\Ÿ™o+e™Ή$3?ξ–fζ±4α–$΅`―%©μ΅$υƒ½Φ\0―λ€98x;"v&€/"βdΰSΰHΰuΰζϋόIσΫE€Υΐ™Ž·x""V+†ύf$i³Χ’ΤφZ’ϊΑ^«χ\ΐΦΈΰ±ΜΌk›#.>žΛ̌¦Ϊ·ψ+·ήwg3ƒœœάΗdζ¦aΌIšγμ΅$υƒ½–€~°Χκ=o!’qρ2pIDμ{EΔΑΐs4χmΊX>ΓΎΣωΨ½μΏpPfΎ ά,vςϋ‘€ΉΚ^KR?ΨkIκ{­ήs[c!3Χχ/DΔZΰEΰ€Μό Xœ™oM·ο ‡X,‹ˆ5ΐαΐγρ°x037ώοK’ζ{-Iύ`―%©μ΅ζ‚ΨϊνI’$I’$I’κα7°%I’$I’$IUr[’$I’$I’T%°%I’$I’$IUr[’$I’$I’T%°%I’$I’$IUr[’$I’$I’T%°%I’$I’$IUr[’$I’$I’T₯pQPSψk IENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/lr_scheduler.png000066400000000000000000001422171465426447700250020ustar00rootroot00000000000000‰PNG  IHDRΌMΛ§©αsBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœμέy|œe½Χ'“e²§I[’ΆI[,Π–­@AD…*R@ΰ°y—ΰυˆβ£‚ xŁ/"ε€€€υΘDDΩ‘₯…hf)I›&ΝμΛυϋγΎ'†€Ωf2“{ήΟΗ#NουΊοΉοΉf>Χu.sΞ!""""""""""2Υ₯%Ί"""""""""""± €·ˆˆˆˆˆˆˆˆˆˆ‚ή"""""""""" x‹ˆˆˆˆˆˆˆˆˆH (ΰ-"""""""""" €·ˆˆˆˆˆˆˆˆˆˆ‚ήhfφΌ™}&Ρε 3»ΧΜΎ£m]dfΗzΩ©ΚΜφ5³¦D—CD$T·ΖvΩ©JuλĘΩfvζ(—­3³£γ]&I>ͺsc»μT5λ\3»ΣΜΎ•θrΔStύlfW™Ω/]&ΩEo™tfΆ3κ―ίΜ:’ώnΛ΅ΜΜ6 3ο^3λςΛΨhf1³“]Fηά›ΞΉ’xlΫΜζ™ΩΓfΆέ̚ΝμΥΘulf Ν¬7†ϋφ˜eΈΣΏFλΝμ>3›«}‹HrSέ*“-Ξukτ΅ω{1ϋš fφC3»=zšsξ£ΞΉίΗb[QσκΜ¬έ?_΅fv»™e·ά"24ΥΉ2ΩβYη˜Ω‘fφ˜{ΆΑm9‘kΩ9wΎsξΊ–q‘™93ϋY¬ΆKΞΉ+sΗb[Γ5tϋχxΏ·šΩ†D~ζ$;Όe9ης"@pRΤ΄»Η²-3KO)‡τ}ΏΜs€ΐ­“Έο€df‘mg2ίΗX»x(¦ŸκT–/ϊΧθ~ΐLΰ‡ *‡ˆL2Υ­Α‘Ίuΐχ£―kηά‰.ΠqΌO-ŽΎ™ΰςˆŽκάΰP fv,ππ`>ήoΪ―'&°XC9hΞ™Κη;ήφογΰrΰN3›Ÿΰ2%%Ό%ι˜YΆ™έδχL©1³›Y†?o™™m2³οšΩVΰWώτ3όž΅­fΆΡ̎‹ΪδϋόΚ3{ΔΜ¦M€|ΞΉvΰ~`ΙŽα(3[νο³ΞΜώ+jή±~yšΝ¬ΚΜΞ‰ZuΊ™=κΗ3f67j½Μ{όu‡ί’wJΤΌ™ώ±΅˜Ωs@τzοιel{x4n„ύάkf7ψ­Ώmΐ­ϋ 3{)κO™ΩSQΙΜ–ω―λΜμ›fΆhρ§]afοψǚ™΅ξE~Ήnυs½™3蘾of«όsϋ3+κψΛ^9άuaf_4³jσzJk-¬†χƒς7ΞΉη\sn•sξ1‘!ΫΥγγ½ Νμ σzWόΩΜfϋΣΓ~«υΕfΆΩί΅ώ~FΝ9Χ¬`Χ¨ˆ€Υ­ͺ[§Jέ:3;ΟΜή4³\§ϊΧτ΄‘κQ3 ™χΘq•™m5³;Μ,?ϊxΜμsώφκΝμ¨ύ†ό{δmσžκΊΫ̊FZΧ―/Ξ³¨žκΡΧ‹Ώώ“ζ}/¨7³»"ε/ηάΰqτ]@d™κ\ΥΉS«Ξύ p«sξ§ΞΉFηyΡ9wNΤφΎlfo™ΧϋϋA3Ϋ˟ς―υzΏΜ―˜Ω~Qηϊ;ώλΘuŸώ²[,ͺg²Οόά/s™έhfYQσΣ€Οί2eQσ"u~wXT/pΌΝί›όe>5ΏΨΜώΫίo΅^Σ’Ξϋ¨κg‹zΛFώN‘gfγ—η53»ά†y:c8ώϋτ0Π0–uS…ή’ŒŽΕϋ`‹˜dΰυ¨ύͺ_Iά| (Žͺ£–?8(ŠόεΖΝ€; ΨΣ/8η €}€‡ύu ό(ρoέ ²^΅xη3+ώ ό―Ευ³ΐΆλ1΄ΫπZ;χΎ|~œΗ6~ΐ«hΎ δ/ ΪΔ3ΐAfV`fa`°ΐ―„ςρήΣg’–?ψΈ.ΐλ)}$ήϋψ#ΰ^3›΅ό1ΐ+ώς?φΛρYΌχz6^ExύwΘλΒΌ τO3πz?ΜρΟΕ{8ηπp«™ύ‹™Ν΄Θ1@_TΥζελόwΰ$Όχk5π»A띄χτΰlΏœ£f^*“SΨσ5*"©Eu«κΦ)Q·ŽΔ9w°ΈήΑ} π9η܎¨Ε†«G/ώψή54Σ/WD―!{πIΰZ3Ϋ۟χMΰxΰhΏό=ΐΟFZΧ1ϊSΰzͺ_ ”β½Ÿϋίν9Š™UψεΥw‘Ι§:WusΝkΈ= x`Έ˜Ω'ρΞΧ©~ΉΆΏυg 8x0Ν/ӎ!6^#†³€‹[Μ,ϟχSΏœ‘:p_ನuΓ»¦~ο—υΌ!ΆΏ 8Δ/ΟηΜλΉq °οΌˆN v7Π μχ½αΰ_£ζ·~ήΣwŠk€xηδΔAϋ3K3³3πγ·ΖΊ~JpΞιO ϋ64m πΡ¨Ÿ ΌξΏ^΄Qσοώk˜ν?|3κ—³μ2`Σ0σξΕk9kή—ƒΕ{8ρ>KMΏ ΈgϋψeΤ? ¬ρ_ŸόuΠςw„~`^ΤΌŸϋ―½Cœ—Οψ―/ŠZvΨύD•ρΆήΣ—π>ЏΕλeΌΒύ ΰΕ¨εκ€sFΨΦλΐ Qε|gΠόW3’Žι{QσΪ†:{Ί.€ΰυ؎Μ+πΟοΡΓ”q:ήΎ ώr+Cφpξœυ ΌΝ{ωο₯ŽTΆ?~―†ΉΦΫπz8}˜ΛϋUϊΣίΤψCuλΰ}¨nέ}[S‘nΎ6"·FΝ/ή^~5}€zτΰσQσΪρ~€/τם>θ\œβΏ~8*jήό1¬ϋCΰφα—!Ž,ΰΉAολΡΓmkΠr­ώŸΓ{<=OΧƒώτ§Ώ‰ύ‘:wπ>TηξΎ­€sρΥ.ϊά±ΜέΐΥQ/ς·W꟧uxβ΄!‡οD]›ΝΡΛΰύn]€έΐμ¨y6Dύwΐ½Qσ:iώ#u¨εWuή_‹šWμ/_„p|?~ψΏaΞΕ¨κgFώ^π.πα¨yuοFowˆ{Όο>ξz/νιLε?υπ–€bf†χΑY5Ή―%1’Ξ9Χυrφά’UυΊΘnΑ\뼁"φΖϋΩΣ ηα΅κΏif/˜Ω ,λ\ΰ‘—&σFh> ―5·οΗVt/€θσ7{ΪODυΠ«ψή‚cόΧOφώ1hΩέΆef_0οQΎΘΎ°{ktΝ υ+ρZˆ‡Ϊ^%cώc`Cξ\ϊގs―r’sn»sξRηά"ΌχβMΰΑα–Η;Η·Dc=^Eέ;|πqDγž\θΌ^‡ϊeνz"`ͺ[U·N΅ΊΥw­s(κοΒ¨υ€‡€ΕμήC{Έ2GŽgο½²ρ~ό‚χTΦφΑΗΰίCεΐ#Qηq5ήΣ²%{Zw„cΐΜf™Ωύζ=βέ‚Χσl\=ΰO8ηςρzwul"2 TηͺΝbun£oΩ0σ#Ϋx?œsMxΑκΩΐαυ¦Ώ¨3³›£zmVοœλ’Μ³π:­‹:oγ=…y"αTΌΐ;xοΑvΌήυΡφtŸ ž‡?.^ΐΌ>jίΏΐλŒ6ΡϊyΈοixΧ|τ{=5ν>.Δ{2β£cX7₯(ΰ-IΕyΝVuDεμ*πZΙ΄Z5^Λδ€pΞ½ƒχXλf–9Μ2œsgβ}Hί<θ/;ή²V ϊα—ηœϋwΌσεπΎ|DTD½nΓΛ#5­tϋ8ΌΚ:ψ Β?ώ ΒΐΆΜl_ΰFΰ Ψί„χε'bpʐ ΌΦшΑη έ97κΑj£χγ?b6ά—Œέ8ηΆαύπžg^nΡ‘ΞU5pώ sœνœ[΅‡γx—1pΞ­Γ;Ÿ"’βT·Ku«'©λΦ‘˜Y$UΙύxΧΒ`ΓΥ£οςήϋ ƒ]?ψ‡δίC‘›ΡοcxЏΩa71Βόγ]Sψ Χ_dχχh̜sΕ{τϋGَˆŒκάa©Ξυ$UλΌt`«π†³[έι§A)Ά8ΟOs‡ΰ5ΜΨSξΤβu{_Τ{Vθœ‹4(ŸδΏ6³:Ώ<Σ:­ΙXU;ρz‹Gφ]ΰœ;ԟϊΉΨΚξΧBω0‹οi;x=ϋ?h~^yٝή’Œξ4³3›‰χ(ΥΰΗΡn.4³cόkf%ΞΉ>ΌΦTηύψ”y,₯›Ω 3;hεz8ΔΜΞ4³ 3Λ4³˜ΩΎώݟ€«Μμα vΟωό.^/βsΝTβίΨ½‡Α¨φ3Š2F<…WΡ€Χϋi5°/ŸΦΣ{X/οΡ¨z ΝΜ.β½½ΚΝt"έΌAJΚρF”Ž8ίΜφυ[•Ώ‡χCo¬ξN3³Γύ/uWϋε’™ύΔΜϋ碐]L΅ΫπΎœEa»ψŽνΜcš™ ώ‚ρfVhfσπoŠ>Ž΄AΧhC»/ίά ΓΜ‘Τ’Ίυ½T·z’nέ3ΛΑ»vΏœμgfƒs½Wή|ΣΜ*όcΧγ¨Fr πC3+χΛ1ΣΜNe±·σΝ†„:οw‹α’ΆtO °ΒΛύz²™-e9E$6TηΎ—κ\O2ΦΉί.2³―ωΏMΝΜ3³Θ5{π™7h/uΗΞΉ:ά.5³tΌΐpχϋzi‡;€_˜Ωtεfφq‘σπw=/ΚΌ΄&οŸΐ}Ωχ;xιa3³|ώΫΗv π9Φϊy΄ξΎνW©ΐΛ[?Xζ {94Dω;ŸWΔ¨\’€·$£+€υxΉ Φΰε[ΌnΈ…sOαoΖ«ŒΖ{[NGkoΌž>φށ#~\fώˆΫƒ| xΓΜZώΕ9ΧγœΫ„—Γν?ρz­φ©P~Λλ x_Hjρ*ύkπύo¦½π~Pέ ό&jέ>Ό–Θ+ρύ)ΗkΕΟ~Fδ?β΄Xνœλσ[0WαεΰjΪΓz/γύ˜\ιο{Ύ:Ϊ?ρΎh4β}qότ οίβUΘ[π*ΪoŒΆάQεX \Šχ¨τΏ,Νx9²†R€—#¬―^ΎΊΘωΌXeή#RKœsχΰ ”ρ yE­Αθ$ڟρ3Y‰Χ{-ϊ ςGΨύmζ8:όύ|w΄Η."¦ΊuΥ­’±nψ™νŒϊ‹<~=°ή9χΏϋWΰ'~p;bΈzτWxiǞΕ{$Ώ‘Ρx½xxΒΏŸΕK!6χβυNk4³g‡˜ή`˜Νxηθ#lο|vΏ§Φ΅sξ]ίίe9E$6Tη’:w@ΥΉΞΉ'ρ`ˆ—Ίd;ήοΘ?ϋσοXw>KΩ5Θbp'^Nι·ύυ1Φ2ξo{₯_ΦΏΰuޚW?ώά9Wυχ^ͺ™ΟŽc_ƒw―γ½/ΏΗOiΒΨληΡϊήΰž•xiaξγ½οΟίΨύ^Ύ|˜mέ,Žj ŸCƒˆHbω-δ§;η>6ΜόηρIΩSο‰ρμw^Ε7Λ9WΛm±―0^eVξœœίMDD$¦‚V·ͺ‘d΄:WbΗΜΎ,sΞιιμRo‘AΜlΉ8]^Nξτε@DDdόT·ŠˆˆLΥΉΙΝOΩς?…ΚώxyΟJtΉ‚Fo‘χ:oπ”ΌόpηξyqκV‘Ι‘:7Ήeαε-oΕKίr/^.‰!₯4‘@Po ΌEDDDDDDDDD$]€Dš>}Ί›7o^’‹!""΅jΥͺνΞΉ‰.ΗT§ϊZDDβIυuμ¨Ξ‘xmοyσζ±rεΚDCDDΚΜ*]† P}-""ρ€ϊ:vTg‹ˆH<ΆΞVJ‘gfΛΜμ 3Ϋdf— 1?ΛΜ~οΟΑΜζEͻܟώ†™5ύ3Ϋff― ΪΦ3{ήΜ֘ΩJ3;"žΗ&""""""©Eo‘ff!ΰ&ΰΐbΰl3[f6ίΜ2ρ‘\1h™xj€Σ'œsΟ~–™e™Ω|`ΰΕφχ.πaυG18‘€6Ελ‰ΐΠϋ ""’π‘qΙΛΛ‹ϋ>V¬XΑψΓΈο'Ϊ“O>Ι³Ο>;©ϋL$η\/p1π(°ΈΟ9·ΞΜ6³εώbΏJΜlp p™Ώξ:ΰ>`=πΰΛΞΉ>3»xΨΟΜjΜμ ώΆώ?ΰz3{ψ~Ϊ‰ΥΩ©ΛΜ–™ΩfΆΙΜ.bώ1fφ²™υšΩιƒζgfύΏσ―+""’¬”Γ[DDͺ――P(4δΌεΛ—³|ως!ηMDoo/ιιCWO>ω$yyyydκŒ₯θœ{xdΠ΄+’^wg ³ξ΅ΐ΅CL?{˜εŸ›HyED$1TgO-fn>Ž7°τKfΆΒ9·>j±*ΰ|ΰ›ƒΦ-–Xε―»c2Κ.""2 xOPmsOΎQŸθbPœ›Ι ϋ—&Ί"’‚~όγsί}χΡΥΥΕ©§žΚUW]ΐ)§œBuu5|νk_γ‚ ΌΞΌyyy\xα…<ώψγάtΣM|ζ3ŸαΌσΞγOϊ===άύ,\Έ;οΌ“•+WςΛ_ώ’σΟ?Ÿ‚‚V\I]]Χ]w§Ÿ~:ύύύ\|ρΕ<ρΔ”——“‘‘Αη?yN?}·NJ{μ±,Y²„§Ÿ~š³Ο>›}χέ—kΉ†ξξnJJJΈϋξ»ιθθΰ–[n! ρ»ίύŽoΌ‘… rΡEQUUΐΟώsŽ:κ¨Ι=Α¬­e^I.‹g$Ί("" £:;₯lrΞ½ `fχ'γ=™€sn³?―ΠΊ'uΞ5ϊσ ,ξ‰w‘7ooγ₯͍œ±΄|δ…S\_Ώγ…·8b~1ι!=ΐ?’υοΆP’—Ι^αD%ι5wτπVύN­˜–θ’$=ηΟ½έΐas§‘•>t£°L>Ό'hγ֝\ώΰΪDcΐSίϊεΕ9‰.†ˆ€Η{Œ7ςβ‹/βœcωςεόσŸδ˜cŽαŽ;ξ ΈΈ˜ŽŽ?όpN;ν4JJJhkkγύο?Χ_ύΐv¦OŸΞΛ/ΏΜΝ7ίΜO~ςnΏύφχμ«ΆΆ–§Ÿ~šΧ_εΛ—sϊι§σΰƒ²yσfΦ―_ΟΆmΫX΄hŸόη‡,kww7+W`ǎ<όσ˜·ί~;Χ]wΧ_=]tyyy|σ›^G§sΞ9‡―ύλ}τΡTUUqΒ '°aΓ†8œI‰§]½\ρΗuΜΜΟβE†~ŠH RrfΥQ―ή?ug΅ ™]€Ÿ’¬’’bμ₯δΦΎΝύ+«9pN! KΥH½'ΏyζωσΎzά>\ςρ}]œ€VΥΠΞ§υ ³‹²yδkR`rœs|ιw«xξνΈθH›« χžά·²šψΓZ>wΤ<‰.’ˆ€ ΥΩͺ³ƒΘ9wpΐ₯KέD·χ­φγΡuuόηƒkyΰ’#IKΣ`£CΩΤΑOϊ&™ιiόκΙM,?x fκZŠsŽοόρ5ϊΌUίΖmx›―§ο‚Γyhυž}«Μτ4ΎύΠZώτ•£ΥYdΫwvρƒG^'3=»žέΜ©‡Μζ 9E‰.– €χ„…3B”&Ύe°Βr·vφ&Έ$"’jœs\~ωε\xα…»MςΙ'yόρΗyξΉηΘΙΙαΨc₯³³€p8όž YYY„B!z{‡ώ,‹,ΩοXεζζΌώΚWΎΒ%—\ΒςεΛyςΙ'ωήχΎ7δ:ύύύ<όσ„Γzτqͺ[v@)'TΖ ΫΔρϋ—²ο^ω‰.’ˆΘ€RrΆΡyAζψΣF»ξ±ƒΦ}2&₯Α΄άLΎύΙE|γώWΈη₯*Ξ}άΙΨν”sεΧαάαωΧ_Ώΐ·ZΛ½|35 φΏ―ΦςΟ7λΉβS‹YUΉƒΎ‰“žΕΌιΉ#―œbv΄us͟7pHE³7ύξeξxϊ.όπϋ]΄€τƒ?o ½»—ί_ψA.όν*ώσ‘΅<όoG)ΕPPΐ; ςΓ΄tτ$Έ$"2ΩύΨΤ 'œΐwΏϋ]Ξ=χ\ςςςΨ²e 4773mΪ4rrrxύυΧyώωηγ²£Ž:Š»ξΊ‹σΞ;ϊϊzž|ςIΞ9ηœΧknnfφlοΙά»ξΊk`z~~>--»zίόράxγ\zι₯¬Y³†%K–Δψ(d²\½|ž{«Kο…?|ιH}‘I₯:[uφ${ ΨΗΜζγ°ΟF>αžG˜Y$—Αρΐε±/βΠ>}θlXUÏώοu>Ύx/fζ«#Ϊ£λκx|ΓV.ΔB./βςO.βςΧςΐͺε>€Ή£‡«w=Ξ.δΌ#ηqβAeόσΝzΎσπkόφ G¨`ώίλ4wτπƒSdQY_Ό?{όM>y`™² ςΜ¦ν<Έz _ωθ­˜Ζ•'-ζβYΝ?WΙηϊI$™<ϊ•ωa―νB=ΌEd²όρœsΞ9|πƒδΐδτΣO§΅΅•eΛ–ΡΫΫΛ’E‹Έμ²Λψΐ>—ύŸvΪiΜ™3‡Ε‹σ™Ο|†C=”ΒΒΒΧϋήχΎΗgœΑa‡ΖτιΣ¦ŸtI<τΠC,Y²„§žzŠnΈ•+WrΠA±xρbnΉε–Έ‡LŽ’Ό,ZΎ?―Τ4σλ§ίItqDD&•κμΤβœλ.Ζ ^oξsΞ­3³«Νl9€™nf5ΐΐ­fΆΞ_·ψ>^Πό%ΰκΘ–“ΑΜΈζΤθμιηšMι<μο±³«—+ΈŽ…₯ωA΅3—–³tξ4~πΘΫΊ\ΒδςγG_§ag?8υ@BiΖ^a.]ΆOoΪΊWήMtρ’Κ‹ο4ςϋ•Υ|ρθω,*σςη_΅|ΜΈrΕΊq=­T=}|ηαט[’Γ—?²€,γΓϋΞΰϊΗή ΆΉ#Α%Kε vι₯.2ΚTΧάΡΓΑW=ΖwN\Δ?΄w’‹#"qΆaΓ-Z”θb$H~Ξ††Ž8βžyζJKK'΅ C½'fΆΚ9·tR @±―s\τ»UόύzωꇔοRDβJuφξ]g«ΎŽ―XΧΩ?ϋλ›όβoωοΟΑ1ϋΈΩv§²«΄žί<ϋψ‘Z±k0Α7κZ9ρ†§8εΩόδŒƒXΒδρrΥNϋΥ³œδξƒ φυ;>ύ«gΩ²£Ώ]r,…9 ,erθξνη“7Κ‹³ΉνŸo'Ί(I‘½»—~n3rXωnΑn€ύJσωάQσx`U υ­]‰)`’Ήύ©·)ΙΝδΗο·ΫτPšqν)°}g7Ό\“ %—ΏΏ±MΫvrΕI‹w vœδ<φΫ+Ÿ[ώρV‚J—\zϋϊΉύ©·9ρΐ²έ‚έεΕ9όΫ± xtέV6ooKP “Λδ[x•ΙXο€₯yYι΄v*‡·ˆ€ž'Ÿ|’5kΦ°~ύzΞ?όDG¦€™ωaZΎ?««šψOιG΄ˆΘdQ-cΞρα}gπJuύj fmM3½ύŽγχίkΘωΗοο5 ­©nšΜb%­—+›8ς}Σ:F;`v!³‹²Y]΅#%K>/Wν 3”Ζ±ϋ½χIŠτP]4“υ΅-tφτ% tΙεΝ­;iλξΫΓ}θM_]­k ΌΟ£ƒηNzΎ|Ό€ œNK‡zx‹ˆˆŒΖςƒg±lR~ϊΨ›l˜ςS IDATάښθ∈ˆΘ–”O£΅«—·κw&Ί(  d/)/rώ³ ₯kh£Ή“Ί–ΞaΟxηQž5UM,šU@VzhΘωKΚ‹θιs¬{·eΘω©d€ϋpŸ™ωδf†XS₯k«΅³‡Mυ;YR>mδ…cLοΙg¨‡·H Iε1’ή‹©)2 V^8oά ½}ύ‰.’ˆ”κ‰δ χajŠ•V+0ɚκ&Κ‹³)ΙΛr~vfˆ…₯ω βΒ@ΠIΕποƒΛ ©ΩΡΑφ©¦―ί±vK3‡μ‘q 2OΧ–wmηfRQœ3δόPšqΰœB+ΰ՚fœΫσ}/ xH~8VεπI αp˜††ύpKΞ9‡Γ‰.ŠŒΓτΌ,ΎςΌZΣΜ­Κ*"q :;9¨ΎžΊφžžK~8]Α#Ό`γH=%—”ρjusΚ§€Y]έDFΘX\V0μ2‘s™κ=qίάΪJ{wί{ΓΟ,3«0¬ϋΡ₯θXR>M)`ˆκ ?gςήοMd$SVAv[[:] ™sζΜ‘¦¦†ϊϊϊDEπ‚sζΜIt1dœN<¨ŒG^+γ珿ΙGφ›ΙβYΓ0+ΥΩΙCυυΤ”–f^κ‰Jnmι€ΆyΟ):ΐ xίύBoΥοdŸ½ς'©tΙgMU‹Λ g ’ΰΐΩ‘0M|lρΠω˜SΑH):"–T₯|ΊœΦΞ6nΫΙ‰ΞΪγr‘0λk[ή3ΐl*Y]ΥΔήΣs)Μɘτ}+ΰ ωαt6mSo‘T‘‘Αόωσ] ‘ΐψώΙπΒۍ\rίώxρQΓζ/+ΥΩ"·€Όˆ›Ÿ|‹Žξ>²3S³Ž^]5Ί δ!»Rΐ€jΐ;’’γŒΓφάΐ•bΏ½”fMUΣr2˜[2tŠŽˆ%εE<²ΆŽ†]Γ¦Υ Ί΅£LΡΉΧT5₯lΐΫ9ǚκ&ŽΩgzBφ―”&R ή"""γRœ›ΙN;ΧλZωωγ]‰²€Όh ˆ™ͺΦT7‘žfμ?Β“h{OΟ#?+΅Sΐ €θEήΰ%EΌRέ”)`ΦT7qpyΡSt@T ˜ΎΆ"c <§pΛνU¦,ΕSΐliςςγ'"7(ΰ(ωαtZ:{•PDDdŽ[΄g^Ξ­x‹U•‰.Žˆˆˆψ0/uΣ)¬©ήΑ’Rt€—ζ ςΒ”N³f (9Š€wy­]½Ό½}gΌ‹•”vvυςζΆΦQ«f €€IUkͺ›˜?=—’œΜ—=xNQʟ+ω©”x‰kΐΫΜ–™ΩfΆΙΜ.b~–™ύޟ‚™Ν‹šwΉ?ύ 3;a€mšΩfφŽ™­ρ–ΔσΨ’Q~8ƒΎ~GGŠ'Ε―ο|j1³Š²ΉδΎWhλRš0‘d0=/‹9Σ²S6xΤΧοX[Σ<κΐΡ’ς"ήΨΪJGwjΖΦT5Q˜ΑόιΉ#.{ˆNW§hΑ«5M£Jѐ“™ΞΎ)œ&’’cΤχaEUν4μμŠsΙ’Σšͺ&2ΣΣXXš˜ρ‘βπ6³pπ `1pΆ™-΄Ψ€ΞΉΐΟ€ωλ.Ξφ–7›YhΫΌΤ9·Δ[―cKVΩ^JφΦNύ@Ό¬t?γ`ͺΫωΑ#]ρ₯ςΐ•·΅Φέ7†€χ΄”N3Ϊο›‘Ϊ)`z᎒‡7ψχaЦ€y·Ή“ϊΦ15<ΌR“ΊΧΦ³ ΘLOLr‘xξυ`“sξmη\7p/pς eNξς_?gή'Ιΐ½ΞΉ.ηά;ΐ&{£ΩfΚΚ{£žΆt(·ˆˆΘx½οΎxτ|ξ~‘ŠΏΏΎ-ΡΕΌΰѻ͝lkιLtQ&]$Π?Ϊ\ΈKR8L$EΗhƒ’)`R5ΰ]ΥΔΌ’¦εŽœ’Όρ­½Ό½½-Ξ%K>kF9plā³ I3R²‘§―Ÿ΅[šςΎ'B<ή³κ¨ΧψΣ†\Ζ9Χ 4%{Xw€m^kf―šΩΟΜ,ε†ŒΝ{=Ό[ΤΓ[DDdBΎyΒ~,,Νη^MΩΗEDD’Ι!~°wu &ΧT7QNg~ΙΘ):fδg1»(5SΐDRt2†ΌΑKΚ‹x½.υRΐŒ5EμjtIΕkkMυ2ΣΣXT6ΊΉY^ ˜TόΜz£•ήώ„ X Α΄ςr`!p8P όΗP ™ΩfΆΜVΦΧΧOfωβΐοαέΪ©ή"""‘•βηg-‘₯£‡Λ\«‘EDDlY…€§θ€y‘ii#§θˆXR‘š)`¬SΐΫKσΪ»©•¦ΆΉ“mcHΡ^ ˜Ό¬τ”|z`Muϋ1EΗ!EΌ’‚)`V1UN<Δ3ΰ½(ϊڐ˘Y:P4μaέa·ιœ«už.ΰ7xιOήΓ9w›sn©snιŒ3ΖyhΙ©@=ΌEDDbfai—ž°]Ώ•ϋVVΌ‚ˆˆˆΔM8#Δ’²‚” βΆuυςζΦΦ1υX―‡s*¦€YSΥΔά’ŠG™’ΰΰςuSΙ@ώξŠΡ§₯ΝI½0»RtŒν>\R^DKg/ο4€V ˜5UMηfR^œ°2Δ3ΰύ°™Ν7³LΌA(W Zfpžϊtΰ ηu‘ZœefYf6ΨxqOΫ4³2_N^‹γ±%₯|υπ‰©/=Ÿξ]ΒUZOeŠ}QI6KΚ‹X»₯™Ύκ-ΉvK3ύnτω»#vερN­ΐδ+5cKΡ03?μ₯€I±Α_©n"3”Ζ’²ό1­·€ΌˆΧk[ιμI0onm₯³§o―1α•½G3plΌΔ-ΰνηδΎxΨάηœ[gfW›Ωr±_%fΆ ΈΈΜ_wp°ψ πeη\ίpΫτ·u·™­ΦӁkβulΙͺ Ϋλαέͺή""2fΆΜΜή0³MfvΩσ³ΜμχώόΜl^ΤΌΛύιo˜Ω QΣο0³mfφžh3ϋŠ™½nfλΜμΊxW,€₯ΧΛΑ„Œ―έ»†žΎώDIDD$e-)/bgW/oΥοLtQ&Ν@ŠŽ1¦8`vκ₯€©mξ`kΛΨRtD,)O½0««›X<«€¬τИΦ[R^DoΏc] ₯€‰άG‡ŒqΖ3σΘΝ ₯Τ}ΨΩΓ[υ;ΗuΖR\sx;ηqΞνλœ{ŸsξZΪΞΉώλNηάΞΉΞΉ#œsoG­{­Ώή~ΞΉΫΣ6ύιuΞθœ;ΐ9χη\κΤ€ΎμŒ‘4£₯C=ΌEDdtΜ,ά|X œmf‹-φ`‡snπ3ΰGώΊ‹ρžΆΪXάμoΰNΪΰύ}88Ψ9·?π“XS¬Ν*Κζ§Țκ&nόΫΖDGDD$e ˜—BΙ5UMTηP’—5¦υΒ!–ε§T -r]Œ7ΰ½₯©ƒϊΦΤ¬Ό―ί±Άfμ):`Χ}Έ:ΕξΓρ€θπRΐ₯Τ}ψju3΍ο>Œ₯ Z™ς̌‚pΊzx‹ˆΘXlrΞ½νœλξΕ HG;ΈΛύpœŸBμdΰ^η\—sξ`“Ώ=œs‡Ψί—€ϊcnΰœΫλЇ“žΕi‡Ξα—ίΔ‹ο uX"""oσKrΙJOcγΆΦDelάΦ:ζ”‹J ΨΈ-uϊFŽuaiΑ˜Χ]TVΰo#5­-;:θθιcqΩΨΟΥΜό0Σσ2Ω”bΧΦ’²όq₯θXTVΐ¦m;ρ28_δZ4Žk+–π˜όp†rx‹ˆΘXΜ’Gd¬ρ§ ΉŒŸ^¬(εΊƒν |ΘOς3;|eŸTWΌ?εΕ9|ύχkhΦΣT"""“.-Ν¨(Ξ‘²‘=ΡE™ύύŽκΜ-ΙΧϊsKr¨oν’½;5:ΕU6΄³WAΩ™cKΡήΉ¨J‘k«²Ρ›¦Β?ξ±J₯ϋ ͺ±Šβρί‡νέ}ΤοL§*ΪΙΙ 1=oτΗΖƒή“N§E=ΌED$y₯Εΐ€Kϋlˆfv™­4³•υυυ“]Ζ!εe₯σσ3—PΧΙw~-eziˆˆˆ$“Ή%ΉT5¦F ­₯“ξήώ`μXEε©rΎͺΫΖέ8PV&#dT¦ΘΉŠ«ησ|ΝK‘ϋ°₯³‡ΖΆnζϋ>L­Ζ”ͺΖvζ–δ&tΐJPΐ;p ΤΓ[DDΖf Pυ9ώ΄!—1³t hεΊƒΥ:Ο‹@?ή`Σ»qΞέζœ[κœ[:cƌ1N|R1―lώτΚ»όαε‘UDDDbmn‰Χ³4ž77x½pηN g)ΐζν©hΫάΠΞάβρ%ΣCiΜ™–C₯Ξƒ²‘¬τ4fζ-7|DEIο6wΠΥΫγ’%ŸH z’ O›S$ΰ½Ή‘mάχa,)ΰ0ωΚα-""c󰏙Ν7³LΌA(W Zfpžϊtΰ ηύΚ\œefYf6Ψxq„ύ= |ΐΜφ2ν19’Iς₯cpΔόbψγkΌ]Ÿ:Ή EDD’Αά’:zϊRbpΑ ڊ#=ΌƒΔmοξ₯Ύ΅kάη R+MGeC;Ε9€₯―ξά’œƒκƎ—,ωD‰ρ¦4™]”MšAU 4¦τυ;j;&tƊή“Ξ EyEEDd”όœά€ϋœsλΜμj3[ξ/φk ΔΜ6——ωλξΦΎμœλ0³{€η€ύΜ¬ΖΜΎΰoλ`o3{ o€Μσάλ’J3~qΦ2ΣΣψΚ=«S’g‹ˆˆH²¨π{¦Bκ‰ΚΖvӌ²ΒπΈΦ/ΜΙ 0;#%‚Έ‘τγLΡ0―$‡ͺyzΐK;1‘ƁΤiL™hΎσΜτ4fe§ΔgV]K'έ}ύγN-Kι‰.€ΔVAΆzx‹ˆΘΨ8η4튨םΐΓ¬{-pνΣΟfωnΰ3)o2(+ΜζΊΣβ‚ίβΊΏΌΑw?΅8ΡEI ‘œΓ›··qψΌβ—&Ύ*Ϊ(/Ξ!=4ώΎŠσJR£ΧςœΤβ–δΪΥKc[7%yγKυ18η¨lhη¨οΙ*8jσR(]Nεφv¦ηe‘—5ώκΌ’ά”HiRΉέOΓ€ήkωα vvχίόI‘D:~RΞϋΰ\~ύτ;όύυm‰.ŽˆˆHJ˜=-›Pš₯Δ€y‘΄QQ’;ΠC5Θ*'˜οά[75ž¨oν’£§oBAΙβάLς²Sγ>ll›p·’$'%RšD~nΕ‚ήSNΗ9hνR/o‘x»ό“‹XXšΟ7ξ…­-‰.ŽˆˆHΰe„˜U|―eηU K;^χέ¦NzϊϊcT²δTΩΠNav…9γήΖΌιήΉ ψ΅‹ €™ω9ΟƒΔ­šΐ`¨s‹sΨΡήCKg°SW6΄“2fe'Ί( xMAΨϋpo ψM$""’ Β!~yΞ!ttχρΥ{VΣ§'¬DDDβn^Inΰ{αξhο‘΅«wΒΉpη–δΠΧοΨ²#Ψƒ V5ΆO( ΐœi9˜ψΖ”]ι_&vmΝ›žψϋ°³§Ϊ–Ξά‡~Ξσ€_[Um”OΛ!4ΞΑPcIο€Ι{9…Z:ΤΓ[DDd2,˜™ΟχO9€ήiδ†ΏmLtqDDD/z–nHΡ1Αž₯‘œη?_• ν°ΌŽ ₯αΐ_[• m„ŒΩΣ&Φ ·’8—κΖφ@wψ¨ΩюsΟIY?θχαζννγά3Φπ˜‚lυπ™l§6‡O:›žΨΘ³›Ά'Ί8"""6·$‡¦φš;‚ϋ»74VΆ ηZξιλgKSΗ„ΐ;_Aο΅\ΩΠΞ¬’0 ΌsΥΣη¨mξΣ‘ήπ βFΗωι眀ΕΔžbEτπnνTo‘Ιτύ“`οιΉ|νχk¨oνJtqDDD«’8ψι"±ς qgζgΞH t mˎϊϊ]Lz–Ξ-Ξ τΉ/‡χDχŒˆ40€Β}8ΡΖ”ά¬t¦ηeϊ\5Άu³³«7)¬Ό'ίΟατDψ"""Ι&7+›Ξ=”–Ž.ΉoM οI€Θΰ‚ANPΩΠFYa˜pFhBΫ13?ˆΰsΥ›œΤΰυδέΎ³‹]ΑνDXΩΠ6α'ζN€Λ n·²‘ό¬tŠs3'Ό­y%9ώΜΪ£§RbEο€)Po‘„YXZΐUΛχ積Ϋωε›]‘@Šτ ršŽΚΖφ˜υ”¬(Ι t―εͺHΎσXqK‚έkΉΉ£‡¦φž˜œ«‚0™‘4*ƒΔ­lτrR›M|Ɗ’œ@fU5Ζξ>ŒΌ&Γ[9ΌEDDγΜΓΛωτ!³ωωίήδεσ‰ΉœΜtfδg»ΧrC{ΜGs‹½@[@Ÿ>ΫάΠN8#™ωYήV€—xU@ƒΈ‘@~E Rš„Œ9Εفmο|Εξ>Μ₯ΆΉ“ΞžΎ˜l/ΩT6΄cs¦)ΰ-q™žFVz-κα-""’fΖ5§ΐ‚y|νήΥlmιLt‘DDDgnqN`S)μμκeϋΞ.ζΖhπ·Ή%9tυφ³΅5˜ίI*Όήπ±κ… ΑMΣ±9†½α!Ψχa_Ώ£zG{L`Χ9―h/οΚ†vΚ &ž†)Vπ ‚μ υπI œΜt~υ™Ciλκγ+³šήΎώDIDD$Pζ–δΆgiUŒsαFηAMkRΥسƁ‚pΣr2|bmU5΄α\πžx·©ƒž>ΗΌ˜+o;A½Ά*Ϊb2pl¬(ΰ@ωαtυπI°3σω―OΘ‹›ωΙco&Ί8"""2·$‡Ί–`¦Θ…γž₯Al θοwT5Ά37FωΞΑβ4₯IeC3ς³ΘΙLΙφζ–δΠΦέGC[wLΆ—L"± β4<΄‡wUc{LŽΌ(?œAK‡zx‹ˆˆ$Ϊ)‡ΜζœχWpΛ?ήβ±uu‰.ŽˆˆH`9=@€h¬m³Š² ₯Y άΦΪEgOLΚ›ΰA>+bέ8ά^Λ•OZΔ&ˆ;-'ƒό¬τAVƒΔKΓΤ­ή_αtZΥΓ[DD$)\ρ©Ε4§oάχ ›·ο ˆˆH"D‚PAΜΌΉ‘i9fgΔd{‘4ζLΛδΉͺΘI»ž₯s‹sx·©ƒξήΰ₯€σCαΉH—ΌοΈ• md¦§QVŽΙφ̌ΉΣƒ™σ|ΰ>ŒΡS)± €w„•Γ[DD$Y„3Bά|ξ‘„BΖEΏ[EGwπ½™l‘^ͺA ΄U5ΆQγΤΕ9LiRγœΤήΆrιwP³#Xη«³§Ί–Ξ˜ž«9Σ²1 nοςiΩ€₯M|0ԈΉΕΉ©R‚$ΦγΔ‚ήT­ή"""ΙdΞ΄~~ζήΨΪΚ·^ȁ}DDD&SQNωατ@bvΌ@Τζ.XΥΠN(͘U”³m€ιΨ΅U‡Ζ¬τ³ ³ƒy6ΖΆ7μκν£ΆΉ#ζνN”ήΙ™£€·ˆˆHrZTVΐN;ˆ77rνŸ7$Ί8""PfΆΜΜή0³MfvΩσ³ΜμχώόΜlž?=ΓΜξ2³΅fΆΑΜ.Ÿμ²Fy$ˆ ΐduc;YιiΜΘϊιv³3CΜΘΟ ΤΉͺΩΡμΊb©’8‡κΖφ@ ςY½£=ζ9©aWcJu€­κFοښ3-vƒ‘‚χ΄ηœiΑδ³Ά©“~ϋάπ₯€wψ=Ό[”DDD$iΌd6Ÿ?j>w>»™?¬ͺItqDD$`Μ,ά|X œmf‹-φ`‡snπ3ΰGώτ3€,η܁ΐaΐ…‘`x2™Uθ£κΤΓ»Ά₯“YEΩ1ο… 0«0L]K€Ξ•ΎΟ* Η|Ϋe…ΩtυφfOηu͝”Ζ6€ PVθ έ‡u-LΟΛ"+=σmΟ*Μζ}Xϋϋp"π ]=ΌƒρΑ,""T—r!ά»„ΛZΛ«5M‰.ŽˆˆΛΐ&ηάΫΞΉnΰ^ΰδA˜ άεΏ~8ΞΌH«rΝ,ΘΊ–Ι)φθ•Fm Υ5wRZŸΐQia8XAΙf―nim‘ nPε΄tφήέ7p\±Tœ›If(Ϊέ‡΅Νq9Wΐϋ°%~χαD(ΰ@ω=Ό•DDD$™e„ΈιάC™‘—Ε…Ώ]E}kW’‹$""Α1¨Žϊ?mΘeœs½@3P‚όnj*ΰ'ΞΉΖxx¬Β!¦εdPλ>ƒ .ށΆ²Βμ@Ϊj›;IO3¦ηΖ6ύ D7¦γڊΌορJšYπ‚ΈΝq ΰ–†ΩΦΪ˜ΑvkγxmM„ήTνυπnιPoΩxσ{ϊσ.χ§Ώaf'DMΏΓΜΆ™ΩkΓμσfζΜlz<Ži*)ΞΝδΆΟƎφnώνξUtχγΛ―ˆˆLiG}ΐ,`>π 3Ϋ{¨Νμ3[if+λλλ'³Œ”(ˆΫΧοΨΪΏ@[ia˜Φήΐ< ^ΧάΙ^abŸώ%’ϊ#(=Ό#Bρμ΅”sροαέΧοΨΎ³;.۟lu͝fg“™žθ’μFοΚΛς.2 Z)""#™H~OΉ³€ύeΐΝώφξτ§ ΅ΟrΰxΌcμ?«Ÿ~0/mήΑUZ—θ∈H0lΚ£ώ?ǟ6δ2~ϊ’B 8ψ‹sΗ9· xX:ΤNœs·9η–:η–Ξ˜1#Ζ‡0²²ΪvvΡΫοβΨΓΫΫξΦ€€žˆgPrF~‘4 LcΚή±Οα ή΅”sΥήέKsGO\{xy2%žχαD(ΰ@‘4#?+]o‰δχ<ΈΧ9Χεœ{Ψδoηά?α}ώπ-Όό β;ιΰY\ταχqχ UόφωΚDGDD¦Ύ—€}ΜlΎ™eβ5R―΄Μ ΰ<υιΐΞ9‡Χ(ύQ3Λ>Ό>)₯£ ₯R¨sP2’<( uqμ J3fζgζ\Υ6wb3σcŸώvέ‡ήΗΗΤω<‰[ο‚` ΆΟτ/‘€w@ε‡Σi ΘcJ""WΙο9šuwcf'[œs―L¬ΨΑtι ϋρΡ…3ΉjΕ:ž}k{’‹#""S˜_g_ < lξsΞ­3³«ΝlΉΏΨ―3Ϋ\DR›έδ™Ω:Όΐωoœs―NξŒNYA˜†Άn:{ϊ]” «s -Hi:œsΤ6wΔ΅giSκš;™‘—EF(>aΐ²‚0έ}ύ4ΆMύ4½α βΧ‚qBςφπN+3ωαŒΐδε‘`0³ΰ?ρ™Œ΄μΐq.Yς₯Ώ8k §ήό,vχΛ¬ψςΡT”δ$ΊX""2E9η4튨םΐC¬·s¨ιΙ(³p[KΧ”―3λόρκ-9³ ΛίΟΤ΄5wτΠΩΣ·ήπΰ&ί¨kΫφ'SmK|ƒ’₯Q)%yριE>YβέπT”“AVzuH-ΤέΫΟφ]qk˜υπ¨‚μtZ:”DDDF4‘όž£Y7ΪϋπΎzΕΜ6ϋΛΏlf₯ƒLt>ΠDΚgpϋg—β|ρΏ_RΆˆˆΘμκ΅<υσαΦΆt’J£8'3.Ϋg„(ΙΝ DΟx%Αλα[˜4qM;y‚Π˜ DΗλ|™Y`ΖˆŒŒ=Όπ¨όp­]ϊ,""#šH~ΟΐYf–efσ}€‡Ϋ‘sn­sn¦snžsn^ ”Csu±=€©oήτ\n>χPήͺoγίο]C_Τ‘%""‘ TzKΦ5w²Waii·}xi:¦~γΐAγΔmοkκw&τNΔ·7q`Y’‹!""CpΞυšY$ΏgΈ#’ίXιœ[—ίσ·~~ΟFΌ 8ώrχλ^ΰΛΞΉ>3»8˜nf5ΐ•ΞΉ_OςαMiG-˜Ξ•'-ζŠ?γ‡·oŸΈ8ΡEI:₯Κ‡[ΫάIYœS”†©Ω1υm“Γ;ͺΧrA8#nϋ‰·]½Ήι•x IDAT΄vφΖ5(Y’—Ezš#ˆΫάΧT9ΰ=™ςζΖΈξc2LΖ}8^ xΤφ.α™M <Ί.±ζZ:{yαFΌED’Ψxσ{ϊσbϊΩ£ΨοΌ±–5Υ|φƒσΨΈu'ο©wX033O|ζ"""£‘—•N~8=©š;YR^Χ}”†YYΉ#ϋ˜ uΝ€̈cΎθθΑχέ+?nϋ‰·ΊIJ†Œ½ ‚‘¦c2a,- ³΅₯“ώ~Χ':β-ήγL„ήuφœ}Dβϋ‘΅όε5=©.""2^Wž΄˜Ν m|ϋ‘Χ¨(Ξεƒο+It‘DDD’Š—wjχ,uΞQΧάIΩρ •fΣΤήCGwΩ™ρKΩo΅ΝΜΜ“Š_¦ή]=Ό§φ΅5ώ₯ ώAά 4<熧²Β0=}ކΆnfδOέA>k›;ύFΗδ{B9Ό%Šs3ΩΡήMΏrŠˆˆŒKz(_žs(sKrψέ«ΨΌ½-ΡEI*₯…ΩS>ΠΦΨΦMw_ά{JF‚žS=ηy]KgάΟΥΜό0fS?]N€1(ž9Ό!οΞ>ΪΊ)‹wγ@A0ωτΏ$_οnˆsΐΫΜ–™ΩfΆΙΜ.b~–™ύޟ‚™Ν‹šwΉ?ύ 3;a ΫΌΑΜvΖλ˜dl¦εdο ₯ShŠˆˆŒWavwœ8|ώΞ—hjοNt‘DDD’FYR)LV.ά]i:¦v―εΙH;‘™žΖτΌ¬@%fΔ·'qδ>τΖΆŸšΆ΅tρOΡi|Π}?q x›YΈ ψ°8Ϋ̏Άτ`‡snπ3ΰGώΊ‹ρΔΪXάlf‘‘ΆifKiρ:&»βάLΐk­‘ρ›[’ΛmŸ]J͎.όν*Ί{ϋ]$‘€PZ¦~g=}S·nH;1 ½p£χ7UMVΟR/]ΞΤ>W΅-”δfΈo ›Β0=}΄tτΖu?ρ4™½α!OZ4wΖ=UΞxΕ³‡χΐ&ηάΫΞΉnΰ^ΰδA˜ άεΏ~8ΞΜ̟~―sΛ9χ°Ιίή°Ϋτƒα?ΎΗc’1šζΌw¨'šˆˆΘ„>―˜Ÿq/ΌΣΘeΎ:₯{ЈˆˆΔJYaη`[kW’‹2n΅~ΰkΦ€υ,ΊΆΦΞvvυNJΟ‚©Ÿ¦cςόk«eκφZŽ γ}ΎJr3ΙΩ”Ύ{ϋϊΩ֚‚=ΌΩ@uΤkόiC.γœλš’=¬»§m^ ¬pΞΥΖ¨όΕ9‘ήJi""" '/™ΝΧ?Ά/ΎΌ…ŸΨ”θ∈ˆ$\¬kξ =Ν(Ι‹oΪ‰μΜE9S:ˆ;Y½α!’NVΪ‰t9SχΪͺmžœ€wZš±ΧoL©ίΩEΏ›œϋp<1h₯™ΝΞnΕ²˜ΩJ3[Y__Β₯ΈiΉήH­;”DDD$fΎzά>}Θl~ϊΧ7yxυ–DGDD$‘‚ΠkΉΆΉ“½ Β„,ξϋ*β9Ο'+ί9xΑΌ–Ξ^ΪΊ¦nšŽΊζŽIKβνoκ^[u͝δ‡ΣΙΛJϋΎ¦zcΚdή‡γΟ€χ <κsόiC.cfι@!Π°‡u‡›~°Ψdf›3²Λ“sξ6ηάRηά3fŒοΘdΤrx+₯‰ˆˆH̘uځΌ~1—>π ϽՐθ"‰ˆˆ$LςROVΪ πTuS9νD€ξ$δ.›βΉ–;{ϊΨΡήχœΤ3ς³H³©ήπΤ1iάΒμ)™ρο ?^ρ xΏμcfσΝ,oΚƒ–YœηΏ>xΒyΙ(Wg™Y–™Νφ^n›ΞΉ?;ηJsσœsσ€v LI°μŒYιiκα-""cYι!nϋΧ₯Μ-ΙεΒίdγΦΦDIDD$! Βιδd†¦t m2ήS=ΠyŸχš„€χToL™ΜƁŒP3ς³¦xj‘ΞIKΡuͺŽΙ“²=Όύœά€ϋœsλΜμj3[ξ/φk Δο} p™Ώξ:ΰ>`=πΰΛΞΉΎαΆ―c‰33Šs3iTΐ[DD$ζ s2Έσs‡“•βόίΌΔΆ)ΪϋHDDd"̌©›Χ9ηεYž„ $xͺν;»ικν›”ύΕZ]KΣσ²ΘL–ή²)ž—z²ƒ’₯…ΩSφ\“z–„ικν§©}jŽyWΧάA8#ΒμŒDeHqύtpΞ=βœΫΧΉŸ½;«χ?ώϊΜ$™i’IΪ€YJ[Ϊ–Ϊ"ˆ’‚ - Θφσ‚rEΑ ―χz/^ Xδ" Έ²h½€¨he_*²C‘B›€ Ι€ΝL–ωώώ˜™$”΄MΣΞ9ί“ΎŸ&3gΞωΞΙ99Οχ{ή_7έ9wQαΉσs 3ΞΉcs3œsss― zοE…χν윻{Sλb»Υ₯ό\²eΖVV°V‘&"""%1i\%ן<‡΅λ»ω̍G:cRDDd€’œ‡ΫΡΥKWO_€#ΌσΫiνΘ²½m-¨Ia`yTG-£k‹Λ‰πDŒ=}9Ϊ:³F A΄;S&ԎΑ¬τσŒΔ¨˜΄RόVWUή"""%΄ϋ€ZœΈ/¬Hσω_Ή/k"""ΓΥ\½<άt¦‡tΆ7π‘₯j“8mιl ΫέZ+È©‰ζο°b'Š£–£€/ηhIgƒίWQνLiο’©6A,\όΛ–RΑ[Jn\€‰ ή"""aΨ±‘š?=—φ>uέ£¬Υ5YDDF‘ ΅IVtDkdiKˆ£pa`pT= #@U’ŒšdYδF-Ϋτ±5‘6ΉγjUg–Ύœ e_A4;S&<~K©ΰ-%—,SYΧ—k‘ν>©–ΛlώΉf=§άπ8»uRDDdsškΗ°²=C.<άb‘«9„ o€oE«ΠΆ²=CSΐϋ ς“’ΎΑ’dUEœT²<Πν6Χ&yk}]έ}nwk„u6χŸ‡λLιΘΠδq~7¨ΰ-WYΑEšˆˆˆ„jιυ,8qž}£Σ~Ί˜LOtΎˆˆˆˆlNSM‚ž>Η[]=a7eΨZ:ς‘"A,mJε·ΧšŽN·»7Ηκu݁%k΄F,ώ₯΅#JQ²Ψ!₯c+¬;-ϋΟΓθ[Ξ9Z:24Χ$ΒnΚ&©ΰ-¨«ͺΠoO™ΩαfΆΔΜ–šΩyCΌž0³› ―?jfS½φΒσKΜμ°AΟ_of­fφμλΊΨΜ^4³§Νμ3[ΚΟ&οτ‘YM\|Μ<τΥ|αWάdU"""S,΅D(N‘ΨΦbΫƒ2Ά²œŠx¬ΏΰmωΆ6†PhkL%iΠqωc«1ΖΎJΆc«΅< vU”ΕWY©ΏY™^2=Ήΐfm)Ό%c+ΛY³>:½μ""Ϋ 3‹ €³€ΜlΦ‹ ¬uΞΝ.ΎWxο,ΰx`WΰpΰͺΒϊn(<·‘?»9ηφ^Ύ±M? Λ'φ™Δ·ζνΚŸoα+Ώ~ŠΎέϊ-""²1ΕBh”FKΆ₯³€eŒ©ˆo~αmΘΜhH%"5 7¬’$䏭Άt6Rq9­ιl(EɁσ0BΗV:KΜ Ύ:€Ξ”HύΝ*œ‡α-’ή""› ,uΞ½βœλnζo°Μ|ΰΖΒγ[CΝΜ ΟίδœΛ:η^–Φ‡sξ>`Ν†sΞύΑ9W ~˜΄­? ΟΙL嫇νΜoŸ|“Ν38/p"""CιιˆΠhΙΦt&΄ΒQ±ˆΕ’`ήM©½9ΗڈD΅:ηhMgh αΨ8#tlud_ ³ΐ·΅ΈœβοU#ΌEΘgx«ΰ-"β₯‰ΐ²A?//<7δ2…bu;P?ΜχnΚg€»·°½² yΘ Ξ8x:Ώzlέω‚Šή""iQαέΪΞ(\ȏ”ŽR”BΈ#Ό£•΅fμD\N€Fx‡Ψρ±Έœβ9 ή"δGx§³½Κ Μμ›@/π‹Ό~š™-6³ΕmmmΑ6n;σΥΓv攦rν―rΩ_ »9"""#–,“J–EͺxΤv‘-"\;v’˜Kc+ΜΨ‰b\N[„Fx·„Ωρ±Έœ–;žΆ„ ήˆqU‘ΉύGDd;ς0yΠΟ“ Ο ΉŒ™•΅ΐκaΎχΜμΰΰ$·‘!ΕΞΉkœs³s³†χIdĎσ˜Εq³'sş—²ΰ/KΓn’ˆˆΘˆ5¦’ΰœ+Œπ«ΰΰ­υ=d{ϋBΩώ–jνΘRVμD*Z#Ό‹± ![ :‘˜wήy₯ΈœΦt–1εqͺea7e“Tπ–@ΤU ήλ4q₯ˆˆgfšΩ43« ? εΒ –Yœ\x| πηB‘z!pΌ™%Μl0xlS3³Γ―σœsλ·α琭‹ίωΔξ||ο‰\|Ο½•°›$""2"M5Ρ΅ά‘ι%Ϋ› %“²°£’γV&5 Œ”ŽΞΎ /ο<ΏέθLˆΪΫ—cυΊllMК"—ΣšΞT“ ?₯“ΏTπ–@Œ«*`rΌEDΌRΘδ> ΈxΈΕ9χœ™}ΫΜ滨7³₯ΐΉΐy…χ>ά<ό8Σ9Χ`fΏv6³εfvja]?RΐΝμI3»:*›³Ϋ}uη όμαΧΒn’ˆˆΘ‹R.u1v"΄QΈ5؎hΪŒH–Η©‰P\NΨ±©ddŽ«ΥλΊq.Μ}­ΈœΦŽŒχVψ=ώ\F:EšˆˆxΛ9wpΧϝ?θq8v#ο½ΈhˆηOΨΘς3Άͺ±RReρsό^d{sόΗoŸ#‹qβ~SΒn–ˆˆΘ°5Fx;缁X,†9i% ή}ךβǀΪΠΆίX"nΨ±©ν]=dzϊH–ΗCiΓpωΠ9Ρα=k‡š°›±Yα-(Fšh„·ˆˆˆίΚγ1œ΄7Ψ₯‘»γn~όυ°›$""2l©έ½9:ΊzΓnΚf΅†8± D«Πvμσα£Σ9fμD”"`Šyηa[QΪWPανχ„• ‚·dl†· ή"""ΎK”ΕΉκ€}xN œwϋ3όzρ²°›$""2,ύyΈώ&‹…Ά°r–λ«*ˆΗ¬Ώ> ;v’•vμDc„r©ςΞΓ9Ά’—³.ΫΛΊξΎΠώfm Ό%e1R‰2Φ(DDD$’εqώχSϋrΰŒρ|νΆ§ΉνoΛΓn’ˆˆΘf δαF£ΠVY^μD,f4TG#σ<μΨ‰βΆ‹q9ΎkMgϋ3ΪΓPό=E‘ˆΫšΞ`γ«Cά_‰Λ)vh„·Θ γͺ*4Β[DD$B’εq~ό/³yοτρ|εΦ§ΈUEoρ\‘-#Ό[<ˆh¬IDcnΘ±Ÿ\΄»7G{WOhm°c'’—Σ‘₯²‚ςxx%¨Δε tΆϋώλΞXπ—₯a7IDD€_c*Ÿμsξΐ(άp mΕνϋžy^YΆ(L.ΨκIμDSM>.§»ΧίΈœbηEθ£α#rϊw>\*xK`κͺΚ”γ-""2 ”Ηc\~ό^΅Χ\|Ο~π‡%^DDΆGfvΈ™-1³₯fvή―'ΜμζΒ돚ΩΤA―νaf›ΩsfφŒ™E£ΚAΎΰέΥΣGgΆ7μ¦lΤ@ΞrΨ…ΆΒΘR‹Έ}9ΗͺΞξΠc' Ÿ΅μ{\N«'±QˆΛ)χ ΎŒπφψ<„c+ Tπ–ΐGx+Η[DDdt(‹ΗΈτ“{qάμΙ\ρη₯όם/¨θ-"β 3‹ €³€ΜlΦ‹ ¬uΞΝ.ΎWxoπsΰtηάΐΑ@dnՍB/±υU˜ω½―б>Œ,m¬Iβ{€‰'£p£PΔυ%Z¨*QFu’Μ븜LO™ήΠ³τ‡Ko L]UΎΰ­ή"""£Gpcαρ­ΐ‘–ϊaΰiηάSΞΉΥΞΉΘLΖ…<\_b'Κβ1κ«΄y\h+Γ.JΫЁΈ/φUρξc:Š#|Ψ_©„ηώμ«αΨ’‚·™ΕΜ¬¦T‘Ρm\•Fx‹ˆEΧl R,f\pδ,Ξ=·.‘‘\γfšΩ4ς…νγ7Xf!p2π0p πgηœ3³{€―™Y%Π ΌŸό€–‘`f4¦’~Ηt€³8c|ΨΝς0«:³τερ˜‡…Άt†±•ε$ΚΒΏk¬—Σζi·8‘¦#Ό!_mρx„w[:ˎγ«Βn?ΆΊzϊHg{©ρπξΦt–²˜12¦NΑϋΧ€§€ϋΜμ]€Ώ]⡩㫘κΑ“Ǝρϊ?""#€kΆx㨽'R(γΜ_>Α'χa~ϊ™Ήμ0vLΨΝ‰ͺ-ΎΖ;ηzΝμ,ΰ \οœ{ΞΜΎ ,vΞ-~ffK5δ‹β8η֚ΩΘΝp—sξΞ|΄π9¦Γ§Ψ ΘGsVwf½iΣ`­~LΒώΗεψ4Βς14ΎŽπvΞΡ–φη˜οΛιΘϊYπ.œ‡1;Ε†²ΩcηάΞΉ‰ΞΉΊΌ‡Π6‘’i¬Iz=€ˆΘHθš-Ύωΰ¬&nόΜ\ZΪ3σ£‡XΪΪv“DD"i€Χxηά]ΞΉœsӝsž;ΏPμΖ9—qΞλœ›αœ›λœ{eΠ{ξœΫΥ9·›s.R“VB>ΧΧB›oEΙb;Όέ_ι¬7εω—γΫΔ‚)ΟΓ·ΦχΠέ—ση<τ|²έΦt†OŽ«αΞ€•Mΐw€œs1³Yΐώδ{‚E"©)•ΰε–tΨΝΩ¦tΝ½gΗz~uΪ{8ε'qμΥρ“OΟe―ΙcΓn–ˆH€θΏεR ξ{ΙΟB›±P,΄Υ†Ϋ˜!΄₯³μΨώβΰ\Nk:KyάWιΗαƚ«;³τφε(‹ovΜm ΞΓόρίΣΣΓςεΛΙdΒ)8WχεψρΌ $:WπΒ m‘΄aSNέ­‚²X‚^x!ν%“I&MšDyωȎεαDšάόψfαη—€›Ρ…U"¬Ψ۟˹Θ܎!"2 7 kΆxh·‰΅άzϊ|κϊG9ρǏpυΫ—ƒvj»Y""QrΊΖo‘Ζšιl/λ»{©¬πkςdοFx ο>qs΄¦3ήL,~Ηε΄tdh¨Nx3ιac*‘ΛYΧνΝ¨σ’σ0ίεΛ—“J₯˜:uj(ϋ―/—ƒ7;˜P›€Α£γ½Θ½ΩNν˜r&Ž«,ύΆœcυκΥ,_ΎœiΣ¦hΓι^Θ6Ϊ τ gεfvΈ™-1³₯fvή―'ΜμζΒ돚ΩΤA―}£πό3;lsλ4³λΜμ)3{ΪΜn53¦Λo4Υ$θΛ9V―λ»)""ۈ―Ω"₯6u|·~Sκ*ωΜ sΗί—‡έ$‘(Ρ5~ 5₯όΝZφ-v’‘Ί0ΒΫΓ}΅v}=}ަ?:ΐοΈŸ2©ΑοΜσβο°xle2κλλCλ,ˆ™3£§osσ/η½9Ψ(}3£ΎΎ~«FΫ§₯λΜ¬žόD˜Ω{€φa4.,>ΜN(άv5Ψ©ΐZηά ς3>―πήYδ'ΛΨ8ΈΚΜβ›Yη9ΞΉ=s{―g γ³Ιvj ΫΟ^Y‘Ρ5[$(5In9}fOΗ97?Ε5χύηόϋG½ˆˆ‡tίByΈ~Ϊ|Š¨(‹QWUαε¨εb›|αݐJΠζaόšΰ6ŒΛρΛPΗV˜#γ͌²ΈΡλaΑ»Ψ¦ςxpϋgkΓ)xŸ ,¦›ΩƒΐO/ γ}s₯ΞΉWœsέΐMΐό –™άXx|+p¨ε?Ρ|ΰ&η\Φ9χ*°΄°ΎΣ9ΧPx J±'έΗ?Ί""[a€Χl‘ΐΤ$ΛΉρ3sωΨψΞ]/ςŸχΉœώΩ&"²ΊΖo‘bΛΗο|ΎΕN@1¦ΓΏ"nμ„G#ΌΗεψ¦5ρl_ΟC?­T’Œ1ρ°›oίι;Π“Λ•t .δ»ίύξ½§§/ί¦²ΨΘFx/Z΄ˆ‡zhDο©ΝY9ηž0³χ;,qΞυ c݁eƒ~^μ·±eœs½fΦΤždƒχN,<ήθ:Νμ'ΐGη/£²*ή²βcFθϋ`; IDAT™ˆΘHτšmf‡—qΰZηάw7x=Aώ‹υΎΐjΰ8ηάk…ΧΎAώŽ­>ΰ‹ΞΉ{ Ο_΄:ηv΄:ς™£SΧ€O:η֎όSK%Κβ\yόή4¦\ΰ«΄tdΈτ“{’,χη ‡ˆˆOΆβ{ωv«8²ΤΗο|mι, ΕN@~Τr«‡w@οΚφkΤς@LΗΤρώδΓg{ϋX»ΎΗ―ΡπΥΕσΠΏc«5‘Α£ΞŒm2Β»――x|θWΟ›7yσζmΡϊzs›αέΫΫKYΩΠηΓ’E‹¨ζ€Ψ’νnΝ–ζΝμ_€ΙΙέ‡|ŒΘΏ”Ίa#αœϋ4°πpάP˘ΩifΆΨΜ·΅ω7λ©c|u3?芈ŒΤHΩ₯ˆ +Όη†Βs:ΈΧ97Έ·π³l‡b1γό#fρ͏Ύ›;ŸYΑ§{”·Φkn ‘‘Dι{Ή/ΖV–Sy9Β»΅#K“G\π7—ΊΨ&ŸŠΈMžΖε΄mI탁ΈΏφΟCŽ«’ήΒhκ‹/Ύ˜9sζ°Η{pΑτΏ~ΤQG±οΎϋ²λ»rΝ5Χτ?_]]Ν—ΏόeφάsO~ψa¦NΚ\ΐ>ϋμΓξ»οΞ‹/Ύΐ 7άΐYgεS O9εΎψΕ/rΐ°γŽ;rλ­·Λε8γŒ3Ψe—]ψΠ‡>Δ1GΙοόν;2Ό>ψ`Ύτ₯/1{φl.Ώόr~χ»ί±ί~ϋ±χή{σΑ~––^{ν5Ύϊj.»μ2φΪk/ξΏ~ΪΪΪ8ϊθ£™3gsζΜαΑάζϋq8]Qs=N‡Oι΅)o“ύ<©πάPΛ,7³2 –όΘ±M½w“λtΞυ™ΩMΐΧΘΟbΝ―_\0{φlέ?»*Η¨―ͺπ²·_Dd+ŒδšέPΈ†Ξ'·TΡ|ΰΒΒγ[nAΌjfΕ²‡sχ žŒzƒu\x|#°ψϊ°>Œ:fΖgΪ‘ζΪ$_Ύε)ŽώΡCάπιΉL+ύμο""3οεΫ-3σ6kΉ5aΞ΄qa7γmS ΪYr9G,ζOΤJ[:K*ιWμ„―q9>v@!.ΗΛσ0ΛήSΖωΪ·~χΟΏΩ±M·7k‡.8rΧΝ.Χηwώ^~ωe{μ1œsΜ›7ϋƒ:ˆλ―ΏžΊΊ:ΊΊΊ˜3gG}4υυυ¬[·ŽύφۏK/½΄]γǏη‰'žΰͺ«β’K.αΪk―}ΗφV¬XΑ<ΐ‹/ΎΘΌyσ8ζ˜cΈύφΫyν΅Χxώωηimme—]ήΝαŸ8²!ώ6tww³xρbΦ]Λ#<‚™qν΅ΧςύοŸK/½”ΣO?κκjΎς•―pβ‰'rΞ9ηpΰςϊλ―sΨa‡ρΒ /ŒtΧi8‘&oΛ3³±δ³³7ηq`¦™M#_”>ž|τ` “‡c€?;ηœ™-~if? ?b{&πω[·ή±ΞΒ—ξιΞΉ₯…Ησ€‡ΡFَ5¦’^ή²%"2R#Όf—*‚lcšœs+ WM›Y^ΆG©Ÿύιb>~ΥC\wςlφœ<τ‘νΡV|/ί5Φ$hρ¬(ιcμδ‹’½9ǚυ݌―φg„pKGΖ«8π7.§Xίhπl5€ήu8ηςyηžν«b9ωΈ‡?όαμ½χήtvvςςΛ/sΠAqΕWpΗw°lΩ2^~ωeκλλ‰Ηγ}τΡo[ί'>ρ φέw_nΏύφ!·yΤQG‹Ε˜5k---<πΐ{μ±Δb1š››ΩΐƒˆΗlΘyŽ;n `cωςεwάq¬X±‚ξξn¦M›6δ6τ§?ρόσγ«:::θμμ€ΊΊz{ixF6΄ΊΕƒΎŸάC>τzηάsfφm`±sn!pπ³Βˆ°5δ Ψ–»…όθ²^ΰLη\ΐFΦn4³ςΗΗSΐηGπΩd;δα?~DDΆ±a]³ΓRθδςn+3; 8 `Κ”)ΆK±ߎυά~Ζœς“Η9ξš‡Ήόψ½9lΧζ°›%"β+――ρΎhL%x₯m]ΨΝx›ΆώQΈ~Ϊϊ'μΘzUπnMg½λπ5.§„·G‘&lψrKgΨΝx›ŽL/™žάF­αŒΔ.₯ޜγίψŸϋάηήφό’E‹ψӟώΔΓ?Lee%|0™Lώ8L&“οΘνN$ςΗB<§·wθIV‹Λ@Ύ#`(9ρL²[UUΥψ _ψηž{.σζΝcΡ’E\xα…C―/—γ‘G!™,έΉ=œ οί™ΩΒΒ,ξΞʝsw9ηvrΞMwΞ]TxξόB±η\Ζ9w¬sn†snnρvκΒkή·³sξξΝ¬3ηœ{―snwηάnΞΉ“œsΫφήušj’^ήV#"2R#ΌfoI[AΆ1-f6‘° @λP 9ηqΞΝvΞΝnhhΨΜ*e΄˜Ρ˜βŽ3ήΛΞΝ5œώσΏqνύ―lτή""Ϋ“­ω^Ύ=σ1—Ί΅?gΩ―"ξ@.΅oE܌W™Τΰo\NkG–xΜ¨―ςk5Υ$XΥ™ΛρE[α8χ­s θ|λ―ΏžΞΞ|GΑoΌAkk+νννŒ7ŽΚΚJ^|ρEyδ‘Ν¬idήϋήχrΫm·‘ΛεhiiαΡο'>Œ¨£φφv&NΜίπ{γ7φ?ŸJ₯H§Σύ?ψΓζΚ+―μωΙ'Ÿά†­ΟΞοK=ξώιœ[ΎΝ["°Ζš$«:³τφεήΌ/"Q#Ήf—"‚lSŠλϊnαΏέμ§’νJC*ΑMŸ}ηής$uη όsυz.8r–Υ"²½ΣχςhL%hοκ!ΣΣG²ά θβ +ίb'r©ύ)β:ηhνΘφ>χIcMΒ«}ω΁ρΥΓ*LΙΗΈœβyθΫέEο;δƒ,{u)ϋοΏ?Ÿςη?9‡~8W_}5ο~χ»ΩyηyΟ{ήS’ν}τΡά{ο½Μš5‹Ι“'σξέφdμΨΪΝΎοΒ /δΨceάΈq|ΰΰΥW_ΰΘ#δ˜cŽα·Ώύ-W^y%W\qgžy&{μ±½½½tΠA\}υΥΫτ3 'Γϋ―Ϋt‹"žhͺIs°z]·w½λ""#1’kv #Θ~E~rΚρfΆΈΐ9wωBχ-fv*πOΰ“[υ‘eTSgΑ‰ϋπέίΏΘ5χ½Βk«Χ±ΰ€}¨I–‡έ4‘Pθ{ωΘ‹Ymι¬7"·z:²΄X€χiž«Ž^²½9οβ_ΐΟΈœ–β_` .§₯#γMΑ»ΕΣσ0Nσμ›τζrœ}φٜ}φΩοXζξ»οβτ/zν΅ΧϊϞ=›E‹pΚ)§pΚ)§pΓ 7 ΉŽX,Ζ%—\Buu5«V­bο}η°Ϋξ»Ώc›Εu͟?ŸωσηΏcΉvΪ‰§Ÿ~ϊmΟέ|σΝC~Žme£o3KCέo`δc7kJΦ*‘4₯ώθͺΰ-"QΆ΅Χlηά]ΐ]ϊnv_ΕΏζYŽΎκ!?eŽ7 ‘ θ{ωΦiΣαΛυΓΧΨ‰dyœΪ1ε^Z.vψ6ς‘4Ό²&μfΌMk:Λ΅ώΥ6βr²„›Œ= 8ΒΫ·Z™Q3zϋ9βˆ#xλ­·ΘvwsΪΩ_eβ„ a7i‹l΄ΰνœKΩ‘ 5υχ2ϊsA ]³e4;~ξ¦ΤWςωŸ?ΑόrΝ§φeφΤΊ°›%"]γ·Nq“Os7ω;ωQΛ~ν+?‹’ΰg\N[:Γ^“Η†έŒwθΏΣΒ³c«²"Nub8IΟΑ*‹ΗθιΛ…έŒώΡΫλ»{YΪΪIyΔβ‡έZ3k4³)ΕJΩ(‘ {[<ΊeKDd[Π5[F›¦ηŽ3 vL9'όψ~½xYΨM …ρ[¦qΠΘR_ψ;ωύΥβΡ€•ύρ/Žπ—γƒžΎ«Χu{Ή―ϊγr<:ΆZ:2^ξ+€ςΈ#Ό‹Šm)‹ϋΧI·)›-x›Ω<3{xψ+π0t`ŒH„ΤW'ˆ™_e""[CΧlΝvl¨ζŽ3`Ώiυ|υΦ§ΉθΞηιΛωσe@D€”t™ΊΚ ΚbζΥ §ΦtΦΫB[c*ιΥοβέΨ>NZ98.Η«:³8η_&5δγrj’e^έ]Ÿ?ίy\9ώΏ-Λβ1zrαπ.*Ž6/‹;Β{kΓiνο^rΞM#Ÿ»ωΘVmUΔρ˜1Ύ:αΥ]‘­€kΆŒjc++ΈαΣs8倩όψώW9υΖΗιΘτ„έ,‘ θ?±Βw>ŸFx·₯3^p!_,mKg½(ϊA>ŠΖΧΨ ίβrŠνπυš€7™Ώaη@2™dυκΥ‘ε1£/ηΘy2°£7όoη«W―&™ωρ<œΏ=ΞΉΥf3³˜sξ/fφ?#ή’ˆGšj’^έ²%"²•tΝ–Q―,γΒy»2³©š ~ϋG-xΛl¦7T‡έ4‘R5~„šjό)xϋ;ωbiw_ŽφΖVV„έZΣ/σ»ΑΏΈœΌsO-ΞCΘίιΘ΍o{n€I,_ΎœΆΆΆZ•·.ΫΛΪυ=X{"πQΥCY»Ύ›LOKcέn2™d€I#~p ήo™Y5p?π 3k֍x‹"iͺIπΖ[*x‹Θ¨‘kΆl7NΪο]Lo¨ζŒ_<ΑQ?|+NΨ›CviάόED’IΧψjH%YΎv}ΨΝόŽ€¬μ–ެ'οlώ³o|‹ΛΘ;χ΄ƒ •δ±WΧ„έ :³½¬λξ{ΗyX^^Ξ΄iΣBjΥ€EKZωμMsΫηχgχw…?Qϋ©7<Ξ›νξ>{Ÿ°›²E†ΣUπ 8ψ=πΰΘR6J$(5IΪ4Β[DF]³e»ςžλYxΦ{™\WΙgn|œ«- ύ6T‘Ρ5~„|Yκ{μD£g“ Άz<± oq9-YΜ`|uψCiLω—SœΗΝΧc«ψχΑ—ψ]ŸηΨ”αΌΛ€?‹€p³snu)%”¦T’Uέύ!ό""§kΆlw&«δΆΟΐ{μΐχΏ„³~ωwΦe{Γn–ˆΘΆ¦kό5¦¬YΧMwoψίω|(Ζ‡x“K½‘‰}αS\N[:C}Ueρπ#0†X“Λyk}ψs― œ‡~[ύq9έ=ΰλί¬MΩμ™ΰœϋ–snWΰL`πW3ϋSΙ[&€βIΫζΙEJDdkθš-Ϋ«1q8~/Ύρ‘]ΈϋΩ|όͺym•ξτ‘ΡCΧψ‘+΅Vu†ΟϋΨ r©;³½¬οξσΊΠ֐JϊS”μπ»s`ΰξπ­b|΅\ŒΛρa_υε«:»½>Ά6fKΊ~Z•ΐj@‰2*ργKξ–ˆΘ6’kΆlw̌Ͻ:?ύΜ~΄¦³ωΓψσ‹-a7KDd[Σ5~ ωThσ=v’²’ŒκD™ߏϋc'<.x{—“Ξϊ½―<ŠΛˆ4ρ³ˆ‹ )?Ž­Υλ²τεœΧΗΦΖlΆΰmfg˜Ω"ΰ^ ψ¬snR7L$Ε“Φ—l$‘­‘kΆ8s<Ώ;λ@¦ΤUrꍋωΑ_’/~^€ˆΘΦΠ5~δςpΓ/΄εc'ήΖN@ώ;²w@·xžwωˆT_βrZ<Ξ;‡Αƒ Γ?ΆZΣYe1jΖ”…έ”jL%Όψ›εϋΌ›2œίξdΰKΞΉ'Kέ‘ υg”yΠΛ("² θš-LΛηzσŽgΉβή—yjΩ[όΟq{1ΚΟu""Γ kόωΣ‘π·( ωB›ߏβ_όέ_ΕckUg–Ǝ ­ωΨ Ο#MjόαέX“ΐΜΒnΚF5€’,_»>μfτw~ΚήΞΉoθ’*£U1Ι‡ž3‘­₯kΆΘ€dyœKŽέƒ‹>Ύc5G\ωΟ,o»Y""#’kόΘΥWU3hσΰ;_K:γ}α¨1•τbξ@‘Νγ"nͺxΗxΈΗΦκuYrΞίΙPa .Η‡ Q[<Ο;&DmιπΏγicό½F$Εl$.θ"""²m™'νχ.n9}œsύ£‡ψω#Δ9Eœˆˆl/Κβ1κ«ύ(Ei„wΨΧΚώΨ‰€Ο±Ε;ΖΓ=ΆŠEδΟ‹Έ)?βrZΣ~ΗΏ@ώΨς!.§xl7xΎΏ†’‚·lχk’‘χȊˆˆHιμ5y,χΕχρžιυόϋožεœ›Ÿd]Ά7μf‰ˆH@|ΘΓ-ΖN4yΔεDa2T zΨ·ZYοοΨΌe»ΧT“`νϊ²½}a7EDDDpΐŒράυΕχ±ηδZΎzλΣ|ω–§Xί­ˆ‘Ρͺ1•`ug–ήΎπςp#;αK.u:#K‹Eά0E%v’±&z\Nk&C…A#ΌC>Ϋ:2ήw€lŒ ή²έ+ώ‘ ϋ–- NcM’_όλ{8ϋΠ™άώχεΜϋαƒΌΈ²#μf‰ˆH 4Τ$Ι9X½;΄6Ώoϊž<K^7*±ΰΗέ-‰θ΅βέη‘ίΗV1.'Μ}•Λ9Ϊ"0οΐΖψ;έ­H@š 'οA…°§Γ[YΑΞ9ˆρΥ~ρ β1γœνΔάiuœ}Σ“ΜαƒόΗ³8iΏ)^O’%""[f 7ΌβM1φ’ΑσοzΥ‰2Ζ”ΗCιˆJμδΫψτςφPΫΠ‘Ψ‰†AηαŒΖT(m(Nšι{A1.'́™kΧwΣΣη"qEoΩξν·c_?|—Πoe^ٞαΧ[Ξ‹+83šPDDD’θ½3ΖsχΩογά[žδίσ,.]Εw?±΅•εa7MDDΆ<ά PJбe~ίhof4Φ„;ΙgqΫQYژJ°z]>.§,ΞοΆ­#̆ρ‘l{Kψ—ΣšΞR7ΖEΰίxM5αΖετΗΏxή9°1*xΛv/QησO»ΌρVΏώΫr–­]vSDDDΆ; ©7~z.?Ύ.Ύg O/ΏŸ9~/ζL­ »i""²•|ΘΓmMG' )•τ"v" £–k’ΈB\NΏίbμDφ•q9­ι ©d$ξδkL%ϋG€‡a γΙck(~w-ŠlGšk’”ǍΧΧ¨ΰ-""†XΜψάϋ§σλΣχ'3Žϋί‡Ήμ/…:Ι™ˆˆl½bddΨΕ£(dR4Τ$h ±s *±πφΈœ0D)vΒ‡ΈœΆ‡©DΈΡB:‡’‚·ˆ'β1cβΨ1*x‹HΰΜμp3[bfKΝμΌ!^O˜ΩΝ…Χ5³©ƒ^ϋFαω%fvΨζΦif‡šΩfφ€™=`f3JύωDΆΤήSΖqη䨽&rω½/sά5°LΧg‘Θͺ(‹QWUξοŽLd GωB[ΈQ‰h,ŒκkE)vΒ‡Έœ–ŽL$:ΰνq9aθ?Ά4Β[DΆΦδΊJ–λ ΅ˆΘΜβΐΰ#ΐ,ΰ3›΅Αb§ks3€Λ€οή; 8Ψ8ΈΚΜβ›Y珀“œs{Ώώ½”ŸOd€RΙr~pά^\~ό^Ό΄2ΝG/ΏŸ;ώΎη\ΨM‘hL…7\.ηh‹ΘΔ‚/žλξc]6œy’;n\NΤb'ςηaΈ)‘9Εε„‘΅#C*YF²<Κφ·– ή"™\W©ή"΄ΉΐRηά+ΞΉnΰ&`ώΛΜn,<Ύ8Τςί@ζ79η²ΞΉW₯…υmj¨)<ή,ΡηΩ&ζο5‘»Ξ~»LHqΞΝOρ…_ύφυ=a7KDDΆPcM’Ά²ƒΧο¦7ηhŠΘȁ¬εpŠΈQŠhH…›K΅Ψ‰όyΞq•ννγ­υ=4Ee_…—₯y†’‚·ˆG¦ΤU²v}錾H‹H`&ΛύΌΌπܐΛ8ηzv ~οέΤ:ΈΛΜ–ŸΎ»M>…H M«δ¦Σφ竇νΜοŸ]Ια—ίΗCKW…έ,ΩaζαΆτOβQ±xVLG”b'Κγ1κ«*B;Ά’;f\N”&C…πγr’tEoL©«`ٚ[""R2ηuΞM~ό`¨…Μμ43[lf‹ΫΪΪm ΘPβ1γΜCfpϋ0¦<Ξ‰Χ>Κ·~χ™žΎ°›&""ΓИJ°ͺ3K.|4UqτoTŠG!πŽRμδGy‡uχ@Τb'ΒŒΛ‰Rή9ψ—•ΏYCQΑ[Δ#“Ηε ފ5‘½Lτσ€ΒsC.cfeδ£HVoβ½C>of ΐžΞΉG Οί 0T£œsΧ8ηf;ηf744Œδs‰”Δ“ΖrηίΗΙϋΏ‹Ÿ<ψ»β~ž^ώVΨΝ‘ΝhͺI›s¬Y|nd m!Œ,ZμδGβ†Y”ŒRμD˜Eάb§„βr6Ο9WθxŠΞ±΅!ΌEΐ—>ΈŸ;hGΚβ[""β‹b΅-„‘Έ­Ρ‹hL%;1L©$}9ǚu݁Ά;бaΖε΄vd_]A,fo{€ΒŠΛιŸΰ3Bηα†τ―pΟL©«d™ ή"""‘rΨΝάσ₯ƒψπ¬f.Ύg ŸψΡC,Y™»Y"²3³ΓΝl‰™-5³σ†x=af7^ΤΜ¦nπϊ3λ4³―ΥζR 3·5‘)B}₯Π±Ψ  wτ±ΕΨ‰0γr’–wαΕεε¨ν―ΑTπρΜδΊJ–­ν eφpΉϊκ NΪ‡'ξΓk»8βΚϋΉςή—ιιSΆ·ˆΟΜβΐΰ#ΐ,ΰ3›΅Αb§ks3€Λ€οmπϊ€»KέΦ $Λ㌭,geH1QŠθ€|‘«₯=ψ}΅²=CYΜ¨‹PμDq„uΠ0Εc9J#ΌΝŒ¦šDHηa΄β_ Άufι ψί’ύΗVΔφΧ`*x‹xfr]%έ½9Ϊ:Γ™τBDDDΆΞΗφ˜ΐΞ9ˆΓvmζ?ΎΔQ δΩ7ΪΓn–ˆlζKs―8纁›€ω,3Έ±πψVΰP333; xx. φ–\sM’•qϋrŽ–Ž j£S”hM’Ξφ’ΞτΊέ•νšj’Δ#;QόέψΨZΡήΐ;Ά&Ԍ |_Aώχ3‘vLΰΫέΝ΅ωΈœUέnwe{~ށͺDt“°UπρΜ”ΊJεx‹ˆˆDX}u‚žΈWΏ}hιΘ2Αƒ\|Ο‹dzϊΒnšˆl?&ΛύΌΌπܐΛ&—n'?Qu5πuΰ[΄30j“ΪVwfιΝΉΘΌ‹ν zΤςŠφ ΝΫW Υ bFΰ)ΕνEm5Χίρ΄Ύ»—φžΘν«Ξ”@·Ε΁ ©ΰ-β™ΙγςT^_­‚·ˆˆHΤΎΫώtξA||ο‰,ψΛ?ψθχ³ψ΅5a7KDds..sΞunnA3;ΝΜ›ΩβΆΆΆ·l+4׎ ΌΠΆ’Ώ(­βQsM8£–WvD―ΰ]Ρ˜ Ύ3eE{3"—3‘Pπv.ΈΧβy΅Ž§βΉFgJΤΞΓ ©ΰ-♉γΖ`ΛΦͺΰ-""2Œ­¬ΰ’cχ䧟™KΆ'Η1W?Μ7οx†Ž€o‘νΞΐδA?O*<7δ2fVΤ«ύ€ο›Ωkΐ—€3³³†Ϊˆsξηάlηά솆†mϋ Ά± ΅IV―λτn›-΄GwYΔuΞ±’½‹ Κ€. cΤςΚφ γ«T”E«΄Χ\›€»/ǚuΑΕtDu4|ηaq{Qϋ›΅‘h"ہDYœ 5IEšˆˆˆŒ2νΤΐΞ9ˆSœΖ―{ύΰ―όώΩ•a7KDF―ǁ™f6ΝΜ*€γ…,³8ΉπψΰΟ.ο}ΞΉ©ΞΉ©ΐίqΞύ0¨†—J±ΨΥΪά|I+ QQ+΄5Φδ'« ²ˆΫήΥC¦'Ή}ΕΈœ€c'"˜ α\ίΞ IDATdžtχ@1·?Š)ƒ•¬ΰmfq`π`p‚™ΝΪ`±S΅ΞΉΐeΐχ οEΎχyWΰpΰ*3‹ofΏvvΖZͺΟ&RjSκ*YΆF_|EDDF«='eαYο式μΒύ/·ρΑό•λx•ήΎ\ΨM‘QΔ9w—sn'ηάtηάE…ηΞwΞ-,<Ξ8ηŽuΞΝpΞΝuΞ½2Δ:.tΞ]tΫK‘Xΐ r΄δΚφ M΅ b1 l›ΫJ>¦#Έο₯Q€ό±΅Ύ»tΆ7°mF5v’Ώγ)ΐσpE{c+ΛSl›ΫJsMΐηaG4ηΨP)GxΟ–:η^qΞu7σ7Xf>pcαρ­ΐ‘ff…ηorΞes―K λΫθ: rηςέi‘Ο'‰€)u•¬μΘš-'"""Α*Η8ύύΣωγ9οgΏiuόη=Οόςδ²·ΒnšˆΘ¨ΤBξŠφ j’Y8 zdiTσΞ!ψQ˝Ω^™ήH%ΗW'ˆΗ,πΞ”¨ξ.y82₯,xO– ϊyyαΉ!—)άnΥΤoβ½›]g!ΚδSΐο·ϊˆ„dr]ώ’υ†noυ&ΧUrύ)sXpβ>΄₯³|όͺωζΟΠΎ^“ZŠˆlKΥ‰2R‰²`£Ϊ3‘± …ށކο"fАJΆΝm%θ\κ•.JΖcFS*|ΗSχδ;SZ:2δrΑΔεDuށ ΖI+―ξsΞέ?Τ‹fvš™-6³Εmmm7Mdx¦ΤUhβJ‘ν„™ρ±=&pο—ίΟ§ΘOjωKqλί–φGDd{Πΰδ‚Ξ9VFΈΠ6‘v o­ο‘«;˜;W΄ghH%(G―TU=Τ¨ε(ΗΏ@1.'θŽ§θ†‡|§FOŸcυΊξ@Ά·’=CUEœT’,ν•J)ŠΌLτσ€ΒsC.cfe@-°zοέδ:Ν적όdCrΞ]γœ›νœ›έΠΠ°…I$“ oM\)""²}I%Λ9ΘYόξ 2₯Ύ’―όϊ)>ωΏσό›a7MDdT²ΠΆf]7έ}Ήθ%k‚Ν<_Ωέ’dSM°#Ό‹6QξL κ<Μττ±z]wdχUροGPϋ«xWJ>q:ΊJYπ~˜ifΣΜ¬‚ό$” 7Xf!prαρ1ΐŸ ά γΝ,afΣ€™δsΉ7ΊN3ϋWΰ0ΰηœfϋ‘Hk¨N,©ΰ-""²Ϊu‡Zn;ύΎτΌ²jG\y?όφYΪ»s""²5‚ΜÍzξ@LG0£–σyηΡάWe1ΖW'-JΒ@‘=jš ηaΎXZ­ΩώmFQ(ηaD;ž+YΑ»Ι}pπp‹sξ93ϋΆ™Ν+,vPofKɏΚ>―πήη€[€ηΙgqŸιœλΫΨ: λΊh6³'ΝμόR}6‘R33&«T€‰ˆˆΘv,3>9g2ώςϋ9iΏwρΣGώΙ.YΔ͏Ώ˜‘jC[g–žΎ“ˆˆfρ(¬‘₯QhgJG†Ίͺ ’ερ@Ά·­M¨MΥΣGGWoΙ·υΡπύηaPwZDό<,*i ‹sξ.ΰ ž;Πγ pμFή{pΡpΦYx>Ϊα2"˜RWΙ‹+ΣόώΩ•a7…›SL_v3DDDΆKc++ψΟ£vγΈ9“Ήpαs|ύΆgψΕ£―sΑ‘»²ο»Ζ…έ<‘H™P›Δ9hMg™8Ά΄…θΡαέΰDŒιLΩήΘξ+Θο―ΧW3hme{¦?r&Šϊ­Ž.j+ΛKΊ­•?ΗW%(‹Y ηao_ŽΦttηLEbOνԜβή[9ύη »)μΨPşΏ|pΨΝΩν6±–_ŸΎ?Ώ}ςMΎsΧ ύ£‡ψψήωϊỌŠ‘8""A΅άUς‚χΚφ.β1c|u’€Ϋ)•ΚŠ2jΗ”2Β;κ“0BΎ ϊθ+«Ω֊φ ;D|_Aώsμ\Sm­ˆψ±˜ΡTΜάmYr.Ϊηa‘ ή"ž:χC;1oΟ j“n~όu~ϊΘ?ικξcLE4o—-̌£φžΘg5±ΰ/KΉξώWωύ³+9γΰι|φ #{k³ˆHP&8jyE{†¦T‚x,Ί“ΏΣ1wΝ’$δ‹„™^Φe{©J”ΆάΆ²½‹}¦Œ-ι6J©X|ͺ3%•(£ΊΔΏ“Rʟ‡₯ΟπŽϊΌƒEχ·-2Κ•ΗcΌ{Bi{:‡cιυάψπ?YΪΪΙξ“jΓnŽˆˆˆΥ‰2Ύ~ψ.œ0g ίΉλ.ύγKάτψ2ΞϋΘ.±ΗΜ’[\)₯ 5ΑΪ’>R²Ή6ΙʎΪVŽ‚BΫ„AYΛΣͺKΆLOkΧχDz_5¦˜ΥρΤ5*ΞΓgίh/ωvϊﴨ‰nΗSQΙ&­‘ΡafS €%-ι[""""šR_ΙΥŸΪ—_~v?jΖ”σ…_ύ£τ}mΨMρR͘2Ζ”Η)΄­lΟDzΔ2δ‹ΈAt5ь"a©χWΤ'C…όΏ†κ+΅<:žŠwZΈGŒ¦ή*x‹Θ&½«’в/©ΰ-""β­¦ηΎp ί?z–­νβγW=Δ~υw–­ fς,‘¨0³@ŠΈΞ9VŒ‚B[sΝVuv“νν+ιvVvt1ΎΊ‚DYt£Ή‚ŠΛ-EΙ γr’Ύ―škǐνΝρΦϊž’nge{‰²cK<‘hTπ‘M*‹Η˜ΡP­‚·ˆˆˆηβ1γ“s&σ—―ΜY‡ΜΰΟ­δΠKΚwξzφA‰’ζςp;Ίzικι‹|‘­Ψώ֎lI·3*:MˆZJň™Ρ°ΏJέρΤΣ—£­3ιΡπlgΚ„Ϊ䨈ΖSΑ[D6k§¦j^Z©‚·ˆˆHT'ΚψΚa;³θ«3o―ψρύ―πώKώΒ΅χΏRςz""QD‘mΕ(*JBι m+Ϋ3‘Ο N–ΗWYΨοζšh[jΗ”ό‘νέ¬jψΩ©ϋρ³SηR;¦œ/έό$G\ω}©­δ“‰ˆψ¨Ήv }9ΗͺΞΕtŒ†‰apLGι mλ»{iοκ‰|Q‚Ι₯-EΙb·₯£tϋk΄t<5T'ˆYiΟΓ\ΞΡ‘ή"²Ω©PπVŽ·Θθcfq`π`p‚™ΝΪ`±S΅ΞΉΐeΐχ ομ \efρΝ¬σ`2°‹sξέΐM%όx"2Θϋf6π»³δςγχ"ναδλγ„?Β―― »i""šPSϊΡ’+Ϊ3˜Ac*Q²m!•,§:QV}΅r”%‘—SΒ.ŒžΨ‰ζΞΓώc+βq9eρ©v¦¬Z—₯7ηFΕy*x‹Θ0L;†ΚŠ8K”γ-2Ν–:η^qΞu“/@Οί`™ωΐ…Η·‡Z~&“ωΐMΞΉ¬sξU`ia}›Zηηo;ηrΞΉΦ~6Ω@,fΜίk"χž{0ߚ·+K[;ωΔUρٟ.Φu^DΆAL.Έ²½‹†κερθ—]Jy>0>ϊ…Ά 5IΦ¬λ&ΣSΊ93FKόKq”z©;žΖ”Η©νψπ<Œx6|QτςŠHΙΕbΖΜ¦/·κ‹°Θ(4X6θηε…η†\Ζ9Χ ΄υ›xο¦Φ98ΞΜ›Ωέf6s}Ωe1N>`*ύκ!|εΓ;ρΘ?VsψεχqφMη΅UλΒnžˆHI‘‡;ZŠ’Pˆι$v"Ϊ£pa h_ͺ˜Žξή«:³£’s ±&χC©‹Έj“δΗκD[>.§tt£ι<ΌEd˜vnͺfΙJex‹ΘVKηάlΰΗΐυC-df§Šβ‹ΫΪΪm Θφ€*QΖY˜Ι}_;„Ο4{ž[Ι‘?ψ+ηέφ4ΛΧ»y""%QWUAEκΜψη¨kΤFΫκξ66– ΖtŒ)†@(› l’e!›F ɏd³6½@ ,€Y„Π;c w7YV³­QΧωύ13²0–5#4£;ίχλΕ ιΝλgŽΞ3σάsŸσv5WœPΜ5gNrΜνϊ"{Ζe₯PΧAo― ϋŒΖ@BΚ)³– 2GΈLGK;ΗΉGδΨ‘0’³–χ΄΄“–OF²3yγ³RiφvΡΦΩφ’6}³αrŽλ;GθbΚg‡šα-"A1Ζ0m\†fx‹ˆˆΔ /ρύςΧΟ䒊Bώ²’š3n…o?Ί–šF-n)"cΟψΜ:{ziτ†’Γe'œqQππΜπ'ΪΪ»zhhνtΤΜqY©#6k9P“Ϊg”θKβŽ@{9m6|ΰΒΣH\L±Φ:n†·ή"΄©l©;4b«‹ˆˆHt+ρΈψρ%Ησς7ΞδS Šxxe-‹ς ίψΏχΨV(α‰ˆm$λαŽ™Ÿ™φcG‚Ϋ•HrB܈΄ΥΎΎΊΰNIJ‚οbΚΘ–pΖ…Ω‹)N«wž”Gnzςˆœ‡Mή.:»{sW (α-"!˜ZAK[ϋFh±Šs\άzΡl^½αLώuQ)O¬ΩΝΩ?{•k²Šυ»["žˆΘ &Έ}‰]Ν#‘hkΓ“–DJbxK4DŠ1† ξTv@R2pL§$%Ζ»SΨ¨ƒŽξž°{OK›³.Έ}ΙϋέΝαOβξii')!Žœ΄€°;R&ΈSFδ=kw³σΞC%ΌE$hS | WͺŽ·ˆˆˆ€οvύοβ8^ΦY\sΖ$^έRΟGυ:vοΫΌ½£Qw…‰HΤ*ΙqŒHY¦ͺ/%W؏IΕ9.ͺG ­ͺ|Η,ΝI ϋ±#₯$Η…΅PΫήΔd{Wu:(ΝqNߚΰN!Ξ0"}«ͺ‘•’—cΚΏ€ο<‰χ¬@ϋ;ι}ΛUξEdTL-HΰεΝϋ">[!Ξΐ¬Β¬ˆΗ!"""›žΜ·Ξ›Ξ5gLβOoξδήε;ΉτΞ7™_šΝœ1‰³¦η‡}Q8‘αp»’ΘLI ͺadή'”e‡ύΈ‘TšγbuuΦΪ°&«[Iˆ3}3ԟ4¬nπ2)/=lΗubR29!žρY©T7΄†ύΨU ^G]ίyψμΊ½tχτ’Ύ9́χΑRs.<)α-"Aσ€'3!+…{—ϋΎΘFΪυK¦π΅s¦F: ρΛJMδΊ³¦πωS'ς·•5ά΅l;WίΏ’)ωι|ρτ‰,­($)A7™ŠHt(υ€QζΩ’έ=μii£ΔSΦγFZ©ΗΕΑφnš½]d‡±DDUƒ—ΒμΤ°&ο"­Δ?[½*ΜI\'&%ΑΧ·Β}Zk©nτr$OXi₯έ½Ύ&‹Γ˜Μ―nlΕ“–Dz²sΔΞy%"2*ϊχ“Fδv£PύχX±½!aˆˆˆΘQ€&ΕsΥΙeόΛ‰%<΅vΏu;ί|x ?yn3Ÿ=₯œ+–•šι0E$Ζ•x\¬Ϋήuj›Ϊθ΅8nfi ΜΞ†Φ°'ΌKΦVΉιIΈ’βΩζ» t§υ­R‹gΧΧ…υ˜υ‡:πvφ8­Sv6΄†5α½sΏσΚ0)α-"!)Ξq…υu¨MτπΠ;5aΏ•GDDDΒ'1>Ž₯…|bΞ^{?w.ΫΖmOoβΧ/ΎΟe'”πΩSΚ’βs…ˆΔ¦2OψΛjR—ε:λ½­,Χ—h«nτ2·$|εZͺZ©(. Ϋρ’1†ROZΨ'ŠU5xΙLIΐνrΦγRO­lο"#%<―­―6|³fΓήWͺΌœ6%|Η­nτ²°<'|ŒΚ‰Θ˜4―4›Ά6iM‘¨gŒατ©yόεκE<ρεS9gfχΏΉ“3ς Χώu«ͺ›"’ˆΔ œ4Ί{-»›ΫΓvΜΐ,ά-Β‡gx‡³ζy³·“νέ}5―€4Ηώ’&^J=iŽZ„ΟXgίκ+β°‹κ)$%Δ…υbJGw»[Ϊw§…ή"2&Ν+q°Z_EDDΖ”Y…YόβςΉ,»a1WŸZΞ²-υ|ςŽ7ΈθŽε<±f7έ=½‘QDbDΰώaLLV5zq%Ε“›Ύ²Ρ %1ž‚Μδ°&%%?œ–h_™ŽšΖ6zzm؎YέΠκΈ²pψ< g·ͺΡKœ’lg΅W\œ‘$ΜSj›Ϊ°Η]xRΒ[DΖ€Bw*ωΙ¬ͺnŽt("""2ά©άtΑ ήΊi ίψL[;Ήξ―«9ύφ—ωέ+ΫhφvF:DqΈ2βα\0/P“Ϊi³pΑΏΘg8/ψUζ°²ΰk«Ξž^φΟέέ=½Τ6΅Qζ°€$^„3¬žZ™ΰNuδBΩeW˜gΓϋkΓ;¬o9ο//"1ΑΓά·nγ’ψ·SΚyιλgς‡+P–›ΖŸΩΔ’½ΘM¬eΣή‘QD*?#™δ„8ͺÜh $¦4ΗΦ‹ΥŸα „νΑξζvΊ{-₯+•žœ@nzR_‡ͺ―γΈ%9ΎϊπΦ†ης/{ίRΒ[DΖ¬y%ΩT5xi8ΤιPDDDd˜βγ ηΜ,ΰ―_XΔΣ_9₯s ydU-ηύβ5.ΏλMž^»GεND$¬εv†)ΡΦΣk©ilsl’­Τγ’ώ`ήΞξ°ogƒ—‚ΜdRγΓrΌhHβ‡+‰[Υθ― οΠΎε+ΣΖ‹)^ΗΥΡ(υΈπvφP¦“_r3ŸΙωιότω-œ|Ϋ‹|ωΥΌ½£1l·τŠHl*υΈ¨jl Λ{I_-\Ο,…p&ΪΌ”:°œ ψξZ*ΞvQέž$nuC+Ι qδg$‡εxΡ¦Δγbρv:Ί{†}¬κΎΞμ[αΎπTΥθΜσ0!ˆˆ UJb<3'dj†·ˆˆˆΓΕΗΞ=nη7Žνυ‡ψσ[Υόί»5όσ½έL-HηΣ'–rΡΌB2S#ͺˆŒ1₯ν]½μ;ΨAAfΚ°ŽεψD›?‘Ž$·³›};ΫVΰKβ†σβ@IŽ‹Έ8gΝΒ (υΈ°jۘœŸ>¬cUυΥ†wζ…§Bw*q†°¬=ΠΣk©mlγœ™aˆ,Ίh†·ˆŒiσJ²y―ΆY5=EDDbΔΔΌtnώψLV|{ ·_|<©‰ρ|ορυœxλ‹άππ{¬n¬o Z Φr8“U^γ ά©Γ>V4Κr%’•š–Άͺφ/~YβΠΰ[δ³Ί!<‹ V7:wF8œœΗΕ§Χ;OJˆc‚;5, ΘΚ09ρ%ΌEdL›[βΖΫΩΓζΊƒ‘EDDDF‘+)KO(ζםΚ?―;•₯xbΝ.Ίγ .ψΥλάζNZΪΊ"¦ˆDΉ²ΎςaH΄5΄R”ν"ή‘³pΚΒ4kΉͺ―&΅3“’ΰ+=q°£›ΖΦΞaΗZλ+βΰ‹~°sϊΦ~/ΉιΙ€';·¨E™'-,υα«φϋΛ09πΜ™Έυ;hλκqdR2 '-‰τδ„Ύ™ΓQΥΨκθΆίμυp”4 τM'Ύo)α-"cZQv*ΉιΙ¬ΦΒ•"""1/#%‘OŸXΚ_φΝϊΎx^Ο­―γ;ίdΙΟ^εχ―ncίΑφH‡)"Q$1>Ž ξ”a'%­΅T7x=c|e:v5΅ΡΩ=Ό’’U ^²RΙr9wν…@΅z˜Sœœ” 0ΖP’γ ˝Υ^ 5 4ΗE“·kΨw²U58· “ή"2¦c˜WβΦΒ•"""ΗΓμ’,n½h6og ·_r<ž΄$n{z'ύθ%Ύοž]ΏwΨ q†2OΪ°gK6Άvr°£ΫΡ5©Α—Δν΅°«ΉmXΗ©ntώŁ’lΖΐΞaφ­ώ²eο[eΉΓ/—ΣήΥÞνŽ.τ½Ύa_Lih₯Ψ‘e˜œ[ΠFDbΖά’lžΫPΗ«[κq%ΕG4–τδfŒΟŒh """r˜+)Ksι‚bΆΥβVΦςχU΅Ό°q9iI,­˜ΐ%σ‹8nBV€C‘)ΙqρĚ=Γ:F`γg–φ«y^ž;τ€βΞ†V*гΓVTJIŒg|fΚ°“’Ս^βγ …ΩΞ›…Ϋ_INΟo¨£§Χ9[ΫδΕZgΦ€ξοpΉœVf ύσKUƒΧ±‹{*α-"cή‰sΈκoG8Ÿ^wκ°“ςΉρόι|γά©Όφώ~ώοέώςV5χ.ίΙτq\2Ώˆ₯…δe$G:T‘°0ƜόˆξΆΦήvΔγΙΐύΐ| ΈΜZ»Σsptί΄ΦΎ4ͺΑ’R‹–Ά.ZΌ]C.±HjΖJ’m8΅–»zzΩέάΞ9Ξn+πΥZnΉœͺ/ά)$Ζ;»HC©ΗEWeOKEΩCλβNMβΚΫ gFΌ΅–κF/'”9σΒ“ή"2ζΝ+ΙζΡ/LkGODγθμιακϋVςΒΖ:%ΌeLκ—ac7Ÿz€λ­΅ΟyΜ_Ÿ³Φ¦ΰK9ͺ„ψ8OΟgρτ|šZ;ωηšέό}Υ.nyr#?zz§OΙε’yEœ3£€Τί=&2TƘxΰ·ΐ9@-πŽ1ζqkν†~»}h²ΦN6Ζ\όΈ Ψ|άZ»Ϋ3 x(έW0zJό 'V5ΆrΌΛ=€cT5x1Š>Γ;?#™”ΔΈa%Ϊv5΅ΡΣkŸ”ί’œ/nΪ7¬cT5z½Έg@ΰξˆκο°ήNΏΣ"-9άτδaέ=ΠΨΪΙ‘ŽnΗ–QΒ[DanIt\•¬(vσΚζ}|υœ©‘E$(Γω2lŒ™ \L^0Ζ:€Η4Ζ,’】˜—–Δ•'•qεIelέwˆGVΥςθκ]\ΐj“8oΦ8.š[Θ’‰GΦΈG[l΅Φn0Ζ<,ϊρKοϋ~ψ1ΖXkWχΫg=jŒIΆΦvŒ|Ψ£―,Χ—ΫΩΰεψ’‘&Ό[—™BJ’³/’c(ΝIΦ₁šΦN―I Pšλb‘ut“ž<΄\UC+=>Μ‘EŸR‰œ ^Nž<΄cT5΄’‘œ@NZR#‹NeΧ7 š IDAT°κΓοtψ])#z?„1ζ0ΈΒ?¬ΏΎcΐΟρΝγˆcηwcβ9ζrΰl j€^“ˆΘ`OΟ`Ω–ϊG"΄α|θΉΗ:ζuΐγΦΪα­ %"2‚ββ 'Mςpϋ%sxη»gsΗ§ηQQμζOoVρρίΌΞ’ŸΎΚϞίΒΦ}‡"ͺȈ2Ζ‡ο{ϊΏcŸ/cVcVΦ׏ΝΟΐ€ς2’‡•Δ­jπ:6qt€_’­·whͺΌ€$Ζ‘λ%y>΄$n Q^%Mβγ E9©Γ*ΣQSηa{ZΪiοZiΧ@¦‘–‰v#9Γ{TgŒYkWκ‰ŠˆDΚΜρ™δe$σŠή"bŒ™| ψuϋŽω/Ο"β )‰ρ\0{Ξπςζ},(Λ‰t8"Ηd­ν6ΖΎ Η |VZkΗχeψOώ/ÍψΨψχϋ°θ΅Φφ€o1ι#9Ϊ―MDd΄ηΈΈζŒI\sΖ$vξoεΙ΅{xrΝnyr#·<Ή‘9Εn.˜5Žσg™/⬡OO±νζ~?·γ+7vδσnnρ£ΘτqlΨ} δΟπλv·g˜œŸ>‘E’liIρ¬Ϋu€ΛNνΉ[λΡΡέΛτρ™#\š1>ƒ§ΦξΕZr—u»τυΝX0}œ―_¬ΫέΒβi‘]c[·»εΗpΊlW"ωΙ¬ί} δηξii£‘΅“ιγΫ·Fr†χ¨ΝΑΧ "²¬ΤDζ—dσΚfέE"cƒ΅φ)kνTkν$kν­ώm7ϋ“έXkΫ­΅Ÿ²ΦNΆΦ.΄Φnοχά[ύΟ›f­}ϊXΗ<ΚΏί E$¦”ε¦qνβΙ<υ•ΣxωgrΓyΣθν΅όθιMœώ?/σΡ_½Ζ―_|Ÿχλι–m%n€!έ₯YYΣΜτq€&9³ξ‘βγ ΗΉ‡ΦVΥΎηT»ΓVΤͺ(vΣΦŎύ‘ΝΔυvv³yοζΖP[_”Eœ9άOBQYέL©ΗENZD}Œ1Tλ<Ȉ%Ό‡sϋ”X`ΖΨ3ψgŒ tLcΜυƘZ|³ΎΧcξ©Χ&"2˜3§η±~χκ m!ϋΚsΣψ™“ωη—Oε΅σ f’ΟOŸίΒ9?_Ζ’ŸΎΚmOobuu½½J~‹DR~F …ξTV‡˜<κν΅¬©iqtβθh*Jάlάs€φžž·Ί¦™Œ”&ζ:·”Β‘*гΠ/¦¬­m‘ΧΎ ’˜Z1δ O±xξΨίJ³7΄0•5Ν$ΕΗ1s‚sgÏh ‘ή>εμVΰC3ŽvLφ_ΏfΘ""a±xZ>·?³™W7Χsι Εƒ?ADDD­8ΗΕNŸΘNŸH݁vžΫPΗ³λφrχkΫωύ«Ϋ(ΘLζœ™œ3s‹&搜3EE’ɜ⬐g–n«?ΔΑŽnζΔX’mN‘›ξ^Λϊέ-Μ/ ΎLeM3sŠάΔΕ…VΪc,›œŸNZR<•5Ν|r^QΠΟ $}ηΕ^ίzvCh%`φΆ΄³χ@{Μ΅UEΡα;SΞ ‘ΜκšffLΘtτgΨ¨z/"2Κ¦Λ`\f Ο¬ίΛ ε‘―γ—‘Lz²ήςEDD’AAf ŸYTΚg•βνβεΝϋxvύ^Y΅‹?ΏUMzrgLΝγμ™ω,ž–Ϋ·g‹DZE±›§Φξ₯ώ`yΙA='0#<–ΚNΜυΟ:^]έtΒ;P’γKgΖ֚ερq†ΩEY!ΟZ¬i¦8'Ozp}Ρ)*Jά<΄²† ^ΚƒΌ ²¦©οΉ±dvQΖ„–πξξιemm —9|bž²""#ΐΓβιω<πv5/mΪιp(ΟMγΕ―S3)DDDΖ‚,W"Ξ-δΒΉ…΄wυπΖΆύ<Ώa/l¬γΙ΅{ˆ3° ,‡³gδ³dFsΣB^τLD‚ΣΏτΔ93 ‚zNeM3Ι LΚ‹­₯I 2SŸ•R·―DGŒ]_ίΊηυν΄wυ’ά¬ΪʚζPu‚@¨¬i :α½Ί¦™ΔxΓΜZ  #%‘)ωι!‡[κΡΦΥγψσP o‘rΓG¦±hb‘^jγžάΉl;+v4r$Odƒ‘₯$ΖsΦτΚ^ΐ­½³X³«…7ΦρΒΖ}όπ©Mόπ©M”y\,žžΟ’ιœPžνθΫ‘EFΫμΒ,βγ •5MΑ'Ό«›9Ύ8+&'–„Ί`^`ίX›… ΎΆκ걬ί}€ω₯Ωƒξ_w =-νŽOJΝΤ‚ \IρTV7sΡάΰJΐTV73s|fΠœ€’ΨΝσκ‚.Σw:Όo)α-"2B²Σ’XZQι0ψΘqγψλŠj~·V o‘1".ΞPQμ¦’ΨΝΧϝFm“——7ΧσΖ:ώΊ’š{—ο$-)žS&η²xz>gNΛc|Vj€ΓΣR“β™Β‚ym=l;Θ5gLαΘ’SE±›§Χνe‘rƒ(»QYΣLQvjPϋ:M LeMsP οΥΥ±‘”<šψ8ΓμΒΰKΐττZΦξjαS󃯏ξ$ΕΩόme-U ^Κ‚˜_YΣDΆ+‘Rk’‹%ΌED.5)žΝΟ?*wσƒ₯Η‘¦Zή"""cNQΆ«―ξw[§―τΙΛ›χρς¦zžΫPψΦ9cjgLΛcAiI qŽZdμ©(qσΟΚέτφΪAgm―έΥBO―ν+…kϊJOT7sv3βƒMφ:Q¨%`*ύ%:Ž›[%:*JάόρυA•€ΩRwogOLή9ύKΐ4™πnfN±ΫρεΡτ HD$\<―ogO―ΫιPDDDd˜R“βY2£€[.œΝλίZΜs_=›ΞŸNΆ+‰?.ίΑΏόasπWί·’?½Ή“ͺ†ΦH‡,2fT»9ΨΡΝΆϊCƒξΫ·P^ ΞΒί‚yΎ0ƒ'qcΉDG€―LSPϋVΦ41#FKt€oΨΛ†=έχp‰ŽΨΌ˜2΅ ΤΔψ ΞΓƒν]ΌΏοPLœ‡šζ'"ζ—fSζqρπ»5\£·z‰ˆˆ8‘1†©L-ΘΰίϘđŽnήΨΊŸW·Τ³μύz^Ψθ›ύ]κqqΪ”\NœΗΙ“=d¦$F8r‘θ4ןZ]ΣΜ”‚Œcξ[YΣL‘;•ΌŒΨ+ΡΰJJ`j%`%:ζΖθ,\8\¦αPžc”uι顬­mαβώήΦ·€lu3σJŽΘ¬nΖνJ€Μα%:’Ημ’,Vq­mΑΖΘΒ±Jx‹ˆΔc —Μ/β'Οm‘¦ΡKqNl~qΊτδΞ=nη7k-;Ό,ΫRΟkοΧσθͺ]όω­jβγ sв8ur.§LΞenIΆΚŸˆψMΚK'#9χjšΉtAρ1χ}―¦%fΛ(T»ybΝΰ%`ή«m&!Ξpά„¬QŒ.Ί’ŒοΥ6sΦτKΐlέwˆΦΘHJd\V γ2Sx―vπ$ξ{΅ΝΜ)r~‰Žc™[μζήε;ιθξ9ζbΦ•΅±S^ŸjDDbΔEσŠ0ώΎͺ6‘ˆˆˆΘ(0ΖPž›ΖU'—qχU'°ϊζsyθ‹‹ψ3&Ρkα7/oε²»ή’βΟρoχΎΝ–mgΓξτφΪH‡.1qq†γ‹_0oίΑvv5·υ͏Us‹έlοfϋώc—Nͺ¬nŽιΠ―Lυ±ϋV¬—Κ π•€9v[΅vt³₯ξ ΪͺΨMgO/χ<ζ~•ΥΝ”η¦αv%Rd‘£ή""1’НΚΙ“<ό}U-ן5eΠExDDDΔY’β8q’‡'zψΖG¦ΡβνβΝν ,ίΊŸεΫφσΚζδ€%qD‹&y8y’‡‰Ήi1=sNbOE±›ίΏΊΆΞR“Žž  $-c>ΡVrxΑΌΙωιGέ§§Χ²¦Ά™OΞ‹έpΈΜ`₯'*kšΙJM€<ˆ¬’ΔΝ3λχΨΪINΪΡ΄kj[θ΅θN‹ΐyXέ4ΰ{’΅–ΚšfN™œ;š‘EŒή""1δ’ωE|υ‘χxυύzζEzQ™) ϊ-""!YDΞ›5Žσf`OKolm`ωΆύΌ΅­'Χξ ?#™E=œ4ΙΓ’‰Κ<.ίβhΕΩττZΦνnα„²œ£ξSYγ+Ρ1«0vKt€―Lzr•5M€‡U»yr0««›™SΫ%: _ ˜šfOΟ?κ>} VΕvίŸ•JAfς1gΔοiigίΑŽ˜9•π‰!9nιΙλωμ½οD:Ύ|ΦdΎ~ξ΄H‡!"""ψΎ0_<Ώˆ‹ηa­₯ͺΑΛΫxk{onoΰρχvP™Μ‰ε–η°hb“ςc>1#ΞHUV73α=}|FL—θˆ3_tμ0}%:b|.ψJΐ<πv5;Z™”χαρη7.ΡE—Ω…YΔί²'Ό›(σΈΘ`x,¬LίΕ%ΌEDΔi\I ά}Υ6μ>ιPx~CχΌΎƒΟR("""QΖCYneΉiόΛ‰%XkΩΎΏ•·Ά7°b{#+vN€{’8‘,‡…εΎfŒΟ$^₯Σd ΛΛH¦Π:`ςΘW’£… ηNεΘ’SE±›»–m§½«η¨*kšΙLI άΫ%: ι‰ζ£&ΌΧξς•θˆυΪπiΙΎ0ƒ%qOšθΕ¨’WEq6Ο―£©΅σ¨ί―+kšIJˆcΖψΜD7ϊ”π‰1‹&ϊnGŽ΄S§δrξΟ—qος|M³ΌEDD’š1†IyιLΚKηΣ'–b­egƒ—Ϋx{g#oοhδ™υ{HON`^i6'”fsByΕ+cΟΒςžίPG݁v 2S>πΨ³λχr¨£{ΐΩί±ζ„ςξxeήΕ K>πX‹·‹ηΦΧqBYŽΦ&η₯“νJδαwkωδΌΒέσπ»΅$Δ™˜™…;˜…ε9<τN Υ ^J<<φΪϋυΤθ`ΞC–ϋJ–>όn-_8}βσvvσδš=TΉIJˆ‹Dx£.6^₯ˆˆD©œwά8ξ}c'Ϊ»"Žˆˆˆ„ΐCyn—/,αg—Vπϊ·Ξbωgρ‹Λ*XZ1Ί–v~ϊό.Ώλ-fY.όνrnybΟ¬ΫΛΎƒν‘_dPΧ/™BgO/?xbΓΆhοβϋ―gζψL>:{|„’‹.gNΝcay·=½‰ύ‡:>πΨmΟl’ΙΫΙWΟ™‘θ’K\œαληNγΝν <ΊzΧ{s[C_²RwΐϊόΗ™“Hˆ3|χλ°Φφmoοκỏ­£<7mΐΪρ±f^I6gMΟηη/laWsΫϋε ﳫΉo|$v&š)α-""sέY“9ΨήΝύoμŒt("""2L…ξT.œ[Θ­ΝζΩ―žNεΝηpΟU Έϊ΄‰$Ζξ«Škώό. o}‘Σn‰|p5χΏΉ“u»Zθξιtψ"Pž›Ζu‹'σδš=Ό²y_ίφŸ>»™ϊCόπ“³IˆWJ|ΐ~xΡ,ΌέάϊδΖΎνοV5ςΐΫΥ|ξ”ς˜_ά³ΏYXΒά7·<Ή‘¦ΦN:Ί{ψΞck)ΞIεϊ³¦D8Βθ1>+•o|dΛΆΤσĚ=}ΫσVͺΌάzα,έAδgŒαΏ>qΦΒχώ±Ύoϋ†έΈϋυ\Ά ˜…ε±3^%MDD$bffqΦτ|ξy}Ÿ=₯œ΄d K"""Nαv%±dFKfΎ„ΞϊέXUΥΔ»UM,ίΦΐc•Ύ:ΰ€xŽ/ΚbnI6s‹έT”ΈΙΟH9ΦαEFάΏŸ1‘Η*wρώ±Žηώσ ΆΤδώ·ͺΈrQ©JNar~ל1‰_Ώ΄•Kζ±°<‡o?²Ž Y)šέ}„Έ8Γ/šΝΗ~ύ:·=½‰_rΆŽ₯Ψ\w?\Ή@“ZŽbΖψL>΅œ;—mg~i6Ώyy+;~Ξ0΅ ƒŠβ,Ž/r³°<‡Iyι‘| MτpΙό"ξ\Ά€;>=Μ”ΔGRγΉεΒY|枷ωΕ οsξΜΞ™Yι°’ΦWΞΒkφpΓίא‘œΐΝ›鐒Φμ’,:ΉŒ{—οΰΗΟ&7=9²AE©Δψ8~ψΙΩ\ό»7ΈνιMœ<ΙΓEs #Φ¨SΒ[DD"ξϊ³¦pΩ]oρΕ?½ιPxδK'3―D o‘Ρ–’Ο‚²”3Ίο`;οΥ΄π^M3οΥϊΰΌ]ΓU'•ς_KgE0Z‰ίΎ`―l§’ΨΝω³ΖE:œ¨vΪ”<>9―η7ΤρύOιp’š+)[.œΕηο{‡/˜N~¦Κ8ΛΧϝΖsλλ(ΞIεSσ‹#NT›W’Ν•‹JωΫΚZnΉpVTL*m¦*§±fΑ‚vεΚ•‘CDD€ϋ[iνθŽtLΜKΓ•4όkΒƘw­΅ ΒRLΣx-""ύYkΩΩΰ%!Ξ7C|Έ4^‡“Ημν]Έγ΅Pez{-Ϋ»Ιri&|0š½Ί»4H‡:ΊINˆ#Qηα ¬΅΄΄u9o;fk†·ˆˆD…ςά΄H‡ """c€1FŸdΤ©ŒIπββŒ’έ!pZBr$₯«|Ќ11έ·tIDDD$ΖcΞ3Ζl6Ζl5Ζάx”Η“1ω_aŒ)λχΨMώ훍1μ˜Ζ˜Ώψ·―3ΖόΡ£oC""""""6Jx‹ˆˆΔ0cL<π[ΰ|`&p…1ζΘs>4Yk'?~μξLΰrΰ8ΰ<ΰcLό Ηό 0˜ €WΰΛ‘£„·ˆˆHl[l΅Φn·ΦvKΨg)pŸη‡%Ζ·ςΙRΰAkm‡΅v°ΥΌi­}ΚϊoE#όϊDDDDDD$†(α-""Ϋ š~ΏΧϊ·ukm7ΠxŽράAι/eςΰ™aΏ?%ΌEDD$ξ–Yk_;ΪƒΖ˜/cVcVΦΧ׏rh""""""2V)α-""ΫvΕύ~/ςo;κ>Ƙ h8ΖsyLcΜχ€<ΰke­½ΛZ»ΐZ» ///Δ—$""""""±J o‘Ψφ0ΕSnŒIΒ·εγGμσ8p•ηK€—ό5Έ.7Ζ$cʁ)ψκrxLcΜΥΐG€+¬΅½#όΪDDDDDD$Ζ$D:‰km·1ζ:ΰY ψ£΅v½1ζΐJkνγΐ=ΐŸŒ1[F| lόϋύ ΨtΧZk{ŽvL?ω{  xΣ·ξ%Xk0J/WDDDDDDN o‘g­} xκˆm7χϋΉψΤΟ½Έ5˜cϊ·λ³‡ˆˆˆˆˆˆŒ•4G0Ύœ±ΙSοΆκαΚφ‡α8±Bν<΅UhΤ^ΑS[o8mUj­ΥŠ‹ΓΖρΤχC‘Ά Ϊ+xj«ΰ©­B3Τφx&ϊŽ1j―ΰ©­‚§Ά Ϊ+x#ώ;¦ήαbŒYi­]ι8Ζ ΅WπΤV‘Q{Om<΅•³θο<΅UhΤ^ΑS[Om΅—sθo΅WπΤVΑS[…FνΌΡh+•4GPΒ[DDDDDDDDDDA οπΈ+Œ1j―ΰ©­B£φ žΪ*xj+gΡί3xj«Π¨½‚§Ά žΪ*4j/ηΠί24j―ΰ©­‚§Ά Ϊ+x#ήVͺα-""""""""""Ž ή""""""""""βJx“1ζ7/Zk§/ϊŸ―ϋύώcΰηΦΪΙ@πωˆD~ nχF&ΒθbŒ)> άνέgϋwQ[ωc²€Σ{¬΅ΦΪfΤ·’€c°υ­>ΦΪe@γ›κKKϋ­Ο[€Ϋ3~t"•aΠx=Ω‘јΧC’1{―c†ΖμcΠxΧΑӘ2ΧΗ cΆήΓSΤτϋ½ΦΏMŽ`Œ)ζ+€kνC{‚…m~άτϊχΝΦΪnοκ_‡•υΐ½ώΫΣξ6Ζ€‘Ύυ!ΦΪ]ΐO€j|ƒp π.κ[ƒ¨/ι}lί-³ƒ’1;8―C 1{H4^;ώvAxΧΑӘ$ΧC6ͺcΆή2βŒ1ιΐ߁΄Φ蘡Φ6"EcΜΗ€}ΦΪw#Λ‘Μ~g­ ΄rΔ­Uκ[>ώΊXKρ}€™€ρα[‹δΤ—$–hΜœΖμhΌΖμαQ_’X’ρzp―C¦1;H―‡o4ϊ’ήΓ³ (ξχ{‘›ψcρ Δ±Φ>βί\Έ=Α}‘Š/Šœ|Β³ίm{g᫟εφί"κ_ύΥ΅ΦΪώίΖ78«o}ΨΩΐkm½΅Ά x_Sί:Άϊ’ήχΗ&ύέ‚ 1;h³ƒ§ρ:4³C§ρΪyτ·„Ζλ iΌΖμΰiΌšQ³•πžw€)ώ•X“π©<Β1E }¬{€Φڟυ{θqΰ*ΟWνΨ’΅φ&km‘΅Ά _?zΙZϋiΰeΰnj+?kν^ Ζ3ΝΏi °υ­£©c\ώs2ΠVκ[Η6P_zΈΏ’τ" ₯ίmY½4^Bcvπ4fOγuΘ4f‡Nγ΅σhΜ>ΧΑΣxΩ!Ρ#ˆd€IDATx=4£:fί,r*cΜψκBΕ΄Φήᐒ†1ζTΰ5`-‡kf}_±Ώ%@p©΅φΘbφ1Λs&π kνnj1ρ]ΞVj­νˆd|ΡΒSoρ‘$`;πY|ρΤ·Ž`Œω/ΰ2|«Ί―ΖWK} 0Ζ<œ δuΐχ€Η8J_ς ω Ύ[ΦΌΐg­΅+#·„Fγυ±i̍كΣxΩΣx;4fLγυΠhΌŽΖμΰiΌ>Άh³•πGPIq%ΌEDDDDDDDDDΔ”πGPΒ[DDDDDDDDDDA oq%ΌE$lŒ1cfF:˜Ζk‘θ§ρZdθ”π‘pΊΠ€,""έ4^‹ˆˆD?Χ"Cd¬΅‘ŽADF‘1ζ_λ$`°(³Φ~ΣψΏ ¬΅Χeί/Yk{Œ1‡€_Ϊ€₯ΐ$ΰ  ΕίΕΐGk€n`ƒ΅φςΡz"""c™Ζk‘θ§ρZ$:i†·H 1ΖΜ.N±ΦV=ΐ!ΰ’~»]<8ΐΎŸφο“Όe­,Ύ`­}xψ¦΅ΆΒZ» Έ˜k­=ίΐ,"""ƒΠx-""ύ4^‹D―„H "£j 0xǐ μΆcοӁεΐ΅μ Π‰οj3ΐ»ΐ9ό{k€Ώc χ‹q(Χ"""ΡOγ΅H”RΒ[$Άΰ>kνMΨhΜη€KMΐ£ΦZk|£π‡φυ벇λ!υ0π{ΙGΣί1ΖΜΆΦv‡γ…ˆˆˆ8˜Ζk‘θ§ρZ$J©€‰HlyΈΔ“`ŒΙ1Ζ”β«vπΰ ϋΛA ΓΏPl­}ψ€‡ωυˆˆˆ8‘Ζk‘θ§ρZ$J)α-C¬΅€οΟcΦΟγ­΅MΐF ΤZϋφ±φδŸxψ¦1f50ψ³1f-°ψ•΅Άy$^—ˆˆˆ“hΌ‰~―E’—9|Χ„ˆˆˆˆˆˆˆˆˆˆΘΨ₯ή""""""""""βJx‹ˆˆˆˆˆˆˆˆˆˆ#(α-""""""""""Ž „·ˆˆˆˆˆˆˆˆˆˆ8‚ή""""""""""βJx‹ˆˆˆˆˆˆˆˆˆˆ#(α-""""""""""Ž „·ˆˆˆˆˆˆˆˆˆˆ8Βm1μ,fΏ« IENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/piecewise_linear.png000066400000000000000000000267671465426447700256510ustar00rootroot00000000000000‰PNG  IHDR…‰Ρ‹₯sBIT|dˆ pHYs  έ~ό9tEXtSoftwarematplotlib version 2.2.2, http://matplotlib.org/†ŸΤ IDATxœνέy|υυρΧI= @T‚Z–Q«βV–U«7΄ΥZkΫ_±‹[ΏύύΊΩ~΅₯E«(.-P­[­β š VY $A„ˆΚ&Θv~Μάx‰ΩΙάυύ|<ςπήYΟ0ρžΜΜΉŸcˆ@N²‘Τ‘€ ""•”DD€’’‚ˆˆTRR‘JJ ""RIIAΔ̞2³KR Ž“ΝlYos¨™•Η½_dfC›r‰RυXš`{nfG6υ²’zš%;I=fΆθμΆOΧΊϋVwžΜΨbάύeΰθˆχΡ/Κν‹€"])HMΞwχΆΐ@ ψI’γΙ f–΅¨eσ±§%©•»―%ΈR8ΐΜζšΩ±ωfv™™-1³Νμ3λ7―Ÿ™ύΣΜ>2³υfφ£pzŽ™M6³šΩF3›efΒyΣΝμ{αλnᭈkΒχG„ΫΚ©ζVΟΝl­™m1³efvF]ϋͺ‹™­6³3ΓΧ·„λ>ξc‘™Ζ-{ˆ™=bffΆΚΜ‹›7ΨΜζ™Ω'fΆΞΜώ`fΝγζ»™]cfˁεΥΔΡΜ γΔΜJΜ¬K8―ƒ™έgfο‡ηΰ±*λ~ΟΜ6„ϋ½4nz 3ϋ™­ ΟΝT3k7α:ο›ΩeUΆYυw`’™½RΓΏaϋ‰Γπά}άWχY‘¨))H­ΜμPΰ\ΰ­jζ~| Θ^ώΞΛžžŽώϊm`pj8οc`J8οE`hψϊT`%pJάϋ—έ}o•8ŽŠά=8X]}5Τ`p P ό!άππo pp½™·ψ.Π 8!œ­*ΫT³ίK€φΐ‘@Gΰj`{8οA 5Πθ ό.n½αz݀ˁ)fvP8οΐQ@‚sΣ Έ)<žaΐχ³€ήΐ™uΣΤ¨ΖύΔΕΨθLڏύHSqwύθgŸ‚Τ­ΐ'ΐ{ΐVαΌΉΐαλ§€ΛγΦΛ>%ψόΰ­ΆΏ8#ξύΑΐ.‚g\G|pηS«€ςpΉιΐ αλ‘qӏ6|xPί}UWε6γώΞ _ί<7―ΨΎ>XSe[7χΥpόΧsβή;pz-ηγ2ΰ5ΰΈ*ΣφΥp,Ϋγ3ό7Α³’#β杬 _O~7ο¨0Ζ#«ώ„ο'―T9ž#뱟‘ΐN e²ηυσωξαIMFΉϋsu,ΣΈΓΜn›f  ό·–υζ˜Yό_ό{€.ξώ_3ΫFπ—εΙΐΟ€ΛΓ«S;«nΜέW˜ΩυάύΜμ‚δρ~mϋΦΦq|U}χϊS exΌpˆ™}7?—ΰΚ 3; ψ-Α³™ΦΙoA•m—Υ²ί ώ=g˜ΩΐCΐΓiΉϋΗ5¬·ΡέwW‰Ή-ΑU]k`™ΕζY3WTρρ½WKl΅©k?ξΎ£‘Ϋ—θφ‘μ2ΰ*w?0ξ§•»ΏΞ;Ό–υ†WY―₯Ο/ Έ…4hN{‘ΰΚAΐΫΥmΠέβξ_&ψ€vΰ—υάWS(#ψλ7~yξ~n8OΐR ·»·#ΈεfUΆQγpΕξΎΛέouχΰDΰ<ΰα~;„‰’!>$ΈŠθo{ Φ$œ˜Γͺ¬ΏΰΓ>¦k#χ΅·$‡’‚쏩ΐfΦΐΜΪ›ΩΨpή߁ƒΝμϊπacž™·ήΟc₯Ν,?|>σ"Α3‚—ΒχsΓχ―ΈϋžͺA˜ΩΡfvΊ™΅v|Ε κΪWSxΨ>0mefΉfvŒ™…σσ€ΝΐV3λ|³!7³ΣΜμX3Λ ·³ ΨλξλnαύΡΜ2³Μμ”Z7xπLζΟΐοΜ¬sΈnqΟ@fΝ¬ΐΜZ7WΩΔΫΐΧΜ¬΅ίGΈΌ‘ϋ‘€€ ζξsώ"Ÿaf›…ΐπpή‚•ηάvYœzΑƒΪgΝl 0ŸΰΎ|Μ‹€±€π Α_¦/Q½4? χΥ™ΰž~}φ΅ίΒDuΑ-―Uaχ<δ…ΰ‘ν…ΐ‚Ι™ άEW`6ABXBποσ`8οb‚$±”ΰ™Αυυάζΐόπά=Gψ½w ψ_ΰωp™η«¬ϋ;‚gλ žσ<ܘύHj2w]½‰ˆH@W ""RIIADD*))ˆˆH%%©”v_^λΤ©“χμΩ3Ωaˆˆ€• |θξωu-—vI‘gϞ”––&; ‘΄bfυϊfΊn‰ˆH%%©€€ ""•ξ™‚ˆ€–]»vQ^^Ύμ4΄lΩ’ξέ»sΐ4j}%Ω/εεεδεεΡ³gOβ†Θ–$pw6nάHyy9½zυjΤ6"½}dfΓ,hΈΒΜ&Χ°Μ83[lA{ΓΏDˆ4½;vΠ±cG%„`ftμΨqΏΪ"»R‡ωB0Rf9PbfΕξΎ8n™ή£YžδξΗ†Χ‘τ’„:φχ\Dy₯0Xαξ+έ}'AoΫͺγΨ_ L‰uŽrχ Ζ# ΄²b+O/\‡FΙQ&…nμΫb°<œο(ΰ(3{ΥΜζ‡ ΓΏΐΜ&™Y©™•VTTDT5ωΡwΉϊ‘7ωΙc Ω½goέ+ˆ$IΫΆmλ^h?σ‹_ό"ςύΔ›;w.―½φZBχ™μ’Τf@o‚ή΅ »ίνξ…ξ^˜Ÿ_η·΄₯ ¬¬ΨΚ«>’ΰΰv<όϊ.›^Κ–»’–H€φμωBcΏJ#FŒ`ςδjξ—έ»wΧ8/Σ’ΒZφνσڝ/6J/ŠΓ΄«€$ I²Y₯εδζχ_ZΔ/GΛk+>d̟ζ±φ“νΙM€VΏώυ―)**βΈγŽγζ›?ο$:jΤ( DΏ~ύΈϋξ»+§·mΫ–ο}ο{|ιK_bήΌyτμΩ“›oΎ™rμ±Η²tιRξΏ~½φZ&NœΘuΧ]Η‰'žΘα‡ΞμΩ³Ψ»w/ίϊΦ·θΣ§guηž{nεΌxC‡εϊλ―§°°;ξΈƒ'žx‚γ?žpζ™g²~ύzV―^ΝΤ©Sωέο~Gώύyωε—©¨¨`τθΡQTTΔ«―ΎΪδ~Q–€–½Ν¬A2˜@Π’0ήcWχ™Y'‚ΫI+#ŒIκaמ½Μ^PΞiGw¦s»–Œ/:ŒnΆζ›-`Τ”WΉχ’BŽλήΠ^ρ’ n}b‹ίίά€Ϋ,8€7Ÿί―^Λ>ϋμ³,_Ύœ7ήxwgĈΌτKœrΚ)L›6:°}ϋvŠŠŠ=z4;vdΫΆmόρά~ϋν•ΫιΤ©oΎω&όγωΝo~Γ=χάσ…}­[·ŽW^y…₯K—2bΔƌΓ£>ΚκΥ«YΌx16l oίΎ\vΩeΥΖΊsηΞΚqά>ώψcζϟ™qΟ=χπ«_ύŠΫoΏ«―ΎšΆmΫςύο€ /Όο~χ»|ωΛ_f͚5œsΞ9,Y²€‘€΅Š,)Έϋn3»xΘ¦Ήϋ"3» (uχβpήΩfΆΨόΐέ7F“ΤΟ K7παΦϘPτω…ή—{wβ‘oΘ₯χ•0ξyά1aητλšΔ(EΎθΩgŸεΩgŸeΐ€lέΊ•εΛ—sΚ)§pηw2gΞΚΚΚXΎ|9;v$77—Ρ£Gﳝ―}νk 4ˆG}΄Ϊ}5Šœœ XΏ~=―Ός cǎ%''‡]»rΪi§U».ΐψργ+_———3~όxΦ­[ΗΝ;kόŽΑsΟ=ΗβΕ•œlήΌ™­[·6ι3•HΏΌζξOOV™vSάkn$EΜ,)£s^ †½ο󛣺δρΨ5'qΕ₯\ύΠ~|n_.r/•#J₯ϊώEwηΖoδͺ«ΪgϊάΉsyξΉη˜7o­[·fθΠ‘•΅ό-[Ά$77wŸε[΄h@nnnχόcΛΔφΫPmΪ΄©|ύνo›nΈ#F0wξ\nΉε–jΧΩ»w/σηΟ§eΛ– ή_}%ϋA³€˜6νΰ…e3¨;ΝrΏψλ‘ŸΧ‚WaXΏόΟ?–¨2IRΚ9ηœΓ΄iΣΨΊu+kΧeΓ† lΪ΄‰ƒ:ˆΦ­[³tιRζϟΙώO:ι$yδφξέΛϊυλ™;wn½ΦΫ΄iέΊΕ™Σ§O―œž——Η–-[*ߟ}φΩόώχΏ―|φΫo7Mΰq”dΌYΞ^‡q…‡ΦΈL«ζΉLΉp WŸzΏΎ†ΛU™$)βμ³ΟζΒ /δ„NΰΨce̘1lΩ²…aΓ†±{χnϊφνΛδΙ“2dH$ϋ=z4έ»w§  €‹.ΊˆΎ}ϋ:Χ»ε–[;v,ƒ ’S§N•ΣΟ?|ζΜ™Sω ωΞ;΄”γŽ;Ž‚‚¦NΪδΗ`ιφΕ€ΒΒBW“hμέλ ύΝ\9°%3&P―ufΌ±†?ΆήΫrοΔ"ΊΨ*β(%Υ,Y²„Ύ}ϋ&;Œ”»ΗΏqγFΜ«―ΎJΧ‰}ώVέ91³ξ^XΧΊΊRJσWmdΝGŸ2‘θ°z―3aπaLΏt0k?ήΞ¨)―ςNω'F(’ϊΞ;ο<ϊχοΟΙ'ŸΜOϊΣ„'„ύ₯QR₯Μ’2ςZ6cΨ1 ϋ%Z™τΏγ4x"™’ΎΟR•€MŸξβ©…πΥέhy@nέ+T«L:Ίk;ΎωπώόJ™”EtSΗώž %ΰ±·Χ²sχήZ0Χ%Ύ2ιηOͺ2)[΄lΩ’7*1€€X?…ύ)YΥν#Αέ™QRΖ1έΪqL·Ί+%j«LϊΥ3˘ϊβ)ϋx;S.@^ΛΖu’ΤΧ½{wΚΛΛΡ`•©!Φy­±”„…k7³dέf~6²iΎx”“cLή‡[σ“Η2vκ%…4—mέΥνΒγ?―Lω‡WYΈV•I’Ω”\¬»š0G'Ύ2iμΤyόsρϊd‡$%…47³d ωy-8νθόd‡’Ρβ+“&=XͺΚ$ΙXJ ilύζΌ°¬‚1YΪ]-Ρb•IgtQe’d,}’€±Ω ΚΩ³Χ³Ί»Z’΅jžΛŸΎ>ˆIͺL’ ₯€¦άΥ]-YrrŒU©L˜I’)"M f6ΜΜ–™Ω 3›\Λr£ΝΜΝ¬0Κx2Ιό•Aw5 ~—<ρ•I£¦¨2I2CdIΑΜr)ΐp ΈΐΜ ͺY.ψπzT±d’Y₯eκ–ͺV&=§Κ$IsQ^) VΈϋJwί ΜFV³άΟ€_;"Œ%£lϊtOΎ»ŽQύ»ΡͺΉΊ«%[|e•–2M•I’Ζ’L έ€²Έχεα΄Jf68ΤέQΫ†Μl’™•šYiEEEΣGšfbέΥtλ(uΔW&έφχΕά\¬Κ$IOI{Πlf9ΐoοΥ΅¬»ίνξ…ξ^˜Ÿ―z|uWKMρ•IΜSe’€§(“ΒZ ώOΩξᴘ<ΰ`™­†ΕzΨ\;uWKm±Κ€ŸυU&IZŠ2)”½Ν¬—™5&Ε±™ξΎΙέ;Ή{Owο ΜFΈ{i„1₯=uWK_?ΎΣ&QΚ$I3‘%wί \ <,fΉϋ"3»ΝΜFD΅ίLΆc—Ί«₯“SΚ獙$i&g ξώ€»εξGΈϋΟΓi7Ή{q5ΛΥUBνbέΥΖιΦQڈU&υΗLRe’€:}£9Μx£Œ[sΒα“Š4@ηΌ–ΜŒ«LΊE•I’Β”D¬»Ϊ8uWKKρ•IΣη½Η•ͺL’₯€&f•–‘c¨»Z‹―Lziω‡Œ:Oέά$ε()€Xw΅ΣϋtVw΅ «L*ϋθSU&IΚQRH±ξj";sΔ*“šεhΜ$I-J i ²»ZŸΞΙEšP|e’ΖL’T‘€βbέΥFμΞκ–qͺV&iΜ$I6}Κ€ΈΟ»«ιs¦ŠU&]yr/Pe’$™’B ‹uWά«‡η·Mv8‘œγΗ_)ΰF©2I’KI!…ΕΊ«MΠ7˜³ΖECT™$Ι₯€Βf•–‘ΧBέΥ²Ν©Gε3ϋ›'kΖΈ»T™$‰₯€’6mΊ«pˆΊ«e‘>]ΫρΨ5'qdη`Μ€ϋ^]•μ$K()€¨β·Γξj…‡%;I’ΞνZ2cΞ*θΒ­O,ζζΗͺ2I"Χ €`f9fΦ.ͺ`δs3JΚ(8ΈΗtΣ?w6kέΌYee’ΖL’D¨3)˜Ω_Μ¬™΅‹ΝμΡ‡–½bέΥ& Φΰw’Κ$I¬ϊ\)Έϋf`πΠ Έ8¨²άΜ’2š«»šT‘Κ$I„ϊ$…Μμ‚€Pμξ»}?"±ξjηͺ»šTC•I΅ϊ$…»€Υ@ΰ%3λlŽ2¨l¦ξjRU&I”κL ξ~§»wsχs=πpZbΛJ3K‚ξjCz©»šΤL•I•ϊIα 8ΒΜ^ΎiTYhFIΪͺ»šμŸ>]ΫUvsSe’4F}ͺήNNϊΉϋ;υΩΈ™ 3³efΆΒΜ&W3j3{ΧΜή6³WΒ‡ΨYgΓζΌ°lc©»šμΏΞyͺL’ΖkVΧfφ*“šξώ@λεS€³€r Δ̊έ}qάbqχ©ας#€ίΓr™`φ›Aw5έ:’¦Ίy3ώψυAόβ©%όωεU¬ωθS~α@ΪΆ¨σyΙrυω³΄(ξηdΰ`D=Φ ¬pχ•ξΎ˜ŒŒ_ >#¦ YψMiwgVIΠ]­W§6ΙG2HΖL’F¨σΟwίηω™Hπ_—n@Yάϋrΰψͺ ™Ω5Ο-š§W·!3›L8μ°ΜJϊυU±zγ§\wFοd‡"κ’!=8΄CkyψMFMy•{/)β˜nν“–€¨ΖάΐήF0(^“pχ)ξ~πCΰ'5,s·»Ί{a~~~Sν:%Μ,)#―₯Ί«I΄4f’ΤW}ΎΡό„™‡?–sκ±ν΅@όMςξα΄šΜ t/kTvWλ―ξj=™$υQŸ§NΏ‰{½xΟέΛλ±^ ΠΫΜz$ƒ ΐ…ρ ˜Yow_Ύύ °œ,λ6‘(³n‰Iꊍ™τέ™osλ‹Yύα6~z^ΝTυ&‘ϊPͺΚ€ TŸ?Ywχ~ξ~K•všR±ξjΗ«»š€ΉXeΟT™”±κσLαFw;ΑdͺXw5υ`–Lqρά{I‘*“2nn'ΐ,uW“ 4τθΞόνjU&e%…ˆmΪΎ‹¨»šd¨Ύ«2)Σ()DLέΥ$ΣΕ*“ΞPeRFPRˆ˜Ί«I6hέΌS/Δ_*“&=PΚ6U&₯%%…ΕΊ«M¬Μ’ωrsŒŸœŒ™47¬Lϊ`ӎd‡% €€‘™%e4Ww5Ι2…•IkΒΚ€Eο«2)()DdΗ=<φφZΞUw5ΙB±Κ€ƒ±SU™”N”"ςΤΒulΩ±›qϊn‚d)U&₯'%…ˆΜx£,θΦ«c²CIU&₯%…¬ϊp―― Ί«ε䨻šd·XeεͺLJ J ˜UZFŽ‘ξj"‘άγ§ηc&½°lƒ*“RX€IΑΜ†™Ω23[af“«™ƒ™-6³wΜμ_fΦ#ΚxασξjΥ]M€Š‹‡τΰή‰EΌ·q›*“RTdIΑΜr)ΐp ΈΐΜ ͺ,φPΕ=ψUTρ$Κ Λ*¨Ψς™Ώ©ΑiGwζoWŸˆ©2)%Ey₯0Xαξ+έ}'0Ώ€»ΏΰξŸ†oηiΏefIΪΆΰ΄>κC$R“‚C‚Κ€ΓσΫpε₯ά―Κ€”eRθ”Ε½/§Υδrΰ©κf˜Ω$3+5³ŠŠŠ& ±iΕwW;@έΥDjΥ₯]Kf]ugτνΒ-ͺLJ)ρΙef…ΐ―«›οξw»{‘»ζη§nγXw5έ:©™”z’L k ΊΆΕt§νΓΜΞ~ ŒpχΟ"Œ'R±ξjƒΥ]M€Abc&©2)5D™J€ήfΦΛ̚€βψΜlpABΨa,‘‹uW› «‘FQeRjˆ,)ΈϋnΰZΰ` 0Λέ™Ωmf6"\μΧ@[ΰofφΆ™Χ°Ή”7³€ŒΌκ&²?T™”|ζž^v ½΄΄4ΩaμcΣφ] ώωsŒ-μΌ:6Ωሀ½υ›wpωτg z HIDATΏΏ™›Ξ+`βI½’RΪ3³ξ^XΧr)ρ 9έΕΊ«/Tw5‘¦«L:½*“MI‘ |ή]­]²CΙ­›7γ‹5fR’))μ§Xw΅ρE‡b¦ΑοDšRΥ1“Ζέ₯Κ€¨))μ§Y₯Aw΅QύΥ]M$*±Κ€Υͺ2)jJ ϋaΗ=<φΦZ†«»šHδͺV&=ΏT•IQPRΨO/ό€Ν;vλΜ" ?fΣK™ώΪκd‡”q”φ̒5κ&’`ρ•I7/ReRSRh€ΥncώJuWI†Xee'©2©©))4’Ί«‰$WnŽqΣωόld?U&5!%…FPw5‘Τqρ =ΉχU&5%…F˜»¬‚ κ&’2Nλ£Κ€¦’€Π3Τ]M$ε¨2©i()4P¬»ΪθAέΤ]M$ΕT­LΊυ U&5”>Υ¨²»Z‘n‰€’ψ1“ξ{u5W=¨Κ€†PRh€ψξj‡η·Mv8"RƒΚ1“Fφγω₯χ<ΦoVeR}()4@¬»šDΓΕ'τδή‰E¬ͺ*“ΏΏ9Ω!₯<%…˜vW;χXuWI±1“ΖN}–¦uηίΘ))ΤΣ¦ν»ψΗ»λΡZ5ΟMv8"±Κ€^ωmΈ|z‰*“j‘€PO±ξjŠΤ]M$iΜ€ϊQR¨'uWIκζV7%…zPw5‘Μ_™€1“ΎHI‘Τ]M$σT3I•I%…:μΨ΅‡9κ&’‘φ3ι5™„’Bž^ψ[Τ]M$cΕW&iΜ€ˆ“‚™ 3³efΆΒΜ&W33{ΣΜv›Ω˜(ci¬%k8¬ƒΊ«‰d2U&}.²€`fΉΐ`8P\`fU[LώUϋ#Φ]m|‘Ί«‰d:U&’ΌR ¬pχ•ξΎ˜ŒŒ_ΐέW»ϋ;ΐήγh΄Xw΅ΡΥ]M$¨2)Ϊ€Π (‹{_Nk03›df₯fVZQQΡ$ΑΥ%Ύ»ZΧφκ&’M²Ή›[ZΎˆΫžXœ2•IYϋiψΘ‚ »Ϊ8}7AD’ Ύ2iΪ««ΈκΑ|Ί3ω•IY™ܝY₯e ξف#ςΫ&;ΙRϋV&­O‰Κ€¬L κ&"©$V™΄ͺ"ω•IY™bέΥ†Ϋ5Ω‘ˆˆΥŒ™΄,9•IY—β»«΅nή,ΩለTΪgΜ€ϋ“S™”uI‘XέΥD$…Ε*“N;:9•IY—fͺ»šˆ€Έ6-šqχ7 ™xbβ+“²*),z_έΥD$=δζ·ŒθΗ-η$΄2)€`fΓΜl™™­0³ΙΥΜoaf3Γω―›YΟ(γ™U’ξj"’^&žΤ‹{.)deΕ6žYτAδϋ‹μI«™εS€³€r Δ̊έ}qάb—»ϋ‘f6ψ%0>ŠxvμΪΓuW‘4tzŸ.όσ†S9$wFy₯0Xαξ+έ}'0Ye™‘ΐτπυlΰ ‹θΎΞ3‹Τ]MDW·[%δΆw”I‘PχΎ<œVν2ξΎΨ|‘ύ™™M2³R3+­¨¨hT0mš7γμ‚.κ&"R‹΄(Τwχ»» U›ufAΞ,θ€q‰ˆdš(―ΦρχjΊ‡Σͺ]Ζ̚큍Ζ$""΅ˆ2)”½Ν¬—™5&ΕU–). _žwχΤ?VD$ EvϋΘέw›Ω΅ΐ3@.0Νέ™Ωm@©»χšΩ ΰ#‚Δ!""Iι3wx²Κ΄›β^οΖFƒˆˆΤ_V}£YDDj§€ ""•”DD€’’‚ˆˆT²t«5³ ΰ½Fή ψ° ΓIΩxάΩx̐ΗΗ ?ξξž_ΧBi—φ‡™•Ί{a²γH΄l<ξl$Ίλτp±ιΐ¨δD 3λ|Έ'|oΐιΐμp‘L<ζφΐ)=Ipχξώ ~CΝ€Va·ΖΦΐ:2μ|»ϋK=fβΥtnGx`>p ™άΨ}gKRθ”Ε½/§e,3λ ^ΊΈϋΊpΦ@¦5«ώ_ΰ{ΓχOά}wψ>Οw/ Έ/Όmv™΅!ΓΟ΅»―~¬!H›€dώω†šΟm“~ΎeKRΘ*fΦxΈήέ7ΗΟ ΫfL²™lpχɎ%Αš?Ήϋ`UneΪΉ$HЇmψβm–ŒεΉΝ–€°84ξ}χpZΖ1³ΒΓξώh8y}μr2όο†dŁ“€fΆšΰΆΰιχΪ o/@fžοr άέ_ίΟ&H™|ΞVΉ{…»ο%ψΘτσ 5ŸΫ&ύ|Λ–€Pτ+š<˜*NrLM.Ό—~/°Δέ7«Έ$|} πx’c‹Š»ίθξέέ½'Αy}ήέΏΌŒ Λ¨cpχ€23;:œt°˜ >Χ‘5ΐ3kώΎΗŽ;£Οw¨¦s[ |#¬BlŠ»ΝΤ`Yσf3;—ΰήs.0Νέžδšœ™}xx—Ο﯈ΰΉΒ,ΰ0‚aΗΗΉ{Υ‡XiΟΜ†ίwχσΜμp‚+‡ΐ[ΐEξώY2γkjf֟ΰαzs`%p)Αz}ΝμV`‘JΊR‘JJ ""RIIADD*))ˆˆH%%©€€ ""•”DD€ KΎΌο~lIENDB`‚ignite-0.5.1/docs/source/_static/img/schedulers/reduce_lr_on_plateau_example.png000066400000000000000000000615141465426447700302150ustar00rootroot00000000000000‰PNG  IHDR~a/6xssBIT|dˆ pHYs  έ~ό8tEXtSoftwarematplotlib version3.2.2, http://matplotlib.org/–Œ‰ IDATxœμέwxUUΎρχ7’H „ή‚ (QT°ˆ(8wfœ;ŽΞOtttp.:ΨζΪu°ŒεZŽ‚8Q R‘Π[BOhI¨BΪϊύq܈”r²““ΟλyςxΞΩν³“#ϋ|ΟZ{-sΞ!""""""Α+Δλ""""""X*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘jΚΜΖ™Ω?½Ξα3{ΗΜσ:Gy)ΟΏ§™υ7³Œς^WDDΌ£ΒOD€Š1³ΝfvΔΜrΝl§Ώ€©νu“9]qefΞΜωΟ#Σ̞3³ΠΦΉΖΜωΧΛ1³χΝ¬ΙYΆ™εω‘mfSΜ¬QΞcΆ™έzΆΫ•…™Υ5³·όΫƒfΆήΜΖTΔ±ED$x©π©šuΞΥΊΙΐη)«ώσΈΈ ψΟc Μμΰΰ θζ™Y½³8ΖόΗhΤž/§μςDD€ό©π©ΒόΕΙ•@Ί™%Ÿυ?“Ν,ήΏϊΐψ ΎG_ŸΕ‘ξFWuπ΅Μ6³ZΐWώ}ŸŒ^1³gyνπWΗZΆΪΝ€Jηœ+ΖWΌ]^βε^ΐ:y=Όι/OήΜφα+Fvΰ+bΒ9—γœ›μœ;μœ;<Ž―ϋ驜φΌs³s+ό‡εΐ„3μ―€Qψ ’?«Ν,½D+ζ5ΐNηά³ΞΉ<ηάAηάχ%Άηϋο]ύ―χβs8ηςs7π¬7;ηφ8ηΆγK™υDg:ΐBηά4οζH#""gI}λEDͺ¦λœs3Νμb|­NqψZ«†›Ω΅%Φ fαkΪλœ;TbΩ i)ΧΨp’Χ›½ό…Υ1aψŠŽθξίοpΰ  Ύϋψ²ύΛ›NΨ¦Q‰ε;=pΞφ7φ•μf΄sξNΒΜ’πέ[78v`΄™…ϊ‹¨φΌΝ¬—|:@ Nh½<1τ7ΰofV|δ/ήOυw8fg‰Η‡H}t́Ζ'δ ΕΧ’ ΎχΗΆΛΆ”&λIœι8œp© jρ©ΒœsίοΟΰϋ@ύžsn‰ŸZΞΉ'π΅tΥσwQ<¦Y‰Η‡€¨cOΜ7Ίf|‰εΫπu<Ρ6ΰΫŽYΫ9χΞβœsn°xΘς: ƒZύ] ‡ρΣξεα^|έK{9ηκύŽςXΜΦ?Σy€―«eSη\ πj‰}ιw}œsξΎ"°ΠάVe8Ώmΐ¦ςF;ης/ίΑOΏhvΒφ‡Kf–ρ8πσί₯ˆˆT~""Uί ψξy[\kfύƒ±DϊiβœΫ‚―ΫηΓfaf}’-ƒλρ΅]mfαΐX|­TΗόπ¨™%™O3‹>ژΩ/Ν,άΣΣΜΪ—ΨφX–c?§8'€ί™YCηœΓwβX3»ΩΏ]CŽ:”ΘœΡψξλΫgfυρu-i?-ΈΞtήΡΐη\ž™]ά\bΫΣώΝμAΎ"Μ,Έ Ψ‡―ώhdfw›Y 3‹φ·.žΙ"ΰ ™ύΩ?K¨™u2³cƒΈL0ί 7Mπu7-i)p³»AœΊΫκ™Ž#""Qα'"RΕ9η²€wΡψΞψ …―υε>ώοίϊ›ρ „²_aσn‰}μξΐWXeβk•*9ςδsψŠƒ/ΐ›@MύpW໇k;Ύ†OςΣ’q Ύ’κΨΟ7§8ΐfœsΏΔ7‚g°¨ τρί_Xž^πο;ίΰ*ŸŸ°όοΐ ώQ/Η—βΌορί‡ωΎίέ±σ<ΣοΪαh&ΫΏοˁ«sΉώγ^Ž―hί €—œιδόέU―Α7jκ&ΎίtγλήΉ ίίψΔΊwωΉψ0­ŒΗ˜οKU Vjρ r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π r*όDDDDDD‚œ ?‘ §ΒODDDDD$Θ©π ra^(/qqqE‹^Η‘ πγ?f;ηβ½ΞQUθ)"R=œξϊ4…_‹-XΌx±Χ1DD€˜Ω―3T%ΊFŠˆT§»>ͺ«§ˆˆˆˆˆHSα'"""""δTψ‰ˆˆˆˆˆΉ ΉΗOD€<‘‘A^^žΧQˆŒŒ€I“&„‡‡{%θθ½ώτ>‘κ@…ŸˆH DGGΣ’E ΜΜλ8՚sŽœœ222hΩ²₯Χq‚Žήλ>zŸ‰Hu‘ž""%δεε[­?WfFll¬Z€Dοu½ΟD€ΊPα'"r‚κώAΈ2Ρί"°τϋυΡοADͺƒ€~f6ΘΜΦ™YΊ™9Ις~fΆΔΜ Νμ†–ύΪΜό?ΏdN‘Κ€vνΪ?Ζ«―ΎΚ»οΎπγ”4mΪ4V―^]‘Η¬¬Jq}lff³Μ,ΥΜ–›ΩU'YžkfͺΈΤ•Λ₯K™1cΖ)—/^Ό˜Ρ£GW`"‘Κ-`χψ™Y(π2p9ό`fӝs%―ϊ[[€?°m}ΰ―@ΐ?ϊ·έ¨Ό""Α¦¨¨ˆΠΠΠ“.ϋύο_αǜ6mΧ\s :tΘ±«ŠR^Η“œs0³ΐ  E‰εΟ Θ•₯KYΌx1W]uΥΟ–£GzτθαA2‘Κ)ƒ»\€;η6˜ΩD`pόΒζœΫμ_V|ΒΆ―œs{όΛΏφ`^Ÿ.ί¨έ‹ϊ΄Ž£Yl”Χ1DΞΙΣO?Ν€I“8zτ(C‡εα‡ΰΊλcΫΆmδεεqΧ]wqΫm·ΎΦΒΫoΏ™3gςςΛ/3hΠ ξΊλ.>ύτSjΦ¬ΙΗLƒ 7n΅kΧζOϊύϋχ§W―^̚5‹}ϋφρζ›o’’’ΒαΓ‡Ήε–[XΉr%mΫΆeϋφνΌόςΛ?ϋ0έ’E nΊι&Ύϊκ+ξΏ~<Θλ―ΏN~~>‰‰‰Όχή{,]Ί”ιΣ§σν·ίςΨc1yςdξΌσN²²²ˆŠŠβ7ή ]»vϋ φΖ―ψΎτ¬γl?ΆΐΜ6‡*$mmήΌ™AƒΡ»wo,X@Ϟ=ωΝo~Γ_ϊWvοήΝϋοΏOǎ5j+W€  €qγΖqε•WςΠCqδΘζΝ›Η<ΐš5kΨ°a7n€Y³fά~ϋν<σΜ3|ϊι§δζζ2jΤ(/^Œ™ρΧΏώ•aΓ†y}ϊ"RΑœsΜZ·›‹ZΗ~ς/)ƒY Ώ`[‰η@―sΨ6αΔ•Μμ6ΰ6€f͚•-₯ίήC<0eΕ9νC*—”€8ήϋmiίr"•Ο—_~IZZ‹-Β9ΗΰΑƒ™3gύϊυγ­·ή’~ύϊ9r„ž={2lΨ0bcc9tθ½zυβΩgŸΰΠ‘Cτξέ›Ηœϋ￟7ήxƒ±cΗώμX………,Z΄ˆ3fππΓ3sζL^yεκΥ«ΗκΥ«YΉr%έΊu;eΦΨΨX–,Y@NNΏϋέο;v,oΎω&£FbπΰΑ\sΝ5άpƒ―g€xυΥWIJJβϋοΏηŽ;ξΰ›oΎ)ο_ceTšλγ8ΰK3Τ.0³ΪΐŸρ΅žΆ›gy^#)==>ϊˆ·ήz‹ž={ςΑ0oή<¦OŸΞίώφ7:tθΐ₯—^Κ[o½ΕΎ}ϋΈΰ‚ Έμ²Λxδ‘GXΌx1/½τγƍcυκΥΜ›7š5k2{φμγΗxτΡG‰‰‰aΕ ίu~ο^u ©ŽήY°™‡?YΝ_jΗmύZ{§ΒUιιœs――τθΡÝ˾׍δ»”K.ρήψo˜όcyEΥς)²ŠΥΫ”λ>;4Γ_―νXͺuΏόςKΎόςK’““ΘΝΝ%--~ύϊ1~όx¦N ΐΆmΫHKK#66–ΠΠП΄dDDDpΝ5ΧpώωησΥW_τXΧ_ύρu6oή ΐΌyσΈλ»θΤ©]Ίt9eΦ›nΊιψγ•+W2vμXφνΫGnn.όΩϊΉΉΉ,X°€αΓ‡νθΡ£gόT##wœsΟšΩ…ΐ{fΦ _AψΌs.χL’œΝ5ΛχzΛ–-ιάΉ3;vdΐ€˜;wfσζΝddd0}ϊtžyζΐ7ιΦ­[OΊ―ΑƒS³f͟½>sζL&Nœxόy½zυΚrJ"R…­ΪΎŸž±€)K2Uψ•³L i‰ηMό―•vΫώ'l;»\RBXh c"y©@—·oΐίoε‡Ν{HIŠχ:ŽH™8ηxΰΈύφΫςϊμΩ³™9s& .$**ŠώύϋŠ>22ς'χΨ…‡‡±044”ΒΒΒ“«Fg\ηtjΥͺuόρ-·άΒ΄iΣθΪ΅+οΌσΞOZ^Ž)..¦nέΊ,]Ίτ¬Js}ό-Ύ[pΞ-4³H _Λΰ fφP(6³<ηάKΗή{!!!ǟ‡„„PXXHhh(“'O¦mΫΆ?ΩξϋοΏΩΎJΎEDŽ9œ_Θ¨ ©Τ«ΞΘ šρΒΜ4Φμ8@ϋFuΞΌq dαχdf-ρ]ΠF7—rΫ/€Ώ™Ω±―δ(ˆ¬z΅ͺOx¨17-[…Ÿ”Yi[ζeΰΐ<ψΰƒόβΏ vνΪdffΞώύϋ©W―QQQ¬]»–οΎϋ. ΗοΣ§“&Mβ’K.aυκΥǻɝΙΑƒiΤ¨Όώϋ$$ψzκGGGsπΰAκΤ©CΛ–-ω裏>|8Ξ9–/_NΧ]r.•Li[ΐ;fΦˆ²œs)ΗV0³q@ny}^ΏΧOgΰΐΌψβ‹Όψβ‹˜©©©$''δύt&—_~9/Ώό2/Όπΰλκ©V?‘κγαι«Ω”}ˆχoνE»†uxι›t¦¦fV»Β/`Σ98η ?ΰ+βΦΰl•™=bfƒΜ¬§™eÁΧΜl•Ϋ=ΐ£ψ.Ž?θE€4’"ΒθΡΌ>sΣ²½Ž"RfW\q7ί|3^x!;wζ†nΰΰΑƒ 4ˆΒΒBΪ·oϘ1cθέ»w@ŽΗw••E‡;v,;v$&&ζŒΫ=ϊθ£τκΥ‹>}ϊόd°–#FπτΣO“œœΜ† xύχyσΝ7ιΪ΅+;vδγ?ΘyT6₯Ή>χΏ3³eψ6»Ε9wN·4TU>ψ tι…Ž;ςΰƒB’[·n|ψᇧέΗΨ±cΩ»w/:u’kΧ̚5«"’‹H%πΙ²ν|ΈxwφOδ’ΦqΤ―AΆρ|Ό4“’βκυΟͺΛu€GnρβΕ^ǐJδ•Ωι<υω:ύΧΞ‹V7^)5kΦΠΎ}{―cT EEEΙ† Έμ²ΛX·nšγd3ϋΡ9§±ϊKιdΧH½ΧJΏ‘ΰ³mΟaϊϋ\Τfνκkσϊlωξό` ούφ‚ λvΊλc@'pρRJ’οδωιjυ)‹Γ‡Σ·o_ΊvνΚΠ‘Cyε•W*Όθ)‹Β’b ΐψΙΗ‹>€νΟ#:2Œ©KJ;όHp¨£zŠœNΗΖu¨Ξά΄l†&7ρ:ŽH•zRˆˆHUτχ―ΣX²u/ŽL¦iύŸΞλΚ՝1}ΩvΛ/$*’z”Djρ“ bτMŠgnZ6Α₯YDDDDNoα†^š•΍=špmΧΖ']ghr‡σ‹ψbΥΞ Nη~ΤRγΘ:x”u»J7ς› / *ύ-KΏ_ύD‚ΗžCωάύa*-γj1nπ©G,ξΩ’> uk25u{¦σ– ? j}“β˜§Ρ=₯”"##ΙΙΙΡΑJΐ9GNN‘‘œ)τ^χΡϋL$x8ηΈ_ΛΩ{¨€ρ#’OΫ…3$ΔšœΐΌ΄,vΘ«ΐ”ή©Z₯Ϊj\·&‰ηΥfNZ6·¦΄ς:ŽTMš4!##ƒ¬¬,―£Ύβ€Iέ£z―½ΟD‚Γ?ΏΫΒΜ5»xπštJ8στCΧ%'π¬t¦/Ϋ^->'ͺπ“ Χ71Ž ‹Ά’WPDdx¨Χq€’ §eΛ–^Η 8½ΧE$˜¬έy€G?[Γ%mγωΟ>-J΅Mβy΅ι$†)K2«E᧞τϊ΅‰γha1?nΩλu)gGς‹υA*15ΓyzxWΜ¬ΤΫMN`υެΫόγA¨π“ Χ«e,α‘Ɯ4ug 6~Άšτ¬\žΏ±q΅kœΥΆΧvmLhˆ1%5#@ι*~τjΥ£{³zΜ]―^DDDD‚ΙΏWμΰƒο·r[ΏVΗυ;q΅kpq›x>NέNQqpv₯ΒOͺ…~mβY½γΩΉG½Ž"""""ε sίώω ―ΟΩ@Ώ6ρLC~qk&,Ϊʌ;ΌŽ(ΐ’M{uΧwOΰΊδςωBhrερεκε²ΏΚH-~RmτKŠγ³ε;H۝K›Ρ^Η‘Jΐ9Ηβ-{yνΫ Μ\³›ΘπF^Ќ[ϋΆ’YlνΥaαΖΖL^NΧ¦uI¨[ΣγΤΥΧΎΓωά=1•fυ£xdH§rΫo―–υiΙΤΤΜ ν¦?©6ϊ&Ε0g½¦u©ξŠŠŸ―άΙυXΐπWςγ–½ά}Y Ζ ΰ‘!Ž}α‘!ŒэbwOL₯°¨ΨΓδΥ—sŽ1“W•{”ρ#“©]£όΪ°BBŒ!Ι ΜMΛ&λ`p¨ΒOͺ„Ί5i_‹yΰEDD€ΪΚ+(βƒο·rΩsίςϋώHNn>ιΘ‚1Έϋ²6Τ―qνšΗΦβρ‘ψaσ^^ό&½‚S ΐ„EΫψ|ΥNξΨ–.Mκ–ϋώ―ON ¨Ψ1}Ωφrίwe žR­τKŠgβ[9ZXD°ΰΌqWDDD~nία|ώωέήY°™μά|Ί4‰αε›»3¨SCBC¬Tϋ-oΧgρβ7i\Τ:–^­bœZŽYΏλ ²Š”€8nνΫ* ΗHjM§„:LMΝΰ·}[δ^R‹ŸT+}γΘ+(ζΗΝ{½Ž"""" cοaώd=ρ Ο|ΉžN 1Lψ]o>Ύ³WwiTκ’ο˜G†t’Yύ(ξώp)ϋη(΅””WPΔθ ©DG†ρμ] 9ΛΏΩΩšά„•™HΫu0`ΗπŠ ?©Vz·Ž%,Ę«ξž"""AmΥφύά51•‹ŸžΝ{ ·0¨SC>Ώ;…w~sΆŽΕ¬lΕCνaΌ8²;ΩΉG3y…F ―›±†΅;ςΜπœΠc ξژΠcJjπΝι§ΒOͺ•Ϊ5ΒθήΌsΣ4ΐ‹ˆˆH°qΞ1/-›_Ύω=WŸΗΜΥ»ψΟ>-˜s%EΕ^Ηψ™μ·ηobׁ£΄kΝ 7uγκ.­mΧwO`NZ/|ΖE‰±žή{XΥ€οΞε―ΣWΡ'1–ίχkνuΪ6Œ¦C£:LMΝδ7}Zz眩π“j+%)žwnaΙ–}\Ψ:Φλ8"R}$ΫJ<Οz°Ξ8ΰK3Τ.;Ι~†KTτIi8η˜“–Νkίn`A%ŸΞ¨Ob,OίΠ•”€Έ*7›™ρΨuX²u/£',eΖ])R"Xδ1jB*5#ByξΖn„„TžΏϋυέxμ³5€οΞ%ρΌΚΣ½Έ,TψI΅Υ»U}BCŒΉiY*όD€² Όγœ{ΦΜ.ή3³NΞΉb3λ< \qͺ˜Ωmΐm͚5«€ΘRσιςνΌφνFΦ–Ίu/Ο~ΉŽ«»4βΖMΟΌA%049)K2ωzΝnξΘλ8e’žRνυMŠcϋώ<6dς:ŠˆˆΘ)-,βΓΆrΩσίrΫ{?²σ@γνΐ‚1—rΟmUτUbclG‡FuΈο_ΛΩu Ολ8ž:Wΐ艩4¨Ιί†v2_Ί_Τ:Žuj055Γλ(e¦ΒOͺ½~IρΜMΛς8‰ˆˆΘΟν?\ΐΛ³ιϋδ,ώΥ—Α]ͺqUIβy΅yxpGlΘα΅9§œ‰%¨MY’ΙΗK·sχ€$Ξo^ίλ8gmhr…ΕŽO—οπ:J™θ+"|έ=§,Ι$Ώ°XC]‹ˆˆ§Φμ8ΐs62}Ωvpm—FάΦ―5Χρ:šœ£α=šπmZΟ}Ήž [Ε’ά¬žΧ‘*ΜΖ¬\όx%½ZΦηŽK½ŽS&νΥ‘]Γh¦€fςλ‹Zxη¬ιΎωόη±dλ^―£ˆˆH5δœcΑ†l~ύΦ"όϋ\>_΅“_]Ψ‚oολΟ #’Uτ 3γoC;Σ N$£'¦r ―ΐλH"Ώ°˜ΡS‰ α…έ­ΒΣ‹\ί=eΫφ±!+Χλ(gM…ŸpaλXBCLέ=ED€BσΙ²ν ~i>7Ώρ=«Άο羁mY0ζRΊΆMκEyQΚYLΝpƏμΖφ}yŒΊίΑνι/Φ²2σO λB£˜š^Η9'CΊ%bπqœΣO…ŸP'2œδ¦u5ΐ‹ˆˆTˆ#ωEΌ»p3—<;›QR9t΄ΎΎ3σώ|)w^’Hέ¨―#JίΌ>Ό,‰ιΛΆ3yIΥ+ ΞΖμu»ycξ&~Ω»9WtlθuœsΦ N$}㘺4³ΚνΊΗOΔ―oR:½‡ς©WK\)9ΉGywαή]Έ™½‡ HnV—Ίͺ—whP₯»ΏΙΩϋύ™—žΝC―€{³Ί΄Š―ά“˜—EΦΑ£όι£e΄mΝ]έήλ8εfhrχLZΖβ-{ιΩ’κ R£?Ώ”€xœƒrΌŽ"""AfKΞ!œΆ’>O~ΓίΏNγόζυωθχ2ε]Δ N UτUC‘!Ζ 7%Β艩-,ς:RΉ*.vάϋΡ2ζςβΝΙD†‡z©ά μؐšα‘L©b­΅*όDόΊ6‰!:2Lέ=ED€ά,ΫΆ;ί_Β%ΟΜζΓΆ1€k3οιΗόΊ=[Τ―2“WK`4Œ‰δ©a]X™y€gΎXηuœrυζΌMΜYŸΕCΧv Mƒh―γ”«Z5ΒΨ±Ÿ-ίN^AΥ)ΨΥΥSΔ/,4„‹ZΗ27-ηœ.Ζ""Rf©[χςδηkωnγ’#ΓΈ­_k~Σ§ κDzM*™+:6δW6獹›θ“GΆηyιœΝKΛζ©/Φ2¨cCnΎ ™Χqbhχ&L[ΊYkwseηF^Η)•€Άψ™Ω 3[gfιf6ζ$Λk˜Ω‡ώεί›Y λαfφΏfΆΒΜ֘فΜ)rLJR<™ϋް)ϋΧQDD€ŠΚάw„_Ώ΅ˆMΩ‡ψ―«Ϊ³`Μ₯ŒΉ²Š>9₯Ώ\՞v £ωΣGΛΨ}0Ολ8eR\옹z7ΎΊxσ{Τ‰δ‰aƒφ‹τ>­c‰Α”*4Ίgΐ ?3 ^:#Ν¬Γ «ύΨλœKžžτΏ>¨αœλ œά~¬( €~IρΜΥ΄""R…EΕά=1•b“nΏίυkEtdΈΧ±€’‹ εΕ‘Ιδ-δήIΛ(.:£E-,bΫΈβ…9άϊξb2χα‘k:πΕέύ‚ztΪ°Π†tmΜμu»Ω{(ίλ8₯ΘΏ €tηάFη\>0rΒ:C€υ?ώ0ΐ|_ 8 –™…5|ΰ@³ŠΠ,6Šfυ£tŸŸˆˆ”Ι‹ί€σΓζ½’³ολΟφmI­ΑGΩΠξ 9>]Ύέλ(₯ΘΏH°­Δσ  Χ©ΦqΞšΩ~ _8ΨDtΞν `V‘γR’β˜–šIAQ1α‘HDDJgΡ¦=ΌψMΧwOΰΊδ―γH4ς‚¦ΜYŸΕΣ_¬£w«XΊ4©λu€ŸΩ±oΟίΜίo%χh!}γxfxWR’β‚Ά[η©thT‡Ά ’™’šΙ//lαuœ3ͺ¬Ÿj/Š€Ζ@Kΰ^3kuβJfv›™-6³ΕYYj‘‘ς‘’Ο‘ό"R·ξσ:ŠˆˆTϋηsχΔTšΥβ‘!ΌŽ#U”™ρΔ°ΞΔΧΑθ ©δ-τ:qλvδήIΛθχΤ,ޜ·‰K۝ǧ£ϊςΟ[{Ρ―M|΅+ϊΐχχΪ=Τ­ϋΨ\Ζ‡dα— 4-ρΌ‰΅“γοΦδ7Ÿ;η œs»ω@ΰœ{έ9ΧΓ9Χ#>>>§ ΥΡ…­c 1ΤέSDDJΕ9ǘΙ+ΘΚ=Κ‹#»S»tq“ΐ©Α #’ΩΊη0}ΌΣ,Ξ9ΎΫ˜Γoή^Δΐζ0cΕ~Ρ«9³ΤŸρ#“ι”γiΎΚ`H·Ζ˜ΑΤ*0ΘK Ώ€$3kifΐ`ϊ λL~ν|πsΞ[KΜ¬ΠXΐ¬"ΗΕΤ §[ΣΊΰEDDJεƒE[ω|ΥNξΨ–ΞMτAXΞέ-λ3z@S–d255£Β_T옱bΧ½<Ÿ―ΗςŒύάsyŒΉ”qƒ;΄~T…gͺ¬ΕΤδ’Φ±L[š‰―Œ©ΌVψ9η ?_k€IΞΉUfφˆ™ φ―φ&kfιΐ=ΐ±)^j›Ω*|δΫΞΉεΚ*r’”€x–gμcίαͺ1J“ˆˆxcύƒ<ςΙjR’βΈ΅οΟξJ)³?\’Θ-κ3vκJΆδTL7ΒΌ‚"ήϋn —>;›;ή_Βώ#[ΎΠcH·nλ׊6 ’Λ!qυ4΄{Σ—mgΦΪ,ujθuœ“Rα'r )Iq|Ήz›sΣ2N“πŠˆˆΟŽύGΈςr:%ΤαΎνΌŽ#ΥΐƒWwΰ‡M{Έg2ώ}W q΅kœυ>œsΜIΛζυ9˜ŸžCt0~—ŠίτiIΓ΅XŸ«”Δ8βjΧ`jjF₯-όΤΥSδŽ}£6OΣ:ˆˆˆ_Q±γξ‰KΙ/,fόˆd"ΒτQJ―fD(/ޜΜώ#άχΡ²³=² ¨˜i©™\5~Ώ~kι»syΰΚvΜΰRΈͺ½ŠΎrΒΰωfνξJ;8 ώ΅9…ζ±Q4­_“9ΊΟODDόώ1;ο7να‘!h_Ϋλ8R΄kX‡―nΟ¬uYΌ=σΧ?t΄7ηm’Σ³ΉϋΓ₯στ ]˜{₯ά~qkκD†>t5s}χ ŠŸ.ίαu”“Rα'r fFίΔxnΘ‘ (p#i‰HυcfƒΜl™₯›Ω˜“,off³Μ,ΥΜ–›ΩU%–=ΰίn™ ¬ΨδΥۏ[φπόΜ4†tkΜ°ξ ^Η‘jθ?z7ης xβίkY™Ή€λμ>˜ΗΣ_¬εΒώšG?]MB½šΌuKΎΈ»Γ{4U+uul\‡€σj3­’NζΏΌΘiτKŠ#χh!ΛΆνσ:Šˆ 3 Ε7_ν•@`€™u8a΅±ψζΏMF―ψ·νΰήΌβߟΨώ#Œž°”Ζu#yμΊNτKΊW’/‹Τβ'r)mβ)v°pƒΊ{ŠHΉΘš–xήΔZIΏ&8η‘@\)·ΕΏέλΞΉΞΉρρη>αsu”WPΔ¨ ©ΤŒεΉ»ι)©TΒBCxθΪό¦OK}•Μ•R#,„©K*WwO~"gΠ­i]jΧΣ}~"R^~’Μ¬₯™Eΰ¬eϊ λl˜Y{|…_–½fVΓΜZIΐ’ K^Ν<ωωZΦμ8ΐ3Γ»Π Žζ:‘‰Ž ης ψdωvς +ΟΘπ*όDΞ <4„ή­b™§ΒODʁsψπ°ί蝫Μμ3μ_ν^ΰwfΆ ˜άβ|Vαk \ |άιœ+ͺψ³~_―ΩΕΫσ7sΛE-Έ΄]―γˆHs}χφ.`φΊέ^G9NνΒ"₯Π―M3ΧμbKΞ!šΗκ†i97ΞΉψm)ωΪC%―ϊœbΫǁΗ°šΫu ϋώ΅œφκ0ζΚv^Η‘*(%)žΨZLMΝ䊎 ½Ž¨ΕO€Tϊ&ΖšΦAD$Ψ;ξ™΄”#ωEΌ82™ΘpM“("g/<4„k»6ζλ5»ΩΈΐλ8€ ?‘RiW‹„Ί5™§iDD‚Ϊks62?=‡qƒ;x^m―γˆHv}χς‹Š™±r‡ΧQ~"₯bfτkΗ‚τ ‹*ΟMΊ""R~R·ξεΩ/Χqu—FάΨ£ι™79Ξ 1΄Ž―UiFχTα'RJ}γ9x΄eϋΌŽ"""εμ@^£'¦ N$Ϊ3Mέ "ηΖΜΈΎ{mήΓΆ=‡½Ž£ΒO€΄ϊ$ΖbsuŸŸˆHPqΞ1vκJΆοΛcόΘnΔΤ χ:’ˆ‰!έ0-ΥϋV?~"₯T7*‚.Mκͺπ 2“—d2}ΩvξΔωΝλ{GD‚H“zQ\Π²>SS3qΞyšE…ŸΘYHIŒcιΆ}Θ«£3‰ˆΘΉΩ˜•ΛC―€WΛϊάqI’ΧqD$]ŸœΐΖμC,ΛΨοi~"g!%)Ž’bΗΒ 9^G‘s”_XΜ艩D„…πˆn„†θΎ>)WvnDDXS—dxšC…ŸΘYHnVZ‘ΜΥ΄""UήΣ_¬eeζžΦ…F15½Ž#"A*¦f8—·oΐ'ΛwPΰαθπ*όDΞBDX½[Εκ>?‘*nφΊέΌ1wΏμݜ+:6τ:ŽˆΉ‘Ι μ9”Ο·λΌk?‘ΚθΉ―Φ³,c?OλBBݚ^Η &*œνΟγ“eΫ)¨ΐβUψ‰”QDX½[Ε27M…ŸˆHe37-‹WΏέΐΘ šqeηF^Ηω‰‘Ι δΚg^~ŽTα'rR’βΨ”}ˆm{*~H^9Ήμά£ά3i‰ηΥζ‘k:xGDδgϊ·=zQαLI­Έξž*όDΞAJR€Ί{ŠˆTΞ9ξϋhϋπβΘdjF„zIDδg"ΒBΈ¦KcΎ\΅³Β Tα'rZΗΧ¦QL$sΣ4­ƒˆHeπφόΝΜZ—ΕΨ«ΫΣΎQ―㈈œΠξ -,ζί+wVΘρTψ‰œ3#%)Žωι9Wμ\,""ςS+3χσΔΏΧrYϋό²ws―㈈œVrΣΊ΄ˆbjξ©ΒOδυMŠg‘‚ Ÿ‹EDDώΟ‘£…ŒžJ½ZαֈHΥsM—FD„†0%ΐƒΌθ_H‘rp~σzΤ Υ΄"RήFrΞ˜Y"Πh‚―XΌΤΜRNΆ‘™έff‹ΝlqVVpώΫτύ¦R·ξγΑk:Π΄~”ΧqDDΚ€nT—΄‹gΙΦ½=NX@χ.RMΤ ₯W«ϊΊΟODJ#hZβyk'3Έ³Δσ‘ΐwΞΉ\3ϋ7p!0χΔ s――τθΡ#(η›™—–MXˆqU—F^G9'O λJtd`K3΅ψ‰”“”€x6f"cοa―£ˆHεφdf-Ν,_q7ύΔ•Μ¬PXXβε­ΐΕfffαψv©Ά]=η¦eΣ½Y=jΧΠχΨ"R΅ΕD…ΨAšΟͺπ3³3«¨0"UYΏ$ίHrσΤκ'R-•φιœ+ώ|―h›δœ[ef˜Ωΰ«Ž&ΊŸσφ/`°X,sΞ}Rn'Q…μ9”ΟΚνϋII(ž""₯qΖΒΟΜ>0³:fV X ¬6³ϋJ³σRΜSTΓΜ>τ/ήΜZ”XΦΕΜϊη*Zaf‘₯?-‘Š—x^mΤ©‘ξž"ΥHY―‘ΞΉΞΉ6ΞΉΦΞΉΗύ―=δœ›^bqΞΉ1'lW䜻έ9Χή9ΧΑ9wOyŸSU1?=η|£*‹ˆΘ™•¦Ε―ƒsξpπo|£‹ύςL•fž"ΰ·ΐ^η\"π<π€Ϋ0ΰŸΐοsώ@AiNHΔ+fFJR<σ7dST”·ΣˆΘΟ•ι)ηnnZu"Γθ€ΧQDDͺ„~αώϋ¦;η πΝ#t&₯™§hπΏώΗ˜™W˝s˜s9ΗF4©ΜR’βΨwΈ€•™ϋ½Ž""£¬ΧH9Ξ9ζ¦eΣ7)ŽΠί#",JSψ½ljsόs •fvΑΜSt|=ϋX  ΰΜμ 3[bfχŸμΥa¨j©Zϊ$ϊΊiZ‘j£¬ΧH9²±c}㽎""Reœ±πs΍wΞ%8ηr>[€Kœ+ θ όΒί‘f6ΰ$Ω^wΞυpΞυˆΧ?ώβ½ΈΪ5θΨΈŽξσ©&<ΊFV{ΗΎ\Σΐ.""₯WšΑ]˜Ω›ώΉ‚πί§χλRμ»4σ_Η__ ƒ―upŽs.Ϋ9w˜t/Ε1E<—’䛀3χh‘ΧQD$ΐΞα)η`nZ6-γjiv‘³PšžοΰrΊ±ωzΰξRlWšyЦσΘ€oόΓVt6³(Ax1°ΊΗρ\JREŽο7ζxEDοΚv”2Κ/,滍9τMTkŸˆΘΩ(Mαηœ›Γρ{ρΞ8ΠJ)η)zˆ5³tΰ`ŒΫ½ΐsψŠΗ₯ΐηάgguf"9Ώy="ΓCΤέS€z(Σ5RΚnΙΦ½Ξ/R7O‘³VŠu™Y,ώQΚΜ¬7ΎAXΞΘ97_7Ν’―=Tβq0όΫώί”"UJdx(½ZΖj€‘κ‘ΜΧH)›ΉiY„†ΆŽυ:ŠˆH•RšΏ{πuΙlmfσwQM%RΕ₯$Ε±!λΫχρ:Šˆ–‘lnZ6ΙMλξu‘*εŒ-~ΞΉ%fv1Π0`ž"9…”€x` σ²Ή±gΣ3/"U“‘kο‘|VdξηξmΌŽ""R圱π3³_πRw3Γ9χn€2‰TymΤζΌθΜIΛRα'Δt¬Xσ7d〴Ρύ}""g«4χψυ,ρ8,ΑםEDNΒΜθ›Η¬΅»).v„„˜Χ‘D$0t¬@sΧgF—„―£ˆˆT9₯ικω“{Μ¬.01`‰D‚DΏ€x¦,ΙdΥφtn’)"ΑHΧȊγœc^z6}ZΗZš! DD€€²όΛyhYήAD‚MSs4Ί§Hu’kd€lΜ>DζΎ#κζ)"RF₯ΉΗοόΓTγ+;“J$ΔGΧ }£:ΜMΛβΞK½Ž#" kdΕ™»ήχ%ZJbΌΗIDDͺ¦άγχL‰Η…ΐη\F€ςˆ•~IqΌ5‡σ ‰Š(Νn"RΕθYAώ{weyξόse…°†‚¬«’P!΄uΗZ΅§ΪBmkkOΥVϋ³΅υ{~?kΫsN—ΣSΪS»a΅΅­J­Φ~-ξK Š"jΘ„E’dXΒNΆλό‘IΣ dr?3σ}Ώ^σbζ™{’o€δΚ5Ούάχ’Κ8#Š ^T:ŠˆHJjΟ5~ιŠ "騬d?_ΌevςΎ‘γˆH'Sμ΅υ,]Ώƒž5$t‘”uΔΖΟΜφςχι+οx pwT"ibΘBςs²X«Vγ'’FT#»ΦΛ›w±ΏΆšζ)"r܎ΨψΉ{― "’ŽΊεf3ΉΈKbρΠQD€©Fv­%•q²³Œi£ŠBGIYν^ΥΣΜšΩπζ[2C‰€“™%ˆmίΗΆšƒ‘£ˆH’¨F&ΧβXœ Γϊ§{nθ("")똍Ÿ™]jf1`#π`πH’s‰€%MK—λ¬ŸHΪQLΎέjy΅j7e%ΪΖADδD΄ηŒί7©@…»η/$5•H+©Ζ IDAT)Τ‹ώ=σ5έS$=©F&ΩσλwΰŽ?‘ԞƯΞέwYf–εξΟ“’œK$m˜3Kϊ³€2Ncc[kAˆH SL²ςX5½ςs8chίΠQDDRZ{ΏέfΦ(ξ5³ϋ“K$½Μ(ιΟΞύ΅ΌΎmOθ("ΉT#“ΘέY\ημΡEδd·{YiC{~Š>τnΦHf(‘t3c΄σISͺ‘I΄iΗΆξ>Ȍmγ "r’ΪΣψεΟ½€ί%¦΅ˆH; μݍA½(U‡Ž""K52‰šfΞΤυ}""'옍Ÿ»έέOn1³'“žL$Ν”•τgΕ¦]¬mED:‰jdr-ˆ3Ό_#Šz„Ž""’ς:2a~;π°˜œ8"髬d΅ ,Ϋ¨“"i¨C5Μ.2³ufVifsΫx~ž™­Jά*Μlw‹η†›ΩγfΆΖΜ^7³‘ψuDF]C#/lΨρ·-qDDδΔ΄gΏΟ™Ω³ΐS@πw?=ΩΑDΝδβ~δεdι:?‘4r<5Μ²³€ρΐ3ίrŒ»Ρέ'ΈϋΰGΐZ<ύkΰ?έ}0™¦¦3ν¬Ϊ²›}‡λ5ΝSD€“δ΄cΜ0ΰ ξΎ*ΩaDY·άl¦χγ™uΫΉ|ΠqRΚΠΒξφΘ C€-ΗS#'•ξΎΐΜ—―aόΰk‰±γwΐέχoπ¨+―¨&Λ`Ϊ(5~""α˜Ÿ»ίΪAD2Α{Ζ ΰίώΌ†ά±$t””· —§n~E=σCGy‡γ¬‘C€--WSΪhf#€bΰιΔ‘14m!ρ‡Δρ'Ήξžv/ŽΕ9cX_ϊtΟ ED$-΄ηŒŸˆt’OΑθ=©oΠFξν΅χp_zΰ~τt%·_zjθ8"]m6π`‹Ζ.(Ξ6Ώ> άΥϊ…fv-p-ΐπαΓ»"k§©9PΗ«U»Ήρœ’ΠQDD†?‘.”Ÿ“Ν{Ηjm€ŽzqγNξ]φŸš>R«ϋI:ΨJΣΡfCΗΪ2›¦C›U«ZLύ#0•6?wŸΜ˜4iRJ½Ϋτόϊ8mDD:SGVυ β η!'+‹|l]θ("a9PbfΕf–GSs·°υ 3+ ₯­^ΫΧ̚w4?‡#_˜²ΗβτΜΟαŒa}CGIjόD$ςNκݍ.+ζO―nγ•-»ύ‘sχzΰFΰ1` π€»―6³o˜Ω₯-†ΞΈ»·xmπeΰ)3{ 0ΰΞKŸ|ξNy¬ši£ŠΘΝΦ―)""ES=E$%\;σξ]Ά™o=²†ϋ?33 IδΈΉϋ"`Q«c·΅z|ϋ^ϋΆΫ*½±γU»rέΜSBGI+z+MDRB―nΉάtn /lΨΙ³λͺCΗ‘$)5}Ο(pŒ‘""jόD$eΜ™<œE|ϋ‘΅44¦ΤZ"Nε±8C »3²¨ t‘΄’ΖODRF^Nra)λήήΛC+«BΗ‘NVΧΠΘυ;(+ ιά""LŸˆ€”‹OΔΓϊ2ο‰ Υ₯ݞΥ"ν•-»Ω{Έž2mγ "ιΤψ‰HJ13nUΚΆšCόςΉM‘γˆH'*ΕΙ28{TQθ(""iGŸˆ€œ©§qnι@~ςl%»φΧ†Ž#"€ˆˆœˆ¬,cξ¬Rͺvδ7KίGhΧvGσΜlUβVaf»[=ίΫΜͺΜ,%ί]‹cΣG«ρι*9ΙόΰξΎXΤκΨm-ξ<ΖΗΈ=)αD$c”•  ¬€?wM Ÿ-7³…ξώzσwb‹ρŸΞlυaΎ ,ξ‚ΈIQ«ζ΄!}θΧ#/t‘ŒΥΕ]DD:ΥάY₯Τ¬γ§ΟE€=Ϋ΅4ΈΏω™MNOjΚ$Ω{¨Ž•›w3CgϋDDΊ”?Ι§žά‡Λ' α—ΟmδΝέCΗ‘Μ֞νŽ0³@1πtβqπ_ΐ—“œ1i^Ψ°“†F§LΫ8ˆˆt)5~"’1ΎtΑάαϋOT„Ž"^³έ½ye’Ο‹ά½κX/Œκ–Gε±j ς²9kDίΠQDD2Š?ΙC Έϊμ<΄²Š΅oν G2W{Ά;j6›Σ<iΐ‰νŽΎ|ΒΜΎέΦ £ΊεQy,Ξ”β~δηd‡Ž""’QΤψ‰HFΉα}£ι•ŸΓwY:Šdφlw„™•…ΐζcξ~•»OlwτeΰΧξž2+boΩy€ρύšζ)"€?Ι(} ςΈα}£yf]5Ο―‡Ž#¨ΫASCΈΐέ=DΞdXRΩτ=7sŒvιjjόD$γ\}φHNξӍo?²–ΖΖ΄ωZRˆ»/rχ1ξ>Κέ=qμ6w_ΨbΜνG;›ηξΏrχ»"og)U3¨w7F θ:ŠˆHΖQγ'"§[n6_Ί`,―VΥπ§ΧΆ…Ž#’η*wPV3 GD$γ¨ρ‘Œtω™C(Τ‹ο=ΆŽΪϊΖΠqDήk[k¨9XGΩ]ί'"‚?ΙHΩYΖάY₯lήy€{—½:ŽHΪ+―hΪRbϊ¨’ΐIDD2“?ΙXο3€ι£‹ψο§bμ9T:ŽHZ+―Œσ!½)κ™:ŠˆHFRγ'"Λ̘{Ρ8v¨γηY:ŽHΪΪwΈž•oμ6""©ρ‘ŒvΪΠ>\zΖΙά΅d#oΥ G$-½°~υNΩhmγ "Š?Ιx·\8–†Fgή‘£ˆ€₯ςX5έr³˜8²0t‘Œ₯ΖOD2ή°~||κH~boο G$ν”WΖ™zJω9Ω‘£ˆˆd,5~""ΐηΟMόΎσθΪΠQDJΥl¨ήΟ Mσ JŸˆPΨ#ΟΎwOΩΞ² ;BΗIKbqfj>‘ Τψ‰ˆ$\3½˜A½»ρ¬ΕέCΗI ε•qNκOΙΐž‘£ˆˆd45~"" έr³Ήω‚1Ό²e7‹^{+t‘”ΧΠθΆ–Ί†ΖΠqDRΪ_·Φ°ϋ@3Ηθϊ>‘ΠΤψ‰ˆ΄e|eΦX6ν8ΐύ/nG$₯-©lΊΎoΊv NŸˆH+ο;©§τγ‡OΖΨ{¨.t‘”΅Έ’šρƒ{ΣΏg~θ(""OŸˆH+fΖ­³Ζ±c-w.ή:ŽHJΪΈž•›wQ¦iž""‘ ΖOD€ g λΛ%§ζΞςlίs(t‘”³lγκœ™%ΪΖAD$ Τψ‰ˆΑ-Ž₯Ύ±‘yOΖBGI9‹+βδηd1qDaθ(""‚?‘#QΤƒ«¦Œΰ[¨άΎ/t‘”R«fΚ)EtΛΝEDDPγ'"rTŸ?g4έs³ωξ£kCGIoξ>ΘϊκύΜ,Ρυ}""Q‘ΖODδ(Šzζsύ{NαρΧίfΕ¦‘㈀„%±¦mΚt}ŸˆHd¨ρ9†kf3°W>±h ξ:ŽHδ-ŽU3°W>cNκ:Šˆˆ$¨ρ9†‚Όn> +7οζ±Υo‡Ž#iΞs•qf”τΗΜBΗ‘5~""νpΕΔ‘ŒΨ“ο>Ί–Ί†ΖΠqD"kυ›{Ψu NΫ8ˆˆDŒ?‘vΘΙΞβ+•²!ΎŸί-ί:ŽHd-ŽU0}΄v‰5~""νtήΈLُ<cαϊΠqD"iI,ΞΈΑ½Π+?tiAŸˆH;™s/.%Ύο0w–oGR˜™]dfλΜ¬ΜζΆρό<3[•ΈU˜ΩξΔρ fΆΤΜV›Ω«fφ‘OdjλYρΖNmγ "AjόDD:ΰ¬α…\|Ϊ ζ/ή@υήΓ‘γH 2³lΰΗΐ,`<0ΗΜΖ·γξ_tχ ξ>ψπ‡ΔS€OΈϋ©ΐEΐΜ¬oΧ₯?ΊevRΧΰΜPγ'"9jόDD:θ– K©­oδ‡OU„Ž"©i2Pιξά½X\v”ρs€ϋά½Βέc‰ϋoہȬ’²8VM~NοΩ/ti%'t‘TSάΏs&ηΎ7SWοdEπ-΄3‡rεΔ‘ZN?š†-Wͺ¦΄5ΠΜFΕΐΣm<7ΘΦ'!γqY‹3ΉΈέr³CG‘VΤψ‰ˆ‡›Ξ+α΅­5<³n{θ( ΎΡΉΕ-ΔήήΛW/§ζ/΅Νtχ†–Νl0πΰjwos3»Έ`ψπαΙΞΙΆšƒΔΆογΚIC“ώΉDD€γΤψ‰ˆ‡ώ=σωγ ΣCΗhSc£συΏš;Λ7²sίωΠiδdGπ΄dζΪ kρxhβX[f7΄<`f½?κξ/ι“Έϋ|`>ΐ€I“όD·Gy,@™φο‰$5~""i&+ΛΈύSιΧ#ŸyOVPs°–;>z–¦ίEΗr Δ̊ijψfm=ΘΜJB`i‹cyΐΓΐ―έύΑ‰Ϋ>KbqϊχΜ§tP―ΠQDD€ z XD$ ™7WΒ7/;•§Φnηw½HΝΑΊΠ±pχzΰFΰ1` π€»―6³o˜Ω₯-†ΞΈ{Λ³ufŸl±έΓ„. Ξ’Κ8e%ύ5΅XD$’tΖOD$}|ΪHϊδqσ«˜=ξΉζέ μΥ-t¬Œηξ‹€E­ŽέΦκρνmΌξ·ΐo“ξ8ΌΎm;χΧR¦mDD"KgόDDάΞ8™»~7›βϋΉςgKΩΌγ@θH’fš―ο›1ZŸˆHT©ρΙ3Η ΰΎΟL‘ζ`ϊΩσ¬ΩΆ't$I#ε±jJυb`oM‰*5~""βΜα…όώΊiδdώωR–oΪ:’€ƒ΅ ¬Ψ΄KΣ:e8?yv=_}ψ5ΥόIϋόm5~""‘—Μ ά‡[Z<¦iŒ»Χ›Y PDΣΏfVΊϋα$fΙXΩYΖΏ_ώ.ϊδqΗ3•μΪ_ΗfOΠΤ=9¦ςX5ύ{ζ1nPοΠQDDδ"½Έ‹™JΣτΟλŽπό΅fΆΒΜVTWWwm8‘4bf|ωΒ±άvΙx]ύŸϊεrφͺ K"¬±Ρy2ΌΡύΙΚ²ΠqDDδ’Ωψm†΅x<4q¬Ν1f–τv$>αξλΫϊξ>ίέ'Ήϋ€΄Œ΄ˆΘ‰ΊfF1σ>rΛ7νδ£w.#ΎO“-€mkήΪC|_-3΄ƒˆHJHfγ·(1³b3Λf [YHΣβ-WO»»›Y_ΰΟΐ\w.‰ED€•ž9”;?1‰Ψφ½|ψgK©Ϊu t$‰ ζλϋ΄°‹ˆHjHZγηξυΐΐcΐΰw_mfί0³KΓξŠΜ¬ΈhήςαF`4p›™­Jά&+«ˆˆΌΣϋJςΫOO!Ύο0Wόt)oο I"fI,ΞΨ“zqRοn‘£ˆˆH;$υ?w_δξcά}”»{βΨmξΎ0q»_ιξ£έ}²»oH7wοαξZάΆ'3«ˆˆΌΣ€‘ύxΰϊi4ΊsεΟ–²rσΠ‘$"Φ6π⦝ZΝSD$…Dzq «tPoϊμΩδr՝ΛxvήƒxqΣNjλ5ΝSD$…¨ρ‘£Φ―€ί_6Εύ{πΟχ¬ΰV΅^§K2MyE5yΩYL). EDDΪIŸˆˆΣ€^ω,Έn*Gς…ί­βžη7…Ž$-©Œ3id!έσ΄Χ£ˆHͺPγ'""ν»[.χ\3™σƝΔΧfήΈ{θXΕΆο9ΔΪ·φR¦mDDRŠ?i·nΉΩότͺ³ΈrβP~ψTŒΫώg5 jώ2‰ΆqIM9‘ˆˆHjΙΙΞβ»WœNΏyό|ρv¨εϋž@^ŽήKΜK*γυΘcόΰή‘£ˆˆH¨ρ‘33n½xύzδρ­GΦRs°ŽŸ}l"=ςUVYc£S‹3}t²²,tι½=+""ΗνΊχŒβ»WœΞσλwpΥ/–±kmθH’DkίΪK|ίaMσIAjόDDδ„|x0~zΥYΌΎmWώ|)Ϋj†Ž$I²€²@ »ˆˆ€ 5~""rΒ.8uΏΎf2oΧ⊟.e}υΎΠ‘$ ΚcqJφdPŸn‘£ˆˆH©ρ‘N1υ”"ξΏv*‡λΈςgKy΅jwθH‰Υ5°lγNνIQjόDD€ΣΌkHΌώl ς²™3–$–ώ—Τ·|ΣNjλ)£λϋDDR‘?ιT#ϋχΰ‘ϞΝΠΒωΥr½Ά-t$ιε±8yΩYL)ξ:Šˆˆ5~""ιNκݍ›ΖιCϋpΓ}+ΉoΩζΠ‘"ΕΜ.2³ufVifsΫx~ž™­Jά*Μlw‹η6³XβvuWe^\QΝΔ…δiΛ‘T€ΖODD’’OA.Ώωτή7v _}ψ5ξx:†»‡Žœ™e?fγ9f6Ύεw’»Opχ ΐ€?$^Ϋψ0˜ |ΝΜ “yϋήC¬}k―¦yŠˆ€05~""’4έσ²ωωΗ'ςΑ3‡π½Η+ψζŸΦΠؘρΝίd έ7Έ{-°Έμ(γηχ'ξ_<αξ;έ}πpQRΣΟU6]«Y6Z »ˆˆ€*5~""’TΉΩYόΧ•gpΝτbξ~n#ΟVl)΄!ΐ–«Ηώ™Š§γ΅ΧšΩ 3[Q]]}BΛ+βδrκΙ½Oθ㈈H8š¨/""I—•eόΏKΖqήΈœ=ZΣ;`6π »7tτ…ξ>˜0i€:Νzϋe§ruυH²²μD>Œˆˆ€3~""%ΜLM_“­ΐ°‡&Ž΅e6ŸζΩΡΧvšήέr9cXίdI"5~"""]k9PbfΕf–GSs·°υ 3+ ₯-?\`f…‰E].H9*MυιBξ^of7Τ°ew»ϋj3ϋ°Βέ››ΐΩΐo±ͺ»ο4³oΤ<|Γέwve~IMjόDDDΊ˜»/΅:v[«Η·α΅ww'-œˆˆ€%MυIsjόDDDDDDœ?‘4§ΖODDDDD$Ν©ρIsjόDDDDDDœ?‘4g-φ…MifV ΌΡ ͺ?ΣΩ”«γ’š-ͺΉ ΊΩ’š ’›-έspχπq2B'ΥΘ¨ώŸ‚θfSŽ‹jΆ¨ζ‚θf‹j.ˆnΆΞΘuΔϊ˜6_g1³ξ>)tŽΦ”«γ’š-ͺΉ ΊΩ’š ’›MΉ€³Eωί.ͺΩ”«γ’š-ͺΉ ΊΩ’š ’›-ΩΉ4ΥSDDDDD$Ν©ρIsjόώΡόΠŽ@Ή:.ͺΩ’š ’›-ͺΉ ΊΩ”K:[”ν’šMΉ:.ͺΩ’š ’›-ͺΉ ΊΩ’šKΧψ‰ˆˆˆˆˆ€9ρIsjόΜμ"3[gf•f67tžffv·™m7³Ώ†Ξ’™ 3³gΜμu3[mf7…ΞΤΜΜΊ™Ω‹fφJ"ΫΧCgjΙΜ²Νμe3ϋSθ,ΝΜl“™½ff«ΜlEθ<-™Y_3{ΠΜ֚Ω3›LcWΝ·=fφ…ΠΉš™Ωχjfχ›Y·Π™Μμ¦D¦ΥQϊϋ’cSμ˜¨ΦHΥΗγΥΕϊΡ‘™^5Υ“¦4@p>P,ζΈϋλAƒf6ΨόΪέί:O33 vχ•fΦ x Έ<"gτpχ}f– ,nrχGΐΜn&½έύ’Πy ©¨“ά=r{ژΩ=@Ή»ΒΜς€wί:W³ΔϏ­ΐwDO4ΟšώϏwχƒfφ°Θέ8Χ»€ΐd xΈήέ+Cζ’cSμΈ¨ΦHΥΗγΥυϊΡͺ‘ͺ:γΧl2Pιξά½–¦ΏόΛgΐέ;CηhΝέ·ΉϋΚΔύ½ΐ`HΨTMΌΙΎΔΓάΔ-οp˜ΩPΰύΐ/BgIfΦ˜ άΰξ΅Q+jΐΉΐϊΠ­• »™εΐ›σŒ–Ήϋw―ώόSΰL>ͺ‘Υ©ϊ˜>R€>BτjdFΧG5~M†[Z<"? S…™Ξ–…Mςw‰ι"«€νΐξ•l?ώh €7³—ΜμΪΠaZ(ͺ_&¦όΒΜz„ΥΚlΰώΠ!šΉϋVΰ{ΐf`PγMΐ_23+2³ΰb`XΰL>ͺ‘' j5RυρΈD±F¦B}„ΥHΥG5~r‚Μ¬'ππwί:O3wopχ ΐP`rβ4zPfv °έέ_ ₯ 3άύ,`pCbϊTδg?uχ3ύ@”/Κ.~:K33+€ιlL1p2ΠΓΜ>6Έϋΰ;ΐγ4McY4 %’dQ¬‘ͺΗ%Š52υ’W#UΥψ5ΫΚ;;둉cr‰λξuχ?„ΞΣ–Δ΄‡g€‹Bg¦—&XœcfΏ ©Iβ]0ά};π0MS»’  ¨jρŽτƒ4Ί¨˜¬tχ·Ciα<`£»W»{πΰμΐ™pχ»ά}’»ΟvΡtݘDŸjδqˆzT}lΏˆΦΘ¨ΧGˆ^Μψϊ¨Ζ―Ιr Δ̊οNΜΞi‰ ΔοΦΈϋχCηiΙΜ˜YίΔύξ4-H°6l*pχ[έ}¨»€ιΨΣξό&3λ‘X|€Δ4‘ hšvœ»Ώl1³±‰CηΑ”ha™ΒΒf`ͺ™$ΎOΟ₯ιϊ’ΰΜl`βΟα4]Ώp_ΨDNͺ‘Υ©ϊΨqQ­‘)P!z52γλcN2>hͺqχz3»x ΘξvχՁc`fχοϊ›Yπ5wΏ+l* ιέΉ―%ψͺ»/ ˜©Ω`ΰžΔJRYΐξ©₯‘#ζ$ΰᦟδχΉϋ£a#½Γη{Ώpn>8π·_Ξ >vΡ†IDAT₯%w_ff+zΰe`~ΨTσ™uΐ ]ˆ@ZQ<.Q­‘ͺεΙϊΡ¬‘ͺΪΞADDDDD$νiͺ§ˆˆˆˆˆHšSγ'"""""’ζΤψ‰ˆˆˆˆˆ€95~""""""iNŸˆˆˆˆˆHšSγ'’ΖΜμr3:‡ˆˆHΤ¨FJ¦Qγ'’ή.TΤDDDώ‘j€dνγ'˜™} ψ?@° xιξ·$ž$0Ιέolcμηά½ΑΜφ?.—£€?5‰Ϋ‡€χΧΣ΄qιλξ>»«ΎN‘ŽRι<:γ'™>Lwχ @°ψ`‹aaμU‰1=€άύ `1πwXάβξά}=08ΣέO§©Έ‰ˆˆD’j€HηΚ @$Ý L–›@w`;°ΑΜ¦1 xΈαcjizηΰ%ΰό#|ΎW{Νμΐ;ϋ‹ιDͺ‘"HŸHXάγξ·Ύγ Ω5ΐ‡΅ΐΓξξΦTΙώalB}ήvGώή~?0ψπ―fvš»ΧwΖ"""ΙT#E:‘¦zŠ„υp…™ 0³~f6x˜¦kζ Ž1φhφ½γ³€aξώ π Π³“Ώ‘Ξ’)‰Τψ‰δξ―xάΜ^ž»ϋ.` 0Βέ_<ΪΨc|Šΐ-fφ2PόΦΜ^^ώΫέw'γλ9Qͺ‘"K«zŠˆˆˆˆˆ€9ρIsjόDDDDDDœ?‘4§ΖODDDDD$Ν©ρIsjόDDDDDDœ?‘4§ΖODDDDD$Νύ/ώppήΓ₯¬IENDB`‚ignite-0.5.1/docs/source/_templates/000077500000000000000000000000001465426447700174045ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/000077500000000000000000000000001465426447700210325ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/css/000077500000000000000000000000001465426447700216225ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/css/ignite_theme.css000066400000000000000000000111661465426447700250020ustar00rootroot00000000000000article.pytorch-article table tr th:first-of-type, article.pytorch-article table tr td:first-of-type { width: 17px; } div.container a.header-logo { height: 80px; width: 160px; background-image: url("../img/ignite_logo.svg"); background-size: 160px; } /* versions block */ .rst-versions { position: fixed; bottom: 0; left: 0; width: inherit; color: #fcfcfc; font-family: FreightSans, Helvetica Neue, Helvetica, Arial, sans-serif; background: #d1d2d5; z-index: 400; } .rst-versions.shift-up { height: auto; max-height: 100%; overflow-y: scroll; } .rst-versions.shift-up .rst-other-versions { display: block; } .rst-versions .rst-other-versions { font-size: 90%; padding: 12px; color: #6c6c6d; background: #f2f3f7; display: none; } .rst-versions .rst-current-version { padding: 12px; background-color: #e2e3e6; display: block; text-align: right; font-size: 90%; cursor: pointer; color: #ee4c2c; } .rst-versions .rst-other-versions dd { display: inline-block; margin: 0; } .rst-versions .rst-other-versions dd a { display: inline-block; padding: 6px; color: #454545; } .rst-versions a { color: #2980b9; text-decoration: none; } .rst-versions .rst-current-version:after, .rst-versions .rst-current-version:before { display: table; content: ""; } .rst-versions .rst-current-version:after { clear: both; content: ""; display: block; } .rst-versions .rst-current-version .fa-book, .rst-versions .rst-current-version .icon-book { float: left; } .rst-versions .rst-current-version .fa { color: #454545; } .rst-versions .rst-current-version .fa-book, .rst-versions .rst-current-version .icon-book { float: left; } .rst-other-versions dt { font-weight: normal; } .fa { font-family: inherit; display: inline-block; /* font: normal normal normal 14px/1 FontAweSome; */ font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } .fa-book:before, .icon-book: before { content: "\f02d"; } .fa-caret-down:before { content: "β–Ό"; color: #ee4c2c; } .fa:before, a .fa, li .fa { text-decoration: inherit; } .fa:before { font-family: FontAwesome; font-style: normal; font-weight: 400; line-height: 1; } /* automatically generated toctree tables */ article.pytorch-article table.longtable.docutils.align-default colgroup { display: none; } article.pytorch-article table.longtable.docutils.align-default tbody td:first-child { width: 40%; } article.pytorch-article table.longtable.docutils.align-default tbody td { padding: 0.25rem; } article.pytorch-article table.longtable.docutils.align-default tbody td p { margin-block-start: 0.1em; margin-block-end: 0.1em; } article.pytorch-article div.highlight pre { white-space: pre; } /* versionadded, versionchanged, deprecated directive */ .versionmodified { font-style: italic; font-weight: bold; } /* Footer */ footer table { width: 100%; margin-bottom: 1rem; } /* remove gray footer */ .pytorch-body .docs-tutorials-resources { padding: 0 !important; } /* dim out pytorch header algolia searchbox has z-index of 200 so make sure not to go above that value */ .header-holder { z-index: 100 !important; } :root { --docsearch-primary-color: #ee4c2c !important; } .DocSearch-Button { border-radius: 8px !important; width: 100% !important; height: 2.75rem !important; margin: 0 !important; background: var(--docsearch-searchbox-focus-background) !important; } .DocSearch-Button .DocSearch-Search-Icon { color: var(--docsearch-primary-color) !important; } .DocSearch-Button-Key { background: none !important; box-shadow: none !important; top: 0 !important; padding-bottom: 0 !important; color: inherit !important; font-size: 1rem !important; font-family: Arial !important; } @media (max-width: 750px) { .DocSearch-Button-Key, .DocSearch-Button-Placeholder { display: block !important; } } /* docsearch end */ article.pytorch-article p.rubric { font-weight: bold; font-size: 1.25rem; margin: 15px 0 10px 0; } .highlight pre { border: 1px solid rgba(0, 0, 0, 0.15); border-radius: 4px; line-height: 1.375rem; } /* Sphinx >=3.5: Fix class/method/fn names, because of spans */ article.pytorch-article .class dt > span span.pre, article.pytorch-article .function dt > span span.pre { color: inherit; font-size: 87.5%; font-family: IBMPlexMono, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; } /* Sphinx >=3.5: Fix annotations */ article.pytorch-article .class dt span.pre, article.pytorch-article .function dt span.pre { color: inherit; padding: 2px 0.2px; } ignite-0.5.1/docs/source/_templates/_static/img/000077500000000000000000000000001465426447700216065ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/img/ignite_logo.svg000066400000000000000000000130251465426447700246270ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/img/ignite_logomark.svg000066400000000000000000000025131465426447700255020ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/_static/img/netlify-light.svg000066400000000000000000000515231465426447700251140ustar00rootroot00000000000000 netlify-callout-vertical-light Created with Sketch. ignite-0.5.1/docs/source/_templates/autosummary/000077500000000000000000000000001465426447700217725ustar00rootroot00000000000000ignite-0.5.1/docs/source/_templates/autosummary/class.rst000066400000000000000000000006421465426447700236330ustar00rootroot00000000000000{{ objname | escape | underline }} .. currentmodule:: {{ module }} .. autoclass:: {{ objname }} :members: {% block methods %} {% if methods %} .. rubric:: {{ _('Methods') }} .. autosummary:: :nosignatures: {% for item in methods %} {% if item != "__init__" and item not in inherited_members %} ~{{ name }}.{{ item }} {% endif %} {% endfor %} {% endif %} {% endblock %} ignite-0.5.1/docs/source/_templates/autosummary/function.rst000066400000000000000000000001451465426447700243510ustar00rootroot00000000000000{{ objname | escape | underline }} .. currentmodule:: {{ module }} .. autofunction:: {{ objname }} ignite-0.5.1/docs/source/_templates/autosummary/module.rst000066400000000000000000000022151465426447700240110ustar00rootroot00000000000000{{ name | escape | underline }} .. automodule:: {{ fullname }} :members: {% block attributes %} {% if attributes %} .. rubric:: {{ _('Module Attributes') }} .. autosummary:: :nosignatures: {% for item in attributes %} {{ item }} {%- endfor %} {% endif %} {% endblock %} {% block functions %} {% if functions %} .. rubric:: {{ _('Functions') }} .. autosummary:: :nosignatures: {% for item in functions %} {{ item }} {%- endfor %} {% endif %} {% endblock %} {% block classes %} {% if classes %} .. rubric:: {{ _('Classes') }} .. autosummary:: :nosignatures: {% for item in classes %} {{ item }} {%- endfor %} {% endif %} {% endblock %} {% block exceptions %} {% if exceptions %} .. rubric:: {{ _('Exceptions') }} .. autosummary:: :nosignatures: {% for item in exceptions %} {{ item }} {%- endfor %} {% endif %} {% endblock %} {% block modules %} {% if modules %} .. rubric:: Modules .. autosummary:: :toctree: :recursive: {% for item in modules %} {{ item }} {%- endfor %} {% endif %} {% endblock %} ignite-0.5.1/docs/source/_templates/classwithcall.rst000066400000000000000000000007341465426447700227770ustar00rootroot00000000000000{{ objname | escape | underline }} .. currentmodule:: {{ module }} .. autoclass:: {{ objname }} :members: :special-members: __call__ {% block methods %} {% if methods %} .. rubric:: {{ _('Methods') }} .. autosummary:: :nosignatures: ~{{ name }}.__call__ {% for item in methods %} {% if item != "__init__" and item not in inherited_members %} ~{{ name }}.{{ item }} {% endif %} {% endfor %} {% endif %} {% endblock %} ignite-0.5.1/docs/source/_templates/fonts.html000066400000000000000000000052231465426447700214250ustar00rootroot00000000000000 ignite-0.5.1/docs/source/_templates/footer.html000066400000000000000000000073231465426447700215750ustar00rootroot00000000000000

{% if (theme_prev_next_buttons_location == 'bottom' or theme_prev_next_buttons_location == 'both') and (next or prev) %} {% endif %} {% if theme_pytorch_project == 'tutorials' %}
Rate this Tutorial

{% else %}
{% endif %}

{%- if show_copyright %} {%- if hasdoc('copyright') %} {% trans path=pathto('copyright'), copyright=copyright|e %}© Copyright {{ copyright }}.{% endtrans %} {%- else %} {% trans copyright=copyright|e %}© Copyright {{ copyright }}.{% endtrans %} {%- endif %} {%- endif %} {%- if build_id and build_url %} {% trans build_url=build_url, build_id=build_id %} Build {{ build_id }}. {% endtrans %} {%- elif commit %} {% trans commit=commit %} Revision {{ commit }}. {% endtrans %} {%- elif last_updated %} {% trans last_updated=last_updated|e %}Last updated on {{ last_updated }}.{% endtrans %} {%- endif %}

{%- if show_sphinx %} {% trans %}
Built with Sphinx using a theme provided by Read the Docs.
{% endtrans %} {%- endif %}
{%- if show_netlify_badge %} {% trans %} {% endtrans %} {%- endif %}
{%- block extrafooter %} {% endblock %}
ignite-0.5.1/docs/source/_templates/layout.html000066400000000000000000000511111465426447700216060ustar00rootroot00000000000000{# TEMPLATE VAR SETTINGS #} {%- set url_root = pathto('', 1) %} {%- if url_root == '#' %}{% set url_root = '' %}{% endif %} {%- if not embedded and docstitle %} {%- set titlesuffix = " — "|safe + docstitle|e %} {%- else %} {%- set titlesuffix = "" %} {%- endif %} {%- set lang_attr = 'en' if language == None else (language | replace('_', '-')) %} {% import 'theme_variables.jinja' as theme_variables %} {% set show_netlify_badge = True %} {% block htmltitle %} {{ title|striptags|e }}{{ titlesuffix }} {% endblock %} {# FAVICON #} {% if favicon %} {% endif %} {# CANONICAL URL #} {% if theme_canonical_url %} {% endif %} {# CSS #} {# OPENSEARCH #} {% if not embedded %} {% if use_opensearch %} {% endif %} {% endif %} {%- for css in css_files %} {%- if css|attr("rel") %} {%- else %} {%- endif %} {%- endfor %} {%- for cssfile in extra_css_files %} {%- endfor %} {%- block linktags %} {%- if hasdoc('about') %} {%- endif %} {%- if hasdoc('genindex') %} {%- endif %} {%- if hasdoc('search') %} {%- endif %} {%- if hasdoc('copyright') %} {%- endif %} {%- if next %} {%- endif %} {%- if prev %} {%- endif %} {%- endblock %} {%- block extrahead %} {% endblock %} {% include "fonts.html" %} {% block extrabody %} {% endblock %} {# SIDE NAV, TOGGLES ON MOBILE #}
{% include "breadcrumbs.html" %}
Shortcuts
{% if theme_pytorch_project == 'tutorials' %} {% endif %} {%- block content %} {% if theme_style_external_links|tobool %}
{{ toc }}
{% if not embedded %} {% if sphinx_version >= "1.8.0" %} {%- for scriptfile in script_files %} {{ js_tag(scriptfile) }} {%- endfor %} {% else %} {%- for scriptfile in script_files %} {%- endfor %} {% endif %} {% endif %} {%- block footer %} {% endblock %}
ignite-0.5.1/docs/source/_templates/theme_variables.jinja000066400000000000000000000010251465426447700235510ustar00rootroot00000000000000{%- set external_urls = { 'github': 'https://github.com/pytorch/ignite', 'github_issues': 'https://github.com/pytorch/ignite/issues', 'contributing': 'https://github.com/pytorch/ignite/blob/master/CONTRIBUTING.md', 'docs': 'https://pytorch.org/ignite/index.html', 'home': 'https://pytorch-ignite.ai', 'concepts': 'concepts/', 'quickstart': 'tutorials/beginner/01-getting-started/', 'examples': 'tutorials/beginner/01-getting-started/#complete-code', 'faq': 'how-to-guides/', 'about_us': 'about/community/' } -%}ignite-0.5.1/docs/source/conf.py000066400000000000000000000275651465426447700165650ustar00rootroot00000000000000# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import shutil import sys sys.path.insert(0, os.path.abspath("../..")) from datetime import datetime import pytorch_sphinx_theme import ignite # -- Project information ----------------------------------------------------- project = "PyTorch-Ignite" author = "PyTorch-Ignite Contributors" copyright = f"{datetime.now().year}, {author}" # The short X.Y version try: version = os.environ["code_version"] except KeyError: version = ignite.__version__ # The full version, including alpha/beta/rc tags release = version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinxcontrib.katex", "sphinx.ext.napoleon", "sphinx.ext.viewcode", "sphinx.ext.autosectionlabel", "sphinx_copybutton", "sphinx_togglebutton", "sphinx_design", ] # toggle button hint text togglebutton_hint = "Show default setup" togglebutton_hint_hide = "Hide default setup" # Copy defaults.rst to source/generated to be discoverable in docstrings # Skip this step for previous versions of ignite if os.path.exists("defaults.rst"): src_folder = os.path.dirname(__file__) gen_folder = os.path.join(src_folder, "generated") os.makedirs(gen_folder, exist_ok=True) shutil.copy(os.path.join(src_folder, "defaults.rst"), gen_folder) # katex options katex_prerender = True # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = "en" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_title = f"{project} {version} Documentation" html_theme = "pytorch_sphinx_theme" html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { "canonical_url": "https://pytorch.org/ignite/", "collapse_navigation": False, "display_version": True, "logo_only": True, "navigation_with_keys": True, } html_logo = "_templates/_static/img/ignite_logo.svg" html_favicon = "_templates/_static/img/ignite_logomark.svg" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static", "_templates/_static"] html_context = { "extra_css_files": [ # 'https://fonts.googleapis.com/css?family=Lato', # '_static/css/pytorch_theme.css' "_static/css/ignite_theme.css", "https://cdn.jsdelivr.net/npm/@docsearch/css@3", ], } html_last_updated_fmt = "%m/%d/%Y, %X" html_permalinks = True html_permalinks_icon = "#" # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "ignitedoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "ignite.tex", "ignite Documentation", "Torch Contributors", "manual"), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "ignite", "ignite Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "ignite", "ignite Documentation", author, "ignite", "One line description of project.", "Miscellaneous", ), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "torch": ("https://pytorch.org/docs/stable/", None), } # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Type hints configs ------------------------------------------------------ autodoc_inherit_docstrings = True autoclass_content = "both" autodoc_typehints = "description" napoleon_attr_annotations = True # -- Autosummary patch to get list of a classes, funcs automatically ---------- from importlib import import_module from inspect import getmembers, isclass, isfunction from docutils.parsers.rst import directives from docutils.statemachine import StringList from sphinx.ext.autosummary import Autosummary class AutolistAutosummary(Autosummary): """Autosummary with autolisting for modules. By default it tries to import all public names (__all__), otherwise import all classes and/or functions in a module. Options: - :autolist: option to get list of classes and functions from currentmodule. - :autolist-classes: option to get list of classes from currentmodule. - :autolist-functions: option to get list of functions from currentmodule. Example Usage: .. currentmodule:: ignite.metrics .. autosummary:: :nosignatures: :autolist: """ # Add new option _option_spec = Autosummary.option_spec.copy() _option_spec.update( { "autolist": directives.unchanged, "autolist-classes": directives.unchanged, "autolist-functions": directives.unchanged, } ) option_spec = _option_spec def run(self): for auto in ("autolist", "autolist-classes", "autolist-functions"): if auto in self.options: # Get current module name module_name = self.env.ref_context.get("py:module") # Import module module = import_module(module_name) # Get public names (if possible) try: names = getattr(module, "__all__") except AttributeError: # Get classes defined in the module cls_names = [ name[0] for name in getmembers(module, isclass) if name[-1].__module__ == module_name and not (name[0].startswith("_")) ] # Get functions defined in the module fn_names = [ name[0] for name in getmembers(module, isfunction) if (name[-1].__module__ == module_name) and not (name[0].startswith("_")) ] names = cls_names + fn_names # It may happen that module doesn't have any defined class or func if not names: names = [name[0] for name in getmembers(module)] # Filter out members w/o doc strings filtered_names = [] for name in names: try: if not name.startswith("_") and getattr(module, name).__doc__ is not None: filtered_names.append(name) except AttributeError: continue names = filtered_names if auto == "autolist": # Get list of all classes and functions inside module names = [ name for name in names if (isclass(getattr(module, name)) or isfunction(getattr(module, name))) ] else: if auto == "autolist-classes": # Get only classes check = isclass elif auto == "autolist-functions": # Get only functions check = isfunction else: raise NotImplementedError names = [name for name in names if check(getattr(module, name))] # Update content self.content = StringList(names) return super().run() # --- autosummary config ----------------------------------------------------- autosummary_generate = True # --- nitpicky config : check internal links are correct or not -------------- nitpicky = True # ignore links which can't be referenced nitpick_ignore = [ ("py:class", ".."), ("py:class", "TextIO"), ("py:class", "torch.device"), ("py:class", "_MpDeviceLoader"), ("py:class", "torch.nn.modules.module.Module"), ("py:class", "torch.optim.optimizer.Optimizer"), ("py:class", "torch.utils.data.dataset.Dataset"), ("py:class", "torch.utils.data.sampler.BatchSampler"), ("py:class", "torch.cuda.amp.grad_scaler.GradScaler"), ("py:class", "torch.optim.lr_scheduler._LRScheduler"), ("py:class", "torch.optim.lr_scheduler.LRScheduler"), ("py:class", "torch.utils.data.dataloader.DataLoader"), ] linkcheck_ignore = [ "https://github.com/fossasia/visdom#visdom-arguments-python-only", "https://github.com/pytorch/ignite/tree/master/examples/cifar10#check-resume-training", "https://github.com/pytorch/ignite/tree/master/examples/mnist#training-save--resume", "https://machinelearningmastery.com/gentle-introduction-backpropagation-time/", ] def setup(app): app.add_directive("autosummary", AutolistAutosummary, override=True) ignite-0.5.1/docs/source/contrib/000077500000000000000000000000001465426447700167075ustar00rootroot00000000000000ignite-0.5.1/docs/source/contrib/engines.rst000066400000000000000000000012051465426447700210670ustar00rootroot00000000000000ignite.contrib.engines ====================== Contribution module of engines and helper tools: ignite.contrib.engines.tbptt .. currentmodule:: ignite.contrib.engines.tbptt .. autosummary:: :nosignatures: :autolist: ignite.contrib.engines.common .. currentmodule:: ignite.contrib.engines.common .. autosummary:: :nosignatures: :autolist: Truncated Backpropagation Throught Time --------------------------------------- .. automodule:: ignite.contrib.engines.tbptt :members: Helper methods to setup trainer/evaluator ----------------------------------------- .. automodule:: ignite.contrib.engines.common :members: ignite-0.5.1/docs/source/contrib/handlers.rst000066400000000000000000000016101465426447700212370ustar00rootroot00000000000000ignite.contrib.handlers ======================= Contribution module of handlers Parameter scheduler [deprecated] -------------------------------- .. deprecated:: 0.4.4 Use :class:`~ignite.handlers.param_scheduler.ParamScheduler` instead, will be removed in version 0.6.0. Was moved to :ref:`param-scheduler-label`. LR finder [deprecated] ---------------------- .. deprecated:: 0.4.4 Use :class:`~ignite.handlers.lr_finder.FastaiLRFinder` instead, will be removed in version 0.6.0. Time profilers [deprecated] --------------------------- .. deprecated:: 0.4.6 Use :class:`~ignite.handlers.time_profilers.BasicTimeProfiler` instead, will be removed in version 0.6.0. Use :class:`~ignite.handlers.time_profilers.HandlersTimeProfiler` instead, will be removed in version 0.6.0. Loggers [deprecated] -------------------- .. deprecated:: 0.5.0 Loggers moved to :ref:`Loggers`. ignite-0.5.1/docs/source/contrib/metrics.rst000066400000000000000000000005351465426447700211120ustar00rootroot00000000000000ignite.contrib.metrics ======================= Contrib module metrics [deprecated] ----------------------------------- .. deprecated:: 0.5.0 All metrics moved to :ref:`Complete list of metrics`. Regression metrics [deprecated] -------------------------------- .. deprecated:: 0.5.0 All metrics moved to :ref:`Complete list of metrics`. ignite-0.5.1/docs/source/defaults.rst000066400000000000000000000023201465426447700176050ustar00rootroot00000000000000:orphan: .. toggle:: .. testcode:: default, 1, 2, 3, 4, 5 from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666) ignite-0.5.1/docs/source/distributed.rst000066400000000000000000000077061465426447700203350ustar00rootroot00000000000000ignite.distributed ================== Helper module to use distributed settings for multiple backends: - backends from native torch distributed configuration: "nccl", "gloo", "mpi" - XLA on TPUs via `pytorch/xla `_ - using `Horovod framework `_ as a backend Distributed launcher and `auto` helpers --------------------------------------- We provide a context manager to simplify the code of distributed configuration setup for all above supported backends. In addition, methods like :meth:`~ignite.distributed.auto.auto_model`, :meth:`~ignite.distributed.auto.auto_optim` and :meth:`~ignite.distributed.auto.auto_dataloader` helps to adapt in a transparent way provided model, optimizer and data loaders to existing configuration: .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) train_loader = idist.auto_dataloader(dataset, batch_size=32, num_workers=12, shuffle=True, **kwargs) # batch size, num_workers and sampler are automatically adapted to existing configuration # ... model = resnet50() model = idist.auto_model(model) # model is DDP or DP or just itself according to existing configuration # ... optimizer = optim.SGD(model.parameters(), lr=0.01) optimizer = idist.auto_optim(optimizer) # optimizer is itself, except XLA configuration and overrides `step()` method. # User can safely call `optimizer.step()` (behind `xm.optimizer_step(optimizier)` is performed) backend = "nccl" # torch native distributed configuration on multiple GPUs # backend = "xla-tpu" # XLA TPUs distributed configuration # backend = None # no distributed configuration # # dist_configs = {'nproc_per_node': 4} # Use specified distributed configuration if launch as python main.py # dist_configs["start_method"] = "fork" # Add start_method as "fork" if using Jupyter Notebook with idist.Parallel(backend=backend, **dist_configs) as parallel: parallel.run(training, config, a=1, b=2) Above code may be executed with `torch.distributed.launch`_ tool or by python and specifying distributed configuration in the code. For more details, please, see :class:`~ignite.distributed.launcher.Parallel`, :meth:`~ignite.distributed.auto.auto_model`, :meth:`~ignite.distributed.auto.auto_optim` and :meth:`~ignite.distributed.auto.auto_dataloader`. Complete example of CIFAR10 training can be found `here `_. .. _torch.distributed.launch: https://pytorch.org/docs/stable/distributed.html#launch-utility ignite.distributed.auto ----------------------- .. currentmodule:: ignite.distributed.auto .. autosummary:: :nosignatures: :toctree: generated DistributedProxySampler auto_dataloader auto_model auto_optim .. Note :: In distributed configuration, methods :meth:`~ignite.distributed.auto.auto_model`, :meth:`~ignite.distributed.auto.auto_optim` and :meth:`~ignite.distributed.auto.auto_dataloader` will have effect only when distributed group is initialized. ignite.distributed.launcher --------------------------- .. currentmodule:: ignite.distributed.launcher .. autosummary:: :nosignatures: :toctree: generated Parallel ignite.distributed.utils ------------------------ This module wraps common methods to fetch information about distributed configuration, initialize/finalize process group or spawn multiple processes. .. currentmodule:: ignite.distributed.utils .. autosummary:: :nosignatures: :autolist: .. automodule:: ignite.distributed.utils :members: .. attribute:: has_native_dist_support True if `torch.distributed` is available .. attribute:: has_xla_support True if `torch_xla` package is found ignite-0.5.1/docs/source/engine.rst000066400000000000000000000225531465426447700172550ustar00rootroot00000000000000ignite.engine ============== Main module of the library containing: ignite.engine.engine -------------------- .. currentmodule:: ignite.engine.engine .. autosummary:: :nosignatures: :toctree: generated Engine ignite.engine.events -------------------- .. currentmodule:: ignite.engine.events .. autosummary:: :nosignatures: :toctree: generated CallableEventWithFilter EventEnum Events EventsList State RemovableEventHandle ignite.engine.deterministic --------------------------- Helper methods for deterministic training .. currentmodule:: ignite.engine.deterministic .. autosummary:: :nosignatures: :toctree: generated DeterministicEngine ReproducibleBatchSampler keep_random_state update_dataloader helper methods to define supervised trainer and evaluator --------------------------------------------------------- .. currentmodule:: ignite.engine .. autosummary:: :nosignatures: :toctree: generated create_supervised_trainer create_supervised_evaluator supervised_training_step supervised_training_step_amp supervised_training_step_apex supervised_training_step_tpu supervised_evaluation_step supervised_evaluation_step_amp Resuming the training --------------------- It is possible to resume the training from a checkpoint and approximately reproduce original run's behaviour. Using Ignite, this can be easily done using :class:`~ignite.handlers.checkpoint.Checkpoint` handler. Engine provides two methods to serialize and deserialize its internal state :meth:`~ignite.engine.engine.Engine.state_dict` and :meth:`~ignite.engine.engine.Engine.load_state_dict`. In addition to serializing model, optimizer, lr scheduler, metrics, etc., user can store the trainer and then resume the training. For example: .. code-block:: python from ignite.engine import Engine, Events from ignite.handlers import Checkpoint, DiskSaver trainer = ... model = ... optimizer = ... lr_scheduler = ... data_loader = ... metric = ... to_save = {'trainer': trainer, 'model': model, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'metric': metric} handler = Checkpoint(to_save, DiskSaver('/tmp/training', create_dir=True)) trainer.add_event_handler(Events.EPOCH_COMPLETED, handler) trainer.run(data_loader, max_epochs=100) .. code-block:: bash ls /tmp/training > "checkpoint_50000.pt" We can then restore the training from the last checkpoint. .. code-block:: python from ignite.handlers import Checkpoint trainer = ... model = ... optimizer = ... lr_scheduler = ... data_loader = ... metric = ... to_load = {'trainer': trainer, 'model': model, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'metric': metric} checkpoint = torch.load(checkpoint_file) Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint) trainer.run(train_loader, max_epochs=100) It is also possible to store checkpoints every N iterations and continue the training from one of these checkpoints, i.e from iteration. Complete examples that resumes the training from a checkpoint can be found here: - `save/resume MNIST `_ - `save/resume Distributed CIFAR10 `_ Deterministic training ---------------------- In general, it is rather difficult task to achieve deterministic and reproducible trainings as it relies on multiple aspects, e.g. data version, code version, software environment, hardware etc. According to `PyTorch note on randomness `_: there are some steps to take in order to make computations deterministic on your specific problem on one specific platform and PyTorch release: - setup random state seed - set `cudnn to deterministic `_ if applicable By default, these two options can be enough to run and rerun experiments in a deterministic way. Ignite's engine does not impact this behaviour. In this module we provide helper methods and classes to make additional ":ref:`Dataflow synchronization`" to ensure that model sees the same data for a given epoch: - :class:`~ignite.engine.deterministic.DeterministicEngine` - :class:`~ignite.engine.deterministic.ReproducibleBatchSampler` Dataflow synchronization ------------------------ Ignite provides an option to control the dataflow by synchronizing random state on epochs. In this way, for a given iteration/epoch the dataflow can be the same for a given seed. More precisely it is roughly looks like: .. code-block:: python for e in range(num_epochs): set_seed(seed + e) do_single_epoch_iterations(dataloader) In addition, if data provider is ``torch.utils.data.DataLoader``, batch data indices can be made completely deterministic. Here is a trivial example of usage: .. code-block:: python import torch from torch.utils.data import DataLoader from ignite.engine import DeterministicEngine, Events from ignite.utils import manual_seed def random_train_data_loader(size): data = torch.arange(0, size) return DataLoader(data, batch_size=4, shuffle=True) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) trainer = DeterministicEngine(print_train_data) print("Original Run") manual_seed(56) trainer.run(random_train_data_loader(40), max_epochs=2, epoch_length=5) print("Resumed Run") # Resume from 2nd epoch trainer.load_state_dict({"epoch": 1, "epoch_length": 5, "max_epochs": 2, "rng_states": None}) manual_seed(56) trainer.run(random_train_data_loader(40)) .. code-block:: text Original Run train 1 1 [31, 13, 3, 4] train 1 2 [23, 18, 6, 16] train 1 3 [10, 8, 33, 36] train 1 4 [1, 37, 19, 9] train 1 5 [20, 30, 14, 26] train 2 6 [29, 35, 38, 34] train 2 7 [7, 22, 12, 17] train 2 8 [25, 21, 24, 15] train 2 9 [39, 5, 2, 28] train 2 10 [27, 11, 32, 0] Resumed Run train 2 6 [29, 35, 38, 34] train 2 7 [7, 22, 12, 17] train 2 8 [25, 21, 24, 15] train 2 9 [39, 5, 2, 28] train 2 10 [27, 11, 32, 0] We can see that the data samples are exactly the same between original and resumed runs. Complete examples that simulates a crash on a defined iteration and resumes the training from a checkpoint can be found here: - `save/resume MNIST `_ - `save/resume Distributed CIFAR10 `_ .. Note :: In case when input data is `torch.utils.data.DataLoader`, previous batches are skipped and the first provided batch corresponds to the batch after the checkpoint iteration. Internally, while resuming, previous datapoint indices are just skipped without fetching the data. .. warning:: However, while resuming from iteration, random data augmentations are not synchronized in the middle of the epoch and thus batches remaining until the end of the epoch can be different of those from the initial run. .. warning:: However, please, keep in mind that there can be an issue with dataflow synchronization on every epoch if user's handler synchronizes the random state, for example, by calling periodically ``torch.manual_seed(seed)`` during the run. This can have an impact on the dataflow: .. code-block:: python def random_train_data_generator(): while True: yield torch.randint(0, 100, size=(1, )) trainer = DeterministicEngine(print_train_data) @trainer.on(Events.ITERATION_COMPLETED(every=3)) def user_handler(): # handler synchronizes the random state torch.manual_seed(12) a = torch.rand(1) trainer.run(random_train_data_generator(), max_epochs=3, epoch_length=5); .. code-block:: text train 1 1 [32] train 1 2 [29] train 1 3 [40] train 1 4 [3] <--- train 1 5 [22] train 2 6 [77] train 2 7 [3] <--- train 2 8 [22] train 2 9 [77] train 2 10 [3] <--- train 3 11 [22] train 3 12 [77] train 3 13 [3] <--- train 3 14 [22] train 3 15 [77] Initially, the function ``random_train_data_generator()`` generates randomly data batches using the random state set up by ``trainer``. This is intended behaviour until ``user_handler()`` is called. After ``user_handler()`` execution, random state is altered and thus ``random_train_data_generator()`` will produce random batches based on altered random state. We provide helper decorator :meth:`~ignite.engine.deterministic.keep_random_state` to save and restore random states for `torch`, `numpy` and `random`. Therefore, we can deal with described issue using this decorator: .. code-block:: python from ignite.engine.deterministic import keep_random_state @trainer.on(Events.ITERATION_COMPLETED(every=3)) @keep_random_state def user_handler(): # handler synchronizes the random state torch.manual_seed(12) a = torch.rand(1) ignite-0.5.1/docs/source/exceptions.rst000066400000000000000000000002411465426447700201570ustar00rootroot00000000000000ignite.exceptions ================= .. currentmodule:: ignite.exceptions .. autosummary:: :nosignatures: :autolist: .. autoclass:: NotComputableError ignite-0.5.1/docs/source/handlers.rst000066400000000000000000000364361465426447700176150ustar00rootroot00000000000000ignite.handlers =============== Complete list of generic handlers ---------------------------------- .. currentmodule:: ignite.handlers .. autosummary:: :nosignatures: :toctree: generated checkpoint.Checkpoint DiskSaver checkpoint.ModelCheckpoint ema_handler.EMAHandler early_stopping.EarlyStopping lr_finder.FastaiLRFinder terminate_on_nan.TerminateOnNan TimeLimit time_profilers.BasicTimeProfiler time_profilers.HandlersTimeProfiler timing.Timer global_step_from_engine stores.EpochOutputStore .. autosummary:: :nosignatures: :toctree: generated :template: classwithcall.rst checkpoint.BaseSaveHandler param_scheduler.ParamScheduler state_param_scheduler.StateParamScheduler Loggers -------- .. currentmodule:: ignite.handlers .. autosummary:: :nosignatures: :toctree: generated :recursive: base_logger clearml_logger mlflow_logger neptune_logger polyaxon_logger tensorboard_logger tqdm_logger visdom_logger wandb_logger fbresearch_logger .. seealso:: Below are a comprehensive list of examples of various loggers. * See `tensorboardX mnist example `_ and `CycleGAN and EfficientNet notebooks `_ for detailed usage. * See `visdom mnist example `_ for detailed usage. * See `neptune mnist example `_ for detailed usage. * See `tqdm mnist example `_ for detailed usage. * See `wandb mnist example `_ for detailed usage. * See `clearml mnist example `_ for detailed usage. .. _param-scheduler-label: Parameter scheduler ------------------- .. currentmodule:: ignite.handlers.param_scheduler .. autosummary:: :nosignatures: :toctree: generated BaseParamScheduler ConcatScheduler CosineAnnealingScheduler CyclicalScheduler LRScheduler LinearCyclicalScheduler ParamGroupScheduler ParamScheduler PiecewiseLinear ReduceLROnPlateauScheduler create_lr_scheduler_with_warmup State Parameter scheduler ------------------------- .. currentmodule:: ignite.handlers.state_param_scheduler .. autosummary:: :nosignatures: :toctree: generated StateParamScheduler LambdaStateScheduler PiecewiseLinearStateScheduler ExpStateScheduler StepStateScheduler MultiStepStateScheduler More on parameter scheduling ---------------------------- In this section there are visual examples of various parameter schedulings that can be achieved. Example with :class:`~ignite.handlers.param_scheduler.CosineAnnealingScheduler` ``````````````````````````````````````````````````````````````````````````````````````` .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import CosineAnnealingScheduler lr_values_1 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20)) lr_values_2 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3)) lr_values_3 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, start_value_mult=0.7)) lr_values_4 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, end_value_mult=0.1)) plt.figure(figsize=(25, 5)) plt.subplot(141) plt.title("Cosine annealing") plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(142) plt.title("Cosine annealing with cycle_mult=1.3") plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(143) plt.title("Cosine annealing with start_value_mult=0.7") plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(144) plt.title("Cosine annealing with end_value_mult=0.1") plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) .. image:: ./_static/img/schedulers/cosine_annealing_example.png Example with :class:`ignite.handlers.param_scheduler.LinearCyclicalScheduler` ````````````````````````````````````````````````````````````````````````````````````` .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import LinearCyclicalScheduler lr_values_1 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20)) lr_values_2 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3)) lr_values_3 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, start_value_mult=0.7)) lr_values_4 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr', start_value=1e-1, end_value=2e-2, cycle_size=20, end_value_mult=0.1)) plt.figure(figsize=(25, 5)) plt.subplot(141) plt.title("Linear cyclical scheduler") plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(142) plt.title("Linear cyclical scheduler with cycle_mult=1.3") plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(143) plt.title("Linear cyclical scheduler with start_value_mult=0.7") plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) plt.subplot(144) plt.title("Linear cyclical scheduler with end_value_mult=0.1") plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.ylim([0.0, 0.12]) .. image:: ./_static/img/schedulers/linear_cyclical_example.png Example with :class:`ignite.handlers.param_scheduler.ConcatScheduler` ````````````````````````````````````````````````````````````````````````````` .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import LinearCyclicalScheduler, CosineAnnealingScheduler, ConcatScheduler import torch t1 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([t1], lr=0.1) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.5, end_value=0.01, cycle_size=50) durations = [15, ] lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations)) t1 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([t1], lr=0.1) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30) scheduler_2 = CosineAnnealingScheduler(optimizer, "momentum", start_value=0.5, end_value=0.01, cycle_size=50) durations = [15, ] lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations, param_names=["lr", "momentum"])) plt.figure(figsize=(25, 5)) plt.subplot(131) plt.title("Concat scheduler of linear + cosine annealing") plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(132) plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum") plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(133) plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum") plt.plot(lr_values_2[:, 0], lr_values_2[:, 2], label="momentum") plt.xlabel("events") plt.ylabel("values") plt.legend() .. image:: ./_static/img/schedulers/concat_example.png Piecewise linear scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import LinearCyclicalScheduler, ConcatScheduler scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.6, cycle_size=50) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.6, end_value=0.0, cycle_size=150) durations = [25, ] lr_values = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations)) plt.title("Piecewise linear scheduler") plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() .. image:: ./_static/img/schedulers/piecewise_linear.png Example with :class:`ignite.handlers.param_scheduler.LRScheduler` ````````````````````````````````````````````````````````````````````````` .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import LRScheduler import torch from torch.optim.lr_scheduler import ExponentialLR, StepLR, CosineAnnealingLR tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.1) lr_scheduler_1 = StepLR(optimizer=optimizer, step_size=10, gamma=0.77) lr_scheduler_2 = ExponentialLR(optimizer=optimizer, gamma=0.98) lr_scheduler_3 = CosineAnnealingLR(optimizer=optimizer, T_max=10, eta_min=0.01) lr_values_1 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_1)) lr_values_2 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_2)) lr_values_3 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_3)) plt.figure(figsize=(25, 5)) plt.subplot(131) plt.title("Torch LR scheduler wrapping StepLR") plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(132) plt.title("Torch LR scheduler wrapping ExponentialLR") plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(133) plt.title("Torch LR scheduler wrapping CosineAnnealingLR") plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() .. image:: ./_static/img/schedulers/lr_scheduler.png Concatenate with torch schedulers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import numpy as np import matplotlib.pylab as plt from ignite.handlers import LRScheduler, ConcatScheduler import torch from torch.optim.lr_scheduler import ExponentialLR, StepLR t1 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([t1], lr=0.1) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30) lr_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.7) scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler) durations = [15, ] lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=30, schedulers=[scheduler_1, scheduler_2], durations=durations)) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30) lr_scheduler = StepLR(optimizer=optimizer, step_size=10, gamma=0.7) scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler) durations = [15, ] lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=75, schedulers=[scheduler_1, scheduler_2], durations=durations)) plt.figure(figsize=(15, 5)) plt.subplot(121) plt.title("Concat scheduler of linear + ExponentialLR") plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(122) plt.title("Concat scheduler of linear + StepLR") plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() .. image:: ./_static/img/schedulers/concat_linear_exp_step_lr.png Example with :class:`ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler` ````````````````````````````````````````````````````````````````````````````````````` .. code-block:: python import matplotlib.pyplot as plt import numpy as np from ignite.handlers import ReduceLROnPlateauScheduler metric_values = [0.7, 0.78, 0.81, 0.82, 0.82, 0.83, 0.80, 0.81, 0.84, 0.78] num_events = 10 init_lr = 0.1 lr_values = np.array(ReduceLROnPlateauScheduler.simulate_values( num_events, metric_values, init_lr, factor=0.5, patience=1, mode='max', threshold=0.01, threshold_mode='abs' ) ) plt.figure(figsize=(15, 5)) plt.suptitle("ReduceLROnPlateauScheduler") plt.subplot(121) plt.plot(lr_values[:, 1], label="learning rate") plt.xticks(lr_values[:, 0]) plt.xlabel("events") plt.ylabel("values") plt.legend() plt.subplot(122) plt.plot(metric_values, label="metric") plt.xticks(lr_values[:, 0]) plt.xlabel("events") plt.ylabel("values") plt.legend() .. image:: ./_static/img/schedulers/reduce_lr_on_plateau_example.png ignite-0.5.1/docs/source/index.rst000066400000000000000000000013631465426447700171130ustar00rootroot00000000000000Ignite Your Networks! ===================== PyTorch-Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. .. image:: https://raw.githubusercontent.com/pytorch/ignite/master/assets/logo/ignite_logo_mixed.png :target: https://pytorch-ignite.ai All our documentation moved to `pytorch-ignite.ai `_ .. automodule:: ignite .. toctree:: :maxdepth: 2 :caption: Package Reference engine handlers metrics distributed exceptions utils .. automodule:: ignite.contrib .. toctree:: :maxdepth: 2 :caption: Contrib Package Reference contrib/engines contrib/metrics contrib/handlers ignite-0.5.1/docs/source/metrics.rst000066400000000000000000000360711465426447700174560ustar00rootroot00000000000000ignite.metrics ============== Metrics provide a way to compute various quantities of interest in an online fashion without having to store the entire output history of a model. .. _attach-engine: Attach Engine API ------------------ The metrics as stated above are computed in a online fashion, which means that the metric instance accumulates some internal counters on each iteration and metric value is computed once the epoch is ended. Internal counters are reset after every epoch. In practice, this is done with the help of three methods: :meth:`~ignite.metrics.metric.Metric.reset()`, :meth:`~ignite.metrics.metric.Metric.update()` and :meth:`~ignite.metrics.metric.Metric.compute()`. Therefore, a user needs to attach the metric instance to the engine so that the above three methods can be triggered on execution of certain :class:`~ignite.engine.events.Events`. The :meth:`~ignite.metrics.metric.Metric.reset()` method is triggered on ``EPOCH_STARTED`` event and it is responsible to reset the metric to its initial state. The :meth:`~ignite.metrics.metric.Metric.update()` method is triggered on ``ITERATION_COMPLETED`` event as it updates the state of the metric using the passed batch output. And :meth:`~ignite.metrics.metric.Metric.compute()` is triggered on ``EPOCH_COMPLETED`` event. It computes the metric based on its accumulated states. The metric value is computed using the output of the engine's ``process_function``: .. code-block:: python from ignite.engine import Engine from ignite.metrics import Accuracy def process_function(engine, batch): # ... return y_pred, y engine = Engine(process_function) metric = Accuracy() metric.attach(engine, "accuracy") # ... state = engine.run(data) print(f"Accuracy: {state.metrics['accuracy']}") If the engine's output is not in the format ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``, the user can use the ``output_transform`` argument to transform it: .. code-block:: python from ignite.engine import Engine from ignite.metrics import Accuracy def process_function(engine, batch): # ... return {'y_pred': y_pred, 'y_true': y, ...} engine = Engine(process_function) def output_transform(output): # `output` variable is returned by above `process_function` y_pred = output['y_pred'] y = output['y_true'] return y_pred, y # output format is according to `Accuracy` docs metric = Accuracy(output_transform=output_transform) metric.attach(engine, "accuracy") # ... state = engine.run(data) print(f"Accuracy: {state.metrics['accuracy']}") .. warning:: Please, be careful when using ``lambda`` functions to setup multiple ``output_transform`` for multiple metrics .. code-block:: python # Wrong # metrics_group = [Accuracy(output_transform=lambda output: output[name]) for name in names] # As lambda can not store `name` and all `output_transform` will use the last `name` # A correct way. For example, using functools.partial from functools import partial def ot_func(output, name): return output[name] metrics_group = [Accuracy(output_transform=partial(ot_func, name=name)) for name in names] For more details, see `here `_ .. Note :: Most of implemented metrics are adapted to distributed computations and reduce their internal states across supported devices before computing metric value. This can be helpful to run the evaluation on multiple nodes/GPU instances/TPUs with a distributed data sampler. Following code snippet shows in detail how to use metrics: .. code-block:: python device = f"cuda:{local_rank}" model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank, ], output_device=local_rank) test_sampler = DistributedSampler(test_dataset) test_loader = DataLoader( test_dataset, batch_size=batch_size, sampler=test_sampler, num_workers=num_workers, pin_memory=True ) evaluator = create_supervised_evaluator(model, metrics={'accuracy': Accuracy()}, device=device) .. Note :: Metrics cannot be serialized using `pickle` module because the implementation is based on lambda functions. Therefore, use the third party library `dill` to overcome the limitation of `pickle`. Reset, Update, Compute API -------------------------- User can also call directly the following methods on the metric: - :meth:`~ignite.metrics.metric.Metric.reset()` : resets internal variables and accumulators - :meth:`~ignite.metrics.metric.Metric.update()` : updates internal variables and accumulators with provided batch output ``(y_pred, y)`` - :meth:`~ignite.metrics.metric.Metric.compute()` : computes custom metric and return the result This API gives a more fine-grained/custom usage on how to compute a metric. For example: .. code-block:: python from ignite.metrics import Precision # Define the metric precision = Precision() # Start accumulation: for x, y in data: y_pred = model(x) precision.update((y_pred, y)) # Compute the result print("Precision: ", precision.compute()) # Reset metric precision.reset() # Start new accumulation: for x, y in data: y_pred = model(x) precision.update((y_pred, y)) # Compute new result print("Precision: ", precision.compute()) Metric arithmetics ------------------ Metrics could be combined together to form new metrics. This could be done through arithmetics, such as ``metric1 + metric2``, use PyTorch operators, such as ``(metric1 + metric2).pow(2).mean()``, or use a lambda function, such as ``MetricsLambda(lambda a, b: torch.mean(a + b), metric1, metric2)``. For example: .. code-block:: python from ignite.metrics import Precision, Recall precision = Precision(average=False) recall = Recall(average=False) F1 = (precision * recall * 2 / (precision + recall)).mean() .. note:: This example computes the mean of F1 across classes. To combine precision and recall to get F1 or other F metrics, we have to be careful that ``average=False``, i.e. to use the unaveraged precision and recall, otherwise we will not be computing F-beta metrics. Metrics also support indexing operation (if metric's result is a vector/matrix/tensor). For example, this can be useful to compute mean metric (e.g. precision, recall or IoU) ignoring the background: .. code-block:: python from ignite.metrics import ConfusionMatrix cm = ConfusionMatrix(num_classes=10) iou_metric = IoU(cm) iou_no_bg_metric = iou_metric[:9] # We assume that the background index is 9 mean_iou_no_bg_metric = iou_no_bg_metric.mean() # mean_iou_no_bg_metric.compute() -> tensor(0.12345) How to create a custom metric ----------------------------- To create a custom metric one needs to create a new class inheriting from :class:`~ignite.metrics.metric.Metric` and override three methods : - :meth:`~ignite.metrics.metric.Metric.reset()` : resets internal variables and accumulators - :meth:`~ignite.metrics.metric.Metric.update()` : updates internal variables and accumulators with provided batch output ``(y_pred, y)`` - :meth:`~ignite.metrics.metric.Metric.compute()` : computes custom metric and return the result For example, we would like to implement for illustration purposes a multi-class accuracy metric with some specific condition (e.g. ignore user-defined classes): .. code-block:: python from ignite.metrics import Metric from ignite.exceptions import NotComputableError # These decorators helps with distributed settings from ignite.metrics.metric import sync_all_reduce, reinit__is_reduced class CustomAccuracy(Metric): def __init__(self, ignored_class, output_transform=lambda x: x, device="cpu"): self.ignored_class = ignored_class self._num_correct = None self._num_examples = None super(CustomAccuracy, self).__init__(output_transform=output_transform, device=device) @reinit__is_reduced def reset(self): self._num_correct = torch.tensor(0, device=self._device) self._num_examples = 0 super(CustomAccuracy, self).reset() @reinit__is_reduced def update(self, output): y_pred, y = output[0].detach(), output[1].detach() indices = torch.argmax(y_pred, dim=1) mask = (y != self.ignored_class) mask &= (indices != self.ignored_class) y = y[mask] indices = indices[mask] correct = torch.eq(indices, y).view(-1) self._num_correct += torch.sum(correct).to(self._device) self._num_examples += correct.shape[0] @sync_all_reduce("_num_examples", "_num_correct:SUM") def compute(self): if self._num_examples == 0: raise NotComputableError('CustomAccuracy must have at least one example before it can be computed.') return self._num_correct.item() / self._num_examples We imported necessary classes as :class:`~ignite.metrics.metric.Metric`, :class:`~ignite.exceptions.NotComputableError` and decorators to adapt the metric for distributed setting. In ``reset`` method, we reset internal variables ``_num_correct`` and ``_num_examples`` which are used to compute the custom metric. In ``updated`` method we define how to update the internal variables. And finally in ``compute`` method, we compute metric value. Notice that ``_num_correct`` is a tensor, since in ``update`` we accumulate tensor values. ``_num_examples`` is a python scalar since we accumulate normal integers. For differentiable metrics, you must detach the accumulated values before adding them to the internal variables. We can check this implementation in a simple case: .. code-block:: python import torch torch.manual_seed(8) m = CustomAccuracy(ignored_class=3) batch_size = 4 num_classes = 5 y_pred = torch.rand(batch_size, num_classes) y = torch.randint(0, num_classes, size=(batch_size, )) m.update((y_pred, y)) res = m.compute() print(y, torch.argmax(y_pred, dim=1)) # Out: tensor([2, 2, 2, 3]) tensor([2, 1, 0, 0]) print(m._num_correct, m._num_examples, res) # Out: 1 3 0.3333333333333333 Metrics and its usages ---------------------- By default, `Metrics` are epoch-wise, it means - :meth:`~ignite.metrics.metric.Metric.reset()` is triggered every ``EPOCH_STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.update()` is triggered every ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.compute()` is triggered every ``EPOCH_COMPLETED``. Usages can be user defined by creating a class inheriting for :class:`~ignite.metrics.metric.MetricUsage`. See the list below of usages. Complete list of usages ~~~~~~~~~~~~~~~~~~~~~~~ - :class:`~ignite.metrics.metric.MetricUsage` - :class:`~ignite.metrics.metric.EpochWise` - :class:`~ignite.metrics.metric.RunningEpochWise` - :class:`~ignite.metrics.metric.BatchWise` - :class:`~ignite.metrics.metric.RunningBatchWise` - :class:`~ignite.metrics.metric.SingleEpochRunningBatchWise` - :class:`~ignite.metrics.metric.BatchFiltered` Metrics and distributed computations ------------------------------------ In the above example, ``CustomAccuracy`` has ``reset``, ``update``, ``compute`` methods decorated with :meth:`~ignite.metrics.metric.reinit__is_reduced`, :meth:`~ignite.metrics.metric.sync_all_reduce`. The purpose of these features is to adapt metrics in distributed computations on supported backend and devices (see :doc:`distributed` for more details). More precisely, in the above example we added ``@sync_all_reduce("_num_examples", "_num_correct:SUM")`` over ``compute`` method. This means that when ``compute`` method is called, metric's interal variables ``self._num_examples`` and ``self._num_correct:SUM`` are summed up over all participating devices. We specify the reduction operation ``self._num_correct:SUM`` or we keep the default ``self._num_examples`` as the default is ``SUM``. We currently support four reduction operations (SUM, MAX, MIN, PRODUCT). Therefore, once collected, these internal variables can be used to compute the final metric value. Complete list of metrics ------------------------ .. currentmodule:: ignite.metrics .. autosummary:: :nosignatures: :toctree: generated Average GeometricAverage VariableAccumulation Accuracy confusion_matrix.ConfusionMatrix ClassificationReport DiceCoefficient JaccardIndex IoU mIoU EpochMetric Fbeta Frequency Loss MeanAbsoluteError MeanPairwiseDistance MeanSquaredError metric.Metric metric_group.MetricGroup metrics_lambda.MetricsLambda MultiLabelConfusionMatrix MutualInformation precision.Precision PSNR recall.Recall RootMeanSquaredError RunningAverage SSIM TopKCategoricalAccuracy Bleu Rouge RougeL RougeN InceptionScore FID CosineSimilarity Entropy KLDivergence JSDivergence MaximumMeanDiscrepancy AveragePrecision CohenKappa GpuInfo PrecisionRecallCurve RocCurve ROC_AUC regression.CanberraMetric regression.FractionalAbsoluteError regression.FractionalBias regression.GeometricMeanAbsoluteError regression.GeometricMeanRelativeAbsoluteError regression.ManhattanDistance regression.MaximumAbsoluteError regression.MeanAbsoluteRelativeError regression.MeanError regression.MeanNormalizedBias regression.MedianAbsoluteError regression.MedianAbsolutePercentageError regression.MedianRelativeAbsoluteError regression.PearsonCorrelation regression.R2Score regression.WaveHedgesDistance .. note:: Module ignite.metrics.regression provides implementations of metrics useful for regression tasks. Definitions of metrics are based on `Botchkarev 2018`_, page 30 "Appendix 2. Metrics mathematical definitions". Helpers for customizing metrics ------------------------------- MetricUsage ~~~~~~~~~~~ .. autoclass:: ignite.metrics.metric.MetricUsage EpochWise ~~~~~~~~~ .. autoclass:: ignite.metrics.metric.EpochWise RunningEpochWise ~~~~~~~~~~~~~~~~ .. autoclass:: ignite.metrics.metric.RunningEpochWise BatchWise ~~~~~~~~~ .. autoclass:: ignite.metrics.metric.BatchWise RunningBatchWise ~~~~~~~~~~~~~~~~ .. autoclass:: ignite.metrics.metric.RunningBatchWise SingleEpochRunningBatchWise ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ignite.metrics.metric.SingleEpochRunningBatchWise BatchFiltered ~~~~~~~~~~~~~ .. autoclass:: ignite.metrics.metric.BatchFiltered .. currentmodule:: ignite.metrics.metric reinit__is_reduced ~~~~~~~~~~~~~~~~~~ .. autofunction:: reinit__is_reduced sync_all_reduce ~~~~~~~~~~~~~~~ .. autofunction:: sync_all_reduce .. _`Botchkarev 2018`: https://arxiv.org/abs/1809.03006 ignite-0.5.1/docs/source/utils.rst000066400000000000000000000002671465426447700171460ustar00rootroot00000000000000ignite.utils ============ Module with helper methods .. currentmodule:: ignite.utils .. autosummary:: :nosignatures: :autolist: .. automodule:: ignite.utils :members: ignite-0.5.1/examples/000077500000000000000000000000001465426447700146355ustar00rootroot00000000000000ignite-0.5.1/examples/cifar10/000077500000000000000000000000001465426447700160625ustar00rootroot00000000000000ignite-0.5.1/examples/cifar10/.gitignore000066400000000000000000000000331465426447700200460ustar00rootroot00000000000000output cifar10 raw_pytorch ignite-0.5.1/examples/cifar10/README.md000066400000000000000000000100521465426447700173370ustar00rootroot00000000000000# CIFAR10 Example with Ignite In this example, we show how to use _Ignite_ to train a neural network: - on 1 or more GPUs or TPUs - compute training/validation metrics - log learning rate, metrics etc - save the best model weights Configurations: - [x] single GPU - [x] multi GPUs on a single node - [x] multi GPUs on multiple nodes - [x] TPUs on Colab ## Requirements: - pytorch-ignite: `pip install pytorch-ignite` - [torchvision](https://github.com/pytorch/vision/): `pip install torchvision` - [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm` - [tensorboardx](https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` - [python-fire](https://github.com/google/python-fire): `pip install fire` - Optional: [clearml](https://github.com/allegroai/clearml): `pip install clearml` Alternatively, install the all requirements using `pip install -r requirements.txt`. ## Usage: Run the example on a single GPU: ```bash python main.py run ``` For more details on accepted arguments: ```bash python main.py run -- --help ``` If user would like to provide already downloaded dataset, the path can be setup in parameters as ```bash --data_path="/path/to/cifar10/" ``` ### Distributed training #### Single node, multiple GPUs Let's start training on a single node with 2 gpus: ```bash # using torchrun torchrun --nproc_per_node=2 main.py run --backend="nccl" ``` or ```bash # using function spawn inside the code python -u main.py run --backend="nccl" --nproc_per_node=2 ``` ##### Using [Horovod](https://horovod.readthedocs.io/en/latest/index.html) as distributed backend Please, make sure to have Horovod installed before running. Let's start training on a single node with 2 gpus: ```bash # horovodrun horovodrun -np=2 python -u main.py run --backend="horovod" ``` or ```bash # using function spawn inside the code python -u main.py run --backend="horovod" --nproc_per_node=2 ``` #### Colab, on 8 TPUs Same code can be run on TPUs: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1E9zJrptnLJ_PKhmaP5Vhb6DTVRvyrKHx) #### Multiple nodes, multiple GPUs Let's start training on two nodes with 2 gpus each. We assuming that master node can be connected as `master`, e.g. `ping master`. 1. Execute on master node ```bash torchrun \ --nnodes=2 \ --nproc_per_node=2 \ --node_rank=0 \ --master_addr=master --master_port=2222 \ main.py run --backend="nccl" ``` 2. Execute on worker node ```bash torchrun \ --nnodes=2 \ --nproc_per_node=2 \ --node_rank=1 \ --master_addr=master --master_port=2222 \ main.py run --backend="nccl" ``` ### Check resume training #### Single GPU Initial training with a stop on 1000 iteration (~11 epochs) ```bash python main.py run --stop_iteration=1000 ``` Resume from the latest checkpoint ```bash python main.py run --resume-from=/tmp/output-cifar10/resnet18_backend-None-1_stop-on-1000/training_checkpoint_1000.pt ``` ### Distributed training #### Single node, multiple GPUs Initial training on a single node with 2 gpus with a stop on 1000 iteration (~11 epochs): ```bash # using torchrun torchrun --nproc_per_node=2 main.py run --backend="nccl" --stop_iteration=1000 ``` Resume from the latest checkpoint ```bash torchrun --nproc_per_node=2 main.py run --backend="nccl" \ --resume-from=/tmp/output-cifar10/resnet18_backend-nccl-2_stop-on-1000/training_checkpoint_1000.pt ``` Similar commands can be adapted for other cases. ## ClearML fileserver If `ClearML` server is used (i.e. `--with_clearml` argument), the configuration to upload artifact must be done by modifying the `ClearML` configuration file `~/clearml.conf` generated by `clearml-init`. According to the [documentation](https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html), the `output_uri` argument can be configured in `sdk.development.default_output_uri` to fileserver uri. If server is self-hosted, `ClearML` fileserver uri is `http://localhost:8081`. For more details, see https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html ignite-0.5.1/examples/cifar10/main.py000066400000000000000000000334121465426447700173630ustar00rootroot00000000000000from datetime import datetime from pathlib import Path from typing import Any, Optional import fire import torch import torch.nn as nn import torch.optim as optim import utils from torch.cuda.amp import autocast, GradScaler import ignite import ignite.distributed as idist from ignite.contrib.engines import common from ignite.engine import Engine, Events from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine, PiecewiseLinear from ignite.metrics import Accuracy, Loss from ignite.utils import manual_seed, setup_logger def training(local_rank, config): rank = idist.get_rank() manual_seed(config["seed"] + rank) device = idist.device() logger = setup_logger(name="CIFAR10-Training") log_basic_info(logger, config) output_path = config["output_path"] if rank == 0: if config["stop_iteration"] is None: now = datetime.now().strftime("%Y%m%d-%H%M%S") else: now = f"stop-on-{config['stop_iteration']}" folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}" output_path = Path(output_path) / folder_name if not output_path.exists(): output_path.mkdir(parents=True) config["output_path"] = output_path.as_posix() logger.info(f"Output path: {config['output_path']}") if "cuda" in device.type: config["cuda device name"] = torch.cuda.get_device_name(local_rank) if config["with_clearml"]: from clearml import Task task = Task.init("CIFAR10-Training", task_name=output_path.stem) task.connect_configuration(config) # Log hyper parameters hyper_params = [ "model", "batch_size", "momentum", "weight_decay", "num_epochs", "learning_rate", "num_warmup_epochs", ] task.connect({k: config[k] for k in hyper_params}) # Setup dataflow, model, optimizer, criterion train_loader, test_loader = get_dataflow(config) config["num_iters_per_epoch"] = len(train_loader) model, optimizer, criterion, lr_scheduler = initialize(config) # Create trainer for current task trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger) # Let's now setup evaluator engine to perform model's validation and compute metrics metrics = { "Accuracy": Accuracy(), "Loss": Loss(criterion), } # We define two evaluators as they wont have exactly similar roles: # - `evaluator` will save the best model based on validation score evaluator = create_evaluator(model, metrics=metrics, config=config) train_evaluator = create_evaluator(model, metrics=metrics, config=config) def run_validation(engine): epoch = trainer.state.epoch state = train_evaluator.run(train_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(test_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation) if rank == 0: # Setup TensorBoard logging on trainer and evaluators. Logged values are: # - Training metrics, e.g. running average loss values # - Learning rate # - Evaluation train/test metrics evaluators = {"training": train_evaluator, "test": evaluator} tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators) # Store 2 best models by validation accuracy starting from num_epochs / 2: best_model_handler = Checkpoint( {"model": model}, get_save_handler(config), filename_prefix="best", n_saved=2, global_step_transform=global_step_from_engine(trainer), score_name="test_accuracy", score_function=Checkpoint.get_default_score_fn("Accuracy"), ) evaluator.add_event_handler( Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler ) # In order to check training resuming we can stop training on a given iteration if config["stop_iteration"] is not None: @trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"])) def _(): logger.info(f"Stop training on {trainer.state.iteration} iteration") trainer.terminate() try: trainer.run(train_loader, max_epochs=config["num_epochs"]) except Exception as e: logger.exception("") raise e if rank == 0: tb_logger.close() def run( seed: int = 543, data_path: str = "/tmp/cifar10", output_path: str = "/tmp/output-cifar10/", model: str = "resnet18", batch_size: int = 512, momentum: float = 0.9, weight_decay: float = 1e-4, num_workers: int = 12, num_epochs: int = 24, learning_rate: float = 0.4, num_warmup_epochs: int = 4, validate_every: int = 3, checkpoint_every: int = 1000, backend: Optional[str] = None, resume_from: Optional[str] = None, log_every_iters: int = 15, nproc_per_node: Optional[int] = None, stop_iteration: Optional[int] = None, with_clearml: bool = False, with_amp: bool = False, **spawn_kwargs: Any, ): """Main entry to train an model on CIFAR10 dataset. Args: seed (int): random state seed to set. Default, 543. data_path (str): input dataset path. Default, "/tmp/cifar10". output_path (str): output path. Default, "/tmp/output-cifar10". model (str): model name (from torchvision) to setup model to train. Default, "resnet18". batch_size (int): total batch size. Default, 512. momentum (float): optimizer's momentum. Default, 0.9. weight_decay (float): weight decay. Default, 1e-4. num_workers (int): number of workers in the data loader. Default, 12. num_epochs (int): number of epochs to train the model. Default, 24. learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4. num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4. validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3. checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 1000. backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu", "gloo" etc. Default, None. nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful, when main python process is spawning training as child processes. resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None. log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations. It can be 0 to disable it. Default, 15. stop_iteration (int, optional): iteration to stop the training. Can be used to check resume from checkpoint. with_clearml (bool): if True, experiment ClearML logger is setup. Default, False. with_amp (bool): if True, enables native automatic mixed precision. Default, False. **spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes """ # check to see if the num_epochs is greater than or equal to num_warmup_epochs if num_warmup_epochs >= num_epochs: raise ValueError( "num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease " "num_warmup_epochs" ) # catch all local parameters config = locals() config.update(config["spawn_kwargs"]) del config["spawn_kwargs"] spawn_kwargs["nproc_per_node"] = nproc_per_node if backend == "xla-tpu" and with_amp: raise RuntimeError("The value of with_amp should be False if backend is xla") with idist.Parallel(backend=backend, **spawn_kwargs) as parallel: parallel.run(training, config) def get_dataflow(config): # - Get train/test datasets with idist.one_rank_first(local=True): train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"]) # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True ) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False ) return train_loader, test_loader def initialize(config): model = utils.get_model(config["model"]) # Adapt model for distributed settings if configured model = idist.auto_model(model) optimizer = optim.SGD( model.parameters(), lr=config["learning_rate"], momentum=config["momentum"], weight_decay=config["weight_decay"], nesterov=True, ) optimizer = idist.auto_optim(optimizer) criterion = nn.CrossEntropyLoss().to(idist.device()) le = config["num_iters_per_epoch"] milestones_values = [ (0, 0.0), (le * config["num_warmup_epochs"], config["learning_rate"]), (le * config["num_epochs"], 0.0), ] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) return model, optimizer, criterion, lr_scheduler def log_metrics(logger, epoch, elapsed, tag, metrics): metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()]) logger.info(f"Epoch[{epoch}] - Evaluation time (seconds): {elapsed:.3f}\n - {tag} metrics:\n {metrics_output}") def log_basic_info(logger, config): logger.info(f"Train {config['model']} on CIFAR10") logger.info(f"- PyTorch version: {torch.__version__}") logger.info(f"- Ignite version: {ignite.__version__}") if torch.cuda.is_available(): # explicitly import cudnn as # torch.backends.cudnn can not be pickled with hvd spawning procs from torch.backends import cudnn logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}") logger.info(f"- CUDA version: {torch.version.cuda}") logger.info(f"- CUDNN version: {cudnn.version()}") logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info(f"\t{key}: {value}") logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info(f"\tbackend: {idist.backend()}") logger.info(f"\tworld size: {idist.get_world_size()}") logger.info("\n") def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger): device = idist.device() # Setup Ignite trainer: # - let's define training step # - add other common handlers: # - TerminateOnNan, # - handler to setup learning rate scheduling, # - ModelCheckpoint # - RunningAverage` on `train_step` output # - Two progress bars on epochs and optionally on iterations with_amp = config["with_amp"] scaler = GradScaler(enabled=with_amp) def train_step(engine, batch): x, y = batch[0], batch[1] if x.device != device: x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) model.train() with autocast(enabled=with_amp): y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() return { "batch loss": loss.item(), } trainer = Engine(train_step) trainer.logger = logger to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler} metric_names = [ "batch loss", ] common.setup_common_training_handlers( trainer=trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=config["checkpoint_every"], save_handler=get_save_handler(config), lr_scheduler=lr_scheduler, output_names=metric_names if config["log_every_iters"] > 0 else None, with_pbars=False, clear_cuda_cache=False, ) resume_from = config["resume_from"] if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found" logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}") checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def create_evaluator(model, metrics, config, tag="val"): with_amp = config["with_amp"] device = idist.device() @torch.no_grad() def evaluate_step(engine: Engine, batch): model.eval() x, y = batch[0], batch[1] if x.device != device: x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) with autocast(enabled=with_amp): output = model(x) return output, y evaluator = Engine(evaluate_step) for name, metric in metrics.items(): metric.attach(evaluator, name) return evaluator def get_save_handler(config): if config["with_clearml"]: from ignite.handlers.clearml_logger import ClearMLSaver return ClearMLSaver(dirname=config["output_path"]) return DiskSaver(config["output_path"], require_empty=False) if __name__ == "__main__": fire.Fire({"run": run}) ignite-0.5.1/examples/cifar10/requirements.txt000066400000000000000000000000721465426447700213450ustar00rootroot00000000000000pytorch-ignite torchvision tqdm tensorboardX fire clearml ignite-0.5.1/examples/cifar10/utils.py000066400000000000000000000021371465426447700175770ustar00rootroot00000000000000import os from pathlib import Path from torchvision import datasets, models from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor train_transform = Compose( [ Pad(4), RandomCrop(32, fill=128), RandomHorizontalFlip(), ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) def get_train_test_datasets(path): path = Path(path) if not path.exists(): path.mkdir(parents=True) download = True else: download = True if len(os.listdir(path)) < 1 else False train_ds = datasets.CIFAR10(root=path, train=True, download=download, transform=train_transform) test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform) return train_ds, test_ds def get_model(name): if name in models.__dict__: fn = models.__dict__[name] else: raise RuntimeError(f"Unknown model name {name}") return fn(num_classes=10) ignite-0.5.1/examples/cifar100_amp_benchmark/000077500000000000000000000000001465426447700210115ustar00rootroot00000000000000ignite-0.5.1/examples/cifar100_amp_benchmark/benchmark_fp32.py000066400000000000000000000043021465426447700241460ustar00rootroot00000000000000import fire import torch from torch.nn import CrossEntropyLoss from torch.optim import SGD from torchvision.models import wide_resnet50_2 from utils import get_train_eval_loaders from ignite.engine import convert_tensor, create_supervised_evaluator, Engine, Events from ignite.handlers import ProgressBar, Timer from ignite.metrics import Accuracy, Loss def main(dataset_path, batch_size=256, max_epochs=10): assert torch.cuda.is_available() assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled." torch.backends.cudnn.benchmark = True device = "cuda" train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size) model = wide_resnet50_2(num_classes=100).to(device) optimizer = SGD(model.parameters(), lr=0.01) criterion = CrossEntropyLoss().to(device) def train_step(engine, batch): x = convert_tensor(batch[0], device, non_blocking=True) y = convert_tensor(batch[1], device, non_blocking=True) optimizer.zero_grad() y_pred = model(x) loss = criterion(y_pred, y) loss.backward() optimizer.step() return loss.item() trainer = Engine(train_step) timer = Timer(average=True) timer.attach(trainer, step=Events.EPOCH_COMPLETED) ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out}) metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def log_metrics(engine, title): for name in metrics: print(f"\t{title} {name}: {engine.state.metrics[name]:.2f}") @trainer.on(Events.COMPLETED) def run_validation(_): print(f"- Mean elapsed time for 1 epoch: {timer.value()}") print("- Metrics:") with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"): evaluator.run(eval_train_loader) with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"): evaluator.run(test_loader) trainer.run(train_loader, max_epochs=max_epochs) if __name__ == "__main__": fire.Fire(main) ignite-0.5.1/examples/cifar100_amp_benchmark/benchmark_nvidia_apex.py000066400000000000000000000045621465426447700256730ustar00rootroot00000000000000import fire import torch from apex import amp from torch.nn import CrossEntropyLoss from torch.optim import SGD from torchvision.models import wide_resnet50_2 from utils import get_train_eval_loaders from ignite.engine import convert_tensor, create_supervised_evaluator, Engine, Events from ignite.handlers import ProgressBar, Timer from ignite.metrics import Accuracy, Loss def main(dataset_path, batch_size=256, max_epochs=10, opt="O1"): assert torch.cuda.is_available() assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled." torch.backends.cudnn.benchmark = True device = "cuda" train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size) model = wide_resnet50_2(num_classes=100).to(device) optimizer = SGD(model.parameters(), lr=0.01) criterion = CrossEntropyLoss().to(device) model, optimizer = amp.initialize(model, optimizer, opt_level=opt) def train_step(engine, batch): x = convert_tensor(batch[0], device, non_blocking=True) y = convert_tensor(batch[1], device, non_blocking=True) optimizer.zero_grad() y_pred = model(x) loss = criterion(y_pred, y) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() return loss.item() trainer = Engine(train_step) timer = Timer(average=True) timer.attach(trainer, step=Events.EPOCH_COMPLETED) ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out}) metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def log_metrics(engine, title): for name in metrics: print(f"\t{title} {name}: {engine.state.metrics[name]:.2f}") @trainer.on(Events.COMPLETED) def run_validation(_): print(f"- Mean elapsed time for 1 epoch: {timer.value()}") print("- Metrics:") with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"): evaluator.run(eval_train_loader) with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"): evaluator.run(test_loader) trainer.run(train_loader, max_epochs=max_epochs) if __name__ == "__main__": fire.Fire(main) ignite-0.5.1/examples/cifar100_amp_benchmark/benchmark_torch_cuda_amp.py000066400000000000000000000056311465426447700263520ustar00rootroot00000000000000import fire import torch from torch.cuda.amp import autocast, GradScaler from torch.nn import CrossEntropyLoss from torch.optim import SGD from torchvision.models import wide_resnet50_2 from utils import get_train_eval_loaders from ignite.engine import convert_tensor, create_supervised_evaluator, Engine, Events from ignite.handlers import ProgressBar, Timer from ignite.metrics import Accuracy, Loss def main(dataset_path, batch_size=256, max_epochs=10): assert torch.cuda.is_available() assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled." torch.backends.cudnn.benchmark = True device = "cuda" train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size) model = wide_resnet50_2(num_classes=100).to(device) optimizer = SGD(model.parameters(), lr=0.01) criterion = CrossEntropyLoss().to(device) scaler = GradScaler() def train_step(engine, batch): x = convert_tensor(batch[0], device, non_blocking=True) y = convert_tensor(batch[1], device, non_blocking=True) optimizer.zero_grad() # Runs the forward pass with autocasting. with autocast(): y_pred = model(x) loss = criterion(y_pred, y) # Scales loss. Calls backward() on scaled loss to create scaled gradients. # Backward passes under autocast are not recommended. # Backward ops run in the same precision that autocast used for corresponding forward ops. scaler.scale(loss).backward() # scaler.step() first unscales the gradients of the optimizer's assigned params. # If these gradients do not contain infs or NaNs, optimizer.step() is then called, # otherwise, optimizer.step() is skipped. scaler.step(optimizer) # Updates the scale for next iteration. scaler.update() return loss.item() trainer = Engine(train_step) timer = Timer(average=True) timer.attach(trainer, step=Events.EPOCH_COMPLETED) ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out}) metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def log_metrics(engine, title): for name in metrics: print(f"\t{title} {name}: {engine.state.metrics[name]:.2f}") @trainer.on(Events.COMPLETED) def run_validation(_): print(f"- Mean elapsed time for 1 epoch: {timer.value()}") print("- Metrics:") with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"): evaluator.run(eval_train_loader) with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"): evaluator.run(test_loader) trainer.run(train_loader, max_epochs=max_epochs) if __name__ == "__main__": fire.Fire(main) ignite-0.5.1/examples/cifar100_amp_benchmark/utils.py000066400000000000000000000035411465426447700225260ustar00rootroot00000000000000import random from torch.utils.data import DataLoader, Subset from torchvision.datasets.cifar import CIFAR100 from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomErasing, RandomHorizontalFlip, ToTensor def get_train_eval_loaders(path, batch_size=256): """Setup the dataflow: - load CIFAR100 train and test datasets - setup train/test image transforms - horizontally flipped randomly and augmented using cutout. - each mini-batch contained 256 examples - setup train/test data loaders Returns: train_loader, test_loader, eval_train_loader """ train_transform = Compose( [ Pad(4), RandomCrop(32), RandomHorizontalFlip(), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), RandomErasing(), ] ) test_transform = Compose([ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) train_dataset = CIFAR100(root=path, train=True, transform=train_transform, download=True) test_dataset = CIFAR100(root=path, train=False, transform=test_transform, download=False) train_eval_indices = [random.randint(0, len(train_dataset) - 1) for i in range(len(test_dataset))] train_eval_dataset = Subset(train_dataset, train_eval_indices) train_loader = DataLoader( train_dataset, batch_size=batch_size, num_workers=12, shuffle=True, drop_last=True, pin_memory=True ) test_loader = DataLoader( test_dataset, batch_size=batch_size, num_workers=12, shuffle=False, drop_last=False, pin_memory=True ) eval_train_loader = DataLoader( train_eval_dataset, batch_size=batch_size, num_workers=12, shuffle=False, drop_last=False, pin_memory=True ) return train_loader, test_loader, eval_train_loader ignite-0.5.1/examples/cifar10_qat/000077500000000000000000000000001465426447700167275ustar00rootroot00000000000000ignite-0.5.1/examples/cifar10_qat/.gitignore000066400000000000000000000000331465426447700207130ustar00rootroot00000000000000output cifar10 raw_pytorch ignite-0.5.1/examples/cifar10_qat/README.md000066400000000000000000000050111465426447700202030ustar00rootroot00000000000000# Example of Quantization Aware Training (QAT) with Ignite on CIFAR10 Model's implementation is based on https://discuss.pytorch.org/t/evaluator-returns-nan/107972/3 In this example, we show how to use _Ignite_ to train a neural network: - on 1 or more GPUs - compute training/validation metrics - log learning rate, metrics etc - save the best model weights Configurations: - [x] single GPU - [x] multi GPUs on a single node ## Requirements: - pytorch-ignite: `pip install pytorch-ignite` - [torchvision](https://github.com/pytorch/vision/): `pip install torchvision` - [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm` - [tensorboardx](https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` - [python-fire](https://github.com/google/python-fire): `pip install fire` - [brevitas](https://github.com/Xilinx/brevitas): `pip install git+https://github.com/Xilinx/brevitas.git` ## Usage: We can train, for example, ResNet-18 with 8 bit weights and activations. Run the example on a single GPU: ```bash CUDA_VISIBLE_DEVICES=0 python main.py run --model="resnet18_QAT_8b" ``` Note: torch DataParallel is not working (v1.7.1) with QAT. For details on accepted arguments: ```bash python main.py run -- --help ``` If user would like to provide already downloaded dataset, the path can be setup in parameters as ```bash --data_path="/path/to/cifar10/" ``` Other available models can be found [here](utils.py): - resnet18_QAT_8b - ResNet-18 with 8 bit weights and activations - resnet18_QAT_6b - ResNet-18 with 6 bit weights and activations - resnet18_QAT_5b - ResNet-18 with 5 bit weights and activations - resnet18_QAT_4b - ResNet-18 with 4 bit weights and activations - torchvision models ### Distributed training #### Single node, multiple GPUs Let's start training on a single node with 2 gpus: ```bash # using torch.distributed.launch python -u -m torch.distributed.launch --nproc_per_node=2 --use_env main.py run --backend="nccl" --model="resnet18_QAT_8b" ``` ##### Using [Horovod](https://horovod.readthedocs.io/en/latest/index.html) as distributed backend Please, make sure to have Horovod installed before running. Let's start training on a single node with 2 gpus: ```bash # horovodrun horovodrun -np=2 python -u main.py run --backend="horovod" --model="resnet18_QAT_8b" ``` or ```bash # using function spawn inside the code python -u main.py run --backend="horovod" --nproc_per_node=2 --model="resnet18_QAT_8b" ``` ### Online logs On TensorBoard.dev: https://tensorboard.dev/experiment/Kp9Wod3XR36Sg2I1gAh1cA/ ignite-0.5.1/examples/cifar10_qat/main.py000066400000000000000000000306411465426447700202310ustar00rootroot00000000000000from datetime import datetime from pathlib import Path import fire import torch import torch.nn as nn import torch.optim as optim import utils from torch.cuda.amp import autocast, GradScaler import ignite import ignite.distributed as idist from ignite.contrib.engines import common from ignite.engine import create_supervised_evaluator, Engine, Events from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine, PiecewiseLinear from ignite.metrics import Accuracy, Loss from ignite.utils import manual_seed, setup_logger def training(local_rank, config): rank = idist.get_rank() manual_seed(config["seed"] + rank) device = idist.device() logger = setup_logger(name="CIFAR10-QAT-Training", distributed_rank=local_rank) log_basic_info(logger, config) output_path = config["output_path"] if rank == 0: now = datetime.now().strftime("%Y%m%d-%H%M%S") folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}" output_path = Path(output_path) / folder_name if not output_path.exists(): output_path.mkdir(parents=True) config["output_path"] = output_path.as_posix() logger.info(f"Output path: {config['output_path']}") if "cuda" in device.type: config["cuda device name"] = torch.cuda.get_device_name(local_rank) if config["with_clearml"]: from clearml import Task task = Task.init("CIFAR10-Training", task_name=output_path.stem) task.connect_configuration(config) # Log hyper parameters hyper_params = [ "model", "batch_size", "momentum", "weight_decay", "num_epochs", "learning_rate", "num_warmup_epochs", ] task.connect({k: config[k] for k in hyper_params}) # Setup dataflow, model, optimizer, criterion train_loader, test_loader = get_dataflow(config) config["num_iters_per_epoch"] = len(train_loader) model, optimizer, criterion, lr_scheduler = initialize(config) # Create trainer for current task trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger) # Let's now setup evaluator engine to perform model's validation and compute metrics metrics = { "Accuracy": Accuracy(), "Loss": Loss(criterion), } # We define two evaluators as they wont have exactly similar roles: # - `evaluator` will save the best model based on validation score evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True) def run_validation(engine): epoch = trainer.state.epoch state = train_evaluator.run(train_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(test_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED, run_validation) if rank == 0: # Setup TensorBoard logging on trainer and evaluators. Logged values are: # - Training metrics, e.g. running average loss values # - Learning rate # - Evaluation train/test metrics evaluators = {"training": train_evaluator, "test": evaluator} tb_logger = common.setup_tb_logging(output_path, trainer, optimizer, evaluators=evaluators) # Store 2 best models by validation accuracy starting from num_epochs / 2: best_model_handler = Checkpoint( {"model": model}, get_save_handler(config), filename_prefix="best", n_saved=2, global_step_transform=global_step_from_engine(trainer), score_name="test_accuracy", score_function=Checkpoint.get_default_score_fn("Accuracy"), ) evaluator.add_event_handler( Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler ) try: trainer.run(train_loader, max_epochs=config["num_epochs"]) except Exception as e: logger.exception("") raise e if rank == 0: tb_logger.close() def run( seed=543, data_path="/tmp/cifar10", output_path="/tmp/output-cifar10/", model="resnet18_QAT_8b", batch_size=512, momentum=0.9, weight_decay=1e-4, num_workers=12, num_epochs=24, learning_rate=0.4, num_warmup_epochs=4, validate_every=3, checkpoint_every=1000, backend=None, resume_from=None, log_every_iters=15, nproc_per_node=None, with_clearml=False, with_amp=False, **spawn_kwargs, ): """Main entry to train an model on CIFAR10 dataset. Args: seed (int): random state seed to set. Default, 543. data_path (str): input dataset path. Default, "/tmp/cifar10". output_path (str): output path. Default, "/tmp/output-cifar10". model (str): model name (from torchvision) to setup model to train. Default, "resnet18". batch_size (int): total batch size. Default, 512. momentum (float): optimizer's momentum. Default, 0.9. weight_decay (float): weight decay. Default, 1e-4. num_workers (int): number of workers in the data loader. Default, 12. num_epochs (int): number of epochs to train the model. Default, 24. learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 0.4. num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 4. validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3. checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 200. backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu", "gloo" etc. Default, None. nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful, when main python process is spawning training as child processes. resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None. log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations. It can be 0 to disable it. Default, 15. with_clearml (bool): if True, experiment ClearML logger is setup. Default, False. with_amp (bool): if True, enables native automatic mixed precision. Default, False. **spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes """ # check to see if the num_epochs is greater than or equal to num_warmup_epochs if num_warmup_epochs >= num_epochs: raise ValueError( "num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease " "num_warmup_epochs" ) # catch all local parameters config = locals() config.update(config["spawn_kwargs"]) del config["spawn_kwargs"] spawn_kwargs["nproc_per_node"] = nproc_per_node with idist.Parallel(backend=backend, **spawn_kwargs) as parallel: parallel.run(training, config) def get_dataflow(config): # - Get train/test datasets with idist.one_rank_first(local=True): train_dataset, test_dataset = utils.get_train_test_datasets(config["data_path"]) # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True ) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False ) return train_loader, test_loader def initialize(config): model = utils.get_model(config["model"]) # Adapt model for distributed settings if configured model = idist.auto_model(model, find_unused_parameters=True) optimizer = optim.SGD( model.parameters(), lr=config["learning_rate"], momentum=config["momentum"], weight_decay=config["weight_decay"], nesterov=True, ) optimizer = idist.auto_optim(optimizer) criterion = nn.CrossEntropyLoss().to(idist.device()) le = config["num_iters_per_epoch"] milestones_values = [ (0, 0.0), (le * config["num_warmup_epochs"], config["learning_rate"]), (le * config["num_epochs"], 0.0), ] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) return model, optimizer, criterion, lr_scheduler def log_metrics(logger, epoch, elapsed, tag, metrics): metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()]) logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}") def log_basic_info(logger, config): logger.info(f"Quantization Aware Training {config['model']} on CIFAR10") logger.info(f"- PyTorch version: {torch.__version__}") logger.info(f"- Ignite version: {ignite.__version__}") if torch.cuda.is_available(): # explicitly import cudnn as # torch.backends.cudnn can not be pickled with hvd spawning procs from torch.backends import cudnn logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}") logger.info(f"- CUDA version: {torch.version.cuda}") logger.info(f"- CUDNN version: {cudnn.version()}") logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info(f"\t{key}: {value}") logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info(f"\tbackend: {idist.backend()}") logger.info(f"\tworld size: {idist.get_world_size()}") logger.info("\n") def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger): device = idist.device() # Setup Ignite trainer: # - let's define training step # - add other common handlers: # - TerminateOnNan, # - handler to setup learning rate scheduling, # - ModelCheckpoint # - RunningAverage` on `train_step` output # - Two progress bars on epochs and optionally on iterations with_amp = config["with_amp"] scaler = GradScaler(enabled=with_amp) def train_step(engine, batch): x, y = batch[0], batch[1] if x.device != device: x = x.to(device, non_blocking=True) y = y.to(device, non_blocking=True) model.train() with autocast(enabled=with_amp): y_pred = model(x) loss = criterion(y_pred, y) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() return { "batch loss": loss.item(), } trainer = Engine(train_step) trainer.logger = logger to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler} metric_names = [ "batch loss", ] common.setup_common_training_handlers( trainer=trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=config["checkpoint_every"], save_handler=get_save_handler(config), lr_scheduler=lr_scheduler, output_names=metric_names if config["log_every_iters"] > 0 else None, with_pbars=False, clear_cuda_cache=False, ) resume_from = config["resume_from"] if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found" logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}") checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def get_save_handler(config): if config["with_clearml"]: from ignite.handlers.clearml_logger import ClearMLSaver return ClearMLSaver(dirname=config["output_path"]) return DiskSaver(config["output_path"], require_empty=False) if __name__ == "__main__": fire.Fire({"run": run}) ignite-0.5.1/examples/cifar10_qat/pact.py000066400000000000000000000014571465426447700202370ustar00rootroot00000000000000# Implementation taken from https://discuss.pytorch.org/t/evaluator-returns-nan/107972/3 # Ref: https://arxiv.org/abs/1805.06085 import torch import torch.nn as nn class PACTClip(torch.autograd.Function): @staticmethod def forward(ctx, x, alpha): ctx.save_for_backward(x, alpha) return torch.clamp(x, 0, alpha.data) @staticmethod def backward(ctx, dy): x, alpha = ctx.saved_tensors dx = dy.clone() dx[x < 0] = 0 dx[x > alpha] = 0 dalpha = dy.clone() dalpha[x <= alpha] = 0 return dx, torch.sum(dalpha) class PACTReLU(nn.Module): def __init__(self, alpha=6.0): super().__init__() self.alpha = nn.Parameter(torch.tensor(alpha)) def forward(self, x): return PACTClip.apply(x, self.alpha) ignite-0.5.1/examples/cifar10_qat/utils.py000066400000000000000000000250731465426447700204500ustar00rootroot00000000000000import os from pathlib import Path import brevitas.nn as qnn import torch import torch.nn as nn from pact import PACTReLU from torchvision import datasets, models from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor train_transform = Compose( [ Pad(4), RandomCrop(32, fill=128), RandomHorizontalFlip(), ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) def get_train_test_datasets(path): path = Path(path) if not path.exists(): path.mkdir(parents=True) download = True else: download = True if len(os.listdir(path)) < 1 else False train_ds = datasets.CIFAR10(root=path, train=True, download=download, transform=train_transform) test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform) return train_ds, test_ds def get_model(name): __dict__ = globals() if name in models.__dict__: fn = models.__dict__[name] elif name in ["resnet18_QAT_8b", "resnet18_QAT_6b", "resnet18_QAT_5b", "resnet18_QAT_4b"]: fn = __dict__[name] else: raise RuntimeError("Unknown model name {}".format(name)) return fn(num_classes=10) # Below code is taken from https://discuss.pytorch.org/t/evaluator-returns-nan/107972/3 def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1, weight_bit_width=8): """3x3 convolution with padding""" return qnn.QuantConv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, weight_bit_width=weight_bit_width, ) def conv1x1(in_planes, out_planes, stride=1, weight_bit_width=8): """1x1 convolution""" return qnn.QuantConv2d( in_planes, out_planes, kernel_size=1, stride=stride, bias=False, weight_bit_width=weight_bit_width ) def make_PACT_relu(bit_width=8): relu = qnn.QuantReLU(bit_width=bit_width) relu.act_impl = PACTReLU() return relu class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, bit_width=8, ): super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride, weight_bit_width=bit_width) self.bn1 = norm_layer(planes) self.relu = make_PACT_relu(bit_width=bit_width) self.conv2 = conv3x3(planes, planes, weight_bit_width=bit_width) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, bit_width=8, ): super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width, weight_bit_width=bit_width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation, weight_bit_width=bit_width) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion, weight_bit_width=bit_width) self.bn3 = norm_layer(planes * self.expansion) self.relu = make_PACT_relu(bit_width=bit_width) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet_QAT_Xb(nn.Module): def __init__( self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, bit_width=8, ): super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group self.conv1 = qnn.QuantConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = make_PACT_relu() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], bit_width=bit_width) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], bit_width=bit_width ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], bit_width=bit_width ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], bit_width=bit_width ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): # qnn.QuantConv2d includes nn.Conv2d inside. nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False, bit_width=8): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride, weight_bit_width=bit_width), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, bit_width=bit_width, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, bit_width=bit_width, ) ) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x): return self._forward_impl(x) def _resnet_QAT_Xb(block, layers, **kwargs): model = ResNet_QAT_Xb(block, layers, **kwargs) return model def resnet18_QAT_8b(*args, **kwargs): return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], **kwargs) def resnet18_QAT_6b(*args, **kwargs): return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=6, **kwargs) def resnet18_QAT_5b(*args, **kwargs): return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=5, **kwargs) def resnet18_QAT_4b(*args, **kwargs): return _resnet_QAT_Xb(BasicBlock, [2, 2, 2, 2], bit_width=4, **kwargs) ignite-0.5.1/examples/fast_neural_style/000077500000000000000000000000001465426447700203605ustar00rootroot00000000000000ignite-0.5.1/examples/fast_neural_style/README.md000066400000000000000000000062361465426447700216460ustar00rootroot00000000000000# fast-neural-style ### Introduction This example is ported over from [pytorch-examples](https://github.com/pytorch/examples/tree/master/fast_neural_style). It uses `ignite` to implement an algorithm for artistic style transfer as described in [Perceptual Losses for Real-Time Style Transfer and Super-Resolution](https://arxiv.org/abs/1603.08155).

### Requirements - `torch` - `torchvision` - `ignite` Example for `virtualenv` setup: `virtualenv --python=/usr/bin/python3.5 env` `source env/bin/activate` `pip install torch torchvision pytorch-ignite` The code runs on CPU, but GPU allows it to run much faster. If using GPU, please ensure proper libraries are installed. ### Documentation #### Training Code can be used to train a style transfer model for any image. To run code correctly, ensure that [MSCOCO dataset](http://images.cocodataset.org/zips/train2014.zip) and a style image are downloaded. Since the code using Pytorch's Dataset functions, ensure that directory with MSCOCO dataset is formatted as shown below. The directory should be setup such that the location of the dataset is MSCOCO, which contains a single folder 0, containing all the images. ```bash β”œβ”€β”€ MSCOCO β”‚ β”œβ”€β”€ 0 β”‚ β”‚ β”œβ”€β”€ RY48TY43YT.jpg β”‚ β”‚ β”œβ”€β”€ 4324J0FNFL.jpg β”‚ β”‚ β”œβ”€β”€ Y9REWJKNFE.jpg ``` ##### Example `python neural_style.py train --epochs 2 --cuda 1 --dataset mscoco --dataroot /path/to/mscoco --style_image ./images/style_images/mosaic.jpg` ##### Flags - `--epochs`: number of training epochs, default is 2. - `--batch_size`: batch size for training, default is 8. - `--dataset`: type of dataset. - `--dataroot`: path to training dataset, the path should point to a folder containing another folder with all the training images. - `--style_image`: path to style-image. - `--checkpoint_model_dir`: path to folder where checkpoints of trained models will be saved. - `--checkpoint_interval`: number of batches after which a checkpoint of trained model will be created. - `--image_size`: size of training images, default is 256 X 256. - `--style_size`: size of style-image, default is the original size of style image. - `--cuda`: set it to 1 for running on GPU, 0 for CPU. - `--seed`: random seed for training. - `--content_weight`: weight for content-loss, default is 1e5. - `--style_weight`: weight for style-loss, default is 1e10. - `--lr`: learning rate, default is 1e-3. #### Evaluation Code can be used to stylize an image using a trained style transfer model. ##### Example `python neural_style.py eval --content_image ./images/content_images/amber.jpg --output_image test.png --cuda 1 --model /tmp/checkpoints/checkpoint_net_2.pth` #### Flags - `--content_image`: path to content image you want to stylize. - `--content_scale`: factor for scaling down the content image. - `--output_image`: path for saving the output image. - `--model`: saved model to be used for stylizing the image. - `--cuda`: set it to 1 for running on GPU, 0 for CPU. ignite-0.5.1/examples/fast_neural_style/handlers.py000066400000000000000000000022401465426447700225300ustar00rootroot00000000000000import sys class Progbar(object): def __init__(self, loader, metrics): self.num_iterations = len(loader) self.output_stream = sys.stdout self.metrics = metrics self.alpha = 0.98 def _calc_running_avg(self, engine): for k, v in engine.state.output.items(): old_v = self.metrics.get(k, v) new_v = self.alpha * old_v + (1 - self.alpha) * v self.metrics[k] = new_v def __call__(self, engine): self._calc_running_avg(engine) num_seen = engine.state.iteration - self.num_iterations * (engine.state.epoch - 1) percent_seen = 100 * float(num_seen) / self.num_iterations equal_to = int(percent_seen / 10) done = int(percent_seen) == 100 bar = "[" + "=" * equal_to + ">" * (not done) + " " * (10 - equal_to) + "]" message = f"Epoch {engine.state.epoch} | {percent_seen:.2f}% | {bar}" for key, value in self.metrics.items(): message += f" | {key}: {value:.2e}" message += "\r" self.output_stream.write(message) self.output_stream.flush() if done: self.output_stream.write("\n") ignite-0.5.1/examples/fast_neural_style/images/000077500000000000000000000000001465426447700216255ustar00rootroot00000000000000ignite-0.5.1/examples/fast_neural_style/images/content_images/000077500000000000000000000000001465426447700246245ustar00rootroot00000000000000ignite-0.5.1/examples/fast_neural_style/images/content_images/amber.jpg000066400000000000000000003230661465426447700264260ustar00rootroot00000000000000Ψβ ψICC_PROFILE θmntrRGB XYZ Ω$acspφΦΣ-)ψ=ή―ςUxBϊδΚƒ9 descDybXYZΐbTRCΤ dmdd ΰˆgXYZ hgTRCΤ lumi |meas $bkpt ΄rXYZ ΘrTRCΤ tech ά vued θ‡wtpt pcprt „7chad Ό,descsRGB IEC61966-2-1 black scaledXYZ $ „ΆΟcurv #(-27;@EJOTY^chmrw|†‹•šŸ€©²·ΌΑΖΛΠΥΫΰελπφϋ %+28>ELRY`gnu|ƒ‹’š‘©±ΉΑΙΡΩαιςϊ &/8AKT]gqz„Ž˜’¬ΆΑΛΥΰλυ !-8COZfr~Š–’ΊΗΣΰμω -;HUcq~Œš¨ΆΔΣαπώ +:IXgw†–¦΅ΕΥεφ'7HYj{Œ―ΐΡγυ+=Oat†™¬Ώεψ 2FZn‚–ͺΎηϋ  % : O d y  € Ί Ο ε ϋ  ' = T j  ˜ Ε ά σ " 9 Q i € ˜ ° Θ α ω  * C \ u Ž § ΐ Ω σ & @ Z t Ž © Γ ή ψ.Id›Άξ %A^z–³Ομ &Ca~›ΉΧυ1OmŒͺΙθ&Ed„£Γγ#Ccƒ€Εε'Ij‹­Ξπ4Vx›½ΰ&Il²ΦϊAe‰χ@eŠ―Υϊ Ek‘·έ*QwžΕμ;cвΪ*R{£ΜυGp™Γμ@j”Ύι>i”Ώκ  A l ˜ Δ π!!H!u!‘!Ξ!ϋ"'"U"‚"―"έ# #8#f#”#Β#π$$M$|$«$Ϊ% %8%h%—%Η%χ&'&W&‡&·&θ''I'z'«'ά( (?(q(’(Τ))8)k))Π**5*h*›*Ο++6+i++Ρ,,9,n,’,Χ- -A-v-«-α..L.‚.·.ξ/$/Z/‘/Η/ώ050l0€0Ϋ11J1‚1Ί1ς2*2c2›2Τ3 3F33Έ3ρ4+4e4ž4Ψ55M5‡5Β5ύ676r66ι7$7`7œ7Χ88P8Œ8Θ99B99Ό9ω:6:t:²:ο;-;k;ͺ;θ<' >`> >ΰ?!?a?’?β@#@d@¦@ηA)AjA¬AξB0BrB΅BχC:C}CΐDDGDŠDΞEEUEšEήF"FgF«FπG5G{GΐHHKH‘HΧIIcI©IπJ7J}JΔK KSKšKβL*LrLΊMMJM“MάN%NnN·OOIO“OέP'PqP»QQPQ›QζR1R|RΗSS_SͺSφTBTTΫU(UuUΒVV\V©VχWDW’WΰX/X}XΛYYiYΈZZVZ¦Zυ[E[•[ε\5\†\Φ]']x]Ι^^l^½__a_³``W`ͺ`όaOa’aυbIbœbπcCc—cλd@d”dιe=e’eηf=f’fθg=g“gιh?h–hμiCišiρjHjŸjχkOk§klWl―mm`mΉnnknΔooxoΡp+p†pΰq:q•qπrKr¦ss]sΈttptΜu(u…uαv>v›vψwVw³xxnxΜy*y‰yηzFz₯{{c{Β|!||α}A}‘~~b~Β#„ε€G€¨ kΝ‚0‚’‚τƒWƒΊ„„€„γ…G…«††r†Χ‡;‡ŸˆˆiˆΞ‰3‰™‰ώŠdŠΚ‹0‹–‹όŒcŒΚ1˜ŽfŽΞ6žnΦ‘?‘¨’’z’γ“M“Ά” ”Š”τ•_•Ι–4–Ÿ— —u—ΰ˜L˜Έ™$™™όšhšΥ›B›―œœ‰œχdž@žŸŸ‹Ÿϊ i Ψ‘G‘Ά’&’–££v£ζ€V€Η₯8₯©¦¦‹¦ύ§n§ΰ¨R¨Δ©7©©ͺͺ««u«ι¬\¬Π­D­Έ-‘――‹°°u°κ±`±Φ²K²Β³8³΄%΄œ΅΅ŠΆΆyΆπ·h·ΰΈYΈΡΉJΉΒΊ;Ί΅».»§Ό!Ό›½½Ύ Ύ„ΎΏzΏυΐpΐμΑgΑγΒ_ΒΫΓXΓΤΔQΔΞΕKΕΘΖFΖΓΗAΗΏΘ=ΘΌΙ:ΙΉΚ8Κ·Λ6ΛΆΜ5Μ΅Ν5Ν΅Ξ6ΞΆΟ7ΟΈΠ9ΠΊΡ<ΡΎ?ΑΣDΣΖΤIΤΛΥNΥΡΦUΦΨΧ\ΧΰΨdΨθΩlΩρΪvΪϋΫ€ά܊έέ–ήή’ί)ί―ΰ6ΰ½αDαΜβSβΫγcγλδsδόε„ζ ζ–ηη©θ2θΌιFιΠκ[κελpλϋμ†ννœξ(ξ΄ο@οΜπXπερrρςŒσσ§τ4τΒυPυήφmφϋχŠψψ¨ω8ωΗϊWϊηϋwόό˜ύ)ύΊώKώάmdesc.IEC 61966-2-1 Default RGB Colour Space - sRGBXYZ b™·…ΪXYZ PmeasXYZ 3€XYZ o’8υsig CRT desc-Reference Viewing Condition in IEC 61966-2-1XYZ φΦΣ-textCopyright International Color Consortium, 2009sf32 Dίσ&”ύϋ‘ύ’ΫΐuΰJFIFν”Photoshop 3.08BIMxg6fkXgmldtKh1p2tnDoGy(ZFBMD230009690100009f470000ee6300001e7b0000b7ca000086110100162a010050920100a0c801009cf30100ΫC   $$$$$$$$$++++++222228888888888ΫC   ;(!(;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Β88"ΔΔΪ χΉ=£ΗΡδocWŒ=– 2ΰΞ΄DϋYγn¬œ›¬Oεάϊ]ΉCuξ(—¨:/Ύ|ήƟ{˜Χ‚=]Λ§•ΫϊΟ!κΪΔ@Ρ­›xT¨‘ƒ†Υ'4šψίΏΰ{^7Ό―†λί”ο›Sξνˏ¦›―9ΡX69£~thΥF#FFΈ3ΥX;\P\l Y΄’2+`ΨAηJΓb™Ϊ@`NZ³+YsaF₯vDt"! ΡΟFŽΝˆΠv,64Έκ–°:€`J•˜ά£ ›m£Žόέ\Ί¨&’ΣhžΛΚ:ΫΖΫFVZρλ'γθLZ9 {Χγθνζ¦ΫyΫ ƒΙΈτ|2 Φ@"…&ΘΫd\Ι.ͺ(qωQσz=o&=όϊyΛɝ_Ου½ξό|οUΟn2TlrhewΡ7:€l€Ηe’BΉκ![Ό•d¦ ΆG 6Q²ΥAP­6ΆΣͺθμ―₯Gu©Ϊ1³ε ­1sΓ!τηζsΟ»ΈϋΰfΥ>|‹ ΄DμE u’ PaŠd{aΜ¬Υrηkj˜Άˆ»SDZ™8Ο^)φ o„φμΌζμ ’jκηKgΡΆπ΅(.‘i yN7ΰύΞξθψες7«ίΧ<>ݏ^+;¦²ω(šo:dΥc΄lƒ \ΨcB’Ψη)Dy*ΒΡ›m©Q$ag“k$Sgf›>ΠΝΆΔ6Υ΄ψΗΠPΛκςςή§/AGΞn¨a΅ό˜·Ήηψήb}OWΖqeϋΏα\_ξ?ϊϊϊςσΆΜ1Γ•ηNWQΚ(εΒN4A XK&Š΄SK6―;Υt™& Ζί E”&™Ž5b;q¬†›Sm©±œψq―KΓτό=|ŽΞο/;τΗυ=[τφδ nœΥΰ# δ€εh­lΫi#m ΰDmG YXKεmg#₯>€d—Ϋ&‹ ’τh5vς05ΕΆ“WyσΛιςstŒ'έ1ηιεζY< ϊN_ϋœ~cgWΞ·Ο4;㳜τ&XGΊ{Ο΅Εχ‰ΫΧΆπAΘΤ α q6I Ϋ‚#έΈpϊ;j κi–˝;ʐψΰΗZK.ΗH ²ͺΊ²ν¨άΣ¦ˆFV1c)Ν`>[ϊo“υΟ—Ώ5΄ρ'·Ϋτrδυ οΕK">ΙO&ΫΫ Ξ­-FZ+¦ΨΔ[ λc¨lν₯h…NΦQct]’mΡΆ)ΗY؊ΫJ˜ψ۞ύ.#^΅ςΈkάεπ#{<\$k-©k©^«šσΣlΎ];,“ŸEζŸΠoΛ·~©Jr2,kˆΎ:6ˆ™kν# W„βԍY†Ι"Λ”ΰ•€«‘Ό°Ω$πΗ/W=ήΉΊ!Α—Σγρ<όoΩσ!lλ–”’μλη―:ύτNjuτοeύJοwGcτΟ=+œ©9Ά N'"ιNXc]γΚ–aoŒ™Υω:W: ^ισ:½FλθΦ|nήήΝ^eΫ§9QΆ²V}@βŽB~W6_b' ϋΠωψΉΙε‘λ”Y_k<]ι•ωb*[š~‰1=D―5½>,}~^™ΰΦ¦±Ου;υuυ\ύ/Όςu›7˜Ί~gG‘ηϊψΆ§#¬Ž΅ΆΥΆΣ‘x°hL@ΰ ΐUC7•ξσznώgR<;ύnΌΦΠΎωγ‹#(i;9Y!Ab4ΣmtŒήp:“jueIν,n²ghufήp!Ρ+Gσ©žΈ₯ηψy}οΟlnoJL‘ά^guή$έ=[ΟOStΔθΫYY׌zΔc]3γδΖ½>+‹φyΌIW©ΛΒZ²‘©%wΞ‘™‡•iέ>u½·ΝευvŒk˜uαζ55Ί9p*l7yΡδΛΩδθyeςΏeΎ^ΝdΉun[ΣεΝΑ>Ρεν©Jzβc™qΎέΗ›«s5tMc5 FŠΥ΄I+ύR2s\ݟοπνΥσωλΛϊ4φ=\™ρΧ4ΓηκM“N‹X%šnΰq›k-ŽdWžZef ΙVXQT1`ΘΈ₯:qO‘θ™V\&uμxΎ}σΈ\uΟ=½.œά]omf5κΎρΛΡGήUΆΠB%Q9ψρ3“Ηη―{“ΐLλΣε…ZNα–Ξ‘:ϊ²ωvφ—ΣΪΨΧE˜c²sΡpzd™eA’Œ¬Ι©Ν’’Gi­$*:Ήi:Ήύ——οp§ΪpSΡΗΦ>9Φ}sδjυχ‘«Π2<ΆωM9M’!†: ClvŽ—›ο“ν#FΚάtηεӏ§ζχGΌœNe½έιδ‰ΎkI‘§3]ΒνΆXΑiLAEJ$\§<χΦr6ΠsΝΤU1FΔ!άό9mΛΫ³«/”^―ηŽ}‹Ρ1θτΊjVέZΔ-ΩN˜•λ*JΣ,ΰ]ΰσωοΦαρx3―_Ξηv—―Μθ™ΖΫvφsΧœήžΖ‘―L\τ³TY‚‘ς;tdj―—£­'Υ1oSš9Μ;½ρή;9}€>/'Ό•ΟθψέωΉ½>oI'šϋ8;|C¦}Ωx4Φ}ƒΐιΩΈ΅v+n[(πΩM,6šf{C΅ νG Β³„b`sθ§αώ›Οέ£Υης׍φΏΩΒVΦ.Q΅‘ R\με'~3Ue₯l™¦πvΝ-Xe|Q°j,λ‘hΫY\D‘Έ³uωιάk—^mvxςŸ=y—ΤXΫΏ«/?PμΦyΊzλΣ«6σˆHe—.uΧΟηωάχιωάΞ­ΔτjԚRέ|zr?Qα r4₯G^Jΐ‘ Hd>fŽσγϊ“Itρ§‘δϋo_0ίOδl^žDΛι―7₯¬Δ7‘]ύΐ菕νr Χ@»#\œά½^fuΫέΑιο0σ»x5wy]q#ηKνwŸιϊύ£γχΥδb–ή5ž„ΨgG.gκζμΦ@pδιR —ƒ§žβΏ6ά{zυς―ΟVυτrΝ:k`άξΥGΫ9;N΄«+‡6Μ)ŒήΪ€i͝P;θΜwLl1hA9ν-X―EΉρΎ™[³YΰΏZj7κθή'W;ΐ!i–\ΓΣΝηωœχιωΌ›: CKšYΡyvy»Κ•~:Ή“¦…•C£p7^}ήsqκΏwΨƒ‹Χι ~—V―:Υηs£‡™Ο―βz ΡgžΌγά Μτx=ͺη•ωΣ’š>‡4¨iC:τΌ™v·_g~±δΟΦπmD7Œ=ΏwητvεΤ`ΪΛeΤAάχΆ1₯Xƒ―WšθδΫj AK%ž[pψ^ŸŸ²σvπc=υžgΥϊΈΥΦκ”QzH‘œ£ Λ # `u+Me ŒYƒ±ΡŽΙ†βžιΚ†^^^Ÿ-L«ί<½μθ)~Νβ=±:i•9‹£›‹ΜΖ½.:C]*½ τ_/ vΘO7]ΣΟλξηε°λn*G°jσSמ:~λž:τχk›τ•ꛦ8Φk—±ςE«ΖU·«yέԚZiž?‘ΖΤρύώVλO₯™^ΌΫ!.„Λ?m)¬―™κs―Κϋ­ή= £―+ς4ŸOc~ήFFj§;aJΪΞVΙ6i re–αάΊψώ…Ί9τ‡'/Ψυε£zsd£eJθf01#YΡ›c’ σ‹Y`’ΈμΗ)>\«w‘ͺpσπσΣO.7;τΦSΆΉϋ«Nό•πΦYRn%ς1―GΝβ\θ—Y}NŒ<υκzj°“άΉl“šϊOζw9―JΆσXn¦γ·G7=3₯pן¬vǘ=8γ\œ}Š4καοή8·GŽΉτjΛσή)~‹Ναϊ$Άο}熧ΞO'Qτρ―Χ~”O-ύ:σΉ=ώR°δθΡ$₯FυδμήV6šO<]‘ω™/δύ>ZzΟ½”uΕZ YΥΙ\-WFΙΆ…sΆ_?_‡ου7O€kοwγoPK―.€ nz=0}¬Ν΄r»3²-RŽ““ΰtE©1l48’αχ‘ˆ‘ΟΖ—€pU|Ή―.7NXwfΠ•λκΦgf=p2Ξ2β羞/>Υxz‘£nOK:Nšί4μΪ˜L΄€ΣΟμι5ζS'uM§θrσΧ½ΌKx§Lβ1=ZŽ@Tۍρpςz³5ηΣ ϊ₯χŽXzYΥ:|λ§E|ΚθαM<ό鏢’²x~σO_?ΞtΗ₯έOOmR·₯ΗΫ¬¬κ4L–Ρζyώ‡^uρEΕιc[_'p#@Ζo…Θ²Έ”δηκη―—½Ÿ΅θ䎏 ζκυyΨm¬A¨‚j³Ά€ζi£T;jY\ ”bl2"6–luΓVα΁`ΣΞeε³+uԟvh—u)Χ αu–DηΚόάώo-τπ‚ifν–oΤF]WšX€¬²Ρr²'LσuτOyyy_9£Ωοψ^_‘·Ι{ΨiQ›Ιητ'–~ύx} αϊ‘Ίa‹)”+釨™eζz|mνB›ΜlΌ^o΅IΕܚ9~Wμx‡ͺ«tσ»sό°oΚτΌΏ£*z^W­¬.#y؍…\'˜;S|ω3Λ¨ Χh#—£α–\βγΨz\ή5ξ}Ÿκzx¬κ–]₯›W.ŠιQΞUy`tqYβΣM΄ ΤJbK$΄tα“pnœh"ω’άΒ\ΆΦz°Ττ5™τ³uΐΑ Εxσͺω’‡= ΨfZ˜Φ₯Ά\ΰΥ9.ϋΜΜ­–=MΌσό=ǁΓΛͺ놧=RΦε9ΧΠύΐמΏJO•ϊR‡³^_/«ιος6ρμξnΎ˜tQc<€˜C£O—ξK*τΞΫ\ž_rώG»•ΌδN™τr§nη₯?Μ}GΝOkψή¦u™όŒΎΟ«ΟΡӘΑ΄ΆςqΪ%; ΧrbΉΝfεdΫ@ΈϊeπΌ{}ŒRά:/―άοΙ:"5ž€DΩj›l‚Y|ΕΠUΙ§MJΑ2ΡrV|t4¨*\ΌυΖΊζΎ@΄ΥyνΊŸhnύδ[œςιVη_/Ώœ­a«–v~‚η~™ŽhΆ²Žv\Φ‰R=£ήπ|ή=ˆ5–²Σ\…η“₯ω:λ~z ―ΖΩΧΥύ'ζ}Ό΅ϊ,Ό―oxσG«Κ>_SO:τmαϊΟMSo 0|‘)«šάωΧ-9%uφέ7†ζια«ςϊΧw7=㏏ƒιmK—ΠαΞ{τΒu―¬ΆΫDό_w‡:αέ{:ο ‘Ψ€“‘GyGŸ–ύ_œΌyu΅Ί<Ψφ»ύOκ5žtτy«Ο³Ο/’ώO‘¬½lbS$ #›©F6ζJ―Ζύd%½>ΈζιΒ£Ί|7ι–©Σγϋ„η:Ά²IΪ0ΛO†₯ΫrιΥΔ%~=>λ|Ξή=ΊόŽΞœ½'}₯Nn’R΄mΆ9˞UCŽr«L¨BelkΌ dn<¦ΐ)ζΦ<Ίn‰φ’άwtΑ|ύpsΥ<Ζςyμ”\¬έ6ε΄κΓ¦>΅zŒϊσΡβςyΝ^1Λ’Ό±LR[k8μΫa[m[ClΨC:ˆΫ&ΫVΫVtΥΡ^:g]tε¦uΣλψuΖΏDτΏ6ϊχ9;OLωΡμž5~#΅:(y‰„bs€@//ΚϊV5σΎΧRF#Š»yψζ>§7w:pϋ^?°ΚΚΫΙΘϊm¬εmC\ΊσαΥωΧ—,~.ή·©ζpeυ~†>Ÿ:ΞϋD”š¦RL­*Œ+6ΩΦ`ϊ5&©|ŒηHΪƒa³Ν•lŠ2σ)[˜‚Ύ†²υ۞(<ŽŸεΠ·=3§ξ‡§ΛB>άτS§Ρ½‹4ό^™ΏŠœjόσαιŠς¨ιˆMŽ‘Ά­‹ ³Ϋb@Fσ™XœPcsZ œ!ΆaCmOHμ§sގ ηYτߚ{œο΅ζ^ΞΈσωύe=~m«±—o#:e7=,=5+sAκZσ‘λ>z<}2Œ­ 8:(ΦvΪΆΪ“Η€ω“ΙεΏcΗιn=_Ολτ:γ­ ύΉWdΌήŠ“QͺΥ'>Œœ°μ—>‚«‰ΆdYΨ6¨ΫΖΓRσ―F4<ΫyψE»3ͺ¦λsN•―~{i αo+—Dƒ¦5žΛθΦN΁χCeπ*ž`ζ–σεΙΧ›Ογm›j*θ!³–*ωΠQΦ’¬:s<τ+ž¦:fP.ts'_7Na•φ*²ΖΫV€ρt׎ΉίeΈ―ϋŸ]ωΟ§Ο_’K‡ΤλΗ†]Π4½ž} ©Υ7’ΔaΫaŸ‘!αν˜_?Ά‡μω™iξsίyV ˜ƒ²€g«m«…{ΌξSΜο—ήOΡpW,}ο/Υτq νζkd*m«+’Pƚm2[‘ΣΚξ”ΠFΙΉλϝVUσJ<τN=‘ΒW½kΫ™%7‘Θώ67)²ρΪυΏVFžσΟΊΉs†N·#…Ύ~GαSζ€zς;η +m«m©”‚z₯1ΌXcJΒ’ΈβεV^ό‹+ΧKΎ?_2υ-Mo3ΠηιΛ‘ζ}^a­Ά­Ά¬F«W’ΉΧgGF:zcπ―=}όΈ=NΌxεΫ^Ύ:U¨£F˜ΦΫe„Ίβ,3ήxηθςsί?«σΏCγΌ‡VΨϋmg)ΆΤžo\ψuω_Bσσϊ<Ξ_©γιϻњtΗN‹ΐu(ϊmEA-ΆΘΪ{Er”Σ’Sm›m ²θE˜yΤζε±ίš^θφτΑ}Ί`Eψ†>mSHτKΡ£|»Θ8°ΖΕ>fωaιΰ2O“₯ί–;k$ [f ]S’΄Zς莯Ϋ›œ‰DτpέτS₯GΟϊ:yog.o7Ϋπ»rεΔ{Ό!–Ή-ScΌ ΅lERΌΟwυω}<ϊ}Φ|v5χγ‹Ρι˚=)M^.€¦WdΜ˜Φ•†YΝΠ‡•ιrg^wΣyΎ“lvπ(ΗΔk8M—W“έΝπώnmΟΛιqιΓκω>ηneή2RmFŒ«$GXbX6ΗaΆ3+o ƒ;‘«—yέ~Tν纍׼VͺύpQ “ςz8ψτ :Ɲ*ύ2<―[šŸ;2ςϊ<θρ ϋsΗmgZΔ‘Ηΐ UuΦF;EιŽQ™³Ά˜Σ™Ρ8giz|ϊΣ¨ϊΥημωήωγ³’QžO«ζuγΔχψVΡΎ:a’Έί5of₯ΔSί•ςϊ6σϋΉυϊ/©ψOcΧΕoΧ—<μ³mΟΣ™™<τ±ΊeωΔφ‰―ι%ΥO²οŠm·œ„ηΥΗβ%Ό^©χς΅uυXχε*‰ULz ν¨Ε΅0#0Jζ›c—S+¦Y(όΩE’yΉΫ›Jφm¬ΣΊwλ‚rο)Ε3ž šœΊ?QςQ“yq±9ό„δσ)εcqρΜϋςΗg‡BΚϋ:Z.kF²ΦvΗgSNΎ~Ζn£ΧΝHηV―6Ni^žΡΓΡξΰ·‡ΫYΛθBMtyݜŽ|°wΡωλhߟAˆΗEo0rŽς\E?W3―o»ΔτΉtϊo‘ψ’ΝμFλ۟;΄G―# ZK)Ηg\ιΥΟ—‹Σς½JΝ›BRtΦ\ο,žηΏkyΌ~^_VζλξνΗ·mΌm––‘j† ±’κΖ›Ρ”ΡΓ&W ‰ΣfΨV†ΉOΞκβ5&Ÿ-O¦ύ2ξ―1&ζnÏHϊ2νfc>˜,V΅΄£ŸΐΏŸσ|εΈϊσΜ7Lα΅lM-₯lκ₯O†–ƒ}Y}yμާ•<ύ˜#e ¦έ)–\ύ<ώžΠ§k«y=T|κ*goΗn}γaνρ-§Lt#}#XdUtή6eLF­ˆͺϊ>Mρ―£τ|S—_―οωo£Χ2-“θ‘*Y9$ξ­δϊσ _k2r)φΙΑδ}™ςokζ~§Οί‡Πητ:σ“²Γ‰Y(AΠ'YӐcͺIΣ§ήyLΑDΫΛΟ”ΡωtsσӟK½B_₯kΫ™VšG‡§Ξη΄EνΖ­lέp€3+­Hxž&Y|oΞjRw^@lΫX©§ναλε,–tσͺσ •‡^T[#/DiΛn6Ξσ*ΥDάyqέψ™tE:™-ζτ-α³·ͺΗ0μΰιΞLΥ擃lF:`s‘±EV]γ)T' Ηj μφώoΡεΣι=ߚτ9ολ‡/onR56¨ γ™eeΆ₯ΔSν‘#u—Ν£η;Ό·ρϊ½Žˆ[―&Γ2ΦvCΆr°³Μ(Σ*±›‘ΓP Υ‘΄ςΒΧη£ΐˆΘρτ1₯΄{7Š8=0#NQεγxrιOF=ZΛ+™ΚNWΌXδσϊ>_;γ†=ωe!1Ξ#@Ήee|¬Ι^}'X\y©:k]7– θ Λ¦΄i"S#₯&HWvζω =ω½“"E'ίŸ―…'Žυων#Xmν΄mƒ―ΌiΧ9žqL0Φp:…dKίυΎSθΈφχύ”χ#ӝgΣͺ­Y€EpG+jΫd`B`u69ΌŽ>ͺy=‰SΌGYh]YΈ‰ͺ:mS[‘€%Ψdΐ¨ςτIσ/?―—―j6³~¨_xq—Byύ~V57NάjΥWλ…`)n\Ύg•y9~~Ψ; d¨Έ9ΠZhMM’lNtϋ{ԍ‰ ΟkoŸκπλυUςύ^Ό€3]2[l[ΚΫ ΨΡΫ'ΟϊήΉζο\¬…YδηJ‹H8f­:θ<ΟΣ₯ilvΝΉϊ9±«sߊΉγΊΉξδ_¦+@Ϋΐa\\>]7£ΟΩ‘ƒςfΜOΙΧαΧ'Μϋ3'vζΉυ!})ŸΈ5B₯‚>¦FΓ©=A+’]\ξΧ€S+IΙLW4u…'g§RCTΊγLl3PΛΞdΪΛπτΖ¦ls¨κꈰ¨š.³ΆΜ¨ψW8$Zδ– €Μ+Ρϊ‡ϊŽ=~‡ήω―`½4’uη:œ2΅`E@ΆΩ6Β›Ÿ;μρφωϋε|’ ’>ΫY\ˆ:ΆΪˆΪ•+ͺrν΅κeNžAγτω;ς§_7^ρL6ςœ}<Ήs?-Ώj7L0ηθE²=rψ}ή6uΰxΜ½Ήν²m΅lu  u u u u u΅ m΅ ΅m΅m΅m u š— [m[m[m[m[m[m[m[m[m[m[m[mXCm[ΠσΫ/ίz?νpντTΰτ;rš:Ӟ^š MK©ͺy…6ΩΪ›lά΄συΆ›²_–ιM5FΐεΔj©εΡΥΉ]―¦θ€6 ¨<ί:δειεΖΊ,F³kΞΫΞVDησ»xωμt'@Ή+Σ ΅žΚώKε>‹αšXžΌΖ&†mC6•,a55LΉ©jž‘©šˆΎhŽPΉυσCt±hk˜ηέΉ·IžQΦˆτ$©θdδέ`ΉwVQΦ[ŒτŠζέ8y·FnmΠ*ΚRΤΝ1LSΤΥ<ϊPRfλύgΐύ―Ύη«σώ’wΛ’{ΚΦlΝ‰ƒR«,Έ"Ζ[lœϋnDμ„z%Mη°…[–φΩ±Ω6Ε’wV¦Ϋ¦³jΌ‰Ι'LmϊΘT’[,Ό?WΘ5ΰόΗ₯ηtζ5„Υ5-Da›BηԚ‚“SLυ&¦‰κ­&¨©κŠž¨©κ–¦©κŠ–©¨λ ˜©©jꉨλjΆ¨κκ–©jꑦ©Šjž¨©κjž}I›RζΤΉš₯¨)3 Mσ]ΨΧάυqwqιξ―nH Ν°Ι™MyΝΠ»im΄sžgαΦθŒέ`N³©jljbΛHω*Ί WܝKpG^b7†uNNžZ‡Dzr­γΣ¬Πν¬§/O¨bΨΥ, `(Y5yž?‘σxΧΝ2?~Fn)K΅DΨΤA.}Σ§›t„ηέΉΗRΧ;['9ιΜoͺϊ’/ͺΪ’.*B⣡5Ί47FŽ}Σ«›tšεέ:Ή·I]Υ«—ujεέZΉw‘θ—Οo[Ά~s{X|]ιs'0ι Ξo§Ÿ_T DLΆ₯ Π¬Œύ―±ςΏQζνλφω~Ÿ^iŽBΣ’ee¦'4ΫBν₯ΆΡ· …NΚS¦K‰ΤŒ­”Φ#!#P!υΆς$Η:NkƧӐκ‡F†9ŸW€u¦5c†ς†Wειση‹βΎΓστ/L-R΅ˆ"Ηǝœτ1†1žͺ#±Δ6΄φŠlr`Α€£°­7VvVLH%Η0ΗΔV1₯΅lEtΏ‹†ζ’IV2m°€Bm‹L:A +Χϋ†ϋ?oWΦρ½]η‘^{Ξ€ιcAš` dαͺY7ŽςŒNrŠκ*+†:Ψ’h+Q­Ήz:e† :J“bν΄Z²‚¬©kC:4J QΧYΓ>XyώŸ’kΒψkΖι†GMeέ\vP•1#sΟͺζ/  £CM–aΉ`cŠΛ-UΣzrjΆ« β M/+ ΘιLΣ’Bαλc™HՁΔΐdΨ`1MV‹ ΩE8MN Όr0]LSe-§D­±ƒφτΊ}‡£ζφη^€Ωzs$f}„( _lΚp£“pι©*ο-I σρΏXςuΐ¦Ϋ6ΨΦo³mͺ5&’C’tQAGšrΙΣ:0ι"Π΄K‡Οοςs―ƒ†=Ή€sUƒe”θ4.g©kL—T±zžι›E™# «eηV¦ˆ›jˆ¬δjŠžjTwFzcx2Aum˜Ν•Κλ-OQisκLԘλ4sΎΥmΆuΞΊϊΜ5uKQ$ -.f©λ-N€ΦV€qύ ΏΚυ8υυuιΝFΥ@B*² ,r—nσΆ[ΊŽ]5ψ­£ ΐΉa­<Ϋ«6θΕ qR[ — Χ*B­Hf§GwVΦt«δS³Άθ‡B΄-₯Jσ>wήωω²na•ζŒ­–X:+e¦l)›TmSΜ”gh΅ΫΌΤQfΞ TL Z‰DmJJΐμθ+*3+#†¨5Ί •z‘Ή΅pˆS"ηBθg\½ύΜ›-έΆdΔ–™4€Α”‘†C°―Ίχ>cκ<ύ»ϊx»zσ“MDΈsν²OΒϊS\;ΣΨvžΈ{ό`NΩ£ΞνΡB₯ΙΫ6ΫV$%Žθ Z9^u“M•€•₯U•΅ ByΆΨΥ/*λ* Λfη;ΰώλσ‰#¦gJ}7Ί2-¦ΥD&›m–vQ«FρA:NΊ ΖT’Q’U«s©lT‘θƒTγΥ ΘVΑŠE3+##2CΊ’s©b’τJwƒeŒ›/?G?F‰R}”’Π؈`QQΦ†ΪˆΛEYQ•–Ύ“μώνψuνξσϋϊeΔ2/d3«Œ- OSW(βς|½ύžί+O¬>xΖυ|―£NZ_k16Ι#LΣJ eI“Κ±₯dzԝ*€dsτsΟ8eηŠ#o!X 9:ψλΚόίοώAk&‰JΩΝ@L΄Fs&*‘‡*κΚ«&ιΫ):P“9›ΰÊΐ;"Q |¦²M³L:;ωc—aO§ͺ₯\@"ŽSJgDEej5qτσtR…Τψa;jb™—DΫQ¬ΕiVtΐθυ>σσΟΏγΣΡξΰνΨqJ²,­1<χiFΆˆλθωΟΝξπ{ύσσ4OW<]cθώ«ζ=χ†MΌP.GΚteWΨlΣtFόπ―:V€λ#hάέΣ›»Ό…eΝN:~oβΎ·δ΅–V]Žθβδlθ¦Θ”Z}6!’΄Uƒ,m»–•ƒ†žiΥ Μ΅©:IΊUvΩ@efef,―›Ÿm«65&yΕFΓ2(™›T¦σkν±kΒϊΚγJ)NW ΊQ1“mL,ŽˆH5oΠΏ:ύ–ύ^ή.Ζu`…•™gI–tv‘6ΪΎ }lψz>M>Ч睟w=σωξξεΖΦυmf/R6̊Δ8©ΗͺYΦδξζiΊάσΎŒIIσuρRΞΊJνδŒ3SΞτ|κψί™ϊŸΨΐ³FWΞ‰ QtWFΠΤ•)ΘΜ΅‘MΔεαD‹0ΩΤ­Ρt‘ιŠηvΥnzσVr§FZ‘Ϋ†,―”ŒA]1d9Ίƒz|ιΞώǝ\”YMβ4XsήΩX% ²d/8²V7Y3a;bΘκŒΩEόλτ[χ:ω:ΪͺU©€Ž‚¨FƒΆRIΟJ*\έ(7ej;jΔaΨ5)Ζ–tˆ6 BΜ-£stς:ΎZ·•A7ΣσλσΧρτΆŠ<œœŒ+d:•£§r’κ<»O"ΧpγΧΗ΅ ·o Ηkω¬^‰σ1z[Ν κ(‡¨Ύrף牫s₯ ¨):& Œ»!G=uσuz[Μ#ι87¦|¬^ͺyΩ»x…#ޏk=ϋΟΕίΌσ]ϋΝjο^%δε nr$m‹ >ˆuhηϋΟ„ϋ^[ϊnž^©ͺ:C2–ΘYњ»hΨbηΛ­Y¦πrjxΥ(μrŒΝ(N @’-ˆ yΊy€Z6…Όm‘ΘΞG/W4£«qΙGA§Ÿθω΅ωοκω[ΞΕR‡0‡h‘₯°ΕˆΝλG3Ηg[mYYQ΄ς>ΨpΪvؐ_₯Ο ΦPΔS•’UH‘Dh¬δμH9p€έ ηŸlkm¨j«Jν‡a«`jMN·<@ƒDlΫm*£‚(τ"2ύŸΕ}§=}OO/@έ25m'2Rœm \ah5€¨ŠT %§WxΈΧLΣ (‡cFΡσtsΘ΄mΡΆ‡ λ+ΛΥΚ*θγpFςU—+ωΎŸ™_œωž‡Ÿ¬•eΡWGΞ±¦₯u“˜P +«lς‹]`΅ΣˆΖ€ήp¬ΩIRΫ<‘g‰2κ°': λ@ŠψŠŠtn|o j’z©§©ςhθ*Fj₯1¢œGmC;ΤXj|ΰVƒMΠ}―Δύ–5υΌέCPΘ„«0›‘-0“Ά-Ά‘¦QςΞj T|Ο_ΙΛθ™ ’]•σ­ˆ©lu•ͺ¬δ»Χ;w¬yνΧΑ„ολΓcpt}ζuΛK«bε>’G»#9m:NΚpΪ“―?G*ήδ3ˆ‚Ί;# ¦“°‘ξ„r³¬³ΘSJ²kμ2Ζ“} ₯[uΧτy£˜Ρd‘4ϋbΚΙIIΡμ>?λρ――κζκ›#"‹ΒƒMΗPΰ˜ϊ{ΘΣη4ςνο'@λ2Uμ'Ψž§Ω¬χn}££r9]Έzځ4<)Μk―™αO~k‘΄*ζ™Y—«”V“qΈ#Y Zω~Ÿœί˜rurο'lΧΨa;‰FyτR―Tβ@ŒλԜiΩΙF›u±¨:>²]u#Ω$ζ#gDΏJq'_4©:Ύ-­ςυKŸ£›|sΎr!]ZΤθJ‚μ$?ZyΪότρ¬κΐ΄fŸqr·w2IY3 Υ}g˜R2ΚΒ›lYYiNΘ>Ώδ>Ώϋžn™¬έQ<ŸOδ±ΎyFόϊϊ:ž©Ÿϊε<­μju»o<ΠνAŽθjζ{†•E!YYΨV΄jŒMΟΡ κœ\βΆJ’tFΤNΪΚqφσ=Εκ eT[ΞτόΚόΏ›£Ÿy$dΆΓ:J<τ!©•bƒi#aΫjeM Ι¨:l^}Σ΄ƒS[m8M’θΠ¬’“―’<½ά=sζιεί"Ρ§N(hvσ 隁ΫjΫj€†F…gN+Ρ7Sh }Ž\ ΡΫPy6€ -Υjι «BύwΙ}^5φύdtAΛΤδετiΛ©τcΣΎi¨5”Ο«œc#0 RΊš κΫjՍPγ“BρζιζΚ²€ ΒθΨ—«”R³­S£ όΟKΛ―Μ9ϊ9τ²Tƒ΄M•΅tEΒDΥ(²¨5©3- VMΛGΡY±©%±giέ’U•Pƒ—©’œ}Rηιζί.ΙA·ΖJΑŽnϊσ‘ηӍ…A);­!hΥ°6Vbέ–™H₯θtB‰DΆΨr²ΒS}_Κ}n5φ=蚩X;f„μ™Υ/ ΉΐŠΫj†;:3|ClΚUΘh4Ά›#•ΘΠΌ ?/W64k* Ώ?B1Y^^Q[FΥ@FƒΆ#εϊΎ=~oΗτ;¬μCT΅MΦlP1ZτW›»§\Υοε)R-+F/ΆΞ₯D}fν0zΊΗΖ¬λ†žΏ%sι½JTPƒZς·Tyϊ9χȐwΚ@„§·ηsWwzΧuFΉλή±Ε¨VQΌaφΓ'VjΈ”a~Ίς‡¦΅ΒήΧI’΄`@εe†CυŸ'υXΧΪτsτ Q•Ζ§:Ξ^ρ΄`B΅swa% Υ<ͺ=c“WQγZνNE.νΛ:υw“κh€: -ΟΣΚi«BήGΫk+ΛΥΚ:’­P ν‰Ό[ΘO”ω§ωT šΨZn”JXŒUEΙiŒ:VV^BuΐgΩοx¨k"U§*ΧlΉU=)qξζΣ7ƞξVΌ/ΓΧ>nžmρ8ςšΣΠΦ|§χΌNŽ·¨rzZ—‹Ρbςηλ+yΌήΧ rν…:W­#c‰Ϊ+]C”'^αΣέ>e‹qΦr„ίQςU}­αΠ4GDc7₯›Nk^~ŠΑ„m²rJΎW.ž'š†½ρρQΡχcε›ϊvωnvϋ ς(ηλεςΫ:ϊŠόw¬ž£ωU‡Žβz:ΉΊytBΘ:!dr •δλδYZœ£mˆω>·Ÿ'σQσ ‘NvAF+₯ΪX¬'©ŽD¬Ζ3Τα56PίgςBeQ=T „™ΫYΖX_ §ϋ߁υ«y^—’έ6…ΌώΉστσo–6—N3a¦šzΟU3΅΄±;OK…Ρ‹ͺžΙ©‚κχ'vΪΆΖ™γ4 ΒTƒλ>Oκ±―²cq Ρ:ΤVD•₯;£Ÿ¦Y8jαδ'ήΌΌφƏN¨ c]s­“ŠΧUx3ϊzWΗzžΔ5WhƒvC-fόΊ­ΡΕh΅ωΊw–Ψ9Χδ·=šΛ•!—ς=_)ΟΚ|ΏΤόΎŒ§; ΈfE9‹iiκ^mΣ2Ω4>ž«)"»ς™ΒŠl¦άζŽ˜ΟKφyq=΅ΉοΗΧ>~žmr• ιΔΤΩ8Q]‡‹%4πΣ ͺ,λBHR‚zŸ(§xκ|šœΛUtž˜9YYH1ΎΗγ~ΟϊλΒυIrΜ­ FZ©’Ήs“ΆesΟ§;ΙΝ1`st@]΅! δEv/B‹ΩyέωΥ9ΊΉ„^έ<έ=2Ϋmax»x³₯ΌmTS΅• ΉΣy>Ώ™¬ό—Λ}OΛθΐκ|β ¦Ω:žΡ§΄ηzΗ2MbYΦ-bYttΖ5€‡Hk˜δ|%λ$ͺ XΆΥνŽ>™σtsk›`wΙ'DΠλC ’N0¬Œ&σDΚΛUΫgQ€ίYθηV¬»IIξ½γ(a΅1rΚAφ_φxΧΧZ7ͺJ²—ehIV3d€’Ψ “DΘάϊΒvγν ΐ,ΙMˆ‰<,ojhΜ¬ƒ›§Ÿ:§7G0›Βτέ\½]0Ϋmaxϋ8σ₯΄kUk9YDωޏ„Ÿ7σ?G΄|ΰ"œ‚8@lΔ PgXU½Ak6iRqR§:FVBššΊy₯‹§œ^Ή…΄ι:ΨmnnŽ>™Ζ²ί"Wkš£e,Ϊ5ΫΟTžjžt’”“[a–N lΕΊ*“SL‡¦Έ™’°!›lXΛ±φΏφxΧΨQ*…+#NCBJњ£€6\§¨ΨήVI'-ef­Ew%YINiΨκΗܝ\ΓN~ž\λ^FκεθΦi•΅•δλγ΄mO°ΦJ•ρ=ΏΉύO/ΣΡω>Ω`,bν†4½ 4ν^b[`/~a]ά"₯αT(’Δ3'‘Μ#Ά<ΐŽf“ΥΑ«³‰Ω%;Βͺ4Η’ό½<½ s‘Ό·Ξ@†2zξ. Ά΅^ ŽQ²š‰β —»‘£|ΨΆΪ\ΟUd¬€a,5κ!–”ƒνΎ'νρ―¬΄l*ΜΣ2˜΄¦‘΄AΤΣeΙ”μtΚA`V΅'DvžΪp"·ΪόWΪαϊΫJ¬ιI‰!©gYU 0˜¬Η6B™Υ4ފγYδ[₯¦u‡Ρ8«a n~Žy―g₯Ήο[«“―xm³…δλβ41½†Œ€eo'Υω}Mς^‡‹¬ό{+Si8κΤ›Cδν#L`jζZ¨&*ͺš†-B’WηΥSWάθέB¬$j’z0Ο!ΡΉτΙIΆΔo™’R)S¦W r‚¨cͺι-X6‘Ij©Žͺa2ΥQ1T ¨cJ:†Ϊ·ΫόGΩεϊϋE‡’zcc6lšQΤd΅p΄σ6LιΪjΧ^>¨eΒ]δjͺ’,œ}ΖWΎVˆρz|ωxΗ₯Δk™ρ¦τ8{zsua¬§ ΖΑΕηUΦfh2οΟ?Fω}ž‡Δ £mˆ:΅ΊX¦'Ι©še[(§Λ¨£ζ9Ib’œ#6ιη0H%°U³ NΌϊιV(rςc΄²[m:Σw2ΐ eΤΐjyP& ΞPΔFξΰΤΩ4Ά]M”ΖGΤ4ΈŠίYςQ—μz…„Ξι$γ :Ν¨θπ6ΡΆΥ͈ΞΒUk“₯˜qΕ‰€$W=ΛJa(uV3nή,ι/Ο;·³Xl³>^ΎQFV‚šΛώ{θ|ψXS“R‘΅–*ΒA§™KlΤΈ5)cS5‹P”#d]QSΞ•±j@M MR5•S&²Ά:€ι78Όe+Y)3-m­[5*©†F’Gt%K:ΦΔVΨΠfj–"›mXƒ(vƒυŸ'υΧέV6GGAr UWG³Ή:γUΓTTœο+5›VΪ°mXΑ•«”΄œ]ΌYΤϊΉ:‡vρv묧'_ † N¬ΊΔ[Βχ½σpF²Ό|’¬€iˆΠ1ί=τ_<Ÿ­'Έ[,A£† ¬ψΣΆzζ#Ό}€ZNŸm#m’6«ΒbΆ"Mΰ`%R•i:}„΅α~}WlεΗ§ητεΘ¬’^}TV’©μVΚŒ­ ΨT‚‚ςκŽhЁθn\7₯I])€μ₯#ˆύgΙ}N5χ.”ŠΞ‰$ƒZU“Uζΐp-ΆΡΞvΟB›C.ÎΤj;dj ΅>Ω6βΫ;—^Ω[«mαΖΪΚsl*ΫΪ0Ψ_ΒΪ?8žέ2Wj'jΓf;bq΅m΄ν΅m±Ω²m 6­Ά¦Sm‡m«m©NΙ“j}΅5φηΩg²}w‰΄y+ΆωΠmXμ8lΨν[mZ[Q}©ΠvբӢю΄΅7vΡΓΆ”m«}fΨΧΫΎΡiν,v‘-ͺ­΅³‘ΆŸΔ/ !1"02A#3@B$4P%`Ϊˁδ?ŠΕΣ4ή‰‰21p‡“ΙδωŸ3δ[.E³qzΩeιδ’•ν‘ΆcŒ²6HΉ#|Žγ7Hί&(ύ _g„u²HιΣΒdκ’AΤ!ŽρBΑ“) 0Bαι’šOη!E./_%}o‚ϊή–Τolω•fΔQ%Kύ…Ικ—ž,kΊ³υ\ZσEV΅_K7Œέ}kjqrΟο$68Ξo&S(ΗθbξHxa%£ΚώΕυΎ £z-”Ω±OŸ”½―FJχΕ–χp‘\bΖ,“ΛςŠιМ²B$ςCύώ©αιcQλŠ-X•jψ^‰‘ϋΥjύw"n“6Ɋ+ŠΰcΗ|½XΉ1£-eПYg–Uq\w§S)d:eُvMώΨ-Ω³ΈτQ€΅Z·G–ΤRεt[gξ΄θ> ¨›Ο›;fΥυ^€<ψ‘ό”w³±Η4₯‡r†¨₯ΤαμνR;q6#j) mfŽ;HνΔx’vQΩFΑFH©dTγglŒ+κoN£―hŒΦΝρί–-™p5Y0ιlŒTPΌ>[ehΉV’ΰΎΕΓr-”Κ_[i¨Δ‡Τϊ–vσHώ4EŠ€‹Fyxy^2=VO¬Η›©žV¦t97ΓύuΙ{γϋβψ―§Ρμξ-ΩΓ±‚”€‘£ΩΙ˜Η†8ψ4-lQαλFθςWυΎ;‘δ’Ύ§(Δ}F3½–Fά?cŠ<ς!ζG|yΙuΙΤΩ>­Μξ1ΚO_ι―μbδΎΗ₯žω΄-/N«,뀄ρ’κ~X·B%,™Μxc W[ϊ‘_Zϊφ•_Kπ<ψΡέΘΝ™€,FΨ£Α½*rYΗΤ3IΝ›°’σG‚Ρ»L™†3Œ>Ϊ(s‚ζΕ²ΝΤnZn7"ΝΘά‹-‹E–69_LΌdfκqΰX²w1MΗ|γpΙƒtqυ)F4²8Go ½±Ε‘e€ΩοΩC_JΥπzξEJBŠ_L§:/<ŽΕЉhsCΚ<Δ³9ά“>LΪm)Θή=Μ–<”±I―=”m‰·ΗGΣφqύ{ΰoδn.χώ•—―ƒΖ–(Χδ2RψεΒςN3νFœ`IζκΜ6<+EΓΧΡΈ―³χͺαr6ύ2Ι<™Y¦,G„nD<ΓΜ<Ηq³Λ6ω£Β7#Λ6Lν3³c€©Y’Ω‡Μvyν³΅ΕΣΟ)Ξ_ΚΒFQšΣ$š]Ν§Ν›ύ΄**_Rϋ~Εϊ=›'%Š8ΊΉεκ²εŒξRΚ .žR1Ε%Ε³ΛlνI¨Š0ZS(Ψ,LX™Ω;1;IKb6›J’.ψuω;x:~p†LΞrά`Κγ$νVͺž—¨Š)},½ΩϋH―‘Ί?!5}RψG%β†F\σ°GESΰΌ•§U‹‚ϋ=3u›_Σ,πFόΣ#ˆ¨ŠhyIfDΊ„~ˆϊγ"Ύ—δτu–lŠSŏήOŒcΊ}KΗ†8υ‘kο••χ½m³o7ΰy‘Άs"‹BY’%žΗ)ȌJE’I‘ΓbΗ‹Ι΄PbΔ(W;,܎ΰςΣΊ<ƒΚ<ρjiΩ²ε₯W,³ΩΡ―ξrΏ­rύύΞ£«ΗΣ©I(¦»­|Ί¨γ„1c˘Ž%/ƒEςlςΚ―΅pσj<ΫQ;²‘ΫrHrByiHΪΨ’‘t%) 8’QΈβόv6,B‰\¬²ΝØς ς2P<;“e·£ρ:(ύιhάn™ς6ΘΫ"Š)±*}ωB• ޖː₯/’Š(ΪV—ΞτnΦ7γ6’{cT²ζŽ‹§žIF)iBΧΨ—-Όύ}6n(Rœ`wg1bσαD²#'P‡’Slψ£u‘Ε6,QEiBΖR#€QH­66,iJ(„Yfγpζ<ƒΘK*aΞoZ(’q7Ρ»+<’($m*΄’΄ΩΫglΫBOJΉ=#ομφωΏVMνρά₯•Ά±e©O1‡~/VΔ΄O[ϋnFΦΝ©ΖRŒMω&GG‘̞d‰υV|¦vˊg"8RΣΛ1D-¨Ν³pς ς2Y1ξekG„nDnOk;S[h†=Β‚JŠ(’΅­<…#s.Bς4Kόϊu€εQ†δZ,Ψ͌Œhς|%›‹e›Ζγr?"ΉΉ$En'ΥγŽLΝ(E£mΛ¨Ϋ9tψΎ΄±.X—ΠΕΝωR”b»“™KG"y’2uJBŠFαcœΘβŒDMŠ’ΈYfγ¨ΙΆΚ<Δ³Žrgž/$smbΚάzx£Ά,iM¦ΣbγΊ&γΙLΪΨΰ‡Ϊ‰Ύ€nβ†Ό4aΑ)d†…Wυ?’RΪ£36±Γ§ŸvY;KΔε,¦.•D\U‰WηšϊΉ•ΚW!a=TO-:‘ξ˜’‘ΈŽ28+MŠ W ,r%•"YŒ™Σ]Ιυ‘Έ£p£6v"ΘΒ(’ŠαΈωςΝΉ ²ȝάlέ"¦UP±3Γ;1gn1%‰H–'β †­3`Εό™ΘΌ;6vΩ;?m‹œ Yόˆ>’YcPhŒ"‰Iεx±(!‘=[±p³ίΫλFλθžt…ŽSjδO2Dϊάέ$Y2‘q‰BΈΨδ<„³Μ<­s?"†ΤDη#΄Ψ°ΐ£iEQG„Z>LΨΚ‚7mε"F £Ζβ)’ύΕ₯Ž bn>qΑd’%’[αŸxαpΓˆ­!tϊ™οŸMΎοb;ΈΞζ3r7"Ρh΄_:ζέ‘Τ7ΫΓ‚K&yJku”œ»VŒ―Μ― Ζ­”. },ω W)δŒάΚF $έ'™VN ΉHͺ,†)HŒ#Π­‘€’W‰d%”–c|€V”d€“f,1ER‘QZx>FΡΛNσb”™ρ- ““œΏŒB‰Ζ$βο*”EΣ9ŸΗšŽ%*ΗhΛβΔ<±m1ΞRP{²Φ’—k#ΉεžΑyd͌Ω#ΙδM›Ω½›‹‰ΰ[M†*΅υΑψ?6σγYsώ8ߍͺœ;ΉqbΨ½pnŠS–X†ΔΉΎvUςm!δ”ΘβHτK!“5 R‘·Hγ”ˆB1Ρ[1DnΙe%”y›tm+O&Δm"ΎTQVQαeH{"w›6’^φψœ-εΒa›)ΜKiYXι ΝΘΙ‰e!•Z’kJ)4όNXΘόV₯Fηš]ΙΓϋp½–NΔWUΤε.Gρz±τέjϊcμχΚτάydγ2"Y7ΓΑ6ςΌXV5§‘;ΣΨ— »"«ι~8ό„ΉK2FΙMͺC•Κ6δl)BU)ΈβHB^V1D9d²’Κ963ΙG„{|νEtεE€[6Άn&ζSfIΗRΖΘOv›«-Ψ’Φ%δΛ-«¦Ζςdτ΄€Ο'“ΙR*GΘςy#v΅υΒLΝ>Φ<'ς:ΗΌι³οY³3§ΐ±FΈ₯gχ[ε,’Η€§DςžYαLŽ!$QΫw6Y)’ΚK#g–QZyd‘!N…εQZξΡ›gsjΦ\QPͺρ%(u ›–GΆ%)dμ™1ά~p”2©Ζ}La-ή0β”$9!2qψΰYœύy?!Λjy#‰w·9GzΙ'·1Ξ1Qς²J0qΘΕbZ³oΙ•.βGz&I&±Ϊε2+Z³Φ­_9gωB:ίΩ’k z\r£m Wτ]ύΥΕ΄‡)d#Ί'sr=G±Ζ(•­–NT吖Rο†ΦP’PΥ«¨‹6¦-Π#$ΗΗ‹Υ{%4~'q#Žk !Ϋ؎ϊΖ,»Ιΰ’‘X©i/2ΛΣ©Tάe‰H”eK ’ϋά²”Q’qΖ›Ν3y8`K-’‚ΘΏ‰Η dueu{₯,•Wσ…Ε”QΆFΩ"ΉU?ξ>£>,O6nƒ±΅>«*U«‰Ί‹±pl\_Ϋ)(”ζύDςžΗΰ§1AGD›# +…’™—2§#ΩE‰X‘Ejδ|­ΐΫ$Fb˜˜β€\’FJCŠeJ"|v’ΗΈ‘OΆΤ“N›Ι’Œp₯hκVyώT‘>gƒ>؊­3Ό±Λ₯1y_΅q”σF‡ΰHŒ~JΛωTbBqo†_Β2Ϋ ύζπ©FRΦτ½=Η'—βΛ‹&L™77rΒεš]\πG³ω4¨­[hUΙqœθŒt”‰NΚ,Œ=iX’— ‰εœ‰Δ_#ΒlQBEjδScj$œάΆΨœ’|$l”ȞΔΗΝς€šβ™ιPβ˜π[Ε9z=›|8’; :e—eΠ±ΙKj8DφdmG2,Ÿ½¨ΛΤaΒB{σ\vαRo$XtψγΑΥfΘ‘8όq;qFί#Σύլε΅EmSόUŽιu2:^–8UYζ%θΩZ΄yΥ―ͺΈΚnγ 9ΠΫ–—daZ$Ψ %Α²RΙδΥ²Ϋ1Ηβ‘Zξ)³γΙ±BΝ‚TΆ&9:¬”γ‰JΣΟ',½N3NμI##ΙN=L^–S~γ•βΟ“Βq![΄­=’ι“{α»6ΣbνΓZ/J/UΖ„ψϊ#;z6ς:‘Κ‰Ξτl„(²1ά(ρl”Η;ΰρωόˆΕtφSg„6νA±E!΄‰ηHž{%;/K άL][D2ΖIS6‘’cΕDfΠ¦&P€UžΈ΅’ρ§Y}₯g‰ƒΗ‘3&%•δΕ>aT¬‹ςdώc—63XeR΄χbΎιε§‘4ω8ήMΡݘŒ·FRX‘‹ “‹ΰό ‡οDω^­π’±M]Ηθr';ό‘Žέ#.9˜Ϋz‘#m›D¨΄y‘αh•›%SΜ’dκ)Ά7­λeπ²3q0udrEžΙBΝ²ρΘ5,dr G³ΜDӁ;αV4nq'5#zΫ j„d#ΰ”<Ο ζIΤκΚ2γ‹1τЌ€Gά>‰+]ΉξΗ†­Ym §¬ε΅_kΝ“ωYe܌•ίšŠIΔς„τχΑ²+Z.Ήέq~ ΈΏb’•›gλΩν p²R%“… "EifΚ4–Uυ?)δl²τ²ωY|ažXΟ©Œ’€™D±¦|’V{γ)‘T₯"s³j?Q‹Η€"%Α²s½’0Ρ!ʏ,_tžE&k%6Νō–_ϊ)π³y@ΓΤΖbv48ΡβC‹‰‰•eΡ\ZάYϋΝ–8a“ͺΙΥΎ–RΩ/+4I#b:…š°aΙΊ²ΝDFw‘C§†Θp_T€§–nΧgηŽ;^yxŏΆ―G{ΕΑιθπΟ\ž‹ω’r,nˆFτŒlHZHήdΙCw§ζ(”PΩεž#’‰θžZ2d†Η!Λύ»/„2Έ˜z‹±‘Δρ#ΜΛ_gΟE"‘ζθ”ζŒ½ΝΠνEΡ–qΕ 2“ZώΧ/’7ι’[T”qαόγ »šqK¦]ά…QΈφώ„τΏͺ_'蔉;‚ Ωb\3JΞLόœ!ZΆ/:+΅΄Œ™‰Lll”ΛA}ΆYeιν0u$f₯€££Ne―³Χ%%­rqά£RY²f„α.gη_bζΡ΅£ε9υρrΕΛ νY(䌱ΑB:ΘQρεjΕ₯‹Ι^tτ^Œ\&θŒv©2nτIΝϊάEplœΜŽR"ΗδŠ­=ιVUšŠΙ–Ι;)—Υ_Oθ―²Λ,².Œ9θΗ•M'’Q’2žψ΅cŒX²DžXcK$ή²ρ2Φξ θn–%γ4~1[#Σό³πύιG‘"Šg±¦ˆϊαε pn”ΙΛJέ$Ά―dc\9v1@Š#Ρ±FτKIδHžBR%1Ώυ6ψD½ι^Ρs²ΛΡ3jx³)θΡθq’2,~|Z±γƒVm‘xy—Œστψ6­WΡ•ξ}PρCR³βΗ¨~!(ΣFνεκβSΏ«όŒ”†ΖΘGj!ΰΩ)•Œφ$lΡ+=ΙDςXΩ)ύKŸι꽫$ΌΔ‘’¬bϊ/KΧWmΪ4zhŒ΄τ{βΠ•œ`>₯Ÿ’“Œ•­ΠυΑrωΔο#ΙυxTάqvȘ»›Z+ƒη΄σΑp›’Llf8–B<&Nw¬ i‘V„΄Ι’‰NΖΙJ‰Nώ΅’ΣφV?c#ω6$5ς?Λ^£!}i‰ˆΕ•§‡6ν=‰zzεθνFφd6Σ”bˆI¦V«žrςc2eQ!RŽyv°τ°Ϋ‚γoθq<‘pnˆ«9h–ζEnijΖΜ²ά=#Ρ‰»ΛL™(”­Ι’Wφ"΄­?z?c#ωF-Κ^"ξΰžτ·MUxΌ΅bbdY%<9·hΡθ’‘=%§›£"!=ύjΉ―ž_κ%)γΛά‹ŽdO.N’Xς»Υ‹Ÿ’ω>/ε/DδXό‘[W²*Έ2rΡψ1ΗV%’VUΛβR±Ώ3Wφ‘--Ρ^=Œ—†3ω!/šό—ω¦? c6ͺœkξLLŒŒy(Ε—r½Εhώ-3ΨΈ΄&n74gšΜ±ΕΌ«Φ«–ImŽ(ν†h§.ΨΪǏ₯ΖR6#δ‹G”_Ρ| Κ”VΥ&7m³FB<9Pέθ£Ή₯£Σή™2m7Ύγdς ί:=r‚ΧΡ^eκ+I{œ’‰;έ%&ΦΧm±zΛοξLLLο8,9CG³ΣZ{βό;ˆΔ–Νκ=±zΥrΪάάΰ₯™Qγ¨vα±Υπ—Υ|£ςl›ΎDU΄΅d™)[τ/"Z₯―£$φ“žβ»—% ίΠ΄|cι輟―Τ}Ω/c1­ΣNί™d”nS/-Jε'QŽEγοLDΛJ1δά†Ι/=rτgκeŒιΏΉΈ3BXΏ§ΦO$σαΞςΒ ˆ|²pύκΟ’ώ„«„ΕαIŒ“ Ά’+ƒ'-αiοTNT²Oq&N&οι(D}KEψώΩtD—±ό$•ΛΫoj½#u•ό_―»qI˜r4BV΄jΔτυΕ«N;‰Ζ_γγτΕTzŒ_(F;ς½ΈρΓΗ”)-WΒΉ~υd<’$Λ1ΗΙ-Y61‘ˆ—†θΛ;2δζΉ>όPέΏŒbεMΛΒ“%ω δ€EQωΉΠώQ~cŠΝψ~Ώ_|Y&aΘ'c=Bg±ƒ6&ς©ΚQόyY½Ψ™ςΗ¦“”λL$Ή•x“6Qςΰώ%θΈOΛτM–{kΑν₯Α²oH«Z;ێ;RZf˜Ω–t›ΎhCΧί"Έ?G–OςΚ’%2ώQω+άΏνψ—Pό~Ώ_z!"2"Μ95§‘sͺ%ž#ζeιΟ$ž°f'“>ΨΙtψεŠΖψ{/θ’Όκέ(!’c1Dτ Έ2oO$%’ΡyΣ$θlΙ=ͺRΏ₯ΫKOD½½ŒRJΔ~λενϊ%μz/9 _wr³ά-ήo'λυώ‚d$E•§z3ΪZz΅jΙβŒδ•/'Ήabx‘š7Έκ]cΓ΅CVQ΄ςβC›dάγΒ^Y'§·ι/“K„˜όŒ„EΕ•)ΚΙHΛ“sϊ(lύJŠ| e"χ?Gκό]Ώί·?tΚb?!=?uB_²c<€™ f)Σ„­‰ ›6OιF pΛz—Ο.ΣΙz~υ~ψlGΙ¬Έ2ΜkH­XΩ9 б.) Λ;Ÿ/Kτ¨ΨKΑφΛDPΡz‘χϊ±~2χEΈ–3χIξ$όjΎŠϊa*!",Γ1 G¦Ήϊ|gOΏ_‰kZG‚ϊ6Ÿ$%e€ό²oO-Χ„Ό­XΩϋd…Γή™f6fΛ΄~~”:‘!ΊQ‹“ΏΛύ%€ˆψ?ng§b?RNΦ”+ΣΣςΪ_+σJ*EhΕτ?₯§DY εz1ωˆt#rΙβ0υ«¬ω#y|ή­эΆY&HΖ΄ŠΰΙ±² Ε―­g*R•™$£Λsϋ‘•Zz(ΆzC/ΕΡζθ’…eΘψ·V«dεzQ_ι¦b•‰˜§D]λϋZ―Ά=ΜbΚςeOΗΣFΣδY|½r? xΙ³Ϋͺ_΅«$ΙΙZ‘‹LΣ±³>]ϊΡr^4Ώ²E–Z/V{"ή—ηqΈΆEψ–x·αΥ)x,²ώ•υΒTΰμ‹1OF{KWφγυnQLά'ΑrqL¦YΉ ‡εŸ‘Ζˆ[vEpdΨό^WΩ’T€u)?Ώυΰj΄—"μ~Ε£%§‚τρTΆϊ=B^ςzΙλύdaf9yƒ½X΅_dήΜXWΗ…O’/κ’\₯α’χ" £B\ςΘ‘h΄C2JήImY'ΉσKJE"‹ΣΨ‘#Ρ!$|O‰/h^΄Ώ(ύ$›ΩlM±«ρϊΏφΖJVLΨl6!ψ|θ’Ύ€Μ3έbŸχυεKŸοΙΎρfυΛχ¬τΘ«‘ ”΄ŠωrΙ*RgS“ι±s²2Ϊί’ΖμZΛΩ|‘ο†δΟΣ·ͺ“‰&Ϋ(’_—*EκΑ“l’Θ2֏οOΉΤ+/UΟj6 βn7.~ζΙ ˜—‚<'δ‚ρ«Μ²·–josηΰπ*-‘h΄Z-‹EΔψž Θ܍ȴ\MΡ7DέtMΠ.€χ£z7ͺN&θ n‰Ίθ \E8ΰw"\[ψβ\K‰q- ,~OƒΑΰπx\‚˜Κ±*_΅Βlbˆ·&Έδ•)3«ΙoπΨ'ΆQf7ζ/_ތΆ[ϊpΗn=X΅Sα?D†A[#Α’(ˆ΄·ΈZe‘–{"έΏώ7ώπ`–θŘ寱I²…υ½~KfδxWΉ܌kΑΥ-kΘ‰Θ“:Ιω֊(’¦ΦmfΦmfΦmfΦmfΖlfΖlfΖlfΖlfΖlfΖlfΖlfΖl‘²FΙ±›±›YE²FΙ±›$lfΖlfΖlfΦmfΦmfΦmfŠ(’Š(’Έt³σz$ώο’73r,ΘΪ|ΥΗj>Hέ3Έ…(½F/ φΈOH‹‚Σ,ΎY%Jrέ.Z-‹E£r7#r7#r7#r7Δގβ;ˆξ#ΈŽβ;ˆξ#ΈŽβ;ˆξ#ΈŽβ;¨ξ£ΊŽκ;¨ξ£ΊŽκ7Δ܎κ;Θο#ΊŽκ;¨οδwQάGuΤwάGpލθ܍ȴZ,²Λ,²ΛΫ,2έΘI-XΎχυυνLΫ\$κ1π₯’^D-Y-"Ό-X‰?vϊΉΤ~Ÿfα;αϋαΰڍ¬ωΜο‡νp–ˆZ±c:ΩΤu_ό&m‰Q*%"’TJE"‘H€R)ƒbV±Β-φ lƟφ†γώ‡O*’1ˆz/Ή₯Rα z.Y†uRέ—Šύ~ώψJŒ“ά,’Šy$Λ/ν|0y!κ ˆψΏ―Ισ7Hή_Ϋ/Δ–‹ΨΈ>·d̏ldνύTΩ|¬ΎnΩ΅―£rΡϊ_VαsŒ7'γθ__O*ž&"ύG₯"™ς-›ΛK?zΛI ˆύ.ΥqwsχΦΚ±κΏΠhJΉ§C•ύ€½--‹œq¦UsΗ’XgεΎHZtπΘD8/«j+‹*6#izΏΘz/L\%ͺΰ‡α3¬Ο•–[73s73s73s72Ωlσ­²ΩlΆ[-–Λ-–Ο%³Οιi_Eιh΄Z-‹½m‘e–Ye–_Λ§Ÿˆφ‡’ΧχΑύ#λθ\εΓφΈKUΗ3¬εΕιEQEQ΅”P΅eQEQEQBΰύ.έ£Αh²Λ,²Λ,Ά/z[-žO'“ΟΠ΄|:wςΗψĈψΏΆ^”Π₯τG„GΑ{ΰώŒ¦YmΖύρz^–n,½/ƒ?[––X˜ΩeιΊ#λ„½Ρ°’ΰ€Q΅ ί ZΨ΄½mhΉcu<‘ΒN‡–'}£§ο†Τvβm£δ|‹‘fγ|EλXϊ|#ΑEΑi“ί[*ΕɈ£υE"ŠEzoΙ^9{(Q³dM°*ŠͺΈ?\$"ε§“k6IY΄‘ hΈΦ”(ΨαEQϊ­< Dy?KV·)αΫ(Ζ%QtχΘNί:²όQ!‹ΩU«’χΧΛΟ&!•£εθ~Έϋu₯λzP†/zΏ\$!žt‹H”ά‹zωΕοƒ+E%Β„1sιΕ珄Ջ\nε¬}ύτ΅—€=‹„΅KΡΥΛvnLGοF΅φQDΧ%fΤJ4τQr}·§ν‹ή―Χ {GοOޞήΧ£φΕο‡μΨψ%eiϋbΥϊΧ€κ<γωkEkίdŠ{£τK„΄z- kΛψΏWsαz1τXυn„Η§£wŽY/%XΕ¦ν―ή²½Ε#ΈI©kΊςΟ.‹Χχ{Ko \ϊ&Cρˆ‡ΗώΈω<Φ,rƒΡψX£½¬Hν#b6²¦|Ο‘ς-ή²Ρθ΄\%ͺυΓ!•Τ«JB΄ύύJm§ͺζτbΣ΅΄?Zy"KΪ<ΝθΔ(9=Ž:Ώ‘ϋŠ6ͺα?ξa!ρ«€€δ|Ν¬Ψ,ΉY?κ2‹Ž|ς'Ÿ4λsIεκσc‡I•dŸΡϋΦZ=‹„΅\rS¬:Œ²υežτύsΎnŒ^ΛΡϊŠMω΄υΟΫ£τ…'ΙΎΈΩ»V.}3ώφ! —μ\#™9ε‡χ1ΘΛλb:ƚώžΎGοY{‹EΒZ9=υΞ±s΅£χ£+WΕkBΧχKV.ΧοYΦ…ωhΝΊ/rΎT-t΄ύ1sΓώ\"‹’αά’’Ξ₯›hσYό”–L―,ΊI(ΑMYz^Ώ½_±π\%₯rΙοϊƒψσ΄ρ£,³Ϋ<ΕxΣΡe‹OŽŒ\―ή²φΈ?OΨ•41r->:1pzΓΔ°ώHŽ‹’αΫκNΟPΟγuΑΤ‘t™Y–Dp²8β,q6DΩdNΩ°Ψ(ΡZ΄χT†δΘRFδYzXέύόΏ¨Ώ<δ"Φ”mc°ΩE hλƒ#t^Š6v™,[Hα³²ΠΥiq¦.ΧοYVo•iL©£#$…ο‡Š(Ϊl,νHqh’αL\όk‡Ω‘pΫ₯x’‰ ;#뇝/ƒό‰h½q‘δσ₯πŸεύAsEΕιZ¦ΖοKŽ,ͺε·U6Mξp{G92Š6²©. ύλ!δ"Ψ₯Ώ•IεΗy΄w’χΒ΅R%+¦ς±Άτ­Γ§‘q­+V/ΙzϊŸδ?‘ςKIψ}ω΄BαB€Z7#z7£z7£|NδNδMρΰΗκ”EiDu|™Msπ9'₯Ӟzt~`Gθ\­£CϊΉΜλφ4BΎ…!Χ6%Ν:%’Χ:ΡϊΡΙ‰·ΟcySδΔΉ―rΘ€ΉΦ”eŒb=:ΐ‹,³Ιδσͺαw’δŸΧCϊΉΟίYώ}Έ2Ρhπx< ,΄ZψΪ.'Δπx<ƒΑq< ƒυΑŸ#ΙR>G“δy<žO?WƒΑρ<W―Eώ4μ'ΙΖτZω-ς__ύOΧ.sχΥŸD. £iEQE#i΄Ωepe·TQγJ<P‘eq~Ώz½h’Š(’Š( £iEiZQBŽ’ΰΗ―Gώ$Gμπxυπeu•zϊΏθCΡr—Ύ§όΪ!pzn‘~,£Θμ£Κe·Αιδύy6”ΚeD9HΆψ$5c\$#αZX˜ΛΧ|QwΕ:μυΓΟ z.‡Eώ"<}σσ|Z:qυυΨώ‰ œŽ£όΪ Z^ˆέ›ΗZϋοKzE[U₯ˆ|#€½k!~¨Ϋgf1[`8Ρ\ޞzcŒId³vΆ!‹ƒαЌ 7#r7ΔξΔyβwβ&$ϊΜθ‡Uœοζ;َώd,ύAίκZέ9¬~Ύ―ϋΡ!qZHΟώ^l\/λ~Ρϋγ|i/ZΘC+DθnψW&.Ν‹ƒαΠŒZ³&Z2gl†\“•bl²&Δ8dodΠ₯FδΗeHω˜#8½³Œ·e€n‘ά™ΊdrΚMξ>GΘω=χ"ΝΘ΅VZ/WΙi#7ωy±΄¬ψ"[^ͺΠPΕλWμ^γ7γ‰)FZΗmχ ΙE ύk %λYύ‘Γ&O‘¬cΉφΰ8ΈŒύjτF8nρ!μzΗlG4Η£βψtf›YT“xόF n6Μ۔ِν=Z"U”P‘αΰΪΉΨΚZ$ΈΘ['‘–&XΜίεγΈ±ˆπ_;h~ul½—γ’•­³’υ¬„~ΰ%9H·ΗwбψΡ²ΗοΣ‘ˆzΎΰG†H),‘p#‚ή(W*(€ΔŠ+F΄―§ώΎ—Απ‘—όœv*J†/₯πŒSsŒτστ>0ǎI$™/FΦΔ™!}/„aΉΟ€ώΊ΄ί £αΠ~$xΞ6θ‡ΡBχͺϊθ|ΨΕΞf_Ο›ϊhςz³ΙZ~΅z~"αδHCαGθ†]ͺRάδ"†Y|7Εδ|"αηEψ±p|?§ώ$|qzG‹OώŸΕΟ'γ—όœΨΧτ1pύρL|1ι/ZΘZtψ»Ω:¬1Ε›Χ(ϋ|ޟ½/ΓΓϊΰ./Eυ/₯*γ\?|ΉδυšŒω±iΉhΛ/U*wΈjΈ1F-–-¨όΈΓΨύjΔ{:iΗ§ΙΤδY³2τχτ1‡(Χ%’HjLbΰψt€Ή―φ?θD…Ο/•ΧͺŸ6!dΣβ(Ε’Œb%d)νΡd”KOƒ£ΌΕδ[† ž‹gMέΘwςό‡!έ›;’7³»#ΈΞτŽμΞώC£ιquXϊœkrKΧ }˜ά"Ο‰κ>Θ‚qκ#ω^”-Κ?”(œγ'’iωŸΘΘw²μ¨ξεL¦ό΅Ίus«ΙM䯝[ΰύkΠ―Zψ,½Ύ*P7b&°Λ'{§;ύ1όŽ˜ώGL#¦?“ΣΘιδτΗς:byϊYF=GK«₯cɎSRΚoΙ~Cϊ$.y}QόΎ‹/Ζζ…&•ΡάhS‘I­šš-—―Tώvιrks­ΜrlmΙVιVω$₯$”₯6—τ™§‹―Ϋ«"1ϊαΰψΧΖΎ"ΫIΔ[QρHπ'E—₯Qls“76n“-²Ϋ/šM’Žέ­zΗΘ±ΈŠ1)hτύρΘ“{ΰe…Š!Ρ–*[bže¬Ωη-F=/Λl’€•~cϊ$.LΛλϊΎ*Dq9vΎWFρΞR\jΞΜ’γΡu §ΟΦJ3κœΩΫ%θψΧ?,\γ=Οw:·< +ŸŽφ!qz>66†ΡΰΚԜ6_ƒl§'£hφΔߍ›πΣɈYΫ1Εt„raDϊ𦑠˜χw ??Cϊ2ϊώ£οq²ΡhŽM£•–‹E–‹/JΡh΄YeΒΛE’ΡhΕ‡&hιGθ‘sΗ=$χΎTV–‹E–‹,άί'ž/‡Cώ4./GλτyΣ¨ιΦQτDz8‘ΔωψΟΰcgπq’Š!ΡcΫόœEΣ£ψψ‡M¨p‰Pˆ‘cΑ†Go²;ž8TJΡFͨڍ¨pCΈ‰½[,΅¦O_Τ~›7ΜάΝΜΆnfζnfζneλŽ]2ΕΊFζne³t7Θέ#t‹fζ[?€Lκ‘ yΘι/\<Αΰψž ‰hΈ—Ρh½l²Ωlέ"ΩlΉΟ'žo‡Cώ4-?|?QτV”R Z^‘VήDμtυ_T‰)Ή†οO:?§’ Χχ£Ρ›1δΉ~Ω1zΦrΪ’χ.?υΒr€uσ”0πψνπ=(|ίNXΪb+‚ΪE΄τzV°š‰βΖ_ƒφΕτ³Ξ±Ϋy6?«ΨΕ£Λ:γс} G₯•Νi’r‰mύ?υΑqz-w£!ώcϊŽnlGό•ΖŠδΔ~Š+…ΙhύΔ1kδσ«<”Gι‘xαZ/Ε‹θθΑτ-/gλE―νθΉΠυ\e͘ΜuΛηɈGnz>*.C„£Ε‹M’ΡρŽ9Θ”e+G£­Έ=^ΎΉ-6˚Šd•}]#¬ θ^Ή:Υ1‘β—?ϊ±βω³ωŽ»ς捾8y+Ul B$υς‰εsΑͺΆ> “Cx’ΣΡzΗ&ΒRsζ·Dy&υ£k6ΘΫ!¦šƒ§ττͺπ―‘zϊV‘ϋ?θ—½#ΖBδΜζ:οΛ“ΣsΣsβMŠNχ!ΛKfζψ1εb‘qdΌŸ–β›˜νŽLάίΤΔoŠ<bMά-“Ά™E…uΑ}[ y£•iE’‡—²ž›λ&ŸφKIz‡Αθ†upάϊ˜¨εϊ7‹,³qΈ²Λ,²ψy<žO'“Ις<ιδςyA:r›––Y|+O'’™δσΟΐΎŒq!s_EYl|άSk֎ŧύφ?PβτZ=WŒy)l‘{γΉ›€[-–Λe²Ωr<–Ο<|žO'ž~xL΄Ye–Ye²ΩΊEΘΆyγE}_+‘Ώ:tTΦ«ŠΧ&XβδΎ΅λ_ϊ%§κ<τZ>JΈgσ?§βWΣγƒk‚/KΛΎ ί=₯}:β†γτΌσ~τώη‚β΅”c/ΏΟ/ϊ%μύG‹ΡhτZu_γΝ%)ύ5₯(Y°p’΄|XΈ$m‚>_BχυQΩ•leτΦ±΄Ž·τKήŸΣ„-τx=}ͺJZΡ/gκ?K‘GˆKίΪδή—τ­+KϊΧΎ/Œ]9MΛKϋwxϋ'­?§h΄\W/r1PGύ“φ~£ΕςC:Ού}W“d±Ξ+^ܘΣ_LcΈΫQZ₯mΐjΎ˜Χ5Žl”%}ύq‹‘ΪŠ' ΊΑ@}Ά5\Ω'Rέ§Aψ!s\oύ?ϋ'ν₯Εϋβ†uŸΰϊΆ½73Ή:Ρx7Θά3k⊑JΉ[/J ή‘!ΣΟ)$α-cH–YHέ*ΪZΣ\ͺ…=©Άω­Όηωiύ;ΠΉ―Άψ=ωΥ V?|™ΤΓ~7ʞ«ξ§ώ‚‹nͺZ#¦κ!‡Y%<Ί_Ϋ΅―τ8lΡλύ;ρBζΈΔ' 01!@QA2aqP"Ϊ?]J—cε¨ωͺ$lΤI$i5 Έ>f.£*ͺIVœi‘ΥΑBŽμi5'κz'5“Ϊ’I$Χgg” }ίλxK°₯(Ce]OCxMΰΩD“Ž–iπ$›I&¦&jdήFπRhOςk‚ͺΫπžpi! £ΈΣ8?δώxPFx!RΩΣ]ϋ£±(uo,¨œ4‰τC4­ tEI€γb 8½†πSφtϋ ͺ‘½η„α€μw4{!ZΌŽ£P«5•;ι4Ϊ›j'ΐΘx±ΌUŠ{(5Wœ“‚Κo#ψ*}Š’;ZMf³Q$ޏŒˆ²!fσ\ŒO·bͺ ug;Ίm Š”α‘Τk5x4šM$"Q&‘ΰ°Π5ω f«Ζ)ΨκΌήvg >Ιτi μ‰5±»Α’-7TšM Π|gΖ: $aSœ‘8όkκΝοΙ7dϊ4ϋ?„{$“Q¨‘*HΌi4M 6@ψΓS΄šM6œϊ>8vuoA7gπΣμ_’ Cf‘»ι&Π*M‘ZΘΩ«ΏFέ+θt)΅u}x)ΓIˆ$‘Υx'bM,T3I’p‘T7λ?F’ π@Ζπ¦‘QΥUŠΕa6Hΰδ‹HΨκΌ ›ͺΣCΰ’q’m7O~Δ3Q8Υ…(Χr~ΗUΫΩDέ/gθTϋ"νήM+yΌΩfπJΜ]ϋ nq\•8Α"Š{’=Ω²GR+Hκ&ΠFHœ'²I܁vΔUU’Πάέ!"J™;ΙYSi$nΠ%’ΒZC$“΅’Όˆ’N3‚—μjэ(OΉΤK)Ωƒ‘+κ&Ιhχή-9‘ή-#™+a!B*«μ{ά MΫ΄±6UΒm@ΙΖnρjΥa=³TφŽJžχWnι`½κυiΒHφOΨΥζκΡeDYσgxxΣL‘ ΉS9ήJνέ+E“ΌήrUŒΥf²ν„έΞΤ²V’™Hl{Τ«·t­αΝ›΄μ"ΘΚqHHvy#§Ι¨ͺ¬RΨBSvι‚lΙ΄Ϊvfr5vjΙη$•+< μTς‘ΰέ‘ΝΫ΄ NζόΪIέ›&:}f¬υhϋ΅Vx€SK| ©ζρJΚΝέ!!φ΄f6N1„ŒΩ1©8$jΙΰ•€vx€.Θ©βΙY₯nd­ͺ.Ψ‘#x₯xΌM%T☘ϋœ ZpΟRTΚΆ&ΞΘVύΩ+M—‘‰ δ­bδT}³Orͺν’bcR>Β–©Yΰ…cΚΙ!•;+<Β.­e‘~μ©:λώmJ8&&T€}³EVx@ϋ!η8π#Œ³ΊCcxE—OΠΚyΪέoΖΤ kΔΖ§aΎΦxRŠžβ9³vJΣ‹xEέ—|Yς.Jjφjϊ·Wρvι‘’beKwgm&”& xΞ.θ~‡eg‚ΑYŸC²βμ«›!;uόΫ§ƒΑ1,$’I½,ΤUL]γ$αΘ‰–)1Q,}?ΩρšŒΡϋ;R}H†;!νFχKρ:ά“αΣ‹Ί΄ΩΤjFΏVϋ$CCςϊ_‰ΦζI>8Ό–d!ŽΘ~GKƒ­Ο‰M–ΕJ9γ΄έeVCς:_‰Υηί¦Λ~‘ v[q½ΰκσ„Z2Œfλq)Εc²ΕνΖΟOƒ«ΞΜmӜm!YΩbόJ8:ž"Ϋy!Z«,^2v;‰»' ½SydΌ+;!ΰρ‹ΑFtή΄FβΖ1ŒΊb΅V^ηGSΔDμΌ&θ€eYλΝb‡—ŠΎvΨηΗ&ΈΗγ΅ΤQΕγχΉα2Š+c’FΏEΘkΫ?δREΆ%"½}ΓΜΘ―{δ‘ςΛΒ/―SC|‘v+sΨՊΚΩ―ΡΤώš’5ΏR‹B‘¨r5#‘-Φj5v­—„ΆXεΰ›wh]_Bw^tšvkτ;gD~OE³‘e½Š,Pc ‚¬λ5Ώ8˜’i4μo©©–i”Δ˜ΆΉΫ±CR’KτVΗ—…δJ²δެtΉύ Ώ'M”ΟΖΟΖhF’°Λ%/GδbvPΛe?"Ϊ†πΆ>vΆ~AώΘΐ¬ΦΚμΦΝ^ι©!Ι²—’ύeA±|bŽΛΡωΘ6Ψ’Νœ^e³Z"ΣΗαGβ?SΝα²Su…,Φ^ϋ5y²Ϋΰ―cŸ‘ί“ω,_ζΝh!mšY₯°Ω¨ΦΘΘΚFf‘±‹|\neln•δuˆσf–%Xe·ΑKΘηθώ—λθPJc™©”Ν+9‡$~_F¦σgR˜BηŠρEζΆ7JΙO₯_D(­Λ³Xf§ΰώδτW²ύiD±c™ͺΝ/ΙI‡#ς#ςϊ™fΏBΆXŠΪΔΕK“W’Ω©εbχNT¬»θŠ|…vδ²εθ―cŸ’½—λb†l!՚P€jȏΘσEeP‘μγŒ!―X„z—ΦΝf¦[:—Π²ΕΆRςN](Vϊ!-¬[Βx¬9QՍ₯ΑΟ'σ -ŠrΟξΙ|ΓωΧQEa"ΊS(’°ΚΩΗAϊ4Jxλ…²rς>½zHΒ²—eŠ9nψ:.£•ρ„W‘G-ŽEa²s’5f+ ‹+Π‹²Š±G HΨ…Σ™p|q½Ÿ$ϊ‘zΝf·!,7G<ŽT<ΖΓf¬Yc(ώ’ψ?όš=šH£ϋ± “‰–2Ηΐ„¨dBe2˜ΣhJΊb†Ζν ψα]Y[ΪΩYoΡΐεyQ±*Ε’~1eνBύFKβ£F“©cdQLκPΚκV?YX\ Ρ$,ή[’rθ_CγWOubχέπ] ηAXr/±ΌV?‚—†Yя Ρτw‰ Λ£’ή(HxXF–Κκiέ)¬hŒu1wΉ‘²„¬K ε½Y¦ΉΎρœri?§¦#O­œ²’x‘Φ^ˆq…Šλ…ΆRδ¦ΧB*—mg‘Θo 9ocφ$ο:ŠΟΰ‘ο-Α«ΨΧ”W†'BvGPbβΖ]b°₯†²Ξ»rΕ…‰+)μ“%Ι‹”ϋ’–(Œ}αŽXr8?l«*б,WaΔΆΉ:1‘6„μcΝb~#cdxΒάΩςqΠλdcEl“π-ξΫ$λ‚ρο r‘Mɚp…eϊJ+³YΣ\ WΘγθ―B–Ν–!•ˆ<-ΝωDΡρ·Ί“Δ°Ψϊ!‹ΩωōΨΨΥ‰V9C‘!.Εο”E*δ«ϒ±‘3JΩ0ΆΆ?%_U-λ+ œ •δŒo-Ω'D^£ƒUŽ6p$$%²ΛΩeν¬4u‰ΘОΨή(ŽΦΖξL‚ΪŠsWžz’bκ.’Δ₯‡B₯„†ό ŽΦρeα–j5•ν’ŠμhN°ΦΛτ?bΒΩ$IˆŠΕ%‡θl~Šπ„±'ŠΓ^EΤoΒw<^ψόΊ|_λsC8κ„μhXkc πΆyπEu+c,ΤYylΰ“B+ α"±Cύ l±bC/ ‚可c‘π7«b–Ζ†Ž8Ό,5…θd0Ά~…Ιυ·Ι&.’λ™;ΒΛbDc[ΒΔΉ/δ\ΰx£ΰX˜„φ43ƒά‰uΒΩ9 oΌ¬3„7ΰύ blEeτ"²ΩyŽ%ΛΒΔxγ||γβKήΠΡ[$²ΉΒΓ™©ŽψdrΦN«‹“² dVxΔc²X‰Λ#‡ΞQ1¬|Kώ±=‹cC φQE™£@Ÿ[ΒΫ€qyατWbLBΒ ΆΜbφΘ―"ΔΉΝ ŒHeYρυx–ΕΆK ―n=ΔΊ‘κμXc"²Δ―t†1‘ΔΆ.0Ζ#γX–ΕΊH‹νΕuΕvY ,IˆXXŠ­‹ πG[C”|kͺ(’Ψ°Ε™,Eφ£ΕαlλΆCbκφX–[ »(€V)RΛ‚4£J#Ξh’²ΚΩ4Eχυ#"ΊY<"Δ2*ΏπΪ± ΩE–j5ΆXX–[#ΟΣθtΗNόΥ1>ν쬀Ή!ΗԞdΖ",’Š+bΓΆ.2Χџ$8+ιΟc‰ΪXcΒΓXΈϊ“δ‡oΎ±>;λ xXbϋδ‡έlXŸWi‡…•τzJΫ>Hq›ΩΧ»>0χ7F²ϊF³Q¬ΧϊrκEυ‘ˆXbξίn|ΰ―§>1YYbμ¬QL3ΕŽ‘‰‹ ]š+}oŸ'ΗΖh¬V+Ή>Ϋ(¬Vπ°Εφ'Ι>’Δπϋ/eaŒDpΕφ'Ι€±<>ϋ„!‹μO’ΛμO²‰:ΪΖ!,?³>H}Iαν½‹sΎΔˆύIοkbάΗ…†/±"ο»<>ϋ»6^,²σ{δGe–_z[,ΎΛbΓCEΓ|χ«|ˆwλlĊμ%±-Γϋ2#υ>N>‹$"?nD~š>N>‹$"8fD>š>N>‹&DXfdστ~N;Δ7!1 0"@AQ2Paq‘#‘±3BR`rbΑΡαπΪ?I±t±c°”θ±bP±bΪ¬X±bΕ‹,X±εSΚ§”d€zΆN_ͺ»ΤΏΐ΄€ΈΓς?ξ£xi™GρT„ΨcΆΤσΦΒq~ίθ@υ α#…-D―ΓOΘιΕQΕm©• ©mQΟΙΫ™αWτΙ([a™H8ύΗ­s(ȍO%ry˜BWyΉ†§~s"@ΉΊ©‘ ‹>ΘqύΙD υIΓ°φ؍ΚIbwdΉΓJ©ΓJ!™jenƒT©‹Τ6nfuίfεΟ1ζRεπΎά’Σα«…=ΟD7δJ|4žͺ=c& ͺ6ί•‚w$»œ© ‡jN„T^¦bμpΙ8*v痐Μˆ²@Ž2“όͺ?Qc±mˆuΉ)Ϋ•"N$Υψ&v.2#EOמ^o'‡rΏΏaΊ‰Mr½ΝβB'A¨α§ju·-νIwψ8)όœU~ ΪΉ; E2~₯ω}‹δciπ›‰βwG$Žς=?“%(υ™όq΄-]„­:γ:γδΰν΅Δ§9ώ#Φ―ΘXqΛγ:ωͺΎεΘE:!5~' s9vέpsιŒRqόU2ΣΓAί‚yNgfTύ:'·ΐϋ°˜JαlTœ<₯„ΝgΧΖ­ƒ―‹Su2Σl$Ή₯ΉˆΪƒ2™jŠf ²Š’­z™|)S7‰q΅ΞΈ'u?N•SŠ―Ζμ!+…Ή(ΊŒ²:αγΔ-NΤ"²1܏Dʘg«#xέ,e’žO„βΩdŸ‚8N9Γ/m˜%p3±M_γRψΥJžΙ₯HBΖNβP7zξΎΣ¨™:•Υ_S%=L¨Ή—ΈήjΟ«βΚΎδ±Δ§k₯ιœ'ΒHL$ΆΉU=ΠJϋ£κΎ·Ε= ΝXž"u’“ƒΌϋŸOΐό™ͺ•ΦΪγi΄6‰#f%OρtΖ ’HΡ<ŠSΪ4ίm=š.Θ7εQκα₯:R)ٍSΆϊΰn5ηι9ϋͺF‰δοΛۜξΈ| ύGͺkΕ#z7[G :έOΣOΈυ«ιƒ‹'€oMŒ/…ωwRHL«{ žnζZf£κψΈΖˆΧ<ƒNΎ%8½ΗͺWKΈ2dΞ›ρ„λEΒΨ\ΎΪz‰BJžΒΒελsιψW3Υ₯Ηζg\œ<(:Ξ†BG\8Pγ#'N^Ϋ7#bp±q+o>#σξ€Ѝχ>‚Ατό/Θλ­ωfκIΈŽM<'ψΞA:λz'ΰ·δΉ|fΫΆRΕ°sИΑ8άΈκ₯Σ”ΝQO‚—\TλuΓπ‰Ύ¨ΥΓΤpGΈλ+£„βΕΦ7³ŒιL”ώN%oΦ~wξJŽͺAe,tUρΏξ"'(Ϋ.£ •ϋ™S¨έ:ŸOΒ°ϊšžY‰Υ#x_‘λ•ΡΒ:ΰΘqAA;‹JHΪdŒ8ˆΪΆ€±Γ$S„ΤuRιVeG°«šΓ«UΤαBδσ9ͺ>‘–‘Ί‘νάΙE΄2γνͺy Χ–Ž%?U_ͺh‚pd8ˆ$‚w p§δβ]¨Β䐇bδ‘R·±Β€’£ΌCOΙΔpˆ«ΠdΉ”j―±—₯#αrεΛς’:g.eνs-]R{`Λ‘φŸLk’a;bγ!8AΔFO9)χS̟cˆ‚DΛΠzN9bδ ͺ: •`ΛΠΛ‹ΣƒτHΕϊi8•UH£ςY !dΨΆγτΑώεΗΨDπ’m”dδ'S¨ήδœcD‘„rFΤa$!Ψ™”λŽc-G±ΑIΨe¨‚qΛίO|+n…-²ΤΜ?SτΙ©ˆρ­ωΕΊ ”O{ˆ‰*€XΙE΄>Γ'-–™S5zψq‚y$|(q.‡ώΛqΘΒ{N’ ώ¦}”ϊt£)2£$―a·±Γƒ—P\δΰΎΖzαΖ’Ψ{φA)ξ&Tb0βTMΙΥ• ‰Tφ2T{Œ‡Ρ’έu:ΊY9WS²ͺ3ΰ‰wΰ‡C‰p„2€Ž‹ƒu$”s…V•χ2WrFΗ/JpαC5(5(Ζj†M#tΓ*$w„ϋŒƒΥ8Ί?s"}Δρz;m[ lεAι>­}FA‡ƒu§]-ΌΙ―-fͺWS!Δ2`·!Ult2ψ•~ΕU¦ζk)(Ba”c7S:J‚R«rEͺ₯wΠͺ~’&^δbΨpˆIϊhκ§YLΎ$Š˜εS8έ iμ ΕΙδ1sάDπΌΖjΌΛͺt²mΆΛ©Ω5Ιο²H¨°ΨA$‘ΐ£U«ΎιΉΗHΛ =#¦ ΨΞNiN%c‰dΓ7AΗ[ O—BΤ« -GΤρmΡ ¦U-ƒ¨υλ½S‘<4°ˆ˜:ΰΘγͺΎϋ™κ2bΐηu2ΣζQ6A“z7’Ϊ`zΆηDƒ:‘¦5Ή:‘ΌAθš΄Lα e ύKΰλΠΟM”JΈjΰΈή™ͺΎ™H,1ΏM§Ωξ9DN‚ΥIς}—&λ‹iθ$Ί¦>Ψ²`Θ:ΰλ±dΑ=Ξ,`eΡpqhzFρz\]« ΩȟίθΥ”zεpD©#‘Ζ\‘ΤG# ξθΌ£!τΖο†u>­W]¦NCάj‘Hςγ2ƒμΰάΌ VŽatχL5I"{f^Ί_ ”T°ε(‰ΑΟ¨γm†& WΡ2F…«¨ž)²ΙΏ;Ž%VZleTj’ιƒ& ˜ΊλŒcKIjDδΣC, τ ΈΊ PθN¨SˆŒsS-Σ Ν\©(Έ2Ε)aΠa‘βΓ5K lΕkJ1ΛεL{`ɌλŒ}΄ΆΚςpN‡€jˆΡέ6„Μƒ/ ϋΰ•Ρ(Έ#[kθ'‡MzFS%HΎΕ~:ω«YΑS·"žK9ž˜¨Λβ β)š½,7*Ι‹ FλΥ¦]1̸Տ°τŒΈΊ ­”§?φ«Œ½L”#"`υC}O τ’Δ‘J©Δ’(Ι*Mϊς§Υͺλƒ7SθΥ)O\#Cθmu52ΊaπuΪΜΎ«KU±}J€‰–“%wL1sτδΟβίz Α<4ωS.{¨λζ«eΠ}ΆΙ«2ΰϋ1„θu ŒcŸƒ-ZG€œ}΅ϋ_δj‹‹„6…]·σ ΅Υu•>·Ϋμ:ΨΞΎTΕ’ό»©™tζ\vY4²ιp@ˌk“†U5PLθΛΥpύ¨eίJ;N + αSu œε}΄Ίΰλ’7gτf\`eΠιΈΤ'ΣV?Z?|΅θ"U~»pL`ζδΟα/ ‘τλ…OάΝΡρΧνŒ·ŸN]3°γβΙ₯“Σ'CTE±tΨΎ‡πIϊi™Ο‘Τ‹σ»ΒdQeςŸ"γζTεK%υ6ΛaΚ:b鯍g₯΄…ύ°tδLΛz‰±’κ?a|EΩnAΜΛ‘dfΡ>¬ι‹¦ΌΥJ{ ’/a< ͺ:¨ύwSΓC/‡sί¨¨Ώ'…OQˆΨ~CΩ7ΫΕΧΠ2σN.šέSΘ%V~۝Ξ(ΕS1žƒΰZϋs9{ι|u{jtΈλ‘ΉΔ\2αygM¬ΨqI•»ξ"uQ‘‡­Ezzκ|ςs₯ΜΛƒh}Y:uTŽ–ε\uہƒέΔ#”aΣΤΨ{a˜ώ7ˆ%τ«™Ό/ΐΝaͺŽM΄·DΤΫ/‘ρr9FH8™Ί`γ κ·εcά{”–=“mπqZΜλuΒ οΘΎuΣ›iφj偻 ₯AΜΒw}ΕC0ά’ ‹.Λγ‘IΫΚβR½LΗwΓAΉŒΪX}†ΪϋrŽ8ϊ‘¨jŽ(EͺL΄χs„a*^Ό–eΤΨ>¦(Ώ_ϋ„Jjαφ–²?΄Λ_˜ψ3—δς¦ŸqΉ7ηg ΛΩΙ—A*κfξ…5}ʐJyw6d‚vΡ ‘?υ2υ]θΫΜΊ3°Ϋlœ’ŽΈ8Š€ >„Α–ζd…AΗΓ*υ>νΜΎΓ™†O-7Ϋ¦Ÿς>₯+ž‘(¦=†N˜ΙΒ€θmόΊrμΎ…k“‹s 6΄JΊ™©JDn€‰O,ΨΆ/©…Ξ¬’jƒ*©Yά~†NŠqτeχœuјωτeGΡ:€Κ-# ψ#ϊ&eIΨαΉ'ΜΙd>šq£L·—KΊΪqΘΓ7nO„Q2Š‚8‹ΨΝΣΠίe3S(Έ|Fττ6‡FnO*m> ƒm°Ϋ˜ΐΈ76Ϋ-΅—’н‡δcΑ°Λ₯ΆiΆΣ }‰Ετ2 ΈO.Ψ>Γο%}J;νΞη ™«FΠό“―!Q²ψ¦.·Π[w‚Οa]“zv[ΎB°ψ7 Ψ2s‹ŠAσ₯P|ψΑͺλΜ?.κU^‰έ_1φδ²§^nvβψ{‰Νe^[η\Λo>¦δGδ“T‘φ[d'Σ©£j άDε²'$όΜΎœΎΫσ±ρ‘ωΓ―ϊΧί‘‚t>–ٝŒ‰Σύ=ρΆΚ',έω ΊV‘Χύ;„žV BHΪψΠϋ§'ϊKiωLUρΆ¨RΞLΊ•y7AΗηm…°±bΕ‹,XΆ,X±bΨX±bΕ‹rn97^R9εΛώ–Ψ7’’n7+|/…πΉrψ_ —.\Ήrψ\ΉrεΛ—ΒϊoͺεΛαrψ_‘0‡ζ}}»r7ΒSrψ[J―)—Τ­…‹8‘K~I₯O*–<ŸΉς οθ―ΚόzΓ …ω?ŽR ž„γϊKς νκΩDεΏ­g§χzςn'? O0ίιιθ‹Ι"wτϋ,X±bάγrΛθ*Ώκ Θ_bΔh·4έωΩ#–ζNm”•‚)ΡbΔο/(”ϊrאϊWeΆ*OE]Ηί•υtΨ]Š—ίBζV/θ ΌΤrΞ€ ψΖίΏ"©Θ«υΠ―’εΛ—Βt'&«θοΛO+φΫ„ΒεΤς~ζ_§ϋŸΣOΘως2x_ΉšΊΎJΥ7S“«ΠŸn7ΰ·ΪMϊ©μ%XHγΊœ›©SσΏ›ΓKάΛβ! θL“ƒ.κrt§©ΎυτΎβ.φώ §ΰΊ~νό„ €λΎ›—8Ήy9#jH] Ίθ_–žmυ7>‰νΟ8ό€œ$‘;ο„ξ'ͺ}ΉXΖFbΫL¨FΤΑrεΛ—.\Ήrδ.‰],[ ,XΆΝ¦ΒοΙ$“!8H!sίsίjqΗΛ—%K—._D„A ½Gͺ/Ϋ—ŽAΉYV8mΏ:8Uρ£Υ*ߎzuρ;ς6ί γO*άύ\‡S©ΧTNΈυΥΤλ·bΕ‹ΣΠιͺεΛ—.]N»Τ‘»:ώyϊΎΤΣ•£οΟΥσ·;3΅nNεφXθΫϋς΄―?WΞτ!#¦μBƒ§)Δ€.φj¬p£&ί{Κ‡• !(‡φ–€l©ςq7?WΟϊr}†vCϊ„Τ§χSΘAaͺE8\²–:œG 0yO)εύΟ"žQ²*ŽX·ξ[χ‡χ<€Η#WΞμc%‡§j³bυƒΣΘΎ=ˆ«iκ°Τ ιΏRSsο¦ ΑΤΛMξyPώΣΝϋ«½:—j6jωζΫbwu²μ·%χΦΘ†jω•δκωε€αδ=ΘτVΤΏ<’ΎϊςJ/Ο%<ΣrσΘ/Ξ Ο―$’όϊŽA|:lœ»m/Ο ―$’ζN»N[bΪέHmvE!7Xϊ•*[‘W‰M—yΤς¦ΖeΪϋϊ ς_tώETκ«΅)²ΫΈ\κ6†D#rqθ]2BU1LΪ,2¦(>ίίΠW’ϋ§ς}ω—Η‘rj•<ΕΠΉ‹0μBŠyT±m0[…ΙR瘹rδl·ΎόΰΟϋΓ―ΰŠTςUϋEύ%_±4/μyWφ<΅~Η•cΚΏ°ŸŒW’Oϊ§ω>ό¬γOώG†―¨ΊgCα/‰γ]Ω―Γ¦Θ»2―„ θ*²ΙΤ±bΕ‹iΧ8:Ž8㎣“±χίj•2~J|O¨‰”σΣω?©Oδώ₯?“ϊ”ώOκSω?©Oδώ₯?“ϊ”ŸΤ€Z~’#™~’A‘ž…x"“δ“ώ“ω>ϋ,0Γ`ΘAA|ξΔ¨Κ£ N γz ƒ ΘUαυ₯_ςxŸ;R(δ£’ŽYπ±m 2©$α;1­>pβ©W mΜͺ"κbN•‘3LΰŸ%\’Υ?Ιχ^aVΦΦϊ’ͺΌ« WU θ«„θžAφ_z–=ϋγwRG •UΗ‰PŠšŠ…§5‰α-^dy8ͺ₯ ­>Β.z%MR~O2~yͺ“οΟίUUψhιD― N‹ΩOδj–…NΔx•]’υώGΝQζ¬κpͺ ™έWδςžSΚ„R˜π‘(‡yPX<©ψ˜LgOrΪΣώ©ώOΎΟMϊώ§υ?·vΏͺΟΨͺŸ ^Ÿm›—.§S©Τλ…‹,[˜§ηΠW’EN΅'ς}φ§ΎΜα‰ ;TΧ ―$ŸτŸΙχތ'z“uٝ1₯χι―A^I>Sω>λΌΙƒU»' !sί“‘¨L7]Iί§η’ZVb$}KΙUπ%yΡ—Έ«š˜Ϋ‚wΰžƒa—MΪ?λΠW’«αJ>ΙWΒνIΒqNˆ&g5V8`j±s ι ΎΗu,ˎj€°τμζ«\`Ύ΅GΟ ―%WΑGίω*ψ^fFΡΫLλz‹h—ΨmΜΪ©ωτδ«ϋaΓΦ6_v1}Fv·γf9N#‡ΛͺŸž]©M₯δ«ϋaτ[έjŸžI·Χ’ρ>ίΖΒ;,[\I)±eΧΒ„§=m~dA‘_jŸŸA^KΕωOγ ΏγeωBλ‹™²’ίΖϋQ΅8@Μ6 „&ˆ|3fAχδd[ 0Ι₯άΉrξ\»—.^Os«žϋ4ός­Οx‰Zφώ7μx‹Jή–τλ@θ:?1¨―ώμX±—/ίbgbψφ/…Ο2§ΑύJ:'LhUμγoI‡Ώ#eΧ(ΧήEχιΔκ[7c‡¦ΖZ–zhO –zτεώξ+Yy›al,[E‹δ«ΥrεΛνxTw«ψδ£aω•«°‚d_›ϊ-‹-θ4ϋ?οΈ™ϊΗ#<²ΣίΦγLς•nq#ϊ:‘ΫžžYωϊΉψžQUEυ7δuΎ5sμœ₯°:θrv₯G§D.έ΅B½―‹ΦFΟψ/©ΧΆψ@Ο’δμNΔν~š;V4:ΰΨΖ†]q±Ε΅W©­>ΓhD[ͺ¨΅§Vδ'u]U|οΔ*!1A Qaq‘‘0±ΑΡπαρ@PΪ?!‘ λa6Cvό‡•όšKμ[Αρϋ'Ημ˜λμτ}–?μNEϊ³ύΩ/gΓμΟ_dΏσ=?cόXMάΏbZΣ±Ι^gϊΑ…?ΑoώI†ŒˆΏδ™ )’ωD€K±ώ kj@Τ™K$»QnΞ‘ο±EŸαΪ6\/‚d’‹eψY1Φϋ?αχ‘¦XBΘ;mΔΎ'NΤ'Ÿ“ΞρνVτς’"Ύ|,sΒΗΑuWί\2§‹ΚMϊ»0‡„Œ""›ξ· (XβΠOd¬’&5*V2‘\˜l@ΚΗqX1ΒΫ4‚"pHHΉ(NWgΑmΰ6xύŽaηoτBζ…ΪΔ—R–ΕΖ<-½…’G!;ψ΄(ΕΡvΏNΖŽφΕIP%VΛ“•!φ%\ΨΦ«R…uWkπ±Ο•Ωνϊ$Βόz=‚Μ„AmD“±‹Š.…Ž3Νq΅―Gˆ/"š.f&£Z>p5μ7#YΌ,‘F+> HΪthŽΞNλxςZΗc-jΏΡιw„„P”Δ’–^–‰/λ±""SΑ©GA©ΖY' ₯„εMJμnŸς7ΰΕUž‡ 8ZS—ΰώΔ1 dIk†D(‚ sl'8ΏEδXβ¨ψ6€xhι+ι‘NΟ –ΫΒ±«ž η‘ΨΨ6θ0ΠςΤ—–ΉτΛZI.ΩC&ίλkΟ€0•Ά"mVΆ„Δ,dI:!]nNψΉ’H}π]πb«R†•[.5D?fw~A_Μ­»!(q.¬4ԚͺkYc0€ξGbM€½e$k₯ Ym˜ιxΜH™ιWBμΨΊ>•ŸοI!#Ix5©‘©"IAv7:[ˆΝ½ˆRn“ sΆ.3SΔHž~Χ0H«Rhφ2q”±#₯τгO–ƒ[mφ(c‹[DΡ ,»K²|–‹JδXe&δ΄—kΠŠέ wDˆΨ’²—έ Š6w±Š;§ƒEl²Β"Jά]pÎqΓςRI²ψQoΠmqΓΔ€ϋfΦoδ‰@Όνk-³±τZς™uΞγ¨XZQ’Ή„Α>6)a67€„ϋ hJΒ Fˆ DΤ‡ε;Ώy"Œq<κλhGΖθ£wK$UψƒJrΘ”6α;OΨύ ΛEθ`Ε8ĐY &#ΐΓdƒ –λπ¬“>_T§wG„ž₯Ž"GQ,ΏAέ:±v%,SΩ†τΫE-VthzΨl|uΝQιJ©ΚdvY Giˆœ)†!ΡΩπ.ΝU‰ΚšYdlNΛΨ”Κκ„X^ό³"Y ‹D[&]„1¬6J +α»ΨFΦhbM„y 0ΟΩθzδ!‘"­*ΘΎA_k΅}Κ ς7(mφO1¬ž_JoEΞY"ΐγ‘c>ΡiRx¨˜£¬RζB6>8«r<3΅:EαŽ…άϊιy,<]²’άψŠrF JQΑeγ~Ε³βά$­<F”O3‚ Π—σ‹½ίθYύ$;%gŒ‹ΌΆ%@"Ό–%2X%hH„'k‹, Jrς!„$ξώ5Ε,δΔ!*( Ρ’Iΰ"2ςρύ‰μs,@k\irΠΥ SLΗcδ"4>o΄'ΛEœ™ŠΙg‘?.ΧDΪFv¬ «η?QTΎήΛ^Ρ(ǁώlϊ[=‰QΙ πι0_Πj/`œͺΘϊ‰έΒI`jEΧ 9ΰϊhσU•"ΈΪY4,νqδΙ$α]?z<;₯L!’ŒΓ1―-ψEˊΪθzIΖC•YtŒ]?>‡p Fn…J¬“C-CA#¨£±64»oμw ½]‰7]ˆ"F12&AoψfρYςD―t‰ξΒΉ‚|'I$Γ“MΛDSqΑΈR$ΫΑάL!Θ“π4. xB]{2`Ηd_Δ$X[k‰ΧdNH¦Ρz¬…ΐ19«γc©Β»›WΩΎζG%Β§Θ'ˆž„)ΚmΏ,ΛnF…ƒ™š1ŽF‰5l‘k@½άJH"³Q–’j©[؍ aWSbW6Π‚FBH?25l„μ– Π΄xXϊ†δ„K 2.<ύ‰ΠE(‹c \.0„‘VB–|…|»β‘D ^›±w’ΛΫΘ”<ΑΎ§ƒ4rtΛbXTwNCJ«nΐ•Α΅d-Δ Nxeγƒ\hHΠ»ΉήςwEΣμ’vΟΡ‘ωΠ! ‘c¬ HΪΦ‚jδZ"ȝα}yHΑ#τ*QI$a–΄Mj]Αšˆl†.Γ‚mCf‰&L]°•ΠΩ‘ ΠI”…z§vx βΩ"rο‚θb υ°ΊHZUΙsKbΗ%ŽL’υǝg@Qν‘!9gΊΗ‡ŽΘμrB|—Ρs,Š„pˆp€KΚήΈΛxDπvsΑάm>~κΡev1Λθ+Yq‘uδ͌²;g@”nNV]‹1Ώa/ί ­π[Φ 3a)ΒE”F H Ρ¨{3N]€ΠΛ ₯Sh“& ΌΉ.<¨mK’΅Η¨+T#(3f‰jD«41i0p<$nζFι,‘rDJJό,<‘‡±cυ#ΠLQͺb¬–X桨ζm»ΝΜΰj w±ΦIoψ’Oʟΐ„Ϊ! Υ ΕΩ A%Z«ΝΈDŠΦΰ›š2τPlαtŒ‘X’Ωh$ΒyΆ\ίlΆ΅Ρw’.° τ4r_βrΉ–a!€‚XlΈ€B+"ΜΌ#εQj…*=ΜΦΉ†°ΩΩe΅Θ!εp3Ρ'H ψϊ!ΉΓbϋ˜½ΜΤ¬*‚0μͺƒΨ±$ͺς,ηϊ±ϊ,Ώΰ@ώ¨ SK"LΨdl{Ύˆ γύ eψ"z}²>uΧΩ/bbΐα¦z±#Σ!ζ„Ό0YΑͺLzΟΠΖx ΜΎ=½+4§)?ΫC.Ψ–Α*dΟΕœdCš΅Bτ_|­Α$n~θΪY%–‘Rυ•‡h°μ ώq–Bѐc]―$Μίμ!’ά+šΰj₯ω%<žXJ!šbΦ»eύ„θ‹,Naμ4Χ Α‚%KDΛρqYτμ1c—dόˆD,R,*‰/$(!lyˆ<&]„zE΄2 ω!@l³ι Έ·$_?ΠϋPglDβ ‚ςv˜HӞτD»’$%ˆF‹ 7F…5BBK€”QDъμo›φfΘΊΨF1W’DνΛ±ηΞeε“«ΰΤ¨:݊H\%qΨBPaρiΰνt+Υ$M±_±osε˜ΠΌ–σε‚g7™–Aa;@ΗkΙi…Ω»™C%Ν‘Ρ‹R£ ,YŸƒ$R0ΚUαΕΦRꉕΘι Θ€eIY[.XCέ?“ ˆ4°’τ6χvEοθθϋ±!;+ϋ§ΘΆˆLώfM–—δpKΰΉ—φ‘T‰θ²\w¬Ο™κ“lnΠ°΅’M†Hμ|Ηbϊ‚ΏcC_“i—« y/I\βά"Ž85I²Ζέm4¦‚#ΧμžΡK!ό O»ν ύδ+H=φWΧξ"J,Έ<>PœέWΑ•fϊ!»ύΖG°ώΚ'™ix0„*Ξ/ςe€aί e‘ aH.„ž?,—Έ„!le(R ²ΨrX‹bZβGdd‡Qφ_·amyΰ‘ΉFΞ€‘&XzinKΘXυ’ΘίΉ!,ΖBP=uΒ’?‘#ΞIJή„Η[·wδYE)ŠγȐm¨jdŽ}-Sώ›/ddrPΟ©βPςσBτΙ\UΨΆŒρjŒ“}DŽ2$ΛΗΩ}Ί‚nq³±‘-‘RqŸ°’4Œ‰6½ƒW›V‚Ϋ'•ΨάDψCN!.³G‘|ž]€²&_ό‰α"θ²1εXέ—€‘ΕΜ»ΨcEf–<‰ΝΜBŠΘβC‘*ŸΜ0e,HE JwDό[L_‰φjXQ;’αw’,O·’μ#Ω6ί‹ˆj^„fP0Ί}² Re˜‘«wQ‘θ;R—μv8 ίπ½’μ4a /tJ‘2ηθŸΊΣBχxc‘w}ˆ2I<^ΘD‡ͺ|@ι|Ρ!?Μ.ΏΦηωd†ΖΑι<[ΐΰΔ’R8‚ŽΜηΑ3VI,ΌΜ­τ―DT#Yθs’σ—±Π2&ξDž8θM5*¨ΘhX’Πg!ν³v>Jς„εpV³£D&ΈG²Β-Τ.ΕβηΫAH„ςΓvΪVD>r"ξΒ`ό³s» ͺ‘†‚‘Τw±ε‡E‘HLFˆΆHυΑ.‰QӁ*²ΗΡ’lΈτ%Ηϋ+9ώ soȚΞΫΙb% ‘ΐ₯!))61ά°ΖΜ;±'‘^Άƒe –μ9 D$)‘IM}„œH—,r”"θ#*Ψ]ψ<(ˆπ‹’θB¦|f1 °“…±8Θ”³ςdσέ ΣυΛ°.&’β;Hk,MΙ‹ ]^ΔAΡD:‹>Yϋ-Er(Τΰ!% Y{π΄AΒFξϊ±Γx€§ƒˆΉ-eφGΙΗτθS ψξ§γΡrΈΰ΄Ε–/nμƒψ%’ό›ξdI‚”A„%j‰v‰lȜ YjƒΝL›g»Φ,K|‰Μ<ΗπŸ+ΎEΙ³άΉ—HνrαϊΎξ(BX‹2SKbB›cΐ“,ΣV'-α Ϊ}Š•aόŠ£ΒίAζΙρΩ&&¬bE%‰5%Ϊ36K‘DUΠZŽΰΣBχ/±―‹| I;wŒρ6Ÿΰυ‰„FΑ}έΖΪΪ―.XLΩNΈ€Ί5—lIΠ—ΰ!,†ΘͺΦ<w―wσ0#JΘLΑΞC₯ΕÌ[‚ϋ2ρΑ©Α'‘(γ4KZώv.… m“£4Al=†Ά*BUlt :ΗΊ ObΓh&s)ϋP ‚&Kθ^8L(—lί-Ε’φΙy^UΏθ†ΗΏΜ dΌfœ~δ1pψ}‘€)Ίΐ’Ί£p*[vGbΔ†I²ώΨφεΔ }»“ω/}‰€ν04Χ… μΆ"χ#Υ]YyϋΰΤ“-ΧKώ~ Ϋ₯ΰ°‚’|4y GΘΐYˆadI hέ0Τ‘βzΙ£Εωτ$ΒGΈ[$Q’ώHNoV·΄’D±WΤiˆ„²ΊΘ‘ΎΗΏi΅£clθŝ[Jμc‡ΰLΥθŠ@Ί&ΆκœzΰΤ’GωDΈI#ΚοH½(JB¬œƒ §#²ί›ϊ%ƒ + @ͺΓ(BΜ!.llY\±a‰6κ2˜ΌάŠπ&δƒΔ/f£oΨIS«o(0f%ΘKIΆhI[€IδpLΰz/±Ω$Au'τLΖί•ˆ³ΏM²†_d€‚ν [eΕ†Ϋ?ΰnΆΏ‘©ΪΛΘ›h|–WBmtύΗ¬“keΫοτL—μ$\½"ύGLτϋ’qaΫ 6Φ ζ2lB{Ημms#g†D³‘ΰH€,.-5t$d}ΔXؘž.“`…Cφ} '-§7*5$큒ΈΖšΦ‘Α‡…ηŠƒ•tp!-Ζ\'ΣΨ¦”/"ވmŽ6EΪΤ"΄Kc d!ΕCC1 F0rς$wωb‹°μ²Y±τΔ±2dπ2E†»nEΘ Hπ-θgΗ'ρ…ν#ia}Κ ,2`ΞΥ.’Gv2g%³°ŸΘ‰|ΧΫ±xL.§D‚Εˆx%6p‚D}‘ξΖΉeZ_Ι&‹I#ψ4!ΪΫ"5cμ|*BΩ.«#ΆόŒ­Ψ°[„–ΰG¬2Ξ¨Δ$ˆηΨF:’ϋXσjΑ# ϋΧ-ΰRθO\Y:1CICA§½1ς“³z< Ο’s–Ό ™q^ž Α‘…ΝγƒRFΖCΉς‰@‰d…‚Ρ¬]εŽ†‹›»; ό‚±$bΧ‘"„4±-܁lgG/π!Y#Ν„ΙΊB‹—“YtedmΛΟ†Xα ‚DάlΓΛ³΅‘C]£žΕ‘…˜c΄ΐα,­= ή‡ŸΘ‹ ]!UΤHΘΉ +_ΈjΦ Ά51}™ψ4#Ί›Θςžζ'ΟΣ'ΝΟ§žΘ˜„μP» ¦τ>Em%­†·‘JΜ|ˆoι ϊ»‰ Aξφ(žq%ΦdKhί›ŠX7EΉΔ [XŸ³o2Jy<ς•υh%ψ ’4u¬XB6ΖUD9ω»r4½ρwΫΐ„ Ϋ1ƒ"\€•|‹„ ΥΈ’ͺ ϋνΨ’„8‚Μsv&½’IX%{]’ „TΔvΈb灡μHˆœF "€€’¦5ξ&+|αg¦!„;j‘‘, jφ1˜>Dš]AΎ‹0šf HId¨Ω „JzΡ’aΔ¦=ξ₯έ’ύ y|ΑXHvp΄AΏΛDWσ~‘sΙu’=8‘œ­ϋb|έ‹ rλc›5ΩΨΩ…ͺ Δ‰wύKn›mΚΨZώδ082šό³ ΄\€c‹&Ζ|Α˜φ}£Λ fΏΗib6JrΛπΪ«0Ήc”6+qΕ#±=g#₯΄!šΪΜι4vCΈi,Sθ„…U;¬‹ΨXXβcanqΊ›πh‘±/Ύ+eηHόdˆB3B.χDΤ"υ–Oc2Ea‘ΐHK#^D€ Υ8WVJ±FΰfH¬°ϋ2qM .ΜYΜ"ΈΘ’#(KΙdΡi1Ζετ^ΑiΟΎ‰s+΄5ΞΖYlύ—,ƒ€HM,3­zυmώ––6m™\$ΐw<)Έt™~τa-!^Ζj%1δF !MΓH#m±ÚJ%;nΓ½ϋbœt1‘—‘rw‡’©η΅fzοΨ†•?Š7ΌRsE ‡Ψ„‹Η”v #&œ―άU8zcR&ς1> [1`>xΰ5’ '§Fy Δş9ΰσ "EY£²0ٚXά CڐϊŽp‘$žΓω1‚Up£„©ΜΓCΘ‘θBGH‘bΑΠ.©d/₯°‹3Ίπ±α]δΆ-šφ ;Eΰ”xΖC#&₯phΖλB»q5›RΌ±ΜY)j€%Υr£$)LPΐ‘ΉljIω:Έ‰M!Ϋ'Α:b-ԎK6ψ~β/Qδό Rc!ΛΔuΡκbώ‹&FEδF[±yΏΐ­ΕΘς45O‘Ββ½λ'²V}λοέ!ro§Z €Ÿ„I –³iξΚμj‚Α‘#Ί£Ό‚V¨d§o$uΎΈ5Dθή‚‡?χŸFk»—ΔΝ;,xΉαPΈ±Y¨G‘Έ[/²E%.ΘV‚ΛbW‹ˆΑ(pχ²O“Γ!Œ%ˆgx+: `ΨH<²;Δ²ςPΘ¬K½hέiΉj³Λο±Κ·Ψτa_ˆ1O˜,*Ι²τΑD'ρOψ.(Hv!ψ2ιΙΏΤoIf = œ’%7)Ι£ͺΠLͺώσ6žε5ώΘ€η4ογD%-zςdbΘΘˆΉ )ΗCBeΌμ…2!Ω²σq#XΆH5Z’ ξx9Wqs… φ(WίαK#~ρ b1νΒ<’XHMΌ ¦θX ΆΖd β7€i bƒ”„”%δ²°έ½Ω.DŒ…±‘Ν,lΙ‰ˆ6#†XρΩ‰ ζG'…“H‰“q8Q—A6DΧ@οb‚ΧT„Y‡TΆdn²˜PkM‘‡”ΘIJzΪIbƒ$"'•…€ΪΤΖνΟ½Ρ©XΫZzŠd˜·»Λώ‘š3Φ₯nμ<H†Y‘ΥŠ©f^¨\RΞΛBΡ ΓHφ‘σ‰Σϋ.‡\žU2>Δ•ΦI; @εu‘FΤ·#'Α’_$–yβε†μ†GbJ dLCqvDύ‰XkP»³ΐ€%FΖθΐ:Ρ 7‚FtζL°­±Œφ1.Π4m;™d,›fφ1ψ…ρΣ  ?aΉ1†ΖVD/ΝΘϋ’©jGά@₯Ζc.% L”wαeΜ i‘~Ο&ΈOu“Γ ώΙ‘ŸmΎ»ΆΔy½‰ΥmΛ bΞ΅»φZˆ°Φ< |βο³δK°e“¨ΝkI©―‹OšyB.%Ηd?p±ŠhUΖFfΛε˜NJϋ’ΑβcΠͺSx/b0Β}ŽΎ—πE d‰vv¬›«'(Hkk$–v|r-4BB혦Z²afΚΐθ°~D’AΠ!3`ZΞCc›D¨Ψθ‘.¬CidIΘ”‘Ί(b’CB:0%”»Νά,ˆGI₯‘ΝΥFΖΖ$L„’H ]ήZΐ¦S!8½FόάΊ 2½ΧbΩ9d†uB0'πiΔ£μN€ͺYiΓ%d–:,/Bβ{δ:βΊPύΜd-& Όu‘fDϊB[ ͺί‘ΰΕ4*Ι ™<Ιά~Θ’r<3ς\·}»!Θ/‘6͜| “Β=‰iΠ‡%‰ηΊθ—ΒΥ£YφβΤ‰Γ‡ I»³ΕY$‹Aο‡ΰB?ς€x‚Jςd([δcά Q±„‘Νΐς#ΐ[dC„™3βtΘ[Έυ X62ΘWv^ˆTwΨa±†'Šd%t’IfWBro@hΛα —žx 43ΐ?ΑοO–y«'QθFA έ΅"H°m ΨYζ#Λ*β+ςI‰fγM“iLŽ/οΌ’.¬KψΦ&­π:±p²Μ₯©gŽ wV}‘Y―Κ Τ–t­Λo±eς!D–4­–ώE*Ω‘r8\&μ|…,άΎ-&)ΒθM>" Ίω$ιε–$qžΦΘιRyGͺDy‡/fΜ¨%Fθ)T]…/A Ι θjδVŠΘΠ²]δkΘ‰7gM‡JpΙFΖmΏΠ‘¨HΙ$|.ΘHEf„vb@–=°3†].T§0Ε¬4ό ¦₯S4–λ$μ3ώΠuΨ Ζπ2Α„ΣBζΦξJ¦–.Θ…/‚wΑ.‹ΑF›qpι,#$ˆIΡ3DшUYFβΡ;‚yΗB>L%ΨͺΘ•Η±κs*;PZ ν‚£ή+Έ77,Syέ §Ž-mΈvuΚHαzγ²ΐΛ,•Ό£}€ψeήζyζη‘Fι! ¦ϊφ"?”XΉq„(ΎθΩβΘkΐ„dXόŽn[HΫ©") ₯‚,pX}β9bΜFDZΘM‰‰ρRψY-Φc[FxIBό-$v†›Έ‚"ΙY"Υ΅islyŸ#’λ—]‰5νsa€€ϊΓ'ώΙ]…6’ΙUήXρOά"Υt5ΡεΑλε>΄Ξ¬u#>…šδήΕmv1Δxέ _Ί7 DΨhΙψ‰§t5γ–tXT–ˆs&Lη‹I‰•‡β*±+`{²‚Fϋμd^ΝΟiB(έPκpK™>“ΒDΉ$³² μjrv‰%@άϊ¦0ΒKG/Ρ|€LΉ,LLLL;Zt&»Έ„%’Ι±C/ληΟω#Γΰ†"YŸάWςD Ν…PσΆΔ“žΠ©²GxY~Θ΄±%-X½ φGΕxŽΜEΕΥ« ’κMu$m }&ϊρƒοΙ$ˆxF&ψ½žϋPΫ‘9N—Μ‚Q,Ί*šœŠVnLγ…Αb84l1m²7"ΕΗ!΅‘ξ4;Ήc²Ο dd#–τΡBl‘©PζDHFBpζ Γ©θE1CRI$Ύ΄ eφ‹ε1€Δφ(˜­E…Ε>_°³C”κƌ‘Κp˜eϊ>SΨΏχ"0„Φœ±§ ¬,Δωb):%°@υ6_ˆρΑ5‘ϋΌήA1 B/Ξ=’’Xύϋθ*9vˆŒ-‰Bΰι'’6¬ttlΉΑk/ΑhŽΗAvΈΠ+φGέμ„#’δΈ†eΘ]Ο" C,±ί#˜,‘βA¦k9γ<§τΠA$AΨΟ>Y †ΔαКltS0œοΓ‘4ƒOӅفΉΨ•€OΒUωh*!‰(i —†—ξBE”Lq}y¬ι_ΩͺΎEΕΥΕοbΌT¦3A6χΏΰ₯œ­l’Ξ^†βεΧp} XAΒ_!>$¨dΗ“)Ψ’Ρ|Ν$ΌΊ`²\rsέϊϊEπL€#’6¦Ζ]gfˆS1qKΒΒ±’!…+ 'ξnΈ]·‹±<nxΟ#‚D Gθ¦ ‚bb}zσL₯ HάΨΖ“΄Ώ| br4Π&”jŒQ€‚Ί&N«š‰g›ν»hoΔŽΫ“€‡ύ=#U9ωˆ}ΉΌ‰1χa2*[Έ˜UG½ύ/@o’ˆ’“ΐnΒΰά)ξθθύ2Œž Kz Uc’$Œ”ƒΤmh—/ ‚Tn’ϋŽH/%ΰX¨‹,‰ίΑ0…ΐˆ[,Ԝ"{hœ‚μθθ’HŒΡπΘhΊΙϊH( θ1[D‘€ΙFΝ΄ά'‘¨λH£SbιΓ$BOTi«†φ5, *α$­Λ4ΘXΈ―i`cΫ"lE¨ŒεCςn p°§,™§π:ήkϊ*/…,Ž+/BŽΒ \H št»β§…Δy!αqJ £ƒ{aΫΪYY™θ΄ev„‡/ΫήΟΐTjGΦΒΏ†% “L¬'‘_bBαi&`„±ζ Q-ΊI$%F!CYΏΐΠη "rΞθ«-""ǁΉτKv%]’ς0ΙoDζύφ>¦Η—ΑyKfGapήΘ<1oF=” "’α$έή,ddJύΰNMSBRLͺ9ΓΑ<+ΌQ™ρF;ό1c5ΠΎR†±Μ$>„ΆΐΡ”σ1QHWΧEαo%½¨!ΙD’AύΈ;ΈfβFDΣΗ4;«K*ŐζάΖ‚g±Ρ₯ƒΒ4@%F€ζŽY0Ρy„dlNH‘a°|”!k ™€ΧύD.„fθΐΗΪJKρʕ₯KfF2ΘΓ-cΏδFM“(˜Ι)§d^ Kφξ$Ύ_¨œΤ;EzjZXIΜ‘’α J‚I\04’,γL»Ό7ξΧbΏθ TϊβLσoΑ¨‰• ΛL8Ψ²Ρzω…Έύ S«hdΥͺϊ§‘Γ%<‰+¬—  ΛP;6|£MγσD•δYp\—²ςĈ‚αΉτH–FΖD Οt›άς$>&4$˜™βbkΙ‚[ΒFN0%ƒfTLM%b§Ž‘o$_„’KήΔΠΗ8hu 6-[—¨$ΈΗθ'QθιΜ Ή‘-šCόš€Σg‘­Υ’_dˆ±Γ"ACΖLΉώIύ+X±—I 9wd§ι:\Œ&•ˆΣΞdŠPΆ‰±«;$bs~>Ιθ…$‘8- ‘γcΰb ±*΅ΣωŠ lcr%!(‘²D7Σϋ‘φζ†4!KθXlvP'φœw0z€tθ9ψ‘bPξΑεV‰`΅ΨŠ™i6=Ϊ,7jƒ-^I,Ÿd”ΓCΕ(юiš)k-l·ƒ­I,`Wˆa­‘8HΛ‘P₯ύ˜ΤΫc<¨q(Μ„ΰˌ— 4˜Φ’v€+³ΏE•ό‡WΘœ5B¬"Iζο’λ•ŒΫƒ²οΰh4ŒΡ„”0 „q;—C@ά9csdDΩ ”ΓDή˜‹VAE£F„"vVξ+υίjffμ½Ν»‘*N»œaκ55„"/r‘+Ω)cζ₯†ά‰’αΣ¦μgP5Π© ’ {m!Œ dvαŸM Ϋ<ψv.ι-εzΤ 6O½‚ΖEž—Ο±ΦδšήΔ %φA—€nφ. ό άt4ΩEžQΝΩ-ΑۍΩΐδ\Λ°nΘξγςB*1ΝDάkΑŠ`‰x‚&ΘHMgBϊσΙ&π`W‘Ψlj§FΓ`Dˆ_Δ7%’ξr;B…ΖΙένβ›3$l‡δnΙ4λτΘπά΅Δ–™Gx”'θθ4…ίc:©·φ0θXγΣ@ιQ΅0ξ;8ƒΈNEthj°ZbΊΘυ–‹“d*H2ιY« Kz‘.=Œj'ύIG1uΚ΅…\^­NI,ΎΙνGπ2IΆ#w°f•H”I6ά]πmb ŒF‘nYb†Ν›₯έΒ,•©€–5αR…l$䔐‚τƒaˆ[1βε‘ptΙq R?’' λ7ΐ‘<™˜ΜBK©γώD΄φ/„H’υώB\Ό+!œΡ‰'(ΊV…π«Thukšdv’ε?qκ̈ Ύ…,ΣΡeκΕ‡’Βm v>ΰ…ˆ΅hΩ4μσΉ˜xHAgΕΊ$Bwydkυ­ωb$…GŒ% +’??0¬ΈΔ`h³Θ‘ΒΣΒΙ}³Ι!ΜKd €zΡ)’d„lTκ.fΖ7‘Ό²lΞΒXΜAδH47aaΡ°Χ"o’buΆα5a,VΒ‹¦‡še`P…ofίh±1$$/’"”Œκ0νQ—‘{‘αRΕ͎̚§+Dχ *‚μC‘”DXJ­€Ώt‘΄#΄945qQ[}ˆkq’qιφ.eΡ=μόD²ηχYmpx‘"»O–Α.9ΐεδΤ›ƒTΐ‰ζc’‚ aL8ŠŒzm³²!Pƒΐ“s"HΑ=Ω~ ‹š‘·θ‰›‘^ΜIΐ‹±D°θK² QΞrΘν΄AKyw€²ΰ˜(ωgd4Ϋ± Ω”²άLfi!ίθiG‘Έ~δεΤZ°Š9ΏΡ%'%ΟϋΩ ΚμdΝ8”v$—ϋ!φ?ΰ,£ ށ΅ψ³nήOTjΪ}RBαρδS€τ{¬ΦΕAG†+fΒs\i!K Ω}‹ΣΗαI(—ΒΑ1–aR~G1vBƒ£ψ‚Q²$8ΡάZ]Έ0¨HSδRAž>RH…vY‹¦GyHo˜Θ™ςΐΓΉ°”XδhVμ”ŒnV)1ΨoD€]OˆΧ ιιT₯²n‘ŠjP‹.θ΅€ΡΘ‘ω Π *2M؁}‹έ-γr‰Ž‚Δ‹€Ρ”鉴1”'(ΓχΑFHŽ@d 4,§ϋΟՁEBLώHg%ͺy=ΫέZBxš΄)hFεςΗYάΚΔʢȐ•ÐΠ1ζ‚CbP>ι4"U‡&ύ²°Xο’)mΩ0ž†‘”ΩȈHkB&’9d\¦ˆ8‹(‡jk0d}–\$jNν–C %θcήΒ”½7c= φ#z`ΝΡΊΨCμv0ζΖ#šdŸΔ†–4‘ΒŒ9”.ͺΠΈVE‚uΎΏ$4¨meίξ­šΉ‡ §›I䏁ހΙ}™L~‡ζ{±(T$vE‘“x!U©ΉΈω1]Θξ+Œ(.\‰ ŒΪyE.Hy^.μΩυ-ςH†Š„šΌ½m ;o Ϋ$"\Ξ‰ψ { Κ@ΌhJ“’i’<Ɋβt(Q$Γ›2'τ‘/‚̐\F3E©Π³π\"βΒ2(μ΄ΆύύπθXͺΦ'š4$x'“B•¨‡›LφJN?‘€3‘;o‘ΎˆͺΖ’%jT£0< B16Šφψζ°A‘€ΰ„M7ς('qΉ\ΞΒ’ !TΒcˆ…Σ‘#DΊIm—<ӈμ¬Ρ)‰.ΦΩΪl$ΓΘ’E„όPŠΊ1§S|Y,AηY­‘a£`ΓμΚ,ͺ?E aS½)ΆQμJI°œΦ%πwqFŒk”4Έr'ΠHρΒθuV`sa-χ­? #Π(a_Π[p@†ΫD{δJ¨YΈμH–uB«ΰtAFα–^IΈί+O’^†B Εeδ=Zδπ?€qKΰP‹~ƒΆdZH†"+―BΖήHΡf5;-Ÿ ‚Τp/›0«£\U›‘ΤL½ŠθJ!t&Εϊh[t+ϋg˜:¬C‡>Λ0 <;spηΩ%‡Π›i;wVd~£p‡_‘‹ΤτZ‘QŒiaχ±†Y"&QHc³Kβ–Δ7IςO’|“.ΒNΓX1&tD„&Ϋ°εΊ> ]τ:Pέΰ•ˆHF&\hf¦ m\”€„†Z¦‡K’ΈtCI“‘ nΨλήΕ‰D‘~…Ιd²υj8±;C‘?B0Δ‡#³%–εΎ(™{ώDͺ#ακ’nΑcτZ‡ΰ†u"“ΛΈ6ˆ5² ―‘(‘ΊNsΠ@„§a±F„[7@ΗΆψ₯5™ά„λN! .Yάr‘£©K:a( έЎ„ νX‹»‹3@Ξπ]C²τͺnWΰH™EΕ7Fp8ΆΓ(7±₯I‹dΜE(HG²=ΜIδθ₯^"¬Η™μG΄ΒΊ2Ž‚`dώ’$_ΩΈeπbOΠΆ>ΛΉ·'Α•ώΒ²rΤ<‰.EYΕ…»!­~"„dX-/†A2/ « IQ‚ⲄؐΑ‡y'#’ Ή,νCHqlh%Κ `MMιAc—“ „ͺZΤ‚ ‚\Β&Š,Τ v’4nKˆ}™ι"ΗΑh]«Λž 3K1ΏC i+(œU_†gθ`;‘R@έǏbXTc‰ΈΡ»’ȍ ˆΒΪ¦,X±bΕͺ2n±kšΊH~b]~w'œςžSΚyO ϋ‹βΉγ<#|.#–y1η<ǘς «"g™Œƒdφ<‡œςžCΘyIFDˆΘ{žη±<Ε„ε(ŒΎ)hΜ‘¨ΊŸι"6―…‡%Wc•†βK(Ь’Z'»Σ³„‡Tͺ2Ε‹…Ιτ@lVDH¨\ƒΕsς]Ώϋ£η²A-!£~Η`˜μT+±uPKθ–.^«αŒΧ ΏG$¨ι‰6ΓΨΌυEΨ•XyeΔάΎΨ–ϋ’QΨvDŽΌΠχf|£„X ‚ †A§E Xη:πR-> ¨Πμ,«>^5t‰ ?H\Έλ†E™μτzήΔς'–Ϋ"―tšδ =ˆ*1¬9Θ₯¨μ‰@† ΄§Ι!)FΙ‰QuwH"€Ι“%ΒUTώογύWΌG‹Ž¬Nˆρ>/ΤU~DΙ’$H‘"Dˆd1•„ΐεαˆbG~‚:!Ά[فΨM‰,6[ΣdΒΊžψ7^.FOζδyOK Aϋr˜{α•Σ"Λ°!ήUŒ2ηθJ1ΨΉΘά!ΕΏB^ϊηέ$’QΤ…Ζxα<'„πž3ΖxO γ¦ρQx@H”Ή ΈmΘZs EΌ–-E‘ς>U-E‹Qς,X±bΕ‹,X±bΕ‹,X±bΕ‹,X±bΕ‹,X±bΕ‹,[šsΪθ<Ίkfhj.‡ŸΠ\0Έ ’C6k…ήWϋVΪνf ¨ΗξΌ„$3C»@bV0­H•JΔ“δŸ$ω&ω% ΎIδ‘>K SE–iešΤq€-έ o]/sάσg½/sάχ=Οz…‡±jjΗ±†Kv[Ί|πIG/$8ΔaˆΨπ*?*·°Lε£ΜBω-Κg”HρVψθC.fBΑΡ *1Ζ%oŠΖ\δdπ=5Α2hH‘2DϋDϋDϋεZΛ‘―(MΒ ύoΥΏΔxŒΑ–Kα^Ω£‚Β˜—˜‹y:! CΡ…Qœ^‚’βΪBsΕρ₯Yeΐχ‡‚rL"›β0²QφBΜhF鳡θΗ@ZήΏ j²!&$ž©ΎHπEr} .Š‘7d‘dΨΈ?ΩFΈΖΥ ŒkU(ξ1)0V‘fνθψ—!h‚*ι%R€ΦD1Λc3©“£Ÿ$šΏ&€Θ΅s±6ϊΐ—ί-₯σ„άeHfλК]’ρθςX·zA…ΔB‘°χ2GκŒΨ©™‰&L™2t'FJΉ:$H‘"D‰’$JŒΈg6αάy_dθƒ !Π‡CΠz#ΡπOΕš V<€φ&’εΘd2" *Χ tΤ±£ šλΗ"\β™ΰSp-μ\πα»ςΜ8\Β˜ˆΈ†hέ2GАΣRbΐ•Θ‘³Αrβ"Δ„»NΘJ±¬,Š™3{4Xh†ΒΆu“7 hˌ²ψ~ΐ€8)"Dp1Ή4-q’[°υΡ΄¨k άBS-–7 ŒN+4ς5Κ†¦Μh¨…–%±€›BSΑ8πwdΩτ'‘―’; ;Ÿƒΐ‰ˆtΗLUΒ’Υ04,›‘pd_FB.r1€yγͺbZ—`’’GͺL@°Cΐ„1εšIάqaDd&Y9‘‘‘d7c>2Λα‘…‡&FΪ^FœN3ΗDN°Μ\—,D#::ζ5b¨%›E€iΨftTN—W•ΓY©˜j‘Έ™―ώΕχydŠΡξ=‡©μE‹ς‚Μ8KQ…C‘WΡn!Π½K΅~ Ή˜—XB£qF“Ι ¦‚X‡‘^Š8§‘Λ4jΛ9€²ψdbXKjˆφ ₯³Ί­JΔο4β£Εz †˜ΫwtUaaF>4°5F!ΩmpMŒDͺΌ€ W?ιε¬ΘxtͺαLTς:Ze±«pUΜΒ„!ς’­6„G…%eUεš3…2δ±[K eΌ‘‰ς-ρ±&bAq7$꓁\iΥ(⦫2Ronœ:½›ΠΩQ~Š&‡LΉΓάCΝR=ό.ͺIΈ!‘ΊlNΒ}’ΏLΆ^Εƒ:ž)HC‘Σ lte]Ψ°yΥf΄δΜΐ°qΑ'F$؈BΙ„‰rdΘ•[PšΚ#Be•ΕλͺmY20¦ΒoΑfΙCρTΛφ.Β/ΒLΧ!#Ε4$ΥΒEΆCΎl—Ύ,νQΈ$b―ΰ‹‘™Tͺ•ζ© 3#:”#⊁ϋDoGΠτ‘#oμιz“ΥτO"YΓsFTΨx‘QΤί ‹(τqs¦θΘβ θπ*]‘δm5ad“#Y‡–,8›]"RfDM˜³ ±²χΧ?hȒΉ΄ŒˆͺΩ)ΤΒs͌ýK™†#T‰—c™˜Π…_ΰ4‘θI.K€K‘δ œ*ŽδΨǏρ &ςJo| Y;Δ‰Ϋ[&cm«?\ΰ«G\ΎfŒͺxΰu|˜WtΤ›x7ΐ«••Π›BξF¬D»ψ‘ Ί<±)CP5U)Ν`²4$܈ɍJ"¦Ψˆ[Γ?ƒ6Ω•'dFi$€n.’/2¦DdJρXy JΰM6*D8Ί1Υ‡{ ήc?(ZΠΤ6[(AuBSΊ^ρr&}±?ΠxΧύƒχʘ\«ω©£ΰ{ΓV\¨Υ 4’UˆSfY€τA 8:ʜΈ›Uό jI,2Ϋ―sš ΖεΥ‰££€ -X˜Qr/5hg€ΧkΕWΐǞWs'dβA&<ΐΥN0³₯£Ε‡'tJκIi4Ε?Σ:,\ Ύ€:lь‹ΈaU ΉUb’ΚςB²i‘ΙΚ0¨ςθHξά8w£ΊH QέΡ[vΣτ4΄δΐΛ†Cj*~шλh&™‘˜~εΦίhΝUš!»!ͺRŽΧ&HPŸ‘m~ŠoΧ| yεQΩ vF…ε ­ ΑΈžY¦0ΊD₯μϋ!¦ώΘφώΜ,Ζӓِό‘쁻£πΰη€yΖ” 1,ID`Ξθ†hΩͺVŸb’Έ…\¨PΓfE‘1±Šd¨ΑqΣ#±<2c’γO¦DšMZΖΑ#HΨd\KΊbdGz*fb"Ά†€‹‚ Θsx­Βt…ƒwHBCa˜θ»Xe’+ΡΏIQYΘΦω UcΥ3α‘₯x}  I³X XΩ  DR;"»dΧ’Δ&δ!)Y5…&Β{!? i±5©&ΖbN T–…ELΔ¬+ιq*g#™&C4 ͺςΘ”&!ŠUΕ|Œ]ΒOHl˘†\0\30"°›eγX-βςBi"ˆDήgΒρRϋΰ36¦% Œ^H8ŠQ€ΠΔB6αβ9š΄Ο΅όQ€ΕΑΣ>0Π„;Ψ›w4ψ©ΡύšgEƒhUt‘d(‘ψ,ύ°‡Š0ΰε“ j›ΰ₯γγ‚&ΛόVTΟΰI Bλ<ˆπž[Ωξ&ΣDωδO‘Ω JςCȝΦsΊΆ₯έT'ȟ"J|Ις'ȟ2|ΞΟȟύˆL&ιF‚νΟqε‘BŽŸ‘ϊύ‘γφ|>Οo±~ώΔΎΡ7WOΡa#»ΑoόΑoόΟ£Ωτ’=Δω“δO‘+Ι+&;„ž«ρفˆ°‘ Ut+ΊMp`ΰ›\΅Q΄7 ΑΠ;R՟27ikA> υO‚ΕΛb<ύ2¦PΨͺλ'q bΝ2"F¨Γ†eΔέx )ς hE\„ξθΘόW„Lh²@-ΐqxfUE¬Ή ‘"\Ή2BB˜ΩYΦ…D"5¬o‘Xp:ωίξCF5Ve–D$†4\ ,6Ί$Γ„ίμ ²!‰A_ώ©˜§Ω€lUfb7ŸΘ‡E‘ΰ‹bα*$˜pΜNΦ% ΩαMZ „vd «¦ ²?°δHJ Ή±!@vξΔXhn,ͺ"β‘Έ·uUZH4’α©5™n ¦+‰$‚8AΊΌˆΉ©¨ήΓmΰ†)ZkΙhr²%wcΗ/a_Šh…Κ=F`JY˜ψly’)ryzTΘFŠ¬Κ…‘ bΙ£7οŒYΓ:\ %άΐ%Τ+јr'(B[†A`n.Ih’βhC° xˆΑ%d†œΠ³\ΨψŒˆΤˆ€„9Ε§?ξ!€‰4nŽ…‚ΒS5&BΙέ x= 9pΉQ\0”ξyΗά4lCg˜h0pσΏή7alŸϋdK~γMŸc’«ΑΏθMΙi(Ψ«ΗoΰΘHΡ±U™P¦D:eD»α.”τͺlŒitoNŽWI둁–+'‘δΩ]r0βW Βv¬σϊ£S~‘αo“Οωgφ^GςŽϋκ˜q“ζ'ό܌!/ΈΒΜ‘•ε2 Ί/‘΅šωG½π&·ζQϋ~>ϝc'ς –Σμτ@WŽšμΠζμω 6mdBD% £1 D1π?1Wž9Π¨KuΜ«]QœβKf#O(Η‰X. {ΩϋήEΥcˌ!·…g•Dπl5<4iKG6^Ȍ—ŠΩ₯"ΛdΆΌ8‡FFλ‘ͺ †P›£uWΐŸ’ ‰ΡΊ 8΅C€C"8Žδ²d`]Β•‘ΠŸŸψzŸ ‰ωEθv?ΐξˆc “nl‰ Xέΰ³{2K;‘†¬EΙ… rc{™Ώ“VβΏ`x6xˆP π*²IΨ>Θ^τ₯0E©$ ΨόΝ]& FtBc"ζXi%j1`N<˜Ι©ΟμŠωΉ’Κ)4šdueˆyΙ€·πyΈωΰ‰!9€‘’jβPΖξo‚&dhxEΘ*1ˆx,CςΥu—LιfBAMRΚ%π…ΈΨψ2ΦcRZIζt^Cs`mQ“mŒΟLK„ENΒmduVΰv–,‘‰ ‰ΖΫɐ±F¦„s!Ρ§’"P*›/βÊ«ΨT‰5ΕH2γ<₯#i\Rx!;1­0?qrΗ£Rd™pbŽˆ0hπ,ЬΜώTC’ρι?%WΗ*fεWšΆ^PψeCvQΪ¦ο5Fλ sΠΜ΄TχΖ[Z$ΡΑwœ°«d*2R}2ξuΐ|R_#*«YβΟ”NH°”Œdάτz₯δ‡&β–ΐ„…$’Mf<šY(C†Fχ‘ΦΥu_5[ Q%Y₯-Ί2e7>α fŸ ©”ΣA>$d˜‘wD€?po(c‘›―μ ΟEΒI΄694SW\–»>„p.Γh™ΕvΘΦΩ+ΗδhL/²Jf¬Ρ‹Ιvlyη膴’,X‡ς5pέΚώx$‘πˆiήΉ±Œό5‘‚B!˜«ϋ0?Πͺ#[Αb‡ΰc-ό ώ`ΦBBΘubΉBπgI|ž_°°‘|ό™Ρ$Κ‰όŒ•Mδ²QϊScEš9‹‹Ρ‘μ’IπFqΩ7α‰LMwΘ$Ζ­Ώ¦tH6ΫϊώΖΌ3όςw·³ύίΨk›μ΅ώί“ύ_Ψ[Wώy­—Ιm=‚_θ¨2£ΐ²*³3!QŒCΑπ`~ϊ¬\'u"E” ]wžNy©ή'ΨΜiΪ0Xb§ c,šΡ\|―πoŸΑηόύ‰…MR‰oΡΎƒ0m »²SL˜Λ…›ƒ"AάΏτA*N’Π„ΨI²Ž€ŠΓ}ž@Φ…Œ'βΥΤ&$i}ΗΡ—oη"| j[jD&A;pφ5Κά3;0z± γ#cgnC€Κλ]ν$ƒlU•ΘK†\wB‰ωbž2Ι-9O!μΚHΫKΉA?BH°?bxάyΒψ,Λδ[ί`ω,S½ˆZCίgBdά7ΰ{΄$–}§φ1jΔO 7*ΑΕk\›ŒYY˜°! b bφ«¬&“’QΘy˜Ά–Ο1ζ"yˆvC²;±‚c'˜σR‰9΅=žjZ©C`IHœMϊžŒXΉ2ε"D£”ŽY G’„(@€σ ’^“/Σ=„v8`j©wΜΒ†,ΧΡNΗό"DΏ$–hχ›mχu#?灧‹όπαMδ7»΅Λ/ŽΆD…MΥ«RHd ΡϋΝŽΘ’γ—“χiHˆπAžU‘ ¬Μ³΄ώ!ΡšHZ5ή6ζΕ2μ„ΗšoχB§.ΡΪSΓ²Ξ_FŒŒ 'O’D˜‘:L½,­Ÿ™›[ΩjSO±Ρr}‰ίdΊ>Ψ‰“μj6NG‘μ΅η½ΒΞΥU5Gšœ—JΔ;!2π.°‚2œ$Μ*ϋάΣς6K’W QˆΡ™`³‚nA%vίɈ_‘A0ΎΨγ„L θϊ/ψ½~ i‘)ψΰπ*ΔΗ»}M ‰β‹`d‚ΕΘZ"DβΓbk±¦,ε5UΪ·‘™ ¬ΘPγΓ΄ˆtCΑ‘cΆ_·9©Π“έK”¬!7œn h7l&ΔΔ#pM JΚx’C„ν’]RΩλμλ{Vtζ&·O$\ΰ†φΔΔ‰έξ'aυ7#Ά~n\”Ό7v]—ξ?³Ηn ΆšQΫΩ₯ν‰5•ΎMUfHšbCπ₯¨“ΘhDΦW'²Ψšαv^„Θž†Eq9θ•ΔΉέp•¨ψ›‰,„Θ-τ†©JF!OBk+myμvŸ ΅ώΓBφhφm³ΑΰUdΏΟ"©ΊaOφH ”Kϊ Ϊ ’°œl„ȐV)\"8mθc 0N•W[ QΡ#KufŌΎΕΐ)IQ7£ͺSYt–K<…ΡJΔπφM-Y|&MΉ«%›€[‚pϋŠί±“‚ΏΘΗnααg\Ύ4ΛΣ7.Μ²τΛμΫ<„ΌŒhDŽm‰Ύj&φ£ΗΨx ±ζ5& »|Ž―μ&½€’rޏ‰ρ ξHοπB¨φ6c,O΄ZpL„Σ$‘ ψCΈœμρ$ \CμΉδMέy@ν<ξŒcϋQaQŒBYX‘΅M˜έ#3ΘkΟΐζΆͺλ96>}…΄mΈ°ž‡ΊΚ‚ŒξŽγ}˜Œ9Ά/»ž¦ΙΉՌf©QόaΘMocwUΡ(²T+ ˆ#gΚχ•…ε(r/σ₯ΞGθπŽΘ#Β4;”δ{`y°μœλ[ι²―Υ€ζ–.=>H1Χ pCΛΟσ€―ΑΛ57ξ°vN,Oο₯)Sω΅?d{(Η\RPφ9ίqΗ­©Δr\_…αA°MW@:rΫΟ§NŸΑη(Yή¬p vϊ‹ό€4>ΰ―ο˜c‘,;ΎjˆκiSd›Ο» H›Ϊςπ΄t Ϊoγ©εqι9sςο)ΪEVΩξg –όξι»lέθ>ξiCqw”Ž‘;θJ€&ϋ"b *žΛυkLHCv’Mt}H²›,λ}ށ€4"K΄ͺ”}ψΠ’‰Iμ[«P{ΗwΑpΆίΣ1 P Κ-ͺ©{ΎCζY2›ΑΎΨ€|5G³A³“K5˜ζIΥωίWS#³‹ΰ{ 3R©ΎπxR³S6Ί,δb„Έl3$όΆw|ιeΙκƜξγoυHζ˜δΈ‚>LͺnjI[,xe+p@„¬Ύ+6D~μΠ%qSLό½οC=$lC„Ψ-o(΅UBMΙœΎΤαUƒv Ψ(2|­-Œœ-3`T΅ΪsU°πœΰ=‘ܐαλύ²@#Ι*7p΄―¨ŒΞ ϊΑΩbf2ΛMƎΨjŽΖ–?α`wTŸ~lkœτg)Σ»μ νnΎs4«Aήg¨%±Η†'mR<γ’NΘ]¦'˜b£iσ?ήM ©'ž(Λ·h©+=Οί_­–ΰ°τqή@Υc₯%†n5βΎ«Χό3°Qˆƒθί±ψμΒΞ™%δr€“θ°peƒCNπayhΖ‹ΪNρ–xΧΛ­w*‘WS±ν-Θτ;}Nϊ¬ΫξΊΛΣ.Ι‘2’~˜TX›τxί;Ιξ#17&‘[ίΟ-«;ηOπιφχCΧ’T΄—SB'”β‘ΝΑ₯x½T,3†ΨΧΓ8 ₯ψχυΧΝόε―<ςΣ.¬r$rgɟkδ‘2Ξ²ϊxέ#VK»τ0\δΠ(ΨκWΥ8]υ‘¬“O|ΨHΝ/RΥ[uάΰΥξ½ύΙΒψ±j‚’οδH [ΤiJ‰) 6ρΊΧŠA#$’Ÿ.hκ[βΝΟ|½hΗΚ‘Ÿ™nQ;ϋρNŽf#Λps₯5wΆoηθν―‡ΔΝιWRσ `]σMΗ ΚV,\O2ςΦ άU ΆΦ‹CSο‚)XlΌQΐvƒΟ<Ί¨…MΖ)ΝSS‘ΗmИ‘6wWηέ*=Šͺ$…;7ΓoŒ-ΏΖGwέ ΝD‚ w‡S“'4 Τ—Ω’4Ώ[‰κ5Δ»Υόί ΅ήd/°Cύ-·\&ρΎ!Œ΅ΗCF0΅5€φΝ-θ8€))±qχ#φK\–ΑK•οRΩ'V#DΏΰKdοΥO; Ύͺρ έ]w½3!Ϊ‚ @smϋyΥπ”F ^Ϊ•eπέRžωλ?RΕΥMβW‘‡ΌΝ@Ζλ’ΗBˆxŸΧ{FΚΑ’?eFχΨtγsˆτJ'κμώ —W–=F–BR.žΊ²2«?εΘ xδ9”`3ιξ[ά£κΆψΖ‘+Ξώh\rtY/)•{χΘ½&‰ά@πgfӞIσh’Oy?έ½δF_V¦‹χ p©ζŸd!j<²:ΨβγUHdω ή}—«ΚgmϋM-ο1DjpDTυ—KΆγG,L cνΞ)k΄ίξgoβΙCδΣ %ΩPE+ΣqLx0QuΖͺϋ‡J!ΘYΨG=6σίΏ°ΏϊΣ,wίώσO4ς@4Σώ€\Ίwί|Ζ0χίι‹D€Ou…ΜέTKW―³κa¬š‚EΒόΙΝφmϊ.₯<ϋ^τAGΔΪ‘T{½λ@bZ£)-'mBwΆ3ί]γΞeϋΙ4wd›yGŸq…ΌυτC8w^kŠ“2ENα_Wΐ^™Πή»C άl·χ‰Wαb₯ΤiUmΤ<2Ο,sΟ<ΓvŽ)Ώ>Κ‘uPί‹Uxgp™‘χΔΑyίe\Ξk§Γ~Ω¦ΞψFΈ(FΦeZTR ΌΦΔFJcΪ 8lσΐrέ΄q|μjƒ„C.±Hm―Π wE^`Nz¬ο˜––}Ωz²KŽήβX OZςω- »QάeI†χεγFP3’€Ώϋ½ 0Ρ“'ώAϋΕ<ηζυ $‚ΈΨφaρ_…O2Ν|ίίλMΘG5ψrϋύ§ΚZ=[Ωތnβ±`“€©χa0ζ„ΩΙK(f"qΛμΉω«ω Ώο€Γ`/'”š οήΚ䫞(ψΥ ³ϋBjΐj2΄€ŠΫ]Υϊσ֏Ÿbzίμˆ‘ΙψώνjωωaΉΨΉL½/kάN)ψ[Œ†2Φ‘}s€ϊiά―±ΛίA ElߝΝΙƒKU‰wH5YψόVy‹PΛΪ ˆWΘf’’]κφ³°$—λvEΫ~’ΞΠ[Oάώ€Ψ‚ΦΒYšΚ²«*3£‘TΒΏδ.ξr7‰9ŠΏ½™Μ˜ωŽtιΩο^<0#ΓzΥ€ή‚=Ϋ‚¬―»ώΉ&ΫΘθaSίnζ Σ€%3tc¬ςυ ½Ιͺ§έ‹€ώ)―ΰ”ΐΈΕ•ΰ6άsa9Ϊά €Mt·φτςΩh••¬š ΪGΑcαΦκeΘτB¨1ͺ© ‰δ΄°Υΰ)·+ΑGŽ<ώq₯„ο7ƒr•φP([Vλ½όΰT?Γ"ήψŒΎM]‘r€$ΖήαΤΡk%ύλ0[ΈMHÜi!€£Γ[ΥƒΚδ Εέ•9ӈoΓ“L‚8Ϋ#ˆI‹…Μ·κ πW$!Qγσ“γά|΅θΟ„BΈ| —μtvt1~ Π}’iΛ:Έ…«&ΰΏ^YˆUꝦ[dΠ•¨†€ΝMfQ`‹•4&uήfΌ΄ΎK8=4¦ΨΌ,β_XXΖ™{hςNu”"X ™D•H~}yΊθ‡ΝG_Ρ΅Vo%θVΧσώŠl(­@²;Ξɬ\U;ˆW™‚ŒωJˁx•ΎιΙ°ψ'ΏΆ(^υπ›Ξ‘Ώ O½'υaˆσ‘΅ΫšH#δο]  COΪrΧβ=MPyv³Ξc(ωχ0RD/SβςSA$ZΌΒλˆ2 .vΎΦω3ψ* Z/ϊνΡΆUχ Ό{‚εΨΟ΅ͺ1Y`p?ΊτΎΪ»—Ρυ"ΑΧ-Ύ--Όƒ@DΚ}£ν^s#°—g*1AΕ,G΅g‘jώε{‚qίz8–KDΎΨRΡA““ΜŠ4βΙT’Π_ώ|λ…4 Ρ;š€qd‰όοάVΜ»Υ &-P͟:=,`Œl”o@L΅α#R©,«Ϋ3ύ?F–3ρ§΅s θŒγβ{κ³ P£Π…d]Bm}PŠςžB»’`‰šβ‘/˜ƒμ†οψb³σΠ?³’ωM@t°nˆΡ΅Ή Ί΄Ψ‹½qXΦ™W~9ϋ~͎6Α}j쎍‘έ=œ»ΐ–/ϋc-έ[,…Η!Νς—4Ώ$Ψ‡IwIΉτ4£ό»Ή«ςΉΞρπϊB;hίSž[Sθ±Z4H"’• ©Υ£ί¬ε;Γμml2<υ@’»t2Λ|Β$ΰΉ‰ΟΪ #9χœT{MGC­7πR±*³ΈγΨΈV#νEΏΦHΏο•^’'_žYIo.αα1£_ΛΝΟoX3<[#„NφšΫ γω²³© ½†#Λ¬°Ž b²Όr·γ@Φ½‘η& &·eμΧ€cš—$Α8 천g=Ξ·obG7wuvω—™σ—!šά¨«*–yΓIΪΔ£0œšw䛏Ο.^FJ -ΣΗ θ\·šδ—05σΎM‡όΥf>ΉώΕ{ηk–ϋΝ{|Ÿ3 žP³ρΝlsrω,$€Xν%γΈξϋ4~§ όP[‘XΙγςΎ`Q€wέή}·˜σσ‚Ο|‡Xc€½Q z½θ΁جΜ0wέλέM­ν/―=/ω%Ε”~ w Αf%Ί}Χ;λ4ίβ=Χ‚yΧγΨ?οψήχ#ΐ>{πύθ‚Χ@xαΐϋΗγς?…ϋχ_ύο|Δ"!1A Qaq0PπΪ?S V€Οla‡ω?Θ“τΫΡ_£†=ͺX"§¨Wΰی§Npή@°«~­›7ΟlxŸ₯^ ά&.εf1i4ό―NρΦ8>hHCVI>ύόžγψ!Σwˆ/·ΑP5τ·ώ –›f†%„3Μ%…½χς6yΫN!?£SBϊCΛΔά£Αύ†ώŸΠzAoe-(˜Ηߎ†T˜šAΊCς:%Β5ΰΨΠ‘0ފ?Ρ h‚:Q΅α~>ιύ8„ίˆk¬IlΨιmμ© ¦‡ς±0Δ3c#(‘bθtΈ&5†πq•iΓύ£tΎΩ=ΛΔ\ωy%†ΰnς›έλΰW£OX+β:K¬‘­i …½ύFYCΚΰˆΠΕ²/Α%ψ4ˆ¦ΟΓ)ΰφ i'’… Ώ1iaa0•*CόπO+Π’JάΠ›’BΎ!±ˆ£±_£Q(²ΫΒUΑ~ΨΣΜ"hm!ό-Œ£„ΡPΚ=yB_£Z?ΦΓ‡G= ŒƒtXhΎ ‹ ₯Α³ξS2zA‘~8Σ4£Q ΨnΛ …[?†5Χ±χ±«lM'‘νβ“)‘ŒoyΡω©.‘EΰG]έ-!|Δ$ξ ε¬]©pnˆι^θ©qC| }•!Ξ„!ώΜy&ba>)Ÿ€Υ Όμ‡ϊ6w~(wcgψ?ΑώM1ΟJ!’ !CpΥ²Β’Ω ƒίΒy‚D7D$ۈΠ3ΫΈ&}.ΈΗΊΖρBqEK‚cfΚp―žQ’QXš]^a}§Ž›Β(•qi0P΅€7qώ a1¬1 ‡XJ’‚nμ$9¬JΰcOΜcmdJθš\+ιOjΑ4Ϊ*mŸ ’ZYH¨ldΘ‚F£P‚ύΆΨۏϋΦ(ΆY‘~&(›b«hl£ΠΨ‡ZΒόˎœAˆKΡό ΨGΰHΊ4β?Qώ0Q!3#±’Z6ΕeDθ‰i‹ΨΣΣ‹F†¦ψ,M>ŒΪrlŸΣύ‘ᬣώa eΪ WαύLœOπ© a0ž Π΄-ώ {bih'τH‚EΆ?(q²Š°€…x6mXlJΌ,Ι³oΈœgΰϊ'±Ο±ψ”^jO팿±dŠiθg12"#›eƒΨΛ1ψσ aΌxhzθΕψEύ >„ˆώ³ψΐo π$—ΰΖτz1ΓΐΩG<Ωk’VιΤ1}Ό< &'¨Ν—£τΖIμiψOαPš¦ΏqΦΓΫH§J‘Ίώ‡½ ώ|5†¨’ŽΕoA aPά-θή!Ό*ΐ’Z!ϊΘ© ±΅³£Ρψ/θ䑦ؐN]αNŠV2–zv>ƒψ,'ιΌξ‚Πξj7ƒφ6ΫCόΚkι‘ψΓ qΡ»1H£πB φH$IΡBΑ»!+c§b…+}ϊ>AΊ[‹6Ζ„Ρα^peρš”πeΩ Β’―ΡtsW„ΣιA©¦9Ρζ°—ƒπŸ™ι`ή=n…Ρ/Ριΰ―J*%ΆpJ’ ”JA¦7ϊ./£hLΚ~<‘"RŸ¨ήAθq‰υ~τkb=E7M „a‘¨%\6$!>ˆ?hnπ……Ηα ·±&!ΓK£~±’ΰΩ“*Άρ ‚BkbKF―FΛh”€…Ύa2ώ ΅£…±%8ΑΖ:tΰJ7]GBc RHΏSTV*vHQα a1¬q ŒK¦3f%β, W … u.Žψ=tύ θό²ώ π_’”LM%±ΪΡiП§ƒύΘ]<ΡiXη …lkE‘°’{cΪIΎ,ΣπbU‘SD@p4Πήi?0˜£$ΚImtΨ•EρˆΨ–D=ξΨ‡ω:Ά6—(˜˜Δκ]ž…]*}?3ύρβ‰―I-b[aΨΖΪZΓ―„4¦Sρ‰’»όβΉ„†ΌyθΤφ1$Ά5앍έ#Ν ‰ι(££±ώ!Έ6ƐΖ6?’bejψV?£ΰΣBp[ Γ“΄Ž²hΡG‘UΦLY‚ocJcΧeoFRR[ύΔ ή%YebWƒ~HlJή…*~Œ£x?ΐ—¬a±όώLB­ΡϊτΙ(”Ϋn)θ Oy7ςͺ&4•’ |™HLΊm΄RγπΒ]±*ρ ψ46*Ϊ %ΐΖ΅Ά6ΔHa†οΔΜ ˆ'‡Ψ(Σ=<J']±*τ$ §DΧ’:HaΤt£)r…€"΅ Ŋ1οHH74ˆ(†Δ‰l³!ΣE±"Dmš, ŸΒMŠ0Δ0ΜψA< γ¦ΨB›Xύ1FΏtς ‹Ώk(+ΪΝ4jπ„?ΑΌ!Cή,ΨέΫΓ„Ž!°ΒG°Φφ˜έcEρ‘ž‚ΑτKbΦ‘ξ‚πžiΆ=’ Ϊ+z)t[‘λίΡ«Ψ±ίΙ!λωk)НΜ$ΫΊΕϊΛθ£§q!θQͺ 4_lΪšΥQ QŒ ί‹‡oηΩA#a„»Xk‹ψ&Ζ€ςΡQ%2Κ žΙψRƒΑo W·ΰ5Ρΰ† ΄0ή…6Θy†ƒΒΤ…Ψh©ΰ»cGEpEfΚΕ*Ε™>}bTΒtCK€έwŽ3 «eIτ}e‹ΉX1χ ιΐάCb ¨œΨΨ°ΆΩο) π_„Ά‚.ΨͺiMli)Ψνΰ†53 (JŽ2A9„ΔΰΗ±>“©Œ{.Κ²–…ρζ³£Πou–ψ˜CˆJ±Έ‹e*p' ιΨ‡R=žihν‚ ˆmϊΥ‘ιF4IςWΪ:1ΌΝœcϋx6) ξiœdO„ΛW‡₯€Α± ώΓΫ"ϊψQN3½¨;κžΗ­QŽ‚ιωoFΥΎ·G6Xι– hλγφ‘tCή †Ν7qΰΙ!ˆlΠ“ )Δ£‹gD«- zcQιQΌ7αμMDO†Σ7c[DΡΚb-ΨφΔ)€‘Ί±τbBφ Θwυ₯CQό§π™Fv±¬7‹ ‰ψ576Ά‡Š 1!!ρύ²nŒHdΗ±Υl_’Η‡ΤCή‡Θ5½at>θ±6Ěc‘Ό3² hk Βͺ‚“λEgτTΘ<Π£ΒΉ‹§Fθa ΰ‘yCύΛPCξŽπε)jΩPˆzPhӟΑz 6Λ†t\ΜXφ„ώœ1ˆOχ;’z6 θbZΘ)σp™eπoΡ»ˆ7(‘α+ƒ”5A•OEΩe<' ρM`_ρl6<ψ₯Ηpu„ΓSAš”wN‰P‘α©Ρ5Β—α’d™[ μCμ:-tabΨ₯Šf}ο6lΩ³……†1_α_α_αΏΒΏΓfΝΒΠ{ +)’&X› ±:ιΔq BގF’βό8ώ΅qΡ^?HzΪƒk$1ln!~ŒŸ@b2Ώΰ―ˆB? Hό8ΘB)Ζ'P»ΓΒΓωϋx#¬‘ζž¨x/₯)~Μ<_‹ž¨’ψΈkγ`‚‡Š†)ΑJhI ±!ρ |Ε†ΓX†πƒT¨΄"¬*4\* ω‰π–n)Jh¨Έx•LQ|²|8Υg¬u„ B:•p}aτX£Gϊ2ψ"‘β:6z6> ˜]Š›ΖρξTWάA³ΡΌπψ·qJz•p‡OΘ―ά)H.αεb:bχF‡±ε}.§’QπKESίΈνύ..F‡†ΗΰΔ&Εj‡Ωbochkπ’ˆπ„! GGXXχ7 ŒBΗή:zA‹ €&_αξΜSϋ…яΌW!σ(}=!ptιύμP¨Ητ"Β Δu‰‹ CΎτk_ ‘Α_G—ΓŒ]θΫόboπb.ΏΰΏXXxχ‚Β πΌfbAα bg_#X@Ρ$Rΰ—Έ',<\&=‰a―€„‰a" „¦"”‚ΙΦHo ˜‚Γbfθ°ΙπνΧΒVM¬™»Ÿό;qF5ˆ3±‰GŸ…cfώΒΩΧΓΔ “kk„&_AΆlΩ³f͍cd#&ΗC βb³2—>πm'…‹λ°ϊpfόΙ{‡:oa‹hLDš6_Α RbQ(=lή!ξ:ΑŒ¬ΕV‰^ψ#‚œde 4γΒtHF1ΰώΏ”· –­ BιrΩGά&˜ιξBώ Γϊ<"θMώ ―π§ΈxθbΨΛqΜc‚βελψ)P˜ϋ†5=rΖ=‘οΛξ+8‰ž“Β/0†1νEσθΫLxθbŽ‘jQ”Ώ/X?εΏ+β gΏ-Έζq=Ί+X¬|„†±pρΨΕ…”“ή}θŸΓάξcΧΖύAΌ¦§z-΄6°¨l·Lqӊ+ζpρΠΕ…πe/ΒƒPυ‡Y!ερˆytT¬ŒMŽ›ΓbώŽψ$6oάΌpΔΗΏΑ)αί ρ³fr|ΗCΠ‘±Δ44Jq‡t_ΨΧh8IXz&=eΧΑπYXˆ‚¦α„‘]!β""Ρ\\*±h„"+°„DIό;GŽ‹ψ&Ζ!ςλ₯ώ —έhAMVG6bFšy‚PΏƒΔρJSΪVVVB²²±••³£ΤHq“VΒ”Έ₯+ΕebΓΗG’ΒψQŽ•FΚ!φ{ϊ.D> ατX©tXxτKΚφsΓχαό,U†²ρΡξ _(k̈mόροΎCψ/pΨ‘&pΩΜ<0j)ξ“/HqθI!4Žαγ£άq>,ŠRž²(Φ|g™O)DΙ1pθ’) †ΰΕΊψXlA— ]‰—Ηg’ΎV4DƒΟΌ“='Α Cߊ<:ίΝ¦’peΕ(Š?яkσG†‡Ž…Ρ|".ƒΰ°ή_Έ?‰βίψή=-ζΕn—ΝΓn..^;=!D,q›†{;ΐπΎΞ6Βa4 ¨£! γR1D@šΓθ~a‰€?γΦ؟τms-Α4†Σ*D‹όψμτCΕ:kαπŸWΨϊΎ’ϊK„ψ&&„!1Αη ΰω„! †ώ lHh˜BpΣβ%! Žh£‡vπλ 7ŠxΕΜΒ”Lkt₯) …ψR”x< βo€τ₯*ΚRόθMα1.ŒQ'XC=άL~'Γ4BαβΓYμyψ„ΓSαoαόpθτCΓωπu‡XY\8bηΪ§ϋτΡρΓ<|€ώίπΣε=ο’Μωbxwπ/‡Γ­αίχβλDΈwώρ›ξ)·—π‚LdωkΓΌ!όϋ—πςοα_ ώ o‘Te|1χώnD<<Δ(!1AQ aqπ0‘Ρ@‘±ΑρΪ?{iq‘ρៀύ6<±E±±Gw ΄’Cτ$—3£Hϊj°κ?πM()½„„¦/Βύ XoXa~jΤHL'Z€‘'‡Bό%ˆ44,ρŽΖUΡχψA„έ7Vi‰y—ζόD Ο@β½± ”Γώ λπtΪEͺή„\¦]ΑύΑ1ιSo…DΎ‰1 !΄OTψ‹o>?ΣΚΒ:fΰ„ό5|/Δ*ίM#ό΅A$”GtΗύΐ­ GvlOQ /‘IR}Β~ Œ6M‰”πшha7€/ΗA›p?πφwb\G2B/B­”&šε”₯bΊ5±"‘8AQΩ‘4†ΪΒϊtΈ ^ν ¨‚BX‹ΰΫ₯Μ‘=.‘P•sθΪ[dEΰτy‹p6ύpiΦΘρρ ίDέΌ, ’όλΡ‘+ˆ7Ά&α±Q·Jώθ&₯mθbξZ> °β³C=‘[?ω±}d(Σ›)JFϋ–£ΗΦc1"ξ[KljάZE· UμψA·£]6/„2ΦQWΑήα=‹]œeρ-Ψ΄΅ΑΑϋ†$ml_Q3’WGςΐ±hDΉ—τoαώ!N^xBА…Ύ .˜NϊBα5”ότ†8Κε’ͺΤ«Τc£A?ƒDηξ ϊ$x@‚:#pH[CχbD*‚β…э"ό(Δ‘Ρ2•„ΤОaΆq_’Ο¦ΛνπP‘!EXl­πH\<'†·ϊ%81Ή³~hΣ}]=t{H=ν‹kXϊ!x%Š5BC_ ω†τ‰»Dž‰€°—‚ChYd–’©θ%ϊOΡΡΤ«)ΑτbJTj—_BWHO½πCk B`¬˜Έke&$’ΠΖ‰Vy$ϋ’–ƒ7PM. ίH&161J j†ƒΰyŠuŸAt…K‡Ή l‡£ΐ§G’΅‘Γύ…ͺ ˆΎ1‘τΨ΅kΐΦα=‰McόΕΉOΜ!πƒ:%442JΌCFχτ€»sNIvΚzτJΰƒMP΅Α»…Ί ©iαΆ5½Ϋΐlm”ΎŒ%ΰ@Ν †ͺ7H£_ƒΣΣBHuΑ?Β²>CTni—>φ­‰7ώ_ (A&ϊA‰z5ΒxbxM±*Ψ†΄¦–Λ”~œlυ¦ ˜ŸpD0„7Ρ!9ΦΐψGΠbΫΐήΫ6ψ °€γν „βΫBk‡S‘>Κ|ΜώDbb Ί°Η­Ž`Έw}ΌŸψŸΡπηH؟ŒlIϋ„ΈNjŽψ}“f?E< žάmΑ„!tj†$ŽˆZc[ζΖΞ23q’=νθjv½"Φ„'CMμ΅>!UJ|ύ £b£’ΪKylšΪ#­ˆΟ2I/‚Πšι.ήiš{,x 6iΜ+‘>ΊBX{ ΈƒώH’ΗΒ7±€%-±Œ{± ιžΔœlσXψ,N(Δe“[υ hα'Xή ¨$ ‡„qhŸώo α 6Χ-šŸϊ°ζ=ΣϋŽew£ΩβΠΝ‡±ΊpYΞ‰z6[x’PΧΑΧF‘Γa θn菦[Ρ+€}KCI<-ίΎ±’6±'F“G¨lœA|$΄ψƚΣγ-ώ„‚_φ(ޘˆKi Ωθ2ϋˆ•φ6½ZfœKΰWΎ .ΨλΰΙ­ Ρ „ŸM#±68И•’f7jŸœ©;σϋύ6ΊQ+‡ ΣpL˜J‰y†ΪŠ1ΊΝ±/τH”EDτSθŸΑΞ‘Ύ‰‰ˆ#z+ŒΪΠ€€ττFDšxC'œd΄†uαZ3mZ4m­œ΄†Q’G$lW‚> HqJ±“½>±π|CK„Ζ4,%^,εp^ˆΩ±zcBV"5½ΨΔτ5θΰυΓf„›h=S+ΡH{C‘:«bμ.W±£Ψ“£ψ5‚Υ‹Ά†OLH7ΣώoΠ²}™ΓM έ#Ήγψ%Iwπ\†ΕDQ?Λ²Η ?όHι6%6Λm‰ “n±΄6“ΫΗ‚ξ#z}`–Ά8Σ9ˆ }‰Q»Ρ‰MτG I~.R~ Ρ1D¨ΩΎγ?ΑOL'ΑlΰΫKcoŒ‘ίαύC‡RΏπnKΏόπJ κιήžŒδbΕβZWΫ‘EbCp²! F5π ΊΧΑDˆ§qΗπΡ„!ˆ# 4%θ¬Χθρc™ύGΊ!> ₯Ά+ˆλ£JɚζΘΊ½$'Σ{φΩgJ7ώ‰ͺ4}-π9€6-…ΝŸΑ/ψ ά)’’hOόgƒΠ“(π‡BΰΪ£ή1j£‘χπΥa³Π΅<hΛκ=QΑ―H’¬†P©*‰ωΑiŽKƒ:ΫοΏ ¦ΒEΛF6D·άQhtQb"ν-½“z,α-ΏΜcuŽϋ ©0OύΗ‘χφ φˆ 4ρ=“£ZͺΖm1b²χώOτ+f„Λ…ϊBύ.A:ϊk‚Ϋ ¨”WΣΤH¬ΧX‘$:έ>ƒύmΈ)€Me³n †ͺuέ —ό a±5Ξ‰!θΔnώ‰V‘IFΌΖ Q˜V•lŽ  )΄{±{Α=bΙv†ΚMpOθ”SΝ•πJ’CeP•Αu„«<‘ζA–αN“yψA-Œ9sα*΄+£θΡ<ΰΔ'sAbΊ„R Ρͺ£Ž |˜&v,±Ν χ’46!±ΏDή‰¦A66>΄>˜KPIAhŠΒ懀*ϊ4`Ž`ކ©|9D΄w[og±DOΧDv^ˆ~ ˆLO6ΕDπjμώβ›DŒŸτ$w†rΡ<IηΰYΌΰ)Dύ!›;mΟQ!’³ΠzCΠ΄¬nΊKo 'z6Ά)KÁ—LŒKΡ"hOWM-N$‘o’G™O1iα ԚH”xπ£1Ό}~Z1Ύ8Πκθά&ό”c–„’ vYΒΌάv‡ˆ¦¨:±ΐ:!Ψ+ᦍ΅3F蚈πDU œ¦'EŽ>ζΣ£A<ZZ ‹ˆΈKX”ΒΏDπ†ΛiΰΗ¦-ΑkYΈͺˆ]Ά‡x/’LvΔΤΔC’œ 7ž€'žkυϟώƐΌ"? όό4‡ό46„”Ζ$’,y!ln²l½‘Μχh‚^…Ρ „$$bhaΨ°ιIͺv0ΠL!4C±³T=X_τώζΖΞ„1―˜_₯H%P†„B•tCΫΜφα% »ωIa€ϊ"τ!"ZΒqFM ν‰{?˜ƒ…Ό5¨I$’&@³7I1ΡKΰ’ζA‰ίπ>©6Κ96,BV}2 ΓΏό 4¬*ΰΣ{!οα2£‡:‡π(š{BZΉEr!¨’ό‚"α !nW4hΡ’’’’’’£E8QQQQ£F4hΧγkτž†½ό?ΛΓ!Ό!V9!(λ1+§p†Ε)ιOώ'ξΨWαώ·0ψ4ŸPΧΒΌeOol>‘‹ΆX6•pτ«πΦ4 iϋ„Δ4hΡ£CihKH‘2’’―ΒU ΨX›?ΐΕ‚γњ#E“θ‡πo΄uŸΔH0ΦV7%Bff“0˜Oρ¬Œ?άbλxht‚1γ6zchπXatπ•N‹+%…L&Σb$Κ(―E{FσKψž„fΘΙ…‹Δ σJ6±X–\π±Θώ ξ Qˆ}d‰! \ΕfΝ‰αΌ2γb…ΡχρK‚te(ΩJQ XJΨ ΈBιύ‰ύ4θ˜πFWh˜΄‰ΌΗ›‘+Xxπ¦θΛϊŠ&1”EΩζΩΦ.*Γΰ˜Κ!‘J> =΅‚ΓΖ°‡½ ΘP©Ρ2 DΠ–ΔΆ!±ζhΜ]δΣ<*Βz‡xBz2lΈ’<ήO‡¦±’lπ˜MšΕD BξΠ‡‡,CΒζf'’ψN‘/pσ §C ΛH6Ε‘σtξ‰…‘σ °x‡π)ΰώΗτ%Ο4Šؘ†Ξ21―MΚ\&y…ΣΌ-‘‘"‘lΰ„‘Ώ…Xγ ΄!αώ˜ύ=a‘['Ρ Ζ8ΗΠ‡! a8‹…²f ˆˆ‚…€JΕ„<ΡΏ₯}'τBOι^)―¦ΏΜ.žX‡‡ŠR▍?GƒA³ΙΑΐšΓήpδ"μˆA!’©ψ_Βhyh‹±τi ζ)ψΤΔ˜‚…ΡM₯†Κ1šό6TqX•α€Δ’ώf!fbx­‰1¦Ah¬WΰΣ~ς 2c‘;…„3 άΆΚώό+ψVy…ŽΉ‚Δ8_ζ==KψGƒ“Ζs—}DŸα9’²ς$Λ0’e)E±7šeŠ)N”₯)JQ!c•<.†ΔΕ‚ε4ΆΖχFΚ6Ν H!ΓTŒγ ‘?§†Δβ?Γd# Έ4A"’αB‰ž†Ι”LBψFB˜L!œ/ωΰ˜4'ιͺALL@Xx­¦q’ιΰϊz†·h‡„oώV.PρΩοσJ*_…ύ?§p.+πKπrΞ0Δx>‹£οαg_΄UπŽΟe~oεͺ˜šΖΈ1af”ΈΉXπrrΩΗΰΈ>‹£[ό‘αρ °§€ΟbTUΜΙ•ψ™LAi3ι ‘ΰΕ‹ψxBΚΛƒ‡ŸΉ•ψbΏhGG±·ό¨ι‰ ~Cί!wΒoΦ²z’^₯wi±;Iεm€v¦œSέ¨8X#`ξ€ι½!` Œ9@&œ‚1–'ΐ1rg½] Cύ0ΪΐΪͺ‰€°PˆυŒ&“θa‡hŽ Γ°ξΛxaŒ?’…—©Τ€ „u6φ§ΠΏΫϋ2ΤαΊρΊλ™λΉ!›Ζl36}τq―ΐj‹ΘGα$φAŒσύ³/ λ'φΞΙ>Cγ? κύ“₯ŸŽŸ;Γ œγ:4ΪΕ…:˜ υ!¨+Έƒ ,½‰K‚ΙΖ¬½ΒΟ$b™clpE’{cnΑϋω,ξιFΨΩlYΖ^'Œ²Γ)Π@2 δ€ά‡0|ηΠPVΓ«dG`Žωy6."Έ,γeΨϊ ΖΒM2κg)¦BŽ<;HΓ’‡„ΰGeΆ]πš%ΠiπυG|ΡLνz! Wa!κέlabc-Ύί,ωmόγΫδωgΩ³Β~ίR?o™$‘˜iακ7;ž½βŠ |Φ5~ϊ,ώ7…g’μL’υ΄ΐMžΐ‹°»ΉΗ Mk Gwίπ3PμΏ%ταΧVΜ€υ&@c&<a# HΥx5„Κΐ`μ!Ε°$ ( vie–,νf1υ° 8Ϋ€E7!4”i½ ΐΘεsό#.ao!ŽΙηΆΘ2πρά,ν/%κpέ!ψ$‚KΒ6"Δ†6 κ8ςZιφΫ|KΖ/‘|Ÿg̞αφOo»"N²:—€ΞζdˆH0ςΑ{‹ΈΛ‘φ;…χwοψ8bNfήWΪφΛ\φΖ폰ΨόΨφD”νς3`|H=‡ΨβMY`v;Ά?m]\ΨsJ)Z’ω»ŠΧ;Əl»<oίsΒ'dτδPξΜΡ€j` u@6m4xΛμ;f™λf―LNυ΅Εμqχ]>tΩ/Šw6Ι6νΗ8Σx \ηΫf’―΅„πY†ΟŸγ`qCyL€&μP_H'LBGνŒ€bL|L d.Ή}Λεžί·“n;gwΖνέήΫO£&ωxα;Ξ£ςΝB›Ϋ ˆΗΏζHβ,ϊρ―! bK-f;Τθίρ‚cnξxΘWQšπ‰UEξ0φ…Ɛζθ‚Θ8,Zγ@Φκ^Œε'FμœάΞ»Αϋoxή‹†G¬KAα„»,ΰυˆ~K@JvΗ ϊ’½‘γ^3——… vƒ™aV}\Υ |`‚ Ϋ됚6ΟfΜ->ΐΛΛΒŽ^p?Ψχν‘|›oN­οΉC»£ˆώmeώέΎ]½Ž/z ΦmΗ°“I‹€ΦΙάwdu,£`6κ}­ŒΒuZ;mpνœCμ `ΰδσ t*’™.ΪΞBaΏ+ΏΟr!Ċkςσό8pΛOMž)’ώέ3ΦnέKl0όαξ=ΰδlT€ϊXaψœ―oΏAœ;6ΑtˆxD΄'f2nΛΈšδh.±Dΰl(wΟ–|ž½#Φ|ΩivXό!ύ“¦ΰ;œ`@«6ΝξYv^ cVύ^Έ±₯Υ°!]gς‰φμ—sO6μVώhτΰ-N…‘ν°£bΘ`H3Y!ιώΘήΘ@W±r\ΐ`ΖΝ`ΞG`ΐΚ7 b{l:uoDΰHgX ;<{ώRΣJ ‡MγmHA€ΰΦwΝC§{‘Ÿ,{‘‚/Η9{η0„nΔ„Υ'κؚŒ²r›ži.w•6݈³œ―udO-»ξιιΠ•€hΣ&ΓΒΚ3»>C$χ/[{₯Ή~.ΨKκLΐp΅`Η>@!φ;w{‹[·μ/Φ|Emίm<Θώ'Φ²ξnZΐ~]Ά©αυWjΰ\^, Ό»vfΗ—Ή2Θp)±‡Y‘Άΐψƒr‘€p ni`ο”»ΚD=ΐxrφeέ«OΆΞ/Ό0aΖ Š(ςώ^“ΤrmΒXΧ‚u 5ͺb鳆ހk1Ϋ§>>, τ8ΏqΎ+χŸ!aeύΨDμοm‰ͺΤ‹vJ\-bP‚D,μŠDΔ φ$œ4½Ž1οΆpφώρχU:Ž3N›ΤζΐP;#hτœΈ:λ:žμΫ;ΫήΫPωΐ„Ι/€³Ύ=φ"Η`γ!τ€o9₯·qΨ“@²(T–"`€Zΐ$b8a M!1  γmή  ΗΨΊK‘ytΫ>ΩΤ4–›ΖΪa<7aΞΰ;Τ 3<κ'³'Œΐ4Ȉ0=G.Οή7ŽΫΩf³mΪΊυΙtIa¦²€θpθρ ·¦ΏRS―-›ι†τΞ‡ Βν8yt€Ÿ,ξtR=Ό­GΙ@WΕ€ι`> Ξvή`Βzφсu kΨ{ΎΝ‡½SΨ_6mΊ{·Σ¦ˆ;Λ ΠN5 €ίrΙ° Cΐ< Άͺ14η:±e € κΝ·‡1° c  Ω;“LfE@‰4Λ4WΘ²'\ LHΥ•Ρ&‘τxΞ3‚P5—,eΆ‘δ‹?` ŠDx™cm­ {@x‡cΌz>;`Γ°(=az¬ΐJ<Ε½ αy rόY݈I(A¬8ο& @ €@[C…χZΗ8 Y&–iδπ[xΕφξώ μe»°nN/Ia¦a‡CR›Ρ:t%&‹ Λ ψX,ρ–Έ¦‘€g οψή~P4’ δ~=P/sLdα οgHƒ8Ay #£Υ`P.’KΐΝ ύη£ξ­ΰι₯Ρ¬[θ¦κ0h¬@6υΙ>C@Q°=• ΐ]W”Ψφ P™0Άτ‘:‡‰΅α€ΧΎ™$κB{Τ‘ δ_ΑbΔe³T b}†&ΜCΓΕžLΨώ°υ€ ŠežUfL·Ž‹Qυ Ÿll?Άέό·ΉHέΒΒ²~Ω$<€Ε†Λ,‚Λ:s¨ŒuΛ;ή³–drf`ΐωηφΐ¬ ˜“ts¬JΌs±Žηφ@ΚmŠμΓ>³?Tq׍‹ΐγ%Ε@Ϊ`ϊΰι:΄ΰΌΎKχAβ°vfπȎ˜|7bŠ(»Mˆ{)5 ¬ "( ι &Γz'Œ_"δ8Ά_ bGlύ2BΑ Ίή­’EŽΐ>ϋήΝ›˜]Ξ!ϋΰB³Xc‚μ—­€u-:’DeO6€T’ωcϋgκ]n·mωcoεΊλxδ;ύΌI πp°OGV,ήν»μ•°Ά”žp  Τ,ΨΜaL04 m鬀lq³s† `²MυlπIŸή:$@Z±t HέEΰ Β³ 81γΟ8P(Q€μ! ο „P‡Po (Ί “σ°TPΓΒMG[!5ΓΒHe₯‹$’φΨ½lB'Ζt{&τΖφfq€V-Έ[¦Vρ–·/£',”ž¬ΐ=OSbω,ΖVΩK¨ z,ߍ˜ύ†0έ$茸XυΈΘD«ϋ…ϊC·N€ζH0[ΖΫhlΣϊ’ο±fίπl₯Ϋ°™€‘#φ@qp©ή@uΞƐ oa,$rZ&:·Β‚&σΎF:@4δi ηψz+Θd GΠ@7fyfίr8>ψ"€ ™ ΰώυ¦3¬P€ΣRοΖϋ Ζώ—Σc;ͺl/i dvφN‹:b2rι–vWeΧTZͺmϊg^J\֌w4_iξ―Q`\EΈ0ηj q}œΆ6=ν*;„KωŽΛωΩxIkF1υ°~ΫψΐεH|<εΨιΈςN—Mc%GΦhΐ˜Cv Lΰv8\ο–9;£¬€Θ©dο”ή­δ#e©›ΒδάΛ›Oνv λ—&ΒΑ˜†@€α {‡q—€-»=ω‚ΡfξbΖ•ρψh<`„&I0abύ…λ͏zl~ΑκmvΌh_Ά6#s™εΐXB ±΄Ψِ€Z60τΒ0Ρm :ΑΣ™lα±ΕV!‘“μ # ΫEΪH֞_ηη#ΘΞΫΉ:Β:ωn±εœaƬLjΘ_ŠŒΘ€ΐdY+.ϊšaώ d;‡dΠ鼌d”pϛϳh¦c‘!Ϋέσίl[‹CeΰΙχc…έΐŒβΔ¦4 άO pΐHO`&TκH]x »ύ½ΖυgΫXξΛT#ΏRδ¬ΌcΠ“NΖ)Ϋ€#τ ΚεΡ±OO,xΒ vΊκ 1/AΜ‚wŒ*˜ΗŽ’#³«?νίφΒ{{]Τς·ό>1ΰ‘ŠΑ.Λ97XΛς ዦ†^@d@šΗ26@@#g ΞβΑέΆΜC ™–Ϊφ œ%½CΟf,›ξΉ¨ΗΩίVžx3…R΄œΰsΙφbδ`ΨPdAŠu(c,ΊλξΓπBZ.·'€`φϊZ1Ύ1ΟLΤΙ;F‚°‰ glϋ8X #p‹‡P(lLβΦ­ξA‹6q'Λ,θ„s²zk#Ν%?x,ΐΩ€† ͺrb»ƒ―x‰’ΐ CGύ$οΤ‰πΘ™Βw5F·ω^1+ŽšΠ•ϋ‘?V‚?sΈFKI%ΎζŒΔΚ1PίΘ ¬…έ†^N„Θ\‡s%ΌΙ6E4•Ψ rLP»άΞujco .pς7\(gΪλΜ»uubœ0ά4sη»‘Γ‡\‡›Ψ8Ρ‘c΅ τύQmgjˆ Χf!q€bνΨξŠvŠμΒwcΤOLΨΡYi€ΪψΛΜɎ©Ζ^»Όdc{½,ŠQC9^Φj0.Τ*ΰC%²!αxΰ&d‘­Εh‘X$€ŸhYπ—όoαuίΤt„ΖΟzΐΐ-ήξΆόVHιΩ Lδ–}Β$εάHπΠΨ;=—@%@c £Γ„›G²c‚FrΠŘpœΣό=υbΗ†bͺ@Σ‡ΉžqμΪΘ#―8tμ‘€ƒUοƒ ݱꈚΔΐΑK …šΪ@Λ€ yiμn2x ϋ9ν‘έ°£ΐp5$+FΖϋƒΡ`I ˜$MφΧ@g\˜GH~Βh‚φΞΊ²υΊ†Γc lΖXœ0€(:υ€œ1P8ΑΜ’”΄ΦΑœ8Ϊ Aή ΌU@ΐ4œΰφΙ†NΛ}`°²Μ…ΫSΈθ’ ?“ϊ„ cy|Ώw¦>-ΊΨ€7„='ΐ… ›I«E€α?Αg\¨;°£Κ£HΩgvk΄7 0yϋgwV]=–HΆf™°Δ=ΝΕ”cg°¦Œ±X¦z€.‹?`=΅έ‰θl™;A.Ρvθρ„w/γC‡hΐl&%άΜ™€F™mξ —… 'Κ‚ΩnΠ¦ΦΓ@1xα6ϊΖ`92 ¨ZaΐΓk@C5°ΘδφŒj8±ΈŽΑtVn-έάΖ?ό–Θ?‘) £oQD#υx¦ο_"bž‘ˆ£s ]Μ,ΑΘ!K©ΊP-pέxΤ3Φάu2p 3«8λΩ9!u\ΐ'Q.3ΰG { ¨θΒdhFς$ς?`Β'‘>Βn؈ !€el\·$11Μ7Ω‘Μ/±τ w,24CΥb@½q¨΄ΑΧΐΊ RϊIV˜«ΐdE 20T@₯  P‹P ‘ ’ο@ ™ͺ«WxΘΘO\ …ΐDδ οˆϋeΆΟ|>ƒnΡoωΞuάͺ;€0š²ξΓ–`΅0o$‹ ιp ΝκU;@ΘgφCν3Œ 8lrB&—|zc.(μδ,Aύp·Ϋ$γ'α[†("»@h2Z°…(ή$πΰkŒf Ω°|ΒfPΒX>¦zWΈ΄„Ω/s Β-bΛ¬ύJ»οRτ8φ°ΑΆ?x΄μμ $-€ΌHΖ-ΖΔ³ˆ€Lcsΐ @ύ‘ΰ Δuz5p ,Ε@:8μ¬#RΑ}ΐ4δCp X ±N°)Ψ@ˆ Y•Δ<ž<½KoΨοΉς#[ΊφC?ΘŽ$HPP@B¨9π@Ξ¬αΖ@Œι¬πH$$ o`ΑιC£7|δpWsΨϊB˜Β,οxs‚%» *O³-šN2d/ ί³u"α6Ε€#>@@}‰φEtΫ€ΆΟvλ!Tˆ“rΡΌj6ƒ­¦υ$²Ζ08!J +<ΐC¦pŒ9šΕ  c–ΰ`ω+Šΐ=€›1€)άΖ3xΐ}8Mƒ‘Œhδ Έ|.φC³Ν€ƒ W‚σ–@ ™Ωlΐ(~S7βσiΛΔν)ž¬]Ή>£½(Fckΐ ?ηΘΰΨΘ€δ"˜ώ Bc Θή ΰE‹κiΛ,Ι8,u8]±–Hψm"ΑΆf던κ$Z!RDcν'MgΊΞ&–HX)»`Ž!ƒK©BΒΆ&χu‘ΪY]ΝOΝv ­Ίώ²]—[<³©ζ–Π{|BBtΑǍΐ@&₯€χOC€X# ή(oͺ3 Ξaˆ‰‘˜ξ€’ ‘„’«έ *IšG^85ΐΈ6.ͺp―ΐΑƒ /€Uχ$KhZΡώ2Ρ!klΑoR9MχzE¬ •† ˜ΖΣΘO ƒΈ’‘™Ξw|΄2.χŽSLš ί-Yn ž_%㉔ά€ˆΕΑ8cZ:Œ&iyΘΘ‰Ϊ,K =Zή[&•;ΆΫ’:φ€ΓΑf’Kο(0ς3魁ϋ#«nΝΛ€'wPφCPΕD@žpb`‰!-΄gœv’¦aT ΄PA†±‘ΨΑV   <x±02ΩqBŠ'B²nΘΝzpŽ“•²Zΰή:< §–?ωu" »’Α][Γΐ–Ζω—¬°Tv ΘXΕ΅t[{{2u8t‡N Ω4Θ~£†L²ae²Λ„ Τ:0[]”rΜ1w–7’Σ„Α 3#CφΒcͺ`Ζ?Ψ7ΉΑ=%»8Y@h"‰Ρ«<ν(κF ΰΐ~H ΐξˆ0κWVc±Υˆ“ΪΕκ‹p€Xΐ7 ΠΜ8ဇI¬Δ¬ΔΰPρ˜‹GΐTͺΞWT0ˆS}ΎœκiƒpΖaŸBsΤΖλ©ς6… I)`™Hθ_ωά­]ΗE±Ψΰ' š'0ΠΦΙ€¦άP°+[.ΈeΓgƒ"M\LM/ο.‹N›eΨF³,nί ψΖΚό™© ΐ|!;cϋl±β Σf˜\€π„τ@tYΐ&A!I g2Ό¬=]ΌK¨2HD±Y#U`qή,H~Μ42φvΜ‰πaξvv! 0J‚y΅Α¬€νΐ½ŒŒƒ‹A5"ι€Α˜0ͺDΑhC{Aτ°H v€˜ΐ€ @ˆzΈΘaκaPd=,Β†Αs†ψPEGj€€ ‡zΡΛŒ1…Ω†0δLe0¦¦„€7€Βxψa̍ƒ§Ÿ²0Σ΄dΑ™ΖΝΊα‘Θν)fqdq±€kΫ‹Ω–g|.pfH–Λ±wdL#dΣ΄’_UΩ‚_\k”!?{™F6ΖΪ+Ξ91΅‘#Ή#9¦“gς ςŒHf‘œ½@‹-ψηΥ  ΚblX$Χ’Ζp8GQf3#q€ΒNfW†ϊ@R†/p8C&XGΏ xιλΫkWa¦Bψˆ!©]”r/H&Β&œ‘΄°–ωξπΡκlβ€x8Ε`,ϋ †#q%Ω€"ς„vKXv8ι;2μ‘Β<Ά’Ξ¦T*ΐŒ„M»E‚Žb€ωπ@$N%Ι$%ŠG½OdφΥR€h<;Ad@‹‘l)ˆ uf(Z‘yH aέ‡JΜ6; D¨Σ ]$‘ͺŒχΈφBχ vB’ΓHNΩ`kŽpΓ@ŠΝl_Ό|š€Ϊά5 +9vCΜ‡€g‡²,D¨±°tY|– Ω$ΐ•dΆ`ΤαG½ ‡@c―π#L‘ίΡU€ †Dΰ0ˆ†6ˆ‰ΜŒš9Θκ:!4$‡ώGϋ1:DΒνG žœu7~ν³Vrbλ!ΒHtBXε”'ΨCٍxΒ)“υ―|@½ψ#Œ„Ω–aLΓ°„iy%žεΐΕun!$fΰB@™νœϊCφΑ˜.Ζ›0εμ™ΡeκΕ@ͺd°kΒIŠQƒوf2α(€7°Ζ›” :@Uxΐ7ΰ±pΒ†6^J€τHΝ@.]ΗLƒ·Υ„tλŒlŒFdΔ 69aΙ€# y„]αρ#Υίν²ΞΒppXOp=dέΰ π wΡ‡­!82=6Gr?%ΞΩΞΠ<Bt)  XbΞVˆυ h•X†εΤaPΐ»JZ ,la±hΐέ“?HΔ-Ψ’ΞDͺF— "Δ2·ƒy)Ь7€„λ[€°[έ4”y‚P—ZΞό‚{»¨†¬Ψ#P[:ŽŒΆ@HKή£{9 LeVS’y^͝€΄ˆ ’N7¦̐°Μ”{’ρ,!HnύAƒΒVf—Ό %'BψDvΞ€l'QΒ‡l;<δV„υώHHtΨNz u|ΰQ.εΓ8#< 6Θpΰˆ;G3 @ +\αΖwv‹$Ÿ;° ΘPFBρ%‹r`@T-€pκΤ/j7D>’+Ž(Ωx£a0μ\γ€ ‚@EΪΌ€±Šu₯Τξ΅φ\’‘Ω4Θ=Hω`OΠ$ "†@Θ>Ψ¨h2κ€v%ΦXCs€ ŒvcΔ…E˜]=qΠRίήŠsLA ΪΨ0ŽsΔ ΥκΗh ˆP ©2K:9€eΊ tΫε€λŒγO'Πδ†Ϋ9μτL€€œŸ± ΅0X„ΩS[άΩ²λD,€’OP—–dDν4mŽN‰0:°bΘΐ耬`ΡCΡ ~π>Q±Ψΐ>Z†d–ΦΝΈw„ƒVρ,0ΔPι™°abΜ„}γCp;[;Ψ;qσ—rnt$Ώ7vΘ\ƒεΠ†ZY΅ΰ˜· N`0† ƒκ ½±r£μΨVkf €™Aƒ`dD0$ΞOΎ2ƒg°—ΚFΫΣGRΉ8šΞšπ€ƒΒ–/ /²an@Κ7¬Id=HŸγ=–ΒφξPX‡qϋtž·(bΰhzpΈ!@…Σ)›Ό !^XY@ΖpfhdN© QΓ5₯ktδ­†±{αΥΗ‘ΪΠHŠ3Τmm{Œ™ΏHž%Φ0Δ>¦]]±™Χ2j;ΛΦ–†,£Y@pλΜΤ7JΝΖgVεŸc:Ϊ"x̜ˆ ¨0;|=6γP_dl.κ‚`p¨Cλ‘ήPTV‡`έ}FώΟHωbΐΓϊ°}°‘$ΑΖΗPΐlU έ k°Wo'”πe,G9z»*ς8ΞγžσΤ)¬­α-cΞε0λ€16_=.QΌά`ΒάΰΚ#v`«­»jΉΖ'HˆMQ‹L° "γ:έA=9uJeτ…Χ‘9oΞSΘδ]uέΆΔ0ή ws πΚ€Ci€#ΓFz¨hI :A)0œ:™°&§HkˆΗRΪΖy χΒpoͺ+dιj0uΥ±ϊΔχh Z‹ψ ΐ!Π‚[`* !J@™0!V~ Lο!Χ[iϋx„ιM„β“j ΐ@&’Έ€βΚ’ƒIΐΥλΐœΊι@ Fp›Υ‘‘…aŸ’πюˍžι‹―8\ςQκ"˜ˆZ³§P2lGo° ΌŒˆF\g|ΛΎέl~nΤ—s΅μΎ1^ ΅‡U^&M+3»zNωvΩe“ΥΌω’Ώοe=›dSζ:dΖΘ Γ"€κ7³„CεΪa1ηps#,Otς']ΘaδtΒΉAκiR°‘,fb3 !pHHtG\BGGsάΛ3œ$'q.„v8ΈΠf)-`AΧe 8/ρ•«!ΩPp›bvOhIlŒ,ϋF]εΡάΜE|ΖlHφhSΖ I’@0—H¦ό`Ψh2ί‘άvΆθ@{1„β;Ωwζg΅ž³fbjmw%π•]ΩΑt{+Œ·8•ΖπΏIˆŸN‘a ώD%ά§ ‚1l³HL7¬VL;’RδNΔnΠiPƒ zοY‹‰1’ΐέZldΐξκ[ΚCsό.Sΐφ°(˜QνAA£€υdΈP_ψ<β.Η!Ž¬Dqœ‡ϋι1 Ÿd3ΩΑpΧm™0ΰ1h¨ΰDφΫ`@5ΫLα2:Τ,ΒΔνΎ»χΩίZZ·P“v΄φ­™υ•r[–ΈΛ¨L~€ηG«.,ΆΟΟφ…ω_­ΣΤlΔ¬<Œ©"z4i‘‰Vw—šΜ“²Γϋ0sφπA,MLπΤW’ΐ φ8HAΌΦ`3Γ—x|ΌOBGœ`ΚΌHΰ5PB°€η’™Ε'¨H:λEGόγΠτGΠέτή2k•3Ύ(dmΦεγvεπ₯‘±”ε¦ 'XžΓ#Ξ¨ ©P‘ ξy¦vL"ϊ‘œ-PΔδX²€nΐf¦w²έW|»o8Ι댼…β6ιa²>LMΤm†½],ψ±vΞδδRψ3ω‘Ω13ΤΑxec` pΈY§W°8‹Γtκ©q« NΙ€!jΖν†0FΜ€fOƒτΝ.‡V€“η0x'ΈσRΐΆ©2k>ʉ>oR|ΐ‡lx§ξ[%`ςpΑ Χ€₯Ί@Ώδ6χ€f{°K+ *Δ› lH=G6…anμΡe€f8Ιξ φ˜$άγ Cm*Κ"†‹+ά‹»& '’φθƒΒ Φό'ΞοβYςq³Ήνƒ€,šNΕΎξζNχ{yπLδE·œY{εΌQΰa[ ΐ[}ΌJΠ’ήH­_ΒR;9ƒΐBΔX7ΐDΚ(όΔN„Nm!ΏΨΖωΎpIή8ŒL7¦5‰;c²Γ†]τŸΡ,N]CαwΒs|²Θ=^ό#sΛΧYCήΡ°f]ˆa l JΙΒ.°ƒ%‘ϊD²Ύζ‘tN@@ e€ΐ`…§u™Š: έ„QΘ›Ϋ8l‚χ‘°μb4œ΄„›„:8ΒΞςδ#‘D’…Ρ…!$ž­4…qψIfKη2φϋ Φ2ξ©xƒ{†5ΰkw†f…f‘y8“8?ƒ tΐ¦ρ;κτ 7Ιτ½ςOœ{&OρƒΚ ΰ%QŸΒΑϋ ι{’ΕΈGD‡cxζ=lψCώΓ©c$zΙ7P.«4]¬μNt¬#=–ΐ±f$‹Žψ*ΦΑ„A‘ή F(H€`<'BUg;ωΗv6mՏ¬—²ψΣμίy3:e±αgΥ’,3€` y6š‹2«y^sΡώ›ΥχΰΚτFΦx!τuαΨΚpa #«ΞΩ±Έ½ͺνCΓαΈa:XpΎ–φx/Θ#’ Yq*+ Φ`s’B{`P9οΤ”šΓΣ#«$ωKΥάΈ{cP:)Υ;N‘§T€‚{b8 %[pQ—»³2«οψ:䡞t‰3¨£+‚ΠF¦IRΟ| βu―AHΗK‡άΑ™ešΊ½Ÿ`IβΕΣ«εv’abΟ’Gai5k ^(‚K½g~ A' θ1·œ €ž*  ΨΝΤ]ΆKίψρΑ;€”γ`Hͺ@nˆ(8@V/―πŽ΅x›ΤGψΙ>ΘθΝΈl–AMeΌ†2ΚH»·Θ€Y·A,7»΅°P#‘B6€;Ύ$ͺ $“5••‘u:ΙΒΨ8[ήrΘ,Ύ/π QΛ=%Πξ$ƒ/Oπ9”@2αΌ@…&vΐΨ˜Ν–%Σώ…―ΊΕξθΝ±`μb/ De`€Μ™θm¬8υ»)-¬£ϋ;1ƒΆPΖϋ,ή»½G#‚Δr \ƒp €>πΈgΧ Έ?‰MΒƒΠ€θΟ―ρ΄@Θ!λ…λ,::°θˆJ“¦%° e,„1†΄B4Θΐκu/™ΒK³tŒQ0ϊΗhΑΫΫ8_Ξ?μBκ:Clί,&ΐœŽ…`ŒΊΰr΄a<Φΰ6[Α¦“ΔA΄bχ-°o²σmύ³όŽZ˜Κ>ΜΎHt¦¬ΠH`ΒβkF(|‘Ξ3Yί΄» Π8c°mομiωt{ΞG‘aφ@ν  g%θ[τcň/M¦»΄Θς¦ΩΔm·ςΡpNM£9 ‘ϊk«e~FύΩ#αmοb2[£N›$gΞΡν»ŒJΩ6mκΛΆΗ«$ΎΘp€p“„š ΤΨNΣ…lγΙw”{H5 Α—K6ΨzΘ$ρθΩqa±  ά³'V€vΓ"€!Z Hag‹ΎYb@ΚpORujΘΟΧΝ±4ΝΈΫ’’€`ˆθμcWIC«nnΜ₯–dΏ"Ό‘Ύα8³>i‘"–›Υ―φC―ς>pΐβƒ^'ΕΐΖ8s†@΄@ Ψ,,l²ϋd>ΩΟ™ΣΜξcoq#FG(c»UΊΩ₯°€MΔΙ ΒΐŒφΘB"€Oή‡Π!’dΚ H2Ni56`*δdίχ€ηψF{d˜Ψ€’ό@λ!°]–€f“Τ―²lΝΏl9C ˜ΓQBΥ†ApΈΜ₯Κ@ΰτOn…ŽO¬‡ΩE»Κqε›Œƒ³š+`Α6hΰ„RvN†—₯«&Ψ=GέΑ¦†8;…™GoaΖ^2ύΏΒ|ƒΎε˜ (t‚±3šDpwŒ ‘ž2Ω’Ξ2^` Ÿναά€ΙΒ{3’X C¨ΑΤ―[Ώ—˜8Γ£ q/ ΩeJΕ`8έͺG*Όg+mΫΙ™3…!`πcΡaφ{Μ¦€ΐ ΅B © /oWα²RG ʁx0} β pήαj.I½Ιχ‡θ·χŒ“œβf2 ]₯„-wΉ„έ3c«½λ‡ι;A9@шTb΅σgC¬½7όΊ#υf‘Ακƒ8‘cD;BOY V*]…‡€> ,Ϊtšs‘ΰίΖοg?ΒΤ9\mί½€R„ a%D»ιΐNδμ:ƒI«mοΘ†³΄œ΄b°θEp}x­ν’ξΫΠΰ…#&ΊΖΫ!_|@H¦£h9 l(·“Nλ…ςΌ"06ΐ·0μ탉ΰ ωΎ¨½,:?ΘσRΛΛζή«ufʁ‡wŒ-M&εΐο\Α‘ !οφ:.ΗΫ:€5˜{:ž›{Ό „ΫSDy\@ˆb3A{uμ8ΙτA!o"CΘ‡nΫθE³be—²v<κ{κlc μd§o€TCκyVΦ¬(^=ΦCΘΞ‰Ϊ†X!j+¨P1™[83m"}‚Γ pΙ₯ΗLKΠΦΙuxξΓ™,uŒ+ͺάG’2 U[ †0qϊ!ΪpΘ=aEΨ` F pCH 0x3ζψGάAή¦Ξσ„‡wΜ²Ιχ8uAF3΄EH6‰²μ΄Ίν‘ΦΕ©ώ’²Y$ c‡s ₯ο’†ƒ Ztΰ`€εX‘y JKX GΩ@Iuoεο±ΤΌ‘ˆbΩ‰ -—κA.Υ‚ Ι .ό5¨ΠF₯–$Ή„¬–‹dΣ»¬]β5iΆ‘hfjΑΆ[œχΆ< :+#m‚’Q€Τ2‚Μi*κΞ t­c‹¦€h$4,t–m@#²H)Π’6<„BJ,"V »ηcΞνψ]lŜ5΅Ά5K$L˜ΒΒ1g!wHHΡ'€H£¨'FόζpC³€εb³$‡­ρΚΦƒΩDιJa Σ€¦οNΉpI쇉 `aπΡοQŽž «ˆB>χ ―–θέ½„`…ΡX`$!xqj3­ŸAz=A„β3˜H,R'eMLά‹ο œXΓΐk"v$4Ap} ]`bKP?ΈA«AŒŒ'a0#Ν!$fΞlΣ…š'τ€J 7ΛƒtQ€!D L±ΰ%ΗΨΓ“ ·μϋ7ς,ΰτΞ†ΫgΜ8ΜQŒKLŒΐAΆ4žέrW±}ɟfgΜLpήΈa₯½,P3€Βu(πΊφΑ³v5ε–qβrύ$;‡ρCΜ±ΣΩv€Κ`Ο]A@ΐ‡£q#• e‚²n]tκΒθξΞΛ«&²f°²Μ’Ώμ=λdυΗφφΖAήXς@ZΘϊ¬pŽ ΐ(¬Π1»ύΆRμ8βŠFψM`ΆK1$J ˆ ƒŠ!mΫDƒƒΞ,d ˆF3ήΜΙS;ν”&pk*ώNω=udy'WβΑ±'δ8εύ8ώρƒ(»{?bμ‘oΈΦWDωΰΑšŠgoϋΤ]‘tL;αΌ^θu/μi‡%κ!]Cψμœ6ŒΊa%«cμ“lu!t$μα0  ΙݐX:FFB_’λ,ϋ­¦ΞŒν˜—B=Λε±νž—_fR­7ŠT†ήπ ?‹!Ωσ ŒB™„κΓΤφBάΩdGL! ZFΖ !ElR¬ŠΆ€$\lgi²μηχ&8<ΧM fFnπ¬Θg{:—»ΈφΙμΊ]zZΆ ΌrzΆN1ra‘ϋΚČEΊNΘ–ύ0i’ΝpΠ-Ϋ&ΒΗςο&τπΝΰ؟Τ@τC–:²κˆ?ηeˆ{τκB–dfΔ–G†La€ˆαbΔ‹Μ­‹cΌaΦΫz'0žϊE Τκ¬ν'Šxa=uc±¨A–ˆH ΖξΪR„^°u.ΓC ±:uυŽοQ€f% »idΘNΣ~‹¦…”}Θ @J²6B@²°/S<+φΈΗšK~Kμ~KςSeΓ»Bώ7sδ‚wΠ…ΧR 6ϋCΨ½Π1Μ7QΨ«Ό˜†y$™Λ6Iά$0Θ£Θ7`λ‚9ϝޑkαP.–χPΫΗXΐ΄έYu₯‘€‰ΥΒΪ1s#aH'©ul3%7E’GTτCU]—Ά`΄’KΉ ο·…σα`3‡mΫ?bƒ¬¬HνaM‚ƒ0ΘύPψ¬†ƒiK3F ιDΚxt‡Ik¦Κ 0Β3ƒ-*ΙΡΑΉ<„ΔΝΘ‡(GόΩ~X͟•φ}›δOz΄Ί°Z{}‹Σœ–3Žc―V27‹«rΓ-˜:ƒ&cΧƒ³x}α€07HhfY;XμΧΊ#14η²―ςƒνθqσξc8asΛϋΉ9ΐ‘mΪ @Q–dφ£°.κb”ό,;g½α΅Ψ`cjͺΐΙμK‡_eβ+Ο·­ž2)v*γ¦Α\ ·QΆ4ΰ΄άΨ‚Hι+—€ŠΫ φξίΓ0Ϋ;υF’Η8n`–ΎρΉ#sλvξ·Nkeσ–/’υΤω:½x΅=ήΆ[dλΖLZ,˜;mτl£tEΜ]vS ΟqΊž α“C9Β90™`κcτκ‚ oΣ$ΠCO%ϋvNΘφ˜t΅A#1i!MτXx2@›<ιΠ°—jΒΫ>Ψtm΄ςœ¬ ¬~Ϊ-ςμfώψGϋ#›t₯M,Ψ" έ$ψ]V. ‘fz,νq  1έ.š2ˆ] Œϋaφλ1’tT1ΆΩ™]κ“‘~  v=·\²r^χΨώ§­Ϋ|ΘάVνΥλ'¨²ςpa`ψĈjΔ{ ›Œ“΄„Ί(1ήδΝύδφys±ΚΈ‘Γ!!Χ)Υ‡hgAL4/qvΙφώ³HΓ8Ά%–ž =¦G–μj3kTνaΤΛYόΎπk!Τ[+:’νkbω?mŒiε­¬'WRΌ½ωκΨ · έ’ €+PΤ0`ΨXΞOΜ]dΨ—VNXXWlέ»(‹ΛA™ΰZMs,ΤάD&š8"#rά#ΒΧ][—>S!Zό» 5Ό /γ|—fXΘ ƒ`m±yƒΣΈψ,― fgΘυ³&%ΰΛDv?KiΑ8厩䞁ŒPκ0jLfmiRΜφΟ€3Š €ΧŒ‰ˆ!Β³E–κvμ€ξz»_‘tl.Ά‘Ζ©‘ΈoώνύΫϋ·χoκGφ%zίSφώΧφΏ­ύονmφOΘ@+fsϋvε‚ΰ06nχΓ?H’4νέ_}M “ί‹ΝƟxόb•¦PŒˆk’ΘhζΛζ׍οŽρ—x3σnΏnΈ`‹)+ϊZώΟφYπΩϋ“χf$Bc Ω:RŒm—PŒσUμ‰ας=xxx`Θ :ΖO±™μΊΎX-N:γm‘zCbX;ψ ήν”Γ#CΒzC ’Bά&v Έι«‹p`/Kv-‚kέ_ύγσΎρ±ά{ά06Ϋμc(Œ ‘`ν±npn‰θš£ θ’½Γosφ.Ϋ<ΎE»C;]3©γ―ώ-€2[ώΙj%σ,²Jj>λh«ˆ&Θΰ@°‡±CHYXmήΡ•ΔΥDγ“V666Ώ-~HΨώZό΅kςώWςΏ…―ΛV666?η-Z΅ωjΖΥ«,9vΨΨΘΑe–Ye`e–66sŸνDΖ[€Φ;/”Ιy 'e9ΐΘ]^π{1ψρ°0ΘαΝΣͺ.άΑš?Οm»wςσΛ# lςRM(@‡ ξM­τμ.–ΊJY‘YΪΓ-[΅kƒώWόψεΓ;ώWόω_ζ_ΘΏώ7ό―γςώ}%ό/α;Kω_Κώ7σζ‘χžUAnΤMΆ¬ΎK%Y„Œ‰it v.ΆΙ'μu7Ϋη£QŸ²/κP™€:>œ —riάΥα°ψ†QθΦϊECnΩw¦οΒ#U½ͺέeΙgΤα„΄Λ°Fκ .ΞCκֈyͺΞdΔΫϋ_Φώύ˜ϋ,Φφ­kώΧπm>6?ΏΤκκώ‹ϊ/λΫ]ύ2ίqφ€φαϊ.tΡΦcδ?4& ‘X¨Uƒ§¦ΗΓwμQΩΫ·.ˆοηˆΙ_πG―ΓvSOŒώOωΑR"ΊΎzΙθHc~D4ŽΝ.šq―—«μπΕ–N"œ`Oψlq–ΛΜ샣rλفƒ.DΫ =Γ½ΦΓ]ΆΒnΪ·EΓ‚ˆͺ.οΆV~›?»?»?»?»#+?»?»?MŸέ‘‘•ŸΥŸΥŸέŸΥŸέŸέŸΥŸ?»?»?»?»?»?»>6ΟκΟκΟκΟκΟξΟκΟξΟκΟΣgχ'ΞΩύYύYύΩύYύYύYύΩύYϊlώ¬ώμώμώμώμώ¬ώμώμώ¬ύΆvV~›?MŸ«ΫΫΫή?δ‘HΠ0nFCνξlœŽΛξh-³ό—ޏŸΰv6@9yTτ/·ή;·φ8tH'¨ύ‘˜IP#Sƒ0bΜq«»+± ]W˜λWF 8ΖΆΉ@6.Έ L^½ΰ;Μ\τΉ1= ‰Λ‰Κ?jπjώ”λ?Hz+Ύ΅Wκο^―αXΑΤξλ#ο€4+ΐύ“·Q}²ό«wξ§}mύνΧ«ώ³ί§}λ½{•xμβ>ζ|;θ².άϋ™«’•> ψΑΔΊψ/ύ,?K¬ž„“ςE™e’ŽX._£:^€eυy Ε€εΫBς'Θ·ŸΖCη1GK;[κΘ₯½ž„m,nΫ ΑΏε°Ψ}OXšΫ³c¬ΰαέ ™HuΫΕψ.½F J ζHAξbw«O¬m§υ!ώœ¦ύO₯·™O„$`E„–Ÿ—ό―ωH~_π±όΏεΒώeόoεvζ_Η‘ˆΨΦΦΦΦΦΦΦΦξΦξΦΦΦΦΦΦΦΦΦΦΦΫ[[[[»[[[X.!ίxm ΊμzaΦΚ]e籩ˆŸ"&όhyέσ“Ω:»mφΎ,ρ,Υ Ώ%ΘνκmcέΪoRkάrΉ΄:‰ŸSάO`€υ|½«₯°­™l ƒx>C{lΗ€}ˆΗ¨~Aά2_‘iςAςΒμ‚΅˜ Ε‹ ²ΒΛ Χ 7&dλ~π›¬ξŸ‘ 0τ†^―μ0—όV›ˆϊD?ΰ€αD€K°Βΐ …˜€oBΟΒCπΊσ …„ŸΒzψI dΗ…ΰα“‘wς‚Hνξ`ά½-ζO]ζ'±ϋΛδwΗR~Α§ό™³žH³Ύ²agΠ §ς?φB™ ±OI€Uδ CΓ.­™°c»ααn菅– hΆtΗY}•[/°‚2Λ:‡ν‹ΝŠδώYΛfάΆίΛώq–pΉμ#δπϋgVw=ΝΤΞOx1‚Λ«/ßγ#r²ŠŸήΦΚε’ΞDςςvC’}”:6‹-Δ:žμu˜Ž±#Ή/Νλ1Λ*@™ƒr€9Q ͺφΜιmΫ Dnmί ΆOΈOΔώ]fέˍd.œ)τΗ]–žό`!ΊΆ ۈU8)Η¬pΎF_c€%¨P6εΫΈLœΩ· ΐΔ]ωΒυk°@=HΟ8Ο³°uδΰkb.i{ς‡[φ;άγ,?·Δ΄SΞΫ?oκH΅]0\Lχί$=“ω$ˆ-a?γ·¦^2<˜G\avAg²Ρ:#.§ΡŽ’0κλ?\κ4ΌpΫe=A<—€˜„ΌKήθΖGsΐφBΊg@†ξΩhtZ@κ+ #ώ Ζ ά¬t]˜];Œγ,ΰ+k€ηΛΦC­²ΟΘ3»ρίpm²ρvφWΆe›`gω aέηΞ ύAtŒ|Ϋe²ς,Ύ8;L‰/‘ο>ήu†ˆθ†iΏ%ύ@σH`Ά}/Οιaρώπ©Οέ³ΖvΛώ—ύ¬Ώ?ΪWκWšŸΡ+Θ~Rί%†₯θ¦κνψΝφ§HκZ.μ_8ρ—EvcΙΰƒRq³μ0γΘCΨpμ;ώؚΟω%ηΩ+d}lφ­ξΖNΌω3/$bμŽ Βϊnθ]IF/W uΤΗί3šΧεόοωίΜΏα ψOγ(τΊ;l-|,½/ε+ωp+ψίΞώv!odςΏ²νœAŒ,ΎL4™ζβα3Γχ‘>9λ©o%rΘ§ΥύΧχmυ­Mžϋ³_mΈ·nϋ7¬Γ¨6zlέ€Θ€Ψ'# 8Άvΰυ.ŠŸa08zξΟ¨~χl½ΔK’JErΌα-4γίπω}cώέG²Π‘3ζή²€^nΖΜη΄tδ$ΌE;ΉΤ„ F–ς}ξξΑΗ”³L‡cˆχx&[Q° ~ΚθIhI8e~Χ‡ψ!4d'­Χ,˜­pd@,:HΙ6Έ»ΑzήKωYΔρ£ςβQξζ!>Cd7A} aωyLω—ΰO`x₯|Γ|’ρG7sKKΔΚ<²qΰ(f[‹ρ=ςzŸx{KΑo ώ ϊ„3¨=‚?–έ1Ι °hΙ@>·v4@Ζ>¨ΓΉ*Q‰ύœψΚΌ0}§¨4 ™;Gο Ί»)BΰxyŸ„̍βΡ[Dΐν6νΫνϋˆΌν#„vw~In„δ'xL‚9hΧ’λxΌn-r·ƒωzΗ ‚_ΙΛIƒcί%νΒ/εδξ»EwQž =LΜοΥΨ$Ί\„y―;εЏK4Ι―²?)ŠtωΉ)ςA¬pΛΤ›ΔtΛδΜb%Xό“Π½.™x§1αvFL †Οa+@ε9 ϊ†λ8Y$‹ωO [(uκΐφνπ0@ΰXtC₯τΓ’ρδϋZοdP²O\6αhˆ0Oj-ŠΑΠΗνς9ύτ° mhI‘`†Yy―οΔ΅θSΖπC'‚ά&qTξ υtIςKl΄ZΞfΩjΰρϋπ,θ]Q‡EΊδ6:'±iοΦΐςρΌ φ€κυwnŽΟοo@€`Ɋτ@:eίX΄@Œš }ΆΌ?ΛfAB_oΒ…Σ»E§h¬ϊ𝓫‘‰`M‡}Žσ,₯pgqgΈ€=(Λpή2ZΙμ=IŒ€₯ω²ΪLΛΨ'D˜Η‘}ίs:xoΡ$—ZvLN7r ­¨&pK$†It_ƒΠb‘Υ pΕίΒΤ ΏΖw<ƒ7!ηξ^#€ΖΓή«ƒ€θ >Ω°ςιTΕ ΉŸ·”»ΎργxΫ|Ζ$©άKϋΫ3μ€§P]z/g\cκΚβbž’νŽέ‹φό°k=8~Y…·΄x[–Άσδρν“D[ΐœNχ`0pFgSΔoψ»θ…πˆ; ΛXΠε£±–Œpϊ˜ΰυƒΎ4ˆ‘†›ΜΊyxgŸπβ%Ž.< ΰb ί›ΖHΆ?lώΐ}‚ύ΄nΖL½μˆa—A<•;φ/cˆυδ‹α« u3s‘hD,=ρςρδ^7’;M½°μΊ V'ik>KfοQΰτ]%”k:”UcL“!N›θ[ξ?–ψ°*ΠΓΦ―œƒ”)Ήo¬c–9Ρ hί% !λ’U1™e.έ7HρΆ’ρ{XƒβCΆ—;"΅w}^xκωg `Ίή/0κϋ|αε¦9"Ρ:-Œ³ΐJƒ—K¨!z"²ΗZ½0Fl*ΑŽm0樱cΧ φkΡ»J0uΜ[€/sfDf`~7ο7Ωδ(Μ‚ξπρϋ΄β‘ΛΑd;oΛΙlη z–bΐfNxlΩΤ£½ΆκšΠ!ι^ϋ|‘Ψέ€­ΣO‰‹eŠφ/RŸ5&8Θt<‰0½³όEβπ”4#ΔCτoqυŒΊ&LΗux_m Τk!μ™rpN£δΖLڈN‰ρDνlBix±ο’ΕίC6Λ‡ΜΊ›«.Όz½=?Ǝ„W`T2z'd…#(tBqτύa½pDΦz۞­§Μ…oC##‘29΅ b5“Φz•菠€ϊ.Θqβ|bΗV³»>K8=$j= K5·E6κΉGRnφό OFφK²YΑΨς3Θ#эΊvlΣ+Ϊ0ΈŒž5wB/—ς:½e©ΐΓ—©Φι"Ak©Ζέ‰|θY‡₯Œš™τΫ{”ϋzƒuDιtι‚Εα…’€RMκ]MO§A[$γ@^\±ν½Mέ8τδƒt ·šμŽ‘‚ΊΥ D“ί‘“¬ιgΫ?o'-sm_,sΦ?»-έ;¦Άκv;ΰx½ΗΦυeςρ~Β‘α8]ˆπΛ΅νΌξ'ςͺG‰‹RΣ™`B½OˆAΐ±Λ_ŒiΩ;φ<vuΉ#½ΐΣՐμ=¨Y‘’°ϋΏΧY?…͐ώιΛ8!u?…χ‰ι,uΜnwΊd.ά¬}§(Š€= ˆι™ˆ½’€4(Ζ@ŒcHKΐ²76F‚ψ™xcλ˜α ’쏹:ˆΊWΌπ[P΅™C²OœΣΔ}rAΥϊ“ΥeΪΠφOμφέx];Θ’k[Vc™ΤAb ^–}Ζ 7ΓπΊ<Λ―εύMŽΏ–ٍΙγnlAΝρ™Σ!ξAήψxžΡ.λδl6n6Š; lop“ΒΘ%RGUί'~IΤwΤ>h#2'ψxЏ`ί9]–Νl_$¦ι₯žΘχΓ0“¦Qrξ[nξΩ: ΘΩΤγΩξϋΟΩ{·K}$•ކ?cΉ©YΫEE™ƒΥθ8ωΌ^˜;ΏΌ1Τ'AΥ°, %ΦΨΔތ„|.Ο¦ ¦.‘/=ƒΎ±όgπΟOY~Œ>˜”ΡcW΅ώΗ»ΐwΤq€ΧAΌώ^/vΨƒΓΜηc‰‹.ƒιzo(m¨cπί₯‹Kf/Γ=6Ÿeό·η₯₯α½­²-”΄αDRCηΌdv“Σ2wΖΩΪoΩ)ΌŠ[xcΛ£m‹xή>G^Μ4€μ[,₯ΆΑ z1uΫmεtΟpbιΡšΆΫΤί…βg©Φ ΣΘiΤύWNlγπΣΌV0O¬€Ž€‹£ώ7oόŸεΪΙΦC[Ϊό-o“½Œ–H;ξΨx—\ΔρŸlO‰zβ|½ς[cΒπޙÁω,·θίλzύγίƒC} ΟχŸΫ„.ϋV’ƒ½Ώδΰ]>r<ΛΉέWηοu4ιΜ…ž—³έ‘Ε2l£`Ξ₯gWα9d e3We>ƒxƒ™m0άοΕƒ|AμΊθΝΆΣy°m»’οͺώ•ψίΟr~*ΗyΙΤπκRΣvήξξwZΖ‚¬υλ†Ά³- it“†]gwx΅ΝΖ€`kFθ…žCΟ ΟΕ£¬ Ζuz/Λυ‘hΖSΞ§±o1Η‹ίRΆυΓΔΊβ|±΅£xι»Γ‚π„€ilœϋ#λ%Ϊ@jΒy>€ώ“,dH·­œϊ’{?U―›°[«rΟδ:ΟςƒλcbΑπŒd~Λ¦ƒ"σoϋίΒώWς-g…―ε―ε»wFίhv/ΛNΓ;Θελ4“qa^·d?e³]ΐxίjwΞΧΤ$ MUΓ”–YMS©§dGH¨j’ΛςΗμƒνγΒρ‘_,ώYσ'‹νψ³ι?ωc»ζ8ρΑΣ{ΊςΎw(φ]ΦΛ^_tŽ?νχeΦρl†Ο²βμ{Ώδ³νšmύsΈŽ»žΈŽbώΫyή„=c ’‡zpjl|Δ{ž!¦!ώ±S½’‘ΐKVL½#ΔfτΌΜ`vα‹Όw ι δ΄{a>Ωγ»ΣΞυǝδω—`A·’^‘ξ›uΩ&ˆ wγ=ˆ6ςCΐ’r ‘`l›3BE…Jp,€άρσxff.Λ K ƒ]Ι­f+3T °HlτΐΠlξΐQλ"† ‚|‚A±:ˆ)€Z€‚ΦμbHύ’ύ±²šiΦπ_KΌ„ΔεΠΊ@q2λŠg-Œ?MΪέVΚ,g’»X|Ÿ/E™#³vxDvρΛΔuP΅ΎέσΫͺΊθ8ΊXή›έΏI ‚ψΘ·fΉ‘¨8zN.Ξ¦ξ'ςτ•lY^η˜.†Η’ΕΔ:ΤλeΦgtΕδ$’Œe·/H€­μb/2Ζμ›η Ž „½·ά“Θ}χt/xπΩκd,›έΙx‡}^Ή"X J€Φ>8 Qdχ"ss:d‚AcΒ`id$Xα†ΐ?d¬ί?Ώ 7δ(u{ί—„Ίή#<Μΰ`CΊΖ[ΐ?8萩άύΈέ­Ό8]γΖΩς3€D!#E£±έΫ̝#qγmΨ·Ϋnς {ΑΜ7²oΉΙw₯¬rΪ\‚χ<ΚhΗ\τΩαΫ{‰δ1"ιŒΈ@ίI˜κμCΓ§ΏΆF1νΥmυZ["ή3ΓƒeΪRΠKΔLΖ:CΤSΘ ΨΩυ/ψ³ω(Λ— OΡΔla’cFJι!˜jM‡.Τvς“!m½7# xž7aΠΛ―8Όΰέd=‘ΗΦΜ;ˆΡω|½ πή<8vλ`όiΆ κBξ“€†CΛδ»zήr4›„SoΘ²ξότ"3 & λ>.ιD¦=κ1Ω•€ζM'“"ܜ:,‚Α2=lΎ¦τŽά‡’Θ…l Υφ!EL”­χΞΟΌ|›εο ΈΘ>G·Ωό•ŒG;Βdχε–"(–HVέTΐ:,m‚aτ†vα±»W‘jLλ’ΗoXΣΦOΘ]ΝΎΎξΝΊ›Β]Fμ―εηƒ.ƒž=δθ½^&Al|Ύq<²ΜΌ/. *=I>—ύΰŒ#’χ»6s φω7­η»Η΄i-³’$ΩΤ ς‹|<G^―‹‹νκ¬μΜ±Nΰƒ΅ΦM‘±—Ay:HhV}Ίή=―$Ό-γNΞΊŒlŒΝ^ŸροC²hx»—₯ήΟV·»7Θ…ίέ΄ώΞx^Œ΄DYˆβ£(‡fόDh’e›“dQ$FΆ3Τ―ϊ΄‹}cdP¬ς³βύFοx»zΌsfρt‹…‚ η―½Ϋ{Œ1¨ήΚ3ηδ6~­ξXBˆ ρ‡©oXkRΙ ΝΤτD―AƏ!Ÿ  {Λ²&Ξ›μΰh_-ζΐ°€!½Av²„rx/”ώσιxLcΑ„ΆLΌβσ ΔΫΆΞ―Ώρλ“ΑΫg’Βκ#Ξ9xΩΗώΩ;‰`‘‚Cs€‘ܚρ' ’L"ΥθFN ·Bμλ#ξC ½FOμψΨgΌΒεδ8όG>ν6И δΐsˆ ‚y|xψƒŽ²όDG-j Mœh>Μ°PΉ˜ƒΨ΄Α‘7`ϋ}¦ρœ,ΓaA€£!—‡nΠ"aΙ5 <lŠ±:Φχ«ρnš—ͺ£ x'ˆCˆ=ΉR7ΤΙςή=0£Ό0XK$s€2…*ΑΩ²sλ…M%ϋ›8υ φς €μύγΩkW­ς2wxήύγή½¦š(ŸΔ§­±C]# KeH·'@D"€Β©4u_›,€gΪ υ›}]°]KΫρ>“έ—ˆ»ΞΈ'\½ΖοΨλΆU/ψί €†ωΔ^vξΖΉm¨'βQV0(Bν x‡A‚ΰpxLU³‚ις~ΙœcX0F:gRΤ΄FΰC’/ϋΒΝdΜbΐ+yW¨wν£¦κψ ΣμοΘvΫ’P4ŸVi•4»―yzέΛAκΓΆ‰–T,²Γφz«Pš±¦qνΓƒbΦ_'Ω=O–ˆΜβΰog~Ιή†€δ{DœP ΡAύΡΪκr‘I՘g¬ ˆΑq`ΗΑ p!Ρ«:?gΌe“zNy;xžO²OΈμG‡Ž. L‡p—ΗŠλΎ7Έξ}JfΓ Ψη›;β-ή„ ­=,>%HTŒΟ­0ια#܊Τάh!ΡͺΔΦ”,U„―px‹Ύ!UΆΤHΌynvΙΆΑ Teš²KS€P`’’†`t€0ξ›χ=b½c‚%“ͺΠs%€Α3 R&Ξ/$‰ °efu<ψτ ΤNbNΑΌZ:¬Lω]―mΨώ6 λμqH€Ύ˜0"ΆhU΄‚„φΟ ·‚HΉΐ€T⃐‘ P’=Ί;gӍιǘ–²f˜ΰϊη@/κΣΫ ž FˆΙ !ε9y„ΆΆZκ#j66FΟV €‹"ΗdΈ @QΠΠ¨R"±^…*―€ΙŠNŠaŠ]T‰ΊΝ²:“Ύα μ Θh (<(ŒW‡™A―#ˆ© Γ @”4€)Θ$sZ’}ͺS΄uY]ΦΧv{w‚Μ μO‘˜KŒ-± ^δYS€ZΗQΰzힾXH~€w8c!$‡6 l&ÝDƒ3N…VθΞΑŒΧ€:,ΡVΟΚ"υx=βGEςρ_b8y8x—t^`κPΥΡ·Π ύ»ΰίmκωxT\λ»ΦΟΛ»Ω€θ†\W·ήξ¦dRΜι·K3Q»₯Ž˜7€˜: !|›u‚β6Sοlw$˜XΝΥ–θΉg,9±Έ.OŸΰΩfgώ pΊhνqλYΗgΓΦ¬1fχy[@₯K=ΰ.³] ’XΓ+χ€58X (,Έ„ aa0G¦¬0βˆ@ ΰΡ€Γ”vˆŠO’mμEσΎaMp;…όρ?ͺo—›ΎΔτgχ#χ,\RΌYu‹Fxγ)ρcρR7 )Žu%φΏŠiύ/λΒ†[χ‰‡VmΧΪN ;Ν”t]Φhzβ+6ι‰Oςzγrνx‡,!Ζ…§μΒaΡΎ"Γ₯Ώ‚|4Ώ©kϋΑ:Ddε΄€ͺΗδcΣŽ0²υ‰ςόŠΑΚ{Ό^ρΖ6Ά΄ΦΟg.±:»ά₯€{‚ΈΑ–ΐΗ06‚=Πd!\6D±Aγ‹‘V zT5τ‚Θ@ <Θ $OΡφ};‘Ω썻ΎΡ’χlΝ·{ΆX<|ξωyŽ{™Ž‹~ΡYt䀐+…[΄_ʝϋ[Ά ~@'Γaλ€Έ—Sϊ“ϋ“ϋGx…&Η€ιΩΨ³ϊNέΫ¦π3πΧΩc+Ά69ΟΙP3-ϊYψπ9ψ<°:mΩG’ δ‘EVκJ ό―ψΪύα ~―μΊ2΄ΰΝύ3ϋXή³ν·ιx_’‘“ΡΓƒ€ByΗ΅ύ$ξccΆx±χ$Θ»ρ$€FUunЎ‘‹±ΫΔp&μΛ1 ŸβΔ…$΅+φ>…HuΨγώ8ΧCΆτήγά½ „ΰ1ςωy‹ϋƞ^uΙZ2eήAθX"D/Α/}‚hO¬6Οa?—TPάDƒΫΰL»‰€/₯πFœ# «‰DΛ`0λήC8ŽβπEiΝ±ϋ>¦ΣΖXO8Έ§Φ ’G³όΎ^Χ\ £l  ž°ƒφiH.ooψυˆω~AΗ;[Φ“vL[.’Cωk»,Dw Έ Ί@†Βmš²΄G³Π&Δ\π ε›Θψƒhdtgi!žJW>q-kŒ$ X΅ΌsβΣkzφA·΄ϊά#˜ςωuΗ\„ΦΚΪΨ±ϊnω$xΆ cωl‘€$ Ÿ·ƒ°Δ…mΜ}<^ͺβ·I³΅vTϋ°ŠήĎK€Μ#φ/KΐY;—ˆΗc9ό[~Ων!ι9J ­ΨΤp$υ{Bˆƒ1§υtX9€ΥΛ½· •°ΒϊπFϋπ»2{/HχŽΒHX‘’ΤΣm…=χ?¦!E>–s]Ί=΄v‚'F%6;–ŸVνO-ΌXΎ©>!&χ$ςέH&BCEοό|GiDv]έ8Ώ/W΄@ΦΜ7Ξ₯Τruφ{›yΊ¬·ΐ†Ά0²΅!-ŒΘ„hƒWΘΗc δςIŒ]@Γ% 3‘hπzςϋΣp2=ΎΑ0ρ–ΦνWΎ?δϊƒ½‡vA=Š ‘»ADl&\ Ę@ΗΩokΌDa QΓΪ/UΈob$_c†7ˆφxδΜ 8fNζΞΞΎqβΡΩxμ0άmI>jν?2BΫγΉw‡X £dczˆΤE:½’7 ’"Αv[§“vi‰ΤU%ηKΑlo\ή ι“6Ϊή/zβ\|ΐt@.ΖaΗvEκIhΊ†ƒ*}›]ˆa­—S©vG­ήqθ%…±‚eˆΘ8ΑΌϊή .λbfί8ό“’ΫmŸœAI–?–σΗRQι?©aρ™υγΪqi»‘Νaˆ¬εσ{ΗΌyΚκCq9ςτ-λ80wΛ«ΩΜζ‚LlΡΪM`³lϊΪΥ‹πR9Ϊ"K“ΣΉCΨWvτ[~έ=—^ΙD5—ε¬Xή–ς>γεκόpeέι5:Π8πσIθΞ6εΫ/0½Ϋλ"Κ«"ζEΈAτ’/­ς?₯ξρmά=Β3 § PhΨφAΎΪΫ}%½x‰C»N@ΈŠώΩΓΘ`½PήκIθΎ^ΫswΆ:­‘‹™ ²t°¬f³V²ϊ”=²ωwoqηuΐ€Δ’|­ύ@Տ™duGHzXΤοΦΑ‚ΪςqήΙωb]@Kω0  Δϊλ#ιΘwνηΫ4ω0Ž“Ή?‘ΤbSΔ°2| Άa—‰›eœ'“ ΗW­½&=π††Np³h±ϋdh°³Ή§P4θΨο α'·©λ‚NoVΟπ5ΙzΩa†Ϊω¬ΰ,tοΈν[?–.’O]W σf8ΊΉξ9?«ŒΠ#‡ά½p`-ΐWzσμΆ‘ž²xl£D δΚΒgvχlδ>,@Β[χŸ#C>₯΄AC€ ΄){}βLm ό8Ξ,Η»cγ‡t b―K9Η–έx±u»υΑƒHR ιt’u΄±ϋcΙGΌ qΏ΄ ‹κBHuξχ8Γ«b,==Ž$ωzρςτκύ±u ΏκΘΜ„άL;:@zΩƒ.²ΌΘά@˜ηι!3GΓLjlcεΩ{ςΟδ ܁c«Ϋ 4Ϋ― ζϋIƒ«΄LύήΈ;2 “!Πήή?Α|ή%‚&˜Ιω{l• μμ/¦ΛΦO¬=mθΌν½Λ<2‡T \&KΑ>+Ωυg:Ύσ֏T0τί‹χΗ†ΗόΰXSΫfΓ[wƒΗ΅ά“Λ?e’»*΅ΰ PΧ;ή›Ύ}γΞ?’s†<Ϋζ|½ro—†{ρ‰Ο² ϋΗβ#EΰOΥc8)°Œgs&dηΒ%“ \*ΑΠC}ο-?’CŒιIυΕβ?ΔېΰDΔŸΔ‡Ήκ‹¬1lΨβ!γoŽ ¬ŠUέ‘e·x.˜!ŸX:8θ—‚2Κn0gY,FΪΗrjkηkΐKΏmΎx.bίΨώZƒ§\`a 2gXωώ׈“-˜–ά=δεΔ ›ίψτ8ϊ]Τ ήq|‡L{cŠΫΗ–ŸΛ?28ιkΖ `{rX$;.ΑNΣ"2…ΐs{Ε»Nη°2t-ˆ!X—kφO‡]ΖχήxήΔξX‚Μ]8œyβω ξτ΅£ΨΔH@{xŽ gζέ¦’n‰ΎN&3θYΥfΛΆl΄(Q¬xoˆ―\\(υ±Ρζ`!παάlΤ&+„1œγι—‹8pCvβ€μu&2ξκΣα;ΓaH€xαχkΜA΄}nΙρ΄}Z8ŒΖΩ/;€š7―ρο} ,@λrξk>_―’1κMgS Œ€ϋ;ήΣ§PHά ΤywfnDίD–τo#·‰c;·u―Ν“κ2uβε€έo–B@όˆΒe‚ν©ςΌπή,p=ro moo 6{x#ƒ…Ρ7c.ξ›xσtβ*SΝ7¬‚Γ­φυcδwŽΟ_aώΔnw4daΆΠ’·7Uu’ϋαξx/ƒœ-{>DE·|ΰ8£»υ­¨F>νΠ© °{©ηiξ&¨CX•δƒŸrvMt… F… «΄Š˜=¬8χ ½ψλΓΐ’mŒΠ] ΝuxrΫͺβ% ,ΔώΑŠIΧΞ €ˆΐ 4ΫXΔJ (dπXivέ&]+EŠBΉιxγι€ 7/™‚}l½$ϋd:–ώ7ώΞП 8WmNΆ:΅Σ#TMwbΒgvšuaΉoοέϋ}φΡυΏ·~OC>wuω6χW‹ώΝηˆ'r1φξqτ2T ψCΑΖnsscI0€Α\hΠΒp^PGpa"a€ :\Ζ~Ω²μ‘@υ™M£ Μ4b΄)°,Eαp@h@;΄b%εl»qί&ƒpX"4M[v±‡x N6E6ΐέγbŠj R`;#@a†–ΰΧ˜%°‰υQ ΐG‰Δ!bό=/ΚD/ΩξKΤ ½ή>WΏ ‘΄~ΩΏYΦ¦άφμ@`£–P{™ιgiŠ˜Qςu˜ΝwE΄οl–΄φYζ’~’‡t]|²%XΙvπ2gΤ΅uΕ-L>­κΦλh.`9(P!™D½‹ΘQκ Νm`N–ώ°F a*ήΫLΦQΦ³Χ5΄žΛ™oNΩ½Αθ—Ύ¬Ϋ³vUφΥνΆΜΦμά°θη\΅•~ΫϋήΜ<=œqίaN ξ0™Ώ=ˆnΑά.w…!… ΟWgf!₯ΌmεΌ1jοžξμf(‹Inή‘ες².°@z΄:°’"ΐՊopΕ)±Μ(!0ν€H+e°₯Π Σ-‘eυŽΡ0&›5D(dΥ₯( α–ǁ΅$“’7››³©IμΧ\&‡|Žΐ {&υ=’τΌ9'$fŒ5-dMlaεϊέXY°oSΛ ρΊ’lύ3₯Ρ»6A‰‘€IΣ ΰxw€€!Τ”7-N€Ο³ί퉩o%Φ|•Ό {zέ2iπ»Ω|.Œ±ͺ0@=6ΛΔyΒ^Ψ[ίπ>ύΟίnΐΩH6Ϋγ%ψΗΆ6¬υ›cδŽˆM”ρ_`χCω"ηQg…‚lw$άϋq‡Ψυ³ΉzxΈc.½΄σ$ZδώΪ~Ϊ~’ΩάΏ­ύονgϋ°˜όZφ“§Ui‚‘q½ύ‘ν­'Υ•/ζΞΒλΕ΄άχDN2Ξ wHU@u—f|½³δ^ δ±φĐΩ+#XF˜&τ° πfΑvV“ΞςF΅4pƒΔƒ’ΡΣ‰djΔ§™o]Ψξ­zBξΖσ4ρ«ΤυαπΌ7«ν PΈ ΒOΐwr¦1ύvέ5ύŸ\sχζ¨ύ+8ίθ'fmψVώζΣώ›ώΫώΫώΫ?mŸ¦ΫmϋΡ²χnjΛή@»bC`”¦?rWδ+άβYψε;xLυ–od6Χε―Λ|wώ|E:φήΏΑ:Dqή’i€xκω>^‹δ^ώΒαcπ ₯ΥΚϊe& ΔέZvΐ»ΦΐvŽ¬bΨΟdbAτΟ`ξΠ@!<ΖΩφ¬½Oά½bοˆσΓέ‹Υ†εκ y?oRΧΘ!Γ θŽ\²Ϊ>ΐϊ ~I½ΐΒϋ#Ϋ §V»W‡‹μ˜ˆBSεΪ3˜°>ΔyqeFύ΄‹Βg1Ž Ν¦cٚ1,H<²’―θ΄ρ³\— @>{ηΫ4a wtΒθ•c-z„AϊYς.›{ "|IΰΤ6ξΙΤΟ–ή–ΛMe‡δη°{χmgdOA m V1j?¬‘θέ†νΩΠm;3‡μ0_L΅ΣβDz”θΨ2&Η‘βυΌpιΓԟχ±ύ˜Μ ΓΉΰίE <{Ό₯ΆΫ#Ηήφ1―cνa$ΫΡtΐΕ‚3uŸW—‹=¦t"€‚,DaΰμdK¨3νίΛ2ς’ΜΎpRs²ΙΌVΘϊ[ δ[ΦwΩb:Kw«½Ϋίvήΰ$a††Α‡½ԍι`ε„Θ!θ½O"†;:Ύœ^1·ρ|ρ·φΫpίρg}c8ΧΉs«‘³ 6ΨΒ4€κ;%zΨλ Œ`ε’G'’/ΨynA§;ΣyΩ<_{~]΅©ζ8πήφψÏ\τΫiΛV`ΐƒ|βτίΛ"Ι{ˆc΅€ ˜aL[[μ-3νμΎ‹Γνεu?/h ’N±Χκl/ΫeΫΒφ~π&FxβρΤ­ƒ @Nπ„θ³δΉ"θΘvlκ}Ÿηwˆ ŽΗRi=ΝͺγΖCŽ^/\žΪL‘™k;„ΫΦ3ελnǐι†Ψzœ>,/>_Δtu0j‰:Τ$’₯ρ>“ΧKt…ή'Φχ’ίVtuCΧ©tMϋ,Σ$χAΤ³ ¦ždΌππtΪw«ώ―²>¦^ ΖX{›ελoKΖέ^oΜ»Θ·Vl¬oδπ–©ν>²}Όx{“Θ;r—Ο‡<Δ*,7˜v>ΌωΑΥΥA!bz/yΰ]ZyŒl@%=uΗ^ΘοSμρνΫΕΪaώTˁ³mπžSΉιž§©ΰ$ad Γ|'Q#·fόζχ²<±Œbχ„‡¦] Χ…‰ UΘΕ90ύΖ]ΑΩ`D' `ώ°χfw–©±ϊΒΡiϋ'φ1ρΪ–πγgXγ<πήr ŽNάf·cϋ2‡9Ε“nhώ ςGΏj³½tΘZv©!τςvΜρ]9ιŽj>‡ŽŸΚ«ΩA½ΕνZ#ž“QΧxy1Mn’έω`:†[νa”‡πεΊϋΙq(ϊ흆:ηΒ~αˆλZ*TίQ)ΎΗo€›w™§i(ΩΓ*ό§ρZμrN~[-ϋω ©qΟ―jύkZU/XΛΩ{O΄[S*d>‹r¬ΏΓ£Γ QK«­£Θ*ό8ώ‘Œ}rυ^[Έ·h―έ*FV°ξμμβΠζςΰ6ΔΜ~A@η>υ&ϋSΒskΜtQψ–C&AΧ ƒͺ¬hHόCb¬'‰a΄ uGΌ+ΕTΪRΛ§θΤ„ν}©#ΑΗόq]·KoΌ¬wΉΗ@=j\ Φ§Ÿ,BŒμΞfoD‘#m'Xi€W·ίσ8Η½d]jššκO#θ:šδF\§N€s]~—k#ԁ=υ1 ώ\Φ„‰€¬½WωVΌ‘QεeB³‹ΊGŸύͺςα€]SvίQŸ|š°·šξ›}«E˜ΗΤ΅¬Ρ6ί¨Θ5ۈو9¦² ΰ{`χ«dΛ-Ξ9υϋΧ*SCΦ# ζ/ώ.₯}oPk|6…«0χγB«ΡywΧ:xn-ί*ίτȌƒύ+BY"··’fω"ˆdAυ5εΧ«J=Ÿ)Ρ³Pζ8½NΞηQh<½HΑˆ§ΤVςjΊ•ΣX&‰s<°’$r½˜q[:e”Ϋšϊλ"ζ`>_ω䝖§ΏΆ,‹sΕΕΉά™ώ%ώ%?Z!Y'Λθ)>xκdjvΓxoΔ#ώΉ42θ/Hή6‘—ζΠόM»ϋ―l ~$Ά+jγΠςqΗuφ5VξC=ίΨ-Y|γώΆB2°/ΏΉ˜Ν·kœSψLψHu«˜ΪζΫΒΊ’BOΘββάΏΏΛ»5Tψ²σPw·΄Πu .”…x'‰SΛ=·’{ϊŠμν‘X‘XΧ%`dVv―₯<“E©Ω2Η¨[Ÿέ³}Χ^θώ φ=o'£eFύŠ–>…έ/5ψm.o>P‹χ0dτ^rΗύ£ωV Π4uWJ²φΑiϊN¬š₯«ΎΗ†x›Λš>τOΖAώ†―γΪΆ²[3Ÿž{HΜmJΑΞ—dν‚Φ.·α«{]šž™§Zy–νζ4†Ηε]aόi:N,ΈΜΖΣν4}RΖΈl­Y%@@hW+κ½^ML#L³ώΈŠΔB<5β&†έ2ώ\!ώ&8ΐ>ΝΞ=λ¬LFE(«uI?±μ1ŸχεjŸiw12½²6A±.ε>½9­@ .ηΏ―₯UŒάŽ'[ΨάέψrϊΪέn¬Ύt&!ϋΘXε[υΗ΅u«₯Ψcώ<­ΏοΦ'‹γŽΦΞ-r)#ŠοNmΘς+©#tl{‚:\UK__ψ•|9jφ֍Γ__¦6γ‚>¬sέΈφ¬ύœ“ΠΣΪs#CZΊπξ‰Ιz-bfϋˆ ςΊ dώΜΌwž'vŽΟE†ΚՎζφΨξ¦}=k₯‹ΓΪ^ƒšž£2™Ψf{λΩϋθπ£―ΈΟ|PDgπ΅˜Κ [ιΥ–>½U~ση¦N>•59`ν+σΥέ‘ͺΣΌ5αύ €XZI*(Λ2Ω>§ΦΈίκσψŠISJ±°Ά²΅%|ϋ˜Θσ›‘ΐa{ τ+›Υ²gΉS΅~Ξ_suΙ\“όλπ•ΪιsάM@ΆΙqε’2X”ίΉZ•=£ŒbξtΠ—,e:‘ΨƒΑ–“ψWH…υkDŽβώκK„·1’…όzb+C\ρΝ¬w6:}«ίjW‘²Αn¨2ŒWo@*ߌ#—Tρ…½­ΜvΆšm«½υτΛ”ŒK«ƒχœνΘ_q\>₯§ΙαέQ5νO»σcmΝ5Τ‘šα{ξOαΘΙtβΊ•U ¨J^šŽiV₯ Ε{ίhμP[ΩxfΦίQ²ϋ5Δq’9ΰσα±ΖΠ‡-Ο¦)ΎπU­•Ί½ν΅°Έv2JοDdœ‘ΧυνQΑ―θ– Υ—­ψ‚φ0ʐσr>ξO(θzcή£—Γ:ηŒL‘ψ†πΗrlmCιΉΊΘίSŠΒEξθƒαήEΉόUdΎu…τ¦Φ°νA-£=>iN€ζ£ΐχΊΤ«sβD±yΚΪΓξbΟΉ9vχ< ΦπŠΗΌΊ]ΔΓy¦Έ‰βUp@*γفλλ‘]1 8#=+’4c w2u5Φ§;kΰοΪ"/φ&œOvϋ:ρVo<-€Νhλgnΰ‚²$ GLϊŠΩeŠbό­‘ž*•ϊ±s6ΞGΒvΦ―mq₯]ιφ±^XLc• @πί2·ΠηŠιWGӁ}¨>Ρ ηΌD‡Bρ†ΏE³m³Ώ'§–μH}ΥΈΟ‘±NξΨ#‚= efžŒNDΩΦj8²ΆH…#ι–R!V³ΆΑυˆbcr)‡ŽIΐ‘ܞc‘ŠΞki ‹iW²Ÿ)ϊ4Ηψ ξ§ψ}I¦Y·[X?ΗψVŠu―ΫΫM§κ·ΡD%RΎAΛJsΘŒœη‘Yzhρ‰tΘ`½vΡμv4vφρzŒ+#©<žΥœ§΅ΡNVZ–5kΓϊmϋXΖφΟ|Ÿ~(`V1ŸFνψUu?D· Žc!κaίqωgh?lΏ€|+=„6rθvl±δe;ωκKg$ŸRj›o„5±£@$]ςc‘‹y3Sε’Nv·ΜWάb·tUε&DewΉ‘cα O…QtλYπYβάίR{šΣMN_Ήaj>­\pGN΄ΰž•)°rΉWϋ>Θψσ·Ώb—ϋ6ȟψσ·Ώb¬η#ž1@¦“%Θl,Τgμ°λεŽ*ώŸkExΆρ,ΓΛZӞh­γi§•#]άαTz“Π εŸΕI¨mΌ7e>«Υ|εύέΊvΙ•†t™\θθΝ¬ NΨ£`FxŒ ηυhs›hφ^^ƒmioζΘO§ t~Τ5ΒkΪΜם ς`Η‘a‡qυΕoΩiφZe²ΫΨΫCmπ ?J΅mΘr±ηzςλ’Αu‰4; ++Kˆη–9ωόΌνc…8Θ œWKaα­ Ϋ!–Κ~ΐ3Ž£<υζΊ;›x¬f΅™O“"qμΓ5Νψ6yWIm>λώ>΄ιM”…»νϋŒ~ͺE:°qI‘ӟCZ-K‰q›h΄"¦ώΚ±ΑΝ…=αZ²8§v€•Κr9i6šdΦ:ΚΩAφ[ivέ/”1>ΈJΥ‹L°dΙ³΅nŸςΘtυ­{˜"Ί³šήtσ"d!”χ­s^šX!ŸJ»|άiy›«&Ώ?₯eˆ‹KN} tΣ¬SξΩۏϋd)Νed2Νko€2v8υΥτvj»·ξF£.ίAύj§έ_:Ιr-Pπ?ί#―²ζξU™ΞλΨC₯κΦ–±›M>ωZζQ#ό„ϋγ#₯w&ίoΝm ΰεjŽ£aή™-“ X3U §ŒώjŸ„oεΌΠΦ“ώ—fζ|}8Οβ0j°υ9•‰«Vl}’Ϋ΅΄#ώ) ³‚ ¬X©©Aχ5Τ•ΜqΊo’ψ§OΎς!ϋΣ΄ !‘”ό? θƝfΚΩ[œϊΔ)ž%Σ?Ά|7{h„‰Ϊ=Π·u‘He?˜ύiΊ€ΊΖm|Έtk!ŒGΜ?0j&šwEΑιbq¦X‘el?퐠ιφ}>ΗmΧ<Δ*rOjMψκ RW œ–‡gk¦x£XΡ₯·€‘c{dδ|> ΧNt­=:}sή!X~*Βk~%ύz!\\p ιc*θ G¨οYΙ4ξΕa€XƟh?툧—₯ƒ‰,mGΈˆdTΕΘ8¦„η?&μ8³πΎ™kkލqine±–Œ£Θ߈5ЍNΟόƒν3\EgjΰiΎ%°ΤΔW_θsByγ‘ψΦφήs–―QΉ[B™Σ,#……¨ϊB+ΕV6πι)¨­΄)ύŸuΛβ02€αΈϊΊRΕO\}j+›d½΄žΥΘ)"27|9ΝN«as.€fΞΪXΓhHχŒt¨N²ώ<νοΨ¬ύX΅³πΕΌš­άvώ@0ΘΣ`©+ψδ ΤMγ}*A›Xu•ώŠΑπίBG5Άξθηr’ΠΦώΞ²?ςηΆb£k+Xά¨‚ϊ ¬{―Λ 0/”‡„!C=^¦ƒ¦x›W"KΝMt¨Ώη…œjςθΞΓϊ 'Νr€ŒΉΝg΅‚0Y‘€¨β©\jz5Ÿ7φγφQŠbx'EΘkθηΤ»^Nοϊd™­ψjΖΛI–ηGl’ζίχ¨©ΛrΛξHΞ=λ(ΰ₯mΈΝ-ρž?Ωφχϊ§;\ή8’xƒ^Ό Ρxa’\dύ’xΉ"΄­―mnt»k»vΜ.©"sΠ–ϊ). 3 σ°ώ@ΙΎ*₯ȘN’μaEiβ-RΊ{m&ή e˜/©η5SRΡ‚€VΟk§ύ²yQ(€·=K› Χ£4 ±QFΠ8°•ΙιΫu^}YA0C›[@ΊΏ8φ΄©Σ§ο mX~›ΰΝ N³†μ«)]G€cžIόkI|=£ƒ€XpηέjΒ;–γ9χ©Tν??_j馔Άoο1”εοǍτ:ΗΒ’κ1XΪΖl.!»m±•Wπ5ύ†Ψ©έm ΓΜb’Φτρ¬ψwQΣŠζέγ\φ$qϊβͺψbόj~Σ/K`ΛjŒω= ¬ΎA¨«qΣ©ξ—>Αf§‹Xb†΄·ηχγώΉŠ°j†₯ŸfΣΘIΗ Š2Y»(Ι¬’».R1΅λX&xm­mmώΪ$[•&1ςͺϊύz Ρ±³Σ¬ ™,­Ά²ƒΘυί­A’IζMv·ΡjΎ`7QHθΗUύœƒV΄ΰΆχ7vΐaO1μ­Τ~y£ga'‘m4ϋ5ϋΆ€b¦ϋ,*8†?Α;§Ή5l ς[AήΟόUg±΄*AΆ·<c^nH¬‹³.₯<–ΜV8Ί™OέώYR{ϊT$·Ϋ1 …Ύ―tn#΅·M: 6‡ςFfsΖG΅XE„—b-:ΙYpda>XΗϋšΤΎ–+0‘ōΈŽW»‚§³°:}Ί#’³4ŸήsΧ?΅£"jJΘ§/†΄Ω hΣO΄I8ΪώHΰϋύj†™m§άZA'φ}ͺ‘”eς‡ΚΓ‚ t£€H8γ=«$[_άΫΔw‹Έ—Ππ}{Φӏ»s*u5±pιΦ Y[ϋd)ι¦Ωc&Κίώύ °xΙ)³N–Ι$’H±€`–f<(χ¬¬tjTΏ]2ΒΦYζΆ·HΣ©Iμ w&²mτxξKjz…ΊO—iεŒD κΗ»V‘m&©u«u%΄l~Ε ŽOύ4aλιN–#gzΦΈΜ’ΠηpiΙiq&;ϋΐ|Ώ`΅Ρ Κ½°³_hˆΆ–κL’6c²άb–Ι ζ²oγxu yxf™Πξ‚‡ωT½ŠGY ΅Ίΐ›mβpS^(ΖtŸχΘ©£ΆˆγψiΑδγή‹\ηΉJX!9Μqί"²―)΅ŠK‰9HΔcsθ*}[S6Ggjž}τ£χPφν9μΏΞ Σ-L6ώtΜeΊ”ξ–b9'ΠzJ1*δvϊMΌhZHay 9Δc “Ξ?ƊΎWoΡ[E΄IQu+©ΪάΕwqΏbEω„ ηΠzš΅φ+‰lχR =RۈΙͺϊ&‘a£G:ΨY¬&YwΘG$_Β΅3ΗZσύ₯£‘€ ΉΜ‰,ΦΙ`²id{I%Κ 8l}ΦυΟj³*§ti·žvΉγπ©o ϋUœ‘†loξ°εMCisφ‹d—,>`{0κγDgszq[ϊͺI€λ «†“Θ‘–+μœό€€$ϊŽ‡ΪΊ'.-δ…ρεΙ!Ρ†?­UuŠα Τ΄mGPAλYήš[[Ήτ{§-5  7Y!?tϋ‘ΠΧf·½ΚΟ31Βέ)ΔΘΡΓ]ψ~Ι&bίΊ6zeΣψρPέΠί3i…°…Ž~ΞOcώΟ§₯XΠ•­‘Ό³e;­oξ tRw/θΥ~iβΡM°©*Η<{ΧΟβj/k8Θτh«ΣW3ΥQΘucκΎΩ–‘ |I¦D βV™³ΫbηŸΔŠΞ”bΟjΔΨΘΫcf9ςXπŸCΫΆ|+$rψŽφξYqΫΖ-’.qΙΑlg―₯eƒ„ή#]‚^κ;λΛHο-$·”¬ΈΟuχ¬2iL or1slήT χΗFόF+id –GB=ŽkSΣU·ΌˆζΕ΄ώΩϋŒ•{σއ,%­™xΣO₯€ΜΚ?‰;ŸΐΦ…œQκΧh'}…³½Δςγ―ΊηXϋΌBζΓ~Φ4Θι›σός*Ν…ϊιw’₯l&l&:@δτ?μ·oC_=*ΦΖNO‘ΥΛ/cξgFξ2zf”0͌Οόš§w©ZXΫΙqsp‘Cάς>v χ5‚\ρYΜRάθϊ!ϋ¬w+κ£ΊCοσ}+²•)Oα%Y/xcj-&¨ΪœΨΤ‘sΉΩN"„ς½O8ΦΊ‹;,­Δq―SΉ‹rΜΗ’IοΝs—ΆΡΰ†Γφ« υ±-³q>zœnG$δ“Ž§½tF«±aάνn · Œ8*Γ±Šι•7D‡¦±.Ž:Πΐ3­)  Ρ«£HJΗ7C6—z5λDsε/#ωΠρΟϋΛΤ{q[ΦΣΗun“ΒκρΊ†VSΑd‘”°ΫοΗ 5Μhηών~M δY]=†οαJ7lfΈίήΩxzMΧEΚCr­δ4;K=ΤMό*£– ςιYEZA)}“²`ίψ‘ήκM7C€^ίFvΚδ‘±¦Ž:ŸφG?J‘ ΪχŠρΫO‘ιg‡V©Αώ¨"0sλšή°—KνƝ£iδΗ²ή?‘[ΎXυ9λΤΦΞΧ'‘ƒ„’k«x§QώΠ–/œI> p9%’κrkHΤ,u=[Z’T²ΣXNΖ)ΌΟŽGpMcψο\ΌρΕ圁’Σμ`Š#•’EΖYύFx₯jό(ΣΏ£jZΪy2_άαUΈ>\+Œγά³W ΔΕΉKμΔλx)F—77ΌΙ|]gk©Zhp†‘ ΚVY ƒQ#!²:Švΰ{.£Χ5BβDŽB6œqω Κ]B)Ύ&YθPLžCύͺH’e?Ί•βzpΨ«ZΤnfӏ†4Ν·ZΔΆΒ „Mϋ«%#I[κ«χ‰Η’’ί΄žΗDkΤ₯K’œ…ΝοŠ<+†˜%{χˆΗyrϋ’5ΙΘnj㒎O°ζΚώ}>ΫJπ„WΏfŽ;1©ά([xΘ,ΝΦCžpΌg½QΤ πηƒ4‹K+θDΙΝ¦œŸ½y[«HWΜNrΝΐθ:Vρ7‹όc©.‡‘ΩA’Γ3) -Tž ρχΟπ¨ώUΛAΩ8Џή₯9ϋΝ{₯ύbοCπ„λύ«ws­ko'ŸεctŽίΩχPvτŽ•Θά]xΛβ.ͺ4»xαΣlώόΠΗ& HOY$φJ衇ΡψAQ–V»±–@/ξf]Χn y₯³σ.zρΖs^™‘iΊv™€E™ QΪΆΩA“!<ξfξH=kͺ–”eΞύιJ’δΌL ψIπΆž–πΫFσc癆YΉτBΔ‘QUz₯s“P±Α­ξawΤεόWΊMΥ·Š-ΛZ —‘޲Ϋ7}Jœ0ϊθνηŽξέ.!uxέC+)ΰ‚2β)ώς3ΐAμy­qήΊ6«qαΖvk2Ν.˜νή1ρ{•$γΪ”emO]QΩ0β™΄œsSνρI΄“€=M1_B£¦Γ©iw67\Γf'-6 ΚO|ΘΩbkp.₯<'5€ƒŠ™;=  τp8δVGŠ΄gΦ΄ ν­ΫeΦΫΘ:Η*ΘߘΗγZΜBŒ“Šr$¨Š\zΛ9‘²ŒΟk β ΣSQ·ΞLΊ r‡CξΥ'o==λ€·ΥγπoŒ5›;›KΥo\]ΒΡΐΞ!œ¨σWŽΗυwώ={Δ€ΗαλTmΗή»Υ2σΠ€#τ-YΩ“Ύ‡M©κΊ~mφ­NςXΟέi‰ΎΟαšηeρf―©&|;€•ˆŒύ·QύάJ=DcηaωV.›ckcβ›«Iα7Ί²(™5EΌΙ m€qΩ@bF dWg˜Cω—^Psθ_­yΣΕΪ«§n¨ςϋΣ9ΏψG[PΉI΅λ§Χ&RE4f+8Ο ˆpΗύβjΟ„―f°Τξό;vδ­ΉσμΛωbΗ•€·B+₯ςB`G`+œρuœ–qΪψŽΚ"χ:cωΝλ,GT?Uω‡ΊΦT₯YΦΌεξεKC± ƒƒΦ˜j+;˜―­#Ή·I ˆŽ ¬Sω°w?z©€ak‘γ'―σ\…ΜŸΨή:ŽAςΫλ¬ { ˜†S>ξ™…ojύ₯4ϋΆf#"υoJ£―ψoϋCΓr[ZI!Τl°\3Vt`θޜ‘·θiΉ©+#ަΪαΉ^‡ήŸŠΚπή³½‘Ϋί’μσW.‡ƒ€αΠϋ†΅«8«3DξCg9όλ“Χc}+ΕZeΰ8QO°HΔ}ΩW慏Ή–ΊxΗJΚρ6Œϊο‡ξlbb—.‘ “ΌS#³ώπρ­ZΊ±;±‚Yε Ίgϋ1Λoj·μ2bψ{Z]oDΆΏΖΓ2ntldpqλK΄§Ή­5EhΥΘmαΊ·–”΄N…Y}A5αIζ])τλ¦ΝΥ„†ΦR{€2R+‘DΰEqzΞ§cαŸΓw{{ ΄°ω>kΰ£ έΧ‘•¬ζš\ΘI©hv9Ά1MΖ{€>΅Μ/Ž-οΧ>΅=RB>GŠ@φΜ’€0}₯koκL>Ρ¨iϊ,ηΛ±ƒνSι½πΉϊ ΛΩΤ–ΓΊ[—όU3xfώ;‰ςΦy7_™N~ VE·Δ―Λcfίlk½BhUΪΦΒžElrηΤΥ‹ιfςΝIξυK„`DšœΖm§Ω8AωTΊ¬―{d‘ˆΎΛrι„PΌ1ά:zΥP8λ©”jJΛB³kώ'Ԙ7ΓΙe8›W™r=ό¨ςOΠ‘P·„υJ=ΪξΏ}vμyŠ#φhzNOβkU Β¨\{SŽ;ϊΥF{—’ΨΰΧΓϊO…υIοŸLτΙ'fYY7689ΞTγ―lΧ`―–­„|ΌτΟJ°#BΡΈ NAΖΉ+Ώ7Α±Λ${₯ΡΨb%<›y )υBO•΄9c±ΓŠŒζ½ωϋΔaζΫNNyέpγΏσ­ΤΟ@ϊΥSFΣ›N’†l4Μ<ɘχ‘ΉlϊυΕH°Ν ‘ά€δ)<ρ¨U1ΡCݍ™oԐ±Ή9¨hε;Km pjUΒ~ΟΆ‘9+4‡GΈΥtK… lͺnνsόQ1”{«?ίπν±‚Πή\©7„<ŒO(ƒ!SςΕgψ²Ρ―tο΅Ϋ©7–$\Β1’ΫH,‡Τ?:VΧn5XΦΫΓΚ6²)’φUύΤ ŒΰχΫτŸ"¦άŒη)Ι’kڌΣΞ4K+…K©Χχ–ΐΆˆυ-ξέ[·Ά†Φ+xQcŽ5Š@:Sτέ2ήΚqξ‘Žω¦yXυ,qSNΊu¨/uφ(°2LͺΌ~}+šv¨Ν#QEE“ΞF*(c¦kšΌρΗƒtΉ|ΏνΘ ωΐŠΥvΟ¦5ό'ΏhbΊ_…υϋΆώ$ lΏ‰sΆ‡³‚εΈύϊŸ NΒ%Xœ0qΞIι\Ÿ‡t½O]ΠψΫivg‰G8†p]Β‘υ_ˆ£6z6…§.877-q"ύB€ fGρ<ž8Άϋ~Έ–·š†ΙΎΑZζS·'$ΆΧ5s’qχFDύδz5έδV6ΖyΨΖ‹Ζvδ“ΨܟJ©c¦Οsxš–₯ΗL‹kVηΘψ›ΥΘ?…fxΜΓ`φZ½άΧZΎ•q*£NϋΪ(Ω²Οή%[ο~«³ΓxΖ*¨A|FUjΈϋ‡9«hν~"Ώ±›μΪ€ LS•#<£βSΒ©iΊ―Ϊoš ΘZΣTEΫ=³ς{|Κq†S؊λ<¬v ާ±ΌQŠšK]λσΕVά₯Ωb·–G%`3šXŠjZ‘B³[–Τ₯ΐ­yΎρΪΦνbΏΊτΉ,W—h©,$ΰ:ƒχOχΗLŒΧ‘O3­ΆmπΣ0δdτ'ΤsšΖ)5tΞ΅%-QZφi€›ϋ>Οώ>Y~wΗ!Ο'ί¬Ag•’Αž€“Ι>υ-₯’Y@TξΗt²Δς~”ϋΒΙk;―ήXΞΡξzUZεlbY§φ†­%ζ7[Ϋ“ΈλΉρ†ζjLΉ‰;Œž†³|:Ό3¦tϐ #rsŸΖ΅3€Jλ„m†s»(­δfAŽ#” wΞρύŠ}7SθNCθ’aOλŠΥΌ‚ήhYn’9FNεΞΡλžΥΕ^έiiΊ†’Εuqi)H…ΓΛΆ}ΐό»-Σ΅)IZΔΑ>k£ΎΊƒM³iξ₯Fœ œžΐzš§Ÿq«\Ηs©DρY«†ΑΎσz4Ύ½xZ±a’ͺ\%ξ¦n½ ω°ΙPB.ρPΙ;θ$ΜΟ¦‡Ψ'9&Fέώ«θ{VnW;9ϊ™γP^Ϋ›«f ‘*όρŸFγ₯WWPΚASΘ§ŽΈsEΔfΫ²\ΫΗ iˆ=›Έόκ†Ύ7_h‡ΈΎ5€b·O΄b ˜²ηψΈόk7^8ΉάgχWͺΗΫ*Ea9XΦ ηSό{ΔϋVFΉͺ½ŒpΫZD.5 –1ΪΑύγŽY½z“V$Τντύκb(£ Ψ'ΡG©=*¦§ΞMOS‹…Ψ―_³ΕΥbϊšΉ‹A§θλ₯Ε!’Ssy3ξΉΊaΜ­œρθ£< X”z3 ~5€SςHͺ˜ήTμpϊκi[@ŠΤβŠI ͞€š*vbBFCԚ±Θζ«E”a3–RQV;W—£[ ΗOzΝQφkω£SˆζύςΩΊ0ώ΅ άΥRό1?υ‘Θ ϋϊŠH֞ŒXΨω»‡'―©λ1y-­jK§Άω0yhIΔ‹ύG¦΅”\–‹&7N$Cχ–΅„QΘ‹o΅DevmŒƒDNθΊΦzw6‰a©Jή"Τbšm;Qq+ΖΣ0ΰ€#v FA ι‘[iΰΏ *ύeώΑΘόsSψ(,Ύ ²Ž@V„«z+2ΰώTΨgm1e²”4‹ ·s"ž‹ξGJΒ₯FκXΖ”έω‡©ψ7DΉš=>ΖΕDσ Η ΫbNμΓ?ξiϊ…τK;›­σNŠw΅o6 'ΛΒη†9<Άrα]†“§΅”RM?Οw;oϋ§²aUfž|Ηή H?£ι[e s\ΕψF<7εtΧ„β·?ο’+?SπμS@Ρι—ΚαL—,δpΔηœWQ B·€­μFGιSy`ό§8Ο"Έε^΄Qnγ4©uzνbΤ―bΉ–οΞ(D8`pΉ$žžΖΊ5πώ¨T ΌQ©δvc~kš­αΞ|_βΔO˜τ-ΟηŠλp@ο^Ši€Μ›9ΓαH& ]κ:•Ψξ'Ή;%Ε-Ζ…a§q§ZύžεN"ς—s€ŒσψΧBzUp<νLrΩsΟy‡σ«Šrfr•‘ζϊ„-ΪΡξυ QnμΏw-©ΌTp€”lπsμkjO[ˆYςπΘ‹xϋgƒ]Ρ΄V;ΛYΎΝ©Ϋ’mη# gͺ8ώ$=Ηn΄έYώΠms΅Τ­°.-Ψδ©υΊžΖΊ£νc–₯jΧΊ‘ΘΑαm.ε [už'`wΘ³ΎSs“Χ5pψ*ΐ¨Q{~1ύλΌγπΫZΦ¨-υmRέA —ΧΫz‚\֎}r1^."«k(π“_hζΏα³ΪU5 Υ§*₯G'ΓΝ:p¦κξβα‡F|)O‘\WRŽ™§‚hueou{jŸΜbK‘_HΔKβ-CΚ€™†Nܟ­V“Βχv‘ωϊv½ͺ­ΜYdέ(mΐύεΑtαy©bPΈ\;{T^|χQ#šπε8y-5xΙΌ_©ύŠb˜Gξ‰ι»ευγ=«^ _Lϋ‹5¦^€‚€ϋz΅|‰f'΅ΐ\Έ‘Ή Ω—ρλPi³Ά‡0…˜6Y„±ΟIαXtφτ­jΧQ©3'Nώϊ'½Œf/λjέΏx‡τ+ΝAq€ψžeΧ!»ώYή[ͺνΉxύ+ͺW ΑγΨφ₯t]§qŽ•Ό¦γ¬INηœ^ikWΦξ54­V9>Ο<3Ζ„# ŒpFGߚ«­ιZUŒ o¨λΪΥΥάΓΩΫ‘ζΜΩE:ž•‘«]ήx³ψ]S6³ΊγœE g•N¦cΖ ϋ’΄Όύ™ άΐΦ―kΖGφƒά0’vcόFB9CžΐΗP’ͺ΅:‘Τ©Uq$dTπηƒnσ ηˆn.n/ΊΧOΉ˜L-Θϋ­#mGΗAΘ_s]ΐ\ƒΙδς}iδ‡Œv  κδŠV‰ΟΝ)nC­αο\žͺαmgϋnfέ8]Aβ&$7τoΞΊφβ™$ά@φσ xάenCΤn­#MΑd@κARτ4γ\Ž‹pώΦΫΓ’;[2ωšdr^1ŒΔOvNή’Ίμg₯s5Λ€ŠΗVG‰4Ι―τΟ:Μ‘¨[:άZ·q"γώ2ΏmlΙΕHP(Ι;Eg-ξ:XΜΡ5Hu.ΨxIWpSΥOρ)χ"΄]γ…Y$Ž4EάΞη ƒΤ“Π{ΧΊ”~ρMφ›gχ‚δ‰γ΅ΆL˜%a– O 洆‰¨x†XηΧΦ?²n šr6臑{t•θ{u*i³ΑFvΉΧυt­―‡qma»iΤξcΘaΞ|¨ΟίyΈτ©€xcIΡξPΉ7Q#t·ΧΎb=ΨύΡΧ…W2χ·)β)Ό1αλΈgΤ`ŒΛζK‚°F1…lqΈ’zpMiΛ-ž«ΰk«­=d7E9<φ-*Κ[=ΑΘ¦§NTωβΜκS©Ο'‘ΓxΏβΝΕέ₯͟†ΆZY…aφ©Kξˆ>κžΔς}«Υ,5;{ΕΎXΣμκ=ΡΑόkŠπ―ƒtMΑz—Ϊ|7KXώmΏ:ρΞη­eι·Χ·6WZv”†v³ΈΈ[›Ϋ²Vήά ˜ νόdŒ`/&ΈkF₯ή—½&z£F€-w—ρ*i¦‹§a©{mh…άΛ3€BxS»+¨u]hΪΗ€Ε&•₯¬’·Ϋ₯P ,‡•†2Δ‘Ν€<ԞπΔ:E’ύŽ$šώF/s«\@ƒœF>ΌƒάΥύ[ΕΊ~…¨eιΦΧήΎGΛgn~hύεsΒκyη₯gΙHλάU«sΤζF‰>ΪΨxnyτ‡OΎ΄KΉk†‘νν!ξyΙθ8Νhž4žσΒΦ֞€IέGΫ―ζA.2η'ύcdδgΤfΊηπΖ±β’eρ}ψ–Χ~εμIKTδc{}ιN€jΎ­ iήΥ­5Ϋm>έ4ςΙ£ Lj‘I “eNγ‘­§F5 ½§BT₯k†&α=GSžgΆYmWΝΖ³zΛ$²Χ5ώ&τ' ½pMzv€iϊš–:uΏ•bδ±άξη«»YrAWYΤ¨)€ΫΠπ¨ΛSW’²0u₯Wqξ’U(ΰ2ž0Θ#ЎγΪΈ­"fπˆ†n ŸΩDΆ‘3±>[ [1φδ¦zŽ+±Ο•β=G–Ξf(N%^±:œ«py₯~VRWF¨oN•“\無ˍB τνQDZ΅ƒ“±8qώΛόk£ddώ5ͺυD§mZηΜ’³ΖΫe›ε ύΡάώUβ]Ν€ΖΪXςο΄ς³Y›]Nqλ[IΖχRΈ ΄δη„_Sι\Εϊ5 nV·πœρ+lmZa‹hΟ}ƒ˜ύ>_zΒQ”₯ {D‘»kβ5Ό1oήO­€‘‡ί);Tχ_RAΘΐζ±%ΤΌG⑍0>‡¦—3DκaώΔdb0}[š@π.Ÿ£IύΣΛ¨κΞΒ{£‘cΈ˜γϋ©Ι=k\0ΰβJί₯5 kDπΎ›‘<“ΫΔίj”ζ[Ή|ξ}δ<ώλšEΎ·αϋ½2θm4e[•ξκ{ŠΉœiΛΛnzOΊ-†΅«­CF–ΟTγU°—μ·`χuτuΓΖΊzΰ|F­αoYψ–<­Ο—eͺ18 „…Šcώλ|€ϊ^€Έ-œλ]”§Ο‚€9dBGΝΝ#xυͺšζΉ¦x~Υnu+₯„9ΔjAg‘½G,~‚Ή‰/ΌS―ΘEœΨvG£L—n=—cΟΎMc9jkΆ΄75]bΗFΆk›ΩΒ„;@Ζζ,z(^¬Η΅`^C­jPKu«_Ά‡₯ ΛYΐϋfΫM%Ηώκύ3I€θΗ―^I'›%坼_e9‘ƒKŸ1²z± Œφ“bx™’ΥοχO»„ΣΒεmΚ·ρβaŽs°«QΙZ.Θε9ˆό;₯ꀚNŸoioωΓS½wάYyά°χ5Τθš‚κz}­ζΕ[——Λω?‹ΤU#‘PέΈρ +±πΝ±?kΊpP\cώYΗ‘ΐυnύhθΦ¦ξc©΄Ϊ 2,­Άν1Ε€ؐηYEς»Α]¨Δ‘j·ς[4VvŠ$ΏΈΘ‰Eέ½‡σ¬?[=΅΅·ˆν#/s£ΏΪvc™!8'ΎWζλZϊ Žx_Tή&–π+¬™Ξ!#(ΆO½\΄ kr֟§E¦Γ΄,¬Ϋ₯™ώτάŸj°δ:΄g 0 γ·½8šc0§5k`άγ­ψkΖΣιϋ v:Ι76ŠG rͺ’dœ~5ΨδnγϊΧ=βν"mcHg³%u8.,δώδΘΑ”ηЌ©ϊΦ‡‡uxuύΧS„ŽxΓν'ξ7FSξM4ĝ.7r(ΘexςT0ΖGjCŠapΌ‘T‡%s±Fρn­§Ωѝ τ,Οƒίπ*Ϋ”›©>Ξς“™›ΤφZΟρ΄FKO[«4šL’αΐδ΄,BLΎ) «Φ― Β,>πaό@ŒƒοkΜΗ?e>~ζτ=θΩ“«Œ \pvυJ­F?j"OαMίες1\v²Ή©“αYWMΧ΅}ό±Ί…¨bL Ίγ΅£υ⸏yΊ}柯ZDΣO§KΊXΠdΙαeSψa‡Έ­™|{ᡎ?²_Bi@1ΫΨFg”ϋ_Ί{|Δb½|%hΥ£s–’q¨nω\τVΤl!Τ΄Ϋ›˜e‰£“Έ F ?Οπ¬'Ώρ†«•²Σ¬τ[ωι|ίhŸπ>Qψšώˆ_νν[RΥ~hη“Κ„{yqΰμsJtΉ˜œΜ|@Ρ΄ύήΟVΤ<ν^ΫIΌ/3±Œ• …|ΐ[?π‘x“SΟφ?‡E¬XβηY˜FΈ‰2ΗρΕ_ΓφpμΛX,HrΘ Œ*‚q@ƒWl.DͺΡ²§ˆβD=WίάΖΊ!&ί,Œκ5xœρπΦ·«!ώάρEρέ,tθ…¬*3ΘΘωۏz4θV7Ji6ΆΪ…΄’Fg_2LΓοl“œυΈβ²υ»9^5Ώ΄ν–ΉxΧϋγψϊδ>•u#μ(K]ML sςτ sŠpζ«Z]G{i Μ'1ʁΤχΑμ}κΖ}¨S*K°ͺ½8ό«ž9Άρ|ˌ%υ°•Gϋi€GΦΊ‚3Ρ…`ψ›6±ΩκkœΨά¬Œι›―όθ“ζFJ\²6‡έ֘ω·mτvΤu}€œΪXHIbrrN$ΤTvVΉŽ­Ω¬q¬K΅r ΰqCΑ^£‘Χ! 7‹υWJπ΄vCO«\.λdŸ¦i§Γή'ΥΑ:ߊ―MΎš‚0=7YΏ:ˆΚΪ€W°¨χGc;B±΅˜ΥΛyΓ…Ή=+š½ρ―„΄›³Ε―,ς1ΐΆ·ίtΩτsΞ©Z|5ππ™ήκΥ―% σ}²g—ŸS“ƒυ’ΗCτ₯ΚΚήΥGAa1ωUϋI­΄/Ψ'ΌŽOQρ.±©BΡi~»΅Άu*Σκ-± πpŠ ηΏ­7KΆρν–•k¦[ƒa Ίωi /+*™\a›ή»©„ – «ŽXŽŸe―‰m=Ώ<“'‘!l劊“rΦrEΖ4–ΘηξΌ«κΜ/ό_¬Λ>8ύΰŽ,υ ͺςŸLρUτoxjq$7Ϊ4 Λ92ž’~`{λ]Ύ$™‰ςμBY€τ¬½Bκ{§ŠπN]ΑΜNΌͺξ·χ”ϊvЧ jω½ „j=’tϊnƒ€ι±¨±²†Ψ‹ j»LΦ——€p΅ΗΨkλ~„HΜgdΡ1εϊƒΤ·-μ±6Ž'q;GψΧOΦ‘½‹ Kν!•#ή•ΗxβlέψNώέΐ’ rbΨΞΤ™[>ΗU CΕΪfžO«"8ώϋˆόpή,ρœZ•΄n“ΙΉic–&‘v€ΡΫΉη9ιυ­©W«5n] -Ι«‘ιšΤwv^N―bDz₯²Pηδ Γ'¨8ΰυυ³‘ψΟCΦ4Υ½BΨ/GpB΄>ςΏnyθkΜuoŠΗS. Ρ―„Κxά**sΞO~•Βάέ]OrχrYΫwάmόΣ³?τӏŸω œ:―IΈ½Œ± 8]Λί=·WψŸb©$^EΤ>Χ(1ΪΗψγtŸEγήΌCΔ~"ΎΤu±6‘{5ύάdΣ6<φD(ϊSou«Τ1‘\`ωmΠ{qΕdI§H-£Ί “Ό‚O9ΕuI]sUΡ΄ηې½e«ζ90a΅‘ΤGp}«ΩΎκj/τιefM!€‰œδ¬N2€ύ9ι^ -Χ9‡Ϊ½gΰ₯έ­­Φ³%νΤpKr!΅ΆŽFΐ›fβψ'† °Š„bΣ†ΜλRœR=••ƒνΖ@ξŠ@Αl6jWe,@©εqΘͺSί[[(iCdEάέ}tΕjL₯ΠΖπ³μXmΙmΦΣOΙϋ»Ξ­ήκ6Ϊm›]\Ξ‘Dƒ Δ3ιξMaΪj§MΊΥ¬‘±ΊšφKω$·ΆΫ°νeVάΔπ―5zΟA–KεΤu‰ςρbEΘ΅φPG'©­βΫVG$£ο]”ώΓwβi΅5–ίM1X‡”g₯# η!jΟ‹­bγΛP-lHŽ5Q…σJpLcσ5ΆδGРĞψ¬©o[ΟΌ,Χwz31<ϊρŠ|š—t‘Ί\Πtφ€pJΈΎlŒƒΗzdSy€δuΖυ=TΣ·2O’})ΙX€ξ`3Β·`)gΡ$m 7&Ρ‰θOxΙιύάΧJ1œ©γƒτͺ%†‘lπE žXžŽΰzΦv‹<Άsθ·d—΅Q$ηvψ6δχ#₯sIκn–†δΘήMΨΐω³ιŠΘΈ_ΆΫ΄€`ΘΑ“?ΓƒςΦ•σm΄pΌ>N=ϊΦˆ/šΗMhνneamnΏτшΑ?A“ψW%{Ι€ii¨ύ1^Τ!ά7iϊS`)δMu‚?N]ImέK zΥM&ΒίG ±‹ξab9fΙ,OΉ$š™›=+Ά:+Iκ6B½UPΈaζΖύ>m‡ριVdʌροY—3€ΉŽ)!†Xr«υυ­’Ζ•‡ΜμK&ή>΄TFAε.^h©\ƜΔχύ˜ΚΏ~"%AΤ~U`HeHΑCQ¬Š‰–l€:U[I QΙ`}£wχ*Zσ5Hqi»™ρΞ@Η$φ\όΗΜ=ΒΨzΣέ|Ϙτ±όκ f+ŸΌqŒt©w:i₯r˜ ξ²ΫΏ—sΚ1}ΤUν6τέΙε:˜ξcΫΎ3Τr9χ•Q¦IΟj”B²άC4€¬‘ΈdppW­SNw™Ub™CΑ„i”PŸLJΖ΅ŠΚρ\Ÿ–H‰ς³ΨΉϊΧ!αΫέ_K]fΔh³]Η§9fŽd Ψηρ[ β«™I α­dΈγi…T©-ŠΖtνW™n3Lθ"rxδΤ¦!$B’Pό€v πs\Ě׈ f/ Μ£±šνώC5#kΪΤHΖηΒχ`ωγq„~£5Π£-ΠΫ]I<;ϋ½=¬fεμf{GέύΡΚυV©βCΞPzυOώ΅qGΕφV"ΤKiϊͺ™™U’ϋ>Y$T^Έ=NH­?ψLc1—ώΕΦ‚ϊΌ*ΏΜΤIAξ[”­dOαRΕώ0= ΅·δ#γ]ƒ:Χ™Y]+Λ©λΦwν§έ]ΜK.0Κ  ½σŠή‡Ηϊd‰²Hο–ιΑύœμΘΨυΗCΨχ­ε‰2Πλ:ώb«ιΉ0ΌΗ Λ+7αΠ*ε/ͺ¨1σΏ–›A=pNkB?Ϋ[DΎnŸͺΕ9Up>»XΦ”g θΘ¨₯k#d˜ƒXšΞφσε€ΏgΤ­ς`›Υ˜νL>.ΠΎΞn΄ΰ½rNAτΗ\ϋbͺ·‹’”i€κΣ)?”±©χωŽMt9G©‡$Ίι7m}¨κwDaΈσV)’'%Pwτ=½«UΑΟzγβΧ£·ρMΔχP½΄wΠͺΈvdˆ8ݏP+^/θcn―iŸwρ«Σj­ΞδΝθ†M<Ί³cΦtΆεu[ϋψΏγS§bsP³£ρ«²₯ьυ©WŽq‘T>Ϋ9Έ„RΰU„˜ΑάqνZΒ™·fψ˜…Σ7w­Δ%‘ή£ω³$I,rBκ6ωJž˜ΛΧξ Ϋ o•.ΰg>œπ?1Pj~&Xf]?IΆ}GUΞ~Οΐ‹ύ©\πƒυ=«ΞΜ¨Nui¨šΣ»Ή|ψ‚ι{΅ ϋ—1!(Y€<νYˆτ¨?²΅oH­‰­4³χ4΅l<£ΦαΤtηύX?Z©ΰέ> b[ύa̞%·•ΌΥ|ΆΚzy*z)†κ{Χ| یcŠφpτš‚φ›œυ€—ΒU‚Ϊ+[xα…4@Q*¨τ νXή Π΄Άj“}—V·ΟΩξ1‘Žθγψγ‘Ϋ¨ˆŒΤ[Nύή†΅›} βŒ_kηUŽK[ȍ§jBέ[9ΙCفώ$nͺέ ήΞx‹@’ξH΅]:Qo«Ϋ¨•†UΤυŠAέθpEYπˆ#Φ‘’)#kkϋs²κΦCσΒόuυ¨n„SŒΉ‘N¦Υ7’€—fM40όS Ύ»€ΰ”Γ ¬ΦsΟ”‚§θ~ιφ4žΦΖ·€Gpθ"œπ·)W‡Cτ?‘­πƒ$ pϊΤρψOΕΡj‹»μZΖ`™#RΕnΡAFu. ―ΤQVΧ1«οr}ΥέΆŸlχWsG 1Ξξpͺ=λš’σZρ<‚;/;IӁηΊ₯Lχ»SκyϊT–^‘β[Ψυ-bŽΞλ['#l_νΈξ^΅;Δή2Σ<&¦Ξ!{¬…ΚΖ­Xtμύβ=+žτΣΧSfͺΚ\‘,ιΆ.ƒ ZΗ Γ)•œ. HΝΠ’z“Χ“\ŸΔ/λ-+xwAWΆ”(77°ΰ0αАy5ΧψJu½πŽŸ«K΄ά^Ϋ ™εYί–@Nτΐκ·Ά6ή#šK«ΤŠinA}έGAδ+ž½OήFEΰγ •οR:DΝψ=€O’7‰ο/γ1ΝΆ„a³Λnfξ~οη[ϊ‡‰-<;β« ΗΚZκ·~]φŸ·η2νΒΟΟ#Œ7nGzšΞYίF{=%κz€ΣJnC±d“ΉM»vΛοVu‡ΠO£]―›έΝ ­NνD— r}ΨS° ΠWV€c[ή–Ž‰FŸ²εŽχΠ§αx’ΧΒ:~‰©joGIlμHY‘˜νy†~l\`rMu)£ι>RηYk 'NΓe&v=]ωκrI>΅Γψ[βlƒΒ–š>‘₯GΔ0lξ­ΈΪv¬²?}ΐΙ τ­X|ͺknΊ‡‹5ΆίΖΑαHk[sθ#)<υζ›χŽ^U}ΛC\ρŽ‘‘ΡmΓδoξδtύγχ@xσι]‹αν/@΅ς,m%'-όLμz³±εΉ5ƒv‘₯ζ-οmN%ŒwaΗͺ·cψή Š΄¬4£›F1Πz †κή»Im'O2)«#t`zΤύΉ¨Uσ 9οΦ©„t9Ο ίKe=Ο†΅ \Ψmδ~³[lor3΄ύ+§F_Z² 5])dΉ΄uκΫHέz«¨#JΤπώ³mβΩj–Ψς"1VΐΚ;©Θ?JKήW2œT_24qšpωiαyΘrk™Τ|aΪdΣts«jIΓ¬MΆsλ,Ώt}Iφ¨œXγ#/ΕΆΏΩšήŸβ {Ε΄hΙΆ»•†WΚaΖPI<{ͺ₯”·i2_[©  †άsŒΎμ’½ςiAαiu Ψu/\.£t„4Qμ+m9ΒFzυϋΝ“Εt¦eFW¦L}(„܍$Ή΅9{O Οͺ€w'Τ“P!㲇δ΄@NFΰ0dλߊλDhˆ«ͺ„UTͺ=rr™||rώ–@Ώ7?ab@υŒžŸέΝuqΘ²ΔΚpEwΒQqΊ<ΌBššCΥ~QΟ'š€Ε9B}Ε\tJ―v˜A*}θΞατξ?*Β¦§u)reΘΞ)Qsΐυ€–βήήΙ]ν$„Eλ–'€+”>*Τ5φhΌ%b&· U΅[ RΥOC±qΎoΓΉ¬ή‡Ci#sΔ)₯Ι‘^[λ3*XKGpνχUOROcάwΘΒxSΖzζ££G i’9΅66σj“&`X׈ε ΥΛ.08υ’ΓΑς]G¨x‚βmnυ9Y/Dιœ#ε_Η&‘ρ}²θz­—Š­cΩo -’F »0 ψάl‘5ΌhΜ‘‚œ'>V_|3i₯Ξoη’]CVb]Bη™~‹Ζ#_eΕkcΐτ’&&ΰF}Ύ”β3\P¨δυ6v[Z…Γ^Α¨Ψœ_@HΩ*cϊzW5©GjΧΕό?<·GkCηΒ‘M θ‘Ÿ―q]ΉAθ*ž­¦OO‘"ύέΚαα—ώyΚ§*IχϋΏoΘ‰[vdΑ’Ν}qo6ͺ–Λ ύKΆba‡B8b; bΊ%ΘΞI$œ±hωο΄–CτΨ ©Ι+ρΌ/₯]iώ([fŸ•½ 2^Fψο΄αΗγDΧ2 XλΞiŒi"•f‰dFWOΝ+qΝc[B£¨D£Ι\Ž£±μk•πϋΕZΆˆΛk5;Eτέ…Ρΐl΅]8tW5γhd²·΅ρ%²›I“ν,δˆαfOΕΰ4½§,ŠqΠκΩO#‘ϊΤm–αͺ[i"½ΆŠ{vE"+£ƒΓ)ƒω’a4“:’ ΛΉαT{ž‚Ί\Z2SΊ! ‘4r hπw!θΐŒ Χαƒ5ŠέhW/›&Sf<΄ {ό§…hMρFk¦΄ΠΦλZ»\/Lr©jFχΙ{QόW¨kvϊΌχ–z*]¨²š+OίΚ¨P΄„m/ž2Ž' ρΉP©ΦPž§Q¨κ–<hΤ.aΆ³Lpψώ”Ίφ©¬(>[Θ?vφχ0zͺ‘½ΗεZZ_„4]&΅₯¨ΈΎοwvΖi³μΝΐό­π3ΞI>¬r:Ύ_«T•Ν'ˆdγΧΑOͺΚ­βmfκύ ΛAϊ5Έη Uω›ρ4Ϋύ6ΫΑ%³ΏΣ-‘Ά―δ·qDc‚FΪAθ 9υΚ%=:T:Ύ“·’ήι37ξξ"1—λ°œo¨`α^„(B1΄QΛRΌ›ΉuΨ“Ž˜8#˜zΦ„uYu]).Χmμ,mŸ»kXy}Mp β‹K™‘›Βš΅¨ίts3}–ΨηŒf\’τvoψXΌ₯ZϋLΠmIε,ΠάάcΣ{ Ώ¬£(Εθξk)-}Σ±›ΚŠ2σΌqFY₯*©γυΏxOΛ—LSkιεFCo₯ΔΧ-τγ sοQΗπηJ–A>±5ξ±09-¨]4Š?ΰ ϊWIe¦iϊT"++xν’£π₯9z‘ε#—±ρ/Šnμ!Άό/$EŒέλ”И“,N1Η3xkĺνί]Ο&ΧLŒZF=‹ »ΔWTχφΡ™¬h½Xπ+2oΓ‚-`žΰŽα6¨ό[₯e*Šήσ±΄lώs;OψαΝ6_5tΛfŸ9σ¦WΧs“Ο½lάCoadZ5TXΎe…c\kZ”ΜΕ΄ κI‘‡αΐΝgIpA+Ό:—η‡A\q΄`½Ν•*½NΩdWr*ͺγ9Φ¨\k‚V‘Α+χGβzΧu»+xΪ»ΜG ”Q#’κ2;žj€Ύ.·-΅½Μΰp»" ΞͺxΚ­~ξ$Κ0λ#°ΈΦBH%(Λ³†!Βϊ{Υiu»©’…|np?•q’κΊ­ή|«hνΧ±˜ξ#ά¨λUΏ³u9ΚnΥn7އ€ΰ:ΦIβ$½ωr‹žœΦ]άDy™€e䴎[±΅/ΨYͺ§ΪΡeN8ώfΔZΝΆΠΒlΎšβF4‡ ώ5Ύ—ε\OlJ#Βq»²žψΦrΓΗψ“•Ρs©4―„ή-ŸiΩ¦ά€1Μ„(οΦ’λVΧ΄Q}ž":cζ+ωπMOqikΆΩεAŽυZ FΟμSK3π 0=[ϋΏŸJ˜* X@ˆT­-&ŒXΖ©w«ΓΤo–f]Χr *ž‡άž^“Γν$d<·11ξ$fˆΟ5‘i%Ύ™hσ]…I$>d1ΐΙνψ*γ;En&Ώι”,ψό…t}f·5©ΓD)αΉ₯#tvΣ΅EΔq¨Ξaχ >Ύ‡λIͺΫ?ιR:¬ξ‡w<•ο[·[ΥΠ₯§‡ξΌ£ΖnŒ¨5­x_Δϊn„Ϊ₯άvΝŸ$s Y·ΐl`’9ώκΕJpεžζΑ;σ@–m.9“Ο,‹:toOfυZ9­ΡfŽEXεA‡CίόA­Ψό5β BΉytΫΐ=VϊυCώ;™5xΔΪΫy‘ςςy#ϊ €ϋτ―:¬½ϋΤ™tπsœ=ؘΧ3ΫΩi¬Q0Ψ$²O­cέk+™ άΟjτ)>θκ7\άήή>~cq7ώ Ukέ#Βv(`m6Υd# » 6™Ιb(ΟFGΤ€·<Ξk₯ή²,Ώ?όσώ,ϊc½w:*€z™₯Νlχ“Λ”]="ί,’Xΰuΰ[€=iΫ¬ΣN’ςΣΒςAi—–sk΄§ζ9=kΧΎψcϋJΆ₯l±kz±vGό{DFRG υcΞqWqœR-/`ξ·fF›oxkATρ1f΅•ΆΗ'œgώΛ€©+Ž\vݜ'Έ’Ccadχ"(VΣΝbΟλ] 1ΌnWYXdGB;ŠσΝoLΊΡξ-΄ΛΝΞ‘upΪnX•FβˆO Ίy-’`υ|ΘάπώœΦφ²κQ¨½Ώo>sŽPςΗτ ŠΨιΠv•™₯ψ†ΗTo%$h—οΫL…%OͺŸιšΣd<•ΐΑη=«žˆδ“wΤ‚ιKΑ*ΛΖΙψšΙπιέαν1 σΨ© ­nΟŒ©0χwJΉŠΖ[guGy:ΗpHήzUFIH™ί—CBα.·…(0N3‘ύίjŽέSf•X[|Έ δΰυπ©β΄- žδ¬“/έB>XΗ¦=}κK5έέ[γwš ϊ7_Φ³­%Π¬5KΚΜ΅Λ;ΰsqΨV'‰‘ϋ(³Φγ62ζ\υ09 ΰϊΰΰŠΫwςZ67€uυ’έΪMhΐ‘2>£Νkν™<Δ pvύܜπzJΘ΅Ά}KΕ‚vZi‹°3tk‡\υ5₯αΕ’λH±VζEQgϋΚvœώUAη-œ1΄αξš}^§Rώ£βm.эͺί[ΟzE»SެzET[‹}:a£ΩΓŒ–[t±|Ώ­¬jG¨έ‡O₯OTηf7 ΕΧnΗ'·qψΥΆΞ ΰc’+:αešδXΫ·’@έ4ΈΙ‰OOĚσ’Υ΅0χΉ•Šχs@³4%nH£œ}q€?£u4–ΏΌ΅»΅‰Ÿ!…Ψ;dsZ—SΓ¦Jϊvf’]);έ±„=ΛΏρjΜΈ΅’Ε’–vMCVΉ>\ $`Ψώ:Φ‘7s©I³JΥT2MηFίu³Ο±8κ­kΕ΅ηςύΗZΖ,dΣƒ+Ηg)‡* Pv‘'ŽΥ·%έΣ―·#”΅Œ/ˆ5Υۍ·Jγ=· κ? ςγ#ζAΑΑΘΞ*Š x»]ΟBOΧmiΊν;²ψw―&΄_΅•ŽθKά"ΊcΛΌΉ€vPδ―εTξ5‹ιε:UΤ†ΰ°In εmΓgzΉνιžj¬·Χš›΅“"’/ξζ½#δN£ ύζχθ*ξ™e ­νžŸ αUžwf9-ςƒ–=Ξγšή”κB–»œυ}›Ψ»ga…€p@Q2ryfc՘χ'Φ’½™’Q JLς7—?ή=Νm5± `@κk)νΔ^ Σ؟”»ΰ·ΞŸq₯9Ξς1ΊΉ©c¦ΫXΫΓΑh—o˜PnΞy9ϊΦ‰lΒlΦ` η[ίŽςDqŸΔuΌŠ6Š)RŒΉρΨη­{-^6!·sŒš4•'z°όԎΏˆͺΪV‘ukeqirQ£΄;D¬γ*ŸΓœυγŒΤ°Δl&›OrΡΟξΛwˆςΏ—J₯¨€Ί&΅(4₯-ΧθΕT3^ T§ˆpfΝ{CJΒ oΆκwͺ¬ξ?ΡΡ‘t‡‘ιΛΞjψ’X>ι·γ»ΗΘύj؍c]Š›U@QΣ*νάv6Ν; ν;U埰όk±ΞnWζ.ΤΧΩ2οΦ}^vˆΘ©%«£€A '<Q؊[9–ρ)­ Šζ–hŠ”ϊτεOcWμ,δ³ΆT›ζ˜“$Μ;Ήδύj;λ΄lž0έGŸ.B3ΗχXw±XŠιHΪ ψHΣM°Plm8λΊ'ρ’m+H ™t]0Œ…$CλN²Ό7%£š3Μ|I9ΗΎ{ƒΨΥ‚ΡΎ―₯@Ν€™z|‹‘ŸΗΡ‡­7S•Š΄`΅F}Ɓ¦C­Γ₯Ϋi6Q3'Ÿ1h·l@0ξM^>²·Αia g­"¦«J&ρoˆ.œύΙΩrs€ˆ2?ο¦5NλQΉΦυ3‘h³š<‹ΛΠΉͺAωGχ₯=‡n¦Ί=€εVΠ؞J~Κσ1·άκ:Η…τ b‰nέjY2 vې€Ÿ½'ιή»A²ΠτρmkQΞ[ζiυgn¬}Ν?JΡ¬΄{8νlΰς2HάrpI$ςXžI=kKΉ5Ϊ“κpΙφ15ύ ϋD%υœdΥmΉ·ΉΖ@υGčŒψŠ“Γή"ώ׎[[ΨMž«hB]ΪΉΙFμΐ7Unυ²k Δ: ί΄z„ΏfΥν³δLFC)λƒψ£>Έ"œeΛ£'”θ3M¬m^MfήD–6ΆΏ·aΥ¬‡η…ύύAκB+`uͺhhSΙΝs^!Ρ.>Υ»€ jΆό=.#οϊƒ”φ5Σ…Θ§„ʐzΙέj‹RθΜύV΅Χ΄¨ο­Xνna£aΓ+Δ+Wf0r=+†ΦΘπVΉ $3,ZeΣͺκq7έBp`=Iΰγ“OŽχ]ρΣ2ZM.‰‘†*Δ^\ϋ ε)xƒΤVκjKCž†ž«β™>Ϋ&αλTΏΤγβVbD™ο3ާύΙφOΕΉ΅†Ώͺj2κ:Ν΄ρ\A$™Ž%tpΒ(Π`(aΈc’Mw~V‹ΰΙ2¬vΆV¨d`£8υ>€“ψ’kΜ΄^ψ£βΖ„Ϊδi‹ eeœ‹y6­'¬„3ΨτΕL€ΧΊh©Ι/iwcΔ‚ηΑΛ¨θ’ω‚ξ0Ά#ΡΨ…Γ{«g#ΪΌςγΑ―{¬Gg Σn|Ν<˜Λœύζ'Ή&ΊI£π‰~Ψ³ Πu ₯k₯8ƝtΨiτŠLrO»Ž‡£hαΡn΅}Vυ"HΣs‘b€<±$€9Ι―:’›­AϋŸΧδvαkϋ'όΖ&‹xώB‹32υ¬!δƒΜ€ύ7T΄6ΜήZ*-GΔ“άˆγaς[€Έ*n`?/SνVl4Ϋ«ϋ»‹ωδžΐί\IvΠ«‚ρ±sc;φƒ…Ξ95χˆm΄•mΑΆ°Ι¨£ώώνωV€|υ–CŽŸS±£V3Ε9S•ν‘5²J;šζ- ΐzhΤΌC|Χz₯Μ†I&• Ιq3uD?ΰ r+Οuέ_Δί/Ž“oݜ„6Κ±μQ-n[©ρΠp&ΊK?‡Ι!Τ5‰>Σ©Θ>{«›––NyΐΐŽq]/-­ΰ·ΤαxθŒw*  œžH δξ…qΌήζ3χδOαoι^Σ`Ά΄·ζUΓά²|ΞΗ©ζΊ0GNΤχΣ½ZovCi™:φΪ„q^ZKφ}JΨξ·› υWΠγ~4žΧΧY·‘'‰­ον›ΚΊΆsσDό~`υΈ­\α³\Η‰΄«Λ{¨όI’©mFΩq$ΐ»‡ ˜›ίŒ©μF)©%£ IΜCPhϊ΅ž³₯[κR†‚e 3χ‡±ˆ9zΦ^½γ 'C[5ΞύIΥYA–w=†ΑΣ>§KΘ™ΎΔ»χμΗ|Χϊ·ƒυ»‹K`dk«© θφΛ™ƒ²‡ή‹ό*OsWψ₯Š^ΘώΣ[;‘–KΩϊΈbφΙ¨<9§iϊGˆυk x1ά€ŽΕδ*Λ°†s–?2ώ΄ύœιr‘0’©.BγizΏˆπϊμοk§Άq¦ΫI†aM₯P ux­λ;; hν­-b·†?»hWπΕNΌqšRk5.mM\TtCQΤR“šsŽτIυˆη†;«w΅™Δΰ«+r=AsΓ·/£jΟα›Ι *©—O™Ο/CκΛό«¨,œŸΊ 7} w>Υΐλώ!ƒYΎ·ƒΓv꺍ΐ‘.!o.8`ς°Αv’œΪ–†U"žη‘<‘D…₯uUA–'’R{W#sγk½Ji-Ό#`Ί‹!Ψo₯m–‘·N[“违Bž»Φ\Mβ›ί· ϋ’Ξ c΅NxF ŸVό«­!Άˆ’ #α@ £Ψ]OQ(€pΪ7‡WQΧ.νρΏGCτ`Eeˆ…š™T^Ό¦9©"R_ƒš¨³ΌξRΩD„}ηώϊžJ™myZCιΡGαIljΡΛ]‡Π> Ϋ\-΅„[)OeΈŒf?ο.εό+³$•θkΔΊφο‡ξ¬ o*ιΤyGTͺΑ£lφω€ό §xg[!Π-υCΞš&1Κ§lˆG³ψ[•βa%ΚΝvnΥΡG<2C,bD`AΉ Ακ*R€š@0υόͺœ¬K9ΜϊoΫ|1y!i΄²‹ ΏW΅qΊχΖJ ©³ŽF+“ρͺbjZg‰αΟ•hήF ’me` #ύ†Γ©­MsΔΪf‚ΛυάirΨΩ)’WΘγj/'5‹χ•Ρ­&žζΒ¨λΐ¦ͺjϊ–›€ιζ}^κ {b93δ#Ϋί>Ωxάx»\ϐ#Π-3€ΣF·7l=Dq;}βH«Wƒτ‹;€ΏΈ…ου>3y©9žU?μηε^Iϋ£ŠRΒ:›λGh˜>Φ|HήΆό;§c Ι:Ύͺ q΄;ΞΝ‘½ώRN¬^xYΌΔΏρUν߈aR ‚bb†xaαvσί8μŽ8'=Ι9&“λ“]°ŒcρIι‘Jν’Ά-UίbD °£Š«“F …dOb¬τ¬Έε“ΓΧ³―-’™Μjη‘jά}οφ Ξ=+~HΦ{GΗ(θqν‘]œιΗCΙ©B­ΙνΨMo«HΥΗβ)γ ΤzletΫUoαiΝ[Ων\ΦwΠτΉ•B8cΧ§οΘφιRΗ γζͺjΊŽ‘Ϊ5ξ§wΏχζ;F}½~ƒ5Ρ’ΌŽCrΦ=ώΔρό©’Άšμ~tkŽξ%Ηό 0ήεk―XK>Π ŸAΙ―0ρ?Εώ‚5oθ:μZlΡή¦£pžD!ν σH6’Ζkn/λ>%·KkΔ“Ιg2‡ZZύ’¬3‚Γ.ΰƒάŠβ­(σή*η~'yr³c[ρ_†Ό;7ΩυV%Ή'=ΣNa±r[fU…WίΛsψβΆτί θϊA4λ(muς—ϋ–<ŸΔΥ‰ώΗœ:l_›5ΝVRk]=NΈΠ‚Wo˜εaΠ"žζ7ϋ…Α\4ΈAυυͺWΪΥάΛš8AύΠΙ υξj9±W™Ό½”ΒκξΚηάΘΏ/ό΄Έ}Ϋ:ΕΊρ•ͺ|ΆΛ=Β/FD;GО΅™‡%i<ι;φσ€-Ξ΄@^ ΔΚ  VRοΚ@ͺΤΏ»ρ₯x„ZX˜€γ|η…ϊΦ©gήήΘ ύά²dςƒε@=0:ΦΛίiv»’ς‚ŽC`Vtž0Ό.Κ;‹Ωz‚'ό+žœίΉ%*—)-#ΔpΚ¨ΏaΈ%@aΔRδ{zκ–Κ$ΰ€1ΠΥΟίGβp†ΒΫNHoτ™CIΗ<¨}«E<9⸐^kΙ“ Ά=Ικkͺ£©ev‰t”]/3ZZ ς2’ŽIμ+2λΕ:-“°ϋJoΟ¨,Ωϊ ³‚΄°Ϋ―fΊΎpy7’ΎΡ[šf•§φK`ΫΣΛ@ό}jZ‚ψζ\¨§+Ή©κ ?FΉ#<4؍~§5[PΡ|Nμo7Ϋ΄‘ ”…πw98rΎhΗ8Ξ*)όζ%] ΰ1ΗJζ–2Ϋ-)]Xβ`π–­q,RέκVΘeε‘τず»qπώΕ,₯vΊ½ΈΊrYΒ‚Ι@λιž• ·iΣΌέE#%o»žqοžΥe5ƒ4y²Συ[–u’ώ-Ϊ·£9ԏ55b€ά}ιιήπςGΥΎ––YΙ•ΗβΔσ] Žά„ˆm ¬]7ϋJξ­£Ρ'b²³F2(D8<Ÿ©5¬šˆg“ ιΪzω3ΈύΝa>*€½η‘•ΎΡ©“!TœtοT|Ec%†5->F€ΠΛ7EΟB‘|+%Β­jsgο(u‰GΰƒϊΥλ? 袌YtθZCΖι>sψ“Φ½œ&€δΜεˆV±Δψ#WŠγΒΣ_MSY³N³02ݞδ`ΥdΧτΟ΅Κ–―u|ϋΫ"ΦΩεκO|`ϋVΑΠ,,>)ΌsΪΒΪ~₯άAͺ”[ΘΒyΈ\u)†Ηk°Τtq>Λ«"–ΧΦδyO΄maέ\ ώ”ρ8Νκi _$N IuΫΨvΩψRh—+έΚ‘ΰz‘Τύ*Ώό#Ύ+$ΌZfuΏbAχ;y―E΅4Ώi xΜΆηlπIχ£>§ΤΗ½h²γ₯WΤiςZHΞ8Ϊ½YγPθ:„ή!Ρ΄-R{V΅ΊΤPMί$eu< «a*χiq±™Ί˜žΓόζΌσΔO―%Ν€‚GOe6Žάβ€ΈqέXaOηZΪ­oβΛG’θKΕ³ωW6Ά>Ο †ΕμzΝtαc.Hτ9±-Ώ|Ϊ›P³ΜBC,ƒ± ΔV?ˆƒ [[ύŒ¦φ)2[ξ«§8ϊΦψ·Ž% *(ώ¨kVΝs’^@¨w4Gdr?•t»™¦WΤτ;-^5[Έ³$gδ™N$Œϊ«uJ9―τY-NA=ΰ©zΐ.3ΠIθ}ϊV土i²†_οΔ§θqόλψ³©‡ΩDεn5Kˆmcdγ!˜γθ§σ©M’€£7Κvq"IΚQY[cΠϋζΉνVχBΠ΄²5©­"-<₯chχ<™b~U3qŽŸyοƒΌ_ͺh63i0ΒΧΆ–Γ|i3mŒΔυ=_N+&φωu o${»Ϋ™§ΐ'€μͺ;\•qj:E^AK ΜμΩΥΗγΈ¬ξ˜Ϋ麌ΪVΰ6(g‹ά)?2³œŠμτ[LΧν“RοaTωn Ιœ½TϋρE–IdΛ±\zΠ·Ή“OΌΝ)MJάy’ν8 <€˜О•Ξ³ -*›Ο‘οΔφ˘Ψε8ΖќϊΆίλFUΤnώ F)Ϊ{[jZuΆ‘CmΜaԸɎ”ΣGζ0XΥY‰ΰS^’ΤηζΉΔκΪ•ή‡₯Ι€ιŒWVΤonc΅vρο;šr=NG«~ΧT_DΊV—Ϋ ,†u>q“’YŽrO©τ›L±mFOΔšρ@³sεΫ‘"5Η`Ηη>Ή•Θι²Z]Ν«o$sDΖvGηq r;0ΝqγTγuŽœ% ίS©΄΅Χo-κiβ„6vDλΈ υ>¬EYώΜ›vλλ’ΚΌΰ.Π£ΤΧ=§6·γ©κjΧΪngt- ‹OC%Μ€€μdΑ;A qΑό+ZΧαχ‡dQq{k=γ7ΜEυδΧΌ >ψ©Xee‘Œ*Ζ2zo˜@yͺηRmG"ΗΑΪ›―i-@χΑ;»‹-6ΓK€C§ΩΓgθ–θ#ς§Ύ*죆ŠΤΞ¦&MκpΓNρ‘…΄Ρll"#ΞΌ ߎΥ<Ρ]…ΔλHΔ€ͺIφ4Vρ‚ξK’2δςάξiT0ϋΏ7ωΝB―|"|­½ζΘΪbz:©ΖOl“Œφ¦¬1ΝΧU δ ŠYmVHΪ9z7Tߎ?ςeͺ)Y#Τ΄ψ–ΘiΧ7!Xω"•ώσcƒλλΦͺΛ3i·εDΡ^kσ€₯ƒ*Ν δ˜η=I§I₯Ϋ¨c=ΕΪΑ€kωqŽƒ!O8©N—hΦ~M’$1”X—«Aby<ŽτœΧCHΖښ–:<––‘mξ7°bΟ+u•ΟV?SA+™<©ςώΧCψi‚ςΒ)ΥΛ9E $0#뚫u­[Mpl-­ίPΈθΡBΉΩώση^•:ΛCž­e©‚exΣ[G&ήΩπ~„U(οΕ˜c™’Ρβb"δ5Ϋr0ιΏz‘ͺι³jž%½UŠβήŽ8―nΓo]ΉςΫOψ₯m;C…Q"πώ³or€ °’6}l}zς+Ζ1«?{S²£*Z:¬vθXΥP` ϊSό6Φ£xFUμθO ?­s‚MF0R+-qΣ°š{lΔσI¦λM£ΜφI₯κι$ΞΒΡύξ7zΦεEΛγΉ›ζG’°Uγ§₯ek Rέn—>e΄«8Η αΏJΕOίD§νΪN¦ ΛDP?€¦IγmhdŽI%Λ₯L Οƒ·Œιίβ3œ*ίC΄GV]Θr§‘τ<ΣY²sήΈέ_Τ―΄Xd°·΅‘c&3\r§tΟ΅₯φ―žE†–qφ‡γτŽh›rΝ‘ώ ΄έw±¬·?7Ί7ςλ\ες΅Ξ‰©Θ‡χ6C#pΜda[W>%’'S£@rΚ]©ϋcš―ύ™© O§¦•/μ…„¨rέryλšεφ u}¨ΣqΠΨ–hœ,aC–=b±­Υ―nΦώεYbC‹X[°ώσ}{PΆzΝυ­΄fΕ $ΈQΌγΈή[kvΠ4οfŒ#ˆŽ`ΨPy=+’t1"\ešjŒΆD€r gτ¬Θυ9Ά£5«"0 ²Ό‹°ƒΟ\Τβ-BUΜQBΚ:~σ?ΘTF…gφM\γΙ€…g‘& ²dϋ―θ=¨¦YΟ»ΖΊp”` GUœ9*Oώ:*—Rρ6r@η12?ι»?₯TΣm΅κpάi\ΩZG; oΚν*ddŒΛgψΊ/ΦΊ0τkͺ‘ΌERpt䔉tΘu=^ϋT±±‘νΑΤξ>Ϋ~ƒξ.μγυr03ό#ήΊ9ό/„1K m°Ήƒ„γr>NH“»dυ=ksOΣ­4>Ό¨"bυδœ’Iδ’rIξjr1Ο½{Tγ«#ϝYLΙΡ5ΔΥ|λ{ˆšΣRΆ`·6²΄gΧ=Τφ=λ[λXZξŒΧ­£g/Ω΅[|ω‘Aκ’βCιΫ¨©΄]hj‘#ΡW2ψόΆ' sώN;Β©»jΔ€uˆƒŽFj†Ή―iΎ±Z…ΖΝΗdqͺ—’gώκ εΣήΉ›ˆ !‹OΡ!σ΅9#ύ₯ŠΣR²¨!†r£#­bόMρΆ©£izuΆ…Š}AΗ+¨,ˆ rγ'‰!Iϊ7σ¨œ ΟΦtΤΥ΄›‹8!@Ηψͺ·ΰ@«œω‘f(G•άΊ„²άp~΄πsΤV‡u_΅ι05Ϋ¬w*<©•Ž1"ό§σΖkCTΦtύΤ\κQΫ‘8S&rΗ°P9cμ+‰-4:‹ψΖ 8Οk/Ά±½ώΜΣ­¦Τυ|ΆvΗ žς9ωQ~ΌϋUcˆΌV3θZAν/— }8ύʟž•Ή₯θzn‹j-μ-·n(ΌξoV'–>δΦ‘£)|Fr©±Ηj~Χυ»F»ΦΦεγa*i6ΚVΥ€<£7 +ξp3]65•Ξ‘m-’"[νύάj‘U=F1Αƒ[;rq’τν\š“αο‹` Xκμ^Ž#ΉP7/ό dzΪTβ—Ίc/xκBζŒγ4δΑ=Φ™Ogα»\r#Q{wψΆkŸn•cJπ&™k|5 σ>§~9š”¦yύΠί*σθ+Jλ^³ŒPfβUΰ€+»oΤτ•>§©έ9ύβZCά.–3\υ+¦ο9\Ϊ4~Ν8l©k-›ΫLžlO•Ξr¬0Gε\‡οe³Ρ4©]h“›)h‡0Ύ=Η£K‰ `Βφγ#œ7cπ-τΝr{eΣνTŸτ›ghΑ;[†Opn°kίdBpΩ?ύzέ`ιuDΚ€žη"žΌ»PΊ―s('˜­ΐ†0=8δώuv/θΛ.G?uΨgλΟ5ΏΖβ€€G^jE_LΦΡ£ [”ΒsΏC>ΣΓϊ]“‰ ΣνγL·ζy«:‚ωv3Jƒ-ω€oώ΅[Lƒ΄v§²«! >^‡=0z֊ +s4gXͺ=Œ‡ 7‘a“Ÿ­^BYyΰŽή•αι;ilεβK)šάξ=ͺυΆ—*bΝ§$Ρ4AN3O#kη!p ΙνοψTPΙΉA郂=*­ό²\±Β€–ζcύΔτϊšτ)κŽ9Y.™΄οι>"Vh£υ+{ι‹.ιύΔ }VMΥΩ€$ΘaξΈϋVo‰¬šχΐ:½Œ1ο’M&X‘Aύο(ΰ~x¦ι:‹ήψ'KΦά†Έko†κζ ^€}EDοpΏΊg\鏨ν[i„žφhe<©\γcβRαW΄νao³oΘΗל“κ+Ϊκq,–Wd™νΘB[«8cŽ€ϊΧ•ΔrTζ£Ήκa‘ν)ςΜτ x¦ΛΔ°Ι;νnΰΒέYL?}nάg>ͺ{8ΰC]Φΰc=8―Τt‘}εήΫά=­όκ.γα£eΉΙCΣ°Ι¨κ1=gTΥVuωd·K΅ΰχά3:sΕwΣΗ§MJJΜη©€¨₯h3ΏΤόG’h3gΉΤ‰b–v ΎluωΏ…G»^7γmwVΧ|aiΔ'XYΪ¬ ₯Ί2Ξ폘žη§Ϋ]\ιΎΠe–ήΩb…>μQfŸ•}X“λυ-o,uDΤuŒά_ΆΩ¦' ΊΎΚ:}jV!Τ\ΓtcGά“χΝB Π|<Θ$ Νσ<‡“,‡ΉυϊzW)q,‘_I Ÿ˜w’ρί»°ΒξωΜσ/έάXώƒϊΤ Z…ˆ„ ε³eŽTϋŽΰΧ%6ή¦°₯Q+£w~^nm ]ΐ1ƒ~jδwˆgš ,L^rOAυ«QΔdw9ԁ$?Δ§Χάz“EΡ‘Τ|Iη°1-žΧvζ*¬;€FMMod—;*Ww‡°ΒO₯xOF4[‘qq©Ai6–™$R}ΰ8\ΰυ5Ολ*Τuk9μν΄u²Ά™|·’ζη.žFΤR9c=λOΎˆ™β–1mfΰrYΙηy=XΗπ¬­gΕΠY1†έLӎ6/D?νΤΦ37ΛM,5:kžlέ„γ^VςΟK·ΚΨ ©ηŠγΌyγk‹ν%μn ‚K…ω‘ΰb¦&'ροŠεu jφζϋν/qŒ’€Eς¨φΟzŠΒ{β>'ύ.νšbzΜδΧ‘JksU‘Κ€£& Ο§"πτ^πhφ*?Π-TŒΎθw³}Y·Ζ€Ά'Ά†xΘΫ,k"γΡ†k}δ+,‡…rz6κοGbΪ·›nAΟΛωEnτ‰’ΦFŽνΌv¨epΉ%Β€3“ΡG©φ©ρσ:ζ°₯ν{©-Π±°Ά}³sώΊOωζχGzΦΖ‰\”ΤG›0cl3δ£ϋGۊ²]rp»{`tŠΈΨ΅"Œg€ξ{TsN°Ζdb@tΟ>”†EQ’JΙnΐwͺρ΄ΛφΉμκP ϊŸs^δ’ΉͺΙcŽi$(’BǎλκiMΊ3nU(ή_”ώ”©&gXχc©ηιSΖyιŸ₯b€Φ¦Κ)£Ξή'Χ.τk»»₯·ν@%J­Œξ px"ΊXcŽΨGkoE㠏―­cψ‡OΌΉ²³ΏΣW†žΑνΑι&~τmμÏ*ξ‘«ΓͺιΛ}ePŒ]\|ρ²πΚΓΤŠϊΊΌgNΟsΓΜ©T„Τ–Ζ&‡΅΄Ζ»sΝΜς\1κI.@΄dB —αΞGπϋZ‘αΔΗ†΄Χ|©ά=·sυΑ«δym΄gŽΥπψΪͺ₯Vj τ“ΞZ£¬[³XΣύm³yρύW¨όFjθ|·<ye‚xθqXR‘O™Ψ‰]&‰]ΚκyμFj)­’Ί%E~G,3Š­¦ζίO† ƒ΅αwˆΧŽ>•bφ³iΧW1εBΜμqΕuτ+ΉOΐΊ"KαvΌΆa ζκv€ί0Œ0ξ?ΥΤX^‹—x&Cά8σ!n«οžΰφ4x6ΘιώΣaΗ+n›Ύ§“ϊš»ͺιbωx[Ι½‡˜eτ?έoU=1_W*z±«ik±2ΐΟλœ=jŽ—}φΫ@ξ¦9‘ΌΉ£n¨γ¨ ΏΕ(…Hdh•·΅K€:φη™{RdΦΊbŒ$qπΐ–W—šc(hm¦σ!VTƒ ~"³ο΄έΦΚKΛ•ާ‰mέ’`sΐq“Z>*ΈKΦ,οΒG-ΌΉ#<―ΜΏ'ύ B–νΰΥυueΨwΪZΙ!ΟΜν β•6λIž„ZTbŽoμΊΥΉΌCsxžšSζHΝΆιPΰ(Έ |±·¨δw―V·Šή8Ν#KuQε¬`mU<€₯Vuσ,ƒ*ό0nAδQ\šO7€ξΚείΒΞϋT±άtΦ'€ΗΌ$ηψ3]”ε΄8kΠλΈΖ=ιSd•‘°*Ψ#θzTEj݌ικˆΘΑΘυ¬=sF–bšƒˆuH8ΫξΊχύTώ†·ΆΠ ƒ“ωT6j‘• kpλVΜv4P7—so'ί‰ψΘ>ή‡Έ­ΕQߝqώ(²Ή.“Ε:TeηΆP·–γ­ΕΎFG»/P}±]$:ζœΪ*κm…,ό―4ΚηεUΖrOoς*αi+ŠW40ͺΉcŽž•Ζ^kϊ‡Š&}7ΒlVΤΞ΅³1F9aύkφέχG½"ΓγΗέt'΄πΑε-ŽR[ρΨɎV>α;χ­ωu­+FΈL·Ϊ· -΄σύΥ(§-32Q³Τδ5ϋ ό<π¬²Ol—r1$Ώ<·1άέzς[°©4}Ψψ[Nρ^› ΝͺO W³[oo.XδPΝ'iό§Τ{ךψŠηRρ_Œ.nŒ4ΎkZY[?πΉικyc^₯ks©ψgΒn…jŸjΏ΅ΆEσ2#=©t}+–P…ζώ#ΎΎN1Œ~#'β 姈­ό)«XJ­—m–ϋΘ]3΅‡b τ¦ π….ζ±Ω-ΒκQ5Λ‚εά6"`}FZ(,mΌ^l|co½p{ετ JσEΥ†u©šW— ΗϋLc+Σ@8χΖk6­°s]y495!ΑΘόκŽ₯ͺΩhΦOw}q1'Ÿ >˜κIτΤ7‘H‡\νu*ζΒρ7Ε*m8ϋΓΈ#ά=ˆΓή8Φ―’o Cάx‚ΡŒoxψ0Ζ•€κHΖ@οι[ ΊΏ‹N'[;Eoωv[‹•¦Œ?Υ‘ώθ䎡.£α›qom6‘:uν“fΪHΣ 2ep9d`0 xjN7ζؚr­Ν#ΒΠiχCQΌο΅R0χ³ύυf1ΡžΥΆ±€‘G :VW‡uΡ¬ΩΊΝ[ί[8ŠκέΞZ'ΐόΤυΈ­+Ύm%‘ΓMI;Haβ£`{T₯yΙΦΐεŽκk–r:β†)Θχͺ·ϊ…¦™i-ΕεΔpΕΛΌ‡ ŸZΚΦ|UŸtšm…Ό—ϊ€™ΩiΑ^:ΘΗ„_­AkαI―/Pρ$ι}tŒ(Ρ­’)ϋηŸΌΥ Κ[%˹΁¬ψšκβ]άiZUΔΎa»™?{/o*Β»λh!΅·Žή–(γT\ VŒ΄{›»[}gKMΪΆ˜Ζ{tž γΜ‰½GζihZ΅Ά»£Ϋκro†d€žF{prΈZ°|κ] U- ƒ“Ν8F­‘ υΗGRΥl4{6ΊΤ/!Ά…zΙ3aAτχ>Γ&ΉΡβ{Δ’ψvΔYΨ·MSTBX ϋομ[Ϊ΅Œ\΄FS’KR΅ε·„ Π΄yΝίΩ³“ypΖYυ.ωΗΰ+ `‰ƒ)RGώu›s¨ωŒ|§*ƒΗ½b_ΟmM$*(ϋΞNό«ŠxΊP—*Τμ„%$m]λYn‚σά+ΡΗό<ρ“ΠV=έΥΥΨ&κ]ƒ΄1·z1κΥ˟Xnx4Έe»ΓΛΰrxΙͺw β-aΚ4ƒN·ςΝeϊ3c ¬jTΔβ6χ ‘N-Ξ’σ\ΣtΈ—Νš;uΐ9ΟΠrkœ»ρ…νΦF•§Κ ω·@Z‹FVΟS ,8œ39άΗρ5―&›i'Ω΄ο)6@Ήΐηgχsοόͺα…£ΟPU+MO’‘ΝΨΫ_x’E›PΉ˜ι„ ·Ξυ,Gπη΅O iQιu9cŠλMσ`‘”―ϊdΧQq¬i6Δ³M!p6’(=+WΎycβΫ(.%²ηjΈςπ¦–ϋsχρ•9ν]QœgNP§š qΔ^gl–qFAΘΗQά¨kWρn‘¦ά½¬3Ήσ·Θ…LŽ‘ΕlEαk½n“YΤ,Ξqcfve{y’™²1œ`V½Ά₯h¨©§ΩΓlh†ά~=kΓ«Fz•++Ωeœ-ΥνΡc†-.xk‡L·Κσ5£mπλM,Ί­ΥΥτ„όήt˜_Ιk«·o1άFή€ γŽυ“βM*Φsm Γή^Ž–φe}ތ@ξkZ5}¬/MΚ£‚ε*\išhΏM>ΖΚή;["³I΅R>UχΗSψV‹#7FδN3­dιO―]Ϊ―Ω4Έ­ 3<—7Σ«±bO;r}³Z1ψ9n@}fϊβ'˜Oξ‘Η¦Εκ>¦’ΆΎ"₯ω΄FjEΣx‡IΆœΫ΅ΩΊΈU‚4‘OŠ}rμg£­œ}MJPHχ1¦Iϊ+¬΄­,bΪΫΕn‹Ρ!@€~UcΘc§Ύ:We<Ά’Z«œξ₯φ8Γαy§_3ZΦoο?ΌTaj’¦>§ŠέΣό5£ιϋd΅Σ­£“―™·sύwœΥ·}°œό!‡4―'φl˜dNž|“Ÿβdφ=«ͺœ-tžvΛK ‚:TΘΈβ€Α*U\sZΖβζ»y¬Ÿΐλfš” LΦΟϋɐό«d`ΠYvΛ?„τ#ΎkDΙzΰtš$’#˜ΩC©dŒŠ’Eέm ι‘Xš }‰ξ΄y²|ΔO; ~Pϋΰ’+wx^ΰTς²ΉŠ—Ήϋ%Ρα Ιμ‘όXŒuφ¨5 ![ bžU‰ ξ~τ?aCβ½=¬βΔν=ΖΡΎ8#iaΑΞ8₯IGr5‘Σd-œfΙœ“Θόρ\Ζ½©L ΪΪ dﺐDώ¦ͺ“5Μaξoξη-ΟΙ'–£π\V±΄)­Y*”[Ι³ΌG Ν•‹PŒ[ΙΑβUϋυ#"΄Eό‹’-do\°~ΗήΩΓqi$HJΘ@))bJ89VΙ>΅>Ÿ¨&£b’Κ€KχeF?vAΓd}yόk’•9&βΆ5P’V7ˆE€χ1.Ω‹ε(`Ή―>΅κ6E +s™,eu;‹zžy¬ζ™PDPdP1QΝ}Ί“-ΒGŽ₯œ }kZyœο€ TyŽΫKΧ Ή‚ Ξ¦DΒΚ‘NGΤ{Χ α{“€μό5€½Ύ£w¦Ο+|Ε)·ώ{Jυ¬‹Οh0J·°ΌΑ°‰-&οN?­bιž%›G“SžζΒQ Τπωn–fTQΈ“ίoQΠΧ]JӜ;2=8ύ£΅Υlΰ6²KmqΟΞ01ΈŽH>€σψΤ–§OXk;x#‘·Ήυ=s\}χ‰΅»€+i£ω(GΛ%ΜλΣΧ©¬ν/SΧ$ΈΈ°kˆ­Ϊ2$SvΥoLϋ׏O‰Šn£+SnΡ=§O0±`πΏΦ³.E„·`ά€L@r ΪbEr¬͜`Νͺά›Bv³€‘’'ԁΠϊφͺ0ψr˜Yά;r₯ά‘žΏ?<ζͺ†_9ΛΪs…lT(΅s―ΈΥό?₯ž5ˆ"=ΠΉoΠf±uZ9Y,-ξΜ\‰^Z ξ2έEE§XΩ”kxμα΅Ί‡‰cP2§Χ=ΑμhΤtΡ<Φϊr·ΝpΫOϋ1υcύ?ξφTΰ― –>€šP"Ά–λY½‚ςχΜσ–Ά·vF9°8$ϊ֞ΐΒUΘΟΜ¬8όk^}6 b $c Œ}ΐ:j„ΦOΜςBOρrPϋϊεX<\e14yΪ¨cθΞφZβιj­-£01η“ΰϊ―₯tšξ˜nβϋM¨ΫynŒϊœηiφ4ί ΫΔΒώž@™μωΏ2kyQži.Π:ΗqJ5/ΉΣMιc‰½–ΟPΡ—TpAŽ"λ 8eaΥOγΖ+gΓφ‡OΠ`’fύλƒ,€ςw·$SΠVUεŠΕβY4­€ZέL·h˜ΰ6˜Ÿ˜Ξ*Ζ§­y2‹[g 9ΰ³t…{±χτ,M9NΤιϊŽΪ·2-i²Εl]‘ΈΆω~ΥύΓή3ύΰ{ϊW0l₯Τ"eŠ$·ΎΆ;f\χΟpO ΦΫkϊ>’«n·‘|½—η'뎦°uCw,sι\ ΈΏΥΚρνu²~`kΡΒJqχZΠε“»ΠΜΌ°»ΡνΌΛˆcrΟ$τύkoΓΊS—Σ­1qu¨A»‘ήώJ¦³΄ζρ6«l³Εε¬t‹Ž7ΐχηšν| ]ψηKSχmβ–δFΫ΄θF½*Σr²&œΌΟy‘ώστο\߈±l–:Ϊ2βΫδΈδ˜\ΩϊΞ·ξΛi؍ˆ?…dΙx‘ι fά°ωΝ2Ϊ’ͺΈω·zΌΧD59›³35έFh-aΆ² ί^&Ωr2d>ΐsωS­¬"Σ­"΅€°HΎPOR{“ξNMs£ο-ϊΪjWqΔ ΅‰Š qoŸΌrx-ό€­ίν+™Eθ·: ~«…Žˆν‘qˆXΛ4‰€IνEQi%—!νnFp“₯i£D™<—/ *ιW1η;”δg‘ΣΧY³RΑœΕ"πΡ8!—ې2.»|]N~UΪαήͺάΩΜdfšβI$ύdœΈόkε«γ(is’8YXθcΏΉ–X-τΛ–Fb‹Έ„-‘Ψ5>Mu-Qώίkydε€@ΐϊTœ“ΪΉ)ζΥ¬ζ‚X΅{°±°r%>`@λžή΅θΊΌΊ³G­_/ˌYΒWξ―#Μ#ϋΝΫΠWfTq戀§B>ρVΚyfWv€ƒ'ˈͺβ0{ž~ρ•SΥτΫ«uΥ΅ ήHήκίΫ»ήaœc£νόλ΄ ŽœR£―½ sP,NiΪ§ΔyŸβ+[}Β6²½Ž4΅DžVυ(ώι5e5ύ2eΚ_CύζΪGΤk¬·ˆiχoi lω– ~eόωn[X'9žw@ΥγO(‘'~cgŠQ•ΉN=/μδϋ·–ηώΪ d·‚RΆπH‚Y:œέ¦3“]φU‰ΰYΫHDΏαX°΄ΊΆΊžkhœ½Τ©σ 8U%@ϊqJLWΪ4UΧς•QΰQΘƒ¬ $žI5GZΉQ₯\ 8-—ωœWVϊ.šίzΖίυΜqU‡4ΓsK(W Ε—8Η8ζ£ϋ".jNeͺλωNƒOh’Ζ’`B*¨ΑΟAV9ιΠt5‡/‡4‹‚Yμa OήEΪ1QΒ-lΏρο¨ΐ;Ήb?"kٟ3VG"CηScβ“…Šύ|·ΟE™z©¨ewλXZ‡‡§{z₯τ——u;]9§αU Ό΅M2-Nαζ•ž5o™‹Δ}Υ_\τ«§MΖΣ$τ:Fiˆ&8 ³8ςΕU“Sϋ9=λl'sGπœw"±.ν'–έξ΅νFkK4δΩE9Pƒ·˜γ–>ΐρΉΏμ{O2­ΎŸ€¦Y―ξAV“Τ’>½j#YJV€8ςόEΘ―cρ/‹,urtΫkœAk*αƒm#Μu=3ž=+ΠBΰι^l·ιs‘­ωPΔ-υmΡ£\ Gͺ‘ΟΆ+Tƒ#¨ϊ•2ψVÈΟZd± !hXn²7 ƒΤЏjS†)5¦…ΕΨβb’\•ΛΙα†pͺΞw9‰ΰ1κa'‘ώΧs¬±‰# «`‘T/ΝΔγtmΑ†ArθG΅rI/ΓϋΏ-ΛΙα‰*;ΗNbp¦τ?Αžx­)Τζχ^δNΥΠ\Τ«΅%»,‘¬ˆAVΔf«λ:Ν‡‡΄©u-BΰG |p7cΡTwcΨJΥΒΖɌաk=M›Q½‘c†0sΖI'’έ@+†πΗ„―u+©W‚Hτ˜[-1ά‡'pσGρ79 ΘZ¬χΣέkV:ηŠ‡“l·+­Žw BόΓ£HΐςέΊ+³—XΈksύ›§<ρϋي¦ztQΧρ¬δγI]ξi;]?>"Ωx?L6yŽmVDp8·RGΞΨΑΟp=²k~κ;OiZΨυaσΜywά.ΗΉδšπ»ί Οβ W•εe˜άΙ4Ž8lΏ˜ι]Τ"–/ΌwπΘΪ­ŽΑμΧζ’kŠ(C}3ι\ΈŠ΅]+Αk/ΐ꫆Pql<:4θώ'+Hΰ}£J†ώέ3ќ~}pušΌςIGg€ΐ—ɈDOυVQsσώΉκ©ΤρΠVN‡₯ίx{KΣ΄«xγoί1KέH¨u±R ©d *τΟ=ιuΟiή΄ŸAπε³j:γ1’vcŒά™'~ηœνκ}…mΛξ¨oc •œ§teόBΠ(πό·Ν«₯Ξ-5Λ@~Ν;r¬§¬2β‰½:©Ακ©Ύ]ɟ½«:r}j7lŠΒπ׈γΧμάIΪκΝε^ZJ~x$γ ϊƒΥ[‘ΊzΦξ,ΚύƁνY^ ΠνυΝ5 Œl€j•Žj,sL±ΛxŠή}"ϊ/Ψ«-ΧmμcŸ΄[dgκΛΥO±ΦYάΓykΕΌŠρHΡΤπT€Aό©’ν`AΖ@{ϋ~5ηϊf΅w jώΡ­_PžΪτxΑΪ–ρ8ά<Χ9 $Φ‰6„ΉfΞλTΥμ4[6»ΏΊŽ“‚ΟœgӎIφ5ΚO?ˆόW…΅θšCΛIϊdΐuqϋ }O?JΠΣό*ίnMS^»:Ž’§(ϋvΕmνΗ_ΌrMtΥΘζ¦4“Φe©%±Θ6•mΰΛ«;:ŠΖvϋ=ζI$ f<“»ΉυܝܑQιYš­‚κz]Ōως₯B„υΖ{ύAΑό*—…υYo΄Φ‚χεΏ³³ά―ϋjΝτaƒN[ϋ’’Ύ¦α4Μΰζži„f₯²’0•©ΙP%ͺ:ž‡¦iΛτ¬ν\³ρ…mͺΪΘ RΖ¨9(qσ)χ~•‹sγVΎΈ–ΗΒΦΛͺ\ΖΫ$ΈέΆΦάτωδΖύΥΙ5ί%Υιάθο.ν4»ynο.’·Š>^GmͺΏRkΘmTΉ=$O•³οΖk -Α=Η5Νhq₯ž·ΨtXo~Σ=–eSόσEEr¨4εησMcM&?Τήη\ZΎNO=Mdέλ:W†t‘s­ίΗh^YA$ε‰(cAS9rΒμ3Ÿ,M€ω‡L~Υ›κzF‡§›jφkGq0$Iμͺ9 ΉΩ΅λκ#Ρ4γ£Z1ύEΞGͺ[»Ψ‚ηΏJŸLπe₯πΤnŒ·Ϊ‘ϋΧχ²f€δmAΙα@¬i5ξ"‘‚rw™™ikχΦίeπΞ“%–Ÿ+ύcͺ―ϋ™‡Ln5-ΏRώx―†Ήe4τ›Ήί(―u\t6Π@‘Ζˆ‘S…@Uϊ0+[‘}¨K09ΆΌΈPνПqΪ—YΤ Ϊ ‘–iœD„q·=Oΰ3X·šΥ–‘eσ?“+΄όIτ,^#•(SέšΖ›ψ€tj[ΆΩ‚ κ=G­dλΎ%° "φρaΘβ6Ι'πκk–’σ\Χui­₯FΐωlWχ­ςηζ?Β ‹FΡ4α,—w±―Sε™ •Τϊξ>½RSε^Φ\€Έλx?Š5m`ͺii†ˆ1šκ"m#OŒΛC΄Z0κ+ŸΥΌeo¨/φv›ΤςAE°ιξN)Sφp֜Mg?ˆΏ£θ°iΆˆ!ld``&}½j{νkMΡςfΈX±Ξ‚ΧGρ.±>S£Ϋα!dœδΏŽMmιώΡ΄{…ΈKA,γ“<δΘΰϊδΦ3―oκtͺ΄©ϋ‰Ϊυ^Η.‰¦ά.Χ\Oϋ¨ΐχΘηπ­«Ο23kz­Ε̎rΡΔ|ΈΗ·,>΅Ϋ …3뚭¨λ:VŠ»΅+ψmΙθ²gqϊ/Sψ ζX™Ο݊9ͺΚmά₯aα]Le’-6Υz9L‘ψšΡΤ¬γΤ΄[­9cW‰ (λΧδ#‘νΗεΦ²[Υυ3]€D|·Z«Σκ#v:β¦·πνώΩ·ͺ?όJτΆ·„Ÿ–ζόμ_¨οωT>)Ρl|+q§x³M°ŠlG1 ½£•Vl`’ΘΫ\Lη]ίΚκ][8;”δŒδΰη4η—φ—’½Κž%«Xγ‘πPΉPΪζ‘u¨?4?κ`Σb`‘υ&Ί+M2ΟOƒΘ³ΆŠΪ 0#…/δ:ΥμipxxWeΖ#*’”Œ]6ι–λΠ¨+τΑ"΄φŒU Υ—Ÿ’βUη·ΜkK8’)Ε„δˆ€Λb—hSޚ]DΰxdΏZTΗγD“Έ+XΟ½=R͏Ο/–ωΤΥζΪρmp9 ‘τ5β+˜ντΆ˜Θ‘–9”·gτΝK>·§ΗΐΈΗj#1§F;“>e°Ε˜θ· ’tη`±»˜ ώ=ΧΠφ­₯qŠεξ΅>9"7 3{皑§jښ,šo› r[ύΙ$>aςέΟ«•Ο˜ΘΆjΓxW@’Ϊ?/LΆͺ\Έγ₯uΞ3© EœΌΠ§¬ΞLj#OΉ[¨νŽS†P nCŒŽ?O₯u6WΦzŒK%œ±6ξέ>„u±ψkG‰†έ:/ψ[™«OgkΏξ­bFQ‘΅ΕUR¦}€ΐFΐŒŽžΌΡS>ΐΉΆh­Ρw9KΝ:;ΔRE:s§·±υ²γqs+ΑqˆPνxΫ¨>Ήτ=«Fy€…Ύ@zw¬B!w*άn+:‘†ΟθkγjΈI•(;ŒςΣRΏΣ4‡oί]0s5 ΌF+Φc@¨‘FΠ£0; ς­Ηύ΅¦ά0i5…Ξz…Ua¦3^°₯v―Μ:zΧ³•ΣJއ>Oڌ-Ιυ¦“K&:διPοΑ8 ΰŒΧu™Ν$ροLυe;—ϊΣžQη&#яo­KΌzτδΣ Ηπ‚p₯KԟpE xšη<"…Ό-i!ΰΜoΕ€cό±Wυ«±h”ΚOξνŸo³σ©4{ai ιΆΐcΚ΅‰~Ÿ/ψА= ˜`ŒρΘΝEmσK#ηώZ6?•YqΉJτΟCιU4ΙKۍ٠ŒUσΨΣ]ΛΨβ“843`Swg­Τvoρ‚+…Π΅$™gΣη’ΪκyrI§oJμ₯ž;xήi$HγŒgs€ͺ:“νŠσ]κ—:’λ:}ΗΩZξY’ p'F~aΤΌJUμαfΚ£u+£n8SΔ±~Ν4HμRΘ)+o†ώ!έ†9ΟJ/₯oYΊΦ·?ιW’εΰΛ8ς8»wθ*½Μp\M#άxc]2ɏ2/΄B‘Θ{oω†~½ΕjΫθ“]άΫΟͺΕj#ύNŠFx jL|¬ΐtΕBδŒy`B„ε;±Ί=§φŒ«¨Λj!²\¦ŸbΘ# /˜Λؐ8ϊΥ€»—Γ—?e½0ΆΘnηΘμCιθ ΪD!pX³–cΖOӜρ$ρ΄(hίεenA„w§ iΛ#f΅'\2†Sy§ŠδγΈ›Β7o ΜςhEφΗ3ςlΞpžρη£zλ–T γ|½Q;=E·;£ƒ“IqsΔΠʊρ°*Κγ ƒΤά{S΄υέi$wλυͺZώΏ§ψnΕno$bξΫ!Š5έ$ΟύΤ^ητλžtδέΡ^ۜ·φ”Ÿ _c™ό8ηl*ŸΌ–ΚC,g.„ύήλΠρWtm#Qρ’Ίη‰C+GŸ°Ψ·+f‡ψfŽ­Ϋ ¨τ} σVΤ]ρ m¬~όvjFƒΛ~U£βοKαο O&—o’6[xΧ$•‘ˆ 1λή½:w…5*›œŸ<νLζ>&ψΛLc΄Ρτψ#Έ{+«{›¬.R2’) ίή$‘ΪΆ5‘α}Cμ“ΝynDPO#ρlΝ‚Ι<)ΙΪ}°kΝ4\ή^Ϊ=άwΧx’vŸΉ''<œ“ΝtšέΔΙ’λΚ=ζ₯Χφm₯έοrT¬‘6ήγΛ#'°ζβ*IΒ3QζΌΎγΣφ₯(¨ΜάΣ.ΓΕή(±“JΎšέξ"»Yb…JΗζD»·#)Ÿ₯Iα= o[Ίρ…΄o]Ώ—g<ΔξŽP†U<ΗηψWλ\…ώΩ>k.ΆΪeΛ4ΉσΌΙ$EE?b2z½yQΆΊ?xέο$—BπΌ’ΪΪ܈ο5H€ nΏσΞπ_Άξ‹ž2k‘έh™ŒΫ›Ίβ―ύ•$π煐 Ș5έβγC©%YHΞn¦Έk_ :?ν‹ΛV}βlΙ$²΄’¦OϊΩ?½=ϊσž•άψ{ΑΦ’Ϊqjb³:ΫHŞRyέ!χ<ΰς{ϊWlcWR˜O#ŒzcΣΪ…;j‡lW°[u±€ZμˆΧ`L`.8Ζ;UΞ•Β9“αύλ²o I&rNšΔŒgΉ„œγϋ™τΦ9RhΦXœ26 φ b—-΅§t<žy¦0ω³οN#8₯Ϋί δΤΛRoΨδ|G’^Gwˆ΄%Ϋˏ(π.βΘΜ/λΣε=]‹ΖZKxY|@% Βn‘dιε•ώώξ1ύ)uίΨι%Љ.΅)†a°·RfsΩWύ£X:ƒ€M^ηΔΐŒ^\Iζ₯¬LVνŒτyκΨγ΅i r«#4œŸΌ&œ[ΖΊ„ιβG{am/ό‹ξvͺŒό―3υΉΞΠxύbŽ5UEUΨ6¨£ΠΠW)―hFφ(ο,ζϋ.©lΫ­ξ1=UΗρ!~5{Γ~#ώΨ†[{Έ§jΑ.­œε£o\·Unγι[Qš{nEXXάqΗγM`@ιRqώπ€ΰœά洨›1ƒDA}j₯ννΆ›hχWsGH2ξη ΏZ­­x’ΗDΗ1wΊ“ˆmbMΚ{mžύfYiWzΤz§ˆL¨ΩΆ±Ξθ­G«vy9κzviJΗD"ΩBξλĞ%΅s₯±τφΘYfΈ™yϋ£»SοΝ[ψ} ”zΡE‘uΕ.’s—Y8Ξβy9ΰƒ[¬0ωŽδž΅ΟkqI’ίΒMf ςίΔΏςΪ2Δwdκ=²+(ΤηVf“£u‘֞ 0Aƒ΅΄EA}e§c5•ΜBX%Bއ£)κ*Ξ9₯sRΡG'αmFγNΎ—Βϊ¬­%Νͺ‡΄Έ~·όO«.BŸ¦k±Νψ·C“S΄ŠχO;5['σ­ΆόŒ‘eΐΑJΠπξ΅ˆ4K}BT8Γ£pΡΈαΠϋ†Θ­iΎdg?ušΨ¨,G Έ©ΐ¦²iΛα%3΅Cαo=‘ΚιΊΣ™-‡πΕtޞΑΗΜ¨8΄¨θ+?Δz4zζ-‘E)ΪπN1J€qξύMsΦ_τίμ«h₯ρf퐼ώrπΓ Ι `Φ,€μΞΗgΜΟΠ šευΩ­ΜΊn…m>±©&G“eχba=%?"σΫ“Qbλ>%Ğ#Ή{==σ«#xτšuω˜²ΈΡΩΨXιΆΡ[XΫΓ (>H"c_} sUO)λ2g]GDyž‰αK›kUΣ5Ϋ©>Νk:]­Ζ Δΐ7Μΰ+H2HΗb½:8- ŽΦήΩ!†1„* φ\φ₯φot»°HŽϊΣε'ϋγ„ύpEt‘Θ Œ―­t΅μέ‘­' ΣΏRyςΉ€μ)€εΆσΦ¦R•Ω‹χLzΕ―4έπ.ν\][7uuδώc"΄,ξςΚ˜ΗΛ"Σ=ͺΒ¦Φv=M`Ο©ιžΌΝZτZD²ΊΓΌ\$QΛ 5Q’‚»9ͺET6ς0IυΙkΪΆ•α[_ή_¬fξ³ΙfΙ;‘Κ2 δϊzsUήϋŞ(mΆaό;₯ωhθώe>‹‚!=ςΥ£€ψ?IΡM’ύ­ά3ήJ|ΩΨϊ™'ςΕ»—ΐ:X6Ÿο Ω/‹£ή δ΅σﳟΆέΉš|ϊξl€~€VςͺB»#Pτ¨^αwm @ϊγ5Ε:ΌΊΤΤτ•%!©sj ;Fάuβ¨έ^΄YŽ ZO~}MT»Ό‚Ϊ7yeDDfvωPz“\MŽDΑ£ΠνΪx”ΰήΙ”NqHΛώΦκOέ£((ϋΣ;6˜D27³w'ΉcUρΝ΅΄ΖΟNGΏΎl‹ξΖΫsΐ¬k]"Δ6ž~±¨M"Ήm±F|ΈΤgZΫƒΓΙ cɎΪΦ%*ŽαŽMc όυ€o¬•ιœUυΖ·¨jQKyvΞώj„ŽέΚ$|φ“υ“Hπ“ύ₯u ^U–αyBληΥ½ϋTΧΪ†ƒ ¨σn£Šδ8lΈΛΛϊS­ξ|I―ύŸ`Φvν{ζQωγŠ·W•ή”Jφ)Cš€΅&Τnμt½SOέ"f!έώꍧ’k:ζοQρΑό3§»μ8]FsεCτΉ~ΏaΰK{ˆ―uY₯Τ―U· .@؟ξΖ>QΧήΊ΄P *€6ρΟjΖ­XI§-IUU½Σ…³ψrΧAeρ6£%ρ?e‹χp―Χ-]U–—c§D°ιΦ°ΫF½!΄ ›UΥ΄νίΞΤγ·Sχ|άδŸaԟ₯a6΅―kN™φ ^ΊΤΙ«ωoΌEeR5k.ZdΉΩϋΖμσΓiΛuq§,ς*ύOJΐoΑ|Ν‡¬nuy€π―—?νHόcιš}―ƒν§š;½jiυk•9μών?݈|£υšhβED\*ύΥΐ}ΰVΤ°+ώ^;˜ΚqzΔζF“β]Pν-]tψŽAƒJ\±†fηώω΄tΏ i:Lžu­’ ‚rg™%?WlšέXρJA»©„4‚3η”…Žτ©γ@Zlcq”ζιŠι€€τ$Έ΄‚ϊk;ΘόΛyΡ£’3όJΐ†‘5Κx{ˆΌ=.‰~εοt;—Σ]ˆΖψΠƒcΠΖΓξΧXΘγžύλmΊ?ΕeB °ς Ÿτ»o™wƒ1)ΥNΧFjΝΨμ3ŽH€σ1ν‚ E#―'8œη₯QmBά"—{<Ύ>΅Νν"†H―€ΜηQ„œΌv=Žυ£PΧRΪckmάήc>Lg=ݏ ?ZΓ—^κ_d2[£ά°’wQΗΚU_\޽ͺXR XΆB»w37,ΔχcάΧ# ZGsXRΉa!»Ί•eΏ»g ρ±){g«S'½0ΪΨνF^$•—δΫΔίΚ¨jZŒvπ=ΰ€6η}‘Aκk_hπ/“§y·a2ΫΔΔ~gΖ³uλN7¬£ kή: ,mLr™M3.k½Ώ π? X'ΔJͺ~V1Θο\6£βνu i!΄΅΄ˆ:©iΫΜdγ$?˜ϊ~«|»΅Rβbά•GTπ ©ŽΆυƒ―jŽ£Rρ—a'—s©ΪΒγψςߐζ°eρ$—:„3ιΊMμΛΪdp#WSΤsωΥM#I΅΄ΊΉU·HφsŒž}ώ΅Έ#^ ιΣ+§ΨP‹5₯M{TVž$Υ&hh4¨Χ†R“ωc5JγAΈ`ς\\ίjvΑŽθή_™}NΡ€ΓΫ΅uJ­›4Έσ’;νφχ«ΦΆ+mm³απ’{ž:֝h/vΦT'%cг†ΛΘcXΡ΄c~Ύ†Ÿy§£lmˆΫ»nκAΘ?oλš~gFξβ :N’iΐοχ«Ÿ‡Δφ3+‹ͺJ§ 4Ν=₯ρ`vΊΣq΄OŸ«« Χ‹Ή%€ΖκΖhο€Yνw2œ}ΰ:ώ=iΠΨ2ZFeεϊ‡=εYΦ£X“Ε_kM[€Ρ€ΪΣ ŠTq#"|Ω+rM']Έ|άkπ[q–]?NΞ=·9?ΚΌΚςδ•εPφ‘Gžަf­c,ϊ{|_Ό‹ΊΓŸΦŸΪRΪΗ5νυΊ>ΠY]†c>„v5ΎšξιmοumNδ?%d›j…υ OρO--t‘ec6œΜžX$Ζx-κJυ¬Σ£6“™·Υ'ΙvŒ«hqBΠ[NoAΘ ‘“Χ±'­GˆΞ‡¦DΛ‘έΓMΈ4ŽΟ~υŸ Ά Έ•cUwu3œΧ[ hοβYΦP·IŒζήήAΜν=tvUHQ’Ή€΄υ5tδ‘οΟR°Υόe¨F–¦ι€ς>Ω1’@>€c&š<#―ί#M―ψ’ςŠYΝΆ#E^½–Ίτ΄>ΘΣ›v«7&#ΩXχ_CΪ’πύu± ˜•ΤΞIαW9Ϊ~¦₯cγkΰgυj]QΛiή²ΈΣίνΏh”ά&Υ{™ZF…?‡<7zπޏgfŽZΤ aςm·ΓΌ9όλ­*’ΐ χ+ρΗW΅Ί*ΑφIw csοΤW‘O^½IFrά΅hΎX–€³…Π£B¬]Γ9υŠ hg9}$Ή›“mΞοTτ=«€‹.@9Σή’΄U’ΟΛ8e%‘Œž gGFω΅CmξIlΛ$JΘr€9ΞιOhŠΑ·“ώΛΡoœir0T,sφf?ΒOχoJι‰γ•Αjμtβxƒ™¦R‡ζ8+χIτ€˜ͺ©mά ±,—yΘ+Ξ}*©!Ι ">R SοYΤΏ%μR“±™d·L%I W~I=χXw«΅Γa<ΤΛ©e'=δβŸ{«išy+q¨ΫDΓψ 徘57‰4››i ’μ(Sǐۿ?*γ£G{% ”ΡΤύš+ˆ•€Cγο†ˆ¨^ ψNθ.Ω—°”n#ρλXz7Šε}.έn΄}qΡΆΫRωμ^γ}υ­nd+eα›˜@Χ“€`}G'π―J¦ εc/hξ>ϊ ΝBΞtΈ$HW+Η—•ύEsvP‹=]eY<τσ€-–bOn{“Εo=Šco1΄ 6Eηao¨`’υ$οP=y&±4Qύ«gΣΓ*ΨΩ;½ΌT7Lu?:κT₯J€Ξ‡Z2ctύ%Rώ}E»”νςάdD£ξ©Ψώ΄ζΕΊ 4ύ•ˆϋŠrŸŠηωV…•ΣέΨήj‘άFΖWά#ϋ9.’ρΤησ;›pν }νΪ{ }x­ο5Ί;‘μ§JΗΛ¨Aγ-6ΧP„ˆΔήXμkΌ)j$ρRHή՝ί$–k‡ΥJΛβ}αh…ΩA²,¨*~Sν^™ΰΨ6έj{IUq  ωτΘ{υbΟ΄U5$u£DΡΘͺc'ζ 21ί#½s23ψ%Υ$Ιαηp±»œ›H\χŒ“ΑώσΕtσΙJΕδT©s€΅ΛxΏΔΦφήΈΆΣγŠψάζΝP.τ.ά}} οrqg΄VgDNα•―£-Ε± ρΟc.Y…Α Θo_Β΄Zˆ"ωεU¬©¬%Τ/ ΪtΖήςΜ€—#•RzΖΌ9ΊυLaSλN“‡ΈEhJ’ζr6΄SΖ1όλη§^i]K Ζγ5)υ½[Hš4Σν)JαZΰ³ΈΘ=@Η8«Px¬€μ=`Ο„–5Em„ u Πφ5Š!mνŽ–[”$‘lIΠ§πΤχztw ·6ς{„W2@τaŸ™MBΕΝJά€<zsgΕSŸψG΅ϋφœγΥ^ίΔ† Φi4mF4Ί!Bζ2|ί¦ξβ³—TšΦeΆΤΤA)8Yq˜€ό{­I­HΙ₯IsΓΐVt=ΑBς₯υŠœΫπ|ͺχ6›Ε &]#[DξfήΧš!ρ†‡4αŽOωη$N―|‘šκ#Pc\|ͺ@o¦F­r'žm^ϊιj―"ξ’v]ΒΚ#-ύ£ΡWΉη ₯)7ΚpFq{•δoψNuV²…Khvn>ΨH \Κ9ϋ’œυ8XπωΝ枊9xφαOΰ+‘t‹=L‡O²‹Λ†!€:ŸRIξΔδ“κjΛ ΅Όι)SεeΣ¬βξŽOKšΪξ:(γŽxΞ:Ρ·£fΆ :”eΨλχ‡Ώ―γTυmŒηRΣ\Cz:ξϋ’ξΈώ½ͺ=:ώ=CxΠ^۝·ς}δυΟ¨=zσ)Π–›nJͺΏSeAΝ<―CοIn@qΦ₯Ϋ]Φζ9φ,π₯PΡΉ`Κά‚rξ+•Νΰ{ψγ˜<ž‘‚€‡ζ6$ŸΊΗ©Πk³~Aυ¬k ¦iιg {¨_“”œ‰XrYύ#^¬υ1“O”MN:‰©ψ…t{hν,"šΛ»YΒ εη™doαŒg―~‚ͺψoΓ}Yυ^α΅ DŒ=ά‹ώδJxEφϊΦ/‚ό=·ΪmžiTI|½FαΈvθΐ¨<Αω{­t>8½}ΐ—qιΜmšFKxίq8ݟ^΅Χ œ»|›œγJζw‰~ ZGXψC@™MυεΒ[Mwχ’Π·aΩ€8ϊ―xζΦΫIπt2Cϋ>Ÿuotΰœ–E Xž€†&Ό“DπΏύ£¦ήˆbΆ’ˆ! &β\Λ‘οΦ½^ρ>"ψkvλϋ”ΌΣΌΙ%”όγO³r@šη©RΠε½άŽ©a½HΏ³θΧΦ–κZ]☠±™δ[Ι1y_ζnΔgρι֏YΙͺίx¦Xš ΝDŠI±ΊΜϊi ›Π* ?JΉρ'ΩηΥbϋ'‡-v:ΪN1-τ€ ²N?"·ζ™«k—ώ%ΤεΠ<1'"l^_΅mAκώ)O@N§ΫެͺT~Β—Μ* €€ϋœηΔΫΝ?]’ΫΓΊ,*ΣZά,·waHΗ‘‚Γ«œτνωγΊπ·…4ύΞΠ h„± *>πŒγ―»{Τϊ/ƒ΄­"Μ@Άq―?3|έX±δ±ξjΞ‘tΦ³d_6.aβ)90G©ΗQ]q¦¨Σ8•NQΌ™Ί  +0›šk‚iμf#’άΔΠΊ†²0Θ#‚;jβ₯ψ{|±»;ψZW Žη'NbxV=L$žπη»ΘΠ*M2ζΪ»Y-ξQ$‰Τ‡ω €rτΕ @l|L²F²# ¬φcTΧ/u-FMΓΞβ‹Λ›’Σ9Ρε=— κk‘Π.΅»–ΉπΟ†/άhqNc‹[#w•9Š"Φ09PγωW‘ιU¦§Agg—};ŽO$’y,O$ž΄rίs=cΉ[Eπν–‰ žZ;M9έ<ςςΜΗ©w#'ι΅6Œc°θ*fOz„žqE¬;†άœχΝsΎ Πηžhυ}-Δ½°"'o»*瘀υCΫΠσ]j¦§©Ψhφή_άGK՟8Σ’O`94Ήœ]Ρ’³VdΧαΧ΄ο9U Ή…Ό»›y>ό2ͺίΠχ©xŽσU»—IπΛ£K+=ϋb·'?(ώϋϋtm‘λ&Φ΅g3θzMΒ’½Ί1[«ΕΎ?Υ‚γοb»=:ΒΫI²†ΦΚΪ8"ˆaQΦΊa/h½γ™S„eδsώΣlμ–φM²6­ζ*άά\6霞ycΫ“Œ`bΊ¬qιŽΥΜjύ“βuL‘Œ-ξ‰θck‘ώuξ 2:WEΙW”μz+ Ν4 Έγ?‡γNΗ4bͺQΠQg7€αhhnXiΧL[OvιuhκWۊκΑΈ¬Ν_L‡XΣδ΄”•Ξd_½ŽUΑυU YΉΌ†M.υΌ½VΩΌΉΖ;qϋΑμΐŒRkZrζVfsΡΈ]Œ…C0ΰϊ pSՎ~Hͺ±¨D Jy§aάΘΧτˆ΅}9‘W1N¬»Ε 9V=VπζΆu;V‚νD:©ςξ‘=QΗχOP{ζΆΫƒœW9β2ζ9“]Wώ&VΓξ—1δf&υΞ>SΨΤέ-ΒΧΠιAΙΕ8ŠΟΡ5[]oJ†ώΡ‰ŽAΚ· „pU‡bVŽ)½˜ΐAb zΧ'ο xΣnviΊδƒϋ±^}„Š?1]yqsY^"ΡβΧ4«‹ ‚U]2$_½|ϋ{VJ\’Έεͺ±Έ˜n*Ž­¬iΪ™ΌΤο#·ˆ“8'ΠΛ` Dψ…«jϊ\zf—`.υ΄- ΕΣ Ά°Θ§ivoβΆ―\ΧG₯ψVKΨυ]Zιυ]`ψόp"φ…>μcιΝvΙσμrͺn:HΞΉ½ρЁKO?CcΜ‘Σ&μ?tzœŸ₯YΡ΄ iRΥcIΨΘIrΔ ΫœςΩ#<šθέ§:¬ρό½NTξ**ηl>RΜK»©•—xΞ3Š―,μ‘"±4ηjgψF2Xώ`Ž0 «ΐ5Σ v!rœΟŒm$ŸΓχ3CŸ΄Y콄χ 5Θ­[)RξΪ;ˆ†RdY—ƒ(5q£ή :„lŒπx5Μψ:ζOν β‰4Ιe³žI˜crbxb’Ίκg…―k£§‰<Ζ Υυ½+ΓΆ?lΥοⴃ8V—?1τP2Xϋk˜ίkδΫψ2ΓΞΆέ±΅{Δ)kPv)¦#Π3ŽΥ6—ΰΛk[ŸνMBiu-T›PΌω€υΔkχb^NŠηu€•’ŽίgΞω€Voψ—Δ­εψwNm"ΙΈώΣΥΗ¬vύIθFοZΉ£x.ΓL½ώΤΉ3_jΝΛκ7―ζMŸφ†1ΙQ·Ρc…ξy5JShΨΫΫσΌ[ξΗξίαYΊŠ+š©ͺ’–.»Αmfu‰©'}Mf\λ 2ν³Μƒ#χ„aψώ™?‘ϊEέΖχ^KΜ~Uϊ/A\͌Zα₯‹BΆ{ηψΗΛύXŽ~‚Έž:sχhDΩ·½3§»Ή†(ή[Λ²ΐrΕΫj(ϊ δο|q…a‘ΫIv‰χ₯?,IΞ3“ΙJΝ©―<7zΚLs„‘~Αqƒ]-… «Η$ӟ1:* ~¨½ϊ7^Ρό2ΣAΈΤ$x‡νΞ[r"Ηώˆ½Ζ}οψk£Ω[›– vΒ°fρLV7Ο¦hΆrκSη˜-‡ϊ£θΜxJ½„uΝ|+x‚ώ[+#ΙΣμœg/Sτ«­&­tΑΣJZ”›ΖzfŸk IΫQRΛφx‘,έN:qΝ,:W‹|G2Λurtk3Ȍ’b¨ΖϊΧm₯xLΡ iΦq@ “”1'Տ&―²€jΜν΅WοΓλ\ukrιrύΊ~β9ύΑΊ6‹9Ή†ίΝ½<΅ΝΛy’gΧ'ψ ί‚έσΤγ$Šη¦ρ΅΄ΣIeα»WΦ/Sεo³±Fzeεa΄¦MPΏπΖΏ­iΣK¬κ†wzιΆ`Εl@<£7 !#ŽN3Zύ^₯][±ŒκYZFίtKYΪΪήY5 Ε%DQœ0μOέ‰¬ωn|Y¬l¦l9ΫςΝpGε΄εZΊ5½„:e»iπΗ³ΖR  υσZ8P›ΐ2σΚΩr\Φ‘γ}2m:χOΣMY€ίn"ˆa#sžΗ'₯acͺωc*n η‘έM§|R,–Δ+FGGASοΑ‹¬kzeΈžξε-ϋ#6@'θ:Χ‘κΊθ‚/ ›ψa—M‹)8Œ3Mnpχ\νιΖ+iϊrίy·nσ]g™nΙw_aΨ~Ιυ“­Ο9θM\LiΣΠ΄|kf²iφ——J¬Ηpb‚Orήτ-Η‰5©^8LdHpε±$ŸN˜ΝLΆΚͺΟm`‹ύέΐuϊWGchΦφ0Η(@71?ή<šΞtπτ™j€§œ%χ…>Ξ~έw ΣH7IpήooΚ€†8ˆ‘Uΰ*α]ΜΆk†H?›ΰgs\Ά³.“n†ζ{»{9Ρ ,}ΩCώˆt•xξfίSw΄B¬<ΖΗ½κƒθn"iΠΙω lωGΡΏΩττ«ϊ~ΏnΪU΄.‘©ί:Ζ u·1‘sΤ—~0OιJϊW‹5@ς]\Ϊι– nxΰivχ±ŒΦuͺΉIσ³XΰαRŸ+,iΠ›>}AΙK= uόjέο‰ό;¦] s©[ΟuΌ¨ŽΥZασι…Ο5Ÿ 4itφ‚E»ykΙiλσ@5Ώ’‹ 'Ož$΄‹Nϋ"fβ;uΨ:}쎠ϊΧΧ0“mGRθΒT©{$s­λΊ­όZ~•αφ΄σ†EΖ°Β0£LkΘΟ½\·Ό[}#Γ¬λζΗΚΚ4ZL 1‘3>N1θ+©,ˆ·ϋlΡ„Ήœω…qώ­Oέ_Λ«.‘Ξ~μˆq“ΫΪΉή=Ζκ”?―™Ώ*zΘζτοhv—‹}%˜½Ό~£#]0Η›εΟΎ8­‡±TŒDΜc…έΘιΕ]ΰ‚§£Τ›ΘΣδ•͏©8„ηˆ¨―9S厈ΗΠ4ε{‹ΫΧΪΑίΙ@5ΰώg55ΌfΪκk$ω_4lŠ3Σρ+VΚ8ν­!€ΎZ…Φ ΥmΩνΦζΝΝΎ^>ε‡ρ)υΞ)T„jΖΛ‘%&©‘¦`77=T ³?—³Λ3’B£ζwϋΈτχΟ₯sοάΙh“ΪΘcˆ |Žv‚3Ιυͺ›λ—7­+2ς’FȌœtΝrΖΌRχa±΄iΦκGαύ[ϋ†Έ„›{IΡ ›pςΛλΤLWfξ"F%°£’k‹‡^²°Τ<Σ\ΜΙεΙ šd ‚@ΰ`֜wϊέώZΧΓ.€}ΧΤ g_MIΔεͺω7‘₯<:2ζXcaŒq’=Γ΅IgmΌBmπ,ΜIυ'©ϊΦ4ΊŒδb š%ŠΈί;―ΰ@ΣΒ—7QΥόE¨άρσ βΐξ@=³ΕL#*O’«ϋ΅)AΈσ)WW–ZjοΏ»·΄ ΧΝ}Έ¬ WΕήΎ°Ή΄V»Α’m`r@¨Ξ›ΰO2γϋG|²£Ίž½I$š•|yαβ¦="=Bψ!Ζ,l\ψΰkjx:MϋX'ω(s1ΠψŽYΦ9bΡυ7“ΩˆD€ϊε©φ7ΪύΕ‘km"Β%,Δ― +σ .ΠTΪή$½gψbE$ΤΤΕŸlΤΪ} άθvq.pεžεΖO  όkXaμžίxK’; 6βK΅?iΊΣ&^5…€ΐ>ΉΖM3KΡu‰ hΑ™4ΪΫ&ΰ²±¨γ―<ϊW#­EΟsDνξ‘φΪφ½|Xψ~ή=‡jΝu©G΅£„ώpΙ΅ZοΓ–±ŸωηζΜSπ8Ι­‹ο‡:-ΒΕ5²Ν₯ή…ξτγ峞εΧ£ ηΆEck>Υ<= jz’xΓR‘,Μdž8έ_γ8œβ·…Jr|±άˆ¨ίSςίSΌρΠo΅Ήoν…ΏΪBۈƒΒΔTA<σΨVƒ[}Άϋ*?•οGοHγd 1φΟ >΅‚¬5]OTΪnξδ2Jδδσΐ>ƒx>ΨO­kΊˆT•,#=pˆ€°RJβ« UΔΩό1A%gΜ]Τ4 .ζΝςΒ%Ψ@hΖ{0ζΈ)΄έ6Ψά}›\½C#χZΫdσΐδϊW¬jφ3j:UΝ΄„ε #œ~=+‡’ώΞήΔάI ρ[[Dd˜Ψ°9η‘#ŸY―BVՐιΈ=frΆZ£qβέΦΛPšβαδk…KδΦ±¨!€rΈ 2pΖN―[Σό–ΆBΪηVΎΉ€Ε•˜œ’Ϋy9>υ…€*ψGΑŸ‹u΄6Ϊ¦¨Θ΅e%β^–φκ½K󸁎IΟέͺ#βWˆ΅‡{MC΄Σš, ¦Ύ˜Μcύ„xΙυE'-ΞD§9Ϊ—ΒvΛαm°ξωsϊ“Yš•…§άΐ=>ήh§G mBΎζΉ)τίj«cΔϊΒŸ½Ήϋ,@zmŒdώtΊΓύ:O>ζΒΪX‰αfŒ;)=؞Ώ£Ϊ¦ν(Ρ“ψ€zδζ&Gμ0aωŠl±2ΰΈ<`Ÿι\sό?Π‹–M2Oύ2Rƒρ j!ΰM%[1ιQ–ώω#ρ'5²©5²)ώρΥΆ›«±Δ‘;@ΕΚΙΰΈXθӁ¬’³mόΝ^Ϊ]ƒ‘χ:εοQH†λY ❐?΄!ηΤΡ'‰4qΟφΉηϋΩ―MXθQ‘NϊIR8­­γςβC9θΎ~‚΅­΄ψ¬-’ή(ΨGώρξOγ\½‡‰tgΥ.―¦»Ψ΄!я–£ο}3[ΕzΠΫAAΖL•§Κ­a€&΅€=μ«dΖN˜]Ή ½γU8ό)ΪV¨.mηžDhg³Fk˜€ε’+Χ>£ΠΒQ‘MςΗ­Yž…ΒΦ½{ΓήΕiqžϋNΉŒΊΏHr„ηκλ^Ž:mΑμrβ°P¬ΤšΤ»αKvO ιΜΰεβσO¨ήKsυΘ­W56-BΑαˆAul#¨E―Κ00:ϊRΌ ƒΠγζͺM»€W"°ν‘Ρ£8 πsΘ>Ζ±’c₯]‹7ΟΩ›ύC7;Ω'ωV ˜δγ’Nβ¨ίͺέΒc8Θ9Cθk9V³ΤΈ=K7PΕ,9‘Y³r?*ζυ8₯ΣtωνњK B‘ rΠε€λόKό«z9™νw Ξ{ΜΤβϊζ "Δ―Ϋ/[llΓ"$_™εaθΈγԐ+JmΊ–£΅Ÿ9ΥκΎ!άιZ<~v₯*…Ԉνΐ~CΨzυ« hvΊ“$lΣάΚ|Λ›©9yœœ’Oς…`Aΰ=&ΥΦ­uk| &φJΜνœ’ύ˜“ΨŠ– ~ϋΓΜ ρZ‚u(£ω§š£ξ~•ξQŒ`|ύJRNπ:ΣQΏ#©*MΙF‚rCAύ­ZΤ¨Fw}ŠΖΧ4|VϊΚckͺBs ΨΘ#©GΔ‡;v­kc‰'Cό37_~jΞr:ζ±qMΨΧ™­NgCΧ>έ$–7±]NυφξrGϋ@žΔWE }j†³ ΫjΡΖςοŠκ`ΉˆβXϋ'ΣΨρX-βKί FΙβX‚EΤaMρ:φ,£”onFzTΊ\š—ΚjΜιu]^Ο@ΡζΤ/dΩG,Μ~κ¨ξΔπcxgAΎΉΈΈρ'ˆβUΤξTF°“ΈZ@9XWߐ[ΥΎ•‹e?ˆu4ρ6Ό ±έ§YK=%qήFξ‚1SψϋUΌΐΧ3Ϊ#Ϊ™₯޽΅›½Ž+ —Œβ₯)Ζ™ΚΝ¬izοΔυm§x 0Hβϊ o9ύΧ\2ΞAΟ5©q­ΫΌρxwΔπ˜δΈύΜnF`Ή €9ω[8=Εq^πΤίπ”C št«ΐΰ΄ͺΚr}FGυgΕwRψ‹FƒN„,—Χ ζ‚xˆσHΔtω—Ԝ Εԝ£JIo#’Άœͺσu‰ΩxNi!°SœκTΝkrη’ωgFφ)΅³YΎΠμ΅T’]̞±Ή’[!3ΗτΑ²gHΑ-±zw5§λΆž8Τgn‘··²@u'YBΝ©Α#ͺŒs§Jo‰5ΖΧnΧ@³[»/Ε:Ε{r#Ωkυcoέ―UΚ¬œ½œV¨Λ•ΛTΙu]kUρΤνi’\6›αα!Œά‘Δ·’1Αη©ΧKΠν|-c€ιΦp$ζdeSœ₯ŽγόMΗ&΅t-ΓO°·Δ‰ a` Θ§Έ=Ιυ€Χ”ΫΗi{ƒΆΪρ$ϊ+„γΥέ jΣsš€Χ:‚Ψ²§Žsžζ©jΪ\:₯―“#4nθ₯C‡‰ϋ2ŸZΉΫdλ[Φδ΅΄l‘ΰRΈXρ؟Sι\““±Σ“ πψ¦Ή½ΈΠ΅|&―lH' F>uόΑ#΅uddŠζG„%ΊπœrN`Χ#?jŽπŒ˜ξ$ϊŒ|€zTΊ_‹­€Πξnυv]:λN>^‘ήT€ γΤ7UυΘ¦–Χs6υχN†κκήΒΞK›«ˆαŠ$.ο#aQGRΔτζzή»uβ‚MJ »I(ζ9GΉ-Β4£οG=Ίς ΰΦΌVwώ0Ώ†X­΄˜ŸΜ΅Σ€Λ%Ηχ›„θΎζΊ‹ϋxξτη΅‘VHδeή$ωƒŒσŸZΈΣr%Ν&Ik½½€QΪΕP’…DUPq€θ>•`žŸουΓιΧ’ψ+W5ά’>…4’+ ‰NγjΩa‘ΏΊyΨΗθkΈ8;Jτή¦‘&½Ω7rB3‘dΑ«]Ή8€Χ7βŸq™anΧΪΤΓχ6hp@ώόΡάςh’%JΔΊή½iαύ?νW™ΛyqCξy€=rN¦³τ­ξφς-kĘkΤ$ΫZ)ΜV#=³HAεΟNΥ—'ƒυ4ZνΦn|C €Ε!_τXΠύθΥE=7u‹AΧΣUImn’6š•©UΈΆs“γœχSό-ήͺΪܚΏ„ΥΪΪΉ?4JΣΆ.zž€zšΣaEΣΫCyΜ¦ψ€Κ2ϋcdθW²ΪΞϊ& ωΊ΅$‡ώZΕό/υμ}λ€HJF»ω#ωΦGˆ4?ν+x§΅›μΪ…³ο·›ΪOPΓΊ‘Α•X)š©š΄ΝchZηφ€r[άΕφmFΨ„Ή·cΚ7¨υSΤυ΅X-75BŽk]₯Ί’=KOu‡TΆΟ’οχdSŒΖώͺΨό l0Θ©Ώ.¨=™CBΦαΦ¬ΌΕW†ζ&ςξmεϋπΘ:«CάV¨8λ\‡ˆτϋ2ν|M₯†70€.ΰςσSκΚ9SνŠκ-.αΎ²†ξήA$ tpx*FEtΕ©+£žqεd¬ΥΔ§πšέ©cPžΉ5œ‘Ξ΅>S‘Ήέα?-ڝšV§ Žγϋ°NpCμύ υΕv€ŽωνYΪΝ΅…Φ‘uo©”ϋ#ΖΛ6γΒ§rOluΟ¨―<|GβMSFΆτιd„ ZΨλF6HŠΨVO,ε@灞i«΅dBnLξ5―ZιWK§ZΓ-φ± ΜzuΏϊάvg'ˆΧέΏ*Η>ΤυχIΌU~ΧΟφežθνg£ΈΓLqκ@ΝjθZŽhRΪ& #o–GmςJη’ΞΔeΦ΅ΒŒvό«jt’~ρ3”žΖ:ΪΓ¦jj-γH`Ή,q TIG Ψ…·˜σιU΅fšΒB™¦%Œϊ2σΦ©­δK«xηN7 qψΣZ7aΉ]ω½©Ž π=jeΟu9j;€Β*Bž€žΔΥ€Ϋ=ŠϊHσζ–πδϋ˜yϋ¨8'ρ=ύ«eS8Κπ{u5ΛjΎ"<)kcor> P%₯•²oΉ—Ψ/‘υ”€›ζiB“²:B’£p=ͺ΅ΥΚΗ•!‰ξͺVΊ¬”v’f £Y#aΟΚΐψβΉ}_ƐE,š~j7κ~u‰°ŸY$< ΙYV³εΩΚν©·y¨/湈z)ΙQξ}k’»ρu΄[]&»’^xΗʞΉcχŽ}+8iΊŽ±r³k—«0Ξ|˜†ΘSΫΥΈυ­°‡GΠ.'ˆd"(ι“όλŽXw-kHθP{Α™6zEϊJέk3Ό‘Ή-ΓagΎ:šκ“N±±΅XΣΛ‰W€±―έΐVό%6zm…Άa—ZŒ(·…2ΚqΤφ=§…ΌCβGIuέF[X&ΦΨ…!}€λό¨skέ†…Κ0‡ΌΙ/|]kΑΣt++›ϋ€ω|¨“hŒϊ³Gmα{_\ΤδΆ΅κφΆlϋ₯Η$Ÿ»­7FΣτ[DΆ°΅Žpͺ8ϊ“ΤŸsSίήXιFκϊκ(!A’ς*ώ5œ₯ldρK’#4­ΓG΄Km>Φ8"AΒ§κ}OΉ§κš–Ÿ€Z›JξXGρΜpΏ‡―ΠfΉ₯ρ·βΓφFΞΝΊj7ΙΓXβϋΟυl ³¦xFΖΪν5 7RΤηξτοuq~κ½\pς©ρ3žξ$+β]_Zΐπή”#΅=5 PŒϋ€CηΗBϋΒOu¦·ˆυ+ΝUe‘‘γ˜ωPŒ¨ς“p 5έ€J9§sΙͺ!€Λ£M"ή[βα=ŠOιšο†Ž‹SS[’ΪYΫΫΐΓ G}ΨΡBͺύΰUΨπΉη΅Ao"ΝΊ}ΦPγθFjEΟ™‘ڝ9ΡΛZcOΦ΅ 7ξΖ]ΐ=#“οΑ³ω՝FiΕglvάή1Š6Οά\eœύ7Ε,υ'UEp-nXφŠROΡ±Rθ‘}¦ςηU˜6ΆΐφŒ™ΏΰGωW4p—Δ{N†r•΅5’·‹NX"‰JΐƒΚηψ}3ψΥ¦`8τ¨‘•‘†Q†? Α›Δ‘Zo³fk­B6Ψ ·œρΔτPGs]΄HŒωΞ‚I–νΠrEsG^²ΆΥeŽ{“*ε㷌·— υ=9ϊΥIΰ½Υώӟˢ9CΆn£I8'θ8¨ξŒΆKΕq:ΈHΖΥ\I\5qͺ? ½:sN]cP”Ÿ*έ-G¬ς†oΘόκŒϋ?γφα§?έnΐGZεo|mk˜lkΕ^Žƒjg§ή=yτͺϋΔ:¨u/ ݈αΘτάGZΗ—WC’2€‘jΊζ€@‚yβ€)# ό”rkžΈρ^§|Jiv φ’π…ί`δώ5F :Φί4ΨαΪl΄Ÿ™ώ•‘•·F˜4`"δδr=z˜lΊ”ay³ΓΔfΥ)Τε‚+XθwZΝΈΌΦ/%»rηdoςΔΈ?άVίφDK—‚H νΞk8Κ νp«Qs¦fέι²Ιaά#uν«΄¨ρ‚~xΟ¨aΫΤ ι4Ι4έBΒ μ’„ΐγ# ʞΰχΟc\μΪέτΛui€-Ί šŒ»FqΤF£qυΕsΪφ—β»K~uMΡ]ά±Z7”«,Œ8 sλ^T*%/gR¦¦τ0•ω9₯½Υ5m'@'ϋFω!”„mΜΗθI’sΔžΣ‘θ ³’λY”"qόμ;Š»₯xHπμ’{;ežuΑ7nξrsτ­Φ&5Ιa΅Šγ«‰₯Oα\Μτ)α^όŽkώ έR'>$Χξ£9&Ϊ- Π…ω˜}Mbέψ@Ύ›§Ωι°ΗœέΞΓ$ˆWT䟼ψλΫ5θΫq.ΐy' ‹αu»Χ9Εά›!ψa(Ώ™«›Œ­UΉ_Dh©Β(šˆλ.c`w§UnίύjŠυpce\}H­ ‹aq΅Λ"ύΧGψΥw…€_;΄ŠOqŠΒ šOQs82R˜ΘιZΙ½²–―§Ω…θ¦{ƒL‡*­μ[­ΖUHΩέ°Š 1φj ŽΖγT»&).Ϋ{;DQ „SŸnxl4‘UΘΖ¦š—Άžs{J†β ήΏ}}{ΦTΎ3Ρc‘£΅Έ“RΈS›NΩτ$|£ρ5½ρžͺΕl4ΫM ΰΛ©Θ³H>‘§ϊšτ~¨κ;²U] ˜ΰYS•'₯eκΊΞ…€au VΦά«Ω+eΏ!“P―€εΉ:‰uKς"Κ ˆzπ€qψΥY5O†^b„ι‚ν[΅ˆάJ» Η?S]4°qDΚ»±$^/Šζ-ΪF…ͺ_ŠζάB™νσɎ ,ŸπίHk’iqžΝΊwŒ~€Ÿ¨άόEΊΎ· h’Εe»bκ:³ύžέOY…Vx£V\άψ»O΅ƒΏφD9<φήδώ•’§J=ŒβͺΟbμǐ‰©k:ζήLr0H”υ?*Ζ}Mφίt) κGJ†qΙGεΟόOεTαΡ"Άˆλz–‘vΰ%φ€ϋGΤnώ•½i₯ιQ+€ιΦ–Oύθ‘ώ»Ή&¦uiS3ΨΡR©=dΜΫY$F?x[S`>θŽΜ[GŸv|g5«βiΪ\χ·šnŸ2%ΈiδRz ͺoϊθZf†•Έ^›σώuΑΆ―7‰|Ki}a$‚ΗM˜ 2Άν"άKΡδ ς•_ΔΦx:Λ&’¬…(FښφRλšύΌWψ’Y7ςž"·‰sΨ±V$Σ5ιΦ φGMΌ½|ŒΙ5σέγœ ·{πΗNΊ•ο4Q&r~`mXǎψ+œΚ‘ΆΊρƒqό$vSj6vgεΤtθόΝ½·Ks3ΘΝuΌ ξŠ„ιμΚ>τ_έλϊ€ZLΫA2ΨΫΒa °mωΙ¬MhI᫝5·iwζΨŝ€ +FΕuxΡ.u 0˜ΤοfΌ” FΜΨ AθpΉ5SYΣ/gΦ'·Ά½h#]¬€¨!ANy¬1΄ί*”Œ-gΙ#7NΥHXο ςœpY2Wόyͺϊ·Ž΄­ ωm₯₯qώ΅b]ήHυ~ΓιΦΈ-b λ ;T½ΥnngΌ‡uΌ*Ο€“’ΐwΟΆΒλ­Srιw‘!^]fΟΜΨδ–υ'žiα°*ίΌ‘–!₯ό(6§s§^ΪΕ¨Kw±„ΎLzϋυfΗGόK5ζ§αΩυ>(ˆΨ}€’vœ€@?:Ν υΝ/BΤ’Υ’„XΑ™‚ηˆΗSΖ9λ[ΐΦ—V>ΣŸ*w\©•ΤψUζ°Ώ½ΡξT'φcƒŸωg/ ΐI#Ϊͺψθ Pιϊ)ζ½Λ›Ϋ•σΒχŸhόλ?jκ>Ylκ?i©Μh+Υ£­­΄}"ι‘WjΛu"Η<σ’k'UρŠ%ρ=υέΎ™"ιwΕ΄2°Wm€XŽN±ΫHΊŒHΦwPΙ€2‘ςΘ}κ 5΄'mBϋ1Y•ρŽ™J)(sΉΈjuύRω£2ώ…ρΫΔs*Ζ9lυrθn”ω†8nΌbΊOΓVΊ§„τ‘£Š{vƒΝ?1\σΈϊόάΧ™k~yΦΛ-£jανξC ΡΆzU>•ήx'Δwž$Π!Ή’4Šξ6k{ΈΟX¦O•Ζ=}j%‡?΄€qΧ₯:rΏCˆπΜkok6Ÿ¨Ω(ρŒ‰o< σ1a€²ΈΛσnιΤWQα8΄έα7xοŠυfσ 'υ^ΡΞ―ρ&η\·U[=)”²§'3œχT;PvΙ$Vž†;­V-₯Jή;zŒ€Gι]u`ζ%UηχYnεn.ןɌ‚ 'ή φ'ίΪΉ«mψΖ  €hšVΛ»ΘΡ0―!Ɋκ27·΅΅κQιtΧr)s ύι$<"RO αΌπΓ“ ²ψ—U›hoοέΝχ›ΏΛηΫŠXX7>g²Ψ*·ςΗ©ΞψΟT„‡ΕΧ,;BqoΚχ ΔΝυ@U=Žκ½π³KiN³¬:ζ+‰–Λt`ƒυ?₯aΛ£΅΅Ž¦+=ΔΗΘ„I?y€όyΙυ­Ÿλ/ΰϋ-+Γ>žDΊEBp1Λ0ξI9ΈIs{G±œ—³Gw%…ΌDΘ#‰Hδ² β³/u]6ΑονβUϋΒC·~kΟ’‹KΎ³·>%ΦuΝSRφPΐ#²€xγܚΏgαΫ-ΜΪoΓλ;yβ}Za+rΌœώ5jN§½Α­%#j?ψT©Hυ»y6 ‘Θ‰λZψŸAΉ@Ι«Zύ ŠύjŒ°ρ.•αΦ‰z*ΒsόΊTΧ½3FπώξΩ΅Ž*οSaΈΕ–Ώ·τNƒS΅Ώ’ŠΛ“ΒLόI|4―Ω’ή ΩΗΉe‹2ς#ΗΊ «$Rω sΤD*ΠaŠiQΧ΅|ΝJΥψŽΨΕ46ž GU‚GP…ΕΚ–#8ηυSXρ_\ά7ΫΌ«ΟΚ εTτΞ$Φ½φm,ukΐΕGφw”O‘gΐώf±ηFΆ1ΘW±Ϊ»–"n„=β•8NC¦½£5֝¦2 Λ1^1τ"²lKYU·²ΆŽβF " ΄yc€Ÿˆ©'δςˆ"ή2BίΔ{₯>[ˆΣ &Pg‘ υ9cͺ)(©SΓBξζ…‚xfϊΜ·φu¬’F‘$ŽXW̍»†^#θή‘Im=Βξ#X­l׏φΛvh5ε"7#9QΞϋΐΦ­¦₯φεd™ ‘q,OΤ\χ±―Rx‡8έμ=œΌ†YhΪx’ΧN{έOŽŒe|‚qΩ­{Ώ E`ΰ­έηΨI M–€Ÿ\ƒ‘θ{wͺV xpτ?h§’Ωώ•θ~_™l±°2νη§>΅΅JΤ}ψœx™Τ₯Zπ<χRΠΰl'½Ÿ[ΎX!Rη•Θέα~bzο[žΠ&Σ¬εΥ5Ta©ήγzΉΛA?$Yϊ[Տ΅eιMŠ"‡ž Τ@ώt8κ\.aej>csαπe΄,ZM-ΨΖzΒOάnΏ/C[Ί6»e[4–t;%†EΫ$Mά:žA­Τl‡¨9]πΫά\ WHΈϋ­ΒΚFVAύΙGρ)όΕkά‰m!‹Xd=%ˆH>£ƒύ+Lg Χ¦ψ–=OQ²·Ύ·’ΛV³›ΚΌ΅“’ŠΛω2Œ0Ηz’d°Θνιυτ‘­t#ή΅™ ύυ•§Ο{:C J]έϊ(υχφλŒΡτΛΏjΡλšάC€ΫΦ|Ïie«χ ΡiφqΒΑΦφwΫα‹)OΩccΆHΉv`s°~5Ρx»ZΈΡό{₯’$‘$bΓ¦ζ ŽkΥΊ”—B£FςŠ3―|I€ZxΟJπ€r»\]0y#l%²+{Ύ8Β¦ψ³ώ;Ά8Β`l0ηυ―΄O&―i© ^ι/’λν28o2Pw|ΔσΘόkΣόYβ%ρ-`ΣΙs―Ζ‘[DǐύΩΗ@œ’Ωχ:—"‚|ΞGk ιUŒ€Wπ=υ¨π–  V± o€χ*ΐεχx“Ψs₯Π΄΄6WSΛfπΑ/šΐgΚάή\xΞzσλZCN²Ώ»·’Ž8Ό5‘ωaϋmΞ8έκ©Τ΄}«"ϊβσΖσΊΪK%†QΨIx„¬—Η$ˆΰ•9Λun‚Ή*ͺ•₯μ(»G«*“”4ŽKU°›Ζ^-ΆΣό-o Ίi.₯{b·Η>ωφZφ]#A΄Πt¨μν”ν–i0YΨςΜή€’•;Γϊ-ž‡₯Εoif–¨ƒ γδΤχoSZ}G&½H¨Η‘‹Ÿ4›9;›-OΓnό?\Xέ.Μ>Pz˜τ=HCΑφ­k cKρn‡+YΟζFα‘–6R―ž ΊžUμjόŸ1#w?^πδΙ¨6Ώ‘J-5κΞIύΥΠξL;Ž8n ΦΠ―m$g:<ϊ’υ«_κQΫkqςneηf_— ιœg5jK8eΊ²ΡαŒ-ΌιW μ>κŸ\·?…Pπζ½o¬Ψ]N«%₯τ2‘wi.<ΘdΐݟPOCάVŽuo£θΧzφ«s )2Λ$Ÿv8ΗΏ–1ά“N0ωŒ§;+3cPΥ-4›YnοbωžGθŸ_sΨMyŜΎ1ρλλΧΪ{ΪΫA ω³bΏvYW 8l¨ν[–v—~'ΎWΦ ’ήΚ#ΏN±˜s8J1ώ°ƒ§„Φ鉳_ΥepœΈ΅£¦νΟ ŒΥμl,H (ΠRΏ+Š‘†FΜ=Ν+τZ•5-"Ο]d°ΎˆMo<{$LςG_ΐƒΘ=ˆwΒΊ΅ε†ͺώΧά½ΥΊ‰lοιp aΏί†ΩΎέ‡ 8ΪΜ2OLσψzΌW·–ΪvšΞ·φΌšš—KvΗœ³ΊœTIχ.ύYρΔ—γ@π—&₯ŒΝ;.θ¬ΤŽν螽jΦ…‘Zh–Ξ̚ζf/=Μδ4³±δ³Ά={t)tMΛDΣ£΅³ŒμΞφwmξμά–fκΔϊΦ ΰuζ¦.μ§-HΌηή°uνοŒz–Ÿ(ΆΥν³δLGΜrρŸNά[Η;ΊΣO8οW'ΤIšΏ±jβXΪΪϊΩ„wvΞrΠΏOpzƒάV΄`·οXŸΈ§ψEr,΄ΈΣeΔšbΤ-YQβ_ωz„‘˜›ΤŽ«θEumύ§¦[ήΩΘ^ήd „π~‡άνIMMh)G”³MθΩ§Ss“…94Ϋsώ#Ρ'Ήh΅M1„Z­Ώϊ¦o»*瘟ΥOθqV΄=f oKK¨ΓG ;'…ψxd20υ΅πXaΊzWβ$πΞ°|IjΪH58ΤuL€&χeοκ+:ΊΊ.hΞΆ”j8&Žβž&VΤ2²œ‚Θ#λš“₯sξkq‡† p=}+—€„W_mv)¦^ΚΟ§;•$8-ύY]N9¬νsO±Τ΄©­u^H8dΗ!μAΆ+8Vφs°ζΉ•n ηŽ{Φ6±βkHμΐ’ηR”Ÿ&Ζέ3υηΒ=ΟJδ4OxŸZ‚MOš7{yL/―(S θʼN3Νvz‡μ4HΕ{‰ŽgΉ“ζ–by%œςyό+Πk›c“•Ηβ2‘πνώ»*έxžE•Μσ‘ΈΛFϊπ+~κΖ9¬žή5 ςα01΄ŽFnjπΐΐڝ·‘υ€cΛ’3“³ΉŸc7Ÿi ž¬£#ΠχύjΩZ§₯Ηϋ™€θ·R…Ϋ«@/<ŠRΏBω“GAŽβͺιQωvf<`$£=†γZ ˜ œ‘\ο‹’Φ{Γ–«ͺκ©+βΆΦΉ=f“¦Ψ\ž1Ε.eΘjOα:BχOμeΎΤ`ΆΆˆόςΚΫU}³κ}5ΕΝβ{ΕcπΤRιšcžukθΑwλ $n9μ[τ©νό+,χ±k#ΌώΦΏ·#:•·ΆΰE~ρΙ8Νu+@2nΔG4’ε?(šBŸ*χ΅9ύ ΒΆo0‰€»ƒOwrΒIε?νΉόo—XŒ(^§^καBœpΓ5“©λΆzl^uΤβ3’H%˜ϋΙ5gkά; Χ-‰.^OΌΖ$τώ*ηuZΩK%ΎlΧχηz'ݏύφ<~šΝtΦΌFνφ‰€τΟωζοεδN΅©e’YΨΫ#·Ž$„λυΟ©w)5Ο1{-Ο<πœ7ϊŽ6“s}%½…ΔΦζή±˜d2‡~»Hb1ΐίIΆ±΄Kx †Sξ’¨kξ|/γΛYA c«ͺΪΝ»’JΌΖΗκ2΅fi5}~υνΌ9Ϋu8{ΉΙXϋg–?J·Vρ΄"]>Hk1ΊΆ»k€Ϋ”Ž`3׌β«A’x“ΔφvŸΪΙanvŠ@cΟŒu#Χ₯u:€τν&uΎΌέw~§>|Η!r«ΠJθ‘ΌCŒ@ΰ·9#άΧzνh9ΦΏΐQΡ4m+D„Γcn‘¬‰©n¦΄5 BΗJ΄77χZD½^S…β}†k˜mvmFςX<1m Γ«ν{φΘΆˆσίώZθΌ{ΥΝ?­Μz†­4š¦’9#ˆύ£ξ ύh‘B­Ez†3q %ΦuΕ αλ"ΥΊj:’νR=c‹ο?Υ°*Όώ hu+››SW€‰K³ςό§%V1ς¨<ΰ]ŠBΟΌΤ¨0ά₯zιB:$c'gx”¬fŽκΞγ;•Π0cΙδt«θƒ¬{$]?UΉ°ˆX}¦{)ϋΛψη[CZB,Si‡ PΐIW)LiΔΥ{«˜­βy$‘|μΗε_©ˆΣv2|;+%‰΅—ύmœlαχySψ‚+UεDRY€Οaυ;ϋt·,ϊtf[{ΤXΝΛ‘XDΛΐ υlJ£©Οq}#Ϊ‡šqώΊLa °^›aωΧ%ZΠ₯«:#usGΔZ¬ZΥ₯ή‹§s$‘²<«ΔP –=H ` —EΧ O i·r‡]Φθ ,ΰm`=I Φ3΄:u¨ ˆR%,Gχ@κO©¬ΝζΪΗ@΄»Ί‘UΎwŒΘN#Ε°+Š–9Φ»ŠΨ΅I3€ΈkΝL·Jπ[7KXߏϊhγ“τVUφ₯¦hr[ΠΫFΒ¨˜Θ''žυMυKύPβΕLƒ4ΛΙu{ύMA¨iΡiϊ%ΥΔδ™vn–Yζ8νžίAZΣ‘Z£φ•Ά΅§OHGŠn―fh4Ϋ g§!~k˜Ύ½ΏΧυK›i˜2ςπ&sκ ρŠ~›o¨"ΚΞΛyvΈΙλžKμ+¬·Ργ³ΆŽ‹jΔ ΰzšΞ|° RεΟμξΞbΗKmBHΈXΞ\vΘθ?:λmμ~E@„{τͺ3λΪ‡Ί9―cϋI‘³ +<„δͺνβ=oVm΄›/μΤeΘΊΤάGϋ1γ$ύkE]F•κHΚg)ϋ†Φ©₯ιiΕυGHR1‘;Ύ_Ύκγ[S°ž%³Π,―5\N›€Ž2αΊ~8«Ψ[ί­χˆb—WŒž[© ˆ}ό±ΖήΏJμζΠ¬o¬PΩ‘‘0ΠIυΖΈͺη°§ικ™Ό²ΘΤ~‘‰4Ύ-Τl·hΦδόρΫ4Ψτί·π©,Ό1₯Ω\yζΨIsήk–2Ύ}InJΧ±Ό3-'ˆEw±υΐ=z©μji­Wt<γψόkΓ―ΕΥ½ΟOQ+­²¨!―$VsΓφΏψ~ΝΏŠτΜAτŽ&oπ­A8-΄ε>ς7UϊΥ5ΝΗΔ]2rR Ɉξ3(Π«,Ά©ŠχΝ±5 ΩΧ:΄a]—χdcύΟ­?Ι‘Ητ­ymH-ǝk˜Υˆ€κZ₯₯™Γ+όίχΘΙ?•b§ŠξuHΨxBΤ/π· -‘ΟcΉω#θ*Τ֞π*Ηs5•€ωύΫv’W'°κΜ}ι‰όU«Ύt/Eco’γX“iΧΙL·ΰH5Όp”bξΜ\ξF|1β]uφώ½Ή8{M%δz4¬70ϊUo<5ΰ/H’jΖήIΛ|‹}#Μξ}KΒ΅š֦|έ{Ζ˜υ‹M,γQάp ΔΧ%β«νΐ–Χ6^·_νٚ5›QŸ3Kj²twv$ογε^1œšθ…;»EθF²ΠݏΗVρΌΪo‡Ό9}5ΝΎ 1%΄pg‘rnjϋ ΤΝ ώ¨ZNςΕ δΚ?ΰ@.k†΅‹Γνeޝ<6wπΡ^>nόδ‰Ώη cœη׌W ψoΔρkPyMΆΫrβܞc>Ύκ{Zš²”4tβž…h>ι7 6³s¨λ7ΙmBεΩ(Ψ¨έ§Xxr&ΔΊΕΧ—&έ‚0$”ώ@ψr^8·½ΣtΫ[¨Π$6σΖδΰωΗ_Zκ΄ψ›Yρώ³¨œ4j™nΩωW<ΗκXͺΐk+βN©₯ >m%΅Kxf’&2‡<’G©8Ε ε‘½ œ±qfΕυΌ‰» KkΉπ:Ίη,§Χ?αT4hVκΙΌAorΟ}v2ŒyςQs²/Γ‘΅AΥF±α+U‰σνVI0?εͺ€Έυά1ψΧ+ iž*ΡaΌΤ5ΆyEΙ–[•†Ψ‹sŒ €Œδ} yώΒ’ƒ]LyΞͺκΓÚƍ³ͺXZαγ ςΪΛκ2Έ'šηl-’πߏtιεσ-τΝnmbIݘΕ/ΘcG,ˆκqW¬&³³ΉK]Ff{['/ku21-“Ξ3Σ΅lίάh>)ΣεΣξgŽxεΖFu δ8Θ`z]tΥ‘ϋΐŽΦ4'Ρ”«2ΈŠ‘\e¦«7†­ώ"Νb$ΦQΓv‘~m’ΌDίMͺΗΫ­K'ŽΧΓΪ~΅§_έjίι‰ έΊξαδp²0άσŒρLπ\2θ^mkΔ0ZI<Ϋ™ndXΉέ—=3ΨJ|ͺ—½£•IJ’7Ό'akaΰο ZΫ2°xQ—μΙ½›=ςΜOγW/%ŽΓ]Τ_k³N#eŽ4,YΆγϊ α<;ΫιΊΖ [κ7žŽReίXa‘Ž3lηaΈς½Mw6:–›©–’Βκ)dgΛαΏx§ύ y·­%*vGŒ©ΞθΗ·Σ―΅Ώ‰gΫΧm¦›^­Έ`BΉωP±ξΩ'˜β³υ @xΖwΊΜŽNΩ¬lOπ©M/Υ›δΟ’{Υ½wT—ΓΎΦΰΕͺκW+cfᗝŠ]*ΖπΦ€Ί–£i  eΣ-γσ/0pY1ς‘xςZ‡ξF4ϊ³’1kί‘ΣxdΗi§_ψΞχ yV[Ώη˜8ά?ίl~zלiχ2κ:³β«Χ,7²‰=γ όΈΧβϋκΧφώΡίΙXφ5λΖp°F>μ`tά{Β™£θΦzŸ” π‡ΡZMΨΪσέ‚{νϋΗ܊Šς½¨ΔΊM'ΞΚ©s&‘m3ΫΗ/ˆ΅2f’.¦ώcΨ Žζ³l|kγ?Ku₯ΫΚΡΆΖΊ’AqΆ9^sΈn•¬Λ'‹όGiw·ΉΧnv«Ν½’K‹`οέσ^»ύ¦hλ’Α¦XCelGεΔΈFOsžry<“]°¨ΒP‡΄χ(xοW”[Δ/mrcΆ•ΆΘrj­ί‚5m&β(4νvϊK›Žce”2ξΗv6W¬kΪ¬ΊbCke›QΉ.Ϊθ[,μ/ST¬τ(μ‹Λs?Ϋ―f`n.εδ»z(θ«θ=+ZTyΗZ₯8iΚpW>ψD΄ρ5έχΛΞηΩ°ύsΘ’½ βφΓJ€}²ξΪΥpH0γE_³]ˆη‡ς™Β@Gz•ePυοΪ«Εc«>ί9Ος€1jjs%¬8έ“­_!Rx­"v^Ε_Ξ‚υξ~g ƒκ@ΙδG…ΌΐD{@rέΦ¨έC©λzUΌ0μ΅hLaL€f8ς<ŒŸΒ‰t}yΉ“J΅“½ώΰ Χb£SΩAςšFQζ3–βimͺ qζΙΒ}}MI³Η Έ•όιAΰŸΊΏAVΫKρkΉt¨1Ψ}©Oτ¨ΥΤ0ΈΠ―ƒ‚cΪψό5Γ:8žk¨"―νΞM’,—9#χΞ56§h³§Ϊ#o.ζ ²?§³zƒX>§yšVίIΏœ™€9TXγ95q΅-Kaσ4ENOυζ»ωgm²¨žŒ½‘Jo|w£!^;k‰YOPvͺυόMuΊνΜϊ­βxwK•“#ύ:ζ>°B„οΏAθ2k„πΌϊŒž/Έ{-:αoΥ<…ϋJmŽή"ŸyΟϋΓ€95κZ6•§­ΌlJΔΙ4`΄²Y›ίω+ΠΓ&‘ο~*7©r…Η†tΆ³†Φ+8νΨΡΊΓš‘·y \-žΏ!’ΧvΨu"=„Ψϋ§ύ†Ί–^βΪ+Λw·HœeaG‘Εtσ΄d’™0 ¨`x<Υ-_εΣΪNΡΙ§θW2πjΎ pΦbγRΠŸ³ =Řﳼ‘³ΤvŠΪώΗΔ\ΨέG5Όρ2«©γ'ŒBPy'}P?tΤLΑΌSφσ‘T΄YΖ•lοχΌ°­žΔp•hͺŽ ΐ΅€tΤΖMτ9νΒΆΪκAuζΣR΄mφ·Š2ќηiΟήCέMr©¨λ^:sαV·–Θ[“½w ‘Gό²ΏΌψώκ’ t:Φ·}ͺjxkΓκq{·tv {΅1μ½Ίš5››/†žΈ}&ίt¨_1‹΄“;ΉΙε˜““ττ©©UE9BœΫI™7:=½—Š-Ό7αύrςήε`ϋLφ22Νo WRIP=9©uΫΙiqανx-ΕζΨc•Ϋ0Θr9WμG‘ΕyχΖ©£ψήΣ]ΤDφ³%Ά‘<™-ΊNT“μα~ƒoβνΒ_ίZiπG$ώR4—JˆHL΄œ~?JΒJ2’ƒΡΘΪ¬1ͺ©(σF'kα—%—œ‘/-ΖΩc#•uΞN=πυΝTΠ΄9lξΥP Ήp“lΛζˆAO<ばώψœkΦV~Έύή£cΎ#pΓkΝΐCυγθ3[ή+ρ[iχΡψ3Βq ΅Ϋœ,Aδ·ά2db}Oκ}+Ξ«νc[ΨΑ_δuN’’φŸΜ«ΒK©?ƒτmρi°u{•α•q?σCΑτ\ϋ֟–ώΌΆ’6‚¬'Q±±ΐPίμv΅nψsΓΆžΠβ°Άc3†g–w妑Ν#δžώ˜+Bβή;«y ™HδR¬2¬b;Šτ)R(r#•Τ›z’3)εAζ“ni ™΅±WkCn–ςνOχό±CιχˆϊΧA₯hΆ=„VΆ±[Γݍ=O©>ηšr\Γ*ΛΠ€FW›UΪ­°mχ'₯rσΣKšRΤτ9-ξΗr{ιBD¨NYεP©λύ*•ή―ςΟ2Ζ‹ΜΗ…ϊšζυoAezežr?–4U%‰#°υ¬ΨμouI#ΉΤψE9ŠΨU= yΏ•e*ς›΄>9c fO{β-WZ/o£Α±?†ζq΄~ ίρ£@³ΆXώPάΉύδσΞ§<Žzs‘Zui¦ΔeΉ•c$žΥΘ7Š$}BώΚήY ΜΕ’$\Έ$ ώf²ͺΤcϋΏˆŠηg’™ΦΚΨΘͺ‹’}©hxƒUΦζx΄ v˜+m7 vΔ§§,zώsIπuέτI?ˆη‘‘)`ε_ϊθGήϊtΪ[ΕkoAmQ’•TTϊJ1S^ϋ5u%k―ό+δΦtιWΕ7οw$‰΄lύάqwΙ σΝKΰύJεΌ2mˆϊS5•ΞΡ»wΎεΪί‰­]gΔG ΧrKu'ϊ­>σ&’φΤΰW ¬θώ"»»ΤuΧ‰νν.$_νήγΝ €2Μ£Β€p:ŒΧC¦εX;Υ9§«:»οΫCtϊf‡šΖ¦ΉΜ6*Γο,ς όΟ΅g/…ουiχ̇ΪKaΆc΅@?„τixξx­ύ ίI]Ω΄˜aŠΞE‹ωN{ϋΦ‘h*ά1Šλ§…₯I^G•WWŸΩĊΚΪ(mβŽ$ ¨Ϊͺ{V€Α¦Zm’=Ά TόPχ;“Ί#8υ‘p9₯a΄τΝ5˜Ψ©Ή[ΪΟξ„„`ζ`ΝοpΥ’$Eζx ϋETΈdxZ91΅†&Ή{½bε—ϋO“ζ9ξHΘ·^p?Ϊr1Ϋ½75vEmκ~!0Ξl4ψMΦ Μ€νX}δnƒιΤΦSiŸk\k7υΤεbΫΆή?χSψΎ¦‘ŠK&ΟldGΟ#œ³“Υœχ5‰sβΝW1i…’Ά tΛΙpΏZγ–&SψNˆQζΨ³β=Uηvtφ"A΅₯uΒ¬#ΨxΦ,:μ6vΛ³ΊŒ/RW~OrH<šmΎqs|ΠYώιcωžG$’δw=ΝkYψ~h›ΜΊpμ§ξΐ>§Φ±«IV\²7T©Εr3™Τ΅ h5…€3―žιi0Ÿ/SΧΧoN·‹Nukύ.ν |©,‘ωΛ€ησΕnj–’jhολι΄δZ΅¨jΊN˜«%ΞΡ9ιΒdcθͺ<˜udŽz”ΦΘ‹M’ΪιήH'‰ΐι†Ι_πͺΎ2ςL†ΚY‚™bŽFδBΐΗ§jΘΤγΤuεy–έ,-Π†Β€'uΟ •Ζ;Sο~Ο{ Ν£κ2E”:Εw3ΌO΄‚7uτ­‘˜RŸξβΜa’ΦEΘ ”›:λJρŸƒi}Θ:$ΰη›ΊŸΖΈxžΒ+ͺfηIΥΰ#μŽπνpGFB8+ZΊ?Ε{‰­"›RΠ|°ωΰ ¦~„‚?₯UZj^υ‰nήν‹ΊχŽ―΄=ξ쀏W -€lC£»`.ϋΓ98φ¬;/ $Ϊ\ΆΪŽιήμ“u+ ΄Η$Ÿ|τϊ ΣΈΧ’ρ~Ώk–“u.₯\ως\2LΕ£?62IΑττΑ`χ‹:a1ΚB:ξφλšεΔJP‚PθUU¬ŽίLΊπβ΅΅ξŠ5U€†φα!ržŽ²cζχ‘4mKQΆX―5?jΫΒZέίňΑΞvy±¬§¦ _}b wΖ–š$‹5€ .nFCŒ€}Εvχ^‹RΡ¦Σ€Š%Y#hΐaIι]X|MIΕͺ†SŒ-taθž,Τ"Τ‡†|M΅ΦQ–5`C$η‚0Gr9λT†΄ίψλ]ΉΥbgž6!A!P#ςΤg‚3œQ¬ΫΎΉΰ};VβmmmΘHΛ,φν‚|’~5‘κφΊΜ~4Π•―tۘΟ±gωΜ{Fΰ‡»+?*Ο•TS-&LeeΜzΆe¬)q mQΖsΧ―W‚qšη΄ΏYkzάιdM!ιζ·”±ŸG'‘ΐ¬WΖι£xŠΟF½ΤδŒΟ_*η€sιŸε\΄“Š·.₯%&ξz*˜.Μυ.ϊEρ/Δ+-({ Vώα!qκ£sώUnλ^‹HΡ―u ^Hlά’X’Kƒ€Ύω$υsΑzF―α=\jεΔ3 fBneBO—+ς “Ϋ°τΝzT΅§Ν7E–BP €GΜFv_ΚΉMQ™<3Υ‚7©Mφm9_$FOŸ'όΎEu>!Έ1h— |ιBΒ˜κ ?­rϊΎ§§ΫZ¬I"‹»<5Όh77ΛΥ0=FE_²δM—N€¬@|?q¦_Ϊλ~Ψuβ0Ξn€8ΌBAČ9 α»tιPίxχΔ:³K£Xιhχρ Χ—7’}8ω=˜π+ZΓYΌ½Š+‹(τί³Κ‘£3ά6βͺ¨λνš‹Δzjz=ώ‘¨]Ek2Ϋ0Žβ#ΚPry8ωqΧ°7x;ZDR–ρϊ—vλτ&ΉoθΪφ·5Οˆ,`B‡Ι˜K΅eΨ0δžHΖ1Ζ;σ^‹βZ]ΒΦΓI†/ν;ω<‹8˜a#γ-#ό*>cψυΌ(»ήL'[Myό3o ΪBοβλϋΖV‘O½ϊ,NGjε5 Δκt΄u‹χθΜΘΣF§ψΣwq‘ι]4>Σ ’s4κWBB&Τ&‡Νw`r~n‹ίpc`Οrnμ-M͝˜‘XC3ڜγ’8γλNU9‘1½ΠΫΠ­u«m .ΦΨΨΘη}ζ£<«!HŘͺΙη©ΰ~Λ=ΐςΘκ`Σug.Ϋξnq3»τfήz’Gn8₯»»½ρ5Ε―‡Υe·vn¨RCπpގάlΦΛO ΫΒmΦΦ9-­Η&;}ˏ~Ί¦ΰšh¨σ[SΣΌ+βq’’2锏q§–G6Ιβε\W_t|›G•p!Ζ{gΦΉ ί°x»DΌƒΓ—QΛu`Λ-­ΜrEt‡+‚Η?wΣ T΅_kϊf—©YiZŒΪi!οR=„δpΙ·©Ϊΐρτ¬€’χ‘œ‘yσD–[Oρ1Π4=„²©]AζP²)ΑΥΊΰΦ¦½swO₯ψbήylξξΔ²κrÁ$6±ΆΦΠ»Š~΅›Œό3©¬-ά mΞPΈςž,rC1Ӟ՝₯ψ’¨jž₯jZž©ͺHv¬1·— +Δjd“€ ΈιΊ’pjρZ””άΟK΄΄m#F:e†Ÿ½žέ0=wg“’zžkΞ-<ρjrκqΙͺKa!Š+§άΆ°υ@‘ž+ΖzεjkΟ xηΔΚYρ Π|ΙgfA ιΉΧ›ωU― Oβ- [“FΧgmRΤΔ¦G%ž0OΚ’χμpj”*₯y ή ]–΅y’γΒ`Y“'Ϊ PAŽμ]p?ŸΥ]θZuΜk έ€Sωcnφ7ΏΜ9[O‰αa_ιΩiw?mΑ,χΰ*\eΫΨ‘]Σ Πt©ΥhTšlσ?xvK]GGΥ [y †ΪαΪtCύεέ’:+gAΎ_ ό5]rΰuun.%sԜq]dΚΕ~P8=λΝ΅©gΉρ―….”Η§ZΚnDyΘhπ{β*Ϊ|ζ‘J€£ΊTWzf‰φΗ‹ΜΧ5I·Ηœ³O!ωC}'Π Υρ#[hϊEŸ‚μζ2r'Υηξωωˆ'ΥۜvQŠ—B’7ϋW‹g·΄Bšr·;‰α€χ' φΝyτΒϋΔ³_ΑkvπΗkOP ‘δνήsΠΠuφT)5yKv*Οή΄:~΄ΊΤΨ&¨hš w‚42Φ-΅Ό2*ΥΑήΔϋ±$Ÿs\FΏy«£h$Ο™/“Μ™ΤβD·ŒΓ#Ÿ™‚―>υΨ’‚ζg›©S]Ξ—F…―ο.ΌAwζΰyV‘°ζ+pN>…ΎρφΕiΙkͺT¦άτ=ΕrZ&½ ΕΑΡ5‹ω­΅b!+pUgOα۞§cΪΆΓ/Ό½žΉͺ[Έη 7˜3ξWU*‰«Δ‡MΙϋγ‰Y¬<―,I2†άΔgG$ΡQκFΫΓ(ξζΰ‘Ž<ς9οοΧ4UΕ₯{)5£5#Z₯©\Ηaa=άίκΰC+\ψ’*ϊ‘Xή5 [N‰ύΡsyrχ Š}‹cς―œJξΗ\I|=§Λc€©ΉιW nnO1ωΑϊ Β΅@ηΠӘυΞΰΔ’A>΄kY4‹O@ °π0==+ΕχŸaπΕ쑏τ‚’(=|Η`£ρη5Ίƒ+ήΉώχTΡlΑΰ;ή8>‘¨ ŸmΝY֚…MτχͺDΓ·a·΄‚‹'«a‡―>ύj CSΏΣP-Η›=Α)l'g»?ϋ+ԟ¯_ήΓ§ZI<…„PΞ$œπ£Υ‰ΰ}kgΒΎϋ"Λͺk±>­z?zϋ<Γ ηŒFοSτ―)ΑΤΔΝΤ©/tΫYRF‡†t«m+KΩβydc$χ$‚fsΙb— Εo+c―Zζn|55„­uαλ…³rrφΞ3o'Υz©χZ›Lρ,Sή™¨ΔΦ:—h%9ίοtqτηΪΎ“ΩΈhr&¦Ž„œΣ#?;ƒύμ‚1ΑϊTAΆήΩΣ?‘«½Π­bv\ϋ{ζΉ-OΓχzeτšΟ†ŠΓu#Ί³$nΐξ»'£½λ―s‘MUδqΧ΅T{'άΓπ–ΉgͺΪά$[‘š9›Ξ·˜bHXΰΓκx=κ/λ—―w‡4‚κ—KζIp"Ξ†B?Ό~κߞΥGΗ a’[―ˆΡ€‹V „’χeŽΏΕžή˜'΅iψsD_h—z爧ϋVμύ§PΉκ¨{ eψϊΡΟdΫΩλ©sÚ}Ά‡¦Ύ›m”φξA w1 σnfξΗ$ηΏ5ΞόB‰― ·Œ#2ΨΘ—³δ·P«ŽψεΏ δ4O‰7šΏΔΈfžO'HΥ#k‘rFΜσ ­ΨΉaE Šι<[©M§ΪΆ¬„,φr ΞγΑΪ9SμFGγ\μK€‘‰›Π„Op±jtΨ<<·7(²ιώA’LsΌΖ:’HΗΉί θSιš-Έ½ηW™οep #‘χXϊŠIπΨ…₯¬·77‘3ΩΪM€Ίtd’₯€ϋΞ3ςƒχjψ²? hΣ[Ψ9}E°7»k7ρ7«p=zΧ62΄HP§ρΖoγ8OΕ’θΊΔRθBH5‹y–Y>Δ¬ @ΪΨΰμ?Ω―J*Tΰ ί3ξsέJMš Χ­1¬άšŽkHμCC.maΎ΄’ΪαH€]\eXzάW²]ψΰEp\x`±LΗsιόπ―έ’τn«ίŠοcεΦ³5έZΓGζΊΤdQ »6ξ.O7@+[h`κ4Θυ-NΡτ£©Op<ž6lΜ„•TΌΗ°kHΡo΅F=wΔ Vιrm-3•±SοΡ₯ ςέΊ η| α³λW—wΠInΆΣ³Yιν&τ²ΚŽƒ‘Έ«ώzPα@^tŸ"NμήόΚρ T £ 8ΓΉNA#άv§—ζŒn4\"q—ϊ=η‡υ uo ΕΈHΫτΡ€“Ž2ΙΩdξ;†΅R²ρ/‡νοτω‹lΊ‰ΐ#†«‘‡#°μ¨rx^δמκϊ|ΊΏŒ.-<1u=”ςˆΏ΅nΰ%R/½Γ)ΐΗqΤΥF«ζ³j1o™Ϊχˆu}`M‘ψT?Ÿ {xU€ς !<N:}kKΒι‰αλ{m63€m–οBrΫσΞβΩδυ­=7K²4Έ,,νΔPΔΈ œυδ’O%‰Ι$υ5›«θ$ίΪZlΏfΤЌ9?$£<€ƒΈ8λΤUJ<Ϊ’©J7W©Ο\Ι8“νXΊ?ˆβΤ-n Β=΅έ›μΊ·eγ|=σžz΄ΆκX}CtVΔε-凬‡ϊW;v4ψΘ%ΥfΌΫι)粜4爣ϊŸβό*― ΫκΚ«I|ς. 9*‹ίε¦=zΧ@‘$h©**τEψR0Ξ~΅œφdpVφΧ:_ˆμ ΧdΊΣ’,šuΔ͐²pJOVΖB΅wϋΞ8ΗoJ₯{e‘k%₯ΜbHde==jΗο§οΣBΤ€g$fΚιε²αoφΐόΗ5ͺ•Υ˜€—C£Ν(βš)Τ4‰DW₯Μ o"‰ΑVVδzƒν\Ž—s/„΅˜τΙ΄©Ϋfq!Ο’ά~αΟ§]‡πΔ’jž­₯ZkzlΦ7±ο†UΑυΑ„AμEG΄δv-κ‹κΐγ·ΤΡy}i¦ΩIwyq0Δ2ςHpͺ=Ξk„Σ|lΎ΄ΉΣόK,w§Έ„L‘7ŒΖp?‰‡λW¬tΫΝvςW_ ϋ·έi`Ψ)l3ΑnΟ&Πv˜΄ΥΡ’¦δμCru―‘‹3Γμ~ι.oπŠ3ιԏJθτν:ΧK²ŠΞέ †<… ½:UΔE ΅xΟ­?nΦ§ (Ηέ«‘οLtεGmβ¦xjyNAΑΰΦΙίC–q±Ϊβ4•Aέοό;ΤθCͺ²τ`o­(Žή™ζΈλίKΔϊ†R;˘\‡–@M½†yΓ°ϋνιώ$R””7" sG­kΊ_†μζ©x°);PYδoXύ+–ίVρΌ₯΅dŸNΡ ₯ξ+%ΐώυΓ/EτŒ­]Ρό)ok{ύ­¨K.₯¬0ωοξyuφ~μkΙαEtj‰{P`Υ’nz½ŽΈΡTΥίΔV΄±΅²·Š xcŠ8Ζԍ* φqRLκΠη• ηιL–pΉ$γΨWψΎWy,΄b²HŸ,—-Ÿ*zgψ°€λFž†©9+²κk6Φ:-€·W)άωΖG‰βΉΛέsUΥXE₯Βmΰ'››…ύBυ5OF’šβqpήmĝσ6ςCs‘ιΙ5­9Š(œm†1^\Τ#ο΄j¦—»4ί XΨJ·3 n›–žs–Ιλτ£Rρ–žnΞά©ΟΠ}k›³ώΩΥ―ZΣMž}κί;ΉΜpŒυlŽΎΓšοtιϊ<ΒϊεΝζ₯ΤάL2P²λQR’zMŠp‚Ψε'πώ―­ΪO©j›μ¬`C,V€~ρρΠΏ§ΣσχAlt=.΅‰Μa™π3Ο$“ψΣΌC$KαΛΗi©UF9θ€$ώy¬[ oPΥ¬α³Π#‡•&£2βέΘΰu”π8{ƒubγӚ‹ΌŽPΥμ΄›Qu¨έ€)ΠΟ'ΠΛaXήˆ|B1gηhΊaι,Š ά£ύ”Ζ#ΤσWt [XΞ·χM%ξ zέάrλμƒ’`+£†%ΪΊEˆš˜‡/„Ζ<;a££›h–CΊY]·K!υg<šΦH‚αW*ΉνS>W₯1>l†ΝvΖΛC&ŽAΙπoˆΥWεΠυ9BŒύΫK’F2{#στ?Zμσ#m€ϊΥWVΣm΅]&ηO½BπL…Έλ‘ξ1‘ξ+ΑڝΜΦW:N¦Α΅-.Qo;ωh»AŽ_ψγρ‹§#–΅ύγ€…Τ’¨ υnSεΧΨΓζ#‘¨™ΥT`ύsS;šΓaΝ'jΌ“`ΝTυ=bΟL€Οup‘ ξΐœŸ@Sμ+Τ_Ζ²ζ“ΨΥ'- w_“Ξn+-ΙšlqlΙhφnMZ΄ yŠg•ϋ η’Μz’k+5HΔθ.Q‰έ!™ΙδοΑυ­{Kˆ.‚Γ " XΑ_­rU΄ΪR‘u(ΞεT‚}Bώξ=JV’+y©ωΪ$Τl5{᧝.PD6Gj•uδδ3ZVš-¦šΜφπ,}ΩΫ–V<šρΨόS€kΫψeΡ='t,ΰ@~•j-2Ρ]X³ƒ’d$υδg|ι'£.5Ή rϊ–¦RΥν4¨βφlFͺΌ*δ€KΪΊ ΕZmΕδ:eΪΙ¦ί‘ΪΆw`)$q³΅Ÿj―ej†ΞχUtΜρ/χrόj{m/NΤΌ/jΙo-·ζ~U22N‡κ ^_ Q†Γ•Wk›ϊώŸk£Ο ν€W6ΨάRAΈ)υΗc\Wό!Ϊζ‘iψoS76ۘ}‚τπ—d½GGή Σ£™<;$Ϊ¦„0j²lοχa•ΎfΎaŠκ|'βέ:ΰΕ’]€Ί~­CY^¨Y ξTτ»ωW«J £q¨―•Τ©Oή‰Μ[ψŽ?ΆZιΤ7}ψ”&υp_α\|―“ΣΊXμγΊc<κ’rΖBύEtΊ¦‹§λVfΫQ΄†κyIWpιΨύ+‹Ήπf³ IηxcU3ZƒΞ›©1eΡ&ϋΛӌδW-\‰'Ν†ΣΘ9„_ρ B‚+„`±§Ί >ΌSnζH!–P6ωq–Ο₯eAβ›νΣ΅kYτΛςp Ή9γξ8ω_πηΪ­λœθΧf&λΫ5ΰΧΓUUγ ±7Sφ›΄δς|;€<κbάIώ ό‚}Ήό*…χ‚τ+»†ΉΆItΫ“ƒηιΟε?^λχ[ρΣCςZ@˜ωDj0yۊΝ0&t’'Ν–ρ•'˜r}{―ς―q;+DΞϊθq:7ˆτY‹μ‹^ΆŸ-|‰ρίr«z§ ψΪΓGΧζ_5γwςΰ²pDλ! 2ž@-Η΅zp;Π‘ŽG―Jδu­OΧόO€ι·φβD‘₯“~HL€r9 υνS„―•ύ—%‡:Σφvž¨Iό5ͺΪjΙ―ι—6wzΌΰA/”γqθΰ” χ@ΕGwβ©4ΥΈ„£Αs¬L6ωΆ’+…δŒέ[λ^‘Zυξ΅].1Ζ£οΊ· L‹Μ‹γ^Gq[vWΦΊ₯‚OgŒH…Ώfδͺ³Ž’:ΪΑ‘i²hΧk9™ΎbŽξΎΥ“eαΘ|VΕ6·‚ 멝†Ϊ„66:τ=^j νrΦ°Ώ˜ιZ‚©[vΊ[ή'oή‚ήΖ ^“SO,ΪΓYNϊ\Δ ˆ-ΣvΩΈ ÷͜ψΧ+v—³šάв“\Ρ%²ΆΤoΌUeo} "ηN"ζk˜πΓnA’3–=₯vς<1ήΘiγ8?γ\Η‡γΧ“Mί&Ÿ΅ντίhΉšεΥ“œ.ΑΙΪ01ž*Ξ¦N€άκZ­Γ\-΄eΖ@ΟeQκI}kͺTγΛf½γ—Φ5 n΅[ο hVΣ ηΈ%N[Η άΔϋ“œ ιτf±Ρν"Ρ§I!г wή=8οœΧ5‘Zήψw]΄’υσ&Ί€έsΔwK‚Š=ΆeGΈ­ϋκWW—Z…>̏k"₯νύώζԞΰs$žΓ…γ54Tω‘»4—»GΉ‘ψ‹ΓΦzΌ:ό:dρI-rΰ†98lg=sZΣh:©c.©―ι–ΣBAΈ‹νD‘Ά‡Γ‘7cΆiΙα+m!Eβ₯ΝέΘ-u}:‡–VΌI#@«κnθμ1ή―θ·[tΉτ}YnlΧcy‘1έU$τιΖ}E]KλύfδΪθ›Z58{Ζ\DƒΤwcμ+'ΖzUξ›m’ήh³2_G{ΆK뻆*ωRvȝ660@ιΪ²ΓΉ9]hŠ”“‰^ν§:Cλ:Τ·γÐN0NθxUiΏ‰‡9dWae‘h7ϊd7v6IŠ+ˆa\y#―nυGΓή*±ρ"6©B,5΄`n4ϋ“Λο!ι" Œœ~Φ‚ΖοαύΤ†ΒΪk― K&ι­ €Σδ$ρrρ1δ¨εO#½tΖ₯ͺZZΨ£,Ρ|:Ύ•―—’LΝ4,!γt|v'$}kSΧο>#\5…Όφώ±Γ]yͺUδ2ΔGe;ρžΥΠx‡β…{€™₯O―ͺ^|ΆπD»–6' Σ0 ΘΖxΕ$ϊu·„~<g{Α g”υyεœύI'ιΪ¦Q„_ΊυaΜ›ζ–ΗS‘ά FΦΘ Ν΄p¬Œ{g­Xvwj~!Υ΅Τε"”iVDœ…Ppμ?ήOξΥ‘ύ’Ύ΅Ρ7Ÿb*Τ–‰“·tiͺΕ ψS_ρ’l–ζ‘eμ‰ΨdγΤΦ†|5uβψν΅OΒΛ¦€ΛFcςΤIqύχ<§€+FώΕ5|=αι#Ν³Μon‘=‘FވΓџoΖ­x‹Ε—VRΎαϋUΊΥŠο >M’Ÿγ”χ'²O^•Ίk–φw΄[;λZ ž(ο‘@€)\pN ―η\φždπχH•vXjεηz*\(`ο›’¨έψκ+¦‘wsβH\ύΊG9ŽJmθFޝ+Oĝ‡φ&Ÿ­\\FΛ§VΖΣω溝gε—C€ΏΪPŒžƒ kl5δ΅#΄\NΕξa‹t›ΒFƒs7`ητ―7πw†ΰΤmdρ­™q|Ε σˆ-χ-ϊ|ΗλZ>:ΥΛΑZ΄‰ΌHmΜIŽ»˜…κsU-|kkαψm4m~ή]2ς(’4iFθeςΈγ>ͺqŠιvkSŽ.Iθo^x_DΤm ΅ή—k,έxςά ϋŠγuΡ'…ξ#΅Ρ5zβΥqζBH°―p¬ΰ“μ3ΕtΦΎ)ΣoΥw]lς±Ις;}~΅ˆυ[}k˜ΐsάͺ;œπ?Έ:s»!EKŸήg1₯BϊŒνͺG¨O©Δθκ«r~kcΗτ=±EKαν2]*iξ»₯oΆx$‚G劚U}Σ²j1“Hν•σΖGή½5‡‘₯Ο«ΎHΉ˜Ε{CTΔ‚jύw‚_³k7π\Ÿ•$i(Ιά1Θφ¬Ÿi"ϋOώϏYΥτ½NΕDRΫ κ‡ϋψ+‚­œƒήΌψaͺ=.DͺF*ηfΝΟυ§+W!u£xΎΕY“Δ‘Ν πΞΦͺ=Θη?…[ƒBρΠ«ΛβΧLŒώβΦ>Ή4レήΐ±T˜κVQŽ’ΈύrαΟ‹.&κ!³Hz†oζ?*>Ιβ«8χbήεsΒάΫ…'ΠekœΌΌ’σVΆν1ξ/Z;‹¦paΩε¨Ψ’tH ŒdΦUp΅'NP}MhUάŽΒΊTž!Τ“WΉm‹Ÿ²©—‰ΖTˏξ―!}ς{W}Œp8 €΄‚[( ΅EŽΡUF―aRwόkΊΡ¦©ΐζ©9UŸ4ˆΟŠΟΥ΄krΝ­/ Ycκ»³”oο)κ§άV›*>υh‡φέ[ΑΔjK5φ†υΧ|Φ½‡œήOφΗ#½tIwΤv—v+ΔΞe90κqZ{CDϋΧ}α{ΝμίψT…‰δs₯;byε£Οϊ·ϊpj «ΗpφπΏΎv‹οIuyŸa5νέΒΓm™$‘Η¨κk#Bρž±έπ³[Κ6Ι`d0ώ½ bέZ7Δ?>’„Ÿ ir†Τ<]܎Vκ©Υ½π+Ϋέκ ά―ΰνRΛΖ^*:ξ§ϊθθZUννΓ Τ.H–Wc‘ηžO`;šΖπ7†ŽΏ©jP°΄·ιpMΛHέ>ΐγ™ιχ½ cipjΌY4Tπύ”ο”’R>μΞ2ήƒΠΧΈΌHΆm{Sδm Ψ; Η†”?{Wβ‚μeZ₯ύΤ@ξc?­r~"πΣάέ gHΊ6άcjύΙ:χŽuώ48ϊ―WEΎlHύρ‚b8₯sάΧcktesZŠγΤ§}3Q¬5¨σ¬ε9?ο#tt=ˆόk’«^π冽 -Μn&ˆξ†xŸl°7bΤΖ΅ρ‘αΫ΅ΣγΤŽZJq{θΚpm{§M«kvzšχ·’E%BͺξgcχQGv=…sΦZeνυπΦ΅υΫr ύ’ΣvRΙOΏFƒΛvθ+Zο[֏ŠfΣ.fΠ-ΙM9A‡π΅Ι©ΘΞίnkΣ5[RΤMis±OέφoCν^…Ωδβε5π Σ”&·«ΗŒ|Ρ}6ύ+gΑβ3ψg‡ΚcώΪΰΆGΜ?ϊυΝ[γg~šF;@9ΐ«@8w5ΖψƒVΏΥoeΠ|;/—4_-υο΅«Sήb?οΙζ°i³}ƒRΦ/uΝZM@ŸΚxŽΫλπ»–Μό£ϋž€vκk€΄‹-OŠΞΞ.4ΙΑ;˜“Ιf'’ΔςIλX>Ί°Ρ£@6ma2n1,‡wš Ι!²yο]IaΧ=κ’KB$Ϋ¦hΐ»Υ=cΔΏcΉM3KΆ{ύZA”΅ŒγΛί•Ί"ύy5N ["ΪΞ«sφέaq²`Žέr2©θ0H-ΤΡ>ΠN§!SGπνΦ‘¬ΏŠuθ^2·΅ΞαiȞ†B–νΠVϋ1[ψmΧεΰ>€V”+˜cξνγ ΕgκλφK›ξBG8ŽCθ―ΖOγ]|ΌͺNVjB­³R•<η΅LŽ24Μpz{Σ±›–’Ζδ…ΗR¨΅FΗG°šϋPž{xωg|α}±Τ“ΨOjΜΥόC§ψbΑZιέ§iY,μβBσM“{ύz Ι±Ρ΅=jώkΔ $ρœΪiκΫ£²Ή=b-ό=K“Ϊ$F.Nμ₯s}βΘ°GηθΊ l0mυzœ~εOrΨϊΧC₯i6:>Ÿ•¬vπΕχcNƒ=O©'Ή<štΚ°ίG !bαDΧ;šΚι|[΄a½έΛ­2Η•ά=ύ«ZΧ초Χ3ΰŸΈͺ73ŸEλXρTΛ%†›ΆIΤβI~ξχ½O΅aAbZαξn$yξH§—–>Κ?„{ ζž!½μΘο5]OΔwνgq+Ϊ[I΄‰ΫaλžƒŠ·δYιΆαεXγHΖBΊΏύz‘¬Ξtθν€·9ΤZ`ŽNήΰϋb©mΦbH|΅bx2€9'žž΅άΪB‰b06…cŽ+iaΖb¬Δ6FF=ύEsλj|+wˆΑ:3Ά·?ebqΟϋ±ώΗAΤ\Ρ9ηsj+6'sWβˆFΌqDlŒͺTδGžςΗv@Ιφ¦ΆΒΓά»#œΞρΏα«έ,ΈY&?χ$26}˜ ε4ύRM[Γ1άς“LΎ\Γ‘IΫ ϊƒšΈρƒίά½—‡mύΗΚ§Ι w<Γ5ΚΩιZ²ψ›Z/n’ΘQ hrJ}¬Γ8άΏ™©ΗαUj^hp;±½β=fΣFΡ₯O˜»(†t3η€§Φͺθ–άΨXΛ¬N%h#A ’γΚ‹7 |Ηάάψ+GKbg#™ύ$Κ|Ε;†>cοOŸAρσXJš•ΊžΟ—(^\τ¨Ζ>Xξn’“χŽ₯fWP -Ž0Η Voˆτ;R°+¨ΫE<jηΝςς@Θ=Wκ ci^+΄žα­gσ-ξQ°ΠΜ…\§ΒΊ+†‹QΣ'Ά.vJ†<χRz~Έ©‘*”%f&›Ρ™βΓΕ^a&‹|Ϊ֚€ΔΏT •sΐŽδ₯lθž2υkΟμΩjiχ¬/γςηAΡΗΊ“τ§xkSkύήIHσU|©ƒtޟ)ΟεF££hή)³–-JΦƒγΛDp9V+Ηpkή₯[[DσͺSΎŒ½«ι–ZΝ›Ϋ_ΪΓq <€‹ώGιΝq§‡5½!dmWKfAφ[‰Έ…r2Οίpσ«ώoˆ<%#`\ψƒFV†Ύxυβu㎌+ |C€ψŽΝ§ο@ΧP ΄G=O*~΅Σ5GΉfr'^„½Σ'IρE†©ˆ#₯Δ`+ΫΚ₯%B8ΑSΝlIP«rŽ œvΝΏ‡΄έjŽφΡ%)χ$9‡U‡ ώ5ΙΊψ‹Γ’$F]oNW#.γ\τ”uτ5εΦΚεz‹ω…,LΖnY3 Q ±έ 1gύή3T$ Ώ<6ΓδΊNzͺ“―Xκζim&VL²U£nv98=ο†Ίn›πŸG†{hgΔ«"\F8‘‡Μ°…YΌψuα‹‹K‹K(>Βf_μW …ΞvnΫΧ»VmΎ ώΥ/ζ›ΒΧWV.σa3ΰ±aΤΔǜΊ~ΌχQΟa«iρήXέ@ρ7Ν Τ €)νΘΰPkڍXJ η(Ξ›χNΗΖγΓψΖS›MFΩqo~b/κ0ωu±χγ?\RjΒe©[ήCιαλGσ‘7gΫgθ!–kΤg«ιWΌQ~ Χ,4K˜#)mΆϋPγ`α#·_φTΦˆ|S-•ΌΒάΕ(H ‰ϋΒAαG§°Έ±“\–¬ξΓu;{ψ†ή_κφΎ΄•ζB.'ž0Παώύtcrk«Υ΄λ/ ψ{m:Ω`†0ΑΙΐ`X“Τ“Ι'ΉͺΎπγψ{F’βόŸν«χσεc– ~κgΡAχΝmκ—Pι³Ύ©2Ηn‰™ΟHη5Σ‚ΓΗE&ΞLMy9Z%ήxξnB3%¬kε’ΌΗΤ“€+-DΆ›Xš9―φ€Μί»,η6x*Ήg¦+ΜΌV|U«M³ΉΤeΣ§|λ•Δγ‚XvΟlW?¬κ~5Ή–ΟΔ7‘ΣcωHxΖΡώρ^[κsX(JRΊq:―8Bφ>©Šή(•V!ͺ΅P둏η\—‰‚kZφα¨[qσRP+,mγ9@}δ|=ζόγέKSπ›€ιz}ΕΖ½ f͞&[XΥ–W=p›NάΔbΊAΆπΊ΄±<ΣM;Ύ»˜εηrs½έ8υ4κJTγ’Ԉ§5tCβί ιΪφ››s+[ ΠI b{~sς6sŒγ΅EΰgU½±»υ[Θ//t럳5ΚΏΝ*νVGlw ŸQλ]|dƒέ{ƒ\φ½lΪdλ­ΨC›‹eΕΜh?γβFΰ}X}«w8^F© ς²ΎΉ‘hz½Δ'X³Χ(Ϋ » #‘[9ωd\sμjζ‹βtˍ>xl΅­:`™ΎIΆδ}αŒŽγλ]dRΫκš|rΖR{YγWSΤ2‘‘^aΪκΊ?Ν―ƒuYνΟ”'Έ²š[8ΑΓNά‘ΖG8¨ηmΨΥI[b†αm_OΥ$ƒEΌΦ¬m#p©,—ƒμΡ²UίŽ˜ρΊ?Z][Ο&½wsͺ]OnΠ΄χ$(7hΤp˜ΰδs‘QZ|@†4Σ|_₯Ά”‘‚₯Ϊ5¬™ξ$Q•9η ωΧD±άΙ`ΧΎΧ-―­ΒΓrˆOEηž=zΦ”ΤTΉ₯ΈͺΦmr£Ξ&·ΧΌE¬/„οά†³ω5[θŽΣ=°PŸοH0ΠΧ§Γ ¦Ε‰B€@mUθ:}0Aa΅ρEŒζ—>qvνς—Μr;WlŠzd`Œ κγΡ6(–ΗQΌ·”|Β9›ΜŒŸBgυ¨­Mσ&Ά7…•;υβ;λo i–―+G£ηήύ_\{{Χ§Β[>—θΪ8²y‰ž}CY”šF$’!L°ΰŒn< »ϋW‰>%ΫθχA ¦ί]Ζ§r=ΑF§=vηβθΫ­Θhƒ”n‘ΙΙ9ΙυͺŠW΄Ά3”άU£ΉΕx^oι­oΩZίΪHΩσν'ζ2z†V䎽:WαίZ'Ε)τω _±YHΪ™ ] dt?1Οό½‹TΏe›Νu¨iφQ‚Σƒ Ο'θ+–΅ΣδΎΤ#ρ.‘η[έΫόˆo?εϊ2rUΤr£ ξ:Υ§ ςAςi)ϊ§ˆE΅Ηφ}­°ΈΏ;XΗ/Ι;Κ·π‚XΊ‡…mυv·ΈρP‡Ph ) ¬CΈυ ž}2zVw‚ΰŽζοΕVEp—χχN—6σŒΙ S–>œ’§‘ν]]ΈΊˆ+ΘfΊ laξ$>np §47l`άό9πE΅΄Χι0[Ε fI9₯Œ*“Ρ½+“Ρt‹mΚ-{D΅‘.HkΫ‹=μΫνΙTwwÏ|Φή²ouItŸ ΄’ΫΕ9•…3Εk0“΄ο}Чπυ­_μ7I›ΜΤoξŒκ νžEΰz gΣ½sb%7ofi _ήGE§^Ϋ_ιρ^[L$‚E Ž)/ο>Ν †ž{“χbNՏa\'†οa›ΔΞ‡αι&P­Κ?˜v@Œ>q·‘άΫ5ά&ΚΡvˆχ³Ό’±gvυ&¦S‹Žˆ)Α6gΙ©/Ν.«#Ί@ƒεφάk2ζΔΘΩ’φς^q†›#ΰVνΕ•ΈΑΥG‡¨7Ω`qmσ› TθIλXJMθTR+ψzϊ₯βŒG ˆG·/|œ~₯βٚ 2ΪΰαPLεIώFΡόλ3Jμ΅mGLί*ˆ€σ# q•pO㚭γwOψDcΈΈ–V[K₯i"‘ΈQœԊτ(ιMΨΝι(4TΡ..΅ύ_Β\–{dy¦I-ϋϋdωCΧ,C}Ez&₯igya4W°Esn~ϊJ‘ΖO¨DΤεΠΌ*ϊ€ϊM½δΧ{¬ν2x.έΑ#“\/ˆΟ‹o₯–Yυi–R m1H—Ψ/§njα:tlŸS’₯*’—2.­—aγύšΦ[YΧ}―ššΖ|²{₯})π[K’κ0–’Its*΄;–z8φΟQψΧ'αxnμOΥήHfΆ7‘™—Μ>pmΨ`AœgJυύ~ήάOφ‹GˆΫ€Ζ>Qξ+–ͺ\φg£‚Ÿ<:Ρω–JΰΩr}ΊΡXΊ%ίΩ₯:\εΌ‡Bφ„žWΥ>˜δ{QZR6&€9dΣ;ϋΰδuγŸjΕρ ŒΓn«`ήN£jsŽΦRyŽOT?‘ΕjΗ  Α—œAšΔΧ$[k»;[½Φ^Eά@TQΙΖqΙΐΝν9UΜ9o‘³ ψ†ί\΄o) Έ—so/߁ψΘoP{υ-ͺn&΄ˆρζF θ δ~uΘ\­ͺήΙi4–ϊ€Cy•€ϋι‘Έ>xa隚ΣΔш΅UΊΆ £ε·˜cδ=‰1]4q\κθ䩃Œ]ΡwTΦŸk5ΓG½‘αcΟސœ*γܚΠΣ4mt%Συ£Ή2εόΕ ²HΔ–Θ<N? Ȟ%ΦῚ.ΧMr»IΘ’η<Ž §8>¦»LηŽε­[ήδGmΚ΅9/μcΒRoπρ’J'KžAΎ1ίȐώ8FγΆτOιšςΊΫJΙqmšΪd)4'ΡΠς>½+Pzv=³\χ‰΄ 3[™7Α!ΥƒΝ³˜ξ!δ|ήfxμs[S«ΡŠpκŽ”τ¦šβνΌKͺψa…·ŠOΪlwmY>Q“ςύ‘Gά?νŒƒή»Xž+ˆVX˜20r==Αυ­γijŒεξξK1/98¨έwp?IoΜs•8¬Ÿλ±ψwH3šβςgΪΪ'ίΈ˜ύΤΜϊ] \¨σκCž|§-γH^[Στ­²ψ–tΜW6<ˆ8,Ύ¨:(=[κΒΟKπ‡ΖΠy6vQfc“Η,Μ{±9$ϊšΗπΦ…ΎŸ=ώ―qΪζ’ΒKλ¦Aϋ7OΖΈλTŠ‹‘έςΈΑž¨Εͺλχx–κ6y%…Φ<©ˆH6F=Άς}IΝz}μ—cVm$?i°cεHνπ?(XΖPއ₯έιi–7_μ³ Π!δΖΰᐴ­‘Ο΅_Τ’}sΕ i₯OuerΦZκS|£μpόΜ9Ξ|Φθπƒ“\XˆσαӞœ»3Π§ˆŒq‹ŽˆδυΪ&€fΡ’šηΓΪ|ιwͺ遇‘o2°$@ΔυΘ,S$ŸH|EβϋˆϊΖ“ θ6Χ6ώ|™†IΕΰs!ΖI 2kCΗZέΎŸcΌ)jκUyPο)[ž}YΉύIγαίΓ»?iλ<ϋfΦfmΕΑmΫ9ςΣΠg©MNύ’*­hκΎ?6e]₯.Xmύh™ΎιVΪ«miͺvΗͺBI&lς„“χΉ:Wo欇r6Aρ¨.βK¨)cWΖΦV‚=θEqg«x5̚"Ι}£©ΙΣƒ$ ž|†'‘Χδ?…v©?΄cfφ:½Β Bhz+ώω3οΓ~ΏΞ€”’p+-{NΧ­,υm6δ:G7‘ «G»‚§•`qΑ­s€}ι1ΗQq…ΛpzαόJ§Ζ°πΝΊ“§Z²Ύ­2œ`υKpΌHΏΊ8κk_ΔZεΪ\E‘謳v€£•ΚΪΗήgϊ=[GΡmt=:++`εPZCΉέ‰Λ;₯‰Ι'ϊ P…ί09[BΝΌ1ΫB#‰Dj8Β =μaXΪ§† ΊΈkλ)žΓPS•ž0ή/GΖ·ˆΑ .k‘I£&“άδmuΙmυ m']ˆZί½Β΅΄γ˜n=BžΝώΙό+³Sς‚pηšΛΦ4›fΑμ΅ q,-Ž δΜθΓ±+ŠΆΦυν+ŸΓvΣ]Ϋ8Xΐ%-Κ2;Νό9ιί­g+t* ϊ#‘Χ5»ΝBωτJRν0·—ΑrΆJ{οJ{έMhi:5a­¬^Z/@Nγ“Ι,O%‰Ι$υ«:Ng£ΨΕmiď8ΙΙ$œ–$ςXžI5q”dzΣ’Κμ—&έ‘¨ι–Ϊ•±·ΊˆHΉά=TŽΰφ>υ—m©]h—ΡιΊΌ―-ΌŽΦωΐωd“nτ=λ₯"¨κZu«e-άBXd\2“Œώ=p{TKSH—<ΔD.]B(άXžυ5•¦Δu;Ον™Τ…Ϊc²Fr3Υώ­ό«”’}CMΉΆΠ΅Λ²ϊcJR;σΑ•F6Ε)τΟCŠοΥ”΄Q€ μ+™Τwδ*ΝnI·jaPΗγ4‘³F@9­W%©Ιλ^ž{™5½*o³λ±Θ܀ɞb›ϋΘqΑκ§«ώρ :έΌˆρ½΅ύ»»΄—οΒόp}AμΓ‚+nάb8δŽkžρ†ήββ=cK”[k G+ €‰ή)Gt?šœbœ;1Oή:1Ε8V‡|C΅ ±K[jΜκΦCσΔά~jz†θEmd2@οTՈLœΰw#_υ/ΗeαςΡκρεκ«ΆCœN˜^έρZ:¦―y©ίΎ…‘Lb’?–ςωWp΄?*zSΨSZZ^i£ΨΗmkΕRN άI<’Iδ±<’zŒ\·χ„zm’Ϊ4Q†άνΎW‘³$¬y,μFXηπ«z’gLΉ#²? ²3Ž΄³/™o"βF₯tΗnRΆLߐsŸΜT:έ£^h·Άρ¬x[g³WυΊCο­1Ϊ%SνŽ?:Έ0㝈œμRΡo΄τ[[ ΓF¬}Ž9ΟΎk[ρ$Ιvϊ.€‰q©―M -= ˜ϋΟιηΧ‰%φ€5}WΒή”Ε \ω“_ͺƒφ%q–‰GyIΞΡό9$τγ£Ρτk=Ζ8-bΪ©–Δ“Ιf'–by,zΦfΪ偡*r~σ34O[i7¨Ό—š”Ηj78iz ŒFΉΟΚΈΥ‘ ΐΐV™†έ§=s\ξ­«C‘Z=ΗΪLq―π}πO`\ŸASNͺ¦½γ¦1r‰qUυ‹ΙIωbQ8Χ)ͺψ†mNπiϊ4 mw‘=—ϋΝϊ ₯Ά©­Λ1ΤγuˆΞξ,Υ€γρΛ~²l ŠΤ%ΒE(ωQ>˜J’ζ““6„eΌ ψ΄›[Xr)D@Kηžδ“άϋՍRβ/X£^sŽƒΤš―¨κΧz­άZN› ΞώfΣ±>ζΊύΐΟι―L·W(wGεD{ΗΞGΏΈa Y1©F›χ‘Οθ>½Χ/Ζ­«—ΆΆΖbΞ!θq؞ΌτθVφΆZuͺΪΩGQ§έ :κM;TΏΆΣl^ζξt†(ώfg<―½se΅ΏA›I’γ7 έ©όλ²:X™Κ_jC―΅βnžΗH„ή^‡8>\ξ δΦriwί΅Ό=Φ’Δ$—σ–Ϋ=Υzθ£ρ’ΓΓV6Φ©q"^|Έd` χ=I­x­ ΄·ΫΖ¨ˆwaΟ4}YΙήD9Β? ™€Ωι6‰€;UIl‘–f'%˜χ$Υ2„r1O^z#ŠλIZΘΑΆ$|ΔΏAJpV£†@xυλQΛ(^H?Z΅g‘ ‘₯ Χ8όλ γQΈΏ’HlΛ·SΆKΜdΣlcΏΦ›+κΖ7t·OψωpOκΑώuζ£g₯Ϋo™γ·†!΄g…Aιυ,N/ΩΎEΉ¬)υ-[$¨c„mΙΛ;œΉ>η½SΥΌEi€F’FwΈ~"· I!e―A\•χŠ5)eŠ;(ΞΞςAίέ ωbϋ[Ίnm₯οŸ ΣΙΜ·2ς±χcΠsΠb’“W™Όbζμ@4ύ_ΔL΅g6–™#μI‡?υΦ@=AYή2πŒ_πŒ»iΆ±Η-–&Ž8Χν!ŠŸ\β»;WCo) "’ϋQ΅Σμ₯ΈΎΉŠΪέG&^σο]0i+D™CS…±xυΠ—1€VDY=QΦ―Ύ©£xNιSwϊK’h…δrG^Όšγ΄νZ{‹‰4] χμv.ο,WR W’2sΆ<ŽΩλι^…ΰΟYiφΪ n~Σ9$K)έ)_RǜŸε\N¬pΝ€R§Q{ΥJƒJΦ|LήfΊςYΪ“ςΨFΨb?髁ιό"·mτ»]>έ#‚γŽ1ς’( Ώ…kyJ퍀56hw°IΕrJu&ω$ώΜH,­ΚΪΒ½φΥΕES‘R,a1ŒqJΫBϊVπΘœ…Œ_½M˜+BΡΘΖAHΞGpEcκ^%° Ζ3άΉΒ[Δ…δs試«ψΔšδΝc§EŒ†aι#ŽOΠq]tڊΤΒΝ™Pxš=QΊΡμ’ΈΤΥ erb}ΗcΐδZψ{PρxŽιΟ90>#ύ²9sϊU›έkÞ„YZ[©Ίε·Άˆnό{ΖΉ}C]Φυ’ώ|`±PIŽ&±ώΣcωW4ρ‹ΣCzp]NΒχΔΪ†"[Hc_1xŠήή.G”3\.½©λ·ξŸβ;‹$³γqa1irDR7>:aρτΘ­ψa·™όŽόξ“–QξOzν'Ρ-ο΄y΄»˜ΛZΝE"―$©Ÿ―¨­ΥYOά{(Ζ“ζGα{=Bσύ 7o5²Ώ­-₯οŠ|6’2£Z±R6ξp—*Ύ‡<7ηZΉΈ9²Τΐ†›!Σο_™GB¬ΦΆ‘·XξR,ώεΟΙώΙτ ρω«RιΟTQ–¦­Ο„|jd²Ύ·X΅ Ηχ71˜§B};υξ ͺ·^ρ†₯Σ$mcOSΝΌΞΒΧkto‘­ύ_Γv³ΛλT©ΚHxt>‘³‘Y"Ε`€Ά½¦,Žκ5τΟI§ Χ°₯’fNSέΧν₯ΌΤ-‡˜£νN⠐‡ˆœONI’ξω¬£]VάeaΐPc|YηQԁSΑ?f—|b Ydγp0]Dά psόΕfκρ7†ƒ[†Φτ²G™»VαW<€z?)aš|τXΥe=*β\#Β$Vωv† ΫA¬-GΒΊV½δκφRΛg¨δ”Υ4ηQΞH~q ΘεMbψΔΧ–‚ζpπ6Ɗ@VH±Π2žElΩέΙ§]»ΖwY\>ηNΡH‹θ{ϋσU‡Ζ(OΩUΠΖ₯)[š&ό$ž%π¨Ωβ;ͺX‘Ϋύ§¦&N=e‡ͺžδ―Ώ£κv!oν=.ς›&<2烴pΐς= _V¦d“ΚqΎΫOΰ{Χ oα›{έOUΥ|;}.™¨%Σ žΩw'+,Dν‘rO½zΤτzŽ“š: wΒVZΌΏk‰žΗROΉw7ύϋλμkŠΤn΅Sα!΅i-νovΤ-—Μ@0@2(—ωWOkγτ—[/Y!`±κ“%”‡Ž―Φ3žΝωΧKm"M͏ސΚΐη#·=Η5΄ιQ«;΅ολJ” 4ύBΟR²†φΖxεŠ@ HιSg,GNk“ΤΌ7m§ SEΊ-Β~φgŒ~βEŸ2/Ίάw4Ο ψέ5ΆΆΦ¬δΣ/ξW|+ &+λwγiδVUΰγ£.…XΤψNΉŽ8€ύΪL†4€αΊšβζΤνQ)κZ}Ά§hφאE4LGΛ0άΏύo¨fΪΣXc€Μϊ…Œ2˜³ά «”υο…jμY”OgΪ³τ/šΔLνΈΙ4¬Δž§qMF’³CI2Ž•©ΨλvςΓo+FΘؚήe+,GΈu?ώ£YΧτŚ[*ξE™ρζ 6O-Ž₯9_Ά΅― Yj·{₯·Τc9ŽςΫ2{nώ!μr+2{PΠ‰±ρ2Ζ"$:΄kˆ˜’(VΗΧξŸjΞ₯ oξ•+5dŽsJΆŸΓ>%Τ4νGQ»Ό[ΈVξ;‹©2ξΚηΎή1θ Zπ¦oβέk/[yΐa§a‚ί€ιοZ4Σ.u;}WLΪoμ[ΝƒpΘpF 7ϋ.Ό~F±΄Kν5΄?νM'R]-β\Λ§*¬1Ή%Ocžzχ’«:Ρ­φvηpεŽΗ©άήYι6^άL‘Ε圌γόIύkΟη’_-φ‘ Gg f͏έηοΙκΔrjΆ³_xΛJΡ/±²yΎAl)aΐcΗ>£ΨŠΦƒCHuά¦W;ωόΣQ΅da|μηυΨMΆŠχΔ0HŽ η}°j€¦Μ–χ…!δ+«AΧρdˆΦφzT_(Ύœ+Ÿ"ηω ζ•{φٌ}­δŽCισGL αuύ'_ΦΌ$fΉΏžAxΪ'†ΝΑGœpNsΝw> ΏΤt½o κ7…oμ#ί Μ˜%­έ>›”§θ+‘{LΤd£f‹έSμzy:ύŒvΡ9 ·ΜYRR„7ΒΉΈΌ;€}³νϊ.™uαΫΜ‚&² π䣏φH¬/Ώ‹|Kw>·¦Η¦flˆV·’W† H>p u8nξβ‡cί¨Xxfξ=CJ¬¦M;Υ΅μTHκβΥbΤζώΓρ%¬;₯ϋ’ύΤώΰŸΊέρωUoέίxwO‡JΠK­^ωš+3$„ωJ-#q„σ"²τ·ˆ΄ϋ±wαmQLbimΒ]Γd1#ΨfxfK]SS»Χ,ξ<ψ†m Λx—nU³ΘrNH<τ«wqΌ·BΉτΨγώi—?5).ζ’?³Zο•§9yB ,ˆ’Ώ™―EΤdΤ―5>ΖŸμψΔŽΜ€B¨ιžŠN ΞΧτw[€Φl~[Έ{1Θ‘sχ[ωƒΪ³/5έ{[·ž‹N‚ξ8δ‰₯ΤΨ©ΊŒюG+‘5.em$€ΫHκmΌ+€Xέ‰…š½ΗόόNήd™υάΩηιU5ίiΥμ£™d–7D[ΰŠX[©αesΫάuΫΝyέΏ‹,΅)ν5λVΣ²™Όσ© GŒ± Σƒž8ΐ“ΑdΦl†³ͺ4ΣY9ΆWNΟφ¬r²OžJ‘Κ§‘πpw§ _s—ε³:m, wβeΖ·αϋ“§Ψ/ƒ3₯ό€‚1žB<Ο|ΥΥiZΝ•…–₯g¨I€ΪQ3Mζ6rΩa&O,1žzδc­YΣgMkΒΦ:‰P%…Y αΖŒbΈ―Ζ^<Ρ|3ˆσ―™.¨φ·“ o]Ο΄Ÿ@΅£JζjΦ!bšpή0ΤXZjΊΔˆΦ¦γ˜ ΅‡ γŸΫYGžΠ²ΜU»A9χ šeάVςιVqΑu›{²'y©ˆ.ν€ϊ“Qj?mηρ=Ά™g¨έ}Žd3M !š!Ηή9'qωW>η΅z5Ɲ–ˆΆV"$ ΧΐEEJrœΉ€tΖ₯*މγ^\\κZΖαδΗ9Ž%'„<|ηάηƒΪ½Z€Ψ₯#ΖΠrT>΅Θέιe֚κΞΥe[•Ϋs¨"E= ν‘ΪΊM[Zhv‘\_ΕdΡ.?:)ΟB?Jε„?{{—R› C©h†λ[»$ύΚJY’ύ^A{{QZwςNlρfK&r’ΧΏ~ίZ+KhεΕ„˜[‘yY4δΎ2f,m,^]Ω$Κͺ·>Zς¨§AσOΊS˜βnsΉ°?Ζ©κWsΟ©/N[S—=rέO>cOOS^MhJ€9b%$•Ω ΔoβmY|?d-– ²j2:ό£Œ€πY·Άsy_Hs!ωž{‡9go^½>‚₯Πla·‚^ZGfž@MΆΩ΄ΓoŸΎ}σΈϊ Οπή‰uγ­fIs5½΅³΄KΌ4˜<ŸΛςX§ˆͺ©7ξC6Ev›•EΤθ~ψψjΥυΝlyΪύΘ,ξ1‡qδύγ‘“Ϋ ―A9ΰ7jζα#ŸK’;_Ζ"O1BίG“½έ >ΌWD%G]θΐ©=½kΤΡΪΗ#ΨV#Ve žG¦jW'Φ δσQ-hqΊ†%{ζΥ΄K±j»ƒ3‘˜ξ0AΫ28λΤSlΌ}ΊkΕ5¬ŸΫ‘:Ϋ6“ΦG˜Ž0{‘λ»Ί][Q³4ωo―₯Ε$υ$φP;±μ+žπχ‡δΊΦδρF­l#Ύ‘vΪΔίzΪ>G'»²ž}4\Ήš–Ε€ΫΠΨπֈΪT]^ΈΈΤξδσo.ϋΝΩΡ Ω­ΑΘ&š8ƒ΅ρ]wF:Œ š@0rN*Dη­gλ:½¦‡§½εά›Q8Œ³1θŠ;±μ*/©v)ψ“\}ΙV?΄jWδΩێ²Kοθͺ>b}sVšMη„ΎΗx°=τ¨Ξ/e²ΣεΫώnG΅mθΊ=ΫάΙ­kq…Τ%_.(3ΈYΕ<ΑξΗ9cλΕnΰοV'=)ν©tμ.ŸͺYjΆIwg0’'ούΣάCνSτqυώ•ΜίθχΣΛͺθn°_1ΜПυW#ΈqΨϊ0ζ―hzυΎ΅Ί ¨-Ε΄ΌU±p’η–Εm3F³Ρ4ψ­lΰςγNŠ[qΙ䳬ΔςIλτ«NΑO'οš’ζEYw3“ωWβ/άO,šV&&O–βδ ˆ3ό#ΥΟιυ¬jΝAΨι§Φ€Ϊ‹RΚSgb†ζχϋ€αbχ‘»}:Χ:š}ΕΥκήκ·ξδ°#‹'’λF§Ζˆ‹•PNXςΔχΙξsš·›˜μ‚Iθ΅δΦΔΏiΙbμδωQ©swk£Ψ=ΝԁqΙ8ΙΟ@©=pιzΟ‹&+q4ΆΡVm’5Ξ2ψδšΪπξƒ{―έE¬jκιn™{h_ͺpδxŽž™ηχPZ˜`Ψƒ€υυ5ΡNΊΜœ=Θ™Z…¦hΖ,풎PΌΎί›ά“λI¬x’=:δiφpI¨j¬>[Xx+θΞΗ„^}«"η[ΊΦoJπμγdncΉΤΐΜp‘œͺ}ώœ Ϊ4KM.ίΛ†6ω›|ŒηsHΗ©f#,jγMΟβ ²ΆΖ]–y¨_E©ψŠtΊž6έ ΌK‹{χA;΄k¨Š0¨ΣΦ0ό)Θ3]j[ξW;εŽ6Τ{€9«$tyUΪέT㚎{˜ΰŒΛ#ͺF£,μx_­Ay} œ_h•ΘŒ|§hΙ'°€τ¬ψν$»•n΅EΛΊ+RrφΏΌίZRŸ %rUΎ’νqf1Oοδ/όAs᧝δΉΝjγrν ω‘ψT¨*nφ;#IZμ«{₯[κ:tΊ|Λϋ©aυ‡κ¬j²I₯<:«>Μ΄“Ο̜?QƒV5ιϊeΣXιΡέjzŸO³ΐI(Ϋcς¨¬4πνΖ½6₯Ί*Nκν§@ψ€da‚ό½g)ΕOVε$τ./Š/u φή‰d‰[k^JΉ:τ˟§π½Ξ‘Ίδσꗁίp~TφT*Œšέ,ν-6Φ4Q…άzΗτ¬Έ­ξ΄­*{ωƒ5ϋό–ΠΉ$«·Ώ9 F"·΅Q§±k‘2}cC>(Π¦KοN”›)W©gΠγiνΝt^ΥaΧt kψΠΖΜ1$L0bpθAξ­‘₯kiZzi–Yͺρμcύγܟ©ΝrοŸ xωα\­†Ύ ’‘Δw±¨έτσc瞬΅θWΓϋH_ͺ9%>yXκŒδΣ'ΫΉH=κ½ή₯kangΈ™cŒt-Ξ}€ξ~•ΞΛ{―λŒK€X[“ώΎδδ²˜ώu„!Έœ¬lκ½—j&Ή˜.8©cθsXΝoβ±>yΡμO3Θ=Ξ>_₯NΊ>‹αxΏ΅5‹ƒ5Ψ<Ν9.Ω=t€{Sρ•ώ¬|»k lχ#ΜqυντͺOΩι7ό― ψ*˜ mAΙΖΙ3Ÿ©ηρβ°΅kšΠ1 dxΨ¬<Φδtϊ Ζ·΅Ž₯»o”οΖηΛϋu&ΊK j«œΙchGρ`ΜγΨcε^kR­iϋ‡\#¬Ξrk{F LŽr)iŸΤΧk‘xVFdΊΤbςΤΡΫ±Ι³?Ώ ν]™‘ιΊBζΦΩOβ•Ύg>ε5-φ­i`«ηΜŸ»œύζΊ#†…9sΟs:•”ŸΈ‹qΖ‘p 9’kΈ-”Ό³€^+”Ώρ άͺζ6ϋ)Ι$“§²ώ΅Βήίέψšw΄Σ¦ϋ8%n/Ι$z¬yϋΜzg ˜sT|΄Μ%ξόE›οιΗβ{5fΉΆΈ³0_ΌiΓΖΉ₯*”•ͺD½½θΪ§„τΝbΩ>ΣkΚ>d—‘O\‡Yλ¨x—ΒŒd“]Ў¬>Χϋφ\ƒ]6šδ[Ι “Ί y?έώωΊΡ)P1ϊΧe}€e5hΞ3ϋ7Βώ?σoν&ς―ψ– bžΗ ά}—w£ψ§Γ›?ΫZ~Ae%§Gγι]Ήΰ­?UΉϋ|&[-INRφΠμ”sΡ‡±ͺVή'ρ…“Θρ=£κz£U²qQM’―ϋΛ‘Z{•‰ΉΣ¦ύΣ3KΥμ/u»ƒƒŒ8;£>Œ ύkGΒ·ΠΩk:­œΜ#IX‹ Μƒ+υΘΘ«7ήπmsKΎ†7 lΌ·oAΡ½~†ΌΠCiK-ήΉ¦άIΟ–ΈO™@ ΘΰW,)<5OixJ5!cέ&†)γxεL£ :ΊεHhϊΧsα™τ;ζΉπUάP1mΣιμwΨΏ±Μm΅ˆ­ΠΫέΌ‰ό!€.ΏB ΕtκφΦ:tχ—Žb†έ Žα~UdΧoΦγQφg<°ξ–ŒγŸΖ–ΪΥε―…υ˜_FΏžαRtΉpchΐάBΘ8;ˆ 3Œηθš™aiΖΚώΦ)­ψ>Tƒξϊάq^z–0=‚κΎ ±ŠQ«άΖχά ambCž˜}Mk6ƒβ/ ²Ια‹σ¨iιΑ5)s΄zE1ε}ƒdWm ΉΖνݞ}zP†±$kψ]Ϋμ.»₯‘A4ƒνP η‰ n}λGIρŸG0΄”‹˜Ϋl°H…%ƒ¦w‘δ*v…γ=/YΊ:\Λ.ͺ―ίΣοSΛ›>«ΪAΧOαV5Ώ iΊΩϋDΚρ_DΫ’Ό·b“ΔxθßNEELDMΙΆŒ’BϋΉ$ώ/‰μl^ΕhaˆΝqFM£€Ξ8?Zά6χ“†ώXώθ_”}zΤNVš™SΔ*±Ό›od­β«Νz xδϋqΒΙvγНέlVŽ©­Ie4:nŸΪ΅yΧrFΐμ‰z$τ\ώ' ¨./m΄ "±³JI†Uεη“ϋ wΟR{j…Μ^π†‘z¬ž!Ύ(²Mœν™Ϋj"²€π¦k₯«κʏΌΘήϊςeΠό>‘έκ))kϋΫƒˆ£υgΗήnΑ@5£₯ψFΪΪuΤυ;†Τ΅0€‹‰”‹ώΉ§E­E’ZEa₯ΪΗe*«Ε°X“–$χ$δώ5©m«ΐ/RI+¦9Ζ01λšΚχω€T¦οξœ~½­Zx„Η>™t'Στ½vΚ+·ŽρΞ?Ί―4ιφΪ•Ξ— —mζJcy±έ‘–=Γ+ τ» ^ψΧΓ±b8΅bΤ¬A8$oΓ/Υ\ {υhaΏΡ Šβ•%,Ή+Οσ5΅(ϋˆœνο2[H’³ΆU…HFP0£·°|}«κΆΎ»Π’Yn‘Q!wBBGΖβ«όMŒžzu¨F“θRcDΏK‹LόΆΧ―–AθœOJyρ‘h―ό+©.2ΘΩ4x#‘FAϊwŽV…*ͺk˜Ήπς(­ό’3ΆX#™œύηyNζb}I5βšmζ±i¬ήψΗBŽGkΫ«‹‰! ˆ`2·ξΫί HaΞOελ Τ —…dΠΒOoy¦y‘ΕθUόΆ%‘nzŒgΤVwciπ§GŸΙ…δk5ŽΩGο&δοσdŸΖ8©;HΑΆ’6τΝJh6ςiΞ–KΆμΘhΐα’»ΖGAΟzΧΌ³γH  Β?pΘξρΠcΣΆ+'BšΛΓk¬2‰f³΅7P­flΘGlξoσŠ6—ϊš~φζK+rpDX`υlqψW™RŸ";‘€yΞ3Ζ7φ·­k κ!’ζtϋW™ΒΕ ±Ιι»GΦ½JΛΰΪ€WΖ+I΅S²Β˜–v•|ΗbΌΝ’kρ&’<#₯_κΊ J‹jm„Π.|ΏήΆάmυƒλ]t¦–ŒΚ~φ₯‰<αωεΣuλ»Kur#΄uYƒ3…N7~΅ΑψΓwΪύ±―Λ<֚δ7Ν%΅θ;š@ζώςœν*r5BςOψŸZ³·¦½ΥwyIχc„r}©ό{―…ό5oΰο ξUΔenξX`;Ÿ™Ψϋ`~@SRΡ΅Τ%K‘ϋǞΏΕoiνρG‡μnmΓyoφ)vΨΐω žΐzΡ£ψ³MΤΌ:Ϊ5ΝΛι—ΡάMφ¨'•(ΆέΊ%ΙαˆΙ^πΥe›ώ-J}wW±Ss©’Κ2–Q#‘Ή“O©ΕzL^°ŸL‡L»΄†β ›'Œ8'מηj§t‰pŒΞ"k¦VHb΅Φ‚ΥIm³ΐU•G|Άλ]}₯ΟΪΣRΥ9½šŠ8όλBAΞTγδž•+?ΤsޘΓ5Ώ>€(Y‹`}9χΑ7Ωγœζ7'98άΏCΤSτ•}vΖ οaG’6hΥϋHA 6? ΪρWϋΌτ’€Σ†λ7'χ¬ŒυΑ&Šί«9ισrκsuΣki ξΈΕΒ‰ΔκΜWj‚©Αω³]~§Xι6Ο€^^ζΛ;œ»y.Η“Pjϊ[jv‘ώ]ΥΌ‚Ki>[PzV}­ύΖ#ΘkmBGhΧψ‘EcτlŒzσ¨4ю"œΫVΨθtqύ§rکϐ3°?έόqΗ΅nSaŠ+h#†Η„E8“»:⬬ˆds‚1ΦΉ=CΒσιs=χ†nE„ξα€·+›Y½w§πŸφ–Ίϊ†τm²™Ί…Ώ*/e 6sZ'-―n’ΣuHMՐLr³ΤΔύ$ϊu±0FAΝd¦ƒa¬ψJΣOΤ­£Ή€ΐŒNΜFw9SΟQƒXήG‰< ϋΰ7 Ρ”έ;{n£°=&_@pΥ―²vΈXήΜν`ΈbN2+Ζ:υΦ‘c––‹.·¨Κm¬"~›±–‘ΏΩEωΰ;ΤΪOˆ4[J“W²ΌF΅FΛ1ΘςπCƒΚ‘άŸ­dψ7½Ξ‘γνW1ΫΟ‹MY†>Οf€όάτ2ΈŸLT¨§‘z–ŒGΓ?Λ5ԍ(‡t²ΚόΙs3œ’}Y›aμ+Žψug§xΏΐ(ΔΆι—FΧ6ΈY³ω€γ£. 6AΪj‡ΕΉόIͺiΡΊ}<ϋ41€₯€Ϊ>fά} Ε3ΓώΎπ“ψ‚9 Pu PϋsŸ½ή½xγ¬κI¨ΚKWΫΘλφ•8Ι=Λn©yiγhό7γlζyJΪκδd˜>λG^§Φ΅uMΟVΦ πμQ΄€%Ζ₯9‘˜μκ°δŸβ θ½K{¦Gβ6ΊY,γΎ‡PEŠΪΫC"Œ™‹Ι=xλ\%ή‘­|9Χ%πεετ7o{‹Ά&d•—hUFΟρ|Έ΅ΖέIΠ^Ξ6—ς•Wά’s•Ξ³ΔΧmβέbιNΡΙv?*Ž-ν—δΗ©ΖΥΉ―K²±΄4Ϋm>Ζ ­΄b(£Β£ΧΤχ'ΉKαΟ‡AηΤ΅-ΗZΤΘ–ηyΙ…3”‹>ΐ‚}Ο΅uΗ$ζ΅₯ѧʌgw+‘άΗ‘4n+ nAΰπk”ŸOΎπό¦γ@“nM:VύΙΙδƁΏJιά‰†ΖJɚώ(€k;§Qƒ΅YλοQ*²ŽΖΤγ¬Λ:>½k­Η ˆ<70°Yν¦d…½#ΠΦ‹?–›˜ƒΤτ_jευ[™αԴɍΎ―ϊ©˜$^Ύ\ŸήSϊpEcέk·ž)ŽΫΓ‰ŝΤΩώΣVϋΠΒ>πά:ο8P{ζΊbω•Μe2βΧRρlΗ^²ν,εΝm+a.1•iό\…τΰΧW‘λφšΔNŠ ¨0·ŒI `pΓΣΠτ5© ZΐΕĈ‘U’ΐ€¬}oΓvϊ΄©y’Ϊjp©ΌƒEφ9ϋΛώΙ‘JΞΜ"ΩΌ3”)ΟJδ-ΌQw‘JΆ^)Hβ]ΑcΤcθοώόσo―•Φ¬‘κ{0ΰΦξk›ρ‚5 #Ό΄™¬΅›n`ΊQ’yGΔ„ ό*=ΕBκq₯jΡύ‹YL«[±ΚΘF2cnŽ:ujZn9ΑΗS¨€4qλFi4Jc&&ˆΕ"`Γ B;jα€ϋ_%Ωi|:Μά7΅†OCΤ΄YΞ?»ŸJξσΝFκŒ₯\eA“—.₯€₯‘™42YG$¦&ωƒό'‘όλ#ΕΎ+,QΩΩm›UΈΉŒ©+χ–LύOΟή_Eύ„~Υk}!Š $€~yΔ~‹άφQ]/†<>tΈ&½ΥLw:εγy—wxΘ-Ω=zί­mGχŠθΒ€eLΛΣNΣό{¨Y]}ΊφTσg»b地Αb:πaΕvΆ–ΖΦΒήδ‰CgΧώ΅Ιx‹Α°έΈΡV;ZIγ>b’‘Jͺw2/ ή½j†όC¬g³ΊŽβΗZ΄`·Ά71±ΗΝΙΓ!Θ*パνζ❑5Μξt$S•#ͺ§?0ϊSe+™dtUPX’p’Iθ1ΞjRΦμr’Z ’Xΰξ&•cŽ5,Μν…PI$τu5ş΄xώE’D’ ©([(ϊ‘Ο κ°u:·SΖ)Ϋfψt³HŽΎ‰³ M•:›ƒχΫΈ„ΊΏΔy‹£O²p1stΐηλ!νιPκςμt%.[Θ_λχ7·­€i2˜Ωr·wŠ?Τ>βϊΉΗ~΅RΦΖΫM²1Q©8κ}I>€ϊΥk}2 [hΎH“© rORIΟ'=λ]ΏωΏ³lηS JAΞ Ξy5εΟΟW•™]Τ~ΰ>½;鱋Uΐζ“<œ*ιΌ9ΰη»’-S^Y|Λ{)Žyμς{χ Ϋ©©όΰ«].ΪοUrχp G ²eb98lt-ŒsΪΊ[[΄μšςκL*œQΉ™»(Ι=j ’ωΊ›J_Κ:R΄Σ,žβκT†Ϊ>I~€ϋŽδφšη gΕς”O₯h§ώX–ζεΪ#ύZŸN€U;H½Το£Υυε"e9Ά΄ΞVΤ&““Ϋ ͺΦ5ωN+ͺ•~iU¨ώΙΟiV°ι·iqE)m—Q@ cρ…ejθ-/μυ!Β!ς'>ˆδ`Ÿ£ωΦ’±c‘Αλy/x”ω’<ΰ~tΔo™Η£O?Nβ«ΐ۞vνη0δφΩ Ψ™ΨΞf_κVφivg–ϊΦ«^κOpφ:XY'N$•†bƒύοοaψΥ3†‘··+ά ·w°ϊt{ Κ₯E£’!’ζεo―gό{ΒΔf?φ›ύ―OJΟΏρ‘Κtύ63u¨s8XG¬Ψ{u5DΝ«xBY4Ά6$ΰΟ kφϊšΤ²-΄ΘήΆ¨;‰<±'©by&ΉαFs©ΟPR›¦ŒˆτYVGΥ΅‹ƒwwξWΖΨαφHΐλΧ­n[!ŽΖ2§k#ΤΣ5Dί§:72¦EeK¬ΝpΦ:*‡dm²\8>Tυ'ψ ₯YΒ$Rύ欳i©ZxFtΏb)q&Δ?3°-z±ζ«uΚΏl’M'IB0Κ§ϋξ>θ>ƒŸzΌ+imyazd’K‹{“5Εδ­—ea‡,zΟN‚£ΉΦ―5ωΗΓ“<“κEFΜgŒ—>ύqNΊqΊvG₯J€³4n4_ ι[-νΦ4v4C–b}:±5VΩ|Qy;Θφ°ιΦνΐk‚ΐΗχΏΤΥΝΓϊMόqΫΫ+ήΔ=μΌ“$d Η‘'5kZΎv£`±•O6ΰBρχ;ΑΗ~Ea8%OΫG[„εϋΎ†lπiϊPIυ‰.eAΈΙ)8Œ²Ήΐ«ήΣ–Mšήͺξ %­’“-°Δ¬F1QΛαυΏΊ΅ΈΥε.¬ΐyC…“ƒκzV†«β?G˜AΓ]ž#Ά‰s'εڞUΥφ΅wYS‚δ‰Ρ5ςʐ£ #'τΖ7k:%ΠΣa{JΒUΤQ‡7‰ƒ`ŸR›†*κišίˆ€σ5[·°΄?ςν|εΪ`==*ΒλFŠ?³΄ $»ΈL©Xώβ“ύχ?ύs^—ΆŒŽG Dv•mcum³q"Κ¬‚T’S•‰Θφ΅Ÿ©xωΘh<9n~躘b/ͺŒeA\]Δ―cΟαύfiΎΟo!–ΦΤΖΘΔ»WοIŽΧDΦυGV·ΣώΗ ΰKvΑp=£*σj:Κ§$ˆQŠ|σ0.<Λ‰~έ«έKwrH TφUΒΆ΄Ο κ“©ςΚάυ–`7γΩ;­uΊ'ƒm4Ι–ξνήςυzK/Hέ^‚Ά/o,τϋs4ς€1ƒχŸ§\֐Β]σΦΥ„κ₯ό2Ž—αΝ3JΔ‘[)œrg”ξ|ϊδτό*υΦ©g§¦λ‰•3Π§θ:šηn΅Λ»δBilzO8Ψ°ŸΤΧ9w}eeq°4ΣίΉΖ6—™ΏχEkΟgΛJ$r?ŠGQw―άέ+}Φάu‘†d#ύ•νψΧ3.΄$±hΦΣ_\d‡•NOOžVό³TYΕέΜ°ksbIJ-»8ηο°λΧ₯oa5Hγ‰>κ"€«νzν§η\ΥNjΈ¨S|ˆΔm}EΌΝvι%ˆ‹hXˆWž„γ/ψΦ’"[ΐ‰iPͺ¨Pƒθ*+ Œ›]1σAj–§pšE”—’εŒq|Ζω²ssΪ»dΥ- eρj;Α±G6―β}Qe7Kn\Πϊšλ’O,ztφΑz晦θΦϊ^§1³Τ’yΛx»₯.IΓtcΘο^G_”φsάW;gBΨ`ά³!δΨΞqΪ±―΄+Yξώέi<Ϊ^¬Oϊθ½€SΔƒκ+~HS†υͺ’¨•T© ΑΖ  a&›χ£Μ»_jš$ς/ˆ-ΤΐΞφ…°έlrŸ^EvΆ·πέF’Α*˜ΫH9ΑωΑα|¬ƒ†Fκ>Ύ’ΉGOΈΠ_θw’Ε<ΐ^ΦT߁½AϊVu(r+'–RW=A[ Œ08 ΥMF{kHξn"ˆcν‚~ž΅Γ[xϊ+FΕ”ΆyS} σ`O©2ώ#ΡΨG§J‹uΙd|<‡Μg…sUΕ:0χγοΖ“–§7wαοg}cΓ¬ΪU܌Nƒl3ΪXσ†Χ©‘ρ₯ζ‹Ψό]₯ΙήΑϋϋsžμG }Euϊ>Ψ Ή€εDΆΟe<ώ™5b{d˜WƒΤAγ½9Vψgρ•΄‘Δ\x7N»Ά“YπΕτpLHeΨwC/C†δΧ+¬ίέjzή—α­VήHvέκ1›r¨S#‚ΏA]oˆ4 ;@³ΊΦ4ωε%‰L¬φg δς΄Gε|ž1οXΊ6§d³\Z|GΡ‘ƒQΏŸΫ&0η*κΘοŒΧM8&ν#n{ϋ:Ω€΅Υ,f΅œ‡†hΚ:‘Ž IαFyt‰l/Ψ½ζ/Ω₯sΥΤ±ΟΥqωVeΧ‚/΄σφŸ ί΄›μ—-•Η³‘ό«MΧ,ΚκήφΞeΓ`n^…θ}ˆΝs α[ύŒή»0Δ&.ΪuΓn·u$d.rPϊcŠŸYπ•Ή½}gEΉm#W.?-Χδ˜“χf8u?LΣ4ΟIkw‘βΛQ₯_³lŠrΫ­n[§Ι'bΊΨϊΦήδΥ€©ϋΡ.θώ'ΆΤ[O»ŽKV,y–—꽝}Χς­ΒMWΥτ=?^·T½€HT†Ϋ$-Ζ[ͺž+œŽ«αs$Zη›}§#νMV4Λ"œcΟEδwΛGr+–₯zgEG΄ψލ“œ¨ΏxΤ6—χ–©so΅U₯ ‹ίDP‘nΡ)ό3΅Ίa­]k— y¬C¨: ‰qThόΉϋ δτΆ|am-άΪ Tκˆ?u ͺ?h_ψΆ)‹]Uέ–uε3ώς’Ί+τkλxήέφάDβXϋ¬=~½+HλOAΛχS'vΪ.Σ\0Š;HŒΣeώUUc“Η­dψ[PΣQ‘Φ΅5 Xx―Ζ6–“iVΛ§ι‘ οdXΒ΄χ >X˜ŽͺΜGΈ¦|G-.4[ $Š8ƒήΓl6¨‘ΐ ΐι]Q§.[ΉΖsi3JΓΐΊ]₯ž§©\έ]kς2Ν6’ςΆφσ΄v„ηqŒc½s t”Nayn4‹››GbήKΙλί€}+ΠZy/<η>Ψ–]½χ*‚GΧε5ηφ:ΝΎƒγΫ©¦”_ >πx·šEP»`ΐc؊NΡHvrGi¬ZΝ%ΌW–‘wfήl ηϋΛ•\Σ.βΊ±‚[bLnΣΨp}ϊƒX«on“PΉΆ1]ξn› Η·OΒΧR₯έBRhίν0¬œζ9σΟΣ5ΙRq½Ω«~νŽΒu•-]m8ΰ‘ί΅y­¦£«λ–φ7Pl΄•.ο#˜“ηή8>ZŸοεΟαν]ΕδφZ]»^M˜Ρ:ͺσžΚu$πyx?βΥn―€ž;™Ϊw‰βYΆ‚ FΣΡ@Ν\grαΜ¬z¦‰&…q%ζ‰c`Σ8dR1Œ‘θ―Ξ?Ορ—ŠΰΤΌ;q ]Es€κ—f;³έ& Ζ(}Ž2―ςη‘Ο΅a/Œ|[’ΆνJΓLΥ q ½΄ΏψφAšΗWποŽτi­|΅Έ„0ϋEΤxšΩΏΪG³/««JοbͺΖKrHμ ϋ[AŸ"#€!Wς¨υύj]E€ZΞgΥοœΑ¦Z;}ɝΊœ μŒrIγΆygUMsΑ“]'Ϋnn”S‹‹Ύ¦)MnoͺΩ|ΞI=Wμz€·›Ε6 dΥebΙΎΆ‘°!9ξTdZάΤC΅”–ρYn[‘έΣwRGΣ5―k;#M‰…U=€―stυGUŒΖ:NΎ(&1]νν'ωfCθWΏΤfΊΘΘ9ΥΙ7‡τέV[έ3S΄ŽCm(–έΙΓΖ’aWŽsΠρMΟ‰<,Ε”Νβ,0Β6>ί ϋ γςjλ‡ΏΩV·Βv@Tw ΊΚε}aqϊU-_όAhntΫΘεE;\r#ά:žU½λZΒ=ΐ―¨+ωΦΡ…Œg;’¦ˆΑτkGό{§jΎW?/Cž™¬έ•-c90cΗΠ‘MρGˆ£πΟ‡εΏ1›‹€DV–λ’ΣΞΗ ““ϊ[s5žKšW8x^όEm'H nӏ―\[»& 9ΔnΑ’Lwšμ΅Iμ|Y€ψMZ1k³^΅ͺ‘΅„{V8Θώθ'vχ=ͺ=ΛώΝyͺHn5YίνZΘ]ΫζsΟ#²ηιο^oβMeΎ!Gβαerχ+v$ ³“†?©CωΧ4₯'>Xϊ³ͺN £Χ<_§ΕK€—qΫΠΫ[Κίv;.ߏ¨ͺίΫΏΪ^ ΊΊ“NΈ΄°h™f–vPǝ¬ˆƒ%‰9Qœg"§ρώ₯gό:ΈΤlgގ‘Οe"œ0—pُFά1޽kOG±][ΕxΪ?±΄uW#ή0ωΎ»>ΜήΥΟF―4₯Λ¦¬Υ^c‚A-§€|.·}fρ\lςΰ³σ ’'χVΰχnφΞ[x+P»εΤ΅νδρΜλ{4ςtYW”ˆuΒ(ΒϋV•™“β‹Ϋ[‘ΙΠ΄Ή^21ΚΟ(ω^γί§·^΅Ϋ¬h‘„EΒ¨ΐΥN>λ“άηrεΤΕ΅Έ΅ Α {Kθ°&‚A‡ˆρŸͺžΔV‹IΑ qŠ©«hΆš S:••9I£m²F}˜s\όš–«αηeΥΥ―4πqφψΣ%¬Θ9ο α•”φχ‘§›4’yq—Οš­i-ͺyͺ­Έdξ½V’ϊ ­9₯Ά•^7ΐVSsŽJ'Ž PΞκŠ‰–,xU’}8IΖΑ(Έ£ZΈΆπύ³Hžq%ΆΕo­™$?uΟzΣπΎ€ϊ=΄Χ7Ψ}NςO:ξPsσv@Ί£UYIβ TxžρZ’”Σ"q‚«Θ3ύζ=uγ¦WM:n+ReRγ  b†Ξh Θͺd’)‘Šα r¨hΫ† Κ°χγ^m¦ΝkβAαo κW–±] ’κ$mΡYΔA'ƒ΄·EŽΉι]‰5φΡm"Žs©]1ŠΞΨuwΖr}z“Kαo ΞSq/Ϊ΅‰ ——g¬χ?ξŒΰ{TA>kά·ο6vQXYCkoΕ(#@ιYZο‡F‘$z•„νe¬ΫŒAt£wΛέ$Sχγ#ψ{vƒξy£hΞkk΄ΙVΩœΦ‹βΏ>πhΪΥΏφn³ό13nŽ|/όcΫο|WF>Y_§/ŸΠV~΅‘iϊε“Z_AζǐΘwΡ°θΚέU½ΕsQk𗄦6#tΣ0[}i”eΐUΈξžΫϊτά―κK§Κο΄šUŒΗΰzŸ₯"€rδΒ‡ψGή?SΪ’Ψ,Š.‹oy9<νSΘπ«­mƝΖ,ƒεPΏηΦ°₯Ρlυ4Cy•™ξΑFΟ §ͺŸq[ξΔ'’q@EXΥΐQU¨s΄r1jΧΎm5Ήž}=›dŒ€ŒηfΗGθ{ΧP$VS‘EΥ¬7–―mpŠρ8*Κγ*ΓЎ⸸eΉπEθΆΊy&π㐐ΞνΉ¬ŽFΟSχ[ψz*άŒΥH^Ηn9"³΅½bΣDΣ^ςνΘU8UQΉwcΨRjšεŽ‹¦6‘s6!P αw$|ͺ ucΨ΅›£hΧΪ† šοˆ₯Κgμ–dεl”ϋτiH<Ÿαθ+O›έEέΔ4]&γνOλΘ?΄β„6V?ωζ§‘bά{šθΥ”Oœ Χ ˆ‘δ€(€>€U’ؐ7|Ž΅ΡΛ’O¨έ0‹›–”gjJθ3κSρG…Ζ΄°_XΟφrΟ?d»ΖpXδΕt+Ϋ9Αw†dΞ“Ό°ΙΈ™ΊΆG5ΈeHΣ{ s“ΠQ;Ϋ™˜3›πΥ-.­΅Ev«bBίΪΝΙ„ρσΟΜ„r­ά:υΖ™¦ρνΞ Λ…!|o‘΅&«wXAνՍWΤtOψXC[±Hl‘f].ξU$Ooυs―ρBη8•κ8$O ψ‚ J9tΫ›fΣυ‹6U½°|πςGgŒυW\‚Ο©P~Ρ]›SP½ίΔtˆ±Cΰ ?„`c ŒU7˜μ2ΘΨVηžΒ¦šTSΚƒΣηŠα5Ώήλ―£hι•Έ½ΖφW?yϋg ¬«MGD\ڐέ{_»½»“HΡδςζN.n»[ƒΨzΉύ* ΞΥ4›v6)\“œ’OROrOzŽ+[{/Ιqf‘@ Ξ[s0'©9ΝTΊΤ$2[θϊDO5ή,j ώΣϊ ΰ¬Ϊ—*4‹φΠΈνZςζkθ΄}&0χrrH'χ›ϊVώ‹α­?ΒΆMwr©& GϊΖωΨ±>€Uύ E΅π½‰7%Τ§;§•‡Μνύμ*޽ͺΫΫΔχ7/ϋΈΘ8q'°Ή'€(φ\‘Ίψ‡ς«D½}«[θφfζβ]¨€gΕ˜τP:–' ¨΄φσPMc\VYԟ³Z‘h=ΟC!“Ϋ ¨΄ ζβκ=c[ /#fφΔεmqΧ‘ƒΛvθ+­(QΐmB‡*Ό·"u/°±ΖθAN$mΕ?΅BΝ΄ΧZ1± εΊ]ΩΛm.vJ…Ϋ=ƒYϊ-ά“ZnxΊΆo"p}W£~#΅ζϊfΉω\ZjgTή"LWLǍ££Ÿ¦:Нޑ±΅s}…³έ\J±Cάξz ΑŠ-CYƒuΜ’iΊc³:Β'˜~ϋ>ƒšl#ϋjι5+ΠVΒ&͜?ΦωκγAC}¬^κ7iš;…t;n.YAH3œ.?‰Ο§nυJŽO’‘Vά—SΦ4ΟZΓg …•Έ‚έ7HηΤοΖk FόkjΡΗ»‡ŠΛͺΔκήbαZz~m¦³\€iδΑ–βQΊW>쐭‹b ͺ€§œTΒ’½"άήδŠ,‘c  †pzUc[°ΠνDΧwYΈD Y½w¬kνu–ξMؖd8wa˜­Ώή=ύ”RiϊLΣ₯ώ·]8ξ'!œΩGEžrb1‘€΅c”Ψ"½ρŽšΉ’ 5l­šΆ½<Ζx=no±Ρ4θΐΫΖƒͺΈEΙͺΑfΆ’<‘ΚΕQPμέ€Η5­¦θpi³ZΝskω\]‹y]NΠO|w|ؚ—–Δ’ƒhw^#“vΈςG§ςXnΑ#<4ΈλΨ…§έ:iφ4κB6AŒ°ΰΉβΊΔ#Œ–8ΦΉ%#Χ΅‡Χ%qύ•m#-°?ςΪAΑ“ƒœ~tbpžέͺ;$iNVχΏι§LΡ Ώj‘ŒΧ$ΰαΫψW5yτ«}5εΥ ΈΆ‹’ePBŸo§5‡yβ9"΄έwͺŽDdα!jF=κj5πτ10ΥΌS©ύΆβ?™r»`‡ΩόςkΦ„£N‘9œ₯/y˜PΓψ„ˆ¬ή{ >c2ΆΫ—8Θ%WΫ­mCo‘ψ>ٝ„i!9ge/#ώΡ䚧¨ψΆk’-tE‘^N<ηLΈκkΩΪZΚ&”Λ=Ϋr ™y½‡ΦΌΚΈΗ{#’ϊšΧ——ZΔ/sͺNϊv£>NJ—_WaΟ?έšu†§¬€pιpI,Ζ0%uυDΗ˟VζΆ4o †™uZΜbΫp‡Π‘Π·ς΅"ν{υ5ίG ­y…Jϊϋ§+©ψ.Ω4DM"‹R΄“νrXΚHv<γ*~’΅Ό?¬[kz¦‘m²/Μ‡ο#Ž[ΎA~‘βύMΈϋ+^ s"έ ŽΈ?σ‹q[Δώ%±οM°”₯ξΜƒ–p‘ΤνΙˆ'΅¨ΧΩd«΅©ίjž"&W΄ΒΙ2²ά?ϊ¨O§ϋMμ8λŽΤυ M:ΰ\ί\Ιw{+n•K²δ τ_aRΚΊ•ΕΊC§ΨΙin8V“@=ΒυΟΦ‘ΌΣ!·ΠξlζƒΚ2₯ˆάΕ‰$χ9xΒmσKcYΖ^ι:[jΪΑβq¦Ωp07=Ξ>^έ*ύΎ•a§ΔVήΦ8ؐY±ΉΟϋΜy4Ν+R’βΤZά~ζφέBMunχ±«dρΗέο½ q„5F2‘GNŠ;«+‘2+#έΙΌ0qΘό*…Ν•ΞŒLΊ{yΦ`孜ε£χSίιΪ―iςω)sœ,72y ΞMgΝβ‹Ζh4(EΙS΄έ?ˏρώΣ Ά΄8ͺΖ=Hξux^Ι_-##s:Ÿ—ΨϋΦe­΄šΌρί^ΔΙe ²[KχΏη£AΨT“θ~U€š–©?Ϋο#]ΘΜ?u#§~¦΅μ#ΩgGΜPμ{ΥΚ:έ™Βi«#ˆmο$Ή…f°7ryͺκE’9 υΚ―Ϋi7:j‰Ό?zmTem›?μη)υZ»§Ζ»o"aΉMΓεHΘ œΤ{ ‹­)Ϋ"ί@ΜzΔέαΈλΉ'tuE₯NΓΖh.Ž»kύtΝ΅^Gί‡»'OΐΰΦιAζ‡ε󔏧ZȚΪ˜ž+ˆ–H›†G”ύAβ°…–‘αωγ:₯‘i76ζLΖF:ΖΗ%·JΞPNΖ±lξ­ΠYΌΉΣξΎ:{QYšŒΔΪ#:–;ˆΦDτΙΗͺ›€ψΊΚξνl/#—OΏθmΧkίk}Χό OβΥXτ‰/ΣοZΊJH<ΰ0Θ?…)έ,υ*i_» Υ>Ρ/σΗ>΅›¨ι0ι .₯€jK“;Ϊ$MΦξ}?SκΎ΅‘dνœΗKrAvE©bOΜz΅gϋ6[†_y?εš/ݏόO½UOe*jά#R^ΡΚ$Z‹ΜR‹]zάιχs9Ω#œΑ1ΐα_±dβ»xέw©ϊƒΤ}k’ϋ%Ά£¦}–εXΨmder=G­eJu/CζΩΙ-φ”‡&ΦghPŽ~πέjαϊ»¦Ώt]j.Z£₯Ή‡ϋsΕΦ–l»­4Ε·ς ¬1 Ÿ^…Ώ*έΤμ!Τ-ΪΪκ(扲%]ΚΓά΅Ι|=Χ4ύSI’κ;΅kΫΫ‡Ί• Ĉ *ŠΛΧ@ΗQ]Άπκrzuκ‡/+άα›w8/μ-wΒ3yήΈ[<"ςL*{C';έn)Σκžργ\³—LցPέ'•:0#77=5έqXϊη‡4έ~ΤA©YΕpƒ”σ%ͺΆrΏ…k(΅ͺ«}Ξμx“Β“U‚MOK‰‚hΫ ΊήXΗ9Ηq[:&©coφ­6ιHg%Y8Κ°?^”ΤΏρΓEr·0|Χ–«Σ ?εͺQσ WπΦ…βKaβκQXάΘF&€f)I£θ~„+'JΌ £UKI›·sKw¦Ξ‰Yφe ΆFαΘ¨αk?ψr8ξνγΈ·•@–)—rξAΈ5ΜΩψŽσLΎ]+Δv­§ή;»·A9aϋφO5­₯Μ,υNΤ7ξ$˜O ,ͺXcλΝi†­(Τδ™Ž2Ÿ4/L€Άϊο‚ΆO­θ)τ dκΩs'?λΒ7#Œι΄Oi^%±’ηMΊ m‘Xx›Œ«©εO±ύjtmΐπp;+Xπ”ΧgXΣ.KΦΧξή@ ωƒŒ€ΘN$CΑζ»ε¦ΗŸFnZHŠΓw:4ν©x`­³— qdά[Ξ δγψύ‘W΄O[λ‚hΜr[_[ΎΛ«Y†$…Έλκf‘§xΎKKΘ΄oZfίHα!ŸqkK¦γύ\ϋ ŽάΥίxQ5G…ΛYκπœΑvƒ$Œ€‹όH{©ό+΄ΥMVηe*³‹ε–ΖΗ βž+—όRπή&β+q§κŒq-˜n:sτ?ξžEtΗ¦ΰsΟε\n..ΜμMI;‡ZΘΦt[-jάE{—V)#r’Dή¨έTΦ¨l‘Mr<θ3œqϊ¨a]£€ΥΦζΛO}Ε &΄šdX5‘ς¨;†Σ6?ΥΏϋ] τ₯²ρ«‘4zΉϋDˆΰΌ#–# z‘Θ=λΉΤZΥln%ΌhΦΥc>q—•Ωίpξ=«Ξ[ÚΗφLν¦Ϊ»θO(šίGΉ“lκƒ¦Χ γ#$FzdsQUrό,΅8ΛI–<_ͺCs’ΪίΫ°ϋV•~—ΫHΑ*NΩ1ψ6 ν¬ukUΡ δ·1Εko“yΐULd“^uiΰέ]Σk=kVc­“π·tuΫΑŽk Rψw•qi­wq>“5Τvο|ee6¨Δ|3Œ1ΰ7Až{V4jΛ›’LUh%ΖG}’Νrh“ίL¬HŠΪ2ΫsΞ ”r}x6ηKšΣΔ1&₯aιZ‰Ή³[rϋΔnB°F#Τn+Ž•θϊ]­΅€qZδνVVnΘ·Ή¬_Δn<%¨\ΐτς5Gq$D6? ?%9(݊œύώSΝ5½[ΉΤ4 jڌςθΏjSetΐaΠ.DOλ =@ΫΕϊΝΆβ ]>cB²[ݎ€Βΰa±θ~΅gQŽiπιΊa‹ΞΎ‰n!sΘ€m ²·¦ΣΣߊMzοCπޏ&»ͺIφ«ΫΘ~̏pI.έψTd“ZΖ€"Υ¬[kžζΎ›¦M©\Γͺjk•‹›Kcȏ?ςΡ½XƒΑν[ή_8λυ―5Ρ¦:\šDιοτMIvX\.|–ΑτΞΣνŠνLΆΦ63^jM.ι’ώ'>€uι\žκ’ŒMά¬¬eψ£MΣ΄»wΥ$œZΩGΜκ1ς±]ƒΉcΐQΤΦ†ΎO6­‰uKϋΫIŠΨ„—Λ=ΉʁΗk‰ρΎ·ήx–Yu+[›C¦•ΈΣ¬₯δΘ"GΗ ξ3ŸξττϊβΧPΣ,ο-œω€±7P€Γ5ΤΣVLš•gn^†mΝ΄k ±e  Θrw=s\_…Ε΄z–·πηR %ΌΟΣΜ‡“nv™υBp=? κuaf9o¦' ~o%AζF”9θIΈΏۍηHρ š]2τ<σ?-$NvK»κ?…c:ͺεξ idu>ΎŸΚΊΠυ Kν1Δeί¬‘<·>€ŽΈ­;ΩΜχ‘ΫΖΨΨ’W=˜‚}{Χ?―ήΓ£ψΦΣQ*(νZ ³ƒ‡\\ϋη§Φ§ŠζψX’Ωڟ>g/%ΝΐΔQ³όέ܁ΕuJv…Ž8Gšcu©,l!Šξβυ‘0ΏΘδλΥGsŸj€ƒVΦΧΛyξ4ύ9!ΘϋLΚ{p>@:Ήo€.ΎΫw+^_ΟΔΛΒ{"žUΖ•γ\)ŒzξζΉΤΞΨΑ£7Δ6ΠΪx*ώΚΦ Pΐ#^Šƒsκxλ]Ό‚hREϋͺΓρwPFšΚε?Β³ΦΖηU™'Υd Ϋ’²Ξqθd=Ο·jΡ™€%ύ•½€Λ¦‰·!ΖeNv89 ŸPk…Ρt[PΤ氝c°kCΆκ|ƒΘξ£άr3λ^’Ώ"α@t`ΐWρIY͝βΚρΗ,ŸfΉ]Ηkde υθ+’jr%΄ζ:Λvi΅x"#"Ϊ1Λ’2€εšΩR:ρκkŸπΥΔwI}pΔω­rCκ€ύkx΅σΦζχŽύp>ΟΨOΡn­Ÿ_Ό„ϋυ°ί…dλhNšg\οΆ–9Χώάώ•°„7*x<Ζ»(μKv9ύkΒ:•ίφ΄“ιΊΊύέBΕ€—ι '/ƒΝg[ψ«ZπΗξ|[iζZ£ΊΕ„eαΖzΝω£8κFEv v§y{†Φzη·RkS'g£(ιV·zh»±š)ΰ–gxή6 §qΘΑόk‡ΔΪ6±γ₯Τ΅}J }/H‘­΄Ο9φΗuu²Ο“…ϋˆyΙ5[ΔΊvZέΆ…αI%΅ vF[…΅b°Ηnͺ ³ϊ…#–λ‘Z_5 +ΐž΄Ρ¬,ΰi'O²ΩΪH] eϋ3“έ‰χ4ΣOήξD)«Ψτ #ƒP΄’=Όρν*z"ΌΒΫjwΦχP /lf6κϋrUF °χ Ž}ͺο‚–ΫΕ> †βΫQΏόC§*Ϊέ=΅Αδς³F~FV#ευβ©θŒΟγ+ο xŸSHη™ώΡφ»Vςι(Šc`½  ς όpηRΡέQuhS™JήΌEΫΩΦ6Ί„bΠ ˏ]§‘θI—ΖWK¦ιš΄I WΊŽc–Xσ˜α2ΚHώ#Σ'Ήφ­:-'@°Υ3•l€…βΣ-Ψ‹ΧΘΔΞ3ˆTŽ«‘σΒ΅Ρ¨> Œ‘ΤΧwΉHΚ‘OJσΈtν+^žA­iρG-ΔΜφδœ4c ¬CcZXΧ<(Ε’3λšZ‘˜Ω³y ϋωj=5€9jGžŸΒGΆj^ΞhμΊσFj¦“¬iΪνŠέιΧ),D㎠·u`y μjΫ T»’˜Βj+›x`xeExάmu`aθAΰjΣ|λξΨ¨έ–Ž@ιšΟƒ€’ uN³Xƒ5ΈΟ>Kσ/\!ιΪΊ]]ΣυΫ!ucp3΅”‚­wVSΚ°τ5 @ό+Φ<.³ή6­₯]>ͺυσΠnYΏΩ•Ώ­muΤΝέμt ΩuνJ~μŠεtu£λ0gλHΙέύ9‰ˆc·Q]R€Gj­φ"zhΗ€ ŒΦ?ˆ/μtβλQ``«G·qžώ&cΐ€Χ1ZΫΌσΚ‘Εws…EIτW-₯[Νβ]R/ί#­œ`e[Θ0QAώ7wϋ«Žζͺχ\¦ ΜΟπ„Nžρj:¬n’#³ΪX4₯γ°πr ΰς{tέΔP Η :T ›Έ€έ±6ƒή…&ž‡SŠiμίΞY9ΓJΖ΄C(`μ:Yš0cc–<¬ΏνUΩ&T}ŒHsΡHνUαQ™ώΕc5³­ow2z›?Φ±΅­F_j’ψ[J‘ή2U½C±)ο#tdT΅Ή5+οάθήΌ’ f%Τ&\m΅Hξο\€:u5»‘ι‰αΝμQΪΔ±($˜δ.Δ“’ΜH˜žsYYΉYμB¦›ζθup[Εm vπF©hG  `=«†ρ΅Ά•¬Βn ΎŠΧRΣrφڜg›r:©lς‡TδsλEή«&Ό$f™βΣχ`ŒC>8!ΟQΟjγ΅»ΨξgEΣ£…%#Ν”’εΖΌυ'ɈΖ8Λ’ Rθα§Sήρ6­βύ'OTσ¬EΘMTl`•±ά@Ηp+Ym ²ΣΜvQ¬J£`Tώšζ4λ˝ζύn£Ε²2ά Φέ.γϋ»”ΰφ'ΠԚާut‘4Λi€o’7'c „_Οhώ•6©β 7F"9ε&vεaD,ηπώ΅Δκή)Υ΅­NήΣD²’ £“ύl»r€©μηΪ½ˆrR΄Q 2–ˆρΏˆ5>²•ΝέΑ 9‰yŠ#χΉμΔp½2+MoSΆ·±³Oμ]&57H¦RΎ€Ησ©΄­M𭜺–­$R^g|ΣΝσΆσοάύ? ΟΎρ±­‡KW}3O'―ό·wt~΅‹œc?i=}“o–&”ϊž“α8_MΡ jω²ˆŽyΟλτrπ\_“sͺάΌΞΉfbΔFŸAΠ –ΚΕά›m>Ρ¦—<‘Ψϊ³]uš_„ΡJΟ©8›rAœΖΎ„xώ•Ν:uk»ΑΩQδ0tRΥΩ.dCgηΜoυ„v zŸzν΄ΝΓIΓΑn’^σ?Μηίq©ξξν¬mή{™8£wcs\•χŠ/΅!³K gfOό}JŸΌqLΠτϊ·ε]§N‚Έ€ηUΩ&―βM!f‘ήwUm•ώƒΣάρ\ž§¨jzͺ³j7-agΘ6°> τAΙϊ.*ŒSGn“=•Ό—‰ne|±nωnIϊ*©A$’[»Ÿ3o@~κύmΝ9³Jt‘οZΟΖΡiΆ’£ΰ²Ε=Orj/ GmoβΏήά• mΌAŸœ₯Žrr*{fcVQŒ‘όκ @“Ο¬j 7 ―[fξpBgσγN-•YΉ+·Ί₯ωΔAl­ΏΪζR?₯f^ΐ‘,H₯ΙkˆσΉ‰#œžυ΅4ΙήΝ€O}Ώ_jδ―ό@ϊœήV‰m%τ±HΉ•p‘ψ†αš~υM`c)F(ΩΏ΄ϋC%ΔRξαΙGQŸr¬;ƒYƒΕrZΟO΅–κφ3΅Δc‘χρ§4ΕΠ.υB_[ΎkˆΙ?θΆΰΕϋχŸρ­˜¬-­-Φ( Ž$O»jWπ―F†MjpΦΕ€μ`Ϋi—ZΤ²kS¬ΰΙΏμ°Ά!nθ[Zι’$Bͺ*ͺŒU «ψ ­g¦l•a1Αϊ ΊŒΘBIς·@OC]4š‹9ͺΕΙZϋΫ?4χ1ΖΠdόͺΤk΅Fΐ$}9ιT ΅‹BψχΣ£Α'fqΣίω֌@ ΑV#žΥ͈¨άμz|«Rͺ!ŽκRŸpηΨSoΣμϊ†Ÿz2³HHώιŸΖ¬Ω(ΉšIT~ε–‡Τχ>τkVγϋ*PHŒ§=αXσΦΊ±4—ΫΫ΄³©%Ž2xνυ4Ίe΄κ­wt€\Nw'ύZφ_Κ©[!Υ5M­‘RκzI>>ιυωΦϊœžωΟsN(Νh΅+^ιΦz±‚ϊή9’=₯‚ϋŽΰϋŠδ΅5]6ζM'KΊ–ώΜ”’k·£Œa€IO ’0dWq,ΡAΛ+Ž5.μέs\ξˆx₯Τ%\I{!™”υUθͺΰ TΞN&±JHΣπˆ4ϋυ[G΅»‰BΙkp›%\IΕυ­π8ε}»W9}₯YjΡͺ]Β¬Κr’CΖ}U³•¨‘υύ‹D_W²Sχͺέ*ϋ»'γƒYΚΪ ZR/Ψn^B„Α)Λcλτ5‰γΩe—F‡JΆb&Υn"±FTHAc|ƒ[ΊVΏ¦kΡΏΨξWΞOΏ ©I#>އ‘Xڢۏˆ~Άˆ Άλ=ϋ'χqE?χΣqUΡ³©₯‰₯Π4ιτλHMΎΡn‘# ²D΅‡#₯O‘―θD9/«Ω €uΠeύ lΙ”ϋqŒ~•”R@ΚxΟ­ŠApšΤΥ|Aa­[ μΠ‚3θΐς§ΨΦ enŠςŸιfΧΔZ€SObndϋ<·0¬‘œtlγŠΣ²ρ•ζŒD> Bπ+5(#ΚMPrΏQ‘B«$Χ6ˆβ«†q~ξΗ~ρŽO8Εr:Ώ„ίΆ±αλ₯k;ƒP~κηœν:2ŸQΘλ]E­ύ΅νΊΟo2΄m‚¬AZ–@±«Ύ1Œ‘Γ:š8ΟψItΟ#ψwΕvΩjm…k[c”z'ΰ8ξ1Θ¬}SΒΪΧ….~Ϋ έM¨ι‘1ίcpϋ€Eΐc‘žΰνuOΧ,ώΛ¨ΩΕsrQ§Τ ϋŠζΌΏx/r[}§[πώFmέƒ][/’ηύjz δVUc£:hWζZι~$°Υ-χΪK(ΉC΅’9Y#n27N΅©kβ;‹K€Žώ8VήF'F8BznΦ¨K£θ>8΅}o@Ώš”gjΟαγ1Μ‡’;`σθkŸ“U»Ρ&(±ϋ8v .GΝo(Θώ/αϊΒS­§Βm ΫΌOLΤ4ϋ=bΖ[Bήΰ“β”eO‘ žΎύk–[oxCύ˜.u͏(7v«ιυ¨9Β“‘VtιdQ=…Ϋ|ΉςΥΞε+ΨjάΣυxυΠΊ47qćΜΎγΤΔVτͺFOC*ŠQ*C>γέo)‘Ό€Έ¨A‰Α2žQ‡«5„aΧ|!,žRήjΊ*7ϊΆωξmG±–©νΤVž³α4ΊΌώΪΡ.†™Ÿ΄ͺε.χ'OγS޽Gt©t/Εwύ‡¬BΪfΊœy["_φ‘~’׎G~•¬£Μ­"iΟ—bζ“«iϊέ‚^ιχ ,-έ{ΰƒΘ#ΠσV€ςΫ¦ΩA'°γ‹«x`<²κΪ,ŸbΥfAϋ»‘••G :υ–u7ΧΧϋh§±Τbώ's˜£dƒΠ†ΰΎ΅…H8jŽΈ§7dh"Ÿj"b hφRb5<‹©?7Ί/oS] zƒίœUh£†ή4‚Φ8γUT`(τ©—W €§3yεΠΒΦό>ΧSΆ­₯L,υ…ΥΧψGX< ₯yφι̊ΧgoΚb2Ή“v€ό+ β:ŽaŒt,‹έ0.cŸ‹,ο΅°ΐφ OjšuW2ε,›“F΄ή‚/ ΩθZl^BXΛ–eωύδgp,}[ζΙj°t«iuypg•{¨a΄Ψ'­fhΏόGβ†’ 8\]ύ¬-ΌΗΚΟς“Ξ8QχΎ•ΡθΏΪ~ ΡΞ]1.τλΊtχάπ©9?+γxΙ'Žy¬&ΪεeΕNQ½ˆdk?ΩΙm©ιλo¬Ψ6ˈόΡ“ΞT7P{ύk/HρύΓϋOψG΅›;ωΫ/¦΄1‡3Dί0ŒσΓ)ΘτΖ)5ŸθΧΧ]ιΊ&Ώs}Ϊ’ΗhbR§ώYΘ_‚€ύqڍ ΛKρt:ΎŸjρΚc–Ϊεrl°~TΠυέό_₯]J±²“:RS‚„·/ψΞΉa¨x¦χOVΊ’)Σ'ΡG#Σ“ΐΙ#=*ο‰!σt-NΦκ&ΑΆ‘ Ο#§Ϋθλ¬Δͺ°Ωƒ p7cŸΣβMjΫOΆ ΈžεάEmk8σ\Ÿ‘1žr­yψžZΝ%ρ(rέ’Μf]_ΕΆΦW€>Ÿ‘%ΊO&8žρ£ΒΟhΙφ$f»kσ·JrƒfϝG`sšΒƒA“ΓŸζ΅Ήq5ρuυΗ]χ2ΈήΩο‚UAτA]ρd°έΑaυ=+΅έΣ³3§Κ呍 άWLl„χγ•ϊΤr[§›{ϊΤΧ™ ‘¬dή`Ξ¨Iu<Ύ]6ν”Jδ~­rB(κηDΧΫ፳ΤZΒβοώ‹;xFT:Ό„T<λYχšΝ₯α‹μ· £Sp7ʞjώ%šΪM:Ϋr*Ο/Ÿ.0w”΄k«£‘…MM]29šβ/&v΄ςξO~Oτ­2p ¨‚Γj‘ΕA€=(!»ΦΡ"Cχαk Επύ§Β·ψΏfVQ€Θ~#4TZ[Ρ¬ΙΞ~Ξ£ρωQ[¦Μ$›Da(ΈΣ¦6wKΪΓ9Γ―ρ UΧn΄ΐW[΅ΩœΈG™χlrΏΚ·•j]™―>υδΫΉΊd -½υƒ€I!• †VH>υ5†EŒ*ά²Γψq\ύΗ„’ žοAΌ“H»fά|… 2#ςŸΓ ƒΔךύŸΕ‹iμ-όΙjΩώρΖc?οqοZB* ΞΝMI5Δ6V“]άL±A™$‘ϊ"¨Λμ5 €Π\Γπȏΰ«+z‚:Χ;β…>&Χl<-i)ϋv¬Λό6ΚAH‰¦Žΰηj“΄ΡΎTfήΊ‹ΰΈήβ=CΗ:”L—Z’(΄ΐΝ΅?ΊNψ-ώ±°prΌ WρΘλž/i%w+ ΠΣ£`•ΟμΥλχ6Ώo§]ώL’ΌYpm±ι–ΌσΔzi΄ρφ―˜βΥ¦K>SΚΗvŠ ‘?νͺŒ~5 œ^Ϊΐ4ΑUQ«yYΝΰέ"?iŠζK@~Σ?ρρlH έX†·5Ώwα­?U΄o ΞVk·eΊ½ΊΗΟ§ζʞΜz:(χ€Žζς OέA[Ξ­o§idξiebPo8ηζΞ  I«ZΤό„΄_ͺͺŽοurέ©$ηπζβη8J‡Η#±Wߘη­ΣZρ?Š-ό¬H—šfŽιq{v ΄Β0ΖγŸ™›nαά.}kΤ$νZ6…ααoΌŒ «gΤ+/ΐ~“ΓEΔΪή’iΤ&Ξs#ΡAΗuΗZθ˜e«Χ‡ΉTp])]\Ϊ₯αΩ Ο…ζQjsι7ϋŽη“bn:}ΪΉ§xΖΟQ™΄ιγ›OΥΑΨlΧd€ρ’½€κ θ€Ζ:dW¬ιΆž)Ύkj·6Ά―™§$ό’γQΊ†dƒΕ9Ω"·Υb㍽ΗͺκΊ­Ά₯\κ7’‚έZIμrxzšε$“Δ~ΜG“\Λ3΅BΌIχζ™iv•³se ε»ΓCΕ°!,Χώ™ΟHϊαs•ν]f“¬iϊ֟ώuΦςtu=psЎΰς*mΉγ·zWβΝ.ΫΓπήx›LΎ]βαζP3 ί# $ΔΗ #œΥB§I tΉ•Ρ³β­NαžΧΓΪTΎ^­ͺA(ϋ4 ~ςcτφˆτ¬έbΦΦήήΧJΣΤ¦“€σ<1©–'ΤΥ_ Ν{δίλZŒ&/_0‘c±―άOΘξ>€ϋV·mήάgk©VΙκ[Ή―#0ΖEKΨ£|='ΜΙ­ν Τ4ΕΖ’G)ήAηδ} ,RίθŽσ―,AγζΜ±ύ˜~΄ί Κdπυs‡„ πP•ηߊ٠Έ εWυ5T9ι«Ca½_Ύ`^θ+¨Ξϊ…οE’p^HΧ1ώ©:χϋΒ¬θΎ*Kλ₯κ?YNΦSδwΊ8>܎β΄L΅2ω«,žͺ0N΅«£Yk6ŸfΤ-Δ¨d%ˆdaΡ•³•>ΰΧ|*9›¦iœυόŒ‡ώšωΧ1λώbΞΦτεnl‰xλΪP?­{=fΓ]²ŠηOΉYciΣ8 䆐}meΛtcv·5Ιβ˜ΤγτιLΟ<ΦreΨΖΧt{fΕνο’ή›χ! CFΓψυVχ“’kΧΪ>€šΏ1’F+ζ*0vΆ?ε }zŠή,$glΎΨη SΖ€jΆΠx~Ψ5 Η lA ΐ˜žΑzRq\ΔΚ5Ή:J—25$SγmMν'ΓφR€vϋdß+ώΉ©ε½NuεU†yς¬έ*ΪίLΣ­΄θ!€#n=yδϋ’rOΉ­=ΐ‘μΖΙ\峋Ԭ ZAΈΔSdU―¦–2°ΫίΙχsό#»ΕhΝE.&….--ώWΉyΘ‰IΞ}Ο₯`κϊβι²Η€h oΌE¨“ΝbΕ3ΦYe^Έφ«~%Ί‡@πλΗ o-Μ²lΛάNΗεηω w„•£ hΟ±φε'ΘΆ-•³‘τ2ynέs6^ ΌψŸE²ΓW&xν€/?,‹ΣqXr φΛΓ~ ‡VŠ[Y‘k=JΠͺ]YΛχβn9iOUaΑ―SI/zGζίΊΤETqŠP>j^ώ”§šκκecτ}“_΅›’]Δm˜ΆΌ‘>δdUςύπγUuψŒΊT―|θ1qτd ,Šts¬°€Ιχ$Egάf¦’³ΉPwV%w*zώ΅—«λVϊ]“άάJŒ*ξfcΡTwcΨTzΆ΅k€YIuq.Θ“InΚv=…sΊe­Ζ«|ΊΎ¬ŒŽ™ΆΔδ[/©υƒΧ·jΖ-ΛD]Ϊ 67wϋυmY6Ι–‚Ϋ9[aούη#©ν·ό6<­Ψ±ΓH»ΨŸώΆ)Ί”~f™4Jΐn@Ο©¬οΛ2&‘‘;/”ΎTχe~Xΰ¨ώσύ8₯J£iρ§V₯[ΔΣΦΌG%„Ω:@C¨œnwŽάνκ}²τŸ[Xݝjϊy.―€–κδε—ιΩG^••€6V»όΖ@Έfrۜ±99=Y‰ό뫢џQςξuΘΨ[‰ EbXa <4ΈϋΝνΠfΌWŒ­‰©hό§S ¨¨Kν„-q«ημeš­vΓετΒγ>ύ+jή¬‘A2w3KV=ΝZΨ …HΥBŒ*ͺ€π)εQd$γNƒOάΫ{Α ¬†SΤρŸJΔΧ΅y-dm?LΫύ©)ήcˆ#ΗήoRz(?Z]oΔ3ErΊN•ΈΤe~μKύω=½»Σ-t[MOšχRΌσ&cζ\\ΎIw?Χ°΅jί³^μ΅!oiΔβώΞζήΒ;cφΛχ ·²ΎνΜy,ΝΧ#ž+hίiώCaaίκ€–`Ώx9iύΡϊΦeφ­q―ίΫXhν%«¬Ή Ψ€ΙΆGRΥΛφ*ΖiΙ;ΡGΞΉvxτω&*—SΊ  ?\¦sƒΪΉjΕ^θӛ՝ΌPGonΔ»g ¬νrγμϊd‘NιdaIκδŒTRήj–P‰$ˆ^ΑΧ| ‰υ+ίπͺ67PλzΘΈ‰χZΪ#*8―9ΈΝc©Σ= ­>ΜXYEoΙdΞζώσ–?™«ŠFy8χ¨ς?Φ²―uζœιϊ`sIHω #ŸSν[GS&3T‘υ‹Α€ΔOΩγ*χAό1}I•\΄pdΉP6„” ύсψf›cg … Š-Δξάς7ήv=I4Λυ—g'›–ώB•H64Ν%ηŠ•YΠ|ΌBj85:iΕ ²–₯€iϊΖ&–7Šξ/υW16Ω£=°ύOγšζ΄Νbm'ΗΕζΆeΈ†αΣ† ‘‚±αŸ0AΞ2@Εu:΅νΎ¦Ο{p€€+» y-ž{’q\­Œwž²KΛςdŠκV–όδ“ Žz“έGΪ”‘q’g‘Ϋά[ή@—ςΗ$RrŒ#λޜr;}k‹:+Ω;^ψ~πYLδ3C·uΌίο x©= žΜ:Φ:D‹ "avΨ ΜΧ¬γΈh΅ζ’Ξϊ ι‚ρδύήCθkjU₯*ψHΦΡnzVε( μΰSδ‹Έ-+ΕΣZݏ’[ήeJ\/ϊ™‡²}ΊWoowΔa‘Αηθ…hTvoSΜφ‘ξΙΦ΅αQ5ηφΎqύ›­'έΉA•”wI—£‘ΗΤuΛ/YjςŸψžΙl5Wω<‰ΐx=γsΓƒΧke 8λYZΦ‡e¬Ψ›MB+ˆ‰ΘYBŸPs}Εk(ΫXšΣ“Ά§«xSPπΑ’οΓlςιϋσ.œ[€8ζ2~ιφιUΰΎυΨHΤ­Μ <”š#‘{ŠΤŠQπ4Ν§$ϊ†χαnδΛΝd8KŽ^?GŽω«>"π­Ά· λ:©ϊρL„m•x;_³)j”Χ5?ˆΦ\¦%¦½w ά,z΄ΖγLwΩϋ 4$τ{vίωΧC¬θo‰,ήώš0Αγ9*ρ7fF*}Α+AΧST±k;Ψ‚\§ξξm€•n„άυ­ .ϊO L-εv“Bg ¬rlΙθ―άΗθ{}(£Šmϋ:›Ž¦'xŽ·Φu/άŸβ™šσHσvΪӏš<nqΣΠIΠχƒ\πύΈ‘ήE+ΫήΕΝ½ά_}3ƒƒκ‘ΰŠΣ–8―-Z’9a•pΘψeu=ˆθAό«Œ sπρψi|'»εδΣ9γ=KΑ“ΗtΟ~ύQ–Άfnϋ’[fβΟPM\E‚υˆςe_υWc•>Ύͺyτ‰:ςj+λM;^ΣGš±άΫΎr=C)‘Ο»Ο ]˜5 $ΈL"Ό~Z γh”w°nέλ Έk{Π6§‰ζψŽ ’)|Ϋ²sHY)HΘ4yΰΞΈŸcͺ:^ bΎH―f΅Ώ΄`Π] ɏ'Gρ)ξ§­sŽ—έΣάE,wŒ4έΚ³Τ\8~ `ŽPŽΨŸW&F΅±FΓάΞ²‹†bAψΣ5½ 51o<φmBΝχΪΞ1œηiΤχλ?l©Ι)EΜ΄+xk]ƒQYα=ύ»ΎΣ§?<qΙυSœ«Ž{*MFMΎ$Ρα U>ΥΈ>ιΨk­cρ3ΙΤ³i>.Σ~εΔ3*ŸββH[?tτιΑκΓβ ,gŽΛΖΕer³¨·Υ’$ΩΎ1Τυ‰Ίπάz]m―gtB©ui~³ͺi> ΅}Eίη ³`³ΘΗ…QκkΙυ?j?΅?μι^_ήN™ΜΣc•W8ΐΑΪ=+‡šθόC¨C§h—7F$p6C2ewαSσœ}3X^"πμzΎζz Τ¬ Έ°Ή$’Θ'Ί° φϊTkάxŽζΫ\ΤΘ΅·\Z[χ˜*qΧΈ_AΝ*F»άΛ–ΣΊΨ‹BΠβπ—‚f²Ž8Φhγ7—n ηξμ}‡½v(£Κ‚νΈž€ŒΧ/zΧΊ©ΌΣ4°4ήLΗΉF=ψη£ΡnotΉ-t i™¦PΝa;ήlCFμdQωŽk–€%:\σ6ζKέF¦ͺι`έΞ£μžf cΔY=Η§ς¦jZƒΗw½νυΥήΔ1 φ=™}ŽEXΧmRΡfΣΆϋ¬F ς9&›q§Ir壎 (Ι8Θ Κ’’JQe7)hyߍt―α]?Θ½€Jٟ&]Ψ;$ͺΏΒί κwZγψŸ\[œΪ–ŠΠ\Λ½ΌΞCΏαΠ{δφΥ5―^Ύ™€<°F™]Bμ¦ r<₯δ? ζ»­£΄΅‚Ϊ!(Ž4Β+Ί‹Όn㩌δΫεfW‰Lm§ΑhΟ΅qΩ OεΜRκΣ±ˆθ›Π4„‘sώy/OΧf»ρ–±©7Ν£[ΣmΙ?(Ψ~v»ŸŒξΧzDΏgŒ3ζn2@=Ύ΅J|Ι’ye©Œ[BΉfΆQΤΙόσKΎb‘ ”¨ΰ·AV%Ρτ冝 œςLy?‰ͺ3[CGμπ/€ΕsJ‹7ŠE=wK‡Q΄”KoζL¨Lr0‘‡ ƒΑκ* ωcΓ–5ΑhUΨ“’Y†I'Ώ9¨-ξSΜXX…“ lcƒTτ‹™νt΅Σm†oŒςΪΔψw·°?•U+΄Ι¬Ά±ΡA?Ϋ$ζ87«tzβμ zSm4ψ4ϋ8ν’9XΖ77Rz’}I4ι%XtŒ§ΟΊβˆ”5Ξ\T2²Όd^x¨δw—ΉEώι?1ͺΜ‹έFsߚΪ2@‘ŽΤΕΪ7‘F}3EYP#Œ’‘5#5:š…FήΨ©VΌτΖ‘2─T‡8CΓΘΗΈξ*5#n< {zΦ±ξ β5m+Oπe₯ΦΏ€έ _ΎΈΆNm₯l'εs\d+sΐΊtϊN‰}―kΑaΦuY εώε‚ˆβθΤL ΰ–ζ±5K«m{βF•αǞ5²Σ1¨έFμ?{p˘!λΙt˜θxτ›Δ7>œι3bΨ‘ζΈHΞi»F.ijU½£Iž|sͺMρψΚ4˜ΘfΗlN¬ϊˆι’>oχΉ―Rρ–΅c­ό:{λk“u±lζύ―p…C‡Ž£±¬Ό#e§x‹R¬β/§μδvΖΨ!—λœgΫ?†4˜ΟŠ΅­V ΒΞΞηeͺωψΔξοŒ.½šζ­(ME΅¬mχ›U(έΐι-μΚλ–ίiΰ-Ρ Έ“>kŸφ‰#™>¦°<9ή9ψ…>Ώ)oμMš+ίvkŒmiGcŒp{`΅§γ‹™ντ‹ i$G«kRύ–2½c ,§Ÿα\ϋδζ¬[xVσΓΆQ[ψkS{{h—jZ] –g'¦rIΝNσuης0rVε;V<œt*3\€^3ώϐZψ–Χϋ-χm[’ζKW>γεϊ0ZκT’5t`Θ@*rAι‚:Χzk‘ŽsΕΪ­Υ₯½—₯œjΪ‹˜mΨτˆc-!uyϊβ΄τΝ2 'M·°·b„'žI=Ιδ“ο\§ˆ^βΧβ…ͺŽmόσ¦{(‘s»ρaϊW_©κvΊN›>₯y(Žήή3,Œέ”uό{r+Ή•Ψε{Xΐρ~§<6πθΪSν=Yž |Ž!\~ςb=tυ$VŽ“£Ϊθ:dŠV(Wjη–<δ³δ’I>¦³<+§]Ο%Lj΅˜Šj7ΚaaΝ₯Έ9HG‘Α ήηΪΊ3Š\ΆEΑΨnqή€2ΤšrŽ•7*Β‚9ο\™UŽι ΚJ8ω[ΧΪ›a¬Cu1΅Ϊω1Ύή^nΜ=ΕgEg>™©κ ¦Mφkˆ.CŸ&€ΛΉsΗ¦G"­Ξ—β¨~Α¨Z΅Ύ‘ e sϋΨΨ0κ θGγ\U0˜|gΓξΝR΄α¬–†§‡G—&₯π₯λ²ϋnZίϊםι7ϊ·‡fΏ†[ύ<άH­{ξ–,`5'ΤWo§jvz²\ΩάG,/Ρ‘²?ύ~Υ¬(Τ’”&bκF―½_§Z]΅·*!22;#θk›Φ<7nχ¬XΚϊ^’­φ¨ω†yσS£―5ΣξνMš=Ό‘γBΏ˜§ΆΖ©ίFsš_Š%†κ+_‰m/$Șs ΟϋύοφOα]Œ6–œW<φ–Ϊ΁­τ :4j­sσ3μAG5‹>©¨x6Ϋtώ~«₯ giG8 'οη·zΑb!9ςυ ”άuFΦ―¬&•§ΐŠqs1[ΫF>yδ<ν̞€sPhήΊΣVλPΤn5«¦Vžuε#ρ °2>§š—ΓϊDΡ^lλ ―¬ΛΉw•΄LŸέGΖe»œΧL¨Š &+Ά†0Ό₯ΤΒ₯Wt©guΥΏB¬§Ž0Q½ YRΑ09¬{­Iu>ρνοΙ 7DώΞΉδ{φ©,5”{΄²Ώμ—™Gl‡χVθίN΅j.#sRF½ΉSIŽΨͺZ…υžiw«j¬*ΏyˆΞΥ*Τ’zΙ&¬Α$qZΌ*’£;6ξŠ2I'Σšετ¨δρ†«½r¬4›wΞ—ρ»¨7 ε›ψΊ9κjgΫ©|ϊ½Ιτ.οRΥ?α$Φ­Ϊ9ΤΣμ\ǜg©nήsΏέVτ·»%1›y·/¦_Φ­e#]ͺ0AX:ή₯Ÿo5άςlŠ1ΉΫΣΦ’£p§‘Q§ν‹βogΩmΰŽIξ$›ΝXGj ε½q\½₯œΧWΒσTq<ɟ-ά‹?έϹ怂ιŒν¬ί‘YoˆTS,£ώϊc“οS΄Λ§Ω ς` ;1α{η?JσjΥζw‰Χ_έ‰4ν ’I#2Ζ¨73€€I=…/…Ό/Τ’x‡V…ΧOγO³˜pY°<ΧSλΥTτΞOZ“ΓšΎ#•5MUi1‘%­Όƒ›†ν#Œ}Αό*zυ5Ϊj“Ϊ *κKιDvk\ŸΊ89ϊυ©Qύί½-Ω3•έ’TΥu[].Α˜GŒύά’O@v=…T4{ΝBφ=[[VGFΝ­›‹qκΗ£HA€τͺήυ;›}w\Y‹ C‚Sώ‘yΨtσ²­vQΖp8 ͺ8eΞχ2«W›έˆ¨T:V‰Ό8χο«§OφMfΫ>Dδd=c”dvνΑΠGNiΑΎlχ₯t΅0F‡|LΊΚMmu Yκ–ŒςC–‰°9Ορ#uV[…ρΉοψuυ‹TΣn>Ε­Ϋφ{‚2₯Iζ)GρDGnΗ‘Lπο‰WIν/"k-ZΜ…»΅‘²Ρ·ηψ‘Ί«w­””΄ uFε̊ΆΣΐΓφj}^ίEΠ`–β]’8–0ΛΗ £»Υk_Φν΄­9εΈ|…TQΉδcΡTw&ΈΛ}ς\&―­ŸήGΕ½Έ;–ΥIιξδ½ωTT΄νε-Ψ[Ν©jqκ:(Ρ­IΚΫ‚{ϊΉ“Ϋ ­»"Ψ£Lΐ›waκj΄Aa‡ν°V?6DώυΝΙq'ξ‹+Ÿμ+fς£Pqφ¦^€γͺv²Δ֍ί‘8YΚ­ξM¬jχΎ'΄νw‹L-²kΡΗ™Ο)9ι»ς«2Αš…"E‚ήάxωPu?η½jCBQcTM …OΚ£Σ¬ΣWΥϋι–o…ίΟΪgυ>ΓωΧ€ͺTΗU³(υ(ԍbZπφ€μρκzŒL’!έknςΗύΆδ ΐAΐζΊX•HaΑγ2F6’Ξΐυ5™-ϊ[Ϋ«–“žΥλΚ1₯#™ΞSΩaξΫ§s\ζ‘«ί_ޝ#FPΧ_ςV_’η“κ}PŠVρUΜ–Ϊ+ν•ΆΝ¨2αWΩϋΝόͺυΝύ‡…bm'C…¦Τ·fWw;UρJή§Σ―³vήcŒΉ+{m#Α:[ά\Hνq1Μ’²ο–wλΧΉφθ+‘Ύ»ΉΥ&7ZdKE·―«vΞ;ΤfkέJδέ_—žbvΗμ£’Šθ4 ιEώ«-CΕm&~GΎΛψšζ«¬.X3xAS\σ24άx‚ϊ;¦…‘²”Έ|«0η`λƒλ^a¦Ωι–Λ΄1Βƒ“Τϊ“ή¬ζ+u21‹žOE§ΠW!βKΝUšΜY!΅\ξΗΚSΧύγΗ₯vC— NΧΡ²rͺΝ}oΔΦz1Ksζ\^IώͺΦ™ίΡGΉR9eΤ―Εξ­™―ccδΩ«―lϊhσU―EΎ‰€ί\[£4ώYy%”ξwoVn€η΅:ΚΙγΣm՟dꁼΒ9άy9υΙ¬ΥWZ,λ‘F~ρzs$€ω’cύ•<©οXΊκ‰tK½£ ‘—uγšΡK₯ΈQ©Γ)νοξ djϊ”5”GΝ–E(v ΗΜ{ TMœ¬¬M ³†Ώš_”’Έg9όκ•–’fk»?2ΰ``ξΫ·"±CΓc¦Ϊ6©tfΈAεΗBW 6(ϋέ:ΥΛm"λV˜Ύ€²Em»Π6Ώλ£Ψ#εΣGΫΊ<ꘘ₯fYŸXžζF΄"ϋLͺp"Œ΄Η―αNτo>Ρ¨Θ.oξ8ω°§υλ] ΄1@‰ Hˆ™ ˆ‘T~ššΗ›Nνε΄R!ι’8χΟJτiS§M\σ«U•]Aΰ[ΨYvB άΉφ.]VΜ0{~Οxež]CSΈΊSτσΔO1F0}\ΧHσG4αQyfcƒΤΦ©υ½ΫmTΌχA†SΝ#ζηΆ*£ω:ι%™Fœ‰ΉUώUGώ»£$Z4ΧΞoτΉ†ΨA$τΛ*¨4Υ’λνΑΏΈFωLˈ“Έ ;ӊsb“PWd·>$ΌΎUZyvΕ‚}ΊtΒsΗΘ§–νΙβ–ΟO‚ήSpμά·ίΈœο“θ;/~•%Μ qi$°Jΰΐ_L¨ͺΠκ–±ι‹yw(ˆ ΨμΐπΓ¨ϊΦ•)*g%ƒ?kVΚίΑ( ΰy“}ΉͺΪ‹…I’sμ Φ¬MN~•pΥά©.] iσΓ!Ό°ςιGŸ™­N{χdώUIαŽ4]GOŸΚΉ3­κ“ξ9ω‡~½zΧ^­‘΅ 5ΓκΊS¦ΌΆz 4RHκβά6# γ€ΜqŠš‘Ά¨ήΊ³-/‰šϊeΣ%/§άΎΰν&0@ΰˆΫψ‰ύ+ ΆŠήΦ„PrsΤ’{ϋΦM¬zvΉ¦C E‰>Sƒ&6Aτ9ͺςYκz$€ΨΚΧ–ŠA6ΆdQώΓwϊΗ Š¦έš*TͺZθκΘ?Z«oϋ««˜ΟΘdBTΣυΫKςcG1Ξ„ŠE+"Ό΅zx ͺe€ώωrζΦΊ§fŽNg©iNjt8ΖN9λT­h•ΗΉμ{Š­«κRΪΐY%υΙςνγτ'ψΫύ‘Φ±‰£ξA):οˆω¬tΉUεέχeΉ#εOp½~Έ­(nb™dΓ)™Π†δpyΝ&—§E₯i±ΪΖΜεN^SΥδ',Ηρ¨tφΜs/2ŸόxΦρž¦se+x¦ΠfΟ¦±ύΣσ[ŸξŸUτ=©ϊ”‰nχΠ%Ζ›3.υά"νΈŽλό«UˆaƒΟΦ£ ‰’ ϋ²~λrξ>•’‹Π֝Vγ©’–Z†ŠDΪϝjο°\ΎP©θcs’§Ϋ₯(Ώ΄ρ%ε im΅=θΝλΆTaŒ:ž„U XοtŸ5,Ÿi̟evΓFθ€υ‚­ξΌQ—?ύ\φν랣ωWm ‰½ ϊ~‘φ«hέΥ•ΚόγΡ‡υ¦ΥΣDμζ,œv$ Š{Κρλ φΝ7Μ?ι›cΞ?Χ(νΧζtšu₯ޏ7Ψ•2nŒΖzž£λQ’Ί:£&3TΡ›R„*ΚcΈ…·ΐμ7ΫЏβSЊ§¦άΟΓ­Ήm?Vˆ:ɘ˜άz㺞Μ9­:ι/lβ˜7 $zsŸΖOI·Τ"A"°xΞδ•l‘œη!¨’IθΘ•E'ͺ5t―Ωήϋν.ΪΠΞ0U½3ΠΧA•uώUδΠ\=ŒO[Αsc1;5&‰H\Ά˜uR½Σι[φ‹¨ιkζθχf{`x±Ί|§ϋŽySυȘβ”-MJ˜f½κgg4 ©R89Ο_ΤW?‡υJχž’1nΟΊmαΏΡδΟS?κ›ιΗ5ΡθϊυΆ²’ Y-ξΰ!f·˜bHΟΏlΔpkM£tϊΧW*·4ohΎ nqKeα߈Ν,QM₯k–’•ς-Ÿα€κcΘjΔϊ―†.MρJ­Ε”¬oΥFΖ萺O―Jλ|Aαν ˆυ=:ΰΨλVω]ΞGxε_γŒγ§n’™₯λ–ž&Ž}[΄[]b!ΆζΚo˜0ώϊžκό}kΣ…O‹β6§QΑ†ƒtΦVίe ΣZ#•χa‘z€}FΠ,«2υΣί±―:žΪλαζ ηŸΓRH£sΝdΗdυ1θ5ΪΫ\Η,k$Gr°Κ•ΑΰŒΡO{².m?z'5&‡ͺxBvΏπ¦ιτΆΌΪŒ6€O-nΗ;9;5Πhϊή™βm-ζ΄pρ±)42¦ΦΏ‰OCμ•^³™nmγŒ¨8gΔ:°^Iθ³-ž¬‘ΏΥ\©8)0ξ8αΊŠνŽ‡hσlV”Οΰ‹₯Wf—ΓNαΨε¬ Ζx³œαΟ₯ui*ΌjΘAVΖΦ³t-zΫΔ–χΝo{n|›λ€ ΔΔr±SΩΊ\ύχΪό κždΪab”œ<’ έ£Ι8=Ύ•Ν_ ~ς;—…Ε΄ύ•]ΞƒLe½Φ/uwϋ,n@ωβ•]Τ΅M25{™v3ρx%δ>нMai_Ϊw]­œcfˆ »œ«Ό™ΙΚ¨ΞrMlYιzI–οkIt@έu9σ%?π#Σπ―&TεvzΧΠΟΉΠί^/gέa©C!{9:΄μΰu ŒιqE–₯δΜ)μ*ξΦAΌz0cψά±ΚY[“»;7sολTυ­"ΟZ‰LΜπέ[ε‘ΉˆβH·¨φ=k’œΉW*ΨΖk˜ε€π–‰5Η…υ+­Iσ6ύε»wVΔμ?N•ηwώ&Ye·Ύ°n ;dˆΈlΑν^³₯λWV:Œz6ΏΆ;·;mξΔw<χ_Wς€ρ ±ŽχQž0Ο`―rΝό+ψπ+eF3\ρ&iEΪ‘ζΎ°ρ?ˆ5[½>οΔ:½Άok’·;€‘Ύδ0η8$A]œ‘ψŸΓaZβΣZ΅„νHˆϋ<Þκ­ϊVχ†tˆτ +wŒ}’BgΈoοHܟθ>€U \^iΪ½₯άς4d”΄›Ής€Ώr½yμkŽS₯QΪΫ$₯1|+β*ΦΙ4λΉΝ­ϊ±iΦν oζ1δ’x<œšΨρFuν’·fKΘΨMk(λ«Κ‘όΎ†ͺκž³ρ’Iςy ŒρΞFAκ§Έ+‹ΝOLΌm Au[=m›aeΏch8Ξπ€œ9ΐΥJ·4y&©sAΖƒ~šζ‡kw2α₯Œ+#ϋ·Ζqώπ5KΔ’[ιΦ±iΊMΊoX?d΄›ˆr?y)ς¨£w±ΕckΪ&· xΦΣLπχˆΫM²ΤΔ“Ϋ ‹u<ΐΊς Ι'#τ«^ ΌΠ΄KΫΉΌY­ˆΌ['ξnŸU˜)Ž0xH˜αJσ|ΎΈ=*c‡jW“Π†ΧΖz‹€Xx{HΆΣ΄δ"8ΖK1Λ;–f=Ψ“’kǚαg§G¦ψ^q«ή±W?=ΈΖLΐΐt'Œ‘Χ₯u0°špoQΗq‘šΔΦ―μ<+§κή$Έ΅W»0 4œ υεˆz“]qFksΞ΄Ν3ΚΆ‹I4VΊi%Ψp>yψdŒγ‚G,ήμ+Υ%Οήυηšβt›τύ6ΟDΈu—V`/u™‡™‹2Ά:ΆOΰͺzξ&RaΟ°Ε*pЁR’Ύ… €Ϊω :ΔnΝI,―΄’Α>3θ?Ζ©}±,γ+u „© y€§Φ‘#’œˆ΅«‹M6K‹τI"ŒgrIμΉθ++Βφλ¦Aq|‚+«™Ιcυ/Ύ0O½0 ΦυΥ»Ό/N³ωσ%Ηή#Έ«GΓηνWΪƒsrρΒπ*ΰgκjaρXS–¦§™uqƒ–Ά‹°ošCώ‹DΕ‚όήs“ω՜Ÿ]1ΖGkDŒωˆIΐβ aΟNυ.ΰy럚έ+H±Ά4.αψQO_»EZd\Λm3^Nν;Tpηζ·Τ˜žΓ δgί5$0΅·”[kVσhχΆ¦γΚ'ΪQςŸΗπΒ£–Φ˜LSFΓ#Κ~ πkΤKT’γmKVμ²e †Ζzώ5­ͺΑ’ι7Z…Π"ήΥYN…y#ܞƒλ\ΡπQΣ%iΌ5©Ο€ΘΝΈΫ¨σ-XϋΔΗώŠΜΈmcΕ^&Σ|#«ΫΫύ&ަπ£ΒΈςΠ†μςΖsΗ¬f§’3v΅Ζίθ–v?u oΔΦI«ί9Υ&ƒΉ%cϋΈΤπΛ΅6¦γ&¬ΓαΛνKΓΦZ§„<@‘ιwp#Ηa©ξΈ‰ eί’ΰη‚9ΑΝZψΦ―wΰ˜)JΫΓ¨Βn@?»άTώ±ωWΰύRχΐH—K ΞΒV?yμX‘σ:Ζx$‡‘ί#k–WΧȝ²΅Ht/Α¬ά^|9―άΛ‘ψŠΥΝΌ7‚@Ρέ@H ©&0Ξ;ΘγΎEw‚ΚΓM“챬z}­Γ-΄`τ1χ9'žη5y¦E«xr-0€Wλ2b(¦ω’Έ³ά:1Ιωq\橦λ>Ό·ψy€jΟ<©eŽζ^^Φ,.Opͺ:}ξ:W5E1‡γύt Y©FGUΰθα*ρ.£γIk8ΤιϊFγΘ§L?ήl¨#œ vΜwuλό©l΄λM#KΆ°²‹Ι΅ΆbŠ1ό*}O©ξI4‡vJ A(˜§·I‘h€Pθΐ†VεX{ƒΑόk“ ]h’½Η…―Ÿ–ήΦR/™fηή<εΊW_#m¨Ϋ<ΦNρ6Lΰ5/ΐΦΩ~&΄m&θάDΡ]92[VSΈJώπ­½ά^7ρ]΅Œ3€ϊ6‘εΟrCnάύΪ΄«χ‰ιœVŒξ­4\ΟuΈHHέζIqά’@¬ΝαΖ—c ZΓ{kΤΠy’έ[~ιΦV%˜+vaE ‰ξ‡Κή‡ HNNFjΌ‡ΚηΔή$‡}vΘν}«vƒΫψdϊpk_IΧτέz’ΞαX‘Δ‘°+$GΡΤς§λEW%«‹Žζͺv$ £¬jΦΪ&‘u¨έ“δΫς«Œ(υ,HλVχνNHυ\½—\ρŽgŸLΠεYnΌ₯έΎι—δLŒeΉχŸΊVŒΨπ֟sio>‘ͺ(ώΤ$σξHηgeŒ{*ΰ}s[²rŒqX:n«m|3 β·9)ΞεϊƒΘ?…i•rOβJR¨Σ³;=έ =~#g­Z_ ωwZNObyΎr+7PΣν―•Vβ̍ς8$γϊ²y8n‡ΏOJ§{cm¨Ϊ5­δ 4-Υ%—λ_zΐ:^·αηέ£\6£d§ώ<―$D‘ΛίΨ5T&€΄.tάv:¦λJ‡ηχ¬m/Δ–z€ΝjD–Χ¨q%₯Κl•?ΰ=ΗΈΝk3ƒž2(Ϋr¦Ι‹ίlς"ƒκ\ŠΑ²€λΪ­ήΎΑ›JXΕj3Δσ€VY±ά ;ϊδΤz΅εΣΗ‡τΙ jZΜρ€˜?Έ‹%žcτ^žδWya₯Yι:<:Mœ~U¬Q=άχ$’IξI¬πxdκ:―©5k8ΖΕ{5ΌlF?*²ζΕgι„­°ˆπ𱉁μEh)η₯wFZ‘(‚ΈŒ£eo¨³\D²F§sοΩττ5pΘU°ƒ27έSλκ}«Ÿρ£qb-4MΪΦ‘Έ€¬2!Aχηaθ:(ξqιJrv²!Bς»0¬_[Χ$π΅„Χ-’Ϋ°“Tf˜22ΆΑΊεˆΛ π8ό…·cŒ ½`GG-΄.+;epˆI,Ηs1'%˜χbrI?ΘU™$Αώ΄ΎλΉ’΄•–ε{©ΚΞHϊšΰ΅©Ϋ^Υ²±6vllœ‰fμžΰ:Ωρ©<³/MτΉT—“¨·Œχ=½gΌšDÝ‘:/R{’}I5εc+8ΗMΘ+jΜΩ VpΜΔ.ώ₯zμώ•CΓΦcZΤνnυe‘t!!ς’\•˜Œν/ώΖG½:ΛMΉρwˆ€Σ£σΠϊ“ž6/hσύζΐιΫ5κσˆ£‰lνφlM ’΅@θ0*(Rδ^Φ{±Νς{°ΨŽ[»r€A4Mμ8§svςxΒω/f'ϋLΫ‘ι{08σ1<Ττυ<Τ&έό[©5•°+‘ΐεnηεϋK°‘ßΌί€β£†Ž8Φ5@Q@θμuQ’₯.yng9ϋΌ± υΝ;4½E0žk±“p›»΅E4ΛfFΞ3€R};…¬=άΰ‘ΨΧ γψmμl?α!†γμϊ₯ύΔΚ2dΙΉ#ψ”ϊvλ]§ͺΓ₯ΩIy{8…#Ž9Ωθ«•εΪκκ~"s{}€("ΪَD {·«‘Τφι\|Υ=ΣhΖΪ–mξ5Mvξ=f{yΩq FU nΎήδrN+jΓNύθΉΥΆ»‘ύά!·"{τ>υ…ΰ­nλFΆ±k”[ΘcPœ3οV΅;‹½bε΄k+™01yp§ύZœόƒύΆύ]z±§i- ‘E:„Wo?Šυμ¬χΗ Βϋg‘ {Ž )ώξzβΊ4ŽΟH°Ž(β’β8γ‰y'²¨ξMVtΆ,’†έ|¨bR8ϊ’z ؚθ4mHΏΤ‚›Φjηp·Sό+Ή―ž§RaQΚZS:½Ÿ²*)ΗgzΡ‘,f;ΙNΘ£'ε·ŒŸVΗ~ΥΠYZΕg pΔ›#ˆm_aοοR¬)ΘΒ€s\Φ½β Q›NΣ€>{|²H?εˆ ώΎ•μӍ<== $\ΦόUšΪΡβι~ς§Hύ؞? ζ4­>σΕ²yΊ…Σ¦ŒŽpƒ/= 2*ŒΦκmž5o*03$’6Ι䱁5 ΫλνtΐφΆƒ φ’’½?vΈΟβkž–+λρΨ΅ Gή45]-’ώΒΠ#XYIα-—žίή=ΏZδή!fΞyαΎbrΜμyΗ«15¦+u]7N‚InΫ$D™ήOvrz υc]‹α‘k:κ:›€χ‹ΜHŸκ wΥ±όFΉjΠ«ˆ«Μώ‘8Ζ%o ψ[ζ[ύV|6­‚#τgυoΠWM¨κVzM‹άέJ5γ‘bΝΨܟJ§¬kΦϊ€Α¬Η πnω˜w==ΟαXΛq+ƒ›Νζ―™<Ώr6'cόG=©ntΙt»ΰu4•τ–lnIς ΐρΥ=jθ粂-85‹rŒ ŠτθazžV'WaΊn… ™2„άwάΚC9ϊt}+B2bΉϋ$$«Ύϊͺγ©«.U†χ;@Α'ϋ£½E ΓζC&£ %œ•ΟUŒ(ύ3]R•£draβκΤ»4α T ΐͺ> }½€_Γ&₯n­ŸMΐσωVŽžΌf©ψτ&Έ˜'Šaψ0¬’μz3§½ˆulηƒZ€bH2·#ϋπ“Ξέκ)žQΦ6OxXΨΊήΩΏε μςc¨τ릋‹0sm°Ip}UΊ'γή›φΛm:ΥΜσͺAΛ½ϊ μα]Ξ Χ@·WΦ§εh§3(oξ?9όθ!ΐelc‘λŠΞΤn…•ΜŠδˆ†ΙΤs˜˜σψƒΘφ―A|œΘβϊΚηεfδΉ΄ͺΰ‘σRΖΒhΑ HξΘ?• ²‰ρgύκδnμοŠΠΟ•DZ‹g;„ Οf£“₯oφΓ$^˜ΕqΓ’ƒΐ?ή†―k¬VΡΕDL«Ο@HΙόͺΥ’€Iε§Κ"™g°ZM­™“‹‹Ή•±w₯?ΨυψΠΐδ(ΎA˜›ύρό'λΕ:k[Ώ ζοBKdX4– x‘ΜdύΣν·8η‰’•7£ 0aΈώΠθE`I₯jP‰3‰μΌΕf±™‡Λƒ,Ϋ·Πρ\u(8;ΐ裈ζњ:6³¦]\MNa˜JΔΫΜ6H‡ŽϊžΥΡ;ωp΄ƒξ„'ιυbΣ9Fr§WοΖ݈ό0kšJ˜yr=`MlŽκζ)T1Λ θ ŠAςΊ°=lΚ€ƒQŸE0Γ{rn4ιpΆš‰#)œmIHΰƒΩώ™¬}^)Ό3©έψNRΪ|μX³Pπ>ƒΧnΗ5έN~ώ§5Z\ΠΠΖΏΦ°Δb ϊΥQ{‘PΨja>œSΪ™[ίχwM@Λζ'υZqιK6ώt|Ι σιά~"˜―Ί}Φ‡ΠϊjΜ«J)₯’!šcކ₯ŒΆA¦ Ζ20}κtc9 &¬Λθ%ΝΝ½”Χ·Ryq[‘šF?ΐ‹Λ7ε\…βΧΓΧ"»C§β›ˆ›,sδ#–ιŸdΑΟ\΅IγψŸ]θή ‚BƒTœ½Ϋ.r-# #δŽ›˜*ƒ³>5xž+-6 ιχ;ϋ§FfC³’α³ΨεWλνWE¨ΎuΧDoέGi―ΫX=­΅σ₯J¦ ŒτPG$ y¦žχΦΠΒI>Ώ΅¦ωW1-ΈQΆεΗ;”ΖGΫΉΟ[αŸΑγ/ ΕqpocΔwΦδ`,Α@'έ?x}HνXΊE½Φ›λΆφ€M}ov—,Ÿ7‘ΐΜΘΗΈnTsΠΦ*W―R)ÚΑN΅‘ΣψcL΅#:z—²ΗΩ‘šFΛolχ ώYΗA\―‚u{wβ&·\O ƒ³ΣΘI6$uηs1Ξ»γw:O†m|+’3-ώ―8²†BrΚd;€•ˆη…,IμH­ίψFtUΡ-4‡Σm₯³΅A),aΆ χ<δυ'Nk\-+ΝΤ~ŸζeR­•Ν†“r1ιμ{UPpνώυr’xoSΡrήΥεŠ Iϋξg·#Σ“½L‡Ζ‹e?Ω|Gg&‘;Άy[Μ΅ρχe>ŒtΤvά#%=Ž’c»LŒp μ{ΣREp¬669ΰƒή¨kεΎ‡₯έίάc΅C+(ο‚0ΏRHsHΥ€dOψ‡ΗQΑχ¬΄b.eR8k©χk\·±"ΊΧ8ή±<₯άiZ k~w_ΞΝsvύOœηs{γ! Ωvͺ·* Η°υ― Xk2%ΨσmuΥή[6Ω—κίΔ=ŽkezσO cοΟNjyνΉm·±η—ώ$ρG‡’:Mν’^ίΚΛoawg‘†WzuRΜqΗΨψ{DMA‚Γ{K"ξif=e•Ž]Ο©,OαŠΔπδ+βάψ¦UέkkΊΛLΟ9¬³}XόƒΡAΙ±]ΣQζ9κk‘¨θ~¦ \[‘qΘ”pλτaΘ¬i¬υύ ‹[¬š­’|²T\(φμN uύE7Ϋ΅§όa Σ§³9Ν#ZυΨYνnŠœάΥ=3^΅Λas¦]Γ4cςΟ1Ό*~’€½uœΘ½ ‡ΏjΙΟ–FΚ*hΥΠx¨l¦σlαυhԟʀvζΊU­‘ΛvQΥtk f0—ξu9ŽPΔIυVκ sΧz†³αt/|ίΪz\@»ά«}» ˆŽ‰9#ρz)bΈŠ9’Γ$Šτa‘όκe£Έ9hVΤ΅;MK½ΥoXG JY›ΡG€ηzšΜπ~s]λΪΜ{5G ,dημΡυpM£ΏΪ>ΥJΙα8Χβ½-Ÿi2“n1‘t§OxΠδ/«s]Œς퍱;f΄§ ΎfgQ»X’r,0I9cΔ^& l¬£7Z,+Ρ3Ρ€=–€Χ5YΰK}.ŊήΘ™g+‘ }܏SΪΉΕXμg– ufmΫ€v圞₯rMpcq*’β¬WΣ΄λˆ-e{«Χy―1%ΔΚψ'Ύώ‘TnμεΤυθtΝ&ϋdλ˜σœB€s+ϋή¦€½Υ_L²vš؁…Ιη_|žv^ΣΏαπυΦ³©yo¬^|Σ;°sςB§°zδΧ5ίΟΪ?„Ω7ršVvv~³‹E—t£2I+rί7%άχbΞ+RΊΊΦo—ΓΊt― c7χ(y†& ότ~ƒΠdκZήn#~Σ­j2mŠ<ύωHγ?μ(δϋzΨΡ΄$Π΄Ψ£gΈ2ω—7,9šFϋΜžΐV”{.²fοMΨΧΣμν¬,ΰΆ΄`†% ˆzUήΐTj6œg5'k.ζmXiΘ4Ζ8δŠ{T1ΏηU{1₯dE<Ι 4¬ψUλYWڌ6vς_ίH#X Ÿ,~Δi5KΈ`ŠYeXΌ±εSΝrh“Δ:Šήί†ŽΩλKi8ΟP$qܐ~QΪ±©RκΖΠ‹έβλ\ΈKϋψέ#³ihόμνΉύ\ƒψTz† Ά—†Αhπ@γΏ½&½rο5žŸŒ¦G%ΚBνή²%ŠIοCΣ ;‚Kν?ΉNξίΣΤΧ2•Χ4…»™:Nƒu}<ΦΪ,XΈ‚f"η;VI 1#ŸL έΡ.aΣm_Hϋ5ΘΥm·}’ύγΘδƒΌ7B·πν]ž›c¦Ηgf˜δ*.yf'$ŸSΤ“Wυ― ¦£ei=¬ΒΫU±mΦχe7Δε•ΗρFΨδvΰŠΚT㎧Λ-Ν]GOR-Γ²[LΊŽ¬‘―—"AΚ[Τ΄δ[·A[₯U€vΪ9=«'@ρφŸe}³Υ­-Υ³œ”'8?čό-ή±υέDκ³Νl“Σΰm²p%aΤύΡ]”θG–= ”₯y ¬x™'·ž=>b–κ{’>\w λυͺΪ‡m&mGZ-okƒ*#ΆΒ«Χ{·^ͺMI]\­¨Δ"ΡmΫt1°ΐœŒόηύŽ=hΥ/_Δ. ξ:81Ε‚<σŸΌGχ}MIς―|o_„Μ†ή+ΉEΤ±,QƒZΫJΕ³ι#ƒΥaΪ΅no…ε†K7έ…?ΌΨύz†4ΌΥ/E­’ξ»<Ύΰv@Ÿϊ¦»­+JΆΡmDς1έ,ΟΛΚΗΉώƒ΅i†’ήΏ`U&–ΔZf“k₯BD4²ΜόΌκO§·ATυmrHn?³4ΤYo˜eΩ†RέΌΠu5±­NχiΪ[€ΘΑnnΨe-³ό>…ύ»w¬ϋe‚Ζ3³ϋΜI#>]άσΉΫΉΟεZU¨’ύš gR| Τc]'J–ρe{‹‘yIq)ΛΚΖ@>ƒž₯]Ή†K}ΧO\‰fQΠŒςυ‹¨Μnt½!Ο{`X~%Ήό«gUΤmτλ#ws2F±β?γJ*θSŒY;0!aTzΨRΦΪ[‰μ΄0UΆ΄ΗύUΉ=³όGΠ ‚RΎρ‘)–ΣM= lӏW |«νΦ›₯Ϋ-νZΓŽΞΥ†υEΒξώοηΦ΄£‡ΏΔc*νhWΠ‘eΌΪΔΏΏšl4§ί°ϊWKm€@ v¬νbΜi:›jΡFE©qΦ §cτ5Ήm΅ΥXA‚)MJO#«2An’ΔbΑΘΘ#ΠϊŠζξtˍ”Ά6Œ+΅OZT‘’ΐύΩζU?N§ωVΗΩ Έ!Κνoο/}k TIlυ8f‘χCXΉκƒO·^k5¦Nχ9ϋ}Dι:\x]E΄­Έ]Ω ƒŽδt©tύ9u ₯½ΥpΝΦ RAX@Ξ yΉλΫ΅SΆ‰5)/<@ιΊΥdΦ&0ε €zœρθ)ο‘ιrGžBͺΆzεvŸLŠΓŽΣΩC.Š~Ω쩦XΟsžbŒ°ϊφˆΦSθΊ%₯όg|π2qύΰάΈ?žG°υ+mE$M>Βζβh·,“[Ξϋ€PrγΘ'‘ΛκdzΙVR¬₯–@‡ΈaΦΈ9£5dΟB”Ή74/΄½.βΠ]Aˆ₯),D«Χ·ZΖ²ƒQΏ΅ϋD:£0Y0ά¨p„Žjώ‰}§O~Σ©* ‰’NυωΥ ™—βi2VΪ_šcƒ΅3Ρ›Πg½rS―57I΅s_FΤnl―γΣυU‘»²€tŸ_L֎§§XΙ »ωr«.dC΅‡<δŠi‚+Λ—QnΤ‘δκ UΉžζΫΓ)ΐΙrΔΑːx'πζ’2r«u£3•>WsχνV^#Τ¬mnδCζ+—rΠTgΆI¨§·‰Sk4·R0Ž34„όηΎ=ZK–-¬²ΆDŠδ³7RHρ₯™φ΄2Δ.‡Ÿώ΅τρ…¨\ωκ•ίΦyM+›,d³b\αΙλΙcξMUρ H"–Αs‹‰Φdό±œ3¦άšΦ»ρ<[¦δJΈLφQΐόκ­³yΎ=˜ΈΚZΪμ\OεXΤ|΄ΉΞΎ_ή\Χo [½¨—L»”;FΘγ>λ3ΓχςΫΫΙ₯ή²[€A «{Žh₯Τκ;tš]Φf@2‘sχ}JzQβ«V’γEΤ4δPo€[0‘ήF:uΗ?•xOޟ$ΡξF?»ζ‹ ρPΛβ .`>P’r–εrPzuδ‹Sμ]BλOΣfY‘ˆ%¦””„‘όGž}«±ΤτX/nγΠ6Ϊ-PΧ Έ ΗF =λ’πt–‹§Ke#[δΙ$l»†#―|Ž•²Δ5Kc?«)T½Μymc]:Y΅;Ή.LjHPvFΎΐΏtš>–‘xqlgAΉΖιC{œkγJgΧμ4fΌf}ς Β5δ=OΊ{»΄yσYMw£qΉƒ φ`zσ\ΥκNI{ϊ• +ω Kˆ|3/漚CΆΤg9kRH υ({Υid 3„ξ;ύkSKš-WL{Σ˜Ÿ-γnC σΗ‘Br|?{φIXΆ›ΏlRΉΙ€φV=ΧΠφ―‘Ιρœ}oˆωœί-MϋXntήΊey4Ή—΅Λ'ψ‘?wςι]DΘrάzϊW’ xΏM)χf‚hΟϋ»wΤW_¨$ίgp ŒŒύάΦ•RSv= œ©b…†oο^ρςbCŸNηρ€ΣάΛ-Τ©σ!Έp‡·‘?₯&­t4λΆ³βga#ύ¦ξ~ƒ&YΪ₯€6˜D»sκsΟλX_S£’Π˜.ΰήέͺaΗ@νژ)ΩΑͺ9±OQ#Ώqt’=½τκ#²ϋ~ςŸCTγΧ$±#MρΔ³0.±Ίή\ρ‚€ŸCΕn!ο“LΊ‚+»f‚xΦHά€Ι ά­υλ ”#SVm»XΑ‚ GΒν9²·–ϋCY‰Ž(ωšΨ:χΧ©¨ν[Φ:–³l·v1»t£κΐς±¬ ›ŸΛ ύυΗ‡„§k»Ωt=KGθz―΅/t[]Gώ'z Μv·ο‚²―1\»d†ύE'+3zuμ&’Ζ;*μŒ4zŠ€Ήν»*sν’)ϊ–œš’‹¨'ί@ΔΗpΌ”9Ι ;©ΗJΖΌΧEν‹YέDm5X 2[1ω˜ω‹σ)ώ {]-υ½΄Vπέ[Kε20ω‡B]Γ½BWV5RPΤΙ·ΊƒXFΣυ+T ΰKo/'=ʞΰϊгΥ.<-6/%’ηB,ndbΟhxHz˜ϋκ½ψ¬Ω"MBi#•6ΊLνΈ2cWmnήΝΆ’Β[INί9Η?Γ ιΝe O/w`―‡Hάο“l¨H*pAͺQΫ¬ΠέΩ΁γσYY\nHΞθA₯rVzƒψ*αa˜Όžv „δΨΡ[Ή‹=πηž+Έƒl4ˆAY0?πŠτ£(VΡδrΞ”¬Ξ $ΈψyuδLdŸΒnαcwω›M$ΰ+Iƒ'εn©œχ½β/ Ιu"kzΒ J=¦7ΟΙ:pBIκ§±νΑΦάΐ“ΔΠʁ£`C+ ‚δΠƒι\4rΝπςοʐΌή’PˆςΗMbxV<“'†κΉΑλΝΈέr½‘W£αύ\κ­φ«T’ N)ΜW–’`:’C―Cή»KΨ―‘‚+$Θq$2 :Ÿ§­sΎ!π¨Ή‘uέTƒTˆ«E)ε&CƒεΛκ§±νΑͺΩψ‚'IνšΫTΆ`—0HvΛ ρœ‘ΤΔpjbά=§Kވίiϊn|UαΛw{τ š…ͺœ-τ< §ΖΗο'2{šβ΅Θn|#Mβ]#Μ]1˜.·C+ƒ€&Qύυ?xŽάšΪ3±l:’ζκ‡ιM‡Όη5‘κ6Χο κΜ>έ ξŠ\`\GΖ{ϊŠδΔaš~%αρ*^λ:d~ΤπΫNjvœš“άœ ΒφG]Œ/θώ^©€0‹[³T[ξL„‚a“Υ[tβΉ_°xg^i|Q¬ιΦβΝάΗx³¦ΪPmΨη!²?k»ΉΦmb»ϋ oΊδœ4h2SάϋΧ'β-4θzΈρ,Vξ,άͺkNΑ©>?Ό:6;Σƒ{Š\ΡEŸ xOΑΆχ‰­hz}žΔS8v”‘υ˜€άρή»Y„v°βδ*$ƒ ζ †¨>Ήm&ήΖ?ψH΄H‘fŒ¬μπ—bŽAϊVξ΅­h:BA¨έ#½Υβ΅·ΆBΧδdP}ω'W]&­y”₯>T^™¬εΟπuϋωaδX;ςžsεΘ?Β}«FΚε΄}F]PΚ€·šSŸ2< υ88χ^ϋΖZ«Εq‘ΰ‹γg (bϋ\nvΔw?Κ­Ϋ}²ϋ@Πo€‚ξΙ,o Fχ’ΖXF8ΞrFܚΆα'ϋ² κΑ{Ζ‡ŽlΧH³Π΅ΈΑςτYΐ‘ιήM© ϊƒνŠŠ5]FF ψvυνή[aus~Η{[[’T'ψέΈψGOQ%NJ<3β.λG“W²σf‰‘1M B qΑ'“ΪΈ=3YŠmSQΤ­ξfžβ9E¬&"€<0 ‘–Ο7ΜŠ/}›αbκːνό;ΰύ/Ikk‹KXΦζ9K=Α]Ή η{žI$šιυwh’c%!bιž1U|7©Zκz½εΏ &K8(έOΈιUόUͺ[ΩιBΩ•εšκQ0EΛKΠρνΗ^ΤF «ΔS«Ισt+ιϊe₯­€™ν"ydδœΔKdϊžΈͺέyY οd@ΑC,xEcΨ’zUYτ;_±M«xΦεή>M―Ϊ€Ϋό-ƒσ·ω&ˆ%π炍½toΆά^5ƒJͺsς¨άψ?ή"°«N4ώ&―Οͺ:΅Ο αΒλlrΜε;ΰσΟΆ)Ύ™Βx—pς§Θ7dN΅ΑX2έίάΪiΪεΞ›{`ΒYbΈΥF‘o/N@*2£€H9»Β7sjΙ4Ρ}žψ\Οά[‹m‘UKrz©8+νΕLΎ†­έsw¦ΣΨS j@ͺΨΟ΅eƟf–[aχPο‹?ά=Ώ:_Z§¨  γψa>Ζ΄Jβt’Βγ(ͺHFdZV½’8m?Sϋ}Ώ{}AΙ`ΩqΟ>υ~ΧΕΆΛsž₯o.›rΞ Χ*O³Ž o&Mr¦‘΄t›$©κΧcΆ’ŒΨ-'¨Ϊ œφβΈ}švW*3mκ?ΐ[5}S\ρ³€ρΚί`Σ³Ξ-βωr?ί“'𬟈~ ²}B}sμ^|%ΦK€ƒF6γv;――₯>HόWΰh4­:Φ]γIσΦΪ‰Zή`…K€U·rsŒδΦ₯Ǐ’π·Š|=©θΘΐ¬Σ: ΛSv2Η“ŸͺŠΪWVQ[S“₯>~η>•'…τ΅ρV€#Ž[{2β Ihξ­Έ8n~ςπΚxθήΣ~ΙͺΚ²±—μ0‘šα† ·rŒΚηίnΑŽΓ\νΌRψ~[τž;Ώι gBο=σ„.ˆ.@UυεΉ­Ώκ2x#α₯Νδ§uωPΜs’Σ±{ςLΦ-½n½οΧ λΝNΘΙΠIρWΕ½[W ›-ejOόόH£Νaξ―@“©Ξό;Π€πχ‚¬ Έ%ηSurη«M!άĞύ‡α]]Q\‘±„γvV’ͺ\ΑΤO ¨Ž0Θό©ϊƒΑ«.Γ<š¬Ν–γΦΉκIξ\ rsψCϋ>S'‡/ξ4†'s@1%«Ÿx˜ΏπVVwΪϊμ4›τf―ύ£zDγ|©\`p_œξΧ ^\Γek-ΤνΆ(TΛ#Š£kΐΆrfΙ¬ή![½QώΰυHωXΣπ\ΖΈπυ*MΎmμެ€«Œœυ9¨ΤΩγ­GΝŠλoBb΅('ŠεΌgw<–h62˜―uI^Ωda‹hi$?Eΰ{‘]gݐ9' ϊןXXΏˆ§ΎρI»ΊΆVΕΆ›$‡Kt%Y€<μ3τ£E«+}A²±·Σ,!²΄ŒE #ψPtζ놳Χ|U£D‹ͺΨ RΖg²ωfQκΡύ tzG‰τ}w+c{ΚΏzΚJŸο!ω‡ε]JjJθΖjΖx€΄ pOαΣιRΫ!Ε3'_Τ%ΣτΓφ`ςv[/ύ4=Π ŸΒ¦ι‘i:dQ|‘σ9κξI,Ηά±&ͺφ}‘Ή·³W†άs!QΉΏ €žζλVΎ—Mζ0ΗΫux|³ΟȞ―οΪ±”œ₯d' £ΕN‘|RΖΞWρsΆδΝ?yδμΩϊRό[ F­yzυ¨ Ό–ΐGt£ΎPό²~μ¬4»=6άCi3–ΙΙcά±κOΦ§aω}jεKIN€ιΏu˜^Υ¬u])&±ΈW BC!ΒΚySμkSψ5‡¬ψVξνυ;I¦Σu r.νΎσ{:τ{šΕ·ρF±£ά-‡ˆ4ς$Θ wn7E/‘#ͺšηœyvgT[™ΣkzΚθϊ\—%|Ι‚E Že”Ԛ³αέM Fςn$σ―f‘§»œΛI˜εΏaXzΒS­ eΡ†™₯³Gh:ω·8Ϋ$ΏD*ϋ’k­€ ¨\πjκ‘O’<ΖžΌ’1;~΄.γΕ8Ž(Œۍ4υΈη‘Νq:γ\”ƒΑϊtΟ·¬ς<Ρύλk όΗΨ±>ZύMuZΖ­k’ιwλm‚ήψκ{Ή$€©¬ιWqEs¬κρμΥυ'\&sδ(β8G²)hš»sJΘ”Ή_ΌkA§ΩΩYΑm΄pΕ ˆ5*Ž‚ ΎΊ†ΞΩ€‘ΌΈf-€ͺ:ΥΩά/˞ύk„ρΩΥ΅$ΡαlΫDCή9鞫}IδϋT՟"²4ŠŒŸ4Œ™.…ž₯¬αβΉ»‘LjΜrˆHTR=qΟγK,+k E#’XςOrMM¨:άάω} …ƒΏ‘oOΒ²-τϋίλ1ι-$Ÿ½'AοŽνχGkΔ­ϋω*Q6‹ΣšFχƒ΄$Φg_]DE€L³£|όΔeLδ^BϊzšΡΥ—KӘjΣGΊΔϋ€d] €08Nzw&ΊyΔ GmΩΒμ_”θ:~ΝιvηΕΊ―φΥΒ€Α!ldρ;Œ©ΈaιΑ?κφ^χ$6FW³φŒ›ΓEΔ—RkΪΌ,—³Βη›XsΒϊoa‚ί•u›r…sΕ5j€8΅Άw]>­ͺΜ§³ΚΫƒο€_zΝ»j\UŒmNόkήn­x’Ÿ[Ύ`‰H_΄`γΞqέΊΏCSYιπάiπ\\Ϋ&ωAr$Pq“ΐ?†*ξ·z…ύž(EΔ³ρΒΖΏuqξqΗ ¨υΫΙ-DPZΖfΈ™ό«x–•ρŸΘu'΅pFRsζgVξΩƒͺΔ‘_ΫΩθ–›u‰p#Xςjz³˜ώuΥhZmΎk7šώeΧ]ά·%ΫΧ>žƒ΅\Π<8Ί-ΉšwκSœΟqκΗ²²: ΉkhΊ–’Χ.‘­mΞΥD²3ξσ¬κ*•ηΙ Ί™NWW,ι2φΛ¨Θ•ΏΥ‘–kοξ{Φ΅DŠ%‰ΞsTuMVίL΄3JνΧj* Μμz(Ι―J1εV9Μ_ι/{Τ΄»ƒkYφy—ΊžLrρ?ƒ\ο†RΫ-Ξ€ ­£lΈ±sσT ήaΑ“Ÿ|δΧTΊP»GΥ|S"G ‚λhQήCόGΌ γ5˜'Τu«}oM³‚ήΓ)[81iFΌΚ:/M€ς{πjΉ£{šrΉG‘ϊΎ¦58ώΡ$†’(HΚ2‰ρμ+θ;Σ­t WΔuά’ιΊy9Xσ‰€@>Qθ*χ†n΄ΝjCy ά΅αxφΌW±ηό+―‰V5cš―bͺKœ’­Ιϋ²Ύ—€Ωι6KoiI,ΔςΜΗ»€Χ9―λ“\]Λ£ιS΄kmΎ½S¬j{Ήούί­YΦ5{›ϋ©4}f‹Κ8½ΎQώ ωfž²όtV°·MJΧE³Κ³ΆŒάΜΉΙf?t1ξIΙ'½:΅εά7:(Pη|,­€-αωmlβ0ΫIaSχ³χƒRH€·ΊP±‚δͺ’Θ t8ηρΞjό΄nB`ΎΒΉ CV·πϋάFD¦)eέn‘‘f,Γ%ϊηž‚ΉκΣs^ξηeJœš’/ήG₯i‘:ΘΔ[έΒρ(‰ΓpΏQXχ—Zž’.΅V9F& V ¬C±=™±ί΅P“ΞΏΈ}KYFΜκm³ςΒ3ίΥΞzΤρ[3D‘ЁΤσΠ{ΧM*nšΌΩζΞΊD·2Ν΄%Ή-q3βοκ}…vZ>››§₯Ί‚Μ§2>zΉ<“\φ§JGφ€iΏ#eΌn܈ωσέ»WQguΘ;IWLGϋΙυ­ο}KŠVΉ$«…XΨe$ΈU9η¨ολXSΐήΊ;w>Šν…fδΪz7¬yθ{WC>”}.R¬ΊΗqA0 Θ!†FcννZƚ¨΅0©RΜ­,Ь€m<ƒSeQrN “ι\μ[ό1v–ΜY΄™›l1ΟΩίϋŒ{―‘νRjš½Δ³7KΪnWlξ§Λ·ϋή€φΰΉ72w’ΠsκvΪ\.ΧRβyg¬J₯ωγΏsΪ³oEώ²Ύ]ά"ΪΘ‘˜aζ?ΧγΫ—J³΄DσγV’αŽ&Έ›η·SΙιΟ₯_xUPαYqΙ$>΅ΌΥΩΞγf;IΥgYm/ ²ΩΩ Σό̝0²zCUu«†ρ&€ϊuΉoμψ“§΄Kνκ XνeΏžh¬Xψ?<½F «‘Z[ιφβ("X`Œ’ͺ?ƒ$uυϊΧ<’wFφ3nnDf‘±BͺΟεͺŽŠ2Έ隚8<έ6οGI1$k°g‚8Θ?V1νy-. š‹Ό₯‡ c?ZΥτ“jΛ¬i -Μ_1?,ΛΤ©ώžυβc$CΤ§uHΗΡc’;vŽL‰‘ΚΟΏ–ολVτIΫKρ*DηmΎ¦2ͺΗξΚώΜΏ¨©o¬Ωγρ:T[sŽΘΰ`Ÿ|σ^„₯κŒα~rTΈ‡H΄’υ€KBGΨn‰8'ύSžΨηνWΌ#oύ£{wͺΞ|»q!ΞΔ―>΅}p―qm ƒ6 θ2j–ήκmώςΣa}ΥΥ`$φ—ŸΒ±ƒ―mKœ›F¬ΏŠυ %8‘dB3ι€*+gvŒ|―5ΚΔ1ξΓό*mm£ΉρHxX2Kj§ υ δ~”Dž#Σ"Ξ33NΩμOυ"Ύ–“~ΒΟΦWΔ&nxŠXνš&c°ΖWhΖO°΅ΞΫβoE>¨ž\wξ†2ί*νΓ.όuγ5±β@GŠ•[•HŒ{ΰgρζ©Y‚Δ±ŸΌ}kNΣΦΪΗΓΪέΑ”KύΆl9 %Υ@ΐΓZθr΅²kωqpŒ™ί€ž;β₯ρω―U‹²G­ 2NR¨eκšX·ρυ Όi¦²ΌΆ¬ŽXopΩλΗ5JŸ&χRπΤO°»‘€GuBxή£λŽ=+«ρ·W“ΩOgϋRυV%#;$+΅”ŽΰƒωV‡­—Ηϊ=”φός]Fό’2 g‘RΜ0jVιr$'Jt«sίKc[O ƒ{Σγc"bΞΗωšK΅}_Γv6zm§‘.’¬Νsq"’ Ιέ΄u-n+CM³[ρ}νά`IihL0» ς>ϋsΤητ¦i ±Ψj6‘²­έŸˆI³ΟQΌ {`΅b©$Ήž²= NWδ‡Β\m­τκΠ$VΔΑrφ†8†K9Η$žIη9R‚[-B]μy†€‘0HοΧσ²ˆνn΄QΙTΈeŽτž„9α›ά69τ¨Όu 7:ЊψUF…σΒ/ρnυZκΚοOki#ΛΝiήƒwΦ'7α;ˍ/U’κ yξμ-A…#σ™?{n~π™―@‹Ζ:Κ”{Υ·r1εή!…‡Χw­pώv—jːۀ,ΗύΗ9όkzύ ŠΒWΊ@ρΔ™uu μ9κM{2—ΎΟ6„š‚eΈΐΉρ—ο[ΪGΆ6κ¦F^yϊ:ڏnXΘΧ₯pϊ_…mc²IPΟcy#yŽΦ’²,s·nvœ •uoυαγΊq©Ϋ¬ ’œg,½LVNΫ›*ͺnΗ^)X|ΉͺΆ¦£n³ΫJ―ξ8 ϊΨΥ7!©„ŒρO'?˜¨"mΡ©υ8θ&ΑjH)ιζ·zΚ›DΊekο Θ°9`ΣXΘGΩζυγψά~5―εί58 sŠN,w1hή8·–λF†ϊΩΥe‚_’kg=G©θG‘{‹― ΖΦΛ5ζΜ#KΧǜ²γτoΞ¬kz1Ό•5K …¦­Δ3‘•eκcg;pE[ΠuΘ|Amu§ίΫωπνœΨb€Ž§³# ο\sƒ†½ ­©‡¦Jm$Έ‰„†%ΈuΨΰŒώ½ΙTFκ6 2°γΦ°¦΅ Ύe• Ύš\+ΏΝφ';@zωG oαθx­¦ΣaΫ›[‰ lε œŒFTπE+£ΎUDRŽi4‰…­Ξfem€Θwy9γk“Υ}3Σ₯[Σ/ŸΑsω2³Ώ†δ“HΗ?`c€wςcόΑΰԐܱm¨ΔŸέfκ‡?Κ’ΣdX§Πξ–₯βσ9ΗΚ}qœTF~Ζ\ρ؜MN7G Y# 9SΘͺΧvι=»E*†‰Ξ¬2 τ Žΰη₯qšmόΎΊŽΚεήOJβ;iδ96LOΘ{Ζz+vθk»VVι^΅:‘© ΗcηκΉΠ–§ ΔΏο…Όο$Ύ–]Λ!άtζ'εW=L$Ÿ•Ώ‡8>χ|Wα³}εkz<λm«[δΞ~μ‰Ας₯υCϊpEtsΑΝ“Ϋ\ͺ"oKpeπτމo,“§³tŠBy1“€ς:)ΚΤθ‘W›soΓ~"]z ,-k©Bώ]Υ΄Ÿ~ΐ>£Έ=λ¨H• X•{Ηγ\‡Šτ9 wG]š­©ήΌΗΒdϊ‚θqZZ6±k«iΆΊ£I‘\eŽyκΈ9…D€ΉlΝ§ύδc£?€5,’ήž]¨ΝΟφ{±V?σΔ’p„ŸC[Ϊζ•³g$žMΜ-ζ[\½ φ?OoJΡΉΆ·Τl^ ’A*•tqΓ)κ qZLΧΎΥ…/$³ΊMδ˜bT|—οΌ»κ+Z5χdpβ)?Ž;—-όN‘A»WV·Ώ…ό™-Β338PΌQVV=k[cζLϊ=‰–kƒs ϊγƒωΣο|5i([Λs³S‰Δ‘έΘwΎ} ?Βz`TΪVͺu cζ)Šζ#εΟ QΖ2·₯sb(*~ϊ;0x•]Yξ‹–:mŽ‚ΞΩ#N§#%©'’}Ν[|”@ٜ‘Ž?Z‰_oJUlœξο\ύ.Ž΅Ύ§ sώΤ"΄IΥ9γΜΝhΦ½Ξ'ΓΊζ―αJ ­B9©M‹­»dΔ|©#W’[ΖΊ=•ο‹ΌI'•p‘–Γόίd‡΄`}ΏRq^~>Οwψ“U–C§@ατΈ$₯€8κY{ βΊ}BΞƚ₯ξ—{Άϊ|RΨΩΝ&y+|Ο!ξκ‹€9ΫΈχ¬©W”bԌ±y k+X­Εώ=a–Γμ:Tˆ]lΛghΫΟ›3#+Θ3NM/Δ$Τ|έΒξ Η§Βΐ\]/Qζ0ϋŠGπ©φ¨Ž©qβm+Η:}€Χ7šTχ6χZ6Ο2HΑmŽ«€vΜ 3Αˆΰ―¨_^ψžΚβMN+ x63›ι5Ot1ώ©Ζ€œ -œ/SRγν4υbJήμQž"Ρ/υ85[h¬΄ίxZO’ι"ΒίΞΔ#νnwF0ΗήoοvπDsIm{ͺήΔaΊΥnζΤ<†0+ΰ*{μU?g$ƒΔ'Mš{Σό?iεΆ‰£:ςγ3€NFv―rsξzφKΓy,₯όΓu&ύό;v¦HΉΈΗ‘Τ γ³\OZCJ:Ru­ΙEVΤle\φΟγV‰ 3œc©τͺχQβέΓƒύjΰ! ƒ=HSΚΰQZ!э―ψβΉ=1β/ŠzŽ₯*–²Π-ŝ±<ƒq"ƒ)ϊ…ωΩΧ΅”Π΄kέIών¬fcο·~=?oτΉτ/ZE|ΈΤ'ςπγ f•‹Ά}ΐ*Ώ…qΡ\στ3mB<ΜσoŒϊ₯ξ«βK} ΚiX΄»ΔΘΕT‘Θοι]ί‚|o/ˆν±΅tϋ&»cvuγη\πsάvζΉΟ[‹ήkr(ϋ1‘lοI–8Tςδ?μδOΈ¦λ[]I₯ΫΪ9ƒP–νήe8h Hήγa ύEaν₯ΚΏ˜τΉ(ʌeΤ«'†u‹ΛΦΏπU€pΑΪ΅έͺΘ©ey$2Bη Ϋ” ―»γxŸΔž'ψβK]5<<Φh€O-›ά#+\6n8Αΰs^Σu©ι~ π#κ^H†ΒΒΤαQ‚{"}YˆS\Χ€4Y¬΄‡Τ΅1ΏWΤ&’ζρΟπΚΗ”WΣ­uσ.nfŽ4”΄dΠxκ+Zώ“¨hv¨’|Ml8ο,dΊHο`ΌΆYνηŽHΫξΊ°e?B84φ‰J° τ?QήΉ‹ŸiipχzKάθΧ,riε©z3ς7εPۖƏ—s ‘‡|~uΡ‘\Γ7‹΄Qϋθ­΅Ϋu<ΌΘΈ=J£‘Nρ.™©#.UeB‘J₯$‹ύδ<ε\³M=M’M{¦/ξžε­΄;xfœέ3IrŒ°΅L3qώΡ­tš'ˆt­bίm”ΐ4|< Ι³)δzVWƒγ:“ίψ–@vή°†Τ«mUο£–ό«GUπΦ™¬°’κΫύ!NRβ&Ω2ΊγV‚HhΣ6Ž:Œ₯Έ`{W$Ε>δΥ‘λIΈž„Ÿ­8ζ»ξK&QΈRΆ6ν8β›5…β½bηMΣ– 8Φ/₯v*{Hάο>ΘΉcτƒwv3J·ŠΌ`"ετ} MwY―ˆα}ΔKΟ³0ΑέPqΐ«;DνΌ;’Α§Ϋ–h’oc–‘‰Λ;ε‰$ύjk‹…D$œwΙμ+ejqΏR\\₯ddxƒU’Ξ$ŠΩήNΕ!B;υά}‡Zεkέ–βΰy›‰fl³Κη’p:’iΦ“Ηκ7„‹+oύέΈύάCοσŸΚ°―ώΚΥΣG[“pδ ž}Νyxͺφ\ΗB…ύŽ©¨\άA 1M ΐͺ‡‘AΞIγι^ΡΓ ’αQ΅K‚eΈ|ηz.ٝsžΡ«v|Cpqmo!Žΐϋς «Kψr«ιΙΏVΏ·°Σηžα‚Α –|žΓ·ΧΣλJœ}”.χa9sϋ¬ΔΧ|νVςΣΒΆΞΚ&ŒM©HΌƒΊη±sΗΣ5ΨΑpΖ‘Ζ‹ ¨ƒ ͺ8ΐ+˜π͌ϊM¬Ί–© K­Fo>εΨε‘ˆγ'Π.>„ΧX€c Χm8Ϊ3}αοG˚^΄Ž%hHǐDrO½ͺ“ΊΗu2v'p>‚¦›kG΅€ ϊΧβ tψhΒγuךLpAŸ˜1ΕώΐΗ^՜‘€tE―k“[*iϊkΔΖδ(‘Δ όR·°νκqXώ΄O½žΧ~Θφ»;œ³³rYrNMUΡη³ΉY'{ψu – s(`ΩφQΨV₯„±Ϋ]κwͺ$URzUβkŠNnzlmΛ+²”—ΠιW:–©w(@ΞW'œυτ­蓉eΧ5Ta¨\Θβωv‡²{1-ωV/‡4Wρ.‘·z?βZ“4–P8Xwή°τώθόkΡ’BXxλXΣ²Π+TMϋ¦~€¬I΄οήkwš]Ν΄ΎΏDi S_G.C8$γ¨τ&Ί=›ΪAΜ‘-δοβ9Φκο+€Ζα‘·=$ύω=Gp:QαdΦoo5ηRm₯s˜nv8-φˆό…sڞ¬’£κ–:Ζ…ku ‹νp²Β‘œgηR@'§8λ^—§C₯¬φΐ%Ί  ƒ΅0 τλΗzδ£EσΉΤ*SεΨΝΦΥpDD³d/«ŸΉ’ΤΫQ:ͺΛ’Ι&ΏβcjζΖΔ,·όd· ?Ε!ώKΤΧx^ε§ΏkΙφΌ]8ϋΈ<^Λ׊{ΊRά”@ΔαΉ,Orz“οSYιίjΉ·³Η3IΎ@ΈΌ’~ΌW’©(ΣΉδΥΕ9ΥQ%²O΅$PM‘4l Π±'n9χ’e²Σ˜ŸτD8šAMυΪ+hβG5\5ؚ΅όΪμshΪ(>@šηώYB3ܞ½¦xq-γΣZnUW`ϋŽζΞξKόηšΦΥ$@πά°ιρ$NTEh0Ή`~΅…}cύ• /•Ήd‘w‚rΓ9JΥάίΊuΡΓͺQΠ†ώ/μύMn°~Ιtα&ˆςΫ€­ψΥλΨΪ F²†uS–'‚EJώN§a%Ό™Γ‘VΘ?.ΐΤZs6‘αՎ|™PωŽαΠΰώ= oƒΪ³1©Ω©·hΐέ—¬]ΊͺY[Ÿτ‹©0Ήώ–5₯xΌΛ¦Ϊ¨Ήi8P;šΔΣν“έjμ§“*zΗ8vΟZθr±B ‡SΤl݌€L$Ι;‹oPAͺΆVΜΆΏg]\Ζ‹•0‘’Όπ3W΄‹fΈΥu‹ΐΫwHAτΒίϐ_¬5]Dǁ‚cΟχ‡σ―šΕΚTκΞέNΚoš02tλ k}ύπa&m¬GΝϊԏ«κW^m5,ɞΛάNδΤ‚žs’F)n€mGŽάfaƒŸβv<“ψšΌ!ώΚϋ'†έ³!ΤχHίίλ ^*έWμω¬ ―iΘfCi}c `RGν;ŸΊyτχ5bΓFΌ„Qν―B»CφYAΨAΚδžΩwQΣΔ2Ωi±Ύ.“͍\ΰGœžΐσΗ­.±y"ΨZhπ©§0€έη£Π^ΩxUj\¬τ%IR2(Ϊή]xYΕmm@²™₯ΰ αΞAβ·XFšλΓΕ ˜γw8`“υζ±ό)k~ϊ—ˆ-mξ~ΔΒUŸ€™sΣ$gΫ5bΡxU§v6 ΚN0ΩΑ οœΦxΨΎeμφ"Ή49ύZΕto\Y 6F'„ΚΨΘϊqϊ՝2e}v[繍E’>xψΟςφ¬ίCελφι₯άIηƟΌ ϋ‘#lό§vpN8_Σu /μψ6ΒΒ€mΖvϊƒκsšϊ\5wυh& EF¬δoDaΉŠμ}θf\1θTΰ}ͺM. >#h»d/oq λ°ιYσλcΫ7”Ζ²0Jρ4Α}qkψ~κΖXήα.Υ8ތ„ψΧEj|τ€Ί<<ώ uζ;π]ψ³VΦ$Oτ2άΩΖΓψ2ŸΓ ΏsβM&ό¬6:P†YQ6γiΐΗ’δ7Ԋ΅ ‰’G€ZŒC$ΠΔΜά³of=Ι$Χ?βηx|O6 ί!Ž{€‘»‰ƒƒτ―œMM{ŸΦ‡Π(9_ŸfKmr/Ύ,F7bάΚΖLτ-°„cο“ŠΞρD“`κ>'΅•’κΪΰE§N‚ͺFόŽ‘‰#8ΝkΝiaᏠDZ$w©f.§e>aσξ3PkvlΏ΄?Ϋ€ΪΎ –°Εχ"Ffφ$Ρ‡œg5(μ½9£ο-sZΎώΙΉ΄°5 ψ―·­¬ΪPYχr zχΟ σ[:o†oτωmο―υ§ƒPΤ.L!Y fB$ƒ–γυ­ vd½ŸΓβΒ«*λ‰erΨη-Ή1οσ ŠΠρ ήΎ·ˆaΡEΔ u„0ώT±ueMB fkF<ζ2,τ{3αψ~ΡΥάψϋ9΄žv;€;ulϊs\εώ˜ήΥ>Υ,ζηM˜ »hΈυ)Α½D1β&`Ο} Ι’)εδυο^iγ5Έ‡]LΞΛlqpΚ§ο!θΏMΔώUΥ–J―Φ’‰ΙšΈΌ4₯-š -έύ²‘°Jn!炏ƒύkWR\κφΆ$~μIηJΰΉU?SΝs‘6›umͺιΆλΎ0VXWdŒυυτκK-CΒΦΆœα€ŽD8ϋΔ“†SοΤcΪ½ΚΤά*;ž Štτ.Gsς9χμ}ι-Uξ΅ϋΙ;-ΘφΤ  ώuY.Υ"g•^5Œa"γ§5₯ατ)’C5ΘΔ—[d'±s‘ŸΓζζ3ε₯dtεT\ͺΆΘntwG{λ >Νv1»Ÿ’Og^Z³€ψŽ;‰ΎΓzŸeΤΆ˜$#'έOρω֎ôsιƒšΓ}.ΧTρυάAβY7Η”ύΪγ¨η½c„Δ·€ΟcƒŠΰoΫϋΑΩd`=ͺΖqΕs-φο JEμ²έi%†.e’άπ™ύεk΅tk"J‚D`P€ΐƒΫ΅z)_cΝz-GΖ~ρυcSχ¨ŒύOαRZΫCΉ&μ`Œδ\ύΦ”Ϊ‰“Q³Έϋ.±kpλo9RΉΙŽAŸš3ΣΈ"·ΆG“ΐΘͺΊWΒQΦIOΜΤ8κΦDš&ΉΏeq¦κώEτ#Λ½³›ζΖG\τdaΠχ~κ ŸάΕΓ·‡Λ‚y>c`ΗI$ΕΨαΞ©¬θζυ’Τl¦ϋ.­lq>21ή7ΕτνΪ­hZδ:ν΄ϊv‘n!Ύ‹χw–rόΨΘΖ}<ύ:Χ=H{7u±­9ίTS’ηYE2Ι€₯ĝφς ‘ώλwͺ"ς»ŒΫΘπήA0(“.Χ@@zƒψΛηx"_²Ι+Ια©,RΉάl‘„sΤŞΏ‡‘β΅―΄θ5HJΞ£q!’˜}δ'kнNV―±Ϋ ·EΨ§ϋE§•¨[”Že "J7FΰυΪ—Hž_ήΗ€\Ι$šlΆΒyZ>?ΤΉοα>œU-.κK„6ΧHβ QΪΗόj‡΅&°π‹[Z‘mBκα-μΧ'"Bΐ©όOαZaκΈJπΨΟ‡Z~ρΤO¨έkϊ…Ξ“’ά41ΪΆΛΛπ?ΥœΗzΏ©ώ­XO θφΊmŊιπΌwω«½₯ΙηsI>΅_Βοk¦ΒD+Œάeω~Έ5ιϊeΘ#+Έξ‘˜εδ=Λ7SW2ΉνJη^σ7q9=)tŸψ|Λ%„i(SΡ2ν’'θΡ·|ƒΗεXže²[Ο j‘ΚΧV*ο—"{fVΨ=G;O‘³β8fπή£ UŒlΡ Nη͈`y€}:ϋŒΥύk@‡ΔΦ6wΦQΕ}&±½2ΰ¬?Š7ΘόjhΊ”κr/…ώS§ s6ΗYπ¬Ϊ|Rκϊ,<ύ™ΛE—?λPvΘ¬kšoŒl΄mM½6ΧχwzA;’Ž4RQΗPIΪ?Ζ»OGwά]ΖΦΧΉŽ[|’RAΑ;»Ž2=«“Υ΄ύ‰O»XνδΎ³Ρ7–Λ30R¬Γϋψ8Οq]ϝBςdͺtωοV΅±“Δž4Hΐ-₯ι.$`Λ,ψωαzώΊKλMRδi~#ΡayuΛ ]$…•Ά\ 7#‘#•'ŒΫXΙα›'ž3 YΗ–t:όΐƒš±cgey£,σDΟ²Ι(ΉΐάΔδσΟΦΉ\αhkΖο˜ζ5;;{ϋωυαΟ[j€·Q₯miΞίωκΚΰ’€πq“ή’‹J3κΆΧš…ΎŸy{DwΊ•Ξ mΉχ|„ΰŽΖqŽ•Υ΅–“,–ΆJ&C‘υ'Υ §’ukm5[“ƒ&ΐ¨²xηΨW›uJ―’*ΛζU8Et"ΫΫyŸmΉ2Ο#™άΣHΩΰ`: ΠΠ₯wρ¬Œ†0ε'T=sυ¦ ]:(φ/9 Ώ,IκIόižlψžφL$‹ΈR+Ά‚Q•λ]ΒηTιJ› L##"»βΞKˆ"!ƒ8θxSΫλQ_ΆνΦ¬Ώ©ήφS.yΨHΟ­vB ”ηu,ΔcςώU ›ρ¨Η2:aSζŠΝ#sU΄›_ραΗΈ’{Y€[λ΅lάF?ο>ΡωΧs}―ΫiΎ&l&΄ehvχieκWάΦ7‚-Λλ~$Φξ6η%€LO j8όYxίčRο\ρ­ο‹]9Ό ™ωeI`zξά@τJqtΪ§Ί„)Κwζ=―ΔΆ_g©%ΈΉΖRφΩΉϋL,pGv§ΉΡ ¬-ν€ΌmR_"Ζν›/o œ€} ¨λμ)ΊŽο&ΣΫHρ ΌΕϋb‹ƒ|0Η£η†ˆο]wƒό=ύmdΌti¬μ„-°‘Ι+ξ|~ Χ%(Uφηψ7GCr£I|G=ρ+Rή$Σ|;>Η₯ ΤoGPXdB‡υlΌWqa ΆΣ-b`DwΎzξnN:ς2ϊήχ]ΊρN€tέcS"Ϋξ¬IϋΈόΟ@vqΨW­¬ΒQζמ΅ϋ²Rχn)ni€ΠZ’ΞMO2@’?'WρΚΫP†ΗMHΠjwΣύšρσœ4¬O\γκEv‰ΫλΖΉ-&?νΏκzΛόΦφ+ύ›kάnΐ3°όpΏ‘ΚγGMkoœVΠ'— J#π ΰΚ¦οŠkM)9Cz²tWρOβπυή³5ΉΊbΞζ+8™˜,jrrOCž+΅7]‘΅ŸX驆Ά#ϋuž†yl+υ;~U/MB+ή3ό1ͺ ΦΣΓ:¦-‘ANp#ΈΑΙ*G‰'Šμ•Γ.AοωVUφ™a¨ΫKλ8烲Θ2§ΈϊŠΜϋ΅αβ­¦Hژ½-dhΧΡ%θήΑΏ:ΞPφΎό d’:œŠo9¬M3ΕZf₯qφ1#[ήƒƒkr†9TΊzώ­°ΓžGœρŠΝΖΐ¬Η †y£‚&–V cs@?Ζ¬γ VVΟν]D½ehΓvzK.8ΰ:ΞT―Ή€eaΪuΌŒξεJΟpw?ςΝ{/Χ5ώk¨Ϋ/!Iγ?Α*ο_ΘΥΒ;σšcIJ+άξυ9¦Π53ζΠu) @sφkΌΝΣεό 5|`le~$±m.f`©92ήCΗIO£]8•β;›; ξ}F4–8™₯Gƒ—©$€=Νiυ™EςΝ^δΈ¦Μ­U½©Ϊψj#ώŠκ.5 ΅ΏT?τΡ€@k΅»·pz/{}JΰΌ%§Oΰ0Iyn‘E{!–λo?crp‘“έpΏμœΧr:†SyΧ§J1„9QΛ5.mF–Γ rΝνJκ ΰŽiΫv έΕ.₯‘aMΕ€ςIΰ~5Ηψv&ρ«?‹ηFϋ*#[ι*ΩΘ‡$I1²Ηϋ#ޟγ εΤξl|%e+$Ίˆi/:Γh1Όύ\αΤΧSkgo0 …cP‰ QΐP=‡tγΝ+φ1OfˆΒHˆsNErώ&ΏiΟφM»σ ΞγώYΕߟVΖM}}&Š’ΫΘ¬εΨ›UώρΘωη\μα-άΗ,†mFδο`€δŸ§eΟ‹«₯Κ~ςηDz„π[ν΅Š5ΥFζιε―§ΧΉϋm*γΔ"}¬’¬χyg“q>L aœυϊRjώ±}φGΊ™£bˆϋ™Έ,η{“€wΡ[Γz;Ov¨5»φ uŽL|ό±e\šΰΓ·V\ςψK’t£cr;;[ }:Ν|»[ETDΞ0ΏηŸΖΉ‹€ρ†΄Ί€ƒ:¬ΉΆSΟΫ&_3σΝqΗ©ζ§ρ«j0ψZ͘G΄KͺJ§##ˆσύηύ>΅Σ[CPͺCΔ‰Β’  °Χ)>vcΜωIBεH<ƒΨσT:cγ$Ω“€ΔηΚφ>ޞ•|{2†BΘ>ΌΖ·°8·"™3•—η"UŽBM‰8Gn|“θΗΣΠφ«sΚ=xνΝ+ά-bާ¨Cck%ΔμŠ0Y‰ηζ·w7W7΅άen?sσδGžκs“υ­ΝWR]jο ƒ§ZΙ…§‰GχU禲.‡Ϊoc·^@`ςŽΐvκkΗΖWu**ω›¨rC•ΫM΅΅–'΄ΆgΘ.Z1•ΙΙη―zLίUΥ†’Ξ4ΒD—CΝ$=žμF>™€Υu¦8"ydwςγŒwΉιψf½Γzφ&“φiˆ{§bχβυηΠtΡN-ΛQF₯΅FνΌ(¨‘FŠŠ  (ΐP:μ:Uν‘WŽΥ %pOΦ€fΨ3άzΧtu‰‹+Οsš½ΜŽg,έmκ}±\eίŽο>ί<²Ϋxz'ύΡ<=Σg½‡₯ZŽΡΌ}¨2<ŒžΆ‰8ϋs©ϋ£Ώ”ζ}«GΔΊ•εΥθπΏ‡₯s¬ξ£Lύ†&ωQyŽxQΤ ΅tJζ‘Η^Ro–%yοβ’ζ]ΑΊ%­έύΏNΔ,Dτσ%δ³²Ή>½+ρ•¦hλρ[Νβ]°ς¬βΥfΫΆΥTPˆ=[₯u’ήfIkΰoE€›$ ¨Μ»γ·ΪΛζlύtΩbJηƒœτ"ƒi’|1ΣΕΤp\jώ&ԘGy έj`d9Ϊƒ©=zœ…^j²ήΙV‚ΣSŠΠμξό#β;-"α΄λ˜΅ίωpŠgΊ6+Β«37ލ‰*AοΣ<ηcMΈΉ±]KΓZμ ²Τ%…oOΟφX0€FΏήpΜΚ£ψqM–ήσFΊϋ\[ήψλYš+ΝNθσ›o‡ΐ*ƒΛ’z Ήokm£i«₯ιξσ2ΘΚ³KΛΚδεζsξI5œ₯Λξ­ΟC OήEΫHm’VQ”HΨ—f;˜±δ’OV'©¬UU_Š‚2AYΌ=‚§œ•ΉgΧ‚ko kT|m<±=O­pšΎΎφίtϋ«· a$RFγεEaό~œ€@λJ³ε:qβΠΥρ‡ˆdΣέtύ2Eώ‘wκ-γο#{φQάΧ™Ε"Κ―d±4m Κ‡o›“ΩοΞy­L<„Νq#︜ςdθ£ BΚρΚΘVD*’;Ζ»!…δ€άO-Ίκ-ΦZrŒά(f$rΓ8­ο Z¬Νs©νm²Ώ“<¬KΖΰG5ˆο%άieτΊΈo$©1f?‡O­vΆ‹movπώθF6"0Ζ¬βΫάθεŠwEΙl£Τ,.,εW„τ¬ηΧ¬΄K [fšόΔv±.ecΙ'Ξy5VξϊϋZΊm7DtPŒχŒ2‘²ρ·AYφΫθšνƒζ±σΌχεεVλ“Χ†Θj΅•Άj >VΈ±jzτaቱ(Ϋ£·=‹xσΧ΅ušeυ΄Π–‚dc’Άqυz6Šβ{£1UΊ<·$ΣJY­αŸiŠγά€©ΗΨ―2Ώi+Τ:>ͺκ/pΣΦ.UΌI‘Βψ1ω9ΟwόΏΦď‘^G·¬{χΞEaλ²Νao¦κs‡)mrd$)ωOΧ­M«κ—χ6bΦΚή@²€‚β\τ uUέ$Ϊ%»™L“Β7xΙs"΄—±pέA|~<Β Φ‘‚(μβΈ»FgP› rHιEΧΩt(μVY ΐ|ΉλSx’X­μ₯pΓr΅Ζ?ZωlSŸΦΤ˜_’ΓMΕφ΄!Ώ[8ŠBίwΝΑ/χwc3¬ι6–Ώ―\kΙ¦ ·Νω“oΜO―Ζ΅l­J±Ά…π’+EC»Τ°-ŸΔψjΰCΰ;Ό|ΧΏΪW @κ_ΜΗ?†+‘UΌ]ΧAFI’κγ[Π$ΤήD·Υτيρb`eoPΓσ¬—KŠK€RH―ˆš3Ι) ŸPI5gRΎΆΡόIbΒ4έ―‘©&rώ?ν)ύ8¬bvŽš&hQΤη<ηω¬mο.Ζ³©xXΨπ{I{βύvO1ˆ άOM«Πώuaυ6΅}JΦ<ΝBK͢ЁΜΰ}Έ&²4rΫF΅ΥξvΌ-uvNζεP‹ΐυ9Νt>°žIξ•NΒ?°κWVd†Y£ΟtlgυΝokdΝγ‹ΒI&ή’η±ΐ&³uhώΟ©iχΰG †\χˆδύ }8©aΰΟΊχκ"_ ‡‘‚ ϊ’j–‰α»]GΗ:n•9 l±IvκΝ·/φ9­šΫ΄`<‘Φ8“θΌš4R/ˆϊi›΅ΪKjύ°‘‡ς"–'Ϊ{rνΚNxσnuV·c¦keδ³»ΐ±–Rr² H{’Κi/’—Yψ±m¦κŒ‚ΪΖ. Άo•vƒκzŸΒ‘ΦbΉΏΡ淚ΪFώΚΉΛ\γ!U\2†οΠώ‘’\|A‘oRϊ5΅πwλ”vKΟβ |υ α9SήΗΝΛ—ή)ψ .‘¨‹ ωηΆ΅Φ.α ۏ)H2žA`ͺυj›ΔΥτ~2Σ΅Ϋ =΄δxΪy>iw 7#‘ιƒN·_ν/K’!Ή:”±ΪD–‰A?ΔW Ÿoj$‘΄»}ι|ΝAfš ΐ[q^ͺ€ηάh₯)SQIαB7Or–£su©iz§XI£³¨‘»―ξν“vAδgpΟ­hκσκ:ξ³ι7)gi…Did ςdαp/jΟ΅7w«sβe“ΙšKo²iήaΑΈ…X³1?νςϊžυ=•κ*θ—Λ½mˆŠδνΨ=ηͺΔIΞΙτ6£MF.QάΣ™­ό1 ΫιφΡ›»ψΌωa‰Iϋ₯·naό( λψ γόi§O ž…\^΅δ—ΰΑ,η2Fυ AΑΊŸ OqŸ,λζ]-Ϋ£OκͺFΥϊ`π+˜ρ΄ΜΎτΧΓtχ)žΎY9ϊ5Σ–΅ρƒzœ9ŠVš9λΩn‘΄HΪQ$€Hζ΅4ν2σώ›mfΝ–;’ΖΰnjG"³’§z£©…>k•Θ'dXΟB_iΨ€Vžˆ7Λ Vΰ·²¨νb€ω¬|ώ£s—½½]GMšΡ£hξ’ ’~0Δ~pk₯YζΠπ&ΛιΩ&nL# κ=ϋW-wΕα85)‡ϊ[\Ηw#£.>Sν·θqИ€Α :dw•γf’³…Ο[/χjM‘b9Œ ©#Ω¬ν+βn^p¬‘ΑŸηU.DώΫ5Ύι΄‚ΐΌ}ZמίήOnΤΊ-ό+a{ͺώρ„χRΘ )(ŽOΉι%k£ΥK££Τ.ν,¬€–νΗ”ά‡σι\n•i¬i½Ν…Ύν5¦s›3ζX“ŒnžΈSW™fš&Φ5“ ήܟ–N2}\ƒΧ΅oiδ­…Ί““³''ΦΊθT”68'UΠ­§κvڌE‘™Naγ=ΓΖ――ZΞΤτapίo²‘­ο“ξΘ9έώˏ❬΄μφΧ‘›{θΧDΓξ΄u=z”ζͺžej2£ͺΨ½©ΘRΕŸ™Q*H”Eh2*Ύ€rΆγΏjŒš΄?:RΡΨ¨ΎetH―ΞA9¬Oi9ƒQ²ŸμΊ₯ΌΚΆχda(γψϊv­fΘδTΔ›qΦ6Y?ο’ CΤkAΊ&»» Ζ•©ΫύŸQ€μΌ΄—ζΐ=ύ<ΗW—ΑΎD¬xvGΗ#œ›${ΕΧiώ‡Š½¬θλ«,:…₯ΗΩ΅Xϋkœg䣏βCЊ“IΧ#Χ-gΣ΅ J %έ€Ώ0 ρŸFFΟϊΧ5j=φ.E} ρYό‹,/† Νϋ78> ρ\Ε΄―ψΖσVœ³C[[‚Ω_8ŒJΐŸ@6ρλQjw:‡‚t»ΨνΈŸχ6Ο+s`ηwž­η¨ΰt5΅‘ιΦ–Ύ΄΄ˆ—„B>fδ±o˜±χ$“ψΧyͺ΄κuJ΅·-‰[Ξ‚νIc9Bzzƒμk°³ΏK»e™ `OU>†ΈxήHq*±XΞΑ!Σ>υ,W³i³ΔUΘY&E œƒ’>SλνU…ͺ©=:…j1«kΎe 289Θ5Οx@:¬Q^ZΝφMZΡ·Zέc;2yGΕ‚>†Ά-ξD†δpFzTδ׌uηŠυ“R\ǚšΉΜizΏ‹tk» BΣΙΤ!ύΕύœ§&7γΏu<nⲴ λX>Τδy"pM„οΙ‘3ο(όΕiψ›JΌ‚ξ?θˆ[U΅hswA0·ε•=Φ Υ­-ίΔz$φOφˆ™°ΠΟ岘dS”P@ό3I;=‘ΕxƒβΧ†ξήW@Τ,΅F8.—εν_';³ŽœτΖEkxΞΗΔΎΥ/•™ο…2–v©hΰ–βQφ›eτLρ"z) Šλ,-ZΝ"”7-&;19ΗαΣπ©Hχύj«ΥζvB‚jG3§ψΧAΤ&ϋ:_$9Α·ΊTϊl~•Ί{ΰ{7£€išΔ&FΚΪι=.>?Ολ\Ԟ}/tžΦ―t³œύΫνίBŽNΠΧ;inj€έwU/‡―υφΡyˆρ>@UόIί ι-‘ψvΖΖRZxβszΘΔ³ŸϋιqΝ6½©ψKΠuθ,HΎί,–r3$Θƒδ §‘—Ηεν^ŽΜ2yζ‡$ž…(έ\kΣbε±C΅*‘5.`KAΧ0XΪKsq H!_6G=’Oα\‚­ζΈζΦξΠ­ή­3^Θͺ+q~…όιή:›νΙ§ψf7ΪΪ¬Μ³‘ό6Ρ€ςίGj­n¦ΨP ω=ojΚ¬΄±€!xά—h=i‘08^­ΙΗγN.=j6ΗδΏηu9W0E6ejz-ΆΎ1}i†|εάPz―ηTNƒͺι{Ž‹¬Νδ'+mͺ)ΈŒMΰο­u Θζ”―Ύ=ιR©Wyμr³ψšώΖήTΦt{›O΅[€ΐ3ό[—ζΩ³’κ:eζΣ.aš$γ18l{·‘«ήXΨJ“έXƒXz…4»ϋƒtΠ.ά·6ΗΚ”χ—όkhΤ„ή¨wgBZ˜άŠεΓxŸCϋʺ咟φb»Qτϋ’~†―iΎ*u+“j—MΨ86·b™OΊ7τΝiμΧBnm’πkš½C―xΊΣL ΊΦΔ­ύΠ<‚δbΟόόmκzΆ‘₯έ^άΊ¬VΘf“žΛ‚GΤτΕPπV›si‘΅ή ₯uFC{wžͺ͝‰M£ͺθΌω™.ZXή•‰ΖA';†sžΉυ¬hMp€–Σα ημδφ'ΊϊzVΣ’G'4‚XLL7)ΰƒήΊžβζΊΤ‘J6LΤW·Vφ6SέάΚ±[Β¦Y]Ί*/ή?•W΄έlM›’BsΥ}°όH?α!Φμ<1o΄\j‘¦@ώκ#ώϋŒ‘ύΥ€{υbψ&Ξβΰ^xQ‰’ΌΥ-ψh E·Λ†>ζ·5gKvhΝκ:Wn${™ΉΞN;“XΪ΅άPiΣΝ3m#fbO@+yK’*ͺυ9zήK«R–ήj]ΐΒhd?Α δgλΣρ¬Ν;P³›MK»\†”~πΏ,ψ•^F)φΟsw\^qΖVpž›½Ma^ΫޝXΫiͺ|έVEHΠœ™±ι΄n?Jρj׍Gμ"uF+™7ƒτ΄ΦόI6―tΚΊNΫƒΉωeΉΗ_,γΗΪΊ‹ύ]4έ"λΔwQΏ–0ΌμNο1Ζ=4τΣ­΄Λ3ΑϊwέaϋJΔ]Ϋέ›Ώr}«6s ?Œuƒ£hr•P9Y±ŒQΟόΧT`”8μbδάΉ€ZπƏ>“§“zDš…č5άݱΙοŒ€=…tτ⚈@\R…„΄°JI‘x¨δoJp8¦:όΤΫΆΔ$Wœ‘BŽ7©ΰ«rχΔ—Σiς6…iq(‚c½›v1σ ϋŸ”~5Ϋj[[Λ<#Ž%.μz(kΝ·=μW:•Τee½>fΣΥ"θ‰|:ΰΕβ}…>fo‘J—/³dΒήέ*F„3ۜU]\E§ιQΨΐ»η»™‘ΉΨδοM³‘ΣH„YβsΟl3ψbΆ<¦>―Ο­\Φφ™·Ά-ΞdΗΞίΈπ©Ή3yΝr›~πtH[Ϋ‹U[ώG<˜‡<λƒΙ¦‘HνRΗσ §ld`OJξ9΅ξœΚW%‡δ γ$Χ9­ΙqjiαΛ't‰”I¨N‡ζŠ#0{3cς«ϊΎšFšς2—“pH‘Q–’CχP}k"ξAπ―%³—Φ%ˆΟu:·%Ψα±μͺp>•Ω€bŒΗψΕVΎπέμζΒΨόˆAŽΤΰ:ŸEόκ–€mό#βτŽδyΪ_‰Rήέu%7DXω‡ϋ39κ1ŠΚ4ψt_Mύ£ςGprYXδηԞ0:Τ–^«/‡[EΥt ύGHH`"ŠEF9 “Fr₯NWΦ‰IΙk°ͺŒ Ηϋ[AΡα>Φ΅‘o)“HΤ¬ΧΘ -ϋΩXb)$n†σ₯csq€j·Ψۡ€5ώ­¬ήC$:l\?vί/^ Η9#U˜ό;u$-Ε«%»Ν·ώ%‹€‹Ž:ž•^ΫOΆ0%†•cak¦Ϊ>β- ΘšP0»ž@ZB<ŸoJΖ¦'–6ެTθ^WdšpŽή³ΨΙ5ΤΧ—I=ΝτθV[χR1#ηξǜμAΨ}s«–šά₯‰ !A#τλΝAfŠ·2\Œωq²¨$δ“Ου5…¬λ2ΩZCai†ΤfŒˆΧ<Θήޞ¦³‘MΪςz³Ώ›ΩΗA"p Σ‹«΅*\ΫΚ!½‡ύ\€gώΓΊŸJσθTr“ΉΌ•(£’Ψ³ <£œ‘ψΧβ8.υJρtπβζΔG&ΰΨΘ(wEŸV•tφ:ΔWPJ³―‘uΔMΙOu=aθ·Ακl7ϊ]Μ²†8]ΫW?‚ŠΌ^#ΨSΈ”yΆ%ΡZΒ}"ΠΨ¨Š#Ψ}AχΞA¬½v2οMΈˆfXες][Ρ‡ ώ"›§κΆ:VΉqo#νd/π@Ξ7žΔς*NJ§QG©Aσ\0Η!Ί=ω5ΓzW[R³¦PŠξν[λ[+$ΆŠ`d@ΰ±!Wε\ύμιτνA5G·”‡cO£ΗλXSZΛαφπγ±V‘£Ήb~σH₯ŽΰU&­GώΧΆŸΙ»NK·+ ξ²c¨χνYΛ ΚρΠ֍wOAΜ±Iwη\Ζ<†0­ΚΖ #χ¦ikύ‘¬ "Y™ λbξ{q˜Ϋύ 3j[I!Χ"xDΖΦι]%#εοŸφ—=ΕR›:–œ­rq(ΖXRAά{ƒΝ^τέ)UW~Πν&dkVΒ@Η±ΝdψY6ό<œ€Κ“™ ώπη5·Ω^+Έ³q &=x±θzΣ4Σhž%­³?Ν죨bΏRAΆUN.,次5<% ΅‘œ`ΜZ^{oκ*Ύ‡ƒ¬xƒΣ틏ϋΰf΄΄)φΗ̏€UHγξϋV_†TΌšΔΗο5τ ϋc½Ω«$sEΫpΡ±sα_Ϊ½Ώο~ί8ΨGЏρŠ-’›MΥυϋe„n$oβh»)aά*ΥΡ%1[jκG|ΰ1=78¨οοW­₯ZZ™υ`–ΔaW™Ϋ=½|Νg?¬ΤVΨφ!RW‹+jšξ₯κKΣΚ‘žαΆ’`w’zW?.ˆ"π}Ύ΄χwrɟ>oί2+)oŸ 1ƒΧς­†σ<;k§ΕlwΘ%ςςy2<“λQjΛ,Kαqσ3ΔτŽ#σ< tg-60«)T7‘πή… λšUΪ[#ΖφΖΰ4™“’½šεΌVφχž#Š 6_&βυ–6` ,Y8άΓ¦Ojέ½Ή»M;K΅Š!-Υ°6.ξXΖοm£?A\ώ΅`Ί]坴dK,·1΄²ŸγmΩ?‡\V8?z|σ– ₯+Qε{_ˆ-m4OΩiΆκ‘,YfUκF3ž€ςMuz–’φΡ₯Ω*ω#Θ“ΏΞΌηΔΡΟ¦]ΟlβπΕΖ²ΘA _πσ_λqΩ£)]?M8ΛΆK‘Στ­jΖuΨR©>Bε»CγMVΪρcyKG#qΚƒU5ˆƒ…ΣԝΧ2¬h3χFrΗς{]Έ[―ˆ—“€mσΪΔΫOlΏ«ξσΌP‡ψm-IΑμςqω⾚“g… ’o43Ζ`'‹Υ@­d#§ T=˜Ήρ‡­&ξ–]ΐϊΙ«ώ9SUη?tƒnδφΘsϊΥM1e‡Η~’)ύϋΖ žWr?ϊΥWΎV1”ZΔ›“ίΪYZΝ;™žΑ'q°±vfΞά`ύζ=hΩxzβΤ2^^}Ÿ^ωΡJΟΊ;e#f=Œxΐ>§>•Φ•i.Ώ¬ΫGpΒΫLˆ5Ή<·²‚[Ž»F8ώσ›Δ~,·EΠΌF’ΕΟΪ•£°Κ«q»ΐaΑχζΎf­;ΎJ/_λCιc6’M…3άk³Γ{dρ6‹*4°³deυG€{ηEfx•νot Bm—J…ˆo™7°{œ6³φ›}fΗ_Π­¦‘ν€σ‚±·-ωΐ#Њ§’Α G„u₯·_-ežIUd;LN¬+zsΗγZKέQ©Π5)ΉJŸΪ; FήΫ\πžψε[P"_²2<’ΙΗΆΕsΊ—Ϋ|+%υΜ»<ΪMkGοFή1θČ}kNΛP‹V΄λEQš}Ά»…\ξS€k?P΄ŒόFΡ–mΆš…ςEur<ΰ„ΖOl’Έ¬ιιtυκm88Sφ‡Oαλ4/Yi·XkΫ’Ο3IvΛ6OΆqψW;γε’_ ­μ&Ÿ©GenΫ{°ΓδχQ[:ή£u€jfV·iξŸXο•€c‘Χάύ+#β)KMΓή΅$—ΊϋDz°ζf>μνS–Ζ^ή5ς9qsύΔΌΞsV#π|…S`zηp'?‰­έBCqπϋOˆnLQ9τRΨ9ϊνΕdj₯OΕΙ_)\Bq[wΦνmπΫO/ΟΐνμIΙΠ«ιͺ€ζ|ώΰ3όO·ώk”Α_•TL²ŠμŠ³ΖΈ8qŒO­q%-€ΞyΨbcμ­wсε'Ž}xωΓΦτ²ο†f6₯tζΜ[B1upήR+rΗΤΝPΊΡlτΙm΄›%Ϋ”Ή$ςWούI«voέάΪ‹ύΟψχƒ?Γ$5[Y‹ŸΆΫ#ڜ”ΔΈω—λε^lfβΉQκ:₯ΟΤ—Wcύ>ΪHφά+r$ΰ ΗεX«4wvΖwΗ6ΏCƒVνY Ί–ŏϊŸš6?Εθ•Χ„oU#Ο¦ΝQ.Œζ³5%uKˆe6χΠΑ0ηoϋ,;©ιŠΆζ§;·rθΆ΅GRŠjΜην5.Σμ7±ύŸP·ΈΞˆφΖ>`{©μ ήσ=F+ΔΦνΓD€Νfε₯ί„\pG΅ΰ•$@•ΑPΐƒœ‚2 t{[½O=PT]‘7š:•μxΗΦ™ε‚άž(HηЊ΅{ŠJΘ«§’Άͺ€œΔΖ3ŸoZΘρUœCόS}ZΩΚ‹Έ±'˜ΨNΥzςφ-6[—·2ˆ£,μWξsQΑg:ά&‘~»ά8σ•·R~θχ=Νlέγc‰FΈΝ/X:©›OΤΰΪ”'6Ξws€7Ε<ΐΦu£IαMF=9ݎpϋ-dcŸ²ΘHΔLΈyΪ{t­=oHϋz%δ‹}Nέ·A9žQΗt8ιτ¨m.­ΌI¦]iš³GrƒΛ»Άc–SΗ ϊg[ι^mz:ΩμΞθTXΫ©΅ˆαpXΰ±8=Ι¬«ψΖ₯|Άa‰²Σψ‘”ύϋ’;ϋX6ϊΎ©mζψzDž}v1E.ΑσBΔΔτΘο[–rdΪEhϊ~‘GŸή:“’ΔƒΤ’Oγ\ξ &ΤdΧΊmψwU‘ž[ Ζφ ‘‰γzΊίη½vΟΈ`πA―;Έ„έΛΥ”ˆ·–Η1ΐεΤt―CΥ’ώΩdΑGί²DoΌŽ*k― ν’ΨγΕΠqŸ4v6έ=<γ΅p“#x;Δ¦cΖƒ¬ΞPx[[£€ϊ$£}k½R}*†­₯Ϊκϊ]Ν{™o:‘=Aώ½Αυάαsž5,ξr^1Σ₯³™|I¦ΖίlΆΝŒyπρΉz€2¨­k;ψoν΄ϋϋi€²&ΧΥ…gψKQΉY.ό3­IΏRΣΐQ+υΈ€ΰG'Ώξ+6{i|«ΔΚ7ψjβνK‘γμNΔs<Λτ&°OήΤθ’η΄‘ΪjΊM·₯\X^Δ^ήt(λίΏQΤ{Šη|%©]y7Υδέ©idFς7tG\ΎωάWSnγΚWΖ3ΞxwΕϊUˆΌI£GΏS°ˆAβζρ7Τ ―‘ΥΘόŽ|UZbj*ΪF­€2-ξ ΓuώΙ8 'ώΚ~’―M,³?“ ΟV•†vκjM:ςΓΔZ 7ΆΔOis8~I «{ƒGjΑ±ιw@yg桝ŽKEΗμ3ŠηΖGŸή‰X Ž+Ω3Ce€ΌCφ›€ΈήΓά“ΐιβς˜²₯?$IžαNΆˆZ Ž4$†μycκM>4άgWΌ“©ˆ—ΌσΤεξsž#Ά:%ό.·G’8”AͺΖ:ΛjH#ΉFΑϊV¬>n'VΣ.n¬Όΰ5¬δ)dpr0sšάA „ͺ²r0ά†Ο\ϊƒ\¦Ǝڏ„μ^~“+IˆγsΧc|§ΨΦΡ“ξa^›ή&O‹δ»Φuσ(―’ψ\Gs¨“-€ΰνγο1χ5θΓ–PοT”Μgߚσ?Ε:^›αΝBΗX2ΫκrΛ2_ΔΛ’$nqιOlWα9ήohR͟5νέ~^>δh«Κέϊ“ΓgΣ΄ω–KH»»HόG5•ͺθo5―—kyt°™˜ή]ΓτŠε›ΔezΪ«;‚„g υ―2rhιR9)mb³…§Όϋcˆω&Y·{ u­ŸΐφΧξ& —ξ–Aύάγ ~ƒNώ1>§kζ"ωpόμ=[(>΅EΝβ;Ά;— ƒžpΗ―jSφFŽ·‘€"»·ŸμΊΉ& ŒgΚΈώ$=1Y²λ·Σ[ 6[)-uΖ‘cΓrϊhΊγ‘ωWS†ν„οΟ'ΧXΎ"Π΄τ‰E‘0jjβX.KβE9·‘ιψΧ―Ž1φPΫiΆ«oβ%€nY˜ςYΏy½…ΛaԎΌ⼞ wΔzυΐ°΅Šξ[¬•–.lΌη`ΧM.…ŒIŠ|\Άς°Ι··q3Ϋ?yΏJΦ5εkr•_ώԎ₯υ[X’/,λ«ρόθ?Κπ4hΛkoq(ΰ»«°ωcŒύ(ͺUeΥ£R]̏X]k~9Ί‘fH㱊 E. (»‡ݟ…YΠ5gΐ—r%¬σLΥ$Ψ-•²RνΈLG8ό₯mψKšκϊ[ϋR!ΤγέΖη 2`―υ=±ΕXπίλG\–ΪX¬4`R$ϋΝxΛ‡$t;νμMyΌΊ‹ΪΗ©ΝOΨ]Dλ| κ·ΣΌAfS$—Oς²ΘΗt―ΑPOlγzW#πΗD £YεΊx.ξζΏ΄ŠαΛ4JΗΛFb~σ@r{Ž΅Π|SԚ?ZxvΜWZδΏfvCσ%ΊΣΈ―Θ6γύΊΡΠuώΚ }.ςΣ(‘EΊHΖvη<? θέ;œ”•΅f–ξ*"Τχγ φͺΜHy\΄;yV¦Ο*E–FΪ Μ{ζš9 Χ9γ»Ι!πέΕ•±?lΎqcn]ξW'π\šζ¨ΉŠHηό;βm5%»Χ΅9ž/δ>Qh–+tΚΖ ŒΰŸΖ»Λ=BΧPΆ[‹Kˆ₯‰Ί:0#σ’ΗO·Σl!²† ΣZαμΖ™tΗ&[“υ_Ίίˆ­§E[έfгΪΖωζ¦N€ŽΉ}k’x£EΟ ZΕΊγζ€ΥΚ߁§ρKƒ@ΏΌ΄•Υ¬%ΎΞθRT“€‘ς>b+7ξξ9hgZKYρ&±β[’h`—ϋ6Ω$}Ή†!ϋΝ§Ε&yfΆ,όGesrΆ“οΆΌ›{΅ΝψVΗ…΄c ψWNΣ$ζX )¦‡,ω3Sυ]ΓWΆϋ=ύ΄3GΤ ;~‡¨ό+j˜XΝ'ΤΞ­ξȌ9<©zzSχxz_κϊA/’jΞπ―KmKχ©@γζ­Dž,:yςΌC§\i€<φlίΜ^ŸˆζUΓΦ‡Δt)B[T˜ΧΫ"€f¬ύ:ξήξΤΟm2Ι9Γ©~uo'Φ΄Τ†“&γQ)₯gγ«Π”;εn3ΕgκϊŸ¬ΐ!Ώ³·»^ΖeήWθzΐΥȏΝΦ’φφ :ΒkΛ—Ωe‘π’ςjuO™εcΝΌ4Σψ¦ΟΓΪ~₯|Ϊk½ΊΆΉ>8βLCž~wž€šτoνcΤΏμςχΖLL}›·γYΎΣ§J—ZΤ’)}ͺ°Ί™OX“‘πΫψ“] Œ™ |'w#ς―Zœ c;NcUΓ€GCO ΖySμΩ|ΛΪ:΄-χJ’ήιg ¬ H‡ζFκΏZ—½Α«!Ί­ε›₯Λ©^>Θl•¦wτP>aοž€zšΚπF™sm§O«jqyz«/Ϊξ—ώyδb8Ύˆ›GԚ«β%χˆtΏ ͺο³V¦§žt€yQŸχδEΑΨ…δσœ“Zί1„εeΚT•Θ'#=λ‹Φ€m_Tώ͏ώ=­ˆ–δφgκ‘S[ϊώ¦Ί^Ÿ$ͺ7JΜ#†>ο!ϋ£ϊώ… Pθzs5μί½Ιy€oβς~§°ΔΤihmF73΅aέΤ|Μ1ΫՏ‡zdr^_ψ’εUm¬χZΫ38Θ‘»τΉύF[νRξ(! χσyΡ3“Œ–aμ2Ηπ―Eu–Ÿ₯Ωx~ΜΎΠΙΧεΞ~ov<ώ5ζααyW—SJœρ^Ν™sκšW‡58ΐώάΧgXtτqΚgξdz*εΝlhšD.™ocoΈΗ γ{}η'–cκI$Ÿ­`ιΜΎ%ΧξuΙ}šΠ΅ž˜3•ΰν–OψAτS]l@…œπ+Π£ +™ΪϊR{Rƒ‘AEhJ#ν¨δpR·Μyͺ7ΧQΪΪK<Ž8”»±<k9^Ε₯ds/Ίϋ\ΆΊB¬§ν>ΠSώσ`~±ng‚Ϊ6–VΪρΑττΛ%Π›Q˜šι·ν'˜γ"~\ύMfk“…k;u ’I φ8κ:ωΜU_mˆPθŽ₯`έάκ—7χAlΡ™ά$q,˜% u=λΩΌ;€.…‘ΪiΛϐ›Y‡vκΗρ$šδ<  5ΥγjσηΘ‡1Ϊ†9,ά†θ+ΡαQœW·BšŒnc^W|‘d5$²q8¦ (ώ΅Λx‚Iυk¨<;k#'ž¦KΉ¬PwV<ΖΊmdb•Θτxα"Φ½1+§Ϊ“ˆ'οc*Σ~<…τ ³Gi½p©&@w8Ιό)ϊ΄±iZ$±B«–‚8γ^‹ΩTV& ³HΆ~³fŽζε|¦aΗ—w?‡L›M$o%Θ‰΄!βcϋZ`Νenϋ,£~CdΗjν(ƒρι,,a°³ŠήΔqΔ»#Qό*:U]sT‡GΣ$Ίrd`BGςH~κκMt(ςGS’£φ’»1΅ϋ‰.ξWE²Ζϋ™`Γτf#ρ5 [Εkaε[ ‰#]±’^–ΞΖk€Ί`Ϊ…ΓωΧR~sΡG²Ž*Τ… Bl ž™)A9\ξ£f.§yo‘hm<ςŠΜ‡§Ή'₯y³E5ΰ—PΌΕ{u*³ΨΨ„αSςΕjκZŸό$Ϊ²Ξ>‘i!ςrxΉ˜yžθ½©ζ₯Έˆ4&άfκ5όΝvΡ£ΚΉ€pTΔ)~νšΪ>‹n¦6¨ΗΜY†I5Π­Ίϊ}M%Όab§§4·wiΦΝs4#Œrqž}=ɘ»#;jc\]KšWš(γ—r~Uόk2ΣO[ /ZbΖIά}Ž[5bdgvΦuhδ†(ίύ؟™3όMκδjŠk ₯Oν[&0ΩΚΔ3Ζοοu5Λρ;#ͺ–‹S9Ό‹‡"Ωί‰"qψŽ΅e"Φ mρΚς¨9ςds»\sZŸΪpΪ:Η,‚%t‘„ΗαΕ[P†c™{Υƚ[ nη­:έZoˆ<7JΆ‘Δ2—#p>£­ΤΆ·«mnΒ1 ‡?p{ΦNΉ(}VΪζ0Z]Ζdž\ηρ#σ«yο0  ά+‘α·)χΑ漌ڜ¦C‘MΫCOΜ]FώΛν@cl:Ώ#§κ eκ:_™β;h-uΜ'–ΘδΗ΅sŽΗ8ιΕΆΉauŒΠΓ:ξˆ;qΐΞ­=ή[=#VΥΪα~Υ μ61cςΔ€wτ;Ž~‚Έ0Πͺ£vw©Sψ*όQύ•}αλΕ–ομΧφ©ηΖ;•Χž½ sZGˆ#»e°ΥœΕ$ 2`$™3Σ?Z΅―έiσŝau=λ„fΟ#<Ά,VGφQ–ᬍ2³~+³/©΅3—YΖkΩ–η‚ζΖm>Λ,.ρcBx&<ξ9φ*+©ρ,φΧZμ b9d\cgߌ ΐΡl^=?XΧ~Ρ5βi#μv‚βMΕ@ΑƒŽq£ΠQXFρήBςΞ»ωΜδδΉΗ_§4J©7.o€ͺ•$ ’‘ρšΊΥ²B‘^Gς<ϋΖH?hxI~ΟαWU`A»’I‡©Pv ό‡ZΗρΛ>—φ+V>uΫ­ΊΤ#,~‚΅΅1d°° ™‘Mʁˆ Œ@λΣσ5Ρ—E¨6Ξzͺ±·α«I,΄ΥŠVˆάΗΠυ¬ίΒlόC­Ω6Ό‹y'ψ`ώLΏ­Q‡@†<ΉΈŠ@rJΚF?ZŽκΚσGΥl΅{$ρEϋ™Λ}αώ υηͺHΙΒκεύk{]7Ζ†μ ^#žcLcί?Ξ«6ϊ§λwLίΪ—3fRΗ;PƒˆΗ°όi·Δωš»ΗΜ_Ϊήnέ|F˜Ο¨Θͺqjςx‡SΆšYaάc?»'˜Ξ=Ο&Ύo6₯6‘ιPqTαO£ιϊΤ7:•σHΫJQb<žr?š―‘\ΫZ6³y¨Nω&*μܐ‹€Έ=k7R½—DžζKy₯L v\œ1μ­_K2ΧΓΆ³jCηίζHrrNOΧ$Χ$ά|™OΪ³2ώτλ¦όG΅δEίέ„η·΄'f—Η:E₯ζ ²±/pΑ€Αr«ΟωβŸ»FngΙ’Τ †OGΠΦ4ϊԚ‡ˆ"Υν `–Ϊ”^dχQ‚}95ΩB)Ύb§OΩΎ^s΅™§Τ΅«¨/άQ±W?(x5‘avΪV‘oufV-ΉϋR7άf Ÿ|τΕ\Υ΄εΉρ\αΌΥ΄ERcfΖxηw|UK=:-[Ζ- Q*XΪͺάL©ΒξΗΚ§Χ‘šβŠΌ΄~fӞ€zτξώ$ϋ[Ϋ=£- !ρΨδγ₯eXΓsss=ϊ―q6δτΨ§τώuΡψ‰Δώ.»Œ8±΅F]ωΟΰk‘΄Πυ‚Οj·-[Άά“‚<}x―¬₯u†αΥ·Φ&ΞŸΖ‘O§Ι$ΈŠ²jz{ΙΚ²υ ž‡<‚z†Ε|ΚjΌ‹΄ΡοΣNήΞrΌKΥf»ΡnηUΤτχ0c2.6Θ=x8ϊŠΞπ­Γ'‰υ=*=Λk|ΏnHΞi“ >Ήl{TMymyoβ2=OΞ–«"α£}ͺp}‰R§κ)Mε˜Τ|;©i©oώ•ν«Ϊa±•Ώο’1ν]^λRΗύ~fj^ϊQ—Βmx.ΜΫ[~ΥlαΑκ‡κυ_Xςοώ$ΒQ K ]%Ϋ6Y$0#Δ₯:LΨjϊޘ%`‘:KφΞc`?<G΅zTGΒϋdx_2ιφ1#Ή1δ~9υ©-(§sW>iΈΛbΒI¬6Ώα‹­wΙΓ*‘ηtncΞηυ8ΟN™¬o‰—‰ύ₯€jv²«˜exώRΚcησώ•©£w}αύ/SUίq₯8 κΖ2U³υZΟρœrAgβ 8Τινz¬Wwpۜ}Mk€ŸϋTyŽl\dπΣΏbΩ‹UπŽci2KζάΕ #* `Γ·Jν΅»S?…šΩ0>Ub1ό«Ν§Σ.u}j%Α·ΈƒKs ςφr:“]:ιž.H'ˆ!˜ΛΘTηΨ°τ΅b”|φ^劺Ό·^ΏˆŽM΄˜ΰgϊVύΑΏΡbT›gn‡w¦ε™Εμ7/c¬Ϊ-Ός}ΧFί€υΓCIαΗ αέόgέOc]τή·G<‘gtZ†ehΓq},y‘Γœμ塁¦Θ’έ-f*af„#ό ν$οΕlΖͺ:§΅w)]Q‚h±3‘MΉRΔy=Aό+“Σ•νΖ•+?›`ϋQ³‚aln=3ΒΊKΉ ,L:,Λ“ψη΅xΌGm-¨&dŒΗp6ηNOΎGΥN<Π<Κςq¬Y:ŒΦ—"+›™>ΞΝ±gn·χXZΥ[X>σI.αΙ&FG½_ٚ–¬QΕ,.δ οΈzζΉ]AεΡίϋ*ζW]2βQ»—†·CΙW>‡΅jιΨΞU.MΟϋBΰλ.K&JΪ«œν^Asξ{{VΝΧ Ξ@8¦O§!‰e°”ΫH P―Pj΄7fν„ΖbΌ‚U2DNΰ@χ±­ω,Œ=’–…‹Ήc··’YX$h 1φΝbΟ§FΤwΫέ Ι «1(9±Χ ƒVξ[ϋSUKEΙΆ΅"Iς>τ„p‡ι֍qΜ–λeD·n"Ά§V?—σJΝήΖ΄–—2νt”Υτ+θvΑ©†ϋBΟ ί‰ο+χ(ΐ`LzV恩C¨Α-Όφλk}lΒ;«WδΖάsξ§ͺžβ£·Ϋoͺ5²)UΛΰ νΰƝi“άυ}'VΆ"“Δ霘_ΨγCŠη”:υ‘ΎΆ±ΘJ’ΖͺM£εΝc]•n†³jμ§ή&Kn@v­ΗϋΐŽΩ©4ύR=oC]KOvIJμ~_£#Px«φΣ$«ε*„1a6wŒ`ϊΦ\Ξ,μŠUUΫ+₯Έ…$Wrj܌2ā΄d“ό#ΤϋWmp<'9V,4Y矲7£ξœΩ­«HĈ·ΧΑΧN'0Y±Αvy~½BϊW‘Fͺ’ςojr.¬@0Μηύ|o¨θ~•ΪΖ0Nί—žΥΚxΦΖT‚ίΔ|eτΦσvΜ‘yˆ~£‘ξ+sLΤ-υ 6Λy|Θ%EtP@?U'Ρ—=dsΆρŸxΜُ“IΦδ- x—ΨH2GΈ5―β=MNΝΫ‹¨Μ€η=Ζ}Ηk_Ρ#ρ‡5Œε³€ΡΛή'S•qξ«xOY—WΆ^§—©Z7Ωοaξ’?Fαχ¨ͺάU̜W729νuMrΑ.¬eX£9GσItaΓ)zƒΗZΪ·Ρux(Φ!άGγψ–λU¦?πŒxΔ\ƒ³NΦ\G'χbΊΐΪήΑΐΗΤ{ΧVW<τ¬ιƜ•ΡλTzΓNΤcςΈsœόθΈύPΧ΄ ΝVI’Ύ‚+λ DΆ·Uή ;«™—Ϊ’8F hΰΤδΟ#Τt¨|[βλiξτ?³jΆ\jq™AV £g³HΑτΰΧ‘[¦΅¨† ;DQ’Ώh˜εsώʏλY^1΅“JΎΆρm²3‹aε_nj™m‰8υCΘφ’x紎Xœ:2†Vͺ‘#XΤJL·'Λ±‘φ/2a΅ 5ϊDN?J‚k΄eP±@xΘ„“] &υδβ³t)½Z'ΪHα/΄»›;inu-ZiV1½„xAμ0I5»αkc¦[ω¨VβPςΜPΜs‚}†*ž«*κ^ ΆΣ‡0Z‘4ωθdΗΙυξ*θ->o›'οΦ’ S©d\¦ζ^Ν%8t¦ΈΔbqž2ΠΗ›θeΣPTJ>Χο]qΕqšDpΚ Ρ`Vo›Ν~IΘξO5μm‘Σ φ5δ^ π„3ψΕ4Ϋw–(nγ71ΆσΆ5γΜιΤρυ«œo©½)¦ΉfZ}ZΕ#xt›RtȐZ(ΩiΟφ4W{§ΩZιΦQZZΫ€FΈΌbЍS]QΟΟ[λ{/ιnμλ*–(³!ωαqάQΑ«B§ƒ4«t‰H²˜ϊ3€…K}Xσωט[Α¬ψNt|―5½ό‚ήKv'‰Ψη?‘―bO°x7ΒRΚηš]³3·vΫσ1ϊ±Οβk’ζ”Ψ88hŽςκ][β½ͺ Ι˜©€ΩΙΜ„ &x³*ρΨ“Β±Kf‘^C² ±lΚΔδνaΘζ«ψ7MΉ΅Ρτ©΅Bs-υΟΛ·\!Θ?Δ¨ΟΆ+―*ε€,Νιϋ¨γήMo@bEαšΕp κ'{D=έy+όͺδ~&€*›Ψ$Ά—ύdG=χŽŸˆ­χγ#±γ­sWvK€HdŒμφ<ŒgΘ>γΊ/₯qΚvάι„iΛCzˆeŒIŠρžŒ§ Χ2Šϊχ€uΟΩtXvGκdηώω@~›ͺύ6ΫO΄ΉΤ žK?- Ξ`}ˆΐsΚτ$֏€ld²π­΄—!ΎΣw›Ή‹ΆωξO| £π₯G–RηFU©:lι8ΰHsλJάS ΝtΘΖ(λ\OŠl,υŸθ:kΫΖς€ζξwΫ–DO£9QΝvͺNF8$€?ε|(«¨λΖΎΝΌK(΄·Ιϋ°Ε•Η˜ψ Ι&εsX«θu¬Nβ[οu?ZˆžiŎ 0ž+fϋγ¨ανL’εBw)ΰƒΘ?QΠΣΧ₯.iΡΛάxIσZλMi7LΐωΆεηžι­ψŠͺΦή/Ρq‰,uΘTύΦeŸ^QΏJν.=λh„ΧΌbκΞ? ΘΓβύ5&ڒπ܁£•ω?άoΐΦζεu„m=x5bς;9c0^Η«Λ)xoψ Ξkž„&άΙ6‹-ξŠμA lΊ#ή%+šΆϊ@ގ!uFΤlwώ5ΜψΒeΤ΄Ο γPΉ-8¦#ψ )^λΕz4cν66ΊŒ`ζ[IεΏΤ£qωΟΠ4»_ψƒVΦ΅+I ­ͺ.›m ŽFΧ Μpzƒ… saθΥ•NY­Š’Œ=λϊܞEΫƒΘ'¦O§—Œz`fΉ9t]gIœ\θZ›OψςԜΊχeΑe>™Ν=|]m>ύ"υ[IΥάlX5·q=J?έ“―?…z N.2SSΤκ­”yQ·ͺƒUυylμ¬₯Τ―[ʊΝLΟ/B¨Ό°χτΗ½[ƒo“πmP ·q\―ŠρλΪO…‡ο-ίώ&z¦(G—{<˜όš…‰›Ό‰< atΆZή£TΥά\Μ‡¬IȊ/ψ {5ΡHωPH=jγ&3σg&Ή―ήMk¦­­«ν»ΌΑp–oΑs[Ώv ϋIέεΧφΆ·%ρYΗO- „a€θοψ}ΡψΦKC<Σ6£y4„ώζ7bΒ%=:χχ­K‘k₯θζ»"‰<΅ΙΟaξMsWςίMp,˜Ή™…Ό »€νП\ ŸΒΌeIMͺQκz’’ŽŸΐφςσQρ ΞΡΪ[»_υŒ>§’jzœιαXšΗώB›‹{sί͐ΰψ εΏ θίGΆ³πΜZ5΄x‰"^rIυΙΙ?ZΕ±uΟ4\Xθΰ’ίj‘pΐΊ£π-]Š|΄γ²3UΌt:f›m€ΨΑaj˜·ΆA|“ψΥ‚ ³g?ΉυώηΧΪ§@ΰgπj~20zξ΅Μ.ŒTw2ΰv œ πj›ΚtΧΓlΙΖγΟ’}Ω?₯]•DΆΞŠGΜ‡άT3H™sO΄2ΩΖΓΣΝΓ,Wβνa€x4—†DG"kΌvΖΚ§ψ˜ʺˍNMήO.Θ£‹{ŸLuό{WiΝΛάκ7K²βνόΗS,Χ’'ΰΏΜןΔΊ4Ϋf½μ:ώδ[YIqtLQ’ξΞ:zGRkLΣnυύbhδŠIχlάίκ‘–#Χ©¨υr'Υ#±&8?y6NUIf½ΐZA‡NmReΔχ`,|}ΘA8π.Ώ•sΰθ©{νSHsE΅œπGΊyQF6’α^Β­F›M,iŒώt²eTcƒœ~5λ­YΖgλ:¬:N›-ΤΩ`œ*/W~Κ=ΝUΡ¬EΣ.΅ IΧνΧ n.δΟάτ@}qUlΏβ ρ ΎrŸ¦±H=$ŸΟξ χ¦ψŽχϋROμ{wύΨu,:"η;OϋGδμ΅6ŒY—ss%ΚΎ―{ϋΈTb‰Ο ώ&χ#šΫπV"E6·{­Νꅍ_οCΞΥη‘#ζ?…dΗe ?ˆ…–ΜιφΕf»πΗψ"όHΙ‚½Έt9ιΪ–_ΌdΧ«p‰˜ Ι8οι\l_ΥN²Ωϋ³4ZržŽy1ώKνW|Is.£2hξʎΎeτ¨pRΡώσž>™§Β±ος‘V8’Pˆ‹χT€}+J³»ε•ί3 –ξzΧγ ~MBy4 :B°§Ιp§ZŸωb§ϋη‘τVŸŠ|CueZN˜ψΤn>`ϋ<] €zφ\χη΅q6p…FŠ+ 29'<’Η»ΤΥαι©Jς'‰tαΛCH·[D"D±Αn£j(ΰz ΩΥ-Μkjψ!Vφήΐ°§ψjΧuΉaΜξ\ιΠV†³QθΧRΘΑ0$,‡i&œζΊ°£t€^ΈΉ‡N³iη‘Q#’yό>¦©ΨΨM¨ά&₯¨ΔΛ|ΫZ·π πΝκΗή/ κ6–ΐεHύrΕ‡Μ =Ξ@Šƒ‰i¨U2ΪG3ΐpTυNiuk{Γyc 2ΐC¨Ο¨λWυ³x@x₯YOa&9*ΩΐΘμF?ZσσH)J6ΑT’ŒΡΝ[ ‘αΏ΄ˆ”+±•³ΖΠXώ|=)ζ=6ΞM9€ΏuΊΜk6XΘ}AχΑΟj―.£qw i:\O-Ϊͺ‘ωqGω‰ό+£Πτw΅ΈmCRe›Tδ<ŸΓΒƒ°Εqβ±ΓΣ»ϋŒpκuj;”mΌΏRˆλ³<χΘΈωX,h0:c½Ο­\ρriΪV›§iΦΙ¨^τo(n…;ΘIηικjψu'Ρτ««ά=Ί-Š9κdδ“κ«ŒΧ7 θSkΊΝτς^;H~iffω±œg°ώUΝ†•YΗΫΥ‘Ω:^χ³€lψbΩμ|1$1œZ£:σߞώυ¨ιιgβ 6՟±ςƒpBύ*5žάψgLϋ3l‘Θ-΅Θ<υΘυ¬ΩLڞ¦–eά]d Δ“ήwžk\5Βsͺޚ‘Z₯9B4žηSe₯Γͺθϊή±!Ψρ£-£– F±υΤΩUθ[=yνVa™ΏαQ^ͺpρΐ`Ξ_ζΟσόit{7ώΨΣζ‡+΅ –ŒΌλ“]ΡηφnΗ¬¬ΝΨό€Λ›Χώ+©>ΌσU|AᝠHΡζΊ6ξYp|η;˜œלšκ­Γ#Œηn9Οjη<^Νyͺi–C&8ƒ\Θ=Ζησ&Œ5YΥvlΉ+j`x`yzLφ>R°‚βHΞy<άϊυΰΥ½ΞΒίBΥ£Τ`…¬­΄2‚Γv γάηŠo‡Τ[jZͺŽžj·>κτ’{t½ρΕ„3HDr«\πεFF}zζΌΚΥ$±u)ΖΞ0˜ϋo ΨΕφ{‹α™woΫ#–Tαqί΅GαXτk«½BΖσN΄YόΖ0³FψΩ'©cΔwι%θ³R>ΖΉ8?ΕψσQAg&³5Ά“¦!v χ%0#υU=KŸ¦“«ΚωΝ·©ϋ²/iΦW^(ώΗΣΠC)ΪσΌdν‚=£9ψ‰θ+z[[|#s’ΨBρΖΠ΄`θO9-άηœΦ)žΟΓΎ Τν, ΉΊΤw« ­Ή•JΎΗΈ5RσZρFΑŒΚ‰“pύ0Mj₯W™(hΏ2‡όΌ:«ωϊv‹©Ε([£j¬ΜO€¬­ψƒOπTπf₯¬΄d6‘;Ί)Ο 6Τ₯ršΐšσL5½‘έ,"fωrΗ# Αδ“ψWa’ΫGΣ΄˜Hm£ w?V5•Jj’pSJ~ϋφ‡βh₯²ρ+‹έBμC:/Ξ²ΰΗέ$vτό©ρψvΦH#ΊŠοP·η,λ;£Τδβ€ΧtϋνGΕsιΊ»€‚$ζ8ώκρxκFjήΚΦ‘ΫΘΐάDL2qΖO±5λΙΥ₯B σ½Ϊ•ηbάGŒ½ή±©H8σ@γ܁ΝsSιΪu―Šμ­‘n ς7˜εώrΏ(9ξ—p²ςUς1κ₯s&Τ}¦/°ω°ePύEeB¬λFwbqmXΣΡν k@ςY{•ηυͺBβd‚χΕ”΅Ίϋƒ€φκ$t9δ₯:-Vη:"‰γ™‰°±δηΏZά‡Θ€-ŠΖ‘Ζ»Tγόšσ#/bζκ*u'B OήΗΪκV›^kuΔΚ~gN ωΚ΅.αΎ'ΣΎΞκΪUνψžΘJoδzΞΣβƒΓϊήΙ-g;‰ϊ‚…‰ώΫΣ5WN²Υ―΅¨ό9i*@4«“*O!ω„D,Ž:αˆό+’+§Λ‘;Tneλˆ#Ήρu₯”wGjKK.ό{Yƒδΰ zšθ¬οΆ­υ vˆΖm‡>W ύ5Ÿa‘Ωι~:ŽΒβe`Ϊ{.ΩωχΩ>€V‘¬M£k†ά°c€¬<΅Dΰζ”"\ζ‘οHΤπ=ϋ+jν–ϋ/š2OπΎ0ߝUρeτPxKϋ2+™"Iο€m@dݞ{ρ]•—…ΰ2ΔσλΑ­έBΐjφrΪmš3'Άξ3ό«Γwj|-o=ΡΪ`„Η>…£%[?•yٚ’Œ&Žμ»e{υl¦—0άJΈlp>νοž€Ρ©Ζ«mk₯DЉ$Θ‘}Ě³§DΖ½•Hšθ†œωqδνOΚ €›Ν|N6ΦΓΙV'‚δ`ŸzρaYΥ«ΚΆG©j»tώΖΉ1HΨ3…³ΒN8sθ{». Η—,lΡΝ €œ―±ηj͜"ξ9ΜΩxδb‘¦Ξœύj¦“ΎΞξ]6f%­ΐ1;Gξηάtθ+½ ΣMٌΡα‚}4 ˆ#i|Ι†E sΈη“V[Iς†ϋ+‡·9ΞΓσF~ JeͺΥ±=]Ώ65y%2(+ͺμΦm©™¨κoe§ά ψš3|ΘΝ‘ŽGNj};E‚+Pσεš|I<Δ†πƒθˆs€ψZϊέ_>…ΗZ£­i©§κi6•;ΨO+τ‹ύ[œgζN†½,ΰΪ<œuXΒͺΉΌ|?£Lw=ΊΆGΜƒk~cšηδ΅΅†τά@d{5Ό[P³Hd\*I NFM$~(ΌE’ΞρcδϋBŒΓ“άŸα>Ζ₯Έ…dπΩ‘$UxΫ±e9Ξ}λwM˜ϋX½‹Vχ3x>ηΙvy4ΫRGδΩΰ=γ'‘ώΦΞ°‘›5Τ b. ζά¨Ιbz!ΥΏϊτέ*ζ=WHCG<@HN0ΚήΌφ¬Keok–Ϊ\ηJ•Ι°y9ˁϋ¦=Ζ2R’†!7Ι3τ]Ήΰ\² l°[OςήΌεξI9˞IΈμ*ά;>Υ>§9Β*μ'!#xŸ­3Δx†ΪF<‰,δ]ŸΔ?#š­rηRž-*ώΑΉ”tیˆΑυj+B5ΓΥη‰kDέ,2ίΘ{Ή £=U:(ό€­¨₯T<Œ)<ϋU`Šv©@8 ΨœŒΕ3 R‰ό+βΦ’$θΧςν:A'Κ|zaΏ[wm V»K…ŽE Η&r#8#Έ4φu1y2(h@0ΘΑμ}½«Σco λρ蓇}>fc₯K'>[`'Πd§¨β°­Oν›P¬Ρ¨·­ξŠςίΛ‰ίi ΞσύζΗ όκ ޝZMfcir¬ςJ°˜IοΖJϋQ5ΊDneG" «η O υΝVΏΣn―΄ct7φ”l·ΔtΤδΔp~΅ΙNU#SμoV=*Γ#JώΖΫS±žΖξ1,)GŒτ`{­αύb-_G·Ό_”JΉ*z£te>ΰζ΅X#Ψδ {Kή‰γΪ³8ί^άΩΛwα}RC%έ‚ƒrg·8ΨώδgiϊU :#ΰ/•υf²$qΌγΙ­γ+5ν>2χΪa2¬σΦ2G™υΘβ€Τν­|]α€φΣ OOo?xΫ†Gϊƒύk’w§?&n—ͺN+±qŽkρ-³ΏΩυ;PM݁2§«)ϋιψŠΞH«]Η―γYΖ²ΊlI(gΎ›ε··Y½Oϋ>υkR^[Γ“q,aςr{Ιττ©¬4ΈμwΜ\Οw!ύνΣ€XϋξŽz QW3JΖJhΣYθr)3P‹——?zPrGεΐ­"ε.μβ>λμzΰώ5c€Œ ε4{φυ?0Δ±oδΜ'ύA8ϋίμ’zφ₯:}PΤ»ΐ40ΝFŽC†₯γŽƒή­\!‘‚‘$γδτΉ)ΝχŠ4½Tƒδ\yΦ°gώyνΞΰEs[ž#Ή{ۘ΄G+,ιζ]H:Αoί>μFG©Z€Wz3ō Ίͺ:*• ή#Š6/πΕγ·oVΡz€fhΪdΊ·‰βΎΈhžΟI>gξΑΔ—L˜zνV${°τ«__Ϋθ^vκ·ΚgWήηIϊͺψrϊΏŠ|*σμϊ†Ÿ-ΐy4ϋιΜr™6ŽbδrαΊUG‹―΅?‰ύή‰¨ΫΗ₯hgKbδ†YYNx8%€ c°Νyρδ΅’ΚjjW’=Τ΄ΘΧNΔ»ό€žΨ$YaŒΧ/oγm"£‚ψ\ioœ{ EλύξAό렊κΈ„°J’!ώ$`Gζ(¨οͺ7[Y‘ͺ"C€=ω§9ΤΑΗ9βΉfέ‹ZW‹mH†Λ@·b!Τo0;Ηαάl>΅ήB‚•ν€=a\₯Ό_Ϊή>–cŸ'L΄ ΟYTnΗGλ]‹WŽΥT£h€ήδR‰y4―œRΔ8Οz§"R±—β}OϋΓwϊ€l5΅»HΏοd‰5Ηhφž3Π΄}>ytί²Η †·Xc’Aaάη­nψZρ‘ας C$Ζώιι„ 2ƒμu)+pΐ’~Ήͺ‚ΊΈ₯7drψΔΩ©ώά―,@83’ˆGΎδδ¨­Λ-NΛSΆϋE…ΤW|Ρ0`>Ύ•q’BO []π–—-Δw6π}’φKˆΡg΄c ŽA$•#ρtpM{βoiΧ–M«ς/„m%šΒ€"Γ,Ÿ0c–ζΊ?O;xxiGϊΔ«¦ΒGQΏΨϋΓ]]½€6v‘Z[Ζ#ΆŠ5‰#(ΐ_¦FšWΏB*K•jIέ΅ν²][Ξ’E& :°e`{‚8?…qχςΎ‘βُ&+D+θ$q—ύ6Ζ©ψ“A‡Β6ž!πέΚιD’i¬Έ6Wg *΄9ωΈ“φΝVπ¦―mw€<&/ΡΙΎŠ^‰ωƒNΚzi^\ΡεC£̊ž Λ­=’¨³ °'οJWΛ57΄³©kχšΝΟϊb˜Ρ²<ζ_œσύΥγρ¬kϋΆοζ Ίf™»Ή (ώUθV.­YΥ—ΩΠλ«6—)KSΦN•‘Ο{–qoώ)β5ΗΉ"ψFώΓ`²w2Ξ2ΣΛήIX–v?V'π²Β6·γEˆΩθ€Hωθχ.‡jΐW'Ψ‘]btΙρΪ*ϋ™ΞWw-š !ω+s+ $0ΨΓ#ߚΜύξ•ΈEΊK>ΛόQκΏΚ΄ηšΙΦ΅τΝ&κς\˜αMΕGρ~€+)JΜΡ+g‰u(nuhtμΠ8ΉœmΞXŒ€gκrί€¬ΝGXž+G{[YWΙ}m%ΆŒ.― ›©fσεnώanžψ…TΦnΜσž»œuδ^&/χ΅VšNΕ― ig]½{Ž".eΌ”ύβ˜αsκǏ¦kΨβUET ^ŽŠ; ηό#’GHξ-τΜdœ€2τ_ψΐ’5/ή½z0䍑ΙSGbE^ζ°όM{qšXΩ_^Ή·€ŸΰΘΛ9φQΟε[§(£κη\Φ†SVΦo5ΩH6ΠfΟ=”ΰMΗΠVκ$€7XΈ‹ΓƒKΣT¬νˆ-ԞrzΉυξΖ°¦D΄τΆk‚ΑPgζšbr3ψσVn$ώΡΥ₯ΤΫ%aΆ²τ-ψšΏαM?ϋ_W—Y—ώ=,‰·΅οΎLbI?Ί?γRu«{5²5”¬ΉŽ›Γϊ2hzLpσ.Œ“Μ?ŽBrΗϊaOΧ5Hτ}.K§S#8‡Y$<*©ώ΅§ΐ8ΕqrΜu=Ω9°Σ’Άτ’laδϊ/έω―JRε‰Ν:“Κή[ Y>ΠΒMBw2ά8ο!ώ€p=…A¨κvήπτ—·l\Δε€r~TQά“ΗζkTb5f$Ξ=«Μ5]Mf>ΔΌφρ7°ώTΟ°&ρ‰r+{™Έϊμλ†oδ^1ΈΔW/―θΊ]νΝΊ[Ί­Μ„I!€ν Ϊ@;φψ¬%―‡5LBν ξHΕU±°ŽΝ[8άη2?r}+ΟΜ±>Κ:u.„9Ck£X[ΪG °Ž^C(η=y=Ν&›-Ε퀋#–”3#瓝ب'Ÿf΅ŽŽΚ—xO1ΕΗqλνVl,τm<άO87 fcΞIδγԚωϊώόχgeiœχˆ&†βββξDΘ΅»Ž€ύΘψ\AΙ­Ψ4xμ 2i7Βμ0rN2}A2φκ{”½_²H‹&η,}sŸ›Φ»‹NQ‘Εql™άŠO’:‘ή»qιΔTeRr<ςβεΞ“.Z2/ϋA°@όs]Ž›mi£G=Μ³v$³3d’φΧ?iΊΡm[+ηG¬6ΖnzδP­m[\>·rmfΣν­a#ν FY―ΎxΕmw§nN(C–\諏ά7šΝΥ°ΘL‘Ζη`γsδŠΡπη…τΗπζžχφ0·ž¦Fb1ξ$ ΘδpG5oΕ _ςm³Xΐώξζ―o}`°˜MΪA³”[δσ•jn£ ρP’Ή{£Λ£ΎτΤ5%±arΔΫτ`s•χνWΫ@i'[‹]^π’>S1G} Ε^ΆΥ­ZΦ#=Μk‘ΓŸ»ΫŸQYΪznq=΄Œ?cl48"=?w==+Τ‚³ΨΝ­ ˜|Ν;^ΤcΈwHδΟn„gιW.tρͺkuΰn3ΘΓͺG΄Ž½‰'5μπίκΪuϊ0Ψ²42>F²ƒΙιΑ¨¬f’ΓBΎΧ[ΝΌθΚ:…¬@}zώ5σψθΪ΄κCvušφ|†‰4m>=}΄M/SΌQϋέΧΗώ Ό{cσΪQgαίωv("†ή-ψ§~}XžυΝjG§[ψ|¬YΉ†γdΣcοlžωn•±β‚ν-Ž›΄ζζκ4χί ͺ©Ο5\θ‘:i3›6Ϊ\Ά)σ₯g[—aέΖο›Ϋ8¦j2*Bν90€ωΖ?^υ»yρ%ΔΊΎ’Εt˜Ι1[4œuw¬oι:-φ›¬ήˆa$Ψ‡ηbŽ„ύγœWO*~ύΞiώωϋ2ύ¦«iy§i@“JΆ–ŠΉXŽΥŒOSΦ‹=u,Eυ’ZK%υΛ―–…pqΣ“Ψf¬]κb¬vU=x¨tΛuŽήΠ» “S}ΠΘ~ςͺ꣊γŒυm‚/fQ‚ίPΏρV₯ύ±ΉJ„ΜIŽͺ>ρž;UGÐμϋmŒ~T±4;Dƒ?tγΏ‘§Ά‘,~,Φ._ ©μž8…VΊΦ₯›VhΎΦ+c‚Γ/θ~•ξΣ«zΉε:?Ό\…ΕΣmα]BΚϊχ-„@ηk“§Ž ž•±uαα¬Ϊ\r7ϊ’ˆIώ. ύw Χ«Ι§C5嬻σγ–x† °dγΧ½lE­kfΡζƒQŠHŽ1ζF§Jθ₯΄c^N \eΆ‘wqo§ψŠ"k_ή1<ξΊŸ©ΝI.<7Y₯δJ–άIΒƒΟυͺή½Έ:N½€Iε1 Ξ€HhώjΥδΊ&Όγ?eλΑδύs_3^.œV§ΏGXs΅K湎ώγl€­Σ$QΦ―hΦphο‡|«₯Έk¨[NΈ,waˆήΉΟ£Φ«i°cΕΆvΡ*˜νΪζ$dd ??…K¨]’]θz‘)ϋ½F9$ιΒ–*s}WF”}NxϚ|ΓuΛHζΥ­!HΥs©ΔΗfaψŒΥ?ιš8Υο!Aφ8Φ*“Ο¦=sŠέΉ³…³€έΜ‚κή{“:‘Ύ0δ\δŽ;ϊQ¦ι6Χπ‰m΅kΤ`~hήMΕ£ή­AβU` Y\;Ό~΅Χοf]CMVŠνz‚ΉVέqθJϊšœ·Ί>z„ε³5μt««F&-FYuύ+{v‡RΥ΄s‘jν="uV#θXξtj ϋ9\‰…š7ϋΡ·Lθk‘Υdaγq E.Ά–ρ.F@a’xυδW`ΏqsΡΒkVΓξξdg[ Yœ|Η΄H}}ύ*č­’ΕlΩ…P=IοοPΪΒΆύ™˜ξ’F»{šRΫυKXρIΈ†τ šωͺ*εG©7ΤΪ΅ŒΓj26.UΦΚH΅8Τω–‡sοDpQZa~QΖgκσωV’Ζιξʍ}ή'πΨ¦™ΚV‚€ δ˜cΘ«ˆΰ£σ¬­9Ό™ηΣδανhέΞθψΑό3ŠΧŠ5œλ](ξζΠΜρIΫαϋ‰sΜ/ί@€ΤΊΤ2κ—i§X· «,“υ©ΐoΞ’Χ§ϋLSi6ͺ$Έš&I p+qΉΟςκΧ„<³αΛy·NΛϋωOY»Τ+Ώ +lxΨκqEqšδιΣθΖίȞ‰βc’I9άOρΨχ¨’ΜΒ …¨< v―κϊrίͺ][Iδjη0ΜF@ΟπΈξ§’΅(οχΕ<_gΏƒ‰αs’Ύωξ§±―VdΥ™βUΒʜΉ–ΕoΙδ]jς›{ƒ,j{#€žk_VΣm΅}"βΞΰ™~ςΆxo¨<ƒYWŒ–ύ₯Ξv,ρ5Ό‡ισ)?‘«MͺΕ&ξE˜GΞqœ‰―Ζ?e_CΫΓΎj*ζV™¨_^[Oαύ@•Τ­˜Γrμ /χŽiΦρ έΗ`:T~βF<Δη+žγαOΎΡnα…uλ8‹κΘ|ΩγΟϊψΫ’>ΰ·άUΨ€³ρώm¬ρρύαυhΘΧ³†©Τμχ<\R• œΛfhŽƚI-Yz=Μΐ>zι– b?Φ§\_zΤ’x ŒΙ#…Uκέ@¬εvg©JjqΊι–;F ΨωΤ―j―ͺi°λΊ[YΝ;+n ΚrΠΈ9Wΰώ™ k%Μ«4ΚDjsκ=Ν[\«Ό`Š–ω˜ώc/Γf-EZ;ϋh“[³&θIσm|˜gψ[!χ­ψ ‚7ζCА1΄ϊΧ-«Ι5½Αρ5„NσΪΉŽκλ<΄1Ή~˜’-JΖ{X―‘Έέo"‡Y6’6$ώ?…pW§i]¦²”yšcΔ―d[MD™`’NήΏπ!σ ν#•d?:δξmY,ck”"H$GɎE9Sύ>†΄τ]5-6¬'Κρž rŽOΈ9Μ%Kϋ¬σ1΄Ήe̍’Έn8?ΚΈ ψžoΊ”±Ίέs¦ξό ‘}A$θk·Jm8γΤΦ/‰τ&Χ4 °Iε_ΫΈšΞc,₯R9τ?tϋθ―8Ψζ€ά]Ξ{VÞ/ƒVΪΏΩϊ‰Kk܏•$8Θ~ΏtŸ₯vQG>bG°ƒœxό+Ξ{Oψ9£ΊˆͺM‚ζ>h€§Π« Β«ψ+TΊ–Ξm'Q“:–˜βήvoγ\ ’}cŸZΗ =ιΛt:Ξήςγ+v¦°ρeͺ’,ΫΔd΅rψ Γ‘’ίSӌrž cεz‡VΘƒO؍Dρ‡Θ πAϊΧ1ΰωŸI»Όπ΅Γ–};jμy’Ρ±°ϋ•'iϊ ΌM+ϋȊU΄!πlςΨί ^Θ^γK*±HύdΆ` Mο€vŸq]fF+—ρ€ £ήιώ*HK6ί…κφ²0ΐ ωΧM¬ˆ₯XGpFAόEfž–:£!jœΚzz°ρ«―Ηj­?ϊ°ίέpԚ6‹3τψ!Σ’{hΠ Œΐ‘Θ$η“άzzUόsΤΣU ŒRm(xΞίεLΝ’FόΗσ¬_ Δ$ΊHͺΘڝΐeaxήΆy*~’³τ,ECΣmρ—žΫΡj©ΛήΤΖͺ΄nŠΰΛα‰BΆι4bpŽyk^z7ͺzέλGVΦ!τρq6IH"^L~κύ\ϊV™ T‡ΪS‘έΘΑλŸjγ|7fš•ΜšΈ ύ› ΄\.s΅9/όπΎ‚΄¨’z‡œ₯£54m.]: eΌo:ϊξO6ξ`~σvAώΚτ&‘ψΥΉΚH9τ5o73ιQΘ2νIcΫΎ:u’—/αEZ3,ι( ΣJδy1 ™=7Ά2όλ‰πώΨΤu­|ŒNπΟ?σΖ2bŒ~@ŸΖ·Ÿ ςΠ@ΙχβΉ53‹7\ˆΟ@lηόp τΕfxΗ3Zθ—Π\iŽ—|θ"η‹|*μB‚dBGφ¬e_D]Ν…Τ΅kΔG˜ξ&[KSιo+Ÿ£>γψ θΩ²O9ͺz΅¦›αϋ++7S0$JΑ“‘Α$’°ΐ«f»9m#&΅jŒψ“T±Fΰ,ΜΗ>ΙVŒ±—ΪΝ±½Љ—΅£d–OεJI\Ξ’ΠΆ}E2„œη Αζ¦l’pRz Λ0'•]§κko™z…₯s–Ώπφ—β‹£ηΪBλ ην aΥ‡P€δzρN>ρ™Ξβ9e‰>μΌhP=<Ε!ρυΝ_πŸ>²bβŸσΧή·•P³0U$žƒλY%NΙU›jΗ(ž(Υτ܍wΓ·Aσs¦wχ+ÁψΨ|M’kPωΆ•ΌΡŒ67ΝοΉO#ρσw-ι)j¬‘½9Ο²qή=πΦ™}§Δ‚ΖΥo%[[{»eV$bΓ…Mǚε•hσr£’ηFη‚AΎ΅Τ‘y«ά©³ŒΞόυ Ž>€ΰ Ι»Δ™nsΆͺuΟ‰W—DfΫ@€ZDzƒs*ƒ)ϊ„Β~&»&oέΧ7ΰM:}7Γ0.‘…Τn‹]ά’0|ΩX»κ@*? θ•\Ž@ϊVJ4ξDύιXα<}sύ‘.Ÿ’¬œI(»œz"`~­ΚΈέOF "ί[M=½ό\%Β`·';_?}}nξώΡΤo΅‡?Ί‘Ό¨XŸΉ yQŸbrk7PΉO(Μw,1‘‘CuΐκOΉν_;ŽΔΞ5—#;(Ϊڐxz]sPρ_\iipš[oΫ8ωεeœ€ œgŒŠξ€ρ…„Ί]ξ€ΚρΙ¦=’‘a‚τ9ΖjΧ„τ©4 [€γ³ƒq>ΎόΰύΡX^*ν΅½SJπσČ'ΆέΎ2Λl˜8'ΡδΪΏ―J-X#QΉsƒμ$°πδxΣg-srΗώzΘKψdΒ·σšζ-ό%œƒϋ+QΤ,›$μÏϋjQwβ,΅ZC©B§[C²QξcnΰkΦD³‘&šΗ"³l|A§jRyPΞuϋΠJ¦9W꧚`œŽ:ϋRi‹Dа\S\'ŠυuͺΫiŠ•snδΗξΠώ9oΐWW-ژεΌrVo‘βi.gάΠYδ7!¦#~ŸΚΉύ_We±d΄²ΊΒŒ‡pg#u5λώΡΏ±4hlά0¦oοJylϊςqψVs³rZžε„ Όώ5b8Κζ’‰H8λV•QυΕz‘G)β›Ι…€z}›μΌΎsoΟ1Œ»Ÿ`Ώ©S_–ίA𙴱"2m‘@y8ηΤγ&§ΡΐΥ5λν]†`·BΆ'œώ±‡ΥΈό+ W½]SΔlΓ/ibήX=AŒ1ό:RœΤUΝ©ξe΅„­sm₯Ϊ\\­ΜΗΘ‹2¨1–r=‡?•zΆŸ§[ivY[&Θ Mˆ=\ŸrrIχGΐΪ`žζγZ”^m­³ΩΓ7όρτάξ:φͺΓΣPW2­+ΎSΔϊ„ΦΦ1ΨXΎΫϋι>Ο?ςΟ#,ηΩW'늯oag ΏΙsΧβy'άΥ]9†­ͺέk’`ζΛύ˜”αίώΓ― ©΅FίGnο―"΅RοƒΙ’RI}h“敍©G’79Oj’•ΓΦR”ΈΏΈ‘ 6ηƒΟf|mΩ5Νi±¬χσbΪΒDqF½1Ϋ5Ÿqsu,7w7‘ΔΛR“̐γ;’ φEΐtφKimJΚ1šΥG’&.§4υ4 ΑP1Rέ\Gie,³ ƊIsνψΤPpsTnκ:ͺ[u·΅"I½ί*ϋϊΤN|±Έ­vP_eSύεΙgδ›c‘΅Υθ{W`·ΪΪ=ΛH’_1œτΖ3ΙϊUHΖK³ΰε°Aδr1\όzHΌΥΦΝ\iΦξ―4-9΄œŸ,‘·#&³£S™j7₯πύ€“Ι.»yܐ#Λrv©ΞOαRψiI[ωωΔ—‘ŸAύ*)+ mkΔS›€ š…άƒ!―αYQ­ ΤφK œ—ΔS3‘—Μ%#žs(8©κέWhρ–ƒπ|7 3amΗϋ"ψkΓ² xθ•θΉY½N3ΔSά\Ψ3&’.TOF ”γ#ƒQjΜΧχg¦—ŽUΐ‘˜sΗ&>ϊLσˆ­t¬nώΜ·ΗsΙόκΒ¦ˆWh­l³jοΎΝαurO‚7^ͺb9όͺε²ψm]Z+xP©γχxΕz‰&%#Ι–ΖΙ濎Μ]i2„XνΑΛ!ΰŠθ΄ΝM­΅].ί\»·–ΦΔ|ηn‘ωώ4ο›xΌgnmΞV{vFΗΆ§Ϋ­˜f—THΌ’ o0d(τό«ΓΗ^5ωe±Ρ‡W»3ΕύΞΏ¦C₯ιφσΞΦf‘v¬Xl†$χιŠΥΥ`ΈΣΌM€jzΎ£ΎΜ£ΜΪ@SεΰtκzΦ>{­Xxr[]I‘"Y]’ζδˆΐLρ~fΐιP¦uu*ήκ—/y:ςΎiΚGτ•j΄ι&―ώfqrnΒ5δZž‘%ΌΟuŠ\oΟ<―]ΎΤš*ήZψ-β#ʘόΈ*­ΘΰϋV¦ƒj'Ή}FLcy žΐqŸΗzφck―Γ«΄Ÿ!Q ηϋ£ψIώU€eΛuξμs<Ά· Ϊ ’0Δτ’3W΅F•΅2ΆͺΒΩ!ƒΐΟ5.•,ŒšΣ[€¨&%7 Žƒ΅[Š·š΄›‘†ls“λ^}ZΎΞ¨ΰέXœΧ‰c7οϋζΜB†>˜'ιεYφςψyWΗyΈuσAδχ'Χg£ιvž$–Ϊω£htν=3cο9'=NΡ]ό"~„οΩjyΓΆΎ§ LσͺΛχ–<ΘMα£Δv²³³ΜUcrlμΦρ^€28HZD*#,@‰κ=+ΨSIπΌ* BΠm䝣5“>“£κ¬μβ%œ²Ϊ–ηj€6‘ξXfΆφVΥ3ͺmZG/w§Η–U"ω⍝ ξξOOZ΅=–‰kα:Qo9w·@‘Xε܁ςυκNE%Ά£η‡ξΓΒ‹{2Θ1Κ??CΤVΗ‡τωoμ-5‰γΩl ]:3Τg ΘG|τQψΧΚRH©{NŒφhR5E E₯xAβŠŒŸ=Τƒ“’yP}ΰ~5Δ_ {φ4΅ ΏεHΥ~bO¦=λΊΧu屡ŸO·ukφRy―©φcΓΆvΦ~-.΅3uΛ6ηŸ<…Ž+£ :S”ƒ ^κ‰Ρ\ι±ieΤLΗ[Ό`IiH$€^p)ž'†4ΤΌ3F(ꀃƒψΦ}ϋ›Ν"‹Ή ]/;ΙεoΧ#sΔΎaΣlu)δΫ5΄Μ™8Ϊ―•’”yΌΚmJ2ΆήιΣxαwψvkΐ Ί·‘.»εHΟιšΝψ4π‹On ¦šΪ8ΟrK© &λϊδ7ΚφZm”χ›†ͺν@η“ΦΉ.£:ψbΣPt·ArΡ«d3³j3vγ¦i`ν*π„·ΉxŠ–£;Ν΅Ά„Π—šw‡iωϘγiό*ύΌήIr5 ·νΆ7•Ώ‘ζΊ)~ιͺw₯νΓέ/;0ɟuqRιΎ‚Vk}ΦΆ—q$MœΌ=AμkιšVζ>~œωc{/>—΄9υH. ν‚y>ƒoφžΣG$±_Gq"Λ+Ή-Ώ?ΕλΫπΚίšt/‰υίμœ\λΐ-|W­AnΕXyR©μrΈ9σXf9hξuΰjsU,Γ,ˆ<»RD듐}κ[V_wq΅Θοό#όiι!r’XΆ•?{¨‘Εo‰¬%ˆ€ŒΝœ\ε^5(^G΅VZXθK,qο%Q@,Iθrk3KOΊ}R@Dl<«Un©''κίΚ™)Φ―Ώ³ab-!?ιrΰŒγ€cΧ'­k‚Š*μΖQΡGa[MΫCž1ΉŽφ’ζT±Κηs“»Χ4γS•XΦ4Ϋ"ΏDΣt+¨νσηKˆχ±Λ<Ž@Ι>½kfΖΡν4λhmI @Šΐdί>΅Ξj·Ρ ‹dά·Aδ‰FX°BF=rqJšEώ²Ύn‘¨]"EΌ•XήaΤβ½<ύΫlρq²Tꫝέjς–ς‘•Θ*Wόφ¬­N&Έ1έ¬βήϊ LSœξ°ώ%>•oαX~Ζ/«z±$‹‡ωqΟ­jEα75εΔΏν4€ώ5Π’ΫΠ=¬\u*G{{¬[Γ¨EδΟl₯Ϊ2Aηncž+AΧνz­‰»έζΜ§*§ρͺZΎo’Ι§κvξΑc“Ι•‰ΞQψηθpkFΝ kʟ)…L²0υ#ρ3%ŠNEaz#·p70fQ»Ÿ»υ_SΌ#¬I|€cέΘ|t΄”7ŸφΏ‘η½tΆξΒ9ΪVδ±$uΕC{}lCX7οd—ΘΨ[#ίΆ+§ YΑσDuθ©Yz¦œo ŠϊΡ€»‡ζ‰ΏΌ%O± ©m'Ϋv\Ξrœ›€dpA΅RΞy<)ύŸp$ώΗwΫm$‡?fcŒFηϋ½vžέ+SQ‡μΣ-άc !O―c^­Yͺ‹™XhʌΉΕ…|3HeΚ~"’ώ^΄ΙG;αX#»©‹(Wμ„7mŽ{νΤ:DγšίφKm£!ϋ.GσœτVδ―‘Θ¨4βc°‰›οHL§κΗ?αW/mαΥtι¬/ŒRέΛΤsGΈ ξ(•;ΓS(VqΡΥ΄μw4KΈp8Α„·k’ψ–f!“M»‘ViΙH/8?u—ϊ‹ΓzεΝΦ‡<:VΣΨArsηdŸG?\Υσl†Ομ“F²FF$d1=s^EZWg₯5νiŒ,¨op{SΜQυ(=k‹πφ‘.“ͺ.‡u+Ό,Ή±–NIQŒΖΗΉ½«΅*’/C^έЬ‘γΝ:r³8»Εo ψ½nΗΛ§k—œίήͺψ₯αΧlΏ›έ)ΔEΨs$)qυΨFͺρ•(@ϋ€p}A―M58s.§˜ω©Τ°ΐm5m/ νg‡8μθ˟ΤζΌ,ΆP]ψvφBχZS¬Jο- _ίƒ΄ϋŠ‚€m"ϋRπ΄Νσi$΅,ykY0Sλ΄’΄ίDt]oMρ-Ρ…ž 錌9uρψσ,α6™ιΕέ\θœγΠ~5VYγΚλ#ŒŸ― yξεh­@βIάdeΟ½X·΅ŠΨ,μr?.ίSZ3t(Sί―JpZ|΄Cˆ¬I¬k6kκQΉΆŠt€ό§ϊVί|Φ6Ύ#²ΪΩ`£Obχ {ΐp²OQN7VΔΧ2^Νkαλ9JMΉη•:Γj>ρ”}Mjˆα·…!†1 F‘€ͺ: Θπε΄­ϊΕκ»Τ˜HTυŠŸ.?o—ϋšΥf$υύk’χ3„yAO4Ηζχ©Z„l…sπ’“?-hΜγΎ"ή6§©xsD³ή\έ Ά^Έ `OβkΠμν’Β;xΑΰ Μy,{“^gkc.£ρYΖβ?²΄ΤBΰύΙΘνζ·j₯€΅Šξ%8ύΫν~ƒωŠς©EFŸ]MmΠΩ'Š«+g½f―Š4Ά›Θžo²MΣΛΊ_,ώΌΐΥύκά†υΝLΫ4KΈvΉ]BGΏρξŸbΈΩdzΰς3°Οβk«Ύ€ εό'G^Χυ±ΚΟqφXOύ2ˆ$}XʊqΌξ9;SΘΐΗCΝ)zSOJ3žυΠ•™…‰qŒŸΞΈ―Β5_hšJ’žΧӎ£Κ…7.GC—+Φ»`^:δψΧ/αΨώίβ}w[?2+›lzό‘―οϊΏπ‡«Ήk±Uό%q¦»\x{P“M•Ύw·U[3wέ?ͺ⚾(Φ4’FΉ‘Ξθ€w₯Ÿ΄Gυ1œ8ύk²<χ¦œ7Qω*ܚψIMύ£ΛĞΧ­Ϋμϊ•ŒίފQ±“ύεl5†ή#‡NΥbΊσ€›CΩ|β wε2>£―JάΥ|1€jΛώ—a’Ή)@]Oϋέj―ό#’‚#)@»TΠc;”ζšhΩF›Z Μip¬¬Œ #d­KΤƒο^use¬ψ=ΜϊφΡιm/ο-.ƒ40–ΐά€r‹‘Ξ8­ρΝ݌eυŸ_BƒžΙ…ΤCߌ8ό«`Φ¬σ+aζ€jψvD²Σξ-₯b’Κςhπy8'pηš²^ν’νJΒR ώ­λ\†‹γ κ.ΤLθ±NTΕκca*’†8luΟJοKκqώχnΗD`·€p{tZαN‘γε‹ψ4Λ"ψτ–`η΄ΞΊ’ph:εό4ww―κjΜ Ξ ΡΖίμDΧ$5sΣ‡ο.o ΁SΛ}έ‡j­w {TΘΉ_Ή·ο}΅NVVαδ`§²ρϊΣⷎΫ$Fυκ:θε4r(€`ΰ|ΗψGEoΗϋHθžΘOΏt=ΰ·WκBΖΊ¨š2»“ŽΨ=rVυo‰ZΕρ·mγΣ‘9γΜ`$”ύ~κώœ––3ήW:X/νΎX'&γ“Ά^ >Η½fψžφK]T·l\\2ΫCκΘόMjέC ΤF9βY=gΑψ€έιΊώžši{€ˆ5ΛYΚωΪ ±θzΰrͺ—ΊΒ1·Ό3P‚;C”ƒΪ ,Ύΐ| ϊδσXρΩnxŽΛI?vwσ~μ Ι‹`~5šε–‘ͺ_2HρJδΝςΘ6€9ωΟJκώΨ―Ω5 yΎυΤ¦ΛuXc$ψœŸΚΌe…SΕ{Fo)ͺtμuΣξyJ±,^MrώŒκWϊ―ˆ›ζ[ΉE½{[C”_ϋι·7εVόQu=·‡%ŽΨ‘y¨2Ϊ[αδ gπ\šΦΣμaΣl-μ­—d6θ"Œξ―ω'ρ―BŒo'# Jρ,­?$ŽIΗΦ›Ÿšž+tξ GL±ΤΠ%εΊMΊdeϊ7QωΦ‘₯kšu¬«€_ΙunF ­Σϋ{„“qΨΧXά΅A6Tt#?:–μZhσOxŽίTΡ­τΛ))/μο|― (MΓ±θ?Ζ›H΅I#ˆΫγfΞI)u bβ½CX–Ս»gΐeUWε,{ςΐσνR΅Ε»XIr'SώτΎξΓΧ‰Œ©5UEltBΧΤOιGTρ•¬Kϋ5ΈϋdΓ ±OΥΉό+Ψ εΎ^ΎυΜ|?Ρ›Nњφζ=·wΝηJ ζ5δFŸ‚λ aΑZυ°τω ’sΦ|ΈψβΪ7΅dx›R}7HšHFn_χ0/¬¬@Qύ Ϋ=r6΅γTEΪι —Ο{™ΐW?Bk₯™!/Iπ§ƒ"Ά·9Έ Άρz΄Œy?™&Ήv΄xm-τ»P~ΥrήBύγΛ9ϊ šΤΥn«―JΛσZΨ·“zHΓΓ§ηWΌb5NγYa˜aΝ­‘Ξwc‰ρΖΠ}q;Υ­ΙΡ'duΦPιΦ0Ϊΐ»b…h=υυ'“ψΦ_‰εϋ,Z]£„ΌΤ$6θΩΑ1—Αsψ‘[δ„^xγžΥΚιr WPΊΧ$ζ6Ν΅˜?Γ’ΏΰLΰz—,leJ.s±~;xlν‘Ά·A0 ϋͺ:W˜ψσZšύ¦a΅eΉΈ-Κ™Jώζ6ύ[ŸjτMwW΅Π4K½ZθnŠΩ<Β ύ㐻1ρ―—O#Iϊ±ίw5ΐΊΌ?ν³dpπ¬¨ΣΏΌiV§*δeέ2ΌΥVyŸ1ΑΘRAΛΧP‹$ƒδΟ&¨+Kd¬m°;ˆΖE#ιZD»@ʝʻ€Ÿ\”{U-HŒIξοέMΌ+ΊιΞΤLtΟsνRιΦ’ή ŠImŝσχ˜υ¦@šE£y' ΗΉΞjθΤ4πΩΒγ€HΕrU››²4ε± υΜ–Φ¬"šCεB½rη¦}»Υ›+?μϋ5…7ΉάύΩ‰Λψš ·ΆrjζinQa΅_-7όμ9?•j SLa…ΏLvɊPj#RIIΖyζ°οτxζI£½€Λω\#ŽΈtθG­%ύ’€„έΖr>υVΖ”­ΡυμMg95‘Z2žΏqe XήD°\ „£ύ*χ„WΞ¬ΞvΌn½G«_\θW°žξ^ΚΗ‘τ=ͺΏ‡υ?H[ΰ·Σ=Ώœ6ΆΒΫrή>ŸΚ±ΓS§ »#98£±xJ¨ΐβ…Ά<Vd~-ΡΒεο¦TΣΧΕA?ρψ£ž2¦»ΩwΊβ{To κ{Έ+aψbΈΫ[\Z@ίc†D(€bLυβΊOkw^»·Άey6ͺͺχΛιš₯Ώ’Ε΅¨FPTm?η5Ε‹£Nͺύβ"6{•_S2D#Έ/ŽΔ‹οœζβŽυ’ŸMΆŠι7"gύΨX½N!]£kΪ4‘–7)€2Δƒΐχͺš}ν“΄·Σ†ΰ‹·%#(όzΧ> JεZͺKc6ώβΒΠZK¦7”ƒj˜0ΠΦ†βG―–ςM.μF(b3κ3Z ­i“q΄Žε^λVΔErŒΜB€§‘Ÿώ΅CŸΪ[R}€—Ί`έΪέk—+paςγˆ•·άJ‘Ι%Ž;š’9΅{8ΨKΉŒpΨ“υΦμZΦ‹ όβ‘~P6*uΥ΄9 M}CδWgΥ¨NΞH‰Φš|θε5mDjΪτHyEІ\FGΤW¦Z2][C2žσυΧ©―‡/ԟ΅£J£ ,@οΩ~•6ƒβΛ ;OŠΓR{•Ί΅S ™ά£ξΏA4°π‘{Vn’ΌŽΎζΜ\a—Νέb:{Ph²’)‰†HΔwύτ=~Ύγή±α6ΡGOΆδtΕ³U{―ιΗ“o~²'άqΚ}Nkͺk-ŒŸ}šΟΔΪLκ!™ζvΩ‘ψΥ+X€šK{RΪMˆsom·!9αœwb9φ¨W\Σ5Ojί‘mς­<Ε Qσ9λ€k£Oψ{ΊŠ υΚ‘ύ+“Ικnͺ&Fϊ΄ΚoKΑr#ΈηaχOηΨβ°οξ%6ώυCÚ―„|;¦€gYξeη›aάξyl:g5»Š<3wσ¦±h{_~Ε[ JK™£§λ5 οŸ‚ξ(4ι„:δSόΨb±žδδηλQκήkάm&TιΆiiΉΉύλΟψγ ψΦΥ‰t;[IgKΤ—gD’νΩ@ο“Yz~£€ι±}ŸQΏŠ;νΖ[η;ž{Žƒπ¨…Tۚ1z’₯ΛΤΝ6σ’<3DϋAΰuΗZ‹ƒqyqζΝϞ‡>•ΠψqO7‘±έcb?•A/‰<2Oό}αG-€₯_³§{ς{ZžΟ’Ε{ ^οDΆςmμZ[e?,a°Ρϋ υ_OO₯cψŠmBς ΅‹Β<θ J‘)Κˆΐνχγ9­ίψH<6Νςj‘θTπ*£­jz-΁©Gό-›ih<δŽ?3ZCB2φͺ>ρ§Φ+5μ₯/tτtXε@Áχƒ{ΗιT΅ έlš&ςξ"9ϊνφoPk›ΡΌU Ε₯Ω}²οQiΦή1"„b‚€@Њ֏Η‹%'ΤF?½nηϊWO5ήζͺΙlkιO–ŠκΆD#•>Ύΰφ5Εj `ψ¬&qώ‰ gΣ­_ΎρΎ„σ­ΝΌ—Ipƒ ~Μύ=ΤV·‡΅Οj¦₯x‘ΪlH)aAΛ7¨Ιΐ§U)Q九'Λ[CY/ο/‹Ε€Β&ƒpΗl(~ΏΔ~” Ο<^uευΔχλ"Ɏ4Αδ9<] >%π¬q*Ε«Ψ$kΒ¨u tž.πΔ_σ΅'Ρqό…yΣ§μτ‰ΡV½I2•₯ζŸmYElЁΉAf Ο©9Ιχ©Ξ ρ?ι ¨εΦ΄F\&«jΰU‹„R²'™·v2H#Ό±0Κ›γbU‘ŽA<XγΟΡ#{σι,vΕ3ςΦό•ύWΠφ­ }oLC"=β†I€€γ5oϋcG•Hϋjc‘ά§υ­)IΕς¦ŒψΉŒz€AͺΊέΑxVέNg ψu?Κ¬2ψz"q5ΉˆtœΗωŸΚ‘’ίJ{ˆ₯·Ύ%S#󌎣5·:°ZΔxŒUž‚œ“ ecœϊτ§€ρέη`S€‹HہzTϊΥΕ™4PΈΉVΏgͺFœy“ό AΟϋ―Ζ} uΘδ6QΧ±ν\v«§Α}₯OgΒΘ³FΘs‚qƒωZ~›ϋ{Γ67ow%½δqωNω'l©ς°u?{8εζdδͺuGV|Ο”ΩΥ¬ΪϋO"Τ•»…Ε³g•‘NzϋŽ+§Π΅XυΪυFΡ*δ―χ[£ΐζΉdΎžΓhΤbΉnbζ<ϋχ_ΖhύŸίX§ΧνPz@'\ζ΅ΛͺΈΛ‘˜γ©«\λYN\ލ­‘xΒΣTN-5B–wDπQ*Cυε*λAΟCzΟΦτ•Χt+Ν.RΜ›Uη›‚ ·ΰΐφjÞ,σ)T³ΉΝx₯­Xx’ VˆΆΏλ²ΗύΦΑϊW_q:‰4,:΅ƒ€\'Š|$Ρj1‘#ΖΦ·‘«"ό²yόj/_Nt—Σ/uξ™/Ω&fξ R+› 6―Mšβ#uΞ†ψΖ6Ρ΄ΟZ‘ςτχς―•Gή΅‘€n?Ω8aψΧO{ik­h³Ϊ\‘%΄π”}Όεgpό0E:X »·–ΦxόΘ]JΌg£) Χ7ΰ;©μRοΓWΟΎοHq»υ’έ€0ΏΏiχXšmd*3Ί°Ο\άeI¦ήγνΪlΏcœŸβ*ǁ)σƒkΝsΊάm‘ψγOΤΕΆ¬«§ά7e•y…ΟΉOΚΊ0UΎaPΥΞΈJγ[ŠŽzT²r*<ΤJϋ+―ά½λ™ρ.5[ϋ/ϋ»“φ»Ώh ή`n_ίΑ§X=Τν„Nΐd±μ w'₯aψzΆ5½E6jͺ‘¨QϊζΊΖδ++Γπύ—KXΞ~y₯sυ21­Lυ―*Χ΅Ž…’H―q7"Ic=VQΌ~FΉωΌ1Ήi΄››-σΡ~1·πΕtlΥ 1Ο›[›A#Υ΅hΊeΛΝmkyεǁ<ΚτωŠ‘ύk_αν°Άπfš£$˜$ŽI$’OβMEβω’ΓώoέXŒυ9ω­ X>—α6Ξ^$Šέύ›#σ4πΥΣm ΊIθkcŽj"LmΟέυ©d!EF―Όct΄™„t)kΪͺθϊ ξ‘Υ­α.ƒΥςΔ‘Iα­-΄ XX;š@•ύd$³Ÿϋιs>4ΊŠήγHΣζoτYο|ωxΞΘβ]ό³»Jμ­o ΊΆI`•^7 GηY%bΪΌI‰¦’;Rš &ΑοŠBr1@ š.=Hε‰&…β‘w#)OBZη,LΆrάιR’σΫ€Π1κρ66±χΊBHmՍ­ ΄ΎΣ΅P0Άσf'ώyIςδύΪM5rΝΗ†΄«»4΄Ό°΅ΊDn!Y9=NO<šΙ„lU‡υOGn«2ω°¬RdcΨbΊΕpq•8Ηz‘y¦œ’ΨσέKZρŸ†μ¦}BίMΥmΰ]ν=»›yUF>b•?λ[–|9ah–β8TΝ‹‡G$³nΉ4Ύ.UΤot} ’VκδΙ8σΖ $oΝΆŠΏ6ž— <ΠVD$‡yΟΆ€ξΝ!Ύ₯吇©δώ5š³½›Ή•Y{IΣώϊ­Α‰qΘ«z²η ^][XYO¨ά6ΨνPΛ#g«ΙΝa|?΄š Ϋ^]Œ]jυ ί™‹sο·`ό*·Δ—>ƒFˆ°mgQŠΛεμŒΑίC]j*ΕͺΡΠΐv+ή~† Ϊ#gωG$ υη­rg³Υ΅ΌŸί|°gψcO•?3“ψΧMβ›—K!e”šρό€Γͺ―W?—σw[1Ηmm§B»H%ΰ"Œό«“6‘̍©Bϊœ†±iφ~Ωm’WE ŠFO˜Hί$šτύ3J:‡e₯Α#ͺΖ‚6²7u?kŽΡlŸUρ}šuŽΡM㎿7έ@Oα^ƒ9ΔαOπOΆxLh9Ά]I©O”ΐΊ–MSΖΦΦ™&-&ΨΞίυΦE £π]ߝuiςŒgΨΧ%ΰε7ZΦ¨rίiΏdFΟ#PƒλΘ5Χ5ίEIEMΔQŠQ@ŠΥ²˜ωΏ­sώ,Τ›LΡ.f³pΓɁι«ωηπœ*σωΧβ)›Pρ\6€ζ+ΎΠΰτσ€\(ό'ρz³δNO‘ͺWf+Ψ%ž— ς”GžδƒΙχΙηρ¬Έό$—ZΥ½«Λk+·Ÿ0ˆnE‰yΛ‘ΰδΰߚߊ5šγ‘l1Έηo5―ΰ„kΘ5 mםBηχd ς(όv“^&^§:“zΥB¦‘βνf“UΣcΥ-Λe4¦>bƒέ ½5Ρθž#΅Εo±]£Θ‡ eύτ?0ό«F Ύ_\φ5•xcLΦόΉ.a+u1]FΫ'ŒŽλ ησΝ}$’΅9δ΅45MJ-+O»½—-c20Ο\`υ5§E/‡ό=έΦ~άΘΧ3ζWlΰύ2α\n§­XλΦ~ΤLΪΥ―˜5žΐ»hP’Dϋ Θδν5ΥΏˆtίι―₯Τr³OΌ8"DωΑ;Τς?*ΡJށ–¬Β{αΣ4νΨνΎΎύΦξgζ’Cτύ+΄ϋ m6ΚKHΚAyqŒtQλξy?rώΆKύNχ[—˜βBΆΟ`?Φ7βp? μs€}3–*»άΞ€Μ?έJš`±Άm·w XŽy\ςΝψ.MJ–ρΫ[AmyqB’4OEJΜkkχZ™·΄Ν‘‚ίςΥφQτ5&»«Ϋx{EΌΥξ~hν“~ήμr χf ­)Ύir4%Λ©ΓψΣP:Η‰lτ8}‹J+{}ά4ΜΏΉκXφδUo ΥΌ±HΉΤ«:Tt¨'·΅3_Έ:άqtψλ+œ‘ψpΏ…jΐ x=kšε/s–RΌΉŠZT’$?gŸ‰νˆ…χ{ρ° c`tΞ:VF¨>Ηs’ςΎXέ$moΐρτ­¨•‘Σ#άzΧJnΠ.θΑΌ…τyŒŠ ΣέΎpF|†=έ?₯ZB]―Α ƒμkwΙݍΤ20yτ5ΘκVχ:2Kin Η;m3Υ°p}€Ι¬Τnτ4RΠ~•»’ζοŒΞΑqΖJΪXiΗ^(΄ΣM•œ6ρg.ΐήΎΏ­Nˆΰ绣oS–kXΣQ»ΡHG¦ρ‘΅‡­I%΄HA¨Λ¬κ¨bΥlεθ$VΆsιέ­r‹žΈ9¬΅Ή¬βWXbwh'§vH‚ǝ£8Ιυ¨D Ÿ,•ΟεS¬Mυ,GΈ5ΊF3ft‘ -I Ϊ…ί#…aχ—ρλVŒ$`{Ρ¬#­ͺΘ2Zέ„‹ž w•Hw‘<ƒ΄Ρ 73JrΠ‰ ™‚ƒ€‡#βΗZΒ’άiϊ”–ΨΫΐΛτΪ Ά ρ©ΪΩ¨«ΠZ>νΚΰ}kHήڍΪΖ-±VD}Έ€}ΣιNΤlhϊΡ3ynK¨ΗήSΘ~ qO–&·ΤL@admκ¨ŠΣ·W–Ϊ~ΉΗΧΦ³ΆΆ*Ι’­…ΤwV±Οέa•>‡Έ>υSWvΈi°I±ξσ ypχ?‰ΰTnΏΩςnΚΩΞ £Ž#u;J‚fY/nGϊEΧ,3ώ?αLTMΈ&ΞG–~A©ΪΗogΠΔmH\t‘jR«’0έ*γ’Gϋ…Jœσ€}k.ј@#όπ“dτΗCωVt[hξ‹Hœ$yϋ«‘ίQ`EΥα *ͺΔ τέΐ«ΰ‘Χς€sΆζήAΖ‘φά*β½νG7‘x’2ΛΐυνUoνbHVα#‘`ǏαθjΐY1€ΐcΤ:•QR Ÿ‘­δŒϊ Hh Η#ΧΦ’%wάƒ€ΰ{š‚ΔHˆέ°Π1²{†£ΤZiBΩ[>Ϋ‰Ζ Ο(ˆŸιBzΨ†Ω#Τ59/TΑnqχ›ψŸϊV U”€¬ΡŽTϊ{ϊŠ}­ͺApΓTv(τγSΆœΧ ­ωr§άoOcκ+Ο©yΙά.UŠppH ηŽ„ΥQ΅-m¦'χyςΣΠΞΓζcτ ’ςξ{;y₯hρqΘ#ώτ€£θjή›¦Ιac’Θ gΗW',O―&₯/gŠ;˜ΧΨ·" ώΟ‘ώ`T³ΉΩOθjΜΆΆ—`¬ΠDΔr¨ρόM]B`‘žΥΝR³UWB!e¨A »œ<(z«E]Š£»T{ cK”G ΐΘ=Η±υ«1Ε> ‘Ϊ»]ΨNΑ"+Η‚ F7?Ξ‚έ/u&™T}žΠμŒu.>fϊƒή­κ mk!OυΔωQ―ϋF [ZΩΑkεdD»wwΞyΟ―4£¦ζ0ZŠθŸtžΤT cτ‘αψνKεJzΣΦ―S«KGϋΘ1ξ*Ά―G ŠΔc€ΚsωΥ₯†αWΆ>΄Ωΰ6rΒO,€}jWdI&΄+)>ΦΉ?ςΟλνοV( ƒoS‘ΐ›czeˆ$ƒl¨6HΨ_­-γ΄:tλHΛ cΈ,@ΗΉωŸ51_šΕΝΖ9MEγ\άFϋ± …ZΌφpΪΎη… ?ή*—υφ«φΆe·ŽΒ¬H}j΄¨HΪΨΗ‘όλkΆz±QQ3ά`ˆcφωE6μΫΩΪI1‰qΞς[°όh’ μlF{V8©ŒŸ_oεPF²κz€Ϊ7[YΎX‘‘$Έΐ_p)$ٜ¬X°±kKAηs;’ςœκ*c5pΖ ςΏcTՈ8=«Vz"QΫ₯A5Ί2ž0s‘ΗJ΄O½!<*’b3Φ%n1Šrΐ‘²zSΟΚυ*ΓΣή΄‚Έ€Gj%!FΠzη΅3ΓGρn₯§τ†β?νθ ΒΚΏ˜Ν8Ν΄„9ωΛ|ͺYΎ‚’Χm籎ΓΔ†#ΏO“Μš!Ξ`l,€ϊœήΨ¨«OΪBQ9¨ΝͺŽG€+)|u„gσvxΏ±5ˆ5H#c₯Η&Λ…v Ψ‡°φιZ–‚9¬G"‘9?Ω# ϋδ•JέΫ5Ό©•*Uγ<ρήΌŠ=ž¨υjÞgA$A^ΗΫΥNΗ<ž;ϋW5αλΧ³ΊmκBdƒ‹v~²E€@χ ~”ΙΐΗΦΎ’ER HωjπtjΨζUŽƒγ–SςΩλ«Ύ1Ωn£P}]0}Θ5_POμ_ˆ7ͺvΫj¨,§=„«ƒ}HΚΦLj΄c­imΒ+ΈΩeΆ˜Ÿυ2©Κ7鏑¬{‹“γ‡ς]B†=FΣb_½ΔL ώ§π5ΛV›…U8Τͺ)Σεg^’sΈ zϊW/βΠ4 gKρZ°@λg©žΖΪF1qΚ‘μMCŒnu’-Ό'gφη Ύv‘q•²·b2A?zRπ―ηV πMΆ žoŠ/nuΙH?$Ί‚0{G £Ψœž•εΜ΄!EAϋΕOλ6ž&Π/τ];SRΐhžΚ"ΡΓ2ΘΖS…Πž΅[OρvΉ«ΩΗweαyJ8™οcPaŽ ηSΘΤJΕήΗ9«#κώ1°Ρvfέ3p=U@Ψ§κάώέJϊuΝyΆ‹£XψΟUρ©¨[¬φνt,ν‰Κ$+΄ν χlšί„=­ώ%šξ³fAωB]UG‘Y2 oXBΖrΞ™Ή8€LxβΉe‹ΖΊx]hϊ’ΧInηκW+ŸΒ’“Ζo¦Ίζ‡©i©Έ?–.!ΏΟxϊZ)Aθ˜r΄G±uˆ—rH7E§Ω%Ίδd $›τ%Βλ ]›52toτ~:ƒΘsŸLTΪ\γT^ξΪl6·w<­*7ά‰NΞOϋͺϊΧEΌV±$P DA΅Tvεβ1žΖ\‘ަέ,gΑ­x²ΐ£Yκˆϊέ6-ώ¦90?#R―΄Xdj_ldτ—6Ϋγπ(ΛV‰Εlɜfiθ:Τ4{iܝμ\z:ό­ψδV°}Ώ7₯pώρ?‡₯Υ5 ;jΙ£šα§ΆS ^X.εηNq]{Ξ±F^V«‚Ωμ*Ήoο!6Œ["o|m­^`•Σνΰ²B{]οωεkZH˜8ξ3Y^ S&6€ω «\IxIμv Ύ:έe!wc8ˆΒΤΕΝ„~”‰ŒαWjχͺUVp©0ΞBγ’ΐ~΄0½Ž:g}WβlͺίΈΠν ο]ηPͺ>‘ΖΊΧ;W¦1ΪΉ_―Ϋ.‘~uή‘!ϊVΨJ •?QV•Ωb–Ϊ*I]cΑv  ςO@=i‘ΡΊ°ΌRςOk—”šώO °κ‘ΰ3ŸϋδcρΛ驊FF…ΎΎ»ρ+ƒ›ΦΩnT·Lͺί\·β+'ŚU₯άπΗ©}bivrΖvJΤΆρΞΥ<ΧjΡΗi Δͺ"HΤ*ŽΘƒ§δ+#ΒΦίΪ—ψŠe>\Ή‚ΙOπB Λ}XŒύ+Ο‘ΝR£μu:‘ŒlΡ&›aβO ΪǝάZ€E‚ΕtSc<‘ ωX“ŸΌ+@x“ϋjμ„ΦΊ«ΈŽHζM―j€ Θ݈ΑωHΰ’+vR‘BΝ!Β―Μ}€δΧ›]έ6©ιώ3•e}·ΐΟ“ u;zs^³«ΚωNwIN7‰θφΦ–φpΩΫ&Θa]ˆ ηκ}ΟSυ―7ψ©KΔ~‡Fӊί_£ΝaˆϋŽ_Σ‘^‡¨j6ϊn—s¨έ0X-Q€η²ŒŸΟ·ΦΌ;IΤ…ΠΈΉΤfXouIκUγΚ žΑ6€*¨Σ½MLgRΡεfξΑ(z΅΅ΩBη©4Ν=ά…cΙ­_1Bœ`Β΅¨ί0γc=μ₯ΦΞG$IσH8ΖΑλυ¬Ϋm1m―%Σn“qˆo†F<Ό]Ύ€t­› ΨwMpχ δ*3’B―¨΅ΦŠKt½·4φ‡ΜQžJώ"Έκ§-Š’²Ί=Ί—ΜBOπΘF?#YvΊ)Χ/^ψΘeƒtΎa,τw?^ƒΪ€Τ΅xοRίO³ŸζΊ]HΏςΚβ'Πφ­ˆ5}*†%Έ…#Q|³€°‹’WdAw3αA†$ΗM…Τ:kxNεyK•ϊ—|Η5― šxσδXΘ§¦±`άŸΜ+nfΡ»Hηυ_κQi―(›ΜxJΜΏ>HΪsό³P―†υK•ΕsiεΊ‡FΔΰς3] Υl•Ά‹Ž;xϊϋU mBίG˜ΐr,™‰Œυς‰κ§Ψφτ¨UZ0ΊNΖPπ~Έά}½ ŸασεRΒͺχ­Τ™·€ρ6Ÿ λΜ3ŒTΓΕzQλ$£Ω”ΦρWάvLζ›ΑZŽ6™­@<`3‘HΎΤΡ‰νπ½?xβΊ|S₯…yϊ*œΤcΕφY?θΧCtγCŒ@Ί0‡ƒυ~[ƒώ»’?Zzψ7P8jnrP9aτ5¬ή.²~ΰγΉ#Φ“ώλΫά―ΤgϊΤrΒϋ IxFι7[5¬Ž„ν“v Rx©Οοϊˆ-‡°˜ρυ­Y_cκ₯YOΨ$=…Ϊ°ΰγ ϊζ΅\‚ΠΔΤ?Š+QmΣΏαΏ#΄Ύ›5°|oeζΖδ/`Hγυ‘|ufΗώAχ_ψιώ΅-E™·$b/‚u5fΒΗΙΞ|ΣΕYO_ž ‰ΗγZRxζΧqXl.]Η\ΰφλPΒw?ς ŸυΥkOtwFuο„υqΘ‘H˜HΈ|τκ?Uνό=ͺ^F$cΨyΏO―½nΗγλw%F•pz‚λΗλT’ρ”6JΗN™mςπLlzώτ¨χn59"Ηοξa ,ˆΈ`Γζ,£½TΒ—»Ϊ3c s§ήe|}+€_[’3¦]Χ‚§ϊΤž4΄Ήΐ·ΣξΎΡέc€؜τφ¨j"s‘œžΦb9ξ;ŒώuBmU†ρŠΫό³¨RΗ :Φδ>9‡ζιΗzύεFמΤΣγH$˜y@έDaτ<ŒΔπή΄λΜ§Ή”.<5©‹Y y[”nn„sιZγΗ0 ˆτΑξ `ŠCγXŸώaδ}\RqWREπΖ©"‰Y:8 b4αWvΰ°ƒν-Z‡ΖpiγlΆ/φP~R&/cκ?•__iξ,₯θp§ϊΧE’ΥΘφ’G)}₯j:Zά]Ν`…`rόmή Υόƒ4πC$σ“§’ύ^ԍw{­₯Ίδ˜Λ šBFβ0 ŸΜբ𦦼F¬Έι‰˜ΥΆρVšγj2Ωμ†εDNͺΩ(ΓξœχΝh·Ž Œα4ι²;³-]:t₯Kφ’_dΑ„SW™#ϋΖW~T‘xZς’ζk‡–xΞS{ τΟzέ„ώߟψ—ΆαΨΈΰΡ ΤR©iCκ(D•)ίΰ9kxJ“±BojmU–Hn|Θΰη‚S±ΟZΡ„‡Oώ»gΣδω˜H c€F*₯εύ–£uΕk2Ί0 °ٜή βΉ'NΗlά\n]²π†§Ε£ΤIΙόλ`|@ΆŒ—I+2ύτά_ρˆΙ›Iφ’»Ÿ³±ζσMΏ€η[ΒϊŒlΩ%Š0αΩLΉSŽΔf¦MW6›sΤ«œ:Ϋ„ϊΞ\ƒ₯όή„ŒUψKa±œΚ–mœς³εŸcθJε’RfŠR·ΐT—ΒW2―Ι+)ΞB±,?¬|#©)(Ά¨πe<{ΧDϋιΖ”ψξΝίrιςξ2GqI+ν'ό†πώ©j‰o·+yή₯ Ώ;«0½>΅¦|pΏi=±Π€ΰΥ―ψNmΙ)o§ΚΟώΩ κy¬εN7½‡Ν7φjΣFšξυy)#!'λW£πί_/Π‡Ζ*aβtΣοε™ττX.H,¨Ωςδιœϊ­[+cϋ>aRΏγ]Tω₯5φLω΄}F ›E—lΌ!2Ψ;ˆξ{ΥΑ’kxΆDz\β›}γ(ʐXLθΐδιΟηZγΫbJΓ¦\HΓƒ’Sξj)²“—Bό#:«˜ΒΎΑσύ)ΓλΙtϊΕ_„δ &M$ͺϋMœ}x§Gγ{g=”¨=CΦ΅ŒiΨ§9υ3?°΅•ςSŽϋͺUπώ §-*/·₯Nž5y₯‡ONp›ŸϋΤλγ;YΞ@Γο.FEfω.R”μbέψNεε70ΜlύGΠϊŠΛžΪεlν$–uΌŒΌg9Πφ³ώΫ`x΄“Ž£"³5]JJH.b³ς.m€ ±ΞΣθΐuΉη |Χ!Ϊχ4‰©\a§»―όσ‹¨ϊ·zpπΩΖLΟψ±4–ž/ŽPR[ •ž>%E*ΫO―^AνVŠμUI’Ϊζ5ILνϊσ]*6ηV2ξtΩ„Ώb·šA#Œ±.HEξkNΧHϋ4 *F0 κ}IͺΦ:Ε‘u, K;n9 v Ίύΐά#X>TτCΡ‡Ψ'Δ*4Ω‹dw«?ΫφνύvTΡλ’Œ©΅OJς4OΫk:ϊΔΊ¦°ΫTΚF-ϋˆ£·ϋMύγ^¦«„yΗ2Š~ω―.―β=MOφ>‚–P0ω.uigάBΉc"²to _>©©MβNKΗ’q$–Φκ`·~ω”r‰Εznά{ϊV%ΖbΥ%γtjόϋq^O†η&w•š2Ό<©₯jΎQ-šά r½= +ωWR„υοό«’ρQώΞ½°ρ a–+W]ζήB“ώλ`ΧGί $ƒΙ­9sĜBPΞ[S₯xηIΤGκq:ΰφ 4,}ώςΥίικ>k›0Eύ‘[ΛR:‰c!±ψΛzOΨ>―α‹Έ`Κέ’ νΨrVXΨ:‘ψŒ~5―’κqλ:5ž§. IΐΒΔ|Γπ ŠζΔSΥH”“Ψ©g­Αsαψ΅xFθe…fDηp_ϊO΅k[cζ’ΣΚΖIŸΥQτcx~!aw©ψ}†Βονκzy3 ιω6α]%zδV{QΨR ιY>!`4 DωβqώφFίΦ΄›ΜΘ(x¬_6l•Xό―ynŽ}‹sS8έEΨ؁ hƒΏb—?νcζΟγJ~΅4£χ¬{ŒΤ/Ε;DΔξΖpi’-qƒƒAΞαυ€›”"΄Š*L—ώY ’†ϋ£ιEhˆ-*ϋω`C·βΚƊ$LvžG¦kTπ‡‡οšm6έω±-Ηό pks$ΆjŽ―rΆϊ]Δp±Ζd'ιΝsΞ£‹²:©ΪΪ”ώC>m™Έž}›Ξ[krO~•ΨψW=ΰ[F²πNŽΈv΅GaθX—Ω« >•ι5u©Θώ-ΏΙΙ?/jŽξζ->βξV 14ŽsΖΟ5&OBk“ρτΝiαY፼σCγο*Ό‹Έ{δV§gtZzXΓπΜ`"Έ–!ΉgΈ˜*γg˜Ε€>Ψ"Ίd`@Α¬Λ-FΖώ0l!•qŒ#db:ƒV "—ΥuE =΅±hσήBB§ώ<Β­ΌFAΉNΧΟΉΏKύ₯7‡4‡;ZοUVž3ύΛeσXbBώu3³@Υ₯soΓ::xΓ:~’NZή%G>―χœώ,Z«ψ’ψιϊΤΙΜ›<ΈΗ«±:ή+…υλΝr>)fΊΥτλεc w(τa3ψ“ωTΥ69sJη5΄ZV‘ε:†hΤ Ξk*Λ@΅»ρ™d!šO:b½6'Μr=Ϋ΅΅[”—TŽέN,GϋGkOΐVΖ}gUΎ+…-“ΨΉΏ2Gε^U8ΚX#v½œΥΥ₯m¬yΘλΟS\…γŽ©«k­–Yζϋ-Ώ΄|Ώψσ Χρ&¨ϊw‡5[‹sϋτ_*,v•Ψ"ώ95>₯Η₯i––1 %ΌkΗ·_Μδώ5θ%y\η½’^ŒξHχ©Η4Π)Υ|‘qsH*j^MA<Λ2Jό,j\ύbή¦‡0Ην~#½Ίκ°b>ψΒ‚ί™?₯W•"΅iε”…‰ vsό*9'ιŠ‹FdΗpσ’bΧ ŸWbyό1UΌDJ‡IFΩ&«p–€ƒΘF!δ?χšγ«Rv4Z+š> ³š?6‘:²άjŽuυPόF§ιSψΧIς9©ΑFΠ8v‡εΕ>(°k΅ΖΖj]ΙΙΰW= Ώ\έ°Μv‹φXή+σŸδ+rw™τζΉn$† g+yy$#ωb¬Η$ϋγSVIFμϊή'Ώ»Τμom¬&Ε’2Ε=Ζqœ°WΧΣ5θzuš[[EIεΗUξ€8ΑMm—ϊ^‹ μŠϊ"|η?ˆzέ6r±œˆ"φUου5₯\C€θwΐ(˜Ό`{šσ₯‰Άˆλ₯JHαΦ-%'MpΙ•’U“r©Οϋf•€πτ4ZΆ­~ι,Ψφ;—₯wZF”š^›,rΰeΫ?yΟ$ŸΖ΅QSnΥzΧ4ρROCyαμy%Ξ‰₯ων*_ ’BLσBΫJg‘ΐ¨5|Ω€#ά7>˜­ΫοιšN¦ϊL2¬‘ΚΑpr@Ηψτη°¬².™ίNΙF#?f'€ύ“ΨφΝtΖ§6ζIτ%ώΤqΧμΜκ)Ώlќπ·ŸAV³]ΖΈMQιΈς>΅Y5„ϋKD/cI:ψiΚS‘›Hθ`Υ~†3JΝ€²ν1j₯} ˆ«k}hΈΪvΩοΘΝ5΅«Hξ|ΆΤανŽ)8‘ΘPtΣ&Ž(ξP„Δά}x¨cΊδQζύ 8`π*θSY±kpύ2b^kq­,:~ ‹ΌΎ<΄aΤtδτβŠ{ΨNΓKθθ›ΔŒ€ξβ«›έ-œσtΐχH[ΚF,dq5ΞΆ·3β›/ϋ«ΠTŸΪΆ°^}˜jͺ8fh>•€£t- λKmυΉˆβœ.4Μ-οίά%jΆ£ϋή!…G‘ΩΗιY2jίfΉφڊ˜$8Y$PB7 ϊφ¨tμ5kΨ•ntž†;δχ17^)ΒM?wW-ΤeNi‚ι_›\+zΐ ­’悔 ρΚ ]ΚΞˆΫ‡±Ηiμ7]Kr B»g κ#c²Œφ…Ύι„ΫΆ°T?(Η^kwΘ”y—ž%Ί$β”~€VχPM―}žΟS9Xχ §Αp@ω#­k΄e.Vυ/G.–±XnU¦boΜ‘CO₯uύώGqqϊU˜,τωpn5ϋ©uΛό €λm½θ΄ΆΤΤΆvω–‡ύ£άΤΨvV*ΞφM²H„απL-‚cΕ]Ω΄9a62CΐρZς FΩ|Grξ?» @>ŠcXZιν¨^Gq«]†FFL™[ΏOZwMΪδΈ«‹½€Κƚ’Δ„/τΞ*Β‹%@±€¨£’ωl?>9«_fόώ ”άΛΝDdE”„ΧξRτ₯(μΡJζ WĊ³‡_ϊfy‡ŠN`s Ψ#¨Ψx«ΣJŠ… ρΜ’€‘Œϊ*h–ΞφΞ ¦Φ‘±ΛΖξΕ8ά‰$e—ΘΙ s…9J#„»oq­IϋnιυΏ4ƒ…/Κ©ώU%€ΆώknΤ ΉΧ―½[ˆ’“3όΝ΅ms·M}©jfuΪ Β$=Έ}κυH‡ΛΝfC –°,+β„γ-δχ&£w΅= όuʏΆΎΧ§C ‘5ψΒ ΟbGkye¨$·7Z°‡iBψGf#ή°jηG6†BΕjy tG΄gό*q Εw‘ίek‹ν.>ž qΫ,wš\Θe^XρΓd(Ϊ}σG(ΉŒ‰!±»΄{g pW,‡‚zψΦ5”lπ'œ³—CεΛεΖO#ΜΧQ>±₯’2Ε―Ι9σΜ)τδsτͺ:ΨdσSΤεIΜ„Όnΰ,dύόιΒJΑρώΝiŒk±υ‰³ό©RήΝNJέc·Θxύ+pΟ F>OL1ό(δΤ+¨hβ~5αλ)ΖΥ>όSž₯$Μ+«9JE&;ΨΗΎ΄²Ί’σΔ«χXFxφ>’ͺ€ΚΫdŽρ$_Ό­όϊWYφ 8Υmλ‘‚΅Ε֘ς·0eθΛΡ}Š»)-Μ%ŠΘŽVΰЈΟψT«oa*2lΊe<ρυ­˜0%΅I·‘ωΥ±ςϋρόιe}9~MRPΓϋ€ΦvΤ9¬Ž^a@ΡΘ.’b‡ ω~56Ϋ^›.Œ…i۝6kΛ;Rž#Ή\dŽF1œβ—ώ%~uK’ƒϋğϊΪ(ΞMkonέ#ΊΖFHŒŒ~uyΙEΣ)όκδΧ:?– ƒ©R9ρυΝZ†]!ϊk±©Cόκg—NHΚxμf‘ηa$Ζp>΅F+[0v5Τα‡@λϊWHχΊ4³ψ‘ŸεXך₯€Ν$vϊΜιo! σ0P=ΐΟγΪ”cΚ\Ϊ‘R;o.ό¨ήε­a`emΓ,γψWŠΦί¦Bv5­δaN6…Θ\U‹;νdŠΫU³DQԜcάΤvχΊT­<“kφQ†~`H3ψΤEΚ€΅ΨQŠHD}6Aϋ³7Π)ύk6ν-Τ‹HŒ Ο&Α“‚©Œ΅jωš1;’ρ(σ:(MΈό«.ΚM»Υ.&ΊΤvyCΘ‚FΪΐχΨ}Oφ„œI2κ΅’(V†ι6£1œψTS%›όΚ·!ΧξΆΡϊϊΥ‘{απyρLπͺδώUXίiO.ΥՌqϊ°ΦQ€ΒE-ω|»…uκsŸZ±Ϊ4˜Q9Αδ' I₯Ήuπ\}άωZΦΡƟύ“ίΪ1Ιv'£wΘ¬%‡΄―qΖΕKΫ k…ΒσAsά‘”²ή£ωU%–ΦθVžνo–‚Tw=9±«ΧZ²M#[ι—Π•_–KΆΒΕ¨ή?₯:AcjΦou e—kΘ_,ϋΊ–5Ω»)Fφ'Ž%r\qΐΙ2ΫؐGοφώSΖU~Y"\|Μ*hό¦β;Λp{‚ψ"₯EξotWK; ―ΈΎϊS₯Σ-Οομ―gŽeϋ₯ΫrύwSR’ν$yΦΨΟw©Π,l άΪzo4$6•ŠΦ7iuΎσάDy±7'ύΰ{ƒΨΣξ€1¬’K7Ac$}}*Ά­m$ι9†ς&Δr‡ΐPy ϊ©₯‘jz|Αl%₯Ϊ IlψάO¨?Ζ¨«φmjŒHσZζpΣ|ΖYnnyΟ‘'Τχ©Ε„  u·m£hw·†”Σk Ί2 hλ-Œ'ΡmΘ&Ϊψΐǝ½PŸqU­„ΧZˆ‚αF-H3wΘωGυ­ΛΉγμeΑΫ'»gψΥ=2Εν­Wν ™δc,Μ?ΎέΠ`V‘ΉG}„ρ™ύ­αλ›{mΛp|,8)"Κ5ΗγZžΥΣSΣνοЍ·–βLvΉ0Ύ²)πΗS΄kŒ³iτ–ΦtΛea%½Ι–Ψ "L”’;ΊΈσ €'' ΨμΌƒxΠ½–“†|Œ‰'#€}vΤΦ^™-½φΏβOς¦Pϋ–놑U8 ΞpāŽυ³gα«E΄‰gΕcΜ#{μrά–aŸ˜“O»H΄­VΓT8‘‘m§TPͺ!rAθpkžŒ”}Δ]x7¬NΕΌ@g!@Ικ~΅™¬ΖR[{‘Ό·φ§λZPεF8*pG₯2ςsk$Gψ”γλΪ½›icΛ§hTΉ›si₯‘Νe8ύά±΄OμŒύzΔπό²θpΓrsulΝi0oοΖq“υ5Ή`|Θΐc‚ΚϊΧ8ͺtΏ^[ΆF»ˆv  ‰5,¬k‰\ΠΉΣG!ΑΑδsJΖπdƒO»Φt,ν[KŸ>=‘˜ϊ6αZ€νpGΤwlά€>?°–ωgμ.Ψ)Ϊ―χγώχΊλΒρΊ<μ%I)Ω—΅Τ:w‹΄}ExŠδ69νσ|Ρ~5ΈH';xͺ(΅{ έͺ©€^tmŽUΠ‡SυΘ«mΨΤ, ΊQΔΡ¬ΏMΓ5ΐ£wcΥR±!ŸέρX(oψίIή9#M΅Π ­`x πφ°£²qωŠs‘¬$tΙcUέ*ΒΔ„υ(€ώU τ¨°\¬έi―ώ₯Ύ”ώ†£›ξ₯R4“$_υKώνίωfŸξŠ*Σ"Δ«&G#λšqqŠηδπΥΥΎdΣu»Ψξ—”72y±±ώλΨΦm–«β{«_7~•%9D€«Ž œ{׈ιK’7RŠάλ]†sœW3γI\x~ξσζLRΩqλ#¨ώ΄Ζρ-ύ™aͺθ“FŠyšΙ…Βr8qω†=RΓĚφ‹ •ΚMΈkΉ1ό"$ΘAάW­b£ΟQ#}99‘ιΔ–ρ$(0±¨@=ŒJF§7 Žβ‘2W€Ϊ±Κ•ΨμdW'γqφGΓZbΎ>ΥͺΖμ?Ω‰L„ώ‚Ίτ βΈνAN£ρ qώ―G°Ιφ–γύOηYԟ,.iήBέψsDΏrχVoξψΨύΌ0k"Γ—6 K₯kΪ„+ζ( #‰•8ηpɍu’ž•ZXΓ£!<0ΕynΊ“Φ­ΘΚ0x¦ΑWΜ:n€ŠA Οη‘PAβXτ©e:ž™ͺZ9ί!ˆJ‹žΜ„*ι Om«•bΈr?‡±όM2[D–]ͺ{{ϊύkZ’§ΉQL§oγ ά`.³j­ύΩ R>Ή­›{ΛkΕFžAγχd7_‘ͺ––Φ—ΦΘ.­’wQ±·Ζ Θ㜎jί‚|=9-ύ•oΩα&Аk₯ΠζWŒ‰ΠΣ Xα vŒδτΑγτ«o"D¬Μκ‘Y³ΐΛΙαk«vi,ΨυJ•-τ«]Ο‡h„­žΕŽγŸΞ’¬΅4bκ‚?νΜυ»Σ]O‚β[OΙxΚA’Y#q,@ϊτΖΛI—W[²CJΗv0:*τOΩ5¦₯Ap™@νcχ dσκάυ +RœδŽŠ―άε3|A=΁£π \}ͺ\v5ί“υb+©‰v’‚ϊΧ1 ώΠψͺΚFE•΄vΙμYC5uiχ~•ΫMθa/„v(Ο4HΖ΄d$Fδδ‘\ŠJθ³Ϋ‘Δ—,–ΛνΉ†Oεšθ™²ΈΕr:μŸhΧ­-Gέ·‰_#‘#jS\υ]•ΝcΨͺΡ­Ό ˆ1半ΎΓŒT:R6£βυ™I6ϊD- ŸοNισ~KΗγKp^οP‡N…Š3aεqΦ8Ğ\πšΒ4™ε…v£]ΜWœŸΌG>½+“ >fhtρόΜHιιSΖέjΌ')SςΧrfv±™β ί°iSŽ]cΒW$™¬τ΄6Z·2D 9lυύMKͺbχΔu‡TŒ›ΙG²««λwίc±ΌΌκbRTzΎ@σ5Λ‹Ό’’©χΒπ ν~χS+˜­ΐ³„ϋγ.>? νˆΐλXή›KΡ­-[&TŒwrIoΤΦ•υάzu€ΧRΜ­ŸAΞ+…5JšHη¨ω¦`Foρ-υΑŠΝE€dx€―AψT~*Υ?απŽ«©!İ۟'ώΊ1 Ÿ« —Γφ’[hΆβγώ>ei½wΉ,sοΘ…q―ΖΝ Fά›©½6Dφ,GεXΗޝe+@ΰΦΑm΄ΨνPΆ‘…|τ$ ±>ΔδΧaα &ήΝdΏž68>ZΘrb‹²ϋg―δ+ΫO‹PΥ!·PZ?υ³胱ϊœ μή32Œb™*Hα}ˆοšθΔΤΌU4sαιΪ^Ρ›QΘυω}}>΅Λψšσ~§cf*$Ώj”‘»W*1ί'Vε…ί›kƒςΝ $gͺŸcΪ©ψNΥo5[νvUά₯ώΛk“± ΪΜ>§<ϊ δ‚ΏΎuΝςκŽYίZΡΜmtyΥκΞφ8K€σZθΡA)+yΞr±―9?SŽkGϋ*ζ;§ηhŽAΨΟ’‡±γšθtHχ7z©Sϋηςaf$ΘύNMh_Y­ό€ρΆθdοτͺ”ΫΨι₯GέΤσλέ QΡ#Ϊ’[ΛaœeΨζί'Η+ό©ΓΑϊ¬αeστπzƒΉˆ§5έiχbϊŠTΩ4m²hΫψO|ϊƒΪ«GΡcώAΞΨByς ?έ=½+8b€ύΦ δ›ΒšΊπiqΈ—›'ƒ΅qέ.·LΗώ;^‰·”cκzU)S7 n§;ξΫθko¬YjS‰ΑCΰ[λ˜Α–ώΪΟ!#V`έ7wΟΤτυ¬μ"C#B¨¨₯˜δα@¨4ύ6)R[»‹uίq¨Γ;"t~=iΊΙjOΥξr­ΰέ}"ΒΨΪ2ΡgΟ—5“kα½oν·|vmΑχr6Ζ„œW’MbshͺsΤ1\έΞ—₯εΖ ΒgΣZO)šίΊ9ΑϋΉΟΣ­?­Bκδύ]₯‘’|­DŸΊ·ƒžX™rXϊ“ŠΙ—ΓzΕƒ²ΛdώB‘σ«=ύ«Ίm"Εΐe’`€nVΐχζ±­4ΈυΛβA‘τΈdΒωΟφ—Άz ©Χ)Β°―žζ,^Υο6\UH~τ1ΘΨ-θΔJžOλε–E²O1z0`Cν[:mšOxmAΆeνp8*­&–’ή]₯£ΒΡΙΥδ1PΎΈ7Z™θΌ=•ΜΔπ_‰flgΫǎς\?*§βκΊ šj7–ΠL##ΝT|€‡Τc΅vΩ2)-₯}Fι7(ϊŠΗρuΣXhmn|ΖΎΉTQfήXΈg·9’Ž&”ύΤa:iœ₯Š©„β’ˆfwΘ*Χ†Sό5Ϊ›&G ‹p$n†Π=Ο5-Ζ•£AlM₯“‘ –'°χΝ΅;Ψζφ7κqrZΘψ–' *”φΗ‘υNο•1ν•x*{z%Ά‹§E3x}wχώ,{u«-₯ιG^:/¦ά.kυ{«[sΖ±\σ#…9τ<`Σ·Ύ~P8γšτ OI’ΩDz\q»\ΔΎά°κ*ܚ.Ž2hց ϋΕ>οΦ΄\¬ΞXukY3»²Η€˜~T“Δοό+‘ΠŸε]πΣ΄ϋk©$}6ΘTŒ=ώ΅<φΦ0ΔΞώΆTE,Ψaςκ*y‘{h$4Q°όΡ"ΖqΣή–ΰ;Z°`―±5θ6a,AŸΒ“α»ˆηPj6Ά[4Ια)Rά½Μ_κςzγ==ϋSNC~TpΗ-τρΐΰπŒpΤΤ7~u΅ΖΩ•P‚ONzWsαο―5/λ—O9ς ½‹HΎZ€O^kΈ΅Ώπ³5Ξ‹%ΈΆ™₯]OO1δ ΉδŒ3ή4γς£5Q)ΨπΉn%PΆ©Ά9¦ω˜γ`κΝωSη‡|1Αhя(ώοkgn=}s]Ÿ„!Σ-΅½BχΒzάβv?bMi£Šίψηο‚Mvwϊ}δΟΰ]`.2΄Θ€Qψ0"³©QBVδΠN>Υߜρ¨Vx7<;$^κG\Τlδ/ϊŸλ]‰4©5﷝ χϋΎ+›˜£σ$9ΩψϋΧB£ΓθG•ΰ[fΪ~οΪb ώ"œd’Ψ§7ρΔς‘q†Ψ%BČ&y?γZΆŸhΎIΰ[ίχŒΉcw@}=kΉitΛΘ―,lt+(/ξ€Γ#Ϋ(ϋ `fCνύά}γSΫX(’M2Ν‘ˆmQ/ή^9ϊΦs¨“Hω$q»Ό°‘P Q…QΐZή@¨ΰ ”ύ9―@Γ¨ύο‡νΨɍΤώ„ ­w7Vrˆ­ …ΐέ·n#ž•Ί« ώΑ'vd‰$ˆ΄”μ})’fOαlŽ•ΨΩ’ΝkφψdεO\T²Ϋ*!y-,•nf,NΡκxιW E#ͺQLαRYγncb½Ξj)ΈλωWCouw{ŸμΝ.έΰβvςγ?AŒš”ιΊ‘Γ5ž_•Ÿ³nΠ¨θ­cŽ™ž+ΤBv«1*A‘’Xγ½ΫΒ'ΫΣ”ό{WG«Ιy§Ε ·:]ΊGΛΊxHu@N `F{ΣόΘγ„ΘΈ¨έςπ1VκΈΗ”σ+Pj§1—€ΎΆ“Κ–nχB@0ί6[‘ϊύknΣ\I§³€–·yΑ†uΓμz7αZ^Άh4Ψ₯~$Έ&w>…‰?…l^iΆΪΥ™‚ςΞ“ςΎαΊƒτͺŒnŽκuG'v£­₯«(0Y€ΜC!Dώgς­PΈ=ώ„Φ7‡γ–ΓRΥtΛ·gΉ·Ήήd‘·3Δκ<²O|? έΨ œΤ)YΨ·€― π sΧ‘m|o§ΘHς΅ g³|τ'ο?_˜VΖ‘mc™,Ny'Ψ}kšρ w’K­˜ΜRXΙΥ΄-χ€F‹{•'JΦ₯?iIΔΝTP™Ϋψfθ­½φ”μ|Ϋǟ%ωP~‡#ς­-FΘjmΕ―A,eτ'‘όρ\θ‘,όC€j1‘φ{Β,ε=™e‘'ύΰ0}λ―@7ΞάsΪΌ(λiκWV@Ԏ£₯[\H‘—l€ ‹ς°>ωܜƒ\ΆŒMΆ΅ͺY•_eτJOg?κ3ψΧR0W½Ί3ζ‰εΥ‡-C9@ŠVcη8ΕaxΖ3lšv°Ό5…δnμ{Dδ#ησπŽαvΆρΗ5KW°ώΦπεε†pΣΒΡ‚„ŸΊ0)uΈή¨Λ‘ξ΅6x-žKKc—?ς\dmAΨ{Υ_ZΓcα_τXV!c,wH£±V’{’3Ν?ΓϊˆΤ4K[†]²‚H?Ή"όΎEhΝήYKm'ά–6Œηύ+ŠζγΞ£…Kq¦‡#˜ΨgώΓό s^v‹Em>oυΆ3Λhsθ§+ŸΐнΰΛ—ΉπεšΛώΆΝ΄™κ3΄ηί₯PŒ‹j–νς₯Υ΄WŠ;nc~=+Ξ‡»;3Χ“Ό.ΖmΌφsΪ°ΌA"6™©Αœ<°Ύωa[‹Œ θ―©¬ͺ¦4ωΗ–UΙτ5ΥVšqΉ*JΜλ@Δh=•G(ωMLŒΑ`ϊΕ1€Αγ΅q4v'r–9¦Λχ©:γ…E1ځ»IΘq@=(€'9’šD\±ŒœΗςkR‹ϋ7][…ωmοΟ—.z$£[ώ8ˆ°"©κVI¨ιΫ;]pϋΥ[π8―ZΕ£r“אGΏ Τ³Žojz™Œb ΆHΨγ nsŸRp? §¦H{Ϋ‘΅­£-:vD υ'ωhΎΤbΠl$OκΙŸ"Bΐ w%ΞTƒŸΌα^vWN€e'6i7ecΠK¨=AόiŒτ―?Tρ’κM§ιڞ«<\K<Φ²D©μϋN Eζ΅ΣUρ}ΈΜώξ†yϋ¦U‡α"ϊΧΉ}lc±Φ.qΗ WατΛ½sVνΊΏeCλJ"_Γ*Ψ£PρόZ]•ΓjΊ&―¦΄q³+KkζG»Ά] {Υ/λΊ%Ώ†4Λν‹p–Ιζƒ(; ͐O\±\mΤ,i½N™Ή¨dPSΤT‰2Θ»α`@ξi3žΈόkΟ‚vΤαnΑhωωdγρ>Cqw­j9$\κ>ͺ€ ΠMuι°Ό5§Άαύ>ݏΐ)sώΣ|Νϊ“[Á]QχbDΆΉ4)έι&†$C#a\<χhuMbώC„Ž_'>ŠŠ?<Χm9 ŒIΐ“θ3^]mf5KsyrY­dΈ’hνχ€8fυι\΅mk3[–νe{ UΈΘžT36ONΘΏ€Εhθ€ιϊfŸg *‡,άn<œ©5©ΨXΜ,μbΆT’G>E99ϊœVά§Χ­b˜Κ}€ώuΙ:‰UŒcΤ΄― dLλΔ«·ί9i b`pGυGTΌfŸquΘXΆ―aψΧ£ΤΙ3?M>χXΤϊβO³FsΡc?›ωU mΥώ¦“Δ·BIϋ1σŸΗjΞ+Ν;D²΅ς„₯P4»N31fΞzςjž›u׏IsΩlΚ"J0w0Η©Η₯a&₯4™ΌehΨξPyiΐ#ΉΟjΕρ[‰΄Ψl­εΤPχ7oΠΉ%Ζ«>ε„[ΫGΣsεδόΊ Οx]όI§ΐΜ[μΠIrμΗ8fΒ.}ώυvT’^κ3Pis3dr₯€+ŽΔηΥγ)½:ΕMwτHb³„G Ηύτί₯{5νΜ:v›=νΓ†ΩW' EδΧΟΠY_]Ϊ[jν΅u‹ίνXπL‡ξb₯j(ΣΌŒjΝZΜκ΄(c΅7,P)gΪHΐŠΥΉΌ‚Φ!,­·ϋ«Ιf>ƒΤΦ%Ž€|φ°ΒωΫ+•Ζ:d©θήΨ5―φKx Lω{ςAώ••Jš›Ω:Zš«_J†ηl°έΚΛͺ‰6Xΰn―?…z›cŸ¦ZXEΒAŒ{γΉϊœŸΖΉKt7^*Pίκ4ψ·Ή<ώυ׏ΘgσΒ6`ρ€{UTψ”œtD·vρ_Ψ\Y])x%£uέ=OΤuό+%»]6σKœŸν;7ŽOu!vIψ©όλ°S΅·Πς+Χ“ϋ'\³ΧΠ7و[-@ŸωδΔ“κ­Ζ}*§Nρ1”TΛ{T³‚;hƏ ©_aΘ Žp1ךΚΥ/%yΧL²l\ΚΏ;ސ‘ΞIχ=«θΞΤΊ!°Gηκ——±nΪd+γ† 0sλΝiΌ>l-‰•n[ϊΥK{[[EKtŒQ€ ΟΏZ–XναC&|½Ή%·+›•Νe 7Ϊ•ŽƒfdΊΊΫ œ o™ϋ#Ή5[MΎMn6ΌV’0ΜPD€v8οήΌννuOέΙͺͺ#+-iςΠ§―γWKžKΔ.fŽΊιgΎ»m6ήYQsq.γςŸ”΄qLΎŠ+Sao~Tiv‹·Π7―γVμ™-` '%€|rXςIͺϊγο±ϋ@?4RΗ'Ώ +ΤIY έΘ³¨iζγeΔ’Ο—!ύ–Τώ•›φ»Ε‚xό‹¨X™cnqΗ=ΑΟ΄Rβ?,1`8ΞOLΙΥ”,Ρj€ΈΆ9ωFC!?2“ϊŠ˜NΜι…FΧa 1Zˆ§·Z£’ξΪ;‹[‚© 2sψ{Τ’ξξΩmζ¨?z,»"-ΤΎ†₯yύ‘y©Ο°³Κ¨π η|€γύ*m:Ομ6 ΊBKI'¬„叿&°΅ν~ΞOiˆΒTK}κϋγ<ΘT^:‘ΟηN_Vα,4{YήξAς£(‘οΆ{W•ŽΓΤ©%­M)\ΫΌyυ ΧGΣI.3<…rΆΡδΆx,z(όkFh|)Ά_ϋ!dΪ’·-?ί=Α$όί­θΊ\=Ÿ”Œe™ΨΙ<οχ¦rrIώž‚΄ŽΧ£|29ωƒr:wΈΡQ‡!R›nδ\`”Ž΅™Ε±u"όEΊε›ί³›nI Lζu…†©&›o,ƒ@iBΟ(ΧL³‡K6*ΰ“ζpάο'’[Ԛ紻HΰžλF»‰%ΕZ&‘A- }O¨ϋ΅ΠηξκsΛGtLΗj–ξΜXŸ© »‘B6]\‚ο±Ny ΏδΥIτ›X#ib’Kr§ξξ%±—Œ΄έ:Κk ½θΠ³β2ΚAη9¨δ潍§ˆζ«ΫΘμ­‘Q 3lŠϋΏaτξMgψ›D“OπMυύΣ uBRigk‚=+gΒϊsέΈΧ.γ!ΨmΆΟ0Η“Ιi‡?JΔF ΰ=M}QT~.’Ί0τ(ί©Œ· AΌY­2€ˆ€³΄f£ΎΣΕΓ+ΖΒΈIΉνμήͺjε¨Η‰5κc?Qώ5ю8ήi"F₯ݏπ¨λšΚ½>mKζg©Ms¨l‚΄73gνυŽΗ?ν}λ^tŠ0©@Έqΐ…Ci€άΝc/ˆ˜ΎΉΔ‚68ύΐαcηύœ©©’ΊYa) Ή­aVŒ’’FNz™Ϋ—Τ€·κβΘAνΗΚ?Z³8ŠδM€ …”vCΨΣ,œΟs¨K'tΫAPH(j9ΝΘhM"ηkνLΫ“λ] •γc±+ΓRkh‚©rφ?–z ,bώΤΜΏzΪΘνς|ύ@ώuJ)f†ΙνΤ“t’HσΧwcτ^kM"_ D‘Ι₯―qλΙU$ž{f°ΓRwr‘Κ•™±ŽΨιλMdΘ=ͺE`Κ¬§*ySŽΠ»ΙΕu€™²f¦7ΝfΝTWχΝ,―e`ΐΚ>If#δ‡AυojδόGγ΅Co£(Ε¬€ΌδαY‡Wωf·4;ϋGI†[ςβΖ wFώ%opsEKΒ7&uΨΉgk²€ηψ€~I¦άΕφΙ£Σ”²ώςoUŒv?SNžς;(ξfΚF2qΞOaυ4Ίd@βKΤΕΝΫ~ΥΰpŸ€¬)jξDYΈŠ¨ͺͺ‘πŸε89ξάΣR ]#Έϋ>6Δhι—Bz"χ9=o₯djšΞ·β£ξ "΄™‡ϊ/°•Ηήϊt­ΕΡΔ’ϊρ’YaΣ`σm’ήs+‘’ά~Sυ0Λ}¦]]iρΪΛxσΗ‚`SΣynN;Υκ–€F…6Ϋ6a‹ΛBcDάƒxΣιUm―YοZΞΈ`x*‡F5,EΖ¨V}^GŸ»e`MŸ₯tvPAoΕCπ$Ϊ?ϊυΘλk‘€0dŠ$’Ϋ­Τ˜u(ΙΫ16y(γΊcΈΕM₯jσΜ·ž3m}xδ§NsέOc[ ς€FA"³υ*;Β·ΠΘΦχ°«” νu>•I)|G_%–…Άl£›ς§Ko «‡Lγ€{ŒΦ ~ {7Hυ{VΆ*ΐ} |πŽ₯‡+ψΧAΆσB²FκΡ°9ϊΣQΣC6WΡχΫ+YΛΈ%(ŒΓ‚§M68›Δ–bF‘ νΣŒŽΨ­`λRήjϊ»θ62΄BAζέJ¬AŽ<}܎…ˆΗ―hz½ΞršŠŠΏ%₯ʜ£―ecΩΏtBφΤ\Ϊxΐ ŽŠ}€§€=jή”α ΗZ₯b•ΖέB&·h±Δuδ~5Α₯Ό–ΆwF’Iaη˜έG/n ύG…w‰.η(IΑ¬8ΏΡΗ9?σΞ\Ÿ£ωΣ5|Yψ‡CΥ„2gάφ%Ζ~Œ?ZΦρžΪŸ†/¬Τ3@L~‘ΧζSυʊ笹gs³.jdWŽθ²FΖ9AΗ¨#ЎυΘF•=¬Ρα₯u„€F0Μύ3Zz^¨šž…o©gπ¬ΞGbG#λœΦn΅ 2ξϊtΔγkF½|±Έ`}keSέMnL/.<2ώ]Ρitf}°ά±Λ[ €_φ}·zίή¬‘”εN1RIIg:ƒD‘•†AΚτ#ΈO2ψNu‡,Ϊ$6s“fČ+θ{Ռ©υEΣ¬―ΚΝ€ˆ4ΛΒ¨o•E)qYc…£όσPj^bX δR¬¬«ύΑŸηW3’rE†κh£Χσ’‘!ά`β˜Ξ@=λY‡ΒšF>[R§ϋΒWΟσ¦Ώ‡ΜQ‘cͺκwU.%Qψ6kη§JM{¬λN&?ˆG ΆQϋ­JϊΝΖOγŠι ’γ]Sca3Γeξ/cq\~§Œν\~―§jMεΑ¨^ξΆσ΄π…@ώχ_¨ι^‘€΅©Σΰ‘$P:(ώΏZΣ FΠχΒ«iYΨZΨ[$¬1'DΎΎ§ή­(γ­ΒΖ»“9ΡΟxπ1πΌΦρ―q$qdŁ? ©-¬4νBΚ?>ΞE(χ‘+`\ŠŸΔρ™,`b2±IΈώXͺΎ΅xfΝΑωD|ώd η―QΣMTωU36γΑ~žFϋ&™φyσ$Ό*ŸχΛr}…ΒχVΓύ Δ¬_0Ϊ$‘e{ο?uAB€νΗoJŽQς“ιΝpΖ¬§/#.nΗ5φZ ΄«ΰ;Θ― 2*6Φuk0Mί†ξΆŽ A,rζ vωs»sτ¨–/1Δ²gυj„zύkyP₯ρXΡNF ψš›7Y…GV’Ψ0_ &¦΅ρN‰vs©ΪgϋϋHϊƒ‚+h ν‘ψΥK½:ΚόζζΦ Ώλ¬jίΜVΠΌ•˜’CΔ…—)΄ϊΒ–ιn'gΫ·{{ΤΝΰΝ\Ιmo=‹υΝ”Ο€8ύ*€ή– ZΟ[ΤW<ρ }rΉ5Γ‰ΓΦ¨­E$QΌ]x—F± €.εώ‘Η‘ϊ‘]ΙδœRzWšh’κΓΗw3κoφ΄³Σφ™-c'a‘†2rBž•ί&­ku™kp…Oργ„ϊϋΧ~—² ’χ9k©9κ9Δ’"η£ΰΖsώ}j&Ž@§Μ-Ÿο’ΰ1VΦήLI±³ΜΞOΤƒR€1£g`έκΔ±ύkZ’"±Κx¦2πX+mί¬ΒU}εΙ?€ΚΩ8Ζrwθoώ!ιΆΡςΊ}Œ—OώόΈŒ7WY#yy‘β΅£€%&i%u–ΦgŠŽi7eމvŒγΉw_Υm³>oΝΌ3ΖAΘ§ZΨΧn5! ΉI™‹=qΛίΆ+ΚςΎΠ£%·ξό³Rk‹ˆP΅(³cΐξȚνΤ`‰^UTΙϋ  δώf―ψΠω {D–­#ί|‹ŸλG‚bcαΩη?v{‰}3΄~{j_F·:‡‡΄ό¬½Y˜z,Qοώxˆ ΚώωΡΔ‘@θž•(¨ TjSZ§‘,ZiλFh'+І3ΕwkαλΟ,‘,ͺ Œο9 ύMsj±ΩΪ€r(# sΡUx­Μn5k;Eε-ΤέHΞ6 ?©QI5Ÿ»jΜKΛ»‘yΗβq\‰^J(ΡlK§σI} *fΐ‰Xσ}~=k πΤ"KΫϋ·θŒ RO@Oκkk­Φσθ`€fψq―e²ŽήΝΜdΙ#Λ3.D`“ŽμJΞ„/YΝ›T·²²; «λkΓO2ǟΊ­ΤύS\ή«+jΧ–6%(€›Ξuΰ”A»‘ξq[ΦZE•«Q “Ÿ½<Η|‡ρ=? ˍRO^Ϋ{eˆ{δΧ|›QΉΜ‘rBB—a‚[ΏlšΚtϋmQυ!u J†ν°$Ϋ…sΨυ«ϊ•YΩK<‡ ooΓ·ΤΥί ιm‘ΑφΘΑžbΧ:3’p~ƒ²‘9ΆjημμR‚ίTΣυΈ-‘2]XHqσΟϋΗΈύj})ΦλQΤoΑΘ’%?ΑΛϊΥ₯¨›}GΎΎ…‘,Έ?ΕΠ~€U]Ομ:E« {k€^P€‹žͺzηιΧπ*ηTΦ΄«Ϋ‹[«$KiLD\‡r½ΙΟpjΤ^%ρ$jL–š’Πέ΄dω wBž—8κO["M7WΈ΅³\yϊ­Ό¦Θ)?x¨dom€ΩΣtυΣ­Ψ4žlς6ω¦<–cύ+ΞΫZΥίYoZ.Ÿz[1μΝ΅WξKΐxŒgΣ±»βlŒήθ₯»―–ό}yIRRz…—c·(²α³‚:JΒΥάί]˜¬|°’[žyψSρ#?JΗΉρOˆ,m$Ή½΄ΣZή1—–ΞΤZ‘§jσ£ά$ΊD³ά·›7ο•'ξ¦G ¬ͺQ’V[ŽUβYΤtυ²Όkο€¬<έ‡Σ?ΚΜB#ŽΩ>χο$ŸSžsXΣέλσX=c H?\υͺ’WΡα !†{\νCζ1{s•ττ’QΕ{KžkŒ=­ΡΏύ™nΔžY ͺΪ„PΩLVw–k…ΨΉ Χs~$ŠΗΈήΔρΟo£4l₯]L‚ b[ΆΉ>»¦ψvylT <υœ–“b"εU‡sž™τ‘ακRQέ:†…bήϋ6’ž`aΊG,e<ε{ξΟLTώπόΊ«Ϊί’ H€Σ1κΙό<ϊcχ›JΠ’²»KJςK»΅ΞΩηΖΘέ\azυλZZΎšχφϋν›eμ?5»yξ§Τ61ŠΣΩ8’iT³»3ΌΒœƒΗς§£dr:β¬ΌAjd5³ιIž SHw+ ‘κjΫΌS ΦzsΑw š™Q¨Νη8KX,„1ΆO<Œ{ϋVΜήΈI}-Ϋ ΜrmŽzφ3Πφ₯IΌL>όrvcŠeεΖ–“}ΦΙΰL…Xύήύh,eνZ5ogH¬f›<"n^Y Žζcž Ч•ŒŸΔϋΥkxόJ,6GΏΨΙ&(.—Dμ wγ§₯P†]u`moeϋ¦ΫΜ„’JγΔαͺΚ>ιnq6 ΊΉΣυ$ΤlΦ4w9T‘΄τ$އŠΥΌρCΎŸ8»Σ€L!ωγa"gτ?₯sΖο\ φTώνΐΟδj¬šž₯s9°[ A ‘|Πσδ ΰγ©5x_oY‘*tδmKg/Ψΰ½·}·ρ.ΰηψσΙGυό+kLΥαΤ-–E,8’2>hΫΈ5φ­{aaΣϊ Ζ³?βjχΔ>f1ΚKφ†BξΓ“œR₯J­ν …ΡΥίκr,νgf—ŽΨUμƒy½½ͺ[²…s,²6ωfaΛ·ψW5m‰t―1ώΟ¦έ;žGYΆβ>aό«KϋWΔkΑπΔ€ξέ!SΓΥO@•Ijο§IςΆm‰θε‘εYz°ς5½6υIΞm$'ϋ23}hkΟΜέΤKt£ωV$—Ίφ‘‡yb°ωΣ6ΝΈΖ©ση8η₯W±©Λο•ΝM­Mϋ›{{τΫs(ΙΟΦ²΄Ο Ω_xΙΆΆΪΧά“ž_ψcχι“W ϋEm3O0­RΟΐ_r+πζ˜t­)#”ƒpμežOYδηΧra’Ϋ–Α›‘UGέΗ_jεώ%6ί^“χQ’fφEΝt³έCknΣM*€k՘π rž8y―|«N-έ-Δ9S)Αps·+ΤRΤr^ι§m#€λόQŏ–¨jνq©‰4«M‘I tνΡW¨κHηΪ²ζžoκ3]&:Lα#3Ι΅l»]§Χ΅t61E ΄kωX—ίžXžy¨’΅C6y¦£¬x©5Y}gΙhNJc1…8ΗJλt {ΝGNϋv³n’@νΉ2TOήaάwjšUΎ³―ZΩH2±'tέΒuT>»ς©!ΫΒνιΗ§΅EzΆ²Dr&Ξ@»[ίΛ¦ΫΞ°)Κͺ‘υ=+v8γ†HΥQWœΥ;KUMk[΅]ΏλՊ£\Z²Π›A„baά2™<~ΚΊcu ˜ΦΦΟ?ˆ5ˆO6χP?+ΈΖ»³ό« ΆΈŽξ6†EΪΛςΙƒ%sλΨƒYšmŽςvRΎmδ§8τ;₯hIM"Ί2€ιχXsψάiYKVe€ώœ.KιΨRNM«g‘=ΣΣ‘ρF£#§φM”₯.g@^Uςb#ο}OAW΅­bΛNε7²€Ξ₯±ΓΗ½qϊFΫhή'½·’βFί+o GχPdςp+’δW±QΎΖ—‡ό’έΪοHκ>Q?+ώχ|Φ|ΊΎ‡ͺήC€^Iε–M’6δcŽC{œ ΅2DΓνΰ,ΛχeFΑΗdU[&ŽKΩέ€E(ψb͞p;χ­#WΪFΦ2§FΜ΅₯N5¬έΖRkn>Μόνl}σΨη<ΧΊsΗ'?»1'°ι\ξ©ͺi‰$o‘wΡέ°ωΏΰ-κ§Eβ JΒT„c"H,§¨τ5Η(J2Π|–‘Υω’:π8[|ŸhΗ8ͺΡkΪl6PI>‘oθԝΞ*5ρG‡χΘZԟfΟς₯]$jάKδΩΛ1θˆX}GJ―c]*Ϊ6θ`]Ω9'>½k#[ρvƒogεM©G;.£n+‘œ.2j”&ΎΥδK ΕγΒ’—Z†!@£ΈSΛ~8¬κӜ–…ΒΊˆžTίυWΧ΄+‹X­2Ν₯έ»,Ά?Υ0ΞΧ%x=q¨iπ܏΄Ο©GΆϊςψ]κΈ•³ΉΒ21ŽšΓD–)σU:ύκglŒŠρßξΰ~Ԛŀ±°Ώ†ΒσχK™AŒ ιžN κ:Φκ/’ςzŠ<ΌόΕY²6Ά3ΐη§Φ―G"Œ\ΊψΓK₯’ι# i``Η\ŒΥΨ|[₯1ΒΛ!ΆOώΚιΈλcu#%‘ΈΜΑ½ͺMϋpIΐ'±Σ]΅#r­Λhό)dΥΦh-Ψ=T˜ϋ汝7$sJv&Ή­δέ’m¦;H<„nΩΑ¬«έ.ίK·’ςΚy¬d9H?Υ»v3Α&¬_ψžΪH$²ŠΒώk†]­[ΆPϋ“ΐφ¬©΅‹ω―!‘τ³k ά‘™£.όΓ<ΨWŸJ–"ά“zš~΄ΫΙαΥβTΤgc<“©Κɞ0;Œ+£Υd±Τ,Ϊ Ι29R;φό}λ‰ΌΧδeώΙΤhu‡$gθyΝXoάΊωiαν@ŽΫφ!\šφaR€£©§ξblZίK’Κ-o€±,+‰>τG YqθkpΰςΕO―κR[:ΙαΛΆˆŒ6ι’ CΝx‹RUmntI Άΰ±΄£Ψ<~†°,|Aseαψu6θΙϊ<…e€^ξkK@-m§_κ7ΚρΙ,Ν3"7ϊ±€ϋœb½ ΤRHσ!JQlκΥyΰφνΪΈ‹Ά>,Φ¬ΨΙ¨F§°q}.άEΈΉ`nhακ°£ΰΐΫΏ±΅θMΧτmN5ŽζΒ_χdΑR~Œ?Zζ¨Τ’n’βΖG›}SU°9 B]F=›ƒϊΦ™$Μ8d`€γqΕXΧβϋ=ή“©€UώΝ1?ά“Ž~Š―2ε’ύά€ς§~΅Ύ’qΤΚ¬nΜlΰ²Φ"RdRs’Ρπ²ΕN ο†ΧΤtι#pCnE~ΕY2?< βg‡ν‘\ZOΕ‘J:žF`Υ κ\x7K‘Ώγκΐ\Θx[fΰη^~oE9B¬N¬ G(Μμδ·vΟ ¨>u(~‡Š­αK₯‹ΓP΅Τ‘ λyϊ)BG>ψ­Mΰ‘" νXVvρΓγ NΖDΛm—ρ#T[Žη#>Ω¬°Sχ¬V.>νΝΘa“W"YΥβ°1Δά4ίν7’ϊ Ν…RΟΔϊͺͺ’:Ηu…€­υΡ«λ\ή·ώ‰β}"λ€s‡±r{n—?ˆ―J¬n™εα§­‰|[kφΏ _ͺηΜXL±žα†τ©΄Ϋ±yaτš$—ιΈUΣΆk` c =ΊΧ3αye‹G:`8šΞymK0ϋͺ§*OΰENϋΦ6Δ€γrοˆmχ‡΅xψ™a2ǎͺΚC)όΕmι7λ¨iφ·Γš—ώϊŸΧ5RέR!°giϋŏ-žΉͺ~ bšZ· k4ΦΔΑ\γτ"·― κsa&Ά3Ό-Ω¬υ="@1a,qƒΩX‡OΡͺώΊΎfs8;zύEU‰ΎΛγνb€·6–χkυ#!Z·‘ ‰Vΰ>ΥȟFw=ΫΜ³Ά>°‘ϊqT5x­§nβΊu΄[’χόj)uU±΄Ά³Hδžό©Hν£1Ζ~bzχ4[h²έά₯Φ±*\Ί«·QϋˆI>ŸΔyκk^m,sϋ&έ̏ 5ΕΦ“avωxΪdΫ$qΤη½ijg~p˜Α œwͺΎt˜ΰlkrΪΗς5~ύ‘†Νž\mϋΌ^ΥΥJΞ%ΥrM¬ΩΆέŸωgžžΤT6ΡΙ²$Γ…ROaοEsugZ41šˆ°νέ³QšωIMΨν‰JνGœΌ|@9ιθsVΌ%F ™<ς4cΡ7?•exŽε¬τ[Ήγ\Š/χΩ‚η]ŽaŠΚ==G—5š,RDέTΧά Χ^Ύ[ŽΌ“ŠF‰9\STΣ€ηšBvž™ΛœΕ-MΠΫ•g>΅‡ΰy£oιnŽςyΑιΙλVΉͺ—πΔλ"μU,ΚΌ{‘^Uv§SΪ;£ιΩΪ…’Λ8U[댟Ԛļίwρ4ώ=8±Οc&Ρό…t K"*(?R:W7’ξΉρ?ˆωΒΟͺŸdŒd~f½&ξωNhξu y4¦š‡ε§/#5¨ Œ k‘³Šq5Ι©c<ϋ_`Φ/δ•_`uBκΨΪŒgσ5n-nžϊdG@ηvΤΗΏ­tΪ¦ΩΌO}"Η=ΙAΕrρ[}‰-#}Ρηϋ€‘^utγy#ͺ*θaΣ,γ΅άΡΪ₯ةہΧW£ψbΝ¬΅.›G G3υyΖCZβ#(Ζ9yo5"εΖͺo|=ΆcΊΈajΘOΝΌλVgΆŠm_HQvΓΎyCΪ8—pΟΥ±TcΆΫρήΚ¬ΈpŸ1ϋΔ‘ωΏLΡ‰»ρF‘pU±mZ!#‘ ¬bω₯‘ΡΧ#|άη>υf!συ⫁“œΣΓsVβ;κpž,ˆΫψΣπήZ)η‘tΰώ8"°/- νΕ¦‰ 7,Ν1`-Ÿ―ρ»ΗJ±άh·ΝΒΓz"‘d‘psψβΉxžηH{Οe4ΦΧΛwCαI±λνšκ[Qε8ηKχΚFζ‘α΅Τ4·΅?Ίωq^±γξ!\Μ1_π])Žϊ؁"ϊοgΠϊΦύΏŽ!UζuTŒγyi Αμ±'ςͺΪξ―£λšcέX\'ΪΡγ‡ΊHŠΞ §šΖ1εGu* Έ΄Λ­zQrρ·Ψ’oτx‰Ο˜ΐγyφΰT³x9eΙ{Sύυ!ζ oIi~Σ 3Ξ±*ΖͺˆAΙγ°κMrڟ΅GrXF, Η8˟’φNz²—3`Υ(ξV½πυ֜с1€;c…]Λ·Ά}=ϋRΏ†ul–ΒΛίΜΊf υβ«ψkQ:wŠbŸP»yhΜ&iί;XγΠwί]Χl΄Λζ\€E—εR2͟AήΆ•J·QG+TΫ½ŽM<x φP δ¬sΘ@ό†*ΝΏ†ΦΡD²Β»σΥώm£ροYqkϊ‰!’»UO4‚d ž7c‘[xΞϋ½VHΰ­.<ΘΏο‘Σρ₯VZ5§:W)\xVς)€žΞΙ\–<UπΦ¦G•“]½΅ε”ΛδΫ^Fάn\δc5‘sβ»[ Ι,¦΄½Gχ£Ψ£žEvΠ”£™UiΡnζ)ΡώΙΙyfF»Ω™xγή―xrΨΑ¨ψ}άšζκI€φ&Βώ@UΛ½nίΔ:TΦpήJ›†x°"Lς>­Œ ŠΒa'Šτ@œFP£ΈΜUΤjϊ₯‘ιqΎξn φ«10 ΄dεT”gi*ά,w ŒX6IεχzMŸό$^"²–ή&U.£ ΰJ ŸόxΞ²eπό7“ZΪFΦρ@κ&‘‚ο#ε\gšθ|O2YxΞϊρ”˜~ΑRqLε3υιSήDtyΧ #\€‰u3"δω…Αlώxό+‘I;)μŽ.}"]*u‡TΆ/ˆ‰l1τ$ž ,Ί,7WIe@–γ,άα\άσψWEρJžΑ Ύ/ΝΉ~x•ƒΩŸΞ—CŠΪ Νvs!σ'*Ϋ™X―TβŒ=Ρa½χ©Œώ‘Έnꢏb3T'πλ¨ΛΩΑX™γρ5ΣκΎ'Σtaε4Ή—ψbU%ύΈGVρ»u Ν΅­bRB%rH;η₯yτη$μΞΙ{"K&ώϊς[[Kλ΄‚!‰¦f'ώyŽ_Jr艆ΒM>8¦…·°)ΈGή©ΞzΧIαMKO°±NšδΓs-"]&Ι “Λ~πΙΰΤ>5œΙ :dΫ―-›p(z‘ϋΚ~΅έ*MΗCι™Β׍ώ―;Oπ<¬qϊΡ/†nΜEEΎΗ!ΡΙΑχη₯Gcβ KΙK‹{―>2‘Azdr uo‰m/ρ&;…#|.>uό;q\œ•Q\Πg#m£ήά]-œ«s¦^Uy™‚€8ΖOrx­3αέB˜d’E_ΰ2ΆG·ZΫ΄˜j)ͺκ0δΝζνˆ ž#cρΑ¦ZψσDT/•q‚Z ψ=ΑΑΝvΣ^νΩ•=Žv+Wσρ4R ƒΌŸ–―θ€ŸͺφΆ³n§‘lV†₯«ιZ•ˆžΒε ΐpBtlgy5WΓ »ΖZΉnΟ`B¬qŽΨwc’ŸρΩΣκzZΝ4Ρ•K›go»'ϋ-κ3ΣA―\_0΄²Ά“ϋAοb—…€χ.{σΠwͺΊμI ’†ΌΈΚΔξ’χ‘½…jΫ試ΪgΉ‘™€•ΊΞΔε·ων^Vœ₯ ³Ύ3±fΟFUΉ[»ωνΘδ3έΗΟD^ƒ―ZƒΗΞαφΆ9ΙΆ*2}H§er·6ι2†^ύAξ bxό“ΰ@vΒgι½k²ή)Ώt³i1Ώ΅•UγC+ ‚ Žτζ°$πUΨ΄žyKrl› Η©‹Πk ·lkZ¬}ΏvρΡPλMηZΕ§g仝b|σϋΎ­Ÿ+G?~ΖvΓ°y–ΣjRŒΙ})›'¨ƒςΑ­π7/\WKΰΉό ]ό<ΟΆ6cΈΩt1κcΞp‡5ΩDΚθ―O#Ψ^ΝΉ]™7mΟ/ρdcώLOu~HXX¬3yjP ΐ;pzŒVt―αβq'…υFu &’['ώϊης­Ο ‹ΖĞ—zHΑ=Ϊ9?ž¨5²Θ‚ΰ}θΨ§5¬›NΕAάΒ°B[‹»i|13\E31€jdCΠΰœη­\•Ό)--ΗƒξaDώ%Ό-Ψ ­œ“]ΉαHΞ™ πKε_[ε’fΟUoU5Ξi‘WRq ΗΦΆsQ…Δα©VΖ+ mσΛαΫwžF'wˆW²e³Ξ:š–ae:e|7€©^SεΖ‘Ηjι~Α κBŽώ’²―΅MN&/8Ό£ψ#ωšΈ‘UΛseEΦi₯έZG0π֘‰ωXpA^†Ÿd–ΜΧοα­ΝΌ§ΜI7 ‚NAΟ­ΰΗ³Τ?΄|¨έ$†ΰΊE!Ep}ςsΝYρDιsXk*„ͺΚΆχίτΟΈlb·U•ŒΉUΜd‰NΝΓH£ψFᏨήΘX ,Ρ©*ΑΨγ؁ΫΪΆ-΅ Ο0KˆΪlγύ*&L~'Šκ °Σ€€h`ΪqΡGz'4φ6T‘ηΪLχ)cΠiZ   ;\ΰϊdƒWα#½{ƒ¦Ε¦ΩY^Ι”‡Tμ€ζ=…]Σ-ŒVrΨEω°\Ι nΰ"η “θ3]+xgLŸKw¬ιΥ€b oξΑ»₯wαxqβ ι«#‡²w±‘Ϊ(b1Μ·†•©cœa[zL­uβν8;’ ¦lœ’69ϊš«¨θך<[RT»Bx‰ŽΩ±Ÿ^†x[Ζ³°Y”ω»³Šί%Yn3u/#ΎT €:§xΌθZ7VRΈ>‡ŠŒπ܏ώ΅[@6zfΌv{gŠιν·†ν"·lI ›vBΫ΄•δ~Y5MvνδK §XΠα¦*»Sύ‘ΗΜ•$–’M6ΛΛo.μ_΄‰$826U‡qό«¨ƒP²†hτύJΦ- uV9ˆΨΓΥxb}:ΧO=ՌQΚωΪΚ?:νω“©Pό1O›TΧΗg£tne‹8Š>ξxόmέxΗ@‚ήSŸ:Ε’<#ωζΕδΆ“PΊM·dI"η>Z ~͊«ΙwqΠ¦ά΅9Α₯]CΉα½½GrYδσNη'»g­H±x‚,yWΟ ώμΫOλŠέΤ΅m3K?Ύž0ύ”rߐZχΕڌμRΘ$(ί“†?A\ S–η ιΡ±?φn₯¨£j‘³­ΕΌΫ`fpλ‘Γυ¦{TφZƒHΟŽX'‹ύtE hΟΏ±μkWΑΪ€7$Vν4~|eΓΖHά>cΞ;ύk7ΔΡΧ,'IšΩδqΪˆe8ωA=Αχ«…IsςIS…Λπιwz‰]»$ ζ8s7τKZη²ΆBν™άy^•Io­λ:PΝς}Ά82BHΊπ­s¬iž"°–Φ ”2ΈΪca΅Τ猩η­oiΖW±΅5EΖΖ·x~@YdUqίΏγVcΣΌΝ«"Δ€wgƒυ­-?R°²QΥ&Xε(ce%†8ΰΤβ—Tρt7Pύ–ΚΞι.&a,θΏ‹η§5ίGHVI”t]&'Τ²ΖΝnv@Žδόm/ΟΎ@’ΗχΊ}Δ+Γ“Αμͺ?7Q³ŽίΓQΕmς­Άΐ ϊΟσ§θyυI±ς,‚%φωκ&¬ΕNΦHΩ·‘e *λχ”υCΖv7„ο1™mΠ\GμΡ°oιZ/h²0u%%_ΊήžΗΦ¬ŒKlπΘδ`y<ηRΆ±€χ2/-Χ]πΜΡΓΟΪmόȱؐOηŠΓ·Ί†—mx§*)ocŒΤ΅α+Ω4ύm§$΅„²Y7 #|Ή€‘Xϊt ΪZngX^Y]c‰€ΐ.Hβ΄ ωYΖΣl½ζΖοε\z}j ΄vή#Φ4–Ϊ#˜‘ΟχΐYΰΐΖ¦‚Φ(ΧrnjπyλΥΦϋˆt=MΚ·Λi7lΗ0Ψsψν5¦2š«FV"‹p¨Σ=Δ$vU@1’€PxόjŽͺ†ΛTΠ―Ο'ϋ,Ηύ‰xηώг`€\\#2`=Ž94ν~ΫνΎΎ…οD ρŸGROΧ"Όz –Μτj««1’"ύ>•βΨγΓ—RGώΊέEΜGΡ£!Ώ"΄tϋΑatš5—›‡?jfŒJ†6+€{ {‹XŸ>ύΪ₯[ ΦξΚ+ˆώδΡ,ˎΑ—5Μ6βλπ±nŽξœ l|Κ'žυwΑr·ό#φΦΞ~{o2Υ³ΫΛbθE;YO²λz-ΰα|ΦΆŸG^3ψŠζ’ΉfwΦwnΪς°Ζω”ᕆϋB‘ИA¬kv£€.αG ‘FQM½Σδ,ρ9·ΌQςLΌίcψ…dιϊΤKβk™.XFeO+Οχ2£zζ½ –hσ('Ο‘Δ9΄ρW‡oG )›OΎ‘“?π%γλSκWW2ά₯†œνΞ‘šFϋΆΛύηχτΏδX[Ȉ-owoΞε­ξGHg]―ώπ­ϋ‹ΟλPέYΫ_BΡ]B²§ϋ|•χ¨ό)Fv Eν•«kήi) S‹€:¬@p=NE9!–βAux˜ωeιχυ5*θZέ₯έΤ—7s)$}ζՏ$υg₯O?Š,mA#·\mۏ­t©E%rTdφ5•FΟ‘qΗJ+OΕ IHΰΞ­1”]μΝdLž)Πδm£Y³SθΜ+BήφΦο"ήβ σ±ΗεVNΆfΓ[CŒη˜ΤΤWΡoιv›»2G±‡ό pkηe…Œ–“;cU£VΕζ³€ιΗ–ύd`»ο9ό@£TӍΡ[ΛIDρ²FδNvΈξι^ksqs xϊ(μbŸPŠΒΝζh₯œ™…9η8­ugΖΧJΗΞπ—ˆ##ϋ°#Μ75ΥE(BΧ"€Νν7UϋpxfŒΫήCΔΠ·U>Ύΰφ5¨ͺŒ―;Τ|A-ΥΔ7ήρWΡ0ΘaEΐ=U²άƒοZvή>Σ Ϋ—zLωΖ5(‚}€_”Υή2άΕΖ[“κ2}»Η–6˜¬αkωξεBǟ¦I‚ηN·ΈΛ’$qώΪ†σKNΏ΅Ίψqye<PMc±Z9 ͺ―qΗzνΜFLyί08>U ξΡΘ]ψ;ΒsHΛ6‰§,£¨XŽyϊ’ώk οU±Γ:ƒ4p―©C»πΦκΜl=AΑ…˜vςΙ8φ4θ!!cΉΘξO#τ¬jΚH΅93ž‹BΤbhρ­»³Aω€Έ5Bgρ>™±Υνe†γ+ —';‡π6ΣΤφΕvxοT΅8κ:{Ε+>CΒά‘NTώ˜όkJ]AJΜΕ[Ώ@Ώ=Ά9Fω#?NA¦άxŠώ%ϋw†΅Χ~Ždω~΅¦^.£§ΑtΒλ‡Sό8eϊƒšΈcLch―ΪM;XΪJΊ9Έ|[ΆIFΦΔ{ίφu`8λ€Ω5ή9ΠL›τŽL$ ΖΓ‘€«οfΊMΑ0€,Ή\qύ”ώ”Ο‡υ ΨRΩφ–ΰ‘όλ’&\ώΝ‘ςΖΧE©ΑzNΦ—eo¦β[ϊΦ^k3EΣV Ζ%έΕ d'²Ž£½i'ξώYΖχ‡C^γŽ‡: »Œ2Ύt9^1L–υm4Ήoέ±΄¬O`Όš²μΉΗ˜Ώ@₯pώ6½πŠλφV-Ύ< ™”ρ3.υ'ΤσοRαdΨ)σ{†Ώ€m₯΄π6”ςήΛn&|ϊΘΝ!ΟΧuYΦώΗ‘ίΊpΡBJŽΰžmZ'Ω­5UUG`01ϊV7Œ£ŽO] ωUN9ΙaΕ\γh-$sqD-t˜tH•Gεώ5 ₯ΏΪ΅έ>έ€+晏WΤPiκΩfkmΐ3yΜL\χΕmι φύ“BG—εΘκGΊ€?y΄πά΅y™nv¦u±¦.08Τύ9Νx?χΆ3η™―dΘ„ύ·ξη[K[‹¦l,14„žΫkΑ°4Σ7Œ9€Hή Ή.s}WZ^ω’~ιΡ Η4ςi½©*ξsL”όΏH½* ™V($‘ˆ Š\“θ*IκplίhΥ5yΉζθ¨>›T ₯ͺ[Kv‘=ΌdΛ§κ >ΓΝm4K&WΟfΈηζ$,T“+•FΪ qΧίΦΈ₯i6zφ+hPNή'Σ£™hŒ³Γ‘…ΐύZ½5OOZβΌ'6»¨Ξb[u Ιn?Ί‘¨ω²΄6J³HΌ3gδύγίθ+―£dpV~πΝvλμz-νΐΞδˆνxΰηUl-~Η₯XΪ 0’œϊχύjΎ½ Ν…œŽ[ΟΌΜ~€…ω…/ˆnήήΖX£%n.ʏΤκί€§YMκ?Γj—··: ~%¬`φUωrGΎ+SΗΎkŸΠ„QXΓςF°¨NWZέFγ#¦EoE.MYϋϊœμ'ν(ΦHΟ•,VΛΟEXΑ?«Βψ«uεψ*+2 ΝNή6£plγ΅Ή‘,Ϊ€έD·ςŸΐa₯qŸu3Δz–v[Τ&ΘϋΌl?‰5―$;Ϊ“n—&ο c ΔςkEξ`ŽΞCtA‹”*Ω<σςγΉ=«7FΊ[=G”ν<‰œg£­jiΆdώΤԏ, -%©hƒ]5*r£% *ΚώxΧν.ΠΨΗ hβv\v }1ΪΊ/ F­g=ΰ\ ›—‘@=£τZΙϋD–ώ{’O™"ΉμY°Ώ‘ΣιVƒOΣν­‡H’T'ίΏκk’NΜΩ+#QOσP)ιVp)¦#’ρ‰a΄΅?ςήι遜Ӽ2Ώiπν’Θ+α†FW*sλ£ρ[yž$ΡΰΘΒoœƒμΞ¬xHΔ‘ί¦nξ1}ššρζ¦J~ρΜ\iΒϊΥΌ&mš5˟!€#ς?vΗΊυΫι­xΏL΅o ίNκ’\Gψeeω·δzžΥ§γt†ώΖΛE;L—w(Έaœ" ΜHοΐύk&ίΐϊKΉlΚ*v‰[h?Lβ¦8žXΪAμ½λ’†• iVΨ’;Egu½”οqν“΅ΧΓϊZόXΔ}23U,l¦΄Υ5 +€Έ‚ œ² υξ:ρR^Iqͺjθ6²Ιnε \΄ƒk’8\šςSΔs_@ΆΊŽ³ΡτύUžήΛK±©&..L €Aϋ«κ}ϊ – NπmλHφpΙ€Hα~Υ"’Πœœ‡³™ΎΞΞ->Ϊ+[h„QE€ͺ:š™‘I#xX ·#‡Χι^Ώ·qw¦š±ΞxD·—OMFΞέ§·a*ε”rTύEfΑgosUΨΰ0γ·Ώ½:ςκO\-»—“@™Β#1Ι³c•½c=jšΚ!j§ύ₯%ϋm'Γ–:.pU)Ξ.2ΤΕΆhΌ¬I*š<Ο†8G8Σ3ΞjΡρ|—šl°k΄p-€λ#60žΰυλNζΫO’ύ‘΅c « ƒΨϊΧ;m¦ι~ρ6¨X NŽχ6Wbc†WQ—'ξηlΧ^«φvfŒι,τtπη„.ΜΨiΜM5ğή~Ώθ+—°V±‡ΓwRcr]F1νζ)?χΥw>8Μ~ Ԋρ•T>ΐΊƒ\N°?βX!Œν4 ³n\S§ζ•Lˆlγӊ²Γ)Θͺ}β^Ϋ-ΒρΌ`ƒΥXpΐώ5yo§•›}Νβy‡‰λ―'P·vΜO MwςΫ₯Ε€Θ£‘pΘέ#‘\¨ždή/ΟQ:ψ"β½ά³ΐHηΛ_δ*k+’ y θπx{ΕρΩj—Θ,‘ %£Λΐb@ΫΈϊ€HgΔ?ΩΪΕέΎ›nΘ—yΛ]WΙOvIΰ[>,‚ΫZρ†™",‘C\άddmΖΥSυ?Κ³°cπδΟw¦@¦ΤœΛl[ξη©?Κ±©‹²δκ¦“ΠžΟΓΊv›0[*ΏρJΗ{±υ,y55žœ·ή.μюχngξ€Ÿψ§j[GdYΨΔ2©yξzU-#[ΉmwUΊΡΔm•KH¦_έ qՎHΕraέNiτ5“χ,wšή“ααc³]žΥQGΛ%ΖΣψυό:Φ†΄ίk6ς[ZΪΩΓͺ[ό“9Sό,9ε[‚Ύ:Υ(t¨ŒΏkΌΝεΡ9{‹™φ}*kέ\μΎ²œYκpmη 1ξŽ?‰₯zπΕΕΘΰϊ³Kγ1gπݟ†όPϊm֝–WΉ’Ν€L퐾<χυjηΓz-νm:”(Έ)ξζίλ β]1tύB³Χlg…ŒδηpΠ_ΐΥ»WSi’2UIΟcάVx₯fšgM ½KΑν §„¬aϋL{•Hu$d6γœϋΧ6ώ‡Uρ.€Ίkm΅šQχbb>e_V?₯lΓα}ϊK“qco#¬ξ7ΑœυZ—Β±Γ£_j`,qΏΪ`χύ~ŒόkͺU―*΄\]Γ[Σ­Ώ²νlΪέ yŠ«•ε@λψW?£ΛβNβνάYˆΡΙΙ¨*ΧWaβx¬γcls)ηͺηΛšητh‘—Η³E2 #6+.ΗεLŠvς;ΰ7λXN*T¬Β2Ngi iΝkήέ ϋeΨLσε'8Œ{`ŒϋΦ`` ό«6“ΓςylΝ&•Ÿ‘˜δΫz1ξž‡΅n¬Šκ¬§ ς+k‘Š‘bΗShGά“$yθψ—ρλYŸΒͺzω@©e­‹θVςΫ`.E!£~»\t?Έοκ’]ψ>ς(‰ x–ι‡έS½rΉοC£οέ Λέ7"—o‰΅dcƒεBί†Π?₯5ΨI{d[ο5ΞξyΪ‘NjΎ¦ΖΧĒݐ|’N>κ‘ς“τ5gJˆΟ8½ΈͺRΗ«~5Ο8Ibc4έΝ£ΌfήUdΓ<ΗΪ±`Yό%>ΑΎ]ωšΠXύ?»[(Γ‘^==*eQ§•χζ»вjΜσΏˆW‘¦₯§j"ZΊξ+<δ?ΠΣ`΄ž{AφY•·QυΝQρ„I§ψŒΪ~Α:‘ ž!~„ΊzϋV„ήi4d *‡‹{}ΥΕA>Ό ueΥΖιXδ/5Ν}oξβώλνœψ#9ΐΗ9­έR τoΫέΒXκ±Έ2Ύ8”ΉƒzςxτΕhx’(΄½ ¦ŽnhΩ\όΜΞXqψΦV‘©kz…΄VχZTkζJ€4RƒƒΈAοŠ‡%mMV₯+'Ε:€cνP’7Xγ}€}HQό¨Z!’ζκΚ݌†fbOaΗ$Χ‘FV(2>P~n£ΨΡm«hΎŠ[UΈ[½}Αςm@ί$=~Xγμ}XΦ:Š’w{8΅πNJ|/$:τB(3ˆdŽI†γΛŽ8<ϊΦΞ‘αΝoTΣ]΅Λι¦Έt&‘ΐH_ͺπ dδ «βλ>%šβ+Λ™tδŽE gΦ~ΜŽ9νΐ­#ƚ¬bΛ\؎~UΉU)?ήώλWW΅£Νc:p©k™vMΆ«§Ε;Jκ€ΊΈ 9χΝI₯ψ^βY.τ}ZςΗΜmΡDNψŠ›‘³ΧΫΦ₯΅D:Φ―€ΔJE$Βu8#Ί©`>§?uΡ²…PΥŽƒΈ1₯ "ΞΕJηαoΏα ƒ[;΅Ήhά†P ¨VνΑν\φ«€Γfβ+HfΎΘbΩw·nΖ=λwU―n|A{crΠί[ΟΆ)[ mː“ωTή ΅_κ:ަYu[˜₯lύœ`dƒθΔπGa^Ύ΄g^§ k§©­₯hVϊŽVaΎf]σΚΗ?P μ*§ƒΑ_ZJΰƒ¨[άNAτΚνχΘ§βiΌν!α…Τ™ΩaOΏ¦j΅ƒρ—† ¨ΡOφN@ύ+JΡj™ŒZφš‘ίbγ9kSάςb>ηΈώU}€GΌ|ĞšNg¦;Χ9«Λqsc¨izy;"&”! =Ψώ™―13²,σέ=َvp!“WgLχ_ώb½N}>ΫQ²6ΧpG4Dr’@―1Ρ΄MHΧhŽκΣheF+Φγ³ΪΊ3₯+£ΗuίZιεœ M.βδή9HΆΗ$ V†·’ڍ"Wcϋξ ΔIύksβ:Η}›’αIΈΈσdVΔqNγ\kψeνŽΫ JξΥ7 °ΙϋθG|?°•euυ7„ΤwB'O΅…έ,’9\±?SV­tδ’ίKΣμ-§Υ§Rν,‰‘ώ)ΡAΰzžU½ΌΈΣΤ.§ˆyŠeΰ=9cΥ~†»mXΡ|'αΆΉYžοXΤ@”¬HZI;ͺŽΑ@ιΫ½:ο"ρ"—ξΖKΰθϊ8Kλ{IRέ~yδLΉ$䜌“Ψ}+ΥœΧ=`β6ά„»„g=€OκWωWHΓ zτ_Ί  V8νύΔZυƒqεέύ‘Gϋ2*ŸηZ^%bά4Σ$K$7HΘ9ώU•©Ογ‡ΌžUŠ 7ζlgηCΐΉ"­‹bβ-CV‹Λ·BΦΑΖvz<Ύ­ƒ;VMΪLλQζ‰Q^ψwΛζΩi-?»5ΧΉ=U=Ίš½=œ6WZBAPΐ²΄;UάΌgΧ₯jΔr½σλUuˆχιr8t.³/±Rς­›ά•Œιq?„5SmŽA”*π B‘Σ?-hι·‹yoΜl&E•H9α€"΄ΖΗ‘b rΣά]p> πλΫΜμΗMšk9<¨ŽL ŽόXβc¬YΡB§»$zύΥ§€w τΝ5Ϊ€ƒ‚9νO<)>Υ°Ϋ2ΎΙ₯¦]Γ{Ι γ±taΥΚ£ςζ:―†ΏαΦ-ν.υm&αΆΫάqζ.1ϋΆΟSθ{Χ­•ςαr@UžΥΜψ{Ÿ ^ΫΞ˜ΛϋžδJSωΕuςGΩ“NΌΤμsΊdMŸ₯Ο$ iΊ/3ύ(³OΆk[b|o χω'υ’’.ΕΨΥ@}*aΒP§Aš™[ζU$Hδφ― šΡ5Τβ<)‹ψΖΰόΚ―Ίη‘Δc"ΊαΪΆεEιχ?ϊίΚΈΏ…Mφ»msP-Έ\κsNϋ,v―ώƒ^€ΩR1ΪΉq4­8³[Ά•ΚΧ0yΚ$¨w#γ‘χυ™ ’κ&ŠαJȜIs―­Y εύί»ΨzTsΫ™dŒ…“ n=Ο ΤΖ3OA4r~μβρξ―%΄p₯½΄Hβ$ <ΗωΎσŸqŠσoψ«C†]bοRΥllοo€“ΙΈAΈEΞ ϊΧsohχxϊΖ›!=ή!?Ξ½wQ³dNύKw1%Ν΄IΜr!Fϊυ£Ν#X‹yΧΪ1·“?μτ?ˆΕmΰΆ@η±Η8¬Υν5ύψ";΅Ήμ$ΔŠ-+Ω“­<β‘H,W$gωg4π§4ΤZfš°§x†ζΩWl‹φ¨Aώ8ΗƒZςλYή!Uœ7ΘFϋ)Dύz§G‘ΟαVΛ©Œa†1}EU¨γ©Ψ‘6°Κχ½rώ-sgΰέN0Δ P©ž ^+€–Les\Ǎ α'‡Έ?9βΈͺJσP*;{Dh Š6$Ežά ΤwΪ…ΆhΧ“€q77 ŸAκ~•JσW•'661ύ§Q* ‰N.:ΘέφλQΨθ+ΠΤ59Νφ Λ3ŒGτz½zΧΠFΠβ•Kumpνy.4έ,π"$ ‰ΗΉχkνΦ©ψΚΦΦΗΐ7φΠΑKδμDQΡ™”©&Ί½»FόIΙ5Ιψ±ώΥ>“§€M»k ίψwά#Οs‘“ιEh.K&܎ΊΦΨ"Œ¨έ€ ϊ Δρ+»Σ­{4¦VΚ23ψšί€ϊfΉύh±ρ  ­\*ΚΥMϋεG’b₯°δ0ιYš`ŠΟΕ)φRΒΩa-*Ÿ»l`Lβ΅§;³΄ΰdUm0ڞͺΔ ‰BsΨγ\τγi—U―f\ρMΦ ήE|Χ2Ηf€ΣIωfΆμΠ%Ί"€ͺ €p+ƒΦγšήίν°1k [ψξ$9ΘS΄°φk«΄Ήžψω¬cΞG|tQλοM4ε‘•8ϋ†ΰ*§k§Πυ§ˆόκ΄6±’έΤ΄Ÿ3~f¬Ζ›8@ΠV‹PzΌΧ;βΛ–ώΜ{(Ξ'Ό³―ϋ*ycψ.k‘o½ΗZβυ ΄›Xšϊc‹{}Φ°1ɁσœϋτJšš+„Ω_μͺ’ ͺ (Ια@ιU―ξνt»s$Χ!YΊg'?Aή«Ο¨ήjNSKMŽ Τλ„ξ―V¦C₯Εo/Ϊ$/-ΑϋΣLrΓιΨW!՝|νh‹Ύ³ΈΤVφi€šΪΞK‚LΔ’ό£ο2«ν]₯Όi "4UPp€`(¬Ώ :I™ŽFnΉΐθ?•i\Οφt ‹Ύg;aOSκ}…{RQ<š“ͺeψ†αΦϋGŽi7%”7E]„n5[[Ϊ[ΙwqŸ8RΟ<ί9γΣ=? °–‚Mqbr^o-€–Fκ8ΰ{ š©¨ζ{;K2ΨiQ³ΩW“ŸΚΉk¦ή‡m%vnψj‹H€Θ6³όη؞kNξH,μξ.€ωΪF ‘Œ Z¦ΘUΐ ¬―o}[8kۈμώˆ-ŽƒZΙςΑ³&ΉεaΎ·’ΟΞ'ΝxΔPΞwsωΧ–xŽν/ώ!xšM‘«ΓdŽOΚF2όšφ¨ L>`·₯|ύ ›‹fαNηΌΤηŽΉΛ`,ΦT^‘ZNΖ……„Z\ΡΙ6ιlRv*\δDΔ€½W―Ί}b_+EΊΨί|ΧώGτ4Λk!ΊΑ·(ήyλYsDΦ·–šZΉkInUΠ9ζ £qwŽ=**.i\€¬ b0c°±A€Χq.ΣύΥωŽ*ή±ΎˆΞmεί ΐœ$½ώ‡‘¬¦χΕ‘Gό–ΖFΟgqŸΓ5«qoΆηΞ@Κ:νψΧ5z–šD©qzώj#ο^w‰o,fŽΡMυ€΅–FύβϋθߍvZN―m«Z‰m˜’ΔΖe=ΓΨ— ’”―±ΞkŒeρ³Σ½š'Π±Νix`yz*vύτΌ}d5—ͺž;Όρ=€R)ϊ¦¬₯ΩΣ<3<ΰρ™kύι αGβM[ΰCv™’χ?oρΚ_“Ίά>ΨΉ\ΉόΖ? θ ‘[Α$’ΆΤŒ“Πίπ¬ιτ3£θZ\Ns41ωύη',2jΎͺn5{οψG¬ά %_2εη”#O«υ¬1W)«M«6Νί }ž;=ξ‘ϋMά†βE, έΟΆ*ig¦ψ†Δ–gj ~‡VTϊ^—Κ[Ν¦[ΔϋΒλ’3Σζττ5mτyE³Η¦ήΙ’‚Wi"<τ*I#π―B0…ΉYΙ*ι=N±ƒ!ΪĜb£\† ŸβnIιYΊ^¨nα6׊aΎ·&‰ΞHΰa³έOcIͺjmj±[Y―Ÿ¨\’-ανΣ—Dλ‹Ω[C5ΨΓρ”3λΡΗα›h»ΘΜp°ΔK1χ#ԚάΣt&ϊΤΨ .-€·&΅2‚ΡqλŽ‡±¦YiρhΪ~ ο?Ÿvς+έ]8εΨŒz(Ξτ¨¦ΡSRX―Μ“Zތ΄SΒpρ‚zύΰ} uΠ²+4­Aς_©Ίh:‚έΞφΔό¦Yώv·<`ŸQοΪ’ρ€)qαKυή!,θAO犹ˆοt‚lΌI<wνπb*η’υCωŠΛΦμ’Έ’ΧC³Ÿu•μΎ`;²ŽМυ©A8ϋ‡”­TΏszuί…Χ38!ε²,κz«¨˜nέώΥqα|ŸυΧ1ϊˆ‰­tΊ…«ιžΤb‰’ρ9#”žΏ…rZb'†ƒcεΉ‰ρΓYrΩ‘Τ‰Ψ} υ₯λ§\ΎdΟό°ΰd²C]*’θOΠΧ#βv&5¬μγ–ζθmHˆωBγ–oaY^ρ₯Τν§κHσ‹y 2Μϋ‘½xθjjRӝdŸ³bκI/ΖΓή β£?Κ»Ή#΅ΎΣ#„# ΜzΙ―<ΎΥ‘]{_σν|© VΖ<€sήΆu;θόOi‡4ϋ˜·:΅ε°ιۏVΐό+'š'©“αƒ%ύΕξΉr§ΜΎmΘ§ͺD8Eό†֍5 rκK-b;'Ή˜f=±όmμ:wͺ:Ξ˜©g,Ν :ΒΟ ƌ;ϊcΦ΄OŠΕŽΆ>΅VбJ[Δs‚I<ΉΟ§βk‘`―ˆu&O΄w²/ΑΰiαfΧυΏ˜ΛKβ5'²§AϊΧ?β-<9β[mvΚΩmτΛΆK[€DΪ«œ|}xόjΊxufϋF£/Ϋ‰ΛI1ή£ΨO½":.‘f­,JP'Λ#mŸ”γ'Ύ+΅8΅aΊw7m‰Œδ‘ΟjΈ…QrN#Σλ\‡ˆΰKYν[XχrΩΖ„Έu$πυχ­ht ½T¬šτ‘mόΈBΗiη€9o βΉiaΨ’έμT]6OψŽΚKPΛ€ι“uHΙV’@>δMέGs΅—ΐzε΅Ήφς€ώγPŒ?αΌ`ΤΊΤ χM“*žσŒ(‘ξεFqQ"}9ΕΞ…w=΄θAςd‘€‚AύΧRxιΤWjQJΜ™*ͺ¦†.•-Δ:Ά‘a©Βm/†Ω<¦`w YOρŸΦ³uΫΦΣ5ϋ d²|‹…¦O€sτ85ΠψšφΧΔφQ]Kjφϊ΅„κ'ΆoυŠ€Ψ#ͺž ŽΦ±SΒςkHβίT…μd\ζG2τγρ­#Λ`•g-$nxš`Ί ’pY€ θI#‡€’Aβύ¬ΣA#­Ί2N)o„°ιφZmμ­Ύ„'€ p€Ÿ₯3Mlψ―Γ½sφΧŽŸΊjŽ^Z:œ‰΅]#АoΆE`#sυυ¬€It9@LΎšΗΥ­Ου_εZOw•ŠΟ;…E^XτΔκή9ΎΊ’K.!oBIs*ƒ€έ‚rΡ‹θwΞiV‘©Jσ.™¦Έ7²Œ΄˜βή3ΥΫίΣΤΦ_Œ¬­¬ΎκVΠ) ΉΉ,ہάOrMZmm¬¬Η“\y–byδχζ²Ό{xr{lΝpΡŸέO1rΜ{ηVΥηc₯ΑFΩ§|μf–α—εΚ Tσ…*3ώ4ΆžfˆŠΏ4ΊoSn@ή«οΪ¬²x³YΉb‰vž™*3RθΡΖφRΛnΫξιό'ς5•GfJTυ4b•dUd!”τ"¬¨ςqυͺήΤ3œGω› @O―=+γΔΏm-k‘LX΅ού\}ŽGΜ}ϊ ΄Ρ”£Κrή>ΈίγνmDώJ4ŒyŽœϊŸjΥπ2(πί–i—žΏ|σ\‰ν’ΫZ`ΆΟ˜Μω’C’κW,Μ~ΈΑΗ ΣΪΎ¨Α³Χps»?Žj«όΒ›ύεΘ5™Ύίγ7M$ΰ‰―}Β€™όI5rϋμΦ<ςΙQΒΚKΉΒ§ΤΧ;¦κJ|}¬]:GεD€ηUό2kK¬n-/΄έ*ς)lahŽp£pώαξ W½o³}²K`Lξα`œ³2;€kη`ε:>g‘ ΅)hšf‘'oβΠβ3ZΕΒDΣ0Ž& ‘ΉΖ1ΣΆkͺšΓΔ– Οs Ο<`䡭ؘ¨οςπMO§κ³hϊRhώ…dΊ‡ώB3\|±G)?9cΥ؟Nœ yρGtΈ³qiΤ$α₯±!€ŒΤ«›JχU:MZ[˜sΥOCG»‚ξξξX\•i …a†Qΐ!θsQk²Ώ‡uΫ=~<ˆ­΅πνδ±Xϋ«~†΅/ο4BH΅"Ur³ˆf@»[cΈ8<ƒžy¬½xgQ³Ρβd -ΕΨ?'π©xΈα‡ς·o―Ά“‘ηwφ·Δ[ιΜV–dŒυ₯ρψ? –gΊΈΤβ±Σ­όλ’|έ€πŠ?‰Φ°aƒTπ―ˆΰ²Τ¬^K‰ήHα•Rαœ‚GCšτHo4iι n5ΫγΉΦ8·Λ;uϋƒ¦z σΦŸν%²›ŽJπŠλν7rΨKΈΘ¨>άƒšαώΕwαb{Iν[ϋ6V €X[;c [ϋ‡œWUswβjo:φώ]*ܟ–ΦΠ—ν>0>‚²n΄Ψ ΔΧR_]JXGΝy#Ϋ€PF@=}8‰NŠχQΡ ugΤ‘ΧutΆ“&ΖΛl·‡ϊΙq•ΐΰŸΒΊΧΒ. ηΣΣήΉ»}>OΐˆKM₯37ί‚BFKβ_CΪN’λχ ¦ΐμΆKΆΞ§ˆ”ϊžηΌΊΤ'VͺD(ΒΕOθΧ>(Υ5Ή-o >’οs[l—2 αHδrG^Υڍi¬1Αp± ‘ΤVDΪ6šρGΩ[D‘€©ε¦Γμ\R+Q²΄­VεUNV ³φˆ_˜~Ύ‡Z$’ΞjΈg-PνoτFGᣞXΘ=°έ+Mύ—γΐβR ΌτσγΖ?_εUΫ_—GΥ.m΅Ϋ3f%Έ n‘ΌΛ|Έ’9\γΈ«Ίζ.©§ mn 2ΖΒ{wξΌ―ηύk΅Σ…XθyΥ«Κ”ΥΓΕQ£‹Y‡G:mofκ΅/ƒ1k Fκ2‚=0¨* »ΕΤ€³ «+‘ώOΎsV|ΌAώύψτέŸι\r‹5sΆœγ*—GFι’ΠΦv·xπιμσq)ς!AΤ»t«š¦§m€Ϊ½Ύ#N§$φw&Ήh./uUnξήKW"ΪFθAώ#κΔjΊtœ‹―YA]š^9²]/ΐV;‚©Σ₯‚PXφWPί^¦¨κ6Ζ}ι1‘—η¨ Φ†£€C¨i7vΨ-$π4FI»GŸzΛΠ¦:Ώ†ΰ q+Ϊωm“DωH?ˆ’¬R’3§Wš:%½BΛor­ot>VIWχ‘©ΪMŠ9RF§= j\-Ύ£₯[Ms:Ί©mγ8=λ\βY™΅ ›+Iεϋ n<Ι ΙCŽcSλŸΚ»¨JΡ±ΖΥη‘Π|?btMZΣ ·Υ£P{+lq‘ιυέ3νΦΠ\Γ ‚φˆ&8Ο%[ΥHν\Ÿ€ΣμΊΧ‰,•vΗΎΦιΎ…[υA]μκΟa ‹ΑG9φν^ ½άDbŸΑΣυ}s 71˜u k”i#<ρΠ°=ΑŠλ.`³΅’κy’(bRΞνΡ@υ_Q·ŒΔ·$φYΊ3ΞO¦*Εͺ7‰ξcΌ[ϋέo ΛΤ€‡χoZν¦ΩNJ‚nμΕ»ŽζοXΡ|E©DΡΫ₯Ο‘gi(ζ(δyώΩΰό Χ^ΚD'Ψ ΚρO‡εŸψ –9²{aΦ΅ΩΌΘά„d~"’ͺje΅†ΪœΒ‡ΥEI"¬±0NOΏ΅ I‘G|(υΝfψŽy πύπŠΜPA g£ΘBηY–§Šοξ.―…μΫΙl:>¨³€p>B:γuŸŠWΐCo/…£Q4θΡ·n;ΞΤW“μ`ΪLΡΊ­έ§ƒ4 CΒw7V7&±»ŠlΡςΥeΥΊ{§>Υ½jTδξi7.Tv㨧!T#Σ8 vƒ^~ΏΣRlZ‘i“=ΉLμ+šTIEϋΓ’¨Ύ#–πG‡N§Π&UY4λ™RεΒ „Vΰύ[pΗγ^€< 2μ“E€^ŸΌ°BGγάΧ1πΫUƒWρo‹΅ X&ΆŽi-?u8 ρβ0#8Ιoε^šΔ.ފ=ϋ}kIΚIaΉι‘η&πg„΄1aΡ–;—>]ΌVr5ΠFJ™εω`θU8ΕՎ9ιsSJΦ΄»`,€Šm>sΛGrŸ4‡Ή,2σ­©ζO$ΰΚNTό±1ΗιX·ΐλ[¬ν£ˆEΛ-ΜͺFΊž¬}{Vή—α»{–¬4½CVΥqσΑΤ­³έά°DηνΝ{5vy©ΖR²:‹ϋΙ…¬²EΙ1/k©]ŒzgωΦ'Š-V / Z[6eMb rYΆ³;Γ5ΞjΆ3x~΅kIyg’εc΄ρ+ )O›SWν…έ·Š|1oqͺRΞatl$ ]$hAPξ0έƒŒη=«ΥEh›Ζ-;ύ¬βH2ΦS΅ΤŸΊkUύηˆmΊ Άn~œZͺlo’θΞ&άθΟΊύηˆnœr#„B€sθΖ³©ξ›Αίa’&@ΥJ'k[έH)ΫφΐŠθηώ‚Θ0 ιŠ₯{jχš]όƒφ‹yX½Šΰγρ’Τ©««ΥΪ]ι™u»|ž½€όI©΄!.€ΩΫ]󖑦žny!½²x5ͺJΊŽ‘€FŸvώζΊ>vς΅QeRŒΉV'*Γ#†²£'pбmƒΕ<Γσ›A—Λ”³i€α$nLΡ½WΠφ­•`T0<k²ΖLYw²mF!ˆλύΡΧW±υΩμ%ZΝ³w mχy 0~‡5ά—Ζk–ρy:Ζ“qŒ+ω–¬ήPΛϊŠΦpχB”ύγ‘›O›χ-όgq4›!Ž;σΗΉ5zΚ ϋΛ”+4 CΟ“eϊžυ“αΨZ]&Μ\)ς­·ˆ‚B’>•Ρ«έy75ί hy²Ž¦5Œ‘Ά£©]Tf_)rέ”όσUfF>&΅Ÿg•Χύβ―SιM:'R>r©cMΈΒjϊlΗ΄¦3τe+6υ5ŠΠι‘GŽΨΰV>΄Ύf·’D[…OΟ¨P£ωΦΊeΠVF²ή^³€KŒ&}2 Jͺ±ΌLΰύβΝεΨιΣ]9ΐ… „žΐrMx?†#x’ζ›ώ^Œ3ό%ΙaψzΧ¬|AΊh>λ",ω“D–©υ’D_δMpm§,Π$ ˜ŒXςχvτώUiσ\*ΞΜθ"@pΞόͺ½²™ΌTμ~ε₯ΈŒ“Θί'\ώ~4ϋ+£[‹€2-Τφ|φ«3@Ά»ΉkΫG’ήά_NfΉ oδύΤΎύ«³΅΄ΆΣ-VΪΦ!ω$“Τœχ¬U%ν9€MŒ™Ό'α›]%ƒiΦΙ(\Κΰ–\rXœυ§ψNΗΙ†βόΔb7OΊ4n«\ϋ3N–6Χυi'M΅™3ΔΞ3ϋ±κΧFSr £iΨ{W}Z—VDαθ5«8Ώ~οΕΪ4ƒΝ°Θ0ύimΏΣuΤΗ₯›ωOG˜ϋΰδύjJα0Ρ’PwC“0ΗO”λMS<:]†—fϋ5 ·’=σΟ’Ν!ϊ/O|TΒ/–Α&Ή‰5Hίj6ή6ΞΣ―›<Ÿ4vΈ°}\γωΤ^Š5ύ~^Ηpg”ξwVU “ιœβ΄΅­*Λ@°/, Ϋž‘w',ΑΫk3δ–Ι5?ˆ΄yr56γμz€C 62½Eώ%8ό+­P} T·,κšTZΝ‹Βηʘs½Ρ³}Η΅Qπυμ·φ»nWeέ»˜.žŽ£―㚭§ψήyΕ†ΏιΧ½1(έžθγ‚§Z©qιΊOŠοnΜΞΆW6Θς?”Δ T}9,=ψ’tέ‡>Y«£c^’ kxπΟ~­εΪ¬_~YπU8η―hZT–1Νu~Λ.₯rss0δ Ο'’Œώ5_I°ΉΉ»ώΨΤγ)pΚVήημўίοA'·JΨy‡_aΦΈκΚμνΓΣδWfΉ!ώΤ΄°lw³«’}dƒυΐ­F“0ͺA> €>¦ΉοMsVΪ¬PΉ’Βqpμε?#‘τ­!βM-4εΎkΨΦΤ JΗεΑδΦ‘Z9Σdš”–ϊf—=܏)΄²Kσ wȁ#R<ΧA’θ6“xVΚMV).\J.X;ΨΟQ€@βΉK¨eQγœK{†μΛ"ΗύvšϋΙv–ž°”Εswd•εήά™ώ§ξs\ξ-ΚΘΦRεZœ\ϊ?ό$ZυΝ–s—‹s3Λ ΔΙχ€δ’τΰςk‘πΞ ·–’i—6ιi}b7Έ'N}Υ³{֭当«ψjΦΚ 1K%²¨ΖNβ*/h $zΆ›(ΆΥ ŽR2¬½γ”~‘UV—/ΊiCwΞ9¬šάό™hGπχόGς¬­qyllƒόχ¨Xž‘η$ώCσ«Ϊ7ˆγ½σmβ{MF؁qm',„γζΟρ!μΒ©ϋŒ€uΚ²΄Ψxι#π£υ*ο’-Ξ§16«€}©ΧQ²Zκp³¦ΖA rQΗρ)ΗαWtMuuu{iγ6Ί…«Ή·~J9Οu=…Α·ΆύΠύϋ0ŠmˆΗεΦ₯Τό9Μ0Mk3[j6 ˆξ”9ΞX0ώ%'¨|&-―‹b%{’m]KK¦žFΛψΟΣƒW•FޝΝqγυ;;ΕφY!”Kφ₯;νί+€I‘ΙθEm\x―J΅ΣήσνCΘ@O˜•όΗιΛ–jθΙάΚρŠ₯ή· Ψ[Œj qΌJΌ4p(ΛηGAƒή¨}ΎΣBρ‘¦2βΕ%CžV"κΧ>„η£αΫ{›»λj¨ΙsrΕΛΌξ§Τη'λQΨΕφ³β ΘžηnΟ5Ϋόκ"―ξ&>Gνˆ'πΤΣ2‚»«qŒVU‚y~ πήFoμυέε6jοŠ"Km7F²„IξT8uwcσZ؃⍑xΟƒΨί4?α3™΅νQ΅βi?βXm\KΖSχ!RΐnoΞ―/ΓέτΆέste#>vβ<ηƒRΗ }“lͺ$\HψσΤδν͜χ7—1Ϊ$λ z—˜BB¬2"sŸΏΖθ;Τΰ1Q›qz6”¦Ή£ΠέJϋxΡtω"{΄ωf•‡ξν—¦ηυ'°šT_xδε‰<εR}ꏏA_jž¦0?6»Ή“f)ΕE‰lKx£Xlv‹A½¨.‹κλ’Џ.HΤe€’VΘβ¦ Άž"Χd•• Ήf<ΪΌώ†©ifδkˆEΊ†K}Υ9VήaΣΠW“UZ­ΩλΑ₯Hσέe΅]Eζ« KβHΰ1±‚5<ςπΗΝvήΌ·»Ρ’™B|™^:)ϊWGαfΞΓΑπ₯νΚΔ–¬φμς±ˆ?@+™ΊDΥuIξ|;kz²Jω7'‘υέΌaΏ*κ©ϋ;že΅V™KZύΗ&ίLR3ΟίποΙ ŒσXOn¦ΚςνΕ»7Hδ8,‡Ψσz‚φ½7Ε¨o€Fy΄ΔΡΈω$οΐυ«Ί~œϊΟ„$‰mČσ@ά“~δoΜψΦRkΩΨμ·ΌYΧ<9¦Λzž™awΆ­ζ"D6™t8υ=ΕrΪe΄ZΝ³jMs4ςΚήdBg.±γ±^™μMtΊ³q«ΪZάξΨΣ&zl‘xp}χW96<%βKΘ“Ι±Ό“Ν†Lε#‘±ΉXφ¨₯μ«(]Τ«'>Yg³[Λ,€‘Iu'‘μ?ΥΦhšq±Πνb•Hš@―.G;›ζ9όλώΚ;Θ¬­Σ€—Q.Ou$1ϊƒŠλ/΅K]*Ι΅Ή ͺΙΙ'€ͺ;±θgFZŒ­ΉΓkš}‘%ΥΕΌ‚ήO8ω~P$HO>^ΡΧ<ύ*}I]jώIυbρΙlΨs±"9œƒΕj“qk·[ΧP £"ˆmΛˆ[}άƒΙυβ­Ν§Ŏξ9^Ϊω~h§\ΌύΦΔ1ΤV%Jοs9>mt¨L(-R;w‰‡–Q0 “’A§Ϊά΄Ϋ£‘ wρ$Ly_|χ±¬»/ ΎM7V²^ξωwΈςζΐκ­ΐ'Ϋ¨­‹Ή,β„ή]KωYc$κr}+tΡΙψξΦΒΡ5ϋdς΅ Icu(Ώρρσ¨ςΨκ³ ΌW6ͺΓ«I;=Τoΰ ―χ”Η½R΄Ή„ΧΔ?Ϊξ]Mbm•ΉŽ7U\ροΝh>‘ixͺ]>ϊ–%ˆL7uEž£œΦτsδ"jκεέUΡ¬&IUZe=ύrΎŒAγK;F‘šΞ+<Ε+žψΕh\‹ΝΓfWΊy픐DΏ3‘V zšΒΣ’?ڞŽR|Ω&žg ΰ†h‰##κ+Ά­•3«6SΓϊŽ·™¦`­r άω1ΕO’θϊ—‡u›Ψ'ΝΆ“ $‰³ƒξ­]…5}-Όέ2ωeώx^ Γώγ~Ή¨%ΈΤ΅»Ή Υg}:»J£˜σΖμTΒ­:΄ΉΝ:x…[lr““αΫ²‘ΉHξDˆΰŒ LOZ½šφe d,ͺŽ3Σ#―^3xU<WΔH ΐ€―`žΦίQΆ’ήβ5ea΄δr=Εa_GcΠ’ν©ΙxεRζΞΞΧ ©ύ₯$³rHςYNβηΰcλYžk{‹9ξεΞ«ΏΛ½’αΌΙDƒ¨ΙθΉ<Ζ*Ά‹eύŸβΫΛKζε£W‘‰&>0A>Ή«zž›sg¨WJ½ΰIϋ“¨ώτΌΆjΝ†Ήc¨ΒΫ ΕqΆς―ο#n2^†³tΈο΅ŸλQir5²ωΒ)ξϋE–ΥΘεΙιι֜)ήGmJΛ’ζώ£y>‘+hΪfSςάLW)n§ϋέ‹Βͺ[؏M€e›BšM±Jό›i 9ξ€η±5Τiϊ]Ά•l–φΡμU9ΖrXžμO$ϋΥ««Hu 9mncσ!‘vΊ“AΧ08 ¦x9ιυ3Lρ,zεΞ…¬έk)|¨ne<: o>Έ=}«rγΕ:u„—SMˆdΆGΠωνZΈ¦lη₯ŽcΔ³5ηΔ»K8ΖcXDΣ&r ΪUύIͺΦ7ίπ‹κSΪΜήiŒqΚyoΐΪηώy“œΥ{A°Ή{»―κ(RςνΓωm,c"}@λξj†­’σΓ₯Β‰#–i·£ςyΑκπ•ο7τ8λΣS€gή'”λp§jLεΖ{nΑΥ―Θ±k>&yjGkΕΕΑ}gCΧΑΝΚ‚l₯#nxL„c­ΐ@½ Σr?μ:μ4α·KΆθŒ±cŽŠ3ΐ¬mn4ΆΌθ"Α,r£@aΕo"μ· ½bΆ’gŒm#Ŋ&π€ `ω @χ?¬ι“¬Ϊ}΄‡ψνγ?˜£X΄[ε=<‚9χͺžo3@ΣΞz[¨ϊu¨―ρ·αž;K6–VΪ‘)ά@Ξ=Ύ¦‘Σνey΄/S°Ϋg€ ιυ=ΝGεύ»SΑΫڐΕOG”ŽžΰV¨?_Ζ²Lκa·/ΜF~Ιρ9›’έθ™ϊ΄RƒWOŸJζ΅t0ψίΓ—@|­$φ¬}2?U’oPkC€Υ΅;}IΊΏΊ$6θdrέ0?Η₯yΞ‡βΙom€ΉΣt}NςζαΜ“:DδαwΉΖΗN•³3Β[¨‡ChΦrβ"ξe$yŒ;’œΰw<֍¦€ΦͺY˜ @ώuUS΅Θ₯8Ε™λwγKΎΟJΣ£=iZβAψ(?4ψsRΈ•&Ύρ. σ†(«'Ρ@ώuΣ=ιjc¦ΐnζπι)Ά]gVsίtΓϊ-ΉŠ(L΄Ω jϊοˆ,rΡΝ±9 ΧcΔ‹‘FΗψ§Γλ₯ψΓFΤδ_ψ–5ΖΖlq‘ς“μOZ‚MKUmr=[CΣ]¦Xό›΄6ԝΓξΔΦϊψΚΚ{ 4οhwΠΪΘ6>ψΌΤφ%}ΑΗεΤjR„βtP‘Z_iΊ; "ι8`™ΐ\„φλKβυK] _O2Ζ–ζα}~£"Ό‘όe‡.n΄›B=VΣvΫy·±HD„ϊr=x« tϊΊΑq¬κI«I1ΔΞ¦½‚ާάΥΥΔ(B‰o:•ωι4e΄χΆρ)“KΊO:Εq†h{uΦ_ΔλΔΉώΙ°9Ωo#\ΜOE!0„γΤσβ½3@²i΅+ΨαRΕΰΆEάĞ»PtπεΎ&ρLΎ+ΥΔΣDb΄σΉ?1τ.GSνΠVX*kb£%r!‹¨©S”*KήGͺ|ΆΓ:†ͺΗ-u# υΪ€(ΨψŠξi‘‡FΆ‘’kχdgc€]Ώ/”}k‹ψcXΩψ/μχwΓ4W“πξΑ`G·5Ύ/#yζΤΪU2‚±»χΧ­g^Ώ."q—s%NNš’ώS‘‰b‚Šό¨γPˆ‹ΐU <ΤQΞ$Mΐό£Χ΅ ™ m&}7 Κ/ί»F0reΥ^εΆ(“²~‡­;yΑδρΧΪ£r$F\δAΑυ­ω7QcΑτ¦9<ρUν¦"NτωЊ“y<δΦHc3ΈϋζΉέVίν:ΠΠ³GΗ<”ς Œ+’<ŸB+˜Χ.儏GŽΥό«Ώ΄I"ΚyςDC6=yχ4θ·±dԊ’±₯©άάKw‡4Wϋ‰›wr&Ξ6αWσΡΟLτΑ5jβώ-Β1ΰ­>/w›u)ύέΉΘ ΞΗ™'$zυΕgY}—Β4Ž —^Ά‘[5̏χn#VaΌžξXŒϊΤΆ» ΪŠꚚC+Ι§_ۏ(ΜX‰]”ν`IΙΑ 9λ]ΥdκΚ8cO’6ˆjZm·„ ‹U»Sβ^·—d·Qoi$τ‰AΒ"υ'§š£maύ‰βO xm ΉΤ­n.υηAςΔζͺ>κζLθ3ή’;™΄mNe΅ «ψήζ/τ«ΙεI-τΈ²@Ξ@Ζζ#'ƒƒbΒΪ?ΕΎ΄Άy'‘’φφκςQϋΛΙ<΅_5ΏΩ,Δ(θŒd’·:iΒJ7g‘ναhΚˆ¨O Œsšδ`­oο,d$΄nBέLlάϊžΥΩmςψΟJε5ΖK]rΪθ°TxZ9ž>aŸΓ5­_yXT˜ι ’Ή,‘Td’xZ49Ε½ύδ_4FNcϊΦ2£κ{g» -σΊ(™½r;VξŠϋ7ΝRΞLgΙNi»#vΣF[‹/Ψιΐ"ή‹¨7r0Κ ¨άk·gφβΉέyD>&Πnyόλ6>ϊ­tΆJ|Ηψͺβ½ϋ“-4¨“Ba”§‚ΘΗ‘¬h‰Ργ΄f&ΚCΆcŸ-ΏΈOqι[xΟSQ³[λ9!c΄·έn»Hθku's‡±Ζ{c·₯`ψ΄nΡqφ―ΐ=ΖΦητ&ιΧLmtΎ]νΈ 2žώξ­6ύ{y!qς:27ЌWDͺ&Œα™ΗΝijΛ;yƒ·Lwη##€]ω96WŌκj &@mΔχσclΐσσ/ϊς+FΖΚKΆ[«₯ΐ,|¨IΞzŸzσZ²½ΟFRΉΩ~β‘FΝͺΣ‘­ έ{Έͺp*#yŽΚ±§$žυbεΩ-₯™—n#.ν]p•ΞYndi’­Ύ‹ddσ7°ͺ’y=*T΄–καdΈPH)nWλοF‰iiR‹x·΄ ΕφδσΟZΊΩ€sPΝbXΖTg­aλL·t˜ˆγt„g§έΗυŠ1˜—5ΚψΒ/νέ'IŠB“O3»ΘΌ4p„ωπ}ςρ«“ξcξ§½πμ7ιVšŒY|γνηhaκŠzzšΘ°ΎςJ­Β2ސ=tΏvΪ6€ΐ«ή’ωC€±Δ»±ό«“Π$#}»ΰ΄Gwu=*a/u…EyE†9s‡muΖzQMΣξ…•Ž΅vηMΔψΨ"³!2άπ*ΰ#ΒwύΩovΚέ6«LΝ ίQlާΒ֍cα»—‰]<ιIώϋεΞ:]Fζζβξ=2Εφ\Ξ»ήOωγ9o©< ΉquŸ₯ΌσΆΘ-Σ{ΨߏΩI΄—Χ‹‹»ΦIž±―;#ϊŠΒšζ•Ω’‘bΥmτ.Ι!ke*›ω ΞNOsžkV1‚9¨Κ,±δ”φ<Τ(^ΔόΔ½Ώ©δ§ΧΤVΜ"ΞOΕpΕu¦Kήk#υVΠΣ<>Λ=νφ²θZo±AίdkΓ·ό Ώ•7Η“:kš$–§tβY"B@ 9?•_πΝͺEαm64r₯-ζk$Ά]Σq9ͺYJδΎ'“wƒγΎf–-£ίzšΥ·&ΆŽD' ‘τΘο\ξ©#Γ©iΦΧ‰°I{ό.ιυ­&½΄Ο=ΥεάqΑ»ƒ‚IΪ1ŽIγίNi=NJτά—ΊXΥa$f:ΈˆΩ†ΐΨsτ―?·Σ,4θςEe=Ύ‘r]mbΉ·ϊ@\‘e'€Fν τ5ΤXΗ6§všŽͺ€kwΖ \π[ υνSψHώΩΠη_dœ4rƒΜr ·ΰ@όλ–΅KΛC\-GsjGΰΈ ‡ψΊ}θUe|Ήέθ}+ Þ#MoI_΅—Qώκκ#Υ%\κyZΉ.­§ιp“s{ "tήrGΆ:Φ*NιTΔ~ Τ“NΠξξ[bŒœr{ΔρψΧiαΫmζ ­VΤM§΄ŒV'mΙdμί/‚ΌώΥ»ΝEόeβxmbW]>Ν…ΔϋΣnζqο“Νu7‰Φ²G2«GŒ2žA¨ϊΧ"»„C¦΅Ή₯±ˆς€:ΰ ~U™©3άxB·νζΙ/?μΖqόλLΦ΄ύyτU/f’Ρ€FU.F ½£ΎΦ|=6±e{gq=Ή‰ΚΏή@‘ Χ|cΝti^ΌNƒΔγo‡58TmΞίΠΧdΝα§qξ#$Ÿϊδq]…Τ«-F”²°ΪKwΟσ/Nή4.<衉sκ¬WωVi˜Νάο%’V‘,,Τ5Ρ\’~μ+ύζώ‚΄ντ‹x¬Œ,Ύvου*ξ.ORsυ§iΦ°ΨΕεΗσ3|JzΘΗ’O·₯hnΟζ+šWθmΨςqc—‰uρjΆVοo$°†ωC(άNΆ+²π‚ύΆΖη_†ΈΤΰŸυPŒ„ΫŽOΉWR&3γΘyoϊTΚ΅&Ό]"έ.-ηki°«H₯„ψ&ΑΤρ]Τ€β΅8λSζŽ†Φ΅*Iγ ΫΔFεiξJβͺ.½hΉžΫ4Y_A*}ΗU>Ψ―2mβi΅±θΕ:R±ΥΨ‘ΎΦ^λΈ²Μh½)1όt16F:ΪΉ]W4«scxΐΫ•Ύ`[“Έv95£γ]Fά’κJfνywΟ¦aNžœ‰li95 ΛόY«FUXΡcE o3΄η­VΣ<;₯GϋHι‚ΩXEoΊN8Ξοη^€bΰTζͺ«ΌpJιPέΟ₯Δs}ΰ§τ5GN%όog~Xm₯ ŸοΠ֞§κ:-Ε›ρζΖP“Ξ3άώ8¬? Ό³Ν’\’ξ9%†pύ¬[[yϊYΊ·€ΡΚαϋΔΞ·RΌŸtZvŸΆΜΌ1, ύφώƒΉ§>“i§iΆ–(‹$Ov’S'>i`I-κIζ¦Ρ­£΄΄v$½Τ§uΜ¬2ΜޟξŽΥ=ιβсϋl}FqΑ¬pκ)€Ž‹i©›³xJ`²4“hE°²Iσ5§ aΟS‘ώ½γ¦I| }"0dqR;εΧ°ΈxΆ83ΑΉΘ=ˆξ+Ο΅ΰφώΧN™Ώ°mdŒ•~TΊΘ₯–>ϋG§­zΌφVgθ'>h›zυΈΥ›$€¬ΙσvΓΝnΕΉνιΪ¦nϋ’Φ§β dρ•’ωg₯ΰR𫞠p|=j¬qιτΓU£šΨΤVήksς#Ζγi ΐφ—Έ¬ŸήΩ€Ϊ+Op²]ω™°UœγσZΜjΨι7ΣƒQlΨoψušͺ{+3Š­ν9‘•¨x~γBnτ-ZH#IΡ£΅|Mb@AΙAΪ―xJ=@ψͺζη^©κ\†(αŠUΩm•Tΰ|ΑΈnΌTΦW'RΥβ9#΄²$$rc&sΧ?ξŽ>¦’Χζ}_²ρ$!Œ8j 9ΜD­υSϊWq‹Ϋϋ7ύ3­S“ΣλΒζΥεΌ‰ΰ1Όn‘·!°'$u5fΦPΦρ:0 Ζ ‘οž—]ΪοŽUxέz π5GJ‹Θ³x8ήFŒaΘύ i‰ ₯i"γŒΏZΪK₯Ϋ­βΖΠΕ2™<Α«άšζ΄ΏXκ—λ&Ϋθτ=γΙ±’wa9ω™ODιW5ΫθΌKβX΄ΈΞlμΫ}ΖςΗς«WWŠ o-ΊδΣΫ§ojαΔβ§Mͺqέ“ΚήΗa₯Ό+xUD ͺ°ͺ–€?-„ΩQs€RΓ½]D\YέΕ«ιΝΆϊΉΈό’¦y‰ύŽ8τ5ΙKocΡΊnQΠτΕ|*™¬-ΔΆ> Ά[9YβX‰"n2}{τ5rοS΅Σ­ήββU†8ΖηfθΎΉ5κ(]£Ο|]mn”2]Yε—²WΫΏSm4=/NΌŽχμa6 -χHΟ@ΫzΟαQΪά>£ͺήxŠθ•3―—n­Φ8θ[­X’ΰ:Ÿ-“ngςΝsUžΌ«c’ojΎΫyγUŽhΘ³ΘϊŠfƒyŸα£pαœσ‡-ό9?¨"ΉΛ]CΑσ[ζM.π‘Γ3!v ߐ޹ͺjΆzΜzP½K?:6Έ³‹cORp>•Σ†Œh;œΥSkBΝΙ}Vς+ϋεo³Ζίθ–²„8wΟV=½+KΒδΙ¬k/Ϋ0‘Ο¨LQTn$%]vIYOoρ‘ΰΌk2wkΦL" θ―4ι£—¦«·#£θ³`g΅RΆω΅·Α!Hˆgž1Ν_s΄Ηpͺiޏ(–’³¦p?•r£Ρ¨hØ01{ΧΤW;―G³ΖZL€γΝ΅–Λ +£F"Ή³>~½ ΌήΑΖίπ­„Š—ΆοT‰’—μΧqψf# βVΑ㊞Ϊτ<3½y3Ϋƒη¦sŽ:ϋƒΨΤ·ΚSR“;[{‘>Ϋr\T3[%ΥΑ•ς>Ωα½zΧ₯†—ΊyΈ„œ•Μ©’X―ό=<ΓmέLj,ε#Ί†8 |W’^)²»αsΑε\€:)`UΏŸΐΧ˜λΊ“Ήc¨‹}ώΑ¦τ/όdύ(―h‰v^O ΝΑηzσqΟχ©ψ} μdίΔ·ΊU̐D±0Rr2 \Σ―γ“D·»•ЇsΖIl`€=r+ κTπ»ΌOΎK X U^]XσεϋOAZ^΄x­K\€ν@r±dηπ=j©±β`€‘jζ'΅‘§M€‘Ω]Ÿ_SY>›o†-$žpγρρ]ΈΖ>‚Ήί Ηειmn@GΉ–2³d:šχz“F)BΘΤ³‡μπͺ½χ˜΄y9«EΎjˆšžO76bΙ“\·‹aϋdΪEΗη_‚ΟœEB[ŸqΗγ]OπΧ3«±oιiΩm'ΌBεT€1Η²Ηb8γQh:"Žƒ_HΔΊΎ©&ίυF8AτrSS‘¬ ™ΟπΥo Άϋ­c=~Χ²ŠΉΛξ›%y¦5JG4Φ›"ΕόQT€βmμΌy€.Ό>κ εΰ‘qŸ‘ζͺ_ΏŒ†₯k₯‹ν7aŠ:Α'ξ£zF {gS^‰…Ή!GrOw&Ή;’ι΅€NςΝςZŒύΛt8ϋܟʹ!B—Βu,UKXΝ΅πgŠ΄°ΏeΤ49κ³ixά{’Cd“λIq₯|@Do-<( ι‹g>υθZmμ:–™oy²G»oR§ΈόκuhΤ‚ψ9=«§ΨS“Φ&OV?hωΛPπ.»hΣή_ΩΊI»δ’πAΏ, ŠΣΒ7· H\ηž8―£ ‰nμ¦ tΈάΚxΗε^{o¦[iڜš-όY‘m₯$ƒ$]ˆ#Έθ~•­IT‚χ]Ž*Šη±Κι~’Ω€ΆΊ€eX²«Œγ u­‹ K™LΧvΖ5b¨ ρθIώU6‘e}c­\Gmͺή¨B‘w²°ŒςHΙόκΜ& ΨΖΑ~ΜB²±θ8#σΞkΝ”ϊΘτΰ§μΠΎπ†…¨5έςιιδ Ϊ(³mN3λšιΏαπθM§G³ﳑψη4E·ΒVmŒy¦I?9΅/§ŽΖΩε–8ΤΘωμ£όk¦Τ£„δΌωτg}’ιΦ·bΟK[ΕΏ\]Θ#;»Œž=zΠ‡ΓŠcUΎΧ5)ΘΒ]Wτ\ŸΞ­θξΆ_έ)ϋMσyϊ’ }ΕhΘr(σ”‚p3Ξ)ϋ:kμšΗžί‡/…νmΫ̊ϊυ!n@Άbx?LΣίΓΦqŒ½Εζ@ΙgΎ~ι[.Ό’ ΟP?ϊΦy°½ŠM–ΪŠsςΗp›ΆLϊT:t_ό»ΎΎΡφ"½ΉΫ©κhŸΒ‚`Hϊ’3\Ϊh²Kβ©‘ώΠΉhμmΔm)˜<ƒ$μ’γP–āw˜Ω ?Εr:~Ώ”ϊ“M§jΙrχξ y œœη:RP„]ωFεQwš»°6άήίڜζ .W}IBsάr+6O΄ς Ϋ½U,ΘΑ[Νrr₯zBuΗJΠ[rπ‚ΧGL·'„dœsŒ »k‘iΡΚ&š3s7Ν»c+~N?JΞ³Ά‘v8MκΡ‡§Ch–Ιg ιΰΓnXμνLqnμd–Q—δwͺך^£iρ OoνΛθξtηz4EaUΑeΑRΙ―F·"*Η΄(θ ΰΒΉΛψόΟ‰ZbηύV3ίNƒϊTΣ‚„hζΪ±|ι^)Uύϊ cŽ<ύ,ύvΈWΔWϊ֜m!Χ-lo!–ν[~žI…RpQΞόkψVΐ8ΚΈH³ψŠ8€l%΅ΎμžŸΧπ"ͺ„[‰•(]ϋΕγ ©σo>ΞΓο$±²²ϋZŒό>ϊtpRέζαΞήηΦΉϋω’#2JNΨΣ©&»o X¨π½„w ²$3–Py$“ΪΉp3•Dεk€ccxΛYΣ!΄ΣnΎΩΫ}B 7†Θ ¬N;`Φτ~+±xcϋ¦£tΈxνX)χ±\ώΉ’ι’ψ‹F³‚Ζε–_΅NUΔqŒώ­Šξ#\(ΖG•uΕ΅°΄‘™ Ηm QΗΉόi_ΈεΫEΤ”AώFΆM/ Υ6Δqϊž΄ ‘έ—«Ε<'Ϊά2•'•lEΎ%υ¨έlοb3mω‘o–D>Œ§šλœ‘άώuΒxςήΤ[Δνd·/ HX­Χ!ΊϋΦn’΅˜#2VHtΏέηΜΠνOηŠιm [XA$§c δϊžOγ^uzuk-Q‚αξΘΝ+J nS†=ŠκSΔο³ΟαέGhΰΞ? έk RRŽŽζΙjvΦπ΄Ν³¦|ΡΓΨzυ5jμ4Ά²‘Ξ] ϊΦ^ “nωt-mδ·”ΐ51Όc¦@qt/­Τ“=£Ώ^+Ί(ζ›44Lš “sςΐύW *Ά‡ύ!kΒΪ₯„ϊ)ήΐϋ'›8ΘRηhΗ«ι‹6[R³pqΗλY»šΕ*D:ρ\μ]ψΫUΈa•΅Ž+Hσό?(wύX~U―m¨Ϊά’¬–ΆΰΗ '―¦k3L]ڞ·* ’ ώ•UoΘL-Μqdk^ˆΈεπ{ Š3ωΧ3fw– -½ΑλΦ׏n<ίΗεm4Δ=HΩ?˜±!ω<£ύΙ—πζΆ₯ά»œυejΘκΒ~θvΖφ€Σ,W[πΦ£fHY&T'ψ[<Μ {°Xg=Œδφ¬ Ωκχš1ΈΣ5dŒ™\˜€A qα†2;Vxk1Τzh^²Έ> ‡N·™ΘPMzŒ8σPmŸψΝωVΊέMαϋ“ζ»>•#ποΙ΅bz1νXΎ’φΪkΖΎ†1ηκl Ρ6PΆŸ|dzWbQe’`HΘΗΈτi>Ii±Σ¦‹qΈu §ε<ΥMJϊH„vVΈ7w ‘χ»ŸaΫή²’˜ψ\ώdšF~V#q·?έ>«ž‡΅hιPI™/ξΧύ*δƒ,£ώi*–ΠΉu8Ω[ΩψΛ@†œ™Yُ,vrMY5μέΘΜ –Κ„d}θΖγΧϋΓυοG·Ζ4Πδϊ˜Αώ†³fΤm΄ή‰srΫ–;uR7'’υό{Wv IΒμαΖ)ZΘίΌΤό?­xzφΦοP„@ξvΰΒG*ήͺAΑΝqπ}·ΔCqvUνΰΐ·Yί0Ž<Φγ’GJ‘‡―5KδŸXb…yKσŽήaΗ?ξΦ½Γ\°α½@Ζ*λΥW²5ΐα₯kΜΠ± -Ρ±Ϊ,Κ2;λτ­‘eͺ˜Β©²όψ―>ΊŠI¦ήΒQƒ•aTϋΏgβN!DΛy9 8ΪMέλ(J“‘­js‹ύΨψfζάΛ«M,o½•nm’‘ΣΝS€F2Β³ΰπζ.žo­Υ~^2Xομ€ΧA?"{?Κ™’>ψό<€ύύCΜcώΡV?Ξ²!†M2ΙRkW„(Ζ]λώ5cKΈ)—!ΰ[έΖsΨ|ΨώF΅ͺ’υDPM+3Χ£bH8ώ•zσΝΑ›ΥF:Š$ΐη‚+…­ηΟόM"Zκ~(ΟέίˆήB«…η‘§ύ‹G…΅]bρPaΛc"žosή²5u:‡΅IpY-c‹#¨σJu?Aόκ¦Ή}₯ω2XΝplΔ Έ?A]΄΄W0”W.¦±β_ x—J-ΰΣυ[Oš9%Œό€v8α‘±Ή‹! ύγj·²AΫfA˜γυχ=ΐƒHΈΉœI¨FΡΕ|°H»Iτ-Ηι[,ˆΨΡr=ξϋ}+Uu5ʎ|6»gK§iZ~²HΣntςW‚˜mΛώπΞkb?jΉςβžΑΨό yΡ;'‡ž)ρ$d«§β;WG€xσΔc"3kΐ8hό©€ϊτcJœ‘kVUVΖWˆ<€K%Εό.[l6ώS)žqΑθ:σ[žπ4zE­ή—}₯έ«όζC‡έάκΟxΏΔΙ―x‰έgΆXG3ΔU£γœ_j³ΰ― Λzιey{ί2¬’CΧ“ΐ΅N Fn_a~§x|)­,{Bιͺ½2]Έύ+'S…4HΧϋ[U·aO°Mcλ8ρN μ‘mc?Β>y±υ<ΒΉ˜νζύ’dΉiή–UfoΜΧXΣ½Ρ¦Υkχ†“Γqy¬ΙnΣGc|ηΝ“χŽ„sŽΓϊWUk«x^ίΓ“x~ NڝWœ ύA,zœγšγ'‡νΠyN²d}Φ(ISύkτ@] ²I»?t)?vα«ΕFFUιΚχG€δΈ-ξ~ΘI΄ρ»‘ϊσQψ~εm|IwoΚ₯μhŒοŒ,ƒρ5ΛG‘αύ2Hn-Π€|€γ˜Iυφ?‘«Λ<‰¦₯/%Œ‹>R½?₯qΚ TΪLιΡΒΗ§ΌK&Χ TΑώ†€ΤžοΞθ]f9?)ωU{Yγ–Υ%ƒFT:·Q΄Œηςͺ΄χζ];HeςΙ)%σͺˆr|ητ/4w.ΆF–‘y.‘pš>+ d]Χ(QΟώ΅•qρ V·ΠKRi^ET€Ά άx힞ΥJOŠΪΣ3Εkgk)S·ΟRR<AŽk2ΗMΌ2C©O‰X€2ΗΚΑQΙΞζ8η©ΐν]u\!#Μ„*U©ϋΓ«²1XZGrYΜΝ՘ςIχ$“R\j²ΪΌRH₯q‚¬r=Eaλ–σοΜΰπ$~5·§ψίOΑ]_Kς€,  £Χ#‘ψŠρΎ₯NSζlφjU©Ω@ΰήmKE&2ξμ[F؎AΈ¬c<+gŒz|ϊ‡Š"6ϊρ$‘Φ$PΚ –ΐΐηŽkΥ5NΧQπœ‰’έΫK_τ€ξα…y§…΅1kβ=%ξd?`[υςΩΉΨ§+Ο¨ηπ―mΒ…™ζΒ₯YΘΣ΄‚ΒΥ`ŽHΚ¦y’z’}I©WRmh »twt-·σΗ5θΪΧ‹<+αΧx ΄ŽσQΗΩΩεΗϋ͌/Ԛβ5οψƒ_‹Ι]Ίu‹H°>ωΘτ-Œ/α^eL-4ω€ΞΪx‰τΚj—ΣιšΤWŠ’ƒ#Έ ¬Dz«n£»O ι’kZ·ΫΨ°νy€·I%#―ΈΧ+DBϊσόϋΦUμWΊiΕ½ΥβΩƒ«+―’OΠύΣϊVψB~λA^››ζ=Q΄’(€maΟO­rΎOfΐ·Ši’°—fGσ[OΌΤ Q/φ΅ο°.dκ5―αλΩSΖΪmΔ\G%›Ύ1ΤLώ+]ΨΉ)ΣΠʜ,z”Ρ’αΠνuθO#‡ΦŸ Κ±ΪWd€ΚΟ4ΐα°sŠdσZΔT\0SΧω‡ΌgάιO‘εϊ˜Ϊ`>οφΒ=#σsΟΦ»λϋ©mμΙ‚6’c…Š1όRΊ+Ξu—1]ή(;εΈ3'ΝΠωsψ ·«]&«©Εbn˜ΕmΟζ‘ϋΒ1ŒƒΤ μŒy䌧XάνntύM#³Ώ½·ϋpo5ζ‘€g”Ÿ˜γ;}+ƒΥŒwWK’ΫHΝl=Λ(ΞΔμ™οΈγΥΙκz<Ά7m²8WvάTŸοΪΊ+ X΄ϋ Ap9-ŸΌORklMKFΘδΓQζΩΦΪΫΟpα!L0λΌαWλޝ&•¬ž5m=PΜqψW°ώπI k!ϊƒšΪ±ρ.·§`šœ ηBK―CψםG A;³Ρ›«iκ^ ΉKgΌΌ{'š0\Μd‘/qΈcŒzζ²τ­%υΈd—χQ[ BύŽiLΚqŒnV9η·΅jx«Ζ֚υ”zR#Ω»ΏοΦαvQΞάη'Φ–Ϊ±¦“DBJ₯ΈtνŸpqŠξœ”d”iB£’Ϊάν_ΓΎ*@7YiΣγ΄R˜ρψ0 Υ[½Z·…―ŽŸ¦Γήi&ήGԁŠuΗΔ­Bβ?ψ—ιΕ=&Ίmˆ=π95Ι_ꚞ«v·Z½γ\ˆΞV01}qN―± =\OΓ1-ΰžMZ[h΅;h#•‹5ΛΘ "‘Ι-θ+―ώΩ𦙑>™e+\©R U$ολΉ›Χ<Χ)u€e1%Κx&«΄4ΓlmιχM8₯cWκvsΛέ…½άm»X8χλšπ9Ϊ|@„}ΫςίχΤhkŒξ&7@ϋ…¬ν…ξΫΠϋΥΥψ:C³β;vώ!o:ώ+ιXVΌca$’ΉΠκ³4ξ#ZνεF?ΪlTΦ°­ΌIŽ"]™>ΥJ<κz™NmmIŽ6ώόœ‚}ΗlΦͺ¨ γ©ΓmFή‚ώƒγ‘΅ΖG(ΘλμC+£ˆr+œργΊθΛ y“άE©υά ύlˆ{υθβ― (κΣH žΉςςMd^\.›c¨Κδ…†VeΎN@όsŠ©Eo}₯κRjLπέ"”•²ο—Σ¨£S•o5•€-¬^rύlaSί*μ‘&Ά8+ΣΌ‘Ξk6RΑΰλΡsΜςC$σŸϊhΔΠ? χ.’‚iog”G‹Ξ’CΠ.&Ό_MΪ€‡ψ­eΐχΪkΊŠεu_ψF-d ΉΆ[™θε ¨}‹sψW&6•ηͺž‰€\Σ¬₯Ύ™υJζΚ6Ϋΐγώ=α$ΰcϋμIχ«^ΜVSΏό³ϋL€²ΐό8­bW !8=OΦ¨xc?ΨvΝΠ±rί]Η4ΤVΑRVΤΠwωAΞzsXzY1κzΚ6έ‡Η¦ε±4~Vvέρςw­XΪaέ¬λDr<Τ_Ι*«AQ’lΦc–§“Fήh,y8¬¬mq$ gœ d“ΨW-¨ΛΏ\Πo€ΒΚσD?ά)ΗςΝhήά6‘rΪ}»~ν?γκQόώyƒάš§(mKCUP‘gl(tͺ)"ρ“U|7ςxƒ[FtrψΡ4’7ΘJͺ ž3ψ~4Ο yŸΫΊΔ“ΩŸΛω?Έ  ­\Φ—μt­ΦšE=ΊY’GŠ)zfŠiŒ½_}μQιHRKγε–Ξ Bη?ˆγρ­X-αpΒ#DU1χTps6“ά.«uwΐ˜BΫ r2h݌ϊΦ’ίΙ:%ήӟΈΐgσ₯ %©[‹’HΆκ6ς‰otxΰ@oλW€qz q[Μќ1ŽΡnζ²lokΛ ¬?9LΏJޚς+Œς³*‡ϊz’“Π‡MŠ€XΌeΤͺrη±#š§iPk–ήT咞&ί «χ’~Μ?Β’ωZ`–φf΄A%›J‚sσιXίΫKtγϋ"ΓUΉ\ΰLX’~ny.Ϋ1«n$½‹UHu‹x’f8ŠιΥKΐŽͺO‘¬ψ˜Αγ…†E*$±e!»•!ό‰«’C©ψ–ΰ[jzΆςŽZΪΝƒ:ΌψώUͺθ/Šτ»{KPžΦI‹Λ(—b( ŒžKΦ°©†·ο:SΔ©/dwžG‹Β:t#r‘_@I?Ÿ5WΔ@Οo›8ϋEΔi! ό¨NNOΎ+:ής8‘ƒKΈŽKyγEsm`;Ž™ΝJϊ.–ͺ7Y#Ÿ9Œ€±8=ςkŠXˆJ|…ϋ;ΖrlJή8j­Λ„fR?vẊgφf– νμΤ Xg§5Z[-/ζX4δY0GξτηγλΪΊ―qήƘ8^XcƒœTΛ!c 'iθςsk2φξ[(UbςvΙ+tνΒϊΥ{Ϋ»€O±f[…]ΣLN|…i&sΩyΰ!YJ€δϋ›Ή•csw§άΑnΧIqmq·¬†CNζώ%<cν]U‰o³eem»Žή3Εsι§=ΌQi’²K«\L.oεQΔ§;Gχyΰ~uΣG[€¨ͺπΏJq‚Π§‘zέώ\>μϊΦΝ»βtGώ Μ?ς"ΦΤl3σŒzδt¬8€“βKΰσŽΏψτƒϊ rvd―ˆλwe~n1ŸΖΈ-]ΠκZλύΟ3n}@ϊΧw()ηΐϊs^}­Β“kfΤά‘ϋD«Ϋ$|ͺk›―H§ΉJΒΝΙmJt"VbC,ΣόMv~mΎ°Ψ‚}2zΧ"Φ34¦kK¦‚CΥO)τ"΄QšΓΑpBΑ–Y΅ΑΘΙo_Ξ« V-Y^“ iΕη‰tλφιy4Ρ'΄K ?ΉέFk†Β[ίψiPmN±lΖΐ滀h­)K™\»Z6!4΄άsZΆ nWρ3X"λ\`ίr< φv?¦?:νYr6τΙΧ}"AέΔν΅|ηy}1ϊWrφV]GPKO·κΠZ‘˜ckœF@ύڟ©ηπ•οΥ@ηΜη?ZΘπΊ8‚κκνžy·:τ1€0©ψ lΫ]&IbrMrύΫTΠέΩΠB8υφ¨oξ‘Ά·2O0Eθ7s“μ;Υ;QΕΘ±°‹νΨϋ!λ!τφοD:g’ΒξξCwužeaς§²)θ+ή¦ΩƒŽΊ”Ζ‡¦κVν$Ϊd)Ή‰bPΰνλU<7₯iΠ±—L²[ΛLDμbSΉ…²zδWR€*)Ιγ‘&±J|[jγ \ZΌGύεΑhž¦‰ΨΦ}H‘Ύ›j@θ| όG5…dια5‘ΫM½}Π΄ŒXΓ1ΗΘIη Ž3τΒ1Έ)ϊV-ξo©ΝͺXήD$†Vƒι΄AμAδΥ­X«jgyže㑳⦀-ajΐ‘Ÿl…­εΘ+a·#“Ν3Ű̟'‚ξydŽxΚ_’€|‘αSΌΈUb Σ;βBΔεΟLϋΏ…B ‘„γzɚρύ£XW°€”L΅ΛΈ;F=Xγπ«Ϊ5­₯œΊΌmn1Ω#\ςw)8ΘλΘ­]3MKΣc·Q–BKΏχœŸ˜ŸΖ’Πα[―jΚFR+x£η»0'ωR‚³²5θaθo6αm*K³ζι“"HσM£;ξύSž½΅vKmopΤΠ«£###§­gxDπn–’€SΘ0Έa‘ς³.ξ8ͺqπχ٘±Πεp±HΗ?cr@ηώyžvžέ+š½6ΥΠβυ5δΆΐȼς,―Έ3γξ;Σ/υK=σ%tfβ8—s3φGδ(½–wcmd@Ί??šά€ χaί>•‰¦Ϊ,΄Σ{ΰvΝ4§sƒνθ9βΉ'YB:7ΖnΉ§ͺ›mBςβK{[˜δXΓ+O΄ό€“· Α­KΌX,žύzZ‘ύ• Ϊi74ΥΊpΞΩ ?Z―›mu’ΐ\}ŸSOήΗ}Œ•v9*ήͺzbΉεR ry"ΝCΔ6Χ62ΐ±J“+)T–1ΑΘϊΠΎ Σmα›CfQγή©Yάh·ΆsG­ΩyzŒl¨rΔΠ©Aμk2ΒMΦΛ:Κ]>¦ŽΘΒξTΐγ¦9­£>te8›iβK9 ‘mœΰ€Ψφ#ΠΥ£βΝ3:N£Υβ5’u? άΕ$wšn₯δ•9G<\ƒψΦ’4Ά¦5ifˆ‘#$¨ώυΖ9¬ά"Μγs³*ΡΑbδ ^»γ Š― ~œ— Zαcθ`gΉΝai±xrαmzώωεBBC ? νΠ|Ηޝ ·‡§ύͺmAΘ ¨NnέiσF(Υέ«Sx›GΊCΒ~ιIόζΉ­WΓ:cΗ5‡Ά°I,q”vSžϋ§₯VΣμtiLΆΪž«w ќBνςφ#ŽMhYΪψvHJ\jwΏΪΘ6•6ΰ}€ Χd%- #™ΥiwΡ^YΫΜ―ςΛ8$τΰgρΝE¬j°ip n% ΉΫ*ξyϋͺ;“ϊW κ: Π‘Ά-δ³Ό‘Ήάΐάz‚>cRZΖ’ΜσΌΖζψI<νΉΣž€tQτ’w#Yββ΄[—­<2—Sέ^xŽβξ#u3;XΩd:όΝΐ+a|Iα½&Στ]"gksΆDΆ„ ΏΪbG?™¬λν-tθtΘa”kR.%vš%ώ)8<ϋ{‘ιQλΙαΙ΄»k}ڌ2@Ty†ΫŒόΑΉω‰ηŸZŠŠχnDbε©ͺή4·w)…w$€ΰœF@?\Υ‹OisFΨΆ»‘ΓΕφcΉϋ@:ζoυ=&{xντ-ςΠΖ@ω †!‘Fyoz΅ͺ?†n4Кo‡υ{[δΗ—}Ό'9;Θ˜Jζ”)₯EXθ—ΕZ`Mώ]Γ7χ$TrψσIMρωΟsΆKv.ΉθO`=Νsύ{ιΪV©€ͺs©OyΒόn9>†“ΔgΓπθφ‘iw–²A"°Ύ™qφ˜™€}δΝύΰMgΛNϋ—ΘΩ~ΫIpͺ4‹Σp§„Ϋ8>Ώ7ͺ€_ΨNς[Ωιχζξ27Ϋω ήηQY—’ψzMZι^»’α€Ϊ-kю2Ωc–ό8«e§κ:RYhΪ‘υ™έρ…r«o9Λξ+«κρ°ΥN†₯―τ™’d1]¬ΡInm˜Ιχ·‘οBψοH2yik$ΛΑm›#σβΉ«Χo΄`ρΈ?Γ[ϊz£TacTAO€οθ™ˆΓ Œ_\ΤΦεkή1‹wΠ–ΣΪDLd0ΑαΉέˈ٠ξ^Œ¬3θG₯r6“7…―ΎΘΜN, w—G8Β1ώαηiνΊ’a;vχΞ Φ<ž§ŸxΩtKύ`ού›ξΒ<ς˜―s“ΠJvΰ[Ν^—Δ/$!˜Ίiκί,yιζχ·AWuh5kΕν…₯Εηφ]ΰ!e!gu;ΈΘN~kOu˜ΥzhhOπζΜ°”ά4j8 Šͺ£ιΕZ_ιι[ŽΈΞόW-†|G¬XΝu’‘ «jLYqν™mα vηK7ρ^EŠ2² A›o±_J›Kω…Ψκ‡Γ-9œ¬z’ u;1Gό+}[lš¦€γΈσgςΘXιSάι2κ,γ’Ψ‘<~d‹tŒ:όΐγžήΉ«« k7ZEΝάϊΥ½•Ί.ομΩ5 ÏF>ώ”JŒΊHΣΪ3vo‡7ΠάΟXί‘υ=ΠΥψw’”M­ί,bB²΄BΈ=HΘ\ύ9¬Ϋ*ικ7Ϊ•Ύ›o™Ρ μ*:ο!€ΙϊV~™αθ5$“YΆŸI²’LνΣob0˜γ<πΗ}ρZAI-dfμ΅;[xJΦ,#΄žK%Ϋ ίSžjqαίEZK0ϋνsΟβwW§x~ΗPξoeΉ±±x™•—g°μ@89ϊTφz ‚ι²ήκ—1Z:Ρ+F°#©-ιοQ::έΘ(Υζ;/ψGό7)~₯W«G{ΐϊœΤVϊg ΈMBήUSσ,—Ϋ†>„σXΪw„-o#Ίή©gi όΙ¦±ϊiާύ‘΄επ—©i’‘{mg|ΊΖHφ%‡MΓΈn„zQ /Ή£N}K7šgÍVΩ­mξl-z$°±ˆƒμέγ\ΔΎΎΠξβ/-u=: ’RΔ„0qž£J·±»±Ή»Υ΅x4λ»V0Οa*©!—―^ΉνŽΥkO°²—Γsκ·Ϊ±ˆ¬Λ§$Λ΄zΗ%§Jߝ₯cš NFξ•­Ι«X‘…ΜS*„ŸΜ\4,8 SΖ½]– ŠM«‡(ΩvδηΝqv:tΠΨΓufͺΊšώπνΰLIɍ½Aθ=0+i΅΄θŸΪ6ΰ’c;ΗΜ$ι΄ϋ†βΈjΗͺΨτΥ’9λ*MI#΄ΌΤb²Σ U[‰UΏxηqxωO©ν]½ͺ|>·…mό­1bQ€₯r?3ΤϋšΐšΣFΆπ•”–·/ έΎΡ©9Θ “ϋΒγԜ‘ψUMFοΓ’²[ψvKυG!ZζxXDƒΉ†Xύ8υΛyωζμu7?lN--φXΓ>•šΧQ²ΆvbOξylέοXΧ6Ί+–ub{1‡Ÿs“Τύ8¦κgF†ήΦΪ>Ν3Εh†γΞX’OΉZ[πJ«;{eœq²+ΉΏΛΕrzή§€΄‘[iΪ~£e,Μ₯»ΊXŒ1η;sVυ 4+"Φ3ΓνlΉινtͺΓϋά‚K1χ«J;™ς½Ž†ίΔZeέΏ$9)ςΙ‹,‡ιŽ•‹/Š΄χΤ·[h¦K{SϋΓ΅P=? ΛΤbπκΨ¨΄Ρ΅+[ΒU?΄EζNIδ±έσ~U,W\6Ik“~b^1›ž§žI¨”β™4¨;άέ_ΨδμY†m‡ϊԟπ—ΪNϋ Πξeu<αTm>η5‰}>‹4khwvmΈ|ήOlσ’&―O}cugo§Ψhο§ο8Χ‘ BζΕOϊΌζH‡ 'οjΧ°ΤνoNΨεΔ‹χ’pUΧ꧚”\Υ΄5 8ž+–Τζ“Vρe½Όxhtτv>9`zνόMkκΪ„––‰ ϊαΌ¨ϋ§±φšΞŽΑ-ΌM iφϋˆ.79ϋΞH“ξMmή<εd`x²W€D‘(Έ„D§»ΘτοZ/nϊ$Kowh₯7Χ0w'%ΤšηόsrdΦnO{V‰Ύ˜ šου E§“ =?νΐ;OSƒݏ:ΧΣO΅%άLB&HAλΉ‡ί“^ƒcΨtΜ0 Ki·l=ΎΦΟ±&Όkν&ΊΉΪ^ΞΤ:Z«r€ΑcκA]ύ¬ΕΎxzbΔ”ŽΕϊ"ώɘT½DΡκ Θξ‘ΣqgεSΪ«ψe i!?Ή<ˏ»χIγΤ:m΄™zbζOηJ›ΝhZ˜qτ"Ή({­b`>VΎu‚]ΈΘΟpό9oΒάι“»3]Ξ[Ψο§[b(›™υυ¬K»ΛNζK 5φy-ΝΠg?"ϊ±ύ)onnuΆtι<ΆQ‹«‘9ω«Ÿ΄­νν΄ϋdΆΆ‹Λ:§κ}I¬Ž˜Δ§ ¬:}²ΓlE<Χ'Ή=Νdx†5k­)Ξr'aΧμ‚ιs0υ°uΒήvΓ©ΉΘΎ 4΅z€Bk¨γ@vDwΙΈηζμ΅>‚ψρnͺ?Ώlsλ‘GRpΐ’\{ΎjΝΏΖZŠσΉmΤυΪΠ΅=6[«c&›š$dOΎΑ?ή8Ε3͈dSτ5Βw$ ЉζB8|ΡB ΅ έuΏΎ-ΟΈ’Α ωj?ˆ‘όκˆ•­5k§Ψ]rΐτωEEͺ]¬gΉŒ|ΰmΏΜHω‹χQ jjxq”}Ύό!1Ν;*  ύH8­0Ϊ,Ί•φ!]ΓsnHροY’jΪ?†,-4遹Š%A)’R{ό£<“š†ϊΗPρ%„mˆΪZ…ΜŽω‘Ϋ ƒ&8ϊ-kgaJIhK 0έΓύ·―‘dkIFVΞΛόNF΅G<·ϊΟξ±±ΗN<ΙώΚ*΄σλVV₯¬Owo6Πs†ϋ€{8'ιLΊšymΨέΔ―LΚΣΎΧ“ύ…~Pz*TμέٍHIμ[°•%³ŽKqCΎZHIωˆυVv_ψXρ£ύΣ’’™9εd‡εŠ}τWŒ¨ΦΦρ|ΆΦξ0vγ‡#ιͺx†Q§ίιZΖΛ;₯Heω?Ž uΧJ₯+£‹ YΡΔςHήΝ½υŒqάΫ’ά­žTη­E$3Ι#/ΫmΐΩά>Ύ¦­[[m·‰w°O ¨uM^ΫHE3ΜΒW$G GΎI<(ουθ+ΐ•)IϋΗΠσ+gΩΈKΉf+Ψ_1ΗΰJ₯q{€Ψ7–/Νε†ιŒΣΧKΏΦ$Yu©$‚ά1Ϋ§ΔyΗύ5p{p+nΞΞΦΚ=–ΕΗυόk_ͺ½δΜ!7dr‘MpΛgZ‘+>ωX~κ6ηœunx«–|!h‡ΨξJ£Ύ:0Ι‰ξOzv²χ#ZΩΞ!’@Uέ—;FΠzw>•^M!&ŒΗ,χ“ΉϋζYςΪͺQθl€ΉGΏΣνšΑ΄ΫΫΈΨΫΝςΘΙ' Μ'―z©o7‘w"ΪB’κ'οο―₯G[eτΪΌύŽi.΄ϋ[dX/΅)3ΒΑφωK7 Ϊ©­΄ΦΠ-Ό`ζ;dώΊ62Ηρ¬'YA’–¬·¦>ʍunμοζK,Ή2Lήcιž‚΄„Φrt}8½Ιύ*½±An¦5ς™8u 2§άγυ©‚‰Ξ[ΞTZKBΣΈβπΒ­²βnΚ¬yό c[™₯ψ£vΚ Ÿ°.Aώξ­t6‘„9PUΊ»Xπ‹β<Δό¦])O>« τΕ\ή± ,uξ’lΙΐ#Ήώ΅η“·ΊΈ½[&ušRί#‚B”qτέ_ά2[ύž™Ψ?Έ½ΨϋzW m~Ρ -ΕΛ:(#bό¨Έ<ηΦ²ΕJ.c‘υEeΤ]Γ,wRJΌ_«+[lιϊ0ΈHπ%fΪμ1F “ί―αPy+šζTΐ,ͺ£η56§2ƒ£JωμuωΝNΡ¦ωH­u2Όjgρ•l0 »ά°?ΒxύMwΰchΖ0+Οτ‘%Ώ‰,n”«]Η$`ΰTύ@ωXpIΐ5Ύ/f‚d€w¨^αDžRς ―o©§ ε>b>‚ΊΙ°¬ΨoΖΈ=aγΔ2@ΡΆΆ5Χ¨idτλ]Ωϋ„W!©Ζ£\»Aσ%ός¬ͺ«’γΉ_Koίj;s?v3ώΚΤ†k»­@iφmΣ JW"έ#$x‘ΐͺ½­΄WσΙ™ uX8/!Q΅xυώ•½ ιCE‚8εΓέΝ&ϋ™{»χAž+–ŽχΎΡŽrΆΖޟcm§ΫωVθΐd³³³±δ–=ΞsRέΰ[ΉΙ©”Uu6Ωc+zcωΧ«—¨β؎²―‰[ν>ΰg1]O³¦΄ˆSυξg¨Ν¬Σ0>ÏΤΦrOŸCt•Ξ’$ςΤsήͺ*₯άJzΌ§ςWb#۞­T˜ωs`w9ΕtUzt΄‘δ.Œ‰:δm‚― ‘lτa«^²j’ΜWtv`ΑΎGΜΕPρΫ~ ψΆw'°πΥνώ<Λ¦C>Ψξ —0π>I;9Αη­m\kZmΫ%ζ›p·’J6νΞβΔ μ>¦°Β:Žš>Υxρ7Ÿ){‚Ώ0˜ςzsΦ΅?α΄ΆHΥ-nΑϘ«'΄ƒΈ5Ō©EGή)E½•ΕΙέ¨L3Ÿ"…Qžw7SMπέ€-Ξ©εͺ‹ƒεΒΏά„p?ο£Ξj΅Εό—VRΪ0j"ΪI ?2nΖ[άΠΧIi)JcPŠ?ΊAEςκuΕ!Yd5—«ι’υζήo&φάζzνu>•’c¨j7H·ΫM‚LγQ[ΣI•RzXεξoΝυΨΓ{φˆγž6<νΘ%³έN85₯=ΒYΨ΄¬ϋ,Η έgOTˆLŒ"½·pπΛΧiλ†υSY’.¦φΥ+,Λ–ΩΫ!Iσž+ŸEΆŸC*rέτΪn³β;ΖΏ]:ΰ"ŒCζ6Π©κOROιMπόχ}άϊtΐ…|Ν ΙΙθrzϊΧ ιϊδ–6©myc 'ΫŽƒxϊwόλ3Εvv‘ι’ώΚ0d΄q§ϊΧIζœτΖ3ιυ¬H±gβŒ)EΏMα}%LnόJσ]yuV“‰”γΤu·ˆ-Ό Συ͘raΊ†<¨œ8ƒΦ›β sΓΤφΫRQu<*w³vCκJ[šΐtψ#{›³χc‰w?νvλV<9ΰΏ°ά}ΏQHMΘΟ—`¬#܁σ7ΏjφV=Ӎ™ηOJθ‹LΣΒ ξοϊlΌΈlηg’θ]·ux— ο·ϋΏQλVo›©Ed₯Bmσ€SέF0ΤΥ‰Ά8‘‡ŠπjMΚ\Σκz4Χ.†%ώζ?Ϋbd[”Lͺό†CΘά‡ή΄΅­Ε“ΪΛc-”큉£yτaΕ{ψZΤκRΧsΟ­N¬kώοc΄‚(m(‘cLγžζ›6ŸφΈ…νΎξ&έp?Ί}šŸ3ΪΔ‰Α? >•³{T.m`ο_?Œͺι=RkC6Βεo¬’dω―£ ύ 6qφϋ»{MΨVo2LφU矩Ε-Ίύ_>DΌυν(λωŠΏ€¦ωnΩ>ϋωIμ‹Ηκs]”yf”’¬ˆόAbnaKΨEynΫ£'¦3Κ7ͺŸη\ύΛ.₯²Αβhnn.ήh›ο?3gΤpkΆ•H䍰)SΗLΧ/uώ‘«hn6‹λ{²¬ͺ73g§c­tΪϋ €SW:im/ηΆ¬bM£Μ”uEηώΡύ*vρ†,­°ΆΙrJ,’2:Ÿ\ŽΟ9ΝeEe{­Bρ]»Z’|―bŽ|Βι£(δAV4»dšKH [IbΖψJmΪp}kl/«ΣΣs Ά­RΖφ“ζ›™χy mύr|b ρ’ΔώΦ„ΩPbΞ}εΕ_΄A2zΚρλψ{­~rQ{—JΦΪ›J)@‹JΈ’ξ—A’βG,yΰ ΔsZ2Θ°!vωUsž‚¨κ½†―itx†K$·Έoξ2œ£όxg2 «]…Ά‡Θη}ϋW"œα]7±„oBht€Υ4)ΰžx&BfS’9ηΠτΕrΦ:½ή+ιΊ·œΙnΒ8ζΖY±Κ«δެs]Χ άz^ mXn’'Β?ˆγ±» GΔ7ρkΊΩ>T_ρη €n<ζ?œn΅ιΦT”.bͺUr2νbvΎΦEΚΈ{Σ#.yΘ₯Η°Ε9τε·ϋΫΪΫ?syΔ_Qά―^'‘γ9 \Ψ«MΡ°ž ZvXΥ‰pηœ{ς*ΧjI#₯ΔΝ6πΠ£c?_ZO³ΓΖa\ƒάt©R#%wI;PŒ”αόͺΚF€`8γτ­“)5s#RΣZxΕά2y78+#r€g£Žλό©φxΎΜrΑδ_@Γ͍ώςϋηΈ>΅­$"HZ2δN=λ5Œsi’ζi«U;€T―P}Aτ‘ΝΗBšOSœρEϊ\ήE₯Β€DΈΈΉη€£ξ‘ϊži<7ͺ}­¦΅›ώ>±Χ9^ΖΊoΩh7Wς\k‘BΪΕΣω†€Uθͺ€πΓn=ϊԞ5Ρτλ}J7ΠR+MYXl1 TγζήnΓή½UF‰εΤ›uyΙΕ§ ο&BΣ\‹—l/EνEtΪN΄βξρώΣx3†bJΓμ€:ΓΪ‹‚1I€Ÿ|9δ–υΙ<υ΅ι‚ΒΌοjά¬zΰ’IQ‘TŽψζDΫO Ηz’$§’ξžsΨΧBZjtiΠηόW¦%†«oβ8αY#Šrƒ˜Ιdχ*xϊU}CD΅ΉŒMG0xΨΠλyυΘι]T’Κ[{€2€y ώΙh‹%„·5Λ––ΐ)›ψ `<Άχ#ξώΛ‰RŠSC'™sE—IΤ%A«x£OΣH;ZΠJ© υ Η₯?VM±ρ5ΕνˆΫ \Hd!εIΒ©{>΅C[ΣΕΜ $€Š™-½rw'Ϊ³΄@‘Iμ‘“Ό YΨ§Ol σW'fv€·EUL1΄ηφͺ6ύ·P›Q#χ(|‹|φQχ›ρ5cT”Η †..fo!0zΤύ1“WR(-mc†% #P‹μ+6£™*υ̍BΕoKˆe^Α&b—¨ †Ττ₯Συ!xΤΑ{BΗ'κp{³™–αŽσ˜tνQήΩΫή*‰£NQΧ†CžΖŸ΄…’‘―³oc’Χ‰MnΰΉΪΆΚ>„€>ΤΆΦZΆ‰¨[Λ{ ’H1XYH νι’Ώ­nEZkQήέΫ QU·($,ΈΑ?ΒΨΕt>"ρ:φ„ΡΫΩ]₯Υ£₯Δ^dqӐ3Αχ―n„¨Κ’Ο&΄kBΆ§0εΌΨΩς Δ:Ήώ*C>AΈ³g?ςΔϋϋ*“Nš;›Hn!ϋ’&πO<‘Θ?CΕZݐQΆγάgZωϊ•oQ¦z”Υ…έΐΑ8?₯X2jW2dβ2"_Eγš₯σΨaTζ٘›Ÿ(ηΏϋ?Κ―θۍ„³† Hηw§8ώB»θEn\η Ί€OsΪβΙϋ$¨ΠŽΗζ?ΠTφ6QjšEž₯Ζ …’e#$’¬?‰}X£#Y…pž½κΏ‡/cΌ;*ά3kq,¨RY‰9z’ wa*]΅$yؘΛxΉΧ"Σ¬ή-yZΫ *έF ΒΔ‘ΤŽTϋυelVFΚ0ωX{ŒΥ^Π<ΆNYΧvyΪ…?Ξͺ•W(jeΞaψπhFn΄­fκυΖτ=ΉŒ,:’>Β»_\ΌΧ-€X7ϊDλΉδ"‹~§ w⁧ιΡ-–“$rά™’8βΞFwΏΫ₯ϋDw7,Δ:έξ_?Νϋε½Ο§§jΫ7+³:΄­$ΩRΡb]>Ρ6FhQΨt9­Ÿ ¦xSΒ:KΙσE4RŒτKvgηςL}kγΛeΖ ΘzφδΦΟ€ceΣu6?%Φ§r±“ΡbrΚ?2΅Οˆi(ά’»= Θφλ—\ΕάsλνV΄υUŽb)` ˆI·`8οX·,Σt›ΗΣνaΉΊΊΞ~Λi‘£'ϋέ€ϊš«₯©¬γ‘Ρ˜;rΗΣΪΉ FΉ‚ϋUlȎcxdY[€1H·{œδ °oˆqͺρωŠΜ»πΉœ+ꚍΝΰgdŽrF9 x‘«jJi«]ψ’&w΅-Ϊξe;Y•JΗϋΜzώΟi——ΊενέυΫ±H–)|‚cMΔd/œU«•‡J³soh#]±ΕmAŠέΡ¬₯EΣ1ί+ϊΉ955+I«QQΉ4:eŒ8+n„Žο–?­OεF£ ŠΈτS±ƒΕΎ”’βPέ«·§4Rž†ŠΡ0±Ι}²ŽζξW\ωŒηWΦόσ‰νζΥ¬ξcπΪN$1,›f\πρΘNs·¨λD–?ΫW²Gp-€ŠΡXς[χ…Aϊώ5±ύ£Z2_\@­· η–ϊŠζ•G¬ †e§@.txa„°έ•κΰσΛrNGz°u%™’Ξ@mξγcΨκC\―†ou &ΡβŽΚξηIŸ³6ά πGlW<ןjžΧDq^Θ¦εŒζ7,ܞͺs‚3Η₯nǫ萲Ccs#φ Ž»ΕΤξ °ρK)[«moOΘ@fq΅qΧζ^­γ4Χ)ΟZŒoΜA€x—T»πυΊE¦j‰wK χ4ςc‘~RܜŸ»šθ΄m.ΚΑšεZIo$[{pCΘ}θ£žΥ›€xr GΆKν:Ζςή0ZRΠx‹1$“Ÿœ υκ>•²Ϊ‘<Kk 'd€?\nͺ‡½$ *ŠΙšΡ“εηζ Ž)­ΘΙB ‘ƒ·‘\¬ΪuΊ\›[2—C D7±F=Xϊu©†₯ I›pεŒ“+~#'5’ŚΤPΒTNεkι.nυiννO—*NΝ4ΔdD6ΰξJ³lΛε«9$όΜdbO©8<“Nτ«7° -žžΩ•Ωِ’[=ΞjΣiZQς ±_u‹ωΧ<‘ws₯;h$6VΆ€V±Δύό»\ΐZ„]Jžc=’rΞW…όΣd]:M½­„3Μ;AΒ}Xž)γOžhŠάΝncn±Fhη½aW NͺΤ΅ΜΛήFhζˆ•aΡ½TϊŽβ―$NdΊϋΪηΠΦ £C€έI–­7b9OΝεό,}= oyYͺ`vΐΕ„i+”Ρ8ˆ·ΚρΕΈξGλ\¦χψλL{„—io!³|Ž˜Λ'ίδ Χ;΄Ιρ+'“ΨΟϋNΉ«έΔ6FƏv—Ι+o[̏΄$ƒ‡ϋ§ΫΣ΅sWσA¦Νt’ΊΗ3Ά ύαΈsΝuΪΆ—φ€.ν_Ι½…“³ ύΦυΚΈoΆAwβ‹ι/α1^£„Kypvαά;ζ³ΔBΞμtͺ€ŠΣήκW±—@φv£«Λ1†z…ǍjέivφΪ guWrσ6ςNΟΣ“ΪŸqΝe*)ϋΚG=A5=δζσOπυΟρlx˜Ν·ΜW+•ιΞΖ-Ήnfί‚ζΚlͺ4WQΆζ<('œώΪ@Χ7ρ#}½―O5‡Ξύ°£°>΅ΕiΠlψ†YWv›m#$yιq8SΟΊŒΖ½,@νωWN‹5ΜL₯b( ŠΒD›vοψžτ―τ©NΈχ5Zβζ8ήHfϋ¨YΎ‚»­aEά\Χ3―)‹T΄˜$‘$ϊη"ΊUήW,}³’+ρdΝŠˆ72Θ"€c£œr}€Ι¬€΅-ndι0hλΟvFθ,O–€τyΚαΡGήΊfIuXA–=zU=*Ξ=:Β;hσˆFέΗ©9;‰ϊ“Vc”NΣοήγξϊƒή°§Rς±rGB…gk-·KΈ=ψΗΧ"΄γπ¬m}ΏΠβ?λnαOΝ…zζ[–ΑΒŒ` Υ-4cΔ’Σμ/Π‘Wfrƒ'Ž{ΥXf­m0ΰ2΄gωεY―ŒΦ_ ±Π“ŠΟ™³zαNBΰ}*φzsΠσYάyςžŒe9•­wπœt>3ΖόEϋΟψ±πχ°©>Ε"Ί;i6%΄ˆΰFί‘ν\υΓ |Uβ€Ζ¬ΐύT šέΗ₯ΩΉ[‰•Š» œ±ώCήΆ‚ύάL*έΥΠޝ[Δ‘Ά^tλ)Uξi&v1κδŸZΥπσnΥuxW„WBaΉyύj]>ΞίOΡ‘·ΆR±’€3Ι$œ’}I5_Β¬«­K“΅„τU_ρ¦‘m‘+’oΘ#π•«HΑD (bΗξ…s’ ‹HVΦo·.ˆ1iρ·π¦Nd#Υ»{Vu΄/qή U~Ϋ4·L1oΑΰDωΧ\ ‹°(Ϊͺ8 A^}UmΈ’˜X^']ΘΓOqXv±5΄ΩHI1}ΖoβŒτ?^Υ·»ŽΥΡ ]$\yˆx'ΠυΌμVΪRΣrνs…ρŽšΧŽ•$ΛηΪvΕ ”―Κ’€ϋγ―jΒΆΌF‚κλΔvΧp&δi[׌‚b:Χ_β#hKΐ+;ΘCv3œώu“β]4‹{Ϊƒ˜W$w„žώκyΣ…§(ΠIτ3©+lQ—‡·2=׈؎ͺΚά~™€-αι1l7PΩqΔΦ€ή–υx&‰ ΘήǞ}A¬K«+‰%‹KάRiΖιΆηχqw?A[sϋ8έ’¦Ϋ±Q/΄ϋΜΡψŽK ΫbΧη«r}…V½] ‘=škP\ ̌wξ·<ϋΥΪG€ΕJv(@ι΄vZϊ &Κ-νΤH‹όOώy―:ž;ΪNΦ5φ]naY\ψfR?5…|a•όΒΓΧ=eΟs₯Α ΣγΤ5Ɂ”‰T’±ŽqΟ―«ΠΓm¬\Λύ›u%­’ΆΩ‘Ž9ΐώ4ύGD‚Ν.-ΥKReUξΓψ=ς+­βiΕςwdδIΦ”#"FρTJ;Ί±ςšΧϊm¦ρ$άΰ²FΫGύυSΨA _„tΏŠF`…ί•Ο¨ΟZθ—L“ Q@ΰPό+›Z–[œ*Xε’ϋΓdI{βaό,­‘|ŒU9.τeΉΝ΄ΪζαΗΙ“Η‘Νmκž΄ή·,ΔEœJ3Ύ‡ιόͺKo Gp¦ή"ΚΰœΧn T±QΊ9κͺ΄™š—š)Α–o+zOώƒΕ9Ο5ξ•δI¬|ڌB3¨0Ϋ‚o|b€m:kEvwTςώφ‡λνT­KK:«Œ.‘Ku#ξΕΌό{$Φ²‚ƒΠΨτϋ+{H‚Α Δ rΑόOzΠnjόΈΖ=©Q± ΰTȍœž€Χ‘7-M­fy•φjψ‡X}~ΦυdŠUE>[ ΄mΪWρͺ’^ιp‘’ΌS  λ) Κ£ύΦΛcωUο0Άρ”ϊ€\ΕmQά{{κ8ζ΄­ν&ΈύόIž2>ž§Χ>•ιςήΙ£5ήζ*Λα‚K‹-n@y3LAχΘ8¨ΪO•?d³Υd~ή\r~₯Ž+jοΐ·BΚK­=ΡXν¦Ά6)ώφι\ΏΪ ZtΧ €IΨ"a† >¦­EΔΚ€¬Κvχ[Νu)βτΈζˆδ1±#œœgς­8“CΩ›?Ε?Δε˜ϋε±[Ϊn‘Ÿ§E°f σ±ώ&<±>Ή&ͺέ]hz72ίEž}Y~€‘^lqœυQ4δ0¦]›lzΩmΐ…TpGζzΥ—oJ…'΅ΥQΧ¨– Η5nȏyΏcΉ{K5mΔ9Ϋ鏔r*MKΓώΡ¬>Ϋsm†6šrdbσ^„'Κ„ι6aͺι»}–ίΔΖ AΏχΡΟΣ¬‹Ο τ•΅ΥqΥfI 8«Φ’ψmφˆRΡsΐV\ωΦΑ¬d@e€‘Θ>XΘΈ˜ΙΩ£EMμq·σiO{5ε2Θ²ΏΚ¨AλσdŸ₯]ΣΚ¨Άϊρ RΗΦ%ΤT“œπ£zώ§}§Γ5՝‚D¨&›{€:FŸ7κq] ώ]jٜ0‚δ34NΓξFφ5ί†β)ΒΛFsb „;ΰם{ωš‹> i‘.‘‘ψƒNΦ,νZΪΡg0\;.6,ˆT3ηΖO½DΪ\Άώ’<ΉγctϊΥ«aηjšDMƒη_(`ylcΘο]<ͺڜςmεΥ’ίCΕΌΎUΒb›―^Νκ¦ͺ< ­DI³Υ­nvFώς5RQ/‚ηάώv3rl0ή±œαΝtz[ά2^Ψά¬Sϋ·?0e=β³₯ ™nˆtΫΆn†β/"ϊ ,Ρ1ΙΧ=Αμk7Η»π»nVu]ώ›|ΕλϊSu©5 fPΈ²tΉ·eu³«#)aΚppΞρ&³o­ό9Τ„GJ’F€¬–E##πͺ‹ηΠΪu€uρΤΚ¬Jpάγ#ωΥnϊEΒāŸOcˆ‰δΐzmoUτ=«FyAρn€ΩωD0ΝAώ΅‘―\M}$z €Œ’ά)k©W¬η9ο1mŠŒ\/#Μ£QϋM Ή­"ρN°& eΪ0BOό½ΚΉ`ώfΆΪα­\Η,R*φ`ΉQμq₯Ha΄ΆŠήή1 Ζƒ’¨«Ά§„AΐΰƒύkΔ©RοΘφ=‘Ζψͺυ¬o΄{Ω-₯EŽθDΕ±’ ώΈ4―sJTΗα{«Κ f‰Aχ#<ΡγuώΟΤ4ɘ)³2Άΰγ"7+ŸnΏJδ$ΆΤμΖtמkoαˆ>Ι#ŠO Ύž•ΣRv›0©9£:†³/†ocςVHΨόz‰?α#e †nTΊeΉŒ~c'ŠαD’άέ4w\««`CpNμϊϊN*γZF³ώτ@],z f΄Tΰ΅d«΄uο?‰"ˆΌώ“ަ+”#υ¬λθuιw—Π…½΄σGηop\€Aΐγn{63T£Σ%ž3"F9lt§Mh―¦Α(W–βSŽA.΅¬©FΜΕͺ›‘°‡WΎ6ΚYl⏖ιζ0ώκ3ΦΊΫxP&B : τ¬ΙtΑ•–Ν–ήhΞ#(F~λγή΄4λΑsΊ PΓsί‰ŽHχΟp{σ9u4œ,pWρΆ»β1q―&–Πέ†α€ΘdSΠύξ5˜·Κ‘ΒxFHψ7J`γΠϋη΅Yρ0ϋŒυPΗΎΪ#W\d )χρνVξΌ=μiЊ`3˜m?ήΔ wRΓ*Ίœυ+8ΈΌK›Ι¨ Β’Μ€υ$Ητ«—& i›Ζ,ˆ»Žl“ό+;P―4»”²Τ‘ΩΌα'WΜr~=Aφ5kNF₯ͺTύ’Εƒ8'>dίΒΏAΧλŠΞ½ _BhU©RVLe’’fΤubΠΘΕΫeš:.z@$c>*ic²UΜ^$Υ‰δΣI_Ηε¨iκό1 λΈ?Z‘t–:" 'ΏχS«θyΚΈ‘Rœ·G’ΰΦΜΘ„xfP^οΔϊ’2¬Y-š=§π^ύͺŒ²ψ|N^ΞϋΔLγξΊ;.Gό ΧΠΥ»λ 5E‘mξc?θΚά„_GυΟιΪ³VκΪ ·΄Τ₯— Δ‹"ξP}­iR£¦―aR•GΉ^ΤιVο0‘|H-K—O,/ΚOPΨηtΛαέΏ»ƒΔ@χ;Ά­VΞxGΩ₯”wB§΅Œ ΘQΗ#ΒρΊΩΗQ¨4·0MΖ”Λώ‹oβ7cΐRόχqUtˍy±]ΩλΣB’·—‘Y1žIΪFy­ψ΄Ϋ­oP:nžZ·ύ"ωβ‡ψGϋF΅|Qαk}NΣη·DHνœBόtGγŸΗλ` κG™™U¨νdsSOαQ½„γ+o·τΙ$Φί„t›(oυ¨­ —ޱ‹δ\“Ιδηπͺ]£\\MrI6–ˆ7ό΅—‘Ÿ ƒΒω{aQw·ι„ZΪ»³²# v―#‘AΫ'Φ¦ΐxΜNFΰδdcή’ΑŠ™FF¨Z—9 μίΓ7DF θς60y6ΜOsέ==*Myβ‡@Ί™°Π˜ΛcsŒWZΦιb—Ϊ}ξ₯fx‡bΪiΧ ΚE{ͺΩΟγ―γ[·ΩZ™ζq/V#<‘Πz“]’\š|νf£}5₯₯ρΈ‹ΛΎŽ"ΎXηsžPMw>·Œ|=πι‹€V=˜L7~₯«“Ό·“Poν=N%Šλx¨ή“άŽƒ΅Yπό+sπΚΡL£ΜΈŒD%+°} §ίΞΉ1*κ'M'}NΚκώλΔ7siz ΛΕe˜ξ/Ӑ§$β?ΔΩ,8ZΧπύŸ¦E”"κΐufΟ%RsάԚΨ„+ „iB6ˆT`Δ3ЎΥ.‘ΞŸ {-ω“JpVΤΡΝ·©eΓ(θαXΪυ€Ή°ϋL`}ΡΌψ9ά:ΔdVλπ+/XΌ‹N.ο%HPΉQόG# ψž+štέξ„ŒΑ$Ί€±ΩΫf8ž%–εΗTVGυ$~UΡΗ’6*Œτ¬―i’hϊ%΄―ϊTŒeΈ#ώz6I€ ₯l«}:–R”υ¬½@£Ζ{`‚3Zw #RΔτδϋW3%ΔΊΝλZXIΆ$?ιAxŒu}Iͺr²¬ͺνΞ¨±ͺM4±Έc|€}ΟJΩmKμΐ ¨.-Ԟ$,₯GΦ†’ΣKV²Σΰ "δΊ}]»šƒr[=ΙϋEĜ*²δθ£Έ₯7sxš+/,sυι”±χZΝ‚ql²Β‘ΚΙo!ήp6 τχΖzv«ˆβEʐG\ƒΪ΅†ͺεؘ’Ο·―U€3-Ό9‘άΉy­|ηH=½ _‡D,0iπDΰύο,1‰ΝRΉ°Ήξ’ξΧt–ΙώΊ6δ…ΐΙ•m[IνΊMΖF”ΰτ<ΥAs-g 3Ζ©ύ* ννocς扑ς³JžάΥΙ‘ΔQπ1ΠϊUY­-ΌςΚΏ6 Ušz£G?3YΪψYc6¨ζ’± Ι`ώ½I­oά)Ο£];-# ·πΟZŠ ½ρٍ0-¬“νŽ§•σ]@QόΝu…T’ΊUS‹’Τ=―"²0αΤ΄™±USύΗMΏ‘¬ u?ˆ~Ž+t†)&ΌuεmπΏϊk³žΚΛ :ο βόb"°ΦΌͺ‚V(΅9 mЂTΪ?8§8[ήwGYsqi₯i’κζκ(cEώCΤϋW5©qβΝN§±ΚΉ”‚yڟΒ;ςkBΒΫν·+yσy-¬O5ώφ?Ό}jυυδVrOq&ΨρΗœ“Ψz“\Ug Q€©ΤΉ„:u¨†>33³Τ±ξj+»λ;V -ΐYsΔaK?ΰ5—7Ϋn­ΎΡw%Υ­¦μ,1‘ζλ!#θ*Ν•½¬I›5Oρ2_ρ'œΧXΕ?„τ9τЊΥδΛ"€ΠΖς—XŽ sκς€’K‹»–²΅••Χh›oƒŸ—ݏιMΈσgœXΑp©;}φ/)prHκO₯kZΪAclΆφΡ2’‘“Œ’IΞIξk’”]΅9'RΓ­`ŽΪΪγ=}r}M9”0άΑ΄Ή¨n.Lw2G΅άΣ)ϋ¨ δτͺΣKtb/7(άpκΑ@ξxͺ˜ι²i€+ΐΙr±ΆϊeΉ@π€°nη μΏ₯PΣΥΤ\0eŒ«©§ά֊ί5¬«ηa­‰Ζμ«ϊϋV{Ι\»œ‘Ÿž'—ŸΏΈηρ¬’eψˆΔd€·_χΦΊΨYp9ΟZζα&Oκ˜¬m­ΑτάYΘόxͺ{Ε™Ei#ͺ“i_JσΝVΒ JβτάF²fνΒΤ ŽEz(W§ΒBΫ£gcɞ^νXcͺ8ΣΉ•4cωΆ”‘mεώΠ€DRΈθ£~57šϊΈ·Ρΰ[{!ΈσcΒ›2T{’pχ©/n―.εm?Mb²‰§vΩO>¬{ θn¬ ΄Ο₯²Ž;  7$™Pξ,{’iΰιJtΉ¦ˆ©QFvCξ!†ΣPΠ-ΰb‰n5QΡG–p+₯V‚yνξ}«šΦbΉζg°^«;Ήα©“V`Š$ααύά<‡Έλ†EφΘΛB\nY:„Ί„†-4E8k¦»_χGρ*΅kgΆdΑ’f?4²ςΗιθ*’ͺͺͺ„ Βͺ€ύ!λΦ©κ5 ά*Ž˜OR&ηΕH;,mς_ή8ηςΞΊ§ϋ§κ+‰Υd†ΞV»˜6>ΡΐV9?"ΰ~5•m¬iMjI}«Εa \5ÏέΖ{μΗ°OMΌΣnnΰhυ8gΊ3&dmD έ—¦=±Wτ ·Ά{ːμ<€υŒs„Π S5h-ξ¬’–(δ rΙPvŽΌžέ+ œφκEI»θvHΔH ϊ’²|D1g½’Ό…ΟΣpθΕ²o΄cqkΪ'l°μ±λψΤΕδWzٌΘ*TξR<ϊW’β1RΤΧcςΘλUR†O”+n+ΆI°׊’ϋΐ{Φm›"ΤSξ]¬›d^ήυTωs_ΘΖ§₯t^ӊZ5Νμ_ι7_Ό“žcν>€cρsVnώ(κΕΖmΧP‹rφw μΪΥɁ“’2sυ­ί³ˆ©S<ΨfφΒHΓ\Ϋ‚Β@•>™αͺŸ‚/ώ+υ΅Ή·σώέ+<2$žλΧ΅h^]Ekg,ς° eΫ=±Νpλ§ΐžΈΤ΅KRfΓέ9WBΗ #9Q¬ΫΤU)‡uαΨόˍ_Q Χ7lƒž‰Σ šΫώ.΅Κι:6³’i6QΫκe‚Ε™"ΊO1UΨξ?7ήΗ?…iG«Kk8‹U·6€`wDΗύξߍrΚJz£²žΦ6IνO@:)ίusψcΤΡΙs7‘ΖxŽBή9’ώνœΔΌ@ώ•wGΈσt•UYZ2»_§$‚ Rρ2ΊψΣBfΖZ9A#θ)–3Io Ϊ¬*ιδx Œ†<Ÿ`MuB)S9*ΙΊΆG Ίή­ανJλH†f™mΒ½Ίχ1Fθ§ω ιl‘ΈΡt»½o_Ψ.§!¦e9X—ψcJŸ_ΠΧDΖ±Η=嬂Yε“ΎΙΉΗxτ¬OΕv—ΆKcqiyiq½J%Τ+z†δ―5ΚΆ:9]-InuέgQ]Ίf”ΡFz\^‹υ ΤΦ=ζ…v6‘©N..‚ ‘Nz(Η½wν$ΨžΩͺ’Ϋ GZ΄ι›εyL2pƒ#σΘ¬0Ρ‚ψUdΞ/μΆ—z·±[Γζ8Ϊρ«ύυνž8aλW'ΏΥu8 Z5λΘx;‘ !ο“ΠΧ£^kz^‡,–:‘ Χ όΚ«…CώΫœΥ oίi­ι[†ζζΤωΛΎ ψβΊ:ήζ<υ#ό3Κν΄Kθ.¦.,"σ’_5ηiς‰λŸbq[|:φšΕ-ξ#ςΑUpζ@=ƒuήψΊΚΗYΡaρ‚ΡΛ5ŸοPΔr$C23QΞ=Erρjοh—Ω‰”0p λΟηQˆIYTWLθ ”•ΛfΌ.ξΝ…ύ‹G&0Κ~eΗGozε΅ OXΣ΅GŠήό”ΚΔΗ²ƒΐ?…kr -q―g°ΤwmςΣm±8Qώ5•Σψ‹]ΈΣ¬mšΡHς(¨x ΌšΫ PψNzιΤОΐκή'΅–]ZTϋg Α•½3ύΪ¬ςy–ΆΗ%μΗE@1]δΆPΨιm H#Ž8ψ_@=k‚Dέΰωnε•Aτ!²?•4έi6ɌU8žΉ˜Τθ?vGCš―ΎvΧNŽ‘Ηβ3VT6~oQ\Ijv[SΟ―ΐk{ΐeσΡH=1ε¨ησ5žϊ<φ0J©¨_%€l)Šb<―ͺϋφ­;γŸψ„Σ'ώ‹±aƒe$coqŸ¨>΅ιJΏ™ζ9J5΄8΄·ρ ³†³ρΓτ*—ξτͺώ#)ύŽΧ7q^Α― Ρ£R2²Γ 0ΓλΊέF_ψFtωo ƒύyΉ‘‰ΐ μIό+›Χ/ΌEy’ζςΣIy$e*v°16α…κyνšΙK£:Sor”‡ΔšΌ{%ΉK(UBSυ qI„ ½š"ύήAζ7ηλWμυ%Ž)U6ςΐ?} ΌΟP{υ₯’ιςψ£RKk«—±ΣNxl³ΰα­rS§&μ•ŽϊŽ„#νj4ΈΣ52š-Γ}Έ°ή±)eΐκ$Qλ«Ί΄>"ΥΣώ&ΦGOˆŒ*ά„ϊ“η]ό'K£‘₯xSA²ŠΪ) cnΘαIc‘Τš”|LΊ΅sCkhσ΅η…Δ#?ήΐ~UΫ[Ψσε:U±ε6Ϊv­φ‰tΗK9&ΆU?½$oŒύΦ~oK_Y\Μ–’ͺΗ›LnζHξ9ώ•ήxΣM:E―Št–؍ήYά­xτ88νX Εg€6d ς²όΜyΟy5Ε‹“ƒI+ά9υΉ₯ΰΦΉΤ―5mAW+ώΊ£†#κ•cκΊίˆ,5#k!’S0Η8θρŠΠΣ|Ay•–•αϋΆ S$Γɏ#©ΙδŒσΣ½Zπδ“έλ„Ί•Ό+|Œ„;•”·#Ϋ­z1q„4)FU §“XΎπύΛλ2[άβ"Κ6aΧΏnυ“€0>,πβ+’)§υcϊΧY¨ΫΕœένF-Ž„{Χ£+C¬xjε†Iή?’4mϊ /Ο«UΪ’GδΈ"0C ŒЎΰϊW;lΟΰΫ£–H،ΉΙ±b~λρΠpku°ΎΒ€gYc1H‘£97 ƒΤš±Ν³(λΡΕs¨ι6œ’_΄°ΡαŸbΕj΅’ιZάMφŸ?ότQ²Eϊ0Αͺ^΄[λ±£9Ά²ŽkhέΛ•—{žƒ8‘β$\΅λJ5-θ0p¦ι.hξpΧ7:—…­―ξ―£šϊΡJ…Τ”ργhUξ;dV§‡ 1X΅δδ5έγyσΎsΛr«τŠκτ¬ΟΩ¬νw,Š5Έ••=‰?¨›%OS9§)XΥΤ—ΓΪ2ιϊ…ύ‹ΊΜ¬73w#ΈζΉK ·Χ’?Ά‰­pΒίΝ •“ƒλ‘΅Ÿ¨xj-#_ϋ7—VW/ˆ¦‘r"8εΏχk’Υτ :]Agm1>ζPY™Ny>γ5΅IFP²9)R«J‘rξώΛMƒΝ»ΊŽ ?Ύp.υΙκ7iΑJΆb3>eΒ κh΅πζ”θ+8ω‡l±κh“D[έJΧK°€y³Ά6¨ΞΨΐΛ1ώ_yταFS²=fͺF7eοk²ή_ίΪ^άy²1σasŒΈΐ ΅|X#Š/­ξZ˜\*Jƒ%A<«λνΪ΅΅θZ^˜Ί‡‰΅h­–Ψ~ξ;!ε¬^Ϋ‡Μμ}ΊžΥΗiψgV»[+ύGWΘΆ‹P“j0Οv9cξ}«ΥŒa³<š—Ώ52Μ.Υ,Š‹θν¦€ήL‚91ώλΩ—XΌQ₯άιΠά<‘΄f']IθHϊβ³.Ό;g‘κ1Γ%…›ΫΜv€†pή‡>΅uό9€ά’‡Σ­ς9n ύζΉ19+Τg)D‡L»K­;ΩάD| ²—貕χΘιVνΎ h–igoer±¨RV χκFrkHνl΅VΡΠΉ†UΉ…]‹aeQΟ>„š·¨XΕ}ΏZηtψV?ι8 {(،ΰUCλ@₯O C)$΄ŽfI Ω*‘ΗURg ΏAMy ϋυ¬Τn+œF€ΣΖ· (/νPάιΑϊπj‹πr‹‰¬χEs”Θ6džυOCό9­(H!Τί°»†Lϊ)`}0k’©%©‰Τ4l6FAt#½jͺΚŒΣ‰•J*΄lΟ9ΦΌg{nΡG£Α!™„p«ΆύΜ~ξGzΩ†OθΦφχs Ψ I3p žXώyΗαY:¦‰‚΅¨uG›K…ΎK@Γ́ߌ¦~πΖp3‘šhΥ΄―x‚Μω‘Ό’μΆ³)€Κzž{fΆΕMb-ΨΛ Eαή€·ή΅ͺG‹1qsuςξμ¦2~¦±ξ4{Ψγ’K¨­€™€Yζά–w˜P[ΚΰsΤS<5€ιΊ½Νΐ€ΨΉŠέ%9Œ•α€nǞΉ•5{#Σ©jQφYΒΨkϊ†nΎn•#Δ£h–& €Qή¨κίΫZ£¦»-‡•<’0Γ4}ς>•Ϊx“ΗSλ(l4 ltv`¦ζxΒ™?ΐ€pΌu<œΦD>;ž†M_K€[)Ψeƒχˆ£ύ yΖ)ΉΏ-υ8§R«ΨΚƒHšθ ­-„O€Λ4SΞ#§Z΅=ώΏ₯[΅ΪC8$F“+γ H°Ης­‹†ΪY ΅Il―›w‡Φ¦ρ…Ό7;Ι:ΐΐ+£Άp@ύ+šqNiIΙ«]]ώΫΜ·΅ϋ₯“;ζmψRη’8ΎόV™β GT:Tš•οά—}κ‹ιΘκ{Vδ^/ŸμΎ}Ÿ†υG‰W!Œažxεϊf΄<0–γΓπ_<‰#^>iΨcηnyτΖqνŠτωβ£h™rk¨¦Ρm4Ψ­‘qΖUUGaRψY1}1‹μώh΅-ψ{2­(έ0T>ώԞΖΎO΄FGύϋ•XΪ·\ΪNy§…Ε;ŒδΛ 9:ΑρΊαט¨) ΔnΰŒό›€9υλ[ρρX^8Ί‚ίΑΊ¨Έ?+ΒP₯˜‘΅GΉνU Nηιš]šΙ§]½»ΌΘΝW|S6AΖӜq]¦™;2^j…fΌ^‹»1C죝λ'OΣ&ŽNΏΤŽωδFX£'"Žυb;Χ\YVί,v… I=ΦΊέΞ9AXζ΅E7Z¬*O•[‰ξz ??…Kαv1ψ^ψ7άMvεW?݇™$T69ž)΅7so_φc ?!ŸΖ¬ψb t ˆFρaSτ(†±Δ―r%ΣΠτ -VβA#1IB H:―­?AΙ€Ϋ1λ°ƒωš•ΧΉξš‹@ρ'±=3?žMRμm6i°ΘsTϋ_ΣτΒ†2u …=6¨ZŸbδΒΊ'α8ιψW3a:k†’LF‘‚ε’¨ώ€šu3ΉΡ»&\αƒdδτͺ:ž­k₯Z‰€*OIi’Žυ‘6»s¨Jπhˆ¬ͺH{Ι—χ1ύ2ητͺ?cŠΚλΞ™€»Τe'o™sΞ²a]Χ2‹MΪδι§έλ 5‚ρ[;,°¦Œ:œvι[)mc`˜Ž+{lήZmTό«-z++Ϋ{{ΩmΣΞb"}Ηη8θsοΖk`ά@Ν–+ŸCΠ~΅Ο;4ZζOR——qf4°ŸΛ.Νœ)δηζ¨@xε)l·Μ>yIaΠUχŽΡ†6Ύ…Ȑ5’Ϊ5‰¨ηj ΖΉ§kš¦:ήννΔA‹.rΜέ\ž€Υ+fςγ{y\ώβCΊ;gπ4ωoΐc΄tξEcΆ« ZΎζb«20ϋ¬:ΔUΡ©k955ͺ7„n8—SӎEΪΜVΩPC!觌~4Wmβ3/ρG‰tΙΫLo₯Ϊ;·K{Δ^yΨΕ»u ώˆSXž@-ξξ8"βΜ§δN9«‡AΌ]`ΉŽαrJΦ­ίνqΘ=λΛϊΕJMI­Ξ冣R‰ΧΙ­xβf =MSήF{©ς ΅Χ~8–ε|=6~ρ1Κ„R2k*[ΨΛφMnΓΔQʟ}#_11κ₯y+θjΆ³β½:{a§ιCΔQΙv|‘%Τx§W#ψΊ:κ”ΫΥ3cΛ§)‘β?Αosyeq‘Ζ.ζ.4S3*―ʝϊ`tν[ΆΪηΔiGξηπδΏοΓ*ηυ¬Ί΅Ž‚ΣUtEΫi§Ύp:˜ύj˜Mm[̏GΤ£‰O]|ΔMίώͺηŽ&|Ϋθoυ]>ΊŸZρτφZŸ ιLμ»~Σ£΅T}sYzΒx£ΕZ³€^ιϊ<7H’ˆβ•ε•d:FN?ZΔ‡TΎrb±Ε-7@²Ο΄!μI£sαΝ6‘\’5=οžΓpIφ§|θΖqr^μ{0χ3:ο&+i9?yΑώ”νFΒΒι⇀*Δϊd`šΜΣu]^ΟEŒjˆρ¦ι \@qδ’Εσίӊ"Ώρ9™.επΪά•ŒkΔΕφΪqοYJ0ΎηDe%βhφΪ]±V6rΪ»–iZΌYθΊ‘οΪ›s F°‰τ©žΦU;Φ2μbof\τ©?α%ΥΚ²?ƒ5ΔTΛoεœφ._ό*Έρf“J|=§Ι§!ά-γΤ‡› χ™vŸΞιΞ.ϊ Σ$΄˜Ν –qΫ_FδΟ ‹σ†=Ο¨=Kp~έzΊdI²$_2νt’qκkoΗβ•g΅πΎ±φ‹rH½2$+nΐσϋܝΓύšΤŽΛΔz ˜‘΄ϋm`H|ιξaΈϋ4Ϋ›ϋΐ‚‘ŒR”SO•κ4œei"°G·°_ξLSέ@O+β±cŸΔΣঃdŠFG©‚0¦€cβeεΌ?jίξλΥiF›±·΅EλY[Mo)™ΎΛό,ܘ½·ςͺyό|B7r­hΑ³Ϋf(/βlt+=£ΣW ίNW…§κΊμ^3Χ’? ³ΜΡ[―αO( a²AέΪ‰S΅˜)―xτ§p±οnδχ―=žΉυ;6ٌ —eΈΫχU†@_sšΨ]sΔ ‡ΝπUήϋ—Φ?Ε_Y΅νΪj1M€Λ$†B·π˜Ζp£Ϊ:Š/̈κm[ivΆsΫ[¦Ρ†;ήcΧ,{œΦ†©›―Yά(ω£{iWκA}|W’ΪF©q¬X<~‘·0ψλQΝβέ>χΓ0hzf§iφΫ‰$‡tŽΘ‡v|ΒΆ1ο[©–΅)šW1/‰Ό@mΤnτωƒΝι<ΰ`'Ί―zλ£`WŽ1ΠΓΉΫ+7I²ŠήcŽΐفy$χ$’sVGŠό>œRܐqςeωό+%&lŸC{hΕgiΧiν&ξπ.~ `ώ΅₯h₯Nq\β;ή¨ΌFσξMaiπωϊ•επc³Ξςβη¨^ χΙ₯mΜΝH£ζT,> U%M.Α?ι’3sΙύI§VWqF0Vw]«ϋΖ£ŠΦ†Ζ?H°‚ͺͺΩcԜδ±χ'šΘ½™|OαKΎ‘Ιzαsο ?\TBΝ4›:m7Q[Φ–Ϊt0_BBΟŸy οξ§±οSK’gPφŽvάμφoQό©uϋI#Ύ΅”[κPάΜFGΊΈώ%8ό*—«h‰-’ϋ=όοΙωξ§±HΡφnλbγQI•[Ξπδ˜rςι?ή#sZσίΉOOJΦΆ–;–(α£ι1λψω«lΈάΖ1Β―ή9=ΉλY)αύ5evkeEf-΅·ΊΤw©›βŒΒU HN?~ρσξŸύj†νDΧWΧΜ>Tžh-ΗeωΘχ&³ΪXqqΑω\d 採xϋQΌ1Λrlΰ–Ρ@›˜Ύ|v끚ܴ5Ώάw|4Ϋ`Hh-ΐy±θΞFϊRTΩΏΦ"·0/χψn1-₯ʘ–΄œρφcν¨nGλΦ c$АdŽlƒ©Ή:γ=3]ΚiήπτΑξVΪ[€<½Φg”Η8ό«3Ζ α½rΕu*ζί[΅•ΦE;ΐmaΥ”Ž1S,>­Μή#Ϊh%½΄Pΐ‘ΓHΧ°υχυ«1Dέv Η©i­~%‚xZΦώΨ„ΈΆ“οFά~`φ=λd(„79=3^(ΝI©¦sšέ΄:Ξ­grφ7Ήƒ…—ω]:1=:w{MΠcšΖ5Όw‹PRJΫ;ό±d’ьυώ•ΥΫ[[kΊ€ڜ―ύ‡k>ΨLΏΪ%ÜΈΰw5Ώyβ I˜uI@ΰΝ-ΈhΧύ’FHυοQ’έ?xε­RΪ£…°Ž @φΫέBΫ%AΘ=Πφ4š°‹IŸOΦγP«nϋ&ΫΗξ\€Ωϊλ΅―[Νj5― ήPΰi7Η2uΩ“ΟΣΠΧ¬]₯ί‡#•FΘŒ9^pΐŽΨζΉjQ”+)-#]U§hV»2ΑαFTmΗΘ*‡―,?žk–½U·π[Eΐ[xγŽώu±ΰȎ£α»ˆ́|Θ-ΓJτ yέίΑ»ε‘’‰³Ϋώ•ΫJ6FSw= ·φMɐǃœs, =ΩώU²r SβD!€*zƒΝChŸa³d΅±?Ί-ΞΟφOτ΄:©ΆΞ:AΏΔΪϋuΝΨ’-nθΡ―Ψ‡ϋ ΐg·5„JΓβ]yAp²£"Φυiμ[ε‹νžk±βŠύρ…ݝCΕ:n“Μp©Ό˜Ÿ(ωόN Mb Vήέ>ϋέFϊΗωVg‡ƒκž ώΧnEήυQι_ΠfΊ 'A>1ΧεZΗC΄bŠρ=ΓύΦΨ{£>½+™ΑΉ―#eQ#Δ–ΦwL“΅άvϊ”MΊ7<ž½{©¬£]ύ˜ιΰΛm¨ρ3r€υp{©Ο½"ηYπ―‡δm;ΓΎ‚ϊυlŸ»Dέ>y$··5•β‹Λi>v§‘έiZŽœ¦H.mc>™ʞ…HΏhe8σ#–±·H€†$Ž9@ΥΖ ¨8 δgωϊΦ.ž$€Wquu–hύ:`QŒ*ΩyγŠ&–IUcKHΔπ£ΎkΗ―~t‘έ ΅1uˆ’,oτι~Ι)Ϊf·UΙ$aY:n=ˆͺή›O±Α­C$Zœ_»P\*‘Ωέο]?‡WLšς/k3$RltΦRρfN₯ˆϋ π£ή΅υB·³\kήέαΙδa˜,lΔί"Œό‡G+^•:i―xΒΌΣz"/4H€τΗ@ΥΟίά 3Ε}Ξ@Šηύ_O›”'ργρ­έoΑιφO«x:θΖ›D†Ι€2[ΚΌ·$νγ‘ηzξ²u;K8[t7-s) ω«dς:γ¨ΩΠΕE»#Ώρ³ψ~πGΖ#κ?*η!*Ϊ—†J0Uϋb=qϋΆ­H5αΡ)#Νl‰ά6psμzŠημƒ%燣Οϊ½EA΅¨„mIΆgV£ϊΒ‰θvχ"Iύάρ½aΨύj΄d OB? ©bn’)’“ΚΊˆ~ξB2>Œ;ŠŽΖρCΖΘaΉˆ,mΙΧάΖ°ƒF³D;όGβy{ˆρώ΅tσ± sWˆόKέ42μceͺEY"ΑΗZσͺΗχ§»ƒŒ.rΎ:o‚§œrmζ†ϋεΕdΐΒTʐTτΟ<ΗΦΆΌtxQUnXFΈϊΊΧ%:½†ΥWΩmpβ)$žΐά}Ώ‘Μš§#ΕΞ©*•‘©»αkάKαeζ‘ ‘»‘#ΫΊθ“bͺΫC ­¬P[€°Ζ‘PξΥΨ:R–­›G݊G'γ…Ω¨xyδ^ΛaͺžΑΡmί»4€ϋνVόl7λ>LρζJ’ρͺ^rΆ7­ΓΫ]J€ $Φ¦²χ=Hόe\θλc±KOu cpΘaΞ>™¬)|#qm #SΉ΄SΙ·‘Œ‘7=9Ζk[UΈž4Σl"`EΌ/tότb¨?™5­yuo§[™$¨8³–>€u,}`€βBίS‹‚ε¬e[;τkYGΘ…ŽQ‡†Ϋπ¦«c’Oͺkڌ’$ά`‰Š’B―Eu$φοZψCΕ uΈ–ΫM°΄ε‹PS$ΈΗR«Πγ±Έ―₯…I{ΟS†uͺs]CA–ξ‚Haύξ ΦO†fŽΧRΦ43.)EΔHέ<ΉFHϊΟηW$πΕ‘ˆήxCZ0Fδ2AΏνηΠI*~„W­5·‰ΫR½ ΔS.#BXδίΔOχˆθ*†…bm΅}a4vςζΆ’'Ι+.τΛυΙ{UJ2φWf1©j–g Ν Ιͺn©€¬Œ­ ΜXA'ތϋϋΗ½iͺγŠη³7άlΧQZZΙ<²,qΔ₯›’\‡ˆ žσΓ“λχˆΘbKv–Q†3ξΐώ΅eOψH5²/Ν¦XΘδφšaχc OεSxυΒx3TΙωŒj£κΞ V±ίS9Λ[#&ώ2šm”λ’mΩύ1ƒϊn΅+>™φh[\°‰HώιδŸΚ΄b`’p ·žŸdΙoδήn@ZΛ$`œμsZBΔOD9‚Cn±*yb<(°)|47ψPqΡΌR Ÿp#_θj¦­uφ[&e₯ΘHυg=ωτ«>%~@ƒ"kΔΜίνωγ?Œ]­£η€LΎe΄Έκcl~U_A!΄K v·QϊUΔ0…gxl‘£ΐ?Έ'δζ”5c¨μW~α\Ξ­§.€ο Ώ•p²y±KŽœr¨=+’•φίδV|ˆ‘m(Ο%Π€3ΤV³΅1„Τ΄2τϋΠΦK‘ yνρ°τςΨc?κzζΔbΊΔepέ₯N+›Ρσ #Ε_νEl Š?Ζ’R½‘\–R6-πΩIν’3Υ‘ώ•ΝkVp]jφΒhbtXΫ"E HΖs]6£`ς7Ϊν\%ϊŸ•Η£C\ΨΉ—ΧM"4r¦γ~©ίσ―"½)Σ­ΝΠ)Fμ­yg₯i6s]=…ΊGyŒ%ΙΗ@8κO–š[ι)6©m—WŽfΈήŠΑY‡ϊ±‘Π.ΤTZόLυΛ0 Γ/nAφ"©ό+¨Φ—6Π0|δŸbEnτ₯'sJŽΗ&ƒ£Ϋκς&—nηU Wευϋ½;zW‘ΪΫΓj‘D±€1…bΈεc7Š΄ΘAϋ‰%ΑΟl.ΥΟβkΈAŽέ)ΰ₯'I9₯ΊΗσ€ΙΝ8*"ΗuvάΝ―,-.’ešΪ)ΖC 5δ±E¬iwϊ~•φuϋ5δ‘–κFpU°ΘJφάαΨןψ’cγ k…β+ψ…³ŸIS”'άGα\ΨΗ%IΈτ*&\ηŠ-QεΊ΄ω‘9fŽΰ? kΫ^kΪvzŒΎαw"Δ—iΈςΓωΧUm)g_Ό>]cƒ«)$δ¬ΑμD5½UΉ>ΎΪhώΝTουύBIΫλ°Ɍ‹X˜ΰΘή„τ_S^ΜeξœNM»ϊ‰τ¨τx™ΜA'™Δ|ίμδzΦ₯―Œ΄Pα>Τλώτ.?>+KJΣαΣ4»[K$Ωq\γξ}IΙ>ζFŒ“‰<Γ•φΜ£&ξwsE+CιW©² θœ ₯±όκ ]ΪL<σSžΌV„πΫΞ›fŠ9£¨5Ξθφ+g«ί d†Ϊ9‡ξ·BΨΙ>ώ•S¦ΉΉŒ£+ž_Λ¬kžW ΊέΙVμ3‚Aω“E΅WPΌΏ5ΝΣ“q!λН£Π ζt•#XΧ‘οUΉ8Ξ{Žk¦YOhωΖ%Η=‰R›χ"Œμ”“5΅λ£‰p±±σeQ~‘œό©Ύ",ό+°a-υH’ΚT―υͺq3κ^ XΗ6ΪpI»‘”…O|rVόX€[ι„grj6δg·Ξ+JQ΄YOSΉ)γβqckh5i§ΧVΉς¦$ηώY‘ό@τΕ]ΊΥΦή ν Ο)8X‘y'°ΙwVΡηΤ {νL‰ξ!e’+uζ86HψŽ3Ι¬iλk‘8΅©Ξ―Œu‹ΫŸ=’··•‹I2Bsά‘ί΅vZ.«―§Εtƒh`ASΥpΚ~†¨]xKB–ΘΛ %'V;†{ϋΥoΪ›©ΫHΗt7L0{‚5Ύ7ΙO™ YΥvbkK¦‹ŽŸg›e«:•σι @\3΄VθŠW—ωηπ¨όL<_B½Α\΄γ tΰ~b«΄Λ}βήΆΊBeΩ”n]1ψ ηρ5žΞ(Φ£qd‹αέ . ]:Sˆ-ρ3žI3–fΟήV9ύ)šv©.Άχ7™j©&ˈ‘Θ`ΰ GcΫΪ£šβσZh¬τ‹ΖTqεΜG–΅ƒ κŸoΏΥVhΪήυ|ΨXδ¦FsέNx5Ό 8χ­’9A3ψ ι^2ν᫦ϋ„–{·σˆœγϋ€ΥKK=ηΔ7ΪεμPάθφΉ‚V“μ=z…υoΕϊΓΚWΓzC‡Τn”£ό»–Ϊ#ΦGNƒΉ¬}OLmiZ.‹#CΈa!ίΖήqκ\υ­γVλ•œU(ΕVζF·mcu₯\ *ΪΒαP΄%9Η­sv2$ϊŸ†ά ‘ξΛ²Ÿα"68όλ`Νβ(τγ=έΆ›p€n&9Ό‚+žŠGΟ‡f††c~Z"dPΚΔ1ΘΕKΩ‹–ςΤτMGQƒL³ση‘QU@Λzγ υ5ζڟ‹υ«Ϋ²φ*–KΗšκ ›~Ÿγ[“Iuλ\κΊL—RςΟ‚TŒ{&ΣhϊG„ΌG€-࡚ρcˆX„Œ:Ζ–€―'sŸZTΊ΅ /ξ΅ΙgζS<`³“ϋ±‚~ΌΧ{#‚‘sƒν\?†mντοjvΦ’++ZFξ£ψX1ώ»#σ8ΗΦΌ\l}iŸM–ΟΪα!?#ΖkŸκΩϊοZΐWiCΑg·9‹Ζ`_ρΠ!ΗΦΉnZ%”£`Ι>ƒΣ—Kάhςσ”έzm>½¨‘wrΏd$-΄Žίκ‰ιŸε]ά3Εxv›α½kY³ΉΌ‡JkΈη`ηsμά ρŒυγ₯vž Τu˜mΪήX$Ί‚ΪŸύ"?…ΑϋΨόλ²Ξη6Ί–šώ1ρ=πλσJŸšυ«.Μ€œ‰–wΩ΄d»αkCΔχq^ίh>Q>j_α£a΅Χ(G"«iIζέM<-g“nxέ!k ΎXjuE^GφΧz_Š$“YQ‹Q™·<–ξ eqΡƒ]Χ…€Η/‹u0²‘kv™ŒΝ ³Ÿγ‚φ’ΜβFЁ—I2F9ΗcXΪo©xšΫE»·{q§Αφ‰ ”Œ<FίͺŒ“ΟzQk•ΤfR¦ωΉ,jΪΖ³βšk½JξΨ†%tθ€Ψ#\πŒb1ΞqšŠά›e)Υκΰ«NΗ―PA'5=μ tΏlBc|ΘΔvkΤ«¬ΚαCΌ0α‡JΰuδυGr£²e\iwφϋ†œΎ}ͺHΩΩΐxΟ_”ž£ΠTφpΝ­έύ’Ωή^“Τ+Δ1ΟΛκsΑι]Ϊ/n.Žδ1Dδ3mΓόͺξ± }ΎTΏ³“μΪ”?κf##ΧcβSŠp£ ©Kr''ͺ‰™‘iP#Ω 8άΫΏ˜ήwΞ[wVlυ$χ«χΎ―βO§Ϋ§(θ›3κ¬Έ ύ*Ά‰ͺΆ£©J.a6Ϊ”Kδέ@Γ$= ’x5ΠΖ£=09Η΅z Ϋcš•ή’0εΥξό?c.βVΠn”od–άΩρχ—ΡΗ#½sο \ίj‰ At$·WYEΑ]Ε!κ§άž>ΈΝuή"Ώ΅Σ΄ Ή°b•hώρžά±ΰ α’³Έπ΅₯±ΥO²ά<φxdbΦ Ά6#—PΏ—·Œ›Ρƒ΄Y­¬Γo‘ΪO iw­w ί$LΨ"~ς±r@Jζ.νίFΉ”.eKJ3η#Ώjλ·išΖ„ΒΕ’ςH|Ύ60δ­rΊŒϊ<κλΔQΈιόjΧ4Eά稟1Ϊk~ M"`lη#¦y«š'ˆm΅¬¬l―ήFϋΚ}‘ͺk‘½γ΅w&ήΦ$˜ξμ0嚹¬xΗC ͺΩ_Kgq L2Έ'ξ•Η"Υ—qΟΥ_gmgΕ„6―Ή›ύͺΩ₯giΙ­mc­΄šΔΕ£EL,Ϋvu˜χl~UΙk7²έΑ©άN»&I£g\η2§ωWmπΑ•πhκ=?rβ₯ΚμŽͺ*θδo΄ΫΝηX‚Ξi$΄Ήxσ9ε­·ΰaԌΣ₯u« ύΫΓ^’Ht˜cXηΤcF Ϋώ&=ΫΆ}k=I5oGc²Ά|Ι{<ˆΏκΗ·'4–?ρHjGKΉάΊCΙ‹9‹±3|·9χ;IϊRUZξΚ“•tΊmΆl–φcOα^ωκO©χ4ΫΝ*;ψ<›¨c• H½?’―&;›†0z ­¨^ΪιΦζ{‰/AX–μξMavlΪG¨i“ψ^δ8f}6Ii άmΙ |Η©^:φ©τ!υBڡʁh‡u”.?ΦŸή0τΗOΞ΅5 :ώ{x―υPΙiφ˜‚iεω°₯=ξφ’ΐM DKC$Ί1vς˜ Οl»°7Υ08#₯SΑΖ2ηΆ¦~οέfΝ‘ΩΒέ‚Ž= O΄‘Ž@ώU_H‘$·cŠρyε·b?Ι«Ϋ‚ύσΐοZ(άΫ‘ΜkvzR6©Ιar˜o2ί€Η Θ$τ§xoW—K±ŸBΆΡν ρ$,VφξEVUέΘ—<–#¦x4ΝRΰx‡Ε:~‹nwEλ=γΔ{yE'ԞήΥ4š-Ζ₯fuM9ό½NΞζt‰Ϋ•q»ζŽOUnžΗ»"›8η(σX¬γΣ"F €>w·ή NNο\œγ3Pρ γœήωc葨ώ΅_TΥc:_Ϊ$gΆΈŠEI-€]Ξ$γδΐκIΞ*κM§[j‘›+™o%Τ&!SnΐB‘ΉŠ+Ι{$™›ο./F±Δ/b­―‘lEpWύ–ώςϋW<<]«MmδηŠνάB$1β!“Œ†Η\tk£ϋ₯άο¨x‘Χδε"0Β=N:ŸsZΣψ·ΓZ††ϊ6›§^^Ϊ”1쳡`Š}wΟ9¬ΰ©΅‘—΄­J­­‘₯cΆ₯Η {a†.zw,ΗԜΧ3γ‹Ι/|u*‘KF–;π1y¦ΣΝφ­*kί[ΰ}—ΌpΌHό*O!oέϊ©Ύ˜u©ŒlξuΙjW’i΄π¦δ™,‹cΜ?zΫw¨χνSΘ8`r­Θ' υmhl p܎}k W΅—OˆΑlνύ3,zΫ‚yτώUQHΒrξS8½»7Œ ‚εΫƒόG£?ψVƒΒΏ„5H…|Bž3ύj΅ΞΤx­"P (8ξ ιωš½ΰ˜Γθ~!‹§όO Σ)ώ•8΅ξΔ0ξθτˆςd ή³|86ι€14ΉΟcΌΦŠΈ'ΪΉϋIξ.n΄Ν1Ά4wyχD|°ƒŸ”ξJ˜»j]Hσh_Τ5)sgaΪ/{p±έΟτκk=μ³£—TΏΉ’ξζޟ1XΡ²T_Ζ·νl-μmΔP!±c–bz–=Νckcνšu‰8ή¦πΊƒyώBͺrlštΤ -“XιpΓ&LΜ<Ω؜“#Nj§‰<;΅jŽ6E}nw[Μ˜Υ[ΥOB?έ<ƒΈž{sM uόλ£—š‘§³Ÿΰκ-'’π'lœawtννΝOeαϋ‹›Έυ=vAuv9Ž>±[σΡ¦}Νkx¦ήέόkg|S0Β7N~κΞxŒŸ}Ή_lг4’;ω.xτŒzŸzωΜΑՍEN—]ΩνCκΖμΣπάbγΔe—˜­"e$œεΘτΫωsΗΥΙxe"ƒXkhςBΟΧ“’½λKΖ»π”γ JΰΔ4η‘„ƒλΪΉ½gώ&šœ:bδΫΑΆβο'‚εœgκy­Vώ .Εο%BJςοΩqί5•₯XΛgjΖαKέM!šwί?Γτu!§‘q€Ιΰƒθh₯δŽ”VˆW"[‘ ΠG*π3κk2ϊI/žΣΓπ–N3v܍±ίπ*5iοm¬gšΙn™F@'•>ΈοSE>‰’iΏliš]ΰ4’Ύ]έΟnzrpjζO@Ά₯Vκ@bΡτΐβd8 Ώ,χΨ~€w55–•m₯[,0Ή’W9w=Ιj© Γ1΅ŸS»]—WΏ;ω怐±`*άIs$:%΄¦9οΞ ŸσΚ μ~Ώt}k›vF‰ΆPπ[ZΥ―2‘κwE,esΑD>™ΪH­›γφK FΞ@–0ί‰‚8-f΅ϋ ΓΖƒΛ0γ¬}u.τ½*h ά=†ψΞβA’w=F?*ΩΕDΧ•Ε\θVώEΈ"Θo•NτTϊŸZ†γν2±ΛgΟU…ȞR[Αe:Fef €δg$ηš†ξ{”ΣšS/ Ή€{gΉ§$υ+i°Νy« .–Kˆ΄ΈL󸬎>o₯Ίςu½n (H~Ιή1”Œ“ΖI₯SΌ™¬D~ΩΦ${³±†δΌŸAV,|/ogiεέ™.™˜Ό;ΙΙb8Οτ¨Š»»2šV²6n#ΡοQΰΨ’ΊΚ σž ζΉΛ&{²Ί…+ Δ­—μU©$*Ζ±g¦  zu—Ϊf>D%a\©=[π5/‘m€ιΕ!_& x@![ yδt₯V’M"TXΙ¦νKG3'ϊι:ω@χcݏ₯SΤε‘tγ¦ΫG* ŒDB υ>¦­iφ-ƒis$gΞ”™εΘ;ƒ?8?†)ΧS–WU 4ΔδD=³ή‘»3X€·)jN²F–θ6lΉ‰p01λ[·(Χ7βΞΜ•t9žηy>Xη*9ει\₯όζκωτ{6ti„ά\g>VOsύσϊW} qYF±ΑΊ8Tη€23άϊœχ­)­Y’8m‘΅…c†0¨9ΙκO©=ΝN²Ε0e[,ά΅Ν=‹δqή΅2$œ}E`hœxοΕKuΗ­ΐΝΏnγŒΦςψΟĊŠ;v?]Έ’[ϒ:–ϋΉ3Ε1[YΌš―žΠΙ nf^C€~λων]Œœ ΟZΖ­‹½m`D’ƒΘy±ς―Ύ:Φx†’» [θSHmνnξΣf‘}wΎεKrœ©τ Šλ―Ÿ}‚Η*r~ΈgQ‘­―τ»§εΊδŒ€m­?LπθΛm Δχ'ΘB?‡<“ψ\Š’”.φ‘“αι–Ο|sεNZήί'ˆ?©Χ~’Έ‰-ο4«h―•pˆƒΠsŸλ]όg1ŒŒ}MZœπΊ*’²Ϊ£$)ΛS.― ±.%HβOΌΝΠOsμ+ο5-Kζ†'°²'|«™\tωWψGΦΊ(£BοP†9/9Ζ"A–ό}qZΘΈΦ4» >[΄<7ϊΉcl©χιΖ»;{8-!ΔKŒΔ±Λ1χ=λ–Žκξ>@[§τϊΦuηΛ MiΕτ;»{½&ΦζΖ›Ξ‚­ŸŸ$w5θP³/ΫZYφ;3DΙΒς7­r4 %φ§’ΖΫ#:ΧahΥΨ} qψΧq©[i6¦ij ΪFβވ£Ή5 zσ.¦svV$Φuμ»ΙžκV[[©ζiOcώΟr}+ PHπ­όΧύ£QΈtšκηϋςΡG@+[FΣnZπκϊΊβυ”€1‘i?tvάAδώΟ6|=p;ϊ°μΣ§evy³¨―dh©Β)| ΚœŽΤΔ\[FEΟεLW]Ήω½+‘ΧΉ{#`ΙΐώU’‘φIΛ›νRoϊξυV¦ΖŽ•‹jνΊœhpuόx?Κ¦³΄.(nxό1Ho΅9ΰ \¦΅yŒτaςό§ΨΦίφ”i§ΆV Λ<Ω_ΔρYπ2ΗkjΌ)ΤξgΤͺSΫD.υ{;@3?ι“Ϋ§Ψ·?…U“₯g+ϋDŽ«M·m#B‘ ά΄ΣΏ\ΘΗ$\pGβW“ϋ6ςFΫWΙ΄žBοŸΞ¦ΥœE£\°Θaΐ'89Œ3…fΕΆ0~»–œv4GJρ1“*‘œg―ηBN#ξΰ©<―­Gr „ΊΪΌ›FyςΙ#υΚ¨]}¦ωΌ›F’Τν’ι†9UΤΧp²–ΰη#Σ'°νQiΪ|1_]5»L°Α)ˆ“+Δͺη<ϊ֍ΗΩ΄)ήΘΗ ΉΛ<‡¦OrMO€Y6Ÿ¦EΏ4Δ•½]ŽMF.«ŠHΚ–θΑρ2§Ϋ4«T3 ^υWΜ$ay'J›Βα-lu2ΰ²-ύΐ󓃸N}»φ¦λ±όc 7ό²e•=ν_ιZ^…e°ΎWY/n7lΰ*Ϋ άΦͺΜάρ%α‹α΅νμlFΫ=ΘsχXΰ/κkh6rψ~ΫOΈ‚9cXQYd\ΨΙόrIΝfκ—ΕπσTπόμ~Σk{olyϋΡ<ͺΘίLgŸjΥ·Τ£ ‘₯P δΊ·9π±²lΐ’mOΒ#'½T€†ωmΊŸττ#‘Vμ·¬ι’ZΚ²Β—fO1T=}y­-Jβ[·]*Φbͺΐ=Τ¨~βŠbίΚ²έΖVib :νZ(”–)Θΐ€8χW]){6t%vvb@怎δ#gsTχ sŸppFk)FηM¬aψΗKΊF΄ρκVŒgξΝ˜ŸΥsŒz£΅M^k£i›τύάνtBCm αƒ?;Ή­xλPS§ΪθV’”ΉΤXΖ\<¨† Ήύχ5bΞtλX᷌E•TtοΟψΦ_YφVre&WΌ*ίΪK«λWΏΪ:ˆΙ2β8χcB0>΅wQxαρ_†ΞΗζMσGΗς«ηxί+m#zV?ˆnα[½α™Lvϊœ{ΞrX9όHκR»Ή•J64o4ƟΓi,$Γ}LcœuΙ9*ήͺ} prΜ·EΫ΅˜E ©ώdUaωζ»»™γŽΩ Ž@εΐέΞ>•痏³DΥT *^ΣχͺkeΛs’57)κWΪt:„-Θ§ •,3΄Žυ“o£ιΞζ9-6ά£θ1ΗΈΙθ{WL‚qΤQ\[,ώ\ƒε–6[ӞAφ 3qΠοœΤσ+Ψ#_λH¦D…eŒό€’πΟcP·CKΆ@²1σ|(δηλŒT4ž ρ H0ίo`ΐϊJΧΠ eΌ“;₯mͺOπΖΉVσΡΞ•ηcKΕ2CwπmB•<˜€OφHeύA¦΄ίiiΔ"XJpγ!Ž9ρ¬nσΚΠΏα‚VY./T'…‹>acνιSG«[XΊ‰o’τ;εΙ‡jλŒ“W9§€RΌoψbΚU΅ί>š„myˆΪ@ΑΘ;ΤvοZΎηΤ₯‹ΔZ½ΚέΛ"ξ³Mΐ¬ΩηΌƒΧ΅ vuk˜νRBΦpΊΙ;gο?UO§Bi–·«αΏM`>]2ξ@!Οέ·˜γ(ΩnHτ5ΒδΉάNΪqn7:δ8@2p8©Q±ΘΟZƒ9Žυ$dγή°‰F&Ώ¦άyΙ«iN±jrTΘ%ΤqΗ‘¬%ρNΉ­¦iΆgv¬aΉΈ›  ΞpGίlττοWόQ­Ξχi i’μΉ•s<Λ,#9ηύγΠ~u‹yzv’’ωMmϋΕ瞠œžω揬ϋ9(χ-G˜κ|9‘Ϊι6ο:ο’i˜4²Λσ;1ΖKg9ύ£–οΕ’ς’qh μ‘’ρω±¨m5Ή%ŒͺΈ ήέωζ Ρ5X,ΧΔΆΗ/'ΪΥNe*ŸΙ‡λ]π·71•J\²*jβ[=tν™ίΛSž‹Χυ³S ­ψm`} °˜‰ͺ]zΨΩΩωˆKΫΗ&σžZ?ρ_εU-δVρ/‡\0Ϊfw_aερM§AΨε¨ΪΔ.Ηg"`.:cjΗΥ4›IRKΉWΘ™Vβ2REφ$rsι[“άEmŸ4Šˆƒ,ΝΡϊυ— Kͺ]Ηst­ͺ6`·qΛΡίϊ σπΠ’•ΡΌκG–+ψ mž――άά‘σ ‘ »; ΉοΤλΨͺrG¬ 5OjQΎ1>—ΌχΫ#/υ­y#“Oœ2 ΦΕΈΟTλW9IΥΤφp― R·Œκgώ˜χνΘ―;žS9Ks€"χ>ߍwΎ4˜]Δ„nΈd}‹8ώ•ΓέY;Ϋ,π^!Κy{λ[`τ§ΜyΩ€ΤkE?εgIαοΆ‘¦Η§άi“NΡ$!H+ž2 “΄ώ,Φ€Ώ·‚}2Π|²KΈ g#‚οXν¨Iaa…Dϋ€•ΗUˆsυ8½t‡lq mT…ΧW.[X<6ύ£8ιΦΠO¦B±3ν*ΚΕΙl§9Ν7CΉ[_4²<₯‘–TeK;‰žηŠΠρPΩθ\ό¬eN½φƒYώ·3]^—9†ήώf@‰Θ~œΦS³…ΩήΪζ%:$Άq ZκC-κΊΌ­œωkžU}±Yφ˜Ϊ¬­«YΚ;}ΌΔδ```ϊƒŒb» Fζ;&φρΙ lΔjΓπN6½«Α ]ΟΥvλ˜°+n‡¦Π8άAκ? uεΐΎΊ_zΪ2²\g¦γΡ~λ3OΌ„?];aΝ [wrqg!ΗΘΗϋ„ηiνŸzΧˆƒ©Ι-ΜqΤjJΰtώ/§†n#˚άγΣχ‰Φ¬Ωό–1 8>PΫίM&Ώiύ£ έΐ^"Tw|Γυ[B»[½OΉΞΪǜž‡ώ9ΌFθηΒ7ΚΣ0΅­M6U½πύΘ±™ΫE³tOξΛυξ+*-W^Υ%67,–H$ς彍çNBqΧάπ*χŠ5&Υ5(τ]>WO, Zž‘ηϋΝϊ g— Pˆ’1j»Bυ{ϊΧρ*Q=:Tά‘ΣιZ}•gV¨Θ7n99fc՘υ$ϊΤΎ–ΪΟαή£¨\H#νr–?Γ‰όψυ84λ‚Ί~·*Ί?κLρ“θWœ~€\Ί“EΆπΕΥ£ΐcžMFpά‡œ΄kψ±οι]p|žωΛVŽ₯[Σ.§©I­_ΔEΔ―ˆ‘nEΠκδrOΎ* \G`u’δG 2 ‹Π2Ž=ΟSο;FnAνυ§ψjΙoPF!)R.UŠΧDmU’σYŒ˜”ζ ϋ±ŽΖOο6;tΌ"E@ˆ‘TtUP~€οΤη½(e±Π·+Νkζμš& yΥς&e4ΥΦη Μ8φ‘<Ρƒε4›cο„S€>œΦπ|A0ϋ§Xl~ ¬λ zU²ŸΌ#RΓО­i|?Q^΄άΊ΅Γ1'¦:ώ8‰{‘4‚±Ϊλ7ΏbΣeςΧΜΉ“[Ηέε#εό;Ÿ₯7ΓzdZ>‘k§#οx7€ο$ŒIv>Ή& Lίκ'Su"ΧΛ΄SύΣΓIυnƒΪ΄4·ΧKύΙYyνΐ4"δ¬^θΏ…sR“?Žm’‹[9&lŒΰΈU&ΊI ΅ΝθΨ›ΕzυΩ9Ϊλl§="“ϊš»YάΝjtœ°5MZβk–΄‚νF&œŒ₯°>Ύ­θ)/΅½FςM/I}ŽŸ-ΥΨΰηεJ·iao¦Ϋ,6ΡPsΟ$žεRsZ9φ&4Σάηu=ΪΫ@0„2ν‘e‘δΙirΔϋšΑ₯Π&ςš]5Ι+rΠη¦σάzξ―Ade~‡Šδν³, bT§<Nk’¬n΅=*“Fζ‚Ψρmœ«ZIƒν•5Φ{{}kΜ΄‰Fƒβ(T …œ±Θ5ς›‚qμq]4ϊ΅Ξ©Γco©¬mς½Γμˆ*χ žI’žŠΗ%X5+ ςcXM–³²c²‘ςrύΗaWψΞ6ώb¨Αm$(ˆ‹uh0ˆ.Q‚ϋη­XXΒ‘ΈΞίp­SΤ±>p1ψΡQτU‘Ψ§s8Š5rϋH >pΗzHmŽ Ρί^Ϋ)s :ŒΟΜ}ΘͺnN£[ΩΛ) yς©[h ηW₯•#™ „ϋˆΗχk…½4&²Zθv†F‘Žُs’OαYή)ͺMs­ΚίΌ»!bΝΊ’cύ΅KZ™΅9-|;k#}}GΚ§hŽΎΓςΝiΙ 3FβΡpΏw„€Η#¬&“Τ1obIuyu&ό)<žœ ‚ «[ο2ΡΨ:²S9w‘[vnEΛBeΣ\“½Ζγι’OPJ݈€‘ ‘ υSΐ’jϊ£fμ¬Ξ{HΈšΪΐΨ\™ΎΡ¦7–Nάξ‹?»sλΑπ§=ΝΥ™ka40Ζ8’yŽvϋΗ&—Y΅Έ·ΊMJΘ€ΐΈdž‘σ!όΈ¦Ϋψ‚+Λxητ»Ιγ( ²Ζ‚GL“Φ΄§>e©7°ν.τι­―˜Nφ•ώg”qΙcΦ΅‡œ²#+6xΛέί^½υšΛe-£,‘Vgq…qΧι[I&¨φι4FΞωNhc4’L’;ukΏέL‘φY―‘{;/Ξ.*-N1©ZhκNɘΙ0σΙb?ψΤ^Ύ/₯>-gyς4 ύε,ηοsΟ¦iφzΕ₯†―­k2όρ”±Ά·T&W;A*‹ά“ό²kMΉά²:›Β’Ϊ_5•.ζΟ!G­q·΄Ί’›?¦ε#_:ν·‹ΆA#2§~M#QΧ&[ΝtEφpΫ£ΣBU}ε8ωΫΊ ΧIaΪ x_,`G΄(Om£₯[VMξrGG·Ρό-s»Ξσ3<Μΐ—|†άxδζΊαuζGœaΡ[“κ+苍αoΜM9 ΤΪUό66V–Χs€R¬aΝΰ°ƒΟ΅U;Κ㬬‘©Š€ xH““V‘ˆ\@z‘2©‚HφZrO8σN}x­yu2ζ%IΞάΑδ|ρ&F@ŽΩOύρŸλ] p“ο\ή•"―ŽΌK’y6ςΆ{ €J%twR6u[汴Η‡Έ™ό¨{ΤϋΝr‘$v)$%ΛKζIݟ<šι-AΤ ύίϊ»U#ξǞ[κίΚ°ο<΄Υο€^€ΰφΘΗ‹\ΚΖΨumΚz€77ΊΐPCͺy‘ᔆλΕ\šΰjΩ^‘§  Όώ΄\O,²Iά.@λY₯~Γu.€¬"GšΩx‰Aξ ό«–ΌmGAΤ^ω{L qβxdOυ0+yy?yΈτςzυλQ“ΝzIXΚχ3ηέdOW΅=sɏλκ?•rr,zΥκŒΛ2ž£ ?Κ»ΉzzWŸψ’ΦX/R²„y*₯&Pΐ^Ήη¦ sb©ΉBΘڛЏΓΧYήxƒVΈ}‘«ˆ·‘œAΗԚιτ>{»ΥΦ5ddq–ο.κ‰Ώι‘πΝψ#KϋFŸm©κοε{›xδ)f8wΞ9•θ;”Άw\“]8H(-N,L›VCΟWœ{φΕy:ηž&„δE­ωeŠZI₯Hγ^η~5Θx£UK=tϋ#!žώtŠeΪ«‚ΉΟaŠτωG™ss7..ζϋ%±T•±•‹Ψϊš±go Kΐ,Δδ³rΔΥH#†Φ5ΗRνΙbz’{σZP΄σœο3άP²& ’γšΑΤ%·ν/nη“δ·rŒG%Ύ`G©$€+¦_ΈNy p}+‡ρ<Οϊ χ$Χ4τp:cΞ Οβ*δω—+2εϋG—› gJyο5] PΜΉ’i€BލΝχ²Οπ­ FφζΑ’υΌΓΞv αώωΗηWώ&BΆ²KL#KύJhn$Qƒ°ύΉχaXvβX– νeς₯Ϊ7)#c±Φ¦¦Š(!#₯םLg™’SψΊΤΎ5ΚψrΰΣXΏτbΦtΊ‚jz4ρ2˜κέZ#ΤeןqΗ΄|l»Ό)xGU@“-kή,ΞR³;YνγΉ†{y>γ‚§Ϋ=ώ΅Ξ[ή‹](΅ά«³&9ف!Hώ#υΧMewqΞ>βΈΣmˆ΅iŽJ†]¨‡ώ^¦\ηΥozΖq^fG}Bώ=Fω]mŸ±ΒγŸϊθΓΧjӎξ0ΐ*ΉΗbΈͺ— ΪTΜσλn\υŽΏμϋφ­4X|₯ΐVSΘ8ιšΒ£ΌΞ¨A%‘ΞxΆM‹cwεHŸdΌŽMΜΌ?)ηρ­ ΝzC\Hαbi%›'Π±8ϊβ«ψ»lzΔJ0ΜUWΏ%…sZ}ΌΆWVφK‚Šί»Λ#αΣ‘ζ»pm]άζΕΣn*ΖΗ‰¬vΩYψΆζΕ.cŽT{«yGΩ³ΗrΉ Ο½2σWπޝ¦Ιw‡4ΩQ±D#.ΝχG^ω[Kψ€mEՎ―€ΛάΖn-FτΑϋΑ”σŽ΅ΗYΝΧΆζΨ\\θ6SΘΡH£ir>ΰ;½3ϊWE[+³Ÿ §π΄zNh–:xEΨ&™e+ΣqώχGAμ)ή ±MSI’Υœ£Ά 8냕o¨ W;m©ψQώ]GK½ŒΜ―#JκPρωWY¦h^Υ!ΨJeCΗΙrδ¨έ^4πŽU9Σ:ezΞiή4•l£mRέΦd&)Β‘;d^?^Ώ\OXΕ"p£’ΫxO―5OΕήΡό;¬ΫάM§ΒΦzŠyl_,eΖr‰r? ΐkmώϊΟN·±Ά„άL#wDΓρ–ˆόkӌ…Ω^ίCkGgΥon5ΫΐUg\ ίςΞχGγχαZ—ϊ₯½…«Θσq…\εΠzΦ£ψSΓοͺ/π‰_εOΔψWN²Έ·΅ŠΊt¨22υ'œW›<œωΫ"–"v&Άρuύ¦²ίc·΅·‰ώκίΚn>ΐcϊΦ₯ή§wβLZ.ƒeq¨RZ+R©ήv=>k‰w΅ΎΆ]ŠJπFΑ΄―^΄4x‡Γq‹UŠ;λ%lΓ˜ƒΤ·g>υθ”Z³:+•=VΔΐtMCPΡ΅EY°φσ±Θ €vƒΨƒœ{V$œψJθ’I,£ŸS Χ>‘£xΞΚυΰ΄…Ω"ν’2ΉοΈ˜έ“Γχ0ΙΥ]½φΚ?₯lτ‰Δθ%.t{f_spHλŸA“Šθ”©¨θytαˆ•OήlvZ?ϊ-ΊΖΜ ’]ά nrrN>§JŸS³ƒP°{i9‰Ζ1Σ±ϊƒΘ5…„%”$­ιάύωε`ͺ}zκ¬|€jpG=—ˆ5)ž.A ϊu―1Gv{2Δӎ‰Ίw‰΅]$-ޱi$Β3ε­άkœγ¦π:;Šv­γk“²­%kΧeˆͺD~fΘό‡z»βo ψoΓΊoΪ5kfφ>‚7ΤηcΠ1X~ ΅πΞ·$šcΪί[\€dΪ· 7ŒυΞNHͺ‹œͺ'±&•n–4²;K,„Ι,Οχ€sԟθ; ΄Ξ]$έΓΖp:WE γJ²j:œJ9ΒΞ?0kšΦμ|+¦nΆ[ύKPuαΤ_1Uφ;p φ)αωͺσA—F³A’x½lμ²ηΡτJkFςɟ μŸΒέx8Ο¨’σSΉρ }₯xY`“KαΝ“™ߌ‚n@υwQH.9΄ΔΓςΒ SΥ[Τώ½iΩ|OΣτmίM³ΣnRd^+pίΔsŸ›'œΧ·†δ”m-Ξ\W΅τΆφΆS\Ο"Ζ±rY‡žŸeF¦–9ρy–…M-ΌίGμνΡΨ6}Lͺ@ύ uχΪ0―ΞοΊ%½«πw‘«κzξ€cΌ‰ΌΘ­αB”PHλΙb~•iρ˜/^+Zν>σHrHμG±―#­VΟ‘Λ!μπLΙρe»/„no'P&ŠhtŒy‹ΗλY‘D‘»NwΓΎ}«£ρΊΕ©qΐςώDZε/XΙ΅ˆ–ξUΆΈ ΧτΝ^~ξΗ™œ.|E3[Αštf L‘ν±Ÿωg ’~<·γ]$χvΦ14²ΘW»sƒιUn/ ΣbKKxέ@Ω΄cηtΟ`8κj};D–IEξͺRI—˜α^c‡Š<υ­&ξkΛ―ЦœdκM Ew`D’}ηVS“·ή›αq³D†SΓLNδφ,δσψb΅Όl‘΅ΏFά©’GΗ^B :ΐΡξVΧI–"ZI*ΉcΡŸΚTω,‰ήW&ρ O¨¬:-΄©_JΪO»K†von1ψΦ†‰yoΰΏ kUΦ4Ym Œ–“}Šοs―Μ CΙ9xώυ%‡-―t™u?Δ!—PUϋ?˜paˆε¨ϊηqϊϋW—λΆΝ¦έάY˜’9ΡΥnœœτ―^†χ>σΨς*β―_–μ5ύJΖϊ桦ΠΜ`·εRΌqόωϊeκ“άΨ43μ•Γ~Ÿ§γOΣ΄}cL‚-:4i<Ύ€κ±‚sΙΘΑλ[PxsΔ· °Σt€Η_3Rΰ~K\R„ΫΠο~ΛyΌ'γwIΦ%έ Ϋ² €Ζ9ώφ?:λo5]?N·k«‹΄π[=}1άΧ1sπΟRΌ“7šΎƒb%c™δdτΑΐηωV7‡<4šύΒΘθ#ί°ν]”Θ’BWv8ΤZΓιΡ„²—C$—hδžόŽj{κ]―ΪυiΦQGΛ΄vάl“Χθ ₯(»άηX=Œ«K†khέ›$ŽrsŽΥ—«ΟWv6N~όώc’D{HlγψIΕeGtχD·ΧΦΤ»σ• °$ΰΰ/λZ~ρV‰α;‰.ήςκνŽ%œ€μΰDτφΥΕυ:+TvΡnηστς¨Α”Ž9V(\΅΅ω?Ί‡R'―Ν΅λΒ­Hϊ6‘§Iu€έΙΑ;@Œ•Α'£)β³.=;GΒ΄SΓΣ£"σZN••ΜΤύ·MX,dgοXΝ¨>Ÿ1[…D-)9ς£{{ΦΌcξ° ©5ΕfŽKΔ»VM]Ÿ;Y9θ>QSψ|ό7¦«½­Σp>όΆTΌlγeΥ²$Ί–8†πœύ3VΦ,τ―ΊΟ:Ε”O@q1Ι8ΟJηΕ'&’4₯uΙ•c†Σ@Φ¬υϋ½:― JΟon· »μ°‘Žsς1ιŸJΧΧ΅ ΓG’xό¦,˜Δl³ΜηAΙ$w¬Ο|TπυφŠtΫ φ{o/ΛΡb@½1Ι$ρ\ž ³\Γ’j­£[ɘaW‰₯…Ώ‡$Ž@η•Φ”Tlυ8γΝ'’=3Kα±Vέ+2Wλ–=Ήμ:₯Ky WΦ’YάGζDγk#‚CΈ?γ\Ν½η†dP/.όI―Yeo•=Ο–:W_¦ψKΓ­΄RCy}} tc©HWσSΦΌϊXYss6t:ώΙZhΐ˜ΪN“–‘Eq2=ά©‚‰ΈHϋΨ=OJΩρζαoiYΪθ–_oš@αšF,ˆ9,I9φ€Φƒ­ό'\‘}₯,WkΊHΛ^; ”ςH9>ΥκEΉ{¬δ•£MΥHu•ΈΣ­Φ(†Π2Δ–Ι$ςKδԍΰ’6΅YvFκyP©λQΡ>θV~f‘ccmž…Ήό3–5Δκž.π꿓ᏠiɁΕΝνΈEα~ρ?Zδ–*|͚Ε:±΄–~:Φ,4ΙνDI`Φ,Κ!‹jρ@Ζy X’ΗQ}.κlj—r‰u0Ϊ#Ηl.8ϊΧοu6­«-–žΕ"ΞTγ¦{άg₯Z»ρΎΏs,JχΔ`p|²ΉηάχΝz1•:‘΅ΞiR©\ιΨWke~R΅kx sΘG?k τ5Ησ5ΚιW]iΚ·8V_έσό>€ΧKΰy•5m^ί82W?Mϊ\•“TŽŠzUΤξ:TSέΓi –YUx$τΟ₯WΤυ°p­$²±DŸzFΗςυ4Ϋ &O΄-ζ¦Λ-Θ?$c˜ΰθsΟZΖfχHtRj† jΦvΗώZH3#Ί½ΏΞρ…²[ψ6υP<ΘIάrsζ/$ΧP pε|mr%π¦­_7—°³‹†SΙυ­’²Τα$ °’α‘ψΧ1ΫΙ£Ϊ½Ίnm2yry6ΰ°Θ'Ίžή•£ηMQΤΚnXߘ‹ς8ο]\ΚΗ$τά eGχN6ύ;UŸEζxΔD‘Ίγ 0’&aψΦ©.ŒtKιΜΐ`ς`>ώ«ό«¦ψo›ΓΪ½Λ°+6©pκΔρ…Ήϊak›XΕ1Ρ’z£»ΟET`tUΏ*Μ₯wŠim²Σ}¦NGέΖ{ϋb™>!›Ο}γJ <Έϊ£Σ{±θ;υ¦ψzd€ίDΫc…oeXΞ0©ΣƒιDMκ;# K12T£7!δ©ώ’Έτ7ƒWΦ΄»bžKΦy.βš59ΗχA]{)<γψ[Ή5όŸλΠ· *At§Υvμ?‘΅E‘9]›–ΪmšZΫFR8ς~nKΙf=Ιυ§©KeΧΦ™&‚k.CDU•€γy.€7ΝǘΜΧA{;ήά6Ÿly\Θ:DΏέΟχbκ6Ki© ‹²)‡Κ;+£ρ©šΠμ‘‘ΒfΦ΄tφ–`Xd`FέG½vp\y₯‘tς§„ρᏸ=s6 ?‹4€xΓΜyνϋ£]^£b.ΒKΎUΜCδ—¨Νκ ]|ΡΊ9quy'¨‡ή’<Eot–Šdς#ϋρ“ΣίάZ˜ΒͺΝ 2RΥΏέ<ϊΡJΰ€ΐγ=Η₯"μqQκΦρjš£]_ΆŸΊDΛς͊{ζ―½ύ·­€Οm,„…ŒyIξΚy"ͺλΣA¦κφΊ$Oo²ή‘ΆΖδmlzƒίή–ο_π€2„½“ʐ›N•}Žή βWεΣ±/}M k/°@Pς;™%˜Œ΄Žz“ώx‘šεŸΚσNΑη₯Q‹\Š…²}Vθ Εe9ΗΤ°υ¨νu»yυΣ―΄ΉUL—6a₯až«ŒδŽ{WnfκΒ€QΡ‹h€^#ΐͺbΖ['2iΦΗ9hΚοˆύW±ϊUo;E‚RdΤ΅MέΞΙΟθ(}gAw-ξ’1њήδγτžgΠΥΝ5©-ψ.l“ΜΎ°ΘR –ίχŠ=Θϋ]Ϊ½ζ£œŠΠ,ž|  Ά ϊš‘ fš€ˆ./.Iγ`Σ%g?§z―-ξͺΪ„7Ίo„οΦXxS-έΌ[ΑϋΑ“9Ατ=*©σ7ͺ3¨β–ηY¬Ϊ\έθ·1EΓΰ:ΥXrΦ³βΥν­<7iusp‘#F‚Y›tΙ9νQjqpώΧƒz$–YΊ]υόzΦ‘ƒυGVάnΈ΅VG͌·ŸN•‘f€Ν+M+\Τ ŽδΗŠw:œύΡΐΟ\6hΏmΌ+«ιΊμQΙ"<†ΩξΜqζ`bzsŽG@qW‰uqΧπ†²}6OlΚJ«wβ;ΝJΒζOλr$Šcu’Kt=²d§(υD6ήηC<Ω%mή`qT.αyd4ŒGρ9Mρ«»Ψ λS‹lF€ΟlΕF8Vmψ$ώ½M%ΦΒ―MΧ‡ίŸž”£sjM$_ΈWQ‰ΣΘ‰aΪW)ΫΤV.‹zΧZM­ό–F+K›²›‰δσ|N9‘ΑνΖjνΎ±­IΞ<+«#‚.νF7ͺz6£uc₯!ό-β‘)M±ύ†O—ΑλE*mI„εΙαϋx~_Άκl:γνξό1I6“¦CΛw…‰yi'Ί|/Τρ\mΞΏ}€^Εaok―Z—p–πήέY`»NΰI\{ρ[Ί<–Ϊ…τrkwνs©ƒϋ»yš&Š#L¬}Ο5ΡJG4¦ ‹ύ‘ΘΠ€Υ γvό@>žfIό+& KۏˆšΤ2&K€ΈL #sŽμ+ΡU\`Ÿ“³`mό+˜Π›νλ©Αγ^av$ΦξfΎY pcˆΘϋ“pe½ύ3\ΥΧ+ΉΧFWdΪ΅ύΦ£o"©x,@ϊ<£ϊ άΦ, ζ‡bφΚκΩKMΨύαΕe^•ώȁΦ3]ς²XΪFθΥ₯#¨P8‰kΒWζsΪDCΕZ”RD^=6%&~Μςciπ'šτˆ8£XβA Ϊ¨Ό /D+eβΛΈCuΉE†Ηƒ]šΦψuΚ[½™#7ݎ)ϘwΕt6f„όߍpž"_΅j«£ …žF–cι‘ψœ ο@ΐδΧ«]%—Šo₯›qo"8γ$u zΒΌš§‘¬QΠΩΊΗς―Κ@ ?„ƒπΦ..eh4ˆΝ̈pӟ–ΟΉώ/ ¬-6υ­I£Τ#t΅Œn6Αωl—Μ#}+΄Ά ’F«¨ΐEΒͺώ£δ£vDβŠ+€ΕΆ‘¬\ Ι£S!y‡ξ’“΅: ζ5€+€λςΫ,-6£ΗέΎT ¬cψW[«'φ“Ε€δν›χ·?μΒ9Αx€*ŸŽγ-αΩfUΑΆ’;Œzmuώ•ιCXΆΞ}ž…ōG§φ«6μγ§J―UρŒnΘϊš±mΐx+Θκr4U‡–IγΧβK˜|?pqΌkΪ|ΉϊΜ£ωμΟ‘"°ΐ{dW­H±Αα«pyώΪΣPύD™ώ•΄£iFI©~* Ž]%Snσ«–Α灓όλ ε•…Ζzτ³β¨-hRoΒ™ƒΣ-ΚΉxνMΔΠΑ“σs!ώκwΟΧ₯Tβœ5"/”ΎφΔYYίVT»ƒa=6— ;ŽkkΕ/ζxcP…”€«¬~ϋΥ}Xμ[ΗPW˚ ή΅?‰.­"πύΡΊΛFP’ͺςΜηξ¨υ$Φ΄,‘c›ί2±©©ή\^₯‹k!ŽkˆK©Wƒ ;p~…ρ­(b‚(’ήΔ"Pq΅{ ζt6—E΅­'οχ$ξUnŠ„φp tZ‰UeΆ.QχFΑYFϊ#э;FδΕUγ1Ά ·<ΖΉφαΉ°rΪK6nM±'Ήξž‡΅kA|'•’• W1ŸήDyΗΏΈ=Zω'€£δ90ΘΗ‘©•­f(Η#β©ΦGΆS XMΒ³98B–δΧ9₯ιΪψνZ " ˜¬Ÿτ™Λ2xLŒ}kOVΣmtJ7Ί·ϋ~ƒ»Φ9_+e!TΙΧt}qŸ»ŸJή—ΖZ¬sΗošS;(*Y› ΰ g…tQŠPΠΒ»ͺs–Ώ ―γY ² Ώv0ξGՏsV―>jξβX&²‚oTΞΧφeΗ"­MγέnΚgŠXtω6ί5eqΠ1Η[QρΏˆ`@%:u²7%ΡΪC= 8ώœV|³Ύ¦TέU©œήρ4mŽΖuΰ•Έ3@πFΈ³°cI Θ–LDΓώ£5bΣΖΕ£ΙΉŠq»p,Œ@ΟΈ¨Ώα=Χf½ςαkw‘0ŠbhpihjλΤ–ζχ‡\·Ÿ½ˆƒΗΞS ^ΥΜIαέkL†ίRŸM˜₯Όͺώtw±±'¦3Χ'5яψ’P“§Γžεδb?JΘΉΧu©€d\>™¦Ξ$—*³τεS;‘4γΞ·2Jf€Ύρn½ύJx#ΚY½σင/Μj±ψwβ]°iz\JΏά»ΐ?ψξjά^0Χ£UR–sqΑθNόι$ρφ·ϋ–…Tΰ‚Xυ€γ$\%+θŠ πχΕV±elμεAΡό«靸5Ÿ/ƒ΅‹«±G₯Ι fC-ς°E?LœžάWN|]β[ΨΒAφaΖd.d#θ1ŒΦuΉ―[Νw5“›£&fuΙ8οΐΙ­]₯U‘=·Γfέ «g`²―+'φƒ+ιΈ/?qrΓs•­ApδC0Ύ`2'Τpy’_x’ώ4dΤ" Qΰcάσšš/έO4©ͺiVχ0 Ae#ΫΨ;€=\A ΦЊj3•I₯₯ΐ–Ɓω]UΗβ©<σξBxδ―ZΈ½ΔqΨi0ZGΝδφω„»Bœ.KwΖ*]C_Ώ{;‰Ρc„Εo+’GΙ)#-ίιŠηφ']ΉŒŸί¦―«=Δοφv¦S„i:'Ώ ξOJf—ΰ―λv’βάΕc₯«‚ίQ-#ΈμvŽBϊs] žϋt/Ϊ]έ_%½œ:…ε•ό«"*˜ƒ4‘dpΛ’psγ8ž-ρ\dM¨O` έ-¨'ž›ς9$b΅§I?fqβk4‘8ψa~nΝΥέΕ¬σφύΡΏ‡sWαζ‘!Λ\Ψ“ΩΌ¦Θύk;ώίΒ‰φ‘"3φ.?R'Œuε·7Ms;’™ŽœϋτΟ^Έ:όښΠz{εεψy­(ΚO₯°υ18όΗ4±|9Υμ₯7j–ZtήΜΌ˜θk:_x½a3 φΣYœŸ 5™uίJ“κΧ7 ύv>USπιšίΩΥkβ&₯Ji›>-°»»KX5/Yά\νΜx‘˜π2A5–t νήίW²Τ­Z[fσΚ dUθΩμx=*Š]\$ŽΚ›Jτΐηόϋ՘§ΊŽ&&ΒΑςΫoηŒWDpή9ή"m{‡a.ƒ―kViζx₯Œ, ͺ’m›°~j¨ήΦ]„'QΡ‚―uGΟβ=k™υm_O±β{‘\ ΨY@τΞ8όκόΖ₯ϋψ-nΪ59i61Aυn•Ο»κΈ9Σ§~¦άυΏ4‡Φ,U;„Œ“ϊυfχទw\-…ε½ΓΔΐ9˜mγ8#œΦχό%ή#Ή€Ν„±–σŠώC¬{wΔƒT»»β2ΚΣ#2ώθ ϋ֐ƒZ’gR«VdχΌEeg$°ΪYΙ‚Οijδ2ϋK›ΧΙΑk=εβΩ"Ήmί22•’>„nSΘ9ΕzψΧΕΧpΜΆΊ]žψΞלNΝdτŒηΪΊOψ>ΓΗZm߈<[iελέ5½»Γ#Δ#Аe!²X1$ŸJΩ΅y •mΛ3'JԚm+»’’3ψ²±τyvΈh6dψ© Η‚υXOν›ΠπGλ\φsW†ΰHmγ΄„ώπŽLΈΪJύ#>¦»oΟ%Ÿƒu0‡ θ Cθ]‚η\Œ2&”φrΖ»a·L€pυ'ρΑ©Γ):MΔεΜ%Mb)©e₯œ:lθhͺωΙg™½™&ΆτνB;¨ΚcΛ–>&κΏ_cΪ±‘œ0^A΅mν …gŒw(~I1ž=ΤTΕΎ’œR3όi!_Κ:­Σ§η σKωςςξΕ|«ίΞ½˜œd·+}ΘΙοΕzΌ‚]2·ΪΏiΔ0Θ~\ν9rΈΙόͺΦ„Ό'Ζu«;ύG;€”<§ο£Ή<: We7Λ³’΄ωadxΞ¨Λ35½ΛJ3Ζe.ι“Uν‘•˜η³1jχΩΌkα†f76—*«ΪK'ςΪjψƒα Yq­ΚܐžαΫθ6Φ²ΔΟ€NZJξν'o Δ<―²J#^C}œπ>Έύk‘Ρ Χq£ψQ½[έCLΧuΗGΉEΪϋ+ό+°…“`4z5Κ='OΛ­iΓρNςΑΊΣ―­Ÿϋ²C»?BΉΝsU©>‘)ͺ{#‚‡FΥβ$·‡΅uχϋ2Έύ SŸΓڝΤΗΛΠ/υϋ !S^‘7ΔΝ:3²-/QyέμϋIόϊUi>']F›‡ΩUNpΧkΈ{‘ŠQ•GφM}€¬rzwoxΒ-9nηϋŸ]Ψ’wΗlστwFΜxj΅’³žρG%t²GχnΘ?ͺΥ9όͺι—$Ψ΄VzŒΈ Ϊj!=dΖ? ΤΧΪ‹,mcŸRԚ)‡ ¨ 3Π3v$vό*7ŸZΣ4υΌΈΈkv—ηftV*;c܏π«TΪΨθ”»–§πW‰υ‘»SΦτ©$o½0‚Yσΰƒώ]ό% ρ #!܍m>£œΡywβΫM6 FςφβΣO˜ŒmDž…²ΌΧΪ ΊΉρ…¦‘£u¨] 2\7Ϊ̈›ώ^„w(”&J”­bΓ|9š{―7ϋs|ÍΧ¦ ϋdρN Šςλς_ξ[(ώ΅Ι­ΨiγT—QΎ6Rώρ†αΎ0z18οΧΪ¬][ψ₯τdΦ.//ΎΔΈhΥdU`3Α'š“άqsŽΘΫƒα΄O7YΊ>‘#E©ΒΝ:Y{Ϋ‚χŠ“ό«6X%΄γΤ5]cP[YC$.¦ξ€Ή9¨Œ%re*dh_|/{(ή}ύγ” ˜ζ’|vaΫκ+"ΦξλCρœΪ†™5£Άm‰Bw¨+†™{Ž*Uπξ»cd/εΤ/χ‚N@κΎδεIΕE¦ά^j7ƒQΏš[ΈγΜvλ!μδ<`“ό«j΅iκUΟ’;*ɐύΊρΦ[ιFYϋD9ωΠ`ώ5¬Œ8Ζ: δ¬nΪΙWΙ›φF υŸJΆϊ•Ζ«pΪ}ŒREΝΐ Η*Ύ§ί΅aNWΤ―g$μΝ[›Ι§k =ρ"ρ=ΐι9{±ύ+?ΕV‘ZxR‚%Ϊ«sΙ9ŸSZΆ[Ω[,0 ˆ£Ώ$žΉ>§5‡γkΐώΥ!ˆΫσιά:š»ήG[Š"x‰6°ϊ”SόͺΎ€ § pΩΙ©βoάΓƒΖΕΕΈ±γ‘’z­tΣv<Ϊͺχ9Ϋϋ—TKHΧΜv ?ΒΏΔΗΪ₯π|tΣαd£V•@pZά’Λ°ŸVd“_žΞΘ‹`^΅­ΰτιO©ξ]ςx›j>κ’Ǐ¦3QŒψ#’ΠυΫ€ €€£°ϊb²|?²ίŽ6›ωΑg½j©Β.xΖ Qπό-€„υ’ydγΆζ?ΠV4nΩΧ[aΟ§ΙnΕμZsε?Ν~Ώ η΅€³ρ›Μ?ZλfšŽx#aΞא)ό‰ͺ•œžqΓ©ŠXΚ3ƒμφΑΑΟjλ©ͺ8cu"c*G JμQwnŠ=O΅s—ΪŽ©­Y\y(€΅σšAžD+ά΄ ΛπνΝ§ˆτϋiujΞζ”"X‰”6’I@峌Ί{θvŽR]BέY8Ψ€±ϊΚ²ς:ΡOMH`‘H,{Η9l‘žORsšP„^Z•Θ!ά‡=¬KYZ$φkάΣ[ΜΙQΫ±m‡ζL“ΐΘ4Λ›­~ώA΅γΣ!'`K7?†+άτ#4‘£g&ίθ² 7œ λ΄ωύjθ5hšsμΉΥ Y{DΉ‘ο•ΙΝyΎŸ£ιΧ~;7³]j0ΓŒ · .0ωp8ΙϊW Ϊhšf”»tέ=mG¬Qͺ·βέM\'(-•Εx»M²»a-ςΪ£‘ωZbρκ+Ν§/g©J“ͺΉN’cΓαq ŒΚ½3©EΕrώ!ΥΌ=qβ}R²ρ>ΪLŽ–Ÿ+"0Η‘Α'…qΣΪιδ‹m>( ¬v—δ‘VF˜’aii“gI#λοJ5b§uJX(₯ρ₯iγO άF'_ιPκ彌2ŸCΟ?ZšOxmWyρ.ŠΚ;B"x‹τ«>ζΉ³’ŒKοRR;CVό!o§;Λy<¬ŸκαΐWΉϊŸ_JέΣ§(s΄ƒ­WΩ¦{`ρO…ΥŒΏπ‘θj@ΰ}Ύ,zχλQGβΟ (ω|K’γ=ο#ύk’π՚jz=΁yl­uhμmΜ‰σΟ*}ρΣς«^)πυ¦₯hςΪAΌ’ -Œ™Ιe,ϊTŸΖ)Ζ\ֈ«αβͺrNF–‘βΟ]ΈΆ‡ΔšΔ#½•…άrάξ<ΑαχαU<,!ΎρŠξdWG:¬›dS†LΝk UλΚ•ωΉHTc:~ά§sΚxτλמj­ΎΉͺΫ•[Θ' ܌:Œώ Χn’ΛjDs±dΞ\cώϊΎυΘψ²3ˆμfώ ¨Z ΄αόΝF2σ§‘XUΛ#ŸΊ §@πη6nΐsΦ"HόΧωWewˆΰ΄'γq?JεnQ.nνm”–Yg@ύΗ‘οΆοΪM2DG ΦΎVnL$γ†?έτ=«ΝWφZrεU4§Λρ— ΘύσΐsΨ2wό«–κ+XQδ|Β€2Xϊ\}Әξ-'Uέ²κ6AΧ5Τιφ^[}¦θοΊaΛ‘dŸ•}8ο[ΰΫp3ͺ•ΛQ$€ΣΑŸ– ~οΤχ©Άβ—ξ/3|•Χ{‘Hq\/‹ή?P:€ͺXœu'8ρΞ+ΈoΉ\7‰ΐΤυΫk1Μvͺ.%ΟMΔb5?©ό« D’©·#ZMσΌ"%H$ >ΤΞΟ9Οέoξύ#Υ#ρ—?"ς~•Θxzγn΅}ΈΑFzΪ½*λΈγ?­<3R¦˜UD–΄~dσηΞΫ€9ϋͺ>κ}§jvΛ}§άZΙχ&‰£$σάfž’sœœΣ.d ±8ΐΟ½(;#’HΑΠξγGΆ2ŒMύž`{HŸ)ώ•ΉΒ ΑCύ¬œ.ίSΜρ‚~죇ԯ5£yͺ[ιΡ+JΔ;«T³Θ}w¬αL%- Χw–ϊuŒ·w2ypΖΉsΤύξO@=λ‹Υ-n€>‘v‚+‰ΌAc7|…3*ͺŸ|}ψ­υ±ΊΎsy¨ S—Ά³'p‡ρ?χ›ΠVf₯p·:v‹(9«ιg“Ξ|υλΦΣ‹[“NIΗC7β’΅θΐς΅ηΈ6kΑ0!η.‘˜“ΣΠ}+€ψ«/<<μx:”κsΨ΄gΉy–ΪΙ%s€hd±μ£άΤςΉBΔJ\¬ΧΈΌ<)«}’@8‰lχ8ΐ‘t»ΛΫgΧυΌωΆρm-YΎ[p;·χœ―εO4IZX΅-Lfduh-Ί¬>oVΑό+_Εσ o _•8ύΟ–£=Ψ…ώ΅ͺƒŠΤŽ{½Œ7VVΙrFωbS‰ γ9λΕ*#ψ~α!ή[M•φΖXδΫ±θ€χSΫ·mμ’ώΟ‚ΦTB‘Ζ‰†0ώ•…β‹+΄Άžv½“+HΧΝ9Έ=½yξρ©tΞψΞκΜ³©Ω½υ°»³#ν–4x?{ΥOj)­/mbΉσrG¨ϊη"²4ί‰ΛD\ψkP‡Ιo.O$$‘uί₯fΗ­Ψκww6šΓΕ=ΝΣ fΪ2f(Γ9'¦+ͺRWG=)ΈΆ™_k*Ο’ιVΠάάς“ Eœ¬'‚}«·Ί»π¦—y€%¬2hcίsΪ’ί!y\“†ν]­ΆŸn±E•D%²NI9Ιfυ$ΤvΌΆΓς$%›<υυφ¨ζkcMdξU‡RΎ‡D].;=9¬v†σKSάό½O­U΅Υυι²iΙ «ι{Κ™ox”{˜sΦͺΛ ψvc΅Y΄†=?f$χυOOJΡ@Μ‘Τ‚‡zροκ+':§\(Ρ”L‘¨κ>g³°{ytkΗ;flζΤ·vγ,ž‡·€―υ &Β+k¬φcbδƒžδc“ί­>btΨέZ/ψ—1ωδ@O―ͺ³ Ό―²It¬oMΏ1€ρ…?μϊίJˆΧ©~YON>ςd·ž6Φ|;oύ‡¦άΒnd‰D‡«ΆG>ΥWÚ̺|Ϋi³Dι§qIbΗ–-λ’MK¦|<ΊΦ£:­εςCquϋΒ¨7•R8_N˜¬Έτiό?β+‹YΙ+$^bžΗ τ+Ρ΅ υ<Ϊ8šu±^ΔΦΣuνGΒJ,Lpι—2n]ίdsΖ9ΖNqι^Ιk9ΈN ξ;ΉΞzηλš’9Ων™ . ΰŒ‚= eΨιΏmΤ₯Ά€Ξ4θ rϋ€ϊ αU/{‘ιΤ βύΣOOΧ΅ 1ντ«›KKQ!ΘΈΛ6OeΝY―΅‹9εΈ΄[{fή`\“ί8κKkbμρΪHιΘό}j؊n6© v©ϊΝIhˆT‘{³.υ=X’ΦΫΙ²ƒRc,;ΖεŽOγQΗΌ)©¨θzn‘¦ΪήMζκͺ,ͺΗ!Ÿ“ψG₯ljv «Ψ˜²:°hάυ‰ΑαΏ§γX'v‘ p\Ηε^ΑuLˆ(Γ0#±κ :•ͺΕ§ΠP‘MΆ>ΟN•ζςtΙRοϋ¬}οN‘. šβς/.S £1ΑοRΚu&τ1aq ύί1Y$Qξy i-Όiw{w…ΖŠo/%bΣ ώω ν_|W­‡φ)§©Νν1 §+ΨλΉt‡ύ#χvΚό˜νΑ uξέOαZWCH°Πξ£½‹Λ²@~Qΰž˜>ΉιSHΡ$ζ κ›0Ч…AΩ Θ†1―κln±³o*έXδI α€>Έθ+…VΌ›θAj¬fΪ 67ρ₯β՝w2&"xQ΄rqŒ“ήŸ ί…N™ulšF―ηο-g¨GhېφάΜrs[wκŠνQΈp8¨/€†ΒI¦Σ’:ώάΥΌd―’°²9‹}GΓίaxuMTΏΥ%ωHςΆαΏ„+ηες*Ǝ|;Ÿ=ž»αχΉΤβb$Ό$±ΐΚΔεzΗqD–W³ΚΊ‘Η0Ο“q±cξGzcο€@sΤM†I8λΟ¨$UΖσNΦ2•&K§\xcLΣnΰΥ|=ύ£y„<†μξlύΓ’sΞ@ΘοUτƒαύ2'“Wπά—¬μdycΌάcΟEυΐ•Οή%ώ΅ͺ=Δ· $…cl·~½*M:{‹wϋ<‡ §;H!‡ηΪ½)ίKΌΤΞƒL“Γ1DσB]RbNζ[ϋx'Ž1¬ψ~σΓΦ‚φ3αHuKΘηuΝΒέ©?&ηlγ¨ιιXK·Rm‹Fͺq$Έϋ™ΟΚ=•i'“§5€h Q)%² {–ΗΎk‚**\½Mcvjiφϊv˜ΞΧzF•vΞεžk… ©' ?έηιZz]Τ]ΕεΤ>δEpœψ+‘ΡH?JJΰά‡λIbΪζδμŽO•qΐlu«£VξΗTι«γΏΉΠ΅IφhΦ E™γ‡Μ*"||ΘNΣΖ9 ²Φ²-o‘ΈΡˆ·Ίn«(p„ρƒžvϊzVή©doτφ†FD‘}Χ3υδV"\Η=˜˜©ΨWζLrκ§ί5U13₯%¦†1ΓR‘‹€O+ιvΦMn4 ’Δ/Ξ1ŠΦ·7zMσθ·‘‰U‘rrZ#ŽύΚτ¦hϊΊψ2ΰI>=Εσg)΅Ζπϋb›¬x†-vώΔΑczΊΕΌ€¬r \ΖÝΝΘې9ό+Ρ”iN•ξyΎΧώΟ‘-Ξ‘4šT:F¦νŸ¦²0B|9xκOΈ«ϊŽ₯ψ–ΠΓ­^\Α§9 ,UPΜ㱑‚ύQψΤZvδά5νλ%ΝτΉζ걜cέτΟZΤςcK±΄Ιν^tρnφG¨°ΞΧf§Y½ΏΆ³½»–ϊ=0† QW-7‘Φ΄.ŸPΏ*··χ·;:ΖFsœŸ—ŸΦ΄aΣσ§Fΐζoήοi½Gq«€ŒΜΘθRTϋΘO#ίθ}jY1B4SΤF‘ͺ/ϊN£$ΫX2nΑHΨ‚@σP΅κ ΕͺjWσΟ h‘Q=@a隿σ%F5ΦλpE>\џݿ]ΎΗΤJ€‘Σ* ™^)»œi²ΎΌf,ͺΛΉI'‘+YοX$ΣN©Ϊ"iY€ΗΤγιZ·VΧ:߈¬tφ•bΖ]Γs–=zΧKβ_‡ZF›¦¦‘is4V>Τς>ΰΛκGb₯tΚ.€osΜ«V*Φ±Ζχ—ΐn. `‰$S+ : gš³sh±]Ζς+ls€¬Δ„oL{Υ½:ΜΑ’DΓJw6yΪ;ψTš„^e”›%FυΑΞδW…*χ©dτ;ΤnŠρΩΗΈHUΑζ/αœS—M·žrώVεSŒHΕ†~†§„ωΖρΆ ͺ ŽΈΘκjψDŠ0€ΌιMΤiξf•Μ;Ϋ8`‰mμδ–ήiίfΤμ Œ±+Σ§σ«°]΅ŒiΕ±†5Β,ˆwǏÑIh’γTšη'Λ„}ž,σΫζ?΄ΛF‹‚B¦2CrοšΞΆ1ͺŠRΰ­°Y&£―^5žš%Ά€MvγA„KZκ΅*ΫΓίΩqΪ/—9…”œœ0ΞIξwsυ5ΖΫιΧ―o%Վ±s€Ε+Ωμ`{‘Œ‚@νIo£j·d‡Υ5XcΘ9š}ϋˆδυξΠqδ²9**ξΊhμY罜ΩΪ±@‡lΣγύ_ϋ#ՏιUόam Ÿ€u(!M«εΟ'%—“κj֏p»>Θρ¬7¬Oοο{δχ¦ψΡwx7QφEoΙ”ΤAΪFυ›½™š€XΓMΠ9δΔxλκΏΚͺxžτΕ§#oήNΒ%#_΄ΜΙ–η#nΞ„g₯`Mf ώyQIΖ͟-OψΧ‘N žuZ&TtσQD¨I…HGέίΦΆ|&«„τιˆΫρL‹ΐΰeŽηXκ@M™ΑΣΣχ―ΓΫX­€ rώ0mσέόΥ?– ¨ΖS\ŠΖx9·{ή£y©;D–2`\\Θ»β΄ο‚ή“Žσ¬m;Γ֚›΅β]ΝlΖ9퀜ΓΟFΔ §hΙχκ+/VΎ–Η6Λ›©XCΣFιψΏ…tώ2Ά7^šXΖg΅+s¨(ΐ,Χ;¦Υ|K-ϊ/ϊ%”HgΌΞŸ1ό5—½ΜE8τγH‡FΧΌ'e΄YεΆwaμc$“λ–¦[C%Ά›8Η*Ρ•ΐδζ²<`¦ΫAΤΤΪj0ΘΗΠ1Ϊsψ5u³1CΖή>• JΜΗYΣwG:cΣός’[%΄½γ—*CƒψSεŠ’g΅WζΙb@υzϊξkg{«„HSο<Ÿu~¦°qͺ8”Ι$zpoέE/sκxϋΎ‚΅”R&G%vZL₯γ΄•‰ΪΞΫA uΕ#:OŸ}’‘3¦ε—Έ—Κ42ΜA*ƒΆ9Λ{V!ΣΰΊ³^MφΛ›”cΜ ωdφUώTž$πŽŸ­]hυξ•qφwί-„…”m υ{Yπ}ώކκΛΔΪΤφ1cνhΝΟ“Λ©ΫσιΤu―7Ω>[sΒJχ:T³·†Κ8DU ©£ΫΛRl0KΜ·0Κ}ύG΅sΪ„΄{ΔI&ρg‰Y‘DΟΡ+F‡>9Y―5 GwΤ\·ςΕqΠΓϋάͺ\¨%o„ΞΦ€]WTΈ‚βς½AΤ+1A΅T γωVo…­μtmBm>θBmۘ”a ꀟ§Ύψu€ihn‘Φ<@»?…Z"Ψ>‡54^Σ/mγ—ϋOΕ$³φΘθž•ΨΉ ―9 J–‘‰ΡάθΒάΕw£ƒSCϋ„i «ϊ«gψMf[i—Μ‚ξφκζηX$  X8δ…Œp tυ=sL‡ X|Ϋ«N™ž[ΉKξwr~‚³oό§ZG-φ—}¬hΠͺ––EΎlΊΙ δγ¦š«Ε«ξ:Ρ•IΖ]ŽΖM1™H ΄ƒΠzσXΖΘ]Μm΄ϋ¨C)Ϊς υ“aμ ¨λιΝbθήΆoiڟŠζΤοβΉA$ΡΝ¨Jc΅F9Bκ1TŒŸαΝuן |¨Yύkl’ θWΣ;XnόsνQJ–ΌΜš˜”¬š2―|7₯ιVς]κwKΪKέO;)ΟΧ#ς“₯ίψSΣν£²ΦlbŸYo.Τ:7|~b{v­Ώx Β1ήL—z,gQΆω^+©^uτpˆ!»qΣ­tΣψSΓwp$&šκŸt5² ΏL Ϋ‘*΄SΡ#›uπ₯•œ‘ή^ip±™ηMδϊ’NMg·ŒόbL6ή ·V` *ŽΓώϊšξl|% ir«Xhz}¬‹όin₯‡ΎH'5₯pH…‘w€ƒ“₯½αύkΩ;ΣG‰Ψ|XΣμ5?%ξœ—ϊ­!,@%Uς– {©qΫ5»e§―ΓΩtο Ο¬GfΊ³\Iy<ΛILpjι5]:ΒφγlΦ–²”8/$JΫ1ΙώU•kαέJA.›₯ΫΪΊΞ—ΐ,~SκΩγ―ΔΒΚ›κE4ά›hΡ€c,O ¬λi:Ύ€šΖ­α>ΚΪ0~Ι`Ά¨„ƒΦK€HΖ’ŽΌΧ];((DΞ’΄ύβ=/Xπ–—j#ρ&ŽΣ(Θοvˆ^Vε™—=rO³ό?β­ίΕ$ ¬iΡAu,W0;]Fˆ\¨YIυΧ₯Α§i°B±Eagj0«¨P}ΕC œΏυΈ"ΪΪDhT¨,2IΖNErΠΑC 7Q7v\*ή2‰±‰|?tDK―ιnnj&§ϊΥθΠ^Y£&ۈ$Y£bOQΞ:σšΣ“Γ“‰t ·3M…±ϊW­ψgOΡ Δš^‘}’ι…KΟL±{q\ϊ₯mU…?ξΤnKΓ§j! gΚŸαΞ‡κk¦Τh£S‚?‹=ΗJσdΡε΄ί&§ͺDŽήbΑ,αφŒδΚυξ}+Z:g²·™υ}S;AΪƒ³λςσ^5LM%Ω—*rΆ¦…΅³EβM>ΘσšAs°ν<}=+» ω˜)hΧ•C€hx†ήΘκΐη\Jeω£\ac3Θs]έ·ƒό<‹Ξ™0κ–vόI9?ZνΑ'*HS’Š7ƒ)ώ f½Ymα o =0Νώ5ψ7GΞε‚D=ŠHΰΘΧ[Ή”MIδ«1 ›ΨWj†hdΏ|χ’™²OEθ£πP+bοΑφuV%leEΡaŒτ υ+RΆΤΌ)o"·^Ε:ή‚9ϋ£k/Ώ­qβ©VΝcu¬N‹EΏ±/T!ΉyTϊ;P+‰’HΥ”δšσοk:Δ:-ˆ“BŠζ!`cΊPΔ’IΘ#δΦΪxŽHώi<7ͺ―8ωˆjΦ‚„-Ε)slhAΝVΥ7 >P8$„όΘ¬«O₯ΞEΎK‚GΐΫ©8€Τ΅*՚λFΥαJΉs °yΑψ6Iβ?2ζγMΣν6ύ±\N†D(Μ?@;Τφ:|zD­?ΝpοΔ—s|'ψ/Σ₯szoŒ4₯_έM*\^7™&ψ[(™Β'NΒ΅­ΌuαΙ/φœkžτaωδUΒvw N'GΒ—Έ ²θΖΔΫ/Œ-bFμUw°MΚ·$ρ&–4ϋθl5(ΎΡ°ωJ26МτFι,ζΡ|2Φxkxυm2HΨr 3('>ΉfΟΉšΪ¦qα“QΤƒβρTΡτ{ƒœC«DY½VΉέ)R ­υ[ψœΫ FȁO˜cΎ ιΎ,>ΣI±B—\ΩδmEf?Ήύ τMΪ] ³Βdn~SΠϋŽxYΝΖ7GLb₯ΉΩDU!†Β2ς¬ΟδψnN»EΜ‡·˜΅Jήi<:ΐ92iΗ<›ROTΠ~•ΖL―ΰϋέ­Κ†3οΉvΧKŸ<.s(ςΘΥΌ»Όžετν82ρ4μ2°υόΪ§±ΣντΨΫΚ̐ζY\ζG'Ή=j{XRΩΰg'ܞ€ϋζ‘ΥυΣ4ωnHήγδŽ1Υ€?ukΜ’ΉΫΊ΅†ΣΗχ1―^ΐ&Pyt0ϊ‘ƒZwzEž€€]@―ŽVBpθ}›¨ͺZΕ€Ά:M₯ϋ’ζΖαn& 䇑ύ*ωΉΉœˆμύ&Uω#<¬j}«ŽΖu"Σ2₯»ΉΠΤΫήή<–“:ΗΜ¨ 8αΟ~‡š°ΪΦ”¨‘―νpΌγY:ΕΌpψ£HO³Α#Θ$‘žδ0^2 Αλ«Otϊޞ•Ÿq¨Iy7φv‹©VΪxg_Α¬φΦΔpˆ~Γ£H™ΗΛ§ƒθrjύƒ™Ω­¦:—kϋ\`ƒΉ‡OzηdΦt[)&²]N·ΞR2ΕΆϋcωS΄ψFάt­`ς³³°ί]•kE5Τ ιok¦ Xνύrj›sW6•ΜΖΪSΩC{0³Y3lΟ+œeyΖsJ—Sρ–©euό$,» Κ†ηρΕ[»ΤΌˆškΑgkΤΟcΠϊzηΪ²oΰ½Τb‡QΉΣlltθ₯@‹%‚™€γs«Θΐ5Υ*²φ~ɞu:+λ>Ω½Φ-£Qi δipWh9ςΗvjΥ΄Φ|=¦Ϊ€1j–Ηoρg%r}κ]0ΆmεΑ§ιQFX&œόNNjWΦ"r-–Oξ₯ŒlAΝp¨A«•J“nμ£½§0–AwPΩΞό ~u<*ΡΨs¨ͺγμ]4Οv‰ΖŠμͺxμψ<i“k+ΓL"€Žχ||}}ͺΥοsk>ŏψJ4`ϋ†©oŸlœcjϊ™₯c¨Ηw‡*8ςΨοˆρΟ0jθΧ/.KC¦ΪΓw>9 §μ=وύTΊ±»‹I»»Ώ{Y.[ 챟—$v­Υ(΅©>Φ₯ξ‘»™¨κŠb½Έ}Μpc ‰Ήθ€ώ&­ιz.¦ —NTHά%Ορ37V$*ѝ|»`J‚δ^3†μ>•rή†Ι`DedM§Žώ΅ΑR£k•q…Ξ?Δ7Z\ι³ΚŒΟΜƒjo"&6G¦qψΥόE ΖΕ…ν²yVωX~œΧI©Β<šΏ΄|½h0ώΛtFσΆωJbςΨA“vξ}sΖ+…·Τυ)#rΓ,€Θβ0Ε\žάŒΦκˆ•I7’6‡Œ4…8K›†δpHΓωsVaρN”H Οϋπ0Κ¨/ŒmAt’LFE΄qi~§œ~4’ψ‡ΕW‘Θež 2Ψ[ύ^}½ψ-/aρ†ŒMw[Σ£Ή΄ΈŽb/–EXβΨΕ€ˆυ ½qιQY7ΚφwΡc©’GγŠM.ΪνlZβΩΪ‰œJ³72ž71δƒιοWΣ]Υ‡ήΌςd<-§n*~£¨χ©€ιΤmvͺΤZΨΓ»Φ,Ψΰœa%FΗB>aΤWY}γήΑ-ν΅&ήγ Ϋ³΅{δžύ«Q»˜¨½ΉΉ6τοΌAαzrO₯^—Δž&½b³Ί·‹ εΦΥ\ΐJρψτ¨OΩis*ΡU,μgΗ―ι±Ζρ#Ϊ0Cβ‘½Φt«†I­osv‡χl‘±Οϋ-ΨƒϊVŒΊΎ©ωš…½ςƝd{iGΎήj/ψH΅yγtl܃ǝ=”PDΎδK}dαM­Yn­M’)ήψžν5tάOksqςΞ6(‰½Αθ©­XœΉ¦ι/«lΤ΅D;ΠΈΖΡٟΧ=‡jΩΦ4:jΪ\΄-.v’l €Ι&Ά`£ζXίy dΰ€y«‚Γ[ΎPΎBX)κχ 7ί°κis5%n§=vκ+"ί‚"·³ρV¨ƒj‡Σa‘οαVύq]Πގ ^wmΎρwqs$ΠJ²ΪΟ<Έ]›€e,αr½{f»θόΕn0kΘΗΛΩΦ³=μ³ύΩΎ7Μπ«Μh³cύΗV?ΚΈ‹‰ežHνmŸέ(ΨzμB2Xύτ―AρS’xCVs’Ως+ΟτXΪΟR¦%Όϋ.-ίςΜ Ÿˆζž£Tݎ Κ”e^›c/Ό-e 4λkΖƒ.fπ£©Α­m ΒeEέ„a9σH L{sςΖΚ{c:W¦o'΅²‰Ÿt€φFH?S]Z¨Ϋ0FN?Ί+IM΅©4ιΔσλ‹³”ΪrΪ‹}PωbΜ@ήψΊζ·mlΰ΅³Šή8•$Ήμ=ύσš«γ]%5KA³.\]g=cTŒΏr;W>·:%²…³ρΦ$^ ΄φFr§ΠεryοšΒ8]=ΓO¬*rΤιξ±!J©Ι'ψGzΛ†!¨\-δ«›u'μΡΏ9νλžΥƒ>§§\“gwβ iPσ:4+νŒ ΰΥ–» β-^Qό*lX…τ嬧†΄JΙμjΊ}‰ΙQϋ–9pŸιόͺΆ‘iάag‰O£Κώ=k+ν:=ΑeMGΔ·1©Ω$ UΟp29?ʟΏΓ¨1ρ2ŸM₯λXQΐJ/šγ…kn-ZΈπuθo/ν–[Ύrοbή¨©όe«Ηβ{Θb²…‘tύΰ™Σ ͺG }ϊυ‚ναˆA’β/€ ηE'$φγ‚M@Πi±3MƒA0XΡ5@€/‘SœgΣ΅zάPεlζt©J―:§kΑh‹•cΧλŸzΤΡ‘24χgξ±ςS<αGσζΉ@ΪAFS£ψƒvq±―CΗU‘7†Άκ―<μυωϊן:Œœ›)Η] ŸٳˆC‘Jΰ!'"&ώιφ=«CO"S#1Mς;’zœsωW}sα±e;/„―"™8Ί)“ΨpΗΎ*m)t5°΅mEΒβSφι_cwR„]ΨhήεIιfvΒξΨ›θ—x8ϊΧͺκzm†Ί``Έo΄mŒ"E*1Ԟa<$άZxFΞy‡έ‘Sύγš/dH-τνFΧAΡ¬¦₯ dH 1(CΧ;…uN2%7EΉ°Χ5ˆI’tλ<ρ½ΤLΐ³‚F}:֍Ÿ„b°ΣfŽήτ—ΌΩηή9cωcή΅τλΕΤξηiΕ%©ΨmδϋΘΨΑ-κ= nΖ@^8#žΥαTΔMΝDΈ«ΚμβF­a -έάvΰύε“ψuθsLh“GεΗͺΩΎηU8p0 η5 <–~"Φ€ώΝnncΊ-ΎψU\»qΫ“CM{ͺBΠ"(ΨσM†ν­ιךυc‡ζI’eXΦ„—Bˆ,?Ϊ6ΐ―6*½χˆt<+I¨Ϋ$©ΚB;ŠΑ²Υυ‘’ίΚ΄·šΩΜR―—‡―γœπiρ]]<ͺ©δ€ŽέDc?\֍A#?m­¬JΎ*Ρ›ζ 'εςΨΰώTiŽΩΘ?ξ7ψU…Τυ%KyK@~}Ρ)1{τδ*TΤ―ξHqp<ξΏΞ‘Ι%vt:΅—CIνξD³Hο0S=A`κΊŒ1>§.£$jΫ‘…Ψ•#<3η’O§jMRζk™ ±’ζE[ƒΎNpDC“ΣΤρL}cΔR<–Φ“]mRC<Ρ’ν±‘“ΕgFMΑΎζN)ΚμΡμMΨΗ}”Ηžκn`Σ/TŽηjη؎β³γM~lͺꇣ.ώ;V:Λ ²k:€μίpψ…BŒ]Σ7Œκ1ΊeΤρ!΄LΛ΄%Ήp¨δwζ―H5ϋ„Ε―‡―θ¦vTˆΞk.ΚΚhΦβh΅ Θ‰œ€ζRsŒ °οΝIyuyj«ΝύȘB‰wτZΫέήκqiΧ–¦ΩsΚ ˆ‰FH8υ8[BΣφ9΅–š@ς“K!!W8ƒ]„ˆϊΆ«"¦Ρ%ΈΗ`?iύ^όΝΎ›‘€1…ΫŽ€τ©JƒΙ$Ÿ~h ξiΛΧϊΧFΕΒvdYyε$όΉγ9ŽN»}¨5WΔWM7ƒ΅XηB“,2ώ#Ÿ₯i§jΝρrπŽ’ίΔ"ΰώ"„ύγZΝKS=ΈΣ c’Jζτͺ·ρδδg dqZ`X'›Œ†O ΕS)δΒm;αT Χ£BG‹]hΜfΓΫΔΗ―6k_BaZ†"$ρtΙ΄ž7=ΉΑό ?aΜ<‹UξŒžάΦΎ‰ψE<9pΗ>Œ·ŒϊndώBŒ\΄‰8EmOW_υ<τΰ~΅  °έΖέcΏΈSžάηϊΦ€έjρ–9!AŽ8SςžΰŠζPi₯©ΛθO­Φ‘¦"–·Ζ3œFΨ#ω‘]2›i 2’c+ΞΟcκ==+Š»š}_[σi1RM΄ρ¨ηqΑLgOO­6ςχZΤΫeΔw07Q•'„q\―έ՝’³Ψμn₯€kz\K*(σΘݏ˜)#5ΐ[{Άϋ3Ϋ’»dωŽDΔγ'Χ>•ΕiϊM₯G ΆΠΌ6jd—Μ]ωvŸΦΊkΝ;OŠk;(΄»HήYHŽΉυ₯juRΉœ©Ν³z=<Η)–yi”}ηθ?έsώ;]lγ8ϋeΜVμΩfΔ Uρm5„“%ŒΖ8ƒ!™Σ=+#Ε\5Œr4J­bг‚σέD”ea(MKS΅΅UώΜ„`mhΐΑcΑN1X`OαgBΌΊ&~γ!cdIλטύΏ†·νΘX#\€c“’Aζ& )ž9υ«”/£3m=ΜMR[Ωα»²˜Η{ ς•8Κ°ξ§Σρ€[θζ]·:Dρ]'DΪ˜sλ‘Α†«&a»ŸK°ΘΚCΛΞ SΡ}Ψφ¨ΌΣlΘΕΊuδ;‚νŸφ‰μjTU5a- ‹5‹%Ά1‘Σ~Ÿ"ψΥ[Έκζ;TY€c“ΊF$(Z -Σύ\–oΏ¦Υ#PZZ%ΚΙ5Μ·±[+²D’R‘TqσΞ*fωγ‘ͺW._άΩι…avXάp±rXΐG5‡¨jZ›Ϊ4ΎMΝ½¬Kς‚U^BpΖ3ΝtpΫΫZΫg ž©Ι9υ=MS±€jώ)Q³uΆϋΙsΘiΨ|«οΟε\P£Ν>PMv4ό'αhτΝ—ϊŒb}Tši>s $εW=88Νu˜*{TαGVκzš.ξα΅·yη•cŽ1–w8Tχ5ξΓEcŽΔ4'kp™ΰžίZδτ…ϋOΔoJΓ€ΆρœΈ?₯]mZUρ/€CjrΥΘϋξ'R=ΝfxR6ƒΖ>(σ$y`ΛΘrKlΝEDΉ’]+k` l“”ώ=‡‘χ#\c¬ψˆYMΆžVI·t3‘ς―Ύ:ύH·[Υ“IΣΰ2RvCδΙ!θΈύk„³ŒΪژΎ²ά–gΈ`~o4’[>Έ< βΖΝΖ>¦ψeΜυ$Τ&ΫNδUSZZ‡•₯ψ}'œ|–π©ΐώ"1…όMa_DΣX₯”σ" 1ΘλZzά†σT†Μ‚m¬±,‡ &>UχΗZπωar”κ«θWπΝ¬ΦSBΧ_ρχ{3KpsΡ°pΏ€Εz$|\V—ϋύz ΔQ4‡<ΰœ ν’^΅λ`fηII˜ΦKdKM4ξΤΒkΉ³ˆx Ε,%Χ¬­·aT—€ .]μ§ σ­O3ψͺώRΝϋ½―| ŸΤΧ›—-&Ν©κ'„¦{gΊΣ\aco6!ώΓrGΰkΝš¦¦Ί\$Ηί6ξEΰ„μŸV#ς¬A0±Ί†iΕΆDƒTφόρ]§‡μd²΄2]τ«†σχIΞπ¨ΛΉκGžfU£Λ;›ĐB±Ε`(tzV/Œ'qα«ΈcβIΒΫ;`?–kptΖqυ=+›ΧgY΅ΝΗ#η»ΘθN3υ=+έ[zΊ†½ΊΓEΡcΨ ΚΥ ¬; ŒIy+yρΰ|„ϋ§ι[©ΥvΰœγΧσ¬mν=~ηW9h-‹ZΪ)$όOϋTΣΧC₯:~”4Ν3μΡΆω‚‘$͌»“ΙόΟα\-ή™&ͺiš†’vi7zε„wv'ξ†σFΩΣϋΉaΘΖ½wΪfOα\|’ƒαmυ]1Τ]ώ$Χ\τ‰”q2Ύ!³ cDάΓ ©άςzdFΥΖάHφρZκ0‚eΆωˆώόyω”ώŠκώ(H!ŸBέ‚«©\όΩδε_ϊ⒝G–‰‹ ς2x¨ƒ\1¨9jD†β9νRDe’@A<δή±ƒ"|ΚΝ"‘Lβ‘·€ί_ιziRB;;ƒΞJδ¨>Ή8£]³>Φ΄WήN—φά.ξM»#n{―§₯?GΡν4U–ζέ$’οtΞΞ9εŽ0zŽ1[Ρχ)Ψε©₯C‘Σ|%¦Ν=άάqέj ό₯Ξ6!δώYυ¬ΉtDπώΉ€π‡°€Gp?vO@ήǜW!―h#FΌσ¦[ωτξ2ζY Zη sʞǡuW†­ πΥΡ½ΈΈCq˜Μffς‡U<“χFk’u[ ]šu¬1Ϊ‘(͏Δγτ¬έ[Ε––.lt«csxΌ «mΏ₯szmΟ‰55-Εΰ·΄Aε΅ή1$ΰq”\wκΪθvΊm³dΫ`Θΰuδ’{šΒ΅dΎΞΥ I]μ3FΊ:—Œ-ލ’ββmνΚ?tΫΏε]_‰^%πΥωt ΎS|€ύ?Zηό9ΰΝcW΅mNΝ΄·'Ν΄ήX‰?€tΙ8ηρ­Λοx—S‚]=υθ€Γo#ׁΞi$Ϊ3Ztώ$rZGŠ.νa†-JΕ!EU‘‡ΔZξt}cNΥP›)#Κ}δk'Τuζϊ‡o4{Γg©₯Ν•ιϋΈ”΄rο!θG·QRA£,»dKΛ…Έ Ήf§κ:Χ=WJ/RcͺΠυK‰–+g”‚ϋGΚϋΝΨT0Ψhϊ[ί_ΓΛ™ΩA9ΟAŸ+™πεΖ§7‰ °Υn„oœ0 8sκFrk ρB%όΪ^šγεΉΌQ ’ͺ₯Ώ‘[Β*ΪΛbƁ})έBΝ(σœzIΑύ+“ρCο·ΦcPp’ΒΗJζΊλΝRήΠ 3I.ΐΗ–#笍ΠΦΈI"'ΒϊΛΝ!–ιδfš^ΕΥ€ΐφγŠκ³±3šΨ}§{|Α~θ>€u«xΐγZ˜γnεωU€άτ―)GS‘½N+ΕΕξlV8²›½©'}kΝ₯:J\±ΥάڍπϊέjzόχZ€’YμΐUό¨μ3ς₯tzΛCc₯ΙpΞ’εsΨ{η©i ―η°Λ£Όwr1–I ω@¬ίΓΧ< ΒͺCΰ/\κΣνΩ:Ψ>Ο&{H|Τ‚Ξ½en`«*F]ΏŠ§ΌέjSIUhΫΜXύΚυΝtΦ7φz„+%Ό©"ρŒv>‡ΈΦεΡυ«.ς)μVRg·U~9ΐuτ8'#λV€I7wrA1η||μΓ½sTTbμΚP©5ΝqΠ¦£sFvˆ½I ~΅ιž)$WΊβ€R/ o’,žη»s\/†c’+‹ΫN%k₯0΄¬_r0OnήΤΊώoζΘ»€0ΖOΞO`δšνΓB”UΡ8iΤκ5mΒ³t¨£‚ΟΓ―…Ϋ-Ϊ ‹€KPηwIλσΔΰ•T΄:ϋ;[{[haΆ†8a…pˆƒ…ΟψυχλW”y|vχο·­\ρI<#0$<š+7ΜΦDœa»˜ϊΰ}+ͺ· ρ«£n†AΟlq\”Σ‰U%¦… Ζ?θΒ$Ÿ˜ςΘδwϋΥ>Ω<9p6‚ΪC œ›Sž„χLτ?Γτͺ©ˆi ›,Μ3ΐ,Κ ώ†Ί&|ƒ€T‚#‚= y˜Ωή£Ήνe°ύΟ1“γ"?αΎU#㾝k”žπ«'Λ,2+¦}Έ#ιŒΦ—ŠΊ†ξ BZΔΟ @ǘΏxΌgΊϊzVm\q.'!8δg©?AšΣgM£ΜΔ㉀‘Πxy>ΦgԈ8—χPƒΥc3]MΟ§Φ¨Ϋ@––ΡΑνH”"Ψ Ά˜•8β―‘^Η5ρί:mΪτΆ»U'Ρ\m*ςΩ>ΞΧ Ϋ ―Ξv·γ^β‹ay‘KbΗe(„φn ŸΜ σλ ˆn¬RvΣή[‰YbςΑΐσ†Θφ š«(ΗReͺΠ½©6Ÿ±Ζ5ωΪ~ς‘ηΧ?ZΗ[wΉ’(e’;«’T†$4HΞΜ=Ίs[wίDέwσ«htώ6"»ΈΏŽaΆάωBγ”8εΘυlπ}=κ/XΩ.£›ύ H<δ –OSιό«3LΣΌI¦]Εy₯ŸΫ$]Λ΄:žv°υ`φ­§ŸΔ+΄–=bŒ‘IžYΫ؏s]^ΒκΗ¨G₯§‡U,γ€Θ>πeύζ}Ny­94› „ζ%z9ΥΕιϊ4³K6“¨*-ν‰Ή\1¬―9­”±ρ–­%₯ςέčώ’πΨφqύkΛ©ƒ—6ŒΩK©*ι±Mβ γ>JfςeΖβv\Ά?*κξ~ΓuχΟ²-AΎsmœΔO£σχ±ήΉο κΣ«jΧ>I‹Δ.β΅™qδD“θK‘Χ₯VΥuΩέ-ΤΪά»IΓΌP(Xϋr1½Œ'Y˜Vš,K`–Lc{sOΰθεΧλTƒxɝΞκ"‘vŸΞΆντύFώΡ5=V{΅pA΅=φŠΜΊ(ϊΟcƒ±υd‘ODUδυ`+¦m€itΡΧκžYβŠk ϋaΆ9HΘoUqόJM&¨ΒφσΖmο`βhς§}Τφ5Π*Aώ*ΝΥτaxΡήZΙφ}BυS‘ξ8ξ§τ―&­Ο^¦ŠM3„ρ(–ΫΔ3άG’ΫΕ ηϋ‡'kΠ‹lT7aG–ŸήsΣσ&©jWžuφͺχqύšhZΈΞ@μ{ηœUMRΛZΣb΄Ύ·ΏΌ°ΡMλ₯ƒ?u˜γ!–k».UΚΜ*=.t-π¬zE½₯άg}άD AΗό΅ ΞγώιινYZ5ͺO4—erΉŽ&>Θnβ]Fk²»«5ΝΜ‚!ζ͐wrIsΖzWU{sq§-Ά‹£Z‡ž(†Ž$μΞ}ϊΥΧ‰–©6Ν…HaLaU@θqυυGQΤ΄=>π›‘›p2Ε  Ο9μ3V'Πu ΘΙΥ59fώτVγʌ{g©¬­SKΆ‚ΕtϋhΦ6Έq *.O8'rXβΉε𞍯³wΑρΪj±άλŒΡ΄σΉΟΝo ’HμOZΦξΩ­τB‚Dnή£ψ&QΓί³m<;ͺλkV}0\«yW0Λ1rŽŸ(θ{{Uϋ±Ε°3­όH¨BήFcώZ™?JΥΊt—OyαumŠJ°2@Ί5μ½^ζΰΔΓ6μ“b7QΫ δSSΓp_jΩΦhΠ*§™pήcmδ|¨FprzϋW$°ρΉ΄ks;#iu; >;sqΪBΚΩ!žK~5ΣάZψ\xPώΟΤ-o―Z-Οr¬BίΝG΅fθ†Ζ_Ϋ#ιφi$j"•L+•qΑΟγšηfπς]κλcQα4²’νΪ™ϋ€ϊž+Ά•(Β&USoC§ΚCk`μU(«μ3W<.™}]±Λ_?θ«Tδ’+p±K"r>VmΛϊΥΟmυ ίx_Hταk)FΡ6oέ7ˆΑΕ(ΣΘζ”-KΨ”*H=ΕRρ4~o…u$$`lCΪ΄k7Ε§„υ2:ω[GԐ* )JΖ_lΣ­­Χε›Λt=P?YΈΪπ1νιMΈ·ιΦ³[€.νΠΏύε>Ή‘€[‹t‘r #ƒΧρϊPpάσͺMI;Z’l²b[W$žήΉ­=<ΰΆϋ«'‹<ΞxΗΝ)τ—©(ΏΎ’ΔΗΌd5ΗΉμ™ύMkΔό"z !EΗ@O›—~R¨FΘτ‰na°·7r¬1―ρIΐό=k―€ΊΦ΄Ϋ«[wŠ,Ό^uΟΚHΙΒυ=&¬Ωθ–6Χ’^Εk˜.TΙ–ΑυιF«&n4ωcά;₯ݞΐ9φ­š|„G•ΜΨ€Tΰpά⹝#χή1ρΟe1@ eA?ΞΊLω‘œ6α\ζ’<―kΡτέ"J±QύEsWΨι‘ΉΏ$i4F9P:7Xd¨οY^EވΠƒέXΆ$ˆgψqμk\rΥ!mύ+(³‘œΆ΅etš­πΈ Βλ•q‡‰/Qή²ή[­j1k--*ΝΆ{…=°Θ§ί“V5]ΞςξϊΖξ%‚ζή}£z+ΰη=I#šΟ‹SΈΡ§šΔ‘£ x GϋxθJqq{›¨K–θο΄X’=&) a0‘ Β •ƒ‘m³ΧόE§8γΞK€SύΩPgΊ=†πυ†άƒŸλ\ΦΊLρŽ•~›ΔwˆΦ`ΰ†αγ?\δ »c†Ζ±XSDŽUaY¦ΩmgΪΚεC¬wΩ§\ ι\–œH{Ιt«ό†jΣδ'ν$χT<γ΅Ό•Œγ"°Α}έrIΑόh¬χ΅±HΩδh’ΧΜŠΝ’Ά›˜Ι‘·}ΓΞΌ,،χ@Ο,J[Ϋ­Ϋi–Ϊn£k8ύδ)pξTžς9`ˆ?Ξ*έΫίO{oαν&o±Ν$-=ΥΨ\΅€'€@ώϋ±Βη¦ νW徏F#ΒΎΣ‘{Τά&Ό›ύUΉgcΜ²dδQΟ₯sΧ¨”mOVge¬Ž ΔTΎ΄]C[·Έ±G˜4pZx.€`/ΚѐΨφΝOm=φ›4]j0κzuΣΗ‹ΕΖθKŸ“Ν+Γ£r`ΧI£Ωψ&(΅›ο7Δ^.Ό*Θ\Ν$Ύ‘¨8DIΗΏ V‘€>™αΫo ¨eΥo.σWžΥ7,Aw,@Qυ8ζΉ}λ{οόŽΊ2rvF§ƒ,ΰϋ<ϊ™‹™έγSΩΚΏ^λWΰŽŸŸ³ρ0ω½Ζq\†‹­+ά]hw'P°šΨŽ˜0LqŒcG9Y}ί$vwŸ*†Χ!€νŸsI»Έ£ͺ­ПοΡ½¨ή[ErSΛΈώX±ώ•Κx†ωξ,4ΒΊu꬚άLνBΐzμ+¦[hαŸΝάΜύ|Ηl·ηXž/ dΠcΑΑΥ—ƒλεœP₯­ˆNι WZΕά ² +4#ƒ+™\~cυͺZ»έXZ«I¨ήO{3yVΡ¬‘δ>ΐtM^ΡgΫα»I 2XŸαη5WG·•σλ· ς1Y#\‚ίVώUΡ#•-΄…²#ΣD‡,ΰΝq՝Ι%˜žδšΞOC(*~lnΙχ&·&··“hh†~Έ¬Ν[mΆ›{2Ήβ‰œδmΗ g=G z{KS¨˜V<ά–ωΨ’|₯ZΧΣτϋ8lαˆΫΓς¨Ίgσυ~ώYtΝ.ή[! ¨gsΛ1;ŽsΝhΨκRλπΗ€6•Δςuϋ8 ρξΗΖ±‘θN”½—΅ϋ#u+{9¦{ +LŠmD|¬ΠΐΡ$υ‘Ηΰ95·’iPιIm`Εε”“™œ’§ «vV6Ίu’[ΫΗ±δδςĜ’ΗΉΝ#N–πωŽαB†$“χFzšΡADž₯«F-:K™€ `–$gπϊšΜΆ΄ΈΥ₯MCV„Jw[Y8ΚΖ;4ƒψ›Ώ΅Q΄/¬ί&‘$NΪ}³£DίςΥωΘ=G₯t&ιΆόΦ­“ίp˜ζίAΝ υνΙ_L½‡LΦΌO{w ‰P™½ i΄^: θMΜ{ΖΰρΰΛAύk˜³΅QρΖ½$Θ$†‡χg•3y|±»p(žθšQψ‹πZI©έ&­©ΕΐΚΩΪΙΘ‚2~σz»~•ΚM£ιΟ¨ίCqg 1ά2‚TŽ^½λ±•ΫK!{Zdvλ oQθk‘Τδ^_}Ÿ&iξLQͺŒŸΐW•‹rΉΣMtFQΣ Š{»C"Ε ζ5i”„<’ ο[ΩΟƒε™°ςχ²έsTueŽΟΓ·1Ηςˆα(§^κ0Dll€ž.v¨-ƒΐΗŠβiU§Θ͞“±₯αgRΏ™ωH‰p2xόkΆ‰XrˎzzWαWŽΫU،Ls‡*δ«?˜θI^ž %M$sWZŽ#£5!¦5u³ ΉˆύEy•τiq©ί»svγŸ`τ―HΉž(Ό’PG>ώƒΦΌήκF·dΖΘΖεΞΦκ2x―/2OΨθmJγ-lΦMRΖί{yΌΧRIPg{œW€Gp δ1=3“^w£^A΅u<Ϋɇʍ#˜Ά2@ϊΦόΪNΚϊ‹΅žœΜVE…³*ƒΐσ•O·Jί-¦Υr1FέΞώy±Σ’ϋUθ꣄‡ήFθ΅eκzJΨZΓ{3‹«γ}ΛtΓίTvQšέ³Ά΅³΅X­£H‘κ\σ“λPkJ%ΣμŽX€$τ f½˜ΒΡ<η?zΘ­O!K}*Ρό»ΛβΘ$y1c.ηωsVH³X£†’άD6FΡ1VU«i(neΉΥ§SΎμμ‰Oό³·RB―γΦ΅Πόέsυ¬/cΠ„tΤΟ™υk;y£hŽ£ \˜I‡ΥO ψW+s¨AsgαΈ`˜50I|„Lωά§žΈ―AΪ2;τηήΈ/ZG/†΅5mΒX$°:ρ ΈI”9Ιφυ­½­γiς.[•~-’I₯ιΉYΣYe9€Θη§α^d&Κ« ¨ΰg»ν7ΑΎ)ρ…΄ύJΫΔ–ΧV‘s ‘y^&R ‹Ι ξ\”[|ρ\ry²ίψ}Z3•ΒΜγ>ωЧ$΄DΣj‘k,wΪhd£p +r=­qc₯ΟfVK6L γ·€Α'ο/κ+/Γ·QA§¨Βi˜$κΫ’Ϋ»χœΰžΨ›V”CαkΖB6μ©·ΤπΏΜU+Σ3¨γQšϊ4gPΌ:œΉς‘έmdΞΤ>νλι]*0ΰ ŒtΟjΜΣ‘KK8mΠmΖ±γΣόsZzWŸρ;–²)[ν‡Q½· lv £pZ³,vϊ|/p.Ε²(,ŏΘϋCό*΅ω·6ΧΕΆΗhζcΡPŒδύ S²ΆmvdΎΌF(Ω΄·γΑ#Μ_a]+αHΞΞζ/‰fΉΧ€άM—-Ϊ•F8’γhΘ8ΖU?Z±‘€‹¦Η @ω‰,F¬IΫ†8ΞzΰUο+}§Bnίn ŸͺΣΌ5φnΖζPΎΓ‘ύESID•w2_¬g„5Sεω ΐΑ·Œ™]°}Ι"ΈΫοkhφΛw©Ι{kS%£ͺ€ΊX ΈΗΧAβ;‘¨kϊFŒ§*_퓏DEΚυl~UΡΜVή²„UΛnθ£Ή4hΡ¬"―vrPΚ7(d0Ά—έ«?WKf“ΛΏ• ΅–ζ5šWjnjOΎ:UψεΌΥΌΫ? ΨK}l­ΕΤ²yvπžψvϋώΑkΕή ΦΌ?kc―_¬sΓk8–ζ1pσ [ 1‘œρΣπuI­MkbΥΉQΏ¬xίUΦ-ΦΛBσ΄Ν1(»’-λΠγ<ΐs6–wVΣΙq¦k7φ·) Μ²Κ«œϋΕ'~ͺΉ;Nό±UΓϋ‘ψu„ Ιu Θr>‡h―:ž6s©m¬cN NΜΥ}yΌO£Ώ†ΌWl–:£ ιχκwA# GμsΨυΟi(ςY%Α‰„Š1*Œ8oȊΉ¨Λgoa#]ͺ<ο#‚Ω=€ήτΕR‹ΐ~#Xι΄Λ™΄Ι%2dKχ¨§yqσϊμέΗ½zΪΜR‚ ΒχPj–ΏΨ)%υυ΄ŒΒ~PAήηεΖ@©œλχzζ&³¨¬p<ν•bvμfB2u9ιΕiiw62Βa΄†8–‡·ωfθθFGγUό]#'‡€Έ…°φ¬—WψJ0?Λ5θF +R%y-ΟO³·³³H­αX£;WΧՏSψן²ψ[UoοΟ(ΗΉ—θVQάΨGvΑΟLל†Ζ‡ΕΣΚΎ|AΌ7υ­%πžtΎ§‘"μ†/Mͺ?J•O­UžGŽΩ_*•-ψΥ€Κ †娦zρ9όΪݝ»•ςώǏώ½iψp΄šEˆ?}BΩ`‘ΟαTόKέSE—’ύ ΒO³/¨­/ '—¦Θόν’βVLφRΗωΥΞ+Α7Ξ/‹€ς|#¨mζ@˜arΐ`Žύk€ΏΡ΅=!νΖιo΄ˆ%σ/½%Ύοω補zWWβkΑwβ/F^S&ςeυ>@~¬JΧvŽΪ dΈ•!΄ŽηrMR§FΜΥ'ΉΜG{ޘΪT•$Β)SΠ_CΝjxNƒVρ‚Ιuμέ„•k‚Ώ.έ\·= Οκ61κΆj^Π5H]eΥ#ai ŽvΎ|ΐN?†©λZo‰τ;XtŸ1ŽΚςf’Ym¦]̍Œ,€( ϋt8ΕrΡΒ*MΙuΉ•Ž›Δυ bβKO]ύ‹IV*ϊ’¦^^ΔB_χΟα\~žn΄ωšϋHΥ―αΉWΚ›‡i#—ΤJ§¨>½EKγFΒΈŒ=1V-y,zη ž”ΥvυF°ΒΣkS‘Τ/ ψ ²ύ˜Ϋx›N"O!ŽX0Η 0ΰ¦kΆ½ˆXEy„¨bΝ3ά‘ΘΕ”©ΫέBf]A-™·b&i αΆ{Ž•4>Χ4HΞ‘¬ψvξω•ΪRΡ]₯ΚA““ϋzϋ֎š―fL$π­€gΜΊΆ­¨Ϋάi !ςOΙwqς£…Bγ.₯α;)Ϋ\Ύ:ΥΣ\jl6oέ’02/nIνWμοαΊΆ[Ϋy’Tωpκ1b;n*Ύ»rš]ޝ­Ζδ€gΚ»±1’?ΩlψΧTaΚ¬Œ«ΙΝ\μ8δc°pWΧ=ΝyΙ-†DφΊŒP(=U–q»ι&έl³}‘¨ΰŸNΩυΈG}ώ2΅—dW7‘\8'"©Ηύτ@₯₯+£Ξ”nΟKwŠK‰ν[nεda‘ƒκ;ƒšη­ν₯π½ΡŠ-hŽΨU<›B{{ΗιιZWφFώ$ž<‹ΘΎhδ# κΓΈ4šv£φθžΪζ3δ?,π±Ξ=ύΑμkž›Lκših² ˜τ*δbΊ6ΆkΖΖ'νZ=άΉ―`™‡βΘΗ„΅8Ϋ‘‹?‘ΞψZζMKXWŸ/•[lυp­'Ώ[5šEπΥε²|―q$vΚ}²ƒϊf±YΝ½΅΅ΕͺβKΔiώΐΰ§β?Zοΐaœα)#ΛΞ10hŝΈ=½=j&~ζ+"Φώ »xη‰χE"‡SΧƒλV’Έάί»VoqΠ~5Nά…Rκε1XtΓΠ΅Rΰ'―β+•π½}OWΌΫς-ό±Ζπ’σψž+§ρUβΩθFκU$Α*H‹Χs俎k/Απ4^΅ίΔΞ―$Ηώš3±qψŠεΕΏάΨ¨|w!ρ6™gcψ‹j¬ΦELπVHς>Sžΰ‘Šζ“_²Φ.ΧϋPΙ Τ2"ΒθςyΑα˜η―n•ΣψγΤu=/D–rKφΉr0 ƒμ[•]ΏΣm5’;Έb•ωσWpυοJ„[§fΚέθA—€ωδcκ3ŠDΡβρO‹ρu :^šKx–γ}Ήόρ\ή‘θΧ‘Ϋθw€ΘWsΨΚΑ‘Wϋΐ·*xΰw«vή%‘tΈ|=‘­Υζ ]™Τ,Π©είΙΟ 8ζ– μŸ4˜T––½γ}1ŸDπu•»ή#lžδ!΅9ΗΞίΖώΓρkIρ‰τ–‘nlm5kXe*ΟdΕfQΤε[‡όσV,­­­,£ΆΆˆGtQξy'Τ“Qθq—jΫ²/f·LcϊVΡΔΉ;ΔΞ@ρϊn»lΎ+Π\I-‹*άBW11ΥΤς<ŒϊSκίtrI:€…›ξηgυͺ2·²΅Σ%Τ}Ύ₯ Φγ+δm€ϋΰϊΥXŽ‘g^Σ§Šλ5ΕΤE Οϋ,8Ξ9­\TŸ2){žλdϊΌΧ:•O¦ΪΜ/mΫ1^lΒ`žU³χγ§γ]†΅8΅›yνΌ©ΡŒSΓ'-€2±Ο«ΒβEŽMαΤύΦμGΦ¨ μΫ]+b C—ρ˜άϋπVœ[Ω…H«])²12§ϊ‘ΚŸξjδ’mο_?zYβ3Ÿ»lΔλ’Έ?χZ—PκωϊρφΕ±gxΒ[U¦“Πœ›Ž§›ψ‡N»πΞ―₯I¦Eo,Fε’Ϊ†$£2ž8δ¨ύ> CTΣ―šγUΡΩC7ονžΉ=rΌ6:c­m3lxξ\ηΙΰŒφšEωΏΏΞ―]έΑc—7 (ά³φηΨT:―›”Φ•$£ΜgΕ©[j6¦{iγ–7<η_CIα{3LΤ΅oκςβ°o²ΫBΫ[h-΄wvιΗ8¬Ι|?­ψŽγνz6ŽΪ:·?nšo³Ι/ΈˆNΪ¬[―κ~ρšψi–wi,ξžS"4„ ©θυΗιVӊζͺbiΤ^ΔΧΦυέkΕS»j7SιϊHl­”m‰]3ΦV?„Tšy³1κΎςl―ύPT"9ΣΙGpqΑκ W»ΜΖ+Ψ«\ΘσΡ,Oαόλ§TUPμΩΐ}Ρ^mLcREQ£M+2†­β+_hS^\B`»Σˆk‹y~όL1}Aμ{Υ- ea½Žg™όΩO‘=}†3WΡ¦ρ‰΄­/K-RaΎi‰8[uηχ˜υ5­¨xΖρeδ·Σ/ `²XΞacψ0ΑΟnk¦Q•Et<;£BZœ«iΪέδ³Io~-‘δc’ypIγιο]/†!K}?με<Ήbr²‚rwuδχΞk>ΓRϋ-ΣX_Dφσ)ΐ†εvH>£‘ϊŠuΟΩόU:–a¨lη†νš ΏvF²j–¨ιnς;―αΝCαΓεκZμ=6έ«cΣr-YΐŸQXvίΩΎ#Χ&bσď/h›Λ\gωV΅#ϋ½uQ9ΨνsΝ=j²8e €y©‘«œ» ¬ΟŒψRϋθΏϊ­4νT$Υ@F-žAΓN’Φ΄q""""’6ͺŒΧν/*…ΩΕH©a¦ΘH&E‘‰nξΩ9ΟΦΆm‚…ώWΗΪ.|M ‘Ώι©Ί$ώ@b²nGڞβLζ13”Όυ­&|ΰΘΊ2xΚ%aθ|Ω?*Ξ³ΨΩ+^g’ȍ…)΅[“Σ•―.4Ι”–ί)Ο(ΐƒŠΪ’ƒžΒ±εΆj_eNb·"KŽ8-ό)ολ]­WsΖS›­d^΅’d΅ŽK…*ςνμOcXφάxβμv΅‚ϊξβ·Τό§#žω…`U|]ͺΕΐ>DLΏξžίpWzεo}Ϊp$sMΖΣR…ΚΦέœη‰ ςξ¬oF@$ΫJ}›•ύEsΊ„$ŒΓ`R3“ΨWe―ΐfΠoWψ–?1O£)䑊YΤ_<—ŒΠ―(1Χ¦”ŽͺΡ¦mψ^VΡτ;8›ύ“!Ιβ"OCώΟ§₯;Η)ΏΒσέD7Im²ς"9ΓFΑ³ωVτ§ŠΩ,εPT,gυΝd^fςG§¬­©AQΟοό£48θŽy₯ΞμlOukq§½Α-ΉΜΙΪ€d;σX–³^΄§Ή’(ΒηY1“²qŒ‘XšD7ΓKŠΫVΈ-’Šv-„a[εήpwœzp+Aν­έ·6‘‡¨Ξͺ\ךλnϋœ§fXΆ·yPOv.ŠςΡΒcAκxδΡPYEmsd· λ‚™*n˜…>ω4R‹7ε°ΎΦ-tOβbΓ\t·ŽρŸ ’,!–6'IvΑυΕMϊί‡l#πΔ>Υυ3o#7PΆC ”f'ΉS±ΖNNlg­`ύ˜Ο ιΧ–^XΘ΄ t€‘ΓGH9a4;’―ΉΤف;zε²½`˜:τ―9TŒ5:\Ϊ~Χq‘jSωsΑ¬xςβφ›Ι% m€Γ ‘ΖάdqΜy<ΡτλvϋΝ,·I5ΕΤ£ u&y–Cό(XΰAM†ΦΓJ‚Ϊ+X[yKhNΒψΰΘο’η##&j*ΆšLΡ v•Κ…9Λ»g#ρΝsΞR«4ΊG–šΣsVγI•-„›’kΤ%ŒŒΝ“Κα{b©YΩhϊŽwΪͺJΜΌ†OΗϊΦ¬wω~Σ’BXΉZτό±ήΉφΉ’ΫSŒ\i”oΑBΡ'š»Hɩ滀΅Έγ;»²Dšm δ[Ι3½‘$ %Ις½7O~Υ₯β(ΕδZmΥΈ%bΥl€B9ϋΗiηρ¬/ν8§2™ƒξ\™HΞδ\>ΤΎ·±ΊΌŽ“¨ΫAΆU1Ϊ‡f ƒχž,υ=±³ŠRΡ₯ΚtV0 έΚ…£ηth9qΌπqΙΝiK¬pφšm€·—Q―*`τǁψdΧ-₯5ξ§btΫIe΅Šh―.7aTδε#ο“λΪ»+{=6;4†#ξ¨ιλ–=ΟΉ«”ˆp±Sϋ:ώπ 5+Ω6Ο½‘Ψ‹μ[jΛΧΦΫL6‹Άs2@Hΰ…ΘfΙ>ΒΊζe1―μ0s\­Ά5oMxϋ~Ν` 1ge+‡oΓ ¨΅ΨγdeΗ #Λ΄‚s!%CΟ|ΎZϋ3Η΅tMŒ6¬°Θ ošY;»ž¬}σϊTWΪ•–jyV8‡ΚΈ\ξ>€w5™,ϊεΘiν¬―¬α$3άΕ#鴞}λGJ§1Ώw¨ΫΨΖ\K°'' “λ5‰ ΅Ξ¨±άj?-±%γ΄Ξ23ΖσίιU$›[C42θί¬Ri ‘ΤpNC»―«šF‘ik*YHι,+σΫάnYb=·«rθ;RQBζv4ηΌ—Τ*–ΗΛϊεMˆ­Ήδ’yΏΪυώ•WNw†Φ+s•27οe#£`δΗς­έχV6γΨσψΥKή%θ:(YήΛ“ΞΥ Δππ+βǜ0ΊFηΠƘ­υO)|nκήΥ‰ αΌ{βφ‘·sωc4KtŠŽ‘“GO3Βπ*½a‘ψΧ,`‡Δ›A‘D$cwYFκτwUUδ g5εΊλ™5½SIӘ­³J―y*œy_. χbGΰ+ R\°Γ»²άΏΪ²y€–Σ­œ`ωnΐΰ“꣡uz™$VΔm Σ°8λ\δ°ςRΧΛ@›UTŒ(žζ΄ŒcnέΏΠρΉœ‘%’]ΚΊBOΓ°cΙ…€aξΐ]κ.Σƒ\G„ŠΛqszGΛ;•OP‹ΐόρ]€™`0ΑΥΒύ°Aͺψ¦φβA GΌJ‚‘ υ,[ς­%΅Μ§~I3§ψJ’†ϊdJ6€sέ’Ψ ‡βΊ]½„υ›ΈΨ«Αaq*‘Ψͺ r?%ίπΣLδ¬Χ@“λη±ώ΅Σψ3yΰΟΫ‘ωΫOΉŒΐ£8ώt[ή3hρ-)ΨΔκ<£iaŽ9Aœώ&¨J~Ηwc’ΖΑν.ξβDηζ‰U²yώι SΩκGα{ Ή-cΙΖrB·κOMk-ž‹>«r›o¦’&δΒ‘ΖΨΗ§Ÿ­zΈ‰Sφ*۞V}»}ρΪE!ŒRΔύ˜°e?Z³mz|ΉŽAΩ‡ρ«jΈ$œb©κΩΑlσάHβRμǍͺ95βEŸ@SΥΥ΅[ˆt‘‘ ΕΕΧo}ΤόMm ΈP€vεVϊ₯νΌΟ¨-ΔΦσέΈG!;D}<0ν΄}u΅²ϋC― 1Œλε°‘4Φ„ž0C.™k2ΎΪξ9‡ΰqRxuγ³œ°T{q;±μ ,ΔΣ΅—V†ΥO*σ(>˜οXΪ,m.Œ<6XξŠξKI½EΊαΗύτVdŠ—Kέζ΅x²‹›Μ}š1,"¨γ#ŸΖΊ=3C> ·ƒTρLˆΦŒ‹$zr7ξuέ)ΉΗEt:¦½‘`σί\,pFvIΰ"¨κO@yΝ‚K«jΧΊ6¦·YΨΘ :CΛ€cl2΄„}αΞƒΠΦοE© WΠμ/nxΘζ«}Ύ=7l71½΄JB«Ί‰μHΰ{UψέdEt“ržUΝf‡ κyό–ΗCΌŸOωΌ›vQ’NΨΫCgœF}«bΡc΄Σόΐ‘3)sοΙΝ>υd—Ζ,q3²[ωN§ nΦMΕ’ΩκΆ—:|§ν¬r @?‹ύ’ά{W—<&ρVΣδ Π6¬‰,„zn VŒi kr8ΰΨŠΙ•GœΙΣ‰ΐ-ΟΩΙμΗΊϊΥκ%ʈQ₯]ϋΕ¨γΣ|x“C{hή-ΣΐS20gNαγΜ‰½ιךβu«JΓOΤτνjχ$mžί•|γy§XΣ€s­§N!Τ-~h$oΊΘzΖώͺCΝdΫκΓĞ*Ά»šέ­Ώ³ΙA0 ΊιGŽW¨>€Vτ䚱Ν:r όOYίZι0.­5ΔQX›'ΚΰŽΈ#ŸΒ°oα wβ+eσnΰΨ=δΗψξd½ΤP}³PΈœΤa_ΘdΧ2*jΊ΅ΐi.-Φ18 |Ω>Ϋ…9»FΜΞ0Όv3² )7π‚6,sΨSlgΐ‰wΙŒ†LύkžρF«%•‘΄ˆβYNΑ‘’rN+‰—ΔΊΝεŸq­]‡,ˆΨa}±ŽkŽi\λuνsΡ<\Tι»o'‰“CnϊšάƒΙ΅°"8’LδτU’ ΰχTΖ›g«L'ˆΏšΩ@Œ02c―\ϋWObΣL•ŽΩγ/wύαuύζΐόκj.i!»ΔζτέQ?α"ΊΥξΩ‘šθ%$B!^υώ5Φθ–Vz΅›ψ³ΔΕ"ΡmΏ{ii9‰₯Ψ τδΣώ#ήGyαΈ΄ν@‰;127 υΗLcŸ­sκwz¨m#UΪ·ZK…ϋlΔHΖ%?ήΞxΟΧLR΅ŽlEJ©i±­βψ‡_x’mmτΝ7ΜVGΎ¦›*vΈ½=*₯׍u½cJ½u­#GΉ•@YΠLΰΩ€ δΔ΅[μσo\Ϊ[ΌgίΪ‹Ϋ+—ALw^g‘{nsΚ6?Ω89*{ŠΑΠ΅ϋ­#ΔZΜze€WWnκηl€E ωχHA8Ξ8=«Ρ„ŽIS²+iσ_iώ ¬Z_£~δ•~>ΰe<’F+ Η,:dΪ”κVν#Ή9ςπΐ*ϋœW_$7—Ί§φ΅xouXΤα1 =#^ή›ŽI^υƒψ}•sσK@z ΦΊςjb‘ο\τd•χŒ η­SΥmT‘Ιε^[ηdΰ κ Kq:ZΓ$ΑqcΨkΛυMZQ]}’h£˜aƒΥ½OΦΉ(rzؚρ‘³½Ρ η%žHZ#ΣΔl„ƒό`δC]CΎ yGοŠΥdvo:ΩΣ$“Κα«Υ£8 ―΅y8ΨΈΧhυςΊŠxu$`xΚ?ψ§|dAw §Ψ:Α ±BΑBr\τQκkρBFήΤγr›gηΣJδτ;ττΥ|SpΑ#W[ γ!€ΗήΟeιψΧ£•Χφphρ3ό2©V3α‹ˆΧΝ…€ j΅ ΖΰyΗΣ9Εvφξ6Œ ~W9Š΄DΎžβσΒςE’JQΝͺ7²˜)λκ*Αm.ΓF:₯Ž£Ά£σdždoŽvsΧ§jήKΆŒ©AΒ)kσ}Ώ_Σ¬G0Y‘{pMηˆ”ώ­ωT>Έ2Ω\@2Z;Ι†ήΰ ώ΅ v³ZΨZ]^¨šΧŸqŸΰΘωc€+=-­’ΒνΦάΧΉ’6’­ζ1ΰδπ9ό+’΅58Ψκ_ gK™όEͺjŒ@ΒΉηV?₯myΪΖ¨Ί’BN 5ΝΣ.ε΄CŸ˜Žξ…ΐ¬}cΒVš.Ÿgύ…β L΄Η#N±δΰΰsš±£jW:¨θv"XuHξ ld|ΘΟ'"FaχςΫͺ£G”9¬ŽΣΐΎ XΪιΪΊΣrΘ°‰ξ]»³³pΌχ8‚¨λ“iΎ.Σρ¨x{R±Τ-”›;Έ<Θ›Ά[‘τ›β +K»W\΅υ„»Ρδ1 €uΘΝQkhμcŽ(γΫ`*ϊ'Χόi‚%Τiε-[2qΖ{zζŽc~š¬6οΤΞπφηgΉ»}ΧK˜rέQΐόX`ζΆ.οZ%H-c3^MςΫΐ_φ›ύ‘ή¨λ1-¨:₯Ίνš8u‹LyφӍŠώ%nθݘ:ε΄O jZ«ͺI£]΄6ράy JwŒ* ŽrO'―γQžšΊ¬m$Z•© k$x.Y˜ο+Ζ³΄ύQ΄λh|3ͺ‘ί©fžC Ω)o˜α‡rOCΨUσ+Ψ.κΜ±}q¨iW1Ϊί}ŽεΌ±4lTθΐΣΌ4DšΏˆ‘)U’,©δsώύityAjνtΐΙRvͺ‘ke―x‰ξe0Δχb5gS·εEοŠ*«XN:—ζiό.δΖ’\ι[Ύΰεν³ιύδώU―§λ6ZœFKYΥΤ7b§Ρ‡cYz’j:π’ΣM+MΏΎ»“€Aη οοIuϋ tΦ­šΝ$sφa»χΙύΧ=Ι=+/cuqΛμέ™Τ£Y^1•ΧΑϊ‚ηομπ.’Z\E=¬SDO—"]έFGCτιYΎ1Ιπ…ρ炍ω:ΦIjΝ$Ιb#@€£ΨzT·°Κˆώυ—Ÿα¦ mƒ=σΐ€fΫ»}γΙ?΄‹ΠΞH瀡NƒΜ!B¦βνΫΞkI`gψeαέPη/β+}Lό*χί,?:Θ•V]:IHΙ_^zV’Ό‡α ž˜’r5Θμ`ΟPΒθ:ώJ?Jͺ©Re-t;­Fξ_7ϋ:Δ»(7Ήε ­οθ*+(μⷊ=ΔΕδcΛ±,™ž;bYΣHr΄OVt²D<!πͺ?‹ƒ]2mCSŠ1΄Π..Ϊξzπ  –>‚Ή₯KΑγxδ”,F[v]„η 0F}뀊ټί>δ‡œπ1χb‹ώ5‹yΎ3σέ‚Τη>­€+’«Πο§Α·πF֐{U¨W-UΨΐχOx-`.Α‰ΞTrΗ°¬’mšNVFwŠ- ΠξVβEE— d–ΙI#Ž+“m SΎS%Ŝφ6ArΆ‡ShεΫώΠPqτΝt7“ΪθPI―x‚e7(vF˜ίδη€q―w=3PΙ K¨ι’k;Όm?Ewd ŠGφσάs#xζnZP»1§UΙι±ΗΎ›§Κ‘α­~ώ$™A%bΈζwω»Υ}6ΣIΥLΡι‚λJΤ­Ύg΄½•€ž’ žGLΧCύŒή5`Πτ /ψqyϋlΆˆ“N£Ί¦AU>§­cۘρ<1ZΪiZ]ό6v-oΣ~ν IJθF>_U>•Κ§9|JΖρiξ!ΆρIν ΅{Τ+$e p gλΈgJλ[μΙo. 2Y¬Ί~8cW³Ί·π³κα/DίmeL-Λδ.Hμ΄šhΈUšωιΘάK‚ρΖ:΄ vΠw‚KR9.>ά ΨEpόη‹ ‰@H¨«κ π( χV)€4VΡΎ€€ŠΆQ±Ύ»ΜLv°δ(Ψ’’ΨϊΦη0–±‹εςΗb:ΐE…΄–Π\κ6Α<ΨΤοUΞJ ΐ<‘Φ΄,.-O·JΒ!„!OL:ρΉ.,ΡaV­—ΚP¨ΐ^€}+3νZΘϊ­α 1Hο~Ψφ«w71G e"€r_#ευ5ŸαΔώњ+ωQ‡ΩγSg偓q,}X¨γΨΣ£VΩ hZšΛQΏξυ[ιtΫ7XδΓ¦ύJηa† Jsύ‹δΩΑ_ϋBκGωΘδαίΉ"ͺί^k0μΕ2Dx?ςΣϋΔc‘Ϊ©άΛo­ς†τβZζfΘYΨ#OoSάπ+F›•Ϋ_C ΐΤυo:—~λ’§#h ΙV;q]·ŽθΙssΘbΒeOnF gΪmfΈΤ.#ςήJecLXWŽΠ?:ΣΣ$ŽγZΣΰ·””yšFυΪ„σψΦκ^½–ΗD£jDφš.₯£i6-§OθX”΄S Žrw0 Мž3[zV΅§/ρ&‚Q‰"?νλΠΥ¨Π-€j6’νδτ7Ε’ί[jPM§[Ί_ΫRVρ8žnˆƒΣŠτλϋ:iIœtIΝΕluΊ­φn‘sv£ζ‰ Qκδ€£σ5Μ\j©α½ΣLŠ)gΤ€O–L4’K3˜ΙλF£©]x–ΗM΄‰‰ξ.ΜΣ ίfΨ`Γ°n0jΔzMŸ‡νξ―‡T2]ίΟ½œ(λ–aΖ{τ’”ž―AT¨α₯Xν`"}oΕqMvœ~ρwGmž‘’š±-—‰uΘΜΔθXάθχB™—Υ°εlζ›’*΅ρρ7ˆ!‘^‹ϋ3ND.ΦΫΥΫŠR€ŸΊ «pιWΎ>ŽίQΧη1hς2 ΪBT―ΚΓΘδΑόλυ½Ϊz.ζQΌužηΦv:”Σ·‡ο^ΚΪΘdΤυY^9 ΰΆΤ`7¨“Η΅j&‘₯αύ[hš`ίEoΔrϞd<΄epΐ•΅{φ±΄I"°π&Œε―nΓβ;·\b$'ψρΤΰZ‹E„κšŒή$šάZΗ4€ιΆ…0 ·eTσ φfTρ¬―Θ΅g]7Μ[Έ΄XmδΉΥ%˜ r|…›£ΐ83±k€Λ"‡ΈI£Rr"k—b£ί­T_Ϋw£RtcgμcΑωˆΘ2Ÿ_A]Œ‚RνŠθΤm™φϊu’αD1λ’ZΗπό+ŽΌ@Ρ¨PΆΦγθy5Σ2…}ΨΖ+˜°½ƒOρ_‹ο.\Go pΜΜz+7ρ‘GU#[Δϊ¬φPAc¦€Ϊλ­ΑGΖZFeG?\W΄Z| knYΔR2΄ŒrΞωω˜ŸRyΟ@Σ§¦Χ5Hφήή $M.ΠvΗμHΑ>υΕΚƒν— gεΗ'₯rc’ε8X$†L¬!Γ γŠΨρΦλtΣ­‰W'OυiŽXΦΕ­ΊGςn2¨‘μa‚ΨHW3’ υ$φϊWIrS•Šše$ztPΗΫjF3…υ5bo|A#Γ¦ΜΠX©)5πΏPV/_vό«ή#βPiκΜ4Θ›m̊pf|F§ΣŽMz4ΕoE kF6’ Tz]Ψ:7Φ¦ζ5ε¨Λ;+M>;{HΌ˜γ蟩'Τ“ή€<Ν=FΗ"½-Žh‘“\_Šςš„ν$ͺ˜Ϋ<kΆ#ε[_q€“…hsŸB+ Ι5ftAٜΔ:΅Ž―j-­§QqΉDhΗ pΗZτ{IΦβ•z:†#ΠχpWVλ.›€y±«<·p³nΝž½Έ5΅bχΚνζK€3Δ³[󏛹^Έτ§ƒ¦΅εΨΒ½EmN½~χ·C\φ©ΩόOe)Η—vžKη%^TŸr½+n£š5tpTŒƒνXή. 4)o"ζβΠ­Τ\υhΞqψŒŠτεNρ8!FͺΉ£ 0Χ₯G=όv‘C2? YώƒΣή³`Φ#Ύ‚°>d—1¬&x!†Acθ;ύ+sLΣΚC3‘-Ϋ¬ΉΗ²ϊ σ’ԝΡιξMkeq*‰o>\r°vΌ{Ÿjε48Ω~%ψΡί#Ls‘ž<–ZοΠ(ŽƒήΈ­<¬Cѐ>½ύMs«¦Ή¨gƝhΐήΏidˆ³ιΗ5w]Υ¦³΅Š ,6‘xΒ+aΨ2\ϋΝ:ΓL‡L²ŽΦ<²Η]Ί»ηζcκIFμ]$δ΅6ΪDΉΡfGšΑ­vαΣzν\φ#΅r |5§κ(mZ?1OΝεξ`G‘ΗgW΄²ς\Kk Ξ€ydΖ ,z뚿§ΩGej‰ε p>rρ΅Υ*Ι«XΞ–ΩJζ&―wc%Ξ—φ ΎgΊΓG“ςž ΤjiανbMi‘ήˆ–HΧοyΈœγi=…Xρ²ΔšUς‘ήϊ=μŠ2πiΊu€zΌςά,wΗg!#9xϊΦ1Ošζ²W–…›ύζoλs ueΓ7ξmT0Κ―©#«u5SPΣolμυΫ9DZ²βdg?#«`˜€d¨،տ΅Λqπg\΅ΉbΧzb΅”­žIVIϊ©ZЌ’$εTEPq08―FΚqhς§)BWc|?YkΠI‡μΧ°a.­e|Mίw¨=›‘¨u-OΣΰšώήG±)’O*B#8λ•ιX֟ ΤOνg©Zp· ’zύΖώϊJ‘§YΤlτ­B­n£q%τ-'ΘcGͺ±#ιΘ5Γ(¨]3Ύœω•Ξ§BΆh΄Σuv6άή?Ÿ+7T’“μΈ©4MsͺΌ{–νΌΈʁ~M3Xy/$‡J„”{’DŒ8ςα±όx^[+ ΎZ["*ЧͺΌϊzΎfm7₯‘VΞEΡ΅#b&Ν„²bίqΟ’ψ!φ<ντ­ς±H› ž;ΦϊF‰|·vWΆvδ“‘ž8 ŽAχGNXΤΜφπ‘\eA+B'\Ζ7c§lχ―ET²ΤˆJξΘΉβ=z %4=I..eP±Δ›ˆΆf8ωΊρθ:ΥοψGν΄­CΣeO2Sv²σ3°,η#Ή5oGl4Ωskq†TŽ»rz“οWuIφΎ„ςε­φΣν” V°Υs#IδZ}•υ³IΨhIβ)²μƒ?ήού+–Άo΅θ~"wβGšbΓϋ₯qώΫΕ [Uˆρ·όk…Ί&Ωγoιξ+°ρΌ€ό;ΥSŸšHΰ>Ϋ₯QύiΛ€¬ͺŠ9,xλ«Ω§tpΒ£{œή“¨A©ΩΕs¦@[ο#w =sZΒ1»FΗ`η#΅ΘjLΪα»π”ΔΞ\ ‰$#μ„τη?y³Œ₯°Ρμom~Ω―κ“ήΜd±Ο!TGSΛ\wν\ξΙٝΰο‘{HΧό) κאj–Ν}j²³Ϋ˜!3ω,Ψ%Jτ“ƒRZλ­6£ ΠξΰΣl;DϋθΦP§2M·ysΦ‘²ΉΣ†‘6s¦[D”(±(œ«ρΞzϊŠΐŠξ{ vγΈdΏˆωhˆ,‡ψσίΏγXΒ§6…ΥNšΉ§₯jσάjFT1\Νrɜ•Grγπω±]„ΗόH Ή•οœηœ±8ΟόΔΛ¦ZίΕΏξε\*Κ§/―=σιN΅Ÿ\“ώ$j'Λ·-οUBωKΟˏβ~Ω*9T$ΫκZ¨δΆ:ΏjRκz”Σ&1ΞΓ7 ΗΩ’=~z(όjmO@΄ΈŒιΊz›uΡξΆ1™3)#©=I=ΝEαΝ6ΗPxνΖΓΫ™€`7O$ϋΥύ"u:Η‰ΫηϋJ??έ1¨ΘΧ₯‡Šg)Ι+£;HMξŽ—ψ‚ιenYo,u»Χ+ver ‘ΟOωl9όk΅Υtψyk"Γ<|™B;‡υΚΈKλ–ŸL»xβ$Gd7ΕqόϊJŽ­tF=φšΘπυ°ΌΦo/ϊ›Vha'œΘF$θ?ΪρY(t‡Sσ υρSY~‘"πΊM# fi‰=1#g4ͺ]CBT¬‰5k±7Š4 ‘ξJžΫcωsωŸΚͺψ1£ψ‹Kρ.ίά&mo$ΖBΖίu›ύΦοΫ4Ω­€:|>$• \K¨Ϋ΄DΛ8wl GΈ9όk¦Έ0]Z½Όε ‘΅•ωRcλ]T¨σBΜ穈εcCGsl²‘œ#ƒΞ*{tXΧi?ςΥ²X’I―<Έu n΄‰|»HX3Ϋ\>θYr8œLV₯ާ¬ψ’ςβΡΨhqBWνtωQχN0ŠsχΉXRδv7…E5tn^κSέ\6™€7HvΝ;εΪη#ζώσz Ό7l4ω"€ζe˜^»ζO0`†'ΣΆ=+nΦΫO΅K{HV£9Ϊ½²y$ž€žυV9|²³;πe.Δφγ5§S²œRW*iZμ3\ /R€Zjkχΰ›ψΟd=Όs[`)ΒƒT5ύ6ΓU± ¨Δ―ΑW' ΟUnͺ}ΕpBΔβ{ίSδ׎€— ¨7Yκ &UΠdϋ]ˆt« JχϋFω0Ό[[ž|₯υoφˆόͺ{9š[‹©δ ŒiΟ 4οΛη53΄½Sμϊ•ζ›© ΆΎσZa–$R•=ώ«R}bΒΦέξe½‰"‰K3“ΏZΒρšXΫhπ\άαεΆ”Άζgnͺ=ΫϊVu†ƒάλu¨9eVΜVlϋx ύζΑοΐ―NM^η4¬hXΕqβ}b=VωZ+KfΝ•»Œxσzœό£ΆjΞ›ai«Λβ{έBΪ9’7ζά¬ƒ Ž5ΜΦͺ4q(T G·₯SπέτzoƒΌYw9m΅k†nωά# ~9­iZάΜΖͺΘζμ7gθ*η… ŠΦ,Φ50Ηs’gŸ^j¬1MϋλΫ΅IΉ“Μ—Ώ–œνŒ{нα΄5‰;}‘WςA\ψŠŽS²Ψλ§MΖ7eφΠήeΈΣ.f°“vβ!9?νFx5nχΔώ$ΣνV ₯²»·,¨n’cŒdrκs¨«ͺ‡' S‘±”ΰžsΟηSF€ͺΡ„Šcˆ₯xe‰‘ŒHΖ-ΔAηZ$Ρn5ίjV—:h|»kul’1q‚Η»cς©R²Ίγqšβ\λ…΄‘  :M›rιηg,ό΄(£ϋ‘½jK‡ŒRΓΖ:š6₯jŽα4hγ,,X0ΫΖωWoΝ‘άΰcšΟϋ}ζ±g€x―A΄gρ›4ήΨaΏ}΅|Ά‰Κηk‘5•«G¦jw7Z–₯αΏZA>κΡ§·΅·Ίuο*–SžΩκEcζΫ{‰Αν€Υ΅aγ{9ν՟IπM©?Ϊ:œΔΔn‚œbΉα›ΏέρY†ρεŽ₯%ͺΨθΆ .…¦lΫς‘·ν2―a·;ίߜΈΦγXžΓϋRΒΖ ;u`πν΄Ν,ƒη\”ωξ¨sλšίΉ»šήΒς}ΣKtμ>v2ΚΨ+ύΠ°¬eSš\:!K‘^E=P§­}›Ÿ²Ϋσ8!/αΦ³τΘ­g΄H–ξs2eYQ9γ₯nCd,mD}dΛ3°<³““XΊ¬ ΒΦέΘΌQ˜}ήμO΅uS‘ ΆΛNΖέ6Ν¨JT»5Π ?1š)E€v‘β/³d“½άώ’ŠθIu5tΰ™xBΓ‚JœŸ―σz ›im=ΔΗςάXHvΔθ$φ"·Φ9΄υΘ5¨<ξ91_pJΛ•φλ±\*$Μrdυγ ύx―2%ΓTNu+{˜&IΑ4hD‘Jpθqίόj–’fΈΡτνWL‰Ώ΄mΗ@%(ψι•ιW|E&—&› λωnρ:μ!rΔwί5k§Α-ΞͺY™ά“k» ³ΗλMΪπ+^ήi›ŒšVΌΣΘGΪ"σa%aΤ8,93άU“Ώ–Ϋνmeomoƒo₯ۢ䌎1Q†ΐθy¬νΐΕ­½΄8.(ώœΣ4ϋ՞K2ΫT—ΨFݞ LjϋGa(Ϊ7!Ήž[Wσ§ϋ$¨ΝΉŸ~'Ύ«\±ΒO§Ξ‘@Vu` >•WΕ―‹ͺGΔφαT‘ьη8wνZ΄f‹O»Ί“Ν•cή™ηfWΉο֝*INθΉΚτμtφ›Vέ‡ΜCΞΪ†α1Š š”"O²άΚm§—ΔΑΝM%΄Pώσ|Έά>σ2kΊLγ§qwVΆΝρ ˆΆ5±’P -ΐΙΑκ}j_i0κZεŒ6ΟD±Ϋ#\;©rγ$δγ8vΙEΞ§©jJΔο˜ΐ„ό‘Œ<ΥKΫωnnR?ΝΉΉŠ@ΓΚϋ©ƒόm±φ»ΐθφJΪ—STΈΧτ½Εϊ ¬’jΦIޞ%π<·‰±Iηή±uF]Gν7ZΎβ]#Γ|Ϋ«wΊ‚έ.Έ(ϋJη;N[ŒυβΟUϋCωmοοBη'κqθkŽρjˆόA€”Y- ±ΗpٍaЇ4lΝh»jŒλΣ‹)8ΪCηΣ΅5λιd)¦Ϊ13YϋE9cό…sχΞ­§άy‘]"X»ΟηΝkιΦ²Xι°Ν9˜έL‘§3%xα9μ+Ξ””asY=MmΪKϋHdq«œ{`uχΙΡ~οS\w‡άK­;Δpcδ‚HΚ.Iη₯uΰΫtυ1­¨ qL+Ι©π=1Q·zZCŽk•ρ‚n±σΧ$ΒΑΰ'ƒ]LμNzV£O6vH₯§5”υΠΪ η=(σβΡ£SΓί[ν>ΨΟτα,A€d`ŽƒήΈ/ΘήxrΪ^%‚ζA ?ފ2+ΉΤ/ντ›#sq&ΤQ€1Έ³Šrk§jq<άT\΄3^μMχάΗˆ₯ŽA”‡ίιU%Τu=q@±ml›­έΘζAΠμLt>¦¬[ιw:ΔwΪΤ[Qλ{9X½Oο7=;V­ΟΙ%·“]m™S¦Ίœί†¬-ό9}w €q·°O/Ξς@qΖxεX‘Šλc“c£n;VGˆm™"‡V‰XΝbΖRρFH/εΟαZ–Ύ(θΑ¨`}AζTŒ£R*©)FΖΚΜ^Xs^cnχ?όm΅φΘ­¦μoL[“Φ»Ξ<¦μk‰Ρ―Δ?³’X}ΎΟ]=u2–Ϊώz·– ΌlΈ‹ε–3ΥXWψΩOψ€η <+§ϊKŸθ+Ώ΄·"»_–M§ώ=λΞ|lvψΗ]`ΓkxDnη•+rzώu-Yθ)&ΡΑ@’[Ε³ ²ΐΰγ_ιZW°έ5ŒπΙ½βh˜3nS΄c©γ₯f[/P/Π—?‘=λgQo2ΛΙŒα§‘m€Ο#yώ™£™­Š–φ5Ό5o%ΨΕΦζyb@“# ~-Χ?JθΤπ};f’·"@‘Š£jESž§#ωΦiάΩhŒ{˜e»ΏύΡΗΩ0Γw ΚΓ‘υ«ΆŠά–†E1\ΕΔ‘?Qžώΰφ4š`έ’η™'wΟβG?•KwaθWΛEq|ΉW“λκ₯JzRΏˆ`Y,βFσκ rώ΄†]2=ρ.δi°ΰŒ3Υ½¨κΫEΎͺq"•Ή_υlώ/ξšΜπΛ£C'O7|άϊ3±ώUΌW6Žϊ™χπj^άθ6¬vϊώΖΔcηˆΚƒΛ(ϊTΙαli%Σ&–NΔjƒŸ ΰVώ© ?ˆ<79΄•b½±”I„«uδμAΗγ^{w―ίέYύ|Φϊ¬“}•’V!’8ωΨϋœzι§ξ­YΑ^šrΠΣΕΥύΡΉΉw6Φς•†'pϋ€$u‚½OβζŠβΫ^³RΧ–„—L¬ŒγtgωqNŽβΛI±†ίΜHcE ŠΗR7ˆ,2¬ς1υX˜Πs^eG)O˜ο§N‡)»‘έYκHu[gf…UbΗ(€}ΣθrNEjΕ!‰s·Μc’rzWI¨\θwΙ€ΟwO!}―ω<δWSΔ~'ΥPΪC7•‘ϋΙ„!R {“ŽΎΥQ‰„•žŒκόU«4χ0θΆVι†&™r<˜Žwgέ±υ«v’Š$"Aϋ’°tΫ{=:3‰C3Ο+6瑏RMX–ρ$Ψ‚y *’mΨڝ;+—¬ν.u}GQ6:}ζ‘L" kr¨3Λ0ξJ‹[²Υτ=ξgπώ₯–Tyf„*sΞΧ=5Ϋιz›_[ω‹m€—?!͞:WC¦έj^"Άx.o¦ƒDa’Δ|Ο‹όλΠ£οE+œ΅›R±·e¨Ε{iΔL :)9ꭎTϋζΉ-V]—Ί¬ͺ2’[f+ξ1Η΅?±οmΪMBΚ_.INχώλCŒs\ΤχfβΣTvVId$78 Ž(pV ³jΗ‘ιvςχ2€f“e€f΅βΰυλVtniΏ#ψqS£mnΌg­pΕλs―‘‘βΌ­αΒ?Ϊ#χΑͺΓJK.ΖU“Θ½…KGqŽT–$†υSάTώ(}Ί§‡d?u5ΆPΥKέJKT·±· %σŒE΅Ζ=ΓΕ¨3£]XmQ½rρα@ώ!‘ΪΆτ;I5`·WWW²ž―!'œ‚ΝΈp=«Υ§Ehy²ͺ₯t_›N7PoΊ“Ν—;•X“|η}+PΓiR)]$HΩGπεΗj]xju³Τ7Ib[ds?XOesιθ{Uu@ΞΑ–&ώ½M8Tn.η,θ΅4Ρι-*Δ¬ξΐδ–<(υ5,³λνε¦θτ΄l<‡ƒpGπφ:U»ΛTΎΈΕΑclΏvpϊ·­MqsoenΣJιq―\` τ¬`•΅:ͺ9-Œk¨d&cj6L–ŠκωB“‚τΰVζŸu²²ωsGΔ‘·U>ώΗ±¬m-₯½ρ4Ί…ΔFkEŽ_ονݝΜ;gΆfΣ Ÿl±ζ„ΞΙ#b?ˆ{W™ŒŒeSΜϊ ΉΝPI”όa•π½ΧχD°“τ.k’Ό”ΫΪJΘ3'Šz$ύMtϊυΕΙπΎ§g{mΠ·1r™Θ#p꼊ε―¦m'lΧΈz.ί.XLσ3ˆ·Z™ήΪΨizΈΆΆ–A*œΙ(L—ύβΗΏ5zήψ9ΞLγŠΙ²Τ'ušΒς ·­ΞrαΏηVbΰq] •«όfŠςhͺKϊ‚ς­‚>C\Ι&™nφ7LΗFΉΌ}Σχ„,Ÿμ“œ~k‘ρoξμ΄ΛΌΆχρ;g°?/υ¨,6O§…‘U‘χ3+ ‚ <ή—]I”.‹ή.cπ±Ž2Fn-ό₯ Œ1HϊS₯½y?γηiΗLτ_zε.-€±½Ά±–βγώ˜Υόά‚m¦ΗΛσŸ—<‚x θoξό1₯iΣέέYjχK nvkΕb;Ž'»Φκv8η θcέJΊž­Œ;ΎΙlEΕΐ$νίό ¨ΝI­₯ηš5›>uμg‰Ρ·±zƒFŠH,UδM“ΚΖi@μΝό9ψV£2ΛRqυ―!Κ―4zŽ’ŒlΝ­3X·Φ΄…Ή³Όen6γ*ή†¬Η‚€0ΘΞ=…y΄«{£κm₯ΙεΞXS“ΓΧ‡­l―αϋ‘l/>ΦFm|’]dΗLτΑ=₯wSšœnUKΗCOĚΏφ.œΠY2ζvς­αΞ~sΣ φMfiΦ#M³ο/!;δ”“–>όΥ;+k«­M΅}aΓ^:•TεΆOξ/Ώ©οOΦu5°΄ypw‘ΆρΛ7jσ15Y¨@TαΚΉ™­₯\K,Sά™”+J@,Ψαxώ†¨Yk£Γσx‰K{ΘβΫ’w° ‘ΕPΌ_«hφΙ€ύ‹F™mN/mŒ―ΈςNΰF2O‘©u_Vρh‚ιt+ύ‘!g{)9lŒ2*7`|ΨΝ{tc5k•j)hIelΆ–H\’ςΏvsΙ'ρ5™|Ϊ\γ‘–Aτω…\Šι.-#ž' UΑγΧνYϊΜΑ΄Ή»`©ϊa…]4ωΜj?y\τ•_ή³ŸLφ«ΐJ¨‡2“ψ՘Ξ;χ―>ηqΓκX_κ™ΰ‘n}*+ DΤ„Ϊƒ¨ΚδBνό@FοNρ*—ρ,±£ηΒ©!“ΏψUΈ¦Ž <F‘¦O’¨λ\8ΙI4£ΤΦ*κζuΥ؟XlΤOBνu I™;œ–β΅'O-±’γJΦf°ΗV·]ϋ}HϋΥEcΦτm+ώ[)|«›±‰b‘r؜ \ύΦΖ#Φ±/όwβ+»Y]~κIeaDκ ;q’@ΙΐΙό+†Ζ ηΔkd\ˆC¨_³Ζ½³ldv;€ώ#ƒΣ>΅.«dζk}NΔ{nα“xΚΈΘύΫϋqθi–rCœi ό‘έΔώdϋ“όιjΦp—qέ!^«Ruω£ΠκKΉΤι:Ν¦»§‹ˆ Že!eŽ&γ!‡j֏$pi³4Μ?wq)$ž™n3^sqΪξώΥ ’.Αζha.gΟ *†‘wͺ$ΩΧ—ΦΣά8σcmΩςΘωˆsžίZχiΆ"sMZηK%ηό$ϊσj8&ΒԘνž†CIύ]—Ι‚ %’UˆF₯‹–ΐP=MfΓs©₯ͺΓ₯xsYpͺ7Zψ&«&‰^])Τ΄JM­ΉbuQϋ8&₯ΖNWΨjPJ۝qύšIiβίΪ«}Τ»ΌH>£Κ±5Kt±Φ³cρ<’ή0žx­ŽΥσF7ΑΞ8ϊW3«Au£kwVwΠKo"e>θa’8γ¨5ΥhΎ xZmFγή܁5 ~ x9Lύ­z0¦εΞY)ΪΕ©›«n#Kιυ­?ϊtΣn–κRO?₯c₯ΐΉ±IΧ„Ϊ{g¨?CšΥπiΫ€ώνΜΓ λ©ιVVŠhι€η½<­Ešdχ°Ω@gšEDdσΟ υ&©3 mʟα<ρί>ΥΛ\c§κPΩ 'Σ@ω•xsσOή_nΥ«΅ξGΪD––,ԏυ²φπj“Δ©—ƒuβcE€’’τ°?>kdτ&i5©ΘiσK‘XΗ,±;hμΗΙ‘ŽZέIΒοΗU<ΰφ­+«Λ©Τ-’β< δΑΰŽΒ·μν’=*Φ@ k ΖC ŒmΖξ+”Ί΄—ΒsΆΕi4nAω›9ξcτ?ΓUEG›SŸΝΚάIc΅Šͺ€»HΗ,μ}M[†SΓ­Γ»“Ε‰lϋ?jgΗιQJA^6 Tϋ‘šD ώπۏυcΗ Οό ΗσΌdŒZ8πΥ%'fzΚ¨ ς¬έΨΤ€’€\Ϋ# μ©lfrGΞάυ¬θΛΝ!Όt) Š‚Tχ¨ φ₯’qŽqX2Œ γΟ±t8υRώuΈΩTΞ9θ­cL€x«Iί’I™IϊΗ\³ΥΠάΦH’<².Ήg<“ψΠκ¬Έ—Cc‡z‘FcSœqΙ=ͺ¦‘©Ϊι,·3χd(*XΉτP95‰‘Νλ^‚F–ϊΈ‚δγΜ™5„Κ£ , Δv&Ή›«];OΌί,^κG‘ηΌ·Ž0zώτ>Έ›Y›X»F™bͺ‘°nr3Ϋ0sŽ΅™eo§@Νo…e<9sϋΖΟrέOΦ°©NMκΜ:Ύ¦Ύ‰₯O.— ’˜αYP<nf=wΗͺ-Q$άίgω_v±Α¨ό1tσψ^ΝΚNv©ŒνΤ‘Τχβ―Ι―Χz<(ΑΗΧš#Odg)7‘QΌΎˆmϊφRqκMaΒ’ζω΅”O“ndξߍhκutΝfήh26Άνڝ:.‘V‚.ΕYΗL κ’―¨ωlΕΎWrp1Ιθ(¦>UŽcΊϊQUΥ”έΩz6qσdδpkš»C©άέ±l9Sθq“ϊܚ2Φς<'eΚ ΘΩγ±λ›:4:q¨έ³IσΊξdϊ€+Ν”’ZšROsFηΚΤο`Ί“ώ=£\Γ‘ΑcόGπ[–ŒtδΗθ)t“sq†ςή$„δΓ‹–U=Ξ:Ί± pζ(•‡L'OΖ¨\Kq.b±ŽgΏΖ @@zδž tͺ€—08Ψ©ς]έ<»έαRcˆHεΈθO'ς­ί ΘΤΆ<{’%Ž1΄3οŠΑh Y• 1μF:ΦΧ…ε@—vͺ€y7$α°HζΆΑOš£Ή5αΛNηM$QKlΙ*ΖΡcψ {δΧ=4ΣCΊ=*[‡Œ°Θ$Η=‹sωV‹ΪA4ΞΟxS“‘ίVEυάϊ†’Ί-†#sςΝ([―§ϋΗWuGΡπ]Jϊ-±ΏΡ {¨/RΝAδ‡Rο<±$WA[,kώY"… ψ †=G΄…,!(€dˆόΥ™t1‘έ&jfς€ΗγRցk\oHYΜn c‡š.mž{7ο†ΖA+τ8ͺλ€Ϊ%ΐ!Dl’@ž™€΅΄‘μ~Ω­£CΛ)}ΐνΙζΉΥ$ΛΉ›e¦ιW,|έ9 ±·ο\ΉVχηΧ₯K&•d$ς!„Ζr7²;ƒΣκjΛYύ¨%ΤMk ΰnWB";ŠŽΪκ?/Λt1L>ϊ?R{œχ¨’qΨΣ“[–mμlRxν£΄qTŒ’yδΦΗφe ^b}DŒ1ϊΦ}‘ uΫπ§rŽzd ΅¬Ce0ΆC,χmχmβ\ΏΤ“ΐζΊi|&54a(k$bfŠXGv$2~=λÎΖΎ,U4 υω’_π­k[ ‹‰–ηR;©Κ@‡χqzgϋΖ²΄#ΕCΉŽΡΏρΜVιZQ1zΖGM{io{KˆΓϋ¬z­yώΏf–ώ"ƒqiΫ°ŒHΕ°As^…ywoanχW3Η Q™δ8 υ―4ρ.΅qyqe§ιΧBΖ—7DΈcεSΙ±‘S‰†U_#.ε~Χrγ'μ–Œ―qžŒύ—πκk°Έ.ΆΓκΏ­sO>H[yΪ;σ1`XŸΖΊ-μΆΪ|·]@Ψ‚ΟΨqκkΒΔΣ½4‘λI΅ΈΊ6Ώu1TPUΫс]ΤAB€£tAΆ:}ƟlNg’viίΥ°KgΧ°ω ½v`φzb:PΉ§³S+΄Α"­Χn<€F~•Νκ!pqΓqœ•ΥJ‘γ*z qSύž9]咝ίQ\ψ–Υ¬tQ3­Ψιώ-Σ&‚ &ί-ΑX€w˜ΑΪIικ+±²Σf–ψjz»$·kώͺ59ŽΤΓΥ±όUΜBΦηΑ€‘ΎλR3Hη»ΛlΓτ…wjΩη8uτ¬;²W91 οA@ΐ#œU;γ΄B2yλW“ζ'iΘυ¬νUΆάY@έr½}«ͺsΠζ§}M6 *άeν τΑβ±ό&ΗϋάενΪKrOϋ @ύ1ZΫΎexV'‡ Š ΄Θo'<φ»Χ2šΉΣKCzχPΆ°Σ₯ΊΊrpΈ,Μz*Žμz δ<-$ψΧΖ]Αδ]IqhZ"ΩΨΎ@Ϊ>Έλ[ϊ:vοϋaΠύŠΨ΄v*ίΖά†—ϊ/ ¬:">!ψΏiΑς΄ζό|©*η«Π!€u;»\ˆ€1Εy·bYόGΙΆcπΟ—t»xΏάœχ$nϊ τ«έnœa€δ~ζή9‘bρΆ‰σψg 1όb|'θOΰ*#r™ηΡ«’ΐς~•³sΉdΡΨΰ~„“Θδ eDΫWaΰœη[ΤεϊqsΉLSΔκΨΞu­\}ΦEIZGsk:ΘLgε•1ΉͺϋϋzΊy{¨ύjζŸφΘΦ{Y|›˜ΞaŒ€;Xw“MΏϋg™Ρω°η@Η${ƒέOc\ρFŠbi1Žκς)ό֚η΅PΣΖί΄'@·R`ΩηϊΦ‚f§–Ζ©άΐρ¬ευ |bΛΎ;λΈXq‘ 8ό¬±•&Ÿ*g-Τ¦ω¬rΦ>$Υ΄Λ―>FMDtΜΰ$ŸχΦ1ϊWa¦όGΠΔ:”Si―ΣtΡnLΎΉ˜ή?>½6ΡΣi±x ΪC‰u{„ΰS)»{Ζ• μoxΗX‚?­ή•¨₯ΗΜ6˜ά0ηλšΰ<=βk3WŽΦξrΪtς³ωn{7¨=c[W΄;PVK;™X( 0]ίU<Κ£?μΌ°·ΥδƒΑΨεΆ΄M'tgMΡI5Ξ·¦Ϋ1Ζΐ’|³ςΦ&£γA 'L·waΑfΚ(ώ¦ ƒΐZd°—ΈΦ΅‚Zく³ο4/Ak-jϊiσΆBΚ=Ή^I­š”υAN½θe\]^κSn½ΊiP€|ƒπͺ3]jΦ‘­’ίKε F‘υž;ΓΟsίθCX’Pϊ6λQ]išΦΘm5¦Ί°ΘpƒΤρšΖŒkB{›©kQ4οκΞ‚ήύΐ .6ό§Ω½+9[OwΊP~™Ί«? Η‘{³’‡λοŽ+ŸΏπόΪ=ήT7φ}χ6m#sŽU[؎•Χ5Q‘NTΡθ€Ialή±.O§ ‘‘NyΎz―ΧΪ±mυν>ΛJ³k‹”Œ˜P„n£N½5Ό_₯v<ΟΗhJσΝ”΅βιιφ²I‚ςGΠ6θkΖκξήφΦ2Σ1η‘·=Η·₯Gβmol ZΫNΑζboΜΝΈΚΆτΑufnόKͺGΌ¬ΞΊu½ΞΘcτg.JμΑΝ»9±ξ–Œβδρ¦¬5Ιg±ΉΉžύŽΗΏξ±Σ OT‚ίPΈΦŽ»{|©«RHa#γ9ϊšν[Β>‡3v;X#ηd!υΞ?Z’ίBπe‚ž)›oEQOπ­ͺΤ©7δrαgI;Ψημ|C­ι‰n4ϋ B Fο"1ΨυΑΘoΊΝ;]Ρ|Enρ[ΕJ§kΑ4XxΟϋJz}zVˆ΄ο θΦ‰›5υφ§1ΔQ΅σ…_WltQϊΦ5υ‡‡4ύ―ήΪώmXδέ>ηπAθOτ₯MΚ;ΔΦ¬aSTlψ·ODŸO½΄dΈ0L6Œς§QŠΓuYμΌ@–Z‹™΄Fm²ΛΑ=Ύ`6Φ†ξτ¨_ZӈΤ2cš9εšV.:νττ㊯―iž6ιm€Xί+I .δΫ¨ ηiΙΟ ₯*nRΌQq­cμ¦tWφ©Γ$vZlnƒ$½ΈΒΌ=}ϋW7ͺψΔG₯Oi§Ϊn™+@Hπzδu«6φ> ·½ͺhe r3qw$l'ϋμN?ή©όAαί B-εΣlD<ͺΫ»…eκAœŠw~ꉂ” ωNSΤu\Η&©x†1‚±ͺ==HϊΤzŸ‰u©ŒpΙ5ΈΔhΧaΖvςH<mcev.‡“;ξώ_e[Xxk\ρ΅ž™5›id[…!™W§^'τ¬`κ-:oNΫ·ˆuoiž^³:˜Θ’ιόGΧ5&ϋm2XŒήC―ΚĜΓϊW}.›ΰ֐[€³ΨΜίνKͺ+z1?+sνΕsΊχ†΅=>Ϊ䨃W²#&ζΗ‰ddΌ}ΰ&pv3…J+Fz³G YΒ(·ŠΈΝgXΐuk˜υ ΄"Ξ6Ε€άƒώ±‡j«lƒ^†Ω–BΪj’»6 ωΗ/?­oo]­ΖΒ8ΐtzUα©]]œυκς»"Œ—-«ΝE2Βτyίn ƒλ^u C λSy$ύŠ9₯OΆίϊξΗ΅wzΕΙ±πνύΒγtq6ίχΞ:αό―μύ.ΘΖk²gΧσΙ«ΑΡrShηΝλ%ȟs₯ΈΆ[©Rl”•8W=>•43]B0κ²zŽ^¦Έ(³e >ΔRG’ߏ"·¦Ϊ0ŠV)ψͺU»π½Κm+&€z‚YZuΣŒ!·MΉώΖ2½βΙΩtΘμαΌς¬`ͺ>σΘW/§X^λ¬ΪFšLvHδOsΏjΖΉ?» z±ινΝtRΥ™WiDκu_xcH[ΫζKFΖ£t±–DΟ\γ%ŽN: σέZϋLM^ ?Vhͺβδπ\Η·ξ§«sΠRΟΰνsμŸm‹Oικ7+4ͺ/3­θΎ Υ~Κnνν,#3aΥe2/nG―\v­ͺAςΩm΄£-KΡψJ ,z–‘»ΦkA)υ,Γ₯tφΉΤν–GρΪ+tΙ ϋοo5ΞΗΰ?NΫ–ΞΘMϋ~\Υ ]3VΡ€imu‘`ω$yO˜ΎŒ§‚+†8u{Υ%eϋΉ^―ΰέHΡu-gUΥηŽ!œΉ=€ Iι\·…΄Ώήλϊ}΄σ_E{z―‰ιΓG'P™Οχr3λ[υ―Š΅:Κ=RσE1[Έ|+:–cΒ³Œž« ϋڅ©ιw2έiνqμlnBςqԎ‡₯[§(­LcQΈ{σ=-~ΓΈcΔ¨<:ΉšœΧ;β›x_}΅ΕόχΊ±Β…›uΔ©Ο\.jMB?kΘSRρ ½œ'ƒgh?ΊςOαY©πξD@Ρ^ιΚ§9XεΙ>€ž΄‘EΣΦDΖwχ\ŽSYΤRών%4{8τσ$ Ύλ““υο[6Ύ?ƒHŠΞΟF²‹B ’άέσŒδ“žkZO‡7 i<@ͺ sεZΗԜΥπΗνh²[jPœpxΞ+Jx†**+άFtškΊŽ‘ahš]Ρ*σYFΫ‘Ž9sž9=ΐϊΥKΫΆ›O“p ‘‚δΧkΒΘΜ*κr€ρσΚ νφ#Έ>•Ζλϊ^©‘jVΆεͺΫ£Μ‡ν*Α‘uΘη#ξηή΄₯[š™T€ά“GͺΔΞsύџʧσάη‘ϊVWΚaCbJŒ`ρIη9 ΘξΗ=γπΌ©UIΨτΤ—©H$ΧuIIΞΦX' UύMeꚒH,D2Ό·M±γA– ŸΔ ~5$ςO-εκiφSΙη±δmD<™›Ž΅ΡΩxMΆGΉρ±:ίΘ›5Ό†$‰{"²=OZκ§ANWf5ρ Œ,ŽoYψ—¬κwA-τϋ;KwΗΨ$fb@鸎•ΘA5ΒkcSϋKh°ζXu> f»έ[ž &ŸβKΆ•x{†Ψρ χ`Ώ1φ­ 7ΓήŽ(€›Q:†HΛ\^e3ώκαEvTr·)ηΡ©˘㑿Ή7+uώx3“θίΠ6:νtoxyPCbtV οl0O}κΗ½Mβ- ΐΊuΊJ–°ΩNΔyOm!ˆ·Ώζ©tύ+αΥΕ¬w‡ΘΌfκχ—)ΟpA νŠΑE'uu#PwŒόS6ag§ψ_UΝΨfi­Ω]bŒ’;n$ŒfΉOjΟ£xΎ&½»)mv— σ,„‚ 9ηιZΪΔ’Τ#Ά]'O†WΖg\Ζ°ƒάΰŽOoΞ­Λ¦ό<‘Y΄ν&G#€ηΞsο‚Η5£‘›qpδ55‰ZM™–=.5‹„Θ?gcSθdn? kΞόCβίkςl»½Φ„Η½›cΜύMvπ^ψF*ΆΪμpΪ’ό*₯ζΉΰ¨.R1a₯`ž$6ƒ¦:Χ=Ϊz ₯N<Ή-C‰‘X­!#>§5%εώ΅;μ›XΌγξƒ)!}+֏ŠΌ–εRVγSM?όO5U5―L࡚FΛΦ3dΑΏ+ERͺκi.Wφ?Ρu;‹žΣP₯|Ε)]Δς€ϋυΫxBB–·ΆA[™ΟΎυ«χ:‡οtι’κή-Xq$ ΏΛœΧ)eq”ŠΊ³6ͺΕ‰kCf_ žKہΑ¨qr‰QͺνΚw—WρYAζΉ''j’Œ—oAE†+ά­φ€L?ΥEΥmΖVΑλYzίlœί^.ېJE °"ΙιŽ >΅£ΐ'ιԊΠ‘dZ 1»ΤΧ;γ;Ώ;BΊ·ˆρ4δtEή8>ζIwqy)΄Σˆή8–||‘‘ψš―β{H¬< ©Εου[™˜όΜΫ‡'ή΄W±•Ν(ώdΖ?bΛ ‚P ƒΈd`φ>ΤΛ_ψφ‰½QOιRΏ+ƒυΝiθ`η©ΒκΆοα’XΡζΡ0NΡσ5£3οšήk_³όπΫ}ω…ε•ΨnΉ–K•bρσOΦ’†άύ¦DKXΖωžO»μ ¬‹H‘ψmc,r:ιsψŠΩτˆ$κ°™Α‡]₯ƒ^Γ΄κΙ΅B„SΊ=$ικσ§F”£|ŠΔ”_Γ¦jYX\Ά@,Η°ͺZ}τ4 ‚ ϋ| αcʞΜ=Tφ?…[ŸΓ ™UΏŸ5ͺΦ&N\³ͺΜ<Χ\θπ/₯a_Οθ―ƒŸœgό+§nONs\vΎ²Oβ; ILS΄¦ε₯_ωc¦ Τ“\υUŽŠz²εή©<· ¦ι(“]GςΛ+ͺ·<ύσόGύ‘RιšR}²iκωΎύάΓ,=Έ9νRΪAo§"ΪA‰πRIΞXχ$œζ΄±ίόŠΚ \ή€ZFWˆ"Aα­Az$υό:Χ†[τŒΆD“ψΧeβΙ„>ΤΞpL{Τ‘Šζ"Q¬l …XΖΪU§`¦΄,xΓVο’ Ϋ]ΠΘf“jyŽc 1qΞ:Υ†ϋ³ˆοτΘ­₯ΘŠξFχ ώ5«α9-ΰπŽ˜dΊ·B`ήw6$’sΝ_{˜¦R‘²Θ1ŽW*?[*q’ΉΙ,D‘;ΖΕVρ§΄o/ζΰnγτΝK$r¬Yxv¨a–ΞEJb[xΨ₯ΰςd“fYTzdURZSζ²:γξ#TzŸzIς:UW"bvL*€H’›$(Acn˜’’2_ΚjωIcpΡβI©ιXqˆφ(ς„ŒϊΥΨξa• σ@9lύΪÞξy£Όˆ3±―¨>•kw ΅Hbllΰy_ZΨπΐ–Ύ»ΙIv)cΨ?δ₯SΫθokJYRkf·dΤ£:/ }ρκoΚ£²ΥtΨ yΌ‡έ–!SœςIΟ­?Δ_cmΪςo°Κ’8=G©Ϋ]COςΒ ΘƒͺψΙ?Φ»%IΣΉ$γf¦Σ―ϊ© ^@$uόjή†m―Ο-Άh•}~`2?V₯a§$r\X‚μθΖ>RpiΊ5κJΪΛUšξ+[‡gΆy[fr0’FκrΥαβNd₯ϋ«3¨ΏΤ₯š·°rŒ€ ‹¬|–ΰ’?ΰMόͺ坽­•卡΄{B™%vcΉ›+Տs“š“K΄|=m–3άΈΗ^€ϋΦŸͺ6“5Ν½δWqi+A…ˆ±*@)ψ‘]ξWg 4v%T€ΔΥ …Žή eHA%ΫψЦFΉ© ¦“μκ%™ΊφΖ·Z•t;d›Ξ˜Ιu6~ύΣύ:Κ†h™F+ΦΥ`X!%'žc €…ΛΛωΧKA Έ‚96"―–«‘ΐι\μ x‹PΈςΒ@ŠΆϋ€Βΐάޞƒ5Ά<΅lyh?YΚ\£΅ΜΝ*bm)„3Bΰρ‚ϊŠ}γΪE Ou,+}ζe'ίZ©¨M¨‹Ι %½νl)'ΝΛ•6§M}:κz€x*skjδηζaέΉό*ΊΉ¬₯dQΣ¬5Kο3ΘΊΊτ·“r+7 `γ*v/γšιl4Λ=63φXόΌœ»Ÿ™ΨžμΗ“VCΟriνχPΦ΄ή‡;•Β6Vω ν\d7qiόE=Τ‚(Ž›opY½ΑΗ―"» '?ΌŒd~cρ9tψu/ŠΡ™3<6:XyCΈ.<°sΧ-Ο΅\ξε!kvZdϊέΔZ³Xέgdγ"!Ωάwr9φ¬_¨Žn ζFηύ•γ^‚ωΪXΔBާζΎ*»σ&B3ΆήΩ€lσ†lύk»“Šβ|?βoͺΉ * sΐΧDΧSj2Zιο΅#;gΊΗυWΥ½ϋWV rΡHδ©«.It’o!TΙ0κ‹ό?οpV'-Œϋu½­½΄"8P¨'<’}IκjR΅Χb.DΓ \.’™ΏΉ‰†U'bG^ šμ5 B+H€mΝ+π‘(Λ?ΣόkΞυ»io΅ΝB;ωYWΝ[#apUpXŽZ±Δ5Λ©΅܊λU΄gΡ-£ΌŠYμ5›sqΆη “ό5θΆφΟ,"kΫ+`qώρMqž²·{¨€Ηo 1Zͺ3Τ3ώ=w+s]€c΅] ͺdՏRΒγΏ¬½oεΈΣŸ°ΊϋdΡφ¬νy±₯4‡ώYJ’ισVΝΆŒ-©eN1κ s—vO~t[i/ν šI]x1Α€_σ<ο[bq³ SΟAοPxe<ωn5‰HΔpηψaR@‰ηςjW•SIhŽΊŠήΡbŠ1qΤAΐUqΊNβ?Œ3’9[ΨωRκ+°ν·wλςΧ™Γβ½ ΓΌjΪΝ颉ΝεŸ%δΙr>PNyήχ0ŒV΄‡χHJγŒ₯yŸŠα2xΟΕ 7ϊΈΌ,Η)‘Ž~Ώ!­h>1ψΕσkD=d³˜cKΔ.πφΏwβkΛ QΜπΠ΅Ap¦"ηΝ“ lgοΈΒw½Ι­™U _¬Œ[>ƒ°ό«Fkk{Ή΄ˆ%JM~Τϊ$fΉ¨u½‰Xͺe·8ΐλΧg=—φxπΖγσ F3#ο:œησ§Ο I]šVχSψRU[—it7l$ςrm 8Cέ=·zάΥt„ΤγŽξaμ<Ϋόΰv°ξ§¬ΕKf •CDΰ«+ ‚x#Έφ~'—Α7B7f“ΓΑRG96,O ΗΌDτ?Þi$‘œ“z’mQ7wWΆΧQmF)wΟsŽnΊžΖΆχυΞ*Ά³ XC¨XN-υ(`˜Ž œŽ;‘λΧ3¨x‚{7μ+ΫjςΜ-%„ςΠ’2ΟΗUΖH=λ)Ζڝ§u© Άχ~ ΥeΤ­d†Δ˜­±‰$<ƒHβΗχ،gιΝgίΝ¬ΫΪͺ\λ73^\Θc†gς‘ŒžO@=iΠΕ*Z3΄}ΚιzΎ·ΥΥ”+¦XΉU‹vxϋγθ9¨,΄-R.ϊj]Ξ!υ”Ž:O5±o€Γml(bˆ1ΛI<“Ο$š‘μΪ rcΊ»ϋ«3ΉόkžxΈΝέ›SΓςFΘΖΆΡ+i‡˜_ySEeεO^ΈϊU«o x‚ώΚTΎ›q巘Ί{j\ώώέ»‘ScΛΆ[…]ÌIό>ΗΦ›q{3“a¦ΚπΈωn'œόΎμ{zf΅uΤW3/Ω½‰<3₯kRΨjΎ%Σe³2Vσ_sl«ςœξ\ ΰχ6™’kΊžœuΓwgn6d³Έ›2έ'rνŒ)`>ZΔΤτ»[}4”V…γUԜOρψ[ψ“Q²‰>Ϊ7€EUnaP@ΐ‡o­k†ΔΖ²Ί2•' Ν}7ΓΊ¦―bo4Ώ³ˆXd―φ™  υ „ψU/Αzž―ut-§­μδ1,wz“Ζ€Λ`¨#γΪ΄.-Ώ³^φΖ²…8$Ÿα8λΙ©΄ΛmcRr@Λg¦γΙΟ­Mjόˆ!g©£ψrσW7wO¦i³YHΡΝφ‹φκ=Iꧨ5>•α}kWvœ\ιΦΡ1%Zβθώπt8ωxVώUcY²[{Θ5Ώ/˜±ά‚>ς0OΈ5ΤD  ―zR…U8άΡSΦΖV—£ψͺξδιφ‹§ΨΎSΫ`²6œϋU›/^Τξ΄ι΅lΆNͺΠ Αry屜U‹›.€ι ‡+τ=ET“JΈˆωφ­ε΄Κr€Ή‘ΰ@ςEo Ζu0·WCτ[}Ί4"IΙυ* Ή#Έ«ΆχΒY„βœ4NyϊηΈτ¬;=]΄xžίYaEœ‘wέ A9=TŸ~9­ψ΄¨'ΣζΥu•G–u2p ψ@#ΨδšλΒΝ͜θσnVΨm|eϋ’κΑӞ>d #[σάE&idTE_™˜πΏZζu8"Σu= κΩε˜ ¦Tˆ9rκclΰσθ9­(,%žHξ52²Κ9HG1Cνβ>漜Ζ+ڞΖV›£c?ZΉŸPΡg‘!h¬–X›24€0Ξχzu¬B›ΗΜF0CΆμWoͺZΠ―#“ sόΏ•qp1ΌŠί₯<νtΞlζ“n Σ©Ί½¬ΡΛ’ΎDΗ°=jέ³Φ`–QmpΦθ‘ˆζΰŸ‘θί…gθπK.o,l™rP~cΑ©%ςoνš ˆCmΖU(ΓΈ=m)(²¨ΕςκΘΫMΤ5ƒu¬ΘRΞ1@ŽJ«>9fΗδ* _ΔqEd4M1~ΟhΓ ΅B(=kΧ½E σψkU˜I λ6ˆ70“X7`|ΫΎVιυ«–z³iR\Ι„τ»/ά2Ru@«Œ`ΰ63ΧΆ+¦hΫCž΅)7©xžώM΄hds§‘€TΙ‰8αˆώz­ŒόGAh. fq€Vp;œΦ·tύSSΠ`ΉŠΫN"†Vi$™―αŸχG@:Yš₯¨ι2ήάιVVQ[έΙ½EΔ§r'ΣgCΤzr­·9㆕τ>0ρ4b_ίJΡ§ ρGΜ^η½λ-oYΉcie+Ȝ“± zβΊ‹K[ξno,_NΆBϋΪ) H€ώuτχͺΊ%ξ―¦κcM³Σlο‘•€x昜nδ2όœ―<~U ΄dχ:=H―€Θ²»Φ56Ά q~ͺ2κAΒϊ‚Η½P1Οy©ΨΩF³¦Ι>ΠρΆwFœ}ρ] >&Χτ(š(etψΠ–lΒNsžδΦf‘­jκ7zΑ»Q¨LvotUO—ί­:υކTα'+3b ½Yξ……¬rΛq&v†ΞPu9ΟaΦ©m“ZΈΎΆ₯ζ»NX»¨=ϋ}+0k²άO¨jΝτdo-ΈτΖ:Σ©m}­\3Νi©ήΩΫ1εεy­τxZεX–Φ§CΓJϊ Žο]–ωμ­Zπ^©ωΦNQ=ΞF1VmtέPΌϋ2ΌΆχŠ2e$…ίA¨dœν:k:‡’η.ϋ²ŸVωyΚ΄<έaΥR}~ψ)#Ψ=Θ.Όbl°κCfώ-—R“K³ΉΌ”'χ–“•e_φ²Gέ=ˆ5WΟρΪΌϊqΉ™oΫ›v²Ζ€ΟoΞ¬]G|Ϋf]Zϊ9βIΜ€²Bz‘νXΆχWΪyšςσΞfšBοv²†\τˆ;Π±Q”m%…š~Eν>ντλeCΈΨ)*¬y0Œͺη?J»wt^2‘?ήSŒολLΠμn――a΅†,*όΞμx {jΆ₯£\ιZ­ΕΆ™uhΠA>p§ϋͺ₯a*<ο˜ιrV,}†ςΣG7ΆοhŽYΪ0Hh†yΞ:ησ«:Ύ“sαέ6ήϊϊϊΖφΨaŽŸqtζ$ŒŸœ ςωk6Βλ]™„“άC₯ΒαZ4˜βyA9ΐmυ†ΧH°Ά9ŠΖ؜΄…oŏ5Όq ;#C˜ΚΥ|?s’··†‘*)W‡OΆΌOώωηιK¬ψv=2ά:kΊ\Ϊ‹p–6ͺ€sύβ„u'Ϊͺκ-Ύ’εΦΚΣ€p1‚Φ€χΟtώUvήΞΞΞ1φx£D$κΈ$cŠΪU’G°εğΨze†ž·6š–§¨ Ή3ŸχΊΎƒ΅VΥ4έ?K‚KΘ΅;'Υ™@’ΕΑ珦:ηΪ–p'“μκ‘Ό`>ΰ=Ύ¦€‚Φ“F±σž?­eν:šribONΠt­ γμέ–‘xκي³3r}½½)c°πυžŒEŽ―hoΆIΫΉ‰υ' φνUοΞάΖPSŒλ\Π3Ku%Ό ˜Ÿ+σ―Lϋγ₯ts-ΜωTMΫ«m 4Ž ω.5ΘXP;³wάq€΅dΨhVϊ,³Λ}~u»ŒfZu w¨μa†Ua‰QzαF?:Ύ"DρpΓi™GYίCoe¦₯c/…WHΫm&¬Ίˆ@C¬l`ΎAΟιR=Ύy§ωvVzΣjC”ΤΘ)?Έ'ζSάRιJM€HΚG˜ΨЎ9­eVΐτμMrΤΖI;!FΞlC’>“<3ιWsx‘ά/8'«αΫιZ‡TΡΧΓ&ΫM£Ό "Ά²Ή e‡λRꖍ•~ƒ/n~|wŒπAώuGV³†sτ%b»…Ρ’—nO$`άΦ»θΚP³5­‘E±†RLhͺBΖ€΅Ή’kΥΣξ%•¬Š₯ΗMξ1ί½dEͺEφΈ4νRe$vΨΧΜ,1“±ϋ9τ=3]ΔσxcW²‹JΣu@Wh‰bΚ·^N{ϋΧm}HΔWΊ²-ΫG ¬pΖ±Ζ½GO­cxρ±ΰ­WέA­ZΣ/^ζΥL«²eω%Cό2/ ?>―γ”/ΰ\ŽΠ‡ό™MiΚωN^}lhΫ-bΐΌžά ΘΥ΅£βΖΒ΄ί‘Δ@αcΟy@=Ίš‚}RκυO˜’{²ΉHAχ›ωU˜m-΄1ό₯#Ι#9Λ9ΰ–cάΥ'₯‰φm»³›{/2πΙ©Iφϋ΄efή?t™θ:Ζ―Α)O‡ž΄Ι+ŒRΩsΩEː*₯³±³ϋL­‰.Νf>ύ?LVŒQ!ψUαύXx/ί?Β γ(ύ§UiΪ²·υΉΨλΊ!ΤV»Y…©lΉ·ΈΖF:”cC£λ_ΪΞ-―"6š­€£νV•8ϋΐχSΨΧO,L§ ΌͺŒρӊα|]q₯ΔρήG¬XΪλvgχxbΐžcʟNΖ΄M4yηφ–;5l/=ΏJεl$ρξ²d­¬™μ˜δ~$ՍΕϊV΅b;λxοΪΛ"‰c~ΰŒσμEP\Gρ˜ΆΣ%‹+Ό₯Hύ3XWWއnΙT³6΅+ Ξ3˜€τ«ΐŒOλXϊˆ4[D’;έRΞe ‰$ηΪ±[ǚBi[mοkΎZ²ΫΉPz'XΆN΅™cY”κϊ³6–MΎn8’\pžψ¬iνSO$Λo–‡?;䘽¨χ§§‹<=ch‘₯ΜΩI·—cΤτδ“PίkΊŒ–3Ki ]yA2eΏe…6“‚vςǏjΒ”€ξ΄I#ͺπ” …4Ά!w uΖ|½iڞ³δά +(ΪλQ+•‡;V!ύι‚SΪ±ό<|]‡`‚ΗJ*™ŠWΤφ)Ξ98ιΝWΣ΅ rΦϊAƒΓφπάΫ"]ά^^έ ~Π$?+£$“ΈΠcΪͺΩY3‰ΡΌΛι€ά\°“VΦ'Ί›9ΩιŽύ•@­X]²ϋλ“υFΝβΆ.Ÿ’~7MόΆS?ΈΪΦΪ-Έ=JHΞGιY]›:nΪ ΦiΚ‹‹ ;4œ~tU˜μ΅5„ }Cύ(ͺ‹/‘1DxSΓςGΊ=6{Ά?šKϋ ]2ΣMΆR“ͺ01W'Mn¬LΓ? τ$VNΈ‘E§ά_δR³89ŒηΤχ$΄ΠΈ­LΛ­/F†Ωδ:] B2?ŽΒΝty4ψmm!ώΤpδoϋˆJ’Xϋ εRG2ή@R;ΙAάv¨υΝG«έάih5™ν”΅‡ “'Κa†Ιυθ Σ ιΒ\Υ:—ˆNWd·z{ΩjZJήάI¨ά,–νΞΩ<΅ΊNk&-šDSkή#l^ΜψXΎ•ΩbUώ'ΗεV€πύφ§nϊŸŠn±τhΧ{iρΟ΅Βφ3HSύΠxιΝTάhBοpφΞoΘΘ†Y¬¦šΫK²Χ$Xeΐ‰\JF2-ωTcV·ΌΧν΅ ‘otΡ-΅έ™>IgŽ›C ϊVlΊ“β ΓΓΊMž“¦[εΫWΊ,ŒψΑ%UŽX`rOZ†ηf―ΰh΅”‚(υ'ŒYω@όξ¬ mΟ%yΑuY·vaηφ­lK\iΦσ(<΅€§p€·_Ξ«j'΅m6C`εΫχqE"Κη‘qΨ§ιE­λjΧvμdY_ž£ŽAχ5TXZjςΙ©Ι[ΞcŒPpI#•mR―*»'bƝ \Eα«It½Jνξ!‰€ΔΔ4wr]Xz9Οӊe†²—U¬πξΫ,(κ }ή9θr+)|A€ψvX΄ύFg†ξΑY­d[γψ›ζ@Ιюr;Ս'FΤ-t‹]†Ϋ”2‘ˆ*X–##Žτcd8Κ8U%9©κ§ϋC{Λ;yισΖδΰBTδ;V΄‰„ΣέΕ"c95¨§ΐΖ2$Ζ33¬Qυ9Λψ“NΦ`ρ$ρΫjLed_&Φq…^JŒΗ\WdDΎ•a,hlΫcw9k2O Η©ΠJ£βbΏΫšS« ζ)GχNύEMX{Ό¬θΒJj\Θδ—β{kΑm!ƒςάΉ?"q Π,γ˜ι—N€©ωΓ`3ΨΧA¬Nm΄™€Ο*›@hσ©όAhm4ί¨UfcώΡLŒώ ΧXG’Z₯w œζ…€κΠέ$w›F.ζς„P>&ߘ“Œœλ^±i6ΆΙΌb8£Κ’Π{ϊŸzγΌ1Ϊ΅™ηa”΅μρΌ@.₯v«νλZαΧΈsV~ρ ό*­ΣΜ©ˆΈoο0Θ_Γ½Y¦sΦΊ”Y›²Β^\‘ρΊG9cώΌχΕqjw!ΉKX‘d‘ίF=1Φ½6HΤΓ g§₯pχ‘μΦ5&o•Όΰğξν5Ε‹“„.‘ΌjheiΪ‡ˆν4λ;{k=3b‰s3‚1ΨρΧ­oEwβ`Ϋ…ΎŒΈμnγτͺή…¦DΏ`Do#΅Ίϋtά~£₯t±ΈΞ+BΕΌUmi²C£[C aσdrŠ;ύήMt~\0qUγO>ύmΗάOž_―eX9sY!σ]—4«‘gΌΌ{‰ή ͺσΣΌ—Δϊ?“ρ[ΔΊ+―φ|7Ρ‡δ!acω‚+Ω”\go_ΒΌσΖV‹sγMŸδ·φ]±ω}‘dO¨l8ιSvšf-£Ζο4ΩτέNγM0HfxγsΠ€xύ*;Dy§ε°ψ@yΐWSρL²Π<[yv°Bm΅7VΚ[ˆfΘ€\nZΕ±Β ρΑ~cΣ“Χ5₯z’Q²&”cΘζ™-¬j’u'3J©ΟaœŸΠτŸ#NΆΈ\³^Γ0ΙθύkŒπ­Ώ¬Όκson8Ιώρ^.•Ωx·ηπΕςw¬A”{†ϊWžδοcx|7;¨ΐ WΠΣή(ξ {yI¬Θ`zƒUνeB’―έuWB¦ίj6Ϊe£]]J4κqž{;“]ΠΖڜ3k‡υc¦³Όϊ@ζΥΨεαȌ’~aΤυGUšοΔz’λ—:EΤM „·ŒH‘Ϊ3χ·Τx±ZϊΟ>¬λzœ;RΪEx,۝ˆN ?«`ηΪ¬­΅…•»O$(5άO₯y˜Μs… ŠφVw*ι²Yύ’1f©C…Œ.0{†ΉλPΪBu bβρΉ†Τ}– ς7cη?™0ŠΓO—UlΓ8VρχO9ΓόU-Ε6v|ΧV—vχ(»¦W„’Ή'޽k+™9#ΉΤχR:O%3Ζ@₯2kFt>\ž[Ž„ŒΔVzψΗH`•οΣ…JΎ&ΣIΘ‘°=cn?Jj3κO2$΄ύα18ςξ"#rO_₯XΈš 2Αξ¦uT@yΖyμυ5•}ιsΖ· +¬ΠόΛ €Έ'+8λ–·s₯νμw‹ThIP9ωΞ$φ>•tαgra+ΪθMλi>°ίf= ·$«κΩΰΆαT΅ο Yi~(‹J°Ίσ,fl°b7 Έ‘ΌUΝMŽŸk=Λ0ΉYΡΓ6Iœ?―B5/I§£zκ£Ψ؍q"c,2U•Φβ#.ŽJn쀍κΐΰ >πγώ™Qy¨Αyk$3Csα΄Œπ{ΞΌ‰Σv±κΞͺθ[U@£€0pr9ͺKkή² Ζ«¦Ž>τ€p:Υ}|@fΉ{ΑϋΏ)anddρŒw«–d·HήΒτ8$Ό›r‰δρP”£c)hoͺγŒτυνUuTH¬„„ζ%™ ƒ―˜r;ΤΪ£’ΪέτςΝEys=ŒΠK€ήlu+½TgΤg4°°φ&3VΤ­}€ήYΫΌΊفΜΦ€ζ7φτ?JΓПΔwΧrΗ§Θφξ―Άg™G•\‚1Λg¦+JžχT΄‚ΦΤ4WEJ\<ˆT[IΟρΒ»; *ΞΚΒ;KtΩ β<’y$ϊ’kΆx‡ζ|©=>ζΕ΄½:_7aŸ8”δ΄ŒF υκM>ήΥlν£‰N6.7zžωυ§ψ’D$±Σ,mξυ‹uΔ°Η‚ρ€Όnb@κ{Τ2>©ξΏο4l?τ*Κ₯)TŠfΞjBά0†γ €γ½W΄…#Σ„r0ί"‘χ›ž:ŽκMBβάΕύ‡¨ΜΌ”<τ4ω ΦηΘƒΓσ&:yχ„~„ιIΩ"΅#–βΪοD±·²‘γΎ)εή8!_•Ορddzfg½€"8PͺO'$’rIυ5“nχzn£yow£κQ™Ο0$##ž‡žkI'Τε} W‘»΄?ΖΊͺΖSVvdz΄_h°Ÿ χ@`lk₯ΡΌ=₯j>Ghd½x²μsΈ’?,W:"ΧΜ„Β7tΈσ£-ωf›#kzu©ΆŸIΥN/Ά%ή»—?Β@l‘ΧΧ€’₯u# dEϋ²’ΐΊ^€šo˜―¦›‘ߝŒ:!=Α=>•#`=ΊΦh»Φφρα›μvέ,cσζ«ήκz† CCΌ‚5Δ›Γ£„ G^zWZ‹dΊ­Ryp’.λx¦$«rʎ+W[Ÿ u¦jsAnΗΠ"3αPsΙτ»ip–ZBέNΫ7<Œςάγάτ§X½ΕςjšͺꡁΉγ'“ώΩ―jΧ ͺN^ξΗ>&΄"ΜIΌ°ΦmηΥYšβx%d›p΅\―Θ=πyΗzλŸ₯g^1)Npγόv‚?•h2~ω{ Wa«jzΉ|βπκΔμsnκz1\N› 6‘©κŒρί,Ev²6!”ž1ΙφGOθHωϋξς}7j°»‘ΗœΤQ„[ ·ρ;hϊ$ΪE¬Œ/-·(\v-}ΑΝ%Ά­ύ»/Ψτˆ w?,ΙΔΞr?ˆη₯Tρ”d'ςΙ»Ό»`Ÿy€=άwƒLΠΦΣF·† { –iρ—έκ ώ•ΥŠ—)ηΰͺΉΖζ}Φ•i Xι»7±ωΚ7;$ϋβΊ[°>Η!ΰ…ωˆnzzΦ5Γ΄—ΆRΚ† Έ―£σQω*ž}Αυ«ΧΊ‘LWΦk#|¦EeύΨ>ΩδΦt!ΛN©]³ΕZe‘ρEΖ™¦Έ]&Y¦DθΞW">;g’*»αS‘†r:V‡Ω€SŸέK2|Μ{’sΙͺ”ΎD 0` Οrq\“rœΝ‘S<ΖO½ M…τ/κjMCMϋZ$Π—’asΫ=Q½TΤφήLρD.GΘF“Ι©Μρ άnaΧpι[8ς­₯+«\:dή+ρ-†Ÿ#0ŠBZh™²c ΤΗ«Ύ#πMΗ„υ‰cŠQwfpo•“##>£΅[žt°ρ%Ύ³m*„˜}žBŽFC`{ŠfΏβ Λλo°Ο¨Iη\?—–a•^δœg₯tΖiΣΌ&tΪ―deiΪζTΝ΄-Ά0yσq“κu&2₯]Χ ^™νT¬¦°‚ΰ‚Xˆv…SΞ)—:ξ™lώL—@K‘ϋ΄Ψ~Ό>iΞ¦‡tcΚυ67$‡ΐΟRN:«εK¦·›Lς:ω_β?•A‰΄ΆA›‚§ΈhΫ ώUaυ;O*>Ή¦Ρδ~΅TiΝ-McP²6Ί€ އw#±φbhu$Ι²c˜KυmύΓϊβΆ¦ΈΦΎΞfoΛ/RΣ'ZΟρ³›3]ιQ„WI\ Α# 8ι[Έ.₯JwDvΦκ–Κdb$žCξ{RЇ"Nώ΅/ΩΌC,—¦¨Sχ$ΤK2½…ΕV{m`3«¦ŠΏόLΗ\Š₯˜§PΧv₯€’Ϋ(Δjή›ˆΦΊίCαΉ<%c›Αφ» ‚έWΖ1Έψ<“\v£gy-ΝέώδΕ*±Ω¨ž3ςδΥ‰!Ίc½΅MŒŒΘNΠ{tζΆ₯4£faV¬“]Šή2AI˜w­8£`0pG­fΕ₯έμήΎ Π•G‘cв–7οx³N\u ƒσ>F™ί*©’xmυF‹mΒοPyÎ~"Άceΐ q\₯ό*²Ζιβ(¦ΊŠThφ…99δ`{U˜cxYΌ[φQĈΦΟ¦O_ΒΉη†n\ΘΗΪ$u—n1ΠηΠΧ9«E…Ÿ’gΨ†eX”’XŒη½? ―ά9dhY^νΜ‡tΰ•cέ‰φ­ˆ^»eΈ³žδ‡L€X8©εSWE© Σ-ό%β!m.•x lG•ξ’=3W­­šβν[χknŒπΔό­Ίσ–oV"Άm-!Υτ!otΗ$&7ͺ‘Ζ~ ŒŠε^;»έXπυό¨Ί„ω™ˆσ`$žϋ‡ς«§u=Ξ|Lyφ7|>ν«x…υΛΨ]E•ΌLΆ#s¨™\³Œ’Œg 4Cnώκ{­CΓ~.†9°Χ6­=Ό\8ž€°δp29aEœΩŸ#Ω:•Τ>1†KU›ϋ?Αzy'QΏάUnvΛΟχxΓ0λχGΌ6nuΖΧδΆ6–Šδιv",βeT²φ,«;ͺ’-Φ²φ1κVΆ–ΫM¦fώbGŒ%Γ ΪΫGEϊζ·ήΤ^Α+\JμΞΕ›xΐ-Ϋ*;΅`εΜωbtΒ* μΓ΄±Τ%°ΈŠΟνVv;²΄ŠδfΙwΟc]μΕΫ΄jŠ p V|Im©4q۟μωβωfHς₯p:c= Η4.ίaϋDχˆTe˜ά?Κ;žJs|κΜΡΗͺ3u«(΅mgJ±!~ϋK)(2(Ικ8ΛmΊ­±XiΞς|‘ΔΫ<ν\ηšΖπ₯Έ†}VVsφ’1²Λ’dϊύοΖ―ψ<ϋk{AΈ-ΕΜqχsΉϊ…ͺŒ —a9-bPΡ`”Η>‘p¬—7ί>3ΜQς?.΅±Άƒowp]—b’ͺζvθ}IΕI$Λmφ;UβOeWΒZt­§Y꺞σq†k(Ψρo;ΗχΩHη°¨ΐ9Um³:²εEkϋ-Y–³<ρΓ|³¬B!Κ[Βη2998,kv=n{VΩͺڈ6όΎrρ}sΤ~56―Ήna&εφ#ŸιH³-`“ ξ‰IΙι‘ή½΅B2ΠσgŠ”5/Ηp…VHέLgξΆr?:ζτs‰Ύ'^ΖήΨσΟπŠ[—]&α»k8ΤnΊ3υ>έj—…'ΉΉρΗ‰n/aς.₯XΙ'•Œ’μ?‘ϊtj΄ύœŽŠ5=€nŽβhΦHΩ%PΘr °Θ υΌ·Q²Έ΄Φοΰ…Ϋm»"B¬ΩځAQϊšυPs^{βεxŽWθ$΅RIυ–!ή'Vέ©s;SΤε½―ΘQšξ=θ˜r+ρ «j>Ή·L‹„_2z¬ˆC/γΖ?σΥxυ¦ΈΊXš8Ο—~yυ―@$}"ٝ‹cδΙOα\Q¨€€ŽŒFΌx9’]2ΪtΕζŸ]Η“Ÿ|ΧT§Šγόv[Νjxϋ%άπΰφΘ‘ΐp+Z:DΒ·Δζ›%hcœf΅άΔΩa‡ι\?ˆνΝΞ»„rhLΜέ‰@'σ8u—7κgς-”Ν0ΰͺœxτΝ[ζmUΉ†hΆΪ‚§!@\?XΥJΧf±Wf"0Љεͺ Šƒ’―aVmŸ{wͺreˆΞF=jΥ‘ηδm4h&±¬―DΣx7SEε’Υ€πτ­„ˆ𧬀4»•˜~ι‘toL0ΕvoŸνΦν>ΑφΜό†$”{εAi‘α-.|Ηmξsάφ¬=έτΈl.?Φις5΄ΐ±Ήϊ‚+]οb³…§šUDŒe™ \οIΤΏ<[ΒσΟ(ŽR]˜π½pώ&72xZΔMK«ybΥ-Ρψ(°J©χ([?ZθνlζΧεŠκώ6N·Ajγ 3 ώοp΅-€ΌπΎ₯cΥ71Es€ͺΣ cτΖk₯6εŒδΤ!+žOγΨmΖ―₯ι€FρΖχ2mnIwϋΖ‹½/Am+G›Γ—ΣGww‹Λ ΨΚΆΰ ;œς˜`@ηζνYώ(˜κή=Τ΅$]ΠebˆƒΤpυ AΑ«ΊuΊΪΖP Ξ{“θkLKΧ™ΛR°°n”KΪu΄ΊU²ΗmmζΔ‡εΪΓqχ υΝt>–Ϋ_ρ=Ύ>TGI$©VΞ0Ή―SXρJΞώL(^P@θŸο³αέΣXάκ$\Λ,μͺI#ΚU8 ϋΧ=zάΟecsKΦMπυΊά ^β"φ© .]Ω¨ύ§ΫX\\ή¦‘«miζΚ[ γΝƒΦΉ}8τ-Bςα·I¦ΙcŠyX±΅$…ω‰?uˆ?7nύk·VASΗaS^OcZp[“΄i,- δ£­ŸCΕrA$Ζ=:BG‘!ϋ…ϋ£ρΰΧXžύkξ¦σ/ 9ύŽΝyψͺw…Φεςέ™Ψ]BMΡγ˞q,ΐφŠ<1κp)nυ]VβW½KζŽd•Π1E γiγ‘Ϊ¦ΡΌ©υ;ΝN@Α-­Ήλ„Lς¬Λk΄ŽΖεo‘q*—ΊƒyωΣ­wΰ(ͺtΤYΝ]Ά-׊΅xΑ$σ‹ΓΗ—±WݘŽ•Ϋ΅ι_\Ίι Eό6σ]ψ[J²(&΅ΌŽ\y“±ΌŸβ'Ӟ•KS,τ‰DΆ—½‰ΑΓH•οξΏΚ·«J§Ω*Ÿ³κsSάκ—¬Άš΅ϋ™[l‰•UςϋτϊU™o5mΗ—y8Σ m€Ζάt$}ΟεWgŽ%'%vy€κ1·=E2}zΛi‰%ΟB1ž½E΄±Χμ£b+„ΏΎ•!PΊ8ί捩ξ'΅T½—^±–ο5knΣ*™|΄;xΞGδiϊ=λθΧΕg…ΣNš@±Θε‰=χ}=+°ΤWN}:UΤ6yN„?y½€λŸJΰ•LDj%ΠζtϊSήjv‘ο\“τ¦ΗqβνK/n4ϋB8–β$k‰Gϋ(εόy¬½ όY^\V ..μˆ +ε!#δ` κAδŽβΊύ?ΔmωΕ½δNΩϋΉΓ¨<Χ^¦¦žμΓ:%εˆ3¦«¬n/—y.ΰOr6γΪ’Y΅8II5ϋΥ#€›T·δšιu…·Σε—wΉ?ΕΨS­#²Ρμόω.`iˆέ$Ω KzޝmΚ¨ΤtGo5ϋvΜwϊŽάπY#λ‘Rή]κvφ/s¨λ7nΚvˆ!*79αT9&»x^οH2Ύ£iβ.IqσnϊϋΧ-}_Ε,ςBRΞΛOόR0ΰŸΐπ+IRŒ5G5Ω­₯ΫΒ9€C$ηr^κa’ΒFnKβγΪΆ<­KSFΟafΓύiΑ™ΑΒέΧ­&Žβ}*έΫ ΈωΉΰ1ΆϋτI6 Ν§ςη“nOcꞞ•ηF’rζ‘³lΛΧla•δF΄εQΕ­ ”4―$Ίή–ΦΧΧHΟσ3o$FŸβj„©=³ ’yYD€‰ξΉ4Ί±gq=Ζ§nΓΜru…ΐΖw½άqƒυt»άZškCjυ V+™•›G„‚ΉεR\cs°9ϊΨί…άr‘œΤ°Oe4&&ŽHΤyxΰ΄+Κ}b¨Ϋ΄Φ8σφv=ͺžή•ιaбββΰίΌ‰/›‰0?vχgΰΡ°5ΈΓ;}«χζΏο~„ί-]ΰ ρsm+\χ²[Όππ’&ΓΟΉŒHΓψzsŸANΆi%–XWΓ^·Έ‡ύdr–ΚƒΡΎο φ5ΪXΩ[ΩZΕ XTAί{“ξkΔΊŽ™n©'Ϋ£·Τ Ι±Ήώι^κ}+™£»Ω€Œ Z,iΣMue‘[ˆˆ;β³gΑόŒη¦:Φež‘¨ά^ΚιαΫA¨ ±ύ•b'χœΆzδtϊVΞ“ͺ§Šu]χ<+bϋ,£‘1»zŽ~ZΏβ[g†άj–RywΆί2·]ιέXw뎦!F|ŒŸbŸΌŠƒIΦυQΎ±;ΓeiΣΨΏ£k ζnΛg…ΌKΤ$G?R{ώuFΫΕŠF’^iΙ ωΆξŒ³Ζk^-WMΦ-],β‘χbΞΩgψ”ς+~T•0mίR΅Ύ£©ΗonNJδεΏαYϊ–Ή¨C1H£ΊžαpQDMČdϊU­Byγž;[h7ήLώUΌgϋΨΞγμ&ΆDš'†‘΄΅KˆξΒΘN£!ω‹ξgΔπ;K N₯KΚC­?f¬ŽOνž,ŸοΪΒ3οΎ?₯Ή―d³σ.΅F[Ž ’|ͺΩ|ΈΗZιnΣMΆ\i₯ΠΘΫ˜ ΗΦ¨κ7«mawrS>Le‚“ŸŸ#hόΘΞX€aI‹m λž$Ω6škΚΓ‡Ή+Ύαy?R+±ŒλΦ²΄M0iΊM΅»σ2¦ιœυiξbZ°##˜2ϋφϊϊΧ‰R7wGrz Γ³PΧ­€Pvί ϊ2!Z«˜e‚i Ή–ά!;d°BPyιZτFj1dͺέΨΕ.οM§kϊβ¬iΏcΥο―­lτhΞbŽI2ΰρŸφ}»Χ₯E^)Mςκr‰ί3$«:2<2Jďs“Πφ¨€’ΈΤ ·ύλ@ƒΟ’7‘™Wtr{Ÿε]7Š5_ ίήI2κ°Γvœ€Ρ{t ut¬½_:9f˜βζGΜͺJ―EL:Λϋ˜έ†«νgfC7‡>_>Νό‰‡ΧaeΖyτ«:j[έ)‰­’ Θ„ŽAυχΦ¦»ρ ŽœώDlο7x’Bμ>΅ΟjΊΜΫEδ0]Η¨)ςν°YEaά{TQ›κwΙ+]’Z[]ͺi`G™Δ“‘Βϋ…©¦YZ‹MB['BŠL[‡έ§σ❠jΆv–ΡιWαΎ\™ι‚ξNYο’xτιTόI5£MGo΅+Œ$[·•<5£“lΖ.ΗNΆ1eW>ύE2{ΥC—ŒœtO„Ž 4*ήFr‰¨8'QΟηZ2ψœιρgWΣ&…*™ba*"?*vΉNH†εⴊYXmŒ1ΖΡΛΚ=I’Αڌψ†ϊŠѐZΨΆL1Pz°ΞO§J]>βX'ίφEΤ±©-e²(©θΗύ’;φ©{γΝjβ5³—G·ά~ν6ά“ά‘·ΊiSJ>ωΙZwiιφ€;±τLυ§˜ΎΫ©ΫZςνσεΟχ@~§•M¨ΆΚЬ…]9τόhΠq-ώ£qƒ ·Sθͺ£ΜΧ-U­ΞΉ%ʍ­Ό“Θη‘νO^ZviΑβ‘hEΙAοοXϊ•ΝΏiϊ½œfG]ΠΙκρž=Α¨€š†IJxFT8;&#ώω֏Ϊ!6š³8kύi΅/j€LXB#P§‚Έ#·Zۜ©‘A  #ιžΩ¬ίE%nj―€2§Ώ0#?8ξ)’μOnΘΚcΉ‹‰!br=ώ‡±―JŒ•_yœ3^Ηcu€”H7u. ?Α¦+νOMΆεt;]@+F%ΈœaG=ߝs·WNΖVg 'ήRy :Η₯t #^ψ΄ΰ*¬Πy` Ψsύ(ΗIr+ήη©O‡%{VHϊΛ¬tζnG_ ŸζΏΚ·_,᎜U7;|½άo$ηŸα¬oξ•ο Ξ²…tpS‚§ΤϊΧ/αέΆz—‰"vؐή‚Oπ‡E?Ά[Mkb~Α#"υ1ωώ•ΟYΫMuγJ9€OoΣ¦ΰΑˆαG§ωVΡ₯85#£³¦e»ν mΗ–Ός}Ν_ Χ¦žωΘ5WPΤ­τΛFΊΉ”$h0N2Iμ w'΅&Ν™_]‘WK˜’FΝίΧ,nnΆ>Ω Ώπ¨(¬Γ±8ηπ«ZΥ΅εφ6‘©#Co€±Ψθ‘ΊΚGSƒœvͺivNˆMŽNο/$gρ¦έ#—ΒPy^ˆ*”M7βXη>υ¬6„ςΙοŽqXl%Ρχ΅¬d¬²)’Μ{g°ϊ^›·ζΣ­°;ω]?q9€΅%’ρ΄mPδ20Θ#Έ"Ή½^έiΦ:”σ6›q#[Ωά)ΦΛΑXζΙΙ^»OP:ΦΕθφ+Ήξ~ΘGO.fΨζ²ΰ‹Δ6Φvo<&γϚ{»#S‘·=Iΰg΅k [cͺ\•Σ ΐ}EIςƒΐΐΖ3ΠvSH£¨e Ιπ;Υ Uέλsƒ‰Ό°NvD™ΐόO5[Tg‹IΉ€‹$˜z`9όλR{0ΊGΨνP±ˆΤΐ σg΅ŽˆŽΆ»ΆΡν-ξP’Θ6Nζη&§†]*υσjΆr6€Γ>΄Ν!£M*ήiv‘1Δ―9χ4ΩβΡ΅-«*Eζ bE;]~„sZς+˜›ΓϋώΑ"γUΤΘ έΧ¬Ÿν°Τ4½`I΅’Qk(+Ώz7APG³aΌΈπ³¨X ΉξŒ“„ϋΚ§η$Š·{£JΦK½Rαoq˜J01ΐs‘΄ ~tγΉ…FΉŠQθ±ήά½εε΄ΠM#Ρ­ΫFqžε“ΠϋU₯΄ψζ"Κήκΰ}ωe pTηϋdf­ΪMφΛkYLŒΕ8 ε ŒTΧέ=πtΰ°Λ 4€emΤτΘξΖ’pRwe]­Š7¦kϋΛK₯faΔf0\“ΞBγ΅[’Ϊďt—Ά±ΘΔ€— „Α=Ο5ZφΛM±ŸΙϋ9ΥuSΤά0©υ'’Š’m€ŽώήΑ’Ά–kώœ,+Π’»λϊT«-Τœ‹ϋk‰&SΣνη7)Ο8Ϊκ„Žω+;SΥνυ6œΐχr‹iwδ4)€ξ?»£ΟͺΔ’ΨΔl§†Φα­Ydn€ΰdΙνψUk2οϋrλ_‚{S©€­  oέω`m`28c½V•ή₯ί‘Έu™6ω:N—4‘―ʍ ς£P8'š₯qˆnom‘i` K  ν΄ν=ϋΥν?W·½o!I·ΈEΑ·›‡_ΓΏ5bζγkB¨Ϋ[ΠΰζΆ”SCI½s}ύžρ^XΌPΙ4qK<.$EBΓ τ#?Jο!ex"’6…OvΙkR‡Τ4«%“οΟDA»'ρΕt6φac[“ σ}ΦΟ<ކ–(­ jΒεΥMσ#ƒΑ¬ψ•­ x™±φRΚΜέG ŸΒ΄‘rνσ’Ή==N}+–‚κΓΕΣΙuiv—:RIδ\Cψ{‚>㲏ωgž­vΒ}Ž ”τΤ}…Ώφνό…ΐ#LΏΠ’~³?όυaάt~4λu1|RΉΖ{£.ΰ}VQƒϊšήŽNμAμ=«Ηό,ω>n?±O?Iˆι¨a¬ž‡hG₯yηŽ^Huk$βY hσύΡԚτ"Γ#žkΞ|O'›βΆ'ξΑhͺ=‹Ÿε^~)ςΑž–^‘m Ηo €UQp=«­24+BN7ξ $‘\ŒŒb·“Tν]•ͺ8Ρ¬Β‚‰•yXkς͝uΡ_ΓgΘρ«A2Εt£ίξ7ςΩΧ ₯»/‰μίψZ9-XϋγpύEvήfΤΎ:΅ίAϋ‡5ed†#+°UXτͺ/έξwoΆΆ<IτlCΊa,ΰ;©ωψcSƒΧ―s]P]Ξi>ΕH­cH£EK όΞ}k”2nυ}ίτ˜~Xš7ϋF£pOϊΈ‰sύβ9cGΚ_κΡχΞp{n Yb6Πθ₯΅ΛΧR₯½Άηmͺƒ“ό€ϊΡnnΥ<Ζ³Ό_›€¬ξ:Τv£νχίj#u΅³lˆ’IΘ-τ+pJDΏ#3άΦT•–₯ΉY\Cv€«°eκ―Γ/±ͺž)t‡ΓΧrΪ?6ϊΥ›»Έ΄C1·»\•—Ω‡ρ η5=i.n­t}]£}­<ι[˜X)έ·wbp85ΧŽi7k£cWa‘ψο_ΘΤOΚƒŸ=@)ψ°U½7K’ζtΎΤπΕ~hmΊ€^νύζζ£ρ^o<'}uί%Ά/"eδnŒ†#ΨψΦ’κVπZ₯Δ’,q2†Wn˜##λYԏ½sJ2ΌMd ddΰfΉˆ;―ό9u€ΕΈΛ{$α:¬FdΙ?]€ZΥ:­υΔ,4ϋΫqsςF=ρχTΦ"‹GΡZςw% Έ³Ή»™Žζ}³.ζ>Γ'ŽΐVΤΧ½r*ό±ζή(Τν.αΠ ±fdΘg€}3TDy‘Abœΰΰγeq «WΙ%ΕΝη>²7ήό6γπ¬ΘΛXΛεLXΫnΔs7πt7ψΦ•b½’fΤy–V–ˆŒ"6.CΟσ=κΧƒ~H $bHnζB¦μσωΥ})qjd'ο°ΪOe*Ο†°‹ιNs₯ΛNdξox»Γ+’Αe«.›nιf؝aƒBΔnγΤ˜~5Zm'IΎ|ΛXH8!Β€@<η"iΎ+Έ±Άm3ΔΟζ[·ξΕπΤρ‰;©Αλ¨i mαŽ"ΰω<*ΔπUOΚ}ˊ$τΌMθEέͺ…e΅_λ–χ7†K­\ΗΓϋ3œ*³gͺuΑώkWΔ:-‹κbcΨ7 ƒ»γ©5fe²Ά 6ASΘΑκ΅s‚Σώ«ψ$ήm>drE£œOͺzw>•ΌoΙ!biJ1r‰―αΟΓΪκΦθ’υPc"!Ψ·«€Ά*|A­Ι°)― cAŠΣYxpΪF~•„ύŸ_Ίαnαά?ήQε^Ž&ŠPΌO‰n§,Ν'o ιFϋdς·ŒŽ9$œΦ΅₯Κ\«Δλ²DβHί’>ΎΗ΅SΠ‹ΓΪrτ"έzΣξ­–Vσ’.αΘύqμGq^c]f%OΨ“α»«Xrc`₯σ±ƒΗ·'…ξ>Ω XΜDΆΡ’=πAόx§I¨;yΠΗp2‡ΈυΈ¬ί³Ε‘΅€y_&κβuœ~<ΥCFaY6΄3―Ό;¦Ωψ―δ·‡ϋ6fΪr>Xευ?μžή†£ρΎ‡¦ŽKSpΫU$Ž0 䁜ŠΩρ5αƒKu²>ΰω1!δ ςXŽψΧ!y‘ΨZΕoe (–k…'rΜΔώU5d’^‘Tθz]˜μκΚ0<ΙIbŸ\ΥΔ·WΉ‚ΟOΆFΈo™|ͺ£yaοωVλ} `ʁα²8Η½biWγKΈ½±±*fHΓ€D|Ή=πx―:”}ξfΞΜE.Tt­α? iώBλϊ ½Ήf,ΞaΆRO8N8χbk^ΧHπ³91i—+ΐ5ΔΜ ²,HΝpαKΈά}I$φΖjΨΠmc>u‹Mc2ž݊ρξ½ε]++8˜B:hIβE§€­‘ BBJΌdΰώ]j;aΘ@£bα±Χ$χ£PΦξltωm΅΄[6ν±/ɌΎ½TϋŽ)štμp«ΘUv2;dχγ͍\Φ”M‘Ψ~‰l–ZΞͺΡF±Ήu*ΰ„Ϊ?™Ν;WΣbΤu+uΛΏεlgo9€ΉΡtΛΜ5ΕΊ–ώρ'?ŸZ₯Ÿi‘jΆWΦθR/?Ι“.HΪγλλŠξΓW‹΄YΛUZμθ¬νΰ—O—ρΆΞ7Pp}ϊυΝί[%΄w†M΄:‘dsΈ :η―nGΧ<{^&Ω2πמ„wΚ\H_BΤ’A‰>ή‘‡ΏšΈ―F¬,‘ΙJ­ΣG[{αν>ςBΛΆΉC‘,#/εΦ³Ϊ[ν$4zϋU™8iφrΏυΡG_¨­Ϋ“Ή·ΪΰεOψϊΦeΞ’ς;[Δ»¦‡V?©ονZ³W9λM©XͺΡFš–δ>λcxZ>rςیώ5ΠM€½k–ΘYkš\°»GΞΐ¨”9ONœΦΫ.'ωSψ]ΊgКρs4έSθ²ge+’ ˆΐŒ³ sFγJ΅ΗξœσΣ#ΊE|0xΟε\žŸv–šx266M,j:“†=~œΖyΔ\£ PΚφ«΄eνΖ>\όш€Π$-w―K€œΗΛ"/?˜5A-ξnφ΅ΜΎD=‘ 7ώΡώ•κΪ/ˆτϋΘΚ¬Kφ)Βτε χΞEwσYάΰP|§I«Κ&ΠξTpK υ_˜g5Νhπ[jλWΧ1G,7W  aόΑΗα¦’4«{2ΫMΦW2«"ρ–91Θ:0ΖΆ)Ί6‰ͺxŠΫ7Zΐ·’61ΙlnFιΙΗ~ήΥCΔ(ΥόU;@5Ž˜pv1Δ’―Ύ:ιYz]€…šϋJΉ»Σξβb‘2)Αϋ²)'rώ΅ΛRte+u&„jτ-ήxWϋ[]2ϊkιt댽Ί΄μ8Ζδ8όΕiΟα­κ(βšΖœπ>S†ώ΅5ηŠ>ίmβ;°ά £0]€Z Žw φ5££©sφω ŒEž6§ ©λ[ΑΩ=wG#₯hπXkΪ•₯ΠΈQcΙσnˆ·`1ƒŸ\‚iΊ–‹fΕkiiΈΆ§twf=Εuž ΡWέΪ]oνξ% ΟUqέN:V?…Λ©]I|Ο­M „-qΙ^1΅‰Θ5¬$»žuzrRζ6tέΣO΄Ž!om,TMekqΖ Ϋ’β9u xʞΓrœ}8₯TΗLcJδuywκΨZω>Ι΅7sΆί†;ΙΙ=ϋTfψ«yp―™'±ΐ_©¨ξΈΪ™štUB…ΫŽΥΚ’t―,’ΒφιŒλ ΒΕ*ηωrpAΖqT¦πΖ›u)kkθxo(mάw΅γ&πκ)ά• =χ.*8βŠG "oOξžƒλλNJΟA5trΆZ₯½ΩΆλ271dd{ϋη΅\ρΊ|LbUΊip”NIη§ldΤώ"ΣτϋΝJΗOϋ4³$%Κ€r?Š―¦ψzΜ^Mym$φΠ‘ΩΩ /L3mlaPτz°§Jμ³i§[ΨCε@Ώ8κGRI䚡αk³jSL-΄Λ<ΑnGRέΗΏ`~΅Ÿy<ΊLo%Μ¨πci˜ lιΛO₯O₯x’πxr#ΓχM rjEε„κHEa–nzœc4ι-\™Ύ'T£HθΌAwΰΝ6ήMNΡ"Υ΅ 8"άΡ·f‘Οάυδζ«ψNχΓ·+ύ—%Σ΅=ΈΈŽTc·vVηrη¦ dZ[[Ω@#·]Šη$们ǩ$χ5 ՝Ύ’6\D&ΓeXœ#Έlδ₯ΔE;Š9AyžΗ4VKHzΟαT4Ϋ!©ΞΪ΅άd‡ΒΪΐγύT\€Hώσsι\έύύέ΅δ:]μσέYH<ωeΐ3€#+γο@λ]m†³i{9β” qΙ_b;Uσ]](ΩκrΆZ™Πβ[wΛiΎc"Ή—›?ϋ>‡΅kθΆ¦ςgΥ€θωŽάΰŒΏ_¦*%Β\ήZ8VO;pSΠ«sώ5_NΏ½–Υ²tq.Θδ'?f'+±ΙΑντ­!Wš<¦2€ΉΉ‘ΥΛ fܫǐΐΞόkB™μ ₯%­Ϊκ_ί¨wcηίr¦ΚARΚF; ΟΠUM₯άN_΅Μ<ŒDΦ…σt5ƒŠ Vl;¬g6ΜO“Φ2έW؟εW g5’Iζ`υͺ _h\πΠΟ‰U?Λ4₯πό«2Ϋκzιt]—ΉΒŒΖy>ΥN<π’DB^ϋ1όa$qψκHΪTMφ >cOOΣP\Ϋ₯ά"T!fNcvφ> ΦοτΈtθ4I|«™$ΉI€–`8|#dφ0γ΅aλz3ιοk-œϊ{ εΘY1λΗ¬6ε"r\Χ1.LΊYJ<`#ΞάuίαΔ>*/χΦμΆ3ž ΏΘΧmθώΔ–žFe'ΣςήΪΞ(§΅%γΘΚ¦ξύi—:,SK $@ ΄ŒgΦ²νD’VLv=ELΡωJgx₯Nwu­£U\XψŠΩ%Ζ©~ΰΟ+eΫ φUΈβ™>œΧq4ΊͺΗgdΌ΅Ί9VΗϋd*ŠΒFΏΥ\N―Ϋ"x€ ·ΝΜ}π8§LλFš•<ω’d ‘ψ‡ρsͺu\•“9έ;;³μp]Ι%Ξ‚‹§¬ }­ζuG#”?|qΦ΅΄[αΆš„΄P;d›vζΩ›“Χs7Rξa¬ƒίi‘@gpPK‹žƒίΏAJ‘ΫIΩ¬―ΖYχΫ[€ͺŒˆT ΗpけŽ™¬œΉw6ŒnˆχX[­Ό62LΗ cB§ΤΆ?<Υ'{:κK[sώ"Όe3H£)f€χξνκyͺ‘ις—π©\ŸQrqτL u¬‘[ΨΔΊm¬i*H”±<w?1ηœQν"ώ£·:t‚=/K wŽ8fκ͞Xϋ’I£Kώ%–Θ2O—ΉΎ§$:₯ζ_#sc628?@Iώ”ΛIβUKI·C*ρ‰ύ=kKŒΡΤ!·ξ’FΨΏΖ2GγY2Ψ΄‹›9#‹χŒ&ό£Ύ·΅‘:J–lDGŽ+2φWΥ΅9cfo±ΔψaΪG§ΈΝSŸ*›ΠM ΅Μ²λ$ΖI€hμ3]‡N§­kθ7θš½Ϋˆ‰‡wΞš ·"έ\HΆμ£,_τ§hπͺΪΑ,Π‡BΖH‘ΞD`’rGByβ’•W­ΗV”hΥc*]ν¬›ε*ίλ%^ωΗέSιΧ™α›84ϋ'Ρ‘!ΆΤ,Aeαβ'δaŽ η…l₯Τ qη€sόg©κΪwΪ•.`—Κ»€ζOAžͺΓΊœt­)Φ’‘Ξ⚱€v ny*A¬+bς|MšF]»4ŒsŒΈ«ϊ>¨—ͺb™L°ρ4/χ”ϊϋƒΨΥM<ηΗϊšžtϋfξ’Ωώ•Υ*­ςάΕRKcͺv O;qϊWžψŠMΎ'»GΞZή6γ―₯tzΆ°ν;YX2ωΐβIHΚΔ==ΝqΝ³Ύ‘YeΙ"Y\³sκG†:P”-ΤΧ Ζ₯ΩQΩ―u±ςΑ !τ•Χ¦ΔΣ#b!pΌγΝZ[$ ΅ ³Ογ] Γώ%Π€ά ΥδΑ₯4z5nυΞUŽώΑ;$Ωπ?γ]²8ΐ"Έ‹B˟β'τ5Χ+aAΝuaώ ˜We­ή)’Ξ–ρ<Ξp±©sψSDƒ&²υ9ŒσGb§‚CΜqΡz…?ZλR±ΛΛrƚŸ“‰$̍ώσk”ΊσmunάΌb2?‡rŒ·ι],“>θτΟJ秎υ˞;δσŽ΅•Y«1] X£[xaŠ$dŽ0}‡ψΥΈΨqϋΕόy¬•‘uŽΩιPύΆβοuΎ™&HωZb0‘ώc“τ¬c+ΔΤΉ»šiM“ν—ša,Tη5BώΞήΦm&8!Έ.α€mί)Ιlυ<Φ•ŒΪΔ3’K;·%‰κMTΏ9ΦτΰOdηΠβΊ’τΠQ؊} “=ƒ‹ted˜FΩ ·š±α+[dΡμ€’"Χ)Fi˜ΘTŽ8Ν\c΅BzUMΆΨΔΉΑI$\χ''ΜC‰ΣΛ*–Θ<šηί,?ΪCΚ}}G ·ΦκςEη2 γžΥue9ηόχ€š΅ŠεΦγRueŒdja’2ψΑͺP)ε·έώ¨εsύΣ•dœ υ¬oc*θƒΔ‘’θW[C u vœg‘ΤU飴΅Άœ«A'Ӂš«βI³€ΊΑ‘?˜§Ϋά-”m,„*ΔΈmέ·Φ΅§.VcVšcΌQv[ΚΡ┬·m΅ΨpV,e³υιψΤΣΌvθαφUsa¬Λ¨>¬tΝDYνΫyΙΊ$ϊœΈνS₯‘ΏIδxG"ά?ύς4N’—SJΩ«ΨΉνφ°ςΩh:{_`•2»…>~χαTυx†ΓΓν.₯9šΚζ;WΔJ3ΞxΛqο[²j2‹Xν4Τ6,ƒεa…Uφΐ§ΨλΪμQΝί‹€U+5ž £rη°aΨφ<Π₯hsΦ•i;œμAcΫJͺŠΠ£ΥlΖ2NsλPΐŸΉ\¦ΝΏ)†¬*uλώηΙnw'‘SUa•1ΙϋΈδ矧z·kΰ}Uΰ]KOK]:irοhK_=/πŸq¬B+¨§ΐbΈσpyΗLOͺΌ­#λW±Ίς­…eQξ1Νm‡qг9kϋI §%Υޏ:ΫλvRΨd€³ζΐIγθqOΥ€GπύξΦY‘Έ :ΥƒΕ— o%¦»l“ΔΨ_:%έgϋΚzV©£Ce‘Ω·“ζ8Β)ω$`c§zΦTc~h²£9ZΥJ:-σXΔΆO!kPvΓ+ςSύ–φτ©υ2X,©ώ²―¨μGβ*Τ~Τ‘rnl’άΏ½Ξ~’³‘J^2η1BδτλW‘GΉΚΟ. {_iΆΣfVΡm }ί%1ωRω˜|ƒΝfψrMΪ-’–D(WΣŠΊΔ >bδ}«‹›SQΠMAγ™".Έ)"•=ך§α9ψxJΗ™'™Ϋκd4ΝNΰypαΗ2(ύk?D±{­9m’I¬² «Wη5\Δ8έ Ηφ¦»yzI1[ƒo =€ϋΗρ<~₯Ž‘―x‰γDθ«΅ξ$]ΡΕ•ηβooΞ‰΄‹ύβ+mFS%“·“Ρ±λλV4Ν{OΣ.υΙ1 :²$JAε9*R»4u9hZ‘ Ύπό6ζm{XΤ/Q?Φy―±ϋ’υΝfλžΣ­ wΒWKr± ­0t• εI¦k>t›TΌš . f8K–TxϊΣΖ—dIo³*ΤΔJgλ·­D±4V‡'°­'w1Ϊd‰q1ΈPWhς•[ο!ώ,ϋηŠΫBqό«%μ`UlήLΙΠη#θΓΈ«j£s*˜ή!™σΣΏΠן4܏B0εD‹bϊξ½e¦0-nƒν ς6Ί§κ•ij_ᢝηπώ Φ{Žζ·ynχ\ε Μ²;W2ζ\7™!V ―χW=xn+RΩOΩ59Y?Ή*‚ΐ½]ψj”Ty*WVοLΚ»›P•¬Ψ΄+Έ(Ή‰ΌΘN}Η+ψΤz„°j:<ρΫLα O ŽGZι ΥRΰ MNI…£pήb‚}qΦ° ώΩ4–-3ΒΕD˜•{Žy.”T”’)SrάΨ°ΊϋfŸΐςκ­ΟPqήΉέHνΉΏR0­wm!™aŸεZ §Ο‘ΊΓk¬Ϋ< ε`»9#Ψ8ζ±ξ Λjlf)[a!†F1Θ―_ΫΖtν}O9a₯ —θu:₯άΠΎέε- ΓΚ̟_oz„*Δͺ^‘Ίηλλš$Ώ2υFqšΛMRΫOvUmφdς­Φ#ονόͺ(by]™½l3’Ί.j'/d@Γ-δD{Vϊ h„n^˜<Œ{ΧΡyxΫ`Vώιΐω°ιάΦLRάι:«Ϋ\³Ι˜/ œ‚ΉΐΞ{“‘ŽΥλΕSΏ#a‚ΰ‘ώ5>₯tgŠ(†π@\žAȌ?Ήœ“Z2E’Ξ Σ4+6²™ΣΝ»Dά’1TΞ2X}+OΔή%$°IΚΊ\\ΫAfU”‚²–%‘¬?B‘xΣTηŠτψ$mΪΈ ¬mζ¬μyΓmΉου5¬gȜβG³ζ\…»›lΪ"B6΄d4cΣ«ͺψss §€5}CοK=ΜςHΓd*‘χrΟ N@Ζ;ŠΩπΕ2|¨Ν«”ΟBIb ΅…uzq.”=7H°kNϋξ€>mΔ‡«Hά‘τE1ΘέIΗ–ΛW^UCΉδΫυͺŠQξhδ# η΅;θ6‹³F>‚ΈϋX£ΥόI¨^Ξ #CY•p\ϊœ άΥg–Sφ+v+#$qε)λψžΥŸ¦,Vχ—Ά°Θ’e*Ύ€―ZYhiIkvižόœη’iθόTxλHƒΦ²‹±rE£*’–'y$τήΌϋE·YeΈΤδSΆRbOό²€1ΐοk©ΧfuΡcˆ‘$Ε`B; Σ5—C; ,`*‚>θ₯.€‘₯α°Ν>’ΰ―*²γΦΆ§Ά‚xŒRΫFΚz†ˆψΦ…ηQ€ΟζK&βByθ3Ζ —RžK·M2Ψς²η1Εθ}Ϊ…+ϋ³>Ζyη›N΅Ž+E“b>ζ±Γ χ5¨Ά¨€bήΨ~#ρ§GεAΔ‘”TUq’—Μ$ΰ)­γPέEXqVDΐ<E€ΫΝ’˜Y‰IR ψ¦άͺ΅¬ρɍ…H9λžΤQ^3–₯E{ε i^+ Ξs°IΗγκh€’‰YwRΓ8χ’ŠΣ™šrθ:i%7v·vξMάhΖNυ#OΤT70‹Ι$oμme€“‰άEmο`η#ΧΈ’Šv΅Bφz\€Ϋ;άΔ·pΒ/υ6Ρ–1ΖzεF8φ«κ[Ξ•ƒ1;²ΟΟ\*(j’»m”γ‘JχZxΡ,γ+φη;Þζ·-mΰŽ%μ3œuχόθ’ΡVD₯©.χI˜ξlƒΣ=(Ές₯‡)γηρ’ŠΈΙ”–†V―QιΞΦσHΈ*ͺΚέOγV’Ž8mβŠ2@U‘&Š+IΛDDΕZ# !2°ΰ'π|Φν–~ΛnΈΒƒΤqEAθ:‹RΫδ6ρθFi²cjJ9Ζx’ŠΦμΖΔW)zTΚ%IΠζ9Tα”ύ{Šζδ[Ή|}<+y$lΪJ€/W]ΨΨΡE[“kύ™--„)U^Ÿβ}y¬}QφΝlA<‚€žηQ\˜‡sZ\Ζz 9­’Ε`N{QEa…šTZ2[O—S° ˆΊ­Ψ^ WU=Œͺ­H$œ©α‰~Š­VŠ/&k/ζ΄Q]Pz΄iŒ“lΥ[D—QpΞέΊdEΉŠΆ¦›·ΘJδΒΥτxυο Ok,’€{˜©Œπ9ω‡ρsEQf/cΕτψη ‘†γ …N=GΐΟΈ­Σ#š(§ˆ›ζDΣ‚qΉΉl]£ϋ§Œv©ty‹€ΑωfΟζ(’“—ΊiκY…ώ{“†½>Ύ•`ΞR=ΔγΡEO3)DʚΪώρξ(>SΈ}ΪKyο†!™>^œ γλEωέʌDΧά[θ2»•N[―QU-¦–φCw(slΕ9ΑΔ}ωό(’’Sj)ΗSV¦‹²Κ[±,iZ_œΰ9η&Š+{CB@η׏­$ΐΚσ½9GΘϊϊŠ(«„Ψ₯䐫1RHΐΤ©Έ ΰϊŠ(©”™VΉ³œ­8‡α±υιEBε q€ALŽωb²!Ή”ιμŒΜΘ²'%Fh’ΊiIς…X–’I$Α-'¬jŒŒΒyF ΊϋΡEi 3 ‘χKp΄ Y²δ€Jίl’Α#ϋ‡σQR¦Σ-CBΕΛΞΦ¨%Ά;w  Q±|DWiβgυυ’ŠNm‘rši; `‰‹:9ΐF%‡δkM…cΈΤ#eΞΫ–ΫΈg°’ŠR“εhγΑs’=8©72Ž˜’Šσnh£―όΛc'€z«rβζx!Ϋ½Όΐ œHΟ½UΕ›5‘} 磂}sVPΆnβŠ(R%Δ§}3ŽωUΎŽC²r¬~_ͺϊ(ΊnθΞ€H’˜0ΨυQΙ+yΜΌϋρEΣEθD’k<-p‘NU” OρͺK§Ν{tm=· œ³”λERzΆ9Ηέ"Ρ¬€ΣΌSoe£*αFs°‘Ξ?ΟΩ:œHΑοڊ+‹+Τ;rΥj%KΈΌέ6ιeΑRΑί|MίΚ‘Š(Ό²Ms[ΉΕ›}“Χό ͺZhή ΄·Ω+7›<’b-Ι‘$~Uηδ…όaΓ #I¨5’F;£4j}(ΪRnrg…ΤnQά"΅ ±²*Τx 8ΕEjΕς>ήͺ§‘θGz(―63՝:ΐ7_ad,$΄ (αGςgΧ5 θ4¨X―ݝ«τQNsj"P·ό1i7γŒώ&œϋ•y֊+šΫ0‰RgR₯\pzδ*œ ζ]"|Ο J ΖXγv?•UJZ\‰DΦ²€NxδU΄Έ>^NGτ’ŠΪ2%ΖΓD¬Μ@9Η_j<ηBT3s’y’Š₯ ε"œ+.–¨99¬#•»Ž#–Ap dtφ4QZBnΖ5#©₯{Γ²"«Θێ)­e¨YΛo%ΪΌ£ΐŒξ+υϊΡEζΤM'ή€ίu"‚HάΉ9όjΤ,IτQJrcQ&[“o8ŒHϋΰn'«₯Γ₯•«œ‘ΠzQEe)΅8σ P’>ΉͺςI΄ςHΏ4Q\κLή1"K™%CnΞdfΖyΒυλZή&5Tΐ;ρdςMVmXΞJδλΌpƒ€FhΐΞv“άτ’ŠΣΨ9L=VuΎΤνlA·; αόjβep#]˜τγQNswHˆΖβJdT8γΤU+vuvΐ#Fh’₯ΏtΈΗRԘ‘@cŒ+m4έψzcs<[φ’KŽIΗj(­p»˜b΄hΰ…Β¬‹ε7N*ν³—Τ­CA'†yΕU©jΑΑ8•ο›RΈœ°9<“Ÿ­YU*‘φ‘ό¨’Ÿ3h˜Α]‰1Ο–NA`ΧOπηαŸΚΗοήJŸEP?!Eκ|JΛ}yΨ9ό+,I³8ΈΑSŒ}}h’ˆ½χ%*0λ–cΙ'ή¨Y/όM―?ΐ?J(§'‘pE8?ZQRhΚZŒk.Ÿp­ΐQΈB+·&kHZE*2₯Iˆ’ŠΝŠΖ›©Ηec=¬ω“¬₯c‰<σνW­-w™χK4­ΎY0G?έŠ(œšBεΤΡ\€1FN~Rh’›Π,9κh’ŠΡ2Ωignite-0.5.1/examples/fast_neural_style/images/style_images/000077500000000000000000000000001465426447700243125ustar00rootroot00000000000000ignite-0.5.1/examples/fast_neural_style/images/style_images/mosaic.jpg000066400000000000000000002271021465426447700262730ustar00rootroot00000000000000ΨΰJFIFddα"fExifII*2&i‡:@2014:07:30 16:19:58jτ!ΨΰJFIFΫC   %# , #&')*)-0-(0%()(ΫC   (((((((((((((((((((((((((((((((((((((((((((((((((((ΐx"Δ Δ΅}!1AQa"q2‘‘#B±ΑRΡπ$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š’£€₯¦§¨©ͺ²³΄΅Ά·ΈΉΊΒΓΔΕΖΗΘΙΚΣΤΥΦΧΨΩΪαβγδεζηθικρςστυφχψωϊΔ Δ΅w!1AQaq"2B‘‘±Α #3RπbrΡ $4α%ρ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š’£€₯¦§¨©ͺ²³΄΅Ά·ΈΉΊΒΓΔΕΖΗΘΙΚΣΤΥΦΧΨΩΪβγδεζηθικςστυφχψωϊΪ ?υ{54ψ”ZFΨύθG;}Σό?,w†ΚζuHδR?»ιόZ΄Hž%8ηRφυWLqԟ#rlθYΗςΖxιšβmνΠθV)έ­ͺˆ–šζ_–+’O©τ©>Υ[Lπν€ϊΔbxc”Γ‰εfQ–|όΏ¨'Ϋh+^+hVϊ@€·‘ZF9fr2sψmΗ¦MK£FΡωΧ8,g™›ϋ£ε\~ βkjΆβ›ΎΔΪΝ’AdV£Ύ#‹*ΜxΞ;ΤϋY αν*Βά’ΎDH7<†fO©c‘W΅έnήξΩn<‘ΔςEFwαGΰlŸ\ σλΫϋ­wSΆ‹Rqkpf I&Λu9η‘ωsΙη=ιZςΖ΅_fζ£ΧώΉ.3§OΪ(ΆvΤ"šμΎιΌΡ}©1γ'‰ –ΙΘΐλYz½ςΛβτS2ΪήFTΛϋ΄HB2¨†9Η͎ΌŽ+Ε:…φ‰u ΦΫΫΕpΚ³A&πΰQ‚ΛΖ@$ΰΦ¬1=Ž‹4ڜ‘ΪxŽΤ$ΞAωΊe˜uŽ•ΕJs«^₯8»Αmχχω^ΙθWυcεΣε›Pk9ΪLFϋL–χ3n<νPητ8ΥM5$°ΣΰŠεg(cC·Θ…2δbG·\Vη€/!ƒΙ7-ΥΜκ~Λ 2gζ`G9Α$Ÿ~œζ_ΙnΪ d–³ ³$¬Š ˆΑ-Œ†θpΞsΠg$eB0φœΦλgύ\ΩΞΒΆϊίόŒX‘υΆΆ·‰αe)K1ΐMΟ„Α=1ŸOJιfΤ Ύ‘5ΎΏ Vq B²YΒ%7’Γ8έ‘€Όc­s>šΠψylτΫΑ{3Ηq€.3ž]HΖA‘‘žΌVŸ­κsj7Q\\Ύ m“q‚9Wƒ…'9μjρ5eBTε΄ϊmΧς9γΙΞβο­νλmd‡ΓΪυͺΛq]Bγ‰₯•Ώ\U]>ΖΘKdΡGώŽϋ#G1žWπνΟϋ&ΈK]a¬oξ¦ΡηŽβιΆ8ϋ+ζMΌ' Χp9ΓqΗ­ušgˆνυ^bŽϊ[R²Δ²RQ[ΈωίΠρΣ₯zδ§QF3NyΝRpη”Z·άWρ‘bχ±LmαςηύΔ€ΧSνά~+PiΆΆ?ςš(Εκr¬T5yΓŒΑΘφ=±]₯nχ6,jFBΙμγ•ύ@¬;”†ξ++–\Ε.Υ'Έ §ΨξΫΟjΞΌSWfv-OgcjΪb†"£%Ω@χ5š,Z‹«άΫ¬j>α\4Ώ^κ=ΊŸn†X­ϊΗ©ΏœΙσZ³Œ)Η―«εΘkY$i2Xn˜EˆP|«SGO™\Ν·“Q·Ά.f•K3hΘΫ­iW©m6©Ά·3Ξς€SΩC‚TΠFO8Ι«w*…­mQxwάίξ―9όφΖ™wq-Ρ{]<ͺΖ2²ά=UAΰŸRxόœ ΣΤ%+θˆνξΰg.ωšY€Β(,ν΅ŠŒ(δΰ(ͺI½–•cώˆ#D3,{Ψ―^7qԜRθ3ι>ΡZέBG ’Qε έ#aΫϋcž­yθK^X XΫB# o–;Ζ0€@9η<ρΐ>ϊΞ¬©ΩCSJt}₯ξuςκ7q^Ο+XZH·‘If™ŽυΎb6d/# ιξMpΊn«·υ€.Ο&ιe΄’ΨymͺΐΣ’ŒρΗJοu{ϋxμZγ-mRD.ΠωθΧΉϊcŸΠ5›©Ϊi/l‘‘_ΚgΙ3Π’‘άσάδGͺ₯=IσΟβVκΘ•7osπe;¨oυXΓkš ω‘@ ±ΫŠΈ<¦p['3]ΝƒίΙeci3ήJμΣ]=’€Ÿ*νǘάΖΑηžjKι΄mGN³i‚ΪδF‚ΙΘRΈΛ7ό΄b$dcŒΥύϊζKΠc™"Τά(d_»λΡxΟW»NŸ"Ρ-Ύϋ˜ΖœœέD―Ώwc—Χ|1‡§7ϊ2F₯ϐ Μ’bw q€K=2kΧQ†χPŸFΤτψEΦΡηH/$ŒJ[ƒ€ΟJκυMRΣZ*$ΥεdŒγdΕmŽC1²G|†Εr:ύ‰όWςήκ&Xΐ·yχBΛpΑH χŽO#’‡I–ξΡΩνm―ΝF›χΙ‰όJΐξC†ϋΝΖ τ+ΗrjϊOŠΨ[ι?lRE·V΄o27r±“Œs‚u©ϊΧXι Ρ~C’:ϋtΰ›ΛqmͺΞ²Ηu=ΕΑ _0\ŠI`3΄dŸ›υΖ+ъ§RŸ³Oš/ΏoSΛ«NWφ’V³ένm3—Bρ6ΆκV―DΒHΜn ˆ‚Β.pAΟ^™5Ψkž;Υ~Ο`/£Σεjάşή/–PεlƒΖzCOρf½.™a3ι2F‘ΈήOήB»"¨Γ©μI'ž½Ζ;ψs_ρ-ΙvŽΥΑηM π²?°Ο‚pŸn•Ηa)Ν{?ŠξΙ_F·ΣόΝ©Ρ{UϋΫ=Β~%ΈΥl–HΕ₯αE Ύ Jτ`„cžγpΑό ŽψΓΡ$Κφς¬JΘ’₯ŠŒ§£tμMyυ€:„$@ζκ"eς·€ξ„sς—'8ΐ―F³Ί²ΤόΆ’…s-˜F†dΑ$¨\γ½8UœΫŒϊΚ‡&Ε›ϋ„ΊΜ6I%ΤΡΆU PΒ7¬pΉ„ηΪ―YίjWΧO³·l•mΣ–*ΐΰπϊΣm·θΡ€rϊhC½χυO~£ΎGMU·ΤeAχ'ŒJ1έ‡ΚΗςΩN4ΤY‹–†<·Ν¨kZZy±7ΩΙ•Ω ˜Ρ˜t'©;pιΙν[QΖFmtν±GځŸμ¨ξAο±μ-f’{ mΑ}Ι$ΏσΞ1³oγ΄τυ$ϊΧY qΪD±Ζ‘cQ”bχŠVθyΟ‰–ίKŽςΥ!fžυ‘ϊ’ maκs΅WώΪ ŸΓι.“smk«\ΗειηƒύΰκF>ψιVόDƒVΤgŸHEΉ»ΆIΟ+œ–dΗV'jp1ΚςEpΖ9uΘfΤd‘.οVά\Β’ܐI8Ψ8ηhΑλœšštm7%¬Ώ―ΜΩTΌ]φ;?λ6wΦWΦ©―FΣG KdϋR‚€(bΗž₯yΟLu9¬-?TMPBšTsΚ0MΈΫΚ#u“ζγs’ĐΗV5•α››FέΔ6ιm›£f#JμE€Θ$γ8ΫμEYρN­ύ‘q©I‘ΓvΧ’Ηn²Dv˜Θ@ΨΰIιŒO^œ΅₯%Τ–Žφ]~βππ½£ίSψ—¨έιQ‘αΔmϋΛWΔκcήψΘ`ǐ#œW\Ϊΐ³‹O°›t°±³`ήVw/˜μάω€8{0ΦΦ-Fβα­†ΨΨ$³Λ"οš όΆΑσ Δs‘Τη=€ϊl~qsqάΆΥsΕβ”J*¨ΐωJnΞNE\!,E))Ι_λξ§μd”Uξze¦‹ n󦸘r|Ν€ί8ύIβŸnlLz;μy]Lξ]Iϋ ¨''vvŸ›ψAδΧ1¬xΒkkx¬―Z{v'̎xJ‘P9Ψ73cπΫΑτ©΄ydΤ/%Φυyo³#²ξoέ΄ŸtcΫdtήΐ―!œΞΗ)=Ž{[MER }Rε§Γ(6ͺX=If!O#ικ u |56‘oͺΟmx4«X% †PG* ΙΞ3ŒψaψNΞJRΤυ»‹Αc…vhm‹–ξɝΉ%‰=r z†ήΣF†ζβ|ΨnζyΡ€ cςc# chΗ=λΧΛθ7?iΠΚ€¬Τ³ek­!΄ηYgΤc VO)|Δ‘;ƒ΄~_ύsZ^Ττϋm)ζƒT–ζ™XΙ&B΅»ο  ¨δž½sΦ€½ρλ‘ΫΨ‡ŽΩqrΔuEsοθ8οΗ#βYu;O–XlήΘf %w³Η#`£ΎόœzbΆΕΣφ3U©«»₯ΫκΑˆ‚kΩΙκ‹Ώ΅λ]6ΩΞ•$ Ή!(1₯θΞIΞ[εΪ:ηšΦπ₯Ώ¦ZΫ|’Η<‚냝 _i€sώέyοˆV;(χYŽ6»vxg‰NΠ„q΄ηε8+Ξr9=±]ο‚τΛ_ ιšn ˆ©m©MΎ6SΜpΊ ¨ΰd…bG±ΰšͺ°JQWΛ&φύwQ8EC¦ŸπOCv’ΐ…Έ&[6ΰH~τ~Νκ=?ZΞι4NΦ ήΩγA΅wϋ€§·LŽΨΘγΊΚΟΣ‡Fωΐ—O™ε΄PdH-ΪKv'‘ά₯TŸψ ϊ­t$ζ¬`Z³€‘|«H.ΐ·`ΗέΖΰΟαU5KψζΈ{5r± sAη’Ψγ’}Η\+™…Ά˜ν΄;mΪ¨z3όIΉk[EΣI΅y%‘φξF-ΛžNpO?Qλ[%=N{ΙBθδ΅;ω¬/u+‹YŒς !F2 εα—2£t?―9€_Ccβ -o’K {ˆv³‘ςFΩΰ‚:―<‘ΠŸ.Ηy¦ψŽ{‹xMοΨξfšX₯m±Λ`œπ9@WRžλRΌ‡G‚Κ]·Q™“1 @κΑsςžόφ₯rγiÏ’¨»Ή'u~ώΏ}·μJ―RΆΞ~λŽ‹O‰.–λΪύ:χŒ΄[ΝZίH»^έ.Ό©ε-'ξά3‚‡>ΈΘέθjδ_U‡QΆ—MΊo΄ΟpLrAΛFT7FΓ8'#œοΪψrάψ{Ly΅6­©xXΖεxAΙ=0y$“Χ₯y—Š-ξ|Έm„0&n²c<•ιƒŽyχιZγisΡ”Rωωχ7Γbi—ο'g₯£o.ŒΗΏ»ΡF·s,Ί‘kwάΏΩρΐΙ,g˜ω#9ΑΞ<τΑΔυˆ‹΄»’K}ϋ#Œ“’Xη#“Ž1Ζ9«W²ιχ—0έ<ςέ\°Ϊίg΄PC2Y›iόHΗ­oψKαυ׍΅k‹Ν1³m¬”'Ϊ₯Cq6rTς21œž:ŽZς•5&ι΅―αΓς;γQΩI_™ΩΜΊ4“^»ΗF0ͺ 9ΐ8Hτΰu«Q\jz„VΊ,π²ΒSμιδ©6NGSŒœΰŒe°$Χ§i u;hΛΛ­Γq'˜$HM°Xβ# yn‡<γχΧ@π²ΨέE{©\ύ²ς%+T υΪ£ΉξΗ“YSΓM6₯κm*±vhΑΣ|sc. RA™­‘V“@τ yι’{γŠ‡Zi5M(½šω0ΛξŽAsιΣξΧιZώ3ΦομiϊT “ΖVO΄™>\~M “‘Τ>’Ή `λZ|ΏΪzdzzΗύδVΰΚƒ|ΆΜφi9―{IB—CΙΕTnZ=N·ΒΣiz.…&₯pρFwωP·VqΉQG`}πϊ uΝ½½Ξ€Ϊ€ς€λφ ‰νΡ:)]…[9ΑnΌτυ>mŸu’Εoq ’ͺe‘˜©η―ΰAϊΧS’x~ΒφκgŠςWΊ‹OΈ™Κ .6|¬ŸΕœƒΙμΗΊ)AZq2«‰£W–Pž­νcƒρΛx—XŠ Ν4’Lβ<Ξν»9ώΰ9δυϊuλt½J}?OΡβy7΅¬ΡDΜγξ"’ˆ=:|Η¨ ŒŒc‘ qα6ŠΖApΙpΎbIΊ—B1ΌŒγ‘ζϊρž‚ζs«­₯νˆδ1G³BΕc` 8άHεONœ…<=*Uσ± ά«Mw/M’«RwR“ΌΆz|+ΣυΤφ(ζM6θ*ρa+`ωΰη·ϋ€φμ}ΛNc0ΊΊώdgΥŒώ'qϊ\ls©LϊnβĚ ωc=Θ‰ν]v!_ٟύe©ςΈm?Š•5Φγ=74R“§¨±ίΗ<š=Όμ«4»ά§bρŒ2ύC6ΰ5wQ²Žι쫑܎Ώy¨<τVα‹ψ‡Λš­cš?6ݜδ—?60Hu[άξΝt–ζu0ά€—H>ey}Ώ—Jγr»ΉΌU•Ž'R³Ά ¦ΈΡΔ\£,kςΚξ€+φχ<žpδᎠ2Oέ]H$6@<Ήΐ\—lͺΰwϊšιΎ$#έίGyΨͺŒή†PY£”χ–ΈGm{VtΘH$o)LΊHΐn$Œ‚0N™=3\τΥ(Φ”β―5ϊ™·$ͺE·Ρ~ŸΓ~+]bώ;θ‘£±΄Έx#B~XR^C}K`~8θ+”ρ§s⿝ΚΚή4‚wGΤ'“nΚΎrFr©ZξζπΜΊ<:‹%΅’X(ΟεΚΑ†@) ]½‰Ηηι^s<σ¦’lmτ©±srD‘΄˜Λ±ΘΪpHPAτΙ5Ά«Ÿ΄].«δeJ…V¨ν­σιχ–¬~]ΒYšm£Ό΄—ά€cή™>`f “€UΉΧ%·Ι·AρκV²@σ$θb@Ε›<.ήΉϊcŸJσKΏˆ—λ©Βω1EqΈ"Λΰϋ ΰƒ’3ί¨―ZlώΝ3κ2€@FΠ΄vΘ₯cήA#{ρΈΰp 7'ƒ^kβ_^_XΛu£Ϋ,wˆΫ„Š]D©ƒΐJƒœK«¦δ΄9+Φζ‹ŒŸsͺΡο'ρ‘¨_”kΆΣ ž(ΧlH6ΰ0'q€ΉΞ9ΑλSxNMCμΖίΔN¦t―&Hž(/TFθΕχHκ3‚]ǁ·9η5Ε|?ρUόZώŸ€_Β`†I|ۈ8 4‹/ ϊŽ6ϊϊρ^›iγ«wΦΎΕ2Cu€IvΪΊ.%MωΓgξδd`†烡H(Ο™m²τΉΙN³εQ©½υυ0Ό[¦ιΧz½”Zh•γ(εDΩσfΜ…βuλ“Χž•ΕΙ©ΛαΛέGSΣΛ­»*Ϊ4.ά>N]2s”)Οb>ΉΨΦu©?·ο`Ρ-’νcΉ&Ϊ8(l|£’γi9ηΈ8‹o†/o4«Y%]=αŽQ£ζ@σ»δ£%I?“Υ†+%ƒ»ΊΊΏOψ?‘€pΤ9έUΩύζwŒ΅-cΒ:n‘~φk©Δ8#r.Ψ wω@#>΅ΉαΘ΄ϋΟ ψϋ†½,wq:ό«*’ξ_ΠξSŽεHτη~"ψbκίΙχl‰nλΉ-ΠBΈa€όξ=Wou±π»O“K[}ΑΕ¬Μ]”±lLΐν9χElΌ΅5c 5V’΄Ώ¦tS‹„W&ϋ|MΡμ’9't’Ξη«πτ…2γQŠΟRΎEΛΊΪ‰GMΚHκw/ιλS\^Θ‚Ψ»qHΗχ›ΫΠwόΘζυ5huKTLʊοpΜΨ.rŒ9Η\…8γ*α._}Š₯ŸΊŽ—Z·Yn¬ΌήDxCό¬€Q±ͺ5%άZί—IσE*ρΈyO―¨ώ`σ«¬XΝgΎ;Λg–&U,Εz¨υ##ρ§Ν3kVq ;VhΨYη%u_βΟ¦ϊŠηƒΊΠΝΆ™Φ——š~€fA?Ÿ+–<GŒνRΛιςpyΙΰWαέhA=½Ϋ3Z€žh‘h›ζ`~Pάq΄ žΩγ₯w–7Ϊ^“q©φΑ L<θΐW$;rTœ~GπgΖΆ–i qo"F|S)•ΐ_k`•ΰφηΤΦ5)ςIV‚Χτ;)VŠN2WOAž)ΤτΫ›X-l ρΙpIΉ™b^~fηwΜSΎ@ΘθH¬οHšξ§m¨άΑ™kF“σ2»Rίν~μηύγκk–΄ώΟ΄Φ'»k{kkΈ!FutSƒΈœηr3ψο>ψ–ΗΕ3κπiΦρΕu΄2¨‡9 nΝςž;²ƒΐλήΊU(ΙΊκφθg4©Ώu{ΏyθsΜΰ€Κζ^OAެ}wόR*ͺYΗeq<ΒBΧ2f9.ˆω–5ΘΓΣ’ΠΰϊηCΓEfΆmDΖηύY¦CξγλΛ~#©Ϊ0ΈΥ.¨άƒώΜN?ΰMεZR…΅κcV£“²Ψt±ΕiwEN˜„ƒ+lƒ©Η―©’@Ξ1ŒΨ-.|A;³<±Ω!Ζω ,ΗΨwt;Žq[ZŠοΔΧΨmdh­χ…’e<€€π¨;˜Ÿϊε]ΌpΑ₯Ψ$j’;xP*“€8ԟΤΦιΩΝ6Ο$ψα‹]/μš•ƒ\M:€ε“ξ… ‚HδƒΨ―½qIΉΤΧ"•¬O–΄ς]7}Φ `o—Œ¨c½ΟΔΆPjzΨjYI5)Θ§ h }sΧύβ9Γι~·iL­Ε·GΆC #†9ΰ©“ΘΟ"Ή«U”5ŠΏω›Ζ<ρεν±ΚκPC₯iΆϊ„_bšΰ°Žά:β'Q΅˜|ΐίŸBk¨π]ξš-ζŽβξβVζή< ‘†#'jžάH9cΝ;ΗΊŸ‡ ΆIm|Ψ$…£ŠBΖ₯HϋΩλΤc―ΌΊυ_DΊ―ΆΥφΗK„(Α?{―§΅E,4SUSχΊωωωλπKdz‹υQ%­Θ€Gw -ήEš~Y[›²2«ŒœυΙ=+₯Šύ<6>D³ωζY‡ΚNωFΐ$ž"±Ό§iZv+Ϋ h՚M–θ+8€F dυ#8 O§i^9΅:{ωbθΘ ΉJ°9ϋί2ŒcŽ1ι^­ͺΛwS#©!ό§uψψπJζΌMαhΨάYm‚ηw™ΖB–ΞwqΚΆyά?k)¬½Ÿ§¨Ψ6‰¨ί‘.LVΚ€Œ˜τ>Έ x?ήΛΙdi΅KΈΎaBήwΫ’δΐŽίψgJ 3φ‹{·,½Ϋ+Ύ½I΅oέθ·&% ‹ ͺ0œ~˜¨.Gegl:΄‘¦=@ ·ώ:­OΎ˜Ooind"I?ΩPsϊΣ>•FAs¨ή·|«XŒLΜΗψΆŽέ1»·8λ‘΄δ’œŒ’oCFζVΤeh#β6s|p_ΛΉΕι±εόDb±`™΄€ŽΚvΝ£°L„qΟςnύ<Y_MsFW‘N6G?―kοη 4ƒ)m’ΟΥc>ƒΥ½Ίώ”Ϋ9E–Ψbr€6wg!Žy,OsάΡEyΈͺ’u%Ν4b”Q½-Κ\Δρ°WΈ`GΤ{Šΐ»Έ}>ζ•·:dΒK­NθO?> W§AΏ‹ϊάζŸcjxmu 8ΟY!•x#ό?‘iάίZ…ΊΏ‘'O–Qh}FAΰŽN ΡEwΤ§―y\Ζk`ΧτΪMβi Hχμš)‰o7άFvνΐpG%‹iϊHΤmVh-!2I9dbΚΐδσƒ‚Gz(ͺ„ά,’cUsnejϊE·Ϋ•Δwž2¬Tσχΐ#§'ς>Υθ:ψΈ­₯‘ΏxPφaΓΜ(­σ%xE™eo–rKΘMbΰK1$…ζAΉO8Ξ[Ÿ(5iαΆ΅-ς€Q/AΠ(’Ό”g˜ŒG4#mάΡ_ίI•ˆΐr8ΞAαT γίSSάιφ:V–Ο{uu%ΌC,^b₯‰w$ŸΔš(ΨAXβœ›f“,άK¨HV pθsε>T»cω“άΣ£$ ‘ΖTD£ «ΖνEΟ8©ήύΜՊ׍ ƒl[zζ³€ΌGΣ†±l‘Ϋ&2z>ž‡συ’ŠΞI²œ›GΩΫC   %# , #&')*)-0-(0%()(ΫC   (((((((((((((((((((((((((((((((((((((((((((((((((((ΐ‡Φ"Δ Δ΅}!1AQa"q2‘‘#B±ΑRΡπ$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š’£€₯¦§¨©ͺ²³΄΅Ά·ΈΉΊΒΓΔΕΖΗΘΙΚΣΤΥΦΧΨΩΪαβγδεζηθικρςστυφχψωϊΔ Δ΅w!1AQaq"2B‘‘±Α #3RπbrΡ $4α%ρ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š’£€₯¦§¨©ͺ²³΄΅Ά·ΈΉΊΒΓΔΕΖΗΘΙΚΣΤΥΦΧΨΩΪβγδεζηθικςστυφχψωϊΪ ?ΣΆπύη‡Xάhφ‚κŎι΄β}Ϊ~λ²~SμkΊπόšf§h·6jŒ„ν*Sk#wVSΚ°τ5£k†ŒnNέ«7TΡξ~ί€J,υ XŒΗ8Γ*χύGjεO”θΡξj½€.?ΤGχEG…»ξίoύς*-W[ιξ³Τβ’ΦFΙΗχ{ΖΆ^<95\οqrΫCιVΒψo?ΐ*{­ HΘ6Пψ­dŒ3j΄Ρ’²‹ζRΗΊš’΄#ώ*άZ5‘kX3ξ‚·c ‚jΈjΕ>Gd^θΛ‡Γ:jδ›(2ΨΩt+˜¬ PO $ώ•Ώ ΰr΅rž0ž[ϋΘτM6FŽY—}δθpmΰθ@?ί~Tz Η΄ε‹Z!);κs:†gβ+ΦK{+q€ΪɁ"Ζ?eSΞtSίψ°§KαΘ@8†<ŸφEv6ΆqΪΫΗ 1¬qF‘`*Ž‚²bυ†3,Ÿ‚π=ΝuF6Π‰JζGÏ[κ:…Ηˆn`‰νuΆž…Mο’6―°'½z5–ω¬mr§οy+Σς­{+X,ν`΅΅A΄(±ΖƒψUFό…J±ν‘Ο\ΧBI7vdΎ‡§ΖΉ6VœΣ «&‘¦“efΌ+ώΠ:οlVG‰΅(tj₯ΜjΡΪΔlώϋtUόXNΘ“Λόm‘ψ‚=F[ X΄³εόΟjZBs3ΖXσΠUϋ kPΎοΆxqΟΎŽW?”•Σψ+E›IΠ#ώΠ;υkΖ7·ςzy9#θ£ >•ΏεΎυΓR¦·GDU΄8'Σ5ΫuΟφO…oqύΤ’άŸΜ8©RI#‡ώ&Ύ š%^ΛΚΉQψ|­ϊWj#«1¦Π1Τ΅œ+I½JqHΰ Ύπ΄“$M%•½Γœ,ύžB}Θ Χ@–xe°Ά τΜ*2?*Ττλ=J'S΄·»‹ϋ“Ζ~΅Εψ—HΠΌ3λO]xrcΚ[Ε/žŽ}³g#θk§Π7:&πώ‘(,ΆP&?ιΗς¨Γϊpγ얍ιϋ₯ σέ'β‰&KψαiνμgX'ΥZ'Ž4wo{pKτ#!OΪιš<Ύ$°[ΙΌ]=έ”ΌlΫDχKœbs[Β*£χleR§³ψ‡^Ωhz\fMJ :Ξς=:YΥWͺχ,i:Δϊ­„Wvώ °Έ΅”ee΄½…ΑυdRθAδSeΤ–ή@.όυH-εώMXβ)Ό)¨Ι«ι)$–|ΧΦ)Ξα=cί¨ώ!]lώ3ΡξmU¬eΈΤΤ2­³ΝGΰωΦΡ„e²811«†Ÿ+Υt2ΣΔ~„n½¬NεγJn? *^σΑwRΓ©X^θgPΆRΏg˜ˆDρžJΰ|ή‡ΧŠ–γΔΖ&ω΄©ΫΌ«Y―O_ΏL³ρw‡υ ₯τΫJάy:·’ίL°ΗλZ¨Yμrϋj‹V™ΩhV^Υτθo,,,f‚E‰NίcŽ„V¬z‹—J±?φΑΒΌΤxcKΌUoq=Ό–ϊf°Vο,ηhZΞηψt8ςδιθΨ\iϊξ…o%Ε―Š-ξ,βuΧ’\ τ3¦ΦŽkωγ̌ύΊNΝ›ηA1€ΨγώΈ/ψSΓΪCulrz£©ώ•ηz‡Ε«Ϋ=ο?αΈ1,λn5!6·Γΰ9\ϊ/γ[~Σ΅ΐnuύ¦ΡΎυ—‡Ω£_gυ§ρΕgxτ6Mξiλ6~v«eιφ…ύςXqΝαΛφ‰?†ξu_GΆΆG}Θ~YηF𦉒 ώΝ­cqΦW_2F>₯Ϋ$šΩ̞§”ξ»9ζ‹α»»₯έ‚τ«Lχ½ΈŒυTFώuRoλ2š@e²’L~$Šυ`€)»ƒEΙηg„jž Έπ–«Šo—F½±…E΅ν΅ΎŸε%ΫgΜΝΚ’?^•‰£ΙΊιVŒ‚-Џε]₯¦ΫjV7V7¨Ϊζ&†AώΛ ρό+‘ψtσΆ„ΪuσgQΡζm:矽³ύ[ΐΘΦ°} 禀д–:]‡ώ§ψS‡‡΄ŸϊXΰ:…l„ νH6Β΄3ΤδΌKΰ­3TΣd†ΪΒΚ±σΑ"ΐ£kŽ€ρΠτ?Zα΄m.ΒϊΧy°‚9š)chTδS†SΗc^Η<ΡΗΓΝp:ό_Ω~4‚αv­ž΄»Ά.pΰkϊŠM¦Ϊ9oΓPB#Τl΄λi§Ά|>RζhΏ‰G{ΊŸ^+GIτRΪ«{iT ¬°― ώδΧT±†_λXŒžΧε €κSuνmrίΙ$ύύκδ­K›SXOKCΒΊd0†]2ΣΤώεΒͺΒ?¦FΩ:}£/§’Ώα]±#Έ5Nx"ΟzKX³HΚϊ3I“ϋ:Σώό―ψTγΓ:NΣλ?ϋςΏαZ) £ƒΚwx8T§ά™ΖΫΔ>Σ#£i֜Σ Άš–³­3\Wό+nH–P3Γ‘Π1σG­tS|Ύ†RW2&πώ˜FNŸiΣώx―ψW=c‘YΫ\\έZXΓm%ε’5UQξk¦ΧυΛ="Ω ώd³LΫ-ν‘]σNέEοξzζ²4?Οyy§β―*?›m¦«o†ΤyΟό΄“ί νZNM΅m…dωŽJίΑςψ~Υoz&™ŒΑ#Y£\\΄Q†=3σΌt%{"sE-˜­n@@¦ΐ=TΥ;8€Eκ8υ«Š’ŽVLϋση7ΨΦ(£ͺi6ϊ‚!“|sΔwC‡-qϊ‚ζwΧζuΎεΡό-iΦ΄.3wvέΜ|ΟΟΆvύVΔK[/ θwώ)Σ¦m/U…Aݏ.ρΙb–?Ία~δΧ_ͺιφΌΤυ KD^Y§™SωšςΏκΆΏ§–θzεό7χΝγ“vΦw <²ΪΉXšGλζδΠ€―tψwwαΉν‰Ρ ΄€/ΊŒ)>ωκ:ΙπvmζίΫI rEΈΖκΚaξZΝ½π=Ο‡o΄ό$Y­‹f]4ž@ξb?ϋ)όjϊ¨ΞΪΨΉΠ¦½Υ‘ιΪδδΗφhΩ²Γ$δτ―7½Š?j­dŠΓΆ2νΈ~ΏnOϊ‘LΠύγέΈμjߊuι΅θ¬4_έωW(^κεFΦΓpyOΚοτ«ζM/ΒzP![{+T κO’―χ˜ŸΔ“SZ§ΩGN ΝοΛd>TχΡιΦVsjZ«'˜Ά–ψZtήμxEτ'π¬MrΗΕ7~/Ρ :~‹{Yέc{—l‚Ϋ˜Ύ˜β»Ώ‡ΪDΦ;^j1mΥυ&ϋMζy*O܏苀?Tώ‡°εΞσω ¨ΠN>ρ…|Βn£φoDqΙβύ¬uI4ϋεO1WΜG*­Ž wEfΪκ7ήΌ’e_^ΛΈ8²™,1όzuŽzτΟι2jZA{©©Ϊ°Έ³φ e†Tϋεα:‰΄‘"9U’žέΗ1·G‰ΗbGλQμ½”―’•‹§ΛWr.K«m,Ξη,μsŸrk”ρ&Ώ§Y£Z˜’Υ/_&@έ‰Y›XπΏ‹"°ΌΤ$ΡβO:#ZπUV+ΣήΊ/ψjΓΖΊ„Ί…ς5 ύŎv½ΐ';€#ŸμŽOzθŒ”–›˜NΛγ1ό9’ψ“ΔŸk΅πό‹g€\|—$ξ6KΟπΙqΫgC^Ηΰ―.±’ψΚξ]o\Σe0Y!Ό…Ž?ΨRk>†εΡέI’.bš7)4Gύ‡§Ojϋό·±Xe&ύνOŸΜͺ}[ΰ—Ί{!φ€―Σό{xcP΅Σ΅Ε›Δ·ΜRΑ°ͺ ±tH£ŽF#ƒ^Ÿ‘kΊˆ,χIΊŽκέΈ,‡•=Υ‡U#ΠσXΧ₯:.ΣB§8ΤW‹4›9λώ$ί ~[oZdτ70 Θ~₯7 ξkŒψ­o"ψFmRΨβλH•5ˆ ΖΩaψEc4Ρ­“ΠΫΉΈNY› ;τάD˞GΤRiρ[ΝkΔ`J“"ȌyΚ°ΘΗΰEY0ΖG ϊŠλ3 gŽΰͺkΖΊYΦΌ3wm *^ :¬Θw!–?Τpν`υ °ΔYnάy€Ωhη|?¨&­₯Zί Ϋη f_ξ·F_Α>«ao¨ΨOiw™o:uοƒιθ{ƒλYϊm¨Œόk b²oΈνg‘Εh2“LΊΈΡ|WΡ›'X†«ŒΕ*°Μm&>α#Œž »ψΰI‚Θ¬eYNA£ΦΉΒ,υ-O `ΟΨο€CC!ΰ‘ά+γ―f5³Τ|-)ŸΓͺΧZfμΝ€–ϋΏν[“χOϋε=±\ΣQ½€jΆΠξVΜ¨ΒΘqξ*•οn–ΑΎ΅?‡΅»=sMKέ:]ρ1*ΐŒ20꬧•`zƒVn"II©©I8ΪŠ3wχŒ˜/y 6υͺ:Ž·+ޝ/Do΅b‘ mŠέOρΜίΒ=οΥ“+]ψšφK_ Μ`°φ\j‘w(#ο$ποΨ·έ_sΕvš‹a ieΣaςγfσ$vbΟ+žμyf>§πΕyβ­2κr­·3t Η₯\Ιy;_λ.Ωo$\mά‰εš{Ozέ|"ζŸ, w¨7 qšΣΪF:YΛq ŠzŠ*΅Ν»ξΚTφτ’—΅"'΄Λ]ΐ;U±‘‘YΆR“ž:VŒRf³n,I4?Λο-qœR3qΝCŠ)6W‘=+ŽΌΣ.Ό3qqͺxl ΄;¦»έ‚E'³ΔzFύΟπžψ<Χfϋsšδe„ψΞώKT?ρMΫIΆιΑΩT©S<ԏ˜χIoϋX?,CΨεΎ•Ϋ\Ιo§X<€$VΦΡΪ UQΠΠ{TΡͺΕ€jͺͺ £Πι\ϏΪ,lt¬‘ύ₯w ωζηύi’Ψ‹Ή;πΥ‘OΚΈ»cu6zξ~p~‹΅ Χ#¨23ŒgœzSem£“[₯dKw9B5_ψMnaΆjs'bWδ>Ω-]ЦΥνΕ`x~sβ]~ό€DflvEάίψσθ6sžή•€Ύ…«9WiFξ1ΝM 9”• Žœw¬Νό”’9ΰβ₯K©T1ϋʝ[ž.ΦN•αm^νw ‹{g0ρΦCς¦?ΰL΄οik€xwKΣΧώ]­Ρέ±’2kœρŒ~ϊNŸΓGs¨ΫΖ͜δ+Ÿ £Εž1žk‹;Βεβ6)s¨2ο†ΤuGό΄“Ϋξ―|τlDΤUε±­*2›ε‚»dώ4ρ§‡ ΪC š†³2ξ†Βσmώό4χ={\±ΌΤυ5Τ|Eqυτ_Ό‚$R- S<χν½Ύn;t¬y<2έΝya©j6χΧ5ΕΛΝζ5ΓzΘ*ΗπΥ ΪŽ§£Θ²kV’[D;~Ϋj "φΣ’ŸQ‘τΌ£œ­'iωνς3Ν2άmσ%xω3эε‚j:P‰“}ͺάc–8ΓΖ}™r>Έ­Oκvd[Γylm.#V_2dRƒ“ΤtΑ¬Έο/ōžŸgς$‘Iu/ΪvܨόsΩΒK­>ήmΡ[ήΞ#–Rψ€nrGϋ Ζ»«+sβωšž[ /Ιφ„$Ύ²ŸαΆξ­ΫŒšŒ§Unχ9π-A9Ο„:f½εκΪ…Ά‰g6§rΣc†3Ÿγ”π>ƒ'ΪΊ«UΌΣδΉρΎ,¬β¦’ ,yAQFNι[.~ -jCΆ½₯΅½­΄#jΗpGςKβέύμΊD:Cή^<θΔ‚ΆρJ·qΌαΦΎ…RIwf’­*’Πα<;c©i²ΆΏ€¬ΖβωŒX\JXKζ5.Ωa ^wyl+ΎιΆΥ΄#½dΌΥY˜~VΔƒΜJ‡ξ°ξqΈžsŒW/αλδΧ`7)˜"‰š"Μ‡ύ x­R/τmI΅ΝΞ6­εˆ8[˜‡ϊl££wεO―žΐγην₯Bλχ•ε%O’CΦSrτηπ~κ6“β†εΈŽΖοŒuΞAŽ4ύJ(Γ0K­^͐AoςTχΫˆώœ·΅Wm7Ζ―¬ΫjΗώ΅ha’iΊcÜœΙžΏE―r¦"=$Ο5&wŽƒGΈψrίνZεΜZ^₯ fGΊfΫΚ£;gqΖοΌ;Υj?‹+†Άρn›6ƒ';.%Ki7ϋ“Αe€?Zσ?λ7?•Z1,>†@φπ:ϋq%“ύŒύΤοχlg‰Ε£KΪIέ~eŒά½Σρzj~>Σ£Φ‘΄{ 0&··ΐiΖφΙ cœzΧkακϊU…¦©α]bΫYΣ§‰fŽήυLTŒΰH™šΣμ―`²΅“νLbDέ›’Ι5ΑC.£αύog<―w€¬Ό3FOΞ€vηζ θk‹+ΕΟ)9-:yyUœ–·:k_ΌM7U΅ΈΡυ;R΅ΒHΨ”|ωηΪΆ5=$λϊ5冣Μ71΄L=2:ύGZ½¬iφZ”Ά—φρ\ΐό4R.ε5ΝA6£ΰϋY~Ιηjš:/Λ%Ε―ϋΦDέ<ŽΗ΅{};k‘β―’A.εΏ΄Œί[HΠΛ ]Ž ά9Ζzχ­ΏΌx»O΅ΊΤ.ζ·Ί·žΦ5ΊΈi#€λ΄±Θδυ5εΗΪ΅Ϋ©Μ±ΚΊ‚-Ϊ:•ˆό…e_ΪΓ.·‘Gr±²> ŠΘγ ‚ZΎ)ΚtqŽ‹o—·“Ft%<>%YμΟKΥu+Y5ŸO-έ΄GΝΉGg•@Sδγ“œΖ₯ώά`Fσ5›e’nγ=?ΰUΜψΟΒVΛm>›§YGy ‹,y„gS¬;ƒΠηΦ½gΒΆρW‡ ΏƒΓϊPŽζ3Πύ–=Ρ8αγ ΎΎπφ³uG§¨–Κββ@<ΫF'fOvR όZΖ»Υ΅OLΛα>WΆ<}Άσ0ΓυQχŸτ―¦\:§ΟZI&x°£‰NJm£ΣόγΈukίμ]a°Χ|±+nŠθz=}ΤόΓί­uš…œwϊ}Ν€η1άDΠ°φ`Exm‡Γψδhξ\»ψΒΪα˜Ο§™4ω7uΜ.PgώΆΊ)glαx΅ΚxNXγρGŒtϋiαPκ” ©I£κΰ‚W­tκΊυ軣«6ŒgvM8Κ‹ΧωSγˆ†ζ#ζ Ažζ˜ύlο΄-UΙHΕΗΨeγͺΝΒηΨ>ΣZсUώ"ι­ͺψW·‡>x€ΝD‘όκ1QhWΛ©iVwΙχnaI‡ό Aώ΅œ’Et$ΥlcΤ,n,εα'’'Σ#ώπͺ^Ί{ν Ωηι Iνoε[,2€W;‘;Zψ·[ΣάΒΗ¨ΓωdχΠΝrWWW4ˆΊ–w§^I­xuί>ΥfNΤ½Qκ†@:?ΰr* )ηψO3ΛaαΕvνwmΉΊu8d—χHAάή zΆR΅rzδW>Τ$ρ‘ Νύ§cYΠΛdσΥύτ2=+(Uv±vΉήD ²΅Ž x㆔"G…TQΠ: ‚[–cΑΐͺΆwvڍ”v³$Φσ ’9δ2ž„SΚcΆErΥ―&μΆ5…$·Φ€ŒMAάsR£`sQNzκT’Xσ:QPo­Ώ΄f<¨§h "γ΄Pδdpk M½ί‚θN?Ό+R7~»*–μτ*ΧάЍ²9Ν=ˆ#ƒTUΫ’:Φgˆ5μ6IόΆšv+―Yec„Aυ&š©mÐ­β Ή΅]N?ιSφγώzΚzγύ•U€χ­ΰ2kTŒ€ϊ!+‘Τ”ί|B²¬ZeƒΞGύ5™Ά/δ»«­`z΅Κψp}§]ρ άωΧ‚έ‚$ΗσcWΔ»^*)@, τ$VQΤdςmf“¦Δfό?ΆCΐ™oύ§%šςζ{’ސγτW Œζ±| Γΰέ$8΅BΐtΙβΆ œβΊ"¬ˆ–μ^;¨ό©Dq·Uώ˜§B’;|«Ÿ^ί•`Ιo7‹f’ΦΩζ‡@Κ\N>V½aΦ8ΟhΗFnύsV•χ&μαόg-Η‹ΌA‘ιΎΉ66‚y₯˜4i΅ΡrSAsŠΦ:Šm-ν‘Σξ<7δ[Ηε$_f– WΠΰώ΅΅h|DπυœPˆγ‹O»’%U(5άWM*μ|ήΥαζu½K_M;8z³Œn,Τ-MYΉPπ«J ΙςΞQς±dΰΧ§N­j΄Ϋ„—ήŒ!‰£^\Ι^tΤtˆfΆGΤ-XΕqnpŽDΐaτΗ#λ^VήΣ΅Λ­^ώ;©ν5 ΅)ΐ–&α°B€ΘxνΫΦ»»ϋΛύΕo©GmXj-οp>C"œ$‡Π 5ΐ ‰Q5k”I"X΅9Β+`€ΩVδϊΰ“]y-«ΚΡ­šώΏ«νYΠΓ{Eά4O j:§Šž·qϊvι<‘°\δ!G‘ά}kΧ%ΈΆΣ,$ΈΉ’+kktΛ3pͺ£€? ι\ΏΓΛθ¦ΡουK Q.nœU Œέ»· ώ΅₯₯5fΔZΜ‘Α’ΫΆύ>;–¬GόΌ8=Oχθ9κkΧ†Β’²3…F©EΛ·ζZ[ cΕi’KιN β퓃ВΤ©τ5pϊ§Εβ?^i(a·ϋ_φu»4ŒΜΒ$ωœ³rη“ν]ώ£βχ‹J½Τt*σPΆΆ…ξξOτ{|(Ξ|ΗΖοψk‚π―…όYwαK)n΅}7H‚αZθ$ΖYxΫώbΔ(nGLΡ*±€ω¦Ξœ<¦δΡΛG¨ ψ­ξαGώΝΌΪ—ΫΊ$ΩΪ'LŒϋφ―JΤ΅ }Ζk«ΩαŽ(Wr£HvνίΉΕeκΏ μfΣΡυSWΤ‚ΝΜ±.μ`όŠ;γΦ¬ιή πυ±G£Z‚~kΣ}ΪΌ<Κt+TφM6wS‘5»Πζ<γν?ΑZŠΟ{¨ZK§λWKθ`;ΪΦR8ŸΠτaτ"½i>%ψ]Π2κ¨WΤA!ϊ dψ‹E°‹@mš}΄vςL±Οp"‚2qόλ›·Φυm"Ϋώ iMVFι—dξΆoωhήρ.Aυβ’!$”ΫVARΪDΎ2ρΆβϋΑ£.«dt;gYnƒΎί΅ΚV0ϋŠFXχ80Τ΄»€Qg}g&8Ϊ“'O¦k«΅πφŸa¦ΫΩEg ±ΒM »?«1#’I$ϋšΞΤ|+ ^σ΄M5ΒρŸ³*ψ+Οͺα7ml‘A₯dΟ*ρ₯μWΪ”zΐW¬€ΉŠκι£Šu‘Ό·(Β0~`r§ž•μZΗΓ/ Ȟu₯œφrφ—,§θsšδ5?‡7ρ€ §λΞͺ½ƒγϋλώλΰ1˜jPφKGθaW VΧZžžt­wD·K½&φγΔz•ζ₯¬ΔΘЌ©G–ΐΠόΥkBρ^Ÿ©Y₯ΝΊf2H'U‡PAδάkα―‹.t [XxJΥilΦRκΡ}’”δ·, ‘гβΏμ¬ψjβΪφΦ2?΅αΆ`Λ4= ΫG"Xϊ“έA΅{QjJλcˌ₯ rTGρKFM>ςΧΔ³ $0Ο ΖL!€–ŠBHη± W9™¬š}ύďwͺ=δ8žvεFξBŽŠ>•ν?‘†λΐ©•Ά[‰γΨx;H`GΆ+ΓnEΤΪtƒ ¨©xεW =J­WΝmϊμΟ/1©V8ΊŽΡo_½™λ^6Ύ‚ΗNk»“ˆ Λ·©τSΌβΗΓρήI%φ§λΆσ₯T‘”G0€Ψc'ΉΝu~#š=sΔIf¬¦ΗO+qt[ξ™yΨ„ϋ}γ\ΎΉγ(­ΕΔ^ƒϋBtΚ™ΙΔ*}wφωύ >"RkŸ4··EύkχaV½*Pζ¬KΈjz^— Λk¬Γk›fΫΫΞbϋΧ£/ΜO89ΰV¦­ρ_M…3₯Ϋά߁€eςΜ1'Ԟp;ΰvNfΥναΤ΅IZκν†BΙχ"=Β§AϊΥγn’W'ΦΊ#[Ψϋ•o&™Α,βTύΪ Θχ;Βή$Υ-‘Ήιφσ ‘ •©œFAΗλZό>Ή1²έx³W‘XΒ8bXΨΗJσO…>7_ίΗ’jσγΓχO‹yXρe)ώϊζΗώω5ο’κvqZβνJ£ϊΦσΔP₯iιΪG^Ό~#Η4ί άψΗ·±ψm΅OμΨηΉ΅χLρy€~η°(y ά=+4Ϋλ=WMŠσLn-fε$O^ΰŽ ƒΑ‘\ύEρRΩίQ³$ΡdRν:…ȝΟ^O՟―^Yhœή!πΝεΤS6ύWM†t?h¬ρ ρ2Ž }ροΧιπφΨxΝu3Ο«S–£Lο —iΈτ©œͺ>sσ•GOΌ΄Υl-οτι’ζtG$g!οV,œδώ5ΉH²UdM¬ «€{+Ξώ|žΆΆ'&Yν?ζu θ9\Β(a›[€Œ,z΅Φή;1WΩ«9—©ΐ W1/Ω|Yα۱ǚσXΉΟg]Λϊƒ]BγΞxη)€Ηt˜έiuΐ'ΆτjΒ’ΌY€w:59_Pj9<Ž==ͺB0ΗoLšfώkΟZ2Ž-ψ[^ΔΖ=R—„ε΅ΈoODsω7Φ»Kx$ύESΥlbΎ³–ήuέŠU‡ΓޝΰViνζΣ56έ©ιδ#ΏόχˆύΙΑχ‘αγRw½•V£΅ΝH–Sχ‘?€«Hƒ4xϊΥ±ƒΠΣΌ²έ?…uŠ†Ϊ™J£e3xϋ”Tˆγ?;’ύ\ +^O#6ΩΐΗΰ_ ΰĎΘύΠΛόš¦ΡΣζ±:…‹φ6Ί„Κ?"Δ~•»]ΧΠ ½^o<―kZZη5…Zφ]H ΰGmγώϊ]\όz‡ˆeρOΫnτˆυ]?K- :P₯¦ΗΝ GΖHΟSή½Δw‡JΠζΈ…7ܐ#?½#(ό•%€Σ΄Θ-Kt_Ύη–oΔ“Z€ΣΤΝΟB†‘γ­PΉ[7Ό6ΰZj1΅¬€ϊψ ψ]PλœΦ>©€Ψjφ­k©Ω[ή[·XζŒ:ώFΉθό!ͺhj_ΑΪΤ–‘F›¨nΉ΄oa“Ύ?ψ ΐτ­ΣLΔνΩ°wƒŸΛšε>—Γ6· ΘΉ’iΙ=ΛJάώ•NΣΗ1‰¦ΤύjμŸ‹υYι:>™RΣnZβLΉ۟mΥ³’¦|=¦’r‹kP=6Šηόiβ‡πƘˆj—„₯€ew |0ώκŽMs}r\Κϊ#oa7ΤΕΥG‹uΝTx~ΫΔδ1R/EͺΐˆŒ8UbY·Ιδ`qZώ+ΠΫJ°²°ΆΥPHE#υθ©ΐsΓ:Μ>πυΖ§sbή>eΑq%ΝԎqΌ)ξ[ž: κ>[™μξ.―%•οo%Y.C°Η€x¦vŽΔδρšθΓWx…Ο{.ž‚tι‘Βu]<Ο©jΪ•Π±Ήž[΄Τ%ΟΚκ!8<δƒί₯lιzΌΎΆς5Νz™CΘEˆγͺεΑη=λ©ψƒφzΗ‡$„νˆ,π2όͺFOQߎœU/²:θ6*dŠ+4ŠIfΉivˆΙ?0 zοΕuJ*ΏSυΤ[ν±Η†fΚiMρ%υ―ŸΎsΔqέ ϋΜx'<ž g·†υ›%.τN1’|Ε’ΩΏ“ ΧΉΤu=tΑ'‡ck Ιέ©ίΖ|qϋΈ»ϋΐ>†΅`πŽŸq²γ[šηU½ΓnώΠ‘™`|‘…ψΕcS.ΓUwpWτ08=Ρε'ΕsŽ£i%Ί<ρ ό™RαU7Η1’GΈμΦΧZNΉ€’«§?Ι$1²Θ¬ pJφ#ΧƒθEoθ:5­„δhl6Q‚RβTM +Η―lΥ?ψ@Ώ»žϊΦΚM;PDU[Ν9ό™T‘ΖβΌ0υά5¦O œ ¬ž¦ΓΗμ;έ摨YιwpΩM&­‘΄6³Ι‹Θboωζν"ξΉ Η zW˜ιΞ›w>Έ/ž¬δ_4Κ bI6\£w0UΘΖAΝzUΔώ*πέφF›igγ9ΦμP}š[5κΰ-³ΩFΦ?Ni#Ό??‡ΞšŠθsTΕEΤjZφ»α―ψWΒw–z•β9!U‘„7F€sχ% ?έ8λζ‹ΝYτΨ, Iν s43)F/Τpy#§ΤWΧΠxγNΏŽγHΦ!ŸDΥη‚D[;π””#χR’O  ϋW—ίιΪŽΌ€ΩA£O­λ‘Ω$i-ŽΫ0sς¨ͺΗΪ―Ε8χ2«B5œ&ΎΛΊu³πο‹΄ΰρΛ£άΑgΈΘ&ςΌχP{Πη=kj;FΉ’ΚΩ|G{{¨JΝηY¬bΥΣΆ‘Έw―q·š;˜Œφο±χβpγσΦoˆ4=?W·‰/μαϊ£‘‡Cκ¬9άεx.N|ͺμο§ pz«žu‘xS@Υfž§Λ$‘|₯&‘8퓃X³h–Φž8Τc:\QΪώδDSn0H#·5ΧΝ€kΎϋMΞ™ζkvΡΔ]b‘Ώa# ώZ.:ƒσ{šυ₯ρNo/Ιβ2ρΰœŽ£ž„ σ[AF›Z‹–wQGšλˆή:{KΫ(c΅Ίˆ˜<… DœcŒc ϊρŒΧAα›OI«+\Ρ΄ν$c‹Tά ξΈθΓΈκ:Ž*Žg—Lρέ±‚4’f΅fV?ΑΘΕszΥδ—6ι„S>¬€L²%ΰδπ>ΑΕsβ©*λGgΡ–©;hz5·ƒ4=ΔbIςΧBΤδ φ—²ΐl.ODm­-ϋ8Ώ~–Ρ,­ ςν‘m‹‘$ΝΖGp‘Y‹ΒΊζΊ»ΌW­Ψ}ΓB­WcD•ŽΝ‘ξEexŽ0ϊ&¨χZpHμ<Ά­U<σΖk;[Ή΅΅²š[ωγ·ΆΪΚςΚαP)“νT%ΉΜψ{WΆΆπ%–£{(·‚Ε$•Οd :zη€=Νyv―¨^j'[b†βθζΩΡΞm ŸBO ΗΤΦCψ’ohΪƒ‘[½ε„ΧΞXENΉΨŒΝό*>or}«RΫΓϊμ·φςCghΓ ‘€Fε”ž3σ`fΌl\goekυ=T*Uχ‘ π»ΧlmΌθmΦ1¨M¨ &έ΅WΊ:·α^‘ᛃ§Ί\˜³02ζ‘ΥvύήΗο\·†~ιηVΊ…ή₯qs3•š??ΙIwjŽΙΕvφ? ό6“‚t\ͺ¨QΎζSΖ~nώΌώθΰΉiΡTγΉ‘μέ¦Wψ£¨<ώ ‹Yh„X]CpΡΝς>ΒJ8~ΰ|Γ§`jž•eu¬ύ’P°ƒϋ.l Ζγ1#‰€—ϋ¨zO5CβM‡€ντ]KOŒιίΪΎC4q$―#ο1“ΞF0}iΊ_„ό3{α‹+¨tθ£Έ’;–dšUΤλΕuJΏ²²}Ne ΒλC~ξΪα^ά!ŠbΡ2„ϋ‘H<~5‘6©yͺκ£OΠ!‚ξώΜ‘w{s•·΅cχA™vλ‡Φn£΄ρ%ΝΎͺκvvξ‹-•vΜ¨ΈΪΨΘη'ϋΣ|3wͺψrΝ,νu©’G’8.ΰI#?ΔΔ±ΑΛŒž˜Šu”œv1:–΄w=BΓΐΆo4+βKΛύy·|«s!H³ α:£}α?x’κ};ΓM”OεέλΗ‚λΉθΟκύάΧ?oβ_ψΎΓχV6χZe[†±˜Ϋ\ή/t]ό*η‚Aω‡»›ˆžΠ΄†MJ ½Z¦Τ²Ή΅1±ΗD+Ÿ@z=Όe/uκc b›™ΡiZ^ΰέ ‘΅X¬΄λe2K,~rHνΙ'Ή5εžϋβg†―dπφ—Ά‘kJΊέμe&œ(Ι[dαΆΑvΰƒΐΧOΡnόc$:Η‹ΡWNά%²Ρ7Š>λ$δq$φύΥχ5ΥλQ›ώΥW™mδŒœ SάΞ₯[ly/„τΩ|c-Υ…€Υν.‘†ie~’‘~λž%E ή»/ kv½ΠΣοD«v0*πΏχ]O*~ΎΥ‡α‹Ε“ΑZ+³α¦ΫK „ΊœΰρνTtΘu;θ΅Kil5Db±ίΒƒpΐ0ι"π4‘RΚΜθ―€U—΄Ž–?Ε .GωR &εί…- \ηίΦ]Iq"]κΨαΟλ^wρ‡L{wΡ΅ύαSTϋLpE„ΣτΙEЬΏ³%ν[€mΦμ{=c'Ρ«Ώ Š…EΛ'fyψšnόΡΨιόR«φΟ ΟZ-Zψ>T:ίρ.Ή§θ:gΪuK”·ƒξŒςΞίέU±φζυ鬣ӒΒ8gΉ7ΆςB­'Κδ8#‘Π{Υ_μω5σ©λΧ&ϋP*v±RύΘ—ψGΏSήΊg5ON§‚½#αΜ+eΰmm₯,γφδŒΤSύγwάΧ`‘KmNΆηLρŒ%·’ΧQΣ.”@ƒΊ{ϊƒΘ―9ΉπPπUΔ·z&oψ}ΨΌΪl±,—v υhΏΦ/ύ3n} mήθ—ΧΣκž–+=NOšxX³^cώz ϋ­M‘ί4Λ_‰ϊ­οΕΔδ,Rm*ϋDθΓΊνα“ΡϊSšδWlΖ•Xβ–βYx[Α>*Σ‘Υ4{8"YA1έι¬Φ©AΫ‚ ‘ΕsϊκjΎ–95‹ν-pOν-f΅ΙΐσΤpW·˜:wυ^ρF΅¦k·:οƒ|/qhgRΧΦ·’ KΛ'”Ό¬ƒϋΓ¨ΰΧ)­xσƚώ’eMrΩ,.ba$66Š…AemΩ$uŠΞ•xUΏ³•μ9aκzμzύ©a3K‚Q€ ‘ƒάβόY¦I’κθ1•Ή<ήΪΪ.£\ΗΏC^1₯ λΫν3HώΤΥJ«|ΓνL ^Όƒ ΦO iΣΜγΊ”“χšζFύs\xά֎\“MΏ#ͺ ΟήD ;xΗΧWΦ$–‘YΖ‚R @¬K`ϋρΣjž­« =EβςH·mΚ!ΟΤΥOθϊ—}&¦·ΦPά^:[K™#‘NΡ‰Ξξ΅ΩΕΰΫί¦jϊ¨cΙr²)?π sNU–φhυ0τά£}Μ紈–[Ϋ:“R…‘ WΜ_™3ξFGΰ+¨Ώ΅ΌΈ΄·‰'6ϊ₯Œ‚[[ŽρΘ½Ўξ*ž‘£ψ•ήX΅¨Ϊα."k»EΞεΞ>dη‘Woυ=m$–οB‚γqΙ:}Θ?ψγΰΧ“Œ…κͺΤ^½L+a+ΆΪƒ·ήzW…RΫ˚d°Ώχ$CʟηΫ4λ+a€QcξF©ω(°υ Ό·Λ¬h³‹ v!΅gΖcΈ_ωη:ΎΎύGQEŒή§eΆ¦k Βή$Z7—05ޱgwe!ΛGžŽ§ψγ=˜:θΦ3ή¦Δ½S[Oμ―ιν°ΜNŸr{ms˜ΨύΊ―³όc¦jψgP΄^$x‹F@δ:όΚ1OΠ5ͺθΆ:†9Ή…daθΨω‡ύτ U¬)j“-Lž”T¬λάQZ™ˆΈκMgψ¦ϋϋ7ΓzΰϋΠΫ»/ϋΔaR*α$ύ+ρίϊF•i`?εϊφΊξήτγ“³5Š5ό'b4Ώ ι–ΕΊ>¬FOκMXΦuk]#O–ςυΚDœ` ΜΜz*Ιbxu₯Τ/m΄Ϋ ›ΫΩ’ X€’F8 ’ΉMήλΔρkΊΌ2Atλ)80!λdσΥ‡oαI§kh‚ΧwdΊnŸw­^Γ«x‚/.HΞλ;A[Oφ›³KŽύ ηšκUŽ)ΡFγ₯HΨ V•†έτEyΎιϊVƒο`Σ΅Eu4pΑ .‹ΘΑURHΑΙ'Œej}{\KVΞΎΥ$MρΩΒ@bΏίrxDhώמάψnζηΗφsψœΫ]=ν›H–±)ϋΩ"HώΣΌR ϊğzO― ο\ŠaώΝΣ€Υ΅i§Χ5¦e†Ον€Δξp!"€yθNσ]ΪΪΘ£εAΣ­pΪ€‡Vρ³ 0lΌ<»Ž>λέΘΏϋ"Νλ‚"VrnΡFκ1‚Σr―ƒ<#e‘\XM<°λ:]ά± Fί +n;ΑaсΟFό1NΤυKΏ­Ώό$¦Rd:ΏΞΔόŠΰͺlχ?/½\πlXxΊγΝβ=V2ΏΪΓρR¦ΊlΑsβί Ψ]D’Ϋ™n.$GWΩΙΑΰΰœσZΠ”qTγQ­ΞΘ֝^,Ήaΰ‹ΝB8ο5―ή₯άΓΜhτΉ(ΩΘfχ²3ιZιΰ8ΰίj:έμ`]_ΎΞό»IσΝG&…q‘B_Β$1ύζΣ¦Ι΅“ΧhϋΠ“ώΞWύšΠΣόWiw7φf₯Ί~N~ΙqŒΈώτn>YӟP+ьΩMJΥ$οΜkiΊ>›₯ͺΑ¦ΩZΪ(+!Iηώ5ζή† 6λWπτ—,²Y\βψσ`”’}x8ϋΔ>%Στ(Kι=ηdQΟ$―ύΤE™½€γΎ+ΛΌCβϋ_Ε­Iαωτϋ{«o³C%Λ‘‘εŒοMθ ΨΈ>€ρΉρ.IΙμ*2m΅άζ|S’4z-άPΊ]i2ΜσΞ`άώιδ}1PψvΖηΕsΕ¨jΡνπ΅΄›NΫnθ½Μ@ΰŸ^ƒ½n]ύ―Ε‘ΫθR$‘Λ#rxΤ.ΨΞ "ΖBΐθ5άΎ­e€h2§%­…Άžž\«΄X‚ŒuΖηλ\t1…N=v;ΫrhΔρDφ:4jφσ$rΗ+Μμά*"Ž­ώΟN;W?β½2ζοΓ²λ~$˜6«kδάZΨM½˜(mΓ8g`Nζ9…]π֝u©j\Ր%Θ ύŸ`ύ,bnόΛVΙώΗ­Kγw·FΤ¬΅+»TΊkY6Ϊ iζ'\ͺ‚@$p1λ]x|?'Ώ-Ω3ͺΆ, Q’ΙζiSIc2’Αp>Ν)ΞH1>S< \Υ»Oˆ—ϊ[€~2&HHηR±š$Sΐi"#zΞ1Έ\”>4π}ύ΅–&Ÿ­ JX£_,ZΎυ”(ϋ€1ψΣ/5 jMgύ―¨Z_Βα>ΙwΊ;‡`9sόλӊƒ^λ<Χ7iΖΖο‚΅[π]ƒ[έBρΒ. iά»Rw]ώΌ‚ΎͺΥί‰SM΅·Š$šνζΔPCLΣ9'jͺžύI9ΐž+ΘnτΫ;9ε½Σ΅CotΜ‘Υ‚ΖO\²žuΞpzς+Σ>E{q)ρ>½n²]ήΔ˜Ϊ"rN9ω˜ς}ΈρT΅g©”,kiΎ™|g§\ψ΄Ψά\άYΛ$a3 ¬ˆAΪ?xv‘–n3ΠW’^3%£Is9X‚.UQώΡXΪGšΪOφ^6$€}T‚=λ‹> Šφ#ig₯\\λΡ±ŠζΙ䢐ςŸ”)κ;‘Ϊ½)4]oΔ1ηΔ ₯iνΧN±˜ω²Ig ²˜xΧ/a§ΪhΎ3ρ%–—pY¨΅•!Œa#vŒξ zšδΔƒ\Ν¦]ˆ«ΟΘ₯‘Βx£ΒΟ’ΧXΟ©^M΅¬’Άπ»°«09?•t?4ϋΫ%ΏΡ΄­fκΛRΣdω`ΊΝΕ΅Ν»c}§ζSΥNΣΥzsMρ.’dρfkΈΊX†Ύ—'€ΗδOζOαV5‹Ώμ}gIρT#χP±‚σΕnψ ΰ'kώΈ~F ‡Ž|Υ›κŽΕ‹<ΣΫκš;$:ݘ" ξΚ„ε‘“Υ<Žτšϊ›°ΐ8ΰW!ΰ\[Yj:vγΗPž θ¬C―ώ†kOÚάξ›φˆCG"±ŠxοΓ*ύδaκ?QΝPΡcŒx―Δp·ΛΌΫάυFώ‚³m²Ήtih¨δ`$Š)άΚΓσ~΅Νψ‰Ψψ‡ΓP…$5γΘqώΜ|~­U-oόSk'΄Σ5U_β‚Ck#χ[εΝr2Φ―ΌAβ­B²΄Τ4kωVvξPΉPρ°8fΰ¨#¦s\©σΛC’1ΆηJ]Όeη†πή›7Κ+}r½ύγŒίMτξπ?Ÿ½gh–iϊ}½₯€B+h#FƒψTt>΅¨½t₯c7Ψq!EsΊŽ§{¨άΛ§ψsa–6Ωq|γtV§ΈώZIώΟAί›uqqβ+Ι΄έ&w‚Ξ&ςο/βλžπΔΏύζώƒšκ΄ν>ΫN±ŠΖ†Ϊ!΅λϋχ£rΤR՜插[θ±?ΩόΙ.$mσάLΫεϋ³·§AΪ³|`βΪηAΥlυY}£”ymψsšμbΟ#­sž(Σ?΅4Kλ,ν3ΔΘ­ύΦμ:ΒJΧ:#.b߈―ΰΠτ+ύRσύUœM+/vΪ8QξOyD/ύ‹α_7VGs9kλχŸ1ΞXάδ…Ύikš«ψ‡NπεœνώΌ λυ=Ό†ΪPy€ό¬Ψ΄ωόWγ΄e͎žy½f"ŸPͺK}XzW—Z›Δ5‡]u~ˆv΄Ω‘kΧEβfI#M1…ΔV(xK~’nώσ•δϊc½3X3Oca­θκ·zϊL1—12όρ{CΑυΤΓmmcd-’%`ΚC)xc?"ΈOΜΦPΠ%vgζΩ =^έΎhαΚώμϋF GdkBq«ΝNǑ蚭Ά₯¦[ίYHζΦζ%xέϋΩ½9Θφ Ժ敦λvΏcΦ­c–'9WΗ»0aΚ‘κk‘ψm<Λ¦jZzJ™±Τ'‰UDr²τω›ρΉf Œ&92\ž•ΡusΞ«Nn=Ž?α֜—K?ˆ..ξ΅–I Σζ»1α΄F* VΖβέNFzS~1Ϋ‹Ώ\ZΑ Ο©M,cO†0 ½ΐ9P3μ}ͺO†ΪΎiΰ«)ομbšΕ峕^αηI{žύsοU!ρ/‡―qΰd•# tω³Z·>'νt{/ ψb+Λ(nBΪΆ₯u!cχ… θvηί'5ΣJ‚₯)N{#­ΝΝ% ΩΩκšσλ-$:EΛΨθQε$Ώ·½Ή`pR3ό(#RGšΊ–—ασzΦΆ΄ΚfCς²’]_©¬*)¦ƒHπm£½τ`y‘ς–φQγε.’ŽMuvή·ΈΆ βJγXmΈh]Ό»qμ#^£λ^5W‰ΕΤζ¨ωbΆώΏΜκŒi\«s•΅ρ‰ρ„ΗOΣό9֟&UgΈ™Q$ϊ 3cθy‡ΔύRΡ€ΌΊμd†h‘%…%{‡΅U`ί$Θ€Ξ?•zψ΄Αu.—£ψQuMN<Ο°Ÿ³‹\τέ6p­θ5ΒYΑ}ή«£λρ1'ΝGi„ΜΠ7YǁΰžυΧν%A^;οoλΠΚάϊ3Οt_G©E•­3²yΒY.ε^ZΪδν΄dρŽ΅τ―φ½žα5ŒιˆΔ’< ±8Œu$α_1|)Υ›ρDΉ,–Ip–·BEά²E)ςАzŒώμ2€xCΗ–~Ί’θθQ“ͺX²FΣH!@Ρΐ»ώ+»JuR¨΅Ά–2§V0—$έ&άΆ½‚Χς§”ϋΞ~Ξ€πˆθ=:“’jhυΛ½OX6š ˆ’ϊTšk‘Ά eκ ?3»G>€W9βίέΪ[A₯ιwΆ£Ve²κ[ƒ©•[8ΰr­]π5叅|JΪI'φ}ωW·’wάίj+σ©?νυγβO8^U7μ‡Ά‹IDκ›ΑVwΌIuqͺ»Έ• v1Ϋ‘/žMtφQΩΩF"°΄†ή1ΐX •M&άνH¬γŠαJFΔΉ^€λ!aινN<υ51±qοTυVΣF΄3ήHξKŽ(“|’Ήθˆ£’Ζͺ*“θL€έwGΣυ«3i©Ϊ₯Μ'ζ Γ•#Ίž Q^Mβ₯›» YΤuΉZ2²ZΙ wqΖƒ΄“Ά¨Ηv$b»ϋ‹;½ZΩξΌQ Σ΄΅RηMŽ\|£œάJ:ρό ΐο\΄–x²Ω pE§ψIλ[5/Άγ€²ωηύΥ=zžΥθR ©.jŽιtώΊW2roαkώ S]₯ν«_y§ΓςnΆ·[5Μ 2΄§#£9ξ~κŒ“΄gΡm|!’Ο€ΗrςH~Ω―κ™Μ‰ •Ί‚Η€o­mΙν_΄«—kkχ‰{ΊEΆyΝΖ‘βyt»«ί2Υm-Akƒh2ΑAΓνcΑΫάτΟ΅|(ΦΪbΘ(y琢ζ›ά±δ՝kPmB+hΝ£ΫΨ>#±Ργ83γ£Mμ:㒎ΌΧ/£ιΧ$κ²Ψά΄Β^ι#eΔ7©Δ†M΄moQ·t««λΖ)oo’B:ΰvη€=Θ―!°–νbΌΤ΅#ΌΤ¦7SŒργδOψ ώ΅Ϊ|\ψ’‘ΗΟ<°DͺxΙ2)ώ•η/ΎΛ₯Ε§‰VEό•bq΅ίoˏƧδΪ„Og*„!VŸCΜ.΅«ωυ»οX™$9QnVKtΰ;Ι½GΓ·vΊφ€₯ΝΣοaς„ŒG―Q^9¬Οq‘ίG5›~ιTό₯GJξ~j–χ:Ό–Ά₯cΆΤa2ͺ/&NOŽ9€Χ.; ͺRη‡Ε«O™υ=›αΥό“ψqmI7zs΅”€υbœ+~+΄ώ5'†χ_xΏ_Τ =>:ƒsŸϋθ‘\₯Ώˆ"πζ§ws.?Σm €]ήκ2T{ΆδσΑš[i¬€5ΐ_2vώτŒw1όΝKN*k©Œ“FΎ₯§YκΆOi¨[ΗqnύQΖyμG‘’Ήy.―ό ΰj’Ν g |Γtφƒ°›ΊΣAΘοž΅Ϊ ’D ₯\€`‚2 whτ!‚dž$’'WGPΚΚA Bκ=ι]C\]Ε΄ώΉ{›%yΌ.δ΄φͺ76žIζH‡SvOακ8Νv6σΗ<)$N²Fκ]NCΠƒιVΜεŽc[…΄ MΌEeYBjp'ό΅ˆt˜ο§κΌU‹9£—Η7’ΫΘ’Η>™ͺθr¬7œμCVύΒ«‘V Žτ―#Σ.ό#ροG³΄mJ¬wιρyΛ“ύ̌ΝΩNqŽΗΪ³¨΄Ήqχ“ξ{ =xϊQ\ΥηŒ/h§ΡtΑŸΈ±5Σ~,ά~TV|ΛΉ,ι­δX­d’VŠ fn€’\.—ήψBρ%ΔeeΤΝΚΒ9ŠΤ"ωJ=3χΉ­ΟFϊ½†… !΅9ΌΉˆ<­ΊŸΔmOψkψ²4΅½πъ5%ΣB1ΖΐcγχΝc†₯ξΉ³G+4«vω+WΉΊΥoŸD%hXoΣ­ΊΰC=ί#ŸJTΤηŽK];K ϊ­ξDAΊDƒοJμ―κp+£Ρ4¨4›%·· ά–y—‘Οήv=Ψυ»VαmY>“ao§XΑig C*zώ{χλZ Pt©Ώ:k@’{Œ™}«:ι;zτ­Y0V²5Ϋ•±ξξ€ΐHby?!MΖ⌬x₯Œa<}¬/’ιk©ΚΝe!l«ˆˆY•GoœξΗ~Mw ν1α©u"3&£u5Ρ8δ©r¨?U¨–»ΌC€Ζ/νΏι€ΕKKφpξΏ\V?‡Ό{‚΄ XΎ‘vm?1σ΄N δeˆ9ΘPyκEM<£^U»€D+:©Ε-NΣZΈ{_6wp§n0Η~=«ΙΊ ·<ž•"ίΊέψ’ι²H±ώξέpΈΝ&·<’Ω―‰55–Φ#ieh-De]Σ Θ1Σξq[·ν4G_,¨gΉ“fm>Hαi{~ΐ‘όIχN{mͺ'βe‘»EƒBΤ%πΟ$IόۏƼ™SΖΉ8Ύ΄F3œfοmY«―ψOΓ:F)°πξ›φ©±on0ωΐ<“œ ·όιZN•‘ι1ΒΊm΄1ΫEσΝδ£d±$gΤΤ>ΦΕ~ k¦³žΦ(1ΜΚٝΐι΄‘ς§ώ„kcΔφƒXŸNπδ%‘΅YqpTς–©σJρ5ΕZjUύNΌ,U:nrZ³žΣ<λΡZxΣJŠ(oζ>u­Ώά1[B.>ψΙ?QF©¬ίjώ"πεΎ™n>ί3OK΅έφFΐΞ§Ί ί§­{έΊ,P€VψcPŠƒŒ(πβΎ#Τδώ*jΊυ½Ί5Œ¦Ÿw™•ήΣ/Ρε‚:‘τ―v΄aJ‹‹Ϋc:‰IΈΨτ*ΖΟAΣ–Τ1—’I>ό²Όξ{±?—AΐWƞ>³ΠbΊŠ–χR†&Z[.βŸ)!€=wη“LρŸ‰›αΛ_μΫ„ŸUΥΛY”†¦2Σz cέ…yΜVΌΆϊ‰±οοχ$›-±:I4‡«p3Ԛπ«Φpœ`•δϊywgT)©EΙ»$cx―SρNπΪΚ {{a©He’ζƒ%ΜΜΓ{79Η\ρŠγΌ.­g₯kF[]Pίj%Ό3ςaMΩvlςΗΠυκ·MœgώŸj₯n-‘dο7’y±ΊΓ'Τδ=GJΒΧ'Υό5¨A¦άκš;+Be7YΩ8ŒŸΌ{OC[Ζ΄γ».ώf.œe%+³Žm%!··΄hšYΰš)™ΥIšβδ!ˆ}y8νΦ½ΟMρ=νδή+Υ']9ΌA=έΆƒ–ζXlahΙl7ώ3$pΞ:ΰWšψ W…―|E}§€€θΪ=έτ77λ%ΊlGη7¦έηžΥ΅αψmρ“f#ˆ‰βΥ4¨vd‘‚ΐΗύ`Y~Q‚qΣ₯i‰¦ͺΕΕiΫȊpiξmhή*›GˆXψ£Μ–ΐκ€|€vχtέχO±βΊθu{yQZdV‚>΅δφώ%·“T»‹SΆΎ³CY¬εδχNƒŸΘΥXώΥmKΰ{}Ynδ%šΦ;7ϋ!ηΒMͺŸπ>•σ²₯)%egι§όΤζHυ­WΔ©eg5ΝΐŽ xs»vΫΉμsYžŽβεΫΔzςύžνωΚΫEŒyτv±λΪΌ„xΛU—\uΦτΛ+Ώ°Ji ί—j³(ω˜’€ΘΚrπƒΣ'šΏβXj)kΪ‹_¨ωΣIΣ΄υυ‘³ύό/΅k3¦½χwεύ~d9Ζ_ ΏβΏΕβVŠ8O‡Bv―φ^ηο¬z ΰόIβ-SΕ—ΆΪŠ―½δ«:|­pOVf >ΰzU‚.u›V—S‚ [6aΆΦ<³8ώρΟQΣεqήΊ…Ά±ΪΟ­xΟPMΠXFΦφ‰ήY›*ϋύāŠsŒκί{}ΛόΩ«‹PΣ©Ϋψ~ΧMΠHaښ…-Z ΩΗ™rWtςpΈ\ϊ³W’ήjSκ0άxƒ_έ΄’₯ΆδœŸ‘˜wΐΒ’φυΧβΕΎα½Βχs³ίκlo5-$£~⊣“ΎB―%ρ•Υφ‘xp-μν. q@¬]W,XŽ28 ΊΌυ%Θ΄OwεΩyΏΐpQŠΎφΨΩπΛέλQIpΕF«ͺέ‹ pΌωwΫτ$χ"·-¬N¬ΫΩ©2#SK4sΦH˜¨ϋ”ƒYήπξ―ͺ\ivšžTΊm±ΉšA9„‡“† άσι^™ΰ―‡·–έks[μ‚C:[Γ#Κd—ώzK#XŽ Χ˜§KΟ*jήυύίwζ9TQv—oŞSβ”}*Χ[ΠŸ"Ι€‰υ>xΟΰ ώUνΎ ΏρπΦ—g’h°ΨΪG"O¨ε.8Ϋωάϋπ­pΎ.πΛλŸ5εP4 –έςœF>»A>άwχΓZ„Ύ»·.fy΄‹ƒΆΒyX³[Ώ_!ΨςTΈO<=zψ:“œΊ6qT©΅iέh—κ·υύFυOX-Ϋμm©σΕ©ϊO†τM<’ιVHίh„Ž~¬Ω?­iί]$Q³;£Φ«ΨέΕp7DκλμkΎΦ= ’‘t‹’©UΒ³(”ΰ~B³΅;ˆlμζΉΊ}Δ…ݏ`+IΨ#Ύ+Μ|C«oκ’ΪΪHΖ“fϋΛqq(θͺ―κ~•,ΩIA]™:ο‡gΦt™υΙA]q™n¬ΤŸψχ>μcΣ#;½I­ύγΤ4(nPnK΅δΖ ?<Š]6ξκkί!Ζέ±‚1»ί…Rπάιm­jΊ*Θ!au 6?ήθίΞΌ<λ ΟΦ[Δε‘Qσ5-Ω†΅[Λ―4ξ]ΧN.!άζ>Ύœ―ΰ(Ύπζ™©Θg›D³’b9šς€Ύ“²Ύ#½Ξ‰=ž±§Η»0΄˜HΫC+©$zϊΧ;mβ½EdΝή›(XΪ\?χΛ`ŸΒΌˆαρUΧ·£wθφf5% rδhέΤ΄Ι`HΉ©[­œŸhŽ ΉΎΥ2ƒΙ †ΐξk‹Φ―€Φu8.|Uk4‘O›i¬rʐƒσ,όί1ηΦΊ―ΰρ…εΎŸ§™ώΗ$Ώ’HΜoŒρ9cΧΫλVόW"YλΫ[/ΩΦVΆtΐεYxύE{Ήf麘—―Kξg*κ-BžΗ?„“V΄•Ό)¨Ηw8{iίζAιƒΘόk‘ςu? x‚Β{Λyν „η;Hœ‘5νΧz%޳ynΦΗΘΈl˜'…ΜR¨τά9#ΨδVo‹ΣUτ[»MaaΦm₯ˆΔ¨«:»|ͺ τs’9\jο•4Η:ŽΝHΦΧβ}CRώΫ΅T“OπΫΑ{7σRQι΅β+Ϊ­%W‰YNTŒƒκJε~θZ\Ώ †mt—muίΙΞ΄HΈpΰς₯Iƒ…cαέΜ·>ΣΦν³un¦Φoχγ;Oς¨XuBœcŠ•WQ»ŒmΣ6C ¦™¦FΘζ₯3f‡:a\6[ΑΊΒ@/†―€Ϋv±άφ‰ΟOξ·κͺκvϊ•Œφ—±,Φσ!ŽHΫ£)κ*“°ΥΆ`Ν‘Νp~ Ξ©­jrΨ"kiΦΠ][Ά9Θf;3θΐz½αΛ›2ζj’Ό³Ϊ&ϋK‡λsmΠκιχ[π5₯α&ρO‰G! ½°€£1Π…j’žŒΙ·Nμ―auξŸou1LΧΏtώ”U8αώΗΥ΅ !vˆwύ²ΤtΔRΉGΡσ} +ŠTω)WORχ—ϋGYΥ΅Gε-Ϋϋ>ίθΏ4„}\γώ*ίΕŏ…N¦RW}Δ7L±.X¨m€λσTίτι4 ι–wuȏ̝Ώ½+Ξο’k[Δ–Ϊ>Τ­@ΛKnαήpύ@ΘΣ΄9Lyύϋ™Ρn`Š}gYEΎ£†hΗ"ΪώτŸR}«―¬ο ή}»BΣξOYmю}qƒϊƒZG­ecY?{Q’v¨IΗ5; Šη-ŸBA #ž•Ε|RΦmtέ k—mΧχQ[’O2Y°ί±-Η₯Xρ½-άzf‘]jστ‰Žž²‘χPv[ ―=ρO†Ϊh‘οη›\H₯Τ[Sn$L,aTp±†oΈ;uͺΏ,ήΘ#9¨GvzΣ5O’ϊβΙ¦hΝΚιQ>%”vϋC―AL׏RΥΕxΟKρ—ioG‘\Ό[ΒΫΚW-τ—QξΓ΅zGƒΌ@ΊφœΖXΕΎ£lήUε·ός“½QΊ©τγ¨5‡ρ©’>Ή„ kΛ™’‚Λ±IΛe\φ@fϊ;Χ―Q˞oώΓΚΦ΅>πj­&PH2Θ;όΖ΅Ό=pΖ]l/ό΄Τ₯ά{Ά0s^Τ²Ό<šmιΖ­ipβUυη!‡±κ+KΐΧ/-φ±γ¦₯+2žΑ€#τ―R„’qΦζυί:η[_τ[{Ώ“εoΤΦDϋQσά…Tu³ƒμs^¨Γr·Χ–WvhΦ<\ΒωΚδτ#Έ=ΑΝ}⠘¦ρ„­ΛnŒκ`±7ŸhΎ±YŸ<%―£.‘§‹Zέ’¬lν©#…ΏηέΉν]2ΪΗ—νyggΤ­π―I:?¬KF~Σv ά υάόψ ±ΰλ‰nIΛWk}Οό΅=Ο–›±Ξ΄—ž Τ'?c—WΧ/ρ,±’oΨέ\ž@ΐΕtήπή΅α=cΌπ»΅δΜΗΞΔ1θ7€ ˆψ–{= ,| §IΡT6ς5ςπγ–,~θΟΌW7o7˜ε΅ν©IΘΈΊΌ`Δz0<~UΥYRppnύυό7Kεsž›Σ΅ΪΫx[Εfj–ͺšΪΟ§ή[[0—μN0%y«μγκk²‡I³π¦¬«­έκ~Φν£0 ν&tΆΉŒKΒΨ*° N=«ΗΌQoδFχž]•«mύ–!$_Lυfη―₯tώψ‰―IΠ΅}Δ+‹δZ5—;ΐ@αJΈΛ.b―c‰‹…ήǝˆ‘'-bπjιϊ£¬λšφ§ͺκ>Πb\Ε©\I"Όηηίδ·\)r9'ρ¬/xύόC¨hϊˆΠE½–‹ͺ ΩβζFˆ³ΗΛDωˆΙω°2+”Η’ νtΑ―« ΆΏ°ϋ$ΦΛr«Φg•ά••}Gπ¬K'š(m’ζE)j¬ #6γΘϋΞxά瓁SŽΖS§k6φCΒag9‰šίR8G—€κΜΨϋ†$ώ{λ._ˆ>.ρZήi~­tυXΚMs9³=@Ϊ\{Wmw£¨Ek=γΩiεΚ\_γδŒ€NΕ=71žΩ«zνΞ£[Η£ψcNw… ΚͺΚζ6Ί?ί||ΔΌυο^'(.f’υιψοΩ|ΟJ₯8·ΚΜ'τ­.[½#]ž•£gvΟ\+a“>άV©±ΣoτΥ|2Ÿg’/š[dUφςΘιΩ½ΕcY™tmKμ7–λnXoO(εGqξ)ώΌ6–ΊIΝΌ–¦V­’ϊσŠ+σN>-έYο€—klU8rΎW·δuš•ΫάιVιQω·Wϋ"΄NξΞ3ϊΎ˜―Sπή‘œΊN…½ZΓA„__Μά+LA)ŸΗ|‡ΩVΉ]ΓφΎ Πτϋϋ™¦Τ|CslΪ@Λ΄‚Κ Š1ό*3σΏ £SΤζ:+ψFŌ——r‰υ«Υ82;ΰ˜WΣ8Ωυ•:<Ι½ΎΏΧζ3šVZ˜ώ*ρ€ZύdAφ»Γδik ω•Ϋӏœϋ‘\M֐Σ_ψkEV;„ q;€“–'λV|W½βΝ?J·ΓXiς-¬jΌ‰Iτγι]‹G΅«κ³(Ωϋ21ώμk’?¬ͺT•€ώ&›ϋτŠω]šB £²Ωiϊ³₯πˆ΄? zλUΎŽ9ζΊXc‚52JΚ‹Π"‚zŸa]™ρ‡Γ7ΧΖΩΖ‘f72έ[lE'¦ξIP}HΕAπσRπΏ Z€ϊ…ˆΤ§ΜχmΖG9Αm½†ZΜρ=ˆυ;ο\*Ύ‹¦DmbH€Ξ§6ΰv’:ΖjROjϊ0tιF uc‚§½7'±£€κπj:Ά΅¨DΑΰšμΓC$Jpφ$1­K«xu ­'$Α(ΪXuCΤ0τ ΰ₯CᏠE₯ψrΪΞιb{„LΏ–0–Ϋ$Τ¨ΡZΞ"ΐ=ρΕzQVZ|₯vVΣu©―4Ω"Τ†u+'6Χ@weθγΩ†ηT-uO"πKjJΘ>τg£Š]U>Αβ;;Όƒo©Fm%?τΥ>hΟβ2΅ΙίHΊΖ¨ €xνQφ\^/Lr?Vυn‚ͺS²Ήτ8 πφ7‘Ωλώ(“Yςτ­ D‡mνΘκTŽcSύσΣΨ{ΤΧ€θVΆιs"F±¨UŠ< ΎΩλYS[xsΓSΚ"P ‘NX··©>΅ΡxΒ){h5_Ηη_Kσ€OΚΔ½†=k%'-Ž*υw–Η3¬kσή@Ιαύ>i¦δB3ξXΦ`Π/<6ϊO‰―'fη—«Ωb“€Ε{Π‚b*‘’.1…P+ρN˜šž‰«irτΈΆF©όΕ({jr„Ž/­rΙr«#‘ρΕ—φΏ…υf½x˜Ζ=yσγ~}C_Υ,t61-εΡω<Μν‡yΨφUκή½^ί]Ό1gzX½Δh4œό»u,Xnόπ” –΅=Ε©‡[{Ι!ΈV`ζα%#Άκ~‚Όl†)©Β]Ν³J‘QŒ–ζ‚m¬¬΄(γxΗΫVG[Ι,Ο:±IϊŽ=+?βA…΄έ7aRίΪ0ΰmοΝhΗ_ψ© Δ+ͺΝ΄ΩΑ?kŸρςEΆ„€^y£>ˆΉ―€ŸΐpRwiœΞ₯y}s ­§G ›N™fKς½³λŠυŸ†V74Υ-|IͺE³MΣΙ[D?ςσp8iΏέ^‹κĞΥΰ7 su­]­›=Ό„ξZ&ΐ ž„xυλθoΩίRdπ•ζ‹3“KΈΔ@υςd—ς;Εx9†.4)Κ7ΥnuΦͺ§5w> πμ77_Ϊ]Γιzΰ[ΨωΐώS€‹μ܎ΔWΰ u¬Χ†ύ+J1ΕfBάζό¦ΔjZSd}‚ν–<ž±?Ξ‡ιɘžζΉέ_ώ%ή(Σ―†«φΟ£ύθ‰όr΅Όjη’³±έbΧΉj²Γ<:n”‰>―t₯£ΎδH83IθƒΣψ½Mβgϋ"Ν<˜~Σrβ K`pfŒΰžΚ,ΝΨνT΄&a•ξεZ₯Ϋ .ξq1»Β‹ΡW°χ&΄§Nϋ‘*œΊ‰₯θ±iΜήβζvσnn€ζIίΥ½μ½ \ΉaγΝEΥ‰kK8 ΐ9ΐb\œ~½Ic—u±šς;½"-k^ρ‘o3ΪκPhνο o™UFΒ:2䜩­ka%Š€ιSva„ΖΓ ]Wͺ‘2_j0κpjš<_ρ1…vn#Ί‹©ŠCϊ« φΝKβ―Zψ§ΔšDVfH—L·{›‹yΧ Μ‡ΛγΥU[ž‡vESΣ΅ιμ'ŠΣΔ‘ΗΞvEyL}Υ·ϋ'Bj/ΕΓob:πu‚ίώ>?κ€Χ9κΈΟ΅|ξ' Z9P–’Ά—=άl(ζώ±…·υίΜ«β-=o+λHGφ•° m’α;ΖO―u=Φ«ψζήλĚ£Ϊ»²ήAΒ†ΰ«'ξά7ϋ@υ¨αΦ‘XζMC76λΊx. ƒϋΚz2ϊ\­¦²πψΑ|C‘Y³C4wV(/Ί•^ΝθΗ―λYpυLK›ΓΚΛ―D|ΫΕ,4\+;/3Χ5ϋi—J:•Ί›Iž;δί1°,ΏχΞκθ΅9cΎρ7„m`q$]=φ½P±SωΘ†α;Λi)y₯Ξ'Άl‘a‘Ώ‰{0ξ+'ΑZmՏΔTηF{ML—μsχαšTΪΏTΙτ _TΨrsMH―ρχB– λ Ρ§K[³mδ_Ζ~νδD…φΥr·pH=«Ζ΄½PIgΡI΄€`c†½λγ“I7„ν΄ΨΎφ‘©[[c=Fβη@η"ψrϊΆω!Έ’ ΰ>Y•r3ΫpοόθŽΪ'8»?ΜU3E‚«u"άeΥtω ΣnšςΨΛ’θGΛ27Νμξ΅a΅K­WM‹PŽ1&«¦Ί%ΰΘΉωΠzδ p+Œ΅TπΞ±co­ΖΦΧ†azΕuΠϋŽ£½ΒΪ@‚}J|μ…ξA8ŒJ™RU"α>§€λEώςž½h¦΅Φ΄Έξ dΈ΅ž,‚FC)Α‘Αψ3AMβe¬M){΅ΈΡ?-ew&{Œtφ€’φλCρΖ­²λNΩςΩ£€wΎw2ΈεO―έo[‚[λ ON‘—Q°œNΦs.fLaΣiλ•ηJω)–ι§u{}ϋz”fͺΣζhςŸj7ώρ>₯€HΎeΌS»DOF9{sNπΕέΟ‰u‚ΧΙ³ ny]KώCΦ½“UπžρF’ώζι`,ΖH/U€1F¨υ₯pΎΠ%Σ/δτ+:φΧ?ΏΥ­Λ˜ΰΗFύI΅Σ)B₯R1΄ό3ž*Pͺ‘)^%;― ­½­Ξ€n¦»WΌ}+tΐc>NβΚ: ?ΛωΧ;α™mτ―ψQ»!-d!›€€©R^βψwμgƒό7LΆχ+4Χlr\³ίΔΜI$Ž9―"—WgΣ. B8μ%sςξά1ψŠΪε5Κφi'σΊΈΉβΦϊώ‡a«κηΕ7νul±μF…YΥNξG΅©g£Ο}—Z›>›₯F7;9Δoξ/Ήζ±¬~%}’ΡcžΕžp ™c`‚Or;~›uβηΦ™©€ΖlΗm G ±'ζ?^+‘αq ς¨ς₯₯ξ›ω/σ:*Ÿ.Žχιk}ζΦ­­άλ–ΡhϊdeΠ!8ŠΠ+IƒIκ@<ςkbίZΤ΄θ–B n‚Ž.m—9ν/Pk EΤu ¦΄’ΚήΑ#»,¨d,ΨaوθN lAyy«κ)€ΪΫ‹kςε& οςU@- υ#€ŠΖ΅;Ϊ›Šε^zνΏΟώͺs·½{6g^ΙβMF ­6Ββ[{@θΟ&#ΟQΟ ͺ m}£ήJ’ΙΡά^¬+ζΌ«dp '½ρ^‹¬Mc‘YιšU₯έ₯Ή“ΙŽk·ΒΔƒ–™Ο~sυjαγΣΜΪΥ¦yτ“Ϊ‡y<Υc#†!ŽsΖxΐ­0•‘Μ£jkkυΧwΣ̌Gς·οu=BχΕΊ.™₯›έR_x‹SB«urΑšξYzFƒϋƒ©υJχUMΓ ,&7Ίύλ˜αΫε20ωζ8τΟψτ+[]B%/~`\`«©;zΥπκΓ£^@m΄ˆΘ£Ξ &α‘»“Α dυΟ₯i:0œΧuΣΏΟ²νbcRQƒK―Rh―£λŸjΤd/-•§*cδBΓ gΉΐ9>υΤΎ•«κΎKΦIoΪ6Τ.vRΫΆ‚Ί(φ§ι6—ή'sg₯Ω^ ½JR]^B±Γ F ,~P£ ’3^ύᝠΫ@Σ~Νi]›Μšgy_ϋǐ«†Χ­νͺlš·Λώ a*Š?gίκ|ϋ­|AΥ ρ-•‡‚u›έNήeбj‘$Žfu;ԍͺWiιΧΪ½ΞΖγJΡ<₯κφΠG ½+*Γ&τ2‘Υ²=[œvβ»MKΒzEξΏ§λMiz₯”Ύlw 3q‚¬{­fόJA†† Ό>›sΰϊ+ίψιjφΉωšΠσν%ξZ•Z?]½eκsΫΪΑ%ΝΩHαŒnw~Z©wβΨeΎšΟBυk€|»r h速uGγŸcT’Ρ.―΅(nΌG4wR‘έ¬CφηΩO.ίν7ΰuBLαœΤGΗwW"ΡeKX^ΫN‹eΒdΉ ρΥ―Ή­H‘%:zYF±Ϋ₯#EΐU€γZž ‰/Α>o4•ό¨Ό C£ΑusςΑnzεO#ωQ^ XλΐΥ½ξtώΠμujτί$–L«-χ@#;±ίšν#ήθ¨θk–ψbΟ¨k:Ά§΄¬2mD=5ΧλH"ύθτ©£k\X·'R݊w‹φ—nHŒp8Ο½yο‹ο ½ύ­¦ŠΣέjΧ,R X›ογ«1<*μxΡ_λ3\—|?ήjxΫ,Œqižς°οθƒζ>έj}A·πΥ΄σω{«]α'Ό”ξ?Ί pˆ;(όrkhFMθrUΔƌ[{œGΐΏ Β’j·Ϊ›‹½_NΤ&΄ŒŸυ6ΰαΙ‰OsΌόǜ:Χu£bx¦ΩΘΪοπhΆλ?αΪΗmβοΪ!3Z]€~όL€γ•ρ7RΈΣό[qa`»Χtu΅‰Ηπl•όΙ f7cυΕŠQgZ’o}GAšK—ΎΤQI]Bϊ{¬0ΞUœνύ1\§ΔMlGβx,a·[‹„΄*«œδsΗΠ«\ΥmΌ)g΄*.ξ?.Ξή6εΐΛz(ξ σ™lο­υK^ι㾞ηχ—(£k)τΤξυ©ͺͺNTcvŒκβιaΪ„₯fφ,iφk§YνΙ’i2ς9³¦ΊO‡ιποŒ|Η‚y£Τm†άςJ„2ω°Ιΰw¬(―£½1.ž¦ώξaϋ»xΊwώΰσ]ΧΓ‹x4ΤΤξ5P©EςάJνˆβ€ςΎ^z!ΑΙ<’{WΖR€λJ^ίύ€Ξœ₯jͺ]ΊΞs{.­¬H’j“.ΐ¨r–Ρg>T~έΩΊ±φΕcOβ{ˆ±…š[”Ώo,eaWBΈs؞0*­ή‘©x•Œz9’ΛK'¨2αεΔ {ΣCΗ¦kΦ>Ν£ήΩΑc [ΗmylΐσΉΟ˜2I<±9κkκrΌŽ₯Oί?v1Z/OΙ™ŽqGͺΥΛFϊ/σgΠϊލg―i7f₯šήa΅—‘t φ`yt5ΚψoU½Ρ΅dπΗ‰₯inˆ'Nԁ} zL£¨ώ!Θο]„—f/Έγσ¬oιή Σd²ΤΙ!β™$·‘yYφe<ƒψt5Χ(st'Κo`mΘ4nγΘψ;\Ό’iτO”]rΙC3¨Β]ΒNtφ= dzWXrG$τΞαc©Jη9βvΊŽ‘£(ά.ησ¦ι _3ΔΰWZ}{žMqή'Vρ>·¬ŸšΪm£cͺ‘Μ¬=‹ρψW`έ iMXΚ΄“v] Σ΅’υ’Ά9žγ¬”–­4Υ 8|™χ­¬ 3όE¦.―€\Y“‡qΊ6ώδ‹Κ7ΰk7EΦγΌΠ…ύΩ[v‰X]8ςdN$ΣgθEtmχMxοc6ή3ϋ M·DΥ<»N=Ώ*ΜΨΓ7π¬€ή»j$―©΅'ΌM+ {έoS>#Τ7D’‘O΅$†Šάœο>' }Ρλ[ΑeŒ-™‰μύ:Μς5I˜ξ(£Π‘΄1H€ό©―cμAλ aAW₯μ&­~¦Ή\):‘zvh½—Uφ‰s¬ή'π% S©Λ;άGώ­VuΟhZ<"]WR†ΟpΚ£ƒ½έP2ί€5βΎ.׍žWιΖ+Ol Ά;>£υΊ‹[%χš>2ρkx—IžΗKΡc{—Uqφ’ r‘$jσΈ΅/³Gi&­w¨Ϊ& ZΝ;"±υuf½ξݚ6BΑUώφ}+0Ω[ΌΏ9!{c‘5Ν:›Τϊ 6U‡ΓΒθΗπφ«¦Εβ H —φpΈƒΙuςΆόκIRΰ’ {Wcβο ΩκϊΝ°žΩ™”˜§9&7ŽœŒZΐΦ­-’°i/^8Ρyδ(„πWIρ)ϋΩ™nο#rV ΰ%ˆκ'ζγΈ―ŸΜ2ꓬ±4wΣπ*£§J<³zksksgq-œθΡΛόκOυΗLUέGΕένͺΪάκ— l£o”€"γΣ zΉw£ά£M¬ι7―@eήΧfίψnυΔέΫYΎΆΛOς-Ο1ΫJΖVϊ•§±5ιS«)―ίAΕ‘ζ5ό7A|=hmμe”‘·£ΘΆ\rύηό»Τ>,ΣRΒβQΫ Θ=Tφό nύžξqh5&Τi­£lΩ@<j»£θ·Ύ&’Y$BΙn6‹€₯Τ"/½Ι8g_’~ΪR\½―λ©Ί…γμΤσ(πς ™ΨG c$/΅z”Z…¦ιbfˆ]§—ζ+ΙσΟL•ΑkΊbiχς₯΄¦{2εa›³γ=p{τ©|?vπκVέέΌzxw†ΙTλNυӊ„«ΕJivξe†j”Ÿ4oϊ…’iΫ=’F۟ΆL ύΦl…AτΙΎk΄π΄vχΎ!Τ“‹™Ljz77σ•sή,ΉΦΪYTήXjΗ,Β#`W>½γT|%γ›KοήBκl­ξΥY Ξ6‰TmΙ=²Έό«ΐ―GV¨££OTίλχ’«EJ1ogϊψ–Άήλ³m€ίc„ΈώγbŒrΔ’p+GΓΎΡkO5Ά†R"г.ZQάΜ26'κ:֌ZΎ£ψ†κ{(>ΦΧ«G¨ΰ€Q³(’F(ΈAΗjξ!Ήπ΄J—Ύ'ρ—smζΓc ήd1·©-+{·€Wm5g jΚΚνϊmoΞζœnܟάpPxFΔ·TΆΠ/βG;EΕ½ΕηΖε'ie'‘*2+γN΄†υμfDrΨΚ%ΉΌ–λν μ9χF γžξkΡό_ροT±’I₯ι‡δ{ωΧlςƒό0ΗΤgΧ“θkό1π†+}KV΅ϋ=Ί ΦΆ2.\ž’YO―RΧ“ΟN†’ί³’ίfξμΏΰ™Αrϋυ?αΞ§α―‡elχRR5Ε]θOϊ˜‡έO―sο]ynΌgŠ2Hΐi$ΰuΈESŠŒVˆΒrsm±ε2PIΟAΞk?[°Po,n9Žβ…ΎŒώ΅[Ε–··:+₯žko’&”Δ&P2ΈεA8Ι«ŒΡώ!Os₯C»ΓχΧ7 ˜ˆΣHšWŽ&r7~s]‹–ΖRijdxΕΆw‡ΰΣ΅;+Λ°έi3ΕdΝ™ΪΔ#<Žυ·‰΄kζΝ†©g4¬HΨ&PίχΙΑύ*…,.’ Ήο ]^]Itπ£oς·t\ާdϊζλΪw‡#Ά-βht„„υ7‘ŸΟŸΚ½hE¨«ξy3JRΠΔ6골ΗήγŸΜΧ©^΄:uνœ`,cQ*pzδψTϊ₯η…ν’Qΰi΅=b4φf΅οyΏ.>€Χoy¨_<Ν¬CrΦM'™qφ@ΉίŽΌsŒzW6%θ‘Ϋ‚\“»Ψϊ:ΫΔz„<9e Τΰ\It΅|Ιε'Ρ?‰ΐχ―<ρO‹5ίJρ—mIžP>n· ϋΏEόλMŸIƒM+£ωM,„#&Aώφ~oΞ€»‘‘²œ’2Λϊ Ι7±θΡΓFRη–·/xcΔšΟƒΰ†ΞΦήίT€ 7q sώπΙξk4Ώθώ)EM>ε’ξ!ϋΫI—Λž/\©κ=Χ#ήΌ§K•.-"bΐ£΅[Δ_ΩΉ†9™Φπσ€>οφόΩϊV°«(ο©Ι‹Κa;ΫOΘτo‡Ϊ„7|gφQϋ΅΄³Œ`ηqVZεΎ6xͺΓF•ckbΏ-κ©έ1>‘27+TzΆ·βΉmmεΡ€eŒ…TŽE=;dς~΅μώ—K>ŸJg-ΆKK€C ωžgϋ[·ξχΝpδΙN««ΝΜγωχg±‹Ό)ςZΧ<ίUΧc"Ββ9‹‘Gbϋ” §ι‚ι\‰βr‘%RHάΉ=G˜΅hj^E Ρ’Θx|έ<Ϊ|wLΒE‡qΨ2?‡’@τ"³ΌGo―Ε₯Οqq˜a=ζ9°]λΠ+υ uc ΄ΥΣ>*t€λ₯tkπ>™i0 Χυ¨“qΌQνƒY/w#G]£•ιτb{“ ζύkηmcέLΟρf•5μ6χΊSυ=ŒΆn(r~τ,Έγƒθp{Tw~,7ώ†γEVž ίcΆ…ΗΝΑΚ°aΨΗ†'ύΡλV¦Ό“Λί$‹`e™›€;ηΪΈ/^γΘόO5ΈMV™­-$$’Ή+Π v‘žΌZΚ¬VζΤ€υ·CΨΌ=₯Γ’hΆzu±-Όa7‰Ή95 έ ₯ ΠΤΔ’€ηiΟ½۞N(ͺ3eΫΔb/ΦͺΪp‚¬V€wSΗm³ΞΫa‰ Ž} šβ<;bšζ…w«ΒλdΛ$OΥa#§ΆŸ«ΣρԏsŽ‹ }Jq€u/Ν!ό@ΕjˆΒ(ςΤ μ£ φ¬*JΞΗMΪ794φο6‘¨±k»@ ΘίςσE—λΩ‡χ†{ŠΩšκ8cΟoZ‘β>βξτΦXυ[2d·f8VΟލΨaΑτ8=ͺ"ώoL[‹xΨ Ζ9 “οΫΚΌ20υ·₯5- kSεΥκv1^ΓΎ΅ΨΗNExί„5Σ#·#l–ο$N|;t―eUxXmΞάƒ‚1ήΌ>φht“ze η Bx|΄]Ν#*¨δž{W΅–N1œΉ•#0„₯ΘξM­ς4rΡΎTvλΤj±§xζγ\π…—ƒηiν₯ΫutzKl„“=Ι<7ύsχ«Zƒ.5Kί`GειΘΩΖR>ρφz_ˆλ -¦[θΡDΊΤMϋˆQ@E€ύο3u8wΘγ½xάAœΕt0ϋ€ύη’ώΌΟ[)Ιͺ`γ,N&VO쟟jšžŸ’ιΒ]Bθ[ΐ­ΐcΧ=€ξk…ΤΌaw¬ΞΆϊj6bΗv\AΡGλ]DΆ½KcRΉ•v»Κ0ˆΏέ„{υχ―5ρv™q κ0Yi’ Ο=‚ΫΖOοcΙΐ Ž£= |VEK/©_–―½%Άžουκk˜cρcΙ†ύz›Θ‘Ϊ΄VΦΆΟs©άδΖƒtžε‰θ=Οή|,πžΟˆŒώ(†Ϊκι¬ Μ0―Ν .’(ιΡΨκ{τ­_xzΟΓΦ*Nι΅I «™9yΈ²Ž€LΡαmaξΎ.if |Xywvi-Ÿ6`ͺμτ] gΧ>•χυ'ΝT¬—CΛΐ`#†Ÿ΄¨ω¦ϊΏΠμ|vŸρ[x&W9VšξχΙ‰HΠMTρ‚4]NVΌU}?RΫ‘wfv>ΪθkGβx1 ^’’mu˜A#²ΘύHͺž%Φ—IΊ[(‘’W—-ŒG’Ζχ=v?…LRq΄‡Œu!UJžηŸkZf·αϋ).΅X"ΎΣaε―­ˆFAώάGe#Δ>-[˜=Ι‚άˍ£ΥS©ϊž+΅ΦτΝkPΤώΣγ)£»N-ναm­˜χ ycώΣ~BΉMjͭ!ξʝ¬GήΜθsλβxƒFŸ²zΎ¬σύj)ξVKΫ‰.’4b¦Vέ“Nƒ­ε„ΪYoΉΤŒŠ~Ο.CϊΣuKi<˜τΘΎYn$*¨T?yΏλYϊ΄“θΗvΊ4ωƒ΅œΈή§’xν\3©ϋΘƚχ•ί§©¦}b—·―-βwχήρ« Ί½΄]²H%]ά™ „2qY‘ψBMΙηxŸH‹{whb}ΞsψW ˆ/ηΥ#½ρεΦ₯§±!’yXŒβ UMcA…ή[έ2φΡμ[ηPΟσ.‡Iτο\xͺxͺ΅mˆ©ku[Σ[žΞΡ£O–Œ6σόNζmCΒφ`>±βKXωt±‡bΏ³Ϊ¬kΎ'ϋn„7Xbψ} kΔ·>ŠqΡ}‡^υΙhZ BΓuͺΔnυ)λ{ώφάτλI―«jΧ’McQ·„ ΒA\'Πw5Θ°τά‹m.ΏόŠI/½Ÿk%εΏoσ"†‡¦κ;ρe₯²2°\ ω-αO°σ5μ^ ύŸγ•ƒψ{T1 b»RΓκ#]§Α/ΗαmνW1cSΎΔ’4q ΤϋΧ§*ρ^ΕΤRKcG«>zΣ>kc:~‘βxΣLv Š&dw]άτΣFψ#α>ΥγžKω]v™nd9ϊ¨)―TΆ§›Mȏ$Όψy¬Ω+MΉ³Τ,‡ ι1Θ£Π‘ς·Φ«Ωό4Φ'˜DΣ»Α'αΖ+Ω₯/¨Πζζεώ½6:>±RΦΉΛxgΐΪF‰p·B9/uΗΪΨ;χGEό+«l‚¦Ρ]I(«-Œ[rwc‰±Ό_β7ΒGφ¦²­˜•ag…7•-Πγ΅λ“ψ›δΟყζΟEP~΅QNM$Ki+³ροΔ‹MSΓΧveͺ¬Z΄& Kΰ3qΒgpΤΧ/©ήψΧFb#½·]§X¦θp3δtνΕnιZ žyw|ΆΦk}q)vkhΚ f5?u{ŸS[6vڎ₯©gθΆΛq¨`4¬νΆ;u=Fνίryΐ―RgΙٞuzκ€νMh>’ϋRΤcΘρ>§ζp+Š=I 21Riώ΄’ςž>\†2\#γΩ―[oƒZ *ϊ―‰u Ϊζ$2M5³ (Tc$Ά3»ςΖΉ{Ώ ^^Δ'ψpšΥΕ³gk"ZΚ§ΌlΫd>Δ kΡ[œς„žΜΛΏ. 6ΨμrGF:ŸΔΦ…μξš+ϋΛxΌΘ$ΌpΈξͺώy«:ψΤΌ%Cβ-1μ/e»Γ*¨θ’3άƒƒνRxIŸEπΎœχ–σHe δnΨ&΄†K'GΆ(<Ά•+Ϋ—γugπϊ*ΰν@}dZ΅ͺx~}:β[2EζΣΨΉΔδΟ6χβ³oo£Ττθ­”IΓ^[Ε=ΌΓFwηwpGΏIΒζ΄q΄΄•ΆgΞγ2šψ±rWχώΆ=.t΄ˆm»b²μžBΒ9ΛnFΓke.ΗΡΟσ¬ήKk5΄R$Ί΅ϋνβoΊ1χ€φrήΈe%Ϋ6Œ\šHͺ<7jXXD]VeγδκΆΰyϊ·’ύk¬ΥτH5 m3(ή ‘”0ΑF›Hπ¦ψOE‡E’Ϊ&id,^YίοΝ!坽Ιό†jέ •9σ%QΞW=8ASVEλ2k~·žμlΏ„΅΅Ϊ«4gk~|Ζ·ήΈ(Ηχέ-υ»΄ μ."Ε“»G<]PwW9j.V*άτQ7$QTb_΄ ’‘ΠŠ°N'΅s^Ύ’Βzl³ην “6z‰μ|ώ*k Ί-m₯Έ”(Ή>Š ε\ΖΝYΨζμφ—Œυ[³ΜZtk§ΔΫ?<§ω θJγ΅aψ9Γw}’οuܞζF'ŸΓΡΆΰΦ]N΄(ΝyΗλΊmή—¨ΆΉ‘ΒΣHΐ-ύŠqφ¨ΗF_ϊj£§χ‡΅w ΉιUέΝL_+ΉOUffι—Vz›έ„Λ5¬Λ”aϊ‚:‚uΌς ΚˆΎ&»0ƒ|²Bρ»’DhρςPt•δŽMuΪ¦—y₯^Mͺψv5y$;τςΫRλύ₯=_φΊ7Cλ\―β{ ΌX·Φk4―b-’Ο&k¨δBΛΥ[ }±ΟJxΉ9Π’Žζ˜ƞ&.[jm_^LobΣ4HηXΈRSΜW t2ΘGD™8ΉKBo ψήσOšξ{Σwm 鹟ε~Qϊt^ μ>πΚθΆΝvc“XΌ"[Ή“ξξv5aGΧ“ήΈο1g.‘β?&IE”¦Φu‰w1Ž\mΐξw…γύͺωάM9N„¨₯vφυήί‘y†#λΡΩ‰υ6μβ·΄ΞΤΫΛ·‡Τχ'ΡGRkαί‡Voˆr›ΩκKΎΩ4μ8yΟΚƒ•y WIe άCtšŽ²Υnρ˜ΘΆˆr"ύΨχ4Ώ ”I¨x’τ·^, G’/ψΧ₯“ekMs|oς9aOΩΑ·ΉΡψΎξK ϊεQ1o :ύΰ8ύj…¦—νΏ‚ΩΉk θc•RΣ+#“υy3S|H'ώ+•Y7 d…{T³~5x¦ΧNΠ.4ΈK>³8@‘°έΗ %cΫxΟΆkθ–‰žuvέH%ήζΗΖ―τkέF„ήλ(‰w!B6X€l$HΌvό©ΤςzRψΞ!kο6K««π'Έ»˜ζI،‚O`;(ΰvgIŠΔi(Άδά­Ϊω³Ο#dΜ™άυf9« /h‘ιςΆλ=ήΞ_b‡ƒψŒW _Ά«m’;±”]8)\μ5Q°Kη¨1σ εu­Ϊώέΰˆ˜ΫoξδλƒZΪΑ–Yή.ƒζ' ΐx·ΖΦΤΦ)/U™# $#ζ$ύOΔΧ³­OfΤ‘ΖέXκ_‹αV…cd·c)ΚΘ7rGιYΦEΥφ•tΡfc.|Ο”ΆόΓΧ9ͺΎ3ψ˜Ύ [q ±Ž[Wί‡‚20ΐϊ‚?₯hΪθšηŠ΄›;Ώμ&ϋœ™  ‘ΗϋΊ)υλι^MhT₯‹uaοFK_+½<q8XαφqwV8έΓϊΏŠυ/²Δ.YΨD ΗβqΨWDΊF™£=ευ„hŽΘ‹x›wŸ9ΰ·§RΗ½hxΎΣYΡμ¬l'Ά‡MΣnΦ8μίs1UίsΗZΞΣ^3ΰύ,F2–w«φ?‡ζ8'σˍx§R¦‘nΦςσ}ήί3Ύ„aN«§φ’Ή›¬Eͺ›ƒgeΤσ4_hΊ’ή6wsӝ αGaΠWqϋ?ό?ώΦΤSΔZ΄'μVοώυβ>‘Ÿ½'φ~Υn Ζ­¦Z[ˆZφo9u2‘ƒ,j‘γP~ρRxνΛzWIc©YθΎ!Φ΄ˆ$»Ά΄+6θm™Œς]_bγ†Ιγ±ΗjΦ„mI>θΌš:δ\T€TVΣG< 42+Ε"†GSΐτ"₯Ο½TŠ£΄Μš7‚¬>“"›“Xή*ΦγΠ΄‰oKΙ‘1 ’1Β―ηϊU%rM ΐŸ§_j\σΤWŽk>dΦSM{κ«Όm΅νnž(£|pγh>Όž¦²Ό;­λΧ:5ŒΡψ“Wί"ο#Η&Φa”χ­tΣΒN§ΒrΧΖS ―;žσ\_Δ'‡ϋOΓh‹ώ’.&‘{‘Œ?Lΰ}kΞ,Ωψ{TΊ°°ΣŸRžΜw#\,D»Έƒ’8Ο3^[aγ ρχ‡υΦI-XL­ͺΪK€Φ·%f@Ϋ$MŸξ©=vtŸ E¨j&ρ&±§M-ΥύΜΊ|7—1„Š#!Ϋ R~gn»AŒb§ΈΞM»ΏΔ¬SR’”U•‘{Ε^'>#|1ΤmαΡu©ζˆ˜m’ΒGhη_ΈΙ τ`zW/α]nmM²°ρ]ζΆ%@ΧΦ­dγFΡψšϊΦζ»h硚9νάe$‰Γ‘ΔqK,1ΝG*,‘°Γ#Α‡‘Ί£+;£™Ω«4x‰Ό5¦Νi-εšΛœω,qτθEpKg>œ‘ί[9HŸ¬ˆv£)γ?₯zϏ΄ό$WZT%|=/ΩζΆSςΩΜu“ϋ±ΉωJτ ‚:šγ¬Μ2[κQ‘4d„‘8f^ΐŽ„β½:™?‹TyΈœΆ” ύš΄ΌŒΣqqp`Ό±ŠςδΗ’¬ρ 77ρz}_s}@4–26τ`pbqάΜ+Τ­εM?NΫl¬ΫNΰ9&Όχβ|Oύ‰-τztj&ΔD©Ϊw±ΐ8υΟ₯iRΊ³mhŽ(`*ΖJΤτoΩΣΕ}/QySQ»Ήžϊήipδ|.WPœ―§#Œγ¨·o|wβ;ΞEͺZΩ‘ xΪ†Fύdγϊvš$-,Δ―oφ$CΔgkΒθ8u=ˆ95΅πkΖI«Εͺ[κ.·5Μ—Žμ›Κ(‘  2;W—c£ŠrΜpο E%Ά‡Yαz‡ˆ4„|[Ωκ Щ쒁 AΈΧρ›A²—ΔšMζαo=ά/n·(9ŽXώd>ΰŽξ+΄πΔ«7Š|c$‡.mγzˆ"©|TkXΌ?ax!iΧQ…›pΰ«eMvW2hx[IEΎ§‘[ί“$Φ—ˆo`βU ϊ2ϊ©νωVΟ€|4Ύ-ρŒqI$ΦπΩ@χ&hl‘ΉωSκIΑΰνΑ¬ίYΖΡA₯0y!$&σ‚Tυ½G‘υ―Tύ,Aπ­ζ΄γjW=R8ώP§ΠηqόE|ΟΤ–·΄ŽΕO θΤRŽέΫMue}&”+½%A„Ή‹8§ς+ό'CYwU½οŒ|;CH·8||ʈΉ+ŸBOJτοxr/銒O³jΜe³»&1ίΥFΗΈδΦ—•β+Λέ[~Ÿs£Z}škr›™e~1όe€qΨσ]4(Ήba5Άη³,z©ƒœ%ρmκw^ Ό‡CӚςui2Β8αŒ|ςΘ~κ(ξIͺή.#ΈŸVΦ Ύ―t 8S”·N« {ηψ>”š6›¨ή¦·β5TΌU"ΦΜ­šΉ=εoβnέu6ΡόΓ#Ž΅ιb+Ή>U±ηP’©gΉn$Ϊ zTΐt€t©P|Ωτ¬βTΩΜxρ^ήΞΛV„f].ξ+ž?Ή²ΕMv_ε{QΪ²υ‹A{¦^[0M §βTγυΕWπeιΎπΆ™;œΙδ*?ϋΙςΥk–Φ9ͺλfjMύh¬/ψŽΣΓv1]ί8Xδ”D3κA?Šήζ κIαΆ:w‹υύ!ΈŽf]NΨ³'τ‘Xΐ¨ψ³©>™ποZž$ifxDΖ½]ΒνδdT>>-₯Λ₯xš Ιό»Ό½k) χΛloΐΣ~#¨½‡ΓΦ ε.uH€bUY™ZβRΌnmΛy#‘π¦‘i©ψ~ΒκΐζΪH ώξR§Π‚?JΥaŠσέ_ψEόBΡ?Ι£λn?-΅ΫvφY?F―B ΖλYnήŽγj7jR Šk Ž:@@#Όίβ„Ά^$Π_œsΞFkOkšψ‡fΪ‡ƒυHbΞXΌθ±ΧzΛϊŠ₯m˜=‹ZŠ‘Ό½ώΙΥ­ίIΧΟΨηl‰@ώ(_€‹τδwΙκZ’ψ―Η1ZBCθΊ4¬KV{΅ΰŸu$φ‰τߊzΎ‘πϊ{x"šϋYς†Ώ¬3H»ΜͺG*QwJαώάήιž³“M•5 y ν¦"9£cΛl~ΞNλYύN·Oδg†”ͺ§ΜΆ:έfπI­ΞδόΖΔ}λXΏΠdλ2«’[RνϊŽ+'Xρ»\^.Ω-ξ<’† …1ΘΠυϊŠΓ›Ρ§jwΡ]H‘ZΛj—ωc€|OσΚΝκ«S²5ώ+M‘α ¦»vk«ΏάΪCε₯κΠc'ΨW‰Ν¬Οu=ΝέτqKrΫ.$mΟ#ΐƒ°…tώ2·ΥŒxπ―—΄ί_jπI©]MVεΎy§“‰χ=M{ίTπ°4¦8.Yzr2§ι^ca`ΊΦ›e :ΆςyσJΌmLcώσΆM}“„ew±ααSœΥ/y–~xLΤ5ί΄j‰tθOξ£o»rγ―=Π~¦ΎŒhγUB¨@{ ρε΅}2Šά΄@£GJθ4K j’Hf„pΉe>„Zη²θ}΅ ΓΑ(όΝΏψ}|A Οd6­Β‘-³·D‘z~‘―"π„nόM―=§Ϊls€W 0θXη^³>Ώ%ΓAg¦Δ³κWGlƒ•ώˆ½Iό+Ώπή‰‹§ω1Ÿ2yΛ<δa¦υsό€μZό°tΪ½Ο/1ΓShUN]»y• πΞ›‘k¦Γl"ΆΆP!±Vd0η=yο“U4G»πDz­‘ Ο} Τίj†Hf|¨$έΞ22|ΧX«‘Ν1Πg¦k…I§s€ΥŽαMΎ‘¬ΪjΠ\j—60iσωPΐΦ«ρ†³(=PΖ8ΕI’xΖλQ½΅βneΥ'Ο•(ZΚ€°σ|ΑχT…'o^+ Ττ Ješξ …Ω½]•ώι Œ―±¬oψC,΄ύNSΓΔιZœ-Ή2Νq‚"pAŽ1ŒρWΝΈš—FlK­&©fλ―ic|TI™ΖΙМnB}G΅fΣW±»”Gmp’1Ι\†Η]€Œ6=«Šρ„5_LχΊŽ­o=ΐŒ"[$0`gn;ΙΞο\zUψ 7†-!Ρlo­'°xΨHφLΙg΅HΪGu<)#€ c—*{3[£³έΗ‚sK©€#Τ’@%x‘¦#©7Γz΄š7ŠυMλ碚c-Ή'Μ7ψυό C«kΎž₯Žε-ΙΗΎκΙ΅žk7‰uqŒΖŒρ”Мφ##λ]”©ΙJΗ*š­ ž§,){a0•Σ”ecGΓΙψZ[Ώ xΎ)4ι#MBΣtΦήvLW0°ΪΘγϋΐqΈsxgZ–ΰΛox+¨A†uC‘ŸQμzcLρΆ˜—πΨΞς4+„ŽIW¨˜+ώ†½LE%RŸ:>wˆφ5)w±ξΪ΅­|PπΓ‹m6-GΊF‚k‹Ό\4γ£y*0 η£·ΰ8c^πT——·ϊVͺꚞ k{¨͜,ˆο|Ότ$Χͺψ£R°π7€.ξ 0ΫΫXڈ­— ΨۏRIrُv4Ώ΄φ+{Hοu™Χ.η""Gg}μώͺΈο^4‘ŠWGΠΒrƒΌ]Δ·WZw…uv½½Σ!in5(¬£·ΩΡ‚ΑρH_‘Έ zρ[ψ1₯κš w~ρ“hΨρ_Ψ#d9ω‘μkΪ<VšŠνΒͺHo"•QT!6ρ¬x’ŒΠΥ½kΒVΧΊΥ4Λ‰΄k7Ά ~τzJ‡ε}yχͺ¦•?ƒBg77ο9£xb?[ΪΫjnΡuδ.±irLΘOOξ¨?άqzξ—Δ-†!ΈΠξγν[ΘήενΟӊպΤ/΄ϋimΌi¦[O¦ΈΩ&‘f†H ΣhOΝχεG­rZΊCࣆwΊπέΧόyL€ΚasΚΑ‘Λ+υω}*—™ί‡žνX’Ÿuίj? |I.­a₯^@‰42‹7he·d ¬˜l‡u°0yͺΪ6Ϊ–‰k{gεΜ’Ζ²#―ρ)ڊέO‘Γα«ΘΚj΅ΡΥυXsv၎iΆFΈφJΝπσGαίΙ€gfŸ©³Of;E8εまπ»«j2jλ‘Η_ΝzΩ?ΐv½πώνŽΝΛΎFcͺŸzγο#‡]ρ§ΫK9·ΆSwU\qί\ώήxφυ…½΄%ΦD9$ςΈκqύk™ψqnο§άλWJΪ”›Πt"Κ όy5Λ›b}Ž₯»Π0t9κ©tE_NΪ_†.Άae” x°?‰Ξ?L“ψW“Ÿφ&Σ―Ϊ«F nό’¬;}ΰJο|{§^ψ›R‹OΣ¦Šάικ.₯iΞΩΈۍbCπο\¬σκ:lg”±τj‘κ5νέ̈uIod–ϊ00F<?»·5oγ-ςCΰŒ» {n? Ω'HπτΎUΦmξο]~[θά%€ueQΠ§ήΩ«ŸnšςΗâϐάΚoρ»|jΌwλ^ΝMψ5™e¨iϊL φ«ˆαTθŠ2ξ}€ο\―ˆ/­΅έJςw•lmΆεCs+a{γ¦x>΅ZQpq‘ί6κ«$}mx’;k†ΣtˆT֊δZBΐ,CϋΣ?HΧυ=…q~ Ρ€»ρ‰5έuΰΌΥ"»qKmŠ ˆΤϊ7H©> j±ψφhν.¬sύ£ρ4Š»ŒŒO-ΉpΩ'½lx_ώKIεΟ›xς^>{™΅/«ΗM4ξΩζP¨κΝ«ZΗD‰Έ…©«G΅°:Ρn6彩ρςΩ{…Ι{Τ€`S¨¦έ\Εmo,ΣΊΗjYݎ@$ŸJΦ(ΖZ™-ΧSBγašεΨCmύι₯oΊ£ωŸaXΏ…ΤžΗQt{»KΩ’FOΊKό{|ΗJ₯cζψ‹RώέΉFKDRšlN0UޘŽΜύ½ψVζ=?Xρ`™ΆCCvΔπ˜ΨŽΦτ·2ͺ“–ζ4x{c;Iχδ,O.9©½$•Žš+“Bδ΅ΥlD:ΌΆΒΔd―ϋ§ͺώΈ+{ΟZΪio&‘cd›ηΆΈ—fQ™Ιvλ[Zξϋ'–H₯kVU,Ι ω[α]?Γ½2Km6;‹ΕΕέΫύ’b}ϊ _η^Δۊ·s¦#Yλ²(oKYζƒRΣζΣ儁)–Ρ!# yŠ Ž=H«φ±ι7‰ΎΥ-nτhŠΏς5Ϊ|.Q7†ε½dύενεΔΜOρ εύ0•{Wπ‡΅ΝΏdΣ;cΝH„o“ίrΰώ΅ΖςšRW‰ζΥ«Λ7yn·₯ΑφGšΐoνȞί+·χ‰Θ#ργGΤmuύής0­owYO‘eώb°ό ΰ+]kΒvwςλ:δ72ΌΏκ―ITČB°#€ό*₯Ÿƒo<1β”Ρ!ρ6­›} άΩΆΘI3ϋΤ9NΌ†ΗΌιacYϋ*nΝ3j8Ÿgu-ŽWV’ΫHπξ©α}Q{»IlGΝ‘i:ΥΥμΊl与&ys1\(^γk&ΫZΦ΅9$ΧοZ'‡Μ‰"gεΟe―‘ΓΤr‡³“»ŽζtρTpφςOήΨκn~Σ`ηƒ4#¨ξ±¬Ϋ™£σ’}-Δ·“8-PόΉνŽήώƒšβ5%šHe7—Χ“mݝχ Aτγ5κ³WƒΪ.ΌC©AΆα˜ΫZ†ͺƒσ·Τž3νD«YhzρΟ#Y~ξω‘πΒQψ~ΝηΊ)6­r\L£ιz ύO5ΨιHƒŸ\mέάα“rwb{χ¦ŸZ}1ˆ=*D5†E0ρNvΐλŠηυq⿏IΡ­Ζ‘L7-°l,)ήY›ψ~g »°=5eύWQ²νλQΊ†ΪΩzΙ+…QνΟjη₯ΥuMvέ“ΓήΌΉΆ‘J »ζϋHΑΫ»ηaƒΩk Ρ<΅κjšνΡΥυ‘ΚΝ*b+hbθƒί–=ΝnκΊ½Ž‘j'Τξ’·Œͺd<»u@Ιcμ5Υ]ΞiV»χN Ζοα =χUΠΌ˜! i\Ν ‘ϋΆ9p r=3\ξ—¨xfΝm5½8½€yςοl’ia I!JŒΌxΞ0F8λ^—&΅β PνΠtCmnxš³y@ϋ¬+—?‰ZζnξžβclΪΆ£β=B6!ντΧVQ·£ΚΌœznsν[ΑYθsΛ]Ξ[H³ΠuˆžυYγmM?Β/jwΩ³eY@!.#Ή‘₯B{‚XΐŒVL‘(ΖWGΝΦ\θΪ¬Z…Œ‹0ΐp%OO­z†₯{g­ψ6βγL”2K‘Vα‘±œB3Η^ΦΌrίnFΊΡ₯|G|‘ΰsΠ8ώχθk&;K―*GšO.l-Τ Ψ(λΟcΫ5TkJοC<^fͺΗβξz|u/‹τ€Ύdzm΄vρΓŒηωUηaθ0Bώ'Ύ‹Σ”'Ž|Qž–̏χ6ΘλšψφξFΦVβξ(ΜqΪԈΎQ\a1λΕ}3’x†mOΔ:/ˆWNΈ΄5‹$°3\:ƒ,Γχ‘0Aœ)>bNIaΕŠJšŠb0΅W.meί‰··°„―Ku]FΛdW{ΈKγ‘‚w+AΟbj-#βύœΧ k¬h:ōϕζΘΠEφΈ‘{±)σ`{­b|LΦ#ΥόCk’DCYiŒ.οXrl~ξ/ΐΗκ΅‘αƒ7Œoξε‚ήΝ#w=73–ύΈͺ΅C*θkνy«ͺ(χ>ϊΧT°‚ςΖx-gMρMnWSάΰόI ΫιδιH¦=]fbCczFθδ‹ϋ˜tΑΙ―;ψOγ+Ϋ/‹V*ήΧu –Ϊ=Έϋ,¬~F_φ\ƒ‘λΘ―IψΣ¬E’ψkΩžd»Ά6ρ―ήyDͺT/ΏQwI³DΥτgž|>eK;΄ΊŒ₯ώΩ,Ž^I&RQΛΙεNa€*^ΐk un\Η"F­ Γ¬RΚΈϊΣ"ΌΝ<<·O5έΝΆΛ»‰^ydW μXŽAœ~ύ?CΠάgM,ΡgΤ€žAΙΨ δsΟAοN₯xQ§ΟQ€Ž˜cΰ½Ξ[άήρŽΈώ"ώΖΡΡώΟ«\–ΆΤ#^°"Ÿή·°nΗή»Fš+=1Μ­¦kwνηbSӁ^u ψΪΐiΎ$Χ¦Τ&΄ΌΊςgά2K »ό±JΜ€ηa^‰ͺxΓχΎ#±ΠaΆΉ”(z„w+ˆΰεNXŒΘά}2kΝΕAbγν\­š¨°ϊrξr>»ς"{Ϋ©„Sί?ΪeσœdχηΡBώ΅°|U€,ž[_Ε,Έ $9•‰φUΙσ_ψα j“/†τ˜ŠZJήgΩΖSNA=1Sό<±ŽΫΑΪ# x •¬‘f ^Lkœγ½qα°0ΔΉ7&ΎFs―mlpύΕ¦ φžΥ-λΪ.γϋ4!œΰΏζ۞3·½y<'β{-rΒΩοmc‚Hdα%Ω²ξάΡ+6 Η_\WΡ?ΆŸλh` έω2œώ•Λ|IΡ†ΏΰΉZ5έsl‰wήUώc5λRΒΓ@Ίφ·osΑμό'§ΫΘ[VΧDΞ~ςYFυs[-’θ‚άE§ΪHσLViί'sΌυ­-: ˜"uΛ«¨uΗfΆ|€Λ}βΨγdT΄Σ”O&ΡΑ‘Ήυ-ωVυTiΑΘΥΤδŽ†Ÿ‰ε—ΓΧ" V ˆαM*S»hΓ²ί²λ|Χ±iπ€πΓ H#P;1^q>‚<_¬k©&<»O±ZΉrιρ&ρ~&»/λ ͺψjΖξL,νΩ—ΊΘΏ+ΜW*Ξ₯4™:\Ί§LΌ T± ― /Ο8χ«j098­"Κ–šυΕ^Μ ΘΧvΔ0Θ;£Sƒω+«€χΝrΪιϊN cΤΰf'ϋ­”?ΜTΔ:£3@2xkR]bN™;Σe=»[“κ9+κ86άμk;]Σ-΅]9μξԘœύε8e εYOfk/@ΥgŠν΄}eΑΥ!MβLanβΞ<ΥχιΈv<τ5²}Ɍ”-sFMKȞ)^ΧPΆ%­β»TΦueΛΝiΖςEι’κή™mSuτ.νΗ¬‘Άμ~#+ψΧ1c'ΥΌ>ό@o,ΏλŒ„’£ύΦά?_;™Ρζ£Ρή?“‚nšShδ΅;Qm[LΠdXξt»¦σcΉvΜ‘ΗΛFΓΏπ€k―Χgž;lt–χQl ?ά-χ›ώΉ5‘§»έψΓP~JΩ’ΪGμOΞ©π«χΣ­—‹|-qu"Ηkδˆξη ¬ρΉ=Ή―WZu‘i½‘ιͺ.žΞ;½OSl Σ4Ϋ{;E+okcύ03οίκi5MJΛI²kΝNκ+X$ŒŸ@:±φšεΫΔΧΊΤ­mΰλXο6²jW$­€GΡ{ΚήΛΕZΡό#­ψΤυ‹Ήu}gώ~n€Ϋ΄QύΨΗӟzφΧ‘σ-kvf|5ΦRSSΠ€΅Ί²†Y₯Τ4₯ΊΛiνέ·8QώΛ“Η\jOω^ Ϊ<‰¬ΗsΪ,oϋIΘγ=Άη?…nψ£C·Χl–9δšήζσ­ΰlKo(θθB:Α―(Υ―΅­[ΕΛiβ -\θp˜Δ–Ω <² ™ŠlΐΫΨζΌl]‡©υ…·λŸC_Βo€Ÿ iΧΊ‹+g–£χ 'xaΧvμηλ^uβ_ Οαv;ψaXt­E€¦r-₯e8FφcΘχΘτš ΨΌ-―RH iW„}ΉQsφvθ'Σ³۞Υάx•΄ΝWN’αRξΪκ=›TεYO ©ΉθΤϊ¬ύ―I_yΩZ”q”½›θx4₯ΤΌQ}wuύ?H²:œκέER!Cυ“μΧ~Σ²ό=§YžZ(T1υldŸΜΧ•xAώΟψvξ]δ—]Φ!eΎφι'ΘΥbc―kŒ`q½IΎ†8Z|‘±2τ₯€)IΕbtδUK˘m-δžβDŠΤ»Θν΅UGROaKy…œΧW“G΄Hd’Gl*(κI_NΣ'ρ¬ρκέΌh;ƒΨi²¦θ Χϋ½Φ?ΔΥΖ.L™ΝA]œφ³β=o^‰‡βšΖΒκO³ΩNW:„‡ώx©W™œtΖEzΓYψ;Eϋ4g½œω··ŽK=Δ½Ι'£ ŸZ©α a«λ7~%•sn»¬tΕμ!S‰%…Ψ`²«ή)Υ–ξΫDΡWYΎVq)]Λgαηaίwb+QΨγœά†λ:εΜΊŒΊ?†αŠλTiš\ύžΔ†B9g#‘ηΧ¬Ka€ψfυνvτ\]F™ŸSΎ ²ξ’τAžˆ£šΡ²΄Σ<'αζό‹Ui¦žfάξΗ–‘ΟVv=Orp;V6›₯ΝβψuΏ[˜βˆοΣ΄ΙGγ΄²Ž†b;qΧ5fkSΌΎρgŽΓύ‡K“Jπϋœ!ΎΒχkύι~}‡ϋ€{ζΆ΄ΛφxβΤu»Ζ·Ak§¨²€@ζ#κk΄“Ι>ύΝ`]λwW·sιώ‚;›ˆNΙο&8ΆΆoξ’9‘Ψ^κΤΉt"{θDžπ΄Je“G‚P9in€Η՘ΦEν―Βψ“s‰ζ ‚ΆΚ6ν˜5c[Σ4:Υ/όk©]j²²8₯ΚΔούΘ­Σ©όύλ1nuk¨Σ’Άπ¦˜vΫΕ»eυfϋ±ώ¦œa)μf¦‘«#»΄πΨΝkΊΎ“i"νq$—SΨ¬ͺTŠσwΑ±hZ$χ^Χ4X™γΡ-»…C™zc#ή»8tέ+S–Q₯hΪ‡‰Pβ[‹‰]βύ©d!?*ή³πϋXΣΆE€ψ[FΊd†H*²œΉ00z­9G—^bγ;τ<ιCPΆ–Βυ§žνέεε&Βδdž€φ―]ψM©ΒIΰΝkΐ²HφΊΦœΏiΣΌξ0ΫΣλ²P9ΒΓΉmGA‹@šΟ_Σ£–ίKδ†φΙΨΏΨ¦'k0Ο;3ΤvΘ5?–&Τ­΅‰-5[WίouߌϊΜ§‘SΑ¨”ά}Χ±ΩG Πu!ρu!&M8₯Ϋ1Τd™δΤψapI2τ δcڞš΄–~ŠΞ³PρL²©ω£ƒ8$ΐQυ5±β‹Ν]±Ή—VΣζΣ<_xΪ+­:BΆχΞΔ.ζˆRIœ΅εš‡‰"½ρέΛٍΊ}΄_b΄OξΕΐόIΙόk,KUγN•΄NοΟ±ΕK :5*TκΡθ~x§ρΧ‡l·tύ Ά₯s!αcŠ''ρ¬οxχΗ>%mQτϋωμ-Ω—M΅H›di=O¬Χ=†ͺ^e׈o­5Ϋϋ‹[KΫΆdŽ_-%ωχ2HΓ ιΗC^€ώΤtϋ_ ψ†ϊή@Ώ»Žπ‹ˆzqΨ=Εk*rΧb©aε v}O1±kί_K§=¬Φ6–δ Ηn²2"™“Ψ}k¨ΆŽΧ[Υ£Π’ ‰`Κ.φp³H9[qμ8-ψZΙ‚]GKŽ€[ψŽι€ΈŸζNy’δ?GΟπŽΉΐνZΦ:=ޏ§yΑδΫΖΙ·ξήz–cκy$ΧΙbέj•j‘v‹΄Wώέώ_π5λΑαc9ήZ$tώ5š_ ρηΪM‘δ¨ω€fαGq₯]ψ+?‡―RbϊτWF-JG}Μξͺ|t'θk‡πΔ·>"ΤcΤoei4ϋPΛ§£ la§ΗθΎάΤzj0όJ·³·Υο4«Mjέ£™ν‚ξ–H*?tγ##šίd¨'«Šιύu:qsηw[#~(jΧvrψ_B΅’S»@o"‰Β˜-sσξcΒ»ŒͺƒΧ9θ+KÞ Σuˆž&0άΫ³YLž\ΦψμΘ{{ŒzΤΠt+ Ρ Σβ*$mςΘμ^I›ϋΞη–5GΕΣυζŽk…’ ψΤί[7—|ΐΑμΘ3ΙΙ=…y|Gi₯xϋ@’ΔύNXf±’ΖΩΑ”ƒσ‘=€ΞzΣ„UμŠRkVzΧ6φ6’\]Mρ.ι%‘‚ͺRMrw/¨xΝΌ¨š};ΓGο8Κ\_Aή8―ήoaKe άκχQ_ψγΈhΨ<œΫ[ŸS=ύ£Η Ζ$Ίγ)TΧB+H,­b·Ά‰!‚%‘ Β¨$„©βΉ­vϊβϊϋϋ F—mόˆβqΘ³„mΊ(ό{VΨΚΔV x—[• «θϊl˜žVβδrzͺwυj­ yόkβ9•ŒΫΑOώ…]v‡¦[i:}½…Œ~]Ό*œŸrOrO$Χ)α&k—£ιœΨ>Θς5uΝ1ΑκΨύA°@#ΡFΈλη +Ν”ω];«uγΪ±Ό`ujφκ3'eήBθ5½Αιή–uWFIQ†ΦΗƒϊWZΠΑ»˜:eΟΫ΄k+σD’©?­Vρ.†šΥ€!%k[λsηZ] ΛA'Lϋ©θW‘²ώI$:Ϊ]ΙΜϊ]ΤΆmžα[*ο“]”C₯iΊ3zKC—πΖ·%Ϋϧꐭ¦΅hΪ-ΑΚ°=%ŒmΨφθyΡƒ‘Y)πϊk1Γ<=–©jKZήF2Ρ“ΤόH{©ΰϋ‘ ψ‚I.Ž—¬ΒΆzΔk“$Ηp£¬±ϋΓΤ}εολM;¦§±ΡL»°Γ#΅y—„<.—§[Φ΄KΩτ©ξ΅)Δfά ’a@x 7n9>υθσΞ#‰εμŠΟω₯`ό-F‹ΑS32<νυyΏ¨‘₯-¬WhŠΟWΦτ2±kΊC][#dήιy”cΥ’?:ώΦ?ΔΝ7S΄΄ρ‘y σi2n±!Άr€©δmα±μkέUΊŽkŒψ•’ιw>Υ//μm%‚ΦWGtƒ8ωΊυΗzΚxhJfW?3ΧsΛ|!β+C Οkš†§y4·_g‡(f;LŒxAŒuό*ξ«αϋŸ$Ώπ‘\FKklˆ‘=›ž]‡©ΐφ¬ψZλΓwχ%Ύ£5΅ΘnνΜρ,±]DΓ“Žel©Αώu­6£ιχ/΄”»Lq%”Γζξ>?™ԍ'ΙcΩ‘Š₯8¨Ο’΅Ίg‡|uc¦ZA§x•£Σn!AOεν·˜€ΘΐasέN0kuΧpV ς™όfό+r8–(Υ#EDP…€{W?«7Ÿβ½Μα’#5τƒΣb…_ΥΫςΈΑ$pJnN朒ΛΓϊXˆtύ>ίζaό(‹ΟγύMsίμ$΅Ήρ¦…uMm–vŒυ‚?sτΗέ½ͺnjΆκ“ι^ΓlΏΈσ”ΆΠα˜fm£π©Όcq Ό:všΒ=SSΫΐ@β%Ζd—ˆΉ?\V‚ιb‡˜•>±©Ψx?G³°Σ,ΦK™ŠΗOˆΰΘG$“ΩGVsόκ8ηƒΑžžXs-μ­ηέϋχ2t?EQΨjδΰsf—zˆ¦Oν+…sVή<όF=μάΥ§ν]ήΖ5gΙ‘Ζ,oVΧ§}CZœωHbBqžΫGΨvΟSԐ8—Kπ­Ζ€±έψ€/—ΡιqΆaΣΜ#ύczΊ=κOh­ΩΧ5ΈΚκR©[{vδYΔ‡ύφώ#μsΨ…έΥΊV•*}˜μ*piσKrH[ljͺs|ΎX=€ΰTΟ6ΥΒηiκ―Ξ*”‹΄ό€γ€ΔτδšΙXθLσύŽΛΖOir¨m5λVy"ΗΛη'Κsι½Oβ@―°žλΓΧWΆΧˆ’ιΦ3LΚO›G”‘‡uΑΑ#¦3^νβ ψ‡MρV£έ$a#°aΨΫό䏫*ςMnφΚΪΙqm«iαŠεζ žΐο+“άŠΗ9,;œάmσ]G ³£Sχ}JΪδ²ά^ζ~Νi$ρ㧘δEκδŠνυ/ƒ~Ώ²΄ϋo¦jVρ* ˆp °] ΟΠΧ™ι–²x9.τΡ"˜Ό»]^5vσ$‘XΊœδ0ΫΈc¨'ΠW³Xψ7Β—φ±^Aaμs ‘.žY%g£o,OλJHΖχWΉΎ/ R€Τ”­θyηό#:―‚ZφMSK:³ΐbϋe”~` œ“$gζœ*x«X°/o#HΌ? Š)€+"(εΌΆθxϊV―ˆ‹[θρk6λ›½ιoSHFωΗβ€Χ™ΝβK[ύ:ζ Έ%6·+Ϙ7ymΓ§CψW©&₯₯Ξ/ :…“Α8νp‡†=λΙΕRTqJ€_˜B§4bR΄ϋΌiγKB‚Q+°UFAΙγ‘˷ğ Hμ!Τ€™Η› ¬²FO³…Αό+ΛΌiαY΄ 7ρ«Χ6Lπ5@΄kε± Β&mΈΪŽτΎοβWƒ΄εΩ·»FΑΉ‡Πξ:‰ §†ζκhκ~7ΊΏŒΑαM2ξGn?΄o hmαhΓH}{šεβπDΪlMqανJK]BOžΰΜ7CxΗ’dAχO‘^ž†«k_4DΆqkg¨έž0V,xεΘ?₯hiχώ,ΧςΡE§θΆδžBn¦‡Κ€ύsXNkfuESΓ­^§βjηKΎ±Ÿ]…΄ϋ›+„—Λϋι,uΜn8n γ―΅w>Χc·Σ§ΉΣl.΅kR:U΅\Eˆ£y› 623Սr>,πŠλWZŒ)¨jƒi­}{uq.WΜΗξαTPΛ2λΝ{φœ‘΅³Fͺ¨Ρ#*¨Tn΅…<47DΧΕ:ςRk₯ŽPhž!ΧόOu!¦Ϊ7ή²Ψ†aθσ‘Ÿϋδ­Uρw‡΄έLΠ₯μβ·KMZ;ζmϋ”–cΛœ’kΠ@ΑβΉ?Šεx"ς~πKΉϊJΏγ]* +Cžχz›°.Ρ·ϋ§d6S‚Μ{OηXwϊ­ζ£y.“α‘—¨vά]Θ AeώχχδτŒΐ°)σhebmZ™oHΡ#K­jtή¨ίκνγιηJ{(μ:±ΰw­ h0θZ{Δ²=ΕΤξfΊ»—ύeΔ§«·ς ¦πί‡ν49!€Ι5Μνζ\έΜwKpήsό€ΰ­l"RΎˆ£ͺέ¦Ÿ§έέΉω`‰δό‡+˜π•»[xrΙ%•γσdν9.τ*Ÿβ¦[;M*3σκW+ ΗhΧζsωW£‘ ΰ zq\υ€ΉΉ[4‚΄nsΪ¦RlŸZ+CS…\ƒΦŠβxw}Ξ…QΌmς’iψΗ­VYΠ‘ΉΓ+ ‘ςη­]ZΆ2„.r’3aρε b^ΥncώZΕςΏβTζΊϋsϋΖξ sŸbx4«mnΥwΟ£N/0:΄?vUόTώ•±c[aIiΊΏ?Β0+ΑΦZΖ‹αν=ό7x’[˜UΝ|KDsœωoχ£>ίvšGDdΪhυPψ<Χ5ρ¬ΎΈƒώ~¦·ΆΗωΣ5,žu³Φ ›FΏnW˜ξJ>V•3Η  0x—U΅Δ-²Σrv)-nYρχ‡YΣc“M+­bώu”‡ `0QΏΩp0ΪΈ» Έυ-gΨρ:’²ΔΓη‚Eα”ϋƒϊ`ΧΊ†bsΦΌίΗz4Ϊ-όž'#v…€ώΥ΅ŒdΊŽΒο/ρλ^v#«ΖΜ|Ξ:žo$Nρ}έ΄Ξ©m¨s»ζυΐΥύGΓΆΧ3Νl1ΥTŸΖVkzdMi"$Λ‹‹Y“PG±ώF²Ό5¬=μo –χ0]@Α&AΘVφdφ5Ρ—V懳–λς:#.dqz·…l―΅:ΚΖ&•εi Ζ¨…QΧ?R+Τ|u’φΪ7Š΄λ [‡ωmo(©r{+ΰadϊπέ«28'—ΗΕ<˜š;ΜvΐΑp3ϊUR=πΝ±ͺ}± +•?€―Jφw3œφ=bΦΪή+Iϊ…ΉίΑζ]xU‹©Ϊ±ΏˆΤΧ cβ}_A‘!΅΄½Υτ5ϋ«rB\Β=ϊΕτ Νhkή95] .ν/WΝ°½Ά»h&ύάΙ²U, Ÿlτ­”“8₯NQz£Τ|e¦Ι©x[SΆ„= gˆχ'ΞΈ(€ΠoΣSΡμ―c9[ˆVOΜWH[ §#¨τ5ΑψR€O«hJNΝ>ιŒχ‚Ož?Θ~ΙV=M°ς³h»β‹ϋ›kXm4°§WΏ”[Zθ¬zΘΩA–?…u>Ρ­΄ ΫN²Εω€o½+“—‘ΏΪc’.ΥΙψJ3«ψ»UΦ\ξ΅°L³τέΦy? ΧΙωη½Ό»LχΓlυΕt^±ώΜπφ›gΦXβbz΄σΎΰL*e'ΤΡgςRδ6Ήγ›KΞ~fƒΏ<·eGΣρ‘ςβ@1<ΰv€FΗ@{V&ƒ\`|Γ?JΔρ>’ϊn™ώŽ‚Kλ‡Φ±χi_ω ±ϊVεΓ’«1+(,I8’Iμ­s^Fρͺ₯[XFC$qωeΏΌNw7βI5σ3ιhΪ”0 κI4d,IΨ«+ΩϋmvAμBΧ>.ΤN‘α}NωGο"Ό°;ΉαGζk‹Γφ’xHhwΡωΦίe[i—»|͟]Ω9υ€γ̜Pβν«<³Α>!Ό“ΓϊΝ¬s^Y/™jμHϋE±bFΰ£€γƒήŸβΆ…%Y\άΫIRΪήκHžΚOωι©ΑNεΟ§\TrX^ΛrΪUέδΡψ‡D}φΧ‘¦LˆFb;«¨Ϊλκ΅w^ΧeΥK=NΨΩkΐ ΞU”τ’3έζΌκiΚ›QώvΚΡς<φΪςΞΓE›QmCϋVς|yΧ%‡™q αP/Uη€ΈλΑ}*'Τ5G3k7j<φώW¨…e^ώ§šΥ“Γš;j«©fYANDώP Ÿ_―½kl_5IΥ”Ή₯.¬Ξ.Vδυg-ρ δZθ֎ΠΟ:Ά‘j¦(sΈσTνQ‘’qλRέYλ#ΞΈηK[Ή–aι<£·ͺ.©4ψΓ€Z]ΧP΅’‰TΠΥ?ψΆΟK΄cqr ;IΟ$ϊ(κ χπΫ3D/$Θ5+;œZCahΆραx…p裊βόe} XΉΣt½'KΊΥdR¬^ΩZ;`ήsŽ[Ρ:©sβO] ζiziqJΓύ"`zΰχλXϊΜpZjL–Θ+klَr}Ok’RΘ)Ρ»ΌŽKΑφ·ΧWφΦ€β7ύαpΙ'όΰW]΅#̎γψE3φygρ'ˆ#”’ i ?π2?­{Šolt]*Yξ˜ŒEεݏEQέ‰ΰ δPIݝ±βΉQεψM&ρ›€¨F EνΣ/;cSς―Υ›τZυ=Fw4vkHΌλΫ©ΦΚάΛY›ϊ§ΨU? i€ιΧZ–²b‡Q½HΊb~[xΐωS>н}σλ]?…4ζΤoSΔw±ρI'w6qι’h:•ζ–λ©[yhΞ‚6f*Fή™ιœs^ŸŒ­rώ>t/ Γuk0Η΅ΔγZΩ1©΄9.|q£9[ν?NρΈ<Λ§IφiΘυ1?ΚOΠΤ―ρC…„zΗΫtiO=NΡαώF+΅*K18Ζiς‡ψO*”ήm U_SΑ5Hτ­TOμνBηΓ„§μο κίaΉςΟ?κΨηo‘γ—PπΛΟnΧZLρΓͺ@•)9YW©IqόΊΧͺj^π¦¨\ήψwJ•Ÿο0ΆTcψ+‡‡ΐ>Π5UΣυm4Icw!7νq2ΔηΘ”‡7χ[ψ‡G<λ/ύη=9Yβ9Uμyf‰vΪ§Œ.SΔVώUΕ•žΣnύβ¨θxν]©’ΧLӞ馷·AΦ8‚«~$σ[ιπΟΒ­ρΫΛ£©΅m$L¨g—IΞμτΐΖq]„_ Ό‰αΛ»δИΥΤͺ©ΝΑξιβ―μ|έ«όCΆ HΞ€ςΫ²Oβk’Τ¦‹Δ— $ΜρνfΘΜ!Ηη^Ηρcα½Ώ†΅―hv‰1ςL‹7θ$_ϊf{ϊzV%¦œΝξ‚*‘Ψם‹Μ^­.™lk·*‰τΓ_ώhz‹ήIl‰/¨‘ΗρSX…υ+¨ύĐ5Ηϋό΄ ΰY_ΚΉϊ„š}Ζ½‘\ ¦‘ϋ²e_π5'ρ£β³CΒιφήYΉ½Έ·Άœ«!2±ΫZτιTU©)¨ΞΥIήӏα=2ΝΖ&X„“ΤΘ3ο“ϊW@I#¨‹α]MuήνΖΗbΡΛκ’‘ΪκϊΦ¬²`ό­ŒzUΪΒ’mŠΘ„fBvŽή΅ΛhΧ>OˆΌa'EŽHœΐmΦό1­q&_#Zρ¬y"ItθξWίχ„ώiD^ ΄½ΚρAŸψ7Eΰ}Ύx<Μ±©2ΏώΛ^”ς¬’Κγέ=p;΄Ίη…£L?ΨtfΈΙιΉπ€ώ•έ+Ακη½kaImc–ρς΅μZV…œkή€3<2KωͺmVZeΏ‹>!έkϊ“«ι:΅•”-ώ©¦CΊi›± ί(s=…[ρn¨4ίκ:’¦μ€‰O{‹‡Ϊƒκ|Ό~5]t—΄πΦ‡ΰψ€&βωvήΘ8&!σάΏό ›oύ΄57mƒGEΰθN§ysβ[… _b;5aΜvͺ~R} œΉϊΧbΚ0ΥZX£DB"€ͺ pθ*PΗ§j¦‚Θ‘—δ=‰¨έJγqιLΈž;{w–βUŠ(Τ»Ι#mU©$τΉnόjΐ!–ΟΒ½άe&Τ‡·BϋπΟΫ“ φ–μt‰'Œ/Ν΄d @ΨΈ™N?΄υHη#ζoβ?(ΰνTPP0z Šή(ννx(£P¨ˆ‘UTt‚±<[β£ΫE”kq«έ’––δρ‘ΦGτEκOΠR–ŠβW›QG#ρ[]š}GJΠ¬5Ίj§RσΟςB?Ϊ?xϊ]r7ΛΙ<χUΣΒΫ3O>³“NίzY ng?—ΰάGχ@φ¨„›w5­’9ιW>T:ώŽ₯΅]5X”QΝΝΉζH©γrϋzζμoχ‹ό1} ™ Ί‚αLύθΚ«cσύkΤβΙ`ΉΗ‘―0ΊΡ$πηΔ½"Κ.ƒv.₯΄^žMΓ/φ8.ΏR;VŒ"•HΧ[’¨U·ΈzιMd δU9ZV94kc›ρυ©½πv³nΦ{Y0ίέ dΐ_<[έ[ZH·—6:«ά”ΟΪ'_<œσGπυ$π¬ΡΌO‚’ŸB0|έ₯‰"…ν'αν]­›¨Ε₯sⱕ0‘S‚Ί9q54šEm^Σ™νΕΝϊDΒFw‚˜ϊζ«kšή<Ί”Ρ_@C>Τ*ωΚ…ΐ#Φ» ψuΌa­$ϋL%ΤfΓxŒ΄ ζΎ†MIGφVŸε’…T6±  2+― zjrŒ‘‰m]£δo†ž ό-tΧ·—`ύ¦ΡΖΔ9vo5pΏ–zΧ}€ψ›ΓΧšk> Φ¬€ΊŒŸ²YΒΖTΆΟρΝ!υθ: ουνLO‹z0‹N±DώΖΉfQn€ζΖ#'“Wu;§½Τ‡ό:ή]Ώιχ’±Ζ…p?Φ°θ?„|ΗΆ{}‡΄‡75‘Œρ-Ο‘#†΄ρ=―‹5ΡιΪΎ‘αλG±ΪY» BaΣsJ{σa]ΥLj|Q|Ϋ,<5aΔΊκ‚?ΰδώΡYΨΪι–XΩΖ±Zΐ1Πσޟr@ΰW;¦“±Ό‡β}#Δx~ω΅ huΎ™n! x.Ωb?P|5πΦ—kαν"φ+Mτ–‘3άΘ<Ι2PtfΞ°ΕoxΪΰέAui1Α<§· ΰZŸΑΡy^—vŽ qŠRi+ς¦Ν}˜δδžδšηόu„πž¬}`Ωψ³(ώ΅Χ/γ³ζiΆvCο^κΦΰzϋθ΅RΨΝnu°Eε[ΕγdhŸ’Ne#Τ`ϋz°]ˆθXŸΦ™Žrk Δr7ώΡf»kΫη5#ΟΪτΙ~Ξδ΄£εoΔWβΌg}―Ε’[κ6:힚ΡίNn’ϋ3³σεΕ#A?ΗΣΣ5ι~$Φ­τ=*βϊδ0‘―ή•Ο ‹ξāψΥ/i’iϊ^λΖ¨ή9ΊΌY[’>€`aJs²±q]L8όMXD§ΰνTΦK#ΊOόtξύ*€ž<Σ/’ώΘϊ\ΩH„~b½dέΰfe„ ͏MΖ³δS|―bœωUΟ&Ώρήƒ!V―m‘Τa‰ώTW£ά(ό¨‘ΡMξ5WΘΏΘ«pα{P ŽΥ/˜ vό«’Φ9–€ΐdpx₯Pg½D˜|ΈϊΣd%PŽΎυVΤ₯r²'…u°»μΡu)™­Ÿ–ΪαŽZes–_Fά;Šνc°υ"ΧXΣ,uΔ–³.Χ\ΰύAμAΑ±›α-nζΦωΌ9―H_Q‚=φ·d`_ΐ8ή?ι’τuόz˜>mΛhνx>¦Έ”AcγrΫ[Δ‡Qά‘εΏλΆ»4Χ5Θxι~Ι¬x{X“ΆŸpΩιΓ OΡšΡ+wcqΞψώ#/„΅€ –Kf•qκ„?ώΛ[Π>Wž C}άΓ,χ&F‰ΎŒ ŸηT3V :Ϊ”δIΈχΘΓ1,F1ŠΕψ}rgπf”Σ­Š"Lz3΄*ݐ€ϊΧB3{ŒBΫΧi<š~«akͺXMe Ok:μ’7θGτ=ΑƒΝ.%RMLξβ!»Δz yΊ^ΝαŸιž#½ŒΨΝg5Ž£;…iŽυeŠ^ή`δnθάwίUρ£ڞ«ah=&ΈPοœητ[βF›e{αyυKxnν£Υ2Η2ξB’Δλ‚>‘kšΏπJx2wΉΣ4ΥΤ4@Im±‰.μΗγΜ±ϋθ{םŒ’ά½¬ugV1“Q›²ξtΪ‡Δ­β9"tύKZά Ÿ*ΫΛ…ΰ‚ςν~Ό²ΣΑ—³j2ApΪ>—#ξŠΒέόχ„ͺ$ 3Π`γ ώΦζΒκΕoa»†K"»„ΑΐLO‘Εqή#ρꈚΫΒp‹‡9VΏ•·ύίωθO­sQ‘[%Jœ.ϋnz5h`°φ΅έΧ™±ΰ *ΧEψ…u -pΟ.’¬ο<¦Fr ?ӊλ|f[ο ’Ÿ•΅ˆ3ψ,†ΌcαΝΜφμ§½Ή–ζ]N9mfšfΙgΐuϊ”€zί‹$1ΎƒpΫV·v=ΆλόΨW―SW/aWuoΔςcˆ₯Šύνh³UΧϋΖξΩg¬“sΟ r£/ό pί…t_hΐΙ$Χ?ρ"KXό>ζ{¨νο#•f±r71ΈC•£–Ο λΝsš·ˆόI•ΕΎ€Ά+w՟ΰ?ˆQΆΉbΎΣξMΌ’<νqό.Ήδ‚> Φ§‰Θ‚+HuΣβΉ?ξnΨψλ“ψT€βξΙSWiό=•//LΡϋ­Κ ŸR ^ƒlvΒΡχCΖ;Χ›ό)½Ά‚οY΄šktΈKˆν£F‘C8Dμ Ιλ^‘ΚμώΩ­TΊ6­cΜnΆκ~-Ί·|2^λ+,€Ο½”J@όf‘Gη]7ƒβk¨jZω;’•Ν•‘¦1 Γύω7Ÿ ZσM:φβζZςΟiΌΈ”ιVDŒβiηvv@c'ύΪφ½O·4«M>ΜΆ΅‰aŒξ¨ΐόhr%ρ4^'Š©«j–Z>-ξ₯2CkΛ;„τI=žΥ›βYh²E¬·Z”ό[Ψ[ ΣΜ}—ψWύ¦ΐυSHΠn―΅(u―ω2_C“ieέŽ{‚~όΎzt\SΈœ’#΅Σ―|U2^x†ένt…a%‘'ή“¬—=‰ξ"θ:ΆONΝx^{˜­-δžβXβ‚1Ήδ‘‚ͺROΈΛΟήkmδψJ=ΆVΉB#υΖ3Μ‡ύ£…φ5J(˜Βu^†ΧŠ·ώνΤ·MτŽ"Gλ]`L(μ@jεwxλ@$ό’Ϊο]΅Φν㞦΅₯±Νˆψ¬Gι‘\οΕ=>mGΐΊ“YΊ…’‹λGξ’ΔwΜnΨΧBFΣUυΩ‘<;©Ό£δKI‰ϊym[΅‘‚vf„5ΘΌEαΛR%ΩφˆΑt=Q‰OΠΦΑ95ηŸ ¬Ννˆ'Κk{[Π3―"|Γωτ:σΣM]’ΨkW†λ^Τ.ό[β94‹Ά‹mΰ“Κ{a"eγWΞΰΐŽIβ½ΕλΟΒλ«βίάiίZ©·Y#IόΉƒωC”εn1Αζ’­'Z _ϊσTozυΨ©ΰ­CΔ Π—OO C¨³;M=Μ7†9gυv „g°ΐΡCρ2μΗί‚΅θ»f'†_ύ˜Vsx¦ΪՈΦ/¦εQσG©[48 ©ό5J²ΤΌ[Œϊv‚ΓωK›ΕgΌQŸ_ΌG₯c¬sr[ο_πMkQΑFιιδοϊˆρeοŽ~&γΒΆΣYM-μξnoξ΅-*–ePHfωpq“ΟLWͺψ{I΅ΠμΝX"‚Μξw<ŽygfκXžIsΑΆvqψ―ΔΟ¦ΫΕocfmτ»xβ\*ˆΠ»γώ YvΙ΄w―^ ¨¨άς\Rm€6Wg~{U―υpφΝUQ»ŸSV/ΏγΝ‚υ#3ΣQΔα|U#[xK]»nαmΏSΐώuΤip‹kxH’Hο•ϊW=γψDšN•¦“¨Α Ί+oΙTΧQΞIοΟηQNϊ³JŽφ$cYΕ׍|/h9Όϊƒd@ͺ2k₯c΅IgClρΞΉ¨b²†=2#ΫwϊΙSΒͺlΝŽν«ΝUžηj–bŽrxΕ6YIνψΧ#|²ψ»Q—K΅vMέΆκ pgoωχCιύς::šηlqΗi¨|W¬C¬Ξφ-“§©\KΡ?έͺ~-άW`ƒζΐ‘βH-£Ž$Xγ@UFΐzS’ζ°“nF‹bEδʝΐˆγš8 υ¦JψLVπίS9jQŸ;θ©H,’š@XWΐδΣƒdη˜$Ԋ8ͺ©" ‡«Ɯϸi‡Ε4½dίB;›hόk/ΔzεŠBξφχ08šΦκ/υ–ςŽŽΏΘŽ„qZ[ΉιMyΦf‘•A,ΜpΙμ++ς»•k™ρ#K|Ϊ&ΉZkΠβƒˆξγžΠžλκ½T֟‹4ΥΦό5¨ιΰ€σD|ΆώλŽTώ`Wžλγώ»›Sf^ΧK²—ΝƒQεži:fό1ϊ±ϋޘζΆtoήiΓaβΩ+°K}UΨf=–A,δΗOcΪ·Tτ vζ5|5©jθΦw€my£Eώμƒεuό0­I†c!zβΉλ4GŠ΅ 8am―φ―τΐγ€8ΝyQQhυcδš9½PΓž*½Τ%vίošΚοj–ΒΉ`z1ώ^us¨λ°΅¦—₯L\FUυς’T ‚B}η>ΥΓk½_νΪ¬’ ρp«ΗΨηΖbϊνP3ύε―Kπf²5ν?5@Ώ·cπ^«*υaμΓ =[§ZFVJ£Ou±ΕΑαM*χ_Τ΄‘)šM,ΖΧ„΄MzΛΈLΔt0GsšμγρΔϊ=›―‹¬e·ΩΪvͺeΆ”…8f戞ΰρ“\m¦$Ύ'ρ>©¦]}“X‡T–?1hηˆ€V9WΊχr;zVŒ«,w>*ΎmRT;£Ά εΪD}V!χ»~UΠF€°€§/JγoΉθ€–ˆuQS{ŒΕԏ•βΟ ΜNO=ΏύχΗλ]zœρ\WŒ_μπiWΉΗΨυ+iIτφŸΠΧi§εxͺC‡ρ&6^zW!ρBχμώΉ΅YV΅[%v聹v>Α‰ϊΧ\ΔsΌ―Εώ2ψ‡• ?Ω,dίH:<`ω ϊν ŸA‘ή΄ͺνc0s’4>YΈΣξ΅I†‘"˜FέΈ·Œl‹ŽΩ?vtΘΡcEU@τζ8ΕF*+‘κ πJδ4?Ψik72ο»½Τ5)E­•Έ 4ˏα\‘ω·|G¨•’ήίΈΟΩβiy€ωGβp?©€x>ΟAΡ,α†έϊE w6>y₯<±c鸞: §VTa*‘WhΚ¬#RΠ“Π΅c€]k3Γ¨x©‘œΔD–Ϊl=΅«vcŸυ’οjθ΅+θ΄Ν&ξώε€Žή'ΙτQš-ΠΗ¦rGΈΟ‹Χq’Ωxz‰υ«”΅8νω₯o¦ΡZœͺΩΛs–QQψv%ψUk4^ ΄ΊΌ»ΤYυ ύwLΕΐό¨ό+zf_΄ͺ’2A U˜ C§(EŠ θ;ΚΉγqζx‚έ2HΏτ­€ωf’W‹gC δ¨χ©ΰ°95Ά7OΉ‘"δ•‚ΖŠYΨφP2OεNbG©ŸνZ@ΌΓ€Ϊ4ΝιηMς/δλ£Œ`W1ΰνχVχZΔͺDš€ζδ9–!|‚ΰUΣv‘·)λΊ”zV—s{(άΆθdΩέΟEQυbγU|)§Ύ• [Γpsu&gΈnν+Νϊš£«4Z–Ήme#ic‹ϋ²NŸ)Xύrηθ΅™>§{γ’ !δ΄ΠI+. 8’λΥaτ_Y?/ZΒ¬ΤueΖE«­IόKͺέhzΪΗΆ₯{Πƒ,£¦‡ϋέ{Χc₯ΨΫiΦ1ZXΒ°ΫB»Q°ώ§Ή=Νq~KDΆΊπΟ“₯κvi²Uύά‰ή)Gρ)υκ"·Ό'βXυ‘5Όπ½Ž«jBέYJrΡΔβCΩ‡λ\ρšž¨·Χ‡χ4Θ4`Ρvs*+RD5 ώςΑovε£χOΦ«Ι₯δΗψΥy•±$ͺ>AE7xΨΎΤWDmc{“§=iΫH'œt5"τ4œS%6ˆI85 9ݎτω›œ ΘΧ΅{=M’ϋP˜E qœe™EQ՘φΉΤέj_Τu ]6ΖkΫωγ·Ά‰KI$‡  w5Ζo^ζ‰4T’Η~εB„(ΰvͺιάC$3B’C Ψλ"†V„’· \ΒM6(” N€§£U4³<ΣΔ^Υ΄₯³Τ<1tΣΓ¦ΝφˆτΛ‚[ ‚8dκ)#cdgΕvšF‘o©ιΦΧΆro·ž1$mАGC؏ZΫΪΡΏ°΅^Z‘οΐτ©"]+Η³§F±n$CλqΚγκS±~&iΜΆΦϊν’3\X'TΙn~πϊ―ήJΡσ/˜­ιΆN&)κy±΄jθ*‚θ€D?Υέ―\0ι»――΅ks‘zχ‡&χμ6HŽΈIqΦ)”w7u_qΕU½±oλsiOΩ}’Ιϋ‰ε>¨ΗB+:XotέBMGIA'šAΊ΄Ξ՟Δ§³ωχΙAN<ΡZu<¨U•9ςIκΆg¦θΪ½Ÿ‰΄ VΙ·Ώϋ,‘Oe1dD‘΄ΉθΓƒZώ Ί7~¦'%­ξΣό«Νμ§ΣΌIεΌ&Ay κ„Ηsn˜#]_Β•<'φ+†vžΒκkW/Τα² ϊƒ^6>—*Ml}][Έ΅fwΚsR)¨”ρΕ>ΌΆz„”„M'4†•’ΗΡ΄ήΥ|ΌοHL«υR*λ-ξ…Τά!ΚΜ‹(ϊ0 ύk#Q„\X\Βέ$‰Πώ*jŸ†΅8-~izμΛ φ+ηHίΒ#ώƒ]4η.*7±cźԚ]œpΨͺΛͺή7“gr γ—aύΥ1ϊάU hΠθzRZΔΖI fΎτ±Λ»{“Yώ΅ΈΤ/₯ρ­Εwr›-­δλioœ„ΗχΫο1υΐν]-EIσ3Z4•5ζ?#֚Η4”Φ8™©Ξψ‰΅5νC^Vβδ]άϊaηΨΏ–Ώw:‚ žŒ r~ „_ψ“ZΦΟ1¦4Ϋcκ¨wHΓκδψuzƒŽΜ+IE:Zœ“κYt1ΙQύ·ρ ώμ ΦΪ<"Β#ΨΜ4€} ψΧW―λ1h:‘ͺOχ- 2ύηθ«υ,@¬_i鳂μ5Ν۞­4‡sώYπ­°ι-L¦ϊΈΣiο\DΎ|,>S)-ΖO8ΰWjξ¨Θυfφ1ωΈa…/‚ǁωΦ5§i9.†τc₯»6™ x•ΑΞEsή=•―’·πύΌ₯$Τrgeλ²œΉό~θ¨/Όqα½ ZϋUΆ_%7cξkh;€ΜZ³7­ΡcUHΠ"*…U€ΠqUυ½J-/NšξpΜ±Ž~τŒxTδΦ¬nΫ\φ™ x›[ΜOφ=ƒ•΅f /ϋ«Κ―©ά})NVZ ]L ψWRΤ –oO%ΔΖατϋr|·cΣΝn―΄π£뻎㠈P =[6ηSŠrΗ€AlΧ’ζύγ~rΰγυkΕ^ϋlΆχΪ]ΟΨ΅ΛL΅½Θ†XδΕξ?ƒ]@sQ°DW*9#’iΫ—a-w0Ό/βA­€φ—‹=bΣζΠΆv磑ώ(Οfό5»ΘΈK[Π₯,wv“΅–«m“mv‹’„υVΔ‡ΊŸηVό)―>£4Ϊv­Ωλ6Γ3Aœ«―ib?Δ‡σ gIϋ_|&ΉUŽ’6ά‡?J―1Ϊ€/RjΒ… AͺχΣ5Τ’bέ„ ΐ’£AEQ&ˆl“Šφ­D§Χ5γ/[h$+]κ—ύžΞ3σ?ϋL…v5€δ’œŒΰΉ‘sΔzύ–ƒf./]šId0F7I;uΉχθ;Χ#£Ω\λZ’k~$.P‘gh§tVkκ?½!=2ΖκλT:Ύ΅8ΊΤεωr£ΐŸσΞ!Ω}OSή»ρn²ΨΔ«Ηρ^±žΦR-RόOJ4Trά°TΖr€νυZgφΔm΄œ¨θ}j¬r5£ςď~sVΌΘ.ε=λ‘Τ”τ„Ή_cnT·W74›Ρ=·<0ϋΒ­, zΘ±Ϊ„μ9ΝYš]£=Η§y{†{λ¦έ.;y}£ΰ€Ύ•SΓΊΝՍΜ~ρ,ŠšΜKˆ'<&‘ΰH‡ϋψΖδκ= w*zg½fx‡DΣυύ9μ΅[eΈ€ΛΞ6r¬=Euς«h`ήΊžgρ‚84ϋΝ#] Βμ?Ψ€dΉ…ςp«ΥаθZ±Ό7’jδž΅n--­ίΝ΅°c—ίΠI)ι :g&¬Γ¦x‰aρIx—ŽRΓ[ΈrολδHOΨθF}x¦}JΚΦ,χ0ΕςΟ#…W]9ΎK_C ”γ9s%©ΗxΎζϋΓΎ"|AlρHζΚϊ5λ$'ζκ§$~5£|ΛaβžΡΓiϊΚ‰Ρ—ξωΑyΗϋΙƒυΪ”)Φτ» ώΦ±ήGu<¨€Ηi“–=2s€;σU‡­q‹lΊF»%‹ΆΛKχ•_9’/ΜξΔϊW₯ 8?#Ξ«MTIυE Ν ΟP)4‘~δΡ9IθÚΪψ_iZΆ΅¦4³Θ²οcyίs6α΅²{σDΆώKe[g‘^† ²Ί–ΧΕΪ4σ2¦σ,‹Ž>πάΉόEsγι)r[££,¬ιΦPoG‘κhxΕHΦͺ£p MΏΪΎqŸRΙ· 2*ώ΄Φ—ž(ɜεkΞ|,ή"Σm,ζ…’4«™ƒ+.ξg*Hžh>νώνw―.“ΐoακ„π½»(βIg”}g"œ]΄D»=N΅N)Ϋ†j²ΙNίιŠCΊ&-ιXž,Υ[JΡ.n!O6聼c¬’±ΪŠ>€ŠΣ’LM`iѝ{Ζ^k Ϊ~‹χ}ν‡ώΘ€Ÿ« ¨Ζβr²ΈοθΎ0Π4‹[;=kFΌH“ζK»CΈςί:~by5zζoHUM—†ˆββqΣΪΊιY*Φ—BΡgΌhŒςδG*~i₯c„Œ}Oι“]·\¬εΆ·<ϋ\1ρ?ˆΣΓθtaΣΜZΤe–=ΰŸ*“Ÿ½ν]M½‡¦cφ­k@ˆχXHߎXΦΗ‚΄YtM‹ωΪ­ά†κϊqόs7P?ΩQςθ+mΖX7₯m¨«JwzƒψZ•Υ/ΌSrˆΗμ6‘Βο£ΝH>xzWͺGyͺΈ9ΝύΫΚ3ώοΊ{„?ŠηόcβΠτ˜Ν²¬Ϊ­ΫyPž&>σ²£ζ?LwͺδŠΦΒΌ₯₯Ξ{Δ6–†΅‡τ»;k}+NdΈΏDI/Xΰ8δγ‡oψ‰NΡΙχ¬/Ϊ.b±y†YI2M3}ιdc–sξMC¬j—2ή&’²jL»ΪfK8Ώη«z“ό+άϋV2}KVΩ/ε“[ΤdΡ,]$ϋBα HzD§ϋμ?ο‘“ι]E°ŠΞ(ννβXβB"(ΐUj­αύ.ΧI°K[@ΕT–gs—‘Οήv=؞¦΄%ŒTs\υ#9+Δ΅%}HšVfΰT‘ζ œj€ο$©RG­9ΙQΈόίΚΉT]ο#VΥ΄&‘$Uwa‚ Hӌ{Τ,ΑΖZΉ$φ%;±±‡½RΧτh΅h`t‘νo­‰{kΈΏΦBήή χSΑ«³QοVφιS‡+k‘S•ΥΜ^—νM₯k1₯Ύ―ξΒ«ΈOωι=GͺυZΨiΓ“TΌE£Ϋkk Ζψ䍼ΘgˆβH_³!μ}Ί†ΉύXΉ‹Q]^š€Ε2 Gvƒψ“Ρ‡ρ'QΤq] YΩ€•Ξ»#bž„ΡJι0E\¬ΞζŒόZ4Y‘ΣtψEΖ³t…αI2±’ƒƒ#žΰαŸaΝrϊδ‹ΝFώvΌΤξidΆ:?…Ge (lCζn/dhX©-ΛΊϊEΤa€ΪMtK8X6/PJΡEy qφ<έ[g]i>kζω‰ΞyT`yc*yνES‘ξR“±₯§_·”ρΗ]NγΕJ©#Θy‰η’πW^ ¬?Cž€Ή]ΧRϋ\#±QΤR$ ΰ8ζŠ+Ή+³;"ǘOΒψΉd²Ώ:ž–£νj‘&„«rƒ±=˜ ~Š(₯Œ©*t”£ά)$ε¨έ3[·Υtθ/-š†P²ΰŒG¨9žρπξ«•9c€_M²ΠΝ΄Ν“εγώy·$tδt#ίOk™ΙkcΤ"εI5Vτ p:ΡElŒ:™V@.‘±€!ςEeh2 ψ™tbt­Q€ΈΣ@δΑ(₯‡ύΣΛ©θ>aιEδ΄)7Μw7_j‘[’λE—ω˜εl 8°QGA6eψ‡F±ρ“w¦j μξSdˆzϋ{y±ζί|+ Ϋ]_i·ϊM¬ΊήŠιΟ iVXΨf)”1!K/QΤ{bŠ*%ͺ%κK@m@τΌkβΎ―>―₯ˆΘ$πΩk›–‘qζJˏ!}Šd–ιŠ*πΡRšΉIRr6<=¨Ey£[άş.h•Σ#œš·β)5/HŠΒ;˜±=΄˜ϋ’―*~‡‘φ&Š+Χnφ<ΤΉon‡+‘κιͺi°\ΰ©”ўv°8aŸ¨¨ΌS _ά_YœKfΛr½ΉFώ™’Šrχ©΄ϊ’ Ήjέtg€YίΗqmΘHI8γ±ώ΅cνΙ’Šω«T΅r§‘¨ήγš(‘-FΜν{S[-ώε‰ύΤάzβ™αu[/ιΆ ͺ·OΧh'υ&Š*ωUΕ'dk €φ§‰ΧΧτ’Š›1ΌW­+Džζ%ίs•Š= Žv}³ό«sΒzbθZ4EΜ²^yOY%c—oΔώ€QEiMisΝ«#kνcί₯p^½ox½υΆΡ΄Ι$·Σ£?Η0%d‡cΑU ΙοEΌ~#IςžζŒRω‹E₯ΜnRΥoΰΣtϋ«Ϋ¦)ooK#’FOΌsOΦ&Φ΅95νEvI2΅ƒ9Πu ώσ}ζ?Aڊ)ΪγNΕ­sΔΪύšΓND“T½άΆβPDhή‘½@ώθδŸjθ|!§C€ΨHY.o.ΞΉΉ“οΛ&>ρτ€EΑYΎ{)Z77νuΐΗ΅]KΔ`94QZαΫ”u2¨¬ΖOvͺ8λQ}‘0KσEN)·qBNΒύ¦>Γ…5γ84QY¨¦―aά₯-Ϊω™ηŽ”’jq·8 3E0ŠΉw,Οz€Ž sΪυ­¦«e%½Πn™ˆvΌN::·f΄Q[Ζ+’›3Ό!γ?6y4mzOψ™[Ηζ₯Β‘Ϋs@߁χ[$:wΕRŠΊ’“?Ωignite-0.5.1/examples/fast_neural_style/neural_style.py000066400000000000000000000175321465426447700234500ustar00rootroot00000000000000# coding: utf-8 import argparse import random from collections import OrderedDict from pathlib import Path import numpy as np import torch import utils from handlers import Progbar from torch.optim import Adam from torch.utils.data import DataLoader from torchvision import datasets, transforms from transformer_net import TransformerNet from vgg import Vgg16 from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint def check_paths(args): try: if args.checkpoint_model_dir is not None and not (Path(args.checkpoint_model_dir).exists()): Path(args.checkpoint_model_dir).mkdir(parents=True) except OSError as e: raise OSError(e) def check_manual_seed(args): seed = args.seed or random.randint(1, 10000) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def check_dataset(args): transform = transforms.Compose( [ transforms.Resize(args.image_size), transforms.CenterCrop(args.image_size), transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255)), ] ) if args.dataset in {"folder", "mscoco"}: train_dataset = datasets.ImageFolder(args.dataroot, transform) elif args.dataset == "test": train_dataset = datasets.FakeData( size=args.batch_size, image_size=(3, 32, 32), num_classes=1, transform=transform ) else: raise RuntimeError(f"Invalid dataset name: {args.dataset}") train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0) return train_loader def train(args): device = torch.device("cuda" if args.cuda else "cpu") train_loader = check_dataset(args) transformer = TransformerNet().to(device) optimizer = Adam(transformer.parameters(), args.lr) mse_loss = torch.nn.MSELoss() vgg = Vgg16(requires_grad=False).to(device) style_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))]) style = utils.load_image(args.style_image, size=args.style_size) style = style_transform(style) style = style.repeat(args.batch_size, 1, 1, 1).to(device) features_style = vgg(utils.normalize_batch(style)) gram_style = [utils.gram_matrix(y) for y in features_style] running_avgs = OrderedDict() def step(engine, batch): x, _ = batch x = x.to(device) n_batch = len(x) optimizer.zero_grad() y = transformer(x) x = utils.normalize_batch(x) y = utils.normalize_batch(y) features_x = vgg(x) features_y = vgg(y) content_loss = args.content_weight * mse_loss(features_y.relu2_2, features_x.relu2_2) style_loss = 0.0 for ft_y, gm_s in zip(features_y, gram_style): gm_y = utils.gram_matrix(ft_y) style_loss += mse_loss(gm_y, gm_s[:n_batch, :, :]) style_loss *= args.style_weight total_loss = content_loss + style_loss total_loss.backward() optimizer.step() return {"content_loss": content_loss.item(), "style_loss": style_loss.item(), "total_loss": total_loss.item()} trainer = Engine(step) checkpoint_handler = ModelCheckpoint( args.checkpoint_model_dir, "checkpoint", n_saved=10, require_empty=False, create_dir=True ) progress_bar = Progbar(loader=train_loader, metrics=running_avgs) trainer.add_event_handler( event_name=Events.EPOCH_COMPLETED(every=args.checkpoint_interval), handler=checkpoint_handler, to_save={"net": transformer}, ) trainer.add_event_handler(event_name=Events.ITERATION_COMPLETED, handler=progress_bar) trainer.run(train_loader, max_epochs=args.epochs) def stylize(args): device = torch.device("cuda" if args.cuda else "cpu") content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))]) content_image = utils.load_image(args.content_image, scale=args.content_scale) content_image = content_transform(content_image) content_image = content_image.unsqueeze(0).to(device) with torch.no_grad(): style_model = torch.load(args.model) style_model.to(device) output = style_model(content_image).cpu() utils.save_image(args.output_image, output[0]) def main(): main_arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style") subparsers = main_arg_parser.add_subparsers(title="subcommands", dest="subcommand") train_arg_parser = subparsers.add_parser("train", help="parser for training arguments") train_arg_parser.add_argument("--epochs", type=int, default=2, help="number of training epochs, default is 2") train_arg_parser.add_argument("--batch_size", type=int, default=8, help="batch size for training, default is 8") train_arg_parser.add_argument( "--dataset", type=str, required=True, choices={"test", "folder", "mscoco"}, help="type of dataset to be used." ) train_arg_parser.add_argument( "--dataroot", type=str, required=True, help="path to training dataset, the path should point to a folder " "containing another folder with all the training images", ) train_arg_parser.add_argument("--style_image", type=str, default="test", help="path to style-image") train_arg_parser.add_argument("--test_image", type=str, default="test", help="path to test-image") train_arg_parser.add_argument( "--checkpoint_model_dir", type=str, default="/tmp/checkpoints", help="path to folder where checkpoints of trained models will be saved", ) train_arg_parser.add_argument( "--checkpoint_interval", type=int, default=1, help="number of batches after which a checkpoint of trained model will be created", ) train_arg_parser.add_argument( "--image_size", type=int, default=256, help="size of training images, default is 256 X 256" ) train_arg_parser.add_argument( "--style_size", type=int, default=None, help="size of style-image, default is the original size of style image" ) train_arg_parser.add_argument("--cuda", type=int, default=1, help="set it to 1 for running on GPU, 0 for CPU") train_arg_parser.add_argument("--seed", type=int, default=42, help="random seed for training") train_arg_parser.add_argument( "--content_weight", type=float, default=1e5, help="weight for content-loss, default is 1e5" ) train_arg_parser.add_argument( "--style_weight", type=float, default=1e10, help="weight for style-loss, default is 1e10" ) train_arg_parser.add_argument("--lr", type=float, default=1e-3, help="learning rate, default is 1e-3") eval_arg_parser = subparsers.add_parser("eval", help="parser for evaluation/stylizing arguments") eval_arg_parser.add_argument( "--content_image", type=str, required=True, help="path to content image you want to stylize" ) eval_arg_parser.add_argument( "--content_scale", type=float, default=None, help="factor for scaling down the content image" ) eval_arg_parser.add_argument("--output_image", type=str, required=True, help="path for saving the output image") eval_arg_parser.add_argument( "--model", type=str, required=True, help="saved model to be used for stylizing the image." ) eval_arg_parser.add_argument("--cuda", type=int, required=True, help="set it to 1 for running on GPU, 0 for CPU") args = main_arg_parser.parse_args() if args.subcommand is None: raise ValueError("ERROR: specify either train or eval") if args.cuda and not torch.cuda.is_available(): raise ValueError("ERROR: cuda is not available, try running on CPU") if args.subcommand == "train": check_manual_seed(args) check_paths(args) train(args) else: stylize(args) if __name__ == "__main__": main() ignite-0.5.1/examples/fast_neural_style/transformer_net.py000066400000000000000000000073061465426447700241500ustar00rootroot00000000000000import torch class TransformerNet(torch.nn.Module): def __init__(self): super(TransformerNet, self).__init__() # Initial convolution layers self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1) self.in1 = torch.nn.InstanceNorm2d(32, affine=True) self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2) self.in2 = torch.nn.InstanceNorm2d(64, affine=True) self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2) self.in3 = torch.nn.InstanceNorm2d(128, affine=True) # Residual layers self.res1 = ResidualBlock(128) self.res2 = ResidualBlock(128) self.res3 = ResidualBlock(128) self.res4 = ResidualBlock(128) self.res5 = ResidualBlock(128) # Upsampling Layers self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2) self.in4 = torch.nn.InstanceNorm2d(64, affine=True) self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2) self.in5 = torch.nn.InstanceNorm2d(32, affine=True) self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1) # Non-linearities self.relu = torch.nn.ReLU() def forward(self, X): y = self.relu(self.in1(self.conv1(X))) y = self.relu(self.in2(self.conv2(y))) y = self.relu(self.in3(self.conv3(y))) y = self.res1(y) y = self.res2(y) y = self.res3(y) y = self.res4(y) y = self.res5(y) y = self.relu(self.in4(self.deconv1(y))) y = self.relu(self.in5(self.deconv2(y))) y = self.deconv3(y) return y class ConvLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlock(torch.nn.Module): """ResidualBlock introduced in: https://arxiv.org/abs/1512.03385 recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html """ def __init__(self, channels): super(ResidualBlock, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = torch.nn.InstanceNorm2d(channels, affine=True) self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = torch.nn.InstanceNorm2d(channels, affine=True) self.relu = torch.nn.ReLU() def forward(self, x): residual = x out = self.relu(self.in1(self.conv1(x))) out = self.in2(self.conv2(out)) out = out + residual return out class UpsampleConvLayer(torch.nn.Module): """UpsampleConvLayer Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d. ref: http://distill.pub/2016/deconv-checkerboard/ """ def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super(UpsampleConvLayer, self).__init__() self.upsample = upsample reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): x_in = x if self.upsample: x_in = torch.nn.functional.interpolate(x_in, mode="nearest", scale_factor=self.upsample) out = self.reflection_pad(x_in) out = self.conv2d(out) return out ignite-0.5.1/examples/fast_neural_style/utils.py000066400000000000000000000017051465426447700220750ustar00rootroot00000000000000from PIL import Image def load_image(filename, size=None, scale=None): img = Image.open(filename) if size is not None: img = img.resize((size, size), Image.LANCZOS) elif scale is not None: img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.LANCZOS) return img def save_image(filename, data): img = data.clone().clamp(0, 255).numpy() img = img.transpose(1, 2, 0).astype("uint8") img = Image.fromarray(img) img.save(filename) def gram_matrix(y): (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram def normalize_batch(batch): # normalize using imagenet mean and std mean = batch.new_tensor([0.485, 0.456, 0.406]).view(-1, 1, 1) std = batch.new_tensor([0.229, 0.224, 0.225]).view(-1, 1, 1) batch = batch.div_(255.0) return (batch - mean) / std ignite-0.5.1/examples/fast_neural_style/vgg.py000066400000000000000000000026401465426447700215170ustar00rootroot00000000000000from collections import namedtuple import torch from torchvision import models from torchvision.models.vgg import VGG16_Weights class Vgg16(torch.nn.Module): def __init__(self, requires_grad=False): super(Vgg16, self).__init__() vgg_pretrained_features = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1_2 = h h = self.slice2(h) h_relu2_2 = h h = self.slice3(h) h_relu3_3 = h h = self.slice4(h) h_relu4_3 = h vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3"]) out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3) return out ignite-0.5.1/examples/gan/000077500000000000000000000000001465426447700154025ustar00rootroot00000000000000ignite-0.5.1/examples/gan/README.md000066400000000000000000000004471465426447700166660ustar00rootroot00000000000000# Deep Convolution Generative Adversarial Networks with Ignite ported from [pytorch-examples](https://github.com/pytorch/examples/tree/master/dcgan) Usage: For example, run on CIFAR10 dataset: ``` python dcgan.py --dataset cifar10 --dataroot /tmp/cifar10 --output-dir /tmp/outputs-dcgan ``` ignite-0.5.1/examples/gan/dcgan.py000066400000000000000000000365351465426447700170440ustar00rootroot00000000000000import argparse import os import random import warnings from pathlib import Path import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint, ProgressBar, Timer from ignite.metrics import RunningAverage try: import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils except ImportError: raise ModuleNotFoundError( "Please install torchvision to run this example, for example " "via conda by running 'conda install -c pytorch torchvision'. " ) PRINT_FREQ = 100 FAKE_IMG_FNAME = "fake_sample_epoch_{:04d}.png" REAL_IMG_FNAME = "real_sample_epoch_{:04d}.png" LOGS_FNAME = "logs.tsv" PLOT_FNAME = "plot.svg" SAMPLES_FNAME = "samples.svg" CKPT_PREFIX = "networks" class Net(nn.Module): """A base class for both generator and the discriminator. Provides a common weight initialization scheme. """ def weights_init(self): for m in self.modules(): classname = m.__class__.__name__ if "Conv" in classname: m.weight.data.normal_(0.0, 0.02) elif "BatchNorm" in classname: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def forward(self, x): return x class Generator(Net): """Generator network. Args: nf (int): Number of filters in the second-to-last deconv layer """ def __init__(self, z_dim, nf, nc): super(Generator, self).__init__() self.net = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(in_channels=z_dim, out_channels=nf * 8, kernel_size=4, stride=1, padding=0, bias=False), nn.BatchNorm2d(nf * 8), nn.ReLU(inplace=True), # state size. (nf*8) x 4 x 4 nn.ConvTranspose2d(in_channels=nf * 8, out_channels=nf * 4, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf * 4), nn.ReLU(inplace=True), # state size. (nf*4) x 8 x 8 nn.ConvTranspose2d(in_channels=nf * 4, out_channels=nf * 2, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf * 2), nn.ReLU(inplace=True), # state size. (nf*2) x 16 x 16 nn.ConvTranspose2d(in_channels=nf * 2, out_channels=nf, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf), nn.ReLU(inplace=True), # state size. (nf) x 32 x 32 nn.ConvTranspose2d(in_channels=nf, out_channels=nc, kernel_size=4, stride=2, padding=1, bias=False), nn.Tanh(), # state size. (nc) x 64 x 64 ) self.weights_init() def forward(self, x): return self.net(x) class Discriminator(Net): """Discriminator network. Args: nf (int): Number of filters in the first conv layer. """ def __init__(self, nc, nf): super(Discriminator, self).__init__() self.net = nn.Sequential( # input is (nc) x 64 x 64 nn.Conv2d(in_channels=nc, out_channels=nf, kernel_size=4, stride=2, padding=1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (nf) x 32 x 32 nn.Conv2d(in_channels=nf, out_channels=nf * 2, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (nf*2) x 16 x 16 nn.Conv2d(in_channels=nf * 2, out_channels=nf * 4, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (nf*4) x 8 x 8 nn.Conv2d(in_channels=nf * 4, out_channels=nf * 8, kernel_size=4, stride=2, padding=1, bias=False), nn.BatchNorm2d(nf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (nf*8) x 4 x 4 nn.Conv2d(in_channels=nf * 8, out_channels=1, kernel_size=4, stride=1, padding=0, bias=False), nn.Sigmoid(), ) self.weights_init() def forward(self, x): output = self.net(x) return output.view(-1, 1).squeeze(1) def check_manual_seed(seed): """If manual seed is not specified, choose a random one and communicate it to the user.""" seed = seed or random.randint(1, 10000) random.seed(seed) torch.manual_seed(seed) print(f"Using manual seed: {seed}") def check_dataset(dataset, dataroot): """ Args: dataset (str): Name of the dataset to use. See CLI help for details dataroot (str): root directory where the dataset will be stored. Returns: dataset (data.Dataset): torchvision Dataset object """ resize = transforms.Resize(64) crop = transforms.CenterCrop(64) to_tensor = transforms.ToTensor() normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) if dataset in {"imagenet", "folder", "lfw"}: dataset = dset.ImageFolder(root=dataroot, transform=transforms.Compose([resize, crop, to_tensor, normalize])) nc = 3 elif dataset == "lsun": dataset = dset.LSUN( root=dataroot, classes=["bedroom_train"], transform=transforms.Compose([resize, crop, to_tensor, normalize]) ) nc = 3 elif dataset == "cifar10": dataset = dset.CIFAR10( root=dataroot, download=True, transform=transforms.Compose([resize, to_tensor, normalize]) ) nc = 3 elif dataset == "mnist": dataset = dset.MNIST(root=dataroot, download=True, transform=transforms.Compose([resize, to_tensor, normalize])) nc = 1 elif dataset == "fake": dataset = dset.FakeData(size=256, image_size=(3, 64, 64), transform=to_tensor) nc = 3 else: raise RuntimeError(f"Invalid dataset name: {dataset}") return dataset, nc def main( dataset, dataroot, z_dim, g_filters, d_filters, batch_size, epochs, learning_rate, beta_1, saved_G, saved_D, seed, n_workers, device, alpha, output_dir, ): # seed check_manual_seed(seed) # data dataset, num_channels = check_dataset(dataset, dataroot) loader = data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=n_workers, drop_last=True) # netowrks netG = Generator(z_dim, g_filters, num_channels).to(device) netD = Discriminator(num_channels, d_filters).to(device) # criterion bce = nn.BCELoss() # optimizers optimizerG = optim.Adam(netG.parameters(), lr=learning_rate, betas=(beta_1, 0.999)) optimizerD = optim.Adam(netD.parameters(), lr=learning_rate, betas=(beta_1, 0.999)) # load pre-trained models if saved_G: netG.load_state_dict(torch.load(saved_G)) if saved_D: netD.load_state_dict(torch.load(saved_D)) # misc real_labels = torch.ones(batch_size, device=device) fake_labels = torch.zeros(batch_size, device=device) fixed_noise = torch.randn(batch_size, z_dim, 1, 1, device=device) def get_noise(): return torch.randn(batch_size, z_dim, 1, 1, device=device) # The main function, processing a batch of examples def step(engine, batch): # unpack the batch. It comes from a dataset, so we have pairs. Discard labels. real, _ = batch real = real.to(device) # ----------------------------------------------------------- # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) netD.zero_grad() # train with real output = netD(real) errD_real = bce(output, real_labels) D_x = output.mean().item() errD_real.backward() # get fake image from generator noise = get_noise() fake = netG(noise) # train with fake output = netD(fake.detach()) errD_fake = bce(output, fake_labels) D_G_z1 = output.mean().item() errD_fake.backward() # gradient update errD = errD_real + errD_fake optimizerD.step() # ----------------------------------------------------------- # (2) Update G network: maximize log(D(G(z))) netG.zero_grad() # Update generator. We want to make a step that will make it more likely that discriminator outputs "real" output = netD(fake) errG = bce(output, real_labels) D_G_z2 = output.mean().item() errG.backward() # gradient update optimizerG.step() return {"errD": errD.item(), "errG": errG.item(), "D_x": D_x, "D_G_z1": D_G_z1, "D_G_z2": D_G_z2} # ignite objects trainer = Engine(step) checkpoint_handler = ModelCheckpoint(output_dir, CKPT_PREFIX, n_saved=10, require_empty=False) timer = Timer(average=True) # attach running average metrics monitoring_metrics = ["errD", "errG", "D_x", "D_G_z1", "D_G_z2"] RunningAverage(alpha=alpha, output_transform=lambda x: x["errD"]).attach(trainer, "errD") RunningAverage(alpha=alpha, output_transform=lambda x: x["errG"]).attach(trainer, "errG") RunningAverage(alpha=alpha, output_transform=lambda x: x["D_x"]).attach(trainer, "D_x") RunningAverage(alpha=alpha, output_transform=lambda x: x["D_G_z1"]).attach(trainer, "D_G_z1") RunningAverage(alpha=alpha, output_transform=lambda x: x["D_G_z2"]).attach(trainer, "D_G_z2") # attach progress bar pbar = ProgressBar() pbar.attach(trainer, metric_names=monitoring_metrics) @trainer.on(Events.ITERATION_COMPLETED(every=PRINT_FREQ)) def print_logs(engine): fname = output_dir / LOGS_FNAME columns = ["iteration"] + list(engine.state.metrics.keys()) values = [str(engine.state.iteration)] + [str(round(value, 5)) for value in engine.state.metrics.values()] with open(fname, "a") as f: if f.tell() == 0: print("\t".join(columns), file=f) print("\t".join(values), file=f) message = f"[{engine.state.epoch}/{epochs}][{engine.state.iteration % len(loader)}/{len(loader)}]" for name, value in zip(columns, values): message += f" | {name}: {value}" pbar.log_message(message) # adding handlers using `trainer.on` decorator API @trainer.on(Events.EPOCH_COMPLETED) def save_fake_example(engine): fake = netG(fixed_noise) path = output_dir / FAKE_IMG_FNAME.format(engine.state.epoch) vutils.save_image(fake.detach(), path, normalize=True) # adding handlers using `trainer.on` decorator API @trainer.on(Events.EPOCH_COMPLETED) def save_real_example(engine): img, y = engine.state.batch path = output_dir / REAL_IMG_FNAME.format(engine.state.epoch) vutils.save_image(img, path, normalize=True) # adding handlers using `trainer.add_event_handler` method API trainer.add_event_handler( event_name=Events.EPOCH_COMPLETED, handler=checkpoint_handler, to_save={"netG": netG, "netD": netD} ) # automatically adding handlers via a special `attach` method of `Timer` handler timer.attach( trainer, start=Events.EPOCH_STARTED, resume=Events.ITERATION_STARTED, pause=Events.ITERATION_COMPLETED, step=Events.ITERATION_COMPLETED, ) # adding handlers using `trainer.on` decorator API @trainer.on(Events.EPOCH_COMPLETED) def print_times(engine): pbar.log_message(f"Epoch {engine.state.epoch} done. Time per batch: {timer.value():.3f}[s]") timer.reset() # adding handlers using `trainer.on` decorator API @trainer.on(Events.EPOCH_COMPLETED) def create_plots(engine): try: import matplotlib as mpl mpl.use("agg") import matplotlib.pyplot as plt import pandas as pd except ImportError: warnings.warn("Loss plots will not be generated -- pandas or matplotlib not found") else: df = pd.read_csv(output_dir / LOGS_FNAME, delimiter="\t", index_col="iteration") _ = df.plot(subplots=True, figsize=(20, 20)) _ = plt.xlabel("Iteration number") fig = plt.gcf() path = output_dir / PLOT_FNAME fig.savefig(path) # adding handlers using `trainer.on` decorator API @trainer.on(Events.EXCEPTION_RAISED) def handle_exception(engine, e): if isinstance(e, KeyboardInterrupt) and (engine.state.iteration > 1): engine.terminate() warnings.warn("KeyboardInterrupt caught. Exiting gracefully.") create_plots(engine) checkpoint_handler(engine, {"netG_exception": netG, "netD_exception": netD}) else: raise e # Setup is done. Now let's run the training trainer.run(loader, epochs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dataset", required=True, choices={"cifar10", "lsun", "imagenet", "folder", "lfw", "fake", "mnist"}, help="Type of the dataset to be used.", ) parser.add_argument("--dataroot", required=True, help="path to dataset") parser.add_argument("--workers", type=int, default=2, help="number of data loading workers") parser.add_argument("--batch-size", type=int, default=64, help="input batch size") parser.add_argument("--z-dim", type=int, default=100, help="size of the latent z vector") parser.add_argument( "--g-filters", type=int, default=64, help="Number of filters in the second-to-last generator deconv layer" ) parser.add_argument("--d-filters", type=int, default=64, help="Number of filters in first discriminator conv layer") parser.add_argument("--epochs", type=int, default=25, help="number of epochs to train for") parser.add_argument("--lr", type=float, default=0.0002, help="learning rate") parser.add_argument("--beta-1", type=float, default=0.5, help="beta_1 for adam") parser.add_argument("--no-cuda", action="store_true", help="disables cuda") parser.add_argument("--saved-G", default="", help="path to pickled generator (to continue training)") parser.add_argument("--saved-D", default="", help="path to pickled discriminator (to continue training)") parser.add_argument("--output-dir", default=".", help="directory to output images and model checkpoints") parser.add_argument("--seed", type=int, help="manual seed") parser.add_argument("--alpha", type=float, default=0.98, help="smoothing constant for exponential moving averages") args = parser.parse_args() dev = "cpu" if (not torch.cuda.is_available() or args.no_cuda) else "cuda:0" args.output_dir = Path(args.output_dir) try: args.output_dir.mkdir(parents=True) except FileExistsError: if (not args.output_dir.is_dir()) or (len(os.listdir(args.output_dir)) > 0): raise FileExistsError("Please provide a path to a non-existing or empty directory.") main( dataset=args.dataset, dataroot=args.dataroot, z_dim=args.z_dim, g_filters=args.g_filters, d_filters=args.d_filters, batch_size=args.batch_size, epochs=args.epochs, learning_rate=args.lr, beta_1=args.beta_1, saved_D=args.saved_D, saved_G=args.saved_G, seed=args.seed, device=dev, n_workers=args.workers, alpha=args.alpha, output_dir=args.output_dir, ) ignite-0.5.1/examples/mnist/000077500000000000000000000000001465426447700157675ustar00rootroot00000000000000ignite-0.5.1/examples/mnist/README.md000066400000000000000000000104541465426447700172520ustar00rootroot00000000000000# Basic MNIST Example with Ignite ported from [pytorch-examples](https://github.com/pytorch/examples/tree/master/mnist) #### Minimal requirements: - [torchvision](https://github.com/pytorch/vision/): `pip install torchvision` - [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm` #### Usage: Run the example: ```bash python mnist.py ``` Same example with logging using TQDM progress bar ```bash python mnist_with_tqdm_logger.py ``` ### Logging with Tensorboard MNIST example with training and validation monitoring using Tensorboard #### Additional requirements: - Tensorboard: `pip install tensorboard` Run the example: ```bash python mnist_with_tensorboard.py --log_dir=/tmp/tensorboard_logs ``` Start tensorboard: ```bash tensorboard --logdir=/tmp/tensorboard_logs/ ``` ### Logging with Visdom MNIST example with training and validation monitoring using Visdom #### Additional requirements: - [Visdom](https://github.com/facebookresearch/visdom): `pip install visdom` #### Usage: Start visdom: ```bash python -m visdom.server ``` Run the example: ```bash python mnist_with_visdom.py ``` ### Logging with ClearML #### Additional requirements: - [ClearML python client](https://clear.ml/docs/latest/docs/): `pip install clearml` #### Usage: ```bash python mnist_with_clearml_logger.py ``` ### Training save & resume Example shows how to save a checkpoint of the trainer, model, optimizer, lr scheduler. User can resume the training from stored latest checkpoint. In addition, training crash can be emulated. We provided an option `--deterministic` which setups a deterministic trainer as [`DeterministicEngine`](https://pytorch.org/ignite/engine.html#ignite.engine.deterministic.DeterministicEngine). Trainer performs dataflow synchronization on epoch in order to ensure the same dataflow when training is resumed. Please, see the documentation for more details. #### Requirements: - [torchvision](https://github.com/pytorch/vision/): `pip install torchvision` - [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm` - [TensorboardX](https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` - Tensorboard: `pip install tensorboard` #### Usage: Training ```bash python mnist_save_resume_engine.py --log_dir=logs/run_1 --epochs=10 # or same in deterministic mode python mnist_save_resume_engine.py --log_dir=logs-det/run_1 --deterministic --epochs=10 ``` Resume the training ```bash python mnist_save_resume_engine.py --log_dir=logs/run_2 --resume_from=logs/run_1/checkpoint_5628.pt --epochs=10 # or same in deterministic mode python mnist_save_resume_engine.py --log_dir=logs-det/run_2 --resume_from=logs-det/run_1/checkpoint_5628.pt --deterministic --epochs=10 ``` Start tensorboard: ```bash tensorboard --logdir=. ``` The script logs batch stats (mean/std of images, median of targets), model weights' norms and computed gradients norms in `run.log` and `resume_run.log` to compare training behaviour in both cases. If set `--deterministic` option, we can observe the same values after resuming the training. | Non-deterministic | Deterministic | | --------------------------------- | ------------------------------------- | | ![img11](assets/logs_run_1_2.png) | ![img12](assets/logs-det_run_1_2.png) | Deterministic `run.log` vs `resume_run.log` ![img13](assets/run_vs_resume_run_logs_1_2.png) #### Usage with simulated crash Initial training with a crash ```bash python mnist_save_resume_engine.py --crash_iteration 5700 --log_dir=logs/run_3_crash --epochs 10 # or same in deterministic mode python mnist_save_resume_engine.py --crash_iteration 5700 --log_dir=logs-det/run_3_crash --epochs 10 --deterministic ``` Resume from the latest checkpoint ```bash python mnist_save_resume_engine.py --resume_from logs/run_3_crash/checkpoint_6.pt --log_dir=logs/run_4 --epochs 10 # or same in deterministic mode python mnist_save_resume_engine.py --resume_from logs-det/run_3_crash/checkpoint_6.pt --log_dir=logs-det/run_4 --epochs 10 --deterministic ``` | Non-deterministic | Deterministic | | --------------------------------- | ------------------------------------- | | ![img21](assets/logs_run_3_4.png) | ![img22](assets/logs-det_run_3_4.png) | Deterministic `run.log` vs `resume_run.log` ![img23](assets/run_vs_resume_run_logs_3_4.png) ignite-0.5.1/examples/mnist/assets/000077500000000000000000000000001465426447700172715ustar00rootroot00000000000000ignite-0.5.1/examples/mnist/assets/logs-det_run_1_2.png000066400000000000000000011032761465426447700230540ustar00rootroot00000000000000‰PNG  IHDR 0|ψφΗ (iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήDιUz l„$PBH"vdQΑ΅ bΑŠŠ¨Έ@velΨP”u±`CεM@WΏχήχΞχΝ½Μ9sΞΉs'wPb‹DY¨ΩΒ› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πiTXtXML:com.adobe.xmp 1148 2864 1 :Y2τ@IDATxμέ ”Tυ™§Ά^Ρ&ΒˆLΊη„₯5Gmς;Fp3I€Iu"h’βΕ- ˜‰Š3Κ2‰Š’‘F’r mŒ`tΆ™‘ Œ΄ η€ZP»ͺkϋ?ί[uoέΪΊ«‘zίsΚΊΛwΉχUU]ΕρSOy>½SβΒ‚ € € € € € € € € € €tƒ€·ζ` @@@@@@@@@@@ΐ ΐΜ@@@@@@@@@@ΊM€s·Q3 € € € € € € € € € €`ζ9€ € € € € € € € € € €έ&@€ΉΫ¨™@@@@@@@@@@0σ@@@@@@@@@@@n ΐάmΤL„ € € € € € € € € € €˜y € € € € € € € € € € €@· `ξ6j&B@@@@@@@@@@Μ<@@@@@@@@@@@ Ϋ0w5!€ € € € € € € € € € €fž € € € € € € € € € € Πm˜»š‰@@@@@@@@@@@€3Ο@@@@@@@@@@θ6ΜέFΝD € € € € € € € € € € @€™η € € € € € € € € € €t›ζn£f"@@@@@@@@@@ ΐΜs@@@@@@@@@@ΊM€s·Q3 € € € € € € € € € €`ζ9€ € € € € € € € € € €έ&@€ΉΫ¨™@@@@@@@@@@0σ@@@@@@@@@@@nπwΫLL„ € € € € € € € € € €ΐ1”Ξ\+RV‘³gΌ₯YڞŸ“σX_ίι\)ώͺ©"•β>.νrb{Ε\{΄ω5‰nN;ΦΫ70χφGˆσC@@@@@@@@@°€GƒΛΎκiν τ·s vžψjfg…–έΎuΞfl6‰lY*‘­«œ}½y…so~t8·πΦά*Ύ!©olΔ5κ‹ϋε?/N@@@@@@@@@"Yy8Χu›JΕ}­ qλπΧΜ’ΐWŠG+.wf1F%—΄ϊš0wT«3χζ…so~t8·πŸΏHόC]§qΈ’³‹ƒU@@@@@@@@@ξ0!]ΥT­Hl«ρ`K"΄«χ‘¦uxMS©·―-ζΊ;ZΌψnξ¨Y―>^rι ρkΥεΜ%ήςžDvΥ‹θγl?OyE"ΰ¬ΟΏV¦φTœαt1Αη«6IxσR 7άθμοm+½"ΐμΏr―”Œͺ,‚M“„~R-Ρ"Œ40†ΈXJoί ΎςB6(ρ£Νέ΅RΪΦ/.€C?iΤλ(s%qVYA@@@@@@@ ήΚ “W”Xσ“λgˆ·²ˆ5Ώζ¬g8ύ#Νϋπ½ΜΓ©νŠ Ε[‘›&Υ΅η5‰₯Ž΄»ζ9KΌ§WŠΗj₯αΆ½υmΘ§β+β’9˜Nδ_βzMqΣsΪ…βI&Νμ}Ξ5ιρφ]Dη™œWLjλuΕEνFVp.noλβψV ͺΌK–ZαΦΘ–₯Z¨sU–• ǚ lŸ 0PΨ„³{{Υα¬%ΉΓ£Ad:6Χΰ^Μγή΄°έ`zψ₯ωV?ν| ?ΟrΊ&θ~ ~›jΜ&θήΫ–δΫJϞ–·bXqN \œaΞ(eΞ‹Ž―YΫͺΉZ‘ΈfD֏Ά­χ’ € € € € € € € €}Zΰ΄»%π΅IΙKh–πΏ^–WΞvνΧ`ξξ₯ΆιΩ¬KυžΏBΥU‰ύŸlΠΣχd΅Iμ8C—.―θͺ^)‘υηi›Ψν­]’cOž]-½£fˆ?Ψ$ΡίΝ‘Θ‡‰‹tμΑ$ξΔ{₯VΒΝκu.rrFΦΎˆΫD―}Χ|i{έv§OΰϋΖBρ7©l³%zh’ΘΔ•βZΘΉΈΌπ_œ€ ΄–Ξ\›¨Ά[ΐΥ›φ%—κkL«ψšκ»vXΩμή”οoPƒwa߈:+ΐkΘΡ­+Ά φϊkηY·Ž¦χOΌ[€τd‰lyΨ μšΎΎκ©ΪwΎ˜ ΞΑGkΪ w4~WΟ /ΗlΧχ‹iŸ―yœΫžŸmΩ™ »wΨXλt}ZΉδRΡ±¦wειΣΨφΫέ1uξu½ξŒϊη ΄ύ₯ϋ%ΎuΈοŸqΏΎͺaS%pŽ–Μ/ΣΑ­,~¨Q"――²Ύ-Ψξu»XΓϋΣΔ«ojϊ _Ώ‰΄M"υέNφΑ±ϊ R€UϋFVIt½?σ^ΫUi»δ3?ι`o|_θ\"^ύ) OΦΈzŽ’ίΔ,hξ±βΏhΆ~σSΏ„b,?Ρψμ\,±Yƒ²@@@@@@@ώ!ΰ^μ^Χ«σŒš+ώ­ΟJ€%γRύ n{a›‘sSαe3Δπ:ρΚγy«0ϋ&>#ώQ•“Ή6ΛͺΔwΙ&ρΌ2QCΘfΏλ<\Ν:·j~Ν\—7H<2Ι 5{†MΉΜ_Ρ ²Ι"$—ΓšΣPŸ@J­ΩWΗ=EπŸ5[J¦―ΘΧ„[M`5ήlσhubφTœα΄5Ϋ^­θkͺοZ!^ 4χζ%0y‰uzζΌΝΝ„p#^)ώΏΥ¬WΥ—MgX|UΏ4‘n&mΒ»fŸ½ΛΠrύE/[LΈά]yΩT]6aδΜΕdΫ±Ϋ$Ίk]Z3sέ±'λ!v o›Ε8OS©Ή7-½β­ ώI³Δ]O(oςήΑ™Υ™5$wΤ€γrΌ‘CΨϞ{K υ€ΔΤέ5šπ€gΠ0g;₯4LόΧ­π£sR»XC 7 ›'₯ί^˜ώ‘Ψ:_σmΘeϊΣ)+%ΈόΪW0KJ―[$Ύα™‹τΓτ‹$Άc©Χά–£_jWΰκF œž|#l-­?˜ϋoUΥ)½|†Σ1ς”GښœΝ‚V Λϋ­RvξΈvnjlΤ7­‰Ω“Ωl¬”\΅Z?(Teύm0&ρƒ€ν“%šΩm@@@@@@@ϊΊ@»i«2 L"O·Ÿ#ΘGΰ=>γP₯ψΞ9CboΏ—±_7+οΞ/k±²έ$ΦοiZ^™μS&ή―j0nω‰i‘7 ¦‚|&ε^•l§U”jRsC©ε€D›S[ιk”θΔ?bXbχΰρβΣ΅¬¬@e*δlƚWš»τ%¬AΜ-(—ΎΫΪbj&ΏΔ‚ΐ@Θ^6ΑΦπ¦…y«ςš¬ ͺϊ*/΄ΘLΰΥToξνK`Βό΄―9_+Œ¬ϋe1_ŽΐΆŽ6!ίή²˜ΗΩ}ωΒΛ­.νWw Ϋ\C<ΨbUΪ6ao{1ϋLυζοiˆ;ω\hλΨz+Ψm·λιϋ\φ»ύœΒΛ«σVς \Χ*α°rΈIBΦδύfQ·Ÿ|?›0ΆkΆΧΎœuUώι[€δ¬τIžαy>xdυf=,0l‰”_―Όσž†~ 1WΚ―«ΦG/s΅š'ewi9ύΌΥݡߘR>΄2£Ÿk™%>;Όlv——€~φΟLΦX_°ΊέƒΈ^ψ\χ·;σŒξͺίΔ™Υ*ή—ΖKΫ–νΙVKινΔWž§“ξφ $₯wm•Π½5Ω0Ιߍ# € € € € € € €τ}υ΅Χ~E?{jΔν]ήwΔ;Τ•‘J6υVΞyϋž¬Ž “Rϋ"M6εδžθΦΗ­€sιΧ’mόZ‰Ήζ =ή–ρρΏ’Μ–&«(kQΙMΧJXsΔ….Ρ]oj€yZ²y…ψτΊ£Χν«v獚%š+Œ}TΟΏ!ϋ =Ϊ!ΠLΩ]y9όX+ΧYU—Ϋ»^S•9τdUΨέΏ½>=}ΜrύΞνΕT;nύωˆξšΓyL0Ω^Leν\•—Ν9»CΞv{soόΜcν6.«ΒrΫS‰³wΨX«‹qξUαmχ…τΖuOfΔ:PΦN1ϋ ό“WhεT­Z¦oπ&°Ρ Γ»WJΫΖUٍεbρ_T—?¨oŽ―›vc%π-­ΐ:4ω!=§ψ‘mωέ‰Θ1Œk—ο"}βœ>Nη·wκ›½~[)ςϊ΅φ5=X*‘υ9>qψ“Χ˜>€DΦ֊gψa “§ΖΝh’±9Vό“η§μ­ŠΩjΑ ―_\Ψ7£†M•@ν ύp¦Ÿύ<Πߐˆ}P/m gΜ—Ψτ3ρ:Φϊ­­ϊΑK+ο–\2[Ό'j½φθ–Ήήκ²6KJΎ67a¬Ηυ«fZw΅5‡ “²τ}ΐ”Ω©Χ΅^Žy™ΡρΗ‰΄ΎΎ%ž4žα3€μZ‰y}"Δ_rΓ’΄πr|‰μnΤ/ ޳Κκ§υ›¬ύ²ΓžΙϊάJ#Τo[Nψ™HΣmi{‹±qμs™η|£Ύ.“γ΄ϊ½ύZ/ΣΏ‹+υu“#{&kkWx9~ψM‰ξ¬—Xp˜ψFΟHUͺ臨λΣ`χ΅ΕΈ4Ζ@@@@@@@@ ΟxF/ί–ιaαφOίS«•Šν&šςΫΦ bΕ=bv₯–y‰LrGlηB'Όμ΄ΡJΗ±Θ$ρ&37ή!γυΠ{ΞαĊ+dcv˜)ΣζI΄Κϋίk^@sΙa<§M¦ξΰφW4GΌ3ΘΑ7³Ο3οΰ@`` Έ«&^v‹™jΌΎͺ©VΖΙ½Ώ7ϋΏΊ0«ͺpWž§©ΞΠ9ΓΏ[Ψ•Σ4Ά9s>φbͺ&g.¦:΅;Όlž±Ϋ¬f^ -{ΚNΆΦ­ ˚‹j•e{±ͺ3Ώ4_J―Ϊdν2¨MΕgw΅f»mOά۱Θ»KητOί€ΑίΊΤ»3[•–Χ‘vDΦWKΫVη€HΥl)Ή`†k‡ώΎ‘.™‘=ΞP`œ!Ρ?Ο•ΠΪμ0΄ο’΅ϊmͺiβΙUΉΥT.3Wβϋ5ˆϋhž+U?“²)σ`₯λ€tUη5C₯ν³>μψΟ_$ώ‘G'‰R $ΊB‡Rf>0¬v5κx5ϊA³˜ΗΉκΟTTιO?4Ήvιj`ζVρWλ #}·n%νΟ] μω ΞvKt™*₯7,KΖ3Ζρžί„…9ΖΠΐσΧ€…Eγ£τ:υœΣΞe€~Σ `φk«”Œq_Sb2―>FώΡ³υCSYΖμlφ=}#Vαœvl‡V_“zξEDJnjΰΔcνaώhΉf­ΎŽRfΏπzνwƒφKΆρκ?><`Ξ ½τ΅ΉxτΫ‡>ΙόVcf«Ξoσ\ZΩΎmωδ΄$ψ¦o•³’ηΠobV%^λQ©λ‰^-­|™s’‘Χo•{₯dT₯΅Ο£ψΙωσ0NV@@@@@@@θΓΔ?ύV‰]\πΕωGθ˜O.ρέ‹$>l‘3Ή…2ρΦ\,²I³ φ2r˜½¦χΝΉ«kX9Ί{ƒ†’“mυW‘»b1y"o2' ƒ5Σ€“Dν‰*5”ν·7Db;Nm°†@ x?e‘RSρς–V-²™ ˆCογξb¦i‘Φ*/gNj*φϊͺ§eξξu۞Α&Χ©σ2^·4[ύLˆΧ«Α\;Θ[Θ`~3²y©˜€oO.&dn/‘­«$~ΈΩήtξέΥ©M…fSaΫ>oγW:³^μ Λ¦š³;ΐl1—£Ν―‰―ςBkL_Υ4̎n¬ή/ΣέoΤ9&Ρ@žΈ–Νž$!»jͺΎQ›πa*μZ₯•{S²GΡJͺg­”R­Ζz}»sΨ?S|Υ•ΞvΎΟp-Ο}Χ. έ[zγ6kž‘ςKs„¦3ς ­“ϋKδωΑιAl­ l>Ό8Λ }:‰•ψ1|(ρ^™1Š~jJίεt¦qoUˆοά•R~zVgγ> λσ€μ₯iUo3$7c”iωσΰΧ‡›°v…Ζ=iλτ‘WισdD;Ο“nι#°Υ7*ž<uΪ‘]MŠ—ΨŸ|mjκRνZΣBΟφπm`ŸΨ€!_]K{i ["Ύd0Ϊ|E1ήZ!λ‹ϊχη’±ݘϊ»ayΜχΗ3WŽΚφΡ΅ %6Zίά\―§¬sΛρyeƒFΝMόMΓΘκΝ@@@@@@@ϊ‘€ώϊρnζMf†N“ΐθΕήYΐ%Vάκͺ¨¬γΌώšDk›₯dpb,S(Ν£f“k2‹χτJλήϊO;o>φϊ=iΕΜRŠ·ΫΤ(2jvrΐaβ=η 'Pν•ΜT˜£ύΕω=Ιf™wƒΖKΙτgD\ag«I€Y5ώΆ.Ώ†ΜΣa»ŸψΛ€μ S‘°“!ζΦO‚+.κQψT Χ„Zcϋ·uκ|LxΩ]±·S»Ή±GσYŒGX+ Ϋ^»― ς–\ͺU§“!]{Ύ{kήr;Gώ)_Ÿbο7ημuεΓ›fMaŽ»L…fχ΅›ΐ³ρ°+,[νuάΜ ΄ kΫ6Ύκ©Φ˜ξq²&ΉΦnšΆλ¦ρ~ckΗαeΧτΎ +έyWΧ‘ΒW}΅‹R5D¨Lm;kA‰›pmζ’Aκ’λτ ΨY4ΐ[@xΩiΏέΰΏtoΦϋwκxξ΅TH;γxŽp§ia*ά?ι`vΦζ>Ή˜ΰΆ]ΦήΧή½gψl)ΏςΦ΄&%7ε /‡ƒiνμ ο˜…io~ο9_+t·^.|(ZφzύfΚΡΤIzΟ])%“g₯vθZ¬‘F>ϋ‰ΗΊΩ‘zO…ΎA%—Ψξ•φjΪ}|γ2‰˜o¨μΦΫή7E2ςπΎσυΙρύ«₯Mƒφβ«^`―εΎψsιυη/ΗZZœσ5―α²™Kœk΄ΈVZ“–Ÿύ΄&νo„Σ‘@@@@@@@ϊ£ΐΦ9ϋ$uaήsVdLM­yΟŸΪψδM«xZ|KcjŸ_ ₯εΛΗd†~S½Ίiνq‰:syO›‘\?CƒΦ©μ…μoΜDφkAΈ‘•bΒ|i7έΗ‚ΐ± ΔήƒWMΦπ|κωΩαXΙπrlŸ;lΪU ΅Ά7w_ /›λ0αμΠΣΣ5”ϋq{—e3αεΆηg§xνN&°k*›JΓ-fΰ£5Y!ߎϊϋΈίU!;ής^ήσ1Χdnω*4› ΛξΕ[Qιή΄Φ­ŠΥ.cS±Ί7,ύ,ΐ|«”œ;.Λ5Άc‘'­«fKd*|—h¨?ΩpUzˆ6s€ψΑFi[5N>{d’„w4:ίfrΪi₯ήΐ°Δ–―Vϊΐ9X‰ν˜―ΑΘri½Χ#­/­Μκoͺ›Κ­f \½0ϋƒKk“„ŸŸd…+ƒΪ?–„”ΐU?K Πξ΅μΑ&‰ΥχŸd:$:zG/•²λΆΊn»€όΈ”ŒΙt Jδ₯ι©Ω†=–3ΈΫ½T‚&Μhμφ6₯Ϊ'Χ<£8v2RΛΦΞhΊMΒ«΄½εzύ“r<~Z‰Ή&UF=£wj³υ€ΔτΪγZήί|s €Ά.uΜ^;ͺsYΞγ$΄yCΦγd7γΎο DviΈΨYτ5―_\8αύRvΥ30?³’΅Lu}³ΡΜύzΡ7Εε%τοz[>]"ά],ώQ•ΞŽΨξk%ΊΦυχcθ€Τsίiu¬+Η9—~A ž1uΰκEΏEz_,ΎΣ†₯ φNxΩu$ΊfΆD[];tΥ3d\bGΣeZΆš„žJά‚ZυΪ’N4Z'ΡCφ·Λ’γθΟHδ[β{¦‡—΅‘oτΈ¬PrτυTxΩKΟ'υM6g/+}T ²¦F>[5_’ϋd_χύΤKyA•Μ³»ηΪ¨­svΗχΧ[?οbv„wmsφ{GΝΝz.:;±rόsihyp₯x­[Fxω ω†Σ΅ιg³υ2i5ΡwoΛρ·PƒΩcΘ ·l*Κ΅₯OΜ € € € € € € €½_ Άq‘ĝ`±ζlFedš\—ΰ­aeΧ⭞­Ω–ϊ‹δs΅˜;S©Αζ―X-cξ_AΧ‚WχͺoβcR2}…u œ“ζs·=Ύυgυ—ΡSyoυ­Z2•%2U₯Σ²ZΗ7½θ΄€bΞY‰Ή7…—υΚ<•ΞυΕ;46Uw£P-δfBΎ½q1Χΰ);9η©uΖΒus-ω*ηjΫέϋς…Ž;:ΜͺΫωͺ4gŽ“žΞ<؍Ϋοοtγ¬]2Υ,ρZUMέƒ“+7ι7'άϋτΝ²,;ΐj΅q>8ΈΪ§υ΅χ—Ω+YχΡƒŽ•z6UVM0_Ϋ’ ώmšnS’ok₯δυ/gυυžθώΠa7IτυνYν̎ψΖe»ΐ|³*΅x†Σμφρ žS'–x8ωΒT` λΕ@φυz«hΨS€ΥTNύ ”αkΟ3γv =6iΐ±*u|~σJ·’z‹οΡ€²ud¬ψΏ±@—θΟJh5Xχβ)Ο>χqχzόh“{ΣZgύΌ„~ΛkKV3vτG=KHo"ϊόΊhΎψͺ'‰ohκωε±@J'λ2/Ύ%sGΫσΔηώGDP\΄D_'ζ΅ε«\ΏqY#Ά΅ƒαΪ=ά…s΅jeς_LΟ3»VDχΔί1_νύΗ“Zž^•ϊGΡ :)»z‰΄ώλyϊ³@@@@@@@ώ*πGiϋ}£”~΅ƒ όŽx‡žƒρŒ˜$²ε"Ν\γ_νέςžkŸYύŠψFhF*™ιρ|Rψ<΄Ω³M3γm‡Oseš‚ۚ“*hP!PD;Δ\zΕzoς…Ρφ‰W\€™Ύ?q&†:>|_Ι8ΎQ{{oOyE§NΡTά.½j“~ΡeœΣ―mν+ΐξμθ+±Σ>pΖyOQCΆΊ΅­ͺκkηLv³bήΗfK€ϊMρΞxΣθ·©N―³nώsHΌ΅Yb;—JhύΓΞτήα© ₯½3·r\―έι8ξc;¦IpΝΊ¬|“€dΒ€T8Q[xFΜ—’‘·IΫ'Ίίνnz‡υός-™AqσΈΉ–ΐΜ­β―Ξ2w΅)|΅"«©opΆsV#vτ#±ϊ­Δq‰λ9ΊM’{ΆλΊι7ΞΡ›Ž\"e3η‹7ωφŽš-p™VS:Hπθί‘μΧ… ›'₯—ΞNΌ.‚M^U»΅₯wςlΧqσZ™-%#τ@ŽΕwΞ‘­7ζ8RΨ’Μn’Π½ΥΦΉ{.Ϊ$εΤ%&/―“σΗJΘυE oΥ,ρ”λαΦmJό#ΊεFύ‡Ή†©RzΣjρ%ώyNΧP³θ±Δhό@@@@@@@#°η6‰Žή€‘ތ ‘Kΐ{Ύ;‹£Εw5Jά]QΩι+«―ύ«τ'Φ‰Ώβ‰΄<.±Γ3τ—–c{ͺ‰oK"³`ο9Gσ dXμ@‡ˆwj•εsΖ§ΝiΛ'zΎφYεΉΟ*F˜§»8N+ΔόάeRϊνgΔTcšάλΒΛξJΓξjΜΗyι}’» εj Ԝηꡊ»ζ<”΅ΣW55kŸΩα)=Y+#ωE† „)—πχ™“Π υrΒ¬‰_Np·d@@@@@@@ώ.Y»LΌWΟO+θΎfŸL6;6JψυΕξΓΙυ ₯δͺEΙ`°fuΞωŽΘΖg%ΌE+<_2)ΡΖ_)ώ«5,ύ ƒeβ’AbwρΕΰ6‰μΜ1tQw½&Ρƒ-š—Jε'Μπρ½:žeθ$)™ΩŽΜμ”ΥS+8oΡ"uv< -(D ϊίΏ‘Πsϊά4ΩΌχPH—nmγ0ϋF\Ψ­sχδd&Œ[:s­δ ςzΥΒ3ΈR⇛Ϋ=M3ŽμΝlhΝ‘U‹CΟLοpœΜΎ]±mΗΎΚδcl…· ›Ε7’N|ΥӜΖmΟΟ.(ΌμΥ~½mρφΆ*φωΔΓAιθ&αf‰·sf 1?:\>[5_"{·i΅eύ6TΎeΠx)½₯Αϊ έߜήjΠ°΄*ι{`λυ₯Λ$zτ'€iCv°sXeήŒK†‡=fΥ3βΟ /뇐κ%όΚ| ι -΄J+\ΞθŸw¦άbG3μA&Οέ”½ύ@ vΘ•° Œ“ΐδ‹³Κ7ΌΩgAdscκy]―Σ+ouΪ$VΖJ‰;¨|΄)„φ˜ώ5νb;VJψΟ+%βά–Iψ-ύΦ‘3Z•ψsœ“u8γ©κt±WŠ9—=¦V§½ήθl‰©ΒlŸίžζΤ~)%Z=:cqͺ]›ύ`tF36@@@@@@@θϋ–ŽΤ ρΞ¦άΧyΪέβ-KŠ5―Nm€­½&±ƒ©¬Œ)”fΎ>ΌGΒ»έckpΩU—^ύ…εuε/κFtη›γιά[ώ˜±/Χ¦žϋΠ*+œhŠι7έί‘s1Ω‡@~bξαesΖΡ½Ξ‰›0oΎ0Σ¨€v=αΎΈsKT:. c75ρŸ5[J―Ϊ”7ΌlNÜsΙτνžQ!mŒgΩu[ΣΐνΪ…έEbύΥΉ«FηšήDŽΨ.Ρ]υΉšeνsΒz€3՚³*βŽ~τη½"+,ί»@Z—ηϊfRΑ‘yφλξ=K›ήΛXρ?Wό5Στ§!†₯¨!ζ€ΞMί«[yΏ%’ί”κα@†E4eiBΘσρ”WιŽuzΛ^|ƒ3?ΩΟ–^SZσ‰<5XΪܟ΅τΈ/²,­U§7²Jέκ‡ NB‡Ύ"}‘DΟΧo”'ΞΨ7aƒ”zS’ϋΝKΏ$ ί,ρ2ΟγΔΫΏ!±€?­²š~30qΜ;j‘”ί4C’hΏAUβ;m\Ϊk0ΊeΥΟΥI©η“V|n[3'½βsrψVρ'&Ζ[=W€!σ§ZΚΔwε.) &;€έ%ϊRΔΟ-Φ\iƒ‹l™(‘σγβOVaφž£?5£η•Ϋ$ςΑ\§JΊgΔ|)Ώ}’Δvλ5τuε9]]ίβ·εψ»–1› € € € € € € €τ%wξ$’σκ§]M\«ΗNΫ$^wEdmαe²5Ι%’ΏΎυ={+λ>²λMύ…θΊΔ~Ώκ«ΤπY³ή6Ν‘ΆCwK FCΛe©μC’‘}ΤͺΞ‘΅χδΜ-ΨmχEϊoσJ‰5DmŸΚAΝgχΠznσγθέ¦Β° ₯z‡΅N40ρn ==ύΈNΪ_;ΟιΩΊJ+΅kή―—,&\έQ0Ω>USy؝ΫΦΞΙͺ l‚ΙfœBί&θlͺ=­ιΡ o°zAΑb}ό’Ν―Y,Ρ­+mžvοέ›γΑ =·;hφ£³Ύ°ŽΤ`aJΕ3BΓ²Xς½‡ω.κ‘o,Β₯=η<)»}‘xUΥTWυZ$ΌjΈ„χ˜γštύZλζ™ΌEΚ'Œ·;ι½ΎkkŸXKζ†aβŸ~±~Θ 6jˆχ[ΣR!ΙδH±=«\cvΑjΝμ΄ΐ¦™!ώI³ώW+Xdw€Ήr†~ΫkqŽ@S5ψ9L»–Γ‰cɐτύρƒυYαeW―c^g}xԟј&πα=ϊΧ{²OϊΓΕΊΏγβŠα5³ϊΖ6]&‘MY»sοΨs›„¬όQφαψΞ{€MoRρρž^©ΥŠ5‡€θΨΞΧ ¨ΊόGi[^›=hΦžΧ lχž„½ρ΄Vb“¬iفΐˆlYκ„zMπΤά ­²›I˜0_LπΧ^ ΌΪν»ϊ>v@ 'j ΦSvrAS™k)Ώi―U©:Ά·Ρκc| .»'0sš°xO.™auν|i{~v‡§ήΌTΔά:±ΈCμΆ['ΊwYSλΊlτn8ϊasƌ•Έ©Α -Ί΄²iισ₯τv-ξ>p<λ#΅"kΉ~hE_½™κώ ·fί{ kŸΩίΈLb¦’±kρž΅ 6Ίv‰Œ|LJ2ƒΌŒnMkul‘άηζ­}FΚ5ΜθΙΥ|SΛ„³#i?I‘»4πXzΥc­uχΥΛΔλ :›±½«³Ϊ™VΘ4γˆwς&§jmΖ‘‚7cλWg}@σN¨—@z~ZCβ»4¬jG–>/pΰ6 ώdšVnΚzμΧΤ*ΒΛ€υޚŒ/4¬“ΰO'Idoξ~ρΦ&‰ό~’VzΏ-1ΜȐΏVIޜܟ0αTˆΈB|5Sυ-9ZζΪ~œsΉ‡Νψ»cΪ:]"Ÿ ρVΟOώ-Υ@ψ?—KxΗ›ΟΥO;Η΅ŠuΫ#ΩΥΣέS²Ž € € € € € € €Ehω£†–ŸΥόΠ*‰^.βά …Eˆόy₯SaΧ \ria•…3OΒ„}“΅Θkr‰ξZgννήpoBΌ&°έΩΕΊΆ―.”€ή:^6s…ζχŠJΤξkχΧΜJ ›η3 \²ΤͺDmͺQϋϚ―™³ί ΑλsΑ^άsΪϋzκήσιyς|=uFσ–άКXm’ΠOͺ3B†v§YRvίΚμΐrψ€~A+‘h2ήϊF‚]QΥκΩϊ¦†k%6RCΊ³4h'A‰v`»Χ₯stfπς5;ΧΫΏMBΛ'Άϋ8•~―Q|•ZS„7έ£ΩΤ…y§³l΄WŸG‰¬d΄ω5 =Y—·}w0ρ½~΄¬’ΠοgKωuιΧ€₯u}cfλ-}·³₯/ξβξΆKθυ rΒ%“œ‘͊gψ4)Ή|ZΪ>χ†pΦπ²Y’kζJtΤρ₯œΛΔ[=[Jͺm²ώ{΄QBΙπrΦ±Ξξ(Χ°r}boΝM†—M‡‡₯mσ )›0>­·gΠ8ρ_Ε}e†FΌΥ( §Ν¨Ώ>vν-φ‹«½6™ΗΒΟ―υsΣη­‚kž'™Ωξw±¦UκΗ…_^LΏ₯˜ͺš\xΏώά2ΎGΏ™΅§?_!Χ† € € € € € € € €@χ ˜ kΫσ³₯tζZkb“‘+™ΎB|γfY‹M5ε\‹―zͺψkη§Uς5αεΠςΊvC±ΉΖκ}V8{ΣBλϊΊcΞπKσ»cš‚η°g­¦l\7·COO/ΈΎ†ζ9cͺ4»σ•½νΪ½ωNΎ―ξoœ(Α͍…’MψχŸ''Ϊ#Ξ½e²„ήz³pΎp“„γj²„~:[’Gƒ}ν¬Άκͺ5qίN“βJΕoiΕηυιUkc ΅zνOΫ1_ί ΆM—Iێ¦‚ϋ; 5$ν."νμooεΐ΅|eC7»΅wBC@@@@@@@@@ !έUoYMΩ^|#κ4Τ\/εwΆΒ©&μjn&¨jνΣc¦½ΨαeˆξΝ‹©,mͺ»—xΛ{b* ›ŠΙ]ΜX¦―Γ½˜ΰwto£{W―›σ oyΨ9_υ΄¬ΰ±sPW’[WZΧfΩδΉ;ΌlΡφb*xχΆηA―0ΗƒAή£ΝV@5L”ΦGζKt²¬±ύΈοΓ$Ίc‘|¦αί¨½Ώ₯Ε^λ佞c$Υ%ΊΎV>{~©D·3^XCΐfώ{«έ]“ƒh%ιΛ%ΌγΝό[ΣΧRωμ§5YύγŸdΜΙ0Lj§Φβ­ΝzΞK₯υ'ƒ%΄~UΞΎΡυε³U‹Ϊ½φψα7%όό8 I½θμΑ’kͺ5XΌZβa{Oϊ}όƒ•ΪܘΎS+'{ͺΜ Δ]ƒΥ(’aακ}²΄>΅Lb­ΥΨή₯ΘήζΪΓ* € € € € € € € € €έ#`…˜΅zrfΈΧTMPΩ_3ΫΊ™uw₯]sv&¬όye― ­ζ“3ՁMΰ:²Uσ“Λ5ͺηώέB >2NLψ63ŒœkΣ¦mν =Ygυ5c˜jΖΖŒέΦ0?W·ίgέ]UΫ ͺk(έF·O„½‹Ήε c›tُφZ՜>jήΌΤήμ5χžOο̟‘ν5gy\'r±ψ/š€/NΡ'pPο[$ΆwƒDχt>•l§1V|΅3Δ;€"Ρ]΅qM½Gš^.x8_νώ«Α»αΘ©5IΔͺl­!κ @ο~XΏQΨDޚ[ΕwZe’qDƒλ[K΄ΐΎ…͐j•>—>GΆήΦes₯fe @@@@@@@@@Ž¬ΐrν|ρUOm·± ΒFΆhΦ<ΥyΫνά‹ΎΊPοnχ MxΩ|ϋβbθ%—Μz|Νγh=žϊΈΆ·˜η…ίn*WχΖΚΛφω`Ά%ΈG@@@@@@@@@θu&€[zΥ¦vΟ«υΑύ"ΐmUΫΦŠΣΎΚ Ϋ½ή|£Ν―Iψ₯ωVΰ9_›ή°ίίN‚s@@@@@@@@@@@ —@!••ϋKυis­Ρ'λΔΦlρUM_υΤ\$iϋβΑ­ ά‘-KϋLjΜi! € € € € € € € € € €½M Όεaρ—σ΄bϊνoKδΟ+Εά)ΰν“gΝI#€ € € € € € € € € € €@Ÿ ΐά'6N@@@@@@@@@@Ύ)ΰο›§ΝY#€ € € € € € € € €]+PvνvνŒŽ}^ ψΨ—ϋό5pτ„€ηΣ;%ή3' € € € € € € € € € € <οΐ»d@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@@@@@@@@zJ€sOΙ3/ € € € € € € € € € €P€σ|ΠΉd@@@΅Ιlά@IDAT@@@@@@@zJ€sOΙ3/ € € € € € € € € € €Pΐ?―™KF^.pΒ}ρ^~†œ^O|φOOL˜ € € € € € € € € €E s‘A@@@@@@@@@@ς `ΞoΓ@@@@@@@@@@(²€g͚5ρ"Ιp € € € € € € € € € € €@NiiiΞμD@@@@@@@@@@Š-@€ΉΨ’Œ‡ € € € € € € € € € €yόeeeyr@@@@@@@@@@(¦˜‹©ΙX € € € € € € € € € € Π˜Ϋεα  € € € € € € € € € €S€ ΜΕΤd,@@@@@@@@@@hWΐ_RRn"€ € € € € € € € € € €Ε ΐ\,IΖA@@@@@@@@@@ό@ ΓF4@@@@@@@@@@@Š!ΰωτΣOγΕˆ1@@@@@@@@@@@ŽΌ5ΰ8 € € € € € € € € € € P,ΜΕ’d@@@@@@@@@@θP€s‡D4@@@@@@@@@@@b `.–$γ € € € € € € € € € € €@‡˜;$’ € € € € € € € € € €K€s±$@@@@@@@@@@: ΐά! @@@@@@@@@@@ X˜‹%Ι8 € € € € € € € € € € Π‘ζ‰h€ € € € € € € € € € €Ε ΐ\,IΖA@@@@@@@@@@0wHD@@@@@@@@@@(–ζbI2 € € € € € € € € € €t(@€ΉC" € € € € € € € € € € €@±0K’q@@@@@@@@@@@ CΜΡ@@@@@@@@@@Š%@€ΉX’Œƒ € € € € € € € € € € ` € € € € € € € € € € P,ΜΕ’d@@@@@@@@@@θP€s‡D4@@@@@@@@@@@b `.–$γ € € € € € € € € € € €@‡˜;$’ € € € € € € € € € €Kΐ_¬@θν---²sηNλ4G-½ύ”9?@@@@@@@@ϊζ~χrA € ΰΨ±c‡<ςΘ#ςΫίώVL€Ω½˜σΧΏώuΉώϊλe̘1ξC¬#€ € € € € € € € €@ x>ύτΣxΝ° € €@ ˜°ς­·ή*Ώώυ― :‡+ΈB/^LUζ‚΄h„ € € € € € € € €ΐ± `>v;z"€ €@/0αεΙ“'‹©Ύά™ΕTanhh Δά4Ϊ"€ € € € € € € € ΠIo'ΫΣ@θΥΉΒΛ_ψΒδρΗ—}ϋφ‰ώϊ„u3λfŸ9f/&πl‚ΟfŒγYŽ9"/Όπ‚¬[·Nώοώοx†κσ}±θσ!€ € € € € € € €]€sΡI@zRΰ–[nI«Ό|ύυΧΛ]»δŠ+H«¬\QQaν3ΗL{1!f3Ζρ,/Ύψ’ά~ϋνrΗwΘϋοΏ_πPρx\₯ΎΎΎSύ ž  :tH~σ›ίXηF™ŽΥΒ€@@@@@@@@~'@€Ήί=€\ €Wΐ„Ÿzκ)ΐ“|πAg;ߊiγ1›1ΜXΗΊ”––:]ύ~Ώ³^Θʚ5kδΞ;ο”΅kΧΌΧ΄ω裏dαΒ…rΣM7₯U°>‹^sqœ € € € € € € € €@Q0•“Α@@ '~ωΛ_:Σα _((Όlw0!fΣΗ^άcΩϋΊγΎΌΌά𦬬¬;¦+Ϊ^oκc₯{½h0 € € € € € € € €@Ώθ\IΐΈlσ3κΫΆmK«δWμΣ0?!?nά8©««+φЌ‡ €έ(πΫίώΦ™νŽ;ξpΦ ]1}Ήζ«ω‹/ΎXh7Ϊ!€ € € € € € € € €@'zu€yΣ¦MςΪk―uβrŽ­iKK‹˜ t<—‰'Ϋ τB@0οηό±s_ϊםυBWά}ΜxζfΎθΤUK[[›9rD€œtIšΖ\«ωμb–“O>Y<O‡ύM{ΫΘ΄7ύ YμΉLsž…ΜUΘΈξ6ΡhTŽ=*‘HΔς(τά>ύτS ‡ΓbϊŸxβ‰RZZκ6ηΊqμ³Ο¬>%%%2hΠ œνΨ‰ € € € € € € € Π5½:ΐΌ}ϋφΉκ<£šω0ηΑa7 €½\`ǎigx,ΑγΜ>fΜ .Έ mάcέ0ααŸόδ'ς‡?όΑ θ^{ν΅ςΠCY‘]’έΈq£|ξsŸkwxΦ]½z΅<ςΘ#bBΈφbϊ›κΡΣ§O―Χkοvξσυϋ›ΏωΉωζ›₯ΆΆΦik―˜σ}ε•Wδα‡–χίίή-φ\Σ¦MŸΟημ?ΦΰώΥ―~%=φXΪζάξΊλ.λW2$7šššdΙ’%ςΖo€67άpƒ :4mΏΩ8xπ όΫΏύ›<ύτΣiΗΞ>ϋlΛαK_ϊRΪ~6@@@@@@@@ΊF W˜MΥC{YΈp‘½Zτ{{lχ|EŸ$η€!Ωχξ> ™c'*gιΈb`ΞazύΞ~x‘CςξΎ#–όI§ž)}χ‘K=6½ρ:B‡φΙΎ#Φ+DN=σLιθrθέwΕzTΊθυΤΩσιυ/MNΊ]ΐTύ=tθ5― ηvfω裏δ›ίό¦ΣίέΧ„™οΎϋnΩΌy³<ψΰƒiΑβΓ‡‹ ›ώ™Λ_ώςωΑ~ Χ\sόπ‡?t›πςόωσεΥW_uφΩ+φ\λΧ―·Βΐ¦zτ±.~ψ‘L™2%-ŒmeΞνŠ+°Ξλκ«―N«ϊόΒ /Θν·ίn7M»_»v­˜Ϋš5k€ΊΊΪ9φΞ;οX~ΞΧʟώτ'™1c†άύ–•λ« € € € € € € € €] ]’― &PC†ŽHΣΫ―Κ³ΏzBžxBoZQ°αΥ·fšE¨InΠЎ ξΜ©oJ;Τ―6ϊαu†φ6X›yμκ›Aζ>ω˜Ή›ήx{nH:Ο‘¦DŽΉζ4ΜΙυz:"xφ YςΔ³t¨ΓAΪ_€sηΣξPD.3fLΪ¨ΗςΕ€Μ>gœqFژǻaWGΆ+υ_΅\wέubΊ'žxbήαM ΨžνπsMM¬\Ή τ§?uϊ½όςΛςΦ[o9Ϋ¦ί}χέη„— $+V¬ 6Θ-·άβ΄{όρΗε?σ?νgŸ}Φ /›s5s˜±ρ‹_ˆΓ,¦ύςε˝>]1Ahsέv%iSqω©§ž²ΞΝ„§νε_ώε_¬JΠφφ'Ÿ|"?ωΟνM«Ϊςoϋ[«―©€l/?ϊя$[›ΖΑœ»½˜χοηž{NΦ­['—^z©½Ϋ πΑΞ6+ € € € € € € € €]#Π«+0wΝ%wέ¨οΎϊ„Μ™·T²λ&ζόβΤϋερ¦ΙηJ­υwtϋԎjΛ:ϊΰJq―3J…PK{Κ­€Δyzκœ8•ΤcΣ―£€ΔΌZ¬WH‡Υ— Γ Sυ?ϊtΏžBοώNζή·Τ–z©’ΧΎ?ΦZ?–tφ|Žeϊ €ΐ± TTTΘΙ'Ÿ,ό±5ˆ ΅š ΎYL{1c;ΐlFε²Λ.“ €UK6AΫ\Λ§Ÿ~*[Άl±™ρ“O>)%Ιχ"Ζ5αηnΈΑ:Ύ}ϋv©­­΅ΦχμΩγ„Ώπ…/ΘόΗHyyΉuμΚ+―ϊΆžyζ9묳ļΟ.[ΆΜjcζψΝo~#gj|³œzκ©ςK/9MˆΪŒci5*π?&ύώϋο[­Ώόε/[_όςϋMΏύοΛ¨Q£δϊλ―·Ž›φ…^(eee²oί>'=kΦ,+mOiΒΩ_ϊΧ­q8`=† "ΖοΏώλΏ¬fζybΖ³Cδχή{―œtIV ά<.fόΣO?έ’{@@@@@@@@. ΐ\$Τ} ?–)7oHvΚeίU‰j’ o˜¦Ζ0Χέ)u{C²ωιοΘI©–¬uJ $υ3Ο–ϋ ι)·ΚζΧΎ‹e§όvγ!½1₯=°’ ˜πͺ©βkS5Ψη:Ρ<ΰ45cuΥb‚ΑsηΞuB΄Νc‚»Ώώυ―%‹Y!m;Όlχ3εSN9Ε φz<{·z6;LηΜ ± 0›`³ ›ŠΚ&@ύΏϋΏN₯η9sζ8αe{ΠΑƒΛΕ_,O?ύ΄|φΩgV88s\»mΎ{3Ο‹/Ύh6Aβ»οΎ[μπ²έη‚ .°ͺπΏπΒ b*cχ·Έ+,›v&¬nΖ²―ΩTΈΎηž{dοή½‰D²ΧΫT}vŸσŒ3dψπαΦ8Ζƒ@@@@@@@@ k0ΕwŸ<κ /ίΊβeωξ9¦lbyΰΠvY|Νεςœ έξΈOnn8GŸœ¨dh·αΎp'ƒzjIAUy ™–ύQ τΜiψB•μk+‘UΌξϊγcΜ5!ΰψΗόG'ΐόή{οΙ-·ά">ψ »IήuΣΦlέqΗyΫγ€ ΫΊ˜pοίώνίZ͏9"ΏϋέοdχξέΪΪ*ζΧL χθΡ£iΓ™`οΆmΫ¬}&πl*g.ζL0:[aj&Ά+›Ά&LΘμbmΟ›7OΎχ½οYίΟ}ξs9Ϋ΄·ΣTDή΅k—Υ€ΊΊΪ QgΆ7‘δ™3gŠ 0›% ZχC‡΅ͺO›k――—ωŸ΄=z΄U!ϊœsΞss/'œp‚˜ΰυG}d…‘Ο;ο<«bυψργε΄ΣN³n—_~Ή» λ € € € € € € € €](@€ΉΈ‘wί–uΙqNωފ΄π²Ω]:d¬ά΅b™Ό:a|€ΫoΌϊŽ„4ΐ\šμcέ%ώΘ‘}rθHΘΪUz©rꐴVξΦzHCL‡«‡˜ΜO»ηκa~^ΟDCNYCX?oφšTζ’θgΝΩ7³½Ω>²ο]9”Έ9iΘ™2δ€’\Νχ…ŽΘ>s‰ ‘!z'eŸŽφ9šΈVΣ;€a-λ>”ϋ܏R›#ژ!Ϊ_B²οέ}ΙyKeΘ™ζάrž\ϊ0…^“^΄υθδΣφΟυΨ¬$³sύi³™_ςΉ‘ύ©zήœuϊ5X[!}LΥ2ρΰθσYŸ—Ήœ΄ΎiΟε!ϊάμ ξΈžο»:΅”ž$gž:€ΰη\ΪΔ96†œY%Crμ/Ά—ύx™Ο΄Ω§Ορδ#¦ΧwͺΉΎηΔ.8>SQΨQν*̏<ςˆ²]Όxq»›π²ik/Χ_½œqΖφf―Έ7c~ωΛ_ʊ+ >;$mΌζ–kΙ Ϋ՝M˜Ή’’"Wω«Ώϊ+λ–σ`;ΝΨvΥδ|ηe†qΏνάΉSLπ؜―qΈϊκ«­™ώς—ΏΘm·έζΜjBΟ¦ςΆ»’²qxτΡGε²Λ.³BΜ&όόOτONŸΊΊ:ωΑ~ cǎuφ±‚ € € € € € € € Πu˜‹aΫ–ͺxψQj5}δ“Ξ‘λƈܷCwοM„jέαΕЎ7δW;n–ΕλήIλχΕ©ΙγLΞ_i’'ξ½C–nHo/rŠάΊLCΤ—ͺ4Ϋτ«™ς‹ΝΔηΙ z\ΞtM|δν%2aΞ“zμY±ω59Η•1 ½[/gOΉΣ:Ÿσz‘γͺΡGή•%s§Θ“f*Χ2iκyΓ΅ΆΪ'υ‹ο•;ŸΛnqήό‡ε‘ο?Iœ»rΗ—¦8AqkŒwKέ—L mŒ<υ§§elςΊBϋή–Ε7XžΫaββξε™Π ω~'ͺ_y·AζNΉY/iŒL:/}{pΛ«Oά+σ–nHί­[“n]&w}χο’Χ€-·J&\žΥέŸdZϊƒ#_›0Η ½oΕfΉ1ύΑ‘kΞ’p=ο!ωΣγ“e_ύ52εNuόβ|Y±`όxΞ}VίΤI|Qξκq™66W”7ΥΚ½ΦΤπ„άqσRΙz–MΊUV<πέ΄η’έoίΫυrσο”lώσδ‘Ιδ3]O²d§w–Θ”›ΝσΠ΅|q’œχNφσΒΥ’°ΥP“Μ<ϋ¬ΗπΦίl–οV%ŸQΕτ ½+χ~mŠ<—|ʍΉyzZβ5 μήqƒ<ωFζσρ‹ϊZ}(ν΅ZΨΡ :0—wμΨ!&πjv]Ώ~½UQωοώοPnKK‹Όψβ‹ςΐˆ©Φl/&΄{ϋν·Ϋ›½βήTSΎώϋeνΪ΅ΞωL™2EΞ=χ\+HόΩgŸΙ=χάcUbvΈVN:ι$1Uœ;³˜±fξLΏΞΆ-//wΒΜνυ΅Ο¦© ύϋίήͺΞόΜ3Οθvφ9]Ÿ~ϊi1·%K–ΘE]δμόη?/7n”W^yΕ ΈΫΟΣ ±±ΡΊ™σψC±ƒίNgV@@@@@@@@Š*Pψo—uΪώ5Xιη«δ‹φ%=·D^έ²·\χ₯ς§ΛϊYφϊο8V»Α;λg…—Ν±wΦέ,ί\ςΆέ,qδm™9αr„—Ναd±†ˆg>‘κ3HΟ/±Ό!;2ΞνmύιυΔς‘ΤΏ ˜}ϋvό!yμωφ9©@trgϊ†D―™^66¬ΛφΥΠηg_œ3Όlϊ½±tžLψqC’Κpθ¨4™9—”wHΗg_<'GxΩtόH–ή?η sηήϋωάΟ}ά;azςšwΌαε‹.ΊH4Ψ¬ΫΏώzgΩd^xα7Ό¬sΣΐν7ΏωM)--uBΊEEE’!εΨφΪk―9«΄+―Ό»9αk­N¬MŸ_|ρΕ„ϋœκΚ7ήxC4”­νθΡ£ξrμΈne{³!ΆR΄ΎώΒΎ ---rπΰAΉοΎϋdϊτιξUUU0©ΒΫ4ύιOZ4τάΩΩ){φμ­ΨlΫ½χή+Ώόε/νKž@@@@@@@@ΖH€σhΐ¦εΚ’B;P—,Ÿ3]―έ+έ}Ρ‘»Η€Οω+dwΛArξ”–ΪΥn°υθφmmΓ–&Ξ»wI…[X+4·t†‚Ρ-;Φ»AκMRw(t|^‘»ΎΙR6βϊ‘i¨ο …… ₯§)\A8½\†*ΪΫQ½86Ν^(;φw:aνύ»kάcǞwoS΅[Q9·ΜœΗΑPŸƒ-΅¦VtΈ5WJ«^}Σd§ uvΆΘB»-»Κœ»³Υ—ƒΊͺn•…5;δΰSa›Ϊ*w}sεF:2Ϊ/Ϋη†ͺOkΗlŸγά)»kάΈcΪ…ή]¦ŠvOψUz™Τ:Χσ)ι4ηTf“Κ&`Ό¬ξPh'ž”‡Χ·ΗψwΥ7ΨaΝΕi’^χπ†Λ³₯(ΧΩΟ]2Υ¦7ο–ƒfΝ[du‘=ψQ٘D`6Ψ»K*6u…GΣΚΝ-‘π½ρ―)±qύ.©X\gκMΫΦk*_Ϋ9ηJιΣιψ”Ϊ*χŠJεΖΦΘ}h“ΕZ5:άΚjv‡ϊtξ—š²\»zžGκΥ/uσηΘvϋ6*¬‘ΧΜΚΝ¬{[·ΉΥ«KVΧ:ΧCίߍχTΉοοζΚUžχχ8œ*‡@ΰ,°!ζ $}ΖΊο―ύkw­β¬Α` 4OtσqΏώυ―KFFt5} Ϋ@°«V,Ύζškœ—ΊύΩgŸ΅›άgνsχέwΛ₯KεG?ϊ‘3Ζ{ίϋ^w»$jΗόG'D}ςδΙD» Ίξνo»L:ΥΩη駟N”ΦΉ54Ψ―ˆδδ„ΎΥΡΡ!ίϊΦ·€¦¦Fl@[ΓΫύθGσίύέί9γκ9>|ΨY>rδˆάuΧ]R]]-Ώύοu>ŸO²³³jΫ:žm³έΞ3 € € € € € € € €ΐ© `>uC3‚OŠ6΄Θ Oή²½~•̝3C½φΉ}γ.ιθΔ<2·Jn]$9~­žθή<Ή{… Š‹>ϋZe•ΝεΧΘΞ Eβχ…FτO+•5ξπΥΥα hZΆ”†‡j7Րm6pΈ=:Φ^νu‘ e°Oφ…s₯Ωεy“rZ0Υ—·ΥΫg‰΄μYiΟ‘IeδΙΞ–7¬ιiΆ¦r‘¬_cΞ#-Τ'Ν„zkjWΈ»φ ΝXƒF>_†dZg_Šd8λΒfΞmΆˆ±±YZ4Ν­tνΟ+—ZΧσˆ„‡t»μέ'ΫνJί£σsγ“œ’•RSb·zžϋdϋ:Ζ-”ΖΧHžs=Ν5η΄ζΑF±9χžκ-aλ4Ι[>‘&9l/Ž1­³C9G0ՈΫ{Θ.Ο.•l½ebZUν“E³sDI}i~™·αHάΊ†jmΫΧΉ»¬oά)₯ΣΒ!iŸίάλ;₯&r"NVϋzά*Ω…λΧK‘ιΎ’’W^#.Ώ9{š½Mun•ι’šYS”κcsњZ–ΆΑkw:c²0|―TI1Ρν¦Ε³€ΪΎυ=|WQψœušzμEΜ–ςyyΞυΠχwΦΜrΉ{‘=7‹†c! !ζοϋς裏І“΅ΊrlΣu6Έ¬ϋjoεζΙb>χάΘGΆΗ<κ44θϋ½ο}Ο©d΅ΑΌ˜9s¦»jγƍ6ξλλsŒyδyπΑσΥW_-©©©NΏϋ·­ήμm ΦΠσc=&{Ν_r°!bο>C-λωxƒΖ.ΦͺΜήvθΠ!§R²Σω\uΥUΞόeǎςƒό *pϋihϋ-oy‹.:νυΧ_wžυ:ήwί}RWWηTlovŸ.ΌπBwΩ[υΩ]Ι € € € € € € € €ΐ¨ D0£:μY8˜ v.Ϊω”4n^-6_R8*Ν& ZQδ‘σΧ/”pΤΥέΝ—‘-ρ#hθϋ@¨ͺοSwI–Ω;hώΜ»V˜ ƒr,ξΜάα" 6kΧψ²dÁPΕε§Άj4ΟŒι„‘LΨΩΆΘ’]ύ|Έ#RρqύΒ‚θζUFv^άΊ`o‡[Q:ύRɊ=ˆ™ίJ7ωΫ.α@rNΎ CGΦΊZέ*Ϋφ@ۚzB‹&¨½7œ‹Ν-3‘X»ƒϋœ/yΉ1k}‘»»Ϋ@ NeξπF/Š?)Z ΚΧ·‡ͺ[ϊόEr \ρϊRsEΝut§γo¨Η#΄”Žπ-”…qwŽdηΕί9M{δλGβΥ.«*n‘J;ύμ²³<ζZψ$s¦ύiΠ#u»Ϊ€/Ήi§­|P冝݁’\Έι¦›$==τeŽ––§’soo―SρZ+/φ³ŸuGϊΪΧΎ&o{Ϋۜ€ς¬Y³άυZzχξέίίο\K (λkmZεΩV“ΆΊ^CΩ˜Φs8zτ¨΄ΆΆΚwή©›œvύυΧΫEž@@@@@@@@ΖHΰΌ1χ¬6kφ<ΩωΤ< τuKGG›Τoά$ναβΔGΫ7IρŒniμ4]O˜ΣΑJPΧ—š .«›Μ7՚cΡ‘ΜŸCŸiΒΚΝ‘d₯έßWdΆιΊ.œ š?Γή/{·‡± k%wo…,o8*ΫχvΘΚΌΩgͺ‡Z‘δeΪQΒ«bŸ<Σ,ȍ ‘κΞƒTόΥJΟ{·Λ–uυšMμΰΓμο–½[6ΚΊϊΑπGS7TyR$_r:»Β3|d]b >k%L uΥκΜ…α΅MG€<'M:LEKmι k₯6w―/o£Ϋ›€oežψMΈάžYY^¦³_τŽEΏt^ω$uˆΛιtΒΘC-Ώ ;q”ά„Ν]ζΜ#vΨώξ}²eγ©oϊŠΊ}sgΊ•Δ#σ0K¨Υ£ϋž­wΤΑΌ4lwTΊΊŽ:•Ευν]sχ’ΈΰΎŽ–™_nώ[©‹°n‰y˜kš›/³‹Š€(¦δe ZΫάιΗ@`t΄Βς'?ωΙAΥ}4ά[XX(O>ω€³―­Δ¬αgέ>φζ›oލλ•W^)‹/–­[·:ύ΅ϊ°>΅Ώόε/ξj $k΅δΉsη:aέξξn'πμξ^ψβΏ((ΆMΜzΞϋχο 1ιK_²›άηkΉFͺͺͺάΧΓ]ΠͺΗΫΆms‚ΣzŒΞΞΞ¨@΅―΄΄TnΉεϋR €¬¬Lκλ띠Ά7|μξd–/_.—\r‰³Κοχ;‘οΚΚΠΟd λ#Άι½qν΅ΧΖζ5 € € € € € € € €ΐ( œ;Κγ1\X ͟#³KΙVSΈewφ mj–Š-£ΰΤ.ύ„;Oγ™Ύ¬<±u~›:ϊD+,‡j gΛΜά,Ι+ššSƒ ɚΤhOS8"[8;>l=Θμ[Η{ΐέ2ϊYξ /›JŒΩΩΩvjC £N¦Οš^ΦκŽΩΩ:Ik—žaœ’=BΧΡ/Žέ%ςlͺwΟΦ³i]{}SΤ„Ι΅•δJ– Ÿ‡f_/]}"}=mΞ61W4/. ήtŠO6ΎέnBΊ‰[$δμέή±mΎΜš»<*Όœžž-Cςw΅Ή‘iοx“s9bb—*Χξ•Pνςθϋ²Š€³₯VΚr#χίΡv©―^eͺ²Ο’ko[+‡uŒ†W 06Δμ­άkCΜ/½τR3zΛ[ή"\p³9ηœ#™™‘/žœwήπΏCφOτO²aΓIIρ|sȌ|ωε—Kmm­h XΫ3Ο<#―Ύϊͺ³¬ΉτKεp«*»Μ‚φΥ€³†}u~ΆiΕg­TœθxzNώα(ηŸΎν2δ³ΧΒξόΎχ½OφνΫ'·ήz«]ε>_vΩe²yσfY·nSΪnΠy^½ZΎσοΘΤ©Sνjχωκ«―v<,XΰΣ…"σε­Πόα8j½ΎPΣ΅kΧ:η¬σ€!€ € € € € € € €Œ­ΐπΣ3c;ŸΣrτ V[>άoŠO‘™yYqηΰΟ)’­§Θό LύcS»΅­[¦’nZܞΓY‘/nωΪθ~‘κΑήΆ~)*I—Œνjk—Ά”C‘NΉe’kΖρεIΆhδfiλ˜'&cι΄²άθΑ‡xUi£―Cμh6·mΊέρΠ= «6ΛΚS…7-tRΑή]2½Ψ”«Vλ“MΥαιR΅y«”ΜΜ‘π»kΎ―Σ+0œ–/Γ8%wΰάτ/Ž»OdΑ'y₯e¦0s½HO«΄ξ;ќ+3sœ‹#εΩ"›zDφu˜π»>LK/)JXυ72ξ©/εz‚·Ρ£yο²π–ώ6Ή}SΨ7½P6o]iζοWpΚΫ¦Λ:sήζΖΌMζδοοΉ¬‘δp„Ή}•TξΚ‘­σrβ&€ΆΧμ< U>ιξι6οΏ&ΩΆ½9Τ³§^ΜJΛSΖόZΖMŒ 0€€ 1€³r…rωŸYτ1’¦Αέ’’ωΤ§>εTS>yς€ψ|>Ρ/κθ6­Heί Τϟλ‚–TTJ·›ΘŒ8-GΚσνΊ”p¨ΣΎΞσ±πΞνέ—θ`Aιj §eJT(4Χό v§΅W›ͺΗΝΞbay^h.iΉRΞ*―36ήVg.Κυ‡—άS«–ŽkΡ•"C›ϋ₯{_8ό™»^6”ΟvΓΛ‘ν€γΖφ¬‘p,[ςWΧJωμHxΩΩΛ7’ˆμ@Ξ ζw"2—Δ¦zrW«»SjJdŒ  EΘΪ₯ry8„_.™Ξ.iRPΊyšWUHeΈ:sι0ΓεX°wYWk—©ί΄‚·½ΛRSCΧ7pΈΓΖyeuν™ν†—CύMΖ.Ή«ΊLεοDrwˆλ:Α+eσώςΤΑZό΅φuseWoτIτuw˜Όy‡κ ˆ/Ν/ΣςfKωΚ»δΐSϋ₯Ζ|‘ ΤLeνθ~α ‘Ν¦:s2'2½δ—|™RΉ Rw"iͺ^εŽWΉχ›JδΆΕρΊ€>\œ9rέτžs$ΥM½Ά{ψΩά#MφšΕlšπ—9βΧΫ(-OjkWΈ³YWΌ,rΙ²ΉRaΎ°`mμydHξΜΘ—ϊϊγίξ , €ΐ„ $ 1k5β±jύύζ―:˜6–Η‹ΉΏωζ›ξ°ήew%  € € € € € € € €„0Β­0­l₯ n―^ 7,ή&½}Ν£Ο„0λδΆ9Kάpmα’™n0uΈ‡χω €ΖVrξZ'3ΧI―~ Jo[Μ˜»Ξr}Miτq²Εdb#-½\ς2"/ύωΆ ph]nYž$‘_6;gΙ’*;p³Μ½ιvisΞ? ½fN "srζσK‘ν³N–mk’ήΎ>ιν퐺Ϋo“ŠM6ν*ΡΣηv%vσΞ¦j―=Žξΰσηˆ²«z±lkκ>Σ„οΈm–T»CΆΛα!*ήϊόωReΕν«δ¦Ϋw™ωΜυμ—ŽΊΫeΑΊΨ@ͺΞ K–·§]ΜX,ϋzϋuΖίΫ&·OŸλΉσΧ―—OΈά$a%/\eYGsG•ζEβΟ“…Ά`―nΞ-‘άδ.Žξ=Μζ“‚₯λέ>Υ fΘΆΆ^Η=θ•ΊΕ·DBςωλ₯4+t"ώά‚HŸΕΛ€©£ΧψχJΗ>sΟ¨—Ώ«Ν­Άμ/(w―YϋͺbΉ½Ξl ηώΠq2»G™Θ[£Z3Μ‹€v…{³Θάe{Cw/΅Χ¬½RnίΆOϊϊυ H_χ>Ωψm+’-Σ2ΗμbN$ΗFΰŒπ†˜΅sss³$[νw8ηœsެ]»VφμΩ#Ÿόη‡ΣuΒχ½βŠ+œy766&]έyΒ'Ν@@@@@@@@&DΰΌ 9κ™vP­ΒΪX#·WŠ>ΪΎI*Š7%>Λμς΅’H05ƒLΌ»]©Οκ“’šέ6c4θΖφj)žUmwsŸσWοvƒ₯ξJ’ν …os—ΞŒ(§ε:U€«ΓeŒΛς2#]‡XΚ)―‘…ΫζΘv Y–7ΡΓ„dWšΚ΅!§φM•2Ω‘~o5ε4Ι)2aѝd»,/žcž³ewηΞ‘•&HZ±I·•M•2ΐU¨!Ξ4MΚοή,Ϋζ,]ΣζuRlC΅¬©i»E*›Bη7+ΎKξj©)͊[Ÿ™Wδτq6δ–Ε”3€hQl§°σMΈ<ŽfΨ+έƒΎ¬Ri\ί!Ε«œ»L6-)N`™/;•Ⴡ€;ͺ3›’’*iiސ멌Σ7ώcγpœ˜Γφ2κάS3$™SϊΕαJI‘Œ΄¨T쀇 τ›>fkbί ϊ ²}ΐanpη§a،΄˜¨oΒ.fedf’’jΞkŒξ‚&0jλ‡}ώήϋ2Ι{ Ϊ+Υά§«ΦμAs? έ“z?${Ÿ0«@@@@@@@@@8mΞ;mg>Ι'ξ―°ͺ/M2&YΞs$ηž–©Kμ₯MΛ¬OFf$σ3υwGuΙΊŒΕ~Γ>έ—gŽWΒkΰ3ηg4@@@@@@@@@ΞvsΟvΞ@@@@@@@@@@ΖO`RW`Ύθ’‹δε—_v4ξΌσΞ1WΡγΡ@@@@@@@@@@@`μ&uζ}θCcwζ FΎώϊλ¬e € € € € € € € € € €Œ–ΐ€ΐ|γ7:ηωΔOΈ•˜GλΔ½γhεe /_wέuήΥ,#€ € € € € € € € € € €ΐ( œsόψρΏŽς˜ ‡ €ŒΉΐš5kΖό@ΖW 33S><Ύεh € € 0κ|ΆuRD@ΰ΄ΰ3ΐiq™˜$ €“F€σ€ΉL@@@@@@@@@@3_ΰά39C@@@@@@@@@@˜,˜'Λ•` € € € € € € € € € €œ˜Ο‚‹Μ)"€ € € € € € € € € € 0Y0O–+Α<@@@@@@@@@@8 0Ÿ™SD@@@@@@@@@@`²`ž,W‚y € € € € € € € € € € p`> .2§ˆ € € € € € € € € € €ΐd ΐτ‘Ι¬Y³Ζμ Œ € € € € € € € € € €"η?~ό―“βα‡–ŒΫτnΈαΉρΖΗνx@@@@@@@@@@³MΰάΙ|Β‡ΧιχρΖυδ8 € € € € € € € € € €“@ΰΌI0‡§πK/ΉΫξΌσNwy΄μΨήγφ1o²₯―·O‚f:iώ,ΙπM–y σˆΨ\Ιwt.j°_zϋΞXώ¬,α–VFA@@@@@@@@˜8I]yβX†δ@_·tttHGw(;όθ1.ΑnYV\,Εζ±·; uŽθ•½Ϋ6ΚΆ]ϋ€_ΣΝ“Ύ€mΧ6ΩΈm—tO– {l+φvOzΑΣe‚ΑΓMΞύZ\\!ݞ{3ΠΫ&Ϋ6n”]MέN t9ζ‰ € € € € € € € € €ΐ€ΐ|:]ž#­wHEu™rΆμθά#Σ(“:—/(Aττωb*Φϊ$ΓΜL―”ΩδΆήΦjY΅©=τ:η ,š–ζn›Œ ΑήVY²n“3΅½’#M›ӌΨϊ½Έ4³ {θ΅φ\μ šΟˆ›’ξκχάΛAi]΅D6uι¦6Ι)ΰgΈ}ιˆ € € € € € € € € 0ξT`%ς”Εj‹ Μ†ΦςίρvΧΛτιӝG·Κr’S8έΒ§s87Ιk2όέ‚²w~θ˜~S½xjm¨IΪΓΙφ.Oι2-@@@@@@@@@\*0»,œ1nΕΪδγδY₯wKcN·œ0Aτœ¬Ιqνl@IDATυe•ΚώΖι;‘"™9YgΜ₯ΝqsέώOεβΡ<ΒDŽε“’Ϊύ’Ωέ')™rά²‰Ε±Ο`Ώώυ―gπΩqj € € € € € € € €œΉ˜ΗρΪϊz₯?: /Γ/ώ4” ΕYe–ήΨlΠ¬Χͺ”ώΎ> „ϋ¦ω³$Γ»shΘ¨}>˜Ο—!~ZΤvχEψψφ8}½}Ξ|άωΉ;š©ϊ͘π|3$k 1=}/%ΠgΖ²ηh-μνp‡Π|έ΄ͺ™η±ξŽΑcǜεΰ•±}’•3Νν—p!>3οπ•–?ꚹ}Ss=υ™λΠλ\_όώ1γeψύ’·D²-#+GlέooŸYψψ1ΗpΞή.{οAŸ 9Χpˆ<ΠoξΓπλK3χό7nΤώƒά·ΡχE@z{ϋYg˜χFΘπXψ:™ΥΑβάζΊ$_];h΅y/ΨχœΉG3†Ί8^ksρύζz~9Υ΄ίΌ―ΓwΤ οƒ„—ΔψδL‹Ώ’mΜ-8άk0ŒŸS ηΕJΖAΐ\φ.ΫC'Zg·ρŒ € € € € € € € €γ'pΞ9ηΔLΧ`ŽcƒnΩΈdlοŠ»°j΅ΘΆu|T$»j·μ)Οqvφξ•ιΕ«Μrlή±TZ—-‘³·•¬ί!J㷁ξ&Y{G₯4χxχ6Λι…rOν™™ε 2eΧόι²NχMΟ—SΈ‘=t τ;δΐ’πψ^©[[)Υ±ƒ¦—HνΞ5’η<¦ιIwΣ6Ή£r“ΔO―Jj7”GW’ vKΕτΉ’lU»JyŽwξ"ύΫdVΕ&³5[vtξ‘ŒΦ;dNeƒχp²©b–8{x|£vΏvΧΙτΉΥξXΣ’N) ϋκΦΚςκζ˜Ω²Ίφn™—ηwΧϋšdϊœJηu~I‰t74HH44Ggά`Ÿ4mY+•ΫΫέ~v‘€κ©*Ÿ)Ρgj·zžΝό6½{Kρ*3nφ ©ύZͺά^±.||Ϋ7[ΦοΨ*₯ ‚―vθη tμͺ–ΫΧΥnj#’Ώ°FjV%œk°«]κΊΜ=Σ}₯³Kjdλ†’Έΰu_Η^©Ό}•tΕάηz_ΦΤΦH‘χΎυάιω%’Σέ αΫVVμψ‘^πuτTΛ¬kυΪζšϋd§D_Ϋθ³5ig9Τ΄E–Un;ίμΒ*©YcξΡΨ‹cη.σώXΧσ—tYX³UV…ήΧ‘#Σ½ΖtUΌizΎΉn5‹βιμ.uΧΝ—ΉΥζ˜ΩUrpOyθ:xlVάS+M·Λͺ˜]ζΟ)w", 0Žή`²]Ž}ŽŽέ»žΧ € € € € € € € € 06ήΠ²7Ώγ]O€ylμ#£Ιβ $>ͺ*\½Ξέ/*/λ֎ν’ε –ΈϋxV-0UpχΛΚΌHΦ@GΜ¨Π f‚v΄Y–7ˊΪύ²ΘΣΗ-\|΄έ„—τdώr΄A*ζ4HMc§ ˜FŸA‚‘€cΫ|©Ψς νy΄ΉZŠ››€vNρLOR ^Χίέ^ U―>Φί=πήΑ79[ΒƒMΝλ˜ͺΉςž!λN»GΦUΜ‘ŽšFΉ«(+t€cχ@ν&ΌίR7ŽTGηzέέͺMXύPtήU3ww!‘=ϞMRQαξκYθ‘U nΑ’ΔυμZ JΣΣ%&ξξΥΎ½Rf΄υΙώ=‹βΙ= Υ’θNμi¨”Ϋ22δΐΚ­άΊV*Φ…*oίΨ&Kw–†Β‹¦ςj₯'Ό¬šΧ˜ Ν> Θ!SνuΑͺP˜vSΕ2Ι° m¬ήΌTTNί”L3Ά¬Œ„―uΚgK†/ΰT­YΉj―μœ’Œ=`ο.OxY«ίmͺ›ΚΕZxν2θΤΠh—T,‹T“$ζ΅ΰ ―Ο)Ϋ)eΖΆc­ΜYRο¬]QΫ"εΉς:`3Όσ²·im$Όœ»BοΡ Ό>ъΑΛ*V9Χ―Ήr•,*Ψ)9zˆ”θQrΛVΛΚ²γΌwν|Y§εΎMmαM½²sήΰΩΎΆ-žπ²©ΰέͺΰ4AρΊ;Λ&-{l‚ίn*2ξHjw¦šπξ5e’cξwυš}tϋ6ι^šς’^©vΓΛΉR³£F Μ}‘χmG]₯TT‡βΙ•[₯` Pwn™l^Y&™©)’‘™%坝f ύ²eϊΩ“1Š[v–9!k7°οN»Π+[lx9ΫT―©’©«4ΑvηtdKΣΔ¦ήιΪεΑrΩI]‘Ρψ9e§Γ3c!`Ιϊlz»μ}ΆλΗbŒ‰ € € € € € € € €Γ°f^ΆΟ˜‡η8Ό½M¨x[½†΅•HγΞ5nε֌œ"ΩΩ"rӜJ'Έε¨•­nυVŸδΝ[#UυΝ‘l0θΤjΦάl_[”.\ί(Jm85M¦•nF~.Τΰs—lΩΫ+[γΒ«ΉR{ΠT?φVεν7‘ΪpyΫτ2ο<$όΉΓYj΅]뀡―4ͺBnμ΅mT›^ίΈSJm8Χη—’ ;M²ΧTϊΥιυTKSoΩΘΒ»&ͺS²έΓϋR3Δ7xjΥέ7~‘Oώ?gRfKϊBΩΏ3Ri؟W*΅΅ύ¦βυ&³±KΆ΅φΕNs«vΘΞςiQΓφφ΄Ή―‹ΚCαe]‘‘5SΦά΅Pš+œΘ­»Ο©,TΥώ?)·Τ8ΟΫp—Τ7W„Bσ'N 1t@Ϊ6ΪΉd›{γ.χήπeδΘ’­΅}m±‰σšHοΆ6ΩP`Ο­’ƒ[ΛΕήNώΌyrχŠϊpuγcnρ`_[1Ήpύz)P»ΣΜ=V^#+φΞ'S|8ΰήλαBOzœ‘γ„V:wdζšWZ9ΫT(Ξί‘ν‰μνrίCΩE π²ξιK3‘hc·ΝΨE½Wƒ‡dγφp΅ζτ²ίœ―­‡ž‘3[Ά6ΦΘ΅Ε•ΞΑκZKQyŽτχt„ž.λΧ/uΎΜΰ¬HσKyM­μΊ>Gϊ…χ;…§$―ŒΒΟ©S˜%]HZΐRφ.Ώωζ›qAfTχ‘!€ € € € € € € € €ΐΔ ^>χάs©ΐ<–—%ΨwΘ Dζ―_θ†—ν1}Ω’c^„3ΒvuΤsI¦0½-Mr‹ΜΊMfΪΊΒ¦2σφP…e‘BYZdΓΛ‘~YEK₯Π„q5pΪ^ί!`ΆαRg/SΕ67j…H―©šk›K?;‘Lβ©vΊχΣ2°MΠ‚¦‚­^~Ω𲻫OŠV֘s(μYί~Ψ˜Uf4Ϊ σbψ`o‡„κ8‹δ.-qΓ©Ά[Znž¨Š^‰DΣ’όψsπgj Y―‚HS©\½„˜3Bπiy+εΰΑ…f‹OL•ηSkω’{A}ΩRj²έΥαΜν γH«Νζ–˜ͺά1χ†H–Μ«*‘#M‡MΠX+}G·ά’όθϋΛlφή/vŸΏHΈ/RΆΆγp’@ιθΉΉΚ.§Jl’‘έ8»h/οΊθ tTΤ2’δυvpَΤή5ŠgHΘΩ³rR-FŸrτy$MκΛ’ ²ΊΔ€Ιm;Ϊ% υΥ²Ό’X¦_{›μνΨ-“β9Υ7pπx4&Ψ±mΎΜš»<*Όœžž-ٚΧf*oθ”ΪΥe&ΆlΫQio¨—UΛΘ¬ιΧΚ{»ν†¨ηδ‰RwΫt™»|'Όœ.ιΩٞcF =φ/ΖρηΤ؟ G8Σ4¬l› 1{ΜvΟ € € € € € € € € pz Py,―Χ±H5/ΣFxΗς€fμάά+ψΊ!g³›n½―‡šΥŠΪF)ˆ€:=»Ÿ’*™Y‘°ΆgcάbnnΒAΜ~)f”ΙΫWΤΚN(¨¬…n32³’ŸΌ 1ΟΫ°Sζ­ Howτt΅IέΆνΚvχΘͺΉ3ΔΧ)E‰Ki'œQΪσXpθJα#>T›άΎIΛ‚›–^(›·”™9ώπ½”]&μ»'΄y|ώλ“ΌykδΐΌ*ιλν–ξž.iͺΫf*—‡λ «ζš7N‹l(Ѝž,QΫ&©ŸOza•l]Y"9ώπ{'Ψ-σ§Ο•°Ζψœe"~NίΩq€3@ΐ—υTlxΩ>Ÿ§Η) € € € € € € € € pV `Λ˞‰·vτΙΌ¬ΨλθUΆuƒ΅]M,•¬Θ‘Cgμ“&›ŒΜHK*Ό|βΔ±°NΊψ§dIVtfsXrv€VS!z^Vάρƒ}]155ή₯ιPΏ”ηΔ„€cΟqX3JbgOnwfζρŸ @ψpΑΎ^ι:bΒ°)S$oš_²¦ε9’ς₯έ΄VζV68{ξλκ3ζΨϋ%‰9β.φšυ™ΉΘΌœΈ‘ϋ:φIWΏAJΙ”‚Ω9qΧ4C‚ΓŠ‹¬έ ³cn\ίX_cοœΜ{€£λˆY“*Ωy9ζzOs³‹ΚeMχ^Ήeξ*g ϋΊd˜=χGW_Ώ!Š}ƒ₯£©UϊuΔΜ<ΜΐΓ‡ΒGΜ—Ϊ ε1οΣ ργΟ)/7Λ Wΐ™mxωΝ7ίξμ € € € € € € € €“DΰάI23rΎ¬<) ŸYϋΊjιvSΖ‘•ξ7΄{j>™Y^h$«κmH22jχήjχXΉΩI…M3σΛΒ•ΚΚ]©'mΗ HΣΪ;d— gΪ|™™ή*©?;’§z•;DAn$κ†h{4XκmAιiλφHΈœβ g&άa•ΎΜi’ήή°|­ΔMΫlλmΪ(wμκHX™9~θ ΤΟ/–ŠŠ ©X°Qz£vπINξLwΝα>{ζξͺρ]0Χ¬,7tΘ£ ke_ά%ΛΝ}Q)•[†ΎMΎΏ/W+YG΅@—ΤΫΠύ©$™“μΫ]Ώ,tm*ζJ{Μω¦εδ‰{WξU0χήk·KL‘ΎV©PσΨβά§OVΡJΙ6χΠιn’ŠβΧ_χ<[₯άιžT¨yh›ψ±ΖνηTθΠόS°Αe*0Ÿ#@@@@@@@@˜P*0Ϊ”πHS$5jLΏ¬9Π"λKL˜2ͺ₯Kي²¨5‰^€$ZiΧωB‘Hϋ2Ν„„ŸΪΏ[ζ§ΫUξsvώB©mι”y9NνXw}Ϊ”πΎΡCΉΫ%-OΆvΆHΝΒόΘ:w)[VΤμ7Μφ„Žέq Y₯dΏ P'˜žδ/\/-[eZττΔ_t—μIΰ”»PjΦ—„‘}|3η»οYwόЊχϊ€Dυ²1cI†ΜΫΪi‚Υ %^U€pa™χ±E£½MxνLΠ|γYθέ5Όœ.%U›eƒ‹ΜQ‡j‡ν}Ϊ΅φ95αδμΦΘsή’xΟj'Y«KΩ²p}­tήUͺFμlLϋ.AΗχgHωNs•ΩΚΔ‘£ή,›«μ}Χ%έn ζδŽγ„‹c† F†O°δ“’ šk½"ΑωŠδ–TΙξύ;%/κυΛ’=₯v΅½=ΓfηKMm‹άUδ©xnξ͝ϋwHYnμέ”-UχԊ{Ί=žŠΣά›vuΤρδlΔΌ lχЌOνη”η¬YD`Τl`ΩV_ΦΨu£~0D@@@@@@@@q8ηψργ“φo°ίyη.‚wΩ]9J ή±½Λ£4Ό;L0c'N8―S22Lπ³[ζ_;ΧΤΆ5αHS!xgΈB°Ϋα’Ž•jŽVΩΘΑ€τI ‡SΣ’’œΓ3θ—… βf€Ε„)  šc›ƒk Ϊ”TΙHζΨΞ|·™pͺΩΤ ‚πψNyL3^ΰΨπЌΟͺΠΉ;w―ρLΚΈ³ΧΛτK­{֌θ7χšŽiξ›΄aΌ†ύrοΡδŽ?Ιχΐp=GΈd^ζ<ΖψηΤ§H·³H@ƒΚZiYŸίxγ ηqςδI±+―Ός,ΰT@@@@@@@@8sΞ;sNe’žI‡ά6«B¦Υ4ΚS‰Υ’νΨx‡^Φ™OΙΌbξpΟξΤΓ΅ ŽθK“ ο $Ψ%ΩUiiCΧŽΛT™Νˆͺ4΅5ρ‹Qœoθ>I-g@3ή0΅‰OrΌΦŽφΉ'˜χ¨_―Π1Lw$mΨο‘aή£Γ$'‘lŸ ϊ9•μτΨ@@@@@@@@@ΰΜ ΐ<¦Χ3(MΛ*€Η£§²Xφν](HͺτKΓΖ΅Rίu4|τBYZδΣ™08 X€ŸS‰]X;™΄slK΄.v^#€ € € € € € € € €ΐδ8ηψργρ© I2׍7ΚΛ/Ώ € € € € € € € €Œ@`R˜~ψa9pΰΐNkd] εΊλYηA{₯»­Uκχξ•Cέ¦ώ²i~)-[(ε₯³%ƒμς zlDρΰηΤx(sŒα `ž{#€ € € € € € € € pΊLκ³"jˆω‰'žΣJΜZyωϊλ―£πςιr+0O@&—ζΙu=˜  € € € € € € € €£%0ιΜ£u’Œƒ €§—ζΣλz1[@@@@@@@@’87ΩΩ@@@@@@@@@@8UΜ§*H@@@@@@@@@@HZ€sTμˆ € € € € € € € € € €§*@€ωTι € € € € € € € € € €I `NšŠ@@@@@@@@@@@ΰT0Ÿͺ ύ@@@@@@@@@@@ iΜIS±# € €ΐ™.pβΔ yϊι§εΕ_<ΣO•σC@@@@@@@&LΰΌ ;2F@&±@ W^yeX3|η;ί)ηΗΗ«a‘ΡΞ‡–ύϋχ;£μc“|ΰCι―ύ«444ΈΧύζ›o–Λ.»lΘ~΅ΓΙ“'eηΝςΖoΘ¬Y³$33s’¦ΒqGYΰ±Η“_ύκWRQQ1Κ#3 € € € € € € €“C€„ΝδΈΜ@&™@gg§όώχΏΦ¬ό~ΏάtΣMΓκΓΞ!`0(ύύύrα…ΚE]4ͺ,LN¦ι^}υUwΧ^xaR˜Ÿώy'Ό¬Ύΰ‚ άy³pϊ <χάs§Ip € € € € € € € "pξ ΫΨ„ €œ΅)))Γ>χΧ_}Ψ}θ8xπ <ψΰƒrύχΛ›oΎ9!,ηŸΎL:UΞ=χ\Ρεμμμ ™G²ύνoλμͺsΝΘΘHΆϋMrγǏ‹V€§!€ € € € € € € p& PωLΎΊœ €ŒX ??_Ήζ±Υ{Ο;ολόά9ηœs&υ<™ € € € € € € €§"0± ‘S™9}@@1Έδ’Kδοx‡σHKK“ΤΤTχˆo{ΫΫDΧΩνϊ|ΑΈΫ΅Šκ‘#GœΗσΟ?ο‘έ,όρtφρΕ£‚Ρ’φ₯c»Ϊ~zΌW^y%vsR―½γωΟvηaάv'NˆžO__ŸόιO²«|Άs{ξΉηδε—_ŽΫο7ήpΦΩg­Ύ¬]ΫI«Σώίύί€sŒέίAν5ΡΉΏτK±»Ή―ςφ;vΜ9ώPcΩAΥT ΤNηaΫ@Η²ΫzΦωΏφΪkΞζΜΜLηyχξέ’ηΊpαΒAΖ\Άl™ΣΏ³³s ]&εϊζ}ͺu²`Φζύy2QsαΈ € € € € € € €Œ•˜ΗJ–q@@ΰŒπ†y½Λή}α…€­­M4ΰΫ΄b³VvŽmΖέΏ\θτ=οyθγ‘GqΊ”––Іͺmϋε/)‡Š GkΠΊ  ΐ WΫ}zΦνψCηΨZqZCΠ±αޏόγN5κ}ϋφ‰ WΪρ.ΌπB™3gŽζΆλτωΰΑƒςτΣOΗΝννo»3·K/½ΤΩ½½½]~χ»ίΉ]5 ]WWηΌΎόςΛ₯°°Πέ¦¦=τPάόt‡χΏύrέuΧΉϋz^}υUill”£GzW;–EEE⭜ύΔOˆΊ¦€€Θg>σΡΚΠ^#­Ό­F±c]tΡEΞ\υόΌMύΐΔέ_|±\ύυςΰƒ:AνΌΌ<ΉφΪk½]]ξννuΆk`ωŠ+ˆΪχώϋοwŽη½W’vβΕ@χφέ&|σ@σ>Uρ<1 ολ΄M:u<Ν±@@@@@@@NA@‹΄i!8ύέ΅ζ4G@\€σΰ>lE@’ψΓώ MMM^­Ύ{ΣM7Ήϋθ: ρ&jΟ<σŒθΓ6[IX_k훨iΠW»xΦ μ`- Ί•Žύλ_'άυΏψ…<ωδ“’aάΨ¦ŸϊӟʼyσδάsCάC£Zy9QΣ1t» cTeYϋΪρtYƒαΝΝΝqhέ¦ν7Ώω³Ž۞zκ©ΨUΞk­Šόγ8jξΆJ΄Ϋz{Τ!QΣ~?ωΙOάг’u†Rc›†Δ»Wbχ}­‘wmZωϋ­o}kμf^Ÿ¦zŸΫJίW^yεizL@@@@@@8»4K νΨ[xK  Νœ9Sό~¨bθο”΅›Ν4Œκΰγ<ζqηp € pζ όχ·{rYYY2mΪ4Ρ€‡–G}Τω ͺΥ{5`¬U’υCεΟώs·OFF†σαυ‚ . έjuεDνυΧ_w«λ‡O~ς“N^ ΪjΨXCΟϊ‘XΗφV0N4–ύPk?DkEεY³f9ίԐ΄*΅iπX?ό~μc­$­η€U–5œϋ—ΏόΕ9fff¦h°Φ†—5X;cΖ ™2eŠθάt;^GG‡δΦκΞωΘGδ±Η“ηž{Ξ γ~κSŸrζŸ––ζ[η¦ΥŸνυ[ŠŸψΔ'Γίώφ·ςψγ;Ϋ4¬σyΔ6=/ν£ΖZρΩ^»Ύ~ίϋήηt±π½‘γX#ύ¦€šΏλ]οŠrΠκΡZَΥΪΪκ†—½}΄Š΅ΪΪ jμ\‡z­sΆAk­ΠM;slem­χ* @@@@@@@`r hήαWΏϊ•3I-–vώωη; ΝYθ_eΎωζ›ε²Λ.•“ΠœAKK‹σW₯gϞUnT0Ξƒ`gp‡ €gΐ5Χ\γy5`«Α]Ϋ²³³ «Š5„Ϋίίο„o5 l+Ώσο ξΪ¦‘ήK/½Tzθ!»Κ}Ά}t…Žm+΅žwήyRPP œ}ν΅Χά ­Ϋqˆ Mήzλ­Ξ7υtW ?οΪ΅ΛK_ίpΓ n8XCΊςΥP²6­,­MΟcκΤ©’!k=}­M? {ΗΣΚΝΪ4ΰ­MΎΪ4,¬~ήκΛϊA_ΓΑΪ.Ήδ§z³σΒόηΪk―uœxΰgUOO;G»γΆΫnsΗT3=ήΓ?μμΧΧ—΄•Ξ―¬¬LΤZ›:θΉΩλ€n]§ΥΈ5P­M]½}4άί°T[ο΅tvNβ?:_΅Χ°u²fύGŒ³ώ#ΙΞMΓε6΄Δ‘λ¬Υ£΅iΏΛ/Ώ|ΘώZ‰Z§ΗΧ‡ήCs$}’™μ>ήγθΆd<Ό~z>CύCSΓζφ~ΫΫήζT͎‡ΎΦŸ Ο?Ό³Iίϋz―Ρ@@@@@@@&―€ώ.ά†—υwαVΦί‡λοΥυ―SkvB‹²yσ #=Kr΅fN΄ύμg?“Ώω›Ώ9­·ϊ;ί#‘ € €€+ ζ’’’¨π²έ¨ΑEΫlΨΧ>λzoΰΩξχξwΏ;aV ½Ϊ ΑϋΏλVcΆύ4Δ¬~ίϋήχΪUI=λό½‘IύP­Nm Λ^qΕqAT λ·ό4¬lΓΛφΰ:ž Ρjΐ:Qxמ—ν£ΟϊΣŸά—Χ_½»l4@ͺΗΤ Λ²Žmοϋέπ²έ¦Υ“mˆV+'Ϋ4όlΟΑφΡ°© \Ϋ ΅†\mϋΰ?ΧG>πΨ]†υ¬U¦΅ι=₯aο‘Ϊ·Ώύm§²υƍε{ίϋžh…o½v0·aδ‘ΖΠ`ν²eΛD+Yk_}h[vΧJγ_ϊם9^yε•Nέ_MMM£Φ'α@C¬L47=§Αζ¦aηuλΦΉ~v½^§ŠŠ Ήψβ‹]³ττt网Φc›ΞΙώLHTEΡuyi•g[eWχγθtΣsΌ„w5 ΐvuu%Ϊ4ΰ:΅ΦκΞΪ’©~¬ϋiUhmς/β<Ϋθύ™L{α…ά {μώ/Ύψ’Sϋή{ο•E‹Ή›5π¬λννuΧΩν£ί:]½z΅¬]»Φvͺ·Ϋy Ο=χœLŸ>]t±ΝΞνίψ†θΓή£rΧ€|’λeϋόΰ?Ο}ξsΐΏύοE+m'jϊη|τ‘Ψsssέ]žyζη½€ΗΤ{ƒ† € € € € € € 0Ήμ_ΩΥ‚qšMΠί―kXY3"Z$n ΌΐpΞJ_­E΅(Σγiˆω¦›nŠ*X7œρ'r_*0O€>ΗF@3J@ƒΛ{φμ‘§Ÿ~Ϊ GjπV?Hj€7φΫtDM¦ςο@έββb§Z¬P?¬ώϊΧΏ–ΖΖFηO‘$ M{χ]NDΆϋΔΞߏ}>yς€μΪ΅K<(Υ9iUY=ΧdΗπŽ©s²fοϊS]֐¨·Ϊt²γιω%j6θj·ΩJΊ:Ξ[«Ηφ³ύzΦ°¬­ςœl…mοyjUμŸόδ'NXΈ££Γ©¨<Π±μϊo}λ[vQ~τ£‰οƒΑ ΐΥ„iϋΧύWχ:ι9ωΛ_vΓΛ_ύκWχƒ¦υ˜ΆV3Φ βΪFΗι8Μθq>ωΟ»αε5kΦΘΡ£Gέ?ΫcCΗz>?ό°;zkk«^ώΟόOη\υ}ύ»ίύNςςςœύ*++EΏΐ νž{ξqžΥ»­­Mμ—}τQg½ώgΥͺUQχ††ž΅ιΌ۝•ό@@@@@@@` θοόυ‘Ώ‹««s‚ΖZΠꑇ’ϋξ»O~σ›ίœœ5kρӟώ4*Ό|έuΧΉΏwΧΑ5Δάάά,εNicά™ Μc Μπ € pvhP·³³Σ=ΩK.ΉΔω6VζΥ‡VW΅aMέI?ΐj•d­¬Ac Ή&ͺl«ηΊ‡Ξ;ο<ηϏh­t¬ϋyΓ­ZXΏe§’d<ΫώύϋέͺΖœ½TΞΘΘpώ,Š:όμg?‹ mΖΞ-Φ@ΤR j€ϊO‡¦•³m Uƒ‰š^―αžΟαΓ‡‘ΤV1œ¦aڟόη’™™ιt{Χ»ή•Tw όΎο}οsξη[nΉΕν£ΥƒwμΨ!ώπ‡jΰϊ’ΤΤTyόρΗ₯‘‘ΑΩOΒΆν£ύ¨σ5­MοQ{$}μ˜ΓyΦ΅†‘΅i0ϋk_ϋšΫ]«2⿐όγNψϊΞ;ο”O~ς“’ο5ΫΎϊjω‡ψwžλλλeχξέΞυΠκθήΆdΙΙΟΟwWι?$5­η«nφ~Χ{ΔVd§ϊ²ΛΕ € € € € € € 0i4\¬ΕΝτχώΏόε/yj!3ΝFh@›ώŽ^η¬ΏnӜΔ<ΰώϊ;ηχΏύξPZδN›O«4Κ[ίϊVwϋd_ˆό6~²Ο”ω!€ €“X@«ΈΪ0jvvΆΜ˜1#nΆή³nLIIqφΡπ’Sc?°κxGŽ‰Η»B?ψζδδ8]―af HjΨχOϊ“ŽφVΰυφνe―:hΣΰ±=c?kΐs°ŠΚ‰BΚΆ­V֐¬ίΊž·:κ?†μlVΨ9λPZ™»   nΤΨϋ!n‡+ϊϊϊœ΅~χkμ·jεΚ•nx9nγ +>ς‘ˆ>5υΦ¦Χτε—_v–5¬―MΣZ‰9Ά]~ωεN@X1§wm#ιγtζτ>Ρ¦s[Έpa\o ΫkΕh χττ8η₯zϋ§x΄ΊΊV`Φ{Ϋ^c=‡ΫoΏέKίύύύΞk­Δ|γ7ΚΜ™3έλ5kΦ,Ρ‡·ιu΅Σmΐά»e@@@@@@@Ι% Ώγ΅9™Λ²‘Xͺ±ώ€³ΈΊκͺ«†υš΅˜†—½ωŠΨπ²O› 1λο©΅ΟΝ7ί—Υpvœ„9wΞ‰)!€ €§€­€ͺ?όσγζΨcΕ­σ}τQ7$iwΤ ²~£.Άi₯g­ψͺ•_ν·φμ>S§NMx|»},Ÿ5΄μuπ.λq΅"±χΓu’ΉhHY?Θ{›·RπΑƒγ*8«ΑΎ}ϋδ‘Gq>ψ{ϋNΤ²VΆΑq ηjΦΫ4ΤlΓΘήυƒ-λ?l¬ί{ίϋήΑvMΈMΓΉ#m@ΐωΗΥwΏϋ]Ρ τ‚ œτΜ›7/nH[5\CΊNΤτήΧo…ΪπHϊ$w¨uήγh@ϋΔ†—ν8ήΠ΄ΣBwbΦμΕιΠ¨ΐ|:\%ζˆ €“^ΐ[ χ©§žr+kΰT$ˆ žzOδέο~·\tΡEΞU Jώδ'?]§ci₯αDαeνρΕ»γ=ψΰƒς‰O|Β©J¬z5ά¬ίΔΣ¦aH’uVŒΓμρ4ΠωΠCΙG?ϊQη|Ί»»έoύ%š†ύP―Ϋφοί/ϊΠ‡œωΏγοp*SΟόγ‘Τ5ͺmSSS0¨ύS,ΪΧϋ}=QM1’΅υΌ΅iπZ«χ꜡šοŸόηaOMƒΠκͺYύΗΟp[l0<ΩώΏψΕ/œ %³ΏΞ―««+™]έ}FΗν<ŒοqzoιpφΦπ±†ξ5ψ­kύΦκg>σχόφμΩ#ϊΠ¦ΧCί‹φOυθ7Z›››εsŸϋœϋ%ƒ{ο½Wτ‘νοώοe}뼞ώyg½V§φΎœ•ό@@@@@@@` h!+-Ϊ₯9ΝqΔΆ΄΄4ηχΏ‰ώuμΎφ΅fK4€lsΊ~ π²ν[‰YCΜ?ύιO₯¨¨hΒ ΰΩΉ υLζ‘„ΨŽ €$!`ΓΘΊ«†‘ΫΫΫεΗ?ώ±όμg?sΓΖ‰†)..– .Έΐέ€b΅« X^yε•ξ6»••%ϊAWΫλ―Ώ.­­­RWWηTdώέο~gwoΥXweΜBμŸ4‰Ω<θΛD}5°lΫ‘#G€±±Ρq°²ΔnΣg nΪ¦a_Ϋώπ‡?HKK‹hUjmΨύΫΏύ[7Ψ©Τ5,ͺαQ 6Ϋq΄r­­j­°Ν»lΧ%σlΗMtžΙτWoΠX\‹^[^~Ο{ή3¬?£aZm^x‘σp^ŒρtσηΟw²zυj§΅†”υ\4tοmz­>φ±9«τΆ†ή}b—G'vŒd^{3Ψώz½΅iυho₯k ':tΘ©œ­χŸZΨ ΣΟ=χœhΕι?ώρξΠsζΜ}όφ·Ώuή›_ώς—έmΒ///—“'O:v.·χ―»#  € € € € € € €“Vΐώ…έΨΏž­Φ ±ζτwΥή’xƒŒξλύ=ϋPαe;–†˜srrμΛ¨1ά•“pσ$Ό(L @&Ώ€ {gͺadΏίο]ε,λ7ν>ύιO»•]½}υCjYY™SqXƒ©oϋ۝*½S§N•yσζ‰>Η6ύΐzλ­·ΚUW]»Ιy­U‹KKKeΚ”) ·{Wj΅Y[ρUǍmϊAmvοvo_­8¬Mη«ANύS)±MΓΝφ³†Άm₯[έο²Λ.“ψΓQλΌΫΣΣӝ귗^ziμ°Ξά½φZηœνF­lkΟGϋΦΌηf©ΧΕφχž§]7Πxή0Ίξ£ΑkυΠ΄θ΅Υνοz׻䦛n’3f 4LάzύG ΅iX~Όš†Ι{{{Γi}νΪ΅NΕο~πƒr₯ Χk₯μΨf―‘VΦo’¦αg­N­•Ζ΅€O’q‡Zg£U₯ύRϋkx~°¦ο+½jΡΧΧηVUΦρ¬•ν―χކ ΅βς–-[œjλ_όβΝ:ύφ¬ν£χV2οY;6Ο € € € € € € €+`J΄ώΎψρΗw'£Ώ Φ‚wΪ4' ­9™¦Ήύ‹ΏZΩ9Ωπ²W‹¬i&Cσ:†ώΥξΙήΞ›μd~ € €ΐdΠꨃUHΥΠ«SOœ8!ǏwΒΈδ΅ ?χΉΟEŠξ§JD›A5ΐ۞}φYw•χ[vvόΔ'>α<΄J΅³†dm˜Ψν8Θ‚Ξ-v^ήέυξ@•œκk^zι%η[„:/ϋ­C{ ρΤ@κ’η{ϊZƒΰZ­68Ϋ΅‚­Άc[FF†|α _ˆ]υzξάΉQ―υE~~Ύσπnθ<½ϋ$KΏM©νςΛ/Oxίh΅lο5υŽ»¬A_[XƒΓγΥl [η ήΫγk(7ΆΩΊώƒμ;ίωŽlήΌ9*―η’UΔ΅έuΧ]ς•―|Ε Ά§Oμq“ym+*λ?·nέ*ίψΖ7’ΊιάΎωΝo:λτͺϊH½ίξΌσNωΛ_ώ"Σ¦M‹Ί―τ=γ7Ίc¨—VcΦ1τΪ~φ³ŸΊŸΤPχΏχή{έ>Zu]›νν܍, € € € € € € €LZ-R₯…ξ΄ψΥ“O>)O?ύ΄SπMχm›ώξy8M―¬EνŽjΝchζb$}‡{,Ά` UΖD@³Z@?&σaPƒΗ<π€c₯ί’»νΆΫ’‚žϊχ™gžqΆkˆVΏ%—¨yΓΑ‰ΆOΤ:­<=’6”™m%έ‘Œ?}΄bςύχίο„Ž5lΧΦϋΚW_}U{μ1g*ΊύŠ+tZΆJ―Ϊh8{Όš7P[YY)ραT€ΦpϊwΏϋ]Ήϋξ»γ¦ς|ΐ ωήwί}ςοώοςΪk―ɚ5kDο‡_ύκW²hΡ"·V-Χ6’>ξ ΓXΠ€Ό^‹={φ8‘dύGγςε˝oΌφττ8UΌmef=_ (k(Yύλλλ#ύμέ |ΥΩψρG’Κ- šj”¬-‰-6T,’hhƒΠWΉT°ΕΏTT¨ ˆ(υ±₯Ε U*¨(ΆP°θ HE„Š5X!¨‰XP£ αfTψΟs²g2»ΩMv7v7Ώσω„Λ™3η|gΨ™dŸ}F—i†sύ?©_0Έηž{Μr=Ύ„¬5‹³nσ—ΏόΕόtκΤΙ<θ­·ήr뫇ϋ}ϋφ™νΣΣΣ# U@@@@@@@bA@έ­^½Ϊ|~¬ ²τG‹~ή~Ι%—Dυ”εκβ&ͺwMΆ­ͺέΊXGs]¨& € †ΐ©§žj2&k0«fb^°`ωfž> Dƒ(5ΐΩΝX{όρΗΫY^c\@Υ™gž)~ψ‘ΙΔ»xρbIMM5z\?ωδwψZU°·fς΅™Έ5pΫ›ΩmΔ™ΠoQ+6ss°uΥ-ΣlΟγƍ“iΣ¦ΙζΝ›%++«ΊMLPξ}χέ'[Άl‘όό|™7ožω άpβΔ‰rΞ9η˜ΕΘι6νΞσΠύhPυΆmΫδέwί•3f˜Ÿΐm58[3œkΡmξΎϋn7€ωΪk― ¬nζοΈγ7Σφο{ιίΏΏωά₯K— υyδ)..6ΝZα¬zΜ¬΄C,D@@@@@@ˆJΰςΛ/7ŸΩώωη&ΆC?ΧטJΥDΑTνΓZ@@ Ξ40²W―^ζ[wΊ 4Υ@UΝλ ^ΦμΌ999uցK/½Τ,ΫΦ5XUƒfƒ—{φμi«}ΥσBρΜΜΜ*ΟψmJ›ωY3WGS4Γπc=ViΣ;οΌΣΰκΉi³ΫJš%Z3LOŸ>έ.r_;vμ(+W”Ι“'»Λt"šmό˜ ερέο~ΧckPv`ΡΎ½ϊκ«rλ­·ϊ­:χάsΝΝ›oΎΩoΉΞθψΧ¬Y#γǏwΧυλΧO6nά(z–!C†˜κΛ.»Μ¬/'h†f} @@@@@@@ >τ³ϊ΄΄49ν΄Σ^σwθΠ‘£aΦ₯ € PošuφΘ‘#ξq~σΝ7ζηλ―Ώv3Φ[‡κxG΄όώϋοKii©h ©ΎΆjΥJ²³³ύ‚`λΈ4_»wο6Λϋφ퓦M›ΚLΐοyη'ιιιu°Η蚼ε–[δό£ ξύя~T©Νh¬™Β5j$ϊ‹Wrrr₯:ΑθγqtμZ_Ÿ|ςΙΑͺω-‹d›κϊνΧpΐŒf?Χγ‘EΗ₯ηͺ+ΊΝϋ_w<-[Ά¬r“ύϋχ›,άϊ~¦jΦ¬Y•υY‰ € € € € € € €@ChΤΙ@@XΠμΊϊCI<ύ†₯ώΔ{Ρ εp‚Η©ω‘>'šmχΞό‰'ž(ϊI‰t2+G’K]@@@@@@@†"p|C(γD@@ΠšY8KΌφ;­ι3 € € € € € € €΅%pά‘C‡ŽΦVc΄ƒ €Τ–ΐΡ£GεΘ‘#ξΟ·ί~+ί|σωωϊλ―%##£ΆvE; ΰ¬Y³Fœί €W―^rΒ 'čIΌφ;n€ι( €>\@IDAT € € € € € €u @s $ €Τ\€ζš € € € € € € € €±(p|,vŠ>!€ € € € € € € € € € €@b ΐœ˜Η•Q!€ € € € € € € € € € “0Ηδa‘S € € € € € € € € € €$¦Μ‰y\ € € € € € € € € € €1)@sL:… € € € € € € € € € €@b ΐœ˜Η•Q!€ € € € € € € € € € “0Ηδa‘S € € € € € € € € € €$¦Μ‰y\ € € € € € € € € € €1)@sL:… € € € € € € € € € €@b 4JΜa1*ˆ[ύΫeΕϊ"ΣύŒœΛ€}λ€ZJαζ²`ΡjΩ}ΰ€4oή\rά*rj­ύπΪ/›W―—=‡EšgδH—φ­ΓیZ € € € € € € € € €$ˆΜ r ‰"Pφρf;všΞ¨…―ΧRσ~Y2μ"™°ή_©¨ύ΅υΐ\Ά}©\7²||­F-”W `φ?(Μ!€ € € € € € € € €$ΌΜ ˆ q&Π€‰Ϋα€ZJΎΌ{ΕdΏΰεVΩ=%GŠ$-γd?φŒ/-`€eeϋ₯¬L‡Ÿ$-ZΤΰ]M&@@@@@@@@@ˆ ˜£>₯RZκlœœ,ΙQ·Α†T”šJO©ctF9ϋ/?₯Ρώ+(jyͺLΦΝ}Ιm³}“I½ΪΊσ±3Q&KΉH¦h2eα›/ΘωΔ0ΗΞα‘' € € € € € € € € €΅&p|­΅TG KΈ?;Ί€YeΩ ­€U«V2`‰6 c—%’Ώv₯¬\[Po} £SυR₯dgΎ¬\ΆR ŠλλθΤΛ°ju'₯ Μω€ηΤ‚‚cαT œ}λώηζ‹ύΧ*g₯Ζ*χ”Α1Ό\ήεŠ~&99˜) `Ž;ξ8;ιΎ[ζd@@@@@@@@bZ ¦30—sΠ^‡\˜AπcΘFj°’X&6m*MŸΚYt+’+[Φ`±ΊiρΚ‰fάMϋ,a:΅Β VΗQΧύZ{{ωωΡ'μΜέuέ£ŠφλϋΌ,\1W.ιp\tΡEε?\ WέΆHΦ|\Ρ©`Sϋ eΙΓ€ƒίΆœmŸ’Βύž Κ εΆδ’K ωΎεSδ‚K.qφΫAξZ²έSY€lχΫ2χkόΫ½θιpΥm²βνέ~uu¦pΙmNέKœŸ²¨Π„ν©UVΈΔ¬λΠαY½»ςz·j°~JΎ »BΫΎDžΪΌΗ­Κˆhζeϋƒ € € € € € € € €Δ§@Lg`NΞμ'‡υσ“Υ¬Μ­LVζ<'Ϋς’zΘΆμ·ϋjfJd‡―F`¨Ž₯πέl)IN•ΜΤΔΛΎ\Rβy₯τ½ΙoQ‘dο,‘ΤτΜž}ΉTŠw–Ÿ •˜ͺ9³κ|uiοΑ³ƒ2Yχΐ5rγΌΟ²ςΙ‚—¦Θ/UZ\±`χ:ΉͺǍRyK‘‚—¦Ι•/Ν•ϋ^ώ?ι•Vώ?PC‘χξέ[±½N9σΊdι„u2o{iαLο{‘\4hŠ­\ ^’±ƒ^’ΥχύMξοΥΆb}ΩgΊΌνΓ‡5@9π½ ZΞ—[o›: EΪR@?νό΄u»εڜ֢rƒyύβ‹/δ›oΎ‰jΌ7–“N:)ͺmΩ(φ4XωθΡ£~AΛΊŒ‚ € € € € € € € €ρ+ΣΜΥ±† V_"ωIqI‰Y•’š)Ω™©•«y–”Ȏ‚b1[$§HfvΆ„o\R\"e₯ΕnKΕN€jIjŠˆ°œbβ•K%Ι™NMς^.). ml™š*ΙΞφω› Κχ-Ύ};MDRJ|ύΧxΤδ”TiΧ.Σ·ΰ­„7^'πΆxŸΣ@’€:c*.Θ—gΌ’’)]Ϋ%Iqi™³ήΧΎ3†ŽwŠ3(­«₯΄T·sΖηzi‰οs*%΅”THϋ±ΙqΧ’ύΞΞμμξί©›’šνΣ)-)–}eεύ3„ϊ'`Ώ%;σ%ί Φ’ηG;ηό°έτ³qϊΤ©Š>‰sΤ ςw8ηš‘—ΤΜlΏ@uν_©SgŸ/PΈΤ+)IuŽ}²Ώ·»I x.tͺϊ,‡›œn‚—₯l»άθ ^Ξξ?QΖ ξ"iIe²yήϋ\yϊζ—ΖN?yZr4βΉ6KR†L}β ‘&{δκAc}-gΚΔGοφΞ›\ι΅Ή·ΈiλΫoΏ•5kֈΎFRš4i"—]vY$›P7ΞlπςρΗ'ΨC$βμ8Π]@@@@@@@@j"ΧΜU Ό`εlιΨw\ε*Ή“eΓό1’­YR ³‡u”qΛ+o2ωΙ 2¦_vεvIiΎτlΫYΆΪyηu\/§-ŸΆAΘ–‚Ε’Φq˜³ ΧΙ½΄){—φsƒ»uQteΏ¬ψύΘ];ΣινΛvΊσρxmί>Ό¬­₯'IrΛ’•›'ΉΛYœ•ηΜ#m|qΔIΎψk'ΙoEI²#_θ/η δ„wΫ²Π Œ~ήd._R,³/υ/ηΚpί1²ΑΛZO³YWYάύnυ/ηΚ gΏݟ)ΫΆuƒ—σœγQq8VIߎ9a½₯xν ΟΉ–ετi΄[Υ€Ύ’6q­©œΪέ1q\*φS >|N§ΚAΑΎΰε¬ΌAΞ9T±―aoM"μ–β•NP|Eπrξ ΡΞqΟσ­^%C:§Ι\Ώέ9O.υ/Wn ŒΥ6­8Y₯νΊ«•΅5«~-+’₯n£ύεV7xΩn–&7ί7ΡΞx^χΛΊΉ/ωζ3εŽQΑΛε [HίIχΉυWl/r§ύ&Κ*#)£―,^ΌΨόΌμE–.Χί\±¨βΏBΕ²Zœ*;P‹%@SΔά΅kW9α„ͺ ΑΛΥΕuΈμ}%s\R: € € € € € € € Πΐ%άψKΦJŸΎ3}ΓξdρξΛβ;E†―-ηυμΐΛ₯σ½kεΠτ¦ή¦ΩΔέΒΙV<έ—­xΚ]Γέl΅«Fv–•½Iwwλ—)S–.u–Θ M;Šζž³ε28 S―ί&•f²δΙ-/9ΩƒΛSCOΩ΄@Ϊvfj»eΉ ή8ΨΙδ’μ|MFϊPG;›§ψ26O?Fnw³r6{hκk2ΉwΊ –­ΩxɊ-Σ₯«―ŸΪ£½θηoσ†8#w2υn\Τ/DGC,Ξ›%οΞ*&ΐω±?ΘΚ‰—Jί™Ξ€–/–₯ύLΆκ’MΟΛ8ί³F?+/Mι]ξ1eŒΜνΣVF&R±+οβΌY+dώΠεďM‘Ήœvl*γάi²eΡ)?„ΣeΣάΝ¬œ$k †—gyv²^ίΠΛδ'vΖνŒa‘o Sξ’΅³%½4χΜΫe혍}Š“ΉΩΩωσšΚgqޜ-²hp¦·;žiΗΈπ5U#Ύ“‚eN@ώ@=CΚζ‚?H¦ιT‰ΜξΣΧ·sξlpΞ_Άε»†―•ηυ2ΩΌGvž!½M1ς%Ξ9eΟ“J†ή±»=Ι”ι[VHχΝΕ’šΣ½r ΅[/ό‰²έΫέlΗ™£ϊHZΈ›–}μ |.ν›7KYR@0rΩQQNjA€qRkiίΎ΅ιΙώέ…²zύf)Ϊώ±ζΌΉΘ’WΒν%υκ@ΰ΄ΣN3AΜkΧ ™‰™ΰε:€Α&ƒ—=*EE!Ύ¬ƒύ§K € € € € € € € € P!pΜΕ―-_œ«<ω ^.pzΧ²fΪJι6Ξ‰v}θ!)˜άΥ Pέ)‹mdμ gέΰe³ErΊŒ˜ΏFV¦u3Α sWHχA§Ξ₯°‘NεΞ™ο/λΆ©Λ–9Λ€γ0'Ϊuλl'cτ`ι"‚Ή΄tŸ»»τTO„uJ¦ŒY1KJ–66tΝΖ;mƒπ²έ±wθ:νMΆlλΝ•56xΩTH–‹pΛƒ·ΛΓPKeε <Χ2\Ωΰe3Ÿ*Cme­:›cd…υOžLΆΑΛΎvOžγ0—οwΦ”‘ΎΰεςΖ: ΎKςœfηhΈYž‹σŸχν3KVŒ‘λˆΙ’η0λΩΈΐ9oΊφΛtΆτ*•·μ_cl‚—ΛΧfvο'yNˆ½ξΫ-Ε―Ήέƒž\δ/λϊδτ2Ν4Iλ¦f3eeΑ]N0½Tm8?ΈaJfWηΌtχzL'œXb·Ly;l"ιv)ΠΎ"Ϋy°Jžee»7Λ΄±ΧΙsU$ZχTg²žͺ b&xΉžΖ1؝.kΡ€eΦΜΛ:m30gddƒ^±K@@@@@@@@ˆV@νΖ±Ί]IiIyלŒΈΎDΔ~]νΤ{°o~ΉδοΤ€RΩι[2kΔΕ~uΝLJ':¨|ρςeωU‡ †΅[i?Α6Νμ>\²LΝ­ςQqθΰΧδτlΙυ΅8²s+ΉaΖσ²)Ώ@JœMR»•Η¦O—ι#|™†k8ή”€`=­4œ$KΛJ΅“*-± r§ –t;c_““L†a;φk%R»ί<ιΤ.`œΞ>ϋYR\μΫΥVΩ±y­h†ΨŠŸ’^~πd_@’ΰκϊWΙ8ΘΎKυΰš’+#œΜځ%₯Sw'Τ»Ό,Λ·gxω|­ξ8‚ω‚ν"¨X΅Uΰ‚€ωHΠ εήΰεVηϊqrί}χΙ¬Y³δžQ=ΪfφXΨ fΜͺ}8α„δ²Λ.““O>ωXt‰}Φƒ€χxλ΄ύΡΰeΐ\έ` € € € € € € € € PΛ –ΉTςW.,'Ze<Ĝ`_GΦZβXZοfΆ­ΘcμΏM»ξΞ -B4ι_»ηZ¦˜ΐ\›Q:dΛΙΩςؚ9ΆΫ0Seα€!²pRyν¬ΌΡ2ε=»<3sL7䝾θa2\UΥΪXgC™«j«8Ώ"]οΘΎ½BV­‹ΣfgώJίώŠCœ–ι’“ηTρ¦Œv·ΩΥz]‘Σ:’ύΉαΞ­ΖΙλ―^+-"Ϊ:tεέ+ζΙKΎΥ­ϊά'Λ¦φςo»π€LxΠΦέkκ^@ƒ˜»tι"λΦ­3Α«/Χ½y¬μΑ2{³0ΗJίθ € € € € € € € €D.`ΜΙ’’’io«ω--o rrJŠ«2h΅ΜnIVW·Ωθ'œΜ»y€CΆ•Ϊi°Ϊ›'›^[)ΛV.–•-7 [—Ο”ΎΞΟπg·Θτή™Σγ 9:g…=UΥ©ηueeφ<Λ•Ρ“»JΕ™TΡ‘’’bIolMEh¦RRΚ«άΦ9]ΤU•Iiν%ΫY―‘ίω―“ύΪϋ ‡Ϊ6©΅δ΄rΆΩλTΨ»B φ_+9΅Α|`‘o―­δώqΑΛΚ²Γnθt¨ήI“&!ί=BnlE=ΏΓλBΜ/;σΜ3Msrr²œrΚ)1ί_:Xs ^Φΐe-6Y§Ιΐ¬ @@@@@@@@βS Α˜EΪδhx€XκΔ1 ,έ±Ι—q9KΪ€8αΑ©mΔMT[μ –Κζη5­ΣdΧ6aGΞdoΆδ`=«XV*₯&J5E:uοg~¦L)v²τNΌ‘―,t8Έ\ΖΚ”Τ(ΖQlΈΧlͺ8θAЬZͺέ&Η—Λ;«Ÿά5fpΨη†Ω}γI·ZΆΡ󼼘cθ^ΊC¬*_ί50€Ίμ&eHŸL'ΉΐιΫήeڊ^2΅Wšo$ϊ²[ž;Ε3o'[K—Ύ™2ožn˜/ΧM^"―ίί7 ψyΏ,Ή­·< ·Κ ΞΊpσ;7±»½²`δx3C—Κ΄aΣά"žη™|eσnΠΆ­§ή~Y1-Ψ8ΓI3$?ΰ i°|ύΆ^w\οφwιΨ2lξ Ω½gΏμ.ά,“―κ!jŒr’sύβΔ>———&ΘEWM–u…»eώ=RΈy…άuΥE2α₯½²ΧY7μ©B[³ϊΧ§»uζ]w©<°d΅l~{³¬[1WΊΰJyn―»ZVΌm³5‹΄ΝιλX?εJ™Όd³μή½[Άk_qϊ²ή]ζD’d^fΣσeςS«₯°p»l/άζφTC ql°²Ύκf_ΆΛwԌ @@@@@@@@ΔHΈζΤ#d΄οxλΦSlΪι›+‘•3Θ_”f|Α©2b‰o‹­#%톲ΣάYβ/χι8Δ·}žάΥΫ Ÿτ- xIN–tί’Λ6;ΑΔ63r@½ ³«Ζu–‰Λlδf©lZpƒτšι€NΦ2h¨d‡Ž_–”–Ά_“δφk₯ΔΧβ|YωZy"]%Υ΄Q‹γ΅M;―ΙΙΎ‘o] ―8aΰε)‘=5j6Ωυκ1ΎVI·΄ΫeSy4Ά”¬”>η ¬YγQnΪϋzΡΜZΖuK“Ήk+ŽίΞMΟΛ₯m»IίΞmεφ•6ˆ9Y\¦qΛ€ΐ1*Φ)΅«¬^ΎοUγΊΙ N³I.X9C:Ί'ϊιžY~ςtZaΨω‰’ο1ΰžηεmΪσŸŸ(}ϊτ‘ξΉiΧDΪ"ηf™Υߞ³"λ+=.½Hz\yψΰ9ώψγ嬳Ίz?±r±hΡ"3†Ρ£GΛwΎσ¨ΗΓ† €$ͺ@Όέc̜9Sn»ν6IKK3χ+ΗκΈpq¬δΩ/ €Δ’Μ±t4θ  €$„ΐΗlχ~ΖgΘgŸ}&[·n•FI—.]κτΒ„ΐc €4pΟ?\Ύύφ[± Υ{‰½{χš{‹ΤΤTΡG²jγŽ;NN?ύtσσόη?ͺU+Ήΰ‚ \= NΗ·’U½²²²όξΝΤUϋ­I'Ÿ|rΰ.ΜΆΊuQ7[’ι―έΆͺΧpϊΈ}QQ‘μάΉΣΨ΅lΩRτx… ΄γφοۜ#ΪΞχΎχ½Jηˆ5iΪ΄©9Ζήύiΰ»W=znj \φΖoΘΎ}ϋΜω—‘‘αnΗαΓ?tΟ‡σΞ;―yθVv&΄ο½χž[Ώ}ϋφζΪ:}τ‘9ζΑŽ:~ϊι§ξ» ― €@CΠχ^}ο·E―_ίύξwEΏ,₯Ωkσ=\―§z_ψE¬ΪΈΗμη]»Μύ^£u?ϊяόΣvΌϊΝ5[艹xβ iήΌΉότ§?υ6g¦ΓΉ^λΈ΅zx]V+½N©•½žΪDΣ_»m4―αή?ΪΆ΅ώΆmΫΜυYοMυϊ¬ηT¨ςξ»οŠύ’žή‹ιυ?Ψ}]¨νYŽ ›ΥέcΨί+υoϊ»ϊζΝ›ΝοήzΝφώ=BΫ©ξχΔ`χΊLχ‘%άΏ?”••™}{ΏΠeϋiΥkœ^‹΅θίSτχλPE―qzO’₯M›6暸gΟsΤ>+ΥέcΫF—q½%Γr@ˆWŠO[βuτ@ˆ!C‡ΙΕ_,šυ―{χξ&ΐεŠ+ΊΑ!1Τ]Ί‚ €1&0bΔsπΤSO™žέuΧ]&ˆWχ2šaXˆυ°ώύϋ›ΐ=zΘ­·ήjΦkΦ£{ξΉΗΘtκΤΙ<&ώςΛ/7 ύζ7Ώ‘RwΔzίrΡE™`™·ήzΛ,χήΛ̚5Λ¬ΟΙΙέ‡ήΣθ‡v?ό°Ϋ†N,[ΆΜ«τξέΫτA—Ω~j_yδ{ι₯—švΊuλ&\«ΩŸ½E{4 ’~Ψ§ϋ}jPvϞ=ΝγΪ5ƒ£+ΊΏ₯K—ύ˜·θΨΪ΅k'™™™’ϋΦΆ΅] œYΏ~½[uΒ„ f{½—SGoΡΥ\Η³fΝ³ͺ&ύυΆl:ά>Ϋm?ωδ3.}΄½ŽQΟ£BΩώΪΊϊͺη—~(kΟ­―ξzŽθ9`‹ž:ζyσζΩEξ«w]Χ―_?χΈΫeΌ”——'^x‘9ŽωΛ_Μvκ¨Α_jω“ŸόΔτS—tι>ΤΤ[τCε;οΌSN=υTΏϊΨη•Φ?rδˆ\sΝ5¦/;wtμςσσΝ:έηΫoΏνmži@ Αθ{ϋψCσ… °Ρ’Χm}Ώ~葇Μ|mΎ‡λuYίw5@Uƒl΄ΤΦ=†ν§=ύρ4χ&φΎαΗ?ώ±ω{Μξέ»Ν>ν?5ΉfΏϊκ«ζΛι½zυ2mΫ6υ5œλ΅ή{ιί‡τšωΐx77Σ7n4νκ±Πΐ--5ι―i Βt³gΟzxΗw˜ΰ+o“zŸtύχ›ϊφzχϊ%―qγΖUͺ―_μώχΏo~τžCΞ?|sŽxοΕΌϋ`@ >ΒΉΗ°ΏWκ—fυ‹Δϊ·½v˜AFς{b°{Œhώώ }ςήiGl?Gegz£—НΎώϊλ+]γτΛaΧ^{­ΉΖΩΊθϊθ£2fΜwύ-·άb‚VW\i’u…fV Vώφ·Ώ™Εού?Ώ NοΌσŽΙφ¬hjΡ1ιγί΅hφ` F²•~υ«_™ε:o—™Ξ?›6m2“z\4ΰFKMϊkρO$}Φ&τγάά\Q'-κ¬νZtŒ$€ΑQΆθyσΛ_ώΜj6I Lΰ#-zŽθq±ά6€7»Ά©θόμΈΫeZηΕ_΄UMΐΊfΜΌδ’KdŊfΉφσχέ:C‡•—_~ٝΧgυXύώχΏ7Λτ<΄ΑΜΊ@Ο+ ΊΣlΨϊθ_-;vμΝΖμ-ΦEƒ»5‚4D½ζk°~ωΙ½h³Ύ7k©ΝχpούŠέŸχΎ£&χΆŸšεPο΄θ}ŠΎΟkΡεz]Π/ΈΨν5[ΫΠ/tiΉξΊλό2;‡{½Φkθ 7ά`ژ?Ύy„™ρύσχΏέLι±°Χέhϋλm7’i½뽦½ΧΉϋξ»έϋΗiΣ¦™{S{o uώόη?›{*[_ƒ–­τιΣύόυϊ―χ)6p^οΥ¬‡>]CΏΘdΧi{@ψηΓ^ίτ}ίώn£Τ§Dϊ{b¨{ «ξίlŸΌΏλΪez½Φλ™^υ OΆθSŸžyζ;λ~™vΑ‚f™ΦΧk’ΎjΆθS KUχuν<Χk+Α+ €$šΜ‰vD €Δ”€fϊο+šύΗϋ8΄˜κ$A@˜Π`ηž{N `ϊ€š:γ7Vκ£fςΣμ²ϊaΨΣO?-š…ΧfGΦ@Τ7ί|Σ3k€Ν€I“Μφ=φ˜› ±RƒAh@©Ά3wξ\ͺΔi ̞¬Λτž'XΡ~Ύχή{²xρbYΎ|ΉωΡz`d3.ivF –Ρ’Y{υρβ0€ϋyόρΗΝςPh―φOΛόΟψU[Έp‘™Χ~λώτCΘ3fΈcΡ_ό¬²ΩΩΩ&θχ΅Χ^sΫΡ@Z›AXΏ4ϋoMϊλ6b"’>k:ψσK/gΝd­kφl-χή{―ωpUΟΌ¦Αδjς»ίύΞ8?ϋ쳦޿ώλ_2ΣαόκΈkΰ½ήλω©ΑΙnϋ©Ύz>θyΉoί>7€ZΟ_p¦_΄η³φQ3¬γΠεργΗ›M™2Ε ~²η¦χK„Ίoݏ nΣΘ) €@CΠΰœE‹‰Ψθ΅NΛΪ΅kΝ50πΙΊ¦οαΪFu₯6ξ1΄Ÿ%%%ζ>ΰύχίwΏ¨₯Χ½Ύh©Ι5ϋƒ>όγ&{’>΅Β["Ή^λΣ΄θmτΗ½‡Ρλύ"•eΥ€ΏΆέH^υϊlΏP€AΜzύνo+z¨χZ΄φ~IŸŽ ΦZnΏύvs©_6R{Ώ©χΦ_οετžDζυ>@ŸΈ0gΞχž@Ϋ±_ni  €@| Dz‘ΏΫiΠ²^OτΛΑ‘ώžXN8¨ ]―Χ@ύύY†’ύΥ/?kΡΏ θΣ±΄όσŸ4O‚iύr–~Z―‰z-Υ¬ΜU•ͺξ1‚mΗυ:˜ Λ@@ Q`N”#Ι8@@ ζτqϊθlύ#^£Fbt@b_@ƒgC œΡΗ―κ}†ΌhFΒ§žzΚ( qWj‹fWΎζškμlΨ―z/£u΅EχͺΩ#-ΪOέΦΝ©_υϋθT]¦-6Uη5π΄ͺτCC ˆΡ,ΒϊxroΡΗ™k†€₯K—šΗ”ΫuηœsN₯±θ=Ϋ AƒL z΅Jj`” .²ΑΏ5ι―νC¨ΧHϊ¬₯α…LS4€¬΅EW«ΏZ4ψJ‰4X‹i`x‹-ΜΌώ£A`6ΰYΗW“’ΗOƒθO?ύtχ>X³Yι±PK›ρYχ‘}ЬށΕfNΦΊšIS3-kΡσάf‰Τ€( ‚oΥͺ•\}υΥf½f…΄Y"υCa;foφoS‘@(ΰ}’}― d¨χπΐ6ηkγΓφ³eΛ–¦y½ί ό"“¨Ι5ϋ―ύ«i[³{―™Ί0’λυΩgŸm2`λvχ§/¦όϋί6χ0:–]»še5鯯و^lhΝ ¬AW6Γ΅zκϊτιcΪ{ςΙ'Ν—ŒτΌΡΐk-zm·Χg­―Y*oΊι&sίΦΈqcSGο£΄θ—ˆτK`Άœ{ξΉζI £F’φνΫΫΕΌ"€Δ©@8χ_|±ωέNm€‰i€Ώ'VΗΞίͺkCϋ©Oy°Χ8νοΰΑƒΝfz=Σkž›yY―‘ϊe ;&½–κοΓφι¦rΐ?UέcT5³\―ƒ©° @E€HšD9’Œ@bNΐϋΑLΜuŽ!€ €@ά œxβ‰~cΠ€Uϋ‘šffΦΐM ΡΟ4£q€%π^F?€ άg8mn£Αց_ξ²ATϊAa»vνόšΥύ¦€€ψ-³3ΰ­AΫZτqδνΪluΠ́š Ι–νΫ·ΫIχυΚ+―4|Υ€_Νά¦M“ZeυΓΗόΰ¦n΄ύuwTΕD€}ΆM .WΟmΫΆ™*ϊ‘«ύPYƒΘ5XΚ[τΓYΝ&uπΰΑήήϊΥMΫΐ%[OƒνυGν4λ§fvΤlΛz|5=°|υΥWfΡ/~ρ‹JΗυ»ίύ \ΦνΣL\›5»³g=^6[Ο©ΐ ωΐύ14`]6‡kΣ»¬Άξ1ϋl|Ρ^³5HΧ>ώέ~Ι;†HΧzΥΰ^½ΏΠμΕ#FŒν» FkΈ5‰ΆΏήΎE2ύΕ_˜κϊe’ΐ{6½FkπΆ~μ­·ή2_†{²:˜ΐλ1cΖΘΦ­[εΊλ3χošυ>=ΑφΑfόΦ{)έNƒΧ;wξ,rσΝ7ΫjΌ"€ΔΉ@°kpΰN;ν47(Ψ‹τχD»]¨ΧΐkY°Ώ?„ΪΦ.ΦOœμ}‘ύ³^γŸφ£υ›5kf›τ{­ξΓ―²o†λu0–!€ €@’ΐœ(G’q € €@Μ θcΠ( € €@} hp‰f’-,,¬ρnλσ^Ζx¬Α2α–O?ύΤΝΨl‰ΌΫjf!ΦG‘‡S4S΄fό]Ώ~½ ~ΥΜΟφ‘ιAΐZ’νo8}ˆ€ΟϊˆZ VU4xέ›ΥP‡΅x³Fy·Υΐ£Ί,‹-’V» Ν,mƒCU tя~d‚”5χ+―Όb£ž}φY³ω7ήhΕB΅Εr@κΒ}―Ύ%1§^mΤ‰φšmŸπ _ΚΜΜ¬Τ•HΧΊ±flΦ²cΗyο½χDŸa³/κ“2μύO΄ύ5Gψχz˜aΪ6eΏdΏ₯ύ|πΑEΏ¦χ š™Y΄tμΨQ&Nœh²6ΫρhΠςάΉseθΠ‘’AΜϊd [ƍg‚˜υ c@ΔπzG[›χήv£ΥΟΐφš6mjιk#)ΥέcΆΕυ:P„y@H4ςg/&Ϊ¨ € € € Πΐφοίο/k νΌyσδν·ί–’’"yζ™gbZΓfŒ΄“«W―6›hζB}τl`ΡGΊΪΰε!C†ˆΦΧ ! πΆ9ήm4hHl΄ΌπΒ &Σΰ‹/Ύh潏₯ΆΏ¦‘jώ‰€ΟΩ₯ͺiZN?ύτκͺ]o'te˜ 5C£ ^ΞΙΙ1A[l¬A؁υ8Ψ`ρpχ­χλΧΟτFƒΞ?όπC“ιRτθΡ#Μ^R @ ˜@$οαΑΆ?–Λ’ΉfλlPξM7έδχΕ%;–HΧΊ>=@οE΄Όώϊλςώϋο›`ύς~ Η–hϊk·τU³RΪλm¨mΏώϊλJ«43₯ήcnΨ°Α,_xα…¦Ξ–-[δη?ΉάrΛ-b³Rκ ZΦΰe5Σ/‡Ω2mΪ4IOO―ςΛXΆ.― €‰)ΟχX¬Ε~i'œ#Ξ=F`;\―E˜G@D €9ю(γA@@@„7xSΌiΣ&˜{κ©§š }δ·>Άϋ¬³Ξ’.]ΊΔ΄‰~ˆ§₯ΈΈXΒΝ^€>ϊv-ΏϊΥ―*}h¨7φ1ζ“&M’'žxB.»μ2Ρ,ΛϊΨr zVrssΝb Κyμ±ΗŒ©fϋυλΨ΅|ςΙ'A?όsSΧ>žΦiq`ρfˆ \l^Β΅Ψ Χ}ϋφ•sΟ=W4p+//Οom[³8jΡΐό`εγ?6}υŽ[ΫΤ²lΩ2>|Έ™Φύfk6+ψhΰΗώΗC‘Ό‡Ηk4Χl½Ζh³ήSΩϋοΈ"½^λΆάΤΏΣΜβΕ‹Ν}‰Ξ 4HΌΩ£ι―i4Š7nμ^oƒ]λ΅Ι7ήxΓ΄άΆm[σ½7Ψ·oŸωΡΐεΙ“'›@f½ί5j”©;ώ|QC-0uuŒ:Φ?ωΟ’_+V¬0ΎZǞ_:MAˆ†ra_ΦλbΈ₯Ί{Œ`νp½¦Β2@H$πB•H£f, € € € €@ ΨΒ4[]ΈΕV%-e@IDATΦmΦ¬™ΙςηέξΝ7ίτΞΖά΄Ν ¬Uν΅Χόϊ§A.7nτ[¦3οΌσެ_Ώ^4 Ζ›ΉΠVΤG:tΘΜΪΐ]»NΫ|ε•WΜl`xZZš\uΥU&Sΰν·ίnκh&AύΠΠ–hϊk·­κ5>k&&Ϋ ΄²AOv+W4™ 5Έ€€Dμ#nΥX³{‹Žk–یέgžy¦©²fΝΏLŠΊPnΡ~νΪ΅ΛToίΎ½Ÿ₯.|υΥWΝΊο|η;ζU9ωδ“Ντ<`‚ŸάΞ„Ά₯ΗIϋϊοΫ]₯mkvg-₯E³]Flm6δ@ τώΒfψΥλB8%šχπpΪ­―:Ρ\³υϊ©EŽ[·n]©«‘^―mπ«χ-/Ώό²άwί}fρΥW_mW›ΧhϊλΧ@„3vϊ₯°O?ύΤok½_λ°–SN9Eš4ibžd‘’’"ϊ£_ˆ²EοnΌρF3«AΛφΛSϊd ­;qβD[Υά»τμΩS~ψΓšeo½υV₯ϋ ·2 €q!Πο1μίτˁΧPΟΟΟ―tμͺ»Η¨΄oΧλP2,G@D €9Ž"c@@@@„ΠΜΊZζΝ›'{χξ ™…Φ;h θΤRXXh2οΩ³G4“ΆΪΜ΄Ίήυκt¬”N:Ή™„΅―˜¬εΛ/Ώ”_ϊΧ²yσζJ]]΄h‘Y6bΔ“0°‚φžtIfρψργε_ϊ—Ι¨―W^y₯Ϋ¦:y‹fHόε/ι]$W\q…ί|4ύυk ΔL€}Φ j›–?ύιOςϋίήΝΔ¬ΥF‹&kπP·nέ\ηξέ»‹>W‹fŒΊχή{έX΅ž›uZž5[€½ι1ΡsκΞ;ο4uΒωGM퇻Ο=χœΌψβ‹& Z³5j;ϊy-ήΜΠφσ¬ό‹_όΒ”kέζ†nΠIΐόύοίLλ?ΙΙΙrέuΧΉσ:‘Y·) €εϊ…ϋe ’Υ,φ¬’'šχπ*¬η•‘^³½Ω•5c°Ž?°Dz½ΆΫλ}IΏ~ύμ¬ fφ^ΗtE€ύu‹rBŸb‘EΏ§O-ψΰƒΜΌ>•A―©6ψjμΨ±’5υ‹rΆhP² bΦ'&,_Ύά¬jήΌΉ€¦¦;}κ… Φ/齄Ήi»6λ³~IΏ”EAˆ_†xρσŸά°ΐkθ{ο½'—_~y₯ƒΞ=F₯| Έ^‡’a9 €$‚Μ‰p €Ȁ7Σ@ΜtŠŽ € €@ά tξάΩτYƒ‘5σ_^^ž φΠ{PεΗ?ώ±œ:zτh“)O‘½ϊΑZ`f o{ΥέΛT΅ΐvΌσήι`ϋΠ@ά‡~ΨTΣ¬}]Ίt1A/š…wΑ‚ήΝΝ΄Ρj ¬΅ VτΤΫn»Ν¬ XΝς§AΌ:t›υHWΎώϊλ’Ω‡½εβ‹/vkή»wo±Α7ΆN€ύ΅ΫUχMŸ5Ϋϋj0σ‰'žhμ4Λ£ž?§žzͺ Φ, π;wι†ž ΩΩΩ¦73βύχίο.ΫσP78p Ιœ¬ΗΔ{Nι:›ωY3R†*6Γ€_=fΔ•žžn‚ν6nΆε³Ο>Ϋν«<Ϋ@(έΖfWΦΗΠ{³6k;˜m‹»6mΪΨY^@/ ·φ‹Σ§O7׌9sζ—Ϊ|μϊο­ξ=FUύ ΦF€Χl}Βƒ~qJ3%Ÿώωή.ΊΣΡ\―νΖϊ”[‚} +ώΪΆ’}=ν΄ΣdΙ’%fs½oΠ/ι=ƒή?<ϋμ³fωΤ©SEθΣlVfύ’f„Τϊ-[Άtο»4ΘꬳΞ2υuŒΪ–^ϊӟš{ υS[ϋ4ΝLAˆoPχϊ»βW_}εΞώξhDϊ{’έΞϋμϊoΧWwaλUΧΟΐ~λvz­›9s¦iΒ{ mםω]άΆm_ΓΉΗ°u_Ή^Š0 €‰$@s"MΖ‚ €ΗD@‘i‹Œ\pΑfVhGA@’Πΰ"Ν}ϊ½FΫ{ƒΐ§.Œ5Κά_ήƒι˜žxβ yπΑέ{½Ρ€-½ή–ώύϋΛΆmΫD½( €ρ/μCW΄Ÿ—θ—Š3ξGσ{’Jy―υΡόύΑjΫkbuύΤk’–ΐ{ƒ[o½ΥύmSλκ΄ν6vyΈχΆΎν›ηzm%xE@D8Ξω€ζh’ Šρ € €@β »/‰?ZFˆ € Uΰ‹/Ύ0ΪnΡ’…Ιžƒ>Ζ[ ―Ιš17^Šϋjΐ©²j†# ŠΦ θώΗ?ώ!x|σΝ7KnnΌςΚ+²tιRΡ ΔΥΝΊ΄oίΎ¨,«j;œώj°―ψθ˜ͺ*τσα‡ΊΗ+š>kVJ fRCu όΐ3pZW· η<±ΗDΫΦΜή5)vΏΪ?ΝΨN±~_Υ6šmϋΜ3ΟυΤΰt¦ €TΠχU}OΧ{ } ·DσnΫuY/œkφ5Χ\γ^‡?ψΰƒJ_  ΦΏhΧΑΪ \Nυώ(πKFνθΌΦΡ/««χžϊˆϋpξ t{ο=guη’ήskͺΤΤT·Νκ&4ΣtΈ%0{TΈΫ«Ι~νφαξρΗ7›h¦η΄΄4»9― €αΎ―l&ΡΌ‡ΆQίσα^³ulTtδΘ‘°‚—uΡ\―«$ύ}葇ά'i„jWο υ‰ α”Hο—"ΉηΤϋ”HΫ§ΟΤAˆ-†r‘_68p Ήψӟώδώ.ΛǏo‚—Υ"==έά?EzQΥQτzΚυΊ*MΦ!€ €ΐ± σ±>μ@’ sTll„ €Δ€@ii©y¬μ»οΎkϊwΗwΘΉηž+K–,‘Ώώυ―f™>N]™#ΙYWƒ·ώΦ•C¬΄[VV&Ο<σŒόνosΟ—Υ«W›Μέ±Gϊ plβνšoύ=6G•½"€ pμτ J¦#ϊ Ι“'›§ όξwΏ“ΒΒB³|κΤ©&˜ωΨχ– € €±) ˜ `ŽΝcC―@@ ˜«b5 € g»vν’Ÿύμgζη]ΧεώσŸc*k_Όυ7Π4‘ζ·mΫ&ηwž;€#F˜¬Χαf›t7d@ !βνšoύMΘ“†A!€ †ΐϊυλ₯K—.Akκ¦&L˜`24­ΐB@@!€™“@βV€ζΈ=tt@¨R`ǎ’™˜χοίowώΓώPΎύοWΉΝ±\oύ=–Vu΅ο={φΘγ?.ί~ϋ­δδδΘW\!Ηw\]νŽv@βT ήΩρΦί8=-θ6 €58|ψ°ω"Άf]Φ')4kΦΜό^zζ™gΦ¨]6F@‚€ `v2”mƒeŒ ζƒί#GŽ@6mΪΔ΅Μq}ψθ< € € € € € € € €@ΠζFρΌΤ@ΓF@@@@@@@@@@ .ŽΛ^Σi@@@@@@@@@@ˆK˜γς°Ρi@@@@@@@@@@βS€ζψ`ŽΟγF―@@@@@@@@@@ˆK˜γς°Ρi@@@@@@@@@@βS€ζψ`ŽΟγF―@@@@@@@@@@ˆK˜γς°Ρi@@@@@@@@@@βS€ζψ`ŽΟγF―@@@@@@@@@@ˆK˜γς°Ρi@@@@@@@@@@βS Q|v›^#€ €$š@QQ‘|ύυΧ!‡uάqΗ…\Η @bEΰœsΞ‰•ΠŸχœ  €‰ ΐ=FνΕƒΚΗ²α””Ω·o_Θυ¬@@ ΈΗ¨ύ£¨χωΟB6|ςΙ'ΛώύϋCg €‰ ΐ=F"Εϊ˜λΗ™½ € €Τ@`ΫΆm²nέΊ΄P7›~ρΕ²fΝσSVVV7;©A«ςΙ'ŸΤ …ΊΫtϋφνςωηŸΧέjΠ²φ-V }‹ξΘΔͺ›ώˆΥΎι{G¬φmχξέςή{οEw2ΤρV;wξŒY·:zά6―χz-?pΰ@̍αƒ>¨ςΟcΩaξ1’ӏΥχU }K¬cΚ=FtΗ“{Œθάu«#GŽΘϊυλcφ>ΑΊΗςϋ·φ1ΦϋWXX(}τ‘εŒΉΧΟ>ϋ,ζ cύλv특ck;τ駟ŠώNΛ%֏ρŽ;bφοŸz\υ‹2ΪΗX.o½υV,w/αϊ¦χ6l­[·ΖμΨ΄ϊ·’?ό0fϋλοzQUϋ±†Υίcέ0ΦϋχώϋοΗτ=FqqqΜίGΖϊ1ζ£ζοT[Άl©y#΄Π Θΐά 3ƒD@b_ ###d'υ=©©©kίΤΤ@ή~ϋmΣοΆmΫΚ‰'žr ΗbΕ‘C‡D³9΄iΣζXμΎΚ}j =¦§Ÿ~z•υŽΕJν[¬kցΎY‰Θ^cΥ­Y³fςο|'&Ο·€€$Ω»woLφ­Q£F«ΗτθΡ£’DQbK Ί{ νmzzΊ΄jΥ*¦:~ψπaINN–³Ο>;¦ϊ₯α#ΊC«ο]:ϊ–XΗ”{ŒθŽ'χΡΉΕσVϊ₯]»vA‡πΥW_ΉA±xŸ`;ΛοίΪΗXοŸ> ¬I“&ς½ο}Ο’ΖΤ«ώIbυoρpŒKKK₯iΣ¦’·‹Ε’χϋΪ?ŽqτGGί―5cΎΎWΗbiάΈ±ΙζΛǘζΪ?sτγάsΟ Ϊ°ž³ϊ労΄΄˜ύΏΟώSτύS?[ˆΥsWΏˆ«}ΣλχzνΡkP,Ζϊ1ζ#θ[\D cύsΡα Z™ζ ,, "@ζ (,B@@@@@@@@@@Ί €Ήn\i@@@@@@@@@@‚ΐ…E € € € € € € € € € € P70׍+­"€ € € € € € € € € € €@˜ƒ °@@@@@@@@@@κF€ζΊq₯U@@@@@@@@@@"@s!€ € € € € € € € € € €@έΐ\7΄Š € € € € € € € € € €A`‚Β"@@@@@@@@@@¨FuΣ,­Φͺΐαƒrπ°ΆΨDš5kR«MΣ € € € € € € € € € €υ)WΜ‡Ώά%…²λΛC"ΛI©gHFF{ImVŸdυΏ―­σo’ρ+qvœ&χ>σ¨dU;ήΓRψζZΩϊYΉΰβrF΅υλLμ@@@@@@@@@@ a ΔGσα]²tϊ=2χέARΖε7Λ½£zIάΗι>,šhΉI,ˍŸδ,Υζ0Λαωνέ³Μ‹w$Oύ:+Μ ©† € € € € € € € € € €@έ _·ΝΧFλ_ΚCoς ^NλΠQ:d€Ή­~X~qηR9θ.‰Η‰]ςΫ«’«œŸΗ·ΦβHœLΥ@@@@@@@@@@bE ζ30άΊX^ϊΊœ+₯γPΉ>’jά%ON½E^xΗ©πΞ\ypγ…2αΒΤX±¬‡Ώ”bί5Ž9n’%<2Kvl"g΄?#²~P@@@@@@@@@@:ˆω撍oϊ†Ÿ"£Ζz‚—ui³3dΘή+W•wœΩ‚7?1Μ‡₯xΧgς΅4–3ΞH•ΓΕ…²₯`—ΙΠά¬ιI’‘™%©ΝΚ›=μA8λΎόΙzάδ$iΫ1KΞhf#€ΛλTό{Xvm/]Ÿ})–f©gH‡¬φβkͺ’šwΚ Lή^P(Ÿ}yHœM$υŒΆ’εT¬}ύRΎ>lΓ—EJvν’β“œV›žκτΣΫ—&ΨY|pΧvΩ²}—8ΝI³“œ>\Ψ‡Γr¨qS9ι€&R±΅5I9γ §Οeϋ›[dΧ—¦'ΠΉƒ΄?#ΤHΎ”­on•b[7Λ©λ~ιτσPΣ9CϋJA@@@@@@@@@@ ˜`vbέβKΔμΞ›‰&mεςgΘ‚ΓraζIfΡα]+dθMsΝtFΗR΄EΓ›½₯±όκή?HfΑγ2~ώο 3ύγ›ο“ ½Ϊϋ-rλ ΉsόΓ²Ϋo©Ξ€8mέ/WgUΞόΌuΕƒ2ώαΥ•Ά”Λ½˜ YΪέƒrΣMγ`늲zΦX1[]~―,•U±BŠdκ-7JIQ`/2δ lœ6o:^Jœ-{ήϋŒ Ο¨gg™³]–ΡσJiϊίLΠ·§qΙΈςnωΓ―/π.’ƒ…+䦑›νΌ+2Λξ"νušάϋΒ£’U)ν­Ζ4 € € € € € € € € € €~ΗϋΝΕΰΜINεςR"ΣΗ?.ΫM`oG›Hξ„?ΘSO=*ΓsΟ0+ό­`ƒ—Σ22$Ε †ώZζΏΙ ^nœ–!iξJyγα±²κ³w'πQ”χΗΏIΘAΨ — *ΉKΐΚa+m=ͺ¨+‚ŠUT°*ZoΑΟzΤ£TA­ Ϊώ¨D@ΉΘ}η™d— Ω !$d’|ζυZχ™ηšgή³I0ωΝo'D– ˆΎΚ+xΩΥ‘—zuk]zŒTk‰znναcš†ψ%χ– ^ξΠ«—ΊΉ‘ϊoΝΌκzΩCB‚ηr©uk—gΝ²’Ά[[ucΆπͺ+)Ίƒ—νσρ΄ξΠ¬{?°3LΫUV0qI(·•TΪέΗ«n‡;x9Έ΅:t8|ά gιυΝV&jχ–ψ•ς^vuP·σ. ^.νh’8³!€ € € € € € € € € € P Ηg`n3ό ›7Q+­dΏω;jϊU ΥΊΧ(;Hq]βΤJ.\αΦz”ž|ŠΪΨύςτνs7ιΑ₯ξ Ζ.έπΨΣΊ°kIΈoό·ΟiςƒKνι.Ω¬αW›,Μ‰šwΣΌC˜ΜΝΟ{²-gl_ae'žkg'^:kŽΖ-ΊOv΅ψ{Σ―KΊΞΌgέR͝5S/£+g<§ρ^YƒΈšc§L( ^6 !κ7aŠάΉ“]£nχ/›Φ6ύ&hlιaςς­ `kΛ‹Φž6εχ/›ύȎΓυτ]ΓLΡΪΦiΙΖ’uΔ»Δψ;aξ}žΰeΣ«γπiΊkXιA6} !RFΙρLΟ`{Ηϋ?.έε ^6υ‘8ώBο•*»†Νς/Ϋ³tζ9οχ y›υχ—©ΓDέUΌlšCΪ γ³FΉ{ςŽ €T‹@ff¦ΣΣ}ΎŠŠŠͺεL‚ € € € € € € € PϋŽΟΐl…΄ΡΥ³ίΤΈνkυΙΒ΄pε&OŒoκ¦₯š9y©zM|Lχ3“²…˜0ζ’mΠ ε:G›ήΤΓΥy)₯;.MU’±ψp«meƒξ¦•ΪdU]»C“ββ”‘’YΕ5JΓ:ΊvxT―±γ€•³*φhνŽ Ε™΄Ιε»ΰ)EΘ`μ v—*ύα*°Θ#Ξ[yωΚ+qΨ„Aε—Qn%•>>@@_;vμPnn―&»>!!AλΧ―χΩ^[•iiižCoάΈQ!!εειP …mΫΆ)**JIII΅pτŠωΣO?ιΰΑƒJLL¬Έc-΄š΅9ucmU»2Nu3_›ΙΙΙU;©eΎ6:TΓG©ΪτϋφνSvvΆ ͺ6A ŽΪ½{·:wξ\ƒG`j@@@@@@κ‡@έ`.΅ŽξΨ[WO3/)1~£ΎτœΫc·{yΊ^κψ†@]­W&~ΣΊω2=AΣe`Wχn-m2Λ°ghΣΊ%]RK3—`2w“ 6½|χ8b@uοVζ !Α^AΛΗ$]έKf>@¨-Z΄πŒf‚ΥΪ·o―ž={: ">>^[·n΅ΧgέΘξ¨υ¨Y³fjם£Φε^LΛ–-λήuΤ»Σ>kή8¬Ν[£ςe'Ί™οmζζ 'mΧ]φΝN\›ΛεRF†Ή8ς€Τ3ΒΊΩ—§œ lƒ € € € € € P§ΎzσGIσrgv―·e›8MΊο½ρΠ%ξ*}υUΌ§\]…Θˆ£Dg”&\.y QDΔQ~½²WΧ:«―(gg%¬ώSeF@p„€ `6Α¬Ύ^Υ©ϋξαΙ"@@@@@@@@§ 8;€9c£&_v™.³^7}°έ§atάεšΠΊ€)"δΘ0gŸCŽ©ΥΑδJ.ΩςJ•έϋφ{Ζ­L-©ιΕ;‡¨C—6%V³Ο!;Ύ’IΨ,«CtdI_―%όΩ«g -J·fFbι z.$€όΊ½š)"€ € € € € € € € € € ΰSΐΩΜ‘ΡκRΊμ=Ÿ,”οόΚϋ΅±$X{Ά§ψ<Ι㩌Œ, FVΎ^zηΫrSm^ϊ7ΉΓ{Ϋ΄pΩν‘mJ³6η―Τί&1&CK_ZZZΧB-[”½†S3}…=1MMοZφξ3χΌOtδYΔo\[Σ+`~@@@@@@@@@@z(ΰμf+„φς ₯SWjς•χ꫍ρΚ°Sη)qϋ·zΰϊΙZWzaΞΉ0ϊ/Q›αΊΉ[Ι΄©+ΤM/}« {7O—< ιΫQθ«q]K²·>I½JW²ςΑΙzιΫμΡy‰Zςΐdy†Œš’ΈŽ!* {ΦWKΦ)%/C%'ZΪαDΏyΩη/Υδ―+ή^OΙyίός¦½ އ € € € € € € € € € P9ύ:ŽHΧ^₯—7εK©λτΨΜΙΎ—μ₯IƒZϊn;ΞΪαw=€•—Ν” Ωέ±πA]ΆπΘ ]šώψ$O²¬ΐλιMΠeΣfuΜΧΒoVΉ!ΑΓ4{ŠWΐuHυ³b΅7YρΠωλζιͺKζ)xΤCϊΘκ“ŸoGlyΠ’}‹₯R›W†g_ύK‚²ΛΆt»†ύ}²VZΗΘίτ‘&_φaΩμ!€ € € € € €^…ϊςΛUZΎμ ₯₯™έΊjμΨ uΚ)νΌzω/feekΑΗ‹υΥͺon?]#.¬6m[ϋd΅˜qkΧ~―ϊ)  ΒΎ4"€ € € €ΤΎ€Γ30 H›ύ‘›>AέZ— n­Q7<€wޜ"_αΛ>Fxζ 1ΊE„§Ÿ"γ4ϋΓη5qXi6θΓ-ru«‡^~EGΖNGv―_~HΓ|¬ΉΫ¨›υςGΣ¬0gο-Dή>]ήΏ~‹(ΝΞά"kIΗΰŠ.IςμέF%§αNεμi² žsŒl‘8Wi[ΉσŽTΗ6₯eΪΪhΪGΟλ’nξξρέ4vTy‹²Gf@@@@@’@nnž.Ήδ*έύ—‡tώωηιΊ?MPΆX|Ιo₯+J‘°_Γ†ŽΣΌy―ZσŒΥψߎΣΦ-?iάΈ+τωΚ―όŽ/..ΆŽω nύσ_μ iΏi@@@@pŒ€γ30»₯Ί―ΩΦKJΙΟTž•Q8$"Β θ="’ΧΩυj-Zt΅{hΩχ8=½hQΩ:Ο^€ΖΏ°HΦQΚoV†δqӞָ‰JΜΜ΄’ˆˆhEϊŽΆΗ‡΄ŒΣ΄>ČefζYC"aE ϋf^XΤO)‰)ζδμΎf’–ύ¦Yη3­όšLM›αϊhΡπ²m>Ο±₯¦ΌΉHSΚφτμ ϊΛ›δΩσ*d΄ΠΥ³ίΤεΦ9€Xη`-L-[F+ε«΄p©•.š @@@@@Ό€ "ž;χZُW­ώT•ό ͺwο³4tΨωΊώO·¨kΧΣόfbΆΗΟy^gŸέKO>υ ‚‚‚lΣsΟν«Aƒ–λ»Πgη|€HϊςΛΥVΦηΥΦίaόύ¦Α_@@@@Η Τ™fœυ‹)+lΨ³{Β Φρ[ϊψεXE눌΄V\ι%‡(Ί₯―\‘†ΪΏΥ•TΔΨ»ττ€~Φy—'q­ξ}μί%;Αqjγ―‘e0- € € € PUύϋχ«  ΐηpwύ¬›ε͍ΫΞΩ<¨ΠΠP…‡‡;gQ₯+IJJ²Mƒ=ώrΞΝΪ¬ΐ9σrΪfΦΆoί>§-Λ^k«Ϊeqͺ›ωΎηδ΅₯¦¦:ςkΑό,Θ΄’—8ρλΤ¬-&&¦jΤ8*-νή{χ#}ψΡžΰeχαϋφν©ίύξb}ψα"έz«οT+ΉΉΉZ³ζ?zο½W=ΑΛξρ£.W^yKϋφ&κ΄Ξe(a²6ίvλέzω•gτ—»ώ*Ν† € € € ΰ|Ίΐμ|Σz³Βν«^Wͺu6© Τ%K:hΤ…½’ΉE Wnςœγ°ΫΗ[εl € € € €€3L Ÿ ˆς΅εηηΫΥ&Π/;;ΫW—Z«KNNΆ³Hš f§mfmΖΝΣIλ3k3kN ^3kKHHp—g-¬ΝCqL§Ί™οiN]›Ή9γΠ‘CŽόZ0k3? œψuji]`ώωηvvεΆm[ϋόZΊψΧ£uӍ·kΪ΄λ}ώ 9x0Ω?©Eσrγ͍)Α!Α*(,,ΣVTT€§ήΫ¦ί¨ξέΟ°aN™vv@@@@œ+@³s―M­―¬γψΗ5=q¦[ΊCΚί‘₯ ­w―νœΣ΄~Ιν΅.Š € € € €€[ [·nξbΉw“Ρl]»vu\`XHHˆΒΒΒtκ©§–[wmW˜ ²f͚©]»v΅½ŸΗoi=έ,66Φg[mWφμΩ³Ά—ΰχψ¬Ν/M… Nt3„MΧΆkΧ.;;΄ΧζrΉ”‘‘‘ΈΈΈ ―ym4FDDΘκ:}Ϋ²e›†θ38Ω¬½M›Xεδδ*==C.WΣr§Σ΄iΝ™;[εΪvνŠΧ/;wΫsx7Ύσχν§˜μΞξ“ΌΫ)#€ €@ΓΘέϋ£>|ν-ۚ ¨VνΤΏP yΆb+qpϊŽhΝ֌rpyΦ½Ρέ† U‡¨rMT € €TQ€ζ*Β5Œa‘4εiυ›―-λ6jΛώDλΈRt›κέ―ŸΪ”}J[Γ α,@@@@@@ œ@£FΙ)((Πnφ—%?**Κ’|fΉySSΣtέ€›uΕΏ•ιγήLΖη'Ÿ|Nόη{φΌ0»exG@ a μ]3_c¦ώ]:χr=~γXE₯ολ·ή'fu3‹η©lH…@_Ώ]3ŽΥΤ>‘ΚH?ά5έ*Ητ`0W<ώπJ € €G¨ψ·IGM{ƒ‰l£ΈAΦ«Aœ-'‰ € € € € €UˆŒ<`\•ρGŽ1Y―žpƒΊu;]ΧOΎΦΣl29ί0ωVέ{ο:ΉU՞i2nοέ»Χ3§wΑ;γυ/Ώό’δδdοfΗ”γγγUέζΥyrN_ίξέ»eούΥW§EUζΪΏΏύΩγWE―dŒΉΖ7VaaaΥ'©Α‘ζ‰ )))ΦΝΞMηκτ―c³Ύ΄΄4εεεΥΰ•ͺϊΤζηŒωy^υIylΉ»4Γ ^>wΦΛzvl§±g©ΟΊ‘Z6e΄nόσηZσξ(ωOĜ‘΅‹€Y‹¬1Ξ|°Ο±yΠ@pΈΜΏ@,@8^οΏί¨O?ύL;Ά’6mc5fΜ(λQΒέeύ]™νXΗ›?ϊ|υΥ ΠΟοcc+s\ϊ € € € €@έ0AZΥ±™ί-ΌωΖ{š;χMΆ—―Ήφ ΟοLΫσσ^±·1fμ(Οα‚‚‚¨ΠP!IžΞV‘  @ι&•βQΆμμμJε(SU{³Y[u™Wϋβ¬ ΎΎ¬¬,;ΦΠ¬Οι†ua}ζ{†SΏNΈΖǝΗ|Νχρρ[Φ—rχώG›4VΛ<ΑΛξ3‹ΤΘ‡ΥΜσ?Π^Rwυ‘οVτ"‘gbŽl`@@ &` UζD@ `~9ΤSστφ[Π”)υ«_] nΪ¬IoΦθΡ#uο¬;μ?μω[jUΗΏχήΗzς‰η΄lω‡ŠŽvω›žz@@@¨G‘αϊοώƒ~Ο(5%Νn‹Šͺ8KsjjšΈ|’•y6U/½nB&@@œ'PTT€§Ÿž―»ο™ξ ^v―²ωI1šύπ=ΊΎGuΑCΤ¨Q»Ισ~¬γγγχκί_«±γ.ΤeΨ˜Νl € € € Π0ΪΆm-—υ$¦ >Υ₯—ώ¦ΜI› ζGž£;ξœζ `ώωηVvΩƒκΧ―}tAAnΈα6ύαΏΥ Φ“€όέέΌy3έ9γ–2σ›ssυΓ­Ϋ¦ίhe\ /ΧN €Τ¨Ψ3ηγ4Σ7,ΤψY?jκόό%_ΆGmYc0[[μm/kΝΘN%}s΄μρτ§Ρ—κ™ε©ΏΟτΞφ0ώƒ € pŒ0#έ@@Ί pθPΊLP±ΙXδkλΫ·—ς¬G¬¦§§+Ϊϊγβ‘Ϋ±Ž7f]»ξK{šββbegη9%ϋ € € € Puύ3tν5SνbσΤ§F)a_’n»νn΅jΥRC† τ¬]ϋƒζΏψΊ–-PAAAϊο7+~χ3J ‰²~½PnkΦΜε3»³ι˜“cž/λχy0Ϋό@Œΐ–eOκς uξΜyΊ¦O³ Qb{_[njΥε}N>ά/τdΌλ])}„nΌχs­ynh…AΠ™™™ΦΏeχ*™ΜΆgΟύτΣO^-Ξ)ζηηΫ‹INNvμγγγε΄#V²{χn[žυρΪ#ϊΦΖξtπΰAG:ύ›υ™§ΞΈΏ¦kγ:VtΜΔΔD₯€€(22²’n΅ΪVqZZšύ—΅ εηΰ{χξUFF†υΤ"nήυCDu €Ή],–Š €TV 1ρ€š4‰τω¨U3‡yλι§wΦΝ»}0οψΚ“~ € € € Pzτθ¦^|J7έx‡fέϋ°bcOΦή½ Φ λž{ο(σ¨H+Kr\χ3<™–Νο"Μφ›__ιδ…žTί³{ωl VγΖa>Ϋ¨D@(ΎK―M½JΟn”nnΩ d?]Ζ^§.>ΫB4ς¦;5sτ6ε©βfΠh‚˜}mξ€Φμμl;ΑŒ―>΅]η^cnncΧθd?sύ²²²μωL!'nζσιtC§―Οš'Ρ:υ›ΐVσ9tκϊΜΧ…Σ―±ρ37ι:ΥΠ|~ψύ59S€fg^V… €—@£FAG½γόOWqq‘ΟγοxŸ“ΦγΚζ[Χκΰkϋν;κrš!­ΪJmΟpΚrX € € ΰhϋ”z IqqΎ:ξθ₯;nq}ϋφԚo–)55ΝΞ:beώŠ(·Ξ_]4BζεήFŒ"σͺκf²άύσΣχ«:œq € P7,Υΰ«–bΖκυεV\σJœ\n‚Φ¬ΝPώ|wŽ=C5_[r―SŸPί]Lm“&MΤ½{wŸL°ΩŽ;Τ©S'υκεϋ¦,ŸO`ε–-[d‚—[΅jεΨ5§ϊ™΅™ΜΌζίΐζ:;q3™[M–p'7'―ΟόΏGDD„:vμθΔK,“άdΩξΩ³§#Χη^”“―±yJΛεRϋφνέΛuΤϋΝ;e2DχθΡΓQλς^ΜΊuλΌw)#ΰW€fΏ44 € €uWΐάαο돃ήgdξ φ·οxσVTΏ~ψμbκ:€}ϋφωl―­Jσ5³5Ϋς|ωΪZ†Ογ†tλ£€+ο°MΝ/RœΆ%%%ΩYΆœΆ4™΅9ν³ζFbmn‰c{wͺ›ωΎηδ΅₯¦¦:ςkΑ<βΠdpβΧ©Y[LLΜ±}@ι €΅&°{ΗN­;[ΝΏ[ͺΖ9ι2?ΕΧώUŠο9B]n˜‘=ϋ‡ΐZC«δΝλEG»*Ω›n € €@υ μύbΎΖάϊw˜9G³ΖŸ₯ bΛ4ιGέ8u΅­»G±e[μ½άίk«Ζ«K₯'τ1 U € €e`.ΓΑ € Pφο/yτͺΏ32˜ύ ›1Η;ήίqύΥ›@>sWΏ―-??ίΎ‹Τάξ€ΝάΩκΤ-//O&ΐΪΨ™»„Ά™΅™GΡΉGη€υ™΅9ν³ζφamn‰c{wͺ› ^vκΪLvsγˆΏΜΪΜγ圸6sM `>Ά―Oz#€ P[›Χ ƒ7ŽU[+pωΘ­Νϊεʜ΄\+ož«aW^yd3ϋ € €NΨ»Ϊ^ž:]]Ση䣬2Cί-ϋ^1ύΟV‡¨)Ά“Ίι~½ψΕuΊoΘ‘cσ΄|Φ“˜u”YiF@¨ΌΜ•·’' € PgBCC­ΐΥ™,ΛΎ‚WM†ε½{χ)6Ά•Οs:ήρ>'=Je·nέόφ0-Ν#zœφ¨£ψψxmέΊUYΝZ©E‹>­ύžT 4δνέ₯Ό„x{ζΘΘHvΪijΦ¬™Ϊ΅kWG;ώ)[Άli}}ε²8ώΉw§}ΦΌΟ‡΅ykTΎμD7“AΨα:qm»vν²³C;qmζ±mŽ|Ό»yl`EO8¨ό'–ž € P“&σ² ^6Y—+Ϊ\soΦwmΫ©Οΰσ+κF € €€CΎϋΰ/ΦJΣΘ.‘Φί@|%D QLl³’¬ΜΉ»4sΖ_4ζυΕΊ±»ΐ¬vš5{¨Ζίz©BgΟӍƒΟP”•m97=AΛΌT³6v‹ΟpΘ™² @@ ~ΐ\?#g €”hΩ²…L†ε;w[A¬Λ΄™ΔΔJII“ΛΥ΄\›©8ήρ>'­Η•ρηΥΰ?όAααα΅z–{_|Xϋ^z΄VΧΐΑ@@@§ ¬ϋΟΜ˾֝φΰTiπF_MΤ!€ €8J OI{Ν‚ζkΜωσύ¬¬“^ζeΕYΙR€LŠ—ΞΝMπrΙΦaδ=ϊ κ ͜zƒ[U11²nς· ΗκυεSGϊε(ώ‹ €T“ΜΥΙ4 € €€“ΒΒB5bδP=ρΔ³š7οq;˜Ω½Ύββb=ϋΜ| 6H‘‘vuAA‘Ύόr•zτ覓Njcοž›w@@@*#Pœ›£βΒ[O’υ” β"λeν›rF~‘Ά§ε)ΐΤY/S`ϊ»Λ₯γ¬6»OιΈ€’b«Ι%cΝά‡η)°ΚΕEJIJVϊiƒ(«έϊδλhΥwώω”YΎ+e6―A]{φ(SΟ € €€ΣB4ςα/­W%ΧΪN[χeΉΞϊΧ;λΖ+==C!Vls^^ˆ’’9—@ € €@•`2@@g \wݍ{ΉfΟ~J7ίό'+X9RYYΩzώωW­`ε―΅hρ»žΘΝΝΥέyHsŸžm0›†cο™ˆ € € €@•в2”ž§m©Y ΘΛ— ςTœŸgΏδεͺΈΐͺΛΟ՞΄εζζ)Πj0/«O@aΎ­ΆόΜ εegiΗ’•’S @+ ΧΪοVΐ― Τ °‚zM`―Uv·›€ί@ϋUί½oΏΫAΐf.k¬ιcνη[Αΐf.S6s˜rPi[ hl­ΛίΆΦ_ΓυΕ^ϋΥYξξ5―w±Έlμ²§ιΰξ_$˜=@@† iŸf¨­Ή!œ1ηˆ €œx˜OΌ9GD@Nˆ€ΛΥTοΌϋŠn™6Cη­N:hΫΆŠ=Yο½ͺš7oζYGPP""Βν©;–ρžA@@@£egZΈV]+Χ~™ΜΊξ²w½UΦ–ΝJ/Μ<ʌ΅ΣΌύ‹ΥΪ»ψ#+x8Χ"ΜΟ·βs”™“§ +x7Π:§ ‚\™_«»\h"›ΆΰΒ<5²Γς|ŸŸwΐ9CούΦ•<εφ•μG·ŠrΣ*ξ@+ € € € €³ΜΗLΖ@@ ξ”+Ώ¦ΤΤ4™LYΦ£p££]εN ,,T+V.(W_ΩρήΝ1ζ̝ν]E@@(Pš¬Œώ­β―>Ӟ―• *>"ΈΨ Β- 2.}7ϋVΐΟΐc_ΙVΠnU·­UXΓγN©αω™ώΨς…¨( HΕΦ Ί ΄ή­WQι{q` ]–Υ^ΤHΉ9*΄_vSΆϊ΄NΨβσ MΫΆσYO% € € € €T]€ζͺΫ1@¨3&›ςρlΗ;ώxŽΝX@@¨¬Ν”Ήρμ εΜSξξνž‰<% NΘ ‰P~£Pε‡* $TEΦ{AH˜ ­Ί"kΏ 8LVΉΠͺ S“π0εXΑΈ9…RTΣ¦v€u'«Πkθ*@ζ=0ΐ*Ϊ7Έš ]Θk5Xο%ύL¦Αδ 3ΐ%νξv«ΝžΓΪ7ο%σ–Μ%3ον&ˆΨ{KMIUVV–†žΩ‘t|5²Κ%Η °‚¬c€\R. FΆΛ¦έn΅™vλ|«Ί}2ρχjσύg•ž₯σŸ_©ΎtB@@@@Κ ΐ\y+z"€ € € € €uB 0-E&XωϋoK‚–7­U±•uΆΎl&˜Χ ΅ƒoK‚jν@έZ+"Χ΅ϋ”)[VΰmωϊΓΑ»ζ©2¦™Οξϊ.hofžRƒ£¬ΐαP5nάXΕΑ!*6ΑΕΦ«ΨΚ\ΪΨ8.ΆΦΪ’IΈBΒΫAΘ²‚Žfυ) J6ο‘αuj³p«=̞/°qD•/ΥΎ}ϋ” ž={VyŽšΈkΧ.%%%)ς¬Ϊ][λ?ά U2€9ύςι5ΕΑΌT‹@ώ} >©U΅ΜΕ$ € € € €ΐ‰ €ωDjs,@@@@@ ²·n²3+› e;»K0m@IDATς/Ϋ*u”ƝΞPv`#+[―ΛΚ„\’ Χ~χQΆ2γzϊXΑΊ&S=Χ_2υ¦―5ΖdΫ΅_f~ΗπυλΧ;2ΧΰfYkβΐ αJ]ψή©•QyεΝsεš{s…»ŒΧΕ7L­°Τ†@QN–ί~^…‹ίΥ†έ?λ¬Ο·+¨‰«6–Β1@@@@* ΐ\e:"€ € € € €'^ πPͺ26ό§$³ς†’€ε’¬Œ£.$(ͺ©"βϊ*²»y­ˆn½i w&χ¨~t¨_ΓΌR«›6Uξ33εJΩ[ζδrΒ’”4z’.Ύσξ2υμ ΰsƒGβΫΟ)ΐϊy`Ά”Ο©ωΕW:ey¬@@@¨”Μ•b’ € € € €€·ΐχίoΤ§Ÿ~¦ΫQ›Ά±3f”•%΅»Ό»ω-―_ΏQΛ—­TBβ~|rK 2@}ϋφ*7ΎΈΈXkΦόGΛ¬Ύϋφ&κ΄Ξ§κΧ_dΏϋœκ™@φΆ=ΑΚ&p9·’Ω•ΓN鬈`e΄Φ±k=“αt8>cΗJΦkσϊτγŠ₯ΚMKΡiΓ/ΤyV†f6œ.=lœ~ό7{™)+>!€ΩιŒυ!€ € € €@9˜Λ‘P € € € ΰOΐ?υΤ<½ύΦ?4eΚDύκWθΏ›6kΔ›5zτHέ;λϊ.3~Φ½kρβeš8ι* vΎ6oήͺΙΧίͺϊι‰'T£FAφψ‚‚έ|ӝϊΏ[―3o±‚€[kΙ’Οtι₯Τ΄[&λΚ+οχ84 PW 3)Σ RΞ0™•7ώŸ26­UQfϊQO'°q„QΩ*GXΩ•#­LΛAM\GGΊφμ‘PWedd(..κ„@τπΓΜ‡Ύύ\…V~PΣθ:±v‰ € € €˜ω € € € €TZ`υͺoτχ?ΡΒEο¨uλVφΈ³ΞŠΣΘ‘C­γΛΤοάΎΊπΒα~η[ψΙ-_ώ…-~W±±'ΫύϊφνigpΙ-X°XγǏ³λί{χcύο[υω αι;dΘ@M»y†k+Οnγ?8Y  5IΌ©’ίΤχ{vTj©Α-bΩ½$»²Ι²Ρ­w₯ΖΡ @ a φ¬’ζCkV¨(3]Q ³E@jNKRϋ-ήά’Δ?LQμŸξ¬Φω™ @π €Ω[ƒ2 €uH ΈΈXYYYφΛrδηηΫ«Vhh¨ΨnΏLp € €Υ!`‚›4‰΄ƒˆ}Νg‚‹O?½³vξάν3€Ω=¦  ΐ]τϋΎω[uΙ%cd‚¦§ίv·Φ―ίθι;eκ$M˜p©ίux:R@ 27ώŸφΏχ’’—~pΤU„ŸΩK‘V rδYηXΩ•ΟQπI­Ž:† €θŒ> T‘•!Ρl)_,VΜθΛ€A@ͺ,΅ι5i=>υ_Ÿΐ\eI"€ €@e`Œ}@p˜€Ι4—ššͺœœ;X9&&Ζ $ib―ςΠ‘CVΗ!%%%)33S.—K!!!;–ƒ € P5 ²o’«h큁*..ςΩΕ8·i«•+₯ργΗ•λσέwί+-ν~ωe·}ω­·ώaeZ~[Σn™¬9sVXX¨ώg6O2]~Ψ€'ž|ΐ~IΉ‰¨@ ’Ώc.gύο{Ÿ«hΤμ€’μΚέΟV„υŠ<«ŸΟ~T"€ Pθαγ”΄πm»kʊO` }@@ΐ―@ΦigIί.±Ϋ³·nRazš‚’šϊνO € p<0c@¨Όl‚“‹ŠŠΤΊukEE•},€ f6/σΨν„„»―Ω'ˆΉ.‡D@κ™@aa‘"##*<+σοT›y:ΘT+{ςΝ7έ©Ϊ«woλb₯ΫΟ?ο°2-ίc$·oίVΏXYœΝΏ}g?|―FŒβξ¦ΈΈ3τΡΗojτE—κλΥΦ σϋ{Ϊ|φοί/ŸύΥϋš‡:*ΘKˆΧΌ’ƒŸΌ©‚Τδr]G¨ΈyΓ …ΆοT @ͺ*ΠΜ+€9mυre¦+0’μο «:7γ@@ α δ΄hSζ€³ΆlTTŸeκΨA@ͺK€ζκ’d@N€@qq±yΩ…tθΠAωQn›7n¬;vΨcN:ι$™€6@@ŽG`ώ7˜+ >οΌsμŒΚΧMš¦ΈξgXΑΙC΅nνϊβ‹UΊwΦzξΩ—<σ·kΧFC‡ςμ» 11Ν4ιΊ ϊώ‡• `ΞΝΝu-󞟟oοoήΌω¨™₯Λ <;;wξ΄oB4OWqΪΆmΫ6ϋFJsc₯ΣΆŸ~ϊITbbβ‰Yڏߩθσίψ>ήΙν8τbΙ ^ήΆ+^ΙιRςzί}k±ΦΈ9ucmΗ~eΜΧfrrω@ϊcŸ©ϊG˜―M'~_3gΊoί>eggWψ3¬ϊE*7γξέ»ΥΉsηΚu¦WƒhΈΓ#U”•aŸ{Κ΄²0_Ϊΰ8a@¨>¬f'+<9Αž0oίκ›˜™@@#όG=Ρ‘]@¨}¬¬,εδδΨ™—+ ^v―Ττ9ωδ“΅gΟ™±gΛsγ@@_‘‘‘ΚΟ/°ŸT‹ΙΠΌwο>ΕΖΆ*Χζ07Υ]yεοuΑπΑZk.<˜€σŸ§;gάbέ €GyZΑΑΑΚ΅²/›Νί=x}ϊœ₯/>_εžΦο»ΉρΟ_VhwkΧ]ν§˜ψ€ΜTΒΒΒtκ©§ΦΒΡ+>€Ή†Νš5S»vν*ξXK­-[Ά΄>ƒ±5vτŒCJZτwν·2.ηξϊΩηq\η_¨“~7IMΞ|Έ=t½zφμyxίa%ΦV΅ βD7ˆkžΘδΔ΅νΪ΅Λ~R”ΧζrΉ”‘‘aeϊ«Ϊ‡‘G™ίηψϋYVƒ‡eκ:$=tŒ’Ώc―8eε'0Χ‘kΗR@p’@^T΄'€9w/ΜNΌF¬ @ϊ"@s}Ή’œ €@ƒ0AΘ&(ΩdWμfϊš10WVŒ~΅%°iΣ&ωˎh²`™?ΐ―_ο¬luiii7ΪY=΅P(²ά›ωΓϋv+“žω@vD·JεήΙςW9§#{αv€ΘΡχɎxt#_=ȎθKεΔΥ΅lΩB&ΓςΝ»uΪiΛ81ρ€RRδr5-Χf*ΜE^}ε-+`y€:uκ ‹F(ΣοΣ.W·ΈΣ­lȍ­ΰΨ6JO/Ι$X¦SιΞζΝ?ΩΟΎΪΌλ*Ί‰Οœ •ΘΩΎY‰οΞWς§ο«('«ά° &.5Ώψ*΅ψέD…œ\φ‘»ε:S €@5 Dη `N[΅LE™ι Œ¨όο«q)L… €υ@ +&V_ώgŸ ˜λΑε@p°ΜΎ8, hˆ‡Ά ―·μ-=υuθήW][7iˆεΞΩd³3AœΝ›7/ΧfΡύΘ#Ψυwάq‡°μέΙd2Q6sψΚ”ηέ—2΅%Π’E Ώκ5ΑjM›6΅3ŠΧΦϊ|ΧϋλΙ¬ίdI¬ΝνPd€άa^&k£ΙŒθD7cd7Νχ3“!Ρi›Y›Ι^οč΅Uνͺ8ΥΝ8ιΔΟ›ω7ƒϋIUS―ΉQωωωΚΜΜtδΧ©Ήa¬Ύoaa‘1r¨žxβYΝ›χΈΜμ>gœόμ3σ5lΨ EF–<ω£  P_~ΉJ=ztΣI'•ό;φΗ·(q͜ωgχPϋ=''WsηΎ V½ωϊˆ‹;ΓΊΦYϊΟΏΧκάώg—ιkκηΏψΊn½mj™zv¨ ” ΄½—”±ώŸΣ7ξάM-~bFW@hνώ{Πη©D¨χMŒP`x€Š²J~+ϊ―%jφ«ίΥϋσζ@@ ζΘΐ\σΖ@†,Ππ˜SQΐΆͺhΛB)qƒrΣTjejΩ]]ΖͺΈΣE’«}CώLpξ €@- ’»ΡτOΆ”;~χ?ΞΥ · SCc6 5ΩiM0’χfκg͚₯―ΏώΪ63ύλ_Λ“˜1{φμρϋ¨oοω(#P[&ΨίΆaΓ+“£K­Zω½Ώ±5Yoόά› Δ wοΦΚ{±•mΩ;€9&&Ζbvš›Α1΅Ν5wκڜΈ.·k;φ//σysͺ›ω9ξΔ΅™ as“†Χ–““£Ζ;rmιιι βρξΧ]7AγΖ^Ω³ŸΝ7Ι VŽ΄žφ‘­ηŸΥ VώZ‹ΏλωB5~½ϋ/iξΣ³νζ€€]χ§«uωeΥΆmk]zιo¬„}‰ΊνΆ»νŸ₯œkˆΧνwά€©SoΧcέ―Aηχ·λγwοџώt‹υh© .β9ͺS  ω€|ψšυz]ω|N}Α―­ΐεIŠ<«ŸΟv*@8‘ΡCG[Y˜Kώ–lέ|Cσ‰ΤηX €Τ/ŒΨS₯u+ν“*Μ8€μ-ΥΈK\ύ:IΞ@!Π`˜M rΡW*ΰ»ηTlΡxρ›6νZ₯bλ₯Ο¦KοR@ί)%Ν^ύ("€Τ”@VήΦ_Σ—–Ξsžώxekύߜχ΅ΑͺΪπΚΝ£Χτ―[ϊΦΤκΔΌ&ΐ)//Οπp/ΨΤ=τΠCvπςe—]fWΏσΞ;vέΜ™3=AΜ&(Č5ύΩ@@8—«©ήyχέ2m†Ξ4Z:uΠΆm;{²ή{U+Γ~3Οτ&ή"GGG{κΊtι€ω/ΝџoΉKsžzήSΑƒuχ=·[AΚAžΊ‹/ΎΘώχοτιχΨuζ ζί΅—Œ«[oZ¦―gŽC γϋo΅ύ—•²ό#Ÿ³4jv’NϊΝΥ:iό΅ nξΌ'Iψ\4• € B zΨ8OsΪWKU”™ΐˆ¨qξœ$ €Ԝ@φΦMΪυΔ u™ΏΈζΒΜ € Π`D³eω­Q ΨoΒΰ*±­zPΕ[)ΰK b]@γ8ψΊΏ4x9fΤcZτψ…%Ω–'ή 7/¬G¬oίI―<₯ώψwυhΰi˜ @~ζ™g΄rεJ™ΰελ»Ξs)L³Ι„7mΪ4Oέ‘c= @@8F’`εΧ”šjέ0nέ$g2+GG»ΚΝͺ+”«οέϋ,}ω―Εφψ‚‚;σ² t>r3σŽ=R£F Wff¦9((PaaaGve* εd+yΙϋvΰrφOυ9OD·>jqιuj6jΌΟv*@¨m¦G*0 € € €T(Pο˜έΑΛς ^vg`6Y˜έeσξ.ΫbVbτLs… @κΨώ ”dOΤEίSΌlο7Χ•ΝΥ##oΆφ6θσ-Υ£oσκ8d½™£iΣ¦ΊςΚ+uν΅ΧzΞΙ2›ΜtΕΕζ' € €5'`²1Wuστμk>“•ΉiΣ~7£/κŽK 7~§΄ό’’Ύ-σH\_[ΜθKΥς²Ι<*Χu €@ΘΙΙQrr²Ο³ΘΟΟχΤ8pΐ~„§ΒA…€€$νΫ·Ο³’Πs†(ϋ‹EφώΎΕο*·ΗyžΆΪ(ΉΎΪXCEǎϭΉΖyyy :ŽYjn¨ΉΖζiBeΎWΧάα˜j( uζΥv‚L„ €Ž¨ίΜ©Ώ(ΰ»yΗ‡½ϊ!)ξ’«ύρΝΓh@Ώιy₯Μ‘!*λτ(5om ΅˜Λ·ω’@@@<…ιi:Έΰ νΗ+ΚΫ»ΛSο]ˆκ3@-~7I‘cΌ«)#€ΤS—Λ₯ή½{ϋ<;πΈkWΙΟ‹]»*&ΖΚ°ΰΠ­gϞ‡Wf•ΧΏϊ°Š²2μΊφ)ρj6jόαφZ(•Y_-Ώ’C†††Ϊ­:uͺ¨[­΅νΩ³G&C―“ Ž“ΧΧ¨Q#™ Ϋ;v¬΅λXсwοή-“‘ΧΙ†NΏΖ2ίΟΫ·wζίςwξά©΄΄4υθΡ£’B­Ά­_ΏΎVΟΑ@@Ά@½`ψiq™,Λε2,WpνMVfw{žΎS*θM €@Υr΅yΙ†’αΉUŸ…‘ €R£¨¦0 € €x doΩ¨Δχζ+yΩ‡*ΞΝρj))†…+ζ’ί«ΕeΧ+μ”ΣΚ΅S €@]p ₯δ₯ΨΛNYΉ°Φ˜λšλE@ΐμέπΉ^ϋRmΩ'ŞIύGՈώHΆΔΗ@¨fΐjžΟQΣmYθY;ΩSq”‚wοyŽ2Œf@*YΉ h A|4ξη£–*@@ α $/ω‡6_3R?^qΎ’Ύ].x9΄M΅ύσƒκΎτG΅›ρΑΛ ο#Β#€υV zψŞsKύb±Šr²=ϋ@@ΰhyZστDΉϊ~νͺoΌ\#¬6̚:Qύ/˜―½G^ŸΪΟ½ΐs6Ω[7yΚ@@κ¨Χ˜΅£ΗΚ$›¬Κ•έΚτ·ζωφΫo+;”~ €@½θΧ―_½9N@@@ ~ JUΡG/+qΝ2₯%ϋ<Ω&ύ†ͺεεΧ«Iα>Ϋ©D@  ΈJ‘až›wΎZ’θΏ©λ§Εϊ@8!Ή;>׍―oΣ¬kL‡Θcž₯΅VζηNԌ…£τ·±νNΘZjύ ηŽ”ΎωΜ^FaΖ‘Z_ @@ϊ)P―30δ¦yΪ±/›Aήύ½ηρLH@@@@!—―ΝΧZ\]ςNΉΰε Θ&jqΩυκΆ`N{φ‚—qΕX €@M DΎΘ3}ςŠO;J›>ܦ܊§ @@ΰκusqH…Ι¨|,›wοyŽeϊ"€TF TέǝW1΄2ύιγ-πϊλ―λΥW_υ²Λ¦ώ΅Χ^+WO € € PίrΆoΦζ«G(gηOeN-΄έ©jwηγκΎτj{λC msJ™vv@¨―ΡΓΗyN-νλΟT”“νΩ§€ €ώς΄uΡ6]2ζ ŸB#›Yυy>Ϋ¨D@¨š@£ͺ «#£Zv—v―ΆλQΉ2«/Σߚ§_Ώ~•F@*δε₯—ŒΪ°E­Rλ2sμΡκ ₯!eΨ±΄`ΑθΊλ³Mζϟ―wήyGγΖώCX € € €@}ΘάπύtσοU˜~ψIlΑgφV‡©w+ͺο ϊxʜ €Ghrξ0„†©87Η~₯­^¦θαu@hΨ!Š›9Gq"}0διΛ'ώ˜/‹|L>x¨B@ͺ(P―˜»ŒU±W³wVε£y™fw{ž£  @ ΚΝ»φ΅Ζš(εχ΅zϋϊ}ΗΓλθ‡Ο΅΄tζq};Tωυuΰ7ή¨ττt;`Ω}Ž&xyΨ°aΊι¦›άUΌ7`;wiΥͺo΄uλΟv {ηΞ§jȐ:ε”vΥ’šš¦OΉ\χέz…7n¬3»AΟU›ΆeoK¨φ3! € €@ƒH[΅L?ίy˜ε8«Ώšί?_Q±±ξ*ή@hpaε:WJYώ‘}ξ)+>!€ΉΑ} 8a@ͺΔv?Λ簍όE³6v‹ΟvςΩN% € €@Υκusρi£₯·Ϋ2ξ`δΚ2yχ·η©μ@ϊ!€³@σξγtž^ΡΧΦΘΏŽ½I­—=¦­›θΠφ•ΊώŠ9₯σΣ―ΐζc>H=(σΚΛΛSHHI:j³?sζLεδδx‚˜ϋχοoΧ™6χfΖΈΗ»λx―Λ—}3ξΧΨqjπΰσ¨όg­.ωΝUΊwΦ;φΒjCΨ²e›.Ώl’ΞνΆ~ϋΫqΚΝΝΣϋο}€'ΆΪUm‹f"@@:+΄ψνœ5₯ΜϊcΖ^‘”1Χ–©c@†*=l¬'€9ΥΊι§('[&°™ @ŽE CΛΌJ3?L֌Χ«OΤΡΗfggλΐ>;š'ͺš-99YϋφνσΩ§Ά+ ν%d5ŽRΈΧbœ΄ή€€$Ηϊ²ƒΪˍˆˆπtNqώύrΊa]X_VV–[ œΈ™οANώ>cΜκΒ5ΞΟΟχΔe8ν:›klέ9ι{³ΣŒXOέ¨ΧΜr΅WqŸπέΌͺ_‘3eζaC¨AΠŽΊη±ίiδτχ­ƒ|­λGφ/w°?ΎvƒzW€l—ΣtI'yŒLύ¬Y³τΘ#Ψuwάq‡¬μι`Μ3Φ;¨Ω»rύ0Aν>ψ„žyζυ?οΟ :PΓ/¬©SnΧ Aύεr5υ΄U΅`‚•|ΛLέ|συΊjΒ₯žiFŒbgΎ}ϊ½vΦη¨(_]σt§€ € €@₯^{J{žϋk™Ύ±“οR«?ήͺ”υλΛΤ³ƒ €@Chzή  ³ŸTPœ›£΄―?“ jfC@Κ €οψf\r»ΎΡΩzqρκ[’\θh£sssύ0»Η:9°ΠΐœάΨ±ΜNφ3ΧΨf6jΤΘ±f}N7tϊϊLΊ ^vY;κέ©›ψ'·:ύ›―σύά©ρ&€933ΣΡΧΨQ_,ΖΡυ;€Ω’τοZ%νίθΉΕVΙdX6/wΩΌ»ΛV±dk§€³§Ϊυξ*ή@jF υ…χhYσ.ΊιšΏjK™CtΧo?­‹{4/SΫw‚‚‚nί΅λΐl,ΜίuΧ]~YΜD™±fΆ†!šzΘΎήgŸΣ§ά ŸuVœš5s©ΈΨόληπ–šš¦Ÿή‘¬Μ,ΕΆn₯ΪWκΚ~ωe—222uΩε—ž¬΄4`@?΅?₯­ΆmΫ‘ž=γΚ΅S € €ΐ±μzτvxε2C:όυE5»π·eκΨA@ ‘ ˜lˁ£”²bM‘²β˜ϊ‡‚σG¨΄ΐΖ…χλκYŸ+fŒυχΛϋ†κXώJιrΉΤ»woŸΗ2[wοή­N:©W―^>ϋΤvε–-[μ ½V­Z•YŠΣΦλ΄υxc………ΩΑΛζ:;qΫ»w―ϋt›9ω›ΐe“a»cǎξε:κέ|Ÿ1ρ={φtΤΊŽ\Œ“―±‰«0ίΟΫ·oδ²±ΏsηN;H½GŽX―E¬[·ΞW5u”¨χΜΕ‘Mπ‡e*~k€'ˆΩ.›Ν²γ~wΧۍ&xٌ³Ζ³!€œΦ}―7]¬CΣ•g2DQΝ›(τΔΎNΕάΙ™˜˜¨ΤΤTϋΜ•Y΄ιk~!²eΛΚt§O=o¬ΌΌ|ϋΡ1ΡΡ2g•i(§₯₯—©{οݏτθ£O«E‹“ΤυτΣτΥΏΦ(22B}ό¦bbš•ι{δŽ‰ƒ>ύŒ.v ύ‘mEEEJIN±²†ΗΩΔ> € €Η$πστ«”ϊΕβ2c:Ν}O&Γ$ €”ˆ>ΞΐœϊΥεdΛ6³!€ €€?<­yπRέψa²fΜWγϋœμ―#υ € €Υ X s8~ w³Μ¬άZ­~/WŽŠ^ €@υ „ͺIσζjnΏ^>7**ΚΎcΧάQ—ŸŸdsΉ}ΣΗτ ±‚Α­±l G **R;Ÿͺ{ξ™­„}‰žlΛ$ιή{gΫΕMš”|&Ύψb•žxβ9½ρζ Z²τzꩇ΄ζ›εtώyϊνψ«UPPX!\§Nτ쳏*  Μν`φΈηη½ͺΒΒ"|2τ"ˆ € ΰW (;S[―[&x9(²‰ΊΎΊ”ΰeΏj4 € 50B‘a6EqnŽ­Y  €T °χ‹'­ΰεfzqω—/α”ώέκ#jΨE@Ž_ ήg`vΩ™”ή%ΕύA?-VΡ–…RβδRqH©ewv«βΣFKφžμΜξρΌ#€ ΰFYΩpc― 6؏₯‰ŽŽφΉ΄””mίΎέ -T›6m|fΗυ9Κz!`‚‰η̝­!ƒΗθ’‹~_ξœV¬\ σθ“!yΜτΨγχλΜ3»zϊ…††θ»nΥhkμΖ UΟ^έ=mGΜ<ξ­ΨJΗ<οΉ—υυΧΦ–-ΫμΰωΟV|d}ώχqχε@@£ €&kλ”_+{ΛFOΧF1-ΤεΕE ;ε4O@(/`²-»¬ ζ”•ΦίΔ¬ΝΌ»†Ž)ί‘@°2τα­K₯«η¨Kh²φξ-y^lšHΕ6,SΕ € €@ΥL³‡Θ'χ’λεήάΉ­§Ÿ³!€ ΰh”ie³=YϋχοΧϋ_5mΪT-Z΄;Ω.›Ά΄΄4………Ω}͘#³γ:ϊDYάq 蚫§¨qγΖΊwΦV°{{ZΉwιαΩOιj«ν½χ^Ubβ~νO< ³ΟξUξ˜aa‘;ξB­Yσο ˜½šΟΩθ1£Τ½ϋ™Z»φ½ωζ{zγχ4yς΅Gύ šΟ­Y·―ΝΤ›υ³!€ €4Ό½»΄υ†_+7~‡η€Cۜb/·lν©£€ €ώ’‡;ΐόε?ΥΑWZ@hΨΉVΠ²x}šΏξ‡"fͺΎόlΌxζ©ͺ@@chxΜΗDw@œ&`²07iDΑΑΑv² Tώίώ§ΌΌ’;ΑCBBμ ΥζΝ›ΫΑΝ&€ΥŒakXŸΎJ&iΕʏν@vχΩwθΠ^ύϋŸ£ίύξ-^ΌT={v·?;Ξ»Πέ₯άϋ5Χ\!“YωΊIΣ΄nέžφό‹.ΌpΈgί]hίΎ­Μkΰ ώϊνο.ΦΨ1—iΰ€sΧύ wŸο&€977Χg[~~Ύ΄~ύzŸν΅UiΎώάΫƍνŒΣξύZyίΆΝs،Œ mι'EEE)))ΙSο”ΒOΦΪ€l²Ρš f“Ω/»3ך`eΣnΪΜ;ΑΛΥη^—f2ΑΛSoΌLπ²{ύ‘‘!ϊγ΅Πξέρ*,,΄>CMτχΏΏ€"+HωΘΝda ²³'?ϊΨ}2ΔξΝ|ΎΜφΪko«Oοž>”[·n₯­u|υΥΧ>Ϋέs™χ:¨¨¨Θ»ΚS6tνΫ··{zκœPˆΧΦ­[ν₯ΔΕΕ)<<ΌV—•^˜©’ΥΘΞΦ~Ϊi§©Y³fjΧ]­ΛίΑ[Άl©ΨΨXΝ΅Zο΄Οš7kσΦ¨|Ω‰n&ΧܜαΔ΅νΪ΅ΛΎωΑ‰ksΉ\27i˜ο»NΫ"""όώ,sΪZYNΘψώ[ύtΣοT”•αYfΤΩηλ΄§ήQ@h˜§Ž €] 0¬±\CF+υ‹Εvη”Ÿΐ|t6z € € € €ΐ  €ω s@jBΐ&›ΐRDfgΘ5Η °λέA§5ql欁Φgαh[hh¨Δά,&ΪgφΰχίϋXgœΩΥrŽŽv•›ΞdfήΊυguμxJΉ6wEdT„₯§»wύΎ› /› Ψχάμo υ € €uO υσEϊωφ e=|œ:>όZ™:v@@ ςζg©'€Ω dξPω‘τD@,Ω«Ώ2Φ­iΐœ: €Τ΄@`M€ω@@ ζL°² d6A¨&ˆΩΌLΩΤ™6Ά†+ήXo½υΎ•™»°‚ :^°ΰŸv†ήΆm[Λe&/]²²\ΏΜΜ,=υΤσv@|ΉΖ σ98 Ÿξ›υˆ' Έw_“±ω΅WίVοήgyWSF@@ œΐΑV.xΉεU7Ό\NŠ @ŽMΐuώ―<Šss”ϊ―%ž}  € € € €@m ΐ\[ς@¨A .’¬¬,έrΛL%μKτ28pPώσ]ϊωηΊdόX™ΜΖΣ§ί¨ϋξ{DΛ—}ξΙrΌo_‚&MΌI:uPηΞ§VΈσ°ηΉώO·ΨΗ2f‹ί½Gš¬μμ˜+€@@`ο‹λ—o)ΡξΞΗΥζ¦YeκΨA@c k,Χΰ‹<SV,π”) € €•(ΜH«L7ϊ € €Η$@σ1qΡ@¨αzούΧd(_tΡοuΞΩΓΤ»Χ`9^E…EϊΰΓΏY˜#μ“`ePž3η!͘qΏϊφjχ}Ρ₯κε4½πβSf`6˜c•Μi«Oο!φγΖ]aΟ±ΰ“·­μΰ‘uŽU"€ €œp_˜¦}/=ZζΈ~U'ΏΆL; € Puθαγ<ƒΙΐμ‘ € €•ΘΪ²±’=ι† €T^ Qε»@@ . Έ\M5gξlεζζ)33Σ^zxxΈΟ`⁃ϊλ»΅_(%%ΥΚΦ\`%G؁ɕ=_χ±²²²•““c3s„††Tv ϊ!€ €5"`ώTTTδsnυ>;SY#Ϋ¦]ͺ΄ΥΛ=s› ‘§>ρΆšœ3ΨSG@Ž_ΐ5p€g’’¬ ₯}΅TMςΤQ@@@@N΄Μ'Zœγ!€ €'XΐW&8 @͚EΧκΒΓΛΌΨ@@§μΨ±ΓΊ‘+Χηrάυ›7oΆώ ξ³OmUξάΉS!!!:tθPm-Αοq·mΫ¦¨¨(%%%ωνs΄†€œ,ΜΉS?ΧΣ΅8@†'ΏW‹-Υχ?lR€υΤ„aΓΟ׈CT)ŒM›ώ§χίX‰ ΤΆmk ΨOž[ιρ•:H=λ=όβΓ̟/Φ)³ζΥ³3δt@@ &Χ‰i™@ΈΟΙlΰN@@ ~ πX·ϊy]9+@κ’@ς²΅υϊqe‚—cΖ^Aπr]Ό˜¬¨F/>_₯qc/ΧΎ}‰ϊγ―Τ#λαΩOι‚αΏVfζα^|²ΈΈX―Όό¦&\5YΝ’£5qU:³[WέϊηΏθ7ΏΉJ99ΉΎ†Qg Dώ•Η‘(+Ci_ζΩ§€ € € €œH˜O€6ΗB@@@@  μο%νΈkR™3n5ιvrΟ3eκΨAhX ϋuΫmwkΜ‡tίύ3Τ·oO9L+?ΔΞ€όθ#se‚”ύmΫ·οΤΌy―θoo<―i·LΆΗϊΧ£υΥͺOUŸ―?^μohƒ―ŒˆRΣ#<)+>ρ”) € € € €'R€ζ©Ν±@@@@h {žΉO»»£ΜΩΆΏϋiΕώιΞ2uμ €4<V€ρˆC4`ΰΉeNΎQ£FzδΡϋ΄dΙ %&(Σζ½³~ύ=RέΊξ]­ˆˆpέ}ΟνϊΧΏΎVQQQ™6v DηΩIYΉΠS¦€ €x „w‰σή₯Œ €T»ΜΥNΚ„ € € € €4l³nPΒίζ–A8υρ·Τ|άΚΤ±ƒ ΠπL`ρgŸ}©ίύώ7 (Π²εIκxκ)Ϊ»w_Ή6Sa23ϋΝw1r¨Οφ¨¨HωΟήμsP«Œ2ΪsΖEY:τΝJΟ>@@ΐ-ΩΤ]δ@¨˜k„•I@@@@hxE9Ωϊiκ%JZόηδΓ#ΥυΥ₯r ώ•§Ž €@ΓΘΞΞ±³+ŸrJ[Ÿ&¨yμΨ ΅vν~Ϋ―Ήφ yfΧrν&Έω­7ίSοή=ȟΐΚ•VFD©Iαžζ”ŸxΚ@@_λΦψͺ¦@8.~{s\| F@@ψφξΎŠκξψ²’@°dDQQPA6|ͺ>Ο_l *uΓΊ‚V°‚ŠUπQ€jU΄΅ *ˆ ˆΆΠ eίHΨ²‡›9“άIBnB²L’Οτ•ή3gΞ9sΞ{.ούΝo@@ΐKOΥζΫG*mν—ˆx3ύζg ιuSG@ ~ ψω5T``@©ζΈ';»Δ6&x9<ΌxFΐ?όD«W«ΡΧ/±/ς"‡Œv(’>Θ)S@@@@ͺKΐΏΊNΔy@@@@@ n δJΤ–;Fλθ­Ξƒ’ΟT—W+°•ο ›NC  €υNΐdGφχ/ω+ͺγΗO”ΛΔd^~ω₯Χυζ›Π__}AQQgœ²Ρ£G•””δ³]NNŽSπΰAy<gίM…Γ‡+!!‘BS:qNΑΝEǏdhΧ§ Τϋ’ UR§Σ™_IcVfύ‘C‡ ΚΆΖ:pΰ€άnθφω™k|δΘWΪu©ΜΜ56UτΟqeΞ₯€±ά~ΝόΜίف%-‘FλΝΏ!ιιιΎΖ5 ΔΙ@@κ½@ɟΥ{@@@@@ΰTGwmΡ–;Η(g^§ip—κj/ϋ5pκ( € ΰ8~όΈrss½»Ε^6l £Ωe ή΅knΏm’23³΄pΡ&&&V|ητ“~ω·έπŠΤ°ΥYΛGΟӞŸ1+³Κ\[ΐά¨Q£ΚΆΖ2Α·ΙΙΙ§w+m6Ύrϋ56σ3Μn n5Χ8%%…kμϋνU¦ZsΝM&~~~ej_ݍΜ5ΞΜΜtυ5nΞW»‚Z·«]fΆ € Pλ`u—Œ #€ € € € ΰΜλ΄υ1:–‘ζL(΄ΟΕκόβϋjΨ¨±SG@2˜332^P]¨τλ―›uΡE‚ *R\ΊtΉ¦M}Z#F\­)ή―  ²gΰ WίΎ}‹Œηέ1{φμ±w»uλ¦f͚yΉξ΅wοήžΣ‘λώG»σ˜ύ~ώNηυώ{…Η*©γιΜ―€1+«>((ΘlνΤ©Se Y©γμέ»W&C―› Ν‚έ–›{L+WΆ²”rΪ~ϋνzηνχ΄dι‚—•ςόšF¨I˝ŽΙ+;e  € €ΐΙΉι©'W± €œ–˜O‹Ξ € €•%Π‘Cή“ΎΖ3ٍ£’’ΤΉsg_‡k¬Ξduύ駟μσ›GQ6n\³IOOέ―-…4LΠΘΘH΅kΧP­;ŠζKjsM[·nνŽ š…™›Ϋήkήι17―Dω^έκf²»ςύf2Κ›μΠnό³`μΦkj2?~Ό|oPZ#P N,[ ΄E―™y›»§ͺεΈΌ ŽE°ƒ €€ϊλμ³»θ¦Ηλ΅Χf«e«(™@εΟ?R?>]sϊ‚μžζ©BzlΊfΏ8CgœΡ\ζwΩ³ζjμΨQΦCB΄o_b±3ψϋϋ©E‹3ŠΥSQ\ΐ<=!mν—φδU‹ΥώΡŠ7’@@@¨˜«•!@@@@¨‹‰σfλψIΑΛg>ρŠš M]\.kB¨"“…ω₯—gκ™gfiΈυoHσζ‘:t(I~~~V ςΣκΧ―·sfSXvΗ“£#GŽhώό…φΣ°P‘]»h-\4Ο―P5E—Τξ''ΩGŽ₯₯(ύίkΦo –T!€ €@}π m’ciυqι¬@ͺA€ζj@ζ € € € €Τƒ ί(²ŒN³ήUΣW©c@²ZΩ–ά­£GΚ57mΪD 6,½Q£ ­\υ‘Sgϊ}ςιϋΞ>…Σπk‘° .SϊΏΎ²J^Ή˜ζΣ#₯7 €uJ ΈKeΔ|W§ΦΔb@@ΐ=0»ηZ0@@@@\+΅υyβœωu™»Daηpφ) € PΖƒe~ΨjN rΘh'€9ισΥnς_jn2œ@ΚHί£/7κςσ[–yΤτw[2Š΅χdK=.ΏBŠ’@@ ‚Eoc―ΰ tC@@@@Ί-ςΥ§ΞžΡŠΰeGƒ €΅[ bπhgΗR”ώγΧΞ>@j―@’ζίu‹˜όΛ±ˆΨ·”%΄oί6mΩ\π»M ιžrŒTχšzφΤ½E±"@¨Q20Χ(?'G@@@@ v€¬ώΔ™hΠΕW9e  € P»όšFX7&]κ.'―\lοΧξU1{@z+‘±΄Ϋώ¬‘™XfŒ ­[*Mϋψٺ̝κMΓμ}0Χ›‹ΝB@¨&20W4§A@@@@ Ά δJΤ‘M?;ΣotαεN™ €Τ~ˆ!Y˜“V|PϋΔ @κ­ΐΞΟX+xωΜϋŸΥκ―ζθ"+€ΉΜy“³χh©Ί«‹Υ‡ @@ κΘΐ\υƜ@@@¨s6ΔκΣO?ΧΞ»έΆ΅FŽͺή½{©AƒeZλϊυ±ZρΩ*%ξ? –-£tωεΤ―_Ÿ"ύssισΟΏTnnn‘1srrΥͺe ]tρEκΩ©:δ•KœΑO„„ΙΏΫyΞ>@¨ύ‘W^§=O?`/δXZŠ2Φ}«ΠΎ—Τώ…±@z'ΠaΤ­•Ώμμ_•~ΈΜαΛΚήχ«7ͺ3ƒ€ττ$λΗ£ΐ°H5+{ηzΞ‚@@Σ σiΰΡ@@@¨o'NœΠσΟΏ¬ίξn΅Œj‘;ο―NguΤ„ρχjΪΤ§uόψρRIL©ΟΠψίί­&M›θζ›oPλΦ-5ρŽϋ5ιήΙV°ς1§JJͺ{τIνί§έ»βœŸ}{΄uλŽSžΛˆΒi €¬ώΔ£AŸN™ €Τ Ώ¦ ;€³˜€•9e  €Τn²ής/ιπέε Ίμzq£Ύμ*υ½ςΟϊq_Ω‘k·³G@ͺO€ ΜΥgΝ™@@@@Z/πΝΧίλŸο/Φ’₯ Τ¦M+{=ηΧSW_}…•…ω&υΏ¨Ÿ† Rβ:—,^¦+ΎΤί΅—MΓ~ύzΫœΗŽ§>ϊXcΗζ=Β|ίΎυμΥ]·ίρΫ"™™KœU"p,#Mι?~νŒέ°OAp“SI@j½@ΔΰΡΦΏωίΨλHώb©Ϊ=<³Φ―‰ € PΝίYΜΦΦϊΧυέ՝d%b–²υΩsΠνV0σ­ψ@77•l € €•!@ζΚPd @@@@ ˜μΚ/ΎψͺώτψƒNπ²wΩΝΟh¦O?™ΟΎX$‹²χΈy5ύί~ΗΟ_‰@IDATϋ]=χ—u‚—½ΗΓΓ›κωžœ—ζτίΈρ?pI‚—½H5τš²ϊSηΜ ‚©AΟ }  € PwΒ/α,&χπe¬ήΩ§€ €@}hέχfέ껚β ^6‹j©«}WΣ―JέSΏPφ) ²³³•˜˜θσηπαΓ§θνΎΓA­ΫΉoRΜ@κŒ˜λΜ₯d! € € € €@Υ €₯₯+>~Ÿ.½τ"Ÿ'κΧ―<ž₯§§+""ΌX›¬¬£ΪΏ zυ:§Ψ1SΡ₯ΛYv½ιošυΓ:έvϋ­v@σΑƒuβ„Τ¬Y€‚‚ΚώψWŸ'’²\)«?qΪ‡_:TiΞ@¨KΝ£ΪηbeΔ|g/+yεG ννϋχΎΊ΄nΦ‚ €€W λ¨ΫΤΥ»Sδ5PWί󈦌Ψ&ΘΛΜ\δxΑNVV–φξέ[PᣴmΫ6ψ8RσUΗžDBB‚bbbtBσLΨΈA‰ί¬‘‡ΦθD·nέZ£η?ΥΙwοή-₯₯ΉσHŸ””tͺeΤθq·_γ;v(88X)))5κTΙ8 ΤΤTλ³TλΓT—nnΏΖΫ·oWhh¨άzγ‰ΉQ&33SǎsιfZ”]€ζ²[Ρ@¨uζ?LΏ³yφΩg«”°oΏ:[AAΧ];ά~­μΕ€€€κΣOVθί?Wcλ?ΪΟιqΆZΑMΡmΫTφ©@jHΐ7iͺƍƒ}Ξΐԟ}vνΪη3€ΩΫ)77Χ[,ρΥ΄ωΟ6kΜΏιϋόGΈzίyηx»υ&ωωωy«x­BΤοW9£‡Ί†fGƒ €uO rΘ΅NsΚΕjϋΰ3uo‘¬@_Ω‰ϊn]†.ΎΈ“―£Rλξκ’W΅9ϋ6仉© ·nάξ峁 nŽ‹‹S§NΤ§OŸmjΊrσζΝ2Y€[΅jeΟqίΏW(Α;©οW¨σΈ»ζ‚Ή»ΥΟP5jΤHφuφΉιuίΎ}v†p7/7ΟΟά€’Ž;Ίι:s1Ο:tH½{χvκάXpσ56Ÿ;›ΏΟΫ·oοF:λσχ]vϊΉηžλΚω™I™›`Ψ(‹@Γ²4’  € €@ν0A?wέω ξ›4ΕϊΤ^vφΒ£GκΖ―wήy―R΄yσ6 Ύb΄ΎϋώίΊΦ ΎlΠ}±κ+ύίZ²dY₯ž‹Α@@ ζόύύ¬ΰεΖ₯N aΓ†Vvγ>ۘηθΆ­΅Κϊ=ΑΧφ㏬^Σ΄{wœ•έ"Ωϊ =IΏώ²IŸ|ςžΦΕ¬Άζ½ύŠ^{νm=σΜlWgρ΅ΎΪX—ςΥ2Θ>κL½ι€«œ2@¨{αWŒt•{ψ€26¬uφ) € P§ͺ»οš―}%,2{ηmΡXu-%xΩΫΥ7ϊϊ1Yykϋv,#΅Ά/ω#€ €€‹`vΡΕ`* € €@e Όχξ‡VΦΒ-ϊβΛ%ΊξΊκΧ―·ό!͚=C³^xΕΊ3sO₯œ.;Ϋ£?ή7Eχή{‡^zιY]vΩ%ΊκͺΛυϊίώΟ>׌ι/X‘Ο¨”s1 €Τ¬€y$]hhH©“8~άwπ²ιΤ AέuΧ™ίΦ­ΫPdœνΫwκΑ·³*·oίΦΚbXΏΉρz}ΊμŸjΩ*ΚiΫΓzΚΓΒEσ΄hαmΫΆΣ©§P5)«?qn ω…6qφ) € €@έh₯Πσϊ; KΆ²0³!€ P72τγgίhgΊ'oy­;©‡ΎΠ_ΏLτ±\VL{^ΩNa>ŽΦ§ͺ#›cλΣrY+ €T±@νΏ½«Š@¨&¨ψν·hφμ§‹ Π_»œ₯Ÿ6lΤ™gΆs–—’’*8t$σˆZ·i₯ΪΛdP<ΥΆ{χeddꦛΗkjΞΥώΜΆvpQοή=‹§@jŸΐK΄ωύΑ< ’€ν’K.Τ€ϋ&κΆ “Τ³WwλΖ§+³ξ'}ωεך:νa½όkvΧ°°P=τΠ=>‡iέΊ₯Ίϊ νί@;wτΩΖ[ΉqγFϋΡ§ήύΒ―ζΡ­fΫ΄iΣ)3KξWeσ@σΈΡ΄΄΄κ8]‰η8φΕR5Θ?š~VO­_Ώήϊέn›ΒΒΒ¬,Ω‡KμWSΆnέj?"sώύ55…Οkζζ֍ΉUμΚΈΥΝόΩLJJͺΨ’ͺΈ—ω³YΣ―•΄Δ„„™Jϋ7¬€ΎU]oΫ₯K—ͺ> γ#ΰD ΉΦΙΌœτω‡jϋΐ η@jŸ@~€ςΙΟή£)“ΣΘ·>Φέ½­£ν4mΖ{ š1Gwκ0+Ϋrvz’V|㍗δρ|hχή»θΩg_T‹g¨Ϋٝ΅ζ«ομΐη>|G͚E–ΊΜ'€³»w•―GŸ™ ŒΙIΙ:γŒf₯ŽΑA@¨AAAφοζίx??Ώb“6šχνKPλΦ­ŠσV˜ίEώίϋ2ΘΚΒό“lzX— ΊDLΎΟϊ}ΒOΟ>σ’ύ˜Υ_~Ω€f‘E²/γ’ώύτΓλdn˜*mkΡ’E‰Αh&XΝl͚5SΣ¦MK¦Ϊ™?γέ²eΛj?·χ„ž?κPfΊwWQW_§†g؁‘Ζ«&ηζLꀂ άlήΌΉ’’ ²vŸΤ€ΖvΝάάhf@˜[ΕήnuσވκΖχ›ωwΒό·£η–““£ΜΜLWΞνΘ‘#{“  D ­Έη±{η> ΜŸ~PΘΉVp4Ί!€ PΓΝLp²―-TζΣ‹.Ν ŽwΈϊq- λ)wύAƒ¬cΦΗΦ/™F£τ֊»Τ³Ύ§_Ά(Ψ@@Κ €Ή25 @p‰ΐ¦lј1#­ΜVιΦ£ΨdeΚ‹ufv§υΨφqγn΄² Ϋu&Ϋα_ώς²ή~gΞ9§›]g28?ωδsΊaμ­ZaeΪ1ΑD%m:uΠK/=kFnc‚¦ηΎς†Ž;n}μΎ’Βs₯Œ €eˆŠja?‘aΧ8Ÿ™χο?¨δδT…‡ϋ>aέωτΖίώn,ωbψˆ«ŠœψΣOV¨GΟ³νίS>ϊπcυθΡ]£―½¦H³cΖωκ«oνίwŠ<©Β0—΄ύόσΟφ‘3Ξ8Γb.©]Mԛ쩍5R«V%ƒWυΌβζοœ"€G_΅ιήΛή7T###ktnΞΔN*$&&Z7ε΅pνάjςzžDUdΧΈ1·"$eΪq³›ΉΡčΧΤ ›`ά8·£G*88Ψ•sKOO—Ή¦lT—@@σ(;`Ω.›-iΥ˜« Ÿσ €T@PwΝ{·»ο1ƒΪi^ΜκbΗ:\ΡZ©·ζΝΡΌ·ζλώ?>f³Ώ5kf>χg'xΩΜ9((P>zΏ ϋσ/₯.Γ|ωμΝΎl‚‰ΜcίoΎiΌ.Ό`°ώρκ£Ε/5ΊΤΑ9ˆ €hΤ(HW]}…uσΣKΕ©Μο/ύί«―™ΓΫoΏggIτΡΌH•yT―Ι*ελ‡LSE¨ΨA@ Fn»mœώc!Ϙρ‚222μΉ9’₯矟c«»οΉέ™_vvΆώτΨtνάΉΫ3Ώ+άvϋ­Z΄p‰ήyη=yƒ“φkόοοΆ2/7Φ€ΩmdeΒl€ίήz§ύ;‹ 6?ζΙcnjΣοΗ?yf;η\*W kΛFεΪο J³CA@z!qεuΞ:sPf쿝}  € € € €@eψWΖ Œ € ΰ>vν’uΕ‹M¬Y³HM°6ό«6Ρ­¬ΗŸy4ΰ’aΕΪy+~ϋΫΆƒ…n›0I11?y«υδSiΨ°!ΞΎ·ΠΎ}[™ŸK^¬ώλZy“.΅‘zφ*α1mωwξά)δδk3υζρΜλΧ―χuΈΖκRSSsΗΖΖZ“«αΗΘmΫζΜΗΆnέje‡ΣαΓ‡‹Τ»aΗΜνΠ‘C2 wΫfζζ֍ΉUμΚΈΥΝόΩLJJͺΨ’ͺΈ—ω³™––VΕg©Ψπ ΚΚΚ²2ϋζVl€*μ§.]ΊTαά1txxS-xχoΊod]6p„:uκ mΫvͺuλ–zού7ΤΌy€3Q󀆐ΖŠˆˆpκΊvν€W_›₯?ήχ¨f½πŠS啃τ§Ηržά`žρΟ…στάs§kG·ΜXζ f{ψ‘I;v”Σ—Bε €¬ώΔ4°U[5:³³³O@κΎ@@σ(…τμη.'―\lοΧύ•³B@(Mΐ“°§΄ΓC@Κ%@sΉΈhŒ €Τl+(ΩlV’CŸΫω矧/ΏψΪjΪ΄‰ζΟMΗ­Œ†'o& ³ 2ΩŸω„“%Ρ΄σλΎωζ?t~ίή>”ΫXuΏϋξΫ΄fΝ·>>_‡Š=Šή{ά΅oί^½{χφVΉβ5>>^[Άl±η³gO;kdMN,ύX¦ςf“7‹Ξ;+22RνΪΉ3;eTT”μΦΊ&ΙJ<·Ϋήk…'Κά k”½μF7ˆknΞpγάφμΩcίόΰΖΉ…‡‡ΫYΝί»nΫBBBJό·Μms=έωδ+Ώ©””T{Νζw…ˆˆπbÚί%Vϊ¨X}ίΎηiυWΫύM0ΊΙΌlOή7ΦγVPσΓO²1Oe0uώώ|€u²Ueο' `ŽΌzLeΟx € P "†Œv˜/_¨θϋž¬³fŠ € P•Ωϋ`J_ΖF@ Ύ πmO}»β¬@κ…€ΙΎœžžχHw_ ή΄i«έ0((ΘbŽlα$nώ{ͺϋ9έd‚œ}%™ΗΈoΩ²];žYΈ[‘rhXˆΣ‹ΤωΪ1A_%m 6¬7a%P €€L6ζŠn%=ϋΟdc6?lΥ#ΰ±ΎŒΜΪ²Ρ9Yψ kœ2@¨?ζ&¦ψ³œ{ψ€27SHΎυ€•"€ € € €@• ψ›¬Jl P?ώͺΧ™U"PV·fd-λόiWΊ@Οžέ•™yDϊa.Ίψ‚"Mύ«}Kχ?p—ΪΆm£p+[βςe«4jτ°bν^°λώΖ›/©/Όc.Π_OL{F+> X6Ĝœ½ωΖ?4εΡϋ w£Œ € ΰb”―>ufg?>ΎΗωΞ>@¨?ήί27ώh/:yεb˜λΟεg₯ € € €TΉ€?ΑKUnΜ @@j0`θα{tΧ]iζΜ?kΰeΫΑΕρq{uϋνχ©U«(]yεε27·<ψΰέΊχžGdρ>δΚAv]BB’ξγcκΤ©ƒΊt9«Τω_6h€ž~Žξ°Ζ}ςΙΗΥ²…L`³9ΧCMUVΦQ™ΗΔ³!€ €Τ”ΥŸ8 4ά)S@@ϊ'1d”•yΩΐό‘’'ύΉώ!°b@@@¨*•A@@j\ΰΪk‡+ ΐ P~ܞK`` <ΖŒ₯ϋοΏΛ hφ³λX”g͚I“¦hςδ‚/‘F¦¬ΰf?ΏΌv%-ΘK/\4OΣ¦>­αΓS€™cξ__°ƒ£‹`@@ΐ•Ή)IJ_χ­3·πAΧ8e  € P"†\«ψYyŸ-yγuδ—5>§Oύƒ`Ε € € € Pι0W:)"€ €ξ0YGŒΈZC‡Qff¦ΩΟ―‘Lά¨Ψ/x±~\χ₯’“S”››«λ§q±v%U„‡7Υ¬Ω3tδH–Ž=j73c–Τ…z@@ €~½ά™UÐ05ι…³O@κŸ@`Λh;`Ω.›-iΥ˜λίΫ€#€ ΰdmΩ¨Έη&«ν3œ:  € €@EV΄#ύ@@j‡€Ι΄ά΄i; ΩWπ²w&ΰ922B-ZœQΰeoσΪΈq°=†‡ΰεΒ2”@@Ϊ!²ϊg’αrΚ@@ ώ Dν,>yΕN™ €Τ?ci:²%Άώ-œ#€ €@•ΐ\%¬ Š € € € €@ν8~4K)_-s&>θ§L@κ―@Δ•Χ9‹χ$ΖλΘ68ϋ@@@@Š ΐ\Q9ϊ!€ € € € P‡Φ~Qd5M/ZdŸ@¨Ÿ-£ΥψμσœΕ'―\μ”) € €@έπkZχΙ @@ Fόk䬜@@@@\%²ϊg>M/ΉR ;ϋ@¨kGURR’Οeεδδψ¬―Ο•CF;™—“>[€6wO­Ο¬@z%ά₯g½Z/‹E@κ €Ήϊ¬9 € € € €Hώ² €9|Π5'C@ 2LsBBΒ)‡Ϊ΄i“7n|Κv5Ρ`λΦ­ΥwΪθnΞΉ<‰ρZΏψŸR»NN―B΅ΞΟΧNQ·kΧ.(==ύ-kζπ‘C‡”œœ\3'/γYέ~wμΨ‘F)55΅Œ+ͺήfPJJŠ4hP½'.ΗΩά~·oίΠΠΠoH)ΗR«€ibb’233uόψρ*ŸA@@¨ν0Χφ+Θό@@@@8MτΏΡρΜ‚ΰπΛGžζˆtG@ΐέ&ΰ­K—.>'i‚›χμΩcλΦ­›š5k泝*{χξ]mΣψO·^:²ιgϋ|-βώ£6£o8εΉ«s~§œΜI ‚‚‚¨NJΔ>©[΅νξέ»W&ΐΥΝ†ΓΝσσχχWHHˆ:vμXmΧ­<'Š‹‹ΣΑƒ]mθφkά°aC…‡‡«}ϋφε‘―ΆΆζF @ξΉηVΫ9Λ{’υλΧ—· ν@@¨4†•6!€ € €@ „? FΟΟΙ@@ φ €¬ώΨ™|H― διμS@@ . ˜ΐΖ°°0Ÿ?&ΰ‘­Έ@ĐkΚ€ε 2@@@@ "0WD> € € € €Τ!δ•‹ΥD\>ά)S@@Ό‘CΗz‹ς$Ζ+kΛFgŸ €ΤOB\ύY,+E@* €ΉJy@@@@w ˜GΑηΪοL2bπh§L@π ΆŒVpמή]%­όΘ)S@@ϊ#`˜Σό¦ώ,˜•"€ €@• ΐ\e΄ Œ € € € €€ϋRVβL²QΗn lέΞΩ§€ €ˆ,t£S§ο>D@κ‘@ϊ:˜λΡεf© €T™ΜUFΛΐ € € € €Έ_ psψ kά?afˆ €5&1€ΰI žΔxemύ₯ΖζΒ‰@@@@ v ΐ\»―³G@@@@ Βž}{”΅νW§Δ αN™ € p²@P»³άω§:yΥb§L@ꏀ'aΜg λΎ΅L™ @(―Με£= € € € €uD ωˏ•4Rγ}  € €€/ˆ!Χ:ΥIŸ}ΰ”) € €@ύΘΆ–-―Ν·΄L™ @(―€y;Π@@j‡ΐ‰%σt$8X M›ΊbΒΝFά€ΐΦν\1& €y)«?q(Β―ι”) € €% D^y­φ½ς”}8;n‡ύ4‡ΰNέKjN= € € € ΰS€fŸ,T"€ €T·ΐΝ;•““γσ΄ΩΩΩJJJΦ­[}―©J3'οΆcΗyw]ρzά `Ξ΄fb~ά°₯F)ΏξΩφTβγγ•••₯ΜL·Μ@ΘΜ-44΄ ΒE%ζV±‹αV·ƒκπαΓ|Ώ%$$(55Υ•sΫ»w―Ž9’FUμ Q…½φμΩ£θθθ*<C#PΉΉ)IΚX½3hΔ αN™ € P’@P»³d–³Άύj7I^ΉΨή/©=υ € P»όΓά‘$₯v+2{@π%@³/κ@@ͺ]ΐ²š@e_ΫργΗuτθQeddψ:\cu&Χ»™ω—€νmSί_m―όkθ ^Ά2D»m3ssΫ{ΝkΔάΌε{u«› Βenε»–¦΅ΫέΚΏ"z Ps)_}ꜼaH˜Β.ΈΜΩ§€ €”&1d΄ΐœτΩ"΅ΎcriΝ9† €΅X ΈkOŸ³?–žκΤ{φ8e  € €@Y`.«ν@@ͺT G%Žo²”Άoί^½{χ.±MM0Y]·lΩbŸΊgϞjάΈqML£Θ97χΉΨΩ7AΈώώώ5š₯4#ζ;g>:uRX‘k₯Φ­[;ΗέTpΫ{­° s+¬Qφ²έL–γΔΔDΧύέfTM&a“ڍnαααφMζο]·m!!!27έ°!P[RVβL5|ΰP§L@8•@δUΧkίάv³μΈ:Ίc“uμvͺnG@ V €οά ΝAέu~λΐZ5οκšμ‘-±Ξ©²χΐμ`P@@2 ΐ\f*"€ € ΰ~―~μLrΓ† ŠˆŒT»v휺κ.¬;?²ΊOΙω@@  Ǐf)υλϜ–჆;e  € €ΐ©‚ڝe,›ΐe³%―\¬V·ΐ|*7Ž#€Τ"CtטIJΈ{ŽVόΆ{-š8SE@j@ΓΪ3UfŠ € € € €•!φέΚ"Γ4½δΚ"ϋμ € €§ˆ2Ϊi’d0³!€ P²Συγg―ͺοU“΄Ρ,(μΛeΉY[6jΛν#•΅Ή +sYϊΡ@κ·˜λχυgυ € €T©€_hΛH«s08 €₯ μάΉS999>›dggΫυ»wοVRR’Ο65Ug}G¨γǏWΙŽ,YΰŒλίg€ΆΗΕ;ϋ§*ΔΗΗ+--M^ΏS΅―ΞγfnYYYΚΜΜ¬ΞΣ–ι\fn‘‘‘ej[ݍ˜[ΕΔέκvπΰA>|Ψ•ο·„„₯¦¦Ίrn{χξΥ‘#GΤ¨Q£Š½!ͺ°Χž={]…g`h*&a0ο{υ»³ΙĜ½g»Lff6@j―€G+ξΊQΣb»kςKokP³ιώΟ<΅w9U8s°\x3ί€―ϋVΉι©…«)#€ €₯ ΉT"€ € €ΐιwιq:έι‹ €U$»ξkgδ€~ƒœ2@@ ¬:vSPێNσ€8e  €ΤN@œ·ZλbζhμΕν&υ?6_&`™δ%Ύd¨C@ςΉqτθQΕΕΕ©S§NκΣ§Ο65]Ήyσfegg«U«VΕζ˜ώΨ,mΉcT©SlP(ΐΉεeCΥΊŠΦιV?ƒΣ¨Q#ΪΧΉT¬:Έoί>™ΰG77ΟΟά€’Ž žDRC—ΣηiΝί3‡Rοή½}wK₯›―±ŸŸŸΒΓΓΥΎ}{·p™‡ΉQΖ©Ÿ{ξΉEκέ΄Sμ&7MŽΉΈJΐύΜ;5yβ™{VJ  -k»Σδψ]¨i³—Ψ£μˆ(@οižΎ\έν;γ¬_ŠN+k²'ΗΞΎlN\ώqβ5sόDεέ“7Xo/€ˆr­ΐGcΟfM6Ϋ~?,ŒΠ;zϊhD € € € €€/δ՟:Υ჆;e  € €@E‚;Ÿ£ΐ–Ρς$ΖΫC$―\¬–ΏϋcE‡£ €΅Zΐ½5nάΈV―‘€Ι7ξJ|FI6Τ#€ €@ΕV¬[5φ²’f½A―₯Π–΅έιN½Πc9oB!5δ»vώ²"*σηΗhμcύ‹Τ•{'°§^yeΆβ3έ-Ίάέι€ €@}X·nƒΪ·k«ζg4«tŠ””T}ϊΙ ύϋΗυj¬szœ­—^€θΆm*ύ\ ˆ € P~δ/ςž*fz4Rγn½Κ?=@@‘ƒG+ρην#Y[6:٘}4₯ @j±@hŸ‹•σ]-^SG@7 Τ«fOrΌ6οˆWrf†•£8TΡ{ψBφhόεXW)<Ϊ ί€˜MρςF©ΐž υx`/G„„8ΧΡ“±_RL’73ΦΙαΞe›”±?^fψ€πhEYƒΔΗΣ¦ύ&B9PΡ]Υ·[”sbΣ6SΚΜΜ«ΚL‰ΧώδεxBm:Ϊ’­΅ν°Φši­IΦϊ:φθͺθЊζ[.4°)f¬ΣΌEMr~˜―Mžώκv)’Νœν¦Φ£½ωΆσΗ³lγm[ο12Bθ;3tF²b7oΆ±Ιφl|:¨gΗŸόQyA@ ^ μή§Ϋ&L„ ·θމΏ«TƒΝ›·ιζ›Ζλ’‹/Π 7ŒVvΆGοΏχώςάKš:νa5¬RΟΗ` € €εHYύ©Σ)bΘ΅N™ € pΊΑΦ#ε[F;ΛIΛJη^vΊΓ@8)Ό‘ΖηΓ@@Ί$PO˜“΅lΦdΝY΅·Ψ΅ ο3^Ο=1ZNˆkΖf=0qŠRLΛπ6RŠ·OΈ’ϊΌ£;hό“­&\ΣΌ£žVLπζhΚ»G±ρ½mΖΜΤά[»εο–c>V0ς‚‰΅Δψv¬‘!k΄ό€ΐ`u£Χ_ΌΥZC‘ΆωgJY5[γW™‘Z°τΞΌ κύλ4uβ4ō/Ά{τ3MOάΪΧwppώ˜ey‰zIž‘zhϊ+£υςΔ§΄W;΅pν~=6ΠΡΆ†ςhΝΤ‰z=ŸyΜΜΊ΅›7ΠzΏfέ2^«ςηωΰΫK50ΐΊ>γσΟΠι t§Ήω[μβ'5ευΌ»―α}4νΉGΥ7Š΄(@‘„ PίrrrtΟ=ΨΛφσ―ά_M°ςο›’{ο½C·Œ»Ρ‘½κͺΛυυΧίλ‘§κςΛ/UXXΑΏΫN#  € €Υ"›’€Œ ks…ξ”) € €•!9t¬ߚe•Ός#˜+•1@jT ¨λ͚סF§ΐΙ@@:-Π°6­.  ”Τΐ€–βΡ²Ι· ^WŸ ϋΘ MΆ·”˜Χ5ώ½¦ύήήΦ)œΐNπ²9˜Ÿq9ΐ{ž‚ Μy=¬cφ¬Χpo»Ό3­ ‘Ό­œσ±:E΄ΘοΊsU~πrΈ:tπΐ:Άs‘¦.άd7ŠξΩƊ»ncΝ ` o£ϊη/gΔκŽρΑΛmzθΒ {87.š¦gΧΔ;ϋ+XΪσcςΊφ¬žΡύ5¬CήξσΏΆΒ¬ oύά4+m†>¨ηξ˜ŒΌISoyΠΞ€Όw±Φ'ζs‘οYǟ}φE΅hq†ΊέYkΎϊN‘‘!ϊΰΓwΤ¬Y€Ο>ήJλϋDέ½«ό}dv6AΠΙIΙ:γŒfήζΌΦcτuί,U―?KG¨Y”ΥŸ:ˆΈœμΛ@J0Oiϊ―ϊ­μ?¨Η{@-[΅ΠΚΟWkΜυ·θ©ιΠ‘ƒΛ|ΎχήϋPΟεe}Άb‘""ΌK Ίψγz™ιΑƒ/Σοχ?JJNΦ΄©Ο؟o|΄ψjήΌτΟ3 F’TY»υR`ΛhyσΎ±;ρ―/€ΑWWΦπŒƒ € € €uL V0ο\5ΟΚ€\ž+ΰQΜbo‡šξ/›1B5δ±η΄ρϊρv–ί˜ωVΠξ°’A»αƒ§iΌΐγςœUVα—ο ^–ΖΝ|T=ν€ΪΣ›†j†7xΩ^B7ΦF1K¬δΒ9— gπf~Ξ[A@τ`ΧΧjίA£ΌΑΛφX=uΣ¨ό±Κ·Ψb­c/Μ―λ£ay W”•‰ΉƒVi§½pI¬†L(κ=d’Ζ-ΉIσ¬δŒηLΤυ―Y±Μω£όαΕ; ²b;›©πΘϊ\2o ˆP‹όΰeSΡsΤ ]χšβ3₯I³σσ‚ €@έHKKםxΠΚvτ΄‚‚•λ#kΡ—_~­ΏX_ΎύΞ\sNήMCζ Η'Ÿ|N7Œ½U+>Π Nφ+«S§zι₯gΥ Aƒ"mLΖ₯Ή―ΌaeJ:–- ί½T€; € €U,pόh–RΏYαœ%|Π§L@Κ0“gϞ«†Φη_σ©s£sίΎηι +ΘψŽΫοS·nuζ™νJ<₯ΙΆΌcΗn½όkϊϊλοh%—9ωσΣΩ|ήqχ]ΫOš5j˜3ή A—κζ›Ζ묬ΟӞxΔg_§1…*ˆΌzŒηΝΆΗ>ργWUrE@Ϊ!pψγʈωVΝFά€f#o“f– €@R“S΄ύ'λΙ3ω[ŸA½E^@ ΅*€9ΌCumQ8P·`₯9~PL±'“{”™Ψ>t¬Šηπ¨›{XΩ{­ ½)1Ϊ™q«zζ%ZΆ /΄SpͺS–ΦΞz@Λσ£o;Œ›©±έΌ΅˜·«9k‹Όϊ€€ό9ZΊeΩ’zΡX;v8Y±kkmlΌLW3ξΨΚx”Χ-\ne΅ΆΆ6£Ζͺ£]²ώ/°§Ζ Χ΄U)Ϊ»d±β­ζ’ωC5φ‰iZ|Λ4™ή9^Ώ1Σε#1ΆwΤόΧPυνEζΌVη›ί¬1nVžΤ1Ί£ξœ1γ€φμ"€ P?Μ‡iΊFŽͺ~τρΉh“!yΦ¬ΉšωܟΰeΣΠ;?ϊθύ1ό7ŠύωυξΣΛgSιηWάlΞ9ηεΧυν·?hσζmφŸ―ό Τθζ € €@₯^66ιy₯ŒΛ  €HMM“yΒΣ’ήv‚—½ΗϋυλmefΎV‹-Υύχίι­.φΏO7ώζw5z˜–ΆΠΞΐl>»8yϋΖ nξε, ~U‘CζσŒι3ΧmξUvvΆ5jTδ8;U/1d΄ΐ¬έ[μlΜ&+3 €Τ Φ·?’¨›'jΓεNΉ OBœΜOhŸKNΩΆΎ4πμΫ#ΨνέZέφ°·Θ+Τ2­?ύ€\W0λ“ Κ”@ Μ΅*€yπΥ­έJ *ή‘{Fήkeψ-΄yβ΅foή~Hˆο~Ρ=ΊZ ¬f+‹o±Ν›ΈΨ’+φ―₯§¬ ]{λ0^ΣΗ ›>έω”1HΉδΩ™#­{λ)M[Sz³ M^»ΔΦ4έ(Y›6Εζ#(3Δ€@66?hYl†&δgg6mν-’―fŒο‘‰―›λamƒυθ­E35η(ώ='ΜΠ¨Ψ‰2Ι¨•³S‹ζ<₯Ev³υ:A& S΄ο·@ρΑ¨A@ Ž|n=’uύϊŸνG­–΄€ΈΈ½φc]/πΰά¨Qύ…αwίύPjsα±MV€#‡ͺW―s΄nέOzηχτφΫοiβΔί‘υ¨0e@@ RVβœ-|Π5jΨ(ΨΩ§€ €@e lίΎΣΞάΆmŸC^{έέsχCš4ιŽ"7CnάΎ}[­‹YmW™›€³²Ž>μΤ/^ΌL·έ~«3Ξ‘#YjΨ°‘°€];iα’yφMΥΕ:SQεΟ>O&`Ω“oŸ+yΕŠΊεž*?/'@@κπ kZ}'«cgΚΆ˜χ½ϊŒ³*˜  €υT V0ηδ˜ γ’P32‹‡ [‹°z j>ιB{Ό©~Oͺ―Πξώ5zΰ©Uω]{X™ G«peλӲꝏEdΔΎVΌΠA£&ŒUъ°&ΊςΙ{΅(?ΰΫGΧ2Ty΄fΎwύVρ’™zp‰οnKζ―Υ„CN:θΡ¦˜Νu9›΄sΏU–'ΞFkΒά₯΅i­–-_¦΅λb΅7ΕD η(fωM\ΎV3όKϋ‹Ό¨¨Vv’jΪ΄‰ζΟMΗ­~'o&s‘Ÿτl2+?;σ λίρ‚«­›³Μφζ›Πω}{ϋ PnΣ¦•ξΎϋ6­Yσ­Ογ…ΟΧ’E‹ƒΡL°ZΣ¦MΥ²eΛΒ]jΌllΌ›™ΏΫMk#kΪνυ>ρ>λ$44TMς―‘ άlήΌΉu³šϋ~?3ssΫ{Νϋ>cn^‰ς½ΊΥΝdˆ3›ίoǎ³ϋνΖΉ™‹233]ιvδΘ‘ς½9i@5€ύ°ZΗ3ӝ35p΅S¦€ €@e ψϋ—ώ•“Ÿ_Cϋ3σΉΕιm'¬ =ΊΛΚ朰/QοΎϋ7uθΨήŒ6O‚ΊρΖίkήΫ―¨G³Oο4τ°@δΡNσ‘_bβ4Eί3­ΒγΡ@ά'ά₯lOΣvίΜ™ €ΈI τO“ά4Σ Ν%TαQVοήεόπšΦ&T“’Ω»y6ι΅ε)y{!Ρ χΦWΰuν¬ΙZ•ΟΣcόlυ™κ·ϊζγΝsw %³Πj<ΪŸΏέ‘H𲔑u«L ―΅ω<Ξ;PϊoZ5ίΚwlΆ=ψΚ;ς+ΏL#'Ξ±ΪμΥό―γ5cX~uF¬¦z³W·ͺG'kζœ¬f‹τΤ⁚1Ί£=²Ο³ϊNΌiŠ<ήηΑΧυDώ‰#’5μΞ›­ζ)v·Ν±δ{R>G₯@Z+`‚―Έb ’ZΆΠκΥίθΔρΌ/ƒ‚υα‡[_-τυšοuΑ}Τ΅[g™ ΅Θf>³Ώή‡κ~N7;Θ9"’ψoKζKΗ-[Ά«cΗ3Kτ QZzAΠLI MpIΫΟ?leg W«V­JjR#υΖΞ»™@άƍ{w]ρj2¨FFFΦ¨[Z‘f“ Ϊ{ MFmsΝ½ϋ˟„™›ηe¦Ηά*φNq³ΫργΗ]ω~3AΒζ& 7ώY8zτ¨‚ƒƒ]9·tλί;sMΩp“@Κ—;Σ λ{‰όΓ#}  €TΆ€Ήq΅κ·Φ mG웬WϊHy™\Μηχάs»BCBtΟέkΕηΨ7ε•4σDσd_›ω“­β»χV`ΛhyσΎ”2٘ΣΧ}£N3ίV@‹Φ˜ž € ΰ°σ”y.ž„8e¬ϋV~‘Mά•ΐη2ΓΡ@z PΗ˜₯!&hΆ0›’§n™¬G_yTύ£CεΩ«g˜"oΒΰ‘“FŸ2ΛoIο‡ψ5³τΤͺό@h]¨;·Prς~+Σ\ Ϊ<–=$$Jζs»κ˜ΙEa΅­ΜΣ9«–iΣψv°²ωΰ0Ί£υAžΙrΌsž^^ΩQ7χο OΚN-yyͺ–x1dΚ„=—οcΖύZ>?€67«OI‰τ’ϋkTψ-±Έ6Ξ_¦δaaI-{ͺΰZŒ›4A»y΄yώMyν^Ÿͺ5ύKˆ6%4Δ^ŸΉ13gie‹I͚€'C±«V™φΦ±kαθuo-― €ΤMα#’ω9yλΪ΅³χΠm·³™ «pλ ΎεΛViΤθaEš›/_xα½ρζKEκ ο˜`ιKτΧӞρωΕ  €{σhΚ£χξF@@ šRVβœ)όςN™ €U!ΰ}ZbUŒνΣάLXOόy²Όμ=f^Ηή0ZsηΎigdφu3Ά·­™λφνΫ½»%ΎnΪ΄Ιu7,{'»uλVoΡ}―wLSΞ + υ°=7“‰ω§±ύΥpό5θy‘+ζ»kΧ.ϋ=dnDtγvθΠ!λϋFίO˜uΛ|]ύ΄vμΨa?1-55Υ-dEζqΰΐ₯€€ΨOΏ+rΐE;nΏΖζοqσΈy7sS½yŠ7;»ρκ0§κ8όρ™ŸΠ>«λ«7ZWη8 €ΈS V0{9}*BŸν’‡iζΈ5zpžΙ.ΌQOMΌ©Ψ0ƒ՝}σƒ[­A|ŽS¬—·"CΛ^+’•~°²?‡ΒΗhΑ;·*΄Όσ±N“α$QΞOρμ=΅υšγsΆκk&ΏΎΡΗθA3Ÿ€QZπΑυΏιf͎™gχ\>{Š–Ο.4˜·˜«RT9"˜36-s2Pχ±>€*Ήk„†ν‘%―[Χ#e‰Φμ§ώζhŽΉ<ΦfΕΨnζqτš0γZ’|>sκ[κ3Χς³[όu罃5qΆΉ5ϋΑρ*Ύ¬7$?ΫσΙέΩG@  ΝΞVŽus•wkΨ°‘|πnέ{Ο#Φ‡ωArε ™Ί„„DέΗΗΤ©Suιr–·ΉΟΧΛ ΠσΟΟΡ·ί§'Ÿ|ΜΞόl›γγφꑇ¦ZٌŽͺoίσ|φ₯@@ κL PΞ‘ύΞ "¬ΗΉ³!€ PU‘VPρ/•8|Jr^aX˜οOϊKμθγ€Ήa:8Έ‘#’ΏG³ežUΪfήΊtιⳉΙΐΌgΟϋX·nέΤ¬Y3ŸνάPΩ»wo7L£ψ¬ymh₯&½¦δUKμ㠎dθΔ‹Suλ$΅Ήλρβ}ͺΉ&((Θ~"Y§NͺωΜe;έή½{e\]{σ—αζωωϋϋ[7<„XO+εI―e»U*..NδŸ†ω,Ϋ<Ή―}ϋφ§1JΥu57J˜ϊsΟ=·κNrš#―_Ώώ4G ;eȈωμi‰ €υB ‘ϋW`eθΝΫ"BJ›mA»ό§…9»‘Χ§W‡Ό§ˆ9υRΈ†ώaΊήΤΏ .΄…z†ηοk_ΠΜΨζm‘κΪΥΫ‘πρ“Κ…ζ^ωX!»έϊζΠ΅k±ήˆθό άBγ›3G{HCΫšCώρΠnc}Z„χ₯{Ηyοxί«Ν&‚ω€νdΧΒ‡γΧΖδοvΠΨώ₯ GkΙηmkc‚g½ΰ=4ύ……μ=}T‡Ό†{ialΡ9žOτIφΊzxΞίΌ΄ΉpŒf/˜!w~4Qh’@¨PλΙ ¬u o¬ Κ³fMΧδΙVΏσ―Pί>ƒ4bψΦο85χ―/ΘΟΟ―pσbe“υhα’yv¦‹αΓ£σϋ^n1zτΫc|΄ψvpt±ŽT € €T©@r‘μΛζ­Ν[Vιω@ ~ œc ―^ύLπ――-vγΤ₯k'ϋΖi_ΗΛZg—›~»ͺφ@IDAT7o¦cΉΗ|vΙΆnήή²eϋ)3ššΐΖ°°0Ÿ?&ΰ‘ντN4j¬ŽΟΌ₯v=[d°Δ·fiΣο†ΉΡͺHv@@jT ks¬Άά>ω©ΡΙpr@:-ΰώ ́έ4cιS_„S΄‹κ9Z/~0ZΙϋ•i% QD„―»ό£tη;Kug g νv«–.½΅Θс½£EjN½SφωHύ'½£₯“|=δ1-βγX`΄ξœ»Tγμυ*$"Β ~.8w²eαQ`H„"Bσ²‡Œ=i¬ΐžz± ώέn}Q'±œ4P‘έΠΎz§π˜£—ͺ„ε©ηkά …ϊͺδω˜uΝxg΄<ΦcίΜ£x<ΦΊ­΅ε/­π ”@¨·Χ\s₯Ο΅_:πbύΈξKλ±”)ΚΝΝ΅3“˜ΐδ²nααM5kφ 9’ε|QiΎμ ςήτUΦ‘h‡ € PY)«?u†Š4ά)S@@ *ΪΆm£πˆp}τΡ§ΊρΖλ‹œΒ5?στ,=όΘ$'€yϋφVvΩCκίόSΜdΫΌώϊ‘š>ύyύsα<ωϋ½ρϊ³ε_X7c7΄24ξFΉΞψ―ρ ιuΆ?t‹<ϋφΨ3Ιόω_ϊυΖ:Λ pν{I ΎS#€ €υKΐ<©Δςxr”žžξσΈΙŒΈAυκuŽΟγ]Ίœeןά?&ζ'½ϋξšςθύΚΝΙυٗʁ”/–8;~M­ΐ±ήΎ―—Σˆ € P~‘MΤιωωjϋΗ§Šœ}οΛ«-ΈNΗR“‹Τ³ƒ €d[Μ'¬ζ}V³ωaCjJΰΠ―±5ujΞ‹@ €ΉN]Nƒ € € €T€ >n$Tϋ<‰©?ϋμ.Ϊ΅+ΞηqoennΩƒMΠτxΠΚόό΄‚‚•{μ˜w^KH^ύ©s$ό²kœ2@@ΐ-nž¨no}ΐ–ΡΞτυ•~Ήq€27sκ( € €€»wν©f#n,χ€/―-·΄βž›\ζώ¦mάσSΚܞ† €@U xΈα²*}»ώΐ\5+E@@@NKΐίίΟ ^n\κ 6Τ‰Η}Ά1ΞΡm[kΥͺ―|ρΗ JMMΣξέyΠ'NœΠγ𑣆ͺί}|φ‘²¨ΐρ£YJϋn₯Sqω§L@p«@HΎκώξ7jrρgŠ9΄ιΦ+΅ο/9u@@ΐ=~aMΨͺ]Ή'd²(§―ϋΦώ9²₯μLMΫ¬-Λ}>: ΰ±ήs VΖnοOeˆί΅EΦϋΨό˜ρΩ@*&ΰ_±nτB@@@¨oΗ¬μΗ‘‘!₯.ϋψqίΑΛ¦Sƒ tΧ]tο=¨C‡φκΫχ[±ΘiWήΒΝ;•““γ³[vvΆ]Ώ{χn%%%ωlSS•qqq TižΎζ–»Ά xYA:Π²£lέκ«i…λβγγ•––&―_…ͺ‚ŽfnYYYΚΜΜ¬‚ΡOoH3·ΠΠΠΣ€Šz3·ŠΑΊΥνΰΑƒ:|ψ°+ίo ֍*©œΫή½{uδΘ5jΤ¨boˆ*μ΅gΟEGd¦­ΒS145*ΰΪD_|ίXŽŸυΈ3SNϋΧuœώΊL6@p@σ‘7;“1™•=‰ρΞΎ―ΒφώG)…žεm³ξόHoQ]ζ.QΨωœ} œ€ šίg0{·V·=μ-Vψ5γΝ™ΪόŸυvVRλΫ©πXtDκ³Μυωκ³v@@@@ œόμ `TΥυΖΏ,dLIH @‚H5jPά(VͺˆZmUδo΅u‘Q[lέ‹[λ‚k]ͺ’΅b%U\¨Q#b › !@ d!d%“•IςΏχMή›7“™df²M’οΆ/ο.ηž{ξp˜ωήyΞ˜M&“C›3Ο< ·ήφXvΓ­˜zΚdΜ™s.Άmέ‰/Ύψ\ύ{<στ‹Κά’’ά΅ς>ΌϋΟΏ[‰Ι|…ΐΩίίί‘Ϋ)du$΄UΕΑRπ*Ε՞TdLR0n4] «νΫMϋδS]žo™μΈ&cσυυνߎWunD/:7‘­dl^ΟΎ ±ΉGΪSΉI.csύšz:7ΧwΔ$0p ŒΊκf„€œŽύΏϋdfYδ&φ,IΗ„5@P)wsŒœH€H€Ώ˜1VΒΝ’νt‡φΔΛRψl[dFۊŒ·:Σ,d™y¦­IŸ΅k³³`άφ²žΜ:”8U©ϋEΗAξŸ…H`θΨτΖhψψmeΓΑΗΜo:»ηNI wPΐά;\ι•H€H€H€H€H€H€H€)>qΒ€d–™’m‹ά— &&ΪvHkK‘πΥW_Ž ύ­BΈ\^^³gŸ‰•wέ&D±>xτ‘Ώ*βΨΗ{FΙ@\ZZ†Cζ?ϋˆρ={φβ³ΟΎΐΔΔ 5*II5ίφ*ΙΙΙφΊ•>™₯T–€€$DDD(uOω"³/Λ, &Lp)€ν»ΏG[ϋŒq‹Dψτι.ΝwΖX^ΓππpŒγ™5Jάƒ1Ξl₯Οm¦χΒυθ©M06χHz"7™εΈ΄΄ž›Μ$,³C{blƒAyΘ`κT³Α½;’wf»œ‘Ώw"‘Wθ;ΑΙ31e]ά{£"^–+ˌŽ?^5qΏ{‘—ίΠwΑp%   ^%PnGΐlɘkΚ;3Ϋώ›³dζζήΞΨ\»5 φ„ΩΜΊΫ«·w“€§%kθζv»F3«‘KqςΣ{ηwBB‚•n“©EΏΖ΄iΙ9r„'3(-;†U«nW§*ηΖΖ&<υΤZά%ϊ₯HZŠ›mΞp€‰(=Z†eΛ±šΟPύΕ4 ‘§ž Ÿ“΄6+$@$@$@$0P ŒϊΕo2ν4μ_ω+œ8V’l£jΣ‡¨ϋq  “κΦ7   *ώ1–75ΙΏI΄»΅ΏΒΗVΉ5ΟΩIz1togoΆΙV˜m;Ξ6   5ήCmΓά/     @ί𠡟³ο"ΰJ$@$@=M@ ‡"δ‡zF£Qq__ί€ΗVˆ•ΏΑ-ΏΉQ[²©© χήσ <€τΙW.»ρZόλ½ρΖοΰΔ‰JiΙQ\έ- BzϊιΪ|{•FασDs³½‘!ίWωωƒ°ΩkuVH€H€H€H` ζ)λ² RKsρaόψ‹σPΎώ5΅‹g   ~$±`)ffW*Η„5θΗHϊfιζ’Γ0nύF9l2F»Αήeσ!ΕΥς(~ώaw\p @/ΘΞό<οΎν₯θ–†.f`ΊΧž;'       —  ΓρφΊ—qΫ­wαμ³ζ#!aςσ"&& οΌϋ FŒ°ΌΣΗΗΑΑA ΣΦ™4)/Όψ$nΏνn<ωΔsZΜΖ½ΈΎΎ>ZŸ½ŠΜξ\^^aohHχΥεd£₯¦Jc`8wΎVg…H€H€H€ŸαaH|v=J_}EOIΩR[s=pj…xhμέOΐ;Πό&Α°_ξH€Hΐ}΅Ε;πΙ{‘Ήυ02³.Δ…NF¨.kώ›σΜlλΝŏ$Ÿs.Ζ9γD?‘υ^'·|‘²FȌ30ι…Œ^_O] "cδ!K_―­Ζΐ³s€Ψœ…ΊC xΛWύήέqΑΉ$@Pΐμ »I€H€H€H€ϊ–@YYL&“έEeΏ|•<   €g0‹•Žκκ΄ΆΆBfV 3t. ΐŸo²dV fΞLAζ—Κ|ωs^f^–BggΚΌy8c6δlͺ3?φtr †ˆΪ¬   ΐ`"uν­~:φ―όN+QΆVΉρ=Τνή†„ΗίDΐΈIƒi»ά  €‹~ς0ί΅‰ nΖ-·akΕόν›πΠ] ±αΫΫγίΉΓ]―ή‰Uε qsjŒ΅ΫZQHMf?K'k MšκpŒ$Π2C΅ZΧ~ˆPρ}ΩUioξ`!ή& ³4§ΞΆΌ1¦·Χ£,(`,W’ϋ    N@ ˜εkζνωzωRlίΎέήpΏυΥΤΤhkοΪ΅ ~~žυ‡Λόό|„††’’’²TΆ–˜?H” JDύhϋ5ά·oŸΘžYŽ£Gj =₯"cσΤΒΨά»2žΚM~oVVVΊ·©^ž%Ώ7?ήΛ«Έη^ώ[ΠΠΰπ‘χΌφΜ¬ΒΒB$&&φŒ³βEfcv·8=»λo¨Ο«όδ_Γμ‹΅:+$@$@$@$0 O; SΦea]ΏBνΎTΆΨTx{:ρχώαsΖmsO$@$@](ώ―"^Ύω…χρKMδ8g\˜ŽΏ]° <[ολLμhΔΦ ΐκŒΫ± ¦«Ε8ήŸPχfΤ™ίΞƌΫ6cο²ω}š…Ή³xI€H€H€H€\&0nά8%ƒ£½‰RH7vμXLŸ>έήpΏυ9ryyyΚϊS§NU²Gφ[0v–Β°ππpŒ3ΖΞhίtο¨ζθθhΔθα¨Q£γ™φ΄{M΅›ž†σuOδ&…Έςα OŒνπαΓΚΓž›Α`€Ρh„όwΧΣJpp°ΓŸež+γ\ φ‘Ή€PΫTΨμyZ   ¬|†‡!ρΩυ(yω1?χ€²ΝΆ¦FΌgŽ Qsόώ6X·Ξ}‘  8 ύχ?sξΧ‰—UΓ(άςΪπκόΗ‘½BΤBΥ~›sΣalΐdό-Β¦ŸΝC !/Ηa¬ {E"!j₯vλ7Ϊ–M΅B˜μ„€Ή^°Ι.°/³jοέ‰’ο?UBπ‹ŽCΔ‚₯ϊp΄zαc«”Ί³™˜΅‰C€b¬©Ftή@²τ’€ωθ‘CˆώηcΚe£Oϊ@ΐμs`7’χ}§¬YtΚιΚٝ/Ε[ΎΒθχž0ϋikΪ3(—<„Cλ~]κ‚»±†WΖRΛίl~χ’¦OS‡ Eΰ[_~Ύb_¦q“±θ5Ϊ+$0Ψ Pΐ<Ψ―0χG$@$@$@„€}9*ήβ?ελιYH€H€H€H€:¨ΞόΦ)?Τ ˜ >(`!   !B ϊΊ;p’xuxώΧΐTQ¦μΊβΓ7QΏg;&<ϊόΗL"$ΈM κ*ριΏ€;ή>Υ>ˆ˜Sq3*±«ΨˆΤI!vmšŠχ "b.βύΪΪJq4Γ/4#B=λν‹vƒg§B ΕΨρ­r»LΣόŽ\rcΏ‘ͺΝΞβθ· ά\X>»9םi­ΉΫQœρ†25dΖΜξψξ9Ν%‡{Γm·}*βάn{ιځ~Θ’»ž0,šκκ0:Z€έI«N1y{CŠΛυEŠΐγ6Ύ¬t5ή-Ξ0λω°>Έ Pΐ<Έ―/wG$@$@$@$@$@$@$@$0Θ Tg~€ν0μόEZ   *‚§†)λ²pΰξP+²/ːΏ{–žψΥΟ μόŸά'  ]M₯ΘD‹w$6Α·„cuv)~9)Α.§ŠΓΓ ³²   ΐP&}ύο:ύ μ_uLe Šcο½γο‘πθλπ=v(γαήI€H`πCg9’;Ρ.+\bf.Ε bij”…“.Ό{P;·όρΏΨόΜΉfa³ΕΒͺf2™P__oΥ§6šššΤκ8«Ωσ–/μ·ύΊ’=Ή^υ±Ξll:Ό­ξΉςlΝΤgΕ_€iΣ΅Ά£ŠΉΪ6K‘«<\‰ΑΡC‘_Ν€μκ^έ>;ZG/€—6ϊ¬ΛϊλμN&π°Β=–-lUΤ\ΤΦ Q³½Rο‚#Ρ“qψϊΛα[oΞξΫ2>3―» qγβ;L‘"εζχΦ"²ΓPWT€Ρy[”‘’SN·cΡ7]†ͺ’ΎY¨‡V1ΦTΓ«‡|ΙμΨ?¬\ކ°(ΖOΔ΄Λ΄{{h9Ί!^'0 Μ›6mBvv6zθš@PP~ς“ŸΰœsΞιژ$@$@$@$@$@$@$@$@½F@/`;gA―­CΗ$@$@$@$0Ȍ‰SΦeaο―Υ²ΰΙ¬ˆ»―˜…q~†³/HΫa¬$@$@NhFg"e)n¨ul1iα2L²»–.όΝJ¬šŸ/όw.`6ΨΏΏ]/jg~~>† ¦6=κάάlζSRR‚mΫΆu/6ο σόΨρΐ‘έσεζμΪΪZ+Ρ`mY©U{ίΎ}€§¬λŠΊ6qM]-uk~‡­βPΚό«αd_Μ\ςώkΊήΎξU`΄Nm:”χšΎΘvyUͺͺͺτέκ­βϊλKήkOΓ[ϊ’±lώmβ₯mτxx_aΙxέι˜ή‘¨+±ωΫτ𛕕•o‘ίSΫ·o·k§vΚϋυh'6ΆϋQύ΅ζYDΑŽ|Ψ‹σΐˆ*ψΫΔΨj΄dσΝ{ΰ6 ^ά;GΥ0΅³3{ŒΫ+fα±lΑGμ·₯₯E33Φ΅οΩ²²2ΤΤΤ‡φαpΤΙQUˆΔs†ym‚!—m| YsΕΏ{?»Lιφς2Klζζ`Rя𩬍ΜκŽ–jύrMΩ/Οϊ’ΪκϋlλΚχžmg'탇5ΞώƒˆA›ήΑΏ·g‰7<ά‰ϋCz†²Ζ~μΨ1ŒΆ?Εa―z]μΘ±Xέ€­mήgYύόQγΠMΡͺ…†rl~ϋυόΨ;εΥζοι†Ίz”:€ΩΖM>Y«»RikksŜΆ$Π-/`~ύχρΓ?tk“œά³δΣ‚_~ω%ͺ««qΙ%—τ¬sz#       pŠ@‹ψPδψ–jΆ†s.Φ꬐   ΐP'ΰ6“^Θ€ώΥΰ­BD²Ž+yΕrΰ’«†:"ξŸH€™}Yˆ3₯ΖOUΪμ0os>ζ_©Λ¬o*Εζ­FœqF‚ΎΧR™ŒDΌ€½MːκΐΏ4FB‚}2saa‘2>cΖ ‹oͺνέ»2ΞθθhτTŒ΅χ[‰eΣo xΣ»ύ%O ΰΡζ­[υΟKx.Ζ`K`ǎ0ΫBa›H€H€H€Hΐ.Ϊ­ί(άRKKaOζ—„†Ϊ΅ν‹NΏθ8D,XΪKq   θΥ™i~ ³ζjuVH€H€H€H€¬ „Μ<Sήωϋοϊ•έlVΫόˆΪ›βΠ%Χ`Τ•7! ~’υ$ΆH€H€?ΜΌρ\¬Ύγqœύ(Ζٍ~ψ0ΎΕB¬ηΧΎ/#²?فˆ3NΕΈPΡ“€dό Ο± χc+€nΖ§«܏ώϋ‹φ»6αFίp'd’“ŠŒu6#ύΫ”αψΥΟτjRΔλn‘ρΙ’0ΧfgYe΄Ži7GΜΏ~1cά]J™'ΕΖςα/{Eώ₯ώeoάΆ―aίnμ8Η±XΊ?ΓyΛBή“έ)mε₯Ϊt)~ί΅`šΦξͺ"νσn\ ˜%>Ώ‘+s§Ζ½λŽC ‡U‘πΑΈi;n‰±+'΅ΌΈ(`ξΚggγ΅ΗŽY KΡς±C‡•Ύ²=?hϋPŠœ0«{ίυυΕH·x«~<εά|ΌJ ₯¨£«Š΄Ά¬l|φiDN>¦-1ΆšυzώοοΆςΟ x0·ΆΆ*―,π$XŒ₯#R!}` VοJΐσO{n&aOΏRR+…·ž&`VΉΙΨ•ξff™† ³/vδή©~Ÿό]E ŒK^|ΤjŽϊΉ‹LΪβ“η^ΦY£H@#ηKί#\Hό’βΖέώ U\ξ4š‹ ‘»Θκ[qΤjΊΜό,K“ονRω§–h=V’Ω΅CΞi+“ώτfiφ΅yŠ£‹Ε"*­΄]˜»<œ»]dξ€lη Œ~ο Εbd'vΞ U½ύ2~ŽE ’ώσΎZ©ΛκkΜtW¬8tαKPω¬‘―όmbΖΎ5λ‘Ϊž©Ω‘ƒcO¬BΖ ζΜ­Bθ=Zg¨ŠΊA³Ž «žFΐcΜήήސ"fΟ&ΠβΩ2:       „ŽoώmMΪΞ†§ΟΡ꬐    8&³|Bgœ‰Ό{n*Λ4C) ’‡ίSΔ¨₯§<τμjhF¬  x8,•~x–ΞωˆHBΘ|s8ξzaŸ’‹?Ρ’•¨ˆœΝέγ.όή ŒU7ί„Ω’+"BL―F ρκ§7c*Σ/›A ²―eo=‡ςφLΗφΆζŠ0ΥήόΎκ+ίπV‡ Ι ϋrœZ~o{6`i\pί―"~Wr¦θ…ΈέΙ¨\Έζ.ΘX₯@Y0Ϋ,Š΄mΊ΅fνVΗtiΤ DδΞ–£β~θλ’ξ_+3iΛςνΫPΞςKΒοκΞV|Ϊ\ΣsΙlΝRΰ›4}šΓ%ZE6q‡£kͺαΥΉ‰Σ£2[sg%fίwBω+QŠ'ž΄ ˜χ=Ίʘθw$ ΞX:Η ;dDVœ9ρeΣo αγ·KΣΈΙπ9°[Y³³G ZK…hΏ%²θGΛμΌ-–:k$0@x¬€y€πc˜$@$@$@$@$@πO6ΛLΗΆΕh4bΨ°aπχwν p[?Άε«ΪδkΛXH€H€H` ¨ϊΒ’ 怴sαr@ίγ'   >#zκΩ|ς}xοψή_~h•―Ήτ ΏGžω3".ΊLˆ™—#`|RŸΕΖ…H€H€ΊIΐ? K~—ήgDs³Ω—_h:ό%Ϊ ^Ϋ–Ωa±qg,ΖΫΫ£ΆΦ?‘˜ΉΉΩ‘‘2C3Λ`% ξχvιJ`ΫλΫΛ]ψΨͺ.]Λ¬Ηϊ"3»›ιΨ‘°~Ν²uΟλ›=V—{«βτ&™ΥΩ¦·}cW,m£ΝT΄fYފf;ζN[fι6nΫ¬L•βqyΏD넨ξˆ[Ό\“W4 …―=‹’Η™ζ₯Χ™RΌε+l]a~«‰Ύρ.”οΩ…ξfVVΧ>zθΣbhU°¬Ξνμ,³$ͺΊ—‰Ί¨£Ϋ―]q›Μ‘άuρ9Ϊρώμz-H`π €yπ\Kξ„H€H€H€H€<Ž@„x՘ΕχΩΫ¨¬uΦ¬Σ{e­ξGK$ _ζά«ΣȊH€H€<@έCKM•Μ VH€H€H€Hΐ-2ΓςΨU#φ7«…`ω {οe4)Π|I‹<ό’b1rρ―0ς_Β'tΈ6Ξ   @ίœ8 Η€Κ²ΎY°V±Δφ€KtQψψ*Ψfsξ*Πβι³\Gfq–ζ­©α]-kw\0‹ΜΗΆ₯:σ#«ϊ½»¬Ϊ=Ρθ ·mγ wBfU;~ΤvΘn;’,΄ +4‹dνΩtFύ¨ˆ“γlϊγ²ήΣz‰‚ ς›Βƒ8vθ0ZΕT;+έΙRœ»}'’¦O³r/…ΖǞΚƒœk[MvΠωΚ¬Fz"£sœ•ΟCfΏŽήχ•6H`°π,α>H€H€H€H€¬ ”––αΌsŠgŸ}—^Ί‹ώSδνέ‡ŸώτJόwΣWΦΖέlνέ›―¬΅ωΫο±hΡΕ8{vΊXγKe­?μΩΧ(u3TN'ΐPω£‘ΆaVH€H€ *έ'ΑΙ31lDΤ Ω7B$@$@}Eΐd2‰WΓΧΪ=κκ\ΛΦW1sή'ΰrF]υk$° OΓIiηZ-Ϊ,„EO ;瞌Cώ’ΉΩΚ€    ·Dίp'BfœΡε\Γμ‹Ρ1ͺK»ΑfP‘ρ6v-˜†žΚΞΫ|dW>w1nϋ¦ΗΔΛκ~ςnμήΫ2ς:Š“%{}‘q#o§Ύ«ΫυΜ2 ―;₯iXB»œΊwά©šΠ9°±ςθ«²υ©Ν"θO^ιtI)¬ΞX:Ÿ}2Σ±+ΕXSέΑ\ ƒ₯ΫΑv']t8oλ§ΥTU£«,ΝR”―Ο­ŸΟ: Μΐ<"χ@$@$@$@6ΪΪΪπΤ“ΟαΤSgΰρ'€bqϊι?ΑYg}Š»οΎŸφ>BBΜ―@³™ξR³©©·ίΆ Ώύνrόβš%Ϊά9sΞΑΧ"σσΏϋ#Ξ9gΤΧ­i¬    ΈE κ³υΪ<ωΑ   €λŒF#φοίίεΔάά\‰·ZybΩ·oŸ'†₯Εδιρ`Ψ°aŠˆ] Z_  \w7Όώ m›ώ…Φo>Wc½bΡΦԈςC90q*ΌΞϋΌfž₯Ÿένzyy9ͺͺ,oέθΆΓ^pΰιΧψΐ@MMηύzS.ΛΚΚP]] ///§μϋΓΘΣ―±όw\ώ»²²²?πtΉfii)δC1­­­]Ϊ€†˜1ns Κψž+f‘aίn‡Ά^q π«­‚|°h¨[­»ϋVΠ/>ͺLί*ΎJΡxΜ²•ξΊλΦ<ωv‹ž.έυiκ" °Œ·»kΈ³gs^ΧgFUDiΔ84ϊie[/yρ§bΑΩvχI;γ‘Ίϋ[§ΦR„Υy[Πpx·ΛλšΒΓΨ–i?ΉW_Š΅υmΛ7Ώ%φΛη†ΡUEϊ‘^©KαwδδS4ί3fχμ»hŽY!7Pΐμ4N!   O'ΠΤΤ„Ν›‡wήyE/«1Ο½θ|Όός?PR|-ζκκρΑέAΤΧΥ#ft4ƍ oο_ΨqHΌΦΗh¬ΓK/U—ΠΞιιi‡όόƒ˜>}ͺΦΟ    €{ξ΅ΚNC³{9‹H€H€€ΰ-11Ρ.ˆΖΖF>|XKJJBDD„];Oθœ>}Ί'„α0OŽΟίί~~~HHHpΏy@0ž3­ u¨ΘX‡²w^DcAžeΞΎ]h‡ο¨ΡˆόωuyΙ5πfw³VTT)pυd†rkžŸ――/‚ƒƒ1~όx7―BοN+,,Δ±cΗ<š‘§_cωχkƒΑ€±cΗφξΕrΣ»|PB θ§M³~m½›ξzeΪφνΫ{Ε/’€=~]˜Υ9“ίώZ©ξ]6Ζm›Υnνμ΅δ׈ψώS-±_Tμ3k z "³&>Ύͺ<Ρ…»ZœM;λ»ρx mŒ₯ˆΉή?ωcgΒ§υ|M͊E}ΐIˆ¬8„Δ‚ώ/Λ ’ω˜M΄]7έ7Ώ·m"Ϋ²'•ΨŸaΣSήpΌOΒωΚΠ¦_)Ϋ3ώ‡ΘϊΠ!@σΠΉΦά)   ΐ"P^^©—GFŽθ°k™Ρc˜ί0˜ZZ΄±wΦ½Gύ+"#G"ιδ‰ψκΛΝ"sE0ή_†ψ.\³³WɞqςδIΨ™Y’ͺ² #Gzξ}Ά1³M$@$@$@žL :σ#-<Ώθ8ΔOΤΪ¬   8O@ώ#4Τώλ”Υ7Y9C€w`0FJ²8Ž—‰cネκ/?ΦΆ~βhŠžώŠ_xαs#κͺ_#`|’6Ξ   0S'šΫšΪωηOΆΌΧ~™ΕΉ΄΄άjH £‡R6f«Νw³Ρb<)bfι?υ{wΉΌψθχžΐΏE߈Β=Vs+χμΔh«s#¨Ιˆ„C2ηvχJΜΎοΊη ŸfGz˜xYΕ`θƒΜΛκZΆηšͺj 3Ψv³MύB λ”zύ%   θαΓOΒ“O=d7ƒςαΓGp¨ ±±1Κ_|ρ5{μΌώΖZ|ΌρŸx≱ωΫOqΦΩgβη‹―…Ιd:Ϋ‹)!až~ϊΡ―:”σž{φ΄΄΄"*j”½©μ#   p‘@Uζ΄αv|†6Θ    @―8ι΄Ω˜πΨ›˜šρF]} |N²|ψίΦά„ŠίΔξΛΞΐήλη‘κσχZtL$@$@C‰@hj:œΝβ<”Έp―C“€Μΰ«ΟFT~d@π©(PρΆ`χνά9ΨΆΔύ `Σδ ΰΝ0t    3ΠΠœrΚ”8ͺ«k°μ†ίβΚ+.² …@fH~ςΙ΅ψ˚?aΚKF?ά}χ˜ρεΨυΓnLŸqJ_j‡>+Q›HΗόμ3/α›oΎΓή½ωΚk8?ϋό}‘ΩG5η™H€H€H€HΐM'ΚKQΏ{›6Ϋ0{žVg…H€H€H€H ο ΘWΦΗώφ>Œ^~*>ώ'ΚDVf}CγŽ-Η°ΘDΚμΝ?»>ΓΓϊ>PH$@$@N tfz§N΄ώΜKo/³2·mv8_ΞmΨ·Ϋα8œ'2γŒNY;οΙ3-[jkϊ<°Ϊ­Y=²¦ΜζΫπΓ·=β«/œ$doθ‹eΈ ΐ @σΈH ‘H€H€H€z‚€_{ΝMHN>ΛοWŠΛΒΒ"”=†SOΡa‰€,όιEΨΌω»NΜϊ‰^^^˜Ώ`"žήΊu'ήxγΌώϊ;ψ?±žλ¬ ­₯¨Θj={χ”Œ-$$ΔΚΞSŒΝ½+α©άŽ;†ŠŠ ΌίJJJPSSγ‘±‰ογϊϊzΈwCτβ¬Γ‡‹7Δφβ t=Τ TaΙΎ,…/ΑΙ©C χO$@$@$@AΐΛ?#]­R°\Άξ‘yω-ΆeΕ(zζΟ(~ρQΘ·hŒΊς&&LΦΖY!  ‘Hΐ'δ$΄;΅uŸΠαVv2³<ΤRpίΝj΅ΓΩv*†ξ Q³+{κθθ˜τBΆ¦†€Hέ ±7ξ‰")ΏφT‰ΞΫSθ‡H€ϊŒΜ}†š ‘   @Y‘ί"⧞Z«‰ω«+‘fM6™LhnnFϊ™9 ξ—ΏΌΗ²nΕΆm–ΧΙάΐ=Έθ’σ;Μ;6ς˜uΦψωe‹°pΑ˜•~:¦žΒe:ΐb    Έ@ :Σ"`Ώΰf”H€H€H€H ―„€€A'ΚΒ±χ^Ζ±χ_ƒ©ς˜²|[s*6Ό₯&rΙ2„Ώ¨―Bγ:$@$@$ΰQ“;ΝζΫUfeg7”8#,ESρaeŠτ[.~;*σ—ΐ/z ά–¦d Z―ΜΎμi…Ω΅=νŠ0 pΜ3γ    0ͺ«kpεDφβjΌψS˜1cšUμ--->ό$ΌυΦ‹h"eΫ"³0K±³Μžόθ_ξ³Κμη秘ύοo"uζt»εΡ££qΛ-ΛπΥWίΨΧ―7nά8}Σͺ.³5 'N΄κοο†ΜκΊs§YΤ=~όxυwHVλΛμΖααα3fŒUΏ'4ŒF£rMcbbϊ4œΪš£ΘΣ­hοž’±ΩλΧMλ·*cs½§r“™Ύ=ς~“εevhOό^πυυ…§^SωΐOkk«{7*gυ²²2Θ‡ΆμGύφlϋ»Of$:ώ]¦†aφ<­Ξ    €η6bb–―RŽΚήEΩ»/’.g«¨ΜΤ,a‘χ rρ―0ς_BΎeƒ…H€H€† 1w<Sm²έ IS;l;tfΊ":φΩ— ³/ξ0ζ μ_q΅ΎK«Λ ΜBΐ¬/υ{w‘Yš›Kθ»•Ί/Λ΅έ0wpΦO~Q±ϋŸ̾,‹'‰†εΧ~ˆΒΗξκ±½φΣ%γ²H ΪCu±FΦύ›ννΎ'z ξ €Ή †‰Sf"2,PΌήΊ Ε[w£€ {χ“ψ°Ί±ΓBς³Θ!°wW›Œ°3ΕΪ‡oBΪί@l’Ή‚τgϝυDΫ–ˆ―Ϊ(' Φ³UΏΆ3μΆuρΘη!" iΠάξ:>S£yί!σ>œYίW2΄Π`θTο K«]™Ε½e‚Βΐϊ)fΖj˜ kˆA1βθΊ[Φh_ί7 Γ½a±QkΨͺsx& kEE%X|ι5˜5λt¬Ύo₯ΧZˆ–¨IsxDTA²ήθέwΦcς”$EδfΠ)u)ΤΚΛۏργγ;Œ©!‘Α8^[«6y&   >% ΜMMMvΧ½ίβ•Ώzκ[$ω掾~Λƒ³cz?^·bdl]²?ξ‰ά€·΄΄žΫαΓ‡•‡<16ƒΑ ΌεaκԎ™ίμ_ύΎλ vψ³¬ο’ΰJ$@=A@ ΅Ζύi-βnΗώυͺ8ώ)`VKEΖېGπ΄Σΰ7g18Cβ™H€H€H  R΄«½0Yνλκ,…Λz2γπŽΩρoΕrTTΡtCή.-›΄#[΅_ ‚₯0»bΓ[v…ΚR,\ΆξyΥάε³*όΝΞ²šλ'>qG-ύιΉX9u²αrR§tC³" ΚΗ…87²(ΧΗcg>v#fίwvΗKgu˜Θ°\eω]Ό;ϋκI_έ‰ΓΩΉAεG°ι7pήΥφ3Χ;λ‡v$ΠΌ{ΒΙ`σqΩ­`žNΌ|Bd]hOΘƒΐΘ ˜wΫ½XΠλΙξ Ωaˆœ‚kν‹˜œ‰§ll„QΆ+Ks±nνΓΘΘ δφβ+2ήZŠ΅°Κί(Δ^ζ–Ί„#KΛΫΪdi εRdν¨Ά2Ÿ;vZΤu#_ƒ9›΄B¦ΌΪ6 ©Qf7Ɯ-(wΰ±17[/Λα€ΤΕΚΪΏƒέ‰,ΔrœΠd˜5Λ&δX_ Ή₯ν;’ ΅ͺn΅4_ν‰Βρ2ιΞ»κC¨ϊ΄j—Wl»tF ‘H`χξ\),ΒόsΕΧGQ\\Ϊαhll„··7~χ»[pί}B€όΙ΅DKJJqΓυΏABΒ8‘εΙ,šqΔρμΩ銟ε7ή†’£Y™e‘λ_σ‹¬1sfŠ£ιμ'>% @ΗB$@$0΄HΡ—Μl ”Rύυ'Z¨†Ωσ΄:+$@$@$@$@€―!ΡΧ݁S>ΚΑψ‡_AHJšΥ&κv~‡ͺΏό­7œ‡―šCώ"vq‡•$@$@$@]rιY –»*‰ΙšHa―<&<φ&€ΰYSι4—@IDAT―ΈΞ?W“ŸSΘ9R¨,…½ΆΕQ†γˆωKΈφC[σ~oNœe ‘W,ο¦Ώ œ‰Ώ«ΨdΆξRŠ'ž†3³α’oFΡβΫμ†ν-²l§<(2τz@‘Β`GEΖίΩΈ£yjύˆ8΅κΉltR{g|IαΈ§CUκŠ <%Ζ1Δ Έ ¦"€¦,Ε΄φ”Κ Ε;πζ“o!―}λS.Ί—3IdeΕ¬Λ―Γ†?ΏŒ'οΆΌ‚B1σΈ&ΓP†wξ\ƒ­bsΖFη rξ|ψ-KGt"Μ[ˆY“d6gΣ/DL―[Ζ}-KD&ά$MLڈό-X·1R‡œύΑFœΏb‘&ώUpψ&cΕ=‹‘MιaFΖά-šhXΊΞΟάSŠšΝ8@dύ]ωϊ5s±ζαu0ŠΎ€%+°Δ²‹U»¨Ϊα‹Τ΄$d}+kζ#ϋˆ sc;~+ηlΙiŸ‹4Ε―E–$2K/ιψΥ²Ζ ­ωΖ#^\όxT+§˜εΜr·¦‚έ΅+@Žΰ₯γZP μe‰M@¬Ή¦}νόΊkf¬ @Ÿ8zτ˜²ήΟ.qόΤδΪ΅γ'§Ξ@ΊΘ όδ“βΦ[Wα»ώ€ΕΉpαEX!ΔΝ>>>ZŸ½JppήϋΧkXύΗ‡qρΕβ•Ί"}¬}ώ ‘=Π_ΧΛ*    €+j²>E[“εΏλ‡ΟšλΚtΪ’    x0°σA ω{pμŸ/+Be}ΈυΉ?@ψχ?΄ξΰδ™š<ΑIΣ”s`ΒdmŒ   k>!Γ­;\hΩ‡Ϋ6»0C˜9§H‰[ρκEζf[ŽΧ~ΡcšΪ΅θΪQ°nνŎ3)Τή»lΎ·#Α΅©Ω՝ψ₯]&ˆ_ύ,Ά¦†+‚τΞ2v» iΔhψ—Ή2₯[ΆR\ΫxγύJFή™νžΆ¦/F\Φ{.ω•ιžΜά\wžψμyt< OύΆC Wή‹ ;7;̒ܝXͺ ΡHyτŒ;Ω™_ΒkΕ%Ϊϊ#o{ΕΟ?μ>e, ήώXΉO4G¬ (:ͺ‡8˜)Σb„ψX–2|¨/˞έΏŒGή‹Λ“Ε‘#!-Θ’ϊr’½!Ξ–•τΊΊ36zs[!kI6ΌΌUΧέ‹…“dL° ΨP’›4¨«βφ΅ΊƒΆΧ«ρRΦΐ˜q’t|­§θ†Ί_5aK¦*nχV½;ͺη"Υ’“΅^F·«­X[uhΔ“ψQBΐ,%΅;Άδcξβ$›d˜o˜€€τ‚Ϋ‘›ά7IBΑΌ#ΗˆΖ‚\!OΔμ;ς­ζηΑω±ρν}₯Θ/5σŒWϋTs7»:•g θEsζœy8[fu²·~ͺͺjρFd¦B)LvΆ ΓρδSβ-υ ™e‘>όύύœuA;    ͺ3£ ?σxjmVH€H€H€H€)BsΧc}σPώο7PόΦZ΄–Ϋέ\]ΞVΘÜΒβχΓ %‚ “S¬lΥWd“u·DsΑ}7kΣeδDΔΓΞΊ^Ι?AxΈε΅λήBs©Π±tRό’b•¬ΜA‰S!3ϊΪ ›»ΪGτ ζŒR¨l―H΄άφ”ΐΦή}Ω'9Ϊk_Ε!3tKρ²,’mΜ²ί£\\λ†}»»Β¨e+Q‹šΒΓZ¦άΰMοΨλ^ψ+Δ}ςŠSk›u±]»ΚΈΙXp΅ub¬ΨEW aœkζ yKQό\χΪ HΧ9<Ξϊνͺ‘ά†νοΌ)΄–λα©οtΦΦU™₯yτ{OXwΆ·ZΖ‹μαϋμΟ5†Φζ€Ξ>»CS[1rkpΗlκš7*2³΄‘Κώ ΈαŽSHΐ£ Έ’™τθτ|p‘#Δΐ[mΔΐ[wοΕ¬˜ρ05",Q¬ͺ¦gv'‘”Φkkέq!ηd}½MJΒk_„ΚίlbvΧο@•% 8ψΕOhPΝ2Τ^؝1ΩRQ,JϊυΛΡΈn-²ΘΚ*@κόx₯ΏηΎΔ#-!δ7’1g J…€YμZ+2#p{(HMη¨40’Ÿδ‘ycŽhw#vδVλΝP*lηΖ›ΏG«…mϋŸ€'-¦τιu· ‘  θq^^^β)aέςy°    τͺ/24g2«    ΐΰ% ³ŽΊκf˜ΞΉe?lΕX4‘n·,oS²4Ά57uΨ|kc=Œ;Ά(‡:(E4AνšƒeΆfqΘWΦ³  ΐP  ŠJ]Ω«£ΜΗψΆ>³ζΑΟΟ1 ­FνΦ,»fρ³Y*˟Σ2+³,‘3Σ΅~₯C| ΒfY€pW––Ϊ+‘l̍+•ώΞΎHΑ­Ί^gvύ5¦ξΝ™%#)0—Ε–—šη-_θΦ6€\^)D–Œε!ΩΚΆm\r]΅Δέρ ΌNξ­ϊ’ηΘ1c1Α&γφ‡’ί`GŒ›΄ψjΤ9!`.„3ΈJΏLΧΟ“"hqȌΤ)Ψm: ‘EΉVΣ‚GΗ[΅e#n\<βDφeYF'Ÿ‚:₯ΦρKΛ¨8xwμVzdFdonh[³^™2ά€€ιΣ”ϊΜμJΝ{ΡΓ(?Σڎ*2Σu@c­£a­Ώ~Dœ]³šΙωΣχΧ#βΑλ4ϋ*RΘ“v–U&ιζpœϊŠΜ6€wο-R"Eo N_Ύ_|Œ·2uOΖl}On΅™δnσ„ ]“δ„σ aνY£°&"sΉˆlΛΆwΈhΫvυ’#Y[ΜY·}cr²·”’zGΚ…€yDO-Τξ'9=Y˜³EKd[BζωBΠ¬–Yωζj@2bνμΈuζΰ?Δ'‹¬Λ9"ϋr5r…‚9Ir3ζC Ε€ωW₯#σ0Š>5ƒwuAA»π=I6<ϋϊΊώ+Δ’      θ H!JKM•Φe8gVg…H€H€H€H`ˆŠCψτιΏθηΪFλsw Aσ6νhά£6¦―Θ슡Ω_+‡ΪοkYš₯˜9Ε|ž2ΓFŠŒN,$@$@$@"ƒξp»ΤΜΖrP [{²Θ¬Θ])κτ‚εαv΅^›Υ#BΩΦww\Ÿ­ZΖͺΟB-΄’bjYςr΄¬Π2Λ΄I†]-RH,Eβ2{΅ΌFΆY²eFnY*2Φup­‘ΛAιKΞWΕΡκι{Ο•g«Νg½½άŸ_tœ•ΐ\/vέ»l~1t‡v:JΡ8²3Ώ΄’JAmWR6)œ·ϊ9 ³ΌB^ Z‹ΪΧ±'ž8mΪΥGVΡΨΛ¬ |UC{™€\―„dΨf’–Βκδ'ίΒΡC‡€—¨.”³ΜΎ,3 C'ΦtΆwoρ»tO%ιΕΚRL-‹ΜtӞυY2’ΕQ†hΙΤΛ†‡2‘‹/R䬑7•βkGbo½λ$ΠΧμ(ϋ:[oλλψ"υ^œ3!Th˜#‘2ο€\P‹βΓ‡°χlΘκNΚe›½‹Α•χήΫ!#°―ovΌΉλ;,e²q š‰aEϊs‰cΨ©ΣZw4l=&ˆΗZkSc5r>¨icӐ`{‡‹lΉO>lύ΄Ž€h2`ɊεH²h€]„U¬φuC’Σ„ VHaΣR°%CψΞG–PΗ. Œ]tnΧά7^ξ/ωβΆΘΩ’+Μ)f;S.²ΫΣG₯¦ ±nΗbΜY‡‡smα˜`2€`Εςω=’Όγͺ‹xqsΔ½S{O=–ηŠlΛ2Ό€x€ˆ_– 2ΔΈΈŸ ŒHJ A©΄“%*ή*Σ5„Ί――»9~%  θ)ςΙy™Ωˆ…H€H€<•@u¦xηb{ >εTHΡ    ΐΠ% dU™•G^ϊK‚ΜΎ\Ώg‡9KσξνΚΉΉ€Π. Su%Ž»I9Tƒa#F!¨=CsΠΙ)IN…Οπξ½₯MυΝ3   Ξd6veŸR€«)žU³λ³ωͺγ=}!3'N ݌)ήο–ˆVΖ€ύΚύLύpšŠ;TKA°Μ0έ\jΦ^„Ξ<{Sٞ^Μ+³K!²Z$}Φc)DVEίz^€T‹Θ[―ž ³/Fύή]jΣκ,Ημ ›­ŒD#pT«.Ώ³/VΔΞV’!cIΙ,‘υžΐ\ ‹χ΅gΆ]_Ά« 1J–_}¦ίΖοΧ2«sQ;(z±³ή€φΤΉ0Ψd|ΆψJ±υ†›­„΄RΌ,ϋ?ŸΝ|ωO-±)hΈ’UY0λκΗΊχOΝΏkw'ΙΌς£·‘3gΉμJ2ύPˆœ½l8Ίμ¨}Bgbow}r τߞp2Ψ||όόŸqxΑuψYΪ$„»Š˜ ΙΚ1λ‚2‘ρύMΌ•U#Ϋ Bι%r]›2,rξ]9^Δ#Oœη@„†Z^Ρ^Όσ3 )ύ²œf<Ήφ‰Β’%i6eΣ„ΖF;Bp!DνN1lAβΦiι fWB œbΘΐα:'k‡0Ϋ‹§;«Ž@zŠωΩΥh™˜ ±Β]υŽμφέ -MφΨ)&ΑAJycA}›ί‚δx‘ƒ9Wδ`ΞΟ»I@ώŽeW†€d‘‘;Ι b<Η(ϊΕ/ΟIρАYDΕ'XeπξŸλ„Κ/$@$@$@=D@ώΑJώ1‰…H€H€<•@Υ¦k‘…Νž§ΥY!    Iΐ; H>©β'Ω'ίΰaάυ½’₯Ή~YΤ,ΕΛφΚ‰ς£¨ωj£r¨γ~Q±ž2CdiNٚEΖfQχΆχ™¦:ƒg {κj¨*+·7Δ> $ΠWŸH‘ZdΦ^}ζ^΅_ U^𬎻sV37Ν,F]i)BΏΤJμŠO›,Λ"ΐRœ,g‹ž³s€]Δ|ΑōΟteΧ–>;“γϊ’fQή΅k‚ƒƒ:^hΈz ΘlΥRΈ]ς⣚·Ξφ)…ΕΆ‚am’¨T¦/Β°=CάωVw 0}1]}΅RοΞιG q½‹ ¬άΨf_VΟzφmδ_Π‘Ρ’Φΰ­»}0ι“USεˆϋ°|υU6™rΥν aσΝK0BŠwΥ»_ΤMΎ!ˆr;ϋ²Y ¬¬ŒΤκZΎHbζ-ωP„iέΘπ¬ϊ΄>Η§§Γ7;CˆŽ ;·±"…tvΆεŠ•Šd{ι—ε˜! 7_Ÿ“s[0ˆzΘ»›ε”ΑTbSbά\‘φ.E©©Ήν«“Rγ•mΖ§$‰‹š-„α9¨6ωβˆ’žˆOσtE Σ•ΗΧ]«$@$@$@$@$@$@ƒ˜@kα~θ³η…Ώhο–[#   θ)2ƒςπτ9Κ‘ϊl.:„Ί=ΫQsέξm¨q'dφf{EfG”GΥ¦΅aΈρV’ζ “§ic¬ XΤTUγ‹ΗΐˆΜwΨX )ύίzpdϊLΊιΩ/-3Y#θkRΠ}ݐoj¬Ο³Ÿ·§bg,vΖ§3‚`)pU΅Ξϊtd'^’™¦ΥμΖyΛ:2Uϊ ―]‰§Σtƒϊ‡΄\sΗέώLβΪΚ"ω7—ŒAΰΔ)hΨΧQ[Υq»z}t[v«Z<ρ4-Ϋ±δδΏδ&΄…›ίͺ1Sƒέ-z63۝(‚Ϊφzc@(ΞtΕΩQg9uΤYη‘νs²†‰Γ Š·ΈqρˆkΟά¬tˆ/κ˜ΪvεE<έ…iΗBž@@Υ.zB,ΓξΜ ‡,ι—άˆ NŸ™σxBϊ<$ s·$ΜBxΌ33Λω¬Ι Εψβ‹½π ΅\ΆΪͺΘΜκψΓU xΠρΕά›W"Mώσ5aΛ«k°±ΐ$"³œΪ$‡Δ"~„AδΨνΑbΚGf~»Β΅qΎ?GCΛr\-;J‘”Υƒ W†d%Λ³HΒ,τΆΉX$Μb₯$₯₯Zβ°Y5Dd"ΐ98ΫΨΆfHl’ΈrEοRdgnςoYβ‘kώή ―­ˆBΆ7`Λ_qGΙ…€φq₯ٟΧ] €_H€H€H€H€H€H€;ζοΏΤΆ0>Ι₯L6ΪDVH€H€H€H€H@π=V9Β.ΈDγѐ—#DΝΫQŸ»ΖώΩvTš @•ίΣLΪβ'‘ψ‚ŸjmYρς‘­Ω'D'™λ²­τ€drφ°ΌaΦj2$0ΐ δnί‰ς["N—mKμφOQwΓ§ΨτΫ§œΩΞg›H η H‘°νφEQ…Α}±–³kΘ½χΥώ;‹IŸmZfv–™ˆυe φίΛ·±W\ϊVέ1KvΩΫΟ‘ϊK³`ΤΚ`€7΄‹`ε6" Q^^ŽιΣ§χϊ*γ&;½FψdΛpa#G`ƌvηκχbΧ “N)¨h9,3:»[NŠŒtiͺ ozύ-ƒ²£¬Τ2ϋ΄«E ₯@])€–%,:yso@pˆYψ₯Ο°{[YDΡΎaΪ+QνΉg τ9™yYŠ—eΦεΊα©ί"kψp€/μ<»ig>8F$0πHaZτu΅ΟΣΞ2λ±qΫζ ΛV¨¬:—Ωœ­Κ V­mΘLΜqw<€ef–Ξ]Ικά£Α΄;“YΐeΆζζ’ΓZ†h}ΦιήX³Ώ|œ4ΌΧ—φΏuΜΤe„>zθ[k†EΊώ»¦-ΊVY/Uƒ³LΏόjM;K1ΧgžV²) ΄ΎŒŒŽ‚ίΟ—bΕΚz,¬P0[]ΈZ†E"\<τžš Ψ˜₯i^UCϋ _Ί(@ΆZΚ­/W§Ψ ©X”œ‰u9F4ζf «<ιΆ?O\EΨ₯}#²2σΝaE₯βζkΟOς4jf_ίσ3°φƒ‘:Ω₯‹nQΙvΊgG€¦Α ΜΥ"[πηYζY i"Ÿ0‹c$Ε‹Μjζla˜’ 3χErr<²J ΄>CB‚.£u_w-0VH€H€H€ΊE "γmρGΈo¬}”–’δϋO­ϋϊ¨1 fΧμ#Φ\†H€<@[u9Zό¨…6ϋb­Ξ     τΰSN…<Τb<.ΔΜΩ¨ί³Ζ]ί£nW6LΥκ°ΫgSu% n+!΄>㳨›š[`š~j+Υuws±ž~βΨ1”UΦa[mΪΌΌDϊj/ρ/΄y{·Χ½-u˜ϋ䘴‘ΆŠΔΡ§Μ6Z½έWΠ0oLfž£σ ­nφ₯΄…/fΗv"±ζ~»™—νylϊΫέΜφΠ°-)P•G_ΉήΜlχ~ΦŽΡ‰|{*ξBe'`τ΄ΈXfέ–Εέ¬ΞN„씉ž―UΛ"ωΈΓΘ©i€PΏ'fŠžμΜ/QΤ>ZZˆΈ,Λ›F΄ .TδΓIή> 1ϋΎsa–Ε4n\<δΡ›EέoAί$ΰ*.ε™:Ψφ%8\ά€ „‚92+olΐkΟ―G‰Ί©Δ‹°β‚ ζΦ‰cΨΉ[p,’=³τ €ωσ’³F!!ώό½Ο‘Άό|θT,$2W7š`™wMΆλ ±qH€υ·Dcu5₯­˜c]|"^ωμ0šG’fcD€θ“‡„€€#^˜EŽdlΙΚEϊβ$έhT}“& o,°Δ˜œ.Ÿ–w\L&!ςΆ»/ρtY@l08v4€Gβ“bό|ψŠKn2… %Ι:cuTr|?—WΝ\€½ZΊ}έQ]-ξR±€ν­Υ‘Ώ+Άj€<“   8K@ ˜ν•ώϊX«­­Ν#^Ωf ϋH€H€ϊ–@kφWΪ‚ΓFŒBΠδήε£Ά +$@$@$@$@$ΠN@fC>)ν\εP‘œ8Z„ΊwβΰWŸaDp ZκΠRgDk½-J½­’-λςάΪX―NνρsWBθΪ_Cηωp{<$—ŽΦmΊΦεΤΞζΤ‰ρtώέ©n΅3ι„―ŸM α΄=+g)¨–‡l q΄·σς6)bki+ΖΝu³M· Ρ΅―Τυφb_bŽ:WTΏJ_{]ŽhΔά|ψc' “λκ|‰>Εo»(\sΛΨ΅z»½ΆΎŒ]‰QΐcJ½έ^Ζ#ϊφξΒώ±©ΚυhCrψ‚Υ…« MCUr·οDtΎβ]Β/$@G pΤ~‹I/ZLμΏ8z@ςν‰}ň,Αͺπ7xt|§.ϋB0[<ρ4%†πΒ=πο4λA%Kr{¦δΒƒΨ§ŒΥjU’o\ ¬ΈΔ΅I΄&!NΐZ­9ΔaΘνόό›sουβIT‘…yΒιΈνΡΣΡΠ ². •cΰ0KΚε❟‘ϋϊεH\ώθ£Έά.χ|ϋ±>ΟξΰΠξT₯φ($aqͺ―fW₯YؘŸŽω :AqcΦ>,²!Ϋ-!ΈκžHΠ}W˜ 6βαϋ7Ϊ΅ŽMΏιΖ-νΧ(€₯„Ψ΅ΔXr DfhcN޳&…{ιl;ŠC'lR„`ycΑσϊBМ.͝™‘ϊαϋ3μ›„€bεŠωΠQ³o7ΐ{ B Œ|©i I ™­‹θKπ݈\吠3ΘΝrﺏΠV0aγΪ5ppgαϊΥΧΓΫXΝ/+$@$@$@$@$@$@ƒ…€)ϋKm+†shuVH€H€H€H€H Ώ 5q`x4β¦;χ "ng½°ΉE žeŸ™UžσΈδΊΛ‘2>Fˆ–ΐ@‘‘Ή½œh¨Δξ-πΦΗέ—/«>νŸ₯`ΪzΔdBjF(Y•Ee»™‚γη/FlφK8"Xeg|Žσoο$5_³˜ΥΙοŠjρZ«ό!”% ! ρJΝώ—€τ4ψζ|.ΔΚGsΔ„ΨΨφEDΆγ’j4ωΒ 3:Ϋ+Bihh€Ιd²ι¦|ύobbbΞ^‰=¨6Κ͐  &S 23ΏΖ§Ÿ|ššγ˜’œ„… /B|ΌkoΆ΅΅α«―6#== >>>vωδδόˆwί]£₯Η7ι³0kΦινν:a'   τ€ιΣ°ι·OΑπΤo;υV˜Ύ‹VήΫ© ϋ‡@SqΎXx.βύ¬ο?ΧFTbWA3¦Nς¬ΟDΜn   πx0{ό%b€$@$@$@$04Œ7Ž2-K!|  §½πΘ‘#ΘΛΛS.ΠΤ©SδQΛΛΛ ααα3Ζ΅‰ϋj£FBLLL_-η:}y―ο”΄G˜.^ΛΩ—±ΉM36׈I!|8ΓΉ>|XyψΑc“―†5ξzZ vψ³ΜΣbe<$@$@$@$ΠšššqΩeΏDΩΡcΈηžˆŠŽΔηŸeβŸύM[CU±•ίΖ‘hBd^¦xΩ ‹g5d‚’ˆΞBςƒ”-Χ’Y|₯€Ή3R#   g Pΐμ,)Ϊ‘    τ*)ϊrTΌ½½)s‡ύƒŠ@K­%«χ Ϊ7C$@$@$@$@$0θ HQρSO­…·x˜φ묏ΰλkώjζΜœ{ήΩX~γmHJšΨi&ζ––8pΟ<ύ"Ύώϊ[εMGςα\Ϋrΰ@"^~νυ琜|²2ό“ŸLǜ9ηⲟ_‹υλ3pΕ—ΪNcϋΩ»8κ?ΰaΧ±λZΒΚ!¬;EδΚ"k«Ε’ViΙ•…”£Γ›ά‰BύQ\%J"9[ηZΗΊv»ο;ΜγΩ}ζΩϋyfΨΟΌ^<ΟΞΜ3σχοyζ™gζ;ί(@ Pΐεu‘ΊΐήaΟΟ+{ρ{φ9<]ΏžΛΧΝ€Q@ς’}OL–Y’€PKb½MΚλ₯¨ΑΆmΫ’Z”)ΣυΨ₯ψ‚Uc”ΨδΨΣͺΓ™3g΄Aμ{ρ΄R¬ΡΡΡZ+Z½₯π’τΚzώόy+5­-yο]ΉrΕΧV­ήΖ²Ÿ–ždεŸ‡ .ΰΪ΅k–μ©Rχ2ϊ-―Oγ#μ˜ΐl―Αη (@ P€ LΈ²—‰kηͺ)@ P€ (@ €^ΰβΕKX01-žmK^Φ—&ΙΕ/ΎΨ‹-EίΎo꣏@Ϋ—Ί πωfX±r‘VΩ¨·¦;ώF@@[ς²Ύ œ9sΰ½!ύ1sζ<Ότ ’9P€ Μ(W΅2²εΝ I"«\Ή²!p©؟xв€7GΕ&ΎΰK—.αΠ‘C‰Ξ$ɏςϊƒ$΅JYDD„φϊ1JLŸΥ‡ππpK‡huC«ΗgιΖ½œΥ ­ίύΠΖ'Nœ°l˜5jΤ°ll ΜZL`ΆV{0 P€ (@ P€ (p_μάΉ ?ύ΄αͺJβ#E}UΧνMQ΅j%ν"Wr6`ǎ]X΅r "OF‘BΡ A<ρD5‡Χ_Έp?ύΈ n݁Ω³£‚ͺ²ψLέZZχπΙYη‘(@ Pΐ=‡…kΥ•‹-bΈΒ–/ gώθΥλu­"ΡLΕ‹ΕΆνλ΅I’Γ 9’ (@σ<ΌT {₯ώχ5ŒζΆEεC _™Οω#G+VΜp†ΈΈ8;v #e\Ή η1{διΣ§!½bx{{ΓΛ+ρm5+V© ,ρYuΈ|ω²v#]vuˊƒTΩ–χ’• ΩΖi{ηH_Ώ~έ²ŸaΩ:«·qLLŒvcnΆlΩΦ.z΅^}Ωͺϋim6ϋ€ 0ωmXn(@ P€ (@ P€p…€$ 7 _ΟύoΎΩΟ=Χμή‹ΧΊΎ₯UB:μD«Κλ‡ eΛV’λk΅.εχξݏ7^ο‹:užΒ˜±#ΤΙαΜZθϋφDϋv]Q«vM΄iσΌκ‚5ί.XŒ1Ÿ†AΦΨΜ›ΘeR€ ( ωήnΨ°ΣδδGρU]άΖͺ Υ1Θ“'w*Φpη%R°s—(R€°Γ2δ8cξœ¨^½r’Η#/δ P€ 2Ό€§oyTΔhμŠθ_£ 戝X…I"oΦΓΓ 0τΌrεŠ6ΎtιxςΙ' η1{δ7ί|£%–)SFSU7;ΓυoίΎΥͺU3œf…‘{φ쁼€­8HΥΫΘΘHKZ½wνΪ₯݈π裏Z±‰΅%Ξ=«ŠMT΅d|”ΥΫψ―ΏώRΏ[σ xρβ–4<|ψ°ε{y6ζ@δ099Jœ‡ (@ P€ (@ P@Ψψλf|χν°dι7ΆΔ‘*UόΠ€ICU…Ήžͺυš5{Φ©Φ’-ΗͺUλ°tΩ|uA°6Ÿt+/œƒZwΒ?,CPНdε>½α­·^GΗNmmΛσχo€_U ύίͺͺ6ΧΥͺ,Ϊ&ς (@ P€¦ dΙ’ψ%§Μ™’›%Ι8­C… ε ρύχ?bύϊίΠ«wwΓιI P€ œ xC°?ΠoΰZԟΥžρfŒΓ££dό ρζβ (@ P€)HόlRΚ–ΕΉ)@ P€ (@ P 1Ϋ7a[|‰.a[’SΣbυ­η‘\"(pί άΊu &LΕ{CήΆ%/λ“Ώ€F‚αοŒΖΨͺ(λΣεQ^?{φ||:ζ[ς²>]*1Ž7½ήˆ–-pδΘQΔΔ\F»φ­υYlR©Ήx‰’8x0\Uρ³η P€ Μ0«ϋZIŠώΟΦ*;v gΜ±΄‘ΥΫψ‘‡Bž}&Ρψ€ͺβ7œΞστΣO’Wο7ςZ/ψU*†Ψ’’Χ­ϋC‡½ƒΟΓΎ4|­$5ΛΏΊΟΤF›["°E;Τ­SK[†α ξŽ Gll¬α,ϊψ½{χ&YYΪp.)] K—ζ—.]rαZR·hιΐΫΫQQQ©[€ _uΰΐœ={§NrαZR·h‰ΝͺcK]ΛXΥM>›ηΝKέFΉψUςΩ΄β~M6ϋδΙ“Έzυj’ίa.ζqΊψcǎ‘L™2N§[e‚ >]:‡"gΞhΦμYΥ[BDž<…~ύήCαΒΡ A][ΈrSΤ)3±rΥ"ν&Ϋ„$žHυεΟΖOV½9j7VEDD:ΌBzixψαγ9‚ (@ P€ (@ Pΐ:L`ΆN[0 P€ (@ P€–Έz`wςͺ‘©€¬˜[οfΩ«ϊΣ–3b@ΘHžžžΈ~ύ€r±TJN8H…ζˆˆ“ͺ;vη•₯ σ+―Ό„ΖΟΦΧͺ)Ÿ=…zυŸΖ€½U’Sf|όΡd͚3f|Υ«&(K₯Ε=BπΛ/ΏN·«dΙ’ZΌφγτηz’kΉrεΰγ㣏ΆΔ£$/KΧφ₯J•²D<φAHζΛ—Ŋ³m™η TοA_ΛΔcHU7χ€`Ώξ€ž3Ά€„Œ§[ΡMq###aΕ؎=ͺέό`ΕΨςδΙƒ˜˜ψωω7Ά‰csζΜιτ»ΜΔ° W]ΉrELž2={ΌƒaCG«ύq!ul‰ΖλcΘΠw΄οzύ…^*ΙYnf’ο•” qqΧqεΚΜ›·PϋgτΪbΕΑΒE³ WŒζη8 P€ (@ P€ (@χ X:ΉH‘"8qβ„ϋUΈΖd Hq (@ P€"ƒεΛΖζΝ[pϋΦmΤ|²:ž{1ςδΙM Pΰ>πͺV1Ϋ7iQ3(ΩΡοKφœ©Ÿ±ϊVkVLύρ•ΈΏ |Xλφύπαcxμ±G‚?uκ ΟΏθτϋ_*&NjJXƒ₯K’y€Όeότγ*Tτ{Ω³gΓώύ‡πθ£%βM·ΓΛ;'.EGۏ2|.I_Ξ©Ɂ (@τxβ‰ͺΨ΄y%.\Έωξ—›rΌΌΏŸkξωηlΔζρŸr˜μιιϊΦa›ŒΆm[iΥλΦy οϋ7nάΠg±=^Ώ~3¦κΥyξΘ†Β' (@ HςqήΌyTΕώΌΆγ …ΗP(@ P€ (@ P€ , `ιζ'žx•+WΆC0¨T©€8P€ (±$©¨‡κΆSp;|σΝ4<ύτ“¨[·¦}5―Ώή]:‡B’8P€ ά- IΚ?Όϋ6N·©†Σ‡ πwc΄ΉΗυΔ•΅€fwΗτ ¬/$€ώUIΘ£FCLLŒΆIW\ΕΨ±“°~ύoθΡ³›m3cccρή»#~D'ΙL!έ‚±hαΜ™³’ˆ,CδΙSθϊjδΘ‘uκΤΖI•f©όz·ήΪtI–αψ±θΤρ \½z ̚£(@ P€ (@ P€ (@ P€χŸ@«‡όΒ / xρβψν·ίeυp3D| @­Z΅P­Z΅ ±½άH P€ ψλ―έΈ Δήx£ $)Ι~ξά‹-ΑΆm;΅Δfϋi|N XW μΤe)nǎ¨Z΅jŠ_—œμ @ΜφMΪ¬ΫΏŸ’Ιy™mž›7oβDζΜΆΏΣσIφfνΠθ•Ws‘\V: l nŽ’'ώ5\bφkΡΘ’šΨΏ -ΗO1œ‡#ςδɍoζ…ή½’ή3(]Ί$ ‡―o!,ψv:ςηΟg{afυΩΛ™3‡ͺΐ˜Χ6l٘ϊεxτι=γΗ}aίΈq}Ό7€?²dΉσy•Χ-\4 Γ†ŽFσζ/Ωζ“'Ν0yΚ8HEh (@ P€ (@ P€ (@ P€χŸ€ε˜…Te™,{½Ή1(@ P€CΰΟ-ΫΡ‘Cd͚Υaƒ₯jb‡—_ΔΞ3ΩA‡#(@δ dρΞm›Υ;κδŸU†Σ—/b{Ρβ© ηβ₯KˆŽΎ„Ϋ£Sυz£εȝεͺ²'#±Y2ϊq’ΌloWtγwΨΊΎ=jΤ―g?šΟ“Έ“¬<.\Δ­[·΄›˜€›ψ„ƒ$Όζ‡„£΅ΚΙλ7,Σ^/½9HεeIXN8H²τψΟFA*<_»vM›œ3gNxzz$œ•S€ (@ P€ (@ P€ (@ άGχEσ}δΙP)@ P€ @†ά7nό}ϊΎιt»«W―‚A‡γuU‘Yͺ0r (RμeόpaΓς”ΎΜ-σ?¬doχk™ͺuεR―’·SυjγΝζνΞ1ž˜‚±η/\ΐεΛ1ι’\]ͺr%δ6HlMA8©š5ί²iΙ~έ™qƒ€ϊΏ%{~ΞxO@ŒS;HΟ FIΟFΛΛ‘#»JrΞn4‰γ(@ P€ (@ P€ (@ P€ ξC&0ί‡Ζ)@ P€ €•²gO<™HΊ‰‰±RȌ…ΈΟς·hοκu°/ζfͺ"?qβŠ)’ͺΧ:{Q¦~/8›dκψμΧ’SPmΈΤΡ•ι‘\½5o\-PΤ~ρiz.Υ~εš#‰ά#}‘χΓυ=ω―ΓxIDΏxώ‚)‰ΦΑp(@ P€ (@ P€ (@ P€ 2€˜3@#s)@ P€ €«²fɚζU„‡‡γϊυλ†Λ‰Ε©S§0uκTΓιV9gΞH%I†ΐŸώiΩ al©kšSϋχ₯ξ…N^ε[π1>uΐΙTŽΆΘsώδŸΥ‡Ω“'ΓΣ'_šΓ|ζ™gΌ .€ (@ P€ (@ P€ (@ P€Ί˜τζφQ€ (@7\Ώaœx,«–€ή›7o%ΕεΛ—!‰ΚFƒTΫδ@ PΐJΟΏŠ tσϊ <Όv‘…"<―]Ύ―’Ό3ηΘi)?C P€ (@ P€ (@ P€ (@Y€ ΜrλrΫ(@ P€ €rεςΖΩ³ηœιΘαcxϊι'‘9sf§σΘ„Š+:~ζΜ(PO>ω€Σy̘ qύρΗΪͺ7nŒlΩ²™†ΣuV6ΌΪXΎΓεwši_igΆqκ[G>ΗVoc9ΐ}΅U‡μΩ³£|ωςV qYD <<Φά“ZˆaP€ (@ ΈOΰα‡ΦN˜­ρμΩ³Ϊθ M6uœ$ΣΛI¨|ως™‡ΡΚOž<‰9r Ožς^ΣOΎΊrΐe§L ±ύ91Rf©ΟΝc ]"ω<ΖHΎ•ύœ<Ζ°ΧHώsc$ίΚ~NcΨkdŒηςϋΐΧΧΧιΖΚq‚\°Άβq§-Ώ«%ΑU~OX±ΊŸ$Ει7'v<ζ΄ά0A3ΕΞͺm,Ώ-τf+&vΘoFύFkΉ‘يƒœH*‘ΠΜΈ­όΫ[\d#Ÿ9e΅ z»ΙΎPͺϋYυs,ϋBω-`Υψ€R°΄1‡τHΞ1†Όoόρτ]q:-M>W'Nœ@Ήrε,{ŒρΟ?hΗqV½ΡLβ“c ©nnΕAΪWΪΉB… –L•cŒ½{χβ‘Gъ¦XΡποΏΦŠΰ”*UʊααθΡ£γ Š+Z2>Ή.²~+VΜ²Η;vμΠb+Q’„% ₯j­|[΅“κΐ’¨ Κ4λήΖ` WL P€ (@ P€ (@ P€ (@ P€ (@ P€ (@ ΈJ€ Μ’εr)@ P€ (@ P€ (@ P€ (@ P€ (@ P€ (@&0;p(@ P€ (@ P€ (@ P€ (@ P€ (@ P€ (ΰ*,GuΥ²Ή\ Pΐb=τnέΊe±¨(`–@±bΕΜZ5ΧK P€ (@ P€ (@ P€ (@ P€ (@ d`,L^Κΐ­ΟM§(@ P€ (@ P€ (@ P€ (@ P€ (@ P€ €›2]Ύ|ωΆ›ΧΙΥQ€ (@4 œ:u %K–LσrΈ P€ (@ P€ (@ P€ (@ ΈCΰίΥVσψ㏻cu)^ΗιΣ§‰ςεΛ#K–,)~½«_‹}ϋφ‘H‘"πρρqυκR΅όώωY³fE™2eRυzWΏHΪWΪΉbŊ^Ό­6\½z@Ρ’E‘7o^«…§Εσχί#gΜ(Uͺ”%γ;zτ(Μ9ƒκΥ«[2Ύ˜˜όχί(Q’rεΚeΙwμΨ‘½$F+αααΈpαͺV­jΕπpρβE9r>ϊ(ΌΌΌ,#ƒ²†€Ό—™ΐlΆ` (@ €P€ Μ)γμ (@ P€ (@ P€ (@ P€ (@ P€°€€$0[οV ΐ0 P€ (@ P€ (@ P€ (@ P€ (@ P€ (@ Pΐ5L`v+—J P€ (@ P€ (@ P€ (@ P€ (@ P€ (@ 0Ω…£(@ P€ (@ P€ (@ P€ (@ P€ (@ P€ (@Χ0Ω5\*(@ P€ (@ P€ (@ P€ (@ P€ (@ P€ (` ΐfŽ’(@ P€ (@ P€ (@ P€ (@ P€ (@ P€ \#ΐfΧΈr© (@ P€ (@ P€ (@ P€ (@ P€ (@ P€ €˜ P8Š (@ P€ (@ P€ (@ P€ (@ P€ (@ P€p@Χ,–K₯(@ P€ ΐƒ-ƒεΛΖζΝ[pϋΦmΤ|²:ž{1ςδΙmΪ†χίa<”ι!”(Y,^ GŽC―·bα’YȜ9sΌiόγφνΫX»φ,ιgˆW™2₯ΰί€!όόΚΫVϋΣO«qψπQtοώͺmœ;žάΈqλΦύŠΥ«ΦαζΝ›([ξ1Τͺυ„%bKΈύGΗ•+WQNΕ¨fΈ‰ΩκΥλpγΖ = νρϊυ(\θaΤͺ]ζƒ}€6mžG΅j•γΝηκ?dέ›6mΑΚ•kp2βSο·Z6ΧeέfΔu6lBΦ¬Ζ?½==¨Q½Šφέξνν•ΨΛά2MφςύΈλο=(R€0*U€ κΒ ±ΩH»ώϊΛfŽgT|¨X­803N«CˆMRηΜς»Ž'ΔFΎ7n܌mΫώΒργ'PΈp!už§κΥ{ZγΘj_Όυ&uΞ ήΜnϊ#©γ cηΞ]Ϊ1nψGΤ>Η-Z4EΥͺ•L?VsWC P€ (@V`v α P€ (@ $. ŽκΧ ΐβΕKτ°ή{w€–ότK­pωςe΄}©KΌc5wΕ%Η­ς[ΰ£Ργ ]bcγΠΊuG-^IΤ ιΦ WΥ …rl²bΕw…ΙυP IΏώڍn!½±ίBίuς;γ«isΠ©γΘ—7/ΊΎΦQ» oŸwΡJ}†δ7ΩƒΘώrΣζ?ΥΎ²9κΥ―£ΣyώωX²dΉΩα9¬ίΩy‡έ8ΒΚǐάsn$³­ΚκΗ¨άD/ίΫrN―xρGΠκ…”.ύ(>ώ žmΤR;—gΫ “ž${ƒKκψBφcΗ~Žm{ PΑ‡ρfhW”.υ(^λϊ† m;―ζή¨Ή6 $ˆΑΦ•K0τΝώθΤ©?†NX‚]1 g2εοπ­[npΎ€?ΪΝ0οwΔίk1rΐ―C§b馃°36|ͺ7^oœ;£Γwbή„ΡUν)ρ-\Ήφ"+;Υnj}ΦhηXοΦπψ±˜ΩΖΡαR0e­ΓΏ₯KΦ"όξι:³Ϋ±‘Ψ΄dήύ܎όZb‹»χ6‹=ŠΠjέ±+^»ί›μ²ggbε’vχ<ο½Νlcu•[Χ­ΐΔκs’ ‡ŽPŸγu{`6Φμ6–ΟρΒ c΅ψBŒUŸγρβƒYmμ²7œŒΛ@eD n3(@ P€ ’! Azτx‚Ϋ©Η[u ©$4ύ«Ήθ9+W-FΆlžΙXZΪg‘€¦ΏnΖ{οΤfTŌ G+W¬Υ*+―Z½ΨVΙ΅Fͺhμί@%#vΦͺU?ώx™΄€p ϊΕ‚%ŠcŸΪͺ?Υ}¦Ά:)ہ-Ϊ‘MPKψUΊW%:…«H·Ω%ΦΟΖ‘]ʟί'έ–›ΪEDœΤ\Ί½ήΩφΎOΈ,‰ΩŒaΑόορ―JpZ»n ΌΌrj!<ρDU­ς¦T—ΟgρβEέZ!U™Ίoί7Φ+N’p-7?ΨW$w˜Ρ…#$±z©:ψΣςοP°`ۚš4i„Ω³ηkIXί~7Γ6ޝO$kθQϋό­2ΊΎξζΝύρNaψπƒO0vά}4)π@ H―©J\Ÿ‡}‰_Υχ»T7»jͺKβŒάΔονhΧ΅Ν\n>όc QΗ!3f~އr­Iž–dŠi_MT7±ψΩb{α…ζ˜τω4 R7‹Θώ̌γ![0wŸœP7ύθΗlYάΨ+FΒ8δoω.ΪΈρwŒ5Δ΄ ΈFqΙ89Ύνϊ†{G»ΑFŸ―~ύΊhί+&N˜‚aοpϋgΓΣΣ={vΣΓ‰χ8wξ·ZΥΞW:Ά7ή]H{~όΡtξά‘=^³­VŽqεϋ3 y[ό­ͺ“ΫFl3Ήψ‰Δ6rΔδΛ—‹ΏŸ q”A*·P7PΙΝzO₯z†kΦμÝζ¨Έ‘΅:bJ£ο¨©ΣΡ»–NEpΐX΄3ƒ2'.΅Φ³["($ ‘3—‘d₯ψ=@ΕEŸƒϋΛiE6MθŽ3’Vπτ*„θˆ-θ§nNζΣKW‡ΐW›M%γš φ-μφ#·¨ψϊ }b*Ύ=˜9°?F!F.š&%οό6‹Š@-0¨χ`pλ^؏PlΪύ ›ym¬>3ϋcΠΩ@„ΦπBŒ]Fk΄zξS£Jz+Γ8σΪgw’Ώ2σiˆ‘ο·‡ΞaΡΠα όf‚ΚΚη%N½νšέΤΤ±Κe=@Β^ΫΌσ+Γ0s?Ίh:«χ‘im¬ήsΥ~oΚ£ο° ΄oΰ…h•x=³ow CS,ά<%εhbο[2ν‡­E„tn¨φ'1u`/ŒΨ37 Ÿ·4¨9mμ¦·W“AάU!ƒΐr3)@ P€ L©ptAU€{γ.IΑΫkΙ“ΫΆνtΛΖΛE£Qͺ‚κ|Š1c?Δά―§βͺͺ:›’AͺκJ₯Ϊτ$.©Zτξ{oΫ’—υε—*UUb‡$$5HEZIOΟAͺΘ¬XΎφvHd’ξζϋτyΏ±5ΙUΊ"Ά„+ύν·?΄»Σ%!K―nœp£Ώ]›t\ηι§ήχF1“ξGϜ9k«Ύm4OjΖΙ…’Ω³ΏQ‰&£mΙΛϊrκ¨.Σ+S νά­2|tUlF+“ΟΗ'ŸLD„ͺΒάΏ[I&ϋΉ*6©$ί"°iΌδe=ήF*9GΊvOjΟ“μC{j^ν;΄‰—Ό,λ$Ξwίλ‡­[w"*J―ΒlΌvWΕfΌ6Ž₯@ϊ WUξ₯"iή|y°bεBΤ―tŠΎ/’ψK:q"B‹£M›ηγMΟ₯$:tγƒΓlSIQ ΤŊρV/±«dΞS§Ξ@ͺΏš=ΘwyχξύTΒχ -ήλ7›’μ'OŸ>ΉΩΖjƒ$w”Qίί’xk?H$\―_ΏΡ΄χ›}<ϊσuλ~U7LS‰„γ΅Gτρξ|”›δf³—ΪΎΰ°ZŸ|Z―#7›σž‹R='¬Yσ >ωτ[ς²dωςe΅›B₯gw k~^―U9”γ Ήι΄ ΑϋβΕKX01ƍiK^Φc“$Μ_l‰E‹ά―Ύ^>Rΐ^@n*zY%ώoώύO|3¨ίΆΧ―»?!Α>&ϋη;vό€€&Άδe}šτΘτސώΨ°α7SmލJϊT»φ­υΠlςϋ±x‰’8xМž΅lΨ=Iνy»E€ϋS+CΘΖ¦Η9‚tGKΖ­p<‘‡ωχί Wο7Ύ%!Έ]ϋ ΅Ο1η˜B/=ΞθΛJΗδ_Θo ¦ͺύΰΫΆδe}έω ψ`Τθ!ψδγ κ<θM}4)ΰf8¬ͺ’—}B°rϋ4΄oR~5j’ύϋΣ°tj{,κΫλLHrŽ8Š•*IΈ‰J^–AΏΝ8†«‹ _«%/[΄ a=›’F*h‚m›§Α?JUΓ]rτΞλT~«ƒΔ'ΙΛ’ΔΦ3΅U|MΫγ›ν«πiλs²Β΄ͺΠΖͺ΄zͺœV•lšC`1Ψ¦~ϊ άGέ,‚=ού48΅}οΖiZΈ1˜ΡN%/·ψ›VA“ΪUP£vCŒZ-mœ£Ϊ…!Βa›ά7ΒΣ· z(;{7νy禐΄jŸΦ’ύέ$zχEMαK‡c•Άί›„φ Q»vΝ»Ÿ“ΕυYn οVw7©cΓ—hΙΛ}§.Ζ7£Ϋ£μgš©Ορ2 τ[‹ΰk-φ9ŽοΛΏ(&0§D‹σR€ (@ dx?·lGuΑΫ¨±œΘοπς‹Ψ©.ΨΉcΔœQ£‡ͺ —«T‚S;‰)(€»nν―Z·©«W―OΧp%ιXͺ‘T―^ΩpΉΉsηR;œ'&K‚gΨΔ/U’ΦͺŠsϊwIŸ={6*lœ¬³[%V'V…ΗΥ±ι`’ϊVΟψ|§ͺZ]Υ}η}’ΣGWΖ&Λή’Δj?ύ€v1εδΙH-W. &g œΑή@PλNιžp$Iuς~*_‘¬Š\μΉ|ωŠ–(-Ÿ‘ιΣΓT—ΐO; Σ•±­tΛ–mψ~ρ2LŸ¦.f6šΕ6Ξ•±(²?“„§„CRΙΑ2ΏT<•n—₯λυ”$Ψ'\WΒΏε½φηŸΫαίΈAΒIΪίήͺbC… ε € ŠΝΩϊ8žι) Υβ·m_‘C߁TίΏz5}o2Jm¬ϋχΒ³λ;$1Θςδ˜ΘΓ#«αώ$΅λKΙλδΈ£šͺŒ*ϋό„ƒ|ŸJlzuώ„ΣέωχŒι_k]E?ΧΌ1Ν»ΰΞUλΤ©ΣΪ{LΚΞ«›σδƚsηΞΞλΞ‘ς=πΏ-ΧͺϊιU³εϋPφd([Ά4.š₯Utg\ΞΦuV%ηφλϋžͺ6ϊ©αMAΞ^—ήγΕ*§κ…βpψέ‹δv+ΣΔΎ7νfuΙΣ(υΎ*Z΄ ¨δ£α™z΅±V%8“͟–qΟ©€xΩΗvιAνrΰ’JVN8Θοω= 1 -_ΐͺ•kά―Ρϊ9ŽΫΣΟk~ΐΜ™“ΤΝ₯Σύ¦ί΄ΛώζχΝ[α―ͺ‰ r,ϋV NZ-$γTˆx\έ<‘WW·_œό9―φYΞφWφσΊγyjΞ Έ#.«Cθ۞Φsϊrάωh•γ }›‹}»₯b’ΑpBέpiζη ;ώδ_H#r³ͺτf4HoqqΧՍ—ΡF“9Žˆή‰~«€Og΅Gώkσ­‚‘ώ@Ώ…ξ)Ϊb[½ͺŒΠƒΆΓD•$<―oMD%σ\΄ΎŒθ³1.Kξ‹Ψ΄hρ1Z””TL»ΑSU°kŠέ‹&ΉξXU=:ΪEχ‚ή€’Ύύ?Ό[Χ.>x AΏIπ‰Z‚ΓI;g•‘;†ˆuc1hU ζΝμ£V—Όk—+Ϋκ=ΈTUζ-cόS6Y,lγΨπ‹*…ƒκΨͺUί JΪψCυtv%υ΅ƒ³ΡΙχNΦF':“ΊYb@€Š;‹'ŒΫψ…lγύλ’υ¨@‡ύT•ς&ύjͺ·b6lγm3ΗΑγΡΎ†ͺZoπBPΨxψlΓ€άήΖρεHΆ˜“MΕ)@ P€ 2Ί€œ$—n2k¨Κ[ΞιZx­J vΗxg1$5^ΆcΜθΧο=„}ώ‰κ¦°iR/IΡτL™Rf‡C.N&$ωDΊΨ.WLΒIΪί’„ϊζۘ―ͺž-]6₯K—4œ/΅#%IgωŠ…Θ–-›Γ"$qbΝΟP©R‡i2ΒΥ±ι+•φy»ί-±βρΗΛ$+αΧΥ±ΙςύwŸΦπ“5iݐ·h‹Ϊ΅ό1ύ«Ή‰Ύί##O#Pu…™={v¬Zύ½‘½Ύν©yάϋο~΄nέBλnΎλ«= ρ=Sχ9Τ¨ή@%/­UζΘ“'·α’][Β•Κϋπ ΅Κ:yσζI89ήߎM*ŽΛ:$‘N―Ά,ϋ­ώS]*Fλ ηͺ”λnέΊ­^x]^}Y«„ιŠnY«L*‰F Ÿ;bΣψHŒ$ ߍνU΅5£aƒͺ†+7'Ι~ތ!((ς/α I={Όƒ€Mœξ3ΎΖUοΩ³Σ¦ΝΑˆ‘οi«HΟ?R³TΝ–€ε6AΑxΆQKΘχzγg_@ση^45ΩUnŽ:~όΚͺ€ΌeΛV’z΅ϊ¨[§žέmΫΎŠ*™^nΒqΕwOJ-ε˜MzCi­ήU«UJιΛΣu~Iΰ—Š§½ΥwψΏκύ&±Ι 7u͚ω ލ›K>ZBgΖϊ±†ΡΊ%ΦΜ™έ™βζΝ[Fα`ίΎƒhΨ°Σγ GρΥκ­PΩέp8’& ΘΎ¨³ΊA@n8L8Θg}:!7:›Ή—s aa;άψ$7Β~1iΊϊm{KυNP0aψn[ΌRz^ΐ]AZυBίώ΄œ#Π—αΞGik«OθΫ-Η5r>EΞ“ιΥ–εΌΠ/6aβΔ©¨Y³Ί>«i©=gΰꀝ_H―0Ήry!GγίL2^ΞΊ’ƒ«·™Λ0’χmTεPϋ¨Š²ΖΫS_UŸΕΜ€r_Κ±žΕ0Kέ|ΈmΦΤ–$αΈ”$Ζ`εˆV¨ο€υI' ¦<Β8μ_ͺ[”7|©§—$&Ύήπ•cQ»^+|Ί>pi©V_±AiγΕDE"J%ζϊxOΦΖͺδέ‘ύΡΔί U|U}‹Ύ+0lQ”υVG%—m’«ΫXυκ±Q>MQB9E«ds9‡’’d_W·qΔ6•Dί:%υvTηSlg<ΛcΣ†Ε¨Hς΅Tιφ―€&#Ά$™locOγ“³*±Ύίͺς˜Ή,ήI.Λυmμ[6ΦοrΌ\B‹Rη’\ΫΖq8Όθλd?οςρ9‡ΝαΞχf΄qRfœNgYœMΰx P€ (@ PΐQ ©δ©¨šΨzΗ%ΊwŒ\©-€»ΕoΏ›R₯7AXΆF Œ’8dέ#FŒΡ›ύόwΨp©.Τ‘ύkΘ’*9XΉΠeΥν»š“*ΤS¦ΞΤ’a$ ©bU°`Σb“/QU₯ςΫ“ΗhqθΥ‚Ί;ΒnQQηU΅…sκΒΥ^όψγUΑϊΞέέ»ΥΊαŽTUͺ‹’Ύ]WU™Ό ήzλu§‰ _—’Ώ₯ϊςάΉίiΧ€‹ΣρŸVIž*αzΏ– χ_»1fμ‡Ιέ[ΒνX²dΉφώwVqGŸί±IRχ΄―& γ+―γ‹/¦λ«Φ%ΉϊU•œl4H2ΩΠ!£Tβς{ͺJz#£Y4N’ž}Ά>fϚ*UόΪM.ϊmίώ—ͺυ/€ΫyϋΑΥ±Ω―‹Ο)Ρ䦣Asί{o€JdψΘ%ϋx£u&ηααa%jϊΏ=§NŸΡΎΫ+V|\ϋώ±Ν`ΒI •Djι:ώ|ΆΔRB‰·J©ͺ§*ΙwnfΝžΥ’Ό₯ρ—_ΞΒK/vΑβοη@5έ?άΦ.Έ…φ菓κβΰόω_©ΔΫβκbaŒvž$1Ϛύ€mΝ8„M›Άΰ§εߚŠΆ~ι%ζ?ό„—_ξζΟδΙc΅χŸΓ7Œ(¬Ž/]ŠΡn’*Wξ1‡5Κ±―L—6vvΣ™Γ‹\8ΒΩMRϊ*%ΩZŽΟε·  PΐQΐ(yYζϊώϋ±~ύoθΥ»»γ‹ά8Ζώχ΅|Ž'}> Ώύφ‡vσ‚S¬ώy±vNÍ!*₯η β’‘Φ=†Έ³ΑΙ=G`^pU²k΅γ ΊrεŠθΡ#o«γκ„C§ΰvx’f΅„£έφwJΞT«fά3œΫ‚΅[‘œ+Ν‘#‡έΗ§rsΗνΫΖ7X9ΞΝ1H_ˆ]αΣ>0AΧ{λπ,Q>S{ƒPVO–Ό7ΩbΟ"1£m[„ν―‰)«>FόΟ~ƒΖΓ/aυemUqX?f|ό§ižŽEŽγ°uF/t›Έ}§.6¨¬š>ρ–m?³<ο/±-5Z%& ‡ͺκκŒ&6b'Bza·_(Vr:Ÿm™izƒy­zΑ§Η$UΝZ% οKΞΒάΡΖ*uυί9τm<›ν“ͺ}bŠJ¬―αkΰ«…οŽ6Ύ“DΪ·4’^ΰΡΨo£“*ΰCΠΎv±;ŸiΗ7!"ΆΞC‹©¨Ψw°=|} cρβΩ.K^NŸ$ZΏωfWΌσΞ[Ϊ€Ο>ϋΒΦEΉŒpwlGŽΓπα«dά°xF γvwlRΉϊ₯Ά­T‚ΞwΆδe‰A’‡€χE —ΰΰΑp[˜Rαϊχί·jΙΛ’Έά§Ο›.Ml“χφ¨ΡCρΚ+/iοI<ρσ+―%_ύρΗ6όΆρΣbΣW|νΪ5L2ƒυqjαN·'N’λ«=Q«vM-YώϋζjIbƒίν‡ση/`όψΙΆΔΉˆ&¦_©κ‘’Ό<ν«‰.I^Φ­šͺDΊ_݌oΏύΑƒL“Δ¦nέξ$ΚWΌ{„»cΣcδ#(¬\ΉFϋn«Χλ¨ύτ“– ρπȊ―uTΗ;―j1ɍ6›TR’Yƒ$F}ϊιD<‘zο¨Wοi³Β0\oΩ²₯ΥΎ~€Φ‡ž°)•ίzφμ¦υl0fLΜ©I«,ΙΛ?―ω•)₯}ΙΝ5›·IBΈT4sΆ2y¦Jnƒ€zUpGœZή€―πί‡΅γΪyίLΓϋSΏ―uUή³ηΘq¦C\ήxρΕ–θ §ΥΝφΓͺ•k΅ήY€"‘Qο-φσΊσΉ——cO2ξ\?ΧEI@φOaΏΔˆ?ΕΔ° o6k{΅κυͺGͺ7ήθ’ύ–”ί•³g/ˆχČΨRr^ΐŒψ¬{ qO#%ηξ½ΚύΟ¬v<‘ Θοq©΄,ηXδΖ19¦˜3w $yYzvΚΜf)9g`fœφλ–s³^^9νG9<7ηΨΫ! ŽΘ¨R18±ΑC%0Η%QS8±Χ»iZτ ¬¦’—£ΪcαfW%/ίΩίJUΰkPBvΧΒw1lWiŒ 4ͺ~ƒ₯όUςr>]ΆΚeΙΛZ„φΙΛRMΉSW΄k[ΥλuΔ’2°΄gΒ€Υ;ΙΈΡϋV ΆJ^Ž ώ›fΉ:y_ΨcT{Νλ\ώ¬³œ`ύ-δΖ6ή§nXΒ·ί4l’jΰςoσ|Œ¬ΏέT/V›ΞκAΩ?Ί―£Ubrؘ^¨>ωπZH'μόkκ>SΛ”Ψτ`Άnέ©u½Z₯ͺŸ>*ή£;έ΄$‚°/αοίC‡½―Κ±$Š=ωduΆh‡ΐΐf(Z΄ˆwύzΆxwοήƒͺNΆΓ6Sž*τ°ͺŒ>N%:υΖg*‘:€['œV•—%‘ΉsηͺΊφ>άT]<™ά[6‹/₯ΐ# 7 2RλBZ`λ>SΫ2Ϋ&ί•r‹ ΟΤ«­έ Ρν‘Z5E37ͺδIπXύσχρΎΗeŸoφ qΟ5χ7l71|Y%«Θwω­[·Υw„αl.)Ιr¬ψώπΘͺzεH8΅y“'ΟЎΝLŽR=S¬_ΏQ«N˜0F3ώ>zτ8¦5 Ύ‘ι1ΘχΈT7n’JXcΖ8φJ‘ΟλΚΗ=CpτΨq4kΪMPJ3~=χ[•¬~UέΌ7Σ¦ΝvεκSΌl+χ¨“βα (`’ΐαΓG΅›δ³.7Ύ–,YάΔhŒW]ΌxQΘ?9ži£nΆίAuλΤ‚_₯»I4Ζ/sΩΨ”œpYI,ΨͺΗφa'η+š=XνxB<_ΏŽ?ψŽxWλ₯ΓήHzA’cνaCG«›‘Ÿ@R½ΤΩΏ6=Ÿ'œAz5νΛJx#WΒ%Κo³oKΞX>ήIeŽZΧCbΨ‚ΰ€ώΨοΧλgΒ ·ΨΕƒ•#:bΠ’s8sjθΔ©Υ–QI±‘˜Ψ©-fξ/™&ΑOŸξ⨴Ε{B»Ύ‘¨£~ΗNŽE»FcήΦ*θ\£mνό›¦’EθΗ~A}€uSΔ’Bhχϋ$ϊ †ͺJκ2Τχ“χ§$1›άΖ  €AΐΝ§ Σ)_J P€ (@ H±³*aΑΩpδπ1<­ͺΊ2YΣΩΊ“ί<ΐ[ώ\ƒ7C_S• ϋ&ΊI-+9Σ₯rȈc΄δe©κ:aΒθxΙΛφː$Κ­ΫΦiU‘{¨dgI^qΕ Ι΄_ΟύΞpўͺ*ΑΖΌyίΕ[Ώ»b[Άl%Ž«Δr‡Tͺ–„'ωχϋζ?!~^½^KΔ²―ΘβΨώωg―V%ΫNj=υ€± zE©ό·fν°eΛv̘ώ΅ΡKΣe\¬ͺ’%ƒ]~wΌεΦ¨Q·U– ξŽMD†ΧύΟ·|Ξ0ˌΨΞ‰ΤδYΒA’kΤ¨Š ͺ³>ˆέ†_~Δτa?ξ όωη}’Keύλ7,S•΅‡hϋΣ%Šaώ‚ιθώ櫈Œ< /•T―ξŽM_/)φμΩΉ‘αΰ°μΗω¦'/Λw’$(KR΅ΡP§ΞS(^’(φο?d4Ω₯γ]‹Ε»οŽ@™2₯±mΫ_Άου_ٌγΗOh ›ς}ζΜY—Ζa΄πXΥδƍΏ;­0ωπΓw|]ΊtΙθε.'‰3Ω³g3\άT%=@Θw«™ΓŽ»΄Κˏ¨a+ ς~“ξάK•*αŽ«΅nˆ=κxΞ,7Ή!oάΈ‘ΪwyΥ~PΝΧ_υ€"ίυφAAuσ’Δi…ΑK%П>νόsyαόE-L+UŒΆ‚c @B₯KW u«ŽxJύV”ί…VI^ž1γkμϊ{OΒp΅Ώ‹)¬έ˜ςΛ/ΏNwΗΘԜpG\ϊ:¬~ !q¦δΎ]f=ZνxBββk9ή$.δψZΞyΚ±‡™CJΞ˜§ΎnOOO•~Γi'r4"β€Φ3ώ>RΐέQΡwΞ±:_―σk"Ξ_γϊ)žΐώ‘UΥ`•Ό,«Ϋ΅nήEE‡«.ΥTςriLQ••ƒμ«Άz¨μΡύ£Q»–$/K€{°/Βψ†LuΝΰ’ͺbtνΪ 1hΦz,ˆ°αΏλ$ω­£ZϋkΙΛ²ώέλT‘Χb·ΤHŒl=ώ£ζ£‰ο½Ρͺ9-γΦ6¬6.?yω^Dh’ Ρ`σA-―&΅qlE<ή.yΩ ς«ΚΒΑ8‡]ας^Ο=ͺ₯’Uς² FU{΅ .ϊ/bΣBμFS4±lح˜6V•Ιϋ.A€ͺDΦ³)j”-¦Ύ‡ ‘dΩ*h1ψc,Υ3C§"\β4©α[K§†`Υ°ξͺ2΄J¨ώz f ν―*©wΕαCͺήwΚ3›ίΖvΝΙ§H•€γ•ΚT-†/’(@ P€ ΐƒ/ Υεώςε« /ώKBΐͺΥλPξqωΥh­A*ΤIe_ΉΘ¬Ί|,£ͺ¬φξ50^’nzF,΅:Ώ ιZΊšlΥ*ΐ0)A.ŒΌός‹Z₯WρύδΣα8x0άe ―§Tβγ‘£Ξ»ΟΞ–ΝΣVAΫέ±=φX)ΝiΧίΰ7Υέύ&UΉZ§OŸ«΅›$«Ηδ}ζξΨ~ψ~™-A9αϋDβΩ°α7•Δ\C›s_LιVV*\‡}ώ1Ύψb:vl;αKΣεo©¬δ,qMV°wοΥυ|fm]ξŽMί@© σ›J«_ΏŽ>ΚαьΨt‡`ΤIΛ¬ΉέΦής9–DαΚ•+βΝ7»’gw\v„tW»rε­+y1λΨ±-^jΫ =φ(€zό)UΉ„JH”μ'Ω§Ή36#+Ž£@FΟ¦TενΥϋ όoΙ<.lWΖ$ΉΠΏkΧ•@qΝiΉsε2₯’™μc;¨c9ζZσσν{}σζ-ψε—Mڍ7UςυΊυΏβΌέΝ"N7"'Θ:ϊΐ©KDD€V?wξ\ιΌζ€'ί?ωσϋά­΄ο8ll¬–nf²«ϋȍI/ͺJ‰}—:FŸ1ΗΘο‚?ψTϋœΚwΉΈuT•Η5ͺ§ΎΗΒχί¨υ€atS•b’`-Υ΅νWv©žmΚ¨γ\«Δk†ΧIΔd9iWZ…Φ°Ο?Ρ*κΛΝΒV$6Ή©ιάωσNΓρςΞ ωŽ6kx,η̈ΡΚΗΊGJΞθ―1γΡͺΗςέlυ!ωη ¬³% >¬;V…/Œ9Οq^έ$%ηΡ8Pΐ Uu4κp" ΚQGUrpΦ²K͈0ιuŒšmΫ—!Τg-ΪwZβ†ά;1νZ2υ[«διC°rϋΗ¨αλδΈGMί΄}=¦ηΓ¨vύ±Λ₯Βη0£Σhμs’ΘνΫ ‘*‘uύα;‰Τž>wΆeδ’UΨΆa<|6FθΧΖ7|%έΙ›#|α»X¦fυσ8ŠMλ6bφo VnS덋₯ςχ¦£wr3ο.­m¬*foΪt'ΩΧp‹|Λ£ VΔ7vk«¨’Τ?UiΩxπRU…KγN λs4ΕΒΝλ±~j{lΩσώŽ?UŸ+ύγ°kα •lέvΉκ†«qoΗ(šθΦΐψό¦o“φͺ"Ζώsδξ6VJΎ*}Ϋ†ω˜2&…UΚΌ·_SLY΄ ³:WΑIuSD~΅Ύ7˜ΥΖχ"ΰ3 €VΐϊΏBR»e|(@ P€ \ P­z­ΛtIŠL8όχίa-a·ͺFb΅Αώ„\l;n„Λ…΅ –ŸOΣ’£^σŠ&Q™ΞΓγ^χΰ>>ω\šπ* ‹.1¬&,qΟ™³Νžk¬%EJΊ5Ά ε •ͺίξίοΎΧOϋ'ΟΏœ6A34ΈBΊ›[Υͺ•πΩg“΅DΎ·₯:΄$yψͺjU2H5L©²§ΥΥgF^»wοη’„WιΎτςε+Ψr·΄Ύ^y”ρS§ΜΔ£₯Jj£έ›‹$œK·ΙREΨΩΰξΨrͺκ‚?ͺŠ FΓΕ‹—°cΗίȚεήgΣ~ΎΰΞκδ o‚ˆΎF¦λβWb—ΟθδΙ3π\σΖN»ͺuulφ|NŒ$ •Ο{½5γǏΔ+―Όd™Δ=ωΎ©RΥ_~9Ϋ°9Ž=νΟΜ¨ϊ(±…„tŠχ½.ίσς_³fut Ζπჴ Ν†Α»p€O^­G€ŸUbuΒAΫΧͺ€G34e­Z΅ΐΘ‘cΎ$Φ•+ΦjI―fuY{…‡Ρή{ϊίf?J"υ_;wCΊ’7$qΎP‘‚F“\>NήSr¬¨χΦaΏBωŒΚ ΟΤ­e?ΪΤηςΫ%Ίωσ‡~rˆC’š?=^«hmΖηΓ! Ž €δfά9³`ΙoP«Φ–ŠPn~‘σ5οϋΘπ&ι@z’ί°f Rx^ΐέqZωB·HΙ9ύ5f=ZνxBwκΚΫΆξԌχ(=²\½zMKή;οo7ό‘–snΟpR0ΑΏICŒζP…YŽ•Β&NՊfθ=‡.„#)ΰB_Ώ@@υžαd»V¨LΣ*πv2έΜΡq*ΉΠ'xήo"η]½Πω•€»¬JΐM$ω4]ŽΓ¦­2H|₯1sσ”TρzΧΡιΗ»:‘^[Ήϊ/K7νš”ΦG8<šΖZΞΐ†hFλ¦bβΊHΥhͺΗΜ Τ!AA Q£€bUεχE*»’|nMoγ„^ό›)`sΚΝψ P€ (@ ,PHuoά»OwtιŠΏώΪm«ΔΌ[UβzΉC7t{½3¬•΄ήLR0α`Ÿ(όηŸ;NNΣίR wξάoρšJΪΉpα’κ1αίΉsΞ+Ή2αU*ρψϋ7P?ςƒ!]€2 租LΤ:ƒ‚Τ ['ƒ+cs²J­ϊ[LLŒν½ζl>WΖΦθΩϊZE^©ͺ-pεβŠόΫ±c‚ZwΒ«]_I49Χ•I₯’ˆΫž 폡k~±΅ιqη‹m‚U…Π‚hάΈ36Έ26}₯'NDhΙV9rdΧG%λΡU±Ι…ϋ=C έ'OSIςώ—φ”}ΕΏͺS―ͺM%i½BΕr†qJΒΘ±» ’žͺΊ,λ4pΈ›qεΚUL˜0λUυW_}Ε0.ικ؜˜(π€ ότΣjHoΥM#Fίλ2NnΔpχ ϋ³.;h7'}nž+ςΛώLΎ£ΪΎτ*žoωœVΡΧέ±9[Ÿμoεψγϊ;έs;›Ο•γ³fΝͺΎ;ίΒ»ƒ?Δ’%Λm•f/©H$qxύϊίΠ£GˆaοŒK_vΛškmΩ»χ œ9sV§.ΚΙMhΓ‡¬υΨ!I f ςtR½ησεΛgVλ}τΡ¨_i΄lω²Φc‡~Œ+m:sΖ<Œχκc»Ξa.!mυfhWΌέo6oώΣvL+Ηςν¬>Γ…ΤρšU9–>| >ωx–ͺ$έ2ςδ)t}΅§vlΩ A]«„Λ8(`)ωŽϋlόdυ{;Pλ½Εθ˜ατι3¦Ζ¬Φx½[oνΖf‰YωύΨ©γZb¦™ ΜΞpδŠδœpφϊτoυcΩΞ΄ž#H/«€–cΕγ ‰9[Άlθί-Ϋ9½GιQAzί’σ‘}ϋ½©>γΙMψIJ"εΣυΟqjΞ€|mιχ ΉΉQzV5jœφy–%Λϋ`μΨIwŽΏ{vKΏ•qIH‘€gΙ*ΐZŒ\r'a4ήΛcbΰΐ-θVEKΐ7Ν*ΨW Ν―'ΰͺ ³.LΐX7=εΓ”UλTΓΈ‚λ=HŠα!zΈ<ΙΊZψC· Ζ7£Δ†oΔ¨¨|¨₯’ eΤL/»ŸΨωυWVŠΞ_©!ήΏ  οό“.a‹ϊHF:ΙΈΞuξ½ηάέΖΎ₯QQ}&¦Hς¨Γ‡UΓΖ-ŠΩ%υ»»Υ=­C5q,ΆTσŽ _1*1½D~γοkχ$ί…‹QΙήωΰWΒ8―»ΫXϋTͺϊ­Ζ‰ϊΡ[7ͺΈ=ξ&K”ξoγΨ蝘ΩΧθf‡8¬6hέwJχΨmOάΪΖΆ΅ς R/`ήν‘©™―€(@ P€ €©•S[«@IDAT:΄Ρ*ΜΚIϋΜ™3k$©BΊT—i¦™Χ.1ζΘ‘Γa‚žπϊN‘X΅zqΌͺΉ3§`„ήzŸήƒΎͺK—*‘α5xzά;ug?³$nnάψ;¦L™ΑƒϋΪOJΣsItϊΰΓΑ˜ͺ*½ςrό ©Š² ΎŽβΕ‹jλpwlΞ6LΪ.aϋΉ;6ιςχ»…³πι§ΡςωΪ{^OŒg@/ν΅Ώ\,L8H"ˆTύnυΒ+ͺ;Έ_ρ¬JˆNΟ‘eΛζZ%Ι·ί’-ΦC½―δ3ΩZ]8οΫ7Tλή].L››$ŸΑόω}΄m·»c+₯ͺRΟϋfzφθ/T₯Mϋ‘cΗΆx£{[εM£ΚJωσί©–ςZ/4mφ,yΔΧ~iz.sΏžŠ>*q­QΓηmΛ’Hδ3Z°`Ϋ8wΗf[1ŸP  Θώ32ς”κψžmΤpΛeΏϋΣςo΅$gΓ\8RΎΏeφ¦ͺτ?ύ«ΉρΦ$7΅kΧΪ΄DάxΑΨύ‘ΏΐέώYνΖΉϋ©άΠεν•Ό©DωπΓ IeeΛ–ΖβοgΓΜε{@φχƒ~€¦M‚ =Hς>›ϊεxS+cJ;IΟ&ςέn}δξφKΈ>ϋcά—γJ΅κ™3'‘\ΉΗΎΜmΛ±Ϊν[·ϊζΫρΦ)½tΘqΏYCΜ9 W]ΉrELž2N'½ƒaCGΓΧ·vσFγΖυ1dθ;Ϊ±₯α 9’& d‚Α‰b‘žg\Ή‚yσjŒB›Š.š₯νG¦»zœ|ΗΘϊε³έΌωKρVΨLϋμ›y“LΌ€μώ0:/`7Ω­O­| ‘C$η>―YV<žΠ-šψ#[vOθηXτρrόσΑƒ΄žΛτqf<¦δœ9ρ_δΙ“ίΜ ½{ D½gPΊtI­w<9ΐc_9ρζ BΏ©!¨#=§‘―ͺ”*ω¬±{0¦Swμ.аΪχΟ{τNξ tS Έ~&Α/έKGΗ`Q_U•:xΌͺΐ{NύVΰƒ‡|%yΤ`ξ&Y7 QIΦ~ΛΠΎR‰ τŸ¨―n`E»^θδϋ!Ζ΄―‰όκόΎ±u-‚C$ρρcΤHΔEK~\ͺ*L«JΡληΪ%κ&½φ΄Μ+…UβmRƒλΫΈ†RoϋΆ…η¨IθQΏ<ΌΥ‡"6:«F΄Ε°]₯1%¬Ξ0MicU”·R ϊME·zύ1qΡΤ.)ŸQiγh2eϊNB_5JU)w$‘ώc,υο―ͺ•—Ζ¬εgI§1±‡χ¨&­_Ω©€`py{–ΖΘa5Ο°ΩhQ]%€k;ΎμΫ΄νϋNE­Q³΅ͺΥκ>.ΗΑεŸc d“PTΦυΓΑMα+ŸΩΨH¬ό΄;iοΑ*ŽqΩΖΈ―m«δ €A ΣεΛ—οά^œ†…π₯ (@ Pΐέ§NBΙ’Ξξ+tw4\_Fɘ˜ΛΪζΛΕoIςδpάΈq—.]–„vӘΌΆ“ͺ;΅TΪ”ŠΒY²XηΎXiSυW‹I.Jε I HΕR©ͺ$mιννe©6•Κ‘›§§'rηΞ•τΖp P C Θ>Cͺ₯J2§μ3δI \ΌxIΫχ‹Υφ΅¦Y΅Š˜’τ!mΛ!qΉΙL,Hς²•Žqεχ“Όί$*W.oKs©Κ zOό½`$ΔqΈΏ€ς©^]–ηtRΧ–V>†-β9‚Τ΅«ύ«€ccc΅ίδςέm΅c±ϋυœ_Θy5ρ”žn8Pΐ*[ͺδΦ0-΄ŒΊοvΏJ$υρο¦8ω0½·iߌξΨTύctNμΎ°;ΊEχΑͺΞ₯¬ςf4n…°ϊcΫΰš ¦₯ρΟΨ£X«#V%ΆŸP¬_π%¨‡³w/€QUwβΗ€d¬VšTK Ϋΐv΄D» TΆ κςθ°›T›P ΄΅D* Ά@©„*€V,.¦.€kI+–G«U-Δ†­$ΆώΛcmCΥDηwgξ̝Ι$™I&IΎG“ΉsηœϋΉwζ&Ώωέr3Ώydγl™ϋΔ•²ο₯»$±₯ΊΪΈ¬‘ϊY™—χ€ Ϊ~Κ²‡dYQ»Qv|e‚4¬*•Y©AΤu#yJZα/dY'°»Oο•±3ΞYvv|u—c―Ω‰ς²l^‘ΙΔk^ ζ5qVƒ«S¦Κ…σ$-Ρσχ@wc‘ΏΛξΥχΚΚ’?˜Žiσί͏‰O_ωˆ,šz₯ηœ3YΤgd|_Wl‘΄ “°ξΘv™8η1Ωd2‰νˆ“ΠτΕ}b‡y Δ™ΧΐΤ&―«³ζWWγκ}IώνvWΌ•ykΝϋω2‡–<ΖξΣ#kf,”R=χμ’p½l.ΊGF'y&έΕΗΨUΰΔ‰Bs[υΨ@ΊT€ζ.ε§q@@@@@@%Π( ήt£&ιGJF ·Χ~SJVΞ–Η}kΫ[ρˆ € € € € € € € € € €@―ˆ© Μύϋ7F>ωdυ3&›²–αΧΚ0ΟTxΏίnf΅‘“δαυί–V0τ9Ω³βkςΘK&σ©ίš ΟΉ&Γ³Θρgvˆ™cJωΦΓ?•Ιž•εͺς΅eEΦ’’='dZPφgkΏ@@@@@@@@@@θ₯1ΐόBρOδό0;ˆΉQŽW>#GOyˆυψΝ^xƒΨKΫ~w² `ήPεΫ΅³>Λ.σ¦}6k N›*wάP%ΟΌώ† K° O@@@@@@@@@@θν1ΐ|κ₯½rκ₯P‡l¨Μ^³V¦hψ²Θσ_Pιί?h†&{NΩuΚΜSVζέ*ΧδδΛ΄kΣdψˆarγΒUrc“-˜ € € € € € € € € € €1ΐ,ύ?+9S‡Ιy“tΉρd₯μ}IˆEFΝΎW¦₯ ξΤ£90m†,ŸT%«χž0νΎ)/–CJ–™γς¦¬~θ·&˜ψF3'#†‰ΌtΒDο’w^+Λ§₯™Ι'ε…?’‡_Θγφ”8ΉΜTo?›6’Ÿόφ2Ι»q€ιM£œ¬Ϊ#UvΥ#†Όl[πˆ €1/Pίψ‘tφ-Ε΄Νh•?Τ]θ²ΜΛΞ}Πη^8}AMκηœΝ4 €½V€1Ft=cŒθ8R  €@Οˆε1Ÿaτœσ=AθyŒ1ΪLω £ύ†Τ€ €@OˆρfΒryKΫιΗowήs"d½z¦fE°KKΞφ:‘λMκAPKZŸχ•οΚοLΰ2@Žhi¬Π΅―₯ν΄―Œ1Z>bŒ1Zφa) €@l ΄4N`|ΡqΗ–ρEΗΩR3 €@χ`ŒΡ5ǁ1FΧΈΣ* €4/Π·ωEέoΙΰwڎ“i&˜ΈΏ·»{žΡHfS.‚όtΝlκyζϋέψ5ςΩK½Oϋƒ|.Kι™Ω€8f[σζ­?ΞWOά°εg[ΦΘ ΓνΚ|‹€ΠkdΙΓΕ2m˜}R¦@@bU`ɁχdΙ³οΕjχι7 €tSΖέτΐΠ-@bX€ρE <ΊŽ €@7`ŒΡ]C@ ΊζΈ4ΩΈ{wΛ΄&˜ψ»ol²Ξΰ΄iςθξΙςΖλoˆ•_9n€\μέκςkΚξέ ›ΤaΝh¦ώΈΛΣdαΖ'eaγ9yγν·₯±1N  Έ’Ή € €@μ ςΉ€~Ρ¨*μ:΄Ν.υn‘Ηήo²οšiΰ±Ιwuχh@˜`Œ8ΎbŒσ§4;€ ΠMzγƒΟ0ΊΙΙG7@z΄c αε3 ΏS € Π6˜ΫζΖV € €@―ΠlΓ?›φ‘^·ίƒ\B r―;κμ0 €@g 0ΖθLmΪB@ χτΖ1Ÿaτžσ›=Eθ:Ζ]gOΛ € ΠσΈηuΟ;¦μ € € € € € € € € € €έV€ ΜέφΠΠ1@θ©ŸK ΌMx[χ³³oS¦·!}υμ…Άv·MΫ]‘ΠO4{PgέΏΞj«3φ‡6@zŸcŒπ9cŒπ­X@ w ΔκψBZOώƒΟ0zχλ’½Gz‚cŒΘŽbg}ŽΑ#²γΒΪ € Π~˜ΫoH  € €@D?›φ‘ˆΦonεΞΎMΩLπrώΞw›λN‡Μίn¬RΐwKάϊΚyyΛύ‘,Χja/ϋSŸ˜ηŽdΈ6+"€΄[€1Fψ„Œ1Β·bM@ή-«γ =j=υs >Γθέ―Iφθ)Œ1";’ρ9cŒΘŽ k#€ €@tϊF§jA@@ 6–<ϋž|χIΏΕRo‚‘Ώs ϊυF±‹T… €,ΐ£ƒ©@^(ΐψ’tv@N`ŒΡ Θ4 €!H ’…™ € €=]@o…–·σyυμΆ«š±ΰuΘζIΡΙΊέa₯b@ˆšcŒ¨QR €x_p* € €@G0ΖθUκD@H`ŽD‹u@@z”@Ό«O‡οΟΠψŽo£Γw‚@@ "Ζq±2 €„!ΐψ" $VA¨ |ψα‡Q«‹ŠθiΦ룓_#Ϊf4^—}χΦgސw’Վsg[C:žw@[=νc@ˆ>}’As,mϊˆ €taρ}eΑhύ$«σŠΆΩQeKδgΣ>"<ο–'ͺΞwH3χŽsΙΧ―κί!uS) €=E€1FδG’1Fδfl ΠϋzƒΟ0zίωΛ#Π™ΑA‘ΑΟ;³/΄…@, ΨGζ§wξηώΪfT^›Vπ°η &$Zβγ>”νS/–οšΏ“5'ρ5Gε8xΫZ>Φ%³¬Ώ“h‹ΪΆ·ύhΆ•S  €D" c“ΰ ζΰηαΤGs8J¬ƒ € ΓL&α…c:7€Ή3ΨοΏΞ%W&φ“ϊΖθed2;o7ΑΡΧ&υλŒ]  @bZ€1Fψ‡1FψV¬‰ €@Ocπη5D[ΐˆ ~ΤvμyΡn“ϊˆu€b˜;;ΤζCωΰƒφ γΓ?0―ν<‡ΰƒ>¦NΟτς±ύedBi0'±η΅χ8ipτ“S\rω;‰―NӞέώ‡fϊΣ  €Ğ€¨μ bΦyΞηαξUgͺΒνλ!€ €=V`ďΟωφνψνζΎYm,/œΎ ω;ίυmݞΊ|•τ‰ά‘Ρ“uΉ—žHμ6 ΠΕŒ1Ίψ„hž1Ff!€Δ”γ‹ξwΈ_tΏcBˆE;8Yƒ§Ον}³ηΩΟyD ½W<ζ;Ι«sΪώw’ߝΉ 3vϋNžΊΪ»O±°ύήΡS>Έπ‘ΌΎgZŸOϋ'ύέ'`žΞikωκœΨ†§ύ V•L?ήΏύAΩmνΫ!€ €@dvΠ²neOλ£ύ£f°η;Χi­•θFj΄ΦΛ@@bV ή-ςκYΟK΅W$τ½M*@zcŒž{lΩ3@ΊR€1FWκΣ6Δ‚€Ψ?š՞~Œ…}‘±'παώΏ58ƒh#έ“ ο_hΥnΫ ζo%Υχχ?άνΪ³^κGϋI|ώVrΑ,Ϋ^šŒΞν±oΛώ|ψΆοΙϊ¬}!€Ή-Šlƒ €@Χ ΨΛΑ}ϋφυuΜΘμ›ΩΜΜΝΐ0@@ Pΰ&xΩ™ρ9piΗ<Ϋ>ν#r­Ή½@zcŒž{lΩ3@ΊR€1FWκΣ6tgΰe ^ώΡuμ ζξΌ/τ-†ήoτuΎ±±Ώo:‰σηM q”κ ·νͺΧ/Ȝ_ΏξκQYο±/^,£?ήώΏ•\P«χΟ[}ϊΰύ~ΨΨώ:#ΩΑ΄mtεόωΎή~$}e]@- ΑΙ¬l?κ΄Όl?Ϊ[†ΘL³­Ε# € €ΝΜΩσž44ήΚμŠ„ΎruQHyΠL›ΜF@ž/ΐ£ηcφ@Ξ`|ΡΩⴇ@l h`²;ˆYƒ”/\Έ`ύ 8Π·3ΏωΝoδωηŸ—W_}UŽ?ξ›ΟΡψΏΏy²πj}~ζΟΦiύoŸPώοMgχν©+άΆƒΫ w»φ¬wΗ“}d@>ν©ΒΪφ―o(}ΗγuΠčOψaψφ~Λ|ΩΑOmΥwρE}dΘΐπϋuόΝδOό΄DkŸΪB € Άΐˆ#δŠ+ΜΜLΉώϊλ}۝;wNϊυσ|1ΚbΦΰeύwGkAΜ0ϋ™@@:_ΰΕӁ·‹λ#W&†ώΐ(xέWλόπuFΟ™Ύ}“³!k›έ‘,'S~ώŽ―+ρq"χ#xΩΒ €@·70ΖwtΛΪfW—Λτ•?Ύα»T_Σ₯H‚—»Ί΄ €νΠ/7κΟ―~υ+ΉζškdέΊu’_„ΤSh±ƒ•5˜9œΰeέ¦™aŸ.’ € €t΄@ήΞwšΠαŸMϋHΐ<ϋIπΊφόΞzΤΐκζϊΦY}θͺvtί0ώbωΞΟmαΌώβfΝ»ͺ΄‹ €€S xάΐΓ©Σ}¦ctŸcAO@Zˆ₯ρ…ξMoύƒρEλη2k €@`f d~}O(Α˜]!pΒ‘AYΫΧΰΰ—†NτΌnWτWƒ«›λ_Wτ§³ΪΤύίGN5x‚·‡™ιζΝ;«O΄ƒ €]'πβ‹/Κ²eΛdγƍֿ'4xYmnζe»η0Ϋ<"€ € Π‚@ξΘ‹δ…ΣYœ& gέ‹@@ Ζ`±* €„%ΐψ",&VB Χ h&4ϋG μ Μϋχο'σr―=+ΨqΒ|qΡ,ؚz«λ³B‡ΧkΦB@Ž(//ύwΔg>σιΫ·―οΗώχ†‘Ή₯φ‰ΌhI‡e € €8Φ›ΜΛ@@ ΪŒ1’-J} € ΐψ‚sB h ; ΐ`Φ Μ»wο΅ σ@aρ‘³c¬Δ@θ5ϊοˆQ£FYΑΛύϊυσύ[Cτί­1ΐάkNv@Ί‹ΐρΫΆ©+mέM…Ψθ…Σ$η»!–tά¬νΣ>"Χ&υ‹Jz U»όΞμˈŸ³Ÿςˆ €@hλX‘­ΫE 1F΄$©@θ ΄uœΠΦν’Ή±<Ζΰ3Œhž Τ…Ά€Όμ|σ4ˆYͺͺͺμE<"Πα£>ζΌ>’ΖΪΊ]$m΄Άf >ρ¦ηΛ­­­εΓ/ν#ϊ·?γρŎ‘wΞ‹ύΫΡκ"υ € €@/ΠGΨ¦°Ώ(ι€h-ˆΩ1\ƌκ«ή]_'un³οήYξΣrͺN\fέΔ‘‰Ύυ˜@@@@@@@@@@@ »Δtsύ±=ςΝά%ςJΝTωήΆΝrΣΥAAΌξγςΓό©ςxuΰ©γ’κCžZξΫU)·Œ°ƒ“λdΟ dΙS!Z˜φ=ΩΌϊ& j!°bϋY3ν&$ˆœ΅Χ z¬?ΎG–L]"‡‚ζKκΝ²cλύ2ΔYŸΨ9WrΧ9v¦ϊq™šυΈΩ"AΆV–oΙs@@@@@@@@@@Ί\ o—χ pŸΪ#cΑΛ©γ¦Ι΄IWyk«–{§gΙ–ΓšνΨ.§δ‡œΑΛ©2iΪ$κ+Ύΰe]³Ρd4ΆΛα-sΑ˞υS½ «wή+Y‹χˆm{«ΰΗ:ΩL»g›‹^>υŒd;‚—―š4M&]₯=5₯ϊ)Ι»\N™ΙΈΔ«%!υ*Iυ.Ε W™η“Ύ%ΓνlIA@@@@@@@@@@ ›Δhs<’ΏΔK˜`²-”’Ν«eυϊνRΎλa±ƒŒš΅Ξ τΥλ?%{†¦=(εGKdύκυRVΉOΪ8ŠΙšό_y²λϊ•ήυKŽ–Λƒ“ΌΓ{·Θ±V"˜λ?)5ΧoνlWκeΛ‚;Ό™™―’‡w•Λφυ«eύφ2Ωυπ7Όkξ”Gž9%#&ί/e%ΫεΑoσΜO½Oφoί.%λo /3t@»kE»εω>ξ]g’l]=YΩ[Έ†Κμ­[}AΟφl“‹YN{Ÿ$OBγArύχΛ€q“d€Ιο]ΗνvKΐ5Ώ•v ΡΩ7oά΄άόθ£rΓ_OeΔ wΚχΌAΟ;?2ϋs+ρΤώέc @@@@@@@@@@.Έ¨ Ϊl“ξzo©2ϋϊMκtΥ4™$Λ^³dΟΛ'δΦ‘Γ}ΑΎ©ίΈEšl኷2{ς-{«s%Ιd“hω“=Ήϊ‘Y’yψfΉgφ4Ήjψp:τYΏω_»ΗžΜ—άu―ψž{&ΖɎʍ·λvΧωκ9v쐖8©χF%»Lu]Όf6€i3ε¬φlόάW € € € € € € € € € €t˜ `>υΚ³^:°o€₯Ιͺ|ΙTΌWcŠ=KLŒ²UšΩΒ³0ΰχ ΉyϋVy~β,9dζŸ=τ”,1?VIΈJήs·ά:ωj+€8>qΈ™ΐ\`n»uΥώz^yh‰Μς΄Θo@@@@@@@@@@z„@L0»\‰­ΰ›μΔή¬Εή‘{“8{’ΥGΧΠ1²ωh₯?ό¬μ|ϊyώω½Rm’ΛΩWδ‘%Σε‘g”ςυ“eθδΥRyύύMκӌΙ'šΜ wF‚Œ›vƒ •RY³/Ol’}9ܚY@@@@@@@@@@ˆΙζΔT“^YvZfno†εΐϊjyͺΪ3ηκαžΤΛΎ@ζ:_$³c“PAΝn©―Χ­\2bΜdΉSd½ΤŸzYžzΰyθi`οχε•{&Λu&žΪ₯ΡΚMŠ 4Άη5ψ¦μ9ζ±i»ώ}K”Ωχί/cBUλ¨!`2’u6δ  € € € € € € € € € €#Π·sš‰n+ώ Μgε‡OnRωρg·ˆ /ΆJj’fkvΙΠ‘ Φσ³;(‡λ=ΛμίξSΥrΘ~β}t{JƎk~εyΗϊƒ†^-³οΌΞ»ΦY9vΚ±0¨m7qΈ·έ§B΅ϋJ“vΕ5Θ[K΅|‘¦ϋ&ξγ²gΟa`΄΅Ά7(ϋΤi’ι&}a € € € € € € € € € €]/“Μ2τyx’―ϊρY2Χ1{ˆέrlΟ2υ^o8rκέ2y„'-ρ˜―ήιΥ–YcΛaoΰqύρ=’?uIΣ#―Οž²|Ι“rΌΞ“AΩ]Jφaͺ,Y2Kορ1Jςlpφi9|Ό^άnσΣ€ff € € € € € € € € € € Πυu}Βο3(χ†Υ;dή\Ωk6?΄n–Œ]\Oͺ<ΊωV±Γ‹]#n’Goώ‘|σ©³fΕ½2k’nΩ|Ρ@βGoN5λWΛΩCλdjV“D&έ#Χ mΎ]b΅ϋ'囏›œΠgwšvwΆΌΙΪ<ωΑmςτΨιVvζWΊC² ή$AόΦ8³¦§ ½κ3‘ϋsV–LkSe[e‰g!Ώ@@@@@@@@ ν)’™'ž["Ÿ‘²²šu₯HfζίόΖ3eRj5ίL ΠT cJžd€₯Hό@³μ\ƒΤTUHqiEΣ{М»Άό΄xΟΉkeΡΈ\)λ¬ύΛX-‡6MτΕίΤξ[$ΉΛ£ΧzJF¦ 1ov)+kΎξΜΜL{5‰—F)-‹δΈgΚΆC’κ $rΧξ“qΉΛ}υΕζDŠLΙ› i) βy9œ•ͺŠύRΪΛήX3Μyα8…Β8”ζeΝΜ₯²mi¦$™s’ΆΌXf-/ c[VA { θ{ͺo8ζμjΌΉ†œ­‘²hΌ?4Ή.¬4Χ…RgkQ™žrΧF™—&.χY)/.εE‘ΌηG₯ έ¦’ `Žχ ,=ΧHY_ΉOnxδYςΈ7γ²—5uέ²ϊž›e€?‰²΅δΊϋχΛΦΤdΦwAΔ©ς»―“§Χ=nΕ%ΧέΏ]ΆyDXςΈ˜πcGI›ο[/ oΨ'ΗΞΙλξά.[“‚ΫM…χΝ–gΏ»N^1+ΗΗyGΊα «e³Ω·§Χ= χ>Έo’z³lέ|·ŒIτ――ΑΦ[Ž“Y­λμΣ € € € € € € € ‘@†lΫΊΙ¨WnΚ—ΉEAΡΙ™3€ `’―ξΣϋVΚΤxρ5ΐDΘ[±YζLH—x(ˆgrςeΡ:©,-”Ήk£@Υγγα™ΑϋίιτRG©έEk $έQeυφω2}CE“Ϊ3–n“‚œTό†J)ίt= =y*EVl^#“›ΔdεδΟ”₯ ΅RΊ2WΦ6 ήspL εzs]‰μeQ++GηJΖόIυΖΝ₯M4nEE²6θ²Υs Ψ“^!²T6oΚ1_πh©4Huω~Y΅`­tοΣ=Sfζλ%j‚―'Ξ™'₯&€Ή·Ύλwϋf׈[δθΡ[BŸy‘2ωΞΝ2ω[υRΧΠ('qA2¨…wξ1·¬–£7ένYί|G%>qΈκŸ·˜­FάΞ¦\rυδ;₯ΔόΈλλ₯‘±Ρ4'Afηj­N»$°]°Ÿ(.SΙμ[n ½΅Ω·›ξί,7έ]/υΪ§ΖiŒ‹—DΣvΣbꟽY*oΆϋί’AΣ홃 €έQΰ­·ή’~ύϊΙΐϊ½βΦΛ;οΌ#ηϟ—ΘEuϋa^λ;Δ € uFσΩΖ»οΎk>“pΙΕ_VύŒ1ΒbκV+E:ŽμV§3 € € €@·01A}JŸ³B2Цš˜ύΣΎ½yJA ,»6ο•όto€a¨-\‰’ž³Rv˜?uDΘPMF}^Ζ 9°)ΫxνLΗQοo”*ά]~Z'&ωjKNŸ`¦+|Ον‰)&XΧYjΛw;Ÿφ’ιLΩΌΧ}·τrˆO–œ‚2pεx±Ώ#²tΫΙIυ†5vvοnxtšτ)N&4™Ι bK`Θΐ0²‘ΗKκΨΩ~(] L6β.έC“€ΙŒο{krfΖ Γ6―q|•§K{ݍχνŠF£ή¦ ZNLL΄‚{›^>%[2ΣeTώ“rJΌλkπ²ΤΙ“ίό¦7ϋrͺŒ*@Ψό#Γkƒ"^vμ­έOS/‡U4 Ϋ΄9(qh3ΑΛώZό} ·rΆL!€ €@χΨ΅k—\zι₯ςΕ/~Q.\ΈΠjηή{ο=3fŒ΅Ν‘#GZ]Ώ-+Όωζ›ς«_ύJ^~ωεΆlΥm4ψκOϊ“œ:u*ͺυR €=]ΰώϋο·Ζ ?ώxX»ΪcŒ'NΘΣO?-ωΛ_ΒκSGToΎΐώΗ?ώQΞ=Ϋ‘Νthέ‘Ž#;΄3TŽ € €τ€―‡μ»Ρ₯™«›/»€Άφ΄4xΙ—ΚŠŒ.νm;7 Γά:(¬+Μ­ΪΈZΈjcυ₯₯•β &u₯¦Ι”&uεIZ²3Ξ§AΚ‹J›¬Υfdžί$xΩέPg^uΦDό&c©ΙZmΏβ\Žι€τo£Sρ—aܞ7ŽƒεΎχΊͺύ²Ό"F θ6Ά@$/W²ΜΫΆΤ޲˝oM(•ƒε΅ήχ5·Tν~BzCRω@³^“šΟ}ό°<€{:»N&¦o‘i gΛUςΤΊ§€Ϊλ‘π{dLθψeΏS € €@'h€–!C†HŸ>}"j±½Ω—΅ν?όΠΚΜθlXƒ—ΏϊΥ―Κe—]&ǎ“Αƒ;wκτ3ΟQj–Hq™ooμf})™SdBzš$˜}o4ϋ^βάwίZή‰”)rWNš• ϊlνA)¬<ΌFtŸW¬’ͺΊlλΛ(œ,ςDJ‹ύΝ€ΜΘ’$S‘:sŒ‚v7cJžd—9ήn³fƒδœ58¦S$#sˆyο0³Μ―²2ηV--σV‘ηΓs>$˜σ‘ќ%ζ|ꛣ±vOf₯Zg΅―žΚ'ζΛάB»Οy²γΠ"ρJζš’—"R™Π$8>ٜsΊΛζύ3 „±?))ζ΅εyqIγ™2©¨ρΏΆΜω΅ΑρΪ ¨Όž˜σgόθUg¬Ψ!›²“½σά²oώΈΠΑΙϋ eξώbIH8ΰΠ‘οx π€W ΈkwΛΈ\λcΖκm2bͺΟΒ•šn}a€Τ7Η3Ρ5#h[Σ–Ηsϊ>"’μ_]§β\’aΝ7―ɚ),\&ϋ‹$Α\υ<οUfόgή―υσύ8σ^οyqVαyΟΦ77{|°4’k‘sΓn0έk˜]#n’}6ΘΔo3μgeηCλd§γ\uσƒςθcs˜D@Ί^@oρnioP‘ΆsζΜIJJ €¬·š·KΏ~ύμΙNΤΰj;kδ’%K^ξτ#@ƒ €±,Π–kxG1lO½ϋDW–7ήxC~ώσŸ[]ψ—ΎΤ•]‰JΫ‘Œ#£ • € € €½N ^rΦ¬–΅ΉΛΓΨσLΩΈc©ŒMφE1zΆΙΙ—9‹ͺ₯dΩtΩΰΡ˜±F &&{묓ͺj‘΄TΗvf›™3χΙά‚³ζ Έω&ΠΤί|ΆY–·―@¦//φΟ4S™σΦΛΌ,It¬+’#3ηΜ“}… dyqP_ΐΦ<ιL3&Sͺ³,/8(c7M΄nuΎϋœώΞ”5› |‘QuΥU&N*-ΰψζϜ)ϋ –Ι™¬₯23=I7ς–lɟ™'γ§KΰY2E6οXd‘M ͺ£δδΟ”yΥeντΕM²CNY±Ye§ϋϊζΩΜs^,^+‹ ΛΜ¬ΐΎΪU'eΝ—νY"΅ϋVŠι½ΏΈΚΌ$Υُμ™Q΅[&ΝςͺYdά%ΫVδHjΰ‰-93ηHΥΎB™τ:Θ3Αm‹ΑmϊΘ3i^ώžDmͺ€²VΖϊ^Σ&8;kžHq‘―ώ)&ΈάYͺ+vϋžfΜΫ(+ςΖ[]˜oφ±ΆΌDrlπ­rΒ|ωa}ΑDί>Φξ^$Ή«τΈ˜2sάΦ›μ₯YΞχ³INŽ9ͺφΙ‚YΛύςVeρ«Aͺ}ΑΛZ±lΪ?E ²S½5ΚG³ΦΘ¦EΙήηφC²Μί΄έ<©••£s₯ԚώώΜX³ή₯wΤIb€ΏΎ&φΜν²χΝ8{7νΗ&3< V―Ωκίc±ΘX”½£σήΎ­έeˆŽ@ΰΙ_΄|Ί€§ρaΔ-π%ΒkFθ>†7ž xρVδJΚ’Mž ŸŒΞέ/;Άϋ―γζbh村₯3Ν;Ž·4TJώψΉΎχΪΫΆJvͺ}ΕrΛnσε…Ufέ¨μ—έhΧ<φͺTuC―»UŽV–Λ­Κƒίϋžάwί}ς½–]ϋΚeϋύ“…δΛ]s* €΄_ΰΒ… ν―ΔΤπφΫoϋκ pΊι¦›¬ΜΛ―ΌςŠ Τu#§?ωΟRRRbY_wέuΎώ2 €ΡθŒ1Ζ† δΥW_•mΫΆuι“ž{ξ99~όΈdggΛ'?ωΙθcR# € € €@ΟHž([η₯΄²_™²υ@AΣΰeοVψTΙί΄KfΨ΅˜Μzώ’Όμ]oΪέΎ)0xΩή&uβN/:{€ύpΌ_Dχ½#2ΫΞ6 ½ή'Πΰ<ρΝΫ»ο/%²kFhΉΗs‘+ρΝuΎ=/ΡB©¬uΌXγSdŠox–)iɎλUCkπrTφΛΧ₯.›θ5˜}ΒA2bΜuζΗ7‡ @@ b7ί|Σ φՌ„—_~y“νφ·ΏΙ;οΌcΩ~δ#ρ-Χ  ?ύιOrϊτi9ώΌΉmO‚€₯₯Iώύ}λ„3ρ‡?όANžΫ熧ٹυœ±ηι΄Ξ³‘φ!==]W΅Ššύρ”sηΞ‰fΞώηώgΡcά\Ρsμχ­υuO}κSλλωωΑX}Πvƒ‹.ΧύΥ}ŒFΆΠΰϊyŽt†@[―S­]λΓν{WŒ1τz¦γζΖCα^Ot πώϋο›[<±σ?cKτz₯γ‹aΓ†5Λ Χ©ψ°–ίvΫmόE.]ΠΪΓγθΈIΗΑE·Χv΄}ϋϊs θ8θΨ±cΦ²ΔΔDωΜg>c]γϊΧΏΚΠ‘C£~M ΧΣξΏfr>zτ¨οϊ¬Χr½F7Wτ²Η:6Π±Χε洘 € €=A -oL)΄³|6έ£”»fJš/‚Ζ,o¨•ςςZIJϐd_d\’d›`Ο’εž\‘Α΅Τ™ΟΌeHrˆ@:·ω<όŒ$˜Ώψ›pIzώ<‘²BSΙΎ:Σ™­Φλn¨3Α”ρ’θά;g‘€ϋ³όιz”Ξ¨ΨP*΅9©βKŠ—τμωr${ŽΤΥΦHΕΑYUϊΌθ‘9΅gM"ζΰ,ίf%w]­˜³Δœoώ³D’ΣŜ%’gΙm+%Υε¬­ΑœWgΝ)gώφdΟv™ η­wIι,“ρ7c… ^N΅—Xž6†8ΞiΣD|WΡ2σ7ŠZ“YΩΩ7kύs"΅gL§«²κ uΞkΐnŠΙ![c~oܘοΟR©[Έ€A$Ρ±IY3ε”"ΩP3EζOLΆκυύj0Kjˆ—δ$‡‰oa”'j6He]Ύd%zλ5AiLsE…yž9ΑqμΝσΪJλ˜d™9!- #΅UεRۘ$ιώγ’86Ϋ–y³ ¬ήζ'36n”t»―V-n©3Έρζs+ίω`2‰n—!³2$·ΉIί†k‹ΛeΚJΖh‰O–μω’=ǜ“5•rΠ$8*,U8Oi¬©•Zsώ xτΌ/Š»VΜΩ%νߟΠο³YσΝ—ΚΒΙΐoχΆ }.DΪρήΡ~Ϋύaa 8£•ΝΫ©ωΗD矏Νίτ=ΐDωFvΝh¦ύHΖs»Νυ;Υ\w‡$'ωί7MFχΪ3ηΜ[Σ™fZ)*―1™Σνχ~3˜b.z‹s­βxΧ™»5D~-lΆΩ._ΰkI—w…D[@ΈDA@ŽψνokΑh@¦«8‹XκmΗ“Ν;kΧυ-ϊύο/)))’šš*γǏ— &XΑžΨqθΠ!ίz-Mhp­·ή*Ÿώτ§eβĉ֏Φyν΅ΧΚαΓ‡Cnͺ·BΧ€[ †Ήώϊλ­m4δšk‘S§NYΫhΆA κωΒΎ`=Χ€ ΠΥ ν·–έ»w[‘š•PƒDeίΎ}Vup_όβ},φϊσζΝ³ΪZΈp‘ά}χέVP‹½/Ϊ―o|γVЎ½Ύσρ½χή“G}ԚuσΝ7;™OκDΫΣ>7ΞΪWΝΠ¬D?ώΈ€΄εΨι6ZOVV–ε§υjΰŽf₯Φ ωωωV`m@‡Βxι9‘^K—.΅γϋ¨ΑN?ώρ}ϋh7ύβ‹/ZΖzΎθ±ΧϋΨk ½]τΨκρς—ΏάδΨΪη†~iP{žZλqΠ:υήyηΦφ<φ=sΗ5ϋάη>g΅{Γ 7Θ?ώγ?ΚόωσEcpyςΙ'­σΤ^_ϋj―ogιOjυSΆοώ/ Š·ήzΛΪW ͺΪΊukΐ2ž €±$Π–λT8ΧϊΦ ΊrŒ‘cύςɏ~τ£€nj°oaaaΘλΙ=χά0^ΠkΕη?yλΊόπΓΛΨ±ce̘1ΦυIΗ\z}xδ‘Gκw>ΡkΫΝ;­λLπΒcά{ο½ΦφΪ½:‹Φ‘ΧM½ή8pΐZ€ϋ§Ω§υz§}Τk©~h€I2jΤ(k,ΝkZ$žvίuŒpΙ%—ψηz}Φρ―φΡGΪλVUUYcTηΈγκ«―Άφ;ά±] € € €@·pWΛφ}΅ώ.Ί’eήζ<‘³4φ &‘‡[3ŸοΊMπΚφρΉ²`ωbɝT(uφJζqHͺ RiRάRi²ΜNΚΝ•Iγ‰31Ÿ‰Ψ”}+ΗIY6>Ώ$0ΓkΒ«¦ŒΩβŒε9}°@ƍŸ$“Ə“•Oϋ[‹%Ž$§ώωLu‚@±δ.ήp.xuI’ bʞΉRŽΪ%«[Θ’ν>]nn3?ɜ “d‘σά4ΉΝmιΗMΚ5ηΫxΩ^e"|}%^†X‰m§HzjΌoω ·l2™mυΌ7ϊ σΜ_βΣƊ9ΣeΚ”tGΐΌΩ’|“·q²©άyVΗK֌dY>έ΄Ώ¬Βœ±ώr¦’ΐjcq“Ψs^φžσωRΠε†fJF^@€­ϋτA=nΌωΌbΌŒ^yPΧπ–xkN쌻ς$ٞeέ΅fύρS%wκxYΉ―Ϊ±€γ&KΚœν˜ ΡS¦Xεε€ϋƒΫ̜κςR_'Ν{†yΣ°ή;κ*ŸάY dρά\)¬t‘ ‚bίΆmŸΘ” ΡΛ΅R0zœυYΠΈΡRλ¨8%Λ³ŽYνŸ,].‹·W6­Ηe‚ΝΣ²dζΚMrhοV±_Eζ½Τœ«eΞ7G·ι³™—;}±TH{χη΄<‘ο}Ÿ z=Έ’S­ΧCΣΞΖΜφ½w΄Χ6vœθiχp%O°>kΧΟΫ:"9vΰ―§Ώ§–šχS"Όf4··‘ŒηŠΟ2οM‹Ζmξ3ΦϋΥτΕ…Ν5!5Œ’Σ³¬u§LHs\+ΜΨ°€8jϋΥlg:q̝ˆMS € Πs4υ²Λ.³²ΦΎπΒ ;¦yν ϋ·³–ι‹>ϋΩΟZŸ:cΙ’%rΧ]wYΛ4σνδΙ“}Yˆ­™!~iΠΙΧΎφ5ωΟόOk©Ά―ΐϊψK/…ΨB¬uν@_ΝΌbΕ +ΈZWΦ€g BΡLКUYbνώκr `vήBέΞπlg5Τu΄h •±Ψε;ίωŽ|υ«_΅žjΆd­Ηljg¬.**’όΰV5Σ‘]4ϋaq±t‡(ΊŸšYƒΆ5s΅]4ƒpff¦ΨΩ™srrdΥͺUφb™={Άh΅–Hέο~χ;ωΧύW_]_ϊΧ­ύΣ o t²‹ŸHJ€η„Φ―ηΜχΏ}«=Ÿμ`fρ­o}+ πK³"k`»φS‹ΫΗE½vi0•–ζŽ­.³3P:3‰ΫσtΉΝΩEΟ -wάq‡άwί}Φ΄φ󁰂œu†’­^½ΪZf:τάΦ’η©₯ιω¨EΧΟΛΛ³ΑτC(-ϊš)//·¦ν_šeΣ.z.P@Xˆτ:₯γ‚pυ-ytυΓίεA―εzύ’㝕+Wϊ'λΦ­³Ύxc λ΅ΙΎ‚޳τZ§Χ ύb”]ΎύνoΛΛ/Ώl? xά΅k—υ\―σš Ϊ.‘Œ1f̘am¦•ν»KΨυθxB‹ξ‡υjΡ/e-Z΄ΘšΦ_ ,°ΏωΝo|cF½λA΄J$žΪ¦^[§Nκk^ΗxΣ¦M³žλΈJΏψ¦wYΠ’N7ήx£hφe-κ8gΞkZΗ"n/³fς @@ˆe—K*–ηŠ341}ެH υ―ΈŠΒΉ&tœυoΎΒ’JIέΊMΆmΫf1Lq£4bρž(ͺρ.,“ͺ3& Ρ.fΩ~;Φ±¦\N;yΧIOh―m=6ΈSd…ω|vυκ’ςμ’xg€sΐV<ιpŠ 2iτ|Ω]YδλkΧ•$m—m+BŒž©,1™=₯lu@gL–F»TԞΆ'ύ™βωdί3«ξ`±Ιηk—Byμ s›!2Κ|όž‘š`―`OKρEfΪΉEBκ(ΟΊ qŽmΜdœ³Η"χiymφκ΄σΔ6«5˜Ÿ”tGFKgf.]‘ηυjλuθωΛ‡§Ξ8c—ΰς<ρώxb±οyiiM€—oA”'*ΦV„ JΛJKt΄tZJ5Σ¦U*dξ€q&0ΫΌw,+4άiΦϋΖΆm[eŠ3 §cλ¨L¦€KW[R–πΨ.M1ΩΌύ­ΈΊϊ—΄oͺbΓ\=“TΦ:sTιJL“EΫΘjǟ‚βœ]1οΡΎ³­ϋγ֌Ψφ‹ΛδΖ. ΧΧC,—v½w΄Σ6–έθ{w0cσweύ1/ϋ€P½[¦./ΆζEzΝ¨Θρ$ςρœσκͺωή™΅OI…γ δQ&Ώ‰o0Χ=_i8*Ee‘_ }ΫwΓ ˜»αA‘K € Πύ4γν-·άbuTƒXΑ«v`εˆ#¬ΰ]]I?ŒΤ’A+'Ož΄w €¦¦Ζš§™vΰŒ΅bˆ_ˆSbn€Es4띳jΐ΄3ΨήTz6šΫgyΦωΆ£Π8o3―AAvPŒφ{ǎrύχ‹fε΅a5λ’fǎδΨιqΥ a-ϊŸΚΚJ+›³ξŸz9‹ήž>’bοKΈη„zΪ™#5³·žκͺΗΩ²eVΣίύξwEo ―Ηή>'΄ώΧ^{Ν:΄ίΊ:OΛύΧtΩyl΄πD3IjPΉΒoίΎέ:žv?5ψXΫΣ`f ΨΦc’E·φS‹;πNθυυ‘ϋ§Ύ?ϋΩΟ¬u4ϋ£Q >ά @Χ™τ¬ΗΣ.vπΊf½Τs‘‚Δͺ@$Χ©Hυ-yt—1†³zm·ΏŒ€AΜz½Σ/bιυDΗZτϊΠάψIlυ΄eΛίxK· Ύ~λ<Νή¬λiωχwλΡώΙC¦υ‹[:Σρˆ]t<‘c-zΝΣc¬ΧA—iΡ/½ώϊλ’™£΅?ωΙO¬ωΡόΥOϋ:¬_Σ»0θο駟–_ώς—VΧ4k΅-Ϊo[θxIΗdzχ‹Ν›7ϋΖgΊŽ}­Φi  € € λ‚2λ±rΗnΔKφœ¬€¬΄Ž…2cύ69tδˆ,Κ7wίIK΅ξԘfγ+…švβ/ŽΦ ^nžIl!ubΆd[ww4Y©[$šπœ'-P!«Lvέq£σ₯`ϋ>© Ό™š½HVh$Sp‰sηΖ …Žeq‘BζƒΦotkˆ°Ώ44­`Ξi΄‚Šύ[œ–·YΔSΑηuPPšΦ7dH`πsbj–δd{ξZš%ΐΰ$όΤa άE}5wF1/q₯I’Ιzžq—€8ΛzΒνΌύI™'Ϋφ’#‹dbVΊυΎ‘šš&©IŽ’έucP{bͺdηd[wΣΗT'nb²tΨ»FE‘Μ5ΕGη/2οΛ₯ΦR–x™Έf›Ι―άJiχώž΅uηZi0Ζ;ή‚_'βXς½£έΆ1fEwcFΐ]["γ§―ςυ7βk†oΛ¦mΟ5­ͺΩ9ΕkόΛ\Ι2!s†€8ή{λ*Z_ZŠζ~ωμš)˜»ΖV@@ h–_-k¦i-z\μsOΟτΨkΡLΞφkÚΑ/@ Β½NιEz­ΕΡΗΏώυ―­κΈGΏ°ecτzrηwϊ2?ρΔ_hэtά3aΒίκu°₯ρΦσd ΊΥkμ§?ύiίv:ΙC3HΫ_μ1‹}Υΰ_ϋ:eiG―kφuLƒ}υΛEvΡ¬Ρ·ήz«ύ4*‘zκ˜ΦίͺέZ;£_8Σ»%ά~ϋνrι₯—ZύΣ}Τ’c8 ΠΆΛW\aέ!bαΒ…2rδH{6 € € €@Ο(^ %Վ`OσgΘ2c³Μ7ΑΒΞ8LwCΙ,[Χα™_MCφΞ?³Ρ±/ώΉLu°@ή]žμΆš=xι< Η¬‘β Λe–ΌY •ˆγ%}J‡…ŒZ{ΙΦΜiύ πμ`.Oυ­wΚΧ wˆ=hξ₯κΫ¨ƒ&JΛk5'JφΌΐ/=5Ω―ύ%Ε$¦™i†ή9€ξt;Δύ „žŠΐVάξ ΰυΠU†?7CξςfΦΧΓΌΜσr(“ ΛHΙFΏ²$ ΣΌX}­Τνύ‰€ΎVΊσ‹#±ˆϊΉσzμ@4κ*e“Iv²iϋΑ€ρ”+9Sf8λΰ\ uΝπUΥI㹚ΒύŽ;Έ$cNΆ$ω:α–Šο΅"Zϋε«»λ&-#€ €1+0zτh+X^^xα+0ζ΄ωΰ@ƒ”΅8oΉmΡhp‡f Τ,‚v9vμ˜=Ωβ£㠌Ά7ˆ‹‹ ,ΡωΔi@ιmΜ58Iet]·ω‡’”bΧΡ–G Υ’™s5;_p±3*k»'NœΈ%ϋ!C|AΈφvΪ7-‘2k―Φ£A=ψΗνM¬G  ΥΝDωίύίV6@ΝΞ«AN”\Β=vv†_ *€γΰβ ζ ^ΦΪσHΟ‰wήyΗͺ2//―I€zhΰ²φWδ5Άνχ5Χ\cM;ινκυ6χšΕZƒŽΫS.Ήδ’€Ν?φ±ωΡ53³(λy―gš]2Έ46zώu•••Ό₯λip»f¬ΤΫΣΫRψEΟΝv™25“ΈΎ5Zƒσ) €@¬ „{ŠΦ΅Ύ;Ž1ώώχΏ[‡QΏˆ|­Ρλ»~GΗ\Ώύο­;.Ψ_Ӎœ΄ϊ\ΧCηkΡ@]ύ⍖9sζ4ΉΖF:ΖΠρŸ•Ρ·^ΗLT>±Hž¨—oυz!ύ\ULbiiYΗ4J­-L‘œόlIΆΧp'IIa™•YњUS,sː#+ΗΪk„Ηυ-jΫ„ηΟ2ώmYWufrΒ@2οTΰ&qΎσΙ³8Yη΄c²I=њQWώ„,(•‰- 漎7ηυYs^Η­ήΡ|Sg#ˆkΎ–°–TlΨ/uω©Ύχ‹δΤ$Ηv΅²»°Ζ!ύ€δ§ΪοS‰2sσ<)š[²ΉΦ’±:δv7ž+6ϋηIR²η š˜šμοOΓQ)π?uN΅Ί_Ξ•»Ωtχ`^; ›qΡ@zΐROΰiΪ£Nί•Θ-·άbέΞ\h4³_E…gΔ¨όœΑ(€²fΝkέΆvΤ4΅ƒjΓ©Gƒ”5hδη?y8«GΌŽήŽ\Λk―½r[ ¬Υ€ d ξw¨ 吕˜™Ί­ΝY³ψj`OpьΏ_ωΚW‚g‡|ξ±sΆcϋ‡¬° 3#9'ή{ο=ΡL-ηωΆoίΎ–V΅»‚ƒ»Zά Β…L–››+šΑΊ΅’ηZBeέΦωΓ† Σ_Ρ,šΩY3nκyύ₯/}IμμΤ­b@ ΦΒ½Nι~FγZo_γ‚―Υ-9F£έζκw^χœ™ωλ_yε•ΦSϋ‹0ΞeϊE­p‹~ιΗΞ€lΉ(xΫHΖšνYǁz'½vk&eύςš½Σ„ηΒž/šΩν8ΗφΌh>ΆΥSΏ4υβ‹/Κ£>j}!iΪ΄iV·tΎχ½οΙμΩ³}α΄ΌeΛkžύ…3{4 [Η£\£m@@@ g ΙΪέΩRζn•ύVπ²Yέά<Ι›ζΆ‘―ΆΏ²V²“S}ŽΚΚΙ] vζ­ί!3³ΚφόIΎu˜θL9Ϋ`‚„ν˜+Wš¬Ω8Ο"ΠΥ]Ω)Ϋ‘²£rF&ϊ‚¨Ηΐ₯ζΞϊηŒ₯2cl’£ύ3rTT‘}V&&ΫΑ·‰’·u©ΝZk­·tkž/@Wgœ=jΝώΥR\mπΊΑΟΛφW‰ΫΌζμ—Obz–L)Ξ• ή;cΖzY??KŽ>1_暍SjΊ鰯š±σ6KJι\+P|ΖΌ4_=Ύ:l’H*jη˜Χ€έsC Υ•ΎΧ₯κLν~ί“ιΆ½oVσgΞY!Έv‹ΙiYf]Ԍ9!φ½bΏΤΊ'ϊΏX‘˜.9ŠeA‘;Ov¬Ÿ)n—IŠΝRvFκL}‰ή:]©9²q^₯iΫώϋX¦d²—ΆΠ°ΩYϋ%%νάWr–¬Θ\%«΄ ζυ0%ΝW³™qF*μ΅Π»¨Ά=Φ…λ «φKφφίk?>=GξJ)” ζ{!‘^3ΒہΘΗs.|Εk${fZ“œ<θϋ’SΗμW“&;eFίNi…F@@* Α“ZτΆΰšΩnοή½Φs °Τ¬ˆvΡμΗ+V¬π-{ζ™g¬ _ π΄pμu£υ¨—,Yβ ^^Ήr₯`ύΗ?ώQμΐγφΆ₯V-Νθhgli½Φ–iv] Μ…Ÿϋά皬^UUε ^3fŒός—Ώ΄2ςjζιζ²ώ…sμΤ°£J$η„žKvΐ“f2n­΄5k£3{ekm4·ΌΎΎήΌ¬}Φ °—_~ΩΚΐ]l} 6pΛ€€>h3›jΧτιΣ­Jž}φYΡcΌgΟλΉ·ΫAx­π ˆ=p―S}­%ΧΡc }/·―{‘ΪΧyηϟonQDσuL¦EΏˆ¦_’ .‘Ž1τ𭁽ZJJJ¬μΠΏϊΥ―¬ηzΧ»Dc|dΧΥΪc[=uΜργΨΊΣΑC=dέqCΫμ\wάq‡uχ ½Λ‚]τ.Ό¬c άΆΛΊuλD³6λΪ( € € €@O([΅L*Mjx%Y μ5_vέ+G &ϊmΒΫ6ς΅*ΦK­c3WςXΩtδ0Λ8pθˆ ^N6K%ϋΙs¬Ηdg ΤHΑξͺ€Ζ’ΗΞ4w–4Ηθΐ9dξ0™οLΓ+n©φEΐl֎'ΕRRa£vI”œMGΜ9r@ŽlΚρ“κΊΚέ&Ο₯ΙuΉΈΔ 4υm‘–#G°Ξ©œ4g€i”,Φ-𖀉+­Ώϋl]šΩtaks*VΙΑZΗΨ]Ι’oυy―μ=pH6™ΰeύKJϊLȜ—"5EOH΅cu1AΉΫMuέωc“[k-ͺΛ‹ Y_•Ι.άRIžX {Ν—δχ8"ΩΎ,£-mα]VS.§ϋž”e+kί­ΧpeR|°Φ1Σ%cgn’Cζ|άk3Eγ―ΣσeΧϊ<Ηzј,”ύUΞ7Sm»ΐsn™φ)ΘJέ|q²¬4―‘C{7K†ΙέΎύ‰—μ‚#Φί½ͺΚ[ :†Hχ£½Άέ{οθ]Œ Τ¬•έοζ΅»b©g'"Όf„·ηmΟ%M4οg‡d―ωOk₯¦pΏœn²’[*KŠύs;dΏόΥwζ̝©M[ € ΠγFŽ)0«Α›7oΆ>P€g? °±³ίύ²uλVΉώϊλE3τιm΅5`&œbίή=ά¬‚§N²²Τjέΰ©ΤΧ^{­όΣ?ύ“uϋrϋVία΄έά:Ÿώτ§­EϋΨΗ¬[°―§Ϊ|¬& Α‹Γ~ΎcΗk]½όΐ›l§BZμŒ‡7έt“\qΕVφή)S¦4Y_g„sμlsΝ}ξάΉ&υΔΕEπUIΗΦ‘ž υΩΟ~ΦͺA„C•Σ§O[·ͺΧΎ&''ϋV  ₯G'Ož”Χ_έZΟΤΦsΖήg»‚Ύ}#ϋ'ƒΗλqΏμ²Λ¬ΐε―ύλVnν“ήŠ>Έθλ@Λ™3gšdιΦωϋΫί¬ύ/ΨEƒΨ5˜]_wsζΜ‘ƒZηXff>θ΄+εθfα\§’u­·ίϋ»Λ£ώΎλž~Q%TΡΜΐZτzΠΦ/ΰθ5R³ k™1cFΘ;<΄eŒqγ7Zuκ9{μ1λΊ¨wJp~iΝΎφκ΅8’ΜΧVΕώj«η[o½e`λ΅Z–KKK­/μι˜W‹^ο_xαkZΗΊΎfΜΦ/ύτ§?Νό¬cPh±-­'όB@@z”@Μ]ΉΟ„–†.«J*Δ'JR’3ΘΣ³Ψ5°ιΌΐ ›>sζmΊTη”JnΑΑ ΎΉ$>1QβM’―ԝ (γ[ΚD Τl˜%›ΚƒΓ”Μ12Wq"νBCu©,/‹~gЬ•Jg ³i">1θμͺ«”Us‹ΌΙͺ핁qΕžSfiΥφ΅bo!₯Rτ"Ρ/OΗ j'°ΦfŸ-Ο}Μd \¬ηubΐ‰έ`2@›τ›R!…%MϋΈn`]υ¬¦p·ΤWξgLš΅ΈbΉ :-MB˜ΰΓ"ζ,ILN±6 >_<Ν”Ιώ£AΧ«–φ½tω2Ω„λ2ηcbPγgΜί₯’]6̚+εΧ¦=·LϋΑ₯Ίd“/€xymΠb—ΈD2ύΡ»šϊšΰό΅‚Ϊμ}O£aΫϋΤΨγŽΨ0k·8ΏŸ:EVdxZ‹θšΊ‡‘ηΚ€²ΦΩ#S―Ήξ%Ζ{bίS‚Ϋ,–Κ€oޘε G₯Έ"p½ˆφ+pΣnυμ’nΥ›ΰΞpkϋ`ž#€ €@7Π€Ν6wψπaYΆl™Υ; H:t¨―§zkσ·ί~ΫznkΪ 5°C³Θji-³ξ'>ρ k= ΄™7ožhΠ°]458«3ΰ6ψ–έώσŸ}λ7 N“έ͎όάsΟYΩvŸτρΙ'Ÿ΄žj`Q[˜5`Χ'T0²ιώkΡ`/=&Ξ’·oΧάΞ±Σ>kЍΚκνγοΉηgΥRYτWΐ柴εœψθG?jUψΓώPn»νΆ€ktνσCΟŏόγΦΊΪo ϊΪΧΎΠ™Υ«W‹fCΜΚΚΝ<9xπ`kωk―½feU΄Ϋ™Άm@-<Ρ6΅h Ήέ{υP^vo=4ΨέX―]¦ηvaa‘h» Žϊς—ΏlνΓΎ}ϋ¬y“'O™9ΣZΘ/@ ΒΉN΅χZo³Ψאξ4Ζ°3τkŸnΏύφ€kŠŽŸτz¨EΗ"ϊ…"½ΆFZŽ=κ»ΓΓθΡ£›lήΦ1†Žsrr¬€έο|η;V½ ,£ΨϋWSSΣd ₯ϋg7ιTgΨν…λ©cWύς”)ϊΧΏ½ΞjΡ1Γ¬Y³dξάΉΦσW_}U&Nœhe~κ©§¬»όΰ?°–ιΨv€Iς/ς/’ΧλίώχΦ₯Έ[‚ΕΓ/@@ˆe  IkWΚ–KIez`ΆάFoΠJρb™Ÿ°^VδeI’#ZΕ]W-΅’,©φΜΔs»s‘€OC΅eΫ™/“ž΅§[z4폫œ![ΧΟ”΄€ΰ @·ΤVξ—esWωnIήRU,끒S₯fήjY4e¬$‰Z-6ΤIωώBY°Ά4βΈΟ…s–”ΙάIω²bσΙNOnF­ΙΌ|ŽTl˜+£kVȎEΩ’|Z5ΤΚξ‚e²ͺTƒ‡νR!³Φξ–½K³^&"Λ^ΑσtΞ7Ίυ3ο '`Y‘δŽ«‘Υ&“εΔ΄€ΐ:Μ³ΊΪJ)Z6Wн]ΠώΞ—²&l@ζσΊκJiLN—$Ηk³IeQQ*εΥ‹$9ՏVw΄Βδ nZ–O/m+$+Υωεσš­ͺ•!i©ΆŠ€d™D>Eΰ rΦV4w$oέ(ΩΩ±ENW–Kγ(sΞ5ΩχYž;NjVo•™ΣΌ΄^w]­μ/2ΗΧΖu6ΦξιY0uœΜ[½Y¦Œ2ΠΊΑΌwξ/\%kηWΕ†ι²;mo“}τœ]νΨs.λϋtΐ9nζ=±,W ½ηV»wΉ]4šΟECWΠΠμk'τϊΑsΓ{οh‡mpƒh΅£ΏΪv[ŠGkπŒ†kφθΰ§O+›΅ΞΧΐ™/}ιKVŸ4πYo{ΊZΜρdψul·vμ4(Jƒt΄΅Χη ¬΅Ί<π€Uw€ΏΪrNθ­ΨW­ZeλρϋΟήΩΐEuω—D’L€–HRX3lΣ`’bL[6Ύ€lwΑ4€S έ &›i#˜Eš¬ΠDΙΆΈΩ έ IΥ6 ΄ŠΊ’κ€YI[ΙK™¦Ιh”Μ¨e0Ρ9wζwήxsΗΟεή{^žσœοΉoΘο>χΏPΔΥGΕwΎσΕ…λ»2*Άk`σζΝJDIΙώλ_:dδη_ϊΧn&2:²δ‘ λεΌKΡ‘Œ.“Oi%sˆͺx_Ξ™IIΏeψO›I–j’Β(y^ΘγEŠ–₯HyαΒ…Ψ·oŸrŽΘ(ŽU˜/λi“†©s+σ—/_τ£­Γm ΈΨ uŸΝ½ή“P|ƐΟSκsόΒž={”η™_ЁΥϋΓχΏύQ_εΛI2ΙΓΌ_t’ω£}Ɛνδσ‚6β°φλΆόš€z“_ސ/Ιq~πΑΚψδ IΑL#ε)EαςE.y?—|ž~ϊiεώ,Ÿρδ'lΥ$Ÿ!δxεWEd’χ~yΟ–χt™Κ+―@’-_4Σ>#«6Έ&     Π'Њ¬ωs‡t³*o Εγ΄T―Α’j ɜC”x·ΗІ&‹›eι˜[¨h>ό ᣡ+–ΦΖ$d˜ JTR›π‘)ώ»gξ°T— ]#b’Δq’ '*›΅ ­o₯δ σ-"χΟ[βΧΣΦAŽ-YTY^Ί8ΎŒ0g˜ SΡ}, "r²_k"³© ιb1&™a2D)΅zl4΅h!κ.KRF6 aύθι±ΉŽΑ@Η5P‘•‚Š@ύ‹ΘΚ%+–’Δε³t‘ΗΦƒ6ρ)XͺV#₯j`|=Vα«Ϋ€­ JŒ)Π΅Β³ Φd‰ΏΉΞ[qε€Υ€@.―H ts»b Κ„lqώΛdΧ„Φ— ₯‚ψQW²B,λ–.¬mMϋWΫc]]’ηι`‚Yˆκ£ΔUΙγq°ώ•1šΔ!κQε…―­gF3GO;ΣΣ5Χn›Έvk­j:Έ@›ƒŸΗNψ?ΞΖβΪ1ΎΗΚΐˆΉ5α rSΗ^-žΕ”k‡šα±ζ=ΓZ”Ήώο<#zžSϊnŠ%M0%eΐhΟΞ{”, |Νv:m­/ ‰G·‘Σ0Η5΄‘q«q™œ·ήΩ1    Œ’€όάΆ*”₯‰ 5“Ρω€hVŠwe΄^ΝOL¬v"E²Ξ`I te=)φά±c‡aV›'Ϋώηώ§; m [Rπ’F”Βa­ΘΣ_md[)p•mUQ¬/?ώ…/|! OR@-?‹(I1ŽΊHq΄d%£χ·"HώΝo~γ!dΩΎ};ξΊλ.₯L²ΒiW €$)Zυ—^ύuάpΓ ώŠάyrnώϊΧΏΊΕδ²`8swόψqά|σ͊pάmΜkΓ{žΌŠύξŽτ˜F$·•+Wϊ΅'3e4oUθ+^rή€πΘ_ϊΪΧΎ¦0 WΩ_ωΚWΠβ―ͺ’§ε'9~φ³ŸUς΅Η›ΜQ#oΏύvcH©θυCΫNnK!W ΄qγFykϋ tήy4ΰ  \„†sŸι½^Šε "ΪϋΏD3žΟ|’ΟVRά(Ι/ ¨_ΐ/ΖΘ{‰Œζο=6Ω^Fρ—cTΛ€PX>σΘϋ€Œ‚θ9b΄ΟΎμΚ—ƒδs‚|h$Ο8ς%­/~ρ‹†§δ«ώZΙ«0ΠsδHxJ“ςΉ@}πκBٝ5k–ςά+ΕίςΕΌ„„„AŸ—:::}fτΧσH€H€H€H€H€‚G@ώŽ)œα£>Rω5ωlr‘/ΛD$@$@—:u; Υ–ΪakΖόt/\κœ8~ Аζ€ξ@.2@Šό{ˆ\€φEj>δβ/½ωζ›Έά_σH€H€H€H€†O@>l©‘eεςFGGϋ4–β›ΖΖFEΰ¬-”’”Ÿόδ'J–ŒP'Ε7Ϊ4uκTν.ΎϋέοβΙ'ŸτΘΣλυJ4ήoΌQΙΧFόχwlΪ΄Ι£Ύ{JᰌΆ(“όœ·όOk™€ΘXŠ{΄Ι[lγν“όHqΞ·Ύυ-m3eϋ‘GΑώοΊ?™.YIq‹LςsβήQψ€o2©c8rδˆ"^–ω_ώς—•2?dτ?)ΊNNNφ(–QˆΥθŠΗΞΞNςαΜέ5Χ\ƒ?ωΟξO§«δ\Hϋ2©ώJ‘ΆœŸΑ–ωŸQόΝ1!?χάsJδmΥΉ–:εϊθ£ΈοΎϋ1Œ·;P[ι·τ_Š δXƒ‘€=ω¦ΰϋοΏ₯ZnKa’κŸY1++ ςνΒ‘’ΥZΦν1!Ω2ΙΉjœςX‘Η€œΟ‘ζEε'EsRν-PV:ζνρ0άγHν¨cOΞƒlΛθ•»vνΒ’%β3jL$@$p ι½>ͺP}ΖPοΑCݍK›/#ŽέqΗΚ— dTβ₯K—j‹n«χ¨`>cHq²|^’χuι—ΛEΎΈΥ"" Λ—έrrr‘³zοδ |©Νf³ λΩm€<΅Η—τΟ[lυI>7ΙηN96),—/A1‘     Œ?F`9 $@$@‘O |Η!,6ΈόμlΖά₯Œΐϊ³FI€Ζ›ΐωD`φόvεx„ύ“   ΐ' #WΘ9 )‘ΛpΣHλKnLLΜpΝ»λIq¬\‚•ξΉηE`;l“RXΜτΗ?ώ2zπ³Ο>λαψ₯—^RΔΥ²―ΔΔDE|΄|ωr|ε+_Tτ+…·2ͺ³šF{L¨ΡͺU;ƒ­₯ I.ΓIΑδ7šγaΈύοέ»W/K·ί~ϋp†Ζ:$@$0‘ Œτ^ΖH팴ώhŸ1‚ρό€ŽYΎœσΔO(/&F5{ΘυpοQCrUψΩΟ~†RΘg ƒΑΰn&}“βe™βγγ•—•δKSκΛkJŸr\ƒ ‹΅MFΚs$σ,ηx€φ΅Ύq›H€H€H€H€H€H€H€H€Ζ‹ΐΛν-ˆξqώM­»Γ2^n°_ ΈdPΐ|ΙL5J$@$@$@)Ίύάη>7ŽΧΧΧ+ύΛHˆςπ2κο+―Ό‚ψPς₯κ'βe$f¦±%π»ίύϋφνΓ#<’ttο½χ*Ρ°ΗΆWZ' ˜h¦OŸΉŒWκλλS’+Λ¨ΚΧ_=~ψΓⳟύ,ž~ϊiόζ7ΏQܚ?Ύϋ%©»οΎ{Ό\eΏ$@$@$@$@$@$@$@$@$pΙh([ƒ†Kf΄(  Œ?ΛN:unόέ $@$@$@$02]]]ŠΨcd­X›FNΐαp ΈΈ?ύιO}ΛθΏRL+£#2=ρ» f͚)φ’In·΅΅!22rμ;g$@$@$doΏύ6Ύφ΅―απαΓ>–eώ/ωKF2φ!Γ      Ρ8wξδrφμY|τΡGΚίίω‚₯\ξΊλњf;     K˜ΐ―~υ+ε ‘ς+‘ς+“&MR–Λ/Ώ\ωz΅ό‚€Ώτζ›o‚˜ύ‘a     Έθt:TUUαϋί>ώτ§?)Ÿ›—Ρ/£%ή~ϋν˜h}’     „6ΛCΫ=zG$@$@$@$@$@$@$@$@$@$@$@$@$@$@$0Ρ|bJ8ΚŒβŸύbHρ²vμSgΜBΙΟ·β—|S'3f›– ·I€H€H€H€Hΰb"ΐ§ω‹iΆθ+               \δ>ϋ)<ΆιQDnpδγ“’·εwbω=ϊ;β΄ΥayŠ1a±3™όU±| WD\₯΄Ήqι7ρΫΈ‘w_!ώώήn;ά     Έ8Pΐ|qΜ½$              ‹ž@ŒXTb+&GF)c‘Βεm?Γ» ?ΗΗφ>γ“BfΉHqσϊ΅ψTΖw“ωoА92.Ώ¬ϋ%ΎuΟ όυx·O[f     „. ˜Cwnθ               LΧFκρΘcyˆ—­Ή©ξhΛC T œmy'D”fγ–FEΔ¬ϋΤtό|σf€e―@ΟιΎ‘LŒͺΌxλn˜γυθiΫ‰₯yU£²*LΕ[±1-ύΆfδ₯—ΐ*ŽΡAΐ„Œ ƒ“„έ††&ΛS1"ɜ€X=`ο΄‘©u¨ώŒ0‹ϊz₯~›¨Ο£gΔdJB†!Vif·5`Μ§#œc£ ζΔ£³­œbΟVξF=μΦ&,YQαYΘ=  Q €yTΨ؈H€H€H€H€H€H€H€H€H€H€H€H€H€H€H`$j6<ˆ+§Zi"#/·§ήμ7κςP6eDfΩ6Ύρ/Šˆ9βϊπ؏ξΗέkΧΥtTεaB±©b£œQ£Ge$D……Ι±:Cœ6bLΜ¦ΒzlΌƒCˆ₯η ±τΕ’Lζ|!$NFBœǚK‘^4ζgo¬GArœG?EE6l[›Žͺ‘tΕ­\;ζr(]¬Μ΅­±ιe­΅ςE’?y,¨©Τэ–†2¬©φν°pΣ€%<λ ‘υΞΚtTŒ=ΥΕ‹xmByύ:,Ž‹ΦŒ‘EΆƒX›ΎΎΔ5ΥmuŽ“°iG1 žώΩmm¨LΟΓψLqΚ· 9ήuά9l(šŸΟ#9WΎΙŒuiHNŒGΨ0CI…Qj‚Aο<3lΝβά)θQΉθΔέ@1DΗ,&ΈPΚwΐbƒ8gβ‘5ψ5bˆλζ…ς™ύxΈ¨Μέ[«Π»λW8sόmΟQioς5Χ!ςΞ»½’0Hi†H€H€H€H€H€H€H€H€H€H€H€H€H€H€.=ΛnΏΧΜϋ’2p)^–‘—eDεΡ&ΩVΪP#1Ο^΄_ͺύwMΕΨ½1 Ρ:;‹Rΰ₯‹υ°˜±(NΩ?Φ±Η#?$wŒI(ΞΝDRB’eψΩ ˜²7νFA’K8κ°£[LL΄tBo@ζζέ@ζT(Ψ± [‹œβeeB΄MΕ[χ#MDW’Ά?]4’s6£Ζž‰ΌΊσkφ#3A΅α€]ψ§—Oα_Zι~ 'mάφ$`Δ¦έ›10Εέ°‹ΗΡ‚‘ސˆΝ»kΔηπe‚`Ξ± 5ϋ+10ΕvΕ?η' t½˜β¬Ρ‰¬=A /£ϋΕ1¬uΆý‘]œ‹Τ€4'σ୍B`^#ζž=rxp[Z1ŸH Ψδ‹RŠxY/ žΏnή–₯cIΰς±4>–ΆίϋE%ήζ±/Kί₯mه싉H€H€H€H€H€H€H€H€H€H€H€H€H€H€H`trWΈvmϋdεσM†΄₯¦ο}'WέδzΜDΐœ4 aύƒtbZ‡E“ۍFMΣAZŒkQRv’/ΌxΘF†KΩ*#UϝŸ‚%KR0·΄YˆHeŠFjQώˆΨdlZUŸμΣPΜ‹ΩUΨέΎs ΏΉ•θp©224ύ‹‘ζRΆ:l-Ȝ;))σ1·²Ξκz˜‹ΦωtΓ Œ"·xΩΦΌσS–`‰`XΪάᬝ€’l}ψ)˜sl,Μu‹—m-›•c"eώ\T6ۜιγP΄.iψΝoΝ$=ά-^Ά£­Ή™s…_CDVUϋMΚFAZ²‡xY- ΄^WΏΥ-^–Q§kK 0wξ\θˁΪ2ŸH`Όd£X|εΑ†x³`Πλ¦Ϋ7ΖƒΐEωΔξνŒ—μλ“χ½?ϋσΝpΌώЇέ+τΣ1&»>›γQΘ              ΈΘ$Ξ‰Oάx³β΅ŒΎόnΓΟƒ6i+&σίpEΔU˜±`!¦λΛqΜ~2hφ‡6$£}f#>J0‘θν±Ά ¬Ί)`³€όb€§#LΤθ±ξQκ&eˆφ’m[]ƒg”S“Εζd1&Q»ίkKͺ›"γμDS]\Ž„ι"ͺ¨lίX‚=ύƒ)|LΘ/6Γ₯cqΐΆ§ UMjh]2² ‹…γ0:Yˆoύ°yϋ-ϊΟΞ1)υΤΉό1&™±(> νΥuθΟ^'„»Qθο΄bMY5ŒI’, ΆΆ:Έ»t΅3 >--9{Q<ϊΫχ ‘Θ_— £ΰο£`Τ:2Fn\Žn΄YZQ»¦Ιυ§ŽΤ]#θ¦ΒEB’,“;ΣKμ7• 65BΏΙ„$TC uθ$Κωͺ ZΤφA’9ή•Χ‰κ{ ¨ή“†Ν©‘™Ž…Y”(GρτεX•[6―ˆά°{ Υ {G3S …f—8Ωή†΅%κΩ ψ–d!5ρ"ΎiQPWΘ„g~ηxΊsZwπˆ"`φ•!rȈšu©ΚρθθhΖ$ a¦ŽhΦΪT‹ΝΦ(!φœ™ρ›ο{ά ͺ…χkγΜΤλœo{§m@ξBqΠڍͺάUghBc9ΗCχ>ζ5„Θ0YQ$+F'^Fk R4's'σΊ y©»e”βε|<³-Η)€”/"U;νρ' ΐ˜0fΧΈ^<°£yΛA$ŠηΟ»Άλ‘―›Jν€bμؐζρά$ž„°8- kΧbu΅Ek”ΫA$pΡ ˜ƒΘΰ‚™:.„Ιμψoώ.ŸͺWΔΚ2σ£γoγLΧ;JΉγυWΡΉα{θύύSˆ-ώi#2χa{nrκΪW{°lfΈ‡O׎:3v½σDޱχ}}θE8"/Rd½½}ˆΌXγ©₯y  ρ'πζ›oβΜ™3Ήμ²Λ–±€H€H€B…ΐ 7ά*L?Nž<‰ΞΞΞ€γ‰ŒŒΔ‰ΑϋΓwΐŽX@$@$@γH€ΟγŸ]“  …ΐηζ™άvz[~οήΦ†΄© ˜??οvΰB˜EΤΞJ!^v&;:ΪΪq2Β€„8‘ΎΣΗ‘`ΫτΟMGƒ«Fqύ†ρ²½mΦcˆ2&ΐ  XEΔP5IaŽ*^vΨmxΉ½GΤ½ †hτ†DlΨZˆ”Uju?kΆΦ ˆ—νΆX{cBœκG™›TŽBΌ¬”ˆ(Δν/AΨt#β„2X·55ǐRy ν6›ˆ΅8ƒ\Šδ‚L›KK«— Ω™N‘²£ *QΕέ³ˆR*“½Ϋ.~ƒp :9|Q‘_¬ό§>ξr½/‹9>›]cΌAιΓ°8…uu¨²Ίk†ξ†+x±γ˜ΥGΐ k§8*„@^Δw¨ΐζς ZX‘ΔΔ!:έqΐwάB^gρΝ†‚η/28 Ο&΅ŠθΤŽΕ‚«¬g '\ǝΘ›\Qkϋνr™pM±ˆΈ~Π§Š΅σ$δ€ι’’!¦ΨGΰμέ`,ζΈU^DWd&‰)vžΠ¦|Ν5DŸ"Ή#„ A?Rwΰ@©σœ–}wΫΪPž7plΕ‘$Δ»DώέΗτ¨ί}qβ:«$‘½©yξ³ΑOΩΚ‹"ς:$£¨7₯ Βϋzθ§³H€Ξ‡€rΟ_έm΅(©3ΰ@A`{ΓΊnŠ+pM©*^_ θx='£p“xΙJAΗu^ΓΊB?νΌΪ{7>+>σvΙ·άβe)ZŽΞωfύw3βv½ΓζΚ2{ϋχϋW…`Ή Wή,~©ιτŸ_ΐχ,‚γo―x›=Ώ}Χίυ}ηg&$Z+ciΒΡ±L/*£’pmΤTμν ‰‘Ο‰ή.<·ύq|σ Sqν΅ίDΗXcžW¬E$@$@#"πΪk―aώύ°Ϋεf†Vϊϋߎ·ήz+΄œryΣΡсcǎ…€oύλ_ρή{ο…¬o!ι˜pJr ΥDίF>3ςUnςΪͺΎ½σΞ;ψΫίώ6rΰ Ε‘#GB–ΫώΈtqφμY8p dŸT(‘z>],ώ½ρΖ8zτ¨κnΘ­ί}χݐ?χCύ”Χυ·ί~;δζVuθψρ㐿“„r υ9ΆZ­!ϋ»‰œWω’Œτ1”ΣŸώτ§PvΎ‘  ΐΌZQU*υϊ;ƒ|―΅ySJ6€SηUA„‹’6TΞMAVήj©x)ζn>θ’"½)ΫYΗXŒE.‘œΓ֌Ή)K‘——‡t&΄ΉΓχ½3RorΆλ>ˆω)ιΘ[-κ.™N―>>fg Ώ?M…ωˆΧ;‹:šK‘’ž%ϊΛQI+α۝νHͺHφ6Μ_‚Β·¬₯)¨l"B‘τ fd[«±"=Yk-ρ9°gΨΟZν#(,wωί-Δ²Ε‚σΗ€Y ύζ"eIŠXς”:ešCn:ΠV›©ŒoŊtΜ/htω¦Ρ‘“†l ’㦻άσ㎚§G”ZΝO-%ΛXˆ’ΕeΣΦX:±₯ΆV2ύό0Χ`ǎbٍ‡DlyαθΆΚMν:T7v(ϋΡ ™8t`7žyf7msEœ΅w`Λ bz©Kr3 qΣ•³KLˆλ€ΤppΟ‘>J0kŠ|7ΗjŽλςΠθΊ0$dVβΐξgπΜξύ؜γŒ.oΡΌWT_ΰί—t±HT„ƒ’ (=°CHνƒ™Δœ8œφ’γΔΛ2K-#₯Ψ±Ρ_ύ’Bκ…j L―Ν₯)(£xΩ “?I` n-ržwβ%©ŠOiθhΝΈI$@$0q \ύυ'E+2͜9Qβ…’PJύύύΗg>σ™PrKρεΤ©SΈϊκ«1cƌσMFӌ‰‰Alμ…ψcΒΘ†/} Υθfτmds©ΦUnΈςΚ+CςxΣιtθιι Iί&Mš„PΣsηΞA j™‚K@ž+F£Ρ―ΡΣ§O»E…‘ψœ :ͺΗμΕβŸόJGXXfϞ­ΊRλ)S¦@.‘ϊό a…ϊ1Ψ'Ύz6uκT̚5+€ζVuF>οK8Η*‘‘―ευZFΜ—ΧκPL“'OV’ω‡ςSΐŠG}"  °iŸpW?mmwokCksjΜτ`™ lΗ΄F—Π₯}ηZw”e₯Aέjμ\΄™B°°HHά„Έ&#Αυis;šΦjΕ‘@IY ’·₯:ΔϋR'Tq"Β°ˆ W@TTTW#Μ|ϊY„h؈μβ …nGΦ–),¬–Ί $$”})H.+ΡFm@υž4lNs•ΛZΖ4χXΪjbbgc aM re ίυ0J=°ηE …Β$j«Z[]η#AQτΩΡΊ₯AΝτXw6WGθgkAžVXiiΝ‘ͺquΎbQ'&ΨΞƍržD’χτaͺ(M&άλΏθνΦTY<α4•5!75N‰v-EΪΦοlkς<ώ=›rOp ‡‚¨δϋ*ƒgΓ±œγ²†6€–&+꒝‘ΝΥήΫ<―YjώX¬ύ‚[w;**P-’€g—Χ£`qœΈ,+"Π7K4Ÿd‚ͺ/—3Υήά€Š’jXMω¨ίωή‰!9…Ζ―ˆξQ¨Ω]ιύ‹v7―€Η₯v,ΰΠ& €xžΪˆLΧZm[Κ”Η’Α° ΊΩ―±l%¦άbRΔΛRΔό–ˆβ<λ{ŠŸ‡k—υ< Wϋβ•JΓU% ιi"τφϊcuΚέΠJ—CΟIzD$@$@$@$@$@$@$@$@$@$@$@$@$p)8+A\1υŒτrρr˜'ρ’₯3Ωa΅ψ(xa±v ³Ϋɏk„‰"ΊνAοκA°κwES;β±^fε!€Ω»q¬σΪχl‚δg5S9 «Mάkݞ ·ΡΣν£/v»Ά˜αŽΤ{Sξ~ΘUΗζF+’X!¦6$ s«T0žΜεΙPβmw ψ©υ~·‡ƒΫͺtXΒΠ‘ŒŒsωνΡ;b*G²"DΆcηκΥΎ†ϊύKcχ4Τβ€Az ’&$"ή €κρ™Ψ_―GJV™ΛNv(rŠ—ΕΌ΅57*Ηpbjͺͺλ›\$"Τιk\Η₯oο—|Žn8D%ηΉζΏς˜Ξ±Ή\βeΨmhnlΧ #RSCL1’K`£~Φ4x_Όόϋ”\Yuν’nqb]I’ ΞCτρ‰βŐ*wΩyυΧ?ΠΪΦΈ+TρΏ₯ZDΥΧcΆ41/z$ŠΘ«U…²ΞˆWΣξ–j¬»€l\ζ \bDΤσόdeΜφŽΘsŸwšYCdDΧMKΪ:S•{©!Q|mΰPΊ;αˆ΅ ΫΦ”ρE Χ±Ψ€€ΩE56χΈ&η>7γsΑ9ρο|™coოΏPL¨‘—GjOF\Ž]ϋSΌ]²gŽΏž_ύ>yOΡH͌¨~WΗ‹xξ°ω΄―‹Αm Ύ„Έ˜2ίή4ξύ?œP~3˜†ΫΜ 1GpΨzΣfΞρjΧ‡ΓΟ=ΓG»t13°ΰK Θ΄?§{…o{Oψ&]›6 Sη!|šΏšΞΌΎ<άQα‹xρΣΪ‹9 S1Gν°―KψΩ…Ÿ¨W*χ>ŒΓq1d£—ί’Έ―U΅‹;°|‘0ζJ½‡auθ0gN 7ξΕα˜9/ η„£C0Ÿ#»b"              Jΰέ]˜ό‰(₯Ο)Ζxh#&ΓiSM'½­nŽΩΪ+ώ,’$[όt£jiΔΆνΪb— Y›εw»a52±²Α­ƒN Cœ\škbštTυXΡΦa@„‡“°‰Ύ€EߝΓΥ©Ύ ;:§„R+ΌΤ‡y–ytλή1"ΝύΉ½e°H…Γ±ε6:‘7,Η°Ψ`cΤL„{Δj^¬΄γΖ|¬K‹SZ8lνθ‘c Νaθο‘c#œ3»ω… θ‘Ρ’[Ž‰Φ†jhφ¦gP ½8Ξ2„Ε±˜ŠΝ0(f„8:3Ε-J―««BαΦέ"¦8.“Σ„ ΄ΑΓ–{—όF+:Ž9`ύΙϋυ‹€Τέ)’ͺHc<ΗΕΙΞλ™½)+`qΉQWU‡šύې ΧΑ”&ŽˆUΤΐΟ d«‚~Η1«ΟρΤd±‰CβƒΠ‹Ζ„Ϊ‘˜‡Ž=^'™u'¬φ41~M}?›ΡΙΩΘš΅ΑΰύTc ΐyΘ―)vG=oo³‹ϋZ‘xKά'£ Ξk˜.‹ςΕW Πƒ¦=Q#Ύ7Y*žΌj6`Q‚΄§Ct¬AY„˜Ωv°ι««ΟslˆΜ‚Œ/O‹šN~ΛOΓΩΣ§Τ¬Q­ίΫZ©΄»|ͺxλlν#£²!ιΏ΄2zσ‰έ;πώφΗuΧ·Η& ³ιV~σσxΐOΨή¬GχcΛΚycθzξqΜΊσ^<νNό£Ό°rŽ’Υwd/Ύyγ7όF~hΧΘ_ εΆƒ§&Rξ ψΘζΥΈΟUgγΞψΦΟͺ±`Λς9θΨρu˜ς€(Ω™φUε`ŸŒ§ς~«e]/>α|X\•‘Mv₯δ}ήδσθ<,4χ›LbΌwΐσ[M©…ށϛς€ψτΌ°\ˆ›ϋИϋyδHξw˜}Ύ>ΧXήΑς9#P1‡Ηa‹ψdΌš„V›‰H€H€H€H€H€H€H€H€H€H€H€H€H€Ζ…@―_uÍJίa±3‚.`–6ΥτΑ;c/`ΆΆΩΰΘ‰‚_’M"0±ͺψs9&Ċ2‰•ΤΎΉEΜή‚f₯’V!L—‚A£ Ω‹!Qt”`ˆ6 ΘάXΛό,δeΥωmΌΞ•«Έvr Ήr κlhwSΆω˜—ΈΟ]¨Ω0ηΒωewvVyAΡTσ·ι"&Šά΄όU›pyv—FY7έq(ΉΕ£r Ζ—P^΄l2ΓOJ"wqT(IF…-(Hτ©°9 B#eECΏωBœe·΅‘ΙsŽκͺې+Μ:!Ώ)I˜Sn2Ζ*φ6߈ΪU[ڐΆy±RίίyΰγΘ%šαšbL7ΚΉρ<b]|O>ξΗvŽM0Ζ:Ο>)Πσ<"¬¨m±!!UˆωΔρι:$Ζt{z-ƒϊ„ŠA {\ŒΔu4hιX”?ΚK΅Ÿ ŸvΩWsG[bDq4r6Υ`Ο’<Ÿˆχ, @0˜‘œΰΎΫ!13ςŠκ™’±8'GduβςιΩ½±Υ*ΪYQ–—Ž2±e2gc‘)¦δˆχΘ`HΜA}q²*<―’’*S\΅‰±/K(φη›6W/[yή‚γO(Rl=evw+ΫΑύΡ‡νΩβ嬇j±.<$τ΄2Υί›‚onοpξȟ]ΟiΔΛρx¨φiμzςQΔΤΐΜpε/rzρΔ7Uρςx΄vv=]—iόΰΞYΨ;„ΐΆλΉˆ—γW‘vΧ.<ωθ*Mož›ΫW»ΕΛwΦ`—K–Σ»ϊ<ͺ_μE̜Q[[λΏΟZ―μ[–yΧ‡½•RΩ <ΊόKyŽΟΒϊΒUXibl1v§$;άω γΡΚΕe¦ΚGͺ’hEΌ,='k έ­ςLOŠL$@$@$@$@$@$@$@$@$@$@$@$@$@$pρψΏƒέNG&Υ½¬ ­Ν–ΩaΨΡ!ή,e}žiQ‚PΞΘδŠͺΪ―¨ΰΔΎn:yWΪ`ΟdBΝ3ϋΕίλwcSΎψΫ΅Υ‚Ίκ2δ₯/AA£ΝYUDrŽςlδ±Χ<ٝAzϊτ§–κg έY`ρXzΠΣΪ ‹Τφ ‘ 3”φΆŸ@`C4UγΠ"B;TΥ U>plΔ"YL·6™βg:wνvEd©-S·[-mθ°Ω`σ^:lθv8k9Ίε/ ±f’99BΰUPZδ{lLσΡ7τχ;θ"ό¨8£dŒJ™ΒΔ?¦@μκω(^(πšbĝ\ϋ'5/HŒε;Ό²σ½ΑΗ‡(ύ…Y‹­ΣιCl" ½`e˜\β σs4ϊψ>¬ q}νTqΣ4:ΞΆΩΈIΥKz³5#+/₯Ξ’θlͺΙχΕ}  °’½­Γχ^§άϋΊ]½8œεVαuΣ$΄…ϋχοΗξ›”λ΄₯©e%yX2Ώ6Χ½T1Ψ“WΠzIšPζ+τΣ0=ο‡ΓžΘkrξ“ΘΛ)2–bc™”Ο7Mžώiθ>σYΕΜX˜{Ÿ{ 9MN/eDδ-ωΛ0oήδ?u »Φί‘4ε<€Γ}Ξ:/n―tnςώw^@ώ²…XΊ/Ό³ί-LvU!‡»°·έΉWϋo±rΩ,XΈOυXD|bg:ε2μn€έθEγύN1Μ5xη…‡±lΑ€|ομT[ΡΉέϋ"ξΟ©WΆ³j_Βo\Žr,[^ΐΒx%•{>g!–-[†Τ…ΞhΛ3š•ύ91ͺšΨeΊλyδ)Q© ‘:~ΩUθZeΥ ΏΆ θΑ‡±rΡ€•Vώ†Ώ/‰ˆΝ+ΟΤε’Η’ŽοyυWίΣ ξ‘             @ΘψU뀨82髐ΫV’Ά€M5=ρμΤΝ±[[ΚΠβR΄—’Xͺš`SΆtX\Z―ω›zκ7ΘΆΪ†ˆ(=τϊh$š‹”¨ΌjiBl„Ί9θΊ’‘ΝY‹CiύΊΊε(]lΨ—[–X:Y†ΤRlΜ6 ”'β™CΫ°νΐd¨Ήaκ†H{¨3'38Έ­z °ΆZa=ζTEΗ/k“P³.Ω‹Ο° ^4•δ±αΔ―‡yΓƁ«Ή\DMvͺ'»­-ξΘΈFs!jjjPžοRΒ7•!+=ιήKV:Z]Ηθ1K₯RΎ¦Ϊ‚ώ— lΤ .λβΕNnφΈ·ΩzœyΡ‰¨/w"όϊ’dw}―`ΞΞ|ώTT5Έ3ϊxlؘν¦b.―G‚λ²ξΩ9_X.ζxς“ŒΞΌ1c+lN/’sφk\yΓηs-Žόϋ½ΐΩ³½ŠΙό7\›€»όΓ?Άΰοί8{ϊ”;ο|6ϊώφŠός©zθ„OΑHz!„vόύ5τ½ώj0ΜyΨθκzΡΉoυΰ.Xυ ΜμM8|€sβ€#Ο+Š^‘'^y‘S‘σ°ΎΦŒ&U ­)’›{Ÿ f.€’Ÿƒ§ήxGzΓ13NІ{ρβήη‘Υ2χa¦Ζ  Χ§Γ³»ε¨5ίλ_Λ>ϊΊŽΐεςS…³š4ODΓF•86šφβHί2ΘnέΊ`υ CS_nn|\Ι1Χ,wEUφͺ vk‹R=ός­1Όs‘YρI­nœ§ˆΌεxx=T©pM$@$@$@$@$@$@$@$@$@$@$@$@$p1ψϋ{ΰέΆƒψTB’"^ώTΖwplΛCA‚΄₯ ’ί9ΈΗ><»C)Y» Ϋ2…ΐMΕEې˜έ ‡.Ρ.A"Ίb͚—™Τ6§9ΕΓz!*>tΕt:nECK‡¨+ώΦ-’zn>tέέv!=Ήͺ;:Ϊά>Ώ~6­AsΞ,6蠏KΕ‘C‹ Ί Π°¦’ϋ7§Š‘θ‘\°rΊaΫΡj‡" ―S’'zŸY·CŠuH.=„C₯έΨY°-Ιf(RGϋΛ¨s‰_ύϊ sO› ©1f!ς¬cA‡…˜ΘŸ\Ω#o1Έ½±/mσ‘Eu†d!ί1݈8ΠTYηv#;' ±›Kuλ ΗA˜ #,ΚέήRU†ƒ‹Δρ*΄ †δ:&ϊs@νΦ$t4mq‹U-Υh[΄YΪΖ-.Β‘δ\/Yίβξ>šV£%χ’Ε‹ †δ؟αy~u·‘²N qž„œΜΕB^.¦xΊΥ­%>ζ΄Α˜γвH\Λ’sΕωοΠiŽA;φT–i»Γν:T4.B₯ΤϊˆλŸΌtwχk|Χ›2Υ—‘± δtΓκj˜χ—BΎ‘Y‰©έθΈήΪΫQ6Θ^‘UŠ›T"Nœo 9Bx^½Ձ:c> @π D…Ήlκ†υ5ΏΧ͊t˜Εu@9ΕsPšοu°ΝλE†ΰδ΅8a"0"ιNEΌ,§2zifώH\λ;ΉRΌ|x GMRΌόϊχ2‚&^VνΚ΅nφΪέσڞδz υΜρ·Οˎoγ>ήλ|[Ȝ>^ρ‡p#ΝΞV]]'ΔΖ uVGϊm3}Ν Ρ±G ΓͺυρJVύ½wbVΤT|αλΉ¨~’Gt1ˆ‹‹Qϊμλ؁”o܍»οXrξΎG­VΧCwζΜτρΞ£+ΉsβθaW^L’―©S–(“/+IŽc8ιžΈW6«Š€)€φ9@νA²½ …λЦ±Β"             )?―Ωβφ'FˆŽ§ˆ¨v盀 iKMmkΩXΏΪ`­Β’ΜΝhοvώ‘W @UΝiwG3 –¬†*I”šJQΩάαnο/‹Ο·Ϋœ‘έ%²nJΫ\’a)$ΣuΆ7cMV…¦ΆΝ’τhξpF•α²œύu£CΝΣώmZD”NcιpEŠ₯Uρ²έv)Y‘lͺ5γ DνPF’σοιΆƒΫ<Ζνί;ί\KEΆ ³3 α΅KΌάiλtευ£_ƒί•ι³ IΩ(//bYσ8MmX³›SΕwŽ«’έ†Z!―ΦH'.)ΉPxχψŒ~8V¬^’‰ζvW₯?—xΩΡ-’g!«’UcΘ‚Ό”"΄¨ΗΦ?Ώυ5MΉι&°fιΐωθs~-ΙӜ3ύpOqΟIwϋ‘mŒpŽε΅¬ ΦσόwƒŽξl+JTΐ;2ί†-£mΣ^„²X$‡½C9ͺάηC0XIΛMΘΗx›Νyn Ό,β@GK-Rς\_Œ—Uύ¦Vd­it]―£‘±c@ζ·:3I€B€ΈΜ/υΈhοΕΝ•kQa A·'ˆK&σ{Ώω%&r:¦ηώ@™)b–Ι;s ρς9ρΖ`0ΣΗφα d‡ίλ€k~ε‘ΦtΉΫ΄· XX¨ϋάΡ^ib α’—)Ρ“οpAΡ °Μyε?ΎMν@ϋΎzό@.’ΩνΒSω 3΅΅΅)χυ‰Ούœ;κ2^/’3oρˆPμ―Χή.χӊΏbW^ŸΟ/ώ*χή‹Ηdψ4ΟΌ5˜G$@$@$@$@$@$@$@$@$@$@$@$@$@$0g^zχxΧΝ²1ΩXσ Ϊ—ή‚Ρώm]F]–6ΤθΛoμkΒΑ׏ εΖ¨ΚΛηCωιaΐZ‡Kκ`4™‘`"»~;Ϊš4bDΪhΒδ†22 J”@kC,58o{π²F7ΪT–ρt˜’Μ0ΔJίΰΆ={’{V”d-A‰) ƒΨοΤ7ˆ±d©c1ˆώΒΒ`·ZΠdρύϋ»X75I»±θ΄΅‰h½λp ZφٍΖΝ d–; ‘ίόΉξ=Uyι¨2 » ±²{Ψ, 2ΰ³O 8ΒmIεΟ`ρβXŸφήΊ=ehςκ'pή­ƒ³_'˜ΦΙc#Ϋ¨ύ=V44ωͺ₯*²RΠ’dBO«%ΰq¦zx βΨX±%0œ‘ bm‹£Kˆ₯›ότη΄Υ*Dσr^M’ΎΑYΏSΤ>0 —€z>š‘mtFΔξρ{~Y„˜6IIQhί Ν±₯ZœΥς‚£œΧrTΚΉνηόξˆΟ§^kURͺ4Η§ίγmx¬ZΛ1·l(oZ‘—žβΌ–Λ럸ήΪΔ΅άϋΘ[Ύ2t'C9Αr Ρ°”`ώάΑ£ΥkΝ<ΕΛ yιM˜Ε§”+xΖρχ€΅Ηνσ'0aΜE§λ3DΜJΌ,}QIϊ¨λΉ”Τχ·W‚bΗΧH8"gΖ‹μv˜Dϊ£'ϊœΩΛ\—gά!φχ3#ΔΖ~zdΝYΈO‰₯―·GŽώž(1ͺ„šyίξΔ z°rΞ,[6Η£²Σϋ"œέ™1œξ"c\―GήQƒw~»‘w—›}b[£φνΛ+ηωjgΔζυ«„ΐΪ«lΈ»ήψΡΪn¬G$@$@$@$@$@$@$@$@$@$@$@$@$@‘H`ΥΊρδ/oΐ•±ŸVώ¦̟aΝ[ŠΣVkIF^֊—OΪώ†[“XnU«Eˆ–½•n^]δΧμFN‚₯"šiƒZ9υΉ ʎΨΌΪΘ]K«―ˆΞO΅ΐY–V4ˆeΈi8cQl)vU« ¨νAXOκΤ¬Ρ­Β_/1ρhM{Ή ν±="rsaB,,„έΗ_πl κΤc#pη–a[·Φ–ˆ―aΆ΄»]­n›€ΈV =ΕV!^ΆΕ!*ŽpŽ=Ξλ!Lyρp|&+ρΪΗ0εc>lv@$0ΎδΛ%C=ԍ―‡χ %`–³HΔ|κ/Δu…aϊ?όc ^^‚yY=B&‰·=e:sόmœ=ω!.ΈJ-υϊΜρ·”ΆWή|ϋ¨mjhΌM ‡ΫΡ”χŽ,3΅;φβ^!V–Iη\ΉΑχ>ρΌPΝUΦ]‡{μiό1nΌ[|RΑ\‹ž§–!<2q‘ ρΰS·S―…(Aγα#BΐηΡΞ½9 ΞΰΗMxβω.<ΌP Ή ‡ΕΛΪ3CŽE€}yxΎk9R5Υ₯xΉ·«KD{Žρ$»ηl!œ.―—ΫYBΨ­1β*t%„Ξ ΦMθ8h‡&ϋg"             Kΐ;½v¬ϊ.~Ά΅“#£ά‘˜ίmψ9ΊΔ2T4fH,&γ;ψ”XΤ bŽw!χ»«ΠsΪ•+$‘šoŒVΡ>Cr(~Ρ‚«ƒ€:φkt™Φ†2¬h][Ά"   {—}Ύ)b>ζŠΖ,{Χ]w=’–fαάΗ)Ό΅xYvρΕΕJ_ς‡ύωέξνσΩ°?ί¬4ŸύΉσ1γ·νΜ…Λ!c0αΖάνP%Ά}]/"χσ9J ° βdόΰp,XUθΜ{μΈϋ€`ωπφ\άYεωvlŒΡ%LnΚΑγΟuΈl}]‡‘ΆŒΡ —8Λέέ}ΫχΊlta{ΪmTnΔ-€«:ξž•‹ηΊ~QνΨ[kgΝBΤύš&.©ρήΓP-ΛŽ½ I7Ώ~%\#Π΄bS(₯UψO4Ίνφ 1xφ?’1‹I€H€H€H€H€H€HΰB8‰CΝΟ`έͺϋ‘}?ΦmŸξν<9όŽΗΡ\_…όμο"Υzl¨ώ#u~~θμ§xέ4|ή_,~Η¬I$@$@$@$@$@$p1ψσ[ǐ™ 5Y&)D–_Y–Ρ˜ λͺ™τUΘΛj’Ϋ2O–Ι:²*^ξνhGΖςε°ΎϋΎZ=DΧδ₯α ­[ρO ƒ[ΌlΗΑmEΘ ApˆΒ€[$@$@$@$@„ΐ„‹ΐ¬Ξ‹‰9"a>τ _T²O‰Οƒ|dοΕί‹–Yδe΅ΙΣ? έg> Ηί_Cο_aڝw©E£ZŸ6Ξ²+m?ρΥoŽΚΖ " v>ŸσPŸƒYbΉγŽxμΫ7 F~ςΥ"W$d fAŠ―ΒDρc9&±ΆgΖ£w@‰βόƒ;?ρ«'ξˆoΗ€i3ςSUΉ―; ŠφγŽͺμ’βΣ΅€;a %–ZT™d­zά9«ρwφΙΦΞdž3Π_d€k[ŒωZ±˜k_ΒSΛb°·R ΏŒ’tWDgWΫα­fbyΝx,oφUݍkE˜iω+ΆΪ RkW ‘α”Wj1ς|ώxδΜΨ‚H€H€H€H€H€&ΗQ¬3ύ+š0EΉHΏ³6nAŽΉ i•ObmΚ5ƒΉσE,2ί/>²:₯•Ή˜–­λ‘Y δT?‰‚D΅}?nϊ. j_‡)η‡(HΏvΡvMώJ”Fe’qo.bο‰₯$@$@$@$@$@$@€υέόσΏΐζϋοΓ?™Σ•JQrTj¦² gΘΩρVWVγΤg ³α΄ί:­Xή MΘ0% ** 8fEuƒΧ'‡ΗΧIφN$@$@$@$@Œΐ„Œΐ¬“"ζSν‡Τ]œνwΰ ^V;ŒΊλΫΚζι?Ώ€Ά?fx}φδ‡xo«PΐŠtεΝ·CwΓωG`ŸζtCη\)?γ–=Œ7„πΧμΚSΕΛρζυΨF<5Ζ‘Θα ΤxσU6»CD\ΚςΜΉ‘XωΫwπδC«\–ΔΛρYΑςFζ €YΆŠœ‡ίΎ±^έaΥ£΅(Ϊd™΄c Ÿ³ =’~‘k0νnρr<έ%ΚΛDΙ1 ‹P£ZΨι ί>)YгΞΚΉ;0#ƷΜεuxϊ‘Êx9~}(KΊ+tΦΎmΈq–©?E§ΌΪ9a‡χnΗφνƒ/{έͺU#ΪυL μZ[•Ϋ$@$@$@$@$@$@”@?φ―βε¨\4Ώτ82ΟCόάyΘ,{[2±³θnμοlθύh,βeΣΡςΓHMΉsη~΅`Gι—Q›ΏoΊήžuΌω¬"^.έΩ„κΥKD½[²4m–Η±¨gŠŸ9:XG,#     ˜ΐ>8έ‡ε₯?Αͺ»ώo>ϋϋaτ―ΏΫ‰œ₯_Ε·~ςΘE$^Φ ΟjAC]5ͺ«ͺ(^Φ`α&    ΐ₯G`ΒF`V§ςκυΚηcΒ―Γλχ}S1«ec½–Q—?ψύSψΗ_ώˆwQ‰)·˜F%>~kν=8sόmΕέOέ³&n‡#uΛ)œΪβk*FŸ:΅ }½½Ρ€ΓΓ#Εβ[OΙιΥaΩΓ/`Ωϊ^τ*•#ή‡'Ύώκ₯ZW«("ζΤό‡qJ,Γ²ν―˘yxψ…SXονΫΚexΠOύpQΑ§N‘€―W”†£――α‘b<>uc°\ΤK—vΕ`#ΕςbeΆR+«(Ux(ΕaΛ©SπƒΡΥ  σŸΒ©•}‚‘‘ΞήWζk[…c™θ™ίnβπ°θγa₯L°ύFςόΦΣd>dΑ©9ž^‡Η-Γ)1―L$@$@$@$@$@$@$ϋŸ±f°±)Ρ^8bηζbΓ’mX³γΟh[}‹W©kWDoή&~οίάΊz―Χ/ΝGZιΏΰεž~\†Ξƒ;€T!rΎ>Β³¦ND~^‚Ε5―Γ±t†η!xΦδ      ΐ'πΗ7ήΒ²ϋΐΜ«+±ςk ‘πΕΠNJ/_ύIΰά98ή'ή>ŠΦ=»±uίsθ>yz‚απH€H€H€H€Hΰ 0αΜrVኩzœ=}κ‚Οκ΅kΑχ,ΒΩSvΨV§γΣ~)·š†ε‡ŒΌ,ΕΛ2‚³LΧ”»ν°:€’‘―¦Aο‹ψϊ΅)Ψ·ͺo<ΌΜLψπφ·ΟY/}Ž3v°¦•²9€mο^ϋ#m/EΨ2…Tb;;ΠڝWΤ‚7–Ÿΐ΄―ˆΘΞͺ#ϋιE¬‘ΏΪαΈmΧΣxΪ‘ƒΞC>PΧαp ΖhΘΰ       x°wόˆ*Db¬Wk7yE.!„ΕBΐμοΧOGΟλ°"ρήκe₯}¦Λ΅ΉΦΖΧ‘ΆζF—eΟ•.βj‘Ρο™Ι=      K–ΐ‘χOΰΗ#^„•      ΐ„'pI˜ε,~,Δγ‘&O4 ›v(βe)b>rο2L[² Ÿ\QY(Ψ½ΝjδεiKρ‰e+UΏπωŽ.(:εΗr0K,ζ¬,τΥΧ;σ€7YO"5Ξ7Φρ…wt΄=†#&&τό[°q£Ϋ‘      € ΠΩώDe.υ+N–€t†[…jΨιˆσ£`ΦιoAMν->Ρ—e[Η›-gc›ˆΎ,SΌx±;ή;ϊ²R–ΚmˆZτx@?”jόA$@$@$@$@$@$@$@$@$@$@$@$0! \2ζρœ=έ ŸSDΜ2šς™w ΕΙrΡΝΎW}i ΠOΓ€˜λΰxύτ{ φηw+›UŸeδε/KΗbRρΞK»°αώ;ρ˜P27 ρ²šV=Ί λW.@θΙUΉ&      K˜@˜ˆ|Šk›0W?t'OžDgg§ίŠgϞuη9rοΏΎ{?”6ή~ϋmDDD„’KΎ„Ίo½υ&Mš„sηΞyψ*;οΎϋrμqŽG?#rŽ―ΌςJ|όρΗ£72†-?Ž>ψzύ0.ZcθΗ`¦Cύ<–ώ8qύύƒΎA3ΨΗ΄LήgδύfΚ”)cڍ“         ΈhΜ“cU’ eμΆd_ΑH—G\…OήS„¨»Ύ­DY–‘–ϋώφŠΗ8€h9|φηπ‰―~Rτ|1€ππHŠ–/†‰’$@$@$@$@$@$@$ΰ"ΠcJ@6\!πIάΊ›_„©θTfέ]Κφ7_DqΪύ°`jšώscƒ+’Π-³I€H€H€H€H€H€H€H€H€H€H€H€BΐE+`žvη]θύιA*ΗΑLRΘ,ύ—         \Ha"ϊrOΫ 垣°β‹˜H‰¬:kΕIίΕΜΖ†Ϊ_cρœ«ΥŸuϋ3λ‘Sϊ,’R@sΩ—νS#p†Œjk4ύV8}ϊ4^{ν5₯lζΜ™ˆŠŠς[oΌ3eTΟnΈaΌέΨ¨ϋwζΜ„……aφμΩΗ0ž2b«\8Η£Ÿ…ΎΎ>L:³fΝ½‘1l.>9'ύ㏲Ό^GFFB^«C1Mžκθu'±³HDsΞyqΊχΡΩι§fXb£#r‹H€H€H€H€H€Hΰ’%pλWΣp{ςWpsά ΈβςΛ0ιŠ+}ό1>:{νΦΏγΐήέ8Όη·—,#œH€H€H€H€& ˜'lr,$@$@$@$@$@$@$@$0 ϊΉ™hά†œά•ΨY £k΅¨eK‘²j&L `ΊaŒξžγΚVžΩ¬VρYηΧ6aEœ-Λ’Ϊϋ\λSΕ™•–½ιύ¨Ιl       JΰΆ―gΰΗ…«;uς #œwνΥψVΚm8Z|?6όt3=σδ υYH$@$@$@$@$Ϊ(`νω‘w$@$@$@$@$@$@$@$0&bη¦cΟKKa·»"#‡…‰¨ΙͺLy Λλ—ώ'Ϊ–jφ?€6± "PρR *†Θ$@$@$@$@$@$@— )‘Q(Ωό8φΣ#ύ ½?` žωΖΏ "œ9}rDνY™H€H€H€H€H 4Pΐσ@/H€H€H€H€H€H€H€H`Ρ²ήW΄<ްK      Kˆ@μgoΖ¦Ηώ†«tξQŸόθZήνGKχGθόΗΗ°Ϊ?Vʌϊ+{εHŽž„δO…!beJώ9³χτοq_ή·ρή›n;ά     Έ8Pΐ|qΜ½$              ‹žΐŒ[Ώ€_<φ("ΓPΖ"…Λێφ‘α¨v±ν€Y.Rά¬·ώ3tȜ™γž‚Ί_Φαžo} Η­―x7ε>     @ €9„'‡‘              ΐD!;=ϊSρrn›έmy¨qJσ–7ϊΠςήlIΠ+"ζO]9 ›VƒμeŒΣοΏ7”‰Q•oέ sΌ=m;±4―jT6B₯‘©x+6¦Ε£ί֌ΌτXCΕ±ςΓ”d†!V/<²£­‘ι22!#Γΰ$a·‘‘Ι2ΖTŒH2'@ΥήiCSλPύaυυJύ6QŸGψ'Θ”„ C¬Μnkΐ˜O1F8ΗFΜ Θ£Ώ³­œbΟVξF=μΦ&,YQαYΘ=  Q €yTΨ؈H€H€H€H Ψή}χ]|τΡG~Νͺωο½χϊϋϋύΦ―Μξξnθt:L™2eΌ\ΨoOOΒtςδΙλŒWτν²Λ.S–ρς!PΏ·cǎ*Χ|ϊ6:ό‘ΚM^χBΩ·ήήސ<δ½ΰΤ©S!λ[TTΤθTΆ"      K€ΐ†Ÿ=ŽιSœ_)#/§ώα„ί¨ΛC‘™eΫΖ/NSDΜΧO Ǐ6ύΦ.ΖPMGU&›:ρ/vόή&Ηθ qBڈ1ηš λ±93!–ž/Δ‘žLω±.#ѐšŠJ…³kςΚΖ”UφΖz$Η©½*λ’"Ά­MG•Ε#{x;ζr(]¬Μ΅­±ιe­νςE’?νPKέhi(Újί 7ν@Z’Α³ΎYο¬LGE“‡iξψ%`Byύ:,Ž‹Φ”‘ΘvkΣWΓ—Έ¦Z Ν Ξq6ν(F’ΑΣ?»­ •ιyŸ)NBωΦ$Η»Ž;‡ EσΣαy$‚γΚ7™Ε9†δΔx„ γ:”TΈ©&τΞ3ΓΦ,Ν’•{ψ› N1DΗ,&kζόuHKNFΌ! ΝEσ‘9UΗΊkΪ2 ˜ƒ ”ζH€H€H€H€FG@ ω‡ίΖgΜQς₯Ποψ‡ί:γ•ωώϋο#,,L1—ϊ•ΎIvW\αόc zγ‘/};wŒGƒυ)};~όψ`UΖ­ŒΎ}¨r“Χ΄PυMΎœρα‡†δΉ }“χ‚PΫεaή΅W+•βeyYFTm’m₯ 5σ’Ί΅σΏ λgGkrΘvώ{Θf![Α>ΟLΕΨ½1Mˆ|νh,J—.ΦΓbΖ’8eXǏόPά1 ±ušΣ_ιŸ]ό’£•H΄± ©ΨΊ#lΜDΨΩ›v£ Ρ%uΨΡ-&&:ZΔΐՐΉy7ΉU# vlΒΦ"§xYa-DλΪTΌu?DDq%iϋΣE#9g3jμ™Θ«θ0Ώf?2EΔsWΨ…z)πώ₯•ξzRPaqs净›voΖΐw‹ΨήzD †zC"6οSœ7B|0ηΨ„šύ•˜bqmώ9§8₯ϋλΕgNdν‡Ζ°²2Κ±_ΓκQηl3ά+°ΩΕΉHMJ€AžG4xk£˜Χω@}΅ΏυΰΆό΅` @0“²‘›™ŠW€x§Mž‘Α`;ž6(`Oϊμ›H€H€H€HΐMছnro{oΘh›2ύΣ?ύSΘ Γ€x9<<ŸωΜgΌέχ}αψꫯƌ3ΖέΔΔΔ 66Φ_ΡΈηέzλ­γξC θ[ 2ƒη‡"7ι[ŠpCΡ·£G*Ρ‘CΡ·ΘΘHœUΉίr;ΉνhdεσM†΄•;λJΕΤwξ+Bα ˜ΟΧί‰Ρ>B6aλdD¦uHP4Ήέh ω°ˆ(VΕΛέν(]²ΒqVˆwlΕbƒˆΈjHFΉ ( ΊP7.e«G€j]wΏˆ ,dH-ΚGU^υ °=‹26­ƒͺOφ,{b^ΜΒξφX²’ΒU%υŠ'tΙ ω@έjgΎ±i.e«ΓΦ‚ιkœBی8P”,"2λa.Z‡Šτ2Ÿ˜‘’-r‹—mΝ›EDί:₯ΐ\^ΕqB­ž€’l£‡h|(vΑœcca[Όlkώ­qϊ—QΎE‹ B¨‡’uI>QΌ‡ςqΤεI"zΈ[€oG[σNΤΦUΓ2 ©ά΄8€%^Η«t]½8ΟεΑ/’Œ:½³ΆΥM―Zά%oΩ"*»aΌ½`Α&@s°‰               €›ΐμ/$αΖθe_F_n8ΌhyVζŒpDLΊ >ζZΨ»ήqχ=φ2Ϊg6β£τβk}ύθ±Ά ¬Ί)`·IωΕH5Nς_ΈΦΊG©›”!Ϊ‹Άmu žQNMf›“1]/jχΫam©’Ίαͺψœ.d—#aΊˆ**Ϋ7–`O`μMΘ/6Γ₯cqΐΆ§ UnŸ Ω„‰ N™ŸΠ]& ρ­±6oΏEΧΩ9&₯ž£Γ§0&™±(> νΥuθΟ^'„»Qθο΄bMY΅(Λea°΅ΥΑέ₯‹’Yπ1hω“½(ύν{ώ?{oΥuηeP ’˜ €Q΄l@ Ζ-4UμΟ§lΐτ·bΡ­˜΅²Ϋ€mΕMͺΆρ!«&ώ£›DΣ_q³ n£$«v“@Ÿ1‰’΅’HΣ@\E( ŠPyψΟ½s‡˜Aΰs|έΉηžσ=η|ΟϋάΉΜu>χ;ΘΉi½@IDAT: €Z€pα―ΟQn#LΎ‘Φ±r7βeUPŒ•+φ#ng‚ΜΕ$:SQ0ηu¨1fιt‘(«dΖžΔ•ZN{ΙY‰Μ„h€‰ <πΎLΖVΘTΫN"PN5Ρbm¬•Ρpr|€΅¬[mβeU›…­ϋgcKB˜,l(β₯D;‹‡hηͺ²Θέb/«ƒ¬eΨ?ϋΒΤκlfrE`i|Έ^eΞΗ «xY䬜‡„ΨγšxψΎιsE4ΎΖUŽεΌΖΓΥ{GK%Ψb/«Γ¬•›·E΅£YoέΎk^Χβe‹ψσ½DΫυ£=£™aAE~²3圍sŒή’Ÿψη‘`/—δnwV “6 Τ5)&L…&·^—Ϊy js (΅ς·R^ΌΓΩXΆ‘XΌ±^£ZΓΣ Ÿ₯Zλžu'@sΗ²               ¦'Š8Ϛr/ŠόDD̝•T_ͺΟψP]ͺ9γΗ)Ψύ=έYέ·ΪΟδ₯XŸν(CΒμΉΨ’2Ϋ4l1xiχσˆΥŸΦncc1}φr˜uί‡—ˆ€ΩͺR]š±Iςιφ)6nf'ŊΔ%ŽBg{##žŠέ―&Γa8Υήμ\ΐ“ϊΦ'ΗJ<έ¦; sχ!eήJ‹ψ8=mFS₯Μ:zv’₯$ΧΞoέ`2¦ί§Λrσs Qζd¬ZΏZCΞNΦ„~š­Μ1~M!ζn’θΏRP:ΌBΜvπ˜uXn4|V­_― gΝΣ1W€Η‘vN+FqvQnuΪx=EεfΧ#»ΉJΈΈBδRΊΨR‘ΧFGν―φ΅=,₯-ΦtϋΡӚ€Ή₯ ΩΥ8αΘX₯ΔΦ€₯hφ#V„™vp€όpN&Ά‹ L8»κΖiyΛσ¦U-ΌΣ>ϊfa Ix›KKτθΥvŽ—#Z…*·ΪΨUΉΘvε»²;‹Eœg}šΰ膛/γπJL™Πδτδικα:­š«b’ΚsoRΌœŠ·w&[‚·κύρ•H Σ ¬IœγSδўΦίέ@‡?Kuϊ Ψ‘3ήΞ YF$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@A`βίDΨΊΙ-―³ε;+cίηΔθρΥmλύHΤΞM6ρ²EωG‘_Tͺ· Œ@ΪΞέ"mJΛw¬o/›K‘ŸŸQΖβe‘œΪŒΓdΨΔΛs ςŠmΉ^‹υ―.΅Ω:ΟΔΰՌ&ρ²Ή€HΖ+„Έ†`ΦΎαδuxή/[ΚQ(Ύ•*ΩθŒ#f ##‘oaI ŠJΚm--"Θ,*:Šάζ’ίIΊPΩR„¬,›y“ΠH’”ͺdΡ°Ήό<*$o²NΏV«qφΔΗV¨‹—Υό KlΓf$c©5θ­ΝΆ΅LρVΜ›93g₯΄ˆržm‹\’ίZ'7Y§k[a9_άBΐŒβR}N¦D»1Ÿψuλ‘΄°’ΔΔ6Χ:Ŋ8|ϋφν؞•ΣΜαΉH¦— O[­D³ΦΟ¬'ٝw"±F­­5«drEΐΊΔqύh “β*­Μ<n,1Ίb‹H_OaHZ:ΩζcLͺέ5DΞΟξHΆα"θGΒn9~Η­ΫήέZdπΞυc2"­"ςσΨ±χˆmΌγGφ"C"·žhŠθšk3²Σ§`Cσλaλ°–H œ|2°υΦρΟRΆ˜ιbŒΐάΕ€Ω=               τeCϊΩ¦_z½ή–ο¬Œ}ŸΓ‚;«ΫVϊpzœ^o)Α¦ο%Β¦Σ]πŽ€ΕŠX7 ^Z€¬%ہπε˜nΙYJφα{‰+m}―Ϋq3¬uFαά„ϋτlωQ|oζ£ΛwΑlFΖ‰os“ΘΤf‘gb–¦"Š‘hίjΜ[iΘQηbΗ!‰tμ€H"Ίž‘‹‹ΝωH›’bΞ}ώm€K8Τΐθx,(ž‰…‰[e.«pd§ŠςkΑώe‰XγDΧΈΞκΉˆeσμ|kιBΏ56‘ίd›ψΨΞ܍¬ω™ ‘²Υκ„Do=²Eω(Ρ‘EˆΩa%αvGj~XŠr±ΩΙ\έp²U“ΈˆαΦzCζjon”"X™΅6~ψR€ΟΣ—do€œuX₯Ή~‰_žδθ`1ΐπ°‘ϊ9 Βѝ›šΞOHO[³§cuB†F'αψ‘ι(­BC‡κ›‹°mαfΧƒτωšΙˆn)ψ:Όρ΄2c…¬ ˜[[btΥoOAφτCZ΄ξθ€M82½ς ͺϋk–hή χXw­§)±ΡŽƒ ‹Ζκ#»h½u4Ή‰#™£Ί0Ι 4V°vc*Χ‘ΥΨθ$2s­MƎ#iΦ(χμ[-‘amΧ΄›p…MH€:•@G?Kuͺ3μ¬UŒΐά*V’               t„@©)ΆZ±ΉσΜφ}† 舫™Žp«±pϊ&ρ²j½} φι1k‡FO‰›ΘάζF‹P%3rVΨ‹C•kr[ˆwk-J'I" ΫDΕ†­[‘½oφdnρr8,_…u«Va•u[·n9βÁι±aZsˆ yMΌ¬Š²°u‰^gΌ†ΟΆΝ%?³IΌ¬ͺ³–εZ£ο"\MD₯`›δΎ†φV―±Ύ¦":L 6Ν8Ό-Λ‘Ζ8(έ·©s„~%ΉMβeΥy^.J”Q’)ΐΊ@ϊαMΌΖ coB΅–₯Ψ:oΝMτΡ}Mž>I?ΗDτžθ¦Š2&&aaa²YΕΛβΉX„ΪyŽ~η¬ΙA©Q$’N›xYΚJσsΟÎ{λ)i;vš#ύͺα΄V+μΚ5^“•oΨ4T"›[ΕΛͺ0?Λρše3μ‚L“ _tΕε…ΘLOΒ„ °e_‘>š) ‹ΫŒ@ίΗ&ΗΐΠ—+%sαΎL$Ιx2a½Œ#,n±“ˆξΑr}Ψ€Gš—vG·,„Γ₯Ά.Π”H kΈχYͺkΖf―ν#Πt—ΠΎv΄&               6 μηΥ¦MgϋωtVWϋρ5DΌf硌™šW\Š€ˆQΡͺXΐvΒD‰n{΄ΉΉ ΨpCN‘DZŽ•φaHΪt³Νε8_z…ϋwŠ Ω* ŽY‡΄Ω3Œ&Ά½i›RQή"h―Νu£Επ³Ήoρ!Yl΅b£Λ€%žtœ(˜6ZΉάΗ―‹ƒ›·τ(64Ÿ«΅U­ΝC—έΈUα–0Τ­žZ­Ϋύ<’­A†nYΦe"έ&Ϊ-}p·$fωH lIfμY±ΫΦΎΦΉ4vV&ͺΒ”ύ7:‘aέ; ‡vbŠM°=»€[…άfδοΛΦΞαΨ„ͺK”ήΈt*'jm£χωŒΙbԚδΎKΧ8~ެŽΣ½4—`_vΆ\7Β‘0²Δˆ[}Ο.Δ²,ohwζΧ^KVΜ\㊳}ε<‡’λͺ:GcεΑΝΆΊφvν`―.rΦT’½ ρήVΜK Δ‘³e]»@bήΫ)”Ma±0D—ηnΕ’νέΘΖp˜{ V ΈυYͺΥXΩ]z΄€ωΥ³υxχb=.X»„Χ0“ΊΓ οκ†œ.™;%       žM ͺͺ ₯₯₯N'ΡΠΠ`+?}ϊ4._Ύl;φ€ΜΧ_ Χα5ψvOrΛζ‹ς/ ΐvμi™³gΟ’_Ώ~hlμšμθ|/^Ό¨{žΜ°'¬ρ€P_ίω‘ψ:ΊΎͺύ… pεΚΆφurgŒtσ}xϊ+^½ŠΪZ»o‡o~ΊήRύQoΨι}³C   @em=‚|»η{χ+–\ M”¨ΙyNVΩψΨΣ<ͺͺUΠμ€…cQΦ$aΦ/˜Ž°‘&˜‡",BmΡHX\‚Λ±Ή’ωEapΌ›«B‰ŒlνΝ\ꆨΞπUژLŽŸyν…—ΎŽuŽGα˜mώ\˜›c:Ω»Σ—“fέT΄όΥC˜‘E‘Šφ€w©81―輌&3³[Ϋ<² JN[5žŠU³#΄KI!JcR±4ή΅@X€Ύ‚‘Σ‘Ί4*Zςα¦sβpΦVθ‚—ήFZl(ε<›+=fΙ³<: G'M±‰·oߌ₯―ξER€œ—q³EPšεΠ—Υ;ξ„JΡy‹DΉ–΅p"$―5β―——JTu©‹Χxωά8hgŠΉiS"ΟκΖφΝΫ‘qh'’Mˆ™-gDΦv^±!跜/nq>εδ•ˆ€9²σS=Κ:νoφ&+ήƒbσl™λC[€Τp‰nίτΦj½kI€Ί‡€;Ÿ₯Œ ^χxΔQ\θ±ζߝ­C¦˜»2)aτ«2N£ό{ό‹ͺ+±o       θRuuu0›G ²ψϊu{yΩέϊ|m χοƐΌ0_όή/Ό ψ·ρ­Η-πZ±SΒ=OMΧ]Cώύ=ΦG埧3μ ώ)Ί§ž‡\γŽ_Τ9θγγΓ5ξ8Jφ@$@$@=–ΐ₯κZ0ΠότQXη~Χ―ϊ4ΕκŒΛ«Rœ_Kr€~Γ#‰› `|}59 (‚υ¨ͺΆ»ZqΝ–7v±/±`’ †Η`Ατιˆ•’Γ†κQ™ŸίΌοΝCΚΌνN[―²–††;­w^hΑΎMΛ°½€Im³Sa›Ο7χΩ*ν2ρ‹©έφ–`ΟζfPμ̜e­Δ€Κ]BΞzιx™ρΞΦ'’}«1oƒσξΐ°f«FΩ4<r*ΩΔ£ͺΛπh«P^ΔΝ%ͺΐIš,"w9+΄€’Β¦₯ΕΆ°=ΙΡ@yp1²jΓ‘sI>Άη8Ρφ­ωX,f“Hΰο“€ΫJAͺυg)iQ{σΆ|Μή2C³wφ>hαH-°.1†‡«΅q<Ÿ’C­|«\Ÿχ]»Ζ1Υί}%G3Ξ?HζΜάD'„AŸΦS’KW±’Bh…ΙC-BΕ‹7VFy‰?_!ο.νRνδΒW ³ΛΕεεη#4:Zͺ‡"ω₯ μŸ™"β}—Βbη$@mpη³”γ_Β6»€Aθ±ͺά½›"μt‡.ΥXίεPΤ)\nΐ‰jΗΘ1ςΣ9ίβ…αύ™‰H€H€H€H€H€H€H€ϊ:   DΛ—Ξ’ž9sF«Ίηž{μΜμ––}ςδcπ«ΦΏ`qυ<‚œtKύq5ψψργ]Uέςr“D(σ•/ƌsΛ}qζΐΉsη ’0{2Cε·'ϋ§"lϋϋϋcτθΡΞίς2ό₯KΝΠΣΧΨΫΫκz>rδΘ[ΎžΞ())Ρ"D;ΦY΅G”}ςΙ'ᝠ  ›%pώΚ7Έ{°.`ΠωfΥ§‘Ξ]Ύjd»aoBdΌΘϊςE‰Σ£‡λc[£ͺΖh*8)2 Ηt1?lo.Ϊ`ΗƒŒ·Χ#<Π‚Β=K°dkΆΛΆUΔ€«vc‹ˆ E9m‹²μΨV?ͺ΅θ’<Σπ°–’Γγ=˜ξ‹β,{ηT]Έό+vK˜·t~nΞΟuMΦΩήΠ$κ‚ΞfΥέr8yέ-±¬τθ$ΜιςqkmηF(βΒεT*n2&ϊωYμV+κ,ΞΛGQD­Κ;& ΰ Ky ΞW%"֜ŸŽδab‡’œDG9νpίύΤΦκ NS€g°M΅Q}›Ω:zΑ#!`6ޏς@,±Γ{)2\ηZk‘r‘Ίvu―: 0L^ίΑ./ͺI§§Ό’R$EG‘±X*°6Ϋ½ζΖ(z’δ€sr6κuν}•kk©% rM½ΘΩlΧΓά7ΤξΠ>[²σRVbςͺΨ” ώΖK©˜™²Υފy [F γŸ₯n™λ}p`οž:gΉ»RgŽu^ό^Υ <τ?¬ός†αYEy6Ά—Nέΐ£ω΅xόΣZμ½Τ}"νξbΙqH€H€H€H€H€H€H€H /š4Σ6έΚC9Ά<3$@$@$@$@$@$Π—ύsΎmΊqC;?Κ}ŸG?:f«Λ2yk[’KnΓf¬ΖΊΉVa Έ`έnΜ°F4-ύqM:ΏSζ…εwχοδˆΜ5Ψ΅8Ι;€Μ/*0g€_^c.ρxχά˜ΤΕS©©A%όΤƒΥT–αtY₯ΖOE9 ‘0‘       tΑSβqωέ]ΪPWσώΤCr      π8‡wοΐ/ύ;Ν―Ιwψ"°ψ:Μuβ§ϊ•cΥ§‘ή{ύU#Ϋ₯ϋ•+φ zg’ά1#}'b”ΓbŠ‘VA"ʏbΩ²,«YΘά7[Ѝψψq,·X$²Ι‰‡‘•[$ΆZTΟ-Ǐ Όά,baΙjn)Κ· ψœt ’ΦeΨ—|3ΒLŒHΐργΣ!ΓΉXΆ!‡Ά$ΘL—ΆG’Λa–όPc@‰Β«Kτd΄ΓΕ’W’kβVΗρΥεΨ“6ΉqρΠ€ŽζΟ±έ*~uκ›‹Βύω%H“9‹Θs“ΜY‚‹ˆΫX‹ΫίB5œŒτ€h[ΗC£g ³$Ϋ±-c)Bϊχζu²3KΦ{&5…Ε‰XόdΉ1΄ιDBΞ¦ν6$'!:L£ƒ‘·υp«η―Γ7ΨΦ>oσ.η«hAΓβ’qόΘlΟ‚ΐ‘CmBρ’œmΆ9ζm؊όι[4‘mČt[άΜ?@ΩηΩF`¦œ%Θ]|qς`CX\Žšλψώ*ΟΗ¦νΕΦf“‘œ4ar=܌­‡WΆθΞΎ 3ΦxÚ=˜lw-‹[,ο‹Ιξ4c¦5φΓva~;6dO·E5VΧ‚ςςZ;_δz³Ζπ₯}¬\9΅d+β­†zώ":iŽ$”£Φ·ιzkΞΟƚVNπ σVγΎ#›$г΄OαωΦ™Ψκj0–“ tNψ,ΥMžr ΗF`ξΚΕS78™ͺκ‘E[6ΔΛJ΄œ|—ώc¬/ήύ[ΆDϊjΫh_Ό#ΗΛΗτΗΨ@έ‡OΏiΤ’1Uέ97oΆyY5ΗRc+ιΉm.98SΦΥ“©Δ&ω)Ϊ;ƒύq ¬ΰͺ)Β+‹Ώ‹ΰ;GγώϋοΧ·{G#Ψμ*θ θŒι"       ΄AΰΆΨ©6‹Fω˜ΚάwlΗ̐     @_!pιTςKυ KκϋψΉ# eeΗ ¨ΎŒοψž)Η7Ύξx§.{¨dF*ތ™I[PXΗβTPCsZ^΄i3—ΐ$ͺ&9+±i_‘ΡΪ*&Ά €°Db;¦œ•σ°:;ί*VBΒ&1]iα>,›·Α±“£•‰ ±―H,*eλxε(2Κμ•ˆSd.EΦΉ(±΄!^6—EΪ”yvBΩνΨj7‘Ϊ"@τγs'Gh^”έι0o'9-ΚΫ0;EΔ¬'YS«xΉ΄€ΤZV‹Z;όΦΒ;ϋiaς¬[·mβ%hͺx7%Wη§«ς¦–7“ΛZ6 [„©ζ‚„΅Ά‰—Ν%ΘqψV»©Κ"κf•Dα]‘ηΪωZŒ%3“°―ΠΚUΟ*^Ά”KτμtΜΫpΨΟ<€LIGqήΨϋηΤή)³6Λf5½[ΌΏf¦Ψ½gja[βŠ*[ϋφeΪΉΖκZ––ιψώ·^Μ,εEΨ™>₯Uoϋ|kΫZE5Nίiύӟ ±˜‹΄χΓfΫϋ‘3X)r0OΞρόύ½Υτ°ˆEΉ™˜’²Ή §cή²lλυz(ζξ^Χ†=«I€Ίƒ@g|–κ?9ΰU]έΩΚΨξΑ:ι¨Γ§ΗNtiψ|wHό$ߌ«7šDΓοΗήόΡ•_ήΐ—υΘΛρΖ ‰¨ "ζΆ.‰Φό»37P-h%z~ι>_άνίβj‰Zό¨D`Ξ2>ΐόˆž·γs)Ϊ΅χK8κψ̏ρΖύ¦ΚΩΪΤνBπύΙ@δ‹8χΡ"tu°gg>Έ_vΏφΏΖΗ¨ΘyK1'€ Oo–°ΫΦΤσ£o3αžH ―(++Γ¨Q£ϊκτϋάΌχξέ‹3gΞ`φμΩ–Š<)ύε/ŸŸΎύνo{’[š/Ÿ~ϊ)† ‚#FxœoŸ|ς BBBκ‘Ύ?ήγόR)nτ­ύKγ©άΟ? .xδšͺknEE…GϊvκΤ)TUU!22²ύ'C·(..FCCξΉηž.‰έ]»†}ϋφα₯Kω9Απ3>ΛΣƒγη"lυΛF•Gμ=υ:iΐωβ‹/ΰλλ‹1cΖE΅?wξ.^Όθ‘ΧL”§―qaa!όύύ1zτhΓeΪŸ={V»Ξ¨ žš<}?ϋμ3©_‡ι‘KJJpυκUŒ;Φ#ύSNyϊ{,8:F$@$`#ΠΨΨ΅©ϋΦΊΊ:m«5hό­Ϊ~τ£Ωl»*sΓs°mΝSZχ*ϊrŠ|'_l–/Γ;Β}-qƒ­AΚKMΗ‰μΕ—θΌMΓcβ."»Z3ς³rμĈΞ:‰ΑάΉaΝ/г²77Ηӣ娛&ΜBV³&1“γͺ|ξτέ¬±:Œ™ŒΉaa’©pΓ7@›K˜Œ'χaζβ<δδΩΤ‚ͺ·¦€υŠ’|‰Φ;G$‚³ εΨ2a&Ά7Y΅?.ώF‡ͺαQ’—₯>ίtšΌξmlšΡφAη¦Oΐ²ξ?mœΜK΍αΪΉQ[QŒ¬ύšΖLŽAΕαΌ6γ歜‡#~n΄ΔΪVzθδΈ―©eŒΨ‡ιφ₯b/>0΅“€\+„λίsUΈ|…cςδ`ξΎν\cλϋZΝJ{o»z·sΪ7gnη»Λσ­3YΩ]δz["Χςξ>Γσσσ½nŽ[‘@Ο#έ$Μμbχ;όYͺ‹ύλ έΧύ—¦™PΊ υωύϊυΣ6oooxyyi›³yͺοόϊ9«θ«e©c i„.ζέ2>τquπgk^<Ω$^žy».^v—οœαήw›/–|^«‰˜•ϊwγ|έ?»;νwεΫΗ^Ϋ€αzbε4/eΩ/[ΕΛ‘ΘΜΫ‹9QΊά:=u>ύΚL’_9†9ΟLβ)@$@$@$@$@$@$@$ΠΕΌΗ?ˆ«€ωΚ‘0wρτΩ=      h>ώγ.Yψ8Ύv»&8VΒγY^…3ίLR’e{ρςΑβs·DΌ¬|/ΞΡrJ·ΤŒ½HŽ6!{΅D3Ν2ŒηbΗb%^–d©@‰–q|Ι;άA]žόŒΊlξ&wζ’υ₯υkτš…­™π­Θο˜xYuW,ώv@΄lx€φη?ΟGah…Dn΅/ΆΛϋŠXX„έηνŠni6YۍsΓ΅#y"lUύ#§]°EΠn;w]ϋǚVΘ΅’ν%.ρr+}΄«ͺkμπΎnΧ@]`μŽοΙΚ½kyL”]’ t1–κbϊzχ0[Ο€Ε£ 9¬IΚZ§&ίά}’νœ:oiĞ Ž‘—m•nfTΔe±Y‰—/HUZ‡ΗοκΪe++:†χ ŠυŸH1…ΰIίGDHΧ+‹}ΰΟΈͺΔ„β§a$N£ ψ*ŒjΦ3eZ¦˜τύIpΥ΅Γ8ΦƒJρνΐŸΕ796 i α7Θ™₯^VSV„ή?#ΎΘβJDMK@”1`M™ψY†c―ιQ‰k Pa)$Ό™ίWM^ή\(™©˜?M:³¦Κ’[LˆŠ AAφ”]ΕΘ‰‰˜ε‡"axUž1ŠŠh&’‘Ί™ΓH­κJωYpZJ&F!DςΩο+¦52Iα/>G΄3άs˜UŠ\ϋ’MΌ¬„LΒƌxܟ"α· Ξ@Fhζ›fΕ       Ξ$06ΦΦ[C΅ζγ"pΒƒΆ2fH€H€H€H€H€H ―X΅$™υBύϋk"ζ·tS‘˜›G^.ωΖ‚΅©‹<c "Γ‡jώ%¬>ŽΈΤRTTωbxΨPωFYOωYΊ=Ϊgη“hΑ[;IuάyNI„λ5X˜Υ‰²+    N%Π΅JΨNu΅λ:SβεΕ£›Ί•uHύD’/ΧwLΑόκ™:Νih"䛝Αχ‡xCEoή{©»Jλρ£Π~]…YDΊ›½O«πΌΝΌaΫ’‰₯eοΏ‚ΡύΜ‘Μώ ςΕ<|΄(J+ͺ9}ήϋC-ς―½Κ?χξI€N i^άβψΨ+bΚΟDxλVͺΑϋ[ΰ‘§ZΪΟΛΘΓΆωQ(ΪύbR”(YO7'γΰfΙ?—‡κTέo£μΨkΠzz"’MΆ¦"€ά£—E²|q"¦…OΖΔΘ|§"―β-»6J ½χΗ€ˆa*>š/βd/ΎɊϋΤxΰ`KŸ3ςΞaΎ5вέP.³Q‹2±4€4‰­ c?“Uρ2ˆβe χ$@$@$@$@$@$@$Π•nCΐύ±¨ϊψ¨6JenΜ]Ι›}“     x,Κ3x"- ―ώφeωϊΨ"1g± λLM›Ρ˜UΤεΉς«ΚsG˜΄Άj’―Χα§‹Χ._ςΨyC€Ι)SρξεˆΡrΰΠPΩ wΝ8Ίs5–x Ψπ{    θ ή]ΡiO곫ΔˊΑ—υθΛsB}:,8^8BךWΧKΏzΏΛΉ»4‰—η=—‰C‡ήΕs’§UiΗΟ¦ΰΡ]Eϊz-{ίNΌ‰η2ίΔ»―ΏˆΘ& Œτ3ž­Δkβε©x1σ]Όϋf¬]㩇Fγ€”Ω΅cΆμύ_7‰—#Ÿ@ζ»οβυŸp4²;*Ϊ΅Δ&^žΊ4οͺΉΜΣ½Ϋ‘ƒ­Η*υ 233mε‘σΦjΗysD}μjp`“R6/ΞΎCCπηΘyX»τ , 1ΆΜ]—dϋٞ˜mjhε2ΰ#5†(Z/+FoβυŒ₯Ά&)1―‘vΤv&dβ<σΜ3˜ίB^†μMzΔιx₯²f"      θƒγΆsεΰ[Ά<3$@$@$@$@$@$ΠΧœ-8Ž€ ‘’&«€DΙ*ΰ˜ŠΖΌκށ˜|»/T„e#©Ό*SuΚFΩͺ6*]Ύ†ωIsqρΔ—†ΉοcIβLLHJΓ¦-™ΘάΉ™›VcΒ„)X²ω°ϋMΧH€H€H€H€H kτͺΜκ&%Iž΄Μ8Yγ­δ0Ώ.‰Ό¬Wβe%6VιϋCšnτ’φΏ7yαΫ½πΏΧ₯οzΝΊ.­YA$@$@$@$@$@$@$ΠY‚¦Δγμζ•Zw7ΚΛpνΛ ΌΗρ :k,φC$@$@$@$@$@žNΰβW_ΰΗ? OώΫo9JsW}ߟj6wόߝ/Ώ0ό‹άΈV厹ηΨη!K6&    θλ:W{ iρυΖΆ ψΙθxZžΌτΦΈtιQ’ό¬Lκ˜Άϊ©ΈΤOͺp­ΎΡVΦ‘ΜWΥz”dΡ.ίνί†3nτύ`}ΉNTwŽφΓ–•Σγ3±¨YΤήIOΐΑΧ2PU~±{δh$@$@$@$@$@]B Χ˜ϋœ·›Ό±x΄.p5DΜϊΧkh°Σϋv—xΩ|ΓnΠNZΊa]ω­žUΟ›s  ˜# eιύ3•H·‹5\ α”ηXΘ.šhΕ“?B^Τ+XχλŸ!§(<ΈO©Mj§>χ.ήHΏ‰ΘΜΜ„Ÿ_“HΉ¦f‚εΛQ-νθΝΫ"[+v•eΕΗΞj\\v0―,8€—UI|:&φTΝοιlά“’Οk^&Ξ=3ΙaŽ<       ΦœΪχ,—οExB*f_`ΛςŸbΓςYΘΞ[ λsδ.Ί¨ΕΡ—~Š΄ΜˆIώ%‡Α\z ΛRaup²,F¨‹–½±8(ξa”f<«Mνϊ‰/P{ώ,Tdf&      *Ÿ=‰ί―ωόž0H€H€H€H€H€ϊ^#`V«΅νδumΡ\‰˜»KΌ¬œμ―G^.«Υ\κ”—―ͺ» D΄ζ™‚FFJρ“‚œψZƒ«5zρkΔεSεψ 02¨Il쀑CQΤ΄ExCΆšΚJœ>σgΌΆξΧΨ,jζƒO=„Χ&U`QTζΜ‰rh£Tƒ>\<ά.($\οcjΞ½5AΚw«›5’·ΣG·«YΙ[υˆΠkŸu³:w[Uv·agΨ »Gξ}Lοiκ‹8ΉmŽόΌ3`$@$@·Œ€ωφν{Ω‡>…˜0efΟx‘ξ†A4Ÿ‘φ"ΧΪ>zΚƒˆ“Hˆ£œ΄·”žΐ~k_ξ ˜†a†D\L˜1YΔΕ*έwL|i–,ςa(τ^̘0’YI€H€H€zχ4ρrκΆ?`α„!V—ο•Κb˴ǐ°~"ςΧ<θr*–SοiβεΥ{r0*ΐj7ωςΉcyΜ",{&ΆΟκ;Ÿάύ7πφ-Τ^ψZcqεOo!d~ͺK~¬            ήJΐ»·ML‰˜·΄ͺmer*σ―Ύ3Θ~iψΫt§β~ρYj»HΨOG{ΑˆͺzΫ°Κ\¨Ρ£: ΤΕΡκ¬YγπtαpNΚk8έ¬Eπ3+«d mUσώμ΅τ »Χ²‚»#ΰtφ―αοοGwAΣ!"jžyc/–Z-³ ZŒΪΤGΠ θΑsπΪ!Ϊ!•‘ Η‘!#¬"θƒ)ΠΜν”ΗJΌ\YV¦ωαΨJŽl“³Φˆψwέ•Ÿ'Βξv†_–‰κA­sPΤljjόnI5ExςΞ)Jg.i-Ύxk‘•c·ŒΞAH€H€Ί€EO~ +v_FΒΒΕH›7ε»…„ɏC₯m?=e.Ϊ+ν,νΟ .1 ΙσDΙξ΅Hœ‡έEUž—ί‰ΨψEΨR4 Ii‹‘2λ^d.9βξ…φjεςO‘Ά|-ςK/ ΈθDΣVς…δ/ΈυΛσ€H€H€šΈz₯ΎόόΎΨ•…χvΌUΖΤ΅ŽΏΊ˜ώ―vβecΌaHΫώ4½Ην?ΥΦ}ιΡέ@ΒF;ρ²΅Β4ι[gβσ='ϊάη„ΑG’X[Σ•C4²ά“           @Ÿ"Π«"0+Χ<σ·xcδ@Τ‹ώΧG΄Ώ]-^V~<8Δ [Nι}PΡ€‡ξθΈVόƒΛΊΪzŒΏL’“ΣΘiσ‰ƒωeά»ψ-R―’μΦ”Γ’ϋ“­£­Ε€] <ι ‘ηl^ώ!ž| ­‘“ v-ΖC› Ό Πs’ρΚϋQH€Χ”ΐ:‡˜μTΖ­ΥAζΛp;΄αΑy{1'JEŠ.ΓΕχBŠSΔ$M­Κ½οž| “Bτώ‹lΕύ?| xβuToL°Ά³J rN„-BqсW„Ήv‘xΠΞ$Jι‘Φ&―½–iΟ$hύVŠ|ΑC2~—§2lŠ»_VS₯©8t.έζO—ΝH€H€Ί˜ΐ¬Ÿ½Αi/`ΒqΆ±&Δώ /ύ=Rβ7#ϋγ_Ίώ)vΛ €Ξ}χ₯Ώ€νσΫ'ξώ)’ηEtήFŒRφ˜?EςβmˆίπŸX3Ȍ8ϋγ&b}̏‘όό‡Άˆ‹f*#όi¬Xψ›O̐ τM–46Τ£±^žδ”Ν–·–iε*―ΆΊ: ‘Α.―ΚεΎG΅«―³k+6κXυΩΌ«­Φ­ή°ΥΫ•Ÿ»„·ύ Ύ~¨οo’½l²6Θ˜ΰΥίO+ƒiΌ¬uύψ;όανο$4}ί\Ϊ[:λ?ύώχ0eό jΜexςpβί–ΰόœtΔ?΅(εΎS \Ζώ=@zΦD罆ND*.£°΄ "ŒθΚφ¦΅(Ξ>ΩΛξ΅/΄εMC$ίφΓWΆ½$χ0ΚvόF›MυgƒΊΚΛθ€X0‘         τUΡΡΡzdΛΎ €σ&θ“z₯€Y­€!bŽμƒθΑύ΅ΕύόjΜ7‘^Πu‘—³hΈΙ ίθ…½Φˆw/Φ‰€ΩΧ¨Ί©ύ»Pmδόw!]°lA“°=σ ܟ,’ΧΙ-ΫΤ©‘8x°IŒόϊιΆΎ!“ρ\δf<%Υ/'ΗΘζzZ~ρxq*΄(ΞO=t?ž©τΤΘB4uΤCξ뼟Iι‡0u³Š&\ˆδ˜;ΡΚpAVζebsŒ²Ϊ‡Fο@δTqΰ j­§ψ¨¦ρ‚‚¬y™σ²Εg~Œ7ζ„ΰΐ&-ό2£¬­Ϊ³‰ωSρrΚAάόξ5u€47ΖwΥSSμp«…-’³«ΞΛ‹v-ΑΣΆΑbʝώN §Ύψ1ήZΤnyΆΣΎXH$@$Π=Μ93‘m'^6Fž°δ7˜žωφOEΪg"" <7>GrνΔΛFϋΘčH]¬Β*¬φ§mCEψ/±Β&^ΆZšFˆi1φΜ}₯ς“ρ‘R\ZΈα /]qO$ΠΛ (±έ΅/?Σ·’B\κ/h()FΎ‡Ξ»-Y ύΪη?±›₯άΡσ~~²ωJήO4Ξ&ΤYEΡυύL¨ΡsΪΛζ-5ςˆiy`³AμU^‰§•ˆzpΐτk¨ΓΥλ4˜«αεγƒFoyκΦ^^’—½–—²FoΉTεήήu[šϊKήZ―•K]«…ΪM€fί\Ή wνϋKΟ‡οΪ„·Nβ‘έ₯ +n’€εr1›Β|]t€Ψ΄!X}όFŒqbγ‹Θ/ r”³Ο%΅Θέ΄ΑΣ_iρƒHN:κUEγcΰ3h0κ―^ΡζUy(Cο‚^5GN†H€H€H€H€H€H€H€H€H€H€H€Ϊ" ί‚φή€DΜ©cΨΜ΅Θ+½ jίιG‘ύ°αΔ |ϊM#voΐœα7…ΉJ„Λ―ž•Θd’ΖzαξNˆΐμ7H' ‚+)bΞFœŒxKDψ›#…†x92~-^zι LT!™m)©DΘ“ ωe›RSŸX‹χŸΖަ"i„EoCΘΦυxμ)ΈIΌ9ο9l{f’Z ΐ¬Ζ šˆ·NΒ“LέpxβΕL˜²“±ω h”5ωEΝAΕΙ‘X·d 6Λd EΌ¬§HΌψξv,²FVe!Σ‘2RΤ€%ΥXd“HΙJœΘη0md[ΞMΕk„g­λKΤόνx³2?|JοXCω^œ_‰Ÿ=%βh'm¦p€ ΘΠΊΌZ_°‚»PTi?JΛ|PΔ4Œ€u[V;”D8ρΑΑ€$@$@G hίΫNΕE„εaHQZα0;EΗ€ύF8'€ΈcxτŒ˜Η Λ˜½a£νo¬Ε’"$ϊBτz0Eˆze9R©…ϋ.#aΓ0ΙW‘\’0ΦJMpπΝV3α @%P{ώ,‰HY,«}n\,ν±σΉYΗM7CmŒλ±½pΊ΅όΙv8 DΧ "tnπς–}?E{‹Zφ"„VεV‘΄Vηε₯‰¦T™ΨΦΛqΨœ „h€z?ΩΒΧ?w Ύ ΰ(χ"βn”ςΘαAπ;%Μμ¬t<χp«βecœo}²o?ϋ fύςΧFχB@ώž·Ρ―οT¨.RhTΣ/>Ψ›ξώVŽAΖVηŸYμm{c~°Da.λ5mj•ΉοPΐά™s"          h•@―0«™o=qύΌ0Κί?TE^Ά*ΈU6|θoΌSζ…Ο̍ψέ™w›οM‰Wό΅,ΊίΤ£IwΜ9?$l«FυΆ–½„ˆπχκ9¨©¬„Šμη$[K;­€„9?œ΅•¨ΤŒƒδWƒΧ± ˜νΕ"bNH݈jΩάκΫِ!±ρ£j¬mξΫ’9xΖ‰½ŸΨ?σF5VΦ(Ε―jjjΰ$σia‚ωb—¨ϊ•ΙΙvlΣΝj^z‚xξ*E`[u5œ`΄6Β΄Τ7P½¨Fψh€€Ύ(ΥΎ•ζΘψsœ2ΖF­NΨώ0)Nνμ ŸΛΞΫP=Η~ »zfI€H€z0ωφ=ΐά,%vžBcQ‘ϊ, ΗΨ„Η-,k[”4Θƒ<Α"KV+Ζ %Β…ooFςκ·›lΒgbΛ†₯ˆeΔ4ΫbG?slΚϋ’ΙNrΣΣ_ΐj‰φμπ±ΐΑ‚$@žD ζδ—ΊXΩN°\MOΠuΒTτ`―~UXEV{mλη2ίή!Ο}s5ήΎ¨wq;θέΨΛ΅kθ_W‹ώυτ―­‘Όμeσ½‘>ΛχΜΤ‚kƒ„Ψ«rν‘MΓ@φUώƒQηη/ΒgάpjM²—|@›D]?P‰ ύΕF?.’hˆΊq ?ΌD=00eΏ]Χυμ“μœW ˜‘tΚ‘―υ%睡φ±Βy‹*μ[χc¬ΨsΛ3s0ΑPρ;7ΦJ«ͺͺPZκόΑ‰††¦§ΤOŸ>Λ—/·Σ­«ϊϊλ―Π‰Ί.β~qF0_=rşήHκΝύ»u€œ|φμYτλ'`4Ϊ_uœΫފ‹/jηžύί ?Z³'¬ρ€P_oύ ΊΦ&s κ.\Έ€+W Pώ6yjςτ5Vώ]½z΅΅νΛΡΜΥίυχfΰΐέ1Η         ½^ΐ¬VyΓ—Χΰ/"ζkΎ­ξΒSaEx<ώi-ͺεή—|^‹υίρΕψΫΌάQE^VβeΑY₯΄QύέnλΦ­9ϊΪ5¨<†Gξœ‚ƒOdβδΖ9Ά`Β»žFŠ5ΨqbΤH»MΩ6ϋn2uško{%ΒVΙΟ₯[ΖΎί‰ιΉ89*…4‹ˆ¬›ΆοΥ*Šn_#gΦ~xΰέ7ρ¦Εδ2š₯ΕbAHxΈ³Ζ,# θ-Ϊƒθλ+βγVΒ †FΞDΕβm8΅p#F΅`r™›N "RΠIχŒX“ι(.ώ2φόA~ώ]Λf+Ώτ+€ΝžŽΥ{φ#a”ŒWzyͺ―Ό1ΨΉD •2I₯ο!9ωηˆ-yω+Ηie|!πΧΎψDΔΚM‚e‰άhiŸX·ȝπΏ' #’pΑ7w»_DΗ…ΗφβdoΏξ‡\ϋδŒ?ΎCπ}^7,hэ—œ!¬Eάμ%ŸΑ―Λ‹₯W«΅rοz½Ψ*{/Λu\»^ƒλ²υ“v>"Šξ'εή²ω¨~dοΫPϊΊhΝ§Ύή uΪήGΫλe*οW{­CsθξΖΥW΅Ή™μe‰*_-›!^Ύn @ -²iv)zψΕ―zPc†ŠΨ4κΘ–cγŽ} χcF"%ΉN ”œ%WεΞlYF$ΰH ‘Ϊl)+±²l_ΰϊ‰/ά82£ ••`y€–ύΏ3>·5ύ^Ι Œλ˜HΨ 7n™Ι„oQη;Ο…σηΟCEtΌYquΓ΅*4Κu³Q„ΟŸUˆZεEθ 9φRΧΣϊZ^/―ΧΥ*/ji[Ή²Ήz½VΫΌ€­—{ΥΥΓ"ηMύυjάζγŸšj-Bu]uϊίΈ†~5"$aΆ₯ή–kΈΦυQΊXͺ 6#] ndφε_Hh ˜˜tμ@E_>r₯vρs ΕGOΘ RsΧ£Ύ½V~Ρα='<}k~`χΔu£&H~M)::Ϊ8tΨ+Qα™3g΄²{ξΉΑΑΑυžtΠό½~rL\ωΣۚ‹ƒNύ£ς‹[κnsn©3Ν7™δΣ©|3fL³Ο8Έά El6|V‘—=JΌ¬ IΐΉίΕϊ'Βˁ/ι‰ίΕΪE“ΰyς_ΓCξI€H€H gh;Θ‘)ΡΉΞhVδΌ€ΟΈYΔ'§""π2·μ•ΘΛ‹±>νCdZγ,*iXΒΆTQ²AnΒΒ§Μ΅8oQζ{‘Άζ^£Κao }λ#όZ·ΜκΧœ₯7D„'ιΛ/ΏτΈŸτU_t+AΝ7ί|γΜυ[ZvβΔ νg+**n©Ξκ«―P^^޲²2gΥ·΄Lωζ©©MίΎ‘h·gΔ³‹†ΣΕ’?\*mχtοϊ6ΌFά ο‘α€δ1b nψϊαͺτ€6-ύο)#§νΫτΝΑΊ{<Υ7υήΌ|ωr§ΐhρΈ«*‘ϊ«ΏΞ"–ŒΪμ“zoͺλΪπ»οΆ/n=/‚ηλ5\Έή―šλeΊή"vφͺ½Ž²j‰$-{<χ“Ί~MϊΊε†VίΖuD‹(Z꽕0Zφ&G›Τ^κœ₯Α•ηγšΜχVŠ{”ΐ-Ό7ύ*Žiε2°'¦Μp&R>ƒμ<`Ζ²§λ‘ΦβθΊΗΆη2–o{‰œυΣJσ^\4%ή&`ΊŽ…@IDAT<όN/ž)§F$@$@$@$@$@$@$@$@$@$@$@- Pΐά’I—”(σ«γ|ρ_₯uΨUZ― ”O\kΔ‰kωΚEθ…ΗGφΗψΫ\GjvΡ΄[Šƒ"&aγ[ΥX[S)Ρ)t±Ρ A!π£rΉ[ψs  ΎI P‚ U(±›sρOEρ1Q'"°<¦ΠqΨώqNωED}ϋΫ"ςτ°δεε…!C†`Ĉζ™ξNHHBCmρ½=ΚGOŽPhψfωΊD‹¨|½ΈP‹ͺ¬’+ί(oŸ άΫoά}όο§νJtεχά|Τ9Γ7ZL«3žθ[G#0w%gΡV ¬o5·#Ž„ϊ=₯;ξ†Wc|δο„wcξ*uEό©ΣpΧ¨°DΣjί*z¨«Ώe­6τΨJ_D§ό«Σ7γTάFŒj¦…?υφ³ΘΓ,¬e|¨Βρ}Ÿ"8v"Fκe₯‡6‹xy2φš~ϊΑcgܝŽ zpΊmΈFK Ύ9z·ΕN΅•1C$@$@$@$@$@$@$@$@$@$@$@½™ΜέΈΊ>ΐγwυÏBϋαƒ iΉ_IΤe•ΩHJ΄‘S–"=8‰ρ›±3K~ΉA{`I>sμیδΥ_ =scΣ―5ΘηƒΛ…„Μ€E)sφ€ο’_@„|Ά(•_dh‘|:΄΅Ξ-ZτšŸ€ΫpΫw§ΰ›isΊ’ϋΜ½fu9    θYT &     ΈΉŸθ±ζ“—ƒπχfΐΉΫFΥ™I ™ΊΓ[Ϋ:³_φE$@$@$Πϋ Œš$κγ_!ϋΤƒH°E;Τηm9΅+ η75‰…OΑγ0a”Ud©Βώ=Οbφ’\Lh]ωΤΫ[ρ9’ͺGА6Ιιo#ρ@R‹ˆΞ§²·’,‘fά‹Όε;Q:ci“€ΙΊ–Sοau±ψΪ7…I½Œδ »Š€Š€l>ώΜE•l5%ςF²¦*#ΣΚΎ‘"VŽΤΛQY‰•}‡}«•¬"Ο$09% Ητ‚”Άκ`_ ξ~ςΩVmXy³”σ:°κ§Hšώ6<¨8! ‘_px‰Qφγ0\j_e°ˆhY ›ωsΔeͺŒ“œŠά­z„“V½¦((ξα&σŸήΒΘ›{Νά8     Ο%`/00ς¨ͺrηžΡ’πΤi„ίV3Φ“@―# "1Οϊε―ΩN:₯ύ€ν‘'Ί™H 7Š{ΈIΐΌψΦ’Υ½aZœ     €‡°B΅Ÿ>}:ώϋΏώσŸ=ΤsΊE$@$@$@$@$ΰIbcc΅ϋˆ―ΏώZ0χΖ=‡;Ύφh³;€    τZJx,ΫΝ¦φDQ4YΞJμάj’ΘŒΚ -»V;a% τ|՟ύ̟δ‰`ω(ͺ$ίPmnsR^Ύ&- g ˆ•Ζ}c-£+Ÿn³  τ,Jΐ|nλZΝιΪ _£ζδ—π}OϚ½%    πxJDΠΨΨhσΣ(‘ΪTzξΉηπ‹_όŸ}φ™ΝŽ     hNΰΐϊυλ΅bγžΒΈΗ°·Ue­% ˜[£Γ:     pƒ€ωψΦΛ"X.ό3-5mΆς €‰”•XY‰–ύE°ΜD$@$Πχψ…έ ΣΘ1°œ>‘MώΚ‘?b8Μ}οDΰŒI€H€H€H€H "fCX „>>>θΧO— άvΫmψψΌχή{xυΥWρΧΏώ΅Όβ$@$@$@$@$@=…ΐΈqγπ裏bΪ΄i6—Υύ„Ί―PχΖ½†ͺlKΌ¬l(`V˜H€H€H€H€H€HΐM Χͺ΄θΚUΦΛΥΗάjΩφα‘²aYφΖάλV;‘  τ~ƒ§ΔγBζ ΪD+sEΐόι½œ!     ΐ-!` Τή0744 ¬¬ 7nά@]]Fމ_ϊΧPε*j³}δζ[β4%    Έ₯Œϋγ’€€D{²ώΪΎΉ€Ωρ²šΜ·tY98     €§¨¦描Θ&Ρ•e»φ₯{?‘©"jŒ‹‘M°μ{ηHOŸ*ύ# ΈE‚βΆ ˜―ύυSά(Ώ€ώC‡έ"o8,     @o'`/>P#³!jVΒec3ΔΛΖΎ·³αόH€H€H€H€H€ bdγ~AέCχΖ/ΊeΖ½†c(`vΝ†5$@$@$@$@$@}‘ΐ7Wpe4Α²-לό- Ώ3Ξa9πώοΑgΠ`·ΪшH€H€όο‹Αrˆ—Λ4Wώ”;ύ Α     @§P‚%FV•”ΰ@%{1‚}δeeKρ²†ˆ/$@$@$@$@$Πg Βdc―ξ'Τ½„yΩΨχΚΝD³;”hC$@$@$@$@$Πλ \?ρΞm]‹†χγd³υφ%6Σ",—(Λc'ΒΫo`­XM$@$@ ¨(Μ—vN3¨<”C³kT¬!    ΈIJD ΔΘ†˜ΐ^\ DΛ†AΩ"ζ›ŠΝH€H€H€H€H€z!u/‘ξŒ½ΚΫoͺάΈί0φ­a €Ή5:¬#    θυT„εsΏέ€Κχ²]ΞΥ'pˆ•Ώ‹ΐϋcE¬ό·πšθ–$@$@$p3‚¦ΔΫΜζγ Ύκψάv3]±      Έ$Π\D Δ*©r•7".{—±‚H€H€H€H€H ΟPχ Ξ6u/ΡΌά8=Bΐ\]]λΧ―σ§iάYQڐ  τyκΑ€ΤίΏΟ³  h@MI1Jϋ,|³…Y‘!‹@]YΆwM   @gΈνoγΰνˆ†j³Φmeξ;ެ3‡`_$@$@$@$@$@$`# ΎK0’ϊΉgC°¬φ*ϋζy­’/$@$@$@$@$@}Š€ύύƒ‘W{cS0μσξΒρxσ7ί|‹Εβξ|hG$@$@}ž€ϊOΕkΧ‘ΎΎ·έƈm}ώ„  ,gO’4γY\ή»»E]Ώ!·£aΪDύΛΏΆ¨c   t5 οΟ°ύ}ͺΜύ#Μ] œύ“    @%`ΤτU^}―`μ $φf£Œ{     h~?‘ˆeΖή]J-`VQ—)^vw)iG$@$@ŽΤίPυ·TEcf" jϝFιΏoDENV ύ‚‚1,ωgΈ=ρρΩ_ΏlQΟ  θASβmζ«yBCΝuxϋρσ|w°η$@$@$@$@$Π ’eCd`+FY_δΒ9“     ΄M ω=CσγΆ{   DGG;uT Ϝ9£ΥέsΟ=vjη …γǏwˍςG’pΪ*`φ.Θƒ»νάκΌ£ξ§\V™L&MΨ:fΜ—6·²βάΉsPz=™‘βγΙώυλΧO‹°=zτθ[Ή”.Η>{φ,T„^Ofθιkμνν u=9r€KΞ·²’€€W―^ΕΨ±co₯­ŽύΙ'Ÿ΄ZΟJ        θi(`ξi+FI€H€H€H€H€œ¨«¬ΐ…Μ%βς ‘Ζ1§Š²¬’-«¨Λ*ϊ2   x* Ι‡ΣΟ,Ράk¨6Γ|όCNxΠSέ₯_$@$@$@$@$@$@$@$@$@$@$@$pS(`Ύ)llD$@$@$@$@$ΰ)κΝWqaϋ‹ΈψΖΏ£αz΅ƒ[ήόqΗ£?Α°HƒΟ Αu<   O$Π/hΖΗ κ“<Ν½Κά ˜=q‘θ           @‡Pΐά!|lL$@$@$@$@$p«ΤW}ƒ²Χ^FYΦo‘"TΪ'oΏΈ}Ξ" [°ύ‚‚ν«˜'  'χ°Mΐ|εΰ[ΈkΩ³ο3$           φ €Ή=΄hK$@$@$@$@$pΛ 4\«BΩΞί’lΗΛPΡ—ν“—Ι·Ο^ˆαΙ?GΏ!·ΫW1O$@$@=†ΐΰ$ΰλϋ•ζος2\ϋς3 ΌglρŸŽ’           @[(`n‹λI€H€H€H€H€<‚@CΝ5\|}.ό~ κ―^iαӏώΓώύ‡kQΗ  θI|‡ί…w υΝνΚά?Rΐά“Ύ’           ΄I€ζ6Ρ€H€H€H€H€HΰV({νe\Ψώ"κ”·pεφΔΗ1|Ρ2 —[a  @O&0xJΌMΐ|εΠϊO+zςtθ;            8 €ΩH€H€H€H€H€<‰€q9σίp£Ό¬…[Cο„ώδ_ЎΠu,   žN (ξa”n{N›FΝώ΅ηΟBEff"           ή@€ζή°Šœ     τ2—vη·7.–Ά˜Yπ¬y]ό|‡}«E H€H€H ·~Ÿφ·φΒΧΪ”|!Φ[¦Ηy           τqή}|ώœ>     €(σχ(L‹3Ο.k!^~ψQDΎυ žήBρ²­]! θ:A?H°u~%χ[ž           θ遹§― ύ'    ^@ "ηuœe#,_—΄˜Ν™‰Mω%LwnQΗ  θΝO‰ΗŝO›bυgƒΊΚΛθ4€7O™s#          θ#(`ξ# Νi’   €§¨FCCƒS7]•;5fa"pyοn”ώ»—OŸhαχΰ©?Dθ?-‡_Ψέ-κX@$@$Πͺp|ί{Θ~ϋC”TaΡ?{wUyη 'gΖd‚JŒYtΔƒDHέΐKP›–lM‘ΊΈ‹Θ]±ŸΚέEλm£k}Ίθς¬Τ₯”ލ-₯iΫT’!l³’΅eJba Θ$ΜΔολœ™9σv&ο/ψn˜λœs½~Ο5ƒlώω'……χcFš‘‹~Xqηό,$ͺΆ”ξWγΠϋuψΈε"’ΣLȞ›‹ΌωΣ£ΤWνδ†ΌhΈgβnMΒΥKmςϊv#εkCZpΡ (@ P€ (@ P€ (@ \_ `ΎΎž'WC P€ F­@CCάn·κόύΧ- βγγUλŒΤΕΖΖFh΅Z\Ύ|y€¦u\«ΥŠΔΔD΄ΆΆF­3R7Ξ•]‡ή…ζ³ζΘ)ά“‹1αRZ.΅‰ˆΊΆ#λ α•S§N aολšsλŸ_¬ΊIοΝ‹/φoQCάκόωσ1ωΉ&-ϋάΉsΈrε <Ο+τ½ϋ3gΞ`κΤ©}o8-άMψΑœGQžώα&ΗwoΓͺόΧ°όΥR<;?΅Χ³ͺύΥχπΔ«6”ϊfθš‰qžγμΓt<]\ˆσ h·[Qςτ·QŒ%Ψuh#&‡· λβF?5Ξ{­oJfpT½Λζ}Cpύ (@ P€ (@ P€ (@λD€ΜΧΙƒδ2Ί2:φφΠ$$ ς{§΄ΩΞ£­S ͺŠC|R*R“"kEŒαι€νμyt^υήΡ%¦ΰφρc#ͺE\θC;X›4+˜wOoh݈ρ‚.¨―?¨BXΡγξ€Δ?6ϊψώq{3Gˆ΅wtšxρzZPΨ\δS©½Jμ›τβ£ωχGτ΅{Π!wͺCB‚oRΚ8AΧ"ζγk§uT#ν«³b_I³‹ƒ.1©wϋ#b^ (p}Lž<9jf)N:Μf3’“E„U Rπ²^―Η—Ώόεš•w*7έtƍ‡‰'ΖΜάu:qϊ™Δ΅ϊcĜŒσ@Ϊό>n1MΈ7άξΉηžα²Χγqn½¦ ©‹nR ΝfC,Ξ­©©Iώα‡Xœ›Ρh„ΣιČ3Bžq,œ$ˆsŒŽίΠ…?ΑΛΙk°χ+βΓ›‘}/ς–nΓ5E˜S^…ωiέ©v‘₯α$ή*^’γR=΄*ΥvΏˆ}aγχbρ²%ψωί|Oμ*ΔΎGL*-yΙ/4?_ `Ύ$ώώΌζΊ‚1ϊ[ό·ωJ P€ (@ P€ (@ P€ F₯@ΒGεB9ιXΐ};Kφ «·Z3V?Ύ@ bώTdάw€!²}|ζ=π 2SΥ™Oi7φkŠ5.³-Ŝ)I‘χΔ•Ύ΅sγΰΞXΔ⴦πψβ)ͺ}z/κvS HΌOΞ„UkCͺ<Ξ]«‘w{δ>PΪ!¬~ S‚ͺœ=ϊή­ΆDξ+QΧ,‚·dͺYFL(@ \WRΠW΄c̘1Ρnρϊ(θjiΒ©υEpΆ„ΜϊΦ―.Aښˆ7ίr' (0DνuΨ°ΨT^φ”–½//Ϊ‰ »κpψ;YώΛ―ξ† ,]ώ2—~»ΆδβπΊWΠQ ψδ€ΛΈY ’T‡ΕξΕ―[zύ―υ@Σ¬tλ}‹q“N/ά.yε—ώT€ΏωΪ ¦ΐεR€ (@ P€ (@ P€ (p½ 0δz{’\O€@œΘNy5䊨’qIρ"χ8½χη(^φίμlΑΑ·ΆγOgΓm±‡Σ ΰε8$¦L@bΌ―αΥvΩ³ο~ώkζϋΧ.ΞˆλΗU’RπΧ•oΕωVρj—œΡ9μͺκι…#G”άφGΎ"#Έ½›£οiυ¦²€ Χ8‘ν8ϊqφ†#ψνO~ƒOύM0ψ[DΛΎΙˆ,Κώisbχ>\PΤί.μήΩ?ύeAΑΛρ"3wJ’?WY',ίΒοΫΒZρ” (0ΊΪk„“Μ ^ΦLΊΣή¬„顝 ^ݏ—³§F™@ϋΗΥ@ςw17M}βy­J¬έώΫP7y©Β›/,ΓδDΊάNΥΞξ‡ͺγ*?ά+j·~,~P”G―ŒΉ‹”zmήQΚ,P€ (@ P€ (@ P€ (@Ρ*ΰΕ­σηΌ)Π³€f }ςɐzξOίΓφr)σŸχ―zΣT>zΞV‰LΐήvΪ‰Θ_±“|υ.œΒ[{NΰͺΈ{lχd] >εŽΣϋPγΛ —bΖςε ”lΏξ aχ[ϋq^4lΨΏΆi…HυΝ¬Ών|Νϋτ’,²5?Ψ]Άζήtׁ#υη―6ΰ¨ζΎοφAϊXρFθ[I+²%?ξΝ–,7t·αhΥ>T[νβԎύOγ±}4P“{ΎΪ„ς½’Ώn3`ϋ§oΓ‘cΔoBΑŠΕP’7wœΕ»Ώ-CƒΨv-5{πιΜΗ0i8½ςO P€ ΐΘ|VΊ g6m |κέH)ފψ©ζΠλ<£(@!h9^δΛ”ζ P—‘…dlA£»wϊβ3ΌRΘyτ,Κs ΡΊζΫΨyη/°|ξDߘ]h8° «J.b]ΙОx’.`Μ{mο½-ίt|W½―R€ (@ P€ (@ P€ (@Q$ΐ Μ£θaqͺC! Hͺ«rxπηκΎλiXώx xYΊ8~J{ΐl#‚W«•lΚ¨9Ψΰm7?^–.κΖOCΏΞγθi··.ϊΫΞΧΌ/š¨©†ϋΠ‘ν¬aί£>qδT:βͺš@Άdy$]f.~³RΌ‹ο<έ ΤγΒ؁N벩F8‡βξT~­²ωώΰe©VΒνxpy―~'¬gύϋ#΄ žQ€ F“@γ λ"‚—ΏτπγσΏώ7Ǝ¦₯p νΈΦ’Μ]Κoάι‘r··³W dπκΊG1wVfΛ_‹Pψτ6ΰ©7πΨέ†nΫσ¦WΰΦϋ+_Έ]Έό~₯rΞ(@ P€ (@ P€ (@ P€ͺ‘›£q!œ3Uΐs§|Ir'̚£dIC7%ζx ,"[ξY‹ψuΈΣ2χy4ω’6OψΚW”¬ΜΑν4“fαξ‰—aχhο»ΣίvΑsωτ‘zοˆ)9ψΖWψν‹HD| Ÿz¦ΕFΦΰ(±Δ'Δ㈽}H΄Ž”νΓ]kDoC±.;Δ<&ωswϋ¦46 w›&£ύj&ΔF€ω,•R€ zπ8.Βϊέθ8φAH݌η_Gς²G`πÐλ<‘(@αHNΤΛ€-^™–9«6bΥβιHγΊΫm¨ί΅Ε――ίYЧζϊ7‘ϊ”\..^Ό¨zσσΟ?W_Έp]]a?i«άΩBkk+Ν;7 Iθ²ζΐ]wHξγμ»»Π1ωυάx0ζάί`—νv;nΎωf$$¨ό ­Α¬ύ}φΩgˆuΓXŸŸτŒ;;;qΛ-·τγ }ιKŸC}εLcύKσ“>³΅Ϊαωϋ§―Φί!ννν1ύŒϋΊ&Φ§(@ P€ (@ P€ @¬ 0€9֟η72mβ›&ςΘZ˜οŠφΤ˜&&ΒbiΗUϋY‘Ν7 "ήΤr:αφ°ΐTe%IΈoιΧ”3ΉΠίv‘½τώlΐ)˜ΟβΟ ήo §έu‡ΘHέ‰X`;biΓ€Μhkού\SυΣ͍SMΎΰeͺUϊ:pβέȟՎr)σφΥ”U}ŠGσ&EοE£Έ+ν―–κΨeŸ‡σ2‘€Lf<ξ[ό`τφΌC P€W¬'qκyŸŸ?«ΜV“”Σ¦_"aζ_+ΧX (@‘hmο)ΠW=`Έo3nΒΛOΏόWKρΒόΰ[§bςχ³0;ϋ,]· ωGžΗδn:–˜{4(Η]Ήr₯›žFξ–ψh³Ω6,ρ{|ΜΪΧς'Φ_PλA™_Pƒ]”ž­ΐ¬Χλ»λAιO Ύmkkψ3”Ω¨wλΟXšŸΐ«Α­3v8|ΖκΫ«WW₯g,ύI\œ{Ϊ«fΓVIzΖ1ύŒ‡ ƒQ€ (@ P€ (@ P`˜”ΉaΓP`TΈΫΈ*ΟTƒx]wSφΦ‚F#ΓzΞ7Α›ˆΫSzφκo»ξfΦέ½ΞS{πΣΣαί,ΈŠ«cΝxμαnκhΗ7ΉaΘΚPŸΑ:ΏΰΎ»¬ΣιδΐV“Ι4Ψ]JgϞ…”‘7– ₯…Ζςό4β·&e؞2eΚ <“ΑξδΜ™32τΖ²a¬?γ1cΖ@ϊ<Ÿ4©›όμΧ‡ώqι%̜9³­†·κ‡ό-6Γ ΞΡ(@ P€ (@ P€ †\ χ–C>@ν2΅€΄ €Edήυx+\υψš₯πg©θ{‡yΞώ Ώάmߐ Όε<’MζoaNͺύmeZ=_Ύz]β+βhsΛKιζϋΖ’‰G,Φ,ŽΈ΄™˜β[³ξΜ'Dja ,my˜5€Wn:τˆlΘ;όcυqοΒ’Aœ $yίςϋa)ُ.ρΰkv½σγ ’~]7ι><ω­‰Ψ»g¬voΦ³Ξφœ¨‘Ύφc‚ω~,˜ζί>κkΰU P€ @ ΄όϋ?γάΟ^ ™YΒΏΕδώ7ιb3cbΘdyB PΰH›± (@Λ χ"MeΝ-Η+€Kď¬ΖaŒNΨ‡ΠΗΑpΟ8?<${8ͺήΤf"S€ (@ P€ (@ P€ (@α3œƒq, Œ«ΎˆdtΙlo9ο]’/ˆ7N£^ͺ»W»δ_…)e‡’ΎΊΊ:qΉSJ3%ϋΩΞ;x?ώLΌ+V} ίX±+|_ίψΖ7°β[ ΠSw—E€²/‹ρδ™&₯Άζφ™˜(/*Ž9­\΅B\Z.ž|4―ηuφuβ ΣPγϋΦ—ε‡/@£SίrΧc'aρÏγ‰UίΐΉw#-E«Œxή²?ί}Τ―\g («Χ:ψΛӏD/ίΎξyLyεη ^ŽΥΗyQ€7¬€nrς±/ΏνΝ\αΆβ™g>@ώYΚeΆ7Τα@­Jݐ†j'Ώsφco­Sν&Ϊk«E¦g-β¬Κ£z1i~Ύr½­ςJ™ P€ (@ P€ (@ P€ (0Ϊι`GΫΜ9_ ‘€.εvρ-T«Θ¦Ϋ‰ΆN1P””Δqώgο,…<λ&LDΈΫNcŸ΄7Dϋ¦C8Ϊ6³G:“΅2S(@ P€κ]-M8υΏƒ«ρ”RaLB"¦όσOqkξ"ε  (K©Ψ°m ςΦ<Š—uΫρτb“όΟ^wΛIΌϊχίFύΤuΨ2wœ2α–χ_Δ†W QudEί²2λLxΉψ^Ι‡nΛ/°tφD$JLv;ρρϋocΕΣΫ0η‡Ώΐδ(ζV&ΐ‚"`Μg^ϋΎ|ήekΖλIάbšάg (@ P€ (@ P€ (@ Œ0–'Εy―ΐΨ$ˆπ^Ψq'Ž~ŠΩy“TΖΏŒ§Ό©ˆ΅·§yc5ρς7s₯˜ηΣ–³X0eŠ·f,Ro—z”₯wž? XΊΤίvRΫώžξBj»λ° Gόι—}Υϊ£–Cš΅ΰΘι,žc>ηVƒz/‚Ι­ό)—Šσ&β—ϋEΖ°φxο£YxpšοyHAΝΎ5qκ‰φ&{/§¦Cήςy8υΛƒβρΆγH/UuP볇vγ]‹Ί”YX±t¦Ί€)XΊβ~όtϋ~Ρώ*μm‘ζ ,Q€ bLΐyψΏ`έ°Rό€Π%efΊτΙΈγυ€ξ―|€άa bI 1{voΣb՚Υxλ`j2πI+Όθ»ΨύΒ²@emb*0'Uό o΄#ϊΙΛ~„ΊmX±ξQΌ|Φύp;[<1δ*OΊΠήφWΈεŽ»pεΤ Ή’£κ0wOΖ» (@ P€ (@ P€ (@ Δ¨@pμ\ŒN‘Σ’ΐHάσ„8TŸΏ*β]β£―<Šiaq€mG’Αω:Ρμ†k*ΜγpΎι*ΊήΓΡ S ’λφβθo» ‡αέμωτ(ΔδγV`Ξ-άJstΊNTνό-¬"‚ΫzΔ"˜gMPϋ2ΗΎΤ Ε{&₯Δ:ΖN»¦κXEΰxΓώχpaΪΧΌ’u)Z~–§Β‚I™A­€’§Μr¦ν°!§c3±τξxλX Mπ}OgΊ:;E†e ΞzfbRΔ:™z,Ψ‹e P€ˆ] ρ34ύ+d‚‰χΞΓ—τ&β ώά ΉΝ P€ˆ1΄μBμ;² ννΎŸ°ΥjE†δΘ`δΙΛήΐαeέM^‹₯oD­pηβ58,ΎΪ۝p»»ΔΏ HLŒ'jΌ"$²00ίΆ:τογΚ<‘(@ P€ (@ P€ (@ P€1*0&FηΕiQ`Δf.˜Χ*Žvμ/ωΪζ›“§ύ;«E6_ιˆ7#7(ΣpζΌyΎ¬T]¨ώνOQuϊ‚·žψΣ㾌ώ΄'€Νβπgώ•Κύm'΅•χεvΈ=nttt„}Ή½‚ώτ\νŒR·C\ͺV΄ˆ dωКπ•)IΠ%$`μΨ±Ύ―ρMθρ˜uχoσΗp:lθΎΜ"Θ·MLΖ±ž‘ΓΊ?Gς˜} [°ΝW‹Ι½ί8οj:ˆίΌWΛώάphχNœπ%Rž0λ.o¦ν†O½/¦(ί‹Ώ] v·£όηΏΗGΆΛJoξΆΣxwη_rn-nO ‹šWj²@ P€YΖΦE/OXΉSίψ=ƒ—GφΡpt P€ύAΛ‰R@±ψR ^ξG‡Q›Hc€€ŒcπrT‘ήέ0ζ=€Tμ΄ΓηvΏo•Λ,P€ (@ P€ (@ P€ (@˜ˆΘύσ3ζ)0Α‘ΓΡϊKš‰ε9§ρۚQ£5ε;QQ7χ/_Τ:vΎΏ Ώάo΅»pbΟoqB„BΗ‰pεΠaSD–η ΥώΆσΝιjK5Ά€:b†… ³–£pN’r―«α ¨{P9)Δ߅Տε!"°ϋ4Ž΄xWbΞ ]sPγ3g!Ύf:Εώ|Δ†)Aγφ„ΞβΒ4μ¬ {ζ" υνyΘΏ[/;/Ά‡€~λ—Ψ―²?΄“s‘Ιδ•d–(@ P &<Ž‹°~w:Ž} Μη&­ϋί0S±@ P€ ΐΠ ά25ΪΤttٚεAΪ*€/=1t²g P€ (@ P€ (@ P€ (0Μΐ<¨μ2φt‰F_vεD‘58ϊ|ΗΟώΎU‹΄xo.ζΰš‰οBΑͺΗ0M%Θtμ΄ΕXύ09%ήΧ$(¬6N‹ ¦YψΖ#(q³\―Ών‚η₯VnΏμKω¬v3βZh˜΅ΆΫΦ ΒΈ₯C‹»fήξΏωͺ›‚»'x½μM ½Ξ–ά§9^v ,Ή³2D£Ρ[Όμ½¨Γ}‹fωž};Vκk—Š―=ω-δš&ψξ‰μΨJπ²οΎ«ΝSΪ«UGt›4ά•βλ?tLΊ―+ΘAšς+“ƒφ‡6wΝ[ŽΗœζkΛ P€ @l\±žΔΙGζ…/ߜ’ σΩΛΰεΨxDœ(@ ά@Ζϋ—*«uT½£”Y (@ P€ (@ P€ (@ P€£E€˜GΛ“β<W`όl¬}rv―ϊ{ϋL|ν±™€»—έRpoβΗ&¨f ξP7~ |x ΰqγr§7ά6N]χo»Ύ΅Σ!ο±'‘‡σΏz#dZikŸΕm«7„\γ (@ P€±#”χϋwΛj«z±35Ξ„ (@ P€ (@ P€ (@ t+ΐ Μέςπ&(@ P€ˆ=wΓ~̞W„gw]ΔΗΦΰ©G–ΐΎλ9,χuhΓ=νWˆφŠφMΘ+\Uδ’qΧ‹(œ—‡]‡+/ωž}»--V|ςqΰλψq+Ξ΅e―ΓSΟΌˆΓ-ΆzŸ4žη6ˆxg1*pΥyŸ|ϋk!ΑΛcnI€is)ƒ—cτ™qZ (@Ώΐ­_]β/βZG;ΪόŸΚ9  (@ P€ (@ P€ (@ P –˜9–ŸηF P€ "lxyω‹H~j3φ=–₯ά͞{?–ώΫΧρDώkΨ}d#”;a·λΎω 2ŸήŒ7 m_ΈλΫXυΝ1ϋЏ0Y'΅sβ°HθW\ώ],Ϊ‘·v¨Œ©ΟγΩΗ±,ΰjόΦυί„»ΉA™¦φΆΏΒ―τS•k,P€ (›q†±HΌwΪ?8(OΠQυΏςΥ؜,gE P€ (@ P€ (@ P€ ‚˜9ƒE P€ (λν΅;QŽ%( ^φΟ9ϋ;o`*πVmhe}ιΥ~xκ±[‚‚—ύχgώλπ~}άΧήέ„έ˜Ž©ΙώΡ_[ŽW`κRSτ Όs—ͺχα£o- ^6̚‹ιΏ:Θΰε˜{Zœ(@[ΐεr‰ίΡ’ϊuαΒ…G¬>)ο!Ε ν½·•2  (@ P€ (@ P€ (@ P –˜9–ŸηF P€ Β>ήϋ6’Ÿή%Γr*V=5O·α©lυ`β֏?ν„Δ°~½§δ=kBαϋMx6{:ά-'њΌ"s{ϋEρΥmβ8€$jΓZwαψή‹XϊΓTqέ {‹’&’“ΗA'gr«ΞΣ°ύό_qφΗoΘ<Ζc5&~οG!ΧxB P€ˆ)€ωάΉs=NΕb± >>ΎΗz#QαΤ©SC7μ—2”Ύ?·ŸΗ‡eΏ&υν7) ιό”ΩυΏΠΨ؈›oΎYόχh{;Β–v»mmmC8Βΐ»Žυg|ϊτiθυz\Ίtiΰ‹‚>ϋμ38άtΣMCΠϋΰtλΟψ/ω .^Ό88 δ^l6:::pνΪ΅Aξ™έQ€ (@ P€ (@ P€ΡΐM†Χ)@ P€ @Μ tα“·€oώZ V?ζ’uέIΈ3!jμp—z[ωͺHφ(·~ςΠzOΝk8ΤΤ&ω~όδ͍ΘNσ2ΫPυ‰¨Ίi=^=t2¨"°θιΝ(ٞ£Ξ%€6O†Zΰ · ?ψŸh«όCΘPΟΏŽδe„\γ (@ P VŒF#fϞ­:ΞΞN455ΙχΜf³ψͺ^όκ՞†ώβ=χά3dƒ|4ύtžόPξΒ9+ ξσXC9Ώ>O&¬NόTœV«…Ι€ώCzaΥ‡ύτμΩ³\cΩPB‰εωi4$$$`Κ”)Γώόz3ΰ™3g e|eΓXΖcƌτy>i€ή{ι%€ϊ™3gϋΨ½πΓ½Ÿσ½­Οz (@ P€ (@ P€ˆu1±>AΏ (@ P H ‡˜)°­Ρ#”Σf,AλλΫΠΤe hCΙ«V΄V‰hqργχE3DΜ†νxHK_‡Jρr^žΘ/Βϋv_Λ–&ΕO™°sί>o=QwwΙσ8όκzΜύη:_EΎŒ€@—­ύΓβΰεΈ[“`ώΩ/δƒαΨ (@AHΚ{Hι₯νΐ;J™ P€ (@ P€ (@ P€ (« `ŽΥ'ΓyQ€ (@(‰Rr?ΔμeΘΗ(|²ώψcoWNμύΑ·Q.N’σ¦Λ“Σf―ΐΣΫJρμβ lΞΊT,ώΎb^tOύ`ΏθŒΔqX΅τ»Ψ}δ»Έ3%0·΄»οΗξς灷ΦcoKτ κ~.…Νϊ ΠqτΏqς‘yΈςρq₯•ώΛΣ0ύW‘0σ―•k,P€ (0:ŒσΜΣt;3:ΒYS€ (@ P€ (@ P€ (pΓhn˜•r‘ (@ Pΰ:hο1Έ RκzSρlωf4ζ―ΗβY― Υ:ά™hEΙλh±/?UΉ5pη²5ΈS΅-g#žΝ·ŠšχC—8O½0]΅¦.-/Ο‹ζΕiΰf΅Κυυυp»₯άΟ‘Η•+Wδ‹‹ρρρ‘FπŠτ«†₯ΜΧ—/_ΑY¨m΅Zρ₯SGpαw? ­0ϋ«θϊ‡Β‰sιkŽS§NΑn·γόωσ#0zχCJs‹Υƒsλί“‰U·ΦΦV\Όx±‹βV{3?Χ€eŸ;wί gˆϊήύ™3g0uκΤΎ7d P@?ωNhSΣ!ύΖιhϋγο1αΡο °W6§(@ P€ (@ P€ (@ P€C'ΐζ‘³eΟ (@ P`Π“[₯`·TΥΎ[?ωXZˆDΥ»ή‹Ί΄,Όy€ ΅u8ό±M!gα™m+0?{"j° ΪΩΐmΓϋ‡˜;Χ€ήSΪtLΕ6|μ^ƒ΄?@»θ38ϋr ‘S—šπμϋMx6[=ΘΩ_χK_ϊRΤ`4)XM:’““qλ­·ϊ›ΔΔ«ΰ§Σ鐚ͺώLFr’WώϏ ;΄7d ‰+ΏƒΔ‡ŸΉ6'RΰfJJ &L˜0Γw;¦4·X|ž€9·n]Τ›±κ6fŒχ—"Εβ~»zυ*4MLΎ>όstttΔδά:;;£ξCή ΐP $-ϊ:ΞβίδaΪͺήeσPƒ³ P€ (@ P€ (@ P€ $ΣΜ7Kc1£€Δ٘ (0Œί₯<'-2WLGρ―Nβ…ΉjΑ²]8Ύσd._uΡξ–j(ώ~.&gK_ΑU›πϊn`Ε’οΦj<΅»<΄ΰ*Ύ²»‘Ÿ wκ€ΪŸ|o-+Ε–ΕκsͺίeΕͺ Uz ½$0G;Ž;9&Β^@IDAT&ί?~ΌΔ­ήH\—²§κυzάvΫm#1|Τ1ΟόΛ?…/ΡΗcΚΛΫqλW—Dm3œ7l6€gkn’4·XœηΦΛΟτΪ΅k1Ήί€ αΈΈΈ˜œ›ΛεΒ-·ά“skoo‡τLyP`$’ζ?€0wϋΗEhŒγFb*“ (@ P€ (@ P€ (@ τ(ΰMχΤc΅‘© ‚π (@ P ό»΄v±Ϊrrφ ΰΠ‹ΨέΠ1EwCž=¬šn¨­Fmƒ3PΧνΔΎ·žΓρφΐ%©αν-¨Η ΜNΣi&db?~rΐζΏτΪ…}Ε―‰LΟεLΟ‹§γΠ3;ΡTΓ_t7μGρ'@fšΘκΜcXμ»­Œ§M›ˆiΏ|/f‚—•‰±@ P€ ΐ  $Μψ βnMRϊsμ[)³@ P€ (@ P€ (@ P€ bM ¦˜₯ŒJ―γζA P€ @ί€ΏC₯ΏKy\giΉψΙS&/6φ~.n9ΆK—Ώ†©OΏω)ώ5wαКηπΔξ&θ&ηβ™©ΐσ^Am‹?°Ydnήϋ ‹?ΐΊm+ΰm>Ε?ΌεOαε½'Ρξφvαn·aχΖE(>nΒO6δΚ'/ވExK‹ΆαxPŸ-΅˜»όL}JΜI-³2+[ ­ςΈΦιΎΐ΄7+‘Ÿ|η`Γώ(@ P€ˆ1€«Μ¨­κ]₯Μ(@ P€ (@ P€ (@ P€ˆ5˜½ςcǎ…τλa;::ψkXcmχp> (“―{³/Ηδγ”Ie?φ~’}O|³Οb’q­’ηEΟnFqατ1gˆλwκp ί,^ΝωωAuΗαιm₯X‘Θ”„£²k P€ FZ iώC°DžΖεχ+qΥyq†±#=-ŽO P€ (@ P€ (@ P€ "b>€Yš±€Ε ¬ˆgΗ  (@ ά°Zd?ς<nD{W—¬ ΥΔoΡbι›UX~Y—ŠΒΆcι³N΄·w‰vZ$&—ƒ«Ož[ˆ_)υœΠj.©(„"ˆyΕ+Ϋ±βΡ'΄ΠJσ}FL)ΌΟ]ΐΣfΗ₯κ}JΏ·ΜΨΚ=(@ P€ΈΎΖΞY€›tz|αvΙ “‚˜“}ύϊZ$WC P€ (@ P€ (@ P€ ΐu!0ζΊXA P€ nD_ΰ±|Όά3ˆNg@JΚΈ¨ΑΛΑ=xΗ0¨/W}&ŠyιΌ¬2¬ε‹{ί ŒgΈΪΩχΞY’(@ PΰΊ0Ξ{PYc[Υ»J™ P€ (@ P€ (@ P€ (K£"s,q. (@ P€ˆeΦςΐτrΚ,Q€ "œ¨έ»»ίF£Ș‹ΒΒϋ1#Mύ73D4W.ˆ~Xqηό,$*ΧB ξ+φν}{«¬h7€bρ²eXΊ8zύΠΦ<λ‹@ό‡ΠΆοwrΗA0χŎu)@ P€ (@ P€ (@ P€>f`>kŽD P€ (@!p5|ŒNΛQeŒΈΉ‹•2  (@w~0+O<σ6ξ\Vˆ OβΞΦ·±*?/°…Tνι€φWίΓOΏˆF·z͖ڝ˜›Ώ―œŠO­ΑΛ¦£δ™υΘ›υ=oWoΓ«ύΈυΎ%Jγ/ά.\~ΏR9g (@ P€ (@ P€ (@ Ċ30ΗΚ“ΰ<(@ P€ (0@ΰμΛϊŒ©ψ|’i€=²9(@ \Ÿ]8πƒGQžΌ{Έ)ΎEΞΘΎyK·aιš"Μ)―Βό΄ξVί…–†“x«x=JŽKυLΠͺUo―Γͺ5ېΓ_ΰ…Ε}5²°/ο^Ό<ηQ¬ΪTΓ/δͺ΅δ΅~ ŒΡί‚±s*Λmή‘ΟϋΩ›Q€ (@ P€ (@ P€ (@!`ζ!ae§ (@ P€~ϋv(ƒ¦όν#J™ P€ @ˆ€*ή°Ψτf xΩ?-{ ^^lΨUηΏ€ϊκn¨ΐελQ›ρ]μ:ψ;<3cΤ’)7Ψ†Φ©ρ¬ΌμλN7Oz °{?ZTGΰŁ$ΝHiήΆm₯Μ(@ P€ (@ P€ (@ P€ˆ0ΗΚ“ΰ<(@ P€ (0Λ]£Uι!9›J™ P€ @°@ϋΗΥ@ςw17J†εΌΗD`q‰ξΰFaeέδe8|€ oΎ° “ θr;ΓjH§]8όϊI,ߐ οΫέ·―cݝ+P΅o’UZςΐŒσ—*\½Τ†Žc(η,P€ (@ P€ (@ P€ (@X`s,<΁ (@ P€h}§TιalΞύΠ$₯(η,P€ ‚ZŽW#yΕt%¨8ψžTΦed‰ βύhμ.‚9€QWΘ™rβΆ‘ͺΥ„₯wjqόνΧ0{VζΞY$Ύς0»θΌίΠ…Δ”qQη‘τΓBŸ4ΖqHΈϋ^₯]ہw”2  (@ P€ (@ P€ (@ P ΐ Os (@ P€ ΐu:ΡVω₯‡δό"₯Μ(@ P B@;.βRθ­`ξθΡ…vXρςγ‹°ͺΨ‰ŸΌυ;Ό/²6Ώ°/Ο°β©ε‹°[1σ€ω)·ύρχJ™ P€ (@ P€ (@ P€ ( šX˜η@ P€ (@ τ_ m9Ύθς¦ΙsK’ζηχΏ3Ά€(@B 9Q; λΤβœ₯υ“%Ψ}d#ό#&¦bρχ·#9ρλxby ζYƒξ~o€ΛεΒΕ‹ύ­C^?όσsž’ ω|‘ΛΦ Χ_>‚ώΛΣX’(@ P€ (@ P€ (@ P€#(ΐζΔηΠ (@ P€ ΦwJ•n’ώ-nι•s(@ P€j­ν=e>VVλ+ϊ΅.ά&n.έΆ.ΌT9ϋ±η’qΞ-˜uA7ŠRσΉsR(tχ‡ΕbA|||χ•Fθξ©S§Ffδ΄  ₯Qϋδ―†›zDu#6?ΥΩD^lllΔΝ7ߌφφφΘ›1pΕn·£­­-f} ±ώŒOŸ> ½^K—.E_Δήωμ³Οΰp8pΣM7ΰ,Ί:֟ρ_ώς †¨?ύκ†ώΝfCGG]»6τƒq P€ (@ P€ (@ P@`37(@ P€ F±ΐ矡 ύΟ©¬ ω‘"₯Μ(@ P@M@+²/·ξ&@Ή΅ Ÿ ·uT¬Φ―Ϊ5)Lڐ¨vG\K4aUr*ΌΏC J©½x›:uͺj)ΈΉ©©IΎg6›‘œœ¬Z/.ήsΟ=Γ>––γάΟ^•Η½ΕrӞΫu#1Ώ¨“ »‘Σι Υja2™ΒξΔΖιΩ³g!ΈΖ²‘$ΛσΣh4HHHΐ”)Sb㑆ΝβΜ™3ΈpαBLΖϊ33f ŒF#&Mš¦§JHτ3gΌ ©ΜβΓ?TΉΚK (@ P€ (@ P€½cFγΤ=.'Nwκ 6£Έψ%T6ϋΖEu;gœ'\έΦ†›;€lF͎ΨrΩƒΖΰBωfi_£Ό±;ωπgγB£0²ΪΊk3h“\ήg2,Γy\"ӌs'?»κνΎš΅ Ν^ογ\‡qΟΕΔzϋΘΓκ FB υέί*Γή<ώ6$fη*η,P€ Τf,vW Eν¦ΈΦrΌ˜‘…hqΗQšE^Φ0CΊ-BΩέ„έ­6τ'-6&&&ͺ~I<’ σRnvZŽβs»M9g (@ P€ (@ P€ (@ Œ€ΐ( `ΆcΗ+›°y“Xφ}ΟΕNλAΝΓ4:ΜOΜ^³›6oΒ+[«‡yδΠα¬eΫQZZŠν[Κ†'˜ΪΣ›@ιΘύ:λœω†wΉ’Ο#όΩΨͺw DνΨΊ–θΝ0©Π¦Υ%[δg²usyΔ3μαkwˆχΨ‡Ϋ«oπovφb_„>₯Α:Β½ή‡)v·ηzέM―6gl¬·ΧkbE P€#(ΠZ^ͺŒžΌτ›J™ P€ @4έδ,δc?^~Ϋ›Ή8€žΫŠgžωωOd)Εν u8P«R7€‘ΪI*–>5[ž~ν*·voA+ξErOΜ*my©wρΣ²psΚ₯rΫ{»•2  (@ P€ (@ P€ (@ P`$F]³ΛZFILcFvͺ—Nγ}ΉNt‘¦ΊQ^›);sdΧ(2yλΠMΗe-CρK/‘xSd`nπ¨jϋ!ψώΠ–»{6 ½’X«΄`UΞJώRρ&X+¦_d:―n”’NυΘΚτ½ρ€±x ›ΐΘξυ eϊχš5θVoŠΦ²Νβ½]ŒMeΦn«ΗΜz»%oR€yΞκΰjόD™ΘψΏύ–Rf (] Ά­Α‘βGρς^«’ Ωέr/η―FύΤuΨ0wœΌεύ±aM΅j²R)JaƊ!³uςžά…†φ.o-·΅»^DαΛ'±d’΄εεΑHZ 2nϋǁr‘― (@ P€ (@ P€ (@ P`Dϊ‚6rs«ͺ—OΝ΁1b£n9+ˆΈ`―ESΊšŠάμΘGΤΒ ¦‚΅X›ν€>%]„±ν‘W‚₯=JŒΪˆέxMεΩ€ζΒΊ <ΖT€ΓvΜ]΅ΝΣƒžIπΈΑε,έ^[‡Τޘ…¬‘έ†XΕθn:’{=ˆNuΟέ難Ό΅{¨+λνašΌM P`ΔZί d_NȜ νν“F|Nœ(@ ŒΔμΨ½M‹UkVγ­g€©Ιΐ'­@ς’οbχ ː΄ m’ψAΦ9©Π] -FΏ oξ{/―ϋ6 ηm‰ΐθO.Šζ&—όKο6„vΕ³A0ζ=„Ο~σSΉίφΪ?αͺσ2β c}vH P€ (@ P€ (@ P€ ϊ"0Hα}ru]" l³7 lNnFDGzk ͺκšαρˆΐW£ Ή ³‘’ΊJ',"(Σθ€Τ£ΖŽμά€‡|ίΜƒfK=l.2³2`««B­Uγ„!Υ„μœ,oίΞfΤΤΤ‘Ω!₯»Υ =39fυ,΅Ξf jΔόD|+]ΘΜΙƒ9tАuYͺkδωιΝ9ΘπίρΨa©k„&=ϊfTVΥΑ!‘aΕ&Ρ_VXv«N Μ™)°TVΑ*ζ™’΅ Ν)ώa³Τ’Φ—ŒaD¦˜—Σ ‡έ.ΪEΐl T‹ΰς#lΦfΡrΝιJΑ—½u΅υhvz½RMYΘΎήΗδ„Υ,¬E_᲋yYΔΚ Θ οOu? ώ3σN$ςOΥgN;»a lO P€ (@ P€ (@ P€ ΐΐ‚γΦΣ0΄ΆΥVC|«KD†f#Sεϋ\΅;6‘6dΤΥT£`ύϊ¬±ΖJl.©φΩ)υλEέ ˜Ε―J-Κφήz¬ΨQZ&Χ+/S*z υυ¨©¬AΜFΡΞ"ϋkΤΧΧ‘2=V/ ΚTμBυŽ-¨΄Κ+πWAš΅0f`}a–r-PhF΅7ύ2²r3•ΛΦς”ΚΧΛ•kώ‚Τ_mΞJ¬^bς^ςXP²£Tv ^ƒYήf—%›w QŽ8τχΤΧUΓhΞΗΊ’l%hΤZΉΓ;&Ÿ+TΦΦ\½Ϋ+­ΖRI~WŠl½λΦ %θN]ΩV”ΥΩ‚ˆ±$―Š ¬\Ώ ιΒΌ>pίӌŠR)0Η SqQHκ~Τg˜FdIύΩΈ,Ύω £ ΒΘΏMm5₯ΨZa ι¦ΎΎF9ט xΘ ΝΏ’R/‘ƒLδ~ΆTˆ½Pο‚Ζ\„η €]e₯A{Ρ…ΊŠ2Τ‰Q ΜΕΘKΓυcΪκ|YΐΣ‘–~Ή7Οή^_‰²Κfy­uuX•γέ.kΆ—J³Ε¦ .•¨ΨΎ5ς*HηήCΪΧz3Vo,‚οέ‰ζš2”‹΅*οƒ:ρƒ ζl€;κPo‘ΛΚ!½Ο+!e^˜!ƒ Oο'₯ŸπBο]+KPβ WzŸ'Υ,\½Ήι‘ΛCΊΧ²η€=+Fρ9Rω9">³υ¦…Ψ°2W8o{5π,\Ν΅(-ŸΨ¦"―τυγν ͺλυέγ (@ .ύg…œAΡeά’B‘― (@>ˆ εΔΘ ε>tΠλͺ:_Π²N%HΊΧ°bΏ’ςDλ;Ώ‘Ϋ:ͺήasΏو (@ P€ (@ P€ (@Α3˜ m_RXo€jXΰϊT‘I9™ώΠQΚΛDœ™=·(ΑΛ˜²"a–Θ)μ=,"ΘLΚ κ;Ό!Žή}z–,Y“’ΎΥ†Z_π²”E877 ©ΎΨCOs5*ƒ’‚­ε[•ΰe½ΘΆΊ$_τcτVvΤ—aG­Γ?€ςκΩLελ3Γ‚}ƒΘ5υ0‹5,Μ6+ΖΝ5;Pf ΎΧi©‘‘ž “μγDΩ–@π²Ρ”|i^>:‡₯›Λ‚ƒn}=i=Ί¬εΰe½Θn»d ²M>M<Ίu‡7@Ušͺ½VΜΛΌ,2αšLf‘u7Υ»^ΉcK9<)™ΘΚκώ>Δ|3³„mA μm}? Φ3σŽ£ώgΤgγ·Ρk”η[uPπ²΄ηr±PdΫ (Šd΅A'ώωΛΑΛ=μgΖ[[n/²η«μΜ@&cƒ)SΌ `φuڟ}(eš–½9W –Ξ{ϋμSsWBΔωΛGcΕ.XεV;vω‚—Eτ2V―Μ’ο[J·*ΑΛ† ρ~+ΘGV†―±xοξ( μGΪ½=λ‘™»DΌž"«ΈΌ¬I?+φ₯o―‰οκ]•AήAψ",Ώ§χ“wΌΠ?{νκ¬C©?xYzΆ — W™¦λ½3ΜΞσξ[_g}xφz,Y]€ΊMR6sΚΚκP`¬υ2Ω+‹ΰ}:Ε3wΙέλEFι ώμΎ" =Γχ^v5Φ /sΨϋ!Ψ5Gd‰@ρφο4 ™XΏΑ^^ˆl±η·V4н&ŒΔPώΐn_εΎ½ŸΌϊτώF³UH‡+7υ=›δd–b“œmƒœt[οο\Όγ^οϋž“ζιD£/zِ΅k Ό;.''»^Ϊ)ι²­Ω‰”ά…"ΈτΦφβσPŸ‘+ήΫΚξ ,Έλ Tf‰ ΐ+p΅ύΪή{[ுW(X (@ P@E`μœΚΥ/ά.\9£ΘΚΜƒ (@ P€ (@ P€ (@ Œ”ΐ¨Ιΐl©ͺ“ ™‘Y`ƒα2σrC€Mζ οm‘W#—\hΆ{#K ™ωJπ²|K“’ΒLo}‘ Ψζ2τž‹`ΓόΒl_YzшL’ώΐ;“¨φ‡KχŒHρzΌcΉμΝJΠβ 8D?ΉΎ~D@₯/Π{[σΦΪ€’A&§š— "°8%θ‚P.ΜφΝΕ.!ƒnIΕ¬ό%Jπ²tξ°Ω₯1„hηδ–/h[T F–'¬"ψPυπΨ b―ε#sIž―Ύχ<=;Λχ,ή T—SΤz1oίήscV.LR a‘‘Φέ峃xυ αkν}ιy? μ™… ~›g£΄{Ξ·™€=η6—o§d£@=2\Ύέσ~V -ψν„œ'hχg:-ΥΎ,ΰY‘ο—Ύ<{ivb­Z˜!ΟΣY/2Žϋ²©λ3‹DΏχέ)νυ‚ °qγsΨ(/‹Ι;NΈ\€dψήΚ{YξJώ#Β5]dωυu™‘›²ηSRόοU•]ΥΗχ“ύqω«Q[mQή£°½zεJ¬\΅:,¨Ξ½ήΏ=η~βΣ’±»σΒ€ΒukQT$5>χΫSεԞΧλ—η+(@[ νΏWβ cER «’rƒ P€ (ΰ£ΏΖy(Žͺw”2  (@ P€ (@ P€ (@ P`$‘g#1z―ΗlD•E ŠΣ '7ήά£DΖyοh zoΑ'ηiF£/ΆΞ”•ή\$ϋΝΑŽυ"ΠΦ»m›TEκ#HΛhτ…Ϊ !’A-”’½Ρξ+;QϊJ±r=΄ΰŸ€χjsu7θ9='" Qi'Φ6-€š2€Ϊ:وf)ΓlМC}\°ψ0 ¦ΜΐoΉ}€DΧ΅ΒΛιΠ|λUρ₯Άf%³ΎTdZ Ί\”fιjφk‘‘4)ΉbͺΘFϋ\p“Κ½Ϋα8}yfέM WΟFιΐ™Oœ«νΉM₯΄ρBŸ—¨ΎŸΓκχtΪχ}θYΐ-r·ιΉ‘YΐϋςμύσJΝ-BNύ+¨±ωhLXUϊ~Φθ °[*Q^^ƒfgθ{Bn₯rΙίΰUΌ'₯·ΎΨΆΖ”Π}ΫmσήΌŸ|)±€ΎΈκΝ9Θο‘›–ΚRρ%βφι0™³›'―#ϊή½ήΏ=§GvnκDΖu8,(έ"φŒFt‘}>KdaΞ6›‚Ήz(χr½=τΒΫ nϋ;ΏQ–9SΚ,P€ (@h<9ξ‘o·(GFρ£Uεu P€ (@ P€ (@ P€ (0δ£"³£6‰Β‰μΤ˜ψ₯l6)(7όπ‡7z`σG†WρϋkΚA²Qκψ/;ώάΓώ+j―Jβ¦ΥήτΛ"CsΆZε¨Χ<Ξތεm.8δΓ©X«wkkVοΣ#²γφϊP–' JΉΧ­C*φw?(Γ*…n{ygcW2Σφr¨AΦη}¨dš6"7μΧ§g―¬Csj BW“nFψΫΉ±b+Ά–ЬΟrπ²†ΤtdddΐθyχΏ*}v_ΘνΎvδέήΌŸϊ暎UΟ­YΫΣ•Ÿ‡p9šQ_SŽ­β‡vT7†LbdχzΘTΊ=IΟ]…΅E";ΎΑχ€Dφμfk=ΚwlEρ+;B³ΛwΣSΧΫM—ΌE PΰΊθ:ϋ):Žώ·²Άδ‡Š”2  (@ P šΐ­χ-Qn]λhG{m΅rΞ(@ P€ (@ P€ (@ P€n>†χτ€ρY`3DΨ@ψc?ζ’ΧΛΩ’₯°Ϋ”•ž\.oΦc‘m83#4sk?FSšŒFQ£κ3±nc!Œ.Aλσ“ŠΎ²ΥΣX‹d›³Κ<ύ=«<=Θν=ŒΛν&XX‡JΑ†"PԐ.Ν/όpI·δΓ”™~S>Œe@ΑϊυΘCϋšˆ‚(ω$½6ϋη₯ΪU.β~θΓ¨ώͺ½~6ώbΗΙΩ€]"ώ^.(7Ό•gVcΠNϋΊ«kεχƒ xŸž½φμ¨ΎΓΣXŽ2K& ”=ތJ_zfƒi!ΦΜ δύn.GρφΪ  ζοe_UžE`Ύχ“Κp}u…& ‹Vc‘x·8μ64ŠΠ¨¬©—ίoV)+sΦF9ϋΉ΄Xμφ©Μ{°/₯šb΅ψςΈ°57ŠΉW’ΎY|ξΉ¬ΨQfΑsEζ†]λνa1ΌM P`HμεΏVϊΧ¦MDBζlεœ P€ (M@c‡ΔΩν‡Kβ¨z‰ΩΉΡͺσ:(@ P€ (@ P€ (@ P€RΨΟΐμ¨C­œΨˆœ°,°}—IGͺ/ŽΆΎ’&’Ή΅ͺΚΐ,"U‚#τςBjFŠ·¦«΅Ν’k½FΔφzΏτ’μ΄ΩΰρϋŠšuΥur}CVnD†Ϊ!•hαΐΥΊj‹χĐ}[±@SΊΓY_…Ζ@rΙc­†Εk*ΝUνЈ츾P#eŒφ­I^›ˆžΦ8νpxΔ:EcMͺΘ’+wβDm½ό@ƒΊlΔΦβb‹―2k ΐU>φ ξ‡ )τ²Ψλg£τ'=gο‰₯*rΟ©gW° φ-uΤ·}hW²€gζfEΜ£/ΟήΫΨ‰²’ o€»Ζ(ή‡ή‰Υ•ξ@³Ώw—Sδχ™yAΑΛβ’Ν"φ—t­Η{aμηϋ©χ.Tl} ΕΕΕΨΌKzŸj`LIGΦΒBlX·Π·—7θW:α½ξ›P/žΖ Ό$ΦT\ΌYώΜΠθH7e‘pυ,Iυ6χ4Z€α=4šΠσQ²ήΠIσŒ ΐΘΨΛ~© <ΎΰQ₯Μ(@ P€θIΐ˜χR₯­²L)³@ P€ (@ P€ (@ P€ †[ ,‚lΈ‡οy+χυΉύ<:-ΗoΎ{Pϊf' (@ P€ (@ P€ (@ P /ή¨ΠΎ΄ΦΊvΤΤy#ΰ²ς2eδ”œBδΤmA„"†ΉΎ ―ˆ@B½Ζ—7βSŒ‘Ž•+sϊ4–Tn%ΒσB/Θ}eaSi(;P±}*₯o΄Ί\ΎP>Ί›’!‚Z{m¨!c6²}‰›₯ΣhGcM)Šk₯ΰ@WΘ –˜’5 \OΙAQvά–0κ°υ₯:ρ `˜V`9«Vv“ΙYY‘vS©<ηϊŠΤW†ΝŐ oμ±T75›ΛE £Υ%›P˜‰\JΝ)P‚ΤυJΐˆ₯›_@ΩxnCΞ ν‡ΐ ₯‘՞™?80ΙΎ>ΛΤά˜ͺΆΘΑΆΪRΌδ χWμW½AΌ-Ε Χ•n‘σF¬|n=LštτvΦϊ²€³r Ύ ϋπμν5Ψ!½αΔ‘I_‚ykf‹½W-Π€ΛZ†2‹ f) ^#u;Eπ-/…οсˊf`oŸΘ'$]σ‘ΟΧUΌFΎ9ƒnŠ@λ^ΌŸ"ϋ9/zρ™γοΚ’Ν¨ΤˆLεžΐητYΘΛЈ9 ήg_θ|ΥχzB_Oτf,4Δ3οlk%6WF|Žd.Ι•?ί€½Α`bwŠΟœΝΕuβ­½ςƒφήξλτYŸ ΐhθ:ψŽ2εΈι³pΣΈ/)η,P€ (@ž΄·ύnΉs||\κ¨*gsOhΌO P€ (@ P€ (@ P€ ΐH‘r1{ΈD£? lŽ?3oΤΩκ‘žbΉ«Ρψ–²J–¬έˆΤςR”Υ6ŠϊΰeCz WˆlΑ!݈“ˆ PϊΏ‘w "Ϋ’uRε s6Nǎr4‹Ψ=^φ˜‘HΞΆμB”Y¦\‘Ω[‘Ϋ?SS °‰Œώή`0aεΪ•*kˆτ‘ΗΙ_‹΅ιεΨQV+B*₯˜joΈ£Ζ%E…Θ₯έ3Φo\²₯¨σ.L™‹ΡΌ«‹rε`ZΉ”½aƒ₯ΫwΑβPf,n΅€R:g‘Ύω™υ(―χ₯p§Ž>ν‡Θyχυ™‰G+ήv}|6ώ½'χ"ˆΧ’lλvΤΩα€z)s­½"Α΄ΚωΌ”ωG.-°εžQ˜Ÿ‰-ευΎ~}A«’]―φ‘Λ‚κFiRϊξ³€χςΩΧ–Wϊυβύ•£¬Υ”Ώζϊ-°ˆ­P'κ,ο‘άΥλΰΪQ"²ϋž»T[ŸŽl³΅uβΔ§΄uD³ή`±kU<όΟNςD9[p½Ψ£*Do½y?ωϋVž‡hΧ+WQ)ΩΨΈΞ ²N—Α*½‚‚—&ρEKδχKί>ϋ"Χ’ΜML6τϊη“45 ΅wŸ‘ήΪΚβTΚͺ­―Ÿ©5VωύοΖˆœό"ρlŸΝι Y·υŽ8<β3§oλυΆγŸ ΐυ)0yςδ¨ ;}ϊ΄|o€IHNNŽZo$ntuuΙY@Ώόε/ιπ_Έ]¨«©TΖψ«Ώϋ$ίq‡rV²7'NT»=’לN'&L˜€΄΄΄‡ΪΰάξθΑV­έp\γάϊ§«nwέrΛ-1Ήίt:œ:ί ‹Ζκ3ύβ‹/†%#ή lE―@’ΘΒ`~ik½™ιC P€ (@ P€ (@ P€ †Sΰ&ΤπΕpΨ—±jK^BΉ€4f―ΒϊόŒΎ4νe]Ύ@Z)˜ΨΛΖύζr:ΰ™W="0BŸ’"ΕbzG-ŠE†b‘~«ŠΧ#Γw9όΕZΆ;€ΜΤrVβ|Γι€SΞ,k€Ρ¨τή¬Ηs§CΜKΤH|U0γfaㆂΐΌύ=»œ"WLzœπθSΠέT Fκ†|?ψ’ςΪΛg£RΎδΆ£Έλ±ΛλΟΚΰΑW^A½ˆc5daC9Zσώ]ΟΑατȁΎ*Ρφ‘£Ά›ΛΕ€rDΦλ%a°Q¦‡g₯‡ΠΛΎΉKΡΙFρμ‡ςμk)ΛχΐίOΡ\#Φ ‚—r4Ά7;ψ ύg_Δlν‚΄~ωη zxo˟7Ύ:£y½ƒǎϊ%pώόytπΪ―NΩ(f***ΠΤΤ„εΛ—Η\σ‰'†%€ΉνΏΗιgώQ~F7iuΘͺ<…1ρέ=YWW³Μ~ψaΜ0Ks»ηž{bςύΐΉυο±ΔͺΫΉsηΔ€ΪbrΏIŸΉ­­­19·††9€yƌύΫCΨκ“O>‘˜ΝζAώχέΞy΄wέΩΩ‰½{χβΒ… 1ωί ~ίXϊΊb=‰“βΞύnjέGqΒfΙχ»Ž'Ož„V«…Ιdς_Š©Χ³gΟβ³Ο>‹iΓXΪƒjοψργHHHΐ”)SΤnψ΅3gΞȟ3³fΝρΉD›@¬?γ£GŠ?Ÿ₯ΖβΡΨ؈K—.aζΜ™±8=yN±ώŒcŽ£(@ P€ (@ P€ˆIι{~‘Ι9clšΩ+Χ#έξ„!5uˆf&‚g»‹²ͺQεΜ±’s}Xΰ”‘x]ΊΘ)k@―V,‚–Eμ+ ’?)ν@ƒ`ΫΝᑃ€E€+ώ/ςΟήΒΦY1η•λα—€zώY ύ~=θΌ―Ο&¨)Dπσ&˜ξJΝΖΪΥωH•ίuΤ••ΘΑΛRUSfFp‹Α)k€€φθ]y3‹ϋaϋИ½λν—½ϋ¬ͺΌο?ώIχ’hȍ’ΑššΪΚh t:“¬+YΕh-ξΧβfaγ'Τ u‚¬₯Μ©c•ΩΙΟ­ΨV€Έ ΈΪΆL: ‚†"“&"ωα&›@ψη&χ?7ɟ“δ}Άλ}Ξsž?ίηun’kύήηZ/¬Έφ‚θΐ½o9’Wڈ½AΛ+vΡΟSKΝ5Ι»-όώιΥΧz³@;Vα0H;Ί4ό}Σ—Χێ₯θ2·~j5lFZ›ΙΛvc  €τq*λ[¬ΚΚΚ‚’¦¦&h=•- Iœ Wά-ͺ.ϊΘίθά―ί”>ρG-wΰ  € € € € € Π ŽN`Ά²\Χϊrέ`«CFΖΖYιΛΞ:ςΆ―ΧΖƒE2ΑΠαcΖχNŒ½όzθμ½Ή\QβO4WQΆών;ΩΦnΡ2;2ΧiZ ΡŸΡμΔΆ“Ύύψ=ς0ΕvΫ‡zd}’^~­χ8ΰ@[o3!τΛηJTΎg‡½Oκ\»L@ώ.`ώχ³cy[Η‘#G4tθΠΆšυΚυγǏχΚΌ-Mz5ω3RΡ&叢ύL']Γ[jκˆz³3κΰΑƒευzOΣ JJJtξάΉ¦ΥŽ:wΪk°)Ξ©S§όίjbvΐuβavΨ>oύοy!!!N Ο“ΣορΙ“'­8"[ό@JoÚoΕ°Ύ­M ½ σ#€ € € € 0Pœΐ}Z&ΑΥΙ†ΚΙρ………)""BcǎuΔ=mDAAŠ‹‹mθτ{j}Y΄Fέ”Χηζƒ&~βΔ‰Žˆ'XVM € € € €}V€ζ>xλΖiύ±¬|{f―ζΔΩ_ΧCw–貕f{Λψ1=’4έoK«!G'NΥ_=9UUηuΎ’.=2ΪΪm›ΜεVέzβbO<υ̘@  ”Ύ΅Ρ^”'-Σ.S@@` ˜ΔΖ¨¨¨ K4hPΠz*[ˆœτ Ίq˜”Χο|pτΩΟ·ή‰« € € € € € €@ ΐά…˜=6TX€΅[EΝ¦°ΘX%ŽνΉ ϋρLα‘ΡŠλ™Όσ~¬ΨΕKλ៧.Žžα@€@UξQ]<ς½Ψt˜m  € ΠiaΣξSΙ›?ρχΏϊž•ΐ́ € € € € €τ @hΞΕT € € ΠA’­―Ϋ=†ŒKVxΒ8ϋœ € ΠYθι©vΧ«9«ΪͺKφ9@@@@@@ »H`ξnaΖG@@ΰ:J·Όfχ޽o]¦€ €\ΐSg*ΔnQΎ'Λ.S@@@@@@Ί[€ζξf|@@:)pαw»tω|©έ;ζ‹a—) € €Χ+m%1Žσ»ή yF@@@@@Ί]€ζn'f@@:'PϊΦF»£Ω%1lX¬}N@Έ^θι©φηχμPMI‘}N@@@@@θNΗ&0_½z΅;ΧΝΨ € €8Z φb…Ξύz‹£ηΎϋν2@@ +Μ€Gm₯WΏΏtαwͺxF@@@@@ΊMΐ± Μ!!!έΆhF@@ΐιηvnΣΥjŸ?ΜΠ!Šώܝ2ρ!€ €@yƒbΏτU;κ+εηtό›_VΡϊ5v@@@@@@ ;›ΐά‹eL@@ϊŠ@ι[νPcfΝQˆ;ά>§€ €t•ΐθ§ώE‘ρh£αN―]©“ίzX΅—*Υs‚ € € € € €t• Μ]%Ι8 € €t‘@ΝΩByίύ=š'u]¦€ €tΉΐΜ―hάΛ[c}~Χ6}ψΥ/¨κδ‡v@@@@@@ «H`ξ*IΖA@@ ‹JϋgφHƒo©ΘIŸ±Ο) € ΠuΚΞΪ’εί|B_ϋΪZώύ-Κ)¬θΔπΦ8»ΚΫޞΎ|νz'Ώ½­iΧC‘w‘&lό ύΔ]φŒUyΗtψα/θ܎7μ:  € € € € € €@WΐάŠŒ € €@ Ώ±ή-φK_΅Λ@θ2+‰xω]©ztιKΟΠ’…WΊEσRS΅jWQ‡¦Ι~ν =Ίx₯ς|νιV­­_{XK,Ρv΅oϘ΄ι*Α±#tΗ«ΏπΉΪC^υUιΤ²―+ΏeΧQ@@@@@@W μz ? € €tΐΕΓT]xmWΚΨΤΊnpFB@ΐ/P­]ΛΦ6Ο|eύ2S±υ*Ι)χhZΪ:₯͟«{·νΦτψΦΈͺU˜{X›W,ϊΣ.Q֚Χ_+ΜzA+Ž™“˜v΄¦Io άΊδ{ώo€Θ[ρMΥV]τ‡QόŸ‹Ύ―۞ϋ‘ΗΖυVhΜ‹ € € € € €ύD€˜ϋɍd € €ύC τ­φB"&~Z›GΫη@θοA-Ω!=χκ΅δεΐΈρ)σ΅j¦΄dΣΑ@UΠg_ξv₯ΝY€μ1kΣΫohirŒΌA[6¨,ά£΄₯Ϋ΅κυ5ΊΧͺnp‰’σ†ύρŸιŽύJΈ[μΰ*eλπάΟͺβΐ^»Ž € € € € € Π˜;£F@@ΊI τ­ŸΪ#ΗήwΏ]¦€ €@W xξ‘<kJ ;,O{dΎ΄ώ„|­LθNHΧώχvλΥg•©j_E+­Ν₯2½˜ϊ”ξ\ρ#Ν£6ZsΩαcΗkΒλΏΥ Ÿ™atω|©Ž~γ>}όγν:  € € € € € €@GH`ξ¨ν@@θ&σoBW*.Ψ£ϋ“?·Λ@θ*Βœ=ςdN»…έc&Ι£Κk-ƒΉQίΆχRΞωαΧ΅ή³@kΣGIΎΆΫ7ž“^u£n_»I#ΟβFq|τ/Λuς[«φRe£zN@@@@@@φΐά%Ϊ € € Π₯om΄g1_Ϋn†8@θrWLCΊ¬ζjλΊζπεnΡΌ­˜ίΘPTΧ Ι(½ ΧίVβ?ΏΠˆkwρόm:όΠtUεο…ˆ˜@@@@@ϊ²@X_žΨ@@+ΰ-RVΦmέuP^E*ezΊζ̚ͺψkω$­Σxσ­ώ{΄»ΎέΣ§jΪ¬ΦWΐ·ήMΎ|νΪ/MŸbνžΨθ¨Π;Yϋ¬Xšf‡Εψ š•΄}“vœκŠ·\ηwn΅%<χΝ΅Λ@θjO”««‡ >žυήaρœ4σ{5₯­χΑGΠεΛ—uι₯ W«ͺͺ‚ΦSΩ=7~v–&ΌΆ['PU§Žψ'ρύα„>΄’˜Vώ@Ρ3ΊgbFE@@@@@~'@sΏ»₯,@ϊ»€/w§¦ΜY)%ΝΦͺ%σε©.ΣΦο?₯΄U1znΫFMo=!Ι{t»¦=°Ί£™ςΈM•ΚX΅RK_ί¦Œq‘-VkλΧ֊c1Ϊ°χ kψ½σ%΅pιJΝY8_Qފύ­²7FΣ¬ζ†Ν4 X/PΆγ ΫbPδ 2 B €t—@©·­ύ•ΛΊ`κjνZυ°φΞ|ZϋgΕ]Οmή«ΈΩΞ7:yςδ΅ώ-”Ž9’‘C‡Άp΅w«wφΕŽoρ Ÿ•²wϋak«.κδ_SΘΜΏPΘ_όU—cηεεiπΰΑςz›}\ΛηκΜ€%%%:wξ\gΊφXŸί㋬n’S§N)<<\εεε=«„ E…Y/XΙΛfΌζ_;οΝ;l%D?­eΜh2!§ν(}λ§vSOκv™ €]-ΰ²v_.έίJYiΎŽiͺFy?Π‘X|ΉΫ΅Δϊr€ΕVžλ;{δυ™ήVςr΅°žί΄Ss<1Jž>I±­ lή’’’‚Ά0;0ηηηϋ―?^'h;'TNž<Ω a΄C‡γϋτ:»q ž{σκŽTΔΩέφO?RΨ°Φξͺέ₯]·Ϋ-—Λ₯ΔΔΔv΅οιF§OŸ–Ipν°aκδψΒΒΒ‘±cΗφ°Jϋ¦+((Pqq1χΈ}\A[…††*::Z£Gz½·+Ν%LύΔ‰{;”η?pΰ@‹ΧΈ€ € € € €@_ν‹A3 € 0PΌΩ΄M³΅ΎAςrΐ"εo^LmΧζμ†; Φ=—μί€CΚΤΪΙˁΙΟjφιυœ ύ χ(mιv­z}ξ΅:4έ³±0g»’œ™PXŸ“Ÿ«OA•μ³Cτ€Ξ΅Λ@θjψδtiλvΆ0°ω»δIŠjαz{«έQ£4/mΆ’σjkΦνήm=¬Dζέ[ΦΦ ‘³O;²Χ'6·<ͺIlŒŠŠ ϊ0 ½'0|ξ|a–ǎ°ƒ¨8ψ;~ΰ³ͺΜyΧ£€ € € € € €4`ζ¦"œ#€ €8š΅EžΕ―΄°Γrœζ-ŒΡœ"θŽε@IDAT-L žL\ztŸΥΩ’"5mY’2ήΙΧ²” ΚτbκSΊsŏ4kœ΄ΎΑ•Ίb΅r²Κ”φ=σΥπ*)¬°œ]Φˆ1²6Λγh‡@ΙΦ v«π1I:ήΉ»~فR@θ³ξ„IJΥj­Ϊ2OkΣG5^‡υm K—ξSκΪ'ψ3ξΝ=¨μMOiΆqΟζg±“΄π™kίψp­A†Žέ΅Ίφ€¬·}\ "ωSšπϊouς[Λ$/›£¦δcyd–nύΦ?jψύίθγ+$|@@@@@θv`ξUΖD@ΊE ZΗ6K€˜DαΰGό” •n8,7΄o|ϋδ†ν¬Žλkε9?όΊΦ{Τ%8ωšξ½lZiχ1k#Ηηιξ»R5ΛΪ=8-υ˚rο4-}ν`λ±4œh—Kήό‰½zOΪv™ €έ#§%λζkοŠ‡΅*λ„ύ·ΪWxX«RΏCI ΄dJŒ=uα;+΅dώyνšλ,ΤΏŸ¨nυ ΛuΞAχ«q―ό·†?πWζ-ψ§ΏΣ©₯G΅U—Υs‚ € € € € €°3―@@ / xZΦε²’Kƒ%Χυ‹Ož­ωλ”ϋΘ³Jh6T‘Φ?B₯ΙVτ#‰ώ]}Ή[4οEkζ·3ZΨ΅Ω€0_{ΝX{΅aǍ‹­K€.ό`§ζΝ[€)yk΄ΫΑv_lΐ€¬¨8°W5Εgμ΅{Ύψv™ €έ%•’©­λ\š7λΪΌTJ²ήc+΅>Θ4σqm}&½Ρί}W”υα©{γ¬οWhιhωJΠnλ›‚^ ²― άΊx•"“S”ϋΜ]υUω—sξ—₯K'?Tβ ―Ι}Kσw }}Νď € € € € € ΉsnτB@zM Κ$)wςˆJI·Ύ2~2ΎΉ]Y:[±φ8ΚZώ˜ΆYηžiκΎ2ή—―Εs^ΠΜοmΤ”(»aσBTŒζ₯=9V²S|ƒ«ρŸœ‘­Φ€SR)λ‘šίzάΉΉΉͺ©©i0Β΅’ΟW·Eγώπ•••]»ΰ€RAALβxmmm§’Ή΄αe»_Xς=Κ+―”ʏΫuΧSψ裏tαΒόg¬ξkb»tι’*+­υ:μ0±EFF:,ͺΊpˆ­s·Ε©nΕΕΕ*--uδλνΜ™3*//wdl§OŸΦΕ‹ήΉD7φΚΟΟΧ-·ά3tνΠρ)Ϊρ^ΊΌήϊ?YΟ’¬δβ¦GBϊKڟ޴ΆαΉK™_jXΡFy”ΦΎχJmΈάW†Νό²†άv‡N,~PΎςόΛ¨:uD‡œ¦±ίY§?;«―.Έ@@@@@@  H`ξBL†B@zB cΤς\Υ2iHξ  β΄lΫεYIΕ³ξZ­Τy 4.κ„ΦΏΈέΪyyΎV-ά£υώήΥΪ΅κaνω΄φΟ²v] ώ€&—"5A Ÿ™hΡθΩ?U«’₯ύ…Υm&0›DΦ–mΙΑ&α5$$€Ρ½}bbΊrεŠ***:JHM΅ΌσK»_ν=_θΤ8φM &Ά°°°.³Ι> $/2€ΣctWG[gξgwΕΣp\bk¨Ρώ²SέL.±΅>Z:έ-gίyΆ’–£š'-χψ‰Τ‰αVσ?Ω­ά§ζ«|Οˆ΅•^ψΏ(ξ/Χ͏=εΔ°‰ @@@@@zP€ζΔf*@@ΰz’¬ο[?Zjv nTά`Πcϋ€΄ŒF_ϋήಿ莟€WίΫ¦άμƒΪ΄ΘJWž€₯λ25=e”²—―“λξHωr·kΙVλλδKΩομ‘ΧΏ²•άT―c:¬η7νΤOŒ’§ORυϋδ΅Ζ,ωΙ₯€΄D-{'_ΛR‚'9β»σΞ;ΕfΟf—RsŒ?^³ΎtήμΎlv½νΆΫšΕέV…ωJυSΎKώf!.·&ύεB…Έ»nGQ“μ£Q£F΅J―\1b„βγξΫέ+atςδΙAλPIl» Nt3»Ι‰±™„ΝξΠNŒ-::Ϊ!ƒδdλ2;""":½#ΏΓ–B8\·ΐ Θ”Έf£Šώγ~ι;φxζΌςƒw5vυcΧS@@@@@@%:°–Λj@@Ύ,ΰ™΄ν΅Γ-,’Z9φιΞ»ƒ'7›NΎΒ=Zϊέ=ς)R )S•ρ`†2œνO^–ςυ’•΄œ™'wΤ(ΝK›­δΌƒΪš΅G»w[+‘yχ–΅usημӎ¬ΓώΔζ£/?‘χ›€κ`G΅m:‘ySœ™@,➬+}λ§φt13ΌK“—ν) € €½(`v\NϊΑΟ5θΖavήμίκpζηtρΓƒv@@@@@Xμΐ<°ξ7«E@>.’)­xJ[s§*-‘ρŽΗfΧδe9sΟ_KΞΝή£RΟ$₯$DΦ­άW‘›WkΞίμVJTcŒ\+9ω2uwΌw’>3©qY†Žέ΅Ίφ€ΖΚ ½K7¨pΦγjΊ—/w§V³bŠ―Ÿ?Π‡g]>Wb₯Ίαπά7@@ _ D}κsϊΔ†ίθΔβ‡tρΘϋώ5֜-Τ‡_‘1ΟόΐztΏ\7‹B@@@@@–؁Ήe € €ΞˆŸͺ—&jΕœΗ”u΄ΘŽ―πƒJ›σ‚’Ώ€ι±κj흔ݚ¨;aͺ–&I~~΅² +κ뭝›³^PƊ}Z°.Svw»Wƒ‚―ΪRν»V—0λIΝΤ₯Ν]§œcfoΧ”9«•΄ΠŠ©ifσ΅ξΆTφ‹΄Χ>ψ¦‘2‰= € €@<βfέρ“]ŠωΣ―4ZbήςΏΦΎσ·κ8A@@@@@ώ/ΐΜύ³B@θg)Ό€—]«υθs΅L1ς¨L₯Φg.[£­6*ΩͺΣ .R―n”VY‰Ν©© κc΄xέFe¦΄±S²ΫeΝΧδpχφώHΙΛWj^κλ’™―ΜίhΊ—΄8½qLMzΨΣ’·¬ϋP°λ`@‚g@θο +MQwM±’–ΩK-ωω­™?Pβσ?‘Itζ@@@@@@ώ/@sΏΗ¬@ϊ€K)>­ύOΚ[]·#²Λ)·»ιB]J{u·šV»γ”ρΜ+J[V!―·ΪκηRTT‰Λφ£΄φ½Wμ3»`%1g~E™ΟXcΚ%—‰Λ³YHv‡]¨Κ=ͺKGsl˜m  € 0bΏτ°†Žϋ€N,~H5g ύ+Ύxδ}ύ>σsΊmυωfŠπ`‰ € € € € €„B€ € ΠGκMςqσδεΆΧδvG*66¦ΙΛm)kΜ(+.7ΙΛ­b•l1;UΧC'LVxΒΈΐ)Ο € €ΐ€zΗ$MΨπE₯|Φ^ο•ςs:φΧ_™ή£€ € € € € €ύS€ζώy_Y € €€ƒJ·^K`φά7ΧΑ‘ € Π}aΡ1Jϊ·77oQ£I π]X4WW*.4ͺη@@@@@ϊ Μύη^²@@> pαw;uω|©©ηOΏb—) € €QΰζO+ρŸ_WhD”½ός=;ταCΣTuςC»Ž € € € € €τ˜ϋΟ½d% € €}@ tΫF;ΚθΟQƒ’n΄Ο) € €UΰΖΟΞ„Χv+|μx›ΐχQž?όΥώο―ν:  € € € € € Π?H`ξχ‘U € €τΪ‹:·s«©ηΎΉv™ € 0Πά·$θŽW©a_H·)ϊͺδϋΧεͺzύ_ν:  € € € € € ΠχH`ξϋχ € €τ“Ό|΅ΪηvPδ Šž‘ΦG"'L@zOΰςεΛςz½A•••½3w‹@萍ύΗυΊυρο6ίχζ«:τεOιμΖuͺ½Δ}o„Γ  € € € € €}P ¬ΖLΘ € €τImνΈcfgΨe  € Π²@EE…Nž<Ωrƒϊ+GŽΡΠ‘CΫlΧ Ž?ήΣΆ{NGΖwΗgϊΔΥΎ΄\ͺ(χ―Ε—RΟ=©όŸQθΤΩ ωΒ馑ν^gw5,))ΡΉsηΊkψ.Χ‘χΈΑΚN:₯ππp•—Χέλ—Q<{φ¬ΞŸ?―GΔ,§ίcσ{<22ReeeΑΒουΊ’’"™ΕΤΦΦφz,€ € € € €ΐ@ y άiΦ‰ € Π«5g εΝώ­ƒηΎϋν2@hYΐ$Ό%%%mPUU₯όό|΅ργΗΛγρmη„ΚΙ“';!Œcpd|–Y͌™ϊύ3«+{iΗ⻀«Ώώ/γ†{Ώ ›ζΜSτ΄ϋμλ=]8}ϊ΄L‚«# `89Ύ°°0EDX»oΫ bη T\\Μ=ΎŽ[ͺθθh=ϊ:FιΎyyyώϊ‰'vί$Χ9ςsΊ#€ € € € ΰ,˜u?ˆ@@ Ÿ ”ΎυS{eψQŠHώ”}N@Z0‰QQQA 4(h=•ύG`plœ\½\a_EΌϋ+•Ό±^—Ο_ΫΑυΒή_Λ<ά·ŽΥπϋΏ‘Ψ΄L…F½τV‚ € € € € €@ίνϋK` € €8_ ψΏ^΅ƒŒMΘ.S@@h[ tX¬n~μ)MόΥ yϊE IΊ³Q'_Α)<·TορΚφ ω>Κkt@@@@@p– ΜΞΊDƒ € Π.ώώ=UΦ}½½Y^lzf?\%KB@zFΐ“ώ &lψΖύΏ·=#­Ρ€΅+Tό³WtθKwιψ‚ •οΩΡθ:' € € € € € ΰ 0g„A € €τ_’·6Ϊ‹‹ΌkŠ·Ο) € €tN rς½2šβ3:»qΜ7^\ΉpήμΒοvΚ<ά·$hψύί°>Dφ B#’μλ@@@@@@ χ؁Ήχμ™@@`€”ύχΟμ•zξ›k—) € €\Ώΐΰ›Fκζ…Λ5ρ‡5ϊΫ¬!‰ κϋ(WΟ/Σϋ³'(Ώ%_ώΙFΧ9A@@@@@ž ΉηΝ™@@` œϋΊRqΑΏβ—[1ς₯΄z–Š €τœ@ˆ;\±ώ5MΨΈGIφ¦’§ύi£Ιk/Uͺψ?]‡Ύό)_0Gε{v4ΊΞ  € € € € €τœ@XΟMΕL € € <·6Ϊ‹6=U‘C#νs  € €έ#•ςY™GuΡG:»ρe•όόΗφ‡Κ̌~·Λpί2FΓΏς ΕώΩC ˆκž`@@@@@š °s3*@@θ+ήrίΉΥΜsίύv™ € €@χ ΈβnΡ-‹ώAŸάώ‘F=ωœΒΗ$5šΤχQž ^ψΆήŸ=Aω«—Θ—²ΡuN@@@@@@ {H`ξWFE@@@eY›m…°hn˜ςΗφ9@@ž ’›2ώRŸΨτ;έΎv³nœ:³Ρδ΅—*UΌι?tθ˟ρo~YεΏΝjt@@@@@θZ°ŽΡ@@@ PϊΦOEyRηΪe  € €½'pΓg¦Λ<ͺΟθγ ?PΙ–ΧT[ι΅ΊπΏ»e›GkψWΎ‘Ψ?{Hƒ"o°―S@@@@@@λ ωϊ @@fΥ§ ΚœwνzΟ}$0Ϋ@"P‘쬝ںeς*€1wOUFΖ %ΗGv0>kœ]'4nϊ$E΅Π³πƒZΏa»Žž‘βΗ$jΚ¬š9%QξΪS@OΈFήͺ[―͏}ΫJbή ³?]'_ώI{jσ~ξ£~J…?Xε0ΪπΉ*|Μνφu  € € € € € ΠyΠΞw₯' € €΄$P²υ5ϋRψ˜$ Ήύφ9@z]ΐ—―εw₯κΡ₯[4.=CKfh\ιΝKMΥͺ]E /ϋ΅'τθβ•ΚσλV­wΎu₯Ν[©ΒψZΈ0S3ο–V,ψΊ¦όΙ:λB=,:$BΓο†ξ|γ]έώύŸι†{ΏΠ(‚Ϊͺ‹*ήτϊ}Ζ§uμ±?Χω·Ρθ:' € € € € € Πqv`ξΈ=@@hS δΝk Μ±_ϊj›νi€ €@Ο TkΧς‡΅Ν3_YΏΜTlύΔΙ)χhZΪ:₯͟«{·νΦτψΦ"ͺVaξam^±HλsL»DΉ‚4χεξΤΒυ'΄bσ6₯%vvž€ύΦΜKούΊ–n™­WΣGιI½#pΓ”?–yψ>ΚΣΗ^RιΦΧU{©Ζ»οm™‡+~”†εβ}žMC@@@@@ °s‡ΈhŒ € €@Ϋο½£šβ3vCΟ}χΫe  €τΊ€χ –μž{υZςr ¦ψ”ωZ5SZ²ι` *θ³/w»ζ,Rφ˜Η΅ιν7΄49Fή - ίΩ$₯=Ϋ yΉΎ‘;Q‹ΧΞΦ‘Ν'tγζ cQ…@O Έo£QO<«‰ΫλΦΕ«dΞΥ…ωϊhΝίλƒΩtα 4ΌL@@@@@Ϊ`ζ6€ΈŒ € €@GJίΪhw1;ψ… μmiWS@@ ΧΌGχHžΗ5₯…–§=2_zΐJ,ώ›Ir·₯;!]ϋίK―ΏZ­½ΎŠ -«ulλ ΝY2!Θ5ΙcΥW½F%NˆπώΚ(Νv}Όρéψj«.κβφŸI;ίΤ±Ÿ?…ίv‡"'~ZŸΈ»Ys Ο € € € € € ‘ΐΜ«@@ΐgϞΥεΛ—ƒΖR}ΠΖ½\yΥW₯²eGΑξΛ6@‡ζμ‘'3½εδδ1“δΡZεω24₯ ζFki) Ω₯δek”œΩ¨uέI΅v?ΏAž™―΄GNT!Π«7~nΆΜ£*χ¨Ξώμ•Όω]­ίCάzφξ£ΨΊfްh"'}Z‘ŸΌGɟRΔ„Ι q‡χκ˜@@@@@§ΐμ”;A € €ΐ0 Μ>_π/‘―©©ρλ9rDC‡u”T^^ž\.—.\ΈPΧ»»T{©²μ’όa·θτJΜ'NœPTT”JKK{eώΦ&=~όΈJJJτρΗ·Φ¬W™Ψœz[ηξŒSέΜΟfYYYηΥΝ½ΜΟ¦ύ{­›ηκθπgΜΡ₯K—ZόΠKGΗλΚφJJJκΚ!»g,—΅σqK9Ηώ]VsuλMΪYό''m™³ι)­ΘIΤΛkƒ^§' „'ŒΣ¨Ώϋ'έόΝΏWΙΟ€3ώMWΞ6 ωςωRίύίώGΰβP+‰9ς“V2³•ΠlvjvΕέΈΔ3 € € € € €J€ζu»Y, € ΰ\„„ΥΦΦ 0δ:~όxy<ž mz«$/‡‡‡λΆΫnσ‡pbύj•Χ;{ŽFίσιή M!!!Љ‰Ρ¨Q£z-†Φ&1b„βγγ[kkΧ&Ožάks·51±΅%όΊέL"nQQ‘œ[~~ΎΓNŒ-::ZJNN~³{±6""’ΕΏe½VΠ©=Q υέ_Y‘¬ο>¬e›Λ΄tύ6₯D΅=£ω&“΄μ¨ͺͺ VM="0(ςxh.Os}]έZS‘ʜlUδΌ«ͺ“αβα2m\ηΏ>86NVB³IjŽ4»4[IΝ € € € € € ˜Β]f € €@0I_-‘‘‘-]rTύεs%*Ÿ_Ϊ1yξ›k—) € ΰ$Ro«[0[‘vύξΰήά}Z:η νΥ=zyΫw”ίΎ$j“°~ςδΙ6ωœψM  Ί|_‰Ο|γΕΰΑƒευz!;κΩ|«ΔΉ λgκφOH£¬Η}_S¨υWO}¨άU{ς°tΚz\¬hwMI‘ΞοάκΨξn› ΠDk¬Ϋ¬Gt¬}©³§ΏO:εP`yyΰ£€]iχτ3ίsώόy»g†λΥιχΨόŒŒtμ·O˜•UVVφ™"]+†@@@@θ}˜{ € €@?(ύοŸΩ+|ΣHEή5Ε>§€ €€S\ΦξΛ₯ϋ[IP.ΝΧ1MΥHwΧEœ³e₯ζ­Ψ)OΪΣΚzf†:’Žiή’’’‚cv`6;†›Γ‰ίΤΠ0h'ξhήWβs»έ2ίz‘˜˜Ψ0dΗ”OŸ>-“ΰΪμO™Ϊ(ΖͺΌcͺόΰ]UXΚCΩΊtΒJjvXIΟ2‰ΟΏΪμΏ:xxΌ‡ζk‡ζΘ‰χ(βΞ”`½Ϊ¬k_›=zAXX˜ΜǎΫs“v`¦‚‚7ΏΗ£'š:ω›₯šoQ=ztOPtxσA “@?qβΔχν©X»·s € € € € ЏH`ξG7“₯ € €τ@ι[νbμA»L@' Δ'§K+Ά«π™{$°ΒœνRςlEΉΦρͺj½σέΉZΈΉLKΧmTFJ\‡‡0‰QQΑ£4hP‡Η£½%>&IζαI―{ŸX[ιUΕ‘ύͺΜΉ–Τ|εΒωfα՜-ΤΉ_½ι.F|ςžI͟Φΰ؁K<#€ € € € € Π'H`ξ·‰ @@œ.P•{T—Ž²ΓŒM#ΩΖ € ΰ(wΒ$₯j΅Vm™§΅ι£Ηζ;‘₯Kχ)uν“ lΐμΝ=¨μMOiΆqΟ g…»^°’—cτςŽ7”‘m—ƒŽF%ύK 4"J7|zšXYUήρk ΝVbsK»4W~°ΟΪΝy_ ›\q·(ΤiνΤ<τwΩΧ( € € € € € ΰD˜xWˆ @@ Ο ”Όωš³ωzoΧΝΞόjd;H  €X NKΦΝΧ΄ωk•ϋ-ž•θOVφΦσ_{L‡’hν”Ϋ§π•Zς|†vΏ—ΩΑ]™+΄y±΅›σΌ5η.Saa΅=¦]pE*>6>₯€ΐ@s»΅Kσνς€eϊ)Μ.Ν•ΏOΌ[—Ψl%5Ϋ₯ΉΊθ#™Η9λΓζq‡+βŽIvR³B†ψλω48rΰ}<”£‹ηJuε\ΉξšφΉζ¨A@@@@. ΉΛI@@` ”n{έ^ΆηΎϋν2@œ(•’©­λ\š7λΪΌTJςHΗJ%ΟΜΗ΅υ™τF‰Κ¨8ιή8ΉZ\H W|V²ι³~‘¦­o‘³gv2£Ρ|-΄€)`viŽΊησώG *ο˜•Μœ]—Ψ|πwAwiΎκ«R…uΝ<>οxτ)!4Θ7,Ϊ£Αžα »q˜Ώ6,ΆξΩΤσΘΜ́@ΘήύΆŠy™†ŸώPΦ_:qΥϊηžπ(Ud~K³[P_Λ € € € €t‡ Μݑʘ € €JΰςΏΣεσVΦWύ3kN Θ3 €ŽˆOΙЎχευΦοŒμr)Κέ<9!ύ%νOom.en|©yχ(}ο½έϊ^σ+Τ €ΐu„I²viNΊΆKσŊΊdζχχ΅ΊKsΕ{οtxΦΑ7T˜•Μ<8άl•Γ’M’sŒU«ΑV²³Ήn’‘Γbnκπψt@ ·~ύγ+ϊ_ώVΓƒ0€Κ«!ρ΄~~,G_ZσrT!€ € € € €@WΐάŠŒ € 0 |»·Ω돞‘¦AQ7Ϊη@pΆ€•΄ΥΦεsΕΦ·ˆ”Υ—KtΉόœU.RMY±Vϋ:ΆΟ<€γνκ>ğμ\‘KwV…11νκΧӍ*ΚΛ•α² ΅]WCB¬G¨BκŸύ±„†κͺυB¬·žλ― ¦πA¦½©±.Yνόe«Γ²ΥΟίί΄±±όmκΗ ±Ζ½j cΖρ?L}ύ\²Κ>£«εήζγψΗ¬Ο”Υ ˜«a«….kΜαCB>Hf|3§©^ΆbjΠ&ΔήΣ·¨Cσ½χέΏS{ΣηcΆ½"‘ΐά!_#€ € € € Π^˜Ϋ+E;@@‚ΤfΏ-ΥTϋ― ŠΌAџbVT!€ € Π»ƒo)σŽ0j+½ͺ9g%5[ΙΜ5V³Ivφ?—mrn’ KΫ1bπ&΅U—T]τ‘bUήQ ήΜ΅·v2Š« ϊuUΉΑvΡ$δvΥψqΞZcšGW%Φ@ζΡτ¨μΆb―Kξ6Ια&YΊΆ>©;Τ$N[ΙΡW­s“$mžύIΰώ²΅ζϊφζΉaΩğΜνOϊ/›qΝ<ƒ.UκΜπΫκη΄’1}―ZW¬GόΩΖΙχCͺΌΚήύΆR¦}Ύi؜#€ € € € €ΐu ΐ|€tG@Ψ—χόΒπάwΏ]¦€ € €@_ˆ’Ϋ-“ΰκdCγγδψΒΒΒ‘±cΗφζ­lqξ‚‚;ΪΠιχ844TΡΡΡ=zt‹Ξ½yΑ|PΒ$ΠOœ8±7Γhuξ΄z‹ € € € €τ5˜ϋΪ#^@πΎάš2g₯”4[«–Μ—§ΊL[Ώ”VΕθΉm5=ήΥͺ‘χθvM{`u]G3εq›ώ+•±j₯–ΎΎMγ"λϋWhλ7S΅b―4oΩΣZ8&RgrvjΩ‚uΦυtmΪϋΈάυMKjα•š³pΎ’Ό ζ·ΚήM³˜M\€ˆ €΄)`˜γγγƒΆ»xρbΠz*@@@@@@œ-@³³οΡ!€ €MŠ΄ΚJ^φ,\£L²―₯L™‘΄οY¦Ύ ­ο=©ΰ)>Vsί -°’—ο\ΌF―>ΨΈΖ¦Η4Ί{ο³ώΔδά¬•Vςς=Ϊπφ³ΨnΩΪ}9-sžVέ;WnJ׎λvΑσζΆ’ŸΦ²GfΨ1Q@@@@@@@@@ ˜@h°Jκ@@œ)ΰΝή mš­υ ’—‘¦όΝKš©νڜέpδΐΥΊη’ύ›tH™ZΫ y9Π"9γY-Π>½žcϊWkοsϋ4σωΗ―%/Ίγ΄xύ|•?,_}]aΞv%₯9σ+½aσŒ € € € € € € € ΰ ˜qˆ@h—ΐΡ¬-ς,Ξha‡ε8Ν[£­9E-ŽUztŸΥ†*7n©iΛ΅ω|«ΊZΎRiΪΈΈΖMκΟJΟ”¦ΔΙν?―VNV™¬s©B%…E*,,“/έt*@@@@@@@@ͺ@Ψ@]8λF@ϊž@΅Žm–x=xR±YOό” •.°vF~$±>Ή8Θ*«ƒΤͺ¬€cO”Λ:‹TζήrΧe(ϊŸ½Ή;•ΆtŸζ­{ΊΎΎH»I₯Ο-σ{7j;sρ­°v{2L£vœ € € € € € € € € ˜Ξ½f₯ € Π<­/Βε²’K[ΞPŽOž­ωλ”ϋΘ³Jh6T‘Φ?B₯Ιυ Πn“Θ\wψ¬€εωσ7¨Ίτ„¬\e%­ψ‘¦DΦ],ΜΧ^SΪ›¨ ;Φh\l]ΏΒvjήΌEš’·FϋΏ=©-D@@@@@@@π‘^@@  D™$εNQ)ιJΥ>e|s»JQ‘¬εi›Uη™6‘َΙξ„{΄δ{ 4{λN«Ν±«•]XŸ(£yikλ{ΫΙΛfθψOΞΠΦmΦ.Ν›)+ΠΦ\hᨬ¬”Χλ ϊ¨­­m‘Υ € € € € € € € €}M€˜ϋΪ#^@πή–7X·©–iβ*§eΫΦ(/u‘fέ΅Z©σh\Τ ­q»΅σς|­ZΈGλύ½›vŽTrŠΩEy’¦Οš­]ΛgκΡΗwꝍ³εŽš …ΟLhΪΑͺUΙ~+yV|λ‰ΧΉΉΉςω|AΗ Τ9rDC‡ Ϊ¦·*σςςdvΎΎpαBo…ΠβΌ'NœPTT”JKK[lΣ[Ž?’’}όρΗ½B‹σšΨœz[ηξŒSέΜΟfYYYηΥΝ½ΜΟ¦―™eŸ9sF—.]εΛ—»Y‘γΓ())©γι € € € € € €ΐ y€έp–‹ €}[ Κ#-5ΙnqARzlŸ”–‘¨ Wλ*έρ“τκ{Ϋ”›}PϋYιΚ“΄t]¦¦§ŒRφςurέ)•μΣ‚ηΚτόj+AΉΩX.M_ΆFž{Χκ˜oΆ>ή‘±Mž<Ω‘q™ ˆ­s·Ζ‰n&·¨¨Θ‘χ4??ία'ΊEGG«’’BΙΙΦ'dvDDD΄ψ·Μa‘ € € € € € €½*Ϊ«³39 € €@\Ί3s‚Ά½vΈ…>ΥΚΩ°Owή<ΉΩtςξΡοξ‘O‘JH™ͺŒ3”ωΰlς²”―·J™)qςU—iοŽό {1ΧM)κv =ϊςzqK;ˆVλΠ¦š7₯νZ“τev φ εmk 7j@@@@@@@@ Ο  ηn#€ €ΐ@HHΙ”φΤΦάκf ΎάνZ–£FΙΒΉΩ{”[q­­―B;6?₯ο΅ͺ@)wΛZR¦ξŽwΙ?Awjƒ^Μž˜œ»{ŽiΆΖXΫ3™5A{—nPa` ϾܝZqLΊ3ήΪΥ™@ϊ¬€·π 6}΅|ν1-ψζjmΚ:¬ o'Ϊ\Ÿ7χ ² ›Ώi³# @@@@@@ϊ• Μύκv²@θχρSυςΒD­˜σ˜²ŽΩΛ-ό`§ζΌ €Ε/izl ΊZ{η?₯G·ζ*δN˜ͺ₯I£Ÿ_m%›­›³^PƊ}Z°.SuέGiΩ² Ϊ<Λϊα|kΗζϊΓJ€Ξή²ZKχiΞΪtEYΥ ³žΤLmQΪάuΚi0faφvM™³ZI ­˜βπŒ €}M 7k΅¦₯.ζDe.\ ΜτDm^ϊ˜¦έυ‚ ν7 νXUΙA-˜³HΛ²N΄£1M@@@@@@ϊ³@X^kC@ϊ£@Κ#/ιeΧj=ϊΐ\-SŒ<*S©΅Π™ΛΦhEΖ„FKŽJΆκΗΕ4¨‹TΖ«₯UVbsjjƒϊ-^·Q™)ΧvJ—ρ’6D­Sζ⇡ΆAK)QK­Ά)qu΅ξQϊήή)yωJΝKέ`Υ™ωκvnž³β%-NoS£‘8A@g ξ΄>Έ΄έϊΣz$%πžb‚¦ΜšͺdVέ£ύΟLmu >o‘rήΩ’G­ol0‡Ηεj΅=@@@@@@ϊΏ Μύ³B@θw.₯<ψ΄φg<)ouέW°»\‘r»›.Τ₯΄Ww+­i΅;NΟΌ’΄eςz«­~.EE]K\nΨ|ά¬ωΪo=ΌήΐnΝ¦m€#+‰9sυ+Κ|ΖS.ΉL\֘ΝBj88e@pΌ@φWZŸ†ϊNƒδε@ΘqZψκΣZŸϊ‚²—LUŠωZ† G΅v,˜«9΄tν4Ν³O‹³κήΏmN% € € € € € €ΐ€ y@άf‰ €ύRΐ$[Ξnw°€η࣡”ΰά¬΅5¦?ι:βj6& € ΠKeΪ±YZόϊ=Α珿G ¬o]Θ)¬PΚΈΰ†’υΑ¦†¨ςέ#—ƒsR‹ € € € € € $Π΄X֊ € € € ΠN_‘v+QΙcZϊΐT€¦,ŒΡŽμ’vH3@@@@@@κH`ζ•€ € € € Dΐ%OΪ†U.WŒJΩRΉ! e@@@@@@vΐά$š € € € €Sΐ₯–φ_6δ.ΜW«F@@@@@W μz ? € € € €@¨n5IΩ$7—z»7ωόωσ:yςd›ΐGŽΡΠ‘CΫlΧ Ž?ήΣΆ{N§Η———§ΑƒΛλυΆ{M=Ω°€€DηΝλΙ);<—Σορ©S§ςςς―­':œ={VζwQHHHOLΧ©9œ~ΝορΘΘH•••uj}έέ©¨¨H•••ͺ­­νξ©@@@@κH`ζ₯€ € € € DΐμΎ|B%&gΤδ²UuμJ}0.ψΕ.ͺ5I#GŽ :ZMMςσσύΧƏ/Η΄*'Ožμ„0ZŒΑΙρΉέnΉ\.%&&Άo^8}ϊ΄L‚«“ “γ SDD„ΖŽΫ›·²ΕΉ T\\μhC§ίγΠΠPEGGkτθΡ-:χζσA “@?qβΔή £ΥΉ8Πκu."€ € € € ΠΧH`ξkwŒx@@@@žpΗ)#IΪΌΏHΣgKRΞΧΦ½¬%‘ݍI`Ž:ΗΕ‹ƒΦS‰ € € € € € ΰlPg‡Gt € € € €½#ΰݏΞΠή₯/(ΧΧ<‚ά-«΅WιΊ;ΑU±BΩY{”λ­nޘ@@@@@@ΐάƒ" € € € €ΐ5ψιk±gŸ2R_ΠΡ’@br΅r²V+cΕa-^?_φήΘΎ|-[ϊ”ΆεΪ]‡ € € € € € € ΒžPF@@@@ΰš@€2·m”–?¦Μ™[$O’TzΒΊ£₯λ6*γ“‘Χš*R#­³€ΨΐŽΜ .5(Ά~΅ACŠ € € € € € €ύV€ζ~{kY € € € Πξ8e~Csž©PuύζΚ¨HΉ›ν₯WίΫέ΄ΆΡΉ{\¦^Χ¨Š@@@@@@(@σΌι,@@@言Ϋm%-7ΛZξθ(΄G@@@@@@@ @@@@@@@@@@θ)˜{Jšy@@@@@@@@@@@€˜y € € € € € € € € € € €@Ο °sΟY3 € € € € € € € € € €^€ζ@@@@@@@@@@ž Ήη¬™ @@@@@@@@@@/@σ€ € € € € € € € € € € €@Ο ΐάsΦΜ„ € € € € € € € € € €ΐ€ yΐΏ@@@@@@@@@@@ ηH`ξ9kfB@@@@@@@@@@`ΐ ΐ<ΰ_ € € € € € € € € € € Πs!•••W{n:fB@ΊFΰγ?VBBBΧ Ζ(ŽΨΎ}»ΒΓΓuΣM7iπΰΑŽŠΧz?­ΠΠP 2ΔQq™`***ζ·sZp&6s/έn·ΣBσ»EFF:..q#ΆŽί§ΊUWWΛ<œxO«ͺͺtωςeΗΖvεΚEDDtόΕΠΝ=.^Όθ;~όψnž‰αΖ<++KΓ† sδϋ„@œNύ=ΤWβsςϋ-cθσωTSSγΘί™άγ€ΐυ=›{lώfGEE]ί@έΨ»/όžqκΏ›˜Ϋβδχ>—ω]8yςδΐ)Ο € € € €τiάά\‘ΐά§o!Α#€ 0pH`ξχώΠ‘Cώδ`+3Ιζ?v4(Ψε^­«­­υΟo’˜v\½zUζα΄ΨLLζ0vNΌ§ψBBBuKq™ ˆ­ύ·&ΰζ43³σ3ˆ+πάώ•uoΛ@lN‹«‘›Sc3Θ8qbχή 6ϊωσηuςδΙWmGΝί'ώM1A;ωχPΥι1:ωύ–1tςοL_ΰώš²wb4q:ν}«‰Νζƒ3&6'ϋΥEΚ=8tτΩι?Ηf=ζg$))ΙΡ‰τu§= € € € €ΐΐ0 Μawω¬@@ΐIΓ‡χοφ,¦’’΅ΩΩi‡I¦7Ιj111N MgΜΡΠ‘Cν¨ΨLr@QQ‘nΈαΓIΑ™gϞ=«oΌΡq»»šD~σ³`ξ§Ή―N:.]Ί€sηΞΙγρ8nWm³S]yyΉgVσA'^―WζηΈ„-cfμFŽ ΩξΆ7^IDATι$2,eeeώNGŒαΈΨŠ‹‹ύΈq\`}< σ- ­½ΝkΒόmqβϋCovE½pα‚Μ{'&Yώφ™ΏΛNάήšΏΝ&y466֜:ξ0χΧάgσϋά‰ N~Έ™N~OmbtςίEŸΩ=Ψό.4Nb~g:ρpκΏ›¬Μ{YγΨΪί›@Ϋήxάγޘ›9@@@@θ.gύΧΫξZ%γ"€ €8^ΐ$υ΄t˜„s8ρ?&›„R·ΫνΘΨINs3;Ψ™f“$ε΄ΨΜΧƒ›$)“ΔΥΪk²₯ΧjwΦ›Δ(σz6l˜γζMΒG Ωi_­nJ ΜNKθ1»θ™f“ˆλ΄δj³£­S˜/^Όθί ΣiΏ?ΜΟΏy­™DZŽ0?»ρρρ-jάMb°_&hσ7Ο$ΈšŸuσ‘'§&).πα§ύν X™ΔLcηΤ{l~ξ ΜNάAΨό>|Κ|ΨΘ‰‡ω{έΦ‡z3n']4.ζwŒω91οφαΕΐ}3Ώ ‡ β؟cσ»Πό»€SϘo#0χ˜@@@@ώ$ΰΌοΉξOΊ¬@@@@@@@@@@ ΐ܈ƒ@@@@@@@@@@θN˜»S—±@@@@@@@@@@@ ‘ ̍88A@@@@@@@@@@ξ Ή;u@@@@@@@@@@ „TVV^mTΓ  € Π>ώψc%$$τH @@@@@@@@ΉΉΉbζ€Ο € € € € € € € € € € Πν$0w;1 € € € € € € € €ΐoο~c«:ρ?IΊφdχζCκ©’x„ ƒκ(š0lγA* ²ZμJΕRw•:«ŒΡdL…€’ΰv‡I Κ–Ά#ΨhγTZνB€•€jΣa‘ŠκŠ.#4γ #mL¦΅gμ{lllΈ&όρ½ηΪόŽD|}ξΉοϋœί{ΞΉ•ηΌ‡ @€F0JψI€ @€ @€ @€ @€ @€@Ρ0X @€ @€ @€ @€ @€Œ (`•π“ @€ @€ @€ @€ @€’ (`.:± @€ @€ @€ @€ @€Pΐ<*α' @€ @€ @€ @€ @€EPΐ\tb @€ @€ @€ @€ @€ 0*πΉΡ~ @€ p7Wγτ± 1ιQu7/ΒgϋΞΖΎ·χΖασ—’κ F}ύ²X²bQΤT‘³;lr χύ8pΰPtŸΉUΝ'럈ϊ%εΫΔ])Ÿqθ=έη―N /ύ64ρε₯Λ’6ηo°οB9Ό?Ώ³‰Ρ°"ΟσαJΫ*†*+n2]ρΨ“‹cώœΙίέh?.Ζ±c§βδ™³Ρw9’fώ‚xjΙβXϊψ#EλςφNΗώα£qΰΨ‰θΘb[Λ–ΕΒΪY·ίΔTn™Y«ˆ₯ '³ΉοώρA:M²±mjZu59Ε;•ϋ­%Π{ϊTDέ’¨-ƒοβρ°}Ώ<]‡βάoωžΎ—λW,‹ευs£lΒLΧ€ΓϋŁξχ#ͺRή°0ε υ‹b~™žγƒ)Οι‰Ήω]3Ηnz]ξ9ΔHΈCqϋhμΫ4‡W£fή²XΥόtNƒ|b0ΛYOΔΙtŽœλ»Υ5ιψ«_K–.(›ΏM²όπ£qόά₯t?’b[+rΝ³“γ³ς‹ˆΎΣιΈξϊΏžž ρ›|γλ;έ•Ž·ηcΗΉG˜ΆΖκΖΡΉim,ω“Ρ“Š_sY‡’Ώημ«·KΡ+Ϊ7mŽζΓs -λt χh<ωΥgcΓΎ Q—n.hώV*Ά­ΎZž‰'_<Ή^JΞΖ¦?Y«7νΗ–6FΛsρXώX½je΄ν½ƒΩ•θjKV›NDΑΓiπbΌ|-ήωM±aMSΜOρΆ¬\[Ž₯") 2Έ|zo4΅nLΕ{7ߌ’_ˆCΡύζσΡΠ²9ϊj–Εšτ½ΌόɈŽΆη£ώk»£/ΏΐΖz8·ψzΩήΡπ­ΦhN™μMΧπtŽΏœγu|,ΐ_€kRKΚsV―:”ο΅|\\εœCŒ„y)ή~fy4·νŽ/,mJΗaKΤ tεψ½3―Μσ‰αHΣ17ό½½~T§$šΏΥυu³’kύ )Ϋ½Ή&#–ηφoΞχ₯ΏMV=Χ«–>šς,Wܜ_Ÿ‘_ΔP~yI4΄nŽΛσǚυ­Ρ0οJ΄gΉΪΛ'Κζόw΄zI€ @€ @`Ϊ <πρΗ:m£8 pί |ψα‡Q[[{ίξΏΟ[`(ϊzΣ,Ηk£³'‹ent|+ζη=]a*bψφSΟFUΗ[±³qξ8€«qψ/WF{‹Ρ½ηι\fULE›υ«6Η¦wFΣόρ3£Ε±, ΗΧEχOs‰mΤπΛΑΎλΚΝΓ―Χο;Ν΅9ΞΤWcG*Π|μΰρh¨Ή1œx?–um<υڏ㕏^&‡[qΈ―αΥ8σΚβλλΛΰΥ鷟Υ]‹βΐΑ֜f$н_[»›·Η‘ηž˜(r9y._-ο¦cn~ΗάPψφςθl‹Γ{šbΞΈθ~Ή?–΄Ό[ω°’ηΓΰΥθν9©pθWYΥmιϊΠtΓυ!];^L׎3­qψ§Νβν;½;uΕΣy³΄άΞ›q^Ξ|Ύ‹Ρ½wk΄wžήΩυΉί7[φJίΛ[£cίΑh?Γϊΰ…Ψ”nzκλψqΌΣ8ξΪ~sΕ]“f¦ο’Ύφ·β¦ρ9MšυΨΡ°ώlyδ^c ©ΰ1]“ڏ€Υε’Σ”qqΝ­ηνoDˎűχδΊ ³“Œρώ²½ŽηŸOŒφξ}>šv-»ι{0RξΫ_ϋFΌΫςVωΦΔσgμ-Α‹Αήύι:σF¬ίύ^4/œ=Η«±χΫ+γ΅Y/Eχ]vΓχϋΈΝ¦ϊεmεΩ5fkΊΖ\ˆ]Gފ…γ’Λ§RΆ1žΪΆ'^Y:Ω“!¦:hν @€ @€˜Ή½½½aζ™;ΎφŒ @ HYΡOCšaοτcλbοΟή‹Mu³ ΟZ€ώ'kv°οT*φkŒŽ ΕΛΩΦ³bΕΦΧ#ΞΝmFΕΊwF,υ†βε,ΆŠXΊαGQfM-Y¬/Ε–TΌΌrۏ’£.bp(ίŽ#pH3VϫάΚkι=Ά;ϊη½νγ‹—³+υοΆF€G…χ•QΘ}‡·Ζκ»ήΛ«x9ΓΈgϊgΗ–¦Š—³·ζ<λ³c.Νψ˜Λ’Šr:zfΗ6±x9‹₯κρΖθl™ν]#E˜ΕŽ―χπΖ4[νζxlύλqόg?Чρ“J* ί ψΞΔβε,Άš…­±eyΔ†½ο;Tν˜\ ]ΏΫV>νg©HΈkύ’θΟλό.e_χή4­ρλ‹—³ν*ηΖϊOΗ―,ρyNή:ψΑ©8OΗk7/g!Φ,mΆΈg>Έιʐ½Λ’άΆiŒΞu©2‰«ŒsˆαAJρνΪq%6νk›PΌœ½W³΄-qΔΎžς›MΏ<ς‰aΑ8μB¬z­qΒM<#ο̎₯C1ίcρLη-Ϋo(^Ξ"œM;·Gυɝ%…ωΆς‹”«ν[(–o{ubρrφœEΡωΪ²8˜fΌΘ~· @€ @€ pΟ ˜ο™P @€χ›@emcœωΕρxη•Ζ¨­šCi6―rXϊ{ŽF¬ZV ˆ!EWQΓ5°yU#₯ϊ‰//dΈώKџŠt«σžΑ:1~σ™8XχbšUmA –Aυν`ίΩθ―~:K6W’―οR\Θ·eδXŠ3;ΞΖͺ ‹ΗfΝΛ o―_•σ›γψ‘Ά‘cNŽTœΫ°ιP*¬ή «ς hVΜK…1=½…W£―'ΏΨϋ/¦YC[’nŸy Ν©’μlI vj4|}ε[‹’ͺ"ϋύ7σηN ΟrZ_SΨlΙs­ω`ŽΜΪϋF έΜρNΚΞΌσbΤg3:οσŠσRαcΓ‚‚TΞΚfJ½ωΌ+ΈqΡV¦ώλEαS<έ ’ϊ}¬:] ΚaI7T4€‚ΗŽ}λb~UŠ»Ώ‚J7Δ”m1β“έxw2šΗΝμŸε£Η]EW Ϋλ£lsˆkαχ₯οͺΧ΄EΕΐΩxωΟ_ˆƒη―οΧΚ4{Ί‰eNY]ΏΛ)Ÿ±z¬Ύ)ϊ[_ˆω?ŽUυ^;g‡’χΨήhιΌm….Έ.]όWc5ιΊΚώŠš•λί|μΛ ΏGn,ςπ“FZRαuΟCQ—ς`  @€ @€χ& €ωήό|š @€@ΩTΥ,ˆΊΡ όr4uœΆέ―ζWŒ4Ύx9=2|KλζθΌη³b•y/Fχwž(y W₯XΪZvΗͺέοM:m £λκ\w*`NKΝ†·’{Εά‘ρKΕΓ‡ψB¬^ωLμ8ς^ΤηRΐ5”fβ½[ώ|yΓTL½/ΉeΕΈ©°ωΝοǚUΛΣL”GR1Wώ…ƒηφGΗωTόNΞΗΨ΅Q]ψάφhΩ±2}γښλ?Ϊ:ζvόU¦λGu¬γ½γfΓΌ[wηΞτΛ‚ς)HΗΫ-οΙf/+zE |j/|MμΩϋύθθ™»vNςΤ„’νBΕΈœe(-―Ξž4sτω¬Έpnμ=ΩU%‹eςŽzχnŒmύΝqψΉk³Yη΅7lωζΧBLΧπώoDύŽ ±<ΤO3υV₯bΦΎ_žˆυ-£Ύϋ₯θώ―ΛΖc»–Λ‹rΛ'2„ͺ…ΝΡ™ςΧ–Άgcۍ*©¨ώΉΗsΌ)*έςTΧ2;Zή<Ν…Ζ±οD:wZz.ΕsσσΎήŒΓKO­I Δ-–‘›Ή†“2:αo±· @€ @€”³ΐƒεœΨ @€Έ7s‡ίˆ%-oΔSν©ˆaαΘl―χΦβ|Ίς‘ψζϊΆXσ—bUVq}~ktΎ4 ίm©0jέσρ«ε―F{Ή]Ϋ•š'›cύξ=Ρ>ZΌœ­O~+Ύ·'Ά,Ώk^>ƒw»ΫχτΉŠψMϊόωσOǁ_Ό Sρr6^eUΫ[±+¬t¬κŒΛχΤΗT|x(ŽΌΌ3ΝπΈ.κrαot_†βXš9΄3ύΪρjtνϋq8ψγθJ7΄€sagΛΪθξ»eUξhCS³κ‰ΨΤΡΎjkτ LlΎχπΦؐ‘ί,ξ#ω­ΊJαP!λܝ@6³ρ7’eΛ©ΨΤΉ=Vέ]+ΕωTEΤ7gyCKlZ• _ˆŽχ‹ΣΥ΄:Ψ{(šΆœ-[sŠD‘°Λ7‡φlzq!Vξά―5=‘Š—³kzEΤ<Ύ,ή=²=ͺOnŽέ§―ŒnœσΟrΛ'F8ϊŽ₯§`tF<Υςbμz7Λ)φΔήw·§lQĎbGwžωuD]ΣΊˆ4Žϋ³±· \ˆ—Wn^±€ξ‘qo”ΑΛ, «Ύu~‘S¦V8B @€ @€ 0υf`žzS- @€Θ_`ΰbΌfcΫΩΓ°Ν Λ©8 "jΣ̏ιIλQ_Ώ,ZRρECš‘yΙΙEmE¦YρGϋΙ¬wρ„q.]ΘfaΛq™ίΨσ φ_+Ύσb΄―ΌζΛcvΒ‘ψBŠ«aw[Τˆoαs/EtnŽί ¦’Ζt,€Λ§μΛ[ήΈ63ζΨωΌμ=φ]IΕnGbEΝΈc«ζΡ˜Ξ‘˜χςςXσƒΉΝ8Ήτ•=ΡφΑ3ΡςΥ£ρε†ζh˜7+ŽoΫ'cQly­9Ϊ˜Ϋd½φ|V QΉΎMΆΦ(ήT΄ΌjγπΉΎλΰ«±pόυ©΅ί{"ž\Έ5ΪvΗΚt£Yvκδ²Τ,Ž»[SžBιX-럎YηOΔΞ§βΛk^ŠΆΓ©ˆ9Ÿ;ρnΝqώΦωE–Αυ—cά·ή+ο @€ @€(K30—ε°Š @€ΐέ όςP<ωΥTΌάםGŽGώΕΛWβνoos“όώš₯­ΡgγψWο~§οφ“ƒcύϊCiŠΈΉΡwϊT;vbψ_wχ‰8ӱ퇇’;­;χ™…’wΐ->7x)Ί»/LΎAΝ‚˜‡&uόƒSσNVΪ1k²:«ζFKυ#ΉΧ€τΩŸ’lϊqΕeS³χwΩΚP*¨­{ibρςXSiΆτl¦Β+Γ%[]ΔsοϋΆGsšq(fEΓΆνqό―G}Uнfvš³<–Š4ϋr·(PξΏηcq|!Οϊς [ τμO7₯βεσ /Εαt—Kρςι77ΖήήΒE„•©(²3ΝτΏϋψΕ[ξ[1ίμέϋύ8˜:¨«Έ8œ'Œδ§βπ™4Σlq Λ'Ί/ζχ=Xζ9D66CƒΩψVLϊ½2ΏΎ9ζέπD€μsy,e—OdƒW£?έ`΄zBρςušΙ/.ΖΥIςολ[χUΝΒζ8σ³=±k[SΊωm(ͺꞎ]ϋΖ;Ο=Ώ91§άž¦P1+\LΆ“-Wί³γɚl;  @€ @€χ*`ζ{τy @€e$Πwlw4¬οŠενιρΡιqάεQ»w5ΞτœŠΊ¬N₯`@QUiΆή +gEKKcœI3V80Z,\‘ΒΌGR8Υρ~>œ K[σ'+Φ-VΨύgcMΫ‰43τKg9μ}?h6Εό‚¦Ε κZ»Ι­.{9٘₯Βπύ—bΙ΅Νσω1=]§’z}k”zθςΩί{μ5»νxωh¬ΪΪ5΅O »ήβPήu(Ύάά\ψΎΎaΙ^ΥΤ5FtŠΎW%“Μ°<«zvτe‰E>KΥΌζXΩπ~|Π}4Ξ] £2=΅‘oίΡΠμθ9~"β±ΕιIζ`9ηΧDͺkη¦bο‘α›v ₯2}ηEΥΔ§cδƒYΞωDyΡf—μ‹ΖX“ЬfΖ ΰ`ο‘τή’ψζ$ηψΈMKϊ²2έ ψεΨ=}λ’¦¦@Χ}ο§ΏζF«δ²ŽU @€ @€ξ\@σ›ω @€ςθ;1\Όά– ‘ž+«B€G’‘ξJ¬~σύ8“i}γ2Ψ{"^K3™νͺΝ£cv¬ψΞΊXqcPιχΊξ%1°αΕhΞ«°’fn* Ψ»Ž΅ήπhπ,Ψ‘τ(ξ7"^Ν©@3ιšΩιQΰϋ£ι§Ν7ΕΠ{`ηπ¬€Υ…*’ XgΥPτυ$’υγ«^œžn»ΥlVΏž8=°,(|ι9ή1―uΩ(o»Ÿ»Ϊp(NΩMΡΎpβΉ8Ψ{4Ϊ“εŽΌ ρ μOe*²^™ ŒΆμo‰7^ˆM›NΕʝ/–MΑu]°Š@}ΗήHΕΛι»χΘ{±pN‘θΌ"ζ­Zν­]Ρϊ‹ΦΈ9Ό‹±{Ϋ…hΩ}ΓΉ_ ₯b­šσψ²x%ύ»iižOΆF΄Ώ˜ου§¬sˆ΅9O6¦Ε^ˆ½§Sή:ρ{'u|ΛΆ+ρΤΆΩ7—~EζΓΩ3ŽΖαΣλnφKο œ>‘nt«HΟRΘox?:;"Zy<1νŠγ[#VmΪόΒ+άsε£Ρ²ΝRή–fρΏR _H9Δε«ΉΖZ»b]Ί‰§+V|»+z/_Ώ €ΩO_ώΪ³ιϊή«n,zΝ5β‘Ξ‡σ†4«pώKyηΓ>• bGϊήΩΩΊ2ΊΊ/Ž]Η³1ήτΤ΅λxš΅7χ₯ σ‰ΏΉ±₯cјίhž);w¬+–΄ξާ^{1ΧBΫΪmΓηρ’Σ²Δ:[’ηα4ϋ{{–Η~ηζG6*Υ Ÿ«KΏ·=ζυlކM·\‹%‹ϋεgRώ½ :7,*U€ϊ!@€ @€ 0γΜΐ<γ‡Ψ @€W \Š#ΣγΦϋ²=έ _έ=Ι.ύΓoE]Υ‘•σγψ»³’ν›ί;&†·²}{΄7ε]ΐ01¦μ·κšˆa›ί*ٚΪ/Εήͺ4 eΫ ±$‹©:=m½?½˜ΧGΪ’.·‚CεάxηȏbKŠ­ι«;SL©Xτό•τΖάθθ|/ΟsΞΏΖπ27«.—s4 hV4Όσ^TΌΉ5Φ¬ϊΖHˆc][ή=+ςšρ;Ε1Ώi{μŠ7buλ3ρΪX\ΛΧoŽoεxŽN2†U ›γΐξŠhi}>φmJ‡`:?Ξ§σ£zωΊ8f?ΝστΗη%1rΈ*3˜Š–³kcIηπš›SέΗΪ”ίy”}Ηόμ­ΨΡφ|4-Ÿ˜ΧΜkHηx{cΎ7Ιά,6²¦*rυΥt‹Vϊšœl›­/λβšAφ½ΣY±3Υ?ΫΊtOOpHΧσtcΫαο=ίρw-Ύλ?Κ-Ÿ‰¬ΆρυθͺάΝΧόΗ;;Ϊ^{+ž[‘ί,εΓ±€"υέ·Η–o―MŸ€™‹G—κe±λ`άΌ8I~UODgŠ»#Ε½bίζ¨N9n–γV?β^—oώ=jθ' @€ @€"πΐΗόι Ω»A€άG~ψaΤΦ–έgο£°«ξ^`p`€°'k‘"ϊδ]ΰsχ{RΪO$·ŠT‹;4TUUεT”›&ΣK±eΑ ₯««²β-Λm€YΎΣΜΥƒifΏΚ4žU•e4¦i–τμxL1eγYώηθˆε0z:ΛΚς6Ž› πiFΩΡ‰ώ+*5©ό/JŸ±C₯»œsˆμ:ž₯C©ψ{VΊŽ—ήhΊχ8ό½ΎΏ++“_™ε‰™m–+”q|“υΏ[Κ/ž,fλ  @€ @€LήήήPΐ<]FKœ @€ΐΜ8όB€ @€ @€ @€ @`ZdΜN‹HI€ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒPΐ<#†ΡN @€ @€ @€ @€ @€˜ ˜§Η8‰’ @€ @€ @€ @€ @€ΐŒψάŒΨ ;A€ @ΰώΎο“;Ψzj6­ͺx ΜqΰΤhj…”§€£<ΗET @€ @€ @€@ω (`.Ώ1 @€@‘Žτώk|χθοb`¨H|F³Xυ@μzϊa…ΜŸαδm 0έδΣmΔΔK€ @€ @€δ-πΐΗόiήAθŸ p§~ψaΤΦΦήιΗlg/>ώϊοο‘…;θ_ύYε”ϋώγΐ§ρηΗΉ/ξ}VΔόΏΣΏύΥO pί Θ1¦ζcL£V @€ @€ @€β τφφ†˜‹ο¬ @€ΐŒψhθΣ(υcΡ³>§j9{ω“ά‹—³}ω§THύσΎOβ+5MΥi‡Lk9ΖΤ Ÿcj΅B€ @€ @€”F@siœυB€ψ£ΏΉ:φϊΖ‹RQ랯?|γκαίoυΉlƒψ‹Y?gεˆ@6»γθr+ηΡm ύό(M@ύωΚBο|φΊg~ςΫ8• —- @ X·Κnυέw«Οe±Κ1n=brŒ[ϋx— @€ @€ PHΰΑB+­#@€ @ΰfοϋ]|χθοn~Γ @€ΐ=Θ1ξΟG  @€ @€ @€i)`ζi9l‚&@€(΅ΐφ3?νύΧαn}ΝΏFΣ—€₯ύ @€™( ǘ‰£jŸ @€ @€ @€ΟPuρYBή'@€QΰNΙ~γΆ?οϋ$šςΫ"F§ιQ#©pωΝΣC£ΏΖΖ4σ‚96ύσ@“1/ @ ¬nΜn܍ΫΚ1n₯5΅οΙ1¦ΦSk @€ @€ @€ΐτPΐ<}ΖJ€ @€\>_ρ@,ͺy¨€1d}ζ½|4±χώλMϋžΝ–Έϋ?όAήαιŸL{9ΖΔόJŽ1νi;@€ @€ @€ά†€ζΫ@²  @€@ Ο6ΌηλίwŸ― …Κχέ¨Ϋa(₯@φD9F)ΕυE€ @€ @€Θ_ΐ3―σ @€ @€ @€ @€ @€ΈoΜΐ|ί ΅%@€ΚE`QΝΔΗ„ίm\₯~άϊGƒΏξδnΓ½«ΟύqυC‘Ν€\Š%ΫΏRυUŠύΡάrŒΫs9Ζν[Ω’ @€ @€ P ΜΕPΥ& @ΰSυˆτR?nύl*^nώΙoo±gSVΧΧŽ―LQΑχ­’{ϋ—oπΣXϋ§·ΪμΆίϋο©½¬ΐΌιKνΫF³!ά³€γφ ε·oeK @€ @€ @€@1,F£Ϊ$@€ 0]Ύ{τwρΧ—¦_žΒε£T ½ρΨΤ·;…!jŠ(²€£Θΐš'@€ @€ @€¦΅€)α¦υπ ž @ΰn>J5ΛίόΙ?Η―ϋ·M|ζη²™Ο^ώ}μzϊαΟάΦ @€ΐ̐čq΄ @€ @€ @€@qΜΐ\\_­ @€”±@UεEξ«ŠίGΡwB @€ΐ Θ1ξˆΛΖ @€ @€ @€ΐ}(`ζϋpΠν2 @ΰnΎXυ`|gaΕέ|τ?“υY¬εσ•{Ύώpl>1=R”nΎg•ρŸ7Ei[£ @`¦Θ1ξ|$εwnζ @€ @€ @€@y (`.―ρ  @ lΎ˜f^ϋ§₯-`.ΖK‹+cΑœ‡β£‘O§¬»Ο§™»RqτWjš²65D€fͺ€γφGVŽqϋVΆ$@€ @€ @€Κ[@syθ @€(πGsul―ώα/f½ΎΣ?οϋ$šςΫ±έK[cά§/šΎ4΅i±Y—οΣΙn @ g9FΞP {9F« @€ @€ @€I`j+5 @€ΜX#~έIIχŠΟW–΄K @€%c”\w @€ @€ @€2Pΐ\ƒ  @€ΐt8›Š—ΗΟψ\Š˜»Ύώp|₯ζ‘Rt₯ @ '9FNπΊ%@€ @€ @€δ( €9G|] @€LΦΏύ] }:!Ψ?~0^Zlzθ (~!@€ξH@ŽqG\6&@€ @€ @€f€ζ4˜v…˜~ίχΙ„ «*ˆsœ°nτ—·ύυεߏΎU’ŸŸO±-*ρlΘYŸε°¬ύӊXωΏώy,”ͺŠˆΏϊ3ΕΛc ^ @€@٠ܘ7Θ1&‘c’‡ί @€ @€ @€₯Pΐ\jqύ @€Ζ |σ'Ώχ[ οωϊΓ֍ώrγΆ£λKυ3+¬ž,ΆRŐW?ΩΎΏΎτbγ±ί ‡π_–ύΑ€…ζyΕ¨_ 0^ΰΖΌ!» i²ορ·ίN)^Λ1δ₯8ΞτA€ @€ @€”—€ζςΡ @€”©@Σ—>?οϋ\d36.―•F—ι0 ‹L;9Ζ΄2 @€ @€ @€S  ςb 5A€ pό0ΝΌl!@€L΅€cͺE΅G€ @€ @€”»€ζr!ρ @€3NΰώbΦ]νΣέ~ξ:+π‘Ÿχ}Ν?ωmwŠ·ͺλλΗW#ο§bΙO?ΊœJϋςGsuτW?  @€ΐŒΈΫ\αn?7UhrŒ©’Τ @€ @€ @`ϊ(`ž>c%R @€@_¬z0Ύ³°’€1d}NΥς•šΟEU `hͺZΌ»vΎTύΰ”eί]>E€ΚK@Ž15γ!ǘG­ @€ @€ @€₯xΰγ?ώ΄4]ι… 0u~ψaΤΦΦN]ƒZΊ/Ξ^ώ}¬ώΫίΖ?]Ν'Ξ ‹²GďŸ ϊΎ€·“ @`† Θ1fψΫ= @€ @€ @`Jz{{Cσ”’jŒ(•€ζRIΟΜ~ώqΰΣψǁߗtηT?Ÿ―,i—:#@€J, Η(1Έξ @€ @€ @€i)0nZF.h @€χ πΕͺβ‹UέC >J€ΈY@Žq³‰5 @€ @€ @€BZi @€ @€ @€ @€ @€Š! €ΉͺΪ$@€ @€ @€ @€ @€ @  €ζ‚,V @€ @€ @€ @€ @€ P ΜΕPΥ& @€ @€ @€ @€ @€0d±’ @€ @€ @€ @€ @€b(`.†ͺ6  @€ @€ @€ @€ @€(( €Ή ‹• @€ @€ @€ @€ @€C@s1T΅I€ @€ @€ @€ @€ @€@AΜY¬$@€ @€ @€ @€ @€ @  ˜‹‘ͺM @€ @€ @€ @€ @€ (`.Θb% @€ @€ @€ @€ @€ΕPΐ\ Um @€ @€ @€ @€ @€ PP@sA+  @€ @€ @€ @€ @€(†€ζb¨j“ @€ @€ @€ @€ @€‚ ˜ ²XI€ @€ @€ @€ @€ @€@10CU› @€ @€ @€ @€ @€Pΐ\ΕJ @€ @€ @€ @€ @€Š! €ΉͺΪ$@€ @€ @€ @€ @€ @  €ζ‚,V @€ @€ @€ @€ @€ P ΜΕPΥ& @€ @€ @€ @€ @€0d±’ @€ @€ @€ @€ @€b(`.†ͺ6  @€ @€ @€ @€ @€(( €Ή ‹• @€ @€ @€ @€ @€C@s1T΅I€ @€ @€ @€ @€ @€@AΜY¬$@€ @€ @€ @€ @€ @  ˜‹‘ͺM @€ @€ @€ @€ @€ (`.Θb% @€ @€ @€ @€ @€ΕPΐ\ Um @€ @€ @€ @€ @€ PP@sA+  @€ @€ @€ @€ @€(†€ζb¨j“ @€ @€ @€ @€ @€‚ ˜ ²XI€ @€ @€ @€ @€ @€@10CU› @€ @€ @€ @€ @€Pΐ\ΕJ @€ @€ @€ @€ @€Š! €ΉͺΪ$@€ @€ @€ @€ @€ @  ΐPν&;ϋΫάIENDB`‚ignite-0.5.1/examples/mnist/assets/logs-det_run_3_4.png000066400000000000000000011630371465426447700230610ustar00rootroot00000000000000‰PNG  IHDR 4†E Β (iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήDιUz l„$PBH"vdQΑ΅ bΑŠŠ¨Έ@velΨP”u±`CεM@WΏχήχΞχΝ½Μ9sΞΉs'wPb‹DY¨ΩΒ› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πŸiTXtXML:com.adobe.xmp 2868 1158 S7ά6iDOTC(CC‘d uD@IDATxμέ ”Tε™ρ§ͺΊz1.͈g ˆ6ŽΖ&e5΄F3 m"‹ΖΡpDM€QT’qCAgp‹&†%šhFPFi²€‰£΄˜™&£ΈϊΙΠ‚KUWύŸχVέ[χΦΦU@ΣΥτχž#u—χΎχ}?χVΣυ”ο³ITX@@@@@@@@@@@.πhξu.‰ € € € € € € € € € €–f@@@@@@@@@@θ2Ν]FΟ…@@@@@@@@@@@€@3Ο € € € € € € € € € €t™ζ.£ηΒ € € € € € € € € € € @ ™g@@@@@@@@@@ΊL€@s—Ρsa@@@@@@@@@@ ΠΜ3€ € € € € € € € € € €]&@ ΉΛθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@. Πάeτ\@@@@@@@@@@4σ € € € € € € € € € € €@— hξ2z.Œ € € € € € € € € € €šy@@@@@@@@@@@ Λ4w=F@@@@@@@@@@Ν< € € € € € € € € € € Πeš»Œž #€ € € € € € € € € € €fž@@@@@@@@@@θ2Ν]FΟ…@@@@@@@@@@@€@3Ο € € € € € € € € € €t™ζ.£ηΒ € € € € € € € € € € @ ™g@@@@@@@@@@ΊL€@s—Ρsa@@@@@@@@@@ ΠΜ3€ € € € € € € € € € €]&@ ΉΛθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@. Πάeτ\@@@@@@@@@@4σ € € € € € € € € € € €@— hξ2z.Œ € € € € € € € € € ‹@Ι€"₯εi›F›ΆKΫσSΣλξ;}½*€¨rœHy…ψϋρL'²­NΜάΫ·―—θξνžcέmƒ@sw»cŒ@@@@@@@@@θA> 2—ΝڝuΖϋξπe=ήέ«fH`θ””s¦yDvΦKxγ| oZœ©IAο'Π\Π·‡Αu΅€θL τN|’#Ί«Nίμ/wυ°Έ> € € € € € € € € €=F 0`€”\½.λ|›Πν«›  ,Α f‹O+2οΟbW«nΧκΝέi!Πܝξc=δΕ7D₯θ8Χew/—}_αΪΑ* € € € € € € € € €‡FΐΧ«BŠ*Η‰hΕbί!miŠ…xυ5ΌeU‡^sŽ©δΫέ–’3¦Hρ„EY‡έΊp”t·oς„Š/]€ζ)Ι»%ΪτΎ„VŠθ}6χΟWV <λsP4pΌŸ˜rNhΓ| ­Ύ1e‘ξ(ˆ@sΡ··Iρ)Αh‹΄ή1PΪBO=£‹ΡRrϋ ”ε2Ϋ‰ξέ.ν ΅φβά\N8,ΪίΠ¬ζRg.я—Kσ£šV@@@@@@@@ ΰ―Ÿe‹DΆ)Ύ~’ψ+*œΩGΆ―wΦ“WœσΓΫ%ςΡϋΙ‡Ϋε#ΔoΎLΌH{o½DG²ωOž,ώώβ³ZiΨmΫJiߞtς/‰Ώ·ζ`ΒY»ςŒκœ’ΊΗwόρ™1ιbοsζ€ϋ²Ν]D―{rόΊΪGTη΅;Ή"‡±Έ½ΝΥYθΉΉVν5aΧπΖωή΄8Λ„eM06τΪμ”c…ΎΓT,ŽΊ+λ0MxΧ„x»γβΣ`²©@mηξΕάΗΠΊΩ9Υ‹ͺj¬κΞξσΫ5έφόT+ψξή_ˆλhNξ7THΝwhΞέoœ”ήΉRόΑάΟ°Z†ΆKψΕΆ)ΟσΊaσδg“@s7Ό‰ @@@@@@@8γο’’‹ΗΔ{Ψ.‘§ˆ+tEφ~ κΎ;_ΪΦύ*εJώσIp`el§k€uιSΪΔvœ(Α«—‹?–΅ϊβ“ΪΖvϋ«ζiίΓcθδ–-[€ύ΅©ώ(v xΉεzi°8%ςJ•„Άβ«pΝΦΎ°ΫDηήP#mΏ·ƒήή .Y-E}MJΫ,-ώμ(‘Qλ$ΰ*2;–ξO—wΊΓμC ˜€kΙ€±jΌyΜΧT*6_»³]ω7΄ξΗh izΝΈΫ7Υ:lτ-ͺš!EηԈYΟΆ˜jΥa 4‡7>bxMϋΐΐqzΎžΫ«BZΪa08[y¬τΊMž0s€ρmύϋb|ήγ5ŽΑ‹η‹ΏΟ`gΈ&ΤάΊt‚³]¨+‡W Y¨ΠœίƒΆŸfλ"Ί£―„ς»`·kM ΉΫέ²ŽάgœΟϋ₯ϊ zX+οͺ“πο[Ÿ&ΜzrŸΡϊι•ρβ7)ιyMϊI¦΅ϊ_֓샃%0΄B€YΟ /–φχμύΙ―ΪRΫΕ—ˆω {#ηΧ\―%βΧ―žπ₯τ«cύ€fNΧ,ENΡO†φ‰Y~ͺzgDS:e € € € € € € €έWΐhΦ Λ‘…ρ@³{Ώ5»XX7άδͺΤ2 žRΫΉ[ΝΟe4Ÿ|Ώ”\02ΦΞϊ3{˜7 ύΩύΊΞςj…γWFi(Y$xωF 4{v΄•hΆϋϋ’†œη;!gΙ8―τνrWg7θhόG » 1EŠ',J™† »š r΄i»uΜW^!&Θκ+?ΡΣΦ|Mu^+Τ;tŠu¬PΝɁ^+œόV­}Q³^:Ώ|γb‚с&'fςP±Εμk]¨ͺ(°Ε›ΫΓ2U™ΫžŸbo:―v@Ϋφˆ4ΦK{Γ*ηΈ½bΪ_Zkέw{_HCή‘—jμΝ‚|-ˆ@sπκ)κxhl©¨~½Ώ—ε<‹ χš΄\šO 駊Z•σW-xΊν‘iΝ͍Qw;δhΒ”Ύ£ϊ8Ϋn¦¨~ ¬ω±©ξ]‡έ:ζΓθ–φ™!%ߘ­ŸξKύYc>ύΩV+- ―M3αΙRrέθ›ό³Θ4Υσ6Ο—–ηnKs^bWpΪn φ_·ΉNšο•>¨\ΉLŽΈr’sbx‰OΪΆ8›9­δz-%›€τμ!YϋŒ~¬Ÿzi”„SΨƒυ%Λυ— Κτ?>^#mVK{Φή9ˆ € € € € € € €@7π—][Οώψ\>Υ°άRoŽ Χ@sΡ„ΤͺΕ‘M%τΖϋ©PIΥ‘­βeο‘HS‹ψ©U>+η„·h{ͺψFέ/ώ#έΉ‰RmWι΄‹~¬αHΝ %–FiρǚΕrWhΆΝ" WHΡ;O‘UQŸJ“H§=O YC⑝Mι«Lkq΅πΊ\ Ξ%FΞ‡ƒ@Ί0³ Ί†ΦΝΞX΅ΧTs6Υy#2b 9¨Υ—ƒΥσ2Žω`0fl.”%ω>g 3Gέ•ΆJ΅ ~›Jάa '/%’‘nΧ³PhsOoAš“εή^Χ,ΑΎπr¨^ZξJhٍ΄ί멁ζΘ[c€eΕΛ)=MΨ(Εg OΪψWΔ&МtΛ»λfŸyRv}MΪπ­{JѝΛ5€…kΧ )½SΛο]»¬¦žηn4YJηԊίΩΥ"α%eιƒΚ'/“²ΙγγΜΞι+y%χk&4HΙ‰”$χ”ΨΦqΌ4\Ϊ6Ύί5ZJn_#²D‹΄kϊ³ΊUVjN«ΓN@@@@@@@ξ$ΰ .whΦyEί©ΡΟώ'g†ΉšΏ)ΕΣd2T>NjΛGΖ/,Gœ+κJrψ FoJF»«'kPωY­δ¬ΉβΤ%} YŽŸ)%wš'ΟΫT―–"»œ$μ<ζ st:f(`‚Ι¦b±½D[>ΡΚΒ#­ͺΜφΎl―Ι!YwΫB 4›jΒ₯7mσTRvχ`―›κΝΝ?p°»έοώΚΜάγ¨Mεν–CRϊJΰœ@w€«ΐllM¨Ωίg°uJ‘V¨ΆηSπζδ@©H~!Ϊ’κEZYU«ˆ–j(ΊH kβwk₯mνbΫΐυ:ZŠ.Τ²λφ­ψϊ½i7XΏrA+΄DQ‘ώⱫ^Β―M•φF»qϊΧΐ…‹τ/ε!z}ϋΈV˜ΦO3…m‡ηš3|•3$xΖxρ——ΫHT?yΤώη$ΌΕ:‡¬Π™pUΌŽ~x›ΆΥ9LO^τΦ9„u Ξ—Φ›4¬Ή֌lž’ΥfΣΩθΧN\§Ufϋ&Ζ‘ύ^ –’κš„½UQ[ν?\#‘η¦―N띆HŸq¬š(ώγτώ©Ή΅θwrD>\)m«InmmΞΣO’9Φ"‘΅·I»Vζ-ΎxJμ—8{ϋΖιϊ šΛΟd)ΎhzΜXΗͺυ.·ΌAυΗ%:Œ~¬ΧG݁״Γ`g xͺλΨΜ3ΤήπΊD"E§λϋλ¨Δ=ŽόYCύ/ΖBύΙ?’;ΧHψέ:-?Δϊ:ΟyτΌΥ©πUo”²sΌˆn{@šή–ͺt€ζ|ε 4λ?JΆΥιϋ2ζΰ+’Υρ]οuW89ωΡέ―Kϋ;+%G§OτT²Žξ|Bβιͺ^§N= € € € € € € €¬@žf‘F­V<Α)–K ΩW΅HŠO―Œh>FŠμo―Y ›]‰EΏ₯zΪDgΣzμμ°VN” ~ϋ²ίΞάlΣ¬ΠΪ_y›d¨ΌœΤH73šυHπΫ¬Άc)Αdw`Zkξ¦uE,σC 9U™=Έά!Χ|ΓΜv?%“VX'{Ϋ~-΄@³©(¬šaŠAπ‚Ωb*/ΫKσΓRͺo'W―6ΟC€±ή:ΕίΗdS±OΧoΠΏ{V:Ϋf%0`€”\½ΞΩΧΆbjΪjΞNƒ.\9lΝζ+‚gΈΒΙΙΘ‘-~q ΄%>Δ RΉLŽΈ2ρ—½ μΆ½T―%Ψ튩ɝθ/ oMΧΏhSΐζ+Š«Ζ‹/KeΧθN ζ>–ψεΕΣ{εύR:ΆΖ΄τ׍θΗuφ¨–?O:P|CTŠŽsνά[/‘" (–Ήφν^.ϋ^žW ΩΙ&)={ˆ«“τdƒ“6IΡ@}£ΈZzW›4]£κT·X»qRrΓ‰ΉχδψVΊ>΄βτœ•JΈj΄SίΈϊiχXά‘ν’Λ7Iρ χœ\3n’nG%φhNXtŸ5o%rχύ·ηPόƒf)κϋν:ϊq­†Φ§Š ]!G\:ήn"iΟΣΐ{‘xί['ΝŽJ λ»ϋv:ΛτΑŒ 4ηs-O 9Mεϋΐ„MZΑΩ~o$ήλξwTŽ4?|EbZΊVτνmR|JElŸ+νiΔ € € € € € € €έI ο@³Nξγ•š)škΝ2—@³»βr΄αV‰φ™­ΕΘβY†wgKΫ:W‘΅“ο—’ FZ}‹«κq|‡σβ?ο. ”χ‰mZ'‘u?Πμ™[R;₯JτkUz/6ΝΞmb₯“όŸ?S€Δ.cžηEš΅θf<0šη™₯yruε–Η†ζ\™Ω@ΆŠΎ…ζ5cυυͺ²l³‡Σ« τšΠ©΄lκυkhΧμ΅dω#Ϊ$-Z₯ΩΌvεbͺp›jάf oZ,mΟO±Φέ”ΝΪ­s+·v™ Ξ­?ιŒΫψ•LΜdΌsDσ’ζyI^L•ζ@Εkw{Γ* >OnRΫ‡e 98m§ϋΗ2ξ€Ή]«ͺΆΪUU=aΒNtneˆ΄ώ>Qρ·h’ϊVΈZdYΥ`uλέ½‘δ‘Λ€μL!κ侚$ό|/O0Ϋ8LnmoΗ‚Ήωšs©ΠœΛ΅1μΤΰθcυ,34d=ίS5Ϊs8i#²ΉF+JΗ>Ή%β &5u6ν`jπj}NδφœΨ'hΆ%ΊΣλd ΊΧ:Awwf{ώκMRzNμ/†hόΉ ^­ΙΔώ"ζ:Ωwί(»Ήσκ»P«/Ÿ?<Ύέ(mwτ•°sTWϊΜ“²λkβϊ&‰6—‹/ώΑ‚φίιύ΅‰ŸΦižŸA‰±»ΛŒλy^ΛhN°vΏŸcqΏΗΣV`ξσΈΞyzlΞΝυzίPοΟ·Œΰ € € € € € € €*S YΏωένβ?₯™Dd£xίΡ°έ¨e΄‹ƒ₯T1Φζε3₯δvΈL ,>₯=›λ₯mα΅N‘5OανZx…ν۟%sεeooΩΪ]£Υ’§8ΝέΥ’–";{ή’γœκŒΣhk¦bw“VQsΊ‰­θάΒ+nsΞI:Κ&Yό'|YJ'―)Ξ3Τάό²θB Ώ•΅Ξ<˜KΘ5Ϋυ³…™Νy…h6a^3ί\ϊ ½TγzνσL°·ψZ'΄kοΟφšrΆφϋ˜³;̝n<Ι>ιΪ$W`NΫfΰx >―p¦Π|o―Cη`vζΤ*Βι6JHCˆ!ΣΜ&μθ<Χρ½kdίƒΥ±žP‘«΄H4TšΆbst§V9}Μrͺή9θuŸΪαϊv Rp‚”ξΐaΖSυ+φ=š&Πόη1ς’λ]ρV2ή½R«“b.ͺα/Mpc’UΰςmR2¨ΒΪaΒΏm;΅|ρΈXοAϋ}?Ησ3("Nτ˜y-ίkuhvΑc)ϊφN­ΐl@1Φπ„~bηFηM™GΘ@@@@@@@Ί©@ζg΅XΪΕΕoη'γ!^ι ΠμΧo‚wŠςi%εΦ₯·)Τd OƒιŸm”SέΨhΞR‘ΉcνlAeχΩΩΫyΒΙNeκ%xυrρΫ!ε5_ΰΚjxΞq_Κ³aν§φ7¬ν鈍*`…š§Υ\OΊάY”3ηrM3rgWGafΣ°Νf< ۚ0rG–3U06}Ψ‹»±½/ωΥTxn]82οͺΧΙύθvπœ VΟ³Ί‰6½/Ν?­HιšƒϏ΅Ω­9Ρ4œΝΑ#ζDs[κ‡bΆΥ9ΫφJΩ¬&ΗΈuι«Κ΅}¬P^³@σL ?Žl~@Ϊ~Ώ\’GκΝ½hΎυ-χψG·i¨v‘†j=aΒD“θΗuVͺ?όi žw« ςδ‰ΓΊ¦‘θŠnΤ7Χ„†D`1ήΖ]EΨ§Ÿž*½Xžσ΅Jσ±*ΝΑiZΆΏw|¬ŸPZ]#‘M/‹ί|ϊκΒ))Œ£ΫΠ9˜_f4|C³—ξ‡°~šιγF‰–jqΧriYΈF«!kΉρ k0z­H“†‡ECΨ½+Σ±G«©»*«sθ'ΟζKΫ/n”HŸΡΦ+8 uΤ¬j y’ΥNN^$e““l΄ΒkθΩ‘ρ_ΘFKρuΛSξ_dσx­ΌJ;Θhnn”Θ§ϊ†<²Dή™"2p₯+ΰͺ§še―^kν­κά(κ€ψœ1IχIΤOΓη&…Pcgσg .Ω(%gχŽPΊΘGuΎ©ΦzoyzŸ₯Δ3ζm•}k΄”άΎFe±VνΏσiEf­^J<9š“ͺ:'Ξf ά§Œ‰U¦ν(Τ\af3+wΘ5ψΆ΄,’σds 3›Ξ -ΠlΖd‚ά%“4ΛΨg°ΩLYLΉEΏΡ–¦”cξɁpχ1³ήΎ}½΄-ίa?ΙηuΖΆ *«fX]‡6>beTχη:Ύr)›΅Ϋ9΅ε1́ν¬wΆνwΨ»Ÿ3ΞΓ*ΠΈ\ΓΔƒμΏc·‘ύwC4DψΆ}O¬Χ”ΐ―ζσ„ c§€ °ϊ5΄\jWY΅š%‚‡)}οΦJΘ{°ΎκMRvŽϋžΏΈLΪή›©aΗΌ!ΪζΧ₯εΎ*OΠΠ|«τΞZoΩͺNƒŽ1²mΎ˜oŒMΚωΣΪtvwΈ$αη{IΫ¦DCoΥΦΨώȟ5hό’ '–ΐε›τΉηΏΈΩaμΚeRvεDΟόΓK|Ά%q~ΊΠ²©|ΫόΨ΅Ϊ(έ|τk86LΤOxΉΖ‘ζ:²·Nšε­2›¦]ΊηΑ=:Φ W m•q{ΈδΏ‘U›ΧΪΟ‰χYΚ\‘Ωξ ΝλΠrΔ₯γγUΤέΥ’Sϊυό Jό\IΣ»wΧ~\Λh6δw뇬^K­ΰΏΟυA‡Δ{,~Ω‘ϊ^½Τϋ^M H+UoΦOU>ϋ€Eb?k € € € € € € €tSO87Ψ5SρμΧΠ 4oρT\Φb‘wΕJ†@σΙχKΙ#΅³Ψi¨•hΈT$¬…ϋϊLΏSΈ1q]O 9¬ϋξoγμ•—ν1‰tΤξ›R<­ΖΙόD^«’φώZuΪώθp½΄-ΌΦ“ΛρšSBή‰+³†ΐΑθ0Τ\ af3Χΰ³%8κ.kΪΉT$Ά}L¨ΥTσΝe‰4mΧ¬Πφ\š6f&t›.Ԝ…;Έλž@ΎqχΉ±ξηŒέAφL•žΝψέΟց¨;ΓΒξσ° 4ί•’£μ©ιksμ»OΏΚ!yρ„ΝΑx X4€7Ω³ƒΖI€TNSƒ½ώύέWPτ₯Պ/™h]WDi©³ͺšϊ.ά(eη{«ΘΆΏ’μίΏ4M’gi›hΦ°ξ> λ¦.ήΠfκρΜ{" H‹υυ¦·:¬uV&{¬Ukλͺ΅VΫ½kt|ΥΦͺοδqΞWMDυΘ{©s^Χ,ΑΎκ_!γΤω8Υ·νΖϊš6ψώ’VΟέθj_MΆL\+΅-{ΊΐΙ3€δ’[%Π·OΪΑ:αϊ€p|Jπ8νΩޝΑλ΄Ϊzόѝσ5t£ΥΐΙ&)=;ώΛƒ~`‘Y?°ΰόχόlJό\ρφœΊ΅?ΧςšSϋ΄χDυ«`Z£}@ίχΕί~@§ qώAβ2+ι>$ΰiΐ € € € € € € €έDΐ\N‹3šEΌU—=³L οzͺ0{¦n8Υ›+ξόØxƒF ?5AΪS›K`Τγ(el’ΥJθυI­: *ΫΝ;nη™ΗΞ•ι5^όρxOτέΩΆξe»3λ•@³‡ƒC 1Τ\@afΓP|i­ l‰HΘυvΚ%ΚnΪ&ΎςŠ”Ύσ±pwέ™κΜ­?ιήΥ₯λξ@sλRύ9ή°2ορΈΓΜζδΦ…£€}[]Ϊ~ά.…faψ0 4kΥβ9Z΅Ψž™yΥͺ«ν5ŠΔΏ’!v¨E3ΔC’ρΰ`8M y‰VNήβξTΧ=‘Cs,l)Ϊ¬Υ‡ί™/­/&BΏξ*«±v™ζjަΞχ`š37Υ«₯ψœ1ž°’SΩϊΣΗ₯μϊιžcφXμωΊ_S‚”!ηέ‰@sp&)˜‘κ«»£ψzφ@σ 4/φœΌz§ΈC¬™“ŸΏΔ΅<]²QΠƒ%04`ί[/νΙUΏOž'₯“jœπ²}έχ>ϊξ­ό‹Ή©³μ£Ÿ/{φ[ΆX_αb‚ωώκMRzŽ;4Ÿzͺ½Ηϊݏ@σώ^Λσ>t½}ΣJρ#ναIr•xεdρ•ιαζFiί’όqRςƒεp~ώe~o9`@@@@@@@B؟@³ΞΙS΅Ψž£+Πμ?o‘VƏh±Δ†:‰•&28a-œVZ)ώv›D8ΨΦoA/ΌΒSLΠwΦγRlη%τ ‘UzΗ„ύšCPΩjšK;w»}uBΨ}ΊκΏ~{tλŠ4Ή ο)l!pPολRςe"ϊώjY\-‘ώpPϊ=XΈC§αM‹₯νω)«λ‚οΗ„tK―ί”ΆBs{Γ*ύ@ΗψœζPzέ&OΠΧ>)²³ήͺ`mi²wuι«»Bs>m3θ’I+΄˜gΜ#Ϊς‰Ξk€σλ³ΞΗύlε{½¬Δƒ‡Q…ζΤ€oξN3Πlͺ‘ζλΦHQ_wh6ΓhφΎ.­VYΏPΈ”Vλ½uόΰ(‰¦=5uΎvˆ8Ή; ™ΪMζ>RΫκžσΦɍτ²Πϊ)―²+'&~™Ι!HχIž ₯u z NΫ-Αώεξζ'ζ—Ϋ|RΝ{ΧΘΎ«Σ^'wΛ΄§³³<Ο[¨^Zξ*‘€qΉ«†ΫΟS‘ί‹νΰ{σλ|_UΚ{Ρ[‘}»V{/ί•’£’.’qΣU‰}?ΝΕϋy-‹ηƒ"ƒ₯δ–z Ψγo֟CχΕ%/΄ LBIΣ6GLžΫι J'΅b@@@@@@@ξ#°Ÿf‘4˜]ζΰ·7Šί™˜1Τλ G·Ν—Ά΅ΏρŒΙPΆHτC D·h Ίχpρ9ΕΘΜ‘ziϋΕ΅)Ή‡ƒZ‘Y/Έd΅ζ₯ΌΉŸθ;5Z=ϊOf€žΕh6cx»&ΐm wΣ ckεάϋXGΰΐL¨9Ί·±ΰΒΜfVEgL‘β ‹¬ F›ΆKσOΨd»ΙΩώΎC¬―Ό"νˆMΉε±‘έ½=νq{§ιΗš3-V¨yΩ„ϋΙtώΑάΌxΎ«fX]†6>"‘—jrκ>0`€”huf{i]:AΪVΪ›_$@±Σƒ|ΰ°4GCϊI₯Ÿl—ΠS%tδ2)Σ žΟi:oqvΔV<‘>³+S»R|ώ τ©ΤЦιώχ«Ϊf Τϊ/o’A•ρζ%τu팯fοζΒΝάGκυ̞Τφяk₯ωΡ:)S+~ΧI™*=›&ώ ›€τŒ!‰Φvθ±Rύ“‚ΡΖ6ςα}ΓΥIδΣ&‘½ϊΛΟΨ'<°νjΊρΩ!οΔΕτό<œs·t_υBπiΏΜΔoί0FZW{+ {ξσΗΛeί£Wˆ$=­ά⩜ό΅ƒρ}ΌΛ#›k₯=,žŸ+Ρp):{Ό³/’cj1cςόlџ+nkΜ’yΧΚhΦλUι‡.ι\ΨŸά/esnuΖmώ‘ΤΌπF§YρΎΏ²ύ σœΖ € € € € € € €…+ΰ ›œΡ±bjwIΙEcβγ֌Λ+£$΄έ; _Υ")>έ•²͞>΅‚ς%΄ι}οΙρ­’KΦI oil+lΎAzͺu}(­π|Š«ο΄gλ70?;AΒ»I]άaιτ㏝“c;‡9³QΒOiΠ.υΒή ΝiŽ»wE^ΡκΫέ{XGΰππυͺ²ls&hBΌUήugX1•|ME_{iΎ·—~ψ!ν»Ι!}5!ξ`υ<1š³-νΫκ¬ Λ™Ϊ˜σMΠΧ„š³-fξmΟOΝ)œ­Ÿ=ΆΏαuw₯εHγΫ² ϋ|νq1'QZ7Χ΄}ξ‘z=ŒΝ“SB΅Ρm·jΨ.―#π„ Ν-ΘTΞ1ψμΉ‹ƒ%pήt):^Η%Wnn’πβ^>49Πά(mwτΝB¦YΌΑBΣΐοzΒ™Ί?ψMξ&5 lχ‘ά2ΆΪ^¬πηr)½s₯ψƒ‰³’ώlφ„?ΗR*$ΗƒΫΎIΫ€x`E’‘¨Λ’^–(Ο<ΏΤρ₯›7Θi.·]€uΞ|-Χ0Y-pΡRrϋ ”%†ύψuiίi¬>ϊ΅,#ΕTό—~έγ~fŠ―kΦO&ŽEwΧKϋ‡zήQ•8~ˆψ\ΟΌ]•ΌΘύg¨mFβyΆv―”}OH 4λ{wούεΑ΄N^τ+d^OνzΟδy-οϋ 5xμ©ό¬}·jekσŒδ*κΡζ-y·^’&΄έ€ηη[ζŸ=Ισa@@@@@@@p‡Γh^4?SJ.xζ@°§q<Πμ΅LΓΘ±sέ}¦c8ω~)Ή`dόˆχ:ΎΣο’ΰΠ‘Lδb MΥγ: ―ψqΚ7YΗ;—/IρΥσΕWdφxϋM΄1k9šεD ~{yU§5pΉ†έU€½tm™ŒΔ(*4»DX=όJ――ŸΑΦDMε]>=Ε„|MU_³„7-Φ0οk½ώH[w4&jn[15₯Β² 1›ΚΦ…™έύŒ°Έ»Ώ|Χχ7Ό<§FόR7Kϋ¦Z ΏUk­gϋΓνmωDšο-ΟּˎFf‘’[’8Κm™9¨jZ.œ'²φΖΔ§€8Πdό€ωYΡKBEϊa‰”*ε©ηš=α%γΕ [S‰\X^πάψ° 4{*£Ζα’ζSMW§|(ψν†ΨW.4kεΡϋb•Gε@ΝαER6yŠψ\7-m₯βJ ^ι~ μJΠZeϊΞZ' λ¦15}ςγzιžλ˜±]A5sΰΧ50kΥΎ4»2¨ύUΛτe½Χ4ν¬λ_–tλθΆ'4μ|­u%ϋΰ΄μίΗή΄^#oΧΠφͺ”@³hεζΆ;z*'ϋ«ΧIι9#=η'BΖiζ³yŠ΄<·ΨΣ^d¦”Νy i.ϊιΉ$ԘhšvNZ‘:žN΄c­»Œ“βiH e½7γΧOΎ[+­ΏΈ6Ν/σ£­O#€žgͺ·ΏQ#mk_Ž!x~†ΨολL>3΄ͺό|'dΩ¬οƒMcRίΫiOΧΎ_ΣPρφ{2k…Β$Ν! 4ί=0ραŽψ5=?K’>€Ό|£ ξ©Rm5Ίs„ž―–°λύdγ@@@@@@@@² ”όK*FX’-Mb‚Θ‘υΩOJ:jͺ2› «½j5xΑl ŽΊΛζ!y5Užs©lάΩƒI ―η8^¬™3»‚wύβηαΞlζSh‘v·ρahΡ@π »ghΦ5₯Ϊή°F"[Dz+‘οΈΪόΊ΄άW%Oќ˜!$˜±έ`­­•Š=U’5ΝΏs₯„^{BΪΓZϊ”)R4tbRΕW­ΞΊ@«³jψ/pω6)Ta.ξZ4lΩ°\ΒnΡORMΤρI d&ͺ§X…fin”¨ŽΣ³”φIZqWΐφ†3νσ£{롬ωr ”WΖζ}”~ Μ³$*Γ}{§Ÿβ ;Kh»„κτŒRρυ#γΚ=g›όΝϊ΅Χν–`ί侚€}σJ‰45‰uξ›4Ο΅R†ΑŽn$௜¬_[’χΧ|eΚ§υϊU ρ@rsπΥσŽ4Ο…~-ΛΞ:i/΅ͺw]v‡}'qφ'<υgνΖΕiBα‡έ΄™ € € € € € € € €&`*—\]ηT.6‘ζΠκ; ―Ϊ VΝ|΅—B©HlΗύκ+-S©ΨW~’{w§­Gί––C:­|;.»i»3wZ7csΏ3-ξ°{hݏ5›:;SS}~Τφ¦mΦ«iΤΎ}½΄ώ|dΖφ]}ΰ0 4‹ψ.\'eηη Uœ›΅Šs4cP9ι6ekW΅ZŽΈxL Ω7£;k₯ω±©ρF£₯δφ5p³Ÿ.²·NšΤ‡8ήΞSUUχ%ΏΙ₯V4Nn‘mΫΞl·ρWoΤκΙΓν͜^Ϋ_"­Ώ‡B+—IΩ•vΕٜN5Ϊ»Fφ=X­λ©σq½==φΡ*ΧΧOO †{Ϊ€ΩΘl™¦1»@@@@@@@@@؁δΚΊ¦‹φmuή8_ ΌJΫc`ΰ8)ͺͺSΩ^L˜ΉuαΘΌ+<ΫηŠΧδJŝyΝB«PœZI{₯΄.‘ Χ@³ 3› έ&o/- -θηΰ° 4xυ:)9gdnaU ·jΈέœ˜¨Ν·B³ιD«,_²QJΞΞ1ΨΪ"mwoQδΙZιω ­τœ\Ν8ΦΏηΟζzi»o¨ηόΞ4k%γ?ΧHλ‹‹=C1KΤώμ‘)ϋΣνˆl‘–ηρ \ή ͺ+=ϋ:ήh”Π}%”O Y;υ·ZJ/“ΫsζŽο-@@@@@@@@@\ΐ„š‹/­u*5Ϋ=š Ύ¦šo΄i»΅ΛW^aWMˆΥ½t‡0³=^wPΧμ‹6½/αM΅b ό}ΫΝrz5•ˆ#ώ.:Ε©~lN4AπΦ₯γsκγP62Υ΄MUm{1Αυ6 5§«ΤlΒίζ~›ΕΜΡ΄M^…™M…οΠ†ωΙM j»ΰΝΑi»%Ψίυ&ΣjΌΝZΧFœQ³Ο )ΉτV τν“ΎI¨QΞZi}ξΆΔρ”ͺ½Ήš›$ΌΈ—΄½—θJ†Ξ“’QS$ΠΛ5vΧa i(Έα ουέΗu=xωF)4<}ΰ֜žŽιIgιyWο”ΰ€ΔΌ½ έΝS+»&―G›·Kδέ•φ܍ΩύOΎ_JΖNΟ8χθξΧ%ΌnΊ„6½| kΫή2΅ΣJΝΑΤΓΡk₯νΓ +°ž8jί§ΤκΦ‘·ΖKˊU‰¦Ιk•Kι₯Σş¦"vdΫ| }Π|ΰJ£₯θB­Β«ΕŽ£M-ϊͺŸLΨΆFΓΐιΓ΄~½δK j’ψ{ΗŽp“D5ήςrrÌہͺϋθόŒwφ“ΗIπ”1"EζB-"ϊiφw‘Hcnφ)γ+bΓ¦ή4WΪs<7·+$Zy―₯ΟΘ¦Ϋ:νZ‰«²† € € € € € € € € €@Η δUΥxB―ιΞ2AζπΖωyaΣυUHϋ‚̖਻²©mΕTO˜9kγ;hΘ¦·;Τl†hΝΦύΤϋšm1ηYΟ‡>'ξ₯»„™Ν˜{@ Ω}kXG@@@@@@@@@Ί§€ ΎšjΖ¦β°{1}#~Ά4Ήw6λ¦ςpΙ€YηΣΊpT·r›jάΑͺ)σ4χΥΎΗξƒζ90aχt‹©πΪ0?έ‘‚άG Ή o ƒB@@@@@@@@@0&΄[rυΊ¬Νχφ:,έV5n­H¨‘uΎ™Άo_/‘—j¬t¦6…ΈŸ@s!ήΖ„ € € € € € € € € € ΰ1'꬧[Ωw‡/έξn»―θŒ)¨/γ:œC΄ε«Bwxγόn[₯š@s‡·™ € € € € € € € € € €])ΌxΎψϋI;„ΘΆ: ½6;ν±ξΎΣWZ.~­PmΝέ¬Η ΜœΝΩY/ν +­υξόζξ|χ; € € € € € € € € € €έ\€@s7Ώ @@@@@@@@@@ξ,@ Ή;ί=Ǝ € € € € € € € € € €@7 ΠάΝo ΓG@@@@@@@@Ξ(½φ?;§czEΓF ερ3›Ή0ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0}@@@@@@~wιW@IDAT@@@@ΊR€@sWκsm@@@@@@@@@@zΈζώ0} Qΰˆ9ΡBcκb}wψΊx\@@@@@@@@@ 34w†*}"€ΐ h> ΎΓφdΝ‡ν­eb € € € € € € € € ΠΓ4χπ€ι#Pˆš ρtύ˜4wύ=` € € € € € € € € €@gψž{ξΉhgtLŸ € € € € € € € € € € €@6h4*Ύ^x@s6%Ž!€ € € € € € € € € € €@§Xζ—_~™@s§π) € € € € € € € € € €€0Af{ρ­_Ώ>±eοε@@@@@@@@@@θ;ΜlΏϊ^ύu͝M— € € € € € € € € € € YΐšΝΎϊϊzΝ™8‚ € € € € € € € € € € ΰš4w0]"€ € € € € € € € € € €@ͺ€ 2›Ε 4οώ/ζT'φ € € € € € € € € € € €@' 8ζ?ό@s'BΣ5 € € € € € € € € € €€ ˜@s$_cc#ζTφ € € € € € € € € € € €@' ΨΥ™Ν«ο³Ο>#ΠάIΠt‹ € € € € € € € € € €Ω4gχα( € € € € € € € € € €t’ζNΔ₯k@@@@@@@@@@Θ.@ 9»G@@@@@@@@@@@ 4w".]#€ € € € € € € € € € €@vΝΩ}8Š € € € € € € € € € €(@ Ήqι@@@@@@@@@@² hΞξΓQ@@@@@@@@@@θD͝ˆKΧ € € € € € € € € € € ]€@svŽ"€ € € € € € € € € € €@' hξD\ΊF@@@@@@@@@@μš³ϋp@@@@@@@@@@:Q€@s'β5 € € € € € € € € € €d Πœέ‡£ € € € € € € € € € € Π‰š;—@@@@@@@@@@@ »ζμ>E@@@@@@@@@@N Πά‰Έt € € € € € € € € € €Ω4gχα( € € € € € € € € € €t’ζNΔ₯k@@@@@@@@@@Θ.@ 9»G@@@@@@@@@@@ 4w".]#€ € € € € € € € € € €@vΝΩ}8Š € € € € € € € € € €(@ Ήqι@ K ©©IήyηkP§Ÿ~Ί”——Φ  € € € € € € € €=P€@sΌιL@ž$°yσfY°`όφ·Ώhv/&Πό΅―}MΏώz4hϋλ € € € € € € € € pˆ4"h.ƒ €‡Vΐ„—gΜ)Ώόε/sΊπUW]%sηΞ₯jsNZ4B@@@@@@@@ΰΰ h>x–τ„ €"`ΒΜΥΥΥbͺ3糘*Ν«W―&Ԝm@@@@@@@@8@ΝΘι € PXιΒΜ'œp‚Μš5KΎφ΅―9aeΣξ·Ώύ­ά{ο½ςΑ8“8‘ζ={φH]]D£Q9묳δσŸΌΣO[Α’§έqζ‹ € € € € € € €δ/@ 93Ξ@@˜6mš,Y²ΔαυΧ_/>ψ ³nε–[n‘ 8‡ΌςJyκ©§œν|W–-[f₯ΝyO?ύ΄ ><§.LzύϊυbΒΦgœq†˜ vwYvνΪe…Έ{χξ-ηwžkθϋkΡ]ζΝ8@@@@@@@@\€@σ €ˆΐζΝ›₯ͺͺΚM.af»qr¨yγƍbͺ5οΟςόσΟ˝wήiZ[[+gžyfNݘ@σχΎχ=+Τόέο~Wf̘‘Σy…Πθ―ύ«\vΩeR\\,kΧ•c=ΦΦώZœ € € € € € € € €ΐ‘ Π|hœΉ  €wufSέΈ‘‘!―«8P>ψΰλœ©ΌΏ!^hΎωζ›e͚5ςύο_ΉζšΌΖί•ί}χ]™0a‚h~υΥW₯W―^ΦpφΧ’+ηΒ΅@@@@@@@@­@Αšλκκ€ΎΎήϊκυΞ’)//—!C†ΘΘ‘#;λτ‹ €‡@ _Ώ~Ξο O>ω€\uΥUy]υ—Ώό₯"6ΏμΨ±#―σνΖϋβ%Πl ςŠ € € € € € € € Π“ :ΠΌnέ:λ+ΧΥ 1b„Œ5κP]Žλ € €ΐAhjjhΆF6‘δ|–ƒΡ‡Ή^ζΆΆ6Ω³gƒA9ϊθ£­‘ζZ‘ω“O>€6Λ1Η#>ŸΟZΟφ‡ioΞ3‹ioΞΛe±―eΞ1γLw­­Πάήή.{χξ•p8lyδ:ΆΟ>ϋLB‘˜σ<ςH)))ιpJΖ}ίΎ}Φ9ΕΕΕrΤQGux @@@@@@@@:O  ΝσηΟwͺ,vA’gzͺ©©Iμ` @Ίΐο~χ;©vΖk‚ϋ³|ξsŸsN[½z΅œώωΞv+ιΝ&L|ΗwΘώπ+°{ν΅ΧΚC=d…xM¨vνΪ΅ςπ’-Πlζ΄|ωrY°`˜P½˜σg͚%&LΏίoοv^3χ…/|ΑΊ^UU•ΣΦ^1γ}ε•Wδ‘G‘>ψΐή-φ΅Ζ/@ΐΩΏΏfθ~ζ™gδρΗwϊ2+flwήy§υ-žρ-[ΆΘΌyσδό£η°1Έα†δΈγŽσμ7ό±όμg?“₯K—zŽ 6Μr8ν΄Σ<ϋΩ@@@@@@@@84hž={Ά£ΰ^wv€wίξυƒΤ}–nZeΗΦjZέONκέqEΑ,π‘Γpž­»dλŽ=–ωΡύN’ξ{λχ¦ηΡΊk‡μΨc½C€ίI'IGο][·ŠuW:ιύ”οx ψMΙΠ8,ΊC ω¦›n²BΒΙ7 —@σίώwΉμ²ΛdΧ]Ι§;Ϋ£G–|Π4ή½{·˜π±9?ΣrΝ5ΧΘχΏ}η° 3›y½ϊκ«ΞΎδ•3Ο<Σ ›κfٟ@σG}$cǎυ„³“―cΖ5mΪ4OUθ^xAnΏύφ䦞νηž{Nθμϋλ_jω9;¬άsΟ=–UšCμB@@@@@@@θD͊λ1»ΧχΛ½ulΩό†Ό½e›μ59LύΪσ~Ÿ―”Ag ’~G'Ε1[ί–Λ†])ΥfΗΦ,‘υίΌ_—,ψ“ΓyΆnyF†}}E_³dƒ|gπΡΠuo q[žΉLΎ>Χz‡Θ’7ΧΛΰ€·wN­ς̈a2WσzήχΣωΓ―ž•7φ%Υθ«<€τy~γρŽŽ-θ|¦¦&ιΧ―Ÿs‘;vˆωφ…|–δ>ώϋΏ[N<ρΔ|Ί°ΪfͺΠlW_6•ΫΫΫερ­­©ͺΛΏψEyύχ­SΌςJyκ©§ς9έi›.Δλ+›°νΪ΅k­jΔΞIΊβnγ~‡εώη¬ΐ Z›ΚΜξ₯ΉΉYƌcU-vŸχ‹_ό©œ.¨λ›ΚΘ&œάΠΠ 'N΄Ί7’MΙΛ}χέ'K—.΅BΑ&ΌlBΓωšΝ<―½φZωΓώ`υ±rεJ0`€η2¦©ύΒ /XϋM%e»J΄h6žMυhŸΟηœϋΖoΘΆmΫʍ7N>χΉΟ₯š½;ΨύΡGY!gΣΟΘ‘#ΕγY@@@@@@@@f΅v‡˜έλΉί†2λ΄Ρ²*~ΒΜE/Λ·ΞJ|ε}λ·eξ5WΚ³ρ\σΉ½ OVk₯ΓƒτΝ}΄‡ΌεAg"΄*SΓαY‹φvd 4wlR·ωˆΟFrΕσ][·ΘŽΆbPyΰσOdΨDC"°yσf©ͺͺre*ό>ψΰƒΞvΆ•[nΉE,Xΰ41ahŠήŸ%—@³»Š±}LfϋΈyέ³gόηώ§ 6AfσmmmmbΏζΥ4›ΎnΊι&«Jq¦΅ιοώο$ YΑbL^Ύ|ΉάsΟ=ζΥ§ '/Ÿ}φ™6`sŽίοΟ+Πl*Nυ«_΅Ψ§všBwWLΆ―χ—ΏόΕ W›ŠΫηž{5ήώηΆζjΪ}α _©S§Κ駟.ύϊυ“`0hŸξΌšΰφ₯—^*ο½χž΅Οx˜ŠΦ¦σρΗ/Gy€Σ–@@@@@@@@C/@ YΝέ!fχz·£uλJ6φGVσce‘¬Ώρ¬ΤSχόAFœ3]ώnŽŒyHήόI΅”ΈƒΎwΌ KΏy’μΩ΅Cvνi΅Ξ/9ΊŸτλ=Ϋͺ‘¦]»v‰u†šL'έζλγEh“”%vL¦9hΛtnJgΊcώ­²+69ΊχIϋθ­rΝicεz,9hκœίΊGv˜yΔ&"½uG§«–Ό–_M)s6λ™§Ξ”Ίί|KŽ“Ž}Ο.΅ΩΣ‘3†Œ+­²cλŽX?jΨϋ$ێ•rΪθΨ=Ÿωλ ς­J«ζΆ·‡\η€γ·ξNtσ3XqfgώžϋlΏ#ώlθΈϋιΈSH]Ο`ΖyθUφh?»b7GJzλs™ώζxζοy–Kzλ³™ΖΘ}†Žw«^ΗZJŽ–“ϊυ–+―‘Ρ?²žωυ›K₯2eždε€aς#}62>gξ溞―WGfηύ’χ2y¨­{vθ3Ώc:Ώ~:Ώδ6IΓcφSΐ]₯Ωtρ½ο}OζΝ›΅·™3gΚΏύΫΏ9mς B;'ΉV:#Πl~Ƙ1.Z΄Θu₯ΤUw ωζ›o–5kΦHyyΉUΪ]•8υΜΨ{μ&`lΦιŸώ)SSΟώ|*4› vuu΅υ;ΜΩgŸ-?ϋΩΟ¬@΅§Cέ°ϋ4ϋΝ}œ>}ΊΥdΓ† bξsΊe€IrΥUWΙ 'œΰ9ό·ΏύMΈβ +Dν9 ¦*σwΏϋ]V~n.εZƌ$kVΕv¦M[wΘΚΉwˏž5‘UοrnΝ#ςΠwΎ―¨»U«`uͺ`{[’%vŸWλŽ7dξΝ?”g7[ρqWΣc₯ζ‘EςS;ΗeΟΦΥ2}μΝ❠sξfYrjxΌϊτέ2cώš”«Œ™ω„άω­/;U‚χΌύŒœseμΩΉη…7eΌχζh~ͺ‚—EδFοΝ‘k†ΕBβr䟬ΆΒΏcMψχΤYtλQςΓ©sbzg§Κ=Kž”ρƒ]O“λL‡Θ–ΥOΛ¬›ηKΚS6f¦,Ίχ[žgɾ̎7VΚΝ?ό‘€ςŸ+-zHͺOr=dρ“Άž'co6Ο‘k9uŒœϋΧ5V^#ΚϋhΦ9NφuλΊηΈUΓωze 4·n•»/+ΟΖΉAχθΖǞ3S‘ύ±Y7ΘϘό<žͺοΥ‡<οUΧμYEhjj’1cΖΘ;οΌγτb*-Ϛ5Λͺ lΒ½f1νώύί]ξ½χ^yύχΆζψύΧY!`ggž+v(؜V[[+gžy¦Έ«/› ΑωTh6ηήy睲bΕ g$cǎώάη>'ϋφν“ψΗ)šν@³ χZ΅*mυb§ΓψŠ=v3FsNώύ“›€έΆΓΗΙs³ϋ3'Ωξ@σˆ#δ_υ_­*ΟΙΫ}šύvPΫnc*KΏπΒ ²lΩ2ύΟ{·σ:oή<ΉπΒ m³b*XΏςΚ+VEhχσa72‘fsSqš@@@@@@@@ΰΠ hVkwˆΩ½žσmΨσ†\¦ΑΣXθs<ςς"ωJ?Wj8SG0i¦&fJΥg½ή$½ž7dλνaPΝ"YϊX°zΗ«wΛθΟZ ’C³―Ξ!3VΕ‚–γyYξύJ?§£­+¨OΚ=V©[/_qε`FφJŽsρš5:KCΉ«μ>½:Υ¬ί–Λ†]™¬rͺšcš[5€‘›nΊ)σϋ>a~cΕγ?nƒΡMMMφ˜Ξcϋφν2`@ϋ€Ρ ΄βυ“O>)7n”ΊΊ:ΫFθΚƒFμ € € € € € € € €‘fΓη‡˜ύύΛ&₯av‘T{y‹'.’YSGKΑΐψνΫ “ΪχΕU²aώDΣ&G΄ΚmEPa·ΨT§])6#”M¦σάtΞT+8ί6ΏT4ΪΊg“ά2ynϊ­Y·[¦ 5γ{‘Κβy&4;)ž4β Κ―N ]ι7Ε6kšnΦ€)Πά*ΩΎcZϋ*Ρv©?Œ”JWž6ͺ¬[y³ ΝΛ‘Άζ™>‘:˜“h*δš. 'ΦJmΥh8 G¦ΒrυΨΚte^ °<i“Ϋ‹LxT‡Ν―‘­uνΌrrtΦfΞΖ¦:m3΅vL-j«!·6•±•ι*ΪR"[φ-•Ž#€m²lΘ¨Τ8:”™ίm5κœ4U‹o— ^5a?^M£ά‰²¦J†™gΐV¨ *ψζΧ¬“SτΧΪ'dΥΘα²\Γ°…‹€©<„Υ΅8sJtΞMfΞ©›#aΨ<ίTΦήh+kGΖ6!τͺ+eβˆΙΡ*Ψ *dαέ©Δm‘yκ‚g Ω<νΓΎΙ–υ&ΎΠŽlVo*;ίf*;›Άι«aΑ-Rν*‰›{°{γ” ŠφtSE[­¨\»VF›6ζŽJγΪj©\’:#.€—%vš*Τ3‚Jk7HM©ΞΉM–˜qκ] ΪkΓΈ-όlψΟ™xŸ³¬χͺ‹^‘±›O›¬­%ΆΊNΙ_›yλ?γeσΦHMω0`ž‘–υR9cIzέ―Έ5q ŽD@CΝ_ώς—mXΆ+ύLžhͺ Mˆ2›†ε0ˆφΥΈΜ|Wk`:ά¦š μ,„MΆl2zηΪσ6˜ΐjͺ)“ ο±ŒZ‡‘φΘ=πžA7ΆΏβ‚αΆK/XŸoBκmH=,΅c*j'lUm½₯₯ήώ-pί’²ήTΤN1ΗΐM/ασήω=Σgί…έ;]£φ½~ΊŒ[¨U£»ξΆ1OQaμέ›ͺzmR²uγ΄H_šMX}BΊ|sΩΌ;δζaΆ ΉžΣωΪη3g€©Ϊœ:Ÿ ΠσZ΅YΞΊi€Ω…˜ύ‘υ ωI¨ΩλΊPν‘Th~ςΙ'mπΪΝS«9R^}υUY±b…<ώψγξ” π^½Z4¬•5ΠμΦRPP ‹/–3Ξ8ΓϋοΩ€²6ώΧύWΡ`±nίώχεΆΫn³ϋjΦ@ΈV5ΦJΗZ5ٍwΣM7ΙΧΎφ5{ ]λυr~η;ίiΗYθ Ώͺ΄Ύ/**²}}φΩ²cΗ2ΧγΊιœΛΚΚμΎφ=sζL»―kœ7ož­X­Ak=·dIꇡ4l½uλV;ΦΦΦ`mΪPCα'N”ΣO?]4τύo|C^x!υ5έUuΆπ € € € € € € € €@―h6Μ~ˆΩί?’;hm6Ώ}§Τ/[.»™ΗT^pΣ “F˜ιΓ*Αa˜3 TΖ…0S γB ~ΨΆΖ”§΄Υ„§Ω"…›*ME^3Ρ²¦ρ/HκΝ7 H8OW­7riGλ4•­·mZ-·/¬—h΄:μ!ΪΪCahU‚`lx­ξ%ۚeΣνΛda½†UγΆΠ3ξ¬σγͺηϊkvσσΕ:˜~£χΑTQ.0U”½ΚΝξ9Ψ6g€½b^SΈIΖΩrΙMυλω2Π„Ν‡€Γζ~Ψ:œsάϊB77†]»woά:Δ«(š`CωΕσL@}`{iδBκmΝΫδφe·Kύ,w4ΈoαœΔ«ξΣρšό+u?μ―Σ5š«;ξ;Ύ―T›fΣ:υ‘ΞMοΥnέ'‘βζΈn‘Šι©C’[X,cJK₯΄x„©Ϊž—>Κ τ5# 5Η…x5Πό₯/}IξΉη[ωΨύΊυϋ‘ηΜJΒίωΞwdεΚ•ξ¬―C†  εΊjΗώσŸeΒ„ A`7αη>χ9Ήε–[δ„N°§_{ν5™5k–lίΎ=ξr{μK/•ύθGΆj²θn Ω΅™4iRͺΆgό‘Υ ,X 'žx’=£F .”ϊϊϊŒ+£oΏϊΥ―Υ©υLCCƒTW§ΛEτΰέυΧ_/κμμ‚μ € € € € € € € €τ¨fΓλ‡˜ύύ£%ίΪά &T‹‹Χ†•v›Mεβ φx$€™8 Θ†Υ0„)rΗξ}2Βδa3·°ΊpΨΞΤΜ…5[dΝθύR4VC=ω²¦i£δ7.α34TbB³‹eοτ"©Φ —ΤΚΎ₯₯™CDή‡σ4΅nWl—•c2Bš^h6²ΞD£T ―ŒV³ΞΝ•όΌ<ΩΏ? ΓA[;j4 4'MUλΚTeF7Ι\Σ§ιτι’εΎ‹»*ϊκ;Χn7aΥΜ%΅΄―ͺμ;”™JΧ‹M₯λΜΝ―fΛ«ͺmΓΎ#μ½:ΞUλšdΪ F9|†ΠjpΆp―«ς\fοΥΐτ αœγΦΊEξwo‚ωxΗ€l Έ›ͺΠ™›zφϋk\U!•ΛS•O]“άά|1wTώΈ@³yξΆο[j‹n―)zmοšέ'ΩΏx‘μ^Y.νοΈ™Uk£,©ž-υš³ΧLς'ΚΊ5σeh\C:φ@ΰ˜I¨Ωš5ϋγXήώχΫ5ΈP²_=Ψ_\Gf=·eΛ[MX«»νόσΟ·U“kkkεΡG•ώύϋΫΠ΄ΎΊν•W^‘;ξΈCΦ¬YγΩWm«ΑίΡ£GGŽλ›lγ难ψΕ/Κ'?ωΙHπ·³@s¦…π―ύ«,[ΆLΤΜίΞ=χ\Ρ :7΄vηunPΦΚΡO?ύ΄;l_/Ήδ»¦aΓΪ둇’oϋΫ’―ώ¦U₯ηΝk«@fφeΨG@@@@@@@zG€@³qφCΜώ~WoAR«1‘M$η1,¦š­v”ΨcΒ»“SαέόΩ½qŠ π‚£~(ԍdΓ€jπμ Bσϊι2n‘†. e]S ΝIυΈΣTύ‘U˜‹kdΕθ=2s‘‰ΜΞ“¦ΊI’cΒΕγMΈXcΔσLΨioe₯l6ϋοΨ*σGΈΘlͺŸΜ?Γyv―BσΞf>υ©qIΝ ™U6BHMΦο3ΪځΓ`nϋ@s«,2VRυs₯fΕJ)Q ι.MEή γ’aΫΠ3s-ξ}gΞqσσe―Πά>­cΆν\ £l ΌXjWŒκ™ΚvσLΘͺρΓeΉΉ9%‹ΦȘΖΩRmξcnΩ²cρ7εΓͺ8¬Υ˜]¨>pφŽš Νu]­ΠάΆSFŽJ―%·DV¬œ%# JϊŽΚϊρE²P0/ΠΌΎΒ³·d‘yΛΣΧKκdMαu©½πو|žΌυk4 Β{μœύώβϋ Ϋθ΅>sͺ]ρΌ ¦šuίId?™h•ζύΝ²wgƒ¬Z}wΊΖ³^ ¦GρŽΉΐ‘„šgςš]―ΏώΊ­Ά¬―999’?Έ“ψuΧfΎj°YΧ€Ϋ©§žjΫf^“ω^ΗyώωηmΐYΗ;ϋ쳃jΙώ΅ΩΝώ5νΏόςΛςK/ΩKΊ:7½XΫθΊΤξτΣO—³Ξ:«£aμ9½^Η;ΓN;η@@@@@@@@n h6d~ˆΩίοšfR֎,’%6—›/L΅γ‚t€8ΪήTαuU] Σ ZF˜ι†a@6 \†‘\‘E[š€|pζ`&ˆiΖ™k‹Θ–Θ–¦₯β.I4.3Υ‹WG¦UR»E––j; p†˜κΝ»7JL‘απmιU+.^΄EV–g„Ί“-&4;.£u›¬9J–«[aϋ0k²e“›kΗρC¨‘y:G7/”]l‚Έ+3‚Έ-›LΠΫΒ„žiζ«\sŽ›Ÿ_}9ΦΑ Ξ!γώ™Ή4ςTΌ;=›βZiZYjCΎώ|ά\§š*Π³Ό›^·ΎπώFž5ο œΝ± S9άΦY6•‡›LεαvO™wάZύη«} ;ί4o2ζΉ©Μ³Ί2xVέC―Έ5Ή«άk8F§k4MΗ+l“++Άο1ύΒΠYd»΅ΉQιwAΎ θ—an“†9γm0]ΫΥnm’™Κz† ϊ‚@o†š»hξ &qs8@s\ŸC@@@@@@@x{h6χΩ1ϋϋ]}φ¬ͺΙΛm*Σ?^'+§ mί΄u§Œ;ΓV@^˜4ΐL·ƒΒa˜3ΩΪ Ec«SW˜κΚ»Mue?&™h^/Γ',Lο π›Ί ΚΜK½km˜#c«΅.szs•€έϋ¬―-2{Θ81υžΝVbBέK#‘ξΔ3§Ι©9λτB΁‡Χ£1­L›FC’ah53ν‡Œƒq‚>ΫdmΕ(Y’Οn0αΩψΰyͺAΔ9&Τ»ΗTΑžl«`‹A`ρŠeέξ•2ΤΏ9ήύ«/» &d­©ΒΌD+§·²[eρ˜tulsί‡ΈϋnΟš°y]$l†mΓηΕυεΑ#6ޜΒu˜πύμ"©NέP©Y·[¦D’0‘ωαιΠ|β ΓΗj$S|`Ψ0mΛοΨ[f›g.5 F‡sNΘz3NŠ9nMα•©½πΩθ|Gh+€'W™XžžLx\’{d|ΡδΤgή„Σχ™pΊΏ΅6T˜΅§ΎnTγicJφ@ /d†š/ΏόrΉϋξ»»T Έ;σΧ@s₯ω- >ψ |α _3ft§ω1½vώύ2~όxιΧ―Ÿός—ΏμRυηc:aG@@@@@@@θ3šΝ­πCΜώ~—ο’WXΫδWɚRΙΟΣ€p›μίuŸάZ½$l4GJj·šͺΘ&¨κ…I#LνΔlqf ¦•žυ’βΩ²x’ 6C΅μ¬—q3–θQ»΅―,l’& šΚPš‰VΙξΣΒ@tb§©<#¨\8oƒΤM*pέuψΪΌΆB&€Β¦ίΉcΝ,)Μλ/mϋ7ΛΈΚpNα:Γπ©v\\U+5₯…fydΧν·Κ’»ΓdoXEZ―4k0Αί…φt±¬Ψ2_†™q 0ΙaγT–\©ͺ]*₯…˜.χΚκ[«esΨ₯ԚκΦ₯t΅vΫn‹ŒsKζɚY₯’אμί|«T.I§}M»0­ΐlVeζ·XF ξ/[εΦq3‘os&¦’u³ IOH‡€E2«c·Ι2SΡz΅+αlΒμM&ΜξΧτ=zf}φΒ ΩJSuΗ™2ΜTή6AτϊκJY²+=/μ>―¦An±Τ.­Γ/šwΙ­3Γη_CοAεpϊ­0‘_χH–Τά!³Κ ₯‘6Ω<ΗGϊZ 9:ŸΖUγM?ύ€&ζiBκiͺ’ͺ2«|˜το'rπ@£,›>SξΆη2³!€@_p‘f[O„™έšŸ~ϊiyυΥWε=οyœvΪiξpŸ}ε•WδΩgŸ•ΣO?].ΌπΒ>?_&ˆ € € € € € € € Πw4›{α‡˜ύύξά¦DKƒ|t\uΞΪ6ΏJΆoœ&Ά(²ΐ ƒΎaΛ0 Z(λšκd¨K―&šeΞπ βΥR₯χŠMyeLΩ―’Ϋ>° ρΆD·Ζ;Πj·cΓΐ­wΖίυΧ­lλ_έχΫθ™=&<:Ω…Gν₯ω¦*τF[q9,vyΧ‚pδlϊMλ69vf§χΤ4kΰΊaφGMuc—<Žι8¦²Ά^ Η–ύΠx\ ϊpΝ.]‡†³ηΘΈΉ>eU¨Mμρ¦ ΆY½9 ·ξ\ cgΤΗ_Νψ Ηύ€ μΩΐ~δ™ρ>gώΗ«e}…Œ³?]ƒώΰΒ*³vχXΊϋ“4_nθδλBξΤ5²cΦ0!μ#€@ΠP³nguVž%SC@@@@@@@@ΰψ Πlξ—bφχ»}+-PΏZV-ίTcϊ0kη-‘ςƒΓͺΊ¦Ϊνμ’qΆjoϋp±\ΧKΡΈ…¦‹bΨ]i»A&@Ω°lŽT―ή=3Ξ’₯σ₯|˜©·΅6˜n*x]»ΥT)θR©‹[fΛΈj­>d䳋§.’ω7—KΖγc&Ω* Kͺ₯Ί>Έ9v%σVHι‘z™Ή$υΌfš΅6—[*F?7¦ωŠςƒ2Σ8Fͺ:Ϋγώ0kœ^$sΝ‘ΟS–5†ζ{΅6Μ‘±ΥςŽic*΅W ―L?Λa;ΩΊGn_Ά@V{UΗS³/”šσeβ˜‚,ΟCά9† € € € € € € € € €ΐ[O€@³Ή§~ˆΩί?’۝L$δΰ‘CΆ‹~ύϊΛ€Ρ θ‘τi›LHΫΑ^'2hΗo"kοŸ']Yz"Ρ&–«_?Ι0 γgm¦ΩχMJ’ν`η»4DpQ0?ι'ύσt1€ΞΑLRϊ›uυΠSΜ³§vΊ½~Ήμβ3`ΠΑ=σ™ΙλΚƒΣS ξ‰~“f}SΟ€>]}Ξ{b*τ‰ € € € € € € € € €@_ Πlξ†bφχϋb. € € € € € € € € € €Ό4›»κ‡˜ύύ·β gM € € € € € € € € € €τ%>h^Άl™ΌτK½ζuζ™gΚ¬Y³zm<B@@@@@@@@@@ΰν.Π§ΝχίΏμΨ±£ΧξQII‰\sΝ5½6!€ € € € € € € € € € πvθӁf½9j~ψα‡{΄R³VfΎφΪk 3Ώέ? ¬@@@@@@@@@@ Χϊ| ΉΧE@Ž ωσησd’ € ΠuAƒΙώπ‡7ΰJ@@θ“|oί'o “B@ Ηψ Η‰@·”ΐ‚ "λ!Παΰ  € € € € € € € € € €τ¦ζήΤf,@@@@@@@@@@ˆhŽpπ@@@@@@@@@@zS€@soj3 € € € € € € € € € €D4G8xƒ € € € € € € € € € €½)@ Ή7΅ @@@@@@@@@@"š#ΌA@@@@@@@@@@ή Πά›ΪŒ… € € € € € € € € € €Νή € € € € € € € € € € €@o hξMmΖB@@@@@@@@@@ˆζo@@@@@@@@@@@ 74χ¦6c!€ € € € € € € € € € €@D€@s„ƒ7 € € € € € € € € € € Π›š{S›±@@@@@@@@@@@ "@ 9ΒΑ@@@@@@@@@@θM>hήΎ}»<όπΓςβ‹/φ˜ΛYg%ψΐdΤ¨Q=6#€ € € € € € € € € € €@{>hΎώϋeǎνgέCGFŽ)ψΨC½Σ- € € € € € € € € € €d τι@σςεΛ{΄2s&†VjͺͺΚ<Μ{@@@@@@@@@@θ!>hώϊΧΏ,Ϋί₯Ώo(uO7}J )­-­’4s0p°δετ©Ιη“ m χθάΟd›΄΄&l_Ω£ΓJ/ € € € € € € € € €}G€@³Ή~ˆΩίοΞmJ΄6ΛώEϊ_ … v―7―Mξ‘ρE“eΏ³–`Ζ@IDATjέn™6t@jτD‹lͺί,mύ ₯Ό|ΜqtNΘΞυυx°Ώ”–—KA_{ΆΉUλdΗ΄‘½ygί²c%›ΧJΡ„%f}Ή²i‡ M'š-;₯~s£τ/(•ςΎζΌeŸ† € € € € € € € €Όυ4›{μ‡˜ύύξάώζ΅γeΙζ›ΠαΖ t؝>Έφh $%©%˜uΛΙ‰=“Ν2½h‚μ2§j6μ–)©@sΛ¦ι2nΝ:Ϋ#}οdΛ&)7ΧN¬Ο„‡=Ϋš R7₯ΰ˜Β%ƒ‡@ƒγ·q²e½ΉΧ e‘lhͺ“»”€lͺ(’Ή{•˜―9ΗτAcp@@@@@@@@@# Πlύ³Ώίέ–υ&»P±~θ°;=pνΡ+ښp² -OK‡–m^θ6[ ΉfC“ :χν¬hΞ7ααΗ8<œi{μΝIY?ΎHκΟδΦΘξS$]‹ϋh=f½ΦOΆ@sƒ 4W§ΝΜQτρGΆΧΌ@@@@@@@@@ΰψ Πlξ™bφχ»s; 4wG«g―  Z…9#œœ%Π,’”–ζf9Τ/O μΩ ₯ήΫZš₯υP?T0Έo„u=ΫΎh*Ξ“¦ΊIΡJέGιτF7ασœρΓΙ6inn•~yƒdπΐγ5έ‚ŒρVψΏϋΏ·ςςX € € € € € € € €oYN8!²6Ν†Γ1ϋϋ©Nήt%Мhm‘Άdͺ£œΌ2p€©œLš(­Ωrr"Λ€9ž:¬•‚“ΦΪ*‰tΫK^'„‰ViK–““'³Σγη˜ρuœΦ–V;Ÿ`~v©?’‰6Σg"=ίΌ#Q&%ΡjϊrktήXn7κΰŽz―‘ω§Ž'φ¬•α“—Ψ7UkΆΛ΄aύ͜Ӿ^θΦ―Πμυ˜}7™V3οτ‘&ψ{μœΜxzά‡{rΪ_ŸΡ_ήΐ’Δ‘n)³τψcds§ƒϊΟ`ŽΔΞΥ³-œ·Eκ& –D›yΣnΞσΜwςΰFοํ> iii³+Θ3Ÿ”a›¬―% ΅‚q~lί8Eϊ›ϋ’zΞ;]¬Ήΐ|Μg.ύˆΚσŒζuvs|ksσšϋΩρνTΣ6σΉN?QY>YΝY–΅1`wοA7ΎNe™‡θq?Θμﻁ㎹sΌ"€ € € € € € € € €@ο d—ud˜Ϋ'Πl`ό³ΏίΫΥa 9Ρ,ΛfLΥτΆ’šy"«Κέ/hζrƒlœR`Ο&[6IΡΈΉfΏPV¬»Yξ»e†l6Χψ[Ω’u²Έ|¨Θξ'šdΑœjΉ{Ζ©άΉcΝ|1Ψ―δš”υγ‹d‘^›[,eΝ²yWj άͺu²cZΊD‹¬]P-K2;Ν-“5uσeΨΐŽc›ώLšVɜκε~z5²fρμwe²EDΩβΒΗm«dTεrs6_Φ5m”ΌϋζΘΨκΝώpΑ~ΰλ…nύ>“Νk₯h‚† S} υη! ΩΆvΜ\rwΠ_j'_ζ­ΉM& +:'[€hl΅=]\V&Ν›7KJΤλ7Ω* ·/κΥ»2ϊ)«ΉCj¦ŒθΌβr›–MΣeά\Σo~•¬ωJ™]Ή0=Ύ*_­[)εCσ܁N^“Έ~‰Μ^XŸΡHρΤZ©UΞΥ³Ν/«‘rΩ$K6Gοt~Y­¬\\*™£·6n’κΩseoΖsΟeνšZ)υŸ[oνΉΕeRΠΌY­T­»Sώ0ωšη€N’χ6sωIΩΣp»άR½ΊέzσKj€vΎyFύ67χs½ω|,ܜρ—\™Z»Rf•¦>ΧαHΖt“1Ϋή4·Ψά·Ϊi‘1²š›ΧVΘ„%fLΨήmΫvZžMΥk$―aΆΜΝψβ‘νH7ΏN…λaήπƒΚn?σ5s6ξ|ζqή#€ € € € € € € € €@ΟΈrfοξxζ«^G Ω ψ!f?²£χYΝ‰=2}ψdi]φVhΝuA y½ 4/Œ^σnκšν2kX M4šΚΔ•©ΚΔ1—ΫC©ŠΕMR6UΙάΜ¦Ή24waώ΅[šLΰ4’ŽΎqU…T.,ΈΊPΦl―“`I^@Φ»Λƒ@§ ~o0AU©ožΡ­»6ΏΚΖ§™`i–>³…FM}[Sιwxͺ―λ,γ΅€v‹,-l&›Ν½›wο\ 9!kΗ—,ΣLυ\R+MKK;ξ›eαs˜1ΙΘΫ\Y³{‡ Λ ζFΡ7Ii˜S$Y2β©«MpzϋΖi©€²7§v]yr§‘³†GZζΘΈ©έjž1œο`œͺ5ί—†Κ―]`>=Y|ο(ΠΌgΥx™Ό<ώJυQ"[š–zΑϋ™3d\–uzΤͺ5ζΩsλUΣŒifr;ΰ0;e²eίbI=Qζ.΄Έ―©ηΌ ύQ ξu᷍k«₯rIϊασCή™γN”³&Κ ώύ$oΠ`Σ6i†o“Ϋ‹ΖŠ½y¦ΆΦM΄‘λϋ΄[jϊ€7—|S}ΌΆF†™rΜIS‘Ό~A₯©PήήqΩx©\~v‹kdKνΔΤύlή&s&Μ ~Α²ΓκλfΘΒ©²vͺωz`>h‰VY[=VΒε¦MΝeα3>g:αΰ^η›@σΖ,ζ.έ‘Γω:₯s`C ·\@Y_έ:ΆΫχ_έρޚγ € € € € € € € € €@vΜ³ 2·;N Ή+4G‚—¦κj“©Ίκ2NΆ6Θ c«Ec’ΩΝ…¦Ίk]PέUoΈWαΧw› £Ϊmέ6GΖΞL…–K™ŠΑεΡ°j‹Μ-6aΦ•6ΜκšMuδέ¦:²_΅·m§Œ5ΓΞ/w’©ͺ;ίU™ΥyˆψΥl]`3u¦ύŸΫζ ‘ττd‘ λ–ϋZ xΆ N§sΓA˜ΧσσΓΗχ Π™" „n’).] ³τΆρC£­²`ΘX±Ρθά©²}Η¬T%βτ«LEμεφ υ†ύθ=]gͺnM_zροC•™Ϋ4on‰Ζe¦ΏT€80ˆ΄φήdYGhbΦΎf·Lρoh²QΖUΪΆΌy½z»¦2΅©$½ΠfuσΝ³±1ϊlH‹Μ6Ad{Λ\ Φ›“YΌμ›bŸMΧiψΌ„‘z3ΠώΉMΘ*3[0Ω{Φύ{7Nj<οΩξBΰ^Ϋψaγόͺ-¦ͺ²χ2v#ύ¬Ί0xrTM[s<ΧTͺή‘Tνά CΖUΫwΞ»ΥT£k«QηšΟΑ=ΡΟAΒܟανοOψLωΟfΝ]ΌO­έΕ―Sn™Ό"Π~`9sΝ7ίllΦ9ιul € € € € € € € € pμΪ…–ΣšO<ρΔ Zsp&Πάsζ0ˆ(RlBΖ+3BΖ&Ai*Ϊ¦ͺΣΊΐ£>6~»Έ`λžU2yΉ‰QΊ © oͺ(’Ή6YYb‰K#ΑιΤ£  ¦‚Π^;ΏΪsϊΩυΓ·qσHμY+Γ'/±WΗŽΣέθ‚‚uJq­4­,5Ut36ξbΒέΊεΧlS ²†]Λ0Ό zϊ~νζε…nύsa›°/?ΰ[ΡΨ ΄Ίϋφ_e9ΩΌVŠ&€ΜςΛζIν,S‘9/L‘' ³Ό`ͺ@wΈeYGhβWAv=…ax7_w¦έ«ΧnΩ²cρˆv—4#Λώ Γ¦Μ—Y₯Ρϋη>/‘q»N“II˜tΛΙ9(υ•¦j±>ΧΑ³nφ½ΉΕ£mΝEαgΒo›:§ΉŸγM@9•α.“;jo6š΅ZtjKš{£30 uΏό{=qΕV™?ΖT©Žl¦κςμp@dΚόZ)-ο³»,™4}Ϊεš β‡φJε¨JφοO8NΤ-ΈΧώϊ:±‰»aέϋ:εΦΐ+=-ΰ‚Ιϊκ‡—uί½χ_u>.τάΣs£@@@@@@@@Θ.ΰΒΚz… 1ϋ―nί^G ΉwΝqΰH0Σ„xλ4Δk6?`θ‡nνIσGϋ cRΦ›@σB ~Ζ“SνΌ€gP±Φ;ζ‡"Σ΅¬―qΆΣԁ\σ’jν–kή½Ό3•M5ΰ˜ΐ¦½Φ„,+Š&Ψ fX:ݏ{ρBΟA˜Σ gΖυ8tX‘9c^Yϊ ΝΓΠhx,5Ιθ’#A…mΏMܜ5ά=Η„ΨS΅΄Σ‹Ο-”²1₯2Ί΄XF hMμk–ud3Iυήοΐ8ΆssΠλΏpžy6'₯žΝl—Ϋγ~οyvmB›Π؝kkή&·/»]κwΩ8±;ΎϊΟg'γ€…k„‘ΓcφL₯π9¦RxτζHqΩ)]&#F •<—n6­Γυ˜πΊ©Ά=Ι«ΆΣΉw()ΝΫ6Ι²Ϋo—]ϋΓϐwAπ<ι±pœ¨[p―»aΧWx,>„ybξ«?oφθ Nv―.Θ¬―yyy=1$}"€ € € € € € € € €@ ΄΅΅Ω³†šm°™@sšMΥα’tΥα’Ϋe阌ΰU–`¦0Œ ΕΆ2zαM™(»χΝ—˜Z°aθ9@zν‚cαŒΚΊ7ΟΰboRΆFφ-œ vΜ5.τ„m½vqύ‡σ‹=;τΛgΨ&μ+<Μ2뎫*ν·‰›³νΐ„šΧ/˜+ 7Ϋ’Ϊ}ζΛ’ k€<[8ά]eΩLRΝΒϋ»ώ2_½ώc«‹g^―ο½6qύ‡6‘±6k4Η+΅βΈ·εζζKž©•δ}ύ糓qRέ„kνz Y[&₯qύ™½°> ο{σ*[΄A—·ΑƒE[š€|°—vφΪDwΓ*Ωαρ\ΙΝ7_φοΖτύ²ΉχΊ6q}%σλT8φθ9 1λ¦―~ζ7ήxΓΎ?ηœsznpzF@@@@@@@@xώωηmω€“N"Πμ”Ώώυ―»]ρχƒƒ]Ψ Β…^΅ΰdσz)š°ΠΆξι Ν›L…ζΉ]­Πl»7N2‘ηŽCŸαšDͺΦl‘ΡZ”ΈέvHI4x`φΚΒ~uήSνwp»^΄rρtSΉx—9„9½vqαΰp~Ρ€lΪ”φ•£³τΆ ϋ ‰δV­‘:l?s9tH$oΠ`[½Χo7ηHσdBZšMhwοNY»j΅μυŠυΦnm’d³¬#›Ijάπ~Ζ‘ yoΌώ{΄BsΫN9jF*Θ›["+VΞ’ξY2•ΗΗ›ΚγZ΄Ή‘έΜ΅FΪzKμx7)­-ΝΌ―4¬]%w{7§¬v«,.θUNξz…條 dԌz;tnI¬œU&Σ?~`ΜΫ…ϊΝ•α3>›ΪAp―»aΧΧα~²‹ΰzXΐUev―jvaf}=οΌσzxt € € € € € € € €=!πάsΟ‰ 3λλ ThξΑ Ν-›€hά\{‹Mwef7.ΔkC‡1\sΎ}Ρ?M y‘-r[,[šVJ»b±ήXR\+M+KM9 ΈΖ…>›ΧVΘ„%ΪiΤnέaΆv)έΓ jJρ"3vy»πs·Zd¬ΚMθ9ͺm„nΩ4]ΖΝ΅hΩΠT'ιόo‡~^Ÿ~ΰ8l†Fύ gΩ bΣ9@ΨOό½KΆΆΘή&Ήάο6Το/)Ν dBυfλ[R»E––ΖΏ~–uΟ†¬wM΄ϊ° Ύw%ΠμΒ΅Ήe+dΗβ1a7ι½ΦΖm²·Ν€Ήϋ ’Ρc $Η›S\‘Mhœh\&Γ+WΫΫ‡ώΓωFžΟNΖIM/KΫv«π$[₯qοs Ώδ+ˆT9O4o’N˜› ^—˜ΟΟRοβŸSνΉα>iΣ 3Aν[–ΙκΔ™?i˜ iϋcϋύ§†OΚΪ‘E²ΔVb.‘-ϋ–J$²άΪ CΖVΫKσ«ΦΙΖiΡ{θ–`_³¬#x62Lάψ]4{αg ΄―0φhž»Uf›gΫ>qω&€ΎΡ„Τ½9ωΟ³›whή―0”Οz“Lq©tm”h”Šα•bsϊ…fŒΊtΎ“q2Χ*~[7™˜Χζ΅γM€_ΓΖbόϋ2ό­RaΦkη’_c*œO‘ή<$w’lέ1_"Ÿο~¦>s₯aΊω؏ahΰ¦ΦΈVFU.±oΓΟ¨n»,φuή†έ2©ΐ…:“²Ύ’HlΎ2£― ±©’;έTΙuAιΰΈ·“[ΆBξY<ΖV(φ·ΫmΩ4GΖΝMΥ«nwh_Ω―<ίFf˜›97sΓ°"ω5dγ”ΊuUŸ}ΫΠ<£/i“υΣGIΊΈu–)L4aΫω6lφhΦχ<―Ο“=œ[%ΫwL“βΜYΧ<αΧΤpέ 4k›ΖURΉ<\NuύΣow/-MUξ6fgλ?ΟAhγ·ΙΪρ£Δe‚έ΅ν_½0o'γΈΆ~x©ί΄Iφ46›ϊΜfΛ(ε§Κ”ς1’G–ΉΜιΊ'ΐΧ©ξyquohξ eΖ@@@@@@@@@ χŽ«@³ςh¨ωα‡ξΡJΝZ™ωΪk―ν‘0sοίdFD@ΰ­ @ ω­pY € € € € € € € €νŽ»@sϋ%p@ήšίw™5"€ € € € € € € €Ό4Ώο:kF@ΰ8 Π|ή4¦Œ € € € € € € € €@4w‰K@@ΰΨ h>φχ€ € € € € € € € € Πš{B•>@@ΰ¨ h>κ€tˆ € € € € € € € €@Ÿ Πά'n“@@Ξ4w&Δy@@@@@@@@ŽOΝΗη}cΦ €Όν4Ώνn9 F@@@@@@@x›h~›άh–‰ €ΐρ.@ ωxΏƒΜ@@@@@@@@xΝρ.E@>&@ Ήέ·Ιt:$O>ω€œuΦYrΞ9ηΌMVΝ2@@@@@@@@ή Πܻތ† €‡)p¬Ν‰DB^~ωεnΝ^°'Ÿ|r·ΪpqΟθ7½Ϋ·o·_uΥUrΩe—u:>s6lξϋ7ή(ηž{n§νŽΥ―ΏώΊΤΥΥΙoΌ!£F’Aƒ«©0ξQψΝo~#<ςˆTVVεžι@@@@@@@Ύ!@ Ήoάf €λ@σύχίo+υv2ΝΘιΚ 7ά9Ζ› $“Iikk“3Ξ8CΞ<σΜ5κΰ*?Πφ19υΤS½^ϋΦ3Σ9Nš4ιˆΝϊΦκήΎ³yε•Wδ»ξύH…ζ·οsΐΚ@@@@@@@·Ίζ·ϊf} €ΌEŽu YϊΧΏΪP‘ξŸ|ςΙςΤSOΙƒ>¨oεςΛ/—K.ΉD^ύuϋ^ΘΙΙ‘ΣO?=xΟNΧώϋΏ[~ϋίΫρΡηn Ήλ3>ΆWκηC«IΏϊκ«rΡEΙθΡ£ν„ύ¨ <φΨcςΐΘ 'œ ŸωΜgŽZΏt„ € € € € € € €@_ Πά—ξsA@¬}!М9Ή'Ÿ|VπΥγW]u•\vΩe™—ο΅ΚκK/½dίk0ρΌσΞ³Εΰ‚˜?ωΟςΪk―ΩπτΩgŸm_υ2šΦPuάζΪιΉΘgœwY‡Ηt ΧΏΉ5(«οίυwEζ}θΠ!yα…δΝ7ί”ΣN;Mtžmnnz}ώύεΜ3ό\ώΖoΘI'd]ΥW+#k Y7uΣs™["‘°Άz.nŽz½hvχΚέ}Ά4x~ΦYgevmίgσφ<(ϊ_g}ΉΤTΗΧ9λ=rΑχlcΉvΩ^΅ΏM›6ΩΣ£F’AƒΙ† 䦛n’Ο~φ³²rεΚΰ~fλ#σψ-·ά"ίωΞwlhΏ¨¨(σtŸ}ŸmήGκq¬ΌuλV9pΰ€ύλύdC@@@@@@@ΰ­(@ ω­xWY €oAΎhφC²Γ† “!C†΄“ξΉηdηΝ6μšyR+:g–gžyFΆoί—έZyWΣκΕΊ•——Λ;ίωNwZzθ!Ω³gOPEڝΠΰ°Vμν,l¬Χk φΞ;ο΄―—^z© RΎψβ‹+ϋzυΥW‹žΫΆm›<ύτΣ‘sž;v¬ ιϊ'vοή-?ώx»Ή½γο°sΣ ΄n2³ίΦνŸώωRRRβήZΣ{ο½W2η§Όύο—kΉ&ΈΦΏWzŸώψΗ?Ϊ vpΩQΛR[YΫψα‡­««?ώρΫ²o€•Ή5lͺ‘nΣ ΆΞUΧηoϋΫίδΏψE»ηAΓΤΧ^{­άsΟ=’‘ξlΟ“ί—ΏίΤΤ${χξ΅‘οΙ“'Λ)§œšΟ9ηinnŽ<+~Ϋlϋ.άΨΨ(W^yeΆΛϊάρlσvζΓυ8 ΥΰΊuλ‚Ο£~φΨ@@@@@@@ϊΎ€ώΫ_ώς›“ΠίπYπ­ο― χgH ΉχΝ@Cΰx 4ιO²αՎ–;pΰ@Ήα†‚K4τ»kΧΰ}G;ϋΨΗ‚ͺΒΪFΫfΫ΄Ί± ³U!vν΄jπ]wέΥ.xμΞ»W κj87n;υΤSmUεO<ўώωΟ.Z™Ή£Ν…³οΏ~ΡΚΜq›o₯Aρ»οΎ»Γyj@YϋΥΝ4ΗυνŽeΞ}ǎ"ώρω!hν_+Iτ§?΅Υ¬έxΩ^»hΦκΜZ₯977Wƍg»=oΆ`pΆ9χ•γΩζ}€Ηb}–Χ ΝΊέxγrξΉη‹i0& € € € € € € €@7~ϋΫߊ&Σ¬‹Ϋ4g1bΔΡμΓΡάόί.}4ϋ=}h>κŒ‰ €έ8Ν kΫ|ψΓΆV “O>Ωξ«Σ‘C‡lΏϊSŒΧ]w5όέο~'>ψ`π—7Μ@³KΫ¨ροϋΰ~h‡ϊˆχ½ο}ΆoW1ZΓɟψΔ'DCΪ™Fϊ“”j~ήyη΅sπϋr‘cνΨo£UΥVοΏΫΊhφηsΕWΨηLϋ9oΆ`°›c_}Ν6ο#υ8λΥκξO<ρ„d†γΕ\@@@@@@@ sΝ;<ςΘ#φBΝh5Ώ`άΡ,f₯9-’₯¦ό‘}¨σΙυρ+4χρΔτ@@ %p<š}τQ&Φΐ­yύν±Η“xΐr‘[ύιΌ½{χΪcηœsŽhΧߞyζqα`=ξΝh­――·AθK/½TΎϊjΏ™άwί}ςκ«―JAAόΓ?όCδ\ζ?›’Τ{ agνK77oΧΗώύϋm¨Yί»@†ͺ5”©!e ΫκΊάζχ§FόΟμN‰ ϋ•‘έI w766Ϊ·~fwή―ŒνBά~ Yκρ¦›n²αdΧF«Bkuhέ4ˆ­kΣΝΝ#[ Yδ6hm˜?όϋtΡEΙθѣş“φ5i€HuR[ ₯λζόμ›NώΠ@ΆΞ3³ wG^'4υ/NZέY7 ›k?Ίe Ϋ“ι?΄Zυ‹/Ύhίi;υvνύλό}­T­γi8]ΣgβhΆΙ6οŽ<άόόΉι1ίΓ]“ωκϋιz:«’όK/ΙΛ/Ώl»9ν΄Σδμ³ΟΞμΎΧΟ‡ΞY―uΨ 9ˆ € € € € € € Π'τίΒ΅Ψ™nϊoα^ΦΧWΧίn­Ω‰Έ<ΘαL^ϋίlέΦΦf›λΏo;φpΊκ3m4χ™[ΑD@@ #γ1ΠάΡzό­ ―Ίπ¬Ά+// λfn?ϋΩΟ‚oF] YC₯wέu—­J¬U―½φΪNƒΛ™ύΊχ~ ωψ€|πƒt§μ«›£πuψσpkrη²½j`S«Xg†§;ǝΣ>³ύδ’V=Φ ΞΥΠ¨h.**’ΒΒΒΘ”tέ?ώρ­‘ Aλn,½ΎQ\€ά?οϊκl|Λ΄wΥOΫiΘ]CΤԞ8qbΞΰ½υΦ[ε«_ύͺ|ϋΫίΆ? zσΝ7k7φ/MΝΝΝΑs—-¬Χώρ”o}λ[ςο|Gί›ώΕλϋίΎ”••Η܎ήηo~σ›’γϋ›Άωα(₯₯₯ώa»8m²Ν;›‡t8γhψyŊ2ώόΘΌ³­GŸ Ψ΅ϊ τ/”K—.•!C†ψ‡EϋΙO~bŸIΏwδ"ή € € € € € € €τχ[x㊷iND{³ώΫΎώ›ΊVo>άMσ ς—Ώό%…ώfιΈ{\Τ‡ίhξΓ7‡©!€ €@(pΌš5”ψΫίώΦώ΄V6֟Σ*Όϊί›oΎiθΒ«›7oΆίlΖ}cλ$ό_MβΝzNƒZωΥίΞ:λ,[aφ½ο}―δζζϊ§²ξϋaά«ΊJ.»μ²Θ΅.ΰ7GΏ­[“k¬Υ›5d¬Υf~ƒν όΐ°ΆqγdΧsυ_%Ο?Ό γj₯γ|“οŠ3η¦}κσ₯U΅Ϊ !λρΈyψλΤπΈVΎΞά4`ku}Ήϋ¦?y©•¨ Ω$RΕ9nŽν˜:οΊΊ:ήΦκΫΧ_}pYΆοη?yΉύφΫƒλάNώύmEq€Ο ~ξΉημΊ\»ΈΧόΰ2mΪ΄ΰ” 5”ΫΛά™7ož όΊγ‡ΣFΫf›w6gŸ}V4δΟTΆνk_ϋšθ’΄>Z έUTkχρς©O}ʞΏ˜jε={φD‚φϊuγΑ΄cκsΑ|6@@@@@@@Ύ+ΰ²ϊ¬‡*ϊολš‹ΠŒΘ…^ό›σ‘¬@½ZΓΜξ·)gφ₯‘ζnΈAτ7NoζγνŽ1_@ή¦Ηc Ω;»e^Υΰ° ΤΖ……]~0Χ4ΏώϊλςΛ_ώ~3μυ_ίυwٟΒλμV?¬ͺ ψΊqβΪκΌ6nάhƒΒξΊΈΧΜΰrΆqτ9XΏ~½h8Ό#§Μ1|·ΈuιυxΥJ½.„¬Ηβζ·N½Φί2ϋΊώϋEC­ΊωχΝHq8τ§?Ι/~ρ Ϋƒώ…D+R»-[€Χ~υ:­&ΌrεJΉζškl ~πΰΑ’UΎusΧ566Κ•W^iι3gΞ”Ϋn»ΝΎΧͺΦZaX‚T«;βŸG}ΤώEL_5$­χLΧ¬}έΎόε/ΛμΩ³νΉ}ϋφΙ§?ύiΫFΟ=ώψγςΎχ½ο°Ϊh{έ²Ν;ΞCηφOτOrί}χΩΆZmYΧ§s kΕkΒήΆm›Œ=Ϊ^§ζώπ‡νώ~τ#»>}5΄ρ\ΤLmŸxβ ΫΧWΎςY²d‰=¦?| κ“O>Ω–5―ΫG?ϊQϋ«‡\@ίUcΧ€ΉVlgC@@@@@@θΫϊοZόL#ΆfF43αoϊoσοϋύCέΪΧΌ‚ΣβznΣ>υ½ώ½Ϋτί«υίςυί₯§@σρt·˜+ €ocγ-Π¬? ·iΣ&ΜΤΫ¦‘Δ‹.ΊΘ?5όωΤSOΩ°£žsΫ{ο½Wžyζ(ΥPdά7–.`«νβ‚±ZaXC•ڏVœΥ*ΘnλΚ―ι,¬λΖΟ λqmݚτΌ†©/ΎψbΙΛΛm―Β֟FΜμύZήΊu«8pΐΆQ§ΞBΪ:φ±4λ_~ύλ_λTδ#ωˆhΐg―Σϋ€Ÿaύ|Ηύΐ‚k―‘hύάκ6nά8ΙΝΝu§xE@@@@@@θƒώoeΦιiq­K/½ΤΞ4™LΪίj¬Χha7ΝAhŽ’«›·Σ0³ζ+άWν93Τ|φΩgˍ7ήΨ.«αϊθk―šϋΪa> € +pΌšύλΠ‘CεŠ+ˆ¬ΛQυ  ―ϊ!g­κͺAΖ³Ξ:+hwί}χΩΚΞξ€ 4k%\OCΛ£F²ΑKwΎj€RΏΉΥΠpf8ΨΏNχ3CΙC† ‰\βΒΔ™δlmοΊλ.ϋλTτρ)S¦Dͺ)ϋ‘ΝΜώά8Ϊο€I“μO,Ί‰<ώψγ²kΧ.ϋVΛγǏ—O<ѝΆ•©υW¬θζ‚ΎώύpήAƒτކ[υ›ž4λ_Nτ>ΌρΖv4 ΈkΠέmϊ«f|πAχ6x&‚1;ώ_†½φZ)((ˆ\ε‡u]W/pίόΰ2mΪ΄H».3¬ΧhˆZ·άwΥΐϊ׿ʟώτ'Ρ ΞΊΉvΛ–-“/~ρ‹2qβD[uΨΏWφ˜?§λ&ΫΌγ<Ί2ŽΪιO΄κ³€Υ˜υ§Xυy € € € € € € €@ίπο…^h=؟٠/Ό [Άl±–\^^ΙƒψΧeξΏόςΛ6Μ¬·Ε…™έΉΈPsii©ΝŒΈkϊκ«ώ[ό)§œb „i‘°Μ’――N–y!€ €ΐΫWΰx 4g†“υ›I­¬Ωx ςSs~ΐφ'?ω‰ΌτKΑ~χ»ίmΏQ{ξΉηD}ˆΏΉ@³_ ZΏ±»ξΊλdΰΐ’!Z ;λyέ `ΓΏ~™ϋG;Πμ―η‚ .°αMύ¦SC’ώ―:Ι 4οάΉSžxβ ;=uϋΐ>`ÝϊΣƒ™•ͺίρŽw؊·ύϋχ·AΣ‡zΘ^£5ΰ­aΡchΦΉόκWΏ²λΦ}έ4«s~ρΕEΓΐώζ?ώq_ύτ/"œ0a‚­Fퟏ πκyψύξwΏ+Ÿόηύ&‘}w &»“:¦>ϝmΪ¨¨H>ϋΩΟΚψΓ.šυώv·?—lσΞτΠpγ|τ£•M›6E‚ρO}/ΉδϋΦ·xμ±Ημμέ»Χ]Όκ_N΅βΆϋΥ>zbλΦ­ς©O}Κξƒ Σ;ZZζgžy¦}vοΌσNϋωΥgWŸa6@@@@@@@Ύ/ΰŠΎi,ύwΣΐ³ώ6`-V§fύ­Βmš1ΡZZΔΞm…™έ5™‘fύχq 5kQ­ΎΌhξΛw‡Ή!€ €@ pΌšuβ~˜7XH̎^}ύυΧm;'λό&_|±­άͺΗ\ Ymt,­šΫΡ6vμXΡPqG›_υן—kγ*'gυ|\Ϋ§Ÿ~ZΆmΫζšg}ΥώόκΡZιWΏ)χ7WmYιO.ώόη?·ίθϋΧψϋϊΝΏώ%@7?τ­!ΫΒΒBR»―ΧŽ*4»ωΕ­3³³ΈΎτš_ώς—ςμ³Οf^nί_tΡE’^z?γμ3©:i(ZΝ™[f€ΧύeΘ~'Π¬Αλ+―ΌRZZZμpσζΝ³?UͺωΡy<όπΓφΉΤ“.όϋ½ο}OnΎωfΡΠπOϊΣH•ξΜ9»χ‡ΣΖ΅uλsγ»γqώ8ΩΝ~…fΏ΅λχΐΆrσόΟΘΚ•+ƒΐ²>―ϋφν“w½λ]ξR[‘[+/kk­Β¬γ»M}τs¬Ο ΞE·Ρ£G‹>l € € € € € € €}_ΰή{ο΅ΏεΨΟ7ΈY»„-Σί¬ΖήΩ¦Υ™5α ΰu%Μμϊτ‹iq­oΌ‘@³Γα@8Ύh3fŒΌη=ο‰,QΓΙχέwŸ΄ΆΆFŽkψsĈΠΠ`Žqm΅Κπο~χ;Ψ=逓μOζ]{ν΅ςΗ?ώQ4T¬› 4λΎϊhUcm“ΉiUγλ―ΏΎK?έ§šλλλνΌΊκ*Ήμ²Λ"έΉoxυ§φ&Mš©hλ·Υυ½ο}ο³mυ'θvοή-‡Šτ₯ΑXύζΫ…D]ψΨ]€αX­~ϋΖoΨCηŸΎ”””ΈΣΆ‚­„όη?ΗtηΔO”K/½4ςӎmmmφ›|uΊα†lλH#σΖ…΅Ί΅^£Ϋ]»δρΗ­­Ut΅oqFΪΞυυήχΎΧVΜΦcnS={φΨωλ_Tτ/)°ΞΝΝ•ψΗ] 4λOlώηώ§΅Ρ΅^}υΥϋΰ5.ΐ«']ΰχpΝ.ά«ύθ―ΒΡΏiXW« λζΕnΊΞGyD΄κxζ¦&ZQ\?ηwžυSοξ΄q}ΊυΉρέq7ύ‹£{ζόczOtμΜmŊRUU%~»Μkά{ύΜk5κΟ}ξsφVc»7ξzύ!„Ω³gΫκΜ ‹λs―ΟΖδΙ“ν―ΣqΧσŠ € € € € € € Πw΄ –ώφ^έ.Ώόr[0Lχ΅°ΥζΝ›E«4ŸqΖ6 Η»²ιΏ+kΑ³‘C‡F~KpWΪjΖCs&ΗC˜YΧC…ζάUA@c.ΠΝ]EΡ ―VυΥ`²V"Ξφ+<τ: ψκ¦Υt5ИΉiUW κ–νWhέSN9Ε~#¬Aܜœ{ύ±ώγΕ_”“O>ΩΞΛU ξʜΤEοΆuhVΏΧσ(Υw_άώς—ΏΨiι=‰{ό*Uhφ€ρ8χάsΫ-ΩλΊ―^δΏ‡h~β‰'δ’K.±cmίΎ]FŽχΛ_ώ²ΤΦΦΪc.P¬UŠυ/jΊ}α _ k0άmΟ=χœhX]·₯K—Κ—Ύτ%[ΩΈ»m\n}n|w<ΞCpΰŠ+°—|ύλ_—―}νkξrϋͺsΣΏ>όσ6Ό­”5`―Χj°]Ο}ζ3Ÿ‰΄Ρϋ¨Avέt’ώζ7ΏiŸαO~ς“R\\ΉώΞ;ο”ŠŠŠ 0½cΗΡΟp^^^»ΐx€!o@@@@@@@ϊœΐ=χάΎΣƒζD4ΠμΆΈ’wξ\ΆWΝMh?‡³IΫΓοHΪh>=Ϊ"€ €@― ρζ"Ή_/’ΧλOδι―ρƒŸZιY+«E\…δŽΓu½/ΰWTŽϋυ1ϋΫίμOcjHVΟkX]«gΫ΄·†‹υ/,ψΗmX>σΪΈ―^γΏ‡hΦ0½«ΐ¬‘λχ·—5¬ώνo[n»νΆ`.P¬Ολg?ϋY[ΉXON:UζϟoΧ§›§M›&>ϊ¨m§Υ°΅²r l@IDATχα΄q»υΉρέρ8G+AoάΈΡ^¦aκ™3gΚ駟.ϋχο·χAΓΜΊieτλ»ΞΞMΝ΅’ΉnkΧ΅Χιgς駟–… Ϊ΅jui­ϊ¬•—΅·V^Φ} Ekeo}&4P­Ί~ ŠϊΧΏΆΟž+**²νμ ό € € € € € € pάlΫΆΝώϋ±?a-L§EΓβ~«±έΫyŸ@σΫωξ³v@Ž# jΘΟύ§UR΅―ώ§Ώ’Γ…,£%΅›ͺQC’nΥM+:8PN;ν4[!V«ΆΊνK/•«―ΎΪ½ευ8π«kλt΅ͺrnnξΟή½ΐGU{άP„XΡΨ¦oP+ˆM<±^©Z¨’Π_S¬αxΦνm ^Q΄Uሠ(‚-O±/Φ U‘P±’"ъ’ ‚FM°šw={²φ¬™Ω“™ΜL’=3ΏύωΰLφeν΅Ύk›½2σŸ5ήlΌϊ/vιΠ‘ƒf·?Η?κu’³ϊκΜΤz}όΰ?ˆίΕϋyαΒ…2tθPζ_;+φ˜1cδΞ;ο”LΝZπ5Χ\#3fΜ<§» οΨ±CτS¦7ntw‰y>eΚ™6mšΏ.“cτΰdζd: ³ΦΝ†ͺύ 8O4¬}υΥWϋk^}υUΡZΏώzΉφΪk½]/^,\pAC»‹ώA«ύωάsΟyϋιτZ`A@@@@@@Θ?ωƒ>π&²Σό‡N€Ε°ζ†}؊ €!(†@³RοΪ΅K–/_ξ…΄“ΡvΨa^ӝ½9ΩΎ¬€^Γ+V¬;w&­”ΞκΫ―_?o†ΰd;iˆ_C―­[·–c=VlP9~έηΤSO½^4Hlχ³δ{ξΉΗ›9ώ8ϋs²`°žή{ο•Q£FΩ]½ΗŸόηrΥUWIώύeσζΝήμΔξ 4€­38Oœ81ζΈ=zxι>}ϊΔ¬Χ29&Y½“yθyτCπž4i’ώθ/Z·[nΉEzχξν―³Oήyηωνoλ…Γν:}Τ™«gΜ)gœq†»Ϊ›}YνŸz꩘υ#FŒπΞΫ­[7oVh XrΘ!rάqΗΕμΗ € € € € € € €²ζBξ]Ϊ† €@ K ΩvYee₯όσŸ”ššiΫΆ­χ¨³ωVTTx³ϊΪύxΜ?νΫ·{³όρΗ^pyχξέ’AfρχΘ# Mƒ’ƒmυΣ€Ÿ|ς‰¬nΣ¦”””ΨM >jHYΫϋk8ϊΰƒnpέؘcRΥ»‘“i°YϋC Œλs©=ζ³Ο>σΫsΰ6xˆ~hΑώ>Σ―:ΰ€ܟ € € € € € € €ƒζbθeڈ €@Ψΰ—_~)ϊο‹/ΎπˆόόσΟŝ ΆšKhql‚Α-Yω|­wKšqn@@@@@@@ZZ€@sKχηG@΄4§ΕΔNδL`δΘ‘2wξ\YΏ~½œpΒ 9+·© ΚΧz7΅ ε#€ € € € € € € fΝaξκ† €ΎfŸ‚'4‹ΐ“O>){φμ‘~ύϊΙΎϋξΫ,ηΜΕIς΅ήΉh;e € € € € € € € ―šσ΅η¨7 €E&@ ΉΘ:œζ"€ € € € € € € €ζ’ιjŠ €@~ hΞοώ£φ € € € € € € € €$ МL†υ € *Ν‘κ*ƒ € € € € € € € €@Ξ4ηŒ’‚@@ )47₯.e#€ € € € € € € € Πrš[Ξ3#€ €@#47‹]@@@@@@@@Θ#ΝyΤYT@b Π\Μ½OΫ@@@@@@@@ Y€@s!χ.mC@ €4Pg@@@@@@@@ΝO@@ ΌšΓΫ7Τ @@@@@@@@l4g£Η± € Πlš›š!€ € € € € € € € Π¬𛕛“!€ €@¦š3•γ8@@@@@@@@Β-@ 9άύCν@`ΧfYωμ›žCη^gI·CΪζΜdΛϊ•2Ρ_dϋξέΎ}{ι5δj«SΞΚO― ]²ώ/Οʎ½"ν;χ’ΣΊ’ήaμ…@ h.ΒN§Ι € € € € € € € €E!@ Ή(Ί™F"Ώ΅›žηΟπpΥ‚ηdδρrИ]²tτ)2ωΩΨ’Ί^΅@y|μΚ&ώΙm_©9ΣΝ|ώ&nΕ#SΝ9ε€0@@@@@@@@B#@ 94]AE@ H vΛ"ιyήtoΣ€%ΟΙπnΩš·―ό™œ=α1t₯ηH/yS:]r›\ύύ村Ωm_Ε€%²px7Ώ^΅΅»€ΆVl+:δnfjwmeΓΊ¦QΗjΩΈz½TΙrzοΝRΗ4*Υ,»Toέ(λ7š–ŸxΊt-kΩ°l³48ƒ“ΤTΞ—£½#οΪ°S†umn§J‡Π­g…,y~‘t#Π½0xV”6Π¬_|ρ…χοίώ·ΨGuTQΊΠh@@@@@@@@ς]ΰ­·ή’Φ­[ϋZνΩ³§.¬ͺ©\lBž#Q½rY³s­4}³F)•&ύΩίš₯hv«³L`ud³VΑ˜Σ]ΥcυΈ)΄ό.ΩΉvXQ…ΉΣ₯t―υ–47οωkeΧΪSΫΆΑό“-‹δΫηMχΦ5hvν`ŽM¦]+~PΈλyώ‘!’tW―§\³g‡δ';aƒλ 47ΘΓFb4Ηpπ € € € € € € € €#Pΰζ‘²aηέτYαdζ*™‹άl.—ψP¨XgΝƒ›Ύ’ΝzΡV­š"]š–χ1‘εenhΩ 4χ™gΆ .κ@σκ‰ν€ί‰3{»ΧGό΅Σ<Y)£Μ Νfρ„k·©ΞΏeεΉxΒ­²Σ9AΧs¦ΘΥίW.›0Χ[hή΅E–Ν!“η>λ)υœIrΓΤα₯CύκΪ-ς³žηΙϊRΩΉΣ9‹ωΉΤό|ΪuKδϊέό2j·Ώ(ά9Cn]ζMεμ―7›r―–~ΗwŠ3ΟΆ,ύ™œ7y½yΆS¦,^†t‰IΧnY*=Ο›lΆWΘ¬?ί+ίοٞhΎ M`=K½z‹LΊχή되sσΕ"hΦ™šν ΝGyd±PΠN@@@@@@@@ J`λΦ­ώμΜϋξ»―„z†ζ ωhπ³Ώ™yQ3ΜΖX‹$34WΚ 57KPhΉjk₯T—”IΧ²ŽA…ζυΊΚΕC€‡7e΅ -/Š -ΧTIεΦj);²«t,ΙλffYy'?ΟΜμ=Έ«_^τΊnΎ@±r}RcΝ₯Νh•gnΉH.›[S… Ν۟‘Ag_&ɏ,•ώόI? ›@σE&ΠOvNs•<χςHΡόσΙ)C#³B;;Δ<=η†εrcΏ.ώΊ-‹FΛyΣ#‘κ„zš½άΰ²»έ]_1i‰,Ό VυšΌM—,—―>ή?o±<ωπΓ½Πj&νέoΏύδ ƒΚδPŽ ™€šm¨ωΛ/ΏfΦΗΟ?\4‡¬Γ¨ € € € € € € € €i h Y³^fnέΊu~š7˜@sΓWKεΖ·₯ͺΊΪγιXΦU*Ί–5HUSU)―UV‰wDIGιZQ!e !\'˜z— ¦λ*ΥUΥR[³QθήΟ 4ΟXΉA†U˜ΰ² 0GBΌ5fŸ‘Ά%ΡIυVWUI­©ΡeeRb‚ΏΧ™Πs€Ά‘s›"³TΧΧߜIJ:–Ι1Η4"N·½UU›ΫJ™ cWUn”JΣ^ιΨUzΣVͺjj₯rώo’‰rχ™!ξ&M£t_]jŒ€>£³3ΧTKΥΗf§ΆJ™ρΠz¬3ξΊh½+*ΊFχυΦFγŸί¬κXVaϊ΄£9G•|\©_tΟ€gqη­ήΊQ6š°΅.z}cΫέ16¦N'6P'1½VΉρ5s­y-•²&ΈnKRƒ*cP-K~C|\™VΚ}Γ*Lί—DΪ_ΉXJ{Œπκ1oΣ\w-œtz»{Q“­¦OlΏ7δ§Δi όX&Άλ.fςθΨšM½7ΎmΒθζ:ršγ3ΣμZ‹œrqdf-£β‚λdκ°^fχfΉσŠ+ε1g2e7,²]¦}ϋly؞ψΤKδήΛϋIiΫέ²lΪΕ2ΧO._"O½|΅θœΖ»Άo–7wμ0Ϋ/“‡5]:@~Ϋ~ο^ΩΫζPι₯³.Χn6ΑησύΰsΕSd°Σ€SΫZY?w²LxΨ\!χ>·PzΥϝ³@σπCeσzSΉ6;δό‘κ[ΧU¦όώιfrΩmν*έ:Ωi§mγ ρƒ>'žxΒ °6¦΅mΪ΄‘³Ξ:K>ψΰΖΖΎ! 4»‘ζΓ?<€5§Z € € € € € € € € Аΐ;οΌγ‡™σ~†ζ†Ν•«fK“-ϊL“5χΝΗ,Υ•2{tΡLnό2mή?ΈΒYh>ΏVN*=Y^rφπŸΞX#{ΖV˜ pη›ΐκh³Ί™YzYdfi€`Ž3ωV‘‘c€Ο‚;"ΟύƒE¦-έ$γϋι¬Iς΄z£ά4ϊd™Pq¦ώΣcκoΚhD{£u7΅οίGΤ«±Hω]²fμb9ytύΟ1U+7ν\kΪY#σO*•Ρ§|ΦY;22+qεόΓ;n¨ά5Kdτ• bŽ6 ²fϋέ±ύdfž=ΔτQάιϊ ν//ˆ4²tΓ"ι—’Ov­υ™ΆTξίWLάΪ7pλy>Kvξ)βš ²”?ώhΒυtΧšν‘ΌSHuε*έc ’wV›§}dޚϋdpό…^³ΥvO0,/y©ΎΉwmΨ)ΓΌ6VΙMνΊΘT-Έ™y{YάΜΫ±'Lσ§]²hΠ)2]ΓΕf9ηΊ%rγΐn‘Όn—[-vςf7ΠΌ}εΟδμ y{u½`–,œϊ}±·Λ.Y:ϊ™™0YΊχ9i“Η&6Ύτ’ž2YsΙΧΙσ :ΗižyŽτ<ΦHAηΜ’—oόΎ-Τ{όΛ/Ύ'W.‹€¬'-xN† η.ΠlΫ_++Gχ” ^*dΙσ ½@sLeŠμ‡Ζ†š 3ήhΆ³4ΫPσa‡Vx¦E € € € € € € € €ΐΆmΫΌ™™5Μ\°ζͺUS€Λΐ›ύξ:nœt|m•άρ¨ ¨φ7aΩENXv«L1³ΣϊGτ*γLtΥΝwψ‘>³ΦΘ²‘6Τh&2eΐDyΝLΘϋ¨ ϋJΉτοS&ηNΏΟ ‘ΦψΥώ bWΚ¨v=čςφ1Α沏WΛΏ"3žά.cOŒO`ϋΝ3OͺeΞIδJΫ<­ΏΙ ί|G΄δ1m’™ηΪ`tγΪ­»{NσΌ2th™l4ηυ‹vλoϊC6ή!Ρξ˜&[φŒ;ΟwΥꛀK?/ςkŽ*7uκ+[WέέάJΩ3ύDY5ε'2ϋ533ς£Ρ ²†Γ»ž;]fš™šƒŒΛϋ•#kˆI™χ†=wK$nNW΅JΪuθΧΆΟΠqζš~Ντ{4Υ>Λ„ Gϊ‘ζΈλ$₯‘s}šπϊΞ΅ΓόΩ«ύ“6φIν‹f6δ‘υ³!_ ~yͺ˜9’c–Ϊ-‹€ηyΣ½uΡ@³„ξjfJ~ğ)Ω?xϋJωφΩ‘Ž»NZ  ?Ύ~“hξ:EždHL YjwΘζ7wxϋΆ?΄›ΔO†\‘¦4ϋΑk!Πlϋυ½χή“Υ«W§œ©™0³+¬GhΦG 3»f 5zθ‘…Υ`Zƒ € € € € € € € €@‘Όϋξ»^ΉpΝΥ«ε€NύκΓ©cLpy¦\ήΊzΆtοW?kσ4ΩΫλφu³O’3λ“²cΜlΖ3νlΖq³Ω.έ²GϊzIΦψ@³˜F ρΑΪh`5Y Ή\ζmxLw—«ΦΝ—.gŽŽ\–&LΊέ„I“Fš·vέ/τφgftžngt6³0OμΤCξΠ-N ΅±νΦ] *+7Μ”ήυυΤ5Ίl5εξP63ωξ13ωF—`«˜`qY²ιΎ‘r€ „‹™ΝxΥ”3dΰΝ/6Ασ&xnΦW―›-ΞŒτ]ωΈ‡δ±ιηΦ{Tɜ]δΚϊ‰–γέ£υˆ${ξ>7VΈz ­žι…C£3 ‡tM*UF•Ff\vC‘Z`4°jΟ«k£θ>fφβeΓl0Z·™­σ‡HΡš° ΕzΤTΞ—‘πσ¬5;͌Ό‘ ¬ξR΅zŽLyτ5ιxD™6VΓ»oo΄ξfΆh3γοXΖίh%ό ° 4ο4ζh ‚­όύΝ,ΑOξ\&'F0VΆ=Φ*Z†ΘΩ΄g¦Δtk —F‚ΕρξΡFžEΟkΚή³(:Ϋ±Ω=―HΌ£˜s 1ηΠή°η¨Zmfο§Aγ ώ©”!fφmέθΌ rχ`νΫh;’Χ’Y­[όΌŒΞ-U&Δή%b:o“)?F$&©―ˆ);[ΓH3ϋ―Vnl y΄ 4?›ξi+“η¬Ÿ‰9u Ήvϋz™1αby8’[NzΝIiš|C²P3aζ&§oΡhˆYfΆ6ΤΌgΟιάΉs‹Φ‘“#€ € € € € € € € €@γή|σMiםΨ0³>Ά2a HZ¨qe΅ΨήΡΰ§ »ΖVΕ¬šs·/™8«ρΦΕf6γήA‘™v·ϊΑΣY&¬;2 ¬»bT;ΉΠL>,ύMXw‘†u“S£ez΅΅ wtψ€«w\•™mΊKdΆιψςlΉή£θ՟‡N›'#ϋVΘ1Ηt•ŽNP8rL4h›n{Ε Ϋ&«GΤ½±ζΔ~L΄Šzχ™±F–­ˆ4ΕoΤ1Yύμ~=ύ@»έβ†Š£3CG·&ž#Z– @/])Η΄ξ-ς±<:ρBΉΓL4νΫh;’λ"ΗDΫ LGKKfλeή,ΦΡύυ™™Ϋͺ5¨ίίͺ™ΐ³ 4gk{žΖύδšεœίΛΛ7ž–P€» 634ΗšKΝq;ŽυWTL1ζ!iš·ΘΟΎ}ž<ζ\*.)§u;D4,»ϋΝ•2ωΦΘVΏ>f_fhφΑšν‰†šŸzκ)/άͺ'Υ―θΫ·―|πΑΝVNΤόbvιμΜφίξέ» 47—pF@@@@@@@@²Π@sϋφν½@³†™ 0Πl££Je„†e†lί361Πμ̊¬αΧσe…™έx„;ΝšΗšύΰͺ?ϋp²`jbπΤ+Ψό'@uΌΡύγήqNP9UP·jέ|ιrfd–f{N},ο?N¦b¬τ­(‹ι„“Σmo(ΝυύZnΝk›!ΠΌa§™½9& ν+Ϋ«§œ$ύn6‰εKtφνd׍{}€hφ―I3;τ“;ΧΖΜp©NόΉ’ζl S4·ΑΝnXΉbΚY8€[Βώξ>~€Ψš/234{(—N’ηž.ŽLΆ’αš·―ό…œ=a™wpι€dΕυύbΛή²TΎ}ήdo»_σζdήM»ώwή‘gžyΖ»uΦYςΥ―~΅iOHι-. af]μμΜ6ά¬‘ζ?ώ˜@s‹χ@@@@@@@@@ qh>πΐ#AζV­€•ώ+΄šWM"Π\DΧME@@@@@@@(  4tΠA‘ s‘šύΐjω Ω²v¬Dζ%Žv`ΝΖ9Rzς•fEΉ¬ά²Vz—ECΓΣVšš{wŒξμ=«‘ω&:ΪCΛ§­”΅γ{›΅Ι‚©ΡΠλ<3ϋσ`'€ ¬ΊAΪθώύηmEƒ£W=uτ˜ «WΉϊΤHM>-1!Ώθϊͺ«dΚ¨²ΐK6O“-{ƏƷ7zψξύηΙΞEƒMMμlεο/Gδ˜θωμΆhεγLLΧ>p—¨£=Ωέκ>oάycŽ”Q&\“Ϋsψe•› ϋZ Ί§Z’νˆοοh›£εGKKl_tso7ΧqΒe»Q˜ΰΎΉleΪΚ-ζΊ>PΫPΈGΟ q3—s]w―μŸο’EƒN‘ι•‘’άπgΉΎ_'§Ψν2gΠΩrkύv7@Όώ–Arράϊ η\'Οέ80. ½K–ώμ\ΉE–GΜΆCόR4o1ζσ")bΉδή§δκ^Ρ#M*Y¦ύΰgΫV,ο>’ΎύcδΙ-ΣδΔ²ΣG«L ¬ο£δυ«?Π ϊ:eΧo <―=Π ŸΫ@³HΧέf­ά #{GϊoλΊ2δΜ’μ1K·ΘΜΎ‘PσЉν$’'vώBτΚ,1NΡs΅!zDΟmBή¦¬~‘<΅ΉlŸ”Ϋ†θΝ]Ήκ&ι1pͺVΙ\θwΙφeΓ"sΧ°|œ¬Yφ ©HaΈqρ™2£τ9SΖ{Χf€Ψμώ[+™v‘\ι&—“θu—]/.’S†NO²wύκ“δ©G†§=C³ΘvΉεΫgK4bΌψψ•—^ΤS&;ΑεdGΊνh(ΠφΦςJ―Z O<>YΡ¬G ¨l˜Y­Ο?ψΰΝEuΠX@@@@@@@@BΠ@σWΏϊU?Π¬mj•ρζd³»αΠΐŽ+Ÿ![Μ,Βvή\ ―˜XZ4 ‡¬?—›ΰτZœŽΦɝm9TΥ}ƒ—rYΉe­τŽV6`·*™}R™€ιΩ$‹ͺml{k*ηKiΡ^Ιn 6ζTUf–δ.‘Y’#λν,ΐΑV•σ͌Σ5iνzDŽt­6˜™©»šl΄.ΡYš#?ύ7iύκwvΟλ–­›έσ&^[ΡΎrΟQ½q±t:yD}ιAΣLpyΌί†ͺ£Μ¬Ξξr—μ\;Μd£0vfώvΟm*,͌ΰυ™ζ€“χ‘•f6k²5{¬ž=@ϊMŠ„ϊπVEΟα|8 fηeΓΊ:aΩ‘&ΰzw}ΐ5’•ς12b΅άΌΐ©―Yχδ²™f&bΏ6 <©’³o’ 'ΕΕ[ΛϋΛΌ™3epo 8vI»½Υλd@§3½YηmΨ)ƒmΒ8Ά8Y7g”œy₯ λ&š]«κu³₯Σ™“Lβ;>\n 5†'Γ—Δ΅ŠœLg >yDύlΪήͺ>2γΎ2t€ί’aάΈΚΥθŸ7 μh Ωœwι£˜"’}υΠ¦‘¨νv3φMWŒ’©qΧZqσδΆιƒΰΌP%s†t‘+£ˆμ43(—4h\%7™ΐϊTsi$ϊkΏO1ύnέ#•κ3ζ.™yν0‰Ήlλλ›hX.³ζ•U#F{Χν<ΣΎΑ:ΓΆ™Υ|ρN2Bλ:ΖΜ>³o} 9|¨έ%;vμ61^‘ΆνΫΛ!b£Θ ©Φ;v―΄oίFφšslrύϊ΄5εΆ—’ρ‡Fκ²ΫΫΦΨvX»k‡μΨ]+mΫΆ—φ‡tpΤA{³β¨ͺͺ"Π\ΌέOΛ@@@@@@@@ςT@Νee±αΨΌ 47ΦΎ¦¦Zjjτ¨ιΨ1ωek€ΊΪ;ΐQ:$ RΥΥΥiœ3’ν?o“,|€Τ˜γ"gO·Ύ‰'χΛ(1e˜ /Ήi―γ­|%Ζ.ε©ύƒϋ$Zη’Žζ<Υ&έIΠ"w­Ω)Γ*R΅Ή±ηKsϊΆK­‰ηXΦΰ΅cϋΘ«šΕ7Έ›ΉΘ«#ΊΉlIƒ;›ΨΏΖμ[t™ͺ¦lG’ hNJΓ@@@@@@@@B+P”ζΠφ†W1'Πlfr^dfrfI&`f66³_yδ]²eΡ0gΦγj™ofνΝxάGžάΎLNt'ΣNVλ@ς^€@sήw! @@@@@@@@(BΝ‘λtΝiwΙΦΕϋˆϊέΛeά¬±RQR%σGO•ΗνΪOΚΪ±'¦]$;"€䷁ζόξ?j € € € € € € € PœšΓΦο5e@ιΙ^ ·|ΦY;²"l5 U}ͺVΟ—.ύFΦ©΄₯rίψΎRΈ•• €…(@ Ή{•6!€ € € € € € € €ΊζΠυp΅l\½QͺM½JΚ*δΔCWΓπU¨F*7“Χ*«€F+WR&'ž(]ˈ2‡――¨ Π΄š›Φ—@@@@@@@@h ΝM‘J™ € Π"š[„“"€ € € € € € € € •ζ¬ψ8@Β$@ 9L½A]@@@@@@@@HO€@szNμ… €y @ 9:‰*"€ € € € € € € € '@ 9„@@ 4ηoίQs@@@@@@@@β Π\Ό}OΛ@(8ΝΧ₯4@@@@@@@@ 4A'ΣD@ŠE€@s±τ4νD@@@@@@@($Ν…Τ›΄@" Π\δΝG@@@@@@@ΘKΝyΩmTΒ˜:ujα4†–Œΐ΄iΣ ¦-ΕΦΝΕΦγ΄@@@@@@@@ 4B/@π4s! € € € € € € € € šσ―Ο¨1 €$ М†Υ € € € € € € € €„X€@sˆ;‡ͺ!€ €@γ47Ξ‹½@@@@@@@@ƒζ0τu@@œhΞ #… € € € € € € € € Π¬𛕛“!€ €@S hnJ]ΚF@@@@@@@@ i47+₯"€ €@ hntN‰ € € € € € € € €@–š³δp@ζπτ5A@@@@@@@@ ]ΝιJ± €„^€@s軈 "€ € € € € € € €  @ 9„ € ―šσ΅η¨7 € € € € € € € €@1 h.ζή§ν €˜ζλPšƒ € € € € € € € Pš‹’›i$ €Ε!@ Ή8ϊ™V"€ € € € € € € €–ζΒκOZƒ €@Q h.κξ§ρ € € € € € € € €y*@ 9O;Žj#€ €@’ζDΦ € € € € € € € € vΝaο!κ‡ €i „%ΠΌkΧ.©««“<0νΊ³# € € € €Ν)°wο^ωμ³Ο€mΫΆRRRœ§ζ\ € ¦χλ4‘Ψ @ B€@sAt#@@C ω­·ή’Ν;ΛΧΎφ5ΩΌy³tΠAt € WΟ?ΌΌχή{»woιΠ‘CFu―–gŸ}V;μ09ώψγ3*#Wι‡Νή}o\VZZš«b)@!πο[ž~ϊiΩgŸ}δ{ίϋžχ؈Γύ]Γ4ΖΠρ§Ÿ~*eeerΐψuΜ§'Χ\sΜ˜1CfϞ-cƌɧͺSW@<\148σβ‹/JϞ=επΓoQέψ1χλνNŽ €Ν,@ Ή™Α9 €4@Ν―ΏώΊsΜ1š››)@’ψβ‹/Dί¨Ϋwί}₯uλΦMβPSS#ΗwœlΩ²%«`Λ‚ dΨ°a‘Ω7ώnΌρF?~|“ΈQ( €ω, ³ώι7Mι,½M΅θ‡Ύ=φX―ψuλΦI―^½2:UXΖŸώΉœpΒ ²qγFΙ¦=!δπ 1ίyηYϋrXŠB(0|cŒ9RζΝ+§Ÿ~Ί<υΤSψ*Ϋ. cpΏΞV•γ@@ Ÿ4ηSoQW@hP€@sƒ^Η8ξ’o~φΩgRRR"x ·ΙΦSΠ7wοή-6lΪΪZiΣ¦7Λa²™œ΅=ϊUυuuurΘ!‡ΘόΗxΗιΈJΛjέΊ΅{zοΉξϋγX–-[&lΦP³»¨©†΅mϊ•κU^^36SW­·ΞΊ¨ρ‹«ηQ hΩ%“ϊΪczL§ΞρΗλ‹[·nυκ©}‘ύ•lΙO?ύT^yεοΡrŽ>ϊθ„kĚ΄kΧΞ ¬»ηΣ~Χ~ΥώΠkS—ψuϋΫίδγ?½ώ:wξμ–o½υ–=tοή]:θ {ό­‡Ξφi―ŸnέΊy}hχ{ϋν·½{Pί©γΏώυ/{  €@± θο^ύέ―ώΡ@σŠ+€W―^Άm[οw|.‡λύtǎ^ΩzΟ΅‹ΦA_/ΙfŒ_ΟmΫΆyγ!½G뇫N8α„˜ϋ΄=·>frΟΦ1•ήwt¬σβ‹/ΖάΟ΄ΜtξΧv ‘γ‹ψϋ²Zι}JϋΑήO΅\]2©oδΘΰ¦ H₯;~΄₯λώ:Υϋ³Ž'Υιλ_Ίέœπ¨ΧŽ=uΡλBοAγΊ„Y jTc ϋw₯Ύ°οΎϋŠ~K„ήτžνώ¨ε€ϊ;1hŒ‘λτΊ€ϋϊƒξε—_z―aθkΊΨzΪΏνλ-ΊM_OΡΏ―“-zΣ1‰.Gq„wOΤ±ή#΅NAK²1χλ -Φ!€ €@‘ šeϞ=uόΓ€k€k€k€k€k€k ί3ӏy―ͺe—Χ^{­Ξ λΎφ΅―Υ™Wͺ3_oξ­?묳ΌΗψ}ZΆΦœ@Β,pΑψγCΨ&πQg@uζ 5έΰΑƒύ租~Ί·έ„uλ¦OŸξ―·ΗλγΨ±cλLΗoΎ;nY·n·ή]wΓ 7Τ™ SBYwάq‡_†>™?Ύ·­ƒsλyηwzγ%·.ϊό―ύ«ξκ/ζΝΔΊ›nΊ)α|}ϋφυΗWwί}·ΏΏϋΔ„·½γLΨΪ—Ων&HνοΦΑΜΒTχΜ3ΟΨέκFε•‘Φκθ.ζMΏ^?ώΈ·)›ϊΊe=O·ΞφXσΖo:ΉνΣηΪΖ'žxΒξζ?ήύ ϋκώzθ5`{=ήxγv•Τοv–υ£ύΘ?‡=^ϋυλη―wλ;gΜ:5u3ΛW™±*p½t$«;υΤS½}Ž9ζ˜„ΎSK{Ξw‹η9 P4ϊ»]_»°ΏέΗλ»ΞsΘεοp;HφzI6c [O½ηίvΫm mυ&PΣ·Ωά³Ν·>xηΠ{’ήsά%ϋ΅Ž½tl‘ζζƒjξαήσ§Ÿ~ΪoΓφνΫ½uΩΤ7αΊώοφΞefšvΦΦyχΣΫoΏέ―‡{}Lš4©NοΗξ’γ$νCw?ϋά|(/a7ϊv?}ΤλΓ‹Ήηΰ9 €@~€3Ζ°Wκο}ϋή‰ήΦ¬Yγ5²1'1μ:-3έΧlμίͺZ»ξ'?ωIήΟά{–>ιOšpΣχΥ† –°―–aOφwh²1χλόΈφ©% €δF@s?ρY%ΝΊ.Šψ‹„Ÿ 9r p p p „ρk Yί¨ͺ¨¨π_¬²/ZΉoβεfhG) € PˆΏωΝoκ4¨¬c;ŽΠŸχ»ίyΝ΅¨²Ϋμ£Ύρ¦ηΛ/Ώά?GuΣ¦M‹ Lž<ΩgsΗ-f†$o½»Ξ–­ε\rΙ%~ΉΊή}CnρβΕή6­ƒ ϊΥsΠ A1!W ™Yύϊθφœϊhf%ςƒͺv}|Η|σΝ7{ΗN:ΥςΝ7eΔ”9aΒ„ΊqγΖωλ4πkfχυφ}φΩg½υΊ.~¬ωχή6ν}³U—lκλδ?©³‘o Ϋ ”:©σΥW_ν·QΧΩ7Šu‡~Ψί¦mΥΐ° λΎfvk?œμT-'¨ίν:Ϋ_φρž{ξ©335'ΤσώηόΊθΎ+WΤ’½EΓ\ρΧσΟώσ˜74|₯‹}#XΛ03q{λμf̘αCί873“ΪΥ<"€E% χw½OΫ ŽώΎΤ{€ώΞ·0Κεοp;p_ ΙΥ#¨ž:NqR^x‘?&юΞτž­γš3Ξ8Γ»Έχ(-³1χλ[o½Υ+C?xcf‘ΤΓύEΓΪΪ:–Σ%Σϊϊ…&y’μΎώΛ_ώ«ƒΦCϋμWΏϊUΜ=ΫhΡsη΍Ω_Ϋΰϊλ€μ˜PοξΈVΓ`φCdz>ύgΎ1"IY vtΖφώcοΫG}]‘±'1μ:[>¦zύΑΦΙ}Α³εθύλK/υοyΊώή{ου»Dοuζ›/όνΊΏήέϋžc_oρ4OcΨzΈuΣcΉ_»‚n°ΘΎΑζ‹ΛhPΕ{έ7Φl°Θ £6TO7ΌcΟλΞ°?KŸžΧΎθžΧΆο©§žςΪ¦‘Xž΅Ϋ4,υΰƒΖΜPl·΅ΕΞζλΎIι‹V―^νžM}νω“=6¦ΞnΕΟN­εΫ7‡5D€νXΆl™g₯?kΈΩ]τΝZ ” @IDATP²Α’dΧ‘ΤοvΎΉμ†u ίk_θώ΄OέeαΒ…^½άkΘΞXΤ―ο½χž·Ώώ ³Okyv6ηΣO?έΏά―Ž»»ηη9 P,zΆf{ΆmΟεοp;pΓFξ=+›1FCυ΄ΏχέσfsΟΆγ‚ {lcξΧz΅3=λ·JΨΕ†“΄Ύ:ŽΣ%›ϊΪr“=έΧνl:Γ²ΎΆι.z΅3OΪ{΄;ŽΣ°—»θ‡λώλΏώ«nόψρu»wοφ6-X°ΐ»g»m΄ΗθχΊκͺ:ύ°  €@~ 44Ζ°χχo5ΫΪΖώ4Ζ°λ‚^'qο[ξΨΗΦΙ}Α ͺ§½ŸΉίLeχϊ6 ύ ”ύφχΌΆέ 1lΉnέΈ_[9@@ Π‚Ν­τ 3ΈcA@ςJΐ$€sηΞ-ZgσI1_*ζM1!!9θ ƒΔ|2^ΎϋέοŠy!NΜμp2rδΘ­#'G@όΈβŠ+δφΫoσ–Œ3Ζo„θ 󦘜pΒ ώ6χ‰ŽEt»™΅PΪΆm+:vΊξΊλ’Ž[lY©Ζ2Aυ23 Š™WLΠE–.]*ϋ쳏4TOχφΌΆ σΖ‘<ρΔΊuk·9t^έΑΌx'ζ+`Ε|υΉ˜Y•ε?σ?c޳?¨ƒ #ΛΫoΏmW‰™‘Xž}φΩcΣ{μ±bΏbfP”#Ž8BΜLΑ·o_1oFŠ ΕzΫ2­―ς4ž€Sη K·h3C”Όωζ›ήͺ£>ΪλΫW&0%ϋξ»―»»˜Y¬ΕΌα+;v”―ύλIέυ kΰφ»]玏cN`~0³Yyξκk‚RͺU+ωϋίξυŸ[V²>·ε™7­½γ;uκδυ‰ ψ‹ ‹y›ίxγ ―ΏξΊλ.Ήμ²ΛΌ1»žoΏύφ³‡σˆ₯@Cχ\ώ·γχ~ΰž;θυ’ ίϋΆNξύΑsΛΆt^»cΗζ½39ρΔΕΜ$μ Ž;ξ8{š˜ΗtξΧz€ωπŽ :4ζžτ«_ύJΜ7-ˆω•χ’ή3­oL₯’όdlΧ™p²Œ7.αΘεΛ—‹ 5‹™A{­KΗ^x‘<όπΓήΎ#FŒ‹/ΎΨk—Žβ½–——{«΅ΟL˜]N>ωdο5½’’’ψέω@ OάϋΌύ;ί6ΕήkLXΜ‡\½Χ μ6ϋ˜ξί‰Aχz»Nˊ?w²zΩ:Ή―ΉΨuAυ΄χgwL’―Υάyηή½Ν|sƒmŠχ˜μΌΊ1ΥΓΦ#¨nά―c˜ω@ @@ίΏ(++‹m‰šω‡ΧΧΧΧΧΧ@Ύ]ω0C³ϋ ϊBϋ€νA@¦š‘GΟθΞ2₯ϊ € Π @όXvη†ή¨sΏΤΜ0\gf-{ρΕλΜ'άλΜ,H aχM1ϋ¦Ÿ»ΞΎyfΟ­Aυ zc―‘zΊη°η΅e46Πόΐxν23zV·ϊόή{ου4fΑ: i0GΗ’έ»wχΆΕ·Σ£_±nf]τβfvfΏψLλλΠΐ{~}36UΝŒΚ~ϋ¬eEΧ™Y½ύhzΣΤΈoθΪuA!3ύ*azκΥ«—x2³^ΦιΧΣ_~ωεή6[–,:w²6Ϊ―αΥr΄νω48Ζ‚ όa&λ’«ίαZžΈχχώοΥcc4TΟ σΪύ3ΖΠ@ήƒυ>bfVΦκ%,Ή_λΑn™zoΣ{ –of>Σ1œ]2©―=6ΥcΌ±†ͺνΉ’έom=έΎ΄ηY³fMέ”)SκN:ι$ž«m;vlΒΤήύΊωσηΧ >\bΗAoΤ­Z΅Κ ˆθΨ$~¬€‘Q=&ΩΈΕΎι—j,cλεŽs‚ήΨk¨žξ9μyΝΧ–{υ;ζ˜cΌ γ{,θΌnθuυκΥρ‡xεhpVΫνΞlwΤYu›ΫέζZ͜93°^™Τמ·‘G}£²1uv-ƒ ΤHg>Τΰ³Ύqjϋ*Ωl“6}wξάιUӍƒόμ ’ξΊΆ|χ:³ν΅ac Ni;έεOϊ“ημ–eϋά|₯»«|ϋφν^]?ύτSέ /Όΰ•£ύΪ―_?﹞OX@bΝΟ?| I.‡Ϋq€{?pοYρχ^­ˆύ½οn³urοv[ΆmHΠy3ΉgΫ ι9τήΏ4φ~m·χ»³Ο>»ΞΞκ¨γwΙ€Ύξρ =2Άλ‚ξυZ– nkhYϋPΏIC?π₯άεν·ί»κͺ«Ό{―~°NΦeΧ]ήΎ555ώξϊ|εΚ•ήΈ4Ω8Νί™' €y!ΰήηγΗφ^γήΟm£ϋwbΠ½ήΣ{Š}Α–οΦΛέfλδŽ;μΊ zΪρ‡»Νώ½/Χs';oͺ1†kλT7ξΧ*Δ‚ €…$@ ™π2αe‚ΉβC:-1h³/”Ήo’Ή/TΉ/8΅Dύ8' €δ―€}c,ώ«Kνψ#荺 x!’.]ΊΤΉ!OUXΊt©·-ΩΈΕΎ±—j,τΖZΠ{ ΥΣ=‡=ο3Ο<γΥOΫε~νΊΦ]χ·!_w|eΓ«AνΥγ>ωδζϋοΏ_Wω‹[f|h\ƒΏƒ ςλ£urΟ«…dR_δ γϊ§;ΖHVO-+θΌ™ά³mˆWgΦ{Xόβ:6fŒρα‡ϊίό`οSξ}LΟ“I}γλ—μη c{?ΧΎzο½χbuϋΜήο_}υUŒτξ»οΖμΏyσf›Ξή¬vzoΧΆj€;~Ρ`·nΣ²5(Ν‚ Ώξ½1~Œaο?φ^b[™Ιί‰Aχz»Nο)ρχUχ^ζn³urΗ$v]|=΅Ύvόαn»ωζ›½ϋXΠ=τMσMYAχϊTc =—­‡[7ξΧ*Γ‚ €…(@ ™[Α„ΨΒ8S(ub[ζ½4βp•6!€ €€Π―οΦ7Ώ4¬»cΗ«Θz£ξ©§žςί0Σ7Φ>ψΰo¦]ϋ†™–§o΄iT— 7φάuξ›gΆ^Ao¬½±ΧP=έsΨ75˜[QQαΥ_gυΣ0.ό6l˜ί.·NΧ\s·^Ϋ΄Έ38k(VΠ:›ΰΛ/Ώ\Χ·o_ΏL}c0~YΆl™Ώ]έ΄=ξ’I}έγ“=Ο€Ξv¦d­§~Υ­ ³―]»ΦM]tΡE^¨Θ΅ΧkAΏήWu™>}ΊίζW^yΕ[ο:<τΠCήLΗΪ'ξ5εΎ‘k―-[χsϋ¬φ>ZχΡGy³GΫ~Τϊ»3GσŸτλσ£ύ¨ͺͺΚ+NgœΆ³/kΏΪφΪsέyηώqZζoΌa7ρˆ½€ΞŒk?$4qβDοwθξέ»=—\ώ·γχ~ΰήƒάϋΉν”tΗ Υ3輍½g»PnΠ’ΙύΪ–c?Δ£χ¨ e5ΆΎΆάtƒŒ5”¬u±υΡϋ―.:3υ…^θo³ία~¨H?€dCΝόqݍ7ήθν―χzϋΊm―ΣV©†—υƒUέ»wχφ ;§ΣφA@Cc {qv΄5oμί‰Aχz»Nοeφ5[Ύ;ώp·Ω:Ήc».¨žvόαnsCΛzO·χP­ώlο―φΌιŒ1΄ήΆnέΈ_Ϋε@ M (ΠάJΓWf0Ε‚ €δ•€ 4HηΝ[΄Ξ―ΏώΊ˜―Eσ˜Yhδ ƒ3Ά’O+§vZP•ύuv|eΒ°^ΫΝ‹]bή,”o}λ[ώ>ξ­ΟόcwUΒs·ήv£–ί­[71a―]ψΓ€uλΦv³χؘϊΖ˜β‡ΖΦΩΜj%#FŒx °d«š―όώυΆ«ΉŽW“-&Œ$γǏχ6›PΌ7ΦMΆ―W?ͺ–}χέW.\(C‡ΫcΝ›»IϋΙξ㎫uέάΉseδΘ‘vsΒγO%ϋοΏΏoε>iμύΪλή‡Ν‡²δκ«―Ά›όΗΖΤΧ?('W\q…ά~ϋν1γ8=Μ|€I˜΄σ!rν΅ΧϊΫo½υΦΐzΫΜΜΦrΫm·I«V­dΫΆm³gOoLe·Η?VVVz――Ε―ηg@όcŒ7N.½τRοo;χoGΫ2χο7».ώΡ½―1μύ_s_cП“½ώO4Α λiΝbΎu ζu-–[nmcC‹­SΊcŒψΊΩ²Ή_[ @@ Μ‡Δ€¬¬,ΆIfΗ¬½p p p p p p δέ5`gziΙO ΩOώλΜpv:ύš΄αΓ‡{ŸΎηλ­[²w87 €ω- ³™7ύό}Μu_|ρ…7벝ιηο{B#uVf-ΟΌϊγ;逓Όρμq>ψ wœ;SΡ?ώρo]ͺ±Œy³.aœcg*Yό΄ŽΊh=μωβλ©3σ錻ZΗψm&xλgΫpΣM7ω³IΪŠμΜΑκ’κ+ΚW¬XαΝLmΛΣG-η·Ώύ­W­η]»Όz»ΡΩu_ΨvWΗψഏkι΅­:²ΞŒl^|“vνΪyΞ:λ,1o z3 ^~ωε§OΡΩyu†’σΞ;/e΅ΝŽbΎ =#Λ† O§Ύ:{² ό483‘žΓ„€δ­·ήςϋ+“:›―°]Z Υ.Υ5£ϋκ1ι\'ΆO΄μ†XRn³ηΥϊxΰ)χΧτόΊ΄mΫΆΑct&ΘΓ?άσ|ε•WΌηށό@ F@―κοtcθcΊK&ΏΓΣ-»)χKηž}ΡEωχα7ήxΓ»§ͺS&χλTeκφtκ«γ#NOYœξcPή·)€ΪYǞζΓAi ΄,wΜ™κZ1Η'Ÿ|β΅ν+_ωŠpΐ©ͺΓv@<(¦1†Žτۊμίβϊν‡rˆχϊƒύΦ§΅kΧzίD`_›IwŒΡPΧsΏnH‡m € OA34·šσ©Τ@PΝ\ € €@a όξwΏ“_ύκWbf^”£Ž:ΚoάόωσΕ|†χσΣO?-½{χ3£θxΗsŒΈρwnΖ'ιΦχ”SN3Λ³μή½»ΑΪιŸ€€KζΏόε/eΪ΄i _œy‰‰ οιή³uŒaf3#±}τΡ-Φμtλ«γ ?όα)ΗB463JŠŽ5X@@ 7ϊα#σMU^ ωχ½kΙΊήΜ²,ΏύοΕ̞,/Ύψ’|ύλ_Ε#7-§@@ wšsgII € ΠΒš[Έ8= € CššιΩ³§lΪ΄Ι+υšk‘c=V–.]*όγ½u§žzͺ7Kscf‘ΜacŠΚ·ϊΖTΎ¨­­•|P–/_ξ_/ωΛ_DgdA(n|»gη[}‹ϋκ’υ €Ε, ί°ΤΉsg@ΏqI?X«ί>π›ίόΖ /λ†λ―Ώ^½φΪbf’ν € €@ƒšδa# €䓁ζ|κ-κŠ €€ΨΆm›όθG?ςΎ=~o]ύχϋ_Ώ½%~Ξ·ϊΆ„QsσΥW_•ξέ»ϋ§;v¬Μš5KφΩgO@ŠW ίξΩωVίβ½²h9 €@± <ϋμ³rΪi§2θ7PMž<Ω›Α9pV"€ €f.@(ΝΣ•4@ˆxν΅ΧΌ™šwνΪεRΏσοΘqΗ³O˜~Θ·ϊ†Ι.WuΩ±c‡άsΟ=ςΕ_H―^½δ?ψ΄jΥ*WΕS €@δΫ=;ίκ[ — Ν@@ Q{χξυ>˜½eΛΡoZΠYšυοΓ?ΌQε°3 € PŒf3ƒI]1bΠfŠQ@g&ϊςΛ/‹±ι΄Ž8βˆ€΅ω³Š@sώτ5E@@@@@@@@ΐ šχμΩC Ω ρˆ €y#@ 9oΊŠŠ"€ € € € € € € € ΰ hφ)x‚ €ω.@ 9ί{ϊ#€ € € € € € € €£ζbμuڌ €@ h.Ў₯Y € € € € € € € €-@ Ή »—Ζ!€ P\š‹«Ώi- € € € € € € € €@ah.Œ~€ € `4s € € € € € € € € šσ―Ο¨1 €$ М†Υ € € € € € € € €„X€@sˆ;‡ͺ!€ €@γ47Ξ‹½@@@@@@@@ƒζ0τu@@œhΞ #… € € € € € € € € Π¬𛕛“!€ €@S hnJ]ΚF@@@@@@@@ i47+₯"€ €@ hntN‰ € € € € € € € €@–š³δp@ζπτ5A@@@@@@@@ ]ΝιJ± €„^€@s軈 "€ € € € € € € €  @ 9„ € ―šσ΅η¨7 € € € € € € € €@1 h.ζή§ν €˜ζλPšƒ € € € € € € € Pš‹’›i$ €Ε!@ Ή8ϊ™V"€ € € € € € € €–ζΒκOZƒ €@Q h.ΌξΧΑκηŸž΄a­Z΅JΊ  €„Eΰ[ίϊVXͺB=κcp) €‚cŒάχβ'Ÿ|"οΎϋn‚;vμ(όqνl@@ cδΎS1>ϊθ#9ψΰƒsbJD@ $Œ/ByP ΝyΠIT@ МžS>νΥPΨθΥW_•?όPN;ν΄P5Iλτβ‹/zu:ε”S€mΫΆ‘ͺ_ee₯tθΠAΎρo„ͺ^Z™Ν›7Kii©|υ«_ eέΊuλΊzY7κΦψΡλ-Œn|πμάΉ3”u{ο½χΌπFέΆoί.Ÿ~ϊ©„ρ±­[·Κa‡Κ>mό9…sDͺ1†Ž+O8αiίΎ}¨ύΖoH›6mδπΓU½΄2Œ12뒰ޏ΄5Τ­°ϊ”1FfύΙ#3·|>ͺ‘°Ρ—_~)ϊZ„ώΖq‚uσοo­cΨλ·eΛiέΊ΅qΔ–4TοΏΎχzX.³PaογΧ_]φίοο4[η0=ώλ_ 6{μ±aͺVL]ΒήΗ―½φšχ·\_THύΰŒήoŽ9ζ˜Χ0ύ υϋΞwΎ¦*ε}]cθ½G_?κΡ£‡θ‡§ΒΆ¬Y³Fjjj€sηΞrΤQG…­z^}Βώ{‰ρEφ—MΨϋ˜ρEαχ1γ‹μϋ˜ρEφ†ΕRζbιiΪ‰ €@h.‚NvšψΨc‰Ύ™ψΓώΠYΫςO·mΫ&ϊӟΌŠ 6LΎς•―΄|₯œόγπfzγs/Όπ‚”••Ι‘‡κΤ8O΅na}ŸΊev„ΥMCΓϊζe―··ί~Ϋ [‡±nϊβ†ΎV^^žΩΡ„Gι zΏ sΰ  ›Ÿ—EλC―χAƒy΄ S#^yε)))‘o~σ›aͺ–WΖ™uIXοGΪκVX}Κ#³ώdŒ‘™[‘₯ ϋσŸμšΓ8N°ξaώύ­u {ύ6mΪδ}€μ裏Ά€‘zΤZh¨9Œ—Y¨°χρK/½$νΪ΅“.]ΊΨ*‡κρwήρ~Οh°1¬KΨϋX'›ΠPθ‘GJΒ·ήzΛϋΐψρΗΚϊi₯ΒήΗ‘…Λ°bϊχ΄Ž;{χξΊΧ!΄I>ψ μή½[zφμιύΛ°™MzXΨ―YΖΩwΨϋ˜ρEαχ1γ‹Βογμ[H Ή М+IΚA@ Πάβ]Π¬ М7a£ΜάΒόbu+¬>%l”Y6Κ̍£‚4»€ZΛ#•PπvξγΑ.©Φβ–J(q;cŒD“tΦ0ΖHG©xφ!М›Ύσοpm!£μϋ9μ}Lΰ¨πϋ˜ΐQαχqφ- W š³ο°ί{_~3Ύ(ό>f|Qψ}œ} )!Wšs%I9 € Πβš[Ό š΅š3γ&l”™[˜_₯n…Υ§„2λOΒF™ΉqT°ζ`—Tkc€ ήΞ}<Ψ%ΥZάR %ngŒ‘h’ΞΖι(Ο>šsΣΧaώ-$p”}?‡½ ~8*ό>ΞΎ…α*@sφύφ{γ‹ΒοcΖ…ίnj/ Ώ³o!%δJ€@s$)@Z\€@s‹wA³V€@sfά„2s σ ’Τ­°ϊ”°QfύIΨ(37Ž  Πμ’j-cŒTBΑΫΉ»€Z‹[*‘ΔνŒ1MYΓ#₯βΩ‡@snϊ:ΜΏΓ΅…޲οη°χ1£ΒοcG…ίΗΩ·0\%hΞΎ?Β~οa|Qψ}Μψ’πϋ˜ρEαχqφ-€„\ hΞ•$ε € €@‹ hnρ.hΦ hΌ›°Qfna~A”ΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+ΝΉ’€@hqΝ-ήΝZΝ™q6ΚΜ-Μ/ˆR·ΒκSΒF™υ'a£Μά8*X€@s°Kͺ΅Œ1R oη>μ’j-n©„·3ΖH4Ig cŒt”ŠgΝΉιλ0Χ8ΚΎŸΓήΗŽ Ώ ~gίΒp•@ 9ϋώϋ½‡ρEαχ1γ‹ΒοcΖ…ίΗΩ·r%@ 9W’”ƒ €-.@ ΉΕ» Y+@ 93nΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRB4ηJ’r@@ Ε4·x4k4gΖMΨ(3·0Ώ Jέ «O e֟„2sγ¨`ΝΑ.©Φ2ΖH%Όϋx°Kͺ΅Έ₯JάΞ#Ρ$5Œ1Q*ž}4η¦―Γό;\[Hΰ(ϋ~{8*ό>&pTψ}œ} ΓUζμϋ#μχΖ…ίnj/ Ώ_~gίBJΘ•ζ\IR €΄Έζο‚f­ζΜΈ eζζD©[aυ)a£Μϊ“°Qfn,@ 9Ψ%ΥZΖ©„‚·svI΅·TB‰Ϋc$š€³†1F:JΕ³ζάτu˜‡k eίΟaοcG…ίΗŽ Ώ³oaΈJ М}„ύήΓψ’πϋ˜ρEαχ1γ‹Βογμ[H Ή М+IΚA@ Πάβ]Π¬ М7a£ΜάΒό‚(u+¬>%l”Y6Κ̍£‚4»€ZΛ#•PπvξγΑ.©Φβ–J(q;cŒD“tΦ0ΖHG©xφ!М›Ύσοpm!£μϋ9μ}Lΰ¨πϋ˜ΐQαχqφ- W š³ο°ί{_~3Ύ(ό>f|Qψ}œ} )!Wšs%ΩάεμύD>Ω«'m#Π¦ΉΟΞω@₯ζPvK“UŠ@sf΄„2s σ ’Τ­°ϊ”°QfύIΨ(37Ž  Πμ’j-cŒTBΑΫΉ»€Z‹[*‘ΔνŒ1MYΓ#₯βΩ‡@snϊ:ΜΏΓ΅…޲οη°χ1£ΒοcG…ίΗΩ·0\%hΞΎ?Β~οa|Qψ}Μψ’πϋ˜ρEαχqφ-€„\ δ} yοGΫ€²r‹lϋhΘ~ϋΙAe‡IηΞέ€μ€\…³œ—ξ.Χ.―6•λ$Ώ~πχRž²½{eΛσ«ε₯χΫHΟΣ{Λa)χg»© € hnH§πΆhΞ¬O eζζD©[aυ)a£Μϊ“°Qfn,@ 9Ψ%ΥZΖ©„‚·svI΅·TB‰Ϋc$š€³†1F:JΕ³ζάτu˜‡k eίΟaοcG…ίΗŽ Ώ³oaΈJ М}„ύήΓψ’πϋ˜ρEαχ1γ‹Βογμ[H ΉΘί@σήm²lζu2ηoΫ-:rωυUύ$οs»{χŠNΔά¦Mμ,Μ›η]!yΣlI3ΠΌχ%>θZΡtΗσ~-\ZθΖJ@ςY€@s>χ^γλN Ήρfza£ΜάΒό‚(u+¬>%l”Y6Κ̍£‚4»€ZΛ#•PπvξγΑ.©Φβ–J(q;cŒD“tΦ0ΖHG©xφ!М›Ύσοpm!£μϋ9μ}Lΰ¨πϋ˜ΐQαχqφ- W š³ο°ί{_~3Ύ(ό>f|Qψ}œ} )!WyhώHξψώSϋ<ΚΠιΫ=δ =Uςς›NΐωΫ#εΑί ΘγPσ6ωεΉ%L3Οϋυƒr©3 sVζA7Θ#ΊEρx† €@h.ŽL³šΣ„ŠΫ°QHš?†ωQκ–f'ΖνV7ΒFq•揄„b·΄4§Ε”°cŒ’΄V„υ~€•§niuaΒNaucŒ‘ΠUi­`Œ‘SΡμD 97]Φί“ΆuެDζaοcG™χ­=2μ}LΰΘφTζaογΜ[Ξ# 4gί/aΏf_~3Ύ(ό>f|Qψ}œ} )!Wyhώδ₯{δ½vΉgΠ±ΗHΉρ€ΜN`όΙ6™wύςΘΛ‘΄σw1G&ŸT–+―ζ-ΗΜͺ|™™UY#ΪƒnxPFt‹Ξ7έθ@³)γ“m[dΫ'mδ°n‡εqΘ»y»€³!€䗁ζόκ―lkK 93AΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRBς2Πό=—Ι΅Λ5ζΫQ~υΰ3šσΈμέ,?4A^Φ=Ξω΅<0¦ά<Ϋ+UΫή—Οe?9μ°2Ω[΅E6Tn“OΜ–Ϊ$»–KY}9{M(ϊgο<ࣨΦχHh@‚$ ] *Ά‹JQ@‚QPPΌŠ\π*Ψ°`€WQAT,€€Jη/?±{ΑBPjh“PB€9fKvvgvf³{2yφσΑ™=mήσ}Ɲ7³ΟžΩ’Τeg+΅1ρhή©=’b5ΗtΙ!ά-Dϊζ-HΟΚF^a!b’Π}›ΐ†αΒllή’†¬μ|(]Τν“±ϋ%bΝF‘bh~nΤTΥΠάmΤd€ˆšk6P⌁ΫΠά “Ώ˜†€τΝΨ°9]™₯2Ÿx%†Ξ₯cPΖΜΜVjcŸ―όWΌ4& §$arΞΓζυž­Ž’ŸΫ‘MRiΈjGε?ΩΨΈ~#2΅Άν•Ά ΐμτtδ׌CRΌΏ~ZnI€H€H τhh=S™G€‘ٚ:4Yγ&σ QΖζ,Mi6²¦'ΝFΦΈ±—>šυΉ•2Η0"€_ΟλΈ>£Rr3"δ[ΟΓ—‰™ζf(Uœ644‡Fk™?ΓΕ i8²―³μΣpδ|i8rΎΖφg(Χ44ΫΧCφkσ ηkΜόΒω3ΏpΎΖφgΘBE |šg+†ζ%†ζ'Csοl!V?χζl)D—Aƈλ’P˜ΎΙΓg©άšuj‡„έΩσA“¦αά-ocόœ žκώ₯NΖΏ{Άρ*ΟήΈ γΖΟP Η^ŠΡzΠ€Wp[{ί•‘7.›‚ρ3Φx7οβ.Ε€iFϋxe?o#nM―˜―u^έ&α‹Ρν= ΝJΧf‰ΘΩ)xxΎšaβ¬iθ¬… Œ9P3Gic<Œζh²f=ϊ ζς%ͺ άk”>1mXgΟ"δ₯-ΓπQ3Τ±<+›EcίNu"&-xνύyΐ=;qŸH€H€BH€†ζΒ,CΡΠlM$š¬q“ω†(cs–¦4YΣ“f#kάΨKŸ Νϊ\ŒJ™c―ηu\Ÿ‹Q)Ής­gŽαΛΔL s 3”*NšC£΅ΜŸαb†4ΩΧYvi8rΎΖ49_cϋ3”kšνλ!ϋ΅‡ω…σ5f~α|™_8_cϋ3δ‘"P. Νι«'`ψΤΣqt³>˜ττ ΄‰μžΝΫ<)cxqKlΦ ωι;‘£γŽNl†$€cη>wε¨Y_ΰΊ3αΒτeŠAz†kΌΈfΠΌf&6€ΊΕ=&Ύ…CΉδ•ΎL‰{†Ϋ,έ¬S'ΤΜ܈TΧ11ρύ7ΡΉζfLΈχydΦφνdρŠFb\Mtύ †).eχ Ν%΅βΏκ|v*σъaή›·•¬­¬φ<2y£RζF„τλyΧηbTJnF„|λ™cψ21SΒΓ ₯ŠΣ††ζΠh-σgΈ˜! Gφu–]cŽœ―1 GΞΧΨώ 偆fϋzΘ~νa~α|™_8_cζΞΧΨώ 9B¨”SC³2ύΒt̞0 Rέ+ kPβΪυΐγ#‘}‰cY-φ44» ½Z‡Όx eΌjƍ둘wG”˜tKͺσπφΐ,Q“¨{ίTŒ½…ι‹•Υ™g©ΥΝMΕ΄ΫJLΐΪpΩ?NΑέΟ—”΅c₯/‡α³RΥ&ƒ¦.ΐmΝ½W”ώqΚ@<ΏFΜΕΓ ¬Δ5R‰ΛkUε3qšγπΔΌΉθβaβΞΫψ6RΖ/ρΛΐΠΧm"ζŽξ|ft±ΙΓleή <ζBΕ`\b°F³‘X0­/–¬IUWφΣiθd<έW¬¨¬Ψs7ΟFʘκΎf2V߈θ™}]•y˜@ ζ( 8k†fχXq˜¨˜‰;{˜‰ΥnŠρwœbόφεΔdΕ=Έ½{EεΈxμ: Σζ#yΤ΅ y< n―  .·‘ΩΧ<μŽΟ£No,2-NwDΎσ†‡ρ»ΫΔχ1Ί³χ,tλ{$@$@$Pζhh.sΔa?@jj* t»gΟddd K—.Ίυ‘*3Ό²)=eΥjš»Mœ§š½άΊΗuΘ=  (s44—9β° ++ ΕΕΕΊΗέ°a*UͺΠ¬‹Ηo!ΝF~Ρ¬ω†(c (ίJYΉΡlδW²€4ΔΓΚ ΠΠ$°3Ν™cXγ&λυHΜ†±9KSζΦτdŽa›S{ΡΠeeΎΎˆpd_gΩ5¦αΘωΣpδ|νΟPhhΆ―‡μΧζΞטω…σ5f~α|νϐ#„Š@Ή44ηεε©σ‰…ήzwΩgγξρ%«1Ηυ˜„Ή#Ϊ‡ΤМΎl†ΟΨ ΔΰίΠ<{` δq}”γ;ΛΖ݁©EJ?†fΥ]ζeΓ±«μŒς!_‘Y‰σΝaŠiΩυ34oΔΘδρΎμnΚ*£Ε*/š=`p—H€H "hhŽφˆT˜N:ECs Πl$°3ΝeΎ!Κ؜₯)ΝFΦτ€ΩΘ7φ'@C³>£RζF„τλyΧηbTJnF„|λ™cψ21SΒΓ ₯ŠΣ††ζΠh-σgΈ˜! Gφu–]cŽœ―1 GΞΧΨώ 偆fϋzΘ~νa~α|™_8_cζΞΧΨώ 9B¨”?C³bό˜2ŠW‰ƒ¦βΝΫτ'[ˆω$c޲PsbŸ‰ŠQ·sH Νnγn4ΖΜZˆ«J?­;o½γD5ΖKΗΜΔΏ―Jr―¨έ 3ŽFR)σ6NGΚψεJi4FΝ\ˆλDCs²b μa Žˆ‘ΩΓt}ι(e^jξ‰¦ΝGς¨9JA"&Ν{αΊqH€H€ʐ ΝeWΒ‘ihΆ& ΝFΦΈΙ|C”±9KSš¬ιI³‘5nμ₯O€†f}.F₯Μ1ŒιΧσ:ΟΕ¨”άŒωΦ3Ηπeb¦„9†J§ Ν‘ΡZζΟp1CŽμλ,»Ζ49_cŽœ―±ύΚ5 ΝφυύΪΓόΒω3ΏpΎΖΜ/œ―±ύr„P(†f€γΉήΓρ“ §˜ƒηϊšƒ‘΄™ ΄k(£έ(|ρΒu!54#}5zŸ*FWBxsGwQχ΅lž?cζˆuŒδɊΉM¬EYΥyͺΊ=1 £»xΊ •ՐG¦ €‹b^ ˜ΕΣβ}"bhφdέ³Ž€η,Γ¨Y©Jΰ44 νω" ?šΓΟ<’G€‘Ω}š¬q“ω†(cs–¦4YΣ“f#kάΨKŸ Νϊ\ŒJ™c―ηu\Ÿ‹Q)Ής­gŽαΛΔL s 3”*NšC£΅ΜŸαb†4ΩΧYvi8rΎΖ49_cϋ3”kšνλ!ϋ΅‡ω…σ5f~α|™_8_cϋ3δ‘"P Ν@šbuΖ0ŒΈNσψ0t:7 ±1…ΘLΫ€·_~?)«3‹Χ₯cf)+$'„ΦΠ¬Œ»z\oLή]εΥ¬Ο˜4¬ bQˆΛ^ΖψͺέZq;χΑϋs‡!^mεa²VVaξσΔ+ΦEY]Ί0Λ^~ 3~kN+]zLΒάνΥ}¦a\ς(ˆΓDwzο“”•¬ΟW=Ίb²~@1Y««\»λ<ΩG·KΖ΄'ξD’2”ΧΌub*™K$@$@eK€†ζ²ε+Ϋθ44[S„f#kάdΎ!Κ؜₯)ΝFΦτ€ΩΘ7φ'@C³>£RζF„τλyΧηbTJnF„|λ™cψ21SΒΓ ₯ŠΣ††ζΠh-σgΈ˜! Gφu–]cŽœ―1 GΞΧΨώ 偆fϋzΘ~νa~α|™_8_cζΞΧΨώ 9B¨”KC³²t1»³R‹sˆSVž[²Š°Ϋδ Έ ½Zoc―Or,=c―X=y\ΚxΥl¬ 㽍ØYs‘x©]―ΌΝσ‘2fŽλ½ΟN΄²βτBΟ§ ±xd2f•,φ¬6V Ο ΓσΖ·ΐψ%Β΅νaZ>3`ήΖΩHΏΐ»NoŽ+@λšg+†ζ₯ Νbυλ)·ǚ€θ}c:7$@$@$P¦hh.SΌ NC³5Ih6²ΖMζ’ŒΝYšldMOš¬qc/}44λs1*eŽaDHΏžΧq}.F₯δfDΘ·ž9†/3%Μ1ΜP2Χ¦Έψ$Φ]‡•+ΎΖ‘#ΉhΫ ϊτ鉦M›˜ΰΨ±γXτω—ψfέ¨Y£†<άpύ5Hjœ°Ώθ·~ύoθΪ΅ ’’’Ά5ͺ€‘وΉz™?ΓΕ h82§c V²kLΓQ υΜΥΙ1 Gζt ΤJvΕ^λhhΆ―šμη,σ ηkΜόΒω3ΏpΎΖφgΘBE œšK¦Ώω›ω˜σΡGHέWΚ]ˆΓF`PΟφΚͺΙ%/OCs²²Bρ`±B±φς0ϋ&OVκΪxΤyšΫ Šϊ*«*k―Βt,žρ2f­ρp+uqνϊΰρΡƒΠ>!FkιΪfnČ °¦TΜνzŒΒθΧΑΓ¬φ)L#‡OΖ™§•EŸ•œ••”3œ‚‘Ο―Q–n.m‚VΊ₯―Ζ­Γ§’Ν0iή4¨S՝c&¦ŠεΚβΠ‰ΙΚ*Μƒ=WhΎyn &++GϋΦ₯cφΈqXZ²ͺ΄ht;τ閏%Λ šU&ό  @Ψ ΠΠvδ= ΝΦπΣld›Μ7D›³4₯ΩȚž4YγΖ^ϊhhΦηbTΚȐ~=―γϊ\ŒJΙ͈o=s _&fJ˜c˜‘dά¦  ύϊ AVζόϋߏ‘αΩ °zΥZ|ϊι"š}žΐ΄a]άFμΜυ9t"Τ΅ͺ£{ΰύ…#o<[  @H ΠΠRœFC³5‰h6²ΖMζ’ŒΝYšldMOš¬q«Θ½²²²P\\¬‹`Γ† ΨΏ?Ίκ*Τ©co%GέΨ(άΊu+ͺV­ŠsΞ9ΗΖ(eΣU|9'x%&&–ΝlŒΊiΣ&Τ―__ωA~ιg£Ω4D]ElmΫΆ Ρh‘†±Yγ)+7ρΉwΰΐ)Ο·}ϋφ!''GΚΨφξέ«,L’6mΪX;!Κ°WZZκΥ«'elžΣΞΙ9‚nθλΧ΄ό‹SP%:>:Β³›kΔ‰θ~C2>ωδ]eegοΟρS§NαφΫγΕ' Uλ>bG¬κ|c―~˜υΞπο'žΕΎ…ψψ8―6ΑΎα ΝΑΣo/σί°"bŽτu ¦Tvi8 FMύΆ²kLΓ‘ΎnΑ”Κq0s)mihΆ―’μη,σ ηkΜόΒω3ΏpΎΖφgΘBE€†ζP‘¬ γ€Ν£ζμ+™mt3τθΩ 1ω[°dMͺ‹@·'fatο‹Jξ  @ ‘Ή αJ84 ΝΦD‘‘Ω7™oˆ26giJC³5=ihΆΖ­"χJMMEAA.‚={φΈL5jΤΠm©Β]»v)OϋŠA£F"‚ίγnίΎ΅jΥ’4ΌmΫ6ΕΔ―ššύN B"ΆV­ZEθθΛΨσρW++·C‡απαΓRžoβoωάά\)cΉΩργΗΡΌys’G¬\˜­[·n-½‘yύϊί0ιωΧπιgοy­¬Ϋ²e;F>ό8–.ϋL·>=}?ξψ€² ση>υbυζ””‘˜0a,Ξ;―΅6$„ΡΉΏ{pkroτλw3ΏξΥPMC³ QDwdώV€‘αΘώι!»Ζ49_cŽœ―±ύΚ5 ΝφυύΪΓόΒω3ΏpΎΖΜ/œ―±ύr„P ‘9T$+Μ8yŒ?Ž@IDATψfϊxL^Εμ3λKœŒχ”o΅ Ÿ@Y@$@$ΰH44;RVΏ“’‘Ω/š€44Δγ·Rζ’ŒΝ―l+dεFCs@ΩόVΠμ +,9†05'''«+_Z’ΜΊˆ•_«U«†-ΌW‘,³10sŒ `y4•υz$BdlB±++7ζAˆθΡ”9† ‹»}4Ω‡³1β‘aΊ#δηC―ž·cρ’ηϋd„£Gσ°sηn΄o>’’’ΌΖΨ½{/ξθ/VZ¨ό¨&ΦUχαŸaώόŘΏ`ŠŠŠ”ρϋΡΠμ’ωY?'524i$¬oeט†#λΪj=eט†#M)λ[Ω5Ά:³ŒΏ3ρρΗ ±iΣfΤ?«.κ|!nθώ―<ΒίΨ;vμT~τ²Ε§Ί¨¨Χ^ΫΥΦ“ hhφΑtμη,σ‹ %υι »ΖΜ/|$ Ί@v™_-©OΩ5φ ˜#@CsΔΠ—οζ₯cΛ†Ψ’•‰Ό< >© :wι‚$χ=Γς=AFO$@$P. ΠΠ\.e³4 ΝΦΠΡld›Μd36giJ³‘5=i6²Ζ½τ ΠΠ¬ΟΕ¨”9†!ύz^ΗυΉ•’›!ίzζΎLΜ”0Η0C)p›O?]„YόšOœ8aΙpœ“sDY…yzχv›₯…Ω¨ίνCπΥWŸ αΩ °:Ύή¬Ž;†+V¨Orρ‡OZΜ2FŠe†#νL²Ύ•]cެk«υ”]cŽ4₯¬oeΧΨΚΜ~όρρΰcΈμςKpם·)9B^|ρuεI!yψψ“wpΞ9;uΚ›ΨΊu;:\Ψ……ΆβιO·άz“ςD¦²`whh–˜o{ΩΟYζΎš["»ΖΜ/‚UΤ·½μ3ΏπΥ,ΨΩ5v>l_vhh.;Ά™H€H€H Μhh3πކfkΠld›Μd36giJ³‘5=i6²Ζ½τ ΠΠ¬ΟΕ¨”9†!ύz^ΗυΉ•’›!ίzζΎLΜ”0Η0C)pah>~μ8 NΡmhΕpΌeΛv τ Ϊ΅;3ί| UͺTVΗΖ€Ύ}R0bΔ0τιΫσLYp†ιISφψ”sͺ š4ii)uŸ••…Γ‡Sc]:ζ ·mΫ†κΥ«#))Ι\‡0·ΚΘΘ@vv6Ξ;οΌ0ΩόαdxλΦ­κgτΩgŸm~Ral)3βzΣΊuλ05ΈC‰ψ:vμ\'‰[‹α¦ϋγή‘‘’’μŠττιΣxζ™—‘Άcή›=•*UrΥyξˆvβS“^x ­Z5χ¬ Ι> Νφ1Κό7’˜ ΝΞט†fηkLC³σ5Ά?CŽ*44‡Š$Η!  ˆ8šΝKπΫo±tι*μLۍ€Ζ”z(7(/πy|«Ώƒν/nψ}σΝχθΪ΅ *W.ω’ΡίΨfΛih6KΚ»ΝFή<ΜΎ“ω†(c3«’w;YΉΡlδ­“Ωw4™%ΕvfΠΠl†’oζΎLΜ”Θz=±363 ϊΆ‘•s _­Μ”0Η0C)p›PΠ,ξ-Μ}Lϊ&†ΏCξΉΛuAΤMy}&23³πΒ‹\χ7ŠŠŠΠ³ΗνXςΕ<Τ¨Q=p°JmNNvμΨα·έž={TCsΫΆm•ρjψmΙ aΦlΥͺU$CxlΩγΫ΅k’££‘˜˜p‘ͺ‹d6»Κώ±ψEBBB*e}haZΟΟΟG‹-¬†žN24‹'8 : +W-T΄β‰O<υα¦οΐͺΥ Υ;xΦiϋωωΗ”'J܎/•'@ΤͺϊGVΣΠ¬‘ΆΎ•υο0mF44k$¬oeט†fλΪj=eט†fM)λ[Ω5Ά>3φ 5šCM”γ‘   DŒ ΝΖθΕ|―Ώ>~π™²bΡPtκά›R7γ΅Χ¦γ¦›ΊcΒΔ±~W!£[νρΗ ρΪ«Σ±bεΔΗΗj’ Ν& ι4‘ΩHЉ"™Θfl&Τi"+7štΔ2QD³‘ Hlbš Ν¦Qy5dŽα…ΓτY―GbŒΝ΄Œ^ eεΖΓK&Σo˜c˜Fε·α―V⧟ΦγιgΖιΆΙψ;wή9LΧ`δΩA˜ξRΪ>œƒι3&£S§žΥHKΫ…ΫoŒaΓξF[eεζ’Β"΅ΎP14?1ώY<όπ}κ£δ/ΏβRT­γΥΧμ›cǎaŊͺ‘999υκΥ3Ϋ5¬νdύ Θ GšRΦ·²kLΓ‘um΅ž²kLΓ‘¦”υ­μ;³eΛV+ίόργιΣU˜•{ίt‡ς㧏T#ΌO₯@δc{ ŸΝŸ#Grqόψ ε‡UQ·nΌ^σ Λhh™OΩΟYζ>’] »ΖΜ/‚–Τ§ƒμ3Ώπ‘,θΩ5zBμPfhh.3΄˜H€H€H άhh6&ΎNY%ωρΗ'bώ‚9ΚJ3ξGξUX%„©R₯ Ž;‘η¨OΓ\ψω\$%5ςΧέ°œ†fCD† d?g™_JhΨ@v™_JhΨ@v™_JhΨ@v 'ΐa#@CsΨPσ@$@$@$@eM€†ζΐ„s”Η³φμq»ϊΧZ΅b}‹G«uΏ!Yω’oβγγ|κντ?}ϊ4=^]:Ta£‘ΩG"S4™ΒδΣHζ?²›\¦ dεF³‘)ω|Ρl䃄6ΠΠl s kάd½‰Ω06giΚڞΜ1¬q+έλχίSqϐ‡ΌL@gβ±ΗžT Κο͞αϊaυ§Ÿ.Β[­θ,VIΤϊ £PLL4”Ϋ >―Ίuγ”ΗΎϋώ,j‘_°π}έ{>ƒ( ‘9œ ͺdΎΎˆiΠp„˜~šΚ1 G~„ ’Xvi8 BL?MeΧΨOΨA―X±γΗ=‹Q£ΐέwί°―XΕY|§rεU—{΅ί{ΌόTddfαΥWŸσϋ΄ Ρ)//ϋχοχκ―½IKKΓξέ»Ρ©S'ε —ΎίΝhν"΅ύα‡Τ’5kΦLYεΊi€ΒxάΝ›7£M›6ΫD²Rh,ŒπMšψΙΈ΄cgeeαπαΓR3”]γmΫΆ‘zυκʏ’4¬Rm322σΞ;OͺΈ<ƒ‘]γ­[·*Χ‚Z8ϋlχ=γτΎΈΖˆkMλΦ­#Šίγ‹ψ:vμ跞$  ‘Y#Α-   @Ή'@Cs` ·lَ‘?Ž₯Λ>SΑZΊ΅Έωvί°ΡκŠG;Ά/] ;ύihφΑ±š¬‘—ω&>cs–¦4YΣ“f#kάΨKŸ Νϊ\ŒJ™c―ηu\Ÿ‹Q)Ής­gŽαΛΔL s 3”Μ΅ωε—_•{cQXX¨>}ώ uUζ§&ŒEΥ]ƒΓΠͺΥk]¦ •+ΏΖΈ=νͺΧΫyσΝΧpρ%τͺΤΗΛίάχ.|πα[44λ ‘̟α‚ ΝφΟ Ω5¦‘ΩωΣΠμ|νΜπθΡ<<υΤ$|σίcΚ”I>&ε`Ηή·οou•gOΎΤΖΛΙΙΑŽ;΄·^Ϋ={φ`οή½θΠ‘jΧνU'Γ›?ώψHLLTς8λ+Q—ε\„™΄U«Vey[cοΪ΅ ΡΡΡ*C[•QηƒͺfW™Κ±0­‹YΚϊˆ0­‹Ο!™Ν²k,>Γccc‘PF'ΪV˜ΦσσσΡ’E {•qošΛ°C†§‘Ω!Br$@$@$@ ́ΟρΨΦΗ}σΜρkh~ΰώβώ++tπΜNŠhhώ…HΌ z“Κf„ Ξ‰­ ŸDέΊu₯\ @|α%nΘxΓGζ/γ›΅‘dεF³‘5=i6²Ζ½τ ΠΠ¬ΟΕ¨”†f#Bϊυ²^D΄ŒM_3£RYΉ1Η0RNΏ~οοΏ  ηZ^έCΏAKΕκP§N’z΅xΔ½ρτ'±‰‰QΎ YΊ‰ΤοΉBshδ‘υsR› Ν λ[Ω5¦‘ΩΊΆZOΩ5¦‘YSΚϊVv­ΞμΟ?·¨ζγFβ­·§(«l64ͺ  Ώό²W\q©ϊd‰ŠŠŠΤ'_Šο]¬>Rό=-ξm]uΥU¨W―^ιCDόύΌyσpτθQtξάYύρ€tύœe~‘#ZE²kΜό"HAušΛ1σ Ρ‚,’]γ §ΓζeH€†ζ2„Λ‘I€H€H€ΒK€†ζΐΌ·nݎgŸ™ŒΩsfψ54‹š‡?x‘ΩN«†fρ‹αββbέ‰mΨ°ΉΉΉΈφΪkuλ#UxΰΐόψγxG±ϊ±G*ΆΛκ%ΰΩΈΖ¨S§Ž”+lΪ΄ υλΧ—ςΧΝ"ΆΆmΫFJΊ€Ηelρψ­”•›ψάŸ#2žoϋφνSWq16±ŠX}@ΖGKŠΥ9Δ—Q2Ζζχ ^AC³΅€†fkάdΎ‘Ο؜₯) ΝAθy8Xρ>°ρ;ΰxΎ»cϋ+€ξΔ–ξ²ξ•GCsq…δΠ44‡£Τ?˜3€αΘΎΞ2ηbv49_cŽœ―±•[χF‡Ρ Η]wݎJ•*™&## ύϋ Ακ5‹t/Ω½{/ξ½ηa¬XΉ@χ{3‘‘Ω ₯ΐmdΏφ0Ώ¬Ÿ™ZΩ5f~aFΕΐmdטωE`ύΜΤΚ±™9°MxΠΠΞ<   @ΠΠ²0$?όΠγXΊμ3έkΒt,VhΎwθ\rIgŸΑμτ·jhNMMUeζŒR Γ&ŸΣ₯K½κˆ•9rβ‹e ͝kΕcl•xΤͺUKJΣ°xœT||ΌjjŽ˜€~,σ£›Ρ ŠeεvθΠ!>|XΚG$Šλ¬ψ!‰Œ&­γǏ£yσζΚ‡ΏZ˜­Ε£όhh?{«G€‘Ω9š­q“ωF>cs–¦44›Τsίv`ϊ£ήFζ]SΖ—t/]φχ44‡9hh s™―/b†4ΩΧYvi8rΎΖ49_γ`g(LΙ7φκ‡)S&αΚ«.Ψ½Έψ$Φ]‡ΪᬳκC¬ΐά³Ηνxτ±‡Π³ηu^}ΕχγΗ=£>ybβΣ]ΑΩ«ƒŸ744ϋD±μΧζAˆι§©μ3Ώπ#\Ε²kΜό"1ύ4•]c?a³8hhŽt’H€H€H lΠΠ˜«X)`ΘΰκJΡΡΡ>ΕJΘ·ά<3ί| II|κντ·jhφ Β£@˜Δγu{υκεQωέττt,]ΊŸœ>†Β„zΊζρpFΉλθμΞΛUyυٍ1₯ρωΚ£οκ’I“&α ΓΤ±Δ² hΤΘχό35@6’ωlΖfMxYΉΡldMOqs#//νΫ··6@φ’Ω¨ α–ΡΠ44[KC³5n²^Δld‹mνώ=˜³5‹vmENaβbͺβζ¦­1ͺύEΈ°^k”A/ΩΈiSdŽ‘‘°+3Ώr`3³Φ}Δ«@ΛΪ»ˆl™c„; Ν‘a.λη€6;Ž4Φ·²kLΓ‘um΅ž²kLΓ‘¦”υ­μ;³wίύ}ψ>›?[ωAό έξ 6PWmΞΟ?†λΊέŒ©Σ^p-ό²rεΧχ―§1aβXάpΓ΅¨V­šς££ψΟήΒ—_¬ΐ_ΜCύ³κιŽk¦†f3”·‘ύœe~X?3΅²kΜόŒŠΫΘ1σ‹ΐϊ™©•]c3s`›π ‘9<œy   0 ‘90δ' pӍύUΓr«VΎ+XξΫχ·ςθ΄{°|Ε|ΔΖΦτΜNŠhh €5jψ° gΑΔυίβιυΚ£’• ΝΦΙΛόG6c³¦«¬άh6²¦' ΝΦΈ±—>šυΉ•ΠlDHΏ^Φλ‘ˆV¦Ψωa ¦lόŸ>D₯tbη˜Πω Ώυᬐ‰›ηΌ™cxπ³ΡΛΐ/+ύT–*›<ωa©ΒπΎ₯‘9ΌΌΕΡhh sY?'΅ΩΡp€‘°Ύ•]cެk«υ”]cŽ4₯¬oeΧ8˜™‰ο&^xαu,˜ΏΔo·˜˜εΙ–Ÿ*OŒƒΏοA~ψώgόK15ηεε£Aƒ³•uηžΫ―ΎφΞ>»‘ί±ΝTΠΠl†Rΰ6²Ÿ³Μ/λg¦Vv™_˜Q1pΩ5f~X?3΅²klfl44‡‡3B$@$@$44C~ωεiHKΫ…3^QWΠzx>νιgΖ©Ε₯­& ƒι―-Ά44{ο> Ν‘α-σٌ͚Ʋr£ΩȚž44[γΖ^ϊhhΦηbTJC³!ύzY―G"ZYbύύLMυofΦΘΎ~Y7ŒVVkŽτKn₯98"Η8žμίQzj‘{ίAy¦Έωρ{HliΎ}ˆ[Πb &†£‘Ω$MdύœΤB§αH#a}+»Ζ4YΧVλ)»Ζ4iJYίΚ±υ™ΩοyδH.ͺT©ρΔΛ:ujΫP†fϋe?g™_8_cζΞטω…σ5Ά?CŽ*44‡Š$Η!  ˆ8š%ΘΙ9‚Ύ}ξΔ έQ£ξWVbŽUV:Ž™3ίΕόΟγ‹/?FύϊuՁτ­LΟhhhφ€ή}šCΓ[ζ’ŒΝšΖ²rs„ΩȚ$ΆzΡΠl ;—"@Cs) &ίΠlT©f²^D˜2ΔΆλθ4›§˜FMΎv¦<€¦΅κ˜l]6Νʌ›3ο>Εμ+ΪιΌςςς”ΥδςΠ°N, Ϊ•Υkϋοe5²|γήσ4Π>r+ƒΣΠώS‚†ζΠ0/³ΟΙΠ„Žμƒ”]cŽœ―1 GΞΧΨώ 偆fϋzΘ~νa~α|™_8_cζΞΧΨώ 9B¨ΠΠ*’‡H€H€H βhh6'Αώύxdτ8lίΎ-[6S·5ΔteΥζ&M’\ƒψ{΄šΩώ”š=i„wŸ†ζΠπ–ω†(c³¦±¬άhhΆ¦' ΝΦΈ±—>šυΉ•ΠlDHΏ^Φλ‘ˆ6ά±ε‘θΤ)είIu[¬μOψί·˜½u£><RViή3m4©UΥ;:a262οۘ‘σ½ϋράRΖ—tXŒ44‡= Ν‘aξλK°QΣp,1ίφ²kLΓ‘―fΑ–Θ1 GΑ*κΫ^v}#.ί%44ΫΧOφs–ω…σ5f~α|™_8_cϋ3δ‘"@Cs¨Hr   ˆ ‘98 r”ΥšO)&¨¨(ΔΗΗΧYim·Π,ΥA˜Dό½zυ*UΩ·ιιιXΊt©Δ€P£FˆDCshπΛ|C”±YΣXVn44[Σ“†fkάΨKŸ Νϊ\ŒJih6"€_/γυθΠ‰γψ6#+6ύŽΈ³Ξ:c2vK›Ž=ίΪ/>ν;Ζ‰“'υΑX,½ϊμΖXΫϋN‹½CΣ-οΕϋ›™šΑ8JθΔ7κ6 <ή«KGιχρ*Π²ƒ~]JihδR‡ ‘Ή‹oeΌφyN…†#OΦφeט†#kΊzφ’]cŽ<Υ²Ά/»ΖΦf%o/šνk#ϋ9ΛόΒω3ΏpΎΖΜ/œ―±ύr„P ‘9T$9   @Δ ΠΠq Β ΝζpΣΠlŽ“Q+™oˆ26#υτλeεFC³Ύ^F₯44b}0hh†–»- ΝnΑμΙp=ϊνPΎW Μ?dνΗ™ϋ°#7'˜)HΥVCsΦ' ΑζοΒΗ₯Qs z¬γ‰ΊΔ8zτ(ςςςpφΩgϋokT# ΑF¦`£1tκ³²²››‹–=’ujΓXτΞS@κχζX­&πΒbsmΛ¨ Νe6ΐ°44€D• ΧΎ@αpˆŽΉ:Ω5¦αȜށZΙ1 GΤ3W'»ΖζfQ~ZΡΠl_+ΩΟYζΞטω…σ5f~α|νϐ#„Š Ν‘"ΙqH€H€H€"N€†ζˆKΦhh6‡›†fsœŒZΙ|C”±©§_/+7šυυ2*₯‘وλƒ!@Cs0΄άmihv³f/άΧ£Γ'π}¦b^Ξ,1/œυ7ς‹‹‚ YκΆ}Οi…EέohŒ{濍&•˜Œ#qΐWbK3²bšmBπbŽaβve…ζ鏚h¨4Ήy8pud Ψ44›“*”­Κ“‘9αάVhT#ΐB &Θ±Β}ν 2<Πp,1ίφ²kLΓ‘―fΑ–Θ1 GΑ*κΫ^v}#.ί%44ΫΧOφs–ω…σ5f~α|™_8_cϋ3δ‘"@Cs¨Hr   ˆ ‘9β„5šΝᦑΩ'£V2ίelFκιΧΛʍf#}½ŒJih6"Δϊ`ΠΠ -w[šέ,‚Ω+λλΡοΚκΛί)«/¨¬Ύ,ΜΛ[Ž6ήuΟBtQ1βjΥFt₯JΚΏΚ%ΫΚϋgΚ«D‰²’1•+ΓύώLΟώϋU΄>ΚΨΪΎλ8gΪ½Ώ5Οl0ΏΪρ{WχΒΰsΫ›šcY5*kM­ΖΝΓ$ΉŸWσ&n|ρ ΐn†ZšΓΉΤ!d74S~ ςϊΖ_07υWl9ž‡ΓƒF!Ύj΅R³ˆό[Y?'524i$¬oeט†#λΪj=eט†#M)λ[Ω5Ά>39{Πl_ΩΟYζΞטω…σ5f~α|νϐ#„Š Ν‘"ΙqH€H€H€"N€†ζˆKΦhh6‡›†fsœŒZΙ|C”±©§_/+7šτυ2*₯‘وλƒ!@Cs0΄άmihv³f/”Χ£leυε2χΉW_>π7ކS]qYB#\ž„KœΨθ„26Γ ό4Θ),@ӏf∲5z[»ξTV͍πKnz˜cθQρSΆQ1Ρ>ΘΞςnPMY1ϋjeπƒΌΛ#τކζπƒ—έΠ,ˆΤ›3b5~ρšuUOάΫζu_¦Θϊ9©1’αH#a}+»Ζ4YΧVλ)»Ζ4iJYίΚ±υ™ΙΩ“†fϋΊΘ~Ξ2ΏpΎΖΜ/œ―1σ ηkl†!ThhIŽC$@$@$q44G\‚°@C³9ά44›γdΤJζ’ŒΝH=ύzYΉΡl€―—Q) ΝF„ΒWΫo±tι*μLۍ€ΖΠ»wtμx’’’Lρλ―±rΕddf‘aΓ\{mW\|q'Ÿώ§OŸΖχߌJΫΏχg’UλΈεζΥ­©hDCs8ͺhh'@•λQκα%ζε¬}ψ>cŸιΥ—Ο‹«η2/ σωρυu#΄›ξ€ ΧξίƒkΏœ°wΕ”½ΆχΈ°^ƒ€νΒQ) ·seŽQšˆ‰χϋΆγπΟ_£(7 WtZv0Ρ)|MhhkνHεΑΠ|Ίεxλ―ίՐ»'5Γς^ύ΄π₯ΩΚϊ9©’αH#a}+»Ζ4YΧVλ)»Ζ4iJYίΚ±υ™ΙΩ“†fϋΊΘ~Ξ2ΏpΎΖΜ/œ―1σ ηkl†!ThhIŽC$@$@$q44G\‚°@C³9ά44›γdΤJζ’ŒΝH=ύzYΉΡl€―—Q) ΝF„ΚΎ^Œ_}>όΰ3Œ1:wΐ¦ΤΝxν΅ιΈι¦ξ˜0q,*Uͺδ7Ρβ„ρε—+0tΨݸ蒎ؼy+¦Ό>]»vΑ«―=*U*«ύ‹‹‹1jδΏπΛ/ΏbάψG””ˆeΛVaρ’₯ύΘp ΨίοqΜTΠΠl†’oš}™˜)1{=+{ΎόSΦ~δšX}9ΆJ΄²βr#ΕΐœˆΛ&’‹²_΅š™Π€X‘Y τ·CYΈyΕμΞΛՊ\Ϋu`φ΅7JafA™ΥΤ50ν0Η°š9†5nNνU Ν«χνΒυ_}β’ΰΠ Q¨kςsίΥ©ŒwdύœΤ¦MΓ‘FΒϊVvi8²­ΦSvi8”²Ύ•]cλ3“³' Νφu‘ύœe~α|™_8_cζΞΧΨώ 9B¨ΠΠ*’‡H€H€H βhhŽΈa €†fsΈih6ΗΙ¨•Μ7D›‘zϊυ²r£ΩH_/£RšŒ•}ύΊoΎΗγOΔόs˜xΆλ€RViNΑSGϞ׹ΚKο3ς‹/NΑ‚…ο£Q£†κœœ#Έ-y>·έΦW-¦ιwή™‹%_ΜCllMWΫuλ~ΐθQγΤ1š6mβ*v‡†ζ`‰•΄§‘Ω7Χ£?³–¬ΎœΉO52™sΘΤZԎ+1/+fabΆ³b±ΏΨLRFνΪ†ίebλή½hέΈ±2Ώάά΄UΝΪ°2r3aŽaMOζΦΈ9΅Wy04 φuήyΉ'‹Uή½Ί†œΫ^*IdύœΤ Ρp€‘°Ύ•]cެk«υ”]cŽ4₯¬oeΧΨϊΜδμIC³}]d?g™_8_cζΞטω…σ5Ά?CŽ*44‡Š$Η!  ˆ8š#.AX ‘ΩnšΝq2j%σ QΖf€ž~½¬άh6ΧΛ¨”f##Be[κΤ)τοw†άszυΊήη`kΧ~‹gž~+W}ξZeΩ³‘θϋmƒρΟGGΰŠ+.υ¬Rχψc“jTύOž<‰>½οΐ+―<‡φœοΥV¬ςœ’2)w$£οΝ½Όκ‚yCCs0΄άmihv³fO\Z΄=?*+.)ώνƒX}9GY‘ΩθU½r\tVC—Y¬ΐ|V΅FέLΧΛz­`l¦et5dŽαBΤsŒ p9Ύqy14ί²p.ά―κΡ³qs,νy»TΪΘό.@Ρpdt‘]cŽœ―1 GΞΧΨώ ε‘Όš[_Ψ^x!βbͺΚP‰Fφkσ ϋ§Œμ3ΏpΎΖΜ/œ―±ύr„P ‘9T$9   HF@C„αCΌ*Wπί’…n9š-£+—ih6' Νζ8΅’ωfc3ROΏ^Vn4ιλeTJ³‘‘²­ΟQVQξΩγvΕ°Ό΅jΕϊ,?ΊίŒ/Ύœ‡ψψ8ΏυΛ–¦ΫΔ‰θΥ³ŸΊςrvv†ή;«VζΈΕΕ'QPP€5ͺ#** ǎGaa!ββκψΗl ΝfIy·£‘Ω›‡Ρ»ƒ'ŽcΦζίρΞΖυΨ~<Ο¨ΉZŸT³–b^n„+’Tσ% ά«‘› ΘF²^+Ε4[b*Ν™cΟLτ`Ža›S{•CσΜ[·¬wɐ;δԊŽq½τŽΜŸα‚ GφΟΩ5¦αΘωΣpδ|νΟPd74Oϋp.>Ξ;ˆΤ*§πΟ /ΕΔΞ]ε¨D#ϋ΅‡ω…ύSFv™_8_cζΞΧΨώ 9B¨ΠΠ*’‡H€H€$ V₯_ˆΒΨQTT€FͺU«*Fκ?aφp⋆f'ͺκN44ϋgγYCC³' λϋ2ί,clΦt••ΝFΦτ€ΩΘ·PυΪ²e;F>ό8–.ϋL5—Wδ¨χ G EǎΎ<72<{šψώgΕ\Άwήu;Ζ<φ€ς…ΥFΧαF<4 ƒέ‘ƒ«‘‰šM@iBC³"±σRΧγ£νκΤz]rΦΩͺqω eεε+&‘Q ί xχν;Y―•b–Œ-x­™cΟLτ`Ža›S{•C³ψŒΌϊ·΅8ZT¨J1ϋš1¨u;id‘ω3\@’αΘώ©"»Ζ49_cŽœ―±ύΚ5‚μ†ζδΩ3±°0W…va½ψ5yˆ\•hdΏφ0Ώ°ΚΘ1σ ηkΜόΒω۟!GšCE’㐠 @„ ˆ•θrrr ΒΌ\»vmυŸ+77Wύ'LΞΥͺUSV¬‹CLŒ<+³„  Ν‘"Y>Ζ‘‘ٜN44›γdΤJζ›eŒΝH=ύzYΉΡl€―—Q)ΝFF„ΚΆ~ǎxμΡ'1Α]3±04?p?qƒΡ©SŸ`D}JΚPάv[ε__ŸϊoΏύ£Fώ οΌϋμή΅/Ύ8E]…yτ#ΓqΛ-7)ωmUόυΧV<4bŒb˜Ύ―Ύφœn>ϋ) ‘Ωƒbšš³5o(FζΜΠm˜P½†j^Ύ²^+ΖόΩΑ#xf’s kܜګ<š3λΧAOειΪ+wΘ#¨-Ηβ2† ^4igυ­μΣpd][­§μΣp€)e}+»ΖΦg&gOΩ ΝσζΝÝGχΈΰ}}S iΤΔυ^†ΩΟYζφΟΩ5f~α|™_8_cϋ3δ‘"@Cs¨Hr  ˆa9pΰŠŠŠΠ¬Y3T©R%`$ΒΈ!€θθhœuΦYˆŠŠ ΨΎψS^Ÿ‰φœ―˜• λΗΧ_―Γ„‰c1ύ·ρρ'οͺ†ζΩ³?Βgση(y―ο±ή}χCδεεaδΘϋu£¦¦¦B<½Dο΅gΟ5ΏnΫΆ-jΤ¨‘Χ$be»vνR”Ψ¨Q£ˆΕΰοΐΫ·oWX™ΰ―IΔΚ·mΫ†ψψxΤ―_?,1ό˜{ŸdξΑεΠ=^³j5Ρ?‘ zΧo„τihΥͺ•n»H nŒ-xdε&~}ψπa)5Λ‹'KΙxΎ‰άμψργhήΌyπ'CχΨ»w/Z·n6mΪ”ρ‘8ΌF <š;vμˆΪn£E…jψsΉw·n§M%’[YΣ Πp€‘°Ύ•]cެk«υ”]cŽ4₯¬oeΧΨϊΜδμY ͏ηξCzΤIΰ{WχΒΰsΫKSφs–ω…ύΣEv™_8_cζΞΧΨώ 9B¨ΠΠ*’‡H€H€"D ??_]911ΡοΚΜ₯C+5οΫ·O]qf͚₯«Λν{šΛ­t–§‘Ω6šΝq2j%σΝ2Ζf€ž~½¬άhhΦΧΛ¨”†f#Be[Ώ{χ^ ί₯YξGP+:Ζυ>R;²~Nj–ψΪk―Υ«ŽX™ψ‘Α?ώ¨ϊλ―WMG F9π+[~Γk[PCΈ¬^žkŒ:uκ¨οG2.½c “–ψ,“ρQυ"ΆΆmΫκ…ρ2ΖfMYΉ‰Ο=ρ9"γω&žξ““#elβ‘λbΕ]Ήž––¦šbeŒΝΪ=ϊ½^~yv©¦γJ•*Ή ³ςψqΟ¨?πyϊ™qjyqρI¬]»:΄ΓYgΥ‡hσΨ£O’^ύΊ?ώŸΎbG˜₯ϋφIΑ8₯όΕπœŸ Χu»―½φ.»ό―Ά’oŸ;ρθc‘gΟλΌκ‚yCCs0΄άm+š‘ω³΄Νx#uΎΙΨλ†ΰ±wa½xΈ]gάΩς|T«μύ·˜G3‚μ #ˆ}™ΏΘ”56šƒ8Α<šΠ샻εn…f!Yνχ^ΗΡ’BU½ΉΧή„­"w­¬Ÿ“Ϊ)NΓ‘FΒϊVvi8²­ΦSvi8”²Ύ•]cλ3“³gy34_}vc¬ν}§T0e?g™_Ψ?]dטω…σ5f~α|νϐ#„Š Ν‚dΞnDm §Ά,2@TΑœZHΈ•ΞνƒΣ-•_—ŝ*ζ‡H€Hΐ4\,{bΖ,ήβΣγ‚{§βΝGΊ‘’ۚ‹ŠŠ°kΧ.œώωκjΛ(ρψ짞z ί}χZtωε—γΩgŸ…§ΉDτ@7mΪΤ«―6FyάΠ\U³³0‰s½W―^Φ)ƒžβυK—.UG0`jΤ¨QG1?δΔυίβιυ%ŸβFγ”Ζη£nέΊh€‰ωAΒΤRܐfζF…ιˆζ#σΝ2Ζf^GΟ–²r£ΩΘS%σϋ4™gUV-srލfβΊ£FݏΨΨXΕτs3gΎ‹ωŸ-Ζ_~¬όh₯zxΝ”39{–Cσϊ£ΩxGU€βΌο)+4‹­,/ΩΟYζφΟΩ5f~α|™_8_cϋ3δ‘"P‘ ΝΒΈ|κ›ηυΏιΖ<―|Q(1:·f   Ϋ °ζ±Ξ΅όΜ@υΐ½ρΛ”OQ²Ξ(Pοήχπ\lϋHεy€‚‚lίΎ_μζ ž“&Mš5k’’’NoήΌyθΦ­›²βέx/Sσ/Ώό’<Φ»%ͺV­Zž1Έb§‘Ω…’BμΠΠlNfšΝq2j%σΝ2Ζf€ž~½¬άh6ΧΛ¨”f##Bα©ίΏ?Œ§δ§;•³™ΊmΤ¨!¦ΟxEω!Ϋά)V]ΎιΖώ˜ωζkhΥͺΉ+ΈυλΓ?yyyω²λ―ΏO>υ8jΦt@H¬θόΥW+1α©Τv111(,,Dςm}πθ£)Ή­½G©ΣΠμΒԎ“ Νίf€cϊ¦ ψxΗ_ΊLͺΧΐύηuΔπσ;’ašΊmόΚz=ρ26ͺ.—•sŒΐΊω«eŽαLΕ,/†ζ/χlGοε \‚εy΅’νεJΑ,ξΘϊ9©M‡†#„υ­μΣpd][­§μΣp€)e}+»ΖΦg&gΟςfhe[₯Yφs–ω…ύχdטω…σ5f~α|νϐ#„Š@…54««0ΠΘlq&6ΈQ–ΣΤl› €mΏΕΥΧ<€CΚ@υzLΖ―τ<³σAΜ½σΌ€~|_€Ώ*π2ΝΒΠΌuλV\zι₯.δS§NΕ’E‹T3σ}χέ§–ΏυΦ[¦ζΎ}ϋbτθΡΆ?ύτZ·nMC³‹wΚšΝ©EC³9NF­dΎYΖ،ΤΣ―—•ΝFϊz•ldD(Όυ9ΚjΝβGvQQQˆ κΰΒ¬,ϊ«O9π42—¨Έψ€²zsΎΊBsεΚ•P­Z΅M,½§‘Ω6Η­Π|\9?ΨΆI52~8KJ—πp»ΞΈ³εωΊυf e½‰Ψ›}ΫΘʍ9†―VfJ˜c˜‘TqΪ”GC³P§φ{―γhQ‘*Τ‡θmλΊ ΅eύœΤζFΓ‘FΒϊVvi8²­ΦSvi8”²Ύ•]cλ3“³' Νφu‘ύœe~α|™_8_cζΞΧΨώ 9B¨THC³ž™ω΄B4κΜ?m_l΅}pšš](ΈC$@eI mΩcθ3F,Ο|.ήϋ~.φ4-ο[ƒvέG©‡Ώχ½΅xδβϊeŠΤcλšgϞ­HξΉη―ΨEΉ0ˆ 2ΔUNC³ wΚ!šΝ‰FC³9NF­dΎ!Κ،ΤΣ―—•ΝFϊz•ldDˆυΑ ‘9ZξΆNY‘9-7olZχΆlDNa{‚{ƒZ·Γθφ‡δρΊ²^Δt›‡θAμΚʍ9F"z4eŽα£‚μž8q‡֝mQQ6lΨ€ΰͺ«B:utΫEΊpΣ¦MhΫΆ­+Œ‘Ώ~‹ωιiκϋ γέ‹―uΥEb§t|‘ˆ!Π1·mΫ†θθh4mΪ4P³ˆΥeddΰΠ‘C^G,?–]γΝ›7«?žl€‰ŸDΆxώύκηP»vν"H€£Λρ_ύ…Ϊ΅k#111ΐ,"W•žžŽ£GβΌσΞ‹\GŸ5;v4hΕκP(†ζΜ£Ήx9)s…f S;44›Β°‘¬kkAΣΠ¬‘°Ύ•]cš­k«υ”]c-Nn#O BšO―ƒ¨Ν°NΏλxΰΚ'¬χgO  CiŸά>Ο~§ψ™ΗβϋϬάu;ˆYW_ƒ)ΚςΝ玝Ϋhn«gh ΝΑΠb[ΩΠΠlNšΝq2j%σٌΝH=ύzYΉΡl€―—Q)ΝFF„X šƒ‘εn[ή Ν_νف7RΧcyϊNχ€<φΧ¬…αηwΔύΚΏΊUC³Έ^Φλcσ?Θ]Y5eŽ€gš3Η°Ζ­<χΚΙΙΑŽ;όNaϞ=ͺ‘Y†kΤ¨α·]$+„!·U«VΎΙ9€ΡΫ~u½‘σu¨Z©’λ}ΈwJΗξγoΧ]ͺ‘YV#δΑƒ‘ν₯±ΡœΒ]/»ΖiiiκΣ]5jn4¦Ž—••₯<΅&G}²’©h$»Ζβs<66  c|HaOjΡ’…qγΆ ‘9|πΛƒ‘Y˜ποGΆ Ν.¦vhh6…)`#YΦΦ‚¦‘Y#a}+»Ζ44[ΧVλ)»ΖZœάFž@Ε34ημfZ €K²αqηΈήr‡H€H ΄~Ÿ{'ξzιΰ‚'±ώ£ώ¨κ5|έΩՊ‘ω#šqι₯—z2ϋ††f³€ΨNF44›S…†fsœŒZΙόG6c3ROΏ^Vn4ιλeTJ³‘!ΦC€†ζ`hΉΫ–GC³XyΦ_ΏcƟ°σθχd<φmΤ΅νŒ[›΅φ( έ¬Χ#1CΖfMgYΉ1Η°¦'s kܜΪλΨ±cX±b…jhNNNF½zυ€œͺήηPνχ^ΗΡ’B5ޏώΡ)-Cπ=™ΕΩλΕgq¨2ιFΓ‘}¬²kLΓ‘σ5¦αΘω۟‘\#ΠΠl_Ω―=Μ/œ―1σ ηkΜόΒω۟!G ghŽϊe:N―~\εwZωoT$=ΫG]χ2N_<"ˆήlJ$@$`ž@>Q ΛΟ*†eœ«šΠΠμWhφ&“™™‰f͚yςc ΠΠlNΪ)‡G~X£6«&Li|>κΦ­ «)n:Š•Sd\!Gζ’ŒΝά ₯[Ιʍf£J™{O³‘9NleŽ Νζ8•nUž ΝΏΚΒR‡yΫΒρ“Ε₯§‚šU’1°U[Œn1΍«λSΚY―GbŽŒΝš²rcŽaMOζΦΈ9΅Wy64ψ_ΰΓνΚB=ΚλΦ¦­±ΰ†["&“¬Ÿ“Ž4Φ·²kLΓ‘um΅ž²kLΓ‘¦”υ­μ[Ÿ™½ž©©αΣO?GfΖ4nœˆWvΑ•W^†Κ•+Ϋ˜†f[ψΤΞ²Ÿ³Μ/œ―1σ ηkΜόΒω۟!G gh>ύAwDνύΦ6ΏΣ»"jΐ Ϋγp  =ξ˜ihΦγγ.£‘ΩΝBμΡΠμΝΓιοhh6§πΪύ{pν—σΤΖ44›c¦ΧJζ’ŒMO1γ2YΉΡld¬^ šτ¨°Μ*š­‘+†ζ―σ³1}Σό΅_w’-kΗa„²σ=ηΆGνοηιvA‘¬Χ#15ΖfM`YΉ1Η°¦'s kܜګ<šοΪ†›W.tIsμžGQ½JΧϋpξΘϊ9©1 αH#a}+»Ζ4YΧVλ)»Ζ4iJYίΚ±υ™YλyϊτiΌϋΞ˜1γ ΨWtν‚ττ}xξΩW€›?ωδ]T«fύoΘςbhώ’^5|yθobœς7sφΰΡΦ€–A/ΩΟYζφE—]cζΞטω…σ5Ά?CŽ*ΟΠόZ#D”ξΦύ[œ©dύœΤ`Πp€‘°Ύ•]cެk«υ”]cŽ4₯¬oeΧΨϊΜ¬υά±c'ϊέ>sޟ‰vνάΧΟόόcJω` PLΞ))ΙΦWz•C3Z7Ηύ[Χ»ζyϊΎ±ύHοΘ~Ξ2Ώ°†Θ1σ ηkΜόΒω۟!G ghΖ 5CΕ?^[ςθξ ΘH€H  ‘Y.‘hhφΦƒ†foNGC³9…ih6ΗΙ¨•Μ7Λ›‘zϊυ²r£ΩH_/£RšŒ±>44CΛέVFCσήΌ\ά°τlΞ9μτΜ^e5©!ΚJΜ++27WVfŽΤKΦλ‘ΰΑΨ¬²rcŽaMOζΦΈ9΅Wy74ίΉf ζνψK•'ΉYkΜΏώ–ˆH%λ瀃†#„υ­μΣpd][­§μΣp€)e}+»ΖΦgf­ηόω‹±ρ?ρτ3γ|ψρΗaφ쏔՛_A₯J•|κΝΠΠl†Rΰ6²Ÿ³Μ/λg¦Vv™_˜Q1pΩ5f~X?3΅²klflΞΠ|ϊΥ³U˜«υ\qΩ nΟφ§cjγ§+>7ӍmH€HΐQΒch>Ή}žύΈΰI¬¨?ΌΤδ^Αω‚±σρΡΐ6ŽbΜdτ Ν³gΟΖ©S§pΟ=χx %ΚΕc±† β*駟кukT­κMΨΥ œνΠΠ\Ξ³. ΝζΠlŽ“Q+™ΘflFκιΧΛʍf#}½ŒJi62"Δϊ`ΠΠ -w[Ω ΝfΔυ_}‚ύΗςάA*{­λΔ+«1_ŒΑ­Ϋ£z•*^u‘x#λυH°`lΦΞYΉ1Η°¦'s kܜګΌš?ί΅·,ω^«zε*84hTD…²~Njη- G λ[Ω5¦αΘΊΆZOΩ5¦αHSΚϊVv­Ο,ψžβ{΅1=…[n½ W\q©Ο›6mΖ΄©ΕΜ7_₯‘Ω‡Nψ d?g™_Ψ?dטω…σ5f~α|νϐ#„Š@Ε34ΠQ{Ώ΅Νοtγˆ>If @IDAT°Βφ8€H€H@ŸΐζΉwβΆ—ώP*ϋaEκSHτj–†ΗΪυΑr₯μ‚'Csš/½Τ}eκΤ©X΄h‘ςx«άwί}*Ή·ήz σζΝCίΎ}1zτhMš](ΈS ΠΠlN4šΝq2j%σΝ2Ζf€ž~½¬άh6ΧΛ¨”f##B¬† ΝΑΠr·•ΙΠόCζ>άΈμ3dΈμR·žΏόψG£s\e2μΘz=l›΅3DVnΜ1¬ιΙΓ7§φ*ο†ζγΕΕ¨7g*ŽŸ,V%ϊτΊΎΈ½yψο«Κϊ9©·4i$¬oeט†#λΪj=eט†#M)λ[Ω5Ά>3k=…i91ρlΔΕΥρ@˜Η{͚ƒϋξμUΜΠ -ύΆ²Ÿ³Μ/τu ¦Tv™_£¦~[Ω5f~‘―[0₯²kΜ\ΨΆl T8CsΤ/Σqzυγ*ΥΣΚΕͺΛf_žν£{§/aΆ+Ϋ‘  Iΰΰ/―γš!悔ž\²ύ›»WΞύ}.ΏkŠn]‡)χΝυVh«3Oš4 kΦ¬QMΝb’ΒΜά­[7Œ?ήλβ44—ϋSΐvνΪƒuλ~ΐΦ­;P¬|™ΥΊu \{ν•hΪ΄‰₯ρuΚΙ9‚₯_­Δ/ϋ5ͺWGΫvηαͺ+/CRcοŸ)Γ_ ΝώΘx—ΣΠμΝΓκ;™ΘflΦT••ΝFΦτ€ΩΘ7φ'@C³>£RY Ν_ξَ~«»ΜZ"ξkβΰΓέΡ¨Q#£i„½^Φλ‘ΑΨ¬²rcŽaMOζΦΈ9΅Wy74 ]RΦ,ΑΗ;ώR%Ί½ωΉψτΊ›Γ.—¬Ÿ“Ž4Φ·²kLΓ‘um΅ž²kLΓ‘¦”υ­μ[ŸYh{.\ψ%&Ώ< ‹ˆ„„³,NC³et޲Ÿ³Μ/\RYή‘]cζ–₯uu”]cζ.©,οȱ剱cΘ T8C3rv3Ο·rψŸ@œ\+ΊΨŸG  ‰€αώΞ}πxsΕdtM¬ά΄5x Ο(ˆ΅›ΎΚκΝΟ—Z½Y­¨0)**RL©[Ρ‘CΔΔΔΈζ-LΝO=υΎϋ„ΰε—_ŽgŸ}ΦΛΜ\XX‘x·nέΡΡΡΎεy'33Sω%|³ς<…2}εŠ‡qʊ}ϊφDΧ]P)ͺ~ώy=>ύt&L‹>}z†,†-[ΆγΞ”‘ΈμςKpϋν}QPPˆO?Y¨#6†δX44›“ІfsœŒZΙόG6c3ROΏ^Vn4ιλeTJ³‘!ΦC€†ζ`hΉΫΚ`hž³5ƒΧ~εJΩ»ηάφx¨φΩΚ—Λ 44{‘1~#λ΅RDΞ،υ+έ‚9Fi"ζή3Η0Η©’΄r‚‘yΑΞ-ΈmΥ"U²κ•«ΰΠ Q¨^₯JX%”ω3\€ αΘώι »Ζ49_cŽœ―±ύΪA¬Μ<ύYxο½ρί·^ΗEu4πΔ‰8|ψ°n»-[Ά`χξέΈδ’K―Ϋ&’…b%‘Υiήw€ύκ eο»]ϋ‘ήΩ΄iΪΆmι0όΫΆmκw±M›6υΫ&’8tθΤ eΧxσζΝ¨Q£š4 ύβQ‘87φοί―~΅kΧ.Γ•Ι²kόΧ_‘vνΪʊύφν* €ιιι8zτ(Ξ;οΌ²>$cŠΟšŽ―™!9)Χ*ž‘Y‘λτͺ1ˆϊί λΒu\ω„υώμI$@$`ŠΐΎeΟ ϋ˜OύΆ½χ½xδb9FΏA‡ΈβδΙ“HKKSΏ˜?λ,ο_‹•w_zι%υˆcǎE•R_N8p⏗ζΝ›£rεΚ!Ž,2ΓΡΠ˜»ΈaΦύ†dΌπΒSΈόŠK½―_ρ8–-Μη±i^ MΎζε[o€ώύoΕέƒξπκ%V‡~|Μ¬\΅΅jΕzΥσ††fs΄hh6ΗΙ¨•Μ_Ζ16#υτλeεF³‘Ύ^F₯4b}0hh†–»m€ Ν/όϊΖς; eοΉ‹―Δ/WΝ―44{‘1υFΦk₯ž±™’Π«s /¦ί0Η0ͺB4t‚‘ωΈrΏ°ήœ©'ΜΏώf$7;7¬ϊΙό.@ΠΠlt]cš―1 ΝΞΧΨώ ­ ž€y}£‘Ÿs?xSYdΗά"x999Ψ±c‡ξχμΩƒ½{χͺ‹ ³œl―?ώψCY°¦@5ρέ΄/Υή†‹opνGzG†[΅jι0όΧ]ͺ‘YV#δΑƒ‘-5CΩ5ίΧW«VMΚΣ‹3++ βsH,t&λKvΕgxll¬Ίh‚Œ …Y8??-Z΄1±7ΊΠœVφ’ΞόΣφΕVΫw5lΠQVΰtΥ:"ξ  ”}Ώ|‚‘CžΕ―C\€η>œ†›;Τχ*­¨oφνΫa^φΧvβW„Βδ,λΟVτ€‘90΅ŒŒ,uΕδ•«>W΄χ6± s|Ÿή)ψΰΓ·”β\εδQn²νΔ±όch”xΆzsR₯Jz;[·nΗ°‘£°zΝ"ŸΐΕκ)ΚΚΝcǎV~…Ωήί†ε44"RΠΠlŽ“Q+™ΏŒclFκιΧΛʍf#}½ŒJi62"Δϊ`ΠΠ -wΫHšώnήΨ΄ΑŒ²χΑ΅7αV%«3‰Ο|š½π˜z#λ΅RΟΨLIθՈ9†Σo˜c˜FU!:ΑΠ,„κΏz1>MΫ¬jΦΏE|ά­oXυ“ω3\€ ‘Ωώι »Ζ44;_cš―±ύZα‹/–cβ„qΣMέ1ώ‰GQ΅ͺϋΙ©ΦF,ι%ώžyηUW]…zυκΩͺLϊΞ›7O]υ³sηΞΈhύjΧ1Nί7Φ΅ιΩ―=Μ/μŸ!²kΜόΒω3ΏpΎΖφgΘBE Bš<=S³!Tš™ ±  ” δ<ŠBuπΤͺ_UΛζ@εrTρˆ*aδΏΆ‹‹sQMFϋ%ΈψRΏnέΊš–«:šΛ•›{½zφΓ_Ξσ2-‹^zuŸ|Ό/Ώ< œ…6η΅Β7χ½ςΛӚXψω\ε¦ZΰσfΛ–νxύυ˜9σUDE‰ŸΉ_Β<έ«ηνxηέ7”ΤΘ]δ Νζ€ΡΠlŽ“Q+™o–16#υτλeεF³‘Ύ^F₯4b}0hh†–»m€ ΝΙ+?ΗΒ][݁({K•\³gγζ2ρ™OC³ ‡ιY―•bŒΝ΄Œ†Μ1\(‚ΪaŽ.Η7vŠ‘y~ΪάΎz‘ͺWυΚUphΠ(T/υd·²SζΟp1oŽμ«/»Ζ49_cŽœ―±ύ7‚X€eζΜwρΞ¬Ήxcϊd\vΩΕΑ `К†f@&ͺeΏφ0Ώ0!’AΩ5f~a  ‰jΩ5f~aBDƒ&²kl>«ΓH ΒšcΥΤόσΐ·“Œ‘w¨KβΚΜΖ€Ψ‚H€H ΜŠŠŠ G%L’mΫΆυY ·t8’ύ¦M›PΉre4iΔ°}ιώ2Ώ§‘9°:β¦Ϋ½χ<ŒšŠ)ω‰ρDBΓͺΩψΰCx~«Ψ΅sζ/˜£ž_½cŸˆχfOWΞ«6κΐ…xξΉWπέ·?Bo•gΟ£‹σQO¬ξω*.>‰7•‹}…ε+ψ¬νΩΦhŸ†f#B%υ44›γdΤJζ?²›‘zϊυ²r£ΩH_/£RšŒ±>44CΛέ6ά†ζόβ"τ^>_οίγ ’NLU,SΜΜ—%$ΊΚĎψΜ§‘Ω ‰©7²^+5Me}D₯¬ά˜c˜:ν}1ΗπAR‘ œbh><ι­ήœ©8~²XΥsΑυ·ΰΦfα{τ΄¬Ÿ“ΪΙMΓ‘FΒϊVvi8²­ΦSvi8”²Ύ•]cλ3³Φσ[ε;‘1=₯~’¨<Ι2Τ―ςjhώϊ¦\Σ¨I¨qXOφs–ω…%Y½:Ι1σ /Ή,½‘]cζ–dυκ$»Ζ^ΑςMD ThC³‹|ΞnDmϋ§Ά,2@Ta.NΗΤ.@₯sϋΰt«›€Έs\ΝΉC$@$@2¦Ρ#GŽ ==]5’6oή\Y}7^7Δμμl€₯₯©ζη€€$Τ©SΗgυ\ݎ倐†fc‘r•Uš―½¦·nΓΥk©+7Ÿ:u ·ά2όηƒΈϊκ+ΌΪž8Q€›nμΙ“ŸAΗNxΥω{#ΞΡΣgα»ο~‚XΉ9&&«V/TV{ŽυΧΕT9 Ν¦0†fsœŒZΙόG6c3ROΏ^Vn4ιλeTJ³‘!ΦC€†ζ`hΉΫ†ΣΠ|θΔq\ΥΗψυP–+€†Υkbmο;qnœο“DΔg> Ν.T¦wd½VŠ 06Σ2Ί2Ηp‘j‡9FPΈίΨ)†f!Τν«aώΞ-ͺf)-ΞΓGέϊ„M?™?ΓŽμŸ ²kLΓ‘σ5¦αΘω۟‘ωΔχύn‚.].ΒΠaw#?˜Oη*U*«OΊτ©0Y@C³IPšΙ~νa~@<“U²kΜόΒ€šΙ1σ‹β™¬’]c“Σ`³0 ‘9 y  (kΕΚΚ*999ΘΚΚΒ‰'T£rƒ \ΖfaduΒψ\­Z5εΖJΔΕΕω¬ž[Φq–υψ44&,Ξ“ώύξAfζL˜8Ν›ŸƒJ•*aΧ=xρ…ΧQ­zu|ςΙ»J}ξθ/ώίΧ‹Q])+ύš6νΏ¨¬τρΠ°U~ίοή½{”λ׎Ήs?Α½Cbψπ{ υβΌqλ½6lΨ Ζί«W/½κˆ•‰,]ΊT=ώ€P£FˆΕ"LCshπΛόG6c³¦±¬άh6²¦'ΝFΦΈ±—>šυΉ•†ΛΠΌλθΥΜΌ=7ΗR‹Ϊqͺ™9©f-W™ηŽψΜ§‘Ω“ˆΉ}Y―•"zΖfNCΟVΜ1&ωΆœοχΖδάτ½Iήβ°―‹vμΨ‘ΖΡ²eΛ°ΏΆρδ1΅ν5ž„JQτpι(ͺT©’jκ ;¬|μάΉSύ!FυκΥσΥ„SΔώ@ "@lPlqεvτθQJKKcyΌ‰λμ‰'XΖ&LZ"χoͺΰφIJJ’ψψxjΪ΄)·Π šMΐX‡ΒΠΌ9ν0u[φ>₯žΙ}"V›κ΅i₯ς‘je#M#7Λah6ΕcZΑω ˆΝT6Σ šMΡ­€‘9(žbWι'CσiεΗγεg½¨kΈΈϋ@κί04ίy9ŸΓŽτΓBz…»Ζ0IK«wδ1 GΊT+ά5–žӎ04»†ϋ1‹όΒ#ΏπΏΖΘ/ό―±ϋb―ΐΠμIŒ   ˆ'Ω σΉsηΤ₯φdΫ₯K«¦Κ2eΚ¨K±νΗ ΝΑU7o‰c`πΰ~† ?Yς)%%%Συέ―₯{ζΝ{“.(―SΛ‰Œ,K₯J•RΜρ•ιΨ±tυxΣΪ£|ΥͺUhφμR›„V¦†ε9³η)―fΛ΄|Κ³hsαΒmψ€εΊuλΤm<‘9K <‘Ή©Ξ7D›”€lŸμ³‘œž0ΙqC/c04s±*-lCσ†”dκωιGtς\Ώ6E<έκ6 ₯=Q€ςdΙ`q­„‘9!γ:δΖ\¬JΉrCŽa₯œq=r c.Ε΅ΤO†f‘aβͺΕ΄hOΞ²‡^ςϊοu}B"-Χσ€6yŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=ahv― χcω…5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@˜Έ¨Pϟ?―ώλβS’D Υ€*L¨bέ―šƒ++ ΝeΓqβ Ύ† 5Csο>=θΦαχΠκΟ>]ψΓΣ_š7₯-šŽ#Ž»I“ώI=zt₯Ν;ΆY°` 8BcΗήmXo§P˜„Ω†ζΰ΄`hΞΗn-η’ˆΝЁνΈrƒΩ(P'»[0Ω%…vvΐΠl‡RΑ6…ih^τΗJ\½8`§ƒ_JvλPfΆ!Ξω04›Ρ1/ηz­#6sέΜjc˜‘ ^Ž#8ŸβVλ7Cσϋ»~£!_|’ΚXNωqΠ©;‰€œΟα GξξΓpδa8ςΏΖξgΘk„’dh~ΰΐvϊς`’ pMο!Τ%¦> ˜ά―=Θ/ά&ά5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h.ΑΗ/§ΉsζΣG ζRι₯ ς·]5 Ώυf0`Έ²=ŒϊφλΠ.3σuλڟfΝ~•š5‹¨Λ»±bω*zα…WiΥκEΚΎŸ˜'ž ήΏί_i? ΚΫΝΡ: ΝφpΑΠl“U+Ξ7Λ›•zΖυ\ΉΑld¬—U)ΜFV„Pο„ ΝNhεΆ-,Cσ›ΏύBw­ϋ,wGΚΪC-―’g―κPlCœσahFΘΈŽλ΅RD‹ΨŒ5 VŠ#σ:δζlŠcί Ν§•7½•Ÿυ’.ε’Rίqϊva­p>‡‹9Γpδ^yξΓpδa8ςΏΖξgΘkšέλΑύΪƒόΒ#ΏπΏΖΘ/ό―±ϋb―ΐΠμIŒ   v04—@˜‘Fρ—ΖΡ?&έOΥkTWΝ‡‘§Ÿ~‰6mό…–―ψ*V¬@λΧKγΖ>BS§>NέοB%K–€ƒSθϋUŸφ=gξλκlb_ύϊ₯† λΡSO=J΅jΧTŸžœ΄Ÿzh2₯€€ ε•α‘‘eΝ†°,‡‘Ω‘Ϊ†f{œ¬ZqΎ!ŠΨ¬Τ3ηΚ f#c½¬Ja6²"„z'`hvB+·maš§l\OOlܐ»eνυŽέiτ_Z”Ymˆs> ΝV” Φs½VŠH[A½¬JcX2GŽaΜ₯Έ–ϊΝΠ,tΈj-ή³S•tX\szχΪή…./ηsΈ˜< GξξΓpδa8ςΏΖξgΘk„’jh^ά} υoXψ?†²£χkς ;*oΓ]cδΑυ³SΛ]cδvT ή†»ΖΑ£Gm( ΐΠJΪΨ€€€@‘€‘Ωozϊqš2ωZ·ξ›€Ζ;Ά£G{j(&gν³ξ«―iόψIΪ¦ΊμΫ·'=8αοT‘Bω€r£ ³}‰1ξ»oTΉr%£nΆΛ`hΆ‡ †f{œ¬Zqώ’Ψ¬Τ3ηΚ f#c½¬Ja6²"„z'`hvB+·­Χ†ζ»ΎϊŒήάφKξ”΅»υ£Α›”ΩΩη|šν lΓυZ)’DlZΩΩBŽa‡RΑ6Θ1 2)Ξ%~44Οϋύθ―[ͺΚZ©Ly_‘KΜω.&Γ‘ϋC€»Ζ0ω_cŽό―±ϋς‘¨š''t ) Yΐδ~νA~αώ0α1ς kŒόΒ»Ÿ!FπŠ Ν^‘Δ8   a'C³} Ξ͒ΜΜL΅CωςεMŸ”|ρβE:v,²•אV¨PΑ–‘9§N¦3gΞ¨ΕbŒ²e#ς7‘Ϊ†‘Ω6šνq²jΕωfb³RΟΈž+7˜Œυ²*…ΩȊκσyΠ… ς«ΫλΦ­£δδdJLL€θθhΓ6α*άΊu«’·ER“&MΒ‚ι~½44χωl-Ϋ·KίWω₯iΙ ‰Τ­nC½ΜɊ8ηΓΠμ„XN[ΧJbs'r ηΜDδrάόΪˏ†ζ“粨ςμ—uΙ>Q·}\’oΖ ηsΈ˜/ GξUη1 GώΧ†#kμ~†ΌF€‘Ω½ά―=Θ/ό―1ς kŒόΒ»Ÿ!FπŠ Ν^‘Δ8   a'CsΨ%i04ΫΓ C³=NV­8ίElVκΧs峑±^V₯0YB}~[Άl‘³gΟζ/V·χνΫG‡¦ζΝ›“ψα§Οž={(""‚bbb8…₯ΖςϋοΏS₯J•Tγ°lp§.œ§1Ϋ~€_2λCT.UšώΣτJΊ΄ΌόΫ=vξάIQQQT½zξΫHτ„yEΔΗγ½ωQ ΆόDμmsεvτθQJKKcyΌ‰ος'Nœ`›ΘΝNŸ>M7Άw„°URRΕΗΗSӦΟ\Β0}΅+?š…@ύW.’%{wͺZέΧ‚ζ^{c‘κΖυ»˜6iŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=ahv― χcω…5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h»! †f{ΈahΆΗΙͺη’ˆΝJ=γzά`h6ΦΛͺ†f+B¨ΟOOhΞOΔύΆΫ'4§ž>Eέ–ΏO›ΣλΑΔV¨Dkϋ ₯&•«κe2+✏'4;'ΗυZ)f‚Ψœλ‰Γ93Ρ9†7Ώφς«‘ω½[iψšeͺl•ΚDΠ‰‘χͺ„œΟαbβ0Ή—Ÿ»Ζ0ω_cŽό―±ϋς†fχzpΏφ ΏπΏΖΘ/ό―1ς kμ~†Α+04{Eγ€€xFΰρΗχl, δŒΐ“O>鬳Φ043€Γ‘Ω`šνq²jΕω†(b³RΟΈž+7˜Œυ²*…ΩȊκ9†xJsbb"EGG;ιZθm·nέJ‘‘‘Τ€I“Bί—ΣΈ14~β]ΏμΪ“‘ϋdζζQΥισo‘Ϊε+8 ₯@{qΞ‡‘ΉΛΧJ8b³”―@δΨ*@Ža S±iδWCσΙsYTyφΛΊŽΛz ’λ^Αω. ΐp€ +ά5†αHZZ½#wa8₯’^α±τĘv,J†ζŸL‘Ή;Ά¨$''t ) YPε~Μ"Ώp˜pΧω…5F~αέΟ#xE†f―Hb°€‘9μ„4šνᆑΩ'«Vœo–!6+υŒλΉrƒΩΘX/«R˜¬‘ή šΠΚm+khώιΘ!Ί^y2σΡ³gτΑC+oΌ™ΔS"½ψˆs> ΝΞIr½VŠ™ 6ηz"ΗpΞLτ@Ž!ΗΝ―½όjhzυύl!-έχ»*݈ψ4§Λ…&#ηsΈ˜4 Gξ₯η1 GώΧ†#kμ~†ΌF(J†ζ₯tšžΨΈAC³ύγω…}Vf-‘_˜‘±Wž””D‡¦Φ­[Ϋλ†Vά5F~αώ ΰ±ϋb―ΐΠμIŒ   v04‡]‚C³=ά04ΫγdՊσ—lΔf₯žq=Wn0λeU ³‘!Τ;!C³ZΉme Νkμ£>Ÿ- Μμsϊ@=λ5¦=λΫ^¬ˆs> ΝΞIr½VŠ™ 6ηz"ΗpΞLτ@Ž!ΗΝm―δδ΄lιgτσ/[¨b… Τ΅[gκήύZ*Uͺ”­‘·lω>όp1J9LυκΥ₯ŽΧ΄£kΉΪv³ψΩΠόξΞ-tλšεκΤΕŠNŒΌΟ ƒλrΞηp19Ž\KΜϊ:-fC³5†αΘ»Ÿ!―Šͺ‘Ή_ƒ8ϊψ†,`"Ώp'Γώύϋ)55•Z΅jεn BμΝ]cδξΕη1ς kμ~†Α+04{Eγ€€€„ Νa— €ΐΠlw^C³θρSΫ¨Z΅jTΏ~}{„°•ΈY³‘sΰœoς 6ηzΒlδœ™θ³‘7τ2&C³1«R§†ζχwύFCΎψ$`ΨΫ/½Œήξά+ Μ‹ δrqχ7δrz"ǐγζ¦Χš­£|ŒzχΎzχιAiiiττΏ^RΝΘK—½O*”7ώβΕ‹4λνχθυΧί¦αΓo¦ΫQrς~zκŸ/P¬blώΰƒYYΦ΄ΏU…Ÿ Ν'ΟeQεΩ/λď‹ΔŒ γΓωϊ"ζ C³{ΥΉk Γ‘5†αΘ»Ÿ!―Šͺ‘Ήsz΄ΆΟP0Ή_{_Έ?LΈkŒόΒ#ΏπΏΖξgˆΌ"C³W$1€€€@Ψ ΐΠv B ΝφpΓΠl“U+Ξ7Λ›•zΖυ\ΉΑld¬—U)ΜFV„Pο„ ΝNhεΆubh~uλFϊϋ†Οs;+k…ωͺZqΞǏ¦pΫΪΰz­Α#6[4BŽ€Γφr Ϋ¨ŽwξΓpδN_Ρ›»Ζ0ω_cχ3δ5 Νξυΰ~^B~ፑ_ψ_cδώΧΨύ 1‚W`hφŠ$Ζ;šΓ.AH€‘Ωnšνq²jΕω†(b³RΟΈž+7˜Œυ²*…ΩȊꝀ‘Ω ­άΆv ͏|·–žύε»άŽΚΪ۝{ν—^Pζε†8ηΓΠμœ(Χk₯˜ bs'r ηΜDδrάd{͜1‹φξM’§§>^ΐ΄,ΜΞ}ϋ ‘O–Ξ§Ϊ΅kξbΑ‚%΄ωΧ£'žœX ώΫo€9sζ)Oo~J–,Y ήNί Νswl‘ΫΦ.WQT*A'Fήg‹γ6œΟαb209–΄@ξΓpT@2Ηά5†αΘ±€:pΧΈ@ΐEΌ (š“’+Σ€U‹TβxB³ύω…}Vf-ΉŸ—_˜)gΏœ»ΖΘ/μkiΦ’»Ζfq£<τ`h=sμ@@@ ΐΠ\H`™ C³=a`hΆΗΙͺη/وΝJ=γzά`62ΦΛͺf#+B¨wB†f'΄rΫΪ14 “”0Kεύ|ά} υk—·ΘσuqΞ‡‘Ω9VΧJ1Δζ\OδΞ™‰Θ1δΈΙτΊpα t=ϊΨjΥκ²C\ΌxQyΊςτΠCc©uλ–†υ|œ μM:\U ~λΦmτΚτЌ™/ΒΠ\€NNΑΙsYTyφΛzνgΚΣ²oˆm€o{΅Βω.ζΓ‘{₯Ήk Γ‘5†αΘ»Ÿ!―Š’‘ωdtν²ω*@šνGΘ/μ³2k‰όŒŒ½ς€€$:|ψ°ς]ͺ΅½ahΕ]cδξ ξ»Ÿ!FπŠ Ν^‘Δ8   a'CsΨ%i04ΫΓ C³=NV­8ΙFlVκΧs峑±^V₯0YB½04;‘•Ϋ6˜‘ωtv6υ_΅V%οΡ;ˆ'?TŒRWΧͺ«—֊8ηΓΠμœ.Χk₯˜ bs'r ηΜDδrάdzefž’Ί'RΕ UΥpˆyσh7jΤ­†υΒ΄\·nͺZ΅J@½0COšψ$5jΤ€ξΊϋΆ€:'~B³`ΡλӏθΣ€έ*–;”·'Ό₯ΌEΑληsΈ˜+ Gξη1 ΝώΧ†#kμ~†ΌF(ͺ†fAρβ]³€ΙύΪƒόΒύaΒ]cδώΧω…5v?CŒΰš½"‰q@@@ΒN†ζ°K`hΆ‡†f{œ¬ZqΎY†Ψ¬Τ3ηΚ f#c½¬Ja6²"„z'`hvB+·­™‘9=λ,έ°όϊώπA½qΘr΄¦ΟPjU]/+ΜqΞ‡‘Ω9aΧJ1Δζ\OδΞ™‰Θ1δΈΙτ:sζ υκy-\τŽ©‘yΑ‚%t(%•Ζά;ΚΡ.-ZFΟ?χ }ΌδΏΚυ †£ΎyCσμν›ιφ/W¨Σ?>:1ςΎΌΊϋρ”™yšή}o&5jΤΐ²hžžN»vν2m»oί>ΥΠ, ΓΒΙρ# Ήqqq‘έ»}#}}β¨Ϊ@υΊτX#9s΄Ynγ3Χ«ς={φ¨†fFΘ#GŽΠ±cΗ\iμ+³qΈkΌ{χnŠŒŒ€˜oΝϊf<œ–§¦¦ͺη’ψψx§]C֞»Ζβ<^±bEυ;@Θ 8Ψ‘0 gffR“&Mτ }SšCΗΌ(š£γ/‘Fσgκp.ήυ°ΎΞΞίšέά5†‘ΩΓΠμέΟ#xE†f―Hb°€‘9μ„4šνᆑΩ'«Vœo–!6+υŒλΉrƒΩΘX/«R˜¬‘ή šΠΚm›ΧΠό}κAΊaΕ”žuVoΠΉN=ZΡs0•/]F/ Պ8ηΓΠμœ6Χk₯˜ bs'r ηΜDδrάdz9sVyBσΝ4gΞk[Οψ‰šO>ω]}u[Ίώϊ.Aw±tιg4eς3Τ»χ 4ιPΩ²AΫΫ­Uc?B::bœ§ρ»ΟΣ` ƒαȊΓ"ξΓpδPPƒζά5†αΘ@4‡Eά5v8φΝ‹’‘9!!JΌρ¬Ξ†fEΠδAρΨͺδ~^B~aKΖ ΈkŒό"¨|Ά*Ήklkh04‡3v    04‡‚rhχ!’UρJW£xu x lǎͺΓV&b_jΕ§}ϋφΚNΛ†-±γοӏаŸΎcXΣ\}εb:uτ2.+β•ŸβΒ5jΤΰ’‡ˆ­iΣ¦ϊ6§Δ&§Wn‡V_ΜρxF¨γǏ³όaώύ$ &nžD'w$YχΪ»w/ΕΖΖ²δf}ρlC³œξš‘y[ΙσΤε":}>[hpγKιΓnύυνP―ˆ›ε04;§Ξω ˆΝΉž04;g&zΐΠ,ΗM¦ΧΕ‹ιΑSΎG·₯ΔA} !ξ Γσ΄ιΟP³fΖO-c̘1‹ή~λ]zυ΅ησσ•ΖqSP\ ΝigΟPτάι:ͺΥ χnuκΫnW8ŸΓΕά`8r«0ο‰ΩΑpδa8ςΏΖξgΘk„’lhώ)q$‰·1…ϋƒόβήͺxCη'³sΧω…»cPτζ1ς kμ~†Α+04{Eγ€€€„ Νa—ΐσ`hv†fχ Ε\Ν―ˆM^_šΒΠ,§) ΝrάΠ˘ ΝΖ\¬JΕ`ל9AχϊM@ΣΡiE―wμPκ ρšSηό‡$Δζ\Oš3=`h–γ&ΫkέΊohβ#Og+?’Š+ ³|Ω*zρΕWiεͺ…T¦LΚΞ>OkΧ£–-[(?Š­Ά]Ώώ[šπΰγ΄`α\ͺ[ΧϋρC³€)ή΄°*yΚυf-ι?ΧτPΧ½ψηsΈ˜ ΝξUζ1 GώΧ†#kμ~†ΌF(Κ†ζ5½‡P—˜ϊaΚύΪƒόΒύ!Β]cδώΧω…5v?CŒΰš½"‰q@@@ΒN†ζ°K„ΩθΒ… Τ«W―ξΧjgΙΙΙ΄bΕ ΅Ω°aΓ¨|ωςV] ΅~ν}tν²ωϊ>~j{U«VκΧMF=¨?WΔ )˜ςS±ήζ|#±Yλ—ΏΜFω‰ΨΫ†ΩΘ'΄²G†f{œς·ιbšž΄# ψΩ«ΊΠC-― ( Ηr 9긎ϋ‹r 9=‘cΘq“ν%ž°|Χ¨ρ”’rˆή|s:ΥSK5.―^½†ύΗS4σ?/Σ•WΆR‡ΟΜτ™3g©χ7ӌ™/Q\\cύ¦˜‘Sυ6ωWκ׏UŸή,Ζ“ω'CsΪΩ3=wΊŽι‹ή·Πu1 τm7+œΟαb^0ΉQ7§/wa8ςΏΖ0ω_cχ3δ5BQ34W3ŽgU!β ΝφŽ%δφ8k…ό"λΊ€€$o‡lέΊ΅uγ0΅ΰ1ς χwέΟ#xE†f―Hb°€‘9μ„4šνᆑΩ'«VœΏd#6+υŒλΉrƒΩΘX/«R˜¬‘ή šΠΚiΫhήLΪ“q\οΈΌΗ κUΏ‰ΎξqΞ‡‘ΩΉ \―•b&ˆΝΉžΘ1œ3=cΘqσ’Χ©S§ιΜ™3T’D ͺR₯2•,Y‹a]Qœ ΝΤυΛί§ΟχοU™έΣμ šqΝ ψi9ŸΓEŒ0iJΙ/Ήk C³ΌΆZOξΓp€)%Ώδ±όΜxφ,j†ζ.KηΡ—“T˜04Ϋ;¦_Ψγ¬χσς‹`κΩ«γ1ς {:kΕ]γ`±£.΄`h-oμ @@@  ΐΠ\ˆp C³=Q`hΆΗΙͺη/وΝJ=γzά`62ΦΛͺf#+B¨wB†f'΄ˆ~MK₯– f띸ό1SHYη|šσ±·ΞυZ)’Glφ4ΜΫ 9F^φΧ‘cΨgUZ7CσΏύLw―[©J[­l$1Ξ™9ŸΓΕa8r/3wa8ςΏΖ0ω_c·3gϞ₯{SγΖ υ2§+EΩΠ<»s/Ίν˜NΩσφ܏Yδξ%η1ς kŒόΒ»Ÿ!FπŠ Ν^‘Δ8   a'CsΨ%i04ΫΓ C³=NV­8ί,ClVκΧs峑±^V₯0YB½04;‘E”°hm:rHνtw£¦4σϊ~ΞAkqΞ‡‘Ω9hΧJ1Δζ\OδΞ™‰Θ1δΈω΅Wq34 ».›O;°O•τoiE―uμξZ^Ξηp19Ž\KΜϊ:-fΓ‘5†αΘΛΜπ¬bBήΊυ7ΥΜ|μX:Υ―kΫΠ|ρβEΊiπHzzκγΧXfχAϋeCσδ„4%‘cΠω…’ω…;Κϋχο§ΤΤTjΥͺ•» ±7w‘_ΈŸ»ΖΘ/ό―±ϋb―ΐΠμIŒ   v04‡]‚C³=ά04ΫγdՊσΔf₯žq=Wn0λeU ³‘!Τ;!C³}ZOePΜ{―ι΅»ž\ήZίζ²"Ξω04;Wƒλ΅RΜ±9Χ9†sf’r 9n~νU Ν3ο'½~•*i΅²‘ttΔ8Χςr>‡‹ΙΑΠμZbΦΧi1;Žό―1 GώΧXf†+–―’Η{šΖά;ŠϊφνI>ϊ½φΪσΆžΠœ™yŠzυLΛ–@•*U”Ω}Π>04Εc«ω…-L¦`h6Ec»ω…mT¦ ΉŒόΒT:Ϋά5Ά=4,t04:bμ@@@ T`hiϋ‘ٞ04ΫγdՊσ—lΔf₯žq=Wn0λeU ³‘‘ΠΥόσfZ±b5ύ±{/ΕΦ‹‘>}z(OwΉœJ”(a+ˆŸ~ΪL«V~A)‡R©vνZtν΅ιΚ+[τΟΞ>O«W―‘μμμ€1ϝ˦:΅kΥνΫ”;έ€‘Ω>±oΩHcΏώ\νP₯TiϊυϊΑΚSάΏŠή~φZŠs> ΝφXεmΕυZ)bDly•²·ŽΓ§ό­cδ'RΌ·‹£‘9νμŠž;]~mŸ‘ΤΉN=}[f…σ9\Μ†fUϋpΧ†£@½dΆΈk Γ‘Œͺ}Έk­σ­3gΞΠν#ο₯wίϋ-Cσξέ{hΒƒΣG ζΠργ'θτι3Y–ͺU‹rΎsƒ04@qXΔύ˜E~αPPƒζά5F~a šΓ"ξ#Ώp(¨Asξ„Œ’0€‘9Lΰ±[ο ΐΠμ=SΞ#ΒΠlOšνq²jΕωK6b³RΟΈž+7˜Œυ²*…ΩȊPαΧ‹Χ―Ύόςλτίχ>’1cξ€Φ -iλ–mτK―Qοή7Πδ)SΙ’%Mύ§L~†–-[IwŽΊ•Ϊ΄iEΫΆν i/Ο ŽΫΡ‹/ύ‹J—.₯φ?r$nθ>F)ν„Ή9ο§rεJ4lψMAχ•·½Ρ: ΝFTŒΛςΎ†~`ΊτrB'šQ™–r½‰€›©lA+ΈrCŽT6ΣJδ¦hŠeEq44 ‘―[6ŸΦΨ§j>¦ykz΅ΓυτηzžΤ&Γ‘FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεg–ΣS΅3χcω…5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h»! †f{ΈahΆΗΙͺη’ˆΝJ=γzά`62ΦΛͺf#+B…_Ώξ«―鑇¦Π‚…s©nέ:ϊ>ͺ<₯y=>ω!κΩ³›^žeΙΗ+θ™g¦ΡΒEο¨ ΤκΣӏӠΔtΟθ‘4hP?΅ψΧ_·ͺFιΩ³_ xr³ΦΗν†f{Od₯*s¦ι_½4ϊ4Ї‘Y'bo…λυHDΨμi˜ΏWnΘ1ς+eo9†=NΕ₯Uq54ΏΎuΩ°Z•ΉvΉ tpψ½$ηzžΤ&Γ‘FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεg–ΣΣ©‘ωε—^§χήϋ¦<ρˆzo£tιtκΤizσΝΉκ»-~—bcc€Γ‚‘Yή‘ϋ1‹όB—Jz…»ΖΘ/€₯Υ;rΧω….•τ w₯'†Žž€‘Ωs€@@@ \`hωπμ†f{άahΆΗΙͺη/وΝJ=γzά`62ΦΛͺf#+B…[αΒΊω¦Ϋiδν₯^½ >±oνΪυτδΟΡͺΥ‹υ§,ηHτ<θ6Ί1Τ‘ΓUy«Τua`?n’ήήΌtJyš’x’sa|`hΆGυ[hΔΪεjγr₯JΣΧ ]•ΧνVƒ‘Ω>½Χλ‘±ι29ZαΚ 9†#υΖΘ1tXQWCsΚ©Lͺσή«ϊ1πUί‘tMνzϊΆΣηIm0i$δ—ά5†αH^[­'wa8”’_rΧX~f9=šW,_E•*U€k:΅Ψ΅xΫΤsΟN§”C©τβ‹O}[Τ™3g(--- ΏΆ±}ϋvJOO§N:Qtt΄VΜf9ώ|:yς$%$$¨nSξΜUξ ˆΟδ„4%‘cΨcε~Μ"ΏpˆpΧω…5F~αέΟ#xE†f―Hb°€‘9μ„4šνᆑΩ'«Vœo–!6+υŒλΉrƒΩΘX/«R˜¬n}Ίςεž=+†γEκψςοMό‘π†ξ‰΄Ty]yTTΥόΥ€ΥϊΩG†ύΕύzυΌI}zsΥͺUθΎρ“θ»o£ψψKθπαΓ€όύPωƒ_5*[6’ΐΨ204Ϋ£6pΥ"ZΌg§Ϊψ¦ΖMibυ04ΫCЊλυH‰Ψ€²½Α•r Ϋ4DŽ€£ΨoWC³ΎΛyτεΑ$υψ{σz₯ƒω›7¬ηI-nŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?³œžN ΝΑφ·A>μnύGΨfm…ayΧ]†Υϋφν£€€$jΩ²%U\Ω°M8 ύυW:{φ¬ςFΊΚ[΅bhζώί鍻ՐϊDΗΠƒ šR%ε‡ΞαόμάΉ“βββΒBΠ}οΩ³‡Κ”)£2 Ϊ0L•GŽ‘cǎ±fΘ]γέ»wSdd€ϊH˜d ΊΫΤΤTυ‡ρρρAΫ…³’»Ζβ^±bEͺU«V81™ξ;%%EΉΟžIMš41mΓ‘’U«VΒ@ Μ ΐΠΜ\ „   `Ÿ ΝφX‰§|ύυχ΄rεtπΐ!Š‹oBϊί¨.ν`Ώ•08‰§όπγOTΎ\9jή’uΊζjŠ­WΧώ &-ah6“―†ζ|@$79ίΔGlr’r峑œž0ΙqσͺΧφνΏΣΨΏ?D+>ύˆJ•*U`X‘{ά5j<ύm̝ΤͺΥeκ5C³™α9―‘ΉbΕ ΤϋΖ›•ΌεϊFΙgς~Ζ(㏸mˆa yΫY­ΓΠlE(§ΎόΫ/ισΩκΖΌλϊP³Œ,šν‘ hΕυz$‚DlRΩήΰΚ 9†m "ΗΐQμ7г‘ω΅­›θή «Υc vΉ tpψ½ΗΧσ€6!š5ςKξΓΠ,―­Φ“»Ζ04kJΙ/Ήk,?³œžN ΝgΟfΡ?lRί(U’D‰»>wξœϊ#ξ η*ί‰£ ΤΫ)ψωηŸIδEε ΝS6§'6nΠ§Ά¦χκS_ίΗ χcω…ϋ£‚»ΖΘ/ό―1ς kμ~†Α+04{Eγ€€€„ ΝΦdggΣΈ±(7ΰ~’‰“ξ£ΨΨΊτι§«iΙΗ+hό}£iψπ›­±ΩB˜›†Ή“nί–ξ§ό‚?‹>ό`‘bŒΨL“§2ϊ#cM `h6“§ψ“½;©ίΚEzΙρΫΖΣξϋ †fˆύ\Ην³ΚΫάς°·ŽΓ§ό­cδ'RΌ·‹³‘9εT&ΥyοUύXίχ―Τ‘v¬Ύνd…σ9\Μ†#'j·ε1 GΖΊ9)ε1 GNΤ4nΛ]cγ¨ν—:14§€€Ν7€ΟΏψX}Βnώ½μέ›DwάώwZΉj‘α=‘ό퍢‹Ί‘yqχΤΏaxŸŽΜύ˜E~atδ;+γ1ς gz΅ζ1ς #՜•qΧΨΩlΠΊ0 ΐΠ\˜t16€€€@H ΐΠlϋΏο}DoΏύ.}²tΎςZœ z‡uλΎ‘ργ&ͺ―roΨΠύ/ι…yyΰ€atσΝιΦ·θϋ+b_M˜lϊZϊ€ΖA6`h'O Νy`ΈXεό%±Ι Λ•ΜFrzΒl$ΗΝ«^;vόN|ςyš3χuΓ?ήiOhύ·Ϋ Ν"Ν΄όΖ›Σ(!α =4a–φΧ»ιόωσκK—.M3fΜ’±cοV^γXVo'VΔk^ϋφBο0KyEfγ€:'04[ΣΊύΛ4{ϋf΅α ±θ3Εd.ώ[­Z5ͺ_ί}.i³βœ/^)^ΛνΓυz$8!6Ή£…+7δrz"ǐγζΧ^ΕΩΠ,4ντΙi]J²*οΈmhZϋRRs=Oj“αH#!Ώδ1 GςΪj=Ήk Γ‘¦”ό’»Ζς3ΛιΜМ}žΦ]G-[Ά 5ͺ“xsΟƒιο₯ž=»μZάο˜4ρIŠˆˆ )O<"ύγκ’nhžœΠ¦$t `κ ξΗ,ς χGw‘_ψ_cδώΧΨύ 1‚W`hφŠ$Ζ;šƒK LΖ}ϋάB/Όπ]vω_kOFrK"υλίK―KO?NΒHt*σΕΤ­C5 ’%Kκυf+ΒΨ$ž’hτΤm_?<ήπ΅σfcζ/‡‘9?γmšΉ8-ε|³ ±9U3§=Wn0Ιι ³‘7―z‰λώίο}ˆV|ϊ‘©‘Y<‘ωŽ;‡QΫΆ †»ωΑ{ο}HΣ^ž‘ζ)έ»_G›6ώBkΦ¬SίμπΪ«oͺF娨ͺ†ύEρvx3@IDAT‘ϊ‡ΔI€oμN;Ά3m'*ΆlΩ’Ό=β¬a›}ϋφΡαΓ‡©yσζTΎ|yΓ6α*ά³gϊ‡ps―έτ?:~>[Ε0©A3T³ύώϋοT©R%Υ8.>fϋέΉs'EEEQυκΥ͚„­\Δή'Y™M±™‘ ^Ξ•ΫΡ£G)--ερ&ΎΛŸ8q‚el"7;}ϊ45n,C™ΰGŒ|mRRΕΗΗSΣ¦MεAOGŠ»‘ωί[6Ψ―?W™Υ.WΏΧ?­1ΧοbZ|0i$δ—ά5†αH^[­'wa8”’_rΧX~f9=ƒšE]·ύiϊ+Sυ{«V­‘‰<‘ޟθήύZεΦ‘Jώz’ώύο7hΩ•΄Ty€LυΡaΑΠ,NοΘύ˜E~‘K%½Β]cδκΉkŒόB—Jz…»ΖCGΟ ΐΠμ9R    .04'Ώ{χΊσޱ΄ϊσΕͺΩH9ΰΤ©Σ”••EU«VQϊΰύEτάs―P͚5¨i³8ϊκΛ―Υ§:/Zό.EGW Ί³νΫ§—_~]y‚β‹žJ ž°Ψ«η`z{Φ«+”<šƒJ WΒΠ¬£p΅ΒωK6b““–+7šετ„‘YŽ›W½ΔλUGή6F}‚r™2e ›Mϊ£3_²Όφ§ΧοbΪΔ`8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜrz Σ²xcεΜΌTΰ‡ΩgΜUξAά¬ήΓΘϋφ§oΎώžQLΝ™κίLRSΣ₯—^B/ΎτΥ©SΫUH04»Β§vζ~Μ"ΏπΏΖΘ/ό―1ς kμ~†Α+04{Eγ€€€„ ΝΑ%X±|ύρΗ^ϊΧΑ4αΑΗ”WHηΌ&\τsο(1βύζxβΓM‘Ωs^Sώ¨œσ΄'ρ„η§žz6¬–V­^¬š‹Μφ(LΛβ)‰β΅πy?ΒD=SyMόΗ/WLI ƒŽ‘·ŸΡ: ΝFT –ΑΠ\‰L η’ˆMFQR΁?)O‰o%ΧΉ{ΑΠ,†f9n^υ2ϋcŸ6ώώύιζ›nW Ι+VЊυ₯Θf½ύuξ‘.Ή€‘^­ˆζ“₯ŸΡλ―Ώ@SŸ~‰Z΄ψKΐ%΄vbœxŒϋPϋWiŎ—"ΗOiNLLTbŽ(ΔΒ()žΥ€I“BάKπ‘οϋζ šΆωG΅ΡU5λΠ·ύoUΧΕ`«U«FυλΧ>@jΕ9_˜™Γύdk£©s½‰X›‘bΦe\Ή!Η°ΦΞ¨r #*Ε·¬Έš…ς—ΌGνW‚ϋ.kC/]έΥρΑυ<©M†#„ό’»Ζ0Ιk«υδ1 GšRςKξΛΟΜ}ΟγΗO¨χ?’R₯²ϋ•`hv‘ϋ1‹όΒ#ΏπΏΖΘ/ό―±ϋb―ΐΠμIŒ   v04—`ΙΗ+θ™g¦©Oaίh0 ·bˆ)KΏύΆƒξ3A1φ]>M D‰JέpΊώΏQηΞΥ KΟ?$΅j}y@Ω†0½ώΪ[΄aΓw$žά‘<%z‘ς΄ηŠf]l•ΓΠl ΑΠl“U+Ξ7D›•zΖυ\ΉΑld¬—U)ΜFV„ Ώ^ΌΥAΌ B˜ŽK–,©οPδ“&>©^Ÿxr’Z.~ΰ΄vν:jΩ²Υ¨Q]ύ”0"GW―F“&έ―χ+"χθΧwMTΚ»(†gan~α…W Ÿ-~Έ5(q-\τ5l(oͺ…‘9@‚1Κ“*OhŸ©m;Σ#W΄SΧahV18ώΧλ‘˜bs,§Ϊ+7δrz"ǐγζΧ^04MW~Τ4^ωq“ψΤ.WΏΧ±ά\Ο“ΪD`8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜxφ,j†fAqΚΖυτΔΖ *ΠΙ hJBΗ°Βε~Μ"ΏpxpΧω…5F~αέΟ#xE†f―Hb°€‘9ΈΒΠόδ“ΟΡΤg&SχξΧ4>z4M}•ϋ³ΟN‘ λΡ-7ίA[³„Κ•+ΠNlΌςΚ¨”bTOuΆϋ―‡ί§ό―χέθŽ;‡ΣθΡ·“0OϋˆWϋ^ΈpΑ°ΙΊuλΤς^½zΦ‡«099™V¬X‘ξ~Ψ°aTΎ|ωp…’ξ†foπsΎY†Ψδ4ζΚ f#9=a6’γζe―ττγŠρx(uΏα:7ξnυ‡K§N¦Κ›|΄„–.{Ÿͺ+†eρ―vνΦ΅?Me*΅m› –‰= r'‰]έrΛ@*S¦ ₯•άCτΟΞΞVίrΧȜρ΄f‘‡ˆ}•/_Ny‚sιόM€Άah6ΗΦJy:σΟΚSšΕη‘+ΪΡΤΆυΖ04λ(­p½‰I 6GRꍹrCŽ‘Kδh9†#\Ύo CsŽΔ/oώξζκFνrθΰπ{iΟυ<©M†#„ό’»Ζ0Ιk«υδ1 GšRςKξΛόgΟ’nhξ\§­ν34¬pΉ³Θ/άά5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h.Α·ίώHώγ)ZΉj‘‘‘Yž§¦ή}zΠ­Γο‘՟/6|Ίπ‡,¦Ώ4oJ-Z43ά‘0"MšτOκΡ£+uξάΑ°Ν‚KH<ΕqμΨ» λν ³‘00υκΥΛNσ΅INN¦+V¨ϋ6l˜jΖ ΩΞ vC³‰"Ξ7Λ›„ Jά`6’Σf#9nθeL†fc.{N§Fσgκ•ί*―˜Ώ*Ο+ζahΦΡ8Zαz=“@lŽ€Τsε†C—ΘΡ r GΈ|ί†ζ‰SNeRχ^Υυώ­ΤΆf}Ϋj…λyR‹†#„ό’»Ζ0Ιk«υδ1 GšRςKξΛόgOšέλΒύ˜E~ፑ_ψ_cδώΧΨύ 1‚W ΝΏύφ[ΑGρy΅GŒ ΐŠ@Ι’%U3«  €@ΨΤ―_?lϋφbΗ04§˜™yŠΊuνO/½τ]έΎm@cQΧ―οPzΰΑ{醣†Σ·£Ύύzh'Ƙ5ϋUjΦ,> .οΖŠε«”WΑΏJ«V/*π΄Dρ$ΕώύώJ“ώρuθpUήnŽΦahΆ‡ †f{œ¬ZqΎ!ŠΨ¬Τ3ηΚ f#c½¬Ja6²"„z'`h6¦5}σ4ώ›/ΤΚ:ε+ЁaOc„‘٘›U)Χλ‘ˆ±Y©g\Ο•r c½¬J‘cX*^υ04ηκ}υΗο·©Τ‚/oKΟ·»6·bλyR †#„ό’»Ζ0Ιk«υδ1 GšRςKξΛόgOšέλΒύ˜E~ፑ_ψ_cδώΧΨύ 1‚W ΝΚ«½ahφŠ0Ζš­Q/^ΌŒžϊη τόσOR§ΞνU³qr~Ίϋξϋ¨Z΅(š=ηu₯¬­_-ϋMϊ8u»Ύ ‰ΐ<˜Bά¨ϊtη9s_7|Κ³fnΨ°=υΤ£T«vMυ΅σb_=4™RRRiΕ§QddY­‹γ% ΝφΑΠl“U+Ξ7D›•zΖυ\ΉΑld¬—U)ΜFV„Pο„ ΝΖ΄]:ŸΦά§VŽώK+z½cχ€†04ΰ°½Αυz$&€ΨlΛА+7δ2Ωή@ŽaU±hCsΜ/ώϊ==ψν΅ ~ΕΚ΄wθθάJ‹5ηI-lŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=ahv― χcω…5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`hΆ–ΰβΕ‹΄\yzςδΗ§ͺ#""(++‹υ₯Έ—Κ–ΠYχΥΧ4~ό$}[¬τνΫ“œπwͺP‘|@ΉΡFzϊqš2ωZ·ξ›€j1Ζ}χ*WPξt†f{Δ`hΆΗΙͺη’ˆΝJ=γzά`62ΦΛͺf#+B¨wB†ζ‚΄Žž9MΥίyE―XΩλ&κΫHί+04ΰ°½Αυz$&€ΨlΛА+7δ2Ωή@ŽaU±hCsΜϋ2NPƒy3τ‚οάJWΦ¨£o[αzžΤb†αH#!Ώδ1 GςΪj=Ήk Γ‘¦”ό’»Ζς3γΩ†fχΊp?f‘_ψ_cδώΧω…5v?CŒΰš½"‰q@@@ΒN†fϋdgŸ'ε­κšK•*©<)9°³0@;–NΩΩي‰Ή‚-#sώN:MgΜQ‹ΕyMΣωΫ:Ω†‘Ω-šνq²jΕω†(b³RΟΈž+7˜Œυ²*…ΩȊꝀ‘Ή ­9Ϋ7ΣΘ/W¨•ΛDΠρ‘χhCs$Ά Έ^DπˆΝ–„q冣€TΆ cΨΒTlΑΠ(υU‹ί‘οT jy={U—ΐ&[\Ο“ZΈ0i$δ—ά5†αH^[­'wa8”’_rΧX~f<{uCsՈ²4"ώ2šΦΎkΨs?f‘_Έ?4ΈkŒόΒ#ΏπΏΖξgˆΌ"C³W$1€€€@Ψ ΐΠv B ΝφpΓΠl“U+Ξ7Λ›•zΖυ\ΉΑld¬—U)ΜFV„Pο„ Νiυ_Ήˆ–μέ©V iŒζuν[  ͐Ψ*ΰz=Α#6[hΔ•rŒRΩ*@Ža S±iCs Τ/ός=MψnZXΏbeΪ;tt`“-ηI-\Ž4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=‹Ί‘YPν\§­ν34l€Ή³Θ/άά5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h»! †f{ΈahΆΗΙͺη›eˆΝJ=γzά`62ΦΛͺf#+B¨wB†ζ@Z§•7u”Ÿυ’^ψAΧ~tS“¦ϊΆΆC³FΒΩ’λυHΜ±9ΣRkΝ•r M!gKδΞxω½5 ́ οΛ8A ζΝΠ 8‚ͺΧΦ·ΝVΈž'΅xa8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜxφ„‘Ω½.܏YδώΧω…5F~αέΟ#xE†f―Hb°€‘9μ„4šνᆑΩ'«Vœoˆ"6+υŒλΉrƒΩΘX/«R˜¬‘ή ši}Όg' X΅H/Γ\Ή!Η0”Λ²9†%"ί5HOO§]»v™ΞkίΎ}ͺ‘ΉyσζTΎ|yΣvα¬ΨΉs'ΕΕΕ…$„”¬3Τλ—―τ}Νo~5]ZΎ’Ύm΄ΚψŒφoUΆgΟ*S¦ Υ­[ΧͺiXκ9Bǎ ™Ζ2“δρξέ»)22’εύ'Α;55•ΔΉ(>>^HϊpΧXœΗ+V¬¨ήg ‡;III‘ΜΜLj€‰Γž‘mήͺU«Πξ°ο †fχβsύ¦Ν †f„ό’»Ζ04Λk«υδ1 ͚RςKξΛΟ =½&C³ΧD1€€€@ΨΐΠ6τaΩ1 Νφ°ΓΠl“U+Ξ_²›•zΖυ\ΉΑld¬—U)ΜFV„Pο„ ΝΉ΄ςηGnKΡ‘εrδYƒ‘9 «\―Gb ˆΝyšrε†#HV‘c8€ε“¦ΩΩΩtϊτiΓو§7―_ΏOhΞG'aΡΪtδZ:ρŠvτtΫΞωZnr=OjQΒp€‘_rΧ†#ym΅žά5†αHSJ~Ι]cω™ρμ C³{]Έ³Θ/ό―1ς kŒόΒ»Ÿ!FπŠ Ν^‘Δ8   a'CsΨ%i04ΫΗ]βgυΖxB³ŽΒΡ η’ˆΝ‘”zcά`6%r΄³‘#\hlA†ζ\@γΎώœ^Ω²Q-h_«.mθ7,·2ί Νω€Ψάδz=α#6›"ζkΖ•rŒ|BΩάDŽaT1ivκΤ)ZΉr% Νωτ~ζηoiβχ_ͺ₯υ+V¦½CGηkΈΙυ<©E Γ‘FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεgΖ³' Νξuα~Μ"ΏπΏΖΘ/ό―1ς kμ~†Α+04{Eγ€€€„ Νa— €ΐΠl7 ΝφY™΅δ|C±™©Όœ+7˜‚λfV ³‘”Λ€‘9—ZΜ{―ΑS™jΑσW]KΆl›[™o †ζ|@lnr½‰π›Mσ5γΚ 9F>‘ln"Η° ͺ˜4ƒ‘ΩXθ}'¨ΑΌzεΟ‰#©etM}; Χσ€' G ω%wa8’ΧVλΙ]cŽ4₯δ—ά5–ŸϞ~047¬X…ώzOΨs?f‘_Έ?4ΈkŒόΒ#ΏπΏΖξgˆΌ"C³W$1€€€@Ψ ΐΠv B ΝφqΓΠlŸ•YKΞ7Λ›™jΑΛΉrƒΩ(Έnf΅0™‘AΉ šs¨ύ€Ό:Ύ΅ς yνσǐ{¨a₯*Ϊf% ͐Ψ*ΰz=Α#6[hΔ•rŒRΩ*@Ža S±iC³ΉΤ­Ξ¦ŸŽ¦ͺ ώΡκjzκΚN¦Ήž'΅€a8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜxφτƒ‘Y]Σ{u‰©Θ܏Yδξ ξ#ΏπΏΖΘ/ό―±ϋb―ΐΠμIŒ   v04‡]‚C³}ά04ΫgeΦ’σΝ2Δf¦Zπrά`6 ›Y-ΜFfdP.C†ζj“\OOnΪ n4ͺN[ί' ΝAρ˜Vr½‰€›©lA+ΈrCŽT6ΣJδ¦hŠe Νζ²?ύΣ7τΎRΤ―X™φmژλyR †#„ό’»Ζ0Ιk«υδ1 GšRςKξΛόgOΏš''t ) Γ™ϋ1‹όΒύaΑ]cδώΧω…5v?CŒΰš½"‰q@@@ΒN†ζ°K`hΆ†fϋ¬ΜZrΎY†ΨΜT ^Ξ•ΜFΑu3«…ΩȌ ΚeΐМC­ε‚YτkΪauΓκI‹’ Ν9ܜώ—λυHΜ±9U3§=WnΘ1δτDŽ!ΗΝ―½`h6WvηρcΑzƒ_€Λ«ΥΤ·σp=Oj1Βp€‘_rΧ†#ym΅žά5†αHSJ~Ι]cω™ρμ C³{]Έ³Θ/ό―1ς kŒόΒ»Ÿ!FπŠ Ν^‘Δ8   a'CsΨ%i04ΫΗ C³}Vf-9ίElfͺ/ηΚ f£ΰΊ™ΥΒldFε2`h&Ϊsς85š?SΗχΓ€Τ¦Fm}Ϋh†f#*Φe\―G"rΔf­ŸQ ܐc©e]†ÚQqjCsp΅―X0›~IKU=ΦΊ==ΩζΓ\Ο“Z°0i$δ—ά5†αH^[­'wa8”’_rΧX~f<{ϊΕΠ<"Ύ…ϊ„ζ½'TΠ ”·64¬T%$ΠΉ³Θ/άά5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h»! †fϋΈahΆΟΚ¬%η›eˆΝL΅ΰε\ΉΑl\7³Z˜ΜΘ \† ΝD/oώξζ*Ύ:ε+ЁaχZ’„‘Ω‘aΧ#,b3”Μ²+7δ–6@Žaˆ₯ΨΒΠ\ϊύτ5=ϊΓ:΅Q\ε(ΪqΛ]†Έž'΅`a8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜxφτ‹‘ΉszΤ%¦>=±qƒ zrBΥΰ κ܏Yδξξ#ΏπΏΖΘ/ό―±ϋb―ΐΠμIŒ   v04‡]‚C³}άy ΝχΤ½„Κ•+GUͺ„ζΙVQЧ6hOi7€jΥͺE111VέB^Οωfb“;ΈrƒΩHNO˜δΈ‘—1š‰:2ΎJIRέΫΌ5ύ»ΓυΖ°ς”ΒМ†ƒUΧ#1Δζ@ΘŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=ahv― χcω…5F~ፑ_ψ_cχ3Δ^€‘Ω+’@@@ μ`h»ž ’ΥsηΞŽϋΫoΏQZZuμΨΡ°>\…"&ρ₯V|Ϊ·oOeΛ– W(ϊ~γΧ,ΧΉ­ΌΧͺ΅­Z] kΫΆmM5jόƒgΈγ±5mΪ4άaξ±b±,δΚνπαΓtτθQ–Η›0B?~œelϋχο'a0‰‹‹³Τ>Τ φξέK±±±,Ή…šEQΩ_q74=sšͺΏσŠ.Χη7ήB]λ6Π·ΝV`h6#Όœσ][pνΜjΉrƒ‘ΩL±ΰε04ηSάjahΆVός³hsΪa΅αγ­;Πm ή³αzžΤfΓ‘FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεgΖ³gQ44|4•Z-œOhΐ°ό"‡Τχσς )Y:qΧωE€\Rά5–š: š +šΓA½pχΉeΛ:{φ¬αNφνΫG)))Τ];Γϊp ³ίŽ;Τέ·lΩ’"""ΒŠΎίΦ?¬ΧΉ­ΌΩτJJ¨₯†΅sηNŠŠŠ’κΥs Μb±q4J FˆMξHαΚM˜™Ε#8oβ:{βΔ –± “ΦιΣ§©qγΖrD!φJJJ’ψψxš ‘±ΧCwCσ¬νΏ_~ͺb­\&‚ŽΌΟbšma*Јσ|ΔV@.[\ΉΑΠlKΎ`h.€€XΐΠl-?7m Η\―6Œ«E;nΉ«@'ηI-PŽ4ςKξΓp$―­Φ“»Ζ0iJΙ/Ήk,?3ž=‹’‘YΜϋfH±- ΝWDΧ’ι[~›$ήΞ8§Λκza‡ϋ1‹όΒύΐ]cδώΧω…5v?CŒΰš½"‰q@@@ΒN†ζ°K„ΩθΒ… Τ«W―ξΧjgΙΙΙ΄bΕ ΅Ω°aΓ¨|ωςV] ½ΎΛyϊ>222¨tι©—…zεΛƒ9―°ϋ]Σ{u‰©―† nHΥͺU‹bbbB’εώ8ί,Cl–ς6ΰΚ f#CΉ, a6²D„wCsίΟ}Ώ«Δ†Ε5§w―νm‹ ΝΆ0hΔυz$Elδ²Uΐ•r [ςh„£’b]C³΅ό;£ψήΠn|ύ%*πGΛ\Ο“ZΠ0i$δ—ά5†αH^[­'wa8”’_rΧX~fήτά½{•,Q’6ΚΉ―νvT?š νώΏ08―ν3Τ-[ύΉ³Θ/lΙ΄w‘_•ΟV%w‘_Ψ’1h#ξ •!%CsHqcg   …I†ζΒ€Λolšε4α`6ΚϋδšεtΜΫ‹σ Δ–W){λ0Ωγ”ΏΜFω‰`Ϋ βlh>Mεg½¨γ[p}Jlt©Ύl…CŽaŸΈαGSftΜΛq7g¬†+7δΑT3―CŽaΞ¦8ΦΐΠlOυ½M[QOIθH“:tδzžΤ‚„αH#!Ώδ1 GςΪj=Ήk Γ‘¦”ό’»Ζς3sίσΘ‘4ΊεζΫiΐ€iΜ½£ά¨ŒC³{ŒάYδώΧω…5F~αέΟ#xE†f―Hb°€‘9μ„4šεps0ΑΠ,§Y/Ξ7k›™jζε0™³ V³Q0:¨sJ 8šύ±ƒW/Φ‘Ίύ*§ΌΩΑΞ‡CŽa§ΈΑΠlFΗΌΧqs6ΑjΈrCŽL5σ:δζlŠc ΝφTbγš²q½ΪΈΉςtζ-ΚSšσ~Έž'΅a8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜδ{ž8q’Φ―ϋ†{μiu»οΎξRώyρρ«‘ΉjDYΊ"Ί½άΎ«²¬ι*Σ1Έ³Θ/L₯³]Α]cδΆ₯4mΘ]cδ¦Ωΰ±ν‰ a‘€‘ΉΠc   ‘"Cs¨HσΨ Νr:p0U3ŽgU'€'4Λ阷ηˆ-―RφΦa6²Η)+˜ςΑΆq̜;wΞ°ΩoΏύF"―lΣ¦ UͺTΙ°MΈ wνΪET―^½B aΒύ@K%©c_]‡f^~΅νύlίΎ*WLuκΤ±έ'T ·mΫFΡΡΡT£FPνφ~DlM›6΅έ>” ›mά>LGeyΌ‰όηψργ,cΫΏ? k\\œάQˆ½φξέK±±±,Ήβ΄Γ:4 ΝφπŸςtζζΚSš΅ΟŽ›ο’Έ*QΪ&qώž(‚„αH—Jz…»Ζ0IK«wδ1 GΊT+ά5–ž˜dΗ‹/€‰OΪ΅hκ3+?˜­I«VύΖ»GrΔΐn~14 ³ψ€yο_›eήΏhe^/Ή³Θ/ά+Ξ]cδώΧω…5v?CŒΰš½"‰q@@@ΒN†ζ°K`h–ΓΝΑΠάeι<ϊς`ŽY*οΝLqC OOt+ηyˆΝΉž04;g&zΐΠ,Η­8χ‚‘ΩXύΦ_}Bη³ΥΚ©Ν(±vγ†₯04@±QΔΥό*BGl64hΒ• ΝbΩ(‚‘Ω€bΤ†fϋbΗΏνά5F~¨—Μw‘_Θ¨Ψ‡»ΖΡb+œ`h'}μ@@@ΐS04{Š“ύ`04ΛIC³7Ξ_²›Ώ4…‘YNOšεΈ‘—1‘cμΫ·Υ§ϊ· OιΦ­[)22’š4iβy;°—Ί.{_χΘ­c):²œΎm΅Β!Η0‹Q\+ρ£)3:ζεΘ1ΜΩ«αΚ 9F0ΥΜλc˜³)Ž504ΫW}ςλιΙMΤ—U«AΏΊ]οΜυ<©Γ‘FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεgζMOšs86œ7ƒφfœ°„ C3~0eyΨhΐύΌ„όΒ†ˆMΈkŒόΒB@Υά5Ά14 šC»(|04>cN{€‘YN f#<‘YN;³^œo 63ΥΜΛa62g¬f£`tPη”@q54}Γjzuλ&Χ5΅cι«Ύu„ŽCŽa°ΈΑΠlFΗΌΧqs6ΑjΈrCŽL5σ:δζlŠc ΝφUί’v˜.[0Kο°γζ»(J”ΊΝυ<© C³FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεgζMOšs8ζ½ΟŒ, Ν04;>μΦq?/!Ώ°«€y;ξ#Ώ0ΧΞn wνΞν Ÿ Ν…Ο{šCšΙn`h–‚ƒΩ(οΞΌ73ΕY˜œλΚωbs'ΜFΞ™‰0ΙqC/cΕΥΠσή«tπT¦ ε₯«―£ϋ.»I)‡Γ$4BŽaF&x9γΑω˜Υrε†ΓL±ΰεΘ1‚σ)n΅04;S<ώύ7hη‰cj§ΆΉ†mέ^]ηzžΤfC³FB~Ι]cŽδ΅ΥzrΧ†#M)ω%wεgζMOCσ™3g(--Ν0€νΫ·Szz:uκΤ‰έ›’DΐσηΟ§“'ORBB‚ϊO›ΔΟGS©ΥΒΩΪ¦ι2οίLΉ¬ΰ~Μ"Ώp)°»ΖΘ/ό―1ς kμ~†Α+04{E²˜“•‘AYʜ#*V€ˆb6wL@@€/šωjS‘ΑΠ,G•ƒΩ†f9νΜzqΎ‘‡ΨΜT3/‡ΩȜM°˜‚ΡASΕΡΠΌρH ΅Y4WGυǐ{¨a₯*ϊΆ9†Yœβz„M™Ρ1/ΗuܜM°ܐcSΝΌ9†9›βXC³3Υϋa=υΣΧj§–ΥjΟƒFͺλ\Ο“Ϊμ`8HΘ/Ήk Γ‘ΌΆZOξΓp€)%Ώδ±όΜΌι)ch†ε]»v°oί>JJJ’–-[RεΚ• Ϋ„³πΧ_₯³gΟRέΊu)&&& ”[Ά|C;NŸ (ΛΏqiωJT©T΅ΈOυΌώμάΉ“βββΌΦ³ρφμΩCeΚ”Qz6¨‡9r„Ž;ƚ!wwοήM‘‘‘ώρP&WC₯¦¦ͺ?œˆw5Navζ±8‡WTΉΜٌ3%SjfEDΥ€XsρPΘ’έΏ’Ν©”pM'ŠuŽƒύ )€€w04sWΘΫψ`h–γΙΑlC³œvf½8±™©f^³‘9›`50£ƒ:§Š£‘9―αθςj5θ—A·;ΕFr ³ Ευ†f3:ζ帎›³ VΓ•rŒ`ͺ™Χ!Η0gSk`hv¦ϊ―i©ΤrAξSwά|ΕU‰bt=šιlԚλ΅P‹†f„ό’»Ζ04Λk«υδ±gΈ–2†ζμμl:}ϊ΄aΘ[Άl!aD+jOh“Y{`]»lΎαΌŒ ''t ) ͺ\•q?f‘_Έ’WνΜ]cδώΧω…5v?CŒΰ’ihΞΨLΓ‡L"ΕάPk·Kš›ί€!“>QG‘1ψΊά½£ξYYŠ <"ΒέS•χ(όχ+{ξ«šG924'Σδ>£i“uWzgιxŠr4ƒΖYΚρ˜sέΦ”γ#‚³θσ‰‰4} ‘kΣ― yΝί؈ι iPγw δ54'>OοήΦΤέxθ   Pd ΐΠ\d₯“ †f)l,žžC³œvf½8ίδAlfͺ™—ΓldΞ&X ΜFΑθ Ξ)βfhήsς85š?SΗ΄iΰmΤͺΊσW'ΒΠ¬#t΄‚k₯#\zcpΣQΨ^AŽaU@Cδ8Šύ Ν΁GψŠώυΣ7jΗ+’kO‰#ahvŽ1  G8€6`8’ΒΠ‰s.&…α(@.© ξKMΚΓN04Β,ρΖ³AΆ`h†‘9Θα΄Šϋy ωEPωlUrΧω…-ƒ6βqΠΰQR04{‚;‹’w歷ˆ(jλό>ž„`9HΝΉg-T«\W1ύΞtcϊuahώ|β@ΕT}NΆΜU EΆΣ·eW2’wSrFΕ6%ŽvrΩy‘€€€304;γ₯΅ήΈρgjPΏU―­yΆLO?N+–―’~ό‰Κ—+GΝ[4£NΧ\M±υκΊή Νr9˜`h–ΣΞ¬ηˆΝL5σr˜ΜΩ«Ω(Τ9%Pά Ν/ώϊ==ψνSςθΐ°{"SΫsΘ1ΜΧ#<‘ٌŽy9γζl‚Υpε†#˜jζuΘ1ΜΩΗš«ώσQεIΒ gλχMGwξbύtaΌ^—Kz…λ΅P› G ω%wa8’ΧVλΙ]c-Ξp-ah$Ÿχ~`MΑ-šah.xTΨ+α~^B~aOΗ`­ΈkŒό"˜zφκΈkloh ΕήМu,™ΆοN¦c™”₯Xac·PLΙω-±Yt(9•„ ·jl,Qς6Ϊ΄-™²"jQ»N—QΕ¬ :”šIT‘ՊΚι›•qˆRΣs»Fbб μΙVΛσΤcu?ι­WnS搧mώ¨Ν_:&ΗT}h#M=…6©&βΐ†-§Π·%δ…% ΝɟN¦Ρ―oRoAOΟθG―ώ ’WMx‹ν€ΣVJ²hΙ=JόbN|~>έΦT3^’iο€/ώŒsΒ;K©S™\}z<=ŸΖώόl^ςMzλ;m3wY΅5Myα”P«€ύ9· Φ@@ŠšIvξά94θ6JNΪ―š™…©Ω«0/0ŒnΎy έ:β–€aΧ­ϋ†š0™V­^D•*ε^·ΩΨ€‘Ω$ƒ&ΜFyopΒΠl ’Γ"Ξ7›C1•ζ09g&zΐl$Η ½Œ 'CσΡ3§©ϊ;―θ ς^—υB›+r ³PΕυ?š2£c^ŽλΈ9›`5\Ή!Η¦šyr s6Ε±†f9Υ'}%Mύω[΅sλκ΅θ­F-ah–C©φ‚‘ΩΌ?»Βpδž!Χ|G› G ω%wεgΖ³' Νξuα~Μβ ώΧω…5F~αέΟ#xE ΘšŸ_¨˜]ΝL©ΫhlŸ τ‡B«―bt₯]³θΣ‰‰τϊ cUj}Uc:τέ&Υ`«–VνKo½;*ΗԜΗΐ«υΘYΦU Ν3©Qς2a‘R”³-v³mΑXš0χ*S¦LNSaΐ­Jt.ΟS›«φ}šήu™Rα0ρ΄ε{†Π\ΝW­ξ‘*5jTAω#nnaέΟΣΜA±τιδiή!’ΜύϋΥ§L‹ζUλV₯Ψ„ρ4uT‚ςΔγΝtbΨΦz–©Ϋ‚Z+’ώξ;b:ž‘˜Ž•BρΙΓ#kN΅ρΡ›Γo%Υγέz-}’-Ϋ‡ήβΤAσg |Zuή§9—ιAo-£j±{ΙDχVN\”ω½2¨©i<_£!S>ΣΓiΤΊ5ΡξMτ‡ξ3oAΣN₯Ζf‡ή+  E… ΝΞ”š>m&₯₯£„6WPΎds切§§]»ώ S™§(¦n%ίh@%K–,Π.ΑŽΏΣ¨;ΗΡη_|œ›ύΩθβΕ‹4DyrσÏWώ€%r!Ή Νrά8˜`h–ΣΞ¬η›΅ˆΝL5σr˜ΜΩ«Ω(Τ9%Pœ Νomϋ…F}•sο€r™:>ς>§Έτφr =˜|+βzCs>(66q·Ι  WnΘ1 Δ²Q„Γ$›M²³ΟΣΪ΅λhΥΚ5tόψ jή’©ϊ榆 sήΨcsχΎϊκkκΨ±•*UΚ°[JJ*­X±šΎ~#E–-KΧ]Χ‰zτμJξώC³!nΛŸŽ’Φ‹ζθνV΄μD=―ΊZίζΆΓ‘{EΈ^ ΅™Αp€‘_rΧ†#ym΅žά5ΦβτΛ²¨š§l\OOlά`K<‘OhΆu 4β~^B~a šΓ"ξ#Ώp(¨Asξ„Œ’0(ς†ζF]GPΟK+PVVV>„qn;½9χ ΥΔ›Χx{θΫitηΏΎPΫ—i1‚fLτηӘ3θσ§FΣτοr―­6ƒžθ©˜xσxE§γž¦;;]JΌω•±­ ‘9_09›ΗΎ₯·ώλOS±ς”βωSI˜ŸΗ“ΟΠ\·ΗzaL§CpΖ6š|λ„œ'-+¦μωŠ);ηΉ‡YŠ :Q5AΧν«G)Fΰ??ɟNTžœœcξ;ε-•πηΣ’£σdΕθ,ž©LU•±nΛ+Ό\Ξp‘•Ό„GΏ₯ΦiOQΝwΕ€ΌˆΊε}H³2ωσ§hττœ§+·P΄˜Ϊυ OόσIيΙωΕδ%F4ŒGyΚσXε)ΟΒ0MWΡτωRγ?ΉyΑDš47gΎZ,’>  EŸ Νφ5ά΄ισ· ΄φΛe΄|ΩJε‰ ) ΝΌΏˆž{ξͺY³5mG_}ω5U¬X-~WyνY΅ ;―\{ωεΧiƌ©D‰mϟ?O½z¦·g½J±±1uN6`hvB+·-³Q^Csή˜β‹,ΜFΉZΩ]γ|±ΩU1·ΜFΉ,œ¬Αlδ„ΪZ(N†ζޟ- εϋv©HώŸ½s³‘όψG‹uYχ[εΆRΘ5‰ ?rί(~DE‘~¨Pι‚ξ₯BΏ\~ε—Uύ(—E.Ήώ)₯"”{nΛZ·]vν…ψ?Ϝ9sζΜΜ™™s{φμw^―έyζΉ~ŸΟwφΜ³3οσuκ#‘ΝΎδ1,aad­1Œ”1Ο§λΈΉ>F₯’κFk #™ηΣΓ\«₯ό-N}ϊ<Š”ΣgπςΛ£Q©r¬[»ση/Α›o½‚ŽΫYν _±{~0 «Χ,Bl,‹"£ΩΆnύ O>ρ Ϊ΅kή½»γό… ˜0ώ] ~^²τ(WΞό~†¦;Cš=δ°upσά8–~Qj3ςΖ:˜©§­φ‘¬L@³j‹z-”gFΐ‘¬„σ½θ>&ΰΘΉoε–’ϋXΆ3Rφ4ϋοIΡΟYZ_DΎi}ω>¦υEδϋΨRR ΟΝV…pƒ·κhΘυ1iΩΫp£½Ό·Σ˜k0ΦK•s!^0[Ίέ|1ŠE5VmΦ€ζӘΖϊ]ΕϋeΫΐIσπ`]NΨ:°G 4«Α^©g`Χ§C1ξoΉ*³f.„¬jS•E†ž)E†v58½k6νcwρθΦ©)Τ1 φ²ΎΖπΎόš·M€ «8(ήS—MDM>΄JW­M.ΛX$κ,΅%ƒEwdsυ{jΖ2pΦ\ΪTύΈύœŽ„}±ˆΙ4šΗΰη\ž™{ΣΖŠ NυΪΛ€snw΄#HR€Θ» ΠlΝw/^ΒύβρΡGοΰŽζM€ˆgRΞxΝ6lΒσc'`vΒ4Τ«ηZ-ρoΌρ>~όαg¬Y»QQϊ‘ΈZζQ“’’’<Œβ™fΞψ K–¬ΐͺΥ‹Lϋπh¨s@@³Ž(²D€hΆΰ(UDΎYKΆΩpdnU‚μkΖ[lδL7j₯―@~š3―^E±Ο>PDX‘ΊWSŽν&DXcΩΜ―Gτ₯)#uŒσι:n¬Y‰¨ΊΡΓΜkΖe΄Ζ0ΦΖj Ώ70iΏρΣζ-X°0Αγ>Α―Ώώ†‘O>ƒE‰ŸΓ,R3ΏΗpψπQLϋψSlΪτ“iωΫU PΊt)3δϋ/Ž{FŠώ,ςϋύΨ›’κΧΏ&ΎΰυΕkΉž―=ΝΎ2.ᗍxw§+€ΝmΕJbOaΖ•Γ\Bΐ‘υZ(ό€#Y η{Ρ}Lΐ‘sίΚ-Eχ±lg€μσΠ\=¦ͺ—(ώ₯κA·8ƒ§Φχ’Ÿ³΄ΎΠzΜώ±θ>¦υ…}Ÿj[ˆξcKλ‹Μtΰ€+x„4ΏZ ΅Σ Ϊρ‘#GΨېаaθΖ΄;Ρ}lw>T?x δy Ήt&Έ₯#]uΆ+)Ώ`{. «]e,gt;28yΈ'œΜ»9Μ"ψŽ”"ψΦ`Q”?BƒΒ»0‚Eζ]Ug0π Ο…• ωη)πζzNΧ5NΒGΚ5ƒvνΪγnγ -KέcoΒŒYΔ¬UCΘ&@³«}»Ύ?ο:Ζϊ‚«š²k=Ά'1ŠXέ—.@ΜΫm‡ρbΧ‘ΰ1‘΅ΰς6¦ΛI—;1cΩːe₯§ Ϋ0ΰ‘ p)ηΚ­Α|π‘Ϊφμbυ8 ’fν Υ@ό~hΡ jV«θm+cQ‚ HR Ο+@@³oς‰ΟŒ‡ ΛcάΈg₯<"’hΎvνzφ€gŸ} ­[·ςθ4++]xˆ=Œ| ›άξQftΐǜ>m~όρπΘΝό―kΧ%²hΟΚ׍ŒššζΠl*a‘°Ν†ξqT ς ²ΝΎK 6²―oA°‘3έ¨•Ύωh^xxz―[’ˆpω±ηPTσe4₯ΠBB„5†‘™όzD@³‘:Ζωt7ΦΖ¬DTέhaζ5γ2Zckc΅$55 νώΡέZ~χ)ˆbΡLž{nΈa—GG/vŸ’[χNxκ©Η₯ΝcƎ@™2;•v+W¬ΑΧ_/Ζg³?–"2+,ΑοG<1d€Ω9::Z]d9M@³e©Ό*n;›Œf‰s”ό£ύ†α¦˜’Κ±H Žόχ†¨ΧByfΙJ8ί‹ξcKΐ‘σιϋέ’€#Ώ%ŒΈς:ΠΜ’š“Ψ„)–}£~s£εF&E\2[_Ή”†9ϋ]oηSδΪ„zKJJBJJ 7nκ‘-'Ίi}aΩ•†Eχ±₯υΕΑΐ΄ηάsœΌΞrŠΦA˜Ί©yhŽŸ΄ƒκͺc «υ;Œ €ε ²4ημepςC8™·ΞΩ›€ψ1‹Xͺ*šgz͚΄bU#@IDATθΖΌΎ/ ωτΟS0ψΝυΌ*£™cήGέUΡ‚Ψ£šΥ ±k@sΆ%Ό‰ ‹Άηφ ³Scλ΄’².°ω?’;BέΖΰ­{b]‘–ΩMΚ ›¦`Ν6ΕG‘ϋΧ‰₯/bΨ¬ά\‘v˜•8 έΕ‘ž=ϊΘ9OG Cnχͺ…Π€γ  ՌNUmJ’€)@ δhφν«5k6ΰMe™ΏšU~€§šωƒΒ‡z·a)Š-κΥιGύoΈΑ#’³W%MοσϋΩΆm'Ύψβk<>x† {ΜqT$ή=Ν‘-ŠΠlΡY«‰|“‡l³θDU5‚TbΨHldC,ͺκSό4χΏeψίΑ?$=z°ΘΜ‹Y„f6ΦFφσλΝFκηΣuάX³Qu£5†™ΧŒΛha¬Υ’mΫvΰ­7?Δό³½ cލGόk,V~»@·\;ŽόEνWǏυšyώΠ'ŸΕ#F«VwJΝ._ΞΔ μώEttιψΜ™³([ΆŒ”§νΧΚ1ΝVT2sσά8–~Qͺπޝm0¦‘ΛOΖ-ΒSb…Η"ΟQ 8ςΤΓΙGNTσl#κzGΆp$Wހ£0ˆ.ψ‘4s‰ |ςe₯ hvK΅ρδ1΄]>OΙΈώΔσJ:T Z_ψ―4­/όΧ0"Φ4›ž’ϋΨΤx* ©yhφX΅₯οΒΠΎγΐqYw½ΓΟ gŽξκE[ζ]€οϊ}Η}Γkψ4ŸώOʍ0\“½ Oώځ=šΣwMcσ]Ε§.E2ξ6δA΄¨Q ±,hβΊ7FbΠ1Мƒ₯#β1+7RΆ4†Ρ―ϊ#±μνφš¬0¦ngQ’₯­*^š5-ΤD³ΐϊτޟρνͺoρσΆ]HJ•ϋα5Α€yQΧΏΰ.³θ7)@ €€ Πl€SθΦ΅―τ±V­JεΔEΛpώό ςˆ”wθΠ_θΣϋQ₯\/ρθ£d@σ`έhΆogί6Νέήxσetκ€½žΛ₯½lGBΒt4Έύ6ΟBΝΡξέ»‘­Ιu;v ΙΙΙhΡ’…nyΈ2ωλ|φοί/ Ο_λΓ#R‹΄;Ž"ίΗ4GΎύŸ‘X=D Πsζ š4iβ»r˜jˆξcKλ šMΟΡ}lj<†TΘšuAΧt,Ϊs€[θΞ1H|ω^/ΑwM€q«RyΜH|ΥTύT΅‘ω¦τ†υΉ νΐIσπ =λΐΈΫx€ΖΉ3Ω›0c1‚X !«Ϊx‚ά9ψφΕxLηYτγ,ϊq5•"Jtdu_*=ά Έͺ‘:yαgτzδMH*ΕΥ…tFFͺ+b³ «cutg₯eΥxΜ›9Hεz‹Ί=Ξ37«œžž.5)Μ^g/cD9N`ύάi˜ΎΚρωΞ1³πς½j:Z…€)@ yPšΖψ~ξlήΌοπ:²Ωƒ>ΎŒ*ˆMί„΅k7ΰ΅ΧΗ1Θ΅‹TT@Šj4wξ§ΈΖΪi7Ω¨`Α‚(Uͺ$.\ΰΧqχ†8ΌΛ@Ξύ?4kΪΨXN˜=†4ε1ω+^½*zμ·oί.umΫΆυΘχΏ!πσΟ?Kfάwί}J$μpΫ%ΟΜ•*U U«V•³BΎίΌ?;-ϋlΫ1ϊ–FRzϞ=ΜΜ#(ŠΆqΫκΥ«'šYŠnd›}׈κSώΉΗ?GDτ)Τ‘šš*€mό†,Ώˆ >|˜E,+€mφrςG‹ό4―K:‚ϋV|­8τμ##P6Ί¨rμ$A@³Υ‘oδ“m‘εSšω“€fgΊ©[iί ₯.γ鬬,4χΑ’ΔΟΩ\Kk‹½Žζ,tyΰa”+_§N&cΦ¬P£ζΝΈt)]zSԜ„y˜σω Τ―«WŸV3hΆͺ”~½­g’qΗβ9JαX‘ω]©Y΄€f="ς‚ΟŽ€ζΘχ±%ΰΘχ@šK± #hΦ‚Ήf# Ω­ŽV7ŠΠμΦF’υ…Z ϋišνk¦mai}A@³V6cю=Œ₯ƒ°*fux|―܈Ώ₯ρη_ E¬Κ9{;F‚c XπΪšž2og`4ΫκžŠ·»λGвm NVlTMΑhN` 7Ά\¨έKH%G2LGΒ–ΟΝ¬1Λ>κκ)EWξ늬†ˆUzψšχ.dpυžΉΖΜJ„.;|β[t6]·ώS3πv§\€šEΨΑ"lKΑ«vĘξ0iϊ/zj=υμam°Ά|ZM΄<Ρcΰ]θΪuœΤOιŽoα‹α €4ύ"HR€Θϋ ΠlξΓΛΧ`Ο{%ωϊ5¨\€Ha|υU"*Uͺ€»ξjŽζΝ›ΰ–ΊqxdΐP¬]·X7Ίπό―γΆzu ς‡‹γΖ½ŽŽΫ‘uλVΊF-\Έ'ΩΖ#žΤ-·’Ιa£kΧ‘sηΞVͺ‡¬Ξ‰'°rεJiΌώύϋ£X±b!ΫΚ@"ΐFm–ΝΕw§ŽKζͺo\ςdιuπVΌθYGδd›§―¬ldE%ο:ykB9ΞΘ@σπΦ`ϊΏI"΅©|6°·xψ»‰°Ζ0š­1Œ”1Ο§λΈΉ>F₯’κFk #™ηΣΓ\+₯hΞΌœ‰ƒτ―5š³ΡΆMWv£Φ­_‚B… y˜χΩΏΔ—_Ξǚ΅‰ˆŠŠς(Sπ/Uσ7θmάΦ~ψAϊb||Ότ₯5½zαΞυsˆλrσά8–~Q‘ˆGjNμΠU‹—Pς  Ωˆ|ςΩΠω>Άω/ƒγhv,]Δ6Œ ™;¨ΐ'οZςΣ : 0θ–(UΈ•­`©Y%Ρ―=fλ šΝ<λ.έΗ΄ΎpϋΚiJt[Z_Πlκ~Ρ}lj<†T| 4CΠ2Τ/Νx -ͺΕ ητ.Ό7z~q1Θθ8αs oΚhg0kh>ρύ ›$ΏNƒEzž7 Ε―d ‡Ε ζΡ‚srrPΌxE°ΰΑ°m# 9KY$ζYR`β&˜4oŒ‰9†ΰͺ ‘γΘ‰θΧ’rRΒ7ΣΖγ›έΉ uΔ¬Δαbε©τ0šO³Υƒ]ͺ«dQ•tGUφ8Ν/ΰӏΰ{ιnψό‹!ˆeJ)‘£YφΐI‹XtλV――«J3@ϊ  ­kΟaΌΨu$\q˜λcδ€Qh_—YŸ“Ž]λgaάt—ošŒœ‰νΥ1©= £R€ H<¦ΝΞφΝo‘|:O<1Pκ€CΒ={ΐγυG·ξ<:ε―‚mί>›ύ1n½΅ŽG™ϊ`εŠ5xύuςˆΞ=Ίγ^z­Zέ©nf+M@³-Ή”Κ"ΐF4+ξHBδd›}ld_3ή‚`#gΊQ+}ςΠ\εˏqκr†$ΐΤ–ν0’~3}1l䊰Ζ02—_θKSFκηΣuάX³Qu£5†™ΧŒΛha¬Υ’PEhζχ+Ίw뇉―½¨{―αβΕKύŒΥk™F‚ζo$9tθατŽ;¦ΌQE΄/0ΛF8pqqqς‘Pϋƒ™ιxϊ-HΉζ~WΙ‚Qx³ΦνhUͺœΆrАρα|³•™gϞeoL» ¬Ήν"Ÿƒά>ώθθhT©R… ·ρ77ρΟ’:uŒο½†ΫhΡ}Μ?Ηω3pίΗ}—œœ,½eͺV­Zαv₯ιψ76-§Βΐ)fY½Φ•oΔΖύδCΗ{Q“'D@³¬„σ½θ>& ΩΉoε–’ϋ˜€fΩSΞχ’ϋΨωΜ¨e Θ³@σΠψq`Α†a Τ2ΠΥ¨ήή…/²ΘΑ.άUOT(Ζ,ΪοP헏g hNW·z½ηζ•ŽΗΌ/I―-{Π¬DUfπ<s.Zήv% Ε8ŠYΥ?/;±t†Ν’β»ͺbm‡{’οχkΎδ~<χUρΦΌ™hΐˆ=kσ£τ½ ¬ίER/pψΔ™m. žΊ-R¦cπ›.θΨΓj]Žm`Ο‰u *ŸκκΓΫ:žSS—½ ύΈΩϊ-(— HR@lhv潇‹?όπ3FŽxoΏύ*ΪίΧ7άpNJΖsΟΎŒ‚ "aΞtio4’ό ±zυρΖ/£"‹] @œ8ž„±cΗ³›Ά)Xωνφπ ˆQ>σ hφ)‘n`#šu]γ8Sδd›}·ld_3ή‚`#gΊQ+}"hώυΜ)4_όΉ2ω“ύ‡£r1υ%₯ΘVB„5†‘ΑόzD@³‘:Ζωt7ΦΖ¬DTέhaζ5γ2Zckc΅„αω—_ΆI ±^›δS§Ρ―ίέ/DλΥηo…zfΤ8Ό:~,Κ”qΏ~“ί‡θά©7&Oy Mš4τjΚΫ=ώΨΏπώ―{΄ΣV€ΝZEόγΆ­˜rώώ΅Ο£σ΅ΐΫΝ[{δ…γΐ 8 ‡=Ϊ1“’’ΐW‘ACQ―…²–ΙJ8ί‹ξcKΐ‘σιϋέ’"4ϋ-aΔuŸfξΜλO<ο·OE\2[_P„fkξέΗ΄Ύ°ζG³Z’ϋΨϊ‚"4›Ή’ϋΨΤx* ©yhή‹γΗHΡwN‡k…’%ύ{(Ν²Z>6" Ω²»,UωΩfΙ…•6ςΓςΑF–₯’Šˆt ω₯_ΏΗ[ΏΉΦgΩk]·Η?jAίUDXcYΙ―G4©cœOΧqcmΜJDՍΦf^3.£5†±6VKŽ=ŽG ŒΜ#’j·΅k7bΡ’o0}ϊϋ—©΅εΪc# ™ΏmͺχƒƒπΒ £pGσ&ΪfΘΚΚbš{bΩςy¦š½ͺ2._ΎŒΥ«WKšγγγQΆlYU©8IQ?‡d…dϋ¦νَ§\+gKϋ–«bΡ}=Q©XqόP˜G‘΄Γh,š”±žOΐ‘u­ŒjΚΗFεαΞ·…ΡHšΓ(Ύ CΠL@s[ΆF•·@ήr_VχVΦ;Ξ₯ΰ™ΝΊφ΅Ϊ}@κ‰~ν‘υ…nέΗ–Φ4›ž’ϋΨΤx* ©yh°DιN##(\Έ8»‘ε =x(KέΫW…Q<61*P˜—Ξ^S•‘“ƒΒΕc«-΄d½˜•rΣ₯Wχδfσfs‹ ©‰)8YE €@˜  9πΒσ….€‚G(*^ΌΈ%YkΕεΛ™ƒCžΟϋ(RD³Ρ6°xL@³E‘4ΥD€hΦ8ΕΟC‘omφK°‘}Νx ‚œιF­τˆt ΉήόYψ#υœ4ω‰MοΖ«M[ι a3W„5†‘ΙόzD@³‘:Ζωt7ΦΖ¬DTέhaζ5γ2Zckc΅„ƒΖ={@ίΎρxψα^Ν8dά假ρ<ƒο»―TvθΠ_,ϊμY΄hΡLzΣ“Gv`4σzϋr.\Š η *ͺ GΣ₯KVβΓ§1°:ΡρΫ’hφΤρϊsς·³§Ώv1ώΊ”¦τW>Ί(0¨™Ώ‚>Νώ«φ±½ΎŽόΧTt[Žό—Αq4;–.bΠL@s^šΓIZτk­/όˆέΗ–Φ4›ž’ϋΨΤx* ©4‡TnŒ HR€ ‚©ΝΑTWΌΎ hvζ`#šωΞ¨•Θ7Θ6#―ηld¬Y ΑFfκ„Άlǎ]ΰoψλπQT»± ΊvνΘ^‡}».€gΩoΏνšΥλ‘|:•*UDΫΆwγŽ;šψlΏmΫά|Ӎ(WήH‰‘ 4a°Py3ιw>ψ(n/SA9φ'!ΒΓΘ~~=" ΩHγ|ΊŽkcV"ͺn΄Ζ0σšq­1Œ΅±S²sηn<φθӘ0ρtκԞΑΖQH>u£GΏ"]γg'LWδωσ—ΰ“$H τ„’ω˜f@sFΖetοΦ·ήv ^}u Κ—/‡ΐeΩ7«πΦ[bΖΜΠΌyS;¦{Τ% ΩCΗΪΟΙKWrЖᛣ=ϊΟΎt5}ω*ΤΝώ+υ±=ΆŽόΧSt[Žό—Αq4;–.bFΠ¬…^­8-‰E\2[_h5 „VtWΧ±‘9άvŠξcZ_¨Ο(giΡ}li}A@³©σEχ±©ρTRh©ά4)@ €)@ Sšƒ©x}ΠμΜ'"ΐF4;σQ+‘omF^3Ξ'ΨΘX³‚ΜΤ M‡‹&Ož.EF>|0š4mˆ=»χJ‘»tΉγ']Ǎ΅1+U7Zc˜yΝΈŒΦΖΪΨ-ωυΧί0β_ΟK€q•*•pςd²•ωΥρΟ£X±’Jw+W¬ΑΪuρΑoθΜ€fήΙΉsη1ξΕΧ±uλo¨^ύ&9rŒ½³0>žφš6m€Œγ$A@³ΥΌΫ}N~΄{+Fͺ^cΞ[ς(Ν ξλςΡΕΌ; RŽp€!muk8²Υa*ω8C9κ’€#G²y4έΗ–€#…φ€€ζΠκF# ™"4S„fί©’_{h}αΫ‡ΎjˆξcKλ šMέ,ΊM§Β*@@sHε¦ΑHR€ HR ˜ ΠLuΕ뛀fg>6" Ω™οŒZ‰|€l3ςšq>ΑFΖژ•ld¦NhΚ6}ΏcΗNΐΒEsP΅jeeΠ³gΞ±(Ν}ρκψ±RDF₯@“ுη)X”ψ98δ$o©©ix0~ •Εƒv—³•ύ•+WXώ œ8ž$ΑΜjφw‹d ΉΥ/±ωt’$Ρ³ ξΐwύΓ_Ή”φ"¬1c4 ~=" Y#Š…CΊŽ[I§Š¨ΊΡCΗY²haA$U8ŒΜ―ν|Ο!㘘β6ZΫ«zρβ%6F!dff‘tιR>ίφ`₯wš­¨δ»ŽΩηδogO£ΗšDKΏ¨tT©hq,κΠ-+VUς‚™  ΩuΝ|μοώχ@ΐ‘ŠξcKΐ‘28fΗElCš h& ΩχŸ·θΧZ_ψφ‘―’ϋΨϊ‚€fS7‹ξcSγ©0€ ΠRΉi0R€ HR€¦4S]ρϊ& Ω™OD€hvζ;£V"ί ΫŒΌfœO°‘±6f%™©ό²kΧα‘>αΡΗώ‰ΞοσpγΖπΪΔχ°fνbέ(ΛΌ}o%?ϋάp΄ju§WϋίίƒQ#_Τm?uΚLœ?M›5Βρc'0όι!^ννfD*Π|.+ε>H‘γϋnύpO₯•c"¬1Œζΐ―G4©cœOΧqcmΜJDՍΦf^3.£5†±6ω±„€ζΐxέΧηdZN6Ω°ί=θ1ΰ[wά‹ίε‘ŒšύWΥ—ύΑΏ8ςO?ήZt[Žό—Αq4;–.bΠμΠ|δRήύ~*Ur}A~|ΣV+f닍'A 4oθmͺά9Xy„ΦΞλOψη7»ύΪCλ »υ/Ί-­/hφv¬*Gt«L₯d˜  9Μ αIR€ HR p Π8-σBO4;σ’°ΝΞ|gΤJδd›‘ΧŒσ 62ΦΖ¬„`#3u‚_–Κ"-vκΨ›Η‰(Q"ΖkΐŒŒΛΈΏC<–-Ÿ‡ΨΨ†είZ Ϋ>++ ;υ‘’7«ΫoίΎßƒί-NJε«qκT2Ν^κΊ3>ωsžά΄ZΚ([$gŽt %ΒΓhόzD@³‘:Ζωt7ΦΖ¬DTέhaζ5γ2Zck“KhŒΧ­~NNΩ΅Οό΄ήcΠφUoΖΧν{  [Λk3Ž‚5¦~­Gvϊ F]«>ΖΨVϊ$ΰȊJζuDχ±%ΰΘ|ŠA-% 9¨ςζΙΞ hφŒ 7hkε€3[_hν' Y_QΡ―=΄ΎΠχ›\Ρ}li}±…έ{7Ι=νΙλάι §h}d©ϋ*@@sHε¦ΑHR€ HR ˜ ΠLuΕ뛀fg>6" Ω™οŒZ‰|“‡l3ςšq>ΑFΖژ•ld¦NπΛφν;ˆ‹•ί.@Α‚½δ―•bΘ(<5|07nΰUξ xΦš/²ΧΘsHϊ£ήΑΝ›`ώό%8“r†€f/uݝ™Ύ=~XΚxμ–ψoλΞξΒ€DXcMƒ_h6RΗ8ŸγΖژ•ˆͺ­1ΜΌf\Fk cmςc ́ρΊΟΙ-)§Π{έKΏ¨ ^΅X ;τBσ ••Ό@&Μ€£@Žγ΄/š*ηnGΐ‘[ §);ΗNΗπ§%ΰȟόlKΐ‘ŸF`σHšSΩ›Fm^‡9ϋw[φτ›°o—¦aΩ ˜²₯φ£6―Ηw§ŽaΗΉ₯~¨#+›$ΜΦ4›§*ύΪCλ •³&Eχ±₯υΕͺ9ΐκ/ά ΠμΦ‚₯Dχ±‡±tVh«ό48)@ €)@ Rš©¦ψ}ΠμΜG"ΐF4;σQ+‘omF^3Ξ'ΨΘX³‚ΜΤ ~Ω‘Caτs―`α’9†@σΠ'ŸΕ“C‘I“†^qΰΉoίΑxπΑnμ§»Wω?όŒ‘#^ΐ?ϋ75j^™QγP‘byŒχ¬TŸ€f/Ω<22―^E±Ο>Pς–uŒG—›j+ǁHˆ°Ζ0šΏΠl€Žq>]Ǎ΅1+U7Zc˜yΝΈŒΦΖΪδΗšγu»Ÿ“i Œκ»ώε‹Y²ο·h‹ηno.lol?:" Ωρr›pδΏ†vŽύΡ^–€#{]΄6Ν•3":‹$ ™;dΒΆ0qۏ–}Γdu›Φ•oΔΖύ,΅W?kΠ,+a}oe}‘―C­s ―=G.₯)=Wj|ΣVΦΣ©ΙΧΗ_ELωrRιΝ1%Q½D)šαΙ:~ό8Μ9ΓξΝ6 F ΄- i«Š₯υΝ¦šŠξcSγ©0€ ΠRΉi0R€ HR€¦4S]ρϊ& Ω™OD€Τ7ωM’ Mο–&Γ‘%ΨΘΎ_EΎ@ΆΩχ'ΑFφ5γ-6r¦[ Zνί―Ώ6 s¦Ν”,Y•+'Z’ΐ–³φξέ‹²eΛ’|ως–Ϋ„ͺ"·­nέΊ‘ΞΦ8d›-Ή”Κ’κΖ\ž;wNΘ󍯄΄?Ψηk\\œβcQGE΅jΥ„ΤMḿQΤι‰όΎ£ήΰaD§kb^»n(UΈˆGΎ?4ϋ£ž«­Sϋ?²΅hΆ¦“Y-Ρ}l 82›`Λh²ΐy°ϋHš9(š°—δ yω¨κM zξιQ=KŽPŠd Ήΐ'ο*yΊτE›*7)ΗrBύ¬AΞ 5h+kΆ7[_hAa£ΉšυοoY~š΅Ίϋ{ήπυΕΰ?·`KκYΙκg_ώϊ'ν hφ_EKλ šM…} ij<†TšC*7 F €)@ ΑT€€ζ`ͺ+^ί4;σ ΝΞtωŸl²-²|J@³3ΠμL·@΅β@σΏž‹•ί.0šy„ζΗχGσζMu‡εQ—Ώόr>¦Lž·ί†ώνΫvbΓ†M?αyLϋψS|υυg *ΛD·}1ΑlΤͺUCι+qΡ2œ?ƒ‡<’δ™%vοލμμlέ*ǎ“"–Τ«WŊΣ­Lώΰ›ΝUͺT±eΒΈCΏcΥωd©M»Ψ ˜TΫ ΫκΘ€ςΑƒ%œ9I΄νΐ †EΉr(9"ΩΗm”δ‘mΞΞQuγ0σωση…<ίψς/^6Ύ6ΛΜΜD͚5AlΕHΧ©S‡€ζ j¬νš€f­"ΎύωvKΚ)τZ“ˆ€ΛιΚΰ7±θwK:τBγrYƒ˜GΚ aLXŽΒhž4΄?>…ν4ϋ―²θ>Άω/ƒγhv,]Δ6Œ4 Yν(uδeuΎYšΝƒκ4ΐ£ί­TͺqΘ—G»³·6σzαš9 ϋέ©γ’}₯Ω«εCŒ’ςš­/΄`-͊Ϋ=Ύφhu' ΩCξ°Ϊǁž„αϊbΛjΰΧ5αψύΧσ§έCO^ηN9Eλ‹ Lέ‡TšC*7 F €)@ ΑT€€ζ`ͺ+^ί4;σ ΝΞtωF ΩY>% Ω™? hv¦[ Z=z.EL.T¨W·W―^EΟύ1cζ‡,’€9ˆ›|κ4Ά1ωμΩs(S6wέΥQQΡ假ρνͺ˜0ώlήΌοπ:²³\@rAVΎιϋŸ°vνΌφϊ8νΏƒ»œGδk 5ΗΗΗKQ}½&ƌ={φ€G₯U«–-+J͞Œ‹Wr€6_΄ν‚ώqυl΅·RY„5†‘όZIo0RΗ8ŸΦΖژ•ˆͺ­1ΜΌf\Fk cmςc ́ρΊΏŸ“η³³Π–αΫγ‡= ϊw«φxΊžώ—η<*ϊ80Ž|4 I1ΝώΛL@³ϊϋwμΏζ=GζΝBVJΐQΘ€Ξ3Πμι**σM†yšCΎ|k»|ž΄ηΏ8€ͺ4σ²`CΑF ΆQT^³υ…¬ Άν\νfe}‘΅Σ_Xkƒ―γ@_{=ŠΠμΛƒΎΛνcί#Ϊ«aΈΎΠFeVwK@³Z ˆξccι ¬ ΠVωipR€ HR€€4RMρϋ" Ω™D€Τ7Υ7ψψ?²Ωχ«Θ7Θ6ϋώ$ΨΘΎfΌΑFΞt T«,wyΰ! XŽ‹σŽ`™”t υy «V/DLLq―aytζΟώϋ%Z·Ή΅k»£.ΛWXƒo–­ΒτιογΫ•λ°η½Έrε _».U)R€0Ύϊ*•*UθζΝ› Γύ›ΫήGΠΌζΔ_Έε|E‡΄A£P2€―e—;a!Ϋ’έΣC«ˆ΅cΊŽ[ΣI[KTέh‘υ”΅cZcXΣ)ΏΤ" 90žΤη䀝Ώ`μ/=Œz°Ζ-ψ¬Mg”(TΨ#ί΁pd§Ÿ`Υ΅kl«ύΚΗVΗ³[€f»ŠyΧέΗ†ΐ‘χTΒ’C@sXdzPš}»gΚ]ν°γ\ φος]™Υ6H 9aί.―hΤmͺάdižͺde}hΨ큾φz>4Ϋυ¨wύ@ϋΨ{r Χ4[Vt[žU Ί4]b€ HR€ B₯Ν‘RZŒqhvζ`£Q›Χcκξ­hvζGu+‘omjOYKldM'm-‚΄Š„ώψ½χ>ΒαΓG$θψ†nP ΰ°ςΈ_CαΒ…1ρ΅₯ό«WΖƍ›Π°a}”/_ΌΞθη^AΩre0nά³J[žΰ°tχn}ρ"ΛoΓ€g£ν›₯ί"ωt žxb QΛω‘4Ϋ΄3ά!ΝΏ}Υ›±–E»Ζ&ΒΓh^όzD_š2RΗ8ŸγΖژ•ˆͺ­1ΜΌf\Fk cmςc ́ρz ?'7ŸNBŸ΅Kt9]1{ύϋγΡ Ly%ΟN‚€f;jιΧ €υGπ/—€fτγ­Eχ±!pδΤΝ‘1’:‰d Y λ–b_NΛq½m+Ψ΄ 4ψδ]Ε$+m 4kϋ²2Ύbl€4»"~ϋ#'Νώ¨ηj›gΧ4[vΎθ>Ά<ͺthΊΔ4)@ €)@ „JšC₯΄γΠμΜ"ΐFκt4;σ£Ί•Θ7Θ6΅§¬₯ 6²¦“ΆΑFZEBœššΖΐγ~Rdδ‘#Ÿd‘˜cpωr&fΜψ ,Ε²ε_‘–ω–‘qνΫυΐԏήFσζΧ‚οΫwύϊΖ¨g†αα‡{‘P‘BH>u£GΏ"Υ_°p’’ Nlώό%8“rßbXΗjA€ΝεζLΕ9φjvΎ}άκ> ―ΧΔͺΆκ‰°Ζ02˜_h6RΗ8ŸγΖژ•ˆͺ­1ΜΌf\Fk cmςc ́ρz ?'Ο³uΞCλ–`]QΕΐθ‚ρQΛϋ0δΦ†JžΥΝV•2hδ¬„€fgΊ©[‰ξcšΥήr–έΗΞf%n«HšΥͺk#βͺ˝Ά  hX§>½εvi:ΰnTΆ‚”6[_¨Ÿ—πΚjۍήv)uΐ_4ΠΐΣΙqW’_{ΌΦw‡Ψίσ½mς:½ά δΡ¦‚"+u&h“π4,)@ €)@ ^š―©Θ=ΠμΜ;"ΐFκt4;σ£Ί•Θ7yΘ6΅§¬₯ 6²¦“ΆΑFZEΒs|ςd2žυ"ό ΅kאφUͺTΒ΄ιο㦛ͺ)Fρ¨Λ]x3f~ˆΈΈšJώΆm;πμ3/!==CΙ»οΎ6xεΥ±(^Ό˜’§—XΉr-Ž9†§žz\―ΨV^$ΝΏ€œD‹%_(σ?Ω8*‹QŽ™aa4~=" ΩHγ|ΊŽkcV"ͺn΄Ζ0σšq­1Œ΅Ι%4ΖλΑϊœ|gΗΟxqΛwFφ«}>Ή·#ŠGςΘ7;0ŽΜΪ…ͺΜ p*[ŒΖ –Ζ³›O@³]ΕΌλ‹ξc/ΰΘ{ aΝ!ΰ(|ςŸ8qΛ—­ΒŽ»SΌ8Ϊ΅oΪ’ ϋ"Œ―νΠ‘ΏπΗϋΌͺ]ΉrmΫލΨΨ^eV3hΆͺ”ύz­+߈]ϋωl( Y=zl³υ…ϊy oO@³ZEw:ΠΧuτp>Κυ'žwζ Ešˆ¦ihkΊχϋΠk}a™Y€fY i/Ί=Œ₯ƒ°*@@sXε§ΑIR€ HR  ΠH5Εθ+%%W―^Υ5fϋφνΰ―΄οάΉ³nyΈ2Oœ8•+WJΓχοίŊ™X‘ΆSΨH}ƒŽ€fΟ‘omφύK°‘}Νx ‚œι¬V©,Zσ΅kΧP @Ϋτ_Ώޞ_ω5ΤΘŒ9DΠΜ‘χπ­YΉJψ΅Χΐ`H&υ)ΒΓhrόzD@³‘:Ζωt7ΦΖ¬DTέhaζ5γ2Zck“KhŒΧƒω9Ήωtϊ¬]‚€Λ銱q%c±΄c'ίόm3^ώΥuοHΆό±[ΰΏ­ΝίτeΙύ„sOšύWŸ€f5 Υί±SK½€#§©ΝAΦ€Ϋ™3>ΓΡ£Η% ™ΏMJ½qΨΉ[ΧΎψ†ž•*UP)錌Λθά©7–―ψš a`€7š,¨¦;΅^4J“λ:άq.ΥK”ςˆ­Šu±Lυ3£:"Νj˜Ο7ξzAŸ@³vΞυ*ig4@ηΟϊώTά(ίSƒΨΊNήΤσ‘σ|ωQ;Ÿ|4—,L{N– ˜ΌΞdŠCΑς8žύŸ½ϋ½ΎψψY"ξηώ@G‡oͺSƒΚͺ~φoX‰›Ά―@tt΄kŒZ·«Ώ0Ÿ—―Ν²FΌ—Γhξ %uΚ‘ποΩ—’,8z7‹Φ¦ςPaS€€ζ<ζ02— HR€ Œ  ΩX›H,ᰝ=ΝφΌ+l€ΎQD@³=ιΥφϋ&^§Κ#Ϋμ I°‘}Νx ‚œιF­τˆ ωέ?γ…-ίI“¬S υͺ?α劰Ζ0š ΏΡ—¦ŒΤ1Ξ§λΈ±6f%’κFk 3―—ΡΓX›όXB@s`ΌΚΟΙΝ§“Ώf1’33γ”)EχυD\©X%O  Y­†³t(}μΔBš¨ζΩFtΠμι/'G’ϋΨΜψ3„ήΒΛ―ŒAγΖnRξƒG_ξΫw0Ǝ&MX$Nνπα#3ϊU,X˜€΄΄‹μ-aY h+‚2eτ―%:]˜fΠl*O@ ΅°ͺϊV#λ7ΓΤέ[•q|°Ό’ϊ‡P“°4oΤ>Άk)Νvσ/Ί hφφ™έΡ}lg><Ίςύβ±lω<ΔΖ–Φm:wξBπzC†<’[ΎvνFΌϊΚ[¨R₯Ž9¦Τα?ž6 5jά¬δ9IΠμD5{mf³74€εd£QΉŠhXΆ‚GDfΗ~wκΈ‘/–WTƒΖJCMB έ­/Τ`΅ά\ŸΓΏn\‰#ιiR‘ϊYŠ\Χκ^ όςώΫ²ΏyγΗN"4ΛvΚύ8έχ\“ˆΤμl©ωδ–νЈωGo 7Π¬Υ°M•›<ΜΤΝ²Gm^,8ί΄σ;r) GΣ/Je<κ4¬- @sf:p’E –·Zϊ_‘Šσ2ΠόίWέ›]³¬ίxό5)ν47οlY#«‘ΏΠΜ{χ…Π¬οΚΝ› М7ύFV“€)@ €€Ž4λˆΑY4;s°ΝΞ|gΤJδ d›‘ΧŒσ 62ΦΖ¬„`#3u¨Μ‘4ŸΊœŽ*_NS¦ώcχώhY±ͺrŒ„k £yρλΝFκηΣuάX³Qu£5†™ΧŒΛha¬M~,! 90^ΧηδλΫΔ«[π˜Δ°Ϋcϊέ DPmFΐ‘ͺJX“III>_ VΩΰας±ΥyΠlU)γz’ϋ˜€fcίY-έΗVηΑλeee‘s§>X”ψΉ!ΠΌpαRœNNΑπ§‡θv=ωΓιψςΛω˜0ρtκΤQQQΈ|9Ÿ~:ϋrjΥͺθΆ΅’I@³•W‡ƒΑ·ύ¨th4§2Z†Qy^—oVζ)-Ϋc鑨qε:κ—.‹&uo•Ϊ˿Ԑ¬œ7ωv˜Ίk«2Λω‘ 4«50ƒ€νΝbt‹wTvYOυs*ž'GhVη«5χe§Π¬>W΄σSΕ#…Oa@·­M‘XgyTίCμ‡o8ν‚Ž4«#σώeΐvΛjΰΧ\°χΆΆn~? ωυηOsΛ=Ήγ@WΪξo΅΅nžώPκΑ hΆ―μ½ΊIχUoΤΣΦ5[―/–G@³0”'  9OΊŒ&HR€ H=hΦS%rσhvζ[`#υMυ !~£œ`#ϋ~ωΩfߟΩ׌· ΨΘ™nΤJ_Hšgώρ†ύΰzPΆH4Ξ©?Ω抰Ζ0š­1Œ”1Ο§λΈΉ>F₯’κFk #™ηΣΓ\ŸόVJ@s`<ΞΟI}ραuK‘œ™‘L¦1‹Έ¨C/ΤȍˆG@³"γD8}lΕhš­¨d^GtΠlξ?+₯’ϋΨΚδ:hξςΐΓXΌδK”(#g{μηΟ_‚3)g ζ•+ΦHmοΉ·₯G»λΧ―γ½w§"ωt >ψΰ άpΓ εꃫW―"33S₯€wοލδδdά{ο½([Ά¬’/JbήΌyΈtιš6m*ύψc:Μ7u„`ϊsV 0kΥΠ)·Wm« ½ͺ!U«6ΜΈ½%†ΆΈΗ£Ί’• ΄ΐ΅œ/οeδc+{υ8|~κ9ργpFhΦΪ¦|,ΟΟ.Π¬~φ$χ‘ή«ŸSρ|YΧAW`ΞώέRUuΎμ4šc¦€ƒρ|γZσ(ΜrTζ„}»°—TΖΟÍ]ϋIiΛΏΖuδu­ Γͺa\Τk4Ώ΅(ͺΩθa‡–ΏO’Tše Y /ΛcͺσxGr]N=όΎφ<Σήέ‘l‡;ΗzJ­a0f-°,ϋPΆT[n¦!‹ž5ύy\Ž.2΅o8X^¦’ά“0{Ώ},ΜLȐ`+gζυλΧcλΦ­†‹Ύ` Gύ{*P¬X1άqΗhΫ6Έ―/υ•ŽHR€ HOhφΤ#hvζa`#υ"υ !ώ,Νφύ*ς ²ΝΎ? 6²―oA°‘3έ¨•Ύ‘4w\9«Oό%MpHέ†ψδގϊ“ `k £ιΠΓHσ|ΊŽ›λcT*ͺn΄Ζ0ς˜y>­1ΜυΙo₯4Ζγαώœ<“u½Χ.ρx΅|‰B…ρε?Ί ΫΝq  Ω?‡ΫΗΎf@@³/…|—‹ξcš}ϋΠW Ρ}μΛ~uΉΥΝGžΐsΟ W7΅”NJ:…ύŸΔš΅‹Yδ悆mRSSqθ TΥ” OT©‰;J–υθ[nZ₯pQœΜΡ‡ίy΅}r_ϋ&rτάάφκ9ρώnΞώ.\@\\œaW3Y4ΩONVΚ»–­‚nε«JZ-;{ό‡oq Žss]₯žY―€΅MΦ^ι 7ρΦ-X˜•*ρ:άnySχ!ηq‡V­-zν΅σΡσ­Ίυz>8|ψ0&\:‰έ9—₯±dΥνψΉv‰}ΉAΟΏr}/CM2>F)=x0\ͺXq«g ζ΄ΛO§noδF,Z2ΫRRRΐ?‡:&mF©γ{ΌΪ)‰J;V£ςολy…τŠ΅”zαH4nά8ØyL< 4'&&‚/šhOΎΘξΩ³§x†‘E€)@ ωBšσ…›•IΠ¬Ha+!lD@³-—ω¬,ς²Ν§ϋΌ*lδ%‰₯ ‚,ΙD•,*Χζ‹,κK)ύEήVvκN7Φ”ƒΆaa49~=’/M©cœOΧqcmΜJDՍΦf^3.£5†±6ω±„€ζΐx]”ΟIυ½ yf£4ÐR•QΈpaΤm ΐΘυΓ±OJJ’€‘AQ|lδš”±ž/Ί hΆξK£š’ϋΨΘn½ό¬¬l‘ω!$$LC΅έΰ›Ίξk―½‡»ξjŽϋξk£Ξ–ΩΩ9ψυΧνhΥκN(Pΐ«όΚ•+ΈΏC<.šƒ2e\¬W%–Aš=UΡF>φ, ο‘:BsγE³±γ\Š—AΪ¨Ξ^|dπ@/m*ίδ)ΩG₯XmŸ’ι#‘.ˆΝ|H9`z]₯4lVΖϋΠΪf%Bsυ˜Rψ«Ÿ Tεяydν&Ϋ¦Ν—ΥvρΪ< M‚#K°‘=ςΪ"ί Ϋμϋ“`#ϋšρ9ӍZι+Χζ―ύ‰Ύλ]ΡBŠŒΒεǟӟh€sEXcM‰ΦFʘηΣuά\£RQu£5†‘ΗΜσiaO~+% 90ιsς»SΗY΄ζΕ8“εŽ‚Ψ ¦4>Ύύ.ά[φΐL8ΐ½ΠμΏ 4ϋ―‘HΗz³! YO{y’ϋΨΞl_ΏŽΡΟ½‚–-›#ώΑn^M9Μη)SίΑ­·Φρ*ONNΑC}ΕΊυKP¨P!―ς£GγρΗώ…Υk‘`AγΝ^ UόiΎξΌχή{QΆlYU‰Ιyσζα₯KhΪ΄©τ(«¬‚žΟj?ƒκ4ΐμ6₯κF6†hζφU/QJ‚‰­ΞI=ξͺa\ώ©TΓη¦ΤΟuδqΉm«ά ¨o%A³/^DFF*§ŸvΓΗ\A5ψ* ˆΑΒςV«‘+₯fεr-Π,ΐΪϊzγπ>Tςž^/’ή=νδž=χη“=α_ις±|ΝxΫL=ά¦ΦPžkxhu"j­šn© ₯’ΡΌyυ8όΈ‹έ:ž§€-«{Ÿgώ’7še%hŸΘs@σΜ™3‘œΜ>lhVώͺ‘!C†kF €)Ή ΠΉΎΥ›ΝzͺψΞ6Rίΐβί€tKΙpΎΞ/^Ό8J”(α{"AͺqsLIΕυ"ίΔ'ΫԞ²žU7‚¬ϋP]“`#΅”φWΌ4?Ό~)Ύ>΄W’‘OΝΊψΊ}w%±Τ^„5†‘‘ό3ŸΎ4e€ŽqΎ¨ΧJn1Ωfμ7£Zc)cžOk s}ς[)́ρΈhŸα§33πΠΊ₯ΰp³z{βΦ†xΆAsάRΊŒ:;μišύwΝώk(Ϊί±vF4k±,ΊνΞhΣ¦Ÿπβ ―aΥκˆ‰ρΪV,_ƒ>ψX’9°|υκίΨΈq6¬ςεˁϝ:φΖs£ŸF§Nν=†ζ°τΈ_“"ϋO˜ψ‚ngωhζΟ Ž\JÜύ» ” _Ά Λͺ!V΅5ώΝ#λ7Cκq`±Ί+iΩF^W υNhz·Τ(Γαgυ<μΝάOΌ?υs3ϋΤ0―g΅―k!h–ΗηZΚλBυ\Μ4”ζΞΏ}‡΅U9F@IDATYΌ+”.\„ύDγHzštμλ―ί¨lE©Ϊ†}}Uw•«``θΝ2π;Mμ€ηΙΡ”y/zΐ­Ί_’ΥΚ²…šή? ΅;ζ½Ό"_ΘzO–̐Guνε9ΛΉj»εzzs8½j-  ϋΡΒΩΪϊjΏj#4sΘ›oχηξ]G!ωi닐ˆ–OΙS@σ΅kΧπΖo€οiWώΝΓW^yE\Ι2R€ HˆU€€ζˆu­ξΔhΦ•Εg¦°‘X>'ΰ κTκEώ'›lS{ΚzZTέ6²ξCuM‚ΤjPΪ_ς:Π\μΏ σο«’ sΡ}kίζ―$–Ϊ‹°Ζ02”ζΠl€ŽqΎ¨ΧJn1Ωfμ7£Zc)cžOk s}ς[)́ρΈ¨Ÿα―nέ„Χ·oφšdΫ*7a譍ѧV]―²pdΠμΏκ4ϋ―‘¨ΗςΜh–•pΎέΗvgΖΑγ'†ŒbσNγΣO§’RεŠΈΌvνΌό˜ωŸΙμ ԍ₯n32.£}»˜ϊΡΫhήΌ©”·fΝDOΔψ Ο£C‡ΆˆŽŽΖΕ‹—πο‚εΛVcΩ²y(WΎ¬]³”ϊωhζhA\E”0'8,lf[)Ÿ¦εd;Ά’?‡ΰ°:R²έΞ8DΫ†­S̞·Μnέ±E’ΡcM’½U ™C½<Ly3ρWί‘HΨΏ ·ύ¨τc”PƒΉ“[ΆΓ’#ϋ-΅γύιΝz?š~lވeηN*ΓΚΠ6/ηΆi7½ΎΤuτtγmτ€ζ%G §‰†2Π|ϋO+ΥC8N«auΣNΤ― Γja\ΑXT 9‰AΚοU¦θ4k!]₯fnBž³œ―ΦCΞ“χLŽkδ:Šeΰxσϋ]inC.„€ΒZ ŸώPͺπΝ―Σ3³z>fsWΓΚςό΄υ9ψ,CΟ|ξ«ΏkΊχ2¬ξΞ z*ΦA,§€fξ§ &δcw坩“ŸςŽ―ΘRR€ "Iš#Ι›ΎηB@³oτjˆιέ(³5y4Vu‘oNˆjΑFΞΞA‚œιF­τΘΛ@σͺγ‡ΡιΫΚčBIφ-›k £yςΟ|šΤ1ΞυZΙ-&یύfTBk #eΜσiaO~+% 90ω3|}Qτ_»Ι9Y^“½‰=Ο4ΈCz«uΒ΅ΠμΏς4ϋ―‘ΘΗ|v4GΎΜ0;;οΎ;K—¬DΉrepφμyπ@mN~wίέBι2++]x3f~ˆΈΈšJώO›·ΰ5§§g B…ςHI9ƒ[n©>|•+WRκ9IΠ<Ο‰lAm3ωv,rτ.μ8—”qB4σqδhΓςD¦°Ήϊi½|(AΔC*Υ`ηt 7vύΌP‘ΈMε›ΠΊΚ–ΑdΉsϊnω­”€ζΐx\δΟp>Γ?ώψΣΞbΑΩ$ ΐΡΞΊhΑ(τ«‡Q šαΆΨrΪβ ΠμΏΔ4ϋ―‘θΗ4GΎύ™αεΛ™ΘΚΚb|Z”*U7άpƒ­ξ."**ŠExΎ*΅·ΥΨ 2ΝβΝ X6Α£+[‰xl4(‡h}Ehζ_ΒJυIšCΌZ ™CΔ<2³z«SΚ6XΜmœ²k«8¬ξWVΝj Z]ΗjΪθYŸΫœύ»₯ΘΡZ`ƒΫj€Zξ#6aЇŽz@σξΑ+‡~·jži=‘Y QkAkήxCγζh3χMw?2 «…q}EhvχΰeΥќyžk5tAΉzQ~9πΛ7yξ2,¬lΉ}r{^§‹ΝΑήΕΣ]νΩoΏ€f ­tj”a^΅^2(¬Ξ+Γ’9;™εqyŸwxΝ—ΙzΙυψ^φ!O«mΰΗκMΆS§Υ[]f”–50*BΎθkΘ L™Ίt¨Ν…£fζ Πl•’€)@ Gšƒ£«¨½ΠμΜ3yλ¦~uœ|ƒJ[Kδ²Ι6­·¬‹ͺΑFΦό§­E°‘V:φGΌ 4—›3η²³€ιΟΈ»†ή掬γ&VΪÊJήuD½qKΙ6oYΙU7ZcXρžwZcxk’ŸshŒχEύœ”gǁζΒ… £vνΪψγΒY|΄{Ύ8°—Έ¦έ8τς―ϊMΡ«FmQЎ hφ_ZšύΧPτΏcš#ίΗώΟP¬hΞ@³ΠΨΧYjhφΥ/ΧšΥΟL¬τaT‡ΫΘίΨ©mTŸΫΒΑι£ι₯vFυ¬ζ¬ί SZΆ“ͺ«a«νΉ-³ΫtFΫεžηθβ½ΠsM’ ?^ύΗο˜yβ ’ηOB 4λυεhζ‚OΦλRhζ59€\4Ψ½Ω»hZ θω°e5ϋɍJΜ[ρθΟr”bHψ―ΆƒP£›*B΄/H—χΩo¬Λ&§@σ3νέsβ@qνFhΤzΐ±»¦υΧ"‰²\― ,³$mhζy_6οΕΣάΎδQ υϊ4³”€f3u¨,Μ ΠfDκπ4Gͺgi^€)@ ˆ­ΝΦόΓ#,YΌίoϊ Ε‹C½ϊ·’Γ}mPνΖͺΦ:°Q+55 +W¬Α―[C±’E₯±ξ½η€ŒE@³ G¨ͺl€#7©Ύ9Ηo$^4Κ«’ΘjΘ6/wYΚU7‚,ΉΟ«ΑF^’P† δU ω§ΣIhΉτKeζ'ϋGεbμaCˆ6Zc8ZΤλŸ ΩY>₯5†3Γ™n‘ΪŠ€ζΐxVδλ Ÿ‘h–g|‘E6œ΅χwLc;]L•³•ύM1%ρϋ"Ω“μ‡ίWζF@³κΠμΏ†’Πω>φ†bυ@@³',jΧ; ΛT@ `OεΈΎΰm·}^­Ÿ€ζFe+H}E‰–}ΐζ9ϋvێ-·ΧΫs8؟hΟά&m$νAuxΌ…”ΧαΟ¨ 4ט;ΣTΗ@³žHrž:вœΗχE‹»Ž23ΤΉ΄hφa9ηΤννQωΡ\Ρ 9τϋϋΐχ‹Ϋσ±ŸώΠUnhΝ"W­ ¨f σ¨ΡΡlΎš΅ΦΐάR5«@3―Μad³(ΞΪqυŽ hΦS…ςQ€€fAifΠi₯ω€)7  Ω·Ÿ’“SΠ³G,Xγ'<˜˜βXΊdΦ݈I“^Γ?Ϊέλ»‹5φν;ˆ~}γ–ΝΡ»wwdgη`ώΧ‰ ŒΨ%έ­['‹=ιW# Y__Ήy+€šy)ΏΑ₯έD~PCΆi½eνXTέ6²ζ?m-‚΄ŠΠ±? δU ωω_6⽝ΏHSΏ³Beόάγd°έ–ΦΆ%“ˆz=βΖ‘m‘εSZc8σ'­1œι–—[ρΧΗgffκNΏžώ‡~ΐ™3g²eΛκΦ w¦ΘŸί\ΡνΣšΥ>]qμώΝ’6―>ρ—:[J-…~΅oΓ³·ίΫbΛy•"ƒ€fU$ Ω E;& 9ς}μ Εꁀf} ™C’όή½―θΎΌήςύ`Ϋ₯ b96ΘΦp¨–λs$=Ν―‘Έ~C*Υ@JJ 7v½ιKϋΜΔ―l4ζoΏΨx꘍Ύ«ϊΫgχ›γ°τθӁψψυβ9ΣzV ­@Ψƒ’€κ§c`ΪITΏΒώ‘aX5δʁߎiΟYšƒΛzΠ²Yλ`ΝsίsGs6›ΫΛ‘δϊ-XΔβιf΅=Λ†ΐ’17τšεNtΫϊ³—}˜™Ό€ύˆΛvΗ& ΩbT?„ ΠB±σΣP4η'oΣ\IR€GšΝ}qύϊuŒ{ρ5πΝN~S‚šε<Šςλ―Ώ΅λδμ$?/χκΩ=Τ  |XFΪob‘‘ǎ5kQ’„σ±hφΥςΑFήRioΞΠμ­‘Σ‘p‰jΑFΞΞ6‚œιF­τΘ«@³:rΛΫΝ[γ…F-τ'€\Zc8VΤλŸ ΩY>₯5†3Γ™nyΉUjj*bQΉ ΆcǎI@s½zυPŒ½υJΔνΐˆ‹‹Ρ4Ι&Ρν;rδ *„ͺUΝίd–”‰Ή§β›3IΘΈφ·—ήMbbΡ·Mh[ѫ̟Œ³gΟβΒ… δc?D<|ψ0’££Q₯J?z ^S”ρΟ’:uκo?{ύο˜Žσ{ά+φοΟOΩ”ζΙΙΙψV«V-%OΔ„ 6Šh[€Ω”Ÿζ#—Pc‹”ͺ³qΠvBΣ»₯’F gcηωZ―·ψqlΎœŠ£,R3mώ)ΠΊς’ξm—λƒζώυžχZs=|Aυž• YsΓΡ­hs™Αό2 λΠ,wjgh ™―ΟΆ¬Άσ:ϋŽΚVbQŽ-Βήv4qZ—ƒΩΏ¬š¬ώΒi/ΦΫυTc@ΈΌΥb€w7‘ο5yκΤ½MhΆ)U·¦ΝΦt’Z€)@ U€€fs=y$‘ϋ;Δγλ―?C₯ʞ7s―]»†ήΒ;οŒG\χΤΤΤ4φ ο/\ΞΈŒ*U+£F›qΓ 7˜ΔJχο?ˆ!ƒGbέϊ%C uVχe‘›Ÿ~ϋΆwu‘­4ΝΆδR*l€H‘$hV€xBδ›’ΪF°‘³Σ`#gΊQ+}ς"Πόgκ9ά6–2‘½}†ΰ–e”γP$hαLeQ―G|6d[dω”ΦΞόIk gΊεεV‘9ψήωϊΒgο+B³V‘Œ«WΨ«Ρwαγ=ΫΑΧdΪνΖβ%πT½&xβΦF(S$Z[lϋ˜"4Ϋ–Μ«Ehφ’Δv†θΗ‘ΩΆK½ˆξc/ƒσxF~šΉλ |ςΥ@³\‘Ν²Ή^p)―Χύφ6k˜ΈνG©κΝ1% n–E³Ή/]Έͺ—(…ητr›έεωκαš/ …Ψ„)–΄σ 4·Ž>o©/G• 4ΎΞ‘ΆUeΟΒ“ŒΏΘj»Ώ@5(ÞίσΝv#ebόDl¦υE •?ϊ  9ψ9δ³$ 9δ’Σ€€)@ LšΝOƒ'Nβ‘CYζΕΡ™y+2?ώyάz«+ϊΗΧ_%β½χ>B… εQχΦ8|έfΩ’8Α^«jΘμΫw“'Onj°·ό°Χό¨ΆΏώ;υΖ?ϋΥͺ9„B@³JTI‚ΌΕ" Ω[“@εˆ|sBTΫ6rvφlδL7j₯―@^šίών'Œϋυ{iBΥcJα―~Cυ'Δ\Zc8WΤλŸ ΩY>₯5†3Γ™n‘ΪκςεΛX½z΅‘9>>žέ)+δTEώό悉nŸ] Y}¬K:‚woΧ}-ytΑ‚θWϋ6K…’ϋΨ$ςP%šέΞRΝ­/Lε‘B•4«Δ dΰ  9pZRO€)@ Φ  ΩΊVrMψκΧΏ3f~(EL–£5ί†₯(Z΄¨\UΩτΡPπ†0όι!Jž―οσϋΩΆm'Ύψβk<>x† {Μ+R΄ΆΎX½rεŠ6[:ώσΟ?qώόyά}χέΊεαΚδ6ρ›ζ|kΩ²%Š).StΗέ·oJ–,‰Κ•+λ–‡3sοή½+{Λ—/R3Ά€žEίΎWΖάίΦϋtn[έΊhεJEAd›3GˆͺΫ™3gpξά9!Ο7B₯₯₯ i¨Ο“ΈΈ8g'D[=zΥͺUR· N;OwΧ€ζι{Άcψk%ΝΛ2ζμΐ‘aџ€fg²‹|#Ÿl‹,ŸΠμ̟4;Σ-R[Πϊ|}α3 $Π¬Vμ‡δψχξm˜x―:[JG,ˆΎ΅oΓ3 ξ@ƒ2ζχDhφ’ΟvΝΆ%σj ϊί1Ν^.³!ΊmOHπ4»T:a r²₯ _@3i7vν'ΥΥ;gΥp΄{WJ αrh•oΑ€œK.’ΜΙ5zdύζQ²Ν΄Ž¬ΩŠ7Ÿ@³x&“EyIΎc€ζχΜb½Οκ€uNE”4G”;Ε™ Νβψ‚,!HR ?)@@³uoσ¨Ι_|ώ5¦N)Ε>φOdOψvθΠ_θΣΫυ­v£}τŸ hŒ'†ŒΒφνξoφΎρζΛθΤ©½Q3)?)ιΊuν‹„„ιhpϋm¦u h6•ΗQ!Νή²Πμ­I rD…†ωόD΅€fggΝΞt£Vϊ δ5 ΉΓŠ―±6ιˆ4™a,Ίίτ»Ω«$Γ°ΠμLt‘oδ“m‘εSšω“€fgΊEj+šγY‘―/|†Αšeυ’/g`ϊΫρɟ;p:󲜭μοT #κ7Eοšϊ_ͺ& Y‘Κq‚€fΗ) E;& Yq•γ„θ>v<1AΠμvŒ:³Π‹Ήs?Ε5>k·θθ"ό\ͺTI\ΈκAΉpαΒ(]ΊfΟώš5ml,'̞‹ŒŒ [Qž΅vpΨθΪ΅kθάΉ³Ά(¬Η'NœΐΚ•W™υοίŊ «=ΪΑ 6*lv>31[Πμφˎs)HΝΞ’2•«ˆ,Ί±zKΨ·KKŽFκqtK©Xοœ]rδzIT7Wγ›ΆΒ„¦žo΅y=–ُ£ι•zr‚ΧoSω&ηr™―½(@σΝ1%™žΡ‹BΝϋ;o˜4ύF g¬__zϊ*η5χ-χg0"nϋ?Τε4‡Vρ«%Κ κωΠξΡz°ΏσΦρ±Bο³: S'§Ν\Z§^STˆ-ŠΜΜ 8ΉmΌo38θ4š„hΎŠτtΧΒV-%6ƒθ(unnϊj:tšxVŒŠALξ}’«ιιΰ#πώτΊσl¨=bφ₯¦σΖ¬?ΟΦrΏΪΊΗ*{™=`–Δδθ:φmίΥ,ΧΌcJ»ζaeό(‘A‘)Ÿ;n-=fu5‹[W!iΰι:©ZVz*‚ω5F§•ωέ=FξψQΡ^熻Žœ²SWnC{R )@@³oσθΘΖΔ=χά… _`°mQ―FGΗ#†bνΊΕΰ€²v›υbάV―.κΧΏU[$σθΟγΖ½ŽŽΫ‘uλVΊu.\Κ@‘dŒρ€nΉ•Lš­¨δ]‡`#oMhφΦ$P9"ߜΥ6‚œ}9Σ-?·Ϊ½{7²³]―0ΥκpμΨ1πhιυκΥξ‹IGŽ‘ΦgUͺT‘Μ^u>γύ.₯‹ίP›šΆΣN'dΗD‰%P±bՍiu  66εΚ•³Ϊ$dυΈmqqq!ΟΞ@d›΅άuEΥνάΉsμK­η…<ίψς/^6Ύ6ΛΜΜD͚5έN$uόψqΤ©SuλκGqΔ̈2ƒ€ζΐΈSΤΕδΩ…h–ΗδπΦ‡ΏoΑ pΦΫΥi€goΏ Κ”Νz ΩΛ# Ωž^z΅E;& YΟkφςDχ±½Ωˆ_›€f}dtΞNΨφƒωΔm?*i= ™ςϊκzŽmSε& fζšy„h£(ΞJηšD €fλΦš‘ y{ως9¨ƒ»8ν—·λQ½¦΄tέ‡RGΦ64"DrΤh‘l ζΤC4G³H½YΑœJžθ;«jD'νΟΆΪ7’9+ΰέ¬ΦνΐΣzη;Θ1ϊ¬vΠ5‰phΆαΰ6ύ†£m£›‘Ε~2SaΓώƒΩ\£ήˆ*…¬u|%e+^z>κυΝ*ψht ›&ΏŽelœ>£ίD³ Fƒ\AΚ‘=ψφ?s‘λΓΗ0(5М΅w!ήωΚυj=σc*ΥE—=P·’Λέ»π|΅Ϋ‚φl_ ύ_ŠΪQYXςΞ;ΨΑͺGΧ/₯5†3Γ™n‘ΪŠ€ζΐxVδλ Ÿa8€fYΩ³Y™ψϟΏaζ;p"γ’œ­μ[U¬ŠώUkβΞ‚EΡΈqc%_΄„θ>& Ω3FtΠω>φ†bυ@@³ώ°ςΉTΰ“w•¬ΝzυJ³7e₯±7fmΌ ίvœeΡ¦s²°±k?¨ΗΦkΗamšG Φ—GΦo†©»9—ΰl“η‘ ξΒα_»€6·@ξOΆΖ <\ŠEί6ΣQξΫξž€f»ŠεΦηΐr€ΰδaύξν $r+θWŠ€άXΖν]H1œˆ- ΩG_†ƒ„­€€ζ°IO{)@@³—$ϊ}F1€XE)_aQU…¦˜ΑΖ³lΌ?˜@σμ˜σζ2JΩh–η Ϋ$‡nr ωΰΌσεŸlΖΰί.΅]ΔθΑ%SπεŽΤά6΄{ΥliBέθ,,leA‘cΠ<ΪΠμ†ˆω`΅{ŒBF25ΛϊύφΞ<Šςάϋ1Hΐ ‘RK*ˆιΎ‰6΅XρHk ¨ Φ’'–¨iM•φDM9ι!Φ¨ι)―¦šsU-=ΫΰAL…ΆQρ… ͺ± mΔ ωˆ1|™@‚ΌΟ=›Ω}vφ™έ™ΩΙζΙrΟ™™ησΎχdηΙξoο©γšft[#οˆ >7%…eEˆnDue-¨ΫψΩ₯Έ>;kVb·)c0·ΌͺœCB§Ϊzcψ@Ώ” _FaΨdFIΰGZJKgŠ<ΔIΈu…΄Μ±™Œ ωΪ,π‡P½Έ’’;Χ,Β’ „‡g‘HΤeJu½LxœŠΓγjΨΌvΝ.Ϊ†fΰ#VΰδR€ζθρήΌΉ·ή2/,_‘Ω―?D"εˆmȐtγ1ζ6lΒΏύΈ ΏψΕΟ0UΠύϊυÞ=-ΈηξrœzꩨYό„± »€ΐηkΎ YYη ²²Γ3†υΏvaήΌϋЊU/>'ζ`7DΜršcJ€lΐ°‘R–°7hVkδ₯ΤΙΙ^Ζυ£Ά1lδ-Ί yӍ{© 5eiξ @σ '‰φγχ3~Ε5ΈatΆΪ©”ςÛȺޏΘΆ-ΉbΚk oρδ5†7έ’΅ΝώDVηϋ yΨ›@³¬πsο7βW oa} }Ή]8t8&~a8.6Ή_Μΐ€‘ς§‘νY’{ŒhŽjΠ=Ζ 4'ŒγχP―hŽ?N^—d¨xω·†Ο‹˜Ψ όZΑ]κ ήU}Ύ½δΧxχ³ƒσ™&„[ςϊ«¨ΩΆ%τ%;δΜΡfΏ9cΗƒžδ g]6λδ½ι‡ΥΏžš' †Νϋν‘P²ΝΞ'Ωn/Η¦–±βml'φGλOu^΅5΅~΁ݨΩgͺK9οκΕΐKkΈςfΰβ+ "λ] &;ίx)*”Υ\" ΄m 4Ou²Βΰ1Ζ2μΠ.σ΅j pΫQesZιδ΅ΪιXά.Ή` ΩI|Ηέ„ŸΟΙ±Λν»λρtυR˜ δΗM» 7\~~ kσ‘w1οΑ'#G φoΕοηUα­ΘR†fϋ6r· ΠΌΏσ, U‹«¦_KΟοΞφ|¨AΨτT¨>AG½4§bΆΘ”›$o;Π΄i%jW7peζ– 0—ζ М2₯εΧΗ€u½Ν‡Eφθ*9{t¬lǍ¨Ω—;l+Ο9Šžαΐδ4΄ΥΧ’zE£Ρ&―¨ω™i‡ou5•XΩLtf ·Hό ω•š-2OΟξ½>Γ-Mδ™ΘΎ-`υz!ΈUƒPζ€=“…S%]7,ͺ̝BΟΜ©"{σδ0£Ζζ0Ωψ„ˆ[š£KψςΛkρΣ²ϋ£6ZΈπ\tρ…F›υ―½Ž’’kυΥΣPϊ“ατΣ…•«NΪΪ βΎXΏ~cX5qΧέwΰŒ3‡•»=a Ω­bφ ©u“ίΜT½α¨σΩl›:¦±JuՍa£X‘SΧ3l€Φ…K½)ΠW€ζU;ΆγΫ«—όμΦ{0Ύ¨άK―1Ό ―λύˆΌaΫ’+¦ΌΖπO^cxΣ-Y{1ΠμOduΎΏ‡ΊΝ¦Ϊ[φοΕ[Ž… $«1ΛUϋ― Έω’/Žΐ…n&Θω‚!_T5λρ2έcΜ@sό—€ξ1f 9ωcΏ‡zΐ@sόρpςΊ$°vƍ˜2ςK[_–Rε[ώ²J. ;V}ΎpQν ξΰώ°vς‰ αR™ Δ%{ΦΛ/Θ]ŒcΣ>Ω·ˆF’ΐlgυοw—Mκ‹j,*3Η“λe»ΐΌ4† –Ητrlj)Ϋγv'φۍI™§ –―™ςm#‘ŽŸ™¨Σw’νΤ`ΦMΓ„Λ>ۏuͺ(4; εv@3ΑΆ³ξ€Μf·₯oΎlž9Ϋ;{hEΠςρeΎgŽμυθΰ±»ν‘δXΆD©o?kZηTbΤ¨Q8Ϋ <~Ohώ;  .ΓΠQΖ2:RύάG€»¦†Ζιυ#Π|γOΒ―8ltςZΗπά5‰` ΩA0ΗέTŠ99«aγIί»ίO@Ξ~όqήl°Ž9VΡEˆξlΕβωUP}7fά bŽ\1G”6ς°&ΠάΩZωUΠάέhςmχβκσΙ¦v¬τ>όiά»η{hVgΉ e Ձf rΆW&ώΊΛΠάʜ<3Jʐ›,?PΐΚα Δ™²M3ŠlΒ”€9Ud‘.‹Θ"-Υαe―~EXΤ§ —U‘Άˆf‘‰Ί,”‰:xt{—‘Wˆβό¬ξ³ΤT.ρα™“‹P45Sΐyάh–dγCVΐhφADΛ'DηO?mO θσιŽ@fΛψμ³vtttΕ4Ζ€§Y›x:g Ω“l`ΨH­›ό†Ÿκ GΘfΫΤ1Uͺ«n ŊœΊža#΅.\κMΎ4΅±¨ρΓΙιηœ‹?OϋŽ7‡}κΕk oBκz?"oΨΆδŠ)―1ΌΕ“ΧήtKΦ^ 4ϋYο/δ‘n@³©z›x΄ύ“›ρ_›ίΐGνGΜβ¨ϋΣSϊc’ΘδLp3Ξ΄{搨}ό¨Τ=Ζ 4ΗeέcΜ@sςΗ8~υζψγαδu©pݟΡ|θ€1Yυ%S‘σ…ξ$τVΰWξRsωσ;8ZΉφ%΄tŐ!‘ϋ0Ρ>h43!\:‘AάQig8v,J.ΘΩ—=ΙΓβΡ―]aΤΙφΘ Θ~Ϊ(‹sΦΰ3aυlŸ)@ιbαfSι"Ϋνξ  ™ζ%_ ΟΏ LG7ΎQ['φۍ)Η2½¦“&ƒb+c΅έxrωΠγǐΩyiŸGʉύͺ‡χβžύ;δfγoΜ^[Y*™ωCατu9C³ άΚ}¬ ―\gwL@,eM–a_»ΆNΚ h“ί»$0Gώœΐ^;ΣΨδӘ κ,ΤTOc«2T‹ͺΓΓΟΕ'7ΞΝΤV‘ h¦qε2Κlάπ:΅To¦ΎruΛ@i΄ΜΤΡϊΉͺ³Ν4ηΟ"™DWCJΌVKΝωπ$V€fΑΝνΨ(ΰΰεV8x (ωζΉHνκΐΦ?VγOfϊfsl7@³ 4meξcΝ{ƒ€¨sEVιNΤ/ž₯*ŠΪ¬φΊΝ‘L»  Ω±ͺεπώΗ‚ͺ"20Ή¨΅ Q'ΈΩτάB”ΜΘRO₯„•-MmΪΤ/Y€M4[Š+ !Ύ“ά7֊LэΖy(Σ°GΏ‚£&ΗA‡Θ’½ΐΘ’ŽΩe%Θ¦ή"Gφ²Uh 9Ν--WdψžadψFΫ&TV―†ΰ™ElΓ37ΓEάh6Εε=+ΰ 4ϋ£c_…fo‘bΨH­›ό†ΝjΌ”κόζ„Ά1lδεJ6ς¦χR+ΠW€ζ‘‹ Ÿ όΡϊί—ζγϋ_ošχβΖk oβλz?"oΨΆδŠ)―1ΌΕ“ΧήtKΦ^ 4ϋYο/δ‘@³©ώ]»πζŽpdθYxcοΌΡΊυŸ|ŒŽγΗΝ&Qχ”%p’9²9δL€“Ÿ›ξ1f 9ώhλcš“?Ζρ{¨Χ 4ΗΏ^—¬ΐ/eF¦l»ΦMώ<Α Π¬Z_XΰuWέdLCΰςβm Ζ± ΗVΌ΅!"£±97E[ΫΡ£aΰ¬υ³«ԟơ‚Ζ`Q~$h& hsb£l—U/ςυς•ΟDρ*Tešiά¬΄3Q³m‹‘qΫ±Ž¨,Ξ­vΙ6ΘLp΅UχΠLρUμmΒ}ϋ>ˆ¨t!PUYn-yn Kπΐ΄@MOΝ”5™6§ΰn 5@0-Ω΅ϋ}³$°'@š24Λ’Ν9¨Ε&{ί/ϊ–θ;\ -Η€#€f‚»i(2YŸ=&p,”΅”ΛΝchώι5@‡ƒ/,R{ή=NΛ†—ρΌ"k΅9_Δή/υ–2ΊŽTΎEŒε¬ΐ―Χjg³q«Ύ¬ΝN’7ι{xθ»γ-Ϋ[QΏφE,]η‚v4wξΖ’ωΥ°2ΡV3cΝΣnΗC—έh&νšV.Δ’:Κ]œŽ‚ςŒIe+ͺ±€Ύ θΑ Ν;W/Δ’Mbή”1()/ΐaι|8JΖY7X9¬™M›Έ δ”aΖƒΜ5ΊnXT‰5;~›:^d!Ύεˆ4η t¦β&6q’žt4’jA­@˜‘ΫL-%§cFΑd¬[²RΤ‡€ηΆϊZT―h=2QTQ$~†67qg 9€±~(ΐ@³*φ1hφ+†ΤΊΙo@Zίδ£:‘ΝΆ©c«TWέ6Š9u=ΓFj]ΈΤ›}hn9}&ρι ƒϋΎχc|!u`πΌ7xαMu]οGδ Ϋ–\1ε5†·xςΓ›nΙΪ‹f"«σύ…0AΓ_“ŽΪUσ3ΓΛθL•=˜²ΣF™‹iSΎ”ΕψlΑΆQηO[νθ'Φ·=μ8\¦:32ΫmvΎSfΪTY˜έ́‘μͺό%ΝMx™ΰκ›ζέ•cΩG¨e›fw4«`θ‹Ύ Ό+™ƒŸJ>tΝO_Ύ6€V^ύz­φ:?χλ; 0Πμ0VΣnΏ—jέy»w|ˆν[7αObΰΗn€f1Cϋ‘CFΦΧΠd‚‡MiGύΣUXή=UhΓόͺgε¦ΐΨi(s9†υŐ^,iψuψXΟz/Cs*f””!7=`xWGΦ¬ΐŠΊζ@Af>*ŠςŒγ Ќ€¦ ΒΩ²ut x΅΄Έ;[―ώŽŸλ³-­U§m¨­¬F£`ˆΣLXΈ­ ͺW›ƒΰ¬΅« ¬ΦΜΆΝ>,©| MΔ-™‰²‚œ@7©}Ζδ"O5ρې_β"CͺψΎu‘+=₯ΕέY‰Γ+“θ,”9=·@dΟƒ}uKπΨΚ&!dΚΛς±bΑ#[σψΩ₯Έ>; ΅U¨m‹΅ŒΙ(/ž*"sswšMέxΟ ψ£ΝώθΨWFa Ω[€6Rλ&Ώ‘υia Ε›gς¦σΩl›)ηΗΊκΖ°‘σΚ-6’Υΰγxθ @σΒ½;PυΞ†«— ?½¦ ^·γξΟk oκz?"oΨΆδŠ)―1ΌΕ“ΧήtKΦ^ 4ϋYο/δ‘ 8ςΗsF±š­£ΦΥ‰Ί½-ܝχ ωπk3ΫσƒNΗEέ€3Ξ_6C„’θΨv:ǘΐ£·‰"οΌσ}ΟNM§u}τφξέ‹ /ΌΠi—„·Σ9Ζ$Νρ_ΊΗ8~υζψγαΧ5k‚§¦Ev «Yοt―Z_Θ+A»+ΌΦ޲ϊR&`Ϊ¦Œό’‘ ˜Žν@gͺ37«ύN€ζζCπΞξpδΘΌ{’Σ58lΞ-g–&ͺ/Ή4ΆœΩͺ§r9Βδ— 4[³'|l>mbʈ/š™6Yχςη@”}›žrq[΅6ΥΝzω…`ΉΥξ`…8ΗΌvΔ(όh%Ά6D‹μ³<ΎΣγτγ]Θ9zWf~e9‚‰"ˆX‚z»Α)ŸαΤΎА”ιΨ ,‡j폀qƒΎ1 xmyπΤ8³&›52ΌKeπ€»όqίψbΘΎnHX[ή^š·η߁”μI5j”ιMτ½ h&Ν ή¦΄§²&±€ζΉΐpΕΜΦμh6΅—γ9ϊΰ²λ Ύ°ΡηŸ~½Vϋl§‘ 4»ΚΈ«nΓ΅yηc0ΒςFY›_yK7μ‘KCΗ.ζPΗπ£ϊΕσ°΄›L6fΚΐ|h! Ώ0ͺ³SμbπΰPFžέu‹Qύl’qf±˜ͺ¨7Ύ‡ΟBPh΄‰2€rχ—ΚC@³]ŸTΜ.+σ 4w5―FeΝ&1x ¦Ξ-Ηδ‘4OVWWbS›(ΝΚGya³@‚Mx6¬ή¦Υ•΅ΓΐΪ¦ye5jκ¨&”9ΈMΐΉΥη"3KːӭψκVV-@ΰrm·‘ΡΉάΜθlΫͺΟWετ‚ƒι?mιβKFͺ{W,ϋ­υάXlΐΐζϊβŸQΎV[TφΚ 6e­.<_€‘b‹φΩ‹Φr²ΫhV}žc΅Χ<·Ϊ²nΟ₯Ώ4f4ΫOή;y„U8—}¦qΙ;ϋδyεcZ«Υ_k(aͺΘ»ύήί‚Α­Ί˜ΩεœKγ‚Ζ!xzKxΦc;θؚαΩ„jΕά{~·#ήY°Βši\€εŒΚvcΛφΛ6Κε3Θ2-gΦӜδ‹ͺN΄ρhŽy“/"`ωof65‘–v4HMcΙΫ‘ ΣΎΓ+δ.εΨ―Χκ(SpU’(ΐ@³‡@Ž›rςƝ/†άΌ}ν"όζEEΆfW@³ΘΔΌκμ(ς½šο!ˆo l?„ϊu`"Σ! ΩΖ‘Az{έ*όfω[6 zΆX? y Š+ !Ήšθί‰²ύξ²ιAπ*J³„T1ΠΏΜZΝp½τTΚj?r’ %‚—|~€{hoGΊΏV{σJί^ 4ΗΏY†);rΫΡ£FφήuWέΏqbΥϊBΞh¬„}™Ψ2ˆPk/d ™ΰ؊I“ƒΩeΐΧ/{eˆWΣZnše·ͺ/™ͺ„»ε6ζ1­ڎ †Gl]ΣΈTΆy«ΩΔΨ»€ΝŽN€f³­j/ϋLυ* ™²Q/ήΦ κΚ\½βΚλB03΅’2ΆMΉ-iΓ‘=κœ@!Á!2A₯Φy‘ ؞5 ψΩRϋΎ2l,Ν[ΧΏŠq#ŒL‘ΐΐΣΓοδ‹ΉΝΊ#ΌΞ,—χςr9ΑΠMυjhΩo ™@μg–gT@³ΘN]ΫνΜ¬Νf/YΧx€ζhΈ¬U΄v¦Mqμύz­ŽΓξΪG` 9Ξ@Mžu;Ύω΅Ρ0r"wξΖ’ωՈ@šέ͝­X<Ώ [cΨšΫwcνΪw‘28Tϊτ}¬Ϋk„ΔYέ{@s ςη–!/]8…M5UXέLh―€–ΛŠΓΰα М–‹²AΰXνzόu4w5‰ ΚΰΥ/%% ƒ`ιξI²ς‹Q˜gY$Δ 4SΦεj‘uY$iN3婨ͺ¨%aΞY‚Ω9$ŽΉI~‰LΔ₯"ρI»Η‚ͺB½TδNΞFύ†z'7WvƒπΝXXQƒ€!oκΤ­‘ϊ –‹o-šΏ~βξRvΣφ€#;~+ΐ@σΙu 0Πμ-ή ©uc Y­KΌ₯:Ώ9‘«m y»κ6ς¦χR+ ;ΠόΫ–πΘφΐϋ>γΞІοά¦v$Α₯ΌΖπ&Έχ#ς†mK˜ςΓ[3³ΖŠηνWτψϊΒΌU#΄·ήΘH,Ϊωϊ{,Ο‘*ΰθŽξ{π½KD¦b‘έ—­[  ωŸΧΟΗ Μs1jΤ(kOϋσΔ—"Μ Λ^`a;] –¦΄=˜u'vΎS‡”ΏΏŠŒŒn20›΅h&τ4 »χ²V^l΄ νΤΧG›ˆλϊΌ 4Η αX|―δjŒιuwoϊ#žZ+cμ¬}m€©έ‡εΦ&n€f yžs Ή³΅󫞍ιE’τМ&ΐεΈ,²/يι;V©Ω3Q6;τ‚š-”ΥZIΰ―ƒ ΝmuKP½RόqkKΩ›KCΩ›ζqΝΐΎM5xlu³ š³05/k6-Ύ­π­1‰ωÝ_f―δά·‘Ά²&m.œLɚςΒάnw»D¦λΚ@¦kS‘ΥΊΌ$?«{‰»HΩM[ΣDή³'› 4Ÿ\g Ω[Ό6Rλ&Ώ§z³Jη?²Ω6uLc•κͺΓF±"§gΨH­ —zS@w ωΖwώŠ-‡>5œ›?ρk¨ΌθήυΉ―1Ό ͺλύˆΌaΫ’+¦ΌΖπO^cxΣ-Y{1ΠμOduΎΏ‡*ΰΘΟύ%@³Κl~sοΌΡψήΑΐzTΥ6ž²‘©θ,`g‚žδ„ŸMΪ¬@΄Qg€Ώ˜:(lϊ//Oγμ’Β*'׌:Od6ΌVQ“Ψ’Ž|pGχίc­€fΚΜόΰΏF‡™Ν˜HP—YΤ[{έcά[ΊτΤΌ 4Η―¬ξΧ¬j}A νΊ=; η Ϊ΅>52~U"GˆhΆƒ#gq^b—ν4η¦LΔ~Ν”•›6ʘmnn²>›}όΜΠlΒέ€™A:^Ώ{|}aޚΙ{€ΦΧίc›9 3š6{š7ώιιιξ€ζ-~{_ΐ{UvfYΥρώ–€MuΦ¬Υ–φΝΝΝ8pΰ&L˜`©‰qM«]έVϋc·“sϋ>₯Ν1Γ5·ίFS ζΦzΜ«R€ΕŸr;š.ΎΝ€NΤ/ž₯$9‘‘{h@³Β¦Πμ½r€ Π,Όo\V…ΪΚOœ‚©sΛ1yh@’ Π¬‚Š#T“ΐߜΩ"“qvD‹PA¨-2r1·p*R;:‚Y™SRRqΈi%h]„MΕΒ&9I³@3€1L»REΆζ²‚Π(Ωκ(σ΄9X’ξλ—,ΐŠ&Βί›5£uΛ†,\ΣlV#=·%3Μ¬Φ!-έΔέ €μ¦mΠH>`N2h>ΉΞ@³·x3l€ΦMšιQcτ­vykii }«YHΐ1=FΜj<­Ξo°mr€œ3lδL'k+†¬Šπy< θ 4―{ϋ-\ώ暠{oΚc<Ϊ;XΠ‹ΌΖπ&>ί+Y7o ΈοΕk χšQ^cxΣ-Y{1ΠμOduΎχ‘‡*ΰΘΟύ₯·€f«υΕ¦ΦέF&ηΏ‰=Ξ-Ρ²ΟZθαs£τ;»>£ΟOˆ§φ§Πή~£Μ‡½½ptdΫfdgu?Ύ' ’L…g›ŸoΉŸ@χίc­€fzŒόk˝‰JάΥ!₯ς 4FZšHε½o*[mΜΩ3K1;G•ΆΏ5β[α’_H,ΑΘγg—βϊlEm6ΥTbusΘΖάΒrΜΘ"_δ-δWjφ ”\?^α—ΐSΣ`Θ wMΒc3Γ2=Υ¬«Kq-΅‰ΨVbKξη”aΖsΪ<Ζ=tν¦ ΏΈΉιβj …ΝΪΤίM[£#`NBh>Ή‚Ξ@³·x3l€ΦMšΥ-z―Τό6Ύ:ΏΐΆΩEΝΎœa#{m’Υ0lMs«€Ξ@sω«ΖΟ·Σ€ƒNΗξ‚Ήnέλ±φΌΖπ&-ί+Y7o ΈοΕk χšQ^cxΣ-Y{1ΠμOduΎχ‘‡Ιω)χ£μ†#]ξ'ρ£‡ΰ›aΓ5Ώ}έ-ΘωΒ0?fρ<GιKΐΰΦ<‘mΗh;χΡθΓ‡#E|Ψ—šΪύžjμ1Ψ€ͺχ«μΥgCΰβZ/]lξ—ΩΊΏVϋε§.γ0Π$tΏfy}_ŒgΎτώπα{Ζ ±>/‰o&ο½γš½Ομ¬gΝ2ΠBš…a,nΏ·£‡··· Κ3ϋΙΨvΧ-Fυ³83άΝζhͺ};6.ΊΛ· 4‡λΣΡ(€ζZ Y4m^YšΊ6£“ ‘ζπ‘,gi((/ؔψkivš9Ή“/Cm=Ν•ΒŠbd…΅„2Gg’¨’™f•`ΫΝΪ„ΰW1pJ6JΚgC°²–Ν™_HΛEYι Dω³ί2n=m«ΐςΚ@6νtαs‰Υη6ΤVV£ΡŽΣ1»ΌΩ݌xγŠjOq„ρ£iΈFά΄ ^OΡ†ε:V ` 9 ƒΕ%š£ˆ₯Ša#΅8 4«u‰·ΤΧ7 β5Ζ_WΫ6²Κα)ΓF…βfŽΠhΞ«]„ΏόΔπcξΈ ρ«―Σ‘O‰hΔk o*λz?"oΨΆδŠ)―1ΌΕ“ΧήtKΦ^ 4ϋYο/δ!GρΗΩMŒƒΠ³ŸMΠ™ΐgγX€ΠD‡·ι†€εr¦}@dv΄1ΠμH&nΤK Μό!pΩu½4yhZ7ΏΗ‘^ΙT_Ώ«V½‚ή™ηŒΔUWεcβΔƒSbd₯ Ν±Š]―ϋ5Λλ‹Ψ1ŒΦ’ζέ-xμοE‚Α4Π6 ΟΏ Zσ^©;ιfTΧύχ8'@`=χT²‚34ΫkΓ5}OšΗlfέφ]δœ;R@Μα:Ϋχcλ¦?aι‹ ˜™šΊΚΠ>vψY'κΟΗR1 4·οވϋͺ>¦&|°=«¨¨θΡρ#oΩ€Κ…kˆš‰Βς"D$"ΖN,ͺX$~Š­Tέ)Τ%x1šT  Υ2­¦:ΣΖ_‹μζP'A§Ž™‰2‘ΙΩv Ϊ δ•#?³›ŒVΦT.BsW &•aj°\©« +—@|y…eΘΟR‘Ζ-XRΉMΎΝΘ+Dq~–4€yθΜ/€ε yfςΝ؇ڏ‘Q<)…ΰτ’©‘XpDƒΌC:Ίϋ”Ž•έΩΕ͘¨φlΡY;ΝLδͺ6f™"³΄YΕ{Vΰ$P€ζ“ Θ’‹ 4KbΈ8dΨH-=²,ΪF™]θΝ²Dmτx1σƒΈXt~“‡msΕ0lδ^3κΑ°‘7έΈ—Z]fz¬χ™5ΥA£Χ|{68{TπΌ·xα-|―dέΌ)ΰΎ―1άkF=xαM·dνΕ@³?‘ΥωήG2pœ{3Ζ”υΩ λφΆΰΖχG€ζΰF©™Γ ‚5tpβvή'”AqΐͺEΦyΘ~zzl9oΙ©ΐ•7ωszέ·ήό=ξuηœ8q>ϊž^ςξΌ³Nš€­ xδ‘Η1cΖ•Έ―βίΡ―_?EOgE 4;Σ)Z+έ―Y^_D‹ž³:έcΜ@³³8Fk₯{Œγš)Ϋ3eξΑζ—‡NΈ 4{|ΔΈq}ΦYFΟO[·cλΆ=FIξ. š“[NφŽ`XVΐ‘ 4;*Iš1Πμ- yΣ-Ρo€`ύ—=Ζ2Πμ-f±z%:¦±μ1λ62•p·gΨȝ^ά:ΊΊΝKήۊ›Χ4Œ?£i8pΛ]ΡIp-―1Ό λύˆΌaΫ’+¦ΌΖπO^cxΣ-Y{1ΠμOduΎΏ‡ Εgbœ΅τΧψππAGNΝ;5SΎν¨mO6κρGΒ»1~WΠ~$’GSSƌQξ{1ΏΘ"εrkiiAjjͺρXx—]c7ί1@P’Σmϋζ(- °·lwώ3ΑR˜ψS~ο}δŒλ_{σζU`Ωσ‹qφΩ#‚ φνύDdiΎ?»o¦M›,w{ΐ@³[Ε"Ϋλ~Νςϊ"2fnKt1Νn#Ω^χΗ4GΊλ{ ΝΎKΚφ’ 4χ’ψΙ<5ΝΙ]φ`X}` YίΨτ„e 4{S•a#oΊ%ϊš½ΕΙM―DΗΤ©m 9U*ΌΓFαzπY| θ 4Ώ½οc<Έa ^ _σε±xκςρ9κso^cxTΧϋyΓΆ%WLyα-žΌΖπ¦[²φb ΩŸΘκ|!8Š?Ξ:ΕxEσ{˜υς 1:󴨿ξd >3f۞n Πlγ¬N1V™¨pτδΟ€†ΧUfF–₯žόβ‘ε½P’{Œ)ΙηŸŽοήp+nΉυ_1}ϊ7#¦^·nΈ!ΌόΚr€€œQο€€f'*Eo£ϋ5Λλ‹θρsR«{ŒhvΕθmt±Vλ …” 4+Dα’>«Ν}6tzΞ@³ήρaλXV€HVhNΎΘ9rτ†‘j[Ώ~½Q<}ϊtUu―•νάΉ«V­2ζ/((ΐ AƒzΝΥΔ ©T‰]–θ7R Χύ‹·5†q†ζΨρρ"Ρ1uj#ΓFN• oΗ°QΈ|ŸΊΝδΥΦ­[Lci#30| ψ°[£Χή‚‘λύˆΌaΫ’+¦ΌΖπO^cxΣ-Y{1ΠμOduΎΏ‡ Εgέb\σξάς—ΐ{u*οf^ρ­k1eδ—TΥ /c 9~Ι΅Ž(ΛtU±3§Όȟγ¬m·νχΈ‡έ:|[ΫLˎ–_ΐΰΑimω W~λ:όiε38λ¬τˆz' 4;Q)zέ―Y^_DŸ“ZέcΜ@³“(Fo£{Œ΅Z_(€d Y! υYhΣΫpšυŽ[Η °¬@²*ΐ@sςEΆ‘‘GU:ΆcΗΠγσςς”υ½Uxΰΐlۢ͘~Β„ 8ν΄ΣzΛεΌτHΘΑƒcψπαΚϊή,|ο½χΔ›ΎgaθΠ‘½i†rn²νΌσΞSΦυDαBρaΗο~ίϊ#ΟEρΩφρL΄mnόeΫά¨hϋΙ'Ÿ`ώύ ½ήœZIχΩƒjiAZννν8χάsΊ“°vτaτΨ±c‘°9y’ψθ @σθΡ£γs²z3ΠμMT?¬aΫ’+¦ 4{‹'ΝήtSυκκ:ŽuλΦγε—Φβΐƒ7>W_= YYξΒ'Nΰ5ρΨχΙ“σpκ©κ,ˆ Δ³Ο.ΗΗ-{qΞ9gcς₯yΈτ―ΩΆWΩ«*c Y₯Šϋ2ο/δ Gξcjν‘cŒΧνށŠ·6ΰ/{> 3χšQη‘ϊ’+΄ΘΜlΖ@³©„χ½vΐΡ/Ο<έ‘‹Ύά4/z›Φκψ{œ@χΓ¦zχέ&όψGσ°κΕη”k Z›όΰϋ%ΈγΞ"LœxAX_§' 4;UΚΎξΧ,―/μcη΄Fχ3Πμ4’φνt±vλ ‹” 4[αΣ>­Ν}:|ϊΟ@³Ύ±aΛXV€HfhNΎθr†fcΚ°‘7MύF }Θv[5Œε Νήb«W’cΛ³ža#S w{†άιΕ­£+ΐ@st}μjya§Lτr]οGd5Ϋ=vv΅ΊκΖk »ˆE/η5Ft}œΦ=z 7άp Z?ή‹ςςRdŒ†5―¬Πρ όό?οE~ώN‡Bmν x䗏γ₯—ŸΘ‚H@ΡoŸ\‚'žx7ίό]|]@Ο;wξBεƒUΘ`σο[ρ€ƒŽη²6d Ωͺˆ·s]_'Mo82•πΎΧ9ΖΝ‡`ν;υΖSO¦]ƒt‘Y·ζψ#’%p΄EΌΟ·όqΰΣΦpSΕ“w.»V›ΜΜ¦q:›6&jΏ}ϋ(½η^,{~±-Π\|ϋέΈ½Έ^8Α“Y 4{’-¬“ξΧ,―/ΒΒειDχ3Πμ)¬at±–λ IAš%1ψ°Ο+ΐ@sŸ‘ž0Π¬g\Ψ*V€`’]š“=ΒαώlτωηŸcϊτια½|ΆsηN¬ZxŒeAA ΤΛ…OΟ°QΈNΟύFŠ 4Ϋψ\#[­‰ΆΝΞU9Ϋ¦R%zΓFΡυ±«eΨΘN.χ’Ν^TxαM7ΎW²nήpί‹Χξ5£ΌΖπ¦›ά‹ γ‡ώ6Ύώž[Vƒ”””`υ›oΎβΫοΒσ/<5SσργΗρώϋβρΗώλΧo4ž„τβκ琞~fp,: ΰθ†οά‚ΕOύγΗ%XG‚Ώα;…(σ7^,w{ΐ@³[ΕΤνuΎχ‘Ε ©γζ¦Tχ3pδ&šκΆΊΗXkΰH<•mkqμΐ~dLΞΖx`Υ‘ρ―Tχϋηiμ‘ΆmkΒƒ<ŒšΕOΨΝ”‘ω‡wάhξκκ2ž.¦š‘žTΉ}ϋvŒ5J»ΟΘ^zέJ0€³†ΊΗ˜>£¦'ΆSHuάθι²τχ ΗΨ{tθ©Α©©©βοΠtοƒτ`ΟΆΆ6ttt ##£g‰ohΊ/½τψαή'… 4ŸaNΌ“ 4'^sž‘`XV` ωδΊ hφo†Όι–θ7ρe ω²η`έU7ΩžhΫl QT°m Qb1lC ›j†l„αbO 0ΠμI6š½ΙΖYY7 ΈοΖk χšQ^cxΣMξΥΦvWόΛ5ΆΠς]P”ώύqΟ=wΚέŽ?όπ#\;λf\}Ν4άqΗmF†ζŸΜϋ1† ‡–-ϋΆΌσάΐOΓϊΣΙ¦Mu¨©Y*²7W‘_Ώ~υN hv’Rμ6:HΦ3Π;†±ZθcšcE0v½ξ1ΦhςrΕΨטN-hώΡάyXυβsΆ@3ehΎ­¨_<ΙΦtΝZVm;vμ0€WUeτ΅SN9ESΨV€`X>¬@ff¦v‰Κϊ°œImΊ hώQ-z`@IDAT인ΤDΧΗ½+½‹R_TŠ€’~ϊΪPzt"EιEPQ@•*(€ ¨t_μ ¨€‚ λ₯—ϋΝΜ²»Ιξf“έdnξ?Ο›L¦œωάδdςΟ$ΥΩ³g“HΡeπΰΑŠZ³ό ΐOώ4°  ΰC‡QΡ’EjνΈL`εΚ•tνΪ5ͺY³¦Λ–6Ώoί>ZΎ|ΉLlΡ’eΜ90ƒΛ[?ό3εΜ™“Š)β²%ϊζ7mΪDως壂 κwΊœΒΆU¨PΑ1+oψŠ^Ωπ΅lοα·ΠΊ:ΝBΆν΄m! 1ΨΫ  DHϊηŸθΰΑƒŽoLςνή»w/;vLIΫvοήM‰‰‰TΆlYŸ½ͺ¬όρΗςzUΊtiULŠ«?ΌY\ΧΠξ]Qα[ R:ΥΕ1SŽR₯JeͺέM›6ΣκUŸΡΑC‡)ώ|τθ£=χTΤ•?yς-t5ύψΣ&ʜ)έYζvzθΏχ‹6 ™j'\&Ž1ψxOHH \Ήr…ΛκψΎ­[·Rƌ©xρ⎷©AΔ‘οΗ΅˜K€Tp‹DHΏ1†ž‰™Δf(…Ο³aΓΟ4lθ(šΏ`*₯I“F—yϋφΤυωΎ΄|ΕΓύΑ’’’¨Gχ4pP_qo›Γ·›ΣϋτHυΤ¦ΈΧ—­lέΊήy{M˜ψ₯NZKŽκχάΉs΄jΥ*:rδˆ’q‚Φ•Ο‘l£κφύφΫo”>}z*Q’„†T©ίύϋχΣαΓ‡•Ό/Σ@©ξγΝ›7S–,Y¨X±bšΙJύώύχίςς3σ*UͺXο$J¦<ǚ%Νώ8°n…ΝV¨‘ €€€]4Ϋ%˜ΌΚCΠlΝ_Yγζτ >ΝΦόM)§}jΦ6ˆΜ’ Μ±Q 7ΆXD4zτxš=kuξ܎*V*O[·l£Q£ΖQνΪΥhΠΰ~aΕC\~π Χι“OVQ»φOΣέwW mΫώ 1£'ΠƒήGo*Œ―‹ XψΤ¬i;Ί*SΓ†υθβΕK4ήb!ŽΩ,Ϋ©[·†-4[Γ‡Γ7U―GάΨζ-Ÿ"Ζ°ζOΔΦΈω—š3g!8~‚:wiοŸμ[?{φլѐ–.›#Δg7ϋC­„4s~-*T@W—Πˆx ώVκΠ±u¨ͺ#¦CΠ‘© *__Έ4›rcΨLͺϋ‚ζ°ξ3΅SuCΠlʍa3©ξγ°ΖΗxη… ©v­ΖR°\²€ώEˆύϋ‘ƍΪΚU …ˆ,‹₯Φω~šγΞ‡zHΉ«ΉCsηΞ₯3gΞP₯J•δ?KŒs!ՏYΔφΥ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€ 96@@"A³C i‚fkŽ€ΨΘ7§Λ hΆζ§hJ9νS³ΆAld–T`>ˆyΈ±΅ώίPίΎƒiα’ιRH€ΩpτΘ11KsS9‹bkΙΊί₯K–Σ믏‘E‹gˆ™ϊσϋφσLΜO%΄’gŸkCO=u]Όά ~ jάΈ=έͺ‰/―¬_-υν3ˆV―Y,f±>cΝXMo Ζ0* £ͺΧ#6ΆΈΚτ†ͺάc˜va@FΔ8,m̟Ώ„Ž>RΠΜ³HΥ¬ΡHΖ9rdΨF8As¨Β‹B#ή|‡–,-fψΙ*[Δtš#"2•AΥσ€f<G λΏͺϋ‚#λΎΥJͺξcŽ4OYUέΗΦ{f­δ›"ŽΨ΅k?2ΰemν₯)žΩ•!ύ­U.JAΠl― κΗ,⠟«,―¨ξcΔ–]λ+¨Ί_ψ\eyEu[ξ ƜΝ1GŠ ™Ν8@@ά A³Τέk‚fkμ!6²ΖΝι›lA³5‹γ[*©C?S 8ΝΝ”QfRΥ6ˆ’ρ⍼έ`αΖΪ΅kΧδlDmΪ6§š5ŸΠ™°nέW4δ•7…Πψ#ί,Λώ™Έ|Γ§ZSΟ^ ?λ―[©{·ώ²ό]»©}»n΄φ³%ΊΟ°ςƒΔ¦bζζ~ύΊ‹Op—υo"ͺuš£ΒεˌΓ‡"ͺU―Gά Ψ•+}™Uε†Γη’¨VcD…Λ03 šΟŸ;O­Z75άOA3ΗγΖN‘©SgΣ€χFΛ/@α—ΘŸθ=ώΌ_ʍUΆυ«―Ύ’#GŽPBB‚’3(²΅ͺž‡4’ͺΫΑ‘ζ)λΏͺϋ‚#λΎΥJͺξcŽ4OYUέΗΦ{f­$Ώl]―n3ͺZν1κΦ­£˜‰9+ρΝ„ ΠΒKιγO>€άΉsZ«\”‚ Ω2:_AՏYΔ>WY^QέLj/,»ΦWPu#ΎπΉΚςŠκ>Άά1Œ9šcŽ2šq€€ΈA‚f7¨»Χ&ΝΦΨCld›Σ7ΩKφμ ϊ«[3ցR4Η2ΔFΦΨBld[¬Jρƒ½Υ†œ™?%_­j‚xΐ7—Œf^Τφ―XΉΐpfe‘ΣαΓGiτθρβ‘α[”*Uͺ€.\½zU~²ώύΖRαΒφE³As4΄nδEŒqƒE4kNΗ°-ΦςͺκSΔΦό‰Γ7RnΝΠΌgΟ^κΨ‘;={žfΚHE‹ήκoVΘυ“'OŸώrή½{₯ ωΞ;ο€Μ™3‡ΜηζŽ;vPΙ’%έ4!lΫͺΫ·gΟωβ\‘B…ΒφΓ­G₯'NΐΗ6°kΧ.ʘ1£ψ2Œυ{ΝG,zψπaβsQ©R₯"ζu+ƒκΗ|gΑiΎ|ωάBΆέƒŠλΣY*^ΌxΨ|nο¬P‘‚Ϋ&(Υώ©Gχώ΄sηn*Q’¨όε/L³6)RΨ–­4ΫΒ' «z¦υ ‚f„υ_Υ} A³uίj%Uχ1͚§¬ͺξcλ=CΙX€ 9ΦDQŸ$A37@ΠμuχΪ„ Ω{ˆ¬qsϊ&{݁½τ¨ώ©Ί@Π?Ο@ld-ΔFΦΈΕͺΤφν;©λσ}iωŠ”&M]΅<;b‡φέ©Sηv†3'k‚ζP‚gAσM7e#/mΪ΄ν\Ήr•&Š™‘–,ω”VZd8t@04‡fbŒ0pΒμr:ΖcŠnlΣ!1• *7Δ¦ά§Λ„C‡$κ„εŸ¦οΏίς3μ9D͚΅—/F_ߍγ8 Gχ4pP_Κ™3‡Qϊψγ•4xΠλT»v5πb/ʐ!½a>£DŽ;Ž?n΄‹._ΎL7nΔ Ν†tΜ'ͺzžΤzΑ‘FΒϊ―κ>†ΰΘΊo΅’ͺϋ‚#ΝSΦUχ±υžΩ/Ι/uσ—¦ψ%k£—Ά­΄A³jeT?f_ϊΛΚ–κ>F|aΕ«eTχ1β‹@YΩRέΗVϊ„2ρ!As|Έ¦ψZ!hNρ‡€€€+ hv»kBΠl =ΔFΦΈ9}“}ςEϊωθ!SΖξάΉSΜ RΒT^;™όΦ4Ϋ!Ύ,ΔFαω„Ϊ ±Q(2Ξ€ωηnκέλeZΈhzHAσ³{RΗg[SŊεuF±0©iΣvτΤSuΕΏzΊύ_}υuλϊ½Α»tΧ]e}ϋΉάψqSθλ―Ώ'U§OŸžΦ¬],gβςe²°A³h’b kܜŽ1’±ΆECλF^UΉ!ΖΈα£hΦcDCΛ8ο_ύMO·|–V­^$gD Ξ΅fΝ:Z΄h³¦N:x·n;œ ™χρ§ίߟ2“ΖŽAχߏΌ„sηΞΡͺU« hΆQ”Uυ<©u ‚#„υ_Υ} Α‘uίj%Uχ1Gš§¬ͺξcλ=S³$Νφύ’ϊ1‹ψΒϋ>F|α}#ΎπΎνχ5ĊΝ±"‰z@Π€  € Ω!Њ4A³5G@ld›Κ’NΩ–κ½7|πΎ¨έ”)XΔ·jΕ)ΫB΅.]UΫ 6 η΅Πϋ 6 ΝΖ‰=ό±“^2‚¦MRΠΜ34?Χ©­‘ ™mΤDΛοMC•*έε3›Ε-šw€«W―J!TπμG,’Ϊ+ώmΨπ ͜9žiΧ’ž{­œ)ΙW‰Α ή—gT2ZΦ―_Oϋφν£„„Κ•+—QΧΆnέ*Ε`*~š1†΅ΓBΥλχΆyΛ§ˆ1¬ω1†5nώ₯ψz[Ώ~KρςR5iΐρlΘ΅k5‘~/t§'žxDξγkαΓGιΎϋξ6Όž‡4s<Ρ§χ@ω’U‘BڊΕΝ± ¨φυ…{Α‘}?«Cpο 8ςΎ!8ςΎνχP­ hΆοΥ―=ˆ/ΌοcΔήχ1β οϋΨ~QC¬@Π+’¨'€Ν8°  ΰš­H34[sΔFΦΈ©< κ”mͺ šχœ9EKχμ žΥš—»rε₯z·•Œθh§ΈE4$(ΔFA@LnBldTœ²± ωω.}iωŠ!Ν­€m›?žŠ+fν€ˆc©Ώώ›J•*E₯K—Žc+±©ϊ—_ΆPΫ6]hπ+/PSΪ΄iιΰ?‡¨wο—₯hyͺΈv§M›F66ώzo4ω"Sš4ΧΣό­%hζτF ΫH!t»φOΣΩ³ηό‹Ιun#oή<Ίt³ 4›%>ŸͺχbšΥi$¬ͺξcެϋV+©Ί!8ߏ.]ΊD ζ§ΚY™κ'^ Κδ+²όΣΥ΄fν:zλ­Χ(uκΤΎtm%” ωβΕKΤ ~ :xπ°–Uχ[€Ha9{³‘PZ—Ω ‚f(’TΎΎpw 8²ΰΤ "ͺϋ‚£ ‡YΨTέΗYpjPΥ}dn²ί„ ΩΎ U?f_xίLj/ΌοcΔήχ±ύ’†XHv‚ζΙ“'ΣώύϋcΥΤ… ’φνΓ?8ŒC³¨@@‚fυ‚3giŊ΅τν·?P΅$ͺ|o%ͺYσ ʞύfΫΖBΠl !ΔFΦΈ©< κ”m|<‡Ύόηok]*5υαšΤϊ?e [wŠ›aγa!6 'Μ.ˆΒΐq`Χ… ΕηβKΑrΙ’ϊ,yζδƍΪJArΦ¬Yt±0ιƒχgΡÏΆή35KBΠlί/ͺ³ˆ/ΌοcΔήχ1β οϋΨ~QC¬$;Aσ?ώHŸ~ϊi¬ϊzβ@ V­ZtΟ=χΔ‘fT   α @ΠžΣ{χξέ'gc,Yͺ8=|ΊvνMŸ6‡~ύυ7šϋα!ΔΡ –’±‚ζhhέΘ ±Ρ Ρ¬©< κ”mΙQМ=}Ϊ”Π†nΛ¦‰Β)nΡgœb£h‰]ΟoIltό Ρ–oˆΞ'^―$g~’2G”)«5#B”ϊγ?δ509|>DL%Ώωζ;΄kΧ?~dΐlŠ,XΠˆ-½2€Ώ¬λΚ•«΄nέz*_Ύ εΙ“[Ššzχz™rεΞIτ hΕυκ6₯ώ"ύ!xfqσΘ‘ciυšΕςsυώ™/_ΎLOΦkN^μEΆή35KBΠlί/ͺ³ˆ/ΌοcΔήχ1β οϋΨ~QC¬$;A3wό£>">Q`Q@Ήrε¨Aƒκ‹@@RšΥq3Z>!‘U©ς3§J•ΚgΟΐ8}ϊ\ρYϊΕb†Α ΎτhW hŽ–ΨυόYγ¦ς€¨SΆ%GA3{»[™»iΜUΡ9ή)nΊ†#$@lPˆέQ‰XΐΌjΡ—‹υ΅e³WoEτPμξkSŠΨ耘m±^έfT΅ΪcΤ­[G1γbV:wξώδCΚ-ΛΌœ={Ž―ς$½ύΞpͺ\Ή’LΫΎ}'5kڎΊχxŽš4i@ι₯£ƒ’ή½_–ω,œ.Μiδ:·sΫm·Πk―½Dωςη%Ž3φύ½Ÿϊφ$?3Ώ|ΕΫ1fh–n‰κ?ΔQαςeVυzΔΒ6Ÿ›’ZQ•bŒ¨άθΛUŒα+εΜJJ‰1œ‘išΝqŠ”KΥσ€f7G λΏͺϋ‚#λΎΥJͺξcŽ4OYUέΗΦ{¦fIšνϋEυcρ…χ}ŒψΒϋ>F|α}Ϋο!jˆd)hζΞoάΈ‘Ύώϊk:vμX¬X ςδΙCχί?U¬XΡF-(   φ@Πl_,KoΨπ3υμρ"­ύl‰$ωΧΝ35Χ©έ$&³'r]5kΦτ―ήυυ}ϋφΡςεΛ₯-Z΄ Μ™3»n“ΏωΣ0Ώς€hJ³mπ†―θ• _ η%‰Χ_–Θω=pώu9ρ·Ξ©Σ€₯ϋςΤ₯'&&JΑ₯nG,ξ©JTΉš₯š 6²„’μH΄Οπ U>lΪ7|“{S’ΨθΐƒΤ£{ΪΉs7•(QTώ,˜ŸΖ‰Y›‹)μ#Ζ³.Χ՘&LE%Kσ₯kρCbβY_ΪOF|α}Ϋο!jˆd+hŽΤ   ΰ4«γΛ‰b6ΖΤ©SS‡Ž­ š3g!8~‚:wioΈίL"fh6CIŸb#=3)*ˆ¦4Ϋ|‚ζzfι‡ϧum0γΞψη)Tœ¨~'KνπK»Η"Ο’–ΚΚ(f.TΒpW4‰‡³ω™pb„,ͺϋ‚£4±[uCpdΒ‰²¨ξγζ'»έ4Ϋw™κΗ,β οϋρ…χ}ŒψΒϋ>ΆίCΤ+4NJ$κpΝ»@ΐB€–-:RΟ^ΕΧŒ…`όYωύ‡ΠόS)Mš4– ‡ Ω6ˆ¬aΓ'Χβζ4ϋΝΠΜζ)%hΆΘ+nΕ2 Aσ3ClWψπa:uκTlΔΦ…θ;SVΫ6i˜ ¨GtώΖμΏZyΓ_¦χždΈ+šDˆ’‘₯F^š­ω‚fkάT~θ ΫΌεSš­ωΣtŒa­z[₯cΨΒg©0Ν–°ι ©|}ac!8Ή,κΥ} ΑQΤ.ΥPέΗι\u‚κ>ŽΊCŠ€ ΩΎƒT?f_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέ4whߝžλΤ6€ ωΟ?wS§ηzΡς hvΨmYς€hJ³mΪφΝΤζΛε>GήuαŒ\O+ώΟzνŠ/][y _azνžj›Ύί;wR‰φg-φUΘ+γzlb# œωˆrζ“!Ί]‡s!8²οgΥ} Α‘χ} Α‘χ}lΏ‡jΥA³}¨~νA|α}#ΎπΎ_xίΗφ{ˆbE‚ζX‘D=   € ΩuH4AsΧ©lΉ; 2+hζ`υςεΛ†uόώϋοΔ>Wya©R₯RΩDΨɎΐ913σ:Eηε Ν‘ΝoMYθ~J9c r$μZEΉ.žŠAM¨BŸάϊ(ȜǢ9=τ•.]Ϊv=¨ΐ4[γ A³5n*?t…mής)ΝΦό A³5n^-Asl<«ςυ…{Α‘}?«ξcŽΌοcŽΌοcϋ=T«šνϋCυkβ οϋρ…χ}ŒψΒϋ>ΆίCΤ+4NJ$κpΝ»@  šΓΝΠΌkΧ9‹σͺΥ‹ΒΞΠΌeΛΊxρ’aΗφξέKGŽ1ά§J"ΝͺxvxΐΟt™&˜m7ΒRŠR/Κ!—ww§Ώz‰ͺνϋZ©²MΙIτ=·D-:“.Μ¬Ο&ιBΠl”"Ω hΆζš­qSω‘+lσ–O!hΆζOš­qσj)šcγY•―/άCŽμϋYuCpδ}Cpδ}Ϋο‘Z5@Πlίͺ_{_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέρφξυ2U«^…ͺV}ΤΠ¨/>_OλΦ}E― ιoΈίL"‹ΞŸ?Oχή{―™μŽεa‘υχί/Ϋ{όρΗ)cƌŽ΅m¦‘;wM7έDyσζ5“έΡΆίCΤ+4NJ$κpΝ»ΐgΐςOWӚ΅λhΤ¨‘”*U*_:―°ΰyΐ€W©\Ή;©iΣ„€}Ρl°ΨθΪ΅kT³fΝhŠΕ=/ Χ–/_.ΫiΡ’eΜ9ξmFΣΔFΡΠΊ‘WεΡ”l۞3§hπ†―hɞtκυΩάΛ !sχ²wSλ”½α@ƒ5UΉAldΰ,I¦ΕFc{ύω«‰E–j-‰ͺ·2—7L?ώψC^― hI±]4[sb kάT½qo`›·|ŠÚ?MΗΦͺ·U 1†-|– CΠl ›ΚΧ6‚#Λ’NPέΗEνR]Υ} Α‘ΞeQ'¨ξγ¨;€xšν;Hυcρ…χ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€€€ΈN‚fΧ]ΰ3ΰΰΑΓT«f#š5ϋ=ΊύφRΎt^ωσΟέΤ¨aZΊt6Ύ₯PΐΎh6 hŽ†ΦΌέ`͚Κ’°-OήΘ«*7ˆnψ(š5Σb£ύ;‰Ζφ"Ίp6|υ‹uE”)kψ|&φBld’bY hΆζΔΦΈ©z=βήΐ6oω1†5šŽ1¬Uo«b [ψ,† Ω6]!•―/l,G:—E Ί!8ŠΪ₯Ίͺϋ‚#Λ’NPέΗQwHρ4ΫwκΗ,β οϋρ…χ}ŒψΒϋ>ΆίCΤ+4NJ$κpΝ» ΐ€Y³ζΣΈ±Shβ€Qr6fž©yΛ–ί©}»nΤ¦msκΠΑή¬—4ΰ6½±‘iTU…m2½‘*7ˆL»0 cTb£H’f3?3„(gώ€6¬n@ld•œ{ε hΆΖ1†5nͺ^Έ7°Ν[>EŒa͟QΕ֚°\ 1†et– BΠl]@A•―/l(G‘Ί!8²δΦ€Bͺϋ‚£wYΪPέΗ–:₯p!šν;Gυcρ…χ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€€€ΈN‚fΧ]`@RRΝ›χxσJ“&όwι%κήγ9jήΌ!₯N: ΄4GKμz~ˆ¬qSy@ΆyΛ§YσgΤb£σ‰D_."ϊaΡ‰ΓΧe!σΓ D•«Y3"D)ˆB€Q8‚fkΞAŒaγΰf@τ₯cDόKDcXkΖR)Δ–°Ω*A³-|ΎΒ*_ϋΨHŽ|²Ό’Ί!8²μZ_AΥ} Α‘ΟU–WTχ±εŽ)Z‚fϋŽQύ˜E|α}#ΎπΎ_xίΗφ{ˆbE‚ζX‘D=   € Ωuΐ"ζΔΔ³r_–,Y(C†τ†ω’M„ 9ZbΧσCld›Κ’°Ν[>…ΨȚ?!6²Ζ ₯Œ @ΠlΜ%R*bŒH„Œχγ:nΜ%R*ΈE"€ίCΟΔL b 3”RNšcγk•ΟαάCŽμϋYuCpδ}Cpδ}Ϋο‘Z5@Πlίͺ_{_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέŽA³5άYγ¦ς€(lσ–O!6²ζOˆ¬qC)c4s‰”Š#!γύΈŽs‰” n‘ιχ#ΖΠ31“‚Γ ₯”“‚ζΨψZεs8χ‚#ϋ~VέΗyίΗyίΗφ{¨V 4Ϋχ‡κΧΔήχ1β οϋρ…χ}lΏ‡¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©< ΫΌεSˆ¬ωb#kάPʘΝΖ\"₯"ƈDΘx?γΖ\"₯‚[$Bϊύˆ1τLΜ€ Ζ0C)ε䁠96ΎVωΞ=„ΰΘΎŸUχ1Gήχ1Gήχ±ύͺUΝφύ‘ϊ΅ρ…χ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€€€ΈN‚fΧ]ΰ¨4[Γ ±‘5n*ˆΒ6oωb#kώ„ΨΘ7”2&A³1—H©ˆ1"2ޏλΈ1—H©ΰ‰~?b =3)ˆ1ΜPJ9y hŽ―U>‡s!8²οgΥ} Α‘χ} Α‘χ}lΏ‡jΥA³}¨~νA|α}#ΎπΎ_xίΗφ{ˆbE‚ζX‘D=   € Ωu8jΝΦpCld›Κ’°Ν[>…ΨȚ?!6²Ζ ₯Œ @ΠlΜ%R*bŒH„Œχγ:nΜ%R*ΈE"€ίCΟΔL b 3”RNšcγk•ΟαάCŽμϋYuCpδ}Cpδ}Ϋο‘Z5@Πlίͺ_{_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέŽA³5άYγ¦ς€(lσ–O!6²ζOˆ¬qC)c4s‰”Š#!γύΈŽs‰” n‘ιχ#ΖΠ31“‚Γ ₯”“‚ζΨψZεs8χ‚#ϋ~VέΗyίΗyίΗφ{¨V 4Ϋχ‡κΧΔήχ1β οϋρ…χ}lΏ‡¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©< ΫΌεSˆ¬ωb#kάPʘΝΖ\"₯"ƈDΘx?γΖ\"₯‚[$Bϊύˆ1τLΜ€ Ζ0C)ε䁠96ΎVωΞ=„ΰΘΎŸUχ1Gήχ1Gήχ±ύͺUΝφύ‘ϊ΅ρ…χ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€€€ΈN‚fΧ]ΰ¨4[Γ ±‘5n*ˆΒ6oωb#kώ„ΨΘ7”2&A³1—H©ˆ1"2ޏλΈ1—H©ΰ‰~?b =3)ˆ1ΜPJ9y hŽ―U>‡s!8²οgΥ} Α‘χ} Α‘χ}lΏ‡jΥA³}¨~νA|α}#ΎπΎ_xίΗφ{ˆbE‚ζX‘D=   € Ωu8jΝΦpCld›Κ’°Ν[>…ΨȚ?!6²Ζ ₯Œ @ΠlΜ%R*bŒH„Œχγ:nΜ%R*ΈE"€ίCΟΔL b 3”RNšcγk•ΟαάCŽμϋYuCpδ}Cpδ}Ϋο‘Z5@Πlίͺ_{_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέŽA³5άYγ¦ς€(lσ–O!6²ζOˆ¬qC)c4s‰”Š#!γύΈŽs‰” n‘ιχ#ΖΠ31“‚Γ ₯”“‚ζΨψZεs8χ‚#ϋ~VέΗyίΗyίΗφ{¨V 4Ϋχ‡κΧΔήχ1β οϋρ…χ}lΏ‡¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©< ΫΌεSˆ¬ωb#kάPʘΝΖ\"₯"ƈDΘx?γΖ\"₯‚[$Bϊύˆ1τLΜ€ Ζ0C)ε䁠96ΎVωΞ=„ΰΘΎŸUχ1Gήχ1Gήχ±ύͺUΝφύ‘ϊ΅ρ…χ}ŒψΒϋ>F|α}Ϋο!jˆšcEυ€€€ΈN‚fΧ]ΰ¨4[Γ ±‘5n*ˆΒ6oωb#kώ„ΨΘ7”2&A³1—H©ˆ1"2ޏλΈ1—H©ΰ‰~?b =3)ˆ1ΜPJ9y hŽ―U>‡s!8²οgΥ} Α‘χ} Α‘χ}lΏ‡jΥA³}¨~νA|α}#ΎπΎ_xίΗφ{ˆbE‚ζX‘D=   € Ωu8jΝΦpCld›Κ’°Ν[>…ΨȚ?!6²Ζ ₯Œ @ΠlΜ%R*bŒH„Œχγ:nΜ%R*ΈE"€ίCΟΔL b 3”RNšcγk•ΟαάCŽμϋYuCpδ}Cpδ}Ϋο‘Z5@Πlίͺ_{_xίLj/ΌοcΔήχ±ύ’†X€ 9V$Q€€€€λ hvέŽA³5άYγ¦ς€(lσ–O!6²ζOˆ¬qC)c4s‰”Š#!γύΈŽs‰” n‘ιχ#ΖΠ31“‚Γ ₯”“‚ζΨψZεs8χ‚#ϋ~VέΗyίΗyίΗφ{¨V 4Ϋχ‡κΧΔήχ1β οϋρ…χ}lΏ‡¨!V hŽIΤ   ΰ:š]w£°Ψθζ›o¦\Ήr9Ϊn€Ζ.^ΌHǎ“ΩςεΛGi€‰TΔΡύ‰‰‰”6mZʘ1££νšiŒmK—.eȐΑLvGσ°mY³fu΄M³Α6³€σ©Κν₯KΔT<ή.\Έ@W\QΦΆ«W―R–,Y­ΐ _ψœ[Ίti¬ fpŒΑ>Λ“'Ό.™)γTž³gΟRκΤ©)S¦LN5iΊ>―"Ζ0Λ—QΥλΫ|nŠjEUnˆ1’r£/3Η?ˆ1|8RόŠ&hΞ‘#‡’q‚ζ UΟCΙΕ>•γ-fΘγN—/_VςΎ >ΦΨϋeσu;[Άlφ*ŠcιδpžQυή„έ’ςψŠvΨπΉ°B… Ϊ&~γL€ΝgπσWm9|ψ°δσ’ͺη&ΥΟKˆ/μΥπ±=†ˆ/μργ| "Ύ°Ηρ…=~)©4Ν)ΙΫθ+€€xœΝήsπ–-[䃣žρΐ>ί8ͺ&f[―]»&MfΑ‘jKRRρ?Υlc›xav*ϊT³/UͺTJΉT³‹‚mζ]£qSχ€4»΄_σ=‹oNΝ6Υμςη¦ͺmό0ͺ|ωςρujŠbŒ¨p™ΚΜηVώ‡Γ._&U―Iš]l¨jηΦδ`›jΜ؏Ϊu\EŸjΆ©ΜMUΫψžψ»ξb·b‰“'OŸώ²6’ς=«Šχ­l΄vŽTρ˜Υ ͺn#Ÿ“xQ-¦Ρψ©|Ξd5ςΊͺΗ!ΫΘTυ1ΏHΓΆ©ΜύΛ‹Κ6ͺμcՎٷ̯T©RʊWΩΖδΆ„‹1ψYΗό7₯bŒΑΗ/ͺώΝ³mͺۈψ‚½d}ΡόΛ5¨z²όρ…5?ΓΗΦΈω—B|αOλɝΝΙέƒ°@@@ΐG‚f Ο¬hoώuθθΡ£2™gOTmαc‘Εk9sζTΝ4βOMσ¬ŽΩ³gWΚ6ΎΡ>xπ œa覛nRΚ6ž‘–Ež!C΅Ω_y°›؟™3gVŠΫωσηιΔ‰ruΥfέζ·ΐO:Eyσζ•/F¨ξΜ™3ΔςηΟ―άΰ'3cv T ™΄εψργr–2ž_΅εΘ‘#ς8»γŽ;T3-EΫƒ#φξGŒ=SΔΡ3γˆ1¬qCŒab kά’s)ž5“ύjα}|ͺβXΫΜ³†>}šTόbΫ§]ϋψΎ_Ε―°'²%wξάΌ©άΒώe?(P@IAΚγš3U·cUΎχfϋ΄σ${ͺψ8ΆQΥ{Ά/cŽόw¬β’ω‚ζΨzGγjT+οςΛ <¨β‚ψΒΎW_ΨcˆψΒ?.ψΒ>CΔφjΧAΔφ8¦”4§O£Ÿ   @МœμΧΕί]nέ~ϋν~©j¬nήΌYІK”(‘†A~VlάΈQ Lo½υVΏTχWyΐ–?­ΗƒΆ… rί ? ψS\<“η-·ά"°~»\_εΑδνΫ·SΡ’E•ΠσΓ™]»v)9› LχξέKwήy§rί8 ΌρlΎ<γžJ 3cv•*URΙ,i Ο’ΗbλrεΚ)gΫΆmΫ€θ‚fε\ Δ!ф݁#,݈1 ±DLDŒ‘aΔ†X"&"ƈˆ(ΕeP9N`gπ‹Βϋχο—q±ŠŸ¬η‡Ψ[·nUςώZ;˜Ω>fΗΪU\ΨΏμη *(χ,σβϋ2ΎΊνΆΫδψ“Š ύυWωΒzρβΕU4OŽW¨zοΝΐXTΏcΗb~ͺM˜ 9tΣ¦M”#Gyji*ύ²@ƒgλεΏcm&aŽœσβ {¬_ΨγΗ₯_ΨgˆψΒCΔφψqiΔφ’u@Π¬Ž/` €€€€M4Ϋ˜ΜŠ«<ΘAsτΝΡ3γ4[γA³5n4[γA³5nn–BŒa>ΝΡsƒ 9zf\‚fkά hΆΖ ‚fkάΌ\Jε8ΉCΠlθƒ ΩCšνργ*ί{³}1{ Gφψy±4β {^… Ω?. A³}†4ΫcˆψΒ?.ψΒ>CΤ šΥρ,°I‚f›“Yq•ω hŽώ`‚ 9zf\‚fkά hΆΖMε‡ͺYσ)J@ŒaΜ%R*Ν‘ιχCΠ¬gb&‚f3”τy hΦ31“‚Γ ₯”•Gε8=A³ύγ‚f{ !hΆΗK«|οΝφApΔμ-Ωγηň/μy‚f{όΈ4ΝφBΠl!β {όΈ4β ϋ Qƒ: hVΗ°@@@ΐ&šmLfΕUδƒ 9ϊƒ ‚ζθ™q š­qƒ Ω7•ͺBldΝ§(eL1†1—H©4G"€ίA³ž‰™šΝP灠YΟΔL b 3”RV•γφΝφGšν1„ Ω?.­ς½7ΫΑS°·@pdŸK#Ύ°ηUšνργ4ΫgA³=†ˆ/μργˆ/μ3D κ04‹€)Ia €@< €Nš]»Ο&P7€@2"P€H‘dd­ήTšυLΌœ’ς ΝΡy4GόK@ΠlΝΦΈ©όPb#k>E)cˆ1ŒΉDJ… 9!ύ~šυLΜ€@Πl†’>Νz&fRc˜‘”²ς¨'°' hΆŽ˜‚½‚#{όΌXρ…=―BΠl—† Ω>Cšν1D|a—F|aŸ!jP‡€‘ YάlBΠ¬Ž` €€€€I4›ε‘l*ςAΠύAAsτΜΈΝΦΈAΠl›ΚU!6²ζS”2&€ØK€Tš#ο‡ YΟΔL Νf(ισ@Π¬gb&1†J)+Κq{‚fϋΗ#ΝφBΠl—Vωή›νƒΰˆ)Ψ[ 8²ΗΟ‹₯_Ψσ*Νφψqišν3„ ΩCΔφψqiΔφ’u@Π¬Ž/` €€€€M4Ϋˆβ                 ΰš]€Ž&A@@βC‚ζψpE­                 O4Η“.κp”͎βFc                 4Η#*PΝ*x6€€€€€€€€€€€€€€€€€@t hŽŽrƒ€€(L‚f…Σ@@@@@@@@@@@@@@@@@ šC€A2€€€@ς#Asςσ,šq €€€x†͞q%:                ‚@М‚œ‚€€€Χ @Πμu£                ^$A³½Š>€€@ %As u<Ί                 ¬ @М¬έγA@@ό @ΠμOλn8s&‘V¬XKί~ϋ%]K’ΚχV’š5Ÿ μΩovΓΩζ]{(uͺΤt[Ρ"6όυΧίΤ½[ZΈh:₯I“&`_<7’’’θσΟG+–―%ζUͺTqͺZν1*[φ_³Λ—―‘={φR§NΟψœXΉrε*}ρΕzZ³ϊ Ίzυ*ύ§tIΊώ{”°-Έ{χξ£sηΞSia£ΆΈΑ™­Yσ]ΉrE3Cώ^Ύ|… δΟKχ_ebŸπ*5lX*V,/ήάφ7ίό@«V}F8D%ΕρVΙZς—ΫvΓΆcΗŽΣ—_~Cι₯5μ~†τιιΑήO™2etΫ¦M›εylן{覛³Ρw”¦*?μ;—]Έp‘΄€Y³ί£9²φ#^‰|nX)Ξ³ΫΨI™3e’¬ͺTyˆ nΌΈi[ΌϊŒzAΐŸŸ·ώχΏoθΑοsτϊνoCπϊΑΡ‡.¦­[·Qξ<ΉθξJwΙk{ΆlYƒ³:ΎΝη Ύ>nώυ7*T¨•+'=ϊθIΫόa°_Χο[Ίοώ»}η3ύNωηnϊν·νΊ&ωΪώθ£:~ή6δΰΑΓ§?ό°2fΘ@=φU―QΕ5n-t ₯J*ΨTΉ.]:Ί«|Κ_ Ÿα~'Ož6οΈνc~nΔΟΈΦ―V>ƒ»WάίΦ©SςδΙ-»5~nφΉHζΜ™δ5‘U§Ÿ2 3ρŽΫ>ŽοΈεc£Ώa€€U4[%‡r   Κ€ Y9—€(ƒx`₯ώ“-€Pςωη;Π΅kΧhϊ΄9τ«ΠΜύp /^ΤqG§&ΫRύϊ΅¨s—φν!Δ€ΟwιKΛW,pμα!? y¦νστϋοPοή]¨XρΫθ§7ΡδΙ3¨Yσ†Τ³g'9P?ώ:rψˆΞζ€Δxƒ.<•π4={žΌΨ“²eΝBλΏϊŽ-\F΅jW₯AƒϊINnΨάUŒ¨V΅e̘!ΐnΨΖΗΫΎύΣr ΗίΦ›nΚF-Z6’>νΠΎ;=Χ©­£‚f>ήΊu}~ΗX=¨pαBβ…ƒ5΄tΙrκήγ9jΩ²±|˜ι΄m,Ě={±pΩIŸ>±˜ZLKεΚέINΫΖΦΓ‡–Η=²βό…σ΄@όM²m³ηL–"ϊ .P͍hΡβŽ Ϋ>ωd 8œͺV}TЇŽ?A#ή|Gb\΄x&εΝSšέ±Νί—Xx`απ¨·ΖΡͺΥ‹ύϋ Υ§οΎϋ‰:wκ-_`iήμ)ωRΑ믏¦Σ§ιΓyοΣ­·ήͺhάΣ—,ω”^2‚Z΄h$„ΒχΠ?Bxύφ˜ tώόš9kύη?%βnƒΩX<υςΛΓhΚϋο αBY³Εβ’ον1‰γΔςw•₯K/ωΪΈxρ"ΥoP›Š»Ν—ζτ ?°ξΨ‘U©ς°|Qκψ‰4xΠ2F[²tΆΌ8mΣEΑh€©ςBΆY',.«4uκl'=ϋ\[ݎ­σΓΦF ΫPΩrwPγΖ (k–Μ΄[<d??ρΔ#4tΨΛŽέ wšγoΎW9~ό$υνΧUŠ’ΎΒkŽi΅X-ΈL<·ωώ­oŸAΔ̌^ϊd_7jΤ†:B/½Τ[ˆΤσΪ5λ€½Μ±ΊbcόςΛjΫ¦ Mœ8Šξ©\Q“δ}ΧοΟ’ργί—χaόR‹!_{u€ Ο›χΌΏuΣΨνΫwR³¦νdLΓ/γςίόόy‹ε}Π Αύδύ‡›φ·j\ 8Ÿ“Ϋ*ΗΜΆ“ΌόΫR=ž`[YΥπ©VςΊέ«wgΚ—7cB_σςιςω”UŒ₯ΉΉ˜3pΪΎHρΓŒ=žfΟZ@;·£Š•ΚΣΦ-ΫhΤ¨qT»v5βσOκΤ©6큀$ rό.ήqcŒœρί³™xǍη2Ϊ!mfœ„ϋατ˜΄f_πo¨xΗ-³}fβ7}|τΘ1JΟΉψšά§oWyΏ?φέχhηΞέΎ1'·ΖΟΝ>)/^ wΛΗfγ7}l&ήqΛΗΑΓΨ; hΆCeA@@”"A³RξHQΖπC‘„„VB\ρ±˜Ω¦3Ě>}-vμέιΣgθ+ρφ5 cxιΨ±5uό~PίιΉ^‚XύρXτ“Υτζ›oΣes|3½r;šΠ‚g{½ύφRŽVπ ݐ!oύiό„‘’Žύϋ‘Ίuš΄iγ₯Δ­Νlλ›oΌ-ρLpσLυΩλ†mΏώΊU>d™:u\ΐq―ΩΛΏn ‚ςΓ χߟIΛ>žπPg&ΰΩΙYŒΛB;Uh™S—Ξ}¨Pα‚τΒ έ]‚σŒξΝ›u …εΛ—Ηߍ4cΖ‡R ΞΗάεΛ—4k牱γFΘ™Σ5γ˜[ΏΎƒι₯K4jτPωλ†ΨZ³Ώ όΥ€]b¦qc'ΛΩUxFς+\KγΡn€:ωΑRνZι™v-©iΣ_vώ»δλ*Ος>uΪ8WΐσL) κ·τ=¬ΡŒcΫƏ›"Ύ±>ΰͺνwγW‹5Έm-ήpΓn“ω°ψuΨπΝͺοίV«š _Rβq΅…²³­Œ˜Esπ+/„ŒG΄όNώΚ5Ÿ,XJsΔ AY„Ψι…ύωlǞςk#]ž|Ή‘gFͺ]«‰ˆ}ίrEDΟΆ θ?DΘΏΣ nΌθΕ3„·lΡΡχ"UΌΉρ1΄uλοRΜ|βΔI*R€°NΠΜφŽρ.}+Ύό±`α4J›φΖ—6ψεΉg;φ±%fjŽ··P8όΕ„₯K—Σ{οM—ΩTxIF³W‹ε§Ο˜ ΟΧZϊΩ³ηΔu§΅xΆq@,‘νwκ—Ο 귐/~<έͺI@³|Θ/;¬^³X™/<π9)ΤΈ@€ρn°MͺΖ3c*žΗݎ'4~,‚›>mξ:Θ‚έvΟt•_7{ΤΚ:ρ«g"8%6_0—υβλ;}ŘΏLΕ_”Ρ€Υγ‘υ₯5Χ’ρ ŽP5ώ5οΈ1FΎΡΞC‘βΞητsΆΟμ8 ’γ >@IDATŸ'U/οΈεc³ρŽ[>fϋxB!ώŠ 1œΞ/Οχ­ύl‰ό:©JγηlŸs>ές±ΩxΗ-kη™Hρ?+QΙΗ|ΒΡ€ 9ZbΘ    ,š•uη Ϋ°αgκΩγE9ό‰EΨ―S»‰˜υ·=πΐ½qgΑ7,X·ξkώϊ@!JΜK«WNέΊ=ΠvΈnώΜ*Οώ›1cΖ€2v6Ψ.T<%f:βΩΰ‚~³½PατΤSυΒVπ€~φ7ˆ‚λŠv›’>^εIš;w έVTΉh~θuξόy9»^Έ”xΨά—―Δ¬Ρ…Pύ­QCiΘ+oˆ-ά°mΜ…tNπk'fh΅°οC ‚ςη»NˆΩsηΞS?8ͺ[§ ωš’ϋΫΖφ4Β§¦M¨n½ŽΫζo‹ΆΞ6έΙLΗwš°BπxqγΟΡ#„:τΤLσύ²ΰm›Ξς%ˆp‚fžΕ€Μ²gΏΩW6+|ŽΈ"D½zuΦUΗ"7 ϋhΙL)25X/Ϋt!bL@{θΔη,ž=ghζYVrζΜγ–’«Žc‰φνΊIΏΈkαX‚Ε’kΦ.¦Lβ“νN/|Mά΄ρ)Μυьνΰλ> c?ωτ؟«’ν'Η‰υ…πΊCϋVςσέ =ιθΧ ‚νe65k4lζ)#ΪlδY¬η‰‡oόƒ4ihΙς—gΥμΠΎ›œΉ<–ρk@#Qn|ρΕz“Ώjψ’P”UYΞΞ/]ςd˜™φiYΚϊ‹{†υk»2ƒ+ΗΝ5k6’/žεϟΧί,Ή>mκ:πΟAØD—Ωf‚6C:Ρ†Ες/½τ/Pωg|N«ςX½’ε7^CiΣ₯3ŒSlš‡β `Š€φ’Qα[ ΚΏ›_~Ω*^ή,L•+W2U>ή™.\J›ΕΧ«^_ΧνašψΊΥψρ#]y Š βΦ8¦aGπ˜ŽvΨ―_wW^Ρ αΖŒς;‘¦r Αύ7;FPοɚNΰ2έ† ρ„f,Ώ°ψπΓΘZšφ»F|±ΰν;ύšΦΆφkvΜΐ(&κˆε―™ψ‚ο7jKmΪ6qΡΊζyŒfΘ+oŠϋ­δ8‘.@ ŽTŒΝΖ;nŒ‘³+ΜΖ;»wRЏη2Ϊabvœδζ›oRbΌ<\Όγ–ΝΖ;N?{Σ|Μγ‡M?#Ηβ²fΝͺ%Λ_Άύ‘Φ€E‹fΘ― ©2~nτ\„ vΛΗfγ·|l6ήΙ–-kHA3ž‘όi`Ca4+μ˜   š£γ…ά±#0qΒςΑ[¨™HXτyβψ WφYΰ±rΕZκΦݜ ω 1caοή/ΛξκΤ©3H,€¬Q½‘œ ΡH€Ε’… BDΝ3< VπΐΖΈ±Sδg»η͟J%J™m<˜Γ’σε+ζŠΈYμρΨcI!ΆΣΆωwRH晬3gΞ$…;ΛW,π‰-œΆ}£ϋ9ϋw©R%θΘ‘#B„K”+WNςŸeσ šyΰ„ΕG½?ζ$ži˜gZ³φ#Ι‡ΐ/^”άXΨ¦ Ϊ„ §mώ>ΥΦΏώ'1kτy ζΘ‘]&»ΑmλΦmτ‹―ε5y6ξ>βάΐΗ\(A³6hϊΘ#ΘOΨΗjζ#fΑ35²ˆ lΉ;4“|ΏΌŸ_˜x¦] *WξNΓΑΊxΩζ3+ ΰ>ήωάΛ3u]O2C6³BΔ›6ύj(8Τ­Λ>ž#fΙ|ˆβ„{± ‰?Όπ |Nᙃ…ΨΑyγ½ύώ”™τΓiβ€Qς<ΦρΩΦ šωϊΩ§χ@9σή©S§ιόω ς%7·5ν<Ο³fj/ς΅š―3ό/GŽ•1H¬=v|T|~½ZΥ4eΚ;T‘b9;UΩ*Λάψ%^=;λDΛαφΩjΤdaΎGα—0ύΏ6β_”EŽW­^δ‹uύχΗk?ΛΪΆMš9kR@»όλ°‘£BΪΛύιϊ|_'ω ‘γe'κHζΞ]DΕ‹ί¦„ ™Ο7|m©ί Άοξo?ίƒΌσφ$š0ρ-ΧΝό7Cώ]ю—^ξM<ς o·ΆiӞy¦5iΪ@Šωώ]ΡsΟφ€FλS‡­ˆΖzώτΣ&κΨ‘=ϋ\[jΧ₯Nΰλ˜…fΑ'CgύYέqΗ΅ΝBwPlΰγ]A3 ƒωZ`τin>Ož<Γπ [Lζ‡6,h%ρŒξmZw¦Ό—z ‘§› ?dβOrŒ‘+WΓ†NΫΗ³λρ— 8ΦΪ³g――yžA—γCΎn»±π΅2‘AKš>}}'^4pΈΟŒ’₯ŠΣ«Cˆx€Έ/ΝΝώνέλeΚ•;§ο!’›φp|?qΒTρχ8†Jί^JώM°8f˜Ε|€iςψΛ-luz‰$υp0ήv2›φνΊκΝ‘^Pεr,x\ΊlŽλ3ΏΗ›κOB |ά²žEΛ… Πύ}π9“_nΰλK¨ĝ°™οyΨ–ΰxƒ_`gqΘΚU‹\Ÿ!•mŒ4.ΰ/£6T!4[͎hωέώU-ž`Ώό²EΎτ3bΔϊοCχΛX›ΗΔΎωϊκΡcMœ8Jχ•S™—Ω1ƒPc·ρ΄5T|)ώζ;‰1Ά ΚΖΣDΤ :Ι!ώ ο8=FΑ3οίλπίz<ŸΛhφ™'ΡΞ=NŽεk6ς―ΦΎJΟA4ϋΜΖ;nψ˜Ή πͺψ X-9¦Οcω‰‰g₯ιιΣ§§aΓ^¦Gϋ―άvzl_γόκΉηsλοΨlΌγ–ΝΖ;xF|΄a;9€ 99z 6ƒ€€€ Ω γL@`ρΰ n2ψζ6x<·Νšy&»aΓFΡ'―’Y³'‰™œb7ϋq€Ύ1ΏB”²eσor6@~€θ?XΑΛζΝΪΛO8Ο3g͚%R•Άχσ›ς“ή›F;ώψSΦ5mΪxί¬°nΩΆtΙrzϋν‰ΎΩ$Ž)§mcQr-ρ©pžεxΜΙβSeω$―-[~—Ÿλ­S·:υοίC¦ωΟκΐΗd31[`σ ©[·gfΏ³νΌ+`^―‹Oσ@mχΟ‰ΌΪrφίƒΊtξ#•£·F½v}fu!Χώ~°-Έμ·Ήb&Ρ…‹¦°>·8eΎ?έ2pFwΆ™gfI τόδ“UR\6lψΛT­Z•ΰ.Ζd›g@ψωηΝ4jτPέΜmΪ±ΘΗS£ΖOš°-&D% `’ŸT4‡2™…Ί<ΐώξ»oΠ=po¨lŽ₯σKK}ϋ €C‡Θk{™2·ΣSΗœs3ζί†XΤP―n3^f >η;mΦήθQγεƒΤΑ―Ό@5j<.…]<ςδΙΣiφ¬΄ψ£™ΜNΙםڡšPξ<ΉθŸεΜΗE‹έJgΞ$Μ™σhϊ΄Ή4}ΖbίΊ½πKg­žξπΥ7mβc«QΓ6r&©`;άρΛ<γΰΤiγ¨tι’Α¦‹#­XΉ@'€ΤeŽaB(Α‘œmΤ\pld”i ΰ$P'm0ΣΦβşЈ7ί‘%KgΛˆΝ”‰w>oŽ7…Ύώϊ{β{0€¬Y»Ψ•/NχΥΜΈ@p§ΆU!΄ώ›#Pe–}Υ⠍#ί—Ώϋξ{Ϊ¦ο—_hοΪ΅£oۍ³cόΕ§—Pρνρ‹pΑγAš}|>β―QΉύΝό¦,Ι!ώ οψΫξΖ³…ΰ#%8ήρΧwλΉLΈq’ΰρ §Ζ€5nfβ·|l6ήqΓΗμ7/œχ•(QTΞ"Υ£g'bρJηN½₯9ž‘xΰsȐ7iψλƒδq€ΩΕΏ<¨Η’¨7ή,gb±΅“ΆωΫ’ ΄†¨›ΙH;·8iϋν©„VTιξ»θι§Sώόω蒘s³©}m€œρΊ§πγΕ‹%Ï–Μ’ωσ>’ργί§)οΏΧƒ4Ρ2Ό63Ek³ςqΨB'χύ½Ÿ&Oy›xφφ―“Άωϋλ oΪЁƒϊRΜ9βέ\Τυ―Zυ™˜iρUκΦύYqq^,`d03γ—mN?)^žZ*f‘ϋžΖŒ&g”=ξil_£8Φ&Ξ|>ΣΞωΪ 6q7"D<{aΆlYulΨΎ7ELtπΠazλ­λ/…¨".ΙίΜ³πlΒuλ֐§mγΟw&ι3m[Pέz54$Δƒ{={Ό( <“/NΫζ3Ζ`….ψg΅jU₯Δμœ<£ΜO?mςε|πΑϋδL»ρ©σΓΚiΣζ>Σ ? όΑ³Ε'Χιωη;8n›‚Xωκ«οθEΑΙHœΕ δ¦ω,}Ίt4hp?έ,Θώ"υ[n)$fUlΰϋlχ‰gΒζ›ρ\ψκΨ‘‡œ%­CΗVtψΠ9ΈΩ¦MsϊύχνΤΊu3ρbɝΨΟ~£nπ'ΐ«*ΞΠΜb†‡ΡΎόΖU±°?«Pλόp’oŸAΝΆΈώίΠK/ ν$Οgl§vΞο"D°‘^ Υ§ω:ΐ3o―^σ‘α΅5žvh3ZΏ2€ΏŒ+‚Ϋβ¦―ς€ό’Qΐ­εθ‘cβK /‘Ήe ·«= ž7ͺ|ΑΜί>ζFO‹‚ά©³-ηφ³§σy£vνjT\Ό7{Φ|!*>/Ώς1eʌ3ϊχ%–λαΝG„<”P‚ζXzuΕ‚@(O,κΆ[Ǟ={ELί]ώ­Οœ5‘нΥn•q-―έωΉ) TΝΈ€AqΧ“άŒ!΄Ξ›#p{–aΆW΅x‚mΊ|ω²>5χύδW<8Νωβ‹υ4xΠλ΄rΥBΚ”)“.GΧ͌άSΉ’£6qc‘β C=/ΖFC½ΐ₯έ#<ΣU\Ιq»Ρ`Κ&ΐbBΥγίPρŽ cδαβ·ŸΛΩώγ$Y²dqtLZ³'šxGkvkΏώρΞ_νuόΩ›6^XδΦΒΤ³ggΝ,ί/οηη}Εd!*ŒŸ‡{.ΒF»αγhβb2$·ž―š‰wTπ±οΰΓ X$A³Ep(    šΥσIJ°ˆx&ΆjΥ«θf‚ΥϊΕηλiέΊ―ˆEN/‘Ν΅jW₯AƒϊΡτιδχ¦SΌgiΎvν >š/ϊ˜^|©7Υ―_K7Λ‘6XΑ’Κ:uͺ 1οσςαI¨Kμ2ε·Σ·ύΎƒš·hhXΥoΏmβ±ώςΓΗ―”bk§lΣX φ2eŸΊε㍗#GŽ›βΣΌ<³o&1Σ‹†—-[α¨m[·n£\bvΠόςr[Άtν³πŒΎό7ΒsζN‘ŸQ½!=σL jΧώiΓ²vyΠ=ΤηΚΈξ_έJόwΩ΅[GΗmΣϊΖΎ|υΥβΣΕYB2:ɍνα™ϊŠK–,¦™ιϋεύ,°n'f'ΣΔxη§ΛηΔ·mΣEΜ€>Z|Κ.Ύ³«±h’fχξέ'&*VΊ‹ŠΏ>՚^ϊ’D°ΨΪ Ϋd£ψβL€U4σu’… ζ§χ&‘ςΗ™Bψκ9Φx‘ί+τςΐ>rΆαΰάΜ°©xY‰β8=CΟ4Μη(ώϊD[qδ_yαY…ίxcŒ£'Ÿ¬EeΚήNyςδ6=Ϋό׏?n”1…Ρ ”ό`§ZΥ)0uzvpΤ¬ΡF‹™΅|Ζ>εxqδ[―Ί:sωš5λθΧΗ1Ο"ΗEίFί°hyΒ„·tρ6ηgΑs‡φέBŠhŒκŒGڎ»hΣ¦_ε¬ε…  ‡~6nό™ψ΄ργGκ^²Š‡ Z‘G<Οhκ~ξΰ?‡¨Y³φBποξ,αZ?π ‘>n“αϋi=ςK ^μE2€wΫ$Ω>Ο}w₯ !_*βΟNŸ={6δK ρξD4γΪ ΟρΆΙΏ~•cΝN³cό•·Υβ ζΑΧΗυ[Θ1Γτbl*xΡβΔE‹g›/—±]‘Ζ nΏ½T°ωqί_p,Φ¦ugωR^:ρryπΒβΎϊOΆ  GQπL›Αy± ±&βίPρŽvέtjό>˜}€xG4;ω\&šq’ ΚΉ2^ωMΕη μγhβ'NJ±«“>ΦΖξ+U*O:Ά>,ε6ΗΌwήYšΚ•+#Η¦8Ρι±}n“m χ\„σhΗƒ“ΗΡΔ;ǏŸpάΗΜE["Ε;ό(ž‘h΄π›\ @М\=»A@@t hΦ!A‚Cx€oψΔβ¨QCubΎ9η™jΛ‰YC›6MpΘ’Ν„4σL§Ϊ¬Ρ<¨Εƒθό/α0ϊ°h‚g(˜5ϋ=βY^~Π΄ίβϚρrμΨqω ¬x `Ω?²Eψ©§‘9δ?Γφ"!Δv6 /ωθ9ƒ#σγ…ϊς'=Oœ8%gŽΞ›77ρ'pΆmθk#©L™;¨ή“5uάψΈg1nBBΊ*K!¬Œ2,Heρμ”)οP…Šεtεν&|χέOτ‹―ωŽοΰϊ΄YF:unηΈmš-ΪΓΕ ε‘ΔY, vŠϋŒ}2ΰŞ†³€ρ~Q>έͺ ρ'ΛjΦhDώ+ωsφ“'ψΫKΕΘ³΄7oήΠQα‘fCπ/Ÿ_λΦiF3fN03ΓΰσkpρΪfQ‹4O<%†q;β΄%ζ}$χ|ΝΜ™3;΅hΡHŠžγe‡Q½όΩΚƍΪ~5€σσΉ–EΓZμhTGΌ8>εW^x‘;ΝͺΗ³γ>^₯ΎΈΝuMDΓΗΗόEo+ςαaΌψ„ͺWeA3Η΅#ΔΛy½ϋt‘Œ3tAcΙ5z2`_Ό7Β Žžnω¬<ώƒνe›X|ΆhΡ2ΗΨρζϊ“/P·zΔΧ&|@οO™IcǍ ϋοΏΗ-Stνjηœκβ%υ‡~@·Ÿ.\J< ›[³χF3.―― ‚ω7QεB³ΫμA¨™ψ΅zβύ«*ΕάgŽ΅κΥm¦΄ Ω영3H‡Š/ψeGžωšΛF/–σlŸ΅•3_σΛπX@ΐI|§zό*ήqϊΩ‚ζ³ρ š~.Ν8Ι=χTԍ™Δ{,ŸFο8ύ„ν‹&ήΉ>C·³ΟήΨΖ·ΗL”/WΕ3||ςΨ‡­δK|nŽŸGz.Β}qγο8šx‡ΝN3³ρž‘0-,ɝ€‘ ™ί4NΒ?0ΐ1€cǎ8’Ϋ1°kΧ.qO†œ'πΟ?‡’*Vx8IΜP¨k|ηΞ]rίί{χιφ9‘°mێ€1£'θšb»ͺ>Q?Ik|ϋŽ=–tί½O$‰™š}i±ZB”€QoKjή¬}₯K—ΒV;oήGIcί}/ ψŒ’δΈqΓ/ι±ΨL²ξΤUΗvόzΘ‘cε>§mΣτo‚TNjPΏeΥ«W}YœΆνΣOV%=ϊHC ΈdΊ{χ_IΜ°έ3]“Δΐ§ΟV^³ερvδΘ±€τXl$&ž•uσυχΊκx_•Ηκ%-_ΎΖΫ4ƒΨŽώ―z’μkIΏNsγφΊu}!ιέwφ4£ΔΜIύ·f―ΏlM:ώΌτ½ΈΣvΛcQ<θHjΡΌCΐyΕ—ΑζŠvΌ]Ύ|γœΕU²έ/ΌπJΠ‘oΙά°ΝfΧP’" ύ­†:wDU™ΝΜZόσΏ/ΏΆYSl‹Ÿ‚kηλώ=w?–tψπ‘ΰ]n ‘΅<ΗΊeΗgΪυ1ΨΙ΄ίΰ€/“ηέΰύNlϚ9?ιΙzΝ“‚―άφ’>•Χ¨ση/8aŠaΜ¨qγΆIί“α~79ήηΨώΘᣆΝϘρa_»ύο 3Ζ!‘}ΕΗ›ψ‚‡φp±Ή.sŒ8>kΪδŽΉλΦm–$DΊ9φΰΎ¬^ύ…n@ΐ-sζ,Tκ|$ΌΛσΡΎ}άBΆέχ—uωψϊ(Ύ$>‹­Ϋηv‚ΡΈ€6©C0³cnπσoSΕx‚νγk±πώŸή,ΖϜ9Γ›,7ώŽΓΈa\¨ψ‚my㍷“:vμ0ΎΗιώρ7oc§ $‡ψ7TΌγτΉζ³ρŽΣΟeΨ>yNρ?ΥlΦ~ύΗI8―ΣcωšFΏFρŽ>Ž&ήqΓΗΜNˆΒευXˆ―u(Ω&~†ΙΟkά?τ\„wΓΗΡΔ;nωΨlΌγΆu @ΐΦύk• h† [wP$Ψ†Θǎ8T<8°Αn˜9sž,ΰA|ταeσζίdΪ€IΣά2+)” yϋφ:A3© ‡ψacLm>uκ΄0aΡ ˆΔ,#Ίš8Λh°‚‰—V{HΐβRτoˆΛΎ³€σMρ`EO<¨Η‹ΣΆΙF ώ3ςŸΣΆ‰™dδƒ]©ο‚}ζΘ6nόUϊzάΈ)rN3ερx `/ώXΪρΩΪ/}>ε ψa4‹nYε–m †}ΘypΙhqΓ6m`“_jΰγŸm`‘Ώ¬ΑB<³ίŒΔΈ,NΧK<ΠΙ6τι=PΪΖν‰YŽ’ΖŒ™0Pλ†ml pŠ]ςί’vΝtͺ]£vή–ό»δ—ŒλœΖη 7–?Άο”Χ€±c''>}]XΑη3ΎFρyκ΅ΧFΚsœΆ΅κœo”7ži«V}.Ή-]Ίάw}βŽy…ΖΖΣ&­nν:Π₯K_ŸύβΕ‹I ,•6»-$fϋψΊΎc‡:χ€|\½ „θγώζγ²O§~0[rϋύχ?4Ďr¬Ζqφ7ίόΰϋ{δ˜ƒ΅P/XΕΫHφ£‘ ™Ϋεϋ<~ΌlΩ _lΙ/Dr,¬Ε–ρΆυƒ€Y‘>fΛΗ2Ÿ‹žJh•4rΔ»I'Ož2Œ‹.biC€Ί΄kΜ3m»$ρί5ΫΜ ί?ς9_δuσ₯™Pφ „Κοt•c­οfΖ΄ΌnύͺOh,>ωx•Ός‹6ŽΑγB<ΞΗΧΗ –hY]ωΥώŽ#Έa\ΈψB{yœγmMΞc<±‚ŒΏγ0 € Πfς$ zό*ήqzŒœ½MΌκϊ―η2ΪΡgvœ„ϋβΖXΎfgπ―/7|Μv™wŒlζςρφ1ϋŽ―ƒΪoσ?~ΦΗΧjν9₯ΫγηΜ'άsf喏ΝΖ;nωΨlΌγΆΩ‡X@ΐ.#As*(%χ©§a?€€€@Κ#pθΠ!*Z΄hΚλ8z¬˜“ΈΙ–ŸNζO|ς?ρΦ6Ήύ vώΤτΚ•k©[·g8ρ§Νzχz™.š.mυίωΑϋ³hΦ¬ω΄zΝbρ‰ͺ΄ώ»,―σgκČΒaΛ·mۜψsXK—,§}ϋφΛubπ…Δ`/Q”^|±—.ΫλBδ$??iβΤ€ΊJ–*NΓ‡η–[eΊΆτο†˜ΩŠžο7ΐnΨvξάy9ς]ι3>ζ…pMZΨO|ώ©§κRκΤ©‰6zt@O·jB+–θŽδΙγβε}θρΗ ΨgwƒΫύτΣΥ4hΰpYUϊτιείd‚°«W―.”!CzΧlcƒψo°oŸA4ΑTέί οw‹Ÿ3Ί>ί—Ž=Ξfψ–§ŸnBΟujKΜQϋόΪ‡σ> 9²ϋςπŠφ Β₯ΛζPαΒφΩέΰOϋυμ1€ΨFmɟ?―όš-\2Ÿ/–―˜―;O„,γ|θά©7 ‘@@Ν=zv’¦M Ο½ά`žΌJ ΦΣ]+4C6υν7?˜ωžΔCΚ›7‰Ρθ?)Aoz Θο΄9νqά0 «$m·!ρΒ™Ό.χ&UͺtW@^§7ψϊßlελ_ΆlYn>d{‘b\ώάϊ„ oΙOΝ†,η|ά΄ψ_Yh©sηvΤΊM3Gμp`ƒ? ί½[š8i”α9βΗ7‰8©ŸŒ) ΜO€'žx„κG™3grΐB4ζπ'ΨK/JχTh@s]ΌxIά󡐟ιΥ ΗςFc‘ςΗ#]ˆ­iπ Χεgœύλ―[·qμpΣMΩό“•X7pΣ0•cζΒםHcnςγΆU'4.Ÿ}φ₯ΗΠΆω—Η‚ξG5j>Aόys73cnΨ)Ύΰx’Gχώ΄sηn*!Ζ<ω—γŒqγG’6Φα†έh˜€Κρo¨xǍ1ςh⾏uςΉŒ‘lfœ„―—nŒεϋΫιΏnοΈαcΝ&3ρŽΣΟή4Ϋψ—ΗΔD34cϊ‡ςmτΌΖνρσHΟEΈnϊΨLΌγ¦ΝΔ;nϋ˜}ˆμΨ½{7εΛ—/ šp`@@@ Ή€ 9ΉxΚΫv²ˆ™ ΌdΙ’EŠ&½έcoυξΚ•«tϊτiΩ)be͚Ε[ŒSoxΠVΜlM,:g1G¬„π±0—}*^Ϊ•6₯I“š2fΜ‹j=_Η™3‰ςa*ϋ’…Y*ωTΜΆ*mː!έ|σMžχ: `Ÿ3ψ ,ψœΑ/Ϋ`‰L@Μβ+ΟύΜN΅s-ϋ4}ϊt$fΛ€μΩov]<™¦ϋ9ψ!¦φ·ΐbf•b\ΎβγQ,T)ζ0ς?ΰgα#β~Αˆ@ yΰ—vYΐ Ζt¬ωRε‚{„1k~υ/Ε>_Κcžδ΅Ϋm!³ΏmΌž\Η 8Ύΰq5ζόςxp± N@όλ$mgΪξ 1Nb·κρΗ΄|MQρyuκΞ–DΌγ,o΄Α h&‚mdK‚ζdλ:                ‚ @М‚ƒ€€€Χ@Πμ5’?                )Ν)ΑΛθ#€€€4§G£›                ž"lΝ‰‡φΡΙΛΑΎΈD—(=εΝ^˜²f ή‡m―€ ΩλF@@@@@@@@@@@@@@@@ΌH y š/m¦gΠώ0)T1ϊφiMΕ lC »@@@ΐ[ hφ–?с”A Ω š» Aσξˆ>*DƒgL€J9"fD€ ΩND@@@@@@@@@@@@@@@@Rd/h;l.΅/{cζK'φΡ²qύiϊχ'―;³L'Z4Ό₯OqE‡A@@ ε€ 9εω=Hώ<'hΎξ’DšφlSZ΄_le―KsgΆ'–<'ΪG'/₯˞—ςe ”8_JPΠΌmZWκ³H– %Πά‰­εlΚΎ4?Η*Z”ΞξήM\³\ ΅ωŸΊ>ϋrβjΠt0 Ν΄\²-C…imΩνΛMνޞKυŠ]ŸϊίlψˆšcΥ€€€€€€€€€€€€€€€€€€ƒ’½ 9aΔ"j]:}²}ߍ£η†ΌžV΄-z§₯7+hΞ.Ν3 Ν…ͺΣΫ#;Σu-r"­τ4ίΘemh1+τώΤmΚ‘–Ž:½=ƒjό+\>±y!==`Ί΄ΗhvhΉ€€Ψ&A³m„¨@@@@@@@@@@@@@@@@'μΝ…*V§J…5Aσ%Ϊ΅α3Ϊ²_›#™ΔŒΘ‹ΔŒΘΌίδ Ν†‚ζμτβά™tŸίΔΚ‰›'SΣΛD½7Ν›'?K–‰) ); ω+ως_’΅c†g‡NPα*έ©σγΕw4”@‚ζ”ΰeτ@@@@@@@@@@@@@@@@ΐk’½ 9΄C Q»aΓ©^Ωf±#hΎ!ZΦΪKά6šφY$6oμ»!rζ\Ωιή„fTοΎ²T΄XaΚͺi΅ π    s4Η)*ΈHώ‚ζt)‘naΊ,&eΎ΄o­άΘ3$•i7†Χ+μ0ώ‚fa}77 ]ΉΫ―έλ«…*Φ₯Ξν[QYίlΊ,H°I‚f›Q@@@@@@@@@@@@@@@@\ μΝ­ή^DOΣ¦?>Dc΄£Ο„Έ™¨( [τ•Υv‘Ÿ 9aMl]6χΆi]©Ο"!DΞ@sgΆ¦¬b―/Νof­Ρ ΝΎ}‡ΆΡϊŸΡΎϋŽΆμ?©%Λίv#ζR½\;X€ 9ΦDSV}ίΈκx‡³₯OEwδNνx»h@@@ΐ9ˆ1œc–@@@ ₯@|‘R<~‚€€€³c8Λ­€€θ ${Asέas©}ΩαΔ γ¨ιΰ•²§Ω«£™5αr"M{Ά)-8§»χEZό}4Ά-‚ζιφΝ—ΕΝbIŸ•²jBκK'hσgshΠψ•Δ:λtχφm?Π66@@@bC‚ζΨpLi΅¬ή}…ϊ|~ΞΘ@ΞωήΚ–Š&UΟa³σθΡ"€€Δ•bŒΈβEε   " ΎH‘nG§A@@ ξcΔ10Iΐs‚f31Ok)„ΛrbδμτβŒ™t_¦q‰ΦjBoo²βtuiξβφrfΣΪA ο³ͺκόψγF°(’‘RAkΑ%h%TTPΔ… ΄ (K•J U+Έ n` bET΄΅V,ό‘EPZpiDͺZ(Z’ΕΔΦΈ‹ Α%jώη9ΙΉsgr'™I&ΙΜδs_/™™»œ{ξϋ\˜cςg¦­ΥζΠZ3ΉGVΒΏξ.— —|ήhaf‡ ‘ζ—FΆp/yD@ Ι 0ΗHΞ-ΐ#9Ž΄‚ 9ι<Ηΰg™sr% €™'ΐ£ξcΚΟ0κnH  €d‚@šM€Ή`©\:ργsΚx.>ί>/2U˜Ηkf³œ2ζNΉu`'Ωσι‡ςΚίΙOΎaΧK­Ν{dΕ5ƒeŽmώ0ώNΉτόŽ&4½G>|=OξΈeŽ˜βΠζΔαώTœ?@@ Yš“%;―lϋZ†―ψ2ώ’°η’ΚιmχKBK"Zu`ά³eIi«$σΊκΪŽG@ ±˜c$o˜c$Ο’–@_ ηό #ύο?@ s˜c$glωFri@tΘΘ@³Vc‡‹EΖ<π˜ μpΘφ΅rј™Υ—/ΠόϊΖΙ-Oj ΉάωΨΓΙ4α–Ο^Ÿ/—ή²,b۞&—όόΡ"Ν±–1Ώ_&lk3λ@@ ιhξπϋΟb^y7ή}ά„xƒ–κŽΣύ‹~ξ›ΐ5PΗuιόC:½τϋ7ν‘ίόcU¨ΞΉ:¦RS ΊeVu{Δήv‰ ƒo4‘p]ψA]l'Ά €Τ^ ΊΉBuο}Υ§½aŽQύ˜0Η¨ή‡­ €ι-Pέ/φB@ ) hnŠ£Ξ5#€ ‘š~`Σω‡tͺε~x¦Ου—τ=P.]ρ…ΌΉγ]U/fmχ4sΩζ\?{φKΩhͺ\λ’ΜΚΣΆAώ@@ ˜cΔ?xώω sŒψέΨ@ i €σÞΟΟ0šζύΛU#€€sŒψΖΖ?Ÿαgρ™± €MM€@sSq@  Πάπƒ›Ξ?€S-Οά/ύ!γϊ¨Π¬ηύQΞώ2₯Gs͊Α‚ €@€sŒ”«όσζ1X €@₯@:Ο1όοωό ƒ[@Τ`Žίxψη3ό #>3φB@ © hnj#Ξυ"€ Αš~p?ά].K φ6艇t<@Ž―Λκτz—|%7ΎXf/ύαΎΝεΪοŸζ„ΈΨ@ ΥΝ˜cΤ4ΞC˜cΔ Εn €i)ΐό’q†ωEγΈsV@†`ŽΡpΦώ31Ηπkπ@[€@scηG@€ hJI Ήͺ‰M]P§mέπB™΄4U΄§œ™εo:ηšγbb'@:πΛΐ:ΰΥαPζuΐγP@”`~Ρ8CΔό’qά9+ €@Γ 0Ηh8k™˜cψ5xŽ €-@ Ή±G€σ#€ €@4W₯$Π\ΥΔΏ&?¨σ·—θsΝ‰Š±? €@’ό20Q±δμΟ#9Ž΄‚ šΜ/g\˜_4Ž;gEh8ζ gν?s ΏΟ@@ ±47φp~@Hš@:š“†Πΐ ½²νkΎβΛ=뒁ΚιmχKΚ9Ÿ{η+χlYRΪͺk#ΙΌΊφ…γ@hlζΙζΙ³€%@τHη9?ΓHϋ+@Θ\ζΙ[~†‘GZA@ 4§σθΡw@ˆ ΠΑΡ />ά].K φ6ΘΉάI†t<@ŽΈcφΎςΧ‘ίͺs;4€ €@¦0ΗHΞH2ΗHŽ#­ €dŽ@:Ο1ψFζά‡\  €@ζ 0Η¨ϋ˜ς3ŒΊ €™ @ 9F‘k@@+@ ™‘6[KΎ‘±y_Jρgε΅9ΌΞΗθιξ9·ΉœΨzί:·E € :Μ1Rg,θ  €™"ΐό"SF’λ@@ ΅˜c€ΦxΠ@š²ζ¦<ϊ\; €&@ 9Γ΄/G+(|Έϋ›=λ‰ΩϋIΛ¬=%'C@`ŽΡΐΰœ@& ΐό’ 2—ˆ €@#0ΗhtN‰ €š#8x €ι,@ 9GΎ#€ € € € € € € €4UΝMuδΉn@2P€@s*—„ € € € € € € € ρš3~ˆΉ@@šŽζ¦3Φ\) € € € € € € € €@ζhΜ±δJ@hςš›ό- € € € € € € € €@ hNΓA£Λ € ,@ 9Ψ…΅ € € € € € € € €€²ζTϊ† € hNˆ‹@@@@@@@@H Ν)1 t@’!@ 9Š΄ € € € € € € € €@Γ hnXoΞ† €υ(@ Ήqi@Νιγ@IDAT@@@@@@@z Π\O°4‹ € /@ ΉαΝ9# € € € € € € € €u Π\WAŽG@” М2CAG@@@@@@@@ˆ[€@sάTμ˜‘R)eI»–YΤ]sώsώ֍uώFΊlN‹€ˆζΊ € € € € € € € €@ih•–JH²€e£WPNpא ε†B"Y-[š+d‰[ d“Œν5ZΦχ)oάΣ/ξΓ’ΉcΙΊ[₯ΧΈ2αα•2ζΜvΙlšΆ@β Π» € € € € € € € € bih-—.n3”9²pσ2ιœI©ίP‘ ο2@ςΝΥMXΈAΖtnΩ ·Liq±”˜uλvν$-3β₯[dlχ²^΅zΜ”Ν³ϋωΒΰ₯R΄©P KJ¬εΑ­ΫKnnΗΰλ •HQq(.‡PI±©]1<νŒ›ή†ΕΟO•>γ—Ψ•ζ­–1][WμΐŸ € "@ ΉA˜9  € € € € € € € €IHΣ@σbhžf reιζE1£Ν&Π<Δš'-έ £:Φ>Π2Ο&f›U£O‘Œ=i€ O0ηS‡s&υ±RY<Ό»LΣxΞY½lŒΈqρ¦Ε2|τ4ΩΠΦ„ž”1ηuπm Ιςα]δ6ΣNaςM2Έϋh)΄Gg›`ύ/X_°x¬ ™¦Ρκ™·z™iφσ¨gΝυ Lσ € € € € € € € €Τƒζz@­S“‘kΝ‡­K Ή8οVι3q…ΙΤN’ ΛFIu±θM³€ϋθΉζŒeεΣ₯]. α.~ή\λxs­’-¬^#ηU¦™K·,ξ#fxΚν;Τ„ί‹eΙ [Ηُ .‡L0Ί‹ FWo’Ό±]d’ΧLt°ΎTζ ξ.χkΪΉJ΅h―;D«ˆ‹Μ\ΉYϊΉs»CxD¨ΝυΒJ£ € € € € € € € €Τ«@†šCR\T ΫΆν–PHZΆn/9;TS₯Ψμ_/Ε!‹έΊ}Gιά‘΅„JŠ₯$t°΄kW΅Ύq¨΄Xς ίΣΌY²€mΗ\ιΠ:vl8Φ(l2η-΅m΄nŸkΞ["7œ4@ž5k‚C΅ΧφŽΉ6=wΛφν₯k‡pMεPi‰”μ Ι; &ΚΈΉ&Мs…<9{”d™}[·k]5Ψ\ΊIΞξ>Zvhu㕦Ί±m*$%Ε%’—ΦΊYQ\$› Μ΅f΅–gv–,=Ηn³5ΛΨ΄Ž² •JqΙξŠλqησ­kgΦ‰±Ϋ”Ž›,Σfϋ₯ΆyίP‘ ΠΰpΆcn8 \ُIσVΛ¨qΙUQρπό­gΛψš6}YζοK©l*”έLΪζV L-6Χ=Ν\· ”'ߘ.qηšΝλΜωΖιω²ϋΚ€A»eΖ\m#(Π¬c1܌…Ϊυ5ηΈ§ςύζO@ϊ Π\?΄Š € € € € € € € €@} dT 9Tœ']ϊLτΌrz ”ŽΏ#+žu\‘ σ6Șͺp±©’ΫΗVΡ­8(Gϊl/›V<Έυ‹7Ν,£οwιηŠύί1ϋ»5w¦lΎ§_ΥJΘ^―τI‰Μ1Υ{ο― .›4nη•βηεμ>γ½~εφ(m·­“gσ]#e₯ ζ†ς¦Κθ9Ί$_ +7eηζJλΆeφ=Γ’ΒΦΕ2υ€>²ΔτhθΓ«eŠ+oμͺGτY_Tw›iZΓΐΉ“eσ’aΧ˜ω†Χ…ΜΞν!νBλM•k·‡<ΉyΆxΉq·ΊΪΗbΉΥτ…Ω'wRY4ͺc΅{{M˜όΦ šK–\3^‹άxUh.έ²@ΊΠ°ΆΉn~Ϋ&JŸ‰±ΝbξΗ“*οΗIK7Λ¨ŽQirΫ €$S€@s25i @@@@@@@@†Θ @s‰ 'χͺ 'g›jΜΛΌjΜ₯EΟΛθγ+CΗΑίvΖ·dΣ,ι5z•Ξ8Sžšή―’Ϊp¨Xζ ο#.·μšMφ†.δYs„ξœΩΏ"’Z*y7\$ŸΥ„lEc­Lk©φΌ£Νy+σΧήy₯Tζ ξ^ٟ\yΰΙ‡εΌ‘μ’ηgΙ€ρΧ0π•2ύ<½2―qŽ /‹ »~…ƒΖ=d© {yΫ¨@σ,•+Οl/YYU]Ϋα6cš{ΘΓ+gΚ™ν*ϋŸw« ˜¨‘d‘πυΊΦπhϊ9ΌΛ[»ϊc+ͺ5‡š5“έΫς呉3Ό ή“—naZΪΪ.ΥšMϊ$‚ΦύzΜ”7fχ Η¨Π,ζ~kξWŒ1χŽ,‘Ε·ή*/³έοH~‘‹6gΛΜ'Ÿ“~ή΅šCEΛΝ½u›m­οΜ•rOΏ¨*Ψ&ΠΌpσ"©Z•»Τάcέν=–;Ιάs£"½ξρ@ iš“FIC € € € € € € € €4˜@Ζš‹–•·­7pΩ¦‚ξ[A7R1V­—Ά—εcM…fsHΆ©BΌ&ͺ qp Ω.ή$Χτ-z¦ˆ%;W&ά4IFυλl+$ηέ*}&ˆΨEΓΦ|}Ηš΅2tΌη n+ͺi}™@ ΉψyΣΏρ¦ΩdÚ1‘œύζ€ nέΝdTG_ψΫwDΝb*WŸm*Wο ŠΟ–ŽΎœt€Ž·ͺ΄θy7`Ό­ ­ΧΏΪ\k»5|„ϋR,³Ξξ#s5ν«€­»{±*4ϋͺq4Aθι•Ah{*ώ@¨ΝυΒJ£ € € € € € € € €Τ«@ΖšΓ‘ίXfS-w°©–[hrΏ&€»l” 4› ΝΑβ…&Πά9ΊΪ mHŠ6½ +–?/λΦ=+^Α_m‘οLΩpO?…*Λ(ϋZ֊ΚασΖ€φ_[ηI» ΰ9W¨ύΉ2eΜy6Pν…m+4›JΣΖb†±θ1σI™έ―ƒ―‡ζ©οΪƒ* {mηN–Ν‹†ΩσΉΒU“cUhN^ Ω_9y²©2=Μ«΄μzϋ±tΣ,ι>zΩΑ_]Ήj Ή(ο0ρY―‘=reχξŠ—‘βόπΨgηHNλŽ2sΡt w#ά^Ξ„…²lLΤ=ζ΅Κ@d hN–$ν € € € € € € € € Πphi³εαΥkδ̊’»aΙM2Έϋh1^ϊπJ™bvXlΝΣ΄Rςΐ‡eΝτ3Γϋκ³P‘Œν2ΐVbWλ Ii©†”³€eΛpͺΈ΄x‹,™:Uξ_―­Η8ΏΆi—PψΌCΝy§Τ|ήπ΅εΘΌΝΛ€kψΤΡ*Υ…Ž₯8ONκ3ΡcΪΫ`ΪσLθbΉφ!φΪƒΝ‹‡Λ w…¬\s­΄σ=2@sπUvΖŒί‚©Ι–P–τ»vŠœ•κ§t/lξΖΌhΑ` ΙοΈ–lS{tvγ㻇>`*4Ÿη—Š«AvBHP€@s‚`μŽ € € € € € € € €@ dL YŠŸ7!έρ–4ηŠy²μΪΌEΛΗΚ€ΫΦΫušοΊ©gΛΈ%;ΜΊͺΑήPQžt ‘_n ,.CfΨuoxCΞτ fΙIC΄β―Θ„…dLgF»Ϊϋγω[Ο–ρ+bwΉ9οmv_οΌ&€άŐMOMƒ½y/μsϋuυͺ%™Πρ€ΚΠρj:φη»·Μ,#ξ7!]SMz³©&νς·^k¨Π]5`]όόTι3~‰iͺ!Ν2ά―M&έ£π5l‘Α]FΨ{_S…ϊž¨*Ταk¨ΎB³„J₯θm"͚yMΫ'mύπ2C‡Ρά?3ηΝ”œƒEZwμ`«sΫ}B[LFTφo³ŒκXEΪξΖ €Ι МΪP.Κ»ALTŒl™ωδSrφ'«₯ /Ι ' έ3x]C Ωߜ3eφ”~&0]*λVΘΨρ3Δf|"Π,%2λμ^2ל°jΠ»X¦žΤG*F=[&<ΫTR6U–u[?Ω$y[vKVτ0Ήsθc($w>OΞλh’ι&Έ}RŸ‰vkd8Ήβ€Pρ&yhκ]2w}dx<§Η2eϊ•9Κlωπ.r›Ή¦Θ1―h+ϊΟ’u³€Χ87ε•k ‡‡CίΉ“Ÿ4†’η5 €@=hTšD@@@@@@@@ ž2Π—I¨TJvοiΦLše΅”–1²!ӜΩθφ—frpλ–’UΊNΞξ>"ΠΌpƒŒκμαVτ TZ*»χμ1§h&Y-Ν1qu,j'οΌ"άΊϊ ―;ΤSͺέή³[φ4;XZ›sΗZΒ}<Ψ­σε€ξ£ν3WΎ!ύΛ3Ηj)x}¨΄ΔθΆJ·ΰέβ^[0ηlrΏI7Χ°dOX(kΖh »Tο.Σ4XmͺcΏqOΏΐ#CΖlwEG₯ΩΑΖ"01X…ζΐU,ΩdΒΞΆvŽΜΫ°LΊΖ’κša €@‚M!ΠΌkΧ.ΩoΏύδ ƒŠKη‹/Ύ½{χJ‹-dύχλvB@¦%°ΗόlγΛ/Ώ4?“Θ’ζΝ›ΗuρΜ1βbJ©G¦Tηι  € € € € €dΌ@ζšγΊb™cͺίίn’¬œ7JΪy‰δY0Ό—Μ°Υ‡3)’β’b ™θu‡IH3ΗeœΨNΕ›ς$― €†pxHZwμ'ύΊV\C¨`±t2͞¨jθDΞ2αθ.6O…ζΨ-Λ­'υ­ω}Εψΐ±Ϊ΅KΝΉNΒΕ €4€ΐM7έ$3f̐|PΊκͺΟΨs ύΥ–-[μ\樣Žͺ±OυΉC©ω@ϋΗ,‡z¨dggΧη©κ­νDη‘υΦF@@@@@b4ι@s¨hΉtp[%MΆ œ0Fr³ή‘%3–H‘[K 5Ζ­“Z«7Ν,£ηκ¨υ…fK@Aν8:’ΌώO&>ΫNX9OΞ 'άγ8Φν’uS‡ΛΈ%Ϊ—‘²ς)BœΚΩπˆΤΏ@¦š—.]*_|± :T{μ1Ωwί}«Eυ‡6mΪ$§žzj΅ϋW·QΓΒεεεΆr£Ώ… ΚΘ‘#επΓ—‚‚τρooΘηyyyrΑΨΐχκΥ«kτiΘΎq.@RY@CΜ=τP­Νυ5Η3fŒΜ;7%ήΧ]ΰϋž{ξ‘λ―Ώ>•‡2fߝGΖlˆ  € € € € € €@= 4ι@³š―[ }ΖΝδΝ:SžOZneej ”šͺΪέ+ͺjηL–ΝΛ†ΥPεΉ~z_΄|¬ Έm½i…Ε%R IVΛΦ’›ΫU:΄kœ@NŠή+iΠ­Y~C/Ή­εdΜ[ωιZ« ύmNŠdŒζΘ‘όόσΟ₯{χξu4η?‘γŽ;Ξš£CΛ_}υ• χ΄jΥJΪ΄iف|υξ»οJϋφνCΧ Ψ N… €@Z $hnˆ9Fii©lΫΆMΪ΅k'|p£Ήκ₯h?,υ—ΏόEφΫoΏFλK]NL Ή.z‹ € € € € € !@ Ή!”9 €4ˆ@cšwξά)πΩύΓ½ϋίδ‹/Ύ°‘Ϋ<Π3ωϊλ―m(XC;{χξ•μμlιΤ©“pΐή>ϊ€¦ ΚΦ­[εΓ?΄ΗhΈχ{ίϋžτθΡΓVgͺΠ¬}Ρ€ς'Ÿ|bΟ{ΤQGIǎeŸ}φ±mμΩ³G΄ΟZ‘°gϞΆίϋΫίl=τPΡkΠ°Ρ—_~)Ν›7—C9ΔηCΫxσΝ7#ΞqΒ 'ψw±Ου<Ίo‹-DΓΡzΜ|`·iΏ‚Žρ7ςϋί^ΌςJ™4i’άuΧ]ώMφΉΪjθ9d>ΌΦ¬Y39ρΔE―Α-΅;­Ϊ¨°΅]ν{nn ]½ώϋrΨa‡ΙAδN‘ΠcΌχ„ΏQ5ΤρtΧ¨c©χRΠ’νŠώΡε;ίωNΔΨλ:Ϋέ»wήΟξήΠύ΄z·ή3n>Χun ΅]ΊtΡ]ν’f’μ³ΟD+kkX^Η8Φ’χιΏώυ/»Ώξsμ±ΗFμ―ΔΏωζΫ=oτ’Ϋυzυυο&  Ž΅}Ÿͺι½ήYΤhnŒ9†Ύ―ιΏο:ΏΠyFτοϋ‰ΞτXGq„}―ψη?iη%ϊ~₯σ‹#<2Ίiο΅ΎOύπ‡?”+VΔόˆšζnŽ£σ&D/zΌžGϋ·οΎϋz›uTPP`·΅nέZ~πƒΨχψ?ώΨ†Ό}O«i―§λ Ξήxγ ούYίΛυ=:Φ’χ›wθά@ηb‰^C¬ΆY € € € € €™!@ 93Ζ‘«@@#Π؁fΡ*‚ϊ•δίώφ·½qΡ@ކ‚Χ―_/“'O–©S§Ϊm―½φš 2Δ††½Νm#//Ο’έzΧ~τW…kXiμΨ±ς裏Ί]νγ)§œ"―Ύϊͺ}h~β‰'dθΠ‘ϋλ‹]»ŠVΤjˆ’‰$ΦλΠκΟ .”‘#GΚYg%/ΎψbDΥΒ•+WJίΎ}«œ£_Ώ~2oήΌˆΠχ°aΓdΙ’%rΩe—Ωυwί}wΔq?ωΙO䑇’¬¬¬ˆυϊ’¬¬LάΧήoήΌYτΊέRRR"?ώρ­₯[ηηΜ™#Ϊšœm"c§αξή½{»ζμγα‡.gœq† >ESĎռHδžΠf4ΐόΛ_ώ20Θ­fγƍ³ΧθNωχΏ]  ˆς/:φ=φ˜sΜ1vuucλξ υzο½χl8ά­Σƒ/ΎψbΡ{LwohXKΓζzG/W_}΅Μœ9³J`mΑ‚vό‚φΧΆ4D>cΖ Ήι¦›μί™·ήzΛ—έώ»vν²y}ύΘ#ΘOϊS·‰G@ ­jσ>Ο{½CˆhnΜ9†›άsΟ=rύυΧ»Ϊ€οο~χ;ωΕ/~α­sOτƒMΏϊΥ―Όω‚~ΠL?l€ΞχkθœΘΏh[ϊ‘¨ EηsΥΠ³~€Ιa¨xη:GΣχ πnΩ²%"Δ«mΈω’Ξ+Ξ;ο<{}³f͊Έfν›Ξ9΄?z-΅yOsχPτόDߟγυtFO=υ”KΈΧξ±OŸ>2wξ\;tλ^ύuΉδ’KDΝώEηLώσŸ#ζΊώνi8ZΓ°²`tΨχΖo΄_οBΧΪO υhΥ\]\ΚΎ0θvύzχ?όαn•½¦Λ/Ώά{νžlΨ°Α†a\Ώ]ek­0¬αb ₯Ησ^οή3έϋπƒ>h½U£ΖžcυIϋ₯βΡΠ².ϊ>€ad *»χ{χώ Υύz²˜?τ½ςδ“OΆΑ[·N«6wξάΩ½τ5X¬σ€)S¦xηԍ‰Μ1άΛ—/χζl‰xκ9ΤJύά’s<}Υ*ΦΊtθΠΑ^§~K…:ι71Έ9‰Ξ—t\4ν½nάΔ­η@@@@@šž@P YΏ*½œ0ΰΰΰΰΰΰH·{ΐT¬3Ω›Ζ]L@΄άL)Λ―ΈβŠrS•Ω댩vkΧ›GΉ©vhΧ›ͺ²v γ”ψα‡ήΎ¦ΚlΉΣvL`Ε[o*-Ϊu&ˆRώυΧ_Ϋυ¦Ϊ]§ϋš@tωή½{νzΰ)7Υh½m&ΠlΧλvS‰Χ7aΡrέΟ-O?ύt•ύu›™0ΪυΪ'SρΦνnƒϊdΎZέλΏ^οϋ_ο˜^xΑ;‡ZΉΕΉιuά{ο½ήυ™ LΉ©θlΡλ6_ορMΙn7—½uϊdΥͺUήΉLΦΫ¦ΧΠ£G―MgιϊPΣΨ鸞{ξΉφxN*7!#―νuλΦyητ“·C O½'Lpά;ί―ύkΟMΗυ–[n±Ϋtά>ωδ{oΈλΦu&€μυF―!ϊž [w€ή£:Vm]οΦιzSΙ²άT²΄ηΤ1ϋΰƒΌ~ϊοi΅4!±*mmΫΆΝΫί½"ξ;‚φΆι}­γgBΛv©ιhŸL₯N»ήT‰φώnθz@ β}ŸͺΝ{½kΫotcΟ1jκ“nwσ}?ΡωƒΎιζ.vˆΏόςΛrσa,o½ωφoθcΝ·άŸ}φYΉ ΪΪcMˆΧ­Ά‰Μ1ό}ψγθ΅£}Φ9‡φΧ|8ΙΧχkχ~|ϊι§—›λyϋ›yyΧα'o‡ž½―ϋΗ8O=…{o5*ίΉs§wVσ!.―/Ώό²]o>gΧι|ΙΞ½}υΉ+SΫ[Ο@@@@@hΪšϋ‰Ξ*ν£+Μ/X@@΄hμ ͊ε*š0Š­r¬_#n¦›ςΓώΠV3‘S1‘UλϊάsΟ‰ ΘχΎχ=1‘•λ1cΖΨʁ&°βUJ ͺ¬ηͺj5<­ξ{ΰzνhU<­ §_Mξ*4›p©ν‡ ;I·nέl=w€ I—.]l…C·Ώns•wυš\5^wLPŸςςςδ‚ .°»Uέs•ύνΉλ0ΑS1‘爯cΧκΎ#FŒθ*Πzž–“N:ILXΘV<βˆ#\ΧDΏβ\Ο―΅ϊα>ϋμγmΣjΓ‡·U~]•ΒxΗΞ}ύΌ6¦}»τK½vυΙόωσm•μθ ˆ;Εx‘θ=‘χŒ3l…κΥ«WGΈ™ Ή8,²Υ°]UH#­Lν_nΎωfΉλ»DΗΰΕ_΄Υ₯΅ϊwΠuέnΆ©–={φτšΧq2!2iΦ¬™‹-ZxΫ΄ͺcǎ#ͺ=k…s­Π­Υ,u»»=Θΐμί½GMJΏώz―š³ήSς·ω{kΕN­τ­§X@tˆχ}ͺ6ουξ}Ψ?οpλkŽαΞοο“«&¬}χωo}λ[ސϊη[ξ½KΏ=α΄ΣN³ίDαŸƒιAΊΏωπW•ω–kΠy›Iτ{l’sŒ»οΎ[L8βΫττύO«―]»ΦΎκœD猺DΟ‘΄Ώ—]v™,X°@ό&Ώ5=ΝΩυΤΉ”3sσ…ύφΫϞ: ‰Άg>8f«Jλ΅Ή9œ^μϊ©ίΪ s‡σΟ?ίΞ άz@@@@@@ ι ΌσΞ;¦M›ΝΌ@@tH…@³?D©‘L Τ‹©Xk£Γ)ΊT·³A–χίί£6UhνW‹ϋ+AA”«ΊJ4Ρ†4 μB<ώ€²;‰©škƒ§€Ρ ©Q4p£―ύϋ» ͺ?€μΪκ“[§!b ζθW‹ϋ—wί}ΧϋΊuύ uύκwZ -»φ\8iί}χυšsASαΠ†Vύ‘e·“»τkΪ5π­aXέηψ‡˜*‰aέxΗΞοαΒ³ξ\ϊX]ύϋUχ<ή{ΒΉωﻦϊ€½ζvνΪ‰œM5ňΰ°ί’’Ρ8ΰ9ζ˜cͺ½Ώ Ή»uΪ¦ώρŸCŸ›ΚΝv»^cVV–θίΫ;ξΈ#’_~CSρQ\XΚ΅e*š‹©œ)­Z΅²AmxΫTε”ύθGςΪk―Ω{KCΡ:N.ΜνΪΰH7xί§όΧο{}ΠϋIcΟ1‚ϊδΦ™jΜrέuΧω/Υ>wˆΡy—Ύίθ½ά\(θΓ-½θχQΨYη ?ώρ«œKWΔ;ΗΠχΚN8Α~PGη#ίύξwΕ|Λ‚τξέΫ~ΈΜT€ΆΫάϋ_ΠΌτ|±ϊ«ΫjZ\Ϋώω”k/^ΟC=Τϋΰ–žΟ|λ‡άvΫmbͺ`ΛΡGρα1έΧΪ©S'}jίηuΎzΖgΨχδζΝ›Ϋυό € € € € €8τ 4:\ΝΝ] € $›?ORCΣL*šυΚ§N*·ί~»hΘvΜ9^04ΊΒŸ†`ξΌσN»o,1ΐ¦Ί ΚτιΣε–[n‰h&V YC«W^y₯­jq€ο…?κ‚ͺρšoΌρF™9s¦ Οj€;:ΠΤ/¨ρ‡l\w‚[·i8Y«kXωωηŸ—sΟ=Χβ=.^ΌX.Ήδοuτ“θσΕ3vωΟδΈγ޳Α κhn«Ώώ}b=Oδžπ;ϊο“Xm»~cΠ1nh#έ7θžpλt»ώΡΧΊhΐxȐ!ΆbxŚΘ?ύύrχCPΐ=ς¨ŠW<ϋΙO~bCV:ήtΧ{0ΊfΠ±¬CI žχ)½žDίλέΏ»ώχ·±ζξόOώχ½ p²^·=ZCΔώ@³kGχsKτ9άϊ>ϊHΪΆmkίλƒ>Ό€ϋ%2ΗΠχχ^½zΩ9˟ώτ'5j”Nž2eŠόκWΏ²§v𣫻~Εκ―Ϋ^έcτϋΊΏzuΌžhΦΐM˜0A~ψαˆΣιˆτJϊώΚΩsηΞ ό–}Φω¨†»Y@@@@@@ ΠΜ}€ €aΝa‹:<Σ―!ΧJuΠ|σΝ7EΎζˆ‹ΜŸ?_FmΟtωε—Ϋp‹†:΄mώύeλΦ­_)DΡJΕ.ΨoΨΘόΤλWƒχιΣΗ†r?ωδιΦ­›ν?κ‚ͺώΐ©έΙόΤ' εh»Z 8(Πμ―0ιΞγ#(<t=Ώ«ϊ§_;―a£ƒ:ΘuΛ>ΊqΠZAPί999Ά’VΤΚΦΡηsΗT7v~dšΉ'όα¨θ{+’ς…«4ŽAϋ;χ P±ί ž Ν₯₯₯rςΙ'Ϋ0³žξΏ~9υΤS₯eΛ–ςΚ+―Θ₯—^jΎΈΆξΊλ.Ήωζ›%θάA}ΥuώλΣϋκ²Λ.“Υ«WΛc=Vm¨=V{¬GRQ žχ©ΪΌΧ»χaθΧ­k¬9†;ΏλΣή½{εœsΞ±‘ΰXο{:ο:ρΔ½χ”Ϊš}τQ;/‹υ nτ‰wŽαήγhΏ%BΏ‘’¨¨H΄:sηΝννζή{"ΠόυΧ_'쩁f·θ\ΰ―ύ«¬Z΅Jžyζ·ΪVœΦoΰΠoQpΛώχ?yξΉηdεΚ•²`Α·Ϊ>κNηΝ, € € € € € €fξ@ h[Τα™n΄³†*΅³ViΦ ‡†_]:>ώΚ|ξ΄7έt“Μ˜1£Ζ@³ϋ:ψ 6ό• ]pψΓ?”£Ž:ʞ&//OϊφνλN)Ϊ' ™κW΄»ύucPxΥδ‚7ώ`°[§/Ύψ’pΐnwϋθB@lΥKϋφν½`ΆΏwk/z›†¦5<λkέφ ~θ΅_pΑUΝώq‰5vώ―wύw}ΥGχuχΡύυοτάξ ρ Ί'\Ψ+–ΑΆmΫDƒm‡v˜W[Yzχξέ²kΧ.;^mΪ΄±Ό5PδχφΫoΛ±ΗλΖ4ΰδξ½6ύ£―ύac 0똻Εέ“ώ ΅s t½πΒ Uͺ|λί'­,©A5½6]ό‘i ιkhJο±ΒΒB9βˆ#άιxDZΐ^λ}Κύ»ͺο{½{?qαa=Ά±ηA}rλ‚ή'΅Ο.4|ϊι§Ϋ9ˆ;ν΄ΣμάΖmΊ^מ›CkΧ}/Š^j3Ηpγ’οw7άpƒύΐ›~ψKη‡nτΔOΨσD―wηκ―ΫVΣ£{oυΟO\{ρz6oήάΞτ\ϊ‘€}φΩǞφΣO?΅σ†±cΗΪΧξΎΣΉ…~£†—••e·i…gκ>ώψc‰un»3 € € € € € €@“HΏ@s“.@ΨΎ}{DP2‘c“½ομΩ³eάΈq^³ωΛ_ώb«/λJ•bχΥγng "χμΩΣ†Bύƒ‚(’­†c’«»―]Χv]ΐΤ…quVOΦ*†nρο―•υ΄r ..¨ͺηΠοwΎσwH`…ζ5kΦΨ―Uםžώy9χάs½ύυ‰V¬ž9s¦ ΓjΫˆqΘΖtέώπͺV5ψγ_4ΔϋӟώΤVΖΦκŠ*χ/.TΈ¦±Σ0νI'dC8ZιYΫς/·ί~»L:΅JXΪΏOΠσΪά.Puδ‘Gڊήΰu‹ Nιk7fγ(?ώρέφΡ™τκΥˎ›‰{χξmΗI+^Ίΰ°ξμΖΨBvχ‰nwχ›>ΧeΡ’E2bΔ[΅QοS "»eŊ2hΠ ˆp΄ œλ>Ρ•5₯՞5xο ιΎξτΉ.Aγ[±…?@τ¨ι}ͺ6ουξ}ΨοjcΟ1jκSτœΔA.7ŸΠΏ$h֊Ιϊ>£ίύž₯wMmηzάΕ_,Λ–-σn>Ώ·\Ώ~½œyζ™v{τΚ??Œ>Ξk°š'Aσ)Ηγωε—_ΪjΚZYZ«3χλΧΟ;£†ν›5kf_ίwί}2aΒϋ K–,‘‰'Κέwίνν«OτCuϊα£θ9rΔNΌ@@@@@@&%hΦ€M9aΐ=ΐ=ΐ=ΐ=ΐ=ΐ=nχ€ W˜¬Hj,f’Unf•ή&DΡ1ϊ(7•oνvF-ν΅ΧΚwξάYn‚3ε&Dκg³ήq¦jŸ]o‚εζkΒνzyL5ΒrS9Χλ­·ΚMΗkΗLνzS±Χ[χ“Ÿό€ό½χή+7UυΚMh¦ά„S½mϊΪ-ώs˜NΉ ΤΨt{PŸ΄oξΪLΐΆάcmSzά=χάγΓ„]ά)Κρ‹_ΨυώksƒΞaB4ήώ¦’’Ϋ5βQνt ΄O?ύ΄½N½^zυϊ`ͺ.–λXψυκρΡc§ϋNš4ΙkΓ„₯ΛM`ʚψ―/θZόη‰~^›{Β„Π½~\xα…ε&Τo›Υλ4!#»Mο―/ΎψΒwΞz]&`_nΒΑε¦Rbωc=ζ΅cφv_Ώƒ^―ϋχΐ―θ=σΙ'ŸΨύυžsχΌ»ίμσΗκΥ«½m:ξ&^Ύcǎςyσζyλ΅­>ψΐbSεζλην6]oΒΛv½ώ™6mšwŒ ε»SΨǍ7zΫ΄/¦ZvΔv^ €™ ΰχ9θ}ͺ6ουξύΑe="ycŽΤ'΅ιTgχ7aη ξ²@@@@@š €ζ~\6Α=ξ£OΜ/VX@@΄H₯ Νf^)?όαE«Οš@f•κΙ »|ωr»OuΘZ΅NχΫwί}«!λ±=τύZψκΪρW̍btœΏςŸ ŸΘ©§žj+βΊ}_~ωeΡ―sͺφ§ϋψ«υΊcό&πlΏn\Ώb]­\5e½^%k=Ζpl₯]g‘_oξ*κωμoΪ{ξ―8ν­Œz’c£•,=τPoK=ςΘ#ή9’Γ5.xκΒ1A}πμΝ7ίl·ξ<ϊxύχΛΈqγ$++Λ[­ύΉςΚ+eΚ”)ς«_ύΚ[―OΦ¬Y#½zυ²‘fSIXή}iίΎ½ ŠG‡‘#4/^ύu{ώP©ΖhΏΞ}Ψ°avwΏ;>ž±ϋ裏¬“©Hθ³Χ°ί~ϋΙoϋ[―ΏΪ½7«[44ααΆmΫJ"χ„kσ₯—^’Λ/Ώ<"¨ά§OΡ―’Α~ΰv³»wο–;οΌΣnσoΠqωωΟξ}]ΌnΣΰ•~MΌ†¦έb*3ŠΆ}ΗwDܟ%%%6΄¬!°όγ6ΐδŽΡGέχ΄Ώ- Wλ˜λί=NΗWο%·θ¬hhYCξnΡ{UόΊUΏόε/ν=€―ώπ‡?ώ½‹8€ €@ Ττ>•θ{½ ›o°οm~’ΖšcTΧ§ χwχώ0`ΐοί~ _vΩe²`Αϋžύ }ο»φΪk½m¦²°} ϊ€•ίDŸυ!ž9ƍ7ή(3gΞ΄σΊXΚzυΥWν‡·ό@Ίχή{νMη`:W;v¬ύΠ›Žuu‹Ξ? $O=υ”m3hΞt-Ažξ<Ίν·ίρώ¬Ϋτ=}όψρrΨa‡Ή]EηƒζΫμάΘ[iž :ΤΎ_kΐ›@@@@@PΝά € 1©hŽφλ―Ώ–]»v‰RZΆl)Z·6Λ_|!VΥ₯U«Vα φt NkχC©R!0ϊσ5γ6ΰͺU•ύA•θύ’_—––ŠωΚwΡγτϊ’+Fο_Σk jO˜0A44€Aρx ζjΥV―5‹ΆΧ¬Y31_/HΦηZιΩυΟU^1b„,Y²€ΖSΊͺΧΊcm?ώ؞GΓβ5]§ή+zΔ3.ΞOCQίώφ·½ X°ƒ~ˆχ>rη―ιήΣqΠͺ‘ΐΧ yίΎ}zΐ*@ ι$ϊ^K&Uηξ=Έ¦χ‡XΧε_―αησΟ?_τ› 40Αθxχ•Μ9†Ξ uΎ€ολΪ―-ZΨΞ=χ\Ρii Y?Θ€|sού±ϊͺr{χέw㚻%κιΏΏ΄ΥΝauή€σN½Άo}λ[rΠAΕκ2λ@@@@@@ ‰ hn’Οe#€ ‰ιhΞΔ±¨Οk ViΦjΖ nŒεο»hua =ωΏv]+*κW«λςλ_ΪV$֊ˆZΝ9¨B·λ»q/ΈΰωήχΎηVρX Ώώυ―rα…ΖU½»Νs €@† θϋ΅†z?ώxϋŸΖΈ\ύΦ ύΆkψη>ϊ¨Œ5ΚvIΏύ‘{χξΆΚ³ϋ0[¬Ύκόcψπα6DkΦ#€ € € € € €© @ 9F> € €@R4'…‘FβΈζškΌ―NΧ―²ΧPσΏώυ/ϋςzΈVC,,,”#Ž8"ŽΦΨ₯Ο<σŒόνo“ϋοΏί65}ϊtΉε–[κΪ,Η#€ Π eeeφƒQ[·n΅η½ι¦›δ„NεΛ—Λ_ώς»GΆJs]Ώρ’A/Œ“!€ € € € € €qhމ]@@ =4§Η8eB/C‘ά|σΝ2kΦ¬*—sψα‡Ϋpm§NͺlcEς>όsιΠ‘ƒ|όρΗΆq}ΎyσfiΥͺUςOF‹ €Τ³ΐ‡~hΏm ??ΏΚ™τ[ώτ§?Ιa‡Ve+@@@@@@t Мξ#H@@ΐ ΠμQπ€τ«ι_{ν5ϋυτεεεΎ}{9ν΄Σνkκθ²Sκ4_}υ•̝;Χš=φX4hxΰ)ΥG:ƒ €@’o½υ–h₯ζRΩwί}εδ“O–οϋ‰6Γώ € € € € € €@ΪhN›‘’£ € P“ζš„ΨŽ € € € € € € € €@κ hN½1‘G € PKΝ΅„γ0@@@@@@@@Q€@s#βsj@Hζδz € € € € € € € € !@ Ή!”9 €4ˆζaζ$ € € € € € € € €$U€@sR9i @S€@scκsn@@@@@@@@j'@ Ήvn… €)(@ 9….!€ € € € € € € € Pƒζ€ΨŒ €ι#@ 9}Ɗž"€ € € € € € € € ΰ4; @@ ν4§ύr € € € € € € € €MP€@st.@L М©#Λu!€ € € € € € € €d²ζL] @&&@ Ή‰ 8—‹ € € € € € € € š3bΉ@PΝά € € € € € € € €€Ÿζτ3zŒ €14Η€a5 € € € € € € € €),qζιω—…oΘ{Ÿ—Φ ϋΡ-ZΚΘcN[r»ΥKϋ4Š €΅ Π\{;ŽD@@@@@@@@ ±2*Π¬aζ;σ76ˆ₯šoΝ=­AΞΕI@@ >Νρ9± € € € € € € €Βϊi@@IDAT €©$Qζώ2_ή|wƒψj₯ζ­?Ό,©ηΪ΅wΌτί%ΣΫξΞ=eͺYs9ϊ –rζαmνcROHc €d˜ζ P.@@@@@@@@ IdT ΉΕ£ΏmΠAϋ|δ/’rΎχ>+΅•₯-z³Ϊφrm-WŸp²ŒθΠ±Ϊύ؈ €@S ΠάTGžλF@@@@@@@HgΝu½dšoόΗZω]Α–ˆ^΄< ™hxY­8]uϊ¬ΓΫΙμξη'Ήbs™<ρ³lΉ|‘Θό­;δβ£›Gτ)½^Έkι/yΕ‹₯g«zξ}Y™μ”ζ*ΘΚvn—χΆο¬€iΥFrΪΤ7R=A@σ…OόLN17t§λ–Λ+ΣzμΑ*ΘDΝ™7ͺ:Yέ»woΜ ΫgŸ}bnc €©"pάqΗ₯JW2¦Ÿ}φ™lΫΆ-ζυ΄jΥJvνΪs;@Θζ™0Š\ € € € €€ Πμ$jxlΥ,Kvξ EμU—@σ½{dμ†UςΤEΆM 1_}Βδ’£ŽρΒΜξdΊοSοΏ- ήή*λ>ψeέ!fgop•}έ1‰?šπ0h~Zdφ«;ddN₯s«\lC^ΛNΉ·E;™bϊ°Όθsιέ¦JgRkEY‘ΜΉζ2ΏπυΘ~u!y‹#=Σ:ΘyI.Π,ηΟ—+.6‘sh š3o”« 4Ώωζ›’c~κ©§ΚΑœRφΫoK³fΝ䨣ŽJ©~ig ₯eΛ–rΔG€\ί $;;[Ύύνo§dί:vμ˜rύ©}K|hRΥνϋŸμΨ±#%Ητ£>²ΡTΌίŠ‹‹ε‹/ΎT υΌχή{rδ‘G¦δ˜&ώ7'uލ.ΠόΝ7߈ΞτοS*Ξœbͺώ;”.ύ+**’ύχί_ΎϋέοΊ.§ΤγΗ,Ÿ|ςIJέOυ{πίώ·xΰφίΠ”άΚΞόχΏ•O?ύTN8α„TμžνSͺρ[o½e_.ίDυƒ3ϊ~sόρΗ§μkN>ωδ”νC@@@@ ΝqhΝ:γ<ι}δχδμ'ʎP™wD]Ν—¬yΖ 3χ?²ƒ<£·hHΉ¦E«9ί±ε)5!ηδ†š2\ΣUΦu{έ―Ε…aϋΟU_œ³Ce…OHφ)—‹tz@Š_#©]ηx»LnΡAξ«ΌšσG\'=Ϋl—)χ™²άv9_^ή±Br3$ωλƐ@sεπς€@ ΠάDΊς2Ÿ}φYyύχeπΰΑ6›JW―ύKš7o.ΗsL*uΛφεŸό§vΨa)ώyν΅Χ€M›6ΆmΫ”sΣΎ₯jP€ΎΥξvIU7 k@*ο7ύ7WΓΦ©Ψ7ύα†z:uκT»’°–lS1^—έ¨MkΈ}εΚ•6МŠσ‡“ͺ₯KΆnέj?@vμ±ΗΊ.§Τ£~ΠBCΝ©ψo¦ƒJυ{πυΧ_—-ZH‡\—Sκρƒ>°ΞœrΚ))Υ/gR}Œ·lΩ"ZQ裏φw;ežΏϋξ»φΓ\;wN™>Ew$ΥΗ8ΊΏΌF@@@@ :ΝΥι˜mwu;[&ύΰt»Χ¦}$η=ύΈμ6ab]jhžΈi­Ο-³‘ζ£[΄”—ϋ_WΊϊφλΎύ†άZχkyο‰ŸΙ‰—/”šΝk'Ÿ.ύξ{]z|«ά}QjώΰέΙo_;Y:τΣ8s'™κ³rqNeόzϋFΦα1ΕΉ₯lΰ;ΐνΪJ‡GΝι0Jτδ hNΎi*·H Ήv£C Ήvn© o™5¦šk7žškη–©GhNΞΘ¦ςϋ‹^!ζΊsͺ1ζΜcΝ™?ΖuΏBZ@@@@hJš«ν_v9SnοΓΫcΓφbισΜbωμ«½v]mΝο}V*'.£=^+3/ξu‘Χ~"Ožϊ H΄Κ³.·δv“[sOKδπ€}«o/ά(kσί’PΘšΥFΊφλοJο‹ΊΙK?Λ–KLααٯ9‘ύ,Ϋ^(/­}ίτEδ­·vJnο‹$ם°l»ιηvΩ8ω 7‘σ―›/ΣL…ζ¬6ΗGυۜ¬¬P†eŸb‚ΐ‘•wζΛ[‘,ΙΝm#ωO­’όν»δθnC€·)}\h w‰nΛ‘¨^™mωζŽΆΗι%j?σί3kΊεJσό©΅jj*„«Ώι³Λ#λΎρ,…sΚ)zQWεΙηwχŒ8€πΡarΚΨ§kh.Ϋ)ω_’ΒχwΩq8δ»ΉrVΟάȊΥζΎΨψ–Ήžάγ₯,•¬ΚίnΖ ›\ά;·²/;₯pcΎΉζχν}¦ciο…ΐ²Χ5ί7^ yΔγ²γ‘³d£‹χΝMY¦ώ]{K·D#Δx©*@ 9UG¦~ϊE Ήvškη–ʁϊ–YcJ ΉvγI Ήvn™zζδŒl*ΏΏθhϋ8§ϊhΞό1&Мωc\χ+€@@@@¦$@ 9ΖhΧfΦΓjhώΩ†U²°¨@ZΠL ~4ΊN••][‡˜Άή¬c[&>+O Λ–ΛM™ήˆ° νή;μ™br°Ρˈ^”GΖt‹X½}νSx|Δ:‹NΌ,―Œ©°–½·J†8Hš–yEruΟ6ώCŸoœ3LΞ―΅…ƒ—ˆk1ΧΈφΑΛ€ί€ͺϋ˜ύ²<22W =έ{_―Ϊ،—εσ«]πΆb³Wρψͺε& μͺl›s 9G.φΊGŠ Μ>Γ\odZχ,+|T²OkŠ'Ο–―Œ4ag3Νx(ΞωύEώέ’§—‹edn`Ϊ7ςδξ• οάe^JZE¦©%ΑrΖ$Σ3S‘yE‚šwζ?!νθܝΕχxΎ,u±τΆrίυψφpΧ+…OI―S.‘ω*χBΌχhφŸΟχΌΏσΕfΜY@ ³4gΦxΦt5šk ήN 9Ψ₯¦΅©ψ‘o5^πφTu#Π<^5­%Π\“PΣΪN 99γͺNΊ«#Πμ$j˜κcL ΉφcλŽLυ1&ΠμFͺφ©>Ζ΅Ώ2ŽD@@@hŠšF=ž0³V›@sΫΕ³eΧή=I©ͺμ―φ<ϋŒσeδ1'\MΌ«‚ΝαuΪʈσeL·6²ρή~β2ΑύηΏ*‹Mc»l_+-:τ«x.dΖόi’Ϋό=Ήρ’ρ^P΅Ώ Μ.ΆΩ2ητv2ή&XΟ—ζ_/Η·z_~7h¬^^τΉτ&ΣμŠυŒ’ωwχ—ζo=-—Œ]e"ΓΩώ€λωΧΝ–λ/ϊδΟΉQ&-¬ˆΡΞxΡ„›o’U…;eϋͺ{νϊN#¦Κυ½Ώ+9=}Uœmλeς¨ 5γ^ή!cLυεŠ₯P~fΝ¦8tΕi„LνέJι}½ŒιΉ³r[yuΗbρŽ.+|Βš/ι?_v,ΎΈ"Π\0―hH–6‘΅rΙΨϋ*Ÿ!ş_YΉrK"ΫM ΉCe ω:$ŸGάkηF9½έ9•γΫ_fΜ8KZ™Œυc'UΥG˜k}Δ\kδ½dL›jBΰ‡τ–i#[U½M«ϊΛόiWΙΡYΫeNΏΛ+ύπψοxk―z`ΎΉŸB2ηwu’ΌβW€g™pοΊy‚)+@ 9e‡¦^:F Ήv¬škη–ΚAϊ–YcJ ΉvγI Ήvn™zζδŒl*ΏΏθhϋ8§ϊhΞό1&Мωc\χ+€@@@@¦$ρζVΝ²δΪN]εW›ΧΙ7qŒμM?8]~ένloΟ Ϋ‹₯Ο3‹ε³―φzλά“DΝO}P$—¬yΖώς…—Jξ‘­]S΅~<ύιΗδυ%Θ²ΈΧ…΅n'¨BσΞ΅χJ»~Sl›Ρ“Χή;PϊΩ²ΝύεeΞΥ<οFSεχSεΧ€rεΕβΕΝEMθu˜ ½ja/Πl*?Λ¨d<ΥΟΕe’₯,ί ·F…£/Νlν?[Šτ‚½;7Ξ‘vηTT‰φ*4›> 4}Πލ0!μGΌЬ|Ίτ»Ο„š½0±Θ{OόLNΌ|‘Yε lϋ»°}• o2k“’Ο§I8wν 4˜/ŏ\μυKΔm«&Π|Ύ 4―ˆ 4wš*―Ύή @—εΟ‘μ3τϊΒφώΕσ<‰{εΑMΫeWαοδiE1K§λ–Λκi½M˜:ώeνδΖNχΏΚ—οφϊ(;σ͘ŸaΗ\ƒβWwkξUΧ}_.Ύ[\qι²Bs=§θυψƒΛζ₯ο^˜mBγ#υ&KΰΎ šM₯θ­¦RτΡ•WΤ^ d„ζŒΖΈ/‚@sάT;hŽΰˆϋE*~θ[άΓ±cͺΊhަΈ_hŽ›ͺIμH 99ÜͺNΊ«#Πμ$j˜κcL ΉφcλŽLυ1&ΠμFͺφ©>Ζ΅Ώ2ŽD@@@hŠh>Όω·dUa’{Ψας σε§kςͺ 5OθtͺΜ:γ<ο>Xυα»ς£ηώf֝ 4OΟ»ά™ΏQZΠL>6Φ;O]žΈ6nΡRΆώπ²:4 λBΐ…O “S.71d_ΠΧ; …Λ¬VμoͺςVVφBΛήΞ&Κ[Ω–·ΝLρ@ž©ΫSΪΈΌιφχ佝Νεθœ6&\»S6zIΆ—…+“C€χEmd¬©„¬!ιω―ξ0h ·κ΅xBΐα€°«&¬ύύ™Ήvhφ*J‡Ο―Οςη “3Ζ?°έ…–ƒϊεΆ%hͺφΉUΫ‰μe¬We2§EΆTDΎΓϋŒXΎUι}txEΟΒΞW-/’»£Κi―}p˜τ›T&σ_ώ£\lΒΘήύ/++“ζΝ+ΖPŸλ\vΙƒΓ:ˆfδέ=ι4Wί„ΗPοίΟMΥλπ²ΣTΧng«k{ν†7ς \€@sš`‚έ'М Xεξškη–ΚAϊ–YcJ ΉvγI Ήvn™zζδŒl*ΏΏθhϋ8§ϊhΞό1&Мωc\χ+€@@@@¦$ΡζŸvμ,τμλgu‘ζ 0σEΟ.•Π7_{ΗG?©m ωΜΓΫΚΚέ\­^`‹άψ΅φΨDϋyΒp8Υ (,[L¦7F•βπώSσŠδϊž"χΆθ ZΟΉjΐ8.υ„Χήk*#O1•‘+—N珐‘_$½ϋχ–œV•αV―z―ΫK;ΙΛ―έ*gœ|‰y!‡χχΝV·―š,ΩRΒαέͺ< „«4Ώ'7Ά8Q~gϊ‘WτŠτ —g6-ΊΠ²/„λΗm ŸΗmςΧšύfϋΗnΗ΅WΣγNίe"ΓeΫ eΥƒ7Κ€…γp &O‹ &ΗnΛυ#xΜ# IΥλ1{–m—U>(“Ηί'α;"ά‚G]Ο}£ϋΉ1ΟTΧκξ‹ΏέŠmό‰ι.@ 9έG0±ώhNΜΛνM ΩI$φ˜Κϊ–ΨXΊ½SՍ@³‘Δ 4'ζ•ι{hNΞ§κΏ“ξκ4;‰Ϊ?¦ϊhύΨΊ#S}Œ 4»‘ͺύcͺqν―Œ#@@@@š’@Fšu@ΩεLΉ½KolƒBΝ΅ 3kƒ‰ˆ'nZ+n‘dšŸϊ H.Y󌽾Dϋγ‘Ψ'Ρ!ΟpΕe‘'Ÿ?bΛKxσMγ#[yζλςŠeZΟV{»pit˜5Υ™>yΌ<•b=Fž,ΎΊ§4ί™/O¬*τͺχj£ee‡ΘiΉοΛ §TTΉΞ+ώ\"OχΩ;8λύ°7VYV6ΆΉfΙ&QQŠJ­( Q©ΔΏΓI₯£SηΠI§Ξ‘(EEͺ­C‡”ˆ«›:‘Ьλ*χ–],C–YΧοχ¬g.;σμΜόf/Ώ}ζσΌ^<3Οοςό~οϜ™=yοwάk3…Υ¬’ΪτPYΟΉΈ£+–ηΝ‡(&μ’a‹WŽvdNGrGQίΨ_εκ "4₯1ͺzM!ψέSΡήgŸ{TΩ69[τ—έ™ψ25ρ³£»¦α±Φ푐…1c„Q/Ž’σ|݈1ζkŽB³‘@Δ Π1Q₯Π¬–7…f5n:‹\›½2₯Π¬–'…f5nvE‘Ήd’ΥωσEξBsψ9λž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$Il/4Λ0‹“šUef9o¨ρs™?ΰωΜ•h.6άv―œ"μÜSNκzΌoξNMyΤ”\Σ¦.Η쁭½»Γι=“1b©)› Ί§¨θ,žOZž‡Α φ8LΉΤWf-μδt8°c珘ράhL$"@‘9‚Β[₯Π¬–7…f5n: ?\›½2₯Π¬–'…f5nvE‘Ήd’ΥωσEξBsψ9λž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$I"Fh–‘zJΝΛφμB•J•pEzˆͺ\‘ΚΜrΎP…ζG£εΌwεPLνΨ·0‡σW½ΩSqθΔqό©YΌpyη0¦rΛ©.Χ±LΘ»έ…Ό+ŽιΨ:­€μΜ]‰‡uTEblΝi\Ο]6ΊΛz½B2N_Žρ} «:g 1Ί£!F»eVgΦ $¦5ϊŽ[΄ Γ;ͺΑΞάeθΫ¨»¨Ό,oΉΑaN~ώZ6:^H²!ιΛ?GŸΦ βq.ζ i„³·σ¨μ–cΕΜX΄υt>[₯8+c2R{ ™x˜jΗ ΅nΙ6Ωbίrfy˜’¬?χl ‰O5ΨΈ86ˆΏw`”¨h,΄at}lή}Ά‡1―#+χ¦φ2φμ&μΞ£¨μ†P*4»uQE{Ρ ξ\¨¨{ή?eœ“‡{‹Ιεϋyΰ xζ˜%νT)h‹£¨π^t?Y3„Π׎=†y/Δ²o—#ΎZ51Ύnθv-.Έ0Ω§οΊuρΑ#7g.νWwκ€N:’J•*>}CΉ@‘9ZΦ}uώ|‘«¦Πl]°-ΊgL‘9Ψ$­ϋιž1…fλμ‚mΡ=γ`χΑ~$@$@$@$@$@$@$@$@$ D”Π,7,₯ζkκ]ˆkλώCά{χΰ`Α1τZ<7θΚΜry„*4Λ1ώkϋΡ©N2>ΏαvyIω˜±e#†.—κ/°ό–ώh]³Άς\V’g֜Q’zTp ]S°t©‘8fmՎ]₯›˜ά!OΈ›Νa³[fu`zΟdŒ(\ΎhOAΧ”΅pO†εy³ΡΊΈRΑ’ZrOQ-Ω5…λ.ξžΒͺ3s;r5¦tν ±™Ba[\M›Ί³JΨΉ’bq/χΎΣŒJΝIύ₯oU©ψ[\1šΕ=2gτDΗ‘ξ§ˆk^ΈΊ¦‹ Ι}D…d·tλS©ΪUι94‘Y Υ£…P]¨œK Με0―Á"G-y΅JIsζ ή~k^{ν-ά}w_\uuόώ{6ώω싆ψ<{φۈ‹‹υš;”'šC‘eέWηΟΉj ΝΦΩΫ’{ΖšƒMΊŸξShΆΞ.Ψέ3vμG$@$@$@$@$@$@$@$@’@Δ ΝrΣn žΈ΄ƒ|Y©ωΖΟfΓyκ”ρ<”ΏT„fO y|»ΞΦΌM(·tυ•U™; 9zGώa\-ͺL/Ύ‘·«Mν †$’Ÿ¨ˆ[XQΧ-λζ ψa!ΛΊζ‘’6―Ό2 νΟV96―’GυΔ )nM·λ°±HZ63Ε%·˜*G8°`ςσθχ„[–WSŒΓ΄g£΅Οά²΅Θ!ͺEκΩ·Γ°Iιˆ]0…7\t/²ΊτswΑDΟΝ±w’wEΕβΒ*Ρ…wΘŌΎ`€T<ϋςLQUzXΰ8d―ξͺΪμ½"ShξŠEΩσΡΩ,νμκδ@Ζδ‘θυ„ΗR†a@FΒw{w£FtŒ¨ά[©²ςMKζβΫ½ΩΖΊ?οv;:%ω~u«¦Šδt8„– Q%)Aό±θ(ϊ AΘ·NFη$Δ9EίD£Šoa₯cOqΈpž ζΆΈ₯Όκx§XŸΨ œN'βΔz­ΆcΜ+6› ώ¬œΠ]Ζ¬Ε€τ ˜ΦΗU–Ί˜UΣ$ξλδ¬ξ^ΜxW“`/ΨΊž[<BpΎK–}Δύ€όδιΜD‡ΔŽή•£ύL;ny†{•Π6ηTί“+Ηb2ρ\Š«q―IΟ|L$`{šm±Χ)4{αϊ …ζ QyuΤYψαΪΌ’ ϊ‰ά(4‘WG Ν^8”ž8‡pύu=-₯εq~QΡΡ9r˜ίωεΏΎQό7Y]ωόΊI^}NŸ>>w ΒΏύ4š4mŒ?œ΅™πΜΨ'½ϊΙ'+Vό„ττχEυζQΉreŸφ`.Ph†Rΰ>ΊΎOš+§Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$±B³ό'±κB(>,*«ͺBσŽ#‡ΡαΣχ–RσμkΣ‚’eeζΎ_-tΙΜαTyVέ·ε8ΗJτLξ‚₯Γ±u|˜|™9g:*¬ή[΄b²ε\Z68‘›{5’’,θςXvΦ² μ,ˆE¬Ε·ρ ©i'΄n¬8νΐʌqHLh1%Δ”hΪ©3‚ž²<ΐπž$@I€BsdΕN‘Y-o ΝjάtΈ6{eJ‘Y-O ΝjάYYΏαα?ΒgβΓ«T©b^v}7ξΉϋDζ}Ϊeυζώύγ駟@σζMπ—ΗΗΰΆΫΣpΥUWΈΖ›Φ―ί„W&MΕλoL ΠlB)§³ΞŸ/ …ζπ_ΊgL‘ΩώShΆΖαο3        DˆšK"dU‘Yή;σΰ~£R³)TlΤO΅nΥΟ΅\ΪΜ­›πܚ°#°Ρg@£ζ˜ve7Λώeސ»ρϊΉn›6`œ3gb©yeΐ,δMλ‘• l.g  { Πlƒέ…ζ`Iyχ£ΠμΝ#Ψg: ?\[°)zχΣ•…fοœ‚}F‘9XRΦύήC}ώψγΆmہ””–¨T©’WϋŽ»Π―οX’1ηœSRZNNλ3ŸŸzr,.Ί¨† δ5G(OX‘9ZΦ}u}Ÿ4WL‘Ω$‘~Φ=c Νκٚ#uϘB³™”ϊYχŒΥwΖ‘$@$@$@$@$@$@$@$@‘H€Bs©‡#4ΛΫJ©ΉοΧ ±3Χ*ZΧ¬6FBL,κǟcτ‘μΪYΩ<΄ͺΜl.JœYΛπό¨ξ˜β²˜ ‡MZ„±ƒ;Sfφ`Ε‡$@$@%O€BsΙ3ΥyF ΝjιPhV㦳(ΐ΅Ω+S ΝjyRhVγζ9κƒζaίή}–B³ΣιBσψhξ{¨Y3Αsh±ŽCθ{η}θΡ£;†ΩΏ,mN0wξBΌ0ώΜ›?IIη™—C>Sh™ί:ΎΘShφuϘBsHqϊν¬{ΖšύΖEέ3i3μL$@$@$@$@$@$@$@$ρ(4‡ρWh–·–’ς䍫ş_`Vk.nIWΧ©‡Ώ·ι€NIΙΕu+χ6§ΣC‡ ŒuΤ¨‘„ΈΈr_@$@$(4G@Θ[€Πμ#„‡šC€εΡUgQ€kσ*„‡Ίr£ΠBˆ])4{ΐP|(…ζcGαήAύύΞ "4geύ†Aχώ ­Z΅ΐλoLDTTΏsΛΚΜS&OΗ;οΜΔΤi/‘]»Ά~ϋy^Α΄–d…f)(η½Ω˜4ι <τΠύΈοώ¨RΕΏΜΌ}ϋN ςςσα?3ήΐE5fΉ†`F‘9(Tʝt!)4+Gλ¨{Ζš]Q)?Π=c ΝΚΡΊRhv‘ΰ        °•Πό\ζx>se™Δ2ξ²Nήβ2ΉoB$@$@$ ΝΑq²K/ ΝjIRhV㦫ό*wΓ΅Ω+S ΝjyRhVγζ9κ³O—ΰ‡~Ζ3cŸτΌμzœ³'wέυ –dΜ5ͺβΊŠϊθΌφΪ‹¨\Ή²O»Ό½wτΎ:uΔ?žω+ͺU«κ·Ÿ¬ΰόϊλoγ­ιΑδ)/ cΗΛύφS½H‘Y•œχ8?_δJ)4{η₯ςLχŒ)4«€κ=FχŒ)4{η₯ςLχŒUφΔ1$@$@$@$@$@$@$@$@‘KΐvBsδFɝ“   PhŽ¬Χ…f΅Ό)4«qΣYΰΪμ•)…f΅<)4«qσuϊτiάvΫέθίΏ7ϊυ»έ³ N§i·τΓ}έΊ]k΄mΩ²MTŸέΪ‘R₯J8yς$z ™ωΡώ§aƒk^“x<ωξ»ψΛγcπαGο"9ΉGKΙ<€Π\2uώ|‘;€Π~ΞΊgL‘ΩώShΆΖαο3        D Ν‘”6χJ$@$@6'@‘ΩζΩ…ζ"@‚|J‘9HPEΊι,όpmEΒ ς©ά(4`‘nš‹Q|ΊfΝ:άίp£Ίrχξ]…œ=ΉxόρΡ† όNϊkβZcφ>˜‡iSӍŠΞUͺT9vξΗALL4DfŸ£V­ΔΖΖβΞ>χ"τΰοA~ώQŸ~ςuκœηs=Ψ šƒ%U|?]ί'ΝUSh6I¨ŸuϘB³zΆζHέ3¦Πl&₯~Φ=cυq$        @$ Π‰©sΟ$@$@$`Sšm¬ΕΆ(4[€ p™Bs@Ν:‹\›Eh.λʍBs€ΰ,š)4[€QΈό㏫ρπŸŸΐργΗQ―ήωΨ½;Η¨Κ<ζι'P­ZU׌Ÿ}ΊKΏΖ„ DεΚ•±dΙWxς―ΟΈΪύ=x㍉hέ¦nΏm rrφϊλb\«_£z³₯U Ν*Τ|Ηθϊ>i”B³IBύ¬{ΖšΥ³5Gκž1…f3)υ³ξ«οŒ#I€H€H€H€H€H€H€H€"‘…ζHL{&  › ΠlΣ`-ΆE‘ΩL€Λš²hΦYΰΪ,B pYWnšgΡL‘ΩŒβε3’Ό²ΓqHTY>#ͺ-Η zυxΕ™Κg…ζ’αλϋ€Ή; Ν& υ³ξShVΟΦ©{ΖšΝ€ΤΟΊg¬Ύ3Ž$       ˆDš#1uξ™H€H€lJ€B³Mƒ΅Ψ…f 0.ShΘ’YgQ€k³-ΐe]ΉQhœE3…f 0z™BsΙ―λϋ€Ή; Ν& υ³ξShVΟΦ©{ΖšΝ€ΤΟΊg¬Ύ3Ž$       ˆDš#1uξ™H€H€lJ€B³Mƒ΅Ψ…f 0.ShΘ’YgQ€k³-ΐe]ΉQhœE3…f 0z™BsΙ―λϋ€Ή; Ν& υ³ξShVΟΦ©{ΖšΝ€ΤΟΊg¬Ύ3Ž$       ˆDš#1uξ™H€H€lJ€B³Mƒ΅Ψ…f 0.ShΘ’YgQ€k³-ΐe]ΉQhœE3…f 0z™BsΙ―λϋ€Ή; Ν& υ³ξShVΟΦ©{ΖšΝ€ΤΟΊg¬Ύ3Ž$       ˆDš#1uξ™H€H€lJ€B³ύ‚έ»w/Nž<ιwc«V­Βξέ»ΡΉsgΤ¨QΓoŸςΊΈyσfΔΖΖ’Aƒε΅ΛϋJωGςJNNΆμS^ λΧ―GνΪ΅‘””T^K°Ό―\Ϋ%—\bΩ^ž \›}]ΉΙχ½}ϋφiωzΛΞΞ†ΓαΠrm»vνB~~>š7oφ‚(ΕQ[·nEbb’–k+Εm—λΤšKΏξ’…ζπsΦ=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’PhŽ€΄ΉW  °9 Νφ xέΊu(((𻱝;wΊ€ΏjΥͺωνS^·oߎ˜˜Τ«W―Ό–`yίί~ϋ ηœsŽ–π―ΏώŠš5kR³εΚ©A­I“&εtχβoΛ΅ΟΗͺUWnyyy8pΰ€–―7ω9{ψπa-Χ&+[;v 5²ŠΌάKΩΊiΣ¦šΛ0 Ν%[wΩ•Bsψ9λž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$I(4GRΪά+   ؜…f›\d{Ÿώ9€Τά»wo£ςe‘ζr}*+ΏΖΕΕ‘qγΖεΊ7ε—_P«V-Τ―_ί_sΉ^“R¬Ξ¬£³πΓ΅©½luε&Εܜœ΄mΫVmc₯8JΎηJαZΗ΅ΙΈqδΘ€€€”"΅©eΥώΣ§OShVΓ§4ŠB³6ŸAΊΎOš ₯Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€Hΐ¦(4Ϋ4X‹mQhΆΰ2…ζ€,šuΈ6‹Π\Φ•…ζΑY4ShΆ‘—)4—LπΊΎOš»£Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$`;‘9ϊ‹χ΅ϊKT:Έ·Tς…9;πٞΨ~ϊΎnΫηFE—ΗRн§”I›4iRlŸςlάΎ};’££‘œœ\žΛ°Όχώύϋ ΩUg†Ίg,₯υΈΈ8Τ«WΟ’sy6Hi]Ύι,»κž±|―^½:’’’Κ3JΛ{Ki=??7Άμ£C…fRΰH€H€H€H€H€H€H€H€J‚€­„ζͺ/<€JŽ}%Α%ΰ²Rσ±Η§μj‡*W ςžmήΓͺVΗΙζνq¦¦žaΧ{±|F$@$@εG€Bsω±/;ShV£N‘Y…frS#ϊ( Ν‘3“#(4«q³λ¨£GbρβΕ†Πά»wo$&&j·ΥοΌ„Γ'Žλz―Λ-Έ»I+νΦ¨σgŸ„΅aΓΔΔΔΰβ‹/֎\Pvv6€πͺ³h¨{ΖkΧE||<5j€eΖ»vν2ήgRSS΅\Ÿ\”ξ―Y³ hΠ – ε/N:tmΪ΄Ρr}!cmΑqa$@$@$@$@$@$@$@$@Z°•Π\νo·–)δ£Ο}R"χ«t0WT–ώ/ͺlXJΞ£–sž{N^Υ'Ϋ^gΩ‡ $@$@$Ι(4GVϊšΥς¦Π¬ΖMg„k³W¦šΥς€Π¬ΖΝ£*‚Π|χW 1γΧυF·5l‚Ή7ά]:ΎHXšΓΙθž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$I(4‡‘vIΝџΎ‰θοx­βLl5HyY•{}ͺNŸΊ¨ŽχQΒ›˜3$ƒfιςΠ§AœΧš*Φs/iX”=JyυN'ˆCBEE&ΧοβΔ*κJ9aNO$PPh@a•ΐR)4«A€Π¬ΖMgα‡k³W¦šΥς€Π¬ΖΝ£*‚Π}½!χBσB`κͺ< lV‘ΥΦ²ά‹β“1F°ž·5έ’B‚^ώY’˜ α±]Σ‘7Ώ₯ζςO…+ ƒ…ζ0ΰUΐ‘šΥB£Π¬ΖMgα‡k³W¦šΥς€Π¬ΖΝ£*‚Π|μδIT{{‚+‚y’BsOQ©Y§CηΟΙ‰Bsψ―έ3¦ΠlŒ)4Ϋ?γπwΘH€H€H€H€H€H€H€H€"‰…ζ`ξυΠμ2ΰΥΗ€£‡]#Βšcg>ο’™O΅ΈΗοxgβ„4ΰˆώώD-}• ŽŠώ%)5—₯`“a7‡Ώ—¬9C*ΚU§₯―Βμ>Ν,Wδ̚ƒΔΤA@Κ$d―Œ.mΉΕ†e£; ϋΔ΅…£)4+Rδ0 PhΦ)_ …f5ΖšΥΈι,όpmφΚ”B³ZžšΥΈΩuTEš%ϋk?xί8φ1 jš‚w½Y«Htώ|‘ (4‡rΡ=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’Ph”vΪ`ΰϊ~…½vf―=3ž« ΝΡ §!zΉ(…,Ž“m―3dfγIUή³±o>U(5Χ¬ηπIAΙΠΕOΎ\όόeΩώ^v‘ΉeB³)›΅γ{4(ΛM†}/gζ $vκž‡B³›‘ TXš+ltJ §Π¬„ šΥΈι,όpmφΚ”B³ZžšΥΈΩuTEšŸΙψآΈαάθΊοQ­"ΡωσE‚’ΠώΛEχŒ)4Ϋ?c ΝφΟ8όr        H"@‘ΉΈ΄oΊΈQό1mλ7žŽ;+*Bs₯ƒΉ¨ϊβƒΖxY™Ή`ΰίΜΩC:WΩ°²Κ³Ίυho‡$’ίL`κͺ< lζ½NgnΎ]ΆS¬ؼفΦέz ΅yCgXg.VŽξˆK₯γYQ‘96©i‘u‹›9³Π71 ΡΛσζ£υΩΫ8²2±Ή ­['!sA2s‘Aϋ;ΠMtΘ AΆ5C‘U‰ΆL±‡Ζ8ΉEΉΞΜβJϋΦH,“LΕkOςknV9θίSδΜƒB³I‚g  L€BsOaιš ‰!šΥΈι,όpmφΚtϞ=ΘΙΙAΫΆmΥ6VŠ£vξά‰ΌΌ<-ΧF‘Ήƒ―€SW‘ωλW’Λκ―\„ΏJλkλΥw=/ο:ΎH6šΓ…θž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$I(4[₯@f–ΓT„ζ˜_FΤκ/q&Άœ£ή «²²k81Χ_Β›K賘Σ7ƒDαh/ XH»ϊ¦bŒ{‹&}…iƒΫ{]Ξ]6ΊπΊζω$er¬άΪΈδά‘Ύ-{ΑΟΤ·h+†wNςκχρΚι}ΡeDa΅kΌφ"φΈlς½θώ„oS—cΪΐΦȚΡ©CΧϊN5n9ς‡ΫlΜ]6Zμu"0lςΗw;{YHΞρRrφ>Œ}z&vϋυ eOg–¨–œ*ͺ%§LEފBvyτyH8]Σ€₯Eg9-ΟΖΐΦjVsζδžθψ„˜ +'t‡ι§₯―ΒlQΑΨ8r—!ΎQχΒΗHΑΈτgEΥbQ Έί˜ŠpΪTΡ μοΐτΙa4tΕ€τ‘hš°Sz uΙΐσΆζ£[1N³K(–wL†τρiˆΫΌύFΈλ{ ΝYs† u(Ϋ,ŽMΕΘυ‘9}ž˜YΈΊq_ A8ξGdd9›1ΑΈž2`,Fv«f=ͺ8381CΗC…IΛΠo¨¨c²σ‡#T₯Ωu/1Η,ΑΈύ²!h$ΉPh>Λ•' ŠL€BsEN/τ΅Sh™A‘Y›ΞΒΧf―L)4«εI‘Y›]GU$‘ω›¨SxtωFu«ΕcχΐαΪΔ’ση‹„D‘9ό—ŠξShΆΖšνŸqψ;δ $@$@$@$@$@$@$@$@‘DΐώBsΥxΰš;€ΕοgΞΞφϊ~B*μξ·m=πΖΐq§ϋΪΩG‘ ΝU6¬@μΜηΡΞα/γtέF>s†z!ξΥ‡Q9g;N΅ΈκpώnyΩ”€Λ& Ήϋ£OъΙΛ&τDw£ls– 9WϊΌ+EΥί.²κ/πUφl΄7M[ΗJτMξbˆΚ.‘YT~ξ›XXΙ8}U>L'ΞΜ³UŒ‹ŠΒK5zΡiS‘={ Kμu¬œŽδ.…U’Ν½@¬‘§Xƒ\έ!aOsέX6ΊΊOR³K&vωΉ₯|½„mΟ%δfy»—ΈςΆζ? ·wν!4HGφ΄>uΑ%;#4»€bwH‹U_t ΠΞΜιHμ(χηfοΉ΄βηbB|#ΘT»Žϋ σ‡·‡Kτvέ»ψΨJ$@: Π¬s:%Ώ6 ΝjL)4«qΣYψαΪμ•)…f΅<)4«q³λ¨Š$4Χj ίέΕͺΫ‘mmχep5”Ý?_$ ΝαΏ(tϘB³ύ3¦ΠlŒΓί!g        ˆ$φš« £φ‘ρ@=!°˜-*Ϋ'5_s;ΠλOξό³~ή~Ϊ―Μ,;…*4Gρ>’Ώœ…3±ΥplΜ,χ}Βx䚳f{|z3ΉZSΚΣWT4^θ%ϊΊn ΔγΎ‰ IΉ°?0ηlEa—΄μκ,Tή³sΉΪ<„ζ“αف‘$€hy8sw`‡# š%‰JΕ¬ΜψΉ>Ή5Π­G†ŠJΘbuH_•'„賃 gp­Εά‹»*±―μ„ˆΚΙΣ qΨ”|]λ5ζu•9½/:ŽXίv·Πμ».³-ξΆ@IDAT4‘ΩGͺvIίΎσΈWθQΦ ‘ιPIm6δGρΘά++4ϋgΖ«$@‹…ζŠ•WΈ«₯Π¬FB³7…Ν^™RhVΛ“B³7»ŽͺHBsΫΆmΡφ£wπKή^#ŽΡ©Wbl»NZD£ση‹D‘9ό—‰ξShΆΖšνŸqψ;δ $@$@$@$@$@$@$@$@‘DΐήBs‡›ΎΉσ,Njφ'3ΏωwΰΤ χψ"T…ζS /AΑƒ*2›ΪΣθο?Aτ§…"s¨λρΎcQ‘YΚC!Š[T)vχ»h+Fv†«ς――Θλ–f=ΰeDeδ1’2ςΩ#₯λ μΣέΊ‘YB‘ μΜՈS «-›ύ€,_ύ7tl+ͺiΓ-!»Ϋέk3…ζ܌ΡhΤKνΕnAΨ”|=ΧλΊ£β[bŠXΗ’­+ΠΩ«p’)-ζ½έγΜ6χ}Μ6—pνͺ’μήƒο¬η1ησ{vU•φ–ΐwΜ%ͺQO1ΔυόΩ}όεE ¨((4W”€JfšΥ8RhV㦳π£γΪζoՐσnή€΄¦-qibτlΨD ~)‘›ά*…f΅ΐ)4«q wΤοΏοΖΒŸγ—5λP=>Χw½7άΠUͺT jκuλ6βƒ>FnΞ>\xa2ξԝ:u zΌΥM*šΠ<φηα響3Ά“Rλ»byή|΄·²Z―βȜŽδŽB²NKGž€έ+“­¦l¬›ΠμΐτžΙ±T1³Ύz5œNΔ‰˜tμCυN†yγΣ—„Ξν›ΙŽuPZš™θ™ΨQπ ζ˜„ΌόΑ&ž`°  hC …ζ?ώ8‚E‹–bως•8sϊ Ϊ_qnΎΉj•‘ΓqK–|…•?ό )΅»Ό-Ίuλ‚Ϊ΅kωŒΟΙΩ‹Ο>ΛΐΚ•?#.6Χ]Χ7uΏ111Ύ'OžBFΖW8yς€λš|pβΔIΤ=Ώ:^Ωήλz¨O(4‡J¬°?…f5n:‹Ί¬mž¨Κ|Ϋ’ΉΕNˆ‰ΕW=ξBjΦ…[Q`š‹ ξ9…ζΰ8•T/ωsΐ-7ί‰—_~:_ιšV~ζ?pŸΡ°a}όγ™Ώ’R₯J6Ο[ΆlÝ}ξûnV­ZΈšςσŠλƒ0PHΞύϋχv]υAEšεώΎ:v9llυΕ]0²ux?'…ΚΜ_]ί'Ν΅Rh6I¨ŸuϘB³zΆζHέ3¦Πl&₯~Φ=cυq$        @$ˆ ‘Y&λOjήΆθχΈ;χ¬Ÿ7œ:αΎVΜ£Pβθο?Aτ§Σώ/ΞΔΕ3{pM1ΎŒ¨Υ_–@Υg_ xǜ!h9HͺΉΓ°!<x.ΙpΕ΅τUyθ# ϊΞι+„ζ…²ϋ<δοζΩΛFw@χ‰RŽ^%δθfΨ±`4Zφu}ͺ;0:>Ω¨\XωΩͺR°[6o+Ζwσ‹wˆ9Zs˜š…‘\( ‹UΝښžέΕ5Gn.β’’\―KhNλ•›3!Rw"υZ ΐͺόiπh9ΫΓ½.Χ½Ν±Ξ,τML…D”Ύ*ί`f69–MFrχ'JOh’χΚ9 °Yά0ΦΌιΩσΌ 3S”ΘN€©#»‰ ΝΝΠ§GQ½Θ >% M D²ΠΌsηοΈ­Χ@4iΪώσœ>}ο¦ΏΜΜ ψο¬ιhάψ’bSΫΌω7το7Ψ?xπ݈bς»οώ«W―Ετ·^EΫΆ)ρ?ύ΄C‡<Šλ―Ώ}ϊτāƒρ§Ηη͟ι χο?€oΈ>xšOΉΖΛηž{ސ•ξDεΚ•½‡ς„Bs(΄ά})4»Y„ςHgQ@‡΅9Žΰ"!γΙs CVjήvΧκVκν:pσ·I Νώ¨sνΨ`Λ8֌γǏ£NsρeZ ΑΆjυb•mΣζΝ›ΟεζΝ›—νKρnoΌώ6vμΨ…η5ΖGZ–²σ­=ϊγ“Εωβ˜ό~8kΕΟ(ό}§yŊŸ.~†yν΅•N¨ˆBσΘε_bβΪ W%%㻞}Ψ”υ]ί'MšMκgέ3¦Π¬ž­9RχŒ)4›I©ŸuΟX}gI$@$@$@$@$@$@$@$‰"Gh–ιzJΝ[2!ώe h *U" λ†&3ΛιBš+ΜEΥ”CqΌχœL½ήxΞ_UŸν‡JΞ£8Ρ1 '†„1•―Π Η2!οvς8€cλ΄>°3w%nΤΕ¨B,κckώHγzξ²ΡhΤ]HΚβ–ΎγϋJ±™BŒξhˆΡΒ_>+4;³f 1u¨Ρwά’UήΉP vζ.CίFݍJΒ7`Z/Ϊθoώ΅ltΌ€ε³€/}Z'ˆΗΉ˜3€ΞήΞ£Jrœ’³Ψ m}“ Λ2geLFj/!›%DμΖτYsϊ"UΪΩbίΩbίrfy˜’sΚΨ―°b€ΏjIΕΝ؁QB΄ž"ζιϊΨ,Όϋlc^GVξMνUX=Ή΄*4«χ—K\ryώμ>ώ;ρ*  T‘*4Λjˆ½{ί+γΞ†ΜμY Q~»“‹ͺ©V_έξ_WvK?τνw;€Μμ9~ξά…˜8a >_ό!ͺWΗαΓIΉ7ž|κQάzkwΧ+£ ΰ8ξκ?Ψ¨²hVdΜΜ\‰§ΰw¦xΝιζ Νj)4«qΣYΠam/―ύ ."hΈο\s35s’DΠK°γoŸ„‹+εϋΘܸxΆqί1%x…Bs0W.ζ½σ“£ηaΚθj7‘YώTŸ;αο£βυ O&;ω-ύΕΟ£F=ŒΤTί½ΘφΏ<>·έž†«ΊΒζ:―_Ώ ―LšŠΧߘQBσ·9»Πω“χ]φίσ0γͺΊž—Η>_ŠΫ7…ζβθΧ¦{ΖšƒΛ±Έ^ΊgL‘ΉΈτ‚kΣ=γΰvΑ^$@$@$@$@$@$@$@$@$PH ²„fΉgωšς />ϋj;6 3Y|₯η[O]™Ω|ρ„*4Λqq―>ŒΚ9Ϋqκ’V(όΌ9•9jΥˆωh’1Φ9όeœΫHižΒA~„fѐ5g”{₯‚[xtνš‚₯K ΕΩΈ0kƒ¨vμrŽ˜ά!OΈ›Νa³)4‹šΘ˜ή3#–šM)蚲ξ©Σ°FT”ψE/Γ”’†W_έŸ}Ί³gŒ·ί™lTdφ芬¬ί0δΑBžώHΘΣqxύqT|uό`Q‘Ή4 ΝjT)4«qΣYΠamΧ.xίμΩε†{ζμΓJξKžz6h‚y7ήξy©Μοyηί¨›ιώΩΌΔ`ώMΚͺΑR˜Ά:jΌ3Q8pΰš4ibΥΛχz½Άο₯+;wξD^^žXΫ*/ΡA‹ΏΆμγβ§LΉ Έ™βϋ”A«έ„ζ|ρΩ.ΉiΑΒ’fMσΧ½Aʟd?ω- ώ)-''ΧEBB ―fωs‡ό™δ’‹`ΘΠA^m‘<©ˆšεώjΏ; yNc«Σ:έ„[œύoW‘lΎϋκπωRάv(4G'Έ6έ3¦Π\ŽΕυ=c ΝΕ₯\›ξ· φ"        B‘'4Λ}§ οWH@Vj~CTη=y’πy«͞ς‰[γΔ•·†pGwΧJΞ|ΔMJχβTΓKPπΰΏάJœX0$ύfι«„¬λaΙζ ψa!‹zΕ#%m,^yeڟ­rμj’GυΔ )nM·λ°±HZ63Ε%·Π,G8°`ςσθχ„[–WSŒΓ΄g£΅Οά²΅Θ!ͺEκΩ·Γ°Iιˆ]0…›Pt/²ΊτswΑDΟ͈ Ο“½‹Αg«Dή!3ϊ6ΒΠ³ύ€T<ϋςLQUzXΰ8d―ξͺΪμ½"ShξŠEΩσΡΩηίvȘ<½žπX@Κ0Lθΐˆ'ό³7­βΰΜΗ-Κ¬='Κ•žSE₯ηBhž†‚oη ΛὊ’ΟšuC7£‚uΡwΥiˆ Νy’Bs˜~΄ο x…H€ʐ@€ Νςkί+‹ož°€TtπΐA R²ΏCΆωγˆεψyσ>Ε–-ΫρΨcΒ } χάΫΟ%G=zΜΈ·YύyίΎύHL¬eTd~τ‘§Œ9›6½ϋφνƒp”ŒΆΨΨΛω…搑(4«qΣY(΅m9μΐκύΉX΅?Η8Ή{Ž‹_ π=€ΡlΪΝξΦkκ^ˆ―{άεΎPŽό{ͺηn-‡;kvΛͺρB²Ύ8¨EɊώς[ͺŸwΎ―˜m%k—FEλίΦSF΅fάx·ψΕζ{ƒλ[J½μ&4ΛΧΑΝέοΔGsί³š?όp>rsφZώμa…Z~3Δ γ_ΑΌω3‘”tžU·€Χ+ͺΠ<ψ›Ex+Kόw*qά|a#|Ϊ½Oΐ½–f‡ςψ| e?šC‘εΏ―ξShφŸ[(WuϘBs(iϊο«{ΖώWΝ«$@$@$@$@$@$@$@$@$ΰŸ@d Ν’Ε#€σӞŽVΏρΘϊͺŠΠ,g‹}σITΩΎgβͺUšU*+ΗN UΆ­3'+=ˊΟ₯}8‘ي*Σq βΕέDQb p:ΰ0:' !Ξ‰=! V:nζ38¨Ή}FΉ/„:ή)Φ'vω±qb½VΫ1ζ›MVNθ€.cΦb@ϊLλ#^;αβΎρG!!ΑκξΑά@°lu·ωΓ «OκΚv ¨Θ"Qh–• ο8ζχkέež²r²¬vψΑœw|ͺ*Λφ@Β³)%=0ψτΎύnΌϋξλXρΓOxzŒϋͺš4mŒgΗ>y–Η‰'vK_ρόb,~₯qΝόkΨ°ΑΈwPΏk1ϋs¦Π %ί>š}™sEgQ ΄ΧΆφΐ>CZ^—kœΙΫ‹CΗ ‚ΑfΩG‘yη‡o’ώ!QUϊΨΛuBώ,’' «TKΪσ¨•ˆ Υ^‡?I:NΨσ^€ΤΜ!…νηηΣ³ΤϊΨQhN»₯>ž7ηœS$Η³?ψ`φνέ΄Π,ž™2y:ήyg&¦N{ νΪ΅ ˜Η‘#G°{χnΏύδ7TlάΈΡψ…ͺvνΪ‰užγ·_y_ά΄iš7oξZΖΧy9’ω½λyf瞈«RΕυΌ¬]_Yί?ΠύΆnέ*Ύ]$ υλΧΤ΅\ΪχξέkTάχΜΈ\RΜMuΟψΧ_EΥͺUqΑ³‹ςkΚΙΙΑΑƒΡ’E‹ς[D€;랱όŒ”οΡuλΦ °“ςi–Ÿ3ςσ¦iΣ¦ε³€ ξ*Χ§Ε·g±Vv!        @"Wh$*…ΕT ŽbdΩ*4W:˜‹ΈWEueqo)5ψχ …dY™9fΖs.™9œ*Ο–Smp¬DΟδ.X:,[ΗχψηhγȜ3 Va.Z1YυVε3Ξ‰άάC¨‘”d)@—ΗΊ²–e`gA,bcύί½  IM;‘uƒpΔisσ*  θF R…ζ!>‚‡ώtΏ₯ΠΌeΛ6όι‘‘ψlΡΏqfζzΡώ82–Ξ5„Ο\₯tΫmw£Ξy΅ρς€ηΡσΦ¨}^"φμΞΑτι―ΰ’F π‡¨ξόŸΜΖ»ιŻnV­Z GTeΌεζ;Q£ΖΉB˜~ηΧ-όΙ`έΊxpπτΈυ&<ωδ£F%gΟϋ…ς˜Bs(΄ά})4»Y„ς¨΄₯αPΦR΄oI­Νyκ$ΦYΉ°ςrρxεΎ=EoψΉ,Ηρ·dqf‹γ₯ŽΧγ‘”v­esΉDΈ'ΥJQ:ϋ7λΝΘδψ΄?~ςOυκB•νβ[yxKΰμk―hχa€‹Ϋ½ZfΟν(4S‘yǎί1RόΒU cϋφ:δδηΓfΌ‹. ξˆβͺ·lΩb9ύΝ; ‘ω’K.A΅jΥ,ϋ•gƒ”5›4iβ΅„Ž?-EΑ™ΒŠχγD…σnRφ/§ΓίϊΚi)~o»}ϋvDGG#99Ωo{y_άΏΏ!»ΝΈΌΧεyέ3–zœ(2P―^=ΟekσXJλς½HgΩUχŒεϋΈό™'IόχV)­ηηη£qγΒ_άΥqrMšuM†λ"       •@δ Ν‘’ςΣ_Uh–SUή³UTj~ʐšεσ“©ΧαΔuύq¦¦υΌZύ%’Ώx•ΞώƒφΙΆΧαψΘαzΉ ί¨Ÿk-iΐ9s&DaζΒcΐ,δMλ‘• l.g  {ˆd‘ωᇇ"₯uKΏAšOž<‰ή½οEΓbό cΕ/ΙΔσΘj‰'Ύ†χgΞΑύχ€¬ΠάεΪˆ‰‰Ζ/ζ‰η ί~kfΜψK2ζβΨ1'^ύmΘuΕΕyΦMvφάΪ£?fΝ~[H<<§πy,%Ή>ΗͺU«ŒΚŒ½{χFbb’Ώ.εvmύϊυ†|‘γ?|ShV{Y”ˆόͺvλ€£TΦvXTX^΅_T\>[uYJΜλξx―’š'ΤBΫΔ$4<§ώυˊ’Ν~ŸΧˆ‰Ε/½ο3ΖψνPFUΈ•ΕφμΩ#~)$§dΔ”β„λ@›‘2uαϊΠ‘C8zτ¨»Š’?)[Šά»·š½lΫ{=\Σ»lοιq7ϋ ΝΖ·0€§OΑϊIǎŽΫ£[·k=Hψ>\°ΰsόγι#-νF<υ·‘ŸA|{†vEΎN/^lΝ:ώœ`ξΖίϋPŸŒyψp[–Ρ₯_γψου·šέΛόμo}eΎˆbnΈaΓρsi .Ύψβbz•_Svv6δΟ²:‹†ΊgΌvνZΔΗΗ£Q£β?Cy₯ΌkΧ.γ}&55΅Ό–πΎΊgΌfΝρνu hΠ Έ_f Έαξ qBώόΣ¦MωύbT -ιžq υ³H€H€H€H€H€H€H€H€< Phφ€βγp„fy+CjΥ–+9φΉξ|ΊξE8Υ²ƒρυ»§Ξ}Ά 9U6¬@%§»š΄V•™]«YΛπό¨ξ˜β²˜ ‡MZ„±ƒ;Sfφ`Ε‡$@$@%O ’…ζβ*4oέΊ²Šσβ%ω­Π,“•"ͺΘ9pΟ½ύŒJΝοΌ=—\ W^yœ’β½χφšοΒ3cŸΔUW]αΰαΓ λυ½ŒϋΤ¬™ΰΣn^’τSO=‹[nΉW_-~ξ)ζX·nδ· ψ;tΌ(α[ 6:V“ϋν·ίŒ―uΦ± š¬ W³fMΤ]Ϋ_δεzMηκvΦvΰΔql|8δ΅U9~ Υξρ™3~Ο―>Χd?Ωίσˆ9r1ωΟK!=ήΦe^˜’μ,…7Y½³yσζ%9mΉΝ%?Η9Zό|Π½οπ•mOœ8aΟ/Oϊ7Z΄hκwrω‹OoM&OyAΘΟ—ϋν§z±" ΝοΆΎ\`l½j•(}`€*†°Ηι.ΙQh;bθž1…fϋgL‘Ωώ‡ΏCΞ@$@$@$@$@$@$@$@$I(4‡‘vΈB³Όu%g>’ώ7_όωΔU­ΉΈ%jx Nv€SBΠωp:’zE‘|T£F’¨P¨σjΉ6  »ˆT‘YJE7ήt=nΈ‘‹ί(Ώϊς[|ύυw†ˆμ·ΓΩ‹'OžΒΪΜυX»nƒq₯E‹fhΧξRΌϊκ4œw^mάzkwάά½^zωy€¦ϊV¨’rχ/Nx{φδ"±VMœ_Χ·O|2~ύmkΐ―’—_ο{ϊtαΧ]ϋ·ί~‹ί]T—f…ζ’lŠ{Ξ ΝΕΡ±nΣYψρ\ΫΆ?‰ΚΛ9—εY…9ηXΎυΖό΄ΔGE£Mb€ΦNB[ωGT`–η`Žό,ήk~ώŸeΧ—:^GRΪYΆ—eƒ'·²Όo {•h…ζ@7 ±]ώ"‰Λ½Ϊθ“=ρ₯ƒ>FΟjtχ’ξh· Ν’Ο·ί.Η“‹ΟΟAυκΥ½}Ίp &L˜lό‚Stt΄ψ¦…SβηoEuΛVΖΟ²σwί­ΐ_ƒ?zΙΙu½Ζ—Δ“Š,4Λ ϊ5_vaX$~φΊιΒς©N«λϋ€ ‡B³IBύ¬{ΖšΥ³5Gκž1…f3)υ³ξ«οŒ#I€H€H€H€H€H€H€H€"‘…ζ0R/ ‘ΩΌ½›efωGVnφ¬Ϊ,%f£rσe]ΕΉ|ώΛ\'Ο$@$@$ 3HšeŸ}ΊKΏΖΔ‰β›*UςŠΘ¬†άΊυ%θίΏ·W›ω$;{f͚‹G}•+W6/gYe±ϋM}πϊΡΈqCτΉcώϊΧGpy{ί―Uv:’BσmX°πΏxmΚt΄jΥ={έμ5Ÿ|bVvμέ»τSιΩg€Ε…Ο?R£ΠlΘβ2…f 0.λ( (pβΛμ˜Ώv5vU>_ςφβαB9jΕΖΒςeηο’˜›'$†2…O_ΉŽ—Χώˆ_φοŚ{Ρ¦V\[―Ύ!27<§†OςΊ c¦’…ζ ^ŸΏ ,ώOE—Ζ­αƒλ[J½μ(4ΛΟrων99ΉxσΝIΖ/0Iq9#γ+όύoΔS_Βε—·5ˆζη5ΎΑa+Bϋφ—?άΩη>tθΠƒΌ²½θUuκœWτrΠΟ+²Π,7yγg³±δχνΖ~‡ΆΈotΊΡx\Φιϊ>ir Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$`+‘Ήκ x‰ΐ₯θ™„σpμ/o•ζ-87   @ˆ"UhΞΙΩ‹[nΎ3fNσωjχ-[ΆAJCσηΟΔ&Dϊi΅QM±yσ&Ζσ;vαφΫξΖ§Ÿ}€σΟ―γEύ³Ο2πβ ―bIΖ\DEEaζŒ9ψπΓω˜σα»βy―Ύση}&€κ)’"γ\|ωΕ7xρEwuFώۢνΐ½οΕGsίCΓ†υ=›BzL‘9$\Ξš](Bz ƒ(s4_ξށe{v6:ςBΪΓρηΈͺ-›Υ—λW?7€9Bν¬7«5λΊ6 ΝV‰y\?vxapp―ΗE?γβ…Μ<HΎΨOcΩ]²£Π,ιΗΈq/C~ώΧ] ϋχ@•*U0ρ₯ηpυΥ\€Ξ€έΧψε¨&MγnΏm ‘­σ«_£z³œOε¨θBσλVγOί-1Άž(~ρd½#T0„=FΧχIscšMκgέ3¦Π¬ž­9RχŒ)4›I©ŸuΟX}gI$@$@$@$@$@$@$@$‰l%4Gρ>’ΏœU&9ΏωœΌJ|Ν-   mDͺΠ,˜1γL™<]TDœYYVj^·n#<χέ?C†άkδ$+*ή=p(Ϊ¦ΆΑΘ‘Γ\Χ}δ)¬^‰wί} /ͺo|=ΌYeqςδρθxe{£―¬’ΨσΦ»Π’e3Œσγ«γ?ŽŸ|ŽηŸŸ(d₯ FυE)9IY©fΝόλίOγ‚ κγωe?πg<0ψnόιOΧT’Π¬FŽB³·ς~;|Π—ΏΩ½ Λs³ρ«xμqρΉ h[; ©΅Ο7ΞνΔ91j°ΓK¬_yp vρΊBs fΌ?Ψ½Υ)3ί5 HΉΚ{^΅«Πl".ΉHφ{κΙ±θΨ±=nνΩέ•©'Mz³gΝu]“sL˜π,:uΎuM>ΘΛ; ζx²³¬°Ό}ϋNΔΔΔ`ς”ρΈμ²K]}₯ΰτβ‹―•ε\§N2ڞψλ#ΈγŽ[]kr ρ…恝νN‘Y[Yˆ™φBΚΛ²σ7{vbŸσXP‹½Hˆ›λ_δU}ΉztLPcK»SYpSέƒk£ΠB’²Rσ7+»«5Χί4p±ψ,Ίι Φω!LVz]ν.4—9υ™+ΊΠ,wήaή{ψaοΒ¨6W`ά׏Λς/]ί'MšMκgέ3¦Π¬ž­9RχŒ)4›I©ŸuΟX}gI$@$@$@$@$@$@$@$‰l'4Gbˆά3   @!HšΝΧ€”˜Ι7žΖΗΗ#664©QJΘGŽAtt4jΥΝΉ‹žώCˆΜΡ8vΜYl_)KŸ8q§OŸF΅jUUt*₯η𕰁B³·VνΟuΙΛίεόŽύA Μ©’ςr§σ/D§ΊΰΪΊυ±sγ&΄mΫVmc₯<ͺ4Έ•Τ’u]…f΅„εܐŸ_)))j”β( Ν₯Χbj;Νγ~YΏόΖΨaƒκηbϋ]YμΆτ.λϊ>iξ˜B³IBύ¬{ΖšΥ³5Gκž1…f3)υ³ξ«οŒ#I€H€H€H€H€H€H€H€"‘…ζHL{&  › ΠlΣ`-ΆE‘ΩL€Λš²h. QΰϋάlC`–˜'ζΓ'Ž[άΝ}9NT7Ώ’N=C`ΎZΜW%%£hυε’X›ϋŽ%ϋˆk '…ζΠ™ΙšΥΈΩu”„ζ,Η4ΰMWDλϋ<€–5k»ž—ŝίΓεώ)4‡*Π=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’PhŽ€΄ΉW  °9 Ν6ΈΘφ(4δS ΝA‚*MEψωjχΞ³σN,Οݍc§N™Υχi͘X\yώB`κ^ˆ+…ΐθPY[ 9Kͺk $…ζΠ™ΙšΥΈΩu”„f™MσΩo"λΠ#¦^ή k{e™F¦σ{ΈA‘9ό—ƒξShΆΖšνŸqψ;δ $@$@$@$@$@$@$@$@‘D€Bs$₯Ν½’  €Ν PhΆyΐEΆG‘Ή ŸRhT‘n„Ÿ#’Ϊς·’견Ύ,ΘjΜΑΙΥͺβ²)0§Τ:/˜a^}­Ν«s?αΪBN‘9tfr…f5nve‘ω©•ίΰ_Ώ¬0bjWϋ|όxϋ½e™Ξοα…ζπ_ΊgL‘ΩώShΆΖαο3        D Ν‘”6χJ$@$@6'@‘ΩζΩ…ζ"@‚|J‘9HPEΊ~8ρ!/Vaώyn‘ώŸ6O¨%ͺ/_ˆ«ΟV`Ύθœώ;†p΅θΪBZκ]ΉΆΠSh™A‘Y›]GΩEh^Ήw˜χž+¦έ‡‘ψE˜²:t~— (4‡JΠ=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’PhŽ€΄ΉW  °9 Ν6ΈΘφ(4δS ΝA‚*ν‹•?`βΉg%ζ]Xp‘ώŸΚŠšκ^`TaΎ¦n}Ԋσί1Œ«:ΛH\[θΑRh™A‘Y›]GΩEh–ωΤ›1{ŽζQ½zUW Ώδ²2‹Mηχp Bsψ/έ3¦ΠlŒ)4Ϋ?γπwΘH€H€H€H€H€H€H€H€"‰…ζHJ›{%  › Πlσ€‹lBs A>₯Π$¨³έΦΨ‡§V~ƒ…;·X-* WΤ©gT`–σ•IΙ¨p\Έt–‘ΈΆΠΣ₯Π:39‚B³7»Ž²“Π<μ»%xmΓj#ͺλκΥΗiύΛ,6ίΓ% ΝαΏtϘB³ύ3¦ΠlŒΓί!g        ˆ$š#)mξ•H€H€lN€B³Ν.²= ΝE€ω”Bsp 6ˆ Μc~ϊmΫl9 fL,>Bt{!:?…ΐ\‡Ξ2Χϊ+‚BsθΜδ Νjάμ:ΚNBσμνθφιlWT‡=‚sΕηOY:Ώ‡ΛύShU {ΖšνŸ1…fϋgώ9        @$¨°Bs~~>Ž;†3gΞDR^ά+   (¨T©ͺV­Šψψx₯ρe…ζŠ’TΙ¬“B³G ΝΕsΫδΘΓΣ?}‡ΆnςιX·ZΌ!/w³¬ΐάΊVŸ>εqAg‰k ύA‘9tfr…f5nve'‘YfT㝗pψΔq#w―½χ4mU&Ριό.Phe {ΖšνŸ1…fϋgώ9        @$¨BσαΓ‡QPPI9q―$@$@$P"bccqξΉη–Θ\:NB‘YΗTJoMšΥΨRhφΟν·Γρ!2ΟόmƒO‡€ͺΥpχyυρΒM=}ΪtΈ ³ŒΔ΅…ώ ‘Π:39‚B³7»Ž²›Π<πΛΟ§Ϋ6Αάn/“θt~—(4‡2Π=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’T8‘YVe>rδH$eΔ½’  @‰¨^½ΊQ­ΉD'Υd2 ͚QFΛ Π¬šB³7·mΒ؟‡τΝk½Δ³σβͺβ‰K;ΰO-S±iνZ΄mΫΦ§t–‘ΈΆΠ_!šCg&GPhVγfΧQvš?Ϊ–…;2ζqU­…Ό{G jTT©Η§σ{Έά<…ζπ_ΊgL‘ΩώShΆΖαο3        D '4HlΑιtβΐ~χyβΔ ¬Z΅ ϋφνCηΝQ£F ΏύΚϋβϊυλqΙ%—\†σΤ)4ϊl¦«ί;—wΑη_θz^Z‚]_iέ?ΠΌΏώϊ+’££Ρ°aΓ@]Λ₯=''yyyAe\. 7Υ=γM›6‘Z΅j¨_Ώ~y!*φΎ»wο6ή‡Z΅jUlΏςlΤ=γ7ί"•œœ\ž˜,ούϋοΏγ?ώ@‹-,ϋ”wƒ|―Ρυ/Λ› οO$@$@$@$@$@$@$@$PρT(‘ωΜ™3ΨΏΕ£Μ“  €fΞ;ο<ΝVT2Λ‘Π\2+Κ,šΥ’Št‘yΟΡ#ψηͺορΪ†Υ>kΖΔbd›φΡͺͺGΗx΅λ*ΏΚErm^QύDWnšƒŽΠ«#…f/ρΔαp`Λ–-–{έΉs§!4KaX ‘:RΘm€IPK{dσj,;΄ΟθΫ#±žiTϊe(λ j%άiϋφν†Π¬«)¦,ΜlΖ%Œ'¨ιtΟxλΦ­ˆ‹‹C½zυ‚ΪOYwΪ»w/δ{QΣ¦MΛϊΦAίOχŒεϋΈό©€€€ χT–₯,œŸŸΖ—εmCΎ…搑q        €¦*”Π,Κκ:qά R΅¨( »$£Ϊt@νΈͺ^mžθ, pmσί+7 Νώσ t•Bs B‘ΥnW‘ω%ρΩφΨς/0λV‹ΗξΓK5X]ί'ΝMSh6I¨ŸuϘB³zΆζHέ3¦Πl&₯~Φ=cυq$        @$ Π‰©sΟ$@$@O€BsΔΏl€B³ZŒvšyωε΅?abζJR³ηQ΅Jώ―ε₯ψλ₯Q§j5Ο¦ λ, pmAΗθΥQWnš½b ϊ …ζ QEDG» Ν;ŽFΓχ_weψσ탐Z;ΙυΌ€θϊ>iξ“B³IBύ¬{ΖšΥ³5Gκž1…f3)υ³ξ«οŒ#I€H€H€H€H€H€H€H€"‘…ζHL{& ˆxš#ώ%` šΥb΄›Π|τδ ΌΊξgΌ°ζδ8} όω’ΛπdΫ¨[­ΊO[(tΈΆP’tχΥ•…fwF‘<’Π -ϋχ΅«Π,“»τΓw°ζΐ^#ΔΡ©Wbl»N₯¨ο“ζ†)4›$ΤΟΊgL‘Y=[s€ξSh6“R?랱ϊΞ8’H€H€H€H€H€H€H€H  PhŽΔΤΉg  ˆ'@‘9β_Ά@‘Y-F; Ν3ΔΈ_V`―σ¨Œ‡ZΆ…½Β™Ν‰uΈ63₯ΠΞΊr£ΠZŽfo Ν& ž%; ΝΟόό?όγη[Υ¬΅}(΅Πu}Ÿ47L‘Ω$‘~Φ=c Νκٚ#uϘB³™”ϊYχŒΥwΖ‘$@$@$@$@$@$@$@$@‘H€Bs$¦Ξ=“  D< Ν° Νj1ΪAh–™υΛrμ9šοaH‹6“z’γΟρi η‚Ξ’Χ¦–¬ά(4«εI‘Y›]GΩYh^“·—~τŽ+Ίνw=„ΥΟu=/ΙΊΎOš{€Πl’P?λž1…fυlΝ‘ΊgL‘ΩLJύ¬{Ζκ;γH        H$@‘9SηžI€H€"ž…ζˆ Ψ…f΅+²ΠόΖ†Υxnυrόž‡Οζοo–‚§/»υ#PκYbΰΪ|^ͺ/PhˆΘo Ν~±DμE; Ν2Τ†οΏŽGωΎpE<ή¦}©d­σ{Έά0…ζπcΧ=c ΝφϘB³ύ3‡œH€H€H€H€H€H€H€H ’PhŽ€΄ΉW  8K€B3_ v @‘Y-Ŋ(4Ώ΅)\υ=Ά9δ³ι{š΄Β?Ϊ]‹Ξ©αΣV’t~Έ6΅€uεF‘Y-O Νjάμ:ΚξBσcΛΏΐKk2β»*)ίυX*Qκϊ>in–B³IBύ¬{ΖšΥ³5Gκž1…f3)υ³ξ«οŒ#I€H€H€H€H€H€H€H€"‘…ζHL{& ˆxš#ώ%` šΥb¬HBσ{›ΧaμͺaΛ³w>pYUχ$ˆ„¨˜”dLQΡpR©QΓ’΄΄CΣΤ"§†…Λ•5ϋε–5WΦάζ–5·t³Ε’ΜΚLŠό‹eΙ’J KM"44TTDDΠΗϊ{ξ}ξσηή+Κ‘ησΌ6οΏsξ=ηύ9ά2ή|©ͺτšμΨψŸβ)!2Η·mοuνLœYΰΨμ%.+7 Νφς€Πl[sνΥά…ζείαϊw^Σ㫘π:„Ÿ―7֎¬οIm~š5φ·²gL‘Ω~ΆZOΩ3¦Π¬%e+{Ζφgƞ$@$@$@$@$@$@$@$@ΑH€Bs0¦Ξ9“  = ΝAΏΞǎΓ?όΰsΌ7nDYYF…:ψlΣT'wμ؁ππptοή½©†ΰχΉη‚ΠόaM%žΪς|}δΧ<ξθ–€§“Γ₯Qx];“'d86{ΙΛʍB³½<)4Ϋγζ«—Γq 6lΔΪ5ΰΘ‘*τNLΐπᩈ‹λμ«Ήίs?ώψ#>ϊθc€€$#$$Δ«ςœόόMΨ²e›ψηω\|q ϊυ»\‹–-[z΅·r’Ή Ν ‹θ—†ƒu΅*–]7“z]a‘©Ά²Ύ'΅ΑShΦHΨίʞ1…fϋΩj=eϘB³–”ύ­μ۟{’        # ΝΑ˜:ηL$@$τ(4ύ8glίΎuuu>Η»{χn8p½{χFDD„Ο6Mu²΄΄aaaθΤ©SS Αοs‹‹‹Ρ¦MtμΨΡo›¦Ί°ψΏΫ°όΔμ:ι΄ŒγΈ1κ"܏nηGOŸ΅ύ;w’GgνyVΔ±Y‘εj++·ƒβΠ‘CR·}ϋφ‘ͺͺJΚ±)"ψργΗΡ­[7WΘ’μ}χέwθΩ³'$‘aΤ՝ΐwLΔώ}0cΖ4Δ\|ςΦmΐ₯9ψΓ‡!CωομqeΙ’xξΩωX³v9Ϊ·r»ZSscFί-Φz%™φ:^t!TΒίζώSmχήΚ₯ˆŒlνΦΗΚA0Νχ~Έ/}ύ₯ŠeθOΊα½Τ1V™j+»$G‘ΩTŒ 6’=c Ν Ζgκ’μSh6cƒdΟΈΑΑσ"         x Π섇ΑC@©ψhφΪΊ5Zy5vΰpω>Q$«D΄AL{οVήݎ‘|Ο>Ԝr^iΥ&—\ΨΦ«™Χ ‡ω~17eT­ΔΈC½nδ~Bkλ~ΦύΘχόέۏuΗ `‰hλωΪs͌bξΗj€Π‘C  ’ν+ύ}ΈpJ~iλΓά8¦ή΄Z·”ώΓ9m ϊΆΎ_¨hγs2ΚΊΪ#Φ•2Ί΄jΣήάϊΠοΟ0G€B³9NlΥτX‘Ήρ3±BsυΙΈ3οm¬όΔkΒ·uιί_u.»ΰB―kgσ„Μ’Ηfo%ΘʍšνεΙ ΝφΈ{)•ŸyζylϊψSΌΉ,‘‘Ώ|}φΩη˜|ίΓXΎbQƒ•šO:…’’]˜?οElάΈIύαžU«ίDTT;㣐“σ^Ξ~έλ9ΚoeΘΌχ!$''αχeΈυ±r Bsξξb [½\ΗRsΟ#8ߐ™~α4vd}OjS’Π¬‘°Ώ•=c Νφ³Υzʞ1…f-)ϋ[Ω3Ά?3φ$       Fšƒ1uΞ¨+Α‹Y«pΒ,‹°dN€KΝ»6­ΔΪ­ίzχθ„©C‘γ[l.Ωψ.V}±Ϋϋ©!mΠοζaθί­½χ5qΖZΏ:¬1 Ebraρ©˜tKCΚ\m}>X;Ωζrά7αΊ€r΄ΪάΐΆΝε£0αΊν.†­λΉΗ(ζΏζE¬*V&δžƒα† ξκύ}Ά AtΧ+pγΝύq‘φύzΓΊ¦f`h7οΚ`u%k΅ͺX8ΗρȘ| ”Ζητ‘‰—x―½"š9έ Mφl[•ωEήλJ΄MŠA‰ΎXϊœO’@@š"bƒs€ΐκΥ«‘Ti5j:tθ Ոwμ؁ππptοή]ͺq)ƒ‘Mh.=zi«—aΗα 7VΓ»Δcζ•)θ-G%i™EŽΝmι˜>•…fΣΊ5€Πμ†ΓΦAeε Ίρ6ΏςŸgΟEhΛ–xδ‘όήΧοpϋΘρ~[*ξΏ^΅Bσ―σ.ΈΐύοΊO?ύ p­ϊΟ›­‘χυN<0e’η%ΣΗΑ 4+0"ώύ,ŽŸr¨\ήtξθήΈUΐe}Oj B³FΒώVφŒ)4ΫΟVλ){Ζš΅€μoeΟΨώΜΨ“H€H€H€H€H€H€H€H  PhΖΤ9gΐQ‚E/¬ΒΡX„ˆkυE”±2GχW…ή’5 …\+Κ?ΖΖβόε#ξΓu—hv¬Π-o-DΑ^M‘A›θh ¦G΅RΝ’UΧΗch/c΅f;ύκ°aavˆ!F‘yb‘Yk«Œ!b"’’–Χ'"©Χ56-Γ­ϋœgCΊbόδ‘0ΞΘyΑʁ]λ!·H€%Ζ‘)Ζap€=žξϋPοοϋrύΩh€έw'Ί(±ΦGΌšoρ%4οZ¬ά"·1Ή='€3ξ˜< ž΅$λ΄~Bσžo η —Θ!*wG  G΅5tJ…‘WRjn0F^4M€B³iTl(1 ΝφΒ‘Ihώ`―Χΐα_₯Π«M^<W]x±½ ž‘^2‹›½ΠeεF‘Ω^žšνq3φΪ²₯όΓsXϊζBρWCε/ΉξŸ―Ώ.ΖCώ+W½ισΊ{k@©ψόπΤΗρΔ“Ώρš³Ύ&~γΝ1ŸrCΧ<Ÿαο8X„ζ1λr°μΫ―U ιέ{αυAΓύ!±u^Φχ€6 Ν ϋ[Ω3¦Πl?[­§μShΦ’²Ώ•=cϋ3cO        `$@‘9Sηœ}p‰¦aΈ1czyε…cΟΌ³ΓΩ?¬3ΖC—ϊvJ6`ωͺN ZΘ¬c…ΜͺΥ :V²Ω«ΎUϋ…D'ˆJ’ƒτjΐuΎΒ»ΛίΗ>Υ#ξˆQŒ†¦¬ΪλgEv΅ λ*ͺ9m¨š³Ol'aΝ‹ΩPŠ)koΉ[Ήβzn`ιΪ 4Ϋ¬Π¬‹Ζa’šς$g5eu|u‡±mΓZδ;Eβˆ!€ ¬Ν†1ιρΣpχ57Χ:3Vh.Η²ωΛ‘jΰρ1φθŝνΑΚ₯9ψVuθ#„t=Ρ)]k€Ή%›(4ΫΗnR Πl/Y„ζη·oΑCηΉMβΚ6νρΚ57£W—8·σ2Θ, plφVˆ¬ά(4ΫΛ“B³=nΖ^―½Ά ‡φ)+νŽ«ΑΠΤ1xϋΧΥΞΨΥη~CBσΆmΫqΟΔ)xζ™§qέυύΡRT~v8ψψ?Ÿβα‡Η‚Οαͺ«ϋωΌ―™“Α"4ΏΊsΖ}«"9?$5χ>bι6²Ύ'΅ PhΦHΨίʞ1…fϋΩj=eϘB³–”ύ­μ۟{’        # ΝΑ˜:ημ“€oΡΤΨԁMoΌ€­ͺϋΪIˆΗ#uρXkUW"ͺφU{Ε§³¨Ά\‰…_ι6{_‰‰Π±cGtκΤΙνš 2‹›½"+7 Νφς€Πl›±ΧRρƒ”φaζζG@IDATπ+4ΧΦΦ ‘ω,_±νΫG»ϊάoHhV:(•˜Ÿώ_^}οΞΈ =tŸΧy+'‚EhΏα ]φ\Ν*!œωΙιώ ²~;ΘϊžΤFH‘Y#a+{Ζšνg«υ”=c ΝZRφ·²glfμI$@$@$@$@$@$@$@$Œ(4cꜳO>EScKΗ.,z!GΕΉŽύFat­Ž²±‘KBι4“G& wΧ%«vLΎ£―ΌΠΨ‘~06Ύ»ŽPtλ3ˆΒͺέ~–ͺ7Π\²ςE¬ϊV”gŽNΖWUb©*wG‹ͺΒwzTΆφ\½ς±‘²ˆ~OκΏgΓ"δμɞ‘Y‘ΨΗ ‰½mύθ|3C֝RΖbδžΚϋl\σŽž Aη«!ρB— νwΌ@Phˆ—Ο šνΕΤ”BσΑΪγΎf9>ή·Ηmπ/ Љ—^¦ŠSšέИ:YbΰΨLEθֈB³ΣšM£ςΫPšΧ‡"ϋϊ4¦ΠΌqγ&LύΥc?ώN Ύi Ϊ΅k‹£G«‘—·/gΏVnΎqΠυΎ†‘ŸSΖsθΠ!ύΨΈsςδIlέΊΐυΧ_/ξΈ’΄±ΩΪί±czχξ}ZKί΄U|―ήc|—žψσεΙ§u?cηΖŸρ~½ΏsηN΅Ίw\\\cίΊQξW^^Žƒžvƍ2?7‘=γ’’"DDD sηΞ~fΠ΄§χξέ«Ύ‡Ε“τ#{Ζ_}υΪΆm‹K.ΉDJ‚eeeβŸOGΡ«—g±y†«Όkϊφν+Ο€8        8 šO»6/>ESγlΑ‚₯8…0 ? ‰š‘jl#φ]ςlΌ¨φ{‹[΅ίΛE΅ήλ Υz=ΊΊͺ[κgWhNHΓΔA]άΗ`ιhޘŸ₯€u§γ12±F/―?’n’Qm"‘Ωg…f1–EYP|f΄Ή™C+ϋψΤ Q1»΅ }½$k={qŸ΄~G‘ϋα·jΏ6½Σ0a “­ήH͜΅7Κρ–`΅·ώ)`Π€D΄§·μŝ'…ζΖcΙ;5 ΝφΨ7•ΠΌύΠ ]υ&Ύ;¦όCΧωΉ(<oέr;ιθω•B³FΗό–°yVΖ–²r£ΠlLΙό>…fσ¬ό΅<[šΩ8νΦ;1υαϋ‘š:Ψk8|°3ŸœΥk–αόσΟχΊ¨¬¬Δ7ί|£zmwοή­ ͊0¬‘2~!·G§5΄7χ‡?νϊJ½G»P|ΠοΖΣΊŸ±scŒΟxΏΖή/--U…fYEȊŠ >|ψ΄3nlnΖϋɞqII ΒΓΓ₯όν ΗύϋχCyυμΩӈUͺ}Ω3Vήγ‘‘‘κί€W?E>vμΊwο.γπτ1QhΦQp‡H€H€H€H€H€H€H€Hΰ'@‘ωΓo<ΎESΧύλJΦ#K­8lQ]Χ΅½]λ"·¨¨—gCφlΐ 9;Δε6H½oΊ™”T6ϋ‰ΞΨ°PΊΚβS1ρ–†~έ¬«-BB&ώοώ9…Sm0ρ΁5£όT}΅―Ό―Όy~υξ‹x·¨ΨΡ™χp=7π’x2' 8ρ꒱¨–Ω‚§ž~ΜxZί/~Ǝ„΅λV 44π_lόρG<<υq<ρδopΑΪίΒ Δ°ά>rήΝ]‚°°0ύώڎ"<ίrσ(,_±νΫGi§-mkjj°fΝUh5j:tθ`©ΩjάοΘοkͺΡiρ|}Θί6ύλPH?is§1ΖgσΡ¦ΊύχΏUΧP||Ό©φg»Ρž={TαUfΡPφŒΏόςK΄nέέΊ5τίΆΞv²η}χέwκ{¦_Ώ~“’νɞρΆmΫ….]N§ΘΒ™ƒόΰΔ‘#GpΕWœΉ‡œζeΟψ4§Ηξ$@$@$@$@$@$@$@$@AF€BsΞιϊ'ΰO4ΥzΊ΅ΣΕήϊΚ½’d³U‹ΔewΪ±g#^yWœoεϊF°βψ$ώ’гΏηκg[hΦ&ΰΉ •¦'‹JӞηݎΨΈθUή ι”‚Ι#‘ί%e‡ E½WθίΓn"‘ΩmΜmz#cΒ@η<AhVΕλc_αΕμχ‘κb=d(2ΆX/ψXκhͺvaΝͺ΅(p ΦΖvLΈ#υ‚k΅―rŸ¬ Πl{ΘG€B³½LΞΆΠό»Ο6bΦη» vL·K±θ†4„‹J’ƏςΝxVh61·/³Δΐ±™ΛΠ؊B³‘†ω} ΝζYωkΉkΧw˜0~2Φ¬]VDυl·nέ,_ώώρ9hΡ’…ηe―cBsmm-n>–B³ ΦXοȟ½΅Ÿψ^ΝΰΧW\Ώόμ―<μœh¬ρΩyΆ™>šΝPjΈμShn8?3WeϘB³™n#{Ζ žWI€H€H€H€H€H€H€H€Hΐ…fw< bώb I]ΙQ‘ΉXŠ Δ™’²ŸŠΉ%’Bσ*Ÿšέ…fΧύ΄'8·ρ©Έ₯[kΈd`kύl Νm.ΗΨQWΐqβ”.Ν:„aΡν[»ΛFξ#GUΫρβ+ͺβ6~g›ΓxwΑkΨ}J)X-ͺE*κΘ%4%lu܍%4‹›Ψς–μUo|ξΌdζ/W*v»ηͺ6¨Γqμva[Qφδζ°Ξ)˜8μ =cξ“€Uš­c{ PhΆ—ΚΩš«OžΐΈχsρφn}υ<Ϊ'Ωνœv |3žB³FΓόVf‰c3Ÿ£Φ’B³FΒΪ–B³5^ΎZπΓ9r<ξΊkΣowk’HΘi·¦γΡιSqΣMΥkί|σ­¨>[δδ$œwήyn핃†„f₯σμΩO’5W{υΫΆm;&ίχX—·‘‘*ώ^ 8Lš ³ πΨ§ͺDΊDΆEιΨ_6@Ηό%™ίαΚ,(4›Ο_KΩ3¦Πμ/9σηeϘB³ω,ύ΅”=cγζy        πE€B³/*<” Ν.i7Ι’Ϊπ•z΅aw\»Φ/BnΡQ Ύ"ok!Η.|ajD³„ΤL LhGΚχ‰³!β!5(ΘY…έ’0―.Ϋν+²°‘mBšŽνύzΗ=!g‡˜sύ'$DLͺώsκ”°™ΥO'άρΐH\¨ξž/Dη[4ΡΉΎ©ΗΖΘT­|μq=Бޝ1φah#*a‡’oe-Η^ex’:s¦¨Ξ¬;κ(4sE†ο—άΫ Šqͺ‘Ω8ŸΊΓ%X«¬ e‰ΕΠΪ3φγ> "@‘9!^?PhΆ—ΩšKAκͺ₯(ͺ<€²mΛ0Ό>h8†vξŸσάQΎO‘Ω“Jΰc™%Ž-p~ž-(4{1wL‘Ω§@­™ψž‰S0σ©ιHMŒΠPρ7§οχaΪ΄ί©ςΒμˆsΞΏο-]šƒ½­Vt6ώP{†?‘YΉώ^ξZ<ρΔρΜ3Oγšk―V+BΧ՝@AΑgψΏ‡‹Η£Gί¦έΚς6Ψ„ζ’Κƒθ΅4Kη΄}Μ½θέ>Z?Ά»#σ;\™…f»ΙΊϊɞ1…fWVvχdϘB³έd]ύdΟΨ5Rξ‘        @`š3b‹ !PhΖΌ1?‚G›ήi˜0Π—ό[…• ^Α·B’ λz#& ν%Z—cΩόεΨ'φΒΊ¦ŠsΎδ]6,|;„΄ͺ ΝΆϋY‘…­΄υ·\U˜ύ΅ΠΞ»ζfνΉΊ,$ρΣš#D‰ƒtqΉκ«wρΚϋ»Υαu½q<†φjλjΠ³κ%τ4!‘wΡUgm*Ψ³ρ δ|!VƒaL~Ηi¨`­ίΐ 4οΩτ.VU Ut?ŒυUΉξ+Ό˜υΎ Ψ»q¬ Πl•ΫΛH€B³½TΞ΄Πόαχίaδšε8|’N`|Ϋ(¬zβΫϊω‰°ϊ–Κ7γ)4λΨLοΘ,1pl¦cΤRhΦQXΪ‘Πl Wƒ?ϋμs<τΰ£8qβ:uŠΑή½εjUζ'ž|ηλ}WΎ·VTQή€gŸ…-Zθ硝†„f₯Νϊυβ7Ώ~Rkn1zζΜG‘:τ&ŸUŸέ7plB³‚"ξ΅bWu•JeΦUΧα·}―i€ΉK2ΏΓ•Ph6—cC­dϘBsCι™»&{ΖšΝεΨP+Ω3nhμΌF$@$@$@$@$@$@$@$@ž(4{αqΠ,4Ϋ–-@ώ>΅€/n̘€^­έqήφ.^Λw ².yΨώξ|Έ[醔;&α g™bCg_B³έ~Y8AT?δK Φmhk’R²ΦΛΈuμΪ€rw¨§z§ŽEŽa¨Σ«2‡ U«lxm)Š• Γ“ρΐθ+ŎαΉΗθ’°‡lGCϋzƒ|μl k^ΜF±¨Œ +HΔτΞ0iX’ΗνΕψeA-J-ξ™1i”₯ΰ9BkτrE€Φ?H͜₯`·ήΡH»οNt Υ9w„`ύ’¬•aΧ•G+’€%š-αbcI PhΆΜ™š±c+ψΟ:· Ύ€ –ί4mΓΌ@Θ­‘8PΎO‘Ω“Jΰc™%Ž-p~ž-(4{1wL‘Ω'³­Ή²ς”mXX"#=ώςkφF&Ϊ9R…ΊΊ:ρwΗVhΫΆΝi‰ΜΪγ‚Qh~μΣ1»°@EpetGlΎ=CΓa{+σ;\™…fΫΡκeϘB³•νΩ3¦Πl;Z½£μλε         ˜ @‘Ω$6 f„fή†―εCQ“Ef$§ Γ•]”Jƒu(Ω΄«ΆξU―@ˆ·’°ώ-ί*Qaχg…]Ejξ:»9­fG]v~ΊοαμΫ55C»Υχ΄ΥΟ% ‡tJΑΔa pΤ9œγ Eλ֊TδjΦu&άάΓG[ ΄Uk΄ς”lλο΅ύ-!kοUJRΗ ±χלυgΆ,Γ₯F΅&ρΊžxŒFα·3Fe¦’½£ž3jΥΊ5ό Ρ% { Ν‚@Ιzd­*RGέoξμ£ξ΅ςEΌ­j:#:aR$’­ς€ΊΨ΄6[w+†ΆβhΒθ+}t1ΩΗs£<­τΤXŽ=B ΟqJα넇 B―g΅θΊΓ%XŸ³ ίͺ Γ€ρ“X_HZΉ ?$`—…f»δΨO&šν₯q¦„ζ{>\‰…_ι6¨i—_g’op;ΧЁςΝx Ν ς}Mf‰cσYCg)47DΗ5 ΝώΩγ•`š?ΩΏΙ9―θqοχ.ŽˆΤνμΘόWζC‘ΩNͺξ}dϘB³{^vŽdϘB³TέϋȞ±ϋhyD$@$@$@$@$@$@$@$@  Πά0^ ".±Υ%šϊšώ-o 9·^\φΥ@ˆͺ7ŽŸˆ^iΥWkπΚϋΕ†!j΄SŽΦNG#5γNh>³rΦz?—,¬έΥΧΆ£wGχo E₯a§›λ«™σ\DodN―ΊŠ’rπ"Q9ψ¨h}ωάyέ%Ύο!Ϊ-ν”Η8₯asΟuŽ1Ζ%$ϋΎ»σlt2ξ»σJŸRsΙϊ…XU$žn¨¦μΊU6ŠjΛ_(“’zΪ}κ+$—γ­ωΛaLZωυΗ§τκΣJσήȘ0P—ΈB³V΅Ωυ±wx‹β κ3w_g»6.CξŠτ­}ΌΧGXΧ1ih/­·$pZ(4Ÿ>v–„…f{A4ΆΠ|°φ8†―YŽχνΡ.ώ™™u}*~ή£·~Ξ̎ςΝx ΝfHΉ·‘YbΰΨά³2sD‘Ω %ο6š½™σ™`š•Ό;-ž‡οkŽ©Ρ?ν`Lι­ό†$ϋ™ίαΚ¬(4ΫΟVλ){Ζš΅€μoeϘB³ύl΅ž²g¬“[        0C€B³JlΩt©"›vĈFϚ«²¨Ϊ³ λΧnΒήwΉMηήtγ@\’—fvGWw@TΫ}C|[αa‡„‘cΧD Τϊ(3l­Ÿ9‘9">oΉΔ€Πœ „ζA^B³«ͺuΰΚΑ[–-@Α>Α+ΊŸϋ!ί„Hνc7sB³OYΩΙ_—ΠΥgχχ–žΛ7aΑς­ͺhά¦w& μR\Ά­Y‹MΕϋ<Δσ0tΎ<7_Χˍ‰.4G_.ζxχsΔ]wmxΉ;*Δ^€fN@7ƒ%~Έd 6δoΕή£ΞΚΠυƒ"v4zχ€‰ΞJΠϊyξΐi Π|πΨUšνEјBσφC0tΥ›ψξ˜ϊ“Aκ€:‰jΉCF£―ψuχV?Κ7γ)4[₯Θ,1plΦσ€Πl™ƒB³=nΝ΅W° Νχη―Ε?ϋΉ덝:c}Ϊ]§±ΜοpebšO+^΅³μShnώShnώŸώ y        `"@‘9˜ζ\Ÿ@έ1TΥ)Rs"ΪΆφ)°ϊ|¨£U5uκ₯VhέΚ‡Εμ«£έ~ΎξΕs8p¬ͺF•šCZ΅y,d w1έTδ|L¬U—‰@ΫΦ&Χ‡ι°! šΉ š ΝφRl,‘ωνϋώ;¨q8τ\uaŒ™Ηΰ’σ#τsVv©†B³bΞΆ2ΛH›υ<)4[g¦τ Πl[sν¬BσΊ²RάΌς =Φ#SΡ6Μώί_e~‡+“€Π¬Gm{GφŒ)4ێVο({Ζšυ¨lοȞ±ν‰±#        @P Π”±s$@$@ΑN€Bs°―€ζ1 Νφrl ‘yώŽ­˜ςŸun˜»žΏφ&·sV”oΖShΆJš­sφUώ Πl/Q ΝφΈ5Χ^Α*4+yΆ[ψWTtώ֟—ފ =mΗ,λ{R›…f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @0 ΠŒ©sΞ$@$@AO€BsΠ/f€B³½OWhΎηΓ•Xψυ—niΐPLΌτ2·sv”oΖShΆNNf‰c³ž'…fλΜ”šνqk½‚Yhχώ»x΅ψΏj΄#γz`ΕͷێYζwΈ2) ΝΆ£Υ;ʞ1…f=*Ϋ;²gL‘Ωv΄zGΩ3ΦΚ        0A€B³ HlB$@$@͍…ζζ–hpΞ‡B³½άν ΝϋΧ`δΪψxίύΑZ…γ!£qMΗKτs§³£|3žB³u‚2K ›υ<)4[g¦τ Πl[sνΜBσ²’―1&/GΆζžGp~h¨~leGζwΈ2 ΝVτέVφŒ)4ϋΞΝΚYΩ3¦Πl%MίmeΟΨχ¨y–H€H€H€H€H€H€H€H€| Πμ› Ο’  @³&@‘ΉYΗ4“£Πl/j;BσηϋΆzφΦTλMl•©cπ“ΘΆϊΉΣέQΎO‘Ω:E™%ŽΝzžš­3SzPhΆΗ­Ήφ f‘ωΈΓˆ—žΥ£Νšo•šν|d~‡+σ‘Πl'Uχ>²gL‘Ω=/;G²gL‘ΩNͺξ}dΟΨ}΄<"        † Phn˜―’  @³$@‘ΉYΖt“’Πl/r«Bσ›%E˜πA.jO8¦Ϋ₯Θx+"B[κηcGωf<…fλ$e–86λyRhΆΞLιA‘Ω·ζΪ+˜…f%Σa⇐rw£Ζ{wΟDυŸΩv²–ωΜ‡B³TέϋȞ1…fχΌμɞ1…f;©Ίχ‘=cχΡςˆH€H€H€H€H€H€H€H€&@‘Ήa>ΌJ$@$@Ν’…ζf+Ž­ΖͺUyΨ΄ιSόψÏΈϊgWbθΠ›ΥΞΤ„++`νΪπι'[πγ?"ιͺΎΈι¦}[oΎωV$_»SNžtΰ†RΠΎ}”zΝα8…uλ>€CT 4~”vΗ\„ώΧ\mq{Π¬«Γoϋ^γv±”oΖShΆNSf‰c³ž'…fλΜ”šνqk½‚]hώwΡΘόh•oΫ–a82ρa[QΛόW&D‘ΩV¬ndϘB³[\ΆdϘB³­Xέ:ɞ±Ϋ`y@$@$@$@$@$@$@$@$@Phˆ—I€H€H 9 ΠάόRέ½» #GŒCžέρΰƒΏΐ?ό€—³_Γ_ό―/ΙBχξ]œτώWŒ»3Υώ™™γΡ*, /Ώό:>όKdύϋyτν{™ήos@iEŸΛp’ξ„~Ύ#oOC·nq깊ŠCΈEόšσI“&©ΩUέWΉΨΆmŒZ΄h‘Ά΅σ…f;Τ3BsΥ‰:ά΅ώ¬όDH€¨ΖόΖΰΫ0΄swύ\cο(ߌ§ΠlͺΜΗf=O ΝΦ™)=(4ΫγΦ\{»Π|°φ8’ύ]χύ΄»pC§Ξϊ±Ω™ίαΚ(4›M;Ω3¦Πμ?;³WdϘB³Ω$ύ·“=c#η        π&@‘Ω› ϐ  @³'@‘ΉyE¬T@5κn t½*3Ÿwήyϊ_ϊχbUL^³vΒΓ[ιη;΅΅΅H»5w¦ίEf6φ_±"Ο=;«Χ,Cddk΅rσc&βz=zt3ήΖk‹/vΰΉηζcαΒωnχτjhσ…f{ΰ ΝΕU‡‘Ίr)Š«*υΔEΆΓͺ‘cΥA?w&v”oΖShΆNVf‰c³ž'…fλΜ”šνqk½‚]hVr½ώW±±ΌLψ‘Δ+ρ·k[Ž[ζwΈ2 Ν–#υκ {Ζš½"³|BφŒ)4[ŽΤ«ƒμ{ ˜'H€H€H€H€H€H€H€H€H š€ΓK$@$@$Π\ Phn^ΙnΩRˆ{ψ·Θ[Ÿƒ–-[ΊMN©Τ<,-φ\{νΟάi›ρψcOcνΊ·’V·?ώψ#ξΊ+S¦LBJJ2Ž«ΑΠΤ1Θ}ο ΄iιΦΦσΰ΅Χ–‘F΄ΟšΟΔ‡B³=ͺ Νy{J1jν[¨:ιͺΌ=ΰβŸΰ-Qi»}«p{΄ΠKωf<…f ΐκ›Κ,1plΦσ€Πl™ƒB³=nηr/ε²:δs 'OžΔΦ­[qΰΐρC_£Π‘Γ™ύŸƒ0qςLΎ#ϊεgψΏMο«£Έ8’5φŽ›bbDξMΞδψܟdοˆB³=nΖ^²gL‘٘–½}Ω3¦Πl/Wc/Ω36Ž•ϋ$@$@$@$@$@$@$@$@$ˆ…ζ@„xH€H€š! ΝΝ+Τ| -Z΄ΐ/ξΛπ91E,>|θ0R²―r½ϊh΅ίώ99οα›oJρΘ# €€Ώžφή\–#Gͺpόx­Zωω‚ Ϊ»έZ‘žϊΈzϞ=γU‘HœBΡhΥ*Μ­­έ ΝφΘωš²ν<ϊΙ·›NιέΟ_{“ΫΉ3y |3žB³uΒ2K ›υ<)4[g¦τ ΠlΫΉά«²²RόϋΙ7~§°{χnυί?zχˆΏνšςΒΝ;ΕoΌθqF†πύ‰ZάΊν#ύή―υˆ6ϊ±™39>3ΟΤ¦΄΄TύaΎK.Ή$PΣ&Ή^QQΓ‡Ÿ±ŒcR²g\RR"ώŽN:5Ζtύϋχο‡ς.κΩ³g£ί»±n({ΖΚ{<22Rύ;@cΝΉ1οS^^.~¨χΊwοޘ·mτ{υνΫ·ΡοΙ’        @S ΠάΤωL  hbš›8€F|Ό"wώOΘΖύϊ]ασΞ_]¬V`^ϊζB„„ΈW`V:ž—-{ϋΚχ«BτΊuπΔοώ(€‚”–ξ֟sζΝ]»vQΟ)•Σn½=„ΜΌιγOυvΚΞdβ|ŽΕ­a€ ΝωΉμ)4מr`ΒΉx³δk·/ Љ—^ζvξLPhΆG˜pσβF‘Ω^žšνqk½jjj°f͚ Π¬dΫgΩBl;΄_ωwύΑΣIΧYŠ\ζΎ(a…fKqϊl,{Ζ¬Πμ36K'eϘš-Ει³±μϋ4O’        €šύ€αi  hΞ(47Ÿt‘ω“¦β—χίγWhώζ›oq/ΑΚUoϊ”ˆΏψb‡Έ> λςVΰόσΟwƒσΓ?`δΘρΈθΒh,xα9όύo/`ρβ₯˜ωΤt€¦Fhh(jjŽγΕ_Ζ«‹ίĊ·^All'” ϊΦ‘w ]»ΆB˜~1wTο»}ϋW˜”ω+ >=φ0Ξ;ο<·ηY9 Πl…–«­Qhή[S4±.>?蔝”VZ…γ!£qMΗ³_νPωf<+4»²2»'³Δΐ±™MΡՎB³‹…•= ΝVh5ΆšΟά’§ΆόG=Hl/Ηάk)|™ίαΚD(4[ŠΣgcΩ3¦Πμ36K'eϘB³₯8}6–=cŸƒζI        πC€B³0Κ½Ÿ{ξxνΥ7qΟ=?W+4―|o-Ϊ΄‰ΔuΧ_γφ,₯ν_ώό7”οۏgŸ%~-o ώωΟ— Œ+<Ό•[Ϋ={ΎΗπawaΙ/‰_ΑέΝνš• ΝVhΉΪjBsY«Œ\³ϋkkτ‹Šμ΄2u ~ΩV?w6w”oΖShΆN\f‰c³ž'…fλΜ”šνqk½(4;“-?°ΤwωB=ζ±ΏD Œ—ωLŠB³­νΩ3¦Πl;Z½£μShΦ£²½#{ΖΆ'Ǝ$@$@$@$@$@$@$@$@AI€BsPΖΞI“  ; ΝΝghBsCšKJJΥ*ΞkΦ.χY‘Y‘‘TTχσ_ΰπαJLΈ;]­ΤΌπ₯WΡ»χ₯ΈζšŸ‘ΆχίίpU?ET?ξ>¬]χ–¨άβ²2ζΗ=n½υf€€$ϋm§\ΨΎ};κΔ³}}vοή­ώ*ωή½{#""ΒW“&;WZZа°0tκΤ©ΙΖΰοΑΕΕΕ(hαΐsw»5άώ"<έν2„·πŸ[‡3p°sηN΄oίΡΡΡgΰξ§wKel=zτ8½›œ‘ή›=°²r;xπ :$εzΫ·oͺͺͺ€›"‚?~έΊΩA{+)p―οΎϋ={φDBBBΰΖlΡ((4»0vZ<ίΧSO<σ³0튫]μΙ.ΙQh ‰Λ²gL‘ΩDˆšΘž1…ζšΈ,{Ζ&¦ΐ&$@$@$@$@$@$@$@$@$  Π¬£ΰ    ΝΝ'kEžφΘοpːAΈωζ|Nμƒχ7bΓρ+ǟ~Μηuν€Γq _~±_n―zͺW―K‘”ΤΟ?/\xa4nΏ}>ϋl+½φg8οΌσ΄nϊφδΙ“ΈεζQXΆόe|ύ>tΈ =b.ξ¨_7ξΌσφ*μ,.Α#<`<ν΅Ώ~(€}}Άn݊½{χβϊλ―G»vν|5i²sϋίD₯λVθ₯K“ΑίƒωΡjΌ}dΏΫεGϊΰW=.w;Χ;vμPef₯J³lelŠr<ή[Ή11Ήυ_Ήrζ<σ<Φ[EDVδζG¦MAjκ`·vͺ8ύΨΣ ΓΜ§¦c•oΞOόšΦefSUU…ΊΊ:™‡Θ±‘  €”Z΅j…ΆmΫJ9ΆΖT° Ν »Ε‹—bώΌ,,xα9(՘Ο;οŽΟ?/ΏόOΔuν,~#Ζ)¬[χfόvζΝϋ ϊ_s΅ΪvνΪπΨτ§πδΜGqσΝ7¨Uˆ«ͺŽβωη…άwΧΰέw_Gτ…ΔΏ«’τ8Q < šύ$bc;©ύ ·#σήqoζxά½κ9»PhΆFnYΙΧ“—£wΪ?αA\‘Λ°£|3žB³υ$d–86λyRhΆΞLιA‘Ω·ζΪ‹B³{²χ~Έ/}ύ₯z2υ'έ°Rό@“™ΜοpeόšΝ€ΨpΩ3¦Πάp~fʞ1…f3)6άFφŒ=―’        €;sB³6όΪΪZρZύ΅­Ϊ9nI€H€H€| ADD„*ŸϊnΡ<Ξ³Π¬ˆΚoΌρžωΛί‘δ­όΔ‰˜ϊπ/ρσŸA‹-Ԑ΅JΚύϋ_α·₯κΑ+ςίώΆo,Y‘ŸSξρμ³ΏΗuΧ_£ŸSv6}ό)¦ ©ΉΊϊ.ΊθBμί—^gŸ›…‹/ŽΡΫΦΤUšŸΗΫ9+Υρœ:uJ½φθτ©=zΈ>&½ƒΕ ΝΦ€ [½ Ή»ΏQ;₯Εόοkνg‘΅ςΝx ΝΦAΛ,1plΦσ€Πl™ƒB³=nΝ΅…fχdίέUŒαk–λ'kξy燆κΗώvd~‡+c¦Πμ/9σηeϘB³ω,ύ΅”=c Νώ’3^φŒΝΟ„-I€H€H€H€H€H€H€H€Hΐω=ΏsB3ƒ#   _‚YhΦx(³"+ŸΦ­[£U«0ν’©­"!WWW£eΛ–ˆŠj§VzφΧρΘ‘*„ Ζαp ];•ΏYϊδΙ“κ’EDœ―φρwO+η)4›§u Ά-z^ο}εά}e²~,ˎςΝx ΝΦӐYbΰΨ¬ηI‘Ω:3₯…f{ܚk/ ΝήΙFόϋY?εP/,4wvοεέΘγŒΜοpe¨š=³q({Ζšm„κΡEφŒ)4{fγPφŒmL‰]H€H€H€H€H€H€H€H€‚˜ΐ9[‘9ˆ3γΤI€H€H€ό ΠμL3=M‘Ω|°ίΎΏϊx½Ϊ‘}hKΞ;›ΏΑYj©|3žB³uΨ2K ›υ<)4[g¦τ Πl[sνE‘Ω;ΩΡλήΒςo§^H2σλBjτ‘ωŒBs _—=c ́3 ΤBφŒ)4J0πuΩ3<Ά          Ν.ά#  8Η Ph>Η΄8| Νζ%­ΘΖ–Š}j‡ŸwμŒ?φ½–B³y|jK™EŽΝb˜υΝeεF‘Ω^žšνqσΥΛα8… 6bνš ό6†ή‰ ><qqΦ~ζΗΔG}Œ””d„„„ψzΚΛχcεΚuψτΣ-oΥ 7ήx=†€BX˜΅ί0αys ͞D€Ε;w`όΉκ…σCBQsο#ލ<ΞΘϊžΤ†I‘Y#a+{Ζšνg«υ”=c ΝZRφ·²glfμI$@$@$@$@$@$@$@$Œ(4cκœ3   4Sš›i°~¦E‘ُΣ_UΔO—fιg—$^ƒώ±](4λDΜνΘ, plζ2τl%+7 ͞I™;¦ΠlŽS Vuu'pΗ±ί̘1 1_„Όu°tiώπΗίaȐAn‘__²dž{v>Φ¬]Žφν£τσΪΞζ͟γΎ_<ŒAƒ`̘ΫpθπaΜ|ςΟͺόœσφ«ˆŽΎ@kjyK‘ΩYΥ‰:΄Λž«_X•:C~M?φ΅#λ{R+…f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @0 ΠŒ©sΞ$@$@$ΠL Phn¦Αϊ™…f?`γσνShD(πuΩ3¦Π8Γ@-dϘBs _—=γΐ3`         p ΠμbΑ=   sœ…ζs<@‹Γ§Πά0°ΑΉK°~ο.΅ΡΔK/ΓK†ͺϋ………Έΰ‚ ΠΉsη†oΠW•oΖwμ؝:uj‚§7όH™EŽ­αμό]••…f‰5|žBsΓ|Μ\=[š«ΑmΓΗβ©§Γ΅ΧώΜkhUUG1xΠ¬Y»ΌΑJΠ•••ψζ›oΌϊk'vοή­ Ν½{χFDD„vZͺνΝ;Ρ£G³>¦[·}„οOΤͺΟ} 6χ^άΝηšj|>γγdii©*Δ_rΙ%>6ύ©ŠŠ >|ΈI26;{Ω3.))AxxΈ”n¨0ήΏ?”wQϞ=Ν"?λνdΟXyGFFͺ8λpL<°ΌΌǎCχξέM΄nΊ&}ϋφmΊ‡σΙ$@$@$@$@$@$@$@$@$Ј(47"LފH€H€H i PhnZώgϋιšύίsμ(b_ύ‡ήΰƒ΄»0°“S`¦Π¬c±΄#«όͺL‚c³₯ήXVnšυˆ,νPhΆ„Λgγ•ο­Ε'ŸlQEc_ ΚΏί‡±c'¬œ¬υύρΗρπΤΗρΔ“Ώ?HΣ^;-Δ° MƒΏΞύ#ϊυ»B?―ν(ύξ½ηAΜyφχnύ΄λΪΦαpΰψργΪ‘ΫV©ήœŸŸΟ ΝnT\Σ?Ω€?oϋD=qetGlΎ=ΓuΡ°'λ{R"+4k$μoeϘšνg«υ”=cVhΦ’²Ώ•=cϋ3cO        `$Πl„fGm5ͺሊΏŽΤQ„Ή³– ‘HɜŽΑ±ώEιΉΊΥ•΅ŠDxSNΒQ’β DΖΔ#6JΞnλ‘ΡψΤ"wξll’2¦#-ΞyΟljQZT GTβcόυi΄A΅"“ DΕ%ΰŒ?ΞQ‹Κj’Δ: ޏΩuqf™΅nq¬gqΝI1_‹xΨόμ Π|vy7υΣ(4ϋOΰΟ…˜ώι‡jƒK""Q6ξ½1…f…₯™EŽΝR”zcYΉQhΦ#²΄C‘Ω.ŸwνϊΖOV+#+Q=?λΦmΐςεοΰ˜ƒ-Zx^φ:φ'4πΓ3:Σ§OΕUWχσκ§ΘΘƒΔ»Ή―7X‘Ω«£αDMM Φ¬YC‘ΩΐΔΈϋΙώ½HΞyE?΅Wό{ΒΕβί5©©ƒ…lŠςοχaΪ΄ί©ςΒμθς₯9ψΧ ΩjEηw)Yy@CBσ±c5ΈmψXτϊι₯xβ‰_γΒ £qβΔ ΌϋΞjόρΟ០žΕΥW{ Ά~ξqB³‡ΏάΈ Ύ-M|nμΤλΣξςj%λ{R(…f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @0hBsAΦ,¬.s &9“‡ΔΊh©ΝΣE…ζΖ°7%Zω˜5/bΖȘ9bΖMψ©FyY%Β£cu¦1—ζbfφfQθΈfLα·°Χzh4:&ΔUŸΩ8PQVGT b"Ο°Ν¬ΜΥQ2‘ITl,\BσΜz‘Ή‘ͺD땨£’1cκΏy4~iodb]œ‘±ŸΉ΅nqΐ>לω{”ζΞEφζΐB³4σ5?5Άlš›z>’B³oψΏϊ8ίΎE½ψ³‹.FΑˆ n )4»α0} ³(ΐ±™ŽΡ­‘¬ά(4»Εdϊ€B³iT~φΩηxθΑGUΑΈS§μέ[Ve~βΙGqΎήε{k±.ož}vZ΄h‘ŸΧvš•6Βγύ›7ŽΈΈΞ(-ݍ°°0Μ›\yeν6ΆΆšc[[φ-nYΉTox$c*Ϊ†ΉWΔ–υ=© šB³FΒώVφŒ)4ΫΟVλ){Ζš΅€μoeΟΨώΜΨ“H€H€H€H€H€H€H€H  œϋBsmζΜ^‚jQxΔ΄ιθ)b4ΝIγ¦!Ϋ±‘° ‡‘QρHœ„hŸ^i5Š6 ¨΄RΘΒ’θpd,’R’«άS8PV΄ε΅‘Hμ‡ςΒ Ψ\\©^Œ‰GRr罫ΛPPPˆ²JεΧw†"61Ι 1ϊ]Œ;ΥeE(γΎ«ψ^-“"Αύ‘Ζζ(U‘—ˆͺΘα #0=½ώ›|Ž –"46qαeΘΫPˆJ1‰PΑ%^ά―Ηύ*Š‹PZŠ„Δh‰o@‹qFχŒΑ Ρϊ³Κ‹6csQ)jUQHLJφWu9ŠŠΛθxΧƒόνβZΚ‹ΛΔύ“‘’«ίίΈS[QŠΒΝΫQVνδίΙ‚―3¦j• Φ9Θ+ΧCc1dtŠ˜Y$ϊxήΟΧzi6NfΕUŸΩˆΥY\T,Fρ:*А'U+ŒΕ|‚zΆ‹5“PΟΤ8ώxT `{λΩ-ˆuQ†ΪκΝΘΙ+ΟGŸ!CΔλ’O‚x’λcmV#gΞ(ΕΉFLEzŸ(׍”=eύ7½£²T£:η>ρn2tYQ!*”e.Φ\‚Ά€Jρu²}{1ΚΥ5.Ύ¦ϊ Iπ4~)+s(*―2w"β#ΛΕΧΑf8Ώ#Ÿ˜„>ρΞυ]&Š5₯¬mελ£kύt֜qUA|ν Φb½*‘ͺ™Šχ€ώ~«οrζδ@ωMˆρŽˆτρ>ρ9_7"< •…ζΰZš}ηέ>{.*OΤ©η_{ξοέΟ­!…f7¦d86Σ1Ί5”•…f·˜LPh6ΚTCEF¬<’VYV$γΘΘΦ¦ϊΩiTUuTˆΜ-qόx-’’Ϊ©• νάΗΨ‡B³‘†ύv Šͺ“'Τ/Όz&Ί5–υ=© ’B³FΒώVφŒ)4ΫΟVλ){Ζš΅€μoeΟΨώΜΨ“H€H€H€H€H€H€H€H  œσBsy~δ•1)˜1Yό:T%EƒΠμ;Τ(Œ˜:F³Ά4s³σG§„΄L€' ΙNωˆ{Ϟ΅Δg;gƒ!5G‘° H•’ηœ†Ζ¦`Zζ`‘”jŸZδ/J5*W@IDATž‡Όba…z|’G`κh_‰Κ53K(―@rζ ‰uκœΕBr^¬Ψ₯~>±Ιγ9$ήyUΜaŽ˜ƒgλΠ„tΜHOj‹‘=w1„[νυ‰JHΓ”τ$]"՟šˆι3Fλs+Λ_Œ,U υΈETL™:B¨½OaΞδ )Ϊσ‡qS3[Ί ³—lχΌ*Ž0mfΊ›”λo=4Nf ‹«Bέτ™MmQύψ£i‚‘¦{–,Α‚ΥE>ζε<₯ηaXs‘‘α’³g0ξλΉhΩl,Ω^ ΅`–ώ…·λυ1}&ϊ¨‹ΡΖ:,ΟΗΜy➱Ȝ™)ώt}Μd―η$ΊΕ ™‚Œd犨-ΞΑμΕ…κΝBγG`Ζ8εk «³ζ‘@Taχϊ„' szΊώ|mξ^νκOD%$!Ά²ΫΛ=οŠ”ŒiηόκΤΧ΅ŸΉ}=‰·AξœΩΨ,Ύ Σ§‰ŠπZΒζΉ–ζe#;ΏΤΗΣ"18s*RκΏΞ t†οΎFYλ§³ζ”wˆς©-ο‘lŸο‘πψΑ˜6.ΕΛf‰΅κ™…θŸŽ™γκο£ή π9ίϊkܐ€‘…f#ζΏO‘Ω;γwwcψšεϊ…Γ’Ϊb”G΅E Ν:K;2‹›₯(υΖ²r£Π¬Gdi‡B³%\ΝΎ1…fsόύwρZρΥΖ#βzΰ­›owλ(λ{R$…f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @08Η…ζj,›=ΒέD‚ Σ5‘PΘxs…°[©%.$γ€xΤ– ‘±TX‡β—†IΞzεOυ β“D…δ¨ δη‰*ΗΞθ#ξ?BΉΏΗ½Γcϋ` ¨r\\˜βrwΡT©2‹J͚?™”1iš4™;‹7;Ÿ.*Κμƒβ|₯Z²Sπ‹O›ŠqIQυ#pnͺ…;G‘{Γ…;έ%Ηηˆ{j£ GBRА<Λ°a³K¬ξ3n:FΔ aΣc’l5βDyΪπΔ4€ [«Ό«<1*>ITUŽBΡ†xp5―bλ°h™¨Ύ]©ž.ͺ„;Χ‚2σΩΧbυάΩ(P—l Ζ͘Œx1Ε³ζ‘XYώ‘ρ˜‘q}"2/_o…₯Ξυnƒ6w΅±˜]bΚ@ΔAΓf₯BΆαƒ>Ι’2ty±X—΅6cZš*λ{ή§Α―'?B³iΥ…˜='ΗωCJΆ)"—ς"δ‹ΌœŸ8! ±ί0|QΫΤ»ΟφZ?­5η\…"·œϊάb„Hή'.Eω’2Όs"±ƒ31"ZΜ³ΈΥΕ…κ{/4*‰qшK,ͺΚ‡fμgΎ†ά%…fDpl)4{η’„Œ<5M―H\–Ÿ-ͺ6+χŽλT!°Ί*#F΄μj[YΈ ss„Έ-τ΄©3 zέ₯Ή˜™-DiΑEOEΧΗΔz8­Μόˆ«Ϊόe£ Ν:#`σβΩΘ"§Β-―ŠΝ˜3/WΝΛ—Πlf=k™θύΥcξΜΕBΠμg φΪ m­CWn)“gb°φυ"ξn>{1ƒΘ)*’ˆΪŒΕωeκΘ’2fρ?Ti„e³Δ-ˆυd—•FΎΎ–΅Ή{q-[™Yκ½)Ύ–§‰―eηΚŚ_ ω(€OŸŠαΡϊ½――'_λΒWhΌΕZ7sšžMuΡρΓ Eb”αb\ΣΥqΥY”+όξ;­΅nxΟΩ[sΥΘ?lR(–ΈώΞSοΚS―@.Ξ— ©>[όp‡{[}ΆώηkhΒ]ΠPhΦHΗ–B³{Ξ•'κΠ>{~R©²¨T[τόPhφ$bξXfQ€c3—‘g+YΉQhφLΚά1…fsœ‚₯…fsIw8ρ³zcΟwυ=© ˜B³FΒώVφŒ)4ΫΟVλ){Ζš΅€μoeΟΨώΜΨ“H€H€H€H€H€H€H€H  œΣBsΡQ%Ά¨Zψ‰υ•l΅ 2ž^•ΈώZu‘s„$¨WΛ­‰g£PT υΊθSk Σ§OCB¨Vύ9ι3”cν‘ΖjΓ’ΊμLguYηUWe_νΊδ*$FυΎB’Τ>.‘Ρ%XͺΧtΤ».`ϊ}5YP―κܟβœ9’³ΓPMX˜‘’u’¨X=ZT¬ΦŸ«ΙΊβήsDulqhm΄ξ¨•hg;+ΡφIΥ’γJ1gΆ³mrζ ‰5ΐD9ΟΞB±¨Ρ›>9STΜVͺζˆΚΟ…ΒοtUƒΦο-v―‡ΣΛLŒΉb­l“σš[Ωx»α5§e ­c…ζΐλΩ%γκύHzζξkG›…u¨―O‘Γ4Q•[xνΏ•μkX|Κ…δΎ@•ܝ·Pώ _ΟΣ•ΚΤυGm΅ΠόEρp±>’šo­‘‘α¨_ΛY«‹έΦͺΆέζήΗUύ9nΘd$Gk·ΥΓs0KYWΪ}|Ισ^_O>Φ…q₯Λ0[©Ί.δύ„Α£‘–’ 3-+.F­¨H/ͺ?g|­λλ°·ζΔŸ-ή«BhFTΗ₯!!Ί~₯T–£¨ΌΡqρˆοiΌ½ssΞΪο|PΈOυ(4ΧR ΠμžχΏΎ*Δ}Χ¨'£ΒZαpΖTχυGš}b xRfQ€c ŸΟ²r£Πμ3€')4DT (4›;mυ2Ό·ϋ΅Γέ=‘=πV½³¬οIm€š5φ·²gL‘Ω~ΆZOΩ3¦Π¬%e+{Ζφgƞ$@$@$@$@$@$@$@$@ΑHΰšK±`fΆΠ^C1xς €Δβ3Θxžβ©.jR¬CT₯TυχΤ;κΧλŸmšΑΩ "λb€— μa5a―,/ YυΥh #χΨu—OΛV/@VAΉ(H]_iΩΠZ}ΙΎ΅EB^b6u)ΫSΜγœ+„]Γw₯TΧ<βDυζ Q½ΩσΉ‘ey˜••o™ο]%—΄Π<§ ,j妋ŠΝF9άW/―μά™Yξ<•ξV2kHhn(οq—!{fJΕσ=eQeLSm­ΈddΟΌ|Kή^ύ•›κ_ξ ¬―CW%ςΨΑ“‘iψΒsXΘ^‘αŸZ¬^0Κ²V?‘β‡fΐyΊΌ(ΉΉ(«VJ{|΄―eqΪηάΥζ΅λΙ\ΟΗ—ΠlΈ·φT――§pΧ½΅χ5υ =#<*ρ }20 1†wŒσϊYXλϊz±Ώζ\Ωλg%$τX!1χINARΌρ…έPnJίζ[knHΐH€B³‘Fσί§ΠμžqΚΫ‹ρŸ}{Τ“τξ‡yΧήδή ώˆB³O,OΚ, plγσΩ@Vnš}Ζπ$…ζ€ˆ‚ͺ…fσq»θ d~΄JνΠΆeŽL|Xο,λ{R …f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @08g…ζJQu[₯eC|Vd§ZέΨhR‹šΘιKhޜ9Ή₯’Uύ˜š΅jՈ‚™S“=εš‡VEΧσΉΠεi‡ͺΠ !4Ek/qΣ½“Ύ€Ήυpz™ωšΞΖ{ά.5VT Ξ4T Vf¬1Υ֊ΧΤe`ίkΞ«ΏrSύkεuX½³η䊚ΔΥΓΕ#\’―ς@MϊΥZ”ζΜFΆZΚWΤ(ŽǨ$ν’Ί-"ΆΛxFdLŒ¨μŠΚ²RT*~³α|Ξ]½‹kνz>_ΟGϋϊλP»©―'B³eŽrδ-ΛEAQ™¨Fνώ‰œq)qϊΙ³²Φυυb_hVμWDGΖΤqˆ«šΧxλk^Ÿm€―mC;ξ’€F€B³F"8Άš]9{τΊ½Ύ@?ρɈ Έϊ’‹υcγ…f# σϋ2‹›ω-eεF‘٘’ω} ΝζYCK ΝζS>X{Ρ‹ώwx?ν.άΠ©³z,λ{R,…f„ύ­μShΆŸ­ΦSφŒ)4kIΩίʞ±ύ™±'        @08G…fVϝ…QIX«μž%―Y’s™Έ§θ¨ή³ΊPœ9Bΰτ”έΕP₯­.Fššυ α‰˜2}4’j…Ζͺ>e·~?΄~ΗQΊ³² Dƒ8Lž™χϊ¦Σ w:麗¦Λ„8Ό]Ζ"cf&βόςQͺοΞF~ΉΎΔB‘bΙl!UΧΊXi"’&~Ί*4GbΔΤ©θ# ρꂦϋΔ½’―7KmμΖ­ΎfΧƒχsόίΣ%ΐΊXΈΞΧJ lΌŸQœΩs 8Ό ’RuΊAPVζ[œ;‹E™lύΉ~σς½ζ΄LτώΚMυ{Έ3°Ί5Ή84nˆ“•;λW…ζΐΩΧ/o ’³ζ­v­q7waΏL|}f©_Ÿ‘ρƒ1y\ŠψJ¬”εbfΦfhkOqc}Ξ]mξ;;ε’žφ5nšΝ|=‰·CξQΩ\ό|‚Ά.¬rU‡¨ώα@eE9J W°Ξ‚Τ⦉lP'~–ΦΊΎ^\sΖ¨σ2ΌηόswφrΤV’\θς°½Μωƒ‘ ι˜‘ž 6πί?ΐ|΅AqKš 0‚`—B³+δ™[ςρΤ–¨'ΊΆi‡’»&».zμQhφbςPfQ€c3’G3YΉQhφΚδ!…f“ ‚€…fkA_χΞ«βΏ)e x(ρJόνšΑκΎ¬οIupβ Ν ϋ[Ω3¦Πl?[­§μShΦ’²Ώ•=cϋ3cO        `$pn Ν•›1kn E•ΨS‘ Ϋ‘υZ’ρBFœ₯ʈˆJU‰ί΄Ρƒ&—B{Š₯B³£8³ͺIΜ‰!±ΪΫΚ²2„ΗΖB‘4•ΟζΕ³‘[,΄κ>γ0mDΌσ€αOM4ʝΪ催YX]&΄bMΞl€O©i³…L ‘Lg̜,τiΧΗQœ+Ζ,Rρι3n:FΔ‡λ©ώ\qο9’‚΅’,Ζ€dbς`Ο‰•£"\©°+8ŠΛΕB“βΣ¦b\R”ΨΣ>₯X Dσrq¨=K)#“0}ZšΞ¦Χƒ»Μ«fΞΝSυυvΆΦΊΎ^μ ͊δ?[ό†ϊŽž.ήΡΪ‹LΜ¦`ΑL¬VΎ°ΫiΣG¨‚Ίž›ηϋ-Π|]΄ΈG: Ν:Š Ψ‘ΠμŠ9vρ|μ©qώΠΘΊχνοΊθ±G‘ΩˆΙC™EŽΝdˆΝdεF‘Ω#(“‡šM‚ ’fš­ύάŸα‘‚χΥNG΄ΖήqSΤ}Yί“Ϊμ(4k$μoeϘB³ύl΅ž²gL‘YKΚώVφŒνό=I€H€H€H€H€H€H€H€‚‘ΐ9)4k’qh\š¨›δ›E―’ σV—ͺχ‰JΙ£ϋ¨²lΩζeΘΚݞΧ+κχ>]9ΦUyV‘₯‡df"9V)Ακ@Qή,Ι/Fp2fL‚P]ό Ő)3­ΙνMTNΖ%§#cˆSŒ,ΞΛΖβόR΅mT8LM2΄>oYΡ­bnTLž21‘B-ߌ rUωΨX%Z.~:ΰrΥG"qHF'Η©EyΘZ’/τO!KΟ²t¨h»@Θ»Šά(΄Ζ”ŒΙ§0¨Dώβ,δ+RŽΰζΧΓιfζCŠ5‘.ΜκŒ€ς|!γζ W|b’‘ωμέ |εύΗρB€α>E$±ΰEEΕzΛ!rE**x‘ ΅ήw[λAQP±E‹ˆŠH@ -όΕ*(r(αC @όΟLάΙξfΩΩMςdζ³―W»3Ο<ΟμσΌ›]ϊσ€Wmƒξ"Y3o’Μ[£GΌ΅•kΧ±zΐ5D½έΫSsΌ~3―`πyο—ΎsFκ[άWkϋ³­γπ@ΐO€@³ˆNυ¬ž8q"ΰJ~όρGΡkήΉsg©S§Nΐ>՘‘‘!ρρρrΪi§•ωVΪ/ƒΎύω:Λ/ν!MkΤ4Ού6mΪ$uλΦ•ζΝ›ϋ_ͺπσ7JΓ† ₯qγΖ> θsλΠ‘ψίΨώΧ*ϊœΉΩ«€ͺnΩΩΩ²~%ίozΨϊΠ‘CJΞmϞ=’‡XSRRμ½!ΚpԎ;€•φ Λͺ~†”α+μΦš#£ί‘wXΪΜxΣ΄Ί09ΏQSQ=$G Ω,™νΥkL Ωvíͺט@³Y*ΫͺΧΨφΒˆ € € € ΰJJh.Ω%Άσ°‡΅Ÿ–>τDΖm?αβ]R=7Š“-l[¨'+G+-€;\ ΰj'ζ½KΏvςΩνΧ³σhρ5m'Ϊ΄h ½BͺΪ…<- ϋ²Π-ξ— ­₯°Πtκ-ž@jŽlœ¨½€Ε#JώΫb5[β΄Pva˜54k7Ψ²`’L_•iή*!!N›–‰!]΄pewΓ+ψιΦΥ&γ_žωkψY»\΄’Gύ5΄¨νΐϊ²ΆΫΆη τhΦe°άΣ½]ρ₯ݟΛΣ“W”tΣvj~|l™ωλΑαίΡΦ¬PΫQψcGaώΉVjcf½€δ}\² ί#OύKήs₯λθޞχ‚9ήΈνnmΗλΙƎΧΕ―’$ƒ΅έΝΫiοi«οΓUSŸ—Ϋ΅=w=ΑxίιŸY­}ΞWςόΔEΖ{=Uwy|xcΌ'ΐͺŸœ7p¬ΌNΠς/;VΏ@ .©λ-;] Ζϊ]SΊvž;nœ­εΧk§ήχ―έ§8XnτσkϋG›Ÿ AξmΥUrVΙ hwωυ‘½V\QΙη@ΙNΖ%ο™2―›ŸsφίskfΎ,σ6–όdϋŽx~†τUοώ|’L^Qς™“¨½ΗΖφJ2wΊ^Οx hφΒpΘ!ζπ…||γ·2ληνFΗ‹“ΙΏRrζυOlužά4Έ―˜ΉiσήΪ.Α2vsυ 0οΤYΥΛλή"«¦Ώ Άj/«νΊΫ·ƒgˆξ^%Σg.έ%Ή?νZœtΈv  μͺyKv–mΧk” ξ\Ό{«yƒ_Ι_9ڎγέqά;Ό«_ϋ>Τvά‚RO^£– oΓβW²P{O8ΪΨmΫηη(GfΎ0±x_sMΉςωτ©²bΛ―uΧ_%‘•tξ'«ΦlΧOΜ9νώ|²Œέ]κηL9ςΤ³V»^νJ~ςE ΥΏ …κ υΏ‹ΗP©°?O^χ.~_”ά;¬«ώϊ#g£LŸ>OΆψό h:νΊΘΐέ‹wIί’νP^^ου˜Όη΄έζiŸ©_mΡ„ΌqI₯Χ@ι~^3―ΖL™ύς$16ͺΦZ΄ΆG·1όz½ξΐ!Ν wδkͺan!Kτ’ͺnϊ.Θ™™™JΰτΟ\}χhΓyϊq#//OΞ>;τg`Π7D^ψ駟δΤ©SμΠ\†Ζώ·&Πμ/ώό©U+δΩoΟθΨ©~#YwσšΓ³…μA 9$₯‹š-1…μ€κΏw<“&Πμ‘°¬zν―Œ‘ € € € €n¨tfO2©σ0Υ«MΤ¬Pr &$&i;5—ΑKΈea^i;³iΨ„FJΒΠZΨςi-l©?‡==JΪ«7™LcΧβ^ΪΆ»ΉZ°EΚ&JRRIΐ2Θπ ΝyΉΪΌ΄«q ‰’£δuύβΏή²0O ηΖi;ΞζIQB# 5•"mΞz7NsHJ >g½_žvΟΔ€DYcξ\Vο‡ 4’a­Τ&ΨŠ4ΫΈ€$£V9ΖΊ΅Z%Ιμ^υZΤ?όμ>΅kuΘΝ+’`ον`οΓάUSeό‚νΪ€Ίh»bwΧ"χΤήΒέ΄`zράυΐ’Vϋ²|”Ό―υ]ΐ£y ζZj ΪΞΜΉyΕρ_•ύg_©ΩΔ¬A_Ώ±Ι{˜ŸmγσζΧ>•y½1ƒγFΆ4Ϋb«΄ƒ4‹ΜΚΨ(·|1ί¨aB΅j’}Ϋƒ’X=>dM 4‡δ zQε s ZΆTu#Π²lA/hJγΚ š#/ϋšύΪNΒs¦˜·ξ^9°9CΙ_`πLς‡~ψψxiΧδ—Ή=ΧTx&Π}4Go¨κΏw<+#Πμ‘°¬zν―Œ‘ € € € €n¨tf=Ԙ™“'‰Νšωξςλΰκεεdj;%'J³FΑCœfSΫ΅xμΓ}ΛΝfγμ—e¦Ύ­j9ΏYξ ~?X©9WοΟΐΝ:Λ=Γ{;πj‰]Y3o²Μ[“iττίνΧ{xωINfŽhn&!ή†ε?­2zŊϊy Ήœ ~―‡œ[Y\tΫzΛΒΠ₯χ$ΠμΒhι΅hΆ|Ί3Γ(ό­ν~#Σ―Ύ1움@sX’€T 0·€% Ϋ¨ͺζ°₯ ؁@s@G7ʁρΔ‰ςν·ίJvvΆ’ΙΑ3iΥ>‡ZLŸ(?δΣ{ιβ«δšSΥ 4{Šeγ™@³ 4Ώ!šύ@lœͺφ9γΏΝώ"‘Ÿ«^γΘWΔ@@@@7 TΎ@³›«bνεΐάΎhͺΜΤ‚·ϊQ$t(μb†\ς(Ϊ½HžŸό•Ω”¨νΤ¬οΨ\¬©5'u‘‡Gu/Ω©ΫμΙAy”χΟSy¬‰Χ@ΐ-šέRιβuΊ=М]X Mޝ`=½ηΉΎΥζy°ΝΑdB·«`n‘kμͺͺnšƒU,t;ζΠ>NΌš«ύo茌β_κ ΄Ύ;wζŽ;J­Z΅u©πΆΝ›7KJJJ…ΟΓ3—vl”χ³v§ηj΅μΡΈϊJΝΟ3OΟσφνΫ₯zυκ²eKO“RΟ999rπΰA₯ U{ϊpλΦ­’ -Z΄πΏ€ΔyVV–φ—ώr₯}ϋφJΜ'Π$T―±ώ9ž˜˜(M›6 4ύ oΛΜΜ”όό|INNπΉ„š@jjj¨Λ\C@@@@ h4₯ =э³_ΠvJΦβ°­•§‡w έ9WΝΧ3ξ•$}G’σ’bpcέ"wΛ ™9ϋsΙ4SΜΕ‹oΦαZ<°kΉν²ν"rΛK5ίίετσdybtD°šΓ9ͺƒΫΝ―[%£V~aΤ΄qBMΙΊνAKυ%Πl‰©T'UΓ―ϊD™[©rYjPՍ@³₯ς•κD Ή‰γŠŠŠδθΡ£Χ©ςυŠ+Ψ‘9 NπΖόΌKόd†ΩaiκUrε…™ηͺόπΓ/νΪ΅SmjΖ|Ψ‘9ϊ²°Csτ†ͺώ{Η³2vhφHΨV½ΖφWΖH@@@@7 hvJΥ‹ς$7O$1)QβΚaMEy9²}wŽi{·κΠ†πmζ…yΉZνŠSΝ‰IΝ$1!Š›146εόσ›IsΠ4»λ}ΰφ@σs§Κ·9ϋŒ’ρά‹δEνOΓ[yhΆ’TΊΚAζVΊ^VZTu#Πl₯z₯ϋh.mβζ–‚‚IOO'ΠlγMΠhΪ«²Xρβρ6Ώ‘ηΏΡΖ]ΚgζθUύ.τ¬Œ@³GΒώ³κ5&ΠlΏΆž‘ͺΧΨ3Ož@@@@°"@ ΩŠ}@@ RheŠΩ$έhώ1wΏόfΦdΣς‡Γ嬀†ζy¨Ν‘t‚_S9(ΐά‚Χ-ΤUέ4‡ͺZπkšƒΫΈρ fϋUΏγ? eΚ¦uΖ .«ΧHVάr§ύ›•ρHΝΡ«ϊ]θYf„ύgΥkL Ω~m=#U―±gž<#€ € € € `E€@³%ϊ € €@₯ Π\)Κ³IΊ9Πό§-“ΏŸa™Ϊ°‰|›v»eWΝ–©|:ͺ`n>₯²|’ͺfΛ%τιH Ω‡Γυ'šνΏ>ή±Yϊ€Ο5ophΨ(©_ΓmρG2wϋOΖMjaζχ΅P³ŠΝΡWEΥοBΟΚ4{$μ?«^cΝφkλ©z=σδ@@@@+š­(Ρ@*…ζJQ¦˜M­ζ!KΘτΝ ΗZ'Λ‚ξ7EdJ 9".³³ΚAζf–)’Uέ4GTF³3f“‚M€@stoύίϊΏ7τGέκρ²ρ–ΌVbt7-ƒΡš£GUυ»Π³2Ν ϋΟͺט@³ύΪzFͺ^cΟr}«3Μ64G_UΏ =+#Πμ‘°¬z 4Ϋ―­g€κ5φΜ“g@@@@¬hΆ’D@¨š+E™b6I7šίύi½ ]φ©a˜W]²‡>( Υβ"2%Π—ΩYε s3Λсͺnš#*£Ω™@³IΑ&@ 9ϊ·Απ|&ooZλs£η:_.Ÿ©O[EžhŽ^_ΥοBΟΚ4{$μ?«^cΝφkλ©z=σδ@@@@+š­(Ρ@*…ζJQ¦˜MζkΜ”/φξ0 Gt8WώρΫξ{hŽ˜Μ rP€Ή9«¦šνΥ“@³=7§Ž"Π›ΚŽϊμ#yuΧO>7λΥ:Yή»ϊF©«νΪ\ΡΝΡW@εCθ«#Πμόhv~£_!w@@@@p“f7U›΅"€ ΰpΝ/°ίςάhή“DZ½χ†©°Όχ­΅Y+σάκf«RΎύTό07ίZY=SՍ@³Υ ϊφ#Πμλαφ3Ν±yθŸ“›6KζΙώc…ζM“λ&Ιόni±~#³­"4G―κw‘geš=φŸU―1fϋ΅υŒT½ΖžyςŒ € € € €€ΝV”θƒ €•B€@s₯(SΜ&ιΆ@σ kΎ’GΎώαΧ²V’μ<–%f[l’rP€Ή9«¦šνΥ“@³=·@£ŠŠNΚ²eΛeqϊR9tθ°tμΤAzχξ!mΪ΄Τ=hΫ/Ώό"ύο—΅k©V­ZΠ~ž Geυκ5F*Uͺxšm=hΆΕVjηϋe·φKU}ΣηΘκœ}fŸšΥβdΚ•=ε–δ³ΜΆς> Π½Έ§ΖΡί©lξ@ 9zWΥkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€Γ4;Όΐ~Λs[ Ήνϋ“dΫ‘C†ΒS\&O_ΠΥOΔΪ)fkNώ½Tƒ07jY;WՍ@³΅ϊωχ"Πμ/bοόΨ±γ2`ΐν’΅/[|¬4kήD>_²Lf͚'ώΛ½ϋ5–oyς€lέΊC^ŸψO#œ/Ÿ-ϊ0l@yιεF ΩjsbA4‰°9ΠηδΏ6―—Ϋ–~κs§.MZΘάλϋIsν/H”ηƒ@sτځjύ]cwΝΡ[ͺ^cΝΞ―qτ+δ € € € €n Πμ¦j³V@.@ Ωαφ[ž›Νώίη2aΓjCದ-eEŸΑ~ΦO 4[·ςξ©r„ΉyWΚϊ±ͺnš­ΧΠ»'fo {ΗΉΉ‡δš«ϋ -ν…ρW½ΊŒ32θ μΨ±Kϊχ"½ϋτϋξ»ΣΨ‘ω=( Τ:&33Knθ9@&Ώ=Aμ9™ώή?ΒξθτfΏ^ ΠNΘΪυ`Ÿ“ίοΟ’>ιsdGήaσFjΚ-Τ|y³ΣΜΆ²> Π½p°GηΨ܁@sτŽͺט@³σkύ Ή € € € €€›4»©Ϊ¬@‡ hvxύ–η¦@sύ©γ%χψ1Cΰ­Λ»Ι]gη§aύ”@³u+οž*‡A˜›w₯¬«κF Ωz ½{hφΦ°wΌzυω˟ΗΙ¬§H΅jΥJέdΣ¦-ςΰΙΒΟ> xέ€ΎγσθQΚ“O=4Π|κΤ)Ήeΐ?νF0 ―\wm?#P]Ώ~’ν":'ΠWΠΞ‘>'υ— ό|Ύ€οήζ3ώ₯‹―’±η^δΣVV'𣗠Uγθού4Go¨z 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈf‡Ψoyn 4Όc³Ά β\sυ‡’€ψζy€š#+ξ―r„Ή9«¦šνΥ“@³=7οQ3fΜ–ƒΚΘϋGx7›Ηωω³ΗΝ2γ’”TΟlv`%Πόήτeφμω2{Ξ49qβ„všƒV@»•ο—'ΎY.Οχ₯Ομϊ·i/ο^έKjΗUχiυ ζθE­Τ8ϊW±Νφν<#U―1fO₯μ?«^cϋ+c$ € € € €€4»±κ¬@‡ hvhaƒ,Λ-ζ›–|$sΆύd(άάφL™umί "֚ 4[sςο₯rP€ΉωWΛΪΉͺnš­ΥΟΏf‘ΘΟg͚'ΩYΩAΝ………ŽΓš32ΆΙ€›o—O?ύ@š5o*‘ή?Τ Ω‘9”ŽυkV?'μά"·~ρ‰>qάΌω™υΘόnirfR³-Φš£΅Zγθ_Ιή4Ϋsσ₯z 4{WΛή±κ5Ά·*F!€ € € €ΈU€@³[+ΟΊ@p €ΫΝGŽδΙgŸ}.+W~-ΏœϊE.ΊψιΩσ:K»(κo‡άάC²xρRωϊ«E!uΎ0U»ξ*iΤ(t₯ ΰ¨θ¦ΎkΧ.R₯JσUTtR–,Y*EEEf›~pβD‘4oΦD.Ή4Ί?Gξ†@³ώηάλOoϊ}=Mz΅ngžΫ9 ΠlGMDε ssVM 4Ϋ«'f{nή£τ@σQν;}θ°AήΝζq€γPζΒΒc§χ 9r„τξΣΓxHο―ϋβθΡ£ζόΌτ{­X±B²³³%--M6lθ}Y™c•?Ώu€Hζ—q8Wϋ‹sdΓΑΣWί‘ωέ«zI3Ϊ›m±< Π½f$5ŽώΥ"ΏζΘΝόG¨^cΝώ‹ό\υGΎ"F € € € €ΈY€@³›«ΟΪ@p˜€›Ν;wξ–~}KJϋdyΰ»δΤ©S2mκ Y»φyζdIN>#d΅ϊi‹ 8ά?|ψ©/Σ¦½―YΦΙδ·'HjκΩΗλa₯±cžεΛWΚβ%s}ΒΣ99€ΫυύeĈ۴PσIŸρuλΦ‘ΑCHΥͺU}Ϊ#9qC ω­ΧΘ=ΛΣ –€ψrpΨ¨Hˆφ%А%l£ΚAζΆ|;¨κF 9`ΉΒ6hKΆCyνΠ¬Ϋaόίί”}ϋ²δ―/΅m,>°ΟηΎCš.£O;Σ§-'Ϋ·o—κΥ«KΛ–-cq»˜ί#''G<θ¨Η)Μ ·nέ* ’E‹0=+ζrVV–φK‘ΉΎ}Ω„φc±ͺHŽcρš‘άCOLL”¦M›F2¬άϊfffJ~~ΎφΏ§“Λν5νΌPjjͺaŒA@@@@@9ΝΚ•„ !€ €€]·šυ Σ†Κ5ΧόΦ3{ο’όΞΫӍ`rϊβΉZ F@Z}Γ^7 ”[φ=Μμ=~ξά2ξ•ΧeQϊlνΡ\»Τψ₯K—ζx-ύΩ’}ΝkΧnqγ^—)S^χΉg©›ΨlpC ω²ωΣεΛ}{ ‘ίwκ,γ/½Ζ¦VΙ0Ν%‘©~ΥΧΐά"©dI_Uέ4—Τ(’#Ν‘hξ»πΣΕς?ν―4<σμ#;dώΌO~χ»Ζ/0ΕΕΕμγέl‡ζ­[·ΛΝ7 3~α©c§³δΔρΖ°γZ ω±GŸ3ώ-sϊι§Ι₯—],5jΔ{ίη˜š}8ΚδΔξηδ„υ«εΑ/?χ™ΣεΝZɜλϋIγ„Ψ…ΛΩ‘Ω‡ΨΦ‰έΫz1ƒΨ‘ΩšίΥkΜΝ~³qͺzm,‰! € € € €. Πμββ³t@œ&ΰΦ@σκΥk䣓Ͽ˜gμRη]W}§ζ{ ”G#—iΑ @―ΎZ%>ς¬PϊHββͺωtΡΓHƒ —ϋο!]»vρΉ–™™%7τ`μΰόψcΟΙτχώ!υλ'™}f̘-ω2\Ϋ‘Ή,N4o;rHΪΎ?Ι€[έ˜œί(ϊΛ4›€¨`n•μ¬ͺf³DhŽˆ+`η;vΙmCξ‘τΕsŒQύ;-Y²LζΜωXήxγeKa!X Y “9MͺU«&ǎ7^&^ .οΣώ]±lΩ ιέ»‡œyς€ρο‰OΜ”Ϊ΅£ΫΕ—@s@βˆ£ύœΜ.,΄ΕΙςΜέ>―=α²kεώŽψ΄Ω9!ΠlGΝwL΄5φ½[μΟ4Goͺz 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈ€ΝzXhΘΰ»εZΨψόσΟ XαM›Ά;0Οϊpб’§pηΩ³η»&z’ί›ώ‘θν³ηL“ڟˆοΩc€O YoλuΓ-’’…™W~ω΅ΟKŽ9\†p.>Ü8=Πάjϊλ²§ ΟPψΫΕWΚCηήa; S©ΛšK‘XjP9 Βά,•°T'Uέ4—*•₯Ν–˜ΒvϊώϋυrΗνχΛΣΟ<,=z\«ύε†8ΙόyŸŒϋ„Zž2υ σ―9̚5OώρΦTcGg}·eG€ζ|ν―:θUΒϋ€όοiυœ@³U©Πύbυ99zε2~έ*Ÿ»%ΉƒLΉβ©©½Ημ>4Ϋ•+«—ά1ΆGš£χT½Ζš_γθWΘ@@@@ά$@ ΩMΥf­ €8\ΐ­ζ»FŒ’{ο»#h YίAρΎ{ΗΘΒΟ> "^»vƒv}¬,ω|Τ¬YΣη]βΩ­±IγF2ι­qΖxύ~nΎ]>ύτiΦΌ©θ»6ϊš3΅?CΟR―^]™1γŸF?ύΖλΧ(#†^nμέ]ydtΐ}&βΔɁζε™»δ·Ο0WΏϋΦϋ€eν:ζy4šνι©anΞͺ)f{υ$ΠlΟ-Π¨oΎωN|ΰOrόψqiΡ’™μέ›iμΚόδS’Z΅Jώ°πΣΕΪΏ–Ι+―ΘψQn_ΆPŽž,2_΄cύF2Ώ[š$ΧM2Ϋ"9 Π‰VΰΎ±¬qΰWˆ•@st~ϊhΥkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€Γάh~πΑ»εμs~°ΒαΝEEE’–6Tڜ~šΌψ³R£FΌq=ˆ4nά2γ½εŽ;n}‡ζΒΒc§χ 9r„τξΣΓθ(Π|δHžΌωζ;’Ο+!‘†ΟΌφμωYzί8Hf~πŽ€€΄υΉζ’cU8zόψ㏒׼sηΞR§NlΒΎ^ΗN[FF†ΔΗΗΛi§fgΈ<Άq΅|ψσcμeυ›Θ”σΊΪΊO A›6m’ΊuλJσζΝ]ΠΆ7JΓ† ₯qγΖ:@/Ο­C‡.Uxs³WUέ²³³eώύJΎίτ°υ‘C‡”œΫž={D±¦€€Ψ{C”α¨;vH«V­”t ΆlύίΉΉ‡DΦΏΟkλͺd;ζΨ”%ΦAΘ s€OϊΙ8œkN°nυxyοš₯Wλvf›ΥΝV₯‚χ‹uƒΏ’½+šνΉyR½Ζš½«eοXυΫ[£@@@@ά*@ Ω­•gέ €8Pΐ́ζP;4oέΊ]τ]œΣΟ ΈC³ώVΠwT|λ]rπ`ά6t ±Sσ”wή“ŽΟ”K/½X “{ο½CΖύM-Dœ%}α)swe=pά£ϋΝςρ'οϋμάμ-¦‡£}τ9Ήα†λ₯kΧ.ΑΊνλΧ―—cΪkzμάΉSτΰ_ǎ΅Χ­¨K…΅mίΎέ€΅hΡ"β9ε”\ύνR)8uϋ|Ϋ³₯gΓΨ…·lΩbΐ›6mράΚzΐζΝ›΅]9λK£FΚϊ₯"ΎΏ>7ƒ’ϊB˜[Δε4¨κ¦‡™8 δϋMž=|ψ°’sΣΓΦG•ΆmC’Œ½wKt£vνΪ%νΫ·―TζθV\ρ£ 4Η¦e’;|ό˜άϊοOdΑΞ ŸI>–z‰<αo}ڝh'ώzYΤ8ό«ZοA ΩΊU°žͺט@s°ΚYoW½ΖΦWBO@@@@D4σ.@@ΗΈ5ΠπΊ§±¨θ€¬[»AΦ­Αh:λ¬3΅έΟ“ ώ‘ν˜ΫH.ΎψΉω¦a2bΔm±ΣYrβxρΞΙΗ΅@σcZ@ωξ’Σ΅]ž/½μbΩ²e«4lP_š5šύxώg²Yλ3fΜHΟΛGόΌhΡ"ΡCΝiiiΖΎί  lΨ°AΫ™:A’““#~•Yε–/ζγͺU“ƒΓFIB΅Έˆοlΐš5k€AƒΊuλ`]*¬]ΖλAk;A𲞴ΚAζf―ϊͺΊιΑάΜΜLIMM΅·°2₯ζκkη¦7ςςςδμ³Ο.C{·ώ駟δΤ©SšνρΩE Ω[©Aeω9ω—οVΚcίόΧη5―nΡZf]ΫW&ΤτivB 9˜Œυφ²¬±υYοI 9ΈΥ+ͺט@³ΥJο§zƒΟœ+ € € € €” Π\Ϊ„@¨€n 4λ₯ZψιbYςω27ξΟζɞzvC>眎2hPš§ΩηyϞŸeζΜΉ2zτ½R΅jUŸkžέ—ίœ4NΫ97I&sš±Λσ±cǍ~ρ5βeŸΆ»³˜ξέ»‡œΤv~θ‘ίΛ«γί”N~#}ϊφτΉŸ~’ΟIa§₯έh„ŸKu°ΨΰΤ@s―E³εΣ_w-ΪΎ“L½ς‹"ΦΊhΆζδίKε sσ―–΅sUέ4[«Ÿ/Νώ"ξ>'Π›ϊ—υηδΏχξKζΙώc…ζ„[Υ#σΊυ— 53Ϋ‚h&c½½¬kl}&{hμI«κ5&ΠI5χU½ΖgM+ € € € €4v‘@*‘€[Ν™Z ψ†ždϊ{³ΞjοSΉŒŒm2ΰζΫeώόχ€Υi-k«V}'‰‰‰ΪN‘)ΖωŽ»€Ώ!ςιΒY¬YŸρ .‘—_š ‹—Μ•ΈΈΐ»Ÿmώ'šύE"?/G>«’šK,μ©^cΝv+[2Nυ—Μ”#@@@@Β hoD@¨$n 4λε™>}–Ό>q²Lzkœθ»1W©REΦ―QF ½ά~Η­rΧ]C*κ»#|·€žŒ3l=κQωξ»΅2mΪ›ζŒΦRTtR–,Y*?φΌLœψ’\rιEFί@•Ÿ_ 7jΑ[= ¬οβ¬?τœϋχlœυ…§€U«Fϋš5λeψȝÇΘ}χέi΄Ωύ/'šΗ―[%£W~a΄¬•(»ΧΘQ qš©„oS9(ΐάΒΧ/PUέ4ͺVψ6ΝαάΤƒ@slͺ]žŸ“·-] ΪΌΑgβΓ;œ#τTσ£@IDATόmŸ6οΝήφŽΛ³ΖvfH ΩŽšοΥkL Ω·^vΞT―±51@@@@ΐ½šέ[{VŽ €€γάhΦƒΚ|π‘ΌτβkR­Z5γ?Ǐ—Q£ο•[o½YͺV­jΤ[οχθ#ΟΚ%—\$½ϋ”Dτς«―N’fΞ5ίϊ}^yε9Ήό·—šmNœ8!}ϋάjμν 4λύ Žj»4OωσσΡwrΦzx”άtSosNF£rb ωό9Sδ»ύY†Ζ#ηu‘Ώ\t… ™ΠC4‡φ vUε s V΅ΠνͺΊh]·`W 4“qg;ζΨΤ½Ό?''oό^Fόw‘Οδ/hΤTζuK“V΅λψ΄λ'šK‘DάPή5Žt‚š#+έ_υh.]³H[T―q€λ‘? € € € €€»4»»ώ¬@G Έ9Πμ)€bΞΛΛ7NkΧ-5jΔ{.YzΦCΘyyyR½zuIJͺgμτli`ˆNzXZ=Ÿ:uJjΥͺ)qqq!z[Ώδ΄@σΉϋε7³&›? .g%54Οcu@ Ωž€ΚAζ欚hΆWOΝφܜ:Š@sl*[ί/«s2₯oϊ\ٝΔ\DΓ 2λΊΎru‹ΣΝ6ύ€@³‡­“Ѝq$%Π‰VΰΎͺט@sΰΊEͺz#Y }@@@@ ΠΜ{@#@ Ω1₯΄΄§šϊίRyιϋ―΅_ΨΈ™|έo¨%‡H;hŽT¬ΈΏΚAζ欚hΆWOΝφܜ:Š@sl*[Qί/ϋ Κ€ΟηΙΏχξτYΘσ^.₯–όεΝ><ΆN*ͺΖV'K ΩͺTπ~ͺט@sπΪY½’z­ƒ~ € € € €θšy € €€c4;¦”–β΄@s“w_“l-ΐ£?&\v­άίρK‘v"Π©Xq•ƒΜΝY5%Πl―žšνΉ9uζΨTΆ’Ώ_ύϊ?ςΧ5_ω,¦Wλdyοκ₯n| vhφ‘±wRΡ57kΝα„Β_W½ΖšΓΧ0\Υknώ\G@@@@ΐ[€@³·Η € P©4WκςEε\ιέ’ fS%ςUjlζšƒΙXoW½Ζš­Χ2XOΥklή΄#€ € € € H€@s Ϊ@@ R h”e³=i§šσ΄Ώϋšžmͺœ°Csτ• Π½‘J?ǁVC 9JdmͺΧ8²ΥΠ@@@@ΐνšέώ`ύ €8H€@³ƒŠia)N 4Oϋi½ [φ©±β€ψrpΨ( «·ί…@³=;•ƒΜΝY5%Πl―žšνΉUζQEEErτθΡ€K(,,”+VHvvΆ€₯₯IΓ† φ«θF•?Ώuη7~έ*½ς Ÿ΅―W_ξοxάΡα©WέηZEžhŽ^Ÿ@sτ†*ώ{―Š@³·†½cΥkloUŒB@@@p«f·Vžu#€ ΰ@Ν,jˆ%9%Π|Ν‚χεί{w+½χ7©ςFΧλC¬:ϊKšνͺ`nΞͺ)f{υ$ΠlΟ­2ΚΝΝ•ŒŒŒ KΨΉs§hξΨ±£ΤͺU+hΏŠΌ°yσfIII©Θ)„|mUηχ]ήA»yΤvmφ~ΤͺZMϊ4n)ΏkzΊ΄¬QΣϋR…ηδδΘΑƒ©qϊ[·n•„„iΡ’Ew)»‘YYY’΅o_v]%ΪΩ«ϊsμY—ώ9ž˜˜(M›6υ4)υœ™™)ωωω’œœ¬ΤΌό'“ššκίΔ9 € € € €•R€@s₯,“F@@š©8·Ν ζ=ωG€Υ{o˜EZΩwˆtiRΆ Ν&wD„†#β2;γfRX> Πl™Κ§#fWœ°CsΩ—YεΟπŸ ςδτy² {O@ˆξ­Ξ»΅_λΫ¦βγμΠ°45²CsD\;«όs¬O˜š–-’FΥkΡbθŒ € € € ΰzΝ € €€s4;§–VVβ„@σ_Ώ[)~σ_cΉgΤ©'[έceιQυ!ΠlOε ssVM 4Ϋ«'f{nNUPP ιιιΖΝiii°aC%—ͺςη·¦ϊό~ψα9τΛ)ω΄ΰ€ΌυγΙ)ΧXQB΅j’}Ϋƒ’X;ϊ‘§š©„oS9 ΒάΒΧ/PUέ4ͺVψ6ΝαάΤƒ@slͺ­κη€guV͞ώϊσ½;ε΅υ«dήφΝήΝζρυ­ΪΘƒZ°ω†ΦΙf›έΝvεJΖh.±°{€ϊΟ1f»•-§zKfΚ € € € €α4‡7’ €TΝ•€P1šfe4ί΄δ#™³ν'CbPςY2γšή1R ΝαυP9(ΐάU,|›ͺnšΓΧ.ṔTάΫF 96΅Wυs³:;fΟΨ]y‡εU-ΨόφΖ΅ζ_Μπ\ӟ“λ&Ιύ/;;œ#ulώfoQ{ΗšνΉyRύη˜@³w΅μ«^c{«b € € € €€[4»΅ς¬@ hv`QC,©²šs“ϊSΗ›+ϋ¬ΗΝύ΄ΆζyYhΆ'¬rP€Ή9«¦šνΥ“@³=7§Ž"Π›Κͺόύ’―0š@³GθhQ‘LϋiΆkσjω1wΏ§Ω|NŒ«.·΅ο$£ΞΎPRκΥ7Ϋ­hΆ’ΊζΠ>VͺώsL ΩJCχQ½Ζ‘gΟU@@@@|4ϋzp† €•X€@s%.ž©WΦ@σ€Ύ“{W,6Vά8‘¦dέφ ΥΫB ΩžΚAζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎΒXš½₯–μή›WΙ‚ήΝζρu-ΫΘƒg_ ½Z·3ΫBh₯cνfkN‘z©ώsL 9Tυ¬]S½ΖΦVA/@@@@Š4σN@@ΗhvL)--€²š/χ/Y™΅ΧXγ˜s.”—»\mi½±κD Ωž€ΚAζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎΒXš=j;ςΛψuίΘ;ΧΚαΗ=ΝζsΫ:υδώNȝgž#uγk˜νώšύE"?'ΠΉ™ΥŽ 4ϋW,ςsΥkωЁ € € € ΰfΝn>kG@ΐašVΠ0Λ©ŒζmGIΫχ'™+ϋώ¦ΫεœMΜσς8 ΠlOYε ssVM 4Ϋ«'f{nF”eΛ–Λβτ₯rθΠaιΨ©ƒτξέCΪ΄i¨{ΠΆ_~ωEώϋί/₯kΧ.R­Z΅€ύΦ―QfΝϊHφefΛi§΅”—w‘Λ/Ώ$h€7 ΠH 9Š&•Ώ_τε”U ΩC•_tB¦lZ+Φ―–Ÿτ4›Ο΅γͺΛmν;Ιο;u–3“˜νžΝ ϋΟšνΫyFͺώsL ΩS)ϋΟͺΧΨώΚ‰ € € € ΰFΝn¬:kF@ΐ‘šZΨ ΛͺŒζ'W-—ηΎύXΡYI ε‡Γƒ¬μš 4Ϋ³U9(ΐܜUSΝφκI Ωž›¨cΗŽΛ€·KΦΎlyόρ±¬yω|Ι2-t“·7­5VΡγ΄Ά²°ΗΝ~+*ŸSΝφœUƒ07gΥ”@³½zhΆηζ=jυκ5ς—?“YN‘jΥͺy_2Ž7mΪ">π,όμΓ€Χύθ;>υ¨<ωΤC>f½ύcŸ”~ύ{Ιe—]μ?L6lΨ(―½ϊ–Ό9ιΝ₯tΚ·Aεο]’"Νή•ψdΗymύ*ω|Οοfγ8A εwiΪJ:5h$—5k%5n.mλ&•κWQ ͺט@sτο ΥkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€Γ4;―ΐϊŸι.** Έ°oΏύVφξέ+iii°aΓ€}*ͺqΓ† ’ ΙΙΙΖ OIγi―™šόύkzΛΐδ³*dzšν±«anΞͺ)f{υ$ΠlΟΝ{Ԍ³εΰƒ2ςώήΝζq~~τΤ~gώΗ3$)©žΩμ X Yο―‡–[Άl^κ>ϊ˜GyVΞ8γtΉλξaΑnΆšΓYκ ςχ‹ΎUΝΜsχΛλΎ•·7~/…'OzšK=7N¨i„›/mΪR ;· ΅sB΅ΈRύΚ£AυhŽώ] z 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈfηxύϊυrμΨ±€ ΫΉs§dggKǎ₯V­ZϋTTγφνΫ%>>^Z΄haLaρLy8£xwζZU«ΙΏΟΏJβ«T­ιmΩ²EκΤ©#M›6­Χυ’›7o–ϊυλK£FBu«kϊάRRR*δ΅Γ½(s 'ψΊͺnϋχο—(ω~ΣΏg>¬δάτ ψΡ£G₯mΫΆ ^­»vν’φνΫK‡*pα_zΦ¬y’•4Π\XX¨šȜΉοjŸΥαw˜ h6›ΉsΘK/Ύ&σζΏ§}O5Φ-l;ζ°D–:¨„T-ΠμA=|ό˜όS 5Ώϊύ7²λhž§9δ󅍛Ι%ZΐYtnX7dX]T½Ζš£―΄κ5&ΠμόGΏBξ€ € € € ΰ&Νnͺ6kE@ΐαšWΰόό|9uκTΐ…-_Ύ\vοή])vhΎα³eα­Ζ:ξ<σ™|E€k*FvhΆ§¬r„Ή9«¦μΠl―žμΠlΟΝ{”h>ZpT†δέl—e Y?Ώ>q²L™ςžΌυΏKηΞ©ζλ;Π‚ƒbτΠηΊbΕ γŸTόKž9«όω­ΟQυω©hφΤwϞ=ςΏΫ$·A]ωjί^YΉo¬?˜γΉςΉE­D-άάΒ'δr€Ν‹ͺט@³ΝΒz S½Ζš½ŠeσPυΫ\Γ@@@@\*@ Ω₯…gΩ €8Q€@³«|M‹-}—fƒJ6l„„INN–μΒiςξs!ΉρwςΫζ§™ηε}@ ΩžΈΚAζ欚hΆWOΝφάΌGUΤΝΫ·ο”»ο%ωωGε_Σ'Ιgœξ=­ ΗΉΉΉ’‘‘τΊΚΙΑ3iUwŠ―,σΣ"FυκΥ₯eΛ–ž)+υœ““#τΩΥ>d‘¬Λ;$λςΙΪΌ\ν8WkmVgΧ'η$Φ“sλΤ—s“€qυV†…μ£ϊ{pλΦ­ΖΏ©=υ$δb*ΰbVV–θŸEϊ.όͺ>T―±ώ9ž˜˜¨δ_Ρkš™™©}?ε»NΥλσJM ‹@*ϟΉ!€ € € € ΰ Πμ‘ΰ@*½ζJ_ˆPYΝ_χόa忍΅΅ΤvΫΫ=xdDλŒugΝφD γfO ςQš#7ΣGhΆηζ=jα§‹ε[-Ο<ϋˆw³yœωσ>ωέοFΘβ%s%..Ξlv οΊGΥηη”@³ηύΰy>rβΈόO 6―ά·Η:λΗŽz.‡|ΦƒΝ—4m‘ύ§₯\Φ΄•4«U;dΥkL 9dω,]T½Ζš-•1d'Υkrς\D@@@@ΐO€@³§ € Py4WήΪΩ™ye4o˜$Ώ™5Ω\ήΦAχΘuκ™ηq@ ΩžΊΚAζ欚hΆWOΝφάΌG:uJϊυ"ƒ₯Ιΐύ½/Iaa‘τΊa όιαQrέuWΧ22ΆIVVŽtιYͺT©βΣ_? h^±β+ωγΨ'eφœi²eσRc£m Π­`ρx•Ώ_τ:5Π¨z›rœ³ŠCΞVwq>=±nφ„œ/lμϋσ¦rυ_όοϊ΅€N]ι’r¦΄©ΰCͺΛ]»Œ_œ8όσ]V’Mελ@𣛍^γθWΘ@@@@ά$@ ΩMΥf­ €8\€@³Γ μ·ΌΚhž”½S^^ϋ΅1σK΄?ώeί!~«(SΝφΜU 07gΥ”@³½zhΆηζ?κϋοΧΛ·ί/O?σ°τθq­ΔΕΕIζΟϋdμΨ'ŒΠς”©ohmՌa³fΝ“Ό5ΥΨΡΉZ΅β6οϋ 4λνnΎέBq›δηx3ŽυΧh€q©v« š­J…ξ§ςχ‹>s7šύ+₯οβόuΦΟΏξβΌGΎ²Έ‹sΝjqrAγfRΌ“sK©“u@ΉθbΫWθωΌν›eτ—_ΘφΌC>σ8―aωϋ%ΧΘ•-Zϋ΄Wδ ζθυ•4οΩ"Y›ΦΙ1ν N;·³HςΉΡ/Έ ξ ϊgu,™["€ € € €8X€@³ƒ‹Λ@p›fwUΌ2š/ωΏO%»π¨Q˜7»^/χό&΅Β‹D Ω^ T 07gΥ”@³½zhΆηhΤ7ί|'>π'9~όΈ΄hΡLφξΝ4ve~ς©?I­Z5Ν! ?],K>_&―ΌςΌT­ZΥlχ 4;v\ϊχ,™™Yž₯ž[·neμή((]ͺs€ΝPl4©όύ’/Ήζ@εܘ»_ΎΪ·WΎΞώYVdξ«»8_Ρό4σvu«ΧF5kJ³š΅₯Aš(‘¦4YK'Τ2λT7ϋΗϊΰφe eκOλBήvΚ=eΨ™g‡μS^ 4G/­d yΛχ"σήΩ“α»@νηBΊω­ο_1πνTώgͺV—Ώ―ˆ € € € P™4Wζκ1w@π ΠμΓαψΥΝ« Ι°ο–›u88l”$ΕΧ0Ο+κ€@³=y•ƒΜΝY5%Πl―žšνΉ₯‡‘ss‰ώ/‰‰Zˆ«=4Η¦X*Ώθ+$ΠΊΞyϊ.ΞZΈωΛΜ=ΖNΞVwq}Χβ«-k%– :{‡žiθΖZZn’’­<τ™ϋ-žk₯«|—v»θ;6Wτƒ@sτP.ΠόuΊΘϋ/…^ΨEΧ‹ z(tŸrΌͺϊgu9RπR € € € € Πμ€"²@( Πμw‚κζG΅½>ή·Λ(JΪνeφuύ”(f{eP9(ΐܜUSΝφκI Ωž›SGhŽMeUώ~ΡWH 9ς:tθ€nή«ν䬇œχΚχ‚ο”ωέƒΠwz6v{6‚ΞΪnΟΪ.ΠzΪ;}Σ’yrD a[yτ9=Eζu«ψ]r 4[©Vθ>JšdŠ<78τ„=W» )ή­Ωs^ΟͺVW / € € € P 4WΒ’1e@,@ 9°‹S[U4³φ{ΉόλΕrμΤ)ƒΎΈθ­/TxhΆW•ƒΜΝY5%Πl―žšνΉ9uζΨTVεο}…š£―³^γ¦g¦HΦΡΙ),Ÿ ςŒγύ…G΅γ|ν8_φiΡ―οΚ?ύ ZΎΓ/^=«x—ώrןJN*θH4Ÿϊκ39½nBd3h™,R31²16{oήΌYRRbόΏCκ7iΠΜζŒ|‡)h~ϋI‘υ_ϊN0ΨYMν/όe~°«εΪϊguΉbπb € € € €•^€@s₯/! @@f„;žU4eiΊ<ΆyQˆ€ψrpΨ(eŠB Ω^)T 07gΥ”@³½zhΆηζΤQšcSY•Ώ_τhŽΎΞ‘ΦXίAY7{BΞzΰY?7ώS¨…Ÿ τc­M Gηh‘θθz°9p ω»΄ΫεΌ†M’‰(ξ š“¦?+u²ΆEq†Ϊh»P΅ωϊΪ_Ψ ός>ωŠH»s)ΗΦHŽΛqjΌ € € € € hŽ˜Œ €  ͺfU+S6σR9Π|ρ“ελCϋ…?Πρyν²kΛΑΖ] 4Ϋ@Σ†¨`nΞͺ)f{υ$ΠlΟΝ©£4Η¦²*Ώθ+$Π}ΛΊΖžΰ³ηΉ8ό\‚φnΫ[pDŽϊ—M¬Š@³U)ϊ•™@·!"έ‡–Ων­ήΈ¬Ž­Ξƒ~ € € € €ΔB€@s,Ή €(!@ Y‰2”Ϋ$T 4οΡώw«χή0Ύι7T:7ŽΝŸd6oŁf{x*˜›³jJ Ω^= 4Ϋssκ(Ν±©¬Κί/ϊ 4G_gUjΌf–€Ξ™RΌ }Cf}C܏zΪ_@ΙUΰ/ θ;4ΧX8Yšœ8bΆ{)//Oχm­ΨI8υΥϋή+rEZ…―N•Ÿγ ‡` € € € €Ž Πμˆ2²@Π4»λ} j yΪOλeΨ²ObtHj ?‘Ta4Ϋ+‡ΚAζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎBΝΡΧY₯·™ρ¦μΘ;liQCΫw’©Wή`©oYvΝΩΩΩrώωη—εΛDuo%j| SδΐΎ€λΘΘȐΔΔDiΪ΄iΐλ1mά²&τνΎ˜)Rt<@=eΰ1v’HΛv.”o“5.ί%σj € € € € Πμΰβ²4@ά&@ Ω]W5Π¬Wα‹oWΙ’ά,9«UkΡ*=4Ϋ«†ΚAζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎBΝΡΧY₯ΟΫΎYϊ-žvQϊξΜkn—6uκ…ν[Φ4G/όύχίKRR’œ~ϊιΡί,Ϊ;ΜxQδ›ΕΦξRΏ‰Θ“3¬υ-γ^*ύ—ρRΉ= € € € €€ 4» Θ,@·hvK₯‹Χ©r yΓ† ’ ΙΙΙΚ…@³½’¨`nΞͺ)f{υ$ΠlΟΝ©£4Η¦²*Ώθ+$Π}U«ρΤMλδφ, Ί0=ΜΌμΖίΙy ΅0©ΝΡA©@σΡ<‘go)ΜΏ°;ž9ϋ²πύΚ‘‡j?Ηε°d^@@@@ΐΑš\\–† €€Ϋ4»«βšνΥ›@³=7•ƒΜΝY5%Πl―žšνΉ9uζΨTVεο}…š£―³Š5^Άw§<½z…όηη]> ΤκΙΣtUbgfΟΔ4{$μ?+hΦ—±g‹ΘΔ1‘CΝƒώ(rQ7ϋ‹ŽρHŽcΌDn‡ € € € ΰ"Ν.*6KE@ΐιš^aίυhφυ°zF Ωͺ”o?•ƒΜΝ·VVΟTu#Πl΅‚Ύύ4ϋzΈύŒ@slήͺ~NzVG Ω#aYεη?&}σ•ρWO]p±ύE–αHΝΡγ*hΦ—t SdΡ»"λώΟ7ΨάιR‘+DڝύΒcx•ŽcΈLn… € € € ΰΝ.)4ΛD@ΐ šέPε’5h.±ˆδˆ@s$Z%}U 0·’:Er€ͺζHͺX—@s‰G"šcσ.Pυs³:Ν ϋΟͺΧxέΊuR»vmiΫΆ­ύE–αHΝΡγ*hφZΦήoώ+GδHr·ώ^­jͺώs¬–³A@@@P]€@³κb~ € `Y€@³e*Gt$Πl―ŒšνΉ©`nΞͺ)f{υ$ΠlΟΝ©£4Η¦²*Ώθ+$Π}U―1fηΧXυ@σφνΫεΠ‘CrξΉjνΚμύΞPύηΨ{#€ € € € N€@s8!#€ €@₯ Π\iJ“‰hΆΗH Ωž›ΚAζ欚hΆWOΝφά*σ¨’’"9zτhΐ%ʊ+$;;[€aΓ†ϋUt£ΚŸίΊκσ#Πύ;Xυhv~ 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈf‡Ψoyšύ@,žhΆεΧMεΐsσ+–ΕSUέ4[, _7Ν~ .8ΝΝΝ•ŒŒŒ +έΉs§hξΨ±£ΤͺU+hΏŠΌ°yσfIII©Θ)„|mΥη§οœZ½zuiΩ²eΘuTΤŜœ9xπ 5Ž’[·n•„„iΡ’Ew)»‘YYY’΅oίΎμ^$Κ;«ώs¬Ž'&&JΣ¦M£\iΩ ΟΜΜ”όό|INN.›ˆΡ]SSSct'nƒ € € € €@Ε hX^@b(ΰφ@σ‘#yςΩgŸΛΚ•_Λ/§~‘‹.Ύ@zφΌN’’κYRΞΝ=$‹/•―·Z~ωει|aͺ\wέU¨QŸρϊ΅U«ΦΘ’%K%k_ΆœΡφt9οΌ³₯kΧ.R­Z5³oQΡI£Ύƒ’χγΔ‰"iή¬‰\rιEήΝhŽ˜Μ@ Ωž›ͺαW}5ΜΝY5%Πl―žšνΉUζQϊ.ΜΈ„'NΘ·ί~ΛΝu¬7ͺόύ’―‚š­Χ2XOΥkΜΝΑ*g½]υ³C³υZλ©zƒΝ›v@@@@ h€B €TJ7šwξά-ύϊ–”φΙςΐwΙ©S§dΪΤ²vνςώΜΙڎRg„¬ιO?m‘A‡γ‡"5βγeΪ΄χ΅ δ:™όφIM=Ϋ―‡™Ÿ~κY° ]ƌ©…™Ϋȏ?l’Χ_Ÿ,υκΥ•ζM7žυΞ99€ΫυύeĈΫD7{?κΦ­#ƒ‡ ͺU«z7GtL 9".³3f“"’•ƒΜ-’RšUu#Πl–(’Νq9ΎsAA€§§h޲ͺ~Nz–E Ω#aYυhΆ_[ΟHΥkL ΩS)ϋΟͺΧΨώΚ‰ € € € ΰFΝn¬:kF@ΐ‘n 4λ; §₯ •kω­fR₯ŠYαwޞn“ΣΟΥώ\s ³έϋ@ία°Χ 喁ύE3{Ÿ;wŒ{εuY”>[ϋSΐ΅œŸ}ζE™ρ{°aΙΞΝǎ—ί .έΊ]-wέ=ΜΈύΪ΅dάΈΧeΚ”Χ}ξιύΪΡhΆ§G Ωž›ΚAζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎBΝΡΧYυhv~ 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈ€[Ν«W―‘?Œ~L>bžT―^έ§ΚϊNΝ7φ(>6F.»μbŸkž“―ΎZ%>ς¬,^ς‘ΔΕUσ4ΟϊŽΜƒ΄ ςύχ0Ζί5b”τλίKzφΌΞ§Ÿ~’οΤόψγ–YN‘jΥͺɌ³₯ Ώ@†k;4—Εƒ@³=UΝφάTό07gΥ”@³½zhΆηζΤQšcSY•Ώ_τhŽΎΞͺט@³σkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€Γάhžτζ;R΅jUsgd2λΑβƒΚH-”θ‘_Ο;’tόΌyŸJFΖvωΓξ3ΒΝΟ=χ˜€€΄-u«%K–ΙŠε+ε™g==zΤ£Ζ=Ϋ·ogόΙw­ΙΨΥΉFψRcν4hΆ£&B Ωž›Κζ欚hΆWOΝφܜ:Š@sl*«ςχ‹ΎBΝΡΧYυhv~ 4;ΏΖΡ―; € € € €ΈI€@³›ͺΝZ@pΈ€ΝzpxΘΰ»εcFΚωηŸ°Β›6m1v`φμœμί)\ΰyφμω²/3ΛD•Z΅jϊίBΆlΩ&· Έ]^›π7c'η'NH―n‘-ΜΌςΛ―}ϊ9\†dμβμs!ΒΝ‚ύڝ@³=7•?ΜΝY5%Πl―žšνΉ9uζΨTVεο}…š£―³κ5&Πμόhv~£_!w@@@@p“f7U›΅"€ ΰp·šο1Jξ½οŽ ζŒŒmrί½cdαg ―]»A»>V–|>WjΦτ +Ÿ:uJϊυ"M7’IoσΏsηnc朜ύ’——/c΄Pυοn½Ωx—ejθzzυκʌ”fΝ›νλΧ(#†^nμέ]yd΄T©RΕφ»’@³=:ΝφάTό07gΥ”@³½zhΆηζΤQšcSY•Ώ_τhŽΎΞͺט@³σkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€Γάh~πΑ»εμs~°ΒαΝEEE’–6Tڜ~šΌψ³R£FΌq}χηqγސο}(wάq«±C³χ ”oΏ]#δΚΛ/Mόόω`Φ;Ίu+9r$Oή|σΡ畐PΓ{˜μΩσ³τΎqΜόΰIIiλsΝ$??_τPu ΗςεΛeχξέΪάΣ€aΓ†ΊTXΫ† ΄u'Hrrr…Ν!Ψ h&Ί]εΐs ]»`WUu#Π¬b‘Ϋ 4‡φqΫUΝ±©ΈͺŸ“žΥhφHΨV½ΖšνΧΦ3RυhφTΚώ³κ5ΆΏ2F"€ € € €ΈQ€@³«Ξš@p¨€›Ν‘vhήΊu»θ»8§/žγ³Γ²χΫ@ίQyπ­wΙΑƒΉrΫЁΖNΝSήyO:vΗzψyόίί”5kΦΙ;S&}}ήχΡGŸ“nΈ^Ίvνβs“υλΧΛ1ν΅=vξά)ΩΩΩΪ;J­Z΅u©°ΆνΫ·K||Ό΄hΡ’Βζμ…·lΩ"uκΤ‘¦M‹wΝΦ―"Ϊ7oή,υλΧ—FUΔΛ‡|M}n)))!ϋTΤEζfO^U·ύϋχkΏ(r@Ιχ›ώ={ψπa%η¦Α=*mΫ†ώE{ο–θFνΪ΅KΪ·o/:tˆξFŒΆ,@ Ω2UȎͺ‡δ4‡,Ÿ₯‹ͺט@³₯2†μ€z 4‡,Ÿ₯‹ͺΧΨ"θ„ € € € €ΐ―šy+ € €€cάh;ζ ιΦύΉώϊ«ΦrιΏ—Λ²e+δ™g xέΣ¨οΈΌnνY·ώ£ι¬³Ξ”Νϓ ώ!7’λ½R^›π–<υԟ–υš»]Ÿ&Ÿ,x_φξΝ”† κK³ζC³ΟL6oΩ*cƌτΌ|ΐgvhΘU#;4ΫγS9(ΐܜUSvhΆWOvhΆηζΤQšcSY•Ώ_τhŽΎΞͺט@³σkL Ωω5Ž~…ά@@@@ΐMšέTm֊ €€ΓάhΦKΊπΣΕ²δσe2nܟ₯J•*>Uφμ†|Ξ9eΠ 4Ÿkž“={~–™3ηΚθΡχJΥͺU=ΝΖσ‰'€Gχ›εΝIγ΄]›δΆ!χΘβ%I\\5Ÿ~ϊIaa‘τμ1@ζΜ}Wήx}²tκτιΣ·g©~ϊœτvZڍrιe—Ίn΅aΡ’E’οœ––& 6΄:¬\ϊmΨ°A$99Ή\^/’!Π‰VI_•?Μ­€N‘©κF 9’*–τ%Π\bΑ‘ζΨΌ Tύœτ¬Ž@³GΒώ³κ5&ΠlΏΆž‘ͺט@³§RφŸU―±ύ•1@@@@ΐšέXu֌ €€CάhΞΜΜ’zιούCΞ:«½Ou32ΆΙ€›o—ωσί“V§΅4­Zυ$&&J‡)ΖωŽ»€Ώ!ςιΒY¬YŸρ .‘—_š …˜ηŠDΦΓ͏?1VΌ²«O?ύdρβ₯ςΒ_nž§!/Ώ·iΣΪηZ$'š#Ρ*ιK ΉΔ"’#•ƒΜ-’J–τUՍ@sI"9"Π‰Vμϊξή½W|²HΦ|Ώ^kΧ–k½Βψ‹Υͺ•ώΕ§P―Ίuλv©Z₯ͺ΄9ΓώΏ ΌοO Ω[Γώ±ͺŸ“žhφHΨV½ΖšνΧΦ3RυhφTΚώ³κ5ΆΏ2F"€ € € €ΈQ€@³«Ξš@p¨€[Νz9§OŸ%―Oœ,“ή'ϊnΜϊNΝλΧ(#†^nΏγVΉλ‘FΥυPςΑwKκωηʘ1#ΝΆΡ£•οΎ[+Σ¦½i„‰ŠŠNΚ’%KερǞ—‰_”K.½ΘθϋΡG δωη^–ΏώυIΉκκˍ°ς±cΗ%] 0?στίδo/>-Χ^{₯θmύϋ –ϊυ“δ―/<%­Z΅0Ζ―Y³^†ίω€ά9|ˆάwߝF›έ"ΠlOŽ@³=7•ƒΜΝY5%Πl―žšνΉE3jιΏ—ΛΨ±OH―^݀׍έεΐς—?=ΜόΙ‚™R»v-K·ΟΙ9 oΉCϊυ»AFή?˜p4‡²v]εο}š­Υ1T/ΥkL 9Tυ¬]S½Ζš­Υ1T/Υkjξ\C@@@@ΐ_€@³Ώη € PiάhΦƒΚ|π‘ΌτβkFH?~\FΎWn½υf©Z΅ͺQW½ί£<+—\r‘τξΣΓ¬΅@~υΥIςΑΜΉf›~W^yN.ν₯f›~πΕ‘‡ώψ”O[||ΌΌτς³΅k³½ ΰ¨ΆKσ™?o‘1§“'OΧώτπ(Ήι¦ήζœΜhŽμΧξšνΉ©`nΞͺ)f{υ$ΠlΟΝξ(Ο_‡?ώ/>N(**’;οx@τΏΐπτ3Ώ`μ5>"+–―”'žψ‹ΡεΙ]Ϊbρ Π EΡ~Ων;IMMΝΝΚΰ.š£GU½Ζš_cΝΞ―qτ+δ € €ίή}€ΛUΥ{^IHƒΠC (”‹‚‚Hο‚»τ"ι½(Π[h‹Š 6€Š "%: $€πΝΪχΫρ΄}ζœ9SΦ™yηytΟμΊΦϋŸ™³ςπΫk @€ZI@ Ή•ͺ­― @ ΙZ9М—6†˜'Mšœ½œ£τΣοC‡Ι7υhCΘ“&MΚf^žgžΉ» "½ύφ;!€cπyξΉη*< KO›6-̜93Μ>ϋπ0Ϋl³ξΫ› Ν½ΡϊοΎΝ΅θΝ³”?ΪΦ›JώwίTέš[£ή<hξVίχ½`μ%αίώO8±τ‹ ρW!Ϊ>bΨyΓοl~qΫ5aα…l»iΦσό«ψ]ι—Ζ„…Z0ά{ο―Β~ϋν1kŸΎ<hξ‹ήMυ{2o‘@s.Qω2υ 4W^ΫόΘΤk,МWͺςeκ5ΌgŽ$@€ @€hEζV¬Ί> @€&hnΒtK Ή¦Μjζ2@›S h[AΡΚ¬NΥM ΉLα 6 4ΐΤ`uΌAi‹ΝwGuHiφήΟvΊB +o³Ν.αΠCχ «Ίr§ν]­x晆»οΊ?μ·Ώ@sW>Z—κχdξ!МKTΎL½ΖΝ•Χ6?2υ 4η•ͺ|™z+ο™#  @€ @€ZQ@ Ή«Ο @ Iš›΄°έh.€)³Z Ή PΑ攃ΪVP΄2«Suh.SΈ‚ΝΝ05X=yςaέu6 ·έ~M˜wήyΊΌΒΥWqΏ]wύ^—Ϋ;hξ(’ΖλTΏ'sζ\’ςeκ5hΌΆω‘©ΧX 9―TεΛΤk\yΟI€ @€ ЊΝ­Xu}&@€M* Πά€…-θ–@sL™ΥΝe€ 6§ΠΆ‚’•Yͺ›@s™Βlh.€©Ακ)S¦„υGonΌιςΒ@σψρ·†Χ&ΌφήgΧ΅@ ΉGLuί)ΥοΙB 9—¨|™zš+―m~dκ5hΞ+Uω2υWή3G @€ @€΄’€@s+V]Ÿ  @€@“ 47ia Ί%Π\Sf΅@s ‚Ν)΄­ heV§κ&Π\¦p›š `j°:š7ψφΦαζ[ sΞ9’Λ+\ύ-aβλš»ΤωοΚTΏ‡ς¦ή>ζΌR•/S―±@sε΅ΝL½ΖΝy₯*_¦^γΚ{ζH @€ @€VhnΕͺλ3hRζ&-lA·š `Κ¬h.T°9ε €Ά­ΜκTέšΛ`³@sL Vχt†ζϋ₯pΠA{χ¨•ΜΠόΞ;ο„ηž{πό/Ύψb˜8qbψτ§?fŸ}φΒύΉαΩgŸ Λ.»l#›Πν΅Soί /Ό]tΡnϋΡ¨oΌρFxϋν·ΥΈxώωηΓ°aΓΒ¨Q£ϊp–Ϊϊϊλ―‡ψ]΄άrΛΥξ"}bĈ°ΠB υ±§΅9|Β„ aςδΙaι₯—ΝͺtΦUVY₯Jgr @€ @€hn¬Ώ« @€Uh"f?8•@seEhΜ-Υπk썢5WMš+«§@sen•5eΚΤ Ν[…qγΞ ‹}’λ ι±ΗžΎψΕΥΓ·Ύυ΅]’’@s VΏυΦ[]žΪ΄iαα‡ΞΝ›mΆY˜ώω»ά―Ρ+SώώŽ6©·Ο Ν}§^c347ΝΠάό5ξ{ @€ @ •š[©ΪϊJ€š\@ ΉΙ ά‘{Ν@zψR Ή‡PvK9π£mŠΥΓ—©Ί 4χ°€vhξRΓ—όq8ψ £Β—Ύ΄zΨlσ ;])†‰cΰωμsN+¬Π³YK+ 4wΊp›|πAΈηž{šΫ˜Tς4ΥοΙΌ/ΝΉDεΛΤk,Π\ymσ#S―±@s^©Κ—©ΧΈςž9’ @€ @ š[±κϊL€šT@ ΉI [Π-ζ˜2«šΛlN9( mE+³:U7ζ2…+Ψ,Π\S£Υ>ψ‡pψ wίsC1bD»«άqϋ½αŒ3Ξ χά{c}FxΰΓΚ+&,°ΐΘvϋζ/šs‰΄–©~OζJΝΉDεΛΤk,Π\ymσ#S―±@s^©Κ—©ΧΈςž9’ @€ @ š[±κϊL€šT@ ΉI [Π-ζ˜2«šΛlN9( mE+³:U7ζ2…+Ψ,Π\S£Υq–ζέvέ?L˜πZΈθ’sΒΒ‹,”—ο»οΧαΘ.Έπ¬π…/¬’]}ςδΒ7Χή8œσ““Βκ«―Φe‹š»diψΚTΏ'sζ\’ςeκ5hΌΆω‘©ΧX 9―TεΛΤk\yΟI€ @€ ЊΝ­Xu}&@€M* Πά€…-θ–@sL™ΥΝe€ 6§ΠΆ‚’•Yͺ›@s™Βlh.€©ακ©S? §œrvΈυ–;ΓΘ‘σ…7ήx+ 4(œyΦ a­΅Φ˜uε)S¦† Ύ½U{Α™aΩe—š΅Ύν“,Π|χύaΏύφh»Ίβη|πAΈηž{ΒΔ‰Γf›mζŸώŠΟUΛSύΚϋœzϋšσJUΎL½ΖΝ•Χ6?2υ 4η•ͺ|™z+ο™#  @€ @€ZQ@ Ή«Ο @ Iš›΄°έh.€)³Z Ή PΑ攃ΪVP΄2«Suh.SΈ‚ΝΝ0uXύΑ†)S¦„„Ήηž+ 8°WνώΝέϋτtkͺί“yϋšs‰Κ—©ΧX ΉςΪζG¦^cζΌR•/S―qε=s$ @€ @€@+ 4·bΥυ™4©€@s“Ά [Ν0eV 4—*؜rP@Ϋ ŠVfuͺnΝe W°Y Ή¦EW 4W§π©~Oζ½hΞ%*_¦^cζΚk›™zšσJUΎL½Ζ•i€΄>@IDATχΜ‘ @€ @€­( Π܊UΧg Π€ΝMZΨ‚n 4ΐ”Y-Π\¨`sΚAm+(Z™Υ©Ί 4—)\Αfζ˜]-Π\Β§ϊ=™χN 9—¨|™zš+―m~dκ5hΞ+Uω2υWή3G @€ @€΄’€@s+V]Ÿ  @€@“ 47ia Ί%Π\Sf΅@s ‚Ν)΄­ heV§κ&Π\¦p›š `Zt΅@su Ÿκχdή;ζ\’ςeκ5hΌΆω‘©ΧX 9―TεΛΤk\yΟI€ @€ ЊΝ­Xu}&@€M* Πά€…-θ–@sL™ΥΝe€ 6§ΠΆ‚’•Yͺ›@s™Βlh.€iΡΥΝΥ)|ͺί“yοšs‰Κ—©ΧX ΉςΪζG¦^cζΌR•/S―qε=s$ @€ @€@+ 4·bΥυ™4©€@s“Ά [Ν0eV 4—*؜rP@Ϋ ŠVfuͺnΝe W°Y Ή¦EW 4W§π©~Oζ½hΞ%*_¦^cζΚk›™zšσJUΎL½Ζ•χΜ‘ @€ @€­( Π܊UΧg Π€ΝMZΨ‚n 4ΐ”Y-Π\¨`sΚAm+(Z™Υ©Ί 4—)\Αfζ˜]-Π\Β§ϊ=™χN 9—¨|™zš+―m~dκ5hΞ+Uω2υWή3G @€ @€΄’€@s+V]Ÿ  @€@“ 47ia Ί%Π\Sf΅@s ‚Ν)΄­ heV§κ&Π\¦p›š `Zt΅@su Ÿκχdή;ζ\’ςeκ5hΌΆω‘©ΧX 9―TεΛΤk\yΟI€ @€ ЊΝ­Xu}&@€M* Πά€…-θ–@sL™ΥΝe€ 6§ΠΆ‚’•Yͺ›@s™Βlh.€iΡΥΝΥ)|ͺί“yοšs‰Κ—©ΧX ΉςΪζG¦^cζΌR•/S―qε=s$ @€ @€@+ 4·bΥυ™4©€@s“Ά [Ν0eV 4—*؜rP@Ϋ ŠVfuͺnΝe W°Y Ή¦EW 4W§π©~Oζ½hΞ%*_¦^cζΚk›™zšσJUΎL½Ζ•χΜ‘ @€ @€­( Π܊UΧg Π€ΝMZΨ‚n 4ΐ”Y-Π\¨`sΚAm+(Z™Υ©Ί 4—)\Αfζ˜]-Π\Β§ϊ=™χN 9—¨|™zš+―m~dκ5hΞ+Uω2υWή3G @€ @€΄’€@s+V]Ÿ  @€@“ 47ia Ί%Π\Sf΅@s ‚Ν)΄­ heV§κ&Π\¦p›š `Zt΅@su Ÿκχdή;ζ\’ςeκ5hΌΆω‘©ΧX 9―TεΛΤk\yΟI€ @€ ЊΝ­Xu}&@€M* Πά€…-θ–@sL™ΥΝe€ 6§ΠΆ‚’•Yͺ›@s™Βlh.€iΡΥΝΥ)|ͺί“yοšs‰Κ—©ΧX ΉςΪζG¦^cζΌR•/S―qε=s$ @€ @€@+ 4·bΥυ™4©€@s“Ά [1Π’]Š5ΝΫ7`ΐ€€Jš·+6JΫz^šά-5³ΨƒψΘΫ•/{ή³Ϊξ™·-΅v΅uK΅mρf•W^ΉΆj±³ΏσΞ;αΉηž+μu ’ΖΏ')ώM‰Nω{(GM½)·’aΚί™±}y}γσΏ;σ6Ζv¦6nm‹x#Ml[Κ~ΧR5Ξz»Lύsϋ?#Λ-·\Αϊ޺۟ @€ @ uš[·φzN€šN@ ΉιJ^ύυl6ΠzφΖod«γ Ν©=β{1†Χζ›oΎΤš^}υΥlζθyζ™'©ΆΕ°ΐ„ ²Y ηšk€Ϊg€οΕΉηž;ΉΩ_c°?~b=gŸ}φ€ά>όπΓπφΫo‡ωηŸ?ΉY·γLvοΎϋnXpΑ³#R‚{ύχCόίΒ /œ\€+šE»Q£F₯D–΅ε­·ήΚfB]h‘…’kΫΔ‰³χي+˜\Ϋϊsƒβ¬™±ξEΈ-ώmIqœΫgM}ο½χB|Ο¦ΊΞφΕΏΙ)Ξ γίζ&9rd|™ά#Φ7Φy‘EI2πšς"/fΚcκΨΖ”.Ζφεί“ρί$ρ—R|€ϊo“ά*Že£cό§ψΘk,Мbu΄‰ @€ @ ζJΤC€$) МdYjΦ¨§žz*;χ +¬P³kTzβΏύοYhx™e–©τ5;ξα‡Ξ¦‹/ΎxΝQΙ‰γ wϋΫί²η’‹.ZΙ)jvLό9ρ8[ψ'>ρ‰,[³ Upβ”zζ™gΒ’K.™\€>@žώω$gŒ‹Σ_|1|ϊӟN.ΰσΚ+―d7ΔΩ|γ,τ)=’Y΄[m΅ΥRjVΦ–8So [―΄JΙ΅νι§ŸΞ‚΅Νυ-MΚγ„(oβyωε—³χlΌ *΅G Ι=ρΔIώνΛ­bϋ’] ς₯ψˆυu^e•U’»A%zΕοΜψύ΄ΔKdcΓ {μ±μf²₯—^:Εζec‰T.F°ͺφΩgCτKνfΖΌ <ςH˜wήy³χaΎ.₯eό'ρβη8ΕGώkΝ)VG› @€ @€*hDΝ1 @€@’ΝI–₯fJ9¨$Πάϋ² 4χή,!Π\™›@senΝ•Ή 4WζΦΧ£R'ΔΎ 4χ΅Β! \ 4Wξ(Π\Ή]~dΚcšσJUΎhάΞ‘ @€ @€*hDΝ1 @€@’ΝI–₯fJ9¨$Πάϋ² 4χή,!Π\™›@sen)·ΜΠ\YM›ω¨”Η Ρ] Ήοο>34χΝP Ήo~ρθ”.Ζφ 4G…Ύ=šϋζηh @€ @€½hύ  @€dš“-MM–rPI Ήχ%hξ½Y*εqBthξϋ»O Ήo†Ν}σ‹G§όw1ΆO 9*τν!Πά7?G @€ @€θ­€@soΕμO€$+ Мlij°”ƒJΝ½/Ή@sοΝβΝ•Ή 4Wζ–rpK Ή²š6σQ)’»@sίί}Ν}3hξ›_<:εΏ‹±}ΝQ‘oζΎω9š @€ @€@oš{+f @ YζdKS“†₯Thξ}Ιš{ohΜM Ή2·”ƒ[Ν•Υ΄™Jyœέšϋώξhξ›‘@sίόβΡ)]ŒνhŽ }{4χΝΟΡ @€ @€z+ Πά[1ϋ @€Ι 4'[ #@€ @€ @€ @€ P( Π\Hc Πίšϋ[Ε΄— @€ @€ @€ @€@Νή @€@Σ47M)u„ @€ @€ @€ @ …š[¨ΨΊJ€š]@ ΉΩ+¬ @€ @€ @€ @€Ν( Π܌UΥ' Π’Ν-Zxέ&@€ @€ @€ @€θΧΝύΊ|O€΄hn«α9 @€ @€ @€ @€ώ! Πά?ꀕ @€@š{€d @€ @€ @€ @€‰ 4'VΝ!@€*hάΞ‘ @€ @€ @€ @€% Πά(yΧ%@€ͺ. Π\uR'$@€ @€ @€ @€ Psζš» P/ζzI»N9?ώ8όοώ>¬΅ΦaΠ Aεv―Λφ ―Ύ½φ¦πΔO‡‘ Μ>ΏΪηΒ:λ~#Μ9爺\Ώ»‹ΌπΒ‹αΞ;ο μΙ°θ’‹„•VώtψϊΧΏœDΫΪΆ;ΦυΑύCXγ‹ŸC† i»©ξϟ{ξ_αΙ'ŸιtέiΣ¦—μΦ σΞ;O§mυ\1aΒλYMτ§Ώ†aC‡†o|γ+a½Ρk7ΜmϊτιαΞ;ξ θ’aπΰΑαs+&,ΌΘB]n―ΗΚwήy7<πΐo³Οθ[oΎ–\rρ°fι;δsŸϋL0 λvΧ£]ρΣ§Ο(΅νΑπ›ίό>Lš4),½Τ’aέυΦΛ.»T½šΠξ:οΏ?)sZcΟ·[ŸΏΘΫ{ο=ΏοΎϋ^ψτg–n8:,±Δ'σ], $!π—ΏΌτ_!|₯ΤΎΕJmMρρβ‹/…>ψ0,Ώό²I4/υ1DDŠcίώOαž{~^}ε΅°μrK‡M6ώvΆl$bODŸψwπ·ΏύCψλ_ /½τrXd‘…Γͺ«ΎϊΥ5Cσ€πˆγ»οΊ?<σfŸγ΅JŸα΅ΧώJΓƊрάψ"ξσ·Ώύ=γώλω—ΎsF…ο|g½°Κ*+5|¬ΫζA€ @€ @ š›‘Šϊ@€dΝή©Δΰπ™gœξΉχΖ†K£ΙCύ%μ½ΧΑα‹_Z=|wΫΝΓ”)SΓΙ'Ÿή{oRΈφΊ‹Γβ‹’at·άrG8ξΨΣΒvΫmY !ΌZ ^ŸsφΨπα‡SΒW^>υ©eΦΆŽŽα©£Ž:1όόβŸ–‚ ŸνΈΉ―Ο9ϋ‚πRdεΟ}6|4υ£Yמ:ujΨdΣ ΒRK-1k]½ŸΔ€ήξ»P ₯|5l±ΕFα­·ίΗ}J„»εΦ«ΒΘ‘σΥ»IajΙθΒ /  lwν˜.e¦Β₯—^vέυ{a=wj·½^/bΈlΛ-v Ÿ]iΕ°ΥV›†sΜώU ϊΔ:λ[_ 'œxTΓ‚„1ά³υV;…·ήz'zΨΎY(κ7₯ΰυυΧίφ?`Ο°ύφ[Υ‹)»ΞΜ™3Γ‘‡’Ωψ/λδk½ε–;†Χ_›Ž<ςΰRH}Αp}dνŽλ•‚ΨRxτΡΗΓN;ξ.ΈΰΜπ…ΥWM‘IYˆτ’‹― ηŸqφَ7UΔ0δρǝž……―»ξ’0lΨΠ†Άυ™gώΆέf—lLΖΔΟόυΧέyδοαθcΛn^hh;\<ŽΉΦ]gΣΜνΞ»nθτΥaχΊΌLy bhxΏ}ώόηGΒαG[lΡpΧ]χ…[oΉ³!wΪ%υρDlk Οo±ωχ³ΏΫΌwXhΑΒΔ7ήΚΖΧqϋw^FŒ˜#>mΨγφΫο G9)¬³ΞΧ³Ομ›o½N;υ'Y{nΌιІŒˍ/bΘώ¬³ΞW]yCΨ{ο]Βͺ«­žxόιpζ™η… 6X7ϋώ8°ύ8³aΐ.L€ @€ @  4χγβi: Π^@ Ή½‡Wυ˜1cFxΎ4SΧyη^|πΩμbwέ}C˜gžΉλېW‹Aš Ύ½UΨy—νΓ6Ϋl6kkόςΗ{jxώΉΒ₯γΞ ψπώχΒ¦›lί) Ϋvώy?ΏϊΥƒαϊ.M"όσςΛ―† Ώ³Mζ7nάωYπtfŸDŸ~=ρ€1 ›!·¨Λο½χ~)Έ΅Y@Š3βζŠ΄Ο”fΡ<ζΗ?Lj»+―Ό>άpΓ­ακ«/ s”‚Δυ~Δzξ±ϋα³Ÿ]1μσƒ]Ϋ]ώΝ7ί*}~·η=£!!ϊΨΆ#?Άh|%ϋœϊί™Ιγ αΫo·{ΈͺδVYGγ{θ‰'žΚΒΜoΏύNψδ'λhŽν=ν΄Ÿ†?”fυΌaόΈ0Ϋl³ΝςŒΑΈ=v? άxΣεfjž₯βI#β/&άzλαg?»,»| 7ΙδωΝ—]>6ϋΎΞΧOžόAιοΞa» mΗωφz-γχΐ¦›l—έψρ½οoέξ²qμovΈχΎ›’ω…‡ψtκ)ηd7TΔβSΣΔ6₯:†Θ £_|EψΕmΧ΄ ήΖοΏίαΙ~7z<‘ϋΕ›/wM§Ώƒ1°»ΛΞϋ†ψλ»νΎCΎ{έ—ωχ̹睾XΊ™1Δχζa‡>ϊθ£pζY'Τνί&=_Δ6>XϊυCKν‹7SΕ_”ΙoL|³4Kσ6aΜΡ‡†Ρ£Ώ™―Ά$@€ @€ @ Bζ αF€€' М^MZ©Ey8wÍF‡½φΪ9›‘ωCχ σΝ7oCbh`Χ]φΛ>mΓ}±Qρ'ΫcXςΎϋo ΓK?Ω^οGœαυ‘‡Ν‚ΉβTΉm1<ƒ±·ίqmΓCα1²I)x½ΫίΟ~Ύ{‹-7.ύlχΚmZ[ί§ΡfύΡ[”lK&΄• ΔY¬―»ξζpΙ₯ηv ’ΗY5wΫuΏlζςaΓ†ε‡4tωλ_?X μβΜΡ -΄@CΪg’άdγν2³Ω© ‡—Ε›n²ACfp!υΧί2 •-Όπ‚Ϊ6ξ«Γ+―NGq`§mΥ^‘ϐΎχ>»f³9yδραΌRjΠ A³.ΏΣΦώΖF…a·SN>;Μ6xp8θ ½g㠁z δ7-φ‰QΩηζΡGŸ(ύJΒbaυΥW«g3 ―5~ό­αο=~|μαφ‰Ώφ0nάΥ₯Ω›O―[Π°c#β/Δ1ΝύΏΌ% .}–Ϋ>br›3‡ΆCniΫ–όωoϋPSϊe‡3Ξ½t#hW‹γqλή2ά|Λ‘«1Q-Ϊά“ρEό·ΐV[ξvάι»₯qΡ·:5γ/WϋγSKήΊΉt3ΥΗ%v΄‚ @€ @€²Νe‰μ@€τζώR©ζog \°ΩL]4ίuΧύ₯Ÿa¬Λΐa ΅|gƒ­KaΕ«K3ΰ¨{aΎz|HŠ?ίρgD޳ΏΖ™;±;ξ[λΧόŠπ§?=.ΈπΜl&έέχΨ‘‘ζηŸ!rπ˜lζ½wί}/|ψα”μ§μύ^‹οϋ8Σpœ5sΝ5'+KόΩσ8ϋχ°aC³Χ'ΎζŸΎ†…αΪΎWή(ύόϊΊλl~ώσŸ„UV]©ν¦Ί>ΟZΈw§ΠrwΫκΡΘB34Ν*ί‹»νΊRo,uΫ¦L™vΪqŸpΕ•Ά 4υ― 'žpfa{cφύΑ‘αΞ»nhw\­ΫλόŠΉζΖ°τK$hŽί7ρoΛ&›n0λ;Όm»Ÿxβιπ“s. c/8£aίαρ3|ΦY燱₯Yλ;ή)#ήμsρ%η†ΕΥΆι yžί`qεU? ³Ο><»‘'…οžTΗy‘bϋβ,Βχέsφ==}ϊŒRΘyjfkΗqίFJήήΈLe<‘·)ήl4yςδ.CΛέmˏ―ε2~ΟΔρ}Όρΰ³+­ΨιRq{KξΌΛv ω^,_ΔΟσθυΆ(œ>ΏσΆΫ― σΞ;O§~YA€ @€ @€@Οš{neO @ qζΔ ΤBΝ‹1>•@s O›6-ğ:οψˆ3’]tΡε ›10Rβ ‹CIqvΆwΨ;¬ΉΦ„K!ΟF>ž|ς™°σN?·έ~m)ˆ;oήάs―h޳λΕGZ8ΌπΒ‹³xβ Ίρη»—\rρYλκω$Ξ<ΊΩ¦Ϋ‡Λ.ϊγ_ΒΡcNšuωe—[:wμ!.SxΔΟθΑζ9_—az·1ώLύc/-}ΟΛ―°\φ™ˆα˜J³˜_xαΈμύ7²ΤΦz?Κ€γ π{νyPέΒΡfΧ]φνhŽ7IΌύΦΫ]†Έ’]<.oύΕΥI…ακ]WΧKG ₯@sT‰‘εE]€Ση#~gΖ›βί—έvί‘a€1΄ΫρF§z½`μ%α–[ξwίscΓgHmŒ7{|ξsŸΙΎβΜ?Ψ'›)RCδoͺ86ύΧΏώΆύξ₯€ύQ₯›ςώžoΚ,Ώ_Ίiͺž7ΠΜΊxΑ“ΤΖ±™>ϊxvΣΟi§Ύό•/fcνψkΏέŸΒ.ΈΰΜN7Pt―κ«£W 4Xϊ₯„~ν$μ4j¬]4Ύ(7ΚΫ½Χή»$3C|Υ‹η„ @€ @€κ$ Π\'h—!@€j/ Π\{cWθ™@όΪ©š‹ZƒΊ1PπӟžΎτgΣ-Ϊ·λγOŒzȘπΪλΓ³x.|ζ3+„K.=·‘‘•jΨhΓmΓ‘GΎφ΅΅²U (5*d‘Χα¬3Ο1{̏FώfμŠ3^tΡeαͺ+o7έ|ECf§Œ³Ϊmπν­ΓΘζ―Ύ2!›ωxΙ₯οΏ?)\qΕuα²qΧ„Λ.›Υ6οK£–1\φύονU β^ŸΔLzρ;cΛ-v qfʎFβΝλ³YΈtάyaωε—νΨ΄ί‹Χ—BΧwέ}C§d§«Έ’(pΫ2±τ²χ>»vy΅ψ?eγM—'Qχ.ieK €h.ΒΏι¦ΫΓi§ώ$άrλUa‘…(Ϊ­λγχζωηύ<όξw 1l8dȐ¬Ύ75δ':vόΦ[ξ ηœsΑ¬_™hΤΝΫ_§:†ΘΫνN>ωμlζύΨ3l²ΙΩ―<<υΤ?Β>{R ‹Ξ8σψ†ŽσΆΖejγ‰Όmq&ζŸώτgωΛYΛοο°MΨwίέg½nΔ“ΨΆΏύνοαΜ³Nθ4Ϋϋ„ ―‡o―ΏeΨoΏ=²_ό¨wϋŠΖρ3o„γe]ΎχβχQœYΊΡΏβRo/Χ#@€ @€ P ζZ¨:' Ё憰»h©šοΉη—₯™ ϋν_ |oλ.zPUΡμρǟ*ΝϊNΈaό­₯YδώΞ>ϋΔΜr_ͺcJWŒν9φΨSΓ”§„O“Ν˜Χ₯h޳Ξ9ηˆN6±}§žrN˜πΪλαŒ3Žο©5dœ‘ωλ_ϋN)T68άΛ[²Ϋ^σ’‹―Μ‚ΨχήwS§Ω5ΫξWληΡ)†R–*…­‹‚―΅nCΫσΗφœώΕ!ϊvΨ~aεΟ}6Μ>ϋππz)˜{ΕεΧ…?ώρ―αΪλ.‹/ώ‰Ά‡Υνy ΏΕYOo?.,ΈΰƒŒχήσ«pxiΖΦ8sτwέΠeΐ§V, Ε@σ‡₯p luυhξJΕΊF €hŽίOηϋσpι₯W… vVψόηWi$W§kϋί /–ώχΧΏ>šέ8³σ.Ϋ‡=χά©Σ/?t:°†+b›6έdϋp㍗‡%–όΏ_ΗH)Мκ"/I 4ΗρΧI'ΦYηλωκlωζ›oe7NrΚ1α+_mΜψ°mƒROδm{πΑ?„ύχ; 4χε…3ΆλL_ŽΜΠ\Ed§ͺ‹@ʁζ^x1μΎΫώΩgύŠ+/K.Ήx]L*½Hόϋ·αwΆ γƝ߰ΏΡρϋr³ΝΎvήi»°αF£gu%~Οxΐ²C8k}jO9†Θ-b yάΈ«KV—u9ŽΉδ’«Β€I“>Λplojγ‰Ψ¦iΣ¦•Bί[…ύΨ+ϋΈνγΧΏ~0sτΙαξ{Ζ‡αΓ‡·έTΧηωΛ#₯ο—²1φn»?ΌώΪΔμvάρ»α©§ž ;μ°mψΒκ«Φ΅MρbEγ‹hώΑ>‡ήΐ•aη]Ά «―ΎZέΫν‚ @€ @€šI@ Ή™ͺ©/ @ Εš[ό PχS 4?ωδ3YΠuΤ¨…ΓΟ.:;,²ΘΒ ›9sfψαa?G9$›mΈcc’α6Ϋμ-ΝήΆκͺ+wά\ΣΧq¦αuΧΩ4,·ά2a§·Λf|œmΆΩΒ)§œ] .6ήψΫα3Ÿ]!,°ΐȚΆ₯γΙ§Nύ(όωΟgαtܜYΦ]g³,`:ί|σvΪ^Λ1²ώθ-ΒY₯™΅»ͺY¬ιΞ;ύ œ~Ζq‘ήmkΫοϋξ{ œRϊ9ϋ»οΉ±Λ°TΫ}λρό™gώ™…–ΗŽ=cΦ,…m―ƒp»νΊ_aˆ¦νΎ΅|ώμ³Ο‡Gy,›΅|ΡΕ _ύκZαα‡bΈμόσO―λŒΰE£8σhœΡ:†κ»zLxυ΅°νΆ»†FΟήUΫ¬kMTΝ·έvwzŒ71ρ£ƒΒΠ‘C’(Pœ)ϊσ«­RXwιΥ₯@βδ†ΝΎg³³ΈžpβQaθ!ٍPnβΔ7Β©§ώ$œTϊΕ‡α₯ψγM?6§<†Θί`ρΖ”k_x£Μc=~ύ«³_ɏiΤ2΅ρDtˆ7έd»pΫνΧΞΊ!―­O <Ηqβ7]ήΠ›Λb›β–ύλίΒ‹/Ύ”}^V]νsaι₯—[lΎC8ώ„#Γ +,ΧΆιuy^4Ύˆc±wΨ;»)oπΰΑΪofΨdγνΒΨ Ξ ‹-6ͺΣv+ @€ @€θΉ€@sΟ­μI€$. МxZ¨y©šσŸžή€=ΓwΏ»ECB4Λ~gΫpωc» GΓ8r#f:‹‘„|χwC ΔGΜ—šnΎωφπΕ/­^ δΞSϊYμ-³ΠsΗΎΥςuό™ξ­Άά1άΛ[BWŠΈˆ‘α8 ς Aυ‘9†Τcε‡?άΏΛYυ¦L™Rš‘y“RΘζš†…hβϋκˆ#Ž K.ρΙ°Ϋξ;Τ²T=>wʁζψώ?­Β;ψ}Β°aΓΪυ)·\e••Β–[nάn[­_t8ϊήφ{dοŽνmŠα³oόEέΨ΅φpώώ+Z 9~ǎ½$\όσ+¹睾ψΕ/$ƒ›η¬·ήΪ₯*Φμ²]γΗί^yeBΓfο}≧Γ-₯qR˜9?Δ0ψύχ?ή~ϋݰᆣ Ž,mΆ―ϋίθ–ς"/θCύ%ω£γ Η1εfβΟΟSλeώ~Li<ϋΗZρΧ2R4Η—|πΑ₯_ΛX»S™β8φ»Ϋξ–ύBK#f._Δ›γΜΧ1°Όμ²Kujwœέ|«-wΚfΎ1bŽNΫ­ @€ @€ @ ηΝ=·²' Έ€@sβj‘ζŐΓϋΖ}hCg’δ1Όςνυ· g—fΝύςWΎ”Lς ȜsŽ(LμΤhˆαΨ;ξΌΛΐs§κ΄bΟ= {ν΅sα쐡nF ‚^o‹pΠΑϋtϊ)ρΜτπc³ Υ1?ώa—³ύΦΊ}W]yCˆ²~*>ώŒό™gžW )έT Η­uSΊ<4Š3xΰ^Ιό$ψsΟύ+lχέέΓm·]F.0§v_qΕuαώRχ’KΟ­{.πΔ™Τ;γgtΣMΆwάq]Xx‘…:΅»–+ŠG1TΏI©MΫl³YΨzλMΫ5!†Ό6ψφΦα°Rΰώ[ίϊZ»m^h”@jζίώφ‘pΘΑc²Ωq]t‘F±^7ΞΒ~ϊιηv9ΛzόϋΈρFίΝf”Ž3 §τˆ3ΠΖqα γΗ5τ¦²ΤΗ±fρϋύ›ko\/Ÿέ@ΦΆŽq[ λv5j»_=ž§8žˆύŽλβ Μ'Ÿ|t'ΏΈύΡGΟnΌοώ›Βˆ#βͺΊ?ώϋ9ΎΉέ/e”ϋ·A=Z4ΎˆΧ޳¬?ό nŠj;ώ.ϊ…ˆz΄έ5 @€ @€4‹€@s³TR? @€ ΠμMŠ@όΫ©šγLΓW_uC’ωπΓ)]-Όπ‚ Ψ<ϋηJ‘ÝΓN;oΎχ½­C 7Ϙ1#<φΨ“a―= |§τSχ₯°σ€8=rXΧέvέ?μΉΧNaΥUWnX‹ξ½χΧαπώ8}ΜaauΎžΝœϋή{ο‡ŸώτgαφΫξ) ΖΦ£ΑyΨh…?Ζ”B° ,02|τΡGαΆ_άN<ρΜΜvg44HΫ·ώθ-ΒΕ—œ–YfΙz”½F„yπΑ‡ΒE–]nιRΐgΆkzӍ·eu½κκ‹ΒςΛ/[φ\΅Ψ!ΞJ~‰g…s~rrXcΟgŸΗ§žϊGΨiΗ}²ίχωΑ΅Έl·ημ.pΓZ±m1Τ?zτ73Λ ―Ύ>ψ¨¬ν—Ž;Ώ]€ͺΫ ΩH Ζ)šγwΡ–[μ˜}ΞwΩυ{Y°΄cχg›mPi†α:ΫλόoΜK|"ό‘a‘ψ%Ž^ϊΟΛαΠCΞnβΊσvΣLΔ?ώρΟπƒ} ±mυώυ„ŽmJy ‘·5ώέ9ώΈΣΓi§ΎςΥ/eίγ±Ζ»ο~@v£` ίγ)Ž'rΏ;nΏ·4;1σϋš«gγΔ8cψCύ9xΐΒαG6ί|£|χΊ/σΟqKρ£Γ<σΜ]š±ωΓθ²pν57…[n½*,΄PcΎgΊ_ΌSϊε–¨_gέo„ύφΫ= „ΗvΗYνΗίpk6+φΘ‘σΥέΣ  @€ @€4›€@s³UT @€@ 4·pρλz*ζ؎“N:+ά8ώ…BρgΡοΌλϊ0οΌσξSΛ Ο<σΟ°χ^—~Šύv—9 4ƒnœe΅ΡΑŸΆΚ‚§GΆΨb£†šc›ώπϋ?…–BΝ“&MΞΒe―Ώ>1|κSΛ„3J3.²ΘΒm›]χηoΎωV8βπγΒ_ώςHXb‰O†^x1›5ϊάσN «­φΉΊ·§νγΜ…λή2άϊ‹«³}Ϋm|>}ϊτo>Έπ‚KΫ5#ώάϊΨ±g4lFπؘψΎΏω¦ΫΓ 'œΡm{ο½KΨaΗmr3D νΏίαα‚ Ομς;βΟ~$μϋƒΓ²0ύ¨Q ‡W^™ΝΚ<ζθΓΒμ³oΧ/4R š—YzΙπ…ΥWmd3²kΗΐ㦛l—…‚‹σΙO.–ΝήάΘΏΝ1TxΜΡ'‡όC»fnΈαθΗsΝ5g»υ)Όxι₯W²@σψ/λς;«ήmLy -βߝ;J³q=怌&ŽUγΝQ›mΎa8θ }ΒΠ‘CκMΦιz©Ž'ς†ώς—Ώ ‡rtώ2[ΖΟν1₯›αF―­†ί,AζΐŽρίω#ή`9φ‚3CόžiΤ£άψ"Ž'ΨππΟώ+»1..γ8γΌσOoh»εεΊ @€ @€j! Π\ Uη$@€" Πάv%P8m uΖ™ηž{†„$«‘:ŸδέwίΛf.ŒvΡ-₯G¬ι!ƒCœ<ΞΎ—ΚLΫ)ulKœ‘<,Δ0σˆstά₯a―c˜,Ύίb *γ,)?b .γ2†αR²LΩMΫτ83j •ΖΗsΜ‘DΘ΅ΏΨενLy Ϋ8}ϊŒLα“³Ώ7ƒ ΜfΞΫnΩ3Xγ©S§–>C³Ώέ©Εβ˜'~ŽcϋRΗv'Η3gΞΜΖΆΊ)΄»φΩF€ @€ @ ? 4χηκi; ΠN@ Ή‡ @€ @€ @€ @€ϊ…€@sΏ(“F @€=hξ‰’} @€ @€ @€ @€€% МV=΄†胀@sπJ€ @€ @€ @€ @ AΝ ‚wY @ ϊΝΥ7uF @€ @€ @€ @€΅h΅°σ @€uh΅  @€ @€ @€ @€¨š€@sΥ(ˆh΄€@s£+ΰϊ @€ @€ @€ @€z/ Πά{3G @€‰ 4'ZΝ"@€ @€ @€ @€ Ѝ€@s786 @€ύK@ ΉΥKk  @€ @€ @€ @€Dfο @ i𛦔:B€ @€ @€ @€ ΠBΝ-Tl]%@€Ν. ΠάμΦ? @€ @€ @€ @€fhnΖͺκhQζ-Όn @€ @€ @€ @€τkζ~]>'@€Ϊ 4·Υπœ @€ @€ @€ @€@hξuJ @ Ν=@²  @€ @€ @€ @€Δš+ˆζ @€• 4WnηH @€ @€ @€ @€hn”Όλ @€Uh:iKπ―Μ¨{η2 ¬8r`έ―λ‚ @€@ύŒ1κgνJ @€ @€ @€@hξΏ΅Σr @ ƒ€@s/{$pοΏ¦‡C~5%ΌQv―ϊN‹Ξ9 \ΈήpΑζͺΛ:!h¬€1Fcύ] @€ @€θ_Νύ«^ZK€t# Πά N6=ωΖΜpάο¦Φθμ]Ÿφ¨5‡V-όϋϋ‡o_?ΉaaζΌ‡1Τόΰvsδ/-  @€@Λ cTη-`ŒQGg!@€ @€ @€j/ Π\{cW @€κ$ Π\'θ6—yθ•aΫ[?l³¦φO―ήhxXcΤ ͺ\(ΜΈΗέSͺrΎž€šύκk[O€-`ŒQ½ cTΟ™ @€ @€ @€Ϊ 4ΧΞΦ™  @€: τη@σRc'j­^ ο^[ ρvυθξΈΈσ{Žθκ°ͺ­λοa£³όQψΙ_>Κ<Ίsξμ½Υs νnβm[—Βΰ*…ΒγCΨ¨ΨΙ¨\ »±BwϋΊ;.ΆΖ£ϋšctοc+ @€ @€ @ £€@sG―  @€~+ ΠάΉtΒFMΪ©FΨhχ Οs α΄o k{κ=h @ έ“šΫΓVσζ"cŒφΆ^ @€ @€ @€Κ 4—²θ7͝K%Πάـ횾†ΪκΧ‡…Ν—Ÿ­νιΛ>h.Kdθ£€@sΟS 4cτΌnφ$@€ @€ @€šC@ Ή9κ¨ @€@I YΝ} !?τʌ°ν­Ξz?τε\³NΝ“ŽΧλfΧͺmJ%ltοΏ¦‡=J³3·}άΎΕμaΕ‘ΫκφΉ@s·<6 @€@Ϊšϋ2.θψ7Ώ/ηκI·:^―'ΗτucŒΎ :ž @€ @€ PΉ€@sεvŽ$@€h‘cψ§Φa£'ߘŽύέΤΊΎΖ¬9΄W‘αξΧvφΓΥG Χn4Ό»έgm{―Τεƒ5%ΌχΡΗ³ΦΕ's ~6zX»uέ½hξNΗ6¨†@ 4ccTγύο @€ @€ @€@hξ?΅R @ Œ€@sύΝeJ’όζJΝΥκ˜@s΅$‡Šϊk Ή¨?ύe½1F©”v @€ @€ @€©4§R ν @€ϊ, Π,ΠάΫ7‘°QoΕμO€ύM@ Ή13ΖhŒ»« @€ @€ @€ύW@ ΉΦNΛ  @€ύ9ΠgκΝΧn4<ΪλeǟgοΛΉzrρχ¦†πΤ›3z²kΥφYaώAa‘Υ9]Ή°Qμ_΅ΥU‹ΝΠά•Šu PMcŒžkcτάʞ @€ @€ @€j 4W[Τω @€† τη@sΓΠϊxα‡^™ΆmΖξγιztψΥ₯ΐχ£υhίr;uhΎτ±iαέ©‡ύΏ0€άiz΄ύ’ωζ2 lΎόl³φhžEα h'`ŒΡŽ£ΫΖέςΨH€ @€ @€τζ~R(Ν$@€Κ 4—7ͺφΝ6:δWSΟLϋ~~HΥΝyxzΗ•‡£ΦόΏ)¦š«ύŽt>hcŒžW£ηVφ$@€ @€ @€hN·6ZF€τR@ Ή—`UΨ½ΩΒF?[oxΨζΦΒSoΞΜtjhŽ'ώŸ Σ–΅Ϋέ†?•fΉŽjΞ<Π @€~,`ŒΡσβεζx„1FΟέμI€ @€ @€€% МV=΄†胀@sπ*<΄ΓFmCΖ΅ 4oϊ©Ω˜5‡ 4WψΎs4Ώ€1FΟkά6ΠlŒΡs7{ @€ @€ @€i 4§U­!@€ϊ ΠάΌ }ιύΓψ§§Uxte‡mΎόΰ°Ψœ*;ΈΓQm@«—fMΎv£αΩΗώvjχχi‘ζ#ΧvZipv­o5Cs‡’xI€2cŒžΏςρŒ1FΟΝμI€ @€ @€€' М^M΄ˆ¨P@ ΉBΈ>,E‚ΆζψzόΣΣΓ{}<+|ΧυεqΙcΣŠ#†5JΑιό!МKX @€ζ0Ζhzκ  @€ @€ P{ζΪ» P'ώh^jμ€YJΟο9bΦσή>ιψσμ}9Wo―έχο.lTώ4ΧCΩ5 ΠΪƍ©Ώ1Fcά]• @€ @€θΏΝύ·vZN€th‘ށζχ¦†πΤ›3:T’Ά/W˜P˜khu!lTGg!@€tϊk Ω£oο)7MυΝΟΡ @€ @€ @€@ύšλoξŠ @€@šλhξ Qi۝φꍆ‡5F j·Ν•Κ9Žϊ‹@ 4cτν&Πά7?G @€ @€ @€υhΏΉ+ @€5hhξν[«/ζέξšήθγv—\aώaΜZ=Ÿ>ZΨ¨Ÿ Pζž£¦rΣ”1FΟkfO @€ @€ @ yš›§–zB€Z^ YΝΧ”f nϋ˜sΘ€°βȁmWΝzώΗWfΜzŸ<ωΖΜpάο¦ΞZχόž#f=―Ε“x½cΫ\―ΧθxΞ1k-τθΈoΉΧ} 4ΗΎopΓ³.1ηΩhφ^΅M yŸ' P#ΆfcŒξ‘1Ίχ±• @€ @€ PKζZκ:7 PWf 4wD[}Τ pm‡sΎOېRΎν²ΦζΆΧκΟϋhŽύττpθ―§d]Ώ`½aa%gλƒ@s―ΈμL€t7V0Ζ¨΄‡‡cτΚn @€ @€ @€/ Πμ­@€4€@sηR 4w6i»¦―a£xƒ5%ΜUšE{ΜZC۞ΊGΟš{Δd'胀@sπϊp¨1FπJ€ @€ @€΄€€@sK–]§  @€@s 4w«@sg“Άkͺ6j{Ύή>hύ  @ ·Ν½«ΞώΖΥqt @€ @€ @ uš[§ΦzJ€š^ ?šϋkqzeFΨφΦλΪό«7Φ5¨*ΧΌχ_ΣΓwO©ΚΉϊz’jφ«―mq<h΄€1Fυ*`ŒQ=Kg"@€ @€ @€j' Π\;[g&@€κ, Π\gπε^zγ0ώιiu½πζΛ‹Ν9 *Χ|oj_ΎrRx£ͺœβ“,?ΐpη–³W|Ό  @€@³ cT§’ΖΥqt @€ @€ @ φΝ΅7v @ NΝu‚n²Λ<ωΖΜ°ϋ]†—'}ܐžΕ ΡιίV9°!ΧwQ @ 6Ζ΅quV @€ @€ @ 9š›³zE€ZR@ Ή%Λ^΅NΗ™ _zfΥΞΧ“­8 0ΧОμi @ Ώ cτΧΚi7 @€ @€ POζzj» PSζšς:9 @€ @€ @€ @€š4Χ„ΥI  @€F47Bέ5  @€ @€ @€ @€τM@ Ήo~Ž&@€hN¨šB€ @€ @€ @€ @ ‡Ν=„² Ύ€@sϊ5B @€ @€ @€ @€š;ŠxM€τ[ζ~[: '@€ @€ @€ @€haζ.Ύ @€fhnΆŠκ @€ @€ @€ @€@+4·B•υ‘΄ˆ€@s‹Z7  @€ @€ @€ @€šJ@ Ή©Κ©3 @ ΅š[»ώzO€ @€ @€ @€ Π?šϋgέ΄šθB@ Ή « @€ @€ @€ @€$. Мx4θΉ€@sΟ­μI€ @€ @€ @€ @ ζT*‘ @€@ŸšϋLθ @€ @€ @€ @€κ. Π\wr$@€j% Π\+Yη%@€ @€ @€ @€ P;ζΪΩ:3 Pgζ:ƒ» @€ @€ @€ @€*4WΡ) @€›‹Ν"IDAT4šΣ¨ƒV @€ @€ @€ @€荀@so΄μK€$- Мty4Ž @€ @€ @€ @€@—Ν]²XI€τGζώX5m&@€ @€ @€ @€huζVθ?h"ζ&*¦ @€ @€ @€ @€΄Œ€@sΛ”ZG  @€@σ 47υ @€ @€ @€ @ ωš›―¦zD€ZV@ ΉeK―γ @€ @€ @€ @€ύX@ ΉOΣ  @€φΝν=Ό"@€ @€ @€ @€ ΠšϋC•΄‘θ‘€@s˜μD€ @€ @€ @€ @ )ζ€Κ‘1 @€@_šϋ’ηX @€ @€ @€ @€hnŒ»« @€5hͺS @€ @€ @€ @€¨±€@sž¨Ÿ€@sύ¬]‰ @€ @€ @€ @€@΅š«%ι< @€@Γš^ @€ @€ @€ @€ Πkζ^“9€HU@ 9ΥΚh @€ @€ @€ @€bζb[ @€~& ΠάΟ ¦Ή @€ @€ @€ @€JΝή @€@Σ47M)u„ @€ @€ @€ @ …š[¨ΨΊJ€š]@ ΉΩ+¬ @€ @€ @€ @€Ν( Π܌UΥ' Π’Ν-Zxέ&@€ @€ @€ @€θΧΝύΊ|O€΄hn«α9 @€ @€ @€ @€ώ! Πά?ꀕ @€@š{€d @€ @€ @€ @€‰ 4'VΝ!@€*hάΞ‘ @€ @€ @€ @€% Πά(yΧ%@€ͺ. Π\uR'$@€ @€ @€ @€ Psζš» P/ζzI» @€ @€ @€ @€κ 4WΟ™ @€ 47Έ.O€ @€ @€ @€ @ ζ ΠB€€) Мf]΄Š @€ @€ @€ @€@wΝέιΨF€τ+ζ~U.%@€ @€ @€ @€  4{# @€M#0aΒ„°δ’K6Mt„ @€ @€ @€ @€@+Δ@σΒ /ά« 'Μόf©ΎBIENDB`‚ignite-0.5.1/examples/mnist/assets/logs_run_1_2.png000066400000000000000000011552331465426447700223020ustar00rootroot00000000000000‰PNG  IHDR 4z'DΣ  (iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήDιUz l„$PBH"vdQΑ΅ bΑŠŠ¨Έ@velΨP”u±`CεM@WΏχήχΞχΝ½Μ9sΞΉs'wPb‹DY¨ΩΒ› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πŸiTXtXML:com.adobe.xmp 2868 1146 ώ«εiDOT=(==˜₯ΖΗ}œ@IDATxμέ ”TεoUuυb\`Δ3 .ΰhl~e5ΆF3 m’€ΖΡpDMc•ΈDάΠDΠάb ‰a‰Fi4#­ŒdGi1Ht ]œ#ZPz©κͺχΉUχΦ½΅uUΣMU·ο{ŽΤ]žϋάηyΥ­¦9~ξ·|ŸύH’Β‚ € € € € € € € € € €@ΐG Ήκ\@@@@@@@@@@,Νά € € € € € € € € € € P0Ν£ηΒ € € € € € € € € € € @ ™{@@@@@@@@@@ &@ Ή`τ\@@@@@@@@@@4s € € € € € € € € € € €@Α4Œž #€ € € € € € € € € € €fξ@@@@@@@@@@(˜ζ‚Ρsa@@@@@@@@@@ ΠΜ=€ € € € € € € € € € € Π\0z.Œ € € € € € € € € € €šΉ@@@@@@@@@@@ `š FΟ…@@@@@@@@@@@€@3χ € € € € € € € € € €L€@sΑθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@‚ h.=F@@@@@@@@@@Νά € € € € € € € € € € P0Ν£ηΒ € € € € € € € € € € @ ™{@@@@@@@@@@ &@ Ή`τ\@@@@@@@@@@4s € € € € € € € € € € €@Α4Œž #€ € € € € € € € € € €fξ@@@@@@@@@@(˜ζ‚Ρsa@@@@@@@@@@ ΠΜ=€ € € € € € € € € € € Π\0z.Œ € € € € € € € € € @Ωδ•"ε}žmj”Άη§₯=ΦΣwϊϊ’’Κρ"}‰ΐpΟt"ΫκΕΜ½½qDw7zŽυ” Ν=εbœ € € € € € € € € € €ΐηXΐ§AζŠ9»³ μ»Ν—υxO;¬š)SSBΜ™ζΩΡ α $ΌqI¦&EΉŸ@sQΎ- ͺΨό#fK _β‰Žθzύ°Ώ\lΓd< € € € € € € € € €τZΐΰΡRvεΪ¬σk~hp­RμžXɈ)<χNρiEζΞ,v΅κv­ήάΝ=α]bŒ(½.*%GΈ†±{…μ{θ2ΧV@@@@@@@@@80ΎΎƒ€€rΌˆV,φ.Ρ–¦XˆW_Γ[Vuθ5η˜JΎ=m)9eͺ”N\œuΨ­‹ΖHO ρfšHιΕ‹₯D«2'/Ρ¦χ%ΌΉVDίgσώω*ϊΔΟz” ™ λΗ&Ÿ"‘υ $΄ϊϊ”ύΕΆ£¨Ν%ίή&₯' κ£-zΫiο‚ž>]Œ•²[λ$P‘Λl[$Ί·QΪ7ΧHΫ‹σr9‘W΄)½YΝεΞ\’―ζG4; ¬ € € € € € € € €Ÿ QρYΆH€ρρυcΕ?h3ϋHγ:g=yΕ9?ά(‘ήO>œΨξ3JόζΛΔKτΏχΦI$q$λšψ)β?zψ¬VvΫV+νIΧισ%ρχΣL8kWžƒQSTχψŽ%>3&]μ}Μt_ΆΉ‹θu_WϋˆκΌ’’vΗΚa,nosu>ΏΉVν5aΧπ†ήΈ$Λ„eM06τڝ)NJ}‡©XsGΦašπ ρφΔΕ§ΑdSΪΞέ‹yCkοΜ)¨^R5KΓΠSά§kζ³VڞŸfί=Šh£¨ΝΙ‘ΡN;…4Π|ζάύΖKων΅βζ~†Υ2Τ(αKΫΖ<ΟλΝ“οMΝ=πMdΘ € € € € € € € €ΐώu‡”]0.ήC£„žΌ,4€ϋΟ·χkPχέΆφW)WςŸ½X‚C*cϋ?­“Φe?NiΫq¬―\!ώxpXvΤHλ‹OdhΫν―š―}Ÿ @'·lΩ"ν―M“πG±ΑK5(ΧWƒΕy,‘Wͺ$Τ8JJ―Όί 4[ϋΒnϋζYφ;;θν½@ΰΒΥR2ΐ€΄Ν"νό³V"ƒ±cιώty§;Μ>>&ΰZ6ye¬oσ5•ŠMΐΧΖlWώ ­ύqQšƒG[^3ξφ5N Ϋ}KͺfJΙ™³Δ¬g[L΅κ°šΓΆΌ¦}`Θx=_Ον;HZΡa08[έy¬όšž0sdηΫϊχΕ„ΌΗkƒ,aΞpM¨ΉuΩDg»ΨVzg Y¨ΠœίΦΙ@³u‘Ίm€„ς»`kM ΉΗ½eΈx ž¦%φΛυτ°VίU/αί-±ž&Μzr±ϊτΚρ›ΏKτΌ&}’iώΕ—υ$ϋΰ0 Œ$¬η†—Hϋ{φώδWmW©νβKΔ|„½‘σkΧρλWOψRϊΥ1Š>©™Σ΅‡IΙySυΙΠώ1ΛOυBοΜ“ΘΞ”Nف € € € € € € €@Οpš΅ΒrhQ<ΠμήoΝ.Φ 7y§κ³\‚' Šνά­ζg3šΏOΚΞkgύ™=ΜΠ~Kμ~]gyW΅Βρ+c4”,Όtƒš½G;ΪJ 4Ϋύ}ICΞ œ³dœWϊvΉ‡«³t4~Ž#ΠΣJN™*₯§LΓ„]MP9ΪΤhσυ$&Θκλs¬§­ ψšκΌV¨wΔTλX±š“½V8ω­)ωšυωε³Œ 191“‡Š-f_λ"}¨’Θ;lnΛTen{~ͺ½ιΌΪmΫ#²³A+0―rŽΫ+¦]ιΕ5Φϋnο iΘ;τ,{³¨^‹*ΠΌr³”τKά4ΆTTΏήΐίWƒržEƒ„{MZ.ΝΣBϊTQλ#crώͺO·ŸΛ4ζζQw;δhΒ”ΎCϊ;Ϋn¦¨>Φόθ4χ^·N Ή½₯ύgJΩ7ξΤ§ϋR֘§"Ϋj€eΡΥi&£λSZ/‘pJ{˜ώ£d…ώT™ώgΓΗuφH΅΄g흃 € € € € € € €τOpΩ°υμΟεS Λ-σζr 4—LL­ZΩ8IBoΌŸ •TΪ*^φnDšZΔΤh­ς9(qNx‹†°§‰oΜ}β?؝›(Χv•N»θΗŽΤάPbΩ)ν/ώX³Xξ Νv Y$pήJ)lη)΄*κ“i²Iγ΄ηγ 4kH<²£)}•i-^›kΑΉΔΘYC 7€ 3› kh흫φšjΞ¦:o`Π¨ŒΕhjυε`υόŒcξΚ&Πl‚ΝΕ²$ΏΟ™ΒΜΑ1w€­Rm‚ί¦wXΓίΙKΩΏi¨Ϋu/ΫάνρU ΩTΊΧΰ5Νΰ /‡€ε„–Σaε½/5Πykœ΄¬|9₯§’‰€τ”3’φχώŠΨš“ήςžΊΩΎT\;+mψΦ=₯θŽΏΜ΅k¦”ίεχƒ]iVSΟs7š"εskΔομj‘πŠτAεγ—KΕ”Iρqfiητ•Ό’ϋ΅7KΩ)‰”$χ”ΨΦqΌt†΄mx;Ύk¬”έZ'ŠD‹΄kϊ³ΊUVjN«ΓN@@@@@@@ž$ΰ .whΦyEί™₯ŸύΞ s 4SJ§§Ι6d¨|œ¬Υ–Ž_"XŽ8WΤ•δ ρŒή˜ŒvWOΦ ς3ZΙYsΕ©Kϊ@³5[Κ.˜ΰ4Ož·9¨^-%v8IΨyΝζθtΜ ŸCL6‹ν%Ϊς‰VmUeΆχe{MΙΊΫ[ ΩT.Ώa›§’²{Ό]½nͺ77tpWwΫιώ*Μάγ¨Mεν–…ΓSϊJΰœ@w€«ΐllM¨Ωί˜uJ±V¨ξ1ζδ@©H~!Ϊ’κΕZYU«ˆ–k(ΊD kβwk€mΝ’4οιX)9OΛΫG΄βsθw¦έ0ύΚ­ΠzDό‰’ύΕcWƒ„_›&ν;νΖι_η-ΦΏ”‡λυνγZaZŸf ξκΟ5gψ*gJπ” βοΣΗξ@’ϊδQϋŸξ—π;`θ²Vό#fKΐUρ:ϊα-ΪVη0YŸΌθ§sλ>\ ­/6iX³Φ֌lšͺΥfΣΩθΧN\£Uf$Ζ‘ύ½&%Υ³φVEm΅°NB/ΞK_Φ; ‘ώγ%X5IόGθϋ§ζΦ’ίΙω°VΪV?œάΪΪœ­O’9Φ"‘5·H»Vζ-½`jμ—8{ϋ†ϊ šΛ)=FΜXΗͺυ°ΌNυG$:Œ~¬ΧG܁״Γ`g‘ xͺλΨΜ=ΤΎωu‰<\JNΦΟΧ!‰χ8ς' υΏ υ'ό‰ξ¨“π»υZ ~ΈυužσΦλy«SπUoŠ3½D·έ/Ν‹nIUΪΟ@s>Χςšυ%ΫκυssπυΥρ]ŸuW89ωΡέ―Kϋ;΅iι/“'y*YGw<ρtU―S§Ξ@@@@@@@ŠV Ο@³ΘN­V<Ρ)–K ΩW΅XJOŒh>FJμo―Y ›]‰EΏ₯zϊ$gΣzμμ°VŽ• ~ϋ²ίΞάlӬК_y›d¨ΌœΤH73šυHπΫ¬Άc)Αdw`Zkξ¦ue,σC 9U™=Έά!Χ|ΓΜv?e“WZ'{Ϋ~-Ά@³©(¬šiο€Ό‹Aπά;ΕT^Ά—懧TίN^mξ‡ΘΞλ“M=Μ>]Ώ!@ξΩ\λl›•ΐΰΡRvεZg_ΫΚii«9; °λΝζ+‚§ΈΒΙΙΘ‘-~qˆ΄%b©\.]žψΛήvΫ^jΠμvΕΤδNτ†·fθ_΄©`σ• ₯UΔ—₯²kt‡sMόςβι½ς>)Ώh–'hι9яλ₯ν-žt τΊ¨”αΪΉ·A"%P¬pνΫ½Bφ=΄"―@³ΒR~ϊpW'ι+Θ'o”’!ϊAq΅τ6i {–ͺSέbνΖKΩu'δή“γ[ιϊЊΣsk]•pΥh‡~pυiχXά‘ν’K7JιPχœ\3n’n‡$φhNXτœ5o%rχϋoΟ‘τΝR7φΫuτγ ­O±RΊx‚έDž§χ;πΎ·^š“Φwχνt–ιΑŒύ 4ηs-O 9MεϋΐčZΑΩώl$>λξwTŽ4?tYbZΊVςνmRzΒ Ψ>WΪӈ @@@@@@@z’@ށfάΗ΅š)šgΝ2—@³»βrtσΝν§#‹gή½SΪΦΊŠ¬Ÿ”;Ϊκ[\Uγ;œΩwH OΨφ§υZΫυfΟά’‚ά)U’_«’Π{±αhvή&VΊIΐδ©"evσ³₯μvΈL ,>©=›€mΡΥN‘5OαF -ΊL‹φufΙ\yΩΫ[ΆvWi΅θ©Nsw΅θΐy«₯ΔΞ^„·θ8§9γτšΓš©Ψέ€UԜnb+:·πΚ[œs’޲‰@V1_–ς)«EJσ 57Ÿ΄,>OΔoeνΏ;ζrΝvύlafs^1šM˜ΧΜ7ΧΕ„~C/Νr½φy&Ψ[zqΪ΅χg{MW 9[ϋ>fΖμs§O²OΊ6Ι˜ΣΆ2AƒΟ+)4ίΣ7ΕΠ9X€•^hN­"ά‘ξN i1dšyΒ„η:Ύ·Nφ=PΫα ΊΪH‹DCεi+6Gwh•ΣGν*§蝫^χ©7jr°€t3žͺ_α°ο‘4ζ?“–]OtΕ;H[Ιxw­Vyžθ\"― wό¬θ»7Kσ/bO£™]₯?Πκ}.+‘ύŽŠΨSg‰f­IBKϊƟήr0½­ά[&ΠάΊsͺTœ?Ϊ½;§uΝ91]£²›’p*mλΧΊ¬ΏYΪV/Ι:Nχ½h‡ΰSO˜"₯WNŸI1—hΥπ—&Jxg’UΰmR6t΅Γ„ΫvhωώSβp±>ƒφη>~ŽηgP"Dœθ1σZΎΧκ8Πμ‚'ΖRςνZΩ~@1Άωq}bηzηM™GΘ@@@@@@@z¨@ζg΄XΪΔoη'γ!^ι ΠμΧo‚wŠςi%εΦe·(Τ ψƒιŸmŒSέΨhΞR‘ΉcνlAeχΩΩΫyΒΙNeκc%xε ρΫ!ε5_ΰΚjxΞq_Κ³aν';ΦφtΔΖηTΐ 5O[£ΉžtΉ³4(EfΞ%δšfδΎΒΜ¦a1šΝxΆ5aδŽ*,gͺ`lϊ°w%b{_ς«©πάΊhtήU―“ϋΩίνΰ™³$X=ίκ&ΪτΎ4tPJ—&ΠΌ`A¬ΝnΝ‰¦©ΰl47κœΫΊHŠΩVοlΫ+sšγΦe­*Χφ±BΏφ@σl ߟŽlΊ_Ϊ~·B’λ›{ώ)ΠΗγέ¦‘ΪEͺυ„ M’Χ[©ώπ§ύ%xφΝR2TΛ“'λš†’j(z§~Έ&nNγmάU„}ϊτTω€τœ―Ušo‹UiNΧͺ°G{Η'Νϊ„κYΪψ²ψΝΣWηMM©`έvΏΞΑό2£‘ΰλš₯δˆt?„υi¦wJ΄\È»VHΛ’:­†¬εΖƒΑθ΅"Mv aχ«LΔN­¦ξͺ¬ΞΉ’Ož-Ά_\/‘ώc­Vpp₯λ¨YΥ@ςB $«ΏX*¦$Ωh…ΧΠ3#⿐•kV€Ό‘M΄Jσ*ν K Ήy§D>ΥδΑύ%ςΞT‘!΅€«žj–½z­57«σN Tί/₯gŽKzŸDύ4|ώHR5v6±@ΰΒ RvϊήκMω¨^Ϊ7ΦXŸ-οAο½”ΈΗΌ­²o•²[λ$PkΥώ[ŸVdΦκΕsgΔο+Χ½owδω”τ³Ϋ€}ΝZžŸU!ύͺ»τ«)\}{+έ»ΖzΌΞaŠ=ϋύ‡ΣŽΧ₯ύ]΅\³ΔήΙ+ € € € € € € €½C Χ@σ+:nrW[Φ¬‰ϋ ΅L•“γ™™” Ν_bj ΔώFί™%mώhΉ•L\+;€™•Φ•[ϋ‹-Πμ;MσL#μLPc,„μ1Σ\ΑKjσQβvΘ)МTΥ9q6kδ.8a\¬2mG‘ζ"3›YΉC‘oKΛΒα9O6—0³ι¬ΨΝfL&Θ]6Y³Œύ‡™Ν”Ε„[4πmiJ9ζή‘w3λνλ€mι„ϋI>―;ΆMP9X5Σκ:΄αa+£Ϊ™λψΚϋHŜέΞ©-jlGƒ³m―ΈΓήΕvτΚ@sΰR ΅rŒ½ νΏ!Β·νχΔzM όΪa>O˜0vJΊ«_CΛεv•U«Y"x˜χn­„ό7λ«ή(gΊΠθωK*€ν½ΩvΌί’m~]Zξ­ς ΝXε·ΧxƒΘPuΚtŒ‘m 4ΐ|}lRΟήΠ¦³»Γ•& ?ίWΪ6&z«ΆΖφGώ€AγMΠ8±.έ¨ο‘{ξϊ‹›Ζ\.—OςΜ?ΌΤ'm[η§ -›Κ·Ν^­ΝGΏ†cύ$}ΒΛ5Ž4Χ‘½υόΐo•Ω4νέξΡ±^Όi«ŒΫΓΥ ψ ­ΪΌΖΎOΌχRζ Νvi^G¬”ƒ.ž?¨’ηgPβηJšή½»:q-O ΩTί­;X½–[ΑŸλA‡Δg,~ΩϊY½ΨϋYM H+Uo§*Ÿ=`‘ΨΟ € € € € € € €=Tΐ΍vΝT<ϋ5΄k͍"žŠΛZμ/ςξNρŸ!Π|ό}Rvξhν,ΆD6ΧH4\.ΦΒ}ύ'‰ί)ܘΈ'ΠΦύ‹:[Ε8{εe{L"΅ϋ¦”NŸεd~"―UIϋΡZuΪώθpƒ΄-ΊΪ“ΛρšSBή‰+³†@Wtj.’0³™kπά;%8ζkΪΉT$Ά}L¨ΥTσΝe‰45jV¨1—¦΄™ƒ έ¦ 5ηcαξΊ'o@ά}nw¬»ΗΉ?cw=S₯g3~χ½΅?κξ°θ•ζ›’Rrˆ‹«Ή^φέ«_吼xBƒζ`‘₯mJ YΓΊϋ4¬›ΊxC›©Η3ο‰lΎ_Z¬―·0mΌΥa­³2ΩΛ0­ZΫΰT­΅Ϊξ­ΣρU[«ΎγΗ;_5Υ_Έ"ο₯Ξ=xM³¨[|I„ŒSηγTίΆλkΪΰϋKZ=wƒ«Q|5Ω2q­ΤΆμιΗΟ”²σo–ΐ€ώiλ„λ“Βρ)Αγ΄g{w―ΡjλρTDw,ΠΠύυV…₯ότψ/ϊΐB³>°ΰόχόlJό\ρφœΊΥ™kyΝ©}Ϊ{’ϊU0-LLŒΡ> Ÿϋoί/†; q™•t x° € € € € € € €@π—ΑβLfoΥeΟ,“Β»ž*̞†©NυζAwhώa\ΌΑN ?9QΪS›K`ΜcθΛΨD?ͺ‘Πλ’ZuTΆ›wάΞ3΅ι;AόρxOτέ;₯mνΛvgΦ+f@ c¨ΉˆΒΜ†‘τβ)1Εٟλ ν–KTά°M|}₯τ…;ΈλξΘTgnύωhχ‚»Ν­ΛτηψζΪΌΗγ3›“[‘φmυiϋq»›E/ 4kΥβΉZ΅ΨύVhΥΥφvŠΔΏ’!v¨E3ΔΓ“ρΰ`8M y©VNήβξTΧ=‘Cs,Τ''Kτ³Ur†Oνœ~^«ΫΥΞ=?[?WœΖiW:w­ΤŸ7i:oΞπPHRΣ@Υ| œ¬–GWzΒΝΡ5ΘύδυI­ΩD@@@@@@@ ‡ δhΦω%U^vfμ 4{+;m2­|Z'­Λ~¬G―’²ιSVΡw&IΫ†χνΨJR¨z۝ϊ-χήPqΗ•—ν.;4ΛΙσ₯¬κ ϋΧ«~»ϊ3cLΑiΟB ΩΓΑΖ°BΝWΌ¨eΤγΒΆO₯ε©Qšι{덠γΛhnΤ@σ±)P½=ΠάΆrš„ίͺI™w¦V5λ+ΧzͺrwԁζLšyμO”Šd Ÿ¦†YsΏLΧšE+—ώΰu)ι›>l)Ϊ¬Υ‡ίY ­/&BΏξ*«±v™ζjŽ¦Ξ·+Ν™‚›κΥRzζ8OXΡ©lύιcRqν Ο1{,φ|έ―)AʐΞσD 98y£” ΙPυΥέQ|={ yͺš—xΞ ^ΉC‚ƒέ!ΦΜΞΙχ_βZž.Ω(ja°οmφδͺίΗΟ—ςΙ³œπ²ύ»ίϋθ»7Kσ/ζ₯Ξ²ΏV|ΎxjμήoΩb}…‹ ζϋ«7Jω™ξΠ|κ©φO跁ζΞ^Λσ9t}}η­ΥJρ£ναIr•xερUθα松%ω:γ₯μ+$ΰόόΛόΩr.ΐ  € € € € € € €Ε.Π™@³ΞΙS΅Ψž£+Πμ?{±‡TƏh±ΔΝυ-)OdpΒZ8­ΌRόƒν6‰p°'¬ί‚^t™§˜ ο΄Η€ΤΞKθ"ͺ$τŽ=ϋ5‡ ²Υ4—vξ6vϊκ„°]ϋtΥ3~ύφθΦ•irήSΨB KίΧ₯μΛEτσΥ²€Z"όΎKϊνͺNά‘ΣπΖ%φόΤκΊθϋ1!έςk7¦­ΠάΎy•>Π1!§9”_³Ρτ΅OŠμh°*G[šμ]}uWhΞ'°m]6y₯σŒyD[>ΡyΦ`~CΦωΈο­|―—΅γ.8Ψ +4§|swκΚ@³Ήͺ†š―©“’ξΠl†Ρμ}]Z¨²~‘p(­Φ{λ₯ω1M{jκ|νqr?v@3΅›Μ}€ΆΥ=g―•ƒΞν9d υ)―ŠΛ'%~™Ι!HχIž ₯u z Nί-Α£ϋΈ›wΈž˜_nσI 4ο­“}T§½Nξ–iOggxξ·Pƒ΄ά5B"IγrW ·ο§ Ύ—ΪΑχζΧ₯ωήͺ”Ο’·"{£Vϋ,ί•’C’.’qΣU‰½ζN^ΛγβyPd˜”έΤ {όΝϊsθήψΟ‘€ρ…VHhgΔ΄ΝAS&ΕvΊ‚I­ΨD@@@@@@@ ηt2Π,’¦³+ΠόφρΫ53†z½AαθΆΆζW"ž1Κ‰~¨θ Dχ;C|N12s¨AΪ~quJξ‘K+4λeΦΌ”7χ}g–Vώ£ gρšΝΨ?nΤΈαnΪ’al­\ϊ‘{λμŸ€ 5Gχξ,Ί0³™UΙ)S₯tβbk‚Ρ¦Fiώιΰύ›l9Ϋ?`Έυυ”vΔ&„άςθ‰ξnL{άήiϊ1ζL‹j^>±Γ~2ί•ϋƒ,`ΥL«ΛΠ†‡%τ¬œΊ -eZΩ^Z—M”φΝ΅φfΖΧύ Pgμ΄‹|nΝѐ>©ΤΑβ“F =9DB/— βωœφρ σgGlΕκ3»2΅›)₯ηL•@J­hšξ/άxΏ¨mΦ@­ΝR6΄2ΎΣΌ$‚ΎρΥΜαέάCΈ™ϋH½žΩ“Ϊ>ϊq4?R/εskΔο:)S₯gΣΔ?q£”Ÿ2<ΡΪ=VͺR0ΪΨF>¬Σ\½D>mΩ«Ώό\τΈ§Ά@M7>;䝸˜žŸ‡sξ–ξ+°^L> βWΈ‚ψνλΗIλjoeaΟϋόρ ΩχΘe"IχcD«4·xͺ4'ν`|oΕςΘ¦i‹ηηJ4ά_JNŸΰμ‹θ˜Z̘k yQ<Π|Τl)»`B|ΰ™ΑžjΔρ@³Μr #Šλξ3ΓρχIΩΉ£γGΌΧρ|‡GŒΦ `"ίkhͺΧKxεSΎΙ:ή‘Ύ|IJ―\ Ύ³ΗΫo’YΛ1Π,ΗJπΫ+r¨:­ωƒK5tθ"ν½ kΛd$ΖP‘Ω%Βjο(ΏΆAόύ‡Y5•wMψtς5U}ΝήΈDΓΌS­υbψ#9lέјL¨Ήmε΄” Λ&Δl*[wfvχίaqwωw6Όiۘ”ΤC™C…Ή€KX)'ͺʚύΡmχkh|…F<QΙL½¦μ֊Έ]ζ xZγ6՟§9—·WvοkϊΌmΨB@@@@@@@.θσ%ρ=HΓΙlΦ€tδuV~©Kϊ¦8 ξΚ½ζΒϋSMΧ„_Mυc{i]4FL(ΈXκ-Ώ¦AΚ8,―!™9Dβσ0aέ|‚ΜζB&ΤΫςΣA―Tν―wgΨάjoίΌJο©D.,/ψnjά+͞ʨqΈ¨yͺι‘κ”'‚ίήϋΚ…f­ώ1½Ξ ΟuL€Ψ š9πλ˜΅κ _š]™ΤώͺεϊDΩ$ο5Mϋ?iΰϊΕ—%]ΐ:Ίνq ;_m]Ιώ#8}‡ξooZ―‘·&hh{UJ Y΄rsΫmC<•“ύΥk₯όΜўσ!γ4σΩ4UZž]βi/2[*ζޟ4}znα` νL4M;'­H O'Ϊ±ΦSΖKιτϋ%pte{oΖ―OΎ[#­ΏΈ:Ν/σc­§ƒSΟ3Υ‰Ϋߘ%mk^Ž!x~†ΨŸλL>3΅ͺό'dΩ€ŸƒγR?ΫiOΧΎ_ΣPρΉφg2k…Βχ'Ν! 4ί5$ρpGόšžŸ%I)/έ %CΞπT©Ά‡έQ'‘η«%μϊ<ΩΗxE@@@@@@@@μeV/A£¬FΡ–&1AδȎ†μ'%5U™MΥ^Š1ΘjΖ<χN ŽΉΓζy5Užs©lάέƒI ―η8^ ™3»‚wΓ’ηαΞlζSl‘v3¦^hΡ@π\ ›ΊM©Άo“ΘΞ-"ύΞ+‘οΈΪόΊ΄ά[%OΡt!$˜±έ0­­•Š=U’5ΝΏ£VB―=.νa­ }ΒT)1)©β«Vg]¨ΥY5όΈt›” δ½5ŽΘζώp‹>I5IΗ?<%™¨žΊš₯y§Duœž₯ΌΪΠ’ˆ»Ά7œiŸέΫ eΝWh Ό26οCτ)0Ο’¨ [ςνRz‚7μ,‘F oΧ3ΚΕ7`œŽθγ9ΫlδhΦ‚Χμ–ΰ€δΎš€}S­DššΔ‚:H‹ηZ)Γ`GπWNΡ―-ΡχΧ|eΚ§ ϊU ρ@rsπΠσ6χ…~-ˎzi/΅ͺw]τΊΓΎγΗ‹ϋ OύY»aIšPx―›6B@@@@@@@@ ΫLΕα²+λΚΕ&ΤZ}}‡αU{@Αͺ™b‚―φR,‰νρΈ_}ε}ΔT*φυ9Φ½»ΫΦ#;ί––…Γ»­|;Έ‘Ρ™» ­›ΐ±yΏ3-ξ°{hν5›zg¦¦z¨ν Ϋ¬WΣ¨½q΄ώ|tΖφ…:ΠK͚Τ>o­Tœ“'ΈVqnΦ*ΞьAε€·)[»ͺΥrΠγ’NΘΎέQ#͏N‹7+e·ΦIΐΈΞ~ΊΘήzi~@oβx;OUUέ—ό&w”ZΡ8ΉEΆm»:³έΖ_½A«'ŸaoζτΪώΚpiύ]<ZΉ\*.·+Ξζtz¬Ρή:Ωχ@΅§ΞΗτφτΨ_«\_;#%ξi“f#³ešΖμB@@@@@@@@@ Ι•uMνΫκ%Όax]•ΆΗΐρRR5KLuf{1aζΦE£σπlŸ ^“+wη5‹­Bqj%νZi]61#Aff6ΊM8ή^ZQ”χA― 4xυZ);stnaU ·jΈέœ˜¨Ν·B³ιD«,_ΈAΚNΟ1ΨΪ"mw oQδ)Zιωq­τœ\Ν8ΦΏηΟζi»w„ηόξ4k%γ?Ν’Φ—x†b6ͺύι£Sφ§ΫΩ4KZž}Ψs(pιf­P]ιΩΧρΖN έ6@Bωš΅SίΩ«₯όόqΉέ'ρAhξψέ  € € € € € € € € €ΐώ ˜PsιΕ5N₯f»GSΑΧTσ65Z»|}YΑUbu/=!ΜlΧΤ5ϋ’MοKxcav³œ^M%βˆ†ΏKFLuͺ›MΌuΩ„œϊ8L5mSUΫ^Lp½MCΝι*5›π·yΏΝbζhΪ&/ιΒΜ¦Βwhύ‚δ¦E±έcΝΑι»%x΄λC¦Υx›΅―]8£f™RvρΝΠ?}“ΠN½9k€υΩ[ΗSͺφζhn’π’Ύφ^’+1_ΚΖL•@_ΧΨ]‡%€‘ΰ͏{―ο>λΑK7HΙΠ3nΝωοιψ—]Ÿt–žwε NΜΫ[Ϊέ<΅’±ϋhςz΄ΉQ"οΦJΫ³Χgχ?ώ>)»hFΖΉGwΏ.α΅3$΄ρνδKXΫώ³—«Vj¦Ž~X#m²뉣φϋ”Zέ:ςΦiYΉ*Ρ4y­ς1)Ώx†ψΣTĎl[ ‘Gk@{Έsf‡‚@@@@@@@@@n0vMΰ50hT^W2αݢ秦 ΕζΥΡjlζYv₯t7ΧJ»™έAέΰ™³¬ΚΣΎ>Ηf A‡Φή)α·jœv&m‚Ν~­Zέςθp‰ξntŽΣJΩδZ ow†dλ&„μvpfY‰…ΰk>‘] o\bέ YN+θ‘hή₯±RržVαΥbΗΡ¦}Υ'ΆΥi8}˜v―—άΓ0 TMΏψΝn’¨&βΓ[^Nn˜q;Puί~Ÿ±γξ>pόx ž0N€Δ\¨EDŸiχa‰μΜνΒώ³%pΤ Xγ°†©7Ξ“φΟΝν ‰Vήkι=²ρ–n»Vβͺ¬!€ € € € € € € € € Π±@@Ή%U³<‘Χtg™ sxΓ‚Όƒ°ιϊ*¦}Αsο”ΰ˜;²©mε4O˜9kγ";hΘ¦·;Τl†hΝΦϋ©οkΆΕœgέzŸΈ—b3›±~ŽΝξ·†u@@@@@@@@@@ g ˜ΰ«©fl*»SΡ7’αΧhK“{w―Y7•‡Λ&―Μ:ŸΦEcz|ΫTγVΝL™§y_νχΨ}Πά&μžn1žCλ€;TTϋ4ΥΫΑ`@@@@@@@@@@ ˜ΠnΩ•kΣrφ5ίΣ·WΊ­jάZ‘:0h”3·|VΪΧIθ₯YV:Ÿσ Υ–@s‘δΉ. € € € € € € € € € €@^͍fmΏο6_Φγ=ν`Ι)S%P9ACΖw8τhΛ'V…ξπ†=J5ζί^ € € € € € € € € € €ƒ@π‚β0<νP"Ϋκ%τڝiυτΎς>βΧ ΥΦάΝzάΐΜΩ,‘ ΎΉΦZο‰hξ‰οcF@@@@@@@@@@ —hξ%o$Σ@@@@@@@@@@@ ' hξ‰οcF@@@@@@@@@@ —hξ%o$Σ@@@@@@@@@ξ(ΏϊΏ»§czE^#ΠςΨ©½f.LBh.„:ΧD@@@@@@@@@@K€@37 € € € € € € € € € €L€@sΑθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@‚ h.=F@@@@@@@@@@Νά € € € € € € € € € € P0Ν£ηΒ € € € € € € € € € € @ ™{@@@@@@@@@@ &@ Ή`τ\@@@@@@@@@@4s € € € € € € € € € € €@Α4Œž #€ € € € € € € € € € €fξ@@@@@@@@@@(˜ζ‚Ρsa@@@@@@@@@@ ΠΜ=€ € € € € € € € € € € Π\0z.Œ € € € € € € € € € €šΉ@@@@@@@@@@@ `š FΟ…@@@@@@@@@@@€@3χ € € € € € € € € € €L€@sΑθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@‚ h.=F@@@@@@@@@@Νά € € € € € € € € € € P0Ν£ηΒ € € € € € € € € € € @ ™{@@@@@@@@@@ &@ Ή`τ\@@@@@@@@@@4s € € € € € € € € € € €@Α4Œž #€ € € € € € € € € € €fξ(ZƒζF‹vl ¬pϋnσξβ\@@@@@@@@@ Λ4w9)"€@η^Τ»@IDATW hξ*ΙήՁζήυ~2@@@@@@@@@€@3χ­ζ’}k :0Νεηβ € € € € € € € € €@— ψž}φΩh—χJ‡ € € € € € € € € € € €@Ύ^x@sP4A@@@@@@@@@@πΥΥΥE}>_ΧχL € € € € € € € € € € €@h4*Ύϊϊz«B3‘ζ,RB@@@@@@@@@@.0af³ψ^ύυΨZ—vOg € € € € € € € € € € €@ΗΎ††Ν;Ρ@@@@@@@@@@ΊAΐχ—ΏόΕ 4ϋ|Ύnθž.@@@@@@@@@@@Th4V—ΩχΏϋΏThNυa € € € € € € € € € €ί‡~H ω@s @@@@@@@@@@HπνΨ±#κσωR°@@@@@@@@@@θFh4*ΎΟ>ϋŒ Ν݈LΧ € € € € € € € € € € Y€@sfŽ € € € € € € € € € € €@7 hξf`ΊG@@@@@@@@@@Μš3Ϋp@@@@@@@@@@ΊY€@s7Σ= € € € € € € € € € €d ΠœΩ†# € € € € € € € € € € ΠΝš»˜ξ@@@@@@@@@@@ ³ζΜ6A@@@@@@@@@@n ΠάΝΐt € € € € € € € € € €™4gΆα € € € € € € € € € €t³ζn¦{@@@@@@@@@@Θ,@ 9³ G@@@@@@@@@@@ ›4w30έ#€ € € € € € € € € € €@fΝ™m8‚ € € € € € € € € € €έ,@ Ή›ι@@@@@@@@@@2 hΞlΓ@@@@@@@@@@θfΝέ Lχ € € € € € € € € € € Y€@sfŽ € € € € € € € € € € €@7 hξf`ΊG@@@@@@@@@@Μš3Ϋp@@@@@@@@@@ΊY€@s7Σ= € € € € € € € € € €d ΠœΩ†# € € € € € € € € € € ΠΝš»˜ξ@@ ψšššδwή±vςΙ'KŸ>}ŠoŒ@@@@@@@@Ο‰ζΟΙΝ4@ψΌ lΪ΄I.\(ΏωΝoΔšέ‹ 4νk_“k―½V†κ>Δ: € € € € € € € €t³ζn¦{@(¬€ /Ϟ=[~ωΛ_ζ4+ΈBζΝ›GΥ朴h„ € € € € € € € €ΐώ hήCz@@"0aζκκj1Υ™σYL•ζΥ«Wj΍Ά € € € € € € € €tR€@s'α8 @Š[ ]˜ω˜cŽ‘9sζΘΧΎφ5'¬lΪύζ7Ώ‘{ξΉG>ψΰgR]jή³gΤΧΧK4•ΣN;MŽ<ςH§ΟΫ Ÿ·wœω"€ € € € € € € €Ή hΞ݊– € Πƒ¦OŸ.K—.uF|ν΅ΧΚ<ΰl§[Ήι¦›dαΒ…Ξ‘Λ/Ώ\ž|ςIg;ί•εΛ—[AisήSO=%gœqFN]˜τΊuλΔ„­O9ε1A잲μΪ΅Λ qχλΧOΞ>ϋl ΦΠ;kΡSζΝ8@@@@@@@@:/@ Ήσvœ‰ €E*°iΣ&©ͺͺrF—K˜Ωnœjή°aƒ˜j͝YžώyΉύφΫ­SkjjδΤSOΝ©hώήχΎg…šΏϋέοΚΜ™3s:―ύυ―•K.ΉDJKKe͚5rψα‡[Γκ¬E1Μ‰1 € € € € € € € €t―ζξυ₯w@(€€»:³©nΌyσζΌF1dΘωΰƒ¬sφ§JsgCΌ&Π|γ7J]]|ϋί—«Ί*―ρ²ρ»οΎ+'N΄Ν―ΎϊͺτνΫΧNg- 9 € € € € € € € p`zL ΉΎΎ^¬―^ο.š>}ϊΘπαΓeτθΡέu ϊE@ pδ‘GΚ'Ÿ|b]ι‰'ž+Έ"―«ώς—ΏtBΔζχƒνΫ·ηuΎέΈ³!^ΝΆ ― € € € € € € € €Ÿh^»v­υ•λκ 5j”Œ3ζ@]Žλ € €@ 455ΙΐMΩ„’σYΊ’s½\Νmmm²gΟ ƒr葇ZCΝ΅B³ n›΄Y;μ0ρω|ΦzΆ?L{;πmΪ›σrYμk™sΜ8Σ]k+4···Λή½{%[ΉŽν³Ο>“P($ζόƒ>XΚΚΚ:œ’qί·oŸuNii©rΘ!žC@@@@@@@@θζ tkeζdVzš5kVςnΆ@@ όφ·Ώ•κκjg€&θΪ™ε _ψ‚sΪκΥ«εœsΞqΆs]Ih6aβΫn»M~ϋί[έ«―ΎZ|πA+ΔkB΅kΦ¬‘ϊ§’lf3§+VΘΒ… Ε„rνŜ?gΞ™8q’ψύ~{·σšιΌ/~ρ‹ΦυͺͺͺœΆφŠο+―Ό"?ό°|πΑφn±―5aΒ ΞώΞšM ϋ駟–Η{ΜιΛ¬˜±έ~ϋνΦ·hxΔ7ΆlΩ"σηΟ—?όαžΓΖΰΊλ“#Ž8Β³ίl|όρΗς³ŸύL–-[ζ96rδHΛဓNςμg@@@@@@@@ {zD ωΞ;οtάλΞΞ.Zqχν^ο’ξ³tΣ*Ϋ·n—VΣβЁr\ΏŽ+ f鬈υΒyΆξ’­ΫχXζ‡6ηgZΊκ*ωώχΏο6afσΧ«―ΎκμK^9υΤS­p°©.m–Ξš?ϊθ#Ήθ’‹<αμδλ˜qMŸ>έSϊ…^[o½5Ή©gϋΩgŸ•!C†8ϋώϊΧΏZ~Ύ4+wί}·e•ζ»@@@@@@@@ΊA€@³ Υbv―»šδΎΪΊGΆlzCήή²Mφš¦~νωΐ#+eθiCeΰ‘IqΜΦ·ε’‘—Λ_΅Ωα³–ΚΊο Λύ:=©e/œgλ–§eδΧηYοΒ¬₯λε;ΓνIοHb¬χ¦η±ειKδλσ¬Oˆ,}s Kϊ%&bΦZειQ#ežζυΌŸ§=ςϋ_=#oμ=Dͺ5ΠWΉισόΖγ[ ΠύMMM2pΰ@ηBΫ·oσν ω,Ι}όε/‘c=6Ÿ.¬Ά™*4ΫΥ—Meγφφvωηώg+dkͺ*O›6Νͺ~l·1A^46‹ ο{ί“uλΦYΫ#FŒ™3gΚΡG-όγ=α^SΨΈlΞs‡¨9δyδ‘Gdΐ€ςΪk―Yαg«Cύ£¦¦FLHΩ,¦ ΄ χšΕŒuξάΉbͺ›P°©½wο^λ˜{ŒωšM…i΄Ά«?›ŠΜwάq‡~ψαRWW'ζ›:με§?ύ©˜°ΆY>ύτSωκWΏκ΄M5ζσΟ?_>ωδy葇δΝ7ί΄ΪsΜ1²jΥ*«v²Ÿ Q_qΕϊkZ™,Y²DΜϋe3Χίόζ7–«΅ƒ?@@@@@@@@ΊU€@³‹Χbv―»šδ΄ΊυΥ§dΪΜ’©ώα‰γο–'ξ™ ύμήZ·ΘU#Ώ.拇Ξώ΅,ϋV₯}€w½vρ<[[c{ ’ "biέϊ+yΡ\λ³½^ΎUΩSΝ‰{°η±υWWΙEs­OˆόϊΝeR™υνn•ΪΙ#εG›ΌŸ§Φ­΅ϊ^ύΘz―ΌAηόοœόΖ“œϋ/pδ‘GZΑVΣΣOμ°Γδο{>§;m; 4›†—]v™ά|σ͞jΚ&x›.ΠlBΌηœsŽUΙΨ„’M°ΩTuΆN6Α^³˜ΰσŒ3¬u;dl6LΐχΉηž“ŠŠ λ˜ω£‘‘Α12α|PΜί³ΥΥΥV%hs_ϊΧrœVΙ·wΕg3smΣ§}-sŽ©μά·o_λ”tζΐ‹/Ύ(·άr‹ΥΖ©Ÿzκ))))±ΆΝfŽΧ^{­΅m‚ιυ_%εεεV¨ΪTͺ6Λ”)S,/kCˆD"ς΅―}Ν I›qΌςΚ+―_?OΪτeϊ6αe{ωΙO~bΊΝΆΗgœaβ@@@@@@@@ 4»pέ!fχΊ«I‡«ΫWPΖήX—hwψ‰2ξΛPή΅Eκώ`*ΜΖ—‘·Ιϊeί+ώΪΕA_ϋEχΪ₯σl•_]2RζZE{gΛϊuߊYΰIh>0ΰωˆ;4Ÿ¨<·δ7žcΔU@ΐ+0}ϊtYΊt©΅ΣTV6–σY† βT ΎόςΛεΙ'ŸΜηt§mΊ―;¬lΒΆkΦ¬±ͺ;'銻»ϊq8–ΏύνoV`Χ­Mefχάά,γƍ³ͺ»ΟϋΕ/~αTaNΤu€MedNήΌy³Lš4ΙκήTˆ6ύ%/χή{―,[ΆΜ ›π² ηh6σΌϊκ«εχΏ½ΥGmm­ <ΨsΣΖTƒ~α…¬ύ¦’²]%Ϊ4› Ο¦z΄ΟηsΞ}γ7dΫΆmbΜƏ/_ψΒRΝΖήμώ裏¬³ιgτθΡb‚ρ, € € € € € € € €έ/@ Ωeμ1»Χ]M:Xέ.sN+«β­f/~YΎuZβ+ο[w½-σΊ\ž‰ηšΟzπy’Z+viΠ·ƒ!ςp—Ξ3Z ‡Ώ©απ¬E{»iήš» 6©ΫόΔ‰{#Ήβω­[d{[© n^χμΩ#ύίmˆMΩ|[A[[›˜ΐ―y΅Ν¦―nΈΑͺRœ)@mϊϋΏϋ? …BV°Ψ“W¬X!wί}·9dυiBΔΙΛgŸ}f…„M؜γχϋσ 4›ŠΣ_ύκW­φI'd…Πέ“νλύωΟvΒΥ¦βφYgeχ_υ_­Ήšv_όβeΪ΄irςΙ'Λΐ% Ϊ§;―&Έ}ρΕΛ{ο½gν3¦’΅©Δ|ΤQGΙΑμ΄e@@@@@@@@ΰΐ hvY»CΜξuW“¬«­[keδE?²Ϊώo‹eέυ§₯Άίσ{uζ ω‡92ξAyσ'ΥRζϊήφ‚,ϋζq²gΧvΩ΅§Υ:ΏμЁ2°_φΈn«†švνΪ%Φh2Ažtg˜―=’MR–Ψ1=šζ },ΣΉ)ιŽ=Ϋ·ΚΨδΠ~ΗIΏC·ΚU']$ΠcΙASηόΦ=²έΜ#6ι§σ84ΝX΅δ΅όjςh™»IΟ/ϊ^&΅uΟv½Ηγο˜Ξo Ξ/ΉMπΨDN Έ«4›.Ύχ½οΙΌyσ²φ–fΞ'γξ4›Ÿ1ρ!‹/NwIgŸ;Π|γ7J]]τιΣΗͺνJ윐΄bέŒΝϊΏόΛΏ$΅HΏ™O…fΔΆ~‡9ύτΣεg?ϋ™¨NξΩξΣμ7ογŒ3¬&λΧ―σ>§[&Ož,W\q…sΜ1žΓϋίε²Λ.³BԞΊaͺ2χ»ί•aΓ†%b@@@@@@@@ 4»pέ!fχΊ«IΦΥΦ-OΛΘ―ΗƒRίX,Ύ=M YC‘Ώ°e,ˆ{›¬ξ›r¨+LzβψΩ2AjeήͺΏzuβψε‰{ͺ₯Ÿg―nμΩ"Oέ5GΤyΫ‹.³_,ίϊ²V€Ž/[žž,_ŸgΐgΙ o>!ΗΉR”{ޘ/gNϋΉ;\―_'§Ή2§ξ ΆSUΪξ4έ랭2ΖEςss)Χ2nόP©[Ϋ™4mέ.΅σξ’=cB«ήε¬YΛƒίωJΌ’ξV­‚}‘SΫΫr¨,Υ°λ°ψΌZ·Ώ!σnό‘<³ΙŠ»š.³\,ί1Υ±s\φl]-3.ΊQΌS*γΞΪ$uρ!§χΘ«Oέ%3Τ₯\eάμΗεφo}Ω©Όην§εΜΛcχΞέ/Ό)Όoކΰ§Y!ψ[Ό^χΎ9rΥΘXH\Ξ€όΥVψχ"ώ=q–,Ύωωα΄Ή±½3Šεξ₯OΘ„a»Ιu¦ΞCdΛκ§d΍ $ε.7[ίσ-Ο½d_fϋ΅rγ$©όgΙƒ‹”κγ\7Yό€­«ηΛE7šϋΠ΅œ8NΞϊk„ΧˆrηΝ:ΗΙ#Ώn½‡ξ9nΥ°tΎ^Ν­[εσ/’gβ·άΠ»υ… ±ϋΜThtΞuςσ?$ߏ'κgυAΟgΥ5{V@`?šššdάΈqςΞ;ο8½˜JΛsζΜ±ͺ›p―YL»όΟ”{ξΉGή}§­9ώ?σ?VΨΩ™ηŠ 6§ΥΤΤΘ©§ž*ξκΛ¦Bp>šΝΉ·ί~»¬\ΉΙE]$& ό…/|AφνΫ'?ώρS*4ہfξ]΅jUΪκΕN‡ρ{μfŒζœ£>:ΉIΪm;|œ<7»?s’mα45Jώύίέͺςœά±έ§Ωo΅ν6¦²τ /Ό Λ—/ΧxΆΫ»ΧωσηΛyηηl›SΑϊ•W^±*B»ο»‘ 5›λ˜ŠΣ, € € € € € € € €έ/@ Ωeμ1»Χ]M²―ξyC.Ρΰi,τ9T~y±|e +5œιlW˜4S³?₯κ³^o²^Ο²υφ0tΦbYφX°zϋ«wΙΨ™ΟX ’C³―Ξ%3WΕ‚–γ~YξωΚ@§£­΅?Τΐ§ ε.Χ―“―Έr°N#{%ΗΉx͝£‘άUvι^jΦoΛ%#/O ΦΖN9QΝΟYζV ΤrΆeάƒ/ΛOͺσΜΤvΟ–Z9σλ±*Μ™Ϊ˜ύ&ΝειKΞ”yΙ `w8~ωΉοˆ5‚ν―Κ¨±3­ΰρY‚}"‚5Ν·Ώ:Gί·ΈΞψ‡εΟχ|ΕιΕ6Ζγ/Λν_(‰°­Σ,ΝJRpέυΎyη!ςΖS“eΪ‚¬w™,_&§Ήξ‹­«ηh09λ;*Ύό¦T»>[4Xόu« sšα:»φ/Π|•š5κνy―:γ•8Η=žν2ΤXωy<―|ψ7–WnJ¬ϊ²ηgƒ3ΟΚΈ_Πϋ1χ½ηd6@ £@ΊPsΖΖ‡v˜|ςΙ'֞‘C‡ΚκΥ«;lNβݟ@σŽ;œpω6†₯K—JΏ~‰ΐ&¨{ώωη[νΰ―Ήž©jΌnέ:I»¦œ²ΊbΕ Ήϋξ»­ύK–,‘‘#G¦΄I·Γ'_+Ε§Ÿ~j…ΛρΘI'dΝΗT„N^ώόη?Λ€I“¬έwάq‡\zι₯ΙM¬ν=ϊϋΫί¬`τ›oΎiν3γ¨――—CM}Ζ40―εΉηž“eΛ–Yη˜?ς™³s+ € € € € € € € € Πμbs‡˜έλ&¬ΆΚκŽ”]yΟϊΩ»πͺ:ίΆ”΄ΆΠΪΔή¨Ά0ΪΔ–mJ/ 3%© q  AΤώα©>%(1ϊγ’rΡ2aͺƒEapdH% θ˜RK 3€Υ”iAΪ†VcoΑZ£Ά‡ΦzθΕϊsΦήkŸμ“ Κ{?O9ϋμ½ΦΪk½φ>ixψ䛉‹dΦΤQR0 >DcτΒ€φ}q₯lœ?ΡτΙ­r[TΨ-6ΥiWIΝH'₯ήTzž›Ξ™jη;ζ—ŠζC[φΦΛm“η‘ίκυ»eΚs}/TY<Ο„f'₯Γ“&PTωΥ €+ύ¦’ΨfMΣ͚4š[)ΫwLk[%ΪN:υGγ‚RαΚΣζO•υ«n•!y9ΪΤ Σ'TsςΝA…\3DαΔ©©%ϊηHΒTXS‘Μ+AVƒG"­²²Θ„Gυ²ωΥ²΅v’WNŽΞΪΜΩΨT₯m¦Φ¬—©₯Cl5δ–Ζu2¦"]E[JdΛώ₯~„΄U– ™ΊŽ^ΚΜοŽjuNšͺΕ+e‚WMΨ‡WΣ)w’¬­­”‘ζ°U£Λ+‚ ΎωΥλeΣύ΅φ Y=b˜,Χ0lα"ΩS[– ΒκZœΏ9%:η=fΞ©›#aΨ<ίTΦήd+kGmBθ•+VΙΔα’£U°”ΛΒ{R‰ΫBσ ΤΟ@“yΪ†}“ΝL0|‘½²Y½©μ|‡©μl"Ψf¬†·I•«$nξΑξMS‚*ΪΣMm}d΄’rΝϊeϊ˜;*λͺ€bIꌸΊ6Kμ4U¨g•€'Φl”κRs«4,1Χ©sj?@¬γΆπ³α?gβ}Ξ²ή«Nz…Ζn>­²|€Ψθ:%m歌›·VͺΛ†Jσ 5ﬓŠKλvcΕ­‰c p4jώβΏhΓ²gςδΙς―ϊ―’a·i¨9.Δ{4ζΘψργν΄ΎύνoΛΘ‘#έν«vf=ροώοςο|ΗΆΡτ!ϊžpΣ9iu䦦&ΉρΖe€IςΠCIEE…mτ…/|!Ψ{‰άsΟ=RWW'ο~χ»­qŸ>}€+ζ7ί|S>ωΙOΚΓ?lΓΦZ)ϋ’‹.ς/a+Zύλ_·˜υ„VbΎκͺ«€±±Qξ»ο>Ρkj`ϋΜ3Ο ϊιzόJΦnΝ΄‘ε7ήxΓρ²Λ. ϊθΞO~ςως—Ώle[s€o@@@@@@@@މfΡ1ϋϋ^“ŽwMΠsuΕi[Π6WJ¦ή*“Ζ•ΚΠAαf/h)…&Zλ‚‘©Λν]=^&/ΧRΏ…¦q­­@,- 2xLΊq$€œκ©Pd½ͺΑΑ1“%mZg*»―φχcΒΞ³MυdΝhηWšπν΄h*u΅τŸώ:dœlέΏ8U}؝6sΎΙΜΩfv«7Jν”sΖvηάd‚±z΄mΐ8ΡΈZ†U,·#ψ!TνΊ η™π€tX‡4Ÿo2ŸuΘ›FγY‘ιi―ΠφH Χ„Ζχ/.4j1•ˆΗ€+‡σk‘9ƒΗ€+NGΘΆ³gj&„Τχ+—Ι6“δ^)7©]œWϋ‡ΧρΒΞ^ 8 ۚΆkM˜}¨χΌ%Mρ’TρΞ„}·Νl*w§–œYΥΫή;/ΐ?oΛ™d’ΦIο>—˜jΣK½jΣ6Έm*W[ώόy&=Ι† ύ93•³G*gϋΟHgBΏα³Ρ™5ϊΧξ¬WΨ§ΨΜkδΐmΓR‘₯jσφξ“ …oάΏIτΙwΫήe#d²-λ¬c­ Βκξ<― pμφνΫ'ώιOT_v£kEζ}θC2gΞΉτKναλ―Ώ^~ύλ_»&r$‘ζchvaaΤ§>υ)™={v0? ρ.]ΊΤVΦƒ~ yοή½’AmέΉζY½z΅ Ϋζηž{NJJJμΫk―½Φž?tθ=¦―Zεψg?ϋ™\xα…‹h5θ²²2yζ™gδmo{›lΫΆMϊυλΧ₯@³ζ3Ζ†Ιύ*͏<ςˆ|όγ·ΧΥροΏ~9γŒ3"εΈjΚϊ½άƍmΏοϋvέΐvfΎmdώxΰ¬›ΎΧτŒ3ά)^@@@@@@@@ΊQ€@³‡λ‡˜ύ}―I§w›·mΉ3F‚¨s©ΐΌΆfšΉf/©š›ξΨkΗ“5p†9ύŠ―mƒ¦ΪΡ„(ƒ°iPƒ˜αXΛLΐw¦Γmͺ ΒΞ2AΨds½©Π;מ˜·ΡVSε‘Γ†ή^²ΙTσͺζ[l‚¬«"AVΣΠy]%θHΠΤCw“ζΧΕ'uΗT[>΄―.¨¨ym«0Πl‚±{L06]΄XOflII$μˆfΘΩWWaͺkD84ΘθΌmΪP.¦βΔqΞΎ›Ÿ,ΦΑŒή0Ϋ‘S₯ΌΓ~a5dw,ΡΈΜΊmκ`NΉSΧʎYC£žσL@|R*&ήc/τCν‘{ΰ=ƒξΪώύŠ †Ϋ!½`}Ύ ©o²!υΰb©SQ;a«jλ-=$u&πoωƒϋ–” ¦’vŠ9&nF ŸχŽο™>ϋ.μήαuμ ΣeμB­έy―°yŠ seίΎTΥk“ϊ—­›¦E‚όŠΠdΒκε›ΗΝ»Sn-j«λ9―}>sϊ›ͺΝ©#ό‰έ/ U›5ଛ˜]ˆΩΏ²ΆΡοΡ„šύ° ΥM…ζ§žzΚ―έ<΅Ίρˆ#δΥW_•+VΘO<αNΩοš5kDΓΑZ YΝn-²xρb9ϋμ³ν±χώŸ (kηϋ· λφέο~WξΈγ»―‘f „kUc­t¬U“έυnΉεωΚWΎbΫΉΠ΅ΆΧσΫίώv{<ΞBOψU₯υ}QQ‘λΌσΞ“;vؐΉΧMηΙήυ‹ΙξUeφŽ›Y΅4Κ’ͺΩRηͺ9{έ$’¬_;_†ΔuτΫ±ΗEΰhBΝ.Π¬ΑΨώπ‡ςήχΎΧΑ…’ύκΑώβΪ 4λΉ-[ΆΨjΒZΨm]t‘­š\SS#=φ˜τλΧΟ†¦υΥm―ΌςŠάy睲vνZwΘΎj_ ώŽ5*r\ίd»žισŸΌ|όγ; 4gZΈ ώε/‘eΛ–‰šωΫ\ ZAZηζ‚ΦξΌΞMΚZ9ϊ™gžq‡νλε—_nΧ4thΫ=όπΓςΝo~SτΥί΄ͺτάΉsmhΒΜΎ ϋ € € € € € € € €@χ hφ|ύ³Ώο5iw7©Υ˜Χ*’s± SΝV{'φšπξδTx7ΏZvoš"ύ½ΰ¨ u ²a@5 xΆS‘yΓt»PC—…²~O­ ΙIΈΣTύ‘U˜‹«eΕ¨½2s‘‰ΜΞ“=΅“$Η„‹Η›p±Ζˆη™°ΣΎŠ Ωlφ'ήΉUζw‘ΩΤ8™†σμZ…ζ Μ|κR!γ’κ2kάpΠ?5YΜ hk/sΫš[dΑΰ1’ͺט+Υ+VΙΈα’Tδ-7.Ά =3Χβήwδ7?Xφ ΝmƒΠzΝ֝ d€ ”K͊αR5SCΩnž Y=~˜,77§dΡZέ8[ͺΜ}Μw§μX<άMωˆ*k5fͺœ½c…¦Bsmg+4·ξ”#SΑkΙ-‘«fΙπ‚’Ύ£²a|‘,ΤΜ 4o(7Ημ-YdžΓ²tΫ`I¬)l—Ϊ ŸΘηΙ[O°FΣ!ΌΗΞΩ/~¬°Άuυ™SύŠηm4Υ¬ όA"ϋΙD‹4h’};dυš{5ž΅I4˜ιΔ8ξGj>’Ι·hvγ½ώϊλΆΪ²ΎζδδˆώΰNfΰΧ΅Ν|Υ`³I·3Ξ8ΓφΝl“ω^―σΒ /Ψ€³^οΌσΞ ͺ%ϋm³šύ6ννΏόςΛςK/Ω&›6Φ>Ί.΅;묳δάsΟmο2φœΆΧλ‰a‡ƒΣ@@@@@@@@ Σš=*?Δμο{MΪΩMΚΊE²Δζrσe£©v\G;™*Όκ± tzAΛH3έ1 Θ†Λ0”+²hΛ)”y1Δ4Χ™k‹Θ–Θ–=KΕ5I4.3Υ‹ΧD¦UR³E––j; p† Lυζέ›$¦ΠpΨD{zՊ‹m‘Ue‘ξd³ ͎ͨDέ*«GŒ”εκVΨ6̚l—’±sνuόjdžΞΡΝΖ e› ξͺŒ ns½ z[˜ΠΣuΝ|υƒ«qΞqσσ«/Η:˜‹„sΘΈfξ#L <οNΟ¦ΈFφ¬*΅!_>nSMθYήΝ ΫΔ­/ΌΏ‘gΝ{gs¬άT·u–Mεα=¦ςp›§Μ»?n­ώσΥ6Π^ί4Χ›@σάΤ…Μ³Ί*xVέC―Έ5ΉVξ5ΌF‡k4]ŽΔ+μ“++ΆοΡ}ΓΠYd»₯©Qι{qΎ ΰ—an•†9γm0]ϋΥlέ#₯2•υ τž 5w&ΠάLβζp΄ζΈ19† € € € € € € € πΦ Πμέ_?Δμο{MΪέέ»Ί\&/·©LSόx½¬š2€mϋ–2~Μ [9tzaH3έ; ‡aΞdKƒ©J΅0Υ•w›κΚ~L2Ρ΄A†MX˜:ίNΰ7Υ ΚΜK½ki˜#cͺ΄.szs•€έϋ¬―Ν2{πX1υžΝVbBέK#‘ξΔ^3§Ι©9λτB΁‡7~£1­H›FC’ah53ν‡ŒƒλcΆΚΊς‘²$žέhΒ³ρΑσT‡ˆsL¨w―©‚=ΩVΑ ‚ΐβ;Λϊέ«dˆsΌϋV_vLΘ:S…y‰V0NoγVl•Ε£ΣΥ±Ν}μξ»=_hΒζ΅‘°yΆ Ÿ7–Ψxs ΧaΒχ³‹€*uC₯zύn™YHΒ„ζ‡₯Cσaˆ7 «Ι™β›ΐvΉ l[~/ΐή0ΫՁ‹+k€Ί΄Π,ο μZy»,Ή'Lφ†U€΅₯Yƒ ώ.΄§‹eΕ–ω2Τ\§“6žAeaΙ•Κš₯RZx±rŸ¬Ή½J6‡CJ©n]κJWλ°mΆhΐ8·dž¬U*yύˁͷKΕ’tΪΧτ ƒΐΡ ΜfUf~‹eψ ~r¨ΉQn;#ϊ6gb*Y7™τ„tHZ$³:v«,3­ΧΈΞ&ΜΎΗ„ΩύšΎΗ.Π¬Ο^X![i*οά"S†šΚΫ&ˆ^WU!Kv₯'β…½ΓηΥtΘ-–š₯Υbψε`Σ.Ή}fψόkθ=¨nBΏε&τλΙ’κ;eΦΈBιwΈU6Ορ#½-НOγκρ&€Ÿ~ΐσ 0!υ4UIε ™U6Tϊυ9t°Q–MŸ)χΨs™χZΕΩ@ 7 ΈP³Ξ­;ΒΜnΝΟ<σŒΌϊκ«ςw½KΞ<σLwΈΧΏΎςΚ+ςάsΟΙYg%—\rI―Ÿ/D@@@@@@@8ώš½{ΰ‡˜ύ}―I‡»‰ζωπΨͺ œ΅C~₯lί4MlQd/€}Þa@΄PΦο©•!.½šh’9Γ&ˆWK9μ”ή+6aδU1adΏŠnΫΐr4ΔΫ6έζ2ށΈn½3ώΏΞhe[ΏUtίο£gφšπθd΅MσMUθMΆβr$X&ςMαΘΩτ›–m2bΜΜο©hΦΐuΓμ›κΖ.y3pLemm Η–ύΠx\ ϊHΝ.]‡†³ηΘΨΉν>eU¨Mμρ¦ ΆY½9 ·μ\ cfΤΕ7 Žf|‚γώNφ‹l`?ςΜxŸ3GβΥΌ‘\ΖڟˆApa΅Y»{,έύIš― 7uπu!wκZΩ1k¨Ώφ@  h¨Y·sΟ=·Ο’©!€ € € € € € € € pbhφξ“bφχ½&ΫM4KCέY½|sP9θh*ΦΞ[\-eΓ…UuM΅ΫΩEcmΥήΆαb Έn’± ΝΕ&°»ΚvƒρL€²aΩ©Z³+<€{ζ:‹–Ξ—²‘¦tάΦ`BΊ©ΰuΝVS₯x€KI§77Μ–±UZ}x’lέ?_²Œ7²9Φ"υsn“Ή~)dstjΝ ‘u3e)Γλ‚žn€Φ½ rΫδͺ B―=ž;NV,.uUbWTΌMχJΆΘκŠ1²ά•υ5ΥŒΧ›@s*𝔽υKδΆΉu‘ ²VX^ZzH*f.·ƒdΞΓΝ'σ5Ω( n«ˆTwΦϋQ³’Μ,)5οΈΰwSΓ2™^΅&2­ΊlϋυνΫOϊχE»<`ΆΙ„΄κλd»~ΜρΘΪϋεIg–žH΄ŠεκΫWςϊχ΅ν‘D«ιcΗϋ&%Ρz¨σmΗkοH0?ι+ύςϊw2€ΞΑLRϊ™uuΣSΠήԏɹ.―ί.;ω ˜4tpΟΔ|fς:σΰ“ΥυΠ I³ΎC©gRŸ‡Ξ>η=4;.ƒ € € € € € € € € €@ hφΘύ³Ώο5a@@@@@@@@@@Ž‘fΣ1ϋϋ^v@@@@@@@@@@@ΰ œζeΛ–ΙK/½t —έώPηœsŽΜš5«ύFœE@@@@@@@@@@£8!Ν<π€μΨ±γ¨ΫΩJJJδϊλ―οlsΪ!€ € € € € € € € € € €ΐ œf]›†šyδ‘n­Τ¬•™oΈαΒΜGψ0Ρ @@@@@@@@@@ œ0ζ.Œφ € pr̟?δX(«D@ΰ$8p όξwΏ;‰VΜR@@xk π½ύ[σΎ²*@:ΰ{€Ž„8 €Ύΐ‚ μ[ΝΎ ϋ € € € € € € € € € € Π£š{”›‹!€ € € € € € € € € € €€/@ ΩΧ`@@@@@@@@@@zT€@srs1@@@@@@@@@@π4ϋμ#€ € € € € € € € € € €@ hξQn.† € € € € € € € € € €Ύf_ƒ}@@@@@@@@@@θQΝ=ΚΝΕ@@@@@@@@@@@ΐ Πμk° € € € € € € € € € €=*@ ΉGΉΉ € € € € € € € € € €ψš} φ@@@@@@@@@@@ G4χ(7C@@@@@@@@@@_€@³―Α> € € € € € € € € € €τ¨ζεζb € € € € € € € € € € ΰ hφ5ΨG@@@@@@@@@@8aΝΫ·o—GyD^|ρΕn:χάsε}ο{ŸŒ9²ΫΑΐ € € € € € € € € € €  œζx@vμΨΞΊ›χFŒ!ψΨΝWax@@@@@@@@@@8!ΝΛ—/οΦΚΜ™Vj¬¬Μ<Μ{@@@@@@@@@@8Ζ'D ω«_ύj°l?8xŒvό±ύύc4<Γτ*€΄4·HΜ©€A’—Σ«&w‚O&΄5Έ2άcs?“­ά’°c 4Hxd +£ € € € € € € € € €Νή=πCΜώΎΧ€ΓέDK“8xH€ίΕRX0€Πa‡bΗ©Ar―Œ/š,Με+Χο–iCϊ§&’h–ϊΊΝΪ―PΚΚFŸAη„μάP'‡ϊIiY™τ†π°g›[Ή^vLrœnς[λ²Ι¦uR4a‰YT¬ί³C†€Ν‰ζR·ΉQϊ”JYi_sήZ·Υ € € € € € € € € €'…fο6ϋ!fίE‰Χ:@IDATkαnΣΊρ2a‰ΖdσMθpS:μ°# ΊA )I-Α¬[NN4θ™l’ιEd—9U½q·L)Hš›λ§ΛΨΉz4#θlτΎ?’ΝυR4vX― {Ά…Υ₯vJΑq…K>'n]γdσs―ΛBΩΈ§V μR’R_^$sχ)1_sŽλƒΖΕ@@@@@@@@@ŽX€@³Gη‡˜ύ}―I‡»ΝL v‘bύΠa‡έhΠ aE[N6‘εiιΠ²½”ΊΝh޸ǝ{wΦ4η›ππ¦γΞ΄=ώζ€l_$ υg r«eχŽ)’Εέ O\χ™-Πά`ΝUι@σFσC½ό‘ν^$FG@@@@@@@@8!4{·Ν1ϋϋ^“w 4wHΤc Β¨VaΞ'g 4‹$₯Ή©IχΝ“‚AzlGs‘Φζ&i9άW κa]ΟΆ7šƒ Ζ…σdOν€h₯οαΎασœρΓΙVijj‘ΎyeΠ€5έØ\ξ-'πχΏύ-·&„ € € € € € € € €ΐΙ pΚ)§ΨehφξΆbφχ½&ξv&Мhi–Φdj¨œΌ2 Ώ©œLš(­Ωrr"Λ€9ž:¬•‚“Ϊ"‰tίώI^„‰iM_,''Od <¦―Ÿc―Χiin±σ ζgg‘ϊ#™h5c&σΝ;ŠeR-f,·Fgα]ΛνFάQο52ΤρΔήu2lςϋ¦rνv™6΄Ÿ™sΪΧ έϊš½³ο&b松32ΐŸcoƒ“Ήžž4χ‘Ωή‡œΆν3ΖΛ0@τ‘8Ϊ-e–Ύ~Ζ5²ΞΉΓ‹ϊΟ`ŽΔΞΥ³-œ·Ej' ’D«yΣnNσΜwπΰFΪ·σάFŸ‹„47·Ϊδ™ΟFΚ°U6””…ZΑ8ΏZΆoš"ύΜ}I=η.Φ40Ÿσ™K?’ί<£yέίΪάόζ~Ά;Υ΄Υ|ΣOT–ΟAΦ@s–eDmΜ#ΨΥ{Π…―SY¦ΐaΊ]ΐ2ϋϋξΒqΗά9^@@@@@@@@@ η\pΩΏ’Œ@³'γ‡˜ύ}―I‡»νšM²lΖY£αJo+©ž'²z‘άσ'Ν\n”MS μΩds½kφ eΕϊ[εώΫfΘfΣΖίΖ-Z/‹Λ†ψ‡μ~’©AΜ©’{dœΚ-‘;ΧΞ—αƒόJIΩ0ΎHjΫάbWΠ$›w₯.”[Ή^vLKŸh–u ͺdIζ Ήγdmν|: ύΨ¦?“¦†Υ2§jΉ΄^΅¬]ύ1Γωe„FM…Ϋ±UΞ»RΆά©zsD+ ίV17}Β>α8φςR8qžΜš8TϊυΝ‘ƒΜzƒκΫ¦°ξΈERS]jΗkmή)·WΜ°ΥΊ΅η<ŸΤ^H<Λ:B%W*W¬’‰Γ $Η8Χ/(—…Zάl…σΆHν$™΅‡ΪόΡ²s™q\“>n*|oIUψNΆ6ΙΊ9ΣeyΊ,rIΝVθΦ{Ω$ξ~ΩN¦ΪπΖω₯ΐ<οκUT‹.6τU’ϊŒ4ΛtN=b…R³ΎFF™ηBŸΫΖuUR±$ύπω!οΜλN”³&Κΐ~}%oΰ Σ7i.ί*+‹Ζˆ½y¦ΆΦN΄‘λϋ΄Yjϊ€7—|S}Ό¦Z†šrΜIS‘ΌnA…©PήΦqΩx©X“~v‹«eKΝΔΤύlΪ&s&Μ ~Α²Γκλζ’…Se}ΝTσυΐ|Π-²jŒ„ΛM›šfα3>g:αΰ^η›@σ¦,ζNέ‘#ω:₯s`C §\@Y_έzm·οΏΊγ=57ƒ € € € € € € € €ΩΪ˜Σ‘ζΰψ+―Όςχμέ{Η?\μολΩωcϋϋ]ΉN.τΝ‘ΰ₯©ΊΊΗT]υ '[δ¦1U’1ΙlζBSέ΅6¨ξͺ3ς*όš γndΤB»-ΫζȘ™©ΠrΙ"S1Έ,Vmφ‚ΉΕ&ΜΊΚ†Yύ@³©ŽΌΫTGφ«φΆξ”#gΨωεN4Uuη»*³:Ώš­ l¦Ξ΄ύsۜΑ’žž,2aέ2B+Ο6Αιtn8σz~~ψ؍knN†P Bο‘).]³ŒφρC£-²`π±Ρθά©²}Η¬T%βτ«MEμεφ υ†γθ=]oͺnI·N½ψχ‘Μmš7·Dγ23^*@Dz{o²¬#41k_»[¦ψ74Ω(γ‹*lΫήΌQ½]S™ΪT’^h³ΊωζΩΨ}6€Yf› ²½e.PλΝΙ,^vΧN±Ο¦4|^ΒP½hϋά&d΅™ƒ-˜μ=λώ=Œ»Nκzή³έ‰ΐ½φρΓΖω•[LUeο3dμF;ϋYuaπδ^)/š,Άζx©T½#]©Ϊ-ΈΉA­²οœw‹©F=ΖV£Ξ5Ÿƒ{£Ÿƒ„Ή?ΓΪޟπ™ςŸΝNš;y"žZΊ“_§ά2yE 'όΐrζώ›oΎΩ&Ψ¬svl € € € € € € € € pό‚Π²bΦc§žzjP­™ ΝήύρCΜώΎΧ€Γέ0H†Γ ’H± ―Κ›₯©h›ͺNλz!Ώ_\°uοκr™ΌάΔ(]Τ‚λΛ‹dMV–˜@βHp:5ωh5„φϊω՞ӫυΓ·qσHμ]'Γ&/±­γΗιatAΑ:₯ΈFφ¬*5Ut36ξlΒέΊεWo”MS ²†]Ο8s=ηϋ΅™—ΊυΟ…}όϋW/EcηΪΛΕV4φ­ξώ…γΔWYN6­“’ )³όqσ€f–©Πœ¦Θ‰„Ή^Žτ7U Ϋέ²¬#4ρ« »‘Β0Ό›―;ΣζΥ?wܝ²cρπ6MΧΝ‘e Ώ“‘SζΛ¬θύŠσ Ÿ—ΠΈΝ Ι€$ΜΊεδ’Ί S΅XŸλΰY7ϋήάβ£}M£π3αχMŒΣάΟρ& œΚp“;kn5š΅ZtjKš{£3λί?uΏό{=qΕV™?ΪT©Žl¦κςμpPdΚό)-ο³k–Lš1νrMρΓϋ€bd… Hϋχ'ΌNΤ-ΈΧώϊ:°‰»αψ]ϋ:εΦΐ+έ-ΰ‚Ιϊκ‡—uί½χ_u>.τάέsc|@@@@@@@@Θ. αejv!fΥξS‘9τCΜώ~Ψ’γ½ \θUhφƒ‚qΰH0Σ„xk5Δk6ΏŸΊu³“²Αšjπ3&˜œκη<ƒŠ΅ή±`,w­[.cν ©cΉζE+ΤΪ-ΧΌϋSπΞTB6Υ€c›Ά­ Y–M°AΝ°:tzχβ…žƒ0§Ό?pπΜuΈvύ²Œφ C£α±Τ$£KŽhΆύ>qsΦpχbOΥN/>·Pƍ.•Q₯Ε2|θ  @›>’eΩLRƒ„χ;0Ž=#4lžΝI©g3[s{ά›Sάψ‘MhμΖkmΪ&+—­”Ί]6Nμ‡―ώσΩΑuRΒ΅FΒΠαˆ1{¦RψS)'±/σΥ?ΆΊxf{}ου‰?΄ ΅[£©8^‘Η½-77_ςL­δ ολ?Ÿ\'5LΈΦΞš΅gR7,‘Ω λΒπΎ7―q‹6Κβ²Ά?x°hΛ)δ₯½>Ρέ°Jvx 1λ¦―~ζ7ήxΓΎ?όσ»ο⌌ € € € € € € € €έ&πΒ /hΞΤυCΜώ~f»φήαB?Πά΄AŠ&,΄έΊ»Bs½©Π<·³šMrχ¦I&τά~θ3\“HεΪ-2J‹·ΩΛaι' Θ^YΨ ΞΫbͺύj3ŠV.žn*ο2g‚0§Χ/.Ξ/ C›Άrt–1Γ>αXα1‘άΚ΅Rk’mg.‡‹δ d«χϊ}βζιžLHs“ νξΫ)λV―‘}^±ήš­{€t@;Ω,λΘf’ΊnxΏγΘ„Ό7ήψ…σΊ±BsλN1rF*Θ›["+VΝ’αξY2•ΗΗ›ΚγZ΄Ή ‘έΜ΅FϊzKl7)-ΝMt`Ÿ4¬[-χx7g\ΝVY\:ΐ«œάω Ν­;ΘΘuφΉ%Υ²jΦ8)ώρcή&ΤoZ†ΟTψlκΑ½ξ‚MάXΙ#ό:eΑt³€«Κμ^5ΤμΒΜϊzα…vσ @@@@@@@@ΊCΰωηŸ—ΣN;MN‘BsΘλ‡˜ύύ°EΗ{AΈΠ47ΧKΡΨΉΆs± ςΚ ςΖ…xMλ0tΘ5ηƒkAFό4ζ…ΆΘm±lΩ³JΪ‹υ%Ε5²gU© ‡ΧΈΠgΣΊr™°DΝ•š­;LΐΦ.₯λxAM)^d]Φ&όœτ­«2zŽ„jΫ‘›λ§ΛΨΉ6-χΤJA:۟7¦8ϋ„‘Q?θ9n… ±Žξ 'ώή%[šeίA“\ξ{± ⏗”¦†2‘j³υ-©Ω"KKc‚ίN?Λ:‚gΓ{]­>μ‚ο 4»pmξΈ²cρθp˜τ^Kγ6ΩΧjά}Κ¨Ρ’γΝ)nόΠ&4N4.“akμˆmCα|#ΟgΧIM/Kί6«π$[€qίAs Ÿδ-ˆT9O4ΥΛ‡'ΜM―KΜηgi©ˆŽ>L΅η†ϋ₯UG8Τ΅σ€qΩx©X£ ν˜Ο©χυύβάtΦΑ½Ύ˜ƒΨčωμuαλ”΁ ξpAfW‘Ωš5Μ¬]|ρΕέ=ΖG@@@@@@@@n8xπ ζLW?ΔμοgΆkο}.ŒI[dΞΰ1’Ѝ›Πνͺ t«c%φna“SœγŒρ‘ΨΰZ^±₯aΆŒ©ΊΗN±°z½ΤN™nΣ†ι2a‘†Mδ Jrϋ‘O?θh:ΙξZ­κμo iX°D₯·Κ€‘~8Χo£ϋIi˜]$ιιIυϊέ2eˆ?RBκ§›M6­ƒ`« g‘Ϊ‰wʎωΓ½uΜ›Μ˜ZΦ8 Θjƒ0΄ιεzzΟŽΝ~8T¨λw―’Θ΄Ν˜Ν ΛdMbΈΜŸ4Τ†΄ύkϋγ§.Ÿ”u#Šd‰­Δ\"[φ/•HdΉ₯A©²Mσ+ΧΛ¦iΡ{θ–`_³¬#x62Lάυ;hφΒΟh_aνΡ£ζ@Ί ΄]nσSι]π!t3oŽY…fλHΎNi?6Ί[ 3Π쇙uο|gwOρ@@@@@@@@@ ž}φY*4gΊϊ!f?³]{οΓ b‘¬ίS+C4‰h·Y0bŒΤ₯σΊξhζ«ΜτCž~θΦυ B«~eVs2Ρ\/ΓΖΞuΝb_ηmά-“ \¨3)Κ‹Δζ+3Ζ :›*ΉΣM•\”Ž{;ΉγVΘ½‹GΫ Εήα6»ΝυsdμάT½κ6'큢UύΚΣρ}τh†Ή™σx3η0 +’_½Q6M)°‘[WυΩ· Ν3Ζ’VΩ0}€€‹[g™ΒDΆoΓΆα8ρf p/0ΑσΊ,#ΩΓΉ•²}Η4i'ΜuΑ³‘~M]kfνΣΈΊ\*–§“Λ©A’šΰνξ₯₯©Κέ&ΠμlύηΩum|γVY7~€ΈL°kΫφΥ σvpΧ׏§Žε›ΰϋ¦H•tΧ6υjͺ~Ο1UΏ7·χaΝ—΅»7ΙPχ2ՍW#ιŒztΈτ»’š-&πΕσlΖvς>ρnΩΝ]Ώ:ƒŠ78Ζqf­Μ¬aζΧ^{M.½τc|E†C@@@@@@@@žxϊι§ετΣO§B³ν‡˜ύ}ΏMGϋΝ ³el•VAφ*ɝZ€~Ξm27¨(¬'rebεh©[žŠΆϊΠ0ΐ( § B«…¦šqmY4HάΪ$ΛζL—5βqzωΕSεKσo5Υ‘ƒ€΅9cœ³M€σΰ,œgƚ+έה䕆• €jMf¬9_*kζΛ”!ρύ\ο΅΅©AζL―’ŒιIρΤE2Φ2‰L/έ―©aL¨Κˆ›jΡ5[₯Κ€ύͺΣ©N-;W˘ιj»ζPh+YΟΫΈΗ„»SaιΆc©Σή†•r[ΥɌΊ–L­‘Y·–σξθήΩΩYΟeΖΣUΝN/Τ<γͺηΛ¬‰£ΕΑnσ*rϋλžH%n7Th.ž·QVM2οNlΝ;7HՌ…‘€Έ•©‹Ύ$·– ο½™ΣlΦΦUšρk3Ζm2ŒΥcI•TΥEƒΣ%σVHια:S9υά-Ϊ²GΚ΄DsΧ –dΖ]]aΒΖΑ°ωζ‡ 6y?l΄τvτ^―“UΛ3ΦkΦ4ZζϚh+”{ΜnB7,‘Š…aύ|SqϊKσ₯t¨©^νmΙΦ½²δΆΫ€nŸ4εKυ_Y§ΥΚ΅qψu$Ϋ³Ω\?έό€€iμθΐ&λ=°σλΪΧ)oIμ"Πmh~σΝ7E_]uf}ΥP³ώG ΉΫθ@@@@@@@@nΠ@sŸ>}4ϋΚ~ˆΩίχΫ‹ύd"!‡ΆCυΝΛ3UmMEΫΑDσ–~ ω˜_«ŸΉVGΩΞ\4™ΦC"}ϋ¦χο”©νLοH›D’UR}₯_^0iε½I&Ν΅ΝΕMΈXϊφ“ΌΞ\ΫΞΧx› χ3폞 )  η¨Η4γ%uΝΑ#ιΩέΤΪνΣk<;είΥ Ίϋeϊυ=VΟ¬+Ρjž5Σ<7ύ»πAˆ|^;3Ÿΰνά΅Βρ;ωθͺηΆηeΦΡΝ_§ŽpŠt;‰βΝ.Μ¬―—]vΩI€ΑR@@@@@@@@xλ<υΤSš3o§bφχ3ΫΡϋΦF?²B†Τl‘ω₯ƒ"C4./kΨc%5[eii΄’k€1o@ξΰλTwΙ2ξQ h>J@Ί#€ € € € € € € € ΠK4Ηά?ΔμοΗ4νβ‘€4”I•–`6[nρTYSθόU—-[&/½τRη;eΛsΞ9Gf͚u”£dtO4ɜadsΖαπmΎΤl©•A9α!φ@žΰλTOjs­.hξM@@@@@@@@8N¨@σ< ;vμθ1ή’’Ήώϊλ»αzIiΪyΏΤΥΧΛήΖ&SŸΩly€lβT™R6ZςΘ2wƒ9C"€@Χψ:Υ5/Zχ„ζžPζ € € € € € € € €τΌΐ hV 5?ςΘ#έZ©Y+3ίpΓ έfξω›Μ@x+h~+άEΦ€ € € € € € € € €@[.Πάv A@“A€@σΙp—Y# € € € € € € € €ΐΙ(@ ωdΌλ¬@P€@σ xӘ2 € € € € € € € € Πά $š € €ΐρ Π|όο3@@@@@@@@@ ;4w‡*c"€ €ΐ1 Π|ΜI@@@@@@@@^!@ ΉWά& € hξHˆσ € € € € € € € €œ˜šOΜϋΖ¬@8ι4Ÿt·œ#€ € € € € € € €œ$šO’Ν2@8Ρ4Ÿθwω#€ € € € € € € € /@ 9ή…£ € ΠΛ4χ²r’LηπαΓςΤSOΙΉηž+ηŸώI²j–‰ € € € € € € €τ¬ζžυζj € p„Η;МH$δε—_ξμ5Ϋ§OŸ.υ‘qχθ7½Ϋ·o·ƒ_{ν΅rε•Wvx!}ζ6nάάχ›oΎY.Έΰ‚ϋ――ΏώΊΤΦΦΚoΌ!#GŽ”―©pέc,π«_ύJ}τQ©¨¨8Ζ#3 € € € € € € €½C€@sοΈΜ@:8ށζxΐVκν`š‘Σ ›nΊ)rŒ7H&“ΪΪ*gŸ}ΆœsΞ9λΤN+?Π{ω~πƒT”>^7’ϋ£ύH^zι%Νέ`ː € € € € € € €½C€@sοΈΜ@:8ށζ]»vΙO<ΡΑ,£§΅B³KΩΊ.ΰδ}ϋφ•}μcrκ©§v}―Η‘š΅»Ξγ™gžΗG>ς9γŒ3ΌQ{Χ3Σ9Nš4ι¨ΝzΧκNήΩΌςΚ+rχέw‹~ €BσΙϋ°r@@@@@@@ΰ­.@ ω­~‡Y €oγhVΖΏόε/6T¨ϋ}ϊτ‘§Ÿ~Zzθ!}+W]u•\~ωεςϊλ―ΫχϊGNNŽœuΦYΑ{v:/π?σ?ςΫίώΦˆE8χH͝Ÿρρm©Ÿ­&ύκ«―Κ₯—^*£F:ΎβκΗLΰρΗ—|PN9εωΤ§>uΜΖe @@@@@@@z“ζήt7˜  €dθ ζΜΙ=υΤSΆ‚―ΏφΪkεΚ+―ΜlΌΧ*«/½τ’}―ΑΔ /ΌΠƒ1;όγε΅Χ^³αισΞ;ΟΎj3šΦPuάζϊιΉώύϋΛΩgŸΧ¬έcz 7ΎΉ5(«οίρŽwDζ}ψπaωӟώ$oΎω¦œyζ™’σlossΣφύϊυ“sΞ9'ό7ސΣN;ΝΊͺ―VFΦ@³nκ¦η2·D"amυ\ά΅½hvχΚέ}Ά4x~ξΉηfmίgσφ:$ϊ_GcΉ ¨©^_η¬χΘί³]ΛυΛφͺγΥΧΧΫΣ#GŽ”Κƍε–[n‘OϊΣ²jΥͺΰ~f#σψm·έ&ίϊΦ·lhΏ¨¨(σt―}ŸmήGλqΌΌuλV9xπ ύλύdC@@@@@@@ΰ­(@ ω­xWY €oAήhφC²C‡•Αƒ·‘ώωηeηΝ6μšyR+:g–gŸ}VΆoί—]­Ό«iυbέΚΚΚδνo»;-?ό°μέ»7¨"νNhpX+φv6Φφ¨½λ»μλW\aƒ”/Ύψ’ΚΎ^wέu’ηΆmΫ&Ο<σLδœ†§ΗŒcCΊώ‰έ»wΛO<Ρfno{ΫΫμά4(­›«Μμχuϋ]t‘”””Έ·ΦτΎϋξ“ΜωiƒχΎχ½rύυΧmύ{₯χιχΏ½ b ̎Z–––ΪΚΪξψ#ϋλ_*?ϋΩΟΪ<¦Ύα†δή{ο ug{žό±όύ={φΘΎ}ϋlθ{ςδΙrϊ駁ζσΟ?_ššš"ϊί7ΫΎ 766Κ5Χ\“­Y―;žmή.Π|€Ηc‘ό_Ώ~}πyΤΟ € € € € € € €@οΠϋσŸlsϊΎ3 Ύυώτό 4χΌ9WD@#8ΝψΓlx΅½ε0@nΊι¦ ‰†~wνΪΌooη#ωHPUXϋhίl›V7ΦtΆ*ğV Ύϋξ»ΫέyχͺA] ηΖmgœq†­ͺ|κ©§ΪΣ?ύιOE+3··Ήpφ< Z™9nσ­4(~Ο=χ΄;O (λΈΊωζΈ±έ±ΜΉοΨ±Cš››Ε?ήY#?­γk%ιψΗΆš΅»^ΆΧš΅:³ViΞΝΝ•±cΗΪa6ΐ›-œmΞ½εxΆy­ΗρXŸ†ε΅B³n7ί|³\pΑΗc\@@@@@@@  Ώώυ―E “iΦΕmš³>|ΈhφαXnZ”M;΄ζBNτ@σ‰~™? €'‰ΐ‰hΦε‘C‡μ4h 2ΔVμΥoΐ~ρ‹_Ψo\υΚργΗ‹VQΦo2kkkm…^ν”——gΏ™=묳dώύΆϊ²»] ω΅Χ^³U•υ§ϋτ›ΤoΌQ.ΉδI&“ςΛ_ώRž~ϊiΫ-³Β±?–ΫΫίώ&6lB·ZqyδΘ‘Άj±†¦5Hμ6ϋ΅Χ^+ZiZΧ€U˜΅’¬nΪgΰΐΆΪ΄VQΦM«6L.Ύψb;7mοΖsae Iλz~υ«_ΙsΟ=gϋ|πƒ΄Vύϋχ—>}ϊΨ}u:|ψ°WŠρψ€5όΝo~#=τPπ—7Μ@³Kϋ¨ρoϋΫΰ~θ€ϊˆχΌη=vlW1ZΓΙϋΨΗDCΪ™Fϊ“”j~α…ΆqπΗr‘cΨο£UΥVοΏΫΊhφηsυΥWΫηLΗ9ΪoΆ`°›co}Ν6ο£υ8λΥκξO>ω€d†γΗ\Έ& € € € € € € €@ΗšwxτΡGmCΝh5Ώ`ά±,f₯9-’₯¦Z έUTλχŸωŸς‰O|žΏ˜jεοφΆ½{χF‚φϊu㑇²ΧΤη\ƒωl € € € € € € €½Wΐeτ7X2DτίΧ5‘‘K.Ή$ψ7η£Yώ{΅†™έoSΞλD5hΞΌ›ΌG@^)p"š] ±#P ―jpΨjγΒΒn ?˜λš_ύuωωΟnΏvmύΧwΌγΆξi§ζn³ο‡uγB΅q_7H\_Χ¦M›lPΨ΅‹{Ν .g»Ž>6l ‡·η”y ί-n]Ϊ^―Z©Χ…υXά<βΦ©mύ-s¬x@4Τͺ›ίμτGRαϊψƒόμg?³#θOYjEj·e πΊΐ―ΆΣjΒ«V­’λ―Ώήβ $Zε[7Χ±±QΉζ{L˜9s¦άqΗφ½V΅Φ Γϊ€Zέωcϋ˜<φΨcφ/bϊͺ!i½gΊf μλφΕ/~QfϞmΟνίΏ_>ωΙOΪ>zξ‰'žχΌη=GΤGϋλ–mήq:7ύ•;χίΏν«Υ–u}8Χ€±VΌv!μmΫΆΙ¨Q£l;5ΰ?hχπƒΨυισ¨‘ύ~τ£’fjϋδ“OΪ±Ύτ₯/Ι’%Kμ1ύα PχιΣΗ–5―Ϋ‡?όaϋ«‡\@ίUcΧ€ΉVlgC@@@@@@θέϊοZόL#ΆfF43αoϊoσο}ο{ύC]ΪΧΌ‚ΣβznΣ1υ½ώ½Ϋτί«υίςυί₯O€@σ‰t·˜+ €'±ΐ‰h֟„«――·ΑL½mJΌτKmπSßO?ύ΄ ;κ9°½οΎϋδΩgŸ΅R EΖ}cιΆΪ/.«†5T©γhΕY­‚μ6ύ)ΌRχ6φ΅£°»~fY‹λλΦ€η5L}Ωe—I^^žhuΠΆώ4bζxξ:q‘ε­[·ΚΑƒmuκ(€­Χ>ށfύ‹Γ/ωKŠ|θC ˜gn™cfŸ|PόqkP^^yfβΌΪί~υ/0Ϊ?[ε`Χ.3Πόχ²{χnϋπ|ΦΟ₯ 4_~ωες裏Fά5ΈΧΊΰ‚ Dο‰>Ÿ.Π·ώνΫ·Ϋ`³Ί=Ϊ^^«˜ίuΧ]φ§t―ΊκͺH άŸϋ € € € € € € €½CΐΟLΈ}φΩ6αΖ`ύνΖZθ««›~Σ«Ξ 3»€΄fόP³f3JJJ‚’f]½ήρhO ωx¨sM@θ²ΐ‰hώνok«ϋκBσσσeΨ°a‘5kΰXΓΎΊΉ@³ ρκ±Έo`ΥΐU'Φ6qf=ξonΦκΐ.4άQΨΫΝΛΟΝ13€¬m2ϋϊU§O9ε™ϊόhΰύΜ3Ο΄ΰ[nΉΕ«³}ܘn}ξϊξΈ?­&­?dΰΣjΡqAs­`=cΖ ;Χ―ΆΆΦ>Ο:φš5klejwά¦ŸΫΟ|ζ3Άή'ύ λη;ξ\ EληV·±cΗJnn;Ε+ € € € € € € €@/π+³NO‹k]qΕv¦ΙdώVcm£…έ4‘9ŠΞnZάNΓ̚―p[\΅ηΜPσyη'7ί|s›¬†£·½hξmw„ω € €@¬ΐ‰hφ¬C† ‘«―Ύ:².DΥƒ.Όκ‡œ΅ͺ«Ο=χά ίύχίo+;».Π¬•pυzZ9r€ ^Ί6ϊͺJύζVCΓ™α`Ώξg†’iβΒΔ™δl}οΎϋnϋλTτρ)S¦Dͺ)ϋ‘ΝΜράutάI“&ٟXtyβ‰'dΧ]φ­–Ǐ/§žzͺ;m+Sλ―XΡΝ}ύϋαΌƒι ·κ7έhΦΏœθ}xγ7μΥ4ΰAw·ι―šy葇άΫΰ™ΔμψΊα†€   ΚλΊ 6pίο}ο{2mΪ΄Hk— Φ6’Φΐ­χ]5πΏόε/ς‡?όA΄‚³nί²eΛδσŸΌLœ8ΡVφο•mσΗ‘τqΓd›wœGg£vϊ­ϊ,i5fύ)V}ž δ.i_υ9Τ€½ή ύάψωtύrώηώg[}9³JΆΪκη#BΉ?ϋ € € € € € € €½CΐMΌ—\r‰ύχ`fϊӟdΛ–-φί’ΛΚΚ"yΏ]ζώΛ/ΏlΓ̚p[\˜Ω‹ 5λoσΦ\FoίτίβO?ύt9Ε,φο½}²Μ@N^-МNΦo&΅R°f|πΑΘOΝωΫύθGςK/7ϊο|§­δϊόσΟ‹ώϊsfΏ΄~cχ|@  ’Υ°³žΧ­ώ6ό돑Ή¬Νώz.ΎψbήΤΚ΄υΥIf yηΝςδ“OΪι©Ϋϋήχ>ξԟΜ¬TύΆ·½ΝVΌνΧ―Ÿ š>όπΓΆvΦ€·†Ew Yης‹_όΒ[χuΣ`¬ΞωΕ_ ϋ›LψΗύ}υΣΏˆhpvΒ„ Ά΅>.ΐ«η]ΰχΫίώΆ|φ³Ÿυ»Dφ];Lv'υšϊώ\²Ν;ΣCXΐ]ηΓώ°ΤΧΧG‚ρnL}/ΏόrϋΦ·xόρΗνμΫ·Ο5 ^υ/§ZqΫύj=±uλVωΔ'>aχAΓτŽV£Φ€ω9ηœcŸέ»ξΊΛ~~υΩΥg˜ @@@@@@@ χ Έ’oZKέίί4π¬Ώ X‹Υi Y«pG›fL΄€–±s[{afΧ&3Τ¬>‘f-ͺΥ›7Ν½ωξ07@N΄@³Nάσ ‰ΩρΓ«―ΏώΊνηdίε²Λ.³•[υ˜ 4«^K«ζΆ·3F4TάήζWύυηεϊΈΚΙ™d=Χχ™gž‘mΫΆΉξY_u<Ώz΄VϊΥoΚύΝU[Φcϊ“‹?ύιOν7ϊ~_ΏωΧΏθζ‡Ύ5d[XXθ7΅ϋxm―B³›_ά:3‹KΫόόη?—ηž{.³Ή}ι₯—ŠzιύŒ³Ομ€>ꀑh 4gn™^χ—!ψ=’@³――ΉζinnΆ—›7ožύ©RύˏΞγ‘G±Ο₯žtαίο|η;rλ­·Š††όγGͺtgΞΩ½?’>―[Ÿ»Ύ;ηα_'[ Ω―ΠμWΊvγ\lΐ1―VώΝo~c»§všύΙΌnΈA~ϋί‹†ŠusfέW­j¬}27­j|γ7vκ§ϋ΄Bs]]Χ΅Χ^+W^yed8χ ―ώΤή€I“"mύΎΊΎχΌη=Ά―ώέξέ»επαΓ‘±4«ί|»¨ »FŽΥκ·oΌρ†=tΡEIII‰;m+Ψj@ψόcpLwN=υTΉβŠ+"?νΨΪΪjΏΙW§›nΊΙV°Žt2o\Y«[kέvνΪ%O<ρ„hh­’«cϋλŒ3~n¬wΏϋέΆbΆs›zμέ»ΧΞ_’’IΡ€unnόπ‡?μT YbσΏώλΏ¬υΊλsΓ―q^=ιΏGhvα^GކpύMΓΊZUX7(vσΠu>ϊθ£’UΗ375ъβϊΩΈπΒ ­Ÿzw₯Σ­Ο]ίwσΠΏ8ΊgΞ?¦χD―Ή­X±B*++Εο—ΩΖ½ΧΟΌV£ώΜg>ci5φΈ{γΪλ!̞=ΫVgvγkX\Ÿ{}6&OžlŽkΟ+ € € € € € € €@οΠ‚XϊΫ{u»κͺ«lΑ0έΧΒV›7o­|φΩgΫόοΜ¦¬Ο† ω-Αι«Ν™œaf]š;sWiƒ €Η] 7š;‹’A^­κ«Αd­DœνWxh; ψκ¦Υt5ИΉiUW κ–νWhέΣO?έ~#¬AܜœΫώxρβ‹/JŸ>}μΌ\΅ΰΞΜI]τώg[‡aυx=―R pχΖνΟώ³–ή“Έgΐ―"έQ…f/Aϊ .Έ Ν’ύ° πj#ψ=’@σ“O>)—_~Ή½ΦφνΫeĈ‘λ~ρ‹_”šš{ΜŠ΅J±ώEM·Ο}ξs’a †»νωηŸ «λΆtιRωΒΎ`+w΅Ο­Ο]ߏσΠΈϊκ«m“―~υ«ς•―|Ε5·―:7ύKα /Ό`ΓΫZAYφΪVƒνzξSŸϊT€ήG ²λ¦sАτΧΏώuϋ όγ—βββHϋ»ξΊKΚΛΛƒΐτŽ;D?Γyyymγ‘ŽΌA@@@@@@θuχή{oPψNs šΡ@³ΫβŠήΉsΩ^57‘γΙv4}δzGΣ‡@σΡθΡ@zLΰD4wΙύzm―?‘§ΏbΔ~j₯g­H¬q’;{ΪυΌ€_Q9ξΧΗόυ―΅?©!Y=―au­VœmΣjά.ΦΏ°|τ£΅aωΜΆq^mγΏGhΦ0½«ΐ¬‘λψ°—5¬ώΝo~SξΈγŽ`.P¬Ολ§?ύi[ΉXON:UζϟoΧ§›§M›&=φ˜ν§Υ°΅²χ‘τqvλsΧwΗγ<τ:Z zΣ¦MΆ™†©gΜ)gu–8pΐή 3릕Ρ?πΨΉ©ΉV2ΧmέΊuΆ~&ŸyζYΈp‘]«V—ΦͺΟZyY+pkεeέΧP΄VφΦgBΥκ‘λΧ ψ/―™%@IDATωKϋθΉ’’"ΫΟ^„?@@@@@@@NmΫΆΩ?φ'¬…ι΄hXάo5φ۝ΜϋšOζ»ΟΪ@84x¨!?χŸVIΥjΌϊŸώJ²<–ΤfͺΊF IjΈU7­θ<`ΐ9σΜ3m…X­ΪκΆ+ΈB»ξ:χ–Χ@ΐ―­ΣΥͺΚΉΉΉΆ―ώŠ·υοίί†ΩέϋΜW}N΄ͺ―V¦Φη㦛nΚlbίΧΦΦΚδΙ“ƒΚΏ*φg?ϋYYΉrεΟή½ΐGU{άP„XΑΨ¦‘V›x B½rΤΒQZϊ*β+pŠ₯G8^°€΅B{@Ϋ‚WmQ8’‚Š`ΛΕSμ‹υBU(T¬¨H΄’(h£ ‘‹&XΝ»ž=Y{ΦΜμΙLf&ɞ™ίώ|d&ϋ²φZί΅Ν^™ωΟΙ$Π¬_sΝ52cƌΐsΊ+έ@ρŽ;D?eΊqγFw—˜ηS¦L‘iΣ¦ωλ29FNhNζ‘³0kέl¨Ϊ―€σDΓΪW]u•Ώζ΅Χ^ύ°‘ε†nk―½ΦΫeρβΕrώωη7΄»θ΄ΪŸΟ?Ό·Ÿ~ A―@@@@@@@όΠ™‘?όπCo";ΝθX, hnΨ‡­ € b4+υ]»dωςε^H;}—.]Ό¦;{s²}Y½†W¬X!;wξLZ)ΥwΠ Aή ΑΙvΏ†^[·n-ΗsŒΨ rόώΊΟΙ'Ÿ,z½hΨξgΙχάs7;rόqφηdΑ`=½χή+—^z©έΥ{όΩΟ~&W^y₯ δCά_76ζ˜TυnθdlΦώΠEγϊ\ͺEωμ³Οόφ|πΑ ’Z°ΏΟτ+…:θ χg# € € € € € € €Ε @ Ήz™6"€ P6ψε—_ŠώχΕ_xaH D~ώωηβΞ[Ν₯ ΄Έ@6Αΰ–¬|ΎΦ»%Ν87 € € € € € € €--@ Ή₯{€σ#€ €@ZšΣbb'r&0fΜ™7ož¬_Ώ^Ž?ώψœ•ΫΤεk½›Ϊ…ς@@@@@@@³ζ0χuC@_€@³OΑšEΰ©§ž’½{χΚ Aƒdύχo–sζβ$ωZο\΄2@@@@@@@ΘWΝωΪsΤ@" Π\dNs@@@@@@@@ŠF€@sΡt5 E@ Ώ4ηwQ{@@@@@@@@’ hN&Γz@•ζPu•A@@@@@@@@ gšsFIA € Π”š›R—²@@@@@@@@h9Ν-gΟ™@@ šΕ € € € € € € € €䑁ζ<κ,ͺŠ €@1 h.ζή§ν € € € € € € € €…,@ Ή{—Ά!€ P@š ¨3i  € € € € € € € €ށfƒ§ € ^Νανj† € € € € € € € €@6š³ΡγX@h6ΝΝFΝ‰@@@@@@@@hVΝΝΚΝΙ@@ SΝ™Κq € € € € € € € €α Πξώ‘v °k³¬|ξ-Ο‘[ί3€η‘msf²eύJY°θΟ²}χniίΎ½τ~• οΫ9gε§WΠ.YηηdΗ>‘φέϊΚ)=Mο0φB 4a§Σd@@@@@@@@’ Π\έL#Θ_ΪΝHŸσfx Έrασ2ζΈ9hΜ.Y:φ$ΉξΉΨ’z\ΉPs\μΚ&ώΙm_©93Ν|ώ&nΕ#SΝ9ε€0@@@@@@@@B#@ 94]AE@ H vΛ"ιsΞtoΣδ%ΟΛ¨žΩš·―ό©œ9ρqt₯gI_yK:_|»\υ½ζ‘Ωm_Εδ%ςਞ~½jkwIm­ώΨV:tΘέΜΤώ x‚@ž hΞ³£Ί € € € € € € € €€)@ 9M¨Τ»ΥHMΩ«€DJRοΜ€¨ρ.(½€ZθŠ2η\-tώz!7π››@s­,:·L―Œœΰό—ΛΤAέSφGSνΰΆ/6ΠμΦ³‡,|αQ9ŽLsSuε扁ζ<ι(ͺ‰ € € € € € € € €@#ς.Π\UU•v5ŒYVVΦ,γ—Ά“ Š ˜³A–μ‘F«eγκυR%GΘ©ύ{4KΣ¨T³μR½u£¬ίhZήοTιQΦ²aΩfip'©©\ ₯½ΗzGΞΩ°SFφhn§Jή·~ρΕήϊΧΏΔώwδ‘G₯ F@@@@@@@@ ίή~ϋmiέΊ΅΄Ϊ»wo]ΨSSΉΨ„ϊθ#/΄šI{8ΰιΤ©S&‡rLΘ4ΠlCΝ_~ω₯Ψ0³>~ώωηB 9dFu@@@@@@@@HS@͚υj΅wοήΊ4 ΥnΡΰη`3σ’³1WKεΖw€ͺΊΪkCΗ²RΡ£¬ΑφΤTUΚλ•UβQQzTTHYBΧ ¦Ξ1ΑΤ‘=€ΊͺZjk6Κε½yζ+7ΘΘ \6ζHˆ·ΖμS#ΆD::©ήκͺ*©55:Έ¬LJLπwγ:zŽΤ6rnSDc–κϊϊ›3IIΗ29ϊθ†CΔιΆ·ͺκSb[)3aμͺʍRiΪ+{H£ΫJUM­T.Έ\M6Qξ3dΓ}#₯£i”ξ«KρΤ§ctvζšj©ϊΔμΤφ`)3ZuΖ]­wEEθΎήΪθ?ώωΝͺŽe¦O;šsTΙ'΅‘ϊEχ xwήκ­e£ [λ’ΧΗΡζϊ°έccκΤ―:‰ι΅Κ―›kΝk©”υ¨0Αu[’TƒjYς£ήrΕΚ΄RξYaϊΎ$ώΚΕRΪ{΄Wω›φΚ°²Έk‘_Πuθνξύ£&[MŸΨ~oΘOˆ1μj »~"“Ϊυ3ytμ Ν¦ήί1ats9ΝρΞ™ι?»Φί*']™YΛ¨8z™:²―΄Ω½YξΊό yά™LΩ ‹l—iί>S±'>ωbΉχ²ARΪv·,›v‘Μσ“ΛΛΣ―\%:§ρν›ε­;ΜφŸΘ#š‚."Ώ»ύ|iΏoŸμks˜τΥY—k7›ΰσy~πΉβό)2yδ)Ήm­¬ŸwL|Δ\!χ> τ­Ÿ:gζQ‡Ιζυ¦rmvΘy#&Φ·‡Lωέ5Σδ²ΫΦCzvΆΣNΫΖώγ‡~(O>ω€`mLkΫ΄i#gœq†rΘ!9Œ}C*hvCΝ‡~xHkN΅@@@@@@@@@ !wί}WφίΒ4Wš-½‡NN΄0MΦάw΅hΦ8f©”Ωc{‹frγ—iσΧΘΥΓ*œΥqζσjε„εegιŒ5²w|…™w ¬Ž5«˜™₯—Ef–6θ!ζ8“o1N,Ό3ςά?XdΪMrυΐΚ$O«7ΚΝcO”©υŸ`κ?=¦ώ¦ŒF΄7ZwSϋΑδ‰ΗΌ‹”Ο‘5γΛ‰cλŽ©ZΉiηZΣΞYpB©Œ58ε³6ΘΪ1‘Y‰+ ‘ήήq#dΞ,‘±W,Œ9Ϊ€ΘšνwΗφ“™ExφpΣGq§0b°<±0π ™±έ‚£η-— γΚδ–;γ “ ²fΛx©ΌyˆŒΎ3ΎGΘ ‹d`hPYΛNv­ ˜ΆTξ»z ˜Έ΅oΰΦ%ς|–μά;Ζ 4d)ⱄλiΞšν‘ΌSHuε*Ϋ{¨’wV›§dώšϋdXό…^³ΥφJ0,/yΉΎΉs6μ”‘^«δζvέeͺ<ΐΜΌ½,nζνΨ¦ωΣ.YtξI2]ΓΕf9λϊ%rΣО‘Ό·Λ­ηž)vςf7ΠΌ}εOεΜ‰{{υ8–<8υ{&bo—]²tμIr]dΒdΉςήηeŒM›Ψψ ϋΘušKΈ^^xp¨sœζ™ηJŸσn‹tΦ,yε¦οΩB½Η?όίεŠe‘”υδ…ΟΛ¨γ"αβάšmϋkeεΨ>2ΡkC…,yαA/ΠS™"ϋ‘±‘fΒΜ…wΔšν,Ν6Τά₯K—Βk4-B@@@@@@@@ ΆmΫ&­[·.μ@sΥͺ)}θ-~wŽ˜0A:ΎΎJξ|ΜT›°μ"',»U¦˜Ωiύ#Œ &Ίκ–;ύPι€YkdΩjŽ 4™2d’ΌnrΩ°―”ΛΰerφτϋΌjπΜ•ri»ήβFy˜`sΩ'«e‘_W‘Om—ρύβΨ~σΜ“j™{BgΉΒ6OλorΓ·ά-yάΓ›dζΩ6έΈφFλξžΣ<<_^ωŽόηάuRVυ˜©}ΙΜ†<’~6δσεO―L3GrΜR»e‘τ9gΊ·.hvƒΠ=ΜLɏϊ3%ϋo_)ί>32ΓqΙ εΡQΗΥorΝ=¦Θ  4KνΩόΦoίφ‡υ”ψɐƒλ#f?x-šmΏΎώϋ²zυκ”35fΆb…υhΝϊ¨af7Π¬‘ζΓ;¬°Lk@@@@@@@@(χή{―ΐgh^-'tTNg‚Λ3ύΰςΦΥ³₯Χ ϊY›Η™ ιΜώ^·―›}‚œ^Ÿ”gf3žig3Ž›Νvι–½2ΠK²ΖšmΔ4ΦF«ƒeΓΞE™δ7ΊΏ†aηox\†υˆ—«Φ-ξ§\–&LΊέ„I“Fš·v½.πφ`ftžngt6³0Oκά[ξΤ-N ΅±νΦ] !+7Μ”ώυυΤ5Ίl5ε^P63ωξ53ωF—`«˜`ρΰY²ιΎ1Υ›ψΈΖ„O“‘·hΌΨύU…Y_½nΆt>=wε–Η§Ÿ]οQ%s‡t—+κ'ZŽwΦ#ςΜ=οΰY+εΎ1ύλCΊ¦œα¦›0C6,_ίO"λζ—Σλ7ϊ³@›Y±‡tŸa{€iΓ’hVΟώ‘ ς¦ϋ.—•ΫΧJϊΞ[<Ό]BΈ[k–`Όεvι_ζHεŠ)ϋ‚Hά>ΪΎjπξ\π6ΧΞsνΤ—kΆ–α½ΥΓ'˜φt/€έ ‘Σφθ9t"οΥ²j}•”υ˜ΠηρΆιό솃{\iBΗclθ8z΄»hέl‚ΠηΥ‘E&ΟΊWΊ΅­€Οjί’[―˜!:ωsΕ”%ςΰπžυΫSšλχ‡]Ϋ·Θϊλε­ΝοΙni/νΫ‹μ~λI™·L§w6η]bfhξΩΑ{N Ωch–R…š 37K7΄ΘIά@³ 5kΩ›?ϋ쳩'E@@@@@@@@μ<πΐΒ4W­˜$έ/π"Ό2Σ^f'%w[7{ˆ /kϊΥ‹·Κ$3;³wĈ‡eοέgΗ W―3‘ΥΣ½pht†αΰI₯Κ₯₯‘—έP¨ ¬ΪσκΪh y€™½xΩHŒΦmfλ‚α{¬&lcC±ήF矚ΚRΪ;~ž΅f§™‘7„Υ]ͺVΟ•)½.,ΣΖkx·ρνΦέΜmfόοΟψ­„6ζ&Π­A°•ΏΏ™%ψ©Λ€_τceΫc­’eˆŒ“M{gJL·Φ˜`qi$Xο­aδYτΌ¦μ½&Xξμ=―HΌ£˜s 7ηΠή°η¨Zmf€Aγ ώ©”αfφmέΔό rχ0=S΄ΡkΙ¬Φ-•‹MŽφž'œ[ͺLˆ½{$Δ>bώ&S~ŒHLΊ‡tt‚Β‘c’AΫtΫ+NΨ6Y=’ξ 4'φc’UΤ{ΐŒ5²l|E€)ώΏQΗdυ³»ϊυτνv‹*ŽΞ ݚxŽhY&½t₯έ6Ί·Θ'ςΨ€ δN3Ρt΄o£νˆ‹ms40--ράΡύ˜Y¬—y³XGχΧgfvn¨Φ ώ`¨^dΟ6М­aμyχ“h–³~'―άtJBξ>~€ΨΜΠh.5ΗνL8Φ_Q1Εš‡§hή"?ύφ9ςΈp© ΉxŒœσPΡ°μξ·VΚu·EΆϊυ1ϋ2C³ΦlO4ΤότΣO{αV=ιώϋο/”C9€Ωκΐ‰š_@CΜξ:;³ύoχξέš›ΏK8# € € € € € € € €Y h Ή}ϋφ…h6ΡKKe΄†e†lί;>1Πμ̊¬αΧσd…?3ξ4hΎ: ΠμWύΩ‡“Sƒ§ΆΗ’T7ΐέ?>ΰκη•Su«Φ-ξ§΅§σΛOι?/+Κ"E:αδtΫŠ@s}Ώ–›@σΪf4oΨifoŽ ƒGϋΚφΕκ)'Θ [Lb9ŝ};Ωuγ†©Σ 4ϋΧ€™ϊ©kcfΈŽT'ώ\Ρ@sΆ†)šΫΰf7¬\1e‰<8ΌgΒώξ>~€Ψš/434{(—N–ηŸ%ŽLΆ’αš·―όΉœ9q™wpιeΕ ƒbΛή²TΎ}ΞuήvΏ>ζ'ΝΙΌ›vύ»οΎ+Ο>ϋ¬w#;γŒ3δ«_ύjӞ[\@ΓΜΊΨΩ™mΈYC͟|ς ζο!*€ € € € € € € € €@γ4Π|πΑr YdΥ€d¨N‹›,ΠlBΒΓKO”ΗΜ^0΅γ_€]χ‘žδ hh^0\z5G ˜#;—lΎšMψzΈ™eΧ―klΒ6±χkͺeέ_VɊUKd՝‰΅χπ™yv‘ͺUno(ΝΓMPέ@dƍέ`y„28tn™Ν«&΅3ךn ¦υΟ‹TWWIׁW˘ώ(›ώ¨_’ηN/Π\΅jŠtz‹9Ί@σcφ„^ΆdΩΘpš₯φ%LQLΎ“ΗΔ†‡M‹Ν²CnύχΣdž7)s…άϋόƒ7νDsÁζΝ‹.”σ¦kTΊΤ”ϋLBΉ΅›>ηΝπz*Y yΚςdxχ˜)Ί“΄#Ά}“M¨{” uΧΚ’ ϋˆW©%/<(=c‹τκΐ?"j.))!Μ\Dƒ 1Η?~όρΗš‹θ: © € € € € € € € €…! ζN:I«V­€Υή½{#SζYΫ’ΑΟΔ@ͺ6Ε¬–ϐ-kΗKd^βh#k6Ξ•―0+Κeε–΅Ώ,žΆΜΠάΏctgοY,0ΑΠ±&Z>m₯¬½ΊΏY›,˜ ½Ξ7³?sΘΑυŽξ?xώY4,pΥSG Ήz•«§Fjjτi‰ ωEΧWm\%S.* ½dσ4Ω²χjγΡψφ¦Sί}π|ΩΉh˜©‰]‚­όύ%±£η³Ϋ’e”O0}0]ϋΐ]’Žvφdw«ϋΌqη9R.5αrό۞Γ/«άέΧjΠ=ΥmG|GΫ-?ZZbϋ’ϋ›λx»ΉŽ.ۍ2ΔχΝe+ΣVn1ΧυΑ²Ψ†Βύλ8zσNBϋά­Ή{ΎK{’L―Œ”8δΖ?Ι ƒ:;Εo—Ήηž)·ΥowΔλo=W.šWΏα¬λεω›†Ζ…‘wɟž-·ΚUς¨Ωv¨_jÁζ-&Π|N$E,ίϋ΄\Υ7z€I%Λ΄8Gρ‚Τ"“—Ό £κSΖ[–Ž•s{Ξ;ΛΙS–Λœαέύ3Š˜ΊŒ=Iκ7›γž7ΗEΨn`;>ΠΌrl™θI ΩΑδ)ήμΜΚΰšυη;whV@@@@@@@@ςH@Ν₯₯₯^ 6Π\΅ΪΜ\;Hg5s4?ef\ξη&=M τR3k­¦R5H»w‘τ*™»xG”Ο’νkΗΔΞ΄[ΉXΪυ­H4„κSΝμ·‹FΦ‘kLXΈ42£rόΉ£TΥ£!3ΦΘ²ρΊ_VO9Aέ’iδΑ²fη"©H’˜­\0ΔΜ νEWe» -»-œέNzOΦ"˜2–™2ίήhέƒΒΆ‘κV.6³XG¦P6†γ:[ωaΰ΄Ν"«o6SΥb€<΅}™ΔtλΦΧ^ElΨ8R«Δ{ήh ΡΎ²η¨Z1IΊ_ΰMΡp­™@zΥ:ωKUWXacυQ‹ςOΙΪρύόβ6N<·T­63mςŽ`ΚZζ”₯+£ν±αϊθυd―τΟGΙτΩυ·ΚIΝσ?ωΚeκΠ“MΈRζMΌH©Ο,λnXv­—sOΊΘό_SΏτ8_~wγΕRqh[ΩQΉ^ζύf’,«ίΨcςryt” §4―ό©œ3ρq[ͺ\|ύ,9₯[©}ο%ΉuβmΡσ™=*¦˜•‡χŒμ»}₯|ϋΜ‰ώqη_―\άχ0ΩύήFyΰVSτΉ~qΫ‘<Π,↫+œ%ןΡYφΙa³{$ mΛγbΠ0³.ξγŽ;4γΕ@›@@@@@@@@ςZ@Ν‡zhaΟΠ,n@ΩΜΒ<η©E2²_WΣqΥ²κζΙΠ©ό5±ΨY&@<& ZeBΠC½H³Θˆ9²ιφ‘Υ„‡«+Wȏz_ΰΝr*ŽS»fΩ*“ΪυΈ–OX*O?UJj"³&G«Αf­Σ„‡7Θτ³5]#λ\.§υ’Χ¦NKeοέu—ΐŠ֎˜³RfžΧ_:šϊΧTm”Ή—Ÿ(“ΣΓμ ΝF¨‘νΦ=y y« χφςΒ½εςπ†Ηεlτ¦‹ΆŠn]Hσ’ηsΆm5Ας^£#;Θ8yjΛ4ιWVbϊh•飑υ}”Ό~υ:A_§μϊη΅:αshvιΊΫ¬•dLHm]·B†Ÿ>Z4‚=nι™90j^1©D2ΠdΓΟ‹^™%Ζ)zξ 6šΝq«MYƒ"yjsΩ>%·μηΝ]Ήκfι=tͺΩΓ,ζΘφe##sΧ°|‚¬Yφs©HaΈqρ™²`£τ3SφΝH±Ωύ[+žv‘\α&—“θu—]/-’“FLO²wύκ“ειGG₯=C³ΘvΉυΫgJ4bΌψψ•—^ΨGs‚ΛɎtΫΡP 9>μ­ε•^ΉPžs\²’Y@Q Ψ0³6ZŸψα‡š‹κ  ± € € € € € € € €…  ζ―~υ«…hN6k± μΈς²ΕΜ"lηΝΥρŠI₯υAΣΐ#dΖJ3Ϋs;χqpHW\q© ¬Φηυηrœ^k‚ΣΡ:Ή³-GƒͺΊoπR.+·¬•ώΡΚμV%³Oθ.“5=›dqC΅moMε)ν=Φ+9ζ;Q•™%Ή{d–δΘ; p°Uε3£σXMZ»‘#]« ffκ&­Kt–ζΘΟA&­_ύΞξyέ²u³{ήΔk+ΪWξ9ͺ7.–Ξ'Ž/=θaš ._ν·‘jΕ₯fVgχ™#;׎4ΩθŒ™Ώέs› Λ$3#x}¦9ΰδd₯™ΝΪΏlΝ«g‘A“#‘ώ€ΌUΡsΈ³yGκYίΙmΔϊZyiι qέ#±ΗT\,Ώ»μ0Ήυ'Σ½™‘§,y^†χŒ›xΧf™;νηrΫγώ\Νυeτσ§\%W?Ebpfh˜"/<8\ΪƞU€v»,1Q{$6άγ¬)2ux™vΡΔΘLΝgέ(/ά4Θ9~‡¬œvΉLŒ;N*Ξ—λ‡ΤΚuΣ—ygrΫαšΟΊqΉά4ΘΞ$­»ΦΚ³·^$?™­GΙKΜlΣ=γkΜΟ΅€ 6πΑš‹ϊJ ρ € € € € € € € €ω( ζ―}νk^Υ[νέ»7ςένyΦ’hθtœlΨ;St>άΐ₯z£Μ{©™86ε;nΦJΉvŒ™Α8ࠍ+fΛ₯LφfΥυ7˜ Kg^-{ΈGDCΊ#ζo»‡9΅¨Z-Γ»oRdSΘ3ƒσ²‘=œ°μp½»>ΰ ΙJω8™P±ZnYθΤΧ¬{jΩL3±_›žTɊΩ7Λ“γβ­εƒeώΜ™2¬ΏΞ»€έήκu2€σιή,Θσ7μ”a6a[œ¬›{©œ~… λ&š]«κu³₯σι“Mβ;>\n 5†'Γ—Ε΅ŠœLg >qtύlΪήͺ2cΞ@Y06oΡ0n\εκτΟPvτΪ2ηέkϊ(¦ˆh_=Όigdj»έΜ„}σε—ΚΤΈkmπ„ωrϋτaNp^¨’ΉΓ»ΛΡ Dvš”K4’›M`}ͺΉ4ύ΅ί§˜~·ξ‘J 7Gf^;Rb.Ϋϊϊ&–Λ¬ωγeΥθ±ήu;ί΄o˜Ξ°mf5_<Ό³ŒΦΊŽ3³„ΟX_BjwɎ»MŒW€mϋφrh‡Ψ(rCgͺυŽέ'νΫ·‘}fΗΖ›΄\Ώ>mMΉν₯C‡„θsΰ‘‘ΊμφΆ5ΆAΦξΪ!;vΧJΫΆν₯ύ‘œuΠή¬C xͺͺͺ4oχΣr@@@@@@@@<Π@sYY$›·ζΖΪΧΤTKMU";¦3ΏlTW{˜C:JZ‡TͺΊΊ:sFC²ƒηo’EΓΊJ9.rφtλ›xrΏŒS†ω―α%7νυΟaΌ•―ΔΨ₯<΅PcŸDλ\ќ§Ϊ ;kZdʝ2²"U›{Ύ4χ―o»ΤšxξΑe ^;ΆΌϊ§Y|ƒ»™‹Ό:r‘›Λ֘4Έ³Ω؈ύkΜΎ%MΧ™©jΚv@ ©ζ€4l@@@@@@@@@ ΄EhmoxsΝf&ηEf&g–dffc3Kρ]ηΘ–E#Y«e™Ex¬7γρyjϋ2ιηN¦¬8Φ#€佁ζΌοB€ € € € € € € € P„šCΧιšΣξ’­‹₯]―Ρυ»—Λ„Yγ₯’€JŒ*OΨ΅3ž’΅γϋ₯]$;"€䷁ζόξ?j € € € € € € € PœšΓΦο5eHι‰^ ·|ΦY;¦"l5 U}ͺV/ξƒΖΦiπ΄₯rίΥ₯$p++@ Q€@s!φ*mB@@@@@@@(tΝ‘λαjΩΈz£T›z•”UHΏCWΓπU¨F*7“Χ+«€F+WR&ύϊI2’Μαλ+j„4­ζ¦υ₯t@@@@@@@@šB€@sS¨R& €΄ˆζaη€ € € € € € € € €d%@ 9+>F@0 hSoP@@@@@@@@ Мž{!€ €@hΞƒN’Š € € € € € € € €Δ hŽαG@Θ_ΝωΫwΤ@@@@@@@@ x4oίΣr@ N€@sΑu) B@@@@@@@(ΝEΠΙ4@b Π\,=M;@@@@@@@@ I€@s!υ&mA@ Θ4ω@σ@@@@@@@@ςR€@s^v•F p¦NZ8‘%#0mΪ΄‚iK±5„@s±υ8νE@@@@@@@(Ν…Π‹΄@<Ν\ € € € € € € € €䟁ζόλ3jŒ €I4'a5 € € € € € € € €! ΠβΞ‘j € Π8͍σbo@@@@@@@@Β @ 9 ½@@@ 'šsΒH! € € € € € € € €4«ζfεζd € Π”š›R—²@@@@@@@@hΝMγJ© € Πš[S"€ € € € € € € € ₯ζ,9@Β#@ 9<}AM@@@@@@@@HW€@sΊRμ‡ €‘ Πϊ.’‚ € € € € € € € €$hN a €䫁ζ|ν9κ € € € € € € € PΜš‹Ήχi; €&@ Ήΐ:”ζ € € € € € € € €…ζ’θf‰ €@qh.Ž~¦• € € € € € € € €…%@ Ή°ϊ“Φ € PΤš‹Ίϋi< € € € € € € € €@ž hΞӎ£Ϊ € (@ 9Ρ„5 € € € € € € € €„]€@sΨ{ˆϊ!€ €@Ϊa 4οΪ΅KκκκδΰƒN»ξμˆ € € € €@s μΫ·O>ϋμ3iΫΆ­”””4η©9 €€)ΐύ:M(vC@‚ Π\έH#@@@Βh~ϋν·₯[·nς΅―}M6oή,:u’s@@Όxα…δύχί—ώύϋK‡2ͺ{uu΅<χάs₯K9ξΈγ2*#Wι‡Ν>ψΰo\VZZš«b)@!π―ύKžyζΩoΏύδίύί½ΗFξο¦1†Ž—>ύτS)++“ƒ:Θ―c>=Ήζškdƌ2{φl7n\>UΊ"€ ΰ δjŒ‘Α™—^zIϊτι#‡~x‹κƏ1Έ_·hwpr@hfΝΝ Ξι@@ ιΒh~γ7δ裏&ΠάtέLΙ €­ΐ_|!ϊFέώϋο/­[·n‡šš9φΨceΛ–-Y[.\(#GŽ ŘȾρwΣM7ΙΥW_έ$nŠ €@> θ¬ϊMS:KoS-ϊ‘οcŽ9Ζ+~έΊu·oߌN–1ΖηŸ.ΗΌlάΈQ²iOF9^Η8ξ’o~φΩgRRR"|°·ΙΦSΠ7wοή-6lΪΪZiΣ¦7Λa²™œ΅=ϊUυuuur葇ʿύΫΏyΗιΈJΛjέΊ΅{zοΉξϋΓώP–-[&lΦP³»¨©†΅mϊ•κU^^36SW­·ΞΊ¨ρ‹«ηQ hΩ%“ϊΪczL§ΞρΗλ‹[·nυκ©}‘ύ•lΙO?ύT^}υUοΡrŽ:ꨄkĚ΄kΧΞ ¬»ηΣ~Χ~ΥώΠkS—ψuύλ_ε“O>½ώΊuλζ–oΏύΆ=τκΥK:uκδo’υΠΩ>νυΣ³gO―ν~οΌσŽ`κ;uόη?ι?cα(6ύέ«ΏϋυΓ?h^±b…τνΫWΪΆmλύŽΟεοp½ŸξΨ±Γ+[οΉvΡ:θλ%ٌ1βλΉmΫ6o<€χhύpΥρΗsŸΆηΦΗLξΩ:¦ϋŽŽu^zι₯˜ϋ™–™Ξύڎ!t|_V+½Oi?Ψϋ©–«K&υόoͺ€TΊγG[Ίξ―cQ½?λxRΎώυ―ΫΝ zέιΨS½.τώ4K8 €‘H5Ζ°WκkϋοΏΏθ·DθύOοΩξ߁ZNͺΏƒΖΊNΟ‘KΊ―?θώ_~ω₯χ†Ύ–‘‹­§ύϋΧΎή’Ϋτυύϋ:Ω’χ8“θrΔGxχD ι=Rλ΄$cpΏb €ͺ€h–½{χΦρ\\\\\\ωz ˜™~Μ{U-»ΌώϊλufΰXχ΅―}­Ξ„|ΌΚ˜ΠPωzsoύgœα=ΖοΣ²΅ζμ € fσΟ?ί?θΒώgu&TgήPσΧ 6Μ~κ©§zΫMX·nϊτιώz{Ό>Ž?ΎΞ„qόζ»γ–uλΦyλέu7ήxc :%”uηwϊeθ“ xϋΨ:θ:·žwέu—7^rλ’Ος—ΏθώbήL¬»ωζ›Ξ7pΰ@|uχέwϋϋ»OLxΫ;Ξ„­ύq™έn‚ΤώρnΜ,LuΟ>ϋ¬έ­ξK/υΚPkutσΖ¦_―'žxΒΫ”M}έ²ƒž§[g{¬yγ·Nάφιsmγ“O>iwσοΏώ„}u½Fτ°‹½oΊι&»Κ κw»NΛϊΑ~ΰŸΓ―Žƒ ςΧ»υ;wnšΊ‹™ε«ΞΜXΈΏ^WΊΏ ’՝|ςΙή>G}tBί©₯= η»Εσ(ύέ―]Ψί‡ξγυΧ_ο9δςwΈ${½$›1†­§ήσoΏύφ„6ιz(ŠιΫlξΩζ[Όsθ=Qο9ξ’ΞύZΗ^:ΆPsσA5χpοω3Ο<γ·aϋφνήΊlκ›pgΕχ{η23M;kλΌϋιwάαΧΓ½>&Ož\§χcwΡq’φ‘»Ÿ}n>”—°Ζ}»Ÿ>κυαŽΕάsπ@ ?cΨΏ+υχΎ}οDοkΦ¬ρ٘ΏƒΖv–™ξλΆNφoU­ˆ]χ£ύ¨Nοgξ=KŸψΗ?NΈΗιϋk#GŽLΨWΛ°Η'ϋ;4Ωƒϋu~\ϋΤ@r# Ή›Y"ΠL ΫΏμEΑ#‘F|ΊΒhΦ7ͺ***ό«μ‹Vξ›xΉΪQ  €’ΐ―ύλ: *λΨΑŽ#τηίώφ·^sνͺμ6ϋ¨oΌiΰω²Λ.σλέ»wέ΄iΣb$Χ]wΟζŽ[Μ Iήzw-[ΛΉψβ‹ύru½ϋ†άβΕ‹½mZτ ͺηΉηžrΥΐ‘™eΡ―ΎρhΟ©fV"?¨jΧΗpμΑ·άr‹wμΤ©Sν*οΡ|SFL™'N¬›0a‚ΏNΏfv_oίηž{Ξ[―λβǚχηmΣ~Ρ7[uΙ¦Ύ^IώiL΅}Ω₯ΤI―Ίκ*ΏΊΞΎQ¬ϋ?ςΘ#ώ6m«†m Xχ5³[ϋ‘ΰdo€j9AύnΧΩώ²χάsO™©9‘žσ?γΧEχ]Ήr₯ν-抿žφ³ŸΕόΏ‘α+]μΑZ†™‰Ϋ[g™1c†w}γάΜLjWσˆ•€ήίυ>mƒ:ϊϋRοϊ;ί~ΐ(—ΏΓν8ΐ}-$WcŒ zκ8Ε H]pΑώ˜D;:Σ{ΆŽkN;ν4ο>βή£΄ΜΖά―o»ν6― ύΰ™ERχ kh_θXN—LλλšδI²ϋϊ/~ρ ―Zν³_ώς—1χlwl EΟ›7/fmƒλ―²cB½»γZ ƒΩ‘ιωτ?σIjΜj@° €3Ζ°χϋ{ί>κλ ύ;1hŒaΧΩrυ1ΥλΆNξk v-Gο_—\r‰ΟΣυχή{―ί%z―3ί|αoΧύυžθήχτϋz‹ yΠΓΦΓ­›ΛύΪδ9 €ЁfBΜ„˜ΉΈΈΈΈ ζˆ™΄Δ€ΝΎP¦/PΩšγί 3_ακΝ„?Λ_KΤ—s"€ €@ώΨ7°βgCΆγ}SLΑ:㝎34cΎ–ά#Ν}γKƒ‘τΥc’[μlρc™?ύιO>šžΫΎ1η–oƒEv±α•ψzΎρΖ~9=φ˜_O{^KΩ²O8α„:σuδώώ†ΥΊλξyνn Χ Zλv;»―–νΞΦΤ·νχέwŸ-ή›΅ΠΊ5 £K6υυ Nς€1uΦ"άPπγ?ξ—ϊΑψ3lΫΎΡ™œ­₯Ξ ¬oΫεα‡φ·Ω~±Χa{PΏΫuz βλL“vΌjΥ*Ώ|žΣskl ΪΦSΧλLΨΆτ·Χ–Ξyν΅ΧzΫμυ¬!s{ύθυb ΩYΖƒfΕ΄ϋρˆ‹€ώ^΄Β~ρΕcšΛίαv`Oλ‰άϋ¬ώ~ΟtŒ_Οκκj―:ήΡίυZΆ{ήlξΩΆ:ζrο™zΒΖά―m9Z·W^yΕ«―ώγŽa–,Yβ­Ο¦Ύ~ΑIžέΧϊΧΏϊχ[έngcŽŸ%ϊΡGυJΥνφήͺ³WΪϋs²ρ¦ύP˜θ7mΪδΧLŸΫϋΌ;;¦ΏO@ςJ ‘1†½θο}ύΫN?Ψ\[[λ΅―±'Ϊ{ͺ{―·λ΄|½g§zύAOlλδώ­kΧi9ϊνQφ§υ΅ί4€³Ϊ ΉχPύπ΄m“ή+GείημίΧn‡Ϊ:1l=άΊΉηνά―]Mž#€ €@> h&ΔV0!Ά|šA”Ί2γ-ΧΧΧ@Σ\ωhΦηX@@L‚ήΐrμ›^ϊ›~EΉ»h€υ¨[΄h‘q·mήΌ9!ΰγ‹μlξΊψ±ŒUl°Χ}cΝ‹ά0jCυtΓ;φΌξ »ρ³τιy훁ξymϋž~ϊi―mŠ΅αY»MΓR=τPΜ Εv[P[μlΎξ›”n°hυκΥήαΩΤמ?ΩccκμφWόμΤZΎ}sXCDڎeΛ–yVϊ³†›έEί¬΅%,JvκqAύnΧι›Λn(]χΧπ½φ…~ΰOϋΤ]|πA―^ξ5dg¬ κΧχίίΫ_?ΠΩ§΅<;›σ©§žκ_ξWΗ‡έέσσ(½Ϋ@³½ΫΆηςwΈΈa#χž•Ν£‘zΪίϋξy³ΉgΫqAΠ=Ά1χk½ΗΪ™žυ[%μbΓIZ_Ηι’UΤΐ–@IDATM}mΉΙƒξλvΆGaY_Γt½ΏΪ™'ν=ΪΗiΨΛ]τΓuυ_UwυΥWΧνή½ΫΫ΄pαBοžνΆΡ£ά»ςΚ+λτΓn, €ω-ΠΠΓήάΏΥlkϋwbΠΓ zΔ½oΉc['χ5».¨žφ~ζ~3•έ?θΫ€τƒPφΫ άσΪv74Ζ°εΊuγ~mεxD@BpΝ­τ… 3¨cA@ςRΐ$€[·n-ZwσI1_*ζM1!!ιΤ©“˜OΖΛwΏϋ]1/Δ‰™NƌΣ’uδδ € Ÿ—_~ΉάqΗbήΐ’qγΖω°γ]aή“γ?ήίζ>Ρ±ˆn7³JΫΆmEΗNΧ_}q‹-+ΥX&¨^fFA1³ρŠ ΊΘ₯KeΏύφ“†κιžΓžΧ–aή8”'Ÿ|RZ·nν6G‚Ξ«;˜οΔ|¬˜―>3«²όηώgΜqφu0adyηwμ*13ΛsΟ=c¬cΊcŽ9FLΰWΜ ŠrΔGˆ™)X(ζΝH1‘Xo[¦υυOžΖ“tκdιmfˆ’·ήzΛ[uΤQGyύcϋΚ¦dύχww3‹΅˜7|₯cǎςυ―=©»d ά~·λάρqΜ Μf6+Ο]}MPJZ΅j%ϋΫίΌώsΛJΦηΆ<σ¦΅w|ηΝ½>11a1oσ›oΎιυל9sδ'?ω‰7fΧσpΐφp@’hθΎ‘Λίαvΰήάs½^τ{ίΦΙ½?ΨunΩΆ3ƒΞkχoμΓΌ‡&ύϊυ3“°7&8φΨcνibΣΉ_λζΓ;2bĈ˜{/ωK1ί΄ ζCVήkHzOΜ΄Ύ1•JςC±]gΒΙ2aΒ„„#—/_.&Τ,fIο΅.#\pΑςΘ#xϋŽ=Z.Ίθ"―]:vˆ_τώ[^^ξ­Φ>3av9ρΔ½ΧτJJJβwηg@<pοσφο|Ϋ{―1a`1rυ^3°ΫμcΊ'έλν:-+ώάΙκeλδΎζbΧΥΣޟέ1‰ΎVsΧ]wyχ6σΝ Ά)ήc²σκΖTc [ ΊqΏŽaζ@(}’¬¬, 4σ\\\\\\ωz δΓ Νξ'θ ν“r΄@šV hF=£;σy£.‘6lπg2―ω³ΨΪη&HβΝΤ«Ί3%Ϊ²άuAc™ zΩ™Ν{ώW²6TOχφΌv6B Ι~}«ΫΈ σκveXΫ¦νY{㝱م¬‡>ΊνΤύuF`]ύχ{ΕΩs»³3fZίψϊύܘ:7δTΆm‹;«TΠ~vέί5²Ϋ‚ϊέs―3»Ώ>šyƒ}a―!χ :·[¦}ξΞΌe‚rή¬ΝA³aΪύyDŠQΐύύjοΑΦ!WΏΓ΅<{rοξΉƒ~·έslμύAΛΆλά²u½.AηΝτžmΏ"h–F=WcξΧΊΏ³θCΏbίΎ}ώlΩώσŸuoΙ΄Ύφψ†γέ>Ρ{gΠbBbώXKΏνAm‹ιΫSυξέΫ›a:ώ›ζΝxΧocΨΊukΠiY‡ gξ=%~Œaο?ξύάm^Ί'κ1Aχz»NοIρηNV/['wLbΧΥӎ?άm'Nτξo7άpƒΫοy²σκΖTc [[7·,ξΧ Τ¬@@<pghΦO~hΖ€k€k€k€k€k€k o―Νy>2₯ϊ € Π @όXvη†ή¨sΏΤΜ0\gf-{ι₯—κΜ'άλΜ,H aχM1ϋ¦Ÿ»ΞΎyfΟ­Aυ zc―‘zΊη°η΅e46Πόΐxν23zV·ϊόή{ου4fΑ: i0GΗ’½zυςΆΕ·Σ£_±nf]τβfvfΏψLλλΠΐ{~}36UΝŒΚ~ϋ¬eEΧ™Y½ύhzΣΤΈoθΪuA!3ύ*azκΫ·―x2³^ΦιΧΣ_vΩeή6[–,:w²6Ϊ―αΥr΄νω48Ζ‚ όa&λ’«ίαZžΈχχώοΥcc4TΟ σΪύ3ΖΠ@ήƒυ>bfVΦκ%,Ή_λΑn™zoΣ{ –of>Σ1œ]2©―=6ΥcΌ±†ͺνΉ’έom=έΎ΄ηY³fMέ”)SκN8αž«m?~|ΒΤ>ψΰƒΊ ԍ5*f_έ_Η«, €ω-ΰήηγ6΅χϋχžΫΖό¨Ηέλν:½§ΔŸ;Y½lά1‰]TO{v·Ωύυ«_ΉMςž';―;H6Ζ°εΪΊqΏNΰe €€ΎŽosΜš °ωƒ½(x$δΟ5ΐ5ΐ5ΐ5OΧ€lZz±/”ΉoκΈ/TΩœZΊžœ@ςOΐΎ.±γ 7κV­ZεDtl?VΠ¨“lάbίτK5–±υrΗ9Aoμ5TOχφΌζkΛ½ϊ}τΡތ…ρ=t^7τΊzυκψCΌr48«νvgWΆ;꬀ΊΝm‹ns­fΜX―LκkΟΫΠ£ΎQ٘:»–Aj€3jπYί8΅}•lΆI ιΎ;wξτͺiƒΖA~vIχ ][Ύ{ΩφΪ°±§΄ξςΗ?ώΡsvΛ²}nΎRΧέΥΎ}ϋv―Ÿ~ϊ©ΏξΕ_τΚΡ~4hχ\Ο§, €±ζ^x!†$—ΏΓν8ΐ½Έχ¬ψ{―VΔώήw·Ω:Ήχ»Ξ-Ϋ6$θΌ™ά³ν†τzoŒ_{ΏΆΗΫϋέ™gžYgguΤρˆ»dR_χψ†žΫuAχz-Λ·5΄¬}¨ί€‘ψάεwή©»ςΚ+½{―~°NΦeΧ]ήΎ555ώξϊ|εΚ•ήΈ4Ω8Νί™' €y!ΰήηγΗφ^γήΟm£ϋwbΠ½ήΣ{Š}Α–οΦΛέfλδŽ;μΊ zΪρ‡»Νώ½/Χs';oͺ1†kλT7ξΧ*Δ‚ €…$@ ™3!f‚ΉβC:-1h³/”Ήo’Ή/TΉ/8΅Dύ8' €δ―€}c,ώ«Kνψ#荺… z!’ξέ»ΧΉ!OUXΊt©·-ΩΈΕΎ±—j,τΖZΠ{ ΥΣ=‡=ο³Ο>λΥOΫε~νΊΦ]χ·!_w|eΓ«AνΥγφμΩγΟΒ|ύχλ*qˌkπχάsΟυλ£urΟ«…dR_δ ςΏωΑή§άϋ˜ž'“ϊΖΧ/ΩΟAΖφ~}υώϋοΗκφ™½ίΏφΪkώι½χή‹ΩσζΝώ6½YντήmΥwό’Αnέ¦ekPš@ ά{cόΓήμ½ΔΆ2“ΏƒξυvήSβο«ξ½ΜέfλδŽIμΊψzj}νψΓέvΛ-·xχ± {θ[ζ›²‚ξυ©Ζz.[·nά―U†@ Q€@3!Ά‚ ±εΣ ’Τ•oΉΈΈšζ Π\ˆΓUΪ„ €V@ΏΎ[ίό°ξŽ;ό―"o荺§Ÿ~ΪΓLίXϋπΓ½™vνfZžΎΡ¦aP]‚ήΨsΧΉožΩz½±τΖ^CυtΟaίPΤ`nEE…WΥOΓ<ΊhπgδΘ‘~»ά:]sΝ5ήzmkΠβΞ଑X @λl‚―ΌςJέΐύ2υΑψeΩ²eώvuΣφΈK&υuOφ<“:Ϋ™’΅žϊU·6ΜΎvνZ?4uα…z‘"Χ^―ύz_]Τeϊτι~›_}υUo½λππΓ{3kŸΈΧ”ϋ†½΄lέΟ]μ°ΪΏ=φXέΗμΝmϋQλοΞύόΓ―Ο~πƒΊͺͺ*―8qΪΞΎ¬ύjΫkΟuΧ]wωΗi™oΎω¦έΔ# Pτ:3ύΠ€I“Όί‘»wοφ\rω;܎άϋ{rοηΆSc4TΟ σ6φžν~XHCΉAK&χk[Žύή£‚>”ΥΨϊΪrΣy 2ΦP²ΦΕΦGοΏΊθΜΤ\pΏΝ~„ϋ‘"ύ’ 5ςΙ'u7έt“·ΏήλνλvΆ½ΊN?X₯v^ΦVυκΥΛΫ?(μœN{Ψ@ < 1μύΗύΫΡΦΌ±'έλν:½—ΩΧlωξψΓέfλδŽIμΊ zΪρ‡»Ν -λ=έήC΅>ϊ³½ΏΪσ¦3ΖΠzΫzΈuγ~m{”G@(47ΠάJΓUfΕ‚ €δ₯€ 4H·nέZ΄ξoΌρ†˜―Eσ˜Yh€S§NbΖX―_?Ω΄i“˜œdάΈq-ZGNŽ €ω)`Ύ†[Ύύοϋ•7AOyκ©§DΗΗsŒ·ήΌ)&ΗΌΏyQΎϋέοŠ ©ϊλ‚žΨγάύνΊTcۘΐhΜ8gΙ’%2lΨ01o쉙 ZφΫo?ol”¬žξ9μy΅žΟ=χœœrΚ)AUφΧΩρ• Γzm7/v‰y³PΎυ­oωϋΈO΄>?όαέU ΟέzۍZ~Ϟ=Ε„yΌvύώχΏ—Φ­[ΫΝήccκs`Š[g3«•Œ=Zxΰΐ’u¬jΎςWLψΧΫζ:^MΆ˜0’\}υΥήfŠχΖΊΙφΥυκgBΥ²ώϋΛƒ>(#FŒˆΫcΝ›»IϋΙξ㎫uέΌyσd̘1vsΒγ“O>)§Ÿ~zΜzχ%x oε>iμύΪλή‡Ν‡²δͺ«²›όΗΖΤΧ?('—_~ΉάqΗ1γ8=Μ|€I†š΄σ!rν΅ΧϊΫo»νΆΐzΫΜΜΦrϋν·K«V­dΫΆm§OoLe·Η?VVVz――Ε―ηg@όcL˜0A.Ήδοo;χoGΫ2χο7».ώΡ½―1μύ_s_cП“½ώO4Α λiΝbΎu ζu-Φ[omcC‹­SΊcŒψΊΩ²Ή_[ @@ Μ‡Δ€¬¬,$3xcΆ^ ΈΈΈΈΈΈςφ°3½΄δ'Πμ'uf8;~MΪ¨Q£ΌOίσυΦ-Ω;œ@όΠٍ̛~ώŒ>捿Ί/ΎψΒ›uΩΞτσ·Ώύ-‘‘:+³Ξ–g^ύρ;α„Όρμq=τwœ;SΡίώwo]ͺ±Œy³.aœcg*Yό΄ŽΊh=μωβλ©3σ錻ZΗψm&xλgΫpσΝ7ϋ³IΪŠμΜΑκ’κ+ΚW¬XαΝLmΛΣG-η7ΏωW­η]»Όz»θlΊ― l»«cž§S_m―©{Cι ΘΪοΊ4ΆΞΪoσηΟχκλΆSgv²3»Χ±΄ zΗμoή$3α,w7οΉω ž?ƒ’-Ϋ¨λLˆέ;ώΗ?ώ±ίούλ_½u'Ÿ|²7x|a:#τi§s^­γ’E‹όu:ƒΆ»θŒφZ²ηΧ―¨Χ·ƒυΆ³ήύA»°(jαΟΌ«ΏWν½5—ΏΓ3y½$έ1FCυ|ύχ½{Ύϋ:νμtξΩΊ―QΨΊΨγƒ{ΏΦ2μψKg,6Aή b½uιΤW_‹2hjp|‘cΗά+ΣΞψ8wξά„σέ£νΨ@Ηρ‹Ά=ώώ¬moqˆ›ιlΟφάφ^&VχΪk―ΕΝΟ €y*lŒaΏEgκΤ©- Ί%ϋ;1hŒ‘ΙλφΎδήͺ§ύF,½wΩΧ=lcτoyχώ¦χO-Ku½ 4{»¦;Ζͺ›=Wχk«Γ# €δ£34›#  €†@fh. IZ €a0A1‘ιΠ‘ƒ”””€]UΠ˜‘8@9䐴kι΅­:²ΞŒl^|“vνΪyqΖbή@τfΌμ²Λdΐ€’³σκ EηœsNΚj›7Ε|zF– žN}uφdψipfB=‡ ΙΫoΏνχW&u6_a+:»΄ͺ]ͺkFχΥcΉNlŸhΩ₯₯₯ ±€άfΟ«υ;ψΰƒSξ―;θωuiΫΆmƒΗθL‡~Έηωκ«―zΟ½ω@ F@―κοtcθcΊK&ΏΓΣ-»)χKηž}α…ϊχα7ί|Σ»§ͺS&χλTeκφtκ«γ#NOYœξcPή·)€ΪYǞζΓAi ΄,wΜ™κZ1Ǟ={ΌΆ}ε+_‘ƒ:(Uu؎ ‡Ε4ΖΠq€~[‘ύ[\ΏΰΠCυ^°ίϊ΄vνZο›μk3ιŽ1κzξΧ ι° @ςIΐ‘Ή•ΞМO•§ € €€+@ ΩΥΰ9 € Ώύνoε—Ώό₯˜™εΘ#τ΄`Α1ί€αύόΜ3ΟHώύΕΜΐ(ϊήΡGνnό›ρIΊυ=逓ΔΜς,»wοn°vϊΖ§©4ΰΓ’Ήΐ/~ρ ™6mZΒWg^"G"€δ»@Ίχlc˜™ΔΜH,GuT‹5;έϊκ8θχΏ}Κ±ΝŒ’’c @ȍ€~ψΘ|S•hώίύ_οCΕZ²7³,Λο~χ;1³'ΛK/½$_ϊΧC1ΖΘMΛ)@ȝζάYR €΄°ζξN €δP ¦¦Fϊτι#›6mςJ½ζškδ˜cŽ‘₯K—ΚώπoέΙ'ŸμΝܘY$sXŘ’ς­Ύ1•/ΐjkk呇’εΛ—ϋΧ˟όgΡ™+Y@Š[ ίξΩωVίβΎΊh= €@1 θ7,uλΦΝ#Πo\Φκ·όϊΧΏφΒΛΊα†nk―½Ά˜™h; € Π ζy؈ €ω$@ 9Ÿz‹Ί"€ €©ΆmΫ&?ψΑΌ―Dί[ΧίύώΧΐΗoo‰Ÿσ­Ύ-aΤ\η|ν΅Χ€W―^ώιƏ/³fΝ’ύφΫΟ_Η@βΘ·{vΎΥ·x―,ZŽ PμΟ=χœœrΚ) ϊ TΧ]w7ƒsΰ¬D@Ν\ € P0š ¦+i € #πϊλ―{35οΪ΅Λ €~η;ί‘c=6fŸ0ύoυ “]κ²cΗΉηž{δ‹/ΎΎ}ϋΚόΗH«V­rU<ε €ˆ@Ύέ³σ­Ύr™Π @%°oί>οƒΩ[Άlύ¦₯Y.=όπΓU;#€ €Ε(h63—Τ#mF ˜tf’/Ώό²˜ h;8Gq„σSώ=%М}F@@@@@@@@ˆ 4οέ»—@3Χ €䭁ζΌν:*Ž € € € € € € € PΔš‹Έσi: €…&@ ΉΠz”φ € € € € € € € €ƒζbθeڈ €@‘h.’ަ™ € € € € € € € €%@ Ή Ί“Ζ € Pάš‹»i= € € € € € € € €@~ hΞΟ~£Φ €  @ 9…U € € € € € € € €„\€@sΘ;ˆκ!€ €@ϊšΣ·bO@@@@@@@@Β"@ 9,=A=@@ kΝYR € € € € € € € €Ν.@ ΉΩΙ9! €4•ζ¦’₯\@@@@@@@@šN€@sΣΩR2 €4³ζfηt € € € € € € € €δ@€@s)@Β!@ 9ύ@-@@@@@@@@hŒζΖh±/ €„Z€@s¨»‡Κ!€ € € € € € € € (@ 9…• € šσ±Χ¨3 € € € € € € € €@± h.φ+€φ#€ P@š ¨3i  € € € € € € € €@Ρh.𦑠€ΎζΒοcZˆ € € € € € € € Pxš ―Oi €E+@ Ήh»ž†#€ € € € € € € €䱁ζ<ξ<ͺŽ €±šc= α'¬~ώωηI›ͺU«€ΫΨ€ €@XΎυ­o…₯*Τ£^€1— €@!0ΖΘ}/ξΩ³Gή{ο½€wμΨQ>ωδ“€ΫΩ€ €@!0ΖΘ}/¦c|όρΗrΘ!‡δώΔ”ˆ €@H_„€#ς šσ “¨" €€'@ 9=§|Ϊ«‘°Ρk―½&}τ‘œrΚ)‘j’Φι₯—^ςκtI'IΫΆmCUΏΚΚJιΠ‘ƒ|γίU½΄2›7o–RωκWΏΚΊυμΩ3tυ²nΤ­ρ]£Χ[έ>όπCΩΉsg(λφώϋο{α0ΊmίΎ]>ύτS γ b[·n•.]Ί„²ONα‘jŒ‘γΚγ?^Ϊ·oͺFΏω曦M9όπΓCU/­ cŒΜΊ$¬χ#m u+¬>eŒ‘Y2ΖΘΜ-Ÿj(lτε—_ŠΎ‘?…qœ`έΓόϋ[λφϊmΩ²EZ·n-Gq„% Υγ|ΰ½ΖΏΛ,TΨϋψ7ސ<Πϋ;ΝΦ9Lόη?EƒΗsL˜ͺS—°χρλ―Ώξύ-ΖΧ?R?8£χ›£>:Ζ5L?hύΎσο„©Jy_—†ΖzοΡ׏zχξ-ϊα©°-kΦ¬‘ššιΦ­›yδ‘a«žWŸ°^b|‘ύeφ>f|Qψ}Μψ"ϋ>f|‘½a±”@ ΉXzšv"€ Pš‹ “&>ώψγ’o&~ϋίwΦΆόΣmΫΆΙψG―"#GŽ”―|ε+-_)§ϋί½™ΒψΖά‹/Ύ(eeerΨa‡95ΗS­[X_Δ§n™]#auΣΠ°ΎyΖλνwήρΒΦa¬›ΎΈ‘/†•——gvA4αQϊB§ή―Β8hΒζηeΡ:ΖΠλύάsΟυ>h¦FΌϊκ«RRR"ίόζ7ΓT-―.Œ12뒰ޏ΄5Τ­°ϊ”1FfύΙ#3·B=J?@χ§?ύΙ 4‡qœ`έΓόϋ[λφϊmΪ΄ΙϋΩQGeICυ¨΄ΠPs.³Paογ—_~YΪ΅k'έ»w·UΥγ»οΎλύžΡ`cX—°χ±N6‘‘Π]»†’πν·ίφ>0~άqΗ…²~Z©°χqhα2¬˜ώ=­γΞώύϋ‡ξumC=$»wο–>}ϊxeΨΜ&=,μΧ,γ‹μ»?μ}Μψ’πϋ˜ρEαχqφ-€„\ hΞ•$ε € €@‹ hnρ.hΦ hΌ›°Qfna~±ŒΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+ΝΉ’€@hqΝ-ήΝZΝ™q6ΚΜ-Μ/ˆR·ΒκSΒF™υ'a£Μά8*X€@s°Kͺ΅Œ1R oη>μ’j-n©„·3ΖH4Ig cŒt”ŠgΝΉιλ0Χ8ΚΎŸΓήΗŽ Ώ ~gίΒp•@ 9ϋώϋ½‡ρEαχ1γ‹ΒοcΖ…ίΗΩ·r%@ 9W’”ƒ €-.@ ΉΕ» Y+@ 93nΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRB4ηJ’r@@ Ε4·x4k4gΖMΨ(3·0Ώ Jέ «O e֟„2sγ¨`ΝΑ.©Φ2ΖH%Όϋx°Kͺ΅Έ₯JάΞ#Ρ$5Œ1Q*ž}4η¦―Γό;\[Hΰ(ϋ~{8*ό>&pTψ}œ} ΓUζμϋ#μχΖ…ίnj/ Ώ_~gίBJΘ•ζ\IR €΄Έζο‚f­ζΜΈ eζζD©[aυ)a£Μϊ“°Qfn,@ 9Ψ%ΥZΖ©„‚·svI΅·TB‰Ϋc$š€³†1F:JΕ³ζάτu˜‡k eίΟaοcG…ίΗŽ Ώ³oaΈJ М}„ύήΓψ’πϋ˜ρEαχ1γ‹Βογμ[H Ή М+IΚA@ Πάβ]Π¬ М7a£ΜάΒό‚(u+¬>%l”Y6Κ̍£‚4»€ZΛ#•PπvξγΑ.©Φβ–J(q;cŒD“tΦ0ΖHG©xφ!М›Ύσοpm!£μϋ9μ}Lΰ¨πϋ˜ΐQαχqφ- W š³ο°ί{_~3Ύ(ό>f|Qψ}œ} )!Wšs%I9 € Πβš[Ό š΅š3γ&l”™[˜_₯n…Υ§„2λOΒF™ΉqT°ζ`—Tkc€ ήΞ}<Ψ%ΥZάR %ngŒ‘h’ΞΖι(Ο>šsΣΧaώ-$p”}?‡½ ~8*ό>ΞΎ…α*@sφύφ{γ‹ΒοcΖ…ίnj/ Ώ³o!%δJ€@s$)@Z\€@s‹wA³V€@sfά„2s σ ’Τ­°ϊ”°QfύIΨ(37Ž  Πμ’j-cŒTBΑΫΉ»€Z‹[*‘ΔνŒ1MYΓ#₯βΩ‡@snϊ:ΜΏΓ΅…޲οη°χ1£ΒοcG…ίΗΩ·0\%hΞΎ?Β~οa|Qψ}Μψ’πϋ˜ρEαχqφ-€„\ hΞ•$ε € €@‹ hnρ.hΦ hΌ›°Qfna~A”ΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+ΝΉ’lξrφν‘=ϋτ€mδ ƒΪ4χΩ9 €‘ ΠΚni²JhΌ–°Qfna~A”ΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+Ό4οϋx›TVn‘mο9ΰιTΦEΊuλ)eεŠ(œεΌ|Ο(Ήvy΅©\gωΥCΏ“ς”νέ'[^X-/ΠFϊœΪ_Ί€ά?œν¦V €4$@ Ή!ΒΫF 9³>%l”™[˜_₯n…Υ§„2λOΒF™ΉqT°ζ`—Tkc€ ήΞ}<Ψ%ΥZάR %ngŒ‘h’ΞΖι(Ο>šsΣΧaώ-$p”}?‡½ ~8*ό>ΞΎ…α*@sφύφ{γ‹ΒοcΖ…ίnj/ Ώ³o!%δJ ΝϋΆΙ²™ΧΛάΏn΄θφ½ΛδWW’ΌΟνξΫ':s›6±³0ožΉL|τ-³%Ν@σΎ—eԹ׊F ;žσ+yΰ’ς@7V"€ ΟšσΉχ_w͍7Σ#eζζD©[aυ)a£Μϊ“°Qfn,@ 9Ψ%ΥZΖ©„‚·svI΅·TB‰Ϋc$š€³†1F:JΕ³ζάτu˜‡k eίΟaοcG…ίΗŽ Ώ³oaΈJ М}„ύήΓψ’πϋ˜ρEαχ1γ‹Βογμ[H ΉΘΣ@σΗrησŸςψηQ†Ξίξ-φVΙ+o9ηo‘‡~=$CΝΫδg—l0Ν<ηWΙ%Ξ4ΜYšΟ½Qέ3ŠΗ3@ D€@stdšΝ М&Tάn„β@ό1Μ/ˆR·4;1n·°Ί6Šλ¨4$l”&»₯%@ 9-¦„c$€΅"¬χ#­χΖ‡dtΟθ|Ӎ4›2φlΫ"Ϋφ΄‘.=»δqΘ»y»€³!€䗁ζόκ―lkK 93AΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRBς2Πός=?‘k—kΜ·£ός‘€O4ηqΩ·Y~vξDyEχ8λWςΐΈrσlŸTmϋ@>—€K—2ΩW΅E6Tn“=fΛAν:I·εRV_Ξ>Š4Ϋ>ώΨlmΣIΊχ.—.ΩΔtδΡχΙΆΝ•²νƒeΟΎ}rPYωvωΟήyΐGQν_ό$Π!₯‘"ς Φχ|XŸΖ†‚¨€Š¨ΰST@ X°JyŠ ’ :OVlθ£(5΄€τ%!½³™-ΩΩΩ)›μΝ䌟03·Νο~ΟΈswφ̝ζζ†αάL¬Y›Žέ™‡!ͺ vύΖh-LƁEƚ‰γΒΠό\1š‘ΉcQθ&ghtͺˆ3Cs#Œϊl,κg¬Ας5’—’?ΥE ν Η Ϊά•)r“Q½vuρ―\t&‚S}irΞƚ_—##SkEŸ[‘yύΒp΅ŠβŸL¬όu%vιe[‹²`fFWJAύκ‘κιυΉ&  Ψ ‘9φLUn‘†fgκΠlδŒ›Κ7D›·4₯ΩΘ™ž49γΖZΖhh6ζ-•cŒh„Œσy7ζ-•ά’ Οη#œ‰•Ž1¬P*=ehhŽΦ*†Λpδ^gΥ5¦αΘϋΣpδ}έχP­hhv―‡κΧŽ/Ό―1Ηήטγ οkμΎ‡l!VJ¦‘y²04Οςš‡Cs‡0οl.–<χ(¦¬ΝE‡žO’ίευ‘›1i}'iά΅k…MΛ₯έ9xIBΟ‘cqζΪ·0xΚςΰ mϋόϋGαΙΞΝC3WΞΗ Αγ5ΓqH†0Zχω2nl>3τΚω£1xόΠβr/ε|Œϋ$ZWΫΩ+qC·ΑΒ|m°t‰Ο΄24‹ͺR‘΅Iς^aψ€±h―‡ Ϊμ!ΪΜE:œŽ~”Φ¨SWTZπ©fi₯λpŒνΣ>8 ΩισΡ·x­­ΰŒΤFIΨΎIFŠ‘³&’u$xp%n“  @ ΠΠC˜% )š‰D³‘3n*ίelή”f#gzlδŒk ‘٘K΄TŽ1’2ΞηuܘK΄Tr‹F(<ŸcŒp&VR8Ζ°B©τ”‘‘96Z«ό.{HΓ‘{Uט†#οkLΓ‘χ5vίC΅Z ‘Ω½ͺ_{8ΎπΎΖ_x_cŽ/Ό―±ϋ²…X(‘†ζŒ%ΓΠwŒΟtœΤ¨+F>έΝ«›»g³ΧLF·³BΈ₯6j„Γ›eΰNJm„ϊΘΐ¦νΜώ“>Γεα܌ωΒ =ήί^J£vh\i–― ‹; ύΪK‡²oɘ/β0K7jΧ•v­Δ*1R1ό½‰h_i †υ]•€νΫ₯Y.IHM©„φ^FαRΜΠμΛ•jύΩ$ϊ£'₯φΔτ‰7ϊf‹³=?”6›D^Wahξ# ΝAiz$₯’QύΓΨ΄Ιί FMΗΝ \γ»ΎΖ ½GΜΦ)Πͺ~.Vυ[34O†ζ0£Ή(ά   "!@Cs‘`UΆQšIC³‘3n*ίelή”f#gzlδŒk ‘٘K΄TŽ1’2ΞηuܘK΄Tr‹F(<ŸcŒp&VR8Ζ°B©τ”‘‘96Z«ό.{HΓ‘{Uט†#οkLΓ‘χ5vίC΅Z ‘Ω½ͺ_{8ΎπΎΖ_x_cŽ/Ό―±ϋ²…X(‘†f`FίΠK^c€Άλ„»^ŠΦgΆFm#mˆ‘9΅&Όάυ΅rΉX6ξ!ŒX ‘Sp¨±θάάgDΞX6}G,Πx7J…±wΚYšƒ/gvžΰŸ9;}‰˜½xL©Έ&|φ΄0FΛ*ΑFΰVωήσΎΩ˜EVϊ’Ρθ?¦`ΦζVύρΩσ—ΛbYƒ‡θ3! SqέT,s&?„³€=Y,’?cDkύΙΖόaw`ός‚™’ucqy9’‘ΉΣΐ1θwic­Ιμ5sqΗΐIšq9₯λHLνΣZK_φά ρ£|»ž#ρτΎτ܌―ρPίQ³U‹šυγj΅ψ   š‹‡³*G‘‘Ω™49γ¦ς QΖζ-Mi6r¦'ΝFΞΈ±–1šΉDKε#!γ|^ǍΉDK%·h„Βσ9Ζgb%…c +”JOšc£΅ΚŸα²‡4ΉΧYui8ςΎΖ4y_cχ=T«šέλ‘ϊ΅‡γ οkΜρ…χ5ζψΒϋ»ο![ˆjhέΟΝΐδaƒ0kU`&aJJ«Nx¬_O΄φ9–΅δ`C³ίΠ«WΘ^‰ϋΊ ΦΜΈ)„y·ŸΟ€λΛΞΖ[=ΊαSq˜Taμ(Œ½ΉsΕμΜ“΄μF=Η`μ>°ή\ζ²ΡΈc„Ο ¬+cξ τ΄J+sΜ,άΨ8tFιe£{`ΔRΩ— 3°ˆλ!WΘ¬Κ šS0dϊTt2qg―| έΪVCsJΗα˜: }Aλr•Ι’ί³‚ϊ\a°Nσ¬Ρ¨7f½Α½ΘώuΊ —ζο >΅ΘM  (j445αβoπαΓ8yς€αΏωζ-½K—.†ωρJΜΘΘΐΌyσ΄Γwοή+VŒW(†Η₯ΩΘKΤD•oˆ2Ά¨ςP•ΝF†rEM€Ω(*"°A€†f°‚ŠrŒΓΖ¦ͺΧ#ΩΖfCΘ ’ͺrγ#H$›cΨ€ε‘’yyy8zτ¨aoŽ;†oΏύ{φμAZZjΦ¬iX.ή‰ͺ~ι\T†#])ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuχL͚44»ΧEυs–γ οkΜρ…χ5ζψΒϋ»ο![ˆ’kh. ™ώ+ζ~:Ÿ.]₯Ν& ¦]οQxϊ:9£²°η™ŒngiΫΊΙXΫ‘™}ύ™Ω˜y_7L8λ†ζ@[).ΜΔνƒΜΔZ5aό$ŒΏΎœš&LΠwΆΜ¨œ οMνίόΟώƒ 7}&ϊOΡFNǝ­E£&q Ναζα@|AyFm₯ιq" ο7‚Œί‡Ώ‡νC{axά@ƒά"  "'@Cs‘#.φ¬Z΅ 999†ΗέΊu+vξά‰:ζΗ+ρΐX·nvψ6mΪ 99ψ°xE8ξ† P₯JΤ];¨ΘΦϊυλQ½zuΤͺUK‘ˆaΘؚ6mHPh‹±9CUnϋφνΓώύϋ•<ίδuφΰΑƒJΖ&MZxΈqθΗΞΎΨΦΪΆmš5k†ζΝ}χ'bΫ:[+ 44;£JC³3n*θΚΨΌ₯) ΝΞτ€‘Ω·’\+++ 7nŒΨy/Bš[Άl©άΜzΠͺ~Χ))ρmήΌIIIHMMΥCVj½wο^dff*ω½L₯ϊ9˜žžŽςεΛ£^½zzΘJ­wοή ωY$ΏGͺΊ¨±ό―\Ή²’χ?₯¦ςžΆœΘ£I“&ͺJ¬ΕΥΆm[₯γσRp44»WSεο―²w44{_cš½―1 ΝήΧΨ}ΩB¬”xCs0ˆ]+ρι[γπιrα>.XΊŽ|}ZW©‘yΝΜ‡0pŠœ79I̎<;dvdίa ›aζCΒ-« #ήϋl@˜‘9xφcΏα:ΘpμOσ `6˜ ΩΠXlΤVPšnΦ.h^¬ χAΜZ4CsΗαΣ…‘9ΤΙmxά@ƒά"  "'@Cs‘#.φΘψrv$£eωςεHLLgh6’9f£ΘlΜrTΎ!ΚΨΜ”‹œ§*7š"kf–C³‘ζΩ%@C³]bΎςc8γ¦κυHφ†±yKSŽ1œιΙ1†3n%Ή–œ…Y>`h΄?~ς^gh6’c=Mελ‹μ GΦ΅ŒTRui8Š€œυtΥ5¦αΘΊ–‘Jͺq€ΈKj: Νξ•SύœεψΒϋs|α}9ΎπΎΖξ{ΘbE Dš³³³΅ώ'‹'+ζ»Λ\9w φΝƜi$¦φkSCsΖόaθ;~Ήˆ!²‘yrn˜•€tΗοs&ζΊγWu"šƒf?φ›—ƒ Ηώ΄εc>C³ˆsbaZφ/F†ζ•x(m0€/»£˜Ez€œE:h‘‘97I€H€βB€†ζΈ`ΫA₯ΩθδΙ“44ΫT€f#›ΐ Š«|C”±yKSšœιI³‘3n¬eL€†fc.ΡR9ƈFΘ8ŸΧqc.ΡRΙ-‘π|Ž1Β™XIαΓ ₯SζΘ‘#XΈp! Ν.%Wω3\v†#—‹κͺkLΓ‘χ5¦αΘϋ»ο‘Z-ΠΠμ^Υ―=_x_cŽ/Ό―1ΗήΧΨ}ΩB¬”rϊδ ΄Τ#ΕLΦΗՎ.LΦχ “΅6Λu /˜}R«4ŒrꋦBϊm“―Cό—H€H€Š– ΝEΛW΅Φihv¦ΝFΞΈ©|C”±yKSšœιI³‘3n¬eL€†fc.ΡR9ƈFΘ8ŸΧqc.ΡRΙ-‘π|Ž1Β™XIαΓ ₯S††ζΨh­ςgΈμ! GξuV]cŽΌ―1 GήΧΨ}Υj†fχz¨~ναψΒϋs|α}9ΎπΎΖξ{ΘbE DšΕΤŘ;θLZuܜCŠ˜Exͺoα€ΙπzυΪAΖή° ώTΊΆƒLΛ f―œŒnƒg…ζυ1hh#CσdahžUΘΠ,gΏ}C_,5ESAh\‘  @‘ ‘ΉHρ*Χ8 ΝΞ$‘ΩΘ7•oˆ26oiJ³‘3=i6rΖΝj­C‡²1ώόπΓOΘ?™σΞo.]@JJ5KMdeΐ’E_β§E~~>Ξ9·-Έβ2ΤͺU#¬ώΝ»1oήbότΣ―(_ώωΟKΡ©sG$'ΛWYω–ΌΌXΌψKδεειIΪϊψρ<Τ­s*.ΈπΌt»;44Ϋ%ζ+Ο1†3nΌŽ“›3φkqŒaŸ™¬Α1†3n^­ECsl”UωΪ'{HΓ‘{Uט†#οkLΓ‘χ5vίC΅Z ‘Ω½ͺ_{8ΎπΎΖ_x_cŽ/Ό―±ϋ²…X(‘†f_χΧ|=S¦MΓͺν…ά΅I©θΤ§zvn-fMφ-Α†ζ41Cρr†b} 2ϋ¦yΝƒς‚ Ν­zΑσΧ‰Y•υ%7sΗΏ„IKƒΗ"/₯UW<6 'ZΧόΨζ―²k%Ζ†₯…bnΥ©?τ»Aώg­JnΖΧx¨ο(L8-&}38‹™”w-ή#–Š©› › E΅Œ%Έ‘οG#Œœ>ZW ϋΈ γzτΖ19tjš˜…ωΞΰš―ŸλQbζθπΌ L4³Vωf•ΦMj…γΣ’ ΝώC$@$Pμhh.vδq= ΝΞπΣlδŒ›Κ7D›·4₯ΩΘ™ž49γf₯ΦΦ­Έώ_έΡ΄Y<ψΰ=8yς$¦Lž†+ώΐτ'‘I“F¦Ν¬[·έnν­Υοέ»Κ cς”)ΣρΫo+1ινΧΡΆmΰ^Δ/Ώό†{οy;ώ7έtφgfbψ°Q¦LΜ™ϋί½wο~\uε θΣηaj>rόͺU« {›‘˜˜’ng‡†f;΄e9Ζ°°³ΕλΈZ²δ`au‹c «€BΛqŒΚ£΄οΡΠ›3@εΟpΩCŽάλ¬ΊΖ4y_cŽΌ―±ϋͺΥ ΝξυPύΪΓρ…χ5ζψΒϋs|α}έχ-Ċ@‰64ϋ!dg#σψaδζΙ•*‘zε`C²ΏTΡmˆγο:|X<•*UGεpsΨ±³³3qψp¨R •ͺW†y•\dξΚ”³P6μP±OΘ E'sE2ED`¨]»:2Ώ~wŒϊQμΣΠ{θl‘H€Hΐ š­PςNšiI³‘3n*ίelή”f#gzlδŒ[΄Zrδ΄΄žΒ`|©ffNHHπWyηνχ5cςΒE³QΎ|9zπΖ±cΗpΝΥ·β–[o€43ן=ϋsΌϊΚ8,X8•+WΒΑƒ‡„I9 ƒ?Œ];ϋ›ΙΙΙΕmέz£U«ώτZ+V¬Ζ«―ŽΓ»οŽ iΣ_Ιε ΝΞrŒαŒ―γδζŒ€ύZcΨg&kpŒαŒ›WkΡΠeUΎφΙpδ^gΥ5¦αΘϋΣpδ}έχP­hhv―‡κΧŽ/Ό―1Ηήטγ οkμΎ‡l!VΌahŽ ΆΐeθΡ{*u‚±}:ŒΨ»~ΕC½‡C›«:©ή›έΥ£·Ζ$@$@$S44Η§ςΡΠμL"šœqSω†(cσ–¦49Σ“f#gά’ΥϊυΧίρ`Ι9HJJ ).gjΎφš[1xΘ#Έθ’σCςτeΛ~ΑΰAΟ`ΡβOPΆl=Y[ηηη£›0*?π@\|qΜϋb>ϊθΌσξڌΜΑ…Χέ€{ϊτΗΒE³„yΊ<¦M›‰#‡ ·˜‘Ή(šQεΓ7^ΗΙΝϋ΅8Ζ°ΟLΦΰΓ7―Φ’‘96Κͺ|ν“=€αΘ½ΞͺkLΓ‘χ5¦αΘϋ»ο‘Z-ΠΠμ^Υ―=_x_cŽ/Ό―1ΗήΧΨ}ΩB¬ΠΠ+’₯€τ™χ‘”νΎή&5B§Ξν|x->]ΊΚO γIΠ‘ΆŸ$@$@$P\hh..j‡†fg:ΠlδŒ›Κ7D›·4₯ΩΘ™ž49γ­ΦΔ ο 11χά{§aQi,Ξܟ‰~Β”l΄ΘόμCΩλΟ™σ6n܌ϋ~άwοΏqGΟ[ύζθ#GŽjΗΦgή³g/jΦ¬‘ΝΘόπ€ΑZ›Νš={φ@x£΅ΌrεΜίe£Q ΝFT’§qŒ‘Q ^Ǎ¨DO#·θŒ —ΰ£0kϋcXγTZJΡΠ₯Uώ —=€αΘ½ΞͺkLΓ‘χ5¦αΘϋ»ο‘Z-ΠΠμ^Υ―=_x_cŽ/Ό―1ΗήΧΨ}ΩB¬ΠΠ+’₯¦l|=n0F-ΠζbλυωχΒ“›‡₯3H€H€Šƒ ΝΕAYcΠΠμL šœqSω†(cσ–¦49Σ“f#gάΜjΙ”{tΏ~€Ϊ΅kˆΞλκ@IDATcXTΜ,g`žρρ»a³*Λ Ρ Ο3gΞŝ»Ρ«χH»‘¦L™€e?ώ‚aCŸχ―i³&xφ™ΑkΉ?~Χ\}‹Ψ??|“ΏœάθΧ―7zήΩΝ0–‚QvhhŽ(B6ΗΐDIζu<  ΩδŒI2Η&pL²8Ζ0S ³hhŽθ*†Λpδ^gΥ5¦αΘϋΣpδ}φpη_»πᇳ±zυΤ:₯&Ξi7\yΥ?Q₯Jε¨MnάΈI\#Φ†•;~<—]v1ͺWO Λ³š@C³UR‘Λ©~ναψ"²vVsTט㠫JF.§ΊΖ_DΦΞjŽκ[νΛ=š‹ž±'›΅ΛWbνξ]ΘΞͺΧoŽφ: ~τ±Ύ'y°S$@$@j ‘Y Š+ š‘¦ΩΘ7•Ώd36oiJ³‘3=i6rΖΝ¬–44ίΣgϊήwDC³ό1οώΎ`ήό MΔ+V¬ωbρ’Ω¨P‘BΘαNž<‰λ―οSO©…ΡcFβΊ·k?&ώ΅c'&M‹FOΗ!1»σΤ©aΚδι˜ςή΄jΥ;…ϊκ.7£Z΅ͺΒ0ύκΤυ½!jΥͺ?Ρ§w\Ϋ΅ zX›Ι9δ€6vhhΆ+¨(ΗA0llς:nVPQr ‚aq“c ‹  㣐RΎKCslN•?Γei8r―³κΣpδ}i8ςΎΖNzΈlΩ/θw£ΈΰΒσpϋm7βΨ±ΌπΒk8x0~τ6N?ύ4Σfnjžˆuλ6 ΝίZ#7'Χ_6''Χίp 7nθO³»AC³]bαεUΏφp|™έΥ5ζψΒ’αεUטγ‹pΝ즨±έώ°|Ρ ‘ΉθΨ²e   b&@Cs1σαhhv&ΝFΞΈ©ό%›±yKSšœιI³‘3nf΅tCσCέ‹ΦgŸeX4š‘9//ii=ΡPό(ψ¨gP\²ΦŽlϋΥWΗcΪγξ»oΧfhΎμΧ"99 K–ΞARRRΘρήyϋ}Όώ ,Z<GΓ„ ο@ΖUΎ|ΉrΫ·…Χv?DΎƒ¦M‡δή‘ηŒœνΩhωσΟ?!Η•ηœsŽ˜₯©ŠQ‘Έ₯mάΈQpJΖi§™ΠΧ]‹ͺU«’nέΊρ8Όι1Χ¬Yƒš5kβ”SN1-L[σζjΎνŒ±9;#TεΆgΟμΫ·OΙσMŽ8 dlΫ·o‡4±6mΪΤΩ Q„΅ΆlΩ‚ϊυλ+Ι­»Χ¦ihŽ ~•ΏΓΚpδ^gΥ5¦αΘϋΣpδ}νφPš—ε۞zυξnέόΥεύ‰gžy ι7γέΙ㐘˜θΟ ήεnΎι.Œ|~hΤϋ Αυ¬nΣΠl•Tδrͺ_{8Ύˆ¬ΥΥ5ζψΒͺ’‘Λ©1Η‘΅³š£ΊΖVϋΑrEO€†ζ’gΜ#   š­ƒώύχ•˜7o16₯‹@O«‡k―ν„ΆmΟΆ<›‘έϊς†ίΧ_‹/ξ`8ƒ£υΘ%ih°°³EC³Z²*Ιflμl©Κ†f;*ΚΠ`«-yνŽ6Cszϊf­ΜΒE³"^ίεŒΚέoΏ™™YΈ£η­ΪLΝοΎσZΆ<^x>މ™Œzφμ&fhΎ O?3]t~X<„Λ;ώ ς8f―p•1ό,ΎϊJmΜΦPPΒͺU« gQ2ZΆnέ iόkΩ²%*V¬hT$ni›7oΦ ΝυκΥ‹[ ‘ΌaΓΝ^»ΆoΦμHεβ‘Ύ~ύzqξTG­Z΅βqxΣcΚΨT4JΚ ›©t3Uε&ΝΜϋχοWς|“ίε<¨dlrlvτθQ1γžωƒ2Oˆ"ΜΨΆmš5kVb Νyy'πΥWί`ΡΒ/…ύ ZΆjŽ];£aΓ–(9rs>ω_σ*‰λsKρζ†+―ψ‡Έ§‘±Ύ«$&$’a#kLjΨPA ΝΡYΛWυ»˜= G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuνφL>-ίκ$”.[ΆlHυ¬¬Βμ|«αΫ₯τ‚‡A—Ξ7ασ/>ί{cΚjšuΞΧͺŸ³_8ΧV―©ΊΖ_θJ9_«1ΗΞ΅Υkͺ±'Χρ'@Csό5`$@$@$@1"@CstθσΪkγρΑϋ£_ΏήhΧΎ V―Z#fI‡kΉ Γ†?qΩΊΣϊ~8―Ύ2.ͺ)z%hh°°³EC³Z²*Ιflμl©Κ†f;*ΚΠ`«-yΝτ‘§pU§ŽΈςΚΛ ›ύςΏίc·šΩ°@A’40­\±+Wύ‘₯΄hq¦˜ύψoxύυ7ŌΉ΅43“όaπ΅Ρ#Ρ]›°¦d,½ξ~/Ώς,ώϊkjΦ¨Ž:uM³ŸΞυρΘ#ύΒΪ±š ΗԜ––¦Νκk΅^q”[½z΅˜™Ί<š4iR‡³u Ž1lαςVυz$dl~™lm¨Κc [2ϊ sŒαGαj#GΌ–ύζ›οΒξ]{π䓏Šλψ©X²ψ+̘1#F>…NbΌaΆΘ€Wwν*yί’rεJ˜;η ,mŒoψgΗKΓͺοέ»·ήr7Ώώjτ{ OXΎ“šP ―£κη€) G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuνφlώό%βϋΝ ρτΏΓͺJ³ς΅Χ܊O?›&ΖΖfeωΤΐG‡βγ™“΅³δΫ£δ[£jˆϋ±XhhvOQυs–γ οkΜρ…χ5ζψΒϋ»ο![ˆšcE’ν   ĝ ΝΡ%ψFΜ’όΨcΓ1sΦ€¦ΦυWΨ»gŸ˜₯Ή†{ ;_ξO/Όa§ώ‰'.f€χΖ[ψFΜ $_>ΑΗHI©VΈYGϋ44;ΒšœqSω†(cσ–¦49Σ“f#gܒ՚χΕ"1CΡWβΑ§aoq&c9ςΩg· y]kp›Ϋ·ωPΣΓχ {`κψργθάι&L˜ψͺ0η6ΔM7ή‰'ž€sΟkά„Ά}μΨ11Cσυψμσι?nZ΅: Χύ«KX9έ„–v-.4˜ι9¬B„š#€‰’Μ1F@²y&J2ΉEdΝ1† IcX€₯ˆΌ>υ:~ψώ'Ν<+βΟ?†ϋξ}³fΏq¦fmΜ1θΘš_}mDΘ[!δXεΩg_ΦfTΤ HΕ›Ύχ žzj€Ω½χή‰{Δ_,šcAQνfdi8r―³ΚΧiΩ;ŽΌ―1 GήΧΨnεύ yΒθΝr<ρΦ[οiΏ™”)SΖ°iωΥP1Ά¨W―6oήκ/S§Ξ©xcά(4jtΊ?ΝΙ ΝN¨…ΦQύΪΓρE¨^NφTטγ 'ͺ†ΦQ]cŽ/Bυr²§ΊΖNϊΔ:EC€†ζ’αΚVI€H€H€β@€†fsθ'OžΔ-7ߍ»ξΎ]Ί\VXΞ°ψΜΣ/‰Χ}"^»~γΞnύ-[Άα†λ{ λuqύ½΄š>φPΜf- ‘9LBK 4YΒVHε/ٌ-L.K ͺr£ΩΘ’|a…h6 C“9βΥ]nΖϋΌ‰-š…΄)_ΧzσMwaξάό―zε—ί΄ΩŒš7oͺ•ΥΗ_Μ›ω#_π2oήbΌ,ΜMϊλ^εΫ#fΜ+ŒNSΒΖ!sηΜΣή&±pΡlόwιαε—ίΠήϊ””ά$6mΪ‚Σzšš’B*DΨ‘‘9˜(ΙcD![Υλ‘ —±E-J²ͺά8ƈ"\„lŽ1"€±‘œ%^γήρŸΧEΌ>ΏψΒh”ΧτHoW6]ue>ϊ蝰74Θϋς‘¨^†¦Νšho•,ΜΟ_}υža(jΧ>‹ύύϋίg#βΘEK”‘Ήq ZΝȝ‰cŽͺŸ“:ŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;οYhΝ?ώX‹έοozΡτΑθΧ^χߟαO?‘M#Π’[½υΦνm˜³?™Šϊυλ…6nc†f°"Uύœεψ"‚p6’Uטγ bF(ͺΊΖ_DΞF²κΫθ ‹1š‹0›'  (>44›³–?"Κ™₯q¨J•πW§ΙW«Ι εμ‡Υ«§„5ζ¦ΎœQιს cυ6šΓ$²”@³‘%La…Tώ’ΝΨΒδ²” *7š,ΙVˆf£0$1K?؍{c&ώηUm6ζ„„¬Zυ'ϊτξ―=$uΟ==΅cΙk½ό°m»6~C’~ύ—―u2e6j€ΌΌβυπ_βΙ!Οα7^Βž§Υ—γλΊή†g‰‘Cβ”Sj!77Ÿ}Ί#GΎ*fr~ηΧς•υ7\ί]«3Yƒc gά‚kM›6™ϋ3Ρο>ΑΙώmωPS—Ξ7aξ§Σ„§š?]ί8t([{ CλΦgA>XΌΘ·AάzK―ˆn—:C³„3ψ_ΐΡl¦ϋ]ŒL‰m•―} ΝξOΥ5¦‘ΩϋΣΠμ}έτPŽ-†‰―ο{Œ=2μή„έΆ·oK{ΐ;›/υφ²²²°qγF}7d½uλVlΫΆ mΪ΄AΥͺUCςTΨY±b…xΐ<©©©¨WΟωLΤEΩi&mΪΤχΖ°’<ŽΣΆ7oή ω¦1ΙPΕeοή½šΩUe†ͺk,MλεΛ—WφiZ—ŸC*›]UΧX~†W\YΌ ¨ΆŠk¦υΓ‡£I“&JΖ§EC³N‚k344›Ρa   @‰"@C³Ή\ςΥπ>ςfΚ6«‘¬)Hχέϋoά{ߝb&€6aΉ©_ Νg، [4ΡnR…ΑŒWBυΪψ=ΉΆ0•ΧPr&ωƒ—Ό βMQ•ŒclΞώ‡R•ΝFΞτ€ΩΘ7;΅€‰9;ϋ°V₯R₯J(W.ΩNuνU¬rωγ4+6$7vπΰ!adNΒΡ£ΗLΛJ³τργΗ!_7_±bm¦›ΰvœnΣΠμŒ ΝΞΈ©z=’½alή”c gzrŒαŒ[p­3ζ`Οξ= ΝrΆΏ.oΖ¬ΩοΎ-*Έ­ΰmω©[nΎ Χ^ΫW―ή|k΄˜e³NԦ佇Ÿ^Ž‹.:ίπ^†Ό/!ί|)wqϊvJω}ZŽ;/½τRΤ¬Y3jLΕ]`ϊτι8tθxΨΌ½φWάΗ·r<Υ―=_XQΡΌŒκs|aŸ•\Υ5ζψЊζeTΧΨ’‘YΞΠάχώ» Νnκ;54Λ'†σςς ;Ά|ωr„Χ°aC=I©΅|]ψΎ}ϋ”όΞ¨ƒR]cω:σŠ+*ω°Ώd(_.?‡Z΅j₯#Un­ΊΖώω§6Λ­ͺ3‘fddhζΠ-Z(§­ό¬ρΪ Šί|στφΖ)½Ο‘Φ;wξΦ’Z²tŽαδ%ς½ξ~ Ν2όέ%R»Αι44ΣpΆ­ςχWΩ#šι\KuihVΛΩΆκΣΠμLΧΰZͺk+·γK€†ζψςηΡI€H€H€bH€†fs˜όΰaήό o¬ι34χκέηΧ>¬17υšW­Z₯½Κ,,‘ _Γ&o¬vθΠΑ(;niΐΊuλ”44gΧnŒωM@•*U”4 Λ «W―™šγ&`„«όͺ+ΖA΄(Ιͺr“?LΛ.U|½ŸΌΞΚITŒMš΄Ž=ŠΖGQΎψ³₯ΩZΎΚ†ζβgοτˆ44;#GC³3n*ίΘglή”†fgzΠμŒ[p­XΞΠ,ο-L}ο#Œ3}ϋލ»ξΎέπώ†~|'†f³ΧΑΛvε½ύDiˆTqi1ν)”Ο;¦…ΆύάΨέβ₯ΒTυ»˜‰―„ΧI8_«1_ ο\[½¦κσ•πΊRξΦ^24KSςΥ]nΖθΡ#qΙ₯š‚ΙΛ;―ΎϊmΪ΄Β)§Τή ΥΉΣMxδΡΠΉσε!uεΨdπ gΔ[¦’1όι' gp©a‡†ζ`l$«όύUvƒ†fbF(ͺΊΖ44GΞF²κΣΠlCΜEUΧ8BΨLŽšγ‡$  (44›s•3άug?m¦9ΣLαEΞ„|ύΏΊk³Υ―_―p6άΤwjh "(Ašδ+ζ»tι”M9ΓΖΌyσpΑΞε8«Z9ΣW‹%Ϊύ;ΜέΎC‰ΧΝώ~ρβΥw5”œ…F~‘­]»6κΥ ?Š…•ΙATώ’ΝΨL„3ΙR•ΝF&’™dΡld‡YΆ ΠΠl™V†fgάT½Ιή06oiΚ1†3=9ΖpΖ-ΈΦΌ/αΗΕΣΟ Nφoοόkn»­-ž-fZ.λO/Ό‘•u·‹rϋχgaάψQ†o–*\Η‰‘ΉpΑϋGŽΑΒ… 5CsZZš’―„—ρξzλΤώγk_θ šΏ܍Έo«|}‘ph8rЍ1 Gήט†#οkl·‡οΌσ¦}π1>ž9Y<ο{θ§pu꜊ΔΔDρ°#ΈΌγΏ0fμσώ‰_-ϊƒžxΓ†?Ž+―Ό εΛ—ύΒλ―Ώ‰Ο?[ˆΟ>›ŽZ§Τ,ά€ε}š-£ŠXPυkΗ₯³œ‘ΊΖ_X–2bAΥ5ζψ"’t–3TΧΨrGX°Θ ΠΠ\δˆy   β"@C³9ιcΗrpΝΥ·h†ε¦MΓg°άΎύ/ρκ΄»±`αLT\)¬17υK£‘Yμή½»φ Λ0˜Ε™°` °pͺοˆ44;&―ς—lΖζLVUΉΡlδLOšœqc-c44s‰–JCs4BΖωͺ^d΄ŒΝX³h©ͺrγ#šr‘ω_₯gbΕ’…¨Έs#ςσOβh΅z8εό ΫMB ΖqOΎH>δ«ϊ[ δΓΡwτΈO{ΈZš /‹…Y³>Εψρ/k&’Βωr_ή―Έ1­'.ΉδmφÊ+ K+­†ζ΅K>Γ™_Œ π6 H95°η-U?'u,4ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5ΆΣ3ωΫΔσΟΏ†Y3?XMΞ°‡>} ΘΪγγ}u/ΰςn!μγΉ£κη€Ξ„†#„σ΅κΣpδ\[½¦κΣp€+ε|­ΊΖΞ{ζΎζ΅·JΘ1J΅jUέ7(Z ‘Ω=FΥΟYŽ/Ό―1Ηήטγ οkμΎ‡l!VhhŽIΆC$@$@$w44G— KΌ’υΊ·αΚ«ώ‰ώύο31WΖ‘#G1aΒ;˜ωρ\|φω‡¨U«†ΦΡ«ΥμΤކ†ζ`ΕΌMCsL€«|C”±9“XUn49Σ“†fgάX˘ ΝΖ\’₯ЍqΎͺΧ#-c3Φ,Zͺͺά8ƈ¦œ/εg_Ε£ϋη™ž–|6Ί  )ʚ–+κΜ’bh–ώχΏUΈϋ΄Ω•;wΎ\3νόk}τ)Ν όξδρ"­Œ†lƌ9xσ?“΅Λ”)γ―;ϋ“©HNN3f‡“­Q#E{υ{αœRmhώλw`ρ>$υΔ[ΊΎYOάφUύœΤΠp€“pΎV]cŽœk«ΧT]cŽt₯œ―UΧΨyΟΤ¬IC³{]T?g9ΎπΎΖ_x_cŽ/Ό―±ϋ²…X ‘9V$Ω   @ά ΠΠlM‚;vβαƒ°aΓ&œqF#m]―^Œ―wmΠ ΎΏ‘H―V³Zίߐؠ‘9˜F1oΣΠΰ*ίelΞ$V•ΝFΞτ€‘Ω7Φ2&@C³1—h©44G#dœ―κυHFΛ،5‹–ͺ*7Ž1’)Μόd1nόϊΕθE‰9υ―ΒΏh©lQ*I†fΙΰηŸΓC>Žάά\Θ{ςή‚œ•yθ°ΗQ±b?¦y_,Ββ%_α•WžCbb"-ϊƒΔλέΝ–‰_ΕΉη΅ +’š,tί–η$αΘ‘#XΈp!φμΩ#fNC͚54Sδu΄Ο‘:)β5[}Η2¨•؏γ–ͺŸ“:ŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;ο™š5ihv―‹κη,Ηήטγ οkΜρ…χ5vίCΆ+44NJ$Ϋ!  ˆ;šνI%fk–―~MHH@υκβ‡.›‹Ϋϊ6V\šdό]Ίt Λ‹gBFFζΝσΝθΥ½{wρΓlΕx†ΠΠώ*ίelΞ$V•ΝFΞτ€‘Ω7Φ2&@C³1—h©44G#dœ―κυHFΛ،5‹–ͺ*·XŽ1~ίqŽεEDρUzfΔΌΝ™G±9σXHώ±cΗ _Ω-ί mI)_«W%Z±°|9›ςίκšΧϋεΝΡ8'w[HέΣq σ³BδNΚ#ηΖu–ζ’fh–άδΓΞς^‚\''' Ν+Ιδ³”(CsΫΆΐˆ;€½;||―κtκ©kU?'u84ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5vή35kΠμ^ΥΟYŽ/Ό―1Ηήטγ οkμΎ‡l!VhhŽIΆC$@$@$w44Η]‚b €†f‹ΈihΆΚΌ˜Κ7D›Ήv‘rUεK³Q€Ύ;MίΊu+φνΫ‡Ά‘ΨBC³b‚”πphhv& ΝΞΈ©z=’½alΞ4ύπΏ?£nΓ3B*'ζε"ωΝ‰„ό“ΪZΫΦΔC¦β?ρ΄¦¨#ςυ4Q’¬^ο§­Yών‘—™η[Λ* ²m™¦εΙγh hΗ“m=zǎE5΄Ψ6μ;‚μάΪvα²sς°aίΡΒΙEΎŸ$β/SπWV[磌θGΩ‘.ΦeDηΚδŸμ‹~ωΛΙmΑ«ŒVVΆS§₯η‰6τ<±–Η+«΅]ply<ύΨβxr»νΙ]¨†œ°ώ~ΓΣψΫ%…₯WBI44›’:N‰34/z˜?Ω‡£V=`Θ{E…ΖV»*__dGh8²%§aaΥ5¦αΘP6[‰ͺkLΓ‘-9 «±aΠ%8‘†fχβ©~Ξr|α}9ΎπΎΖ_x_cχ=d ±"@Cs¬H²   Έ ‘9ξk44[ΔMC³EPζΕTΎ!ΚΨΜ΅‹”«*7š#)fžNC³9ζΪ#@C³=^zišuφΦͺ^d/<[˜ψΈ0¦ζΚ?}[_‹4=οΈHΣΚΘ΄‚νΒyΪ~PžΎŸwάήIΐ%€€4‡Kϋxθ²ΰ¬›Ρ©Ο=‘‰ΕΈGCs1Β.8T‰34οέ.fiξυθD 5τ‹@fρm©|}‘h8r.¨1 Gήט†#οkμΎ‡j΅@C³{=TΏφp|α}9ΎπΎΖ_x_cχ=d ±"@Cs¬H²   Έ ‘9ξk44[ΔMC³EPζΕTΎ!ΚΨΜ΅‹”«*7š#)fžNC³9ζΪ#@C³=^zišuφΦͺ^d/Š$6i"³#/8!ŒΏό+Nˆ}m”1/mۊΊ΅ͺϋLΗΊαXεφqΡΎ<ŽΎ/ΧG³ν Γ$BΐΨΠΌκκΗΠκς+CJη ΝΕIΫw¬gh–aΏΘXολΐ?oνγێγΏEr}‰ah8rSui8ςΎΖ4y_cχ=T«šέλ‘ϊ΅‡γ οkΜρ…χ5ζψΒϋ»ο![ˆšcE’ν   ĝ Νq— X ‘Ω"nš-‚2/¦ς QΖf]€\UΉΡΠI1σtšΝω0ΧšνρKΣΠ¬“°·Vςztμ0Ύύό5κΦ¦aΝx\Θp¬ ŒΙ~γq°99(O7.ΫCΓŽ%&γD~N&ΘΏDœ@’Ά}epBμŸ³Λt™/σ΄΄|±NLDήI L"P΅|2ςŎXδZΞ;μ[η£Jr’Ψζέ‚?њΆ-σ“PV–u΅ό‚υI_[!ι'eωΫdngIJˈ?pBΑZί—ir[τΣ_FΟ“iedy™/‚Υ κλyZ=½nh^ξw_@±‹`e}ΉΘΎκΫΎΏ‡‡*Οτοχ ΝΕM(‘†ζ/gŸΎιƒ•r 0lzρƒ+tD%―}A1pΓα¦κΣpδPΨ jͺkLΓQX7UΧΨa·”­FC³{iT?g9ΎπΎΖ_x_cŽ/Ό―±ϋ²…X ‘9V$Ω   @ά ΠΠw Š5š-⦑Ω"(σb*ίelζΪEΚU• Ν‘3O§‘ٜsν ‘Ω/½4 Ν: {k%Gφ~6l\ό΅Ι^'ΌRΊ\E@i“Λ‹Ώrb»`­oη%Wπ•MεόεerΨ°5g4kζ3άJsmˆ6Ȍk–'Έςx1\8ƈsΓλΓqFϊ·Ρ Škͺ6Aσ§c©lQ’‘Ή¨ΘFn·Dš³vOίθT±@Γ³ϋqΨRβΪgoŽLΰXΜR]cŽ, iRLui82Οb–κ[μF‰)FC³{©T?g9ΎπΎΖ_x_cŽ/Ό―±ϋ²…X ‘9V$Ω   @ά ΠΠw Š5š-⦑Ω"(σb*ίelζΪEΚU•ΝF‘3O§‘ٜsν ‘Ω/½4 Ν: {λΈ\v€›Vk³0Λ™˜‘΅Η^ΠΕQZ…Λ–³ν&‰΅0φΚν²b[ΫOBvN.*§Τ(0›Šu3²Ο\¬“₯αXΆW`-·εŸ4*ΛΌς•bΪ£Έhj‘cX€t4GžΌO‹Z8ή³3ΛihŽ*SΜ ”HC³€0ΆΏοs_n_z=p}?Ή·EΥΟI G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuχL͚44»ΧEυs–γ οkΜρ…χ5ζψΒϋ»ο![ˆšcE’ν   ĝ Νq— X ‘Ω"nš-‚2/¦ς QΖf]€\UΉΡlI1σtšΝω0ΧšνρKΣΠ¬“°·.–λ‘4/oZ%f_ζεMβοθaKA«v*ΚΧο3kfbi*ζβ2ζb™¦ii…ς ΜΗ>3²4%KCr¨19,O-,ΕΒΝBFETc #΅ Άoΐ±ΧFωG 2Γ‰ε‘pC?TΌ¨³a~q&Π\œ΄}Η*±†ζo>fσu’r πμΜβ‡tDU?'υi8I8_«1 GΞ΅Υkͺ1 GΊRΞΧͺkμΌgjΦTέΠόγλΟഝ"₯\YTΌώ> υEʁTύœεψΒύ)£ΊΖ_x_cŽ/Ό―±ϋ²…X ‘9V$Ω   @ά ΠΠw Š5š-⦑Ω"(σb*ί,clζΪEΚU•ΝF‘3O§‘ٜsν ‘Ω/½4 Ν: {λ˜_r„ Sš—ΣεŸ0/o]Ο΅TΓ³€F­€ΖΎΏίΦnDΫΆm­Υ-ζR1ηΓψUc "‹™šw~> ΙΛ£Ζ±L­βΡ2εq ιω¨sS F]Qš‹Žm€–K¬‘ω8‡ήθVΏW€3Ϊφ‹yKΥΟI G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuχL͚ͺšwνŽSντΑ»ͺΠ©§r U?g9ΎpΚ¨1Ηήטγ οkμΎ‡l!VhhŽIΆC$@$@Š8yς$Nœ8‘EU¦L$&&*aμΓ‘‘9φLUn‘†f‹κΠΠl”y1•o–16sν"εͺʍf£HŠ™§ΣΠlΞ‡ΉφΠΠl—^š†f„½΅λλQv°α³˜]ΦR±ͺ0/ sγΦbέgd.TΡul…Ϊ‹ε.c³O“c ϋΜd 9Ζ8ΊΞjž³а ΝE7BΣ%ΦΠ,ϋ3ώQ`ύ゙]p pσ€½,ϊd•?Γeοi8r¨1 Gήט†#οkμΎ‡j΅ Ί‘yε¨GΡzGΑ8’Υ…@―gΤ(’QύΪΓρ…ϋSFu9ΎπΎΖ_x_cχ=d ±"@Cs¬H²  P€@~~>δ+ς/''ǏΧ’JJJBΉrεP±bEν/!!Ahc Ν±gͺr‹44[T‡†f‹ Μ‹©|³Œ±™k)WUn4ERΜ<†fs>Μ΅G€†f{Ότ44λ$μ­m_φdψf^–³/ΛY˜χξ°vΐZ©Ύ™—ε Μΐ\»AΤzΆc‹Ϊbμ 06ϋ,9Ζ°ΟLΦΰΓ7―Φ*Ρ†ζΎfΌζ“¦Be`䜸ɀςgΈ„BΓ‘ϋSCui8ςΎΖ4y_cχ=T«Υ ΝΛ_‚v[τAkr6πΐ«jΡ¨~ναψΒύ)£ΊΖ_x_cŽ/Ό―±ϋ²…X ‘9V$Ω   Δ™@nn.²²²pμΨ1ΝΌ\΅jUΘ?ΉtŽ1μ3“58ΖpΖΝ«΅J΄‘ωΘ!`Θυiξyhqn`Ώ·Tώ —h8r2¨1 Gήט†#οkμΎ‡j΅ Ί‘ωΏoΎ†ώ)Ž’KΪΐSψΆϊWυkΗξOΥ5ζψΒϋs|α}έχ-Ċ Ν±"ΙvH€H€H Ž€™yίΎ}8yς$κΤ©ƒ*UͺFsθΠ!μάΉ‰‰‰¨Y³¦ηLΝ44ΚξΩDš-JKC³EPζΕTΎYΖΨΜ΅‹”«*7š")fžN³‘9ζΪ#@C³=^zišuφΦ!Χ£γΉΐζΥσζ?€άcΡ¬(Ύ5³.Ksc1³40Η` ‰-νΕ² ΖfŸ&Ηφ™Ιc8γζΥZ%ΪΠ,Eys0πηO>yΞ½Έν±ΈH₯ςgΈBΓ‘ϋΣBui8ςΎΖ4y_cχ=T«…eh–θ^[’@κΧŽ/ܟ2ͺkΜρ…χ5ζψΒϋ»ο![ˆšcE’ν  @œδηηcϞ=8~ό85j„²e˚F’——§ύ —””„SN9 ¦εKR& Ν%I-χ±Πl‘! ΝA™Sωfc3Χ.Rͺάh6Š€˜y:ΝFζ|˜k Νφxι₯ihΦIΨX ³rϊ‚™hœŸ-\“ΒΘΌεOk•k₯ ³˜Ή±00K#sέFΦκΩ,₯κ΅Rvƒ±ΩSηΓ>3Yƒc gάΌZ«ΔšY |π’Ožr€>‹‹T*†K 4Ή?-Tט†#οkLΓ‘χ5vίC΅ZPέΠ<}ϊttϋιν΄§ή35Χ μ+°₯ϊ΅‡γ χ'‰κs|α}9ΎπΎΖξ{ΘbE€†ζX‘d;$@$@$'‡ΦfgNMM83sαΠδLΝΫ·oΧfiT©Rαμ»OCs‰•ΞQΰ44[ΔFC³EPζΕTΎYΖΨΜ΅‹”«*7š")fžN³‘9ζΪ#@C³=^zišuQΦχ+ΎV}¬ύ%Jα‚μΝ}3/k30‹Ω—+§X«η²”ͺΧJΩ-Ζf_\Ž1μ3“58ΖpΖΝ«΅JΌ‘9ηπDΧ€pύ^Ξh£DΥ―=_Έ?]Tטγ οkΜρ…χ5vίCΆ+44NJ$Ϋ!  8Πgg>γŒ3lE°aΓθ³4Ϋͺ¨pašΗah«V­BNNŽaν­[·bηΝθΠ‘ƒa~Ό8€uλΦi‡oΣ¦ ’““γŠvά:Ώ/DέΎWΐeΧnŒωMΠ~¨]»v\γ2:ψϊυλQ½zuΤͺUΛ(;i2Ά¦M›Ζ5†Hgl‘Θ˜§«ΚmίΎ}ΨΏΏ’η›ΌΞqβ„6Σ²46ζεεαΕ}―‘|όρΗQΆlِɛίςOޜ/S¦LH^Iέ‘‘Ή€*9ny_žΛFΛςεΛ5cέe—]f”·4ωΓζ²eΒ°"–+ΈBϋ$nΑˆWώvͺ|?G !χ΄ζψ¦Νυ¨V­šφ~<γ2:φκΥ«΅Ο2l±Ι¬U\›3UTε&?χtƒ„³ž]-ωvω£ͺŠ/HΣ°ό1PEΣ°ό±Όf͚JΖVtgKΙn™†fgϊΡΠ\ˆ›œ}yΥ>sVΑΎ…ŠΘέΙεQFΎΩPŒ3·κ©σ`†Κ?26ƒ“)J ΝQEΘ¦‘9';vL{ΐΠ¨‹Η‡Ό!Ηλ—^z©φέΪ¨\ΌΣΜΎλTXϋ#RζΎ‘…˜_6 »šˆό²ΕϋΰŒY|ρf'/šrˆ† ͺNX )„Uρ{™¬κ―Y³F{ ‘AƒzΘJ­wμΨ‘}΅j%Ζ†Š.ͺkόηŸ’jΥͺJή”’fdd@ΎE³E ρπ’’‹ό¬‘‘ΉψΔ) †ζVλ­37ψ ΠΠlϋδ ‘Ω6²° *ߐΑΠ&™νΥ5¦‘ΩΆ€aTΧ8,`&č Ν}Φ$lψ'Χ~ μZ„œΘ/W ¨}6ΟμŠό3RN›H<0  ”^1Θ]8wm‚³{ΑΔ‡;’΄Ϋšε)r֐³Ξ:K»Ρƒ:yς$†ŠοΎ―2Λ…^ˆgŸ}‰‰‰zΘΊς ΄Ό9/o{a‘‘Ω *Zοƒ4Ιs½K—.Φ+CIyCzήΌyΪ‘Ίwο›LNυυΌΙΩψύβ;P£F ¨ψ£ό"+ΝΜ*ΐ£ς—lΖζμlUΉΡlδLOšœqc-c44s‰–Zκ ΝΗ Μk~rŽFFV³. MΜ­.ΐoO*kPυZ)Α2ΆΘ§W€Ž1"‘1OηÜOiΛ=rδ.\¨šΣ΄‡ΦTd`ϊy\ΌkΘυΐρ\_θ=†νŠχAqΣψJΓ‘{Tט†#οkLΓ‘χ5vίC΅Z( †ζfι? ύή?|ΰΞ½Έν1₯ ͺ~ναψΒύι’ΊΖ_x_cŽ/Ό―±ϋ²…X(Υ†fi\>ωυ$ό2.:ΟK† αά~>£sτ,A$@$ΰš@–>Ϊύ4Tσ"τκ‘ŠŸGΟΐ =©Χ»ψΏ‡Οu}€’ά@NN6lΨ€sΟ pΟ‘#Gbι₯θΦ­›Φ½ιΣ§£cǎΜ΅G€†f{Ότ₯МΉ ψί7ΐj1σ†ι(ŒΧ Ξfabn}!P§‘ΏŒͺΧ# cσΛdkCUncΨ’Ρ_˜c ? nž04K%§Ž–ιΣ΄•Έ.υzΖ·]Lͺϊ9©wŸ†#„σ΅κΣpδ\[½¦κΣp€+ε|­ΊΖΞ{¦fΝgh§ΰW•‚©ϊ9Λρ…ϋΣEu9ΎπΎΖ_x_cχ=d ±"Pj ΝΪ,ΜοwvλΆ8 HO= έΠΤl‹ €k{ΏΕίqφ‰†jv…Ο^ξ\0σ^L½νxQϋψ>|? mJρ4ΝΠΌnέ:œώω~δcƌΑœ9s43σ=χά£₯Ώω曐¦ζλ» π—ύρΗΡ¬Y3šύDΈQ’ΠΠlQ-š-‚2/¦ςΝ2Ζf]€\UΉΡlI1σtšΜω0ΧšνρK—Cσf1#Υͺο}³1οΪ’wίxέBΜ(ίrϊι§Η+„ˆΗ•?ΞI^©©©ΛΔ+cυκΥ¨U«jΧm;„„Ό\”ΫΌ εΦ/GωΏ!ρΘΑˆmœf°œ&CN³sp¬ΡΩΘOŠώ&[Λ–-#ΆΟ Ζ挾ͺάδηޞ={”<ίΆoߎ¬¬,%cΫΆm>ŒζΝ›;;!аVzz:jΦ¬©dlEΨνΈ6νC³€ψΔ΅@ΞQΟnσ*6Άͺ~ΣΠp€“pΎV]cŽœk«ΧT]cŽt₯œ―UΧΨyΟΤ¬Y ΝUv₯γš-_ϊΠlϋDβψΒ6²° ͺ.q|&™νΥ5ζψΒΆ€aTΧ8,`&č@©44η/ˆ„_Ζ;‡~ρ`ΰ’!Ξλ³&  @Tιέ‹Ο~'ό̏γϋY= fgΦ«νΕ€Ώ£ΕτΝg>>³z¨χ£’iQ― ΝvŽIC³Z,«š-*BC³EPζΕTώ’ΝΨΜ΅‹”«*7š#)fžNC³9ζ†X΅jδXΪhΩΊu«ίτW±bρΝVhKα΄Ν›7#99υκΥ+œχύ 6 J•*ŽLΓEόϊυλQ½zuΝΤlεXes£ΪΦΥ¨Άm5ͺό΅‰'ŒΝο²­άΚ5UΏ6hCušXi>€ŒŒ­iΣ¦!iͺμ06gJ¨ΚmίΎ}ΨΏΏ’ηΫ]»pπΰA%c“c³£G’qγΖΞNˆ"¬%ΝΦς­[*š­‹°ΫqmΪS†ζι£€Ÿϊxžypί ΕΖVΥοb:ŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;ο™š5Kœ‘Yb|m‰R0U?g9ΎpΊ¨1Ηήטγ οkμΎ‡l!VJŸ‘9KΌ rΒYξωυ―—LQo6χc $@$ M½ ·ΏΈBΌšχ)ό:ν„Ξk•ƒ9·΅Η“2[š§ΡЌσΟ?ί‘p44;ΒΖJŠ ‘Ω’44[e^Lε›eŒΝ\»HΉͺr£‘9’bζι44›σa=rŒ!MΝiiiΪΜ—φjmi9σkωςεΡ€‰}γlΡFΘ`kΤ¨ υ‘l·/?σεμΜ¦Fπβžα*ρPνͺ€-šγ΄f@« Φu™—’«κυH†ΝΨ’ˆ![UncD,J2ΗQ•²lOšΧώL|" ΰˆO€ŠUϋEΈ₯κη€ήeŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;ο™š5K€‘Y±YšU?g9Ύpžκs|α}9ΎπΎΖξ{ΘbE Τš~‡ό%iόςΕΏ 6H—OΈό%δŸΫΟFm% °N  Γς³Β°Œ3…‘y Ν‘Ψq†ζP2rV§Fά B[δžΚhhΆ¨ΞΝζLπ7ΏψŽ’m6²ΨνXSωfcs¦Άͺάh6r¦'ΝFΞΈ±–1šΉDK-‘†ζ ζο}ϋώ2½²΅01Ÿ} P₯ΊyYΉͺ^d› !ƒŠͺʍcŒ ‘llrŒaV)(κ)C³ΤkπΏ€£Ω>εnμ\tm±¨¨κη€ήyŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;ο™»š«Vύ‰3>Α{pΪi©Έψ’Έδ’ P¦LW ΣΠμ ŸVYυs–γ οkΜρ…χ5ζψΒϋ»ο![ˆRghΞ*$lϋΦ5ΏόΣ.FBχ‚ΧqΉn   „ΜΐLCs(™Β{44‡‘‘9”‡ΧχhhΆ¨°4κŒ{ΔW˜†f‹ΠΒ‹©|C”±…λe%EUn4YQ/Ό ΝFαL˜βœ ΝΞΨ•Cs­ΐ?ϊ Μώ9Ή³*-Δ›p€‰YΛUˆ\ΦEŽͺΧ#Ω%ΖζLXUΉqŒαLOŽ1œqσj-Οš? |ΉObœeQΥΟIύΌ₯αH'α|­ΊΖ49ΧV―©ΊΖ4ιJ9_«±σž9«™ŸŸwή~γΗΏ=nΑEw@FΖv<χμΛ¨/ŒΝ}τŽx›Rθ»fν©$š:„{ώœθVͺxsΤ£ μΗyKυs–γ χ'ˆκs|α}9ΎπΎΖξ{ΘbE τš_­‡„œ?9;³œuΩκ\>Ώ\5όxαl«UYŽH€y§μΪ€r›Wκα―«Ÿ ΄Ό@˜˜/š΅3.γTU―G²›ŒΝ™ΨͺrγΓ™žc8γζΥZž34o@ΏQπ΄홏cϊ‚HηͺŸ“zΌ4ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5vή3g57nά„›oΊ Sή›€V­Zψ9|ψˆHΏέ…ΙΉ[·4Ίέih–|m‰έYyΥΟYŽ/άK―ΊΖ_x_cŽ/Ό―±ϋ²…X(u†f}:»ξ: 0ΐO“†f? n”@44[†f‹ Μ‹©|³Œ±™k)WUn4ERΜ<f#s>Μ΅G€†f{ΌτJšό˜ό4{L9§5GΉˆY'[vΚUπ§Η{CΥλ‘δΒ؜ͺrγΓ™žc8γζΥZž44oωύ`@²aӊόaU?'u4ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5vή3g5₯i95΅.RRͺ…4 ΝΞƒ=ƒFNΗ=χή’gg‡34Ϋ‘e\Vυs–γ cέμ€ͺ1ΗvΤ4.«ΊΖ_λf'Uuντ…e‹–@©34'ό<ωKΔ«&Ε’/ώδ¬ΛV—ΰς —Ώ„όsϋY­Κr$@$@6 μύω5όγ·΅ZO}ϊ+ni˜Aψΰ&αΒΫGζΩ Xϊ‘―Χυߌ@ 6Ι*†Λpδ^gΥ5¦αΘϋΣpδ}έχΠ] rΜ1ξIxχέπŸ7_ΣΖΡZƒZ΅j‹ζŠ€ Υ5ώσΟ?Q΅jU1cΏϋI»Š`FF:„-ZEσ1iS~Φ΄mΫ6&m±o(}†f‘gώβHψeΌse/ \2Δy}Φ$ °D`ϋόgpΥΐΛφzw!>WΝcΔ cœqβΔ €§§k?̟rJθΣίrζέ_|Q;βγ?.~°)rτ={φ@~yiάΈqΔmB*”€šΝE’7ΜΊ2 Ο??^t~Hα_ύτ{ σ|φΪ΄‚w䏕7\ί·άrξθykH-9;τc‡aΡβΩ¨R₯rHžš-’‘Ω"(σb*ΗΨΜ΅‹”«*7š")fžN³‘9ζΪ#@C³=^zιΈšη“Ÿ€ez8@YρΠζΓ€–4σ+ Ν4V·T½VΚψ›Uε8Ζ°°³Ε1†ZΖe₯αgΤ¨ΧρΓχ?αγ™“CξOύόσoΈοή‡1kφ{¦35ϋξmΖ‘·΄7NΙ‡ϊξ_̝3/Ό0Zk―^½ΐlYβνQ7¦υΔ}}ο7^g¨…TΟšwlFέ 0d P«θξΉͺό.!ΠΠ8œn©1 ΝN• ΤS]cšZ9έR]c§ύŠE=ωΜ{ο€Γ‡bκϋΕ$;Φ&ΑΛΚΚΒƍβšk°lέΊΫΆmΣ&/’f9Υ–+Vˆ kr4ίΥKoDΪpU_ͺ-†R`‘†α¦M›*‰q›7oΦ Νͺ!χξέ‹ΜΜL₯ͺ±ό½Ύ|ωςJ>L/ΟΚέ»wC~Ι‰ΞT]TΧX~†W\Y›4AE†,|ψπa4iDΕπό1ΡΠμGΑ ₯Мsωο_%>±WϊΡδ‹­„‚?}[υmΑS[#‘ϋBδ—«ζO⠐ @ΡΨώσGxθg±6δgγΉΖβ_mj…€–֝νΫ·Cš—ν>m'Ÿ"”&gUΏ<;Ρ“†fsj;wξΦfL^΄ψ“°‰δƒ]―ν†χ?x3d†#ω£ίƍ›pδπΤK­«έœKLL4?Θ]·nϊτξ%Kη„Ν.Μμ&fn~όρβ)ΜΦQۊT€†ζHd ₯ΣΠ\ˆ³]•oβ36oiJ³‘3=i6rƍ΅Œ ΠΠlΜ%Zjά Ν‡Ÿ2ΦB¬$~Ύχΰ4ߏ4ςZICsΥ-Ž1¬’ -§*7Ž1Bu²ΊΗ1†UR‘ΛΙϋ y]DΣς‹Β€\VΌ9μ‘GϊEldΛ–mβ‘ιΪΫ¦ξΏΏ—6CσΐΗB εΫΚnΊρNό[΄sQ‘‡ΈeΓ+V¬Ζ€ώƒΔΓΥαχD"ΈP†g Ν²Ÿ#ξφξπυψͺ@§ž…z»]U?'υΠ¬“pΎV]cšk«ΧT]cšu₯œ―UΧΨyΟάΥόμ³ΪΫ Ήζ* ςΚ• Ό9ΥMΛςϋ΄w^zι₯¨Y³¦›¦Š€ξτιΣ΅Y?Ϋ·oφο?8FΏW€3ΪφγΈ₯ϊ9Λρ…ϋ“Cu9ΎπΎΖ_x_cχ=d ±"P* Νž‘©9*Tš™£"b (98ΈχĜ[bIF•ZUQhT"[•―¨’F^ω΄]JJθ«6#uH\ώ¨_£FHΕJ\: Νζ’ŸbZ–΅Œς>―q}ι₯±8υΤSΠΌES|ύί‹'O+aφ'SΕM5σσfνΪ xν΅ρ˜0α$$ΘΗΖ‹4Owι|ή~η Τ―_/as‹†f‹ΐhhΆΚΌ˜Κ7Λ›Ήv‘rUεF³Q$ΕΜΣi62ηΓ\{hhΆΗK/CσΞ-ΐY»υ0€Ϊ§ 3σσ@υSύiς3Ÿ†f?Λͺ^+e›eύ9Ζπ£°΅Α1†-\†…ε‘FŽx3>~Χπ aςώΑC>†yσ?6Μ/ά¨|Hϊαƒ1tΨc!†ζΓβAlωV*9s³ΡΫ δ[«δ=9tυκΦξŸ>Ά§ Ν Δ¬Μ §ϊΊ\Kά«ς^αξΗl_εΟpΩIŽάK­ΊΖ4y_cŽΌ―±ϋΪkAŽ?&LxoOšŠ7ƍΒœk―(₯ihŽΘBΆκΧŽ/,ˆ₯ˆκs|E@ ΩͺkΜρ…£Q]γ(α3» ”ZC³d¬™šzψvdtδFΒypfζθ€X‚H€H ˜ ?~ςuT$Ϊ²eΛ°Ωp ‡#Λ―^½Zϋ‘¨AƒQΛ―ς> ΝζκΘ›n½ξ~•„)yΘΰ£vS5³ρή=ϋ0bδ+ΨΌi+fΚ’_~ω l8ޝ‰gvE~Σk€1»   P€ό!ηΐΘΘΘЌ¨73Ν^Ήrff&ΣΣ5σsύϊυQ­Z΅°ΩsƒΛ—΄mš£+vPΜ|Ω?5,Έdιm–"ωšΦλΕ«\ύοϋρχΏ_RφΨ±\sυ-5κ΄mwvH^€yŽŽ7 ί}χ#δΜKΙΙΙXΌdΆ˜νΉr€*–ihΆ„  ‘Ω"(σb*ίelζΪEΚU•ΝF‘3O§ΩȜsν ‘Ω/½t±š^L{I?΄o}ΞΐνA―Ύ Κ•Ÿω44±Έ©κ΅R†ΟΨ,ŠTŒcŒ 669Ζ°+BΡ3ζ`Οξ= ΝvΖ‘ Ν2½[·ήΈρΖβοΊ°h€©COˆ·E½ŽΏύ­uXΎ•OΟΠ,ŒΊΨ‘ξCρΟ[€kMθVX™•Qω3\ΖMΓ‘™zΦςTט†#k:š•R]cŽΜΤ³–§ΊΖΦz›RrŒqσMw‘C‡sлϐc^Κ–-£½ι²pΊΥ}š­’Š\Nυs–γ‹ΘΪYΝQ]cŽ/¬*Ήœκs|Y;«9ͺkl΅,Wτhh.zΖ<   9ΌΌ‰‰‰ΨΌy+^xώ5”―P}τŽΘߍ[oι…~9DZαeμΨ Œ¨iv₯Βεεώ–-Ϋ°Uόύϊλ0uκGθΥ»ϊφ½;ͺ‘^ž·2n£eωςεZό]Ίt1ʎ[š|Έ`ήΌyΪρ»w+Ζ-νΐ44Η„ΏΚ_²›3‰UεF³‘3=i6rƍ΅Œ ΠΠlΜ%Zj±šΏxX2=4œ«{—w M Ϊ“Ÿω44±Έ©κ΅R†ΟΨ,ŠTŒcŒ 669Ζ°+BQih>zδ(zήiό9+C³<ΌnZ~σ­Ρhίώoώˆ6nά„ξ·ί«=ΰμ˜UϊυiΘ’YAQW1±λͺ¨(Œ Q¨"IΡUΐU1ΓP²Ί€„]ψΔΥuUTΔΏ2’…! 0„ΎΊέT§©Ί]‘gϊšΣΟƒUuS½χwΚͺwͺOWΝ_0#τcξHeЊgηΝ ₯αMυΦ3u/bΫΆmΘΜΜD­Z΅,Ϋ₯»Πσ9R]_ΥuV}ͺΧF$\oΓ5Ύλ9>ί{v6 GΞ8ιZIט†#zΞκ€kLΓ‘3u­€k¬‹=ΥuκΝ•]»tΗ–-ΩΆC7jΤ0ςφKΫFš š5pVI?f™_8RΣLΊΖΜ/4β9¬’1σ ‡BjšIΧX:«Š˜ ΝE œ»#  Β"ŸŸ„LΛΚΈ¬ΦU™ϊ¨'β*cͺ2:«j]•νCC³^Ρ γΙQc ΎΌSΖφ؏Ί)wΓ ·£GΠ¦Ν‘'ΔΦ'ί~ϋ-†‘Ή7ξμΣίψ2οϋHυ¨'‡’cΗΛ"ΫV+›6ύ†ΞWwΓ€IΠκŒΣ¬šDΚV¬XΌΌΌΘvμΚϊυ덛ˆ[Œ'#΄-NϋΊϊoΥͺU‘8Z·nφΧͺnΝΒΙσ_Ε“[· ζ5½U«V ™z+!€Υ«W‡~ˆQ»vν„šτoͺؚ5k–ώ@,"`lPIεΆcǎBβρ¦³{φμω‚2i©άG½©BΪgΓ† hήΌ9Z΄h!-4ΖcC€†f0IŠ‹ΔΠόΦH`ωgρ‘ά>8γβψ²„-u³œ†ζ(6%ΙΐΨ˜Π„†ζ 7ihvJΣ¬¨žΠ¬BPOP|睩ψϋs/‡ξ7΄o,3~X½xρΠ»_ή7~Θ]£FuۈΥΦ¬Yc[―ξE(CsΛ–-Σf›(½ώ­“±?-§?uUΗ~ΨW'υo/υ_$°B^Y»v-Κ•+‡ ςžΌ Ώ}ϋv¨‡WHό›Ρœ‘tΥ Υ½Ρϊυλ›!‹Zͺ<¨s‘ϊ;RκGΊΖκ<ή¨ώψQχ΄χνΫ‡¦M›J /S›6m"λ\)\44ϋη+ωoD5;šƒ―1 ΝΑט†ζΰkμ†!UhhNIŽC$@$@¨'Ω*³zbŒZšOΆ-[ΆlΘT©nΖ+#³Ϊ⇆f½ͺο½7=τ…ΜυΧ|υͺκωΡ‡σ°aΓF\ήώά}Χ@Όχήk8b|˜ψ©P‘<Κ”)c˜γ3Ύ@Ι ofu|U―^ o½υ.Ξ9»­ay[ο…nΪ&{Κ³Ί±{δΘsψΈε₯KCΫ|Bs–‚|BsA&J$ίel5ΊHεF³‘7=i6ςƍ½¬ ΠΠlΝ%Yi‘šχο^yXs4ŒΚΗ} ΣΥN–Ω¬©s> Ν6p4ΕR―•*dΖ¦Ξ¦Š9† ˜$ΕΜ1’rP=wΞ|ωε7xό γ™?έ0ΉUΆμ§ Υ½4υC9«zzσgŸ}ά'4«I?Χ/z½mΧθΧ …―2Ιηp51Ž|Ικ,]cŽ‚―1 GΑΧΨ e@C³=€_{˜__cζΑטωEπ5φ?Cސ*44§Š$Η!  !Τ;Ώώ{θŸZWŸR₯J… ¨Κ„ͺΦƒϊ‘‘Y―¬24—7 Η™ΧuΆlhš―ΊΊnνq7.šeωtα©ΜΒi-[ΰτΣ­Ν#κΈ2δ―θΠαRόιOZξkϊτ±yσά]–υN •ΩH™ihNB‹†ζ$€œUKΎ!Κ؜i˜ΨJ*7š•rΆM³‘3NlεŒ ΝΞ8%Ά*4CσΆa3σŽί’»¬ΣΈη ΖρΡ2͚:ηΣΠ¬dS%υZ©Βel6’iŠ™chΰhͺ˜chΰ8¬Z·nCθƒΥΫ’Τ .ΑŒaΒ„1(]ΊtQν ΝͺόΝ7ήΑŸώ|N>Ήqq”±ϊ£?qΌŸϋχοΗόωσƒmhώ3€Ωα·<‘Šρ$λΏN·Bα«Lς9\MŒ†#_ς†:Kט†£ΰkLΓQπ5φ?CY#+Cσœ±ΐμ0ΐΎΖϊΙ­Eΐ”~νa~α0‘1σ‹ΰkΜό"ψϋŸ!GHšSE’㐠  € Νz fϞƒΙ“¦`ΪτΙ‘'ΕΆV_όέΡ뾐ΉΗ­7’K—ΖvwtΎ¦cl3γ©ΚϋqΩ₯ΧβΝ·ΖγΤSν_{¨Ύ(3fΌε–ΤΔ―½ζ yl.ΌπΌΈρέlΠΠμ ΝAι›IΎYΖΨτΪΩΥJεF³‘bϊršτ|XλŽ Νξx™­ ΕМυπΪPΰΰ>s7@γӁ;'3W°Ίf΄qxMσihN€’|[κ΅REΞΨ’λ—Ψ‚9F"gΫΜ1œq΅R?DVχΊuΛΔM7ukͺžx¬žšόΘΰώΈός?‡κΦ¬ωΩΩΫΡΆν9–?ΚΧš4 ΅jΧ4~d=0a?yΈ¦s7έ_=ύyΨπ‡έΛHά_μv‰14η#`ϊ α©W¬Œž‹ΑχΊδsΈš GΎ%}V³£α(ψΣp|ύΟPΦ44ϋΧƒω…?†›6m2ή’’6mΪψ¨{Kטω…ρ₯kΜό"ψϋŸ!GHšSE’㐠  € ΝΞ%ΘΛΛΗΎ}α/χ*Uͺdϋ€dυEα]98|ψ°ρΕ_eO_ώνίκ5²κ£Ζ(_>Γy š–44kΰΔVΡΠKΓσΊδ)ŒΝ›¬RΉΡlδMOšΌqc/k44[sIVš2Cσ?FnΥ%ρ»λρpΦ%ρe.ΆΤ9Ÿ†fΐŽ5•z­Tα16χz2ΗpΟLυ`Žα›]/uAύψY-322Boˆ²kλ§ά܏Ί—‘ξy8ωQΆ“ύ•Cσώ½ΐc]’Hξ| 8υΡmŸk’Οαjj44ϋΨθ.]cŽ‚―1 GΑΧΨ e@C³=€_{˜__cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³Cά44;₯o&ω†(cΣkgW+•ΝFvŠιΛi6σa­;44»γeΆφmh>hόΨξUΓΈόλ sH@=²χ_&­’eΦΤ9Ÿ†fχΰ€^+ΥL›{=™cΈg¦z0ΗπΖ-¨½JŒ‘Y 8ρ`ε7a)ΨΈωα”Ι*ω&IΓ‘©₯kLΓQπ5¦α(ψϋŸ‘¬hhφ―‡τkσ‹ΰkΜό"ψ3ΏΎΖώgΘRE€†ζT‘δ8$@$@$@i'@CsΪ%(hhvˆ›†f‡ τΝ$ίelzνμj₯r£ΩΘN1}9ΝFz>¬uG€†fwΌΜΦΎ Ν;~^yΨΆΡ¨upΟ3αe΄ΤӚ:ηΣΠμΤk₯š cs―'s χΜTζήΈ΅W‰24ω πώ˜°”ε+Oœ2Y%ŸΓΥ$i8ς/΅ti8 ΎΖ4_c3”5B±54_ΡθΠSLιΧζώι3ΏΎΖΜ/‚―±r„T ‘9U$9  @Κ > ΝξJ½Vͺ™06χz2ΗpΟLυ`Žα[P{•(Csή~`p稔½Z]έφ±&ω¦EΓ‘qu•1 GΑט†£ΰk솲F(Ά†ζšuaοŠ€)ύΪΓόΒa"]cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³Cά44;₯o&ωfcΣkgW+•ΝFvŠιΛi6σa­;44»γeΆφdh^ΎxΛ0HΕ~ΞΈΈ}dl‰οuuΞ§‘Ω=F©ΧJ5Ζζ^Oζξ™©Μ1Όq j―ehV"Ύ> ψρ‹°œgώθ94ΌξσΏ’Οαjj4ωΨθ.]cŽ‚―1 GΑΧΨ ePl Ν γs‹Dΐ”~νa~α0‘1σ‹ΰkΜό"ψϋŸ!GHšSE’㐠  € Νi— H ‘Ω!nš‚7“|³Œ±ι΅³«•ʍf#;Ετε4ιωψ­έ»7σζ-Β_όGŹ睍N.GυκΥ “³ ,ΖΎόGΕ9lƒΛ/Ώ΅k׌λΏfΝ―†de\™Ϊ8tθ0.Ήδ"Τ¨Q=TwψποXΈp1>ΧV΅;‘ήρ8‚sγΚέnΠΠμ–XΈ½kCσ’)ΐœ7βwvΩΝΐ•½βΛR°₯Ξω44»)υZ©fΒΨάλΙΓ=3Υƒ9†7nAνUβ ΝΛώ Ό=:,gΉ ΰΙY@ΉςΎε•|W“£αΘ·Δ’―Σjv4_cŽ‚―±Κ†fz0ΏπΗpΣ¦MΘΞΞF›6mό Tˆ½₯kΜόΒΏψ5f~|ύϐ#€Š Ν©"ΙqH€H€H€N€†ζ΄KP€ΠΠμw¬‘Ωθς]Ο1¨Y³&5jδp€’k¦nVΠl䞷δ›<ŒΝ½ž4Ήg¦zΠl䍛“^λΧoD—k»£Yσ¦ΈοΎ;qδΘLžτ–/?Lyu4mΪX;ΜͺUΏ ΫM½Cύ{χξς˜ͺ}λ3[!?/?Rž——‡.]―B“&'…ΚΆoί‰+ΪwEŸ>·¦ζί#νΤΚqΗUEχ7 tιqεn6hhvC+ΪΦ•‘ωέΏ_/ŒvVk7? ό±}|YŠΆ˜cxΙλx°Έ1Ηπ¦'s oά‚Ϊ«Δšεu1~]v,/λρpΦ%Ύε•|}Q“£‘Ω·Δ44ϋDΈaΓlΫΆ gu–Ο‘ ―»τi8ς―½tύΟPΦ44ϋΧCϊ1Λό"ψΣΠ|™__c3δ©"@CsͺHr   ΄ ‘9νi44;ΔMC³CPϊf’oˆ26½vv΅RΉΡld§˜Ύœf#=―΅κ Θ™™=qι₯νBfζR₯JE†zσwBΖδω f’Bλ'υ4ε«Τk₯š cs―'s χΜTζήΈ΅W‰34+!'=|iXΣ/ξ0Ά}~$ŸΓΥΤh8ς)°Ρ]ΊΖ4_cŽ‚―±Κ†fzHΏφ0ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†f‡ΈihvJίLς QΖ¦ΧΞV*7šμΣ—Σl€ηγ΅φ›oΎΓΐaΡΏf£\ΉrqΓ¨'5_}ΥMςΨ \xαyquζΖϋ5†<ϊ,œ…²e˘őεΡ£GΡ­[oτλΧ]ΤϋφνG§ŽΧγŸs>@ΥͺUβΪ&nΌχήtμ7Ϊχ6žΠ\š½QMjhή½xω`λΊθͺάϋ P§a΄¬ΦΤ9Ÿ†fχ`₯^+ΥL›{=™cΈg¦z0ΗπΖ-¨½J€‘yωRΰ-γ‡Gζη鏀ς•Μ-OKΙηp5!Ž<ΙΧIΊΖ4ΕΙεiCΊΖ4y’5“tγ‚ ΐ ΝώE”~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†f‡ΈihvJίLς QΖ¦ΧΞV*7šμΣ—Σl€ηγ΅vβΛo’tιΈσΫ,‡PΖβ];w‘―aJΆϊ¨ϊά½ΉΆύgϞƒ5kΦbΠ ΎΘΚZ‹‡ŽiΣ'aχξ=8pΰ`θΙΟ5kֈZ‘τ³yσ“C―b6ŠP«VM”/ŸΧΦλ ΝήΘi ΝV―rs’ƒ7lάύ4PΉZ΄¬ΦΤ9Ÿ†fχp₯^+ΥL›{=™cΈg¦z0ΗπΖ-¨½J€‘Y‰9ψj@½eA}Ί=œ{Exέγ%ŸΓΥ”h8ς(lL7ιΣp#–ΗUιΣpδQؘn5Ž 5«44ϋ—Qϊ1Λό"ψ3ΏΎΖΜ/‚―±r„T ‘9U$9   @Ϊ ΠМv Š4š⦑Ω!(}3Ι7D›^;»Z©άh6²SL_N³‘ž—ZeξΡύ. 4ΜΖgΥΪrˆ•+ =yκ΄·P¦Lό˜U‡d†ηιΣ?ΔΦ-Ω!CτΒ…K0|ΨhΤ―_k׏μ―^½γ1ώ₯gΡΈρBe‡ΒUWވf†™ω‹Οi§Vϊφ퍞·u³Œ%a’ 𓲩Ά54ψ_γuυΖ“Šφ<­-pΫp \jLθс­ΧΤ9Ÿ†fk6ΊR©ΧJ3cΣ)g]ΗÚK²RζΙ•¬ϊkh~ΧψΧ‹ΒbŸrNψI>€—|WΣ’αΘ‡ΈΗΊJט†£ΰkLΓQπ5φ?CY#ΠΠμ_ιΧζΑטωEπ5f~|ύϐ#€Š Ν©"ΙqH€H€H€N€†ζ΄KP€ΠΠμ7 ΝAι›IΎ!ΚΨτΪΩΥJεF³‘bϊršτ|ΌΤ*Cσ}ϊγž{{ΩšΧ¬ωχή3sηM³4/_ώ£Q .š‰Š+Ζ…qδΘtιΗΧ©‰―ŒΓ ΟΏ‚wή™Š‘Fǎ—‘lΩ²ΨΏ^{m2ή}gfΞz ΦΗΓ}e§P­Ϊq†aϊ5Τ;‘nhά+~BŸήΰκΞπθ£PͺT©ΈύΉΩ ‘Ω ­h[KCσ’ιΐ‡£ΤΪ%םοŠ/+δ-uΞ§‘Ω=d©ΧJ5Ζζ^Oζξ™©Μ1Όq j―khώΏ/Χ‹Κϊδ, RΥθΆΛ5Ιηp5Ž\ jΡ\ΊΖ4Yˆζ²HΊΖ4ΉΤ’Ήt-B.ΦEΕΚΠ\Οx˘»£ΌŸ;φ£§hIZΦ€³Μ/ό5f~|™__c3δ©"@CsͺHr   ΄ ‘9νi44;ΔMC³CPϊf’o–16½vv΅RΉΡld§˜Ύœf#=/΅¦‘ωώϋοB«3N³"™‘ωπαΓΘΜ쉓ώp"žyφ ”/~―{άΈ xοέiθΥλ–ΠšηΞY€ͺU«ΰβvΔνK΅}ζoΟcΛΦlŒ; ϋφνΗΛ/Ώ W… εγΪnΪτ:_έ οπ&š5kW—Έ‘ ŸΥgΩ²eΨΌy3Ϊ΅kg§/κ}V­Zep,?ό!όΔjA‘…Μ?ŠWƒ BaUϋδ TZΎ$.ΔέWτΒώΦ—Δ•ΕƏ?ώˆΪ΅k‡LΝE±?7ϋP±΅lΩM—"kΛΨΌ‘–ΚMχΆmΫ&ςxΫ΄irrrDΖΆaΓγΪ³-Z΄πv@b―¬¬,ΤͺUKdl…8ν΄]b ͊ϊkΉaώΧέ\ΨΩ³R3'DΓ‘IΒϋRΊΖ4yΧΦμ)]cŽL₯Ό/₯kμ}f2{+CσΩg.‹‚€‘9ΚB³ΖόBΗa•τσσ ‡BjšIטω…F<‡U5v8 6+44dξ‚H€H€H hΠΠ\4œ₯μ…†f‡JΠΠμ”Ύ™δ?²›^;»Z©άhhΆSL_NC³ž—ZΣΠ¬{BsVΦΪΠSœη/˜aω„f΅_υDεξ·ά‰]»rpkΟ›BOj~λΝw ΣΪ)Έΰ‚σp0/χή{‡6DeTξΡύ.,X8ΛxrsΫΆ*ζ!CώŠ+―l‹.jkΫNU¬X±yΖΎ­>λΧ―˜ώ*UͺdΥ$mekΧEFFκΧ―ŸΆμvόΛ/Ώ¦τͺ8‘V 4^<ΗύΆ*τHΩ dύ₯φΦk)+Κ•Υ«W£F!SsQξΧΙΎTl͚5s΄ΘΫ06oΘ₯rΫ±cvξά)ςxSΛοΩ³Gdl*7;pΰš4ΡPΖΫΡβ―—2[7oޜ†f]υ.Ρ†ζƝζΥ€pίsΨΕ6–ϊ·˜# G& οKιΣpδ][³§ti82•ςΎ”±χ™ΙμIC³]€³Μ/‚―1σ‹ΰkΜό"ψϋŸ!GHšSE’㐠  € Νi— H ‘Ω!nš‚7“|C”±ι΅³«•ʍ†f;Ετε44λωx©Uζΰ Γ.EϋφΦOΤ]όο₯X²δ3<ώΔ£Ϊ]>ό;~Xώ#~Xρ‘v§žz Ξ9ηLΌψ⫨S§6Ίv½_}΅ ^xJ•*U`¬C‡αŠφ™˜>c2~ϋm+jΥ¬z'Τ-ΠN|τα<¬ώ% ƒυ΅¬wR¨r ejΞΜΜ =ωIŸ’j£žόZ‘B4mšc°nžκ Ψ:Κ’ΑGΟΏύmZ­pχ3@½τ=UZσλΦ­+.υz€dlΡΓΨ͚TnΜ1ά¨mΛ#Κ‚k@‰64―ZΌόpτ0xbP΅FtΫŚΤσ€9ŽLή—5¦αΘ»ΆfOιΣpd*ε})]cο3“Ω“†fΊH?f™__cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.AΚPΙͺ21Y}~ϊι§ΠΖ.Ίθ"«κ΄•©§ž©?jΥη‚ .½>mΑ;΄y5Μ6ž€tμσΟKϋγΈγŽΓ 'œ`‰YώόσΟ!γX:uΔΔd’b“ψšic3Ur·”ΚM½ ^=AQβρ¦ŒP»wο›zU½2˜H|ΚιΊuλΠ°aC‘ά’ύ_3wΞ,\΄γΖ=Yΐhl> ωŒ3Z’[·LΛ‘Τ“•ί& Έ₯K—Žk£ο;\—'Ž3žκ[7ήp;ύk6Κ•+ΧNm¬[·wτΊκIΠO?υN?ύ4\sm§νLvfζΥΈΐ0G{ύΠΠμάΚΕσpςΏί@™άœθ'4ξ1ΜΜ Oсό­©/6ihvΟPςŒͽž44»g¦zΠΠμ[qξ•››‹Ν›7[NαΘ‘#Pχ"TΞ~Ξ9η„ήL`Ω0Ν……υ·N“Χ’LώΠμΆ_xv΅ΎΤΣL +>OΑXtΚΚΚ2ή R5²¨MQvvvθ~˜ΔΏM:5VoS¨X±bθο43fIΛ-[ΆoΈΩ…SO=URXq±HΧxΥͺUα·ΗΌ©@ͺ댺ި7-Hύ¨ψΪ΄i#5ΌΐΕU¬ Ν£g«€]Ι#*844ϋ?D€kLCsπ5¦‘9ψϋŸ!GHšSE’㐠  € Νi— εΠΠμ) Νώͺ$QΓΨΌi,• Νήτ€‘Ω·d½ΆlΙΖ•nΐ;οΎj|™Eλš5Ώβ†λoΗ‡Ύ‹†'6 υυΧί’J•*†y»Yh[‘»vι9s§’^½γγv7wξBŒyφE,X8ʈ¬ΜΝƒμ‡Ž/‹k2N?ϊ2220ςρΑ˜§ϊ27'šŸύuΛμ‰3“Nςn@‘‘9NgkΎΗ‘‰’ταόhϋSΟndTˆ–₯iM}ιEC³{ψ’Ώ,dlξυ€‘Ω=3Υƒ†fo܊s/šνΥ«σιϋ¨Ύβ…<ώΨpέ`ϋƚ©‹™!ΣΠl’πΎ”1 Νή΅5{Jט†fS)οKš½³σ³XšϋŽNnνeΪ)ν#ωoD5QšύΛ-]cšƒ―1 ΝΑΧΨ 9BͺΠМ*’‡H€H€H νhhN»E€2©§#uκTπ EHΒΞ6n܈Ήsη†J»wοŽJ•*%΄(βΝ_Œ§EΏ4(²ΣοzŽA͚5E>iHݐ’Ω("•γΙ7ς›c# i6Š p΅B³‘+\ΏσΞTΌ4ώuL|eΤӘK•*…+~BŸήΰφ^·ΰΞ;{†ΖSΖγέοB›³ZcΠ Ύ‘²ύ‡ΰΫo—cςδ—qRγF8|ψw,\ΈC…ργŸΑω¦Wγ³`Αb<:ψqŒωΪ·Ώ*Tΐž={ρβ‹―βŸΟΗΗOAν:΅——o˜€»£FκxκιΖSΥκ‡ϊχέ τΎγ>άΡ»ξ½χŽP™ΧΠΠμάs†ζλWF;^|-Π΅_t;ΝkΜ1Ό ΐλx°Έ1Ηπ¦'s oά‚ΪK½dώόω‘'4gff†ή0$q…vώώuπBθ”GΌTΡZ΄~­Πβ³ί₯«Ž\α²l,]cŽ,esU(]cŽ\ΙiΩXΊΖ–AγBšύ‹'ύ˜e~|™__cζΑΧΨ 9BͺΠМ*’‡H€H€H νhhN»E ΝqΣΠμ”Ύ™δ’ŒM―]­Tn4Ω)¦/§ΩHΟΗO­2*πΑ,<ϋΜ (S¦Lθ_~~>ϊΈ·άr=J—.ή|’ςωηŸ‹ΞΧtŒμRŸ~">xf€L3vμ_qq» "ejε‹Ο‡Α†©97wŽ?Ύ²³·α”SNΖΨq£pΒ υ"mχο?`<₯ωE|8{n(žί=TχΘΰώΈξΊΞ‘˜"\ΠΠμΨΆΐθΫ’Ίζζv]’ΫΦΤ9Ÿ?šr/„Τk₯š cs―'s χΜTζήΈ΅W‰74+a‡]δζ„%Ύ²pΩΝε–|W“‘αΘ΅€:Hט†£’Ή.1 G%-ΠAΊΖ.ζ44ϋPϊ1Λό"ψ3ΏΎΖΜ/‚―±r„T ‘9U$9   @Ϊ ΠМv Š4š⦑Ω!(}3Ι7D›^;»Z©άh6²SL_N³‘žO*j•‰YΥ§rεΚ(_>ΓΥ°Κ„¬^Y[\9T―^-τ€g»vοήƒ²eΛOs>ŒjՎ³kzZσ‘C‡Bol¨T©b¨mc44»€₯šΞ}Xh<‘Ρψ>6Κ>ώ~h]Τ9Ÿ†fχŠH½Vͺ™06χz2ΗpΟLυ`Žα[P{ΡΠl(ϋΡ+ΐβia‰Oh <όškΉ%ŸΓΥdh8r-i5¦α¨€d €kLΓ‘kI tq€‹y Νώ”~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†f‡ΈihvJίLς QΖ¦ΧΞV*7šμΣ—Σl€ηΓZwhhvΗ #ovοuΪ}aWT»ξ^—~suΞ§‘Ω=g©ΧJ5Ζζ^Oζξ™©Μ1Όq j/š e7¬ΖΕ\λ› ΤnΰJrΙηp5Ž\ΙiΩXΊΖ4YΚζͺPΊΖ4Ή’Σ²±t-ƒvQΈwo.~όρg΄m{Žγ^kΦόj\#VhθΠa\rΙE¨Q£z:§44;%eίNϊ1ΛόΒ^;§55f~αTIϋv5f~a―Σι;Ϋ>š Ÿ1χ@$@$@$PDhh."ΠBvCC³C!hhvJίLςٌM―]­Tn4Ω)¦/§ΩHΟ‡΅ξΠΠμ‚Χšεΐψ‘›ϊŒEƒΣZGΆ₯¬¨s> ΝξՐz­T3alξυdŽαž™κΑΓ· φ’‘ω˜²wrΆ…7Ϊχ:φt%ΉδsΈš Gδ΄l,]cŽ,esU(]cŽ\ΙiΩXΊΖ–A;,πΨ?\I.ω&BΓ‘+9-Kט†#KΩ\Jט†#WrZ6–±eΠI σ ς?ώ23οΪ•cόνΪΠ±‘ωθΡ£ΈαϊΫ1ϊ©αhΦ¬I’=Ή―¦‘Ω=³ΔYζ‰ŠΉί–1σ χš&φ1σ‹DΕάoKΧΨύŒΨ£°ΠΠ\Xd9.   @‘ ‘ΉΘ‘§u‡44;ΔOC³CPϊf’Θflzνμj₯r£ΩΘN1}9ΝFz>¬uG€†f‡ΌO€ΪΘ?κ°α‚λqτΌŽ44;Δg6“z=Rρ16S%wK©ά˜cΈΣΡlΝΓ$Α₯"@Cσ±γΰ·_gϊDŠA†'G·“¬I=OšaΣpd’πΎ”1 Gή΅5{Jט†#S)οKι{™Ωά9 0lΨhτνם;wΔΠ‘£πKΟ:zBσΎ}ϋΡ©γυψηœP΅j/»Χφ‘‘Y‹ΗQ₯τc–ω…#΅€kΜόB+Ÿ£Jι3Ώp$£Ά‘t΅Α³²H ΠΠ\€ΈΉ3   Β$@Csa•76 Ν5‘‘Ω!(}3Ιd36½vv΅RΉΡld§˜Ύœf#=ΦΊ#@C³C^ί-&Š4^~σ“¨^χš#Dœ­H½©θ›3 [IεΖ#Q)gΫΜ1œq*)­hhŽQϊΙ[ν›ΓΉΈ:ΖΰΣΜjUκyŒ•†#“„χ₯ti8ς­ΩSΊΖ4™Jy_JΧΨϋΜΒ=<ˆ^·χΓΫοΌβΘМ•΅=8Σ¦OΒξέ{pΰΐAT¨P5kΦπJ¨? Νώ1J?f™__cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³Cά44;₯o&ω†(cΣkgW+•ΝFvŠιΛi6σa­;44;δυΪPγμ 7>σOψυΥΖ—Ή5ihvˆΟl&υz€βcl¦Jξ–RΉ1Ηp§£Ωš9†I‚KE€†ζ˜γ`Α;ΐΌIα‚κu€Sb*υ«RΟ“fΤ4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήgΈά§χύŽ Ν .ΑpγιΞυλΧΓΪ΅λ#»―WοxŒ7žςάΈρ"e^VŠ‘ωΡk€ƒϋΒSν;8Ή΅—i§΄τc–ω…Ή₯kΜό"ψ3ΏΎΖώgΘRE€†ζT‘δ8$@$@$@i'@CsΪ%(hhvˆ›†f‡ τΝ$ί,clzνμj₯r£ΩΘN1}9ΝFz>¬uG€†fΌrs€aΧEφ…οU ‘9JΔρšΤλ‘šcs,c\C©ά˜cΔΙδxƒ9†cT%’! Ν12oί<Ω3Zπΐ ΐI§E·5kRΟ“fΘ4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήgξιΦΠόάΈ x睩ωψ`tμxΚ–-kόΠι^{m2ή}gfΞz ΦχV±34¬Yž/ ͎tg~α“Ά‘τσσ ­|Ž*₯kΜόΒ‘ŒΪF5ΦΟΚ"%@Cs‘βζΞH€H€H€ “ Ν…IWήΨ44;Τ„†f‡ τΝ$‘ΝΨτΪΩΥJεF³‘bϊršτ|XλŽ Νx}: ˜υRΈaΕΚΐθ‘Ύ€εš°Kh"υz€Βdl b9ܔʍ9†Cš1ΗHRΒ7ihN8Ζήl\.ΌΈ Π΅oBλM©ηI3ZŽLή—5¦αΘ»ΆfOιΣpd*ε})]cο3 χtkhž;gͺV­‚‹Ϋ]·λ£Gβ™Ώ=-[³1vμ(”.]:>vγΰΑƒΨΉsglQd}εΚ•ΘΙΙA»vνP«V­HΉ”•)S¦`οή½8ϋμ³C@C³ki˜_ΈFV ƒτσσ‹’Ή.1σ Χ’θ ]γ³ mhhNzξ˜H€H€H ΥhhN5QΩγΡΠμPš‚7“όG6cΣkgW+•ΝFvŠιΛi6σa­;44;ΰ5ξ^`ΓͺpΓ‹―5 Lύhhv€Νͺ‰Τλ‘Š•±Y)–ΌL*7ζΙ΅³jΑÊJΙ-£‘9AϋΕS^ V©όuzBλM©ηI3ZŽLή—5¦αΘ»ΆfOιΣpd*ε})]cο3 χtkhΦνoΣ¦ίΠ£ϋ]X°p–ρδζ2ΆM•ay͚5–υλΧ―Η† ΠΊukwάq–mYΈ|ωrδεε‘Aƒ¨_Ώ>šΝUΆf…Bϊυ’ېsbΛt†ΪχκΥ«Ρ¬Y³΄ΗaΐΪ΅kQ\ΉC»6ι,ίΎ};vνΪ%š‘t³²²P‘B…Π#ιΤnίΩΩΩ‘N4oήάIΪΛ₯k¬ΞαUͺTAέΊuΣΞΚ*€-[Ά`ίΎ}hΪ΄©U΅˜²6mڈ‰…Θ%@C³\m   €K44;¦žπωηΓόωΒo›·’Yσ¦θrν•‘₯³œ·ΚΙΩ υτ‚―Ύώ•*VDΛΣOE»‹ΟGΓ8Δ¦% Ν6`‹ihN$βi[ςM|ΖζIR±&-šΌιI³‘7nμeM€†fk.‘­λ€§οˆlb€ρ€ζF§ΠΠ%βjΧqWΈ"Ι-‚Βρ s Η¨β2LjΓαkγπαί±dΙR,˜Ώ»wο1ξ΄@ηΞqI\«ξi|ϊιηΈθ’Ά(S&jRεŸ-ύ»Œϋ₯J•*0fΨ@rZ΅:­@ΣšHεdί-Όw ΠμΜθΆΝšδsΈ ™†fα\Kט†fbΪ4•1 Ν6ΒΉ(–±‹©X6uchΞΛΛΗW_-Γ…žg™c:tW΄ΟΔτˆ-‡@IDAT“·Υ°ά_²BυΖ#•wΛ'4_ΡθΠ3Ω ½^ϊ1ΛόΒ! ]cζΑטωEπ5φ?Cސ*44§Š$Η!  H;š“KpψπaμΪ₯:_Σχή{Gθ Ν=|Ώ£ΧΊ«§*^ΩιŒLθ RΆ;qPAC³€½»€αΧG+ξ œzntΫbMκy •†#“„χ₯ti8ς­ΩSΊΖ4™Jy_JΧΨϋΜΒ=u†fUwΩ₯ΧβωžΒΉηžκ°`Αb<:ψρΠ›'Ϋ·Ώ*Tΐž={Co€ψηΗσρ±ρ™Ϊujy‹†fΟθ"₯³Μ/"Ry^‘1σ ΟF:JטωED*Ο+5φ<1vL9šSŽ”’   €‹ ΝzςYYkΡϋŽϋ±pΡ¬ΠλUΥ“ςςςP©RΕΠ“φο?€όόόΘŽ>0^γϊΜ3/ΰψγλ Ε©Νπιϋ<τTη™³ήF­Z5΅;[Ής<χάΌόςΨO%POVκΤρzΌρζx4lθύ΅ί44k%ˆV&Ύλ9†―ƒqΌ&ωlΖζXΖΈ†RΉΡl'“γ š£bChhΦ@z πε'α Oa’‘YΓMS%υz€Bflα4URΉ1ΗЈ¦©bŽ‘γ°κ›oΎΓθ'Ηaκ΄·Bχ"»©ϋχίχ0ζΞ›fYŸΨ^ύHz@!>βဆζ#GŽΰϊλnCγiŠ}ϊܚ8”λmšmMxXύ]ΈςœΛ[±i.–zž4ƒ¦αΘ$α})]cŽΌkkφ”1 G¦Rή—5φ>³pOeZVo¬œψΚΈωΗΑƒyΈκΚρςΔqhΦ¬IdWκmƒ SsnξΎΠw&ΩΩΫpΚ)'cμΈQ8α„z‘v^VŠ‘ω‡oŽO5αή€—ω§’τc–ω…•₯kΜό"ψ3ΏΎΖώgΘRE€†ζT‘δ8$@$@$@i'@C³^‚ΉsΰΧ_Χαζ[ΗC3 ?D:τνΧ={ήΉy·xρR<ςπHΌ5ι%΄lΩ"ΤN=αyΤ¨1ψΟgΕ‚…³ŒΧΔ–‰τO\Q¦eυ%cμ«dUe’žψς›˜={>™?C;Fβ˜‰Ϋ44'±Ω¦‘ΩŒ»bΙ7Λ›;-ΝΦRΉΡld*δnI³‘;^l­'@C³ ŸCωΐΠ@ώΑpƒm;FΣΠAαjEκυHM‚±Ή’2X*7ζ‰\­0Ηp…Λ²ρ{οMǝ» ξ;X}”‘HύθωÏދόΐΪͺYζΖΠ<ηŸ 0vμxγΖΜχ'Μρά,ihΆ‘υΕ`κsαΚς§?Άi.–zž4ƒ¦αΘ$α})]cŽΌkkφ”1 G¦Rή—5φ>3=wοήΚ+>ŒjՎσ? 1B±34Η~η@C³£c€ω…#LΪFΟKΜ/΄ς9ͺ”1σ G2jIΧX<+‹” ΝEŠ›;#  (L44λι~8{.ž6^εͺžΒάΐ=θε*γΥhερΣO«Π―οChΣζŒΠΣJ•*eΤυΐΐχβOΊ0nPσιΟ>ϋڜuF\έ†ϊ²qΒK―γ?ωκΙKΖS’gO{bΧΕQ9 ͎0±7.|B³Cn Ν$‘ΝΨΔrΈ)•ΝFLhF³Qnϊ"@C³ Ύe‹·ŸŒV*³’2-ϋΠΠl’p·”z=R³`lξ΄4[KεΖΓTΘέ’9†;^V­§NmΖ ν Ν4 Ν7`ΖΜ FκVCΔ•954›Fι1cGαl7†Χ šmΘνί <Φ%ZyϋHΰŒ‹’Ϋ kRΟ“f˜4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήg&³' Νώu‘~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44λ%P†ζ'žxO==νΫ_ΧxǎΖkΤnΒίώ68ιDάtγψχβQ±bΤ€bvxα…WP¦tiΫ/#Νv±Λuλ6`½ρο›oΎΗΫo€;zχΐ=χτ‚2Oλ>ϋφνƒzE¬Υgι₯‘βN:YU§­lγƍ˜;wnhέ»wG₯J•KhΗ44§„Ώδ’ŒΝ›ΔRΉΡlδMOšΌqc/k44[sΑ«C€Ÿώ<σO@Οaq ihŽΓαxCκυHM€±9–1‘TnΜ1βdrΌΑΓ1*Ϋ†ΚΠ|`τΌ­›e›Β24«{ &ΌŽΉσ¦EήFe@B‘zΪβJΓ›*ΦΟ>ϋ ΫΆmCff&jΥͺeΩ.έ…i9%Ιb™€%ΎΨ’¬Σp”ƒjιΣpδ@Δ$M€kLΓQTKΧΨΑŠU“ΐš7ύάf_£.P³^‘ι ύ˜e~αP1σ‹ΰkΜό"ψϋŸ!GHšSE’㐠  € Νz Τ—y“&½‡iΣ'―D+S ρ›oΎ‹άά\\ye{άpύνκc nΏύΓΠάwφιeΛΎTzr(:vΌ,²m΅²iΣoθ|u7#– huΖiVM"e+V¬@^^^d;veύϊυΨ²e ΪΆm[œφυέ»wcΥͺU‘8Z·nz"u:ƒͺΊ5 'Ο9Β΄ ξBΥͺUQ·qCQΨgυκΥΖΉj vνΪΒ"Tl͚5— ˆ±y“E*·;v`ηΝ"7uέ³gΘΨ”IKOš4iβν€(Δ^6l@σζΝΡ’E‹Bά ‡N%š-hζζΓ‹Vτ΄ŒΟΑhhŽβq³&ω 9ΖζFΙh[©άhhŽjδf†f7΄¬Ϋ¦γ Νκ‡ΡκΝSwέu:uΊά:0›œœ¬Y³Ζ¦Pχ"”‘ΉeΛ–ι³M”ιψ[§fΦ7ψΓgο‡":R¦,~Έι )SΞ2ΒtΔgˆMαΪ΅kQ\94hΠΐ¦Ez‹·oߎ]»v‰ό»Μ$#]㬬,γ­uPΏ~}3dQΛμμl¨s‘ϊ;RκGΊΖκ<ή(ρώ§TέΣVςhΪ΄©T‰Cq΅i“š7ˆž€ΰŠ΅‘Y1|nQ˜δψΐšεαυ+zz†Χ‹ΰΏR3§NC³IΒϋRΊΖ44{ΧΦμ)]cšM₯Ό/₯kμ}fμ™j44§š(Η#  HšυθΥ—ˆSή›Žι3&[>hως±ψίKΡ±ΣeΈϋxο½ΧpδθΡƒV¨P>ΤΏZ΅γŒ/PrpθΠ‘H›ŒŒ T―^ o½υ.Ξ9»­ay[ο…nΪΪ½r֐Oh6IψXς Ν>ΰE»Jώ#›±Eur³&•ΝFnTŒΆ₯Ω(Κ‚kώ ΠΠlΑπΣ™ΐ¬ ኊ•ΡhDCs$Ž €^TπŒΝ‘„IεΖ£€TŽ ˜c8Β€m4wΞ|ωε7xό‰G-Ϋmωm+nΎΉ,œiόψΊ¬e›ΨΒ£Ζ}Šύ‡`ψˆ‡Q³fΨͺΘΊϊ!u—k»oOšŠΪuά=E™OhŽ`t·’·ά9Ϊ§‡ρf‡³ώݎY“zž4C€αΘ$α})]cŽΌkkφ”1 G¦Rή—5φ>3™=ihφ―‹τc–ωEπ5f~|™__c3δ©"@CsͺHr   ΄ ‘Y/Αϋ5†>6 σΜ°44›OMΊκκΈ΅ΗέXΈh–εΣ…§~0 §΅lΣO?Υr‡κΛΕ!CώŠ.şώt‘e›ιΣ?ΔζΝ[pύwYΦ;)Tf#υΤ₯N:9i^dm6nάh|i:7΄Ώξέ»§‰M44§D{Ι7D›7‰₯r£ΩΘ›ž4yγΖ^ΦhhΆΰ2φn`£ρκXυΉψZ kΏπzΜihށαbUκυHM±Ή2¦©TnΜ1bDr±ΚΓ,›¦λΦmέcPχ"ΤQ? .ΑŒaΒ„1(]Ίtbum'†ζ γε oΨώ »ΐ  φοߏωση‡žΠœ™™‰Z΅ά™₯ξΖw³΄‡ήόπŸpό-ΟzΥr.i‹Ο2š‚…4dβΆDΊΖ4ΉU΄`{ιΣpTP3·%5v;ινihφ―τc–ωEπ5f~|™__c3δ©"ghώ駟 >‚/U{β8$@" ¨›ΔΚ Ζ  (5*Φ hhΦΛ·oί~\vι΅7nΞΏΰάΈΖͺξšΞ7cΠƒύpΕ ½šυŽ^έΡωšŽΪ©1ή|ka'‘±‘“³#G<₯KΏˆ«Rc x/Ž;j\ΉΫ š£‘Ω!(}3Ι7D›^;»Z©άh6²SL_N³‘žkέ ‘9Χȁέ;Β…z—ίœΠ ΌIC³%–€…R―G*pΖ–T>ΛRΉ1Η°”+i!sŒ€ˆ7ψκ«oq}„ξAΤ―_›7o =•yψˆGP©RΕΘ8κO -ΑΨ±£B?ŽT[qjhΎϋž^hΣ¦Ubw_Ϋ44;ΐχφ“ΐ²Εᆧœ άύ·€ž'Ν@i82Ix_Jט†#οښ=₯kLΓ‘©”χ₯t½ΟLfOšύλ"ύ˜e~|™__cζΑΧΨ 9BͺΠМ*’‡H€H€H νhhv.ΑαΓΏΓx;Gθ©HeΚ”6ž”\Α²³ϊ’pΧ>|Ψ01WvddNhώP―‘U5F¬i:±­›mš’‘Ω!(}3Ι7D›^;»Z©άh6²SL_N³‘žkέ ‘9†Χκo E FOjV;Ί³FCs «R―Gj ŒΝ…1M₯rcŽ#’‹Uζ.`9hͺξ1¨?«₯ϊu•*•τ’Σ„†fZ¬ψxcx΄α“³€Jρ?h—zž4ƒ¦αΘ$α})]cŽΌkkφ”1 G¦Rή—5φ>3™=‹‘yηΰ―έ£0»χ Ξ½?X³<\~E CΟh›B^“~Μ2ΏπHטωEπ5f~|ύϐ#€Š Ν©"ΙqH€H€H€N€†ζ΄KP€ΠΠμ7 ΝAι›IΎYΖΨτΪΩΥJεF³‘bϊršτ|XλŽ Ν1Ό¦<όoAΈ ι@Ώq1•ρ«44ΗσpΊ%υz€βglNUŒo'•sŒxœn1ΗpJͺd΄£‘Ω‘Ξƒ―ς„_w?pa縎RΟ“f4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήg&³g±34+Œ.‹Β4ΝΛ44G™$¬1ΏHβaSϊy‰ω…QΊHטωE‚`6₯kμaJμRHhh.$°–H€H€H θ ΠΠ\τΜΣΉGš§‘Ω!(}3Ιd36½vv΅RΉΡld§˜Ύœf#=ΦΊ#@Cσ1^‡ς‘]όπ›6pγ  mG[˜44Ϋ’ΡVH½© ›V:ΫJ©ά˜cΨJ¦­`Ž‘ΕSβ*ihv(ω”gDΝ7n ΈοΉΈŽRΟ“f4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήg&³' Νώu‘~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†f‡ΈihvJίLς QΖ¦ΧΞV*7šμΣ—Σl€ηΓZwhh>ΖkΩΏ·GGα=ύ1PΎbt;a†ζ 7₯^TψŒΝ‘ˆ Ν€rcŽ‘ ”ΓMζA•f44;zεΧΐΔΑΡΖOLͺֈlK=Ošpd’πΎ”1 Gή΅5{Jט†#S)οKι{Ÿ™ΜžΕήΠlΎΡ‰OhΆ=ΐ˜_Ψ’q\!ύΌΔόΒ±”Ά ₯kΜόΒV:Η5v<6,t44:bξ€H€H€H ¨ΠΠ\T€e쇆f‡:ΠΠμ”Ύ™δ?²›^;»Z©άh6²SL_N³‘žk ΘΞΞΖαΓ‡ V%Λ–-ΓζΝ›‘™™‰Z΅jYΆIWα?ώˆ * iΣ¦…Β+?ήΟ™zΣf-ΫJ©Χ#0c³•M[!•s ­lΆ•Μ1lΡ”Θ š]Θ>δZΰ@nΈΓ5wΎ.Yκy †#“„χ₯ti8ς­ΩSΊΖ4™Jy_JΧΨϋΜdφ,–†ζ'nveΫ½’Π‘§}}Šk€³Μ/ό .]cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³Cά44;₯o&ωfcΣkgW+•ΝFvŠιΛi6σamA+V¬@^^^Α £dύϊυΨΆmZΆl‰J•*YΆIWαΪ΅k‘‘‘ϊυλjeζ’ΥΤΗ#ϋΘϊK/μnxjdΫjε—_~AΥͺUQ·n]«κ΄–­^½5jΤ@νΪ΅Σ‡ΥΞUl͚5³ͺJ{cσ&Tn;vμΐΝ;Eoκoω={φˆŒMεf@“&MΌ…ΨkΓ† hήΌ9Z΄hQˆ{αΠ±hhŽ₯‘d}Ϊ߁ΟnΤθ`ΐK‘R3€αΘ$α})]cŽΌkkφ”1 G¦Rή—5φ>3™=‹₯‘ω“Ιΐό·νΠΗ†ωEOΟKΜ/<ΙΧIΊΖΜ/βδς΄!]cO“b§B!@Cs‘`ε $@$@$@ι @Cs:¨§oŸ44;dOC³CPϊf’Θflzνμj₯r£‘ΩN1}9 Νz>¬-H`ίΎ}8rδHΑ £dι₯ΨΈqcΙ~Bσ’ιΐ‡Γ|*VFhΙ*ΆOhŽ₯α|]κυHΝ€±9Χ1Ά₯TnΜ1bUrΎΞΓ9«’Π’†f*―ω?(ΪaΔ{@υγCΫRΟ“f°4™$Ό/₯kLΓ‘wm͞5¦αΘTΚϋRΊΖήg&³' Νώu‘~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†fΈ\iό]Ο1¨Y³&5j)“²’n:ͺ§:φS'½ΜWς QΖζEQΉ&-šΌιI³‘7nμeM@εκ)Ν™™™¨U«–u£4•ώψ㏨P‘š6mZΈŒ1^ Ώι—π>.ξtν›t44'EdΩ€ΧqK,I Ι-)’ ˜c@⨀9†#L%¦ Ν.₯v›ξte/ΰ2γΥτΖGς9\ΕGΓ‘’ΰο#]cŽόι«zKט†£ΰk솲F ‘ΩΏΟKΜ/‚―1σ‹ΰkΜό"ψϋŸ!GHšSE’㐠  € Νi— H ‘Ωnš]ΐ²n*ω†(c³Φ,Y©Tn4%SΞΊžf#k.,υF Δš·žΎ# o ρŠψWΕ'ωΠМM΅Τλ‘ —±Ωˆ–€X*7ζI„³©fŽa¦„ΣΠμRψΩ€73άι„ΖΐΓ―…Φ₯ž'ΝΩΡpd’πΎ”1 Gή΅5{Jט†#S)οKι{Ÿ™ΜžΕΠόΓ€7GΨ½’Π‘§}}Šk€³Μ/ό .]cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³ ά44»€eέTςΝ2Ζf­Y²R©άh6J¦œu=ΝFΦ\Xκ@‰74l˜ώύA^Νzΐ°w€‘Ω¦€^T Œ­€\Ž €rcŽαHΎ˜c@R’ hhv)ΊŸ€ΏίντΨd vΡΧ, GQΙΌI½šσ‘αΘ$α})]cŽΌkkφ”±gP–ΕΠόΛχΐKƒμ% ‘9Ž σ‹8ž6€Ÿ—˜_x’5“t™_ΔΙεiCΊΖž&ΕN…B€†ζBΑΚAI€H€H€A€†ζtPOί>ihvΑž†f°¬›Jώ#›±Yk–¬T*7š’)g]O³‘5–z#Pβ ΝC3}»Γπ:―‡Ώ<όzψd4ihNFΘΊ^κυHEΛΨ¬5KV*•sŒdΚYΧ3Η°ζRRKihφ όγέ€œmαŽν'5vμ)ϊϊ’₯αΘƒΞ ]€^ Ν0i82Ix_Jט†#οښ=₯klΖ”% Νώ•”~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†fΈihvΛΊ©δ’ŒΝZ³d₯RΉΡl”L9λzš¬Ή°Τmh^΅ xωα(Έ‘οΥjG·5k44kΰhͺ€^TȌM#œ¦J*7ζΡ4UΜ14pJ` ΝDηλΐΏŒ|B}jΧϋ‡θλ‹ “†#EΑίGκ΅Πœ G& οKιΣpδ][³§tΝ8ƒ²€‘ΩΏ’YζΑטωEπ5f~|ύϐ#€Š Ν©"ΙqH€H€H€N€†ζ΄KP€ΠΠμ7 Ν.`Y7•|C”±Yk–¬T*7š’)g]O³‘5–z#P’ Νοώ ψza\Σ3€~γC€‘Ω1ͺΈ†R―G*HΖ'•γ ©ά˜c8–0!sŒ8%~ƒ†f‡ΐ¦_€1wG;šˆo·νE›6m’eΒΦh8ς/ˆΤk‘93ŽLή—5¦αΘ»ΆfOι›qeHC³)ΞΖ:τ4· m)ύ˜e~α_zι3ΏΎΖΜ/‚―±r„T ‘9U$9   @Ϊ ΠМv Š4š]঑Ω,λ¦’o–16kΝ’•JεF³Q2ε¬λi6²ζΒRoJ¬‘ωP>0δΰπ‘0Έm;:†HC³cTq ₯^TŒ-N*ΗRΉ1Ηp,a\Cζq8Jό ́'oΆowώˍψΆα944{D©ΊmΪ΄ ΩΩΩ’J½šΨi82Ix_Jט†#οښ=₯klΖ”e±44«-½1Ψ•­—†ζšυ‡‰“Zιη%ζNTΤ·‘1σ ½~Nj₯kμdlS4hh.Ξά   @ ‘Ή Ϊ Ν.Ĉ14o9³=*V¬ˆjΥͺΉ ›ώ±=P³^hκΩΊuλ’~}γ5΄Β>’Θflή©άh6ς¦'ΝFήΈ±—5khώζ_ΐ;OE‘<ύ1PΎbt;Ι ΝIΩTK½©p›hIŠ₯rcŽ‘D8›jζ6`Jh1 Ν…d20νpηκuπmη‡E›qi8ς¨sL7©ΧB3DŽLή—5¦αΘ»ΆfOι›qeY, Ν ~μ5ήN šCd˜_Ψ ΞΛ₯Ÿ—˜_8Χ₯t™_Ψ)ηΌ\ΊΖΞgΒ–…M€†ζΒ&ΜρI€H€H€ŠŒ ΝE†ΊΘv€’ΥC‡Ž=%0a―?ύτvξά‰‹.Ί(‘&½›*&υG­ϊ\pΑ(_Ύ|z2φήlΒ=iΑ.€MΧΔώϊΝBΥ?ό3jΥͺ…:uκΨ5O[ΉŠ­E‹iΫΏnnjMGΗΎN*·mΫΆaǎ"7e„Ϊ½{·ΘΨΤSΚ”Α€Y³πωΔ^ω’―Y·n6l(’[ΡΣ({,±†ζ‰ƒ•_‡E:σΟ@Ο‘£‘ΩHcΙ7ς[D&W+RΉΡΠμJΖHcš#(JΜJnn.6o>φ4α„Y9rκ^„ΚΩΟ9ηT­Z5‘…ŒMiλ”۝“ށσΩΩ7 ξy—DΆ₯­dee‘lΩ²hΤ¨‘΄ΠBρ¨§3«{ORοQ¨ ₯ƒ‰B^½:τcυwšΔΟ–-[°kΧ.œzκ©Γ Ε$]γU«V…ΞΡ'œp‚H†κ:£7Ν›7Ÿ JΕΧ¦M±ρ-°bkhήΉ%ό”ζΝYφ’ΠΠbCC³ύ!β΄FκίΪfό44›$Ό/₯kLC³wm͞56γδ2ύhhNΏŒ€H€H€H EhhNHAΓ¬X±yyy–­_ΏκΫΆm-λΣU¨Μ~κ¦Ήϊ΄nέι %²ί6x(².mε—+ξΑήΊMBa©/”jΤ¨Ϊ΅kK *6‰FIбy;\€rSffυε΄ΔγM]gχμΩ#26e:pΰš4 ŸOΌ…ΣkΓ† ‘/)% gζΕwΤihΞΝ†]­Ο(ΰ4w9 ΝQ|nΦ$ίΘgln”ŒΆ•ʍ†ζ¨FnΦhhvC+msrr°fΝΫΙ¨{ΚΠά²eKTͺTΙΆ]:+$ώ­Σβγq¨Έλ·–ΥυNGnϋžιD€έχΪ΅kQ\94hΠ@Ϋ.]•Ϋ·o™]%ώΝh2‘x š±©₯2­W¨PAδΒT|Κ΄ΞE’Ν5Vηρ*Uͺ„ή§˜Jϋ¨{ΪϋφνCΣ¦M₯… Νq8 u£Ψš•ρ5ΛνωΠΠbCC³ύ!β΄FκίΪfό44›$Ό/₯kLC³wm͞56γδ2ύhhNΏŒ€H€H€H EhhNΘb2Œ2©§#uκΤITΔ7nΔάΉsC1uοή]Ζœκ¦β±zΊ†zϊβ&mŸΨœ}Η'·…’ώ­[·Θ/”$‘ΝΨΌΙRΉΡlδMOšΌqc/k%ΠΌxπΡ+a +£?΄†£)₯‘YGS%υz€Bflα4URΉ1ΗЈ¦©bŽ‘S«ΤAζϟ24gff†ή0$ƒΘσΠ’)ΐœ7BΈW¨‚²OΝ–ˆ. Gώ₯y ΖL‹†£W₯kLΓ‘GacΊIΧ8&Τ΄¬fe­EιR₯qRγΤ<͟†f2J?f™__cζΑטωEπ5φ?Cސ*44§Š$Η!  H;šΣ.A‘@C³7ά"ΜF.‹OCs”…Η5Ι7k›{Qi6rΟLυ ΩΘ7φ²&P" ΝOχΆΉΈ Π΅―5M©ˆΓ&>u=⏦lΰhŠyΧΐΡTIεΖC#š¦Š9†N ¬’‘Ω‡θ9Ωΐγ7GΈw ΠμΜθΆ 5Žό‹!υZhΌ†#“„χ₯ti8ς­ΩSΊΖfœιXnίΎ7έΨ ]Ί\‰Ύύϊ€$šύc”~Μ2ΏΎΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†foΈE˜hhφ&žM/Ι7k›hšbš4p4U4iΰ°Κ5ghώνWΰ™˜/aΎœxŠkn"r ›¨Υυˆ†f8šb^Η5p4URΉ1ΗЈ¦©bŽ‘S«hhφ)ϊsύ€υ?‡9Jΰ†>,œξ4ωη*υZhΌ†#“„χ₯ti8ς­ΩSΊΖfœEΉά³g/>[ϊ† Ϊν]wέ†;©ψΠΠ쟒τc–ωEπ5f~|™__c3δ©"@CsͺHr   ΄ ‘9νi44{Γ-Βlτθ5ΐΑ}α π Νή„Œι%ωf-c‹Κα*ΝFA%4£Ω(7}(q†ζ^O 3«YφŽ'~"r ›ΘΥυˆ†f8šb^Η5p4URΉ1ΗЈ¦©bŽ‘S«hhφ)ϊ’ιΐ‡ΓƒT¬ŒžνsΐΒιNΓ‘R―…ζΜh82Ix_Jט†#οښ=₯klΖYTΛ£GbΘ£O`Ι’ΰ©§‡_ ώΈ;%!ΠΠμ£τc–ωEπ5f~|™__c3δ©"@CsͺHr   ΄ ‘9νi44{Γ-Βl4~ °fyx44{2¦—δ›΅Œ-F(‡«49•ΠŒf£ άτE Δš‡fϋv‡™uκ\σ:x$Eδ6ρͺλ Ν6p4ΕΌŽkΰhͺ€rcŽ‘MSΕC§VΡΠμSτέ;€‘7Fiy>Πϋ―Ρm!k4ωBκ΅Πœ G& οKιΣpδ][³§tΝ8Σ΅\Ής|2oθOC3bου[ rE CO«š”–I?f™_ψ—[ΊΖΜ/‚―1σ‹ΰkμ†!UhhNIŽC$@$@$v44§]‚" €†foΈE˜borΠμMȘ^’oδ1Ά‘lδTB3š€pӁeh^ω 0ρ‘(―‘οΥjG·]¬‰Θ1lβUΧ#šmΰhŠyΧΐΡTIεΖC#š¦Š9†N ¬’‘9’Ώ1Xρyt σ:7 Šn X£αΘΏR―…ζΜh82Ix_Jט†#οښ=₯klΖ™% Ν1δcουΗGVih‘`~9"<―H?/1Ώπ,m€£t™_D€ςΌ"]cΟcΗ” ‘9εH9   @ΊΠМ.ςιΩ/ ΝήΈ‹0Εή䀑ٛ1½$ί`l1B9\₯ΩΘ!¨„f4%α¦/%ΚΠόξΣΐΧ‹ΒΌNn ¨λ²ΗˆΓ&vu=’‘Ωަ˜Χq M•TnΜ14’iͺ˜chΰ”ΐ*šS zώA}*ξή¬γm@ϋξΡν4―Ρpδ_©ΧBsf4™$Ό/₯kLΓ‘wm͞56γLΧ’†ζς±χϊcŠ#«44‡P0ΏˆžW€Ÿ—˜_x–6QΊΖΜ/"Ry^‘±η‰±cΚ ΠМr€H€H€H ]hhNωτμ—†foάE˜borΠμMȘ^’o0Ά‘lδTB3š€pӁch>” Ή8|(ΜK=Q=%ΡγGDŽa»ΊΡΠlGSΜλΈަJ*7ζΡ4UΜ14pJ` Ν©ύ‡Ο?E«…œμθ€· ΞΉ,ΊΖ5ŽόΓ—z-4gFΓ‘IΒϋRΊΖ4yΧΦμ)]c3Ξt-½š<ˆ;wZ†ΌrεJδδδ ]»v¨U«–e›tN™2{χξΕΩgŸϊKμ½ώΈŠc44‡@0Ώ°:8ά•I?/1Ώp§§Ukι3Ώ°RΝ]™tέΝ†­ “ Ν…I7ΐcηηζΒψΪ Uͺ #ΐσδΤH€H€Šš‹—^~£₯‘ΩAf£Ψ›œ44{2¦—δŒ-F(‡«49•ΠŒf£ άτE ΔšΏ^Όϋ·(«§?ΚWŒn»\‘cΨΔ¬G44ΫΐΡσ:£©’ʍ9†F4Ms œXECsjD'O¬ <ΧΨΏ':θO§ώ1Ί¦5Žόƒ—z-4gFΓ‘IΒϋRΊΖ4yΧΦμ)]c3Ξt-½š•ay͚5–!―_Ώ6l@λΦ­qάqΗYΆIgαςεΛ‘——‡  ~ύϊq‘4›2ͺl͊+‹έψνŒΛ°εΜ+b‹ e}υκΥhΦ¬Y‘ŒŠAΧ]‹rεΚ…¦bΌT±}ϋvμΪ΅K4Cιgee‘B… ώI΅V^ΗΛΞΞύp’yσζ^‡(τ~5Vηπ*†GNέc”ψΩ²e φνΫ‡¦M›J /S›6m"λ\!;ΕΤМ‹s ΅•oˆUμ¦η΄]§ε»πΝ’";£!.nΧ Άα8Nz»όŸqζCψՈ³Γθ)θΫΚ݌s·nDφΎ|dΤ8 νΕsA!Yί|в3pφΕνΠΠ]8.φΓ¦$@$@ ΠΠ,]‘ΤΖGC³7ž"ΜF44{Ο¦—δ/›hšbš4p4U4iΰ°Κ5ch~ωa`Υ²0Ÿ3 τκšUl9Fl@1λκzDCs ‡«ΌŽ;•ΠL*7ζ B9άdŽαT iFCsj„Žœ'7ώ<_τmeΛχ=4j‘šy…†fΰbΊE4Ž)“΄JC³5€kLCsπ5φ?C#x14>|°άρŠ+ Œh|BσΙ­υ―†a<·πŒΝΟKΜ/,}W…5f~αJNΛΖ5f~a)›«Bι»š *βihΞύ=Ί aiΦjΆσ‰8χ‡ΧΠmΘG‘QΌ|}ξήUχό|Γž‘αο©ΚΧ» ώ›Œ=w6 Ν}\š7bΔΥχ όuΩ₯ψΗΗύQΓΥ ,ηΗCfψx¨ήy4ήξΣΚ’‹H€H€JšK‚ΚΡ9ΠeαfM„Ωˆ†f7’%m+ωcK*_4@⨀f#G˜ΨΘ!ahΞ5ξͺ ».J€Ο(ΰ΄ΆΡmk"r ›ΈΥυˆ†f8šb^Η5p4URΉ1ΗЈ¦©bŽ‘S«hhNθqηɟΎ^}4:pΕΚΐΐ—ΪρOŒ6(ό5Žό3ŽΣΨp)†#H₯kLΓQπ5φ?C#x14λφ¨ώžVyg ΝζΔ›žτgn₯|)ύΌΔόΒΏδ5f~|™__c3δ©"P< Ν†υ~Γΐͺž¬5Τ:mη“fξΟ“Πν‘‘Q2Ÿ‚ΫZH|Dp>=š‰ηWΎMΏ>ΈΖšΏ°žΟΟΐuM2ό)khΞ|oί–ή_οϋ› {“  ψ!@C³zΕ―/ Νή4a6’‘Ω›x6½$ίΘcl6’iŠi6ΐΡTΡl€Γ*ΧJ„‘yρTΰ£WΓl”qhτ‡9%v‘c$ul[]hhΆ£)ζu\GS%•s hš*ζ8%°Š†ζԈ^ΰ<ωυ"ΰέ§£ƒW?ή05ΏTυύ8œθ˜.Φh8rΛ¦imΪ₯«˜†#δ₯kLΓQπ5φ?C#ΠΠΓ/φ^LqUšηfΰδ“O.€FBΑ¦M›6mΪHΗ2ιΧζ–²Ή*”1σ WrZ6–±eΠ,L šS‚=³²›Q-―ΚωΙΕ€»»a†ρXε†ιw’Σ―Cσ’G»¦κCBεΞ{ 3‡ϊ{,wc6ζf a‹†h'L˜+$@$@…J€†foxΏωζ;ό‘Ρ‰¨]§–·4½rrvcξœψκλoQ©bE΄<ύT΄»ψ|4<±¦—³*šqJl%Βl{“³οΨπ+ηŒ@Υ²4%*–|[ς Ζ–\ΏΔ4%qΆM³‘3NlεŒ@‰04?έ ΨΊ> δβ.@ΧΎΞΰhZ‰Θ1lβcŽa&I1―γIΩTKεΖΓF°$ΕΜ1’rQ}ψποX²d)Μ_Œέ»χχZ sηŽ8ι€F.FŽ=ŠO?ύ]ΤeΚ”)Πw͚_ρ·²@ω‘C‡qΙ%‘FκκœΠΠμ””ΎεyrΡ{ΐœ7£λτ(_)ZVDk44ϋm©±aS6 GώQJט†£ΰkμ†ώF ‘9†_μ½ώ˜β«44ΣΠ\ΰ pW ύΪΓόžV­₯kΜόΒJ5we5v7Ά.L%ήМΏk#VfmΔ}ΉΘ7¬° ›œn˜’-±ωΨΊ1Κ†[½aC`γΟXφσFδgΤEΫv­P%?[³χ•+£npίόά­ΘΞ‰w­DTcΨ“£x ο֍PΓ—«ήuA6ώπ ~ήΊΛΨMj4<g·ˆ«UΫ}ΘΕτΒ'ΖE«_ϊΖτl…Cω•ΡPuŽωμ2ζ–eΜu_~Ύ1T]49ύ4¬’πe―†ζάoΠ£ΫH!Δ|γΩ/ EΒ.v©˜CψŒ&ό ί`»1ΔΦ¬3τ1η^·†A α“» ?¬\ihlΜ)Δ§1Z5‰ςIhΝM  bL€†fχβ­[·]»τ@Ÿ>·βξ{ cK ?κ¦ήΝέzγό ΞΕυΧ_ƒΌΌ|Lύ`¦aZύ#F>ϊβΟξhhφFO„Ω(φ&' Νή„Œι%ωc‹Κα*ΝFA%4£Ω(7}Ό‘yσΰΩ»’ŒΤO<%ΊνqMDŽa»ΊρGS6p4ΕΌŽkΰhͺ€rcŽ‘MSΕCΗE•ΊpΓ ·#{λ6 ϊ κp<-\‚©SgγΙΡΓΠ‘Γ₯ŽG{ύ™7φ%Μ_0Üόόί'bΥͺ_ΠϊΜVΘ7φk~ςςςΠ₯λUhδ$³Θυ’†fΧΘ,;؞'ί7~πόεΌhŸΖ§χ=Ί]Dk44ϋm«±‘S2 Gώ1Jט†£ΰkμ†ώFš?Y„ΈΫί@Ηz«Ώ§UήΩ];Τͺ•ϊΟψ rΚ”)Ψ»w/Ξ>ϋμΠΏΈρbουΗU$l4h <ψJBaκ6₯Ÿ—˜_ψΧZΊΖΜ/‚―1σ‹ΰkμ†!UJ°‘yζύύQLψ—ρΘβ„Oυ³zcΜγΧ byΝύΑ0β q«7rΜ>Υ1zΚΫhόλkθ6δ#c”πv+Γ#όΓk=0δ£xλnΒnž”μ"ÜόZΧnψH~_Š•?Ε'1O=ν§q&^α6c1m@LωΈoΨT½υŒΈg$–…LΔρ OΟ‰Ηo;;jφhhή8oξ™°ΜόtŒ~ωΌtΟ“P$Ο{θu m‘m”δγΓ»ψaΞ|v nka―·βο]{γ_Ηβ|θ£]Ή¨>FOA_%ΐ±ΟŽΒΧΏ47£Λκgaδ˜Ηpvέφηh‘  ;44»“μΠ‘CΈξΊΫ°qΓ¦™Y™šSυQ_Vvν7ήΨ·φΌ)nΨ₯KΏΐÍΐ‚…3Q΅jτΊΧΘΑ Ν Y4a6нΙIC³…JξŠ$ίΘclξ΄T­i6rΟLυ ΩΘ7φ²&xCσ‡%ΣΓ“―YφŽ5—₯"r ›˜Υυˆ†f8šb^Η5p4URΉ1ΗЈ¦©bŽ‘γ°J=QωΩg_ΔŸΣ¦OBΩ²e#=Ώϊκ[ά}Χ̘ων“šύwde­ΓKγ_ƒΊ§ ^Χ=ο“i¨^½Zd,΅’φuΓυ·cτSΓΡ¬Y“ΈΊTlΠМ Šα·3ΩΎΞόυaΐ_DwΤΊpΫπθv¬Ρpδ²Τk‘93ŽLή—5¦αΘ»ΆfOι›qeY" ΝJ¬ηšdYζώ₯—1σ‹ΰkΜό"ψϋŸ!GHbohΞ|v†av΅3₯ώŒϋ―~Ώ΄:FΧ>£k>ζ=š‰ +LŒΥqΦyM°υΛe!ƒm¨΄zgΌώvŸ°©9Ζΐkφ/†ζ‰hΌqΊ=4Γ( o«έό<ύ~<4ωW”+W.άTp«‡bžΪ\½σhΌέ§•Qα2υ΄ε»»a²ι«ν‘:7l|‰-lΠσYLΌ!ζxοmφmΪzΚ΄j^½Au4<»?žϊμ|ΥφΗ΄Π{‘¦APμ¨D@E1PDPE° (¨•ς„§`ΓFQ)>P|Š"ŠEͺ!H„„φΏgvgχξμτέ$7›3ŸO²wn=χwfwοΞ|ηLŸV"άσZ<(€m½e±ZΝΠR’ώρǐ@:ž, c‘I›€G€bσϋ1΅ϋ=Π`ώΘv˜7ΰFL#ηΤꁙSnŒV-Gs.ΦΣfχΧ|‘2ο)<2-`W]1ΏΧnmliOΖͺ‰θ6⫐9u[ΆR~Α–gή f½ˆzV‡O¨%'XV€`ς‹ 4{σE-Ϊ·o?Z]xΆoہώυ‰κΰΐƒ Η΅=r5kΥ덳QΈpα¨zΖ Š†Τ§χ#Xςυάπz(X‰.0v‘›Ÿxb Z΄ ΅ΏfΊ)1ΠμΟy­T>‘ΗΆY8Ν&›a#qlŠ6²'E‡gΰΛ/—ΰ‡~ΒιS§ΡϊβVθΤιΪ(ˆΘj(ZO,Z΄?ύΈJ.Ό¨½φT©RΙͺ‰–τh&V­Z­=RΎP‘B‘ΊτΘϊΕ‹—βΔ‰‘_πQL7P[Β@³•2ής?'_(ξX _ŸΒδή‰‘6G1ˆlκθγΨ‡ˆ©Žb’Ok¬Ί8J|Η>C΅z` 9v¨ώΉΔλ‹Δχ1―/ίΗΌΎH|Η>Cξ!^ δ{ ΉnΫθxNidg‡' IΗΔΤ_k― ήξ^1½G­U+Φ¬&Ώxk0s–Œκ‹ ?ˆΧ–ύ&cdGρJ/5jϋΘ θέζ”QhΛΨ 4kΖϋWΰ–{F‘b₯xζ‹ ψΩ³= ΉV‡!x₯›œ±Γοˆ΄, μ™ΚΔ=Μt²AΧκ,@η>n;Ύ|JDNœκΝn•²―ηψ9™uΫΨ³#άΡMWίήΟΑG±‹λθγΨ‡ˆ©Žb’Ok¬Ί8J|Η>C΅z(0@s‡ΰSB/jΠ£βΈ©ώΉΔλ‹Ψ­Ίy}‘ψ>ζυEβϋ8φrρR ίΝn…ƒ·r4δf3E„Ρ^κm7Ζί_k•ƒ―ΜVh;οQ₯ΝΠΌEΏ_QΏbλ1f&nmL„­{d Y{΅ž΅SΔΠΟDΌεZΒώ)AYjSKD†ž’E†4Ψ½v –) ξuΡΉc+Θ‹7ˆΎ†P_1Ν«&vLj―o‰ σGB{Ψ›€«Ρ¦€&γG@IDATe"υ‰Zƒ’!’;R΄₯@IΏΙσA¬ΉΆIύ„ύœιέ»a )4š)ΰη Ο,$OΑΔαS±γˆ€Σ>v:ιμŽ_XV€`ς― 4»σέ‘C‡”ŒΧ^{ ΅n‰?ž‹=ι{"€ζ₯K—γ‰ΗGΰνιΡ΄i`΅”••Q£^ΑΎ[E‹ηˆΗΔF_ˆΤ- h™.2ʏ’₯2‚ަL~ sη.ΐW gΩφ‘χeυΚ@³•2φωJΐF 4Ϋ;Ιc©Κ'ςΨ6ΞΥ6ς΅`ΨȟnN­(rrr΄mΫFƒ™ε›”ήϊΟ{˜ΌpΡl 2λλΨ±cΈαϊΈ£λ- ˜Yn?{φηZtΕ―~ͺέ0elOkšΝ)ΏfΝzŒ7oΏ=1’Oc~χh~οE`Uΰ&4hτλW¦¨vJ¬1’¬ dΠχί4e!ŽM6ΫˆcS€ͺnΌΖ°qšM―1lΔqYτΑŸbΏx:”ΩS‘¨ =ͺςΌΟ>ˆΈΙͺ{; yρβexφ™P³fu€¦n uQ]<Αፉc΄§N…2}$hφ!šIWŸ“χγΤ|HΌκ[g€ χr앁£Ψ₯uεγΨ‡ρέGΎ₯ 5TέΗ …\ε;‘Ί}OLΡ†ωhώj°π]oΚΉ:'ΗMυc–Χ±;[uσϊ"ρ}Μλ‹Δχqμ3δβ₯@Ύš+Τm‰sͺ Υd;žώ#~ Β°2θϊιƒ’%F·ƒ€“ϋGΒΙΤMŠˆΰϋˆΑ·ˆ’όΞKZ‹"20uU+Yΐΐ=Ο‹Ν ΠΌb|wŒώ:ωΉn1xνV£ΠW{Κ„ΫDBΛ³6L€!³„΅2„l4‡'³kΏύ+Φξ€`}Aͺ¦―ύΏμ±ά—)@ξ%:•‚§n|Ω.―ΊŒΠtΉ“ηƒΞ(‡ϊΨΏ έrάΊΒ―Ι>°°g­€¨‡j΅hW¬.’ϋά‰KΞ«‹z΅Οˆ€ΆCcq‚`XV ί+ΐ@³³ υ ΥΞ¨Š‘CӁfŠΌΨ₯Kw<φX?\uΥε;–%ΐ€;0fΜshΡςόˆ2«sΔiψί~E^"0iρ’Ω^ έndΥΤ6Ÿf[y, •€hΆτŸ•Oδ±mή=Κ°‘wΝ¨ΓFώtsjE{τi,ωzΈΙ8ςά ­nΌ‘+†>=—_~±iW+VόŒ‘O=gz#­Ίu덇κƒ+Έ$’}ZZ:οt»ΑyΨΣΟγ½χίDŊBuŒ:*)ί[DhΞ‰-aζ¬L`Ψ-β³ΰέβ]‰‡ZuŒ›„J¬1,fCίG 4[ˆc“Νίγ6βΨ©ͺ―1lœfSΔk q\Ο9›Ρ P:ގY³ί‰ψΎ7ΦΣχυσfš_7 ο½χ1FŒ|;ΆΣn²>z4S§Ξΐϋο}’=q*–'E1Π¬{!ΆWן“ιہρ™tΕ*Έυ4l‘οεΘ+G±ΛκΪΗ±ε«Ž|ΙΡHu3pα._;ͺϋΨΧ€n”―ζŸτ·/ ؟ξNešέι”‹΅vξά‰ττtρ$΅œ]gΕ2%Υ?—x}‹wmUχ1―/ίDZϐ{ˆ—ωhN3 =Λ1…eiR0@€΄"‡€ζμ Nb 'Sλμ Σ‘βΡ΄QΫκΠ‘js’`XV (ΐ@³³―-ZŠΡ"ΚςΒE³D4ΕZγΕΕ­[·£λχαΏKη‘dΙ’QΎφΪΏQ€paΛθJQ DυΉMό­Zυή}χ#ά'’4φνΫ+¦¨Š 4›)휧lΔ@³³£<ΤPω$ΫζΑ‘Αͺ y׌Z0lδO7§VτT…Ββ;ώzšVuŠΈHε‡3,ΫΣ6oNΕ AύCύ(}Ην½pKςΈύφ›qm».€“1‘M5ΐž={ΔS!€Κ•+‘xρψόΘOX yε"ΰƒ—Z€ϊ¨Ω@ρθ΅^ΘJ¬1,l¦ο#š-Δ±ΙζοqqlŠTՍΧ6N³)β5†8.‹θœC¦€Š{τμfΪ"ž@σ ‘lΩ2Έ²ΝecΡϊα囀΄έι;v”ΆΎ‰¨ΰr‡f—B9Tστ9Ήmπͺ€šυ-IœΛψ:P£žχWšc—Τ“cΞs y–,ͺκ>fΰ(Κež3Tχ±η )ή _ΝΊΆ^"53Π¬«¦Μ+Ν±»‚Χ±k¨ϊw―/ίDZϐ{ˆ—ωhΆ‚`52ΦβΑnCAΈlΈ^ † Θ™Π]³hΛΤ.cνTtϊՈhήύ-ΊχŒ0ά cf½ˆHώΪ‡=qš3ΦNσύЦE2ξάηV\R·6*Š ‰KF=‚Y$ o 9σ$cQεN[³G0Εv†ZΩX2Ό+&όŒ$|ςτ΄)ΈD&š­€ζ`O»7¬ΐ—_}‰«Φbη½*l‰13G’qlΑ! φς.+ΐ °¬@^*ΐ@³½ϊ;wώΞ7vΓǟΌϊυΓ~fϚ}βρ―z”ΓΝ›·ΰφΫξ΅νμή{ο@soάίg ~ωε·PέQ£‡iQB& ݎιΣ'αΌσΟ5©ΞZ·n²²²ΒRjΫΆmHKKΓ%—DFu”ͺδIςΰΑƒψλ―Ώ΄±›7oE€ΞC,έ΄i“Έΐ[Vƒz,ͺδxvΓ…“QfwŠ6Ξίη·CΪΧiι7Šˆ\Q₯J•·Αλd[Γ† ½6Λ•ϊl›?™UΥmοή½β3yŸ’Η}Ο:tHIΫΚΜΜD½zυό9ΨjϋφνΌm„ƍυ'5εΰ`qμšΐŸξw?€Ηlά²₯ωc@ιΙ ™ΦEŠ‰έ xώτΣyΨ-’1ˏ §θ‰”ι¬βfθγQ)žΡPΐΜ?|SĘύϋχΦ`)3["*:μ$,Π<ωqΰ―ΰΝμ\ τζ „·bš½ι₯ΧVωb Ϋ¦{ΙΫ«ͺΊ1Πμ͏zmšu%όΏo’6φO ΩΨ·ΌOη"hm³hρΉ9zέ’Χ=pΰ€Έαj³ΎυJη"θ†ͺ¦M›’T©RQε*d¨ϊ[GΧΖ«}ε·―G½₯Συζ8Q’ ώΌώd—?Α#T‡Djjͺφt’Z΅jΕ‘·ψwρΟ?`ώύJώ.ΣgλΥΗz»άzMIIΡ=Τ¬Y3·†τ4EΘ€Ο"ϊ©κ¦ΊιsœžH75ͺΈΡ9ν#GŽˆsτυU4/d“Κ‘ZCF&H‚ζΨ©κο0}f|Γ”„WΥ}Μ@³ίκ-Uχ1ΝΊ§όΏͺξc3γ–ρV ±fSΠ5Ÿ>Ψ 3€[μβ!˜=¬M”¦k'vΗΠ―PLž= ΅₯~jyŠΠΌγoι‹―ƒ m13qk=λΓ„ΫD€ΖΑ™8FhN~Szž¬/ŸJΖ$ €,’OяkKŠ„’#ϋšχ―ΐ-χŒ†&A± ¨PZκ<˜ς’b Ω‹Zζu)jς?ΒΘηž2­φχnάygΟ qQΣ:r&­Q8Ο•*U eeecεΚ_pωε›θάΕuν“΅›¦δv‘‚ ZΠ †fυAη"h½ή¦Mν·΅Y½ΌΞSυ·Ž‹ϋJ­ω忚¦wε«bο=ΟαTIι‚R¨4ΆšΕΔFλΤ©[G9Ԛ@HΊVΕίeϊ”ύψXo›―6lΠnH8묳rc8ΟcμΪ΅KϋjΦ¬™ηΆΉΥ@uρΗ(W\žž΄σŎ;pψπa4iΔZž–Ρg ΝΉη‚„š7‰ΐ7Ή­u{ Rυ@έϊβ&ϊζ7»λ,PKΥίaϊhΦ•πͺΊhφο[½₯κ>f Yχ”WΥ}μfά2ή @ YD~K0βo<ύΞ»Έ$|Ξ Θή ΰΨ!‚…}Ν+ΖwΗθ―-Άf½'ΰΕ›Μ#EyΆΗ'Π<]€άmΉXΫ§1{ ~Ρ*Σ»‹|2³noΜν&ΝήΐΏ ]Ή[ Ί² Kz„#_KΝ€δ†O`Θ Ο\ C¦Ν†);ΌγKάΨw’ΦͺYΏΙx±c©ΆˆΫZpηZ0δ¦ύ3ιΗ@=YO3{DΫξ’-M«₯€–GF Ό7ή8Tλ§B‡πnξΦ²ψ+ΐ °¬@>V€f{η-ψ|ΦΎAOŸ €Κτhφ?œκΥ«αK[£uλ–8§qCάΣύAΝ1.όρGspnΣΖhΦΜό„+]\:τytθΠW]uΉ©QyqΧ4 π€iΉ›LŠžH0T§NάTΟ΅:tBϊ‹/ΎΠΖ»ϋξ»•‹Ψ€lτΖcΐζ5Ÿ\ΧθΠCKΣY~ΌχCUεl›w2lδ]3jΑ°‘?έμZι@3}W[=QΑ h¦›’’“{ ΞΩgβε1ρΦ΄QίγΖMΒο‚^½θ©}Όœ…›:wCώ}Πω¦ŽZ=3 ωπα Lžό–Ά† ›¬δM Δ‡½%"Φ™ŸƒΡλOλ³mωςε οσ„šϋ0j`Ί%Εέζ/Μ3›zLyJ¬1,fΐk a²ω{άA ‹bUuγ5†…Γ²yα ‹β­[·kη.šezΓοβΕΛ0kΦg˜4ιqƒuaΗ­€fΊιιŽΫοΕ’―ηj0ͺ±#²γΎ^ƒμπϋ4‡£GbαΒ…Π¬β:AŸ³ͺŸC1Ϋχε `Ρ»z7β!« €G^—Ÿτ6α’XR Ε’^ ­κΗ G‰οcŽίΗ±ΟP­ Π,Λ/]³½¦Uξαυ…WFΧWέΗΌΎˆφ™ΧΥ}Μλ ――Ί£-朼R @͐ZγιΙOγ’Ϊe½{-^<?dtρϊ·΄³ΜΊΠΌγΫρθ;ζλ _E€η™Qϊψd‹XΑtj%;;₯KŸ!w#vΌΪγ hΞΖ<‰yš˜Έ%ΖΜ’Eb¦Η턁κbθπΘHάyI]dΨ‚Ο&Ηgλ‚‹uΐ΄Ωύ‘Ε=’τ°šw‹Υ½ͺkυQ•o GUŽ8βχcjχ{πι^‘3ήy·* ₯B‘£Ev1³DtλlQ―[ *@ϊέ mjO žΊρβ07Γ#c’]ca}vΦ~= C'|Σς‘ΙΩNŽIaο°¬+ΐ δ3hφη°Οζ}‰΄έιΈώTͺGLΌ―Χέ! HοωΘ‘£hΧφfΌυφ"‚D#=;κ•"0½ςΚ¦–(’ΡΝ7έ…‘O"'E5v™Α@³K‘ Υ”€h6x%Ά]•O°mή}Λ°‘wΝ¨ΓFώt³k₯ΝvšSRR΅(Ξv`ΑEwίuΏφT‡{ztΥ"5ΏύΦϋ"’ά9Έμ²‹q,+ }ϋφΒψW'c·XΌψπPTEZ3tμp>›?Sά TΞ\­Œl¦›ͺΏΎ=ΈBΏ‘ΫΌΩΊuλ%Ζ6ΫT~”<=žˆαυρΨMζA‰ƒιΪtΣ_Ž­o6›zLy›6mBΩ²e•|¬3EZ¬X±’φ$ˆ˜&™U~\7ΫζΟαͺκFΡ<)κlΓ† ύM,[ΡoωC‡)i­Ν233Q―žύ29(eΧτ„ŠF)ύC·nΙθΪυ–ˆωΠΝK7\ίO<9Χ^{΅VF7L₯§ƒK.Ή0΄&YΝϊΊaΠΰ‡Π±c;Ή‰v3ΥΠ§žΣΎCGŒ|΄ίˆ; 4[γ1;¦ί‰ο½¬―½‰_< ςβΈ1p»˜1ω8φα{`ΰΘQ"Η ͺϋ˜#G:VPέǎΘgh\›²uۜ‰ΐ”@•›ϋnl’¨~ΜςϊBr–Ο€κ>ζυ…OΗJΝTχ1―/$gωLͺξcŸΣβf9 @ΎšL lΆ@­]­κmψτ)98€»šιΕXDϋ}PDϋ₯ράΝxkΦ{0―B2fΎΫSƒ|=Ω#€ζPTeΟ°όP­΅ΣΔP Ε,υO#ξ˜7}§m .^ЉΆ³ϋ>E·!βΞvΫ­^˜9ηΡ@¦qt㌠ΣEΏ³΄'pxΗΌ§„mτž0 —€OBοс“RΎαo=j΄…=;–¨|‚tb+ΚΔf˜0E¨w*:ΚPΞ`XV€p©Ν.…2TϋψγΉΨ“ΎG‹Ž¨}χέ <2ΰIΌψβ³h'.*R”€ΏNΓ Η†i‘Œ¦Ο˜dшΐη›:ί)Οy&F†3DθB… aΗφxόρα Έ‰OoŒ¬¨ο敁f7*EΧa 9Z79*ΘfΫάx0ΊŽͺΊ1Πν+79 4»QΙ[‚…zΧ‰'.΄oiγ₯]ŽeΛΎ³|„ΌήθΔ‰“X»f=Φϋ]Λjδ\xαxύυ7Q΅j\|q+άvkOτιsšŠ'@Οά\-€ζ§ όπΓχγlεω2ρωM›RPY<^Ύz ν–k}ˆΠ+έ¨΅QΤ4¨(Ο,Q "4οάΌς`X†ΗΔS²Ξ΄Ύ1-\Ρ[J‰5†…Ιτ™ΟO°Η&[ΥοJ2™m³qœE―1,„qΘζ5†ƒ@.‹ϋmzέϋ&&ΨΈhΡ’Hϋ{7~F;WπφτI"―ˆΦ£xσίΣ-#)[ΝΤxΡ’₯xκΙ‘>β mύR’D ΛΦΦŸΟ_ˆωβ&©*U+»΄:ΊΝњψΙ‰ω3όίO‰λZ+ΓC·j ά-ςβ΄1p»1ϋ8vl{`ΰΘVW…ͺϋ˜#Wn΄­€ΊmΟ‡… 4»šε )ύΗ šGxZυc–Χξς΅£Ίy}αΛ­Tχ1―/"άεkGuϋš7Κς)ΠΌO%Ρ’οφ˜0·Φ“q^I§μp½δ13Ρ³qd½έkηaτπiΨ BhYϊ=Ž>ΟΣ")ςvcbχήψJD•ό¦τ,d Ωhήό[Ψ›³ š―Š<₯ϊ1Λλ‹°+ύ¦Tχ1―/όz6άNuσϊ"μ+Ώ)Υ}μw^ά.ώ δO 9Ξ:dμߍ#βόGRRiq-zŽσPΊΛi{ύ'‘΄xΤf &γ2φοZd#©tET4Ί²^ΝJΩ θKΩⱬ₯Εάhjj ΞV±¬+G 0ΠαιBαώύpβΔ ρZΪΘl΄βθΡLΠcdi£>Š @)ΝώTT6b ΩŸσ,Z©|€m³pšM6ΓF6βΨ1ld#N EτD…λ;ݎχήMšDFτ₯ΗΑί~Ϋ½˜7ο}Τ>³–6ΚΟ?Š2eΚ qγ†ΪώΦ­ΫqK—ξXπΕΗ¨.žΦ otCΥ+c^Η’Ε³΅(r™ž>yς$mΧσ?0΄!Θι•WήΠ’6+VL―ͺ½nΩ²·&χΐ¬ΩDœQζe'α€ζaβ"ί‘ƒ ο΄»Σ‹λ*±Ζ°°–Ύψ¦) ql²ω{άF›"Uuγ5†ΣlŠxa#Ž":Η@7?Σk’8W_¦Li½Έkrπΰ!mAη3Κ—/η‘C-šrY—ΟΙΜ `¬xάόήΏΓ£ή1Έ€cxίgЁ#ŸΒIΝββc©Ώx'8Š]QΥ}ΜΐQβϋ8φͺΥΝ@σ£νΜ%IΡ+¨ώΉΔλ έSώ_Uχ1―/όϋVo©Ίy}‘{Κ«κ>φ?3nohŽ·’ά+ΐ °¬+ΐ δ™ 4η™τy20ΝώdW6b ΩŸσ,Z©|€m³pšM6ΓF6βΨ1ld#NŒEο½χ1&Ύ1 Sώ=ΉP‘BX·ξτιύξνuξΏ?pΡ‰ΐ€ξw?€-›cΠ ώΪ¨”χ¨xΪΓ―ΏΑŒ“Q§ξYβ&©“XΌx)†== oΌρ2.½¬΅₯…GŽō7tΥeŠβLEpΎ₯ΛέZTη_ŽΪ΅kjω«W―CοϋΖ}½»G=uB«ΰα_BΝˆΗ±Ώ)=‚}Δ‡@ω*Τp_U‰5†…Ήτ}Δ@³…86Ωό=n#ŽM‘ͺΊρΓΖi6EΌΖ°§1Π§Ηνsr:0ŸˆΤ#=’σΎηΔc@/‹ΙPŽb’Ok7ΗnŠi ™Κβ)Su3pδɝ¦•Uχ±©Ρω8“fΠΌs°r‘xΪΤls―2ΠlK Ή;wξO6IG‹-bθ%g›ͺώΉΔλ‹Ψύ―Ίy}‘ψ>Ž}†άCΌ` 9^Jr?¬+ΐ °¬+η 0Мη.ΘUhφ'·°ΝώœgΡJε“­±κŸKΌΎH|σϊ"ρ}ϋ Ή‡x)ΐ@sΌ”δ~XV€`XV Ο` 9Ο]«0ΠμOn%`#šύ9Ο’•Κ'ςΨ6 §Ωd3ld#ŽMΓF6βp‘ghώi!0sL`ώE‹£D”μβ%=λᢁk cιϋˆf ql²ω{άF›"Uuγ5†ΣlŠxa#N,b 9>NΟ‘ΟΙΥί3žX2πΨ$ ΌxυΈ1pδQ0“κ9βc“qόf1pδWΉp;Υ}ΜΐQΨW~SͺϋΨοΌTm—@3E6ž#Ύ{iΫ—μO€έό―>°y›š: 4»ΧΚe͝;w"==]ιθϋͺ.ρϊΒεΑfSMuσϊΒΖy.‹Tχ±Λip΅\P€ζ\™‡`XV€`XάQ€ζάΡY•Qhφη %`#šύ9Ο’•Κ'Ψ6 §Ωd3ld#ŽMΓF6βp‘ghž4ΨΈ:0Wχ σ¬…—J¬1, ¦ο#š-Δ±ΙζοqqlŠTՍΧ6N³)β5†8°ˆζψ8=Η>'Ώ›Μz=ldΥΪΐ V/Ξs‘b Ω…HUrΜΗγΊ-fΰΘ­RΦυTχ1GΦΎs[’ΊέΞ#ΏΤK Yϋ«ΐΒwεϋt~šΎžΛEνJΥΓϋ6)^_؈γ²HυΟ%^_Έt€M5Υ}Μλ ηΉ,RέΗ.§ΑΥrAšsAd‚`XV€`rGšsGgUFa ΩŸ'”€hφη<‹V*Ÿ`Ϋ,œf“Ν°‘86E وΓEžH ωΰ?ΐˆαΉχ œ{qx?RJ¬1,ζEίG 4[ˆc“Νίγ6βΨ©ͺ―1lœfSΔk q `ΝρqzŽ~NΟ όχ£°‘u›Ζ‡χ]€8r!’C•υ±ΓΨnŠ8r£’}Υ}Μΐ‘½ά”ͺξc7sΘOuhV8BσCcŠg„ΑεGΫ…­ώ’¬AσπΎMŠΧ6βΈ,Rύs‰Χ.iSMuσϊΒΖy.‹Tχ±Λip΅\P€ζ\™‡`XV€`XάQ€ζάΡY•Qhφη %`#šύ9Ο’•Κ'Ψ6 §Ωd3ld#ŽMΓF6βp‘gh^2XπŸΐάK–^ sxSba1Gϊ>b ΩB›lώ·Η¦HUέxaγ4›"^c؈S‹hŽΣsόsrϊsΐoί†mz)ΠϋωπΎCЁ#\縏]Ψ`W…#;uά•©ξcŽάωΡ–κ>Ά³=?–x Ω«ΣλtθΡjΓן£ρ†₯α<‚ύl›~&Šl)Η@s€6ΉΈ§ϊη―/b?Tχ1―/ίDZϐ{ˆ— 4ΗKIξ‡`XV€`ς\šσάΉjΝώδV6b ΩŸσ,Z©|’‡m³pšM6ΓF6βΨ1ld#yV !€ζ—z»·ζή¦ Π₯ΏgΌ6Pbaa4}1Πl!ŽM6ΫˆcS€ͺnΌΖ°qšM―1lΔ)€E 4ΗΗιΉς99i0°quΨΰ‹;] pRΈ4"Ε@s„ΎvrΕΗΎ, 4bΰ(ρ‚MUχ1G‰ογΨg¨V 4{τ‡ ›nϊj,œξθΥ%α΄—Ν^ΤΚΥΊͺχπϊ"φΓ!δγ9])oξ Τj{ηqθΧ±‹ςqμ]q Ν ξ`ž+ΐ °¬+P` Ή y` ΩŸΏ•€hφη<‹V*Ÿ`Ϋ,œf“Ν°‘86E وΓEžΘχ@σŽΐXq²_ί›œΩHίΛ±W%Φ³£ο#š-Δ±ΙζοqqlŠTՍΧ6N³)β5†8°ˆζψ8=W>'³― vn }Co mΧπΎEЁf a5ΆPέΗF{σϋ>Ν=h4οόΰ5ΤZωYΈ#U€f€7†={φΰt…j¨vƒˆ.ΣΫO •‹£Τ¬ηκ&χ;w"==-Z΄Θiλ|χ―ϊη―/|»6Τ0δcω"E[oΠΟ΅ΟΙ#‡€W€‡ ΏλIΰΒvα}“Ν&’xΜΚ5{΄K―Ξΐ‘„WΥ}Μΐ‘ίκ-Uχ±ng’Ό2ΠμΡ“5½είoΏ„k€¨Μt.„Ξ‰xέΜ"4Χ?xh\ §G₯u„Πς«ΐΒw΅Ά™5’δ)Š΄WΫάΦ—Ζ„l»M{šmΔqY”―ΧrDδ‹Ϊ­―s9k©Zϊ}χΘΧέΌΟ$3r2Ιλ‹ΨΥ ω8φΈ‡W€ζw0O`XV€(H 0Π\ΌΝ@³_o+Ι'#€“τC–fοžUωΫζݟ y׌Z0lδO7ne@Ύš‡%G&w}/ έζsk ‹9ρΓB‡lώwΘ’XUέxaα0‡l^c8TΐŠhŽΓsυsςŸ]ΐ«Gά¬oύΖ ­£2Π¬ ε5W}μΓΜ| ω˜oN4QέΗ ΕξuΥ}ϋ Υκ!αfŠΌ+%~’KΧτN£€fΏ€Π\²4P«@ ηL±ŽΠ77cHp±-ΠΌ/-UΉβώ€Rέ.iΜ„šI/?ΐΊQΌ*½ΎO-IίΆDΓΦWDkgqΝΞ“Lqθ#τέ#χεζ}ζΙP›Κ"šzh«Y(Y&΄K ^_DΘαk'δc_­ΉQAR€ζ‚δmž++ΐ °¬+ΰ 0Мΰ6L`£S§N‘S§N†’Όέέ±cΎψβ ͈»οΎ₯J•Κ[ƒ £+ѝΪίΞ X&|€² 4ζbWεl› ͺ0ldΔε.ΓF.…βjΘΧ@σο?SŸΟsΔ‡@ω*αύL)±Ζ°˜―1,„qΘζοq,ŠUՍΧsΘζ5†ƒ@¬˜ζψ8<Χ?'wl^d L ©ππx Ά“L6šMDρ˜•λ>φhŸΐ‘˜ΛφνΫ±gΟ΄lΩγΜr―Ίκ>fΰ(φcAuΗ>C΅zHx ™’o^?Ρ₯k z§Ά@3=Ιjηζ@Υ›ϋΰd½‘ρΥ hΦλΠΈΑhΛZ–ΠR‚‹mf©ž[Y7+κΥG_ω.Bσ+€Ώ8"3”^_Θ€°ΙϋNεntŒC‘ο9:½g―Αrc“Η5yσϊ"v'„|{WάC‚+ΐ@s‚;˜§Η °¬+ΐ $h.HήζΝ~½­l$ŸP“NžΠYš½{Vεl›w2lδ]3jΑ°‘?έΈ•Ήωh~gπλ²ΐΔ4\ά1Ÿfάs•XcX̊ΧΒ8dσχΈƒ@ΕͺκΖk ‡9dσΓA VΜ@s|ž'Ÿ“& O T9ΰΡ7€*5ΓyΑΝQ’xΞΘ{°RiΰHΜƒfΞ΄¨Κΐ‘…0²U{˜JΎ¨šΠ@s Šn,"ζ%Πμ)F$v@3Eh^Ή(\½›X[΄Ύ.Όo–’…0Πl&ϋΌˆΟ%ςikαn»ο ‡k*½Ύp‚Κέhη₯…οn2ΘΜτLο-ρ^ ωX~ΟJΧݘSy\šc’ͺqΘΗV8Ÿ*ΐ@3 ¬+ΐ °¬+0 0М0t5ŽΠμJ¦¨JJΐFI'WΜx><‰ Υ€ΑS€n–6š%1|&σΜΗ.νU8s` Ω₯#mͺ1Πl#ŽΛ"ΥίΗ.§Umǎ]ψ|ώWXύΫ:”)]mΫ]…φν―A‘"E’κ36oή‚ίӘγΗOΰšk@Ŋ’Κάf$4ΠLΡ™iSh–G 3ό·š‘¦ϊ’₯k! 4΄φΈρΉ€ƒ§n|ΰqΏΥ•^_8ΑΖNεnDρ‡ξ?½ί C>–Λm|| σ~ϋϋ°ΦKωEqAΝ²Z:u1ΜX΅KKŸ]±zΆŠΎ‰Q:βU—ζiβ΅ςqΌ:δ~VšΦ΅<1V€`XV ΰ)ΐ@sβω<=='Nœ0Ψ/Ώό‚Β… £S§N¦εy•ΉcΗ|ρΕΪπwί}7J•*•W¦˜Ž«l$Δc ΩΤMž2U>ΐΆyr₯V™a#οšQ †όιΖ­ΜΘ·@σ_Ύ˜TΡbΐ¨Ω@ρ’ζ“́\%Φσ’ο#ΎiΚB›lώ·Η¦HUέxaγ4›"^c؈“ EǎΓΎ}ϋLgwόψqΠΉˆ={φ 99•+W6­—Χ™ͺ~ιΊδ©}ύ˜?U7%πΘω぀‘<šCRψN䩏]X­4p$μg Ω…ͺ0Πμ ‹bΥίΗ.¦Ueι—cπΰgpΓ Χα†;hίχ/Œ§ΑΜσ?₯K۟ǟ0~ ώϊkš_p²³²Cύgee‘Λ-7 ^½:‘<― š=*f8ώύφK¨±fIΈ#F”!E“ΆαF"₯ΠL½*Ν…φe»¬~hεšoςυ§ΊΑvξά ΊΧ’E σ>ȍψ\’}Ϊk$pήεynaŽ―/(ͺ±Ύ]wžrχκ;•»ΕK²¨oŸ@σt-ίϋΙοšuWΥ­€e\¨₯—₯μΗ5oŠΚΧ2μώΙvɟ!Α6Yό3Φ*‚ςεΛΓ”φρή³3ΗkYjj*<ˆζΝΕSϋέ"ήNJΪΘf©‘Νjψ­`XV€`X8(ΐ@sDT¬‹uλցNšmΫΆmCZZ.Ήδ³β<Λ£‹ύυ—6>ύhLJJΚ3[Μή΄iΚ–-«A=fεΉ‘W}υΒΠΙΕΏΟo‡΄ eΫΈq£ˆdQUͺTΙ 3<AΆ5lΨΠS›άͺΜΆωSZUέφξέ«]PQρx£οΩC‡)ω^ H+33S\<ͺηο€ΘΑVt1ΊQ£FhάΈqŽΒ]ΗS| 4OΈΐEb΄ΈΈgXΗΛ”)“§η?ν|G紏9‚ϊυλΫUΛσ2•ΑF―β€₯₯γϊN·cόψpe›ΛBΝ)˜Κ}½F:gaΔΘ'Q¨P‘P™œ8}ϊ4nΏν^Όπβ³βσ7ώηžh%ŽυoηΘ’Ζ–6’£€f³d™ΐ8λ›I[½H{•Ααˆ±c„ζSβ¦σΒ/Ν7φΨ—AHΚ±šΝΚ½ώΛ}εW 93Ψ%­Ιλ7GΔom«Ν‚#4{p¦EU%|laeη(pd3Ϋ"ŽΠμV)λz‘ΩZ·%ͺΏέΞC―7eς[ΨΊu»$‘e‚;ίΨ ŸΝŸ‰κΥ«ιM"^9ŠNoΓη >ΑB‚lDΨvhΦ£ οKžΏ;6±¨u}T«xP©:’€f«Q€λ¦UŒΰ¨i₯`¦S_TMΎBϋV ͺ±Ν―¦€η»τ§V‘šiίͺ*“ϋ"°{πΏ)ΧvS.B³ΡbΎŸKxͺΓ°ΆΜ…Β]_˜θa;₯9}AΠλ[Á}»M̎[Fn&nϊΈο9ΫξM ε>h Šš=wr ͺ|,SŽμ?ΪΪς±\nf/΅[NΝΧ»Λ Ÿ…₯χ·ΒΥυ*;7aΥλ/βπρΣψ­PUΜix[("tΐρ_~οΉΌ™ ΤΦmBΦΖEΪΠlτW‡n-ˆ©^ΘΗ1υ ‚ 4/σYV€`X’ΝΔΡΑilD°3Νήόl$¨—NFΠYš½ω“j«|€mσξO†ΌkF-6ς§·2W _ΝK>Ό˜Pιςΐ¨Yζ“ΛΑ\%Φσγ5†…0Ωό=ξ E±ͺΊρΓΒaΩΌΖp¨€=z .d 9FΏ+σ9ωΪ@ρCb]x6mΕΝa7τΝaIό¦”ρ±Εr8²ΣK6Ν^Τ2―Λ@³Ή.^rU{™ ]CΈν֞φΜ΄hq^TSŠΎά­[o<ώψ΄l) R“-%%C?‹O>Žƒ‰›ŸŽ‰HοΕQ©’€άβ°%ΠόΣB`ζ˜€2F¨O†ρ⠝6ούk=*§¬rξ±Di vƒp=εΝŽΚeΖ΄tmΓXΪ—―…P¦ˆl¬GueνŒvYυCνŒ}ΩΥ₯ϊbShώFœΧaX2Πh–u’Ίn6§’–tΈiγP'GΧ^όOvΚ°j―‘ 9hΪe·£ΫώV‘Ω°QߏžΤΫΠ›€Μ#~ι½Ρΰ@&lμΣψ9@υwnΦ}²+”°yŸΙ@s…E±ΔΥZ³e)ϋqΝ›αΟ?šu Ήg«¨S±$κμύ =VΌ2KKm“ί{Ζ9GΆτΏ'kΗ@³Ή₯ς 0Π¬Ό‹Ψ@V€`XV€p«Νn•JŒz 4ϋσ£°‘ό£^ϊΑO'ΚhφξW•/0°mήύΙ°‘wΝ¨ΓFώtγVζ δK ™"Q€#ΪΪt Gπ δδΚ%Φ3ε5†…0Ωό=ξ E±ͺΊρΓΒaΩΌΖp¨€3Π‡+σ9™u?HK O,ωaό^©!’’’Π A|!—π ±₯”ŽL¦£ŒMl£¬Ž,Ζτ’Ν@³΅Μλ2Πl‹—\ΥίΗ^ζBΡ•―kŸŒωŸΟDŊL›~πΑ§ z}ϊάcZΎxρ2<ϋΜ ¨Y³:RS·…κPDη7&ŽAέΊg‡ςό$h&XtΞ€€!X2L92ŒηG,‹6gΤC™έΑˆ΄uL³°―5mΜlέ^D–njˆmΉQ€άoη„‹γι%y6攁HΐWoυ*_‘B«1₯†9ΊΎΠν1F–ƏJκmτ‚xΝ2|k€Bυ!½ΎζθϊΒx\:ωTšιάΒwCΣIm}+κώ^ηj°―\_>ξB­\$δχ6I›>±OΉ.Υ£ϊ4ΗΝkh/r“!FDFh¦2\žΎjξύδχPu=?”a•μš^€R UΐŒΒη‰Χςθyr-ή>± ²₯Ρ6ωΈ5Ξ9²eDtιαmλaD«RΐΚEαZτΩbΆI6Βpμr„f3Α8/Ώ*ΐ@s~υΫΝ °¬+ΐ °Q 0Π%IBg0ΠμΟ½JΐFςzι?(g Ω»_UΎΐΐΆyχ'ΓFή5£ ωӍ[™+ο€ζνわ ₯)=&.žΩΘ|r9˜«ΔΓb~ΌΖ°Ζ!›ΏΗ²(VU7^cX8Μ!›Χ°bšγγp₯>'ο^y8΄74Ήννϋ «a+šCŠxO(εcσs82ΟkΝ^‹Ο@s΄&^sT{™Ο±cΗΠ©γν˜5ϋK ωΣOηawZ:ϊ?ΤΗ΄λWΗMΒ{ο}Œ#ŸDǎνP΄hQ=š‰©Sgΰύχ>Αμ9ο’v횦mέd&Πl7iΊ6@›1λE¦Mϊ9ώΗh–‘NW£ŠJt}γΌΛc"2mΕ3’αfcŸV ͺ±/‘ς5*3φC9Ω@EΘώI#υΊ™ΐ́:©ZŠPΠΌπ@ŸτŸόhΌeΫε9…[E§L@πˆΟ%κ4φI7όλΒkΦ‹κυ‘δφ2JΪιΗ U[½ΓkŽ/Œ@s v5Σ\:žš\…κ|²6―€ζΤ»^ΐ Σ6|Αύ!{΄½β4Λ‘›©?@³n ©yΔ‰ε~ςzvΰUΊΎ©ex8Φ{~Ό3~ω[k¦Νu‡#ZSώΎΥjH¬Ž]Q…fI'Nζ{hΞχ.δ °¬+ΐ °¬€ΝΊ㕁f~V6’ΤK?ψι„Νήύq"Ο{σmΑΆy——a#οšQ †όιΖ­ΜΘw@σlνgy0Ϊ]4zζ=σ‰εpk ‹9ςΓB‡lώwΘ’XUέxaα0‡l^c8TΐŠhŽΓ•ϋœLί."5?~DΆ˜ζΞ[£Φ•β3α8χpg[¬ΊSΞΗCs82Œεg—f?ͺEΆa 9R?{ͺΏ½Μ‰€ζοŠ9sίCΩ²eL›~όρ\μIίc 4±`‘ΦφΚ6—E΄?}ϊ4^ώΏ H۝ޱcG‘pαΒεςΞ‰'™™)g…λΦ­CZZΪ΄iƒΚ•+‡ςUI̜9‡F«V­΄ΏΈΨEpνΠ›Γ]υ)Ύ€”«Gt —ΈJΕh–£φΊUT2‚˜υ­ ,ΥφexVΓXO/{hl e)λυ¬ΪSΉFΚΧeJf²Gl΄ΎΨ»c+Ξ―"ςi3ρL‹6€₯ΦBΧ[t γ|Δ">—δ1©Ο=Dt_α—6šΝ€ξ@iΰΏάΎΫ υu|?ΆϋΝΡυ…l—<J›SFύ€6F yΛW Κ[O ΜŽυZ­cg7C‰γ₯.“²¦τ> M? -λτ ys•–}:λ%νUχOέ Q₯pΆ»Ν:tNŸ™GP¨ψ“z7!pΩ+ΠΌ,e?ΎQ ΅θ9§€ζ«ύ3ΎΩr@³½GΛ˜ήςΝ!Or‚\σ#f€ΆBGŽ9_Dωϊλ―ρσΟ?[.ϊςΛ<ΕΞR₯Jα’‹.Β5Χ\“(Sβy°¬+ΐ δChΞ‡N‹Αdšύ‰§l$Ÿ|‘NπΡ )š½ϋ5βDžχζ9Ϊ‚mσ./ΓFή5£ ωӍ[™+ο€fω‚ΫυχνΊ™O,‡s•XcXΜ‘ΧΒ8dσχΈƒ@ΕͺκΖk ‡9dσΓA VΜ@s|δηdͺx$υ€ΑΐqRˆνTΡ$ώΧ@՚ΐΉ—₯ΚΖgςq腁ζΨEΜQΰ(vσΐ@sμ"2Π»†J~Vϋœ–ΫΝ[·ξΐ Aӏ\Ž·sηίθ~χX΄xŽˆά\IJՁ°ys0:‘ΦΆmΫ΄χ~σζΝQ\9CiήοY³YYY¨U«jΦߍqΪͺ―^ˆRϋF‘μL€\ΣU5Φ,ρΥϋžr5PυP Ϊ©—~½gL¨z‹wΨκqϋϋόv(»;eΔm΄ŸvAŽϋ N•QωΑ3›js₯΄ΌλΙefι΄ Ϊ‹± Ω΅ΧηHzυέxέƒZ{C‘΄T\΄i™ΆO€ψΖλϊ†ϊ·KΘΊmm‹Άς&λΆ_γ|h7nDΓ† ΅ε1©OΣ87έ}ώϊ>ω«π‹ΎΙ>σc«ήOJJ J”(Χχˆή·l—ž§Ώši.λ£ΧΣ_iπ/΄ΪήZίΕΤ•G›%γΡθψn-ο―2gγΘ-βf?—[­Ÿζ’ԁ4”I Ύν­ίJk]ys`>™To·Ž>=¨εf³fι"ο}xΩ?”gΤBšΉ#pCΘ”΅Gρζ€c¨sϊ žΈΞ©XTο2κ•μ:™ΎΏfΏUf4ΫΩζt¬Σ˜«φˆYl5KΖΰ*ixτ―·Bγ[½@φνΞ‹:#½Ι•z‘vcŒΰ>QΏ~ύPžUB~ηaΥ&^ω-Z΄ˆWWάO+@ηγςΠ<{φlΠ’‰7υ Ev—.]Τ3Œ-bXV€( 0Π\ άš$Ν!)<%”€hφδ3§Κ*_``ۜΌ]Ξ°Q΄&nr6r£Χq«@Ύš_LžΪˆςUΒϋΉ˜Rba1_ϊ>⛦,Δ±ΙζοqqlŠTՍΧ6N³)β5†8°ˆζψ8]ΥΟI¬λͺiΊJžn½σ€f—η ` r Ή$ΧΣ 4Η.9Ν±k¨μϋ885šίΗ^fxμX–ˆΠ|¦OŸˆΪgΦ2mϊάs/γK[γΪk―Ž*ΟΚΚΖΚ•ΏΰςΛ/F‘B…’ʏ?ŽλΪ'γΣY3P©RΕ¨r=ƒ#4λJΨΌΚΧ lͺ™e—€€#h§fε–y½˜"ϊ―δ³– Ϊ,₯›@IDAT €.ZMc€άJ"Ϊd·ΗΓΡ„λ7ˆ?c=‡a΄b=ς2νΨ΅§ώ)Š―ΎY΅ΟΑΎJg†‘`ŠΰόΒΌh+6ύΆ½¦€&Ο»‚™[‹¨Κ2((Χρ’¦ώ^hAΰμšοˆήκ†@GOj›Κpa¨’CBΪS]ωΊŒ‘λ( ™Κεώυϊr4ΊΆσόέziœ¦σSς&Ϋζy†šΙm(S€Ώ>e 4Χp΅"‡: &Œσ°šεqΝl•ΫΚ#Φ ί €ΣdB7ω›Ž1§mη&AύAb|ΧΫΘΊλyϊ«DξςX&X·B³V˜σkπ^W¦š=¦ή»φJ@σπ“߁κ/½ΏW1\ώό]⦀@tηpftjD§71ςλΐ{Αhή·1Ίεθο‘`iκΜ)¨σΣ§‘ΊšM2ˆ,όmšλ&υEj‘ς‘ ΅€δuΏ8Ν4˜μl΄ Ό[©ΊΈΉ\ πtΟV5Cφκ‰άšεq†·­‡Χ#¨Ώς°3ηohy >ͺΡ«wΦΐo ώ>·ͺnj\_i}WaΈ³(ςΠί4e!ŽMΆͺί•d2Ϋfγ8‹"^cXγΝk  X1ΝρqΈΚŸα4Í+‡ŠΫG•έͺψλϋI—.œ{ ΠTό5ξΣΞ鍁ζΨŽŽbο.ξ=lίΎ{φμAΛ–-γήwΌ:Tύ}Μ@sμžVέΗ^gΈ|ωxκΙηπΥΒOP¦L™ˆζ >_„±cίΠ€d–Oœ8‰eΛ–‹—ΝP΅jπά±Γm4ψ!tμˆώ©w@°τΠ§žCRRFŒ|4‚³^Χζ :2,JYŒκ௝€±”Q$bŠ2LKOΆt½ΓάH‡5e6T萐€LΫΝԍΠLUžΩε·―§d`ΣA`΄₯hΦϊόΘ?zDF;&Έ–4ΥΑ\κIΌOB~4@ΐΑ‘’_Œz8ΝΤƒΥ±2x P«Ax γq¦ϋ€jΘγ$έ₯_ΈEΣ–Ϋ’―Ÿy?T±ΎbšƒΧΐB•Νί̊ΤMןκΚΧԌm{ ΏrΎ<ΎœoH Ό¬πY οo%λ’ω SC5SχΓ½/~ ½χ½Ο7=…ΪGvΚoξ Ός`¨]"^@σ7έ‹«No 5°h;ŒΡ“C›κΣχ’ϊ‘‘,³y‚όKΎΗ†o ΩxσΜ3κΘ–±¬+ΐ $¬ 4'¬kM'Ζ@³©,Ž™JΐFv'_gΓŒ' ‚Γ©ό#›mσwL¨ͺΓFώόΙ°‘?έΈ•Ήωh^ρ%π‘ΈPD[Q%jΤl ΈxIήβjΰžaζΚ₯\%Φs₯Ο|š-Δ±ΙVυ»’LfΫlgQΔk a²yα P+f 9>Wω3œf4§Όe°ξ‡ΰΌ{«±4rŸ"6»Tό]ΤnYΓΝ1ˆlŽκΉ{—q큁ζΨεd 9v U¬φ3Γ¬¬lόߍǼΉ_ J•JψηŸ} @mγ^+‘φƒΫ±cYΈαϊ;0yΚ84lώœψαϋŸπ€€š32Ž Z΅ͺHOίƒsΞi€±γF‘F uΖ°1ΠΟš ™Φ χ='Ψ›€Μ#ގ"Τ•Ο™υBΰνœ‰ΐ·sΜJΝσόθO6Ρ&CVύH0pdlΥ†ϊ¦1ŒύSΎ[ Ω Y‚B=Ν"0jŠΟ‰.ύZ_œ:iΩ&Ο•φΝ6γu3ΩΏΖ2Ή½lΏžοhΦ«_SŸύ<8u&RWώhτR„f9·±#iŸ€ζeK–i9Λ²?JDdαJ QgίƈΌΠŽ<ΏŸ"υΓ£Ξi‡› C ši‹‚’ƒ}ΫΝԎΪG΅₯:N)σΰΝ\z_t'šΧ(ƒ o§Ϊ[ΌζV`υίΪ2ό|cιξψόD­ΠΨXΟ½ηTΪ!”šE0u ek ŠκΌε‰+"3cΨKΔυE rpShΆ‡‹ό+ΐ@³νΈ%+ΐ °¬€hφ―]~lΙ@³?―)‰“ ?Γ–‘‘z¬_ρβΕ %9Ό›)~δλ'θΔCγ’TωG6Ϋε.WͺκΖ°‘+χEUbΨ(JΈA|4W)/ξϊοžeŸΡβqη‡χσ ₯ΔΓbήτ™Ο@³…86Ωͺ~W’Ιl›γ,Šxa!ŒC6―1*`Ε 4ΗΗα*†Σ mfYŠXΈφΐyγ―rItΊ|•άάTΞMZG—{Θa ΩƒXUCΐΝ 9g«ώ>f ΩΩ‡N5Tχ±“ύvεGfβΨ±c(T¨Κ—/‡Β… ΫU*;xπŠ-*"<ŸΠΪGUπ‘Α@sP΄‚4ΣΤνΰ]»γ©u{hQŽ)J² Ω©Žq,?v™Ν•yŸX77»Δvcχ Ό5<ά₯΄Ι‘’9:LΧ€hύFΗύιΩG˜L}XΡ%›ΕΤώ™χνfŸi ΒρρŸlΪ,l‘ρvιvSε<+Φœί‡šΙ‰ΤΦ·bλΕwΰ’Uο‘xzj HžŸ\ΩeϊήΛ&`ϊͺΏC΅―>΅Νθ% xα»‘zv šG|qΏi; ω@›nψζœΞZ΄ΰV3‡ Μ?©¦}Ψe>Z΄-N Rwό αCy#ϋ\€ι©E οyRάΌh²YΝ[ˆ}FΩβ(±ΥΌ]¨«ΑSψά **3•_pz7^=ρ5*œ>&ι‘&οοOk]‡ΫΎΨ£εɐr¨Ω/onZ»;f‰Hm±ΊΠλ’νιYίhΎΉi5 œΥKΟ‚ΠL•ήΎν\τlU3T?–D"―/bΡ…ΫF+ΐ@s΄&œhŽƒˆά+ΐ °¬€ghφ,YΎnΐ@³?χ1ld’άΡοθg ΩD Y*ŸœPΥ6†όo ωӍ[™+/€ζ”ΐo&PZΐΝ£f™O&syαOlUΏh6l[bω”ΧώόΙk Ί%j+šγγY•Ώ_h†fYެLΰpσ+£6Qγ’J/ Dnnz Pͺœά“cšfG‰+0Πμ(‘cΥίΗ 4;ΊΠ±‚κ>vœ@>«ΐ@sΠaςyzΚ²ƒZσ™m͍ež:τϊό]ζΠ°>0Υ#Χ ΦΥλΙ―~쒈½ηΚΐ±ά§œΦm§<#(l7ΆˆVNΗ θΆ“:²š©L«GήE»A’$NZΓΥ4†PΗTΦ"Qλ ΄ν:ŒΊ,ϋ}\uz;YσV¨ψ“}XΝdŸKxΪ/ΠόOsρƞJ؊ςxϋΔ‚»bήΡυu˜ƒΠόM‘3E沨°λw{SθΰϊτU»Ίf>©…Δω\±Yj+ΚΎ:χΌ΄©ˆVΟΥZΛ4ΌΘNκwKφd­˜ώιΗ‡žA@sκΎcHM‘g…λ˜Dh¦J7[UDuBω‘VώΌΎπ§[AlΕ@sAτz.Μ™ζ\™‡`XV€ˆR€ζ(IL3(Αά9ŸγΫε? t©RhΪ¬ Ϊ_{5jŸ~δŒiC™Δ aεΟΏ’TΙ’ΪXmΌ4.c1ΠμΓ!’ ΓF&ΊΙ'JK–^˜UIεΩl[”»\e¨ͺΓFάU‰a£(I8#ςΠόˆD³/-0Λ«nnξÌγΣ”ΧώtTυϋˆfΓΆ%–OyαϟΌΖπ§›Y«'NbΩ²εX΄p)(²aΣfΡΉsGΤ©ŽeΦΘwϊτi|ϋνχΪ£αι1ρƍΚώy5/^Šτέ{P·ήΩΈΰ‚σ,λΫΫν3Πl§Žϋ2•Ώ_hΎ€fγτSΦλΕ hλvo3–FξΧmŽή|†σϋζHωόμ1ΠμG΅Θ6ͺΏhŽτ—Ÿ=Υ}μgN*·a ΩΒ;6§E‹ό™νΪ͊€Μλξ l±ͺ›[@3–΄Ή‰Ϊ«ƒΖτΔ‹Ή“"l;M g`@›YSt㝛D4Ϋ#ΦνΖ€VΟΌΜcπ\τ 9Φ# }hΆ;Ζu}¨?›z:°O ΉnRίpKΓΫA·Tξfσ 4λ}</`[ο3ΦWΧ6Ž9jrLΪή z„ζ₯Η?MM?>τ 3 ™ζqu’Έ)Βb£6Λ7dΖaγυED, ]0Π\@ΫΣd 9·ηρXV€`Hšƒ΄΄ttΉωnΠEΏα#ž@™2₯1oξq‘oƌyjΫΖΉ—5ώόsξμΦ—^Φ·έv²²²ρρG³±V›.\Ζ²1ΠμO=†Lt“f*¦;ν ›Κ?²Ω6ƒ³\ξͺͺΓF.h¨Ζ°‘AήuTΰΘ‘#8uκ”i½εΛ—cǎHNNFεΚ•MλδUζϊυλQώ`jςbΨ„A"κFν†αύ|! κ/`ζ:ψγχ?1qβ4ν‘πsζΎΣ£αhސΫχŽΚί/4©ΈΝ²:τhσ5ίΰ捫ε’θtl Ω₯θΝ՘l 4›ˆβ1‹f‚™TWύ}Μ@³‰Σν“-΄ΉšuΠΨ,:.Ω»ss ―X»Ρ‡Ζpšo―‘Φ‘§ ΐͺ₯Ι4Fœζe…Ούυ<ΉuNΫ<%Δ¨θ‚…›‘g±B1A·Α^v)Ϊ'†ϊ”Ώ•¬‹ζ™[䬨΄kx8ͺeΞeΈΆΙδψH-TN@γπ[‘ͺxδδ*FŽm‚——>N@σ†τ#HΫχ|hLšCRpB!hVΘ‰d Ν‰δMž +ΐ °ωGšν}Eφ†>υ(BσΈWGkP³ή‚’(?ό+XΌdΆ€œΛθΩΎ_ιbε-]ξΖwά‚{ztθgΉˆ ύψαX΄x6Κ–υ?Ν²ΊήaΨΘD*šMD‰O–Κ?T΅a#ΗΓFώt+Θ­Φ­['nΆΚ2•`ΫΆmΨ³gš6mŠRβi*m©©©h‘ςκμψM3+»L%¬Ώε)%Lά΄i“XΫ•Εgœ‘„=²7nΠ[ET©REΞV"MΆ5l˜χ@Ί™l›™*ΞyͺκΆwο^μΫ·OΙγ~Λ:tHIΫhm–™™‰zυ@‘ΨΆ}ϋv4jԍ7VΜ²Hsθ\Ę1―γ‡οΒ'ŸNGΡ’ECVό>π(fΝ~Η6RσΙ“'‘’²ߘ :§””„/Ώϊ*Σ«wΈhΡR<7ςeΜϋμ}qSR%=[»ΑšnΈΎξΊαώz†ς½&hφͺ˜y}U‹ιΦΖhΦ;¦W‚ˆώX€›ψ 8zX.L—* 4i€›ι΅xI­œζH™όμ1ΠμG΅Θ6ͺΏhŽτ—Ÿ=Υ}μgN*·a ΩΒ;2Π¬ƒ ΖsωM TΆjŒΫάύ€Φ^€ζΈκΠQΌτ±λΗv6š7x P«A W>ƍυΊˆ§±Ψ½OάχΝ¬ψήΖq,φG½3 Ÿ§EjŽΠl1Œ–}€p ”>ů’e±Νϊ„\χ‘7_ Η€[ yΣή£Ψ±ηΉPON@σ«74Βΐ+œŸ$κΠ&Αλ qΈ(Bš#δΰx)ΐ@sΌ”δ~XV€`Ό(ΐ@³½ZǎΓuν“ρΡGo‰hH‘  E(Όν֞xι₯αhΨHό@nΔζΝ[pτΘQΤ¬UuλžΒ… λΕ–―ύ΅ }z?‚%_ΟE±bΕ"κΡΕΜnβBβO D‹ηE”yΩa Ω‹ZαΊ 4‡΅₯Œ'A9BsHšX*ŸœPΥ6šύu 4ϋΣ­ ·ΚΟš›Όϋ$ geάwύ}@»nJΈ’Χώά κχΝ†mK,Ÿςß?yαO7ΉWhϋ―›,‘ε{i<ŠŠσQΩjΫΊu»ΈiΊ;:ίΤύϊέ§EhςψTͺT1Τ„Ξ5άίg Ίάr:uΊ6”―'(Rσ°a£ρρ'oGάΰ­—»ye ΩJΞuTώ~!λsh6Κ“²V<ύ‡ΰœΎέXΉN+ ι₯H«Φ=.Ξ©΅ˆ,WhOu3ΠϋΑ’ΊhN|Η>C΅z` ΩΒ2μyQ{ΰΞΗmgΡ €f Ζf 9φ#Cu3Мψ>Ž}†jυΐ@³…?d ™€Ρ=hŽΜ LΩ²`μ5hξΈΆr%DkΥ΄ΘΌͺŸ1ώή,ΐοLρE7šsή1« UΓ§Σ} ΄‘Ε-hόλμP[š >Ώκ΄υ’w—Ί ŠƒύG…Ϊ‘ -’z…φεD<£3SΏͺ―!εΉs:o` 9oυOΨΡhNXΧςΔXV€PZšνέsψpΆlيσΞ;7 2¦hG]︋Ϗ /ƒ₯K—γ‰ΗGΰνιΕγ֏―ΝΚΚΖ¨Q―ΰί­υζˆΗΔ± eΊΘ(?J–*Ÿ8qS&Ώ…Ήsΰ«…³lϋ°μ"žE7=ΟϋμT¨P>”o•°š©ώΡ£™(UͺdTΣM›ΆΰŽΫοΕk―.Ώόβ¨r· 4»UΚΎžΚί/dyžΝ²lΗΨςΗΚ@δfŠΰœuT.NW¨ œέ¨'ΰζ:ηgΞεEW̝Υ}Μ@sμǁκ>f 9ρ}ϋ Υꁁf XΝzυ9oηθ{χ΅’x"λΎέwώωuζωΐo:Π<πδJΌzΒ<Βp~•?μ^]λR\°SόVn4?ω?}Χτ•κŒ(z%Ng½Qϋ§Ev0NYΌafPυ5d„(Ό“§ 0М§ς'ξΰ 4'oyf¬+ΐ ¨¬ΝώΌC₯ {7ήΨ=ά§NBρ(ΧΗ뇫Ρ^€νΨ±,άpύ3ζ9΄hyΎTb€‹“&NΓώχ#(ςRRR’ˆ=[D{.cέΘE Ν.D2©Β°‘‰( 4›ˆŸ,•ON¨jΓFώŽ=†όιΖ­ΜPhΞΚžΌ1ltΧΑΐΕΒϋyœβ5†?¨ϊ}D³aΫΛ§ΌΖπηO^cψΣMnυρΗs±'}%Π|μΨ14ߎY³ίAŊ䦦i; Yn°mΫ-’σ?μEFΖ Τwήu›\ΕsšfΟ’™6Pωϋ… Vh6*GΡϋΦ―nή³ΓX½_΄pζ9Έ™gΛ8ΏΏ’;ς—£ΊhφηWΉ•κ>f Yφ–Ώ΄κ>φ7+u[1Πlα' ω«ΐΒw-ηPv}q]lσϝ/SινξE­Ήγ<·ε¬@^) Γ―#N,weσΚF7¬@,@σ²Βg ζE αŽζΥ1βΪϊ¨S±DΈσ8₯x}'! @7 4'ηΕhΞ ΥyLV€`Xš½χμΡ͚5Αδ)㴈Ιz΄ζ.‡’%£#½φΪΏQ€paΛ‹‘fVPŸΫΔίͺUΏαέw?Β}½»£oί^Q‘’mi±zόψqcΆΆΗ`ίΎ}ΈβŠ+LΛσ*“l’“ζ΄]vΩe(^Όx^™b:ξŸώ‰rεΚ‘F¦εy™ΉaΓT\U«ŠΘBΉΈ•Ϊ΅1βDβΖ~“£F'Ϋ7n•―BΫζΟ ͺκΆgΟμέ»WΙγ@¨ƒ*iΫΝ;EDΎ£βρβ ύ9ΨjλΦ­¨]»Ά’Ίεΰ΄σuΧΚΝ?,>~5 -A*£Δ#‹G―ΥςJ|šύ)―ς‰|Ά-±|Κ@³?2ΠμO7ΉΝ™"rržέδμP:§€fzBΤ/Ώ¬η ΰ•1―ƒ"Aτρ[8λ¬Ϊ‘±ΝΨ΅k—Y‘v8‹ 5ϋ…^(žpUΦ΄^^gͺϊ[GΧEuϋRRR΄'ŽuΦYΊΙJ½JωΕRΧ‘2Q"-IάEd<^ΆŽU«‹c5ΰXuρZυμ›—κ>ήΈq£vΞ“~§©Έ₯₯₯aώύh€‰Šζi6©ξγΏώϊKϋŒVρό' Hί3τ}Σ¨Q#e}Lφ΅hΡBYϋΝ0š-<κhφ [ŒnžνsŒ=-;ΰΰ₯7£ΑΔΝϋε\V@At yιρpυ©m ZΘ&Ι €*‡:§ΙYQiͺS7©_T„fͺH@σiρ·μ £ΪΕ+Cεsρš#χhŽŽά‹Aš ‚π.+ΐ °¬@(ΐ@³{™)’Ρ»ο|„ ¦h`ρ½½ξB‘"E΄6oή‚Ϋo»ΧΆ³{ο½KΝ½qŸβaπ±η’Ε¨ΡΓΠ±c;ΫΆ;wώΞ7vΓτι“pήω"JŒΝΖ@³8>‹hŽށζhMβ•£ς.Umc ΩίΡΗ@³?έΈ•ΉΚΝ™Ψ=o:*ύρŠ58θώ΄ως(—fΒ«|"ŸmK,Ÿ2Πμϟ 4ϋΣMn•WšeθΘψW'cυκ΅xλν7Bη?δ:zšf]‰œ{Uυ·˜>cՁζττtνύ¦λΒΩ™(™ΆΕތ’»SP"}+(Οi;]4I@Νg!σŒΊΘ3½ž,H_u3Πμtt8—«ξcš}θTƒf'…β[Ξ@³…ž9 4ϋ“ΡmP©:0qP€ΡΤίΎ4`zd~poΧUwαh³+h6U'ΖΜ₯ϋž‹φIŒέrs`z‘fYδJlɎΔϊδ_(³ Nω#υc 9Ί6‘,g 9‘ά©ΞdhVΗl +ΐ °IšέyϋΐƒψφΞ>ͺκΚγΏΐ T1 -Rˆ—ˆ±₯5VΨElΤP¬M5•΄f+­nۈ©D 5mS›jvW]μZΔθͺ€•EΊ’ЊΫ ΰ¦n(αO!˜H†dΟy3χ½73oώΌ—Ιδ‘œΛ'yχέ{ξΏίy™ΉΌωΞy·άόΟZ”’Gϋ¦OŸΤπν·›°ΰφοaΥͺD'}θšΌή!Ϊ‡ηž{E i Š ¬]»V›CQQ† Φ«σ \`£PEθΌ‰ |σ Θ‡7† Π&I\’[\2 l$Gά'Ε-•Ζ‘€kfšϋ]»ΰυz1ρ‚%υ±αqΘFXFE‘/έ͐ߏ.ΈΰŒ;6ž₯$ΥFή+Ι-ΊΩΧMφφ5γ²Ηp¦›ΉΥΪ~―½φ–όπζb=ίrΰ n¦{/nxN‹Š«WDΘ0œ|Wι½ΈρBzί©[9όwόΫΏ?ŽΕ‹ο±–9Bσ™‡ηΧ<‰‘#Στvv2όDυλΧkšηΝ›§=aΘNϋdΩΊω5’5pϋόήzλ-πύ­ΜΜΜdΉΜΦ8όeN†š£FN=°xχζ·ό?㌨χ1zšWȘβ?Žs¦Ϋ}ΌcΗ >&L°₯}²Œχξέ«½ΞLŸ>=YCΪΗν>ζ§η₯₯₯aόψž‹Dn[4Sƒζζfν XΣ¦ί—7™τzΦν>ξu<š# hήρGΰW‹Ζ_ψ°ώ·Ζy΄ƒΙOώ,šEx·ωτόεw™ϋ\~Ώ|έ `χ›αν¨δέόο cό§hΆT§›…¬U_j$ϊu7•΄lΞQ{9B³€ώ‘ΐΊs¦#oΙƒ=ΆXΩ_τ˜΄}cšΈt”Λ0zδP΄΅Γώ7vဃ>ϊz“δΝ>z4O{˜¬>ΰMM…ΧVψNΒ’I°‘'©^‘­Γ#pVέ7 =£ω΅žδΖΤ_pkΥoh ΛsΣ|ψ›± ™€&θ?=?_»έ©iώuΔ3Ύ‡5΄œP_(T׎‘eΠͺ|νtmω iμ:Ν¬ύd+| Ώ¦ZTRM$ΏcΖχxΓ ΓFεμΨͺ6rϊ—4Ηφ7GGΎqή|\yεgQΉ€œ`ΫπΗ”Ώϋξ^άϊ΅Ψ°q΅φNh―O?΅Ÿš’…©S­{Θ.ή{οΘΛϋ'\uΥ‘Ν΅σgžω=Z―ίωΞν–υρ ЏJα6…k"@³…& *rσΝ ·ΞM`#gŸΐFΞt“VΦ œ@σΔ‰Φ“οΕRΩc8ί­οGΌ™[ίς©μ1œωSφΞt3·RχΦΏψ¬φ₯sη7lΨ„gŸύ={¬ ­;4οΫ·_»—ρβ†ΥFϋŸ@enάήގkηά„gŸϋΝfaz!οζχ–£OΝ‘~m?EίΠΐΝΝ»ˆͺj>ϊ0Τ*ό|0}2τ‰Ιΰ|ΑΞΓΞ · )q»hq˜ƒS·ϋX€fN iβv‡Lχ¬? 9‚ Όήυ˜«3³ι'δKτ$+ΌΏ:=t—Ž ½dS ΚΉΖ#GGNžϊ9`η9aΫ‚oυ"Ρ~~.0χΆς'3Π|ΗΟύs[ύ(πΚjetԁζΥ ξ'¨NNΊ©€ΝΝ|7»”憡sPzf›Q Ή˜ 0^ιی«ΊφΖ΄u›Αφ‘aڏ³Η¦%ϋ‹“ΆΟu,@³ —ΞΌωΜʏPμ§νΠnΌτΔγΨ€‘ΝSPϊ£ω;(ΎŽ;mΓ’š§1ε¦2ΜΟ‘TΤt›~ΟΣ87•ύ9£# C»wα…ΗWnKτJJ6Πάήψ ͺλvF\kjzς •n`ΉΟT£ng8άI:Š* Σӎϊκj4Ήwj!ΚoΜ 6‹qfŒ•ŽβΚΘΠνΫρ υsΊ}* Λː…FTWΧi€uvQ9 Ζ5λη©ΩE(+ΘΤ[gφaYε2μ£BOf*вτuΫ…œ₯Ν@Eiž;€ž׎ω₯Θ Ξ±ei%6ΆΠΔΗε‘²dFΠ |ΝkP΅œ7o^”•#;5¨‘ύnΨγ|k\’†Q gΗ6¬±ˆύDš£;ΪGίτ™G0σ5WΟΔ·ο(AJJŠeŽz?₯‘?©ρKόeζ§6rƒΙΏΌΰ/qβˆΟyσ šn. α/¬€fnc.ησ@ζuEŒβ¬™Nό˜ GχπΩ;œτ₯/ξ3œ΄WΒΕsόq½ίŸ/?H·κ‡#;ηέόِ•]?){η`<>θ“«MφΪΞf Ή)-™‹—φΨuρ΅ΊΗF”ŽΟVhŽΣs7•@l’”;ΪڈŠA:SL°ρ2‚ίξI Ή +aQΚсf΅(5'užΌcζ¦zT―€oΫΕH9ζgϊ‰Ρ¦ϊZ¬lh ΄ΰθΊ>‹Φi—"Λێ55ΥΨFϋέTšΛlΝDΜd”’([Q³Τo-υ«¦a1M#MkΙ3Εε%D7’ΆͺάljanΜςbγ*laπΦ“‰;+ŠpžΏEΠοφF©A+σ·σθλ ƒ35MΝFYYΕ!ξƒΙgh™EΎ)Τ}Γkm&|Ή€S,¨,FΊI‚}—aΩΖΓ3PBuγLu V ηβ`Ώ†νϊ΅ΠlΓΦAr’@R@€ζθώήΎ}'Ύρυ;ράκίRδεA @ΚaiΤ¨4-b–-[ρέο”γ'?Ή³ιCEŽ’tΰ@ Ύ½ νΡ­ΛWŽͺͺ \>Zϋ rίήχ±pαb΄΄ΒΪώ‹Ζ’šΨ> Πl[2­ΐFt3ίh 9‚Hφ‹έ|sΒ­sΨΘώuΖ-6r¦›΄²V@€fk]b•Κ#–BΦυn}?βΩΚά¬}«Τ­ΊΙ#–η¬λea­‹έRu?‚Ÿ5gΞlŠ μAˁƒtΟω>ν^Α―—?¦GU~ϊιzόβρεΰˆΞ *ΠΜ†«WSŠj΄{³ώρJϊόf>ϊθ4Φ―–Tώ?}°³gΟ λ3ήšγU*Ί[_'Υ¬ϋ Π¬¬Žž ΘΝk@ΞρFqBa >‘E“άΜ σψ‹ρΧΏ5αK/U=»ξ(@sχ]βφΏcšϋΎ»ΏBwυ @sχύχλΛ·ύΠ?`h šΧ­0€c4[MΟόy‚ŠΠΜvܞΓΉ;δΟΣoh~ω7AεΊgμ½ϋq` Q·ΐjŽTύϊ‹A¦‰>ωpJ.:μGκΑ^ˆΝχω΅[[{Kγ/Vέύ £ λoΚΏf_=υ»άΛ)?λ" oO9ΣΊΗτU²Χv6ΝP1Uufχk΅³ξ₯UR@€ζxœ9εfόh~6˜]nΫί€'jWαν@»)snΓM³&ϋ£6Ÿψ>πΛπυφ‡πΤΒΌnaŠΠΩΖάLš6`aυ*£jΜ$\wνυΈrr Ϊσ‰4'Ϊ%9υΠμE!EΚΝΙΫv4m]ƒΊu;ύΈ2Ήεζ2¬͞©(«Έ1¬λh>IΡ£kΜΡ£cE;noD E_&vY+‹1Όh‚pύ`r*ZκP[ί¨ΩΜ(©@ή8†΄ƒΣΆεUXΣΜtτ8pKθ·±.oEž.€›Nύ.Qτm‚ΥHπP ŒΜ~QrIΧΩ&]·,«ΒΖ}€ηΈΩ½97HΉxύ.@slr" t[š£KΘш~PΎ$ͺΡ₯αςOOΧl6Ώς'”–ήdύυsPvχΏ`ψπaAεV'­­ΗQΉΈ›7ΏTΝ}άυ½oγœsF•Ϋ= Ωb~{"θfΎi%@s‘μ»ωζ„[η&°‘ύλŒ[lδL7ie­€ΝΦΊΔ*•=F,…¬λέϊ~Δ³•ΉYϋ,V©[u“=F,ΟYΧΛΓZ'₯―ΏώW|η_ξΑιΣ§1vl:φοoΡ’2ίΏψ f<“Ÿψ΄aγ&όόηUΪ—«CNJ4³νώπ2ή½8¨ΩΰΑƒρ³š"7wFPΉέšν*fmοΦΧI5Ϋ~ 4+ΜGŽ Ή‡’,½G σŠβ|˜ΌΔNΎ!Γα@v©#τ“JA~FπΟ(`ψΉ| œλ†uοaμ[Π¬‡“3· ΠμΔ«Αmάξγΰٞύg4wί‡q_³©9sš1 ωs“G]=θΜ‘#₯Πvζ>Ή cŠ­ΝG tζHΒVΡ—#„;ώόΚ΄Ώ-ψ–VυivΡΛœ‰„όΑgoΐξOζβίά½mOԚΧύΘχ  <ž±ΜmΩΎ§€ζΟΟ^Yό¬mxž-άΚοΦ-’^ϊ»ŸΔ —τq»3ΰ₯ƒΏŽ†l@ϊ‰θ{ΤX@σq ΑΉψΘΡT¬ΪFšΩΎ•~’ ϋ ' yζ’9ε\ԟ~62Όϊ7εH•ȍβ~­Žά…ΤτhŽΓΡSn.Γόl„­aγΛn½_™ΚΩ>Šί/¬Ζ–Π>']B@tΗ!¬XTϊ―Xšr‘CcD±17R@sΗ‘,ͺ1Ν£άΫξΓυ“yNmΨόπb<ΐάΊησ½4[GΉ5"ιυ:Πl‚œ#+c€Ώφ"4ϋŒΘΙzη^δ—–#‡ξΡX& X9ΜΞ¦K)š0iφRις°(¦z^vΊ°ΥΟΤ n'Ν‰ΊάˆD­_#Υ₯Ο(Ζ‚ΌŒΐY –W-σαγrKP2{œIƒψύ.@³I6Ɋ P@€ζˆPxμX+=-ΐGσπΈ@ζ.πα‡mΰΗΘrβ>† jβθ\€fG²A`£Ί™o@ ΠA$ϋΕnΎ9αΦΉ ld:γ9ΣMZY+ @³΅.±JeK!λz·ΎρlenΦ>‹UκVέdΛsΦυ²Η°ΦΕi)ίcΰ/?σ‘!γΤT‚)z(ρ½ ‡£<Ÿ{ξ9 E€ζ„Θθκχ^‘ΝQόΜQœ› lζHΞ :σρ΄ž_”VρUϋ1?­ΑΟ;σ9ƒΞ DŸCωατwΜuiηΗΧ_+š£ˆg•[χ;jϊš)μΡΧ_Α‘·ΠυαIx'NΕψ+‘ΐΙL5uΧέξcΧ• ‰Πά}!_³*’2Oαͺy@4ˆΩ‹UκVέdΛsΦυ²Η°Φ₯Ώ– МΟ»υuR­N€f₯DœΗ{r¦!tΆΕ9Ξή­Ν†—!B£?+:τh¦ Πl-«R·»hnϋ2^{ΪRζ}ηOΖΈ»ΐ³Έ^-$‘Πν>N‚IB€ζξ˝τkΦόy‚ΠL_`ΐEϊΒήωBtŽ™€ΜH@³‚kυ¦ Gφε¨Ξ*εΝήoV?ζ/α±ΰeψχΒ‰ώ²χ)tHf˜α_3œKνZg݌=ηO²ŽΠ\ΆΤP;­ζΝG^gLΛ―n^hXύy=Ε’€51œ| A•ΡΖ5―Iυ`^›*³:*ΝCfΈYsEσωέΏ~y?°σOώžXkΠy‘€v€±&7]Vfρ–-xfvΎJ₯ŽB‘WigΎE’·9¨e—ΣKαΑ4΅ ›Ώ¬aς6§€αΧΎΆΩcΈ9―/mΘ]Išyώ•ž+΅‰˜uRεζ24_uQRθϊ0Χ)"Ν ž‡FoΔΉ«Ίφ†ωΨ¬R¨[Η~ ΅Ω₯Xς‡wPλΫ*ο’nRό―%_½ΫϊKζlζ“ώZms~bξhŽΗ—έŠΏ2ΥoΩv /½€U›lΒv€ζŽύXΆ¨‘Ltθ4cΝsnΗƒ³x³"@3kΧ΄f)Vn£MPTQŠL•ΥΧbeC+έτΘ&H΅ΐ©²±erώξ[·ΛΆΈžL”Vα€ιόN:?Οj¬°riάrŠΚ‘ŸιΥ›mYV…ϋΏυN₯(Δ7Β€ΣΊ²‹PV`ϊF ή²dΪQS]G3MΊ°n:”œ†ό’\lZΉ†κ ΰΉ΅‘΅υ ˆCIe ύ6’Ώ Πlθ&9Q  МϞ>hvζ+"θfΎ)@s‘μ»ωζ„[η&°‘ύλŒ[lδL7ie­€ΝΦΊΔ*•=F,…¬λέϊ~Δ³•ΉYϋ,V©[u“=F,ΟYΧΛΓZ—ώZ*@sb<οΦΧI΅:š•ΕΉιευΘM‘•Ogp§ŽNPώΓ(wΎΓΩc½͊#<H @Πi8άΦίδΛ1f̘Θέ @ŸνΡSζяgPΰ82,r»Τμέ»‡ΖτιΣΠ[ΟtαφΏc·ΝMT"sχ–¨Ξxoψ…ψΔ’G]5»έΗQΕ< +hξΎΣ’~͚?O°šyI δ[§iO(q4«N"nY|c‰f;3|«Ϊ)€—ΟΝΠ/AΑοΟύ>:d 4ση%j Υ—ΣcΑ·ΒeσΌBϋ‰Ϊ hζΉΆ"ΰ›^S£E–fX“!γP ™ύΩΤ`€Χj ³*3λ:wσΉΛ|ݘλCσM[Υj,‚§›wοΑŠ7P„ίρ`(™‘ΦHι!Έμ£f½š!X4tώ_P4ζDΝMi™hκ<yόE›3sΝCύ€O"»λ j;θš €§(εcmΟ«ΣΘGΛ[ι)=· f tg¬‹.2xι'8ωΰKΛFΩ‚@TβΰΚ>tfDcNΛ)’θΩ™8²m%YΣDBf£’<υΥΥZ΄ζ©…eΈ1+u5¨k$:= fΣU€’=Ώ Π¬t“£(hNŒŽgK/4;σ”ΐFt3ίHϊq}Ψ‡nώOΆΜ-‚Oc»U7b8.B΅ΐF„‘bG ΠμH6ΘΓ™nn}?βΥΘάϊ–Oeα̟²Ηp¦[_m%@sb<λζχ^‘Νέχsά>ώ;=χΔ1?ψΜπ3CΟ'Υy„ζrώqc4$tΦhϊpΦ BλyG[Νmγpλq΄ž8…ONž H?W§ΠΥ9υ2§σ‘eT>˜ψτ@ŠΫΗ=0v<]Ί h>΄uF?UΟ΄Ρpαg‘]φ@\Ά=mδvχτϊ“έΏΝέW<ιΧ,Γ­*1;*]Y-χζΟ$’A½–=†z08Κ1G8>z0ΨhΤΖ<9²0pʜ†χ/™hf;σ|ω\₯©ŸσGsερ^Q•ZŽ|τϋΑuΡΦξhV½›acž#χeŽZΝs‘΅‡Ν‘Ϊ ΰ΄43„lŽ’­Ζ2kh†–ΥœΥ‘5Q‘¬ΠLu›ή9†YΏxC³Ϊtϊ VUΝΜG‹3[‰w €―{Ύ¨°|ϊ•a-¨;Άqτύ‡™&ΥΡAΗ‘1b¨ήpΆ¨}:Ω83Π{@³Ύt‹LΊPφΏš-,ύE^–—;š}ΝλP΅|+uεΑμ;+{χκΓΊΪ*l₯{/žŒyάρY;'ψYƒ ι31=4•6•žXίΩή§o€Cw­ι±βKw₯ΠBυΌΥωIDATQ/ο•1,MuZύ@νœσΆ„‘Γ‡ϋΟ© —mMΗœ3l’0@‘Π΅‚±Ύf{ώαώ5;€L«η²@9Ϋιeœ§r½,pυη·ίέό.RG€β‚ Ɏ`ν‡μ8iv q9•iY>*»@ΫqlT]ˆ=7Ά΄3μ›— £ΐΒx“E …x›&GώŽ9Α>Φ—Νέw¨Ϋ―YΛύ…ω3 stεξΛa»}ρŠZšΤ-ΝσU6 ή* ;|LvqσBŠœό˜ΏυP‚VšG΅ ΄Vύͺc¬>M°―j’Ν@3Οσ’+Ώy\NsΏν—wόψΥbVλ5Jό9ž GnζΔΐ3χgγτπ4œš’‹‘#GϊΑqΖwΏι·WŸ9±½Jyσύ‘΄Ν΅ͺKΠΜ lΑ‘lόξ­ΓͺWύψπηΞAιKχjηΫSΞGρ |€¦_ˆΝοΕχ½#« ϋ„ό\ΊβΜέϋ‚nQ:h6ΑΙΰͺ‹Pš;Ε΅ ߝβ§wβw‹q.>mU†αίΕ“οΐ¦Ϋs΄’Κ οh†ω„ϋΡΚ ή_Ύ‘½φ”fΓ°pύΐIψχsw!wΠ΄Ÿψ―ͺG§f£†OaZΫ͞…Ν ^΄=S‹‚½ψ ]”– Όoκjdž?KώΗ€ςGQ§}ϊo­Ρμ΄_¦k¨zνN”o(Υλx,Ž”=³σ½ ΘΝAΧέΟhVΡΕωZ kΕΌφ4⼎Uηλ}Z}Ω€ηϋύ)^€ΎωΏGGηΏ7N/?)έ_cύ[E·΅UκφΧj[‹γU@€fςN™yfL™ŒOŒ‘&ΈyχKΛπψ o‡χh h¦HΜk7`Pϊ^[ «‘C1΄ν6mB¦  9|8­„"HοήΆ―φ;'‚U»hΞΔ‚Κ"Π[υdDh&ΠωΞBœησ1{μO”χyR‘~^`3cSγŒΠά°²υMtΣ„"ό–—JμOzδ_Pθς0¨δCXY·ŠfCQ «( 4­Ω…ε(ΘςbγJlα+‡E6ΝςήIΡ«}ν>“ ”O=η₯*aττΉΜΙΖ:ΤΤ5Ί2° "λͺ–’™Ξf”T oœνMkP½r]#SQZžεU+ΑΨψŒbͺΟ0τ±λwšIDI’@ 9bž] ΠμΜIEΠΝ|3Nέ\2™Ίω?Ω27“£ldέͺ›ΐF6œh2ΨΘ$†d»­€ΝΞ$”=†3έάϊ~Δ«‘Ήυ-ŸΚΓ™?eαL·ΎΪJ€ζΔxΦΝο/ΌBKΰ(1KOH/:pΤί€f»κ;臝?ό8ώχ HΠ'μ…§Σ/C·> Ε?gθS5νΘη”θC»#н(`KM…‹»Ž†΅ΩωΕ…˜:ϋš°ςdΈύ΅:Ωzττx4w_a·_³–ϋ‹ŸIt_•ψ{Ϊ_0ΈΛΐγ…ύ0xΛ)όε2σg)mE£«‰ωrzmc ΩNβHӁH§·<Α§˜Π δξŸΟqξώ²Πί܎ΫsΚΜφGcφŸ…¦M0j°‘Ε™ h>•>Ώ|&L p;ή€4e˜uDυΥζ­"lε΅fj=ΆΆω0rΙ&-_|fE*nΗƒφ;‘‰ ΤΪΣγ5Α Ϋβš€Κ«'`۟‚ΛŸ3ή‡8Zr=²ΦκG  Φά/Cι ΄5—›σ—‹8’΄vά}Œςώ±²ΗŽ@Α”ΡΨDe<™oΓφ=-Z4α4‚šΏλΩ…”δΝpςKŸΌ.:ΠGEΦ€_jζ¨Φ\7ϊTο~ ι‡ώ¦™Ά…§/ΒwΟlš:žΩωf·iΐxLΎ$ w|f .ωΦΚψΫ˜ωe|βΑ―θef8™}–vožQ§τyΏΙ€ϋΉφΞ‡ Φ_ύ-ρθgωϋ)°ε~4kΧ"\+Θ[kdΊO^0©ΩW ax&²―$θή*™μ­ͺΓΚ8Βωm? +vRΰφΧj'k’6=£€ΝέΤ5wξνΈϊ³1”ϋι؏e‹jόv@εv€ζŽCX±¨±b*λ@sΫ~Ότίΰa•'޽ƒM[bυΠΝ…Ηhή{@³yw–cFMΠγΓΦε5XΧL7e.,_λ@sjΚΛςuΰΨziψΠμkBmxΥϊσxtH˜o„πŒ8eδ-@ρ 3fM…Ρ`e­U,šk-E]¦½œ'³E^ΤTցƒ0g”’0›ΕQΙ΄.ŠD\F‘ˆϋm:Ω€κšzBΧ½ΘΙΝBΓ–ςΑΝ•ΕΎK+—£©˜1;Ϋ6r}:Š+@η™ψ]€ζ~{ΕΙΒ{Hš{HX—v+@³3ΗlA·7έόŸl™[ŸΖ(v«nΕp\„j"#Ŏ Ω‘l=†3έάϊ~Δ«‘Ήυ-ŸΚΓ™?eαL·ΎΪJ€ζΔxΦΝο/ΌBKΰ(1KOH/AΐQBzL|'nχρŽ;0œ’ Η qΔg+θYΠ †ζsew&g8Zε΅#[΅S}MϋΙ“Ψuπ=˜Χ‡A8CŸ/v± ƒΊΞ`P wρΉϊαϊ.ϊœZ}ς˜xJ=£ΐkΖΰ3*”™1Ζ¦Μ|ΜΌ£Τ(θ₯œΫŽ{I–V€ζξKλφk6βώBAΐ ζͺΘΑέ—Γvqν/€© [EEgΆ1Ζg.VM’•¬ώ&RΎγ7‰™9Z'VuέšxJ‘˜f_ƒSWήώBΝε—χS°K’yΜ@«ͺ³8r€^•fN‰μg#m[ͺΘ8š`s††_ήC₯H ―*׌Μΐ«‚ΗΉ‚‘λPP]k`ϊG΄qεͺV λ6mί·ψΑu—iQ›Υ|υHΜdlŽRl.WύΔ³Ξc‹g"ν—Φ’gσϋSΡυQ΅κ-Ÿ» …G§kη Nβ8…δtϋ”aψΑη/ΔψΪΫ΄sν—Š|ΜΧ‘JζΏ.ϋαΝΐ±CώΪF;VΓ™#…·L»ιΕχθU–³ižθIζ”ΐΏ7·ΏV›—-ωήU@€ζ˜ϊOΒ­₯Χc¬—Ύh²υχψΝ¦0\“ζ–’δ³c©§6ΌΊl1V‡šΨšA@σΒψζŽCΫ°¨ζ阫HΆAοΝ©.—ΰ2E+¦hΕt«ή¬”fλRθ@sHeέ (cγˆΠάΊm%jΧ4υ`y’JΡ›ΛŒθ͚M·fΰΘΦεxd]3Ν˜=Γƒ[x.ίV|« ’~Ω[—jΥ7­¨«ͺE£ιž'#ΕώΗWΠ&Št]εt­ ¨Φ₯yt³ΘŸœψ]€f%¦EΔ( @sbt<[z Ω™§6Š [Œ›knώOΆΜ-‚Oc»U7b8.B΅ΐF„‘bG ΠμH6šΙ&Π°θζPϋΝda_3n!{ gΊυΥV4'Ζ³nύΏ˜Z]DΰHτς1.ΰ¨—ηθvΫš“¬ηή½{qψπaLŸξixxα0ž©όρν θy`g'}H τ-&§s*H6oξ;F€4ε ζsΞ{’ΦςZΤ~ˆΊωο§4ΐšΑj†¬ωg A0l;0…Žͺ¬‹στΓeά§f°εr­MW œΖμεTgΨσœύ¨r‹ϋ3΅1μΟ.°ϋ΅”±ψLΧώ0—Ύ˜sΉε«aεΙ.pϋίq²υθιρhξΎΒnΏfϋεώ"Ζg.v½ξJ Ω΄Ηϋ †™Χ­ˆiΪ4†e6N5YΨšWmEN>ίίΓλm§(‚π£ΐ%εWEι…ΏMΓiΩnΒΊκηζcmZ—i^8ͺ3§X@³£Ω–aο™Fj/ϊι.RWυl˜`¨ˆΙ?ϋ¦}Z•©FγφνΫ‘––†ρKΏ’HE)±OΪiΐ_---8–2_1+ϊΠ‘™H­hŽ€Œ”χ 4Ηw n_r&rζC XX³*ΌΕΜΫρΰ΅τ)t aΕ"¬ Žά£@sΝs ŸeRK\4ΣͺŸ©AέNŽOμΑμ;+{ž_ hΆ‚ŠΓΤ2ΏΩ…Ι8+ΜΒ(0l‘žƒ;‹gΓΫή7ΪγρβdΣ,­ίIMhN hNζ Ν šΝQžΥΌΌ­ΉΌΘΊύεΖ\γŠ<­:λ£Η†•Υ¨obόݟB#Z·lYŽ₯›U5rŠPš―’ZZΪρ»ΝΊœ’’€Ν ‘ρ¬ιD€fg 9‚nζ›kŸΎeή |# ==Έ,BO‰/ζG±…ΜΗ<ˆΊΙc.sK^ζfίΩ׌[lδL7ie­€ΝΦΊΔ*•=F,…¬λε½Z—X₯’[,…ΒλeI<%²ΗˆG₯ώc#@sb|νζΧp^aΏŽγZ½·ϋΨ1p€―°g3V@sώhΏχξψΨœοΜφŸ?]%Ύηυz5θH•y(ϊu ΑΠ)ΪΏN€`ιώα²..₯2J)M§@MΜ΄Ώ,pτŸsΉΩŽmΘ@λ'ПjΗ}ΠΟ‡―n gΏςΨT‘•Q›`=Ζ~|ΧqmLσ―·Ύω8>u1s½›ΊγγޝωΩ9ΊΝέχ›Ϋ―Ω~ΉΏ0ζb‚kzϋψCίΕΉ{0VK§σ mΧkϋ‹?―ŽΆΠΟA€ΑVŽšΝrΘgJ‘ϋ ~?žυ‹7τeμΉ'#)§9­z@λoΡΓ£Ν `sw±ς=υwlŽj]yυk Ω ωFX‹4k)½Rίά܌γǏcΪ΄iΡΗgPύ•ΥΡmΜ΅* ΅ΉΜaΎ§|μp:ΜΕ Π‡sζάΎ³4’™ήvΏŠ―†ώ˜IsP6F’Ž:φcΕ’Z„ςΜ° 4?Eš· λ ήTφ#δΠ Y ΠL_~iͺGυΚ+$B3ΛΧވšκ:0Œτ\T,˜M1 Νή©XPZ€4Ÿ³©–>N₯oόP'XSSmΤ‰'#eϋXΑƒΤTzƒ?²U¬Σ欂2f§&zΛ+—’™ΞΓ@βDΝΤοΦεUXΧlόη=§ΈωΌs2ΦεΝΚGιS-ΦE+σ¦B“Αά΄ζU„eΙδσY\K­δΫZΏoyω9EεΘΟ lκϊέΈv=Θ[PŠœ4ΊΪ ·i*+ύνΨφAχΘ’DΈ 9.™ϊŒ‘ΝΞ\)°QέΜ7Χ"˜τZq„›'j>nΎ sS^Š(°QόZ™-62«!ωξ* @³3eαL7y―ݜ)`Ώ•μ1μkΖ-dαL·ΎΪJ€ζΔxΦΝο}ΌΒ~ %Ζ΅z/nχq―GΊBΡ3‘ΐQtλή©u»έΥόg(ΨG°Yι΅Aγρ™‡eΟ›ΈέΗ=―@rG Ήϋz»ύšν—ϋ σg. šόΊcήάθΏXhΆύGmΑ_ JΚΡ J›Αh¦W?fŒ½ϋM#Ÿ'νοXAΰ<ϋL ™I°ΉŒ‘pσΊ«tΣώΒήΘΕ 4³_(2ΖΚέ·RXΝ¬κ“ζc«Α₯μ¬R@€ζΈά5 ·ίW‚‰ώ(φZ‹Ά6 oOΤγΠAL2ϋΣώm+PϋtΞ {@³κΝκΨ†W—-Ζκ·šƒυio$ Ή.ΠL¦Νkj±|[«ΦHA¨:ΠάUΘY*Š*ʐι1ΐίƒ ΣqΉ%Θ=ω κx¬tW.@F…qbDއ’ΚŒSU&{janΜ²’γ°1ΰWκΨ“…ŠB€©1τc|λBjΚΛς@wυΦ}.ΣΊ€ε5ώhΪi΄ζΠ5·’ͺ>^y +J‘ΨΧ5ΦΧ:ςϋy:ŒMM5bΗVΏž’u+u’@T@€ζ>θΤ(K 9Š8Qͺ6Š ŽωζZ“^+ ΉG€w덁œΉ[`#gΊI+khΆΦ%V©μ1b)d]οΦχ#ž­ΜΝΪg±Jέͺ›μ1byΞΊ^φΦΊτΧRšγy·ΎNͺΥυKΰH->AG·ϋX€ζξ;Ϊν>vpĐؾŠ[1΅σPTαcώ2·³>yT»dUΊέΗΙ!tœ††X»vφΌσ.Ζ}|,».—^ϊu›Βnw# Πά ρMέ~ΝφΛύ…ω3—ΐο―ϊ7\x΄Ωορ )’ύά;Ία$°‡~ΉΏH°έώwμ¦ύ…Υ₯7Π̍㍜ΐθΜ<¬Ϋ}Μs”δhŽΫc0χΆ― {ΒX‚˜ƒu΄Ε­ΟcΥ 03›ΪŠΠάwπYV,Β*FΝmϋ_ΕβZ‘ΰƒ;μ±³ΚΚΚλΫ²γ–-¨ZΊ‘@Τq((AX bμΓ²Κeτ›RTέGκJ <Άμ1PHΠj9A«ήψΐίΤ©_BVσsZ$gofΚ)’sΔ€Ο˜QRΌq2–fΉΌjš}δ–”cΆ^nκΙΧ„₯U+Aί›ΑŒβrδeX‘Ζ-XY΅Mί¦Ο(Ζ‚Ό S*ίΊšM@sAίšquՏ ±`8½dv8¬ƒθA·‘£]ΏΟl_ˆ.|buτG‹ΞΨ§"‘[Ω¨2‹ΘͺJŽ’@?P@€ζ~ΰdΣh6‰a#+°Q±ψqRQΙ“'ιi_4‹¦[Uοο¦Η6œςw!@s·€ŒΤΨ­7N6Šδ±θεEΧGjν) @³=½”΅μ1”φŽn}?βUΘάμωRY»U7Ωc(Ω;ΚÞ^}έZ€ζΔxΨ­―“juύ8R‹OΠΡν>ξ—ΐQ‚|«Ίq»ένΨΣ‚½WœyOItd˜ωε/Vΰϊٟ *οΝ·ϋ8ΩΪtuuαα‡Γ+ wάQ‚ι—Mݍxθ‘G‘Ÿ,Ό p<-šK§7tϋ5Ϋ/χλVθώA„ˆ·†AμœΫ},ϋ‹Ψ>Œeαv»mͺ§- ™Η‚šc|6:~<ηnχqΩc8ΣΝ­οGΌ™[ίς©μ1œωSφΞt;›[ω|>΄΅΅Y.‘½½[ΆlΑαΓ‡1oή<|μc³΄λνB7Ώ~³6nŸŸGέΏ‚έξcŽϊΎ8κϋ>ξώ γο‘΅υ8ζδ}™€εη0bDjXΓS§>Δ™‡ηΧ<‰‘#ΣΒκγ) 9•’ΫΈύ½GφΡύO­Ϋ},ϋ‹xΌέΖν>–ύEtΕSλvΗ³±IŽf ω>Κ3@IDAT일ΤDΧΖ½w€‹ EEн`ΑBWΈA€+½ ‚ **ΝBS’ιE)*ŸX^+H‘*λ₯—ϋΝΜ²%»›²›Μζ>ρ‡›Lf&gώ'79™y2IsκΤ©R|4hβΒ<&?α<pƒΐώύϋ©dΙ’nnj 6ΠΉsηtkί΅kνΫ·ξΊλ.έύn%?~œώϊλ/yψ[o½•2fΜθ–)ΊΗέΊu+εΘ‘ƒ ,¨»ίΝΔ-[ΆPž7w¨όΖ\T·oηΝ”!C*Z΄¨›n {μC‡ΡΡ£G•|.ӌVέΗΫ·o—1΅Š±!3΅kχ4±ΈΩΙ™35oѐ¦MλŸlj‚fSΈ|™cψP˜ZΑ½._fpσ‘0Ό‚Γ0ͺ€Œˆ1p€Š ~aŠ_”Σ[Ξ=Kί~ϋ­¨ψβ“f³ΚΧHΆQuϋ 8Ξ$λΏͺϋ‚#λΎΥJͺξcŽ4OYUέΗΦ[fΎδΆm;¨w―—iξΌ©aΝΟvθIž}F­‰Θ h6ο—ΰͺŸ³ˆ/‚=f~[u#Ύ0οΣΰͺϋρE°ΗΜo«ξcσ-B‰x€ 9^dSy½4§ςΝ—@Πμx—Λb#;CΠlΞ™γ₯εvό!Ϋ_Π\΅Q½Nš)!ΏŽΫbAψΨžMΈ=…#9b£Θ|¬ξeAORRKͺV­ͺ3§I“ΖWΥ€§Iaς²εσΕμf™|ιώ+,ϊ©]«15j\ŸXΜμ_~ώόΟhδˆ1τΕ²Ήbζ¬lrηΑ―ΌE‹O³]ΉωάΉσΤ΄I[zόρ‡©}‡gdυλΦm€‘#ΗΠδΙcκτ?Άuš­ΡCŒaξ•ΰf€ωRˆ1Μ3γˆ1¬qσj©Σ§OΣ²eΛ hΆι`•ο}ά4Žl:XWέΗyίΗyίΗφ[hΌ~Q{Θΰa4eκΨ°‚fž‘ωΉŽ­# š#½4Ε_ͺδ™ΕyΦOΏΑΧΝσηΟΟl_ΈpaγπΜΙΟ;ͺΪΖxf\ώϊΩJΕ…ΏΚΗ ©ΜPuσ5±•ΏBͺβΒ3χςσ |lέ;ό…ώrΟ¬βΒ_ψΰώψB… ©hž΄‰ΟΑϋοΏ_Yϋ`˜: hVΗž²‚fOΉ„!AsΒΈ*&†BΠl #ΔFΦΈ9>η/h.U¨σΘ°†;n[XKBwΐΆP&ΡR 6ŠFH?ΔFϊ\μ¦ώϊλZκΩγEZωεBωΩmϊψ₯’:΅S{Ρ½χήιΏΛ·ώΏύBύϋ ¦ε+Pϊτι|ιΌΒ327BεΝΫΙς<ψW―~mρ’£ωxƒgj~ι₯ΧhφœΙrπgƌΉtϊΤij+fhŽΗA³5ͺˆ1¬qΓ½ά¬0_ 1†yf\1†5n^-Asl<«ς½[A³}?«ξcš½οcš½οcϋ-4^ š»tξCK–Ξ +hζšΫ΄mNwάQ%lΕ,4cΡ²ή²kΧ.)xΥΫ§BχαψΏ€‚M°@@ ρ+VLΉ‰Κbκ°‚ζΤαgΗ[ A³γΘq@A‚ζΤu@ΠlΝίYγζψ`ΝΦe’”γ>5hΔFAeƒΨ(HŒ6Ǐ›DiΣ¦υ͌\- ‹9J„(YoαύΙ'“Γ–_Έπs1˜·“zφμ(ΕΝC†ΌHeΚ\RՊ«θΫΥ?Π+ƒϋI!tξύeeΛ––~b\MΞκœ)SƐ²V hΆB1†5nͺޏΈ5°Ν[>EŒa͟ˆ1¬qσj)šcγY•ο/άBšνϋYuCΠμ}CΠμ}Ϋo‘ρώώϋjυL'ZΆ|^ΘΛή\ ΟΌ\οΙζ4nόH*V¬H؊yΦΜ#GŽθξίΌy3νάΉ“rεΚ₯{ έB&8p€.]ΊD9rδ_ΩΚξΰ‘*99YYΫΈ<ϋ1χ±eΙ’Εx£Μyξά9Ίpα‚ αc{'ϋ˜gZηΏcUΥ}Μφ₯OŸ^Ξ¬"CΎΟπ=IΥλ43γ―T«VME|°I14+ζ―˜A³W<‰v€€@b€ 9±όeΧZš­„ΨΘ7Ηγ hΆζ(₯χ©AΫ 62*(ΔFA@b°Ι³ο΄hށzφκφ“©›7o•30k3'6šΰyξάE΄ί)ˆ>}ϊŒθΠ ΤΩΊu5j؊ή}οM9“3ΤՈΚ1σίpΘNΪRΛgšθȐ1ΚΝQ…ٍ# ˜(ΙͺޏΨlΨΕyav«Κ 1F‡EIFŒP*Ϋ AslκuRkΝ λΏͺϋ‚fλΎΥJͺξcš5OYUέΗΦ[fΎδΩ³ηd? –υ^Βή³η_ΡoњΎX6WˆΘ²™?€(ΑΟΣwV­ZUΌ°ΟRρ,4sζL:yς$U©REώ‹η±¬Φ­ϊ9‹ψΒͺg―–SέLj/ϊΚκšκ>F|aΥ³WΛ©ξγ«–bΝm4»ν‚f:ΝΕ @Π¬ΈƒblΝΦ€Bld›γΩ4[s”‰RŽϋΤ m” b£ 1ΨdAsϋvέ鹎­Γ š·mΫAŸλφ³«λΦmϋ{ӊ•σCf Ή|ω2Υ«Χ‚ \“ŸΖΏ?2@„ΌkΧnβY˜:LΙΙ§¨—U7mΦ@ΆjŸ@ΧͺΩPΜZ”“f̘@… ”ι6l’vm»QΊΥ©_ΏΆ>… A³΅1†5nͺޏΈ5°Ν[>EŒa͟ˆ1¬qσj)šcγY•ο/άBŽμϋYuCpδ}Cpδ}Ϋo‘Ήήzλ]ΪΎ}';\Ξ²«•ζΎ“ώύSƌεW₯΄t³Ώ4›%š_υ{β‹PŸ™MQέLj/Μz44Ώκ>F|κ3³)ͺϋΨl{?~ hŽΫT]3Ν©Ϊύh<€ΈF‚fΧΠ»r`š­a‡ΨΘ7Η²ύΝΦLŽo©Q+ Υο87CV]Ι€ͺm™p’_Vˆό`ΔhU4wνځn©p“n­ΡΝό‰»€€–TβΊkι­aƒ)S¦Œ²{δΘ±4cϊjέΊ™œ‘Ω/^’ί~[+>ΕzŒ†{O|–σ4͚=‰Š/&fJ¦qγ&Ϋ•9s&bΔ³"Υ­Σ„>™5IwΦ$Μό©OUλ-«W―¦έ»w Ϋ“”›iγƍς³†₯J•3έΥ4ΔΦπ«z?βΦΐ6oω1†5"Ζ°ΖΝ«₯ hŽgUΎΏp !8²οgΥ} Α‘χ} Α‘χ}lΏ…ζj8vμ8=Q·)=φψΓΤ­[1svβ/MqΔά9‹θΣΟ>‘όωσš«Τ/7Ν~0,ͺ~οA|aΡ±~ΕTχ1β ?gY\UέLj/,:Φ―˜κ>φ3«.€ Ωexυπ4{Υ³h€¨M‚f΅ύkλ hΆFb#kάΘ^Ρ€ΦŒu’Νq£ ±‘5΄Yγ©”&hŽ4C3ΟNΔ³8/[>/`†ezyFεζΝΪΣΡ£Ηθ閍εLΝ“'M§ςεo {ξΉ“Ξž;G;Άρ/°ΞvΌ=jœψόκzš4ytΨγp!ΞΫΏͺUλ1ΊοΎ»κ ήΨ°aΗΦ[vνΪE6–§¬Y³κeq-mηΝrζ§"EŠΈfCΈoέΊ•rδΘA ^™5;\>7·lΩByςδΜωέ8|Δc²meΚ”‰˜Η­°ΝyUΉ>|XΌ(rDΙσŸεOœ8‘€m›9s†Ώώzk'DKύσΟ?TΆlY*W\‚ͺύ @ΠμOΓϊΊγΟΧ&M…ΰΘ$0μͺϋ‚#§™LRέΗ™t¨NvΥ}¬crά“φξέ'Ύ&ՏΆnέA₯K—”ΏEŠ’1bΦf~ΫΞA³zWΚͺ~Ξ"ΎπΎ_xίLj/Όοcϋ-D ±"As¬H’ž4ΰΐ€€€C hv΄"‡ Ωš# hΆΖΝρΡ­ΏιeΝX'JAΠ7Κ4[C A³5n‘J±8Έw―—ιρκΥθ±ΗΝϊυW«iΥͺo£~V•g\^Ώn#­ίπ‡¬ηΖo Ϋn«Hο½χ]sM~zτ‘ιέχή§ϋκ –y†ζΗK3Ν$@Μ—7*¬/š]Όh)mΩΊzυκ€k³–xΰΐβ€υ–ί~ϋMg/fhΦƒ! 1F8v9cD°%xl &bl[Unˆ1Œω/8bŒ`"©{‚ζΨψ_Υλ€Φ:Ž4ΦUχ1GΦ}«•TέΗiž²ώ«Ί­·Μ~ΙcbΆfώβSš4iΔ‹³ΉνW(j€ Ω>FΥΟYΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ@‚ζΨpˆΝVδ04[sΔFΦΈ9ή!z&™hΟ6CΖςŒ˜₯K—6”ΧV&5ΝΆPF* ±Q$:αχAlž=K>_N+V’‘#_“uώui³!W¨Pžš4Iςίε[ί³η_ϊδ“ωΤ£Ηs”6mZ_:―\ΈpjTo@γƏ³6g¦§[Άή25KBΠlί/ͺŸ³ˆ/ΌοcΔήχ1β οϋΨ~ QC¬@Π+’¨'€Ν8°  ΰš­Θa hΆζˆ¬qSΉCΤ1Ϋz†ΰΘΊo΅’ͺϋ‚#ΝSΦUχ±υ–©Y‚fϋ~QύœE|α}#ΎπΎ_xίΗφ[ˆbE‚ζX‘D= hΐ ‡@ΠμhEA³5G@ld›Κ’ŽΩA³΅“Ηd)ˆLϋ/;ΔFΦΈ)5mΪl3z"$ρlΜόIΥ 6Q»Άέ¨UλfΤΎ}KY ‹’[4ο@•*ίJ½zuς₯υθή_ˆ"ΧΡΤ©γ¨DΙβtρβ%Z±βkzιΕWiτθ·θξ{ξy,ψŒ^2œ†@=|Ώ+Ÿ;wž– σ+ƒή€7ίD<ς qZύzΝεg]‡Ύ1Š+"Λ―]»ΪΆιBmΪΆ ŽΫΘ4«ƒ Ω9ΔΦΈ9v·`l³MQ•b kώDŒa›WKAΠΟͺzΤZΑ‘FΒϊ―κ>†ΰΘΊo΅’ͺϋ‚#ΝSΦUχ±υ–©Y‚fϋ~QύœE|α}#ΎπΎ_xίΗφ[ˆbE‚ζX‘D= hΐ ‡@ΠμhEA³5G@ld›Κ’ŽΩζ/hΧ‘¨h©¨0·lΩBeΚ\™©5jf;JEŸ-:ΈzΗΈ8Κ6ΔFQ…Ω ±Q01Hf‘ς¬Y hΨ[οRΊtιδΏσηΟSχΟQ³f (mΪ΄ς(œ―ΏΑtχέwPέ'jψŽΜδwήO³>™οKγzFŒBχW½Η—Ζ+_~ωΤηωi3f€aΓΣ}χέεK?}ϊŒ˜₯ω=Z΄p‰΄η₯Kr_ίΊΣSOΥυΩδ+`r‚f“ΐώˎΓ7UοGάΨζ-Ÿ"Ζ°ζOΔΦΈy΅Ν±ρ¬Κχn!Gφύ¬Ί!8ςΎ!8ςΎν·P­ hΆοΥο=ˆ/ΌοcΔήχ1β οϋΨ~ QC¬$œ yΒ„ ΄gϞX΅υā@Ρ’E©]»vq¨U‚€€@d4GζγΖή“'“iι•τΓ?QΚεΊγΞ*T³ζ£”;w.Ϋζ@Πl !ΔFΦΈ©ά!κ˜m£{m[g `ΌKZiϊŽq3iΔF&ύ—b#kάΜ”bsrς)Y$[Άl”)SF3Ε‰EΘΙΙΙrζeŽx¦ηpΛѣLj,|Ξ•+gΈlrΆζ .ΠεΛ—)kΦ,”>}ϊ°yΝμ€ Ω ­«yc\eafMΥϋ·Ά™ρδΥΌͺrCŒqΥGfΦc˜‘9/₯aΥͺΥ΄|ΩΧtόψ *s9ͺ[·•(QF|α}#ΎπΎν·5Ċ@Β šώωgϊόσΟcΥ~Τ΅jΥ’ΫoΏ=5£JˆL‚ζΘ|œή»kΧnͺχds*SΆuι^Š¦N™AλΦύA3?™H₯J•΄eΝΦπAld›Κ’ŽΩ¦² ΉΣ’ζfivŒ›ΙSb#“ΐώΛnEl΄{Ηί΄ύ›•”r:YΦ’>Ίω‘G)Wžά֌Sκ―Ώώ’χΐrεʅɁdΥ@ΠlΝ#ˆ1¬qSυ~Δ­mής)b kώ΄cX;’ωR‰cπ6lEφ€—^κM…  •+VΡμΩ ι΅Χ_¦κΥ«π‰ψκΓΘchΩςy”'BάvθΠjά¨5Υ«W‹:uŽΝ,4vSČ*ί_ΨpŽ"ΊΟΠNΥ} Α‘!7FΜ€Ί!8Šθ>C;Uχ±‘F$P&šν;Kυsρ…χ}ŒψΒϋ>F|α}Ϋo!jˆ„4sΓ,X@|‘ΐ’ *PύϊυΥ3 €€ 4«γζ‹/RRRKͺV­ͺ3ϋΟΒ8ιΓi4uκL1ψ8Ÿ2gΞdΩhš­‘ƒΨΘ7•;D³ ‚fk'ΙR™φ_v3b£γbφί΅“ΗΠ|r°γi2Ρο·Φ§ͺ-Ϋ„μ³šHb#«mτZ9š­y1†5nŽέΗ-˜Ϋ,@ETε†Ú?ΝΔ֎`½T’Δ<£ς°aοΡίDsζN ψ’ΒΟ?―‘g;τ yσ?Š8Sσ₯K—hϋφΏiΜθ ΄zυ”1cFZϊΕέ―?8q’Ύy^~ωu ·C‡g¨½ψ‹‚ζXPTχ:©΅‚#„υ_Uο…Z‹ 8HXUέΗYχ­VRukvzε‚fϋžTύœE|α}#ΎπΎ_xίΗφ[ˆbE !Νάψί~ϋΎϋξ;:|ψp¬X ΉζΊϋξ»©rεΚ6jAQ°G‚f{όbYϊΧ_ΧRΟ/Κ/ΚOΛϋΧ͟…―S»1υ±έ{οώ»L­CΠl —/3ΔF>¦VTξM΅Άω ¬χeΘCόΟΜΒ’ˆhŸ¨6SŸήδŠΥ辍ό“ ―CldU@F3b£Ν}›Σ ηχ”ήψΆΐt_Ώ+"˜ΰ}f·EldΆ]^ΞA³5ο"Ζ°Ζ-ΥήΗ­ας•7 Γ+ˆ1 £ Θh&Ζ(θΐF’Δǎ§j?V΄όζoSϊ ¨W―Na©ύύχ?TΏ^ ͺϋD κΨ±œ‘ωω>])oήΐgOχο7˜V­ϊކΎ1€ ,@Λ—EέΊ=Άn3; h6C+|^•―αl5Gα}gtκ>†ΰΘ¨'ΓηSέΗ…χΡ=ͺϋΨh;%Νφ=₯ϊ9‹ψΒϋ>F|α}#ΎπΎν·5Ċ@Β šcυ€€€x‡ΝκψrόΈI”6mΪ°³ ͘1—Ž9jλ³―4[σ7ΔFΦΈ©ά!šjmϋpΡ†ο­94Ξ₯6g,DgλXM?~‚Nžφ·Υ λ4Ϋχ’κη,β οϋρ…χ}ŒψΒϋ>ΆίBΤ+4NJ$κpΝ»@ΐƒ‹-šw žbv₯Κ•oΥ5ŠyΦ€pšΊ…‚!hbpb#ƒ ‚²©ά!šjmϋb*Ρ²ƒ<…M=ΗΣd’υϋιν2•vτθ1:uκTLΔΦ%ΚίLΉςδ6uόH™ŠŽχ¬EΉRΞEͺΚ·…ι7Ό9Ν·mu%QΔFVΫηΕr4[σ*b kάRν}ά._)pσ‘0ΌA³aTΖ…ΪH”#Ϊ Ν§N¦š5Π’Ε3(wξ\QιAΠ©|dλU·‚£θηX΄ͺϋ‚£hŒΎ_uCpέ‡Ρr¨ξγhφ'Ϊ~šν{Lυsρ…χ}ŒψΒϋ>F|α}Ϋo!jˆšcEυ€€€ΈN‚fΧ] ΰΑΕφνΊΣs[‡4oΫΆƒ:>ΧΛπ Lz-ƒ YJτ4ˆ’3Λ‘r‡hͺ΅νΘ>’#ϋiνΏΙz.‹šΆgΟ*Z4v³ σ+ΞυΈΘp…ΐξtΉθP¦|1ΓqωςeJ₯K›.l—.]€tηΟκr@7ύψ€ΉΆ…Χ‰"6J!hΆζxΔΦΈ₯ΪϋΈ5\ΎRΰζCax‚fΓ¨2BΠ€ΓΖμΩ ιΰƒaΏΠtφμY!hnHσζDy ΌπAst7¨|dλU·‚£θηX΄ͺϋ‚£hŒΎ_uCpέ‡Ρr¨ξγhφ'Ϊ~šν{Lυsρ…χ}ŒψΒϋ>F|α}Ϋo!jˆšcEυ€€€ΈN‚fΧ] ΠΝ]»v [*ά€k”QA3«.\Π­cΣ¦MΔ>Wyai€QΩDΨ CχmώŠnΊ|(†5’*· Œ+\εΞiیͺU«RΉrεlΧƒ œ!A³5Ξ4[γ¦ς +lσ–O!hΆζOš­qσ/Ε‚ζ3§ΟPΛgšψ'ϋΦU4'''Σή½{}φω―πKtάqπΰAΊνΆΫ(GŽώ»•YσΟ?•Ž=U·oϋφν”>}z*^ΌΈ2>υ7δΐtδΘψΨŠΙυ-[ΆP–,YΔΧ‡Š™,ιLφ}ϋφΡΡ£GιΖotζ€Ž’ϊί1ΏXΜΧθΒ… [h]ό‹π}†ο7eΛ–Α,ν«T©’Ε(f–Νf‰…ζWωω•­… 9ΤgfSTχ1Νf=š_uCΠκ3³)ͺϋΨl{?~ hŽ[Τ    ΰ0šζpš 9 ΝΫ·ο”³8/[>₯ ?›ζ† θάΉsΊGΪ΅k—DΤέ©H"͊8f€@*%pιΒEͺ²γG₯ZŸ=ε\B‰ΎΗ–x‚gΙd›!ΝΆ:ZΝΦpCΠl›Κω°Ν[>… Ωš?!hΆΖΝΏT’ΝΠ|μΨ1ΪΆm›Φ΅ΎˆςεΛSΦ¬Yφ©²ΑbΝ2eΚ¨bNˆͺΫ·sηNʐ!CΜΏθΒbΒ‘C‡€Ψ>ΆPcΡzζΜ™©H‘"Φ+‰cI­σ΅He±«κΗ|Ϟ=;,X0Žž²^5‹ΦO:E₯J•²^‰%!hvς‡€ Ω>k•Ÿ_Ήu4{ίΗ4{ίΗ4{ίΗφ[ˆbE‚ζX‘D=   € ΩuHXΔΫ»ΧΛτxυjτΨcιυυW«iΥͺoι•ΑύtχId±Ρ™3gθΞ;ο4’έ±<ςΘ#r€Δ±ƒ8ΠΦ­[)gΜT @ΉΝΒΆεΙ“‡ςεΛημ m+]Ί΄œΞgm֘«ΚgΪβ*žo<¨zβΔ [Ά:‘LnΫjΝiJ•―ί‰`GvώJ”Uύ„ΰΘϋ>†ΰΘϋ>ΆίB΅j€ ΩΎ?TΏχ ΎπΎ_xίLj/Όοcϋ-D ±"As¬H’Χ @ΠμΊ |π€εŠ•«hδΘΧ(Mš4Ύt^αΑΗώύ‡P… ε©I“€€}f6Xlğ{­Y³¦™bqΟΛΒ΅%K–Θγ4oή\Ή› 6²v ¨ά! ΫΌεSˆ¬ωΣ¨ΨθχώνθΦ3; dUιΪτ`§ξ†ςFΚğΊεϋΝ‘(©΅‚fkώ@Œaξγΰf€ωRˆ1Μ3γFc k΅Ϋ+•(1ΖίCO·x–ψ M<#jπ²bΕ*š7o1;œ¦MΌ;d‚ζ$! *ί[ΨXΥνƒΰ(δ”2 Ί!82νͺϋ‚£—™NPέΗ¦€xšν;Hυsρ…χ}ŒψΒϋ>F|α}Ϋo!jˆšcEυ€€€ΈN‚fΧ]ΰ3`ίΎT«fCš6ύΊρΖ²Ύt^ΩΆm5lЊ-šNΕ-°ΟΜΝfh]Ν ±ΡUfΦTξ…mf%PaΠΝA@ nBldTP6•;Da[³ nͺΚ b#ƒ ΚfVltόθ1Z3c •ΩΎšŠ^>.kc!σΫλΠ} Υno3‘ΔFφZκ4[σ%b kάT½qk`›·|ŠÚ?ΝΖ֎b­T’Ε?Ό†Ίvι+ϋŠ)D{χξ“³2Ψ—²fΝβƒ°δσε΄bε*1βUέ~Σ‚ζ/VR·nΟϊκ·³rϊτiZΆlvμ8ρoƌ){φlΖ +‚ζΨ8Aεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£@Πl 7ΔFΦΈ©ά! ΫΌεSˆ¬ωb#kάPJŸΝϊ\’₯"ƈFH?ξγϊ\’₯‚[4B‘ϋc„21’‚Γ₯Τ“‚ζΨψZεk8·‚#ϋ~VέΗyίΗyίΗφ[¨V 4Ϋχ‡κχΔήχ1β οϋρ…χ}lΏ…¨!V hŽIΤ   ΰ:š]w£°Ψ(W\”/_>Gν`ηΝ£Γ‡Λl €tιE+βθώδδdJŸ>=eΜΩΡγ9Ϋ–!CΚ”)“‘μŽζaΫ²gΟξθ1 Ά%˜OUnηϟ'ώ§βωvφμYΊxρ’²Ά]Ίt‰²eΛθhΆXψΒΧάrεΚ)` L0B€c φΩ5Χ\#οKFΚ8•ηΤ©S”6mZΚ’%‹S‡4|Ύ"Ζ0ŒΛ—QΥϋΫ|n2΅’*7Δ¦άθΛΜρb ŽTΏ’ šσδΙ£dœ 9HΥλP’Ψ§rΌΕ ΉίιΒ… J>—ΑΗ{ΏμcΎoηΘ‘Γ^Eq,ΧUŸMΨ-*χ―h§ _ +Uͺ€mβ7ΞXΠΜqwpΈjˁdŸ _—T½6©~]B|a¬†ν1D|a—ζsρ…=Žˆ/μρKM₯!hNMήF[A@@ΐγ hφžƒ7lΨ jτZΖϋόਚ`˜m½|ω²4™Gͺ-)))ΔT³mβ…Ω©θSΝΎ4i(εRΝ.6 ΆwΖM5fάώΠμ~·,Ύ95ΫT³ΛŸ›ͺΆρ`Τ­·ή_‘vSc˜Βe(3_[ωb CΈ|™T½'iv±‘ͺ][Α6՘±΅ϋΈŠ>ΥlS™›ͺΆρ3qŊΩ­XbDΰΨ±c΄mΫΆ°΅±”ŸYU|ne£΅k€Šη¬UuωšΔ‹j1ΖOεk&Ϋ¨ω—ΧU=ΩFώ§ͺωEΆMe~μ_^TΆQe«ώwΜΎe~eΛ–UVΌΚ6&Ϊ)Ζΰ±Ž-ψoJΕƒΟ^Tύ›gΫT·ρ{Ιϊ’ω—kPυ_k'3ΫΗμx ]Ε…ύΛ~T©’r/Α2/~.γg %JΘώ'[·NΎ°^ͺT)Ν“ύͺ>{30ΥoΩ²…˜Ÿj&h]³f εΙ“Gž‡ZšJΏ,ΠΰΩzωοXΕE›I‚#ηΌƒψΒkΔφψqiΔφ"Ύ°Ηρ…=~\ρ…}†¨A4«γ X   `“Ν6&Xq•;ω h62AΠlž—€ Ω7š­qƒ Ω7š­qs³b kτ!h6Ο ‚fσΜΈΝΦΈAΠlΝΦΈyΉ”Κqs‡ ΩώΩA³=†4ΫγΗ₯U~φfϋ 8b φŽμρσbiΔφΌ A³=~\‚fϋ !hΆΗρ…=~\ρ…}†¨A4«γ X   `“Ν6&Xq•;ω h62AΠlž—€ Ω7š­qSyPb#k>E)}ˆ1τΉDK… 9‘Πύ4‡21’A³J‘y heb$1†J©+Κq{‚fϋη#ΝφBΠl—VωΩ›νƒΰˆ)Ψ[ 8²ΗΟ‹₯_Ψσ*Νφψqišν3„ ΩCΔφψqiΔφ’u@Π¬Ž/` €€€€M4Ϋ˜`ΕUξδƒ ΩόΙA³yf\‚fkά hΆΖMεAUˆ¬ω₯τ ΖΠη-‚ζh„BχCΠΚΔH ΝF(…恠9”‰‘ΔF(₯<*Η μ šνŸ4ΫcA³=~\ZεgoΆ‚#¦`oΰΘ?/–F|aΟ«4ΫγΗ₯!hΆΟ‚f{ _ΨγΗ₯_ΨgˆΤ! hRŠ:¦Α'€M›–._ΎμΔ‘p  PΌxρ°2Ό‰4‡gγΕ=*wςAΠlώŒƒ Ω<3.A³5n4[γ¦ς *ΔFΦ|ŠRϊcθs‰– As4B‘ϋ!heb$‚f#”Bσ@ΠΚΔH b #”RW•γφΝφΟGšν1„ Ω?.­ς³7ΫΑS°·@pdŸK#Ύ°ηUšνργ4ΫgA³=†ˆ/μργˆ/μ3D κ4‹‡LšΥρ ,0I‚f“ΐ<»Κ|4›?Ή h6όK@ΠlΝΦΈ©<¨ ±‘5Ÿ’”>Δϊ\’₯BЍPθ~šC™I Ω₯Π<4‡21’‚Γ₯Τ•Gε8=A³ύσ‚f{ !hΆΗK«όμΝφApΔμ-Ωγηň/μy‚f{όΈ4ΝφBΠl!β {όΈ4β ϋ Qƒ: hVΗ°@@@ΐ&šmDqpΝ.@Η!A@@βC‚ζψpE­                 O4Η“.κp”͎βΖΑ@@@@@@@@@@@@@@@@@ & hŽ FT    šUπls h6Η ΉA@@&A³Β΁i                 †Νaΐ @@@ ρ@Мx>ƒΕ                 A3ΞΟ€ Ω3DC@@@@@@@@@@@@@@@@RšS‘³ΡTπ:š½ξa΄@@@@@@@@@@@@@@@@ΐ‹ hφ’WΡ&H₯ hN₯ŽG³A@@@@@@@@@@@@@@@šΝ ν>   ΰO‚fXwƒΐΙ“Ι΄tιJϊα‡Ÿ(εr έqgͺYσQʝ;—ζΘcnίΎ“¦IK%J°αοΏ‘ξέϊΡάyS)]ΊtϋβΉ‘’’B_}υ -]²’˜WΩ²₯θ±Η¦[nΉΙwΨ%KVΠΝ»¨cΗ6Ύ4'V.^ΌD_½šV,š.]ΊD7”+Cwί}»Ά·Χέtϊτ*'lΤ7Έ1³+Ύ¦‹/jfΘί .RαBθξ{ξ φyώC¨Aƒ'¨rε[ςΕ{ƒύύχ?Ρ²e_Ώ{χSqΎΥ{²–όεc»aΫαΓGθώο{ʐ!½nσ3eΜHχέ7eΙ’Ω5nkΦ¬—Χ±νΫvRΞ\9¨όMε¨Ϊ#ψegϞ£€ϊ-hΪτ(OžάΊνˆW"_ΎΧΩΝm₯¬Y²HVΥͺU₯Œ‚/nΪ―6£^π'ΐΧ­oΎωžξ»ο.Gοίώ6―οϋw?}ςΙ|ΪΈρOΚM>Ί­JEyoΟ‘#{pVΗ·ωšΑχΗυλώ ’E S…[ΛΣCέO*ΨζƒύΊϊ›θ»oσ]Οόχ;ΉΎmΫϊγΝ!‡δ{ϋCέηψu?ؐ}ϋHŸώτΣ―”9S&zψαͺT½F5ΧΈq ΄δσ”&mš`Sεv† ¨β­7S‘Βuχ;‘xμΨqZ΅κ[ω7zδπQ*Yς:ΊW\C*VΌ™€Ρ·Ϋ »ψKZ΅ZΖFΙΙΙTκϊ’τxυjT¦ΜυN™p~>αkΩ]wݐmhφ._φ5?~‚Κί\ŽκΦ­A%J>kiωρ nψε—5βο¨εΚ•Σ-t»aΓ&š={νίw½Ά¨ˆεο’ϋΕ³“}Ί†ύ—ΘΧΛ%Ÿ/§Ÿ?~Φ(σTUΨWLΨͺβ’Χ/ঝͺΗΜ&Z[ό!ž`6|όφΫθΧ_§έ»χPαΒ…D?Ozΰ{EG·π7ZŸA@f‡6’ΕlΖΪ΅λeŒ»cϋίβšS„κΤ©N•*Up=Vs£0•γίpρŽ}δώ.ŒοΈ5.£Ω­ŸΔώrΝ6½_½xΗM‰wάφ1ρΧκΥ?Θ1Έ;Εσm:Σ5Χδ—ˆέκ?7:.’5kyOδsΥι1Bd$ήqΫΗΡβ·|¬χ7Œ4°J‚f«δP@@@@94+η’Tew¬Τ{²ΉJvιž._ΎLS§Μ uB@3σ“‰TͺTIΗy:t„7jMυκΥ’NΫ/!μΉ-Y:Η±ΑC iΣΊ mΪτυξέ™/U‚~ωy M˜π5mΦ€zφμ(;κgΟ^H ±9 1ήΰΑ…§’ž¦S§ΞP{RŽμΩhυ·£ysS­ΪΡΐ}%'7l n*wF<ώX}ʜ9S€ά°Ο1Ά₯]»§eGΏ­9sζ ζ-JŸΆoםžλΨΪQA3ŸoέΊΎ@?‹s¬_T¬XQρΒΑ Z΄p uορ΅hΡHf:m ±¦OŸC,\φ_2fΜ@,$fΦ€Ι£©B…ςδ΄mάa=tθ(yήsg!‹ ΞrEΠ9@IDATœ=CsΔί$Ϋ6}Ζ)’?{φ,լѐζΝΘQaΫgŸ-£†c=$ΕC‡₯ao½+1Ξ›1εϟWšέ±Νί—Xx`απΘchΩςyŽώύ…kΣώχ uκΨ[Ύΐ¬ιSς₯‚7ήE'N$Σ'³>€λ»6\ΡΈ§/\ψ9 <Œš7o(„Β·ΣΏBxύΞΫγθΜ™³τρ΄χι†JΗέ£`ρΤΛ/ΏN?|On1Z,.ωήy{ΩΧ Ά’ϋK/υ"υ΄rΕ*i/s¬.„ΨX@@ΏΎZ·κLγǏ€Ϋ館‚IςΉk‡ΣhμΨεsΏTΑbΘW‡ —bαY³&Ιη[7έΌy+5mVΖ4ό2.ΝϞ5_> ΤW>Έi_π±Γυ ηsr[ε‚9ι#p’—±T'ΨVG5xͺ₯Όoχκέ‰ Έ†Š>!Ž―yω|ΙlΚ.ϊά\Œτ8m_΄ψ‚ϋaFKΣ§Ν‘NΪRε*·Ζ Θ‘c¨vνΗ‰―?iΣ¦uΪl$•γίHρŽ}δ ŒžΔ;nŒΛh§΄‘~n‡Σ}š}ΑΏαβ·|Μφ‰wάτρ‘ƒ‡)IŒsρ=ωω>]εσώθχ> ­[wψϊœάκ?7:.r«x)ά-wάτ±‘xΗ- cμ€ Ω=”PŠΝJΉ#UΓƒ"II-…Έ’*±˜Ω¦3ξĚ:u¦Νwl€ξΔ‰“τ­xϋš…1Όtθπ ΅ό¨οψ\―A¬ώx¬ώΩrzλ­whΡβΎ™^ω8šΠ‚g{½ρΖ²ŽwVp'έΰΑoΡή=ϋhμΈα’Ž={ώ₯ΊušΠ”)c₯Δ­ŽΝlλ[oΎ#ρLp³ηLφΩλ†mλΦm”ƒ,“' 8ο5{ωΧ­NP ϊπÏiρ§3ΥxfžœΕΈ,΄S₯ƒ–9uξτ<-V„^x‘»+BpžΡ½YΣφΔ’°‚―ρw#}τΡ'R Ξηά… 4kΧ‰Ρc†Ι™Σ5γ˜[ί>ƒθόωσ4rΤkςΧ ±΅f~A ψ«ΫΕL]cFO³«πŒδKΏ˜p/Ηq£ΥΙK΅k5’6m[P“&IΎμόwΙχUžε}ς”1 ΐσL)υλ΅π ΦhΖ±mcΗL_‹XpΥφ»ρ«Ε|l-ήpΓ>&σaρλλCΈ6CnΈΆs|ϋψcIς%%žW[xh7‹Y4½ςBΨxDΛοδο΄i³iΜE4CΌ”M‰^؟Οvθ)Ώ6ΉKΰˍ<3RνZEμ;Β=ΫΦΏί`!hά+N3eΊϊ’Οή’yί‹TρζΖηΠƍ›€˜ωθΡcTΌx±A3Ϋ;lΨ{τƒψςǜΉS(}ϊ«_Ϊΰ—ηžνΠCΖ–˜©9ήήBύ‘π-ZB|0UfSα%Ν^-–ŸϊΡ8y½ΦO:-ξ;ψaΔΪ~§~ω:PΏ^sωβΗΣ-–Ÿωe‡ε+ζ+σ…Ύ&…λ0ήΑ ΆIΥBΓ`€@ΕλΈΫρ„ƏEpS§Μ Ή²`·m›ςλΑ}ZY'~΅λL΄>§ΔΑFβ ζ²Z|}§θΣΰ—©ψ‹2ΪΒ‚΄:’?rΐΐ>T£Ζ#Z2~Aΐ1ͺΖΏFβ7ϊΘΩ1Ϊu(ZΌΓωœ—aϋŒφ“πuR…ώςHρŽ[>6οΈεcΆ'β/‘ψΏΓιόbαμY hε— εΧIUκ?gϋόΗEψtΛΗFγ·|¬]g’Ε;sFΞ©#%Ά·ε[1kτ!T1ς5όΚ›b 7l›1c.όڊšΓ-μϋp όω£bvΕόωσΕT€ΔGuλ4¦αΓ_•BtΫ؞&BψΤ€qΥ}’†γΆωΫ’­³MWE2SΕω.’<^άψsτί ‘Nώ=5Σ|Ώ,Έkέͺ“| "’ ™g1ΰ³άΉsωΚΖb…―…¨³W―N!ձȍ;θ,όXŠ ΒuΦΕΛΆƒ1&  :ρ5‹gOηšy–•ΌyσΔψHζͺγX’]ΫnRΰγ/ξγZ8–`±δŠ•σ)‹ψd»Σ ίΧόφ»ζϊΏhΖvπ}Ÿ…±Ÿ}ώIΜ―UfΫΙqb=!Όnί₯ό|wƒ†O:ϊ5ƒ`{™MΝ ›YʈΆ4yλYbπΏb.]:-Yώς¬šνΫu“3—Η2~ 8ˆΙ―Ώ^-bς!Ί/ ™¬Κrv~ι’Ώ ΓΜ΄OΛϊWΦO<3Τ―WΫ•\9nY³‘|ρ¬P‘ώfΙυ)“gΠήχιΖ$!™m&h3€σmX,K―ρ•yΖΧ΄j?V΄όζoSϊ tγ›ζ‘8" ½dTμΪ"ςοζχί7Š—7‹ΡwT1T>ή™ζΞ]DλΕΧ«^ά/δPό΅‡)βλVcΗwε%(6ˆgXγ˜†Α}:ΪσcίΎέ]y$˜HˆΤ/ —ί‰4•cnΏΡ>‚'ž¬ι.ΓΗP!žΠŒεxΰ^ωOKΣ~Wˆ/ό΅y‹£_Zӎ­ύν3Π‹‰΄:bωk$ΎΰgF [S«ΦΝD\τhΘṏfπ+o‰η­²Ÿ($@ ŽTŒΖ;nτ‘³+ŒΖ;;vόVЏqν41ΪO’+WN%ϊΛ#Ε;nωΨhΌγτΨ›ζcξ?lά¨μ‹Λž=»–,ΩφͺχΧ€yσ>’_R₯\o\„ vΛΗFγ·|l4ήΙ‘#{XA3ΖHώ4°‘0švL0G‚fsΌ;vƏ›$ήΒΝDΒ’Ο£GŽΊ±Ο/–€nݍ šΏ3φξύ²œαNκ1ƒΔΘΥΘΩυX,ZΘ$DΤ<Γ£^gwlŒ=Q~Ά{ΦμΙTΊtɘΩƝ9,:_²tΆˆ›Ε?\U ±ΆΝΏ‘ZG2Οd5k)άY²tŽOlα΄mμ“έϋΛΩΏΛ–-M"\’|ως’,{œOOΠΜ',>ϊηŸ=1 ρLΓx―ό„}¬f>bί{€œyοψρtζΜYω’›ΫηšvηY3΅ω^Νχ~ —ƒΙ$Vχ;Ύ?$>ΏώψcυiβΔw©Rε vͺ²U–ΉρK\½zv -GΪgλ  σ3 Ώ„ι΅’|.rόΈlω<_¬λΏ?^λόYΦΦ­:ΣΗΣή8.Ώΐϊϊk#ΓΪΛνιΪ₯Œ“ό…Πρ²υ‚@43gΞ£R₯J(!hζλ ί[κΥ―ν»†ϋΫΟΟ οΎσ>?Β5A3 5–Ζ‰Yλƒ_„β/eπΛ>NMΕΔΧtά^’υ ΈeŸͺ1„ΖΓhA¬_ΜՎoεW•xB³ϋνN:₯Ϋ·iŸV>žΏ|1ΪgΰΖ‹αβ ώ{ζΎp3ΐσ3Ώˆωιg3Iλ+Š'GΤ ώ!ώ ο8έGΞάΜΔ;αΝρ—Ρόj΄Ÿ„ŸgœξΛΧlΤ~£Ε;nψ˜m3ο„»ΖΫΗ<»0ρH›¬„'Ήpα’ο‹QΜUλCΡ4»Ρ7.Β¬έςq€˜ΖŸ>6ο`Œ„Ο",‰N‚ζDχ μπ€ Ω‡+Π"{ŠYC+WΎUχΘΡμu Ε(‘mDΠΜνΰΟXΎ=j(¦° t½Dή|ˍ!3i³+ >DΞxάYΑ³Λuλϊρ,S,z(R€P,L ¨ƒgλραj;Ώϊςzα…WΔΰΑ'bΆλkB:Rœ°mapGbŊ7ΛΑ#žAͺKη@Ρ„ΣάXΤZ»V#*#ΔΜόωm₯S§ΆΤς™&R’Ωώ\ΗΦΎΏ‘}ϋPσfν©dΙλδω¦ΗήΏ>³λ<w7mΦ@ŠpΧ¬Yο«‚gίk)Qά9λ†m>Cώ[ΡΞ—^ξM>xŸo·ΆiƒimΪ4§ΖMκK"ΰoίώ7=χlOjΨ¨΅oί’x0.ΈΣσ—_ΦP‡φ=θΩηZSΫΆ-B„Ύ†YXa<8ξ:λΟꦛnpΤ6 ΝA°E€ΟwUΝ, ζ{ή§Ήω:σ{Ό‘ώΔ Nΰγ–υ,Z.Z΄pΘί_3ωεΎΏ„{Aά ›ω™‡m ~Ρ‰ϋ1ψv‡|±lžλ3€²Ρϊœΰ₯w UcΝV£}Z~·U‹'˜ΗοΏo/ύ 6˜ξ―z·Œ΅ΉOμϋο~’=ϊΣψρ#C^ rŠ#σ2Ϊgο6žΆ†‹/’ΕCΪί|GΡΗV©-ρ4uƒ@DˆΓΕ;Nχ‘kπŒΖ;ΑΟ:ό·ΟqΝ>£ύ$Ϊ΅ΗΙΎ|ΝFώՎ―8ˆfŸΡxΗ 3·ώύ‡ˆ―€Υ’}ϊά—Ÿœ|Jšž1cFzύυ—鑇ο—ΫNχνkό‚͋p>·ώŽΖ;nωΨhΌƒ1’ΰ³ Ϋ‰H‚ζDτlΠ%A³.$Ζ™€ΦΑβίΑ|Θΰ‡Ϋΰύρά6"hζ™μ^}$}φι2š6ύ}1“Sμf?ŽΦ6ζ7@ˆR6¬CΞΘˆώ,°lΦ΄ό„σt13qφμΩ’Ui{?Ώ)ώShΛ_Ϋd]S¦ŒυΝ λ–m‹.‘wήο›MRοœrΪ6%ΧŸ ηYŽg̘ >UVPςΪ°a“ό\oΊΥ©_Ώ2ΝV>'›ŠΩ›5o@έΊ=0ϋmηύWσzC|ϊ›;j»χxNtδΥ–³lΪτuξτΌͺ@#FΎzefu!Χώ~°-Έμ·™b&ΡΉσ¦°ΎΆ8ewΎ?έ"pFwΆ™gfI ξτόμ³eR\φϊΠ—ιρΗ«71&Ϋ<ΒΪ΅λiδ¨ΧBfnΣΞE>Ÿ6z2@Πμ„m1i *ƒψΪ Š 9œΙ,Τεφχή{“ξΉχΞpΩKη—–ϊϊwο>9σqΙλ―£“'“ιγgΡΤ)3iκGγˆ}λφΒ/΅|ΊcΐWά΄‰Ο­† ZΙ™€‚νpSxΔ/πŒƒ“§Œ‘rεΚ›F|.rŒ΄τ‹9!ȐΜ1L'8ς³υιεA8I œΐΗIŒkώόΟhΨ[οΒEΣε ΔFΚΔ;_7ǎ™Hί}χ#ρ3 @V¬œοΚ'‚Ϋj€_ ΈŒSΫͺΖZϋφ¨2ΛΎjρ„Ζ‘ŸΛί{οmΣχΛ/΄wνΪΑ·νƊΡ>ώβ‡ΣKΈψ‚ϋφψEΈΰώ Ν>ΎρΧ¨άώŠ‹f~SDˆΓΕ;ώΆ»1Ά|¦Η;ώύϊnΛDκ' ξŸpͺOZγf$ήqΛΗFγ7|Μ~γώΒΓ‡Θ–Η>nΏ½²|©ω«―Ύ‘_e|ΎOWjάΈ~Θd%nυŸ³υΖEψ\pΛΗ|l#ρŽ>ΦlΓ “ΐ’@МΌŒ6‚€€@*!As*q΄bΝΤ:xΈγώ– 7ιZηpλτΰw8ιΝΠΜƒ#―½:B~βΌg—€Pgtr†6ξPdqιΝΘLνΨάYqV|βό±Η’FZSY10Šέ)vlΧz!°fΑΜ›oΎ#gA=fΈΔΊaκ«~½4oήGT’dqyŽιSNΫΖ"’qbΆ*>χ΅O•i}ϋv£[+ήBY³f‘BάρG³θΗ±Ϊ‡tέuΧΊb*σ¬§sζN‘ρΩ°|ΩWβ₯ΈΑςΉdΙ9Ž=°αGgŸβ~lι-4λQAš›Β |ά΄ΙΨ|}3z"Mž<]ΌL<Šn»­’nΧΧω|—ψχλ―ΏΛgڈ/Π<'ΎD£=ƒΈa Ρ~7lγcͺCh<ŒφT}ΐψP³“U‹'4ΫV―ώΊwλG-Z4’G}PΎάΞΟγ+W’/—ρΜΝW«ͺewόΧhŸJ34sίμΑΓhΚΤ±ΊρŸ ώ8LΥ!ώ ο8έGξD ο¨0.ΓΆ…λ'Ρ=NφIk Ζ;nωΨhΌ³uλvΗΗήΨo­Zu_IύC~9¨X±"Vωϋλ―kΕ{ΡβOgŠ—†sΊήi\„ vΛΗFγ·ώŽΖ;# 8ύ±‘  hNPΗΑlP4‡2AJό h<‘(Ϋ·ο”ΠΪμ¦ρ·κκΒ šYΛ³΅ω/ρ$ϊλ‡ο’ΝϋΘ™ί’ΣlΩ²ϊv³°;τ΅…gevλσΝ<[Ο&\·n )`pΪ6ώ|g’˜Άiݜκ>QCCBάΉΧ³Η‹RΒ39πβ΄m>ctVψο‚?qV«Φct―˜“g”ωε—5Ύœχέw—œi7^"u¬œ2e†ΰ3Uχ³ΐ“&MŸ\K¦.]Ϊ;n›‚XωφΫΡ‹‚“ž8‹:ΙMσYΖ hΰ Ύ!³ ϋ‹Τ―½Ά¨˜U±Ύο³uά&ž ›6γΉπ9Τ‘}9KZϋ-ιΐώƒ²s³U«f΄iΣfz晦βΕ’ςΨΟv£nπ'ΐ«*ΞΠΜb†^§oώο{WΕΒώ¬Β­σΰDŸηΊ6ΫβκoΎ§—^zMΌž±Ϊ5Ώ³Α†{A.\{œJηϋΟΌ½|Εέ{k<νΠf΄~ep?W‹_˜z€Ϊ“ςKόE·–C‹/$Ό„ζ–-|\m0xΦμΙς3[ψœ5j,ύ#^rC€ΞΆpœϋΌ˜=―΅k?N₯ΔKpΣ§Ν’β3ς+'~vΖBΆΔr=’ ω ‚‡ͺCΠK/ X'π‰EέvλΨΉs—ˆι»ΛΏυ§§’%―³[e\ΛkΟAώ_nŠλu*7Σ/ Sάυ$7c­ρFϋܞe˜νU-ž`›.\Έ „OΔsGωNσ_Ύώz5 ψ}±l.eΙ’Ε—£λFϊ nΏ£²£6ρΑΒΕ,†κ"ϊFΓ½ΐ₯=#΄iۜŠγv〩›‹ UΓΕ;*τ‘GŠwά—Ρ;³ύϋI²eΛζhŸ΄f™xGkvkΏώρΞίοr|μMλ/,~]1κΩ³“f–ο—χσx`1Yˆ ύη‘ΖEΨh7|l&ήΩ+&Crk|ΥHΌ£‚}'V@ΐ"š-‚C1υ@Π¬žORƒEάΐ3±=^½ZΘL°ZϋΏώj5­Zυ-±Γι%š ΉVνΗhΰΐΎ4uκ'4ჩοYš/_ΎLC‡Ž’ωσ>₯_κMυκΥ ™εHλ¬`Qe:Υ…˜·‹< 7c‰]¦όvϊŸ›ΆP³ζ t«ϊγΝB<ΦO0|ϊιRlν”m‹Χ^™2‰OέςωΖΛΑƒ‡θ-ρi^žΩ7‹˜iEΓ‹/uΤΆ€|bvΠB… κr[Όh)m³πŒΎό7Β3fN”ŸQ½΅iӜڢ{Z·¬έDξtχΉ2{έΊΔ—]»upά6­mμΛ!C†‰Og ΫΙθ$7Ά‡gώι#fp,SζzΝLί/οgu[1;™Φ!Ζ;?_2›Έ#Ύu«Ξb&υQβSvρ]E“ό7»kΧnω7QΉJE*Uͺ5xκzυ΅—€ ‚ΕΦnΨ&Ё@œ πί’j‚fΎO²Π΅H‘BτΑ„·©pαBq¦ΉzŽ5^θϋ ½<ΰy9ΫppnfΨDΌ¬Δƒ8NΟΠΖ3 σ5ŠΏ>ΡZάyΖW^xVα7ί|[ˆN―§'Ÿ¬E7ίr#]sMώ`ΣγΊΝ/qύόσo2¦Π›’v,I LžœE 5k4 Qbfm=Ÿ±O9^>bˆ«3—―X±Šή|γm!ζ™ηΈθ[οδΰη-7"$ήζό,xnί[X^ρHΫ²e;­Y³NΞZ^΄Xazΰϋθ·ίΦΏ€6vμ𐗬βaƒVg8ΑΟΔΕ3Z‡{žΫχο~jΪ΄ό»;KΈΦό‚@8ΫdψyšEόC{Q¦Lέ6IŸgŠΎ­J₯°/ρg§O:φ₯†x7ΒLΏ€φΒsΌmς―_εB³ΣheΔνE΅x‚yπύ±~½ζ²Ο0£θ› ^΄8qήόΘΝ—ΛΨh}7ήX6ΨόΈo‡‹/8kυL'ωR^ρryπΒβΎzO6§qγGRπL›Αy± ±&ρoΈxG»o:ΥΜ>ZΌ£ š—1ΣOR©RWϊΛ5Ώ©8Β>6ο=zLŠ]τ±Φw_₯Κ­ΤΎΓ3Α§₯ά昷|ωrT‘ΒΝ²oŠξΫηc²­‘ΖE8v>8ωwl&ή9rδ¨γ>f.Ϊ-ήα—F1F’ΡΒo’€ 9Q=»A@@B@Π‚ ΰΎβ‹#GΎ"ΰ‡sž©Ά‚˜5΄I“$‡,Ίz˜H‚fžιT›5š;΅Έγ%ζNMπ Σ¦@<Λ«ήΒM{vο%ώ¬/‡‘ŸΐŠ—–ύ·φχ ΒO=υΜ!Άη !Ά“Ά±hxα‚Οδ ŽΜτεOz=z\Ξ] @~βOΰ:mΫk―§›oΎ‰žx²f7>οYŒ›”T‡ξΎη)„υŸQ†©,ž8ρ]ͺTΉBHy» ϋί/τ‹―ϊΞοΰϊ΄YF:vjλΈmš-ΪCΕ εαΔY, vŠϋŒ}ŞΊ³€ρ~Q>έ²1ρ'ΛjΦhHώƒ•ό9ϋ >ŠΫK 7΅¦jŸbδYΪ›5kΰ¨πP³!ψ—――uλ4₯>§+ f†ΑΧΧΰ:β΅Ν’i?v\†ρqΔeK ζ-χ{ΎgζΝ››š7o(EΟρ²C―^ώle£†­tΏΐωωZΛ’a-vΤ«#^iŸς‹+/ΌΠτfΥγΩq©VOάƒfΊ&’ασŠcώ’%Ї<ŒŸpυͺ,hζΈv˜x9―χσ)sζΜMΠXς@zΓ†Oμ‹χF$ΑΡΣ-ž•η°½l‹ΟζΝ[μΈ;ή“xχε3C3ρŽΣγ lŸ™xηΚ έΎ½±οΌ=^Ύ\­ΟπωΙ}νΫ·”/ρΉΩm\„ΫβΖί±™x‡ΝN3£ρΖH˜–D'ΰ/hζ7ŒSπ pΰΐ9€sη΁D=Άoί.žΙ°€€σώύwJεJ€ˆ CΎuλvΉοŸ]»Cφ9‘πηŸ[Rή5.δPlΧcΦKΒίΎC‡§άuη£)b¦f_Z¬V„%eδˆ1)͚ΆK9ώ|ΔjgΝZ2ϊ½ςˆΟ(IŽΏύϊ{@z,6D“¬ϋί½ϋBͺc» z#eψπΡrŸΣΆ…τ_‚θTN©_―EΚ₯K—|YœΆνσΟ–₯<τ`] ΈdΊcΗί)Μ°m›)’γΣg+―ˆΑlyΎφΒŸΛ{Τ™3g0EχΜ¨Q£Φ)?ώψ‹ξ~79ήηΨώΰCΊ‡θ£ORψήν< ›1‰μ+>ίΔ~ό„μ0aΡ ˆΔ,#!4q–^g/¬6HΐβRξτoˆΛΆ³€σ-1°ΐ’'ξΤγΕiΫδAuώ§η?§m3Ιȁ]©ο‚}ζΘ~ϋmτυ˜1₯εœ¦Χ ΚγρΐΟ©΄γΛ•ησ)ΏXΐƒΡ,ΊeA”[Ά1φ!rη’ήβ†mZΗ&ΏΤΐη?Ϋΐ"'~Yƒ…:,xfΏιuˆqXœ―—"Έ£“mxΎχiOΜr”ςφΫγ:jέ°mΑNΰΏKώ[Τξ™NWο8~8Mώ]ςΛ zχuNγk†Λ_›·Κ{ΐθΡRNœΈ"¬ΰλί£ψ:υκ«Γε5Ξ ΫτŽ—7žiΛ–}%Ή-Z΄ΔwβŽyEΖΖΣ&­nν>ΠΉsŸύάΉs)sη,’6»-$fϋψΎΎe‹:Ο€|^½ „θγώαγ²O'Oš.ΉmΪτ—†Ψρ_ŽΥ8ΞώώϋŸ|sπΉξ«xΙ~Τ4σqω9€/^κ‹-ω…HŽ…΅Ψ2ήφ‘~0J œΐΗhωXζγkΡSI-S†{/εΨ±γΊ1Γώύ‘’‹XΪ­.νΣ¦uηώ»f›yαηGΎ&π‹ΌnΎ4Ξ~½~pyγr ‘΅έH–Χ­_㠍ΕgŸ.“χAξcΡϊ1Έ_ˆϋωψώ8gΞB-«+ΏΪίq΄>7Œ‹_h/sΌ­ ΒΉ―ƒ'Vρw&pƒŽ™˜TΓΕ;Nχ‘³wΝΔ;αξίρ—ΡΞ>£ύ$ά7ϊς5;ƒυxΉαcΆΛhΌ£g3—·Ωw|Τϊx›ρXί«΅qJ·ϋΟ™O€qf喏Ζ;nωΨhΌγΆΩ‡X@ΐ.As,%ϊ”Σ°@@@ υΨΏ?•,Y2υ@Λ]% sΩςΣΙό‰Oώ'ήΪ&·?ΑϚώβ‹•Τ­Ϋ³|ψΣf½{½LsηM•Άϊοœτα4š6m6-_1_|’*½.Λλό™:1£pΔς­[7#ώΦ’…Khχξ=rέΏ€θ|!Ρ™F₯J—€_μεΏΛφΊ9ΙOΐΏ?~r@]eΚ–’‘CˆkΛu2έ Ϋ ϊoCΜlE]:χ πŸΆ>}††OϊŒΟy!\“φŸ„κ©Ί”6mZ⿍έϋΣΣ-SεΚ·4Gςδyρς€ηι‘G ΨgwƒϋωηΛiΰ€‘²ͺŒ3ΚΏΙ$aW―^)S¦ŒΩΖρί`Ÿημ9“CώyΏ[άψšΡ΅K:tθ›α[ž~Ί1=Χ±51GνσkŸΜšDyςδφεαν„‹Ο bŊμ³»ΑŸφλΩ£?±ΪR¨PωyΦβΕ‹Ι$·lΣμΑ/Δ›€vm0°εΝ›'ή‡ [?Ϋ1tθ(š7wqΨ<|½X²tvΘu"lοΰkE§Ž½IˆjξΡ³#5i’€{ν Θθΰσμί5hπDΘ½A3δ‘~ψώ'3ί“$‘!ρ"έpCi1ςU*\ΈΣζγ†ώύ†€%Š“xαLή—Fy‹ͺT©Χι Ύπ'[ωώ—#Gv§φxαb\ώάϊΈq#δ§fΓŽσ>ο̌ΔWŽΤ©S[z¦USGμp`ƒ? ί½[?ώHέkΔΟ?―qR_S)RˆφξέG>ϊ Ψ—²fΝβ€…8#ΐŸ`/]ͺ$έ~Gecβ˜λάΉσβ™―ΉόLwΈΓp,―Χ7.<…Ψš |C~ΖΩΏώΊukΗ9sζπOVb]―_ΐMΓTŽ!˜ ίw’υΈΙ­j<‘qωςΛ“ύΪ6r_Π A}©FΝG‰?oξζb€Οΐ ϋ’ΕOτθޏΆnέA₯EŸ'rœ1fμpϊ:ά°Η& rό.ήq£άLΌΓΟ±NŽΛψŸΙFϊIψ~ιF_ΎΏώλzρŽ>Φl2ο8=φ¦ΩΖΏά &š‘¦~"οΡzγ5nχŸGαvΈιc#ρŽ›>6οΈνcφ!°K`ǎT°`AY Νvi’<€€€€« hv?ώ1³„—lΩ²IΡδ»π“.^ΌD'Nœ–²+{φl `΅ϋ&r§­˜ΩšXtΞbŽX αcΡ2φ©xyWΪ”.]Zʜ9s,ͺυ|'O&ΛΑTφ% ³Tς©˜mUΪ–)S&Κ•+§η}‚Ψ#ΐΧ Πa_3ψe,Ρ ˆY|塟٩v­eŸf̘Δl™”;w.ΧΕ3ΡiΊŸƒ1΅Ώ3«γςσŸo,ˆbΑ J1‡žηx€Ÿ…ό‹η=BHΔ&ΐ/ν²€τιXσ₯Κ1·}Φόκ_Š},Ύ”!ϊ<3Ι{·ΫBfΫx=Qϋ 8Ύΰ~5ζόςxp± N@όλ$mgŽ₯=’ŸΔ:oΥγŽiωž’βxuκΞ–DΌγ,o ‚ @ΠLΫ    K‚ζ„u HΕ hNΕΞGΣA@@ΐk hφšGсΤ@‚ζΤΰe΄@@R šS‰£ΡLOHXAsςώέtμB°/ΞΣyΚHr£μΩƒχa@@@ΐλ hφΊ‡Ρ>/HLAσωυτlRΪΑ#E+'QŸηŸ‘λ!lŽ@ »@@@ΐ[ hφ–?сΤA aΝ]… yGT₯A§*y’fD€ ΩND@@@@@@@@@@@@@@@@R„4Χ}}&΅»εκ4Μηξ¦ΕcϊΡԏ]qζΝiήΠ”1ΥΉ ΤG‚ζΤηs΄@@@@@@@@@@@@@@@@ ρ xNΠ|Ε%Ι4εΩ&4oΨΚ]—f~܎XςœΌ7»@”!w*˜=Pβ|>y?Έ²“ŠΌ"NKήύ'ύφηn:/κʞ§έ\₯œ¬χΚ1ύŸL»Χo¦νGOΙΔl"ο ·\&―9¬ƒ€€Ψ!A³z(                 ξπ¨ ™hϋάΤmκA΅(½>s<έ’=™&ΤoB‹YΠ\ύušίι–βλ'΄ ώ‹Ε¬Ξ„zώ΄/JRέκD‹Ώΰϊό—’4hβ»T₯ΰΥ΄ύλΡΐώ‰΅ΤKnJ4œžρΟ˜[   6 @Πl Šƒ€€€€€€€€€€€€€€€€€ <+hώίΫ-θ΅/…@™*Σ;ŸΎBΧS2Ν³6OJγ’u_§ρνΝώ?{wUuAІJ5X…ͺΰTPD±ΈαP$T@PP±FQρ+TEάΐΔAw~b…\ŠVq‘ŠT VP$ΆEQ’bAbΨσ?ŸΞδΞd&™-Ι̝Χύ>JfξrξΉΟsρžoxΟgfή(£˜ΐrN?™ϋΔP[M9°Ξ309­ZɎΟ?mΩ.9W˜ύϋ—U_ήΎR.Ίδwb2ΣviΦκDi)εγΟ{KήΤΉ’ΫΊ¬τώέψ €I М$HšA@@@@@@@@ >ΠάoΪΆAΩΖεΚu^-[ΧκzYπP/im Ή™ 4Ο hΞι)S'—²,ςvY|χεςΨ*.» Π¦*τ’ΫeΔτΝΊϊrύΤ?I―ύΑε­kζΛεwМ@L М £Μ5"€ € € € € € € €ψM νΝ‘$GςξύƒδΆ;x.‰šΛCΛξ|ΫΧΝ”KF-0oΛ·•‡œu―frjΏK%·K;iΥΊ₯4q™kΧ?@@ ιš“NJƒ € € € € € € € €T»@ϊšλw”~}ZΚS”yχΖ•ςκ*­,rbήγς‡ά–ΐκ4›ΘςGo‘ ―~ξ9oΩ˜Ž}dψΥWH»@5ι »°@ М ‡#€ € € € € € € € P ihΎbκιίΪ•?ή$S.Κ“%&ά,Jξ]π΄s›Δhξw―<1΄]χΊ™7Κ¨&ˆά¬ŸΜ5Tš˜­už*Μξ pšΫ6­“Ώ/^"K—/— έjϋ3o\Ιm«­³ € €@²4'[4³ΪϋΗΧϋjό‚jPGŽo^·ΖΟΛ @@ ζ˜cԜ5gB@ S˜_dΚHs €Τ¬sŒšυζl € PQ νΝ}ξ+W·+o_ω¨\ς»Wν•6λy―Μξ‚ΛΫeζ΅—ΘSΐΉώ©wʟοκ€±nΎ 4?“X yχφν¦F³Y4‘&.H½{«¬Y2Gξ~μUќuύSG™sw :7o@@ 9š“γ˜i­όνσ½2κΝbΩf'r5υ9Υ‘i=lyzΈ €@΅ 0Η¨V^G@ #˜_dδ°sΡ €T»sŒj'ζ € ₯€οΝb*1ΟΌΜ—maδfrηŸfI—ƒUc·Όqχ ™ΊΚĊλχ‘ΉΎΪVavNoά}QΩΆΈ+4o—§.ΊD^ΤΤrΗQςqεέςθ…ύΔΖ¬›™sΟ >·λ?@@ 1Ν‰ωΕsτΪΝ?ΚψχJβ94ξcΖtΝJZψwγΆRΉΰω΅fvjώϋΖξ-?@ΘxζΙΉ˜c$Η‘V@ό#Ξs ~‡αŸϋ+AπŸsŒΔΗ”ίa$nH  €ψAΐ‡fi^7_.υLΩψtaΒΕένλυ¦ σ­Βl–ŽyχʝΉνdχ֍²|ώ£2υŏνz‰;ΠΌ[έΨO¦ΫζλKŸχΚ%έۚΠτnΩΈf±άsΗt1Ε‘Ν‰ΛϋSvBώD@d hN–dτν,zŸ\ΊhWτ$aΟ9Ή€Λαυ’Π’ˆVΈφΥ‴•h#ΙΌDϋΒρ €ΤΆsŒδsŒδY €@ϊ €σƒίa€ύΗ €ψW€9FrΖ–ίa$Η‘V@Hg_š΅syΈX$oκ\ΙmέDdΣRΉ0oRεγε 4―yκZΉγE!ηΘ½sŸv¦ ·l_3S.ΉcAΠΆέߐAΧM-iΙ{|δΆli3λ@@ t4·~|{Δ+οl»ϙoΈ₯²γtυΧy&0αHp]:’N/}ʊέςΠ?w[…Κœ+c*2ͺ›fUΆGδmƒLό Χ…_ΤEvb  €@ό•Ν*{φUvœφ†9FεcΒ£rΆ"€€·@eσ„Tž_¨z:ƒωEz½‘χ €U 0Η¨ΪΘ»G²ώM9†W•Χ € PΫihΎΒ„•ϋkX9t1αβ‹φ‡‹sϊά+O\έΞξ±uΝ"ΉέUKήLύV§J»­U…fE«+dξCύMee“^>Eς&,©<ώη‘rώφG ύV&μόP μΌ{ΣylΒ}²δsm¬|©ŸsͺŒΌu€t ΧΧςέx… € hˆGΨ¨’‰wM2~Q7ΜTxnj>―6ιœ†ή¦£zM 9*&vBH@ ]10ΓF:\Μ1Έi9@ εu~‘°ι<Η`~‘ς5θ  €@‚Μ1bL₯@3NΫΨ±7 €DHΟ@sδλ‰rΛnΩΊi«©γl–₯ΕΑaΡQΆq·έΫeλŽ²{wiάΈ±4iBUζˆVl@@ Iš+Bhhβ]“θ?zΏομ†Ώνήζ«|M ΉJ"v@HP ]10ΓF:dή9Be•*# ―χxζ‘”X P[ι:ΏP―tžcxηΜ/jλξηΌ €Υ)ΐ#6έT 4{η(ό#Ά1do@¨(‘ζЬA@τπK 9‘rθ?Μ%V4wDθω’9&Ρ}’υK:ν‡χm±ώcΰί>ί+ךκΜήεεΚρΝλzWUϊš@s₯σi+šΛ =_4Η$ΊsŒD9@ Su~‘γ“Ξs ~‡‘)ΓΈN@ s˜cΔ6φΙϊ=sŒΨάΩ@ͺW€@sυϊ: €Τ ζŠ0Wέa£΅›”qο•Τΰ(‹ŒνšShΈ²ΞΕϋ‹Ί"sΙ·ΌY,E»KƒšoΪ Ž<Ω«aΠΊΚήhL‡m €ΙHΧ dŽΑ#χ?m €T@ΊΞ/T#ηό£zξgZEH汍E²ώ­„9Flξμ €Υ+@ Ήz}i@jP€@sΝškpx«εTρώ’.Y!М,IΪAˆ$Ξιša=sŒt%ϊˆ ―σ‹xε;ŽωEb~ ϊΜ1jgŒ˜cԎ;gE@πšΓ»°@P€@3ζXo[~Q«ϋ#€€›X;#Ζ£vά9+ €@Ν0Ώ¨ηΠ³0Ώα= €€ί˜cΤΈ2Η¨wΊ €α4‡wa- €€‘@:š΅R―[žΛmδ^Ζό3τ«Si+š“•ˆ|Ίe_4»&mŸγ²λIΣ¬δ4WΥ/κτϊ’up=¦Bs8Φ!€$S€9FτšΜ1’·bO@ΜHΧω…ŽZ:ƒίadφί;Θ汍r²~Α#6wφF@κ Π\½Ύ΄Ž €5(ΞζdJκ©–½O.υ„±“Ϊx„Ζζ˜ΐw—ΓλEΨΫκΚ~Qχτκ=ςCI©Œ<₯AlFΨϋ™φš6¨#ύΫΨƒ@s€‚ € 0Ηβ¨τ sŒJy؈ €@@:Ο1ψFΠPς@”`Žέpπ;ŒθœΨ @L Мɣϡ#€ ΰ3Ν5? ιόK:Պτ£ή,–ω{εΖ“$-ΠμΞueϋϊ2¦kY‰iΝ5ΟrF@τ`Žύ81Ljފ=@Hη9†{ζλ(v6τvίΚΕο0Έ―@¨}ζэ›Οπο$Ρy± €™(@ 9GkF@ΐ§šk~`Σω—tͺε~y¦―υŸμΩH.Y΄S>ές£ͺ–@³Ά{ͺ9Χ4sk^έ%˜*ΧΊ$³ς΄m?@HcζΡžw>Γ#z7φDΘLtžcxŸωό#3ο_@ u˜cD76ήω ΏΓˆΞŒ½@Θ4Ν™6β\/ €> Π\σƒ›ΞΏ€S-ο/Οά?zCΖΥQ‘YΟ{Q›dlΧ†šƒ@0Μ1Β DXεΟ0Lj€Δj@φ €σΓϋΜηwά €€–sŒθΖΓ;ŸαwΡ™± €™&@ 9ΣFœλE@ΐΗšk~p7n+•ωλφΤθ‰ϋ·­/-ͺ“”szy¦θΎuά»%2s͞j©Π|WΧ,ωMϋϊΆƒQ‘9)I# €Ύ`ŽύΊω sŒθΝΨ@ syŽαžω:zό#sοa@ 5˜cD7.n>Γο0’σb/@2Q€@s&Ž:׌ €€O4ϋt`«ρ²ά/Οτή ΤχσΧν•’έ₯π±Kdω«χΘρΝλJœv f'ΑO@ό%ΐΓ_γΙΥ €  Μ/Raθ €ώ`ŽαΏ1εŠ@HgΝ隰Qo@ͺA ]19sŒjψλ@“ €IHΧω…^~:Ο1ψF’n`šAHYζ± M*šωw’Ψƌ½@@ jΝU± €€‰€_ΝsMbοrPƒ:r|σΊήUΧψz_ΰ΅ΎX»ωG^I`]ušυ|γ<η œΈ_ŒνšΡ#ΦΣ&ςzν½_Ψ8εA DζζSί4ψx PMή dŽQ92sŒΚ}؊ €€HΧω…φ?Αο0άΘOλ χς@IDAT@Ώ 0Ljmd“υ{ ζ±Ή³7 €T―ζκυ₯u@¨AΏšCΙ:^Ož 9»}ΌΏΰsλΌ?«;Πμ=W:ΎNδuz½σΧν•[ί*Ά—ώDΟ†ς΅: &Ν1q±3 €@•Ν˜cΔε!Μ1’„b7@΄`~Q;ΓΖό’vά9+ €@Ν 0Η¨9kο™˜cx5x €΅-@ ΉΆG€σ#€ €@4W€$Π\ΡΔ»&Ρ_Τi[·ΌY,MMν±gdy›Žκ5ζ¨˜Ψ @ ώ10ΌeŽ‘‡"€€Όσ‹Ϊ"ζ΅γΞY@jN€9FΝY{ΟΔΓ«Αk@¨mΝ΅=œ@’&@ Ή"%ζŠ&ή5ΙψE·½X_hŽUŒύ@bΰcKΞώΜ1’γH+ €©)ΐό’vΖ…ωEνΈsV@š`ŽQsΦή31Ηπjπ@j[€@smηG@€ €s 9i5άΠς―χΙ₯‹vΥθYηδ6’.‡ΧKΚ9φω^ΉφΥ‴•h#ΙΌDϋΒρ €ΤΆsŒδsŒδY €@ϊ €σƒίa€ύΗ €ψW€9FrΖ–ίa$Η‘V@HgΝι׎ €€Ο4ϋl@kψr΄‚ΒΖm?ΦθYΟ'M³jτ”œ @jX€9F ƒs:@2@€ωE 2—ˆ €@-0Η¨tN‰ €Ašƒ8xƒ €ι,@ 9GΎ#€ € € € € € € €dͺζLy@ hφα rI € € € € € € € €Ύ Πμϋ!ζ@ΘΝ™3Φ\) € € € € € € € €€4ϋg,Ή@2^€@sΖί € € € € € € € €€‘ζ44ΊŒ €α4‡wa- € € € € € € € €©,@ 9•G‡Ύ!€ €@Lšcβbg@@@@@@@@RB€@sJ @@dhN†"m € € € € € € € € P³škΦ›³!€ €@5 hF\šF@@@@@@@@ š4W,Ν"€ €@Ν hysΈ € € € € € € € €@’šδx@HΝ)3t@@@@@@@@¨4GMŎ € κšS}„θ € € € € € € € €6Π\RT$%’%M›fUΌ*Φ € €@F hΞΘaη’@@@@@@@@\ -Ν%λJ§>wϊ62{ειN™ζ’")(Ψ,’Υ\rrš¦ωνCχ@H-Ν©5τ@@@@@@@@h4Π<ΟšΗ›λk/σWΞ‘Άih.X@@@@@@@@? hΑQ-YΏΠT–ΎΛœ±½Μ6•₯;PžΉυ9 €@&hΞ„Qζ@@@@@@@@ό&ΰΣ@s‰¬_'_½MŠJJ€iσV¦CkiqτΜώλVΛΊ‚»GσVm₯CλζR²Ή@6—$99,)*ΥωŸ‹iή,YrxΫφΊyε εφ“+gδKvξςΞ„3μΉJŠ6Λζm¦‘¬ζ’Σ\dύŠςyQ‰4o{ŠtΘΙ’Ν›₯Δ΄ίάl m½ΘτΟzPsiή΄lkωΊ³NΜu­0ΧUdϋΨΤ\Χ)ζΊX@π«fΏŽ,Χ… € € € € € € € ΰgίš‹Φ-–kϋ’ΥF­ά3{šτνθ-Y/^ΪGLΞ8hiΣ΅½δΏWΦʘWΚΐΦ.NΌY»QF=ζ ΉχΘ΄ }%δ eνšσ λΤGή3οΖΜ7ν΅-koέ¬~bΩΙΫ·’.Ϋ={δlyη2‘~‹mŽΉl1ϋ”Ygv’‰[DμΎyΜκ’ΐ:ιz•Œ—E―–‡G>½LςNq— δΑ3{Ȍ@淍τΜm%+½*U¦΅Ρσ—™0qΩ1+¦›*ΛS\ϊΉlΟΝώnτœ$+'χͺPMyσ»γδ¬kŸ7­]%―}ό[ΙΩίΛυσ†IŸρs^ڏ™/sϊŠ Aχ·!hoΚφ,‘…—v’»Μ₯΅mφ½¬­Y]ΎΌ΅6΅k–Ό·?œ­λΫίσ’i»uω.ΌB@ΐ'š}2\ € € € € € € € €@F ψ(ΠΌΩ„“ΟΪNΞ6՘ͺ1­_"Wφ±?tœkΕl xσŠε¬+gΨΟΝ$/Mθ%6Ά\R Σ/ν!.·›*Λ·˜*Λ―š#tΏ™ύΛκ,Ιβ[.”QΆr™½rtpmλ%2Ο„Η›πqΧ1/Κ΄εaβ @sϋ‘2‘‹₯mσύλ’u šΫ|BžΞ;£¬EλεΞ ϋΘ"Mj·-Λ\Vv­Άό €€?4ϋcΉ @@@@@@@@ΜπM Ω[Ή«©@<-€q‘ /ŸΎ?Ό- ςN ά-%KδΞq‹Ej+ΧOΘ“Φή@σζ%rζY#LΥηlybΩ;r†+mŽ.4·‘§—-@ρhm9‘@sφHYφN^Phyέ¬K₯D-ι ΠμΓAε’@@@@@@@@|/ΰ›@sΑβ;₯Η( G 4ΙΌ~§Λψ|SΓΩT4^p™ 4_jΝ«5Π<Ϋš;vΥ‘Χ―xS-\"οΎϋͺδο―Ψlθ9I–Mξ%Mχ·VτΡ,9}πDσ§ΌΈr²΄φV`6k!c©<Π!οL8#ψ€’υ2¬S[‰yτόerY[(—HQQ‰ω™%M›–'“‹ >’ηǍ“)οiλήσ—Θβ[:Ι¨WMˆzδΣ² ο”ΰs˜wUš/νΤ_LMŸίΆ}.o ΄βt[³©|h.§β €@ΖhΘ‘ζB@@@@@@@@|$ΰ›@³,‘{Œ°CΣζ*ώmpxxύΒaηχμφ1/šjΗ¦Tς»γΞ”kŸΧςΚmδιe δWVΩ¬)YΏΨ€GΩύ] Ήdέ,ιΤ_«-‹<±μc9Γ³Ώ¬{PNμ?Γn9{™δu0=!κI―­”^9ε!h»£ω£@³ȝ'φ­;έfδlˆφV‘.qgφν>š&?@2]€@s¦ί\? € € € € € € € €@: ψ'Πlτ—άr’Œ0Րuι:ϊi™tΩ)ΤT-^·x’τυ|Ω†6£eΩ‚ΛΜz -/4‘ε»ΚΦKOyϊ΅±rJNS)2aζ+M˜Yλ-λ4˜s²svΧΡςτ„‹₯uσ,))*7§Œ’QΟk-εl™ϊΪ;rnŽHΑβ[€‡-Ο\~NΫ ηΚ͞ŠΛ&t=iώ4ιΥφ )*ψ\&ίΣ06f'/@2\€@s†ί\> € € € € € € € €@Z €} yφΚ9Α>.Y'·tκ/ϋ3Νa€<ρφ9£yω¦ς*ΝελB_Ή@³‰@›ͺΞ—šͺΞ.κΊ§yίs’¬œάK²€H¦ŸyΊL1™γž“^“Ι½LΒ9Μ²nΦ₯’‘ΫKΠ΅μίwσ»γδ¬kχ‡±Γ―«Κ+4ΙΌ~§Λxνž'Έν[7ϜkΌ9W›1²rΑ@ΣG@ό%@ Ω_γΙΥ € € € € € € € €d†@šš»Κό•Σ€­7™[R ‹'£fΌ4‚mzŽ– ·],mMEεΰ₯DVΜ'WŽ_δYέF}†,œ8C΄ry Yw)‘?&γFΝTp.;0[.3YFΤͺΠήκΟαƒΚeLjl^ρ œuε SΨω*yνίJΈΨσΊΕš ΣfΟυβ«dΫσ3D£Π]οyQ¦υmm·x°Ÿ\9#_²/~Bή{†ηS1zΙ8ι1Β„£Ϋ›@σΝA8ΌAπ…f_ # € € € € € € € aihŽjŒJŠdσΆέ" Hƒ¬¦44Ηh€ΔΌ2έώ@jήT²Šή•3OΏΆ,Π<{™\ΦAcΚΑKIQ‘l۽ۜ’d55Ηx6―w’\©…•{N•'ŸλΩηΛ’s=ΫμΑ $M#_Pœ'ΰ0@_ Ν?όπƒΤ«WOš4iΥ€νάΉSφμΩ#7–8 ͺcΨ @2K`·ωέΖ]»$++K6lΥΕ3LjŠ)₯vŠu™R§3 € € € € € ΰ{š£Ί™~f™’3Z^{ϊ2Ι $’7Λ¬KΟ’‰ZώXΪΘΣΛΘ)σΜ•Ÿ‘¨@Φ]"Y‡·–œX­ΌeΆ"€ €@Ώš_|ρEΙΝΝ•_ύκWςΦ[oΩ`s »ΊΈΈX:uκ$kΧ•χί_ΊtιRΩξqm+,,”χή{OZΆl):tˆ«d€a¬―ΎϊΚ±rrΒ}οE²ΞD; €ψKΰΆΫn“‰'Κ#<"Γ‡―ςβjbŽ‘Ώ°ϊ裏μ\ζˆ#ލ²OΥΉC‘ω@ϋwί}'|°dggWη©ͺ­νXη‘ΥΦF@@@@@"dt ΉdύBιΤηύ4Ω’;2OΪg}.ΟO|^ςέΪ«ž–w~{J>V#€ €@* ψ=Π<ώ|0`€\|ρΕ2wξ\©[·n₯όްъ+δδ“OtΚ6jXΈ΄΄ΤVnτξ7{φl2dˆzθ‘²nέ:τρn―ΙΧ‹/–σΟ?ίΎί~ϋν*}j²oœ @TΠσc=W ΉΊζyyy2cƌ”x»ΐχδΙ“εζ›oN呌طXη‘b € € € € € PMhVΣ‚wgIk'†εmρ$ybl/‘ΐrXV"€ r™hΎπΒ eαΒ…Uv5Π|κ©§ΚκΥ«%‘°Ρ7ί|#‡~xΨΠ² Ηh ωίώ·4mZ;3' [kΨ{Α‚’Ո@’ΈρΖεα‡Ž)Π\έs hŽvήέ•ΖΎΧΦ­[ν‡ΒΦ―_/ύο₯uλΦ±7’GΈ9[m{¦]@@@@@@Θψ@³—’"Yo‚>ω›₯¨€D²š6—φνO‘Φ9΅ΘIΡ{…n!€ ςšƒ‡hǎrϊι§'hώΟώ#ΗsŒ 4‡†–χξέkΓ=͚5“-Zw ί}ρΕͺU«°‘λμ§B@ -b 4ΧΔ£¨¨HΎώϊkΙΙΙ‘ƒ:¨Φ\υƒRΉΉΉφΓRωΛ_€^½z΅Φ—DNL 9=ŽE@@@@@š Π\ʜ@jD ΆΝ………’Ÿ8 lΈχϋŸμάΉΣ†n5j0Ω·oŸ khgϞ=’-νΪ΅“ϊυλφΡUQΦ]+7n΄ΗhΈχ¨£Ž’]»ΪκΜα*4k_4 όύχίΫσqΔΆm[©S§Žmcχξέ’}֊„έΊu³ύ~γ7l>ψ`ΡkΠ°Ρ]»€aΓ†ς“ŸόΔηύCΫψτΣOƒΞqάqΗyw±―υ<ΊoγƍEΓΡzΜW_}e·iΏΒγmδρΗ—λ―Ώ^F-όγ½›μk΅ΥΠs‰ωπZƒ δψ㏽·Δ;vZ΅Q+`k»ΪχφνΫΫΠΥ—_~)‡rˆ4iĝ"¦ŸΡήήFΥPΗΣ]£Ž₯ήKαm???_τοŒ.?ϋΩΟ‚Ζ^ΧιΨnΫΆ-μύμξ έO«wλ=γΦιk]ηΖPϋΠ©S'έΥ.j¦!ωνΫ·‹VΦΦ°ΌŽq€EοΣO>ωΔξ―ϋ}τΡAϋkρόΡφAΟΊθv½^½Fύ»Ι‚€£@ΌΟ©ͺžυΞ’ͺ@smΜ1τΉ¦}Χω…Ξ3B—hŸ':Π`vΨaφYρ―ύΛΞKτy₯σ‹–-[†6x―Ο©_ϊΧ²hΡ’ˆίQΥΓΝqtή€sƒΠEΧσhκΦ­Ψ¬σ uλΦΩmΝ›7—_ώς—φέwίِw¬Ο΄ͺζ‘ΡzΊκόογ?<ŸυYΟθH‹ήCnή‘s‹Εz ‘Ϊf= € € € € €ψC€@³?Ζ‘«@@#PہfΡ*‚ϊ•δ?ύιO㒁 Ώχή{2fΜ7nœέφα‡Jώύmh8°³y‘m,^ΌΨ’έzΧ~θW…kXiΨ°aςμ³ΟΊ]νώ;ΚͺU«μλΠ@σ /Ό _|qΠώϊζ”SN­>¨Υ5D)H¬Χ‘՟gϞ-C† ‘_ύκWςΦ[oU-|ν΅Χ€gϞΞΡ«W/yϊ駃Bί”ηŸ^Έβ »ώΎϋξ :ξ7Ώω<φΨc’••΄^ί‹ϋΪϋ•+WŠ^·[6oή,—_~Ή΅tλάΟιΣ§‹Ά«&gΛΨiΈϋΌσΞsΝٟ‡z¨œvΪi6ψ:NA;Vς&–{B›Ρσο~χ»°An5»φΪkν5ΊSώγ>}ϊˆ’Ό‹ŽύάΉsεΏψ…]]ΩΨΊ{C½6lΨ`Γαn<`ΐΡ{LwohXKΓζz‡.7άpƒLš4©B`mΦ¬YvόΒν―miˆ|βΔ‰rΫm·ΩΏ3Ÿ}φ™ .»ύψαΧχO>ω€\}υΥn?@΄ˆη9Ν³ή!D 4ΧζΓΝ &Ož,7ί|³λͺ ψ>ϊθ£ςχuξ…~°ιχΏ}`Ύ 4Σ釳τ9£s ymK?nΡωœ†t5τ¬`ς~*Ϊ9†ΞΡτ€ޏ>ϊ((Δ«mΈω’Ξ+Ξ=χ\{}>ψ`Π5kίtΞ‘ύΡk‰η™ζξ‘Πω‰>Ÿ£υtF/½τ’KΈχξg=dƌvιΦ­Y³F $hφ.:gϊσŸ4Χυnη5 € € € € €džζΜs@ί Τv YC)'œp‚ ŠκΧ“k`Δ-ZX«&λ²|ωrΐΥͺvZ‰Ω-£F²•dxΰ»JΓ’Z™ΦU― DΡІG,X`ΡpΘ•W^iΓήΐͺ7Π¬ΑηΛ.»,pŽ›nΊΙ†t4Θ¬Λ±Ηk+ξΨ°²VL~ε•Wμ6 yδ‘’‘5τμϊ€αh ΓΊΚ‚‘aί[o½Υ~mΌ ]k?5Τ£UsuqA*ϋΖό‘Ϋυλݟzκ)·Κ^ΣΠ‘Cοέ‹eΛ–Ω0Œλ·«l­†5\μ4ύϊυ³‘¦»οΎΫjƒΞΊŽuμ>ψΰ;†! Fk…bw}Ί^Η?Φ―¦υžΠρΧ0°—uΡ0· Ήρψα‡ν>Ί]«&k Κ-ӊŒίκχœV‚Œ4Άz¬V‚Voέ_ƒΜπrλ\Ϋξ§ήsζΜ±cμνgίΎ}εΉηž ŒΟ]wέ%γǏw‡Ω@΄ έλί…αΓ‡Λίώwϋ‘έI}5₯jWR\tΡE6ήyη9묳μ{­H­}fAQ Φη”ώw=šg½{fΊηπ#ΛtξγζƒΪΞ_ϊWΉΰ‚ μuΈη―ϋΦ έ‹:θΆτΓdnρŽ“[WΥOχ\WŸ… ζl±xκ9ΤJύά’s<}Ζjk]Z·nm―SΏ₯Bτ›ܜDηK:.Θv‹^·wnβΦσ@@@@@2OΐhΦ―H/εpppppp€λ=`*Φ™μMν.& Zj¦”₯W]uU©©Κ茩vkΧ›G©©vhΧ›ͺ²v γ”nάΈ1°―©2[ͺλ΄X ¬7•ν:D)έ·oŸ]oͺνΪuΊ― D—ξΩ³Η7žRS6°Νšνzέn*ρΪυ&,ZͺϋΉεε—_°Ώn3F»^ϋd*ήΊένΟp}2_­θΏ^ο·ί~8ζΝ7ί œC­άβάτ:ξΏώΐυ™ L©©θlΡλ6_ο ό4A&»έT\¬Σ―Ώώzΰ\&Ψ¦ΧΠ΅kΧ@›Ξυ‘ͺ±Σq=ηœsμρ&œTjBFΆί}χέΐ9½γΨ‘Š±ή&88ίώπ‡€›Žλwάa·ιΈ}ύχφήpΧ­λL9Π½†Π{.άΨΊτΥ±rmλz·NΧ›J–₯¦’₯=§ŽΩW_}θ§χžVK«ΠΦΧ_Ψί½‚ξ;‚lΣϋZΗΟ„–ν:S2` }2•:νzS%:πwCΧ³ €ι(νs*žg½kΫϋίθڞcTΥ'έξζ1ϊ<Ρωƒ>ƒτζ.vˆwνΪUj>ŒXoΎ="0τ‘ζ[n‡νΫ·—š ­=Φ„xέjϋ3–9†·Ο<σL ν³Ξ9΄ΏζΓIv½>―έσΈK—.₯ζΓzύΝ‡ΌΧα§ΐUΌχ\χŽq4žz χl5*-,, œΥ|ˆ+ΠΏχίί7ˆ³λtΎdη}υ΅+S;°ž € € € € € Ωšϋq™₯:ϊΒόƒ  € –΅]‘YΡ\EXF±UŽυkΔΝtS~ύλ_ΫΚu&t*&΄j}φ·Ώ‰ ΘQG%&΄dž——g+šΐJ RbΈΚzz‘VΓΣ꾍5 ΄£Uρ΄‚ž~5Ή«ΠlΒ₯Ά&μ$;wΆUτά&$:u²έώΊΝUήΥkrΥxέ1αϊ΄xρb9όσν.αͺξΉΚƒήφάu˜ΰ©˜ΠsΠΧ±kuίΑƒKhh= OΛ‰'ž(&,d«vΨak’_qηΧ Zύ°N:mZMϊK/΅U~]•ΒhΗΞ}ύΌ6¦}»δ’Kνκ‹™3gΪ*Ω‘ƒvŠπ&Φ{Bο₯‰'Ϊ ΥoΏύv› ’‹σ0Α"[ ΫU…Τ1ΚΤήεφΫo—?ώρ’cπΦ[oΩκZύ;άu„»'ά:mS-»uλh^ΗΙ„Θ€Aƒv,7nΨ¦UΫΆmTνY+œk…n­f©ΫέuθA&fΎθ=jBPrσΝ7ͺ9λ=ε*›ίΖήγZ±S+}λί)@ ’}NΕσ¬wΟaοΌΓ­«­9†;Ώ·Oš°φIŸσx``H½σ-χμoO8υΤSν7Qxη`zξo>όUaΎεtήζΓ@ϊŒuŽqί}χ‰ }{ƒ~C‚>΄zρ₯KνσWη$:gΤ%t₯ύ½βŠ+dΦ¬Yβ5qύ­κgΈ9[¬ž:—rfnΎP―^={κ’’ΡφΜΗlUi½67‡σΞ‹]?υ[tξΠ½{w;7pλω‰ € € € € €™+πωηŸK‹-,ζΜ½Έr@|! foˆRC™¨)((S±Φ‡†St₯©ngƒ,_~ωe`LZϋΥβήΐJΈ ΚπαΓE!‘!mHΚ.Δγ (»“˜ͺΉ6xͺA šjE7ϊή»Ώ ͺzȍp}rλ4D¬ΑύjqοςΕ_Ύn]ΏB]Ώϊέ…–Β…–]{.œT·nέ@s.(c*ΪΠͺ7΄μv`—~M»Ύ5 «ϋόσŸS%1(¬νΨy=\x֝KVΦ_ο~•½ŽφžpnήϋΔΫ©>i―9''G4ΰlͺ)‡½ϋnήΌYτυλΧ—_όβ•^‡Χΐ…άέ:mΣ{xΟ‘―Mεf»]―1++Kτον=χάΤ/―‘©ψ(.,εΪ2ΝΕTΞ”f͚٠Ά7ΌmͺrΚE]$~ψ‘½·4­γδΒά ~"€ι&νsΚ{]Ρ>λΓ=Oj{ŽOn©Ζ,7έt“χRνkχwισF?θεζBα>άβΪ }ŽzΓΞ:_ΈόςΛ+œKWD;ΗΠgεqΗg?¨£σ‘ŸόηbΎeAΞ;ο<ϋα2SΪnsΟΏpπσEκ―n«jqm{ηS½h=>ψΰΐ·τ|ζ[?δ»ξS[Ž<ςΘ ιv½ΦvνΪιKϋœΧωκi§fŸΙ 6΄λω@@@@@pš?@@ νR!Π¬ˆγƍ“»οΎ[4d;}ϊτ@04΄ΒŸ†`ξ½χ^»o$|oΐ¦² Κ„ δŽ;ξj&R YC«Χ_½­jt€η7κ‚ͺΡšo½υV™4i’ Οj€;4Π_.Pγ ΩΈξ„»nέ¦αd­¬aε%K–Θ9ηœγ όœ7ož 4(π>τEθω’»όη?rΜ1ΗΨ`Žu΄ ·w‰Τ_ο>‘^ΗrOx½χI€Ά]ΏΒcΈcάώ‘FΊoΈ{Β­ΣνήϋGίλ’γώύϋۊαek‚τφΛέαξΑG•½ΣΰΩo~σ²ρΦ »ήƒ‘Υ0ΓΛ:@ ’yNιυΔϊ¬wέυ>OܺښcΈσ»>yŸ{αΒΙzέήg΄†ˆ½f׎ξη–ΠsΈυί|σ~ψαφYξΓKΊ_,s }ΎŸuΦYvΞς§?ύI.»μ²@8yμΨ±ςϋίޞΪUh­~μϊ©Ώn{e?CŸλήκΥΡzj Y?7rδHyβ‰'‚N§ (ι7"x+gϘ1#μ·$θ3Zη£ξfA@@@@@T€@3χ €ψF UΝϊ5δZ©NšŸ~ϊ©hΐWΓ‘a‘™3gΚ•W^iύ‡jΓ-κΠj΄½{χ–΅kΧ}₯xhE+»`K΄a#oπSO¬_ ή£GΚύώϋο₯sηΞΆ?ή@ͺ ͺz§v'σGΈ>i(GΫΥjΐαΝή “ξ<ξ:Β…gÝCΟοͺώιΧΞkΨ¨I“&[φ§}£5πέ¦M[Q+jeλΠσΉc*;―G²Ν±άήpTθ½±«nΓνοάΓ…Š½ΡTh.**’“N:Ι†™5π4eΚ9ωδ“₯iΣ¦²|ωrΉδ’KμίΧΦψGΉύφΫ%άΉΓυUΧy―Oο«+ΈBή~ϋm™;wn₯‘φHν±HEhžSρ<λέsΨϊuλjkŽαΞοϊ΄gΟ9ϋμ³m(8sOη]Η|ΰ™o ωΩgŸ΅σ²HίαΖAο‘hηξŸ››kΏ%BΏ‘bύϊυ’Υ™;tθ`o7χμ­‰@σΎ}ϋbφΤ@³[t.πΧΏώU^ύuyε•Wάj[qZΏCΏEΑ-ϋίδoϋ›ΌφΪk2kΦ,·ΪώΤ9œΞ›Y@@@@@@΄ 4kε@¨­ϊ—ΞKͺš5p£Υ˜5T©˜΅J³94όκͺΠyχρVζsώ·έv›Lœ8±Κ@³ϋ:ψpmx+Ίΰπƍεˆ#ް§YΌx±τμΩӝR΄O2Υ―hwϋλΖpαUw ήxƒΑnΌυΦ[RΏ~}·»ύιB@lΥK«V­Αlo;ξ Χ^θ6 Mkx:Χ€»ναϊ‘Χ~ώωηW4{Η%ΨyΏ6ήυίυUΊ―»ν―wŸp―½η7žαξ φŠdπυΧ_‹Ϋ9δ)((¨΄²τΆmΫδ‡~°γΥ’E [Α[ΕαόώϋίΚΡGŒiΐΙέ'zmήϋGί{ΓΖ`Φ1w‹»'½Ak7ζθzσΝ7+TωΦΏOZYRƒjzmΊxCΣΧΠ”ήcωωωrΨa‡ΉΣρHkο³"sΚύwU/4Ϊg½{žΈπ°[ΫsŒp}rλΒ='΅Ο.4ά₯K;Ρu§žzͺΫx―MΧλβΪσnσ~`hι₯’Ο’Π%ž9†}ήέrΛ-φoϊα/ΊΉ /Ό`?̺ޝ?\έΆͺ~Ίg«w~βΪ‹Φ³aΓ†v η%Υ©SǞvλΦ­vή0lΨ0ϋήέw:·ΠoΤΠγ²²²μ6­π¬σCύΰΡwί}'‘Ξmwζ@@@@@Θ(΄ 4gΤθp± € “@ͺš΅ΣΣ¦M“k―½6Π όε/±Υ—u₯·J±ϋκq·³‘»uλfC‘ή „α‚(’­†cB«»―]Χv]ΐΤ…quVOΦ*†nρξ―•υ΄r ..¨ͺηΠοΟ~φ3wHΨ ΝοΌσŽύZuέiΙ’%rΞ9ηφΧZ±z€I6 «mk ΖjΌ!wPΈλφ†W5°ͺΑο’!ή«―ΎΪVΖΦκŠ*χ..pUc§aΪO<Ρ†p΄³Άε]ξΎϋnΡ„»ο~‘―γΉ'\ ͺeΛ–Ά’·xέβ‚Sϊ^Η_ΗΝ…ΩŸyζΉόςΛέφ§39묳μΈiψΌσΞ³γ€/]pXwvcμ !»ϋD·»ϋM_λ2gΞ―·|ο½χδŒ3Ξ°ΫCηPήωaθq+yn>εγhiίά΅™€m© ΖΪ¦τΈΙ“'ΞaΒ.ξ₯χgΧ{―Νm w’ μo*)Ί]ƒ~ͺŽφαε—_ΆΧ©ΧkB―>˜ͺ‹₯:ήΕ{½z|θΨιΎ£G΄aΒ₯&0eMΌΧξZΌη }Ο=aBθ~\pΑ₯&Τo›Υλ4!#»Mﯝ;wΪυΞY―ΛμKM8ΈΤTJ,;wn °·ϋzτzέΌχŠή3ί½έ_ο9wΟ»ϋΝn0Όύφہm:ξ&^ΊeΛ–§Ÿ~:°^Ϋϊκ«―μ!&0UjΎ~ήnΣυ&ΌlΧλί‘ργΗŽ1‘|w ϋσƒ>lΣΎ˜jΩAΫyƒψAΐϋίηpΟ©xžυξω`‚²"οyjcŽOήkΣyŽ>u1•~K x˜ΚΚv½χyβ½6»Ρόξnžΰ§ΈύέΟxηζC<>κΨι³Σ»θ|Β=tώςξ»οΪΝϊ¬2dHΰΨpΧβm'άλpσ©X=΅§œrŠν‡ϊ»η³ΞρΜ‡‘ύsΟ_7_kΡΉ›ΞutήfΒΣ₯ζCuvvΧ]Φ!€ € € € € €@ hξΗeκθ σ*, € €@Z €R…f3―”_ϊΧ’ΥgM ³Bυd^Έp‘έ§2l­Z§ϋΥ­[7l5d=φ±Η³_ _Y;ފΉ‘UlΓη­όgΒ'rςΙ'ۊΈnίχί_τλάΓUϋΣ}ΌΥzέ1ޟ&πlΏn\Ώb]­\5e½^o%k=Ζpl₯]g‘_oξ*κωϋυληm:πΪ[q:°2δ…ŽV²<ψΰƒ[’»oΏύV:tθ`«4 yαϊ«cνλ=‘νΘ1Cςςς"žB+-Ÿ}φΩv»V—ΦqΣʊαŠΆcͺ_ ―•Ο=χ\1aδp»Ϊu^?oEPού¦;jUIW!3bcfƒχ8}έΉs爻›πΈά|σΝAΫ½η‰τχ.θή €i(Νs*Φg}ΈjΘJS›sŒH}r•ύ# έ„ δŽ;ξ°›ΝοΉμ³dνΪ΅ͺϊλΓ‡·Χθζ=ζC^vΞ£ΟI6–cŽ9&μiβchϋmΫΆ΅σ'όωΟ–8 θή*ΝA@@ί€Z 9ZΨ}ϋφΙ?ό HiΪ΄©huάx–;wІUuiΦ¬YP`8\{ΊΏ§5€ϋ“Ÿό€B…ΐΠcΜΧŒΫ€«VUφUBχ }_TT$ζ+ίEΣλ ­DΊUο5¨=rδHΡАΕ£Y4˜«ύW[½Φd,Ϊ^ƒ Δ| Όh Y_k₯gΧ?WyqπΰΑςόσΟWyJWυZwŒχžψξ»ομy4,^Υuκ½’χ@4γβό4υӟώ4«ς’Βμΰ½’½άω«Ίχt΄j€π5hή³gΟ0=` 9±>λ#Ι€κΓ=ƒ«z>DΊ.οz ?wοή]τ› 40ΑθhχŒJζCη„:_ηΊφ«qγΖφηœsŽθ‡΄4Π¬dΎΉg€Ύκ‡άΎψ⋨ζn±zzο/νcesX7ιΌS―νΐ”&MšDκ2λ@@@@@@ C4gθΐsΩ €ψQ ]Ν~‹κΌ& βj•f­f¬βΪXώρˆVΦΠ“χkΧ΅’’~΅Ί.ψΓlEb­ˆ¨ΥœΓUθv}Χ ξωηŸ/Gu”[ΕΟ8ώϊΧΏΚ\Uυξ8šη@Ÿ θσZC½Η{¬ύΐOm\~k…~Ϋ€Ξ5Όσ‚gŸ}V.»μ2Ϋ%ύφ‡ΣO?έVyvf‹ΤW\zι₯6DiΦ#€ € € € € €© @ 9F> € €@R4'…‘F’ΈρΖ__e―‘ζO>ωΔ~…ΌΥσσσε°Γ‹’5vITΰ•W^‘7ήxC¦L™b›š0a‚άqΗ‰6Λρ €Τ¨@qq±ύ`ΤΪ΅kνyo»ν69ξΈγdαΒ…ς—ΏόΕλΪ΅«­œθ7^Τθ…q2@@@@@@ ΝQ ±  €€‡ζτ'?τ²€€DnΏύvyπΑ+\Ξ‘‡jΓ΅νΪ΅«°ΙΨ±c‡΄nέZΎϋξ;ΫΈΎ^Ήr₯4kΦ,ω'£E@ͺY`γƍφΫV―^]αLϊ-ϊӟδC©° € € € € € €@Ί hNχ€ €  Π ΰE θWΣψα‡φλιKKK₯U«Vrκ©§ΦΪΧΤΧΠe§Τiφξέ+3fΜ°ζ£>Zϊφν+5J©>@bψμ³ΟD+5IέΊu倓N’N8!ΦfΨ@@@@@HΝi3Tt@ͺ Π\•Ϋ@@@@@@@@H=Ν©7&τ@β Π'‡!€ € € € € € € € P‹škŸS#€ €@r4'Χ“Φ@@@@@@@@¨ Ν5‘Μ9@@ F4Χ3'A@@@@@@@@ ©š“ΚIc € P›škSŸs#€ € € € € € € € Ÿζψά8 @RP€@s  ]B@@@@@@@@  ΝU±@G€@sϊŒ=E@@@@@@@@ΐ hvόD@΄ МφCΘ € € € € € € € €d ζ t.@Ώ hφλΘr] € € € € € € € €~ ΠμηΡεΪ@Θ0Ν6ΰ\. € € € € € € € €€/4ϋbΉ@PΝά € € € € € € € €€Ÿζτ3zŒ €4G€a5 € € € € € € € €),ΰ»@sύ7ηΚ«–H­ίU {ιΑ‡Κގηʞs.©–φi@β ΠΏG"€ € € € € € € € P[Ύ 4Χ_2GκΏω\Xξ9gμ9χ9'A@θ4GηΔ^ € € € € € € € €€’€―͍&ηU[eζΠAΣJΝ»n™Ί:αχυ>].uΏω<ΈFMdoΫΞRzp‹ΰυΌC@ ΝAΌA@@@@@@@@ -|h>πΞ>5ŠΎsΒ‹I9_­›LeιΉRoνr©SΌ3b›?ΦJφvΝ•½'q6 € Ιš3yτΉv@@@@@@@@t МΐΘ%#Π\•§€ώ²—‚zQšu hxY—Ί…ίIΒmίΧκDΩέoD’+6Λ ΧdΛΠΩ"3Χn‘G6 :gκ½)–ΒB‘fΝR½ŸαεŠ ‹₯ašφ=ό±H Ν©1Ιμ…NVχμΩ±Ι:uκDάΖ@REΰ˜cŽI•ψ¦Ϋ·o—―Ώώ:βυ4kΦL~ψα‡ˆΫΩ€ €€˜cψaΉ@@@@'@ ΩITυ³Q‘]ΫƒφJ$Π\§x‡4X0ΥVeΦF5ΔΌ·kΩw|fntέW«7Χ[ω†Τϋβ»­΄αR’wo…}ƒŒι 44ζ—E¦­Ϊ"CΪ€vPψƒϋ»ΘΩcΧΘM‹ΧΛψn-bΊΪΫΉPς—Ύ.Ο>zΏ<πςš΄p=+ΌΔ'@ 9>·T>ͺ²@σ§Ÿ~*:ζ'Ÿ|²tΠA)uύο₯AƒrΔG€TΏ΄3ωωω΄iS9μ°ΓRoλΦ­“μμlωιOš’}kΫΆmΚυK;€nτ-φ‘IU·ύο²eΛ–”ΣoΎωΖDSρ~+((;wJ*†z6lΨ -[ΆLΙ1ύoNκQY ωǝ'θί§Tœ'8ΕTύοPΊτoύϊυrΐΘΟώsΧε”ϊωέwίΙχίŸχSύόχΏ-5² M©Αέί™oΏύVΆnέ*Ηw\*vΟφ)ΥΗψ³Ο>³Ώ\*ώ& ¨œΡηΝ±Η›²c¬ύ;逓RΆt @@@@X4G£Υχ:‘6DΉIdGQΰˆDΝY³ο „™χwͺμξ?RJ6΄ιEύe/ΚoΜ‘:%;ΝώΙ 5§S 9_iάQfKwy«`‘tnI+5Φnψ@^ž?]†5ε―=K:Η=έε% šΣb˜ΝνG±@IDAT’ΦΙW_}UΎόςKιΧ―Ÿ Α&­α$4τΙ'ŸHΓ† εΏψEZKnϊΧΏδCIΙπΟ‡~(-Z΄Γ?<Ή„Φ΄o© oρ pͺΊihXR©xΏιs5lŠ}Σ_nh §]»vρέΥx”†΅4`›ŠAπjΌμZmZΓν―½φš 4§β<Αα€κ‡₯kΧ΅ ;ϊθ£]—Sκ§~ΠBCΝ©ψίL•κχΰš5k€qγΖΊupρΧΪώωΥW_ΩΞtμΨ±Ά»ρό©>Ζ}τ‘ωΎfrδ‘GFΌ†ΪάπΕ_ΨsuθΠ‘6»QιΉS}Œ+ν<@@@@ ΠRαmο<‘s•­ώ2_δ±Q"&L¬KΌζϊ/?)υί7₯Ν²χ€sl˜ΩΎ‰ςΊί¬—¬§ξ( 5|¨ί05ͺ0tεΝ§O Ήpιύ’Σk¬ΘΰηdΗ“V~Y΅Ύ΅Xžν’-ΓΦTμζŠ&¬A М¨`zO 9Ύρ"ΠŸ[*θ›ΏΖ”@s|γI 9>7ΏE 99#›ΚΟ½BΝ‰sͺ1f1fqβWH  € € € €™$@ Ή²ΡξyΉHσ?·|ώ‰Θ΄ΫL y—]O ΉΞΦMhςΥφx­Μ\2δNΧzL?λ­].ZεY—=η ’=η^Σρw<ΠΌ)YΊϊ3))1Gf΅SΊύJΪ΄hX±]S˜//½ΎB~Π}ε'rJοσδHΩ «?ϋA~rdϋγŠeυΏΛκ/7ιΞ¦ιŸK·_u“HM‹”χsκϋ’ΧΎ¬7ΏE 99#›ΚΟ½BΝ‰sͺ1f1fqβWH  € € € €™$@ 9hWfΦΓβ 47˜?EψπM)Ν:PŠo‘Peε@[ M[£kΛ ΪηΛύ;ΚΨ7*B žϊ–<™Χ9hΓ¦₯Σ₯u―AλΌoΪM}_–η΅·«Š7Ό.ο+a𖉋ΧΛ έφ‡Œ½ lZ*[χ2kn’υ;ΖKΩω2°qG)«y]Ύ³=Χ‘άμΣΜ9ΊΛϋ[‰Ι7–βόg%»γ0‘vΣdΛς!6μœlt¦=κnώο }λ=ν}™7€¬†bzQήΧ η˜Ϊ`g@Hš#Ιψs=ζψΖ•@s|n©ψ‘oώSΝρ'ζψάόzζδŒl*?_τ 4'>Ξ©>Ζšύ?Ζšύ?Ζ‰_!- € € € €d’ζp£E˜Y‹'Πάhό ©SΌ3)U•½Υžwχ!{;žξj’\W^ωΈΞ©>Ζšύ?Ζšύ?Ζ‰_!- € € € €d’€͍šˆœΩOδΥg’Χs™€k^ωΎŸ"2ν6‘’]ελφΏŠ5Π\oνrɚ}―=Ίψ†)ςγa­+΄λІί(uΏύBφwͺ” Ή3ΦΓ=ϋ—‡—]ΠΆpιύ’Σk¬έ'΄bςϋs₯—-ΫάΫT>žg+πHœ=Z«χ–· ζIgϊ-ό@ζœmƒΚ@³©ό<0»¬ͺςΜU;Δe’₯xυώŠΚ"Sίί"yή’Κ²IΖ4n-˜3‡=ζΑ3₯ΰΙβN] $Πάέš…š»ΛΒ΅σδΌ#χ—tφτkšιא ~y«|YήWη\ε!μ€ ΅ζ¨©|±#ζψ†‘@s|n©ψ‘oώSΝρ'ζψάόzζδŒl*?_τ 4'>Ξ©>Ζšύ?Ζšύ?Ζ‰_!- € € € €d’€ΏΝML¬υΊϋD7ΑαΌ*2ο~‘Θγ«ΑηΎΧ•oΟ_)ςτοΒ†™u§XΝυ—Μ‘ϊo>'₯YΚ±Ο•Ÿ'W6>Tvέ2=–*šσ_hͺ›R̞ Ɓ˜€οΐμΣlHΉ,˜+ςΒΐl±»ͺ0φΧVΈ@σΰ©‹eόnΒe‡7m … εΘ6-lΥdΧJρκι’}ΪOΉl[yHxζͺ-&½Ώ!»Ρm‹1Πly‡©Ϊ\ΎΚ³Ή92Μδ΅ "»ώ$ΪNyΟx… P.@ Ήά"^hŽo” 4Ηη–ʁϊζ―1%ΠίxhŽΟΝ―GhNΞΘ¦ςσE―@sβγœκcL ΩcL Ωcœψ € € € €@& ψ;Π|Ϊ"Ά|<5ΤόάδςχήWαΒΜΣοΩ»Η»WΠλxΝϋŽ:AJώCP[ρΎ©ΏμE©JY9ΦώŸ34ΠlΚט€ςlΝ3―’yΚξ¨ςύΗ-^/7wΉίTOΦzΞCΕ¦Nς טpτl šΝ~Kοοbͺ<―q J»ξƒeΘ€ εΌήηI›fήPrΩ.―ίΪXϊ>*r“9ίψn-Η•WavβΝBΣεΧK ΩCΟK@ Ε4§Ψ€Tsw4ΗL 9>·TόΠ7)ζψΖ“@s|n~=Š@srF6•Ÿ/z…šηTcΝώcΝώγΔ―@@@@2Iΐ߁fɞ—‹τ0sKΈJΝq„™΅ΉXΔυ_~RκΏ²$3Π\oνrɚ}―½ΊXϋγHΚ~†vΛ+.ΛΰΕ²γI“XZΚχοn*2/,hΎiq ›κ؞%\ Y7―~}ΊL3B^.Ο5Ϋ£ΊO\,σnθV^‘ΉψΙΝ>[ސΑ²jΛ“T„Y\h™@³‡œ— €@F hΞ¬a'ΠίxhŽΟ-•?τΝ_cJ 9Ύρ$ΠŸ›_"Мœ‘Mεη‹^!ζΔΗ9Υǘ@³Η˜@³Η8ρ+€@@@@Lπ YG³²Psœafm6Φqύ%s€ώ›ΟIιΑ‡Κ[Κͺ*k;‰,Mm#ΦώŸ·< μ*Ώ~kSy©ͺόΎΜ>xw)”ιΉ92β "6θ\SΡΩΌŸϊώΙk\a9R Ω5Z\X(Ύ\!ΟN#μO7{ΫΩπ­rό G₯έΈΕ²\ΛA-Ρšίί2O‚Ί•‚4ξ8TΔSΩυΣ»μT}‚Ίυ›Κϊu#μˆ A€@sŸ&ΠίΐhŽΟ-•?τΝ_cJ 9Ύρ$ΠŸ›_"Мœ‘Mεη‹^!ζΔΗ9Υǘ@³Η˜@³Η8ρ+€@@@@LȌ@³ŽhΈPσŸˆ ΌΉ|ΌσWŠLΏKdοžςu•ΌŠ5@\Ω‹R•² σ1s₯΄aγJZnSƒωSδ€ίLBΥηŠέ /\#ǝm:2\ΦξΈOŽτvΙ…ΝΊ™«ΆΘ€6žŠΞΓʎϋΞσξ-KΗt‘^h8z• G·‘ /1εDzΟ”-σ”Wb6Aι1sΔl‘²ΚΟ¦a³ξ‘.92ΪTq.;WpXZ*«Π\œ/³;ΚΛΆŸ;l?]Η —>"9½Fhv όD| @ ΩƒΓ%hŽΛ³+fF /S9πCίbHΟ©κF Ω3H1Ό$ΠVμJ 99ƒœͺtWG ΩIΔ3Υǘ@sόcλŽLυ1&ΠμF*ώŸ©>Ζρ_G"€ € € €d’@ζšut½‘ζ©[WδΘγΜΟz&[˜Y›‹5Π\gλ&i4ωj=Tvχ!{;žk_'ςG£ρƒ€NρNΩsZoΩΣϋššͺh–Β₯%§—˜±Θΰ™²ώΙΒΌ,ήτάΨϊlΡ¨³Θ8YΏγf»~Σ1Ί—F‘Mzζϋrί€²ͺΞ«M0ϊ4Œ6ωεύζβόg%»γ0»οΔΕ«δ†n\ΦΆ—ΚΐΦ½Δz6§\+O01jžn7Q –ί Νμžή?*«zΌAnm|Ό»£Κ~VhYύlœ6,p"ig*Ώ󦻩½¨¬Jty yšY7ΔS9:ΌOp?’yWy_£i}@" hŽlγΗ-šγUΝρΉ₯rΰ‡ΎωkL 4Η7žšγsσλQš“3²©ό|Ρ+$Мψ8§ϊhφhφ'~…΄€ € € € I™hΦΡν'rξ ²qΦJΝΣnΩ³;ζq΅B³žΐBήsAžμ9½OΜηΥκŒ:[Ώ“}G %W!vΚ*–—Ι–A¦μςΜU[d@“$ήΏlZύ‚άxΪPyΩ­0?Ϋυ'=4\:·(ί―lσ&yαΦ\ϊhydΈϋπqbιX™mV•šuοByι‘{eΠθςΐ΄m7x’<9>OΪkΫΕ&œέΡTƒξ.o,’ΞΛ3›#\HΈ»,6ϋt«°O‘ΌώΘ0ι;Ϊsν†ΛΤ!…2b΄ΉΰΑΟΙ–'/΄αehξ>ξ-YtsgνΞώ%Ψη<ω@^_½Ιm ³Yp^Y•κς\_σZγ|d¨_ωžΌBˆ]€@sμfι|ζψF@s|n©ψ‘oώSΝρ'ζψάόzζδŒl*?_τ 4'>Ξ©>Ζšύ?Ζšύ?Ζ‰_!- € € € €d’@fšu„ŒiaJ ?u§HΙΈΖ<ž@³ž(λ©Ϋ₯ήŸHiΓm•ζx*+gMΏCκ}ώ±ν·Vz֊ΟΥ½J±9IΓ†ΝΜ"œΝμ#ΝL’ΈΈP νΞΝ€YΓby67[΄HroSey^˜*Λ‘Ϊ.όΰ~Ι9ΫTΟξύœμ˜wa„“FΉΊΈΨτΙvΚt1DΧVώτ.qDyh;όQSeˎ·TόΠ7)ζψΖ“@s|n~=Š@srF6•Ÿ/z…šηTcΝώcΝώγΔ―@@@@2I ³Ν ŽtΌf=mέoΦ›JΝwΨP³ΎίΫρΩsΞ%Rzpδμ?{gE‘·IHΒ0Κ}Κ% ŠΰbD”ΓwqUΔEeT\]eWT\pεΠ……εaΑDAn9 ΒG ήͺžτΜ$Σ=GΟ$©τ<σ„ξ©ͺϊ>σNςwΏσ›_ΎCΩU_’ΤιγrrΪά‰K}žΣΞ•ψηΨ"ΔΦοο\J5{6DafΗcΐWHŸΦ“‹u<’  „œ…ζ#UzB ΝΦβ‘Πl›ΚΒΧf―L)4[Λ“B³5nvE‘94ΙͺόϋEξBsπ9«ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$N(4‘v0B³Ό­&5‹jΛ₯2N8Wq₯F=δ^ί(‡+•ͺ‰>…ΐ| »6 ”[5i₯*3;WdμY‹7Η$bŠΣbv\9y)& νL™ΩOI€H€BO€Bsθ™ͺ<#…fkιPhΆΖMeα‡k³W¦š­εI‘Ω7»Ž’ΠšdUώύ"wH‘9ψœUϘB³ύ3¦ΠlŒƒί!g        'šƒH;X‘YήΊTV&Κόo‘ψω·³Z³·%εΦmŽœ[―…·nΕ~-++gΞdkλ¨X1ΡΡΕΎ$.€H€H PhƒέΆH‘Ω F§š€εΦUeα‡ks *€SUΉQh D·šέ`πšCσ"Pυ}Rί…f„υ£κShΆž­>RυŒ)4λIY?ͺž±υq$        @8°•Π\ξέ'σU;.Μ@―ŠκΙπiΘn!ΕfY…YώΘΚΝξU›₯Δ¬UnnΧUλ‡μžœˆH€H€μF€B³έυΎ Νήω˜]₯ΠlFΖ{»Κ’Χζ=;³«ͺr£Πl–˜χv ΝήωΨρjNN.^ΌhΈ΅¬¬,|ύχ8qβzχξψψxΓ~Εέ¨κϋΞEυυQhΦ“²~T=c ΝΦ³ΥGͺž1…f=)λGΥ3ΆΎ3Ž$       GΆšΛϊeΏϋͺHrΌ|ίP\Ύεώ"ΉoB$@$@$ΰ Νώq²K/ ΝΦ’€Πl›Κ’Χf―L)4[Λ“B³5n%yTFF8`Ί…””MhnήΌ9bbbLϋη…}ϋφ‘Q£FΕΉ―χV}}‡BΩ²eQ«V-―ϋ(‹'OžΔιΣ§™q$%%‰o}‹F͚5ƒ˜₯π†?~ς½¨qγΖ…w“ gVύŽεϋx\\‚άiα OKKCff&4hP87Ρ¬mΪ΄ ΡLœ†H€H€H€H€H€H€H€H€Š—€­„f‰RJΝe6―ΚWα8”ˆeeζœ[{Qf%TΞE$@$@!"@‘9D KΘ4š­E‘Ω7JΓδf@ΰ£(4ΞLŽ Πl[I%«0Ÿ:uΚp —/_ΖζΝ›Y‘ِŽ*ξ“»`…f³4λ©zΖ¬Πl–œνͺgΜ ΝώgiΦSυŒΝΦΝv        0"`;‘Ωh“l#  šΓ#g}—šu)4ΖKο­²(ΐ΅ι)vT•…ζΐrΤ{ShΦIπ( \ΈpΛ—/§ΠδΛAΥχI}[šu֏ͺgL‘ΩzΆϊHΥ3¦Π¬'eύ¨zΖΦwΖ‘$@$@$@$@$@$@$@$@αH€Bs8¦Ξ=“  €M PhΆi°&Ϋ’ΠlΖG3…f€L.«, pm&‘ωhV•…fΑ™\¦Πl&L›)4‡&xUί'υέQhΦIX?ͺž1…fλΩκ#UϘB³ž”υ£κ[ίG’        „# Να˜:χL$@$@6%@‘Ω¦Αšl‹B³ Νš}2Ή¬²(ΐ΅™„ζ£YUnš}gr™B³ ˜0m¦ΠšΰU}ŸΤwG‘Y'aύ¨zΖš­g«T=c ΝzR֏ͺgl}gI$@$@$@$@$@$@$@$Ž(4‡cκά3   Ψ”…f›k²- Ν&`|4ShφΘδ²Κ’ΧfšfUΉQhφœΙe Ν&`Β΄™Bsh‚Wυ}Rί…f„υ£κShΆž­>RυŒ)4λIY?ͺž±υq$        @8 ΠŽ©sΟ$@$@$`Sšm¬ΙΆ(4›€ρΡL‘Ω “Λ*‹\›Ih>šUεF‘ΩGp&—)4›€ Σf Ν‘ ^ΥχI}wšu֏ͺgL‘ΩzΆϊHΥ3¦Π¬'eύ¨zΖΦwΖ‘$@$@$@$@$@$@$@$@αH€Bs8¦Ξ=“  €M PhΆi°&Ϋ’ΠlΖG3…f€L.«, pm&‘ωhV•…fΑ™\¦Πl&L›)4‡&xUί'υέQhΦIX?ͺž1…fλΩκ#UϘB³ž”υ£κ[ίG’        „# Να˜:χL$@$@6%@‘Ω¦Αšl‹B³ Νš}2Ή¬²(ΐ΅™„ζ£YUnš}gr™B³ ˜0m¦ΠšΰU}ŸΤwG‘Y'aύ¨zΖš­g«T=c ΝzR֏ͺgl}gI$@$@$@$@$@$@$@$Ž(4‡cκά3   Ψ”…f›k²- Ν&`|4ShφΘδ²Κ’ΧfšfUΉQhφœΙe Ν&`Β΄™Bsh‚Wυ}Rί…f„υ£κShΆž­>RυŒ)4λIY?ͺž±υq$        @8 ΠŽ©sΟ$@$@$`Sšm¬ΙΆ(4›€ρΡL‘Ω “Λ*‹\›Ih>šUεF‘ΩGp&—)4›€ Σf Ν‘ ^ΥχI}wšu֏ͺgL‘ΩzΆϊHΥ3¦Π¬'eύ¨zΖΦwΖ‘$@$@$@$@$@$@$@$@αH€Bs8¦Ξ=“  €M Phφ?Ψ-[ΆcΙ’•8˜”Œk―«‰ž=οA›6­PͺT)Ώ&ωε—νX±|ŽGυκ ΈγŽNΈι¦ΆΞριι§πίώ€²eΛΞ‰N·uDLL9Γλώ4Rhφ‡’g ͞LόiQYΰΪόIΠ³ͺά(4{fεO …f(…O Ν‘ΙZΥχI}wšu֏ͺgL‘ΩzΆϊHΥ3¦Π¬'eύ¨zΖΦwΖ‘$@$@$@$@$@$@$@$@αH€Bs8¦Ξ=“  €M PhφμΥ«Wρή{bφ¬y9r(ΪΆk;vc€)θΡ£;^yυE”.]Ϊt"9ώΥWήΒβΕΛ1tΨcΈρΖ6Ψ½{/ήο#tκΤ'½2e"–v³gΟƒ—έ‘‘e!eθ7α³Ο?@λΦ-ά/tN‘9 \ΞΞš(:QYΰΪŠΩYUnštB‘9 \ΆοL‘94«ϊ>©οŽB³NΒϊQυŒ)4[ΟV©zΖšυ€¬UΟΨϊΞ8’H€H€H€H€H€H€H€H  PhΗΤΉg  °) ΝΎƒ]·φŒσ*ζ=΅jΥp8y"]Ti~γ_ƒΔΔΞφ‚' ,Α[o½―Ώω5kVw^ΞΘ8ƒ>½ΗS7}ϊτrΆ<‘BτΣ#€ZΧΦΔK/=ηUž.8Άΰs Ν‰ψχœB³œ φRYΰΪ ¦είsUΉQhφ/Ώ‚½(4$ήΟ)4‡&Uί'υέQhΦIX?ͺž1…fλΩκ#UϘB³ž”υ£κ[ίG’        „# Να˜:χL$@$@6%@‘Ω{°W\AΏ‡Ÿΐ'ΰή{»yt^³ζ{Lxν¬Xω/­ΚrΑr|ί>ƒρόθ‘ΈυΦ› ^ΖΆm;ρά³/›Ž—2σ»οώλ؈yσgήΓcR/ š½ΐρr‰B³8^.©, pm^‚σrIUnš½„ζε…f/p ρoΏΑβEΛ°eλΔΕΖβ]pχέw ""Β―»ξΨρ+ζΞύŽ₯ΐuΧΥB§Ϋ:ΰΆΫ:ϊ=ήμ&šΝΘΦκϋ€Ύ Ν: λGΥ3¦Πl=[}€κShΦ“²~T=cλ;γH        p$@‘9SηžI€H€Hΐ¦(4{VVQNΌ§―ŽΏAωςq33/ ϋέ½±hρ?QΉr%ΣλK—Ν3Ÿ••…{Φͺ7ρǟ…π<K–Ξ5œίγ†>(4ϋdr™B³ Ν*‹\›πL.«ΚB³I`>š)4ϋT—W·/Ό0=ztGžχΰΤ©SxσIšŒΌhρWˆ1½«όΣgŸΞΒ‡~ŠAƒϊαΦNπΫo©ψσλΕ΅Blž3η3DGG™ŽχuB³/Bώ]Wυ}R_=…f„υ£κShΆž­>RυŒ)4λIY?ͺž±υq$        @8 ΠŽ©sΟ$@$@$`Sš½»gΟ~<σϋ1B(žgXωPΚEΓ‡=‡ίŠ6mZzLζKxφ&4gee£Η}ύπ§q/ΰφΫ;yΜm₯B³j…fkάTΈ6{eJ‘ΩZžš­q³:*-ν8ξ»χaΌώ›Έ­σ-ΞirrrπδΏGέΊ΅ρκk/‘T©RΞkξ'ΔΓ}‡`ζ‘E‹fΞKςo‡ϋΖ@!9?ςHog{ 'š%fά_εί/rΕšs €UυŒ)4’¦q_Υ3¦Πlœ[ ­ͺgΘ^Ψ—H€H€H€H€H€H€H€H€(4σ5@$@$@$`š½G)ε‘FΓό―gš ΝOx#žŒΆm[{L&…ηGŠ>}ξ?½<ύ<ϋΜKψτ³Ώγ†ς Ρsη.ΐ?ΏœozoΙόh Πμ$ƒ.š  ψΡ€²(ΐ΅ω AUΉQh6ˏ& Ν~@ a—?ϊ ΙΙ‡ρζ_Ζ{HΛRvΎΏη#ψχ’’zυk ο:ώBlίΆ ―MxΩγϊ† ?cƌ/EυζΏ’tιΧύi Πμ%ί}T}ŸΤWN‘Y'aύ¨zΖš­g«T=c ΝzR֏ͺgl}gI$@$@$@$@$@$@$@$Žl'4ΏωίØ΅υ8’3² %Ο:•’0°υ5ΫεΊB™Ÿ“’   X'@‘Ω;»½{χγυ οbΖΜM…fY‘ω~χ„‘Π,gΧ₯εiŸΌvνnpήPΚŒ@nn.–―ψ•+Wr^“•›{άΧΣMνΫ:Ϋύ9‘¬^Ύ|Ω°λ―Ώώ ™ω7ވςεΛφ)Ζ 22Χ]§ήߌ{φμA… P£FβΒczίέ»w#>>ΥͺU3νS\δښ6mZ\·χz_Ν+Σ‹ͺr;qβΣΣ•|½IΩϊΜ™3J-55RbmΤ¨‘iζΕu!99Χ^{­’ά¬0Ήrε ϊφ,Ύuα†ίθ j̘g žΧπΒx<ψPάzλΝKΨΉs7ώ6y*>ϊx"…f:EΫ Ί$G‘9ψΧƒκShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αDΐVBσkDu ΅‡‹$Ώ±―ΓoWOP)’Νσ&$@$@$ ( Νήƒ‘BσοŸƒ%Kη™ Ν²Bσ“C’}ϋv†“I iΦ¬Ήx½Π²ΥυΈϋξ;±yΣV¬^½―Όϊ"¦|𠾚σY>‘YJΠϋ:Ύ]΅eΛ–5œΧ¬qǎΘΞ6ώ ZJJ €ψΧΌysΔΔĘMQ,퇄ζš5kΛύ½έtώύšžΰ­[±\Ϋ·oŸxνTFΥͺU‹εώήn*Χ¦’()ΧΜ΅yKΞόšͺά€Μ|κΤ)%_oςχμΩ³g•\›”­/^Όˆϊυ뛇^LW>ŒΖΫFhΞΜΌ€ξwχΖ’ΕΜχϋήο—β[dΏaΓsovžKiΉV­¨T©’³MžΘΏ3ΖΎ<υκΥΑπƒσ] δ +4BΛΌ―κ²+…fσμό½’zΖšύMΌŸκSh6ΟΞί+ͺgμο>؏H€H€H€H€H€H€H€H€$[ ΝΧmS‘Uf.ψr‘•šw=c,ϊμΘσΕ{Na[ZfΎ!•Κ•Α}«@ή“   sšΝΩΘ+ς«α‡ ©UP6‹srrπΰEEΔI’’€w7νθ1l"σΙ“ι¨_;ΆG™2Z%ζeΛη#..V[Œ“^ύ]νωσϏτΎΐ―.[Ά Rjξέ»·VΥ7ΐα…Ϊ}η͈ŽŽFƒ υ>V&ί²e ͺT©‚Ϊ΅k[^¨cδ/EkEp•EΝΪΛRUnRΜMKK•oΫXΫX!Ž’οΉRΈVqmς?nœ?-[Ά,DΦ¦ή»w/dUcU«ΌΊ+ωΝ χ&>Œ―ΏωΒThž?!Ž₯ΗΘ§‡4ύ7ί,Ζ»οό ΞΏ¬Wλ§ΠvΣΞͺΎOκ ¦Π¬“°~T=c ΝΦ³ΥGͺž1…f=)λGΥ3ΆΎ3Ž$       GΆšc'όP€fŽΏ%$χKΞΘΖ›MΑ’έ§p&;ΧtΞV 1xΊC- hmύΤ3œH€H€Hΐ(4{1++[Ηύ4aΉQ#Ο –©©GΡοα'ΰ.$»Ο(εδΟ>….·wBΓ†υά/iηKώ³^΄ ~ψWηWΔ_Ύ|Y»η_ήzΕπkη=&  Bs°άΊRhvƒΐ©Κ’Χ@n]UεF‘Ω-€N)4+ΘRhξq_όkΑ,Qρ?ΞpΆΉsΰΔρ~ ΝςoŒ)LΗηŸΟΖΤiοαΖ} ύr²šΉΡCώύ±yσfν›:wσW‚6SmςPς›&T}¨Ύ>Yi_~H―nέΊJ"”N‘aΖΦγΩ½{·φM,*~OξκΘ‘#ΪϋP‹-¬o²GͺώΗΏώϊ+*T¨ ͺφΧ*dΦ¦ν·ίpξά94kΦΜΪE0JΥΒΑΦy          ΠD¨‘šΗ,;ˆ)ζ[E…¨HyY>RΞ\?ωΏfύΆ:0΅W£WlΞΒΌαρ<˜±+}λDη[“zO²‘ρυ΄ͺ―Ӎ\Vφ$ΛkˆFB:(IΛwΫ OI€H@Yš}Gσލz˜”t(Ÿt,Gι_ρ‰Χ&Ό¬M”““‹5kΦ‘uλ¨V­ͺΦη…Ργ_΅ Ǝ}>ίΝ€,έλώGπ²hΏ]ΟϊCZϊ/ϊRT¬7‡δH‘ΩF ΝΦΈ©*ΏΚέpmφΚ”B³΅<)4[γfe”Ώš““ΓθΡΎΏαΠ‘Œώ23/β³>F½zuόZV†ψ0ν++ŠŸ8qB“IcbΕ΄s1]Bn£FŠιξΎo«ϊϊ:€ ΝͺА'OžΔιΣ§™±ο—ši€€$ν[OTόφΉθγǏ‹>™Ζ›ξ‘Έ/¨ώΗς}<..Nϋ––βfet) gff*ωΝ;ξλUρΫ3άΧΗs        π—…f?IU*WsςυFh>“•‹ χaΡG5!)1?}sMτlZ­ͺ;Ύ’]Ώ™μ»hO:ώρΛ1|ŸrNk(ϊ/{Ό…G_}LΰG!4χBσb`κζt l’Ά(Όqbά1~;ž_š„Χ;'Ύέ"‘…΅ΣΗ#ρΩ)w}~ΖzΌή·•G;H€H€¬ Πμ›[FΖ!?Š»»ί‰gŸ‘ύΗ.\ΔG}†ωσbΡβ―PUΛς!eδw=€Ιϋ Ϊ·o§΅νΩ³>2ύϊ?το&‘€=†^§υŸ7&Κ”‰ΠϊΚφξݏaCŸΕς_k2‚σBN(4[ƒH‘Ω7JΓδf@ΰ£(4ΞLŽ Πl›•Qϊ7>̘1Χ^g\QsΒ„wΠ±c{tλv»Χ[,ίμπκ+o‘GξϋΗшŠŠτΪίί‹.\ΐςεΛ5‘Ήwοވχwh‘φSωw‹‘ϊϊvνΪωaΌ† inώή,55U^U UΟxϋφ툍Eύϊžί.γo…ΩοπαΓΪϋLΫΆm σ6AΝ­zΖ[·n+*‘Ž(ό βC~pβΜ™3βCΎ­U\žΆ&Υ3VF$@$@$@$@$@$@$@$ $ Ν~Δς^ΖθΦ¨ ΊLέ„τ —#‚šϋΟΩν”™{4©‚i’βrΕh—όγΌI“)?ş׀ΰlv.B+5—$‘y†ΗΆΕltΕκΤ…h_©$Ş‹t—ΉεL蛀΅γ'αΫΌuψj¦υTσ?Ϊ+†’Λ! Ÿ(4ϋD€u8r$ £ž{ϋχH=νX³fuLωπ―¨]ϋZη$Ί°τΡΗ“De9—D°iΣΣΩW KγƏΒAώ ˆĘ?Ό‚Ήσ>GD„οΏuœϊqB‘ΩH](4@ρ£IeQ€kσ#@ƒ.ͺr£Πl–Mšύ€’.ς[δ76άrK{τξsΏΗ¬—/_FϋϊαύΙo‘Y3γͺ₯rωaͺO§LyWΘΟ7yΜL…ζ`θΉΖͺϊ>©―B³NΒϊQυŒ)4[ΟV©zΖšυ€¬UΟΨϊΞ8’H€H€H€H€H€H€H€H  Phφ‘ϊ[χ4Δ‹·ΧΥzύτΫYάυΙfœΛvTjΆ*4aY>ܘ¦Ν9 U5L{ °―έ––‰ξ3whRsJQX?όΏdhο[-9BsΖΪ‰¨•8π2§υτΎ­βΎzlbλχΧV1RTc~ΗYω>θU/jVσ$eކκu¦‹%οO$@ώ Πμ%WY­ωΚ•+(Uͺ*WμBRD’γsrr ΏΖ½ ΘμΊKαQhΆΖ–B³5n*‹\›½2₯Πl-O ΝΦΈY΅nέzΌό,[>OϋΆχyώ³x&Nό@ϋv†²eˊΏr±fΝ:Qέ²ͺU«ͺuύώϋ ψΓ γ1뙨U«†ϋπœSh FVh#+4 P §ΠH€H€‚$@‘9H€%l8…fkQhΆΖMe„k³W¦š­εI‘Ω7«£δ›†{iiΗπΙ'“Q½F‚&.―\ΉϊγŸρρΤχpΣMm΄ι33/ λ]`ςίώ‚φνΫAŽ}Έοtθp#†{ ςzΑG™2Έζšj›ύ~N‘ΩoT^;ͺόϋE.œš½ΖηΧEΥ3¦ΠμWŒ^;©ž1…f―ρωuQυŒύΪ;‘        @ Ν&/_2³fEhΎ`fo; QΨύμAUVΦηͺ(ζϊ5ΘΉάEα©›Σ1°Iž]›΅ϋ΅Εx­’p~X&―Ζ΄‘νσ5[;υŸΝΧζώ€εδυΨ0΄•Φ”•ΌύSγν₯IxΊ³AΝβckEΕγD1ώyQΥψυΌͺΖ{Π/Ά-»ίHœkχτŠο(ξΡUHΓ σIΓN‘ΈεT€o¨ΙΞ{fυBΫrE]ΕϋΦcm=¦ΗœŽυΈρΣcρΑ‹έ€F윿Oς<Δ^?X΄ΔζΜwΠ$U># °@€B³h%x…fkαQhΆΖMeQ€k³W¦š­εI‘Ω·`Feg_ΒΫoΏ… – jΥ*8yς"""0ι½7Π©SηΤYYΩθq_?|τρ$4jT_|Pϊzp ‘;ϋ<©]ϋZ­z³œΟΚƒB³jžcTώύ"WK‘Ω3³@[TϘBs ‰zφW=c ͞™Ϊ’zƁξ‡ύI€H€H€H€H€H€H€H€Β›…fƒόύ‘™ε0+BsΝ·•‹sŠͺΚξ՞§φjˆ­―1؍ΏMΚΗ.‘ΩΥ&gπφ mŸ€ρbž=άcΖfΜι›§β:ecΩ»%ޞρΊˆ“1¦³Ψ.›Δ£ΗTΡ μŸιjαYνBWLž1+₯`Κ#œbς‚€Lt+ΰ4o›ΥG,FW!F/Μ£=.„ζΩΪΔ?-`B·J¨Ψm4†vΞΘ»Φ›EdέΣ–]³φΜ’‹EΝ@ϊœΎ‘yήp΄μœ #'ΟkΘΖτώϊΊZbiκtv/΅,'³πX;±₯)ξv Σp  € Νn0Βΰ”B³΅)4[㦲(ΐ΅Ω+S ΝΦς€Πl[(F]ΈpYYY(Uͺ*V¬€₯K‡bΪ ζ Π>η`•ΏΘERhvFeωDυŒ)4[ŽΦ9PυŒ)4;£²|’zΖ–7Ɓ$@$@$@$@$@$@$@$@aIΐφBs₯re0ͺSmΌ²2Ι―€_Ί½.ώrOCgί’3ΠύΣ_pώR³M? Th^΄ϋϊΟέ­ _?Ό5ZUΥ§²|μ0u Ά»€Mͺ`NΏ¦–η1ͺМ±v"j%ŽΧζ,X1Ω)γ’‡¨|&‰σό²³›Π<`R§υ…~k—μμEhξ*„ζ……ζX°kΊΥΡ+U»Φ5U¬k`Ύui‹ 蟌mΣQ«££’υδυ©bŸ4;“  δ#@‘9Ϋ?‘Πl-b ΝΦΈ©, pmφΚ”B³΅<)4[γfΧQšC“¬ΚΏ_δ)4Ÿ³κShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αDΐΦBσ5q‘Xωd[΄ͺ‡Ο~>‚a_Š+W―šζϋœŸίλΡΨy}εΎt<τm†2³μ¨ΠόƚΓxsνaTˆŠΐΡovή'˜}Ξ:•’°λ™vALεͺΖ¬Whή3―Ÿ¨V,J1UβqΏψŽš€μθΜλ­»³ ³k9ϊ\FBσ€ΙKρϊΐΞHΠέαcΙHΈF& ZΥd}–,!ΗK ΨM@v\s Ν36§ 9Ϊ]‚Φ―(4‹=gŠͺΝGfυͺ…ΒΧΦωΈx&*Yw¨Ÿθ¨ZύόRdΎή9ΐ ؝H€HΐŒ…f32φl§Πl-W ΝΦΈ©,όpmφΚ”B³΅<)4[γfΧQšC“¬ΚΏ_δ)4Ÿ³κShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αDΐΦBσ°φ΅0ν‘fΞ<₯Τόδό]Ξηξ'F2sΟ™[‘sΕ½[Ύs«Bs§Ϊε±|pΛ|sY}2εΗ£³ό 6<ΠυδΏgA‘YΚΓ… <[ϊΜ›1ΗYBYεκ?aiF 'w’¨ž<^\φ”ŠEδyΓ…=N‘Yτ[;±ΗoΧ'DΛ0°oOtλΡ M*ΉKɎ.+ΗΔβ)ΐσβ~―wNpŽsUa6’- Ν΄kΏA ΝB―εΑ HΚ χΈmЧ$@$@PhΆ­‘Πl-< ΝΦΈ©,όpmφΚ”B³΅<)4[γfΧQšC“¬ΚΏ_δ)4Ÿ³κShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αDΐΦB³ ςΥυρŠψΡF•š­ΘΜrΎ@β?,KΒ‡ΣJ‘yΡξSθ?w·Ά½@Χ£3q »ŠΛ ͺO+XEΨΥΏ«¨ΘΌp`%§ΠόόT!WΚ7½‘Π,;l[9oŒ{‹]^³6λΫK1ηιΞ ΝYΡ+ώ|‹؜> ωŠ0C—–Ušχ`\l[Lv8λΕ>ZyzΫΪUώC$@$`…fkάJκ( ΝΦ’£Πl›ΚΒΧf―L)4[Λ“B³5nvE‘94ΙͺόϋEξBsπ9«ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$Nl/4Λ0½IΝVef9o ρkγΝ΅‡Q§Rv=ΣNNτCŸSNθzςίά%(λˆWŽι *"oU•ΧcΞΐVω»#Σ{ΥΒ³ίκ± {‰ŠΞβωδυιZΐΤ5šυI³22œςf½1“ςμfχy’Αυύ§ ε„₯Ψ ΛAη{ψ'4―OŸ“_ ή3±mn՘υuΊ·9nεΙ'ί|>qρ7ΔΤ…(ΰ|ϋœH€H€| Πμ›‘zPhΆ–&…fkάT~Έ6{eJ‘ΩZžš­q³λ¨%4Χ― TŒW2 •ΏH`šƒΩ¨ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$NΒBh–IΝ?$ Ι΄χυΞΌWξKGΟ™[‘sΕΩζν$PxʏG1fωAmΚ#cnFΕθoΣϋumψ‚}˜½νDͺ>{ »Ισ†γϊΑ³Ε:FbWζ;¨γΎ"]m36§£o·ŠΞ# σnξ½±v\$N’rτf!G7Aς’qBP΅Š{Μ@ϊœΎJΜB”[K«bμ¨ό,&mt¨…EgΗ½ –5φ"4gνAΏψΆX¬­3S[§Ύ°Œ΅ Vβ‹E 4 ΆΓ…μ-Q’%$m@·}<’  „’…ζPT. ΝΦ2’Πl›ΚΒΧf―L)4[Λ“B³5nvU"„ζ•_βΒ†eˆ9ux}>—›TΘFεί/’…ζΰ_%ͺgL‘ΩώShΆΖΑο3        „°še¨ξRσΪƒ§Qͺn]eJ—B 2³œ/P‘99#Χm“Š©½b`λk΄σ`ώ©ωφ8“‹ί΅―Žwο©ΔTžB32Φ’C­D0IΣϊBzΈYΗ6β™ϊw@σs1I™£΅φckΗ‘~’”ΕcδŒυx§―£ͺσ6!FwtΨΌN‘9kΟ,Δ·‘υ}{ιf<έYŠΛrξ΅θW?’Π³Έε.Lλ+4j]žnω6R7< Ο‰Ο‹ΠŒdŒ‰½SΔ|]Ÿ 3_祉ΟΨ³·}@»{5ζΒ¨ΠΌv’ΉΗk1yu†Ά§Ν,³ζƒH€ ƒ…ζΒ ͺξœš­eC‘Ω7•…Ν^™RhΆ–'…fkάμ:ͺDΝ―φΞ€;"xp$ΠωAεβPωχ‹„E‘9ψ—ŒκShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αD ¬„f¬”š»Τ―ŒΫŏ|όxψ N_ΌŒΎΨζwefm ψ'P‘YŽλ0u Ά»€ΫκTΐ²Η[θSY:ΞΪz#ξΧΖή­ͺΗZšΗ1Θ@hφΜƒΆƒ₯μxtνΪί~λseΛW»2ΡΣYΊΩUI9―»ΗA―Π,«.OοU ΟJsY{΄DΧ–ΫᚺΦ§ΟA+QŒy£‚οBπ€›…ΰμŸυQŽ£7‘Ψ6«:ŽpήHΤH†CΦ'ι*ͺD/tT‰v ΝSEΫ@·ΚΡΖ|τ)̎YBƎo;Ψ첫½₯ΈίχϋΉ.ρŒH€Hΐšύge‡žš­₯H‘Ω7•…Ν^™RhΆ–'…fkάμ:ͺDΝ‹§«ΎrDp]cΰω•‹Cεί/…ζΰ_2ͺgL‘ΩώShΆΖΑο3        „°šeΈoέΣ/ή^WΛYVjξώι/ΘΚΉ’=δ+B³»„όNχzys@nιμ{&+§m¬ϊά©vy,,5έ`YX4<ύEΩε›ΣΡ·‰0‰σΗΆΝΓ3c±ή Ž-{Lΐίώ6ν\ύ—aޘ^<Ε%=w9 kΗcΆhr Ν²w}π&ϊΏθ¦ekΛocΪλCΡJΝ%dεψΆ’tW¬N]ˆφžε™Ε]hξŠ₯’Og>XωΑ<π’ΫZŽΔδxφE±α_!}ZOM^Φ…ζVcαθφr9yό|Ίa#Vn;¦_4>Vj‚ž΅χψ'4‹5dŠ5πA$@$ ΝΑρ+i£)4[KŒB³5n* ?\›½2₯Πl-O ΝΦΈΩuT‰š%‹@υ€+‚—>œŸw΅γ™ΚΏ_$ ΝΑΏ8TϘB³ύ3¦ΠlŒƒί!g        'a)4Λ€?z )OˆΕ}ŸoΑωKΉ–2·"4ΛuŸ±ί§œCΕ¨­J³•ΚΚχΜ܁uΙg΅uΛJΟ²βsa?²22%n]Iό˜άMτA%age Cλ\ •’³0«W άχ„R‘¨όϋE‚’ΠόΛEυŒ)4Ϋ?c ΝφΟ8ψr        p"ΆB³ ΉBTœΝΞ±œ·U‘YVUξ0u‹Έw&5ΟιίΜo!YVfξ7ηW§ΜL•gΛ7˜±½j݁oGΞ@;}‘ΧoΫΌ1θ8ΨQ…Ή`υg³©άΫ3މJΘ„νήZΌη{6β§”3ˆŠŠ2^HvΆ¨¬Τ [ιŒ»±•H€H ΄(4‡–§κ³QhΆ–…fkάT~Έ6{eJ‘ΩZžš­q³λ¨’"4§ΞžŒZ?/rΔP1xuŽR‘¨όϋE‚’ΠόΛEυŒ)4Ϋ?c ΝφΟ8ψr        p"ΦBs°A[šε}·₯e’»¨²,₯fωΨΊΖv©:•LYΡgφΦxγΏ)B΄| hU Σh€+ρΟ±Eˆ­ίίΉ” kφlˆΒΜŽΗ€―>­'+λ†G   ό(4ηηaχgš­%L‘Ω7•EΝ^™Rh,ΟC§³0sΣ,ΫuΉΉΉΈ΅auτj^ ·Χ―ΨD…Ψ{οή½Έrε š6mZˆw Ώ©322pΰΐӍ§€€ΰΔ‰hήΌ9bbbLϋη…}ϋφ‘IύzhωΟ?‘τ•\m)‡Ί Δι:­‹sYΞ{Λυ5jΤΘω\΅“C‡‘lΩ²¨U«–jKΣΦsςδIœ>}Zi†ͺgœ””$Š$D£f͚Jf|όψqΘχ’ƍ+Ή>Ή(Υ3–ογqqqHHHP’aZZ233Ρ A%Χ§/ͺM›6ϊ)$@$@$@$@$@$@$@$@$P’ ΨJhn6yS>Έ0“©]1 Ώ>Ϋ0oΑΉI€H€H€$@‘9@`%Ό;…fkRhΆΖ0ΉY#ψ( Νώ3΅h/ή_Šs@%d!Ž―’BσΏ΅F₯reœΧ‹λ„BsαΟΚΚΒ©S’Ί±ΑγςεΛΨΌy³&4wξά+V4θUόM;wξΤ„λŠ‹?FΜi ΚͺNχ]ό‹+ΠΧ§Δb !EM)4Χ­[Χΰjρ7I2==]ΛΈψWcΌΥ3ή½{·φ„Ϊ΅ko ˜[9’½΅hΡ’˜Wb~{Υ3ώυΧ_Q‘Be?˜πΫoΏαάΉshΦ¬™9δbΎ"ίk(4sΌ=        @ΘΨJh~cΝaΌΉφpΘΰx›θξυ0ςζήΊπ   @ Π\Δΐ‹ωvš­@‘Ω7 Νδf@ΰ£(4ϋΗlΘΌX°ι žΝύƒs·‘ξΥ³Ϊΐ DaAD#Όq*Υ¬…ΥΓo,v©™B³™†²Χ… °|ωrMhξέ»7βγγC9}ΘζrώnΩ»ψhŒkή7εβ\Ο‹ιΜΉΎbΊΏ―ΫξΪ΅ ‘‘‘hΨ°‘―Εr=55²‚―Κ’‘κoίΎ±±±¨_Ώ~±dθ릇ΦήgΪΆmλ«k±]W=γ­[·’R₯J¨S§N±1ςvcY ώΜ™3hέZΚωFkU=c£5³H€H€H€H€H€H€H€H€ΜΨJh–›”Rσ¬­Η ­R³¬Μόt‡š”™Ν^Ql'  b$@‘ΉαΓ­)4[ƒN‘Ω7•E%Χv>Hځ£[~DΊυ€¨!ηΕΡβG?ΚsωS6Z(AŽšΎβ'€–VOr<ώ<δOυκΥσνPVΎ‘Fω|mϊ“.’qQ¦,‘BσΡƒΐ;Γ\;ϋΣ?€ψηΕpVδΏ_ά#…ζtW=c Ν‘Ψ€zΖš Τ »κ,™M$@$@$@$@$@$@$@$@$`J€B³)^   (i(4—΄Δ‚[/…fkό(4[㦲(Pθks―Ύ,«0§υβ΅ qώςΔΕ ‘X\Ι.œ.ʟsΐεKϊ%ŽΛΔ +Rό”)‡‹ecΕQœ—-'~bΔσΈΌsω\\“m’Ÿ<ž¦Cτ8wξΟ?5j`M)ΓY{0Γ°=˜ΖΚW³Wκb―\֎1WsPو…x~U΄Λ£ψ‰νͺ>^Ιύ^,­”Ης>ξ4OυξβΡ^T š‹Š΄λ>%Rh–Λλ ρ•#)Žt{ΈW» Ρξ• 5:Σ%MΛηώˆΪnW¨O£₯-j —‰BφՈ‹Œ²ε:εQώπa‰ΐ©ξΓPεž~–Ζ†b…ζPP lŽ+4ΛxŒλγΪμΣ“€­\Ο‹ψ¬ΠίΓƒά…ζ ŠαͺgL‘ΩώShΆΖΑο3        „ Να”6χJ$@$@6'ΞBsJΚoxπhΤΈ~ϋαΈrε fΞψΫΆνΒ?ΏšŽ „|θε±wο~<¨6~θΠAˆbςΜ™’ΓvLτο’RhKηθŸώ#†Β]wuAίΎ½pκτiΌϊΚۈˆˆΐ‚…³τΙ“§Πύξ‡0lΨcBjΞuŽ—'*”ΗΐA£tιωΪyB‘9ZΎš],9SYψρ{m²Κ±¬Ό,Εεƒ’ϊ²<ϊ#υFΕ8ͺ/ΛΚΛυ€Δ,fΩζΗΓο΅ω1W¨»hkο™Θ’³φ#δh):g‰£|~QoΟ;ΚηR*–υ>²Ÿ²tΩ(ΗOd4²―—Q qqŠΕ²ύ[Mn[ΚΈ}δD akγkEΠJ‘Ή ΈE‰šε>>μέμΨQ‡D ίθ»+Ί§*Ώ‡K šƒ-¨ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$N(4‡SΪά+   ؜@Έ Ν²rοޏ ΑΈ³&3—*εΊ>ϋt–&&/_ρ ’£…”fπΘΚΚBϋϊ£_‡ efχρί|³“&NΑ²εσ…ΐ‹³gΟ IΉ7^; χί/$›ΌGvφ%<ϊΘP΄hΡ ―Ύφ’6ΗΆm;1i|ώω”|sκc‚=RhΆFB³5n* ?¦k;zΠ!0K‰Yώ?μίζ―ΉNΜΧ yYΜςX½γ z™Ν oQ7…lm²J΄œuZ?κ’΄σΉμ'hMš–Gρ#Ηež |λε„P,EγH—lμ8ν’RΎσ]ΣϊΊ]ΣΗΚ~NaYΞ—χ<ͺœαšRRRžž.>δΖπz‘5~:Ψρƒ_·»‹Ro-τ«oau’Π\XdΝη-ΡBσΟ+Ωo;6'oςνΕζ-δ+!{Ÿ,€uRh¬κShΆΖšνŸqπ;δ $@$@$@$@$@$@$@$@αD€Bs8₯Ν½’  €Ν „«ΠΌiΣ@«ΘμήyϞύ>μY,_ρ΅§£ρε—σq!σ†Š Ν…ρ Πl*…fkάT~΄΅5k,ͺ.οΚ˜w:ͺ/ΛjΒΎR–«έΔ%/ΧsLy_£όΎ<·βsu’—³‚³£ONΖιγihΤ\TΓvΚΖ"')/ϋY[Ÿ6ΤGe„ζύ’Bσ?«Φvάσx¨Q4…ζ€p…€s‰šε{χŸr.;X<>Έ‘KHΈ:‰Κοαr/šMΤ³ΏκShφΜ,ΠΥ3¦Πh’žύUΟΨsΕl!        s%VhΞΜΜΔΕ‹!%>H€H€H€ΌwΛ•+‡ΨXρΥρ6~„«ΠόρGŸ‘tι>b°aΊR,>}κ4F )Ωθ!―Ÿ?wήtό‚Α‡πόσΏΓS#žΗcχwΚΡ.\Τξ­W>qβ$βγ«h™G=7V›³qγ†8qβ„ψ» Ϊ΅¨(Q=4 ΝΦ RhΆΖMIQΰΘΰ—5Θϊι;DŸ9ζίΖͺTwT]ΫLHΜB˜½Ά‘γ,φR’[ή^T]ΫΡ£G‘––VόU 2WFh–kϋοΧΐ‚ VιΦtΣέΐ£cάŠη”BsΡs/ΡB³Δ5λ/ΐ¦UpΝ;C\τΕU}ŸΤaPhΦIX?ͺž1…fλΩκ#UϘB³ž”υ£κ[ίG’        „#)4Ÿ={ΩΩ’‚$@$@$@ˆŠŠB… S’:‡£Π,?ά5hΰ†ή ΒΜ™aÏ?γ•ρBΆΙ{4jά―O y”Λ—/£Η}ύΔσ†XΓΖΌ^ŽΓΘ‘CρψΰG Χ’―£'š}2ΉL‘ΩŒfeDΣB\ώYHn›ΕOZ²U‹ΛRZ–ς²¬Ό\_œΗUς=&„=”αf°'UΧF‘Ω ,³¦νώ5’€uώΡβ\]D…ΫbΜ¬/ŠB³N’θŽ%^hήύ0υe°7εβ\Ο‹θLΥχI}ϋšu֏ͺgL‘ΩzΆϊHΥ3¦Π¬'eύ¨zΖΦwΖ‘$@$@$@$@$@$@$@$@αH Δ Ν²*σωσηΓ1+ξ™H€H€BB ..N«Φ’Ι›$\…ζαÞΓύξ S‘ωΐƒψݍƒ₯σ %βmΫvŠλ/`ε·ίxΌ6\Ή‚„kͺUΕϋ“ίD―ϋ j΅x=’†ιΣ†zυλΰœ¨ξόΜΑΜΔΜ/>B‹ΝDuΡγΈοή‡Q±b!L‚κ5΄WˎΏbΨΠgΡσώ{πςΛ£΄JΞV_Fš­‘£Πl[±Š™g΄JΜZ΅ΞC»Μ7P±ͺ£ϊr=!/Χ½¨#Dζb~+7{Wumš}gtYˆΝ§wό„K—.!‘ν­@CρŸb?–&ΫJšΠœ““‹5kΦaΕςΥ8sζ,š·hŠϋοODέΊ΅ΝΆhΨ.?t΅vνθΤ©ƒαίς>ίΏ›6mΕoΏ₯’Fκβo™VθεV”-[ΦpNKΌΠ,7:p>Γ±ε‡žn{ΐί퇬Ÿͺο“ϊ)4λ$¬UϘB³υlυ‘ͺgL‘YOΚϊQυŒ­οŒ#I€H€H€H€H€H€H€H€Β‘@‰šOŸ>œœœp̊{&  (S¦ *W’ΉT›$œ…ζgž–­„ΐhππ%4ΛΏ­zχ~uλ\‡wޝ€¨¨Hm)"Mšτ!Ύœ=O<1@«Π|Ην=YίZΰ!}φι,̚5+V~ƒ‹³πΡGŸA+::*ίͺRSβώžΰ«9Ÿ‘Q£ϊω|rόψqΣΏύ6oތ#GŽ sηΞBœXph±>—ςš¬ˆ^§Nb]‡ΡΝ₯ό#yΥͺUΛθr±ΆνάΉU«VEB‚C€/ΦΕΈΉ\[σζB.’G©ΛΩ(·χ'DοZ¨ƒΫLοzωšΪ8ί»τBn…xΣ~Εu‘¨Ή²OUΧ&ίχNœ8Q€―7Ή₯¦¦"##CΙ΅>|™™™hΪ΄©ΏΫ)²~IIIˆWrm!dg_ΒΓΑρc'π§?½ >t Ύ]Ήsη.ΐoŽΓ=χάUpˆισ―Ύϊ“&NΑς_‹Ώ=σW‡Ώpα"ϊφy§Ne`τ #‘pM5œ8y “ίH›ο?Kζ".NTΪΆψ°…ΠΌπc`Ν|ΪM€Q’y?T—δ(4‚P=c ΝφϘB³ύ3~‡œH€H€H€H€H€H€H€H œ”8‘Yώ»|   G Z΅jΑM θθpš½UhNJ:YΕY E†ιɊΚ ΗιΣxμρώZ₯ζΟ?›-€΅&Έε–›‘•ΗDTh~―Mx·ήz³ΗεΪϋŸώΔΧp=/‚3ΥeW ΝΑΏTϘB³ύ3¦ΠlŒƒί!g        'šΓ)mξ•H€H€ςPhΆΟKAΚG/Œ‡ξ’bβέwίaΈ±Υί­_½&"vΘk”_ύΎ}ΫNlί±KkiΦ¬ nΌρόύοΣP­ZUνλζοMμ‹χήS|%|k©δZž|βχψλΔΧqτθ1ΔW©,*;WΪύχΒ₯Ψ·? £Gτ˜Ηί†eΛ–AJΝ½{χΦ*_ϊ;(ϊΙΚ―ΡΡΡhΠ AQά. {lΩ²UͺTAνΪ΅W₯T#«3«(‚ͺπs`+°ι;`λZΰΒ9cΤq’Ίι ]€v’:jέόΥΨ umΖ«ρ»•kσ•³£sΣΠ¦Mg›*'ς=W Χ*MώǍσηΟ£eΛ–ͺΰrCVν—’ŠΥ£‹'gpם½L₯ε·ίzeΚ–υϊ»;9ω0zpξο•ˆίύξI­BσΖ<#~οδv ήA—.·j?ξkη+EEθ½{φaδΣΓ ^ςϋΉ-„fΉΫ·žŽ₯8φέmpοΏ„’£ΚοαršƒOYυŒ)4Ϋ?c ΝφΟ8ψr        p"@‘9œζ^I€H€H …f{½–όgV~»“&½R₯Jεۜ^ ΉU«ζxδ‘ήωιORSB~-ό¨Q‡₯KλΝΪρςεΛHΌ§/>ϊx’s늯‡Œ—^z7΅o›―Ÿ|’••%*4?ˆE‹‰§LG‹Χ£ΧχzτΣ%μή½{βƒJΟL(4›€ρΡL‘Ω “Λ!~REεΝM«€Ν«3'ο ΄κ΄s³›ŒϋˆΦ―ΝτN_ΰΪgF‘9pfr…fkάάGmΪ΄oΎ1 sη}nψ{φμΗ3Ώƒ%Kη^wŸKžΛίχ£ž‹ρ―Œρšg|ώ%233 ₯eoΧ ήΓμΉm„ζU_‹§;ΆY1xuŽΩ– ₯]εχpΉa ΝΑΗzΖšνŸ1…fϋgό9        @8 ΠNis―$@$@$G€B³½^ iiΗqί½cΦμihΦ¬qΎΝ8pχ‚… gγΪλjiΧ~ώωΔΕΕ‰J‘΄ηz5Ε,™‹κΥ―Ι7~Ι’•ψ«ψϊω+ΏΡΎz~φ¬y˜?‘ψ*ϊ™βyDΎΎ ,Rυ,_ρ Ύ[υ_όυ―ˆσ―QVTst<˜Œ>½7­ιήΧΫ9…fotΜ―Qh6gγνJH„Ÿτ£y³¨Ζ¬Wά4Ίiσ‰Ήε-@Ω(£ωΪB²Ά|3†ξ Χ8K ́3“#(4[γζ>κΛ/ηγτ©Σ†’±μ—™yς›ώϋKTͺTΡ}¨αΉ7‘yλΦxbΘΣxχέ Έ­sGνo…œœόπΏβVcρ±ψ •Ρ‡§ odΠh‘Y~ΰεΥώώώ= ~ΡU!Wω=\B‘ΠμziX=S=c ΝV“uS=c Ν¬¬ž©ž±Υ}q        @x ΠžΉsΧ$@$@aN€B³ύ^³fΝΕ”¦γγ©“ «1ΛJΝ;vόŠaCŸΕ'`ψπΗ΅MKΉhΠΐhΣΆ΅σ+γuαθ—_Άaζ̏P·^mδδ䊯|_?ύρΟψΰƒwΠρ–φΪx)3υΊQ4»Ύ ƏͺU«ŠK—.aΡΏ—αΝ7'‰JΞΡΎ};dg__9?•+WΒ_ήzΧ^[SΏeΛ }ςχxrθ ν«θƒI‚B³5zš­q³, œΟpTa–Υ˜Sv›ί\ jνD%ζΊ1εΝϋ\±Ό6ƒΉBέΔ΅N”BsΰΜδ ΝΦΈΉš;wN?a*4ΛobΈ7ρaνIςχ»―‡ώχ…Q…f9VVbώϋί§yLσψΰGπΜ3#<Ϊi°Π,7ύα ΐΎ-ŽνwΌxxT (‚κ«ς{Έά…ζ βΥ«ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$N(4‡SΪά+   δ ΠlΏ—‚”†ζΜωή}ηoΪΧΐGDDh’ρs£ώτEι₯΅MΛ~c_ž€ŽΫγώ^‰NR@ž<ωcΜωκg›œcβΔΧEεDQ%Φν‘ž~JΜρ:d₯ηΊukγΠ‘DFFβƒ)ο ]»œ=/\Έ(ͺ4²r³œ+77W»φβKΟ‘OŸϋkrπ„Bs€ΐςΊShΆΖ- α'ϋ"°m£σžMζ7¬QΟ!1·»¨”Ώ:Ίω Ο+­Νsx‘Άpmγ₯Π839‚B³5nξ£€Π|Qόξ–B±Ρ#”BσΊuλρά³/cΠ ~θΪνvT¬XηΝǷίΑΜΤ*7ίyWg£e8ΫδzN:ε|ξ~rωςelήΌ'Nœ@οή½ο~Y™sΏή#\|υWǚ#£·ΩϊύZ_‘­ΖσFš=™Ϊ’zΖšMΤ³ΏκShφΜ,ΠΥ3t?μO$@$@$@$@$@$@$@$ή(4‡wώά=  @˜ Πlίΰe΅δση3΅ ΖΖΖ"**2 ΝJ ωόωσΪWΏΛ―“—•žΝgϞ"sY\Ό˜₯}υΌY_)KK±θΚ•+ˆ‰)‡2eʘMP;…ζ€p9;Shv’θΔ/Q`ϋσΞυ@Ξeγω«$m…ΐ|cW ‘ŽqŸ[ύZ[€s†ͺ;Χ8I ́3“#(4[γζ>ͺ¨*4ΛΏ zάΧύϊΕ{aΗκΥλπκ+oaΩςω(W\«§8pΰ€«‘ΐYJJŠ&47oή\όύSΰͺOχνΫ‡Fy]LιΛΩh9η”Ύβψ`ΨΑ.ƒQ§•Χ1‘ΊθΟϊBu/+σ:tHϋ›΅V­ZV†ϊ˜“'OβτιΣ>3.τ…xΉκ'%%!::5k:ΎνΕΛVŠεργΗ!ί‹7n\,χχη¦ͺg,ίΗγβ␐ ώFVπ‘––†ΜΜL4hΠ@ΑΥΉ–Τ¦MΧž‘        @ &@‘Ή‡Η₯“  €Uš­’γ8•PhΆ–…fkάLΕά}Ώ‰ω;Q‘y-pΡρa;ΔVnθβ¨Ζ\―…Ηε`LΧμΔ!Ο΅‘BsΰΜδ ΝΦΈΉZςŸψρΗMxmΒΛξΝΞσ΄£Ηπθ£Γ°bε7~}8I~+Δ¨ηΖbό+cP₯Jeη<™™πΠƒ±hρWΪ7<8/δHαΉϋέ½ρυ7_ rεJ/;ŸηδδˆU‰ŠψY½ωϋοΏ·G…fΉΏ/ώ ό²Ζ±Σβ›3žœΰ8/δU~—[g…ζΰ_ͺgΜ ΝφϘšνŸqπ;δ $@$@$@$@$@$@$@$@αD€Bs8₯Ν½’  @ Ν|)؁…fk)RhΆΖ-Ÿπsx/°YHΜ›WgӍ'ŒŒ€tΦNTcΎΎƒqŸ΅ζ[[ˆζ Υ4\[ΰ$)4ΞLŽ Πl›ϋ¨δδΓxlΠSXΎβk­"ͺϋ5yΎrε|ύυΏρα‡Eι₯ ^φxn&4KΩΈΧύ-4{άΠ­αΒ… XΎ|Ή}„ζ]?ŸόΡ΅Γ7εβ\Ο ιLεχpΉe ΝΑ―zΖšνŸ1…fϋgό9        @8 ΠNis―$@$@$G€B3_ v @‘ΩZŠš­qΫ΅v%ΏxΤQωΔoζ“4kο¨ΔάςV@JΝEπPYFβΪPhœ™A‘Ω7χQW\ΑƒΒ#τFώΉ_‚”{άΧ/ΎτΊu»]»vΰΐA?~:܈R₯Jελ/Ÿxšeζ·ήzoο™[·ξΐS#žΗΚoΏA\œ5iΧvB³d4Ά—λ›z?tΊΏΉΠ?Uω=\ξ–Bsπ™«ž1…fϋgL‘ΩώΏCΞ@$@$@$@$@$@$@$@$N(4‡SΪά+   δ ΠΜ—‚PhΆ–"…ζΈee:ζŸVΙΏš¬Χh{—ψΉˆ©`ή―¨,#qm‡N‘9pfr…fkά Ž’2ρCžΖ«―½„ΔΔ(S¦ ŽΓ /ŒΣ€εΟg|(Ϊ"΄asη.ΐ΄©3΄ŠΞŽ6χωΜ„fΩη?‹W`όψ7ρξ»pΛ­ν΅ŠΠΩΩ—°aΓOx~ΤρςΨQθΣGΌΆšΏ™¬ϋ—ƒHfΐs·HΗa*Ώ‡Λ]Phφ?K³žͺgL‘Ω,9ΫUϘB³YšυT=c³u³H€H€H€H€H€H€H€H€ŒPh6’Β6  °9 Ν68LΆG‘ΩZΠšύΰΆs %ζ­kΝ;W―γ¨ΔάNˆΜ•ΜϋΑ•%-π…ζΐ™Ιš­q3υΣOΏΰ™ίΏˆK—.‘fΝκ8r$M«Κ<ώ•SΞ9dΙVˆ*Κk0qβŸQΊtig»~βMh–}V­ϊ/Ζόα½»v”bτ«―ΎˆΔ{»V}ΞΧΩΛ[ Ν‡χ“FΊvύ§ρ5\Ο αLεχpΉ] ΝΑ‡zΖšνŸ1…fϋgό9        @8 ΠNis―$@$@$G€B3_ v @‘ΩZŠšMΈ₯ξσJQ‘yp>ΓΈS₯j’ 󝑹f}γ>ΕΠͺ²ŒΔ΅ώ‚ Π839‚B³5nf£€Œœ‘qς‰ΈΈX³A·Ÿ9sΩΩوŠŠB… 僙υΕΨRh–›ϋσ ύ¨c›w‹σΔΗυ-ΚQεχpΉa ΝΑΗzΖšνŸ1…fϋgό9        @8 ΠNis―$@$@$G€B3_ v @‘ΩZŠšέΈežqHΜ—GΊ]p;ΥH[wΖώΚυΡπžήnΤ9UYFβڝPhœ™A‘Ω7»Ž²­ΠΌςK`ΙgŽΨ*Ζ―Ξ)ΤU~—§Π|όͺgL‘ΩώShΆΖΑο3        „ Να”6χš@fffΎηޞ”‰E”G‡œN;†Σ²Ε•ΔTŽκ•={yΛDZκ1\Θu\‰*_΅ͺUπθζѐγΈ±7Ήͺ(±ξ2εoΠϋζoΝΜxωϋΈ?ΛΙΞ„ΔSΑόώϊ}ύY#Δή3/ebDΎ6δΎύ\Ž—@ ΝŠΫkyΎœγƒΔ‘CPί­KκΦUXςύnΟΧ•θΫ΄K"ξjaΔpSl$Ÿ(4ϋDΔ%€…fk!…­Π|h°QHΜ[VM>ΨVSόέt£˜₯ΘW)`•E-_T~?Q•…fΏ#ΜΧ‘Bs>aΔΆB³Lφο£Δηs»#γŽ=€‡Ÿ+΄ΌU}ŸΤ7L‘Y'aύ¨zΖš­g«T=c ΝzR֏ͺgl}gI$@$@$@$@$@$@$@$Ž(4‡cκά³(’›„/¦.Ε9/,"Δ΅Ό"ʈHh‹‘}:jBoςΟ…\+Κ»?ά;‹φVŒΐm΅t;VvΜΑ¦}Ž Gt…:ε«V.œΔ9½T³θUοΞAΈ·™{΅f+γ²±ζσιΨ)–#„ζ!>„f½―\%"ΔFrυ]k-Žbšbπ»4iΧ­ΥπτΔϊω˜»ω˜γZD= zκ^ΈοΘq!5Ι«Ύΐβέ"-±Ž‘bn°α 6:ΗΌοyUτΡudln―†Bhξn$4'―ΒτΕ»σ­)ί}"jγα§z’ZΎ{—^W@hN]7 Ά‰j[yQΉ;gqςœώšjvθΫQjΦρ ΝΑργh5PhΆ–CX Νg…ΔΌΜ!2ŸL5V‘ ΠφN C"PΗΈhUYΰΪLcσzAUnš½Ζfz‘B³)š°Ό`k‘yΓ`Ξ$G‘ΡΐΫ‹ -cUί'υ ShΦIX?ͺž1…fλΩκ#UϘB³ž”υ£κ[ίG’        „# Να˜:χlHΐ%šFβΞΑΓΠΜ³(/rRΧ`ꂝŽρ‘΅Ργў¨“ΧοD|½t§C‚2λ£BfΥλ-g&-ΑŒ₯΅qU›’wο»œΥ€³OόŠE_‡cšGœ€ή#ϋ@WV­ Dvυ¬'ͺ9ί뭚³!Ά™XώΙ ΘbΚϊΓSξ–W\χυ-]» Ν+4;EγHQMy˜£š²ΆΎμΣΨΊfΎίο‰cš ό.Α ‘ΩmMΞϋΐaΈνΝυ:s―М†ωSΎ†¦Η4ďv‡³Έsf*–Μ]€ƒšC#€λ!ιZΜ# X$@‘Ω"8SŠ…fkqΨ^hΎ”l]+$ζεΐώ­ΖΚŠG΅ΌΥQ‰ΉιMΖ} ΄ͺ, pmΒςσ©ͺά(4ϋ`nš σ§Άš³//υt%<δρ©κΫ\ΟCx¦κϋ€ΎE Ν: λGΥ3¦Πl=[}€κShΦ“²~T=cλ;γH        p$@‘9Sηž ‹¦ξ]s°~ΞTlΦάךB<~Π)λ½²“DΥή₯»΅§΅E΅εžZ΅εL¬ϊ|vK!UT,~TT,ΦEg}\ލΪ;UVϋ†‰CEE`YƒΨκΈ@dα@ϊjΛσώOΪzLωzsΎ>΅οΔS=›εk+6‘Ω€Βσϊ9‹\…Q.δδΑΓD%κ …fΧvΫφŽΥ]ΥΊ _gΩIψ|ϊRΘ—HΣ#p—V&Ϊ5ΞnΕ”|―54ν1T\΄F΅Ϋ\<%<šωR° ΝΦR΄­ΠΌWό ςΣJ`Ϋ:@JΝF†­…Δ|7ΠΊ3UΞ¨‡i›Κ’Χf›Χ ͺr£Πμ56Σ‹šMΡ„ε[ Ν2Ρή‘ης:OΌ&ΟBώPυ}Rί(…f„υ£κShΆž­>RυŒ)4λIY?ͺž±υq$        @8 ΠŽ©sΟ† ESχž9Ιψbκbœm m{£OΗκξWσΞ]rDΝ.xκΑΒέuΙͺ FŸvΥ ΖΖΊEkp2§ κwΌ­« aΥκΈ€ͺ‡VhNZς –ε™«vΐΓ7e`&wWU…ϋ¨*Ψ}•έͺ!@4mς5>uΝX°S$[B³”Ψ ‰½Bήκ _gnYΧμτ(l]Py?uΛΒΉάΤΎι.΄¨ζ€M7Ν $ΰƒ…f€xΉD Πl-&[ Ν'SE%ζŸ…ΘœqΒΘ5Χ7vΪw*Ζχρ£UeQ€kσ#@ƒ.ͺr£Πl–Mšύ€F]l/4ο\LηJτΝ@Ή8Χσ©ϊ>©oB³NΒϊQυŒ)4[ΟV©zΖšυ€¬UΟΨϊΞ8’H€H€H€H€H€H€H€H  PhΗΤΉgC†’©{Ο›πρά ΘE$Ί †Ί‘κήGœ»δΩ†’Ϊoχ|Υ~[‰j½·ΉUλ-04S·*Α³*47ν!wΥΙΏ†€ž₯bΞ”¬kv„[\ΟΏΞ{.$έξ’n1 Ν†šΕZΎ˜ι3£|+ }μ6DΉ±o˜8XT̎υ α|½ΈIΦΞμΕ<=ڞΓβΤΖ•oޏέξ`λ‡$­7π/ΑκHή]švΑ]]Z 2½eξl Ν‘cΙ™Š…fkμKΌΠœ• lϊNTc^!ώπϊΥB¬ψC­ΝŽjΜ΅›χ °UeQ€k 0ΜΌξͺr£Πl-O ΝΦΈΩu”ν…fάΨ^ΐEρ;Q>ϊ<άzΏγ<„ͺϊ>©o‘B³NΒϊQυŒ)4[ΟV©zΖšυ€¬UΟΨϊΞ8’H€H€H€H€H€H€H€H  PhΗΤΉgCΖ’©«kv*LΧ*»‹¨λϊYςͺΟ±xχ OžH]ƒ© vŠΛε‘8β1ΤχSRΝ±8N”vΖšΟ… +—Π0CΊΧΧ—fptυED"ΕOώG.r+4Ő~·CԌφϊ8ϋλόγ;)πΊφωλ’Oπ]ЍΨΣC‡ΈΟαΊ―ο5ΊKβM1tΨ]>ΧRp‘NΡXTK~TTKΦΥκ쳩XΏj vkguδ`…f!9λ\Εl“’4"ΠαΡ§ΠNάΨμu–ΌΣo“˜ς5Q―yS΄nΡ •}ΰΕπ…f8±—Ϊ(4[Λ§Δ Ν;78$ζ­kΝ7ώμ\WΥύ_**)&32l8­Θψ[–¬΄¨(­¨iYaΉ΄’Ι5+*ΦΨfΞm–ΆXQQ³’’Eζjnρ+VTTZTd”h¨”h¨hλwΞύp|ώί{A9ςyέΗχληάsΟ9χœηϋ|.4žŸχ縟 ‰Ydc{jθ6.―¨, pnξ‚ͺ*7 ΝξβI‘Ω·ήΪ+*„ζg ΤόΛΒδŸ7‰σn>T}NκΛ€Π¬“pͺzŒ)4»­ήSυShΦ#εώUυ»_{’        D# ΝΡu9(P’©ή8u½!φvfξ)›…¨Ϊ .ϋŠΠžυ―αρEύ@Σpφx„sή4œ"²8‡Ί_€~…f}ώ―ύD¦ι™"Σ΄½ΟΉ―=φ &οφž‰™―]5₯μ~ΘBορΊIμHΊξF‘ΩgΞ~'CΖ`ϊγ½λμ‘Y―·„‡Κ^…¦K‹ύ0]ΚΨb?<d?h³Ωφ–ΏΌ­^ΑΪ:ΓΓRΟDΞ„Ρ0w‹υ*Λ$ΰœ…fηΜΨC=šέΕdΏšΧ7 ‰y₯ΘΘό Πή|ΑRβϊΏ³€q"#slψίX‚`―VeQ€s³CVͺr£Πμ){ηšνqŠ–VQ!4Λo)XpƒΉΓ7Ο»‘€κsR_…f„ϋWΥcL‘Ω}lυžͺǘB³)χ―ͺΗΨύΚΨ“H€H€H€H€H€H€H€H  PhŽΖ¨sΝA „ˆυΖ»Φ.š…T#3η‰LΛ!2ζš_š‘ΩWh6ΗΣοΰ}M™4g SvΦΟ΅Π<δ8\>ωxxvο1€Y0¬c ΕΠΑ4Ϊm«ρΠγΡΔ]}ώήΥlΑ‹‹ŸΔ—{dΒj‘-z‚ž-Ί‡24ϋ’6Ξ¬ΆVΩ]B³lσΫΟγιΪ Ϊ° —ΰ#ΦΰώgeΖnίΈj :ρlߌ/π^C6Xδζ#2qΥyΗρ±φa™œ Πμ”Ϋ«H€B³»¨¨.4~ΰ $ϋxs9π•όφ‡ ‡ΆNΜN"s7Λ[Aξ¦U©, pn‘’Ύ^UnšΓΗ-ΤU Ν‘ΘDg}TΝ2΄ΕΣ€―ΏςωlQžxe·\Υη€ΎH Ν: χ―ͺǘB³ϋΨκ=U1…f=Rξ_U±ϋ•±'        @4 ΠQηšƒˆ$4Ðvϋ!Cd>ΡΘ6μ;ά―<†ͺ†oΞŒΌƒ…ϋΘƒ/c‡h–:)tΪ³ -Em?ρύv Άςe|)σB°Ϋ~޲[ΔβΤl!ι»›gλW=†Κ5b͝GΏ~bQΗž=Βf֎αΈdΦ…8D+[ξ›"Dη³uΡΉ³©ί‹•©–ωΨοz€S£?FΰςYηaˆΘ„ƒ<_ϊ,6Θι‰μΜy";³α¨w£ΠlΜ₯ ?.γ0ΌWۈ=a„fλzvmY‹roΘ $6KΈ½gνΗ2 D"@‘9!^ίPhv%e…ζ k±νΙω8p½όf‹ Η€X‘‰ωη"σ™ΐΘcƒ4Ψ»U*‹œ›»Ψ«ΚB³»xRhvΗ­·φŠ‘y…ΘΚός£ή0ΚψΘ,Νέx¨ϊœΤ—H‘Y'αώUυShv[½§κ1¦Π¬GΚύ«κ1vΏ2φ$       ˆFš£1κ\sP…f¬ΗSχW’Uτ2&WŒ&nΓŏγs!Ι8κLΜ8g΄hέ‚ŠϋŸΕFQpΤ$QLήυ`Υ#bV ‘Ωu?'²°“ΆA±‰J3 s¨z½Ή6gχ5„d!‰wIh$ϊ_5Α—·}τ"υKmzG9 ηŒ>Π;Υ]BB/ν”Π³…„~€‘:λKΑϊמBεϋb7Xζrž† ot3Cσϊ7^Δ†V L‡Λƒe`ήυ*}5Hlλx,“€3šρbk5 Phv%…ζχώ <ρΰ»]‹ϊΙΙ"σΩΐρ? ΌΆkT87wAUnšέΕ“B³;n½΅WΤΝ2;³Μ¬7ώ8jŒ~ΦεWUŸ“ϊΒ(4λ$άΏͺc Νξc«χT=ΖšυHΉU=ΖξWƞ$@$@$@$@$@$@$@$@ΡH€Bs4FkJ ²Π ΌW±5΅”Ύ8sϊ=Ψw¨-h'kΌ‚¬)ο«_\Œ|)ϋ @ζ%3pΌ7M±₯s0‘Ωm?‹,œ*²O&Pλ·Ά΄΅‘)Yοe}υ|± V­ΡͺΖLΊ§6»Œ¬Μύ0pΰ¬zςi4Κ Γ‡e`Φ”EΑr߈s QΨOHΆΞ#\Ωθo‘½ν·cωCeh™±ki‹˜>βtΜ8o¬ίπbώ•BKJ-Ɯ>cδV}‘΅ ϊY)@‡)4ύ€μλ.Ε‘1F#oAΦ ΑZNΣΊ―όZρ” Πμ+J€B³»ΐ('4ΏψπκSΎ‹I%²1Ÿ€OŸκόΐ‘o‹}~¦²(ΐΉΉΫͺr£Πμ.žšέqλ­½’Fh–όλMΐηή&Η©ΩΐΕωέVUŸ“ϊ)4λ$άΏͺc Νξc«χT=ΖšυHΉU=ΖξWƞ$@$@$@$@$@$@$@$@ΡH€Bs4FkJΐŽΠŒ-οaρ“5j²ΘӌŒμσpβ‘CEyΦΎ±/Ώ³A»!ήN™€ ίy›Θ°ϋΈ7Γ”šΗLΚΑψ‘^«Ω³k>}σΌϊΎ·οQ“¦γœ‘=]υ3eα~Γ3qΥy©πμςxηeόƒΑƒeΦa³ν€£NΗg ˆ8ύ%ΫΞ±V?/dν ‚Θ€!φžmΩΈ°ων <]+sTλ―yίΘs΄ˆΒΙy“0Τ³ ώ+8x0BL1¬hΌkν+(}ΩϋΥφ γ&γS΅™΄τ!ΌϊΉf:#!υtL:},”7Ψ΅o¬¨Β;_JC[:Ϊ“1εDoCL§eK«<-Οu€g½Β+;=`8Ξ~ۘw±qΨ:eNό©Q§JAeQ€ss·KTεF‘Ω]<)4»γΆ?χjooΗ†  οΏ}τ6oތττt 2Δ―…§ HMMνdZσύΟ“Ϊί<Ÿ]3ΏKγY;wΗό¬γuwyνΪ΅ˆ‰‰Αˆ#Ί{θnoΣ¦Mψζ›oΊγn™LˆATρ§Ÿ~Š8III!VΠ³Υ---Ψ²e Fέ³ swΥcόΙ'ŸhΟθΓ?<Μ*zξ’ό9#ήsΜ1=7‰w–σ;α„"΄βe        Ψ?Phή?βΔYξ¦ΨjЦΑn»ωνη…œό¦ήφƒpζ΄«0ΪO:έφΡr<ώj£eΘ~θ'Τh―­W'`τK‘ϋΜ²Φy?SΦG φz˜w§œ2«™†½nn°fήΊAcwΥxHΪ癃™ƒΏ• ΗεΰŸαsΩ8ννδmΌ°½ϋzη˜h ΙΖ€A ΈξƒJΝk_y/7ˆ»[²)›#μΒk"ΫςϋrBRΟΎξŠΞ Ι-xώώgatΏ~"bFφiΩ| ¦_1ސΈ­B³ž΅ΩΌ(my[ρ΅1χέg_ΌVͺχ₯τ­ϋcΐQgbΖ9κώ‘LŸ9_χšχ8q–α PhΟ'ΤU%„ζMλ€Ώί|ύ•9M‘•ωƒS/Η°#ΖπαΓΝzEJͺΚ―ηζn“¨ΚB³»xRhvΗmξE‘Ω½Ύ»vΰθΜ1BωΥΔλΠ>2Ν8οJAu’BsW’λν«zŒ)4χώShξzŒ)4w!G     χα’@IDAT   P‡…fubΑ™τ4ΝB6}ZΚ¦‡!gΦ„Ps΅Yn[^Yρ6μπΥ‘‡Œƒ gŽΗFjfίEνΪ,²νΎϊ|ήκgχ€ΓŽ‹Σ'œ‚C‚€vΦϞΠ<(e:ϋ›Bsͺš'ΝfVλΘ™ƒίXŒΪ‚WΒ8!C ‘Ϊ;Η‘φ„ζ ²²—Ώ!‘kχ>%Pzny‹Ÿ}G‡ŒΙΖγμ ά6Ό·|ήhάθ'žΐˆγ2qΦOGϋ01„ζ„γΔx1κ«žB՚VQ‚IyW`€Εί²φm¬ͺyΎυf†ξœ„±0ζ”Σ1~¬7΄QΟ t…ζ.ΐcWePhvŠšΧԏ»;Μ€gΏ(ΤΔάΓ;ŒB³IΖVIU1WNžs³BŸFš}pΨ>‘ΠlUT4ά±c–/_ehž>G©oqŠ€λœFSSΆn݊γ?^­‰Yf£zŒ-Se‘H€H€H€H€H€H€H€H€" Π@»ΆcΫ.)5χΓ XƒφφμΒΆ»΄KύΒΰ1A›TΊν0+œπ`ϋΆšΤάoΰ@/‹…μl {­Eœ·‹ύ‘ιςύαΐΑ6χ‡½Ρي4šΉz Νξ’Ψ£BσΛeΐŠrί‰OΎΘ<_«“Œ§Πμ‹ΗΞ™Κηf'‚Ύm(4ϋς°{F‘Ω.©θhuBσxψN3ΈχVΔ™η.K*?Γε’(4» ¬₯›κ1¦Πl –Λ’κ1¦Πμ2°–nͺΗΨ2UI€H€H€H€H€H€H€H€H " Ν±   τ>š{_L£qEšέE½G„f™ωα"ΰγ:sƒfΙ?1κδγ)48lT–87Ϋa4Rh6P8*Phv„«Χ7Ž:‘YFτΆ €Ϋ½±rpΪy]޳ΚΟpΉ8 Ν]±ί€ WG‘ΉχǘBsοqΧWΘH€H€H€H€H€H€H€H€’‰…ζhŠ6ΧJ$@$@(4s+ΤΧ€₯KWβσ΅_ ιGΓqήyΕΧa‡>}ϊΨ‚σξ»`ΕςWΠ²qΓgdβώo\@~ψ―Ώώ¦ψΪχWπΥ†uΜΡΈ0η\νΥ֍Β4’ΠN˜Kϋ\hnέόύ6`s³9«αβkΓgόˆ?Δ¬% Ν>8lŸ¨,œqnΆΓh4€Πl pT ΠμW―o•Bσ3 €Χ«Ό±•Ίι―]޳ΚΟpΉ8 Ν]1…ζ."\·n6oތqγΖuq€½Χ]υχ1…ζΗ^υw}…H€H€H€H€H€H€H€H šPhަhs­$@$@$ΠI€Bsτn)ωΟΰ‰ςg0kVƝx<Φ¬nΐόωχ#;ϋlάYττνΫ7$ ΩΏθΞTU-Gތ+ž~>Α‚?/Bffξ›;ΔΔτΣϊ{<άtc!ήzλ]άzΫΝHJ:/ΏΌ/T.EώΝΏΔ΄i—†Ό šνP l³O…ζ†·€²{€];Μ‰— \Udž[JςρΜΠlb³¨²ΔΐΉΩ ’₯…f E Ν`EAΣ¨š?_όUdf֏ΉΓΧΟ\½ͺό — ’Πμ*¬>T134ϋ„ΛΥ‰κ1¦Πμ*¬>T±ΟdyB$@$@$@$@$@$@$@$@PhŽˆ—I€H€H 7 Πά£joM―ύχuάrK*ž}GaJ.­›ΏYš/Γwή‚I“²B&eδ’’xφΉΗ0|x’Ρ­m+¦LΎ3y¦L_y.)Mγγ_/ώqqƒΆ―½φςoΊU#9y„Qο΄@‘Ω)1oϋ}&4―(^.σδy3€3C‹μςρš}‘Ω9SYbΰάμDΠ· …f_vΟ(4Ϋ%ν’Rh–‘-?c·~ν ςΔ+€³ΕwαPω.—E‘Ή ΑνμͺzŒ)4χώShξύ1ξϊ 9        @4 ΠMΡζZI€H€H “…ζθά ί=.½δj\uυ/pΞ9?€°jU ξΎλX±ςy#Λ²΅‘μρ”ιψ՜Y8ν΄“­—΄ςϋο―ΡDeΩϞ=8Ό\Μ›WŒc_{n9d–ηΛ.ΛΓeΉ“qAΞ9–+Ίšρ[οu‘ywπh±°Œjυ[ΧάŒ:Α¬ R’R …ζ `"T©,#qn‚δ2…ζ PlTQhΆ)ŠšD­ΠΌτa`ε“ήH&>4V(Ξ»p¨ό —Λ’Πά…ΰvvU=Ζš{Œ)4χώw}…H€H€H€H€H€H€H€H šPhަhs­$@$@$ΠI€Bstn™EyΔ‹…°ό† ‰ €°}ϋœ}ΦdΌXυO ςϊΛ˞ ΪΏ££ηLΊDΛΌΌeKςΉ+«ŸGΏ~ύΰρμΑ]»0hΠθΣ§vμΨ‰έ»w#>ώ €ϋΨ­ Πl—”o»½*4oΩ,ϊ °ΉΩΌι!Iΐ΅χ ΓΝΊ%)ΥPh'L΅Κ2η&p!.Qh&B5…ζ€’μrΤ Ν_O3£=g4Κ7ψC~vϊ©>ΧόO6mڏΗγ_­ΏσΞ;Ψ°a&OžŒaΓ†mΣS•kΦ¬w,Ž>ϊ螚BΘϋv«Πόέ. όχΐϋ5ζύϊΌ“aΦΩ,Ι?ΖShΆ ΛLe‰s³Κf‘B³MP~Ν(4ϋ‰ςΣ¨šΫΫ€Ϋ§˜;ΰΪ{Ρ'™ηJ*?Γε2(4;fˆ¦ͺǘBsˆΐ9¨V=Ζš3DSΥcbΪ¬&         (4ΕΒJ  θέ(4χξψ†Zšo˜} –ΎόLH‘YfhΎ&o*N:ιΔ ΓHιΉΌόi,ψσ"{άO„¬|&ήyϋ=όϋί―αΞ’ίΰώ…aΙSkBsYΩ“x¦βQΔΔτ λα‡Ÿ@{{;nΌρΊ€k֊իWcΧ.!Ν9ΎόςKlήΌcƌΑ Aƒ‚΄θΉͺ¦¦& 0Γ‡οΉI„Έscc#† ’‰Γ!šΨͺξΏ½ )―”"Άm£Ρ~χΰx|6αtΔ'uN Ÿ~ϊ)†Š„„'έφI[9·Q£Fν“{9½ ηζ”˜·½ͺάΎώϊk|σΝ7J7bΫΆmJΞMŠΰ;wξΔΘ‘#έmˆ½ΨkέΊu8ζ˜cššΊοΒ‘­’Zh– ϊ­°}ηE2N|°lš8wq¨.ΙQhvTΏ.ͺǘB³_ΐ\œͺc Ν.‚κΧEυϋM—§$@$@$@$@$@$@$@$@$–…ζ°xx‘H€H€z' Ν½3‘VυΕλpΥτYZεώύϋ4—™/Μ™ŠE‹η#))ΌˆΫςΥFΌ-DζΦΦ―qπ°‘8ε”“4qYf^^ΆΌK—Δ?Ÿ¬@Ε³•§ί ώύκkΈ)fΐ<μV,[Ά Rjf†f»ΔΌνΊ%CσΪ€ά μΨfή|δ±@ή=ΐqfΓ’όc<34;„&š«,1pnΞγΙ ΝΞ™ΙΜΠμŽ[°^Ο¬ZυV,7Άnέ†1cSqώω“œ<"XσuςCPύολΘΜΜϊ»€μΨ²IϋαΝ7ίFμΐ8σ̟aβ€ Ϊ‡‚BlγBΤ Νο+φ’ŠΏσ? <ΐ9ί&*?ΓεL)4ϋΖΛΝ™κ1¦Πμ&ͺΎ}T1…fίxΉ9S=ΖnΦΔ>$@$@$@$@$@$@$@$@ΡK€Bsτƞ+' ˆbš£3ψ»}ξ₯š°mε΅ ΞΏs fc€,ŸkNN(4;‘eΆν’Πό¨ΘφXΏΚL–˜ œ0ή·Ξε™όc<…fηπT–87ηρ€Πμœ™μA‘Ω7k/ωsώOϊήxύM(4ϋΰΰ   D ΝΡηP«ά°‘7ηߊΖΖΟ‘’r”φ:|x"ξ`ž\“Œn2λrφΉ—bΡβω5j€QφΫυψΥΝΏE{ϋv£ξη?ΫοΈƒ2κd¦Η—„°tηBzΗ€°{χnLžrΎ‘fcΰΐF[7 Νn¨Ήš›>JoΆo5oxδh ο .ή¬λ†’όc<…fη U–87ηρ€Πμœ™μA‘Ω7k/ωσύήίΝΗΣΟ< ΛvR4Ύρ†[°τεg‚^·Ž%Λςχ€›σoΓwήβ#4Λϊ™Χύ W\™‹ΣN;Yλ&?\%Ώ9"6v vΎys+† ;X«Σ*ώC‘ΉXΡ₯ΐVρ‘$yœ{ u™·lσ_•Ÿαr šm2L3ΥcL‘9Lπl^R=Ζšm2L3ΥcfκΌD$@$@$@$@$@$@$@$@φ;‘yΛ–-πx< a   €=ςλΓ‡j―ρ~Φjγƍ8ꨣφ³Yχάte&ΖοΏ^ϋ:χ‘C‰©RF’ύεοeƒ ς™ύWδρμΩ›·kšϋυ“²’»l‹ώγRhφ'bοάQ†ζχ/ β―Ύ§gΏ(τ­λ¦3ωΗx ΝΞaͺ,1pnΞγI‘Ω93ΩƒB³;nΦ^O>Y-ίlΑ¬Ω3¬ΥFY~sΓ9“.Ζ zρρυ‘ ‘„fω©ΙMΓ£.BνκŒ>ΙqFs4ξΉϋ6ν5ΤΈvκ)4wRͺ*^™™εq˜ψf†Β‡½e›ͺό —K Πl3aš©c Νa‚gσ’κ1¦Πl3aš©γ0Sη%         °ί Ν;wξΩΫΒ    {βββpΐΨkΌŸ΅’ΠΌŸ¬‹Σ₯Πμ m‘ω‰ Ϊχ&SnN;ί·Οδγ)4;ͺ²ΔΐΉ9'…fηΜd ΝξΈY{=ύt%6oΪRhξθθBσ%xφΉΗΔ‡γ"*΄Πά!Ύ" ‡ ΓWβ[#JKŠ£F‰oΏmΗγ?…GΛώ‰G[„±cΕ·Έ<(4w‚ΫψP"23λǜE@(ύ,β«ΚΟp9y ΝC±κ1¦Π1„¨c ΝC±κ1ŽΈ6          ύNh–sίΆmvνΪeY‹$@$@$@v 8x ¦ϋe ΝϋeΨ\OšB³;t…ζφ6ΰΑ[ζOΝ ύΕ@ςOΜΊ½P’Œ§Πμ¬Κηζ<žš3“=(4»γfν%…ζ;vβΚι—Y«rχ Ν»pΖψσ0`@TΏR‰ώύϋχ…‡QŽςς§±bεsΪ·;ψ\΄œΘo‰zvΘΉΦΤΤ`σζ͘RΘΜΏβ1λφRIώ1žB³sΈ*K œ›σxRhvΞLφ ΠμŽ›΅ΧΎΚΠΌ}ϋ\pώεΈλξ[qΪi'[§ •·mϋYr°|Ε³a3A·΅΅α³Ο> θ―W|ωε—šΠΈδNΫΓμ‹ωٞL†MMMšΔGΉΪσU­­­Ψ²eΛ^qWVͺzŒΧ]«ύ7μπαΓ»²Μ½ΦwΣ¦MΟ’cŽ9f―έ£««cω—ί"%@Ε£₯₯EϋΔΡG­βτŒ9pΒ F™        ؟ μ·Bσώ s'  Ψ;(4οͺŽJ‘Ω]dB Νu+'ώΰ;θq™ΐUEΎu{ρŒB³;Έ”†{7 ΝξβI‘Ω7k―₯/­ΐώχΆ&[λυrΛWqωε3"fNΦΫπΓΈ96άqη-8ψΰ‘z΅ΓvΰœIγΟ ξΕΈqΗυzAφ»ζκ0οΎ{|ϊιΧυWfhΦIDx•ίΌpϋ³Ρ΅χ£O2ΟΓ”Tώω"§Ν Νa‚gσ’κ1f†f› ΣLυ3Cs˜ΰΩΌ€zŒm.ƒΝH€H€H€H€H€H€H€H€H@#@‘™H€H€H Χ ΠάkBik!šma hThψ+πΌΩηΝΞΌΤ8έωΗxfhvNZe‰ssO ΝΞ™Ιšέq³φϊβ‹uΈbΪL-3r°oυXΉrž}φ_xΰyθΫ·―΅kΠr(‘Y~ΣΦΕS¦£°0wΈ€ΎςΉ²&\ˆ«ώ6Cs@GKŎ;°|ωr-CσδΙ“1lΨ0ΛUuŠϋμωχ[ής.|άΐ΄ίΪ‚°Οζgk6(42qZ£zŒ)4;h`{ΥcL‘90fNkT±Συ°=        @t ΠέρηκI€H€H W Πά«Βq1š#" ΪΐGh–YKoΎψΘl;ppΝ]ΐ¨}΅ΕςρšΝPΨ-©,1pnv£hΆ£Πl²pR’Πμ„VπΆR4ΎπΒiΈμ²ΙΘΝ½Θ§‘”Œ³ΟΝΕo„„όσŸΧ}φΩηΨ΄©ιθΣ§O{yJh–Χž(/ΰ™ŠGΣOVΗ •K1ώύB¬~±±z' Ν~΄ήyx\df–GL ψ9`ΰήσ0ͺό —Σ¦Π&x6/©c Ν6¦™κ1¦Π&x6/©c›Λ`3        ΠPhζF   θ5(4χšPΪZ…f[˜BsΜwΐƒ"cγΆoΜ6‡$ς«θ†›uϋ°$O‘Ω9p•%ΞΝy<)4;g&{PhvΗΝΏΧ{ο­ΖΥWΝFΡ]…˜4)KΘΖ1hωj# nΧ€εGΚ0䧟Δί,Σ2:χλη+%ΛqΓ ΝΫ·οΐη_ŽΡ?ω1ξΈγΧ8δμή½/ώkξ½w>-Ύ't’τlŸShφCυέn`Τwwx/δ'Oτkxͺς3\Ξ–Bs`̜֨c ΝN#Ψ^υShŒ™ΣΥcμt=lO$@$@$@$@$@$@$@$έ(4GwόΉz  θU(4χͺpF\ …ζˆˆ‚6BσZ?Γ°—ω^q:pu0 Φ·~žΙ?ΖShv\e‰ssO ΝΞ™Ιšέq Φλ­·ήō7όFŒ‡OΔ† -ZVζ;ξό  2³ϊ.}iVV―Β}χ£oίΎC…šeγ―Ώώ·έzκκήErς45}‰`αύΔ‰'¦Œη€‚BsZOώxk…χBΚρΐ¬ϋ‚4ς­Rω.gJ‘Ω7^nΞT1…f7Qυν£zŒ)4ϋΖΛΝ™κ1v³&φ!       ˆ^š£7φ\9   τ:š{]HΓ.ˆBsXdc•ŸαršC†ΞφΥcL‘Ωv(C6T=ΖšC†ΞφΥcl{!lH$@$@$@$@$@$@$@$@‚…fn   ^C€Bs― ₯­…PhΆ…ΙΫ¨½ Έ}ŠΡaσEΏΒ!?=Η8W₯ O‘Ωy4T–87ηρ€Πμœ™μA‘Ω·ήΪ‹Bs˜Θώϋΰ_zΔΕχT„l¬ς3\NšBsΘΠΩΎ zŒ)4ΫeΘ†ͺǘBsΘΠΩΎ zŒm/„ I€H€H€H€H€H€H€H€H@ ΠΜm@$@$@$ΠkPhξ5‘΄΅ ΝΆ0y­² ‹΅²gΰ`lΈώo1b„ƒφMSωΗx ΝΞY«,1pnΞγI‘Ω93ΩƒB³;n½΅…ζ0‘υϋ½}RΠ*?Γε„)4 ›£JΥcL‘ΩQ8ƒ6V=Ζšƒ†ΝQ₯κ1v΄6&       ˆz½Fhφt΄£έ‹ψΈΐΣ€ΕKΠ†dζ"+IΤυΊΓƒφΆΔΔΗ!Ά'ΧζiECc+βS―gŸύΠm|:P΅ u"ΑaϊτBd'‡"ο›454ΑŸŒ”ΔP}Ίm’@‡ˆIS+β“S±Χoηι@[»ρbFοaw_μB{g―;œλ>άsJ¬Χ!6ί·(4ο[ή=}7 Ν"πϋ«€Mλ΄njdz ΠμŸlͺ²(ΐΉ9 fgsUΉQhvO ΝξΈυΦ^š#Dvρo€ίφ6w0ν·A;¨ϊœΤ'K‘Y'αώUυShv[½§κ1¦Π¬GΚύ«κ1vΏ2φ$       ˆF½DhnEYΡB4‰fΞ,BVBζ ‘Ή]œΝ-ΐ”Τή'[ΆΦ–aα2±βΔ,ΝΜ+홣±’ε«;€˜±(œ;eοΛՏΈW$qΪo?$v!ΞB³ΨXαφ•lZjJ±ΈΊYL"Ήs iϊ]œnΝβ"T·ˆAbΣQX˜νAOhώέwΤ•£ͺΙƒ€¬™ΘΛμ6Πέ7Α}2’½}±w¦²·φΊ³Ω†ΫsΆG²΅9ΥX―ν5±a Πά#Ψ{μ¦šm’_ίΜ›i4nΘΉƒŽJ₯Πl±WPYΰάμΕΠΏ•ͺά(4ϋGΚή9…f{œ’₯…ζ‘«ž(ρ6Šι? <  “ͺΟI}’šuξ_U1…fχ±Υ{ͺc Νz€άΏͺcχ+cO        h$Π+„ζŽΖJ””Χ S3ωssodh/žξΏ7Κ”μ|LMο±₯4VΞCy½0|c„Πœγ#Οvχ€Œ8Η Q·ΐWΤ΅ήΛh§ολΕ.•Mξ‘…f³ShŽΗΤΉωHιN£8ΘzjJ…Π¬ωΣNžF‘΅Ό\d-Ru‘ͺ»#Q΄ρ>‹Ev~!zp‘°/«Μ˜‡ή{g>{o―;›oΠ=η`ˆΖΚβ9"vgΪT䀄μ©ΚzCN” @‘Y‰0μ³IPhΆ‰ΊrπŸg½t κΟΌ|0…f›ψτf*‹œ›%g―ͺr£Πμ,Žzk Ν: ΎJš#μƒοv·] Ύαμ;oΓΛ~ œtv@'UŸ“ϊD)4λ$άΏͺc Νξc«χT=ΖšυHΉU=ΖξWƞ$@$@$@$@$@$@$@$@ΡH WΝ΅₯ΕXΦμAbΖt̜˜,ώ Σ δΝ%Bή”Bs‘ΘΠάφ¦BΫ£΅Ε «!VŒιE3!VάƒG;ZšΫ›„ψ½Ή© Eeu"Ρqζδ„Μ4°ΊŽ q5hl‰q{Ωf–kυ΄£YΔ$>) ζν„Π\Τ)4wS–h#u|ζζO nΓ―μ@6φΕ^šϋήΫλ'tΟΩ£©jΚκ" ΝΚ¬ΧώΨ²Phξθ=xK Ν6αϝ lίκm|ΡlΤI¦Πl΅™Κ’ηf”ύ²ͺά(4ۏ‘΅%…f+ –)4ΫΨ2C³ΜΤ,”γYχyΛ–U}NκS€Π¬“pͺzŒ)4»­ήSυShΦ#εώUυ»_{’        D#ύ_hξhΐΌ’%hΉs ‘'ΒhšΣ§ «±ͺΎ1ρ)ΘΜJGBP―΄ u΅hhj²°H:—„τΜ $Ι1Γƒζ†ΥhιˆΓΨ΄d΄Τ―B]£T§…g›˜‚τŒ4οΨνΝ¨­­Gs[‡Έƒ€±ΘHMΤΪωΣήά€Z1?α»’©©c3Ζ#Υχ¦>]DVδ%"+rlj sΣΌΧ<­h¨oBLX$Η6£zU=ΪΔ"b—1^šίx­ hjAκΨ4T―B£˜gBZ²RŒ{΅4Τ‘‘ ŒxŒMΟœW{ [€„” ΧƒšΥβZ¨ƒχ-‡”±ιHKρξοfΑ°^μ)Ή·εϋךQZT*”W #o.&&yuΞF!9—K»4Δ‘”1ySΌWΕζ‰5ψ·ŽIΝΕάάT!J6’lA9„[pΔ§fcvnΊ!‘χ‹ΒΉSŒ΅5Χ”£Thύ†ˆOΓμό‘φšG}εbTΦ·˜z)6Sσ§#©©%KVλ΅–ΧTεϊHΉ‘φCχΔ,ΌΈ*ΤΝ ±ιh蜿`T ιΊgKν,^Φ`Yoш‡eΟΕΔŊΜώρέΟ %X²ΊZ XΒΫ 8r ‹¦mFϋ°₯E‹«Ε˜IΘ+Κš‡Ψqέ’'ΞΖτ οŽθh¬DIy½6XLJζN•ο6,+]ˆZ‘…=ΰˆME^aq}νν:+βSΣ‘ΤVΥ-ώcΕ sz²’½οNc_‡Θηύ$žUσJP'ήPcs DFx=ΒφΉ6U—‘¬¦)Θέ␕—ΜΞχΉ΅ΑΠοΩΧ-{½+{N>CδΡΡ$ž#eAŸ#±)Y(˜š‰ΖŠb±Wύc!ϊ¦δ’hjη8Ϊ`@Πυv^γ X PhΆθύe Ν6b\v7πή½ = Έϊ.ΤΧΧShΆΞΏ‰Κ’ηζ-{ηͺr£Πl/~ώ­(4ϋ‰ξs Ν6γϋ ½ΝΫψάk€¬Λ|:ͺϊœΤ'I‘Y'αώUυShv[½§κ1¦Π¬GΚύ«κ1vΏ2φ$       ˆFϋΉΠ܎Š’yξ&R…H˜«‹„BΖ[ „έΞ?Ɉ΄ŸB2NOAG³›„u(Ž˜δl̝žξΉ‘ωS»‚”t‘!9Ύ5Υ"Λ±·Δψ9r|Ώ±c“0^d9n¬―Ac‹―h*³ §$"S³ξO¦O/DΆ.MV-@yχ±"£μψ΄D4ΦΘlΙ^Α/%;SΣγ;gΰ}irμ<)χΖ 9ΆΠ”c+ΕXυϊlc‘šž)$Οf¬ͺ3Εκ΄©…ΘIΒ¦ίDΪj$‹τ΄±c³‘+dl=σΌc|JΊΘͺ†UΥΠ½λΈ΄\δxeCγΎ±i(,ΜΡ„ζŽΖ*!₯Φy'+³ίŽ…§±ΦΘdmŠͺ@k]9V5zۊLΉ)‰qˆiΓκ†–ΞΊtLOYŒE†γφF¬–Ω°Ε|ǎMF|r:²’Όν΄ννχ1 %z§*6†€'x ;³S–}cĞΛ@rL+VYDψΈ±‚σΑΩ?^φ³oxTW֊LΔm"Kn“&6Η₯ŒEͺΘ&ž••¦Ε«ΡΕ>l¨YΒWΛ,αΉ"KΈw/ȕ؏}–-(A­Άe1uξL€ˆυ—/D£άώ1)˜9w*ΔΫ K„ -ΣχŠ#.9 ™"ζ-βύVίδέοΦ9θk׋Ս͏D!θ―ͺ“²-GL"2Dfθ–F±/Ν½6· [“υύΗ ϋ~ !4ΫζΪ^’y•ήIΘΨfŠΈ΄4 FΔΛ{$ i\ˆύ–ι‹Ώ8ΫzφΉήλ]ΪsήύP/βVΩ·D!’§%Η ‘¦Vd†χ.$)+9 bho¬Χž{1ρΙ›œ€δτ,‘U>Φ²βλ΅΄`‘tšuΡρJ‘9BœwЇξm9f£kξŸΎ9B³IΔQIeQ€ssJ£±ͺά(4!rT ΠμW―oL‘Ωfˆ_X ¬ͺπ6>lPψ°OGUŸ“ϊ$)4λ$άΏͺc Νξc«χT=ΖšυHΉU=ΖξWƞ$@$@$@$@$@$@$@$@ΡH`š[ͺ…Z#βζ—%Φ"γωgE6$;‹\WVŒͺ&©;ΖaβΜdH‹R‘a΄Dd•—Dϋ|!Η[Ǝي DΆbοαAυβbΤtΊ‘csσE¦ΦψΞk-(+^¬—6UΘΐ"Sr[JTic|z.ς³½ Έ)jJKP-³ΡΖ₯ 6[“N;χ(ξ‘”™‡Ό¬$½¦€‡μΩHOθΌ$²ΡΞ[PιΝƜ”…’ΌL_AVdLΞ“υ™ΆΦ–aα²&­sΚΔ™˜jΒ@MفP±1„fƒPW^‚*!rJ–>ρj­ΓΌ…UZΌ‚ Νvφ³£Ώ6ΑF,(*‚Ύ`_$Ψλ“v΅ΝΈeΞ,B–ώ~£Ϋ½˜€EδΙsβλP^Σ¬Ν,}ϊ\!ώΗΘF¨(ZϋΙ*.ΛFΑήΛϊΪΈ6/CQi­66βΔ{Ή@Ό—½gh{~±Άηγ‘[˜TαΡ†'Ψϋ)ΨΎpΐzo±¦±ioX">ΌΠ f+ζU¨Ν«sΚ"]qδg_—φΊε9ηnΟ΅£R|Ψ€^lqγ™§Mތ§‘\Τ7 ©ΎL|ΈΓ·­±ΪΠλ΅4a‘tšuΡρJ‘9Bœί‹@Ε_Ό άϋ‚Vf†ζάB\VYΰάB-B΅ͺά(4G\ˆΛšC€‰j Ν6Ώα3ΰOΧ™η,Ϋ(γ\Υη€>A Ν: χ―ͺǘB³ϋΨκ=U1…f=Rξ_U±ϋ•±'        @4Ψ―…ζ†%"KlC»π;3Ωκ΄ΘxFVβΞkνυB¬’ ‘-·Cd$.A½H`0ŽθΣa‘ s £gŽCξ\yίԚmXd—-ςf—υ^53ϋκχ0$W!1jγ ‰R?L‘Ρ,΅k†ΨΗ0ƒΘΎΊ,hduΓ§±ržΘτ,aX² λ³d²+2VO«ϋκ²{žΘŽ-F€ήFοŽ‘‰ΆΔ›‰6-Wd‹NnΒΌoیΌΉ˜˜d‰”—”’Qδθ͝™'2fΛμΏ•"σs½π;ΝlΠΖΨ’y?t-fb¨{₯N,.`mab8οπ{NΎW¬š#οgSΖ5ϊKHFΜ}χŽ17ϋΠ؟""+·πΪ½‡“ΨKkX-Br_¬Iξή!δΏ±βύ\(3SwžŽv‘ω‹ β±bxD6ίbbbΡ*ήΛ₯Λ}φͺΎ}֍cfNž8Σ3ταEφπJΛ}ea Lžx?ΩNΈ&7U Df]ς~jΦdg¦L›Ρ!2’§ˆ¬ΕΦc―οucΏξφœΨγ%βΉ*„fΔ§"wj6R:wJ[ ZΪ‘œ‚„ΞηžΞ;0nήU‡\― Λ$ΠI€Bstm Νβ½ΰΰ‹Ό~š\4[+ShŽΐ-Δe•EΞ-DΠ"T«ΚBs„ΐ…ΈL‘9˜^\έήގ 6]αχߏ>ϊ›7oίΨ•Ž!C†mΧΣ• HM5ϋ·'ζsδ?οΒ€--Ϊ­·wZ3/1¦‘ΒόŒΙ)¬]»Vόο11Bd—VπΨ΄iΎω曏q84ͺΗψΣO?Ε€€€€pΛθ±k---Ψ²e FέcsˆtcΥcόΙ'ŸhΟθΓ?m^Ά₯΅βLz¦eK] &ϋv4x‰EΨ4€l1WΜsvŒΰ™RΝu$‹μΝΣEφfϋΖ4W£Έ΄Ζ2³ΰE—μ˜j― ,rε抌ΝV9 0ΧϊaouKC5ͺͺjΡά.Sϋϊ{YT]»Φάά»ώ̍ψš-cλw x?ŚcλΟg\Νύ ί#6> )©iΘŸŽDΛ3Ζ{}μucΏΈίsfFφΞU =IHΜi™HO±>°ΓΕMφ ³ήΞ‘ωBVš­4z™Bs˜ύP<Νlπ«€yO‘ΩΔβ€€ͺό*ΧΐΉ9‰€ΩVUnšΝ9)QhvB«w΄mkkΓgŸ‰ Γ!Ž/ΏόRšΗŒƒAƒ…hΥ³ΥRΦ5Κ̈ά³9lΝ* ϋ%ν֞Ψ8|pɝΖ4T˜Ÿ1™ …¦¦&τοίGqD«=_ΥΪΪͺΙ=γp$T±”Φccc1|ψπpΛθ±kRZ—Ο"•eWΥc,Ÿγqqq8μ°Γz,Žαn,₯υνΫ·γ裏Χ¬Η―Qhξρp$@$@$@$@$@$@$@$@έD`ΏšΫDvΦ>™–-DœΘx–¬Γ‰Y³13Σ7ͺ)‚vŠ})ΝB€^"h_1Tήέ#$HSxΤ%Υ† ‘]zu»eΑб"{sa§4έ†%Ε Π |N-»±Υ€]u‘3˜Πά^W†yUM’UηœΓΝzΆjΔODQ~†ί€ΜuθYtύο Cžφλκwͺ ΝB³U΄7};…ζ ΨΫ]‹Yh‘9|lηm ¬I"[pž%[°\±ΞTί+{АƒοΉ€ώrPγ=αΛΐρ>l―CΙΌ*‘“Ψ/{ΈΈ…)ϊΚ†>tιWoΡTY‚2-•―ΘQœœΉΣΣυKΪk“ωΛLγq‰‰"³o ښ›Π&ύfΛ‚]Εά»ώχ7β£Ώ?Δ>ΤΗ±υ~ "4;ζκiAuEjšE6jί#%k:¦f&•ϋd―ϋΕ½Π,'RDMΑτό©Hξ|Ο뼍=o¬6Β{ێEΠ D»Πόν·νxωεjΌρΖ›ψαϋpΙ'βœs~ŽψψƒtDa_ΫΪΆbŊγΝ½~ψιw~ώσ3p°OΏΟ>ϋ~ψ±O<ωξ;Ξ8#C‡ΖkΧ<ž=XΉςίπx|Ÿn²έቇβ”SO ΓI…ζ0΄^z¨~ΫΰΠ·>b4¦Πl pTPU~•‹ΰά…h¬*7 ΝFˆ(4;ΒΥλοΨ±Λ—/Χ„ζΙ“'cΨ°aJY‰ηΠΦV (Χδsν½ΐhοοhJΜϜY@ιΓ?Δ€’’pM…ŠυλΧC ―*‹†ͺΗψƒ>ΐΰΑƒ1rδHB0‡uλΦiΟ™qγΖ\S₯BυΏχή{βΏWγqδ‘Gͺ‚Μgςƒ[·nΕρΗοS―‰κ1V‰ηB$@$@$@$@$@$@$@$ >ύThφ`Ω‚bԊLΒz¦`ԎdΌ&”ŠLΟΝbΡQ³½^œ•Bΰτ—}ΕPΩΦ#mΝFΧΨ±˜]8ρBτ‰Ρξ(€Qμ,Λ―Ξ”‡§iŠΛjE)3‹¦Γ7Ώ©Eΐ΄ΘZGρOGC…‡W‹R¦ε!9$™}·5- …Zˆ%%Bͺξ0Yι"’.~ššγ“Ÿ4‘ˆΧP˜|}Yκs·Ύ†ζkw?ή'τ˜¦k²0λ¬{%RlοΡŽΚ’yoͺΘTk”εz« \€Ι6ξ2^Αχœ£ΏΤΓ—Σ}¨ΛΕ1Ι…xœ!G63CsδΨwno ΅Ε —™{DŒζ+μ7‹χg©φώŒKΙΒΜ©™βΨy4W‘¨΄ϊή“nlΠ΅kΝƒΗN^2β£ΏΗ­B³χ“x:TΝ™ΝΕητ}α”«6EνΪZ[ΠT_‹κΪΥπ&€l(lΠΎφΊ±_Μ5ιs4xYžs‘Ή{{y:ΪΠ"τΪUΥXέμύ GLj.ζζ¦j Bχ°^}R|% hšΏό²ζLΕ¨cŽΖ 7\ ωU돖=‰χί\R*2Je!Xόδ“F\–›§υΟΛ›†ByτΡ Qς”ώγoBΔ8Φθτ—‹!ΫŸv,vοΪmΤοΪ΅ ^”-„ƒd­΅υœ}ΦE˜1γ ρϋΝ£,xΰLv ϊφνλSοδ„BsZE—[Ώφ68op¦8ο<(4λ$œ½ͺ, pnΞb©·V•…f=BΞ^)4;γΥΫ[ShvαE·ŸΌγν4ξ `Ϊo΅²ͺΟI}ušuξ_U1…fχ±Υ{ͺc Νz€άΏͺcχ+cO        h$° Νmu(^P%$H‘%vn>R ;²3„Žd<‹5ρ™"+q–Ο>ΠεRθχBC·dhφ4V’ΈΌ^»WF^&&ωάVdŸmFlR€€)ΊςT5 ­:m* rRΌ•–u!Π*wκ—kK‹±¬YhΕΊœ†O“iΛ„L ‘LO/š)τiσπ4V‰9 TiS ‘“k€Ζ}ΕΨσDk©,&fζaf–ΒZΠ+3μŠžFΑ²\h@Jv>¦¦Η‹’~4a±Ν[Δ©~/C€ŒKGaAΆΑΆχƒ―Μ+οdŒi‘3½30%US 6λtqUΆ›ΐ{˜γH(šι»ηjDΌͺEΌŒϋ†‰WΰΨ!€^c ίχŒ³}؊ςβ…h[I‰—UηΏNb―ubχ€‘=£ Ε3Z‰ΥΤ..Β2ωΖl s4A݈›σ-z5:ό‡| D«Π,3 Ož|%&Lψ™&3χιΣΗσπ?Κ51yωŠηΔΧ54κ­…ŽŽdŸ›‹Ks/‚”™­ύŸ{ σο»Λ–Wˆ―¬enΎδβ«pοοο_‘>SΪϋο―Αόωχγ‘GξχΣzο”)4‡ χι»ΐΏ6/ήS!~^šΏgQh6Ρ8)©, pnN"iΆU•…f3FNJšΠκύm)4;Œρ[+€'θνΣ(~x€ί 'K‘Ωaœƒ4Wυg‘>U Ν: χ―ͺǘB³ϋΨκ=U±>OΎ’        €[Ή“η@IDATϋ₯Π¬KΖ1ΙΩ"Klzΰ:Κx­΅eXΈ¬I'~lfNIΣdΩζΊ ”V­Φꍌ΄ΖΨ]•cΝΜ³R–ž˜—‡Œ$™‚Υƒ†κ%XRΣ(Œΰ ̝91†ψƒ‰³η"#A›’Ο?Ί(+“3r1}’WŒl¬.CyM“Φ6>}*ς³… m¬!PVτɘŸ†™³s#tΠ–:,^\₯ΙΗΦ,ΡΖ} ρΣ―«έc'NΗ”Œd퀡‘₯Kj„ώ)dιΉB–Žm yWʍBk̜>YΙ’AjΚKQέ(MWΑyn&­w4TŠLΣυ’NHΉω³‘/&&ϋϋ‘«1 "Εڈ!ΜŒ€–!γV W‰ιΉΘΛN Ί=¨―\ˆΚz©x‹• Α΅@ aβll=&F9˜E N˝œT}Ωί‡΄WhIΑμΉS‘ ‡χNbθٞeί΄©EΘIT˜'?¨ \Χ”NMσ™w\J&¦ηf!!¦5•(―nπή6˜«³σΆ‰]η5ƒ‘άk…b―Śb΄lρύtlϋ\+ζaΙjο^Ϛž‡Μd―pΦ\[Žeβ9 Žτιs‘³οφzWχœeΏΙΜΪy"³ΆΆͺŽf,YPͺeyGΌxΎε‹η›X_C₯` ΝvρΜΙΟΟρΆυίΫπ#­BσΫoΧγW7Υ―T’!‘X™©ωΌμ\άφΫ98ν΄“-WΜbmmn»υn¬XωΌψ–ˆ~ζQϊα‡pΩey˜={233°}ϋœ3ιbT½τ† ‘?·CO>Y’}žΘΠΌ7 Ν!¨>ρρ‰«•ή‹©\χ{Ÿ†š}pΨ>QYΰάl‡Ρ§‘ͺά(4ϋ„Ιφ …fΫ¨’’!…f‡aή΅˜{‘ψίΎσvΌL|0κ€³)4;Δθί|ύϊυΨ΄i“ψ¦“ό/)sκΟB…f„ϋWΥcL‘Ω}lυžͺΗXŸ'_I€H€H€H€H€H€H€H€HΐύPh6³Δ¦O/’Ÿ°ύ‡2D>ao–T} Δ ΩΆCš•Ϊ‘$ά¬++FU“ΘΉ«‹ρΎΣυžΩ}k-Š.ΣφzLDΜΝΛΠϊλ«sβΔ+Ȏ72‚‡\―Ό―$`!­BσβE£oίΎΈφΊιfQŠΕ[ΎΩ‚YBJvΘλνίΆ‡μ_Yω>ϋ¬ sζΜΒΪ΅MψuΑx¦’ [·nΓΝZζηƒκ3΄‘oΞΏMσ˜cR°yσf!GΓ†Œψ΄u{B‘99!I~eΌόκxΛA‘ΩΓAQeQ€ssHKSUΉQhΆΙA‘B³XQΠ”B³‹ ?~/πΫގ£ΔŒ―ŸG‘ΩFk ΝVξΚšέq³φRυχ}Žšuξ_U±ϋ•±'        @4Ψο„fCΰ ™%V„ѐρbEFγBŸŒΖž&‘eΆ¬NΈ‹i(R­©Cw Ύj *λš|φA\R¦ĹαMc‹,Α…ωZ6W½ƒ1v|: σ³-c‹$yε%¨jμ·YwsRυ.θhCω’*4›ήŸΈƒΤ¬\δfJ‘ΧΜ,›’©ιήμ­Ζ]b•§‰‰qhi± —‚©3§"EO’h¬!>nK}Κ+λ|D㘸dL̝‚t-“΄·₯q_YW\™X+Λ— ήwaˆOΩZs3…:j9Ϊ±€΄ m†).Ζ!mb.r2’, NJ¨Zέ)šŠ{Ξ,,―ΘBe ݍυv5fXΆ ΅βφiS ‘#ΒS%η::\lŒ=+μΒλΎhAεβRΤ·˜²xlb2b[›Π&ͺ )ט`ΌŒ=gΩΟzLβΣDFn9ΙΞ£Ud_Ψ™qά*οΚΛχ‘ΘΈ» DJκ±ΘΞ/Dˆm轓Ψλr΄–mΫη}Ԋ%% ½|5΅‘ΊΌ 5q—w‰MBzj κκ›δ‰1§ζκR!Ζ6ΌΟδϋH]Ίˆ]vŠωΞ‡κK„Tί!3wΞEg(oρύdΫ»/Μ±#r•7GkΚΛ+ΡθσtR2›;Ρ›%½Qd(ίW{½[φœΘ6ΏL„ρ4Šξ*Δ€IYβηv vμΨ‰‡zO”?ƒηžIIΓΕ‡«6αάs.ΑA(„釐xψaΪΈ«W„y7αΌσ'βΦ[oFŸ>}|ξηδ„BsZŸŠ{Ι#γΰ_yΛ–)4[`8(ͺ, pniiͺ*7 Ν– 9(Rhv+ šRhvδΫΕ§ΖΕΏiΗΉΧΰέa©š]’”έ(4w^gW Ν]g¨κο;ϊΚ(4λ$άΏͺcχ+cO        h$°ί ΝRjlimG\b’o–ί^½φΦ‘)9‰ ‘%NCΐY‹ sφ›†ŠyX"Σͺξγϋαξαύ`'6Ζ\­=+pb:fζekx…±‹ϊΚRTΦ·h-ύ³ύZ»οϋ²­-­BhND˜mΈο§΅—ξΨSο§°Λια½vn{γb΄­wo0Œ1£YhΎρΖλpμq? ωHB³G|jςδ+‘|δπΗ?ݍ½}eφηωσΐ“O<ƒ«―ώ…–‘yιK+0dH~ϊ³S}ξ%ΫώρAΛΖMΈοΎblίΎ‹= 9―Ψ؁>mΧ― ηŸw–<υ0FιsΝdΣ¦Mσ vΌσΞ;Ψ°aƒ˜ϋd 6,X“«[³fXw,Ž>ϊθ}7‡­βguQyΏώ Œ<Φ<ο,Qh@b«BeQ€s³Β€Fͺr£Π*[šmaŠšFš]†ΊrπŸg½wΟΎB³K”²…ζ.ΐλμJ‘Ήλ Uύ}G_…f„ϋWΥcμ~eμI$@$@$@$@$@$@$@$φ?‘9£dcΝϋZΐlZV†%BΌνθθΜ&›š‹ΒάT3eIΐΣΌ Ε₯΅Œ8‘©YflφΥρ(̟hfκ6Z²°/μλχΣΎXοAΡB š…ζpšΧm‚ΜβΌ|Ε³A34Λύ!3*OύΕ΅Ψ²₯ W\™«ej~δα'0f̏qκ©'£cΧ.\ύ5a·’•§M½+V>/27χ ΩVΚΟ·έvΞ=χ,dff„l'/¬^½»Δ½ƒ_~ω%6oή,ζ8ƒ Φ€ΗꚚš΄―@>|ψ>›Cβ―ΰπw—iχΫw0Φ\dωΪxΛ,…”>‡ζ͚mΉΤγΕO?ύC‡E‚ψΖΥ9·Q£F©6-m>œ›»°¨Κνλ―ΏΖ7ί|£δ~“?g·mΫ¦δά€ΎsηNŒώƒ2ξvKΧz­[·Ηs RSωίΜ]#iΏ7…fϋ¬|Z67χΝ4ͺ>ΞΞǏ'ˆo-RτψπΓ΅ί·RRR”œ!…ζ‡…BsΧͺ.»Rhξύ1ξϊ 9        @4 ΠάK’έPQ"2% 6) Ey™{}UΖύ΄;Ε#'?iρ{ύΆ½κm5XRQΓbφ./15 Ss3χY–ν^΅›cμο}τ~κ¦is A Z…ζ‚9·γμ‰pΦYgέ~υ5¬ZUƒ»ξ.Έκ<ž=ψΰύ5ψ`υ‡ZΥθΡ?Fzzώφ·ΏγCpΡEηα­·ήΑi§Œ>}ϊθ݌ΧοΎϋgŸ5Ο>Š―ΎΪˆaEβαΑ₯Ω½π2>m\‹9sfύƒΆoߎοΏ>Ψ%ΌφΪkhnnf†fΞ=SoZΌg―Ξ¦_ρye†fΆOT–A87Ϋaτi¨*7fhφ “νfhΆ**RhξB˜KΏT© °it&½Ά¨ ƒνέš»ΞW՟…ϊΚ(4λ$άΏͺc Νξc«χT=Ζϊ<ωJ$@$@$@$@$@$@$@$@vPhΆCihγiG[;‡˜}0_O{+šš[α9„“R“)ίvyG{›ˆΧjŽ‹OD\lcΧξ!°ίOέ3iŽB$ D£Π,Χ½τ₯XY½ ση.@4Φ³!wά\vΩdΩ<ΰ™•—,y7ίόKτνΫΧηΊ””'MΌ‹ΟY}γpι%W‘ϊ•Jτοίί§<ωβ‹uΈζκ΄LΠ%Ώ3Ǝύ .Θ9' œ“”°'O>§ 9Ϊν±lΩ2Θ,Ν“'OΖ°aΓά³Wϊ­Y³±±±8ϊθ£χΚψƒ6 ύ/7šΥEK€ƒ‚g9¦ΠlbrRRYΰܜDl«*7 ΝfŒœ”(4;‘ΥϋΫRhξBŒ« ΌτmO¬ψߘ~_Ω…ΑφnW Ν]η«κΟB}ešuξ_U1…fχ±Υ{ͺc}ž|%        ;(4Ϋ‘Δ6$@$@$@ϋhš[Z6αάs.AωΗθΡΗψΔκ³Ο>Η%_…^xI?:B»VWχ.ββ␚:J;—"ςENΓKKŸFbβ‘>ύ—.]‰yϊV¬|RD–rσœ‚Ω˜4)Λ§&Nίz·φ΅ίEwβeΩoήBMnφ—Ÿ?ό L™|%ž}ξ1$'πΗΙ …f ­g―Wy+Ž>˜=ίrΡ·H‘Ω—‡έ3•EΞΝn}۩ʍB³oœμžQhΆK*:ΪQhξBœ·ΆEΉζΧή Œ>ΙOΎ’        €šνPb   ύ‚@΄ Ν28εεOγώ…₯Xόΰ|ΘlΜ}ϊτΑκΥaFήMΈκκ_ΰΪk―Τb(ΕγiS―Γ γŽΗœ9³ŒΊ›σoûマG]„δ£FΐγΩƒ•+ΉΏ-ΖΒ…Δ)§zE–+ώ[ οEΏΑYg‘e!ήΆν[όνoGΥ‹Λρβ‹DΒ!Γ°kΧn!IOΕΠ‘ρψ}ɝHJέ«Ύ~5ςΉΧδMΓυΧ_£ΥΉύ‡B³…άo²έήo|@npςDΛEί"…f_vΟT87»Qτm§*7 ΝΎq²{F‘Ω.©Θνδο«V½†ˍ­[·aΜΨTœώ$ΗB’ΏsόχΏ―#33ύϊυ‹xγ;vβν·λ΅φςχ˜š»BOτ½ΠψžwqgΣ~ΫΕχNw Ν]ηͺκΟB}ešuξ_U1…fχ±Υ{ͺc}ž|%        ;(4Ϋ‘Δ6$@$@$@ϋhš₯4τΤSΟγOό«& IqhχξέΘΏω—ψΕ/.FίΎ}΅κ™”O9ε$œΑ$#R@ώΛ_γ©%ΟurŒϋξ»?ύΩ©F,Όρϊ›(Rs{ϋvzθ!Ψ΄i3~όγά7Ώ‡žh΄•bΌyΓ •K΅9νΩ³G»φ›Β|L™rΎ1'£ƒΓ…ζN`υ½Η{Σ(1x@HššC’ {AeQ€s ΊUεF‘9dΘΒ^ Πν‹ςχK.Ή ›6nΖάΉH<όPT―\…§ŸΔοώ?{wUuχόKHΒv”U@Ά‚ΨRΠΊ·΅ΥŠ .A”VλRq£*k…ΊU­ϊΈUk[[—V©U RWΐη/-ΆΦZ”Ee‘έ°Θ’$,πΏgΒΝ$“ΉsgξL’“{?σzα½s–;ηΌΙLϊκ77wά¨O<.νk=λόLq}ΗώZƒω§TσσΙ΅γoԜ9oΕώ*D»vmS χν#ΠμK”zΐΫ―IΟή[9ΖόlqγΣR›Ž©η4@/ζμΡmύ,twF Ω•~΄½ΖšƒΧ֝i{έurD@@@@ Νι(1@…@”ΝnLˆΩΝ£U«VjΦ¬ΠνJλhBΘΫΆmSAAL˜(ΥΝ]σσσ»9οVΫΆm<―oΒQεεεͺ¨¨PΛ–-bs<gΠA yΦcΞ]Ύ]ωδ'hvξ„”ŠšSςxvΪ`mžeKΩa«ζ”eσμ$ΠμI“v‡ ίsΟC±_\z~Κ“5>―ίyη}]vι5š:ν)οΤl~yiΩ²Ξ_x,N.,,Τ«―=ϋ™"ΥBήxcN,МξψTΧ2}šύ„|ϊw8?KN8->¨“σ—6ώ΅T”:˜ŸP?gš³wΆυ³Π݁fW"ψΡφh^[w¦ν5vΧΙ@@@@t4§£Δ@hšE™rΆHΝεΆ-Ξ]GΖM/Ώ[0,ώ<Ɂζ$(i4Ω`mi0Ι[έ4')VMšΣ@ς²eΛVχ?§y†–χ”οόΒΣψρc=―΄bΕ*yΖy±ΏqΕ?Šέ‘ω§Χ]₯Ϊ{Ξ))Y―“O₯ία!έπσΫττ3Ώ“ߝ=/Ά―ƒ@³ŸPύ―O–^~<>°KoιΚϋ₯–ήΏΔ\?gš³wΆυ³Π݁fW"ψΡφh^[w¦ν5vΧΙ@@@@t4§£Δ@hšE™rΆHΝεμ)τG+MΫ: ώ–Ώψϊhφ%J:ΐζ kKZ2ίF[έ4ϋ–.ιΝIY2j|χέΉΊγ—χλΉηŸPΣ¦MkΝύψγ%ΊκΚλτΚ«Ο'νOœ`ξψ|ΝΈ‰Ίιζλ<Νζ―7œ=κ"Y|ͺF:]ΗχŒX š@s’fΓ<_χΨ­κΌπροz`坚›΅ˆ·5ΰζμρmύ,twF Ω•~΄½ΖšƒΧ֝i{έurD@@@@ Νι(1@…ζFQ¦œ-’@³Cyη…ϊU•¦Η#r±―/f_’€l °Ά€%σm΄Υ@³oι’ М”%£ΖΙ“§hσ¦Νϋγ1Iη•––ι€αgiϊί&«]»ΆIΗToL'ΠόΜΣΟkΚ”ιš2υ)•——;ΧE Ή:bŸΗή'—½)½9=Ύ’^ƒ€+ξ‘ ›ΗΫθŒ@sφπΆ~Ί;#ΠμJ?Ϊ^cΝΑkλΞ΄½Ζξ:9"€ € € € Žζt”ƒ €B€@s£(SΞω@σΪ₯=—Ζ=―wώ,|ηžρηgš=`|šm °6ŸβytΫκF Ω£`>Νš}€θ~ξΉ΄aύΟ@σŽ;2 ϋš—.ύT£ΞΊP/ΏόuιΪY™^?Υ–ΚΚΚ4cΖ mΨ°AΕΕΕκΨΡω+>l}r©ͺΦχόΏ^r›₯―"]p“ΤΌUΌ­Ξ4g^Uγμ/U'W М=«ν5&ΠώgΏC€ € € € %ΝQͺ6{E@ δšC^ΰ„νE>ΠόΒ$ιοS+Uz~EΊζα‘δO 4'wρk΅9 ΒΪόͺ—ΌίV7ΝΙλεΧJ ΩOΘΏίš·—mΧωŒN:8Σΐqͺ@σŽ;uڈΡ;vŒFœ6<φz™^?ι"χ5hN₯“~_χΙgξ’ώϋz|r~%5ko«η3ΝΩƒΧ¨qφ—Λω4gOj{ 4‡ΏΖΩο+ € € € €DI€@s”ͺΝ^@Ήζ8a{‘4ίP,•n­T)ΎJ:fD‚Pς§š“»ψ΅Ϊam~ΥKήo«ζδυςk%Πμ'δί__wh6Aη~5Iλ֭םwέ¬&MšΔW^^α'ž₯Ώ½ψg΅lι’έ²e‹–.uώZΗcεΚ•±;4<ΨΉ^KQ ΫΌxρbυοίΏa‘βΥΧΧϋοO«ύŠyU3J; %ί»Lω…Umυy²|ωr¨{χξυω²iΏΦƍ΅yσζFUγ΄7WO—-[¦ζΝ›«[·nυτŠ™½Μϊυλeή‹ ΩΔzψ}\/ΦK™χρ’’"uξά9­ρυ=¨€€D₯₯₯κΫ·o}ΏtF―7tθЌΖ3@@@@[4ΫZΦ… € hΘ¬QOˆt yαΏ₯ΗnˆΧοŽ€Eρη)Ξ4§ΐIΡekψΥ,™΅₯(\Š.[έ4§(ZŠ.Ν)pμzεε™zϋνwυ‹['$QςΩ:}ϋc4sΦ4εηη'S½ΡλΝΛ–-ΧY#/И1?Τΰƒ©|WylΪ.'Πόσ‰·ιΚ+/Q―^訣W³fήAYsGηM›6UΙͺsŽ~ο½χbζo}λ[jΫΆmUŸM' , \ΫϊHΆΎφ}@ΝΏ[΅δ]έhΣΩΧko~AU[}˜ ¦ 4χξέ»Ύ^2£Χ1AΘΟ?ΌΡΥ8£MΦρΰ>ϊ(φ ={φ¬γW vω΅kΧΖή‡>ψΰ`¨‡YΙΎλαeΣ~‰E‹©M›6ΦώbΒκΥ«υε—_jΠ Aiο©ΎšχΝυ­Ξλ!€ € € €Τ•ζΊ’εΊ € PοšλΌA_0ζ'o•ζύ£kί”.Ό9νZhN›ͺΖ@[Γ―f‘¬­F©~b«ζ΄KXc ζž¬X±J?<ο2͘95vGΤΔ‹Μš5[S§ώMr­΄xn|Ύω+σ‹Vυτ М=΄o³‰¬@ 9+ΎΨdΫkL 9ό5Ξ~‡\@@@@ Jš£TmφŠ €@Θ4‡Όΐ Ϋ‹l ωΑ«€ε +5ΎνάAστ+dR?%МΪΗ«Χζ0kσͺZκv[έ4§›W/f/™ΜΫίyη}]uεΟ΄kΧ.uλΦEkΧ–ΔξΚ|ΣΝ?SΛ–-ͺ.ψΚΛ35λυΩΊοΎΫ•——WΥξždh.//Χι§ύ@O?σ;Ν.b}ί'ΛwI““>_ιoIά^‡gš³Ηυ­qφ/‘Υ4gΕ›l{ 4‡ΏΖΩο+ € € € €DI€@s”ͺΝ^@Ήζ8a{‘ 4ώ™tϋyq‰ρJ=ϊş§qF 9 €$Clƒ°Ά$K£ΙV7Νi/ΙΝIP²h2aδ-[ΆΚ UTδόE€FτΰΝΉ)VZο“»vH^_3Τ|ΘqΉr³ˆW!М'Ν΄jœζ΅κbζμUm―1ζπΧ8ϋr@@@@( hŽR΅Ω+ €! Πς'l/’ζW—fM”ΨiΒ *ώO 4ϋ%as„΅%«˜›­nšύk—lζd*Ρm#М›Ϊ§ύ>iBΝ_+­ό(ώΒ‡Ÿ(γ΄Υαƒ@sφΈiΧ8ϋ— t́ΨjL²½Ζšk”+ΠΫkhSLB@@@ˆ¬ζΘ–ž#€ >Να«iͺE2Π|ΛΩΦΟ+YF\*}η¬TDIϋ4'eρm΄9(ΐΪ|Λ—t€­nš“–Λ·‘@³/Q€hΞMΉ3zŸάΉ]ϊΝ5κ%ρ?ϊTiδΥρη9>#М=hF5Ξώε2ΎζŒΙjM°½Ζšk•,γΫkœρ†˜€ € € € iΝ‘.?›G@ \šΓUOΏέD.ΠΌψ}ι‘ŸΖYn›"΅‹?OσŒ@sšP Γl °Ά„b₯ωΤV7Νi0aζˆ?%М›/€Œί'w”JΏ'}φi|ί>S:ύŠψσžhΞ3γg’]@sF\IΫ^cΝIΛ–Q£ν5Ξh3 F@@@ˆΌζΘ € €@x4‡§–ιμ$rζΙwKοΜ¬€t˜tΙι0ΥC ΉIZ 6X[Z%¬5ΘV7Ν΅J•Vζ΄˜"3ˆ@snJθ}²μ ιAηΜλWΕQG‘fΝqβ gjτΕΜ#Π-aŠν5&МP°Om―q€-1@@@@ Βš#\|ΆŽ €@Ψ4‡­’©χ©@³ω3ξ78w8ά]^‰rώ ׏M δΡK ΩΖ§Ωζ kσ)žG·­nš= ζΣL Ω(bέšsSπΐο“ΫΆ8‘ζ«€kγ ~tΒΉρη98#М=bΰgi]@sZL)Ω^cΝ)Λ—V§ν5Nk B@@@@`ŸfΎ@@ 4šCSΚ΄6©@³Ή3³ΉC³y6—nŸ&V>ΟπΏš3Ϋ7άζ k WM 4«'ζ`naE 97•Νκσε‹MN¨ωJiΣΊψbNΏ\ϊvqόy–gš³t¦gUγμ_ήχ š}‰|Ψ^cΝΎ%τ`{}7ΐ@@@@ͺ h†Α) €4n͍»~™>RζG•Ο­$:ςiΤΈLΉͺΖh’ΘθΔζ kΛ¨”Uƒmu#Π\U’ŒN4gΔϊΑšsSβ¬ί'·lpBΝ[7Ζ4ΉsσΡ#βΟ³8#МήΎ©YΧ8ϋ%€Όζ”(ώ<Γ3Ν‚νnsP€΅…«¦šƒΥ“@s0·°Ξ"М›ΚζδσeSIe¨ωΛΝρE3^:|xόyΐ3ΝαͺMΛI«]/Χ§š³΅½ΖšΓ_γμwΘ@@@@’$@ 9JΥf― €„\€@sΘ œ°½ΘšgM–^yΌrχΊH7> ‘ΩSΝ™yΉ£mƒ°6·J™mu#МYέΡš] ŽF€@snΎrφ>Ήqτkη―KT5Ÿ;A:δΈ¬J 9+ΎΨδœΥ8ϋ₯$½ζ€,5Ϊ^cΝ•3ι`ΫkœtΡ4"€ € € € ΰ!@ Ω†f@h|š_Ν²YqdΝ·+™»šΗπ €œηY<4Γ³9(ΐΪΒUSΝΑκI 9˜[XghΞMesϊωbBΝ\%•n/ξ‚›€!ߊ?ΟπŒ@s†`I†η΄ΖIŸmζl%ΫkL 9ό5Ξ~‡\@@@@ Jš£TmφŠ €@Θ4‡Όΐ Ϋ‹D yωBιA'όγ>nyVjΫΙ}θH 9›Υa›ƒ*¬-σ―7Ν™›™šƒΉ…uζάT6ηοαλV:wjΎΪΉ…φ—ρώθVιΰ£βΟ38#М–ΗМΧΨγu‚6h*Ÿg{ 4ΗkτΜφέσ@@@@’)@ 9šugΧ €„R€@s(ΛκΉ©HšŸ@ϊΧK•ύ†HcοστH·ƒ@sΊR5ΗΩ`m5k•ξ3[έ4§[Αšγ4Χτˆϊ3ΝΉω ¨“χΙΟ>uBΝγ€₯ρE^r§4θρηižhN*Ε°:©qŠΧΛ΄‹@s¦b΅ΗΫ^cΝ΅k–i‹ν5Ξt?ŒG@@@ˆΆζhןέ#€ *Ν‘*§οf"hžxš΄}_ΰηϋΧIί8ΑΧΕof?‘δύ6X[ςšω΅ΪκF Ω―rΙϋ 4'w‰j+ζάTΎΞή'W/–ΊFΪ΅#ΎΠ+ξ‘ϊ?OγŒ@sH>Cκ¬Ζ>―›n7ζt₯ΌΗΩ^cΝή΅K·Ηφ§»Ζ!€ € € € `4σu€ €‘ М~)ηΞύP―Ό2KŸ.[‘tΣ©§ž¨‘CΏ¦&Mš€u‘χίP3gόŸJΦ­W—.υο£o|cXω»wοΡ¬Yohχξέ5Y^Ύ[]»μ―#:¬F{¦OBhžχιIηΟ°›G~tϋ4©Y‹ΚηYό—@s0<›ƒ¬-\5%Π¬žšƒΉ…uζάTΆN?_V,’ΎV*ίYΉXσ³ΞεwK}Ύšφβ 4§Mε9°NkμωͺιwhNίΚk€ν5&ΠμUΉτΫm―qϊ;a$ € € € €šω@@ hφ/ζή½{υ«_=’gž~^cΗ^¬a‡ Ρ‚ωιώϋΦ)§|O7ίς3εεεy^ΘΜΏεζ»τK3tρ˜κΠC‡κ£>ΡΏš€cŽ9BχέKεη7ΝίΈq“ΎwΒ™γŒ3αζκ6mZλάσF₯|­κ㓝‡>ΠόΨ ΒWnύΠγ₯ό,CΖmš3&‹M°9(ΐΪΒUSΝΑκI 9˜[cž΅cΗmΪ΄)ιΚΛΛυή{οiΓ† *..Vǎ“ŽkθF›ίΏM―oΩ‡$η/Pμ.―,EA3ι²»5hΞώ+ΈΞkœε 4g θL·½ΖšΓ_γμwΘ@@@@’$ΐš£TmφŠ €@Θ4ϋxΞ?ώ₯λ»ES¦>₯ξέ»VMΨΈαsη.Ν£uΣΝΧiψποV΅'žLαέuΧš:νκΦ­KUχ–-[5²ψ|]vω…9ς΄Xϋ,ˆ₯Ÿxβαwnš”εI¨ΝΫΆH7ŽŒ ψ3μρΙ5Ο4ΧτHχ™ΝaΦ–nkŽ³Υ@sΝ:₯ϋŒ@sΊRα·eΛ-]ΊΤsC+WŒš¬–-[zŽkΘŽΕ‹«ώ Ή„”―]λk]²DύfώΆjM ΄δ{—©΄SΟͺ6―“εΛ—«  ΐω™Ά»ΧmίΈq£6oήωgS„eΛ–©yσζΞξθ–Νeκlξϊυλeή‹ Pg―‘ν…λγϋ8›5šχρ’’"uξά9›ΛΤΩά’’•––ͺoίΎuφΉΈπΠ‘Csq € € € €@ƒ hnπ°@Θ•ζΤ’:{ΤEΊπ’耓œ;ώ&OBh^»LΊη’ψξoψ““οžεζ`€6X[ΈjJ 9X= 4s λ,ΝΉ©l½ΎΜ—τ‡›β‹oΩΪ 5?(uξo«vF ΉFΐΣz―q†λ$М!X’αΆΧ˜@s’’eΨd{3άΓ@@@@".@ 9β_l@0 hN]Ν₯K?Υ΅γoΤ”©O% ›@σe—ώD—^v† Rλb¦τθ‹5rδηίi΅ϊί|σίΊϊͺλυ‡ΗR—.uςI£ΤΆmMžό˜Ίtν?ώ"Ήψj:βDM˜pš4iRλ:ι6„6Π<ύQiφ”J†^ƒ€q₯K’Φ8Νi1ΥdsP€΅Υ*WZ ΆΊhN«|΅hEιΝΉ)ƒΌOΞϋ‡τδ­ρ ΄jλό,τk©SχxΫΎ3Ν΅H2nhg°JΝ`y ΅½Ζš= —A³ν5Ξ`+ E@@@@@šω"@@ΠhN]ΚO>Y’Ϋn½GO>υˆg Ωά‘ως+.Jh6WwCΛΏ{μrΘΧ«^Π„₯ΟύΑ₯Ϊ³gf̜ͺόό|MšτΈΊκR5oή¬jœ9Y³ζ38u΄žύΛγκίΏOΎΔ'₯₯₯ͺ¨¨HlŽ=Ÿ3gŽV―^­ββbuμΨ1ι˜†j\°`³οζκΫ·oζKΈ‘X*έZ9oδΥΡ§f~34§ΐIΡesP€΅₯(\Š.[έ4§(ZŠ.Ν)p"ΨE 97Eo°χΙwOzϊΞψ&Z·―ό―]βmΞζž4XΣ\-ζ4‘R ³½ΖšS/Ν.Ϋkœζ6† € € € €@L€@3_ € Ν©KiΝWώψ:½ςκσžfs‡ζ]|;쐀3wi~ϊιητΐ―&ι«_;H'œπ?zοέyzγ9Ίω–Ÿιαί< *·oί.ι|Σh1qβm:ωδtΜ1GxŽ3σηΟΧΝ;“ŽYΉr₯6lΨ Αƒ«eΛ–IΗ4TγςεΛUXX¨nέΊe΄„6«©ο{ΌjΞηάͺ=…-ͺžηβdΙ’%jέΊ΅:wΌkv.™«k,^ΌXνΫ·W§Nruɜ]Η¬­ώ9»^./ΔΪ‚iΪκφωηŸkΣ¦MV~½™ΟΩ/ΎψΒΚ΅™ ψφνΫΥ§Oκ_” φΥ’έ¬U«Viΐ€8p`vbvΪšΣ¦J9°ACroΏ*={_|}mŸ Μ_­h·_Uζ*Šΐ' Zγ4VM 9 $Ÿ!ΆΧ˜@³OΣθΆ½Ζil! € € € €T h’ΰ@»ζΤ\±b•.Ό`lμΚ΅οή½[gœ~&=zΏzτHΔ-ωlήu‚Μ7~ΫλΘ#sξΚάT§œ|Ž^›1Eζ΅:vh―.]“‡f6ύU-^²LγǏ­΅Žκ ‘»CσS·Is^I0δ[7UηΘΙ9whΖhsP€΅…«¦ά‘9X=ΉCs0·°Ξ"М›Κ6ψηΛ?&Mωu|3œŸ+―vBΝm:ΔΪ4Ηi‚ž5x}N Ω(nΫkL 9"ϊ ±½Ζ>Λ§@@@@škpπ@³ζΤΥΫ±c§8>;XξίΏφ,Χ¬ωLgΊ(H.*jUλbζΞʏαi}ϋΨcԯ߁΅ϊ_yy¦ώφβkzδ‘{uηχλΰƒi§ŸTkœΉΞ΅γoTqρ©:κθΓkυ§ΫπΪk―Ιά₯ΉΈΈX;vLwZ½Œ[°`š7oΎ}ϋ¦zΫ·IOs»tPκ;XΗ§F 9}«κ#m °Άκ•JάV7ΝιΧ°ϊHΝΥ58'М›―+ή'>UzaR|Cœ_Ί»Ϊ 9΅ζ8KΠ3+jœbρšSΰ€Ωe{ 4§YΘΓl―qŠ₯Σ… € € € €@-Ν΅Hh@@Ζ*@ ΩΏrwίύk-[Ά<:ΞΛΛ«š`BΖ'άͺΒΒBύβΦ ±φέ»χhφμ92δ`ν·_'ΉA䎝:hβğTΝ5'&,}ڈњΰ΄λžMΈωή{“τnП~ΊB#‹ΟΧΤiTοή=k\'“'‘ 4λ%ιω* Z΅•nwώx‰Ύ?ϊb»ζrsΞ™*((PΙgλtν΅7ΖΖ??ε)εη7ΥΝ»tζηͺ}ϋvΊσ›Υ£‡s7=η1wξ|]ό£+υ£‹ΟΣWό(Φτ?‘ 4?x•΄|a%Η±#₯Σ. J“rζ”<ž6X›gΩRvΨκF 9eΩ<; 4{D²ƒ@snΚnΥϋδKΏ—ώοΩψΖΊ¨ΏwΉšΆjγόεΝq˜ΜΞ¬ͺq’₯hN‚’a“ν5&МaA“ ·½ΖI–L € € € €žš=iθ@@Ζ&@ 9½Š­][’kΖMΠ’%Ÿ:cΗnέΊθαGξUϞ=ͺ.bξΊ|ΚΙgk£χ«>UνοΎ;W?ΉζηΪΆ­΄ͺνψγΥ7]§V­ZV΅™ τ½χ>€ι/Ό’¦M›jϞ=±ΎŸ]?N#GŽPυ;DWMΚΰ$TζΟ?sξΘ|^|χ?ύΤ-nοΘώŒ@s0C›ƒ¬-\5%Π¬žšƒΉ…uζάTΦΊΟ—‘ώ>­js;:υΠΪ3Ζ«ΟA_­j³ι„;4g_ ΝΩZχ}œ°%Ν žΪ^γ[b  € € € €@„4GΈψl@° hΞ¬’ζnΝj€IμNΚ™Μή»w―Μόέ»w«eΛ–5‚Μ‰Χ1wk.//½VΛ–-œ;8η' τΆ-ΝΥ0žΪ^γ€Ϋb € € € €@D4G΄πl@0 hcU½χͺ@σ-gK[?―άμi—Iǎτήx–=šƒΪ`mαͺ)ζ`υ$ΠΜ-¬³4禲Φ~ΎLyPϊη‹΅7YΤN:θ0iσoΐ0©₯rnΐζμρ 4gohνχρΎ­h³ί!W@@@@ˆ’ζ(U›½"€ rΝ!/pΒφBh^x FŒή½{&ξΩfώšΓ?ώρ/sΜjΪ΄iqση/sΟύUλJ6θ€Ίλ˜o‘o~σHΟρI/’€‘@s”M6Ύθι;₯w/υzτ“ΎrhεΏώ_O=Άz 4gJ 9{C«Ώνh³ί!W@@@@ˆ’ζ(U›½"€ rΝ!/pΒφBhž|·τΞΜΚέt„4ζφ„ζφ)ζ`ž6‡AX[ΈjJ 9X= 4sKœ΅sη.u‘Φ―Ϋ nΈV]Ίξ―ΧgΝvBΗ/θ—wά¨O<.qŠησgŸ¦ϋο{X3fNUϋφ5QΗ„ΓΣzδ‘?θΌσΞΦΡNθyυκ5ΊύΆ{ΥΓ 6ε/«yσfžΧφλ Πμ'”^ΏΝŸ/fk^zF­Χ|€6«H₯_€ήT~ΤΟ 54ηC€.½SΟA/ζμ 4gohϋχ1ζπΧ8ϋr@@@@( hŽR΅Ω+ €! Πς'l/ζς]ΔΣ€έε•»»ΰ&iΘ·všΫ§šƒyΪamαͺ)ζ`υ$ΠΜ­ϊ,2Ύηž‡τΦΏώ£η§<©όόόͺξwήy_—]z¦NϋcΚ;5οΩ³GΛ–­ΠΓΏyLsζΌ₯ΒΒB½ϊΪσjΧmΥ΅ΜΙ₯ŸjΤYκ©?NΑͺκ+--sΪ/ΠΉNΘyτθβͺφLO4g*–|ΌΝŸ/fΕ .Œ}υληά‰yνRι£Vώ[ό~ς UomΫ©2Ψlξΰ<Π 8·lS½7'ηš³g$М½‘νίΗšΓ_γμwΘ@@@@’$@ 9JΥf― €„\€@sΘ œ°½Pš;Kzζ+wΦ’•tΗτ„]ζώ)ζ`¦6‡AX[ΈjJ 9X= 4s«>kΛ–­:ξNσ -ο](Ώ @γǏ­>­ΖωŠ«tζηiΔiΓuΕ?Šέ‘ω§Χ]₯ΪΧ7eΚt}ψΑBύβΦ 5ΪΝ“ϋΏzςΙΙΞέ›οU^^^­ώt4§£δ?ΖζΟ³ϊζκΫ)ί)-™η„›ί© 8―_U½7ωyώρ€sηNΞ9xhΞ‘@sφ†Άh³ί!W@@@@ˆ’ζ(U›½"€ rΝ!/pΒφBh~δ§’{Α£O•F^°Λά?%ΠΜΤζ0k WM 4«'ζ`nΥg½ϋξ\έρΛϋυάσO¨iΣ¦Υ»bηΌDW]y^yυω€ύ‰ΜŸ―7Q7έ|]@³iι΅7ιŒ3OΡΡGž8M |€_?ψ[Mzτ>Ν΅tκ·ΑζΟ#αhNdΪϊΉ΄θνΚpσ'οIΫ·%ލωΌ°ΉΤχkΝ›»7ΕΉ{sη^5ϋΣ|F 9M¨Γ4§ΐI³ΛφοcΝi2Ε0Ϋkœbιt!€ € € € PK€@s-@@ ± hn¬• ΆξFhήΊQΊεœψζΗ=$υ^G€e@IDATgšƒΑΪ`mαͺ)ζ`υ$ΠΜ­ϊ¬Ι“§hσ¦Νϋγ1Υ›«ΞKKΛtπ³4ύo“Υ]Ϋͺv――@³oBΛέ»w­u3gβ„[uΰ½tΙ₯x]Ϊ·;4ϋ₯5ΐζΟ³΄Ν‰»]ΎPϊψΏ•gsξχhΫ©2ά<ΐ 7tώ΅lγ7#ΦO 9-¦”ƒ4§δI«ΣφοcΝi•1ε Ϋkœrρt"€ € € €  @ 9„§ € Πx47ήΪYy£4Ώ>YzωρΚ­wθ"έψt†ŒηhΘ,6Αζ k WM 4«'ζ`nΥg=χά Ϊ°~ƒg yǎN y”¦Nϋ£Ϊ·oW}jσTζ€œΖiΣ^=wZ/LF;οη5Μ·@³/QZlώ|1hΎϋe•ΑζίuŽοH›ΧWοM~ή£Ύ»7;wpξ7$ω§•@³'MΪšΣ¦ςhϋχ1fΟ₯έa{Σή@@@@p4σe€ €‘ ΠšR¦΅‘FhΎν\iSIε^OΎHϊξχΣΪwΆƒ4΄9(ΐΪΒUSΝΑκI 9˜[υY&ΠΌ½l»ΞΏ`tυζͺσΊ 4›πσΓΏω½žxβύφwΏ‘‡­z]―“mΫΆiνΪ΅I»+**΄hΡ"mΨ°ΑΉΦ‘jέΊuq έψΡGiΰΐ ½ ΟΧ·}}Λ–-S~~ΎzφμιΉ‡L; ·¬SΛU ΥrεB΅Xσ‰ςvοJy‰ŠόBmο>@e ŠύΫΥΎkΥψυλΧkΣ¦MΤΈJ$σ“Ε‹«E‹κΡ£Gζ“λaFII‰6oή¬Aƒκώ―¬ݎνίǟ|ςIμ=ΊkΧψχNΠ½ΦΕ<σ9c>o P—ΟΙ5Νϊ†υάΜΙ‹q@@@@κX€@ssy@¨?ΝυgmΓ+5κ@σŠEWΖoyV2ΞΌšƒ!Ζ-˜@ζ³4gnffhζV}VCέ‘yως•Ίτ’q*-έ?=ύ¨<°Wυeyžhφ€ΙY‡νAΘΊ4'β΅tBΝ-VΜW«Υ©ΩΖU‰έ΅žοnΥN₯NΈy{ΟΑZΡΌ£ΦoΫA Ή–Rϊ šΣ·ςiϋχ1f―Κ₯ίN 9}+F"€ € € €Ψ/@ Ωώ±B@HS€@sšP!Φ¨ΝS”ώωbe%ϊ;wΣΊβžz« ζ`Τšq &ω,Ν™›™šƒΉUŸυΚΛ3υφΫοκ·N¨ή\u^ςΩ:}ϋc4sΦ΄Ψ]q«:M*ΘΝ)ˆ’>%М”Ε·Ρζ0kσ-_ΆΊhNZ.ίFΝΎDΎ***tΖηiτθbsΞ™5ΖοΨ±C§œ|Ž~vύ8ό±±Ύ₯K?ΥϊυuΔ‡ͺI“&5Ζ›'©ΝoΎωoύτΪ›4eκSκή½k­ΉΩ6hΞV°rΎ­ο“ξξ<Πμ.ΔΛwJ&Τό‘sχζή‘6¬ήλ}ž_ π•Κp³ 8› sQ;ορ9ξ±½Ζš³/Έν5&ΠώgΏC€ € € € %ΝQͺ6{E@ δšC^ΰ„ν5Ϊ@σοopώLωΏ+wsΨ θλvV·O 4σ΅9 ΒΪΒUSΝΑκI 9˜[β¬yσζλ’ ¬[~q½†ςσσUςΩ:]{퍱ΠςO>β΄5M{ξΉτ»ί>»£sΣ¦•mΥ―ηh6ν£ΞΊ0„ΎxΜUZZV}ZμάΌΖώϋ;w² ψ Π.ašΝŸ/f©Všμ΄υsmyσU,ύ@Ύ(‘>,q„χσχœ;GηnΞ&π\GΫkL 9ϋΒΫ^cΝα―qφ;δ  € € € €Q Π₯j³W@B.@ 9δNΨ^£ 4oΫ"έ82Ύ“±χIύ†ΔŸΧÁζ`Θ6‡AX[ΈjJ 9X= 4sK6λwήΧUWώL»vνR·n]΄vmIμΜ7έό3΅lΩ’jΚ+/ΟΤ¬ΧgλΎϋnW^^^U»{βhήΉs—Ξ<γ\•”¬w‡Φ:φμΩ#vχζdAιZƒ“4hN‚ ΙζΟ³«ΝΞϊΦ¬YγάΕ|½†*•~!}:_ZΎPZ±HZω±΄kGzU)hζ„šT†œ4!gηNΞ9Ί‹³ν5&Πœή—HͺQΆΧ˜@sͺκ₯Χg{ΣΫ£@@@@¨ ΠΜW €„F€@shJ™ΦFe ωοS₯&Uξ―mGι–Ώ€΅Χ\"ΠLΣζ k WM 4«'ζ`n^³LyΛ–­2ΗΒΒB΅ςje;ζά”ΕζΟ³ΓFhNV’ΥK*ΞΛT3Ή‹sΗΥξβμœ{τKφ ΎmΆΧ˜@³o }Ψ^cΝΎ%τ`{}7ΐ@@@@ͺ h†Α) €4n͍»~™ΎQšο½ΤΉ]ίΚ­žp4ό‚L·υxΝΑm °ΆpΥ”@s°zhζΦYšsSY›?_Μ} 9±Lζ/y˜;8»Μ]œΛw&ŽJώΌ°ΉΤσ+NΘyίœtBΞ-Ϋ$[­ΥφhV¬€§ΆΧ˜@sΐΒV›f{«-•S@@@@|4ϋ1@‹ζΖR©ά¬³ΡšΧ­”ξΊ(Ύωώ$™»λΥσƒ@s0p›ƒ¬-\5%Π¬žšƒΉ…uζάTΦζΟ³ΓΠš“•mυβxΐٝ3Ή‹s§ξϋΞ½€s·>΅^ΑφhU²Œl―1ζŒKZk‚ν5΅`@@@@H!@ 9] € ΠΈ47ze»ΪFhžώ¨4{JεΆMΈδͺ³%4Ÿ@s 6Ω`mαͺ)ζ`υ$ΠΜ-¬³4禲6Ύ˜F"МXΚΨ]œHŸξ»“σͺOΏ‹s³Ξ]œ:wqvΒΝζgΡ^ƒτώΗK4tθΠΔW±ζ9ζμKaϋχ1ζπΧ8ϋr@@@@( hŽR΅Ω+ €! Πς'l―Ρšo(–J·VξbΤ8ιΘSvT?O 4sΆ9 ΒΪΒUSΝΑκI 9˜[XghΞMemώ|1;Œd 9YiM¨yΉr6wp66­K6*iΫφέΤβΗUφ5i"΅l#΅n'΅wώ9ΗΦΞ±•ΣΦ@ΝΩΓΫώ}L 9ό5Ξ~‡\@@@@ Jš£TmφŠ €@Θ4‡Όΐ ΫkTζ…oKύ<Ύƒ»^”Μ]ςΰA 9ΊΝaΦšhVOΝΑάΒ:‹@sn*kση‹Ω!f:Ηξβμ›—Ν—V,rŽz Μ Ω›έ€³{{ξ„žΫvŠ‘ΫwΞΰ’ώC 4ϋω°ύϋΨΪ@σ¦mzηΪϊΡ\εmί¦fύΎ¦.G+uοηG^ούΆΧΈήAxA@@@@F-@ ΉQ—Ε#€ €@uΝΥ5Βή¨ΝOέ.͝]Y”―+Cƒˆ@s0z›ƒ¬-\5%Π¬žšƒΉ…uζάTΦζΟ³CΝΤ9vη}wpŽέΕΉ$ƒΙmΦrί]žχέαΩ B»hsχgχ.Π>w&М‘}’αΆΫh.™ς{uωη³I4₯]R§+οZ%νoˆFΫkά&Ό& € € € €@γ ΠάxkΗΚ@@ A€@sHȟ6š@³sG/M<=^Kœ|Πaρηυ|F 9ΈΝAΦšhVOΝΑάΒ:‹@sn*kση‹Ω!ζ,κlξβμάΑω³wίTΧVΝ₯Rηyι’i7Μy}=άΐ³{ηg7μμW|ώ…φ ό†ϊτιS_«ΙθuV­Z₯ 6hΨ°aΝ«ΟΑΆΫh^ς›[Τoι›)K΄²UwυόωΓΦ„šm―qJL:@@@@H МΒS@hΌšo킬ΌΡšίzIzξΚ-Άj+έ>5Θvs6‡@s0J›ƒ¬-\5%Π¬žšƒΉ…uζάTΦζΟ³CΝΩΧ9eK·:αfη_ΥΡ„«=›6'όlΡε»²_PΆWΘ/š:Μ1??~ήΤ9΅™ώjν±ρϋϊ™WuύΚklΨΌE[Ύά¦ώ_ωŠ”ΧΤω—'5qώ™£ϋά«ΪLΏσΌib›Σ^θΛλΰ‘²Ζuπz™^¦@sΙάwΤε© imaaΟ£tΠ5·¦5ΆΩ^γΊή?ΧG@@@—ζpΥ“έ € iΝΡ*£ 4?x•dώ΄·y|η,iΔ₯•η τ_ΝΑΰm °ΆpΥ”@s°zhζΦYšsSY›?_Μ 4g_ηœΧxσΊΚ;<—9‘δΛM5Π&mξόόεζʐtΩ—Ωo δW¨pΒΧ{τή}αθ½ΚsΞ›8mζhBΡN_“&*,ΘwrΪϋB±°΄s Uηi[Ωv΅i³/TmΪγ}Uη&p]c^˜X ;ΰ\7δx},wK—.UQλ"uξάΕYc“}œυ˜GlΣ&Σξ΄ΕNΝΡ·―ό3Ψ·/aΌ™œt\|όͺ_ŒΡeŸU^+ήρ‚wiΞωχq:{g  € € € €u$@ ΉŽ`Ή, €ΤΏ@ΤΝ_:w{υΥΧυΦ[Ρފ½:μπCtIΗ«];ηΐi<ΆlΩͺ™3ίΠή~W{χξΥ‘ίͺ㏎:uκrv™σ’Ώϋξ\sΜΞ·lώOεΚΗξέ{4kΦΪ½{·Ϋ;–—οVΧ.ϋλΘ£«Ρžι“FhnΧΉ#σyρ­]ΈΤΉgόyœh†nsP€΅…«¦šƒΥ“@s0·°Ξ"М›ΚΪόωbvH 9ϋ:7x·UΏλ³{nŽ•w}ήV²Fω»ΥΌ©NένάΪά:ρ˜=W@ ₯ΐš&­Υ}oνώό“―ΣΑί=!εάϊθlπογϊΨ$― € € € Ν‘)5E@ όQ4―\ΉZgœ~ϊθ«+―ΌDzκΙΙϊΰƒ…ϊσ³ΏWίΎ¦όψδ“%}ΞΕ±ω_|žšκ©§ώ¬χίPΏΓC:τ«Iη›ΰσ΅γoԜ9oiζ¬i5ΒΣ7nχN8ScΖόΠ 5ο©1ΏM›Φ:χΌQΞM²φέM«FozOE ω“9Μ§+7Τ£Ÿ4ώΡτ6W‡£4Γ΅9(ΐΪΒUSΝΑκI 9˜[XghΞMemώ|1;$М}m―ρ‡~¨V­Z©OŸ>©7»s{ν sUπΉGgŸs¦L˜ΉϊόiΣ^ύχ=¬ΧfLQQQ«ZσίxcN,Π\θ _}νωζ>X ϋοXO<ρpkΦΊHΐ†FhώΣDiλη•;ρζ›oΖ~ώ(..v~ώθ˜t\C7Ϊόώmll_ζμΏ‚m―1ζπΧxήΌy±0s―^½²ίl–WxαΎ{tϊκi]εν‚^:όξ?€5ΆΩώ}\Χϋηϊ € € € €α Πz²@"-Ε@³ Ÿwξ₯ϊ‰66lHϊόρ’Ψ˜Ÿ{ώ 5mZσΜf‚_ΰyΚ”ιZη܍Ήz ϊ™§Ÿ—iŸ2υ)•——λ€α£jšMΫ)'Ÿ­ώN˜ω­ύ§ΖΊΖ޽Xη_0:ιZj τybs yαΌΉψτDενήUΉ‹ o–ΎφMŸΥO7ζ`Ξ6X[ΈjJ 9X= 4skΜ³ΆlΩβόΒΥRΟ-¬\Ή2hͺsγƍڼy35Ξ’Λ–-‹έ½·[·nY\₯ξ¦_Ώ^ζ½hΐ€uχ"Y^Ωφοcσ>^TT€Ξ;gΉΣμ§―-­POη/μ|΅b}Κ‹mU3½xΨ Ψπ!lw‘C‡uO9"€ € € € Π¨47κς±x@¨.Υ@σ%cΖις+.ς 4/]ϊ©Έ|Ό^yυω€!β>Xΰτ_«Y―OS‹-ͺ“Κά‰ωŒ3ΞΣώϋu£Ώ½?6ί\oΤYκε—’.];Λά11Π\β O>i”ΪΆm㦋3ž?‘Ζ\|΅Nq’&LΈΖωΎΞίπ ψ°9ΠΌfϊSκ>ϋO•;kΡJΊczΐ]ζ~ζ`¦„†q &ω,Ν™›™šƒΉ5ζYά‘Ήξ«gσgŸΩ=whΞώkΐφs‡ζπΧΨ¦;4ν?-ΡOΤΡ{V&Ε7aζ?s.+ώvώ†h΄ύϋΈ!LxM@@@@Ζ+@ Ήρ֎•#€ €@‚@”ΝW]u©Ύϊ΅ƒD*ŸϊšM ¨Έψ|υξu€ξΎηV5kV›hξώ|ύhς3Ολ’‹~»CσŽ;uڈΡ;vŒFœ6<6.Y ωΛ/·i€ΗeΦΥΌy³λZ³ζ38u΄žύΛγΞλϊΤθK|RZZ U'Ά›ηsζΜΡκΥ«΅Ϋχ§δ·έs…ŠΦ~RΉμcFHΕW%ΫBƒ΄hΖnsP€΅…«¦šƒΥ“@s0·°Ξ*++ӌ3bwhΆρηΧέζχo³FΫΧG ΩύJ ~΄½ΖšƒΧ֝i{m 4·ε›wθυΙΦ~Λώ£―W¬S/}‘Ώ79@iU9r”ŽΤΓε΅βh{­@b € € € €F€@s£) E@?(šSέ‘yΩ²ε2wqž1sj;4WsGεsp‰σg±·θ‡ηŸ»Sσ?£ΑƒΏ’£Ž:\;vξΤε—_€~5Iλ֭םwέ\uwεςςr ?ρ,ύνΕ?;½ζž“ΥΜ₯'NΌM'Ÿ|‚Ž9ζˆdCͺΪζϟ―Ξk'{Ψϊ§δ ΚΆκΰ)·W-ωγ“RY§ͺž7τΙ’%KΤΊuk+ώ¬s’…ω“ΨνΫ·W§N»όΉΝ›΅ϋς°ΥνσΟ?Χ¦M›œ_ψθlcu8Λ|Ξ~ρΕVΝΑ·oί>}R’Lςx^zΥͺU0`€θ9†Žά h΍§ν!9ΝΩΧΩφhm 4»κ[ΆοΦkο/–ω%Ϋγ=X½Ϋ7w»¬:Ϊώ}l‹A@@@°^€@³υ%b € @TΝ׎ΏQί;ρ8pΒw’R½ρζhφμ7υ‹['$νwwοή£?X η/Œ5 τzθΧυΠCΏΣ~ϋuα‡’³F^ 1c~¨ΑRωςΨΈ]N ωηN@ωΚ+/Q/η.ΟG}Έ–,Y¦ŽΪ«KΧΞξεk6ύU-vƌ?ΆF{β“υλΧΛάA:Ωγ½χήΣΪ΅kν»Cσ;3₯ΙwW.y'Θ<α‰dΛo°6ξΠŒήζ k WMΉCs°zr‡ζ`naE 97•΅ωσΕμ@sφuΆ½ΖšΓ_c›ΝFωςεΪΊu«† ’}1κθ ΆΧΡΆΉ, € € € €@H4‡΄°l @( D1ΠlκόΚΛ35λυΩΊώ_Vέ5Ω­Ώ{7δ―}m°F.v›kΧ¬ωLΟ>;MΧ\sΉςςςjτΉw_žτθύΝsΫιχ=»ΛσΝ»bγ ›jswg˜1bΈφTμΡuΧ]­˜€ƒ>H§~Rλ™'fM&„]\|j,ό\k@š ―½φšΜ]šmόSςŸόηMu\ρ:φξ'}γ„4wT?Γ4sΆ9(ΐΪΒUSΝΑκI 9˜[XghΞMemώ|1;$М}m―1ζπט@sψkœύΉ € € € €@”4G©Ϊμ@ D5Π\βŠO>i”ž~ζw4h@*/]ϊ©Fu‘¦OF=θλϋοίWQQ‘μ{ΎbΕ*yΖyzω•ηΤ₯Λώ5ζΏςΚ,έ{ΟCš9kšςσσkτΉOφμΩ£γΏ{†^|ιY΅jΥ2ΦlBΦχήϋ͘9UξΠΨρΣOWhdρωš:νκέ»gΎLžΨh^°`š7oΎ}ϋf²₯zK 9³ΝΦšhVOΝΑάΒ:‹@sn*kση‹Ω!ζμλl{ 4‡ΏΖšΓ_γμwΘ@@@@’$@ 9JΥf― €„\ ͺfSΦ§Ÿ~Nζχzτ·χΛ܍ΉI“&š?‘Ζ\|΅.ΌθΊδ’σcΥ7wG>οάK5t؍?Άͺνšqυώϋθ©§&©χ=΅{χ͚υ†nψωνϊΝoξΦ‘G›μ?₯₯e:υ”sbesgσ0wp>σŒscwuΎσ›Υ£G·XϋάΉσuρΤ.>OW\ρ£X[Πh&G 9˜›ΝΦšhVOΝΑάΒ:‹@sn*kση‹Ω!ζμλl{ 4‡ΏΖšΓ_γμwΘ@@@@’$@ 9JΥf― €„\ ʁfTώΛ_ώͺ{ξώ΅š6mϋ·kΧ.»ζrύΰg)///V}3nβ„[u䑇iΔiΓ«Ύ"LωΑΥ_žVΥfsί}·ι›ί:ͺͺ-ΩIyyΉN?ν±;D»f3¬l»s—ζ‡4ύ…Wbλ1wr6Ÿ]?N#GލZS¬1ΐ4@s¦hζfsΰ‡΅…«¦šƒΥ“@s0·°Ξ"М›ΚΪόωbvH 9ϋ:Ϋ^cΝα―1ζπΧ8ϋr@@@@( hŽR΅Ω+ €!ˆr Ω-­ 1oΫV{ΪͺU+5kVθv₯u4!δmΫΆ©  @νΪ΅έι9­‰)™°΄ =WTT¨eΛΚΟΟO1:ύ.Νι[UI ΉΊFϊη6~X[ϊu¬>V7ΝΥ«”ώ9ζτ­’0’@snͺlλϋ€»;ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐD΄™@sn oλϋ€»;ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐD΄™@sn oλϋ€»;ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐD΄™@sn oλϋ€»;ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐD΄™@sn oλϋ€»;ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐΤqσκΥkυ‹―iξΌω*jΥJΗ}χΫ:α„ο¨iΣ¦½ς²eΛ•Χ$O½μ™Ρ<―Αš½d2k·υ}݁fW"ψΡφh^[w¦ν5&ΠμV*ψΡφί3@@@@’(@ 9ŠUgΟ €„T€@sH λ±-Ν0>Νš}€<Ίm °6’ω4ΫκF Ω§pέš=`κ°ω7GΧ^{£N9ε{:εΤ΅iΣ&έρΛϋcaζ_zV­Z΅LλΥ7nά€sΞΎHgœq²ΖώxLZsόhφJ―ίΦχIwυš]‰ΰGΫkL 9xmέ™ΆΧ˜@³[©ΰGΫk|gΜD@@@ˆ’ζ(V=#€ RΝ!-¬ΗΆ4{ΐψ4hφςθΆ9(ΐΪ<ŠζΣl«fŸΒythφ€©£ζ’’υ:ω€Qzΰ;τΝoUυ*»wο֏.ΊR½{χΤ-ΏΈ^Mš4©κK<ωβ‹/υ朷tγwΔΊ.½τ]βόΛΕƒ@s.%[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω¦ŽšτΈV¬X₯;ξΌ©VhΩ„Gœ:Z{ρΟκe€+Ψ»w―&NΈU³gSwήu“:wή_3gώ?]}υeIΗgΪH 9S±δγm}ŸtWK Ω•~΄½ΖšƒΧ֝i{ 4»• ~΄½ΖΑwΖL@@@@( hŽbΥΩ3 €! ΠΒzl‹@³ŒO3f n›ƒ¬Ν£h>ΝΆΊhφ)œG7f˜:h¨¨ΠY#/Π 7ώTC‡~΅Φ+˜°ςθΡλΊλ°aCjυ'kψψγ%zνΥΧuυ8ΝΙ|ͺΝΦχIΧƒ@³+όh{ 4―­;Σφhv+όh{ƒοŒ™ € € € €Q ΠΕͺ³g@B*@ 9€…υ؁fŸfΝ>@έ6X›GΡ|šmu#ΠμS8nΝ0uΠ\ZZ¦οP¬_ϊ³Ϊ·o—τ&Ož"3n̘&νOl$М(bΗs[ί']ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐΤAσŽ;tπQš:폞ζ)S¦k]Ιzύρ˜΄V@ 9-¦zdλϋ€ A Ω•~΄½ΖšƒΧ֝i{ 4»• ~΄½ΖΑwΖL@@@@( hŽbΥΩ3 €! ΠΒzl‹@³ŒO3f n›ƒ¬Ν£h>ΝΆΊhφ)œG7f˜:h6ζSN>G}αi΅n]”τž{ξmXΏ‘NΝΫΆmΣΪ΅k“Ύ~EE…-Z€ 6θΠCuΦΩ:ιΈ†nό裏4pΰΐ†^†ηλΫΎΎeΛ–)??_={φτάCCv¬_Ώ^›6m’ΖYaρβΕjΡ’…zτθ‘ΕUκnjII‰6oή¬AƒΥέ‹dyeΫΏ?ωδ“Ψ{tΧ]³άiέL7Ÿ3ζσfΐ€uσ9ΈͺYίΠ‘Csp%. € € € €@Γ hnψ°@Θ‘ζA6’ΛhV(ΝΑάl Ώšέ°ΆpΥ”@s°zhζdVΊwh^±b΅Ζ›ΦKΉCσ–-[΄tιRΟλ―\Ή2hͺsγƍ±°+5^ZoήΌΉΊuλό"u8Σ„ΦΝ{‘ΝaWΫΏΝϋxQQ‘:wξ\‡• ~iZ/--UίΎ}ƒ_€fhd^@@@@ ^4Χ 3/‚ €υ!@ Ή>”νy ΝΑjA 9˜‘aά‚ d>‹@sζffζ`nAfνΨ±ΣΉCσΩzςΙ‡Υγ€δA[o½[Gy˜Ž?ώΨ΄^"H 9Υ…ΛΚΚ4cƌX ΉΈΈX;vL5ΌΑϊlώl1(Ά―oαΒ…*,,TΏ~ύ¬†©^x͚52W›ƒ†ΆΧψΓ?T«V­Τ§OŸTΤ Φ·jΥͺΨϋΜ°aΓl ~/l{ηΝ›§vνΪ©W―^~[i~σ‹[·nՐ!CδυΣyQΫkœΞƒ € € € €€+@ Ω•ΰˆ €^€@s£/aF МWΥ`ΝUΨ`m•²j°­nš«J”Ρ ζŒΈ²Όwο^];ώFuΤa*9’Φ΅ΚΛΛcηΌKƒ ¨ΥŸ¬@s2•†o³υ}•!ΠμJ?Ϊ^cΝΑkλΞ΄½ΖšέJ?Ϊ^γΰ;c& € € € €@4G±κμ@ hia=ΆE ΩΖ§™@³G·ΝAΦζQ4Ÿf[έ4ϋΞ£›@³L5Ο™σ–&\«^›ρΌŠŠŠjΌΚΛ/ΝΤ}χύF3fNUAAvοή£Ω³η8w·Νš}€<Ίm °6’ω4ΫκF Ω§pέš=`κ¨Ωά₯ω’1γTR²N=φ Ίtν .Ϛυ†nψωνzτ·Ώ7Ύ14φκ₯₯eϊξq§λΑ_ί©Γ;$ιŠ4'eiπF[ί']ΝDπ£ν5&ΠΌΆξLΫkL Ω­Tπ£ν5Ύ3f"€ € € €DQ€@s«Ξž@©ζΦc[š=`|š 4ϋytΫ`mEσiΆΥ@³Oα<Ί 4{ΐΤaσΝ»τΏϋ€¦ΏπŠ:uꠍ7©iΣ¦ΊWΏΤ1ΗQυΚ;vμΤ)'Ÿ­Iή―ώύϋT΅W?‰š_{]W_}Yυζΐηeeeš1c†6lΨ ββbuμΨ1π΅κr’­οCξžm_f·RΑΆΧ˜@sπΪΊ3m―1f·RΑΆΧ8ψΘ‰ € € € EΝQ¬:{F@ €šCZXmhφ€ρi&ΠμδΡmsP€΅yΝ§ΩV7Ν>…σθ&ΠμSΝeeΫ΅cΗ5iDmΫΆQ^^^=Όjκ— ΠœΪ'έ^[ί'έυhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ"ΠμγΣL ΩΘ£Ϋζ kσ(šO³­nš} ηΡM Ω&’ΝšsSx[ί'έέhv%‚m―1ζΰ΅ugΪ^cΝn₯‚m―qπ1@@@@ Šš£XuφŒ €@H4‡΄°Ϋ2ζζΝ›kΏύφSAAΗ¨†i.--U^^žZ΄hΡ0 HρͺΫΆmS~~~Μ.Ε°ι2k3΅lΦ¬YƒΌ~ͺ5k+**J5€ΑϊX[0z[έvνΪ%σΟΖ―·;vhχξέΦmϞ=jΥͺU°/ˆ:œeΒ΅ζσjΰΐuψ*\ΊΊ€hnίΎ½•?'Έk΅υ}¨±¬Ο柷ŒαΝ;U^^nε{&5v²;š›ΟμΦ­[gw‘:œέήglύί&¦,6μγ~٘χΒ‘C‡ΊO9"€ € € € Π¨47κς±x@¨.@ ΉΊF8Ξηϟ ƒ$ۍ ˜σ»iΣ¦ΙΊ΄­’’"φϊ&ΤlΫcοή½2l[›Y“y;kκ―I“&V•Τ]—YkKΏ4›mffζ{ΐ]—{Lgu;]›mλͺξfλΪΜ/k 2€n ±«oΩ²EK—.υά΅ ’šΟ?SΜ’m~rQm_£Ν?oC›ί3Νϊάϊšsί;έ5šuΪφs«Y›y˜_€1k³Ω―r₯ΤΨuΘτhϋχ±Ωω0`€ΥΑϊLݏ € € € ]ΝΡ­=;G@ tšCWR­_Ώ>v7Πd;ΫΈqc¬Ωά‘ΩΆ‡ωZ4α΅:ΨΆ4}φΩg±;G·kΧΞͺ΅™°@IIIμ.†mΪ΄±jm掴ζk±mΫΆΦέύΥϋΝχ‚©gΛ–-­rΫΎ}»6oή¬Ž;ZwΧms'»­[·jύχύb„Mp_~ω₯ΜΏ.]ΊXΰ2fΖ[·n6‘ΕΦ²iӦ؝P;wξlέΪ6lΨϋ:;θ ƒ¬[[c^Ήk¦©»ΧΓτ™ΟN0k6wMύβ‹/dΎfm ]»Ÿ}ζ3ΩΖ;ΖCσΩlΒ€:u2O­{˜ϊš:wνΪΥΚΐ«Ν?CΈΕ΄ωgj³F›?ΝϊάχIσΏIΜ_ °ρaλ6q­ΜΟ²ΖΡ|ΫψpkL ΩΖκ°&@@@@ šƒ¨1@¬ ΠleYκlQ‹-Š]{Π AuφA/όα‡ΖBΓύϊυ z‰:›χή{οΕ¦½zυͺ³Χras‡»ΉsηΖBœέ»wr‰:›cώœΈΉ[ψ ΐΦΩ Έ° J}όρΗ:πΐ­ Π›Θ²eΛ¬Όcœ ˜\ΉRƒΆ.ΰ³vνΪΨ/˜»ωš»ΠΫτ0fΖξC±iY±΅˜;υš°υΧΎφ5λΦφΡGΕ‚΅šλ·46œ`$Μ/ρ¬Y³&φ5k~ ΚΆ‡ Ι-X°ΐΚΟ>ΧΚ¬ΟΨ™ ŸS_Sη‘C‡Zχ *ΖΛΌgšχ§ή½{Η~6΄Ρπƒ>ˆύ2YίΎ}m\^μg [? ˜ Υ/^ΌXΖΟΆ_ft ϊώϋο«}ϋφ±―C·Ν¦£ω?OΜ_0ίΗ6>άΏV@ ΩΖκ°&@@@@ šƒ¨1@ίή}€ΛU•ώB Š©*EΈ‚ˆΚEE -@B ‘„NB EH τ@!‘'΄PR ‹5€ˆ € "‹4I ΐέkί;η?§ζ΄™ΩsΞ;Ο£gf·υνwMYyψν΅ R@ ΉέR±’ŠThξx· 4wά,ν!Πά97ζΞΉ 4wΞM Ήsn]έ«Θγ„tnΝ]ναΘΧ͝whξΌ]iΟ".¦šK=ΥωΏ͝·³' @€ @€Ξ4wFΝ> @€@!š Ω-+ͺΘA%ζŽw»@sΗΝ͝shξœ[‘ƒ[fhξ\Ÿφ佊ζ 4wΝ/ν]δίΕTŸ@sRθΪC Ήk~φ&@€ @€ ΠQζŽŠΩž(¬€@sa»¦"…9¨$Πάρ.hξΈYΪC Ήsn͝s+rpK Ήs}Ϊ“χ*ς8!Ή 4wύέ'Πά5Cζω₯½‹ό»˜κhN ]{4wΝΟή @€ @€:* ΠάQ1Ϋ @€…h.lΧ(Œ @€ @€ @€ @€@«Ν­XA€Τ›€@s½υ˜z  @€ @€ @€ @€D4{ @€=F@ ΉΗt₯!@€ @€ @€ @€θEΝ½¨³*θιΝ=½‡ @€ @€ @€ @€@Ohκœ @€@/hξ₯ο΄  @€ @€ @€ @€κZ@ Ή»Oρ @€@Ή€@sΉ†η @€ @€ @€ @€κC@ Ή>ϊI• @€@;šΫd @€ @€ @€ @€h.X‡(‡θΌ€@sηνμI€ @€ @€ @€ @ VΝ΅’Χ. ΠνΝέNκ€ @€ @€ @€ @€*. Π\qb  @€Υh–΄v$πΡGΕ―ύ»ΨpΓυ£oίΎ ΪΌ*λ_xώΕΈφΪYρΘ#ΑK/_ως:±Ι¦ί‰ΕT•φΫjδ駟‰[o½+ώόπ£±Β ΛΕΪ_ό?ρνo£΅•םϊuΞ―λν+Ρ―_ΏςUUώ<>ϊx³vί~f·a,ΉδΗ›­«ζ‚^x)οΣ{ο} τοίωΞ7c³!ΧΜmώόωqλ-wEŸ…ϊ΄Θ°Θ"‹Δ:_όB,»ά2-―ΖΒόηψε/“F_{υυXyεΟΔΩwΘ:λ|!ϊτiΉξjΤ•Ϊ˜?ƒ¬Ά9ρ«_ύ.ή~ϋνXu••cΣΝ6ŽΥV[₯Z%4jη­·ήΝΦ_+–—^”κ½σŽ_ΔoΌη «ΗV[ ‰•Vϊti BΰώϋΜ>G«ΖΗ>ΆD!κ)ρ—Ώ<Χ_CΌψΒΛρ©O­~cύψΖ7ΎV˜1MϊΎΌυ–;γΎΜoс³ΟψρΝ¬Ύ³Z‹ψxζ™gγΏ}7V_}΅B”Wτ1DBJcίύξ޸㎟ΕσΟ½«}nΥΊΝχσΏ΅D¬‡ρDςIΏƒΏωΝογŠgŸύw,·ά²±ξΊkΗFmi—³Έ3iIDATΜS„Gί~ΫέρψΟ?ΗfŸα7ώfΝƊΙdAγ‹΄ΝŸώτη|ŒϋΤ“ΜΎs–-·ά,Ύτ₯΅k>VK΅y @€ @€θ Ν=‘  4{#E ‡'žu~άqη̚K“Ι=χάϋοwX|νλλΕ.;osηΞ‹SO=;ή|σνΈφΊKγ3ŸωTΝθnΌρ–8aΒ1bΔπ,(όΥx> ^Ÿ{ΞδxχέΉqεUΖη?ٚΥΦ΄αž:φΨ“γ’K’ΦjΊΊͺ―Ο=η‚x" €|q΅β½yο5΄=oήΌΊν±Κ*+5,«φ“Π΅χ˜,”²Q ΆuΌφϊλqάψΣς ܍³―ŽΑƒ?Qν’b^ftα…Sb‘> 5j;ε„³ΜTL™ruμ΅ΧbŸ}G6Z_­)\6|Ψξ±ΦΪkΖ;lƒ[4žΚ‚>©ŸΏχ½oΕI'[³ a χμΈΓΘxν΅ΔΨ#ΚCQΏΚ‚ΧΧ_cŒ³oμΊλΥbΚΫωπΓcμαγ#™Ν˜yy3—ΤΧΓ‡ο/½ψrsΜaYHύ“qχ]ΏΜλMŽ›eAlExθ‘ΏΔΘέˆ .˜_]oέ"””‡H/»τͺ˜4ιό³.ͺHaΘO83 _wέe1`@šΦϊψ㏝wΪ3Ӏߘτ™ΏώΊYρΰƒŽρΗ‘_ΌPΣ›4žΖ\›n²mξvλmΣ›}g5ΩΌ*/‹<†H)4|πAGΖ}χ=G=&V\q…ΈνΆ»bφ·Φδw§ΌSŠ>žH΅¦πό°ν˜nzΨώ±Μ'—Ž—_y-_§υ·άz} ΄XzZ³ΗΝ7ίγǝ›lςνό3ϋκk―Η§8―gζ¬+k2V\Πψ"…μΟ>{R\}ΥτΨ=cέ/1ωΛ_cβΔσc‹-6ΝΏZ¨ρ8³fΐ&@€ @€ PΗΝuάyJ'@€ 47φπͺΊ|πA<™ΝΤuώyǜ9ΏΟg»νφιρρ¬Ί…4i-iΆψώ±Ηž»ΖN;mΧ°6ύGω N'ρtL™z~Τβ?ΐσŸŠm‡ξΪ, œj›tώ%ρσŸΟ‰λ§O)Dψηί~>ΆΪr§άoκΤIyπ΄³ΚO’O Ώž|ΚΈšΝΫΪ)Ώωζ[Ypk»<€”fΔ-=R(ΠΎΝ’yάρGj»«Ί>¦OŸΣ¦]‹eAβj?Rξ3κXk­5γ€χjΤό«―Ύ–}~wŒI“ΟͺIˆ>ΥvτQ²@γsω紝™<ΝΎλˆQquζVYGΣ{θ‘GΛΓΜ―ΏώŸψτ§WlhNυžqΖOβχΩ¬žΣgL…^ΈΑ3γφ5&fΞΊΒLΝ *žΤB έ1aφμ[γ’‹.Ο›/ΒE2%‡Ε—_19Ύ.-ηfΏ;»Εˆμ†ς±Di}΅ώ¦οm‡ŽΘ/όψΑwlΤl{₯‹ξΌkVaξ𐾓N?νάό‚Š4C|Ζ4©¦’Ž!Jš£—^zeότ¦koS>ψ¨Β~ΧzυšfΏƒ)°»ηEΊ»Αή£v+m^υΏ₯ο™σΞ?#Ύ–]ΜXz€χζc‹χή{/&ž}RΥώmžρEͺqNvχ±Y}ιbͺtG™γ•—_Νfiή)ƍC†|·΄Ψ_ @€ @€:) ΠάI8» @€Εh.^Ÿτ¦ŠJαά­Άϋν·G>CσαcŠO|bɚ2€Πΐ^{œ|ΚΓ}©¨tΛφ–ΌλξY10»e{΅i†ΧψPΜ퓦Κ-{€πT Ζή|Λ΅5…§ΘΠ,x½χ^?Μoί=lψ6Ωm»ΏXVmuŸ&›Ν‡ Λl+Lh«$f±ΎξΊβ²)η5 ’§Y5χήλΰ|ζς”v©ιί_όbNΨ=!ΜΡΛ,³tMjI3QέfDnΆτƒ›ΥpT(ήvθ5™Α5…t6ί|x*[vΩO6«mκ”iράσ/ΔΡGl]w/(͐Ύ{ε³9sΜ‰q~†κΫ·oCSι;mγοlέjΨν΄SΟ‰…Y$=t†}r—l\τ½feό2»sΕ„γOΟώ½uCv1ՎKšmh @€ @€ h^ ‘  @€zh—žκωu¦ΐŘΡGη3uΥ:Π|Ϋmwg·aΈΕΐa ΅lΉΕŽYXqZ6ή ͺwΜ΄i3ς@RΊe|ΣGš9ΝώšfZlΔnΊm₯__zΙ•qο½Œ .œ˜Ο€;jŸέjh~ςΙ§γπΓΖε3ο½ρΖ›ρξ»sσ[ΩΧϊ½–ήχi¦α4kζόOή-ιΆηiφοϊη―_~ω•Xj©OΤ, Wώ^y%»ύϊ¦›l—\ςγψΊk—―ͺκσR@λΠCφoZnk]5ŠL!τ4Csk³Š¦χβή{ΞCκεΑβJΧ6wξάΉϋqεU6 4?πΐŸβδ“&ΆZo:Ÿƒ·ή6½Ρ~•Χρ ΄&pΝ53cΥUW*D 9}ί€ί–‘ΫnΡπ^^χ#ό5~|ξ…1ω‚³jφž>ΓgŸ=)&g³Φ7½*έ)#]μsιeηŊ+._^zMž—.°Έκκ‹bΡEζτα»§¨cˆR'₯ϊ,Βwέ}Cώ==ώYΘy^n˜ϊ<+ Ύ΅ΎJ©ήτ·(γ‰RMιb£wήy§ΕΠr[λJϋWςoϊžIγϋtαΑZk―Ω¬©΄>%χΨsDMΎ[_€ΟσΝ†΅:|ιBΜ›nΎ&–\ςγΝΞΛ @€ @€Ϊ/ Πά~+[ @€h.xυ’ςŒ/J 9ƒίύH·:oϊH3’]|ρ5›10R ‹MCIivΆέwΫ?6Ψπβ,δYΛΗ£>{Œ<0nΊωΪ,ˆ»dήάwΏ‘5 4§ΩυŒΛ/Ώl<ύτ3 I3n·νqωε“γž?άγǝΠόjŸ[5N˜pt€ΏEx€Οθa‡K ώD‹ajטnSΑδ)ΩηρœX}ΟεŸ‰Ž™žΝb~α…Sσχίΰ¬Φj?N3ΐο·ο‘U'›½φ<¨Y 9]$ρϊk―·βJviΏxœύΣi… ΓU»_΅W"š“J -―°ΒrΝ>ι;3]ܐ~_φ΅[ΝSh9ΥτB§z½`ςeq㍷ΔνwΜ¬ω ©©Ζt±Η:λ|!>J3Kx@1.¦(κ’τ¦JcΣ§žϊgμΌΛ°,`lvQޟK«rΛfMUσš†Ζ[yR΄ρD*σ‘‡ώ’_τsΖβίόZ>ΦNwƒψέoο1cŽŽ .˜ΨμͺVN―Ϋ'―h>$»SBKw;)}vj5Φnm|± ρP©ξύφί³03Δw{η9  @€ @€* 4W Z3 @€@εš+o¬…φ €¨]”@sk§ n όδ'§ΕΧlΊ­m[ειγc/Ύτrόν‰ΔΎ°F\6弚†VR¨aλ­vŽcŽ=,Ύυ­ σU (Υ*dQꇳ'NŠ€=ξψ#cȐοζΑ4cαΕ_W_5=fέpeMf§L³ΪmρύcπKΕσΟ½Ο|Ός*Ÿ‰·ήz;ΌςΊΈ|κ5qω“σΎ-K­ώ¦pΩ°_Δ½Ύ3ι₯οŒαΓv43eΣG-ƒGιβ‚M7Ω.¦L=?V_}΅¦₯Ez/^Ÿ…o»}z³d³»qAk£TΛΛΩwΘώμΥbkι=šne?sΦ…θχ‹΄°W -Πάώ¬Y7Η§8nœ}u,³Μ­mVΥει{sω—Δoϋ‡HaΓ~ύϊe³ϊΞͺΙ'šžψμosΟ½ α.΅Ίψ£i]ιuQΗ₯Z“έ©§ž“ΟΒ,՚ώmω?ͺ]_kγ‹τNΒ͘yy‹ο½τ}”f–υ]\ͺν₯= @€ @€•h„ͺc @€5h »F[(z ωŽ;~–Ν΄xB<: ό`ΗΞ ϊ‹’Ω_ώςX6»κbϊŒΩΩ,rˆsΞ99›YξλΥ/&k1Υ3aΒι1χέΉqς)γςsΣ²"šΣμ…‹/>¨™MͺοτΣ΍^|)Ξ:λΔf!‘JC¦šΏύ­-³PΩ"qχΟnΜg,oσ²K―ΚƒΨwή5«ΩμšεΫUϊyrJ‘”U²°ukΑΧJΧP~όTΟ€I—Fς9βˆƒγ‹λ¬‹.:0^Κ‚ΉW^q]όαΔ΅Χ]ŸωΜ§Κw«Ϊσ~K³žNŸ15>ωΙ 2ήyΗΟγ¨lΖΦ4sτ­·Mo1ΰS©"[ ₯@σ»YΈ?ΆZz4·€bY-ŠhNίOηŸwIL™ru\xΡΩρ•―|©–\ΝΪώη?Οd{ΰ‡ς gφΨsΧΨwί‘ΝξόΠlΗ .H5m;tט9σŠXiεwwŒ"š‹:†(uI 4§ρΧ)§ŽM6ωviqώχΥW_Λ/œ:ν΄γβ›Υf|X^PΡΖ₯ΪζΜω}Œ>ψ¨ΨuΧβ»ίϋV|μcKδ—έ}χ/σ‹ΛΜΝίΩψ›₯Ν«ώ·Z>|μA±ΓC>―ιΈΩΕ–Οώλίqρ%ηΆ8ƒs₯‹mm|‘‚λ'L8#¦^>©ΕρNz/αί•φq| @€ @€Υh†²6 @€ͺ4W…Y#νHQ»ˆ34§ ΐΈq'Η―υ»š†…ΫA)Œ1φπρ5›mqΞ―ΗsRΦώ ω¬©ζΤ―iφ΅²Ω_ΧZ{ΝφœFΥ·ωχΏŸΟgήΎσ²ΠpίͺΆŸB iFλγ'΄0λwšνχ»owά9³¦³γΎςς«±ι¦Ϋ5 ›UͺIc₯πΫuΧO‰Ο~vεFkΣ{ξμ³'ΕΏ²pO-B꩘t›ϊΓ³ΩΣΣχΖ[l«f5^ΝώΞ;οfζ1ΩLάW΄:ca£“ιΖ­ŽΜΠ܍ΘU"šŸ~ϊ™΅χθό³~εUΔΚ+¦*&m$ύώm΅εN1uꀚύF§οΛνΆϋaμ1rDl΅υ†SIίσ‡ŒωQ~aΘB -Τ°ΌhOj9†(Y€@σΤ©Σ2«Λ[Η\vΩΥρφΫoΧ|–αToΡΖ©¦χί? }ο£Ημ—ίΕ#-+όβsβΈρ§Ζνẅ–―ͺκσϋο0ϋ~“±χυΓxιΕ—σ;>μΎϋ.ρΨcΗn»ν_]oέͺΦ”km|‘Ν0ΆΥ ΈJFΨcΟ±ήz_zέ$@€ @€ Π“š{Ro: ΠΛš{ω @§_Δ@σ£>ž]—_~ΩΈθβsbΉε–­©Ψ‡~Gq|;ξπ|Άα¦Ε$ÝvΪ3Ζf³·­»ξ›θλ4Σπ¦›lŸϋάgcδ#ς_Sƒ /ΌpœvΪ9Yθt•Ψf›οΗΦZ#–^zpEkizπyσή‹ϋξϋcξΣ§OΣΥyeΣMΆΛ¦ŸψΔ’ΝΦWrA l>dXœΝ¬έRŸ₯>έcδqζY'D΅k+?ο»ξϊeœ–έΞώφ;fΆ–*ίΆΟόοyhyςδ³f),o7αφήλΰVC4εΫVςωίώφd<ψΰΓω¬ε+¬Έ\l΄Ρ†ρΗ?ώ)RΈl€3«:#xk£4σhšΡ:…κ[zΌπό‹±σΞ{E­g o©6Λz§@QΝ7έt{zL1ύ£C£~…θ 4SτWΎό₯VΛS§LΛ‰οΤlφύ4›}šΕυ€“ώύϊεB%Έ—_~%N?ύΗqJvΗ‡Ω ό钟Z›‹<†(½Α…)ΧL›Ρκ…2?όHόβηsς»Œ”φ©Υί’'’Cϊ}άv舸ιζk.Θ+χIη4Nœ9늚^\–jJZ>πΐŸβ™gžΝ?/λ~yXuΥ•bΨφ»Ε‰'k¬ρΉς«ςΌ΅ρE‹νΎΫώωEy‹,²H³ZΕ C·“/˜+Έ|³υ @€ @€ Π~ζφ[Ω’(Έ€@sΑ;¨•W΄@sιΦΣ£Ημ»μ2¬&!š¦έŸ[mΉs\qεδCΑΙ0Ν†\‹™ΞR(!…4ίψΟ‘Β?ι‘²ΓYIqΓ 7ΗΧΎΎ^Θύxv[μαyθΉιΉUςuΊMχΓw»vc΄¨H‹N³ χν[έšSH=…PŽ{Ϊ­’]Υξc9Мήgd!ΌΓ?  ΠθœJ–_ϊΪ1|ψ6ΦUϊE[£μΊOώώoZoͺ)…ΟfΞόiΥΨ•φpόϊ(Z 9}'OΎ,.½δΚ8οό3βk_ϋjapKί9›mΆqvAΕ-Φ5cΖμxξΉj6{ο#ό5nΜΖ ύ²0siόΒΰwίύΛxύυ7b«­†Δ'?98ΫμZυίθVδ1D©CοΉηώ8ζG'Ά:ŽYΠLό₯γTϊoιύX€ρD:η4ΦJwΛ(r 9ύ»δΏύov·Œ›uSΗξ²σήωZj1ƒtkγ‹t±cšω:–W[m•fu§ΩΝw>2ŸωzРŚ­·€ @€ @€φ 4·ίΚ– @€@Αš ήA½¨Όr3ϊθ7~lMg’Mδ)ΌςύΝ‡Η9Ω¬ΉίψζΧ Σ ₯ Θβ‹Κ¦‡4«+R8φ–[―k1πάl‡*-ΨwŸCcΏύφhuvΘJ—‘‚ΰC6‡v@³[‰η¦GMΘƒTΗd‹³ύVΊΎ«―š)PΦ­βΣmδ'N£tšΉH4mNŸ1΅¦•} ‘ϊ,}Ώwγm²ρΒ‰ωdεύ˜Φ₯°nKc ςνͺρΌˆγ‰tήι·.Νΐ|κ©γ›ω₯υ=τ—ό‚Α»ξžƒ J‹ͺώψίΟρ ξ”± T£ΠΦΖ©ν4Λϊ“O>έμ’¨ςρwkwˆ¨FνΪ @€ @€ ΠSš{JO: @ š½ Š"ώΓvQΝi¦αiWOΟC4οΎ;·E’e—ύdM6{βYθpΉΗˆψΑvŒnώΰƒβᇍύφ=4ΆΨ2»Υ}vG.ΐ#υλή{Ž}χλϋŚUt睿ˆ£Ž<>ΖwDl²Ι·σ™sί|σ­ψΙO.Š›oΊ£Υ`l5 .…ΦXσσ1. Α.½τΰxο½χ⦟ή'Ÿ<1›Ω‰S}›—^v^|φ³+Wƒdm”‚0sζά_|N¬φΉU³€ΟΒ‘ϊtΦΜ›ς~½zΪΕ±ϊκ«-πX•Ψ ΝJ~ΚΙgΗΉ?>5Φ_+ωηρ±Ηžˆ‘»Οψ~ΐ{U’Ω6ΩVΰ(…΅Rm)Τ?dΘwsΛž1;μΨΌφ)S'5 P΅Ω•*,P€@sϊ.>lχόsΎη^?Θƒ₯MOα…ϋf3 /έtqΥ^—~cVZιSqβ‰ΗΔ2Ωψ%žύΧΏcμΨρωE\·ή6½fΝ΄ρď©Άjί=‘iMEC”jMΏ;'žpfœqΖ„ψζF_ΟΏΗS5&ΏP°ίγEO”όnΉωΞl vrξχυ ΦΛΗ‰iΖπ{ξΉ/σ£8κθ1±ύφ[—6―ϊίη8₯ώΡ!ρρ,›±ωέl ty\{Ν¬ΈqφΥ±Μ2΅ωžik|ρŸμΞ-)PΏΙ¦ί‰ƒ•ΒSέiVϋΣgη³bό‰ͺ{j @€ @€@Ohξi=κ| @€@/hξŝ_°S/J 9ΥqΚ)gΗΜ?mU(έύΦۏ%—όx«ΫTrΕγ=φίο°μVμiΤ̘lέ4Λj­ƒ?εEεΑΣ£OˆaΓΆi 9ΥτϋίέGf‘ζ·ί~'—½τΛρωΟ6ΞΚf4\nΉeΛΛϊσW_}-Ž>κ„Έώc₯•>O?ύL>kτyηŸ_ώς:U―§ΌΑ4sαζC†ΗμŸNΛτελjω|ώόω‘.>Έπ‚)ΚH·[Ÿ<ω¬šΝžŠIοϋfέ'tV£ΪφίΟΨmχkr1D >ψ¨ΈΰΒ‰-~GάwίƒqЁGδaϊε—_6ž{ξ…|Vζq㏈EΨθ<Ό PKhώμͺ+ΗWΧ[·–eδm§ΐγΆCGδ‘ΰ֊ωτ§WΜgoεos 7ώԘ3ηχΚάj«!‘ΖK,±x£εExρμ³Οεζ3/oρ;«Ϊ5y ‘,οΞ-Ωlάγǝ’Σ€±jΊ8j»ν·ŠC= ϊχοWm²fνu*ώώχ§ς γί4Ξ8™5­»V^Ϊ%@€ @€ P ζJ¨:& Pζš°k”@·€ΩhS¨3Ν΄ψ±-Q“d·œH•ςΖoζ3&»δV€GκΣ~ύ‰43xš}―(3mΙ¨i-i†ςg!…™ Z¬ι&5{Βdιύ–Q)0˜f‘.ς#βRπ1ύMaΈ"YΩMmκE ͌šB₯ι±Ψb‹"δZ/v₯:‹<†H5ΟA6Sψ;ωοMίΎ ε3 —jχ·}©ηΝ›—}>ϊηΏέE‹₯1Oϊ§ϊŠ6ŽmK8/>όπΓ|l[«‹BΫͺΟ: @€ @€υ, Π\Ο½§v @ ‘€@s#/ @€ @€ @€ @€Τ…€@s]t“"  @€φ4·GΙ6 @€ @€ @€ @€Š% Π\¬ώP  Ёζ.ΰΩ• @€ @€ @€ @€@šk―Y @ ϋš»ίΤ  @€ @€ @€ @€TZ@ ΉΒŽO€TM@ ΉjΤ"@€ @€ @€ @€ ΠmΝέFι@ @€@­škέΪ'@€ @€ @€ @€ ΠqζŽ›Ωƒ(¨€@sA;FY @€ @€ @€ @€ΪhnΗ* @ Ύšλ«ΏTK€ @€ @€ @€ @ 4{ @€=F@ ΉΗt₯!@€ @€ @€ @€θEΝ½¨³*θιΝ=½‡ @€ @€ @€ @€@Ohκœ @€@/hξ₯ο΄  @€ @€ @€ @€κZ@ Ή»Oρ @€@Ή€@sΉ†η @€ @€ @€ @€κC@ Ή>ϊI• @€@;šΫd @€ @€ @€ @€h.X‡(‡θΌ€@sηνμI€ @€ @€ @€ @ VΝ΅’Χ. ΠνΝέNΪ«ψ‡η>¨ϊω.ή―O¬9x‘ͺ·«A @ zΖΥ³Φ @€ @€ PΏΝυΫw*'@€š47ρ²]w>5?ωάxλ½vmήν­°xŸΈp³‚Νέ.λ€ @ ΆΖ΅υΧ: @€ @€ P_ΝυΥ_ͺ%@€Ϊhn§B«}εΓ8α·σ*tτ–{μύ»-όϋμ[Εχ―§faζ¦Pσœ‹•^ϊK€z½€1FχΌŒ1ΊΗΡQ @€ @€ @€Κ 4WήX  @€@•š«]ΦΜ=Ο};Ο~·lIεŸNΫz`¬Ώ|ίni(͜ΈΟνs»εX]=HwžWWk±?¨΅€1Fχυ€1FχY: @€ @€ P9ζΚΩ:2 Pez4―2ωνV΅ΦΛΒ»Χf!ή–mν—ΆrίA-νΦmΛκ=ltΞ}οŏο/χhΛΉ-°7³ ͺ—θίΦ­―Ϋ1 ƒί›…ΒΣCΨ¨u'k @ σmΪϊνkkΏT1FΫ}bŒΡΆ΅ @€ @€ @€¦ΝMEΌ&@€κV@ ΉyΧ 57)_a£QΩ ΟKτ‹8γ;ΚέηΝνb²tA ­`²@scΨξΌΈΘ£±­W @€ @€ @€ 4/HΘz @ nš›w•@ss“ς%] •οϊ·Δφ«/\~ψ>h^ ‘  @ ‹Νν,R Ω£ύύfK @€ @€ @ g4χŒ~t @€@&ΠSΝ] !ίσά±σμwή]9VΓAΪx΄½66νΆUE έωΤόΨ'›Ήόqσ°EcΝΑ •/jσΉ@s›μηsγΝχ>jX–ž,Ρ―O\4d@£em½hnKΗ:θz 4cctΗϋί1 @€ @€ @€ϊhŸΎR) °ζκšΠ%…_έΩ@sw˜@swI:΄&P―ζΦΞ§^–cΤKO©“ @€ @€(Š€@sQzB @€@—šš;ϊ&6ꨘν  @ ήškΣcΖ΅qΧ* @€ @€ PΏΝυΫw*'@€šΤs 9ΝΤ[z\»υΐΣmz{φ«=Ώ9/β±W?hΟ¦έΆΝKυ%ϊwΟα6JηΧ]m΅T±š[R±ŒΊSΐ£ύšΖν·²% @€ @€ @ »š»[Τρ @€š Τs Ήfh]lψžη>ˆΛΒΨ]<\»vŸ–ΎΧ_Ύo»Ά]ΠFmš§<ό~Ό1ο£ύΥ~ :L»Φ_–o‰~}bϋΥnΨ^ ΉΒ ΠHΐ£G›/Œ1Ϊδ±’ @€ @€¨ζ:ι(e @€ h^°QwoΡSΓF‡|nΜ||~τ•~έh.…§w_{‘8vƒ7Ε΄@swΏ#zŠ€1Fϋ{£ύVΆ$@€ @€ @€Š+ Π\άΎQ ΠAζ‚uΓζ=-ltΡfc§ΩΗ^ύ0Χ©D 9ψ²¦/ΜΪΪϋφwγήl–λτθΞ™§σϊ? PΗΖνοΌR 9νaŒΡ~7[ @€ @€ @€Εh.V¨†θ‚€@sπ:ΉkO •‡Œ+hήφσ ΗΈ 4wς}g7θωΖνογς@³1FϋέlI€ @€ @€K@ ΉXύ‘ @  Ν]ΐλδΟΎυQΜψλϋά»s»mΏϊ"±ββ}:·s“½Κ@λe³&_»υΐ|‹ Ώ™Sό~T"Π|ΜύcδΪ‹δνμ8Ϋ ΝMΊΔK  c΄PΟc΄ίΜ– @€ @€ @€@ρš‹Χ'*"@€:) ΠάIΈ^Ό[)”ΚΝιυŒΏΞ7ίϋ¨!|œ–uεqΩΓοǚƒŠυ³ΰtι!Π\’π—τ,cŒžΥŸΞ† @€ @€¨Ό€@s卡@€TI žΝ«L~»AιΙ}5<ο蓦·gοΚ±:Ϊv=nίVΨ¨η#Π\ em @ w cΤ¦1jγU @€ @€ @ ~šλ·οTN€4hލv ωΝy½ϊA“ž¨μΛ5–κKτοž6„ΊΗΡQ @ Έυh6ΖθΪ{ΚES]σ³7 @€ @€ P}ζκ›k‘¨€@sυΝMΤκΪF‡ΆυΐXωΎ–uφ…@sgεμG€υ"P―fcŒ½Γš»ζgo @€ @€ @ ϊΝΥ7Χ" P!fζŽΎ΅ΊhήϋΆΉρΦ{5jr₯ŠqΆϊha£F|^ @€@šΫZ”‹¦Œ1ΪίgΆ$@€ @€ @€zŽ€@sΟιKgB€z½@O 4_“Ν@\ώXΌ_ŸXsπBε‹žαΉž§'ΎςaœπΫy ˞άwPΓσJΦ @€ @€ @€*) Π\I]Η&@€ͺ*ΠSΝMΡΦ[Ύo\Ϋ$δ\Ϊ¦<€TZVώ·ζςΆκρyWΝι|gόu~ŒύΕάόΤ/Ψl@l²ςΒbh  @ mŒ1:ΪΞ]Œ1Ϊ e3 @€ @€ @€ΐhφV @€zŒ€@sσhnnRΎ€«a£t¬Γ~>7–ΘfΡ·aςC·λΉ@s»˜lD€]hξ^v5Ζθž]  @€ @€ @€^) Πά+»έI @€ž) ΠάΌ_š››”/鎰Qωρ:ϊ\ Ή£bΆ'@€Ž 4wT¬{Ά7ΖθGG!@€ @€ @€z€@sοιkgJ€zΌ@=šλ΅sξyξƒΨyφ»U-ΪΦcύεϋvK›w>5?φΉ}n·««ιΞσκj-φ'@€΅0ΖθΎ0Ζθ>KG"@€ @€ @€*' Π\9[G&@€ͺ, Π\eπ¬Ήgίϊ(fόυύͺ6Όύκ‹ΔŠ‹χι–6ߜρ«ήŽ·ήλ–Γuϊ «/΅Pά:|ΡNοoG ΠΣŒ1Ί§G1ΊΗΡQ @€ @€ @€Κ 4WήX  @€@•š«έÚyτ•cΤmοΖΏίώ¨&g–‚Fg~g@¬9x‘š΄―Q @ 2Ζ•quT @€ @€ @ g 4χΜ~uV @ W 4χΚnοΆ“N3A>ϋΦ‡έvΌφhΝ₯ϊΖύΫ³₯m @€z0ƨמS7 @€ @€ PMζjjk‹¨¨€@sEyœ @€ @€ @€ @€@Eš+Βκ  @€@-šk‘M @€ @€ @€ @€]h½  @€ 4¨3”B€ @€ @€ @€ @ Νν„² P|ζβχ‘  @€ @€ @€ @€4hn*β5 P·ΝuΫu '@€ @€ @€ @€θΕΝ½Έσ:θiΝ=­G @€ @€ @€ @€@ohξ ½μ  @€@/hξ%ν4  @€ @€ @€ @€z”€@sκN'C€z·€@sοξgO€ @€ @€ @€ PŸΝυΩoͺ&@€ZhnΕ" @€ @€ @€ @€h.x)hΏ€@sϋ­lI€ @€ @€ @€ @ (ΝEι u @€]hξ2‘ @€ @€ @€ @€¨Ί€@sΥΙ5H€TJ@ ΉR²ŽK€ @€ @€ @€ @ rΝ•³ud @ ΚΝUΧ @€ @€ @€ @€nhξD‡ @€Š! Π\Œ~P @€ @€ @€ @€Ž4wDΛΆ @€@‘š έ=Š#@€ @€ @€ @€ Π’€@s‹, @€υ( Π\½¦f @€ @€ @€ @€ή. ΠάΫίΟτ ζΤ™N… @€ @€ @€ @ Χ4χšv’ @ η 4χό>v† @€ @€ @€ @€=O@ Ήηυ©3"@€½V@ ΉΧv½'@€ @€ @€ @€¨cζ:ξ<₯ @€š{xE€ @€ @€ @€ @ šλ‘—ΤH€΄K@ Ή]L6"@€ @€ @€ @€ P(ζBu‡b @€4wEΟΎ @€ @€ @€ @€j# Π\w­ @€hͺC @€ @€ @€ @€¨°€@s…ž¨ž€@sυ¬΅D€ @€ @€ @€ @ »š»Kq @€š 4ΧΌ @€ @€ @€ @€ @ ΓΝ&³ PTζ’φŒΊ @€ @€ @€ @€΄. ΠάΊ5 @€@ 4ΧY‡)— @€ @€ @€ @€@& Πμm@€τζΣ•N„ @€ @€ @€ @  4χ’Ξvͺ @ § 4χτv~ @€ @€ @€ @€=Q <Πό,› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πŸiTXtXML:com.adobe.xmp 2868 1156 σ<iDOTB(BB‘§ΠγΆ@IDATxμέ œυOwOΟa<`ΕΗ‚ˆ‚«qψύ•CΤ0Μ*Œ‰DΐM5ŒQT’ρBAwρЁ!†#šhVPVr€‰«Œ˜]Θκ„y<$ΛΚέΣύ|«»ͺ«ͺι†ιa^υxHΧρ­o}ΏΟͺ†‡οώtΰσI\X@@@@@@@@@@@hξu.‰ € € € € € € € € € €–f@@@@@@@@@@θ0ΝFΟ…@@@@@@@@@@@€@3Ο € € € € € € € € € €t˜ζ£ηΒ € € € € € € € € € € @ ™g@@@@@@@@@@:L€@s‡Ρsa@@@@@@@@@@ ΠΜ3€ € € € € € € € € € €&@ ΉΓθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@ Πάaτ\@@@@@@@@@@4σ € € € € € € € € € € €@‡ hξ0z.Œ € € € € € € € € € €šy@@@@@@@@@@@ Γ4w=F@@@@@@@@@@Ν< € € € € € € € € € € Πaš;Œž #€ € € € € € € € € € €fž@@@@@@@@@@θ0ΝFΟ…@@@@@@@@@@@€@3Ο € € € € € € € € € €t˜ζ£ηΒ € € € € € € € € € € @ ™g@@@@@@@@@@:L€@s‡Ρsa@@@@@@@@@@ ΠΜ3€ € € € € € € € € € €&@ ΉΓθΉ0 € € € € € € € € € €hζ@@@@@@@@@@@ Πάaτ\@@@@@@@@@@4σ € € € € € € € € € € €@‡ hξ0z.Œ € € € € € € € € € @Ω„ε"εέ267l—–&g<ΦΩwΊχ•’Κ1"έϊJ°Χ ΟtbΫjΕΜ½uϋ:‰οήξ9ΦΩ64wΆ;Ζx@@@@@@@@@@.$Π sΕΜέ9gΌοΞ@Ξγν`Έjš„OJ 1g›GlgD7Μ“θΖEٚυ~ΝE}{\G ϐPΤ':β»jυΝώJG‹λ#€ € € € € € € € € ΠeBύ†KΩ5ksΞ·ρ‘~ΎJ±™`Ιΰ‰Ύp–΄"σώ,v΅κV­ήά™͝ιn1ΦC.Pzc\JŽs]vχ2ΩχΘ•¬"€ € € € € € € € € phέϋJIε­Xμ5HβM ‰―ΎF·¬l3ΠkΞ1•|;ΫRrζ$)·0η°›ŒΞβυO¨τ²…hžδί-ρ†$Ίy…ˆήgs݁g}JϊΥυ“Ξ‰¬Ÿ'‘U7₯ν/ΦEh.ωφ6)=΅οA0Ϊ"Νwφ—ΦƒΠSΧθb€”έ±ZBωΜΆIβ{·KλζiyiN>'mJolΤ@sΉ3—ψ'Λ€ρ1Ν+ € € € € € € € €@φ–œe“ΔΆ)Ή~’ϋφufΫΎΞYχ―8ηG·Kμγό‡SΫέ†IΠ|™x‰ώχώ:‰₯Žδ\ ž2Q‚}ϊJΐj₯a·m+€u»ο:έΎ$Αšƒ‰ζμΚs0sŠλžΐ Γ$`Ζ€‹½Ο™“ξΛ5w½ξ)ΙλjqW\Τξ”ΎyŒΕνmΞ‚@ΧΘ·j― »F7Μ“θΖEiX&,k‚±‘Χg₯+φ¦bqxΔέ9‡iΒ»&ΔΫ—€“Mj8w/ζ>FΦΞΚ+¨^R5έͺξμ>ΏUCΠ-/LΆ‚οξύΕΈ^fhtΏ‘"hΎ‡@sώ~c€ό η†Υ2²]’/υ“–žΧ ›ϋŸM͝π&2d@@@@@@@@ΰ@NΈ[Κ.•μa»DžΎ24ξ«ϋ/ΆχkPχ½y²φWiW žΏPΒύ+ϋ?[-ΝK~œΦ&±γ$ _³L‚Ιΰ°μ¬‘ζ—žΚ6±;X5Wϋš@ϋ[6m‘ΦΧ'Kτγāπ”λΑβ–Ψ«UΩ>LJ―yΠ 4[ϋ’nϋζις{;θν½@θURΛ€΄Ν$­Ο±VB"ƒ‰c™ώtyg:Μ>Ί€€ Έ–MXž¨Ζ[ΐ|M₯bπ΅«1Ϋ•#k\”ζPΏαV ΧŒ»ucΘ6Aί’ͺiRrξt1λΉS­:ͺζθ†G­―iκ?FΟΧs»χ•¦Η· ΞΥ{+Ώ~£'Μ«GΎ[πxcψ’yμ9Π 57/ηlλΚαh*4φ νg ΩΊH½Dξμ%‘Β.ΨιZhξt·¬νχ#᳡Δ~Ήώ‚ΥΚγ»j%ϊϋEΦ§ sžάs€~ze¬Ν_Š%z^ƒ~’iώΕ—σ$ϋΰ@ ξ+¨ηFIλϋφ~«Ά«ΤvΙ%fΎΒήΘϋ5ίk‰υ«'iύκE?©™Χ΅JΙE“τ“‘=–Ÿι?„ޝ#±ϊ΄Nف € € € € € € €@ηpš΅ΒrdA2ΠμήoΝ.֍6x§±TΒ§φMμά­ζη³šOy@Κ.žhgύ™;Μ~Kμ~]gyW΅Βρ«#4”,Ύbƒš½GΫΪJ4Ϋύ}ICΞ󜐳dWζvω‡«s΄5~Ž#ΠΩJΜ$₯γ¦MΓ„]MP9ή°έ:θΦWL5Πν$O[π5Υy­PοΰIΦ±b 4ϋ½V8ων)ωšυω²Œυ791“‡J,f_σύPE‘-vΨά–©ΚάςΒ${Σy΅ΪΆG¬ΎNZ7―tŽΫ+¦]ιe5Φ}·χE4δyyΊ½Y”―Eh_³YJz€[*_oμA9Ο’AΒ½&-—αΣBϊ©’ζΗFδύU žn»δF†@sc½ΔΤέ9š0eਞ΢›)Ÿk||²{Χa·N ω0Ί₯=§IΩ7fι§ϋ֘OΕΆΥHΣ‚λ2Lx’”] „zω™¦zή¦yτόνΞKν OΩ-α>Ιλ6ΦJγύ#2•+—ΚWwNŒ.HΛg3―•|―Όt£”Ÿ3(gŸρOτSZ/hZ{ ώ£d™ώT™ωgΓ'«₯ε±jiΝΩ;@@@@@@@θ$žΰ²+`λٟœΛg–[βΝδh.—^΅8ΆqΌDήό ΚWΪ*^φήj‰54Iπ„αZε³oκœθ aO–ΐˆ$x€;7Qν*vρO4©Ή‘ΤR/­/ύX³Xξ Νv Y$tΡr)ιgη)΄*κΣ²ΎqΪσρš5$ΫِΉΚ΄W‹Ν·ΰ\jδ¬!p8d 3› kdν¬¬U{M5gS7ΤwXV‚b 4‡΅ϊrΈznΦ1Μ&Πl‚ΝΕ²ψοsΆ0sxΔέ«T›ΰ·©ΔΥπ·)ϋ u»ž…b›»ΌEhφΚ½ΎΎQΒ½\αεH4έ3˜Π²iΏΧΣΝ±·GIΣςWz,·AJΟκΫψWΔ&Πμ»εu³η\©ΈazΖπ­{JρΛ4€₯kΧ4)ΏKΛο‡]»2¬¦Ÿηn4QΚgΧHΠΩΥ$ΡΕ™ƒΚ§,•Љγ“γΜΡΞιΛΏ’΅Bγ6KΩ™©”ψ{Jmλ8^*-ήIξ)ew¬–PEͺEΖ5ύYέ¬?« 5gΤa' € € € € € € €@gπ—Ϋ4λΌβοNΧΟώ'g†ωšΏ)₯S2d²T>OΠjΛG&/‘ ,ǜ+κŠ?Hό¦£7ϊƒΡξκΙT~N+9k8}Ιh–fHΩ%cζώy›‘κURb“”'МeŽNΗ¬ ΠL0ΩT,Ά—xΣ§ZYxΈU•Ωή—λΥ’u·-Ά@³©&\~σ6O%eχxφΊ©ήάψΣ~»Ϋύξ―ΒΜ=YΪTήnš?(­/η΄Ί#SfckBΝΑž­SŠ΅B΅=Ÿ’4ϋ₯"……hKͺjeU­"Z‘θύ/ͺˆί«‘–5‹lΧλH)ΉHΛΫ{΄βsδχ¦έ@ύΚ­Πz\ςE%ϊ‹Η:‰Ύ>YZλνΖ™_C-ΤΏ”ιυνγZaZ?ΝύύumžkΞTN“π™c%Ψ­›έΔυ“G­~P’[쀑sΘZ ž!!WΕλψG·k[ΓύδECTΗπΡ]Ώ!@ξΩΌΒΩ6+‘~Γ₯욡ξ–ε“3VsvtΰΚah6_Α>ΣNφ#GΆHτ₯ώ’ϊƒHεR9βͺΤ_φ&°Ϋςr–`·+¦ϊ;Ρ_ޞͺΡ¦€ΝW*”V•@ŽΚρΜ}<υΛ‹§χΚ€|τtOΠs\7βŸΤJΛcZώάw τΖΈ”ηΪΉ·Nb%P¬pνΫ½Lφ=²¬ @sπR~Ξ W'™+Θ†'l”’ώϊFq΅τ6h {ΊͺΣένΖHٍO¦δή““[™ϊЊӳWΈ*αͺΡN}γκ§Uάcq‡ΆKΨ(₯άsr]ΜΈ‰Ί•ΪG 9eΡyΦΌ•ΘέχߞCι₯€{β·λψ'5ZŸ,2xΉqΩX»‰d4"-¬οξΫι,Ϋ30Π\Θ΅<ζ •οCγ6jgϋ½‘z―»Cήqύ9ψΘ•©iιZΙ··Iι©}ϋ\AhO#6@@@@@@@θLšurŸ¬ΠLΡk–ωšέ—γ›o“xΟYZŒ,™exo–΄¬uY;ε)»pΈΥ·Έͺ'w8/Ασο–P·ž‰νΟj%²φΰš=sσΉΣͺDΏ^%‘χΓ!Πμά&VΪI xόY"evσ/¨E7“ΡΟ<(ΝύΥ•›œwef{Ή*ϊK˜ΧŒ5Π½―Tό`›=μΌ^M Χ„vM₯e³˜PoPC»ξ`―u Ηρ¦i*Νζ΅#S…ΫTγ6Ktγ"iya’΅ξώ£bζn[7k—©ΰάόσαΞΈ_ΩΝL&+0Η4/ižbͺ4‡ϊ³v·n^©Αη±ώ&E±}XšΓSvJΈOς/γ6˜[΅ͺj³]UΥ&lγDΧαΦWIσοSK&h ―_W‹«¬nΎ§Ώ7”u–ΪiΦ$²¨{ςΣ[ξ¦·•{Λš›λ'IΕΕΓέ»σZ'МSΡ5*»5.!§Ά~­ΛϊΫ€eΥ’œγt?‹v>ύ„‰RzΝ$ ˜s‰V yœDλS­BWl“²}­&όΫ²SΛχŸ™ό‡‹υ΄ίχΙs­€άΌδv…š¨Aα©I0ύσ―pͺ{Ν9*4·­+¨μ>;w;O8Ω©L}’„―Y&A;€ό‘ζ \Y Ο9ξKyΦ5¬ύτώ†΅=±ΡE¬Pσδ5šλΙ”;Λ€Raζ|BFξμj+ΜlS ΩŒ'€a[Fn«ΒrΆ Ζ¦{qW"Άχω_M…ηζΓ zνοη@·ΓηN—pυ\«›xΓψΣΎi]š@sψ’y‰6»5'š‘‚³9xΔμΈsnσύPΜΆZgΫ^©˜Ωΰ7/gUΉΆΛλahž‘aΰΣΒΐ±MJΛο—IόH½ΉΟ“’^έ<ώρmͺ] ‘ZO˜0Υ$ώI­•κ~ΦSΒηί&%΄iΤO(­š.‘―HΠ|ϊκ’IiŒγΫΤ9˜_f4|c£”—ι‡°~šι“z‰—kqΧ2iZ°Z«!kΉρ°k0z­Xƒ†‡ECΨ=*3±SG«©»*«sθ'ΟζIΛ/n’XΟ‘Φ+ά―uΤ¬j yΎ’ΥNNY(}6Zα5ςάΰδ/d#₯τϊeiχ/Άi¬Vi^©δ47ΦKμ3}CΩSbοNιΏΒpΥSΝ²W―΅ζ6u—PυƒRzξ(ί}υΣπωcΎjβlώ,bΠ₯€μœ‘ήκCϋΈVZ7ΦXο-οAο³”zΖΌ­ro”²;VK¨"Ρͺυw­Θ¬Υ‹gOM>WgίξΘσ3Θχ³Ϋd|-όZžŸUύͺ{τ«)\}{+έ»ΖzŠΞa’=ϋύ‡ΣΞ7€υ=΅\³ΘήΙ+ € € € € € € €‡‡@ΎζW5tάΰΆ¬Y-φiš$₯g$33išΏ€ΕΤζI όΏ;]Z6όΙr+·VBvH3+ΝΛ΅φ[ 9pΆζ™Ϋ™ ν‰²ΗLs/«ΝΗ©Η!―@³―ͺsκlΦΘ_ tκ¨DeΪΆBΝEf6³r‡\cυοHΣόAyO6Ÿ0³ι¬ΨΝfL&Θ]6A³Œ=šΝ΄Ε„›4πojH;ζήα„»™υΦνλ€eρΨ6ϋρŸΧΫ&¨šfuΩπ¨•QݟλΚ»IΕΜέΞ©Mklg³m―ΈΓήΕψ ˜qVζΠ&`嘸 ­Ώ€!Βwμ{b½¦~ν0Ÿ'L˜8%S€5¨‘εr»ΚͺΥ,θ Ρ6Ύ!MχWy‚†ζXεwΥxƒΘPuΪtŒ±mσ4ΐ|SbRΟήΠ¦³»Ν•‰ΎΠ]Z6¦z«Ά&φΗώ¬Aγ—LΠ8΅„Ψ¨χΘ=wύΕΝcW.•Š«Ζ{ζ]–-©σ3…–MεΫΖΗ―ΣF™ζ£_Γ±~Ό~ΒΛ5Ž Χ‘½΅ψΠo•Ω ν2=ξΡ±^Ό«ŒΫΓΥ τM­ΪΌΖ~NΌΟRφ Νv^/—#.›<ͺ’ξΦ―ηgPκηJ†ή½»φγZž@³© Ώ[?μ`υZn:€ήcΙΛΦχκeήχjj@Z©z“~ͺςωΔ,RϋYC@@@@@@@ “ xΒΉΙΐ™ŠgΏ†vM y»ˆ§β²ϋ‹½W/ΑS³šOy@Κ.%–Ψζ‰GΛE’ZΈ―ηx :…SΧυš£ΊΑώV1Ξ]yΩ“H[νΎ)₯S¦;™ŸΨλUΪG«NΫί­“–Χyr9ž@sZΘ;ueΦ8m†š‹$ΜlζΎp–„GάmM;ŸŠΔΆ ΅šjΎω,±†νšڞOΣCΪΖΜΑ„n3…š ±pwέ(4 ξ>·=Φέγ<€±;Ȟ­³ΏϋΩ:u{XΨ}Vζ[γRr”=5}m¬•}χλW9ψOhΠLŠECzέ!=;hμλ ­’p*x˜μΥποο&Ή‚’¦/­V|ιxλΊ"ϊ HS­UΥ4pΡ©Έΐ[EΆυU dώί4‰ž£mZ YΓΊϋ4¬›ΎxC›ιΗ³ο‰m~Pš¬―·0mΌΥa­³²ΩΛ@­Z[ηT­΅Ϊξ]­γ«ΆV§ŒqΎj"ΏpΕήOŸ{ψϊF χR·δ’ §ΟΗ©Ύm7Φ׌Αχ—΅zξW£δͺί2u­τΆμι§L“²‹o“P―žλ„λ}αψ΄ΰqΖ³½;ΓΧk΅υδ?*β;ηiθώ&«AπR~Nς—ύΐB£~`Α)ψοωΩ”ϊΉβν9}kε 4§χiο‰λWΑ4=6.5Fϋ€ΎοKΏύ „NδόƒΔ9dV2}HΐΣ€ @@@@@@@:‰€'Έœ g 4‹x«.{fι οzͺ0{¦o8Υ›ϋή­ω‡QΙυ}zœ΄¦7—Πˆ'$Τ-‘±‰\#‘7ΧωZ΅TΆ›·έΞ3+$Φ}¬“ρžψ{³€eν+vgΦ+f‡@ k¨ΉˆΒΜ†‘τ²)<Ρ9λ! m—KTάΌMέϊ¦υ]ˆ…;ΈλξΘTgnώωpχ]wš›—θΟρΝ+ ;ΜlNn^0BZ·ΥfμΗνRlφ€£@³V-ž­U‹ν™™W­ΊΪϊq½Hς+‡š4C<ΘhL£Ν‹΅rςw§Ίξ šc©ΰazυεδΉύ΄U}–ς~CZίΌ]ZuXώ%=`ΈEZξμ/QCk;}Ύvθ2nzΨt¨‘YL…Φˆ†§ΓΙί.¬©?²…?M‹Ψζιx~4ΥΨ΅–(ή"Ν:Oο/V₯δR žφ$Α#½αΣ@E7Wo:^ύJΖΗLμτωΔ6i•θηWzΪΗi τLχ§Q2]?qJώ–žK°Qτϊ|]4]BύGιW³xŸ―Φυ£΄’wΉVAΧ―0HV)Ξτεžβ4ύy4Οωyί¦(ψH?9Y’ο­’‘>gΈszτ­BnW;χόlIύ\qg\ΩΏk₯ΌΙΠyc–…ψš†ͺζJθ ΅μSι 7Η? χΣ7ωZ³‰ € € € € € € €@'(8Π¬σσU^vfμ 4{+;m²­|ΆZš—όX^+eS&9­βοŽ—– 8Ϋ‰_¨zΫ,ύ–{o¨ΈνΚΛv—mšεŒΉRV5Τ>ΑυͺίώάSpΪ³hφp°qˆ¬PσΥ/iυd °ε3izf˜fϊή>D#hϋ2š·k ω€4¨Γ=Πά²|²DίI›wΆV5λkΦzͺr·ΥζlšμχJE²…OΣΓ¬ω_ζΰšE+—ώΰ )ιž9l)ިՇߝ'Ν/₯BΏξ*«‰vΩζjަΟχ`š³7CΥ«€τάQž°’SΩϊ³'€β†©žcφXμωΊ_Σ‚”η=©@sxΒF)ιŸ₯κ«»£δzξ@σ$ 4/ςœΎf§„ϋΉC¬ΩύΟ_κZž.Ω(jœ °ο­“VΥοSζJω„ιNxΩΎΗξ{ο6iόŜτYφΤŠΟ—MJ<ϋM[¬―p1Αό`υF)?ΧšO?Υήγ ύξG y―εyΊήƒ‹Φj₯ψαφπΔ_%>X9QzΈ±^Z·ψ‘3FΚ~°LBΞΟΏμο-η¬ € € € € € € € PμϋhΦ9yͺΫstšƒη/”pΚδ-–ΈΉVβ%ε© NT §•WJ°Ÿέ&φ‚υ[Π£ τ œύ„”Ϊy ½BlC•Dή΅aΏζTΆšζΣΞέΖξ__ΆkŸzΖ―ίέΌ)Ά³Ξͺ`oj°wuθ«»Bs!m3θ² Λ΅˜gΒ#ήτ©ΞkΈσλrΞΗύlz½œΔƒ‡Q…ζτ€oώN3Πlͺ‘ζλWKI/wh6ΛhφΎ!ΝUYΏPΈ”V뽡ψΠ‰g<5}ΎvˆΨߏΠLο&{ιmuΟωkεˆ‹‡{Yhύ”WΕUγSΏLi }’'HiH…ΓSvKΈO7wσ6ΧSσΛo>iζ½«eίCΥ―“ΏeΖΣΩYžη-R'Mχ –˜o\ξͺαφσT’ΑχR;ψήψ†4ή_•φ^τVdί•Ζϋ%ήΛ·Ζ₯δ(ίE²nΊ*±οG Ήt?―εqρ|Pd ”έZ'!{όϊsθώδΟ!ίψ"σ+$Rο›˜Ά9bβψΔNWPΪ׊M@@@@@@@:ΐ~šE2T`všΓίή A»fbΦP―7(ί6OZΦόJΔ3&CΩ$ρ4έ€θC%ΰ#3‡κ€εΧ₯εj…f½LθUš—ςζ~βοNΧκΡ2τ,ž@³ϋ'Ϋ5ncΈ›6i[+—~μήΗ:&`BΝρ½υEf6³*9s’”Ž[hM0ή°]Ϊοΐ&ΫIΞφd…tέϊf± !7=>Xβ»·gpΨšγύ€RK@ΆKδιώ9r©Th/ΰ΄O·8;+žPŸΩ•­έ4)½`’„zVjEΣLα&ϋΥ@m£jƒWl–²•ɝζ%τuνLfοζΒΝήGϊυ̞τφρOj€ρ±Z)Ÿ]#AΧIΩ*=›&Αq₯όΜA©Φvθ±Rύ}Αhcϋh΅Ύαj%φYƒΘ^ύεgτ“ž Ψv5Σψμwκbz~Ξω[Ί―ΐz1 4ˆ_α β·%Ν«Ό•…=χω“e²ο±+E|ΟcL«47yͺ4ϋ‚Ώv0Ύ§·bylS΄FΕσs%ν)%ηŒuφΕtLMfLžŸ-ϊsEΓ-υ94ΰZΩΝz½*ύπΒ%Ý ;γ“€bφmΞΈΝ?’άδ΄3+ήχWŸažΣΨ@@@@@@@@ x<αa“3Ί2QL­οέRvρ¨δΈ5γςκ‰lχN#P΅PJΟpεμ@³§O­ όζx‰lόΐ{rr«δ΅κUžΨŠšožl]?8B+<Ÿκκ;γΩϊ Μύ“¨ΖnwX:σψηδΩΞγaΞ¬—θΣ΄KΏ°·Bs†γξ]±W΅ΊτvχΦ8|έϋJΕΆ94!ήΆ*ο:³¬˜JΎ¦’―½4ήΧ]?όρ‡‚έ䐾šwΈz˜ ΝΉ–Φm΅V…εlmΜω&θkBΝΉ3χ–&ηΞΥρΫίπΊ»r¬ώišŸ{Ύφ8˜*­›oΪ>χP½Fζ‰i‘ΪψΆΫ4lWΐΧxΒ„ζd *η|φάŁ:ͺ” +‘γό•›$Ί¨»΄φšλ₯εΞ^’YΘ ‹7XhΨα]O8Sχ§ΏώnΚvώ–‰ντφb…?—Iω]+$NΧπg£'ό™:–V!9άLΨ&₯ύϋ¦ŠΊ,ξ.-Ύ@yφω₯/Σ|ΌANsΉνκά/£sφkΉ†Ιj‘ Œ”²;VK¨"5Μψ'oHλNσ`υΤ―e.Α£’Ώτλχ3Sz}£~r0u,Ύ»NZ?σŽͺ”Π ƒ$ΰzζνͺδ%ξη8KEh3Ο³΅{…μ{dœ/Π¬οέ½[τ—ΣΪΏθWΘΌ¬Ÿ8:Ηυž)πZήχAzπΨSωYϋnΦΚΦζώ*κρΖ-{―Nβ&΄έgΈηη[φŸ=ώω° € € € € € € €@ ΈΓΗQ 4/HšO˜!e—ŒM<{ ΨS8hŽXͺaδΎ‰sέ}fb8ε)»pxςˆχ:3ξ–πΰαLε MΥγZ‰.qΪ7Y';—/Iι5σ$PbφxϋM΅1kyšε$ {YU§5p…†έU€½tm™ŒΔ*4»DX=όΚo¨“`ρΦDMε]>=Ε„|MU_³D7.0ο$k½ώπ‡­Ϋ“ 5·,ŸœVaΩ„˜MeλΆΒΜξώFXάέ_‘λϋ^Ÿ;]‚R7KλΖ‰Ύ]c­ηϊΓνoϊTολ–«y‡;ŒΝ"e·Ζ%t”Ϋ2{PΥ΄ ]4WdΝM©Op yš”ίρ υ/y“e„$²¨—DήwIχWoŠs‡Ίv&‚Σ‘>Ίχ~ WΎ­•[—kεVίβ­‚š8}! -}AI=”=T˜_ΨΉτΰεRqYͺͺ¬Ωίφ †Ζ—i`΄Ξ•¬αΚτkΚn­ˆϋΘ•ή€§5nSύy²sy{Ε΅Ϊ-ΣvWκZzίξpͺ}~πR~ŽχS ±υƒ΄Bξ;vη΅τhuύς”έ9…•bθω€”ίp›§ŠxΖaΊ‚»‰γϊLέ‘a}W:Σy‰χΑνzΘϋ ¦φ§ŸΈH+G_0=νMλ5φφX m―L 4‹VnnΉ³Ώ§rr°z­”Ÿ;άs~*dœa>›&IΣσ‹<νEfHΕμ}sΡOΟΝο'‘ϊTӌsŠΤ‰πtͺkE`Œ”NyPB}*}χތ_?eψ^4βΊ ΏΜ΄>κ—~ž©NάϊζtiYσJΑσ3Δ~_gσ™¦Uεη9!λΨ&}l•ώήΞxΊφύΊ†Š/΄ί“…_+}0hŽh ωžώ©w$―ιωYβϋBψŠ R¨§J΅=ΤψΞΥy‘Z’χ“}ŒW@@@@@@@@Θ-Pφ/΅κ;ΜjojDŽν¬Λ}’﨩Κl‚¬φR¬AΦπ…³$<βn{˜‡δΥTyΞ§²q{&-ΌžGΰ<|‰fΞμ ήu‹Ϊœ‡»:³™O±…ΪέΖ‡U YDΑ³5작YΧ”jλζΥ«ί"c¨X‰|wΕΥΖ7€ιώ*‰yˆζΔ,!Α¬νj•h­Tμ©­iώ+$ςϊ“ΥͺΠ§N’’Αγ}_΅:λ|­ΞͺαΏΠΫ€l@_sqΧ’aΛΝΛ$ϊΡύ$Υx ΄@fͺzκUh–Ζz‰λ8=Kyό‘Ewlo8Σ>?Ύ·N˚/Σ@yebήGι§ΐ ­\*WΩgσ:=ΡhοjΩχP΅§ΟΗτφτΨS«\ί05-ξi“a#»e†ΖμB@@@@@@@@@`?ό•uM­Ϋj%Ίažx]™±ΗP1RR5]Luf{1aζζΓ πlŸ(^ύ•ŠΫσšΕV‘8½’φ i^2.+AΎff6ΊM8ή^š\ΤΟΑah6πΑκ΅RvξπόΒͺnΦ0p«91-P[h…fΣ‰VYΎtƒ”“g°7²EZξι/ή’Θ΅σ“ZιΩ_Ν8ΡΏηΟΖ:iΉ°ηόφ4k%γ?O—ζ—y†b6B—ͺύ9ΓΣφgΪΫ4]šžΤs(tΕf­P]ιΩΧφF½Dξμ%‘BΝΪiΰόUR~ρ¨όž“δ 4·}7h € € € € € € € € pΰ&Τ\zYS©ΩξΡTπ5Υ|γ Ϋ­]n}­ΰͺ ±Ί—ΞfΆΗλκš}ρ†$Ί±FŒA°η@»Y^―¦qLΓί%ƒ'9Տ͉&ήΌdl^}ΚF¦šΆ©ͺm/&Έή’‘ζL•šMψΫάo³˜9šΆώ%S˜ΩTψެŸηoZTΫEhOΩ-α>7™VγmΤjΌv5⬚=§IΩe·I¨WΟΜM"υϊpΦHσ󷧎§UνΝ7Πά ΡEέ₯εύTW2x”˜$‘ξ±»KDCΑ›Ÿτ^ί}\ΧΓWl’C3nΝωολψ—άδ;KΟ»f§„ϋ₯ζν­νnž^ΡΨ}ΤΏoά.±χVHΛσ7εφ?ε)=5λάγ»ίθΪ©ΩψŽΦvπό₯j§•šΓι‡γΥHΛG}­ΐzκ¨}Ÿ«[Ηή+MΛW¦šϊΧ*ŸςΛ¦J0CEμΨΆyωdΈ΄9ghv(XA@@@@@@@@hgSaΧ^C}‡t%ήmyaRΖPlA’ΖfžeΧh@wσ iΥ ³;¨>wΊUy:Π퀜£1!θΘΪY}»ΖigΡ&ΨΤͺΥM’ψξνΞ±bZ)›°BΓΫcœ!™ΐΊ !»œƒ9V!ψ…‚OeW£YΟBŽΣŠβPΡš\i€”\€Ux΅ΨqΌ‘I_υ“ ΫVk8s˜φΐ―ηοa „ͺΖK°Gςαˆ6H\ρΡ-―ψfέU=p@ηgνΈ½œ2FΒ§Ž)1jΡOƒ΄Ύχ¨Δκσ»ppπ Π7Ρ8ͺaκs€5Οsσ»Bͺ•χZϊŒlΌ½έ•Ί*k € € € € € € € € €΄-@nIΥtOθ5ΣY&Θέ0―ΰ l¦ΎŠi_ψΒYqwΞ!΅,Ÿμ 3ηl\dMΩTγv‡šΝM ΩΊŸz_s-ζ<λωΠηΔ½t–0³s4»o λ € € € € € € € € € €@η0ΑWSΝΨTv/¦’oLΓ―ρ¦χξΓfέT.›°<η|šŒθτAnS;\5-mžζΎΪχΨ}Π<&μži1ž#ληe:T”ϋ4εmaP € € € € € € € € € €Fΐ„vΛY›£ρΎξ‡E ΫͺΖ­©C}‡εœoΆƒ­ΫΧIδειV:[›bάO Ήο cB@@@@@@@@@pŽ˜wΦ3­μ»3iw§έWrζ$ UŽ•P1mΞ!ήτ©U‘;Ίa^§­RM ΉΝΫL@@@@@@@@@@Ž_2O‚½eBl[­D^Ÿ•ρXgί(ο&A­PmΝέ¬' ̜ΝΫY'­›WXλω͝ωξ1v@@@@@@@@@@:ΉζN~> € € € € € € € € € €Y€@sgΎ{Œ@@@@@@@@@@N.@ Ή“ί@† € € € € € € € €ν#P~έΆOΗτЇ@Σg6sa"t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € € € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ € € € € €FΐU3@IDAT € € € € €t€ζŽΤηΪ € € € € € € € € € €tqΝ]ό`ϊ£ΐ³γΕ8,ΖΤΑϋξ tπΈ< € € € € € € € € €@{hnUϊD Π|@|‡νΙšΫ[ΛΔ@@@@@@@@@ ‹ hξβΣG 4γ]ιψ1hξψ{ΐ@@@@@@@@@φ<όσρφθ˜>@@@@@@@@@@@\ρx\/Ύψ"ζ\JC@@@@@@@@@@v°Ν―Ός ζvα₯S@@@@@@@@@@Θ$`‚ΜφX·n]jΛήΛ+ € € € € € € € € € € Πv˜Ω~ ΌρΖšΫš.@@@@@@@@@@@ »€ 4›uuuš³;q@@@@@@@@@@ΪAΐ 4oήΌ™@s;Σ% € € € € € € € € € €€ ˜ ³Yœ@σώοhNwb € € € € € € € € € €΄£€hώ裏4·#4]#€ € € € € € € € € € €@Ί€ 4Ηb1 ΤΧΧhNχa € € € € € € € € € €΄“€]ΩΌ>όsΝνM· € € € € € € € € € € [€@snŽ"€ € € € € € € € € € €@; hnG\ΊF@@@@@@@@@@άšsϋp@@@@@@@@@@ΪQ€@s;β5 € € € € € € € € € €δ ΠœΫ‡£ € € € € € € € € € € ЎšΫ—@@@@@@@@@@@ ·ζά>E@@@@@@@@@@v Π܎Έt € € € € € € € € € €Ή4ηφα( € € € € € € € € € €΄£ζvΔ₯k@@@@@@@@@@Θ-@ 9·G@@@@@@@@@@@ 4·#.]#€ € € € € € € € € € €@nΝΉ}8Š € € € € € € € € € €ν(@ Ήqι@@@@@@@@@@r hΞνΓQ@@@@@@@@@@hGΝνˆKΧ € € € € € € € € € € [€@snŽ"€ € € € € € € € € € €@; hnG\ΊF@@@@@@@@@@άšsϋp@@@@@@@@@@ΪQ€@s;β5 € € € € € € € € € €δ ΠœΫ‡£ € € € € € € € € € € ЎšΫ—@@ Έδέwί΅uΖgH·n݊k€Œ@@@@@@@@.(@ Ή ήt¦Œ €@WΨ΄i“ΜŸ?_~ϋΫߊ 4»hώΪΧΎ&7άpƒ 0ΐ}ˆu@@@@@@@@8Dš4—A@C+`ΒΛ3f̐_ώς—y]ψκ«―–9sζP΅9/-!€ € € € € € € € pπ4ωπÝIŒPσž={€ΆΆVβρΈœ}φΩrόρΗ;ύw΅,ΊΪgΎ € € € € € € € €@αš 7γ @(b)S¦ΘβΕ‹ήpΓ ςΠC9Ϋ™Vn½υV™?Ύsθͺ«’§Ÿ~ΪΩ.teι₯VPڜχΜ3ΟΘΠ‘CσκΒ Χ­['&l}ζ™gŠ bw–eΧ]Vˆ»GrώωηK(²†ΎΏeތ@@@@@@@@ΰΐ4Έ!= € €@‘lΪ΄IͺͺͺœΡδfΆϋCΝ6lS­y–^xAξΊλ.λԚš9묳ςκΖšΏχ½οY‘ζο~χ»2mΪ΄ΌΞ+†Fύλ_εςΛ/—RY³f{μ±Φ°φΧ’ζΔ@@@@@@@@ζCγΜU@@ΰΈ«3›κΖ›7o.θͺύϋχ—?όΠ:η@ͺ4οoˆΧšoΉεY½z΅|ϋί—k―½Ά ρwdγχή{Oƍgš_{ν5ιή½»5œύ΅θΘΉpm@@@@@@@@C+PτζΪΪZ©««³Ύz½½hΊuλ&ƒ ’αΓ‡·Χ%θ@ΐρΗ/Ÿ~ϊ©u₯§žzJΎϊκ‚ϊΛ_ώ ›ίvμΨQΠωvγύ ρhΆyE@@@@@@@θJEh^»v­υ•λ‡κ† 6LFŒq¨.Ηu@@ΰ 444Hοή½MΩ„’ YFζzωš[ZZdϞ=‡ε裏Ά†šo…fά6h³sΜ1¬υ\˜φvΰΫ΄7ηε³ΨΧ2η˜qfΊΦVhnmm•½{χJ4΅<ςΫηŸ.‘HDΜωGy€”••΅9%γΎoί>λœR9ꨣΪ<‡ € € € € € € € €ν'Pԁζyσζ΅kef?« =MŸ>έΏ›m@θΏϋέο€ΊΊΪ© ΊξΟς…/|Α9mΥͺUrΑ8Ϋωd 4›0ρwή)ψΓ¬ΐξuΧ]'?ό°β5‘Ϊ5kΦΘ?όΓ?H@³™Σ²eΛdώόωbBΉφbΟ9s¦Œ7N‚Α ½ΫyΝvήΏψEλzUUUN[{ŌχΥW_•G}T>όπC{·ΨΧ;v¬„B!gώšM ϋΩgŸ•'žxΒιΛ¬˜±έuΧ]Φ·hx$7ΆlΩ"sηΞ•?ώρžΓΖΰΖo”γŽ;Ξ³ίl|ςΙ'ς³ŸύL–,Yβ96dΘΛατΣOχμg@@@@@@@@ΰΠu yΦ¬YŽ‚{έΩyVά}»ΧRχ9Ίi–[wH³iqto9ΉGΫstVΔ‡Γy6ο’­;φXζGχ>Y:ο­Kέ›bœGσ²cυ‘ή'Ÿ,m½Cvmέ*Φ]i§χS‘γ)β7%CCΰ°θ ζ›oΎΩ ϋo@>ζΏύοrωε—Λ]»ό§;Ϋ#GŽ”‡zΘ4ή½{·˜π±9?Ϋrν΅ΧΚχΏ}η° 3›y½φΪkΞ>ΚYge…ƒMui³μO ωγ?–Ρ£G{ΒΩώλ˜qM™2ΕSϊΕ_”;ξΈΓίΤ³ύόσΟKώύ}ύλ_-?gG†•{ο½Χ²Κpˆ] € € € € € € € €ν(@ Yqέ!fχϊ~Ή7ο‘-›ή”wΆl“½&‡©_{ήϋψJpφι}΄/ŽΩόŽ\>δ*ω«6;vϊbYχϋuΙ’?ι0œgσ–geΘΧηXτΣ―—ο <ΊθoCΖΊξM1ΞcΛ³—ΛΧηXοYόΦ:θ{ yηΤ,Ο"s4―η}?ν‘?όκ9ysοQR­ΎΚHŸ6οθΨBφhhhή½{;Ϊ±c‡˜o_(dρχρίύίrI'…Υ6[…f»ϊ²©lάΪΪ*ψh…lMUεΙ“'[Տν6&Θk‚Ζf1γο}ο{²nέ:k{πΰΑ2mΪ4ιΣ§όιOς„{Mb»β²9Ο’>ꨣδ±Η“^½zΙλ―Ώn…Ÿ­υšš1!e³˜*Π&άk3ΦΩ³g‹©blBΑ¦τή½{­cξ1h6¦MΠΪώl*2ί}χέrμ±ΗΚκΥ«Ε|S‡½ότ§?Φ6ΛgŸ}&_ύκW€Ά©Ζ|ρΕΛ§Ÿ~*<ςˆΌυΦ[V»OM?8π›ψΰ@aγ94F\ΌS¦L‘Ε‹[;MeeSaΉ₯ώNΕΰ«ΊJž~ϊιBNwΪf ρΊΓΚ&l»fΝ«±s’ΈΫΈ«G£QωŸω+°k‚Φ¦2³{ill”Q£FYU‹έηύβΏpͺ0g κΊΐ¦2² 'oήΌYƏouo*D›ώόΛύχί/K–,±BΑ&ΌlBΓ…šΝ<―»ξ:ωΓώ`υ±bΕ ιΧ―Ÿη2¦©ύβ‹/ZϋM%e»J΄h6žMυθ@ ΰœϋζ›oΚΆmΫʍ3FΎπ…/€š½;ΨύρΗ[!gΣΟπαΓΕγY@@@@@@@@f΅v‡˜έλωί†2στ‘²2yŒ…―Θ·ΞN}ε}σwdΞ΅WΙsΙ\σyΏ(OUk₯ΓƒτΝ΄‡ΌεAg*΄*KΓα9‹φΆΣd 4·¬―ΫΒΔ©gΓ_ρ|ΧΦ-²£₯TϊUž|@ψΒΖγ› › pH6mΪ$UUUΞ΅L…ί‡zΘΩΞ΅rλ­·Κόωσ&& mBΡϋ³δhvW1Ά―‘-Πl7―{φμ‘όΟ΄Δ&ΘlΎ­ ₯₯ELΰ׼ځfΣΧΝ7ίlU)Ξ 6ύύίύŸD"+Xl‚ΙΛ–-“{ο½Χ²ϊ4!bςωηŸ[!a6ηƒΑ‚Ν¦βτWΏϊU+€}ϊι§[!twΕdϋzωΛ_œp΅©Έ}ήyηYγύηώgk¦έΏψE™^τˆ6I[Ητh†ƒφ±lη¦u¦;φμΨ*»S£{œ,=Žή*מ>Zώ¨ΗόASηόζ=²ΓΜ#1ι‘σ8:ΓX΅δ΅όjΒp™½IΟgZ&L˜ W_}΅œxβ‰žΓϋΫίδΚ+―΄BԞΊaͺ2χ»ί•ϊ± € € € € € € € p4+²;Δμ^ΟΧΏyΛ³2δλΙ Τ7Κ_ξΚhΦPθ―4l™βή)λσM9Ϊ&=mΜ ++dΞΚΏz.{ژ‡ε©ϋͺ₯‡g―nμΩ"Οά3Sζ­φΆ9Vf<ΉPΎυe­\Ά<;AΎ>Η$€Ο“ίzJNv₯(χΌ9WΝόs=v¬,\ΏNΞveNέAm§ͺ΄έi¦Χ=[eξΤΡςss)Χ2jΜY½2±3-hΪΌCVΜΉG~τœ ­z—σ¦?*η+ɊΊ[΅ φh§ Ά·εY¬aׁΙy5οxSζάςCyn“w5=V¦?ΌPΎcͺcηΉμΩΊJ¦ŽΎEΌS £ΞΫ$«“CNο‘ΧžΉG¦Ν[v•Q3ž”»Ύυe§Jπžwž•s―J<;χΎψ–Œυή ΑOΆBπ²p½άδ½9rνDH\ΞΣ€όSΥVψw΄ ž6]ήv”όpςμD€ήΕirοβ§dμ@ΧΣδzΣη!²eΥ32σ–y’φ”š! οϋ–ηY²/³γΝrΛ$ιόηΙΓ –κ“]Yς€­«ζΚθ[ΜsθZN%ηύu΅„Χˆςώšuކ|έΊ‡ξ9nΥ°t‘^YΝΝ[εž‹GΛsΙGnΐ½ϊ…±‰ηΜTh|ζςσ?ϊŸΗΣτ½ϊ°η½κš=« p 2jΤ(yχέw^L₯ε™3gZUMΈΧ,¦έΏϋΏΛ}χέ'|πΣΦ―ϊ/+μμ,pΕ›Σjjj䬳ΞwυeS!Έ Νζά»ξΊK–/_ξŒdτθΡbΒΐ_ψΒdίΎ}ςγ8­B³h6αή•+Wf¬^μt˜\±ΗnΖhΞιΣ§ΏIΖm;|μŸ›έŸ9ΙΆpš‡ &ϊ―jUyφwlχiφΫAm»©,ύβ‹/Κ₯Kυ<;μέΞλάΉsε’‹.rΆΝŠ©`ύκ«―Z‘έΟ‡έΘ„šΝuLΕi@@@@@@@@C'@ Y­έ!fχzή·aΟ›rΉO‘Οςθ+ ε+½]©αlΉΒ€Ωš˜ύiUŸυzτzސ­·‡ΣΚ’ο$‚Υ;^»GFN{ΞjΰΝΎ6s˜L[™ZŽyτΉο+½ŽΆψ‘>M(χXy΄v|Ε•ƒuΩ+yΞΕhΦθL ε΄ϋΘτκT³~G.rUZ°6qΚihώhnΦς ηZF=όŠό€:5ΟlmχlY!η~=Q…9[³ί’Υ€Ή<{ωΉ2ǟvw γW~σ±F°γ56rš<>OC°O%C°¦ωŽΧfκ}KκŒyTώrίWœ^άaσo<ωŠάυεή’ Ϋ:Ν2¬ψ‚λϋ杇țΟLΙσr>e²°v‰œνz.Άš©ΑδœwT~ε-©v½?Άh°ψλVζ ΓuvX ωZ 4kΤΫs―φΗ+uŽ{<;dξ°‘ςσd^ωΨo<*―ήυ•DυeΟΟg2ž•QΏ¨Οcώ!{ΟΙl €@VL‘欍]Ž9ζωτΣO­= U«VνW°9Sˆχ@Ν;wξtΒΉζΫ/^,=z€~› ξΕ_lU<ΆƒΏζz¦ͺρΊuλΔ2vM9muΩ²erο½χZϋ-Z$C† Ik“i‡>φ_+“ΕgŸ}f…ΛώχΏΛ駟nΝΗT„φ/ωΛ_dόψρΦξ»οΎ[Έβ k{~cΕόμέ |wOo€΅%­M썺-¬6±₯A› ‘……έ’T%ΈPΠ jπ¨>JPbτΗEε’eΓ T·…Ε•%•Π5₯–v«iΆiZ½kΪZλ‘—ύ?ίsΎ3ί9™“ ΚkrζΜΜχφœ9ixπΞ'O>iƒΡMMMφ˜Ξcϋφν’›Ϋώiτ­xύτΣOΛƍ₯ΞΆΡ?Ί³ζ ; € € € € € € € €G$@ Ωπω!fΏλ²Ii˜],Υ^Aή’‰‹dΦΤQR8 >DcϋφΒ€φ}I•l˜?Ρ΄Ι­r[TΨ-1ΥiWJ‘ΝH'e“©τ<73Υ ΞwΜ/Ν‡ΆξΩ$·Mž„~kΦν–)CΜψ^¨²dž ΝNJ‡'M 8¨ς«HWϊME±Νš¦›5i 4―JΆο˜ΦΎJ΄tκΖ#€•§-˜*λVή*Cςs€­ΉA¦O¨ζδšƒ Ή¦‹’‰΅R[5JδζHΒTXS™Μ+AVƒG"mrg± κ°5²΅n’WNŽΞΪΜΩΨT§m¦Φ“©eCl5δΦΖ΅2¦2]E[JeΛΎ₯q„΄M– ™G‡2σ»£F“¦jρ2Α«&μΓΐ«i”7QΦΤUΙPσ ΨͺΡ•Aί‚šu²qŠώZϋ„¬1L–kΆh‘4ՍKau-Ξߜs“™sκζH6/0•΅7ΪΚΪ‘±M½jΕJ™8ΌPr΄ φ‚ Yxo*q[džΊΰh6Ο@ϋ°o²e½ †/΄#›Υ›ΚΞw˜ΚΞ&‚mϊjXp›T»Jβζμή8%¨’=έTΡΦGF+*Χ«•Q¦Ή£ΈΆZ*—€Ξˆ ©λe‰¦ υŒ ’τΔΪ RS¦sn“†%fœz¨φΔΪ0n ?ώs&ήη,λ½κ’WhμζΣ&k+FŠ-€SςΧfήϊΟxωΌ5R3n¨δšg¨eg½TΞX’^·λ+nMC#ΠPσΏψE–νJ?“'O–ω— »νpCΝq!ή# 4οίΏ_Əo§υνo[FŽι¦h_ύ€° 4λ‰ϋ·“ο|η;φ A’ο 7“VGnnn–oΌQ&Mš$?ό°TVVΪ‹Ύπ…/ϋa+‘{ο½Wκλλε=οy5>υΤS₯;ζ·ήzK>ωΙOΚ#γŒ3‚vΊΏ’΅[σlhωΝ7ί΄kΌτKƒ6Ίσ“ŸόDΎόε/ΫcΩΦiΐ@@@@@@@@£*@ Ωpϊ!fΏ[&θΉͺrŒ΄/h›'₯So•Iεe2tPFΈΩ ZJ‘ †ΦΉ`hjδ=«ΖΛδεZκ·ΘT ³ˆ₯΅AIW ސSm"Šƒ€¬W588f²€ΝkMbςΥφή8&μ<ΫTO֌vA• ίN‹ R£₯τΧ!ε²uίβTυawΪΜω&3g›Ω­Ω uS Ν؝s“ ΖκΡφγDγ*VΉάφΰ‡P΅]θ.šgΐ“`νT|ΎΙT|Φ.clge¦§‘ύ‘@― ο[\Ή¨ΥT"“DΞ―Uζ “8 Ϋƞ©™`Rί³ΆB&ΫDlxL’{€ΒT€vq^mŽγ…½@qΆ5Χ1aφ‘ήσ–4UΔ‹SUΔ»φέ6g°©άZrfUo{οΌΌ-M2Ι$­“ή}.5Υ¦—zΥ¦mpΫTΆόσLz’ Aϋs.7•³G*gϋΟHWBΏα³Ρ•5ϊcwΥ+lSbζ΅²Άa©ΠΏR΅ϋ {χΙ„Β7μΫ(ϊδ»mΟ²2Ω–uΦΎVauwžW8z{χξ τ§? ͺ/»ή΅"σ‡>τ!™3gŽ\rΙ%φπuΧ]'Ώώυ―έ%r8‘ζ£hvaaΤ§>υ)™={v0? ρ.]ΊΤVΦƒ~ yϞ=’AmέΎϊjY΅j• ΫζηŸ^JKKνΫkΉΖž?xπ =¦―Zεψg?ϋ™\pΑ‰h5θqγΖΙ³Ο>+οxΗ;dΫΆmΏnš΅3ίh̘16LξWi~τΡGεγΈWϋΰδτΣO–γͺ)λχr6l°νΎύοΫukΫ™ω>φ"σΗƒ>hέτ½†€g̘αNρŠ € € € € € € € Π š ²bφχΗΏeΫz™;sa$ˆκϊΙ3˜ΧΤN“ Χμ#UsΣ {Lΰx²ŽΓ0§_ρ΅}ΠTše6 Κa3μ«q™ ψΦΐtΈM5AΨY&›lΩd*τΞ΅'ζm0ΥTyθπBo/ΩlͺωNHUσ-1AΦ•‘ «ΉΠy]%θHΠΤλCw“ζΧΕ'uΗT[>Έ·>¨¨yνUa Ωc›L06]΄XOflII$l¦ΛΩ[_iͺkD84ΘhΌm^_!¦βΔqΞΎ›Ÿ,ΦΑτήΪ0Ϋ‘S₯ΌΓva5dw,ΡΈΜΊmκ`NySΧȎYC£žσL@|R*&ήc/΄Cν‘{ΰ=ƒnl~ΕΓm—^°Ύΐ„Τ7ڐz0XjΗTΤNΨͺΪzKJ½ ό[ώΰΎ%e½©¨bŽ €›^Βη½σ{¦ΟΎ »wΊFν{ύt»P«Fwέ+lcž’’<Ω»7UυΪ€ώeλΖi‘ Ώ"4›°ϊ„tωζςywΙ­eCmr=§σ΅ΟgN©Ϊœ:Ÿ ΠσZ΅YΞΊi€Ω…˜ύ‘υ ωI¨ΩλΊPν‘Th~ϊι§mπΪΝS«1B^{ν5Y±b…<ωδ“ξ” π^½Z4¬•5ΠμΦRXX(‹/–³Ξ:ΛϋοΩ€²6ώΧύWΡ`±nίύξwεŽ;ξ°ϋjΦ@ΈV5ΦJΗZ5ٍwΛ-·ΘWΎς{ ]λυr~η;ίiΗYθ Ώͺ΄Ύ/..Ά}{ξΉ²cΗ2ΧγΊιœΛΛΛνΎφ=sζL»―kœ7ož­X­Ak=·dIꇡ4l½uλV;ΦΦΦ`mΪPCα'N”3ΟuMςς ΔάQ ψγΝζΉΫΎo©Ή.ΊuΌ¦θ΅½hvŸdoό’E²{ε8iΗΝ¬ZeIυl©w՜½fR0QΦ­™/CβϊΧ±ΗDΰHBΝ.Π¬ΑΨώπ‡ςΎχ½ΟΑ…’ύκΑώβ: 4λΉ-[ΆΨjΒZΨm^x‘­š\[[+?ώΈτοίί†¦υΥm―ΎϊͺάuΧ]²fΝwΘΎj[ ώŽ5*r\ίdOΧτωΟ^>ώρG‚Ώš3-ά€ωΛ_dΩ²e’fώvώωη‹VΦΉΉ ΅;―sΣ€²VŽ~φΩgέaϋzΩe—Ω5 Ϊώ_<ςˆ|σ›ί}υ7­*=wξ\[š0³/Γ> € € € € € € € Π;š³bφχ»z ’Zωwm"9Ιπ‘1Υl΅£Δޝœ οΤΘξS$Χ Žϊ‘P7n ͺaΐ³ƒ Νλ§ΛΨ…Ί,’uMu2$'ΥγNSυw†Va.©‘£φΘΜ…&2[4Ošκ&IŽ 7αbΟ3a§½••²ΩμOΌk«Μξ"³©~2 ηΩ½ Ν;˜ωΤ§BΖ₯5+dVωp›š¬ίg΄΅‡ΑάφζVY0xŒ€κ5ζI͊•R>ΌP]šŠΌΖEΓΆ‘gζZάϋΜγζηΛ^‘Ή}ZΗlΫΉ@FΪ@y‰Τ.Υ35”ν晐Uγ‡ΙrssJ­‘э³₯ΪάΗΌς»dΗβαnΚ‡UqX«1»P}ΰμ+2šλΊZ‘Ήm§Œ™ ^K^©¬X9K†τ•υγ‹e‘>`^ y}…9foΙ"σŽK_,©“5…Χ₯φΒg#ςyςΦ¬Ρ4ο±sφϋ‹ο+l£ΧΊϊΜ©v%σ6˜jΦ…~'‘ύd’Ušχ7Λޝ ²jυ½ιΟzI4˜iΔ8ζGj>œΙwhvύ½ρΖΆΪ²ΎζδδˆώΰNfΰΧ]›ωͺΑf]“n§Ÿ~Ίm›yMζ{ηΕ_΄gοάsΟ ͺ%ϋΧf 4ϋΧt΄Κ+―ΘΛ/Ώl/ικάτbm£λR»3ΟΨέw{ΎΘ„Νλ"aσ0l>//?±ρζΓ„οgKuκ†JΝΊέ2%²„ ΝK‡ζΓo>V“&™β›ΐv… l[~/ΐήΪ0Ϋσ&œΎΟ„Σύ­΅‘Β¬=υu£ΚO‹ϋW²}A 3Τ|ε•WΚ½χήΫ₯jΐέ™Ώš+ΝoIxψα‡εsŸϋœΜ˜1£;͏ι΅ϋχο—ργΗKΏ~ύδη?y—ͺ?Σ 38 € € € € € € € €@Ÿ Πln…bφχ»|—ΌΚΐΪ&―€J–Φ”IAΎ&…Ϋdδφκ%©`£9RZ»ΥTE6AU/L `j'f‹ 4k05¨τ¬•ΤΘ–Εeͺeg½Œ±DΪ­}ea­0ΡT†L΄Jvο˜’;M•ΰA•ΰ’y€nR‘λΓΧζ΅2!•6ύ–Κ]kfIQ~iΫΏYΖV†s Χ†O΅γ’ͺZ©)+2Λ; »ξΌ]–ά&{Γ*z₯Yƒ ώ.΄§KdΕ–ω2Ԍ“›k’ΓΖ3¨,,yRU»Tʊ.2]ξ•Υ·WΛζ°K©5Υ­Λ\ιjνΆέ η•Ξ“5³Κ$Ώ!ΩΏωv©\’Nϋšva8ZΩ¬ΚΜo± Τ_Ά4Κνcg€CίζLL%λf’žI‹dVΗn“e¦’υjWΒΩ„Ω›L˜έ―ι{τΝϊμ…²•¦κ-2e¨©Όm‚θυΥ•²dWz"^Ψ;|^MƒΌ©]Z#†_4ο’Ϋg†ΟΏ†ήƒΚα&τ[aBΏξ‘,­ΉKf•ICm²yŽ7Žτ΅@st>«Ζ›~ϊ LΜ34Β„ΤΣT₯U+dΦΈ‘ΏŸΘΑ²lϊLΉΧžΛΌΧ*Ξ†}Qΐ…šun=fvk~φΩgε΅Χ^“Ώϋ»Ώ“3Ξ8Γξσ――Ύϊͺ<όσrζ™gΚΕ_άηηΛ@@@@@@@@ϊށfs/ό³ΏίΫ”hi­ΒΐYΫTΙφΣΔEφΈaΠ7lD‹d]S qιΥD³Μ6AΌZΚa£τ^‰ #―Œ #ϋUtΫ–£!ήφθvΓxZMΰvLΈυΞψ»ώ:£•mύ«’ϋ~=³Η„G'»π¨½΄ΐT…ήh+.G‚₯Ρn"οΪUŽœMΏiέ&#ΖΜμτžϊf \7Μώ°©nμ’Η1ΗTΦΦ«"!β˜ΐ² Dn Ω…ΐ£λΠpφ;·Γ§,£ ΅©‚=ήTΑφ‚γ1«7‡’aΰ֝ ďϊψKƒ£ŸΰΈΏ“4ύb؏<3ήηΜ_γαx΅¬―±φ'’kΠ\XeΦξKw’ζλΒM|]Θ›ΊFvΜκ/„}θΓjΦνœsΞιΓ³dj € € € € € € € €_šΝύςCΜώ~·oe’EκWΛͺ囃jΜA¦bνΌΕ52nψ °ͺ©v;»x¬­ΪΫ>\¬ΧυRdδ³K¦.’ω·Ž“ŒΗΗL²U–TKu}psμ J筐²Cυ2sIκyΝ4km\/·U.Œ~nL₯σγΚLγ©κl{ŒϋΓ¬qz±Μ5CD>OYΦš»ξΥΪ0GΖTkΘ;¦©Τ^1¬2ύ,‡μdλΉsΩYνUOΝΎHjVΜ—‰£ ³<qkδ € € € € € € € € €o?Νζžϊ!fHnw2‘ƒ‡Ω.ϊυλ/ΉΉΡ θ‘τi›LHΫΑ^'2hΗo"kοŸ/]Yz"Ρ&–«_?ΙΟΝνx€τΩD›icφγ}“’h;ΨΑω. \ΜOϊIόά.PΓ9˜IJ³z ‚yφΤN·Χο?—]|L:Έgb>3ω]ypzjΑ=Ρo¬ο`κ™Τη‘«ΟyOL…>@@@@@@@@@θKšΝέπCΜώ~_ΊQΜ@@@@@@@@@@·£fsWύ³ΏvΌα¬ @@@@@@@@@@Ύ$Π§ΝΛ–-“—_~ΉΧΌΞ>ϋl™5kV―Η@ € € € € € € € € € €œθ}:Πόΰƒʎ;zν•––ΚuΧ]Χkγ1 € € € € € € € € € €'Ί@Ÿ4λΝΡPσ£>Ϊ£•š΅2συΧ_O˜ωD4°~@@@@@@@@@@^θσζ^a@@8.ζϟ\Μ“I"€ €@Χ(ΏϋέοΊή€+@@@ O π½}ŸΌ-L @ΰ{€'f@ήV ,ˆ¬‡@s„ƒ7 € € € € € € € € € € Π›š{S›±@@@@@@@@@@@ "@ 9ΒΑ@@@@@@@@@@θMΝ½©ΝX € € € € € € € € € €  Παΰ  € € € € € € € € € €τ¦ζήΤf,@@@@@@@@@@ˆhŽpπ@@@@@@@@@@zS€@soj3 € € € € € € € € € €D4G8xƒ € € € € € € € € € €½)@ Ή7΅ @@@@@@@@@@"š#ΌA@@@@@@@@@@ή Πά›ΪŒ… € € € € € € € € € €Νή € € € € € € € € € € €@o hξMmΖB@@@@@@@@@@ˆζo@@@@@@@@@@@ 7ϊ| yϋφνς裏ΚK/½Τc.ηœsŽΌύο—‘#GφΨtŒ € € € € € € € € € €νϊt ωΑ”;v΄Ÿu1b„όΓ?όCυN· € € € € € € € € € € )Π§ΝΛ—/οΡΚΜ™Z©Ήͺͺ*σ0ο@@@@@@@@@@@ ‡ϊt ω«_ύj°l?8x”vόΎύύ£Τ=έτ)€΄Ά΄JΜ)wΐ ΙΟιS“;Ξ'Ϊ\ξΡΉŸΙ6iiMΨΎ $<²G‡•^@@@@@@@@@ϊށfs/ό³ΏίΫ”hm–ύŠτΏHŠ :μ^o^›ά#γ‹'Λ~3fΥΊέ2mHnjτDοdg`@IDAT‹lͺί,mύ‹dάΈΡΗAΠ9!;ΧΧKγΑώR6nœφ…π°g›W΅NvL›wφm;V²y­OXbΦ—'λšvȐt’9Ρ²Sκ77JΒ2WVΘל·νΐΒ@@@@@@@@@·Ώfsύ³ΏίΫίΌvΌLX’1Ω:ά„»ΣΧ-€$΅³n99Ρ g²Y¦O]ζTΝ†έ2₯0hnΩ4]ΖΞΥ£Ag{€ού‘lΩ$ΕcηΪ‰υ™π°g[T³Aκ¦SΈdπθcpόΦ5NΆ¬7χz‘±,’ MuRh—’”MΕ2w―σ5η˜>h Ž € € € € € € € € pΔš ‘bφχ»£Ϋ²ήbj Φv§=ZaE[N6‘εiιΠ²νί έf 4Χlh2AηΎ€υΝ&<Όρ‡‡3m} 9)λΗΛBύƒΌΩ½cŠ€kq­Η¬ΧϊΙhn0ζκt yƒω!Š>ώΘφš!€ € € € € € € € €šΝ=σCΜώ~wn'ζξhυμ΅aT«0g„“³šE’ά,‡ϊεKα =;Α£Τ{[K³΄κ' υ°gΫΝAγ’yT7)Z©ϋ(έƒήθ&|ž3~X"Ω&ΝΝ­/  pΌΖ΅{C1ήΞχχv^kC@@@@@@@@ΰm+pI'EΦF Ωpψ!f?"ΥΙ›š­-–Lu”“?@δš*ΐΙ€‰š-''ΈLšγ©ΓZ)8)m­­’H·Ν0Hς;) œH΄J[z°œœ|-π˜?nj―γ΄Ά΄Ϊωσ³³Hύ‘L΄™>ιωζAˆ2)‰VΣ—[£³πΖr»QwΤ{Μ?u<±g­ ›ΌΔΎ©Z³]¦ νoζœφυB·~…f―Ημ»Ι„΄šy§οŒ 0ΑηΨΫ`ηdΖΣ“ζ>΄ΨϋΣώϊŒώς }$ŽtK™₯ΗΟ#λœ;Τs$vžmΡΌ-R7i$ΪΜs˜~psrΝ3ίΙƒΉΎƒη6ϊ\$€₯₯Ν ί|6R†m²Ύb€,Τ Ζ5²}γιoξKκ9οt±ζσY0ŸΉτ#*ΉζΝομζψΦζζ0χ³γΫ©¦mζs~’²|²š³,#jcΑξήƒn|Κ2#Πγ~ΩίwΗsηxE@@@@@@@@ήΘ .λΘώ1·O Ωΐψ!fΏ;·«Γ@s’Y–Ν˜ «5\ιm₯5σDV-”{€™Λ ²qJ‘=›lΩ$Εcηšύ"Y±ξVyΰΆ²Ω\γoε‹ΦΙβqCόCv?Ρά ζTΛ½ϋ3Nε•Κ]kζΛπA~%Χ€¬_, υΪΌ)/l–Ν»RεU­“Σύ'Zdν‚jY’Ωi^Ή¬©›/CtΫτgά°JζT/—φΣ«‘5‹§Θ Ώ+­(ž Κ>nk\%#+—›³²i£δ?0GΖToφ‡ φ_/tλχ™l^+Ε4κkˆ?IΘΆ΅ dζ’{ƒώR;2oΝ2ihXΡ9ΩΪ Εcͺνι’ςriήΌYR’^ΏΙViΈsT―ή•ΡŸHyΝ]R3exη—³Ψ΄lš.cηš~ ͺdΝ—ϊΛμΚ…ιρέP²hέJ7$ίθδ5)λ—Θμ…υύˆ”L­•ΪYeα\=Ϋ‚ς'›dΙζθ.(―••‹Λ$sτΦΖMR={μΝxΞυΉ¬]S+eώsλ­=―€\ ›7Kϊ±•ͺuwΛο&LβŸ‚"σœΤIτήf.?){ξ”ΫͺW·[oAiΤΞ7Ο¨ζζ~7Ÿ…›3>ΰ’'SkWΚ¬²Τη:ɘn2¦sΫ›ζ•˜ϋV;-2FΆ@sσΪ ™°ΔŒiΫ»M`ΫNΛ³©Ίkδ7Μ–Ή_<²έιζΧ©p=μ!Π{~PΩνgΎfΞƝΟ<Ξ{@@@@@@@@θRΞμέΟ|Υλ4?ΔμοgBvτ>k 9±G¦›,ν£«ΡފL Ή.4―7ζ…Ρ bήM]³]f £‘‰FS™Έ2U™8ζr{(U±Ψ΅IΚ¦Šb™›™Γ4Wζ.ΜΏvK“ œFΐ±Γ7ͺΚε1ƒWɚνu,Ι Θϊαcwyθ4Αο &¨*υγMΐ3 uΧT™ΐψ4,ΝgΆΠ¨©ok*ύKUϊueΌ–Φn‘₯eƒμΡd³Ήwβξ 4'dνψa’eš©žKk₯iiYΗΥ}³¬#|3&y›'kv™ΑάΘ5ϊ&) sŠ%KFJeKΣR/xί"sΝ NZ΅Ζ<{n½jz“1ΝLnf§\Άμ[,©'Κά…χυ υœ¦?jΑ½.š'Mu“RΟK6ώ™χ@Ίπ9ΧφώΧ)Ώ?φθ Lφ_γφu.ξxoΜ‹1@@@@@@@@@ »€ /λΊοή·ΫυΥW/{7ΗφŒ.φχφ¬όΎύύξŒ„ ΣαZ:l\0B*λΣαΕ‚‰²ξŽb‚™m¦’ςτ ΥAπ †ΖΤ JͺVΘό‰Γe@ŽVv] • Σ•‚‹™ γΈΨ £Vpžo*8η˜@ξS vς\W³Φ―R›h.’y+f™ŠΛύ%璁2ΐ^¦›@k:­σXύ>Γωe„FM…Ϋ±ΥΞ»JΆά₯zsD+ ίV97}Β6a?vx)š8OfM*ύϋεΘΐAf½AυmSX·|‘ΤΦ”ΩώΪZvΚν•3l΅nm9Ο„Δ'uΟ²ŽΠD{Ι“ͺ+eβπBΙ1Ξ›TΘB-nΆ’y[€n’‹ΜΪCνώhέΉΜ8N7Ύ·€*|'ۚeνœι²<]Ή΄v« tλ½lwΏl#SmxΓό‰RhžwυͺͺE—˜ϊJI}FZdΊ §±"©]W+£Μs‘ΟmγΪj©\’~ψόwζ8EeΕ¬‰2°?Ι8Θ΄MšαΫδΞβ1bgož©­umθ:Η>ν–š>ΰΝ₯ΐT―­‘‘¦sT(―_Pi*”··k\6^*W§Ÿέ’ΩR;1u?›·Ιœ 3ƒdpμ°ϊΊ²hͺ¬«jΎ˜Z’UΦV‘pΉiSsYψL…Ο™N8ΈΧ&ΠΌ1K ΉKχ@δpΎNιΨθ-PΦWχŸŽνφύWwΌ·ζΖ8 € € € € € € € € ] 3ΐμ‚ΜνŽhξΑ Ν‘ΰ₯©ΊΪdͺz…Œ“­ rӘjјdΆ@s‘©ξZTwΥξUψ5AΖέ&Θ¨…v[·Ν‘13S‘εE¦bπΈhX΅Ε ζ–˜0λJfυΝ¦:ςnSΩ―ΪΫΆSFŒœaη—7ΡT՝οͺΜκωδ Zsp&Πάsζ0ˆ(RbBΖ+3BΖ&Ai*Ϊ¦ͺΣΊΐ£>6~»Έ`λžU2yΉ‰QΊ © oͺ(–Ή6YYj‰K#ΑιΤ£  ¦‚Π^;ΏΪsϊΩυΓ·qσHμY+Γ&/±WΗŽΣέθ‚‚uJI­4­,3Ut36ξlΒέΊΤlS ³†]Λ0Ό zϊ~νζε…nύsa›°/?ΰ[ΡΨ ΄Ίϋφ_e9ΩΌVŠ'€Μ ΚηIν,S‘9?L‘' ³ΌΙ5U ;ά²¬#4ρ« »žΒ0Ό›―;ΣξΥλ?―ό.Ω±xx»KΧΞ‘e Ώ“‘SζΛ¬²θύŠσ Ÿ—ΠΈ]§Ι€$ΜΊεδ”ϊJS΅XŸλΰY7ϋήάβΖΡΆζ’π3α·MŒΣάΟρ& œΚp—Λ]΅·š ΝZ-:΅%Ν½Ρ™εζ¦ξ—―'Ψ*σG›*Υ‘ΝT]ž½@ˆL™_+e…α}v—%“¦O»\SAόΠ^©Yiώύ Η‰ΊχΪ__'6qχ μΏ{_§άxE §\0Y_ύπ²ξ»χώ«ΞΗ…ž{znτ € € € € € € € €Ω\XY―p!fΥνΫλ4χN 9. fšo†xΝζ ύΠ­=iώhdLΚzh^¨ΑϘ`rͺπ *ΦzΗόPdz –υ2Φvš:g^΄B­έςΜ»?οL%dS 8&°i―5!ˊβ 6¨V‡Nχγ^ΌΠsζτΒ™qύVhΘW–>Cσ04KM2ΊδˆFPaΫo7g wΟ1!φT-ντβσŠ€|t™Œ*+‘αCZGϋšeΩLR}„χ;0Žνάτϊ/šgžΝI©g3ΫεφΈίΖ{ž]›Π&4vηښ·ΙΛξ”ϊ]6Nμ‡―ώσΩΙ8©FαZ#aθ°Η˜=S)|Ž©½9RR>ZΚF•ΛπαC$ί₯›Mλp=&ΌnͺmOςͺmΗtξJJσΆM²μΞ;eΧώπ3δ]Γ5‰T­Ω"£΄(q»ν’ώ2pΠ€μ•…ύκΌ-¦Ϊο v½hεβι¦rρ.s&szνβΒΑαό’Ω0΄)ν+Ggι3lφΙ«Z#u Ω~ζrθHώΐAΆz―ί&nΞ‘ζΙ„΄4›Πξޝ²vΥjΩλλ­έΪ$e:ΘfYG6“ΤΈαύŒ#ςήxύχh…條2bδŒT7―TV¬œ%Γ έ³d*7•Η΅hs7B»™k΄υ–ΨρnRZ[š₯y^iX»JξυnNyνVY\6ΐ«œάυ Νm;ΘΘυvθΌY9«\ €όΐ˜· υ›+Γg*|6΅ƒΰ^wΓ&―Γύ:eΑτ°€«Κμ^5ΤμΒΜϊzΑτπ θ@@@@@@@@zBΰ…^fΦΧ“¨Πάƒš[6IρΨΉφ>–˜ οΚΜ o\ˆΧ\†cΉζ|ϋ £ ~š@σB[δΆDΆ4­”vΕb½±€€VšV–™rp }6―­ K΄Σ<©έΊΓlνRΊ‡Τ”’EfμqνΒΟIίj‘±gBΟ‘Pmϋ tΛ¦ι2v@Λ†¦:)Lη;τσϊτΗa›04κ=ΛW˜λθΞΒ~βο]²΅Eφ0Ιε~ΙΠ!~IinX ͺ7[ίΪ-²΄,&ψντ³¬#x6Ό`½k’Υ‡]π½+fΝ+_!;»Iο΅6n“½m&Νέo Œ](9ޜβϊmBγDγ2VΉΪφΨ>τΞ7ς|v2NjzYΪΆ[…w Ω*{˜ύ₯`ha€Κy’y“|xΒάTπΊΤ|~––‰x?°|˜jΟ H›φ8p¨ jηKγ²ρRΉZΪ1ŸSο3κϋŹ鬃{}€f³Χ―S:6zZΐ™]…fhΦ0³ώwΡEυτθ@@@@@@@@z@ΰΐ6Π¬afΝi`Ώ*³Ώί \ ’ΆΚœΑc$Q-1‘Ϋ•AθVϋNμY/Γ&§*8ΗγC±ΑX^±΅aΆŒ©ΎΧNΉ¨fΤM™~σϊι2a‘†Mδ JrΗ‘O?dlΙξ:­κμo iX°De·Κ€‘~8ΧΏFχ“0»XΣ“šu»eΚΏ§„lš>Ll6Ω\[Mp5ΥNΌKvΜξu¬}ήdϊΤ²Ζa@V/ ^_₯†ν,Πμͺ5€ΊnχJ‰LΫτΩ°LV'†ΛόICmHΫΫο?5|R֎(–%Άs©lΩ·T"‘εΦ<¦Ϊ^ZP΅N6N‹ήC·ϋšeΑ³‘aβΖοr Ω ?k }… ΄Gσά­2Ϋ<Ϋφ‰+0!υ&€ξΝΙžέΌC›π~…‘t}Φ›dŠK₯k£D£T «›Σ/2cΤ₯ƒπŒ“ΉVρΫΊΙΔΌ6―oό6ΰί—ΰo• ³^;—‚Sα|Šδz󐼉²uΗ|‰| Όϋ™ϊΜ †ιζs`?†‘›J[γZYΉΔΎ ?£ώσmάkολ€ΜvυˆήΧ)7o^θIhΦ ³ϋΟ…™ίxγ Ήψβ‹{rxϊF@@@@@@@@xώωηεΤSO BΝTh6Π~ˆΩίοΞ=Β…A°Κ±φV*wmω’ Π_ZλeμŒTxQΟψαΓ0ψΩυ@³IρΚτβ±’Š,›ψmΥ Y£ζ@Ί ΄]nΛzSι]π!t3oŽZ…fνλpΎNi;6zZ 3Π쇙uέο~wOOώ@@@@@@@@@ ž{ξ9fv‘fΝΩ1ϋϋέρƒŠE²©N†hΡn­²`Δ©OηuέΡΜW?˜ι‡<ύΠ­k„VύΚ¬ζd’e“ ;Χ]ϋ:oΓn™TθBIY_Q,6_™ΡWΠΨTɝnͺδΊ tpάΫΙ+_!χ-m+{‡ΫνΆlš#cη¦κU·;i΄―‚μWžŽo£G3ΜΝœΗ›9‡aX‘‚š ²qJ‘ έΊͺΟΎmhžΡ—΄Ιϊι#%]ά:Λ&š°ν|Ά ϋ‰4k€{ žΧgιΙΞ«’ν;¦Iqζ¬λžŒπkjΈξš΅Mγͺ ©\žN.§:‰ώi‚·»—–₯*w›@³³υŸgΧ ΄ρΫdνψ‘β2ΑξΪφ―^˜·“q\[?<ž:V`‚ο#Uέ΅©WSυ{Ž©ϊ½Ή£k¬Ω½Q†Ί©nΌjόIgΤ£έ₯ί•Φn1οt-ξ˜g3Ά‘χyŒwΛhξώ=ΠtλTμΌ9ˆΐQˆ 4kef 3ΏώϊλrΙ%—ει@@@@@@@@zCΰ™gž‘ΣN;-5h6κ~ˆΩίοΞ ii˜-c«΅ ²WI6θ U6ΝΉMζ…υDžL¬-υΛSΡV?E’δT‡Ah΅ΘT3 ·5Λ²9Σe΅«xœžCAΙTωό[Muθ imΘηlΰΌΧ8‹ζ™Ύ&EϋJ·5%y₯αΞR½:3Φ\ U΅σeJِψv½χΪΦά s¦WKΖτ€dκ"™λ8‰L/έΉaL¨Ξˆ›jΡ΅Ϋ€Ϊ€ύͺΣ©F­;Wɘιj»ζPh+YΟΫΠdΒέ)°‚tϋΎΤiOÝr[υjɌΊ–N­•Y·–σξμήΩΩYΟeΖΣUΝN/Τ<ε5σeΦΔΡbŠ`wΌyΉύuΟF€·λ* 4—ΜΫ +'™€wΆ–λ₯zΖΒH@܈ΚΤE_’[Η ο½™ΣlΦΦU™ώλ2ϊm2ŒΥcI΅TΧGƒΣ₯σVHΩ‘zS9υά-Ϊ$γ΄Ds'γK2ύͺ4aγ ΫσΓ½6τvτ^―•ΥΛ3ΦkΦT^#σgM΄Κ½f7!λ—HεŒ°~©8ύ₯ωR6ΤT―φΆdΫYrΫmRΏΧš €ζ/‰¬Υjεzqψu$Ϋ³Ω²iΊωs±u ›¬χΐΞ―{_§Ό%±‹@ h ω­·ή}uΥ™υUCΝϊζ£§c@@@@@@@@zT@ΝZ™ Ν³bφχ½KŽΚn2‘ƒ‡ΩΎϊεη›ͺΆ¦’νΰ ’yK?Π|4‹ŒΥߌΥY@Ά+ƒ&vP€_ΏΤΕΉΉA™Ϊ΄Ž\“H΄IŠ’ŸτΟΟ C±‘«Ό7Ι€Ϋ nΒΕ―Ώδwel;_γm&άί\δIIx9Gά§ι/q°{Iοξ¦ΦnŸ^γΩ%ξNΠέ/ΣίΡzfM_‰6σ¬iŸζΉΙνΖ‘۟‘ΰνΪXa]ό tΧσ0―ηeΦΡΓ_§sŠ4;βΝ.Μ¬―—^zι €ΑR@@@@@@@@xϋ<ύτΣA YCΝTh6χΦ1ϋϋGεΆ·5Κψ‘•2€v‹Μ/ι²qΩx©\½ί+­έ*KΛ’•\#σθ)ΎNυ”,ύ‘ζ#€9 € € € € € € € €}T€@s̍ρCΜώ~Μ₯έ<””†Šb©ΦΜfΛ+™*‹§’ώ&›—-ϊ½JRΩ²o©DγΞιSΌ €=*ΐΧ©ε₯σ#pζ·ήzKτΏ7ί|S\…ζΧ_]xDύΣ@@@@@@@@Žΐο~χ;9ν΄Σ‚*Ν}ΊBσ²eΛδε—_ξ5©³Ο>[f͚utΗK4˜adsΦ^ €vK” ΚΙz'@ΰλTςωα h>|;Z"€ € € € € € € € Π—Ž«@σƒ>(;vμθ5ΟRΉξΊλz`Ό€4ο|@κ7m’=Ν¦>³ΩςΘΈ‰SeΚΈΡ’O–ΉΜιΊ'ΐΧ©ξyquohξ eΖ@@@@@@@@@ χŽ«@³ςh¨ωΡGνΡJΝZ™ωϊλ―ο‘0sοίdFD@ΰν @ ωνpY € € € € € € € €νŽ»@sϋ%p@NΝ'Β]f € € € € € € € €'’ζρ³f@ŽCΝΗαMcΚ € € € € € € € €tA€@sΈ@޽ζc˜ € € € € € € € €=!@ Ή'Tι@ŽΊζ£NJ‡ € € € € € € € €τ Ν}β60 @θL€@sgBœG@@@@@@@@ΰψ Π||ή7f €ΐ '@ ω„»ε,@@@@@@@@ΰ Π|‚άh–‰ €ΐρ.@ ωxΏƒΜ@@@@@@@@xΝρ.E@>&@ Ήέd:‡’§Ÿ~ZΞ9η9οΌσNU³L@@@@@@@@ w4χ7£!€ €ΐa λ@s"‘W^y₯[³Χμ©§žΪ­6\ά3ϊMοφνΫmηΧ\s\qŝ€Οά† ‚ϋ~σΝ7ΛωηŸίi»cuΑoΌ!uuuςζ›oΚΘ‘#eΰΐΗj*Œ{”~υ«_Ιc=&•••GΉgΊC@@@@@@@ ohξχY € €@'Η:ΠόΰƒΪJ½L3rzΐ€rΣM7EŽρ¦kΙdRΪΪΪ䬳Β³Ο>»k:ΈΚ4:TάΑΥ©SϋΫίdύϊυςΦ[oΩW]u• 2€ΣvΗκ‚ηž{NξΏ~;ό?ψA*J«ΡγώθG?’—_~™@sΨ% € € € € € € €@ί Πά7ξ³@@NŽu yΧ]ςδ“Ov2Λθi­Π¬ΑRΆξ ΈyΏ~ύδcϋ˜œ|ςΙέοΔkq8fmσxφΩgEηρ‘|DN?ύt―ΧΎ΅λΜtŽ“&M:b³Ύ΅Ίw6―ΎϊͺάsΟ=’_©Π|β>¬@@@@@@x» h~»ίaΦ‡ €ΐΫDΰXš•ρ/ω‹ κώ©§ž*Ο<σŒ<όπΓϊVΌςJΉμ²Λδ7ή°ουœœ9σΜ3ƒχμt]ΰΏϋΏε·Ώύ­ pξαš»>γc{₯~>΄šτk―½&—\r‰Œ5κΨNˆΡšΐOϋμΘεoΎω¦œrΚ)ΦU}΅2²šuS7=—Ή% k«ηβζ¨Χϋfw―ά=ΡgKƒηηœsNfΧφ}6oίθΰΑƒ’uΦ—@Mu|³ή#|Ο6–k—νUϋΫ΄i“==rδH8p lΨ°AnΉεωτ§?-+W ξgΆ>2ίvΫmς­o}Λ†φ‹‹‹3OχΩχΩζ}€ΗjΑ[·n•ΨΟ±ήO6@@@@@@@ގšίŽw•5!€ π6苁f?$;tθPΡPwΆηΙοΛίojj’½{χΪΠχδΙ“ε΄ΣN Νηwž477GžΏmΆ} nll”«―Ύ:Ϋe}ξxΆy»@σαz‹…jπέΊuΑηQ?{l € € € € € € €}_@νΟώ³ΝIθoψΞ,ψΦχWΠϋ3$Πάϋ挈 €‡!p<šπ‡?ΨπjGΛ0`€άtΣMΑ%ϊέ΅kW𾣝|δ#AUam£m³mZέXΠΩͺ»vZ5ψž{ξiψ heζΈΝ· ψ½χήΫα<5 ¬ύκζšγϊvΗ2ηΎcΗiiixWό΄φ―•€όγΫjΦnΌl―έ 4kuf­œ——'cǎ΅έi€7[08ۜϋΚρlσ>Rc±> Λk…fέnΎωf9όσΕ4@@@@@@@ Ώώυ―E “iΦΕmš³>|ΈhφαhnZ”M;΄ζBŽχ@σρ~™? €'ˆΐρhΦεΑƒν4h 2ΔVμΥoΐ~ρ‹_Ψo\υΚργΗ‹VQΦo2λκκl…^m”ŸŸoΏ™=σΜ3eίΎ}Άϊ²»] ωυΧ_·U•υ§ϋτ›ΤoΌQ.ΎψbI&“ςΛ_ώRžyζΫ,³Β±ί—ΫΫίώ&λΧ―B·ZqyδΘ‘Άj±†¦5Hμ6ϋ5Χ\#ZiZΧ€U˜΅’¬nΪfΰΐΆΪ΄VQΦM«6L.Ίθ";7½ήυηΒΚ’ΦυόκWΏ’ηŸήΆωΰ?h­rssεΤSO΅ϋκtθΠ!Ϋ―ώγ 7ά` σ›ίΘΓ?ό₯ΐΝ#3Π¬λ6jόΫίώ6ΈΪ‘ώβ½ο}―νΫUŒΦpςΗ>φ1ѐv¦‘ώ$₯š_pΑνόΎ\θX;φΫh•k΅ΥϋοΆξšύω\uΥUφ9Σ~Ž4ΐ›-μζΨW_³ΝϋH=ŽΕz΅ΊϋSO=%™αψc1ΖD@@@@@@θ\@σ=φ˜½P3Z@Ν/w4‹YiΞ@‹dιΏ)=Ϊf:Ÿaί½‚@sί½7Μ @<γ1ΠόψγΫ0±n5ΘλoO<ρ„<τΠCφ έκOηνέ»Χ;οΌσDƒΌώφάsΟ‰ λqhΦ@k}}½ B_~ωεrν΅ΧϊΝ䁐Χ^{M εοώο#η2ίψαΨΜ₯ή ;k_ΊΉy»>φοίoCΝϊήr5T­‘L )kΨVΧε6Ώ?5ϊηώgwJ\Ψ―ŒμNjΈ»±±ΡΎυ«0»σ~elβφΝϊS·άrKδy­ ­Υ‘uΣ ΆM77lf WTTΨ ΅m`ώποΣ%—\"£FNΪΧ€I“"mΤIm5”›σ³o:ωCΩ:ΟΜ*άxυ/5ΧMβ€ΥuΣ°Ήϋ©ΝlΑ`{aϊ­VύK/ΩwΪN½]{:_+Uλx:Ύώ§ΟΔΡl“mήyΈωωsΣcΎ‡»&σΥχΣυtVEωε—_–W^yΕvsΖgΘΉηž›Ω₯}―Ÿ³^λ±r@@@@@@@ OθΏ…k±3έτίΒ5Ό¬ΏέZ³qyΓ™Όφ₯ΏΩΊ­­Ν6ΧίώΗόG[οpϊλ m4χ…»ΐ@@ Sγ1ΠάΡ’ό­ ―Ίπ¬Ά7nœhX7sϋΙO~|3κΝ*½ηž{lUb­‚|ύυΧw\ΞμΧ½χΝοϋεψ€;e_έύ€―»ΐŸ‡[“;—νU›ZΕ:3<έΡ8ξœφ™ν'΅κ±VpΦ ¨†Fύ@sqq±E¦€λώαh ]Z/pcωλυβδώyΧWgγλX~ ½«~ΪNCξ’Φ φΔ‰ƒppΆον·ί._ώς—ε›ίό¦ύIΠ[o½U»±ijnnž»lΑ`½φχΏ½|γߐo}λ[ϊ6Ψτ/^ίύξw₯ΌΌ<8ζvτ>ύλ_ίί΄ΝχΏ})++σΫύΓi“mήΩ_ZεZ«νΊ²›‡ΏN kελΜMζΊVΧ—»oϊ“—Z‰:777³I€ŠsάΫ50tήuuu6Ό­Υ·oΌρΖΰ²lήΟ~φ³rηwΧΉώύϋۊβ.HŸ-όΒ /ΨuΉvq―ίϋήχdΪ΄iΑ) @k(·₯₯%8–Ή3oή<ψuΗ§ΆΝ6οlΟ?ΌhΘ]Ÿ©lΫWΎςΡ\%i}΄Ί«¨Χξ?ώγ?δŸψ„=₯1ΥΚίm{φμ‰νυλΖΓ?lΗΤη\ƒωl € € € € € € €}Wΐeτ7X2DτίΧ5‘‘‹/Ύ8ψ7η#Yώ{΅†™έoSΞμλx5hΞΌ›ΌG@>)p<š] ±3P ―jpΨjγΒΒ?˜λšίxγ ωωΟnΏvΧϊ―οzΧ»lάSN9Ε?άnίλΖ…jγΎ“ΈΆ:―7Ϊ °».ξ53Έœm}Φ―_/οΘ)s ί-n]z½^΅R― !λ±ΈyΔ­S―υ·ΜΎ|πAΡP«nώ}³N…λ?όας³ŸύΜφ ?e©©έ–-ΐλΏzV^Ήr₯\wέu6?hΠ Ρ*ίΊΉλεκ«―ΆΗτ™3gΚwάaίkUk­0¬?Aͺ՝?φ±Ιγ?n"¦―’Φ{¦kΦΐΎn_όβeφμΩφάΎ}ϋδ“Ÿό€m£ηž|ςIyο{ί{Xm΄½nΩζη‘sΣ_ΉσΐΨΆZmYΧ§s kΕkΒήΆm›Œ5Κ^§ζόΰνώ~π»>}5΄Ρ~TΤLmŸzκ)ΫΧ—Ύτ%Y²d‰=¦?| κSO=Υ–5―Ϋ‡?όaϋ«‡\@ίUcΧ€ΉVlgC@@@@@@θΫϊοZόL#ΆfF43αoϊoσο{ίϋόCέΪΧΌ‚ΣβznΣ>υ½ώ½Ϋτί«υίςυί₯§@σρt·˜+ €'°ΐρh֟„Ϋ΄i“ fκmΣPβ%—\bƒŸώ|ζ™glΨQΟΉ€νύχί/Ο=χœ ”j(2ξK°ΥvqΑX­0¬‘JνG+Ξjd·ιOα•••Ή·±―…uέψ™dν,­[“žΧ0υ₯—^*ωωω’νΥACΨϊӈ™ύΉqβBΛ[·n•Ψ6κΤYH[Η>ցfύ‹Γ/ωKŠ|θC ˜gn]™cf›‡zHžxβ kPQQyfβΌΪή~υ/0Ϊ>[ε`w]f ωχeχξέφyΦΏ=ϊθ£ς|ΐ†•›ššl8YΫk΅oέ40ό΅―}Νo"Z‰ω’‹.²ΗΎύνo‹V>œ6ΣlσŽσΠΚΩZiY·o|γ’Αckkk³η5Τ|Γ 7Ψΰ³~.] ω²Λ.“Η{,βΑuλόσΟ½'ϊ|Ί@sάϊ·oίnƒΝκ6zτh;ΌV1Ώϋξ»νOι^yε•‘@Ή??φ@@@@@@@ϊ†€Ÿ™p3:묳l6Αϊۍ΅ΠWw7-ό¦VfviΝ$ψ‘fΝf”––EΝΊ;ή±Έž@σ±PgL@θΆΐρhώνok«ϋκB dΨ°a‘5kΰXΓΎΊΉ@³ ρκ±Έo`ΥΐU'ΦkβΝzάί4ܬՁ]hΈ³° Ά›—ίŸ›cfY―ΙlλW>逓dςδΙνΎQΦΰ§VEΞμΟ'sΞ™Y•Xι¦λΦP¨ώε@ƒ₯] »ΉτD…f| Ά»JΏ©Ω¦ώΌοΎϋ€΅΅ΥΎ‰³χ―uϋZύZ²’αdW1؝‹ πκ9ψ πΊΆώu™fšΜύίόζ7Α_Ό\;ZυXƒυ™›ϊθσ£χ3Ξ8Γ‚oΉε»Άq}ΊυΉρέqZMZΘΐ?¦Υ’γ‚ζZΑzƌv.]]]}ž΅οΥ«WΫΚΤ:οΈM?·ŸωΜgμuzŸτ3¬ŸοΈXpν5­Ÿ[έƎ+yyyξ― € € € € € € €}Pΐ­Μ:=-uωε—Ϋ™&“Iϋ[υ-μ¦9ΝQtuΣβvfΦ|…Ϋβͺ=g†šΟ=χ\Ήωζ›Ϋe5\}ν•@s_»#Μ@bŽ·@³`2dˆ\uΥU‘uΉ ͺtαU?δ¬U]5ΘxΞ9ηνxΰ[ΩΩpf­„«γihyδΘ‘6xιΡW Pκ7·Ξ ϋΧι~f(yπΰΑ‘K\˜83€œ­ν=χάcŠ~#>eΚ”H5e?΄™ΩŸGϋ4i’ύ‰E7‘'Ÿ|RvνΪeίj`yόψρrςΙ'»ΣΆ2΅ώŠέ\ΠΧΏΞ;hήΡp«~σ߁fύΛ‰ή‡7ί|ӎ¦w Ί»MΥΜΓ?μήΟDp fΗΛΠυΧ_/………‘«ό° βκ.πϋ½ο}O¦M›iγΏqΧeƒυ QkΰVƒϋψ_ώςωΓώ ZΑY7ΧnΩ²eςωΟ^&Nœh«ϋχΚ^σΗα΄qέd›wœGWΖQ;ύ‰V}–΄³ώ«>Oƒ rCΪW}5`―χB?7ώ_>]EgΏ†œιŸώΙV_Ξ¬’­Άϊωˆ«PξχΑ> € € € € € € €@ίποΕ_l=؟ٟώτ'Ω²e‹ύ·δqγΖEς ώu™ϋ―ΌςŠ 3kFΐmqafw..Τ¬ΏΝ[s}}Σ‹?ν΄Σl0-v’YτυυI3?@8ρŽ·@sf8YΏ™ΤJΑ˜}葇"?5ηlτ£ΙΛ/ΏάΰwΏϋέφ΅^xAτΧ‡ψ› 4ϋΥ υ»nΈA  ’Υ°³žΧ-77Χ†ύ>2χv Ω_ΟE]dΓ›ϊM§†Dύ_u’hήΉs§<υΤSvzκφώχΏί†;υ§3+UΏγο°oϋχοoƒ¦<ςˆ½Fkΐ[Γ’Η:Π¬sωΕ/~aΧ­ϋΊi0VηόK/‰†ύΝ&όγώΎϊι_D48;aΒ[Ϊ?ΰΥσ.πϋνo[>ϋΩΟϊM"ϋξ:Lv'uL}ž;Ϋ΄]qq±|ϊӟ–οϋ]4λύνn.Ωζι‘?,ΰΖωπ‡?,›6mŠγ]Ÿϊ^vΩeφ­oρΔOΨΨ»w―»4xΥΏœjΕmχ«}τΔΦ­[εŸψ„ ά¦w΄΅ΜΟ>ϋlϋμή}χέφσ«Ο>Γl € € € € € € €}_ΐ}Σ"Xϊοώώ¦gύmΐZ¬NΝϊ[…;Ϋ4c’΄΄ˆΫ: 3»k2CΝϊογjΦ’Z}y#Πά—οsC@@ΰx 4λΔύ0o°˜?ΌϊΖoΨvώOΦωM.½τR[ΉUΉ@³ΪθXZ5·£m̘1’‘βŽ6Ώκ―?/ΧΖUNΞ λωΈΆΟ>ϋ¬lΫΆΝ5ΟϊͺύωΥ£΅―~SξoΪ²ӟ\όιOjΏΡχ―ρχυ›ύK€n~θ[CΆEEEώ₯v_―Uhvσ‹[gfgq}ι5?ωΟεωηŸΟΌάΎΏδ’KD½τ~ΖΩg6RuP΄š3·Μ―ϋː όN YƒΧW_}΅΄΄΄ΨαζΝ›gͺTς£σxτΡGνs©']ψχ;ίωŽάzλ­’‘αψΗ‘*έ™sv留kλΦηΖwΗγ<όq²šύ Ν~₯kΧοlεζωŸ‘•+We}^χνΫ'οzΧ»ά₯ΆB·V^Φ*ΦZ…YΗw›ϊθηXŸA‹n£F}.Ψ@@@@@@@ϊΎΐύχίoΛ±Ÿop³v9-Z¦ΏX½³M«3k6ΒΐλJ˜Ωυι]ΣβZ7ί|3f‡Γ+ € p$}=ΠωdΉόςΛ#?νΨΦΦfΏΙW§›nΊΙV°Ž42o\Y«[λ5ΊνΪ΅Kž|ςIΡ*ΠZEWϋφΧg€ν\_οyΟ{lΕl=ζ6υΨ³gΏώEE’’λΌΌ<ωαΨ₯@³ώΔζώηZ]λ΅Χ^λΊ^γΌz~'Πμ½ڏώ* αϊ›†u΅ͺ°n.Pμζ‘λ|μ±ΗD«Žgnj’Ευ³qΑX?υξNΧ§[ŸίwσΠΏ8ΊgΞ?¦χDΗΞάV¬X!UUUβ·ΛΌΖ½ΧΟΌV£ώΜg>ci5φΈ{γΧB˜={Ά­ΞμϊΧ°Έ>χϊlLž<Ωώ:w=― € € € € € € €}W@ bιoοΥνΚ+―΄Γt_ [mήΌY΄JσYgeσzΌ+›ώ»²<2dHδ·w₯­f<4gr<„™u=ThξΚ]ε@8ζ}1ΠάU ςjU_ &k%βlΏΒC―Σ€―nZMW™›VuΥΠ¨nΩ~‰VΡ=ν΄Σμ7ΒΔΝΙΙ±Χλ?^zι%9υΤSνΌ\΅ΰΜI]τώg[‡aυx=―R pχΕνΟώ³–ή“Έgΐ―"έY…f/AϊσΟ?Ώέ’ύ° πκE.π{8ζ§žzJ.»μ2;ΦφνΫeĈ‘qΏψΕ/Jmm­=ζΕZ₯X’¦Ϋη>χ9Ρ€°ΓέφΒ /ˆ†Υu[Ίt©|α _°•»ΫΖυηΦηΖwΗγ<τΊκ*{ΙWΏϊUωΚWΎβ.·―:7ύKα‹/ΎhΓΫZAYφz­Ϋυά§>υ©H½dΧMη !ι―ύλφώψΗ?.%%%‘λοΎϋn©¨¨Σ;vμύ ηηη· ŒGς@@@@@@@ Ο άwί}Aα;Ν1hNDΝn‹+zηΞe{Υά„φs8Ϋ‘΄=œρŽ€ ζ#Ρ£- €τšΐρhξ*’ϋυ"z½ώDžώŠ?ψ©•ž΅"±ZΔUHξκ8\Χϋ~EεΈ_σΧΏώΥώ4¦†dυΌ†Υ΅ZqΆM«qkΈXΒςя~Τ†ε3― πκ5.π{8f Σ» ΜΊώχw[qYΓκίόζ7εŽ;ξ¦αΕϊΌ~ϊӟΆ•‹υδΤ©Seώόωv}Z±yΪ΄iςψγΫvZ [+{N7~(Ρ@IDAT°[ŸίσΠq΄τƍνe¦ž9s¦œyζ™²~{4Μ¬›VFΏα†μάΤ\+™λΆvνZ{~&Ÿ}φYYΈp‘]«V—ΦͺΟZyY+pkεeέΧP΄VφΦgBΥκ‘λΧ ψ/ωKϋθΉββbΫΞΒ € € € € € € €ǍΐΆmΫμΏϋΦΒtZ4,ξ·ϋםΘϋšOδ»ΟΪ@8Ž4x¨!?χŸVIΥjΌϊŸώJ²<Ž–ΤnͺΊF IjΈU7­θ<`ΐ9γŒ3l…X­ΪκΆΛ/Ώ\½φZχ–Χγ@ΐ―­ΣΥͺΚyyyΆ―ώŠ·εζζΪ0»{³w/πQUηχ!A0ΆiΕΤ bOA¨Wͺͺ΄(τEΔWΰ+ŠG8^ €΅B{@Ϋ‚WmQ8’‚Š`ΛΕSμ‹υBU(T¬¨H΄’(h£ D¬ζ]Ϟ¬=kfφd&3“dΟΜo>8“}Y{­οΪf―ΜόgMό£^':«―ΞL­ΧΗ~πƒψ]ΌŸxΰ>|Έ?σ―{μΨ±rηwJ&f-ψκ«―–3fžΣ]ιŠwμΨ!ϊ)Ӎ7Ί»Δ<Ÿ2eŠL›6Ν_—Ι1zp²@s2…YλfCΥ~œ'ΦΎκͺ«ό5―Ύϊͺθƒ -Χ_½\sΝ5ή.‹/–σΞ;―‘έE Υώ|ξΉηΌύτ z-° € € € € € € €δŸ€ΞŒόΑxΩiώC'ΐbiX€@sΓ>lE@C Y©wνΪ%Λ—/χBΪΙθ=τP/€ιΞޜl_Φ‡G@―α+VΘΝ;“VJgυ0`€7Cp²4Δ―‘ΧΦ­[Λ1Η#6¨ΏΏξsςΙ'‹^/$ΆϋΩ@ςέwίν͎œύ9Y0XΟΟ=χΘ%—\bwυώσŸΛ•W^)”Ν›7{³»4ΠΆΞΰyηwδ·Ώύ­·λτQgž9s¦œvΪiξjoφe΅κ©§b֏5Κ;oχξέ½Y‘5`}πΑΛ±Η³? € € € € € € € PΘš Ήwi €$P,fΫe•••ςΟώSjjj€mΫΆή£Ξζ[QQαΝκkχγ1ΆoίξΝόρΗ{Αεέ»w‹™uΖί#Ž8"4 J ΆΤO“~ςΙ'^°ΊM›6RRRb75ψ¨!em»ξ―αθƒ:¨ΑύuccŽIUο†N¦Αfν]40Ο₯Zτ˜Ο>ϋΜoρΨΰ!ϊ‘ϋϋLΏRθ€hp6"€ € € € € € € P š‹‘—i# € `€_~ω₯θΏ/ΎψΒ Cj ςσΟ?w&Ψh.M@ Ε² ·dεσ΅ή-iΖΉ@@@@@@@hiΝ-έœ@ М;!3Ρ£GΛΌyσdύϊυrόρΗη¬ά¦.(_λέΤ.” € € € € € € €@˜4‡Ήw¨ €ψš} ž Π,O>ω€μΩ³G  ϋξ»o³œ3'ΙΧzη’픁 € € € € € € €@Ύ hΞמ£ή €™ζ"λpš‹ € € € € € € € P4š‹¦«i( €ω-@ 9ΏϋΪ#€ € € € € € € € L€@s2Φ#€ €@¨4‡ͺ;¨  € € € € € € € €9 М3J B@¦ Πά”Ί” € € € € € € € €@Λ hn9{Ό € Πά,vE@@@@@@@@ 4ηQgQU@ŠY€@s1χ>mG@@@@@@@(dΝ…ά»΄ @ Π\@IS@@@@@@@@p4;ΠΌ}εΟδΜ‰ω§+­8KzΛ›ω’Ϋδͺο7ο Νnϋ*&/‘FvχλU[»KjkυΗΆ‘Cξf¦φOΐςL€@sžuΥE@@@@@@@@ MΝiB₯ή­FjjΜ^%%R’zgφ@ ₯@wAι%ΥBW”9δ’n‘σΧ Ήίάškeѐ^2½2r‚σnX.StMΩM΅ƒΫΎΨ@³[Οn²πωGδ82ΝMΥ ”›'šσ€£¨& € € € € € € € €Θ»@sUUUΪMΤ0fYYY³ŒW\NΞ_(oΞY6’[u¬–«ΧK•.§φνΦ,uL£RΝ²Kυ֍²~£iyŸS₯[YΛ†e›₯Αœ€¦r”φγ9gΓNΡ­Ή*eX»žς¨©Α¬5;etEsŸ?Šζ~sh^zA/Ήv£žγ,Yώςrqf·}ρζh=+dΙσHwΝΡ ƒgE)`ΝϊψΕ_xώύο‹ύwδ‘G₯ F@@@@@@@@ ίήzλ-iέΊ΅―՞={κΒΪ¨šΚΕ&δ9ͺΥ+—5;ΧJΣg1kdρ°ReŸM yQf7°:ΛVG7{`΅Œ9έΥX 2V›BΛηΘΞ΅#Š*̝.₯{­·t ΉyΟ_+»vΥF˜ΪΆ•ζŸlY$ί>gΊ·α@³{lsl2νZρƒΒέ¦Θσ “€»zE8εš=;$/8Ω \O ΉA6"#@ 9†ƒ@@@@@@@@(4— ;ο’¦Ο ' 4WΙ”v]εfsΉΔ‡Bέΐκ|hΪτ•lΦ‹ΆjΥι:Ψ΄ΌŸ -/sCΛN Ήί|³mhQšWOj'ξHœΩΫ½>⯝ζιΘJΉΔΜΠl&OΈv›κό[VΞ• 'ή*;t;kŠ\υύwε‰σΌ΅ζ][dιΌrνΌg#EΊ5Yn˜:RΊv¨_]»E~ΦλY_Z*;w:g1?—šŸOΉn‰\?Έ»_Fνφεώ;gΘ­ΛΌ©œύυ¦`SξU2ΰΈΞΡuζΩ–₯?“s]ožν”)˟—a]cc΅[–J―s5Ϋ+d֟ο‘οwŽlO4ŸΧ&°ž₯^½E&ίσˆŒμ}pΜΉωb 4λLΝv†ζ#Ž8’X(h' € € € € € € € €%°uλVvζ}χέWB=Cs|4ψ9ΠΜΖΌ¨fc¬E’š+e˜ …š‰›%(΄\΅΅RͺKΚ€[YΗ Bσz]εβaΣ›²Ϊ„–Ε…–kͺ€rk΅”ΡM:–δu3³¬Ό„ŸofφΪΝ//z]7_ Ψ?Ή>©1ζζ 4ΧΚ3·\ —Ξ«Œ©BΠ ζνΟȐ3/•δG–Κ ώd€†‡M ωhŽ‹';§ΉRž{y΄hώyΧ‹‹δ€α‘Y‘bžžuΓrΉq@Wέ–Ecδœι‘PuB=Ν^npΩέΌD8―V†τžΌM-”—―:Ξ?o±<ωπΓ½Πj&νέoΏύ€S§N™Κ1!Π@³ 5ωε—bΓΜϊψωηŸ ζuΥA@@@@@@@@ M 4kΦKΓΜ­[·Ξο@σhnx’γj©άψΆTUW{<ΛΊIE·²©jͺ*ε΅Κ*ρŽ(ι(έ**€,!„λSη˜`κˆnR]U-΅5εςΌ@σŒ•dD… .›s$Δ[cφ©i["TouU•ΤšXV&%&ψ»q =Gj9·)’1Ku}ύΝ™€€c™}tΓ!βtΫ[Uυ±)±­”™0vUεF©4ν•Žέ€οΡm₯ͺ¦V*\.&›(wΏ²αήΡ4JχΥ₯ΖψGκΣ1:;sM΅T}lvj{ ”­Η:γ‹Φ»’’[t_omτ?ώωΝͺŽe¦O;šsTΙΗ΅‘ϊEχ xwήκ­e£ [λ’ΧΗΡζϊ°έccκΤ§:‰ι΅Κ―™kΝk©”u«0Αu[’TƒjYς“žrΕγΚ΄RξQaϊΎ$ώΚΕRΪs”Wω›φΘΠ²Έk‘OΠuθνξύGMΆš>±ύސŸcx„1<βc™Τ‡˜Ι£cgh6υήψΆ £›λΘiŽwΞL³kύ-r…‘˜΅ŒŠσ“©#zK›έ›εΞΛ―ΗœΙ”έ °Θv™φν3εa{β“/’{. ₯mwΛ²iΚ±ΎuέdΚο―–ξ&—έφn½³vΪ6Ύπ?ψΰyβ‰'ΌkcZΫ¦M9γŒ3δ ƒjΜaμR @³j>μ°ΓBZsͺ… € € € € € € € € ΌσΞ;~˜9οghn(Π\ΉjΆτ<9Ρ’ί4YsοΡ¬qΜR])³ΗτΝδΖ/Σζ―‘ C+œΥqζskε„ε%gιŒ5²g\…™w ¬Ž1«ϋ™™₯—Ef–6θAζ8“o>Vϊ-Ό#ςά?XdΪM2‘Κ$O«7ΚMcN”©υoκ?=¦ώ¦ŒF΄7ZwSϋύδρG½‹”Ο‘5γΛ‰cκŽ©ZΉiηZΣΞYpB©Œ18ε³6ΘΪΡ‘Y‰+ ’žήqΓeΞ,‘1W,Œ9Ϊ€ΘšνwΕφ“™Exφ0ΣGq§λ7| <Ύ0π ™±έ‚£η-—ρcΛδζ;β “ρ²fΛ8©ΌiŒΊ#ΎGϋΙ ‹€\Š>Ω΅ΦoΪRΉwB1qkίΐ­Kδω,ΩΉg΄ˆh6ΘRώψ£ ΧӜ5Ϋ#!y§κΚU2¦η`/Dο¬6OϋΙό5χΚΠψ ½f«1μ‘`X^.ςR}sηlΨ)#Ό6VΙMνΊΚT-ΈŸ™y{YάΜΫ±'Lσ§]²hΘI2]ΓΕf9λΊ%rγΰξ‘Όn—[†œ)vςf7ΠΌ}εΟδΜ‰y{u;o–<0υϋ&bo—]²tΜIrmdΒdΉςžηd΄M›Ψψ zΙ΅šKΈNž`°sœζ™ηJ―sotΦ,yωΖοΫB½ΗΏόβ{rΕ²HΚzςΒηdδq‘pqξΝΆύ΅²rL/™θ΅‘B–<€hŽ©L‘ύΠΨP3aζΒ»@βΝv–fj>τΠC ―Ρ΄@@@@@@@@"ΨΆm›73³†™ 6Π\΅jŠt|³ίΓǏ—Ž―­’;΅Ձ&,»Θ Λn•)fvZˆ~ΓeΌ ‚Ίω?TΪoΦY6Ϊ†šγΝ#D¦ š$―™ y΅a_)—ύΚδμιχz!Τ?°:P’AμJΉ€]Oq£ΌύL°ΉμγΥ²Π―«ΘŒ'·ΛΈ>ρ lΏyζI΅Μ=‘³\a›§υ7Ήα›οˆ–<φ‘M2σlŒn\{£uwΟižœ//Œx[ώsξ:)«zT―?ωΐRvΔΉrοΜ‘^˜wρ°ReςΖλg³ΦR*_"=GEλ§λ.5 FCέ¦ό‹lˆΆJfŸΠU&Ϋ6šΐξXΣΘΥNiΡ0ώ”Έ$ž·Ÿ ^&Νyύ’ΓšώwH΄;¦Ι–=ΔΞσ]΅ϊ&ι:ΐ‹όš£ΚMϊΛΦU7GχΏRφLο#«¦όDfΏffF~4TΦpx·³§ΛL3SsqωΐαrDΝBρ/)ςή°η.‰DΒΝιͺVI»ƒύΪφ>ή\Σ―™~¦Ϊg™τh?Τw€4tO^ίΉv„?{΅Ζ>©}ΡΜ†<Ό~6δσδΟ/O3GrΜR»e‘τ:gΊ·.hvƒΠέΜLɏψ3%ϋo_)ί>32Γq·Ι ε‘‘ΗΥorΝέ¦Θσ ‹ 4KνΩόζoίφ‡t—ψɐƒλ#f?x-šmΏΎχή{²zυκ”35fΆb…υhΝϊ¨af7Π¬‘ζC9€°Lk@@@@@@@@(wί}Χ 2n Ήz΅œΠy@}8u¬ .ΟτƒΛ[WΟ–κgmk‚¦3ϋzέΎnφ rz}Rv¬™Νx¦Ν8n6Ϋ₯[φH/ΙhΆΣh4>X ¬& 4—Λό ΙΠn‘ΰrΥΊυτ1‘Λ„I·›0iHσΦΗωήΎγ͌ΞΣνŒΞfζI{ΚΊΕ €6Ά½ΡΊkAΓe写·ΎžΊF—­& άCΚf&ί=f&ίθl,8K6έ;ZŽ0p1³―šrš ΎYγΕ&xΎΣΟΝϊκu³₯σι‘Ύ+<6ύμz*™;¨«\Q?ΡrΌ{΄‘gξyΞZ)χŽξ[5ε 3εΨ,pΏ²aΡ8±“1―›;LN―ίθΟmfΕΤΉ~†ν~¦ ‹’mX=ϋ'2ΐ›ξ»\Vn_+}λ;oρ°v αn­Y‚ρ–Ϋ€o™"•+¦HΟσ#qϋhϋͺMΐ»s}ΐΫ\;kΜ΅S\ΩΊZ†υP oΨΣ½vƒ†NΫ£ηΠ‰ΌWΛͺυURΦ»BŸΗΫ¦σ³ξv₯ Ά‘γθΡξ>~ Ήv³ BŸ[„™<λιΆ6z>«}SnΉb†θδΟS–ΘΓΊΧoOhίKvmί"λ7—77Ώ+»₯½΄o/²ϋΝ'dή2ήٜw‰™‘Ή{ο9f‘Yώ“*ΤL˜ΉYΊ‘ENβšm¨YƒΜ6ΨόΩgŸ΅H½8) € € € € € € € €d'°ώϋ{ζ}φΩ§0ghZ1IΊžοExeώ¦=2ΤNJ\οΆnφ ^Φτ« o•Ifvfοˆαɞ»ΞŽ^gB«§{αΠθ ΓΑ!]“J•KJ#3.»‘P-0X΅ηΥ΅Ρt?3{ρ²6­ΫΜΦΓ€ηMΨΖ†b½Ξj*HiΟHψy֚fFήHVw©Z=W¦<ϊšt<| L§αέΖ·7Zw3[΄™ρwœ?γo΄~PΨšwš@s΄ΑVώώf–ΰ'w.“>ΡŒ•m΅Š–!2V6ν™)1έZc‚Ε₯‘`qΌ{΄†‘gΡσš²χ,ŠΞvl6GΟ+ο(ζΓΜ9΄7μ9ͺV›™ΐhΠ8¨*e˜™}[χ>ƒά5Tϋ6ڎθ΅dVλογ€sK• ±w„Ψ‡Οίdʏ‰ €Gκ+bgΚΞΦ0RγΜώ놕hcΝΟ¦{ڊλδωΧΟĜ:Π\»}½Μ˜x‘<Ι-'= ζ€4MΎ!Y¨™0s“Σ·θ 4Δ¬‹ 3ΫGjή³gtι₯EλΘΙ@@@@@@@@@ qoΎω¦΄kΧNl˜Y[™0P$-ΤΈ²ZlοhπΣ†]c«βV͌ΉΫ—NœΥxλb3›ρ(ο ΘL»[ύΰι,ΦΦ]qI;9ίL>,MXw‘†u“S£ez΅΅ wtψ€«w\•™mΊkdΆιψςlΉή£θ՟‡O›/£ϋWΘΡGw“ŽNP8rL4h›n{Ε Ϋ&«GΤ½±ζΔ~L΄Šzχ›±F–«ˆ4ΕoΤ1Yύμ~=ύ@»έβ†Š£3CG·&ž#Z– @/])G·ξ-ς±<:ι|ΉΓL4νΫh;’λ"ΗDΫ LGKK–²}ΟΈΔ@³3+²†_Ο•fvγQμ4hžhφƒ«ώμΓΙ‚©‰ΑS―`σŸhΥ πFχΈzΗ9AεTAέͺu €λι‘Yšν9υ±|ΰx™ώ‹qΏ’,R€NN·½‘4ΧχkΉ 4―m†@σ†fφζ˜0x΄―l_¬žr‚ ΈΩ$–S,ΡΩ·“]7ξυ‘^ ΩΏ&ΝμΠOξ\3Γu€:ρηŠš³5LΡά7»aεŠ)KδaέφwχρΔ&Π|™‘Ω›@Ήt²<χτHιpd² ΟΠΌ}ε/δΜ‰ΛΌƒKέ +[φ–₯ςνsυΆϋυ1?hNζέ΄λίyηyζ™gΌΨgœ!_ύκW›φ„”ήβfΦΕΞΞlΓΝjώψ㏠4·xQ@@@@@@@@' ζ<0dnΥJZιΏB›‘yΥ€d°N‹›,ΠlBΒΓJO”GΝ^0΅γ_₯]ΧΑžδ hh^0LzŽ1Gτ›#;—hΎšMψz˜™eΧ―klΒ6±χkͺeέ_WɊUKdΥŠ΅ϋΠ™yv7‘ͺUno(ΝΓLPέ@dƍέ`y„28tn™Ν«&΅3ךnο'γ§υ Ο‹TWWΙύ'ΘθΎ(›ώ¨_’ηN/Π\΅jŠt|³9Ί@σ cφΈ^Άdوpš₯φEL^LΎ“GΗ†‡M‹Ν²Cnωήi2Ο›”ΉBξyξιv’Ήα@σζEΘΉΣ5*]jΚ}:‘άΪΝχK―sgx=•,Π'’"–‹ξyJκ=€’eΪΞ‘‡½ ΅Θδ%ΟΛΘϊ”ρ–₯cδœkŸυΞrς”ε2gXWŒ"¦.cN’ϊΝζΈηΜq‘Ά؎4―ΣK&zEhv0yŠ€7;³2ΈfύyηΝš‚@@@@@@@@<Π@sii©WcovζBœ‘Ήj΅™Ήv€Ξ\kζh~ΜΈάΗMzš@ι%fΦZM₯jvΟ"ι&U2₯]WρŽ(Ÿ%Ϋ׎Ži·r±΄λ9JhΥ ¦šΩo¨"ט°pidFεψsG¨6€«%Fƒͺύf¬‘eγ*t₯Ώ¬žr‚ ΈYΣΘeΝΞER‘$1[Ή`™AΪ‹ΚvZv[\9»τœ¬Eφ3e,3e4Ύ½ΡΊ…m#Υ­\lf±ŽL‘l Η9uΆςΓΐišEVίd,¦ͺE?yrϋ2‰ιΦ­+€]σ½ŠΨ°q€V‰mμy£%Dϋʞ£jΕ$ιzΎ7Esΐ΅fιUλδ―UGH «Z”ΟxR֎λγί°qβΉ₯j΅™i{€w|?SΦ2§,]m§ˆ ΧG―'{-ψ§oDx>zL¦Οv­ΏENΊpžψΙWή SŸl2ΐ•2oβ…ςp}fYwpƒΐ²k½ 9ιBσMύν<ωύ IΕΑmeGεz™χΫ‰²¬~c·ΙΛε‘‘6`œ"ΠΌςgrΞΔΗl©rΡu³δ”.€φέε–‰·FΟgφ¨˜bfTΦ=²οφ•ςν3'ϊǝwέ=rQοCdχ»εώ[L]tηϊΕmGς@³ˆΈr–\wFgΩ+‡Hχ‘0΄-GŠQ@ΓΜΊΈ;vμ Π\ŒmF@@@@@@@Θk 4|πΑή ΝΪ/ΤΌgϞHB(Oš ~ΊΑ`·ςN`ΧΜΒ<ηΙE2’Οf‡jYuΣOdπT ώšXμ,  W­2!θΑ^€YdψΩtΫ9Β„‡«+WΘOzžοΝr*ŽSΊfΩ*“ΪυΈ–_*M?UJj"³&Χ;TΥ:hƒL?[ΓΡ5²nΑεrϊ/ymκ΄TφάΥ_w \ά`νπ9+eζΉ}₯£©MΥF™{ω‰2ωQ=ΜΞΠ,ΨφFλž<ΠΌΥ„{{xαήryhΓcrΆzΣE[E·‰ύ=Ÿ³m« –χUίώ±ςδ–i§¬ΔτΡ*ΣGƒλϋ(yύκt‚ΎNΩυΟktΒη6Πμu·Y+7ΘθΎ‘ώΫΊn… ;}”h{μ-2³$ΤΌbR;‰d ΗΛ†Ώ½2KŒSτάAmˆ^'Ρs›·)k@$Om.Ϋ'εΆ}ΌY’+Wέ$=OΥ*™ }Žl_6"0w ΛΗ˚eΏŠ†O‘) 6JίΡ3e‚wmFŠΝξΏ΅ς—iΘnr9InXwΩυβ"9iψτ${Χ―ξ6YžzddΪ34‹l—[Ύ}¦D#ΦΙ‹ŸQyι½δZ'ΈœμH· šγΓήZ^ι• ειΡΗ%+šυ•€ 3k£υω|@ Ή¨‹ € € € € € € € PhώκWΏκš΅M­ς9МlΦb7Ψqε3d‹™EΨΞ›«β“J냦GȌ•fΆηΎvξγΰΉβX­Ο!λΟε&8½Φ§£urg[ŽUuίΰ₯\VnY+}£• Ψ­JfŸΠU&kz6Ιβ†jΫޚΚRΪsŒW²¨9U•™%Ήkd–δΘz; p°Uε3£σMZ»‘#]« ffκn&­Kt–ζΘΟAMZΏϊέσΊeλfχΌ‰ΧV΄―άsTo\,OU_zΠΓ4\žΰ·‘jΕ%fVgχ™#;׎0ΩθŒ™Ώέs› Λ$3#x}¦9ΰδύd₯™ΝΪΏlΝ«g’“#‘ώ€ΌUΡs8(Τ³Ύ+’ڈυ΅ςβ2όΪ‡c©ΈH~Ω!rΛ₯Σ½™‘§,yN†u›xΧf™;νrλcώ\Νυet“σ¦\%W;Ebpfh˜"Ο?0LΪƞU€v»,1Q}86άν¬)2uX™vαΔΘLΝgέ Οί8ΐ9~‡¬œvΉLŒ;N*Ξ“λΥΚ΅Σ—ygrΫαšΟΊaΉά8ΐΞ$­»ΦΚ3·\(—Ξ‹Φ£Ϋδ%fΆιξρ5ζgŠZΐ›ί}ΝE}%Πx@@@@@@@@|Π@σΧΎφ5―κ:;³.yh+φ̝7p©ή(³Η\bf'ŽMωŽ΅Rmf08hγŠΩrΙω“½YuύΝύΖΛ™€7χˆhHwψό rΧP§U«eXΧβMŠl ιgfp^6’›–nwΥ\£!Y)+γ+VΛΝ ϊšuO.›if"φkΣΐ“*Y1ϋ&9r\Ό΅| ΜŸ9S†φΥΉ€c—΄Ϋ[½Nu>έ›yώ†2Τ&Œc‹“us/‘Σ―°aέΔ@³kU½nΆt>}²I|Η‡ΛM‘Ζπcψ’ΈV‘“ιŒΑ'ŽͺŸMΫ[ΥOfΜι/ ΖDϊ-ƍ«\ύώyʎšΝyχ˜>Š)"ΪWmΪ™Ϊn73aίtω%25ξZ8~Ύά6}¨œΧͺdξ°rEτ‘f咍«δ&XŸj.Dνχ)¦ί­{€RύΖΞ‘™ΧŒ˜ΛΆΎΎ‰†ε2kώ8Y5jŒwέΞ7νͺ3l›YΝλ,£΄cΝ,α3ϋΧ—Γ‡Ϊ]²cΗnγiΫΎ½ά!6ŠάΠ™j½cχJϋφmd―Ω±1Η&-Χ―O[Sn{ιΠ!!ϊxh€.»½mmGP΅»vȎݡΆm{ip'@΄7λ(^ͺͺ*ΝΕΫύ΄@@@@@@@@ O4Π\VŽΝ»@scνkjͺ₯¦F*‘ŽΣ™_ΆFͺ«½Μ!%­C*U]]Ζ9£!فσ7Ι’‘GH9.rφtλ›xrΏŒS†ωΧπ’›φϊη0ήΚWbμRžΪ?¨±O’u.ιhΞSmН5-2gΝNQ‘ͺ͍=_šϋΧ·]jM<χΐ²―ΫG^ύΣ,ΎΑέΜE^ΉΠΝekLάΩllΔώ5fί’¦λΜT5e; T€@sR6 € € € € € € € € Z’ 4‡Ά7ΌŠ9f3“σ"3“3K23³±™₯ψŠ#ζΘ–E#œY«e™ExŒ7γq?yrϋ2ιγN¦¬8Φ#€佁ζΌοB€ € € € € € € € P„šCΧιšΣξ’­‹₯]Qυ»—ΛψYγ€’€JŒ™*Ϋ΅3ž”΅γϊ€]$;"€䷁ζόξ?j € € € € € € € PœšΓΦο5ePι‰^ ·|ΦY;Ί"l5 U}ͺV/ΖΦiΰ΄₯rο„ώRΈ•• €…(@ Ή{•6!€ € € € € € € €ΊζΠυp΅l\½QͺM½JΚ*€O·Ž‘«aψ*T#•ΧΙk•UR£•+)“Š>}€[Qζπυ5BšV€@sΣϊR: € € € € € € € €M!@ Ή)T)@ZD€@s‹°sR@@@@@@@@² М#€ €@˜4‡©7¨  € € € € € € € €ι hNΟ‰½@@ 4ηA'QE@@@@@@@@β4ǁπ# €䯁ζόν;jŽ € € € € € € € PΌš‹·οi9 €'@ ΉΰΊ”!€ € € € € € € €ζ"θdšˆ €@±h.–ž¦ € € € € € € € €…$@ Ήz“Ά € Pδš‹ό ω € € € € € € € €y)@ 9/»J#P8S§N-œΖΠ’‚˜6mZΑ΄₯ΨB ΉΨzœφ"€ € € € € € € €‚ζBθEΪ€ €žf.@@@@@@@@ςO€@sώυ5F@$š“ΐ°@@@@@@@@ hqηP5@hœζΖy±7 € € € € € € € €a Π†^  € Ν9a€@@@@@@@@šU€@s³rs2@hJΝM©KΩ € € € € € € € €4ζ¦q₯T@hΝ-€Ξ)@@@@@@@@ΘR€@s–€Ž €α ΠžΎ & € € € € € € € €€+@ 9])φC@Π h}QA@@@@@@@@4'°@ςU€@sΎφυF@@@@@@@(fΝΕάϋ΄@ Π\`Js@@@@@@@@ŠB€@sQt3D@ 84G?ΣJ@@@@@@@@Β Π\XύIk@(jΝEέύ4@@@@@@@@ O4ηiΗQm@H МhΒ@@@@@@@@Β.@ 9μ=Dύ@@ m°šwνΪ%uuurΰ¦]wvD@@@@ 9φξέ+Ÿ}φ™΄mΫVJJJšσԜ @ΰ~&»!€ €@Ah.ˆn€ €  a4ΏυΦ[₯KωΪΧΎ&›7o–N:Ρ9 € €@^ <όσςή{οIίΎ}₯C‡Υ½ΊΊZž}φY9τΠCεΈγŽΛ¨Œ\€6{ύχ½qYiiiŠ₯@h„ΐΏύoyϊι§eŸ}φ‘ο}ο{ήc#χw ΣCΗKŸ~ϊ©”••ΙΰΧ1Ÿž\}υΥ2cΖ ™={ΆŒ;6ŸͺN]@πr5ΖΠΰΜ‹/Ύ(½zυ’Γ;¬EuγΗά―[΄;89 €4³ζfηt € Πta4ΏώϊλrτΡGhnΊn¦d@ŠVΰ‹/Ύ}£nί}χ•Φ­[7‰CMM{μ±²eΛ–¬‚- .”#F„bLdίψ»ρΖeΒ„ MβF‘ €δ³€Ξϊ§ί4₯³τ6Υ’ϊ>ζ˜cΌβΧ­['½{χΞθTac|ώωηrόρΗΛƍ%›φd„Γƒ4Δ|ηwf5ξΛau( @ ΐςiŒ1zτh™7ožœzκ©ςΤSOeόα«l»0hŒΑύ:[UŽG@| МO½E]@@ AΝ ς°@ς\`Ϊ΄iςΛ_ώ²I'n ω»ξ’‹/Ύ8#΅%K–ΘΠ‘C½@³~ΰ+Σ™ž3:ΉsΠG}䅍4 ύΖoHΧ]­;#Οέwί-ϊF[S-ϊΥ¦»vν’o~σ›Ο­o\j€ΈcǎήΧ°7U]S•»|ωr4hθ’όγ½Ω­SΓv@ŠI@?Μ€_­ΎiΣ¦¬‚Ζι˜ιŒφΩg9ςΘ#ΣΩ=pŸ°Œ1μ7@̞=[tŒ–― ©|ν9ꍄ_ ίΖϊ:Θ»οΎ+;w–φνΫ·pΠƒϋu‹u'F@ Πάθœ@šF ́f}!Lίt;τΠCεύχί——^zΙ rΚ)²ί~ϋ5 ₯"€ €@A|πΑςΕ_Θ€I“δώϋο—λ―Ώ^ƌγ-ΚΚΚDΏΒUχiΥͺ•rΘ!ςκ«―Κ;οΌ#₯₯₯^@Ι"θlΕόη?ε“O>ρΎVώ[ίϊ–vΨav³¨c*-λ ƒςΝv,σo|ΓΫ¦3+~ψα‡ήsύϊxγΈ‹ΎψΩgŸIII‰xΰή&[OύAί ά½{·lΨ°Ajkk₯M›6ή,‡ΙfrΦφθWΥΧΥΥΙΑ,ρα§γ*-«uλΦξι½ηΊοόcYΆl™h°YCΝξ’¦ΊΦΆιWΊͺWyyyΜΨL]΅ή:λ’zΔ/z¬žG]4 e—Lκkmθ1:Η―/ώmέΊΥ«§φ…φW²Y$?ύτSyε•WΌkDΛ9ꨣk];/°ξžOϋ]ϋUϋC―M]βΧύνo“?ώXτϊλ₯‹ΈZΎυΦ[ώυΠ£GιΤ©“Ώ=ώ‰ΦCgϋ΄ΧOχξέ½>΄ϋ½ύφΫ^€=¨οΤρ_ϊ—Œ=†G@ Ψτw―ώξΧh yŊ»woiΫΆ­χ;>—ΏΓυ~ΊcΗ―l½ηΪEλ ―—d3ƈ―ηΆmΫΌρή£υΓUΗ|Μ}ڞ[3Ήgλ˜Jο;:ΦyρΕcξgZf:χk;†ΠρEό}Y­τ>₯ύ`ο§Z.™Τ7rdπS€?Ϊu‹κύYΗ“κτυ―έnNxΤλNǞΊθu‘χ q]¬@΅@ͺ1†ύ»R_Ψwί}EΏ%BοzΟvΤrRύ4ΖΠuz]}ύAχςΛ/½Χ0τ΅ ]l=νίΏφυέ¦―§θίΧΙ½Ηι˜D—Γ?ά»'κXHο‘Z§ %Ωƒϋuλ@@ P‚Ν²gϞ:ώaΐ5ΐ5ΐ5ΐ5ΐ5ΐ5oΧ€™ιΗΌWΥ²Λk―½VgŽu_ϋΪΧκLΘΗ«Œ Υ™―7χ֟qΖήcό>-[kΎ €a8οΌσόρƒŽ!μ?ψ¨3 :σ†šΏnθΠ‘ώσSO=ΥΫnΒΊuΣ§OχΧΫγυqάΈqu&Œγ7ί·¬[·Ξ[ο»α†κLΠ)‘¬;ξΈΓ/CŸ,X°ΐΫΗΦAΧΉυΌσΞ;½ρ’[}ώΧΏώUwυσfbέM7έ”pΎώύϋϋγ«»ξΊΛίί}bΒΫήq&lνΛμv€φwλ`faͺ{ζ™gμnu—\r‰W†Z«£»˜76ύz=ώψγή¦lκλ–τ<έ:ΫcΝΏuκδΆOŸkŸxβ »›xί}χ%μ«ϋλ5’Χ€]μυxγ7ΪUώcPΏΫuZ֏~τ#φxu0`€Ώή­οάΉsλΤΤ]Μ,_ufΖͺΐύυΊύM¬ξδ“Oφφ9ϊθ£ϊN-νyL8ί-žη €@Ρθοv}νΒώ>t―»ξ:Ο!—ΏΓν8 Ωλ%ٌ1l=υžΫm·%΄IΧ›@QLίfsΟ6ίϊΰCο‰zΟq—tξΧ:φ±…š›ͺΉ‡{ϟ~ϊiΏ Ϋ·oχΦeSί„8+ώϋΏΫ;—™iΪY[ηέOoΏύvΏξυ1yςδ:½»‹Ž“΄έύμsσ‘Ό„ύ7nάθΨύτQ―w,ζžƒη €ω!ΞΓώ]©Ώχν{'zX³fΧΘΖό4Ζ°λ΄Μt_°u²«jE캟όδ'uz?sοYϊό§?ύiΒ=NίW1bDΒΎZ†=>Ωί‘ΙΖά―σγΪ§– € ΝύΔg•4θNΈ(β/~&δΘ5ΐ5ΐ5ΐ5Ζk ¬f}£ͺ’’Β±ΚΎhεΎ‰—›‘₯ € €@! όζ7Ώ©Σ ²Žμ8Bώέο~η5Χ~ Κn³ϊΖ›ž/»μ2Έž={ΦM›6-&@rν΅ΧϊlξΈΕ̐δ­wΧΩ²΅œ‹.ΊΘ/WΧ»oΘ-^ΌΨΫ¦u°AŸ z2$&δͺ#3Λ’_}γўSΝ¬D~PՏΰΨƒoΎωfοΨ©S§ΪUή£ω¦Œ˜2'NœX7~όx~ΝμΎήΎΟ>ϋ¬·^Χŏ5οώΟΫ¦ύ’oΆκ’M}½’ό§1uΦ"τ d”R'uΎκͺ«ό6κ:ϋF±ξπΓϋΫ΄­Ά`έΧΜn퇂“½‘ͺευ»]gϋΛ>ή}χέuf¦ζ„zώΟό_έwεΚ•Z΄·h˜+ώzώωΟ󆆯t±okf&noύό3ΌsθηffR»šG@ ¨τώχiΤΡί—zΠίωφFΉόnΗξk!ΉcΥSΗ)n@κόσΟχΗ$ΪΡ™ή³u\sΪi§yχχ₯e6ζ~}λ­·zeθoΜ,’zΈΏh`XϋCϋBΗrΊdZ_ΏΠ$O’έΧωΛ_zuΠzhŸύκWΏŠΉg»c-zήΌy1ϋk\ύ€”κύίΧjΜ~ˆLΟ§Μ7F$©1«@Β.ΞΓήμο}ϋ¨―+4φοΔ 1†]gΛΥΗT―?Ψ:Ή―1ΨuΆ½]|ρΕώ=OΧίsΟ=~—θ½Ξ|σ…Ώ]χΧ{’{ίΣcμλ-ώζICc [·nz,χkWη € P(š /^ζΰΰΰΰ(˜k >d6ϋB™Ύ@eghŽƒΞ|…«7bό,-Q_Ξ‰ €ω#`ίΐŠŸ َ?τM1 λŒw:ΞЌωZr4χ/ †jΠWI6n±o°Εeώόη?ϋhznϋƜ[Ύ iΨΕ†Wβλωϊλ―ϋε<ϊθ£~=νyu,eΛ>α„κΜΧ‘ϋϋkVλάσΪά@―΄Φνvv_-۝­1¨-nΫο½χ^[Ό7k‘ tk@G—lκλœδIcκ¬EΈ‘ΰΗ{Μ/υύχίχgΨΆ}£39[KAYί<ΆΛC=δo³ύb―Γ χ ~·λτΔΧ™&ν8xΥͺU~ω6<§ηΦ:Ψ@΅­§Χ™°m]5θo―-%ςškρΆΩλYCζφϊΡλΕ.³³Œ͊iχγ(ύ½h?„ύΒ /Δ4;—ΏΓν8ΐώžΦΉχYύύžι#ΎžΥΥΥ^;tΌ£Ώλ΅lχΌΩά³m;tΜεή3υ„Ή_Ϋr΄n/Ώό²W_ύ;†Y²d‰·>›ϊϊ'yt_Ϋίώζίou»9~–θGyΔ+U·Ϋ{«Ξ^iοΟΙΖ›φCa ί΄i“_3}nοσξμ˜ώΡ±ˆn7³JΫΆmEΗNΧ]w]q‹-+ΥX&¨^fFA1³ρŠ ΊΘ₯KeŸ}φ‘†κιžΓžΧ–aή8”'žxBZ·nν6G‚Ξ«;˜οΔ|¬˜―>3«²όηώgΜqφu0adyϋν·ν*13Λ³Ο>c¬cΊcŽ9FLΰWΜ Šrψᇋ™)Xϊχο/ζΝH1‘Xo[¦υυOžΖ“tκdιmfˆ’7ί|Σ[uΤQGyύcϋΚ¦dί}χuw3‹΅˜7|₯cǎςυ―=©»d ά~·λάρqΜ Μf6+Ο]}MPJZ΅j%ϋί½ώsΛJΦηΆ<σ¦΅w|ηΝ½>11a1oσoΌαυל9sδK/υΖμzΎύφΫΟΞ# P” έ7rω;܎άϋ{ξ ΧK‚~οΫ:Ήχ»Ξ-ΫvfΠyνώc˜χΞ€OŸ>bfφΖΗ{¬=MΜc:χk=ΐ|xG†sOϊΥ―~%ζ›Δ|ΘΚ{ IΦ7¦RI~2ΆλL8YƏŸpδςεΛΕ„šΕΜ ι½Φ₯c„σΟ?_~ψaoίQ£FΙ…^θ΅KΗρ‹ήΛΛΛ½ΥΪg&Μ.'žx’χš^IIIόξόŒ §ξ}ήώo›bο5& ,ζCήkv›}LχοΔ {½]§eş;Y½lάΧ\μΊ zΪϋ³;&ΡΧjξΌσNοήfΎΉΑ6Ε{Lv^ݘjŒaλT7ξΧ1Μό€ €  ο_”••ΕΆDΝόΓ€k€k€k€k€k€k ߁|˜‘Ωύ}‘}RŽφ € €@Σ ΝΘ£gtg2oΤ%TbΓ† ώ,@ζ [ϋάIΌ™zυ@w¦D[–».h,T/;S’ycΟJΦ†κιžΓžΧΞF¨3!Ω―out^έ³ kΫ΄]:koό’36› P‚ƒυΠG·ΊΏΞ¬λο»ο>―8{nwvΖLλ_Ώ ŸSη†œƒΚΆmqg• ΪΟ³ϋ»Fv[PΏΫuξufχΧG"o°/μ5δ^#AηvΛ΄Οέ™·LPΞ›΅9h6L»? €@1 ΈΏ_ν=Ψ:δκwΈ–gοOξύΐ=wΠοφ {Ž­“½?hΩv[ΆΧ%θΌ™ή³ν7@Ν¨ηjΜύZχ·ccθ·Qμݻן-ϋ/ω‹ξβ-™ΦΧίΠcΌ±Ϋ'zο ZLHΜkι·=θ’m±3}»cͺž={z3LΗΓάΉsοϊm [·n :-λ@ςLΐ½§Δ1μύΗ½Ÿ»ΝKχοD=&θ^oΧι=)ώάΙκeλδŽIμΊ zΪρ‡»mβΔ‰ήύνϊλ―w›γ=Ov^ݘjŒaλaλζ–Εύ:š € ηA34λ'ΐ4cΐ5ΐ5ΐ5ΐ5ΐ5ΐ5wׁζ<™R}@hP ώ ,»sCoΤΉ_ijf3³Χ½ψβ‹uζξuf€„0Šϋ¦˜}ΣΟ]gί<³ηΦΗ z½±ΧP=έsΨσΪ2hΎώϋ½v™™ ½«[W}~Ο=χψ3ƒ`†4˜£cΙ=zxΫβΫiΡ―X7³.ϊq3;³_|¦υυ hΰ‰=ΏΎ›ͺΞfFeΏ}Φ²’λΜ¬ˆήώ 4½ij ά7tνΊ ™~•° =υξέΫ <™Y/λτλι/»μ2o›-Λ –;YνΧπj9ΪΗφ|cAώ0“uΙΥοp-ώάϋ{Ώχκ1ιŽ1ͺgΠyνώch WοΑz13+kυ–Ζά―υ`·L½·ι=PΛ73ΧιΞ.™ΤΧ›κ1ήXCΥφƒ\Ιξ·Άžn_Ϊσ¬Y³¦nΚ”)u'œp‚ΟΥ67.αjοΏ~έ‚ κF޳―ξ―γU@όpοσρ›Ϊϋύ{ΟmicώNΤγ‚ξυvήSβϝ¬^ΆNξ˜Δ ͺ§½?»ΫμώΏώυ―έ&yΟ“Χ$cΨrmέΈ_'π²@ H@_ǏΟ/h&ΐ–pQΔ_$όLθŸk€k€k€k ŒΧ€lZz±/”ΉoκΈ/TΩœZΊžœ@ςOΐΎ.±γ 7κV­ZεDtl?VΠ¨“lάbίτK5–±υrΗ9Aoμ5TOχφΌζkΛ½ϊ}τΡތ…ρ=t^7τΊzυκψCΌr48«νvgWΆ;꬀ΊΝm‹ns­fΜX―LκkΟΫΠ£ΎQ٘:»–Aj€3jπYί8΅}•lΆI ιΎ;wξτͺiƒΖA~vIχ ][Ύ{ΩφΪ°±§΄ξς§?ύΙsvΛ²}nΎRΧέΥΎ}ϋv―Ÿ~ϊ©Ώξ…^πΚΡ~0`€χ\Ο§, €±ζηŸ>†$—ΏΓν8ΐ½Έχ¬ψ{―VΔώήw·Ω:Ήχ»Ξ-Ϋ6$θΌ™ά³ν†τzoŒ_{ΏΆΗΫϋέ™gžYgguΤρˆ»dR_χψ†žΫuAχz-Λ·5΄¬}¨ί€‘ψξςφΫoΧ]yε•ή½W?X§?λ²kΧ.oߚšw}ΎrεJo\šlœζοΜ@Όpοσρc {―qοηΆQύ;1θ^oΧι=ΕΎΖ`Λwλεn³urΗv]P=νψΓέf^ŽΏ—λΉ“7ΥC΅υͺχkbA@B ΠLx™π2ΧΧΧΧΧ@Α\ρ!–΄ΩΚά7ΡάͺάœZ’~œ@ςWΐΎ1Υ₯vότFέΒ… ½IΧ]λܐ§*,]ΊΤΫ–lάbίΨK5– zc-荽†κιžΓžχ™gžρκ§νrΏv]λϋې―;Ύ²αΥ φκqŸ|ς‰? σ}χέ§«όΕ-3>4Αί!C†ψυΡ:ΉηΥB2©―ςž4ΆΞn κ§?ύiΒ,Υ68eϋέώ¬mŠŸ ρ‹/ΎπΏ>ήΆΧΞθ4«₯έζΎ‘k―{>ΫT5ΥY΄υΌϊΏΨpΉ;s΄}c[gΤ0”»ΨΠΉ–g―!έξφ«nΣρύλ–Γs@ ΨάϋLόύ6—ΏΓν8ΐ½Έχ{ŸqύΣc$«§–tήLξΩ6Δ«3 λ=,~q3ΖψπΓύo~°χ)χ>¦ηΙ€ΎρυKφs±½Ÿk_½χή{1‡Ί}fοχ―Ύϊͺ?FzχέwcφίΌy³ΏMgoV;½·k[5ΐΏh°[·iΩ”fAΘ_χή?Ζ°χ{/±­ΜδοΔ {½]§χ”ψϋͺ{/s·Ω:Ήc».ΎžZ_;ώp·έ|σΝή},θϊ¦ω¦¬ {}ͺ1†žΛΦΓ­χk•aA@B ΠLˆ­`Blaœ)”:1ƒ-ΧΧΧ@σ^š qΈJ›@@ΐ θΧwλ›_Φέ±c‡Uδ ½QχΤSOωo˜ιk|π7Σ}ΓLΛΣ7Ϊ4 ͺKΠ{ξ:χΝ3[― 7Φ‚ήΨk¨žξ9μŠΜ­¨¨πκ―³ϊi˜G ώŒ1Βo—[§«―ΎΪ[―m Zάœ5«hMπε—_λίΏΏ_¦Ύ1Ώ,[ΆΜίnΪwΙ€ΎξρɞgRg;S²ΦSΏκΦ†ΩΧ]뇦.Έΰ/TδΪλ΅ _ο«‹ΊLŸ>έoσ+―Όβ­wzθ!o¦cνχšrίΠ΅Χ‚–­ϋΉ‹}VϋχΡG­ϋ裏ΌΩ£m?jύέ™£ωΟϊυωя~TWUUε§3NΫΩ—΅_m{νΉξΌσN8-σ7ή°›xDŠ^@gΖ΅š4i’χ;tχξݞK.‡Ϋq€{?pοAξύάvJΊcŒ†κtήΖή³έ i(7hΙδ~mΛ±βΡ{TΠ‡²[_[n:AΖJΦΊΨϊθύW™ϊόσΟχ·Ωo‚p?T€R²‘ζ?ώΈξΖoτφΧ{½}έΞΆWΧι«ΤNΓΛϊΑͺ=zxϋ…Σiϋ €„G ‘1†½Έ;ښ7φοΔ {½]§χ2ϋƒ-ίΈΫlά1‰]TO;ώp·Ή‘e½§Ϋ{¨ΦGΆχW{ήtΖZo[·nά―mςˆ €…&hn₯α+3˜bA@ςJΐ€K—.-ZηΧ_]ΜΧ’‹yƒNΜ,4©S'1c+ιΣ§lΪ΄IΜ N2vμΨ­#'G@ό0_Γ-?όαύΚ› §<ωδ“’γcŽ9Ζ[oή“γ?ήίΗΌ(ίύξwΕ„TύuAOμqξώv]ͺ±ŒŽmL`4fœ³dΙ:t¨˜7φΔΜ-ϋ쳏76JVOχφΌZΟgŸ}VN9ε” *ϋλμψΚ„a½Ά›»ΔΌY(ίϊΦ·ό}ά'ZŸψΗξͺ„ηn½νF-Ώ{χξbΒ<^»ώπ‡?HλΦ­νfο±1υ90ō­³™ΥJF%χί`Ι:V5_ω+&όλmWs―&[LI&L˜ΰm6‘xo¬›l_]―~&T-ϋξ»―<πΐ2|ψπ˜ρ±=ΦΌΉ›΄Ÿμ>ξΈZΧΝ›7OFm7'<>ρΔrϊι§Η¬wΟ£u 께ψ(2σA™1c†ίjϋ{?—ΏΓ3y½$έ1FCυΤΧftό?iΜ=Ϋ|Jzφμ)&ˆ$ζCP²ώϋϋVξ“Ζή―ν±ξ}Ψ|(KΊκ*»ΙlL}ύƒxrωε—Λν·ί3ŽΣΓΜ˜dπΰΑIK0ί"Χ\sΏύΦ[o ¬·έΑΜl-·έv›΄jΥJΆmΫ&½zυςΖTv{όcee₯χϊZόz~FΘ/ 1Ζψργεβ‹/φώΆsv΄-s~³λβέϋzΠΓήυ8χ5ύ9ΩλρχD j°ž&Π,ζ[b^χΠςoΉεΡ66΄Ψ:₯;ƈ―›-›ϋ΅•ΰ@ Iΐ|HLΚΚΚb›dqΜΪ‹ΧΧΧΧΧΧ@ή]v¦—–όšύδΏΞ gg Σ―I9r€χι{ΎήΊ%{‡s#€ ί:»‘yΣϟΡΗΌρWχΕ_x³.Ϋ™~ώώχΏ'4RgeΦΩςΜ«?ώΏN8Α›ΟχΰƒzΗΉ3ύγπΦ₯˘7λΖ9v¦"ΕO먋ΦÞ/Ύž:3ŸΞΈ«uŒίf‚·ώqΆ 7έt“?›€‘ΘΞ¬.©Ύ’|ŊήΜΤΆ<}Τr~ϋΫίzuΠzξΪ΅Λ«·ϋ-Pχ5mwuΜσtκ«νU#uoθŸΞ€¬ύKcλ¬ύ6ώ|―Ύn;uf';³±[qK› wΜώζMβ:Ξrwσž›κω3(Ϊ²M€ΊΞ„Ψ½γϊӟϊύώ·ΏύΝ[wςΙ'{3€Η¦3BŸvΪi1ηΥ:.Z΄Θ_§3h»‹Ξi―%{~ύŠzq;hQo;ϋθ}χέ΄ λ@’ΠώμΜΈϊ{Υή[sω;<“ΧKc4TΟχή{Ο»η»―ΣΨΞN瞭ϋΪ…­‹=>θ±±χk-ÎΏtΖbδ *Φ[—N}υ΅(σ¦Η:φxμ±ΗΌ2팏sηΞM8oΠ=ڎ tœΏhΫγοΟΪ&ύ‡ψ±™ΞφlΟmοεϊh‚au―Ύϊj|ΡόŒ §ΙΖφ[t¦NΨ² {P²ΏƒΖ™Όώ`οKξ=±‘zΪoΔ{—}έΓ6F–wοozΤ²τQΧ›@³·kΊcŒ ΊΩsYqΏΆ:<"€ €@> 0C³1² € €@a„a†ζ€ € fT ‘:HIIIΪU5]1ΩoΏύδ ƒJϋΈ–ήQΫͺ3!λΜΘζΕ7iםχοŒ3Ξσ’7£ΰe—]&ύϊυWg(:ηœsRVΫΌα(ζ«Π3²l¨πtκ«³'›ΐOƒ3κ9LHήzλ-ΏΏ2©³ω [ΡΩ₯ΥPνR]3Ί―“ΞubϋDΛ.--mˆ%ε6{^­ί˜rέAΟ―KΫΆm¦»dς;<έ²›rΏtξΩ\p~γ7Όϋwͺ:erΏNU¦nO§Ύ:>2ατ”Ει>&ε}›Bͺuμi>”ΦΨ@Λrǜ©%s|ςΙ'^ΫΎς•―Ȑͺ:lGΘCbcθ8@Ώ­Θώ-ίNpπΑ{―?Ψo}Z»v­χMφ΅™tΗ u=χλ†tΨ† €ω$4Cs+‘9ŸA]@@ ΠΜu€ €–ΐο~χ;ωΥ―~%fζE9ςΘ#ύΖ-X°@Μ7`x??ύτΣ·o_130ŠΎwτΡG{ηf|’n}O:ι$1³<Λξέ»¬Ύρ©A* ψ°d.πΛ_ώR¦M›–πUΐ™—Θ‘ €ω.ξ=[Ηff 13ΛQGΥbΝN·Ύ:ϊΓώr,€Ac3£€θXƒ@r# >2ίTεšχΧϋP±–¬λΝ,Λςϋί^ΜμΙςβ‹/ΚΧΏώυPŒ1rΣrJA@r'@ 9w–”„ €-,@ Ή…;€Σ#€ €9¨©©‘^½zΙ¦M›ΌR―Ύϊj9ζ˜cdι₯ςΗ?ώΡ[wςΙ'{³47fΙV1¦¨|«oLε π‡ΪΪZyπΑeωςεώυς—ΏόEtζJ@βΘ·{vΎΥ·Έ―.Z PΜϊ K]Ίtρτ—τƒ΅ϊνΏωΝoΌπ²nΈώϊλεšk)f&ڎ €4(@ ΉA6"€ €@> hΞ§ή’ € €@jmۢɏ~τ#ο+ΡγχΦυχέwŸ5πρΫ[βη|«oK5Χ9_}υUιΡ£‡ΊqγΖΙ¬Y³dŸ}φρΧρ@ xς힝oυ-ή+‹–#€»ΐ³Ο>+§œrJ ƒ~Υ΅Χ^λΝΰΈ+@@„@3 €Œζ‚ιJ‚ €ΔΌφΪkήLΝ»vνς©ίωΞwδΨcΩ'L?δ[}Γd—«ΊμΨ±CξΎϋnωβ‹/€wοήςƒό@Z΅j•«β)@ @ς힝oυ-Λ„f € Π(½{χzΜή²e‹θ7-θ,Νϊwιa‡Φ¨rΨ@(Fΐ@³™Α€1h3Ε( 3}ωε—ΕΨtڌ‡~xΐΪόYE 9ϊŠš"€ € € € € € € € `Ν{φμ!Πl…xD@Ό М7]EE@@@@@@@@π4ϋ‘wί}7iΑ;v”?ώ8ιv6 € PŒ1rί‹©Ζ}τ‘tΠAΉ?1%"€ Ζ!ιˆ<¨ζ<θ$ͺˆ €ι hNΟ)Ÿφj(lτκ«―Κ‡~(§œrJ¨š€uzρΕ½:tIΆmΫPΥ―²²R:tθ ίψΖ7BU/­ΜζΝ›₯΄΄TΎϊΥ―†²nέ»w]½¬uk|ΧθυF·>ψ@vξάΚΊ½χή{^x#ŒnΫ·o—O?ύTΒψ‚ΨΦ­[εΠC eŸ6ώœΒ9"ΥCΗ•ΗΌ΄oί>T~γ7€M›6rΨa‡…ͺ^ZΖ™uIXοGΪκVX}Κ#³ώdŒ‘™[>ΥPΨθΛ/Ώ}-B γ8ΑΊ‡ωχ·Φ1μυΫ²e‹΄nέZ?όpKͺΗχίί{=,Œ—Y¨°χρλ―Ώ.ϋοΏΏχwš­s˜υ―‰9ζ˜0U+¦.aογΧ^{Νϋ[.Œ―*€~pFο7G}tŒk˜~Πϊ}η;ί S•ςΎ. 1τή£―υμΩSτΓSa[Φ¬Y#555₯K9ςΘ#ΓV=―>a½Δψ"ϋΛ&μ}Μψ’πϋ˜ρEφ}Μψ"{Γb)@s±τ4νD@ 4A';M|μ±ΗDίLόαθ¬mω§ΫΆm“?ύιO^EFŒ!_ωΚWZΎRN ώρx3=„ρΉ^xAΚΚΚδCqjާZ·°ΎˆOέ2»FΒꦑa}σ2ŒΧΫΫoΏν…­ΓX7}qC_ +//Ομ‚hΒ£τ…N½_…9pΠ„ΝΟΛ’uŒ‘Χϋ!CΌΪ„©―ΌςŠ”””Θ7ΏωΝ0UΛ« cŒΜΊ$¬χ#m u+¬>eŒ‘Y2ΖΘΜ­PΠύωΟφΝa'Xχ0ώΦ:†½~›6mς>@vΤQGYP=κ-4ΤΖΏΛ,TΨϋψ₯—^’vνΪIΧ]m•CυψΞ;οxΏg4ΨΦ%μ}¬“Mh(τˆ#Ž%α[o½ε}`όΈγŽ eύ΄RaογΠΒeX1ύ{Zǝ}ϋφ έλΪ€|Pvοή-½zυςώeΨΜ&=,μΧ,γ‹μ»?μ}Μψ’πϋ˜ρEαχqφ-€„\ hΞ•$ε € €@‹ hnρ.hΦ hΌ›°Qfna~±ŒΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+ΝΉ’€@hqΝ-ήΝZΝ™q6ΚΜ-Μ/ˆR·ΒκSΒF™υ'a£Μά8*X€@s°Kͺ΅Œ1R oη>μ’j-n©„·3ΖH4Ig cŒt”ŠgΝΉιλ0Χ8ΚΎŸΓήΗŽ Ώ ~gίΒp•@ 9ϋώϋ½‡ρEαχ1γ‹ΒοcΖ…ίΗΩ·r%@ 9W’”ƒ €-.@ ΉΕ» Y+@ 93nΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRB4ηJ’r@@ Ε4·x4k4gΖMΨ(3·0Ώ Jέ «O e֟„2sγ¨`ΝΑ.©Φ2ΖH%Όϋx°Kͺ΅Έ₯JάΞ#Ρ$5Œ1Q*ž}4η¦―Γό;\[Hΰ(ϋ~{8*ό>&pTψ}œ} ΓUζμϋ#μχΖ…ίnj/ Ώ_~gίBJΘ•ζ\IR €΄Έζο‚f­ζΜΈ eζζD©[aυ)a£Μϊ“°Qfn,@ 9Ψ%ΥZΖ©„‚·svI΅·TB‰Ϋc$š€³†1F:JΕ³ζάτu˜‡k eίΟaοcG…ίΗŽ Ώ³oaΈJ М}„ύήΓψ’πϋ˜ρEαχ1γ‹Βογμ[H Ή М+IΚA@ Πάβ]Π¬ М7a£ΜάΒό‚(u+¬>%l”Y6Κ̍£‚4»€ZΛ#•PπvξγΑ.©Φβ–J(q;cŒD“tΦ0ΖHG©xφ!М›Ύσοpm!£μϋ9μ}Lΰ¨πϋ˜ΐQαχqφ- W š³ο°ί{_~3Ύ(ό>f|Qψ}œ} )!Wšs%I9 € Πβš[Ό š΅š3γ&l”™[˜_₯n…Υ§„2λOΒF™ΉqT°ζ`—Tkc€ ήΞ}<Ψ%ΥZάR %ngŒ‘h’ΞΖι(Ο>šsΣΧaώ-$p”}?‡½ ~8*ό>ΞΎ…α*@sφύφ{γ‹ΒοcΖ…ίnj/ Ώ³o!%δJ€@s$)@Z\€@s‹wA³V€@sfά„2s σ ’Τ­°ϊ”°QfύIΨ(37Ž  Πμ’j-cŒTBΑΫΉ»€Z‹[*‘ΔνŒ1MYΓ#₯βΩ‡@snϊ:ΜΏΓ΅…޲οη°χ1£ΒοcG…ίΗΩ·0\%hΞΎ?Β~οa|Qψ}Μψ’πϋ˜ρEαχqφ-€„\ hΞ•$ε € €@‹ hnρ.hΦ hΌ›°Qfna~A”ΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+ΝΉ’lξrφ~"ŸμΥ“Ά‘hΣάgη| €„R€@s(»₯Ι*E 93ZΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRBς>ΠΌχ£mRYΉEΆ}΄GdΏύ€SΩ‘₯Kw); WDα,η₯»GΚ5Λ«Mε:Λ―ό½”§lο^Ωςόjyιύ6λΤΎrhΚύΓΩnj… €@Cš)Όmš3λSΒF™Ή…ωQκVX}JΨ(³ώ$l”™G hvI΅–1F*‘ΰνάΗƒ]R­Ε-•PβvΖ‰&ι¬aŒ‘ŽRρμC 97}ζίαΪBGΩχsΨϋ˜ΐQαχ1£Βογμ[4gίaΏχ0Ύ(ό>f|Qψ}Μψ’πϋ8ϋRBς7ΠΌw›,›yΜύΫφ@‹.ίΏL~}εΙϋάξή½’1·i; σζω—ΛΔGή4[ 4ο}IFΉF4έρœ_Λύ—Ί±@| МϽΧψΊhnΌ™AΨ(3·0Ώ Jέ «O e֟„2sγ¨`ΝΑ.©Φ2ΖH%Όϋx°Kͺ΅Έ₯JάΞ#Ρ$5Œ1Q*ž}4η¦―Γό;\[Hΰ(ϋ~{8*ό>&pTψ}œ} ΓUζμϋ#μχΖ…ίnj/ Ώ_~gίBJΘ•@žš?’;ώŸ”Η>2tώvOι΄§J^~Σ 8{΄<ψ›Ayjή&Ώ<ϋΏdƒiζ9Ώ~P.v¦aΞ*Π<δΉTχ(Ο@(Ν‘i6ƒ@sšPq»6ŠIσΗ0Ώ JέμΔΈέΒκFΨ(£ό‘°QšPμ––ζ΄˜vbŒ‘@’ΦŠ°ή΄ςΤ-­.LΨ)¬nŒ1Ί*­Œ1b*š4禫Γϊ{ΆŽΐ‘•Θό1μ}Lΰ(σΎ΅G†½ ٞΚό1μ}œyΛΒy$ζμϋ%μΧ,γ‹ΒοcΖ…ίnj/ Ώ³o!%δJ /͟Όt·όΏΧ,χ :φ-7ώb”Ω Œ?Ω&σ―Ώ\y9’vώξ/ζΚ΅'”εΚ«yΛ1³*_jfUֈφ”Qέ£σM7:ΠlΚψdΫΩφI9΄ϋ‘yςnή.ΰl €ω%@ 9Ώϊ+ΫΪhΞL°Qfna~A”ΊVŸ6Κ¬? eζΖQΑšƒ]R­eŒ‘J(x;χρ`—TkqK%”Έ1F’I:kc€£T<ϋhΞM_‡ωwΈΆΐQφύφ>&pTψ}Lΰ¨πϋ8ϋ†«ΝΩχGΨο=Œ/ Ώ_~3Ύ(ό>ΞΎ…”+Ό 4Ώtχ₯rΝrωv”_=xΏτŠζ|#.{7ΛΟ‡L”—u³~-χ-7ΟφJΥΆχεsΩO=΄LφVm‘ •Ϋδ³ε€v€K·r)«/g― EWšm}dΆΆι$?{g§S½ρΟ 3dA‘‘μrQQ©[W ΥhQ€…$…n©K…6-JT–[*ZhAΆμnώiQ’.Ί!†2dŸΑXfŒρύΞ8Ο2Οyž³=3ΟoΞ|Ξλ5Ξy~Ϋωύޟγ9ίηœΟωz­š£Vέ1Ώ Ώ9Hί°ι{2•“ƒ Υk‘YσΖ‘ Γ9Ψ°1 {2Ž@TAυZυΠ\˜Œύ‹μkNCσσΗj†ζφG‘»œ‘ΉόY’Ÿ‰πšλbΤά7P+}ΦlH£γI}h]°’Νέ"7ΙΥ“ΕΏrΡ™N΅€Ι9 V―Az†ΦŠ0>7CγZαjΕ?X·zvλe›‹²`Fz:Ž”OB­δpυτϊ\“  @τ ΠΠ}¦*·HC³3uh6rΖMε ’μ›·4₯ΩΘ™ž49γΖZΖhh6ζb–Κ̐q>ΟγΖ\ΜRΙ͌Ph>cŒP&VRcX‘TrΚΠΠ­Uώ—#€αΘ½ΞͺkLΓ‘χ5¦αΘϋ»‘Z-ΠΠμ^ΥΟ=Œ/Ό―1γ οkΜψΒϋ»![ˆβihž, Ν3ς ΝO CsΫοl–>¦lΜAΫ^O‘Υ΅“>©ύ&iάκΆj†­k€έ9pI@―‘o།ο`θ”5Ϊv›Gᩎƒ3Φ-ΐ‘γ5ΓqP†0Zχω*Ί5zέ‚1:~Ypqω)© FΎρš'‹ν¬uΈΉϋPaΎ6XڏΔάAΝ Ν’jέdn•<—Ί1ι ΄Φ» Ϊμ)ΪΜE:Œœ†ώV·C”_8G3΅eήθΣ:0 Yi Πoΰx­­ΐŒ”Ί Ψ±Uφ:#gLDσpπΐJά&  ( ‘9Š0‹AS44;‰f#gάTΎ ΚΎyKSšœιI³‘3n¬eL€†fc.f©Œ1ΜησΊ©XζL€Α3€=Y,bDΫwΦΊwΠ}θœΰΆL ΝIνGΰΓA­O·.WY˜,Ζ=#`άΘλΤ|ƒ5κφƌ7Ί"pY«Η‘ϋiώC@‹ά$  Β&@Csa.ϊφ9‚ΌΌ<Γ―X±BKοΤ©“a~¬ΣΣΣ1ώ|mχ=zτ@ΉrεbΥΓύldˆΕ4Qε ’μ›©|†TεF³‘‘\¦‰4™"bhhΆ+ (cŒ66U=Ι!°o6„ (ͺ*7Ζ"ΩΨdŒa–GŠζζζβΨ±c†£9~ό8Ύωζμέ»©©©¨Z΅ͺaΉX'ͺϊ=€sQ½4ιJ9_«1 GΞ΅Υkͺ1 GΊRΞΧͺkμ|djΦ€‘Ω½.ͺ³Œ/Ό―1γ οkΜψΒϋ»![ˆβkh>M #m5fΟ™Ž9ΛΦk³ ‚iΥ{žι*gTφά “Ρ}π m[7kδ?Ff__f¦?ΠSΔΞΊ‘ΩίVF3qλ3±VM‡γ―΄/§€ τέΝύ3*'uΐφGώόΟΎ 'm:RNΡRGNΓέΝE£ϊε74‡š‡ύύ Θ3j+ Mο§ΏG‘γF€ρ»ύˆ0¨uπ( χλo[$@$@$Pθhh.tΔEΎƒυλΧ#;;ΫpΏώω'vνΪ…ΆmΫζΗ*ρΰΑƒΨ΄i“Άϋ-Z 11π°XυΚΏίΝ›7£bŊ¨^½Ί?Q‘­ίΙΙΙ¨V­š"=ςwCφ­aΓ†ώ…ΆΨ7gb¨Κmώύ8pΰ€’Η›<Ο:tHΙΎI“–4žΤ«όΐ±³£#Ί΅ΆoߎF‘qγόλΡm­šQ₯‘Ω7•oΊ²oή”†fgzΠμŒ[q•™™‰-[Ά„‚Ό! ΝM›6Uξf½ΣͺώΦ).ύΫΆm’’’wY©υΎ}ϋ‘‘‘δο2”κΗ`ZZΚ–-‹š5kκ]Vj½gΟΘο"ω;RΥEuεχx… ”Όώ)5•Χ΄εDυλΧWUb­_-[ΆTΊ^κ ΝξΥTωχ« Νήט†fοkLC³χ5v?BΆ-ΕήΠbwϊ:Μygζ¬ξγΣK—‘ Oσδ¨š7L€ΑSδΌΙ bvδ™A³#ηοΆ Έ.¦¦hYνρΑάA!†ζΐُ}†λΓ±/-~ƒ΄ΑlΘ†Ζb£Άt³φιζΕͺΰΔ¬Υ34·1Mšƒά†ϋυ7Θ-  (t44:β"߁Ό€/gG2ZΦ¬Yƒψψxp†f#:αΣh6 Ο&RŽΚDΩ·HΚ…ΟS•ΝFα5‹”C³Q$:Μ³K€†f»ΔςΛ3ΖpΖMΥσ‘ ϋζ-Mc8Σ“1†3nΕΉ–œ…Y>`h΄œ8qςZgh6’c=Mεσ‹ GΦ΅ WRui8 §œυtΥ5¦αΘΊ–αJͺqΈ~Χtšέ+§ϊ1ΛψΒϋ3ΎπΎΖŒ/Ό―±ϋ²…h(–†ζ¬¬,mό‰βΙJ£ωξ2ΦMΖ]CσgcNκ0φoUCsϊ‚αθ7~θCxCσδžέ1#Hκ"φίη<,r;Ζ―?!κ„14Μ~μ3/Ž}i§•ϊ Ν’ŸϋΣ²o124―Γ€Τ‘ΎμφbιArι€…†ζά$ ˆ šc‚=f;•f£ΌΌ<šm*@³‘M`§‹«|A”}σ–¦49Σ“f#gάX˘ ΝΖ\ΜRc˜2Ξηyܘ‹Y*Ή™ ΝgŒΚΔJ c +”JN™£GbΡ’E44»”\εοp94Ž\ ,ͺ«1 Gήט†#οkμ~„j΅@C³{=T?χ0ΎπΎΖŒ/Ό―1γ οkμ~„l!ZŠŸ‘Y{v αFJ―±˜ΨΝθu²9˜ώ@*¦ˆ‰šSΊŒFέΦQ54ϋ» Ά<O]QΛ?£rB{L˜9΅ (˜΅nΊ](R0pΒL\- šS…ψξqL Ν¦λ6ΕΈ΄Nϊ’“6©§ˆ„Œœ6έυ⠐  "š ‚MΣΠμLšœqSω‚(ϋζ-Mi6r¦'ΝFΞΈ±–1šΉ˜₯2Ζ0#dœΟσΈ1³Tr3#šΟ#”‰•ΖV(•œ244GGk•ΏΓεi8r―³κΣpδ}i8ςΎΖξG¨V 44»ΧCυsγ οkΜψΒϋ3ΎπΎΖξGΘ’E ψš‘Žηoθ‡$$aώ0Τ QfΈ(#ηPF³˜ϋβΥQ54#})nθ7VΆ.Ίπ$>ΤVΫΦΩ0}O‘󩣄ΉqQEΜκ΄O§»Ζ   *š ―rΣΠμLšœqSω‚(ϋζ-Mi6r¦'ΝFΞΈ±–1šΉ˜₯2Ζ0#dœΟσΈ1³Tr3#šΟ#”‰•ΖV(•œ244GGk•ΏΓεi8r―³κΣpδ}i8ςΎΖξG¨V 44»ΧCυsγ οkΜψΒϋ3ΎπΎΖξGΘ’E ˜šσ‡Ώαλι˜2u*Φο(ΰMHA‡>ύΡ«cs1krώhhN3ί-g(Φ—³oκ(‘Χ8 /ΐΠά¬χXΌΨUΜͺ¬/9ι˜=ώLZΰ8yIΝΊΰρA½ΠΌz’^·ΞΩ½γ‡Η²}nΦa υΏώg­NNϊΧΠoNO8-&}38‹™”w―ƒή/,S74A‹jιKqsΏ±8Ί9ν hC5γnŒλΩ ΕδΠ)©bζ»ghΎ~Ύ'F‰™£Cσ1yΘΜXŸ?«΄ΦΡ„fθώζ,”,hh֘π  "'@Cs‘#ιihv†Ÿf#gάTΎ ΚΎyKSšœιI³‘3n¬eL€†fc.f©Œ1ΜησmύFμέ«1 χhsU'tΐ3ϋ#ΩΌ5–   ¨ ‘9ͺ8•oŒ†fgΡlδŒ›ΚDΩ7oiJ³‘3=i6rƍ΅Œ ΠΠlΜΕ,•1†!γ|žΗΉ˜₯’›‘Π|Ζ‘L¬€0Ζ°B©δ”‘‘9:Z«ό.GHΓ‘{Uט†#οkLΓ‘χ5v?B΅Z ‘Ω½ͺŸ{_x_cΖήטρ…χ5v?BΆ-44G‹d i'mϊ8eGώhκ’CΗVH<²s–­χhδ$ j[έχ™$@$@$PThh.*j쇆fg:ΠlδŒ›ΚDΩ7oiJ³‘3=i6rƍ΅Œ ΠΠlΜΕ,•1†!γ|žΗΉ˜₯’›‘Π|Ζ‘L¬€0Ζ°B©δ”‘‘9:Z«ό.GHΓ‘{Uט†#οkLΓ‘χ5v?B΅Z ‘Ω½ͺŸ{_x_cΖήטρ…χ5v?BΆ-44G‹d‰i' _ŠQ ΅Ή˜CFέζΑQxͺcγt&  @Q ‘Ή((«³šiA³‘3n*_eίΌ₯)ΝFΞτ€ΩΘ7«΅ΞΒ‚Kρύχ?βTή)\ά¦5:uΊII•-5‘™y‹…XS§NαΒ‹ZβškB΅jUBκοΪ΅ση/Α?FΩ2eπ\!¦nΔΔD_Ωάά“X²δ+δζζϊδΖ‰Ή8»ΖYΈδ‹ƒν~ ‘Ω.±όςŒ1œqγyœάœ°_‹1†}f²c gάΌZ‹†ζθ(«ςΉOސ†#χ:«1 Gήט†#οkμt„»ώڍO>™‰_έ€jgVΕ…­†k―ϋ*V¬`Ϊδ–-[Ε9bcH9y-βͺ«Ϊ!99)$Οj ΝVI…/§ϊΉ‡ρExν¬ζ¨1γ «J†/§ΊΖŒ/Βkg5Gu­Žƒε Ÿ Ν…ΟΨ“{ΘΙJΗΖ5λ°qΟndeΙ΅£uΫΆ¨eλ{’E$@$ šΥΠ‘¨zAC³349γ¦ςlφΝ[šlδLOšœq³RλΟ?ΣqӍ=Π°Q}<όπύΘΛΛΓ”ΙS±vν0ν“I¨_ΏnΔf6mڌξ·χΦκχξέe„1yΚ”iψωηu˜τξ›hΩ²Ή―ώO?ύŒΎχ?‚JΝ@IDATφνŽ[nιŠ1όe”*U ³fμ3@οΫwΧ]{3ϊτΉK˜šOϊκˍJ•*’GΟ[”nη ΝvhωΛ2Ζπ³°³ΕσΈZώ²δζgau‹1†URΑεcσ(ιŸhhŽΞ ςwΈ! GξuV]cŽΌ―1 GήΧΨΙWό ύ|L{ϊΞ;ΊαψρlΌτλ8t( Ÿ|ϊ.Ξ=χœˆΝŽ3ςG‹Ώ5GNvŽ―lvv6nΊΉ3κΥ«γK³»AC³]b‘εU?χ0ΎΥΜnŠκ3Ύ°«hhyΥ5f|ͺ™έΥ5Ά;–/<44[ΆL$@$@$PΔhh.bΰ1ή ΝΞ ΩΘ7•d³oή”f#gzlδŒ›Y-9rjj/a0ΎB33ΗΕΕωͺΌχξGš1yΡβ™([ΆŒ/=pγψργθ|ύνΈνφ›!Ν́υgΜ‡Ρ―ΓΒEΣQ‘Byqρ°0)§bΘΠGΠ₯KG_3Ωβ&αέ{£Y³&ρΜΏ΄6Φύ£GΓϋο jΣWΙε ΝΞ2ΖpƍηqrsFΐ~-Ζφ™ΙŒ1œqσj-𣣬Κη>9BŽάλ¬ΊΖ4y_cŽΌ―±έJσrηλoΓ}βΪDχξ©Ύκς-RΟ>ϋ ΆlΓϋ“Η…}8Z–»υ–{0ςΕahΨ°ž―~΄6hhvORυsγ οkΜψΒϋ3ΎπΎΖξGΘ’E€†ζh‘d;$@$@$@1'@C³u ~ωeφ:χ­i Φ95qΓ Δ ‰X6Ω­//ψ}ύυwhΧ­6Λ’υž†/ICsx6‘rh6ŠD'|žΚDΩ·πΊEΚQ•ΝF‘T ŸG³Qx6nrV―ώ|δI,]6 AMΙ™šoθ|;†>ω(.»¬MPžώAΞ~4tΘ³XΌδ ”.]JOΦΦ26θ.ŒΚ=ΤG‹ζΉŸ~ϊή{­XaγΖΝΈΏΟ@,Z’£aίΌ₯)c gz2ΖpΖΝ¨–|«Βςε+°xΡW8xπš6k¬=ΔT§Nm£β!iGΓ¬/ζαλί£|Ήr’~\{Ν•βšFJHY=!-mβγβQ§΅}θυΒ­ihGΖ^ΊΚη9ŽμιiTZui82RΝ^šκΣpdOO£ͺklΤηHi[ΆlEŸήΕυ‰™βϊDι ’™™΅‡±—,‰3Ξ8#(OpD\ƒθΤρΜϋςST¬ύWVΣΠ¬“vΎVύ˜e|α\[½¦κ3ΎΠ•rΎV]cΖΞ΅Υkͺ±ήOcO€†ζΨkΐ   D‰ Νζ ₯yθυΧΗγγ>Gώ½Ρͺu όΊ~ƒ6ΛaηΞΧaψˆ'ΒΞB [wZ“Ofj³0J#Rrr’yG-” ‘Ω$ƒ"4@±€ςlφΝ‚€ETεF³‘X’h6²ΙA‘‰ήΣβ‚ϋϋήmX[‹3d Ώ0%-2?λpΒ՟5λKl³ ύσŸ⁾Δ]½nχ™£₯i)>>ή7ϋσή½ϋP΅jνα«G ΥΪlΤ¨φξέ+βhyeΚ$uΓv ΝΆ‘ic8γ¦κωHކ}σ–¦Œ1œιΙΓ·‚΅δn½υμΩ½O=υjœ}–.YŽΟ>›…F>Ϊ¬τyΧ=ΈιΖΪCOςΊ…|»ΓlG,mŒυ,ώ!ή&QpΩ·οnΏν^άtΣυac•‚uΜ>ΣΠlFΘZΎΚη9ެι©”κΣpI=kyͺkLΓ‘5#•R]γH}7Κ[°`©ψ}³C‡ώ3$[š•εΫsζN1†±YY>$5ψ±aψ|ϊdνΑ¬cǎkΧ+ͺTIiΟI ΝN¨ΧQύ˜e|¬—“OͺkΜψΒ‰ͺΑuTטρE°^N>©±“1±Nα ‘ΉpΈ²U    ‘Ωϊ 1Kς㏏ΐτS’rΆ―ΒΎ½ϋΕ,Νέ1lψγθΨρj_zΑ ;υOž<‰41τΈ·ήΑ 1ƒRbb",όII• 6λθ3 ͎°f#gάTώ‘ΝΎyKSšœιI³‘3n‘jΙ‡˜zφθ‹>Ϊ­Z΅0,*gN–30φωϋ!³*Λ f†ηιΣgc·0(έΧϋ.€ήάS¦LΐΚ~Βπa/ϊφΧ°Q}<χμPΘ΅\Nœ8‘½&Ά‘03ݏΎrrC>¬Υλξξ†} *hς†f@a²c„c’ΜσΈ  0ΩδL„dΖΰDΘbŒŽΕ,SŒυ¦vή–& ΐYW­ϊY<ΤτfΜόαfj–υeΌ!vύϊ Aηyω†‡ηž{rFEέ€tθΠa|#A<ύτH­‡}ΕƒYα²8_1š}(\m¨ό.FΓ‘+y΅ΚͺkLΓ‘χ5¦αΘϋΫαŽiΧŒβ OΌσΞΪ=“R₯‚ί.₯οG>D5LΔ5kΦΐΆmκΙ¨Qγ,Ό5nκΦ=Χ—ζdƒ†f'Τ‚λ¨~ξa|¬—“OͺkΜψΒ‰ͺΑuTטρE°^N>©±“1±Nα ‘ΉpΈ²U    ‘92tωjψΫn½χά{':uΊ&€πςείΰΩg^1|-Ό,l·ώlΗΝ7υD—ρΰƒχi34~|’5k Ν!ZJ ΩΘ¦B*ΘfίBδ²” *7š,ΙRˆf£$€yθώ>ƒΠοΑ{Γšε+[μχ(ζ/ψ<Θ\€ο|νΪ_EώcšΙ¨ΰk[e\q“ˆΞ:³ƌ‰]ξD΅3«β―»0i¨[ο\³;ψ᧘2y¦|0ΝΔ«εε ΧwΊ•+W†ιwΔ Υ΅έ­_›φϊΨΊtΐ!h39λύ°»¦‘Ω.±όςŒ1œqSυ|$GΓΎyKSΖΞτdŒαŒ[`­LρχφθΦ΄όςKcP:!Š‡¨Œ–γǏγΊkSρι§οωΞϋz9OάνnΌτpνα'έόΌ|ω·xρ₯a¨^ύ,,^ό ψ€^Ε՚†fWψ|•U>ΏΘNpδ“Κρ†κΣpδXZ_EΥ5¦αΘ'•γ Υ5v<°χΏΪΓάoΎω2.½¬M\ΗΧGΗG}†ΟόK›F> %Άzη)ΪΫ0g~ρ!jΥͺι―`s‹†f›ΐ Š«~Μ2Ύ0Νf’κ3Ύ°)¨AqΥ5f|a šΝ$Υ5Ά9/D44"\6M$@$@$P΄hhŽΜ[ήDμΨαaXž‰ŠC_&_­&oΝ7 ΙΙI!Ή©/o*ΚΧΓΛ ihA[€ 49Γ­ςlφΝ[šlδLOšœq‹TK74ΠΝ/8ί°¨™‘977©©½PηάsπŠx|™2‰Z;²νΡβfΰԏ?Η½βA+9CσUWή ή搀₯Λf!A˜š—χήύH»q(cωZΧ ήƒμWΩ²e‹AΞΈΤEΌqβaxjΨ°^P^Ας˜‘³=-Ώύφd\yα…Š˜©’Q‘˜₯mΩ²E{λΕ9ηœ³>„ΫρƍQ©R%œ}Ά- αΚuϊ† P΅jUœyζ™E½kΣύΙΎ5nάΨ΄\, °oΞ¨«Κmοή½ΨΏΏ’Η›Œ<¨dίvμΨ!Μ*GΕy₯‘³’kύρΗΒ8SKInΓ^½ϊŒ|atΨ7:Θ7> xψρ°H₯§οΔ]=H}ς•Œ)Ίwοαß@“&w«mΛΆŠWΜDCsœ&¨όVb‘αΘύΑ‘ΊΖ4y_cŽΌ―±ϋ‹-oxN‹ξΊλφˆMΚYœε=•Λ―Έ4¨œŒE^yy,vνήƒΧ^{ρρρAω²²²°sηΞΐ$ίvZZdlΧͺU+ρ†ΛΠ{3Ύ‚1Ϊψώϋο!2«[·x«Fυ"ςnUύ¦χZj,π΅kΧΦ“”ZοΩ³Pϊ·…κώϋο:Θίh*.»vνBFF†ψέΤDΕξi}R]γM›6i׊UΌφ)ΚsŒ<Χ4jϊΫXΡeZΆl©JwΨ… ΠΠ¬°8μ   €=44Gζev“P7.=(^Χή²eσΖάΤ—mΣΠ‚4& 44;ΓςΝ8φΝ[šΠμLOšq‹TK "ΝМ–ΆM›ΕyΡβ!#½m9£r;οΜ3qW―Ϋ΅ ϋοΏχ1š6=—^ΪΗ³³Ρ«Ww1CσxζΩ!ΈΜ`F€CβΥρW·Ώr?F]ιϋ’}:τ9\ύ΅hΧ­žlΈ^Ώ~=²ΕΎ–?όψΧ΄iS”+WΞ¨HΜΆmΫ¦škΦt>σSau~σζΝΪEύκΥσgΝ.¬ύ8iWήTJNNF΅j՜T/Τ:²o*%ε Ω7g«ΚMš™ε j7ω[ώΠ‘CJφMΖfǎC½z‘”qv΄Έ«΅}ϋvνF₯ͺEθ£›:u:2d C}τ€ ΅|ΈΊSΗ[0{ΞTaΰ©”'?Θ76lέϊš7??δ ςΝP·ίv_Ψ·Kͺ‘yν7? qV$vψ[OTώ +ωΠΠμώ(Q]cš½―1 ΝήΧΨΝel1lΨH|ύίa̘‘!&e»mΛ‡«{φθφΝ—z{™™™)-ς:„ŒνZ΄h‘=(lT&–ikΧΥ‘€€€@Ε뒍ͺΏΓtέδυωΏd¨β²oί>ΝμͺβοE—κKΣzΩ²e•ύ?"Mλς{He³«κΛοπ *ˆ7©wνSώ?‘¦υ#GŽ ~ύϊϊ%Χ44+)‹r’‘Y9IΨ!   §hhŽLNΞ’ψΨ£OcϊŒ)†¦#iz ο?Ρχ» _-ο¦~I44Χέ”…Άu›„Μ2Y₯Β͍?;;§”˜%»Š’3Θ^ςB€ŠEUΎΗΎ9ϋ£*7šιIC³3n‘jΙs·ŒλΠΧ^{•aΡ―ώ³Λ—£‘ œNΜΝ=‰ukΕΊυΣRš49OΜ~ό7ΌωζΫbΖάjθ₯£fdz]άHlΥͺEHS²/χέϋ0^}ν9όυΧnT­’ςΚy½œΩ πϋζ΄°―­ΧΛEZ/\Έςfbjjͺ6«o€²Eχλ―Ώj7GTΌ0Ν‡¦œ ͺžδhΨ7oiΚΓ™žŒ1œq ¬υΩg³°wΟή°†f9Ϋ_§Ž·bΖΜ">ΈΨ¦ά–o‘ΊνΦ{pΓ ρΠΓΖfιgh>’Γƒ?D5\•g=ŽψZU ’‹ωg•Ο/ ΝξΥ5¦‘ΩϋΣΠμ}ŽπΫ¨™kΦ¬·ί#ή0TΓ΄©μμ¬Z΅F{;...€Ό|ϋ“|σ₯Όοβτν”ςχ΄Œ;―Έβ εCΘO›6Md …œpπΰAlΪ΄IICσρFgβ››jσuπŽ•_uΕΎ9TTQ•_οLOΎή7³Zς¦έυnΕGΏ&M—onΈυ–{0{φΗ¨uNώλ2ϊιgν΅{7ΤΚΚ›z7ίΤ_Ξ 5jœTώό%xuΤ›Ϊ+βK—.?ϊΣ§ΟΖηΣ§  )iφ¬ωΒT=Nάœ‰,ϋ?Όϊκ[ڍBi4 \δλθ»₯φfx¬SΗΉ9†ζ@ͺΦ·ihΆΞ*°€ΚςΩ·@₯¬o«Κ†fλ–€‘9†³νhΞΠ,―-|ψΑ§;v"ϊυ»χά{§αυ ½§N Ν‘^/Ϋ•oqΠ@”†HΥ–Κ³Χ!y^ώ[1rR*cηˆͺuQΩίb:(Ύ^'α|­κοm}D|%ΌNΒωZuωJxηΪΦτ’‘YΏΎ1FΌκς+. fΘΆ|ΛΤςε+Π’E3ν­Rϊُ>φ:vΌ:¨Όφ°χg‘˜˜ˆΟό+δaπ Β>ΠΠŽΕ,U‡ιέ§‘Y'α|­ΊΖ44;ΧV―©ΊΖ44λJ9_«±σ‘±f΄ ΠΠm’lH€H€H fhhŽŒ^šŠξΉ»Ώ‘HΦ”3!ίtcmv£Z΅j†4ζ¦ΎSCsH'€Ω(//:…ΞΠP¬Θ7ε σηΟG‹oχαΌIoEηςvf oW¦Ά«­κbΛƒmΔ«οͺ(9 ό!+ggY3τψ+ V‘φ‘ςlφ-’rασTεF³QxΝ"εΠl‰Ž»Ό>ϊ γޚ„‰­ΝΖ,_―Ί~ύoθΣ{ f"Ίώ^ΪδΉΎgΎhΩͺ}΄Ώ/ν‘ACρσΟk1eΚΤ©[[Δ'±dΙWxκΙηρΦ[―ΰ’Kσg >^Όμ¨xKԍϋΖ‹Ύ‰_/ώ Cώυ †xΧ^{Κ–-+ήyoΎω6ζΝ]„Ήs§‘Ϊ™ΞΟ·44ΫU4΄ΌκηΖ‘šΩMQ]cΖv -―ΊΖŒ/B5³›’ΊΖvΗΓς…G€†ζΒcΛ–I€H€H€Š˜ Ν‘?žΞΧί¦–6¬RXΎώΆ[οΕΒEΣΕμŠεCςέΤ/‰†f °GΪ+,C`aΒ±/Αρw–i{€‘Ω9x•d³oΞtU•ΝFΞτ€ΩΘ7+΅δ9όΣOΏΐ¨WήΠ)Uͺ€ΡΈΰ+ZeΉ‘bV’K.Ή]Ίvτ5- ΘrΕO?™ιK“mΌφΪs!³"νί@΄ρδLΟr†εmΫώΤf9zkά+hέϊoΎϊGΕkλ_}υMΘ™›e['OžΤςžψΧ tλΦΕςkc} Ψ ‘Ή‹ihΆͺ@1UΟG²›μ[±,~T•c ‹(Ζ£εΓΡwυ|@{ΈZš .K–,njs0~ό«aΟαςz…| Γε—_’Ν~Xά›1ό\ ΝΔξ.#‘ΈσΖ䌾נlŸφ†|b•¨κχ€Ξƒ†#„σ΅κΣpδ\[½¦κΣp€+ε|­ΊΖvF&―WΌψβλ˜1}NΨjr†εω >Σžwδϋο~ΔΏ„©9+λΞ:λLμΩ³ηΧ―~gŸ]#lΫV2hhΆB)rՏYΖ‘υ³’«ΊΖŒ/¬¨ΉŒκ3Ύˆ¬Ÿ•\Υ5Ά2–)44 gξ…H€H€H ΠΠlωaFJKΫr£P7!Ι wϊ¬I_­&[·S?°7²}9Cγ°α‹Ω“³o«>C³ Νφδ•?d9C³=f²΄ΚΨ7ϋzldŸ™¬A³‘3nvjI³Όi'—ςεΛ£L™D;Υ!MΘYYYHHH@RR刯a•³%&&h³&E*+ΝςΥ―ς ΨTΊti[} W˜†ζpd"§ΣΠ™OΈ\ž+Γ‘‰œNn‘ωε2Ζ0’bžΖܑY yžΎι¦žθή=·ί~sPργǏ‹―o‡|(ιškΤςΆlΩ* BϋΠΆν…ZΌ ί&•*ΜΜ׊όϋχŽC5.>”TCσΦη>FμuŽψZUQyΦΰ‚hbϊYεοp ††#χ‡‡κΣpδ}i8ςΎΖξGθΌ…ƒiΧdŒRΉr%η Τ€‘9†ΓMΥΟ=Œ/ PMu_ˆεpSu_86 šκt•›1&@CsŒΰξI€H€H€’G€†fs–™β­ςuξΧ^χ ΨWΜΔ\A3M˜π¦>sη}‚jΥͺh ½ZΝNύΐήΠΠH£h·9Cstx«ό#›}s¦±ͺάh6r¦'ΝFΞΈ±–1šΉ˜₯ΠlFΘ8_Υσ‘μ-ϋf¬™Yͺͺάc˜)gœΟ؋έΤώw=ξ½η!mvεŽ―ΦL@»ώڍΗ{Z3(Ώ?yΌH+₯5ϋΩg³πφΏ'k3:Λ71θug~ρ‘φΐ“x^:d©R%I{υ{ΑŒ’jh^ΏhRžό‡£§ TύκΎΟ±ήPυ{RηBΓ‘NΒωZui8r­^Sui8•rΎV]cη#S³& ΝξuQύ˜e|α}_x_cΖήΧΨύΩB΄ΠΠ-’l‡H€H€H ζhhΆ&ΑΝ»ΔlΙC°yσV4hPW[Χ¬YγΔλ]kΧεk$ά«Υ¬Φχ5$6hh€Q΄Ϋ44G‡·ΚDΩ7g«Κf#gzlδŒk ‘٘‹Y* Νf„ŒσU=Ιή²oƚ™₯ͺʍ1†™rΖωŒ1ŒΉ8I]΅κg xψ Θ·>ΘkςΪ‚œ•yΨπ'΄7-θmΞr1–,]ŽΧ^{ρρρXΌψ+ ―w΄Lœ8]ά*€ˆfh^ΈT<Πύ@Hž“„£GbΡ’EΨ»w―˜5:U«VuL‘Χ‘ίCυ_ω'KΫWΩήνqΖΧϊ~­ξ@ΥοI½4ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5v>25kΠμ^ՏYΖήטρ…χ5f|α}έ-D‹ ΝΡ"ΙvH€H€H€bN€†f{dŠΩšε«_γβ␜œd―²(νΆΎν¨ ΝF²:u*ۏιιι˜?ΎΦ‰=zˆ³εbΪ!š£ƒ_ε ’μ›3UεF³‘3=i6rƍ΅Œ ΠΠlΜΕ,•†f3BΖωͺždoΩ7cΝΜRUεΖΓL9γ|ΖΖ\œ¦Κ‡ε΅ΉNLLo*ο΄©˜Τ+N†ζ&ΏdβΨΈE§ψZUQyΦΰ˜03Ϊ©ͺί“z_i8I8_«1 GΞ΅Υkͺ1 GΊRΞΧͺkμ|djΦ€‘Ω½.ͺ³Œ/Ό―1γ οkΜψΒϋ»![ˆš£E’ν   Ĝ Ν1— H;@C³5ά44[γdVJε ’μ›™zΖωͺr£ΩΘX/³TšΜ1ίšνΠς—₯‘ΩΟΒΞ–ͺη#9φ͎’ώ²ͺrcŒαΧΘΞc ;΄Ό_Ά8š[œ];Ώδ₯΄(ΥπlίηXn¨ϊ=©3‘αH'α|­ΊΖ49ΧV―©ΊΖ4ιJ9_«±σ‘©Y“†fχΊ¨~Μ2ΎπΎΖŒ/Ό―1γ οkμ~„l!ZhhŽIΆC$@$@$s44Η\‚"ν ΝΦpΣΠl“Y)•/ˆ²ofκη«Κf#c½ΜRi62#Δ|;hhΆCΛ_–†f? ;[ͺžδΨ7;JϊΛͺʍ1†_#+[ΉΉΉΨ»w/$·œœœ{ξΉβΝFΙ([Ά¬•κERfΣ¦MΪ[‹7n\$ϋγN€βdhnΩ²%υx'7μΠ€+{οU8γΑ딐QΥοI G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZuL͚44»ΧEυc–ρ…χ5f|α}_x_cχ#d Ρ"@Cs΄H²   ˜ ‘9ζihhΆ†›†fkœΜJ©|A”}3SΟ8_Un4λe–JC³!ζΫ!@C³Zώ²44ϋYΨΩRυ|$ΗΐΎΩQ_VUnŒ1ό™mνάΉ,,MΝ—Ϊ΅k£Q£F“cς™†ζ’Η^ά ΝΗ§ό޽Ή@_½2*9€θ‘μQΥοI½«4ι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5v>25kΠμ^ՏYΖήטρ…χ5f|α}έ-D‹ ΝΡ"ΙvH€H€H€bN€†ζ˜KP€ ‘Ωnš­q2+₯ςQφΝL=γ|UΉΡld¬—Y* Νf„˜o‡ ΝvhωΛΠμgagKΥσ‘ƒj}Λ™·ΩsW#wušqΒ•η£μννPϊΒzΎ΄Xo¨ΖMηΑC'y½qγFlίΎ=b!9SsλΦ­#–)ŠLš‹‚rπ>Š›‘9oW&v~Ι7ˆJ @©Ζ5}Ÿc΅‘κχ€Ξƒ†#„σ΅κΣpδ\[½¦κΣp€+ε|­ΊΖΞG¦fMšέλ’ϊ1ΛψΒϋ3ΎπΎΖŒ/Ό―±ϋ²…h ‘9Z$Ω   @Μ ΠΠs Š΄44[ΓMC³5Nf₯TΎ ΚΎ™©gœ―*7šŒυ2K₯‘ٌσν ‘Ω-Yšύ,μl©z>’cP©oGF|ih·$vnς#n —]€ι*q 8cŒ@ΖΫX½:όqX«^½z±\hh.zϊΕΝΠ, κυNώšΑ*Ϋλο8γαŽEΐUύžΤ»IΓ‘NΒωZui8r­^Sui8•rΎV]cη#S³& ΝξuQύ˜e|α}_x_cΖήΧΨύΩB΄ΠΠ-’l‡H€H€H ζhhŽΉEΪš­α¦‘Ω'³R*_eίΜΤ3ΞW•ΝFΖz™₯ΠlFˆωvΠΠl‡–Ώ, Ν~vΆT=Ι1¨733³Ξ»Μν—‘άc7θcΆV…[AŒ1  ύΌrεJdee…f€”.]W^y₯ANΡ%ΡΠ\t¬υ=GCσρΎΖ±1σ΅!ΔW―ŒΚ_Ρ‡³΅ͺί“:ŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;™š5ihv―‹κΗ,γ οkΜψΒϋ3ΎπΎΖξGΘ’E€†ζh‘d;$@$@$@1'@CsΜ%(ΠΠl 7 ΝΦ8™•Rω‚(ϋf¦žqΎͺάh62ΦΛ,•†f3BΜ·C€†f;΄όeihφ³°³₯κωHŽA…Ύεώ”†ΓΌmiε9O Ύf²ες…Q°(Έ?~ǎ κΎQΪαΓ‡‘››«•ΛΙɁό«P‘BP=>ΘΎΛ~ΖΊor†f;KλΦ­‘œ»γ†f;jE§lq44ηνΚΔΑΞ/ωTϊΰ!”:Ώ–οs,6Šβ{ΝΈh8rC/ΏκΣpδ}i8ςΎΖξG¨V ͺšW<5gύw*—*ƒͺƒΊ αΚ¦j½QύάΓψΒύ!£ΊΖŒ/Ό―1γ οkμ~„l!ZhhŽIΆC$@$@$s44Η\‚"ν ΝΦpΣΠl“Y)•/–±ofκη«Κ†fc½ΜRih6#Δ|;hhΆCΛ_–†f? ;[ͺžδTθΫ‘Ÿ!gή8±uΚχ)tC…YšΓq 4λ=/h •¦^Y.p9qβ„εYƒλq»π 4jΤ΅kΧ.ό…Ω Νaΐbrq44K‡οάujdΚφΈg κTˆ”Μ›χ=i^³hJΠp䞳κΣpδ}i8ςΎΖξG¨V ͺš·άψͺ€Ρ •νΣgτ½F-€’7ͺŸ{_Έ?dTטρ…χ5f|α}έ-D‹ ΝΡ"ΙvH€H€H@1yyy8yς€Φ«R₯J!>>^±FΏ;44GŸ©Κ-ΠlMš­q2+₯ςΕ2φΝL=γ|UΉΡΠl¬—Y* Νf„˜o‡ ΝvhωΛΠμgagKΥσ‘CQτνΤΎΓΘΛΘΒ©Œ#Θ; Φ™b-ΆO‰mΉΞύi ς²Ž#NΊ˜₯›Ωd)έͺ.*ΎέΧ€Tαf―X±Bϋ-ό\Έ{cλ±$Π’E œyζ™1λ ΝEΎΈš³§~ƒ££ηiΐβ«WFε/‡=Ό€=Εω%`wΆ7i8²,€‚κΣp"™νΥ5¦αΘΆ€!TΧ8€ΓΕ΅? ™Χ=ο[₯ΙύQͺΩ9ΎΟE½αδόR”}€αΘ=mΥ5¦αΘϋΣpδ}έP­T74ΨhΌ|§M…ί\Fκ©~ξa|a€š½4Υ5f|aOO£ͺkΜψΒH5{iͺklo4,]˜hh.LΊl›H€H€А€Όa𙙉γǏkζεJ•*AώΙEή”ς¦ΌΩ–””„ΔΔΔ"μ]ΡμŠ†ζ’α¬Κ^hhΆ¦ ΝΦ8™•RωG6ϋf¦žqΎͺάhh6ΦΛ,•†f3BΜ·C€†f;΄όeihφ³°³₯κωHŽAφνo΅κηϜ|πhώϊτΜΙωeaT–ιϋk†εSb&εΒ^δDΝςΖ‹ιš Ν‰[‘όˆ[ »ΫφΫoqμXd³Ά4 K#rΰR₯J•ΐΪvrrrPš¬S±bΕ 4«c˜“JKKƒό³²Θλ*^x‘•’…V††ζBCΆαβjh–:ά{"rΩ¦­ΜνP΅νXό£ςΉOς αΘύQ‘ΊΖ4y_cŽΌ―±ϋͺΥ‚κ†ζΕ―LΒEŸm֠şŒΚsŸP  θκηΖξΥ5f|α}_x_cχ#d Ρ"@Cs΄H²  ˆ!ifήΏ?ςςςP£F°78>Œ]»v!>>U«Vυœ©™†ζ„1Ψ5 ΝΦ ΣΠl“Y)•/–±ofκη«Κf#c½ΜRih6#Δ|;hhΆCΛ_–†f? ;[JŽŸΠΜn'VmΖ‰7γδo;μ ΕqΩΈJg JΔW­ˆx±Ž«*Ά«TΤςΆμBφΤo ΝΛF;,?ό$ήΠΪ(«ΘV―^zυκωφ'gJŽε,ΎzGcθ$Β―sss±rεJνAρπ₯ ™Ρ[·nφΪK€ΊΡΜ£‘9š4­΅Uœ Νٟ~‡££ζh•ίΉI‹Ÿ²6θB(₯ΤΉΟ`|4@±™€ΊΖ4ΩΤ ΈκΣpd šΝ$Υ5Ά9ε‹'C³„™όΣKΚ1Uύ˜e|αώQ]cΖήטρ…χ5v?BΆ-44G‹$Ϋ!  8%f§Ϊ»w/Nœ8Ίuλ†ΜςT°[ς pζ™g".Ξΰ=½+“Ο44‘’ΤM𭁀‘Ω'³R*_,cίΜΤ3ΞW•ΝFΖz™₯ΠlFˆωvΠΠl‡–Ώ, Ν~vΆb}>Κ]ϋrά" ΜΏ#wΝV;]X6.©œΟ”/ ΚA†εΣζe-­zεˆνΘΜƒ_BήLΣr₯žJΣš–+μ±Φ4άψc„#œ.υΧ_‘••œqϊ“œ%»iΣ¦ΪυΓE˜HCsΒ>½«βlh>΅? ™Χ=οƒVρέ~(έβ\ίη’άPυ{Rg@Γ‘NΒωZui8r­^Sui8•rΎV]cη#S³¦κ†ζiΣ¦‘ΓkυΑ«<η ΔΧ ~›Œ/3Fͺ³Œ/άͺkΜψΒϋ3ΎπΎΖξGΘ’E€†ζh‘d;$@$@$#GŽΡfgNII±<;ΌA·cΗm–ζςεΛΗ¨ηΡί- ΝΡgͺr‹44[S‡†fkœΜJ©|±Œ}3SΟ8_Un4λe–JC³!ζΫ!@C³Zώ²44ϋYΨΩ*κσΡΙΝ»»J˜Ε,Μk€#Ω–»«fP֌ʧgU–³+ϋς«U΄ά¦•‚'7ξΔαΎoγTΦρ°Εγ*”EΕߏRηΥ [¦¨2ŠZS«γbŒa• σΟ?±gΟŸ±YΞ²- ―_ΏΎιƒδΦχδ$ Νξψ9©]œ ΝrΌς»4w΅ψξK™Ϋ/EΉΗΊhΫEύͺί“:ŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;™š5‹ƒ‘Ήύ›λ“§¬8ρ~”ΎΠV¨ͺ~Μ2Ύp”¨1γ οkΜψΒϋ»![ˆš£E’ν  @Œθ³37hΠΐV6oήμ›₯ΩVE… ΣΠ¬°8»Ά~ύzdg›,δ ζ]»v‘mΫΆ[/œj„Ό±,—-Z 11±pvd±ΥΚ³Χ!y޴ǝ‰onͺ­=όP½zu‹-]±ίΙΙΙ¨V­ZΡνΤβždί6lh±tΡcߜρV•Ϋώύϋqΰΐ%7yž=t萒}“&­cǎ‘^=΅n¦Θ£sϋφνhΤ¨7nμμ`e­"'@C³3δ44;γVΨ7δδΜΖ'ΎΫ˜ob^΅§2Fμh\ry$\ά₯/ͺ΄γhΤϊ‚ό™–Ε,Λ±\€©ωθks g‘.έͺ.ʏΈU™Β [S§:ΠΠμŒšrΖ­8ΧΚΜΜΔ–-[ΒA^‹ΧβδLέεΚ• [.–α~λTϊΏ-¨ςΡOZΧNV*‹ν―uI7Γυ/&1ΨιΆmΫ΄k¦rς—}ϋφ!##CΙίe:/Υ5NKKƒ|P₯fΝΨ?₯3 \Λjδw‘ό©κ’ΊΖς{ΌB… Pρϊ§ΤT^Σ–ΥΘ₯T^ZΆl©rχ<Υ·β`hn=u#Ξό+!Σ²}Ϊ㌾Χ(₯ͺΏΓtH44λ$œ―Uט†fηΪκ5Uט†f])ηkΥ5v>2֌6š£M”ν‘  Dΐ‘΄β[qσ2IDέ .Bγ”JQίOqlπδΙ“ΪLΛόWΠ(gzωε—΅a=ρΔ!3Ι‹ίςO^œ/UͺTq~HŸihARμδ|y,-k֬ьuW]u•QvΜδΝ•+WjϋΏζšk΄$1λŒΨq©ΏGΒ'?j]Θk–‚_zžΚ•+kχcΩ/£}ΛW;Λο2o6ΘΎΙΦ*.μ›3UTε&Ώχtƒ„³‘^-ωvySUΕ 4,oͺh–7Λ«V­ͺdί οh)ή-ΣΠμL?šq‹φ…|iX>ργοΘύQΜΒ, Μy;DξXΉD$΄ͺ‡„6 5s©5|ε£έ7_Γ.6€±9gω―ζά”FυPΊu=%fe’ŠάdhhTΙϊ6 ΝΦYy₯δργΗ΅ ΖsβΔ Θk2^ΏβŠ+΄ίΦFεbξ·N\V6ΚtŸθλ^ΞKݐ״θM»αϊηλXŒ7€Q3!!uκΤ‰qOŒw/ςAX—ι=V]γ 6h$Τ][ο²Rλ;wjίC͚5Sͺ_Q]γί~ϋ •*URςϊ§δ˜žžωΝ&MšbUj[~ΧΠΠ\t’Cs½…[ΡθΧCšν44ΫgV°†ͺΏ΅υ~Π¬“pΎV]cšk«ΧT]c½Ÿ\Ǟ ΝRƒΜ?·ωKδmœμ^‹Έμƒ8U¦2P]Μ@r^œjp=tnμΥbH€H Δ8„OήƒΑ³7†Œό‚ϋΖbβ#νQmΝςFŠœ5δόσΟΧ.΄λ ςςς0lΨ0|ϋν·Z₯—^Šηž{ρρρzΘΊς΄Ό8//{a‘‘Ω *Zƒ4Ιc½S§NΦ+AIyAzώόωڞzτθσ›Žύ{ ŽΏ³L돜½nΛƒmP₯J¨xΣFώ•ffgΘQωG6ϋζμ?Άͺάh6r¦'ΝFΞΈ±–1šΉ˜₯ΠlFΘ8ίυωθXN¬N˟ωΗΝ8ωϋ_Ζ; H•1‘6 ³œ‰ω‚πΧ<]χ-`ŸΡήdίμeŒaŸ™¬ΑΓ7―Φ:zτ(-Z€šSSS΅‡ΦTk€οΘΓύήΡΞ²ίenΉεž(ϊYš#υOž4ΉWAui8ςΎΖ4y_cχ#T«…β`h>η«?ΠtM¦.±s+ν-9*QTύάΓψΒύΡ’ΊΖŒ/Ό―1γ οkμ~„l!ZJ΄‘Y—σΎ~q?3ηyω“ˆ»¨ΎΡΩΌ4K  Έ&e΅Ζΐ…§ͺzξλ™‚Uc>ΓZ=ιΎχρ\δzOΕΉμμllήΌ]δη ž#GŽΔ²eΛΠ½{wmxΣ¦MCϋφν1tθΠ SσͺU«Π A”)S¦8cπυ†fбAC³5™ihΆΖΙ¬”ΚΛΨ73υŒσUεF³‘±^f©4™bΎ44Ϋ‘ε/KC³Ÿ…-'η£ά5[Ε,Μ›…!MόύχΣέ•:―&.ζε6 Π².PΦΪ­NϊfΪ™(`ίμƒdŒaŸ™¬ΑΓ7―Φς‚‘9{ζ8:ς M’ΈŠg ι«αE.—Κία Gξ Υ5¦αΘϋΣpδ}έP­Š›‘Y>$[ρνΎJATύάΓψΒύᒺƌ/Ό―1γ οkμ~„l!ZJ¬‘Y›…ω£ΐέgιY ΗBšš- b pM`ί7ψϋ•`Ώh¨j‡Q˜ϋjΗΣ³1οΓ‡w\‰—΅―ο πρwSΡ’OΣ, Ν›6mB›6m|Θǎ‹Y³fifζϋοΏ_Kϋν·!MΝ]»vΕ Aƒ|eψα4jԈ†fn'44[S‹†fkœΜJ©|±Œ}3SΟ8_Un4λe–J³‘!ζΫ!@C³Zώ²44ϋYΨΩ²r>:Ήa‡f`ΦLΜΏlŽŸˆΈ‹ψZUΔ Μ Qϊβϊš‘9rΉˆεΓeZι[ΈΊ…ΞΎΩ'ΜΓ>3Yƒ1†3n^­εCσ©Cǐωg|UœΨ₯/¬οϋ\*‡ΛρΣpδώ(P]cŽΌ―1 GήΧΨύΥj‘8šΟώ.-Ύ—wmšν?Œ/μ3+XƒρEA"φ>oίΎ]{ΣL«V­μU,ΒͺkΜψΒύΑ ΊΖξGΘ’E DšΜΜ§ΡΈΣϊΆ\λΫ>ΰ45ϋPpƒH€ “@Ϊ‚ΗΠe°œžω<Όέ \hZή± Ν¨νώΎχ—γ‘‹ͺfW”nΫΘΠ³‚5_$bο3 Νφx•f|aDΕ^šκν†₯ “@‰44ŸZ2q?wΞ΅έPΰς'ΧgM  SiŸφE—ηΎ~ζ'π݌ž§ggΦ«νΓ€Ώ_‰1βAΰ󞘎=λ%nmdhΆ†f;΄XV544[S„†fkœΜJ©ό#›}3SΟ8_Un4λe–J³‘!ζΫ!@C³Zώ²44ϋYΨΩ’η£ΏΣΐo`^΅y»Fn’\"ZΥ³07³07@©5"—w˜«κΉR‡}³/*c ϋΜd ΖΞΈy΅–W ΝΩ³Vαθσ34™β*ž€―†©d*‡K4Ή?Tט†fοkLΓ‘χ5v?B΅Z(n†fI/ω§—”‚¨ϊΉ‡ρ…ϋΓEu_x_cΖήΧΨύΩB΄”³ά.ŠEΥs₯;ϋf`ŒaŸ™¬ΑΓ7―ΦςŠ‘YΞόŸωg|2UΧ₯Ϋ4π}.μ •ΏΓεΨi8r¨1 Gήט†#οkμ~„j΅P ΝͺΝ¬ϊΉ‡ρ…ϋsͺkΜψΒϋ3ΎπΎΖξGΘ’E ΔšγVΓ©₯kόN‰γl ,wυ+8uQ΅Y”H€Hΐ:l|* ΛΟ Γ2Ξ†ζ44‡cΗšƒΙμή½uλΦ Nδ'Ο ‘ٚ΄ΩSΏΑΡΡσ΄Βς"γ–Ϋ J•*¨]»Ά΅а”Ό U½zuΤ¬Y³χjmW*_,cί¬iX°”ͺάh6*¨”΅Ο4YγT₯~ωeζΟ_‚­i Φ95qΓ Π²εˆ‹³vζηŸΧaρ’eΨ΅{jΤ¨Ž«j‡‹.jRΤ©Sψξ»±H”ύkηn4lT7έx½Άv;Nš€‘Ω·£9ΘωΟzdΟϊΉΏl‹X‘Τy5‘pa}mζ„Φυ€² ΛF¦ͺηJ9VφΝΎβŒ1μ3“5c8γζΥZ^14K}²ΌίmΤ€*sγΕ(χΤΝE&›Κία GξΥ5¦αΘϋΣpδ}έΠY λΧ†Ο>ϋ»wνΕ9η€ έεmqωε— T©RΞ<]‹†fWψ΄ΚͺŸ{_x_cΖήטρ…χ5v?BΆ-%ΞΠ|κ£λ·ύΧόNΣq=Ήn‡   πΟΐLC³ Ν~r‹†ζ`^DC³5…sJΓαήΦ ΣΠl™Q)•/ˆ²oFŠ™§©Κf#sνŒJΠldD₯hΣ€ΑψυΧΗγγ>Gώ½Ρͺu όΊ~F‡Ξ―ΓπO >>>l§dύΓ_ΒΌy‹Π»Ο]ΈπΒ–Ψ°aΖΌ>νΪ΅Εk£_@ιω7sss1pΐΏ°jΥΟ2τΤͺ•‚ –`φ¬ωτH?τμy[ΨύXΙ ‘Ω ₯Π244‡2ΡSrW§!{ξjδ,[ΛΡ“ƒΦρ)U|30'\ΤqIε‚ςcρAΥs₯dΑΎΩ?"cΨg&k0ΖpΖΝ«΅ΌdhΞ™·GF|IWρ $}5ΌΘdSω;\B αΘύ‘ ΊΖ4y_cŽΌ―±ϋΪkA^³xοݏ0~ό»Ϊ5‡ΛΔuŠττxώΉWΕΓά)ψτΣχPΆlπ»fνμ‘8š>Œ[ήNσ «T£³Qiκ@ίηXo¨~ξa|αώQ]cΖήטρ…χ5v?BΆ-%ΟΠ<Ί&β²σ_γ(η’³.[]˟*S?\:ΣjU–# ΟhΫΆmŒ…†f«ih&ECs0―’‘ٚΒ44[γdVJε‹eμ›™zΖωͺr£ΩΘX/³TšΜ~ώŠ―ΏΓ㏏ΐτS’rΆo‡ϋφξ³4wǰᏣcΗ«}ι7€ω₯—Ζ`ΖΜΔLύ5|Ω™™Ρ-΅θwΊuλͺ₯KΣτ»ο~ˆ9s§‘B…ςΎ²+V|A‡hmΤ©γόM44ϋΪΪ ‘9Wή_Θ™·F™BήΌΰΜӟβͺUDΖΕ΅pnί Νͺ-ͺž+%'φΝώΡΒΓ>3Yƒ1†3n^­ε%C3Žd#γο~s…7οEΒ%ŠD:•ΏΓ%ŽάͺkLΓ‘χ5¦αΘϋ»‘½Άlي[oΉS>˜€f͚ψ*9rT€ίβΑκξέS}ιv7Š£‘YŽ1ω§—μ΅ΠΚ«~ξa|α^zΥ5f|α}_x_cχ#d Ρ"Pβ ΝxΡ£Λ-Δ•W-sΫλ“ @±#@C³Z’ΡΠ¬ ΝΑ<Όώ‰†fk ΣΠl“Y)•/–±ofκη«Κf#c½ΜRi62#TΈωyyyΈνΦ{qΟ½w’S§kBvΆ|ω7xφ™W°xΙΎY– Ιϊ·t»|΄?.»¬M`–Ά½vν―šQYΦ?yς$Ίάp;^}υy4Ώΰό ²rΖ€ξέ{£ϋν©θzc§ <;hhΆCΛ_–†fΑβψ δ,]«ΝΖ,ge6\K#ρΚ¦(ΣεB”nېΖ\CHζ‰ͺžΗeΟUνc σγΚ¨c #*%7ΝS†f!cΦ Ι8ρΝMΠDq^*?¬[‘ˆ«κχ€>xŽtΞΧͺkLΓ‘smυšͺkLΓ‘”σ΅κ;™³šΣ§ΟΖΊ΅Γ3Ο i`εʟ0yςT1{σ«ίLR1 †ζ7U?f_86 šκ3ΎΛα¦κ3Ύp(l@5Υ5θ*7cL ΔšO½v6βriΨg\Ά’C`ωS‰•πΓe_X©Ζ2$@$ΰ)Ech>ν‹.Ο} \π4VO½ Α/jςΟΰ|ΑΣ1΅gcO1Ά3#CσδΙ“!M!χή{oPS2]š<ξΉη_ϊ?ό€F‘L™`ΒΎΕlƒ†ζb&˜ΛξΠl ΝΦ8™•RωG6ϋf¦žqΎͺάh62ΦΛ,•f#3B…›Ÿ)fQξΨαaXž‰Š+„μLΞXtέ΅©˜;o’““Βζ/XψΉaύγǏ£SΗ[΅™—322ΡϋΎX²τ ”*U ΉΉ'!cβrεΞ@\\Ž=†œœ$%UُΥš­’ .W’ ΝΌœ=w5r–­Žεƒ9ύ©Τω΅4sb‡Ώ!BY_UΟG²ƒμ›O&[ͺrcŒaKF_aΖ>άΌfhΞ™3Ž ϋ4_Ϋr‰HώϊΩ"ΡYΥοI}π40Υzϋ@IDATι$œ―Uט†#ηΪκ5Uט†#])ηkΥ5v>2ϋ5ε}΅Α ΓM7w6|ϋΧ_7ΰ±Ζ„‰―ΡΠloΤj¨~Μ2Ύp/΅κ3ΎπΎΖŒ/Ό―±ϋ²…h(y†ζCάφo\σ;uN;ΔυXδΊ6@$@$`L`Γ‡w ΫΛkEζ­X΄~R‚Š₯α±f]°P€]π΄04ίFCs›6ώ™μƎ‹Y³f‰ΩιΊγώϋοΧΘ½ύφۘ6mΊvνŠAƒωhΠμCΑbH€†fk’ΡΠl“Y)•/–±ofκη«Κf#c½ΜRi62#TΈω7nΖ€‡ΗόŸk&γ‚{“7ξο3φ-›Μ†™α9ΠΠόύw?bλΦ?pǝ·ˆŠO Γ₯0ž^ϊ?Τ½zέnΨ½Œ•5 ΝV(…–)i†ζΌΏ2#LΜΩσV#ogF(‘W₯Κtj 9λe©zΥ Λ¨z>’eί %3MT•c Sι 0Ζ0ΔRb½fhΖ‘ldό}ΈOΟ cξFB»ΒΏΞͺκχ€‚†#„σ΅κΣpδ\[½¦κΣp€+ε|­ΊΖΞG欦4-§€œςπ΄Όή1tΘ³¨[χ\άίχng‹Zœ‘Ω1:_EՏYΖ>©o¨1γ Ηϊ*ͺ1㠟TŽ7TΧΨρΐX1κJœ‘9nΥ8œZϊΈς”ψWΞΊlu ,wυ+8uQ«UYŽH€Hΐ&}«^Η•χΌ«ΥzzΞjάVΟ?ƒπ‘NΒ₯wŽ1Μ³Ή›b_άh†f9;σΘ‘#±lΩ2ΝΤ,)ΝΜνΫ·ΗΠ‘Cƒž§‘ΉΨްm۟X±β{lΪ΄EΜj˜+f鏫ΊuκΤvΤ^€J™bΖΖω_.ΖͺŸ~FΉ3Ξ@ΣfMpΕε— Φ9Α)Dj#\ ΝαΘ§ΣΠΜΓι'•d³oΞTU•ΝFΞτ€ΩΘ·hΥΪ²e+{τiLŸ1ΕΠL,oπ=ΠχŸθϋΐέhΥͺEΘne~χξ½Ρ­[ρΧ5$›oVbΰ€αέχήΔΫΆγ₯—Ζh³0z€nΊ©3Κ–-ƒί~Ϋ„‡ϊ†ι πΪθη ϋp˜šΓ€1I.†ζγ'³t­6³œ•9ά’pεω(sΓ…HψϋωαŠψU=Ι²o>™lm¨Κ1†-}…cψPΈήoUXΎ|/ϊ Χ£K—ŽΆ―EΘΈαλ―ΏC»vmÞοεO‹-Γέ{P£FuqΝ£.Ί¨•φ67ρœ‘YΐΘzμœXώ? KbηV(?βV7ˆ,ΥUυ{Rο< G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZu,Ί5gΜ‡Q―ΌY³?Fυκg:nΌΈš;¬;‰Šίαgε9O Ύf²οs,7T?f_Έ?:Tטρ…χ5f|α}έ-D‹@‰34#SXΜo&˜ξ'.π$kZŒH€H€ΘNCίΦ]π­Vύ2L\4 νR*αPΪ2<Πe δάΝ@W1{σ foΦ2JΜ?'Nœ¦ΤMhΡ’}γ–¦ζaΓ†αΫoσ ^zι₯xξΉη‚ΜΜςUά2πnΤ¨|u‹σΖξέ»Ε“πu‹σ ½ο‹ύCČ]ΊvΤnώΕΗΕγΗWγ³Οfaψˆ'΄›‰Ρκ„œ­ρaNΊδ‹qΛ-]ΕλΰsπΩ§3΅™£±/š­)EC³5Nf₯TΎXΖΎ™©gœ―*7šŒυ2K₯ΩȌPαζoΪ΄Ο=; “§Œ74Iγ‘œ‘ΉίƒχšeοtΣςΫοŒAλΦσuXš₯{άΩ'OžΔ’Ε3πυ}‡gŸ}/Ύ4Χ^{•―œάΨΏ:_;^~yψϋ₯Ay?μΩ³G{°«`ΊόΌfΝμάΉW\q*WlT$fi2φ/S¦ Ξ=W½kRςζœδ•’βώΑ΅hώυΧ_Q­Z5qƒΩx–d³ύΕ―KGό‘Τw›'LΝFKήΉUqςκσ‘χ&8Uι £"†i²oM›65Μ‹u"ϋζLUΉΙο½½{χ*yΌνΨ±™™™JφmϋφνβMGΠΈqαΟZkχˆKKKCΥͺU•μ[Α±Θλ·ήzφμή‹§žz 5Ξ> K—,ΧEΌ0ςitθΠΎ`•°Ÿ?ωd&FΏ6N‹ ’““‚ΚɘcΔπ—0oή"τξs.Ό°%6lΨ„1―OЁΌ6ϊ”.]*¨Ž^44η,όGžϊ$CΉD$ύ¬$ŽΚͺϊ[L G: ηkΥ5¦αΘΉΆzMΥ5¦αHWΚωZu,:5eΜ1ξ­Ixύρο·_Χb³–εΫ§8`Xlγƍψγ?pρΕ#9Y ƒp`GεJ2:οΌσpΑ£ |Y'FvΓΙζj\Pυw˜λχίΧξΕΦ©SGORj½kΧ.q]mΏ’ΏΙtPͺkΌaΓ”+W΅kGς(›΅ΌΦ)Ώƒš5k榙B­«ΊΖΏύφ*Uͺ€δ΅O)Lzz:>Œ&MšͺNn—ί5-[ΆtΣλ–%ΟΠ,„=΅d0β~ο\βvCΛŸt^Ÿ5I€H€,Ψ±ΰY\7ψ³°eο{ΉHΚa;YΘΨ!o`Υ¬Ygžότ·œyχε—_ΦzπΔOˆ6₯ƒz#odΚ/υκΥ34ž.&hhŽ,”Ό`vέ΅©xρΕaΈτ²6A…W―ώEΜjψ8,ό<δ΅iA-~7+oΎ©n»νfά%^ύΈΘΩ‘<‹—ΜDŊ³lmΣΠl  ΝΦ8™•Rω">ϋf¦žqΎͺάhh6ΦΛ,•†f3B…›/ Ν?τ8ζ/ψά0”7ϊδ Νχυξ!nΞ΅6μŒ,σΡGŸi†£ζœ/ΜΚΐšΥΕW_­ΠΊχΦ;ψδΣχ4CσδΙSρωτ)††€χήϋYYY0 ―α~τΔυλΧ‹‡­²υAλ?όΣgϊ“7"TZΆmΫ¦=Θ(γΥ–Ν›7‹Ψ’cΣpaŽGή8”7…₯©ΩκRzmζ©rί¦!aίΓjyΒψ•uqmiWΩη:»ι,ϋΦ°aCΓφcΘΎ9S@Unςζ΄Όy©βρ&Λ:tHΙΎΙΨμΨ±cΪ΅gGDαΥ’fkωΊŠfλΐQΛsό¨Qoβϋο~ηοΙAΧ§V­ϊYď`ΖΜ"ΞԜύλazG{γ”|¨ίθϊΕμYσ΅79ΘφjΦ¬αλF¦x{T·Τ^x ί=†oƒπ4Ωπ’‘βAŒvOϋF^at/$\QΈ7ΐUύ-¦C ‘Y'α|­ΊΖ44;ΧV―©ΊΖ44λJ9_«±σ‘Ή―)ί€ΩχώAβ‘·cψπ£‰b’kΛψΆlΩbΨyBΖvrς"i–SmY»VΌ©H\C‘0_:|…―{»ϋŽ|o—YΔͺώΣ1Θλ9rr)—}ά·o222”όM¦3T]cyΏΎlΩ²Ϊ={½Ο*­εCΞς{Hώ†TuQ]cω^‘B%―}JM₯YX>]Ώ~}U%ΦϊEC³ς(ΣΉihŽΛ>ˆS]μYηβ”ΨŠ;ύ§oΛ΅Ύν+xVsΔυX„SeԚ‘ΗΧ?n €ΗμXυ)άσ6λ<ρΈ±…υ›ΡAΥ=φAΞd$ΝΛvŸΆ“OJ“³ͺ?žΘDCsdj»vνΡfL^Όδ‹Ό9Ψε†ξψθγ·…ΩΓ?Γ‘Όι'gFϋζLUUΉΡΠμLOšq‹V­?ώ؎{ξξ―Ν”hτζ«ήtcL˜8΅jE6βξϊk7V #σΎ}ϋQ₯j2.Ήδb-n‘3//\4ση/Α΄©Σ1}ΖCστΪ΅Ώβ«¬ΐΐA8žŒ1δΝΔΤΤTmζKΗ BE9S‰Ό9’β…iωŠά*Uͺ(9όΞ—³3›Α…©+gι:dΟϋ 2† ·$\‰].Dβ5„+b9]Υσ‘ϋfYΖ ‚ͺrcŒ$“εŒ1,£ [P^WhaMΛ/Ώ4₯…ΉγΡGϋ‡mCΖ7ίΤS{ΫΤƒή§ΝΠ<ψρβΌγ˜DΎ­μ–nw㟒Λ <Δ-–1Β CΔΓΥ‘ΧDΒξΈ@†' ΝbŒY„Y―6±cK”ξΆ#ξGUΏ'υQΠ¬“pΎV]cšk«ΧT]cšu₯œ―UΧΨωΘά՜;w‘φ6ˆΞ―ΓΠ'oPςΏ9ΥMΛςχ΄Œ;ε›’δ8T[¦M›¦ΝϊΩΊukΤλϋΉ―{'ޏΦσ}Žε†κΗ,γ χG‡κ3ΎπΎΖŒ/Ό―±ϋ²…h(‘†f ΟΘΤl •ffSD,@$@…C ‡φFŽΦx"*V«„2…³£bΩͺœaIy₯©!)ΙoD4ύIpyS_šΌ²ΠΠYΙC‡£SΗ[1wή΄ Σ²¬e”χ©xλ+―Ό³Ξ:›4ΤfD¬P‘Δ[γF‰‡―/rΦP˜Z44‡c#Yυc–ρ… 1ΓU]cΖa„³‘¬ΊΖŒ/lˆ¦¨κ‡ι6“c@ Δš%kΝΤόγ[ΐ7#ΝΡ·ŠΈ‹βΜΜζ€X‚H€H ˆ œ8qB›ANšD›6m2nΑξΘςrf7i©]»Άiω‚υUώLCsduδE·ϋξ}ε…‘θΙ‘Dυgifγ}{χγ…‘―aΫΦ?}³ΚΧ»?ρψΌ?yœ8k ggηΰωη_Ε·ί¬4ΡHrrπΐ%7χ$&Š ³f})LM3BfŠ,kΆMC³‘ό|š­q2+₯ςlφΝL=γ|UΉΡld¬—Y*ΝFf„ ?_>•–ΆM3ΎΝAΖC‡< ωjψgž’uDΖΛ—――Rm†3Ο¬¦Ε =ϊ4ͺV«‚‘"F \€YΊk—ξ"―†giVΊΊύ=ϊy\rιŁE΅Ό]ξΐ£=„Ž―Κ³σ†f;΄όe‹›‘9ο― δΜ[#fc^Όό ά¦.9 s™.DιΏΥ Μ‰ΪΆͺη#9@φΝ™ΜͺrcŒαLOΖΞΈ֚*ή¬q #μΓFςά.zž=gͺxPίό͘2Άˆdh6zˆ[φ‡†ζ@U l‹7d΄ΘΞΥ2*ΌΪ W6-P(zUύžΤGHΓ‘NΒωZui8r­^Sui8•rΎV]cη#sVσqOdπcΓ΄ϋ')βM–Ρ^hhvOTυc–ρ…χ5f|α}_x_cχ#d Ρ"P’ Ν>ˆ™ ξχyΘΫ8Ψ½q9‡p*QΜ΄RύğΧ§v’Ξυη   ¨D@ήΘ9xπ ΣΣ5“r½zυΔL3ώWnφ5##CM Ν¦΅jΥBεΚ•CfΟ ,_άΆih6W쐘₯ωͺ+o0,ΈtΩ¬gο<ΐ¬¦7ώ1LƒΚP€ˆ¨ ˆ’⫨¬¨ (Xb₯" D寈e°ŠX@°VΠuw•…U@:ΘH›f˜ΚπΟ ›Μ½s“›““;χ~dήyLrZΎσ{cςέάχ&ϊSŠΔkZ{h―r}θ‘ϋ¨mΫΛƒΪO`|ζ™I”~‘ά+ΆΕ1:ύεΧι»οώIβΙKΒΠ΄όΛ…”šš4ΆΫ šεˆΑΠ,ΗΙ©η’ˆΝI=λzά`6²ΦΛ©f#'Be_Ÿ₯½N^˜‰;\{5 2HΏΞ=š«?ΑhΑό΅7DΌG΅4Γ²ψ3LΙ/Όψ]|qK½Lδ·φξOC‡έK½zέ θ.cϟ4bΔczϋω ζ˜?„Z΄θ3šόψTωΘm/Σ@΅kηn4h˜ώ€ΖY³§›mυΑ]ώ†f—ΐώΧό€04Χ¨­?…9³IδHvρ-ι&ζΔkΞ'JN°k‘rΧ#19Δ¦&1WnΘ1ΤτDŽ‘Ζ-°—ΣΫ܍ν Ν’Ό·–Kάxc7ν_χΐτuaD2x”φΆ¨ΏΡ…jηw…?Ώ>‘Y Θ5O»FΥ©$^Ϋ‚Ržθ­@H Χσ€= G υ%wa8RΧΦθΙ]cŽ ₯Τ—ά5VŸ™ϋž"ΗΈω¦»¨uλVΤΐνϊ=Š£ΔΗWΤίtYΊ\v†fYRφνΈ³Θ/μ΅“­α1ς Y%νΫqΧω…½v²5ά5–Ϊ•=šΛž1φ  eN ¨¨ˆ²²²hοή½ϊg„Qω”SN1ΝΒΘ,κ„ρ999Y―«^½Ίnώ(σΰ’ΈšΓΓΗ‰xέϋŸξ£ρ‘FN'ρΕmΫvΠ”§ž£δJ•θύχίΤκχR―[ξ¦―Ώω˜*ie₯^|ρͺ¨υsσ*χνΫwνίκΥΏΠΫoΏOwχοKχήΫΟΡP/Ž[·Υߚ5kτψ;wξlU³2ργ‚%K–θϋοΣ§U\9f±ˆΓΠόœ?d#65ΉrƒΩHMO˜ΤΈEΊΧdhOLMΏΎ•Ξ:λL}YΏ~]zyϊTνΝ Μέ?š1s5iΘ,―€hΨ£”c–΅o%=6n$₯€”\OΕ—‰‹/£ργžΫ‰KPOΝΐ4|ψ”””hφWY‘Y…gCσ―ο/£ZkφPόχ›‰r ,'W·:%vmIIέ[Q\=λˆZvτXΘυz$¦…ΨΤΔεΚ 9†šžΘ1ΤΈφ†ζ\νGNwάim”‘YμΣ0-ΏϊΪσΤ²ε…f›7o₯>· ΰΏtΩ‡ϊΉΝΚR+"žƒ­Ÿά/ήz&ξEμΫ·zφμI5kΦ,Υ›Η¦Κy¨πλu”=rξ‰ $ΕSΪWγΛμG=*ρE“, GήisΧ†#k Γ‘5φ>CωΔ›+oθΡ‡22φΪvχ<|8Gθm£004‡#YΕύΪƒόBRΘ0ΝΈkŒό"Œx’Uά5F~!)d˜fά5:ͺ’L†ζ(Ηξ@@@ ¬GnnnZΖe±.Κğ0ycͺ0:‹b]”ων†ζπŠ.[φ =1y*‰/ο„±=πOά”»ω滨oί›)=ύύ‰υ₯ΧοΊλ6ΝΠܟͺ}™χ‹Y=ω‰±Ž―xί½{u»7Ν֞žxώηš}­VΦ­[GωωωVU΄cΗν&b†φd„Φ–υ±*mάΈQί}‹-bώZ₯ ϋ¨ΞΤ―υxςšΦ¦U=R•*U¨N:±Bd»ίM›6ι?Δ¨U«–m›XUˆΨš4i«έ‡έ/b ‹ΗΆ’+·θ ŽΗ›ΈΞ>|˜ε Β€%rρ¦ n;wM›R³fΝΈ…VfρdiOko|¨P‘BXÐUΒ¬,ϊ‹4‰™K·/*:¦=)G‘^Ŋq!ωMιφ²Ϋ04Λ’ nΗΥМ3ζ]*XV’―E­Ά―:’Ί΅’ψ‹Ο ͺŠΦηωˆMν(ΰΚ †f5=ahVγΨ+ZOhϋyΔάΉΠσΟΝΠο7tθp5­Ρ~XύΝ7+υvΏόkτžφCξ΄΄κ!­‹lή¬ύΖζOά‹†ζζΝ›ΗόΜ6!’ΚgΈνmnCR\a±>μΎ{.§œ–%?H³Ϋ—JΉJ|*ϋQν³mΫ6ύm!§žzͺκeΪoώύ$^Αρ3£1qξ‹7Š{£υλΧ7Bf΅xη"ρ9’λwΕy\ΌγύO‘©Έ§->Λ6nܘ«Δz\ιιι¬γσSp04{W“λη0cf04$Τ—ά5†‘Y][£'wah6”R_rΧX}fθi04Gš(ƁΖabOŒKγΙΆρρΪυš9!!A_Šm?ώΑΠ^ΥyσθΗΐM7…ΎzUτόδγΟiηΞ]ΤΎΓUtΟ ‡hήΌΧ¨Xϋ2°τ_rr’ώ€jΥͺj_ dιΗ›ΡFgΥ«W£Y³ή‘V-Σm Λ³gΝΣoΪ:=εYάΨ†(«Ώ•+WκΕxB³’2<‘Ή„…—5Ξ²›š²\ΉΑl€¦'ΜFjάΠ˚ ΝΦ\œJ9šνΜΜΟ;’kEI΅§w¦$9M­LλΉ^Δ€›šτ\Ή!ΗPΣ9†·ΐ^K΄·*όσŸ«iβ€ΡΕζzƞ?ιΦ[Π²ε ₯ή$&LΛΓ†Ž‘qγGRΦOΤcŠ7Dνί€jΤL£K/½X»"uν‹ΎXΊ@3Ή₯˜ϋ/½"ξ₯‰ΚYύ‰§7―Z΅Κ—OhσΝyTϋΠ?JΌζJ™r«Οe\Ο“ΖΔ`82H¨/Ήk Γ‘ΊΆFOξΓpd(₯Ύδ±ϊΜxφ„‘Ω».܏YδώΧω…5F~፽Ο#DŠ Ν‘"‰q@@@€ ρΕΞ±cΗτb]ό‰§γU¬XQ'ΦύϊCsxe…‘9I3‹Χ±[ύ†ζΧu€ΫϋήCΛΏ\dωtαή_Dη6oFηwŽΥ0ϊ‘ΖŒyœ:vlGmΫ^nΩfΑ‚IΌ–~πΰA–υ2…Βl$ΜΞ04‡§Csx>²΅œoˆ"6YƒΫqε³Q°N²[0Ι’B;04ΛP mΓΝΠhΚΡW―D•―ϋ %u ŝQ;t1*αz=8›ΪAΑ•r 5=‘c¨q μ΅}ϋNύƒΥΫ’D»εΛWΠ‡~BΣ§O₯ΈΈΈΐ–λv†fQώζs©ν•m謳Πι+ŒΥŸ|ϊ…τ~BΠ Ž=JK—.υ­‘ΉpΕ){Δ['¦½Ε ν«ρDΙ V(<•q=O“‚αΘ ‘Ύδ1 GκΪ=Ήk Γ‘‘”ϊ’»Ζκ3γΩσd24Ÿ5~9gdι «ΜHρ­xΌ-ϋ1‹όΒϋ{ά5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘9Ό}΄˜ζΜ~—ζ/˜£?™(°΅ψβοξ~κδΎ·ίB=zτΥΆϋP·ξ›iOU>JΧ΄»žήœυsŽύkΕ…S§Ύdω„%ρρλ»ίFcN—_~IΠψn6`h–£C³'§Vœo–!6'υ¬λΉrƒΩΘZ/§R˜œ‘ή šέΠ*iΛΙМ=βm*\±ή .Œtόn‘zO7ΛΈ¬p½ >ˆMν(αΚ 9†šžΘ1ΤΈφ?DχzχξI½zέXEβ‰Ηβ©ΙŒJνΫ_©ΧmήΌ•φξέO­[· ΤAΫgh1ό1ͺY«σPP·ΌΌ|κή­7ΦΚ―Τ Οͺ~74 .™WŒΣœΫ:’”§n₯Δφ¨β²νΗυ9Φh―c]ΌδύΥ««Vύ@C’§žGΧh_*Ч$νΩ“AΓ«?ι{φœιϊnb_έ»έJgœqMž<–κΤ=E"rΧΞέ4rδxΚΘΨKK>ŸOΙΙκ―ψ†‘َ~p9 ΝΑ;Yq΅YρΏ•p†fΡdυκŸι‘aRvvŽΩU<ύω±q#₯ξe˜,VΚƒ‘Ήpε―”=lŽ9ϋ΄U%'˜Ϋ‘Xα|σƒαΘ»Κά5†αΘΓp䍽ϐΧ04{Χƒϋ΅ω…5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘Y^‚όόΚΙ9ρε^εΚ•mŸ”,Ύ(ΜΜΜ’’’"ν‹Ώ₯/ŽΝΥ_#+’c$%%Κ¦% ΝaΰTΑΠΓΓ*η’ˆMMXά`6RΣf#5nθeM†fk.N₯±64[š™§χΧMXβœC³“‚‘υ\―•"RΔͺ—S r 'BΦυΘ1¬Ή¨–Š{ βΗΟb™˜˜¨Ώ!Ju¬pύŒύˆ{βž‡Μ²ΓgΤ•C³˜kζ㈎θΣN™ά‹;^h ˆΘ’σ9\L†#ο2sΧ†#k Γ‘5φ>C^#ΐΠμ]ξΧδώΧω…5F~፽Ο#DŠ Ν‘"‰q@@@bN†ζ˜KΥ`h–Γ C³'§Vœoˆ"6'υ¬λΉrƒΩΘZ/§R˜œ‘ή šέΠ*iKCs83³ˆPœσah.ΡJvλ΅Π4==]v*QmΗ•r ΅Γ9†7Ώφ*/†ζœ σ©ΰ³ΥΊŒ mΟ₯Τgo¨€\Ο“Ζ$a82H¨/Ήk Γ‘ΊΆFOξΓpd(₯Ύδ±ϊΜxφ„‘Ω».܏YδώΧω…5F~፽Ο#DŠ Ν‘"‰q@@@bN†ζ˜KΥ`h–Γ C³'§Vœoˆ"6'υ¬λΉrƒΩΘZ/§R˜œ‘ή šέΠ*i+Cσ‘ϋ_§’ώnί²Uyα.ύΙΜF‘8ηΓΠlА_r½VŠ 6y–Θ1 ξ–Θ1άρς{λςbh.όne™eΚ™φχ‰Ϊ+·’Μm―+œΟαbn0yU˜χuZΜ†#k Γ‘5φ>C^#œ¬†ζδν¨ φ,`"Ώπ&Γξέ»iοή½Δυ‡Γbvά5F~αν<4F~፽Ο#DŠ Ν‘"‰q@@"F`ά8ν΅†ψ‹ I“&ΕdΏ‘Ϊ) Ν‘"yrŒC³œN04ΛqrjΕωfbsRΟΊž+7˜¬υr*…ΩΘ‰κέ€‘Ω ­’Ά±04[š™_XΤΦΔ9†ζ,Ž\―•"pΔζ(_Hδ!H€ cHa*7Κ‹‘Yšy…vφhmΚ€[(±s䞊Οω.& C³.»§pΧ†#OςꝹk Γ‘5φ>C^#œ¬†ζΈziTνΣGXΐδ~^B~αύ0α1ς kŒόΒ{Ÿ!Fˆš#Eγ€€€Ĝ Ν1— ͺΐΠ,‡†f9NN­8ί,ClNκYΧs峑΅^N₯09B½04»‘U6Ϊ†fY3³ˆPœσah.ΡJvλ΅Π”λ“£ΈrCŽ!{δ·CŽΜ£Όo•'CsΞγ ¨ΰγuΙΪ4£Τηό\Ο“Ζa82H¨/Ήk Γ‘ΊΆFOξΓpd(₯Ύδ±ϊΜxφ‡‹yΑpδEέ}Ήk Γ‘5†αΘ{Ÿ!―`hφχkς kŒόΒ#ΏπΏΖήgˆ"E†ζH‘Δ8   1'CsΜ%ˆj04Λα44‹Ϋ_οE5jΤ † Κ ΕVβ¦#ΜFξsΎY‹Ψάλ ³‘{f’ΜFjάΠ˚ ΝΦ\œJ£ehvkfq#ΗpRΟΊΧqk.N₯\Ή!ΗpRΞΊ9†5—ςZZž ΝB㬫&ρ#ΉΊά)n’Δ-#"=Χσ€19Ž κKξΓp€­Ρ“»Ζ0J©/Ήk¬>3ž=ahφ χcω…5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘9ζD5šεpΓΠ,ΗΙ©η’ˆΝI=λzά`6²ΦΛ©f#'B¨wC†f7΄JΪ–Ή‘9―Ž ™τdζ„6Ν(υω;K‚°Yη|όhΚN˜bΧJ2b #œMr 0ΕΘ1•³κςfh>ϊΔBΚ_τ/]ε„ΛΞ¦ΤβœΟαb‚0y—™»Ζ0ω_cŽό―±χς†fοzpΏφ ΏπΏΖΘ/ό―1ς kμ}†!R`hŽIŒ   s04Η\‚¨C³nšε89΅β|C±9©g]Ο•ΜFΦz9•ΒlδDυnΐΠμ†VIΫ254 3σ}―SΡΪνζeΝΜ’ƒ8ηΓΠl’“^αz­44MOO—žK4rε†Cν(@Ž‘ΖΝ―½Κ›‘Ήθί›ιΘ½―™rVz Ν%ZΙq½VšΒΠ,«δ‰vΘ1άρ2Z#Η0H`)”7C³˜sΦUιψ‘\±J)έH‰έ[ιλ^ώΓωϊ"ζΓ‘uOτε1 GώΧ†#kμ}†ΌF€‘Ω»ά―=Θ/ό―1ς kŒόΒ{Ÿ!Fˆš#Eγ€€€Ĝ Ν1— ͺΐΠ,‡†f9NN­8ίElNκYΧs峑΅^N₯09B½04»‘UΆL ͚™ωπ=―±ξ2w”pesJΪΧά–Yη|šeH·αz­Q"Ά`­dΆcΘP mƒ#”Iy.)†ζ£S>’ό?θ²Η·nBU^ΊΫσ!ΐω.&Γ‘g‰Y_§Εμ`8ςΏΖ0ω_cο3δ5 Νήυ@~ααξέ»iοή½Δυ‡Γbvά5F~αν<4F~፽Ο#DŠ Ν‘"‰q@@@bN†ζ˜KΥ`h–Γ C³'§Vœo–!6'υ¬λΉrƒΩΘZ/§R˜œ‘ή šέΠ*iqCs„ΜΜ"BqΞ‡‘ΉD+Ω5ΧJCS_΄rε†CφΘn‡#˜Gyί*†ζ’Υ[θΘ WMι«=ž*T­dn«¬p=Os‘Ω ‘Ύδ1 GκΪ=Ήk Γ‘‘”ϊ’»Ζκ3γΩσd24_˜Zίφ’ 2νΗ)ζz,WΈ³Θ/Όά5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘9ζD5šεpΓΠ,ΗΙ©η›eˆΝI=λzά`6²ΦΛ©f#'B¨wC†f7΄JΪFΠ|<;ŽάχΊη'3Ρ‰s> Ν ω%Χk₯˜b“ΧΡh‰Γ αn‰Γ/Ώ·.†f‘iV‡Ιtό`Ά.oε1=(ι†KΊθ’‹lΫΔΊ‚»ΖΘ/Ό!ά5φ>CŒ)04GŠ$Ζˆ9šc.AT€‘Y7 ΝrœœZqώΨœΤ³ηΚ f#k½œJa6r"„z7`hvC«€m€ ΝΊ™yΰ+tlγsπΔ-(εΙήζΆΫqΞ‡‘Ω-5˜†έ;Ρ9†{r;vμ °|½1r χzϊΉGy54}ζΚ{]ΪψΏ4¦*3x’™λy˜ G υ%wahVΧΦθΙ]cŽ ₯Τ—ά5VŸϞ04{Χ…ϋ1‹όΒ#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝrΈah–γδԊσ QΔ怞u=Wn04[λεT ³‘!Τ»!C³Z%m#ah. 3³ˆPœσah.ΡJvλ΅Π4==]v*QmΗ•r ΅Γ9†7Ώφ*―†ζ’Ÿ·Ρ‘ώ3MY«=ž*T­dn»]αzž4ζΓ‘AB}Ι]cŽΤ΅5zrΧ†#C)υ%wΥgΖ³' Νήuα~Μ"ΏπΏΖΘ/ό―1ς kμ}†!R`hŽIŒ   s04Η\‚ˆ ’ΥΒΒBΛqύυW:xπ ΅iΣΖ²>V…"&ρ‘Vό]vΩe”””«Pτύ&ώ7ƒͺ>ΎΨŒα» m¨jΥͺT―^=³ŒΛΚoΏύF5kΦ€Ϊ΅ks ɌCΔΦ¬Y3s›Σ bSSƒ+7ρΪ7ρ„BŽΗ›0B:tˆel»wο&a0i€‰ΪQ†½ΆoίN 4`Ι­ §}R C³š|^ ΝΗη‘{^θ“™™ˆ/6ah6hΘ/9!ŒΨδu4ZΒΠlp·„‘Ω/?΄ΞΞΞ¦?ώψΓr*ΕΕΕ$ξEˆœ½U«VT₯JΛv±.,‹Ο:5ξ™Gq‡rυ©εά}9ε^£ώωΈ,β‹$σ-[ΆP||<5lΨ0’ΓFl¬½{χκχΓ8~f4&Ι]γM›6Q₯J•τΟiF̜–”™™Iηœs§°‚bαρƍυs4ΗϋŸ€ΈΞˆλMΣ¦MƒΈrΪρqύ!'N‘Šεd64WFϋ‘Sυ:EŠ!ηψbŽ04{Wš»Ζ04ϋ_cšύ―±χb„H€‘9R$1€€€@Μ ΐΠs " Νή‘ΒΠ응σ5ˆMMcά`hVΣ†f5nθeM†fk.N₯^ ΝΊ™Y{ςγ±-š»Iμr₯LΌΩάφ²"Ύτ‚‘Ω=AΞ_"6χzΒΠμž™θC³·“Ή ΝΦκUžσͺόΕυΚΒsλΡ‘Η:[7”(εϊYΜ†fƒ„ϊ’»Ζ04«kkτδ1 Ν†RκKšΥΩ©τ<™ ΝUf€ψVT¦Ρ>œ?#ЉΒΠμ]nξΓΠμahφΏΖήgˆ"E†ζH‘Δ8   1'CsΜ%ˆjΒl$žŽΤΉ³ϊ—heπ]»hΙ’%ϊΠ}ϊτ‘Κ•+—Εn€Η,ϊq‹ώ΄C£ΓφΧ{Q5X>iHܐ‚ΩΘPJ~ΙωFb“ΧΡh ³‘AΒέf#wΌΠ:<šΓσ±«U54—΅™YΔ‹ΓN΅π帎‡ηcWΛ•r ;ΕΒ—#ΗΟ§ΌΥŠ7‚,]ΊTBsϞ=υ7 qdPη‘’΅ΫιHΏζt«/Kj¦šΫnVΚ">7ϋwj Γ‘!ηzξΓp䬑S ξΓpδ€ s=wgpr΅€‘Ω»^܏YδώΧω…5F~፽Ο#DŠ Ν‘"‰q@@@bN†ζ˜KΥ`h–Γ C³'§Vœoˆ"6'υ¬λΉrƒΩΘZ/§R˜œ‘ή šέΠ*i«bh>ž•CGΎZfOf6’η|όhΚ !Ώδz­3@lς:-‘c$ά-‘cΈγεχΦεΩΠ,΄Νκ0™ŽΜΦeόp7JΊε2%Ι9ŸΓΕ„`8R’5¨wa8 ’Kiƒ»Ζ0)ΙΤ‰»ΖAΑϊ`†fο"r?f‘_ψ_cδώΧω…5φ>CŒ)04GŠ$Ζˆ9šc.AT€‘Y7 ΝrœœZqΎ!ŠΨœΤ³ηΚ f#k½œJa6r"„z7`hvC«€­[C³03Ύ{oίo’tύΕTyμ ζv€VΔ9†fχ4Ή^+ΕL›{=‘cΈg&z ΗPγζΧ^εέМϋόbΚ›»R—7ώΒ3¨Κλχ(IΝω.&Γ‘’¬AΈk ΓQ\Jά5†αHIΦ Nά5 Φ04{‘ϋ1‹όΒ#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝrΈah–γδԊσ QΔ怞u=Wn0YλεT ³‘!oυGŽdΣηŸIψΗΏθxρqΊψ’–ΤΉs{ͺ^½šΤΐYY‡hΩ²oθ_\MǏ§VI§φν―’Z΅jυίΌy«f ΩT&6 ‹θͺ«ΪPZZu½¨θ-_ώ ΅νκΥ=….½μβ r·04»%v’½Cs4ΝΜ":qΞ‡‘Ω½\―•†¦ιιιξ'…\Ή!ΗP9†7Ώφ*ο†ζcλwΡα;^2ε­Ύt,U¨™jnΛp=OρΓpdP_rΧ†#umžά5†αΘPJ}Ι]cυ™θ)ξs¬_΅nέJz(Ω{4„‘9†β*χcω…’°έΈkŒό"@,ΕUξ#ΏP6 wBΕjŒ ΐΠc°{Θ€‘9r,O†‘`h–S †f9NN­8ΘFlNκYΧs峑΅^N₯09R―ί±cυΈΎ5iژ|p ӜΩσhνΪ»ο½NŸvπ§ή½ϊλύϋχοKI‰‰4gΞ»šΑτ?τϊ£ττσΝώ/υΈ‘+5jt†^ΆAΊΆΓ 4`ΐ횩ω˜ΩN¬T­Z…ϊτ½™βββ‚ΚέlΐΠμ†VI[YCσρΩtxΰΜ¨<™ΩˆNœσah6hΘ/Ή^+Ε ›ΌŽFKδ wKδξxω½uy74 }uyŠŠ<€K]yψu”ΤϋrΧ²s>‡‹ΙΐpδZά5†α(D2Χά5†αΘ΅€!Έk°‹q_cδΓγI”|8‡*V¬(Υ[φž…Τ`₯ΑΠ\ ˆΒ&χcω…‚¨₯ΊpΧωE)Α6ΉkŒόBAΤR]Έk\*\lƐ Ν1„]ƒ€€D– Ν‘εΙ}4šε‚‘YŽ“S+Ξ²›“zΦυ\ΉΑld­—S)ΜFN„ΤκŐ{φΌƒΪ΅»B73W¨PΑθΝ7ζκΖδ₯ΛRrr’YΈ’——G]»τ’[zέ@ΒΜΨαΒΟhΪ³/ΣKPjjŠώδζ›oΊ‹ž|j5i(p˜υ΅kΧΣ΄i/Σ¬Y/P±†f5p2†fέΜάo:ο>hξ$ιζK©ςΘξζvY¬ˆs> ΝξΙr½VŠ™ 6χz"ΗpΟLτ@Ž‘ΖΝ―½`h&Κ}ρsΚ{λοΊΔρœNU޼סܜΟαb20Ή–4€wa8 ‘Μuwa8r-iHξ‡,Q―ύpzύϊ_u3sff5lΨ@ΪΠ,ή6%{ΟB"”&04‡ q]ΐύ˜E~αZά5F~"™λξ#Ώp-iHξ‡Œ‚˜€‘9fθ±cH€‘9DyC³œ>04ΛqrjΕωC6bsRΟΊž+7˜¬υr*…ΩΘ‰ZύκΥ?ΣCΓ₯/Ώϊˆ‚O4Ίk/σθpΊόςK‚κŒ~ψ‘ΖŒžDΛ–/’ψψΰ'‰/{χξO<0€Ϊ΄iM99G©s§›θ³ΕοS•*α_]>oή:ͺ΅ο―=‘Ή,ώ`hV£κdhŽ•™YΜFœσahv―+Χk₯‘izzΊϋIE‘WnΘ1ΤΔGŽ‘ΖΝ―½`h&:φΫn:άηo¦ΔΥ>Equ«›Ϋ2+\Ο“Fμ0$Τ—ά5†αH][£'wa82”R_rΧXefK/£Η{’ξΧξCtλΦ‰ΖŽL/ΏόŒΤšέά³P‰ †fjΑ}Έ³Θ/‚υRΩβ1ς UƒϋpΧωE°^*[ά5V™ϊ” šΛ†+Fˆšc=†»„‘Y> ΝrœœZqώΨœΤ³ηΚ f#k½œJa6r"€V?sΖ›Gέi9€0gΜΤΏ ΄j 곏dΫφθ£ΕΪ+^·ΡπαχΣ–-Ϋθαγhώ‚ΩtθΠaΚΝΝӟό\£FZΠΠΒ=lθ}Μ¦MΟ’}ϋφiOw&ͺY³%%%΅Uέ€‘Y\8Cσρ½‡ιπ€™Q2³1qΞ‡‘Ω !Ώδz­3@lς:-‘c$ά-‘cΈγεχΦ04ŸPψP—§¨ψΟCϊF₯‘](ΉΟ_]IΟω.&Γ‘+9-sΧ†#KΩ\rΧ†#WrZ6ζ±eΠ. Ε₯ϊέυ½=χ)C³μ= !5…‘9‡χcω…’¬AΈkŒό"H.₯ ξ#ΏP’5¨wƒ‚ΕFL ΐΠSόΨ9€€€@$ ΐΠIšόΗ‚‘YN#šε89΅βό!±9©g]Ο•ΜFΦz9•ΒlδDΘ}½0χν3ˆΜΖ]ΤΒr€ ~ןΐόΑόY–_:ž,ψ˜ώΜΨ«’—/_Aγ΄'%Υ―_—ΆmΫaξ―nέSθ%ν‰IgžyΊ^VXXH]»άBM43σ?Ύ—ΩN¬άΊγΞή–±5tΨ€‘ِM΅‘Y73χ›NΕYfΟδ>WP₯‘Νν²^η|šέSζz­3AlξυDŽαž™θC›_{ΑΠ|BΩά——Rή¬oτŠηFUgίοJrΞηp1Ž\Ιi٘»Ζ0YΚζͺ»Ζ0Ή’Σ²1w-ƒvQ(žΈ< `iC³μ= !5=Ω ΝYWN γΩyϊͺΜHρ­Ν'܏Yδޏ ξ#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝrΈah–γδԊσΝ2Δ怞u=Wn0YλεT ³‘!χυΒΠ«Ώ5kΦΠό‘Εή“jΦ¬iΥ$feλΧ―ΧζL7ŽY v;.mh.ή“IGΌόdζών¨=νν†(³rqΞ‡‘Ω=^ΧJ1Δζ^OδΘ1ΤΈω΅ Ν%ΚΊώ*ήu@/¨4Έ%ίήΆ€aσ9\„Γ‘ƒ€Υά5†αHBD‡&ά5†αΘA@‰jξKL!l·†fΩ{qqqΆϋΝΛΛ£ƒZΦoΨ°²²²θŠ+`wBόξ»ο‘#G¨eΛ–ϊ?š-e [ˆό",©Jξη%δR2†mΔ]cδaε“ͺδ±Τ$Π(*`hŽ fμ@@@ `hŽe>ϋ€‘YN šε89΅βό!±9©g]Ο•ΜFΦz9•ΒlδDΘ}½ahχ„ζ-[ΆιOq^ΊμCΛ'4‹½Š'*χΉm effΡνwτŸΤ<λΝw¨yσ³ι²Λ.‘Όό|ΊοΎ»Γ(ŒΚ}ϋ ’eΛiOnhΫVΔί/ZΊτ+ΪσǟԀicκq}})7‚|«¬¬C$ž^πο’ΚΪ«ζ›Ÿw]ρΧK©ΑiήoΪΐΠ,§ ΝrœœZqΎ‰ϋQΐh@IDAT؜ԳηΚ †fk½œJahv"δΎ^δ #†?FΧvlG:\e9ΐ7_―€+VΡΔI£-λΒ’’cτŸ΅λι?λώ«sΞΩΤͺΥ…τ·Ώ½J΅kΧ’nΈŽώύο5tωε—P… Œnζ²°°νΠ“|8‡φμω“jΦH£Ίυκ˜υ+Ÿ|ό9mϊ} ~`±«u‘cˆ/ρ„fWΨΘxBsƒ„*tΈί :Ύο°9@₯!)Ήοζv΄WΔ9OhvOλ΅RΜ±ΉΧ9†{f’r 5nV½D>°bΕJZΆτ:tθ°v uλΦ‰Ξ8£‘UsΫ2‘£|ϋνχϊ—*V,ω‘“(_΅ς”©έ‡°Κ'NHκΡωη[ΏyΒv‡04—ΐ8φ{ξυΌYPν³QW·ΊΉn…σ9\Δ Cs8υδκΈk C³œŽαZqΧ†ζpκΙΥqΧXnφ­άšσσ €οYΤΠξW¨ό‰ΟΣ"ο<ŸΠœ<@{Σ θΏ‰©4gξΗ,ς‹ŠΉίζ1ς χš–ξΑ]cδ₯sΏΝ]cχ3B²"CsY‘ΕΈ   Q'C³3rρjυ!ƒGi7ΰ~’Ρc†Qƒ§ηŸ/§?ZBC‡έK}ϋήβ<ˆd‹ ~§[{χ§K/»˜nΊ©»φ ώϊΰύ…šωΰ?4~Β#ϊ—’CY6ƒ‘ΩKH! Ν!H” 8ΘFlJ’²5BΑl€¦'ΜFjܜz‰%-rM›φDˆ1H˜†ΔӐ/Έ 9υξέΣr(ρ”’χή[HΓ΄£τkW…IΉSΗ›hΖΜiΪS}Sι–›ο’/ΏϊHZMιΑΆoίIwχ{Δ“ §<υwήΉΤύϊΞ₯›‘aΒξΩσ:ΊL3G«ώΑΠ¬FN|[« žRΗΒΚΜ,f#•04»Χ9†{fΖρΖρi3Θ1ΤτDŽ‘Ζ­t/q?ΰfνZΏχΟ}4vμν‡I§Π—ΛWΠ|DO<ωuΤ~@%ϋ'r‹iΟΎ¬ηii%Z‘,Z΄˜vνΪMqJ^χ.~+•’’’ͺV­΄δσωΆo–pІζ`B‡†ŠwΠ +=Π‘’οΌ2ΈΝη닆#α\sΧ†#bΪ4ε1 G6ΒΉ(汋©X6uchož’½gψc+ΛΫžl†ζάW–Sήk_ι³Ih{.₯>{»ΝΜ’WΜύ˜E~αύXΰ1ς kŒόΒ{Ÿ!Fˆš#Eγ€€€Ĝ ΝΞΌ3w>½ρΖΫτΙ§οj―ΕI1;¬Τžb4tΘhϊpα[ŸŽd°"Ύ¬Ό‘GΊε–τΧΛT‘ΨΧΘ‡Ηk―_¨˜λά¬ΓΠ,G †f9NN­8ί,ClNκYΧs峑΅^N₯09R«_Ϊuι|3Ν}ηU:ηœΰΧnήΌ•nΎι.ϊψγwΜ7/ό¨½‘AΌv―Y³&ϊ…ω†}iρ’¨nέS‚‚X²d9M}ζoz> HΒά<|ΔΤ©Σ5AνtγτθI”˜˜H&Ž’ΟEΏ©/ι&&ρ€ΕΐΏ­[·Σ=οπœΟΐΠHU~}ύςο¨ξ”/)ξPΩ©ςΓέ(ι–ΛΜνX­ˆs> Νξιs½VŠ™ 6χz"ΗpΟLτ@Ž‘Ζ-°—Έ–?£]σ‘½)jώ‚ΩoV‹[ί3h˜γ΅ϋΨ±c΄eΛvzω₯Χτ{ "/ψό‹ωT½z5s¬p+Ώό²ŽτBοΎχΊφϊέ3Γ5 [Cs0žΌWΏ€\νŸψ«xv}ͺϊΞΰΰ6[œΟα"dŽl„sQΜ]cŽ\ˆiΣ”»Ζ0Ω璘»Ζ.¦bΩ4œ‘Ωx«D‹ηιo•2~-sΟΒκ-–”*<™ ΝρIU^TjFΡίδ~Μ"Ώπ~LpΧω…5F~፽Ο#DŠ Ν‘"‰q@@@bN†ζπ“q·λzi& ΙtώΑ―X_0φ֞¦ά»WΟ 'fi―j†₯£9G©ώ©υθΜ3OyΒ’Υ^7nό]²ΠκI‹ΖΎyd(₯§ŸoΥ]ͺ †f)LC³'§Vœo–!6'υ¬λΉrƒΩΘZ/§R˜œ©ΧϝϋfzfΎ2M³ψrnέΊ_υλό]ύn£οΠΧχΎ}QϊE-hψπϋΝ²aCΗhΖΓ΅4gΞ :γΜ†$Ύ\Ύόϋθdzι₯§υ79ˆΖΛ–}C£GMΤίβΠ‘ΓU”œœL‡џ¦ψΩ§KιSνΗX΅jΧΤίψ ~4%žΘψΤ”ρΪΫ&κλϋϊωηuΤξιξώ}ιΎϋξΦΛTC³{rΕ»ΑΫ_€Š‡σΜΞ\ΜΜ" qΞ‡‘Ω”Fz…λ΅Π”γS9Η†CϊΠjˆ#‡†Έ―ΠξκξΆ¦ε›ς<Εk?R2ς«?’κΦ½“~Oh~xδ`’y­»ρ­ΐΌΓj2e04S*ήy€υxΖ,¬ΆθaŠ;­¦Ήm·Βωϊ"b†αΘN9ωrξΓp$―₯]KξΓpd§œ|9wεgbέ2œ‘YΤ]ΣξzzαΕ§θβ‹[κΘή³°ή›s) ΝΌœZp?f‘_8)θ\Ο]cδΞ:΅ΰ1ς 'λΉkμ<΄ˆš£Eϋ(s04‡GΌeΛ6Νθ3X{uό"ύυͺΒP”ŸŸO•+W_#τh.˜O8z_{λΣOΏH§œR›šΣ„ΎύϋχϊS.z›jΦ¬vg6όNΟ=7fΜx6δυβΙJ;έDoΌω’iB ;˜M% Ν6`JΓΠ\ ˆβ&ηوMMTά`6RΣf#5n2½„QωύχΡ3ZN ^*ώ‰|aθ°{ιΆΫn2θ$ڍў€|ι₯“0βU/Ό0“D^aό‰1ž}φqϊλΑOξOn₯™š³³sτόcοή}tφΩgΡ³Σ&S½zuξ$r–©SF΄DGδβο‘QCιΖ»™1™\ΐΠμ˜ΦόΘoPΡ›ΜŽœΜΜ"(qΞ‡‘Ω”Gz…λ΅Π†fi)υ†Θ1άρ2Z#Η0H¨/W―ώ™ž|b}0–~έ.=’Έ0ψΑ‘΄δσω–υ₯Ϋ‹œCό`jάψ‘ކζββbΊιΖ;©£φˆΌΏ †ζjξυ<ϋ=C―¨toJΎϋκΠF₯J8__D¨0•La“»Ζ0)ˆZͺ wa8*%˜Β&w¦ΤE˜–Ε+ŏ·Ε=ŠΐΏΌΌ|κΪεš1s5iΘ¬’½gavp±r²š >]M9ηλ3Δšε„F~!Η)\+ξη%δαΤ“«γ1ς 9Γ΅βqΈΨQ]04G—7φ   P†`hwΙβeΪλr·Σ­šωθαiƎ˜ξ`έqG/σζέ7ί¬€GFN Y³_¦ζΝ›ιν„!iςδ©τέͺ΄ΧΓ/^|£ΟL[Ζ"ρ%cΰ«dE½0QϜρ&}τΡbϊbι‡aΗΟj†f+*‘e04‡2Q)αό!±©(ΚχUυ0©ι ³‘77½„‰YΕ_JJ %%%Ίι›³³³)A{£x=|ΈΧ°:tXΟ!ŠŠŠ¨Z΅ͺΆϋΉ‰xυ«0+‰h•Ξ;l;:TΐΠμ¨TυρΓΉ”uυD³΄ƒ(ωŽΆζ6‡q­„‘Ω½Θ1ά3=ΈrCŽ‘¦'r 5n½ζΝ[@™3Iάw°ϊ†"ρ£η?™gώΐΪͺQζΖΠΌψ³eڏ¨^ξa,ŒHžC³‘BΙ2ου―)wζ2½ βYu©κ{CK*mΦΈž'pa82H¨/Ήk Γ‘ΊΆFOξΓpd(₯Ύδ±ϊΜΌχ”½gαfO'›‘9π;šε”F~!Η)\+ξη%δαΤ“«γ1ς 9Γ΅βqΈΨQ]04G—7φ   P†`hW<ΕpŠφ*W㩊=ztΥ^ηžDΏώΊ‘ΈaJOΏ@’0υθΡ—zθ>jΫφς A§<σΜ$ν•ςΥΩmˆ/§Ώό:}χέ?Iψΰ#Ϊ§½uΑΞМ——§šo¦ΎEiiΥ»ZΛš £τΤg'Σ_ώ’n9–ΫBšC‰ο<@‡zέέΏ/έ{oΏ°OgγδδδθO]΄sεΚ•zqηΝ­ͺcVΆkΧ.Z²d‰Ύ>}ϊhOŒ¬³XĎahŽ ~Ξ7D›šΖ\ΉΑl€¦'ΜFjάΠ˚ ΝΦ\μJ³Ο’Βο7θΥ…—ŸE§ΌΠίiΜΚΕ9?šrŸλ΅RΜ±ΉΧ9†{f’r 5n½„‘9χh.έqgοΐbs½¬ ΝβΘτι―Σ’Οη›o£2wfEΌ!"77Χ²…ˆuΥͺU΄oί>κΩ³'Υ¬ήΈk9H £}Ž<|λ tlγ}f•΅§δνΒΞ2Ϊρ… Ζ’†# (.‹Έk Γ‘KA-šsΧ†# Ρ\qΧΨεtΨ7‡‘Ω»D܏YδώΧω…5F~፽Ο#DŠ Ν‘"‰q@@@bN†ζπˆ/σfϞGσΜΡ^΅Z1€ρ›oΎ£½J>›Ίtι@7ίtWH}`Α]wέ¦šϋΣΐCi͚_ΜͺΙOŒ₯N1·­VvοήCέλ­Ε2ΞΏΰ\«&fΩΊuλ(??ίά\Ω±ceddPλΦ­‹cΎ~θΠ!ΪΈq£G‹-τ'RΗ2¨JφQ©_›!|ωHKͺR₯Šnκ1 ™¬lΪ΄I{"WΥͺU‹ID%aˆΨš4iRRΐh ±©‰Α•ہθΰΑƒ,7q=|ψ0ΛΨ„IKO5j€v@”a―;wRΣ¦M©Y³feΈ I04» ™“O™mΗ›ςFv€z7_insY_lΒΠμ^ Ξ_#6χzΒΠμž™θC³·ΐ^±xBsqq±ώζ©Aƒξ€ΞΫ†γΈž••E›7oΆm'ξECsσζΝcώf» £ύY§ΪηΏRΪΒ΅z8…΅Siχ“]μBΣΛ£_Ψ`,*·mΫF tκ©§ZΤΖΎhώύ”™™Ιςs™A‡»Ζ[ΆlΡήZ—LυλΧ7Bf΅ά»w/‰s‘ψΙυ»Ζβ<.ή(>pόχ΄Εƒ<7nΜ1<3¦ττΘΌαΐ+ΆNfC³˜TڏSτΉψ ­Ωͺ―‹8‰:EλσgDΑ†fοGwahφΏΖ04ϋ_cο3Δ‘"Cs€Hb˜€‘9ΌβKΔwη- Ξ±|:ΡΪ΅λι›―WR§ΞΧΠ=ƒ’yσ^£βγΗCMNNϋW«VUϋ%‹ Ν6‰‰‰T½z5š5λjΥ2έΦ°<{Φ<ύ¦­έ+gρ„fƒ„ϊOhVgΨ“σΝ2Δ¨”ό:Wn0ΙkΨf£@XχJ†fy‚Ÿ¦œ‰συΕ qtτ­ώtZ~?,η|šεu5Zr½VŠψ›‘’ό9†<«ΐ–Θ1i¨­/YΌŒώωΟΥ4qhΛ2φόI·ή:€–-_¨ύψ:ή²M`αqν>Ε°‘chάψ‘T£FZ`•Ή.~Hέγϊ>ΪΫ“> Z΅έ=EOh61J―gdΡ‘'ŒL’SΥχ‡QΕΖφ&BΞηp? G‚‚·?ξΓpδM_Ρ›»Ζ0ω_cο3δ5 Νήυΰ~^B~ፑ_ψ_cδώΧΨϋ 1B€ΐΠ)’@@@ ζ`h/Α?όHcLK—}hih6žšΤυΊŽt{ί{hω—‹,Ÿ.όΑϋ‹θάζΝθΌσΞ±ά‘ψrq̘ǩcΗvΤΆνε–m,ψ˜ώψ#ƒdY/S(ΜFβ©K;w–i΅6»vνΎ4]’ο―OŸ>1b Ν‘‘žσ QΔ¦¦1Wn0©ι ³‘7τ²&C³5«μ!³¨π» zUN«Σ¨xΜuΤ°aC«¦1-η|šέKΐυZ)f‚Ψάλ‰Γ=3Ρ9†·ΐ^Ϋ·οΤο1ˆ{≨₯–/_A~ψ MŸ>•βββJW‡lΛš—-ϋ†fLΓφέ!ƒJ=z”–.]ͺ?‘ΉgϞT³¦;³΄δn<7‹Ε9ςpŸΏΡ±ίvλ±'χמΘxύcŸ¨0Ή‘eέ–»Ζ0Yλ榔»Ζ0ΉQΣΊ-w­£>yKahφχcω…5F~ፑ_ψ_cο3Δ‘"`ihώυΧ_CΕ©=bVΔMbaΓ€Νn”‘9<­œœ£tM»λiΪ΄Ιtιe5uέ»έJΓG<@Χ^{΅ώjΦ»ϋυ‘nέ;…΄cΌ9λ%:ηϋΧŠ'0Mϊ’ε–ĝ―ο~yt8]~ω%Aγ»Ω€‘YŽ ΝrœœZqΎ!ŠΨœΤ³ηΚ f#k½œJa6r"„z7`h–€•“O™mΗ›χίΫ†’Ϊ_ΐς3…8ηΓΠlJ%½ΒυZ)&€Ψ€e4"Η0QΈZAŽα —ecqοΉGΎΤ»wOκΥλ† 6yyyΤ΅K/zdΤPjίώJ½nσζ­΄wο~jέΊU¨P!¨½Ψ14Ώ3w>eόΉ—†Ώ?€Ώ—šνιε½υwΚ}ρs½A\ƒšTν£‡ms>‡‹ a8²•NΊ‚»Ζ0IKiې»Ζ0ΩJ']Α]cι‰œ$ ahφ.χcω…5F~ፑ_ψ_cο3Δ‘"`ihΦ^ν Cs€c¨€‘Ωυ’EŸΡδΗ§3ΟL’+Ϊ^¦ΏΞuΧΞέ4hΠ0ύU­³fOΧΚ*ͺU?АΑ£θ©§ΖΡ5Ϊ—Šβ0{φdΠπ‡ΖκOwž=gΊεSž ƒτgœF“'₯:uOΡΏˆϋ9r3ž=ahφ χcω…5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘Y^‚’’c€½•C*RŊqΪ“’“-;‹/ 33³¨¨¨H31§H™Ktτh.‰ΧȊ?1F iΊt[7Ϋ04ΛΡ‚‘YŽ“S+Ξ7D›“zΦυ\ΉΑld­—S)ΜFN„Pο† Ν΄rς)³νx³aκ”Ϋh}­c04›DδWΈ^Δ ›ΌŽ-ΉrCލ’ό:r yV2-Ε=ργg±?°NMM‘ιΖ¦ Να₯Θ›»’rŸ_¬7Š«Sͺ-mفλy†#ƒ„ϊ’»Ζ0©kkτδ1 G†RκKξ«ΟŒgΟ“ΝΠ\όG&κφ&ΜΚu₯€[ΫΠ‘―Pњ­zyς€vTiP{³MY―p?f‘_x?ΈkŒόΒ#ΏπΏΖήgˆ"E†ζH‘Δ8   1'CsΜ%ˆj04ΛᆑYŽ“S+Ξ7Λ›“zΦυ\ΉΑld­—S)ΜFN„Pο† ΝΞ΄ ―‘œρœh˜Oi_§Ÿ[C³3Ί\―G"PΔ"—TWnΘ1€δ i„#IΉ.€‘9ΌόΕYt¨λ³QΥΉƒ©b³ϊζΆ±ΒυCŒ)04GŠ$Ζˆ9šc.AT€‘Y7 ΝrœœZqΎ!ŠΨœΤ³ηΚ f#k½œJa6r"„z7`hv •“O™mΗ›R¦άJ‰Χ\C³IΔέ Χλ‘˜bs§₯њ+7δ†Bξ–Θ1άρς{kšΞχ;:ϊμ§zΓΈ:Υ¨ΪβΡ!Έž'@a82H¨/Ήk Γ‘ΊΆFOξΓpd(₯Ύδ±ϊΜxφ<Ω ΝρIU^DxB³ύρ…όžl χσς Y%νΫqΧω…½v²5ά5–Ϊ•=šΛž1φ   %04G 4“έΐΠ,' ΝrœœZqώΨœΤ³ηΚ f#k½œJa6r"„z7`hO«`ΙO”3ξύ’β)ν+ΝܜœCsxlΆ΅\―G"`Δf+[Ψ άc„•ΝΆ9†-šrYC³³μΗdSΦ΅“Ν†Uίz€*žΫΐά+\Ο“F0$Τ—ά5†αH][£'wa82”R_rΧX}f<{žŒ†ζ@σ²Υδν¨ φVUeRΖύ˜E~α]vξ#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝrΈah–γδԊσΝ2Δ怞u=Wn0YλεT ³‘!Τ»!CsxZΩΝ‘ΒoΥ%΄;R―Ύ.Ύ€­Q£5lΨ0ό1¨ηό:uκPύϊυc°χπ»δz=Q#ΆπΪΩΥrε†ΓN±πεΘ1Βσ)o΅04Λ)~€L*ϊy›ή8ΉοTiH砎\Ο“F0$Τ—ά5†αH][£'wa82”R_rΧX}f<{žŒ†ζάW–Sήk_Ω…‘9 ς‹`*[άΟKΘ/TT ξΓ]cδΑz©lqΧXeNθS6`h.@@@ `hŽτξ†f9ψ04ΛqrjΕωC6bsRΟΊž+7˜¬υr*…ΩΘ‰κέ€‘9 ­œ|Κl«=‘ω)OέJ‰ν/Π·`h6¨Έ[r½‰Y 6wZ­ΉrCŽa(δn‰Γ/Ώ·†‘YNαόώAGŸώXoW§U[<:¨#Χσ€$ G υ%wa8RΧΦθΙ]cŽ ₯Τ—ά5VŸϞ04{Χ…ϋ1‹όΒ#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝςΈ3[2o½žžh_α|C±ΙλΨ’+7˜U’_‡ΩHžZ:€‘ٞQΑ?SΞΨχN4HЧ΄―4ssr‚Ύ C³=·p5\―G"fΔN9ϋ:ܐcΨk9F8:ε―†f9͏Θ¦¬k'›«ΞΎŸ*žwšΉΝυeΆΥžΘόΏΏ”'{Sb‡Ζ&ΑΠl’p΅Βυz$&Ψ\Ii6ζΚ 9†)‘«δpωΎ1 Νςη/ψŽNωHοP‘F*U_6ΦμΜυύLΦΧ, G¦dΚ+\―…Ζ„`82H¨/Ήk Γ‘ΊΆFOξqϊey2š‹Θ€œ Pњ­ae€‘ωδa©Jξη%δR2†mΔ]cδaε“ͺδ±Τ$Π(*`hŽ fμ@@@ `hŽe>ϋ€‘Y^‹@Cσ‘nηQ₯J•¨Z΅jς”aΛΔ-)~šΎρAΆN:TΏ~ύ2ά£ΪМ?d#6i ³‘šž0©qC/k04‡rΙ9— Ώ^§W$\ٜR§φ iCs©\Η₯0…4·$ŽΘ1Y6@Ža‰₯άΒΠμ^ϊ#ΌAE?l;&έt)U~€; Νξ1υΨ½{7νέ»—ΣΣƒΚ9mpΎN N0y?ZΈk Γ‘5φ>C^#œŒ†fA°ΰΣΥtτΩOιxvž-PšO ‘Ωφ‘ΰ~νA~!-₯mCξ#Ώ°•NΊ‚»ΖAΓ2'Cs™#Ζ@@@’E†ζh‘Žή~D²ZXXhΉΓ_ύ•|˜elΒ€•››K5R; Κ°ΧΝ;υ/)9Κpϊ'εΠ04ΛV°|-匞g¦­zœ(9Αά6V`h6HΈ[rΎ‘Ψάii΄ζΚ †fC!wKšέρςC묬,ΪΌy³νTΔ½ahnήΌ9U\ΩΆ],+8}Φ‰Λ) †C™8Δ=€΅qY,?SAnΫΆθΤSO5ŠX-χοί―›]9~f4@q:˜—Β΄žœœΜς a"NaZη"ΞfWξ‹σxjjͺώ&Έ@νΉ¬‹{Ϊ999ΤΈqc.!YΖC³%–2)„‘Ω;VŸΓŒ™ΑΠlP_rΧ†fumžά5†‘ΩPJ}Ι]cυ™‘g€ ΐΠi’@@@ f`hŽϊ˜μX˜ΔΣ‘:wξ“ύΫνtΧ]΄dΙ½ΊOŸ>,ΎΰOI0ώΔΣ5Δ“†Δ7±ϊ+Z³Υάu•™)ΎΥ ’ψ [§N–_(qώΨΜΓΙΥ Wn0Ή’Ρl ³‘‰"ζ+?όν:ΈœΆnўL}Z}ΊξΊŽΪS.  *HΕφΣO‘eKΏ’Œ?χRέΊuθͺ«ΪΠ_ώrQP’’c΄|ω7TTT4faaΥ«{ ]zΩΕAεn7`h&–ύΘ\*όj^˜pεΉ”:υφΰΫ‚‘Ω‹c!Χλ‘±9ΚgΩ€+7δ–r9"ΗpDTˆ7‚,]ΊT74χμΩSΓGάΞCΩCfQαwtTI=/‘ Ο`ύΤOŽΌΥ܎Α3‚α¨4χΫά5†αΘ½¦₯{pΧΈtΌΡήή²eΕUˆ£3ΌΜΣόahφ χcω…5F~ፑ_ψ_cο3Δ‘"Cs€Hb˜€‘9ζD5šΥps0eΆeC³‰By…σΝZΔζ^V˜ά3=`6RγΙ^Ǐ§ηž›Nο̝Oχίߟ.jΩ‚Φ―ϋ¦M{™Ίv½–ΖOx„βββlw)ϊO?…>ϋl)υp»φχtνUΥιωηfP›6­ιΩiOh?Θ©¨χίΏ ]Ϋα ΅ζζΐΏͺU«PŸΎ7‡έW`{«uš¨δRf»‰Dω'Μγ)“{QbΗ ”¬rΘ1J’ ^Χ#όh*˜‰Μγ2”BΫpε†#T+™δ2”ΚOšΥ΄.ψl5εL˜―wP₯mΦ †f5”z―έ»wλOπεόδTΧB; G υ%wa8RΧΦθΙ]c#ΞX,Ε=‰^·τ£=ΊΠύ ˆH04{ΗΘύ˜…‘Ω#ΏπΏΖΘ/ό―±χb„H€‘9R$1€€€@Μ ΐΠs ’ ΝjΈ9˜`hVΣΞη›΅ˆΝN5ϋr˜μΩ„«Ω(θΤ­όφ{9r-ψpŽφzξzζNχο; =₯Ή7?’:uΊΖ,/½ςρGKhΚ”ηιΓ…oiOκ―kVge’{ήAχά{έxcw½|νΪυΊQzΦ¬—ƒžάlvςΈCs ΐ‚/ΧRΞ¨yfAΪί5ssJ’ΉΈΒ!ΗŒ'p]\`h$"·ŽλΈ§­ΈrCŽQZ)ΉmδrœΚK+š•ΞΙ§ΜΆγΝΞ>t%5»΅£ΉΝm†#οŠp½3ƒαΘ ‘Ύδ1 GκΪ=ΉklΔΝεαΓGhΥΚΠc=©οvΠ ;i φ/04{§Θύ˜E~ፑ_ψ_cδώΧΨϋ 1B€ΐΠ)’@@@ ζ`hŽΉQ †f5άΜFYWN γΩyϊπ„f5{qΎY‹Ψ•’[‡ΩHŽSιV0•&ένββbΊεζ~tWΏΫ¨sηφ!;_±bMšψ4-[ΎΘ|Κr`#Ρ¦†ίO—_~I`•Ύ. ΜC‡Œ6ϋΟ›·€Žζ՟δ804—@Μυ~ω½ ‘νΉ”ϊμν%•₯Φ8δ₯B27Ευ†f‡τ 㨂rε†#H&ι δ¨ΚECšΥeΞ6‡ Wώͺp€M#jψό@υΑΚΈ' Gήs½3ƒαΘ ‘Ύδ1 GκΪ=ΉklΔ­₯x«Τ˜Ρ“hŊοθ©)γ΄Ο—§Π²e_Ӑ!χD$š½cδ~Μ"ΏπΏΖΘ/ό―1ς kμ}†!R`hŽIŒ   s04Η\‚¨C³nf£#_‘’5[υ ΐΠ¬¦c`/Ξ7k[ Rrλ0Ιq*έ f£D’»₯=EΉSΗ›4ΓρBͺR%5dη9šωψΪ=ιΣΟή₯΄΄κΆυŸ1ί²^^uξt³ώτζκΥ«Ρ°‘cτ§ 5mzνΫ·΄ο©fΝ”””2ΆJ Ν£–WH™ν΄'2ηι)ίB‰m‘rΘ1μ‚Χ#šνθΨ—γ:nΟ&\ WnΘ1Β©f_‡ÞMy¬‘Y]υ‚Ο’œΗήΧ(œH5Ώ€>Xχ„αΘ;`ΧBcf0$Τ—ά5†αH][£'w8c΅ά°αwϊβσ/iΘPšου[ι‘< Uϊγw«Ά^ΚΈ³Θ/Ό¨{’/w‘_ψ_cδώΧΨϋ 1B€ΐΠ)’@@@ ζ`hŽΉQ †f5άΜF79ahVΣ1°ηyˆ-P)Ήu˜δ8•n³Qi"Ρέ_δ ~p$-ω|>U¬X1dηβIF ₯ϋξοOιιη‡Τ;ž Ν©©)Τ΅Λ-ΤD33γϋuΏ6ώwφΆŒ!¨‘Γ Ν'~΅Ž²™kJϋ»fnNI2·K―pΘ1JΗdl‹λ Ν ω%γς¬[rε†#P%ωuδς¬ΚCKš=¨œ“O™mΗ›€ώ­%\ΪΤάζ΄Γ‘w5Έ^ ™ΑpdP_rΧ†#umžά56βŒΥ†ζςχϊKJKΦ`h>ΑωEΙ1‘ΊΖύΌ„όBUΩ’~ά5F~Q’•κwUη…~‘'Csδ™bD€‘9Fΰc΄[šΥΐs0ήδ„‘YMΗΐ^œo Ά@₯δΦa6’γTΊΜF₯‰Dw{σζ­4bψc΄ΰΓ9–fbahΎgΠC4θž;ι’‹Z„'κ{χξO7ήΨMϋΧ=€~ΥͺhΘΰQτΖ›£ΊuλP—Ξ7S΅jUiήΌΧ¨n½:zϋuλ~₯ύ‡Πuέ:θΡΓ¨B… !γΘΐΠ|‚TΞθyT°|­Ύ‘pΕ9”:펰9δvŠλ ΝvtμΛq·g†+7δαT³―CŽaΟ¦<ΦΐΠμMυμoQαŠκƒ$vkE)γnτ6`υ†αΘ;XΧBcf0$Τ—ά5†αH][£'w8c΅„‘Ή„|ΰ½ώ’’5šO°@~QrL¨q?/!ΏPUΆ€w‘_”h₯ΊΖ]cΥy‘_δ ΐΠy¦@@@ F`hŽψν†f5πΜF79ahVΣ1°ηˆ-P)Ήu˜δ8•n³Qi"ΡέήΈρwz|34{Ξt[C³xBσ½χυ³44‹h Σς«―=O-[^hN@˜₯ϋά6ˆŽ;FK—}Hρρρ4cΖ›4xπ JN~Zπξέ{¨Ϋu½ι½χί€&M™cX­μέ»—ŠŠŠ¬ͺh͚5τΗPϞ=©f͚–mbUΈ~ύzmήΙΤΈqγ² !―2ΫiOdΞ?Α(e-”Ψ9=μ>9δvŠλ ΝvtμΛq·g†+7δαT³―CŽaΟ¦<ΦΐΠμMυ‚/~¦œ±οιƒTHM¦κ+&x°ŒzΓpδ,Χk‘13Ž κKξΓp€­Ρ“»ΖFœ±ZͺšΕΫ§η{bv0ω_cŽό―±χzAΕΠ, Λ›7oΆά±Έ!r»-ZPΥͺU-ΫΔ²pνΪ΅ϊ=”SO=5δ~DέgΎ¦δϋlΓΛμz.κ~Ύm}€*Έ~3ζ'ξη$$$`Θρoώύ”™™Ις3™Α‹»Ζ[ΆlΡBPΦχμ n—βαβ<$>Crύγ±8‡§j9ρΠŽ”““SφΒπ8ωττπΝπ8<Ίϋ„ΐIjhΞ¦]»²΄›D)§4 ΄T;5dΫΩυ—-Ο€Υ_ώ@{Π_―8ŸlΓ‘Ž{»‚ίhpΟ‡i«gΗ'ί₯ϋΟw7γμ?wΡޜJL;…Ψ‹η‚BmYύ-ύgo"΅όλΤΐ]8.φƒ¦  ά ΐΠΜ]‘ΘΖC³OšΥΈqώ2±ωKSšΥτ„‘Y[€zmίΎ“ξΊσ~ύ ΚβΛ™βIΘ=οC3fN£ Βq3φόI«5#σώύ¨FΝ4Ίτ‹΅§2W€]zΡKΨWΝiT·žυγO>ώœ6ύΎ…†ΏΏtAΫβζnqqqP™±±rεJνΎΣrύ„ζœ1οRΑ²_t$ =‡RŸ»Γΐc»δcΨ'•xB³ϋrδφlΒΥpε†#œjφuΘ1μΩ”Ηš½«žχϊW”;sΉ9PΒ•ηRκΤΫΝm+04{Wλ΅Π˜ Ν υ%wahVΧΦθΙ]c#ΞX-U Νβވψ‘œΥŸψΡ΅0’ωρ Ν‰][Ru-IΌ‘βΩαο Y±‘-γ~Μ"ΏUΎw‘_Ψk'[Γ]cδ²JΪ·γ±}䨉6“ΣМύκΫ{ i–ζπ†ZΩv©gη5κ=ζ}ƒ―Ηέ»κ^P Ήΐ΅'ωxzͺ²ΖυnmΟέ4CσW†ζ]4ώΊ{iu;zλΣ‘”ζj ΄γ‘η‰γ‘z·'ινe ?‹(P  ΐ€ Ν Dˆb04«Αζ`6ΒšΥ΄³λΕωb³SΝΎf#{6αj`6 G§μλςςς5Γρ-ΊaΉI“Π'Xξή½‡nΉΉŸnHNMM H`hVCΘΑlx“³Κ́ίκΔΣ<ΕY˜άλΚωbs―'ΜF0©q‹d/qΝοήνVκpνΥ4dΘ JMM₯£Gsiƌ7iΑόιΣΟή£ZšaYόεδ₯kΪ]O/Όψ]|qK½L|xkοώ4tΨ½Τ«Χ ”@{ώ€#ΣΫΟ_0‡βγ+R~~έΠ£₯₯U§§¦Œ§ NΌτηŸΧQ»€»ϋχ₯ϋξ»[Sυ?εέМ3φ=*ψβg_B›f”ϊόR(9δv"Η°#ΎΧρπ|μjΉrCŽa§XψrδαωΈ©5~Π΄lι7tθΠaνώ@3κΦ­“λ!‰B}ϋνχΤ¦MkͺX±bH›7o₯ώwCHyaa]uU=‡©”,€‘Y”C3γ<™3ξ}*Xς“Ω:ιϊ‹©ςΨΜνX­ΐΠ일‘±χ‘ΚfŽΌsε1 GώΧΨϋ ½Cs Ώΐ{ύ%₯‘k04ΓΠzTΈ+α~νA~αNO«Φά5F~a₯š»2ξ»› Z—%roh.ΘάEΆμϊφΞ>Šjϋγ'R A@š>A) >₯ό•‡PPŠAyŠ Š( ₯HQ@Ÿ PŠΐSl ‘&"εbA%θP@:‘1Tψί3›™ά;;3»›ά$g>²wn›sg™Ή{η;g 53r [―A3%λ‘Ψ\8›œˆαΖΦ«ΌvνK†άπ+‘uΫ!:7Ξ¦d²h5Qpeœ«mnΖYHI+wœˆ}yΙ’=g“»‹­W²N’w'ΑΎ³©μ0αW―1΄lR VcέLΘ€#GΑ†46†vΓ`Fί!/7 κacnKec;Μƚ™›ΛΊΊ4k υ’u”ΝIΠ§χ$`&p[}˜Ύr4Ρ"mVδc6Φ‹γκ³$Σ6YΡV-cώQΗ~eS@·e€Βξύϋ™Ω˜}κÍ ŠυΡΥ¦]R€ H2¬ΝφwμΨ υ„„ΗaΠΰ'νw`B“n»ύθΩ³› -$~ώy7Lœτ‚rγ€ΉΧ"š½JdXA؈_δ$ ΩΠMΆ2e^ ΫlΉR©L°‘}Ν°ΑFΞtσw«S§ΞΐsΓΗΐΑƒGΰΊλκ+ŸuκΤ‚ΉσfΐΥW³υ”’ £.w~ΰa˜Ώ`&4lθz¨‹π!«ηŸl₯hλΠα.xiΒhΆδ©f) τŒoΒκU됩  @){αΕαπΠC]­5²‘¨θ@sκγ.ε+ŠEMκα[XRO†9†ΘPΌΡCS"uΔωtkcV"«n4Η0󚸌ζbmμ”ΰI½z=)gΟΑψρ#‘V횰yΣ6XΎ|LφtμΨΞrwœ3ߘ«Ό­po³g-€ΒM7ίΉμΈκvι%θή£34hpšeϋ“€fΫ’6ΰΟ“™c–Bξ¦_΅z½nƒΘΡέ΄ύHΠμ»κΌ}οΝ=p仦²ϋ˜€£ςοcίGθ[ ΠΌa3{ {o΅ΖίΣ8οlΫΆ-\q…Οψjδ²eΛ ==ZΆl©όγϋγΧϊω|}š€fšυί »ϋ²_{h~aΧ£žυeχ1Ν/<}f7GvΫΥœΧ–’S@IDAThN…/fy[XΘbέΫ’?Μ˜ά 4δ5c7qΗΊ@άΨΊij›X˜Άμ¨dτ»†υβΪΏ‘1Β»υ±kάΡ]έat‘’mΨΓΰδE=zΓ~λ·ƒŽQ_Γ.κ±rœϊρ°xN?6ήθΛΦqAΥg“`βΰI°Kˆέ+6‹Ÿ“ϋ΅,…ΝΙ_L„Ασv±Ξ›Α΄ωέ`ξΰ©€Jή:j1Œo«©Νrraυ f‘ΜρΣ—AΏ&*x}fυθ[ŠμυώZhVμŸŽΣ–Αt@ΡΆ{υ»ψu·ψ3ΆLš1Z^ι?Χ‘)@ €@™S€€f{.ΛΛΛcΠO?H>qR™jφΧ¦FO|ψαπxίGάΊέΎύ{=j"lά”11ΕΧm·JvhΆ ’A`#~‘“€f'ΩΜ’y€l³ιLV`#ϋša ‚œι¨Vi,Zsaa!َ‚ˆQ±}~~>DFFΊΜz{qΎσ…ΨΨͺnfΰ±zυ|¦½:Αν‘)·J>μΠμƒx\Sύy2cΨ»χmqTνJ΅…ΚΓοηZ”l’€fίυΦϋΨχύΫGΎλ)» 8*>φ}„rυP€fT¦ωEωχ1Ν/ΚΏ}!υΰ/Κ<Π?}%ƒ]EPκ>Ϊeajue k‚ΊζΒcβaήUΖXhqk8ϋΓ.°Urc»Ββ\P3πͺ-\ŸuΠΌκ'/ή£V²,Χ>fߊ‘0κ½#Κ+R•Ίΰ²`y\ΤζΨΣΰƒ„YM{0Ϊς ήπžΚU+ˆ…ϊυ£ΨMάβΜΊ}§Γ‚‡κΑGΒ³μ•'O*Q¦±zlέX¨Χr8Όšΐ^νΚ€νA ΨV[†Υm-Xΰ€~ΠbΠρ|ESβτpΧU1Dπ'υyΖ»Ε0X;Ή=¬Ϊ£sκφ…e rVΝGs닇(Ύ8Όz [첫>ߜ‡š0ωvΓΠψ±~ΞHš ½'mΠμ©ί‚E:Ό Žhœy3˜½ςUh ϊϊh-)A €)PV  Ωž§0jΡ_₯BΛV7Γ‰γΙ0䙏(ΒΧ΅f±WΓΧ©[›Ν7ώf)κ!FCJθ? 6oYU<*κo0φf―”α…αΠΌ9Ξ…œm4;ΣM؈€fgΎ΅’y!lyMœO°‘X³‚ΜΤ‘2» Td 9sόǐ»αE²°6M zV?ΛςΙ0Η‹Χ#šEκˆσι:.ΦΖ¬DVέhŽaζ5qΝ1ΔΪX-Αu…vχtBΛzm„†…ΑˆC„]ͺo—κΪ­<ύτSJ„ζQ£‡B΅jξowΜdkχwκ λ>Δ§¨E†Π,RΖ^ΎΡy2ύιŐγA­£Κƒξ…JύοΡφK2Aΐ‘οjωΨχ^ύΧGΎk)» 8*>φ}„rυPQ€ζΚΪ+Β‡wn ΑuάηqΎzDφσΝ/|υ0°·ΏώΜξ)6χ½£υ@σ ί…•έΗ4Ώ(>φ}„ΤƒΏ(σ@sύv}‘Sγ(ΘΝ-~u˜KœpΟΫ‹ήΫ’@Ό\¬ ΨHs•ε„Μ‹BΉz¨(@³ͺ:ΦF5ΟΧOΩΟK4ΏπΥΓ4ϋͺΰ‰'ΰάΉsΠAJΊΙώ˜ζΎqdχ±ο#€ό₯@™š­ Q ήςѐ›Ατ΅―B1Ϊ‹½…Y=ϊΓ%’rΔΛ³±ν&ΑΓέoζXšΟΒ\Φομ—m}§/ƒ‡š aλΐhζΑ^₯g€έ‹ΑΨ5,ήr]f‚"™kS—E†^ D†v58»{3lίΟ0α¨ϊΠ΅SKΰοc}ΒΎ|š“ζφIEn³ΧN†xhNW½M.ΛX$κ‘,uΡϊ ΐ^%λ*yzώZ@Φ\ΩΈ~ŠύœKϊτ†•xH¦Ρ2?ρΜμΈ‡aξΔEœΙΰταγ ½J:uG€)@ eWš­ωξβΕtΈοήx˜3η5ψΏ[Zΐςε«ΰ\Κ97 yλΦνπΒθIπξ’ΉΠ΄©kΆ„―uŸ2e|ϋΝΨΈι3φšXΟ‘ͺ-γMFύ«ίσσ `Αόw`ΥͺΟaΓ—+MϋPϋ}Π,RΖ<_؈€fsΩ-•y€l³λM`˜œ†3gΞHmβψργpώόy)m#ΨΘώwZˆ¨¨@sήWΏAƈχ5a⾚Μ֊"΄}o ζ"ρzDM‰ΤηΣu\¬Y‰¬ΊΡΓΜkβ2šcˆ΅±Z²tι Hύ+Υḿo«FU^½f)ΔΖVε‹ Σf@σ¦MΫ`ΒKΣ NZpτθq­}­Z5α­ΉΣ•·Ni™4;Ν ‰π<™“-„‚='΄V‘γz@Dχ[΄ύ’Hpδ»ΚBϋή΅_z  Ωweχ1GείΗΎPΚ2М5c-\ϊψ[[‚ΠlK©|’½ν=%%EΚu_UΩ―=4ΏP=εόSvΣόΒΉoΥ–²ϋX΅“>K_24ΗΦok2Υ`ΛKωvΑ°<θΊbƒd‘ΡνΘΰδ!ξp2vs˜Eπ¦Dπ­Ο’(ρΓwΓP»ͺΟ`ΰ~ξ―F·4ο˜Υ¦nQb CύΎΣaΞC*FΝ ]»φD·q‡–]"μ[2F­dΦς² Πμj…SaχΧ_ÎέΙΐX_@USvo]'EΜχec{ΡvΖtY.'1]&)Ίά σ׎•QΦzJM‚>OrEe.Κ¬Ο|0‡χΐžέ ’«@Τ¬aX}ˆOψ'΄Ύ±>4¨w₯΄­‹€)@ e^š½»P½ρWσΚ0vμσJ=Π\XXέ»χηŸξΌσ·Nsr.Aη†ιΣ_†ζ-ώξV&ΪΑcΞ›»ΎύφΐΘKαμ-›6'²hΟΪγF’¦¦ω4›Κ#,”6" YθG2/mφ]J°‘}Ν°ΑFΞt£VΖ TT 9sΒ'»ώgE”°;Ψ›Ιf?a, W†9†ΐ4ε΅€4‹ΤηΣu\¬Y‰¬ΊΡΓΜkβ2šcˆ΅±Z’_sΠ·ΛΙΙaoqκ+ί‡ΈΈX}±ΗΎΊa‘ωί3ηΑ‡.‡I“_„NΪ+YgeeΓ’EοΑG~ͺΌqΚ—7EΠμαG¦ηIφ¦ˆ‹OΞƒ‚ƒg΄Ύ£&χ‚πJ.’͚τަ>vά«pδ»–²ϋ˜€£ςοcίG(WehΞ~{δ,r½έͺͺ4[UͺδκΠμ»Φ4Ώπ]Cš_ψ¦αΡ£GαΒ… pΣM7ωΦQ[Λξ㝺Ά©@™šγ§―„~Mψ˜ΒΌ‡a(iDΦ€ζά} N%„“±uξΎ%?j%KΥe@σw Yέλ{šΟξ˜ύ§Mβκχ‡esΊqΡ‚ΨΓΝМ IK¦Β€•»\ύε#ˆša^*γEγλ: ¦ύ#Ξi™…\Nέ> ¦chΆi>RφŠ$―ƒ#ΝΆ°v°8q8\ιΪsύΩ“› ‹††’ξΉaΠ’c$$t‚z’―W›’€)@ eGš½ϋjγΖ­0•EYώrγJφΪΥJJύΝΕcΗNΐ#?έΊ*WμΡιœ9oCHp°0Ί’G–}g’’ώ|π <ΥΏ ό$U·”G@³%™<*ΙΠμαŸ2d^ Ϋμ»–`#ϋša ‚œιF­Œ¨¨@sjΫ "Β-jbOοβΐX1W s ‘}x=" Y€Ž8ŸγbmΜJdՍζf^—ΡC¬Υ\sΘfPqί~½ ›ψh^ωFˆ‰‰†΄½ένXAΏώ―Ωpζl ΌρΖfkN6š¨ζΩΖΫyςς…,ΈψΤ|(φ}„rυP–fUI;`3Νͺjς|Πμ»/h~Ệ4ΏπMCš}ӏZΛ₯@™šE¬"sΖnΤ{, .[\ο0Ld3’»FΡ–±]ΖξEΠ{μ¬α;Π|φkθΣzQ„αf0}ε«ΰΞ_;°ΗΟ@sΖξΉlΌpθJ$γ Aλϊυ ŽMάύzΰΐΕ| #RΛ΄|X τP§N8ΌΧc¦€€ž‹πw€¬›μ>Ζσ8Ύj”qΓ5νΜΜLΆF­Œζi65oή\KS"° Πμ»Ύ²ώSGFL©J8”έΗ4;χ­ΪRvΣSͺ§œΚξcη#£–ώV |Ν† k¬ΤήcnΨ­£ q|[MwΟνc7€a˜Ÿ8κqύΤ΅‘9fυ [ŠΪΎΣ—ΑCτ¬{ Έh\4―šγ§Α‚~.h„Ε£†/ΖΔΓ< €Μ’ΟgяλqŠhΡ‘Ν©; ΗγSA‘ ,b£ΈΞ‹’™™iˆΝ*@ΞΖ|tg­eέxXΆ εz7‹Ί=Φ=7«œ‘αZθ g?XUŒ(75Ά, σ6ΰ€n΅Ζ·•σΗ¬b ύ!HR€°₯ΝbΉ0ΡΘ/Αwίύ3ήx.εΈ αvoϋΧίΓ¦M[αεWΖ²Eޚ,RQ ψ<,]Ί Y;ύV©R„„„@ΥͺUΨ ΌŽMvXE„wcc«Β»ο~­Z6ΛKή]ͺ,Ϊy&Aί½Ϋ>.ΰηηη»ε©;»vνRΐΊ»οΎ[Ν’βolξΨ±C±₯C‡Z$l)ŒcFΰΒYΥͺUKυΖ\ψ˜ΌŸšΘ{δ(xτ6%½wο^f–ρfΪ†7¬eάΘ6g^‘U7<ο©€„³‘Fκΐ›ͺ2ώ_@hoΚ γΝς+ΈBJΫχm)Ϋ=WD 9sβrΘύάυζ°ΫCτσ‡ΫŒ όghjX‡ΟΔυη†… GC΅jqZΡ₯KΉπΣO»ΰŽ;n5|]άwo<¬Xωž[;­ƒ’Φψ€‘Ρ†}ΰZΞΧΫΆm«όΆ6ͺWΪy²ώΦQu±j_pj„ϊ‚Ξ^T›BήΔnPΠκm? 5hΎζšΐΗ©νBβƒ°2ώ.SΗdΥΗjύ’ώά·oŸς@ΒΥW_]‡ΆtΌS§N)η‘f͚Yͺ_•dχροΏUͺT)ΥυO3Ώ$''Czz:\ύυfΥJ΅ Ο54—œ ΚМΏσ0€ZhI4ŠΠlI¦­Dš}—›€fί5”u=EΝͺΞ?eχ±σ‘QK+Pfuxb’ˆΏ±0ξύ uρšγ{χ18v”Ηj°°C yΗ¬>0u £ΩΦ¬lx΅›q€(Ϋφ8š—0£-‡΅‰ΓΥH†°€ΛG3λχ‡΅sΊ)φΊώd°θΚ½]Ρ•yˆ˜Σ£8ς5׌Kξ[1F½‡α™Γ`ΤβD0d‡“Ώ€.ƒη)­š==^νT„T³ΫCY„m%Έsݎ0ͺ[*LŸχƒ«―§‘=¬mΦ‡Υ‚AΛ“έΌΊt«τΫq|0D…»•,ϊC €)P†  ΩάyŸ―Ϋ{Ϋ§Θ— ] rDD8|όq"ΤͺUn»νΈε–ΠΈICxΌΟ Ψ΄ω3ΓθΒΛ?ω nhΪš53^pΕ›‹cΗΎ;Άƒ;οΌΓΠ¨+VΓ©Sg`θЁ†εV26*,,„ϋοΏίJυ«ƒ λΧ―WŽχΨcI±IΨ(}ΐېΏK™εA₯„vPy`E/ό!K―ƒ·U•y€l³οO‚μk†-6r¦΅2V "Ν©m'dε*‚DMxΒ»Ά2Η$W†9†Θ<šcˆ”1Ο§λΈΉ>’RYu£9†Θcζω4Η0ΧΗJι±c'”5†/74|ΰwΣ¦m°rε˜7o{ΐ:Ψk—" ωΜ™xΈΧ°yΛ*FΥw„v<υδ³€vΰCΪNΆ¬¬,ψςΛ/ 9>>^yhΝI?n#λyH·ϋ Ο€ΑΕ~sαςŸιjsˆ™ΫBo½NΫχw‚"(ϊ¨ϋ~4ϋ=pd_3} Ω}Lΐ‘ήcφχeχ±ύΙέ’’ΝΌ7ψϋ|Ύέ΄μίYš_Ψυ¨g}Ω}Lσ OŸΩΝ‘έΗ4Ώ°λQΟϊ²ϋΨΣbΚ)-*$Π @ΛPc7΄ ΉgwΓλ#ΗΒ.:Nz†΄d΄3ΜZΠœόυ,<}K‘_Y€ηeΓ!*/“ΕCW’ηζζBTΤ•μu7¬Š]{ΝΉ°šEb^¬&nΣ—R"1γλvЁκ0θ8l2ό³u}ΘM;kζN„5{Š".†u„Ε‰C@‰eΜιa4Ÿeͺϋ»"TΧνΛ’*?TUΩνŸ ‹ϊ<kPχΨπώ ΗGŽfΩ}§―dΡ­sY½ήzΛι\€΄‘=‡aL—aΰŠΓά †Mν›0λs3`χ–Ε0vžΛ7-†Ν‡Ινω˜Τn†Ρ)@ €@S€€fg[³ϊ 8s6 θ«t€pχξ}؍ΎΗ k·NnfffAϋvΒ;οΎΕ"Hˆ_{ˆ˜fΜxΛ0ΒF4z°Ϋ£0vά%r’ΫlμΠlC,ͺ °͜Cό”y€l³ο`‚μk†-6r¦΅2V ’ΝyίμƒŒαK41b·L€ ͺ‘ΪΎΥ„ s ‘­x=’‡¦Dκˆσι:.ΦΖ¬DVέhŽaζ5qΝ1ΔΪX-QΧzχއGιαΦ £!w~ΰxαΕαΠ‘Γ]JΩ‘CG %εOhέΊ•a€eЌk :φ„#ŸNΪ»GyπzΜΛΚCΫ“&ΏhΨ―[ΑΝalfΫ=O.>9.§eΊŽ 1o=‘-κΫ<²΅κYΣΙ¬–]›υˆ2Ž|WUvpTώ}μϋεꁀfWΐ3―dΝX œVͺD>ίBΧq«.ϋy‰ζnξr΄#»i~αΘ­ndχ1Ν/άάεhGv;5 ˆeh?π%Υ¦@-]Eυφ­Γ"»pW#eέ’³hΏƒX΄_<ž5 9ƒoz/Κ‹‡eτS _[φ0 Y‹ͺΜΰe F.Zέv/c13Χ?–%― ƒ»"α)uΓXΫΔ€}+ χ¨χΤζ‚ΟΊ0mΩΈd{6ΛΨ·„υ»R)π'―Γlsω£μ•Π:eτŸκ‚Žέ|ΑΓίjΤh=Ι›T>[…Κ=νC˜}φΪWΑ8nΆQ}Κ#HR€]šyhωςUp.ε y†Ν ŠΆoΎΩΓ†Ύ―Ύ:Ϊ³›Š%ιτι30βωρJ$£%οΝ3h„ΰs·d―ηΌ ¦LW²ΠAAA|β$Œ=0rϊ/>eΡ™"ΤCΪώ$ ΩΆdJ`#šωNΤJζ²Mδ5q>ΑFbmΜJ62S‡Κμ*PΡ€ζΜIΛ!wέ.E¦°ΫAτ›OΪ•L©/ΓCd8^h©#Ξ§λΈX³Yu£9†™ΧΔe4Ηkc§δΫO>ρ LŒ°qhh(œ9}FŽ|IY+xwΙ<–ηŠšŒk ί^"Œ€,šΡž·Β˜'ΓΔI/ΐ½χή­D„Ύx1ή|s!¬[ϋ%¬]» ͺ׸Žιnu hv“ΓρŽ“σdα‘Έψƒš/f»Ž[) bζ'@θW;ΆCԐ€#‘2ΦσψΨzοΎΧ$ΰΘw eχ1GείΗΎPhξΰΥ!ό=…˜ ΄•;ε!ϋy‰ζ^]μ΅‚μ>¦ω…Wz­ »i~αΥ…^+Θξc―  %¦@šχΑ˜ψQJτέΎ³—ΑC xœ—Σ.·Έ^ότeΠ―‰{½³»WΓΤ‰‹αHQbWΛXθψτhHθt£IΩ•wζφιXαΊρΣ`AΏΉƒƒ»υτ;G~Ώž¦«‘žέjs;*[”eέ€³ϊΐΤ-ivλ(Hߖ딁˛§0χ4–EEvΣJ…άd˜;t0l`¬³²q0΄Ρ±c›u…Ύ-ΟΒμχX_lΣ΄ζb#]•ΚμΟΎ%CaΤJ¨‹uQΛ<>3’ OοI€Aš›υŸWΎχ²+²3ƒŽ§―|š„·Ψ½h(Œ]γ³γ§1Ώ6>CΰŽ9z{p\³^_ {Š’n«½Τ½5Fο’―ŽZ>IR€ Κ–4;σΧϊυ›ΰθΡγπτΣOΉu°ύλο`ψπ±ny]»v‚‘£žeošπ΅/-νLšψlίώ½GΟ=4T©γ–ow‡€f»ŠΉκΛρ‹ό+επ‡,ΑFφύ*σΩfߟΩΧ [lδL7je¬@EšSΫNΘΚUĈzι!οΦΚX/Ή2Μ1D&C€Œy>]ΗΝυ•ΚͺΝ1D3Ο§9†Ή>vJϊιgϊμ €o―¬S§œ:uF‰ΚΝΆδVvzžΔ¨Œι oΓεŒWߕÑʁr}]ᱜpδD5χ6N}μήKΰφ8ς][Ω}LΐQωχ±ο#”«šνΝό=Υ“²Ÿ—h~‘zΚω§μ>¦ω…sίͺ-eχ1Ν/TO9”έΗΞGF-ύ­@Ωšύ¬BFκYΘdχmΒΓ£ .Ξzφσ‘,uh{\ύ‡CT\Ds 0—‘šΚ΄Θ…π¨8ˆΣZ²^ΞJΉ™™ Ήαlάllεhhr NV‘€)PJ ΠμαρFajjδηη³kh”%YoEVV6ΰkdqΓ>""t}‹ϋ4[JWM؈€fS|ά•y€l³ο\‚μk†-6r¦΅2V "Νyίξ‡ŒaοjBΔn™AU½?Έ¦5ΰ2Μ18sά’x=’‡¦ά$±΄CΧqK2yT’U7šcxΈΚRΝ1,ΙdΉ1ΰΓΟψΞΦκ£££,·΅[ρΒ…‹J$h\Ο¨Z΅Šέζ†υ h6”Εv¦/ηΙ‚ίOΒΕ„9HEAΡ• fƒšΦΆm‡¨G"e¬ηϋβcλGq^“€#ηΪ©-eχ1Gͺ§œΚξcη#“³%Νξ@σετl(8p²nΦV°”φP͚,~Kœ¦ωEωχ±ο#€ό₯ΝώR’ϊ!HR€ HRW€€ζRwA‰@@³3Ήe€hvζ;Q+™yΘ6‘ΧΔω‰΅1+!ΨΘL*³«@Eš3' Ήk“‰B[7„˜·άίΨaG;ζ"{ρzD@³Hq>]ΗΕژ•ΘͺΝ1ΜΌ&.£9†X›ŠXB@³Όξλy2ΧHζ?ΉωŠAAU*C•%C ψκκ~1€fίeτΥΗΎ[`ήGζϊX)•έΗYρ’yΩ}ln}Ω+­Θ@sxη–Py@{(<ZμΈΛιƒολRšU˜Z=dhΛj§Oš_ψ$ŸXφσΝ/ΚΏi~Qώ}μϋ©)@@³Ώ”€~HR€ HR Τ  ΉΤ]P’ΠμLn`#šωNΤJζ…<²Mδ5q>ΑFbmΜJ62S‡Κμ*P‘€ζΤΆ²ΨkΛΨ9ΎDBΉz¨Θ@3zεœE[4§θχ΅‚’D ζό‡έ`긝―ιοhŸζŽdsk$ϋ΅‡ζnξr΄#»i~αΘ­ndχ±›±΄Sͺ Π\ͺςΣΑIR€ HRΐŸ ΠμO5εο‹€fg>’6" Ω™οD­d^ ΫD^ηl$ΦΖ¬„`#3u¨ΜhΞϋn?d }W“'vΛͺ©νΫMΘ0ΗٌΧ#šEκˆσι:.ΦΖ¬DVέhŽaζ5qΝ1ΔΪTΔšύγu'σΎΩΓ—hF_Ybj«ε9IpδD5χ6ώς±{―ώΫ#ΰΘw-eχ1GείΗΎP*:ΠήΉδΫ₯9…€fMŠKœΑFbmΜJ62S‡Κμ*PQ€ζΜ—W@Š<‘·^1sϋΫ•Κ­Ύ s 7ƒΈΌΠΜ b1IΧq‹BιͺΙͺΝ1t޲ΈKs ‹BUj4ϋΗΡώBΉz¨θ@sh‹ϊΏλˆζ”°;o€Ό―~Σφυ‰ŒΠœ>p‘fNδσ!€qmί,Aσ 3u¬•Ι~ν‘ω…5?šΥ’έΗ4Ώ0σž΅2Ω}lmT«$  Ή$T¦c€)@ €@‰(@@s‰Θ,ΝAhvζ `#šωNΤJζ²Mδ5q>ΑFbmΜJ62S‡Κμ*PQ€ζΤΆ²ry"Ηυ€ˆξ·Ψ•Κ­Ύ s 7ƒΈΌΠΜ b1IΧq‹BιͺΙͺΝ1t޲ΈKs ‹BUj4ϋΗΡώ>Oζ~Ύ 2'.׌ Ύκ Τ₯εΩIpdG-γΊώφ±ρQœηpδ\;΅₯μ>&ΰHυ”σOΩ}μ|drΆ,@sΑώSυΖZΐ‡‹ O₯ΊΚήTΧΝAΡ•ΰrFްYiΝ©­^ΤμŠY0B[5ΠφΝ4Ώ0SΗZ™μη%š_Xσ£Y-Ω}Lσ 3οY+“έΗΦFA΅JBšKBe:)@ €)@ ”ˆ4—ˆΜ„€fg6" Ω™οD­d^ ΫD^ηl$ΦΖ¬„`#3u¨ΜhΞίρ€?σMšΨ- ¨j€Άο$!ΓCd7^h©#Ξ§λΈX³Yu£9†™ΧΔe4ΗkSKhφΧqžΌτُ55Q30ψšPε?ƒΝo8dtœ„cА€#QlfΙξcŽl:Τ Ίμ>60ΉLg• ™w@φΫ› gΡ>Λ4\+ Ο€™Φα KhŽy{׎S@m΄€fή%›–ύΌDσ ίΏ²ϋ˜ζείΗΎzπ—4ϋKIκ‡ HR€ J]šKέ%jΝΞδ–6" Ω™οD­d^δ!ΫD^ηl$ΦΖ¬„`#3u¨ΜhΚ².­ϊI‘&τ–λ f^»2yΤ—aŽαaTQ^h©#Ξ§λΈX³Yu£9†™ΧΔe4ΗkSKhφΧužΌτΙw5}fdΘu΅ fρ ΐ(v6šν¨e\7P>6>šύ\Žμk¦o!» 8{ΜώΎμ>Ά?"Ή[Tt ΩwŒ€ζ½« W―?ωI‡!€Qm¨²t˜έn•ϊω;Cϊ …nmωγΠμ&M‰ξΘ~^’ω…ο_Ω}Lσ‹ςοcίGH=ψKšύ₯$υC €)@ ₯Ν₯ξ‚5€€fgrΛΠμΜw’V2/ςm"―‰σ 6kcVB°‘™:TfWŠ4§έ3._ΜV€‰Ϋ"zάjW&ϊ2Μ1<Œ*ΚΐλΝ"uΔωtkcV"«n4Η0󚸌ζbm*b Νώρz Ο“9οl…μy_j††4© Uˆ ΧςΌ%hφ¦χς@ϊΨϋΡ½Χ ΰΘ»FήjΘξcŽΌyΠ{Ήμ>φ>‚²Uƒ€f{ώβc΅εΎ7Β•3ώ«ξBάΞΧ΄΄ΝΝνΘU’ue?/ΡόΒχ―ƒμ>¦ωEωχ±ο#€ό₯ΝώR’ϊ!HR€ HRW€€ζRwA‰@@³3Ήe€hvζ;Q+™yΘ6‘ΧΔω‰΅1+!ΨΘL*³«@yšσwόιΟόG“%vΛG―cΧ:(JΘ0ΗΠΫ€ξγυˆ€fU λŸt·_SVέhŽΑ{ΙzšζΦ΅ͺ5 hφ—}žΜž΅r>όZ36€ΩUPeΑ€JaZžY‚€f3u¬•ΪΗΦ¬Χ"ΰH¬ΥΩ}Lΐ‘UOŠλΙξc±εe³„€f{~3šOβ>ωYλȟ@sΔ#w@δΘ.Jίv#4žJ…ΒΣ©pμΨ1© Χ΄χύrm‚„zL,Ζ7U„4#¨Yœ}ςδIHIIζΝ h.VΕ^Šζφτ2ͺ-ϋ΅‡ζF^³—'»ν†jRš©.υM €)@ %ͺΝ%*w©Œ€fg.6" Ω™οD­d^ ΫD^ηl$ΦΖ¬„`#3u¨ΜεhΚ’—Vύ¨ΘϊΧBΜό»Φ—aŽahΛΔλΝ"uΔωtkcV"«n4Η0󚸌ζbm*b ΝώρzIœ'³^_ —–―ΪΌ>Δ,b‘š-l4[ΙK•’π±L‹ 82•ΗR‘μ>&ΰΘ’M+ΙξcSγΛ`ayšͺ½œ‘γ7ΟΝ“ή‡ΈuΏiΗ¨Ίζ§ν[MEhmΑζψΖΆΩš³ίή9‹Ά(mσ―5?€ω‡?&o»Ω1 h6SΗZΝ/¬ιdVKφkΝ/ΜΌg­Lv[Υ* h. •ι€)@ €)P" Π\"2KsšΉB؈€fgΎ΅’y€lyMœO°‘X³‚ΜΤ‘2» ”w 9νžΙpωbΆ"Kδ˜ξοŸθ@2Μ1DΎΖλΝ"uΔωtkcV"«n4Η0󚸌ζbm*b ΝώρzI'ω‡ΈΠς°;Cτμ'Ό‚€f―y­PR>φjˆ GaldΛξcŽl8SPUv Μ.³ΩεhF¨6ΧΏωΗ ΠΓήΞΪͺrΜό€ΓΪ±CΥ† ˜ΚΪΎ>a4׎ƒˆ.-!΄EH΄PkΒCΛΤ%xΈ˜€f86we?/ΡόΒ¦C ͺΛξcš_8Νf–μ>Ά9ͺ@h ΈΤ5)@ €)@ ”¬4—¬ή₯}4šy@Ψ(kΖZΈτρ·ΚψΕGό!K°‘}ΏΚΌ@ΆΩχ'ΑFφ5Γ9ӍZ+PžζόBϊΕΪΐc·L€ ͺ‘ΪΎ/ ζ"ϋiŽ!RΖ<ŸγζϊˆJeՍζ"™ηΣΓ\ŸŠVJ@³<^’ηΙΜ1K!wΣ―šαawέΡ3Χφ4©b/―$}lΟ2WmŽœ¨ζήFvpδξ/'{²ϋΨɘdnC@³=οπχΤ–‡ušyΨΨNTe# Y=WΆŒyFv¨uΥOšU%|”ύΌDσ‹ςοcš_”ϋ>BκΑ_ Πμ/%©R€ HR€(uh.u”¨4;“[؈_ΔγύpAŠ€fϋ~•y!l³οO‚μk†-6r¦΅2V <ΝYΣ>ƒK‰?(mu-Δ,H0ΑA s ‘Ω4Η)cžOΧqs}D₯²κFs ‘ΗΜσiŽaOE+% Ω?/ισdΖΘχ!o[ρ+θΓ;ό’^ύ§p04 ₯±\P>ΆlXQEŽμ*ζY_vpδι3»9²ϋΨξxd―_žζ θJ€Q‘K3B³Ώ€ζˆGξΠ΅ΰwŠΏ·!ϊŽρχBΜ"4_NΟ†‚§•nΝΧqλ[9_™?&FǎY8/6LŸφ}„ΤƒΏ  Ω_JR?€)@ €)Pκ Π\κ.(Qhv&· °Ώ Ζ/ϊαYšνϋUζ²ΝΎ? 6²―Ά ΨΘ™nV[₯§gΐ_l†οΏ.^†[nm χίίbc«Zκ"-νlάΈ~ό! ._Ύ ­ώ―9tθp7T―^Ν΄}VV6$%ύmΪ΄†   ­n~~lΪ΄ςσσ΅΅Ά+°Ύ s ‘q4Η)cžOΧqs}D₯²κFs ‘ΗΜσiŽaOE+% Ω?/σdΖ°w!οΫύΪΒοoQ/?¬νσ šy5œ₯KΓΗv,%ΰȎZΖueχ1GΖ~³“+»νŒ…―›œ| Φ­έΏόoDGEA»φwΒ½χή !!!|5Γτ‘CGΰ·ίŠ―%j%\‹Έϋξ6«fΩώ,Ο@3΅ΈΙ4σχ#Œe‘ǏΓ[_Ψ?/Δ hζλAΘΌ]ˆWY:ΜΘ|%Ο[_F Λ"Ќ0sϊΐ…Ρϋ¨<°ƒΡ°J4ζΎΛmχΪ“““§NR\©R%¨SΗύAί-rοζξz8Ω³λc'Η 6εCšΛ‡i€)@ €)ΐ  Ήό} π‰p=¬€ŽrΧ]Μ€ͺϋΥ,)>“““aύϊυŠ-=φDFϊη5ξώœ °Ώ Ζ/ϊαYšν{Zζ²ΝΎ? 6²―Ά ΨΘ™nVZ?ž έ| 6Ίž}vΒ{K–Β―ΏώΛ>^ Χ^λΊ1%κλΐƒΠϋ‘ώJϋώύϋ@Dx8Όχή2ψωηέ°ψ?o²Θ/76Eπyδˆ—`ϋφοaγ¦D7xϊΟ?‚ϋξν ³yB[ϋ*Ubΰ±>½”9‚[ς 4ηt/”ˆέ2‚ͺϊož"ΓCœ.As  wι:nQ(]5Yu£9†ΞQwiŽaQ¨rT oŠυΧ_†#ΚΛΛ\‹8wξΔΗΗΓW\aX―΄3e=©Ί”–}ιO/†όͺf@Δƒ·@δψΪΎš  YUΒωgiωΨͺΕYUJ\Ovp$φΥΩ}lu|½­έ#GΎ;ߝ»tTχΣ¦ΞT`ζ΅λ>†¨(σίΗ³g-\γΈιζ!χRΦυ₯K— {ΞΠ Α5ZžέΝφγο)¨-OzβΦΏ‘!fΑmΥ@)ζ#4΅UϋΐOζσ1- ЌΆΔν| ? 7ώώ‹mΤ¨¬Ν*Μ|9#ΗR€l£1ϋ;ζΎ+jχΪsόψqv^> 866Z΅j₯€SSSYŒ$|«b{u‹‰‰ΠΠPewηΝΚ5£jΥͺP΅jƒΥΟ£GΒ… ছn²Ϊ€ΔλΩυq‰H”Fš₯qB €)@ Ύ*@@³― ΚΧ~Ϟ=€ ‚FώP=sζ ΄nνΏΘ‚FΗ±›‡?ΥΠψ£1œ[2mόŽΰpimUWοΦS;ίΊΉ`Ά?ώψƒE²ˆc;«—–iΒγ’m 6–—fΩζL}Yu;ώΌrCEΖο^g/^Ό(ε„΄²³³ΩΝ#׍ gߊΐ΄:qβ4jΤš4i˜°W|¨(>Ύ/΄kΧV™ω(ΙοόηCLώrc"[ΐ0΄ Ξ<?fζΫ'&ƒ™oΜ… _€θθ(φ[·² hΖλθ>ušύu/̜9ή}w[Ÿ8Μ(―@sΦ«ŸΑ₯•?(ͺΰM=ΌΉηύ€fgjΚΌOΆ•/ŸΠμ̟4;Σ­,·JKKƒC‡ ‡€k47mΪTΊ˜U£eύ­SΪφηBΝι[ ‘b`ύβέΧΑ_tE9‚aaaP·n]Υd©>όσO@ΘBΖߌͺP²>,%„’κ‡π\„Ώ#eέdχ1žΗ£££KuύΣΜwΈ¦™™ΙΎΦ¬Z©—5oήΌΤmπ—gΞ€ΐχχ‚Y³¦Α?Ϊήu‹λO=ω,\sΝΥ0iς‹Β5|θΊWΟ'`Ϊ«ΨωΧkO4k.±•mΩ":·„π.-A4c㠘ΚJωI‡΅~}šƒ’+΄κζ­/¬ΗΓΕω«5VŽV›»}ςυŒ"0λAλŠ4§έ5Iσ…?Έ‰ @Ν—Σ³!νξɚεfώΧ*ιΈFΏcZ΄h‘+‘gΧξ:Ξιπn" Αγ6mΪΨδζΝ›΅ϊ-[ΆTξ[bΖ7ί|Έή<%C‚?4Kΰ2Αo Πμ7)©#R€ HR€(mh.mψψΈ°‹‘ ΆνΫ·+Ω‘ΩHqž °Ώ8Η/6αbEhϋNTbw‘GΤO ςΙ6ϋͺld_3lA°‘3έΌ΅JJϊžnlή²J:ψϊx}ξω;nάqΗ­|‘–ή±c'Œσ2‹°ό‹dαώϊVΌΨ»wxζ™Ά¨μώp’z£#8χ |ψΡB·W·.]Ί²2³ ?‹Πˆ­ΌΝiχL†Λ³Ι"_|"rΧέW-e˜cˆΖ@s ‘2ζωt7ΧGT*«n4ΗyΜ<Ÿζζϊ”ΗR›πA9£ o^γMlŠΠl€ŽυΌR=OfεΒΕoCΑΎ“šΑ•k •‡Ώύ‹"4k8N”ͺ-XHΰΘΒα½V)ΐ‘ΧAϋΉEhφ]PΩΫα‚ωοΐ±c' ™ΨϋΑ5ˆ]zÚ΅Λ V­š†]g²5ˆϋ;υ„uŸΒ‚…DΦρ%³ΌΝ1 ™ϋOCϊ …ΎHεΡ6Όs ˆšΤΛhφ¨X”υCκTӊ+ h―₯1‘‡έ u;ό½ ]‘ΆΛί ΑLˆͺ―‡°vHΓΪ9²‹—ή.Q?X™ο«¬FhΖΜY3ΧApν8ζ―8@?ρη%;Q·KΰO ηvό/ͺ:Ώΐ‡βΤ LX]Y6ήΗVl²4c?νΫ»?χΦ·hήΆm›φVaš½©h\nΧΗΖ½PnEP€€ζŠΰe#)@ €)PA  Ή‚8Ίh˜!LE@³=ΏΛρ jό’ώ% Ωž?±ΆΜ d›}ld_3lA°‘3έΌ΅Β~ΑΑΑ0``?Γͺ§ώ• C”l΄ayFz†°ύͺUŸ³ˆGaĈ!ZsΌΆ?άλIθίzυz:΄ο+ΩkCγb•:B?7|¬g£FΧ)@Λb―|―ώy+Byšσwb7 i:Ηn™AUΝ_§«UΆ˜aŽ!2•ζ"eΜσι:n¨TVέhŽ!ς˜y>Ν1Μυ©h₯YYYπε—_Πμ£γKϋ<‰‘Σϋ/€‚ƒg΄‘Tt/TꏲO@³&‹γDiϋΨ›αŽΌΫJΉ •§ŠVΖνΟ:4ϋ¦μνŒΧz>ΤΖΏ4 š7w½)o―>p=zτPΉτ&ΎHK>|FœŸX.\d?ε(o«ͺV-N«γK’ΌΝyΫφBΖΘIτ@-’ϊ’™ΪΧ‘9eχσύ15[ψ‰φδο:’•λΑ`=8ͺU4Hπχ6 Š•,ώ^f菧ΆΣΧΓ|^»KKΏQ_΅Ύ¨,ηϋΒ¨±Ϋ&©Ν„Ÿ'Ož|C€,‘ΩsΧ&AζδO5{qΌόy‰…έyDΏ˜ šœ_θΏ—fώ™ͺΞ/κΧ―IIIZ5»°―Φ0 ήΗVΊηf¬―ŽίfβΛy ΉvνΪPΉ²+Ϊ;Ύ­€Ε€fEΫμϊΨφ¨AΉQ€€ζrγJ)@ €)@ Π\±Ύ4;σ· °Ώ Ζ/ϊαYšνϋUζ²ΝΎ? 6²―Ά ΨΘ™nf­π†^ŸΗΒσ 6έΠΫΏ yω§οBHˆ{fμΫπΌbΕj8Λ"!ρ@τG~ ˜Ώbε{——Η" υrš1―σCC3ݏnC2€?τνΧΫΠ·Š^vΚ#МυΪ*Έ΄b‡2rŒςσφ/*Ψ/–aŽ!²šζ"eΜσι:n¨TVέhŽ!ς˜y>Ν1Μυ©h₯4ϋΗγ2œ'/_Θ‚‹OΝ‡Β£η΄AUv?TκΣhΦ$qœΑΗfΖ82;Υ28" ΩͺbžυhφΤΔnŽμνŒ£+ίwo<¬]·L{XZίΧ/°^‚ΰMP›6mƒ /Mƒ:ujΑΡ£Η΅ζΡω­ΉΣ‘~ύΏiyNε h.<• —ΦξT€ΐhΘα 8V7DUσπ£‡4 ΉλvρΩ–Σ9j@₯ΕΧu« y0£#μœυΖZKΝΓ;·„φ/—άœVΪΰ>BΦ‘­(ϋό½Μΰ§T(ϊ£―‡Ω<Π¬/žΡΒξjΚw‘₯υuΥcβψςΎϊM©‡6ς~ $ΠΜΫÏI3Ψ Α·Αb^βΏGVϋ48ŒG~w O§*ωƒ‡4γQG”Θω…/@3ΎeζΤ©SpρβEvžΛ„nΈΑ'ΨW4~δσ>ΆŸhΖ7κΰ\@έTΠYέχφΙΝ|]\.((P²|šyΫ4hψΟΧνθΡ£μ‘› pΣMΖηψΪΏ?ΪΫυ±?ŽI}”Mh.›~#«IR€ HRΐ@š D)ΗY4;s °ΏE@³3?ς­d^ ΫxOYKldM'}-‚τŠψΎ@σ€„α0ψι'…@σ‘CGΰιΑ#`ύŸBΔΏώΊ—•„M›΅Hͺe!©{χ>P³FuXπφL₯=φΧ«ηπ9{…k­ΪW.Έλf|μχχ‚ͺU«0`z‘Rϋά³ηwHθ? ΊtνcΖ<ϊWΘͺΗ΅ςYζ΄{&Γε‹ΩΚπ#_θ=o³"…­:2Μ1Dγυˆš©#Ξ§λΈX³Yu£9†™ΧΔe4ΗkSKhφΧe9O^NΝ„‹}ίWΤ-r\8Τ8ΒΓΓαΊλS³₯ϊ $p䯁ΚβcΡx ‰Ži'Ÿ€f;jΧ% ΩX;Ή²?Ά3£΅}{£ω:ž9>όp9Lšό"tκΤBCC!++-zπΑμΔΟ>€zυ¬ƒ|ߘ.o@³~|ό>’ςωα[( pΞ’-|Άε΄?€ζ‹œ \`²Υγύό€ΓZΤgάΗ>’&υ„ ˜Κ1β} "Ζ>UΈXίΏΎ–σ .OΛΜ"/λλͺΗδσωΎ±?_ζ8~u iT[·ΊŸfΗελρi½ή€ζΚ:0Έμ(dλ_—>ώVιΑνͺk_ΰ»V#ί‡ΠF³¦ΧqE[wb«Ϊy ηz 9vλDU;τŸϊhΕ-[ΆtšΫ΄iΓ"ΞW7σϋ>F6NOOWϊΕshLLŒΗ1μ^{x(;SΑeQΎΗ" ™―ξ+ΠΌ~ΐ9n4σΚRšp)@@3}HR€ HR ά(@@sΉq₯₯ΠlI&J2ΐFό’Ν.²aw‘Ηφ|h@ΆΩ`#ϋša ‚œιfΦJš‡7ώύΓͺή€f\¨Žο Χόν*x}ϊΛτƒ}Οd7—~τ)<ωδ£J„ζœœKΠ­ko2$Ίvλ€Τ3Ίι˜žžσηΏhW₯Jnv]ΗΕژ•ΘͺΝ1ΜΌ&.£9†X›ŠXB@³Ό.Σy²πL€c€ζ³΄Α]ΨςοnB@³¦ˆύ„L>6²>ΐ‘ΡρμζΠlW1Οϊ4{jb7GφΗvΖƒk x>[υ!θ’ ›._ΎcΆρ @IDAT Ξ₯œs{ƒ_qύη•Άh{;Ÿ ΈΎρϊΏfΓ™³)πΖS 88Ψ­œίΑ5’μlΧƒΖ|>¦χμΩǵΆmΫJ·φ-[ΆL„ΔΎlfͺ[ϊ β΅ŠΘη;Caz6”&Π,‚­U{>€f\‡Α·cUΨΌ­ΑΞΨ^…‹υ}ιλ©εj}ώžŠΎ χEν±Μ¨}#XδμJΪcŸ€f^·˜΄θΤJΗμo»€Vλθ?υγρ4£ή’οŽ:~ώ"›ΨͺφΘωΕ₯₯ί@ΦΜuκ‘!μ"›²΅ \ΒЌ§γβ\@7ΧΜοIή lχΪ#—EωVU@σΝ;!--M1ιͺ«‚ƍX"4 ₯‘‚2¨@™š·lΩψ\4ι+ƒΎ(Σ&GFFΒύίΑέwί]¦ΗAΖ“€)@ ”mh.Ϋώ³k=ΝvsΥ—6β…hvζGΎ•έEΎm Σd›}… 6²―Ά ΨΘ™nf­T Ω,BσαΓG•(Ξ_n\i‘ϋLjʏ=:RSΣΰρΎ(‘šί}η#hΪ΄1ά~ϋ­sι ό$Μϊχ|8ΛnΎϊ‹0€˜–——:φ„5k—Adde3s•2΄yμΨWΰξ…6mZ›ΦΗ›…—Ψ±ΆγǏΎš°iΣ¦μΈ‘FUJ-¦1b`:(2V ©φQTΩvP©Š‹ΞŒΊΗJ3Ϋu<¨DWApXΆν?ώPnΞT―^]6ΣmkΨ°‘tv‘Ad›3·ΘͺΫωσηα―Ώώ’ςϋ†Ώερυ·2ώ_ΐΉήƒπΗλ_}£Δ­xkΤ¨4iD\‰JόͺΝώ‘SΆί‰‘ωβ“σΰςŸˆq8ʌgξ‚«ϊuτΟ€ύά‹/ύlа;Ω|¬74ΐ‘ώXNφ hv’š{šέυp²'ϋc;c2zXZί#4;– #F ΡyέΗ‡«ϋ<66nϊŒEnΦGpνΠ‘C†εΈχoΊι&¨R₯ŠaΜόυΧ_•5”ΊuλΪZπfsΥΥ»!τ|&„Ο‚?ŸΈ’Ύ= qλ~σΦΜ°<υͺhˆ;‘aXf–ytΡΓZρ5 Ÿhi«‰¬›λBpV.T:pNi’Ϊω¨Ίε%}|N¨5ύΏZfžgγLΏύ₯œ£―Η—‰ΌνfνΥz¨·^ί ]›)έ§†Β‘:‘ΠΈj-Θ½ΪάΚλvvδ=έΈ†›Ιόq­KιΗƒcΰkσΗΔ>³Ω?ύΨT#Τρ«ϋαΗS‘Ξ+Υ]87€ d2?βζΔV΅#„h1±5;΅­·Oή.}]#Νω:ψ0Ε… ΕοU­ZΥcλγΊ*ώΓ30‚2Ώαz‚ΊU«VM[»Uσ¬|ςv`!!!Z°‰ˆˆ#ΒΝΗVϊΔίg<3¨¦ε‹ϊΔλDnnRŒvddx?—ΰPK§ϊ5ΑΝΧΎTπΑ βa'†ΪΆ$?›7o^’‡£c•QΚ$̘˜8i’M>p’έ½{wω #‹HR€ *„4W7kƒ$ Y“ΒV‚€f[ri•e^Δ'Ϋ47ΩJΘͺΝΆά¨U& Y“Βo \ΐ9β%Έ―c;Έχ^γ‡—·ώw;lΫφ L~yŒιqσσ `χ―{aχΧM©λ―o ­Zέ oΎΉjΤ¨·ήΪz>Τ‡¦Ν‡Όά<₯Ώ\4c€ς³Ο€Ώ±(Ο·ίq+1€‹)8jbOΈ΄v§V†DŠυ‰•ΞΌόαm7k―Φ3Σ· iH»ε*Έβέ”£Šμ42‰ΧΝ(Bsƈχ!ο+ך Υ~υγΑ1πη%ώ˜Ψ§Ν%œΞέα5²j«ͺI ηΌ]κρΤO#ΝΥ2όδ##γ>FdNJJΒ€²α>>l‘F Ζ‡yυτς‹FtΦہQšυΗδ}¬ΪgφΉ~εa΅NϋφˆγϊΝϊρθχωhΙX†ν½m’(ΣήΪ©εό1Υ<όΔγλνγΛΝGY ₯‘Ϋ“u³λcYΗAv^24τΣOπωηŸ^:‚cxΰ%Z³γ¨!)@ €)ΰPš WF›ΠμΜq2ΐFόβKxη5©—2ό!K°‘}ΏΚΌ@ΆΩχ'ΑFφ5Γ9ΣΝ[+|₯κ¦ΝΫ`ζΜ©7νΤhΘ{Sθέ;ή°+ŒRτρΗ‰πάsƒ=^»ͺF_žΏ`&‹œ ‹½§Dζΐ…Έ…G„ΓY݁ι];AAaŒ= fϚ͚έέΌίγ˜*„ίEŸ=*XΜΐ9FGŠ—ξU―{χξU’½X΄7Τπ&ΊΕnAΥcΤ]Ώ~Κ0Η ˆζ"eΜσι:n¨TVέhŽ!ς˜y>Ν1Μυ©h₯4ϋΗ㲞' ž‹OΝΘ4x‹GD(„έήΒq=„έΣ ‚’+ωG ½Πμ@4]“@GΊC9Ϊ₯͎dskD@³›Žvd=W;ŒΊVpϋν·@όC]=Ίΐυ žgΝ~ ΏΎ‘G9Ύyκα^Oΐζ-« ,,Μ£όΨ±πΤ“Ο‚ΩΫ«<ι2πχ4Ξ;ΫΆm+έ:šΊlΩ2HOOW@H„΅]Zϊ dΝ\¨ξ ϋUaί‚ύ§ΰβ£s λ˜eΧvAμ…§S•j<ЌeΑ΅cέ€f¬„χDrΧνκWΨAY»Q‘h₯ΐΒΥv¬ͺ€ωζϋΖΌ=ψϋ2|9¦ λW‡ MkjQŽq»m’R ίf‘»Ξΐζ%†|φ7ψεαb#Έ–·Mm£t`ς‡oƒΥ°ίέ!@μΚϋ Š©¬AΣϊny°Μ hΜ΄\󍑭|[}9?ΏP5*8pZρ7ΪηΛfζ;#ΝωcιAb»@3>Œ±mΫ6­K§@³2φΠ¬‡‚E@³f|QB­§ζσύψhΖσ%F}ΖOŒΨ‘»υLΎŒšQ{μ7ŒβcΎ¦K@3―$₯ΛΊeh^°`{]ι™²{ΉΆ_5’PΗHƒ#HR€SšετK ¬" Ω™²2ΐFόβ .κEtq-‚βΩΖ{ΚzZVέ6²ξCΎ&ΑFΌώKγM»ξο~΄Πγ¦ή‘CG WΟ'`υꏴG;wώ ΡΡΡΠ€ICΕΌ©Χ£{ψ|ύr¨U«¦›aλΧo‚Σίd―dMτx‘Z±  :΄οkΧ}Μ‘J6BΦ3fΌ₯ά(ΤίH‡μ; ©Γί…?Ν_3ϊΧBxΫXτζ¨$ŽΖιΕά{! Ω]'{ !λhYϊο™κ¬ΐΧΘVΎmH£ΪPeι0­_~~ΑΫg€‰ΦˆK\NΟ •ν2X[5ΠJΝ|η­o@σUW]ηΝS\< >ς°QϋΈ8ϋσ_Ν|ti„}ϊU7TΦK-W?Υzκ>Χ¨QCΡC-}κuβλ!Ϊ…ϊ6nܘ/Vό1ωBhζ΅7;ΆG-’““ίJxσΝ7kλνόq¬Ζώ².­­ΌΝ/JKNJpά24Β”)S?i“Wxι₯—δ5,#HR€(· Π\n]k80š eρš)ldΆψβu`΄H…‡”ωG6ΩζμK!«n9σ'ΑFΞt³κΓ—Γά·Γ‚·gFcΖΧ«ξΩσ;$τO<ω( ΠWιoβυyl 4oqŒ1DΛ{nψXvύή{o>\SjΆ˜[›6m…ργ¦ΐ[o±WΊ²I’-33 Ίt~D”1Š3nΑΉGχΗ”¨Ξ―Ύ6κΥs-ΐώςΛθΤ³πT>πτΣO‰Ί΄”_ž€ζ΄ϋ¦ΐεσ. 'rTWˆxψvK8©$ΓCd7žσ h©#Ξ—υZ‰“mbΏ‰JhŽ!RΖ<ŸζζϊT΄Ršύγq™Οα8Βί~ϋ "Οd@­ΓϋΥ^(ψύ€ιΐf »σΏ«©,cΪΘ‡Bš}―¨)ωή›{  ΩwM hφ]CΩΟΥvGˆk†³ΐygaΡ’ΩP«φ•nλ ήώ7{us₯[\‹hίξA˜=ηUΈεW Ž·2 z2Lœτά{οέJ΄Ν‹ΣαΝ7ΒΊ΅_ΒΪ΅Λ z+μš₯Υ' Ω%‹bΥ‹ UMΌ2˜ΰΗ₯Β΄Š8•σσ ή>ΎΥ&£ΟΌm{!cδJ!3Μξ©EΟθΓ²kjΤ₯’ΗC±˜‘Π¬o¨gυν1˜EΣ¦Mm&CΖxœ΄4ΧχM…x­\{6oή¬7YΫWAeύ±΄ E ΅žšΟCΏjž·O½N|}ήFQ=Ρ1kΧ­θ‹ύρΪc„ζ»ξΊ‹?Œ[zǎ‘αZΖ>ZFπ\Uk΅ρ]»ΰΒ… €EΤ }ŒoDΈΫί›ϋϋ˜Τ_ΩT LΝ(ρ€I“Κ¦ΜjςSs8 — HI  YG”4;ZΨΘlρΕΩ¨όΧJ΄ &σl²Ν™eՍ`#gώ$ΨΘ™nVZαMΏO>ω ¦Ώ>πfό—›› ß >Ϊ‚ƒƒ•nΤ¨D·έv tνΦIλδΩ³ΐ''jyΨΗoΌhkΧb€»=ͺDˆVfμ$++›Ei~V―Z―Ψ£.ΈΎπβpxˆ½>V΅I; ΝDyšσ9 ιύh£έ0‚ͺ›ΏšP«μ !ΓCd6žσ h©#Ξ—υZ‰“mbΏ‰JhŽ!RΖ<ŸζζϊT΄Ršύγq™Οα8Bš1ζuΧ]§ ΛέΊςΎώςΎΫo*Bp­X%jsψM£8b# ΩwUyΰΘχήόίΝΎkJ@³οΚ~v2B\ŸψΧΏf)k Υ«Wƒ?όKYS˜ωο©Π¦Mk­ΛœœKΠω‡aώ‚™Π°aq„ΤοΏϋ^dPsFF&Τ¬YRRΞ±¨›ΧΑ3§@νΪ΅΄φN4»TΣƒ¦<λDWYΫπ‘§ΰθάr–}SΧ’α΅#LΕT6q±;o3FΌy_ύf±wg@9ΒΓΈ‰€fώ•G<·β{#kVƒΘη;ΓΕGηhγ° 4λοOρΐ±7 Yίύ‡ώŒΩΤωΕΥΉ_'k†λϊΎc·NT|‹Υτe|Sή~>_MσP,ζyš1Š/F>~όΈΟͺ ¬Ϊ'φa7J³2Ќ°.n8fό'ΪΪ΄i£<˜’–λ‘_5ίμS*cΠ|κΤ)-6ŸζΓχ‹‘³qN£nz[ΝΗOώ˜Έ―BΝϋχοwσί?ŽuΒ&FW•;Ι+σ ':Pο Πμ]#ͺα@šˆFMHR€ |V€€fŸ%,SΠμΜ]2ΐFΉk“ΰڝΐE‘°°0ˆˆˆπ( dΖετνΥu4ϋWi™'d΅`#gίA‚œιf§BΜxΣ·¨¨(v·Σ\Υσ|llUαB©Nρf$.ͺγ›Ό"#+k―³Σ‡Qές4gΝX—>ώNbθΝΧ@ΜβAFΓυ[ž s Ρ`πœO@³HqΎ¬ΧJ΄˜lϋMTBs ‘2ζω4Η0Χ§’•ΠμΛ|Ηκf·Qg³ωη·ϋ!χλί ο›}pωbΆ[1ΏƒpQX›&Ξ’7‡έΑ^3]Ωήό™ο‹OΠΜ«α,­G*τβ¬—ΐ΅" Ωwm hφ]CΩΟΥΎŒ’ΞΙΙQΦ%ͺV­bϋ‘θ .*λωωω€νύ±ΠμRΡ Τκ½eλΓp[>lββxhφVG―‹»ΠžΌ€C³h‹Φ¨>Ί±>ς±¨ vŠΗΰi†q»œ‘£|ꨩωz8‘δ0φakΌo%ŠτŒφκΫbŸψΆŽ*K‡ f¬σΆ τF[C»ή6‡ωψΟίu“L7–fԍ·ΫΜw—»‚ϊώC‰˜ŒQ|qΓs\vΆkžšžžP»υ 4kM5‚«―ΎΪ€†g‘S YoΏ¨μyTγ=νhF­cbb΅ΐO΄― Έ%%%iF@jά¬‡ŽυšΩš5t ΅½{χaЌM―Ίκ*pΧuγx·<Ο/‹B   ΩPΚτUš}UΪ“€)@ 8Q€€f'ͺ•έ64;σΑFžΊρ ₯ΈPfτΚ3™d“mž>΅’#«nYρžg‚<5‘η ” 9νΎ)€q‹Ω"1ˆν\1WKšc8SPΦλކl+_>₯9†3Γ™nε΅Νώρ¬ΜΧ‘)Π¬“‘“\ι0Ξ…Ι,ŸΙ†Psƒ›ΓοnAqQ&5Ν‹h6ΧΗJ)ΝVT2―#ϋcšΝύg₯Tv[CYͺC@³Λ[ό:=ζ˜A­eΙΏήlυeœQ{Bx—–p‘ΛΏ π΄8"-FϋΕΝ"XΧΘF'v‘=Yo¬ΒΕόqͺy‚λΔ)YzPΨμΨ‘9kζ:Ύ+Σ4‚ΑΩ‹6ku.§gFΓΖcβ&H4c›* …s―|’< Q‰1­NcΆΗ†Ηΰο?eNZΉλvyΤΓ «@σ©vυαt‡k‘F P‹°„εΰ-B3_W”Ζ‡Βμ>¦· ΑΪ΄΄4εjxνΑΐκ†°0‚Β8?χηζ Y΅GνΛ VVAd³:j*pŒϋzΝΤ¨Ψ*D­Ά±―ZϋΏφΪkθΪΜ¬ΆΡG΄Vσ|όΒ‰j³ ΝΣο5Ν—˜@ €)` Ν’da‚UŸ­ƒ―·Q‘‘Π΄Ωυpo‡» ήUu jϋ–•–vΦΎ~Ϊω3DV¬«ν?nσΛ±hv悍g7ϊΆΑτι/Γ=νΪzοΔbύϋΒ?{χ‡ΫnΏzφμψZψεŸ$20b·rlΌqιΛF@³3υ6ςԍš±”Υ™Z[ζΩd›κ%{Ÿ²κF°‘=?ͺ΅ 6R• O(P€ζ¬k΅H‘7_1‹ωCΣ>hŽa*°PΦλLΆ έfZ «n4Η0u›°ζBilΰz@―^O(€ρψρ#‘V횰™­C,_Ύ ¦N{ :vlgΉΏ?N„™oΜ…/7„ΈΈX·vxγuΔΧ`έΊ/aĈ! fΎ~m?̝»Xy%όg«>τιΥπ4»ΙνxGΦσ€: §@³Ϊ?/§fBξΆ½‡Ρ›<ΛBυ Άΰ««+`3Fo½ιo‚ZΕΩ4kα4E@³SεŠΫΙώ˜€ζb_9MΙξc§γ’΅Νƞαaϐ†΅!rDω–AΟ6’σχ,W7ΦΜΪΠ–  rB{―0mH£ΪPx*ΥRδdυxNμrF=‰g.gδπYŽΣ}󰴨#ΤHYΫDΟθ#?0l ΏοhnΑZχ«šUΓΌΝέχΐjuGŸjDe+srrΰΤ©S ˜Œp²ΊρqνΪ΅‘iΣ¦Κ:”hNII'ΜTϋ΄ϊ‰‘Žy[*Uͺh§“M…‹Ν`e5B³YώΨjύ@Ν8V;γε£Fσv:IΣόΒ‰j³ ΝΣο5Ν—˜@ €)` Ν’pYxcoμ˜—#4ΟόχTjV‹1Šς+―Μ€M›δ­f;ώΔ›•=Ί??άοϋˆ[?ΫYdθΡ£&ΒΖM‰γόX4»Ιjy‡`#O©hφΤΔ_92/NΘjΑFΞΎ}9ӍZ+P€ζ΄ϋ¦ΐεσH‘#»FΘ τFs g Λz=ΒѐmεΛ§4ΗpζOšc8Ӎo…kΣ§Ώ ίχ#|Ίb „††jΕ?ύτ3 ψ¬L|ί4RsAA‹ u ζΎ΅pM!<<ΎΨπ)ΔΖVΥϊΒΔƍ[αεΙ―Γκ5ΑWTΣΚpΈΎοΎ{`ΐΐ~ZΎέΝv3/συ-φΠμ6ςœ<ΘΫq€Ξ nώf\NΛt+ζw‚ͺECxΫλαζ°\Οiiš5)'hv,ΦPφΗ4krœέǎ&iCšΓΝjd[ύZΎqΛ²•λ+lΨ΅«Š»œ΄±k—έϊώΗ¬3Ψ™·£KW]ϋ‚–ΕΗ΅L› =Πμ­y5ΰάΉsήͺ™–#ŒS§ŽV!α€€$eχa$`Ρ†χ’Υ(Α*0ϋΣO?±·ω\К`oΝϊΡ*—R⦛nΤΤ VnΣ¦’•Yήό@Ν™™™——ΗRKγοwŒΜoͺψ<§iš_8Uβ΅# ΉβωΌDFL@s‰ΘL!HR€Π)@@³Nέ.ώθ»οήxψδ“wX4€+έJ ‘ηCύΰ΅Χ&BΓFΧjeiiΰΠ‘#•™uκΦ†ϊυΑΑΑZΉ(qΰΐAHθ? 6oYaaanΥπΗPov#ρ…†Cσζ7Ί•ΩΩ! ΩŽZΕu 6*ΦBMιA)B³ͺŒοŸ2/NΘjΑFΞΎw9ӍZ+Pցζόƒτ§ζkƒ‹έ0‚ͺΗhϋJΠΓ™²²^p4d[ως)Ν1œω“ζΞtγ[αΊB»{Ί ‘ε½6 BΩΊFTmǎ`Mχέ:ΑΣO?₯Dh5z(T«§5Α΅† Γ‘{Ξpύ΄|5‘šΗŸ Λ?}Χνo΅άΚ'ΝVTς^Gζλ Zοw Y'Iώ/G•ΘΝΉ,zsαρ?u₯άn₯0»­„ίΩΒξΊ0R!n4s9LΠμP8™μ hζœε0)»KΪf4»†‡=&­<°ƒeψBΧ78·°rg„ΎšmΪϊ·“(ΙhΆγΌ”ŸtnΜ΄\yΩͺομΝ|dd«ΗΥΣƒ<Π,jc”`tγƍαθΡ£n@³Q]ΩςΤhΥf°²•(ΞόΈ¬Νxί£_γ?«—ΟΞΞ|hΨκ¦FΠΆZί¬Ν/ΜΤ‘2^šy5(ν7hφ›”Τ)@ €€ h6+9ω<ήg‹Βό™ΗΝ;2ž8ρΈώϊFJGŸ°ΧΈΎώϊ¨Y³4ΉΎ!|ύΥw,zs$~φ[€#££ξίώύοy0ώOr⏀ϋ;υ„ΌσΤ«WόδQ?fy4›©#.#ΨΘSš=5ρWŽΜ‹²ΪF°‘³oΑFΞt£VΖ ”u _½ziι7Κΰπ΅ε1l‚œιF­Œ(λ@sΪ}Sΰςω ep‘#Ί@Dο;Œκη\šc8TΦλކl+_>₯9†3Γ™n|«₯KW@κ_©0δ™>[Kg²7BαCΟ«Χ,…ΨΨͺZΎ(!š±~VV6DFVφhzπΰxΈΧ0ηΝΑwάκQn5ƒ€f«J™Χ“ωϊ‚–—$ΠΜ+uωB–+r󢽐χΓ—Δ―θΞfPT΅;ΑΧΤ€Π―V"όρ}•vZvΠμϋ7DvΠ\ώ}μϋεꁀfcˆ€ζμ·7) rΧ&Aα™4γΖ’εfthΡ›φIf™Sš 8‰€md―] Ω¨_ςζΕ¨ΏaΉ€[_μυw[ŒΠμo Ω›jTθγǏÁΌUχ©}ΫΊukŸϊΰΛ>‡δm₯tι*@@sικ_nN@sΉu- Œ H©  Ω™{πυ―xc―K—NπΜ³ PXXέΩ«\ŸώiΈσNw&'ηt~ΰa˜>ύehήβο–ˆ7ηΝ] ί~ϋ`δ₯ππp%:Qωk©A%šΒxΙ&ΨΘS š=5ρWŽΜ‹²ΪF°‘³oΑFΞt£VΖ ”e 9χqHbž6°Ψ γ ¨zŒΆΘΝ1œ©+λυGCΆ•/ŸΓ™?iŽαL7ΎΥςε«ΰ\Κ9!Ќ―Ζ½ΏS/X™ψ>»Λ75L›Ν|ƒγΗ“•HΞώy222aĈ!πΟG{ςUl§ hΆ-™a™―/hpiΝz±ςΆΉ7oϋ v6Ϋ‚b#Ψό7ύϋΥ ΰΪμj€JafMZ&» hφέύ²ϋ˜€ζςοcίG(W4ϋC4«΅lΞY΄Eέ’Z‡‰†΅‘ΰΣ%ζYιώ*±ΝaΏŸ1―H₯€€MJhFsccc‘U«Vpξά9ΐkpEΪpμωωωμ7§+Έ„ΡΨνFh6κƒΟSζΓ‡ώση†Ώ·Υ h΄ m‰ρίΪ²μsHjI}ω¦ΝΎιG­ Π,†²IR€ ͺΝφεEΐΈ_ί§‘Y³λaώ‚™JΔd5Zσ·†Κ•=#Ν™σ6„ oFY}g’’ώ|π <ΥΏ ό€φ£Θ¨ ζαd5//Ο°ψχί‡ΏώŸ½³’<χώ²„ $4‰€bˆ†j€τ˜Sc‹oρ8ΑŠ4bͺh£δTͺ©¦˜J,±Ζλ€m¬±υxrZ°ˆ¨(΄€‚―Xι)½N°9εγ A>CHBήηždfgwgwgf7›'›ϋΉ03ΟηύόοaηΩΩίάsζŒΫλŒ +†9“lRΏ°ωΛ_ΖΐΓlαφνΫ‡!C† 11ΡΕ(­©©Α5Χ\ƒ‘#G†uτθ½υςό΅1OΏω]m_έ!ΫRS;£•«y²lΩ6{žU7ΊιχωηŸKyΎuξά9)m;qβ„ˆΘwIΌ^όF{'D7Ά:rδF%₯nέ8ν^έuoš›_ϊ#ZήψDΡίqΛ ˆϋΝΏ…Ν 4Ϋ“Zζωl[dω”f{ώd ΩžnϊV47‹ΘΙΞΏOŸ­νwΠLoˆϊτΣjqί ε?(τ[ocƌΖ6Ϊ‘’λκꌊ”ΐι^­ΩιϋPώ°k8 ΝLYΏλ¨Σ‘έ>‚θΗϋ1c,Irh@tΥDο< Η s‘(ΫFCۍגύΖλp%yΪG Ϋldχρ”{žτ=MΖT__―D8Όι¦›d4O±IvS΄BϊŒ–ρώ' HΧΊή€€€Hλc²o€IΪi†1ΠlμQ«@³cςΠφιgƝ…(wΠ“ΩˆJIBSώ2K=Π|%ηŸpMΞrKνΈ2+HY€ζ‰'’ΆΆt»ε8-- ύλ_έ lQDhZηΠοη‘Φ[š ΤNOOχz³M“΅f2ίkԌδ)` Y 7Dž 4GžOyF¬+ΐ τh6ο%ϊBς»ΧίΒΛ//Uΐβ‡ΎQQQJ΅΅Ÿaξ½ων쑇ξ@s}€@ό@θzΪΆτ…b̘1ΝoΫ'NβξYχaŊWρΕ[nφ[—fΏςΨ*d Ω[6š½5 UŽΜ?pΙjΝφΞ>šνιΖ­ŒθΝ@sγΧKΡρygDϊ‘mΰΌ,γIvC.ΝφD•ωF>ΫY>e Ωž?hΆ§›ΎUOEhΦΫ@χ@*^ϊOTWοΒo~ϋŠvC_Gέg YU’ϋΆ²~Sg,#Π¬ΪFΫΖ½Ÿ‘£Z<4Ω<jκα8npΎ₯Ξ­)r-ΪRpup΄ΎλνΛξcšƒw΅μ>f 9x3ΠΌ†Vz` ΩX-«@σ€―ތ֏χw¦ΛΞž¬]©όT—kn7nι£pdŒΓٌ"s Ίj1ΠlI.K•‡U•Ασ-œ–:θε•eš)@V¨αΪ^ξ7σ)ρΝ;έςdFή 4·ο>†σσC›zό¦Εθ7"t―Τ:φ±Γk ΒΘ–υzDf³mœη£XVέxαΓa²y@ ΕψˆD΅ΟύδG†΅λOώσΔ=ŠΆΌg*ϊΑΙ?(x?^²Γ‡»"Ξ>υ9~ω«Χ°dΙΣ†ΐ2EhώϊΏάƒ •obΨ°xC[eA6oή¬DhΎηž{”7 jΣε²~©ZΘnίή½{Aχ·’““U“₯ΪÜ Θ©-­hλΐΆέG»ώŽ‘γt“)›ϋ_?Ž/ށcβhρ7QbŠ$»wνΪ…Αƒƒ^Χ-c:vμ˜ς93yr'p'£²ϋ˜ήžG‘oΈαεΓαΓ‡•7`έz«ϋ}y™Œ•έΗ2i [h6VΡ*Πμ|δkhωυ‡Ζ‰άώ ρΈZί;lԍ‰θηDά²Jz ™ΚœβςΛͺ|Fˆ>χΘνhϋΪMY°V±Α§‘\`YςgϋΎ:œΏ—–ΫFBY€f²±Ράƒv‘ԝΐΫΆΆ6ε/”ύ†Ί/z+=p%{’υ½¨»―/ΊKΩΘ뗁f>MI›‚k‡Ε Ήω,κvξΜχ1ό@s›x5O‹—!βΊ§ίοtx rε šΈWtΔ"ΆλΑ“6ρjϊ3κΞ½‘η‘°―QDHrRξ­Υ~=[λμ‘'c!,‰ν2°σ8°}m-σŽοœ‡™ρ€‘‘A‘©ž;.-έfΥΦ"Ξ­6(Έ»N©Φr‘m~5(%Ύόξ£k|‡ΣλάpΥQχ¬ΤUΫπ–θ[ 0ΠΨίyΞ=βŽ;ώ%Ο Ψ6Ζ«Ρ‘#Ηπΐwς±eλ:εΟ oΏ΅7§₯bβDγ׏‹Ο<σ<¦OΎϊΥΫ=›+ΗkΧώ^ΌZ―?ήyσΗ°R€Lš䣘a#oa<Ÿήg Ω[#»92ߜΥ6†μm ΩӍ[+Π[ζ抍hYυ'eR¦Δύφ{Ζμ¦\^cΨVΦλΝ†m‹,ŸςÞ?yaO7}+υΓζή…Q”§-[Άαέw€W_-GώύυM χ}ΝǏΧ)χ2>Ψ²N€Ρo wΠ‚™3ζβέχ^g Y/LμΛ|}!9zΠlΰC‚΅p¦ήΪv ΠΉζpYό`f"Τά 9 ΠY¬)ϋ'Ή0Ρ\©"»h6λIίυdχ1ΝΎ}gΆDv›Go©Η@³=Ou45γbΙ;JTζΆαƒ0ςƒ+ιac}ΟϊϋώΤΆρΞητΕ θΛMωΛάςΤ‚₯cά₯ΊEhV£6λl­bΧΞ™}·ŽΖu?ϋΠ'τLUϋ φcΐΤ›• ,t=ηXΥ―ηο{νϊ½Υ@s¬ΰƒβββzEΔez@νΜ™3=S>;]5ξ ΰΫeΉ=šΝιΔ΅Ί_š-h§›ŠμΩ³‘šΰΒrkΦ–aΝnoΪ½“δη#ΩΡ‚υee¨՝sP4'Υ½Z€#ΧX ˜_’±Zύ¬ύ4C«‹œ’B€’eekΐ:=·³G֎cΣsQ8;YkαΎsΛK–γΈΘt$ΟFqnͺ6/χzGρ™(.˜nδφθGΒCΧΉγ@vA12<‚sl_Z‚­υΒπQΣQ’—ι6ƒΆΓ•(]Q%ςœ˜]X„τX·bψφ»«žkό.ίΊNQW₯=+u½s+ΠG` ΩΏ£ι Υ{Μό/wMΕχΛCΏ~ύ PΤγo~σ;ψξΓΉΈϋ3άκPD£i_›­Ό’υ¦›RάΚτ©ΌόΓK­­­˜ύϋρΜβ§pϋν·ι›YΪg Ω’\Ze†4)΄«ugqξξŸjΗκ 0-CμΘ|ŸmΣ{ΚόΎ¬Ί1ldή‡ϊš ιΥΰύ`θ­@σΉμ2-ΚOΜώΞϋοV KνyaI.­²¬Χ#2mΣάdiGVέxaɍZe^chRΨήQο1άwί=ΘΙω–[?gkž.*ΐ]β^₯ΪΪΟDτΩΣΘΜΜ0Όoα h¦{ 3¦ί‹βg 1uj–—ώŸ>ψeώ’ΈOa <λλϊΪηΝΎ”±–/λη€:‹HšΥΉθ·νjVΰζhΞWœΦϋάο7\ΗΡCΞΕ9&Ϊg}*έΗ 4ϋuŸ©BΩ}Μ@³)7ϊ­$»ύί hΞiΝ―mAγΗGβκ§”ŽθΈ}I΄L)*%I‰¬’)Ÿκι#:˜|‘πutDΕ34_Ω°Ÿ{‡ΊφJffΗδ/(Q /•os¨SϊQζb`“Χ ½4ƒ"gGϚ‚ΛoώΩPϋ@ΣRΟΉΌz;.ύ’2Pu­<:{2fgψ„Ψ΅Š!Ψ!ΏΆ}ϊYzςξ’ρ摨} ΄ j>|8:δ= d9ώ€ζΔΔΔ^eΛ$ιθΡ£1aΒ„n3‰Χέ&mΔuΜ@³I—Ξ-±ŽRnm‹G hL±€— ΨxwΝ­¨^Ή«₯μhV'₯Ϊ€‡ov ωΰz”­ͺ8Α f'w£ΧW`U΅ϊTEΧ5z:=^ΔHuΆ ²Ό U"(r¬š -Ν.ˆ˜ Lž]€άt•šύVˆ~U3 fΰ¦Q€i%9Fa~Qž’kPQΊΤlbN!ζ€:±ui)ΆxλHΖΒβ\ŒθlαφoKΠiM΅’ΧΩΞ‘ΝKΙtLΧ46……³EβLm.-S…or4ίΠ\ |…€C¨ž_2 : Žo]ŽεΫ ‹_ίNšW}Š+•Ÿκ‹΄}{—Μ…Ϊ—Z@pσε5V»e۞–„σ_ˆΗ°Κ½έΏΏNUˆ»uΫ”Ξ_U―²¨1δΝ'”|ΊΞ_zqƒO}=«Ί/ŸyΦζx`Ξνˆo½°\›―Iψm‚ ³ΥMΥλm@sSS“²vςœάΝ7ί¬¬ν=σϋβ1½-‰(”¦M›¨JPεΌΎJΎ>՘f3ξN›‡L±ΛΝuΥx£b5φw΅K›ρ]Μ½sBgΤζ¦}Xτόyχ¨΅oΐ[‹Κ±Σ»†.B³ο:ϊfΠ|¦‹ΚV»ŠS0kζέΈcBW΄η¦έΒ¦Χ]εaΪλ9 Ω‰)7U#o[ppG%ΦlΪέ‰+ 0·H€Ή„4k@³c" ‹η€uνΝDτθr}τθ@ю[jP.’/ v©VΞqMΖε=„Ϋ &Η’±z *ΦΧ(u2σŠ1}AΪξ©jE)*=JΈyβ_ΧΌœ©"ςtNͺ{ƒ>q$’o X½Z+s§YBΧi:]·//ΕΦγBΟQΣDτfχ/HfύΞ@sŸ8Ιx’aT€fbS4’=η·₯Ώΐ—ώ©σfω'ϊo<γVξ»g π‡ίΗΰΑƒάςΟ‘dI>ωδ/nΕΤΗžό† ‰sΛ·zΐ@³UΕ:λ3ld¬›ώ¦ΝΖΩΙ•ω愬Ά1ldηL6²§·2V 7ΝΝ/oDΛοώ€Lˆΐ’!+3ž\7ζςÞΈ²^h6l[dω”ΧφόΙk {Ί΅ϊŸωώΣΈrε ’’PWW―Deώρ’§1hλ½˜τΖ§-[·αΕK•‡«=ϋς4Sέ?ό‹~ΈΔ­Ytt4~^ώdeeΊε[=` ΩͺbΖυeΎΎΕ}h6ςΞΥcŸwEq>Š6ΙΉ}/t1‘EΓqσhr¦hΞ/ͺ ·dΩ+›‰-WiYΆU@j[½Ϊυ‹u xμ^6§y•υTΝΑ+Ο@sπΚώYό εꁁζΰύaχœΥ.@@sΤ„DΝΩ΅6υe™g;OΩ3Z³ 4_αgnQ‘Υώ ΜuΞΛ2¨=ϋτdΆ,”pμ•o uΣΖaμ#o©&…m«Ν4`[Υ!K“υm©½gΤmΚσ•¬ΝδŸφ'}u0ŸΖ0eΌ₯Ήμ΄«BwΝγǏǞ={LA°fmνŽz‘™’Q4ι)S¦`ηN#B Ψ9&&ϋφνΓ… DgEv"H½±ΡO€Νι3ΠΩηAošΝ&Ό•6―¦ l OyΰY|{"9gπ‡EeΨξΩgŠ’σέΪ€•‹Λ!,{₯΄ΉbŒ 1†Ÿ:ϊF*ΠάΪPΕε: Ή«RΦwŸΕέΘ¦f|ςl°mΥkzΏη€fγ(·HΊr hΦAΞΎ'θ­EhnsENΦ:w"» ρZ†ϋެμ^AΦ9Œ₯"š0ivŠ(E^Q€uεΌlw^^υꌚ΅εX³›ˆf‰ΊΘ‰Z;GΊf—9ωΣΗvΥcEιR>*+yΣFι40οwšu²ρ.+hˆ]Π…gΟ6Š·΄ ˆy°)Ω£ \ΊΤ¬}α₯>Œφ¬b똁f[²a#cέτ7 h6ΦΘNέΙvΖ²ΪFVΫ6²κΙΞϊ ΩӍ[+ЁζsΩeΈZίyS:¦ΰ_αΜ½ΓxrݘΛk {βΚz=’Ω°m‘εS^cΨσ'―1μιζ«έc ‡ŸiKqlμ`_UƒΞ§{4Ey:tHΠύQ 4‡DF©―/4ΓΎ 4yΈ­ϊp'δόχ#h'΄5§Q]}Fjκ7Ψ‰~ρƒΠš8τ*ΆρƒΡoΨΰΞ­Ψο/φ1Ψώ[άΤq|m/ΎŽΦmώ#NͺP“―>Β™Ο@sπj3ΠΌ†2~vςυΐ@sπ> χ9«=@hO ΩΜUζqƒΑΥΊ³Κ„›ς—iχwςμ+ώ£%hίw2KρD₯$’Ώˆμ%ΪΠLΧτΆO?Σl f':{²Χ؞P²^Ϋ@cyΆ%­.–Όmj½’jnf<όό}/›κΧΘζή4gdd ͺͺΚk4ηPηeee‘ΆΆVΌMΨ~σ4ΐKPΆ/ ™`ηaΓ†…tŽdK]]φ›x ˆ811Q±‘’'me›Υ1Pζ””=zT³ϊ₯7'ΡοϊΔ@³^ ήοIh6‘Ύ hnΖ_ΌΞύσ˜2wƒ³­{ώP jψf΅o+@³hZνJέš‘2W@Τ"ͺt+ͺW.Ζj#ŠZν¬Ά²ΝH»@³Δj,‡MπχB5ΚΚΧ‹8Θ@V^>ZΦ,E•ΰfγ3ζ£ {¬ρP†°²GUuͺW•aύAm,ςKζ#AΧμBΝ)ΊFΙqEΆ9/]Ώ‘°Ϋ"’h—)Q΄γ‘ST€T α-bd―-+Ηn’SM±"ΒwΆα;PZ± tywιΩUΡ‚ίhVΕε-+hŽ½₯šνyŠa#cέτ7­h6ΦΘNnΈo$[±QVΫ6²βEW]†\Zπ^π τ6 ™"ηΰmβC+‹@―) wβ5†=Εe½ΡlΨΆΘς)―1μω“Χφt‹ΤV 4‡Ζ³2__h† 4ϋχsGγ%8AΫίEη]βoο1Aϋ_ρίΘdiΏ‘CΈYƒθ9Ά†ΦΉUΚhŸ hΙJ€F# ΝΔ!―Β@sπ’Κ 4Ÿ:u δγΛ—/cμΨ±9r€?λΠφ ϋguhgΫσ½1ΠΌΒ}ΞκO0Ί~t45γΒS7©Ÿxτ68βc‘œœ¬MVί‡ Χj…Ί  USά² }yC•’ΥΆσ)ΰxΐWoFμ‹(mš}MkCPπω%Ωhhh0ŒΠJ ™ζΩςλΥ©(ہ9·cPα,-οRω΄ο―SŽ£ΕόE’φš©‘~nZ§;ͺζ€­π¦hΜδ?5p5₯ߌτύ}·˜w‘eυvS‘›i,»šι°φΣη~ύpΥ…K‰q8“q=NOI4˜Uh²Δ΅4²‘± ΠΦϊ΅ 4 M°'΄M ³¨Ν±±±ΘΜΜtλ/Π¬BΥ€ΡΩ³g}ΒΧFzΜfΖ"ΨZ„“vgΜqƒΦh6R›σzBšΝ¨>εόμΫ;k67 ϊ£χ±z›BΨ ΠάZ‡ε‹+ΰΙD{šhž±?»sΌhΖ@3iw°r)VUQμβxδ Ω!ςΦW`U΅ˆ^ԍšoZŠε;ΔΈŽdηβ‚ξx‘8AΖy&°²[5u\ΰ6‘[„μd…ΜUšn_^Š­Η~λœ(’ΟA¬’«šΣsQ8Ϋ΅€v/ZjP^ΆF Μ@ΊΠm6ι¦AΙρΘΞΝΒΆU•’ά<7V―AΕzΔG!―$OόλJVόΞ@³K7ήcB‘Ν‘P±χτΑ@³=_1ld¬›ώζ!ΝΖΩΙ χd+6ΚjΓFVΌθͺΛ°‘K ή ^ή47ς}΄Όώ±2ρ(ρŠο!+ ^=πΓ†h’‰¬Χ#š ΫY>ε5†=ςÞn‘ΪŠζΠxVζλ ͐fλ~n―ύΪwλœwEϋAϊ=ϋE}ξGžυŸ ‚ξ‚Ÿi{ᇫΠqι²€€Ϋγ˜2q―=Έb7Χ` 9xeš d&@ͺ₯EI©scƌEN”)ΙώY-“V‘°…ζΰU χ9«=Αhφœ‘ΡϊBί‡ ΧzΆ3sά*Ψ₯+βoΠS³Π/.FiB0uλǝo' ψ–’2œ•θYS”r=œh¦ίKͺ>wχO Ν‘ΘΟΌ?ی*ΝώζξΪ³O# Y­£Ÿ£š§ίͺ~σ|ψ‰ς[wΦjΰ΅:†Ύžšηk OMbΛΏƒΞΦϋ\o‹ηΎΎ=ΰΞͺˆ ϋIDATΥΎ€’ρ…qΓ°οΡNzΆ™°l'NLϋ.ŒξYdωΨ.ΠLν†T€a_Ζ†hVηGcιf²§NjNϋ²‹ς f&œΪ{¦­[·zfiΗώ€f,¦uCss³ωY#ΣΊa~Yhh&hZš€fŠR­b­Ž«βpV‡Ψ|ξ.Œ 0ΠlRμ žΕγγ\΅[›Pwτjχμΐ†ν Wݞ Y4knjR’Ύκz|Ν¨~£λΊ†rΝUX\ξzKi“2…ή‰kˆ#H―€΄όZ?¬νύž‹ΠμDvA2Ί΅΅4bχΦυX_uΈs.£¦£$/SΩΧ€f8Δ“7ή––6―ζwEλՁΏsP8'Υ„6XSZΑΗͺ°pcΚ**•ˆΝ8λΩ“XΩ­šΟ:§±ͺτ$n9y6ŠrΣ;›ικ'dε!šŠίΊζ%N28½.°mh‹OGa~WTb7#"ιΐ9>#WDΟNΖιͺUx₯ς 2ΕEΣ±Ύ¬L‰Φ<1§sRcQ³¦kj…βόiβ,R“5Ώ3Π¬κΖ[V 4 0Π{K/ 4ΫσΓFΖΊιo$ΡλΓΤjm™Ώd³mͺ—¬meՍa#k~Tk3l€*ΑΫP(ΠΫ€ζsΩβ‡₯zρΐΆH13αΜύJ(d°ά―1,K¦4υzDΖ±m‘εS^cΨσ'―1μι©­hgeΎΎΠ €£ΠΜ<4½œ8qB‰ 8i€ΠtΨ ½ΣG'γjγEPDη«g/ γ¬Ψ?'φψ}‘•ŽiKuN7uƒή]vtt(\s‡(κ'’%£‡άκugΝΑ«+ΠLι³Ε_R#;ϊ«Ξ2Ω?«Γ©E8Ζb 9x•Γ}Ξάͺ&… φ—ŒΦϊί$=™σ²όu2Š‚|y͟•>)rσΉ'Ώζ3B³zmΤΫ«7†",S$eŠͺμ/š2΅!°χBαοτΝ. 9:{2Z·νΥΰk_@3ύ>ΤΎο€5“‘QIΓά ΠάzSbbb•’Šœέ~ΰ€2Wu,½†zhΩMq Ώ h¦σ‹’Hϋš§mU’7_LOΒΘ'g+υπͺ~Œ@π« όκa_jO.]Σθ!Ά6%y$΅e{Άυ¨ͺR}Jχ5•ƒΌ₯?}„f‚‡ιΪ™””€<,δ9Wκ{βΔ‰hό­ τIo§ΎO5ŸζηΩFmο™ςUϋΤ:ϊνΆmΫ ΅’:z ™ΐeVMΤ§>ιν€|Š0½{χnε|£sŽ’§JfΧ?4ΡϊυΑ@³^%ή—Iš-x#mΦwρ­Μ ˆ#PXŸ(jσ–7°z{ηΕH_€μ[š½ΪweT―\„Υ]d² 4Sζ¦3β‹ώaTk«ΨΖ λ©+jVW΅o‡gJJJΊ¬ΟΖ…ϊ/‘Pξ MμŠΠ쳉9EEΆζΆΓ›PΊb‡θ݁i ‹‘₯„cnΓ¦ŠRμΧcΗΨι(žί W»™ ƒUxΦ­œόΤ9\YUtΑwEnpnΑΉpbva»4€@«+ΛΛPE‘‰}%‡ˆθ\¬FtφU©χηk€r|&J ¦c‡ˆh½ID΄Ž0zˆ\]³VΜ»/ΐ™šƒ’œ±XΫ8'dΞGώτ±šVύξ:wcΕωVΨuΎiέΉνX©λ֐X>€Ν}ΘΩbͺ 4Ϋσ7ΓFΖΊιo$©7—τ5Γ}CT?v }Ά-BΖε²κΖ°‘±Ώε2lH!.·’@ošΫkNΰ|ξ―΄ι ­,Eήι‰Δk {ͺΛz=’Ω°m‘εS^cΨσ'―1μι©­hgeΎΎΠ €£ΠΜ<4½τ Ω*pM‘ pΦΠ μ,ΐg·m ‹"κ²ΝΤ›f£{B6‡±έŒ€ζϊϊz$''ϋμ#..Ξ0  Ο!.ύ±L@³•WΘϋ’BμΒ€έΙξγ€θehήa²Ÿ³Fλ‹@ΏI―ŠωΤυΕΨGήςj€ΝFш Δ¦¨Ο &P4娕(MωΛ”1θίVβ5ž>#PŸj€d}u_o/ΑΜƒKζ PΉMΡ€£&$Ϊ­ΞWνGέ’-Ή™€)γαΘύ­£‡αΒ‹χ*p+Υ!hœ oJ=;jB’[„ζΑKξΕ₯7h€΅R±λO ™l??οe4]γ3B3Ν”ΤhОlWΧ"Ψ£τf}t_₯€ƒ'L<œn‘‡’G­”S]}ΎΪ/mυΧ1_u&™ώOάvΫmΚΫ όΝd/Α»”τsRαcΚ?zτ¨Χ|T{ΓϊΆF}΅‘q’Ύζšk­@έκ[τσ¦zϊδi­&UoυΨίVo'ΥσŒ€L6οΩ³ΗνMz`Zν›oJδgJϊΉκuQ »αΩ?«»aΚά₯MhΆ!\ΪΤYΘL›€1IΧ"F7Χ~΄―½o­ΩΠ,"1oά‚Ίο΅ΉΛ8ρ4ELsͺ·m‡ŠL»€f€k«6β΅u;}Tθήlω€ζdδ—δ"A7mW„f:/ΜΑz‚HΘ$±ίζˆEΒ•όuΏ±W―*Γϊƒb1$"όΝ(qg"BD€.*πXύΐΚ]]ψš!’@—Š(Πb6HΟ)ΒμT'Ά.-ΑvzΓ—W4aΧΌ @ή…"zu[K›N±;#bUa4 "nηBΝ”―©σ‹όβιΨTΊ‡ΕQf^1¦r ε`%ΚVU‰sd" б’tϜ/ΚΗΊτ±κw+²•ΊΒ4N¬@ŸT€ζΎεvšνω›a#cέέ<”ωK6ΫfμΣ@Ή²κΖ°Q Ο—3ld¬ ηΪS 7ΝΝ―lBˊmΚD£FaΘΚ…φ&‚VΌΖ°'’¬Χ#š ΫY>ε5†=ςÞn‘ΪŠζΠxVζλ ΝΠ8 ΝΜCΣ‹ Y†C3ΊΉ^ΒεγŽSη]‘žΥˆΟκ–ΐηΟΠ^[ο/+!šη2τOŒ²iά2tΉ4 tΤΊmWteιηGψƒ}Yκ h&:*%Q‰„<¨p–as=ll% ΄/ Ωhύ—'\‹KΟΟΦ€f£ϊž‘½―֝ή€χ@†Sdg­ Ί¦2Jδ‚‘I‹3₯oγο 3ŒΊΝI`N‰ΨVs€ŽI‘υπ-Ν”§‡š`Vdι^EBΞΘΘΠOF°2Υ?~o½υVeν‘{Œϊτl£Ϊ2hΠ \ύυΈα†”,”’ZΟ¨zσ6²‰ώh€!ΑО‰Φ Ÿχ­)’’‚1cΖXkΤ ΅e¬ξ†)χh— 4/Ώμηl_\_θs1z+¦U―G2ΠlU «υιϊOχqΛ-·(‘”=ζΫn» α—}Ωθ1EVΧ'έ9άφ4Sj‚šΣ|M?θ|šƒ–;HšM8cΖ‚ηp§B4gj‚•―­ΓI΅]Κ >x' 2Zλ°rqŽu:Δ‘ VuŒŽB·΅¨ˆ²ZΫ!ΎΌ‹Pή§w Tό¨H₯©³ ‘“ξώ…Ύ³v=V”,Εaqΰ‡hύξXQŠM‡]6fΜ/FφXš‹>ΉζεLΝFΑœ‰σΨ΅3Š ϊ¦Έ―FXkρJ hί4ίFαۊNίaFn²“»^WeΣοsׁιωΘΑ΄N¬@_T€ζΎεušνω›a#cέτ7׌kτ\σ‘―!fΑ]> t“ΗgΓ0°mΦEfΨΘΊfΤ‚a#{Ίq+cz Π|.» Wλ•IΔ|œ~ΥxBaΚε5†=‘ωZΙΊΩSΐz+^cX׌ZπÞn‘ΪŠζΠxVζkΝ°/G‘ρ¬«Ω|ά*^γ~±δt\p΄qY+" ˜9φΕ5ήΖΫσΙΠn«Γεc³ΆηόιUυ\_wέužEa?¦ˆW\1= @.›&Β+2ΠΌƒe?gϋβϊB›K(€ζC%―cXε^εdqLώβ–-ώΔ aΑDh‘>»ς\_`KΧYJ΄ε‡i|J§4ktγΝέ(.wvh6%y <›‡ρqΚΚS‚zŒ!ξΥTW΅o{αΜ°4«½m›ρ—εK°n?ΐ@³»>-5λQΆ¦Zd@¨"χpeVTuώΘ§B¨Πμή•ΗQ,r‹ ‘μpΏάGeε!λΒZ¬©¦±0Ώ$cέjΈ\‘£G!―$£Τ"€=1§sR €hu\π«θΨ‘Š‚βΔ«ch[sσBlŠ ³Ρ…ξj­#n§±JΛ•Ρ΄γŜ <η܈5₯¨Q8ρxδ ΅‹―Y_aΛο#Šsw»ώRη9b₯v>ωλ–ΛXT€ζtͺŸ)1ΠμG?E ‹£ΏΉf\£ηrhξνe½ΙΝ°‘=3ldO·ξhU]½ 7nΑg‡Ž`Τθ$̚5“&έ’Ό.ΩΜxϋΫ.|°ωCΤ£ADΖΏwή™…/}irΐφ;wVγ†1£1bδ5f†ρ[§7ΝcΫαόΌ—΅y ­,R@ -£vxaOtY―G4Ά-²|Κk {ώδ5†=έ"΅Ν‘ρ¬ΜΧša_ŽBγYW/2ϊψjέY4/Ϋ‚Φm{5°™@ζθYSΰœ—%EdfUAOΰHΝ—i+£υϊΘ:tτg&„™™i¦j·Χ‘έΗέ.€‚½ηα£[0ΠμKσω²Ÿ³}q}‘Ν%”@s?dήj9¨p–ω$ 5{ΠI,!ϋc™ΦFβ2Πl€ ηυVh6νΉD|σ»ίFϊΈ$1»7jm>ƒ=;6`υϋ03U΅‘Ω½oχ£VT―\ŒΥbhnϋ –T¬s―&ΑQIIIx­¨ίŽ₯[ˆ: σ‹σΰˆΗ±ΌdΉψW€.PυΈPW)ΰ±?S΄Z$ U§9π7vⷐzψ=T‰pΠΞδΩ(‘œ}&Νf 3―ΣGu‘±ΒΚ₯ΛqΈΝ¬Ό"LΣςu=΅ΔU¨Y™σ‹0}¬j\U₯KqPΐ· ™σ‘?}¬uΧάΌ›.€ζΩ‘4γ4Φ”½‚ρ>ΑιyΣΌ±` DwƒΌ]:ZυϋΤ–J@s'¨?φΈψΩκW=Ξ[V ` 9=μ>?šέυ0{Δ°‘±RMΎf\Π•kτ*MΏ ‚,lίRϋζ ΕτΡ\Φ›c ωpX€l††βŽŽΌτ«xcΥ;xμ±Qβτ©ΟE”ζϋπγ%‹0cΖ4-ίsηχλ7’¬¬οΎχ:’’΄βΖΖs˜sΟƒT~sζ|CΛWwZ[[Eώ|?vB™ j6υ yΔοΰj=½ ˆY8ΞωS•ύžό‡ΧφΤ—υzD³aΫ"Λ§ΌΖ°ηO^cΨΣ-R[1ΠΟΚ|}‘φEΰ(4žuυ"»8rωΚξžμ>– 8jjjž={|BΝρVθ””ρ]8ΙKBήNv‡|Β: φžG€ξ9Bs L”Λ~ΞςϊΒ„T‘έΗΌΎΰ@Ε²ϋXΆυ…§€ 4{*ΒΗ½Yš{³χ$Άf‰Γ¦±¬+Α 0ΠΑΞ5˜Ν’˜ΘbΨΘ„HUΒ}#…f'„8+ά>5k>ΓFf•r―Η°‘»α>Ίzυ*Ύ=χa<τπύ˜9σ.―α·mێŸ<χ3|°ea”ej―€’Ÿ|κ1ά~ϋm^νώχ=(xβG†ν_XŠ3gΞbJF:Ž=ŽΗ>βΥήj†μ@σΰ\ΔΠEοiΣZYz]vO'^cΨσ€¬Χ#š ΫY>ε5†=ςÞn‘ΪŠζΠxVζλ ͐£ΰύ,»8Š|ΛQ€ζ£G’--βU±"Θ}gϞ•ς{™*”μ>>tθ 7))I5YͺmCCθ³(%%E*»τΖΘξcϊ•ςώ'ιHχ΄)Ef–9Mš4IfσΒf[°χ<ΜΚ@³•όΧ‘ωϋ+YΞ@³™)•έΗ 4›ρ’:²ϋ˜fώ3S*»Ν́λ„GšΓ£sŸ…ζ>ηrž0+ΐ °R(ΐ@³n©‘9€r*1ldOΣpΙn~m Z~ύ‘b,GhΆη³@­ΒνΣ@φ¨ε ©JXΫ2ldM―PΧ­ύ …O=‹΅οτ 4η/x ςηcςδ[½†'ΰωΎϋς0gΞέβο^εΫ·οΐαΏ~σ+€§TΟΰΪλFβ™gžTκχ yζ?cδ⠚FC+‹Π?Α;κ΅V!Œ;ΌΖ°'Ά¬Χ#š ΫY>ε5†=ςÞn½ΉGhξ~οΙ|}‘Ω3pό9 »8Š|3pω>~†ζ{φž‡™‘h6£’:²_{x}αίfJeχ1―/ΜxΡΩ}Μλ ώ3S*»Ν́λ„GšΓ£sŸ…ζ>ηrž0+ΐ °R(ΐ@³n››6mΒΥ«W1sζΜ°if γǏcγƍJΥάά\ι"61ldΖ‹ήuΒύ%[4ΜΉƒ gyΥ•nΫ|bPΐΆˆ ‹a£ω(fΨΘ‡0aΚήΏ žΙΟ±bε«>fŠΠόoί{Ψh&3UhyΩ―+0eJΊf9ύp˜{΄··cσοŠHώρψΰƒπBiΉrμt:•ΊVζ@MΡυ\ΖWΙωΙς‡]ʜ£&$aȏkZυτ―1μy€―•¬›=¬·β5†uΝ¨―1μι©­.]Ί„Ν›7+še\'¨ΊΛ|m!e·#υL²Ώ•έΗ Ωχ­ΪRv3p€zΚώVv۟™υ–‘ΈηA£ϊ{hŠήTI‘ΕoΈαι~O ΫιsσΚ•+ Θφ‰‰‰”%]’ο;²ΪFbΡ>θ­fΓ‡—N;2ˆήΚGχΚdΦPvΣoΤτΖVz ©Œ‰ή.KίgΨΗφ½CoX {Ρρρr—πœ ½αƒήt˜ΰY$Ν1ƒwάq‡4φ°!ς*`4Α²“Μ@IDATμ˜ΤTΧΗmιR₯‹.νE°~ϊΪ°P„•*ˆ M@š€‚R,€ "¨₯ ,*]ε»*  ˆ€τΊ΄₯μwΟΕ S2;™$“άΙόσ<»3ΉΉεάίΙ$'7άd9qβD)Ί 2DQΛ`–?ψɟΎƒ€8E`οή½”œœμTshΗeK–,‘ .PέΊu]Ά$°ω;w’E‹db«V­(Ož<\^ϋω矩pαΒTΆlY—- m~νΪ΅TΌxq*UͺTθF—SΨΆκΥ«;fΕ©·—Σι‰ŸΙφ²ΧH¦όοt ΫΆΣΆ…5DglӁ!ιŸώ‘={φ8ΊΏE0Ι·yǎtπΰA%mΫΆm₯₯₯QΥͺU}φͺςε?ώη«Κ•+«b’νvόρΗz²[?Z΄xeΛ–-€ώŒŒ κά©7=ήΎέtS͐νœΐyf̘M£_OU«]Cχί­Yύ }ρΕ*<δiϋΦDϊΰΓχθδΙSΤ ~ š=g2•/)ξ›—ϊ1:t˜ΪwxT·ώΰΔυλΧΣ™3g‚“ε:ολϋχο§*Uͺ(w/Φo>ε9|Ρξ#«Ρ‘:WλφΑΔ-[ΆPώόωεΉάφ3ksσζΝT¨P!*Z΄hfΩ\ΩΖΆU¬XΡ•Ά#5 Ϋ"ί*7>‡:tHΙύ―ε;¦€m›:uŠΚ•+§οpSώϋoͺT©y9Ζp―nΣ'Ož€₯K—Κ8!%%…Š)’›ΟνD•―؍κφύφΫo”””D*TpΫ•ΊνοΪ΅‹φνΫ§δu™f°κ>^·nεΝ›WΙc;3δγ;_Τ¨QCCͺά§κ>ώε—_¨`Α‚tε•W*ǎ ΪΎ};=z”»ξ:%νc£Tχ±“ΰμσ`{9Bώω§ιΪ8„ξFyΜ&K–, X@@β™@™2e”»―Ο<½l;ίσcΝ€’‚fψn†Νf¨‘ €€€U4[%_ε!h6η/šΝqsz‚fs~Ц”Σ>5jΝFIζƒ 9‡Σkύυ7΅}¬+-]–J9rδiώάΉsΤθ‘V4~Β(*S&σ‡Vφό³—V !σ©p‘Btλ­7QφμΩθΑzΝiρ’94dπΛτΝ7?ΠΘΧ^€3§/ {³‰ν«Ύό––/‚^xq€θ*&Δ]™ DYΒvι-kΦ¬‘έ»w“jB₯σ Α_³Χ}&ψδΚZ’ oέν/ˆ1Μy@ΥσχΆyΛ§ˆ1Μω1†9n^-A³=žUωόΒ=„ ΩΊŸUχ1Νήχ1Νήχ±υ―Α1Σ§OΛ υZή΄i“Ί(P@w\E―Œ“i<†rώόyωsΎ|ωœlΪp[<сͺΆq'„‹²fΝJΉsη6ά''3ςCgϞUš!|lm`§§§Λί±΅šbWZu³}Ω³g§\ΉrΕ‚…šω<Γγέ* y°Z΅jYθ%Š& šΕΣχ‚f‡£9I‚ζΔΪ h6ηoˆΜqsϊfΝζόM)§}jΤ6ˆŒ’ Μ±Q §ΧN aρƒυšIΑrŊ‘3XξΪυ5kڎ–,+Tσ†˜Η3ύΌχξ ΊσΫΕLx—f]Φ2.ϊt-όx 7’/ZA~Ϋ(o²d\Έψ‚±œ9“θƒζQ‰Ε€ϊ¦›jΠύά£ϊ“c žI5Aσ™ω?ΠΙ—ζΙώd«X’.›Υ#κΎΕ²b stU=qo`›·|ŠÜ?c˜γζΥR4ΫγY•Ο/άCš­ϋYuCΠμ}CΠμ}[ο‘ρ¬Žyi‰―§9ξΌγŽ;”|Δ¬Y³θψργT³fMωg€ONηQύάƒψΒϊ‘Ί_xίLj/Όοcλ=D v€ Ω.’¨'€Ν8°  ΰš­H34›sΔFζΈ9=XA³9?ESΚiŸ΅ b#£€σAlΘÍ΅W_}ƒΆnέ.EΗ<㌢°Xy@δk»Ÿ‘ΏL>wξ<­\ΉJΌ^χZΊός’Δyϊ<5Š-Lτ֊ΚOΎqΨ°A κ/ο‚ηpΛΒ‹iΟή}Τ±c›pY §«*hζlόςΚΏz']^ρJJz°¦α>9‘1†9ΚͺžΈ7°Ν[>EŒaψ1Μqσj)šνρ¬Κηξ!GΦύ¬Ί!8ςΎ!8ςΎ­χ0Ί’σˆζ‹Ή!h6C-°Œκηāώ2³¦Ί_˜ρj`Υ}Œψ"Π_fΦTχ±™>‘Ll@Π _+Ν Ώ €ΈB‚fW°»Φ(ΝζΠCldŽ›ΣΩώ‚fsΗΆT‘Ÿ^6Τ€Σά υo&UmƒΨ(/^Κ ±Ρ%n};rδ¨·”3#χθΡIΎΪξδΙS4~ό{4wΞϊψ“¨¨,σrβΔIΊ·ΦC4ζαtΣMEΉ›6m‘–-ΪSΟ^OPσζε+Vχό³—ϊτ(σΟ™;UΌ/[Ψξ͞=ŸφοΫO]»u›Ηθ•Ν6l―5,_ΎΌΡξ8–1†9ΤͺžΈ7°Ν[>EŒaψ1Μqσj)šνρ¬Κηξ!GΦύ¬Ί!8ςΎ!8ςΎ­χ0Ί’σˆζ‹Ή!h6C-°Œκηāώ2³¦Ί_˜ρj`Υ}Œψ"Π_fΦTχ±™>‘Ll@Π _+Ν Ώ €ΈB‚fW°»Φ(ΝζΠCldŽ›ΣΩgWn ΄>ΣΝλ@)šcb#sl!62ΗΝξR»wο‘^=ϋΣ–-Ϋ¨B…dωYͺT ;n$•-[ΖΧ\ΈΧ΅^ύ3υξυ,₯₯πε½οΎ»hΰ ~”7o_šή—E‹–Σφν;¨K—Ηυ6G•AsTΈ|™cψPDυΕι#γ`[4΄.εU•bŒK>ŠζbŒhhy?/ΝφψXΥγ€Φ;Ž4ζ?Uχ1Gζ}«•TέΗiž2©ΊΝχΜ|I£cfZ€ Ω ΅ΐ2ͺﳈ/ύefMu#Ύ0γΥΐ2ͺϋρE ΏΜ¬©ξc3}B™Ψ€ 96\ΎVš~p…Ν`w­QšΝ‘‡ΨΘ7§/²Ού΄•Žw~ǜ±”‚ 9v!62Ηb#sάbUŠg.ΊpαeΙ’… *U3Δεϝ;Gyςδ‰(dŽͺrƒ™!h6*(bŒ WŽ1 š%³ΑΆhh]Κ«*7Δ—|Ν7ΔΡΠς~^šνρ±ͺΗI­wi$ΜͺξcŽΜϋV+©Ί!8ŠζbŒhhy?/ΝφψXΥγ€Φ;Ž4ζ?Uχ1Gζ}«•TέΗiž2©ΊΝχLΝ’4[χ‹κϋ,β οϋρ…χ}ŒψΒϋ>ΆήCΤ`šν"‰z@Π€+  € Ω!Њ4A³9G@ldŽ›Κ’NΩvψ†g|πςOθHΩo(η[χΕ)ΫΒ΅ŸYΊͺΆAl”™ΧΒoƒΨ(<l‰žΝΡ3γˆ1ΜqSυ|Δ½mής)b sώDŒaŽ›WKAΠlgU>Ώp!8²ξgΥ} Α‘χ} Α‘χ}l½‡jΥA³u¨~ξA|α}#ΎπΎ_xίΗΦ{ˆμ"A³]$QOšp`@@ΐ!4;Z‘f h6ηˆΜqSy@Τ)ΫT4_Ψ}˜Ξώο7βY­yΙV©εΈλšˆŽvŠ[DC‚2@lΔΰ*ΔFA!›!4Β’ 1FC ͺžΨxΨfΘ…!™Tε†#ΔU†cΒ”0™ hΆΗΥͺ'΅ήAp€‘0©Ί!82ο[­€κ>†ΰHσ”ωOΥ}lΎgj–„ ΩΊ_Tίg_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ@‚ζXpˆΝV€šΝ9b#sάTuΚ6Asž§κ αpɈ07oήL+VŒ˜ΟL†Œ“gθΜμoιμ7e ¬!kΙB”wp“Lg‘vŠ[ e‘Χ 6ŠΜH/ΔFzTf–ΝζΘ!Ζ0ΗMΥσχΆyΛ§ˆ1Μω1†9n^-A³=žUωόΒ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹@ά š'NœH»vν²«¨'J—.M:tˆAΝ¨@@2'Asζ|άΨzόx-^Ό‚ΎύφΚΈA7έ\“κΦ½ ,`ΩšΝ!„ΨΘ7•D²νxΗ·ιܚmζΊTŠEΝIυkκΆξ7έΖ3I„Ψ(8™l‚Ψ(8Ψ5š£F& Ζ0ΗMΥσχΆyΛ§ˆ1Μω1†9nz₯Ν;O+W’eKΏ £GQ•k+Sƒuθͺ«Κκe›–‘‘A_~ω έ~ϋ-”-[Ά°ωxΓΦ­Ϋ)k–¬tUrtm„«‚ζpd’KWωόΒ=ΰ(:κεVέΗιy-Ί4Υ} ΑQtώΤΛ­ΊυlŽη4š­{Oυ}ρ…χ}ŒψΒϋ>F|α}[ο!j°‹@ά šόρGϊτΣOνκ?ꉁzυκэ7ήƒšQ%€€dN‚ζΜω8½uǎΤθ‘VT±RyzςɎtαΒš:e&ύϊλo4λƒITΎ|²%“ h6‡b#sάTuΚ6•ΝY2ˆ2‚fifOgΙ—‹.›Ωƒ²–*βx§Έ…4!b£€Βl6#6:}ϊ4νΫ·Ξ;'k͝;7]~ωε”={φ0­˜Kώγ?δ9°rεΚζ*@)Η @Πl9b sάT=qo`›·|ŠÜ?ΝΔζZŠΎT<ΕgΞ€SΣ¦miίήύτάs}¨DΙb΄bωJš={> 6jΧeΐΜ£Q―₯₯ΛR©P‘‚aΛ8pˆš7kGΥ£έ와‚ζ°Έ£Ϊ ςω…;ΑQTξΤΝ¬Ί!8u[T‰ͺϋ‚£¨ά©›YuλΗ‰4[wžκϋ,β οϋρ…χ}ŒψΒϋ>ΆήCΤ`Έ4sΗ?ϊθ#βυT«V7n¬ža°@@ !@Π¬Ž›Y–’†jΥΊCŠ™³dΉ€4|οέ4uκ,qσqεΚ•Σ΄Ρ4›C±‘9n*ˆ:e[< šΩΫ9›ίFyϊΤqΌSάBސ±Q@a6G#6βsΤΦ­[iǎ!΅±˜Ή\ΉrTΆ¬=³ψqρ$6 ’  4›sώΌˆίώ’±oM€U«Ύ₯€€$ZΌdŽξ۟Ž;N_‰<“p;uzŒ:Š?;šν ¨φω…{Α‘u?«Cpο 8ςΎ!8ςΎ­χP­ hΆξΥΟ=ˆ/ΌοcΔήχ1β οϋΨzQƒ]βRΠ̝_³f }ύυΧtπΰA»X  x«[o½•jΤ¨a‘k hΆΖΟΞ«WL½{=K+>›O9rδ¨šgj`sπμStΫm7l‹f‚ζhh]Κ ±Ρ%Ρ|Sy@4Ρl;υφr:=ρ3α>1-3]|XβlΎ$J»² νΏνŠP·&e§μUCΕ©iii”/_ΎΠό6€”,Y’J•*eͺ&ˆLa£hΔFί}χ±3[Ψ‡UͺTΙ,‹αmρ"62ά‘ΘA³9'#Ζ0Η-ΡΞγζ(…–·P&‘RcD"€Ώ=šCΏ†Ψ₯ΖKŒqδΘQͺuOΓ°’εW^MΩΕΈΑSOu λ―Ώώ¦ΖZSƒ†u¨K—Ηε Ν}ϋu§Β…ίΔΒβιύ_ •+Ώ¦α/’βΕ‹Ρ²eŸSΓΦΝš£‘>―ΚΗpΆ‚£πΎ3ΊEuCpdΤ“ασ©ξcŽΒϋΞθΥ}l΄ρ’‚fλžR}ŸE|α}#ΎπΎ_xίΗΦ{ˆμ"·‚f» ο€ Y_Ne͚5μ,H3gΞ₯Γ‡[zν+Νζό ±‘9n*ˆ&šmš ω’œω’O'€?:έ`ΞΑ6—b‘τώσS΅ςC»‡’Š+š*―WˆgΟ?Ώή¦¨xFcΆ―zυκQ•s"³Q±ΟΜΜF–š5kŠΧ˜ŠdŒ” Ξ/b£`»y‚fsήGŒaŽ[’ΗΝQ -n‘L"₯@Π‰ώv£1†~ιΨ¦ΖKŒΑ<:ŠfΟ™LΩ²e ²iΣκώd?Z΄xŽξφΰ,ZξΥs ά/DΠœ—λ^²xυθ As07ΧU>†3ެοͺϋ‚#οϋ‚#οϋΨzΥͺ‚fλώPύάƒψΒϋ>F|α}#ΎπΎ­χ5ΨE‚f»H’Χ @ΠμΊ €|s±u«NΤ[ΜT£ΖuΊFρMEž5)ά MέBA‰41Έ ±‘APAΩTM4Ϋ|‚fq¬Ι’εβ Νμ.•ΝA»λ«,hΎξ:ύγq4ΖνΫ·Ž=j‹ΨšΦl—]‹Q±ΡΚ•+ιάΉs†šeaϊ-·άb(of™βEl”YmΝζ<ŽΓ·D;›£Z άB™DJ 9!ύνFc ύ±M—#Ν'Nœ€ΊušΠ‚…3©`Α‘AΠ©|ŒdλU·‚£ΘϋX€ͺϋ‚£HŒΌ]uCpΩ‡‘r¨ξγHφΗΫvš­{Lυ}ρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € ΩuHψζbΗ=ι‰.νΒ šόsuyβ)Γ30ιυ ‚f=*‘Σ 6ŠΜH/‡Κ’‰f[ϊΗ«ιΔσs€›²ˆišO•Ί8σpFΦ,t>gθŒoΩΏŠr?qˆ[·lΩB*TI·’°zυj+Εͺl\Ή(wξάΆυωτιΣtώόyΚ›7oΨ:YΘ|όψρ°Ϋυ6άuΧ]–…Χρ"6λ’¦AΠlΞσˆ1ΜqK΄σΈ9J‘₯ΐ-”I€š#ίA³>—hRgϞOϋχνϋ†&ŽγκΦiJ©σ¦‰·cŒX5Ν)/VωΞt!8ŠΌEΚ‘Ί!8ŠδΑΘΫUχ1G‘})‡κ>ŽdΌm‡ ΩΊΗTίg_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w4@4wοή‰ͺV»FΧ(£‚fVϞ=«[ΗοΏNμs•fα?ƒ¬ΚΆΒ6ˆ9Μ§z³ώ¦ι ™όΣ]Εh[₯|†ςZΝTΊtiΚ™3§ΥjP^!,ώ:uκ”e‹ξΈγͺ\Ή²εzP3 h6Η‚fsάTΎι ΫΌεSšΝω‚fsάόK± ωΤΙSΤζ±ώΙΎοͺ šΣhχξέ>ϋόΏ\Έpx,bώύtΓ 7ΏuDΕeγƍJǞͺΫ·uλVωPcΩ²eUt/ρ›s:[πΞζΝ›εΆeΚ”±PKμŠξΩ³‡>LW_}uμ±X³κΏc~°˜Ρ%K–΄ΨΣΨησ Ÿo*Uͺ›l¨•ν«^½Ί 5‘ # h6B)σ<*_Ώ²ε4gξ?#[Uχ1ΝFΌ˜yΥ} Asζώ3²Uuις8C‚fg8£@ΠμdMh‚ζΜfhήΊu»œΕyι²TΚ–-tFU­™υλΧΣ™3g΄Υ€Ο;vΘ›ˆ‰Š­@Π¬˜C`Žg”ή~‚ώoYδφ—ΜE+λ—ςLΏ£νHΦ¬Y©xρβΡ‹i~Ά)žDίύwΨk’As4΄άΟ A³9@ΠlŽ›Κω°Ν[>… Ωœ?!h6ΗΝΏTΌΝΠ|δΘϊσΟ?ύ»π]‹¨R₯ εΙ“'`›*+,Φ¬X±’*ζ„Ψ‘Ί}Ϋ·o§9r?°ͺβrΰΐ)v…Ν{‡EλόΦ R₯Τ/`Ρ:‹T»ͺώ;ζγxΎ|ω”ΡφZ­Ÿ8q‚Κ—/―%)ω A³sn Ω:k•―_Ήw4{ίΗ4{ίΗ4{ίΗΦ{ˆμ"A³]$Q€€€€λ hvέρφyj =P»έέΊF}ρω*ZΉς+zώ…ώΊΫ$²ΨˆgΝΌω曍dw,ΟΤτύχίΛφξ½χ^yƒΔ±Ζ 4΄eΛΊμ²Λ¨X±br;›…m+T¨)RΔΩ† ΄ΖΆU¨PΑ@Nη³$ͺmΩ?ϋrŒYψω*₯θμsυ)#―ώŒΙͺrγ™ΆψOΕύoͺ;vΜ’m<«ΟΒgχΒΜψ˜Μf_:wξνάΉΣpΣ,ΎΆcVen“»vΤeΨxd΄D‚fsψ h6ΗMε›°Ν[>… Ωœ?!h6ΗΝΏΤ’O—‰kδΥa―χό³—ZΆμ@Λ–Ο“³βϊ—ΥϋΞc½z AƒϋQαΒ…τ²ψ6mΪBK― =;ϋ¬|9yς$-]ΊT>\’’’δ΅+χOεγw<ΨΑ‘•_ΙΕ²ͺοƒyίΗyίΗΦ{¨V 4[χ‡κηΔήχ1β οϋρ…χ}l½‡¨Α.4ΫEυ€€€ΈN‚fΧ]ΰ3€oX._±’FJY²dρ₯σΎω8`ΐ‹T­ZjΡ"%`[4+,6ba\έΊu£)σΌ,\[΄h‘l§U«VΚΝΨ±‘Ή]@εΡDΆνΒξΓtκεtvεo”‘vQ$›­bIΚΥςvJͺ_3Sg«Κ b£Lέv£Q±ΡO?ύ$gΊ [‘ί†rεΚY]ψU·|Ύ‚ Ω*IηΚCΠlŽ5b sάT=qo`›·|ŠÜ?Ζζj·V*^bŒΏώϊ›mέ™ψ M<#jπ²|ωJJM]Hγƍ$~ ,As$BjΏΩz•Ο/lGLΑΪ’Ί!8²ζ_.­Ί!8ςΎ­χP­ hΆξՏKˆ/ΌοcΔήχ1β οϋΨzQƒ] hΆ‹$κpΝ»ΐgΐž=ϋ¨^έ¦4γύwθκ«+ωω˟n£¦MΪ‚οS™+ΜΏΎ‚欆W 62Œ* £Κ’°-ΐU†WT屑ad4*6:~ό8­^½šxΆζΜ~5ν 7ά`h–ΐΜκαmρ"6ŠΤDΪA³9o#Ζ0ΗMΥσχΆyΛ§ˆ1ΜωΣhŒavk₯β%Ζΰ»5j-hnήΌq@§ωΝΦkNO?Σ“ξ»ο.ΉΗ φν;@·άrCΘœ‚f‰)Σ*ΏΩpΥνƒΰ(ΣέΛΠFΥ} Α‘!7fšIuCp”©ϋ mTέΗ†:G™ hΆξ,ΥχYΔήχ1β οϋρ…χ}l½‡¨Α.4ΫEυ€€€ΈN‚fΧ]`ΐŒ³iμ[“hΒΫ£δlΜ…ΨȜ?£E5³˜ωϊλ―םAЌuρ"62Σ7―– Ωœgc˜γ†σ8Έ™#})ΔΡ3γΡΔζZ0_*žbŒ_~YOνΪv£!Ο?Cuκά+ΫσΟ^κΣg -Ož2N€e“0fϞOοΌ=EΞθœ-ΫΕ4J4ϋΣΠςΉ…-Vέ>Žτχ«hRUχ1GΡxS?―κ>†ΰHίoΡ€ͺξγhϊy!hΆξ%ΥχYΔήχ1β οϋρ…χ}l½‡¨Α.4ΫEυ€€€ΈN‚fΧ]`ίdόπÏhΔ«oί„δΏττtκΩλ zδ‘&†^%PaΠ ΝA@ BldTP6•Da[³ ͺΚ b#ƒ Κ­Ψˆghή±cνή½›xf@^XΘ\ΆlY*UͺTPνΦVγIld­§ή) A³9_"Ζ0ΗMΥσχΆyΛ§ˆ1Μω3ΪΓ\+ζJΕ[Œργk©ϋ“OΛqR₯Jˆ8lœ•yΠΰ§)Ožά>‹>]FΛW¬€Χ^{Iwά jAσ’Τ£Gg_ύVΎœΆήCΤ`šν"‰z@@@\'A³λ.Π5€EΜii'δΆΌyσRΜIΊω’M„ 9ZbσCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒP2ž‡ΕΘGŽ%ώLJJ”ε5^Xœ4Ϋ㕏αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8jΝζpCldŽ›Κ’°Ν[>…ΨȜ?!62Η ₯τ @Π¬Ο%R*bŒH„τ·γ<Ο%R*ΈE"Ί1F(#)ˆ1ŒPJœ<4Ϋγk•αάCެϋYuCpδ}Cpδ}[ο‘Z5@ΠlέͺŸ{_xίLj/ΌοcΔήχ±υ’»@ΠlIΤ   ΰ:š]w£@Πl7ΔFζΈ©< ΫΌεSˆΜωb#sάPJŸΝϊ\"₯"ƈDH;Ξγϊ\"₯‚[$B‘Ϋc„21’‚Γ₯ΔΙA³=ΎVωΞ=„ΰΘΊŸUχ1Gήχ1Gήχ±υͺUΝΦύ‘ϊΉρ…χ}ŒψΒϋ>F|α}[ο!j°‹Νv‘D=   € Ωu8j‹ (@EŠq΄έH9s†<(³/^œ²eΛ©ˆ£ΫΣ({φμ”+W.GΫ5Ϋ–#GΚ™3§‘μŽζaΫςεΛηh›FƒmFIζS•[zz:ρŸŠϋΫιΣ§ιάΉsΚΪvώόyΚ›7o £Xcα s+W¬€50ΑŽ1Ψg—_~Ή"Ζ0ŒΛ—QΥσΫ|nŠκ‹ͺάcDεF_fŽcψp$όMΠ\¨P!%γΝAͺ‡βΕ>•γ-fΘγNgϞUςΊ >ΦXϋdσy;ώόΦ*Šaιx8Ξ¨zmΒnQy|EΫmψXX½zumŸ1&ΐ‚fŽ3ψ~«ΆμΫ·OŽ ςqIΥc“κΗ%ΔΦχjψΨCΔΦψqiή_XγˆψΒΏD* As"y}€ Ω{^Ώ~½ΌQ£Χ3Ψη GΥΓlλ… €Ι,8RmΙΘΘ ώSΝ6Ά‰f§’O5ϋ²dΙ’”K5»Ψ(Ψfά57՘qψ7 Ω₯}οYlsjΆ©f—?7Umγ›QΧ]w]l„Ϊ£"€#*\†2σ±•cΒεΛ€κ9I³‹ UνΨΆ©ΖŒύ¨ΗUτ©f›ΚάT΅―‰―Ώώzv+›9r„ώόσΟ°΅±”―YUΌne£΅c€Šϋ¬Uuω˜Δ‹j1ΖOεc&Ϋ¨ω—Ώ«Ί²ό§ͺωAΆMe~μ_^TΆQe«ώ;fί2ΏJ•*)+^eγmΙ,Ζΰ{[πoJΕƒχ^TύΝ³mͺۈψ‚½d~ΡόΛ5¨Ί²ό‡ψœŸαcsάόK!Ύπ§ορN‚ζxχ μπ€ Ω‡Β3_΄'υ:tΰΐ™Μ³'ͺΆπΎΘβ΅Β… «fρ«¦yVΗ‚ *e_hοΩ³GΞ0tΩe—)eΟHΛϋ"ϐ‘Ϊμ―<ΨΝΏφgžΝΡsƒ 9zf\‚fsά h6Η ‚fsάΌ\Jε8ΉCΠl}οƒ ΩCš­ργ*_{³}1k GΦψy±4β k^… Ω?. A³u†4[cˆψΒ?.ψΒ:CΤ šΥρ,°H‚f‹γ¬ΈΚƒ|4GΏ3AΠ=3.A³9n4›γ¦ςMUˆΜω₯τ ΖΠη)‚ζH„B·CΠΚΔH ΝF(…恠9”‰‘ΔF(%V•γφΝΦχGš­1„ Ω?.­ς΅7ΫΑS°Ά@pdŸK#Ύ°ζUš­ργ4[gA³5†ˆ/¬ργˆ/¬3D κ€ Y_ΐ‹ hΆ0Ί«<ΘAsτ;ΝΡ3γ4›γA³9n*ίT…ΨȜOQJŸb }.‘R!hŽD(t;Ν‘LŒ€@Πl„RhšC™IAŒa„RbεQ9N`O@Πl}„ ΩCš­ργ*_{³}1k GΦψy±4β k^… Ω?. A³u†4[cˆψΒ?.ψΒ:CΤ ]A³˜2Τ1–€Δ’@Φ¬YιΒ… ±luƒΔ²eΛΖ‘΅‘¦BΠΚΔΛ)*ςAΠύžAsτΜΈΝζΈAΠlŽ›Κ7U!62ηS”'€CŸK€Tš# έAs(#)4‘š‚ζP&FRc‘”XyTŽΨ4[ί!hΆΖ‚fkόΈ΄ΚΧήlGLΑΪΑ‘5~^,ψšW!hΆΖKCΠl!ΝΦ"Ύ°ΖK#Ύ°Ξ5¨C@WΠ,.6!hVΗG°@@@ΐ š ‚ςH6•ω hŽ~'ƒ 9zf\‚fsά h6ΗMε›ͺ™σ)Jι@Œ‘Ο%R*Ν‘…n‡ 9”‰‘šP ΝAs(#)ˆ1ŒPJ¬<*Η μ š­ο4[cA³5~\ZεkoΆ‚#¦`mΰΘ?/–F|aΝ«4[γΗ₯!hΆΞ‚fk _XγΗ₯_XgˆΤ!A³:Ύ€%    @Πl Šƒ€€€€€€€€€€€€€€€€€  hv:šˆ šcΓ΅‚€€€€€€€€€€€€€€€€@, @ΠKΊ¨@@@ΐQ4;Š€€€€€€€€€€€€€€€€€- hΆ#*PΝ*x6€€€€€€€€€€€€€€€€€@t hŽŽrƒ€€(L‚f…Σ@@@@@@@@@@@@@@@@@ šΓ€A2€€€@ό€ 9ώ|‹A@@@@@@@@@@@@@@@@‚fμ   ž!A³g\‰Ž€€€€€€€€€€€€€€€€$šΘΩθ*€€xΝ^χ0ϊ                ΰE4{Ρ«θ€€$(šΤρθ6€€€€€€€€€€€€€€€€@\€ 9έγA@@ό @ΠμOίέ pόx-^Ό‚ΎύφΚΈA7έ\“κΦ½ ,ΰ†9²Ν­[·SΦ,Yιͺδ²6όυΧίΤ³Gš›:•²eΛ°-–+τωη_βE+ˆyUͺTžξΰͺZυ_³‹-§νΫwP—.ϋœψrξάyϊβ‹U΄|ΩtώόyϊOεŠtλ­7*a[pwμΨI'Ož’ΚΒFmqƒ3[Ύό :wξœf†ό<{φ•,QŒnύΏ›ˆ}>`ΐ‹Τ€ICͺQγΊ€|±^αΆΏωζZΊτ3ϊgχ^ͺ(φ·FΥ“ŸάΆΆn}ωε7tϋν·8zώφ·!ψϋžφΜ£ 6RΡΛ‹Π 5―—ηφόωσgu||~\χλoTΊtIͺv]Ίϋξ’ ΆωΓ`Ώϊς[ΊεΦ|Η3νN~σΟmτΫo›Bšδsϋέwίξψq?ؐ={φIŸώπΓjΚ•3'έsΟT»N-ΧΈq ΄θΣε”%k–`SεzŽ9θϊλ₯%‹λnw"ρΘ‘£΄rεWς7zθΰaJNΎ’nǐ믿–²dΡ·Ϋ »Έ Ž%W\%c£΄΄4*_.™¨]‹*V,η” νπυ ΛnΉε†€tmE³wΩ/θθΡcTεΪΚΤ AΊκͺΐk--?>Aΐ-?ύ΄VόŽΚS—Ήe‚n»λΧN³gD{χμ§+(-bω[θΏβΪΗΙ1 ]ΓώMδγε’O—я‚_kTΉφjΊCΨWFΨͺβ’7.ঝͺΗΜ&[όβ!ž`6|όκ«oiυκ_hηΞ]T²d 1ΞSξΌσ61Ζ‘Γ-|νF3ΘμΠJ€ψ‚Νψωηu2ΖέΆυ/qΜ)EυλΧ¦κΥ«Ή«9„Ν(L@εψ7\ΌγΖΉΏ #Ε;nέ—ΡlŒ4NβΖxΉf›ή§^Όγ¦Δ;nϋ˜ορ=U«Ύ•χΰnΧ·υλ?@—_^T"vkόάθ}‘νί·?Δζ€ΨΌΒ7Ny”Nœ8EžνMωσε₯U_}G©sR½ο§ΑƒŸ–œά°-Έ«<ρΐύ)WœώsΓ6ήΗΨ–•=ώΆ^vY~jΥΊ©τiΗ=ι‰.ν4σώΦ£ϋ3τ£ΨΗϊθEeΚ”,§σQΟ^OPλΦΝδΝL§mc!ΦϋοΟ!.ϋ/II9ˆ…Δ,Πzoς[T­ZrΪ6°>όuΉίσ`!‹ N>EsΔo’m{ζD)’?}ϊ4Υ­Σ”RηMsTΨφΙ'Kiπ αtύwKρΠΑC‡iΔ«oHŒ©σ¦SΡ’…… ΩΫό}‰ο K,υΪXZΊ,ΥΡί_Έ>}χέOΤ΅KωΛ#-–ΌόςλtμX}πα»tε•W„+στωσ?₯_A­Z5Bαι!Ό3z<:uš¦Οx›ώσŸ 1·Αh,ž8pMzχM!\¨j΄XLς=8NΌξϊͺ”~&έΧΖ™3g¨Qγ©\Ή«|iNα֝:φ’Z΅ξ”J:|˜† ~EΖhσΌ/ΟNΫtF0zϋνΙςBΆY',N«4yςϋ2NκόD;͎}η›­M›΄₯ͺΥ‘fΝSΎΌyh›Έ)Θ~ΎοΎ»h谁Ž] wšγoΎV9tθυ{Ί»EύO―9¦Υb΅ΰ2±\ηλ·~}3Σ{θ“}έ΄i[Ϊ·w?=χ\!R/F+–―”φ2ΗΪBˆT πΛ/λ©]Ϋn4aΒ(Ίρ¦*˜$―»ή{wχΌγ‡*X ω‹#₯XψΓί“Χ·n»iΣjΩ’½Œiψa\ώΝΟώpžΌ<δiyύα¦}Αm‡ΞηδΊΚ1s02Fΰ$/ΆT'ΨVG5yΈψρρ'kΦ¬N›φ@@P9ώΝ,ήqcŒœροΩHΌγΖ}m—62NΒύpzLZ³/ψ3\Όγ–Ω>#ρŽ›>>° ₯ˆϋ\|NξΫ―»ΌήλΝwhΛ–mΎ1'·ΖύήΉN<Ζ;nϊΨHΌγ–ƒΓX+ hΆBeA@@”"A³RξH(cψ¦HJJ!ΈƒXΜμ?ΣbM:Kζ9vƒξΨ±γτ•xϊš…1Όtκτuώ ί¨οςΔS‚Xν±ψώι'ΛθΥWΗΠ‚…3}3½r;šΠ‚g{½ϊκJŽVπ έ /ΌJ»wν‘qγGˆ:vνϊ‡ΤoAS¦Œ“B·R4°­―Ύ2F2β™ΰfΟ™μ³Χ Ϋ~ύuƒΌΙ2yςΨ€ύ^³—?έε›AοΎ;~<+ΰ¦ΟLΐ³“³—…vͺ Π2§n]ϋRι2₯θ™gzΊ"ηέiΩ‘XVΌψεώn€iΣ>bpήηΞ=λΈ Y;NΌ5v„œ9]3ŽΉ=έo₯§§Σ¨Χ‡ΚO7Δ֚=ψXΰ·l3u}k’œ]…g$_ΌdNΐΉ4νFͺ“o,=X―=ήΎ5΅h‘βΛΞΏK>―ς,ο“§Œuε<Ο”ΈQkίΝΝ8ΆmάΨIβm«Ξ‘Ϊv7>΅XƒΫΦβ 7μΰ6™‹_‡ δΪ ΉαϊΞρνχ§Θ‡”xF\mα›μ,@»VΜ’9δωgΒΖ#Z~'?g̘Msζ, ™β ΌBHμτΒώμά©·|ΫH·'nδ™‘¬Χ\ΔΎ―Ή"’gΫτAwΛίiΜ—τβΒ[·κδ{*ΦάxΪ°αw)f>|ψ•-[&DΠΜφŽρ&}+ήό1gξʞύ›6ψαΉΞzΙΨ35ΗΪ[¨?3όΖ„ Ρ;οL•ΩTxHF³W‹ε§N/ΧZϊ‰'Εyη1ρ l³€XBΫξΤ'7j%όx΄Mσ€fωϊ‘vXΆ|ž2oxΰcRΈqγ\a›T!4 FΖT<Ž»OhόX7uΚ¬σ vΫ?ή]Ύέ xμQ+λΔ§vœ‰4fΰ”8ΨH|Α\V‰·οτcό0ΏQF[XV_ŒG܏κΤΉWKΖ'8F@ΥψΧHΌγΖ9;F;EŠw8ŸΣχeΨ>£γ$|œTaΌ<³xΗ-wάς1ΫΗ ρ›Pόˆαt~°pφ‡ъΟζΛ·“ͺ4~Ξφωία}Π-wάς±vœ‰οπ½•|ΜΗ , -š£%†ό   Κ€ YYΧxή°Υ«¦ή½ž•ƒΑ―Xδύϊ6³ώ>E·έvsΜYπΕ?‹Vόš†ΏTΧ \†ΫP!žΠŒεοΌσ6ω§₯iŸΛΕ ώΨ΄ΩΡ7­imkŸFΗ τb"­;?Δ|-Π¬i;jΫξέ<ΡΌπό«βzλ#9N’ C*ΖΏFγ7ΖΘΩFγmΫώ +hŽΕ}m71:NR ΐeJŒ—gοΈεc£ρŽΣχή4σψaσfΛ±Έ|ωςiΙς“mΏγΏu)5uš|ې*γηzχEΨ`·|l4ήqΛΗFγόωσ…4γIΐO+ € Yaηΐ4θ@Π/䢏ΐ„ροΙoαf"aΡηαC‡]ΨgΗ’Ε+¨GOc‚ζ/ȅ}ϊ ”3άΥ―_Ϋ6H,€¬S»‰œ QO€Ε’…œBDΝ3<κ VπΐΖΨ·&ΙΧv8{2U¨l›m<˜Γ’σE‹g늸YμqΟ=wH!ΆΣΆωwRH晬σδΙ-…;‹Ορ‰-œΆ}«η9ϋw₯JhώύB„KT€HaςŸeσι šyΰ„ΕG½ΛvΟ4Μ3-_ρ‘δΓΰ3gΞHn,lΣmΒ ΠΖ6ŸjίΏώ'1kτΉ*TP&»ΑmΓ†τά³/ε5y6ξΎβΨΐϋ\8A³6hzΧ]·ΙWΨΫ5σ³ΰ™YDP΅Ϊ5šIΎOήΞL<ήΎU«VEw°.VΆωŒΐpˆοο|με™ΊτΞ§™!›Y,β‹΅kΥjηΦ…Ο³δήDqΒF޽XΔ―Œ^ψ >¦πL‹ΑBμΰΌ±^wtϊα‡54ανQς8Φ©σc šωόΩ·Ο 9σήΡ£ΗθΤ©Σς!7·χ5ν8Ο³fjςΉšΟ3ό/ϋχ1ˆ]η+Ύ? ^Ώώΐύi€7¨zjVͺ²T–ΉρC\Oυξ"ZΞl›₯F ζk~Σm#ώEy_δψqι²T_¬λΏ=Vίω΅¬νΪv£ι3ήh—`6tTX{Ή?ݟμ'γ$!t¬μD½ ‰ΐ¬Y©TΎόUJšωxΓη–FτΓύνηk7ΖΌMγ'Όζš ™Γ―Ώ>ŽΖ‹Y냄β7eπΓ>οΎχ•oΣq{‰4.ΰ–}ͺΖ£cv?˜«΅oζS•xB³ΗνNœ8‘;Ά™Ω6­|,?ω8ctΜΐ=ΒΕό{ζ±p3ΐσ5?ˆωρ'³H+Š%GΤ ώβ!ώ ο8=FΞά’‰wΒ šcu_Fσ«ΡqΎžqz,_³QϋŒοΈαcΆΝhΌNμkσμΒόΖ#m²žtδμΩsΎ7F1Wm EOΠμΖψΉή}f햏3‹iό·Ήαγhβά#α½KΌ€ 9ή=ϋA@@| hφ‘ΐ h‘½Ε¬‘5j\§Ϋr€φΊ…lJ䢍šΉόΛΡ―§ΰΧΩa JΧ Aδ΅U―™ρH›]aΔΘεŒGΑƒ<»\ξΟΟ2Ε’‡R₯JΨaR@<[ΏWΫψωg_3Ϟ]ίΑ±Φφν;|Νσ Ίςyۍ…Ο•)[ΣΤ©γι;ρΠΰAΓ}fT¬Tž^|a€ˆGΚϋάόΒΏΡ>O €"E ϋn"ΊiΗχΖOΏΗΡTωκJς7Αβ˜9bσ·ίž"χΏ’ΒV§—Hΰp7cm'³ιΠΎ{ˆ 9ͺ\Ž Ξt}ζχX3BύρA œΐΗ-λY΄\Ίtɐί3ωα>Ώ„{@ά ›ωš‡m ~Π‰Η1ψv‡,Yšκϊ ©lc€q'xι΅‘j ‘ΩjtŒ@Λοφ§jρσψε—υς‘Ÿ#^ ήq«Œ΅yLμ›― ^½Π„ £B rŠ#σ2:fnμ6–Ά†‹/"ΕCΪoΎ‹c«^½j,MDέ B βίpρŽΣcδ<£ρNπ΅Φcy_F³Οθ8‰vμqr,_³‘?΅φUΊ’Ωg4ήqΓΗΜmΐ€Ε[ΐκΙ1}ΛOK;!MOJJ’aΓέχόW;=Ά―ρ ώ w_„σΉυ;6οΈεc£ρξ‘οmXG4Η£Χ`3€€€€.šu± 1Ζ΄žΰ&ƒ/nƒ·Ηr݈ ™g²6l}ςρRšρώΫb&'ϋf?ŽΤ7ζ7HˆRΦ―ϋMΞΘ7ύ+X`ωHΛςΞο‹™‰σεΛ©JΛΫωIω·ί™B›ψSΦ5eΚ8ί¬°nΩΆ`ώ"3f‚o6I½}ΚiΫX”\OΌ*œg9ž9s’xUYqΙkύϊίελzλ7¨Mύϋχ’iώ³:π>ΩRΜψH«&Τ£Gη€Ωο,;οί ˜ΧΛβΥί4dζ6m_δύ©i³‡ΝNΨfKQ $ΐΗUΝαLf‘.°Ώωζ+τ·έ.›cιόΠRΏΎƒhοΎύςά~ν΅WΣ{“ί 8ζ:fΜΏ ±¨‘aƒ–€=Μ|ΜwΪ­½ΧG“7R‡< Υ©s―vρLΘ'N₯χgΜ‘yMwevJ>ο6οΈαcφ–-ύ\<χ‚Ό.Y΄xŽcΧl@8ΑΗΩ§„ΈŸ[z ΝzTζ&p7mςo›OcߚD“'Ώ/&~nΈ‘ΊfΧΏσ5ψρ·zυ/ςΑ™ΗΕhžo’ΡAά0ΠθΈ€Άq›ͺΖ£cwάιN|¨ΩɟͺΕšm«V}K={τ§Φ­›Ρ½χέ%nηλρ+VΚ‡Λxζζ{jέ‘ewόΣ蘁J34σΨμ‹/Œ )SΗιΖ;Ό/ψOΰ8T4˜Πβ!ώ ο8=FnG ο¨p_†m 7N’{œ“֍wάς±ΡxgΛ–­Žί{cΏ΅mΫUΌ%υ7ωζ 2eJiXεηκΥ?‹70>E ?ž%ΎΜυρσΜξ‹°ΑnωΨhΌγΦοΨhΌƒ{$»?Vβ”Νqκ8˜    J‚ζP&H‰=m€'3ΚΦ­Ϋε΄6»iμ­ΊΤB8A3 byΆ6%Φ‚DΆΎύζκΦ­ŸœΉρe!:Ν›7o3 x@_[xVf·^ίΜ³πlΒ Τ‘§mγΧw¦ιγνZQƒ†u4$Δƒ{½{=+ <“/NΫζ3Fη .ψgυκέO·‰Ω9yF™Ÿ~ZλΛyϋν·Θ™vc%Rη›•S¦Μ|¦κΎψ½χή―\K£'ŸμθΈm>βΛW_}GΟ Nzβ,fθ$7ΝgI9rΠΰ!O‡Μ‚μ/RΏβŠbVΕΖΎΧΦqŸx&lΎ±Λ…χ‘N{ΙY:vjCϋφξ—ƒ›mΫ>BΏΎ‰{¬₯x°€Š+ΆΕ²ί¨ό πoUΕšYΜ0hΠ0ϊςίΈ*φgξ;ߜθΧw°k³-ϊςzξΉ‘’ύδρŒνԎωέ„6άrαϊγT:ŸxζνeΛ?=·ΖmFλη_θ/γŠΰΆψ©{k=$ί$ΐopk9° xSAJΐChnΩΒνj7ƒ?œ=Y>`ζo οs―Ώ>ŽώΉ!Rg[8Ξν+fOηγΖƒ>@εΕCpοϘ-DΕ§δ[>&MšvΖBΎΨω=3Aσ~!'T‡ ΩN/ .;„ψΨQ·Υ:Άoί!bϊžς·>}ΖJNΎj•1-―]ωΏΉ)¦ κTΝΈ€NqΧ“άŒ!΄Ξ#p{–aΆW΅x‚m:{φ¬>5Χύ]δ[<8Νωβ‹U4dπΛ΄dι\ʝ;·&GΏ3Έρ¦ŽΪ腋/X υ€ χ—vπxϋVtΣM5· &6ͺ†‹wT#Ο,ήqϋΎŒήžν?N’7o^GΗ€5{’‰wTπ±f·φιοόυΧΗο½iγ…e―,C½{wΥΜς}ςvΎΨOL’ΒψyfχEΨh7|MΌ³[L†δΦύU#ρŽ >φν|ψ& @ΠlЁ€€¨G‚fυ|’ρ@ΟΔφ@νZ!3ΑjύβσU΄rεWΔ" §—H‚ζzήOƒ?MS§~@ί™J±ž₯ωΒ… 4|ψλ4/υczφΉ>Τ¨Q½YŽ΄Α UΦ―_[ˆyŸ”7OΒΝXb•)?ΎρχΝτH«&ΊUύφΫ&!λ/o0|όρ)ΆvΚ6ΕΠa)§xΥ-οoΌμί€^―ζε™}s‹™φX4ΌpαbGmΫ°a#³ƒ–(Y\—ΫΒ‹i³˜€gτείfΚ$_%\§vzόρVΤΎΓ£Ίe­&ς {ΈΧ•qέΏώΊψwΩ½G'ΗmΣϊΖΎ|ρΕβΥΕyΓ2:ɍνα™ϊ‰+V,§™ιϋδν,°n/f'ΣΔxγ§‹fΔ·kΫMΜ€ώΊx•]lgWcΡ$fwμΨ)5j^OεΛ_EM~Œ^ϊœD°ΨΪ Ϋd£ψ1&ΐΏEΥΝ|žd‘k©R%蝉£©dΙ1¦yυk<στσ4pP_9ΫppnfΨB<¬Δ7qœž‘gζcΏ}’8ςŒ―Όπ¬Β―Ό2ZˆNΛΡCΥ£k«^M—_^4Ψτ˜σC\?ώΈFΖz3PςξO‘S§ggHέ:Mθu1³ΆžΟΨ§/Ž|νEWg._Ύ|%½ςςh!ζIu\τ­·sπu‹–Ǐ-$ήζό,xξΨ‘GX^±HΫΌy+­]ϋ«œ΅Όt™’t睷Ӛ5??€6nάȐ‡¬baƒVg8ΑΟΔΕ3Z‡»žΫσΟ^jΩ²ƒό»;KΈΦ|‚@8ΫdψzšEόΓ€gŸ’œ9“ά6IΆΟ3EίP³zΨ‡Šψ΅Σ'NœϋPC¬;ΝΈ€φΐs¬mς―_εB³ΣθΏeΔνE΅x‚yπω±q£VrΜ0IŒM/Zœ˜:oΉωpΫiΜΰκ«+›συpρΗbmλ*ΚΛ!.^XάΧθ‘V4~Β( ži38/ΦAΐnρ†‹w΄σ¦SγχΑμ#Ε;š ΩΙϋ2ь“T―^Ν•ρrΝo*ήaGο>|DŠ]τ±6v_³ζuΤ±ΣcΑ»₯\瘷J•ΚT­Ϊ΅rlŠΫη6ΩΦΜξ‹pmpςwMΌsθΠaΗ}Μ\΄%RΌΓβ‰F ŸρJ‚ζxυμ!As$8D€ψ–‹W,Ž54D,ΐη,šΰ fΌρ,―z ίhΪ΅s7ρkΝx9xπ|V¬°μΏŸY/όΤ[ΟςŸa;U±΄EΓσ?ϊDΞΰΘόxα›ΎόJΟΓ‡Κ™£‹+Jό \§mϊHΊφΪk¨αCuCΈρ~Οbά””ϊtλέ$…°ώ3Κ° •Ε³“&½AΥkT )o5α»ο~’ηž}Ι·Χ§Ν2₯k{ΗmΣlўψ.f('Ξb±SάΨgμ“Οφ֝%·³ˆςΡ6Ν‰_YV·NSςΏYΙ―³Ÿ8qZΜŠΰ™BNž<)fΎ¬₯!τ}ςMΐGZv”³­²ΟiΫ|†ΰ 8@@ϋ-άΟUα¦ΦUνUŒΔηζψy€ϋ"ά7~ΗΡΔ;,hvϊwΜ\ŒΖ;ΈGΒ΄°Δ;=A3?iœ?0ΐ>€}ϋφμΨβmΨΊu«Έ&ΓΞψ矽5ͺί™!f( i|Λ–­rΫί;v†ls"aγΖΝ£_Ϋu}2„°Ζ·νΐƒ·ά|_†˜©Ω—fΧ!DΙυΪ،GZvΘHOOΟ΄Ϊ?ό(γ­7ί Θ#^£$9YύK@Ί+b€IΦύΟξ=!Υ±έC†Όœ1rδ[r›ΣΆ…τo‚TΞhά¨uΖωση}YœΆνΣO–fά}W}] ΈdΊmΫ_Μ°ύγέ3Δΐ§ΟVώ"nfΛύmώƒιv¬€₯uσυχ!ΥρΆZχ4ΜX΄hΉ+Άi±·ύ_ν !ΨΧ’>ζΖνυθώLΖ›oώφ4£ΔΜwό·nΖ―ΏlΘ8uκ”τ½ΈΣ6Λ}QάθΘhυHΗ€γŠ/ƒΕ/Ϊώvφμ₯cWΙv?σΜσC‡Ύ&[pΓ6‹]CqˆŠ€φ[ wμˆͺ2‹™΅ψηΛ}m±&{‹‚kησώ7ά“±oίώΰM ‘΅<ΖΊeΗgΪω1ΨΙτι!ƒ“ΗέΰνN¬Ο˜>;㑆dŸΈνω}*ΟQ§NvΒέ6˜Q³fν2Ύώ'ένn$rΌΟ±ύώ}t›Ÿ6νƒ >wϋ_θfŒA"ϋŠχ7ρΪ3‹ΝC2ۜΐρY‹ζ‡0ᘻAƒ–B4"Ηά—eΛΎΩ†p‹ΐΜ™s•:‰οςx΄sηn·dΪξ₯k³!ωψό(ސ!^‹²Νν½q7lR=†`&FΗάΰηί¦ŠρΫΗη:Πcαν?ΌNώƏ?Ξ«,—~Η™Έa\Έψ‚myε•1:υ ίγtψ›Χ±€€Σβ!ώ ο8=FωΖhΌγτ}ΆOSόΖO5›΅OqΞλτXΎf‡ή§^Όγ†£‰wάπ1³’py>βλ”lίΓδϋ5nŸGΊ/ΒΖ»αγhβ·|l4ήqΫΗ!; @ΐΦύk• h† ;d§ήI°‘#φμΨ°¨Έp`ƒά"0}ϊ‡r°€ρyΠ‡—uλ~“ioΏ=Ε-³2Β š7mΪ"hf#5απ?¬±Υζ£GΙ-°€HΜ2ς§‰³τ+ؘX `΅›,.εAρ„Έμ; 8_7XτΔƒzΌ8m›lT矞œΆMΜ$#oμ²H}‡μ3Gώ[³ζWιλ±c'IΛ9Mo”Ζc)€7οciΗg+ώησ)?Xΐ7£YtΛ‚(·lc0μCΎ!ΘƒKz‹Άi›όPοl‹œψa κ°ΰ™ύ¦7 Ζ}`qz¬ŠΰNΆ‘oŸA6nOΜr”1zτψ€Z7lc[°€€SψwΙΏEνœιT»zνΌϋξ ω»δ‡τΞλœΖΗ 7–?6m‘η€·ήš˜qμΨEaΟψΕΗ©—^)qnΨ¦ΧfΈcΎ^ήX¦-]ϊΉδΆ`Α"ίω‰c8ζ•™06–6iukηnέϊωΔθgΜɘ;g΄Ωm!1ΫΗηυΝ›ΥΉ&εύκ!Dηχ7Ώ—}:ω½χ%·ίCCμψ'ΗjgσΝΎί#ΗΌ―…{ΐ*ΦF²υΝά._ηρ ΰ… ϋbK~ ’ca-ΆŒ΅}¨Œ'π1ZήΞ||,z8₯MΖΘof9rT7fΨ»7Tta§ ‘κΞ1·λ–ΑΏkΆ™Ύ~δc?ΘλζC3αμΧ—7Φι*ΗZߍŒhyέϊT1žΠX|ςρRyδ1mƒΗ…xœΟsζΜΧ²Ίς©ύŽ#Έa\fρ…φπ8Ηۚ œΗ:xbΗ`7 Νψ$ zό.ήqzŒœ½MΌξό«ϋ2Ϊήgtœ„ϋβΖXΎfgπ§/7|Μvwτlζς±φ1ϋŽΟƒΪ―σίλγs΅vŸνρsζ“Ω}f喏Ζ;nωΨhΌγΆΩ‡X@ΐ*=As(ΕϋΤΣ°@@@ ρμέ»—’““―γθ±D`Nβ"[Ύ:™_ρΙβ©mrϋμόͺι%KVP8ρ«Νϊ<5ζ¦N•Άϊo|οέ4cΖlZΆ|žxEUvM¦ΏσkκΔŒΒ™–oΧξβΧa-˜Ώˆvξά%Ώϋƒ/$Σ¨|…dzφΩ§ό7Yώ.DNςπoO˜PWΕJεiψπAβΨr₯LwΓΆƒώ]3[Ρ“έϊψΟ ΫNžft²8pˆΝπ->ڜžθŽ˜£φϊ΅>| *θΛΓ_΄W.X8“Κ”)°Νκ ΏΪ―w―Δ6jK‰ΕδλYΛ–-#“ά²M³Ÿ kΪ±aΠΰ~TΈp‘X7Ά~ΆcψπΧ)uξΒ°yψx±hρμγDΨ6oΰcEΧ.}HˆjξΥ» ΅h‘’{μ Θθΰ σ0ΰEj€aΘΉA3dSί~σ‰™οIά$‘bΕ.'ρ ύη?θ΅Q/QΙ’%œ6' =Žτ‘ΔM@Ίκͺ²$8“η₯·ΖΎJ5k^Χι>π+[ωό—?>§›Ϋ^Έ—_·>~όkςU³a ΗxοχΝϋ„Δ[ZκΪ΅==ΦΆ₯Œ#68°Β―„οΩ£?Mx{”ξ1βΗ׊8ιiS–*U‚vοήCχέw ό4εΙ“Ϋ Ρ#ΐ―`―P>™nΌ©†±1ΜuζLΊΈζk%_ΣŽευΖ&ΒεEΊ[ӐΑ/ΛΧ8ϋΧί AβΨα²Λςϋ'+ρ]o\ΐMΓTŽ!˜ Ÿw"ΈΙΫV5žΠΈ|φΩδ8†ΆΞŸ<4dΘΣT§ξ}Δ―7ws12fΰ†}‘β Ž'zυμO[Άl£ bΜ“?9Ξ;n$icn؍6A€ ¨†‹wά#&ήαλX'οΛψοΙFΖIψ|ιΖXΎΏώίυβ7|¬Ωd$ήqϊή›fς€˜h†¦Mύ@ž£υξΧΈ=~ιΎχΓM‰wάτ±‘xΗm³±€€UΫΆm£βΕ‹TAs¬€€€Δ šγΕSήΆ“EΜ,α%oήΌR4ιν{«wηΝ§cǎΙN±+_ΎΌήκ`ŒzΓƒΆbfkbΡ9‹9μΒΫa.ϋT<΄+mΚ–-+εΚ•ΛŽj=_Ηργiςf*ϋ’…Y*ωTΜΆ*mΛ™3'(p™η}‚X#ΐΗ Ύ‘Γ >fπΓ6X"³ψΚc?³SνXΛ>MJΚAbΆL*X°€λβ™Θ4έΟΑ71΅ί‹™UŠqωϊ‰χ7D±`P₯˜CΟs|ƒŸ…ό‰λ=BHψ&ΐν²€Œι˜σ₯Κ1χcζόκ_Š},ή”!Ζbœ$€ψΧIΪΞ΄₯]bœΔαΐθU`1-žιΈλ£L§7~J—2γœ¦cb‚κΛrf–#όΆζB ώƒ…󂁺πœ°@@ΐ<Μb…ΜΞ}™•ckcdξΔ™σΑVψ&Yœ r|ΑΤγyρE|n`=€€@dˆ1"3ςΟaΧ=ΔώTρ@@@ΐmq/hn#ΔΚ³X9xββƊ‹K7F:T•9―[@ύ΅Ω’-“#ωfͺzψ{ZsD$$·‘Yo<,fVϊηοFSϋ‘Ÿε¨Eγηυ€2ζ—Ύϊ“…Ψω ŸΨ9}ο:7τUϊlWviΙQϊfκΩ―'έ‘gλ₯lψ   `Ν‘π 6 eβŸbΗ@]'1Γσeβy΅χδς―ΪΠwš aB& βυf`<‹Ψ]ˆ1,μ΄(    <x/l<Ηˆ/”iΐ@‹cDP%A3ξ“Dη;δO >ΝαϋcpK:ή{XΜγ,–€ΌTΌŽ Ϊ`Ma³₯§Ρα'(==‰ςζύφξ>ͺκόψ("ˆ†-•ͺA+‘Š ‚ETψC¬ -›e©’TόU+Έ n` q­ΦŠ…B‹ l-¨5R7@…’%Z$Ά’FΕ‚ 4$σœδάΉ3™If&“d–Ο}½JfξrξΉοsρž†ο<ΣJ;ŒͺΜ­Ψ€ €@‚4W‡$Π\έΔΏ¦θ?ώs[ΘΠΞ‡ψ›―υ5ζZ‰Ψ@ Ž©ϊ©6!σΟjͺTixύΗ3Lj€Δz@ΖHΥω…z₯ςΓ??`~ΡXw?ηE¨Oζ±ι&K Ω?Gαw±!{#€ €@u 4W‡`  €€Ύ@ΊšλBύ‡ΉΊ΄ΝzΎhŽ©λ>‰ϊ%φΓ‹ΆX1πoLufςτ°―Ι)νšϊWΥψš@s©<Ηΰw™ς7ŒλD2W€9FlcŸ¨ίc0Lj͝½@@ ~4Χ―/­#€ €@ hώsυ6Ϊ²γ L{΅ΌGYdj﬘BΓ5u.ή_Τ•šKΎρΕ2)έWΤ|›ζMδΡΌAλjzC Ή&Ά!€$B U19sŒDά΄ P?©:ΏPTžcπ;ŒϊΉŸi@ y˜cΔ6‰ϊ·ζ±Ή³7 €Τ―ζϊυ₯u@h@Ν hnΐα­—SΕϋ‹ΊDu†@s’$i@ ’@*c`€kJ…υΜ1Ra”θ# €@ΌΜ/β•«ΫqΜ/κζΗΡ €Ι/ΐ£qƈ9FγΈsV@/@ 9Ό k@@ 4hŽυΆεu±Š±? €@ͺ π3bΜ1ǝ³"€4Œσ‹†q= σ‹Pή#€€›sŒΖQζγΞY@@ Όζπ.¬E@Hε@³VκuΛƒZΊ—1 ύκΤΊ΄ΝΙKΛEήΩωU4»&lŸ“³›I›¬Δ4WΫ/κτϊup=¦Bs8Φ!€$R€9FτšΜ1’·bO@ΜHΥω…ŽZ*ƒίadφί;Θ汍r’~Α#6wφF@ϊ Π\ΏΎ΄Ž € (ΚζdJθ©^ϋψ+ι c'΄ρ-2οžΗ4‹°5ΆΥ5ύ’n^Α~ΩU^!»7­Ρ{Α΄Χ¦yΪωoΝ/@`ŽΔQγζ5ς°@ Tžcπ;Œ ‘δ  €I%ΐ#ΊαΰwΡ9± €™,@ 9“GŸkG@ Ν47ό€¦ς/ιT+?Nz±L–kΟhž°@³;ΧΨάCeJοΚΣšώžεŒ €©!ΐ#ϊqb޽{"€ Κs χΜΧQμa>θνΎ•‹ίap_#€ ΠψΜ1’7ŸαίI’σb/@2Q€@s&Ž:׌ €@š hnψMε_©–ϋε™ΎΦ |t`KωΡΚ/䝝uU½š΅έ3ΝΉf›s]ωμ—²ΑTΉΦ%‘•§mƒό €@ 0Lj~πόσζΡ»±' €@f €ςΓΜηw™yrΥ €Ι+ΐ#Ί±ρΟgψFtfμ… €@¦ hΞ΄ηz@HcΝ ?Έ©όK:ΥςςΜύc ?d\šυΌ?Μ9D¦φnA Y1X@#ΐ# J„Uώω sŒH¬F@ J •ηώg>ΏΓΰ–F@ Ή˜cD7ώω ΏΓˆΞŒ½@Θ4Ν™6β\/ €i,@ Ήαχ£έ²lλώ=ρΠΞ‡Κ±­›$δœώ_žι?Ί―kφJΉΜk½ThΎ½w–\ž{¨ν%+©Πœ€@΄`ŽύΊω sŒθΝΨ@ sRyŽαžω:zό#sοa@ 9˜cD7.n>Γο0’σb/@2Q€@s&Ž:׌ €@š hNӁ­ΗΛrΏ<ΣSψ1Pί/Ϋz@JχUxαc]W—εϋε”vM₯§ N»…@³“ΰ' €ι%ΐ#½Ζ“«A@ ˜_$Γ(Π@O€9Fϊ)W„ €@* hNεΡ£ο € $ΚζNΏΫγ]KΡ潎υEθךΥ₯­XϝŠϋΧτ‹Ί†ΈΝ ‘Μ9@Μ`ŽΡ8γΟ£qά9+ €@Γ0ΏhηΠ³0Ώα= €@Ί 0ΗhœeŽΡ8ξœ@Β hοΒZ@HAΝ" h.-ygηW z·œœέLΪd%ζ”ό’.1Ž΄‚ Ό©ϊΜ1κvOρ‘©Ίωq4 €@Ν©:ΏΠ«Jε9ΏΓ¨ωΎd+ €@κ 0Ljm υo%Μ1bsgo@¨_ΝυλKλ € Π€š>Π nˆα^4¨₯τ<¦YBNΕ/κΒH# €I,ͺΘ£n7ζΊωq4 €@Ν©:ΏΠ«Jε9ΏΓ¨ωΎd+ €@κ 0Ljm υo%Μ1bsgo@¨_ΝυλKλ € Π€š«Γ\ΡV―#Κ¨0uωEέ•ωe²{_EοΙΩMeκΩΡ—&lΔΗ@zHΥ dŽΑ£ώ:Π$ €@‚Ru~‘—ŸΚs ~‡‘ ˜f@’V€9FlC“ fώ$Ά1co@¨]€@sνFμ €)".ζΗMbΊy9₯]S*ουλε½Φ[v”ι―–{λκ;Π¬η›ζ;Ÿwβz|1΅wVDXO[— ΤkΏpιή)[7y|ΠΧbκf €υ$ΰΗ@ζ5#3Η¨Ω‡­ €8T_hSωχόΓ݁όDHW汍l’~Α#6wφF@ϊ Π\ΏΎ΄Ž € (.ζP²Η4“'BBΞn/ψά:Οϊ4ϋΟ•Š―λς‹:½ήe[ΘM/•ΩKd` ωΗζ˜ΈΨ@ šζ Μ1βςζQB± €@J 0Ώhœac~Ρ8ξœ@ α˜c4œ΅LΜ1όΌF@Ζ ΠάΨ#ΐω@@ aš«Shnβ_SΧ_Τi[7ΎX&mLν©ggω›Žκ5ζ¨˜Ψ @ όc`πκp(sŒ:ΰq( €@ 0Ώhœ!b~Ρ8ξœ@ α˜c4œ΅LΜ1όΌF@Ζ ΠάΨ#ΐω@@ aš«Shnβ_“ˆ_ΤωΫ‹υ5ζXΕΨ@ Vώ10V±ΔμΟ#1Ž΄‚ œΜ/g\˜_4Ž;gEh8ζ gν?s Ώ―@@ ±47φp~@H˜@*š†Πΐ ½φρW2rε— zΦEƒZJΟcš%δœ{ο€\υlYBΪͺk#‰ΌΊφ…γ@hlζ‰ζ‰³€%@ΤHε9ΏΓHύϋ+@H_ζ‰[~‡‘GZA@ •4§ςθΡw@ ΠΔΡ o>Ϊ]!ΛΆξosΉ“ ν|¨ΫΊ‰{[§Ÿ₯ε"ί{lμήW§fκ|pημ¦ςΜπ―ΥΉ@@ ]˜c$f$™c$Ζ‘V@G •ηό#}ξC@ ύ˜cΤ}LωFέ i@t М£Θ5 € €€ Π̍ΐ–e|ώ—RΌ§"žΓλ|Œώ’ξξσZΘ)νšΦΉ-@@δ`Ž‘cΙ• € ρš3ώ@@@@@@@@ 4§ΰ Ρe@/@ 9Ό k@@@@@@@@HfΝΙ<:τ @b Π;#€ € € € € € € € š“bθ €$B€@s"i@@@@@@@@† Πܰޜ @κQ€@s=β4 € € € € € € € €υ$@ Ήž`iΆρN=υTyϋν·Ώ#τ@ Α475'B@@@@@@@@ ašFICΙ&@ 9ΩF„ώ €υ/@ Ήώ9 € € € € € € € €‰ МhΡ j―΄ΈX²:t¬FΊζζόν"ŸŸ@s# §EQ€@s#βsj@@@@@@@@βHΩ@syi©”›(m›6§Sih.—β’­ςρΗ»₯΄Ό\Ϊ΄;^rΊv’ͺόm˜Ρ3ϋo-­Εεv[»γ;KΧNν€|G±μ(o-:T?²Ό΄X ίΣΌY²δ˜ΞΉ©]Ν εχ ‘±s %{©n<£²ΊqyιΩ±Ϋ4’ΥN:΄)ΪΈQή+-—v»KΧY²£x‡‰μfI;³1΄υRΣ?{hλvMεΦΐΊf˜λΪh«Τφ±ΉξζΊβ[ΑαΰκΜ"[η ‘‘χk)ζήςδΫ³₯“ε[ed·‘’yγ‰σΦΙΈͺt4ζ’γεβΫ+ΓΠΙκf‘χ™*ΝsΝ.ΑAkΝNŸ €@ζhΜ±ζJ@@@@@@@@G νΝ₯[σεͺ‘“l€6x˜rδΞ…³epא@oy‘ά7ςb19γ %§wΎͺ1\‘)On’\œx‡δO»V&-©άζ?(gН2{Ζ` 9Cε.ζ<γ»],ϝb*¨ͺTΌu Ο¬kŽΠύfφ―Μυ–JώΙ$[ 9Η~—‡~Λe± O7αγήSž”Ω#aβ @sξDYφ›αΉ]UυcSyΈ.ζά‰ΘΌqgWφ±΄Hn»θbΡ̯䘐πς1•ΧεύΌuρHͺ3Ε;"β±₯Ε[₯pGΉ4ί·[ V<,3WV…ΙMeθu¦2΄«λ\S ΉΨ„ T… g=ωΆδu*’‘§^l«n‡4›ΰτ  ΏέΓ 4G9’솀§ζτW @@@@@@@@ ½&Πμ―ΞάΫT žRΈΤ„—{U…—'/Ϋd*.‹WαXd <ωφέˆ›A/έ(Cz΅!θ@ y«Œ4“5’›3qž,Χέ»;Κ‹_Ϋ¦ε‹΄ξ,?1Nͺ Wnίρ‚œΣw‚©ϊœ-¬[#g»T―Ω4ηΘΌuΛ₯»o›Τ%М=QΦ­ηˆ΅#[˜PςLΣ{_θ·²ƒ΅ι[Kzλœsdθύ^Ιλͺ†sLˆ|ΉW•ZWF 4ϋά=cŸCΔ@³Wιڌε&3–&iN…ζΪΗ•=@t Мn#Κυ € € € € € € € €d‚@ϊš‹K·‹§›1  Φ‘τUWΝ²L8ή«šœs… '_'ہχ…h½@³”Κ‚szΙΜͺΌnvοαrσΈA’{όρΑUUΆᅁ{Ο’M³]UηΚ}ζ\YΆi‘t,ω\Ή1l\Ϋε^ ;ς ¬ ZφΞeͺ,o2U–ύ§r­†¨0ν…ŒΓο(;6.–ΫζΌ(­e·l|΅ΐ„Έ+—쁦’υ݁kh.—όρέd’)΄,2Θ„ΜgT†Μ}k­jΈκGωV3ώCuόsM…μEΆB6ζ`#ή!€™ @ 9F™kD@@@@@@@H7΄ 4­/ίIΨlSιxMp₯c;j°oe(φxYaΒ³zHΆ 4―‰*ΠlrΡΕεΪcΕfnύwCvLΌy²ŒΙλ.–ΫN +ΝΎWΜ['Χ•`φWhNp 9Lh9ώ@³Θ+ΣΞ‘«–μ49ι'M<¨–΅_!δu©Ό0η*™pΏΦ΄Φλ_mΏ}.ΠΌγ•iχͺ%vϋSE{„—ξ.’ρ§^lΝs'›σ©~~―=_š@³₯δ@ £4gΤps± € € € € € € € €i"6ζβόΫdΐ$ G 4—Κβ!½dz‘©αf3(/άxͺLΠ"½fι=yžΜΣέoΛekώL:iIε†œΙ&;ΖrΛ‹V˜Πςν•λMwήͺ©½C)5aζ±&Μ¬υ–uρΝΕ&δ< 2δœέ{²Μ›1\:΅Λ’ςbyρώI2i‰ΦRΞ–V­‘σM‰ΰβόe€-Ο8§mΠχǴf_@Ω„g-›-y[Kiρ{²rΪx™ωͺ†±&ΠΌcγ}w¬Ά«‡Ώ‹_™&ͺς5.OΞ2.¦‚uyi‘¬˜6V¦?[ΩΟ‰σLΠ»*5^=Πl/%Β¦ZΆ Ek=wΚ“²hDpdΪ$Ηeρ^2]¬χ,Ω4;@sIV#€ι.@ 9έG˜λC@@@@@@@HG”4/ά΄HΊΊΒΗε[εΖnC₯*ΣfΌrδ‘ΥΛεμvM*́u‘―\ ΩΤm6UGšͺΞ.κΊ§y?ΠjοΦ@m©Μ9§—άo²Όg­’»σLΒ9ΜβU–\ Ί–ͺ}w˜°p_sΌ Thφ{}ΑmwΨΦΕ¦ΚςτΚ*Λ›L•eΗζΆΧψΣWmzψ#«eͺΡΈ¬ίMͺ `‡oΖs©άS ΩŒλx3hΞ™ΌΜTyξ|ŽςΝ2²Ϋ(Ρ8ωσVΛuέ+˜ ΝΑLΌC2A€@s&Œ2׈ € € € € € € € n)hξ-Λ6Ν–Ξώdny±δ?[V̜+Z[8hΦ]ΚesώΓ2m\―‚sεΩ2|Κέ2q„V…6{y՟Γ•+ρ*g_!«Φ\'αbΟ[σο3¦΅:r`ι=ό Ω½d ρφΎσI™=Έ²jρΖϋ†ΘΨΉ…’=όY3υμΐζUρ ¦’ςSI9wŠlZtΎΌ²βΩ]K¬Ή\ZΛωƒΟ{°}U'0ŽΖεΧΥ\Œε¬©ςΣΌAgŠ7Π|… S_¦φ]—ίš£Γ+@ S4gΚHs € € € € € € € €ι$’ζ¨ ΌTvμή'ΌΉ4Οj#mBsΜ^#εζ•Ωθφ—ζΊ]Ι*}EΞιuUe yα:ΣUcΚΑKyi©μ޷Ϝ’Ήd΅1Ηψ6oœvͺŒ5Ωaψ€Ό}χωΎ-qΎ,/7Χ³ΫάΌykiω‚’;©j|Ž©j¬νš—l™·itW’­‹₯ΫΠιvχY«6I^»VΚ₯΄t·kί:ΔΕΫ«Θ΄u±i+Η„«c­ν±?wΘ}ητ•ΉζB²―˜'kλξm%ΠμQπȁL4οΪ΅Kš5k&‡vXTγϊΕ_Θώύϋ₯U«VrΘ!‡Du ;!€ €@f μ3'ώΛ/Ώ”¬¬,iΡ’ETΟ#*¦€Ϊ)ΦydRužΞ € € € € € €@Ϊ €o 9ͺ‘+–9η ϋ;L–UσΖH Ÿ»CŒμ+3 ΄‘™·nΉt―žgω ₯ΕRτqΉdΣI:ΔzlΝ-'hk©Ό°x₯|¬Αγ–rS›9ox^•M©,ΩK¦«‹©ςΌnΡ[Ί†Γ#nςWh^gΝρηί&&iuνκγD 9"?@΄Hχ@σ“O>)ƒ ’ο}ο{ςK/Ω`sMƒYVV&έΊu“-[ΆΘϊυλ₯gϞ5νΧΆ’’yυΥWεΨc•]»ΖΥF’0Φ‡~hƒX:„ϋή‹D‰v@H/›oΎYfΜ)=τ\}υΥ΅^\CΜ1τV›7oΆs™γŽ;Φ>Υη₯ζνŸ}φ™qΔ’]Ÿ§ͺ·ΆcGΦ[Gh@@@@@ˆ Ρζς’¦JπνU4Ω2hβ8ΙΝzO–Μ\"…nmHΥίŽ™³Ίt£ ι5Φϊτž²LfθΧ΅«ύ3φxDζ]wvPuλh,/~AF˜`ϋ2hΦ*™‘\"Π­$ϋ!€ι#ξζeΛ–Ι°aΓdψπαςψγKΣ¦Mk<ΨhγƍrΖgΤΈM5,\QQa+7ϊχ[Έp‘Œ=ZΎρoΘΦ­[mΠΗΏ½!_ηηηΛ\`ί«W―Υ§!ϋΖΉ@Hf 1?όπΓqšλkŽ1nά8™;wnR<Χ]ΰϋξ»ο–nΈ!™‡2bίbGFlˆ  € € € € € €@= dt YM‹_Y š–7wψ,ydj^άΥƒΓ6š+K7/^£*Ν&/Ϋ$c:g5όU•ΙψnΛ«ζΜ9&½ά„’CΝ‘"ΌG_ SΝ]t‘¬X±’ΦΐšΟ<σL)((Ί„>ωδ9ζ˜cΒ†–]8FΝϊΧΏ€M›xΏw‘nχ§†­5μ½|ωrΡ „jΔ‚ €Ρ \{ν΅ςΰƒΖhο9† 4G;ο‰ξJcίλϋŸύPXQQ‘όη?‘N:ΕήHαζlν™t@@@@@’T γΝv\ΚK₯Θ} ‹wHiyΉd΅i'ΉΉέ₯S‡Ζ δ$ι½Τ­Ν+L¨ω>ydέ9»Q˜JeΑ^’Ÿ7OζλΆΒ3ζ !γ  šƒ‡yοή½«W―:šύοΛ‰'žhΝ‘‘εΨpOΫΆm₯}ϋφΑhΐwοΏΎόρaCΧ Ψ N… €@J Δhnˆ9Fii©|όρΗ‘CiέΊu£Ήκ₯ d?,υ—ΏόEš5kΦh}©Λ‰ 4ΧEc@@@@@@ !47„2ηh͍ΒΞI@Fhμ@sII‰hΐηC ξύο+_|ρ… έΆlΩ³ϊκ«―l(XC;ϋχο—μμlι₯‹zθ‘ή>ϊ’Ά Κ–-[䣏>²ΗhΈχ[ίϊ–τξέΫVgW‘Yϋ’εΟ?ܞχΈγŽ“Ξ;K“&Mlϋφνν³V$μΣ§νχσΟ?oϋwΔGˆ^ƒ†ΎόςKiΡ’…~ψαφ8ΪΖ;οΌtŽ“O>ΩΏ‹}­ηΡ}[΅j%ŽΦc>όπC»Mϋξ#Ώϋέοδ§?ύ©LžtλΦMw΅‹šiH~Ϟ=’•΅5,―ciΡϋτŸό§έ_χ9α„‚φΧ β΄}Πσ†.Ί]―W―Qn² €©(οsͺΆg½³¨-Πάs }ιίu~‘σŒΠ%Ϊη‰ΞτXG}΄}Vόγ°σ}^ιόβΨc mΪ{―Ο©όΰ²rεʈίQΫΓΝqtή€sƒΠEΧσhš6mκmΦyΠΦ­[νΆvνΪΙwΏϋ]ϋŒμ³ΟlΘ;ΦgZmσΘh=]uώχφΫo{Οg}–λ3:’χ›wθά@ηb±^C€ΆY € € € € €ι!@ 9=Ζ‘«@@#Π؁fΡ*‚ϊ•δ_ϊΧ½qΡ@ކ‚_}υU™2eŠL›6Νn{σΝ7eθΠ‘64μνl^hωωω6μΦ»φCΏ*\ΓJγǏ—Η{Μνjž~ϊιςΖoΨΧ‘ζ₯K—ΚπαΓƒφΧ7έ»w­>¨Υ5D)H¬Χ‘՟.\(£G–ο}ο{ςK/U-\΅j• 8°Ϊ9ςςςdήΌyA‘ο#FΘ’%KδK/΅λοΊλ γ.Ώόryψα‡%+++h½Ύ)++χ΅χ›6m½n·μΨ±C~όγ[K·Ξύœ3gŽh»hrΆ±Œ†»ϋχο?ΏρoΘYgeƒO‘γ΄c obΉ'΄ 0όη?δV³«ΊΚ^£;ελ―Ώ._|±h ΚΏθΨ?ώψγςνoΫilέ½‘^ΫΆm³αp·N6l˜θ=¦‹»74¬₯as½C—kΉFf͚U-°Ά`Α;~αφΧΆ4D>sζLΉωζ›νί™wί}Χ—έώ»vν²y}裏ΚO~ς·‰Ÿ €@J ΔσœŠζYο"šsŽαζwί}·άpΓ «6ΰϋΫίώV~φ³Ÿyλά ύ`Σ/~ρ oΎ 4Σ釳τ9£s ωmK?nΡωœ†t5τ¬`ς*Ϊ9†ΞΡτ€ήΝ›7…x΅ 7_ΤyΕωηŸo―οΎϋξ Ίfν›Ξ9΄?z-ρ<Σά=:?Ρηs΄žΞθ©§ž²s χήύ0`€Μ;ΧΞ#έΊ·ήzK.ΉδΡ@³Ρ9ӟόη Ή;―@@@@@@ σ4gޘsΕ €€­@cš5”ςο|ΗEυλΙ50β­¬U“uyν΅ΧlW«Ϊi%f·Lš4ΙV’½χή{ν* ‹jeZW½6\EC(]Ύ|Ή=FΓ!cǎ΅a`ΥhΦΰσ˜1cΌs\ύυ6€£Af]N:ι$[q―ΈΈΨ†•΅bς_ϊW»MCA;v­ˆ¬‘gΧ' GkΦU ϋήtΣMφkγ]θZϋ©‘­š«‹ RΩ7ζέ_οώϋίή­²ΧtΩe—yοέ‹uλΦΩ0Œλ·«l­†5\μ4C† ±‘¦;ξΈΓjƒΞΊŽuμ6lΨ`ΗΠ5€Αh­PμOΧλψΗϊΥτ±ή:ώΦΰ².ζva"7ώ>ψ έG·kΥd TΉEΓ`Z‘Ρυ[έυžΣJ‘ΖVΥJΠκ­ϋkY^nkΫύΤ{cΡ’EvŒύύ„©0ν1zέζ+γέ!ήOd²ΫMΕeoΎxξΉηΌs™ ¬·M―‘wοή^›Ξυ‘Ά±Σq=οΌσμρ&œTaBF^Ϋ―ΌςŠwN8y;Τς"Φ{ΒΗ½σύκWΏςάt\o½υV»MΗνσΟ?·χ†»n]gΘ^oτBοΉpcλΠ{TΗΚ΅­λέ:]o*YV˜J–φœ:f~ψ‘ΧO=­–&$V­­?ώΨΫί½‚ξ;‚φΆι}­γgBΛv©ιhŸL₯N»ήT‰φώnθz@ ’}NΕσ¬wmϋέΨsŒΪϊ€Ϋ݌ε­7ία }€ω–ΫaϞ=&hk5!^·ΪώŒeŽαοΓψG―ν³Ξ9΄ΏζΓIv½>―έσΈgϞζΓzήώζC^ήuψΗΙΫ‘–αžλώ1ŽΖSOឭζCB%%%ήYΝ‡ΈΌώ­_Ώή7ˆ³λtΎdηήΎϊڍ•©ΐν­η € € € € €dΆ€ζ~B³JMt…ω‡@@ ₯»B³bΉŠ°&Œb«λ׈›ι¦όΰ?°•λLθTLhΥΊώνo\‘o}λ[bB+AΦγƍ³•M`Ε«”²ž«^¨Υπ΄ΊoΛ–-½v΄*žVΠΣ―&wšMΈΤφΓ„€GΆŠž;ΐ„‚€[·nΆΒ‘Ϋ_·ΉΚ»zM―;&\Ÿςσσε‚ .°»„«Ίη*ϊΫsΧa‚§bBΟA_ΗΥ}G%‘U υ&<-§žzͺ˜°­xτΡG»‰~ΕΉž_+jυΓ&MšxΫ΄šτΘ‘#m•_W₯0Ϊ±s_?―iί~τ£yνκ‹ωσηΫ*Ω‘ƒvŠπ&Φ{Bο₯™3gΪ Υ«W―r3Arq&Xd«a»ͺ:FZ™ΪΏάrΛ-ςλ_Zt ^zι%[]Z«‡»Žpχ„[§mͺeŸ>}ΌζuœLˆLš7onΗ’U«Vή6­κΨΉsη jΟZα\+tk5KέξC20ϋχEοQ‚’nΈΑ«ζ¬χ”«όmώ?½Η΅b§VϊΦΏS, €@* DϋœŠηYοžΓώy‡[ΧXs w~Ÿ\5aν“>ηΏφ΅―yCκŸoΉg—~{Β™gžiΏ‰Β?Σƒtσα―jσ-Χ σ6’Πgl¬sŒ»ξΊKL8θΫττω§Υ‹Χ]kŸΏ:'Ρ9£.‘s(νο₯—^* ,Ώ‰λom?ΓΝΩbυΤΉ”3sσ…f͚ΩS———‹Άg>8f«Jλ΅Ή9œ^μϊ©ίΪ s‡~ύϊΩΉ[ΟO@@@@@Θ\χή{OΪ·o@ 9ˆƒ7 € *Ιhφ‡(5”©šββb1k-ch8EWšκv6ΘςΑxΤ¦ ­ύjq`%\εκ«― „„†t΄! (»? μNbͺζΪΰ©i4hͺA άθ{ώ.¨κ »6ΒυΙ­Σ±sτ«ΕύΛϋοΏο}έΊ~…Ί~υ» -… -»φ\8©iΣ¦^s.(c*ΪΠͺ?΄μv`—~M»Ύ5 «ϋόύοS%1(¬νΨω=\x֝KΦΤ_~5½ŽφžpnώϋΔί©>i―ΉC‡’gSM1(8μίwǎ’;τΠCεΫίώvΧα7p!w·NΫτί?ώsθkSΉΩnΧkΜΚΚύ{{ηwυΛoh*>Š KΉΆLEs1•3₯mΫΆ6¨νo›ͺœςΓώPή|σM{oi(ZΗΙ…Ή]όDRM Ϊη”Ί’}Φ‡{ž4φ#\Ÿά:SYΏώz₯ΪΧξ1:οη~ΠΛΝ…Β}ΈΕ΅ϊυ‡uΎπγΈΪΉtE΄s }Vž|ςΙφƒ::ωζ7Ώ)ζ[€ώφΓe¦΄έζžα>ΰ₯η‹Τ_έVΫβΪφΟ§\{ΡzqΔή·τ|ζ[?δφΫoS[:vμτα1έΧΪ₯K}iŸσ:_=묳μ3ΉE‹v= € € € € € €N υΝΏ TssΑO@Hΐ-{ΤPγ4“ f½ςiΣ¦Ιwά!²3gŽ ­π§!˜_ώς—vίHbώ€MMA”3fΘ­·ήΤL€@³†VϊӟΪͺΆAψήψ©.¨m ω¦›n’Y³fΩπ¬ΈCΝαϊε5ώλNΈλΦmNΦ*ΐV~α…δΌσΞs‡x?/^,—\r‰χ>τEθω’»ϋίrβ‰'Ϊ`Žu΄ ·‰Τ_>‘^ΗrOψύχI€Ά]ΏΒcΈcάώ‘FΊoΈ{Β­ΣνώϋGίλ’γ‘C‡ΪŠα•k‚τχΛέαξΑGUΎΣΰΩε—_nCV:ήtΧ{0΄fΈcY‡€’@4Ο)½žXŸυξΏ»ώη‰[ΧXs w~Χ's/\8Y―یΦ±?ΠμΪΡύάz·ώ“O>‘cŽ9Ζ>λΓ}xIχ‹eŽ‘ΟχΎ}ϋΪ9˟ώτ'3fŒNž:uͺόβΏ°§všC«»~Eκ―Ϋ^ΣΟΠηΊΏzu΄žhΦΐMœ8Qyδ‘ ΣιˆτJϊώΚΩsηΞ ϋ- ϊŒΦω¨†»Y@@@@@@ ΠΜ}€ €Ν‹:Ό―!ΧJuΠ|ηwDΎζ ‹ΜŸ?_ƎkΟtΩe—Ωp‹†:΄ν…^([Άl ϊJρΠ ŠV*vΑ–hΓFώ৞XΏ|ΐ€6”ϋωηŸK=lόTTυNνNζp}PŽΆ«Υ€Γšύ&έyάu„ Ο†;‡žίUύΣ―Χ°Ρa‡ζΊeΊqΠ7ZAPί999Ά’VΤΚΦ‘ηsΗΤ4v~DšcΉ'όα¨Π{+’ꍫnΓνοάΓ…ŠύΡTh.--•ΣN;Ν†™5πtύχΛgœ!mΪ΄‘Χ^{M~τ£ΩΏ/­_ϊΧrΛ-·HΈs‡λ«σ_ŸήW—^z©¬^½ZόρCν‘Ϊc= ŒΡ<§βyΦ»η°?τλΦ5ΦÝίυiώύrξΉηΪPp€ηžΞ»N9εο™o ω±Η³σ²HίαΖAο‘hηξ?hΠ ϋ-ϊ EEE’Υ™»vνjo7χμmˆ@σW_}³§šέ’sgžyFž{ξ9ωλ_κVۊΣϊ ϊ- nωο+ϋΫίdΥͺU²`Α·ΪώΤ9œΞ›Y@@@@@@Νά €  Π°¨Γ+ άh5f Ujf­¬A ΏΊ*tώ}ό•ωάioΎωf™9sf­fχuπαΪπW2tΑα>ϊHŽ;ξ8{šόό|8p ;₯hŸ4dͺ_Ρξφ׍αΒ«ξ Όρƒέ:5xι₯—δΠCu»ΫŸ.€ΑV ±όρ^0Ϋߎ;Θ΅ΊMCΣžŽτ5ιn{Έ~θ΅_pΑΥΝώq‰4vώ―wύw}՟ξλξCϋλί'άkΉΓgΈ{Β…½"|όρΗ’ΑΆ#ieI ͺι΅ιβMkH_CSzΚΡGνNΗO@ ₯όϊHΟ)χίU½ΠhŸυξyβΒΓzlcΟ1ΒυΙ­ χœΤ>»ΠpϞ=νDםyζ™vnγΏ6]―‹kϿ́‘΅k׊>‹B—xζn\τywγ7ΪΌι‡Ώt~θζJK—.΅ζ ]οΞΏn[m?έ³Υ??qνEλΩ’E ;WΠsι‡’š4ibOϋΏύΟΞƏoί»ϋNηϊz\VV–έ¦žu~¨<ϊμ³Ο$ΉνΞό € € € € €%zζŒ.@bΨΎ}{PP2–c½ομΩ³εͺ«ςšΥπΘ_ώς[}YWϊ«»―w;kΉOŸ>6κ―@.ˆβ*Ωj8&΄Z°ϋΪumΧL]WΧiυd­bθώZYO+κβ‚ͺz πuΤQšΧ¬YcΏV]wzα…δΌσΞσφΧZ±zΦ¬Y6 «mk Ζjό!wPΈλφ‡W5°ͺΑ’!ޟόδ'Ά2ΆVWΤPΉqαΰp€k; Ӟzκ©6„£•ž΅-rΗwΘ΄iΣͺ…₯ύϋ„{Ο=αUΗ{¬­θ­^·Έΰ”ΎΧρΧqsaφ?ώρςγΨνj:“Ύ}ϋΪqΣ qώύν8iΕK֝έϋCΘξ>Ρνξ~ΣΧΊ,Z΄HFe«6κ}ͺAd·¬\ΉRŽvsέ'΄r££΄Ϊ³ού4έΧ]ƒΎΦ%άψVnαO@ uj{NΕσ¬wΟaW{ŽQ[ŸBη$ώrΉω„~ψ%Φ@³VLΦηŒ~Dθ3Kοšxηzά°aΓdωςεήΝηχΦ•―Ύϊͺœ}φΩv{θΚ?? =Ξk°†αζSώ1ŽΖσΛ/Ώ΄Υ”΅²΄VgΞΛΛσΞ¨aϋζΝ›Ϋχχή{―Lœ8Ρ~CΒ’%Kd€IrΧ]wyϋκ ύP~ψ(tŽ΄o@@@@@@ £Βš5`SΑ0ΰΰΰΰΰΰH΅{ΐ„+LV$93Ιͺ0³Jο&DΤ1ϊ¨0•oνvF­xσΝ7+JJJ*Lp¦Β„H½γL`Φ;ΞTν³λMπ£Β|MΈ]ο?©FXa*ηΪυοΎϋn… βxν˜€©]o*φzλ.ΏόςŠmΫΆU˜ͺz&4SaΒ©ή6}ο9L§Βjμt{Έ>iίά΅™€m… ΖΪ¦τΈ»οΎΫ;‡ »ΈSTόμg?³λύΧζ6†;‡ Ρxϋ›JŠnΧ Ÿj§c }xϊι§νuκυšΠ«ΧSu±BΗΒΏψ―W;έwςδΙ^&,]aSΦΔ}αΕžΠΧρά&„ξυγϋί~… υΫfυ:MΘΘnΣϋλ‹/Ύ°λ³^— ΨW˜pp…©”Xρψγ{ν˜€½έΧο Χλώ{ΰΏWτžωόσΟνώzΟΉ{ήέovƒωcυκΥή6w ―ΨΉsgΕΌyσΌυΪΦ‡~h1© συσv›7αe»^ŽLŸ>έ;Ζ„ςέ)μΟ 6xΫ΄/¦ZvΠvή €ι ΰοsΈηT<Οzχ|0AYΘžΖ˜c„λ“Ϊtž£ΟA]L₯ߊK.ΉΔ{˜ΚΚv½yβΏ6»ΡόξnžΰŸ§ΈύέΟxηζC<^uμτΩι_t>αž:yε•Wμf}֎=Ϊ;6ά΅ψΫ χ:ά|*VOν_χξέm?Τί=ŸuŽg>ŒδυΟ=έ|I―Eηn:ΧΡy› OW˜ΥΩύMΨ9\wY‡ € € € € €( Ή—Mp?›θ σ+, € €@J $S…f3―”όΰ’ΥgM ³Zυd…]±b…έ§&d­Z§ϋ5mΪ4l5d=φα‡Ά_ _S;ώŠΉ‘UlΓη―όgΒ'rΖg؊ΈnίυλΧ‹~{ΈjΊΏZ―;ΖΣžν׍λW¬«•«¦¬Χλ―d­Η˜Ž­΄λ,τλΝ]…C=!CόM{―ύ§½•!/tl΄’εGαm‰fμ>ύτSιΪ΅«­μςΒυWΗ.Ϊ%Φ{B۝;wŒ7.β)΄ςΉηžk·kui7­¬n1‘h;¦ϊΥπZ ωόσΟF·«]ηχσWυίoΊ£V•t2#6f6ψΣΧ=zτˆΈ» Λ 7ά΄έžHο‚ΰ  ‚Ρ<§b}Φ‡«†¬49LjΤ'WΩ?Π͘1Cn½υV»Ωό~Λ>KΆlΩR­ͺΏξpυΥWΫktσσ!/;ηΡη€ Λ‰'žφ4ρΞ1΄ύΝ;ΫωƒΞώόη?Λ!‡t•ζ  Ύ7ΏΎU΅ΎŒ4g‹ΕSO’σ7―wRekύΆˆnέΊΥ8_ χMαΪe € € € € €€Ώ€)Έ#νΫ·ΊPΝAΌA@TH¦@³šΉ€Θ5Χ\#ΏωΝoDƒΈ‘‹©,W\qEPΠCC*{φμ #i(DΏϊάTΆσΒΓ¦‘,\ΈΠ†œ]{‹/Ά_λνήλώ<π€hθSC<ϊ•ιίωΞwμfSO~χ»ί‰…ά’αOύ {mη‰'ž°}zτΡG½s„†k\πΤ…cΒυIΓ³·άr‹ άΊσθΟϋοΏ_Ίκ*ΙΚΚςVk~ϊӟΚΤ©SεΏψ…·^_¬Y³FϊφνkCΝ¦’°|πΑrόρΗΫ xh9θ@σζ­·ή²ΧιεšjŒφλάGŒawχΫΈγ£»O>ωΔ:™Š„ξ0{ ͚5“|Πλ―φ_ο͚ kxψ˜cŽ‘Xξ ΧζΛ/Ώ,—]vYPPyΐ€’_%έο~Χνfξή½[~ωΛ_Ϊmώ :.χη}]ΌnΣΰ•~MΌ†¦έb*3ŠΆ}ηwݟ;vμ°‘e ύύο·&wŒώΤνzOϋΫp΅ŽΉώΡγt|υ^r‹ώŸ -kΘέ-z―κ½9hΠ ·*θηΟώs{ιί«ίώχaήΐ@ j{NΕϊ¬wαaσ­φΩζ'i¬9FM} χ|wΟ‡‹/ΎΨϋoΏ†Ώ/½τRY°`}&„~HŸ}Χ]w·ΝTΆΟ—p°ς›θλp}ˆfŽqΣM7Ι¬Y³μΌ.‡²ήxγ ϋα-ξΉη;GΣ9˜ΞǏo?τ¦c]Σ’σΟΑƒΛSO=eΫ 7g w-α<έyt;ξΈ#θω¬Ϋτ™>aΒ9ςΘ#έ’σAσν vnδ­4/†nŸΧπfA@@@@@T€@3χ €€@²š£…ύκ«―dΧ]’”6mڈVǍgωβ‹/DΓͺΊ΄mΫ6(0=έ_ƒΣΐ=όπΓ«U =Ζ|ΝΈ ΈjUeP%tΏΠχ₯₯₯bΎς]τ8½ΎΠJ„‘ϋΧφ^ƒΪ'N iP<šEƒΉΪ΅ΥkMΔ’ν5oή\ΜΧΐ‹’υ΅Vzvύs•G%K–,©υ”κ΅ξο=ρΩgŸΩσhXΌΆλΤ{EοhΖΕωi(κλ_Ί«υ’ΒμΰΏ’½άωk»χt΄j€π5h>pΰΐ0=` 9±>λ#Ι$λΓ=ƒk{>DΊ.z ?χλΧOτ› 40ΑθhχŒJδCη„:_ηΊφ«U«Vφηwžθ‡΄4Π¬dΎΉg€Ύκ‡άήύ¨ζn±zϊο/νcMsX7ιΌS―νk_ϋšvΨa‘ΊΜz@@@@@ΘPΝ:π\6 €ι(ͺζt‹ϊΌ& βj•f­f¬βΖX^ύuΡκΒzςνΊVTΤ―VΧεWΏϊ•­H¬΅šsΈ έοΔ½ΰ‚ δ[ίϊ–[ΕΟ8žyζωώχΏUυξ8šη@4Π硆zO:ι$ϋŸΖΈ\ύΦ ύΆkψη=φ˜Œ3ΖvIΏύ‘W―^ΆΚ³ϋ0[€ΎκόcδΘ‘6DiΦ#€ € € € € €Ι @ 9F> € €@B4'„‘F’ΈφΪk½―NΧ―²ΧPσ?ωOϋςzΈVC,,,”£>:ŠΦΨ₯ύλ_εωηŸ—ϋοΏί65cΖ ΉυΦ[λΪ,Η#€ Π eeeφƒQ[Άl±η½ωζ›εδ“O–+VΘ_ώς»wοήΆJs]Ώρ’A/Œ“!€ € € € € €Qhމ]@@ 54§Ζ8₯C/ΛΛΛε–[n‘ϋξ»―Ϊε|γί°αΪ.]ΊTΫΖŠΔ μέ»W:uκ$Ÿ}φ™m\_oΪ΄IΪΆm›ψ“Ρ" €υ,πΡGΩo(((¨v&ύ‚?ύιOrδ‘GVΫΖ @@@@@@ Υ4§ϊ@π4{Όh ύjϊ7ί|Σ~=}EE…όρrζ™g6ΪΧΤ7Πe'Υi8 sηΞ΅ζN8A,-[ΆLͺ>@bxχέwE+5—––JΣ¦Mε΄ΣN“ο|η;±6Γώ € € € € € €@ΚhN™‘’£ € P›ζΪ„ΨŽ € € € € € € € €@ς hNΎ1‘G € §ζ8α8 @@@@@@@@F Π܈ψœ@+@ 9±ž΄† € € € € € € € €@Chne΁ € "@ ΉA˜9  € € € € € € € €  МPNC@Ζ Πܘϊœ@@@@@@@@ψ4ΗηΖQ € „š“pPθ € € € € € € € €΅hˆΝ € :šSg¬θ) € € € € € € € €N€@³“ΰ' €€Όζ”B.@@@@@@@@ 4gΰ sΙ €€«ζtY @@@@@@@@ 4§σθrm €d˜ζ p.@@@@@@@@ -4§Ε0r €  šΉ@@@@@@@@H=Ν©7fτ@"hŽΓj@@@@@@@@’X νΝ_Ν[#_εo–ŠOKκ…½ΙQm₯Y^Wi6φœziŸF@@ ~ΝρΫq$ € € € € € € € €%VζX-_Ν_Ϋ –Ν.λ#‡\ή·AΞΕI@@ :ΝΡ9± € € € € € € € €Ι$Vζ}ΓSo•™CM+57_rmθκ:Ώ?ψr‘TόϋΣ vš΄n)MzŸ$MŽn΄ž7 € ,@ 9Ψƒw € € € € € € € €€‚@ZšΛϋLkPσ¬΅SrΎŠOJδΐΌ5rπε­"{Λ#ΆΩδ„φrΘπžt`׈ϋ°@L Мɣϡ#€ € € € € € € €€ͺζ:Œ\"Νϋσ¬\Ά!Έ­²DΓΛvωt—Tlί΄½Ιw;Κ‘· JpΕζ2YzeΆ\ΆPdώ–2¬c‹ s&ί›2))iΫ6Ωϋι“++‘ΒmΫ«V΄•Ž9ν%…zﻐΘ/Λ —Jφι—‰t™&[^»A:Fή•- €@½hΦFmT'«ϋχοΨ‡&MšDάΖ@’EΰΔOL–€M?φμΩ#όqΔλiΫΆ­μΪόϋ”ˆ;³@`Ž‘’G·@@@@Β hΛR}e“Φ-₯bχ—AκhήS&ϋ΅Te.¬lΣ„˜› ;Sš}―³49ρ¨ σˆΩWχ;πΜ›R±ωoζΏΉ΄ϊΎΑGΖπΞšG˜@σΣ"³ίΨ)£s’;j»αžžrξΤ·δϊό"™ή§*όΓΥ6μe²vΞ΅’7Α€Εƒ–.ς@ώbΧ'}bΏ^ Y.”υ;KnrίFA£ΑHΝι1Žώ«¨)ΠόΞ;ωgœ!­[·φΦθ―σŸHσζΝεΈγŽkτΎ„v °°PΪ΄i#G}tθ¦FΏuλVΙΞΞ–―ύλή—Πhί:wξΊ:)ήΣ·ψ†!YέώϋίΚΝ;“ς~ϋδ“Ol@4.Λ_|!ΙκΩΆm›{μ±I9¦ρύνIŽ£j 4ϋ¬|πΑ2dΘ‚­{‹‰kαŸό§΄hΡBΎύνo'Ρ΅τόCŽ<ςΘ€ Όωζ›Ύ}{9ζ˜ct΅‰kFϋ–¬Aϊί8'«›††5 •Œχ›ώ7WΓΦΙΨ7ύε†zΊtιί QGiXKΆΙ―ΗΛnΤ¦5άΎjΥ*hNΖy‚ΓIΦ₯JΆlΩb?@vΒ 'Έ.'ΥOύ …†š“ρΏ™*ΩοΑ·ήzKZα² ^@IDAT΅j%:ur]NͺŸ~ψ‘ύοΜ駟žTύςw&ΩΗxσζΝζψΜ7ΩuLΞ‚οΏΎύ0WΧ]ύ¬Iυ:ΩΗ8©°θ  € € € €@ heˆZ^3PZ\ΦΧξu`ΛG²ηͺίKΕ&Ll–xΝϋxV.ί`Ϋh:0Χ„™ΫΧΡώQρ―Oeί΅΄‘ζ&G΅•ζΈ2ͺ0tΝν§N Ήdν=!oͺΘ¨'dο£Υ|Y½uϋsͺSεψ^=½ά5,·ͺGΫeΞ N2ASΝύζΛΕÀφ8{c_Lνηχš©Π\»{ €@β4'ή4™[$ΠίθhŽΟ-™ƒτ-½Ζ”@s|γI 9>·t=Š@sbF6™Ÿ/z…šλ>ΞΙ>ΖšΣŒ 4§Χύ i@@@@ “4Χ0Ϊ-―μ'-Μάr `›μΉf 4ﳫβ 4W|R"ϋFόΖo+3r„k>¦Ÿ_ή*ϋo[bivY9δςΎ1_}ηšΝΫ 7ΘΪ‚w₯\³άYν₯{ŸοINϋά’By깍²ΛζΎ—ξφ—޲M ήέ%‡wΜ 9L ΦΎ,l·]ΚjMισ½>©i‘@?ύ•K δές,ΙΝm/O='ΫwIΗC₯n )4ύή%Ί-'$4\fΆHΉιg—’ν¦ŸΫ$Λφs—¬}j­|`.€Lοή_zδΔVIΉ¬pŽdŸ>Α4}½ν.Ug±§*+|Μl_‡@s™l+Ψ  ?°γ’uψ7₯‡±λΤΕ)Ψ𽞎e²μΉ)kΡQ†Žξ/n7Ϋ ζήή₯ƒ›uΈδš±ΝmοΆV²Έ?·¬5χ9ŸsΝWΛ;§‰lxN6~°K‡MΟν.υΘqMρ¨Νυš΄hŽoh4Ηη–́ϊ–^cJ 9Ύρ$ΠŸ[ΊE 91#›ΜΟ½BΝuηdcΝι?ΖšΣŒλ~…΄€ € € € Iš#Œvmaf=,ž@σώ_ƒΟˆ΄Κ’¬₯&θzX„Pp„~ωW'²-Pxφ;etNUΏΚ εž§ΛT­$²Œzΰ%yt\ ΅ΫΧΞ‘Nyΰ Ώty`½Ό6²JqΩΆηdΔ)ƒ%LΣ23ΏHιγV΅·}­©xœgήψΒ…2’ΥιςtΘ)νΉF‹ Κ>˜£Ÿ¬ίΉRLΎΩ[Ό@q—Ω²σ΅Ρ6μ\ψΨ 9}Ό-›lŽxΎZί.œ½^vU–½¦jxQ&%%&ΝkZoΫΦwr³¦¬ΐ„Ο2VύΜωWVžΏ††‚7•Θ•Ξ’…Αkν»i+ސϊW‡ —ސΣ/ •©²B™χtΉχ­κτ›™/+―ιΨPΆΝά§„½όΰCƒ^]8_ŠσΒΤAΫxƒ$@€@sS¨ Νρ ζψά’9πCίkL 4Η7žšγsKΧ£4'fd“ωω’WH ΉξγœμcL 9ύǘ@sϊqέ―@@@@2I€@s˜ΡŽ&Μ¬‡Εh.Ο›)²·\QUΩ_νωΠ[IΣΌa&ΪUΚǁ@s`Ά2jζ|Χ£½lΈ'O&Wed/œ†,VUuΧ λή]dζόι&@ΌMnΊd‚ΈΜμ…³Νώ£u™Σ³ƒL°ϊΙσo“Ϊ~ Ώ<ή &―(Ϊ+ύC2͏³Ζ?-ύL0zeU0ZL0χJhφΒ½]FΙ΄ώmεπώ7ΘΈ>%UΫ.4ƒ‹Λik½π­ Ωξ4![.½€½–δκζ›>”ΛœK\ΏΊH~ρk'|cm6ΊΕ’o2δίκήΧηΛήιΎπp­-”ΘCΖnrκυ3gšͺΜmeΫρroU:|Ύ ₯3z=£Ώ^Ϊ–ηΘ w](Ο™6ΖΫ6ΊΘ43Vίλ˜%/ίs“L}Ί²aμ‚9ƒδ¬ •«Ι…'΅Ώ½Δμ[ΩΩλM}Ί  {¦UΧΠοκδ3ˆsϋNΛ/–κ X+; €@† hΞ¬'ΠίxhŽΟ-™?τ-½Ζ”@s|γI 9>·t=Š@sbF6™Ÿ/z…šλ>ΞΙ>ΖšΣŒ 4§Χύ i@@@@ “>Πά€uKΙyΆ”Ν~.ͺqmqY_iyΝ@oίΫdΟ5s₯β‹}ή:χ"Φ@σΑ—·ΚώΫ–ΨÛϽRšœx”k*ξŸϋΖΞ–Šl—¦gηΘ‘Ώw;α*4—¬½G:δM΅m†VL^{Ο Ι³e›/4•ΫΚΗ$ηNΦΠλ…ςRρbιαBΏ%dD‡smPΩ 4›ΚΟ#²+«*Οc― ίVu½¬ ͺ’²ΘλwΚ8IeΩ.SZu’{ΝΑag_ y”©ό¨Ώ°ΫVC ΉŸ 4― 4χ“[KŽUU•}ύšmϊ5:¨_U}―εGIΑRΉι‘f―BYΈ°*yάešΌ±ϊ†  u-ΝΘφ΅SLlUqΑεΚcJδ±A&€lšξ2σ%yνšAζωλ‹eXnΥ ψ'Ψ94οgͺQ―΄Υ¨M°}PΆ\fΪ °K™<Φ3Ϋ†’]εm ωϊ[dzŽ•]σΨϋ™PϋJj―ΪΔ@ šˆ™MhŽo4Ηη–́ϊ–^cJ 9Ύρ$ΠŸ[ΊE 91#›ΜΟ½BΝuηdcΝι?ΖšΣŒλ~…΄€ € € € IihnzδarΨo―f'-εOώ]ΎΈsΉΘΑŠˆγΫΒŸ[^‘·}λ’½“„ 3λN±šόa΅|5­H«,Ιʟ읧./\›MŽj+Ν—\[‡¦՘]…ζΒ₯#L΅bS‚ΧWΑΨ; ĎΘ>Λ†”+χY:Β„^uw― ³·· ΦVΆεmσšG=/ΣGχ‘φ.;Ό}›l+i!sΪΫͺΙ•²‚9’}Φ_Ήr› -‡|u«Ϋc Ω\σ^S΅9°ΒΒΞ'°-ΊW…szΚι•%©ŒZ!{νxΕ+g)W›cο >vϋΪ‡LΨy²\=½ά5,7h3†eee"-ZT›Χζy/²α‘’g‚ιήX™-.Π,£7ξ-9m««d»n/‘φsDWͣ䍽ŠΛ©kΣsLuν OϋΪΥ΅, €@b4'Φ3Ω[#ΠίhŽΟ-™?τ-½Ζ”@s|γI 9>·t=Š@sbF6™Ÿ/z…šλ>ΞΙ>ΖšΣŒ 4§Χύ i@@@@ “:Мυƒς΅Ϋ~荧 5O[ζ½χΏfήsέEφποτ:ή@s“ί”ζ^ΤVΌo.}]φ?ΈΚk‚Οh6ε+M@yahU^wT`iωErC‘{Lυd­η\5ΈrΒ₯WšpτΒ 0λΪ{zš*ΟoΉ₯KΏQ2zΨEΒώΐ¬·UδΉ›ZΙΰߊ\oΞ7½O{ίZ©6vΫb 4W M·ϊ9|]©αe™ nίev(Ϋ.Ο=$—L6ΈΊ\Ÿ/{§ΐ¨–@?‚«%‡?ΨΉWλώe¦ΛdΖ”ρςt`Ό†f1U‘ο1Aiέͺ₯K?Ή~τ0Ή¨ιa‚ηn š«{»ΎψΫuΗρH”ζDI¦F;šγ'ΝρΉ%sΰ‡Ύ₯טhŽo< 4Ηη–GhNΜΘ&σσE―@sέΗ9Ωǘ@sϊ1ζτγΊ_!- € € € €d’@Zšu [^ΩOZ˜Ή%\₯ζxΒΜΪ^¬βύ<+—o„š_ή*ϋo[b//Φώ8“ΚŸ lhΕee·†nϋχ3™WŽnλš―Ο/6γΆAΝG ³<7Ηj'T Τφ›™/‹―ι¨Π\ΆAeŸ+Ο‹©ό»ΣTώ­*\yZNξ@sˆy³ν©)rΚ%χšWΥ«‡ξxp&μάΓš]@Ό²ν~rυυΉήd“—NΎW4ίΪώφ‚ηδ‘SδήΠτsΏ™²eρ51¨B3ζΐ˜ρ R€@sCj7ώΉ4Η7šγsKζΐ}K―1%ΠίxhŽΟ-]"̘‘Mζη‹^!ζΊs²1ζτcΝι?ΖuΏBZ@@@@Θ$΄4λ`ΦjŽ7Μ¬νΖ >π‡ΥςΥό΅δ¨Ά|Ι΅ΪDΧ¦6k‚OΚΊ ΔΟέΤΣTD~Λ[ΧΛβΡΉΑ»K‰ΜΤA&<οBΔ&;ΘTt6οXΏSΖε%ŽΕkCC²Ρ²’ΩφΑFyΜ˜υ·³ν©›Lψχ·eZΎΌ¦ε ƒ–θΝλw.– n.•V§_&ώ°―λ§]ε©ͺϋu!Β›²mR°½L€EG鑨d\Ή{‘ŒhuΊ<-J΅ΎEhOWΖε 3.95μ)ž{΅λΩώœ΄κ4Ψ;3‹\Σ§£ΧΞvSM»SH5mo£Ύ(+‘νΫ>η›!γο}Ϊnκςΐzym\P‘9HŠ7 Πš½OI 9>|ΝρΉ%sΰ‡Ύ₯טhŽo< 4Ηη–GhNΜΘ&σσE―@sέΗ9Ωǘ@sϊ1ζτγΊ_!- € € € €d’@Fšu@Γ…šΏΪΌMΎ6eˆ7ήϋ_—μΉξ"ϋxλjzk€ψΰΧeƒ«l“YΟά$rXpθ·¦sEΪΆ—+δΰ³ ¨ϊ\=°»Ν[O1ΑV‘«eΛή»$y5«\ΨΌœΖNfr΅KG˜@³ζ[―^!{οκo^–΅SzJή½Ž αzΥ‰/œ/; Tb6Aι)­:ˆΦ-¬ό¬έy¨g™lΚWž+Τ­†@s™ gkhXέkϋιzU²φ!ι7Ή^ΝΓiRΌχ ͺ[½ύ)*ΎΔt'Ά@³Ίξ2SŠ_»&¨Mό–*W=ι:†ύŒσΚ€s x|΅™±υG­CΗΚ”’–ž§\bͺ62ΑλGƒBαkoj%yΏ5—PΥΎήΩ7Χτ† ϋ+i»~»{ΐμΔ‚$\€@sΒI“ΊAΝρ ζψά’9πCίkL 4Η7žšγsKΧ£4'fd“ωω’WH ΉξγœμcL 9ύǘ@sϊqέ―@@@@2I cΝ:¨ώPσώ7ή“&͚Θ!§~S€YS‰5Μ¬νΕhψ€Dφψ*‡ή2Hšζu΅―λςGyήL‘½εtH9tΒΐ:4U=Π,%k₯g‡<d5Λ¨ωRτθ0|-ΫΎAνthΤYdš Δή`Χo_;E:εiΩdšη―—»†UVu.0‘Ϊ³l0ΪΔ\«Νe…™ΰλx»οΜό7L…ΰΚJΓeΫΧʈNyb =›Sn‘G‡™΅ O‡ πΪ€†@³l“›Z"6s{ύςΗιΩpIαsrιιƒνy\Wc.tλ_WyŽ0>•jώs›©}ΚevŸ Θ—?ŽλSή.)”‡.=]&λ…FΌMϋͺ+χ›™/‹―©l³€p­Œ?=Ο†·/œo‚γ&eιz‚όWώΖίT^^ϋΨM’7‘rdέX™²Λ^(όBsΎΩζ|6˜]Ά]ζŒθd«tΛ¨'dο£Q‘9±N€@sΓY'Γ™4Η7 šγsKζΐ}K―1%ΠίxhŽΟ-]"̘‘Mζη‹^!ζΊs²1ζτcΝι?ΖuΏBZ@@@@Θ$Œ 4λΐj¨ΉY·Nr¨ωŸ.ήώP*v){nψSΤ•™νζXΝzάΎ±³₯β?Ϋ₯Ιw;Jσί\ꚊληΑόΝ²W+ν±Νη^)MN<*v* Ψ-\z“©π«qΰΚ₯_Ώ.ςόσ6βlW<±e―\δ•nTRvϋ‡ώτB²¦κςœA*Γ°v§.―Λ[h:P΅xΓ==εά©¦>° ι>ͺ₯ «-5šE $gΧδpεΕό\yγ«^Ο6Gϋ*G‡χ©j²ΖΟMi%ƒ+sήvΏPΓΩλ‹etnPνζΫӍsFΘY΄ξtΈεzSyΊ­ŽωzΆΛ=­:ΙΤp‡»uΎκΩ‘η«v ¦JχhSŽ9Pω90~9Χ—ΐ=ΰΆπHœζΔY¦BKšγ%ΝρΉ%sΰ‡Ύ₯טhŽo< 4Ηη–GhNΜΘ&σσE―@sέΗ9Ωǘ@sϊ1ζτγΊ_!- € € € €d’@Ζšup[^3PZ\Φ׎σS©yΟ5s₯bίϋ>–?β 4ϋCΘ‡ώl€4vf,§ μ»§Lφ]ώ¨T|Z"MΊ~Sš?xY`[\―Κδ©+³εSœwΎ §3αT·l/ψμ |UΕέ†_ΘjB 0@”MV! A\p ’ *Z[TT,ΈTTl­T,¨Pͺ`AΩ A@+Ύ‚X¨ˆ,‚a \–„Bς͜pnξΎΜΝ29χ=ύ…³ΝΜ™yήΫ$Oώw.žκ:Θ¨όk^KM‹χίŽΞΙ₯νJξΖάQ}0hR©2ά}ψX$―ƒ™β’³ΜjΓβ‰o θRaZŽ‘:ΰ-Ly}0ΪΛ±Euΰ‘Ii’tw|sp:{τ~M‘Ή;–‰6έάΪΨ°rβ0ά3ΪANŽ m1Z,XTΞΥ…+4wϋ μl.Wμωτΐ¬Μ<μpίΓab+τν!«Tη#sρT ν?ΪE€~Λή‰n­J&œΉr.vΪ<Œγp)±UτΈ(?ο\=τα4fϊ³ΣπφK}Ρψb,¦DμΎ1¨¬=μŒ^βΥ³“10q1¬ΊOΐΑEƒKͺ1‹ζ™‹'βe±†R5\\L€YS^GοφΙΖ,νB³¨:΅ώ £r·qCό±oρ(\ΩΜκΡζuξI€H , Ph.KšϊE‘Y-# Νjάt~87keJ‘Y-O Νjά¬Ϊ‹BsΩ$«σχΉB Ν‘η¬{Ζš­Ÿ1…fλgϊ 9        @8K‘YχΒ=ˆhšŒ3O‚βΌsJ™«ΝςA瞜†βΝϋψ£J³JeεsOMGρχϋŒyGOxΥ:ΪΛ$+­%Nω6›PsΨΨDρε₯‡hƒD!θζΫ`3'"163ϊ$AIφ&³zΫΆaRnu„Σg!wvo/ πr~Ύ˜“1)1Eo l¬S» mD©μΉΧδδv¨ς,±”0” Fρ‚‘ηJ―Ύ΅ΉOHIΊt³Iζb‹ά•Vu1+ŸΉ–>ω’} FΧ584β!  T Ν•Ύ’K‘Y <…f5n: ?œ›΅2₯Π¬–'…f5n‘φϊωηCX²ψK|Ώy+jΔΗγΆξ7αφΫoADDD@CoέΊsζό‡³βςΛSpÍ]pγ]ξον!𽑠ξΊΞί_δJ(4—§§ΦΊgL‘ΩSjΑ]Σ=c ΝΑει©΅ξ{š3―‘        €7a+4K Υ„P\œ[ΰίλͺBsρ/6Q]y2 Ÿ-₯ζ7ϊ.$ΛΚΜ/ΞΆΛΜ!Uyφ»Β Ψ6 OΚ-ψjψ4d½έΧ^7sξ(tTR…Ω΅ϊs O°•k% 8ΦΣΖΆsΎΫ111žX ²Mnn+{nδ|uηκ•Ψ_#ΖtΎnžˆ1“[ވφfωeσχ$@$@všν(Ββ€B³ZΜšΥΈι, pnΦΚ”B³ZžšΥΈ…λ›­ΑsΟ½Œττ;ήϋN?~oόqΌ!#/^2 ρρq^‡/..ΖΗ›>ψz¨Ώ‘ ~ώω ώπϊ»ΈLˆΝ³g,~ΨΛ{΅τ…ζR‘ιόύE‹Bs(ι–τΥ=c ΝΦϘB³υ3}…H€H€H€H€H€H€H€H œ„΅ΠjΠͺB³|nρlΘ*Λ†Τ,Ξ«ίΩ‘ή„j Duc/[Ρ—›QψρΏQœ]R‘·ϊνυβ=^ZWΒεΓ‹ί¬ΏύΑι ζLˆΒΜ%Ϋ€YΘ™[­Š°9χ$@$@$ΰƒ…fp,x‹B³Z¨šΥΈι,όpnΦΚ”B³ZžšΥΈ©φΚΞ>‚»zݏχή{7v»Ξ>Laa!~ύΨ“h€^}νyT«VΝ~Ορ`ϞŸpίG1ύΣΡ]ϋ­άάϊπcμΫwoόiŒ›΄,eη»{?€.ώυλ_κρσζ-Β–ΜπΪΨάξ―__L›φ™¨ήό.ͺW―ξv? š‘俍Ξί_δμ)4ϋΟΠ_ έ3¦Πμ/AχuϘB³ ύ΅Π=cση}        p$@‘Ω‘FΗ‘ ΝΖγΞδ£pΞz\˜ϋ­“°μm*Υ:4BΤc· ZΗΖޚhq=?ί†“' ŒΉΤͺ•,>*V‹iq$@$@'@‘Ωβ»,B³ O)4Κ₯™Ξ’ηζV€§Ίr£Π`€.Ν(4»)ΗΣ’’"τ½o~ςοΠ±cͺΫ“Š‹‹EuεΑ5κ)€₯uπxwύΑ½ΏJΗυΧ_λvΫΆxΒd|ψΡ8 Νnt*φ‚ο“& Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       G–šΟυΰTνΈ<­&ͺ'GΟQvbsњΈ *1ΛΚΝNU›…Δ\­y}DφΊ ΥZΤ/»gr$  ° Ν ΤΟr(4ϋδε6…f/`ό\ΦYΰάό„ηεΆά(4{ ΜΟe Ν~•ανάά<άq{/ω΅k'zω³ΟζAΆ2δaχ₯΄œ’‰‰΅œξKϊΕΖ’iΣΖ:lΣ½`NX‘9ZήΫκϊ>iΘB³IB}―{ΖšΥ³5{κž1…f3)υ½ξ«―Œ=I€H€H€H€H€H€H€H€Β‘€₯„ζWαΒ΄Υ’cΤ“w z_χJBςp>„H€H€Hΐ# Ν±Xφ"…f΅h)4«qΣYΰά¬•)…f΅<)4«qSι•ŸŸ^=οΗόŸzšηΝ[„ΓΩG0ό‰!A=bΑ‚%xηνχ±pΡL$'Χ ͺ―cc ͎4ԏuώώ"WE‘Y=[³§ξSh6“Rίλž1…fυl͞ΊglΞ“{        „€₯„fΉ`)5-ΫμTα8Ά‘•™#οοB™9P`lG$@$@H€BsΒΦΰQšΥB Π¬ΖMgQ€s³V¦šΥς€Π¬ΖM₯—šΣοκ,œ„„‡˜3g!Ž9°Π,+3Oš8Ÿ|2“§όW_έΡ㸎ε<Ž?ξxΙ~|ώόylΪ΄ GEFF’’’μχt:Πωύ[r}~šC5λž1…fλgL‘Ωϊ‡ΎBŽ@$@$@$@$@$@$@$@$N,'4‡Sx\+   €3 ΝΞ<¬~F‘Y-a Νjάt~87keJ‘Y-O ΝjάTzZ‘yίΎŸ1rδpΏΨ»w?† }ΉΉgρχ‘iΣΖ~ϋΘ6› {φμρΪvώύ†ΠάΆm[ΔΕΕymW™7vνΪ…-ZTζ|>[χωνέ»QQQHIIρΉŽΚΊyμΨ1œ8q‚‡@VVbccΡ°aΓF)ΏGŽ1ή‹ZΆlY~ qdέ,ίΗkΤ¨!ͺς'‡Ές鞝-Ύ?εβŠ+(Ÿ”Ρ¨;ϊE 2z‡!        r%@‘Ή\ρrp   Š$@‘Ή"iWώ³(4«e@‘Y₯arS#|/ ΝΑ3“=(4«qSι•Ÿ_ *4χΓ΄i“pΩεžE±cίFםѣΗΝ>±xρ—xυ•7‘ž~^|i$bb’}ΆwΌYXXˆ³gΟ:^²KιzνΪ΅¬Πl'’v σχ>Ή"VhVΛΥ±—ξ³B³cZjΗΊgΜ ΝjΉ:φ=cΗΉς˜H€H€H€H€H€H€H€H€ό Πμο“   Tš«LTe2Q Νj)4«qΣYΰά¬•)…f΅<)4«qSιU\\ŒηFΎŒλ댌ϋξvβόωσ†πόή„7Ρ¦ηͺ₯rŒ?ό›ϊwLœτސŸ―q'” yyyXΎ|9…ζP ŠΎ:‘K£ΠbΐU c ΝΦϘB³υ3}…H€H€H€H€H€H€H€H œPh§΄ΉV  °8 ΝΨeyš]€xJ‘9@P.Νt–Ί87—°<Υ•…ζtiF‘ΩH9ŸY³/ΊΎOš3₯Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9SηšI€H€Hΐ’(4[4X/Λ’ΠμŒŸΛšύςr[gQ€sσšŸΛΊr£Πμ'8/·)4{S—σςΞ"??ΥͺUC­Z5Q½zυ xͺοGPhφΝ'Π»ΊΎOšσ§Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9SηšI€H€Hΐ’(4[4X/Λ’ΠμŒŸΛšύςr[gQ€sσšŸΛΊr£Πμ'8/·)4{¦—)4—MπΊΎOš«£Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9SηšI€H€Hΐ’(4[4X/Λ’ΠμŒŸΛšύςr[gQ€sσšŸΛΊr£Πμ'8/·)4{¦—)4—MπΊΎOš«£Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9SηšI€H€Hΐ’(4μχίoΑ₯+ρSΦ>\vyCτξ}':vlo|\| £όο[°bωΧΘ>|υλ'γ–[nΐ5Χ€ΩϋηδΗΏύDEEz.&:7άΨqq—xΌΘE ́ProC‘ٝI Wt8·@to£+7 ΝξYr…Bs ”Β§ …ζ²ΙZΧχIsušMκ{έ3¦Π¬ž­ΩSχŒ)4›I©οuΟX}eμI$@$@$@$@$@$@$@$Ž(4‡cκ\3   X”…fΑγΟώ3gΜΕπბ֩Άm݁ργ'!=ύΌςκhT―^έλ@²«―Ό‰%K–cπ‡qυΥ±cǏxοΟβ†Ί`άψ?"22ΩΩG0sζ\HqΩq‹ŽŽ‚”‘7l؈?™ˆΪ9ήκ˜BsPΈμ)4ΫQu ³(ΐΉ₯½±ά(4Ϋ# κ€BsPΈ,ߘBsΩD¬λϋ€Ή: Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       GšΓ1u™H€H€,J€B³`Χ¬ώFzσζOGJJ{‡cGsD•ζ0ζ•QθΩ³»ύΊλΑ’…Kρζ›οaώ‚OΡ°a}ϋm›ν$ξΛxζQάw_ϋuΧ)D?1όwHΉ¬!žώiŸς΄k_Χs ΝD;§Π'ΧV:‹œ›kZλʍBs`ωΉΆ’ΠμJ$ΌΟ)4—MώΊΎOš«£Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9SηšI€H€Hΐ’(4ϋΆ¨¨ύξ >6½zυpkΌjΥZŒ}νm¬Xω£Κ²kΩΏο}ƒπμΘαΈώϊk]o#3sžρ‚ΧώRf~睿`έ6`ξΌιŸα6¨ š}ΐρq‹B³8>nι, pn>‚σqKWnš}„ζγ…fpΒπ…ζ² ]ΧχIsušMκ{έ3¦Π¬ž­ΩSχŒ)4›I©οuΟX}eμI$@$@$@$@$@$@$@$Ž(4‡cκ\3   X”…fίΑΚ*Κ=ομ+„γHH¨αΦ877wܞΕK>GνΪ‰^ο/ϋrΗώωωωθΥσ~£z³§ώί~ϋ_!<Ώˆ₯Λζxίν~.PhφΘΛm Ν^ΐψΉ¬³(ΐΉω ΟΛm]ΉQhφ˜ŸΛšύ ³ΫšΛ&p]ί'ΝΥQh6I¨οuϘB³zΆfOέ3¦Πl&₯ΎΧ=cυ•±'        @8 ΠŽ©sΝ$@$@$`Qš}»sηn<υδ(!ΟEDD„[cYAy萧ρΫαƒΡ±cͺΫ}Β³/‘9?ΏιwυΓο_~7ί|ƒΫΨ*(4«P(4«qΣYΰά¬•)…f΅<)4«q³j/ Νe“¬Ξί_δ )4‡ž³ξShΆ~Ζš­Ÿqθ+δ$@$@$@$@$@$@$@$@αD€Bs8₯Ν΅’  €Ε Phφπž=?αΉ‘/cήόι^…ζΗ‡=‹aBZZ·Α€πόΐƒqί}w‹―>nχΧ]O=Ώ}ό\u•³=gΞB|ώΩ<―Οv,€ š€δ‘ …fPΈ€³πΓΉ ‡&Ίr£Πμ!¬.QhR5©*Bσ/Αe‡Ο#ξ…{΅LGΧχI…f“„ϊ^χŒ)4«gkφΤ=c ΝfRκ{έ3V_{’        „#Λ Νΐ‘#GPPPP.yΖΔΔΰK/Εε—_^.γsP   uš}³ϋρΗέx}μ;˜6ύ―B³¬Πό›ί>ζQh–£›ς”ΏΎ‡N²?PΚ Γ… °|Ε|ԝhΏ'+7§ίΥϊΣ\Σ9Ν~=ω—ΥσηΟ{lΊ}ϋvΘΜ―Ύϊj$$$xlSYχμΩƒθθh-ΞΈsηNΤ¬Y 4¨,<^Ÿ»cΗ$%%‘^½z^ΫTΦ 9·Φ­[WΦγ}>—sσ‰ΗλM]Ή=z999ZΎή€l}ςδI-ηvπΰAH‰΅E‹^3―¬ϋφνΓe—]¦%·ΚbRήΟΥ^hΞ-ΐ‰;ώδ—ό§ζ΄αˆh§ίΏ3ι.ΙQhύIΊgL‘ΩϊShΆ~Ζ‘―#        „K ΝRf–_±I‘™RsEζ3H€H€H pš}³’Bσ“OŒΒes½ Ν²Bσ―DηΝ<&«4Ϙ1ούωC€ΆΏ·ί~+6m܌oΎYƒW^IŠY³?vš₯ύ‹―γ«―"**ΚγΈή.nέΊΥλ/ͺνίΏRόkΫΆ-βββΌ Q)ΧχξέkΝ 6¬”ηϋzθξέ» <99ΩW³JΉ·kΧ.ρΪ©ΊuλVΚσ}=TΞMGQRΞ™sσ•œχ{Ίr“2σργΗ΅|½Ιο³§NrnRΆ>{φ,š5kζ=τJΊ#’eΛ–š+ΏφB³`qjΠ$\ΨZςoX±uΓ%#zU ‘ΐ₯»μJ‘9°}΅=c ΝΎ μžξSh,G_­tΟΨΧάyH€H€H€H€H€H€H€H€\ XJhήΈq£WαΕuᑞΛJ͝:y}B[ώΰ:77ΧiˆΘΘHΤ©Sς™άH€H€H€Ό Π읍Ό³oί<:hΈQAΩ“X\XXˆ{οˆ?/*Iϊq³9ŒBd>v,u’j£kΧΈŒŒ0*1Ή|jԈ7&#θΧ_Η8φΩαΎ'δέ/ΏόRjΞΘΘ0ͺϊΩ½\›oΫΆ ±±±ΈβŠ+Κυ9*ƒύχΖί-5j€½\ϋΘΖKΡZG\gQ€sS{YκΚMŠΉΩΩΩθΨ±£ΪΒΚ±—|ϕ¡Žs“ΈqζΜ€¦¦–#΅‘όρGQhVΓ§Τ«*Νω_³–λ«^?΅–<―΄Φςμ€λϋ€Ήf Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       G–šσŸTh†Χ]w]™<―  ΐq€Μ,?¦έΫ&+¦€€hωάήζΜλ$@$@$P‘(4ϋ¦Ÿ_ „γ~†°ά’…{ΛƒAΏϋƒ£μ8’”“?ώΫ άtσ hήΌ©γ-γxι+πΟΕ_βƒήEυκՍkηϟ7žω§7_AZZ·>‘\ Π¬FB³7EΞΝZ™RhVΛ“B³7«φͺ BsΡ/'p²χ[φjΞ| ­|B™½qθόύE" Πϊ AχŒ)4[?c ΝΦΟ8τr        p"@‘9„΄ΛBh–ΘX;nφM?wξœ[Υιš5kρ[Ά›σ1whΝ¦ύƒΎc§€αq>l6 1QχyzC—|[>›(ͺ7zkΓλ$@$@Α ΠμŸΨΫoΏ¬¬½N±μ%eε_‹θθhΌ6φc ΒΒ X΅j :th'~‘ͺΡζΉ‘/#©nΌψβ³N“²tŸ»ΐ βϊΝBx6·άά<άq{†?Uk›—ΛdO‘Y #…f5n: ?œ›΅2₯Π¬–'…f5nVνU„fΙ>ϋή7s@όγ†Ψb}+.ωΝνΖ±.θόύE2’Πϊ+EχŒ)4[?c ΝΦΟ8τr        p"@‘9ΐ΄###!?†έq Eh–•˜wνΪY•YnRb–­]§NΔΗ—|D»ω,ΩV~¬―”΄NŸ>moί];·ΆfŸΰχBhξ'„ζ%ΐδM9ΨJoΛvΓΈ.ΈeΜ<», ―wK~Ή•Ϊ£”5ŽM9³‘9ξJ₯Ε‡“ @0(4ϋ§e³βρƒΈύŽ[1bΔ0Τ¨Qyygρα‡cήάEXΌdκ aYnRFξ~Ϋ=˜πώŸΠΉs'γΪΝ»ρΰƒρτ3ΏAώΏBTT²9Œηž{Ωh?wήtDFFmε?ώΈCΐςσΕ/ρ”νί/(4Ϋ1u@‘9(\φΖ: ?œ›=¦ tεF‘9¨ν)4ΫQπ@¨*BσO˜‰Δ…[ŒΜͺ7ͺ‹Z žΣ*?]ί'MHšMκ{έ3¦Π¬ž­ΩSχŒ)4›I©οuΟX}eμI$@$@$@$@$@$@$@$Ž(4zΛ–- Ρxγƍ›nn‘Ν;vμ°ΛΜRbnΡ’…!5›c{ΫΛnοίΏRr–tΩIΝ₯’­ώBσN OΓLtΗ7‘s’7Zz^?ΌzšυsqrιX'„ζφeλwιΉpΊH€*€…ζΐ :”gž~»w„ζΝ›ϋ† λcο’Q£ΛμƒΘͺΛιwυΓ‡WifΏΎqγχxφ™—pζLύZ7γε1£Δ/[ΕΩ―Ιƒ={~Β¨ί½‚9s? θο:NύœPhφΘΛm Ν^ΐψΉ¬³(ΐΉω ΟΛm]ΉQhφ˜ŸΛšύ ³ΫUEhήΆl5ΎΌΤžN­y#Q½I=ϋyeθϊ>ir‘Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘ΩOκΝ›7G“&MŒV§NΒ¦M›μ•šU…欬,dggcΦ«Wϐ™ύLΓιvnn.ΆnέjHΝ111Έκͺ«Κ@ͺ:B³MΑ)R0 ΉSz;±Ρώ$?ύ’ΊBΒΎΈ±B³I‚{ ( šƒ£(«5‘Z΅j¨];Έί*..†μ/?Α"..ΞMdn&j­)4«q£Π¬ΖMgQ€s³V¦šΥς€Π¬Ζ­*χ²Ωlβ§φx]‚όeπ£G’mΫΆΖίUΌ6¬Δς“»nžΎ Q‡K>ΛvO*lw]Y‰3r~΄œŸό|]·½{χŸ’’’’ε;†'NhΝPχŒεΏ‘ΚOy‘Ÿj§γvδΘρίD6ΘbΊnΊg,ίΗε§%'λω |ςίπεΏΕ_qΕΊFlΜ«cǎZϏ“#        @ PhφAͺY³f_ζ&ZΚ²:²άT„ζ‚‚ΘJΟr“•™[·nmϋΗργΗ!«<ΛνςΛ/7Ύ‚ΓΉ½o‘ωπΞ Xω#Δτ˜d\ΣνF΄JφRVΨΆ‹W~‡“²-jαšτhŒ}Θόρ$j5nο/™«Χ sac:1ɍΠνΖnπ64P:Ο λbpϋωΚΆ3?Δ }ϋdd.^‰ΜΓ'ΡΈσ}θ!Jοσ> y―œgœ/ξe’@ΜNφ36Ϋa1Ο}ˆ1ζy«―Ζ~±|ٚθά*8Ω«dΠ?WŽŠΗ=“JΟ ͎4xL$@‘ Π*Αͺ՟B³Z^šΥΈQ&75Αχ’Π<3ΩƒB³·ͺά+??ίώΙW됟%!] ΝέΊuC­Z΅\›hqΎmΫ6΄ίIDΝώΘOQ³z87αA-ζ&'!η'…p]7)jFEEΩ θ6O)BζδδhΝPχŒεΏ}Κ_žlΤ¨‘nρσ9tθρ>$?AOΧMχŒ·oߎš5kBΧ_LψωηŸqϊτi΄iΣF׈Β)š΅‡#       ’…f/ΐόΙΜ²›ŠΠ,Ψ" «―Ύ:€ΚΚe9–£(H&gΤ]όο+·Ή₯O^‡ΩKζo(ΐΫ†‰HΉe΄hŽYΛzγ=‡a …ζι±  F€Bs`œ¬ŠB³Z’šΥΈQh&75Αχ’Π<3ΩƒB³7«φΚΛΛΓςεˍΙΘΘ@RR’–K•ί[ΪΗΧΗ©'ΨηWkρhToPΫ~^™:ο“\~ψαDGGC~ΊšŽΫΑƒ!+ψκ,κžρ–-[Δ'ΑΔ;œΠ)λο3iii:MΛi.ΊgΌyσf$&&’qγΖNσΦεDV‚?yς$:tθ Λ”άζ‘{Ζnζ        πA€B³8ΘΜ²›ŠΠόν·ίžΛ’ͺ²c΅gωΓ›K/½ΤΓj½TZωΈTh.½&GπΦ4  γzbτ’’qΣ§mΒμΎ­JNμ²±Œκ?Bˆ»%[ϊdΡ~ loΓΤ.)aάθŽ ΣF’eβ~LΊg˜]L^˜•‹.NsζŒ~θ:l Ί 1zΡE1Ψ‰‘BhžyρH€±=Q«ΗH ξf»xΟ½rώΞΉBh$όβiΘ™έ·Dhž;iƒμ#aψ„ib˜ΪߜW*–\nAj.γ€YY˜YŠΩβΩšΝΤΈ' 2!@‘ΉL0V™A(4«EE‘Y›Ξ’ηf­L)4«εI‘Y›U{U%‘YΚ'ΣίDQΆΝˆγ’½ϋP7-’Ρωϋ‹D‘9τ—‰ξShΆ~Ζš­Ÿqθ+δ$@$@$@$@$@$@$@$@αDΐςBsdd€ρ±„YYYεΪ€I§Κ.6› ςχ/\ΈΰΦ?X‘ωψρ㐕(7YΥAV u“BŠόA]:uΠΊuλ†+•—M‘ΩΆzRzŽ1Ζt­˜Όz\τ4Κ6§‹ΚΗ³ΚΗ&φΑ-£euγt|sp6:›―mϊ₯άbˆΚv‘YT~ξ—TRUyΪ¦\˜N4ς3/VT&¬ΛΑ`Η’Κ8Œ—γ›aΌx‚³μ\* cΐ4œζ£KegBsw!4/rš»cα³Ρ£±Y©Ίt^“ΕΌ:ΝΛ?φΥγΊ^ΒήN€ƒλ#QΘΤρR¦¦Πμ[ @(4ΛM)4«…H‘Y›ΞΒηf­L)4«εI‘Y›U{U5‘ωμϋː鿍8"Ϊ]ŽšΣ†kΞί_$ Ν‘ΏLtϘB³υ3¦ΠlύŒC_!G        '–šεΗNʏό«Q£:„νΫ·£ΈΈΨkΎ5BΛ–-νχsrr™™ιQf–‚šεΗΚ―ˆˆ\{ν΅φη„r`ŽƒN:…0”»ΠΌsn?Q­X”bv¨`l€ϋ%u5$ε˜Ϋ/ Fs{f{k˜cyšLX†ΧvC²ιή‡}ΆX4n•lTM6GΙϜŠ€#Ήδ^©ΠA±τšϋΌ|Ζ»$@$@ΎPhφEΗzχ(4«eJ‘Y›ΞΒηf­L)4«εI‘Y›U{U5‘ωΒΦ85h’=ŽΔ/_B΅Ί φσΚ:Πωϋ‹dB‘9τW†ξShΆ~Ζš­Ÿqθ+δ$@$@$@$@$@$@$@$@αDΐBsJJ Ϊ΄icΟSJΝς‡ž6O2³όΥ’’"O͍kͺBsBBRSS½ŽΜ ωΓn’ά‚σs\…f!(‚ςLι3oΒl{ e³Wiϋ±Λ²0²0NTO–υœέ₯bQ'yξP!GΟ„]hνμU‹/™Ϊ}φνι=Π*ΡQJ.i°rT<ξ?ί{V<ουnΙ{ɝ)-{’Ν{ξβ°]*v€ΝyΊKΣ₯λ Nh.­*=@pœbrά'*4_9HΜ]Μ+w6ZΙep# ™…ζV©(4«ΕE‘Y›ΞΒηf­L)4«εI‘Y›U{U5‘Yζ`»γ(Ξ9cDχά݈ι]₯Η£σχ ‡Bsθ/έ3¦ΠlύŒ)4[?γΠWΘH€H€H€H€H€H€H€H€Β‰€₯…fd³f͌/3TO•šUdf9^°qVV²³³Q–BσργΗ±cΗcyΑΞΗdR²wvK+.cΐ2δNΖ²ΣVΪΎ»¨ΘΌh`’]h~vΩA!':΅6EaG‘Y6Θ\9|y–lqjŽξo-Γμ'Ί•VhΞί€>I·ΰ+ ΐ¦œ)p*Β¬±Πœ9΅ΊŽeΕ6vΦ2άXKTgŽΕαΕ·`Πxy΅;&/‰F1‰hί­=œ©ΙϋάH€H€‚!@‘9ZUΏ-…f΅ )4«qΣYψαά¬•)…f΅<)4«q³j―ͺ(4η½»³ώψ$2­)¦ «τxtώώ"αPhύ%’{Ζš­Ÿ1…fλgϊ 9        @8°ΌΠ,Γτ%5«ΚΜrά`β@~ΕΔΔ S§Nrˆ7sL9P°σq~x© lV ^9ͺ‹¨ˆΌETU^‡ΩΫ;7‡ Sϋ€@ΊΊ%ν…έGTtηΦε`p{η Λή„fsΠ|› ϋφ‡|γ/Ϊ͎γμ[< WφŸ„Τ±Λ°^–ƒvΪΜ*Μζ\ŸmήKΗΊœΩpšΦNQ%9mpЧ!gQ_Cž6ηιx­δQξ|œ¦ΰρ$3Ί$a˜‹¬ν±)RΕόΦ;ΟΟsC^% πA€B³8ΌE‘Y-T Νjάt~87keJ‘Y-O Νjά¬Ϊ«* Ν…›~Βι‘“ν‘$~=ΥjΕΩΟ+γ@ηο/’…ζΠ_ΊgL‘ΩϊShΆ~Ζ‘―#        „°še ž€f›h―ΌςJ{ή999ˆZTTdΏζλ XXώ`Z—Ϋ΅Χ^‹ˆˆ_ΓtoΧ]8zτhT}vvχΝŠ+ΝσŽrίFcΗ™2°Έ6mSϊΆr¨θ<|!rίξαΨ«_ξ‚žγ₯½IΘΡ­°oρΛBP%ŠΣ…L<»D&.ι`ΓΛρ)Ε‹K*?‹…<=±K F 1ΈδYŽΒ²μeJΛ„ζόθ—”†%’Υ΄MΉΖ„fμΓ¨ψ+1I4οώμ,L½·ΡίΆs%I»ΗxŽc5ζ²­Πμ8G—γ}’:τ•ƒΔΕΨ”;%«wiΓS    PhY•ξ@‘Y-> Νjάt~87keJ‘Y-O Νjά¬Ϊ«ͺ Νyoό Ύ5b‰μ ]©ιόύE‚‘ΠϊΛCχŒ)4[?c ΝΦΟ8τr        p"VB³ VJΝ΅kΧ6ΎδωΙ“'qώόydff\™Yφ“[°B³μ#ωƒ΅š5k’]»vς’ςvδΘμή½Ϋθί‘CΔΗΗ+%TbΜν—„A’”ρdQqy`«’*Θ;ηŽBΪ ©—lέ»§β«― ΕΩΈ0λ‡\τΆ—n.­€lΆwέ›B³¬Ί<΅O FHsΩΨRΡ=u J‡NΗΊœΩh/¦±a\ά2f‹œ7 ΑΩ“ϊλKh2gτAΧaφ‰šΘ(‘΄/>Ω³Π<9‹ŠΊΙζ晏y7Ψ}Ύ΄“‰nιΨ$Φyw°Γ°=  €  Ν.@,~J‘Y-` Νjάt~87keJ‘Y-O Νjά¬Ϊ«ͺ Ν…λwατ³ΗRϋί―ρ1φσŠ>Πωϋ‹dA‘9τW„ξShΆ~Ζš­Ÿqθ+δ$@$@$@$@$@$@$@$@αD μ„f¬Žά€I#gY©Yώγ}QQ‘qΜ*B³£„ά΄iS4hΠ ˜GΪΫΚͺΜRF‘UŸš*5έPΆ|,š„ώ’μς4!4χu0lgΞΕS]AΈΞφ-5},ή8:'—*Ώ%7cξ¨>4©Tzξ>|,’WΑLq©Th–­mX<ρ τ]*LΛ«©ήΒ”Χ£½;_ΘΚIi’tw|sp:»—g=L‘Ή;–‰6έάΪΨ°rβ0ά3Ϊa©Γ1a  #F‹˜…œ)½ yΩ¬Πά}μ7X4ρ£]ωτΐ¬Μ<,§λ}Kl…Ύ=JͺT»6*šE…ζQ‘Ω£kž“  D€Bs@˜,ӈB³Z”šΥΈι,όpnΦΚ”B³ZžšΥΈY΅WUše'ΊςΞΡΔΏz?’ΣΣ*-&ΏΏH(šCiθž1…fλgL‘Ωϊ‡ΎBŽ@$@$@$@$@$@$@$@$NΒRh–·nέΪ¨h,…)«l*B³|ŽόΗψΣ§O#""Β¨¬RYyλΦ­8uκ”1mYιYV|.ο-ίfuœΨΨDρεεi’ …QœoƒΝhœˆΔΨ|Μθ“Y$9]TYžν‘Κ²·±mΖ!ερΓΌτYȝέΫΛCΌœŸ/ζdLJLΡΫkηΤ.HQ*m{ξ59Ήƒͺ<{nΕ«$@$@eG€BsΩ±¬ #QhVK‰B³7…ΞΝZ™RhVΛ“B³7«φͺΚBsξ«sqnΙF#š¨nmPcό#•“Ξί_$ Ν‘Ώ4tϘB³υ3¦ΠlύŒC_!G        'a+4ː###QXX¨œ·ͺΠ,«*›"΅”šΫ΄i°,ελνΫ·ΫeζPͺ<+/ά[GΫτIΉ_ Ÿ†¬·ϋ"ωb»ΜΉ£ΠuPIfΧκΟή†rΌn;,*!ΧJb΄γΥΚ=Άνά€οφŸDLŒ—~#Ή=Ί΅7)Tξ|ωt šΓ%ι’uRhVΛ›B³7…ΞΝZ™RhVΛ“B³7«φͺΚBσω5Ϋqζ™ιφhj―}]όfy”ύΌ"tώώ"9PhύΥ {Ζš­Ÿ1…fλgϊ 9        @8k‘9Τ U…fωάάά\Θ*Λfuθzυκ‘Q£FήYΡηθΡ£ΨΏ?€-7Ω§E‹Ζ±^ŒψfύνSI0ω3gBf.ΩΜBΞ”ή¬XlςΰžH€H Μ Ph.s€ZH‘Y- Νjάt~87keJ‘Y-O Νjά¬Ϊ«* Ν2“Χ((ωόψ7@τν*%*ΏΏH šCYθž1…fλgL‘Ωϊ‡ΎBŽ@$@$@$@$@$@$@$@$N(4‡v(B³|¬”šwμΨa”ε΅ΈΈ8$%%Υ£eυ_Ω&??Ǐ·ΛΟ²V•™ε„.nΆ«ρΖ¨ž˜d·˜Kn Ÿ° cw£Μl‚βžH€H \Ph.¬ΪJ‘Y- Νjάt~87keJ‘Y-O Νjά<υ*,Ό€U«Φ`Εςopςδ)΄mΧwίέMš4ςΤάλ΅ββb¬^ύάpCΘO§rέδsΦ]‡7γηŸ’AƒϊHKk›nΊQQ‘U$κBsξKŸγάςΝ²¨ξ©¨ρζW|rσχ €Bsθ/έ3¦ΠlύŒ)4[?γΠWΘH€H€H€H€H€H€H€H€Β‰…ζUh––š:d|™Υš}M)!!7F͚5}5«τ{ωω6ρƒΟ’J΅j%#6Ά§Δ   „ Νa²Γ)4;ΐβBs°šκ,όθ8· ;αόΏ@vv6΄hŠΘ΄¦ˆhΥЁhεκΘMR‘Π¬φΪ Π¬ΖΝ΅WAΑ9ά£8rψ(~ϋηPΏΑ₯ψjε*Μ™³|γeάyηm]ΌžΟš΅γΗMΒςσQ»v’S»ΌΌ³θ{ί#β—·mωάp$_ZGΗ„χ>4Ϊ}±tjԈwκΜIUšΟ½gFΟ(YrL$jί‚Y~™΅Υυ}\ …f“„ϊ^χŒ)4«gkφΤ=c ΝfRκ{έ3V_{’        „# Ν!€^B³ωx)3ηδδ•˜eUζ‚‚Xή—s||<’““½Ω‡{   gšyXύŒB³ZΒšΥΈι, θ47)2η_‚Yn #;5Cό+}Q½am·{•qA'nŽλ§ΠμHΓ±όD#ωKΒ’›όοκϊυλ£^½zB Υγu&Wπγ?’¨¨­[·φΏ Jl!+*ΏσΞ_°ξ?0wή4γ“£Μι|χέπψ°g0Α§>+5Λ ²²φaΔΏb͚uˆŽŽΖ²/η"1±–9”±_Έπ LŸφΉΫs$§ΑΏ~ ]Ί\‘Γ9υ ζ€ͺ ΝΘ?7Όl_rwFΤΝWΪΟ+κ@ΧχIsύšMκ{έ3¦Π¬ž­ΩSχŒ)4›I©οuΟX}eμI$@$@$@$@$@$@$@$Ž,%4oάΈΡI.Ο@cbbΠ©S§ς|Η&  ’…ζ UρζšΥ€Π¬ΖMgQ@—ΉI™ωτ°)(>“οr΅±H˜vμΫΈι¦λ/ΧΑVŠŠΠ?ξά…αO q½πy•šΕJΟόξο8Ν6cΝΡ½:"~lΏ€Χ_V u}Ÿ4ΧG‘Ω$‘ΎΧ=c Νκٚ=uϘB³™”ϊ^χŒΥWƞ$@$@$@$@$@$@$@$@αHΐRBσ Ώ*bkΪ΄)4hPβ3H€H€H€$@‘9@PiF‘Y-H Νjάtt™ΫΙήo‘θ—~G΄l€šŸπΫΌθΒΝuš]‰x>ίΆm›Q•Ωσέ’«5jΤΐΥW_]ιRsUš7nόoόq<ζΜύnhwξ܍§ž…₯ΛζzΌοΪAV|~ζι1ζ•QnBσ΄O>ƒόt*O²―{Οπvn‘ωά—ί#χχ³J–Ϊ«Ηz[nΉ]Χυ}\0…f“„ϊ^χŒ)4«gkφΤ=c ΝfRκ{έ3V_{’        „#K Ν2@)49r€ά*5ΛΚΜ 6€ΜŽoαšI€H€΄'@‘YϋˆΚt‚šΥpRhV㦳( ΓάΞ-ވάΧζ 7ώ•Ύˆξ]ΉŸx£7Oΐ*ZhΞΟΟΗΩ³gέ¦βιϊΙ“'ΆυλΧwj‰„„§kςΔΫu·†A^8tθ€ΘΘ&ΉmΫΆ4-·6UEhώμ³y8qό„GΙXΒΙΝΝC―ž}±θŸŸ!1±–_^Ύ„ζΝ›·β±GŸΐ;οŒΕέΊ"JT~.,,ΔώožyζE|τΡx\Σ9Νο3Ό5°‚ΠŒάœΈιϋkΌ(’ke?―ˆ]ί'Ν΅Sh6I¨οuϘB³zΆfOέ3¦Πl&₯ΎΧ=cυ•±'        @8°œΠŽ!rΝ$@$@$@%(4‡Χ+B³ZήšΥΈι, θ0·3#?Εω›‚i±€\ ;ρ'Šε.[tzβ_½ίεjŞ_Ώή(}=΅vνΪΎn»έ Ά½”€₯τλΈΉ Ν§OŸ6DOΗ6ςΨ“p,―K9YήsέΌ]wmWQηήXr]JŒž$losΏωζ›έ8{k[Χ«ŠΠEνΪ‰~QωšegY‰ω/™β6Ξ#ƒΐSO s»ΜKΝbΑgžž†σkwKΉηΔύ># !·Υαϋ‹―EPhφE'°{ΊgL‘9°}΅=c ΝΎ μžξΆ Ά"        šωJ   °  Ν–‰2 …Ph“[# ΝnHΊ ³(P©sΛ;‡Β­ϋ‘χ‡ωΈpθ„!1³ͺ‘iM‘0%4aΡΟ#όή^³fMΉ}²ί‡³A…θΤ©“pƒ“ΣΛr‚UIh>›wR(φ΄•₯ΠΌfΝ:<=β<τP?tοq3jΥͺ‰Σ§Οΰ«―Vaϊ΄ΟΚΝ·ήΦΝΣ4μΧδ|Ž?n?w<8ώ<6mΪ„£G’[·nb|₯ϋWΤρΆmΫ|VόκDNXiL§ΈF >Ό’¦f<Ηίό*t2ΆkΧ.γSš4iβαnε_ΚΞΞFNNŽΟŒ+{–ΊgΌcΗΔΕΕ‘Q£F•Κγσε'Θχ‘vνΪyΌ―ΓEέ3ήΎ};jΦ¬‰””pΉΝαηŸߟN£M›6nχtΉ ίk:vμ¨Λt8        ‰…ζπ±3   €N(4λ”FωΟ…B³c Νjά*Uφ3劜[сfξ»ψ΅vύβsvΕ’Ls5†³BσͺU«φΉ 0Έ ωεΊ]rΙ%8wξdεΫΊuλrkyn³Ω<]Τk͚5ƒόͺ¬­* ΝQ‘YΚΖιwυΓΣΟό={vw‹ε›oΦΰΥWήΔ—ΛηAΎξΌmς΅ΆgΟo·±~ChnΫΆ­!DzmX‰7€Ϋ’E ―3ˆΘ=‡ΛŸώ‡ύώαηnΑΩV—ΪΟΛϋΐίόΚϋωώΖί»w―!4λ*B;v 'Nœπ™±Ώ5–χ}έ3ΞΚΚ2Ύ'5lΨ°ΌQ(δΘγϋ^Λ–-•ϊWD'έ3–ογ5jΤ@rrrEΰϊRΞΝΝΕW\tߊμ@‘Ή"iσY$@$@$@$@$@$@$@$@εI€BsyεΨ$@$@$@J€Bs…βτ‡QhV‹€B³·Š”†ƒaΉΝ­ Π¨Ύ\Έe? 7 ‰yσ^Ÿ:ΠτŠE«jΏδ±λΣzΔ=ΧΫυr…žχέw†ƒΫn» }ϋφΑqQuσΥWήBDD.ši ;Ž;n† yXHΝΞΥ4kΦLΐΐ‡ξHˆ²?Ψε€B³ O)4Κ₯™Ξ’€κάJΔεRΉψΨi—U{>­žR‘‹―&Ζ>’y}£aή»‹Q0λgΞBL™<Ν¨θ,©Ιuσ&4Λv_,Y1cήΐ;οŒΕuΧw6*BΛΏK¬_ž}ζ%γοχέΧΗuΘ€Ο­$4ΛEŸό Ώίk¬?vΰΈδ黌γςώCΧχIsέšMκ{έ3¦Π¬ž­ΩSχŒ)4›I©οuΟX}eμI$@$@$@$@$@$@$@$Ž(4‡cκ\3   X”@Έ Ν7~oΘ?_}½QQQNιΚj‹½ΣϋγΕ—Fβϊλ―uΊgž¬__ΌψΒX¬Xω»€dή“2BT~β‰!B λ‚₯_¬ΐμΩΐǟL4*2›νδ~ηΞέ:d„ύ£κ?ϋlςrσ0XTh.B³U Νjάt<ΝνΒ?£0³΄ϊrQΆ- …W«‹ΘΤF%Υ—―U˜Ϋ5bίWό t~Υ6δΆ…›~²7ΊιJΔ> Δ«›Ω―Uφ'n•='ω| ́₯ ™GΎŸΩlž_Ϋ²²oΫΆm‘Ψ€εΨͺ* ΝΓwίύO=9ηΝCΓ†υqθPΆQ•yΜ+£w‰”ό;ΑΚ―VaάΈ?xόΔ_B³δ믍QΏ{Ε>ž<bτ«―ŽFΟ^=Bϊe(« Νβ=5oόƒUυϊ‰¨΅δy'nεu’λϋ€Ή^ Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       GUVhΞΝΝΕΩ³g!@ƍH€H€Hΐ7Yqχ’K.A||Όο†UόnΈ Ν}ψ±! 6Θc‚R,>qό† )ΩΣ&οŸ9}ήϊ/\ψφμΩ‹gŸύ­ρπ?ί.Gηε5žmV>zτ’’κ3OΏhŒΩ²es=zTό½ Ζ½˜˜hOΣϊ…ζ ‘(4«qΣYΘ\σ-Ϊ%ˆκΛB`–Υ—· δŸh‘ΥΤ6ͺ/G^%ͺ/‹―ˆζυκh#Ήι:7 ́ΎΊJΪΙο/GŽΑ‰' %ηΪ΅k£^½zBΔmά@εΨΊͺ Ν…ό·›ν€±ŽŽ6>₯‘Ό|0τ€ΗΉ85τsB‘Ω /·)4{γη²n’@Ρα“8·b3Ξ­Μ„¬Ζθ&ΈHYyYΘΛQW5E΅Ίε[½V7nŽœt…fΗ”?–ΈqζΜ€¦¦ή©‚ZVE‘Ή‚Π”Ϋc¬&4KP§žhΏ}τ\2όŽrγg¬λϋ€9? Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       GUNh–U™ε)Ή‘   ¨Α.«5[q W‘y萧ρ›ί>ζUhή³η'όφ7#±tΩ\qfζ6q9ρ±ρ ά^EEEΈχή‡pi½ΊxoΒθsχΤ­—„_ΔΗΟOϊ>š6kŒΣ’Ίσί>Σ§}ŽιŸ~ˆvνΪ [ΠwυΊ΅jΥΒτ_QΏA²ρ’ΫΊu;† ήwί‰^x&€*ŒšΥώ_L‘Y›’€!1/ΎDbή~ΠBβ’™ΪQ›"²½˜Εb£όχ+Γ:pσΆ]ηF‘Ω[bΎ―ShφΝ'άξZQhΟΆ g'~iDY½Q]ΤZπ\ΉΗͺλϋ€Ήp Ν& υ½ξShVΟΦμ©{ΖšΝ€ΤχΊg¬Ύ2φ$       GUNh6?F6ΓβšI€H€H ,DFFΗ^cι6F8 ΝO=5 ©ν―τ‰?‘Ή°° IγΛρφ;cΕGΎGγΘκΟγΗ€ΟfΞΕc 0*4ίrsoDGGα«―"*ΚYŒόψo30cΖ¬XΉgΟζγΓ?†œWllŒΣΌόwχ~³fŒ-š9έs=9rδδόΒγΨՎAĚQ]~ν:챍y±Έ^ŠlˆbρUΤF|5­kήͺ΄}eq dΑΊΞMΎο=z΄R^oώΈΠ=c ΝΚΡΪ;κž1…f{TΚΊg¬Ό0v$       KUJh–RΝ±cΗΒ2(.šH€H€Κ’@½zυΚr8mΖ g‘ΩW…欬½Uœ—―˜ο±B³ PVT8`(Nœ°ααGϊ•š?ωx¦ΦZαΊλE~AyδQ‘ωAΌ6φ\ύ΅nΉŸ:uέo»ΗxNνΪ‰nχΝ ςοt/Ύψ:ξΊλvάpCσ²ΗύΦ­[Q žνiΫΏΏ]ϊ‹‹‹σΤ€νέ»WˆίΡhΨ°a₯ΝΑΫƒwοލ„„-₯α]»vΏp!₯fέ69·-ZTΘ΄"Žη‘ΖwϋqΙχ#vο ―Ο<_7Ή!+‘—^έ…‰ϊUί―Hn^AyΉ‘λάrrrpόψρ {½yΑγρ²ό>{κΤ)-η&+[ΛOtjΦΜχ/Κx\X9_”²uΛ–-)4—3gΗα­(4Λυκ.μΞ6–zΙ°ˆr›γ²ΛόXwIŽBsθ‘λž1…fλgL‘Ωϊ‡ΎBŽ@$@$@$@$@$@$@$@$Nͺ”Π,ƒ‘•ͺΈ‘   „F€Bshόtκ-εΰηFΎŒ;ξΌ ·ί~‹Η©}σ―5X΅j­!"{lpρbaαlΙά†-[0΄iΣ W_}ώς—)¨W―.ξΎ»'zυμ‹?Ώχ:Έ %ηςλǞĻγ^Η/ΏFRΪ¨ίΐsεΐ.Z†]»³0rδp·q½πε—_BJΝFεΛ@ϋUD;Yω566W\qEE<.¨g|ύχ¨S§5jTΏŠh,₯YYGΌΌ…Ÿ’Γ'qnωχ8χΥ\ψαg―Έ«_ž„θξνέ£="Z60Ϊ•χάΌN&€œ[\šH17;;;vtΉSω§ς=W Χ:ΞMώγΖ™3gššZω \f «φQhvαRž§Všσϊ5ΞN^i ‹h^5g=]ž‘σ{Έ\8…ζΠγΧ=c ΝΦϘB³υ3}…H€H€H€H€H€H€H€H œPh§΄ΉV  ΈH€B³΅^ KΏX•_­ΒψρD΅j՜gVCnίΎ-x Γιžyrπΰ/˜5kžyζ7¨^½ΊyΩ؟?=ομ‹?/δά&θ{ί <όΣΈ¦sšS;y’ŸŸ/*4ί‹ΕK>Η“¦’]»+Ρηž^nνL ;#£7σPιΩ­ƒ— š½€ρs™B³@^n—‡π΄Δά=­ά«~—ΗάΌ`ϊ2η42ρ !šƒ§PhV‘fέ>Vš/μUϋύΩ\­Ε£Q½AmϋyYθό.ΧJ‘9τΔuϘB³υ3¦ΠlύŒC_!G        'šΓ)m•H€H€. Πl­—BvφάΥλ~̘9mΪ΄tZܞ=?αώΎbΡ’™Έμςγήϋ?Τ¨QCTŠlaœοΫwΏΊχ!|±tκΧΏΤ©₯+ρξ;ΑŠ• ‰™3ζbήΌE˜;oΊ8pj»hαR!UOΒς 𯯍wߝ(Žη#**Κ©έO?νΓ}`ώ‚OΡ€‰z•` ΝNX>‘Π0*§†e%ό,1_&+1§–Tbφ 1;N¬ζζ8fYsnΑ“€Π<3ΩƒB³7«φ²ͺΠ,σ:™ώ&вmFt—<Ω±άTn1κό.M‘9τθuϘB³υ3¦ΠlύŒC_!G        'šΓ)m•H€H€. Πl½—ΒŒs0iβT|4y;i9ς?ωƈ.’νe¨9ύ‰r‹QηχpΉh Ν‘G―{Ζš­Ÿ1…fλgϊ 9        @8 ΠNis­$@$@$p‘…fλ½€¨<{φ?πΞΫο#""Βψ’’ρΣΟότEυκՍEΛv/Ύ0]»vΖέ}zΪAHyΒ„0{Φϋ59ΞΈq―γΖnΧΩ―ΙƒœœγbŒΧ!+=Λ Λ{χξGtt4&Nz:]eo›—wVTiώ dεf9Φ… Œ{£Ÿχέw·}NφAPhΨΕζšΥΈ+ό.1Χ•˜Ϋ_ΑH̎«vnŽ}Λϋ˜s ž0…ζΰ™ΙšΥΈY΅—•…ζ ;βΤΐΏΨ£Kός%T«›`?/˝ίΓε:)4‡žΆξShΆ~Ζš­Ÿqθ+δ$@$@$@$@$@$@$@$@αD€Bs8₯Ν΅’  ΐEš­ϋRσ™3ΉΖγγγΤb₯„|ζΜDEE!1±–QιΩΫ§N"sΞΝχΩVΚηϟGQQββ.Add€·!ƒΊN‘9(\φΖšν(‚:Dψ ^bN•˜S‚š‡§ΖΜΝSΏŠΈΖΉO™BsπΜd Νjά¬ΪΛΚB³Μμdϊ›ίsδ7²7bΈή8.λ?t~—k₯ΠzβΊgL‘ΩϊShΆ~Ζ‘―#        „ Να”6ΧJ$@$@ PhζKΑ (4«₯H‘Y›7α'`‰9EVbNEtφe"1;ΒΫάΫTΦ1ηUΒ ώ•Ύˆξέ©L—κόΚt2£ΠμJ—tϘBszh{Ζš=„δ%έ3r9lN$@$@$@$@$@$@$@$ζ(4‡ω €Λ' OšΓ3w«­šB³Z’šKΉŸΜΓΉ₯CΑ’Έ°σPι Η£ΈhDί–Š­j‘uΫοhs¬³ΔΐΉ2‘Π<3ΩƒB³·ͺάΛf³aϞ=^—°~ChnΫΆ-ββΚΆr±Χ‡ycΧ]hΡ’E½J›'Mί€„΅?ςRΰΘSέJo–ΑQ¨σ+ƒ)ψbοή½ˆŠŠBJJŠΟv•uσΨ±c8qβDH—χάuΟ8++ ±±±hΨ°ay£PΘ‘#οE-[ΆTκ_tΟXΎΧ¨QΙΙɁ#θgdgg#77W\qEΠ}+²Cǎ+ςq|         ” Νε†–λN@ώct [d|κΧvoεή-Ω#οBɝ˜„ΊH©WΣ­™Ϋ…ΒΐϋŠ΅ΙYňyGΊ δ|Αlλ|ΥωΜσϊΫ8žδBb‰«ιύωζs™#ΔΪsσ€Θ8‘ƒΏ9NΔ<–ύ%—MFη…‘ωϊπΎφBρ ƒ2βγ/NΚώœ˜k.Ο.φ‹m<.FΎŠΧ•œ]bjφϊp{/€oš}σαέͺA€B³ZNšσΪjHΜηWoχ 1ͺkKDί•†θ[Ϊ‰ΏTE‚bWT>o›O<oRhφˆΕοE Ν~Y+4‹οgΩ‰3O}bΟΆφΏ_ƒψMϋy¨:Ώ‡Λ΅±Bs¨ CλΏίΘΥ±B³υ3f…fλgϊ 9        @8 ΠNis­₯ ²πΧ©ΛpτŠο£θΦ<δ6»ΤΌoέR¬Ψτ“{Έ†Έ©g/΄«οωˆYkcYζ~χgE$ νφήθΪ¬Άϋ=q%Έ~ψϊ―S±C,.ΊyO Ή£™Η1K.–ΆυΡHhaίθWŽ6Ζp`›Π>ίXίΓΠ₯Ου?G±ώεΕ²έrAΞ9xΨγ%{w#P·iάz{WΤ3ei‡54ν9½šΕ»υ,ΘZŽ©Λv ηΈ9=~d Ηη΄½g0nNqΨϋ!=?ŠfMnώKΧξp]‰Ά­oκ‰ΫΪybι65^ €PhiN€B³Z@α*4_Ψzΐ˜Ο­ΨŒβSg=Β‹hΡ@HΜΣ+ ΥκΤpj£³ΤΕΉ9Eπ‰ά(4‘SC ΝN8Βώ$//Λ—/7*4gdd ))IK&eρ>t’Ϋ ―δ_7βΠΡw^Ufk-‹ω•Ωd< D‘Ω” /ιž1…ζ υΠ\χŒ)4{-ΘKΊgδr؜H€H€H€H€H€H€H€H Μ Phσ@Ψ.Ώ0 ŸN^†Σ>Dˆ{‹(#"9 ƒολj½YΛ?r­(μΈ96ΧΫί3 7¦˜v¬lXˆψλ™ uκΦ?t<†Σf©fΡͺι­‘WΗjΝ*ύ °κ“©Ψ&¦'„ζGύΝf[9KDˆ…\0Wm\)ω#5=z›!ν:\υxxtέ<ΜΩtΈδ^DS<τx/8¨δF0sφ}ύ)–μi‰y σpp€=ΞΑυ’½Ώλ §σΊH֍el―ζBhΎΓ“ΠΌοkL]²ΓiNNΟ‰h„ϋοzNΟ Μ~.BσΑ5³±0σ˜½uœ¨ά‡S8vΪ|Ν »dΰήN”šνx Ν!αcgMPhV "œ„ζβc§ ‰Ή`ΙFν=κX΅Ί ˆςWLŸkP½ι₯ΫΘ‹:‹œ›ΧΨ|ήΠ•…fŸ±y½I‘Ω+š°ΌNBsξ˜Ω8·τFΞQ·ΆC·–YζΊΎOš €Πl’Pίλž1…fυl͞ΊgL‘ΩLJ}―{Ζκ+cO        p$@‘9Sηš=(M£qλ !hγ^”…WaςΒm%ύ£!ύΑήh|±έΡ¬U˜Ώl[‰-dΦ…ΜjΦ[ΞΝZŠiΛ~2ϊEΤmŒŒΫμΥ€ ŽnΗβωΒaΓ#NFΖπϋ`*«jύ‚‘…KΫF7՜{ωͺζμ›ΛΕ\,λ4ΘbΚζζ.wΛ;₯Ου/];͊šν’q΄¨¦<€€š²1Ώ‚ΨΌjΦξ.‰γZ ό6Α ‘ΩaNφη Δpχ΄ΆΧ™c…ζlΜ›4†ΧχiB³IB}―{ΖšΥ³5{κž1…f3)υ½ξ«―Œ=I€H€H€H€H€H€H€H€Β‘…ζpLkφHΐ£hκΨ²p>Ό§Ε΅δ΄ άΧΥ¬£μΨ¨TBώφΞ.ŽκάΓ„ B"‰Ψ`δ**ρbƒŠJ[li&j’DΡĈ6*Z¬iM+΅hSE›ZZ£MΫXӊ-FT¬˜/QSΓUj‰’F₯Š#*&hY’MrΟ™efΏfΩ™!'μ~·™™3ηœ9ηyΟλέgߍ™p*ζž/>Dτ“UΗηΜΖ¬“ρoΠΌkŸ]ƒ Gr&NHΒͺΣvΆ²οY‘yΓςϋ°β#!%η`φ·:±L“»“EVα‹‚² Ϋ»―‘ωΨ/² Δ°E‘ΪΊζaΤΌ#"»„f)±_*$φ1ύ£3]g~±ž{ Ξ?!Xyߌ΅«ώƒ­;cpψ·¦ σŸ vΌ@PhŽˆ—š…i( Ν»>ί‚Ύg±ύΉΧ!ΝΆαi‡ ξμ“7γd ;D‹lVsΰ2•EŽmΰΨ…»ͺ*7 Να"6p9…ζωDΫΥhš{JΓφΊ·΄0ΗNΛΒ¨{$δͺ>'υΙQhΦI8ί«c ΝΞc«·T=ΖšυH9ί«cη3cK        h$@‘9£Ξ9›0Mύkn^‡%Λ°±8υ«Ζ‡ρΙ³ι"ΫοYΩ~ΩzΏο—­ΧΏϋcΏ,ΑΆΪ9š3ςpΕ”#B†a½ΰS<~O dλ §^Šσ3{Εω“ύηBΝτ—tχ“Πlš‘YŒεα HŸ£GΡeίGœϋτι…"cφ¨ Ζzρ“¬Ψ‹~ςNڊΪ}€΅=)—Mφ²5Ϊ!Σ‹€–ŒνxZ°ϊ¬.γ3NΕ”S31–ήrwμ9šχKφ΄PhvΖώ€š{ϊΠ·ϊMl―]Ο››B–”€Ψ3OΠ²1ΗLJ5­c·PeQ€c³Mo}UΉQhvO ΝΞΈ ΥVΡ&4oώ-τάτ˜7œβΖΎ|ϋ ­ͺΟI}ršuΞχͺǘB³σΨκ-U1…f=RΞχͺΗΨωΜΨ’H€H€H€H€H€H€H€H  PhŽΖ¨sΞ¦ΜES_ΥΎ / BΛ8μ/’ϊλGΏπ j›{ΕϘg θŠ)ˆωt ώVσŽΈ<Σ―Ύ GY”T=Ϋ‰ΤΞXσ tε§γгއf²χΥEL bΕ·Ψ9&W\4"gτ€[Χ{ΛρΘ‹RΰυΝσ½gοΓ‹EΖζ„I‚…ΎϋF#`ˆΒ~ςπ€ƒ Ίh΄Ω’/Ω’u΅Ί―λSΌϊΒrΌσ™χgιμΘƒšΕ8―Ύj ^}ψΌ%EiΔ η’Ή8Yά8ά:λϋx-*j½΅τα'Œž€#'eΰ„Μc16RτFά“€Eš-‚b5₯ PhvžUhήρΚ…Δό:Ά―ο«Ά{L'?βτL!1Ÿ„§~Στϊ` U86g‘U•…fgρ€ΠμŒΫPmmB3ά;°%χΧF8bDn†qξτ@Υη€> Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$(4GcΤ9gSαDS½r€λz=Cμν—o…+DΥfq9P„φ|Ί<+Κγ|†³GΈ9™3.Ε)"‹sΈϋEjηXhΦ'Ό™¦ηŠLΣΑεη¬}ψošΌ3!sΟ?A»κ“²c+„ήt“Ψ–t½…ζ€1Œž„ΒΛ&{ηΉ„ζ"!4ΗυΌ‡ϋ–ΎM—λ‘P–‰υπ7“υ ¦λc¬Z±-^ΑΪ„γ3NGώ”cα[-ώWyLφ PhΆΟŒ-Τ#@‘ΩYL$‘yΧΗθ«y }+ήΐξν[B!“vb…Δ{Φ –r}O¨, plΞ’¬*7 ΝΞβI‘Ω·‘Ϊ*κ„fΘξƎ½«…4φάlŒΊeΦ Γ«κsRŸ…f„σ½κ1¦Πμ<ΆzKΥcL‘Y”σ½κ1v>3Ά$       ˆFš£1ꜳ)p±^ΉoΓ*‘‘ΉEœŠ ΔE"Σr˜ŒΉD†ζ¦š…f_ϊΌϋτι…8λ¨QπΙΐφΪ9šGKfžΟφ†4놡+a,ƎŠ Ρv­Η}όKwυρ{g³Ο.y wΚ„Υ"[τ=[τ~ΚΠˆΪ8σ—°΅Β=%4‹Ξ6―{Λ>ΣΊMΞ™‹{χ<)3vΖU«Π§g36Ά4γΝζf|ζ'7Ηž‹+fœ`ΔΗΏ Iΐ. Νv‰±ΎŠ(4;‹ŠκBsJΒAχΖηθ«]‡ΝήΏ‘Α3~Ψ8ΔN?q3N†<ή›Κ’Ηζl¨ΚB³³xRhvΖm¨ΆŠF‘yϋs―£ηΦeސ&ΔbμΛ·:Όͺ>'υ‰QhΦI8ί«c ΝΞc«·T=ΖšυH9ί«cη3cK        h$@‘9£Ξ9›ˆ$4Ðvc#² ŸldμξγFm³Θ ؟‘w”cόΫ τŠjΣ‹0E7‘=]hB”Ζˆ‹ιECΝ l‰y !Ψi;[ُύΔβŒKϋ«νό™j™ƒG:5Ϊγp\rΝ Œ™°]hΗΣOβ39<‘ΉHdg6υ=(4ϋ ζR†?)g<ήlhΑΞ„fωτmΩ€ΥrmΘ$Λ@kΟΏI  Ν‘ρϊ@€B³³(©*4οόΰs΄—?„7Ν%fŒŒE\&fΧ‰G:›ό Z©, plΞ«*7 ΝΞβI‘Ω·‘Ϊ*…fττaΛ©·!ύΧ"ΈΎnœ;9Pυ9©Ο…B³NΒω^υShv[½₯κ1¦Π¬GΚω^υ;Ÿ[’        D# ΝΡuΞΩ”@D‘Ÿβρ{jΠ!Zž”‡Λ&›ΙΏ]XΎδ|$$ΩΨ#OΗUg+j·£ϊž'ρ…8Š=rΊ(3“w=XσΰίπސV ‘Ωq;;²°Ί¦ΨD‘/ sΈzΉonφξkΙB”Πœ Ϊ_1Ε—»ή{ΌΈQή‘§_гγjŸΠ+ϊ%τ Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$(4GcΤ9gSV„flyK«‡T“EžfδδΝΐΙGŒΗ}Ψπκr¬x½'…x[(2Ύs—Θ°ϋˆ7Γ”š'MΟΗδ£ΌV³§― Όφ^|ΛΫφΘι…8ϋ¨ώ–ŽΪωdᘠΉΈbF<}mΔΎ\5JfφՍ=ςT\vζD“Ί€+nβ‚%ΫώΞΦ?-dνΟdJκt!φžε›³οfΨΌΛdŽj]βυέ7ςύDaŽ™EΣ1ΦΣ‡ΰō…0CP4ξΫπ*V4k£M>i&.:%E;~oω}xρ#ΝtFrΖ©˜~j&ΖΘτmΖ««kρϊFihKG{&fμmcˆΙ!⴬ι/OΛsΰωTHα5^)±pϊŒ)86Ε›-ΊoΛΌP³i·‹Ε©—^…ΜώD²n$ΰ”…f§δΨN%šEC‘ΩσοtίR…έ_vΩΟ/ΟΖψσΎg”©r ²(ΐ±9[%ͺr£Πμ,žšqͺ­’Uhήύu/:§άn„utΕ\Έ²Œs»ͺ>'υyPhΦI8ί«c ΝΞc«·T=ΖšυH9ί«cη3cK        h$@‘9£Ξ9›π‰­>ΡΤ¬βζuO 9·_\6« DΥΣ/½ΗI§]ο­Β#/Άψ΅ˆAŒP£½r΄^œŒι…Aχ™e©ύv>YXοΥl?^Θ»³N‹5ŠLΓ^7Χ¬š·,aŠ˜ ©@l"sπΓ"sπVQ˜||>.ϊώa—QοAQOήΖ+ [»―wŒ)>!ΩθΠδ 9W_t²©ΤΌα…±’Yάέ/›²―‡>¬Ω–ί’“’zήΥ—υgHnΗΣχ< HΗĈˆΩ§eυI(Όl²!qϋ ΝzΦfί}ΔΡ–uBˆoθyΰ:ϋxm5jί’·Ύ…Ψ#OΗUg«WΰžE€Bσ π±±"(4; „ BσΆ?-‡ϋ‘—& ³2|ω‰8xQ˜0aBΐ5NT86g+DUnšΕ“B³3nC΅U΄ Ν2ž[ηώžΖ Zhγ.ώn˜α8Μͺ>'υ QhΦI8ί«c ΝΞc«·T=ΖšυH9ί«cη3cK        h$@‘9£Ξ9›Ψ,dΣeR6όkf!Œš«΅νϊτMΌ°ϊU|Φ¨#>|¦œ>‡©™oΥ·YdΫ}ρ_ψ¨#Θ Ž‰Εψ#3qκ”SpˆIša{ν¬ Ν ιΣqΕY‡Yš3„Π<%Dhφe΅Žœ9x]υ4|!x%Ÿ$Δγ“PoA€φŽρ(kB³©¬μεoHθΪ½O •žΫ_Ε’'_ΧDγΡ“ςpΩδ#ϊΧ…7W­Ζ«-_‰η±8όψ\œωύc˜BsςρbŽί½θυγ5£φq4Σ‹.ΓQ~–ψ– λ°¦ώu|ΆΥ›ΊBΔNΖ€SNΕδLo&h£œ$0šM•!@‘ΩY(φ§ΠΌ«νKt’;?ψ<`πρWœ†‘Χœωaόψργ)4Π‰|’²Δΐ±EŽ_p ΝΑD¬ShΆΖΙJ-g'Φ¬Y‹Υ«^ΒΧ_waRfΞ=w:·ά¨³{χnΌός+ΘΝ́όr¨ΩΦήΎ Λ—?Χ^[‡ψΈ8œ~ϊ0mϊΔΖƚU·\ΝBsί²WΡϋ‡g4VΓNDͺω–ΉWTω.ΗJ‘98bφΟU1…fϋ1 n‘zŒ)4GΜώΉκ1Ά?#Ά        ˆfš£9ϊœϋΰ τυ «OJΝ1H3ΚT`5½‰§]½}Ϊ₯˜ΈŒŠ3±˜Ν:mgΦΛlπ §«W“šcΔ‡μ£Δφκ&βά#Φ‡¦ΛΗ$`Μ(‹λc―Š5š‡ZD£s>šΕ} Ν۟]‡)Xmσ}qgXςh$–¬4m2ςΓx Νφγͺ²Δΐ±Ω'…fϋΜd ΝΞΈ·κλێٳ―ΐ¦/6cώό€ϊ Τ=ΏΛ–Υΰ·wόΣ¦M nφΌͺκ)ά}Χ=X΅ϊIŒ›R―±ρ \ύγλ1eΚ©ΈπΒσπΥ–-(»υχšό\σΜ£HNΖjA4 Ν»;Ά’sΪo Tcž‡˜o¦ηvT~†ΛyPhΆMσΊͺǘB³yάμ”ͺc Νv’i^Wυ›š₯$@$@$@$@$@$@$@$@$`N€B³9–’  ΐ&@‘yH‡7j&G‘ΩY¨χ΅ΠΌ»ΫήOa{έ[1ω›uΛ…6f€Q.?Œ§Πlΰ°| ²Δΐ±Y£Q‘B³ΒΦ…f[ΈL+ˌΚwήωΌϊΚkx’z)\.ί+σŸ70χκλρδS˜©yηΝذαcά³ψ>¬]ϋͺ–iyΕΚ'”tPΐ=»ΊΆβ¬3g⦛―Χ²?λ₯P}ΙΕEΘΜ<e·•bΨ°aϊ%[ϋhš%¨­Wή Ο[kΜβ 'cδΌiΆψι•U~†Λ1RhΦ#ε|―zŒ)4;­ήRυShΦ#ε|―zŒΟŒ-I€H€H€H€H€H€H€H€’‘…ζhŒ:ηL$@$υ(4Gύ@SΣΫΪOΌ$€£Τ™€3¦αď·,½ρΖΫβ§θ_@ϋ›’2§–‹o}뀐φRŽzEˆQ«DέΟ?ϋ9η矣ν ΝΞξK‘ΩσφFτ”>Š]_|νlό$ά0qηΫWΦ$?Œ§Π‚%bΚΗ1|!(4‡ ±T@‘Ω¦+uv~)§ŸVZώ}ω"ΈFŒΐ 7\ΆŸ?ώœ)Ξ=o:~ϊΣišqγ΅7nl@›εΟ­Ζγ?\¬edφΏψίΆΰΗW]§evŽχΏdω8Ϊ…fwεZl[τœΖkxJͺ-΅ΜΞΏ’ΚΟp9N ΝώΡrv¬zŒ)4;‹«+ΥcL‘Ω?ZΎU±³Y±        @΄ Π­‘ηΌI€H€’š…ζθ ΏŒψΗΏβΡΚ'pΝ5E8ιδπΞϊfά}χ=ΘΛ; ·–ύΓ‡ HΆ/»΅΅΅«PtΥeΘΞ>ΝΝοcΡοEnnξΊϋ·"£cŒΦήγρΰΊkK!³:Κ Œ©©‡aŊηρLΝr_\zιEaοcε…f+”Bλμ+‘Ω}ί Ψφ·η3ρP$ώξ O;$ \?‘ΖShΦiXί«,1plΦγ¨Χ€Π¬“°·§Πl—YνuλšpΗoοΖ²' ‘Œe})_ϋ³±|Ε¦Χƒϋ”ο/Ύ·άzc€Π,Λη^ύs\vyΎχ½οhΝz{·iο?βγγ΄σΝ›;pπΑγ|O|?σhšw}Ύ_Οψ½dLU1bSŒs«*?Γε(4[dψzͺǘBsψΨY½’zŒ)4[dψzͺΗ8όΘy…H€H€H€H€H€H€H€H€B PheΒ  ς(4ω‡ΰΪ—_Α7–‘ϊΙ‡pΨa‡υ:6)²4_¬IGΣ§O5Κƒ€Œ\.24ʟœŸ0Α'ΖΘ¬Ž³f^ŽΉ?Ή³f§5“τύχ?‚>ϋ$&Ž2Ί’?A_|έMa3@#PhŽ(Με½-4οjοDΟό*xšZFwI.~žP|"?Œ§ΠL%ςΉΚΗ9~Α5(4±vN‘Ω§j=φX5Ά|΅ΧΜ»Κ΄ZOO/Ξ~!žωηcHJ:Θ΄Ža8‘ΩνξΓΜ .ΕCέ‹†7βΦ[~g4“Ώδπ›Ϋoτ/9D»Π,vΝω3v6¦±Ώj F^}†ΑΩκΚΟp9 ΝV#Ύžκ1¦Π>vV―¨c ΝV#Ύžκ1?r^!        PšC™°„H€H€†< ΝC>Δ¦ά΅k.š}%Ές‡8ϋμP©e͚zά~Ϋ°ϊω§,ΛώΙφΞ*ΔΟΕOΝλύ―ΏυΦ;š¨,ΫοάΉηΞ(ΐΒ… pάρίτ―)8]|q..˜‰σςΟΈfη„B³ZΎΊ{Shή±ζτ”=έέnγ†ΓΖ%"ρφ‹ΰΚ™h”…;ΖShG'|ΉΚΗ>nαPhGfΰr Νσ±ruΩ²lή΄9¬Πμv»…Π<[ϋBΨ±I» /4»‘wN’9Ÿ֎ŠŠ?γΘ£ŽΐΦ­έxδ‘ΗρΠΰ‘‡οEfζ±ο…fΐύΐKΨφΧU’˜£ΗcΜγΧ‡ΓΆ\εgΈ4…ζ°‘³|AυShΆΚ°U1…ζ°‘³|Aυ[ž+’        € @‘™Λ€H€H€’…ζ( Ί˜²Μ’<}Ϊ…BX~ £G'†@™Ο:s&ž­ύΜD%ύϊŠ•O˜ΆχΆlιDяΕσuOk?KορμD__FbΨ°a?-Ώ}ϋvKCΪ_@‘9™ΛχŠΠάηAοΟ ―ζ?7—sβ‚ Kςeθ¨t"?Œ§ΠΕΒ©ΚΗf!€AU(4±xJ‘Ω"¨ͺI‘y›ψϋ|yαΕ¦΅όΞ›½On^hξΓi“g 6vκ^¨Αˆ#š>p%*+—iοW\.Wΐ5“ξξn|φ™7±Ή<–_Βzο½χ°yσfdgg‹χ-£ƒ«(qήά܌ŒŒŒ½2Χη]HϊωFߝw_Ο‘cŒs+{s|Vξ©Ξ† Δ—π\8όπΓ#Uέ/Χ7mΪ„―Ύϊj―ΕxOLJυπΑ9r$RSSχΔtχxνννΨ²e Ž=Φω0φψ ‚:T=ΖοΏΎφŒ>τPί―MaΏžΚΏ3ςοΝ1Η³_Η1ΠΝεψN<ρāͺπ         0(40‘β@I€H€H`Ο ΠΌηXH=ύχΏ-Έφg7bωŠ'4Ι8xμR<ϊρUΕψι5EβΡγ‚/CšΓ Οώ’Σ«―Ό&Ύ9χ1.ωα…ψEΙ―ρΖoύɟ²ΏόςΣ1•,PhΆΙ€ΚžšwΎ9Ίoz»>ξΈ[Β 3wρχΚ"PhŽDΘό:₯as.‘JUεF‘9RδΜ―Sh6ηb§t_eh–ο'Ξ;χάvϋM¦ΏψΠΥ΅S§δcΥκ'MΏ`₯Ο‰B³N"ό~μ/žBLΫ­BoA6zΟ;!|e“+ͺ‹šM‚f³HυShΆP“κͺǘB³IΠlQhΆ ŒΥI€H€H€H€H€H€H€H€”&@‘Yιπpp$@$@$°wPhή;\UουΓ?BΙ ΏFυ“™ΚΔRhž{υΟqυάBœtR¨π"―_|qfΝ:Wό0ιΦΧ7ΰΊkKqΑΗ­Ÿ Ό|‘–…ΉψϊŸΰόσσ'²%ΎyΧόBΣΗγ»˜Ž#€γ0šΓ€‰PΌ'…fχ£k±νΟάqψΙHόΓ₯?oow£Πl—˜·ΎͺbΗf?¦šν3“-(4;γζίjωs«ρο―ΣDcrύΈύσ/pΙ%WE̜¬Χ—‘Y ΝgOΏ\tGΨχ?ΊςgXxΧo0nάX½;[ϋήή^¬Z΅JΛΠωD{ΜtI&WΥ(R=ΖoΎω¦ψ՞$qΔj Ekk+ΎώϊkœpBθUέo§ͺΗxΏαI€H€H€H€H€H€H€H€HšΘ°qΠ$@$@$08šΗο@mύώϋ-ψΝνwbιC5‰υ Ν?ω镦‚‘œ·.-ύΎE8ωδ,…”₯ηόπjμάΉSΛ¨ψςΏ^Αν·Ώ+ΏgžyšQO|ωεWΘ;§Ώ}~pκwŸH Δγρkη―ΏώΊφSσ*ŠJοΌσŽΈγqτΡG›Ž}ξ ‘ywgΊηWΑΣπAΐTβf~ ?ŸΔΉΚ­žΘγǏ &Xm²Οκ©, plΞ–ͺά(4;‹'…fgάό[}όρ'ΈμΉΪίqω7,x{ώω5xςΙβ―]ˆαΓ‡_9'4οΪ΅ Ξ*Dii1ΎυνP PώβΓΤ)η#ά/B„άΘ€€B³ΚΞ>GΧΕ2τμ/1όPλ’ΈͺΟI}BšuΞχͺǘB³σΨκ-U1…f=RΞχͺΗΨωΜΨ’H€H€H€H€H€H€H€H  PhŽΖ¨sΞ$@$@QO€Bst.)4lލXΎβ‰°B³ΜΠό£’9ψφ·O6…$ε€ΚΚeXτΗ{qάρί²ςιx}έ›xι₯΅Έ΅μ—Έgρ}¨zόH‘yιΗπDυCpΉbBϊzΰG!χΪk―Ήζ_°~ύzτυυωΗ7nΤ2’Mš4 FΉ 2“—Μ¨’˜Ϋ‚Ρ£Gkβ°V ο~ƒοo@L—ΫhΎ+!E9θ=ξP£ΜɁόYρ±cΗ"99ΩIσ½ΪFŽmβΔ‰{υN;η؜‘S•Ϋ—_~‰―ΎϊJΙυφΕ_ ««KΙ±I|ΫΆmJfρ”<9ζddd8[¬ϋ¨•Ο?Rρk 3QPpAΐ]₯d,ΏŒτK!!ŸqΖdνšό2Σ¦MΘΙΙΖ°aΓκΛ“pB³Όφhε¨~Ζτ}Β35Λqχέχ±ϊ)νΧd}»…f±―σΚ±«½S+yύ9ˆαχ}#©.ΙQhŽ@ —U1…f AŒPEυShŽ@ —U±…)°         (4(x@$@$@ΡC€BsτΔΪ¦2σβ…Χh™GŒαI;–™Οϟƒ{—܍Τԁ3δʟ_'D掎/1ξΰ±8ε”okβ²”VͺΖςεΟγU£ϊΙ‡Lει·ήz/½ΈΧΟ ‡Υ‚•+WBJΝΜΠl•˜·ή`24χή]‹ΎΗκnθΚ> ‰ .Ζ°δΡεNNδ‡ρΜΠlŸœΚΗf?žΜΠlŸ™lΑ ΝΞΈ·zσΝυΈςŠy(»­Σ§OΫ]σKJ~­IΛ.ύ«ρE₯eΛjπχΏ-ΥήWΔΔ„~yi ‘Ή§§η{ Žύζβ–[~CIΖφνΫρμ?WβŽ;ξοEξ ϋεͺΰ1›ShφQΩφ—p?τ/­ΐuΒ}O|#©ό —C§Π!€.«c Ν‚‘Šκ1¦Π!€.«c S`        0Ph6Pπ€H€H€’‡…ζ艡Lέξ>‘]ρ"MXž8ρ(KΪρ§Ÿ~Ž‹f_© Ι‰‰£BK1ιϋ+qκδ\€§r}ωs«ρΟgWj?EΪk―cώ―„•œ€΅yΣf\3οͺ~¬PhΆJ*°ž‘yWΫ—θώE%δOΧϋo#ηMC|αd’AΛγ)4ΫG¨²Δΐ±Ω'…fϋΜd ΝΞΈ™΅ϊΟήΐ΅?ϋ₯&O˜‚Ο>kΧ²2ίrλ/Ε/"Œ4šΘΏϋΟΧ­Α]w-ΐπαÍrύ` ‘YΦωςΛ―pσMΏAcγHK;­­΅_7X|ΟpςΙYz7Žφš}ΨvΎΣ†ΛI+eωKH*?Γε„(4au| zŒ)4;­ΡPυSh6Bεψ@υ;ž’        D% ΝQvNšH€H Ϊ PhŽήπ‡?ό6΄j±Ώ|$₯£›oΊ]‰n»ύ& Η³kΦ¬Ε 'dj™e’~ƒ“Ηαζ›QΚη{1nε“…π,3/N’/~2~Nωξ·κκYo(™§e Έhγ„B³ X~Uν Ν}5―‘wα³€{‡ΡΛπΤqHόέsμaFٞ8ΖShΆORe‰c³O Νφ™Ιšq ΧJώΝομόr ³/:…kk·Ό«k«ΈΗlΫζFRAZ&h»}Χ§ΠH€σ¬Ψύe·V˜πΛσwα)œ©ό —C¦Π&p6ŠU1…fΑ SUυSh8ΕͺΗΨΖTX•H€H€H€H€H€H€H€H€΄Οό€3ΰΏ λιιΩν_ ρζΝ›UΗB$@$@$ ΝdΨφΘ ₯œ$βύΜ³NΗuΧ]-₯DτφnΓ½χ>€κ'žΑ³΅UHΒ²άt)ωOώρ³ούo .ΉΈΕΧ`ĈΖOΡΛϊOT?dόύΣOΧbΑoβΞ;oΗNύφ³υmŸ|Š«―Ύγƍ…ΟΦ;™…f'Τ«Bσξn7zΚ–aǚwn›wF•žď(ί'ςΓx ΝφIͺ,1plφγI‘Ω>3Ω‚B³3nC΅…ζΐΘφήυ,ϊώρZ‘+ϋhŒ^bν2T~†ΛΙPhŒ³“3ΥcL‘ΩITΫ¨c ́ρrr¦zŒΜ‰mH€H€H€H€H€H€H€H€’—34Goμ9s  (&@‘9Šƒ/¦.:ώϊβ›ΠςӏΤφς'εοωλB~xͺGf]Ξ;η"ά»δnLœx”QΎn]~~ύ―Πέέc”qΖdόϊ–1jT‚Q&³:>'~ŽώΦ[~§•Ι Ϋ·oΗΜYηβ†ζ!..Φ¨λδ€B³jΦ„fOS+z~υμϊβkγ&Γγ‘π« {ΖρFٞ>ΖShΆOUe‰c³O Νφ™Ιšqͺ­(4FVώ]ίZ΄Δ(Lzα ;ΘχžΝΈt ς3\•BsPΐœͺc Ν‚ΤDυSh ˜ƒSΥcμ`JlB$@$@$@$@$@$@$@$Ε8‘yΛ–-πxvl’­κ?E/ί—%$$ˆΜΑy<;EΆη-CsLΜpΔΗΗWqtN‘ΩΆˆš·-yξŠ:Ιό$–ΓSμ­“€N,œΘγ)4[TEe‰c –…S Ν ™T‘Πl%Š‹(4‡ΏστΫ°»k›v!aώLΔε+΄RP‰ΚΟp9T ΝAspͺzŒ)4;jPΥcL‘9(`NU±ƒ)±        @8ΰ„ζmΫΆ‰l€έQ2NH€H€G 11#GŽ\'ŠΆ¦Π¬h`φ°(4;ΫΤΤ„qγΖ‰lά‡t°«½έ₯bηϊOΚ㋦`δά3ΚφΦ‰ό0žB³}Ί*K ›ύxRhΆΟLΆ ΠμŒΫPmE‘94²½ε5θ«nΠ.Œψή"ρOW„V *Qω.‡J‘9(`NU1…fA j’zŒ)4ΜΑ©κ1v0%6!       ˆbœΠ,cΥΥΥ…ΎΎΎ(§N$@$@ΞΔΕΕa̘1Ξ­(4AΪƒC€Πμ ¦™ΠΌύω·ΠϋΫ§°»Ϋmt:|όA%²2»Ž Ÿ {α@~O‘Ω>X•%ŽΝ~<)4Ϋg&[PhvΖm¨Ά’ΠYΟk-ΨϊΣ γΒΨέŒŠ3ΞΝT~†ΛρRh6‹š½2ΥcL‘Ω^<Νj«c ΝfQ³W¦zŒνΝ†΅I€H€H€H€H€H€H€H€’ΐ)4Λ Ήέnν§ΛεΟ€s#  ˜@LL ?pΕό*…ζ<€6‡O‘Ω&°ώκB³{z~_ƒνΟ θlΔδobTΩl Kά·Ο ωa<…ζ€PX:QYbΰΨ,…0 …ζ–O(4[F)4›‡yΛnz·kGύζ"ΔN?ΡΌb©ΚΟp9D Ν†ΟEΥcL‘ΩR¬€zŒ)4>KU±₯I°         τ8`…fFH€H€H€‚ Ph&2΄Ο)4;‹―.4ζξΑΆ―|ŏΐ¨_œ‡Ψσ²}eϋπH~O‘Ω>p•%ŽΝ~<)4Ϋg&[PhvΖm¨Ά’Πlٞ۫±ύŸΪΕ“'!qα₯ζϋKU~†Λ!Rh0|–.ͺc Ν–Β8`%ΥcL‘yΐπYΊ¨zŒ-M‚•H€H€H€H€H€H€H€H€H Ÿ…f.   !C€Bσ ₯₯‰PhΆ„)€’šSΦnDάC―\‹™x(οœƒα©”οΛωa<…fϋΔU–86ϋρ€ΠlŸ™lA‘Ω·‘ڊB³ydwΤ7£»x©qqlύoρe¦p›ΚΟp9f Να"g½\υShΆΛp5U1…ζp‘³^zŒ­Ο„5I€H€H€H€H€H€H€H€Hΐϋ™Ÿtό·a===»ύ xL$@$@$@ ΝB”φά)4ΫgΉϋΛn΄_χwΔ7o hι0ςΊ³ΚφΗ‰ό0žB³}ς*K ›ύxRhΆΟLΆ ΠμŒΫPmE‘9|d·όΰ w»V!±ό‡1υΈ°•U~†ΛASh:ΛT1…fΛ‘ [QυSh:ΛT±ε‰°"         ΜΠΜe@$@$@$0dPh2‘΄4 Ν–0TκΎ±;^\o” —ˆΔ;.†+ϋh£lΘγ)4ۏ€ΚΗf?žšν3“-(4;γ6T[QhٞωUΨΎ²I«{ζ %ή„ΫT~†Λ1Sh9λεͺǘB³υX†«©zŒ)4‡‹œυrΥcl}&¬I$@$@$@$@$@$@$@$@šΉH€H€H€† ΝC(˜¦B‘Ω$Ώ*»»έθœ\f”Œψώ±uλ, Ke”νοωa<…fϋQPYbΰΨμΗ“B³}f²…fgά†j+ Να#+ΏΨ$Ώΰ€mq.ŒύΏa+«ό —ƒ¦Π6t–/¨c Ν–CΆ’κ1¦Π6t–/¨cΛaE        ˜‘™Λ€H€H€H`Θ Π%γ_軨ȑό0žB³ύ`¨,1plφγI‘Ω>3Ω‚B³3nC΅…ζ#+34ΛLΝr‹Ν; £Κf›6Pω.L‘Ω4lΆ U1…f[α4­¬zŒ)4›†ΝV‘κ1Ά5V&       ˆzš£~    š‡N,­Μ„B³Jή:»»Ά‘σt‘±ΫvΫy˜pΞ)ϊ©2{ωa<…fϋαPYbΰΨμΗ“B³}f²…fgά†j+ ΝGvϋΚ&τΜ―ςVΏΪ06Μ―6¨ό —ƒ§Π„Ά&@‘Ω:Ύe―’χΟh vŽŽCοC?Βα‡n½ƒ}TS~O‘Ω>l•%ŽΝ~<)4Ϋg&[PhvΖm¨Ά’Π!²=}Ψrκ­F₯Ρ‹WΞDγ\?Pω.ΗH‘Y”σ½κ1¦Πμ<ΆzKΥcL‘Y”σ½κ1v>3Ά$       ˆFš£1κœ3   Qš‡h`ΓL‹Bs0&Ε[t/Ψ΄ήώ.ܟϑξβ₯ΨQί¬!ˆ»ΰ;HΈωόϋs|!ƒ1) ΠlΕf‘κ1¦Πl3 &ΥU1…f“ Ω,R=Ζ6§Γκ$@$@$@$@$@$@$@$@QN€Bs”/NŸH€H€† ΝC)š‘ηB‘92#YcΧ_γλs~gTnΏω ŒΚžH‘Ω bν@eQ€c³ΓΰZͺr£Π)kηš­qJ΅:;;ρᇆΖ5‘y€IHHH[o^ψΰƒ0qbhfδ}1¦Ρ―΄βΰ­έjgΒ|ς§ Bn»?Η2“‚ΦΦVŒ1‡v˜ΙΥύ_ΤΡс-[Άμ·[! zŒ7lΨ€ψψxL˜0ΑΚtφyM›6A>‹Ž9ζ˜}~o«7T=Ζς9ž˜˜¨ύJ‹Υ9νΛzνννθιιΑΡG½/okϋ^'žx’ν6l@$@$@$@$@$@$@$@$@* Π¬bT8&   G(4;Βvΐ6’Πl-tξ₯k°mρJ­ς°oŒAλgcάΈqš­α3j©*ΏΚrlF˜l¨ΚB³­0•)4(’ζΐγρ`ΫΆm¦σ•Ω›λλλ™‘Ω”NaOΆœz«Qcτί―†λ€#sy κsR$34λ$œοU134;­ήRυ3C³)η{Υcμ|flI$@$@$@$@$@$@$@$†ŒΠμqw£Ϋ€DΰiΖ’Uθ„ ΉE₯˜š*Κ†άζAw§€DΔοΟΉy:Π܁Ĕt€&©Γ9`=μ1>nΤ.*Gc']XŠΌ΄pδƒcγFks+3Ά$       ˆFCDhξΐ²Εh̝[†©ΙΝX(„ζnqžYP‚YCOΆμhXŠΕ+ŌS¦’ln˜ιώΩZͺΛQΉή Έ2Q:Φή—«E&Έ"‰ΣAλ!eO±βκB!4‹…5ΠΊ ŽM{}–Τ΅‰A$’`~ 2" Γ­_R†ΊvΡI|6JKσb"θ ΝΟmK ΆΥƒΤ©sQ”»Η@οΉξ“ž¬­‹½3”½΅Φνv 5gΉ'K‹SωZž+ξšχ φύvS Ν‘Ροjϋ_ηίiTσψυx{ληš "ΦT86λqτ―©*7 ΝώQ²~L‘Ω:«h¨I‘ΩZ”ϋžό7zχ΄VyΨΑ‰HZ5? ‘ͺΟI}šuΞχͺǘB³σΨκ-U1…f=RΞχͺΗΨωΜΨ’H€H€H€H€H€H€H€H  ‘ΩέRƒςΚ&ajf x~’Œ Ν‹§nΐ}ez^1ζd'ν·©΄Τ,De“0|]YBhΐgχτ Œ8' Q·$PΤυΏ—QO_ώuμγ^hφΥΡcγš“0g~1χ€Ql2Ÿϊ !4kώ΄'O‹ΘZ^)²– ©ΊTHΥ{"Q΄ρ:‹G^q)φγ24‘°/‹|1Ώ.φΞxφήZ·7^Σ5g£‹–šEβ9"VgΦ”䧇m©Κ|Д @‘Y‰0μ³APhŽŒzΫ½«αΎE­bLz ΖT£©©‰Bsdt!5T8ΆpY*P•…fKα ©D‘9ITPhΆώέ_χ’sΚνFε1K―ALζηͺ>'υRhΦI8ί«c ΝΞc«·T=ΖšυH9ί«cη3cK        h$0$„ζ†ŠXΩζAJN!ζNK ΡR Ν₯"Cσž°7ZυX°ΈbΖ(,› 1γύΈu£½­ρΙ©HΪۘ[kQΆ΄Q$:ΞΒό’ό°™†CΦΓ£cA\5mνπ$₯ %q/ΫΜržn΄‰˜$₯¦Βw;!4—υ Ν{(K΄‘‰:)σ‹§…ΗΓ―lGΦΕ^ϋή[λ6lΊζ¬χΡZ»K# ΝΚΜΧϊΤXs? ΠΌ οΗ[RhŽ Ώσμ;°{S—VqδΌiˆ/œL‘926Σ*‹›iΘ"ͺʍBsΔΠ™V ΠlŠ%j )4[ύΦ«ώΟi β/ύF^wΆΡXΥη€>@ Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$|‘Ω݌…εU蹁σKJ‘•(Βθ'4gΟ)A.ΦcMS<\IιȝšdS―΄͍ hnν²°H:œ˜Šμά€Κ>ΝƒΆζυhw'"3+ νMkΠΨ©]MLIGvN–·οξ6444‘­Σ-Ήš™ƒœŒ£ƒξΆf4ˆρ ί­­ndζLFFΰMύ«£YdEY‘γ3ςQZε½ζι@sS+\©™H‹oCݚ&tŠIΈ—tΡ_VP-Νhνv!#3ΝukΠ"Ζ™œ5S3’{΅77’±Ήn F2³sBΗΥݎζ–v 9έδš`PΏ^\KB{K›θ?Ή©FώξŽV45G[·—WJzr_o˜ΊΡά&XΧ Y\w₯bΪ¬\1³DdχgΆD4χLΜ"‹«¦±«³₯ΉEŒ"Aγυt4£N0κ–ŒΕ|2'O‚zΦ‹5˜˜’ΡΟΤόιθln@ΓϊΦs@L ΦEάݍ¨©kχˆGΦ΄ibˆu‘•!ξθΫμ­ΓnΤ,\™œ;#ΏYAYΒεϊ φžΞVmŽΪœ³dθΆζ&tΘe/Φ\†Ύ€Nρ:YΏΎνΪ‰―©,d žώ/e9‡ζφn!sg"=±]Όα} &"=3Yιήυέ&6‰5%ΧΆ|ηLΞAŠΏoλυ4πΊ°ΜUc&žΪό Ν!''0FΎh‰£½ΊΦ³ζόWΔkO°λU†T‹©xΟ7·x~΄Ά£©¦ς₯Ÿšό\ρŒH4yž˜Ξ7€OH@#@‘9Ί…ζγ½σ6t]ΎΨ¨tΠs7aψψƒ(4Dμ¨, plφb©ΧV•…f=Bφφšνρκ΅)4[p_Υ‘wα³Zƒα)I8¨ΆΤh¬κsR …f„σ½κ1¦Πμ<ΆzKΥcL‘Y”σ½κ1v>3Ά$       ˆFΌΠά^_%um@J.ζϝκ•ύ„fσ &!ΏΈώ¦»΅‹–Φ{₯» FyE(Θ’άDίε ͺLλy+€©9 M ͚ν-σώλJΝEIΡT‘”κ›υ•‹QΧ"¬Π -)3Ε³ϊeε€km¨(«Κ+S4ΣR½:g‹œ+₯]fKΝ™ƒ’iιή«b Ε‚k»2 0Ώ Cˆ’-XΊ¨Β­Ω’2ς0― ېHϋΊ2Q:–1·ΆϊJThmPIY˜Wœ/Τ^ίΦT³5MBŠήβΣ0§Έ©­Υ(―Z|Uœg €¬ @Κ ·φLΜW…Ίiwsψ£ΑHΧ=Ϋͺ°de³ΙΌΌEF<ό֜+1^$`Lΰzn.GΥz7΄φωΐ!ό o7dΛ/-C–Ά¬Γφz”-©}¦’¨¬HόλΫ¬Δވ“h–6m sΌ+ΒέRƒςΚ&­3Wz>ζΟ‘―N¬¬XŒ‘…=d‹Ο@Qiq}ξ!υϊ ’2²‘ΪΩ„υνΑ}Ή[X‚©iήW§±ΓtπzOƒΪ…εh/¨Μ‚‘^°u­uK±΄ΎΥδn‰˜ZTŒάώΧΉƒaΠ³o¬υΑ¬9ω ‘›»UGβΣ§’dN.Zͺˆ΅ Ρ6½esϊϋΡ:Lηۍ;π'@‘ٟΖΠ?¦ΠX Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$p‘ΉΥε !άMd‘°@ …Œ·H»zDγ…dœw›[…u(6WZζf{k™?΅+HΟ’“:P_'²{k KτŸ/ϋκ;>5 “E–γ–¦z΄΄Ц2Λpz Π"25λώdva)ςti²v*½wˆe'g₯ ₯^fKφ ~ιyؓΤ?ο[Θ± ₯ά/δΨRŸΫR#ϊjGŒμ\!yΆaM£O¬ΞšSŠόt!lΝA€­FšHOŸ™‡!cλ™wε“³EVε$4―©ƒξ]'f $ί+χΟBiiΎ&4»[j…”ΪθpΌΜ~› OKƒ‘ΙΪ'ͺ•X\Ϋβ­+2妧$"ήΥ‰υΝνύeΩ()LYŒE†γξ¬—Ω°Εx33Ӑ”–©Y©ήzΪΏΦΦƒσ˜…W½CCMŒJΌŒ„Ω/ΛΆ.±ζrζκΐ?>1Spž%8Η+ΒzΦcβmŸ„Ίš‘‰ΈSdΙmΥΔζΔτLdˆlβS§fiρjq°›«E–πυ2KxΘξ] r&ΦcοΖΚEεhΠ–l ζ̟‹t1Κ‹Ρ"—Ώ+sηρxω ΉJΪ2}―ΨΣ²+bή.^oM­ήυξ?}ξZe1»ΜάΙH‚ώšF™!Ϋos₯ +Gd†noλ·Φζ—δi²~p?ΎžΒΝ–Ήv7‘|aχK2ΆΉ".νΝ¨ρςniBbΏίπ!ΎŽ`εΩηx­jΝyΧC“ˆ[MάR„Hž•ζBs}ƒΘ οHκΤ"δ'‹yΆΈΡέ€=χ\IiΘLKFZφT‘U>ήoΖaζλWƒ‡$  Π¬“ˆŽ=…ζγάyΖo°{KV)αΖσ7ϋν˜BσΐάΒ]UYΰΨΒEmΰrUΉQh8nαRhG&:Λ)4Ϋ‹{Wα=ΨΉώ­Q|Ρι9χLνXΥη€>; Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$l‘Ή½NH‘υ"nAYbύdΌΰ¬Θ†dη'7.]€ΪV©;&bΪάδH‹Rn‘a΄\d•—Dύb!'ωυ(²—ˆlΕήΝƒΊ% PίοFf‹L­IύΧΪ±tΑ­ŸΔ¬9B™’;QΎ¨V““² Pœη•ΕMQ_QŽ:™61[°yštΪί‘ΈG™vΤά"MMΥ‹α0‘7―ΩΙύ—D6Ϊ…‹jΌΩ˜S§’¬(7P“‹EΖd}€ K±xe«Φ8}Ϊ\ΜρΑ@ύ…¨k•bi"ςKJ%όnγΎ†Πά‰ͺ‹Π,†$!#η‰Ϋκ—Š¬Ν²ο$!° Υ—Ρ)’ξ\_έΞ¦j,ͺβΆΠKσŠηCσΊ[kQΆTˆ‚‹.žŠ ΎΝΒzTΜˆ«ϊΒΕΖš F@ce9j…Θ)YΔ«£ Χjρ2š­¬g=&F{m€-XTV)}ΑΎL°Χνhϊβ–;· SυΧ‹θέzμΕόDήD‘‘†oήΔF‘Ωΐbλ@eQ€c³J£²ͺά(4!²u@‘Ω!_™B³½»ώΆύy…ΦhψαΙ8θ©νXΥη€>; Ν: η{ΥcL‘Ωylυ–ͺǘB³)η{Υcμ|flI$@$@$@$@$@$@$@$h‘ΉΉJd‰mξ~b&[=‚~2ž‘•ΈZw“k„$hdΛu‹ŒΔεhκEΑύˆ6n?Ω° ΄.=ϋs" ζΛsύ¦ώΩ†EvΩ2ovYοU_f_ύ†δ*$F­_!Qκ›Odτ –Ϊ5C mc˜&²―. YΰΣR³Pdz–0ό² λσΛd)2VΟ«ϋκ²θ{‘Ȏ-z€^Go·ΘD[ξΝD›U ²E§΅baΉ·nNΡ|LKυƒ‰vT–W Eδθ-˜[$2fΛμΏ5"σs“π;}Ω ΎΕAδυ0Έ˜‰ V¬•F1ΉΉ ›ΠqΌζτθkΕ?Csδυμ“qφ’σΐ΅cŒΝΖ:4Φ§ˆC‰ΘΚνU£Όχ°{i ‹­]HξK4Ι];Υώ‰―ΓR™™ΊσΈ»…ζ/2ˆΗ‹υαΩ|έΈ\ρθ―εŠ•-kU_sΧϊρeN›6…9Ιzχ"{x ΘuεΗ@οΗLžy=™¬ ;\ΣZ«Q.³ y?cκ,δεfLΫZZΰΙΣEΦbm――uc½Ξ֜XγεβΉ*„f$e `N2’ϋWJg;šΫ»‘œ–ŽδώηžΞ;4nήY‡―?“@? ΝΡ΅(4‡wο‚'ΡWσ­‚+g"F/ώ‘Q™B³ΒցʒΗf+”FeUΉQh6Bdλ€B³-\CΎ2…f{!ήυω|=γχF£ƒͺoΐπ΄C κsR(…f„σ½κ1¦Πμ<ΆzKΥcL‘Y”σ½κ1v>3Ά$       ˆF°Π܊%eK…φκΒΤΉσ‘›β>?/X<5DC]ŠυˆΜ΅ dζΪPqOλΡΈήŸd?‘Y Ξ~"²!F†Θΐ>VφΪκ*PџΦoδA‡ςiΫΚ%¨hh ©ϋ3-ϋΥΦ…@3ΩΧέ,Dΰ*?aӐ²ƒΕ\1ΞEBΨ0Μ3₯ϊζ‘&²7ŠμΝΑχu΅ΥaAE½ίΘΜe\ς\u^AYδΚ-›ύεp³V!± ¨de=ς”ΝνΔl ‘y Ψ„Ž» KΛ*Π*ξ,‹Κ1ιLυ΅β“‘ƒγe.y‡΄—―‰@φΧ‘/yκΤΉ(ς{αylΔ^Κπή͍•KΚ!—΅ΆΉΔ—ζϋΐ[άή\‡ΪΪ΄uΛΤίA›ώZΕ¦sΧͺϋΦn0s#>fB³_ίϊ]C^OρΎΎυη=Ύυ ί#>)ιYȝœΏgŒχϊ>XλΖzqΎζ|Ωϋg%$τT!1gεδ";݁=PάdΫζΫί5w$ΰO€B³?‘L‘9|Œ·|`Ϋv­Β¨² ›w²Q™B³ΒցʒΗf+”FeUΉQh6Bdλ€B³-\CΎ2…fϋ!ξΊδOΨωώηZΓ‘?9ρ?:B³}Œ->ύτSlΪ΄ 'žxb@ΉJ'ͺώ-ΤQhΦI8ί«c ΝΞc«·T=Ζϊ8Ή'        +X‘ΉSdg]iΩoΊvd<Ώ¬Γ)Sηann`&TŸΪ/φ₯· ΊJЁb¨Ό»!F†H>αQ—T›«Evιυέ~ƒ6;ŒΩ›Kϋ₯ιNT-X„fαsjٍύMjΡT9Ν„ζξΖ₯XXΫ*jυy‘YΟV€i(+Ξ ”ozέΰϋ§ƒšjB3„Πμ/Z‡ˆ›Βσ¬­‡ΑΕ,ΌΠ…ΕsΦšΧykޘm„ΧΆ_=’€N Ϊ…ζ­[»±bE^}υ5μή΅ίώΞΙ8ϋμ3”tŽhΐ}gηΧX½ϊ%ΌφοuΨ½{7²Ώu"Ξ8γ4$' hχα‡αέwP&Ovμπΰ΄Σr1vl’vΝγΩ‰ηŸ OΰΣMΦ;4ε8ε»ίιΓN…fsZ;^~έ?ΘΈ8φεہ„XγœB³ΒցʒΗf+”FeUΉQh6Bdλ€B³-\CΎ2…fϋ!vWΌ€mKžΧΖόοŒyτZ Νφ1΄ Π€ΓΡ …fGΨ©ϊ~G$…f„σ½κ1v>3Ά$       ˆF¨ΠμΑΚE Π 2 λ™‚‚gKΖkE…Θτά&:΅>»›„ΐY#Ξ`8P •u 1‚ΠldpΟΔΌYHr ΡΗ₯έQH?β°ΨΥΰi]‰KD…4Μ-+D`~S?ΣOξτφ&EΣj!―§©(,+BZX>2ϋn9κΫ=0 …Zˆͺr!U»}¬tQ?}š‘_\Œ,‘ˆΧP˜'}CYκcχί‡ηku=„ή'|Ÿ>ΦΗΒWζΏV"Ε&τέ¨)_ιπfˆLΥ~‚²œoKν"TŠ4ΩΖ}ΓΖΛ|Νι11ΪΛN>Ψ]‡Ί\μJ›&Δγ@αέ—‘9rμϋ—7ΠΡ€‹Wϊֈj °ί&^ŸΪλ31} >@IDAT*ζΞΙ―Δώ­­eΠמtcMηU7ΌdΔGϋ ΝV^OβιP»Pd6ίOΠΧ…]Ϊ΅<θμhGkSκΦΓ›Z|±‘D|±A›ψ>ZλΖzρΝI£ΑΛο9ž»·•Ηέ‰v! 7¬©Γϊ6ο9\˜_‘Uί>Β|υAqO~’YhήΈ± ηηΟΑΔcŽΖΟ~φcμΪ΅ -} o½υ.ώQU£>Tθαϋο·ΰβ‚"­}QΡ₯ˆ‹ΕCύCˆ,o£βώΏˆΜrǍώ΄h dύ²ŽΓφ>o`y±――η_‡£ŽJΣκvt|…³ΞΌW]u™x³S+Σ3f4ζ\:Γ‡Χ‹lο)4›#λΉωΨΎϊMνβˆΣ&!ρΞK*RhΐaωDeQ€c³Ζ€Šͺr£Π&Λ'š-£ŠŠŠšν‡yη†/Π5ϋFΓƒžύ%ήloU:»π»οΎ‹Xρž5==έ·Jš Νƒg¨κϋ}fšuΞχͺΗΨωΜΨ’H€H€H€H€H€H€H€H  ˜Bsg#,ͺ€Θ;Ώ†ΩB[2žGȈ 4IΉ"+ρΤ€u Λ₯Πο…ζ=’‘ΩΣRƒ•MΪ½rŠΚ0-5ΰΆ"ϋlβSS!%MΉ5V–£ΆEhΥYsP’ϊA.ϊ˝ޖ@CΕ¬lZ±.gΐ§UΘ΄K…L ‘L–Νϊ΄oσ΄ΤŠ1 TlYsJ‘Ÿo€Ζ}Eί Ek©,¦δaξΤΰ‰΅£#^fΨ<-‚e₯Π€τΌbΜΙNGϊ֊%B4o§ϊ½ ‘21₯%yX^2―Ό“Ρ§ŸœιORυ‰ΑΎ2]\•u#Ε&τΎ~$”Ν \sυ"^u"^Ζ}ˆWhίa€^£ΐ׌½u؁Κ‹Ρ"–’/«ώνΔ^k"Δξ…Bμ–‹Ε•„”ψn΄ko*Š„x―­Ώ κΑ―“φΊ ,©oσ­kэώ:0ΨυMD:D:Φ/ Ν„ζuaςz2ιΫ:W7V.Yˆρ%‚€ΜΟς ΎΪΨ:λQΆ¨N;4ΦΫΎZλΖzq&4KΙΏ\|C{F—Šg΄ώ ³iXR†•ς…-Ψ–”ζk‚Ί·ΰη[€ωjtψ ˆV‘Yf@ž9σrL™ςMf6l˜ζϋ+51yΥκ§g”ϋΈέnδS€‹ .€”™ύΫ?υT-ξΎλ¬\UΔΔQZζζΩ^;~w &N<ΚΏ›γ·ήzwί}|πž€>C*:, ΠlΟƒ-§•ΫΕl±%ώ~FLΙԎυ(4λ$μνU86{±Τk«ΚB³!{{ Νφx υΪšEψλ bΧΖ­ρΘλΞΖ{™£)4;C©΅’Π<xύM)4ž‘ͺοwτ™QhΦI8ί«cη3cK        h$p@ ΝΊdμJΛYb³CγfSΖλhXŠΕ+[΅~’2σ1wV–&ΛΆ5V£’v½Vnd€5ϊ¬λΛ<+eιiEEΘI•)X=h«BU}‹0‚s0ξ4Έ ρΧ…iσζ#'YRΐ?Ί( Σr P8Ν+FΆΤ-Ee}«V7){Šσ„ mΜ!TV Ș›”…Ήσς‘β:h{#–,©Υδc,ΡΖ} ρΣ―«έ™Σ 1+'M;ιhCEU½Π?…,=_Θ.Qw‰w₯ά(΄ΖάΒΉ˜š&t’Ύ²u-tœη—hΊ»ΉFdš–Έr‹η!#I LlΦΧΓ`cf"ΕZˆ!ΜŒ€φz!γΦ Wl)Ω(ΚΛ Ί=hͺYŒš&©x‹™ Α΅D ΔΛ¬o=&F{Ω™ŸœU0ωϊ"²Ύh―ΠξJΗΌωs χ »χnvbθٞeΫ¬9eΘO_TX(Ώ¨ \Χτ|”ΞΙ wbz. ¦"ΩεFK} *뚽·5cuvήβ_“Ψυ_3Κ΅V*ΦZΌOŒ–U"ΎžLϋΆΞ΅₯z!ͺΦ{ΧϊΤΒ"δ¦yΕώΆ†JT¬Ο±eΞG^škί­υΑ9Ώυ&3k‰ΜΪΪ¬άm¨ZT‘eyG’xΎ‹η›˜_s` ΝvρΜ).ΞχΦε_Ϋ7"­BσΊuMψωυΏBέ 51bD™©yF^nώΥ ψήχΎpM?ihhΔΝ7ݎΥΟ?-~%"F/Φφ»wοΖΕaήΌ«››ƒžž^œ=ύBΤ>χ8F–·Γo=V^QΏHdhή…ζPͺΫW6‘g~•χΒΘXŒ­»ˆσΎgkShΦIΨΫ«, plφb©ΧV•…f=Bφφšνρ¨ΆόU…5kΦbυͺ—πυΧ]˜”™sϝŽ΄΄ΓjrMΎ‡xωεW΄χ11ο/B*‹‚ήήmοiδϋ /W™ΥTF‘9!σλΫώΊ ξ^.ΊŽ;-מB‘Ω•₯R Ν–0 X‰Bσ€x,]TυύŽ>x Ν: η{Υcμ|flI$@$@$@$@$@$@$@$@‘Ω—%6»°TH~Β> ήlΚxω„½YRυŽ\ˆ²­Ϋ›ΨN¦ ·HΈβΠθΫ'?κ­ 1O°τ^™hΛE&Z·Ÿ€*.t Aw‘&θzkΉβΕ\D†DύΆΊΪ!ΔΖΕRlτυ{κ{]bΥΟαŠRΆ;ΒL„fΡAKνT6Ά]ΕΗ»Δ°τQ9Bœ¦Απ?ύd]11,ZXΥ/?‹n‚Η"2E—τK‹"λB‘m[κœf[JΞ̝–ξ½ΤV‡²Šz_5‘©y~Iͺϊ³G^ƒ™[d.Χ2 λs­ΔΖ]”ŠŒ΄ήλ[ΗΎ ιρχ­ΉΠx™υ­―£½Φm›Θx]‘eΌφή% sDvσt±¦­ΓΖ₯ PΫ*rξκb|ΰp½gVcίΡ€‹Wjkέ•: σ‹r΄φΊΐ*O² J„x/ωr-c΅χfϊβΪ"ΔΨJ!ΖΞ]Ά ή“»ΉZˆςλΕ©?‹D?^±\«Ό†ύŸ aϊΆΚ(_\+zιίΔ½\ίsΐ—ΙΨ·fφϊZ7žsΞΧ\SΥBΤ4ϋ^ΩΑΟύ5$gέV·υΎgN’Xc%yIFFπ°σΥ™qO~’Uh^rο>|8~|u‘ ί‘‹·|΅Χ)Ωl“Χ»·v‡m_Sσ>ό°7άp 6lhΕ/JnΑΥK5ΙiΫ6·–ωyάΈ±]K‰ιϊβ›΅>9&›7oٝƒ‡ΈΈΨ€ΊNO(4‡’λ.^Šυή/ύĞsFέ6;€…ζ$– T86K! ©€*7 Ν!‘²T@‘Ω¦ˆ•ϊϊΆcφμ+°ι‹Ν˜/Ύ\œrθ7Pχό,[VƒίήρkL›6%bz…ͺͺ§΄_yX΅ϊIŒλύβ¦~-x/ί7”άπk¬]ϋͺψ‚ΥSHJ:(ΈŠ­s ΝΆp•w6†96ΞΫž‡γ&Ÿbœ«vπξ»ο"66ιιύ#ΕH‘yπ‘ΠΖ=‹οΣδd)›XωDDAω₯—ΦjB³ΥϊΖΐΒPhΖBρΧyεΨΥξύοο―.> Gίϊε( έμ“*šYΥΏ…ϊΜ(4λ$œοU1…fη±Υ[ͺc}œά“        €œΠ¬‹IΩ…(ΞK³2G›uάθμ— γ“D¦f›ΝVwwwΒ#2³zΊ»Ÿœμ“‘…lY&dK)~–#-L†€©e-Ξiw;Ρν‘’l’ψΰΠ'X†iΆΈ»SŒK\uΕ'"Ρ†οΎΑ‚x—ξn!ηΊDΖΩnxβ“1ΠP“Ρdd ή[λ!,HΦJlΒυΰl]IIZ¬:΄y‹X%zP]^ŽυΒ –ίΓυc«\Δ‘³Ϋƒpk;ά:μl\ŠE΅­bP9"+φ4‘ά[ΨlΔήBoBLχŽ]¬±¦”xKΝνTς­k™|π―§p\CΖ$23wv{υίΰνύg_ΘhφXœΏ–δ=Βk[{ήτΧ9η»Ηΐ±#G’UhώρUΕψΙO― +4ψαGψιOnΐςO˜JΔo½υŽΈ^‚ηλžΒΘ‘#ΨοΪ΅ ηŸ)ΎqH2–όνnόωO_ΒX†²ΫJ1}ϊTMv’?ί}αΡΚ'πΤӏ 5u‚ψrΥ&œsφltΠ<φΨ}"Γγx­ίυλίΓUEΧaΖΉΣpΣMΧκ'ε)4„ }OΏ†ήί>₯=I/έX‘ŒB³)–ˆ…*‹[Δπ™VP•…fΣpE,€ΠQΔ _cΚιη…•–_Ύ#΄_lΧΩΗ‚ Δϋ†sΟ›ŽŸώτGZ†ζ_άx-‚ΙΑΏ½ώž‘βώΏ`ώ―~ƒΚG1£³{³c ΝfT¬•m[΄ξΚ—΅Κξύ}τηΦξ‡Zš]ΥΏ…ϊΜ(4λ$œοU1…fη±Υ[ͺc}œά“        €œΠ,₯ΖφŽn$¦€fω΅2Ϋ΄NwG»Θ”œˆ”δπ§!`ЬΕ%₯ωϋŒMsυBTΙ΄ͺϋψΎF(χσz°c¬ώzVΰ”lΜ-ΚΣ2π cM5¨ijΧjgϋυoΎο=θhοBs X†ϋ~X{ιŽϋλυ4ΰtφσZpl{γb΄Νwo0Œ>£YhΎφΪ«qάρί4|$‘Ω#Ύ5sζεH;βπ‡;oG\\¬ΦΜΤxχέΕc>+―ό‘–‘yωs«1zt"ΎƒοάKΦύΓο„φ/6α» §§χήϋδΈβγγκ~ϊιη8wΖΕ¨zόLœxTΐ΅ΰ“M›6AŽΟl{ύυΧρΩgŸ‰±ΟΔΑlVeΏ•½σΞ;bήρ8ϊθ£χΩΆΞύ;<΄ϋΕΝΚA‚xOhΆQh6£ΉLeQ€c‹?³ͺr£Πl­Θeš#3ŠTcέΊ&άρΫ»ξδ/>\ϋ³Γ~A*Έωήΰϊβ›qΛ­7†šε§.š}%.˜9³gη㌩ηkBυΨ±βΛΏƒΨ(4;‡ηy{#Ά^ρW£ƒ€nΑ°ƒŒs•(4>ͺώ-ΤgF‘Y'α|―zŒ)4;­ήRυλγδžH€H€H€H€H€H€H€H€¬8π„f+³ŠΒ:ϋZΐl]ΉUBΌu»ϋ³Ιf ΄ # Ι;›²§m%T4E¦f™±ΩKS'ε ΄xš/S·Q“ϋ‚ΐΎ~=ν‹9ρ$-’Yh(Cσ† ­YœW­~4C³\2;βœώ[Άtβ²Λ ΄LΝ>π(&Mϊ_|χ»ί»―OΛ΄8ΠZ’’ς₯sΖκηŸ™›cΒV•‚ΣΝ7ηœs&rssΒΦ“Φ―_>qo³mγƍؼy³γ$$$¨%Ϊ΄ΆΆ"66&L0ϊ/‹ιrγnxΖθ·ύ—SΰNO6ΞύZZZ„”>γΗ{³fϋ_ΫίΗ|πΘΚ9ΙβKTΫδΨ&Nœ¨Ϊ°΄ρplΞΒ’*·/Ώό_}υ•’λMώνκκRrlRίΆmŽ:jΰ/Κ8[-ƒkυΙ'Ÿΰ˜cŽAF†ΪΝόΨcΥΨςΥν Lf3–_V:{ϊ…x柏‰_Ν9Θ¬J@™‘YώΊCuυ3¨~ς!μΨ±Cτ?›BsΕύsyΦμώR|y]l ΏΊqη{ $Β])4Gdα²κ"$…f AŒPEυShŽ@ —U±…)°         (4(μƒζκr‘)Yθ°©SQV”»Χ'cάO»Sς‹‹‘5ΈJ{}Μͺέ ³₯UΥuh7,fοS2¦bNAξ>Λ²­Ζc¬ο}τzRaΞ Ρ*4—άπkœ5m Ξ<σ4ΣPΎτβZ¬YSΫnΏΙτΊ^θρμΔΫo½ƒ·ΧΏ«{μ";; ωΛίqΘ!ΙΈΰ‚ψΟ^ΗχΎχ 6Lofμ₯ˆtΦ™35)ισΟΏΐΑγΖ"εPsiφŸΟ¬ΐ-όΩzΩqOOdφF³mνΪ΅hkkc†fΗύθZlϋγs¦aίƒ€ε7›!Σʘ‘9,š/¨, pl†.μEUΉ1Csؐ xšΔcιβ²e5ΨΌisX‘Y~‘َpIh–Ώ 1ϋΒ+πάskομφ?Π€˜‘y :‘―υήωOτ=ώŠVΡ•3£(r£ύPƒBσΰ‘«ϊ·PŸ…f„σ½κ1¦Πμ<ΆzKΥc¬“{        °B€B³JBO7:EςœΔ€DΈφΑx=έhmλΐ³wpRΤχΗ?W9Ž£§‚€ˆ΄€ H¬hbbΕS„(Vΐ‚ƒ±+Ά¨? Xbϋ©±lH1πMb°Π«p p«ύ™eχnggφ»{άχf^—‡™™o™ύ~ŸŸcΎo:τ α.}ΊΎMΒΌ’€8T»]©ζΌv%/'‰›155{ψΟSjΝ]@@ 1Π¬φ=σύ92χΓω2eʍν§!|p?=ΊP oπ₯ž¬όκ«Σεκ«/•τττ¨~Rr™2uΪ”ΠS}σBΏώωπo3$+++jœΊX΅j\tαΦ“ ο½η!9θ εΤΣ†6§Φ€BΨ…‘_/d(­ϋ5kΦ,QOi.,,”‚‚έΫ4ΚΌE‹INNŽτθΡ£Qξ_¦ΫΟ}Lj―΅šsΞϋ•΄ΌbHύ!αkΝaŠ„NL °Ά„Jlͺζp‰:!МWΜΑ*Π\^V.η?:f’γxζŠŠrκπΡ2aΒ8~κΟ¬Dοs‘m$ΠOΗ½―ϊ³ε²γβ§Β[O'™Ώά3§ Ώ¨‡Ν\†˜ϊYh/›@³-‘4½ΖšυkkΟ4½Ζφ:9"€ € € € ΰE€@³%Ζ € €@³j yΓ†"6t€ΌτςS·oο¨ZΩO?|ϋν—₯Λ~­ΎO?ύBςςς€OŸ^Φ΅ "Ÿ>bŒΌ?σuιΨqŸ¨ω3gΞ•ξTζ̝.*˜€ΒΝ“Ή\† 9.jœœΎαΙΞΞ–ΫnΏ^>PσxΜ 7Χ?―X±JΞ(<Οϊ•ςέΊuΊO"šwiΥύIΆv˜Ν+WIFο}ΓΧυO4ΧρvmrP€΅y«aύQ¦Ίh_)oΧš½9Ε΅§žΠ¬ώΞππCSC?ˆV$χά;9όΓXφQ½σξ_$7·eΌ₯Z}ΕΕΕ²lΩ2Ηqκ‡ž6mΪ$ύϊυ έ/Χq\Sv,Y²DzυΪυχ±¦\G¬Χήοͺι’QVξΪ8ρWRή―cψΪ„“•+WZ?dΧΉσΏγš°¦Θ5lήΌYΆnέjlΥZMώTλ[Ύ|ΉυC‚:uR—Ζ}‰z/κέ;ϊίΑLZ¨ι5VογκίM;tˆύ›}šΪrΓ† Φo ΪS?¨ͺ»ίθNe € € € €F h6ͺ,@’j Y™½τλςψcΟΘ΄'§ˆzsZZš,\ψ­Œ{•\pαΩ2~όy­ 9ηb0°ΏLš4!άvυΔε‹/Ύ–^˜*έθ*ΥΥ52wξ<Ήω¦»δ±Ηξ“#Ž<Τ;gΞ<ΉαϊΫeςmΧΙ 'k Άoί!>ϊ”Όχξly7BΪkοΩΉ³2’>GςσΫYa₯.]v…Ύόr‘Œ½θ ΉhμΉμ²δ~}9f«$RρΜί€|Ϊ\λ"½K{i;γΪ]O ΩΖ₯ΩΤπ«Z6ks)žC·©nš ζL ΩΘC·ϊϊΧgrϋ7Δ½αǍς»ί³~Θ)3ΣύwC©Ώs¨Ώ_ά:ωZiί>?|ΟεΛWΚ™gœ/γƝ+ύκ+U•»B³•‘ί qӍwΚWŒ—ύχίΟϊ--Zd‡ηΥ?QOtή²eKύfλZ…£?όs+Π|Μ1ΗHΫΆmcŽkκFυTΰΪΔ―Œ/VKΦ­ZZΥ#€f€ώ£Eέ,*¨©~p[·n)Έ[κo‘‚?ύτ“±5V;6ω{P­ο»οΎ³~ ‘kWsΎοΤΊμ―υλΧ[οCtέdάΡτϋν·¦M1υΦ]+;vμύΰp_γjk/H½ΧhΆ58"€ € € €4wΝΝ½‚¬@ΒA4«ΠΠk―ύUξΏοΙΘΘ°ώ©¬¬”‰W_*gŸ}¦€§§[Nj܍‘')qΔ‘α_ρ:TωOš&―½:=μ©ξσΰƒwΚΡΗnS'σίr}(Τ\RR*ϋμ³·m’Ÿύ¬§<8ε.ΩwίέOξ+ ύΪϊxTޞ1ΣZOMMuŸλŸ(gœ1<Ό¦¨›'pA yΦΆΣξ“Ϊ΅»]-/9ArΖώ&"ζΈ<Ž¦†_Υ‚Y›cΩβv˜κF 9nΩ; 4;xξPΏ±αά1—XΏ]!''§ΑΌΉsηΛ[o½#O<ρ€§Οp§@σζΝ[δ™§_°ώn ώώ‘Ύ²CΑ卑ί81ώG2|ψ©©­‘k―½*τΤΞV Φα₯‘¬¬LfϞmš ₯  ΐΛ΄=>ΖΤχ!β»WηH‡ώn_ZΗ֏]$™‡›ρTιΕ‹[Ώ€gϞQk4εbέΊu‘Ώ'44ύ{π›oΎ‘V­ZIχξέM)kΤ:Φ¬Yc½Ο 80ͺέ€ ΣkόΥW_I»vνB?Θ²ΏIlᡨ'ΑoΫΆMϊχοn3νΔτ›ζΕz@@@@Μ Πlv}X €$ δ@³Ν€BΜ*h¬ΎΤόχdC{NδQ…KJJ¬§έ΅kΧ6όkΰ#ΗΨηΫΆmυ„ΖκκκΠ“ΫΨΝ Ž*¬€ž”X[[kύ y/Oulp“ šEjΎ_/ΫΟ~$¬ΣvΖ$½KόЁζ0WB'&X[B₯ 6Ս@sΈD hNˆ+ζ`υ9=bΔ=ΊPF:=jŒzςΙΓF‰ϊ‘€γ΅Υ·lيPXs³~ψ ˜_p 4Gέ8βBύΰΣρǍwί{5τw˜άˆžΔO 4'nk†zŸόyM[ΩqΙSQέyŸ/YƒϋD΅5ŁζδΥMύ,΄wF Ω–Π?š^cΝϊ΅΅gš^c{@@@@π"@ Ω‹c@@ YhneJΩ" 4‹”?ςTΌψ,ӌ»H›/wυ%ΠμJs€ΙAΦ³d¦Ίhv-]Μšc²$άψΥW εΒ .—ΫnΏ^† 9ΞϊΑ₯ ?n”kΉΕ -?χό‘Ά λΎ―Ώ>Cžzςyλ‰Ξκ·:ΤJ4Π\ZZ&§œtκΤQΦ―ί`=•ωΦΙΧYΏiΑΎΛΜχηΘάηΛƒή%ιιιvsψ˜h Yύ6‡ΣN=[^zω)ΝaΕ¦=‰|Ÿ¬ώj•μΈμi£BΝš“ώˆ¬qςwKύ4'ojz 4ϋΏΖΙο; € € € €I€@sͺΝ^@πΉfŸΈήφ‚hώr₯μ;-¬nΞΝ’Φ>/|νtB ΩI&~»ΙaΦΏvN½¦ΊhvͺXόvΝρ}νUaδββm’ŽΩΩΩ’—Χ*Ρ[4ιxžΠœώϊ…š 4'_ηϊ5NώŽ©½ζδ=M―1fΧ8ωr@@@@ hR΅Ω+ €> ΠμσΧΫ^ΠΝeχΐo~b©dκ.­§―'ϋ’@sl·V“Γ ¬Ν­z±ϋMu#Π»^n­šέ„‚ΥO 95υŽυ>3Τ|Ι:Ά_j^4»hNΛah¬; m’fΝΙ³›^cΝώ―qς;δ € € € €A Π€j³W@|.@ Ωη·½ š‹½]κv”[*Ή7Ÿ.-N;΄žPμKΝ±]άZMƒ°6·κΕξ7Ս@sμzΉ΅hv V?ζΤΤΫι} 5_ώg‘ςΚπ ε5A¨™@s˜_ϋΔ©ΖΪ7LρDΝΙƒš^cΝώ―qς;δ € € € €A Π€j³W@|.@ Ωη·½ š«ώω½”\ω\X€έί'KZ›–αλx'šγι8χ™amΞu‹ΧcͺζxUsξ#ΠμlΔΝ©©zΌχɚEkeϋ%O5i¨™@sςuŽWγδοžό4'ohz 4ϋΏΖΙο; € € € €I€@sͺΝ^@πΉfŸΈήφ‚h.όΊTΎΉ%’uL_Ι›r^=ηKΝΞ6ρzLƒ°Άx•sξ3Ս@³sΝβυhާΌ>Ν©©ΉΫϋdS‡š 4'_g·' Ι݁@sr~jΆι5&Πμ'ΏCξ€ € € € $ΝAͺ6{E@ΐηš}^ΰzΫ l yg΅l=ξŽπ[ύq΄dŸΨΏžŽσ%fg›x=&‡AX[ΌΚ9χ™κF ΩΉfρz4ΗΣ ^ζΤΤάΛϋd¬Ps’7Ρ]-f]ΉέσΌΤxχθ=F 9ysΣkL Ω5N~‡ά@@@@ HšƒTmφŠ €€Ο4ϋΌΐυΆΤ@sΥ‡ίHΙυ/οΘΞ”όy·‰΄Θ¬§γ|I ΩΩ&^ΙaΦ―rΞ}¦ΊhvYΌΝρt‚ΧG 955χϊ>i…š/{Z€tgψ…χD¨™@s˜[ϋΔk΅_ Ι‰š“ M7½Ζšύ_γδwΘ@@@@‚$@ 9HΥf― €ψ\€@³Ο \o{A 4—όα₯jή"K#ϋ€_H«»FΥ“‰I 9ΎS―ΙaΦζT΅ψν¦ΊhŽ_7§^ΝN2Αl'МšΊ'ς>YσύzΩ>ώΙ=j&М|©qς―–ψ4'nV†ι5&Π\Ώb‰_›^γΔwΔ @@@@ hrυΩ; €> Π쳂Ίl'ζ²JΩzΜ­a™Ό‡Ξ“¬£ϋ†―½œhφ’ΤpŒΙAΦΦ°^^ZLu#Πμ₯z ΗhnhδΝ©©~’ο“{:ΤL 9ω:'Zγδ_1±;hNΜ+ΦhΣkL 9VΥk3½Ζ‰ν†Ρ € € € €A Πτοφ €€4ϋ¨˜ΆΔ@s廟IινoX:i­[J»y“=HE!ΠναυΚδ kσZΕθq¦ΊhŽ“Χ+Ν^₯‚1Ž@sjκ¬σ>©BΝ;.yZκv”‡ΡκΆ‘’}ςΐπuͺN4'/©Sγδ_Υϋ4{·riz 4;UΞ{»ι5φΎF"€ € € € B ™ο@πfί”ΣF‚hήqωŸ₯ϊ“%–O‹‡JξM§{²ŠD 9RΓϋΉΙAΦ潎‘#Mu#ΠY%οηš½[a$ζΤTYχ}²fΩFΩ1vZ£‡š 4'_gέ'Κήξ@ Ω›SΌQ¦Χ˜@sΌκyλ3½ΖήvΑ(@@@@v hζ;@|#@ Ω7₯τ΄‘ šλΆ”Hρ w…mZO/™ƒΊ‡―½žhφ*=Ξδ k‹•Χ+Sέ4{­`τ8ΝΡAΏ"Мšο€dή'χD¨™@sςuN¦ΖΙΏΊϋ4»Ή0½Ζšέ*θήozέwΐ@@@@v hήmΑ €4sΝΝΌ€ .?hζ―ύSΚξΗRJΛo%νζή’ Ψαš΅ΨΔδ kσWM 4λΥ“@³ž›_ghNMe“ύ|iμP3ζδλœl“_Aό;hŽογ₯ΧτhφRΕψcL―qόΥΣ‹ € € € €@΄ζh@@  hnΖΕΣXzΠΝ;.œ*Υ_―²€rΞ>ZZ^=LCM„@³f=6ά4ά4k …¦hΦsσλ,Ν©©l*BrV¨ωβ'₯Έ,Ό¨ά›N—# _λžhΦ•Ϋ=/5ή}·ΤŸhNήΤτhφ“ί!w@@@@’ζ U›½"€ ΰsΝ>/p½ν)Π\»q›lvOX Ν‹—KƁ]ΒΧ‰œhNDkχX“Γ ¬mw93Ս@s"Uά=–@σn ΞD4§ζ» Uο“΅+7Ιφ±SSj&М|SUγδWϋšc»$jz 4'RΝΨcM―qμUӊ € € € €@lΝ±]hE@f(@ Ή-‰%)Π\ρό|)l–₯•ή₯½΄q­Άf=:“ƒ¬Ν_5%Π¬WOΝzn~E 95•MεηKc„š 4'_ηTΦ8ωΥ4Όζ†&‰Ά˜^cΝ‰V΄αxΣkάpΕ΄ € € € € ΰ,@ ΩΩ†@hfš›YΑ’\nΝΫG=,5K7Xb9c+-/9^[@³ΙAΦ毚hΦ«'f=7ΏΞ"МšΚ¦ϊσΕ 5RκΆ”„˜{ΣιbΔ‘αλDN4'’{lͺkϋUτ[ 4λΫΩ3M―1f»RϊGΣk¬Ώ3f"€ € € €Q€@s«Ξž@π©fŸΦa[A 4Χ,Ϋ(ΫΟz(¬ΠvΖ$½KAψ:ΡΝ‰ŠνorP€΅ω«¦šυκI YΟ­9Ο*))‘υλΧΗάBmm­|ϋν·²iΣ&4h΄nέ:ζΈ¦nόξ»ο€OŸ>M½ ΗΧoŒυelά!m'Ώ+ιΫΚΓ―[zώR~βαk―'Λ—/—ΜΜLιΪ΅«Χ){t\QQ‘lΩ²%p5N%ς’%K€eΛ–₯K—Tή6eχΪ°aƒlέΊUϊφν›²{¦ϊFρη8•kόᇬχθ}χέ7•·MΩ½ΤηŒϊΌιέ»wΚξ™κ©υ 0 Υ·ε~ € € € €4‰ζ&aηE@@ 147†ͺΉχ J Ή|κ©ψσί­Bdό¬“΄yωΚ€ŠB YΠ0nz‰Ο"МΈ™šA YΟ­9Ο*..–eΛ–9naυκΥV Ή_Ώ~’››λ8);TX³W―^MΉ„Έ―έXλΛΪT*ούP2ΆW„_Λ聲ύ7‰Y¬\ΉR²²²€sηΞαϋ˜t²yσf+μΔ§ͺ*΄ž““#:uJΥ-SzZWοE&‡]λΟqͺ Υϋx^^žtθΠ!U·Lι}Th½΄΄Tzτθ‘ϋ¦ϊfšS-Κύ@@@@šJ€@sSΙσΊ € rΝ)'5ϊ†A 4½[ꊢ[΅hyεΙ9χWIΥ…@³fάτŸE 9q35ƒ@³ž›_g•••ΙμΩ³­@saa‘θfƒΖ42ω³Eν»1ΧW»v‹lΏπ ©ΫR&ΞύΓpiqΦ‘αk·“Ε‹KvvΆτμΩΣmh“τ―[·NTΰΥδ acΦ8θί|σ΄jΥJΊwΫ₯όkΦ¬±ήg˜ς{§κ†¦Χψ«―Ύ’vνΪΙώϋοŸͺ-§τ>κ'ΆmΫ&ύϋχOι}Sy3ΣkœΚ½r/@@@@ hφΩ! € Π˜R[ B ΉfαΩ~ώγαΒΆ}IοΠ6|­sB YG­qC]z+Ϊ=ΛδkΫ]'―gš½JE#Πντ+Ν©ωhμχp+ΤrΔ‘‡F΅'zαχ@sυ–ΙŽKŸ³΄ϋϋdIkΣ2|­{B YOΞδ kσWM 4λΥ“@³ž›_ghNMeχδη‹ 5οχ€Τn(/ήνIΝšΓTΪ'{²Ζ:‹$Π¬£=ΗτhŽ—Ξ•ι5ΦΩs@@@@‚+@ 9Έ΅gη €ψN€@³{Iλκκ䑇ž—_zC&L+ι/‹~'S¦<.'Ÿ|’LΎν:IOOwΌ‘šΫδ{ε½χfΛΨqηΚ Aδ»ο~‡š*ƒ.Nω£dffXσ7oή"'žpΊŒ SαζΘ―6mZΛ9cFΖ}­Θρ±Ξύh.»λ-Ω9γ?ΦΦ³Žό™δ=rA,†„Ϋ4'LfM09(ΐΪόUSΝzυ$Π¬ηζΧYšSSΩ=ύωRW΄]Ά_ψ„ηP3ζδλΌ§kœθŠ 4'*ΦpΌι5&Πά°f‰Ά˜^γDχΓx@@@@` hvύΩ= €Ύ Πμ^Ξψ§\{νmςζ[/HηΞϋ†'lήτSθ)Ν£εΦΙΧʐ!Η…Ϋ럼=c¦ά{οΓςΦτ₯S§ŽαξββmrFαyrΙ₯Θgœj΅ύυ"+(ύάsG=Ή9<)ΙΏš·}«Hy₯₯Τκφ‘’=l`’b»¦hΦc49(ΐΪόUSΝzυ$Π¬ηζΧYšSSΩ¦ψ|‰jΎδΙϋ››"Πά€$ᆦ¨q"‹$МˆV챦ט@sμΊ%jzΩ c@@@@ ΠΜχ €ψF€@sόRΦΦΦΚY#/” .<[†=ΎΑΰωσ?’;nΏOζΜύkψ)Λ‘ƒΤό3Ο8_~?i‚uΤa‘]ΦΉ 0OΌκ†πόW^ySΚJΛ¬'97œ‚?š«ώίb)™τbX)wˆδf‡―“9!Π¬§grP€΅ω«¦šυκI YΟΝ―³4§¦²Mυω+ԜsΡo€ε₯'DmŒ@s‡ΦESΥΨλb 4{•rgz 4;ΧΞkι5φΊΖ!€ € € €  4σ}€ €Ύ ΠΏ”κ)ΚCN:38ž.­[η5\ ŸxB‘Όϋή_$?Ώc³ήˆ9Ώ’’B†i=½Ή]»ΆrυΔeόΕηKοή=eΣ¦MRW'RPΠ^Z΄HM0Χρζ"•sΎ²juάΟ%οή³ΤC·@³žœΙAΦ毚hΦ«'f=7ΏΞ"МšΚ6εη‹j7MjΧm o&ηœc€εΔ‘αkΝa 퓦¬±—Ehφ’Œι5&ΠΏ~^zM―±—=0@@@@[€@³-Α@š½ζψ%όώϋ₯rεΧΚΜސŒŒŒƒλB‰γργ&ΚeΖΚ€?oΠοxŽ 4ηε΅’“‡%½Baζωο¨{MέΌσGΗ\CΤ@— ίšwVΛΦco©¬Άςξ#YΗφsΡπήM Ω»UδH“ƒ¬-²RήΟMu#Π콆‘# 4GjpN 95ίMύ>YχS‰lΏπ ΗP3ζδλάΤ5vہf7!χ~ΣkL Ω½†n#L―±ΫϊιG@@@@ R€@s€η € Π¬4Η/ί²e+δšI·Θ›o½3L¬Ν—\ό{Ήψ’σeΰΐώ n¦ϊG+gœ1<τΟ© ϊ?ϊθΉκΚλεΟΟ>*;vaCGJΫΆmδ•Wž–Žϋv°Ζ/\ψ­Œ{•œ2ό$Ήα†«%--­Α}Ό6ψ5Π\9λK)½ωΥ] -³%Α^I<#Π쉩Α “ƒ¬­AΉ<5˜κF ΩSω "Πά€$Π šSS~ή'γ…š 4'_gjošγιxλ3½Ζš½Υ1ή(Σkoντ!€ € € € P_€@s}@@ Ω hŽ_Ί~X*wήqΏ<Βށfυ„ζK/»0f Yέέ-?υτΓrΘ!ΏΏ  KŸsφΕRSS#³ηΌ%™™™2uκ³rε•KNN‹π8u²nݏ2ό”ΡςκkΟJ―^έ£ϊκ_”––JmmmύfλzΑ‚²vνZ),,”‚‚‚˜cšͺqΡ’E‘}ηH=^BΙΔη₯κ£ο¬yΩ§"­&Ÿ™π=βM ΠOΗΉΟδ ks[ΌSέ4Η«šsfg› φhNMΥMyŸ΄BΝγ§IνͺΝαεœsŒ¬8‘›dggKϞ=Γν&¬[·NŠŠŠBΏωd€IˊZ‹)5ŽZTāζ ΝSΣkL Y³°ΣL―qΔR9E@@@@ΐU€@³+@@ ΉhŽ_)hΎβςkeζo8šΥš/{Žzθ!1o¦žόK―ΛΓM•Ÿ| œpΒoδσΟΎ’yσΘδΫ“Η{Ϊ *ηη·‹9_5ͺ{άxγ2lΨ 2xπαŽγTΗΒ… eηΝ1Η¬^½Z6mΪ$ύϊυ“άάܘcšͺqεΚ•Vΐ¦S§N -!½΄RΊNόkxΞΖ‰Ώ’ς~ΓΧ©8YΊt©΄nέZ:tΨυΤμTά3UχX²d‰δηηΛ^{ν•ͺ[¦μ>jm½zυJΩύRy#Φ¦§iͺΫO?ύ$[Άl1ςϋM}ΞnίΎέΘ΅© xyyΉtοeτΎ[’›΅fΝιέ»·τιΣ'Ή1Ϋ³fΟTqš’«+.•νM 5—χ3©{4ζΈUŒίiRc­”@s,•ΔΪL―1ζΔκk΄ι5Ž΅fΪ@@@@p Πμ$C; €4;ΝρKΆjΥΉΰό Φ”³²² –§#S§M‘.]βq7όΈQ> ™7oώIΪδΛGz*s†œuψhΉ!ΤώλPΰY…›xౘOƒ^±b•œQxžΌ5ύΕ„ΓQ‘/κ·@sέ–)>απ[?{©dΌψ:U'šυ$M °6Υ”@³^= 4λΉΥŸ΅sg₯Œymά$7ί|Mθ7-μ#Ν ϐ?ή}‹œtoλOqΌ~υΥι2εΑΗ­Ώ δη·‹§ώN‘~Hκ‰'ώ,cƜ%G >\Φ]'wέω€t ›_{νΩΠ΅ˆš“ȁζD΄œΗšϊω’žΤΌc|ΓP³½“΄ΌΙάG²Žξ+YGύLΤuS|hN^@sς†¦ώ9ΆwF Ω–Π?š^cύ1@@@@ ˆšƒXuφŒ €€O4»ΆΈx[(xό;9αΔίΘUW],yyyRVV.S§>+oΎρΆΌϋή«²W(°¬ΎJKΛδΈίž&zδ9τΠC¬ΆοΏ_*Ώ=V&^}©ŒuΊdeeΙ†7Κ5ΧάbγΝ$33CT κτηˆ 0έsοdι₯“5Λ/ΚΨ‹‹ΖŽ‘Λ.»ΘjΣύ?Ώš+^Z εΏoq€νΣFΪΝΌQ—&ξ<Νqy;M °6Η²Εν0Ս@sά²9vhv€ρά‘BΖχί¨|όΟΛo>ϊ<Ο ΟύΟΎK.ΎΪυ‡‘jjjB?8΅JμiY°ΰcλ₯>˜υ†΄kΧ6|/u²lΩ yζςΒ‹SCΏΡ‘oΈOύέcδ™ηΛ9‘σθΡ…αφDO4'*{Ό©ο“j΅uΫΛeύν―HΞg«%½dgμ ό·5sPΠ“›Cαζί$ι£Γυq'&ΩI 9IΐΠtΝΙšόηXνŽ@³kœόΉ € € € €@4©Ϊμ@Ÿ hφVΰυλ7ΘΥo₯KWHϞXΗN:ΚγO< ]»v ίD=uωδagΙΤiS€W―ξαφΟ>ϋR~υMRRRn;ώψ_Λ-·^+­Zε†ΫTPϊ•·gΜ΄~uΌ 9©―λŸ(gœ1\"Ÿž”ΐ‰ίΝΫΗ<*5ί³rΞ΅΄Όό€4Ό%Πμέ*r€ΙaΦY)οη¦Ίhφ^ΓΘ‘š#5τΞΥ=ύφ7§:†–ηή‡%3τƒL“&Mp|U«Φ„~ iŒ ?uˆυƒKκ ΝΈφJiί>?jΞ›oΎ-ί|½8ό[!";?ωδSyώωWό6‰Θ1nηšέ„Όυ›ϊ>i―~ρβΕVhώ€ŠRωΕRυo₯fι»;ζ1£GΙ:ζ@ΙώՁ’qΠ~1Η€ͺ‘@sς’š“74ύΟ1fΧ8ωr@@@@ hR΅Ω+ €> МXUp©ΆΆV¬')'2[=ΕQΝ―–άάά¨ sύϋ¨§5WUUY―•›Ϋ2ꉏυΗ&rν§@sνڟdΫiχ‡·ίζΥ‰’Ρ³cψ:•'šυ4Mƒ°6Υ”@³^= 4λΉEΞR?°tχ§Θλo1ύΟ1fν†'š^γπB9A@@@@ΐƒfH A@ζ!@ ΉyΤ)U«τS ΉβιΏIω“s-šτ.ν₯νŒkSΕΤΰ>šxj09(ΐΪ<•°Α Sέ47(•§͞˜βzε•7eλ–­2αςq1Η•––ΙΠ!gΚΫοΌ"νΪ΅9&²Ρ)Π¬Ζ¨ΠrηΞϋ6Έšsγ wΘμ/γ/>?ςv hNˆΛq°©ο“φ‚cšν>λXϊ‘Ί…›Ώ•ͺΎ“ΊβέΏ]$jœΊh‘)Y‡φ’¬_υ =½ΉŸ€ε·j0$ΡΝ‰Š5O Ή‘I’-¦9&МhEŽ7½Ζ WL  € € € €ΞšmθA@f&@ Ή™,Ιεϊ)ΠΌν΄ϋ€vνK€εe'JΞ…Η&©γ<@³³MΌ“ƒ¬-^εœϋLu#Πμ\³x=šγιxλ{ύυ²©h“c Ή’’"h)oMΡΣovˆhvZΡτιοΙύχ="3ή~Y:tΨΫi˜k;fW"OL}Ÿ΄οhΆώχXύυ*©RαζίJΝ²υz£/3ΪoΧΣ›u φoΝ ΠmͺsE YG-zŽιŽ 4GΧKηΚτλμ‰9 € € € €Α ΠάΪ³s@|'@ Ωw%»!ΏškΎ[/ΫΟy$ΌΧΆοί ιܟ|žΰ ζΑώ;άδ kσWM 4λΥ“@³ž[δ,h./+—σΞΩ>oΜ@³ ??ώΨ3ςάs/Λ“O=$ƒ ΏΣIuu΅”——ΗμVkύ裏dΣ¦MRXX(1Η5u£ΙοίΚΖτυ%hެwν†b©šΏX*,–κ-μjpžΎoώ'7s dΪ³AΏSf'ονš½[94ύΟ1f§Κyo7½ΖήwΒH@@@@D4σ]€ €Ύ Πμ›Rzڈ_Νεš)ϋkΟκi€mžŸΰiΊƒ4λΙ™`mώͺ)f½zhΦs‹œΥTOh^Ήr΅\<~’”––ΛΎ4M8`Θe9žΛ²eΛϋW―^mšϋυλ'ΉΉΉŽγš²cΙ’%«W―¦\BάΧ6}}+W”¬¬,ιάΉsά}Έu¦WTKΛ…?JΛ―ΧKΛoΦKFI₯γ”Ϊ–YRή―£”θ"e?ίWΤ΅ΣΧζΝ›eλΦ­ΤΨ ΘCϋςεΛ%''G:uκδaτžRTT$꽨wοή{ώΕ=Ύ’ιŽΥϋx^^^θ©ό<ξhΟΫ°aCθσ©Tzτθ±g_8ΑW0ΐύΌ%Γ@@@@hΝMΒΞ‹"€ €@chn Usοι—@sρΠ»₯h»{Ν)bΤQŠN Y—Π0nz‰Ο"МΈ™šA YΟ-rΦΜχηΘΏώυ™ά~Η ‘Νασ ?n”ίύnœΜ™;]233ΓνN'κ©ΛWOΌQn|­΄oŸsΨ»οΞ’Ϋ&ί+'Ÿ|’άxΣ$iΡ";ζΈX<‘9–JjΫLώμS;Mζ Νρ€ͺΏ\)U Ύ•Κ|+΅+Šβ •ΜAέ%λθΎ’ύ›ƒD=Ι9ς‹'4Gjθσ„f=·ΘY¦9ζ Ν‘Υ;7½Ζz»b € € € €@P4΅ςμ@ hφaQγlɁf˜Ω1vZx—νζά,iνσΒ׍qB YOΥδ kσWM 4λΥ“@³ž[δ¬U«ΦΘΉc.‘Ωsή²žˆΩ§ΞηΝ/o½υŽ<ρΔ’žž^Ώ»ΑuΌ@³κ›:υYωσ3+=~ΏqΔ/ΜO¦‘¬¬LfϞm=‘Ή°°P ’Ή]£Ν5ωύ[mΪτυ5V 9²ΰ΅?n•ͺω‹CαζΕRύη'‚«9ιμ#ΩΏ:P²Žι+™ο/š#%υΞ 4λΉEΞ2ύΟ1ζΘj靛^c½]1 @@@@ ¨šƒZyφ €€4ϋ°¨qΆδ‡@sΩ½3dη›ŸX»Μ<΄§΄~blœ§¦‹@³ž£ΙAΦ毚hΦ«'f=·ΘY΅΅΅2bΔ=ΊPF:=²K***δδa£δΊλ'ΚρΗΪκ[Άl…m–Γ$iiiQγΥEΌ@σG}"ΈζVyσ­€sη}ΜMΆ@s²‚»ζ›όω’VΈ'Ν‘’u%RύΙ©όϋB©ϊηχ’ΎΪζJΥ/φ“Ν‡w‘Ύgο4¬ΙΫM―1ζδΏEL―1fΧ8ωr@@@@ hR΅Ω+ €> ΠμσΧ۞ΝΕΗή.u;Κ­΅Ίε Ι>uP½]¦ώ’@³ž©ΙaΦ毚hΦ«'f=·ϊ³Ύϊj‘\xΑεrΫνΧː!ΗIff¦lψq£\sΝ-VhωΉηŸ΅eXΣ^}†<υδσ֝32v΅EήΟ)Π¬ΪGžy„;ξ\)--‹œf«ΧΨgŸ½΄{m ΠμU*ώ8“?_ΤΚχt ΉΎVυ+€κίJε‚o₯vε¦ϊέQΧ?λ$™Ώθfύ“uHχFQ/ηΒτhŽS<]¦Χ˜@³ΗBΖfzγ,.@@@@hn@B €4WΝΝ΅rzλnξfυdΏ’+Ÿ o>wˆδf‡―λ„@³ž¬ΙAΦ毚hΦ«'f=·X³ώσŸ/δΚ+“ΚΚJιΤ©£¬_ΏΑz*σ­“―“άά–α)3ߟ#s?œ/>x—€§§‡Ϋν§@σΝ•rϊˆsdΓ†"{hƒcΧ]¬§7Η J7£@s &“?_Τvš:ΠIZ»φ'©œ·Hͺ>ϊNͺ?[Ωσ<}ΏΙόyWΙp€d…‚Ξιμs\c7š^cΝΙ˜^cΝώ―qς;δ € € € €A Π€j³W@|.@ Ωη·½ζh.½υ5©œω…΅«¬_(yœ[o‡sI YΟΥδ0kσWM 4λΥ“@³ž›Σ,F..ή&ꘝ-yy­œ†ΩN 95e1ωσEνΠ€@s€x]I…¨\Ϋώώ§"_­’Œ’ΚΘξ˜ηi­[Jζΐv=ΕΉώ’yπώ1Η₯ΊΡτhNΎβ¦Χ˜@³kœόΉ € € € €@4©Ϊμ@Ÿ hφyλm―YšwVΛΦγBOd.ίpiuΟο$ϋψƒλν°q. 4빚amώͺ)f½zhΦsσλ,Ν©©¬ΙŸ/j‡¦šmύuλΦIQQ‘τ/ΨOͺ>_!Υ_μϊ§vύV{ˆσ1'K2ΪΟ 8gύ"tVηFψM¦Χ˜@³σ·ˆΧΣkL Ωk%Η™^cη•Σƒ € € € €@CΝ MhA@f*@ Ή™NsΩΝ9Π\υα7RrύΛ»vž)ωσni‘©)‘Ψ4Ν‰yΩ£M °6»J‰Mu#МXνΡšm ŽJ€@sjΎL}Ÿ΄wΧ\Ν °—lλ6οͺO—Ygt]QΥοt‘Ρ§S(ΰ|€dύ’›d]ς“rΊι5&Πμτέΰ½έτhφ^K§‘¦ΧΨiέ΄#€ € € € K€@s,Ϊ@@ Y hn–eΣ^ts4—\σΏR5‘΅χμ!€Υgi;$:‘@s’b»Ζ›`mώͺ)f½zhΦsσλ,Ν©©¬ΙŸ/j‡Ν5Π\Ώ:uΫΛ₯ϊσ廞β 8Χ|·ώ˜Χι] ¬'8g†ΞYτύχŠ9.^£ι5&Π―zήϊL―1fouŒ7ΚτΗ[;} € € € €Τ Π\_„k@hΆš›mι΄ήlΝe•²υ˜[Γ{Ξ{ψ|Ιά'|έΨ'šυ„M °6Υ”@³^= 4λΉωuζΤTΦδΟ΅CΏšT+τwΕͺ―V†BΞ+¬§8WΉ²ΑX κ‰Ν™ύCOo 8‡žδœΡ―K¬aQm¦Χ˜@sTΉ΄.L―1f­²FM2½ΖQ‹ε@@@@Ν.@t#€ €@σ Πά|j•Š•6Χ@s廟IινoXi­[J»y“SΑαωš=SE 49(ΐΪ’JεωΒT7͞K5@sGΰ/4§ζ[ΐΤχI{wΎ 4ΫŒ8Ϊαζͺ/B!η―V‰”WFτ:œζdIζΟ»ZOqVηΜώϋ‹„Ϊ"ΏL―1ζΘj靛^cΝzuœez#ΧΚ9 € € € €nšέ„θG@f#@ ΉΩ”*% mζž‘κ-΅ Z&Ή7ŒH‰‡Χ›hφ*=Ξδ k‹•Χ+Sέ4{­`τ8ΝΡAΏ"МšοSί'νέ)ΠlοΩ>Φ,Z+VΈYœCOpΫVfwΕ=fτνΌ+ΰ< pΨ]Ύ\ρ½ 0 ξœ=έY»~«”?υ‘TΝ_$u%ΦΛ§ο›/-N9DZŒ>JΤšς΅fΝΩ΄i“ 8Π”%5X‡ιŽ 47(YΒ ¦Χ8α 1@@@@ Πš]~6 €€Ώ4ϋ«žn»iށζΊ-%R|Β]α­΅~κβP˜δ€πυž8!Π¬§lrP€΅ω«¦šυκI YΟΝ―³4§¦²&Ύ¨9Π\ΏΒ5K~”κΟΤΣ›WZAηΊΝ;κ‰y]Ω₯΄rˆΥ—––&ims%­}ž€ηη…Ž­$½}kIk—snc4ͺsιmo„ƒΜυ_C›σ#?λTΏ«I 4'ΟN 9yCΣί«“ί!w@@@@’ζ U›½"€ ΰsΝ>/p½ν5Η@σΞΧώ)eχΏcν$-Ώ•΄›{K½]5ώ%f=c“ƒ¬Ν_5%Π¬WOΝzn~E 95•5ωσEν@³skWmΆΒΝΥ_―œ—‹ΊNζ+­ΰΏ!gϋ¨BΟvπyŸ6’ήF‘CθPΰXχ«ζϋυ²ύμG\§«ΧhσΚ•F<©™@³kΉ\hv%r`ϊ{΅λ€ € € € €@„ζ N@@ y hnήυKtυΝ1ΠΌγ‚'€ϊ›ΥΦVsΞ9FZNšθΆ“O YΠδ kσWM 4λΥ“@³ž›_ghNMeMώ|Q;$Πμ½Ξκ·„T}Ά\ͺ?=Εω‹R³tƒχΙ‰ŽlΥΒzΒ³ <[!gυ΄ηΘ tθ:=t¦Ϊ#žώΌγβ§BO™^ξιΥZŒ:Jr―9ΕΣΨΖD 9y]ΝΥΥΥ²zυjYΏ~½TTTX›ΜΜΜ”½χή[zτθ!999Ιo<…w0ύ½:…[εV € € € € Π€"³E@‚"@ 9(•ή΅ΟζhέΈMΆ »'\€6/])}φό―Λ&Π.AB'&X[B₯ 6Ս@sΈD hNˆΛχƒ 4§¦Δ¦ΎOΪ»#ΠlK$~¬+©°ΒΓkζ}*³ς€ΆΈTκŠΛ€vkIθΈλ<ρ»κΝHSΑηΦ-₯fΥ&I έ’N$­.tb|₯εεH»ω·ΕθΩ³Mš“χ6-ΠΌcΗQk²ƒΜ±vxΰJ§N{ώίγb­E΅™ώ^ν΄nΪ@@@@ˆ%@ 9– m € Π,47Λ²i/ΊΉš+žŸ/εΝ²φ›ή₯½΄q­φή“™H YOΟδ kσWM 4λΥ“@³ž›_ghNMeMώ|Q;$М|γΥXœUΈΩ ;o8Z‘g;όόί1‘6ΩYό‚ΈCΫw“τNω ΜHύPΝΙ›šhVOfώδ“O↙νrΘ!’Ÿί΄ίφZβύ9ΆΗpD@@@@ Ήhn.•b € ΰ*@ Ω•ΘWš[ yϋ¨‡ΓΏή»εψγ$'τOS|hΦS79(ΐΪόUSΝzυ$Π¬ηζΧYšSSY“?_Τ 4'_η”ΦΈ’κΏOxήvΆžψ C[O.VOώoŸjΫ^ξa‘Η4[Οmn8΄υ΄ρ’9¨{Î=Ψ’Ν꟎;z~Υ–-[JNNŽηρ­[·–ΜΜLΟγλLiλί<Χ&š—/_.κ/_ͺ†ƒφ2΄Ρǘ^γFΰ@@@@|%@ ΩWεd3 €[€@s°κߜΝ5Λ6Κφ³ ¨νŒ?Hz—‚πυžϋR>\Τ/‡ήυU]]#sηΞυι#ΏͺͺͺeߎϋΘGٜπys 4Χ,\#ΫΟ<ΌΏvsn–΄φ‰Ϊηπ ’•oΈ#τ„εΏ†QσΥ˜G+—_>N><ͺoΓ†"6t€υη›oΊS^zω©Π―άέύu_yεM)+-“±‘'47ΖWs4οSμΈμ™πφΫύ}²€΅iΎnŠΝzꄆqΣH|ζΔΝΤ Νzn~UVV&³gΟΆžΠ\XX(FnΥδΟfϊϊ/^,κ‡κzφμid}Χ­['κ‰―&?9ΥτσΝ7ͺU+ιή½»‘5^³fυ>3pΰ@#Χ§ezΏϊκ++ΌώfΣkΌG1x1@@@@f/@ ΉΩ— € €€-Τ@σ΄©ΟZΏκvόΕηΫQG,ήΊe«L…’c}©ώ’%β4ƌχeΩ²•2i„πt”>kδ…rzα)2rδirόq#δ­ι/†Ν*}υΔ­{φξέΣϊύ‘¦P ¨½΄h‘ΎO2'Ν!Πάρ•/€ςνO­mf ξ#yŸŸΜ–S2—@³£ΙAΦ毚hΦ«'f=7ΏΞ"МšΚšόω’vH 9ω:›^cΝώ―±if%ΎiΣ&ωώϋοEύ&£Θ―ΜΜLιΪ΅«q{ΣGrŽ € € € €€›f7!ϊ@@ Ω1Π¬‚ΓcΞΉX~ ϋ)QίΏΤzσλo<'ΡO`VΕu <ΏωζΫ²1τ4ζΘ@τΛ/½!ͺύΝ·^ͺͺ*:ddT Y΅<μ,ι 3όΟG}M˜0VΞ;tΜ΅D tΉhζφηΏ R^iν€Υ]£$ϋ€_Έμͺρ» 4λ›`mώͺ)f½zhΦsσλ,Ν©©¬ΙŸ/j‡š“―³ι5&Πμ›hΆΥU°Y=…[›»uλ&ϋμ³Oθ7eΪέΖMsl  A@@@hš›E™X$ €xj yόΈ‰rιe:š—-[!—]:If~πFΜρΧ_/ υ_#s?œ.-[ΆŒ’VOb1bŒμ³χ^2νΙ)Φ|uΏ‘g^ ᅳtά·ƒυxλš7„ΠΓ†Ž”ΆmΫ„ΣO[γԍ.όVƍ½JN~’άpΓΥ’––υz‰\˜hnσΝFΙ{`Ξ-egJώΌΫDZ4ύ'МΘwΩξ±&XΫξ:%rfͺζDͺΈ{,ζέœ‰hNΝw©ο“φξ4ΫϊGΣkL YΏΆφLΣklr Y\ΉRΆmΫ&ύϋΗώαaΫΉ)¦ΧΈ)mxm@@@@ζ'@ ΉωՌ#€ €€ƒ@ΝW^y±όόΰcΚΈš«««₯°π<ιΆ~rίύwH‹ΩΦ}Τӟ§LyB^yω ΉπΒ³­'4WTμ”S‡– ΖΙπS‡XγΤ«κšwμ(‘©SŸ΅œœQλZ·ξG~Κhyυ΅g₯W―ξQ}υ/JKKE…ͺc}-X°@Φ]Z{‘Δdm‹-’½¦ύŸdΌάZCφρK«{~Χdλ‰|aΝ‘ήΟM °6οuŒiͺζΘ*y?'Πμέ*# 4§¦Κ¦ΎOΪ»#ΠlKθM―1fύΪΪ3M―1f»RϊGΣk¬Ώ3f"€ € € €Q€@s«Ξž@π©@ΝρžΠΌ|ωJQOqž=筘OhVίκ‰Κηœ=^Άn-–sΟe=©ωΉg_–~ύ~&Gy˜Tμά)—^z‘<όΠTΩΈ±HξΉwrψιΚUUU2δ€3εw"ΉΉΡOxŽυ­¦‚7ήx§ v‚ |x¬!αΆ… ΚΞΠkΗϊZ½z΅¨_ά―_ΏΠλζΖdmk–£όT«w…±‹& –²_tn²υDΎπ₯K₯uλΦ‘C‡Θf#Ξ—,Y"ωωω²Χ^{±žΘE¨΅υκΥ+²Ι˜sΦ¦W Sέ~ϊι'Ω²e‹‘ίoκsvϋφνFMΑΛΛΛ₯{χψ?(£χέ’ά,υλκ{χξ-}ϊτIξFΜφ,@ Ω3U܁¦‡δ4Η-Ÿ§NΣkL ΩSγ2½Ζšγ–ΟS§ι5φ΄ !€ € € € π_Ν|+ € €€o‚hΎf-rβIΏ•N86f-ηύ}ΜŸ‘ά~Η 1ϋνΖκκωζλEςΝΒΕVSίΎ?“Aƒ~!>ϊ”μ½χ^rΨa‡Θ™gœ/γƝ+ύκ+U•UΦΈΚP ω¦P@ωŠ+ΖΛώ‘§<yΤa²tιr)hŸ/χš}ηνdIhΜ€I엏y,**υιX_ŸώΉ¬_ΏήΘ'4―xζ=i7ν£]Λn™-ω …&iγ Νzμ&X›ΏjΚšυκΙšυάό:‹@sj*kςη‹Ϊ!ζδλlz 4ϋΏΖšύ_γδwΘ@@@@‚$@ 9HΥf― €ψ\ ˆfU™οΟ‘ΉΞ—)Sώ~j²]jϋiΘάOF.΄›£ŽλΦύ(―Ύ:]ΎϊRIOOκ³ŸΎDjjkδΪk―’?=½¬λU«ΦΘι#ΖΘϋ3_—Žχ‰š?sζ\yΰώGeΞάι’™™Υg_ΤΤΤΘρǍwί{UZ΅Κ΅šUΘϊ“Ωsή’¬¬,{¨u\±b•œQxžΌ5ύEιΦ­kT_"¦šλΆ—Kρono₯υΤq’ωΛαλ¦>!Π¬W“ƒ¬Ν_5%Π¬WOΝzn~E 95•5ωσEν@sςu6½Ζšύ_cΝώ―qς;δ € € € €A Π€j³W@|.Τ@³*λK/½.?φŒL{rЍ§1§₯₯ΙΒ…ίΚΈ±WΙž-γǟgU_=yΜ9Λ€ύe€ αΆ«'ή(_|ρ΅ΌπΒTιv@W©‘ΉsηΙΝ7έ%=vŸqδ‘ΦΨXWZZ&§œ<Κ («§8«/υηΣGœc=Υωž{'K—.¬φ/Ώ\(c/ΊB.;F.»μ"«MχL 4ο|λ_RvΟ_­m₯ε·’vsoΡέb£Μ#Π¬Ηjrΰ‡΅ω«¦šυκI YΟΝ―³4§¦²&Ύ¨hNΎΞ¦Χ˜@³kL Ω5N~‡ά@@@@ HšƒTmφŠ €€Ο‚hVAεΧ^ϋ«άί#’‘‘aύSYY)―ΎTΞ>ϋLIOO·ͺ―ΖέxΓrΔ‡ΚπS‡„Ώ#TωOš&―½:=ά¦ξσΰƒwΚΡΗn‹uRUU%§zΆυ„h;Π¬Ζ•••‡žό¨Ό=c¦΅υ$gυuέυεŒ3†‡Χd5jόŸ©f)«”/Ο‘ά―’6ύΊIΛ‰Γ4vΧxS4λٚψamώͺ)f½zhΦsσλ,Ν©©¬ΙŸ/j‡š“―³ι5&Πμhφ“ί!w@@@@’ζ U›½"€ ΰs šνͺsII©uΩͺU+iΡ"ΫξςtT!δ’’ΙΚΚ’vνΪZOzφ41Ξ –V‘ηΪΪZΙΝm)™™™qF{ο26ΠΪΒ’E‹$''Gzτθα}C{h$f=h“?¬Ν_5%Π¬WOΝzn~E 95•5ωσEν@sςu6½Ζšύ_cΝώ―qς;δ € € € €A Π€j³W@|.@ Ωη·=Νυ@<^hφUo˜ΙΦV―X/Mu#Πμ±€υ†hπKΝ©ω0υ}ށf[Bhz 4λΧ֞iz 4Ϋ•?š^cύ1@@@@ ˆšƒXuφŒ €€O4ϋ΄°Ϋ"ΠμγL ΩΘ‘Ϋδ ks(šK³©nš] ηΠM Ω& ΝšSSxSί'νέhΆ%τ¦Χ˜@³~mν™¦Χ˜@³])ύ£ι5Φί3@@@@‚(@ 9ˆUgΟ €ψT€@³O λ°-Ν0.Νš]€ΊM °6‡’Ή4›κF Ω₯pέš`ΉyνΪυςή»³δΛ―J^«VςΫγ~%'œp¬ddd$τΚΛ—―”τ΄tιv@Χ„ζ9 &Πμ$“X»©ο“φ.4ΫϊGΣkL YΏΆφLΣkL Ω”ώΡτλοŒ™ € € € €A ΠΔͺ³g@|*@ Ω§…u؁f—fΝ.@έ&X›CΡ\šMu#ΠμR8‡nΝ0Ψ<οο δškn‘“O>QN>ε$Ω²e‹άύΗ)V˜ωέχ^•V­r=½ϊζΝ[dΤYʈΓdΒεγ<ΝqD ΩMΘ[Ώ©ο“φκ 4ΫϊGΣkL YΏΆφLΣkL Ω”ώΡτλοŒ™ € € € €A ΠΔͺ³g@|*@ Ω§…u؁f—fΝ.@έ&X›CΡ\šMu#ΠμR8‡nΝ0ΤΌaC‘ :R~ψn9ϊ˜#Γ―R]]-]x…tλΦUn»ύzIKK χΥ?ΩΎ}‡|΄ΰcΉε–»­‹/>_Ζ‡ώIŁζT(Š˜ϊ>iοŽ@³-‘4½ΖšυkkΟ4½ΖšνJιM―±ώΘ‰ € € € DΝA¬:{F@ΐ§š}ZX‡mhv€qi&ΠμδΠmrP€΅9Ν₯ΩT7Ν.…sθ&ΠμΣHΝΣ¦>+«V­‘»οΉ΅AhY…‡Ÿ2Zήyχ/±γ>1WPWW'7ήp‡ΜŸrΟ½·J‡ϋȜ9—«Ί$ζψD 4'*{Ό©ο“φj 4ΫϊGΣkL YΏΆφLΣkL Ω”ώΡτλοŒ™ € € € €A ΠΔͺ³g@|*@ Ω§…u؁f—fΝ.@έ&X›CΡ\šMu#ΠμR8‡nΝ0Π\[[+gžqΎά|Λdΐ€Ÿ7xV=z¬\{ν•2p`ύ±Ύ~©ΜϊΰCΉj"ζX>MΥfκϋ€νA Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€i„ζ29ρ„Byχ½ΏH~~»˜―πΚ+oŠ7nάΉ1ϋλ7h/bΖ΅©ο“Άf[Bhz 4λΧ֞iz 4Ϋ•?š^cύ1@@@@ ˆšƒXuφŒ €€O4ϋ΄°Ϋ"ΠμγL ΩΘ‘Ϋδ ks(šK³©nš] ηΠM Ω¦š+**d萑ςΦτΝoΎωΆlάP$.ηiš=1νρA¦ΎOΪšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜FhVζ“‡’ΏΞxIZ·Ξ‹ω ―Ώ>C6mjΤ@³ZΗ–-[bΎ~UU•|ώωη²iΣ&),,”‚‚‚˜γšΊΡΤχ!ΫΕτυhΆ+₯4½ΖšυkkΟ4½ΖšνJιM―±ώΘ‰ € € € DΝA¬:{F@ΐ§š}ZX‡mhv€qi&ΠμδΠmrP€΅9Ν₯ΩT7Ν.…sθ&ΠμΣΝ^ŸΠΌjΥZ™4i‚§θ<‘ΉΈΈX–-[ζxΥ«W[ζ~ύϊInnγΈ¦μX²d‰τκΥ«)—χ΅M_ίΚ•+%++K:wξwMΥΉyσfΩΊu+5N’Λ—/—œœιΤ©SwiΌ©EEE’ή‹zχξέx/’δMs¬ήΗσςς€C‡Iξ΄q¦oΨ°AJKK₯Gσ)Ίλ€Rt'nƒ € € € €@Σ hnZ^@R(@ 9…˜ΝΰVšυŠD YΟΝΤπ«Ϊ kσWM 4λΥ“@³ž›Ξ¬ŠŠ‘'4Ÿ%Ο?ΈtΩ/vτŽ;ξ“#Ž8TŽ?ώמ^B'ΠοΖeee2{φlžΠΙCŸΙŸ/jω<‘ΩC]†˜^cžΠμR@ݦט'4{(’ΛΣkμ²|Ί@@@@ˆ ΠΕΑ €4gΝΝΉz‰―@sβfjf=7“ƒ¬Ν_5%Π¬WOΝzn:³κκκδšI·Θ‘G*…g op‹ͺͺ*+πόπŸξ•Ύ}½=΅”@sF#Lώ|Q@š“61½Ζšύ_cΝώ―qς;δ € € € €A Π€j³W@|.@ Ωη·=Νυ@<^hφUo˜ΙΦV―X/Mu#Πμ±€υ†hΘ— |,7\‡Μšύ†δεεE½ΪϋοΝ‘|LfΟyK²²²€ΊΊFζΟ_ ύϋ${ο½WΤXϋ‚@³-aΦΡΤχI[‰@³-‘4½ΖšυkkΟ4½ΖšνJιM―±ώΘ‰ € € € DΝA¬:{F@ΐ§š}ZX‡mhv€qi&ΠμδΠmrP€΅9Ν₯ΩT7Ν.…sθ&ΠμΣHΝκ)ΝγΗM” 6ΚΣOI:ξΫΑ .ϝ;OnΎι.™φδCςΛ_°^½΄΄LŽϋνiς§Gξ‘C=$ζŠ4ΗdiςFSί'mΝΆ„ώΡτhΦ―­=ΣτhΆ+₯4½Ζϊ;c& € € € €@4±κμ@Ÿ hφiaΆE ΩΖ₯™@³ C·ΙAΦζP4—fSέ4»Ξ‘›@³L#6οάY)σ?ΛΫ3fΚ^{΅—Ν›·HFF†Lyθ2xπααW¨Ψ)';K¦N›"½zu·GžXζYΚUW]Ω¬}^VV&³gΟ–M›6Iaa‘hί«1'šϊ>dοΩτυhΆ+₯4½ΖšυkkΟ4½ΖšνJιM―±ώΘ‰ € € € DΝA¬:{F@ΐ§š}ZX‡mhv€qi&ΠμδΠmrP€΅9Ν₯ΩT7Ν.…sθ&Πμ³šΛΚΚ₯’’B€mΫ6’žžΎ^5ώKhŽογ΅ΧΤχI{ύšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆ4;ΐΈ4hvrθ69(ΐΪŠζlͺf—Β9thv€ h3ζΤήΤχI{wšm ύ£ι5&Π¬_[{¦ι5&ΠlWJhzυwΖL@@@@ hbΥΩ3 €> ΠμΣΒ:l‹@³ŒK3f ‡n“ƒ¬Ν‘h.Ν¦Ίhv)œC7f˜€6hNMαM}Ÿ΄wG Ω–Π?š^cΝϊ΅΅gš^cΝv₯τ¦ΧXgΜD@@@’ζ V=#€ ΰSΝ>-¬ΓΆT 9''Gφή{oΙΚΚrΥ4Ν₯₯₯’žž.-[ΆlšΔyΥ’’ΙΜΜ΄μβ k’.΅6UΛ-Z4ΙλΗ{Q΅ΆΌΌΌxCš¬΅ιΡ›κVYY)κΏί***€ΊΊΪΨ΅ΥΤΤH«V­τΎ!q– ΧͺΟ«>}ϊ4β«pλH;МŸŸoδί졚ϊ>Τ\Φgςί·”αΝ;₯ͺͺΚΘχLjl $wT5VŸΩ­[·NξF8»9ΌΟ˜ϊο&ͺ,&έΗώΆQο… °/9"€ € € € Π¬47λς±x@ˆ Π©ασ… ZaX»QαυΏ322bu7i[mm­υϊ*ΤlΪW]]¨L[›Z“ϊRv&ΦΤ^_ZZšQ%΅Χ₯ΕΪΌ—Ζv3ΝLν@ύ°Χe½ο¬qGΪk3m]‘n¦Mύ°Fώύ·@»{qq±,[ΆΜqΧ*Hͺ>OLόLQ‹6ω}ΘF5}&}Kšόž©ΦgΧW›ψήi―Q­Σ΄Ώ·ͺ΅©/υƒ4jm&ϋνZ)5Ά=šώηXνGύιέ»·ΡΑϊDݏ € € € \ΝΑ­=;G@ΐwš}WR)**²žkg›7oΆšΥšMϋRί‹*ΌΦΎ}{Σ–&?ώψ£υδθvνΪ΅6Ψ°aƒυΓ6mΪ΅6υDZυ½ΨΆm[γžώͺ‚ύκΟ‚ͺgnnQnεεε²uλV)((0ξ©ΫκIvΫΆm“ίή}€ΫQ•m~!ͺHh€+  EωPPT$t₯χJ(B€Π[…„žΠBIH/V,H‘&UD$€$ΰŸ5ίΏΟwzNΩeφ9χ\—ž½gΟΜzη^»¬\<³f‘EΙ/Œ(άϋοΏι‹-ΆXα\Ι,Ω 8°Hdy-οΌσN>κ’‹.ZΈΪή|σΝό}ΆΚ*«Άz.(͚™ϊ½­%½–~[Š8NH5§YS§M›ι=[ΔΠuι·/ύ&qΖψd˜~›S˜tΐ€ιiα–ΤΏ©Ÿ_|ρB^‹<†(uf‘ΗΤ©Ζ".¦ϊJί“ιί$ιNE\Šϊo“’UΛ&Ητ9.βRκcζ"φŽš @€ @€Ί" Πά5ϋ @€…h.d·T¬¨§Ÿ~:?φΚ+―\±6Ίzΰ'žx" ―°Β ]=DΕφϋλ_šL—^zιŠ΅Ρ•§ξ}τΡ<ΔΉΔKtεΫ'έN<ΝΎΤRKε؊5Τ…§ Τ³Ο>Λ.»lατ)ςόσΟrΖΈ0}ι₯—β«_ύjα>S§NΝ/ @€@!š Ω-+ͺΘA%ζΞw»@sηΝΝ]shξš›@sΧάš»ζΦέ½Š}f΅yU^νΥΧγϊλ'Η“O>^(Ύ±Φκ±αF?ˆωζ›·*ν·ΧΘ‹/Ύ·ί~O<ρψS±Δ‹Ηj_j|ϋί)DmλNύzίολ|λΡ·oίΖ/Uύρ?ωB<υΤ³-Ϊύδ“™™έz±ΰ‚_hρZ5WΌφΪyŸ>πΐΓ1WΏ~ρƒ|76΄AΝάfΜ·ίvOΜ6ϋl­2Μ9眱ϊΧΏ‹-Ύh«―Wcεώσ^όφ·Θ?£οΌύn,»μ±nφ²ϊκ_‹Ωfk½ξjΤ•Ϊ˜9σΣ¬ΆϋβwΏϋS|πΑ±όrΛΖFo+Έ\΅JhΞϋο;­³Ξ7š¬/=)Υ{χ]Ώ‰χή›_ύΪJ±ωζƒb™eΎTΪΔ_…xθ‘G²ΟΡς±ΐσ’žRϋΫΣqγ7Ελ―½K-΅D¬χuβ;ίωVaΖ4ιϋςφΫξŽ3ΏΉϋχΟ>γ+Ηw³ϊ–Μj-βςK/ΗϋQ¬΄Š…(―θcˆ„”Ζ\ϊΣqΧ]ΏŠW§Ύ+~yωΌεσΏ΅D¬‡ρDςIΏƒψßγᇋ—_~%_|±XsΝΥbύυ׍4ζ)Β’Ζwήqo<ϋά?ςΟρzΩgxƒ Ύ[³±b2™Υψ"mσθ£OδcάžWφ306ΫlγXcΥj>VK΅Y @€ @€τζžΠ‹ΞΘš½Š"‚ãι0ξΊ{RΝƒ₯ΙδώϋŠύχ;<Ύυν΅cΗΆ‰ιΣgΔ駟Σ¦}Χίpy,½τR5£»ωζΫ‑gΕN; Ν‚ΒߌW³ΰυω獉>šW_sq|ε++Τ¬Άζ §πΤqǝ—]ώ‹,Έ°jσ—«ϊόόσ.Šη²ΘΧW_5>žρqCΫ3f̈Α[mΛ-·LΓΊj?H½½χ–…R֏!CΆˆwή}7N8ώŒ<wσ”kcΐ€/V»€˜‘]|ρؘ}ΆΩ›΄rΒYf*Ǝ½6φάσ'±ΟΎ»5y½ZORΈlθ]cΥΥV‰m·έ*ζgξx! ϊ€~ώяΎ§œz\Ν‚„)ά³έΆ»Ε;οό'†yPŠϊ]ΌΎρΖ›γaϋΖΞ;o[-¦ΌΟ>ϋ,†q|$³‰“lα’ϊzθΠ]γΧߌc=< ©/χήσΫΌήδΈqΔΆ(‚ΐcύ-vΫυ€Έθ’QρΝ΅Χ,BIyˆτŠΛ―‰Ρ£/Ο?Ϋ钊†<ω€³σ°π 7\sΝΥ―¦΅>ϋμ?b‡νχΘΗ4ι7&}ζoΌar<ςΘqό Gζ/Τ΄ΐf§1ΧFn•»έ~Η„ίYΝ6―ΚΣ"!@ |ΠQρΰƒΔΡΗ ‹%—\"ξΈγž˜rσν5ωέiά)EO€ZSx~Θ6?Ν·;|Xt‘…γΝ·ήΙΗΧιυΫnΏ1ζwžτ°fΛ­·ήǏ8-6άπϋωgφνwލ³Ξόy^Ο€ΙWΧd¬8«ρE ٟ{ξθΈφš ±ώ{Ěk}=žόΫ31jΤ…±ι¦εί?³ΟήtœY3`  @€ @€¨cζ:ξ<₯ @€Mš›zxV]O?ύ4žΟfκΊπ‚KγΎϋώœΟ.vǝβ _X Ί…4k-i6ύρΆ±ϋ;ΗφΫoέπjϊς#GžΟσΕ;ξΒ¨Ε€ΧΏώ[ ήΉE@8Υ6ϊΒΛβΧΏΎ/nœ0ΆαŸW^y56ίlϋάoάΈΡyπ΄³Κ’O ΏžzڈšΝΫΦ)O›φ~άΪ: ₯qKK ₯ΪΧ²Y4O8ρ¨BΝbwΝ57Ζ„ SbόψKcž,H\ν%υη>{«ΊJpΰžMšϋνw²Οοv1zΜ95 ѧڎ9zdhœšNϋυϋΏ™ΙΣ α;ο΄w\›ΉUcΦΡτzςΙ§σ0σ»οώ'Ύτ₯%[šS½gυ‹ψs6«η„‰γbŽ9ζhπLΑΈ}φ“&_e¦ζj!ξ˜0eΚνqΙ%WζΝα"™’CιβŠ+―“_—Φψα³ί]b§μ†Ζc‰λΥϊ›ΎΆΌS~αΗO~Ί]“fΣΨ+]μpχ=“ s‡‡τtζηηT€β‹0¦I5u QκΠ½ός«γ—·\Χ$x›ϊψƒ.μχx­Η%Ώt±ΰ•γkρ;˜»{μ~P€»μ΅χ.₯Ν«ώ·τ=sΑ…gΕ·²‹KKzo9ό„ψψγcΤΉ§Tνί&_€οΛξΎ3<«/]L•ξ(SZήzσνl–ζνcΔρΓcΠ –VϋK€ @€ @€@š»g7 @ xΝΕλ“ήTQ)œ»ωƒbΏύvΟgh>bψAρΕ/.XS†Ψsƒσ€Oγp_**έ²=…%οΉwrτΟnΩ^ν%ΝπϊΘ_ΛƒΉ³₯©r-)<•‚±·ήv}ΝCα)28 ^ο΅ηOσΫwΊevΫξ―7ͺΆΊ“Ν&ƒ†d67&΄UH³XίpΓMqΕΨ ZΡΣ¬š{νyp>sω\sΝUΪ₯¦σ›ϋ²ΐξI‘fŽ^tΡ…kRKš‰rπ–;εf /< E Ggβ­oZ“\SHg“M†ζ‘²Ε[€EmγƎ©―ΎΗsh‹ΧΚ½’4Cϊώμ™Οζxμ±'Η…YͺOŸ> M₯ο΄ ~°E›a·3N?/ζ˜sΞ8μ°ύφρ€@5J-ΉΤΐόsσΨcOfwIX2Φ^{­j–Ρf['N‰'*Nyt‹mέƍŸΝή|vΥ‚†Ν‹Hw&Hcš{usΜ™}–/) Ή}vαΜ‘GR“ @ΧRzό‡?ά#²;;œ3κ”yβ-.Β(mWΝΏEC$‡.έ|³νβμ³OnqρX©·ίnλΨbΛMͺΙ6ΛΆŠ0ž(™.X\ύuσ•Φ•ώή“έ±ΰΉgι·΄VKš!|fv!hkΏΕιΒΈM ›nΎ:ZU’掌/ΏΆΊ[μΊΫŽΩΈθG-ΚψmvηŠ‘'ž™ύ{λ¦μbͺ—΄ΨΠ  @€ @€f) Π“ξήϋμRΣ@σσΟΏG>"Ÿyο½χ¦ΕGMΟoe_λχZzί§™†Σ¬™λϋ?y·€Ϋž§ΩΏηš«_ώόΝ7ߊ…ϊbΝΒpί+oe·_ίhΓ­β²Λ~k¬ΉZγ—ͺϊΈΠ:μΠύ[„–Ϋ{­E¦zš‘Ή­YEΣ{q―=ΙCꍃŕmϊτι±ΫΔΥΧ\ά$ΠόπÏƩ§Œj³ήt>8ωLόόό‹cΜEηΤμ;<}†Ο=wtŒΙf­o~!TΊSFΊΨης+.ˆ%—ΨΈτš<.]`qΝ΅—ΔάsχΟ/θ)ΒwOQΗ₯NJυ₯Y„οΉχ¦ό{zζΜO³σŒά0υyW€|k}”R½ιoQΖ₯šΕF~ψa«‘εφ^+ν_ΙΏι{&οΣ…«ΆJ‹¦λi,Ήϋ;Υδ{±­ρEϊ<ΪxH›3ΐ—.ΔΌεΦλbΑΏΠβΌ¬ @€ @€ @ γΝ·²% Ppζ‚wP/*/ύΗψ’šS0ψ“O>‰t«σζKš‘μK―ͺٌ)’fXlJJ³³νΊΛώ±ξz‡f!ΟZ.O=υlμΎΫqΛ­ΧgAάσπζΎϋνVΣ@sš]/Νψ8pΰbρβ‹/5π€tΣν»—]vι†uΥ|fέz«γΚ+ΗΔύy(ŽqZCσ+~yω8iδ1‘ώaIŸΡΓ;.πΕVΓώΥ1έ¦ώ’1c³Ογy±Κ_Ξ?)3!›Εόβ‹ΗεοΏY­Υ^fN3ΐο·οaU'›=χ8¨E 9]$ρξ;οΆβJviΏxœςΛρ… ΓU»_΅W"š“J -/±Δβ->ι;3]ܐ~_φΪ{—š¦Πrͺ₯ω…N)τzј+βζ›o‹;οšTσRSιbΥWZώ}”f–>π€b\LQΤ1DιM•Ζ¦/Όπ―ΨaΗ!YΐώΈμ’Ό'J/ε–?Ν.šͺζ4 ·ρ hγ‰Tζcύ-Ώθ笳FΖwΎϋ­|¬ξρ§?>Γ†]4ͺΕTmœ^ΩW'―h>4»SBkw;)}vj5Φnk|1«ρP©ξύφί£03Δ—½σ @€ @€@•š«­ @ ςΝ•7ΦBΗΤ.J Ή­ŠSP7 ~ρ‹3βΫ6έΆΆ­Ζϊt‹ραGŒˆΧίx3ώώά?γk_[9{AMC+)Τ°Εζ;Δ±Ηίϋήzyˆ*”j²(υΓΉ£FG ΐžpβQ1hΠσ`Wš±πK―Œk―™“oΊΊ&³S¦Yν6ύρv1`α…βΥ©―ε3/»άρώϋΔΥWίWŽ».ΌjLή·₯s©Υί.ϋιOφΛ‚Έ7b&½τ1tΘ‘f¦lΎΤ2x”..ΨhΓ­cμΈ c₯•Vl^Z€χβYθϊŽ;'΄@ΆΨΈŒ+Ϊ ₯ZήΜΎCφ?`ΟV[KοΡt+ϋI“―*DΏ·Z€•½J hζΆπ'OΎ5Ξ:σηqσ”kcΡEnk³ͺOί›£/Ό,ώψΗΏD φνΫ7›ΥwrMξ8ΡόΔ§ά|{œώE w™¨ΥΕΝλJΟ‹:†(՚μN?ύΌ|ζC†νƒošίεα駟‹φ?" ‹ηŒ:Ή¦γΓR­ιoΡΖ₯ΪLΜΏψΕ%₯§ ΊΛφqΠA{7<―ΕƒTΫ£>£Ξ=₯Εlο―½φFόx“‘qπΑϋδwό¨v}m/g8]7q•­ΎχχQšYΊΦwq©Ά—φ @€ @€TB@ ΉͺŽI€ΤD@ Ή&μmE θζ»ξϊU6ΣβIqπ!YXΰ'Ϋ΅rΥ_•Μώφ·§³ΩU&NΙf‘ϋKœwή©ΩΜrί~1Y‹©ž‘#όιMSO‘Ο˜›Φ!Мf/œoΎy[Ψ€ϊΞ<γόxνυ7βœsNn©4dš‘ωϋίΫ, •Νχώκζ|FΐΖm^qω5yϋξ{&·˜]³ρv•~œœR(eΉ,lέVπ΅54>~ͺgτθΛ#ωyδΑρυΥWΉηξodΑά«―Ί!ώς—‡γϊ.₯—^ͺρnU{œΒoiΦΣ ΗΕ"‹ό_ρξ»~Gg3Ά¦™£oΏcB«ŸJΩVΰ(š?ΚΒύ)°ΥΪ"ΠܚŠu΅(z 9}?]xΑe1vμ΅qρ%ηΖ7Ύ±F-ΉZ΄ύ―ύ;^ΚώχπÏεΞμΎΗΞ±οΎ»΅ΈσC‹+Έ"Υ΄Υΰc€«b™eχξE 4u Qκ’hNγ―ΣN?>6άπϋ₯Υωί·ί~'ΏpκŒ3Nˆο_›ρaγ‚Š6ž(Υvί}ŽC>:vήyΫψ᏾ ,0~qΩ½χώ6ΏΈ,Νάόƒ Ύ[ΪΌκK‘ε#†Ϋn;Έασš.€Ϋ)»ΨςεΏ—^v~«38WΊΨΆΖ)Έ~Θ³bά•£[ο€χBώPiΗ'@€ @€ P ζj(kƒ¨Š€@sU˜5τ΅‹8Cs ŒqjόώwͺiXΈ„‘ΒÏ8Ύf³-ήχϋ?űǞ’΅S>λcͺ9υkš}ν€lφΧUW[₯#§Qυm^yεΥ|ζν»οΉ) χ©jϋ)’f΄>qδΡ±n+³~§Ω~ΈΑ–qΧέ“j:;ξ[oΎm΄u“°YU‘š5V ΏέpγΨXa…e›Όšήsηž;:ώ…{jROΕ€ΫΤ‘ΝžžΎ76έt£X>«ρΪl†π?ό( 4ΛfβΎͺΝ ›œLŸ΄82Cs‘ͺ*E4ΏψβK±χ^‡δŸυ«―Ή(–]vιͺ˜t΅‘τϋ·ωfΫΗΈq£kφΎ/·ήϊ§±ϋn;Εζ[ j8•τ=谟ε†Μ>ϋμ λ‹φ –cˆ’E 47>³Ί²ΥqΜW\|πAΝgNυm<‘jϊδ“O²ΠχΆqΘ°ύς»x€u—ίόζΎ8αψΣγΞ»&FώύΏTΥΗ=τHφύ2,cο΅χOγΧίΜοψ°λ;ΖΣO?»μ²C|sν5«ZSj¬­ρE 4xΐπ6/ΰ*ύaχ=vŠ΅Χ^«κuk @€ @€@OhξI½ι\ @€@/hξεo€~ΝO=υlt8p±ΈδσbρΕ«©ΨgŸ}Gyb7βˆ|ΆαζΕ$Γν·ί#†g³·­ΉζΧ›Ώ\Ρηi¦α6ά*Ύόεb·έwΚg|M Ξ1ΗqΖηe‘ΣεbΛ-_[uεXxα­₯ωΑgΜψ8|π―y`xΆΩfkώrdΩhΓ­σ€ιΏΈ`‹Χ+Ή"…@64$ΞΝfΦn­ΟRŸξΎΫqφ9'E΅kk|ήχάσΫ8#»ύwMj5,ΥxΫj<~φΩδ‘ε1cΞi˜₯°q»)·Χž·’iΌm%ύοΟΗ#<žΟZΎΔ’‹Ηϊλ―ύ룑Βe£GŸ]ΥΑΫ ₯™GӌΦ)TίΪςΪ«―Η;μ΅ž%Ό΅Ϊ¬λE 4ίr˝yθ1]ΔpΜΟ‹~ύϊ’ƒLΡίXk6ΛγƎΟ‰Φlφύ4›}šΕυ”S‹~}ϋζB%Έ7ί|+Ξ<σηqZvΗ‡ώΩ ό钟Z›‹<†(½Α…)׍ŸΨζ…2?ώdόζΧχεw)νS«ΏEO$‡τϋΈΥΰβ–[―oΈ ―±O <§qβ€ΙWΥτβ²TSΊΠςᇍ—^z9Ό¬ΉΦκ±όςΛĐmv‰“O96V^ωˍK―ΚγΆΖi,Άλ.ϋηεΝ9ηœ-jI3 ήr§sΡ¨XrɁ-^·‚ @€ @€Ž 4wάΚ– @€@Αš ήA½¨Ό’šK·ž>dΨΎ±γŽCj’iήύ)P±ωf;ΔUWi5œ ΣlΘ΅˜ι,…RHσ½Ό)ό“–”ΞJŠ›nΊ5Ύυν΅³@ξ²ΫbΝCΟΝΟ­’ΟΣmΊ·Ίkάϋ«›£΅@E \€ΠpšΉOŸκΞМBκ)„rΤQ‡΄:«ήτιΣ³šg!›λj’Iο«cŽ9)–]ζK±Χή»T²«:|μ"šΣϋ¬,„wψΔ\sΝΥδœJ–k¬±Z Ίe“Χ*ύ€½ΐΡOvή'7―7Υ”Βg“&ύ²κμJ{8~ύ -М>ΧcΖ\—_vu\pαYρ­o}³0Έ₯7ή » bέVλš8qJLϊZΝfο}ςΙgβζlœΠ7 3—Ζ) ~ο½Ώwί}/6ί|P,²Θ€ll³sΥ£X‘Η₯½ώ‡β؟άζ8fV3ρ—ŽSιΏ₯χc‘ΖιœΣX+έ-£Θζτο’ώχΏΩέ26hΡMi»γ{εwh©Ε m/ŎiζλX^qΕεZԝf7ίvθnωΜΧσΞ;O‹Χ­ @€ @€ @ γΝ·²% Ppζ‚wP/*/…†rLŒ8~xMg’Mδ)ΌςγM†ΖyΩ¬Ήίωξ· Σ ₯ Θ|σΝ›LmQW 4€pμm·ίΠjΰΉΕUZ±ο>‡Ε~ϋνήζ쐕.#Αm<$;ό€·ΟM™©N8ρ¨Vgϋ­t}Χ^3!R ¬΅[Ε§ΫȏuaRšœ…cϋUΊ”VŸŒΜί‡Ί_an ώΟΎ;νΈwάrΛu1`α…ZΤ}υΥ7Δ½YχбT=W π€™Τ›Σgt«Α;Ηm·έ‹-Ύh‹Ί+Ή’­ΐQ ΥΞjΪ~ϋ­c»νΆjRB ymϊγνβΘ,p£}―Ιkž¨•@ΡΝψΓύqΔα#ςΩq—XbρZ±΄Ωnš…ύμ³/hu–υτϋΈε;ζ3J§‹΄€hΣΈpΒΔq5½¨¬θcˆΤgιϋύ‡l™NΞ/ k܏ι΅Φmm Τx»j<.βx"wϊ­K30Ÿ~ϊρ-όλ=φ·ό‚Α{ξσΞ;oZUυε>Η75ΉSΖ¬ώmPBΫ_€ΆΣ,λΟ?b‹‹’ΏΫΊCD5jΧ @€ @€ž" ΠάSzy @€!ΠμMPτΆ‹hN3 ΏvB’ωθ£ι­-ΆΨ"5 ΨόύΉf‘Γέc·έwŠŸόd»HαζO?ύ4ό©ΨoίΓbΣΝ²[έgaηΩτΘXRΏξ΅η!±ο~»Εšk~½fέ}χoβθ£NŒγO826άπϋωΜΉΣ¦½ΏψΕ%qλ-w΅Œ­FΑ₯°ΡΚ«|%Fd!Ψ…όqάςΛ;γΤSGe3۝SΣ qͺo“ACβς+.ˆVXΆ$³l£„ΉοΎϋγKΟ‹ΏΌ|π™#RŸNžtKޯ׎Ώ4VZiΕY«€YΙO;υά8η§Η:λ|#<>ύτs±Ϋδ3Ύpΰž•hΆέcΆ8Ja­T[ υτΓάς΅W_Γ?.―}μΈΡMTν6δE(R 9} ²kώ9ίcϟδΑζ§?Η}²†nΎΊjΟKΏ1Λ,³Tœ|ς±±h6~Ic„—ύJ ~|~ΧνwL¨ΩE3mA<χά?βΐ†Gͺ­ΪwOh^S‘Η₯ZΣοΞΙ'g52Ύ»ώ·σορΤΗ{ο=,ΏP°ίγEO”όn»υξl vjξχνuΧΞΗ‰iΖπϋο0φ³8ϊ˜a±Ν6[”6―ϊίη8₯ωΩ‘ρ…/,ΝΨόQ6Ί2Ώnrά<εΪXtΡΪ|Ο΄7ΎψOvη–¨ίp£ΔΑοΒSέiVϋ‰¦δ³bπΕͺ{j @€ @€@Ohξi=κ| @€@/hξŝ_°S/J 9ΥqΪiηΖ€‰ΏlS(έύφ;nŒόB›ΫTς…gŸύGμΏίαΩ­ΨΣ€™aΩ Ίi–ΥZ•O9)† Ω’¦ζTӟτ@•…š?ψΰΓ<\φΖoΖWΎ²Bœ“ΝhΈψβ‹5.»κί~ϋ8ζθ“⑇‰e–ωRΌψβKω¬Ρ\xf¬΅ΦκU―§qƒiζΒM )ΏŸθΏVΛΗ3gΌtρΑōmRFΊέϊ˜1ηΤlFπTLzίί4ωΦ8ε”sšΤΆώ{Δ.»ξP“‹!Rΰ萃Ž‹.ΥκwΔƒ>xd¦8p±˜:υ΅|VζΗsΟέΏΙyxB –)ΠΌΒςΛΖ7Χ^³–eδm§ΐγVƒwΚCΑmσ₯/-™Οή\Λίζ*<αψΣγΎϋώά€ΜΝ7iμ0όσ5Y_„'/Ώ<54Oœte«ίYΥ±Θcˆd‘~wnΛfγ>~Δi9M«¦‹£Άήfσ8μ°’_ΏΎΥ&kΡ^QΗ₯Bυ«ίΕπ#Ž/=Ν¦Ον ΩΕpƒ6ωQΝ/Lw9tΨ1‘ώPZ–c.ι{¦VΛ¬Ζi<1쐣γx!Ώ0.ύM㌠GŸ]ΣΊkε₯] @€ @€•h„ͺc @€5h »F ”E ΝF›Bi¦Ε˜Ώ&!Ι²œH•ςή{Σς™ “]r+’ϊ΄oί9#Ν žfί+ΚLΫE2j^Kš‘ΌτYHaζy睧ω&5{žΒdιύ–Q)0˜f‘.ς’q)ψ˜ώ¦0\‘,‹μ¦6υ"fFM‘΄Μ3Ο<…ΉΦ‹]©Ξ"!R3g~šΝώaώ{Σ§ΟμωLΓ₯Ϊύν˜@κγ3fdŸ~ωowΡΖbiΜ“>Η©Ύ’cΫNγ‹Ο>ϋ,ΫΦκ’Πφκσ @€ @€zhηήS; ΠD@ Ή ‡' @€ @€ @€ @€κB@ Ή.ΊI‘ @€@Gš;’d @€ @€ @€ @€Εh.V¨†膀@s7πμJ€ @€ @€ @€ @ FΝ5‚Χ, P~ζς›:" @€ @€ @€ @€J 4WZΨρ  @€ͺ 4WZC @€ @€ @€ @€Κ& Π\6J"@€j- Π\λΠ> @€ @€ @€ @€Ξ 4wήΜ @€@Aš Ϊ1Κ"@€ @€ @€ @€ Ў€@s;8^"@€κK@ ΉΎϊK΅ @€ @€ @€ @€’€@³χ Πcš{LW: @€ @€ @€ @€^$ Πά‹:Ϋ© @€ž. ΠάΣ{Ψω @€ @€ @€ @€τDζžΨ«Ξ‰τRζ^ΪρN› @€ @€ @€ @ šλΊϋO€4hn¬α1 @€ @€ @€ @€ϊh~R% Ёζ Ω„ @€ @€ @€ @€@Αš Φ!Κ!@€Ί. Πάu;{ @€ @€ @€ @€¨•€@s­δ΅K€”]@ Ήμ€½κ€™ϊiΥΟwΎΎ³Ε*f―z»$@€ͺ'`ŒQ=k- @€ @€ @€υ+ Π\Ώ}§r @ ™€@s3O;$pχ 3γˆ_Oχ?ξΠζeίh‰ωf‹‹7ξ/Ψ\vY$@€΅0Ζ¨­ΏΦ  @€ @€ @€ϊh―ώR- Ў€@s;8zι©·>‹“ώ8£BGoύ°Η­Ϋ―lαί—ί<~|γ‡5 3—Ξ0…šοΫižS  @€@―0Ζ(Ο[ΐ£<ŽŽB€ @€ @€T^@ ΉςΖZ @€ͺ$ Π\%θFΝά?υΣΨaΚGΦTώαψ-ϊΗ:ϋ”₯‘4sβ>wN/Λ±Ί{ržWwk±?¨΅€1Fωzΐ£|–ŽD€ @€ @€TN@ ΉrΆŽL€TY žΝˍω M­΅³πξυYˆ·΅₯½ύφΟο;ok»•m]½‡Ξ{πγψωCην9·6-› zώ~νmΡφkΫeaπ²PxZ„Ϊvς t] ½±B{Ώ}νν—ͺ1ΖhΏOŒ1Ϊχρ* @€ @€ @ Ή€@ssΟ  @€ΊhnΩuΒF-M―)GΨhοl†ηωϋFœυƒΉΊCš;Δd#θ†@{Αdζ¦°εΌΈΘ£©­g @€ @€ @€Y 4ΟJΘλ @€@έ4·μ*ζ–&Χt7lΤx3Ώ?Wl³?ΛΗΝ³$²tS@ Ήγ€E 4ctΌίlI€ @€ @€τ ζžΡΞ‚ΘzJ Ή;!δϋ§~;Lω¨αύНc5€ΝΫkgΣ²½T”°Ρέ/̌}²Ω™/·™;V0{γUν>hn—Η‹ PΖζξŒ šζwηX9­ζνudŸξncŒΡ]Aϋ @€ @€ @€Ί. Πάu;{ @€hŽhώ©tΨθ©·>‹‘œQΥwˆuϋu*4ά^qg?\{`ŸΈ~‹ώνmήπΪ΄μ”υτ˜φρη λƒωϋΞ— š«ΙΊφž4·§γ5(‡@½š1Œ1Κρώw  @€ @€ @ ~šλ§―TJ€ΜB@ ΉϊζYtIα_ξj Ή\'&Π\.IΗ!@€Άκ5ΠάΦωΤΛzcŒzι)u @€ @€ @€Eh.JO¨ƒθΆ€@³@sgίDΒF³=Τ›€@smzΜ£6ξZ%@€ @€ @€κW@ Ή~ϋNε @€@3z4§™zKΛυ[τ/=μτίζ·gοΞ±:ψ΄OΏύiG6-Ϋ6+/Τ'ζοWžΓΝ*l”Ξ―\m΅V±š[S±ŽΚ)`ŒΡqMcŒŽ[Ω’ @€ @€ Pnζr‹: P3z4Χ ­› ί?υΣΨ‘Q»›‡λΠξγ³ΐχ:ϋthΫYmΤ^ yμγŸΔ{3>CΎΩwV‡ιΠλWdΗ›Ώοl±ΝJs4l/Πά@αh"`ŒΡ„£έ'Ζνςx‘ @€ @€¨ζ:ι(e @€³hž΅QΉ·θ©a£#~==&=;3ϊFί²šKαι]W›3Ž[χ§˜h.χ;ρ @ §ctΌ'1:neK @€ @€ @ ΈΝΕν• @€hξ$X6οia£K6ξΫOωo<ύφgΉN%Νιΐ“Ν0}qΦΦ^w~d³\§₯œ3Oητ @ ŽŒ1:ήy₯@sΪΓ£γnΆ$@€ @€ @€Š% Π\¬ώP  Π ζnΰuqמ6j2T y«―Μ#֝K Ή‹ο;» @€@Ο0Ζθx74ctάΝ– @€ @€ @€@±š‹Υͺ!@€Ί! Πά Ό.ξϊςϋŸΗΔg>ιβή]Ϋm›•ζŒ%η›­k;7Ϋ«qhνlΦδλ·θŸo1ς3bάŸD%ΝΗΫ/v[mΞΌν¦˜‘ΉY—xJ€rcŒŽΏJγcŒŽ›Ω’ @€ @€(ž€@sρϊDE @€@š»Χ‹w+€Aγ@sz>ρ™™1νγΟΒΗi]w–+$V0{¬“§K‹@sIΒ_ Π³Œ1zV: @€ @€ @ ςΝ•7Φ P%z4/7ζƒ₯ηχ·αqg4Ώ={wŽΥΩΆλqϋφΒFΥ8ζj(kƒ½[ΐ£6ύoŒQw­ @€ @€ @€υ+ Π\Ώ}§r @ ™€@sD΅ΝΣfD<ύφ§Νz’²OW^¨OΜί―}΄°Q>O @ ΝG-ΚESΖο3[ @€ @€ @€=G@ Ήητ₯3!@€½^ §š―Λf nΌΜΧwΆXeΐμW5<ώΛΤO§O½υYœτΗ λžίwή†Η•xΪΩ¨½J΄Ρό˜#ΦνΧ¦GσmgυΌ;ζtξ›NψoCσυΈn‹Ή;U›@sŸ P!ΖfcŒφ‘1Ϊχρ* @€ @€ @ ’Ν•Τul @ ͺ=%Πάmν}βϊf!η6CJ₯uV:ΠάΈ­z|ܝ@s:ί‰ΟΜŒαΏ™žŸϊEΟ.;G§š;Εecθ‚@{ccŒ.€vpcŒBٌ @€ @€ πš½ @€# Πά²+š[š4^Σέ°Q:Φ῞σg³hX―_γCwθ±@s‡˜lD€έhξ^7v5Ζθž]  @€ @€ @€^) Πά+»έI @€ž) Πά²_š[š4^SްQγγuφ±@sgΕlO€hξ¬XyΆ7Ζ(££ @€ @€ @€½G@ Ήχτ΅3%@€=^ žΝυΪ9χOύ4v˜ςQUΛΏEXg`Ÿ²΄yχ 3cŸ;§—εXέ=H9Ο«»΅ΨŸΤZΐ£|=`ŒQ>KG"@€ @€ @€*' Π\9[G&@€ͺ, Π\eπ¬Ή—ί<&>σIUήf₯9cΙωf+K›ΣfD|ηšβύΛrΈ.d₯…fΫ‡ΞέεύνH€zš€1FyzΤ£<ŽŽB€ @€ @€T^@ ΉςΖZ @€ͺ$ Π\%θΦΜSo}{ίρQΌςΑη59³4:ϋsΕ*f―Iϋ%@€*#`ŒQWG%@€ @€ @€z¦€@sΟμWgE€z₯€@s―μφ²tš ςεχ?+Ϋρ:r UκσχλΘ–Ά!@€κUΐ£^{Nέ @€ @€ @€@5š«©­- @ ’Νεup @€ @€ @€ @€h«ƒ @€΅h…Ί6  @€ @€ @€ @€tO@ Ή{~φ&@€ $ Π\ ΞP  @€ @€ @€ @€ 4wΚf @€@ρš‹ίG*$@€ @€ @€ @€ Π\@ ΉΉˆη @€@έ 4ΧmΧ)œ @€ @€ @€ @  4χβΞwκ @ § 4χ΄u> @€ @€ @€ @€½A@ Ή7τ²s$@€½D@ Ή—t΄Σ$@€ @€ @€ @€θQΝ=ͺ; θέΝ½»= @€ @€ @€ @€@} 4ΧgΏ©šhE@ Ή« @€ @€ @€ @€\@ Ήΰ€< @ γΝ·²% @€ @€ @€ @€’4₯'ΤA€t[@ ΉΫ„@€ @€ @€ @€ @ κΝU'Χ  P)ζJΙ:. @€ @€ @€ @€Κ 4WΞΦ‘  @€* 4W\s @€ @€ @€ @€Κ Π\D‡ @€Š! Π\Œ~P @€ @€ @€ @€Ξ4wFΛΆ @€@‘š έ=Š#@€ @€ @€ @€ Πͺ€@s«,V @€υ( Π\½¦f @€ @€ @€ @€ή. ΠάΫίΟτ ζΤ™N… @€ @€ @€ @ Χ4χšv’ @ η 4χό>v† @€ @€ @€ @€=O@ Ήηυ©3"@€½V@ ΉΧv½'@€ @€ @€ @€¨cζ:ξ<₯ @€Mš›zxF€ @€ @€ @€ @ šλ‘—ΤH€tH@ ΉCL6"@€ @€ @€ @€ P(ζBu‡b @€ξ4wGΟΎ @€ @€ @€ @€j# Π\w­ @€hͺC @€ @€ @€ @€¨°€@s…ž¨ž€@sυ¬΅D€ @€ @€ @€ @ \Νε’t @ ζΝ5ο @€ @€ @€ @€θ΄€@s§Ιμ@€U@ Ή¨=£. @€ @€ @€ @€m 4·mγ @ Ξšλ¬Γ”K€ @€ @€ @€ @ hφ6 @€zŒ€@sιJ'B€ @€ @€ @€ Π‹š{Qg;U ΠΣš{z;? @€ @€ @€ @€ž( Πά{Υ9 @€^* ΠάK;ήi @€ @€ @€ @€Τ΅€@s]wŸβ  @€Ζ͍5<&@€ @€ @€ @€ PΝυΡOͺ$@€: Πά$› @€ @€ @€ @€(˜€@sΑ:D9 @€@Χš»ngO @€ @€ @€ @€΅h•Όv  @€² 4—Τ  @€ @€ @€ @€T\@ ΉβΔ @€ͺ% Π\-iν @€ @€ @€ @€(Ÿ€@sω,‰¨±€@s;@σ @€ @€ @€ @€Ί Πά4» @€Εh.fΏ¨Š @€ @€ @€ @€@{­šmjΕΓ\GγIENDB`‚ignite-0.5.1/examples/mnist/assets/run_vs_resume_run_logs_1_2.png000066400000000000000000033007451465426447700252600ustar00rootroot00000000000000‰PNG  IHDR :μς²M (iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήDιUz l„$PBH"vdQΑ΅ bΑŠŠ¨Έ@velΨP”u±`CεM@WΏχήχΞχΝ½Μ9sΞΉs'wPb‹DY¨ΩΒ› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πiTXtXML:com.adobe.xmp 1260 2874 1 t¦ƒζ@IDATxμ½ytWžηϋ5BHB₯v νh_‹Xd@Ψ,Ά‘Ό.ΫUn—Λ΅LMOξιιwΞΌsζŸχήι?ζΌΏϊΌy―{ΊηuΏͺξ*OΩνͺ²Λ.—]Ζ€Α€Αμ«!$΄ƒ$JmHhΑοFfFddfdfDδ.ΎqŽ”7ξς»ΏϋΉ7ξς‹Ol}jϋ7ΰA$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@QD`QιBUH€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€HΐF`19D―Ž~"Ί4’6$@$@$@$Ϋψ“Ψ?jO$@$@$@$@$@$@$@$@$@$@$@$@$@$@$πψ ‘σγ[χ,9    €D 59 184]<’U―θ’Dm7Ό/·gyI€H€H€H€BD€›„,Ε’   <<6X‰ΦyΛhΥλ±ΈJXΘ¨%ΐϋ"j«†Š‘ €/ ΣΠ9΅{χ4`yά"LήΎˆ·ψbΐ0    Ηˆΐš]/c͊ďuγJοR<·§Ι’όΓ׏α>8$ ŸΓχ’D/5―/>:†Α¨ £JDρ8%κ9jο‹Γ#x’γOΏ7eΓφoch{͏αμgŸΰZί-‰…λέ/Π Gh~ι{(K‰ΗΜx7ώτρ1Xƒ,ŸβH€H€H & DqέΟ|<σΚVδ%Šg½΅ο}zΦXrΖ&   𠠞_β:ƒ5/3xΰ1ζΕγ”X¨g3»ά’-6Χ"\#©ωh(ΙA»SγχqΉ΅Λ«R\wπІ& ,LCη”dδ—— S@™Ύi “‘    ,<e¨XUƒbΙ²yΰ>ξΖ،œ₯rfΦ¬Δϊμc8;ωR–G‰^ΌΎˆ<šΨΦ jΗ)±QΟQ{_€Μpό©γΞ\–žƒβRi”nEgŠψ‰˜‘sl\ο:вFšoYS‚ΈY`ΙδMόζ_„^•„Ρq(n(>EΨm½χŽv¨Bι$  Η”@ΤφߍΥGΓ§°Ή¦Δ–θΪᯍ%fl    M\gΠΔβΕσρœσ#p﨧ΔF=s!πK0’ΈΞ)ϊωΨ±χ)4Χ—x(𲡧Ξ~…}'=ΧΈξΰ‹X˜†Ξ3ΐœΜ|€€˜œH€H€H€H`(/°9‹"uvυ`0>έYΈΙ1ά‹#gI‘‰Όκe©~ ―<]…ΔΕsθωϊsόρ\Ώ3n°]ξΌ‚-q“­γ”©g_χ…ΩKΙΤύδΞk&™γO0?/η¬qzPκO‡ξ1%΅ /ΎπΦ•ZTň‡ϋdΠεƒ'PQ]‚z­jΫzΤ Cηkͺt’  ΐcI ZϋοF*#u64•ΨS \ΔΡ㞠FΔ1.    €€m3αδ:ƒŽ+Β}>UGFρA ZΗ)1RΟ\gπqmΕ@Χ"PIbωΧπͺΤK j5,ωΨ΄λ{ΘΟ؏_Έ}AŠλjPtƒ€ϋΪV0dR     D%†•ωŽ’­θλjΑεφ,›.Gb0ΦuQ’υεΟ{Υ+Ε’Ž‚LiWT`(>>€»σ if1±RΟΎξ ³πΜάOžΌ6™Νžι$œϊ P‰(N^ΈzΎυbr5t”ΝΝA]Έ|΅υ[Κ„WΦl/Γ΅Γ4„rς‘‹H€H€b“@ΓζZ8ToiΉ„ΑΨ,΅&   ¨# }4RϊrΧόWη|ͺ4Œ{b₯žΉΞ{ΧV¨5ζ:ƒoΒOοΩ¦2ržΔsηq­σ.₯δ vυT8 Φ>‹½wπ‘Λ]\wπM—‘F ΠΠΩ(1Ζ'   ˆQΩ(Μ/±λn½ƒΞvΙُ‡CΈ#²=7½λ53H‘χh~Vqί‘Ε+ψΉPb€ ΔR={Ώ/ΜR4~?iπΚ6›;ΣJ (υ¨Qš~Σσo`χΪ§vV+`ρΆε‚=ΪMaθά' %c¨Šͺ Cη^§ΊH€H€H€bŽ@5j«‹ZwαζΙhϋΖT*L$@$@$@N\gp²πκ˜Oυ—±K –κ™λ ±{…Fs3ψΰš½ uεςΊΒ0޽ju$hΕΕ3ΧρΜλ―b³#Nyu9ΰbθ pέΑ_&ΰf蜊ŠϊBΫ.wχz[Π;šŠ† uΘIKΖ’ΈE˜jΗ—ηĎ>©ωh(L³e6b‹§‘―ˆS+β,ρliuΫ)ΐ=±ˆVΏ…+$ς0ΨμΖ‰K‘ά=(΅Υbλt‹(›]©±{θl9‹NωžΤ(–β•Z‚M«W"3Yμ’'ŒM¦&GΠ{σ,nŠΟ[ ΚPdIQ§ΠΣ!ήγγA$@$@$@$qΩE(Θ·k1άwΫ±{sΆθ‡fΓΦs³φβfŸFGΠTΏ/Πώ§^–lΡΗLGR¦}―©$Ι™¨¨}hΡ«jA§θ‹zRΏ·EΩ)°w{arψŸiqλ£»₯Τδ₯Ž£S2.iη&pΉ΅K-ΔαΞF­¨ΫΰdzDμ΄νΉo)‹τ+s°zΫqYs#Ο9 L\3τ}Ζuq?E‘½εψΈβk‘ b“ΫΞ/σ 33"ΤΧΑu_tfŒ€Λ2Χ’%Ά•0›„ŠM’fζ “ͺΟeΛ^‘UqΕ9εJρΤωΤnΫι‘TφHΞ―ΓΛ―McπηŸ; δ@“Ώ…Ύ…Ÿίvn&ηE³--x˜P†5MOβ©ΗΞhΉΨΈϊώxΙuΧ7sz4`§ΪΘΩځC_žΒιsΧβ“Σ6mΒζ»Ffe3v6έΒ'U€bΗΆf΅‘σp|ω5N΄φ#§€·4a]©ΖNjζ”e*     ¨FaΎέšu²σ6.:νΎ΄szΏ/πώξ©Γαφ ­n^vτIoΊ:‚”%ΐŒΛΒu=Ά«Œœ'ϋ―βΛcgΡ~w)Yehj;;Ύ¨²nλVtœq ہxγeNξΩO  π ¬–ΊΚΙeh~i=}|VœCζ§›£ά›ΗβX—]ια†υ*#gΑπΰY\Ύή^Q΅ρδΦ&Ψ> #ΖΫ«qMΓ Ω&m²Η}…σ—FΥ؈m{D:[€lδ<€SŸŸΐΙ3­H(_‡­‚O½ƒOi] …ά^[|Ο}bΗδ£g/βfŸ€ΣF4?·Α1 OΖ¦§ΕΧbZ>ΤΤ»J2Η΅bΛZ§‘³΅ GΎοkΕρ7ςό›b·9»‘u}ύjœ†Ξ²QCÚjε- _ι €캌?Š?λ+Bο;ΛXωK$@$@$@Ρ@ΐR_ˆ ›A,pϋΆ—Oλ¨ nΏ/HύέΡ![Ώt¦xVΡtvjΦ‘~έ6+ΆΥ‘TŽΥσ__H±ŽžGoϋ}Ός³7Pο0Ε΅3pνΞώݏvΪΣZj°zΓitͺτV"«fΉ&/OT€άΌpD9Λ/iαβρO„•b<s₯ S‚{«gE¨Ν*~AΊ/„ަ8ΈŸdϊxΙ±…aT„ΗŸ¦Έ8ΥΧνͺέPνΌW¬mψέίΉcϋ¨4NξΖδλίCsΉφ8Ωμυ/Συ΄‡rAτΥίΒ›‘Λ―ϋwtχ†Ε»ΰRuY²P ή ι€a”n|ŒH$iήΫq³Ο›p=O}“ ^Μ,ίϊω υ^/ώR ^_Ύ‘ξηωΣΟž’„9βδ8Ζd7I€H€H€H€‚B€λ \gΰ:ƒύV7οΌq­λ Όq ©ρ?ΧόCΉΦ—χ33xgγ=$xΧΏχ<|‡<ύݝ¨•χΉv”Ηχ·h'ΰΊƒ6ϊ& Ω h#mΓ`δ Œ΄]Q9;UiλTNsσ·yG6Κ ε- €–s§#e΅Μ³Ÿ^„bϊ’[€ϋVo"J>Š‹»L‹³KηΎΦLμΨy ¨M$@$@$@$q%…+: £·ΣiΠ«­Xpϋ}ΑξοŠΝ›U‡Φ ©(+‘ϋ½b{ΨiδμLΨ…/Ξ8 t³ssœAΒ₯Ν+@ΉνΗpπd—#Ÿd4ΏόΧψφ–Ηy?φν;ΰa°έ{ιή~ϋΧψ₯ψϋ£†±°υ€χžwHrikUŒœε0λ{J:XϋΡ*9ΛnωTσw² ΗUFΞJœΎS8wN68ŠŠ”…ΕΥažλβEqЍ΄ΒZTΈΩz_ά!~!ΨύβνχqJΓPQ»ž‘6G¨ψ󾄃ϋΙΙC/gμȏ?αβ,‡?W6J K”HΧΞ~ν4rV|GqθΠ%η=§ψKσΧΏ”:Ψυ·πζA$JFxΔωx%ή¨4Ζ' pπގ›ή„ηyκ›Rπϊcζ9ψΦΠw¨χzρΞhh0ϋ—ΎσŽ|?Ο·~ŽΠ`ΞαΉηj‹ΤŒD$@$@$@$ΰ‡Χ$@\gPlƒΈΞ ολoΑ׺ޘΑ2ώφ<΅³”‘ΒΕY.3ψ#€Μλ_KΎ?Ώ5{ήΐSŽ l₯ϋΘ>ηf±žiΉξΰΙ„>fx]ΎšŸχf*`&οiζηŌ›Ζ‘~,Žs.ΰkDΥιδ₯ŽmόΔλn§ρ«€΄]ߌbΫΜsPSX’Πκι‡\“ΙgC=Ύž›/{π—H€H€H€H ²ςQ˜οθœ ίFW—m‚Ωο _W.Χ2UΏΧ‚’5ίΒ‹ur˜ό+zΉ‰ς‰θσͺ{½ήx*Έvπ Ξώλ₯κHN†ά;ΏvψNyι^Ϋ”LΝGCIRS“‘˜Έ‰ρ X’ψΔεΞ]Κ”Έ:΄Η5ΞρΕπ»Κ\\Sϊ>ξιΥ|ρQJuρϊ-lkΜ·ν^­ΏZΆyνέbu­ύΪΞ,ί€7ώͺ}ύD_/ΊZ»<ŒΗ9{«gg Ι₯­ΰό‚y_ΖΑ΅ΌήΟτρr¦όψΣ,—œΖoαg{μ;₯;Λγκκ»ΌΏψψ¬πŒGb‚6€ώ[^ΖΩC—kό†œζ―E„.‡ΎϊΣΎήue`(R0―CλŠά…‘!±₯³EΪYΜ‰hOΩθ’ΔH$@$nήΫqσΟ³ΟΣ`–]»\fϊcζ9Rmύ‘¨6|ΟΧΘχσ΄ ψπ ΚϊŠω "   ΗΧ€Jη:ƒ|ιsAπ±ώ¦=.43•‰Ϋƒ9 Οψ_ί<΅³”‘šεΒug-†ΚΜλί¨Ž΅Ϋ_Ε·K”d-χγΛ.εTΓΑu (τ2A@1έ5‘6ζ’(ζΓχΠλÐb~^ήλ yyΒp@²\‡:ύm―ι‡0xO¬ΰζ{¬ΰΖ/*L$@$@$@ ‚@A1Š]³ήΫΊŒZc½ί§θ/*°Έ~ ŠύTdf^. Eœ^)ž^Ι΅ι0„O?ύ%Ύ’ tLvžΔοŽwΩάZΦοzO7Υ(FΡZqσS—JΏ€ΙSή#?˜ΑCGhfZ€ύ²}ν ¦ΦΐP}΅|ŽOWXπόΖ2GnΙ((­΄ύ­·ωXqσΒϋτ˜ηuΒtώ¨΅Χ™$ΘΡ¬pΠ«‹ ^ ™?ΝrY"^$πw$‹δC_9‡pgx«=-γl!ΠΠυ/+ ηΧDύι»PγΜΜΘs"―Α,Τς²\$@εy%ŠkθyŽ~FΐU .oaκ˜†8ψϋΨ…*#ΤΟΣ\ΡR_tΖ"   0Dΐ6—ξ'…#ύΖX΄/Qτε4<~π1\s3h]z¦Ή2ξυQΟZ:zχSkο=V(CΜΞ§Ι/…L„ΖŸfΉpΑΠ•S‘K›ΎΧΆT*:wžώ(_τUΌ=\wπ@B+Cg…Οb±λ”rβΛ1‰ι™YΟ™Λm»³iw^S±|©>ιž‚ιC$@$@$@$l₯+W(F΅}έΖΔ/€~ίπ@?¦•™Οβ/ŽKΐ܈㎠½ΌŒΚ•sΆd/G’|"~“³³Π \Uy:œ ΟΎ)Œx‹\&­Γ˜šžύτiΜΖYPšoq ΧIBΌΣΠΣ3O'π‘©iŸFΞξir=»7hΏ΅M΅+‘Ώ"™jT¬mFE^*ήώω'θTe¦·žUI’Ϊi–ƒήBΔ+‚γO3\f&ξγfgΝ:―c5§E‹β0Ϊ£aΊο§œKβόO?½ώΥzωrTΎ/Θ°|(ιbχ|_Mέ‚,? E$π80ϊΌ1σ<ŽF9ΔB™Β£ŸώSŸH¬3ΔAι}iwλœκΡE$@$@$@$Z\gπΚΧμΈ„λ ^‘ΪŒr5;ξ]hσf9ψ gh@Ό"8ώ4Γ…λ Ξz_HœΖηπΚ.ηg„ϋ.μΗΫϋ/λ("Χt@b”Ή.q5£<šΧ01£ολ¦ρPΦU-ιΘ-nφi)U|E[6TžΒΘ=ηΦΝqJτ,δT‹“VΕCεΘCnžΪΈ@D'    @Ψ ” γOϋсή kZ b§ί§ΥWυ{1€³ΏϋNι+Ά„w^Ι΅cΖ·žΩΰΊ;sržήӌΛοs«‰2TU:œϋZŽγθ‰#Έιμž‹ψλπώ·έˆΔ·TΥζΪͺ[²3ζg§]=Ξηjm?}βO:,Ω%(*\•ΥX]ξ “Ϋ€u. σŒύK5R<ου,…Ζζa†ƒkI΅ξ'{ γΌTυαρ§Q.ƒ-Gπn‹+οgzΛY‚μNŒE$Kή}žͺιDΟs#pκrΫ=œό•LΕ1Βύ<Ÿšͺ^VJJN†΄baυ™€$@$@$@$@Α&ΐu‰¨ϋΊŒͺ?mz>λ žΧjΰ\͌{Ο›{jm>f8Έ–!˜σΤͺzπψΣ(3Έ^Zg±3bΧήRύΎ·§QYγhωΏψτ¬VΡ4ύΈξ ‰…ž ,2ί#zJf†‡ŸδQ–―ν―9,ž]Έ7,Oεe’΄Z²TΦ8 ͺQS**‹Ο΅*ΫύΈ30ΰHŒš†Ν‰…ΑΐΆzT$kΡ“H€H€H€H  Κν}»‘φΫΠσN);ύΎΈ%ς zj°κ~o.JW—©]ά9ω(9Šo=Όσ D=ƒζWΆ)}εΎλqΣΡ=O+oΖ+M%Š6GA&²εnΉυ*φδnδ δ4P Š]‡ώ,­r%Φ‹¨΅ŽU΅ΕNοyCχΈ¦¦"';9*=¬C]Έ|ξ>zο_παι.EΜό<Ε ψͺgU΄XqšζΰZ@νϋIŠc†—Ί^#4ώ WJξg#;ΒΫε¬^ e˜ν"BΝΙh{ε"Α­?WΩξg±3⹎σΤ ,—m'ογžζ β:δ0  Dž7AxžFΟs#a¨Οθαδ―°jŽ>ϊ?‘^g˜™‡όΚerZͺν •ώJΖp    `ΰ:ƒDΣs]Fݟ67Θu­λ4¦Η½fζΝ΅t?Σ\υξ<΅Ί^#4ώ WJξg\gP‰>{K‘]Ιf|οΥ-ΚάΒHΫqόζ£j΅}»Ήξΰ›Cu0eθ<σΘωJqu jέ²³ΤοΐΪϊΠξ«VΡτ ήϊρροΎ26•¨VφέtQŸvtτ(§₯M›ρt΅{Ί<Ώ£Iω΄ωd{N¨vŒ;ΡΪ‹I‡„΄Κ§ρ£η7ΩvB…Φny―l«”OωK$@$@$@$J:άινΥ­MTχϋœΫ@ ;KΆFs-ZG‡sηήͺm[±ΉΔ5\:Ϋόρ³ύ?/μi°EΘY]_ΌΜΚ•„η4Ύ€5}'Ϋpτƒ?α‹SNΣσϊ][] ‡U σ°€ Γ½λžέ€OΪυΆ)φωxϊ…gPθ–oiΣ ΨT)ΧΛ$·ψ›ΩΧ|μύ³ΏΔΟώό§ψΩ_ύžρς§¬ήΤθ„μ„ΏzV"Ζ„Γ<[ρtάOfyEvό έu?Š›w”ΨΪγμjΌφt“ς–ΏΩα0wύ;‡°ώάυŒ†ywBr. ‘δwL`Η½dB‘$@$~ζž7柧Ρϊά0Η!tυ œμ:ΓΠ±ρ‹£ξ,iΘ“?tΊκ€d    7\g΄Φe—pΑν"Sšγj~άkvή\₯r9Νs°"„σΤ\g/3Θ$Βώ›½o½ω΄²ρΤ°0rώ»ί1φΥ(;„½Ϊj†‹Νlπ\:χ¬±AˆOMΏφίΔ© ­kηΉ₯•ΨT_bF¬ώ4© ΨΆk l)ςQ7ŠS]‡ό¦ο=s- ¨·Ωδβ©W„άsΡ9<)vJCεΪ (VVτ&qιμEW™­pΎ½͎]‹ΧξΔ_—Φ‘or‹,ΘΝδVΞΐxF$@$@$@ΡB`ύ7»τ+ΕύΎρ y_. ­¦ o½”ŒΞ{ΣΈΧ}Χ;oφžΉ$ϊ½uŽ~o>žyσ/wZμ |{ K–e ΄²΅ErΗwΧ―Ψ Ž ‹ε—΅y™• ΡΞaL-UΒ₯£GqSrœ9†•eΨ\*υ£‹„απœ}ΗΡ―κ±-Μ‹maίώΑ›ΘcŽαιGHΚ(DΓΖ:εE)F$Žδ ψΙΟ²pβJΖΔ—`ς+ΔX¨Θ©JΟ1~pžzs™ε:f―aΪΖ l~υΟ‘|ςΪΊ1›˜Ž²ͺZlͺ‘u™Δ;NcTυμMΟθτο‡YRyτάOfyEvό#uέ{ς2nε]ή.ώpόͺίyέ-Ηρ»ΟΞ‰&Ζ~t:‚Τύ~ΏόgœγΈW»-£YL?T»gm;Έό>:ετΦQΟ‘βηWΠη8PΝO}Ώšα ρs?ιΰ΅^ξυΙρg@\@ΊVρΓ?όrZz\Ϋ%)±tyίp΄Uƒ?υμ&ΦΜυoxύιΉ.em#:"+aϊWέyR’JΗ¬εdZ]Œ‘Ό₯‘?  D–€‘vάp?V*ZΟӐ>7ιϚ~ξκ―k#υRNBeŸύΛΎΞΠفnG΅ε• B]…’ŸΛƒH€H€H€H HΤσƒκyK›x3hR6:.α:ƒ£ϊzsŸ6ΚU’jfά«cήάοΈΠδΈΦ―\Q$Ÿγ@5?υύj†ƒR+ΟSsAŒs!τφ–Κ5«Ο13υP_D%Φ΄Ζ²+Χ‡D'€λ .υΨ:ƒ,jΣޟ`w}ντμŽO/ΩRR?χŸζg\‹Aρ—H€H€H€ ΠkgΓuΧuMΜώΖ%š‰ΜyrΑO}θχuήά\U†6•NšJ„zžšλ šΨ=<ΝΆ+‘?EΓ8Φω—BrέΑΟ$°8ΐτ"Ή0n‰€•AΰŠ‹­ϋqMόι=rV ?{q=ϊΐeόΛΟ?qέIZ„”6­u9‹“Ιϋ0`δ¬WΖ#   0@`²]­~&oάΔΕLΏO7Ίιy:$ϊ½βΟϋ‘Š’Bϋβ7Œπς+Χ{ŽFCz»Z& [όήφŽΰζe†λ¨—‰?ί‡Ιzφ-4ΊBuqπ’²Ηύd^‘ΒΕ .oήƒ]ϊΪ%oΜ\’¬Pן‹Ύα›)¬Ω‚7vΥΈδξϋΔ*^ΈώGC/\Ϋεe£‘Ζnδ ρEƒKηhδμ›3CI€bž€™ηιηiψž†λΕ‡π=‡$Ν£˜“?°‘μηωΡνΤΩV¬†ΞΗ{jκk†Ξͺ~Ÿτ &   0O€λ :ΧeόŒKΜΧ€gJ3x2qρΡ5ξU'Œ¬'Ήdε'Ί8x)C¨η©#9ώ „‹\ήΌΉΞΰŒ9πΞο¨uδΊƒš݁‚‘sΰJĊ„Α;ΚΪL@rπ½'βR[ϊG°89ΕUΥXW™―g νn*gt    D‚ΐHΟmΓ}²Ηί—Z†ό’d[υ˜α‰zež&°žA‹0―Η2V;ώcGΈώό+¨/†τiΈIΥήBλI3†©=ρ\γn؈υŽιŒΎspΦί{ΙyF$@$°@ „λ9΄@ρy-VXϋy}'pΆ₯ΪΆ«srιρ{ϋz ”ρŸW%@$@$@$@$0°φϋΦ6Θ|\H,l¬gcυa^];d¬vόǎpύωWP_ŒHΝοpέA_ύ0–~4tΦΟJl*q‡γνφέ”’σ+±Yόiύ—±ΣσšAτ$   Žnγ™=fύΎœς\aD7‰ΙΙ)˜βeœpl¦ˆ[€θ§ΈcΕΑz6VSηυ˜΅CΖjΗμˆΧŸuΕΌτ'ό­ψ υQ]ΉB|•j#Φ›8τws5oΚ' X!ηP¬πšžaξηϊθŠ2w 8Ε‚²Ϊ*δ$€ΨΖA+‘    hsΏO[‰πω.”ωΈγ:CΘGSΏ/³v(Ψuρϊ R"5ΏΓu‡ U Ε(žΨϊΤφo”3:t(¬ίŒ-λκQU$}πΝν°ΰΥ‹ψςπyXέ‚τœ~uδπzβ1    €>τwCΩοΣ§=cE‚<ΏρB©±ώ:ΧUκQ™…I€νΠΒ¬W–ŠH€H€H€"έΟγZ―A   0OΐΘΊC€ϋ}ζKΙ”!!ΐu†`₯PίΨωζΓP Ψ @CηκΙ’Ωi˜˜@ό²eΐΔuυ ΰδb@ψ˜˜H€H€H€<™pτHμπEΏΟ[^τ' -l‡΄¨ΠH€H€H€bŸ@€ϊy\‹ˆύk‡%   ˆ3λ‘κχEŽs&ˆ6l‡’­F¨ €4t6B+ q9ΉΘΜ‚H€H€Hΰ±"`fΒρ±ΔΒ’               @”X₯zQ-                     Η˜wt~Œ+ŸE'                    h%ΐ£΅f¨                     <Ə E€ψ…ΕΕΙ—™’ 8 ,―Ά ΅6 ΣCSHΜNΒθ΅Œ΅Z•[xοο;•²ΣA$@Α$ ΅§ Ή}eϋΜ«…²H`axάϊ—‘κ_KωJύ|χόφΥΕ‘ @θ€$'Ϋ„ON†.J^πx-ψ*fI€H€H€H€H€H€H€H€H€BD .;;ϋoB$Ϋ§ΨT‹Εg8I€BOΰαπ4π °¬$EΣβq ·•7τΨ™ ΐcHΐ½}Yhν«{ωΓ*f‘I€tXhνŸϊ% A΄”FΞ:/HF# –,±Εœ™Υ™‚ΡHΐ“―#O&τ!         =ž¨««fŽα?Έ£sψ™3G         cΈ―1^Αˆm΅ŽΑbY QQ#ƒΧQΤT!        ˆ1‹bL_ͺK$@$@$@$@$@$@$@$@$@$°@ <|ψ          ,6aΡHߞƒ±³χ17:cZ ’          €DΰΑƒ)ˆΑΑ» HΚΚd[yz»»TΉX         ˜€{ds;: ‘™/δcYC²_)ΔβΤ%λI$@$@$@$@$@$@$@$@$@$@/Gaffφρΐ’“         ΐγF@‡=²qCg‡Π₯e)6œ’‘3·+‹ε%         ΰxψ0Ό_lnnFuu•ΧB€Y,Ψ»w/βγγ½Ζa          €I:ν‘ο&TN+;}Π‹ΉΡπNFΛ:π—H€H€H€H€H€H€H€H€H€H v ΜΞ†o7秞z ίάάώξοώγ.ΰ$#η·~ψC€¦¦brrp ηΙς”\θύ¦βπψ@PU[ϋκΑ‹M嘼}ΏϋΏ~ž Jw σ_Ζi [ 4\ΛΣΚPš‹δΈ8Μ3ƒι‡γΉw¦4"K^IΉ(M_Τ„$Δ?ˆ4##­hρ’ŠP±K– Nl%3πzzbΨK6aσNߌΧ~°Y ΐθ­ΓxηύCaΛ:,©Κ7!ΚχφB+_X F[&β^*pάKB΅ιι\ιo ‘’ε§΄Ss’=šn'”8:J‘Ω^›m—Tω):ψΠΣέ‚ΌŒl€%§#qqβlνΰ†οžA§λ#Q%]ršMη&&šNUν ΫΟhͺ˜λ²bΎζv€ 5ξ^ύ ΏϋτDΘίͺB ΄ƒ’ˆyΩ«‘—’ Ρ;³υΟΖ'ΊΠ:€Ώk–§ΩtφZ± 3%Ρζœ™ΐ˜·ώ§=rτύg;}u iW4γυΧΆ‹±Ψ<¬Χφγƒ}g’‘λ ΄ ^%ω§zMκ3ΐl{ΝtΪXΝrΡ–F_  0`¬ίΠΩ‹Π «Nq$@$@$@$@$@$@$@$@$@$@!™™π:ΛFΞί|σ ώπ‡}9χφφβΘ‘#‘«΄mxiσv€ιΤ ύϊ―ρΩ­±ύGKH\f‹”œΈϊόΛUΗX^π~ΈΊQν₯αΆβά™'†<ƒ–glΐ¦ςu¨ΞΜυ Δ\»ς[|Ργ4Ρ.-yuy₯ΒΘY+ώsΈ;t§Ξ|‚Ni¬«k‹Λ±Τ-lKεV\n;ˆ#=Αcο–…SK*² s‘)b.ΦΞα<Χ ωΙ2a?ϋνΗqαΖέΰηΙςΏ4½ΔκŠ—±©²ΛέH<]َ//Ύƒ+#nžšΙ―0Ώ …©ΩHOΙFFJ>–+·Υ0ŽŸψœwΧ1€φΪ|»ΦS*o^χ*jςς=Ϊ2ζšoaπΞΧ8v~?ξΈp7›ΞEHtžD²}aϋάk"˜<š-?W%sηΰΖοΫΐσŽφvP*a^ώv4•7’`Y²G7‰—ΧΞ΄Όk/b˜εi6‡r(Γ3[ίD΅|™<ΈŠχΏοΦ†z¦Š*ΆƒQUQ£Œ‘vPŒΣ mc‘δ{ˆ$φ@Η©f ˜i―₯Ό˜N›ΈY.ΪθK$tν‘'Χ[0Ω’ύζ±’œ‘.ΞΑάΝ9IΌ±œ™”ΔE‹πθ›YΜΜ=ΐΔƒŒ„`ž»ό©·ΠάP„©‘Kψβ7D¦ίŒžŽd€$Ψ?{8χȊ)?ε3Μ%> ωKGρiEQ…x47Š‘‘hτ]U‹· [€K^œˆΕOˆ-)DL<θ;_LΊΖγYΠ XΔDων•bΛ ΥΕ κcςΦηψμpψήzKJ°Ψ.Νb|Φ{½+ρΌ’ιzOο5™‘ίχ‘™?to “‘ΆΤ‚e )X²(NάGύπ£mzθL§ι2{i £gLα±νμΜ&ύ6ΐa,iFvμ؈€EσοόGO·/σ”z<½{+DΉτΖηGΞOv(%Eΰω—Ά¬ιbπ/ZΫσφΑΓτOΈ·EΪ…6ά/πΚφΣ#3z,Zν™κ~χϋΑ@ξχPΆKQΑ_τΝS}s‘ΟΜμ}tφ‡I3ίχ»]‰ϊ=ŽRi—όχΡΒя ώ—M*r‹ ±―“”Ί ΟzpΪ%ŒγFΧΈ>!Λ φ―Ÿϋ(iž,kτΨΒ›}wφαμ=ιήHFMΑS(Άd{ήCΆΔ›qίzWϊΞiά³ζξ?o:Ρ?RJ°jέ:T5ԊϋΡ~t|υK½Πg\™ά&ΌόΪ.±G†8ξ_Β'ο„ϋ…*Η/EjnM·€Q/‹t>’ϋ J^†΄άL›μΈ{ΒΪΩΜ¦vWR-ΟΏ΄ΤΥ¨ΙͺFv’άpBͺμ@λνcθυςB…ρ~SΆΣͺφΣ™]Q@ νY0ξwU(Ϋ%9ύζgmAmN…ΤΛs9ΦζτβBοθΦθkΉD θΔΟύPΏΗ˜Ρv):ϊ‘A}<gΤccγjU•*}$ΝΈ~ρ+œ<Χκβνχ„ύ%D)ρ‘ί+ΐ@„θkΟ$ε͌§ šQCA@՞½χ59P¦I³³V¬&eyKkFΞR9ξŒάΐ…ξqΔ=ς,Υόό,Λ· X²žΓΥΞΕ²w΄¦%Λσ“θμΉ «°wχ˜ A»ϋδyξ³xVeδό`΄ΧϋZΠ;>„Δtδ¦WbmQ&vYΞΘCΊΘέαλθξΑΐψ]<Δ2ζ­FcA©=4u-J.βNWνΌΊv‹‘swηAœι<ŽΩ₯λΠX½•{oΏΎd½˜3όΓΡ=ΨϊΝ9/Πy§3ΨΉPή P[+6RŒœ'ΡΦ~ηnάDvΥμ,›ΐHGj%*σ-ΈΣo΅Ÿπίl~ΛS3UFΞ’r;%œS£ΠΜt{m²]’°˜Ρ‹Ε¦."νΘύ6ά±`hό>&¦&—˜…‚F±;Ύ}Ζε١ؐvgδΆΧl:IQή °ύτΞΖLH π4uߚaαHν`φvlQ9ˆ―kœl?‹!adΉ’`««³ο@/lI*V–‘]υυ³<Ν¦s―Šjρ\ۘγΊ{νψƒŒΉGδΉw1pίzWž! kZO‡dΦ2q«MρŽe‡ιqͺΙB›m―™NΧ?˜εb²ϊ˜ŒHΐA@2rΞ~₯o(μ‘mζŒιΫsmΩy;‡ΡΘ93c ΆζUψ¨ψ$$†δΝηή‘ί/ΔYΌͺ’&§‘³πžžyΡWχ8Œs± Άh'*—Λζyn"g <·ΨYβ#\UOΕ‘|Ε*d»EWŸZ–Χ`sΩ"ιψZΓΈS3τξ¬ς¬ίPkΛ¨{Ά ΝΛ@IDAT'δ†ΞαΚοξk8}βΆΨM\ ωΨΈ‘>τ0γ+Q_Ψ€ž¦sζ97Ž^ oR–9γyuΝc&„7–Ώϋ(miΊn#g©σwιˆΟG–W#g{”tΛ*¬_4‡=—μΆfο?•:#G £λΦAeM9άMO)ο S―¦Ύ^Ή·nwu†ω«ώt]€,.޳ν'μ/ώp±6-ίϊς―ώΔφ˜αjwπ?ς²žΒ¦ΗΒ©˜δδ24Ηcνjη({Dγύ „WΘΪOνμθnαlΟ‚pΏ;ρ„°]rfvWiώ·°:ΝK/{I!Φxc!μ_ϋ»ίΝχ{μ(Ν΄KΡЏ ϋ…°2Μ*ͺD0rφz,ΝEΝζW‘Άμc|vδ²Χhξμ/9ϋMξlό‡­Ώdz|δ―ΖΒ£±=ƒΙρ΄±’3v° ψmΟ‚!ει&0;뜧՝Θ@ΔX4rΆoδΎΪΗjΌ\(B€ΠI\θˆEΫ"d€ΘΖ!ChΏςτ½6U†ηͺž΄½ˆφΖo/•@8Ž΄χŸΑWWTΖ‰RΘ£QtυŸFχΧhQϏ½β«³q‰¦<»>‹9v‚NZ‡Ί"Y0:Ϋώ Ÿάt,ήOΗηη㐺γ[Θ‘b€£( – •Tt€gΩ槬χƒ»‰ŒΊDcσΞϋχ‘˜Sο!Κ'Y―‹ςΉΦhx΅`n:€4‘‘Τ9¦h½ϊ[pΌL0|»O CgϋΦDΙXš mΘ`ίΨh›0²›ΖτDΏ0ΈnCJşα…J»!φέΙaν—ΜΆΧfΪ%nSzŽŸΔ{ŸžΤ¨0©έΌ‹„]o’Τφ\q«˜M§‘SΜx±ύŒ™ͺ’ θy€QίΚΎPrAψ5uߚΝ7FΪΑUy•ΚzξΨΠqόϊΜA₯Δc7ίΗ”lqτΟ”‡Γ,O³ιΤωη•ΌŒg€ηš΄i£έ”ΒGΗΥΡbΫ­q_»@έ·+Γ~€ BϊΦέήΏˆύΏ½θ".ΆO̎SM–Ϊl{ΝtΪγ³\LV“‘ Ψ ¨œ%ŸPΨ#+Ο%αa4rFJ#Φ«Œœ§§zΡ=r w§§ΏiK Q™aΑΨ΄η.Δ±x±δ‹&j–[\Tπpφ€&Έδ‹έ°ΤFΞΓgpγήUΜΕ—‘2w= —ΪΝχVfV‘sτ”)Η₯ΚΒ:Ρ‰‘‰AŒL[1+Μύ²R+P•ΆΒoRV¦·γ\'E]ΐx;Qm !Ύjϊ#\ω ΄βͺ|™ [υ2a謡Ώv0 œ”˜ͺbΒvE¨Œδg&0α%³”%rΌ)άΉw γ߈ ΰέγ>Ηm Ϋ=’Ήs=χΡΘƒ΄έ{€EB7χγΡ£9,Ο^ ϋk"τΑu±+Œc²Ρ"[YΖ&{pοΑ=X§Η05;…Έx rΣͺΕσφϋ7yy)*’.ᦣŒ¦ο?wεxΨφό«(sΫM= E26`e|…uβζρ–€Δ=ρδΊZ.`‰x³φA_OΠΕ,0\νnΈŸΛV£^eδ<&Ύ–pύξ XΕz τΕͺœ2ϋNςKАŸ‘+ΪWω‘ ˆšθhΥCHΫO­ ιf1ܞE{»d’& EΏίiδ<% '. m¨–μMhΜvJ$‰ϋ=υ2FF'Mδΰ;‰žϋ&ϋ=ΆœMΆK‘ξGϊ¦ΖP&1 {ϊnχβώθ§‘’n φόΉ Ϋ°―η;t|u‡ύ%Έ}ΕW)vΒ—ώΒ’΅=3;ž6PtF )ΰ?{Cͺξc |nΞi(μβΖ¬‘³ΦmEΓ¨bμΞi|₯BϊI=ΑI9βE)‡:bc½;!–mD₯#έΘ »‘³Ίxn†’#gπ…#δq±!‰ϋQ^TΗμΈ°»<‡£²‘³qJΜ₯‹IΤΉ²ΏκΧR·»›λ°DΟΗ-FάT'>Υ•ΜάLΦξϊ6ll;[;ζq'pυΜ~|πι1•fvgN]3κkj‘Ÿ_€¬΄\ˆχ؏‰{θθFΧ•£ψβψUUΊ,lωξλ¨HOΐ¬(SbV–ΏώΟπύ*ηgͺβΔΗΎϊOύ_œΥžZ»ϋX][‡’Ξ™πΙϋ½θlGΛ©ΈtΛΣ@{NμQ΄f/šŸjDY‘<6Žž‹GqθΧA;'EEŽ,lσϋbx1ΕΝ‘σΛwpμͺ»EΨωζw/β,qΊΏƒΓσρβΏί…41ί6?σ‰Ή₯Θ·ρΏ‡Λϋ>FwΒ*4o_ΐΉίΓ§.\νͺΥξxλΧ4 Δ…IΪNΖžπΠίxύI"ΦΰωŸμBFR&;ŽαΜp6š·γiτΊ_ˆΜrh?&ξ[ΩΘY¬„ΰΉuΫ…‘‚τlNΆΗxΒ1€Ÿ€ς›κΐ™Jξ₯)ς^πΒ€mΜύZP’yuψl―M΄KJFAΦbUpV΅s…Έ”ufΣιΖhl?…mΆύTίW•h~u'j*+œΟ0‘–νΩΠίƒŽK'pς’Ό[hžG+›ρΚ³ΫQW.½=&γhΏŒ3'‡mφ«v?νFΫA›” ί·ΪΊIΎ±Ρζ"s™ό,ŸDΧν³z0νΩ?S"™εi6œ±Ψ…zg]ƒύlΊ}ΣΩ(H•žaΓbΎ,𞈜M$~ΩJ½Nτ±φ Cτ1s_ώΛ»Ϊ}Σ;πΪKλ„5Nf†/ΰ½χ‡"΄•Φd;XΉγΨPfΑΌͺο±yεxΗ—ψτΆΡs¬τ[arœjφκ1Ϋ^3φψΑ,³υΗt$@°νΰ,οδ¬ζl{dΕΠYΚD~يΜς±΄L6dT«ΜΞ`θƒ^Ϋ―kˆ™³\4欲υˆδχGΔDa• άoN_»γ˜άP…Δ’3-} 6dŠiQiή^Eς‘ϋμͺ .˜Ή4SˆΟΐ©»ύvL³8Χ‡δͺΝφOσ%ε![Ψ<ΛF¨ίLŠOT]Επ½kθŸ’ΞcX>Ο=±u»qηOθŸΪpJ 끼σϋhήΗΰ&HΩ†;?›Ϊ’υaŽ©ι^\šΑΜCiΰՏ€¬؜c7Ό±ΞŒ:α]tΙΒςDϋυ >p†Ύ;gΰΈ\b…κDχ}$ ‰?ν£›₯ΉIΫ}8…Ά»*Γ‡­ψ²₯U#™ΤY±€z7ςχ―bgΘύ§‘½"@@„M’·εz¦r±eƒ}—3Ϊ”ΧΧ(»δ]Ύ‚[f„„2Νx;Ξne²S‘,u-ΖGmΛ―°΅»a~ώ§ΙΛ5˜»„C=”2χί=†Δ„ ¬r)ξwέGDΪ%έڏ˜P2©ίο8ΊoΒΗΛ‚γ£wQ' maβΛ5‹₯ΖΡ΅.§3ϋ«ϋ~7Σο±)eΆ]Šl?,O¦/F £γϊWθ8υ%ϊ•7f%2]θnΉ§ίz₯©ΉιYY€Cgφ—$^ξGφ—L·ξe3w½ν™ψjΉ©ρ΄9L<κφ,xR))B΅£σB5r†x©AΩΩηo F5„]ΖςΤ4Θ«#¬˜IΚ›u$cnζ)+Ϊ•‘Ά@ž³@ΛU©μδ₯e`ρ"1υξ3­"DΓQ‰,Η ‰ͺΠeIς<(Π9ΤfκSδΛsJPY^ε”zR™pzΟ•ΫψmΌθ.NΥm 99xχ_>Rν•[‰m―½…ΩΈYnYςΛ₯ΏuΘΟ~oxΜšΒˆΪ“–¨‰εͺ5μΡηoPK΅»Σ7γ•ΌŠΊBω pFIN/D™ψΛM†ΞŸ8άΖΧπ£Fwοaόό<~”ΊχοͺΚηOΟω]ܟ\Œζ5φ:+I}ƒWd³:IΒκ—Ύ‹-ŽpL\Ε…a€·Rl6SU…L,2Π°ϋΗp˜C9BŘκεW0ΤygnΛ *ρμΏšͺœλg›΅aέnΗ‹ Ξuΐρ΅F1¨P΄1ξf~E°(;Ο[1:aP―€ΪkνvI›G€zJB³+‘eίV[œ<Δτ΄vNΎfΣyŠΌΫΟ΅ŸrΥ‹gΓχӏQ¦ρLRž qƒ*CηΐžGρΜo>οΦn§ ·| ^,—•ςώk¬Τ’„ϋVK¬Ν/VΪΑiΜΞΙ†jβ₯‰Yχώ_Š•η‡τ•l_s¨fyL'Ύφρ²xΡ_|ΔC=ψςz Κ›=―‡χ1βnφa‹;ΨΪΞ"^l:X’-ΥyκΦ@ΟYΡOt;VoΪ€šr{C3—ΈΒ₯ϊΡsυ NœsΖSGώΪέ¨)X—πΕ}ϊΞ >tΙ]‡m›7’,ίΙ^o;]θFfM5–Ε/˜qZCΖόά<²ΚΆaυ:υX»+—Σp;ΰσOΞWί―E\Σލb7|ρ"—ϋ1=§ύΌ5Σ/p—ˆ·ŸE…Ϋ3Υΰ₯=ΣH6?·εΟ£ΆΆέ+D€Β0ςκ Ρ~9ΪA·tfΪ₯ΐϊYβyτΤF”;u:ٞaCwΠσwhwŠΆ/ω’o.?%'Ε8G6r†ψžDca£0r–ή8”ΖβΒNUvAŽAΊί₯Τjυ{€\L·K‘μGΊ@ ύΙBk_&;Žβ¨ΧυόvάlkGιϋ8Νb‘fς}τ-lψ½΄/μ/9.N­ώn„ϊK>oον„Οdz£Ή=“Κ`f<­·μQορjΟ’όc¦Κ#1P•ώ‚}μΩ³6lΐ7ί|ƒίώC\½κ:^.,*Β+ίω–/_Žήή^ΌσΞ;˜™qΞ3[ŸΰΙΛΕΞς'ŸhnwžΑέs[ΑΣ"’R“3”r€εmΗş|ŒYΫĜνaœpΞ]ΪΒ²ΛPΰ0€»?$6lω3ό°ΨωΙs)ΞΘπeœ½φ!Z pY΅jΚεy\a΄wGκόˆ±Όm_’jExŽεEοΛ4 ²€Κ‘ξXΫ<ΩφBQΒCδ°vžΕ…+H*Z‹¦5φΎZfνσΨ½« οΌθ‘λδPzz{pξ0¦EΝδ–―;\ΪηΡJΆΌŒg;[±’4wmcvω̊MIsΦ’Τnδ0pγ,ϊGΔWφ96ςˆ›Ηέ^υά»”m%φώθΗ¨[αT‘GμέΡ;ŒΕI™Θ)©Deim-ΐΓΣ%•οκA,-mΐΪͺB{„υΨΈζ€COΟ4z}.}ψ+1ξωΟΨR%ζrΧaΧ_@Ϋ―>±'_σ=μΪ&ίΓρίύίΈt_‰9σ9%ƒq\?z³…Mh(•烀ΆγŸb<³6cζB•W CgϋuΥόW#η.±CuGΟ0’σ«ΠΤXg“œΉκyΌτR?ήώψŒ’“μΠ_"ΕτΌ¨cΧΓ0O#ΧuFVΘχ‰ψc·γΆ.―ϊ>š”—6œϊŒŽ:OΜΈ‚™ŸzG?±ρΛ}νŠ4H{­έ.y žΥΒPMM£Γpμ>+ςfI^²”Κg.WQΐφΣ|U˜j?ΩΥnέ¬2rΐυ“q{θ–€€!³°T–ˆ˜κ’y­Αξ½*#ηϋν8sϊ&––bν6yχ}?Œ΄ƒZ’Ίo΅ͺόb¦/LK k²ψ³ ¦μ%ρUΌΡk+JΆ—_†Γ_γ\Ÿ[ΏΠΟρΟ,OCιΔΦ½θψͺΚ$Z.ώ+Δ=‹²“Β@vΗψ/ΫA³Ψ†Λ—/£a—ύ·ΊυΐΩΟά„Υ‘ΌΒή7ξαΊψκ ¦χD X;x§ύΞH;:‹π’44¬²χη\Άxv+Ίγ4ͺϋ­BGSγTν’ϊχ5Ϋ^3 [eό`–‹‹4ž %0Υ5αOϊΔΖΚx"Ξsα;XφΘ‹΅ —‘³4.ΆΘ†`χΠyηŠP'iI)Κ›ιDp¨δ#/Ε>™ιMήτ(LεRvιVόr€!«ΎR\1žGŠΨ ΟYr{ψ|χI׈ΒXpΗK{Q,mΰ8$#gι°δΧb½ψΛ8υ>Ύ<έjχS9ζσ+ΐš]/‘T™wˆ”~–Z-ύ֊O~ŒΟiύ¨Rr^YX¦μΤ<ŽΙ‡ΪƒΕ€Δebμαζβ-ȌO ύ=kθ>ςN|f½LΩ1uHμζ,΅=:eH•>5c;ΔN؎™λΠέr^Qς+ξ₯m»ŸAY4αΰz$₯ŠwΔ_fΒn}zΒhψώIsΕ'žV–Ϊονό"ρρBχ#ΉUΫπΒ²DόφχϋƒζΔμR¬°έ{KqηςQ\ΥΈ„ ΛΔηFσν¦g…‘³ύΒι~ξ’‰xgΒτQΌe΅ςISλ\Ώ'‹Š·MΖImΦΤl―CημˆΆΥφJΜ΄ΌV€υ/Ύ€U%²Ρ±,[˜Λ₯ζ£js>r²±Ÿ§‘·eE K<λnόQ a€,IN.ή†g_Ϊ¦λΩsKFFαj4‹?ωdh:gΤ<‡jδXς―VύξΚrE3Τη‘ηŸ3g=Ya0(6ŠOΥΞ»χq²«|’M˜ί+FΟζϊ.ECϋι’Pœ°=ΣU ήΫ3Οδ5;ΰθέ:—f’lΓKΘΘ°`§Αh—θg‰:ίυέ½bw8§z²Ky†Ε‰IE/†ΞΖΪ—,d+χσ”Xδwφ5* š/z:Œœ…Kγ₯Q‚ΖCKVΠΘo°ξw)O/ύž@ΖqλGahάΫΎψ“ο\hœ™›υY„zo_Ψ_²Γ‹‘ώ’ΧvΒο%ΰ?B”·gžΠ7žφLΕ>i{Ε5² U›/Ιϋxλ­·PRR‚o #η=œ‹‹‹πƒόPc>ώΎώ2r ΛΆ£Φφ%AMlxqώΪ₯`γ ›ΌŒΥ„­[Λ-•ΨX‰΄+Š/zΔά…γ¨_5”»υΛΣΠ¨!"-³Οl30‡ήF«Λά»,Ευ·°μU<]”―xήξ” ό2˜(Ο₯ˆΩ"K΅Ό¦JJǜ’ΞΨ¦’ _ϋ(vnΆϋ18φΏΰΫΫκl§•λQ$ νTΫΠuζ0†‡/απ©«yό·^ύ/x±I2ΔHAIΝ*±9Ϋ![œKϋή…|εYΆ,†ΞM6{7>Γ§Gυε*Π~V΄m;#η^ο—ψβ¬kιSΨ«Sj%·ωυŸϋ=~ρo²ΡΘGΈζk E˜Ψ‰³¨DθyΧkZ}wρΕχ1rΖΎ³hζͺoγ΅]mψέΑ₯x}ο.›9–$§νΰ{ψΒ ›δ?Ω~ΏϋXπ_9‡ρma/ŽΞΓxοCα·β!Š«Ύcσ³ˆω?!¨{›3@˜wΉ2ω §―Ώ"vέmKS²m j…‘σ5I¦Hk¦ώlIU‚ΒΣΗu]˜žλX/"ˆ/KJlΛσŸΕSŽ ǏγΚΓlqά‡‹2;+ΪΙ ζ·<=S\UŽC|ρqXG›"G€½φή.Ι]κΉfυΡœ•±ωY,λVr»*I½{η(φ΅œwΝΐqf6¦°(υdϋΉφ3-Mξΰˆ—Hώυχh_-βΛΕ₯IΓ.WŽΩηQΡΆFΗnςBάύΛψΓωχΚsν˜xΙδ?‰6ΧΎ’䒝ον VB£χ­– o~±Τ^ιΉ„rΡnˆ†hiϊZμ}Ύ·‡`Yf‘ςμx`½€ύ§φϋά|Λ,O#ι6#ηZΗ…ΡέώχK}sη‹{wŒψΤΡ[}E›?ΫΑΐΪΑ[§E?[:K–P™«Δ yιŸ‰Pœ΅lY³Ϊ±γ³πλ_Ή!~•Ύqψϊ‘Άƒ·ŽώΖωEγτg‘- ΅μyœ%~«€―™qͺ³œΖ\fΫk¦Σ?˜εb¬Φ›H@‹ΐΤ-ίΖΞΑ°G^όΝό7š–Τξ {'g›όeωΘJ΄η49y‰™;πL†σ“ξRΘΨΔMάΈsύήη³μ’ϊV6;vΒ­ή}θ^ΤΕξλαΈλΞΗ¦Έ$#9^ή…[μ°;%zΥΗr$9x{ωπ(Ξ[Ε°swΗ4Œ0ζέw\y€5ηλ#Ab'‰S§1—/ŒΔζ±$£Fμ,šlKt―«CcΣ.;DŒ ލ¦bύΞgTFΞVt^Ύ«˜Œ’v,ul–nΪƒ±ΑVœο–’’Ÿ3λ©ϋύΌƒ±«ψΘW’0 Ÿ0/΄'X³λow㬎O:;%ϊqZκφ #/χ]rBͺbȾ܈ηğ|LŠέnέ=―Ÿ–”cύ5xyoΑκμUŠώΓΓΧΡν₯œ",ΘΟ¨BE^2¨ΎοΊm6‘»\uˆτYΆ~k/Κ€ ϊΗΐΝ³θ΄".A|’|E ŠΕŽΏs.Χ‘™ϋOŸ}$φXv=Ζϋ[p«[<+VT’ͺΔ1LΚ―owŸrάGνθjοA±m'εL”T CηVW!¨ΗŠ•ςΤT'z.tΉ…γ΄eΥς‹ΓhΏ|Ζ)tΰ6†ΕfΧ)b.)-Σ6ΨΣhQ•ψως^ŸΈ7Ψgσ_υΌ«‘σm±KNί€IΩ%XUcϋΧR± [Η‡πωqΧςί뽌ŽΩ±K–X•[Όv=η]κLΙ^8J°α)•‘σƒ~\Ώ‚ρEΉ¨ά°Ϊe’Ο» »<υœve1<υόSγςλžΔδμK2nLŸ[{w'Ύ†}Z6΅E²ρ£žΈ‚›bαΔv˜κΨ“ΪGΊύTλ-nΆgϊjΒG{ζC€tΏίhοGBn VUΩ_j΄¬ά†M·qθ\»KJγν’3ΉΡ~VqΓj•‘σ°θΆβξΘ4β—.‡%7₯…’QΓ"gξ.#νΛΘ”ϋέ3· ΛΛή‰:εe+g“Υ}W§ΏqWπξwού‘UνRdϊ‘ΖIšOρΈΆ/ΩΘΜrvΗξέρƒΠGϋΒώ’ώn4υ—|όTΏΰθoΟ<Š‘s<ν‘.j=Χφ,j+dΑ+fΫ*Θ₯|β‰'μm?ίxJbδ(ŽΟ±s¬ΖϊκJEέΆΞ“θTΞbΝ‘‹Œe\ι0ΊοτŠ]R­x0‡΄τ2Τζ8Žk+·ΰ–0tΆ—Σ‚œT©ί!½/‚ζ.4κ8Ήpεˏ\$\ϊψKΤ¬«³u‰y€Β•@Ο-{”3ŸΎλW}rαΠ<) ₯šZΌD^ƒPΗ«qΞ,Z¬˜„ΊFRΊ°jνzε¬γπΗFΞR`Ϋ‘)™z9ΪqώσΟ\Ž_ΈŠFaθ,Υ”%3Η%ΜόΙ ΌσQ!ώσ›vΓζšέ?ΐκβQδΨ™Ψ*ŒΙίΫwQSόΤ„4$±s²\ϋΓ£γΌι Lˆ ‰iB²]XΣΪ:εŠξ9ϊ™λΕpΎΎΟڌΉλPΊ©ΧNٍΓ­?ιk,fxΉsSo$ά³vˆ’―Γ3k;Σ‹6=ˆβ'Wαo?ζtΌ<)ΗΥϊ f~*#ΰ‘‰{ŽΉ<­\έύΜ·ΧΎΫ%χ|μηΖτ,BNΊ˜³·΄τκ΅Λqη ή;άΕΛyb6S‚.Wz€»X׍m΅V•™<ΌFbϋ鍑sνηΌ0ΌWΉρT<Δ#ϊΖ \P»;<V¨^pj;H1rΆΙmξΉΥk°s•o“=#ν »Ή±ϋVK‚wΏ˜jGΊΠ}wΕ2οL¬’R# u=†Žββ₯,‡YžzΣUΧΌ₯|…`€0>ΎaΣ)Kυβήθψmjκ g;θ…SŒτ#οΓΝ+Ο’ΘΦ†”£\τΑ/tΎWW_£τϋڞw΅%W?2ν RQ‰ΞM0? G,τ[₯^ŒSφή8ŽγLόˆϋFγj4n€8ˆ‹7AB@ϋώY]U]έ]ͺLΨUyη—•ύ•ωεŸ*ΥθeT^σtκίFqΡΨ]<G€#ΰ_dgχδzωΘQ뙍–2Χ›©”ΞΧo^YC#%&–c—4/©H˜’TŽΊr hύŠoE”Ώ,Ο?&[χύˆδ–™ι$ŠΪ–μ.Φ—α’ŒΨhΙ*M*ΊσŽ ₯œμR8—ž΅Α–™yϋ3œ©¬V‰Ψι#½Še )|wήό@ή–XMDη½B[Οu4<υž>ŸvΔH—χψkά‘ΘΕ7oaζ«ί#Λ¨Ž‰κ’ͺ£DtΎ.δeΈ<τc°ι<΄β½–nΧzέώƒ§Ύ3Ή%d§ΆΓ91ξ9w:ϋ!>!ΥΉkžˆΞ^Ζ\rœΗΤ—\ΩΔϊΐ ‹8Iοαώδ˜μοο…ήqδ­ΌΜΜ΄Ϋ[ ]κBΫ°χ₯ ’ΌσΨKŒΤΩ΅D’ΕtI^±Τ6ZπhŽ―dwΑ,ηPrY{‘\ΓΈ§·q§Νuμεν?ς$EΩΰψsoχθγπήG οΫW0uξΟqX8ή‘, [rh‘`%ΧΩэ4ΎΨrJnQ)L -.‡Y{Κδ ±Ά'²Lθ?ΛΑ=(Ν_Ψ;›ρpX™q7ΖΗ­(I₯Z”Λ 9χΣW•±ΣΣ₯+&‡ϊΙταΣ¨ΩΙfw˜sοƒ<ξzηΎ|\XΠΙ=°EDtξqDv€xπ1†ˆΙuH'’s†"άύ΄g7ΥUτkΗΥΧƒv‘¬Χ44… –žέspάkξ?£r^½X‡―N9(eeψύ'eΰε·gβ ςθX^s fšΈ Ηk³aY@υ mΆ*rΎΞεμυμ;΄Mϊͺ’?γ]»ήψ#—6Cτ…[ Γ·«|±<Žq#*ΡeΠίNzΛ:n}ωΒυ%¬§οn’Ύ€GN¬Σύš‚ΒAžΉ7Dλχ΄{ΊP½ίς,Tϋc;Τ+φ³ŸαΛ_ώ2:„―ύλŒMMΞΕεžξnΌφσŸα₯―ΏD§)εγ;ίώ6~ω«_aiI1―‚ΰοή[ο΄ΏW,‡E™jΒ»ΧήƐ"ϊΤά4έ±ωc6ίτUΌ•Ž‰I$₯U`ΏLͺ&γΪž@G―;f©„θς#Χ~ŠŸt]%Ξγh–qa#rh.&ϊΡ#’˜ΉίC_Χ0*ΒE4ββ³(Θω…fΪyΡΡό\€Δ‘5]"š2ŽYT‚El½3'βΗHK‚kGΫηχ€νΏ6Œ»“'η]‡›•HΖΪsτσήoq±0/ Φ°-(t|ΦΡ&υψHΆ˜­’\ϊ̣‹='F0Ν¦UεΉVΪ/N(’wαΙ—πe/ JN(¦r>ϋ ‰”±ΒωΥρΤώ\"=QšΣ΄bd,§Ž}Uœ§¦υΧΙΒ3‘‚Σ₯φ‘™Id[`ΛKSΨlv—Ι^Ex^•ΧZδ’gi€ΎzNcd€ tP'–ΤΤ dΣ#8G§μ&δœΕ…ͺΌωψΎJ1FΣ©dεΝ+χώβxΕ‡EH·Δ·πΪίόD΄Rο¦χ–ΛO½ˆyoH~ϋGp8φγƒζο’γI'Fiγο σε½P­!…Β tŽΨΓhsκˆR}]4·αƒθ¬]JΉΊώκ·iΧΏ #9h>‰oԝ67mZ΄’ŸŒΐD$δ 7I|/Pœͺ&πΆͺ\r"aO-ιr _ΐ³ζ6Z#ώψž8N6{„HV&¦όy‰mαrΠΩ©Wα£G6έŒz’!μ)ͺ!γQDtv|±Eι>‰ΤίŠΗ ΄άά Ρ##ε:λΈm½•5ΔΘwͺ\’•Χ<ϊχƒQ\\:…ίp8~" •μl„ε+s#™jko"βΣ(κ<ύI“vτ[Ϋ02OG‘$•bWZ˜U.J3K1 “ ΅• ±ς²ΟΙVΫ¦m·Ρ0κPnSDΡ™…qEUβ2ŒšD‘1ž©₯4#Ρ!η›œZ‡Ϊ, Oς^šΔƒ~—œz‡,”δˆxΥδ…ΊΜ¬ƒ*]d$ύKι¨λ„gξ‘Ξ @΅όw–ΘNJΩZο9IΞBδ)άjΌƒββ3B“Ω’jaUOy,ΫΆ†Τͺ"ψ΅ίyŒέDΔdSγ‘QΔt  σ·’dήιΕi²ι¬ζLH‰e΅·aΨF²‹3X\‹@R"YBLqΞΜ–dοΖΠδ%°ωZώqδ­ΔTX‹,FŸ΅yϊeΡδ+}dΠd²4½*ηjkΔ§ύΚIΐ?Ή,oDΐf½ΰ…‹ξ–JΨξŒYυu‹λν֌]΅r`_γ§$g8pχ}(νΙbό1²L덹lvΡΤڎ*":3‰—l’ΘΐtΣί‚ΑΡ“ΨΕE"“ηΣ)•4%ΉΌ"ςέP·ΗjδΗo1**«Ετ6t>’&:œYNŒΡ*Œ@VΞDš™κ3LΜ¨ΓsΟ'Λό4²Ϊ>ΔGWQ‚|€eˆ S£ Νμ¨:W&Ώ1‡ο|ζΡ³Ÿ’₯΅ υ Ό 9•fτ΄x…1N9꬝λUŽΕiύ¦ηα-™δ,ΔκΉBeUSY"…kZ睎ώs&‚^Ή+%υW²|τΌ€r5ΞcΔ>3Yλv82™αaε~§οβ}:¦ΝιŒκŽ6G~:k―ιŠΛ³°•gžύKVμ‰œ§tΧn‘Έ²Μ±$=€j ςLGΎΦ —X\£zΦm\’›κΚόgϋ‘ +οN|I‹wn sœ΄RŠƒβ‰΄Ρκnο]˜K*δΒVέui9Dϋ…γ]ήγ\Ϊ`=’Λ—‘/–z>*ι?@ύλ:ƒΗcΜυ%Hτ車Δ«/ι‘ŠJΈ yζΩ0mίӞι4ωpyΆ1ςLSgπHΑB DgVΧ?ώρ˜Ε©S§TΙΞ}=½xν΅ΧπΓόDŒ y²sΖiΘ—ΕmΈέq1μΖž&’³šκ}Μ₯¨Οf3`‰HˆeίΡ6bς1™’«ν#'ΙYτξŸ "”HtvΖτΌb֘Ÿί{XΆf:7q|ώ..]]KΧT•ΚσάΌΓΘΝsΓξθ―ίΦλ΅OFΫ<ΛgΚξΓjsh­‰°"Wςˆsυ»|ΧfUεcΚw*· ˆ 9WΑA}ĝ°μ[νΦ66².‘16^ρ¨e Σ―ωνe€:ΕKΓοώΝZςι΄b‚Ϊ˜©˜ΒτLVƒτ,iˆ…fΐ’(Λ3>σ‘Θ€ώχŸ?xj{ΣΘPΨŠ9;2ΚΟ‘’ mr-MΡΘ–ΘhR†ˆζB‡όšΛdyDJζ?m°Ν²Κjpε΅VΉδY½υ΄α^σΈ§Θh_νp‚ŒΨ0—oΩ…"ΊΛC&‡₯Sδλ2.ΖΕ茯θBxL­δsω© r­‘τΚΟ†ΖΫ8°οyΑβ=“…ϟXΪΜ0ίΏŽίΌΘ4?#K²&ζ’%Ι(‡‡΅ΙA΅,υŽ[΅<Όω…‹ά‹ ’σς}ωΞGς†³Κ]ίΒ³eŽ9Τ’uΨέ}½ςŒβ©!ω4Yχήο{ζ±Ϋ¦ΈL€HƒG1ͺρ5α­η.ׁ'|τHΫ½[θ8w{ؚu;ύΈΪJŸ)gv£Xl‘υa“«5yχ–Y ”t―φzχώ~w_ouΤ^χwκz^7Μ¨ΌζιΤΏŒβ²n'ρ@ŽGΐΑβ# ΣIή2Ι™!€X‰ΰΜξΗρΈϋZgfΩ YNθΐΜΪydζ.ΙEEΆβ0siiO‘N"IψnC±Y"Q”έΪaŸwL&:γ2³Δ°s|”efœΐρΘt ³1ž,μVΘ€q2A±β–η„ΓύezώΟ,ΞΥ“Β%£>߁띟c3ͺΰc{τήΊKŸ‚KXŽ&ςξ²=™^ ΣιŸ(}¨“c Ζ£”Οp/Fi’QΨ”―ΑΒͺ”ΜΧo’₯»ͺhΌΩŒΔXjt\žmŒ<σΩA’o;bΊH¬Ξwƒ–ωβΈό ŒŠLtΚΟΦ·πύΓ4^<}₯e†ˆθTΔͺc_Gav ~ϊχΏ₯·n @-M*K-ω`άz-&Lδ`eυy#ٝTςG7]¬₯υδeU Z Σ:ZV!φͺo’ƒQ<5€;Ώ$."Ύ…ι%½#Q0L%ΖVΰΐ‘oaχΪ8ο| Ά₯€šΉτUXι‘mh&]q™tF2΅W±ϋ―’²JΪ\hGΧύ[ήΫ*„S”Ÿj*iƒδ`8θ­>z„«~§jH§Ε¨Όζι ϊύ`ΥΞαžŽ€Ώƒ,«νξ™—δLPΔ'#A.it’œE€¬sτ-ύoΓΣ'νΕώ•ΛTΏΰϊ’.α‘/ιjΤβfςΜ΅IΪΏ§]ΣiΈγςΜ€ΰΘ3—"ψΝ& πΕ_`uΥθW§Ά o²sNρYμI—ΎΣ{qΏυšΆΖ‡m,€ ΨμpOB3ΌσHŽ—υΖοώž.)“ϋ{ώ„75ΘχͺφϋψΈ‘ώˆ(œ)θϋ °Ϊ‰b•v?(ϋeͺ ml 'œ‰¬γ²Yw*Πμ³ΟZ@vΜ‰ΗΏΥΙd ŠίπkΌφΖ%Χ€ŸA³Wαnwk+λb‚N d8™ι/Α€εV·ς6βφτŸ½Š*7rvΥωWqΊοΑ'd™Ο·€a>ž=σ}θϋμ]4hdmΊόo‹JDβxά CΫsΦΟρα£;bd ς₯υ”Y²ςύD% »ζ( M ΖωβoέσŒ ς„ŒιϋΖ&ΈΪΜμΥ’¨ 0"― Ι%g‘Β<ƒήz*“;—±bθul4g >mΈϊφZΐw«—Ÿn€ψykH~Ά^Β[τZέΩYCλ:ε¨ΨsΕf‡^XvOΊ„‹·Ψʏwηλ}δάgΧΪχζαό™σΘLΝΓ€|ΩZrt½Dy†ύ#M*Ξ†ιdaΆΞμΠ΅’θϋΨ«3€§—Οt…ΘJU¬ΝΡ†ŠuTΝάμ `± ½VTK—ƒ^Q 3=²νσ8]ƒrTTZ 2Οηbψw½274cμΝ~0²³2\ν 7">©‡20y^Βk_ho},ΛίΛ+}θσ0†(ωό2νΩ†JΜRS™“Ό‹‚ό3(‘vφΥXžpˆ"kΛ…g°sm ­ύ·1ι.ΛD¨¦ωŸ½ΩU(Ia³„’[GΟD/"’*išY޳crΦ}ŠΣלy G-εRJLλs"bi˜»‘Σ„ξΕ –eeΝ΅–Κ“Μ]C ά•>γBržνBoμsTxup\.¨vd,3G ”θ$Ρ >Q|μ ΖΚK«’]+hxyˆΪμJ™Ό?mkΑγH>=Ί†ξ!#ω<ς―6& i4œ¬ΰΐψσY)Y!o½sρ²L‘ΌύF`mqFΎŽXΉ‚NΓY«Λ:Ÿ©ρΗx y4ρ‘^„‚"`¬'ωEt!ΈY >‘&Ρ 7Θ#abΕ²$-zήEK›7"ί&ΖgISύιγΆYfαΩ‘Ϊ‚¬"3¦ε‰:q€‚ςΙ2Ό³Ψ;—0F†Ό=ΜΐΞτΚμœ3‹ ΉέR+ΟB‚ύώΛ£γ₯Ηc,Κίp{·ŒήAfr!JΨkšb¦'e‘g’ιVΖτ₯P“Ÿžˆ‹>\žy…FyyζZ}ϋβ‚ͺ%•X:ΝBvς€μ£οΒ=« ή|sΗ‘₯ mΙR8:†ΆdίYX2ρΞ[―KvV€RΏ$R…°‘“ι1Ή(χγXΗ―βxšD^"YHSO̍ϋυŽάxwmŽW½Η \rΝ]ύ.z$Έ|QYςυ[Ύδγθ+_•O²ΐD3>ψέ{λnNcEs}IκΧίpΡ—\k x•ξ5ή‡΅< Πχ΄*T\ž©Β"{ϊ-ΟδœψΕ&"°ΊͺψΨ b=Β›μ\ƒe52:ύ7Χ9Ά[ŽΦ)yΗΔξYΜΝ©4‡OJm!Κ,Nσ˜MΉξ`BέΎ—QŸΗ¨ΜΝ’₯εm|Ψ‘ƒP7?,>m£<^α΄²έ>Ψ€s” ύo:τM|γά~D $`"ιΠάΐ»χODd)ΎίΏι΄AžˆΉ½.dY"κδ0’3s³dΔ±Fΰ4ά‡–λ—ΑŠ χ•ϋ$9/.:ι`&s6₯ֈiμ:RˆΆκλŠjlΪeΕω‡ΥŽς' ±=u‡™‘ NΌτίaΰoώ‹ΦΦΣ†^ŒΣ|! ρ₯y΅D’Ί’ Γ@τί:[7HσsM›„ύRnsqωΖNB›e?ŠSΕΐ9:Mp€6¨Έ²C/ΰ™έb_°π™;'’s§{ά•Η²- œDΓ›΄j°Ξ©W^@.ͺ§;hto©D‘΄xIΖn¬Z§–¦S©BHxqω°nπ_~Ž‘³‰ύ5’αύ_ατŸύo$ΩΆ›d$ λΰ4ξζ΄ΏΪ0<:Œ=Ή,ΏXJ ΙΜΌλ»(ΧeέΖ­ ρV³TI_Ύ[Kf 5I"[11銿²Rd&ΡZšΰHτz±yνΘΥw?,aanXΰp¬ΈΆ|…,“bξ›ŒiŒ­EaΝ>Lg™‡±γr0p7q mΝηΗtΙτ]8y![Φ«;šθ[ΐ¨9¨¬°Π[}4HΣw*εtymTίει4}wψx x0G€# %ί8|䨜o—`GLrΏΏƒ―udηωnšP!2#1»‡+ΙΜ,άόR!b²h™>r&?ΡΠ•(+΄ΛHΕ;>ZZώW i―,˜dkTQ"8ˆ΅jg¦ΠΗΣJ―ηdŒ\»pΏ—ώ’MHŽ`₯-ΓΞv:ΖοΕ³f‘Ξ1?ˆ~’g‘εμΟ”&:Ρρ\jQ«rHω­9·šω¨—if" χ{ΔSrκ،ΪlΜ­b]C~Œ?}υιΗΓkžΟ±ΎτG³\ςΜέΣG›ι™Ξ›—/ސqψϋ#_Μ8τβ‹Ψeu«Ήv\~ϋNΛΰϊϊ}β_h°υ%υΪi”p[Θ³€|O«£ pyζ ‡ΏςŒfΏΦϞ‡n+ŒΰdηκΪc(‘,‘Ξ5αΦc£s[ΑΓV_Ξ&TWbq€]’E)–“8Ώο μ3sΗIμV.Μ¦f ‡>£­Š<*«ŸF₯DΤC;::%=Ό§Ž\ΐv’ΐΙνΕΝˆΔ@¦[ŽŠ&Κ―|Ί¨MέE£\–\uω"%ΕKΊbFx"Α•ψ)Η ΤEͺŸͺΓέχ:Ž ιSdf“μΠ$²¬I€:©?€τP½ιτεgJ“Άz«F%Ο6t=i₯cΌ'bξ?υZoόΔ“,œΎu;—Ιbο&>ο5/αόΩ=bCμhόΰ7dA”n³ώgΤ1k|4ο|φΟΎ‚Άφ·Ζjφ€ωή}μΫ¨9ώ ΡY•κœ»ϋs—qΧγύ§Ή’n5?Χ“dȁ¦X³xπψu’«ΑWͺC"―Α‘V—S₯Xμwu•Ν)(ΖΡܚΓR΄2»Py,+S27ncΡΧwϊδ΅qΉδ^ ŸυŒ―@]~:ϊŸ4¨“΅Σκπ|%υΓάԘ£Œ¦s―`Xέsωξ2(?³wΦ€˜ΝQ©Δˆ•—qΘI•`ΑKΟϋhΒΚ¨¨ŽόJw?\Sm’ΊΆΨ[1²Ώf9(§p^ψ·Ξ¨ςΥΦ’ƒdόan–Φɘ.•‰|K ']ίωe»£LL΄κ61‘Ύ†dOmι†isΞOXTgΒιc=jΎΆ ·ό³Η*μ—ƒμΒ‡špΊϊ$e™ŒB¦?2žNR7:ξ*τt? 4ͺGB:«Ψ ΰs3s¨κ­~|§:‚.―κ»<¬οχέJΞv @IDATα֝ό–#ΐΠ‰€ߘ‘ΑGŽb$ηdˆ9*5™_Ιƒυ]ZhIΌΔμ+œ‘œW&—0έθ‡ΦFε3ƒg. y)NνΤΌω»fΌwΛX\Η4#9PΫ\ά‘D‚–v'RΘMπ¬Ebv zπΥόΑeΩ¦Θ/Υ kΆύΆ.E«]"ΚσO‘Ζ$M@Ξ£gψ3ά΅ͺ“.\Ϊ#ή$V<ƒgκ«)ŽiΆyΎŸύα}’‹ZZ#~ΛKNn2YDe ޜ’˜š,XHu‹›lFͺtμܜ Σ*ά\=εEΚLιatΛG―9k—UV¨œŠsΈ_Ν΁MΫ±§…M³_›{·{ϊ!3Ž,:‹ωM/ΠlnykΉO­UŠη±ΰμ&—δyUOγpΉbΜ5cšˆΞΠh‘½ά s©\ώθX3zΌΤKŽδ킬­fΗ‰+“˜R,’Έ$Ρ5ώ\R†ΗMBŠ*ΝhυYί@Œ?Ÿ…¨DnλΖθΡjΑ‚ΩBΗHŒ–Ηέ0mSIγ—WΡ!”1 ΜMΚ‘ 4tA ^S4*-l’/ΩyΕhξvΙ)SƒE—:nτΘ]eΆϊδ ο?mς,‰q4y!8zΟΜ©=€Ζ9HΞτ%ωι‘šυ‚”ŸΚN ₯k.Ο<{C§LσuΠέΩJοδ²ώnFεώγ8v±A†ΜLaΈΫmόIUΦρ>j»ωgkH› Α²³ψ‹¬ΰ£w~‰¬xφωο£Tή8%eς«γύ{άͺηαΦrˆΛ΄.ο0ξCgšξ|_ZKΐƒΑ'XŽ’΅έΒΓ8¨ΠλFzο;7ΎQ*£xMη=σˆ/‚Ι$…L ›z€»pεr0p=h»uMηN’l£<’3q>Z›Πΰ²ΉΠΏςŒκ‘~ΙΑάμΝe–Ό˜[Ζ2š)Ρ(23r±·¦ŽΖYφc‘σύhn’Ν$!―·ϊρ*΄t.―κ»<ΠKzΏ;ΦιZΔΰΈ" MφΕ7φΕHΚ“—†‘ρε<$”& d牏‡aΎP XjΦ>ς»¬Ξͺhςmq½SβS‘Nο8»‚|˜GGUIoBšΊ$’Wψ8uΏγ₯Ί‰Ψ³σμ&nμhν ›Ur~ΰ’솑#Λ,TCE’HžšoE« –Y¨->‰²$b₯]Hύ)Y:\Bb22±˜h*ΞiXG>Z£ΪΖΖ…#_2(ArŠ4C­žz Ώ¨rLFY*jQtυ‘HtΔίΉ§J C w“ͺzΚsΦ"ρμ#Ψ…£_‰šέ΅Ξ(λ]‘έy6ω˚g6“dRz}όι‡D":Knz^„”ˆΌτ,Ϋ[0ͺ«Ršψδέ¨+¨’n11ήκ•PΌΆΆ Η.֜z­βΗ8’σ ݜέΘ‘Η₯΄­ζ’σPnJ†u¬EδM– κ)/I,-ΠΗ·%cγO­"‘κΧO§vu‘<έ±Π΄λΰQτ΄ΌεiΉ/Ή 9+d‘»[hH Ɵ!Dμw0Π}ζbša0οΕ1Ά@ 8+ϊ»I7λώΞ),©― ΦBΌGίG֜%ŠjOΛ=ŸDκΩ!šˆ£μ˜d2‰da+‹fλ‰Γΰ[(Λ”Q&Η¬rΑ“c”jW¦p_Ίο0:ˆθ¬Ί%%£ e+hϋAΞΐεBώš€Y{Ε΅"Ž••½Λ!?‹j θv·S~fΤa§([IviLξ²ΝZίGyi“gvΜ-I=†=%&dΡIOζ]eQŽΉω²©t²ˆΟ,0gP/0¬‡8JώΧ,?iΒγ’Λ³υϊI―„Ά‘,‘ gΎωu\kψ mΔήχ4κχ9-„t΄7S―¨8εaMJoΒήS―bΉ,Š΄M"Ή’΅ugP ml“’yύν§Φh*7MͺεαΨ ―"₯₯›NVŒ@dδ&;Πγ>ΊŠ—PbfMf%Ζ‰– "œΰTDσSͺ±³B– "°ΌΠƒGVFΘ£…‡άzδ †ž³~ŒΝY1³΄D©¬˜”™r-!Λ…-ςρμNo―WžΪΈΧ¨B€―q$₯Ž' ²I gμ‘*‘]ˆgAMφn »ΓΤΎρωI"&.`-"Iτ‘V “’Ψ{‡ΥiYΒΨψ“*>ΏχbaΉ"½羟ˆϋwn£³gˆ6\g!§° ;Brη%™θρg’ξμ/v›”&‚[_Ώ· ΛpΰtYX£«tsΆ7cηQΤg,ΣθcμθΊυ)DΛQ”μΛ™kC+‘}:ϋ0&‡EcΙBd+Y&p€!‹AΉr½g19Φ'g7|χžTΧ᜼R«qξ_$αaγτtυa™,¦š,Τ₯ΘίU‚d²”>ΣΦν΄”žQŒκΜ Vγ ½L©fμ,ͺbιE@nuq”yG1v·}jQΐή[Tή™οΔΰξύG˜ŽΘFUέSΞM"Bͺ§Gξ*‹Vzž^|)ΛfΧͺςlφEz`ΔMG欧pπ‹8tN `%"ωιΥΨ₯Π{&Ζ۝E κξΥ’οƒ!?εΜΓη‚Λ³Κ3·n/¨{O“tilx€δΚgpψΩΓςFΡφηf –Ξ€\2gεcΟΉο’4Պ.²†58ΠƒΙρ1:=# …εϋ°χ€€Z1>ΤΝjηι<…‰¬ΊFžWX°ŠG~Φ1L4a.‚ ιR’π%}©mΈΛ5ιzwͺςeλw?τ’KAΤ#ׁ`3‚Ά²|Ωyβ;8Μ6@1’3Σ fΙΚίσ8ξ4΅ξ€<‚¬›ΡζΑ›€GȎλK2½¦ΎδœπΥΘ°–gŽΖιžφJθ…oyzΠoΛmΡ™ΝΘΞ_|ρFGG]HΞR'HdηΣDrώτΣO%ούM‘ƒά†Ϊ? «†[ΐ-Μ`š m€IΣξMZFϋΰ#46_SΛ³φΏ‹7°€•ǐMΦ™]mνŸγO­Jς@$Νηhu4G3Ρ!G^Yž•ΥΩSΌΉ­ο’Eš#r Έ_\\TάΡεŠNΓ1©ΥοȊ%S՘~x£dΈaO™0“ηπ€m] ψθΧ?uZsf!ρϊ/"ρΒ—Ώ†b6η€t3νhΈ ΛΙηQLύ΅²Ξ1ΤΧ~φΐ…ηQSU„δ˜ $*ϊwAqB£”ύȍ_α?Σ¦ώϝφ¨§g¦]݊‰<›³}κc«4wξp+K*pRΑ~M‡ΞγΨ.qΎœ0Έψζ?aΔ-έΘ΅ΧπA^Ξ.¦ œ8ƒO^gί™·8/Υ†ξΕξ^$‹ΰ’ΗdAΚΊΆ^ΔOfΟ}υyΤν.–’ΊόΪΫΡΥόΘaΝ™…νΏΰ©ηΉξλx I?B½Β:§Τ°±ΡΫΈΡψΫ¦)Tρλή­λŒ#cεYν°<¨(UυrlzΤΥ_·Ό6.—Ψ󦷞Q«v  /Wi°Θ₯³jΒύ'ѐiFΣΉd7\~nΎόlϊ-=)“moBv­m»Ώ„ηhm΄ΎϋΙοϋTιy5Ώχ·xcυ_ΰμΩzΗΖ9ηa<Έ†Œ“'…Ν'.2]Žh—ƒϊΗ­’ηε–’ƒΤ¬ωϋxσ πLe=ͺΝ:‹Πh [zρα₯^ΗBŒβi4P2γ“e’σδ̐ͺήκ‘(T=Έ ˜Tλβζ^¦IŠVιg υγ^Έ9…nζ"s‚©GRŒΚΑΕΩIJ-κΛnMρΈžwΰκz«Ÿί©.νΊΌŒι»<¦ο—Ξδ7Ž€άIΞZωΖΎψΚξe﨩©‘˜Ž1ͺ-ί.&λ;°ΆΈŠ‘ŸuΊXjφ.ε£ε· ˆ&»DrξzρmΆΫψ΄αzQό «:χη¨g‹΅SπξΟίςi…Σ―ΒXβ„½xvη~ΗqσOπqΗ5ρΨ‘»\ΜYgp4[8θΝKνθΈ‚“б±8Y~T0μ%‘‹χΠπϋΈa%fžŠΛΪσ"ΎrͺΦ²x֜W8\ny―ηϊ/pιv·\SεyœφL΄‘σ}Ÿγύ·>v΅‘Χ\X^xε¬&΅Ξφδ#Όω~ƒ’·Λό£ΈpαŒΫΗ΅#Ž{™―ž~(/| 5)d&Ϊ‡[˜Ύ‹χι8 ΔοΖ™ƒς›Χd ½Έέw }Ξ9[¨ςΈ“Bτ>/Ζ;κ¨ͺπN~‡Dt^·–˜οΎ‚ίΌC³λ*N“|ΣefžΒq‹DžVΙl©·»>Fί²J˜θ₯YΎxΛbρξήÊΣ-—¨Gzkn(ωoUω²ή{Ωw}PωμΧaΊQτY[€υβ ŸΝ‘-9+#ϋ WΖΥrmŸΊΛXΒHw© KmCίθCάνΠ’UΨΔIŽNpœ©ΖΣ‹γ$gΦ#Έ¬Ρ„Π₯cΈΉ‰ιΗ蹁β)³LͺΥΩ01+²ϊT’,»[dXΗ²ƒJrC^MbGiI.ν^7!žYέ²«E [ΛϋxgyΗλΟ WepίƒπωεukΞbžšΛnΐΗŒΐρcT–;™fοt#γΐIδR}W}ΛήoΎΉŒ§€I{WR·{Y5΅χƒ‰&H=ΨRΧΫۍGnesτ₯¨=dBψ8ϊmhnR}…<€άΧt>/ZΖb‹‘-Ήmθ"«λ­=D¬ΝΒJGΝ³έ·κnVj_ΗX#†άΖ’±ρ§^J¨ϋΪZ>ΐ6+₯Γ(/p}&…ΊΟ cppΤ₯†Ζίμ’ Σ„ŒάŸΑ“―ΔRVWV]Κsή<Β@k= ΨfΑ `ΰ‰’3 _^žoO€#φ,ΘhΎΓeΤ‘\ΞΏ O4’œYβΡ1+ύο :φΚm†»1NDgaμπ(¬ B‘ύ xο5+;šr‘(-8³φb°«]&9³εyfσI#ΡyfRgΫ>ΖΕΕY©?„"ي½₯ξ£k0•u΅Β&’ ‘=b€fΉ+Λ~΄ΙΑΐ½œΦeΕJx“gΛ]ΈώΨ›]‹’•Ξ+γd₯ΏwΗ<υ#z—Λ`ΘO—Βθ†Λ3ΦYgΛNy=ώδ&βŠ=ήv’ΎγBrf₯’K†υ,;&ϋΪι £ &wύŒU†BzάΑΛ΍:‚·β?mςΕ‘ΐj½Œ&Zˆ©QXk—²²‘nήά{oK)Tρλώώσ&_I”—λwτV†nΉH=RΩΘ½ήͺςeq^²Mηψ%«dΗυ₯°Τ—ό•r³‹­$Ο„†ψžv$|nΈ< ŸΎ ηš’AεmArη> fέ§νD^qŸχΠU Νω Έ[ψΣ•ΖΘΓ΄Vα}n\c&›­·‰ˆZ:JξΌuΥi)XG:£Ϊ:ο‘±Σί\ΆXϊΑ&ά₯?=n³ϊOO§'›pO\rΠ“Ξh܍.Οh=7,έ|/ΊθO·3šNwA‘“€ΛΟΝν‹‘Ξ&Œlδ{a‚dξ5}2ws^zΈΘΑιΙ64oΰϋA;‚Ϋ7&—ƒκϋ£8$’œq<Ή)P{ΟΗ€‰ –ƒ‘¬·ϊκ½kΦ 1*―y:uTβ’žχεp|!`»2Š΄3Xίνw1ͺΜωβϋ W–νbΡYμkfΡΩιaN΅ 1’ ΅F2"ΪΦ%%:Σϊw%[kQΘΏb5¦Φ‹‹ ™I)ˆŽCԎ¬­Ξašˆ΅“Š5foιh–Š=HK€3 nδ"&`x<8Mʊcη'±y³θμθNA˜k|¬¦ΈDΪQ͌Ώcν "‡.NctNa-|λπ’’³`ŽKBlT΄0ŽXώ+t¬›mjΐ{ϋΏDKςΜiK+ktt€}==ύλvΙFŽΏu+ ΐ2²Κ|B΄Κ<ϊΰmΌwωA€r֘MF1Κr²Νv­ΠΖ‰ε₯iL·c,H2-1Γ απΖ₯QΨh!DΦό/ˆΦό»>ϋ>½Ϋ­±βΫ;Z||2γ’IΖ8pXYΆ‘ή3¬AοΡ«loœυ΄žΛ3 ς,«¨i©k+Λ³ch’ώcTΟ2YŠ‘nJATL¬Γ" mκmc$θΐ»x²xdIHΖϋ{W.Œbh.%¬»a½G*OŸ\Ϊςz€‹β—Λ—ΐΚ΄Ϊ/ΉΎ€+΅˜~Λ ΅Lƒΰηw=υΙ³ ΄ δ³άξςŒ[tή#ΊJ›Ή¬Φ-b.ΟLά’³€x0G „HΙ3azΐϋ·άvαγUγp6­.7^^ΌbŽG€#ΰΪLΊϊU„–Δ³ς΄`¨%ε֎£"JΝxŸlΫΪXioέp›΅Gχ+ζF–εWEu$ž_$2ž›EcΙC?κςFιOΏΫ~γovΈm:ΣΦ΅(IΞ ©ςδΞ“œΩC:ήMG;vλ\u₯H…)c 6"Oώ+폦’’¬DΞiiY»•G9Ρ6½˜Ÿ@ίz&ζ½β’W/πšpC€Λ³ΐΚ³±žG²•z7¨zkτbξ†MηϋΛhΕη‹GFSo@:ΓzT7}riΛλ‘,Š_._+_ΠjΏδϊ’v¬Τbϊ-'Τ2 ‚ŸίυΤ'Ο‚Π‚Ο’Λ³ο’°­ #:sΗΰpBό#E(ςŽζp8ήΘξκOžA‚K„q\½κ 9ouω νSΣΫ]Ίƒίp8Ž@X"i6›z3jžj2mF±ef•@~f°8ŠΆϋ-ΰ4-ˆΈG€#ΐpA 6#«σ+.~Κ›pWΆeύλQLŒ’Ώ£OέC·uvύθaš΅η9|ν«/#'+IρqˆŒŽFbVφ:Κ|ρ]>q ίεοΠ0νγνTνp—OΎκoΌ/·‡<3ŽOΙπ€―ρξαΎπc{Θ/yλξΏwωε«ώZϋ(6&FˆΊ΄ΜMӊ™ΦxKKΛX\\=¬γ₯§9Ύ‘Ηƌl°ίΌ¦ν?‹Ω4>?ŒGWoŸ(Ύy}ΑKήx$’†­wΩ΅9ψβ‹/Θ²σ”\‘νήΧΠ-·_p8υΨκςq½Άσ0ŽG`{# ΘΏΊ*:‰=O&:[ϋšpϋβΟρΙύ)luω*νγzλφ‡ΌυŽΐΦE€9Ρyλ>έΌeŽ@ΐH©4!£. ψ‚φ‡X<ςχpωπ˜›²bj ϋτΦ$9³ζ'ζV£’0 IiδοBiΥ>”——##UΪ‡lΕύOήCΗδV6υξγAΰΑaƒ@ξs[V~1ω«&—΅vΞvgZ±ΰρ8FΰςΕ;jΫAΎp}Ι{σπF άΏο|Υ_Oοp’³΄τΕ]\\Δς6!‡+Ρ9>+ρ«3°Žφ£νQ Άξ ˆΎg—ΗήϊH$ fΙΉγΓVδΜ,;Kdην$yoύ'€·#ΐ0ŠΐV—Fqαι8ν@ν7φ£χ³Ϋψψ S0nκΓΝΟ?ΗƒΖ^™δΜυΛΰλΧ\oέ㍷’#ΐΨ~D}ζω ΄ϊϊΗο%ί@g%fΘ@gΞσγp8[ΆHœZ†…Ρyα—5mΊΕ&·0άΓε†π 榇Ρ3sžρ.!ΐxί}47Όƒφa·~ΛQΆͺό’δ―R&‡hπjqΆ,\ΎlΩΥΤ0/i‚‰G 3$ύb«Κ·0λŽ-]έΥΥ΅-έΎ­ΠΈΆώ m[‘!Ό TΏ΄¦Β40Štμ΅τΛΘΞ)tΚΩv Χ#ΚΰlCΆΊό”ήΫ°ky“9pύ1tτg]Ζ£q8Ž€‹wμ­J‘ϋkoώψχu=Y7yͺI<ξ~έXΑŒIΝDΜκl“#θλ쁧}ΰׁ—ΐΰpBi‘{ͺy“w¬‚ETFz–,;‡{x¨γΏ™υ[žμCΧγ;xtσ žt΄ «ύ1:Z υξΫΈ{· 3›Y;^6G@s½τΐ’Eϊ­$Ώ”ςΧ‹Ξϊδ±9wΈ|qGd{έs}i{υχvh­RΏΰίŽηƒχδΟΟΝcum{ΓΥ’sπzŸηΜ]ΚΟWΉœ₯š2ΛpΜ’svmΞΆ —pΰΏŽGΐ[]~r ‘ήzžϋs8ξrb»λ›έ~©_ψ/G€#ΐΰ‚ΑΙΨK;~όο'’{ήω²θ\PTψByŽŽG€#p²Ž[gŽ#9+­…J‹ίΜΒW8‡χύ‘+ΰ˜ρ 9ΠF`«Θ/oς7΄Ρη΅γlmBEΎ0½mκ΄ώΆ΅{·Ž#ΐ`πο?υη 91Q°ΟΞͺGΰΎ†°Z'°ΊΊj8}8%,ΫY,T·ΉΉ9œͺΝλΚΰp8ŽG€#ΐΰp8ŽG€#ΐΰp<ΠcΡyiq σsXZZĚ8‰˜˜XΔΕ' &6Ξ#wmoΡΩ~Οΰp8dΚς Ι°‚εPΪ*“TœΦαάͺkσ;Žΐv@`«Θ/oςw;τ!o#G Tω’Frf˜ω[ΏPŝ׋#ΐόϋOKnΡY—@ψΪνΫη˜ nΡ9O Οƒ#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐ΄Xt^]YΑΤ„³3ΣXY^ΖŠΣύΨ5σcθεΕEτα΅iά’³WhxG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°έΰƒσ¬ΑjNζ!˜+·θ‚Β«Δΰp8ŽG€#ΐΰp8ŽG€#ΐΰ/Ύψ쏹;v )) ‰tzbtt΄ΰ·L$ηY:EqffΖ%‹«ζ’Τ<ΉG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp‚…ΐΪΪj°²ζωr8ŽG€#ΐΰp8ŽG€#ΐΰp8Žΐ&" ‘œγβ␕•…ΘΘH—Ϊ°{f2™066†……πμθμέΦ³KΆό†#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8A€YtζŽ#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰpΆkkŽΉ_FdΆX,$gekα™Εaq™“*γ°kNtvG„ίs8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@Pΰƒ /Ϝ#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰl8’%gf™™YrΦκX\ɚ³”‡2-':+ΡΰΧŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#tΈEη CΜ ΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8›‚@RRΊ–œέ+Ε,;³4ή\”·ξΟΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8` ΐ‰ΞΪQMIΆ Fct«}XcLmΡφΏόπΥϊ2Μ6ΰwΧOΡ«-™ξXΎΫΈ«έΆnΎ)i₯ΘO΅ ‘EVΏXΒΒ’“Mšχ’,ή‚’τ\€ΖΖ#zG$@i&'[Π>Ή~9ˆ/DeF.bcI¦dVΗΡΫΫ«—bΈwΰΘ>φC|σΒ`bΙ™iL¦›‡Χ^ΐιδ+ωy]‘ηrήϋσ"ΗσZίΟ΅Χ€*ώ—GΟvΎψlSώ Γx8Π¦R’»—ΎtώΧΣ½|~Φ€"›N'^\θ…m"„Z’{―Ύršή)«°5€ίΏίΈΚ₯Ε+ί{Y±ΐLη'ψω——w0s2ϊήτ£N9ζ½ΘIN½₯…χ΄}¦-£κΊŽoΩ⬈/}IΞΛ‡œ—rΤSO) έ‚¨Ι3ΕxŸ’ρώKΖ{0εRHt‡>}"°U6!3™^Fδ–V†1­ϊύ`BN†i‰ιˆ‹ŠD€πύ0λX#Ίμκ΅‘e‰z°‹―/Ήδˆ¬₯ž.Ως›MA ;kΚ‘‘‘ŠΈφ[Ε‚mOnέƒχ/U“/>’lHp0ε’B~†Ύ€_NΎŸŒΚ ιŒκƒFΣ ž£.ŒΛ3Ιsbb’k‰‰H‰V–Η17+%–γπρ½‚άh3.]Ή»έ–‡dέYΚ„%$ψ/G€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰlkk«RNΨ’v/=4 iό \μμΠΫw΄Ψ8‡•ΔΈ(k1!%+ψΑήƒ>*cΓνΖΧG=£₯dΤαHΩTfZ<ρšΎŽ{ν’βs¨Ι)!’³Zό/alτ6n4Ύ‹.άL8Pϋ<φ•!Α-μXΕqP€‘?ε’\Ό|᫞rD~±YδΕsgŽ’|ί.YGRVεΉ―ταφgρήG:7Oq} ‘―/”Κ$ ΧFε„οtFυA£ιΟΔ8”gΡΡΔj–mb<{φ›Υ¦ΫqεέΛgΧ‰ H‘Ν!Μ?b*.iXΈΒknRQ„ώΛxbςgΖg ."k_,Σ©9ΜΜυbrY^ΎR”ϊ>Nμ)Δόθ}|όΫwδι>·κ$"9ΦΡ‘+k6ΜϋhŸn\’³—@8C±X[™Βθd/”ί}nrάF›`¦t‰QqˆΪA&)¨fζϊΘς…D₯WMΕ=΅"qgΟθdΗgψ΄α‘Φ”ΖγΡ¬‰ΜΎ,/bΦη`Ό˜PKi’…‡³§+€)Εΰ’η{ΆσOΈψ‰NοΖιοF‹Σ-'Δ‚t§Σ)_βcMšΓ싆χ2…§γr)όŸP•σ{pζΜaΔG¬Βήυ9άl ΦΙ΅xϊόq€Ρϋm&ώtωNΰςzN€£₯Š:•΅΄<ž©ΰ”κ—^ˆzκΙeΨ—ΉώœCcόύ ¨ަφ~PΘO;ΙϏό‘ŸΑ”σ!k 䠞†ψWžω©;€ΟθιΡ ‹Λευ†AΝ ,ά’³6e>ˆ―ΐŸ½­ +XpΌξ›Ψo–h}nΔZ°gχw±φ|―ni-EPo χ=…Σ§e΄-> :Ρy£ΚλνΎ…ίο¦ΕΪ(_‚gN *ŽBζρu8ΆοKΘR+‰ζ1§½€ύyՊςεηOyϋφώ9Nδη©‘P†§k^€Υe<8’IηO=Υ+Θ}7 ά:ω5ΪΕ0Ώτ%ƒrήH=ݚΒo7 ”gοN˜‚(—œ…lψ•}"•ME­aΊ>Ϊϋ§Pπ:YlPyΡΡ±$$iΚΝm­d•ΖϋΖ:νγέh½τΛ GIϊӐ/ρ»ρTιAk ήΪΪ?τ>n{Κ(oρΉEΉ€f…tΙΕΨ}ΰvν©–•ΉŽΟ^Γ•»ύϊ«­EΞλΟ50)’j±ο ψ)/‹ΑFKJLBšEzŸj=ΔΩ­° z)KΝΛ:†κμr‘ύΩ}ΈΫχ1zTDSζ νΪ_½.0υΤφώΛL­DV|Rβ؟™6ΫIm΄αaΗ[θ&RόWόύ ¬E݈χC δ§Τά`Κy©ŒMϊ ŒΤ^y#εω#?υ~ψϋ^юi.― ΑΖm>kklκš;_ MΆβn‘*p­.#½μŠ€Ll·qWaΉXςυί΄Dι{q]½M°Ρκ†Ημέκ$Ϊέ'Ο-ηpNArž›jΗγώGθ³Ο 6.–τ μ/ΜΔ„]ae9#G6BcΧ5,'ΐΑΚ3¨09h΅Ε‡π°]X7τη³κΌ ^­6ͺΌΞF\λ›‘N–Ή‰θ¬f—; MIΝTœ™ιy₯Λω)―ΗO~ VήhyΥΥd H&9Ο’­ύ2n·>yΧsx¦ŒŒˆ0—ZŠ<†XϋΞh:£υ”ΚεΏ›…@^ϊα_ Ζ͚Ί_΅Ι₯1|°@Μ’χίΎξWvOlλGΛΝk`ΛI3¬UΌBnn”ά5ψήt«­φ[σiSœ'ι”…†φ[%²hnώq «qXT%NAωΞR΄‹§Xψ£/’σλ©3x„±< uΉd ΣŒκŠRMRIzΠαlW«ύφΉIL+cGE‚Lbr’ CΆaŒΪ'03?ƒΘΈ,”δ€SeιSΜΥ¨Kϋβ7‹?rIY<»ΦTOχDό~°£χαttu`d|Q¦rμ?ςΪ~΅Θym9#V„Ό8Ι¦‚θπάnΤϋHjuIή—±7Ν‹ΆS€ύΉOa: z–z] κ©ιύ]Ϊ‚zYW‘°~Wμ˜γ$gH6ό&γLOC[žιi‰Έω~hΏQΞ€1PI%΅ΦΗPy~ΘOύίώ½W΄βΐγω@@Η΅οzlkyνC#ܚ³F X΄ΙϋψŒώΤέ^\`1αΤϋYάν‚­zEΧρ-DF²D.EϋΓ‹hY'Ά3¨_Ϊυ”||τH'xύώg0:Π>ЈΟ*H©,tm έ71Πσ9Z&•σγ@ϊΈωoPŸγ¨OD„h‘4ώjJ εΌ»Ϊ~wŸˆ€·ω;ψӝH€žω2²YŒΤ"¦VwRΆœzc.¦Wλkτml·Ρε ν‰σ Γ₯™ΣSmD²[ΐΒΜ}ې\ώ-|₯ΒA›΅z!΅}6Α`yΙυΨS"’ϋ©θ–¦Χρ‘Hξ·ΰ)":;L%"!–ΘnjΡt΄elΌΕ…§ (²X±£γζ΄ΝΰΉΣλYΤ_ΏτύGχ#OŒ2ΠpήήtληΔΠ‰{ψΰυ{A,@-λ,˜ΨΪĘ4ΪΤ" ~&wΌ7½ΦΪwΐξœ y=izτ~Ρψ‘œhϊΙHHΞΖ1ρ=-° ?τ%#rήp=]*Νo6 Pgι4ή wΝnSδ’ζΪιhXŸΠ_”ZŠœβ x–ιA‹*|O9bMΩG\£Ϋπ›χ\ύ„;φ½1†Ψ³ίE‰˜ή…ϋα‡\R¦ΉžΚDόzS˜žBΣνχρπOΏGΫ„² MhΎΦWώκί Jΰψeΐ’GZ’3Χ—”8JΧ!¨/•R“όό5*'4§3ͺMη'<ΉCžUΙ†&Ϊ;΄ζ“˜ S|‚‹ΎDηδƒ8€ 9/Μχ‘g²c σˆŽNAZB*2L˜^Ψ>σΘDU S]nnΡ‡\ςΘͺ£’δκ=³δ>‘Ž€VΉκν0TΏ|œ|ώe”ΊY™7”•”(ΤρœEχ£»ˆ‘΅ΗΉώ^©Φ‘σ»Qο#jqιN’σ<- ίEΫθLζ#8hΜγ ‘—ϊ“S.£ιΗΛ½.PυΤϊώ‹KUœ™fͺΨ¬·4ƒύ­η)P—gAΕ5Œί‘.η τ[ δ Φ’–gX~ψ€ο­8πxa„ΐΆ–ΧaΤOaPΥ5ΎΙ9 ½Twΰ8ςΕEυι‘›ψLš Hξ”I|6’Δ²Θ0‡VKΘ₯‡Q!¦›q'9+λ.3%―ΙF|Ό ΩNIά]YaΔΩqb£άΖ‰δ,Eœ§ΉtϊxΙ–Ϊ!ω+~M5Οαό‰Δy52 ‘σ]ψΣΟ~7…"…ήΛ,ϋΖ«(OΕ2•—U#gwθ[ψΞ.ΖΰpΈΘ`ΰΖπρ-χοτ œψΖ—°»z2©-6j“‰~­]wππΪ{ΈzOίΏς²kN ΆͺyyωΘJ³€qΈ™q χ ϋα||­Iτ ܏‘~˜ο@ck‡\‰’dΙ05νeΣΰs-’χΒ`y•U²΅κiGΙ™fρ₯§‰δΜζ'΅ΩᬔΡt0XOgΙαs΅όχ°·Ί…ΉΞ‰Ω‰> w΅γэqΏΣύΩΡ3ώϋπόŸEF|$f;’ΡjΖ‰cQZ ­‘ε­{Wpιo)χα«?>‹42*΅:ӊχ(ΜMB gω&Ύtˆν’Ζ_Δ{—ΨX\ΐάtΊϋšΠp™Θ;d_&ϋδΏβϋο(vΧ—‰I»Ρtύͺγzη9Όrn¨Y˜|όήΉtoύμӏβΕo₯υMΒ‘ο*~ήu9~υ™oγΠΎ=(vιƒn΄έόο|δŒ'' ‹Š3ίC]© «J¦αeοψ”pX§.;Οΰ₯ηNΣ¦'ώΓνMhΌΪ†άCϋ`’ΙΡ Κγ’J+K«(άχ"NœςΥώΙ]©Ίε χ¦T–ώ_ ½$ gΡ=xΛ#‹ΉΟχ΄G$7Ÿϊ’n9œzΊU;dnΉ<σΥ^δ™J²•₯Hμ?ϋCΤήC'ˆσΰ3Γhjό€δ—(έ‘KώιYτ>zωTU”;λHuήa½θΈ χΔ nuΥ+_ λnεΊ%«μΟԈ›uΊΠΏ`F~*Σy¬˜˜RκΌΎr_&έΫ‡^_šœOΉ$ε°zJ†ΦοV“/Ά{oαχ^Υ…{ΈΏ U§k„NΘΘΜ§_―‘ΕŽς"_ΈΎ$⣦οn’Ύ$ΦHύǘœPΟKΕΧ¨œΠ“Ξ¨>h4J3Cέ‹Λ3_ς¬e‚yκJ+ΪZ½vικJŠhΞ¨dΟ1š“ŠΓήCGιˆ§ΎDg fοFœΨ„‰Iš(x¨hΠ0†hΗ|σ8™’ ΗΛ΄τc¨Λ€iQΆSPώμ’ϋμͺ\ˆΜ\’)}C#βΖΨ€¦εάξ‹D⣆||ΜΔyΆKμκ/f騍&XΗ›10οJ±ρyeΗ‹¨1™„ΌvμΠͺ’…c‘ΞΙ©ΒTΰ¬}JΞ|£,«­’­t>xιT?Ή"βŜbqimU${~Ύξ7Ί<‘>Œe·ΑNϋx7Z1rB(Κ@:δ -ά4ӟΊ+ΑQΆ6 ΘΓy΄)6`¨'ཱྀ@ δR š’yΘ³θ{t½σ««0\U­rήpώ&΄·γΦ'νώζ’3=½wΩ!½w]5Οl6μ}[‰R¦‰gπξN8΄μSc¨!’³C¦L’Xε}Υ\ΚΙΛ―Q½.@υΤσώ›_θCΣθ–Ωββ³ΞΰhΆƒψm[šrnΚσTξ`ψϋ!ΐ€κΘ.ή*ύο³›"η}ΦΚx„ΙAΝ𣺏–Ν₯±ΕUςΤφ ΊεI– ‘>šΎ„ΌΔ]΄Λp‘I%Jτς 8—―RA'4Ž5^ECϋ¨’Fτ§£€¨Βe–τ£ŽξΑftά ;΅ιC«/€~π’ΪΜmHΟ΅‰χέ MΪ΄VψΛo%_HόEK΄—ON5₯‘hή݌ζY―αrΛω’ |Ι·³KŽ^ΐš¨w¦;”HυO»‰.—ΊDL`†/±%¨}ω#i\h@‹;ΥΥ$—8ΥρΕΥv·/_ƒ:J—ΠXrLKΦzπ9ΕιI(޲³8VαȚΊ»=δ_ΑΌ C#dΉεξΗœ ΕΖͺΧ„4ΦώωασΞ#x‘Ά‘΄Έ;Ϋ}7|ΖC―ΪβχαδΩjš>fγcΥ5* ςžGǚεΡƒθkͺǍ;j:%y²^@yN΄ €lv‘d υxΞA:>‰9ξ$ivΡsb­k3˜σz¬α΅[œΈd…Ο*3b‘ώΟFfΌ8Ήθ―€˜δ,δ“€«ΈιEΕJ·fƒ'6Ξ_<₯( ‰EΖ"%·ΟΡOv³}ΎŠΞNM$ yέ4τ-ζ;•‰k1g|rΚΜ‘‡]ΘΑsQθ•FHγ@:ϋεVΠΡzοβWŸz*Δ’²Υω/λΡyθ”©ΤΉ’²ΩΉoΌFVK|γ’ɚ ύR#h’Ω€’sώ‰jεHEw[#ZH‘NuIHΫGνW_5·˜Ž΅ΝU[—IΡYt£ΈυΞσ¨„φ’Xvώωό.a‰ρςΕΥώΰŠΞιΘ‘1\Ψz΅$/Ψζΰπ«―`¬τ­’˜½Η³‘‘–ŒΛψ*z;²ΚIXυν;66Ï’sHο‘–Rώ%ΌR(ϊτϊ/”ρH-ίάψ†tεΘΕEZ\VyݞœZi߀δLUΔμb’ΞC₯V’ϟ\g!iˆ‹’UΒg1ΏΌ™8„£μ!=Χ\nΥG˜ϊΈx…ϊΌmJωH_₯jdL*Š\DJŠ—ί·ƒΟ‡ ΟSŸ‡ς}΄½ω΅ |Wι5#όΣΪw€R…_ΏqΕo†mΑωυΣ-Οƒ+:?Άw’+:‡}nρiT$JeΑ‹†ζϋ‘ψs§Δk&½θHp”βΔ‘R$=ό;\ι£oJΙ•Ρ©†ςτiBrι‘”Z…OΡ—ρΥ‘Υcξ].Εσš[ό^ΘΛV‡ΊeE…DEΙίΈτΏ$Q<%εϋh&Ω€#:»έύώ ς“ΰ8±›k…*&Ϊ.αύk*~>υξ=²yFΨ…λπ—Έ"+p•,£ώOd5…²ΕcοαWHΡω=‘Λυ‘=υa|ό>>Ί)hM«$}ψ3t½ρ'xUPČGAω~2’zU·Ϋg²’SΥΉσi7YΥ'ΘΚs­_’±P+υε&;₯υ*Z˜€–˜"aBφy<_"*\͌\ΗΓεœή‹;ΔY,«ωXK¬Πi ν‘*οΤiT)ϊ+ύΈώγβΚmΟw―τΜo‘:qY%Ψβϋ§ ϊοόoώσ%)ψL~η?γμΆE–…σ θ=βξ?lΓστ~±Ω—‚½•ΘxΏ#BŒψ/οΤ~Hχγ›ž’I²·θά³’ΕpΪ>|Ÿzh27ΑE›[Κιω­;f‘’³GΌgυ²zF{h^³ςk8*Ÿ=՞}p ·ZΎ†ίψΞAΉΰΤ T’s³¦Θk’*V'ŸG:):%~]Ζ©Z’UŠžkΒ/ώς/Θΐx½gΰcιYΏ(Γύg•ΟλW+†šδƒrQώΗM9…΅λΓΎϋ(‘ώΟ‘>&ω ^{9C㠈KΝSxΦ‚ϋ..ίΌτ„+ς’Q>o'ΦΪά\œŸΓ70?Σ/cΌω}όυGŠΌŒ‘™?ΔWNU χ₯5‡GŠΞΪ‘Γ,_BrVR’ό1λχΏJ›ΫΤv8θδπΒθq5 ˜/ EžVm ψ#€δ\!-Aτv\ΒGƒ@n±ΊρrlaΚ/o9Pύ}<—–‚™υUμ$=ω{„Υ76| 46ͺZˆ3Κ—B‘3(9ΑΣΚ_ŠΞ½Œ#FT χδυXύ Μ_ΈΌw£ΌdŸΠ"|C­ς «ω|)`όΣί<Š^j5Μj>΅„ναγόŒυCp~–^Y‚Μ(±Οζ»Ρ6Όfοας‡β\Π£φ&yιρ*:Ηe#MnΜό$’RΟΰΕ”'Y-]DWθέqŠ>Ξς¬§εcKΈΔ"v—|PΤ,Yˆ&©ΜΗ% ZΒΫ'*@@~f5rvΛ \›ΡQ:YߐHΧ ½9_―4fo pδyςπΒ Z6bv‡₯Gͺ=”ŸuΏ\Uη‘ΉςΡ†ΐDO3Fg–•gAΆlOΡƒΈΕΙAΈF†13ε¦CG’H±šŽ Ο•Ώ²œΕα‘^άξ”-‹–ΰΨ :§ϋΠΤΤ‚Ε(R «Ω§N„zΤ ήδWUk”œΗΡύ cSKΨ“‡3…Ήl²}‡NNο —ΙŠηγθxPο•€,eάΌ…΅Ψ]΄y{»SΚΙBΆ8a?ΡΣHx,yXψ˜ΡžΡ’ˆΓg_Τ(9»‰ΞΈiR—Yj+” ½„™‘V4τ²ͺC©O%έ\?¨ω,ϋ,=Χ&ίw«ΔYβT™₯|›Α_¨Nί―lˆoAoXςyΞ—μγKςːƒ“_~ Ες5»έΖΐˆ‘šί.@>Yτ_σx?­π%*xuΓΗΒώμ`#ΊzI&Ι*Εήi;»’¬Gά”ψ|z:ϊ/XΜOENA):·ΚΔKΧ}Θ*’•5»Ρw·Η+ގΫ|ή5„q’θDsD'₯ “ρ:#·BDvJŠ2φMŒ αϋ_φTr"λO.7’Σ °Ώ\\πrμ9…“³£ψΥuΟφOτ?@ηjΚ‘ηE QU\ƒΦ J©9―ΰ|™¨`"ΤH T7ερNΈ‰.2«/3³†&”U%†Τœ—p‚6Q+naŒζs•;Ε³Μ¬ƒjέΞΨΜΕ™„΅τ;e%f-ͺΏΊBTzd!γχn¨JΞB’1\ΎςΚφ~E˜OΝΞΥ΅°j¦>Vlύϋ$”χοξΥ»x–1Ω“±s·Όζ‘—|X¨ύ’Qj™š› 'WΟYyυΚ1f­>g’¬I΄»“*«Α‹$Kρ΄βκν‘μ)D¬­Ρ‡*9«ω˜σο»R½yOr2(—±©Ά½nIAΥ|e,Gφ<¬dνόθ]%gΩ~υοIMuvΌlqΉαW²’³Xφυ»M8DŠΞŒs9R’kk@χΠΛtϊ,έg―%ƒΕ#mr$PΌWεg½­^Τd!ψ*q°†ψ¨ΰ&ΠtσŸ²F†hε[PVv"-‡Ζ».B,λ<Ύχ½ £υ˜Έώρν”―ιόνδI!Ίφ;•ΚΘΠwν’OΈού ϋ*q^P―Dα±<4ίΤͺjΘ‰ `΅TJV¨Ω Σ^χ±’δ,D7½ƒ†{‡¨.‰FMў^ύ§Ιh–οΚYC僬œΐγ¦\“ΕλTzΗΘUΎŒ[*²Ψ€ΐ^f6$Œ^Γ›΄Y&Έ³&/γσT»mto 8? [~ζΫ»dΕώcOΎwݏQ^S)n‘υ—\ΪΰΡGόLΧΰK,ŸU9kxη%Ί²pwΫ άUψzΜπλς„o½FCΚΚΏ«œZ15ψήmΗΉ4ΝΖΛιΩ!?Εε!ƒ ζ1>”ΰbψCόΈαΊw¨Ξ½1Ύ:Υ βόekψKΡK8wA–HόπWž2ƒOqyΙ3ς&σΦΚKvπ ρΌVω„Υ|z€X•­ζΣ£Α#Œσ³mΚΟ²‘_X uΥ;ξxt›ώ Y}nρL§•—ΤΩ.ύά›šGΦ€bcχ`―‡ƒ)jρρ6τιΛ:Ε› rTνG!)m n‘ŸώδΗ萔…š†§ρΊ₯η`Εβξ/ίΗ½NΝvgjςv’j sjΊ7‘x―΅GQώέωCΟΟ Šn±Θ*$; βwZU9ςε-|t”α'?ϊ‰΄œŽ$%±7Ύ|―²s\Ό<ιμΖύwFRVjE}Ξ>dFΊΥ?>η‘*…†ΩfͺΧ7aΧ­ΛΚΞτΨ}»HΡΉZHδΊLΌ³ζT£ W~YΗq—ŒYΙϋΦmΜ½ϊ[d”MŸΕ"Ώό8΅M8Ρ\”Υϊ,φƒP©έ <Χfίw«$Z〡|φσ—ΤΤΪυ+΅~₯νπ\’γ|‰&LlδKμ‰H«:Œ=Κ°γΒύ_½‹†vOž”}πφΔ­¨―EΎ€ ϊF[>ΔϋΦ‰7waϊόοβθ^6‘J'83‰Ο‹ZΊ:{PCόŸqμ¬όb8κZ=6,₯U•¨υu*ΌV,؞ω|&&ΖiΜ€`ZόM‘&xŸς«₯"9Y^ΨΗΤπ*‹Ψμ1sή}P‡–ξθΤ‚“ΒBIVΝδ“’s―˜XΜρΰ \€€ψ#H&Egfχɟ³λ=2ά–Η#- πγC*Γ,š3 γΒ"htβ!Ϊμ‘+8?s]«™Ψ/Ι[Ο<|%%£Ιu‘iΗψ“¨ZAX$Eg#2gΐ?ΎH»žk΅O·άΚpΰγƒϊ4ςτsΊ»αm²ά,8Ϊ 99-<_S"άζ—•#Η4Y]&ωΌΥο*V₯]ίG ωۈ_‡Κw•6‘Η΄φ ­ΕΧh\ρM½=C8Ώζςόφ|2ŸͺΈEgλύΌΏΊV΅Φ>+tZΔ…”bΝϊz@KΌ>%OήΖμV4} ˆBSΒ\Ϊ?Ώ'ίΌΪςώMΊ1α­€=΅@άFtσsŒ;Ιm€Ψu0«’θΤ—Šγ΄ώ*α ω Šλν5χό)ΛEYΈ2 Θ•άοyΙβϊ™£°””Ψo`$«ςς₯ΫΥ/ΜΑζGΛ‹sτ΄žϊώMΙEμτ^ ί)?ΧΔ³c‰[vyΒIHbvΫ}ϋ|¨ζZƒ):›κ?ΛΔ*CεƒFΖM₯2³žτSψΖ‘ΣΒ&!λς8ΘzώŽ˜LdΕIύFi.–Oβέ–ϋK·*/βσ6°,’σ3R*_~ζΣΏ“θνς½‡ώnJχ³΅¨]ˆŠN£λ˜w"ΣχΦδ,’Η—‚ΏχΏΣœΰ]t>κΒȐ N“qώЇ·mΰK‘Σ©O½n(η/[Γ_’γ7ΏϋUE.u7€ΰ+3hϋˆΛKZ4$XΘK‘σ –ϋYεVσω@VεA«ωτhπγόlΫς³„²δH;„–G{Ρ€g³Χ£3ιfnγžκA¨ΚKޟwήΩ7ρ>IΡITώ"ύδΙΖY Œ·cd‘Ž ‰+Ζή€,©ώ,§cpXg’m)΄£θμŒσŠ΅ΎχԍŠΒQb”ΊΧkniBS•U\\˜£ITμfϊΡHI$ΕΫ―ψΔ#Ψ—&γIIV¦0Ν ΰβα°“Κ‘έBY­ΤWF\eV΅.bμVΣΙtͺ»Ξ{ήV”œ…j{―‘΅­‚ŽΠ“'η΄Δθϋ}δ₯δΜ’‘fVƒf~²½ξ²~f νhhΑ~RtcSά;w+ιR΅tΆήςTpλό-Κpt>šν‘^² ζi―R0W€² )‘]² ξ?_Μ΅·vD¨Az9Š sEmwΫ=UΙYH<Ϋυ ((8#€q€;‘M©ΚL},ƒ•~* ρŸΩηΪόϋn•@«|Βj>»ωK!JβbC œ¬ͺ[…Β;™°eο€1έ8aϋ?ζ₯ ήEΉη|ΙnΎ”NVCφ)ΠχΧμ£δΜ"ο~­ d_bV[ΪnΦ)u3OS[ΚIΡ™¬ρY˜nZ14z {Ω€<)«Π|ϋ=š³–]v>›€έpΟ¬•Β58ŸŸ£Υ AY9IιD‹L9‚—^>I'@ΠtMϋ―ρ᧍DC’R€1izd,εηKΙΜΥπ™OΜΣXΦΪVBc.›x££FΚΡΫκη-ή­Ž/ώlΟ{d’4„˜δ¬fΖ‡€hUζOά(Ζ‘\Ι’=mτΈΫwι΄@#»uo™JŽρL …N»ΖΏx’c£€vΞ,ΟHΟBlΈœa.·ςρA~”_ƒΎωιτΪά£u]Χo£€&„Ν›ΙΩ ‘^΄iΏ>ΟZ•ηCύ>ΪΞό:Ύ«ΰ/y‚σO«ίή5©χΑΖ5₯Iηל_[œg°,Ο›|DyrϋN€±―Έ§§€”Σ¨ΙaίbΜΉq§σ’ί£•Ε4Ϋ )9λΉαΎχ𠽡l¦'1‘l ­Hr AQ&ΊΫ?T•œ₯‚&ICRtΦ+[c֘_>ͺXe[˜ΌƒΛŸΏG žž΅»ε…yŠ‚yVφQde{¦awlVuΐέη·OF†Ϊ}3mƒΥzŸ γƒϊ4κLU‡Dyν„σ΅{ƒ—±nwΝd½Φr?"LŒ<―ο†{^»γΩΣΟ΅gvΣwζλK"Γ9R5 ³HΩseμU#ΧΪt υ¬i΄Ξ‘Μ†ΡœΡ°0‡j5ŸP4ΜΣ)ζ3ύ?j·2Ώ`8οξP­¬Η`‡ΌβJ/FhjΈ³γύsTЎŒΦ0M"ͺύn\§+…΅›Ό=ε€βuCΘ_t`/m%‹”‘υΉ‘VωK“‡£‡k•ΘΦ›WΏ‡§©s΄Ή"ŽΆΆ€‰c^n:ߊ¬<Γ9’›₯( ±ΙΩJ2|ΛΖ Ω₯ΐ™%ϋύ]εΑ_| p¦άΞfŽE·!{L^ΝφŸΙβu“[εƒFΗMέJƒVγu’σφόIΓ‡ΚΖ£²½ίΖ‹%βj~Ρμ﹏‡ώΦΉ-ΛKFψΌtΕ„p~ζRΨρ3κιfz6ΘI)HΞ€…§¦ΰJΕήEkο­ΚYuυwPsΰeαT ZPBι‘sτ“Jžs‘εώ όϊνKL"χλŒρ—Πδ Ώ•ϋ‹H?³ϋбs-^›S‘μω[Ε¨_ρ΍{Νo‘š•κμϋ>žΛΧ»sœ{‘KŠΞήίJj#|Ι:•ƒ{8ρΐhsψΛ|νwΏb’iΧοόχŸyΤλ{Γε%_Lh&ΐ€Ό«W†Ω0cόL[jˆ|B[”?ΏU>a5ŸVεA«ωtHπ βόΜ“νΓΟRP\X’Π6Τ©³ΛU‰Υx–κ{ɟݚ[εMA\€¬ΰΜκœ@KΟU΄ΝΝ‹Lwbnγ13„δvFΘjbt8όOJzGdεbRΎ;πP";&c₯Y#Rα˜]Τ «Φq™[aΨ‰Υ©)ΟαdD2Iƒ/:&₯Š8‹ TQ« Βα~ώpd–ksΛΥΙ ΕNάθϊS~2Έ·‡οώ΅¬ξ"₯ίΥΩ€BŸb§ΣΞ8yΒ`c}>iΗ™ΉJ£ŠΞ νθnτ£”εUr¬sφ–ΣΌτtΔF+CΗ ²ιՈ¨TEαWΝβMg%ωF‡ˆN?ŠΞτ€K©¨~ύίΓΡ‚ΎALM clBΟˆOρ`©Š₯ΘΕΑ«ΠΎ9Μ…DΗΚύ@›BΖ|3»ϊ0J“x‚q –D} Π1Χϊe˜ 5σ\[{ίΝR$§·Κ'¬ζ£M36ς—όμ}ͺuωω&4³Ε';)q^ό/΄λSΝt#ήϋΡ;χF{Ώοœ/ωΰ+ηK»Ι’\Jϊš|1•c΅W[ψτ ›cςtsK4ͺ‰n‘*Ս’··ƒK((™…ϋHΡ™) “‹―Av4ΖΣXΣοOXLmιΏ<GFIΒ(Ζ©DΑ΄Ιθ(Egb¬Pg|V>m h„;%²χμ„‹lλΠ:V€*s9kΞαbΞ ΄‘Η‹ΤU†‹ŠV:Ν+‘‘[›ή#Sύg„ΐiŒ$σν–e>7¦ζva_ΡsD!Ο9π Y-£Ν±2ž£˜€cŽνvΑε:λtΪ9ώΕGͺJασCD„O€άΚΗ#o‘ρΑ§œiβύŒω{ΈŒ Ž#_ψfΩ‰ΘHfαΟΨ·ˆG1^7Φδyy²φ}΄}ω΅uΎλ«pœZΠ«/ψΈ’—Λ@ηל_ΣcbyžΑ”<¨•η <›<Ι¦ °ΎnUhSΘ “Bxž4 d©yjπ6n›ή “φω’Ή΄ͺύ—βΧΘπ―œtΉ­t’’·Ϋ\q­°ψuΌRV₯d"…ͺwI‘jF ΡxογmΪvΆμ*e5@Š_v‘΅Ώ;R‘ΤΑΎ·IΉqΒΰ¦ψνγ]ΕΚͺ>54%nŸ;πM%ηω‘6΄wtΐ=G•μ ™χ˜œ>U#Φ|΅}„))Z£COΚ$Y΅βtŸk+Μ£[_RœΈa`™ ‰)DΣ'7Τϋ όΊGά|P–μTN]™­[Ν'πΏ.sˆ$+δw―}„8ÏOΦ{@ΛΦYŽ–Φe¬bύύ[[aiΒ έ&λ‘/ΒYHk=ι{°§’ΆŒ5₯‘€tTΘ,z\5Q ±€ŽΓΟ“%i)νΠuάΎνo¬‡ΎSgQ\Bτ₯₯Σ g%m.׊ΕάΉΘ.§uOΩx­/υί£(R‚Υπͺ–kŠ!2f½ΓyΜσdΟγHMχŸŸφlv°©qΣ1e5Κ†’:±β—^crkΫG€ψ^Š αšηNΛΓΓ>½ΝR!ΘKψΌ}t‰σ³ΐ@m{~ζIΎ›Œύx wQΡκgR(rVΫ;ψ뿝Αk§OΞUNͺˆŒs’όΔW‘—‘€7ζ_BΣΩDyB^Ϊ(Zf~Qp;’PZσmTΚƒΓ3±‚-!.²5‡Ώύ¨oΈ¬l΄rϊ\ξ‘±ΉΜ΄ο „ΙQ1ipR%ύΊΚ4ΖψfΡιCΈΐω‹Œ„ώ5dώRŠWγw•“,0Ϊ€—ܜΖας’~w„‹ΌδM½q>αSή*ŸΘ΄‰Z•­ζΣGA'”σ3P4A‰ŸΕ–‘@€§ΪΡΥν­Œ£‘Qγ_]֝›“ε%yΥP“e‹ΌΡρˆΡΤ>>xv’ޝΑρΑ;+aμG—EJISi&’wΪ;§©{«ς|θίG4ΦϊN΅ΘM‘ Mlg}ψgίZͺ™ίΨΈβΛΰ=ηמ@q~νG°ο-³ς ,Ο{TΒoΆ /Ύψμǝ92 Ξ‘*YžνΓύΆλζ »Τ$ΗΘΨ1Ύ ΝπcΜ#>šiψwϋ+~/h¬Κ τώ o7ΦωΟΐbfογJ=ύH%UψΞ[Βψ¬›,LŸΖo—Hύ2ݍvφi½ΝάΖZ`‰O%7i9€(H‹„ήN»ZΦ ρN#ί«οHΉjΙΉ―ξŸρΓ·ΚYΕkς”“’³fΓ3^Ύ£}Ϊς'76Ας³\r₯οwΩζh3³?K’J=ηš²eTGžC݈ŽεIΤίfŠœfŸϊHTΠΥϊ]Ώnl*p";Y^™'λďΔp«ω‚’ν‡Ξ ωό%hΗ§οϊ>ΗώRΫ>9‚φώ§Σ/Ζ‚EiΨσώkΛΪΪαH!ΫP‚‚ςγd=4 L±˜ΉΡ&²μ-zνϋŸ†£Η*Ε=Έ}CWΩOL0†ρ‘!:HŽxE\rOνCS"ŸlÝξ:Ds²D{ξnA㕬΄Έ0,Π»„%a>‰΅£ύŸ½‡Ί΄ΧrύxΘH†Νσx~* Œο- HKγ¦T¦1~F< V™!ΕΐH“Žrƒ 3ΛleWswχ£ž I^ Κην£Svύ0ΞΟτq‘C·;?“ι―:-!Όή*ϊσΣΜp.ύf±Κ1΄TBΘrVΫUΌC?Ϊi‚’JZοΚέƒͺΓ(HΗˆΨ’cxφπU\ς»Y…²s6ΙΖψK5k^΄Α«4ΐ§BVΙΒΛνx¬ Bό*Φ‚MVP:c|i3ιτΧΞ_ό!#†‡Β_ςpώχs%Ωj ϊίώ«Σ2ΈΌΈOB‹έlyIŸ:c|bsω™=όΕͺžώB9?σ‡ŒώxψYqqBV_χ#ω^‰φπΔ&& ϊ+=‘tΌ$/)σ@^ρ›KƒΎ2ξ―υ£•ξεv*η>ΈkŸ"’RςγυΈ§Fƒο4,>λ‘δΌ8ڍΎ~Μ.τ½ƒ:** ‡k*Δ†(šyΪv9`π$g5Σΐ5ΌύφN¦ΛΉNΘφ…t,^αsp¦Δβο\ΡUvŽ-­! £Rq£wΡΪšB‚J˜žo «Βl¨oά†Ÿpί”BBξu„˜Δςϋn΅^«|Βj>F§ ό…M@νΛ(S6QΜΈ[ΡBGΠΩζȚx[Γ-D+Ό6XΙ;°±?ŒΙ‰yχ‰Ύ€d:v²€  ˆ ΟbωN€ε§cF™ΰ‘#WG:(*‡N.P)θnΈŠ±%–O˜a₯™aέ-κj![ΰ3έ[@“P- ϋΨΈΈ; ω’ΎόψΔ§Έ+Y³ΟŽM6‘±τ“ Άς$ΓrE:mvi6’”3»ddKš€rπ||Ή•AŸsγγƒgQ³ΛKΊίE‘tzβH† Ι…"Ο‡ψ}d˜n‹|Πpωή ν¬Ο ε;@C»αqE“Η”—σkΞ―IεΚκ<ƒiyP’ηM=£<±mll„:ΈΨFJTŠC%• ½]·όΧ€ oOBφIbχ<ΨFQoGί―Ύ*Όy(q–()ΗάΪuŽx΅ΩΩRόŠ.žΉ¬ί-/«ΪwŽτ *Θ΅:ΒΑBͺWΪδuτά&Ί|ι2SŸj€Ή­7ϊ–w`Op%g–Λ=6΅Θ$ΧΤτ,°VκYI€`Ε…ΉšΚS³£A­ό)•j<†žkJ_rψ"±.oM§€ΉL’³τš}½~룕AΕΑ…|rσ²Ίπθ<ˆI‡ tκΪ )υ3g5Ÿ˜ΫοΏtϊΝ±Ν#βͺ°χXΪoκ―Γi©·γύΣ–gΤίΥΠ†Α t2eΘΞ+Η‘s»•χοQ‹ύΌ©ς φ3 ̍ήFΓ5/>#Ζ({ϋIΡlSD.φή%Όησ“Έύ FPtv–ΒΞq;ΔΌ«ΝBΞ>LΠ|(₯"²ϊΌ”Υ‚Τ£ThΙΣG'±’rb.SNt"·ˆΖι.AγZ)-+›q¦Νqfψ–s|0τqΣ?KAbœ¬ˆ8ŽΙ)½w§©q4Χ-8’ tOƒ M^ Ξην’SΫ#ΫάΟω™o™δg$“aΪΈΡη± ƒΠ2anžŒŒι=b¬‘ΆΙYdΪ§«‰ύκQχΑ?ατοόox‚ρέxΪƒΒ”Ζ|Θ1Μ_l’'Œρ—,-Έœ5ΝΪ—@ό;‘ζΠ́’ΡΉ±Ψ˜uΡYœ³ yς.ΈeΪ€£»Tf”/m"šςX’<±ό%ή—ίCm‰,ΛwΰςϋΈορήϋAά$ας’5Α[#/i*τφβFΏ¬ς «ωδΖX•­ζ“λ £+ηgΎEό,7]ΪΌ=ӍžVνܜorΈ(bΏ‘ΚKsJόV{Φh—­NΡ»€FλΔmο 48kD))ΆδJŠ-zt§&δΡφω>ίI*+Έ,wγ~ύv9/(ϋ­b–νpΖ‹ι’ΪμβΨ  —ΛwžΕΑTY¦Ή†‰:άnυJυΈnW°ΆbcέΊŠΙžε—Κ Χƒ_β'^ kρ5($EgYD‘s«JΎ.Μκΰμ;ω.η” ψŒ~@"œω™HΚΘC–%Yl‰Ξ­BeιmάςQbNDωΎr₯°G-χu•”~<†Ο!t")β\>%iχ(‘O 5 X}VϋA­AςΡϊrRbΛ'•…›ήwͺΩ‘Ώιρf±2ƒφv¦xΐYα¬8+ωBΰ/¬Κ€δ”(ζμ]θ€]ωφΊ<Όξϋ<Ϊ[‡Ά4Ξ—lηK³“˜gzΜBGYϊΥΒmΘo_2T¦ΡΧΫ‹ΚlΆαΕA;²χ‘΅ΛέΘΚ•&[i❒mvfψό4Y°₯‰vΛbβQUŒ$Ά@EΦ₯Z†"PNΗ;:²Κ±KZ`  œ ή¬¬ά lIpaδΑ ΄lκn›ί£6Y*zCΪΨ§‘Έ—ζβΞp§Tœ©±Y’‘u«±2>˜’λ,Ρiίψ'4:2Aέΰ΅4‹Ή “.T~ωψ€p—[ωψΰηΩ–ƒΝŒrρO«+iδυ^šX$‹Xl‘–-°,Ρ±š‘ΈεyΛίG&¨ΆΔ}Λ7Μ―mͺO ΐ,΄ς@™W|‘1Βω5ηΧ[/Ο|8y2›X_'Fȝ)*φ@‘lyu‘ ·[μžS1EŽ ‰(+(ΓςHΊu¬β&8OαCJ=#½ ͺb7}_)ŸX‰)Θ€)οqMe/ LV8@:»δο―<<μuT±#ΰ>άzπwΈIŸΞΑ\ͺWbϊ<2Vρ*Ν§KσΣwQ―Τε[bB‚ΞdΝLςdŒΪίδ!‡Œτ@–θILΕΏ{ΤՍ—‰λyΥGQρφ IiPΜS}RT†ξθ4¨!’ΜΤ§fA,βYΰ«=¬& δ# Ίσ¬X󲲑GσI#ABιG<#VtnfyΡΫ…π\{΅ΎΞdpΝσ²°!Z`φHB}S΄αͺHŠaΞγAΛOθm‘]%^)? !Š‚†FΪΠ-GYʝr½aqmGχ£6T₯3ε\ΰΰσ/‘νζ|·$ΐ‘’U²Π-ςq;ή?KπL^EWΫydο₯η,«/ΙΣSΔ9:›o*rF³–΄±60Οi²ζ,qK΄7|T‘ΪέE²¨Δ<ϊ₯f±oSZŠκy„‘¦τ̝FAYΧBι{vhXςΡΊζ­ΣWž<‹‡€θ¬«Ru³VqWκ₯ΟΊz§ΥHWC144Bυ‰ό³τθ)T|Ψ€ςΟ¬σ¨”x«&‹m^k|0Ξ­›ΪFγgdόaζ€™ΡκΩg%κ§|₯2žΕT—ελ Ξ—Τ<ζε¬ iΓq672Ό«‰όΥ'R 0Μ_,ΙΎ΅γ/.ΪΜυίΜBˆ§OόGμφYΈqηΑ_ᆬα]Š#9ΙxT§ΏΉ-ι.Ιά2[Z˜Sε%MmΖω’E:5u…‡χΙη/'ΎσοΔMLOh₯ —ώζD}oΉοΜς./ΙΘωΏnͺΌdŸ`Τo*?£ς-ρAV«ς Υ|B₯aςσ³@ΕψYδB›dΈ»ΝΨ"₯ΐ dο)’S‡z”hδ%eNP} >:©ΊσtiΘN?Yψτ’,Ux¦Ϊžw«X^™ΐ [Ό€ΆyΈ/"H Zή•J1+4‘΄ Ϊyκ3  .«nMy±¨ΠXQpwkβu±Ψ“σ<*ς„η"z]ŸαξΈΎ²G{€›Ψ³8[[Žabƒ«Ε|φσ|Μυς #Α~š¦fL€NEFvš\=YS=,UzDYΊ‰P4t]θQŽlS‹J+ΙΣN5J˜˜Η'R2 S¦h¦q©Iꄨ&XΗ; νκ%«··.γΐΛΏƒElκ&–ΎυYμƒBγς£„Yen²mhBΗ []Q΅‰βΙς'ΰ?―v-*^°κ•6>‰¬ζܘa3κ^ΞL}ΦϊΑ«Bv;Ώ6=Μή>6ΉΟnϊrƞk›ήw"$»όέ£α ͘!EgU²­ς «ωXΝ¦ψ‹Lj6JΣ‹εŒŽ5£W}μ”ππςpΎ΄™| 1₯Θ/KΗ`«'Υ{FμΰKzε s΅χ`τx…°ž–ξ€γνRΖm: V€Ωx“|~d„Qΐ6ν8‘_ΎSΰ{‹3d-ιQ” θœ’[ˆUqI`qΒQ/{ΣΣ΄Bμdγ Y}.ΜA‹‰ρΔl“hωaΛΗw-fΖ#m>cγε YB'X+΄­ηŽzRFόaQ^({Ε…ΡišΠΧqζΖ r%:wΩ#οJνM"‹Ξ’f‰ŽΦΑ!|‚ΆώΉΆ&/…§άΚǝ7ΑδψΰQBbiΟ˘ΗΗh:’Rδ…‹EΜΊƒΕezέX{>½ nM~QžmΛ―-ρ]=LθλΨ,4ύ`a\Ρ'u†r~Νεωžmψ\>$q‹Ξ&ϋ9ιͺς™ͺ—θZ;?ƒžŠ₯Χt”T~ …•Η00Ψ‰χ¦h%xH”VŠͺlφ-+9²4[―›κΗ0M‹ ›yΙι ‡Ύˆφ:t-·nΡ ΝQ±κm―—”7xώΩο“…h©LR_u#&ύ"^ΜTL#‘;žYΗΘΠ5ά£xζ²_Α·Iιz`πš8„™•eΔΕη‘8η(²dΝ²γ|«ε]ΏΦœ…‚|@tΦD„”φό[ZVlŠέ{ίϋN$šυcmη.R°^ΕDΛ§θ’άέ7ΠrφΚ>q•xγ?ύ;\ϊΥϋ¨'έΑΪηΏ‚σ'DΕMFXΣΓΫϊsͺ&κS£Y”_ωC¬Do"ω0…~ζ+(–ϋ)(νŸ@e:)j’/ύξ"‰¬Τ.’Ή‹;©\B³·VΆ‰~ΘΝ; 2>ΒΦx6h Η‘$ΛΘdq+£gca™M\™%kȝL!/„η:X[iΙΕΧ…Rί¬Ζz,JŠ_ΗΘςη˜ήU€CετnΚΟ6½ Νχ5U[Ι šͺΓΐ{“›8Hο‹ΐ…γ[s<ς [zhQ"…₯ϋQyξΝͺ(:ΫςώYΔ¦ΉωžcŠΞZΧOŠΑβz΄6TςΐΩo"[žλΒίξδ%MFΕKxΩΉLσ`τηFσ‡?C»¬ΤSτ Κ+€z栁”ƒΊΙ^ŒΡ`—§,»ΠΧ-ζλό ΊgIΡω‘R\ΧՏπΰπaR8§ 2Ός­?ύΤ]ύ­°Lk )iy($ΓBΕφΒA–§IΡΉKΝU‰κ,f)‚ΉU¬)«Qβ RS²P]y„ŒJ‘E»8€ζ&²v~΅§£˜m°‘ϊήψγ?Δ§Χoa2"‡Οœ,f 6γŸΎ«­ί΄>nj«υλς3R\¦υDΡψ9XτΎ΄ƒΤ·«;im)ο(iΖχ‘Ύϋκ(Ή ς’y>o2½ΫόΚω™όΜ«―‹O_'ξςλχ?Eς±oβάΧO+σ⃍χΤΝ,ŸΎd]Ξ*ΕΙoύ!*“]€—Πˆž6’‰鴇t”<‰§dyΠEOόπqCό…5̊<ΑςqΊό%@žθ|8”eωa˜’:±΅₯Ο₯ΗΠKί+Γ3#΄!cdιxd§£$§DQr¦m—xΠυ‘’UρXΰKJ^­'Ϊtaβ’ωKυλ„³lSrf²Aχ,Ο}―©¦ΦΕ^ŠΨ‰ε‘\ΊZ―φ——T,μτm¦ΌdŸπΧV;ω™Ώ:Xx@ώbU΄š/‘Ϋ3Žσ3κ—όlπ6Ε/υ£§ΙΈξ©άΣΟβhΟ ο΅!ΛK^2ϋzΘe†~Υ.μE'"™Ύ g5JoΩt4VΎόIS·C€€>΍ƞ_ψ!7UE_G‘0Q4‹ΆwΠΒ΄/e.ρ^ŠE¦‘"οJγΘμs‹mhσΐ2 ϋ N‘$ŽV·ᓄׁΠΖ_.&6)‚«”i:J΅žk’œ@IΗΗΖι€*q21Ώ²ωwz$₯,Κ•rEεκDc rΜΗE!š "Ίφe¨άΏO·¨7ϋΗrJφW4ιφ‘ $[sοιu8 ΨΆtέΙβ)χ,%ΛυΜ%ή kΞR/£·υž);χ9HΕ°©¦ψ„ΐ3Ιƒ€„΅³tς?mTϋςU• JUS“ΊόfκΚώ™λ5Ÿδ#K€‹lb5/=,'“’3ƒ4€3φ\‡πΎ{Υ½±±δ²΄‘~jc¬ς «ω¨nkόE%:7s?2εg₯ν#}jdϋ8_²›/ `ˆ„χ$‹ š{'~φ|DŸψ”f‘Εσα鱃/Yz g0Ψsι4’^l]pγθn”o^4ζ7k=ώ“›εσσΓ4αDΕ±ΡΡ!mꃻ7 C lA6UP~f5N±1VrSc”k―8ή8ŠNRtφι–6₯%)kθϊAΞοy]Wo5mUi 豍ο4˜΄4(Ηβ,ζWha\0OΎˆŽαO4»σp,³RY0Ÿι#΅o}gx| »¬–δ:KtΪ7ώ±VΗ’’žμfύ!!§ΨώΧΗχ\›“—ΒGnεγC §ήμψΰYV *ΛΠQΧͺ—@ž<¦-LB0ξ¬Ζzω‚σy5ƒΉη“ε εϋˆείΆόΪίe-ςu†ψ§εο‹γŠ/™Ϋ6„σk.ΟoΫ‡σ 'Œ+:›ι`Ž—N``ΉΖ?ΗΝΎpš'χΣVRu ΘΙ>$όtSΞ΅γJΓOΌ¬£υ H+ͺ‰YΛράϊy06ψή}$Ωρ€M¦^Sž1ιUПέ%}λΩ&EΡ9E:ΉΡ?τmτπΈι1wμEΜγΈ%k­­O#{Ώ8gžwΰ4ς¨„΄GO’KQ6lΒ΅+אχυS’’MV ^ϊ>ύΤδ‚oΎγC|FΦQu‰ϊκnΦ£Š¬œ ”%Wβτ·ΨO·Τ Ÿ^ ϋ+Ύ"Κ§W’φB₯’§NΡlς£ˆ£€ςοq¦—£4C|R}R%—“΄Ί0:!*:‡τ\ϋΤ< €ϊ›Ύ”–• υΔ8ͺπβρ*Ο::p₯Ξχύ3/$:=IΪφw“ŸβOsρMRZžœδ½8ρ:ϋyRξφΈ΅ψώEi¬Ϋ{”§ήΘΣρjˆ§oδz :_―…jžθμxˆΟdκ]Q*Φ*σ‰j­\ΡX₯^ΡzΣmUΡΉφxΧΣP§oaY[˜ΰ§y²α:­@ΈΓθz%μήξ^‚6Y―οΣΫρΞΏώ)ΏχUQΙ8΅ΩO“ď·φΕίΒωύ)ϊ±Ή'π•οŸPγHIϊ‡M•¬NΧγύχŠπέoq!>τάλ*R3xυ— ύ|WK‡!㦑ςu5wΤco^6r„ΈX”–|™~Ύ ΖoαΣ‡Ε0!‰5yΙ4Ÿ§ΊB£Σ·=Ϋ6„σ3©klΰg>ο{<ΚOWψyτδ|ώΦ§AVψRθr–εGΩοœ-ςΝ|Ϋ|ͺμ‘CΝ^­Κ!fλ ’>&ΚͺΔ΄£šSbrγερΐ|ϊ^Ιχ«ή!~ Τϋ| XγKΊ S7ύv|‚ωK\‚΄aŠι1Wx‡4{xΕ@ρΏ{χ .iΈΌ$‚α!ΏϊπO `’Χ#½o4ˆ4σ]¬W€°Πω„²MΗXεςY•­ζ3έθmσ3‘όρ3¦_2ΦΔ°§ά€Kαi† Ω'…_υαγr*z§lκιhjEz>R`˜ a!AΠΜLΗΑΌη±c€ΥέΘKݏršόk€U£"‡†ιuW:β%gFΌο±άq‰N<†³Ήεu·`d~ k«ˆŠ"sήI•H”kX}n΄ N{δd‹}…/£$VΊ§Q`if‘ρΟβ`"­„j܎g60ι~€ξΉyM¨Ζ«Yί–Cu‚δ(KΧ±»­θ―Ω‡\†_bΞόζnܽ߈™(?ς¬ͺ\k©tLr˜ΥΟ «ud€} ρ₯•Ψwδ rεέr2ι:ΨB–$Ž•τDη>AQN}@IDAT‹‹ΦqλϊǘM¬Β‘Eϊ½ςˆ·9¨:'Ž£›v— φbjbŒ¬'!oΟTΧΘRΠ8&†{’Ϋ¨Γœu‚(΅Ν|P_—_³HλυYβŸ–ΎBWdΆ•σk.Οo§τΙ€+:›θΧψJΪ€$sŽ£±γ2YU{άfζΘ*³όωθέ€e:†Qί|]wi|ΰ=Ό…%r Ί%ZŸT——ΒR^ ™O(y6‘Ÿi«ρφζ/VεA«ωΌ© {ΞΟHΟΤ/?F_CvοLš£bίWρτsχ·bfw¦OY^zζχώΓΣΑ[φ»WήXhn>MIΚΉΊέwπρΐΓ@IBŠ+?»¨eV‚§ρޏή1eΧRΕ1Υx±θ haρt^Χ(‹%ZΑ%=ν Žgδ i]ƒΧπ`jLMYŠS{Ž nΥ@ΎaΧΈ9Ξ&|]ZΥkxεω}jΔ&αɎ~ιKΟ ·Z™―oφΡ‡xλƒ:ΟR(zύλβj7ΕΏνο™š4Γjq‘«Σή Τ{οςςkΏ3GJΥ~|žωrpκ»ί#Eg?‰₯ΰŞkψρ/θk_γ”η˜Β†ήΒ―·jby+/ό>ŽξQχάksυήψ\Υ(O;Κ.ΰΒ‹‡mZΩΏΨ9>xηŠίΙoΓυ…Π2-Κ5η8^ύŒΕο6²„(ΧΩA§BΉρoOήΧP) J>ΟΜ]|@ΗQ†£³τ\Λ φ|ΛιδkςR8Ι­||`nΓψ yΎδGHχ:ݎ«?ϊ‰‡’³%>oωω΄ώ}$·g[ςk‰8«|Χ*4ύβΈ"χA8\9Ώ~ΪεycOi|¬h%`v^w;·±Bx*ιιY,-ΙPJπο))*ΪΨάάVm­ύΞΖy¦€6y?ό³(Šfv4"!Ύιdυ*:b7hŸ#Φ7V0GF<Ί'duΆ`΅8P˜]„Δ]lι:V–¦1ΰjίep'rΣSƒέ;"°Ύ6‹ρ‰& ?I\¨‹?GύBj]μERzω]Cš6z…Ίb˜5œ5,‘ΰχο5ΩXϊγ)*τηΪέ‘Φ—@ΖrŠ’R°λz‹Φ13ۏSAυι1›/T:υ©Ψή‘Ž’Ψ““.Z¦bΨΊGΠάδΗ*ΊΤ”­|Ά½ƒίψ_πκΡ‘ͺΑΊαM/k₯›NCV%f#’mB]_#%ίIL έCί&ρ4GV„ύ7K}΄iΘ8υoρo/šΩςΛΏΐO―†?Ϋτ>£ ’J‘ŸLcXΫʍ0Ύ‡Φšp‘3΄VŠΉ9?μδgy•Η‘AckZžΔέM’¬ΚYE•p¦Ρ;-ΠΈΎ0ŠΎΫχό[όα!3+O„P•΅¬Ρydό- Ρ»w ί¬•ΥIŒΆ{(F[+œηbpώb/±τTqyΙlJ&Ξ'(žvηgžόμ£9>ΉΥ†#ŠΞ:Ομκ.$ΖG‘QΏlyI4©§“a+‚f§oβ¬`f5’}(q£τ!ξŒvn)[VGόQΙ™jœYžπQrf„XΑeƒ&IΨς@+ΐΛMΞΠρS#71(o/Vβ™ΕH£ΞΙy}%gVΒͺ—š3Z°©tσνWpiyΗj#_±fBΛύƒχΡ=²#ϋεΫΙ±qίrWWθiέϊ†ϊ\uΈςΛ8yβ νΦσ*n‘zRs YdΞΓ»Ό^:νκΖ«8r¬ΪK™m(_bΝaAyleY¦ˆ•?‹©ώR](Γ»>‘z7z4 αU±ON9‚=LY_pέxdAΙ™emϊΰηddό$Š ³ΘZ…ΡΤ.Ω­¬zZq·~€_¬Ξΰd-a£³«³Α‡ψό“:}kΞR‘†λ ‘dϊ•λΐ Όύφ*^8zˆA<•Ί½ΫΘς„ϊ\yίژG±Ζ(…x¬π Vͺ•|Φψ‹Τ†Θd(Šlnt“5'm ˆσ%ϋω’»υ2ήr9Š=Ήžοͺπd-Έ044*=dβΕ_š_ΖN‘οχO€ER©–υ5γF#Ϋj‘«παA >ς£δΜΚZ]ށ@Jάb•σ ΓDŸΖCQΡyt¨OΩΠεκΒ): ›y\£χήq>P‡χ8Ž£'žCεIQZ"GΎΜŽφa¨ΫσΈ‘U²^BΣr’ΐΧΉeΘM΄τΩζΖ?ΉAfΖ‡ρρOΠD‚•šΣJδrά$£5χέ„ηΣ,ΗjήΟ§ξψš\g ΙΑΗ?-0ωš«^χ³¦žΞs-7•Λ­2W>>08lθω’UΛ&έΖdTΟx;KίWυΏώ…‡’3«έŸ·,Ο[ό>b„Jn{ςk‘8k|Χ:4ΪΈ"χA8\9Ώ~ΪεωpxJŸ<ΉEη'―O­Άhf–”–ΌΏGMFsMƒ:–M•a$±‹Φ*όύ)!œtέ&Εζ-"x+λΪ’&Ρ3κsmŽPλ›™jΒ= Ÿήfσ…J§9TΆGjwΧ=Τ›|™ž¬wβ8ͺ%%g2 W?έϊŽjΒ]ϊmKCF֝€Gk•4ͺΊ4Τμί«ά.-‡4ΰ)ε< ž™©v4[ΰK[MΈΠi.œŸΩΛΟϊšnΨΊyΠ_[SFΊš0brόςGC°p³ςD°ςl_μC7ύΈΫ<8±—ΏXκ)./Y‚MΙΔω„ΕΣξαόΜ“Ÿυ7΅…τHL >Β•ΠΣξω=χX-:«-ŠEz’±μ(° Rμ™'…›Α-Q†S,διYΖS |L>³Έ8—€θ]QΨωΜl¬/`†r§d-’ΗԊΝͺ66%Βαq+£pΣό€ƒ¬JΏ.Y•ξώμπρέΫͺv–V!)ŠνΓ^§cb&ΡΥi°μψ”δ§ai”――,bj°cζ2Ξ$;°sw€ΈS’”|FΫ™΄―+!kΟIΦ:GΌ‹χ?yΰ›hClb Ap™Ϊψ.Ζm6ΑYξ‡M eϋi–OΘ”›Νχtρ%³WΞ—DΔμδK±Ξd§'‰–O6舯ΩIτφzοθέO[Ι—Όλތ{;ρ΄D_ e™βXFΒm™ΑτDΖ6‰Χoε{d ‹™’iG―3&‘d4’vΩ³Ό4Šα½‘έb6e :mjξ–³•Ο΅ey)ΜδV>>vŽiωϋ”(ZiYC‡Ρο“o‘ΥηΣΜχ‘I’|’o5άκϊΨ‰+kώΕμmΐω΅Ψ)vς—'…_s‹ΞφΎ°SXσwlΉ½Um«ΈEηmΥœŽG€#` ΩΜ ϊŸγ χψP€Κ«<‚8ZΘ[[A{Ϋ“©(–GV›ΏGV›ϋšλΠΫюΑ‘¬Eη ͺφ4ͺJ$#E£uψ៿Ή%Š‘τΟΛπF άωW0ϊ½ΫθώiΰgΪΟγ8v#μύ χx3x= ό…ΛKfžžv»#ξό)ύ‘ΰ―εg­-=BQV-:χτˆωwμ …K3fJM“asΌσξܜ’ΓΊT³ΈΈ1>η2%¬‘PˆO„#enRšŸΠΪ?LDi‰z,όΚꂒÏ«”w­4ΫƒŽΖΣ9έΈ UΈ{$%g…ΆVΙ™5Μ26¦QΩΪΊ,χ˜²˜ε2™fσ= όEΖΖμ•σ%OΔμεKσ΄β‡*[Ι—ΤZ7Λg/ž–¨œ ±Œ~›λΟ{΄Ήmς,}QΨΡλΆοΒ…Ξ툝/MηΉΆΜΓLnεヽγΓX/mΘτ}ˆm±ϊ|> δ­ζƒ[]³ Ξη_ΌŸΞ―=±—Ώp~ν‰.Ώΰω“ΐΰp8OϋΎq}7Ί1p³Χ§Y9Ης‘wΌ0¬γυΪεΣP?}Mυ~bž ΰβΒ{^E-ΨΟΧΉpύς»\ΙΩ²ΝxψW ώkώ§‚Ÿ™…§ηXD€σOΰž ώΒε%ΟNηwaώσί}[ΑΟ";ρ§ώI°Σίύ(`ζD‡#`όVE¦Χ '5XEϋύVΨ«»U­xzκI«z _yυ d¦%".: »v!6­žΏ€²ι™šΌΊ+wŸ’ΎΕτΘ(:›ρ¨ρzΖ矞‡·”#°Mΰ|Ι»#BγK‘)QX_\σ.TΉχx₯!†=‘αiΈšΗœΏGΉxυ›‚½a Ÿ…;FΏ7ZΑοCΓ3xω<GΰιA€σkοΎΆ—Ώγ;ή»υώξ#wο’VVŸΠcΣό5|“ΒηζžΞω«δ$qξrll+ΆΩΧyωΟ‘(ƒζΟ]hότ6Βΰ$yϋΟKβp8ˆΟNDΖΎL|ρΕdΩyZΙ!+ρΈϋ¦Β:ΎΏGiχψ"π Xœ‹¨€Dˆ£šΖΥQ‡~όαF _}VQαΎp@ΰIα_ώψo8τ§‘#π€"ΐωΛ“Ϊ³ΫΕε₯ΐψπΨπB€λ/φ}̜Ò~°Ϋ-ϊ}ζ:.[γΈ’3WtΦ<Ϋί›UΌ4Δ%9‘Y°Εε°gΟ€$ΖHďγώGο£sjyϋ7Ζ& ¦Η1=5ŽΩ™§s‘Θ&y1ΛpΎδ UΎ”Pζ@Κ‘4€džερ%Ÿ‚Γ=ή§A¬βi°ψm‘ŒΏGΫ’86#ΐŸk_@­ς³pηΑθχEΚXˆU<•ΞSqž8Ώφνk»ψK0ώ·βυΎ;|Έ’³*Φ˜5η……Ek™ΓΏό άoΌ–Ζ»hl¨CΓ'oβκGwαβ;„ψ£fœγY;ΈσόcΓcΒώ\ΫΣw||°G^ G€#ΰΞ―ύcc&†ρkζΒM~7ΣFžΦ˜Egξ8ŽG€#π$" +53eg­’ άΦp—ΫΑ―Žΐ“‹€#/ι‰δ_2}r{Ž·Œ#°ύΰόeϋχ§#ΐ0‡€,_πο?sΈ…šϊ™ίϋLΔΫοn\y?`‘Ήωωγy$G€#ΐΰp8OLΉY« ,+;3 ΟQιъ΄ŒHΈΕχΌ[&_9ŽGΐ||0OΚΰp#α&ŸΛ›(B+$Ÿ7š…§σƒ³ζ<3σtš8,)*Pinnφƒζp8ŽG€#ΐΰp8ŽG€#ΐΰp8ፀlμ’  ΐRCzzz„|;vμπΘqθΨ‰?υ±ι¦ΏϋQΐ’Ž€ρ<’#ΐΰp8§ν1Χ¬ΥΒ=mŊ+ˆχQrΗxοφ===Λ[ΚΰpBCΐ›ςρ!4ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#π ΐŸ€NδMΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8[ŒΐΞ-WΗΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8O_|llΠ?ξL#οΔnƒΉΖg]SKvπ?Α«΅%˜ͺΓOο7Ρg,›ιTΑΫΈ„ρYwΐr’Š‘“θDlDΦΏXΑς,¦&›0Όθ'[΄…ΙYHŒŒΖg"Κ35ՊŽ©ΐυ :e)Yˆ‰ά2%³Ύ<ΎΎ&Œϋ©†›D λ ~σ;§‘HΩƚ.α§οί0Y€…δΙyȈ–—ϊΰž΄?L³dœψΎωz0Ή’Ά`w fšŠώδ²f³ΟŽχέ(IΑλRKςζŸΑσn_βόEν‘mδγ|iu†ERΆ+ŸΟzίϊϊi’]ΦαnΎŒŸ}Po±:Ω’γλΏυ"Ήπ£·κ$ΪAΔ s$Y‹H\Zrαα`ϋ&λ@fJ:’b“΅3‚<Έˆρ±ztϩΝ6Θ‘Κψ΄FγΠbΉΥH3xλπρΑ:vΫ%§ήψ αŸΣΔ?1ώΉ™|~[`h†D·υ9OδVΦ\˜ρ7_ ‘Σ<ί΅ƒN ά:œ_‡Ž‘©ž€Έψμ).’œX]pΓΥέ‹SεhKόš+:k0α^ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐ°nΝΩ"¦I§pρψi$ΜήΡςΈΤΥi0uπd‘QqB’Ψ¨Ψ¬Ε„„œWπΫΥ‡‚γƝϊ‚£ΎΙRŽΰXI ΚRΎ‘x Ν‚+}ͺŠvaΑyTf’’³^ϊ/alτnΦΏ‡nŸ¨Ωχ2ζ— Ζ+ξDιI7»Ή‰ιHŽOGJ|6”ξΗυ…[0ρΣP>>Ζg3b·b|°ƒΚmίL>/Χρ˜ζω`h„ΪS_1^<ω”ΙŸ™ Mxλ£·|x}(|Χ:CÊηΦA€σkP6!(λ8^:s{μEοmqΣzAARQυΑIt·έΗ½¦.%̐G#ΟoΦά€!:ό%Š&K ©Ρ)ˆΪ±_¬.ŠΜ-τajΥ_λα%ΟΟUεaqτ>όΛ/°ΙΣS^„Ζ">r—ΆΆαΖbφ™ΖeW²cΗ]»°γ_›ΖθTo@ŒERŒq‘ρΨ½#‚ς‘IŠ/–1=׎Ρe/ς·ϊ6~^ΈpIdΎdvΰ>ό€a«)Ψάϊ4ν[ φύκIkίζ’χ„•Nοn’τξRΛVV'Ρ;=Έ‰m΄ZŸΥ|bS’#βΩΖ*fWη·Ο?SΚχ[2Υ»μ§^ υ©Υ„†‹ZΞ6πiψη»Ϋ ?Ά )58wα([ΓTηgψΈq(ΫΒχΘκϋn5‘•Wˆdšά )‹δ¬U,,»08Θς‚UωΜj>Ο.Uψ©~m©}žυm«;Ξ·UwlbΜπΑ”*œ9sΡ;Φ1Ϋύ9έjέ6Ν°Ÿsί·Φκ·:>π|ϊx[ΕEΏ4Κΰp‚!ΐƒ!€Ÿ™δ4¬δΜJX[ 2Ι¬_M€P΅Ό΅©B‰J‰•W•²†%•%anΡλx­œ,ϊu±ˆ¦ωqΥUβ@ε³ΘQ||iι‡πΚΙxλ³w5 žNœ<ςML—Υ­Ό²E:Q΅;Ψ±ρ|4`―Um―šžόΫ%zŽ₯VΚΧΝltν±#’’3UΣΪ’k΅<οΐ³8}ΊF £}ωΡ¦+:oU}}=·qεƒZˆ‹Hˆ§xˆ’ZGKξΓέξΓ’νΆgv'ΌŽYΗLΔ»ŽωkΒφΪγνq[φΆΫr«%K’©‹€DŠHΰ ‚qŸ…»€Β}υ~ο~―κΥ•υK²πςεωε—ο}ωeΎ_~ΉSf5ατ‰#¨k¨Bœ[aPηn‘>n‘σ>²osTΈΌ‘,‚N€0ΤπάξΤx$΅»φp,Ϋ.έj―±ΕxΆκLiτ3m’€οbJν δ,’‘ω Ξ6­γοZ/{<!Θω˜&©{ιTPΐͺσ&ΘY3;fΐ{ ±»[žΣ†΄;9>Ϊ―Ϋ(ηΨhT–ΰε`h5Uί‘Ζs Θ™HZZš‡Z$Ήk‘qΛΜ­ΛCίkέ4_Wy[^‹&9sn@Γρ&:΅'‘«7;υR膩ωΉ«€Ξ1±₯(·–!/>U‡πeτ\Β½Yc‘ΘQ‚ν…˜(:ŽD§Φν ²‘ΎθςbΔΦzπyΧUθι’Ασ%E™Ν(Í`p_ՊŒit·βα¬ϋbk*²O ΟbυΜΓg?Œη<Ύ­K£ͺ†νσΖΕ#Ω–Ζοά Ÿτ°FƒΘI(FuU6M‘·0?|έΓs¬*ζiΆOE†ι}Ί°§AeF‰ΗN}Ζξ ]Δ@GgΣΦϊXς₯%•#=&‰Ράϊ8yrβAΟ»θΡm‹<£uω€Cx>§Β+\θμ κdlυI%°πEΚ»+―OS.™rΧΨGΒH~FD"!EΛ^F»sολϋʏΞI΅¨H/‡5ZRΞU.φΰρθU i6–±κg¬ωzΨδ5Kϋ”φοZŸ)wmΧΏe­‘u|0σιsœ•/ϊ₯™‘&L˜Œ&Π90>Ή§›νĝΒ·άc€ΝΝu€Až弍;*ΛΕRπnΏ&ΗIz"ϊΫα$Μ₯ΗZύζ,ΊέΟmgqVr^šλFΗπC ΉEOl)₯¨ΟMÌKee95S6^;9Ձα©A8\“XE»ρλ¨\ϊJr¦ί~ύQεfe>€¦ξv~:‡ρψζ5L ½ ΦͺCbN™wj<"R*+Ι8 r^DWχηΈέωΦ²pΊΈT 6©₯v ΖF|  ]ϋΘΨ%›ι˜Ӂ Χ –Ž‚μ:%D°h­DSςe΄ͺtP:C‘σ‰Ii*3ΧnIo&οςBδDΜ2“μμvyΆ­ŒΪΓγΓn—σ ύΖ"ͺ‘³U_933ω.ξZšΕΌt#^YεQtΊ‘cήξE|­ε΅Τa.L ‘AέΙ Œ οώΪjθ{λ­²§Ψ>o$ν‰π ψ&ƒtφ…σvάχDƒ%2Πωm°εJιYΗ3Ÿώό•/R˜W“&L°rΐ:3rnφΎ ŸΎ«Εk9Γ_½ˆ;={`›KGpK'Πύΰλ7Φ-΄Ο—=#7>>|oέ»’JΣƒξ‘V|ρ@αb·ζΠ?r#_βρ¬j}œ’†θΤΗυπΝ™=aa’εȘ¨*Θ•ΛξλϊG|πD#-·α£Άp$ϊ&2ΈIyΘ₯7S*@ŒœΡτθs %_3tΞ(FnvκΓUύαzΨEͺFZnΐΫ›6Ώ©|GΪ’΅Μνv;]ߞhνΫΠLΦχ‘fωΙJ'ƒ\2ε cηnsΆ= —Ά™O―xYάΊΠsσ ΊsπΒI_'7ψ&5P9ο»”mŒΉ‹ίΊ»θMγ.&§qW« y¦έ±ρ(‘5ΚΪωγφ·π‰ΈΩljtΟΠY0]‡Ψ(Ξ`ž?Κ=Ϋ’ q΅ΰ—η[4AΒ §?N"κ̏PΐλΧ 6g‘3D9??Χ…–ξ¬,Œΐ» %?ΐK₯π{rqΚά\§Σ‹ΫdŽΫΚ^Ÿ…ο†ρA§}ΜE>9ο—*φ,r½6}3>dζΏ†ηΈq†36%Κwެ9ΧΈuLrΧ :=ˆ1Ψ9 σΎξΆuφΖνޜσ3chΏύ!|τ6O »ΔσσΉo#]S8ψΚΨy(W<’’I! θμΟοT?ϊζrBU η•ε! Μφbre‰HŽΝAiͺσ+ξVˆ}»[cν΄£»"Ρ’!oiΥœ_μΆf ΘΩ1ՊΞιvlD‘ΤֈœXΑ‚`aZϊζn@^’ γw.Ξ/bziΞ•y,―/#<Β[r9YΩθK,@IΜ=<ρ VӜ―ލΚLΓΦNXlψκqΠl‘δ\P@ΞΛτaεΊ&F`±BƒUό“ {}ΜΞy α§tΟhΦϊXσΕD'©@ΜδQmΖX[ΐ‚'‰`–g\ι‘RωΛ›ξ…λ7ΰeœ¦š-FU²,”ϊXω’‘ΗΌΡrΐ”»Z~„z·ψΉ“ολϋΚρ΅Ψ―9ΟΟw c²NZ˜α6’Ug 'jD’œO΅‘άu^VύŒ5=g,ςšΉ}‘>Χ_υό{ΰ½ύͺw!ν[œ@Γ;ˆ$Μΐ°` АrwQ!ΟoifΜ|Δpω+_»ΟΜfrΐδ€Ι L ³††ά48Šlρ#έόΨM|±—Οc2,νW'ÁZBΞ):ˆR1ίμΈ;ΘYΝ^7 Μl+.ϊ!»Θ ‰»+Ξ­@–HV³―H g)ly³΄Έ•!΅C W]-U/ΰά±*D`v3|Β—ϋπΡί½ ΟΟͺͺL¬ήΒSψφ ' œ-ΩζuΑΡݎ֫]Θj¬ƒ…”Σ™žΟpα]·šπςOO ™ Ξ,]ΒΫ_/Ύ| EΕ°ˆmsNt£§νΞΪΚηΝ¨:†ύ•°Ϋ³‘žlŠ#Έ…iŒ8Πΰ .^kw«GΌ-<†oŸ%:‹9΄>η8:eŠώ,„ιύ-Ε±οœFEi Yν–ցř!8FΡsο:Zξbσ0ͺ›‹Ε ϊΡ~ύͺͺ²tωήχQ’…uκ³θτ*9Ξήψό°L9Ž)œŸΉρk\Όεοί{Υ•5H#Ύ8ιαψ8ΥΧ†ΧΞγκ]uϊΠκ ©δ–ο ϊΉf|ίƒ§ΜŸς“‘NΉd„|ρίΪ]Β”KΘ%Ο~¬?χcΤVV!7‹~ Ž—…}έxxγάλU6±ΑΘ%.G^ό½3H‘q‘η*Z§¬8v€E9Κψ2xχ .ύΓ»P$Z%gψ±ds‘η)Ξm$ζIΙ8τΫxΎQΣpώ7V¬`i~ύCνhωόmtΨzόψτlΌΘωΒ³ψξΩP³0Ϋρ)ήχέjK9ŒWΏw‰΄•}qθ*ή>]NPyκwΠXWƒ|Mτ£λζeΌ©’NΞ@žS?FS‘…NζP…Ψλ’±ωΌ/Z˜ί#`ƒ¬ώδΦ½Šc'όυ_hγ‘Τ’`Η‡r:‘5]Μ7οώŽΛΙφއωΉ6υV_lŽΎΈΓΕyt²m¬…£ώΜλh:X£Μ=hoύ˜ΖυόAΙΜ"ηCΣηΩηG»]^³Θ]₯'DŸυ$NW‰›¦Vϊ0ΌbEv7¦LafNΡ`δ| rΧ:ev©Η”Χ¦>οφhκισΞ»οβmχ₯&9ίG`―Ά›Ησ:Ν€«ο)ρX·Ω@g2ͺpQ=3K …#Tτ;0F;Ս‰Κ«*f/z“SŽ )–EΉG*ξ/Ί―2π…ΐΜiδ7&G6­χΰφP8βΚ GσΕdΒJ˜g—ς[}ŒΟκΩΚΰψοDdω9dŠτξ:œoB?΅YtΝmΫ#±΄₯ΜhΆ6=»·­bΎ`j·^Kνγ¦q¦ϋ r ͺEœ\έΐθ%ά-˜Έζ&QE@ηh>Ž,Ϋογ†ŸΦϊXσΕΛ+ChŸXΓΪ*§0Ž &ύgnηڜ²ιBδB‘g΄’mKšΕπX+νςγB©/Ύψ‘jχF›rwχφΚBΗtϊ[½Έη₯Κΰ‚wς=b}ίYσ'ς’r₯eX,ΞίΓ₯Α;2F&―"š¬PT[$Ή%GΡΞbFύŒ5U΄Ό₯}ͺ¦ξ9―Ξ{atBzoC&ΖΤ?5,Τιο€ε «·.wkŠϋ*έ>Ώel5λψ`ζӟ?°ς…±ϋΜl&L˜pη€ tvηHˆχ΄iΎF΄<ΜYFi{r%ΔŸNφΔ€dy;όμ’k162ΦG€œiŒΉτ QE¨Μ. vΰa;Χv 2“S±/ŒσψΚ+fΣ½”’ ]48 ŠQζk}]GΫͺ’zυ&f䣴ΈL‰ŸY”η‰J`θ>KΥ«ψ7^„`“Z*/ΆβfΌL?Ι₯nvγξJ·Β΅0 9ee|ή),αυ¦δJΐe1₯ΕZŒ†£σθ  s/Jqό»?A…[>i|*μΕάομΦ7ρζ;Z€…ΐVΏσ#=:Z²4w6ϋ῁":γRrPD?[ψx@ +_9Œ|±π©»­h!@β¬Θ"0ƒηΣ@OZΏ•„Όo³σmΡωύ?x₯ͺΓϋ$°xZΑœ€ŸΝφίπΟΆŠωB©½΄DμsΝφΎO—ί~δ'lrΙωβ·½O9)—Œ’KͺŽ$σνU9Κf)V–…1σtώ@ &k ΑΚ%ΚZ˜’Κ2AζΡ¦—*₯4Ρ—@ΰΩρzR,ώό/~!šγμeΘηεt<ͺΏ‹k½QZUό ½L@gΑ βΒ_ύŸšΔQš»ΰnΌΛωHd˜ΜΙςτ5Z³ρ.ζͺΜ₯ρ…σ¨εϋ"₯8ϋΣ£ΉLω./F .%υηή@ŽέŠ_ό'Π;=ΏEež}η€±ξc³XhHο•akψ.^o(”zύΚx$• 7>δ"GΦΏΡ3¬θ΄MΞ‰ΫœHB,τU€ΏJ­ω¬₯HΜGS«XY‘Κe£ΣX9Ÿ ‹|Šs ΫΘ©ΩΫx ιΉ6υVύž1Η}ΎΈ…zά­­α[xΩ=8ή†ͺ“?AFF*~ρߍσ!θσΤη‘̏v·Όf“»šξ"«ϊ―ΥΊDnŸuЉυds–˜_žΤPΕΒ—Μδ|es©χ%³Tςϊ,\€Œ§ˆό–‚ύ_7±±₯€R;%,.―‡κ‹AΫO7iΧiψΚn|ψ™<©URγΫάCqΓ‹¨¬*E*ΏΫ†Κ]šBOϋu\i‘&™J]–Όζ"έjCrbb€ -žOLb¬» mϋ• H"εδyδ&EΠΝMD%+««ΦŠs8“·&§ § '^B[Χ„¦φ<‡Z°Y•εΟε9¦FΡϋπzžν͍M€Gνz?l²τ"·qλγ+Π>-κΪυ'‘ξμ Ȍ ΗVΨ&Fo_ΐƒw:¬8pφMζΒFiΖξΡwO:Ώ| „μΨ\_GTͺVžN<ΉώΕ¨kΪ/~œ˜BΗεΡ’α«@_^ύY”Σ±:YžŒ`°½Χo?τhDπύΗQŒζ!)*ΛΓmθp¦ Ά68~ξΤsm§wWz:IJ gRΡΣ@ nG‚`μTf­5ί‘λ<™PΜ Ω’ω`ξΟΒ²SφKžδY} “δά²+ O‘Τ_€)wCν$VΉ«–ΝΩ¨>qyyΚΨGdρcΚΔFžάCGΟ°H¨㘭Η›ͺ,t,bzˆ6Ÿ=˜…2 κσ%XωΉ“ολϋʏϋ؞D@fΑ‘•yΪΐηξV6δΥRχ(χώυ3ύΜ~ς)―·―}ϊΤ?ΝPS†Κύ|͎€Τk`}mη?ΦΧiSΰΩctzX8Φg;pισΩ§’ς­e”ƒφϊs¨ΘN„ζ$²΄Ύ4| -wτAΟ{Rί b~Λϊτ°Žf>ύω+_XϋΟΜgrΐδ€ΙwlmΡqK¦3ˆ6œ.~F<ΒνkΕ—AEοp1Iq©r;’3Oβwι'Ήygτ\F›CYSβγ¬Eȁσ3ˆ-ϊ~7―”,-*nvκ>n=zƒΰKuυqKλΖτtxŒΠœŽ_ΓηΚv~Ο9hU>^x«PC>υ;±ΕΫBΡ€ ω¦ Ο}K^θΗν–V8ΓsP{²Yωvΐ‘£1#)VLSSι3SZ±hρŠ’m™]Fl²ΉeωΊνΕ‰~  bfrŠμqΖ°ΊŽ,5Ϋψ‚󏼆³}ρρ]iU»η^UΡ9Ӎ֛w°[€ϊγς:©H•ζRyτ° δμ@GΛ]ŒN,!2!i9¨(Ξ§τlK¬CΝ xξΐƒλkκΪΡυιe¬'FbŒ DgΤ“…l”ζθΌEόX’5s±žπML©Ώ €γμχΎ£9Ow0΅@OJΩ!TˆΐĊ3?ΐι!²0ήΞUJ} ιΑυƒ’ΩδsΝτΎ3η-£ωΙD'“\2HΎxkκ7ε’qrIκΠRΌϊϊ¨Κ’ξ ΆCΦσ{†¦°/& ω₯(%‹ώά·MΕ±Θ%Κ½²I2]λœ}·Πή9ŽΨ‚ԗ呍8Xχ‰(ηο’γa7Jy‹ω6U4ΠΉU[Y,¨”ΦK;ΡΕ[svKς­9ίΫ‡±α /—ž‰BͺK‹-SPj³Κcίψ§Η~O rξ'ΛΦ=ƒSΰ@ήΝ U|š΄κρΚ+#xσ=mϋΗΊo }³θL£nd2jͺ…ρHwlζK ρ=βΛώψο?cΖ£ τžΤ"dIzΤ D΅―Έμ‡h–7υ)˜smΛyT 免¨«hqΐψΒ c’Σ`9―>q³˜ BΟU8Έ[|!>Χ¦ήͺΣ‘ζψ Γ γƒNj)ˆ“ŸwτΡzυh°Ci•/βά™~όςΣ»R2ώΌœW²«Ο‡Ί*€“‘ΎΏ”¦4ž.¬λ*œβ7ZtξΗρsΟ‘Θη“D–Iθ—΅€^ΥGRΒԊηρR…t']γ`+;Ž—β£ρΦ―?V΅OŠζ:Gΰz:f£L賬ψӘyσΧ«·…GžC­₯ntNΨΞVA‹$:‹Ν”~"Œ_$$ 'Ο`fμEΧ΄D[6_~ Υωx[ 'o’e‡νΘHOΑΗ†ΪT.-#ω’Η«έfΚέ§$w₯G a?Ξ|οU²j%(WyL §g2Π9΄q,Ž6ۜύζq7y‡ΤœzΧ― <}ΑΙϝ}XίwΦ|„θ€u] pFGoΊλΆι°ΙγHΟr|ΰΙ_>$ύL7gPωόΛλmkŸ.ρO7Π”ƒ‘ΚΑ μ³ ‹3Ί‚Μ–ήΐd—z3‡ΠΏ…•ϋQ#̝΄y΄ιoηυO𕆠-Y4ωφœΈΆ] 3Λ|…ψυ4υέ ζ·Bί—u|0σΙ›$‰ιΚό•/Αχœ™Γδ€Ι“ή8`ZtφΖ™ΰΓsŠN’2IΜG:SΫ£{Α²Kr€ͺŽίv')ΡRŠ# ₯H~π·Έ8HΊ”θΚιTCizœ˜Rƒ^Η”b…krZ ž;N«Έ—ήΔcΝΪ»6t—Sτ<›+ŸΙ…φIΐ–TDGKΊνΪΫ”r(ΧβŠύΘVnσ鬱–Ρ{ͺŒγΝ¨x±ΠŽχόΏA!ύ΅ώiό–ž½—%Δτγκ?ό=.ίUxϊ¦qΊ4B±]θo½Œ©©{Έ|ƒGλ*~ϊ6zΏσρ2tK@~E5©ΌΔΗηo­3νΜ}ό˟ύWHOπU‰ύρΞΉ­G(Ε&'Kώ4ύν.‚„•x hY3₯xρžyF¦Αωθ6κ άξ}ψ ™.Λ‘H:7σ₯Mw^ΐω+*žΈΧQvεΕύßγ’ςώπYύŸΙ(πK@YγKΤ†ψ˜λ[?Έ“mΘ½Ÿηšε}7„.U!ΘO:Ωδ6ΙU{ŸΆΧ”K¦5P.qύ™{ό$jdσύςηΈxK+“JOύ΅I«Jχ3Κ%₯Α7rϋΧψΩ?^ƒίΕ̏ώNΧq‹Εtr@n>Ιy¬pοA'Nόη όδ—U!γ|+ΤΠΤάγΥ ΤΌ›zΠ.ΛZ1Ȑ‹o9ίm’ͺH‘osτ};³€Ξ:γ€DHF†džί‰~ΪπTυm¬”ΎλΉχΑάμψ6ZpŽί`”ό* θόH*Œ½WώIV§œ…•€ΞRiͺd²Χ¨χ(ΰώcdŠu<>Ζ‡κξΛ'ηfιDΨ!Ί&ΪΟβD±$œΏ†«ω8"κiaaœc\]ν8–žŠωΝuμ#Ό€€_r₯OŽ]Α‡ΫδŠΨθ4VΞ'¦€ ί½9ͺθDξ©t\Ή»ΜcΤs­4λλ­·r|0Ηεiπεσ=>θηœztωίί#?ΖψόŸΰ[Η«ψϋ Θ% ³z$VΞ#}ή¨ω‘άς]$―Ωδά4ΘΉ’SFΘ t_ΐε §HΩh=Ή4λΧ`^ r7T: wο_S^›ϊΌQϊΌ΅ͺ…Φhρa§ ež81υ›`­*F¦˜\½nσtΞρv€‹D-.Ξ :νžKUŽφζ0ΏπcΧ0’š©Ά7όι¨Ν9+Ονeτ}ˆ°Θ8ΦU—Φς1_β!ΰCL—IJ{ΈDΔHόGœ^€φΤ2”dVΘŒ™ιN ¬λ€έάr ά[σuKϊ­kδ!:»GEάκ²\Ύ@KαqjΕ₯Ϋέ,όΐ1>†ωY'6M€­r²T)€n³κN£qt·z8ΐY ΈqqNΪDdjŠμΒ‚φtCLΜ―h,6̎»Ÿi£ί|Eά—Jt<Ή…αq'Β£,4oΞGž=,gΈσMK2ΧΎήz7²JQ–/NsνU¨(Ί!©MΜ]οΥ`±ΠbG>ξI•8x΁w>Ό.QtHΐu'ξ}ϊKτr»B π¬ε/’―ν662jPb5J2@»–—,•¨ΰΑΜ6ΨμΩtζΛ­~Q r%λΓ'b¬ω¨&¬–’γ8κšΐGΧ ΄¨ώή”i}ΛΓβhΠότθŸmxc³&½—k΄HΒρ™\¦υ4ͺ, _…PΪΥ²κώ¬I1^YλcΝ§G–Ϊβ2H^yΘχΠδY\T’ΌΡ"Ρ€ηι'ΉEΪ ή;Ω†ΝΡ§!Τg$_$"wωΥ”»μΔ$wΕκςjjU η)τέŒΙΩDΔ&Βb³(ϋ¦".”q¬‡žUœηΡήށεhڐr@²Ϊ―ͺJΟŒόάΡχˆυ}gΝΗ1g‹λKtε6­$ /ύL.| ᳫ •Ή¦Š^x€'΄@ιΫ‘Ÿi bΘηW^sέ> Ρ»ςΖ”ƒ¬έ2Œξ'](9TΚ`/€ΩPW‹[aωΘΞtzΞZ^ί£V隟‚ώšœΊžυ²θLšσΎD””zυ¦‡ltk>έξ }7Θω­g3 aΜ|ώΚσVΎhJ3oL˜09L shόSrΧ’±\Π©Έ°Ύτ)‘{ΜgCj<·6;…±!²JηΔf8’SŠP™‘€Ž+K —€ΞB;-ΘHβ]ΉM€Βz-§;vχέΑΐά,iϋѐ-­k ¦θ«@*z JΛ~ gΛ…Υ|ΌσΛΰρ8Ήu§t3σ@IDAT$Ώpυef¦ΠKZφ 8BΖd·4IσuωNφ¬rVՎŽλ4ϊγL ¨έΥς™ rζ«mmwpΆΞ”JM p73έ{{•t­η‘άΈωξ\ΊƒgθΖυπΎHιې₯¦³ν’ΰvχmά­Γιj}:7 ˆ$;7–rαΞΞλΈ#'πζ©BύκGήM£ύΖ»ήΚα‰αJo…ν“@Μr΄ΖS[)€ϋΈΐ©»Χ3Ÿj_όεeίβ€iφ]K’ΑΤΗΛ<9!ώ ξΉfyίC$Π#{ ς“…NVΉdŒ|ρh¦―€”tdPΌΗ’Όnn-kΞέΘ€MΉd΄\ΚEu}£ΜϋžΛοy€œΉΘKO)Ε!—€n΄}$œ…²―έiGΉ’Ζ=Y’£“ϊF_€SŽι>‹Ζt2X<ή)EE’‘% xμΆQFI‚ΟΏœx°² ιΩ€WυΗ²ΞβυΧρŒωcϊή―π½sh(…5C“fF1Bc`σͺd dπʏ>pXΦΆΏŠΖ\^…‚CΉxtC S5-Z<@δξ5ζ= ’T;IYƒlI.-β»³‡Š8€ηκΔ“KhCί₯[Ÿ"ο™?•ŠΖΖ†JCY<ΉΘH‘uHRQέ³}Š_Ά]Σ„²ΡI2Τ=R"$Uƞ]˜Ώ1H±!^Νρaλ­ζψΨΰ|π,‡¬ˆ~¦/ά{ο3T¨6NΞ%‡6Μ ͺζHš2σ\zV}>ΤωΡn–ΧlrWΰ~yΕOδSfG.γ½NAίHWm΄žsjΊJο&Ή zuϊ 3ε΅)―Χžͺ>o­EUmΎόx=|€nYΟ«³#― _ŒΥΫ(«3^3o_„=žv±‰ΕΗΕ• LZ—TU™_‚¦Šθό#Fι­ͺςwΒ[’}DΆ&μ˜ψχ G›–¦ρœk.υe6Ύ$ *‚[tΰuλ–ΰSΝΜ(‚ w«Ž’ύφs¨MHΒβΦΒΙB΄Τ?\'-πΆςΗυΙΙ½{4¬χ4!Ζ8{―ΰ²άΜ»ϋ­˜Yό>N(ζoσΚ+N@ηIώn£ν7‰ώ.ά}άΟ‡Θn†Ρ?Α±šΘΠ΄4«€μώφ΄ρΡ½7?–wΤΖν  s-ξΈŽ–ϋ4φαkQ"3ہ{½‡Ά.mξHλ’ψ5―₯Lt|ŠσŸŠΰΫW0wφp°Œ›L“EM[&ΡΙ²Cqsh{3€όΎ`!ΤRr ΟNβ³ΫΡ8υμ3<‹+}ΰΖ‡hπ¬gyθ>»Fό·m ύ»§ψ… ŒάΔ₯«–Ί†Μό3|XB27AςžEU!·¬Ν9wž΄ £οY²z”Ο“u ytͺeλ?‘ε―!όά†η:Žη”Dίό?)Ij@­5‡'~qώzΧ3Q*ΦϊXσyR@PΏΨ$eWτ2=d{hς,!ΪcIB&#.–&zyΉˆ9{³‚„ΰ€‡¬ςΣHΎΘDξb)wŸžάO>’Ρζ“χώΚC.·fοGf”Sστ°Žcι5Θ“LΠ‘ΌŸΏω–8QΘ΄9ε;$«%j4ϊΊρ!?wφ=b}ίYσ L˜y;Ι{+-’GΗ•αθώ :²v1dΙYV–:q«ΆF'”XΚͺŸ±ζ“κυ/―iŸTί^Έšr049θθx 9ΦRRŠβk-θ7yqύWT*Z|¦G7ž ‰T.Fp;₯†*χ/Βq_$:‘ )tV5CjŽκΊ·τέ`η·ͺ†εeΜ|ϊσVΎΥifb“&Lψα€ tφΓ £«k›λΑ37ρe`€9wc2Zού-ξΉ΅@ήΛx”ϋΎYέ ¬!EΩ‘K†ϊFΈy―IqLŠk“7[ 7&Δ9ρHœ[oΰ΄Έ.2RZ3Χo?g1πΕZ±.Ι\;>ΈφΖTΙη–ζιΞΒ‡d彌oοΛ@ΟΜ,β“KQ/ƒͺ%J»β‚žΦ<~νgψλΎ«„₯YΑj4­Ί―Μj¬[ͺͺcτζς' ™ιΊλQΞθ )؁ξγΡ΅ΐž-Kαa44νμ,$F“•E qδ}±6‘kjRάιτΈ υ^€Ξtt¦XX*Žότ¦owΠσ€㣴α{TZλSΧηιη,RU‰kχ‹ΏθI‚g¦ Bβ“δΤ“£=²_φ˜n„>X8°$*ησγ ό`tpΟ5Λϋ !& L~²ΠΙ.—Œ/6ŸqώαΏOΛ±eΝάΒΟμ―5V =x pίMΉδUΛ₯hDΛϋFΊΡυ₯'Oυκ0D.Ν81=γVϊμj‚[\ΰFAΙ ’“EυYU@§W¦οόh˜\Κ)ςVνΙOcΝo`>1۟@ψΩ54JΫ€jψq*Υ–Mu!·ΌΉ)ΒΚ·₯ ”6\ΗxV>ΔΟsp:†ψuςΌiρœ³ ϊmόaρ+طύΦ}ЧώΪξ–Ξο­AοQPύη—(Ώ r‘'};žΒψd$NyFžΣρZξΏEži“JŠΔO2h6˜~β—H²γ9>ή:–ΞdŒ@Rυ9uν6›y―U,ΰŽ{b1μt)η“U=§ΛαΏ‰¦ Ώ9>μu½Υyά<Κ™Ζ€ˆω.†ϊ(εη,ˆŽI§lΝE<ΚW°ισ‘͏v―Όf—»™Ή―ΰ9i32aά.’‘FΑјΚo΄ζ!C_ώœΉΛN§ΏΊuγMyύXgψΚkΒ>Ϊ(―-Žά'O„¨zθΛ‹‘-ΒΎάΧmάΥnUΆνφΖ!9&™*Y¦Ÿ΄ΨθΒπTΖ——_„²dA₯Ω7ŠŠ0(Θv»I’|{ΖYΩ*λΌσ6Z&a™€β-¬L«Jdε‹ ΄ˆ 'sόLM"ΐξ’²ˆ–Τ„ύι?)ΙΪ,ζ8Φk\:M&v@O…4]£­ψlΨϋŠί:g­LνΒΓS]˜ž έώU»ήk·O;ΞJ±ΓJM™uό–ΥI5ώξΆTΠ™[ͺίG$¦΄&,\™ΐκ$₯ +νFή/G ΅~ζrζ"Gξ|ˆ9•»‡n΄hΫ;»QA@g‡,ΚξVM’ oβΣΟ2πύo ΐζ‚Γ/!¦plb]&Ώt³[·ΤΥ%qω‚,'K½ο\Ν•¬-ρ ϋO#Ε EY±ό¦;ΪΎπΰΙbΟgxάYLΗφQǁLΠ—[i'χ_w¨ύΗY`αgpΟuΈu|]nyrΒΧ΅ΎHrPε –Ψ‹ΠS-l2XλÝΑ;°‚Šδ6έί5)"ΐ+k}¬ωτΘJPm’˜_'›Ξξ.yfAbχδ9αpŽ“΅θ¬n…!>Ž,ή&Š_0(Ά £c³— κΧŒόάΩχˆυ}gΝ'ςgفqΧ4¬©ΤΡ‚΄xŠγΊ•ζοΰΓAiΡTΜ#_Xυ3Φ|rΕπ/―Ε΄!΅O©/ Ÿ)½°iθŸϋ|r6^†δ"»4Ÿtϊ~ΉMωE…²Ύ8Πϋ˜·Ρ'G’g§τO#δ Lw€2Γt<{Cί%XQΠσ[ΖΔ:>˜ωτη¬| °»Μd&L˜ˆ&Π9 6ωN”z²Ή΅3Ξ9q»η‚ί£V…΄»χο<œυάΨΰΈo-Bs·‡Ψ(n>ε’Ή΅%G_Χ§ ΘY ž‘ΜςI!JZwgωΕΪƒ²Ώ₯™ΫψψΛψ#ΣΥiχ΅‘’€τW10Λ~Yvu ΑΟ-©;½φΙψh—g&ΓBΈeάΚ±ΰtμ HQ]ηυΫξ™›Ώσ§8Ϋ\ζμyΏ)-f¨ιŒΐ>ι»Όgݐ–ΦΫ8Pχ"o%šΫYΪp†~b:ξ]Η'ο\ΰž/.›εΈΗ7.Ι~£<ŠU5¦Fτϋ\β†QuίFΥLVZƒxƒ~ߍ#“—ΐεgΠt† —Œ’/±*:Rcά( <‘‘XŸWΏοΊφ™"ANdΚ%bE,Β€/ϋ΄Αgάx,3Kλ1B.9'Η}ή£bTƒ3Uίu§Ž“U<°>·€ΉζFόΒΊ2Ϊ²$8‘υ₯€˜€ι œoΔτm:‘5Z{Ί [εδH#=Uœ•‹ϊ;ž“%o˜¦ˆ*€€KkΌ©°eqW_.ΘΑNS”1οQ°ύ§!ρ&°ρ!™ ‰,ΉZrεœκGξqϋ΄N“‡ΎWΘ_Εη&0ζβ£ ψγΔέGΏΒ]UIuϋίΐ12–ΔΉl[rθ<Δί±Σiœœ'€^¬τ]Ζ η"Ηƒœ9>hΉ'υVs|Πv’ή]€γƒ{Φ9—Ÿ“0R‘’I„φΠ€Ξ¬ϊ|θσ£@υyv9θΞΐξ볞€Σκ…*:ά61§Aή“Ί: Ώb4ΉΛHg`LπLeΚk-OLy­α‡Ώu†`υAcτω<4<Ž ΪXΖ»ι.άώΌUC·ηM*Š ŠΙA?εΎn#M‡<σm{H*β£$€3WΩ4:ϊ/‘saQ¨y [ηА*L.φ…K­ήvΒ « 9ω4Iΰb²wgψXvΊΔγn]p-«=vΎ,¬qΌ3ΣRαhx FαCLKeΠ8‹ TΡt„ΊΘiŽΡ-afΎ‡ίuΊA;9Λ§)„ϋ]ΩXF΄₯ ‡)ΟυqύƒίΗ;cw(ΧΦ#(ΣΊΛΗb’T_Χ9"ˆY)₯γ#SΘγϋΕYN˜“£γlϋQVA»1­VΔEΡ£OΗr/zxtZπ–)εRυ<‘ˆ”ρƒlχ=ΣΛOasσ IλΘςγš²,Œ΅)Ψξz.βΛΆtœβ­a§Α&Όr”ο’#2΄`rMaβM@eψ†wΝ`‘[`‘gžtςO”ςΫœΑ+ΩΟ°\S"€Θ„虉|’ϊ‘Ÿ?ΧΤ½Š…|·†ιέ.£‹¬ƒΗDŠ3vzcf"°Ώπ˜ΈPOζχ‡?'k6(“ žΐ ΙξHφ0ΥǚOŸ„(ά½¨Ωθ‘€g—gNt ŸGοκ€@=}ƒΙ‡pΘ^!,ζξK‡5)s‚$d«ΟXΎ(­χβKmΒ+ΏσΌ‹nyηβƒ7ί5`)•kΚ]7ζ†pΛ$w%Iςζ΅KG†G0;=†Ιie¬ *1«•,Ίwtπδ`ΏG‘£4ϋ:.?wψ=’Φ°½ομω_γω ʐΈαΔ-Ϊ†E¦!-Z”ο‰υτρ~-Ίz«~ƚOις@δuθνSκσλ3ε νύ³Ÿ¬­U“ αžώ‚ΒR΄ΠYχ#»LZ¬οCΏ -7|GτOcδ Lsžέ­ο¦ˆi~4IYΗ3Ÿώό•/šN1oL˜09ΆΆ~R~33Η N’SZU™Ή…λ_mΞ¬¬s+ΩnŽ6ŒΑ­vγρ“ιNΎF†Kˆ9ΘΓSPτ^*―‘ΓgΗα½ΆOυAΚΛχπ-“ž.oB₯U‚gQΦUu!,­₯–8 ΠΩt»\ζ^φLMŒϊ·8]χېσβh'ΊΊ»α\  £•χΨ|œ<~@`CΈΌ‚¬b ψ)-w¨B}z;ίΕ_ώΝ<^=yEΕ9Zƒ-tjRΕ‘ίBnF"~φW€ϋ}Βx‚,ŒŠ5Œ^Γ­[‘¬΅ϊ€”"Χ±ΆŸ†>MηBξγH ₯$έχ=”5y“ŸΊt†"—vRΎ5ρ;W.#^οuΤπKΊ Ηζr?ΈO=»Α™r‰z¬ Η¨Ύ»ί/μricm5ΈκFo‘΅Λη`+ ΅fk JͺΘ$Q{:ŠKKΔr\θΏoόf“ΐε|?}gvΡXBτ₯[QJζ,»τ”#1φ ϊΎž*­UMcrˆƒΔ–ͺ γΚΏ`”ŒYKKVbγδ gιy¦ι+lAχŸά‚mφ$Η ΨΈΗ+Άε±B}£ογ“ώAώ¦<Ε&Ÿ;>7¦=Δ`ςξ>Ό‚Μτ‘˜£#6Άd`ˆ³ρ FΙω@4Φ™9§q­7Η‡½―·šγƒίχ!πρA[”“ŒtŽkƒψ»θ՘±₯“ ˜ PτωηG“Š ΈUBΖϊdΧ€D·ΰΒ’Qzΰ¨’ιoΔΙeUŠ?@υΦ4ZΫ>֜θ$eG r—‘NΉŽ`=¦Ό6εuλ Aλƒ!λσ6Τ?TΆΜŒω~|ωΡUBϋv±εΘ§ΉŸƒΐΜvy¬Ϋ»Œδ»Ά`bc«ͺ}lΌU9‹εL-‘ζ(ƒ)zW€―E½]΄d°‡λ½_B΄uKδ%BΖ-nΜ‚NφQ\|™ξD^šμ .ΝR…4 C©Τΐƒό&–ΖuŽF_DŸγ*ΤPζ‚Μs¨ϋΐš”‹4ΰL©ΚR{ΣΓκΫνυΣH^ΦΕzΙ²G=ωά“Tœψ!šk Δ8—­ε %GCΒϋr³ξ€eΥKQΩŸΐΔΘ(-XΚΗzΈφK΄goς‘}\9>} ΎΕ‹΅9œ˜#6[8\ΉW—D²j 8‹|Τ“ζξSD¨ύ ?z£ld™Ω~χ«X]Ϋ‡D©™d;1½I°HNYF[π„“ t ‘τ Λ³˜ r-IKE<"˜κcΝ§­]Έ#E”τ,ΠFUύ$yΆL g=7;{= Ω¨Jδ@œ1τ!…» Π*ΆϊŒδ‹Εnaϊ͏0ΠΊΎ)wέ:$΄Ϋ`εnΗ£G(/;.Nΐ,Θ«x†~" KSθ£#i[―Άθlb –N,'fΪηΉ!%ˆβ’ŸΨαχˆθg{ίYσΰ° δμtήΓ½α;²Nh·žB“U°aK―@ήL<VύŒ5ŸΤɁΘk#Ϊ'ΥΐΥ”ƒ>˜΄wτΟŞGž9ˆξÜ­…Ω€w4"½ΎX<–’ΰ!VιυΡZ:Άa[υO£δ ―&ΈΗνz}—u~λήΠ€οYΗ3Ÿώό•/w˜™Πδ€Ι“~9`ZsφΛ"Ώ 2σΟ F>Ά{χ:―ωΝ³·XΛ­έpŽ;VΦΠ ]c΄œ¦:R^Θ―ύ[]ωC<ΛY‡έπΐGxηa‹t«uέΓΕVϊΡν4~}mS.˜$ŸΔο‹σθΉ>t=5,ΙiέΠ­ΩΊΐdmš¦ Ε’σ`Λ?βηΏr¬₯œBUΎδ;„Y壉\Έίft^Β»τ£Y «ςaΝ)AiM#ς­ΒσW|Ο4^Βs:ͺ—λΉλΊ.hANΰΕ³΅α1qχ’2ιΩˆ£ΡξNmDϊξξžFΊχWk?HεΛW²S"-CΆŒ%Ηn³'€χ(Θ¨:Œ\‹bP«3h½uΧ/mΖΙΟθd‘K;&_Ίpυ=ΟηΡ/™˜rΙpΉ4C§Xrγ χ!8–ΑB7wK=“θμ|‚¦nΓK*ς+“΅ΛhδsΐbΞM΄“Ε^Αkάί`δό$¦ΖGι€YΛβ‘s|?Ή΅ͺ™Nάξ GCC1R‰φœHργ'0ΖΣ»‚ώ»׎! }ρZΆu7€ΑοQΜφ71-mQ_šϊŸψyπƒ΄EYΘͺ|. [/”ΈΕ9Ξή{ύ\X ρxευyζω‘ΏΎPε XAΐςš©Ύ\€'I8ͺ6Π”rWΌΈ¬ š«­vA2Wκ‘,ΉΛD§GMA˜ςΪ”Χ{EŸΟEυιCΘOηο+#Έ}ω"~ŸφεΛ©ϋžx¬ΫΘλrͺς’(λ‰CœτlΞ>ωό"ΚΈzŠ,Ε 81, 9Ω§P ―XE+Šθ>Ϊ š{ …[s辍ΩPψ²N€jοk3*P(Α©MΣ˜DX|9rb94¦ ³‹ξC±~ΫϋΖξ"5α²9t]d2ζœ2TqΦ―Χ_¨kuEΧ"CYg–τ€Φ€œ—'ϊ08<׍:a”(: *…l2BY.%xOB,xcΑη”sl―ΙώρΣρΪšβΣς mΫ― Τ½[ΐθπνˆΧͺ4}m—0IYδWΒ-3·Ž>?&rΠΫΞΟΥi MΆcκn ρu»εΒhX,ς8)LμAdςΈχŒάΤτUάαŽΨ$g#Λ&ΌΦW–¦΅VŠΕπ€/τ‘‡ί`l}¬ωτ‹Pmτ H¦kE{$έyΖΥ±Άιεέb©ΟHΎx0@'ΐ1ˆΞΆ›ˆρφβxd ΓΦκhhόͺLSξͺ˜aˆ7HΉ;|οΌ³€£cγ-‘ΚdΠqeug`KΓϋο^4μ,•lAdΐ^€ι ψ·μP±ΰh©be»{”Φ₯Šέ–ΖίΖχΞΦc’%‹Σ4Gόΰ/ώήγƒΉ[Ά nιΔ'ϊ؞Γ}l·!§ž—^-‚,˞Dyώ“*Xθ!<Ύ~Ι#Cn]‰Θθ‚cš,ώœC–>sQν·Š,«jί£Tuΐ$5‘ϋ΅’εΓ_ΰδού_8VΙ•›@˜5n6ξ6Ώ:…jΞ²(η&n‘νJΰύΎΊͺΐ―-VŽήσͺ1Βή¨[Ϊ”lΕΘΒ4¦{yŠ4‚©­4Υ 7Ξ,γ~š5 \+Η…―zzί‰ŠβΖWθ(κT…ž…6LΠY‡…J²Ύj”ό ˆΞ ε’ŠTFω’*a—yMΉ΄r ρ5(;”‹Zͺχ!—τΚυΦΫΦ‰‘sΐΊφά 4‰”Η…AZϋρOΉΏά⃔σC£Ti<*kŒΰείβL7nݏεΞΆβμ[Άλ,:†πˆ―nΣΣτ]+‡OΘκσώR ˆρ„/"¨?;©Ι fͺΣ€έ΄σΟ5›Ύ΄7υVs|Πyκƒ4%€?Ϊ3¨ΩΤB€ΪLnήΕΉE8'CΡ؞O‘vνί ηG”yΧΚk&Ή•%ΉΫ \γ~³ιΥ<“ŒˆMnνΓ–ΛαΥΊl@r—‰N e»όΖ”Χ¦>Ο’Ο§ΣϊΜO‘Έ$ΝΤΗρΰ‡τ ΣΌφ*δXE„ά<ώϋ˜ΦτΒΒ4I4Ί£&f'o6hχ£N}1ΌO'rW₯Γ"[› B ΐ˜#υΘNK€ΕΌAΟΕΎ¬φαή ύ",Hΰϋz,¦ΣS‹η¬<ŠXΕ0·bΫΔζV@ w4QiιT£ΫR%–iG-·Λ)+tŒηJeΠΰΈ―ΈπΉ΄ ”¦uΟ(  ³jyLŒΠΏl)&'τΈf°Θ):άΞίh²Œ©ŸjW…Φ½xDQ€¬ΰπ98Η w‡ u kkœΤŠ£Ÿγχ―£Cߐ―GeFχŸG†L’gάύi  ΰ¨*aΓ‡J―,<ΐν±1³iqY’™€Ξ#ϊ…FΩΙ4Η[Ιmbq‘Sξ_zθ]ζ_η`λcΝ'‘£ΎF%*ΝάiT§5\žΕ!!RΪΆGΦ€iAAγ‚­ΟHΎhρv3ŒΧ y!½Uΰ3ά”»>Ωt$“άnΓτ’`ΛΛDrF.rιΜΏ,Ρ’WLN ͺJoαf—pš7’όc[άfή9ΰΡ|½ΆRΞ€―½G–Όύ°&¨Fά΅ytuu{'#Ψχ]*)¨|qH”­c“Ξ2ί―9 E:±΄Nθ„AG WV3€½\Yυ³ ςω•ΧΫΩ>/Ν†)½q{LiοΒDS1ΏΐšWH5’θxPQ—‘J}=Ύε˜W>h"XυΟμ¨$šwΏΎkΠό–Ϊ°ΌfΜ|ϊσVΎhή)σΖδ€Ι“‘qΰ7Ώ!ad:fTξ?‚ΙHΑR;nu΄3—΅;2ZPž_ŽΥρτΡ”Θέ%ڎγ\]ƒ<>Π¦»i]K^ΪJJE&M§Τ†9Κ+ŸEΉPA7zz₯uΆ\œ8τjΈ#yΜκ nή[άΰ,cϊqinuΙsi3ςΛ¨OυΨΉ;h•λς,01Ρ[Šjz&Vi‡gr¦ΡΡq Nψΰ^zπ8*?mAYT\ΦYT5qL…ϋΜ‹ΈdJ0ͺNΤ„C͍κΩ?35M~8VTύ pM 8ŒΚύωrZwO†ΰ¦–zΈρ)n!”λI'ɚ³΄‚ΪΥφEP»ρ‘qήςWΊ%™Q{wOzϋπ‚ΘλάΪƒ¨|ηΊ”­φ¨ϊγK˜œΠ²M,6˜ϊJ‚λ%Ÿθ#K€‹άϋΐ5/ˎ\ϊΎ1txδ@`Οuο»[•››ά7Υ{΄΄%XΨtK§Ύ \~†@'³\"PΉςEέήέζ7ε’Ρr© }O:QcεΐΉ@ύ‰Πyγ―=·^€Τ‘©p,ž ϊ‚r‰ιٚΉ„ήΞ³°—Ρ{›ΥŒ€Ο]$Q{]¨ΘyΥ7Ω­ —Ο<ΑΚyg/b£sι—Ζoΐ‘/˜ύd5=ύ '‘O§8ˆ5NŽŽΙuOŒwš:aΌ©:zθμΆ₯EH›U‡ϊ¬uάϋA.@γΩTξԈt%Oο=’q ˆρOEr€γε˜uΒI’=™t·ˆϋo‘φ&Ή*ΌTqW½ΡρNΝ©ΤR*ξΠψSЦμ ?iΡ '7α:ISͺoinR©/:’σ–NΩά΄“³$»·έΣ{ƒΣ—φŽήjŽΎήˆ`ΗmYΕ¨|¦ wΞ·*ΑGQ*i ˜νU’<}ώεΌ’'Έη“ΛΚόˆΛ˜>O Cƒ\=’ H^s‰™κsΠf™Ώ–ͺr»ZpςΘ„ύΌΑg'nί \η¦₯>\@r—‰N•ξΒ(S^›ϊ|°ϊό‘ύ[~ϊ½/H8nŒαήΏ“s]hŠ@Υ~Ξ’^κOύ&ίό5Όΐkƒ u‚ާ‡ΗΖ-%ې^ŽϋρЈώ ‚PMmιΩ”Oζ5Ϊ€Π[Β%”πkx’Φ˜˜Σ—ώi e¨·qK1Šs,bjΚ ΘΛZk>…Ω—MΕ»ω:ZIŽρα1HžΕ$νGq­σn+Κk­­<Πϊ δ‹–€]zgΚ]Γ:&tΉ;Ηχ{ŒŽ›£ξΕCrœ[rC,e‘SΈ΅.πqlΣ³S(α­'ِšI_·¦΅cXZ²² ¦­EΉ X~τΩ+žΕΑ•~΅τσtv“‚ ’/Πχ]J/]Κ—€ΈhRVxηΔό€”[u΅!)Z-—4Š*›7@ύΜ-mξ L―γςω—ΧΫΨ>ΒwI€)λW{ΓΚι Iτa.MΦΗ‡zž4‡`Υ?‘ƒΑ0kχλ»Νo‰)ΛkΦρΑΜ§?`εK0²™Φδ€Ι“~8`ZtφΓ _ΡΙGP“§¬ϋ<ξω‚JίλΊβͺηQPuΓ#=vŽbv‰vΪF€ΐž^Š»tΪ΅“,ϋ΅ͺΧtg‡0FΣήdήhƒΟ6|α]-θ]ŽFEαΜVx5ΠΥ*‚e,8ρΜd!ZδΖ—&œˆ΅Ύ‚η2΅G…}cγ£Wp—β9—h ? ΠυπΘm:5qσk«ˆ§ΉUQφAdIH²γ|³γ=―֜ω‚δMΕό· %’Α7x© =ΗQΔ½Sΰ;αOpυΪMΜ„η ρΤή’&C±ή³ΘίμSqδ[‚΅˜OπΰΦRα™SίB‘Δo·ΊnήΗΘ™*žžΈβ3ψΓίέΐ§οΏ™τcxξşτ»εnKqτϋ‚ͺ­‡EωtAΙΟθd’KΚŸLxΊ‘¦\’ήwγδ½Οo žδ?ΪYρύ%Χ>;ϊi'†₯Υ¨:s–G" ‘KŒ£GOpŒ:«έƒ;ΥjN―lσ“Αϊ™’/GfTΎ€m«τ]-œώ9ρθΣ·Ρ%mΘ`‘σ3˜$₯*W†#80Ψ'ŒC#ίFΎL· “£Od:z/]ΖύΖFœS·ί?ώ#Z.]Εγ‡O°j±"5Nπ#%Eue°εω9:χJΉ³ͺP›%YžZΗ:Φ(}†OKΝBmUΕ “Θ­/γQ;Y1ήιρ]’•»3©σ4>p\ͺΣ9βP\τΖWΏΔ\D>*HW”t-ΫέSΧΰΫ―7>$ε£Ή”6X•ΒιŸcσγtϊσε °§‘8›Nα”KΒύήΛς+‘θ‘9ΉgQIFn8¬ΙaI,Ι‚N8ΘhΖιΈ„‘α”5YΑξ R―Q΅μiywόΉώθ­ζψ`ΰψΰφbόΎKϊ“σW‘rθ·qζ»'eΌΓΘΓ»šM`σμϊ|σ#©»Q^σ΄<>ΔδΑ"Fžη7ΩH,lrΧ`:%bvΡΥ”Χ¦>Œ>_ϋڟβ4·Ÿ–ψx%wb‰ϋ‘ΑΝ*3)1ؘνΗ½G²–L›λa·‹– V†ΠߏTΤSσvζ•Qh‹IB ιμ.θΜNG‘δIš=-ݎNϋ…ͺμ έΥβΔΓώχ½€ŒCMαwQΘkΚ.tΏ‹nΊδBΰK‚…"ΣQ™{₯ρ"ˆfΉ/#μ(±$`jς±>ؐv66gVΛ¬•%'&$:έ±q HM’G`.š&™Ϋιr‘_UŽξ–ΗJ%₯uΘε&•œ[šoάYΈF#†{'4˜ωrTUοΧ€»qNrΑMΕ½¬ΠΚ‡ι΄½>:Ž[X/k8ŒΗοz‚…ŠQšΉA'ϋεœ;ξΙ{Ο*«]D{ΛGd ”n“UœU½€J|сwΞΆ³Ϊύ³“τ— {Ÿ‹κ’‡€ΞΊb)΅Ε©θφΰ {ω’ΛWάΆ?ΧΛ.,Ρ‚f$GΕ2ΊΗ>Wν"ΞΕ‘Μ*ωύ›šτϊώ%xXλ\€œιΘLΦϊXσi‰βοβT΄Ξ/{“(τž+Οh:aOΙΑΊλ1&Tc‰DBLB5šr*€[ΜLwb@•.ψϊ¨(ω"Ά«=¦ά5€{εΕ–Ο™“Πύψ5λti‚|υFc0γΨΌ“ϋ˜+”—]\ <Ό¨*v?ς‹νͺ{}oΐςΣ χhkkEKΘΚ–². a/BΑΛ –Φh“O$§ƒYN'xμ3κg¬ω4)7ώε5cϋ”*φ Ο”ƒFvZο“n46R‘q°qz'7'ŠΑΘ•~b…¬ϊ§rP!}Sρn©όJ¨Κ·[υέζ·ͺΦqή€ε5λψ`ζӟ?°ςΕ­Μ[“&L„-k‘”φuΚkΑαβFώd;ΥKS_βƠΚΟ^c 5„•d ²ν όO· ]ΈΨφ–bMO4Θ ¨¬m²$UΰXύά ˜ΉŒχžˆφɘ@†Ϋ’n¬΅ήV…#\ν2Π9U<ΉΡ;€+=x74kΞnΔμΨm+ΞPˆŸ|Œΐ_k޽V₯[»ξ‡‘θΰ,γ΄άhE Y.ζa7)U8ω}ξ§[6,|~y™ΐ'kψp[υ9όˆ~;*rΏ3ΊY;oγͺκ[—¨ωπyε€Ώ­Eίς¦nib ΡόψΑIΨ«ωΦ"·ξ$ύ” ]13θ•ΑΣνΈrρ rΏ{\@dΐ oΠOIΞϋ»?ΕdTΧQs?θT|υΪ¨ό–ΐ+z~šΟ)ΟOJϊh”HϋCdΐAAΚϐθdKԎ½%_fΌ[BS.q 1T.Ν\Ε…ΞΑoȊKSΚpδ5ξ§e=·Β«8FΉΐΈ ;ž(cόZz^kF‘*¬§ϋΖUχoa6ͺ6‹z‚&i€)«ΰτέφ–tf“στέm¬ΘΙ*šΖ€ΐθP΄Ιͺ†Ϋ…wεΧHύιo ›ˆβ‹Ρό χS%ρβm~ξΗ8[Ν}mΦq9Gπ­7Ž(’ώyϋCV§ί#ϊAŒG αΑψhlμ@iΉπύ.ΦRƒη ϊ\ΚR7.ΆΈλƒrlΐžœ‰οδ‘ώ™ηυ3‡ Ϋ΅jt;6:C‘σ6kJ3Ω£‘)‚B—&¦χ$Π¬Ο΅ΔŒžo))weΦ—φ’ήjŽb—0>x<_ ¨8ωώ§~0s_ώκͺ&ˆEΞ3?ŸrΝΑϏδ¬{Ψδ`ΐΕ{$4ΈΎΨȈš9Β½ιψd“»ΣιΑ‡έΐ¨‡H€{ΌOR„ώ•ω}0ε5ΟPu†ψo€>Ÿ(nθρΚ°  ?_·³χΝjΒ‹Kςi³£ΰ&ϋ½΄σG―¦PCoΰ6MΒ#‘Γ~ЎϋϊάΗz$rΣͺQ‘Ϊ•ζ¬JΕΞaEΌΌp * O #_b’α4ψ&œ_œΒΖ:’£3`OBš  q’cμK‚Ρˆ.Ϊ†ͺŒj:Ο  'Y.[ž%@Ξ ΆΒb‘oGvrŽό‘­κ™ς±SRη›½NT³!ל¦π,"ΡΪr ε§qπΉƒΰ'*}’ϋ1€ZΆ$΅'Ύυ²πΡ5‹„*μo:…i㬔LοΊΆ&¦bςβ…³‘葏 [ϋφΡΞα Μά‡Cf,Π{χΚκ ΔEήύ8ϋ“8άk»ή2Ϋ—ŽΜάbjDBο₯§t.Η©3GeAαΈϋ œΙ Ή›Ÿ|ŽΤΧΏΙΣo)<…S'pιf·gsάΉ…'•ϋ NY@}φχγρ ΅ }CX' €Iρ₯ΩeH Kœ ]ύ‚%N#ϊ/`*έκ<Δ:An™‚Ή]V½ˆAvϊΜn΄c)ά†R[32₯w—,=w9ϊΌlAb”ϋDΧ…υ 9'k}¬ω*™L‹qΡβŽγ0$ΔJ @vb%Φ#7h³NΦWπpJ2Ι3ZφΚ¦£Ο2QErp“KSX y†pΪ„AVvŠ-Y28ΛُΗzδ{ΆϊΈμμ|‘+ίcSξ†Ϊa¬r75g„’€)τ‘UˆΡ‘ΜNO&0Ή%u¨= l¬‘Γz1=Φ―OdγΨHYπ9T̟T“σ ^9·‰›Χ>ƒ+©MG^AެΗθWΕ‡κK JΊMο‘—έV¬ο;[ΎEΈVI97›YӟAΓo’Ρ;7‚°Td§T’L₯οΞLw 0υ³υΊΰε5cϋ|<6{!Κ”ƒΖυbΧcτΠQΦEœ.Ξƒœ ξίίƒΝG„ΠκcΥ?C’ƒ©ω(L•fπ،N¦‹ΰ,IVζ•QΒ4|su΄ρk/λ»ώζ·ώΊΠ‹ΌfXΗ3ίU>ηώ:ӌ79`rΐδ€o˜}σΗklBvΦ}¦π°ϋc²^ϋp+ ˜_ [ ’Ϊδή€UΊG’υΡ5]+ΙSΓΰWXΑ±ς#ȈrΟ<…ξ/ρQg›*"œΦpuSŸQ֍6Φ%uΥ£€ρρΫΈίω«Φ…=‰«««Ϊ¨ ΣYΪLwΞ[„7—ηqξωtœ²²7ΥΧ‚Žώ}8p²‘ίNŒΠ:΅»#«•›ϊ³xM–ή xλΒρΚ7Ώ…|l#Η/t£εJ'lΗ_D>υ³{yΞWόjσχqζŒ;˜ΝϋώM=~œ­.Kq%ΟΊ;2Šι›‡{}|ΕΣθjω—υLοΙ:‹Ξ’ο:qο½VΡάεΪίύ πΪ‹¨ͺΘCBd*βTΟοŠκDHΤρŸ­Ξβ•³ΔΙ8‹ͺΊž–_γό―.θnh—’\_ύ Υ%_ιyώΛΏYΓwΟCEκ–βάΫΘ…τ\‡ψΎKυσWχΗΧ{¬ό ‘Ξΰε½Ι vα)—Œ—Kγ7~?'γB―ž=‰šbν»Κ? CθλΦ< Lrɹʏ|AξοŸ(Iι5έ”κ:zξž!λΖ’ξGϝ»Ϊ47+k SΊ@gM:Ξ0}β]r~pΔAEδσŌτ?!P±ΰzΡ7Κs„οΌC£#€KηόμΟΖπΒΛ/’©:_ Υ\£έθ{τP±ζL±«‹ CŸ5άoζ—εq™ι=2€€€Η#ύbϊ‘ž·ΠšU§rHEMNάƍΦά6½I±ͺ«ϋγ§3>μΫta”ΐmYjΓmͺ"hKFΗΪqοΙtλθv,t²Λyb#Θ"TnržΦχ¨cz₯Άšz«Δ ΝΥ8v0>Πσ%A-`‚ DΊ·Nš_}ϊ?ΣZs¦Ϊ™δ<³>Ο8?R=5»Q^Kδ±Θ])―ϋ5-&A:Ο.Œι¬3°Λ]#ιt§{·ά›ςΪΤηΥη—i±/@·ΦΧ,ΥΘΙ“zΖ0ΨζΆ{]Uζ7~ϊǁΌ0ή]Ώxήg‘9y΄$‚s}%t:oγ³αΎ’„WqφΠ\F“ΐΉ‡ψΰΝw :&ΩI±΅x°^ΨΙΏό{)ΐc1 _¬ι§p8#ΧGΕ.τŽ\ΑύYeΗiε9κ3Tœg^)FΊ¦ΧΌŠ—Nμ—n·‡Ÿό|ν»’5 ₯&Oί\.½ω–t¦|―PΎ@¦Ξ'Ÿβ[<Λ€ͺsK”½ΒκDΧ—nχ«ƒ`)?‹3Ύ–vh"ŝ%YKV΅O—ŽTjον׍׫ΐkXΌόcΤζ‹JFnα_¨YX΅μ―¬K˜ΒχώwW+δ>PhΘΖΡΎΞ˜ΥaΗ)Œ;žP £’²›ρβkgxπœWΈ:_ψΩ― 3kΐϝxΣNΰ¨M)κpem·ϋ.bΘ}S„”4’Gˎ©v±SYnΏΨ£ΪΤ ₯₯+k}¬ωJrΏͺD_o@άΚό|8(l¦`‘gˆ©Ζ©’YAU5Yλ]Δν‘K’Vί(–©>±TVΎh‰ΪΕwͺχΘ'•¦άυΙ!’QξpP²qό'$SύlΜYξΏ‚_ΎΕ+-ΑŒcyΝίΓ©¦R―eI/5ωiΔ{$λs ^τ:Φχ5" pΈμ„ίqoe‘7ϊ[ω6Xυ3Φ|ΛXδ5Kϋ€ϊφΜΥ”ƒ꟞½žwδ‡8%oΦ:/7\θΆ8―κEζl³ώI€²ΚΑŠsΝ%ɳ͚y? w’ΪΘ4_Ρεͺ†ζΑΘkUɊ7€ω­’T^syXΗ3Ÿώό•/κώ3ύ&ΎΞHˆ‹γ›οZδ`¦cαΐάάxln­aŒxτMK0#΅XP`/DR·΅lk+svtmά†k*’cIΗknnΈ05ݎ1+Pώ(ήΙxKV.x8­‡@+γψα^iδIθψΧ‚ΎΔ`ΧK ΑΛ™!Ωΐ2οn€e“%θϊ ;’hάζκƟ\Η ;˜L§ΞŒΒ*ΨSß,ΉΉ4Α[wu-„ΦοΕΛσωRFZήΔΟά¬ιohΟΞβm_&°φUτŽZ…\s?Θ%lŸ'τχ}ϋhS—:ΑΚ₯½)_Τ< ΖoΚ%[FΚ%KaJ²­Β)»›Λ˜wŽγQ»kρbgν€\ ζω`Mk$?™hΘ’±¬@ΛHI M 3˜½‹Αm’υ;ω1ρƒ1S"o+LNEΔ7H'ΰžeΧΊ₯SͺΛΤΝ“‹‚€dΔDFςz—fm}#]:ΐ7Ο‚§σλ%η=9XΘN>ΧΜϊΣ[Νρ0r|Θ­:Œ 2pΒΩνXΑ@η;½r*Φη3˜ω‘\£'x9ΘX‘˜m§λc₯v―ΠΙΪ>)Ÿ)―N)_ΎͺςZ2z‘ŸŸ/=>^―y‡Ύ…Es¦ϋ |~³ύύύ|ϊ°0Z0TΉ§gΡ™ˆpΝέΐηXCuf-R<(qbhβnOτ¨Θέϋή„ˆXδLM™_φ9s-dαΛ)όάΖU²:ξαfζιX ρqϋ–Ά΅ˆ):Β–Ϋ½’ο–1εμEΟd+ΖάςΊ§_w³X@3χ$‘ί――ρmδ š~r 3Ρω(Ιя]#χΠϊΙϋ Θ™KμhΑΕ ΓΡ#§h—& rKƒxΠ֏ΤΗ‘Λ-¦{§»ύΓ_ΣfΞ£(*Θ’]”ΔPzΙ­­{Zΰp>ώΏrNαhσA:ω|KŒŽͺ€‹Jϋ«nR ά•λΕΫΝ οtͺsxσΗ•>£€œ‰Χ>Χ‚œΉ|Ξ‡ηΡ’nEσ~ξμž4”Χ7βξΕYΉΦV%j(ZlώΪ†Ά%†ihnΑωŸOαΰ‘c¨*αΚυt‰AŒφ©ΜΠ³φŸόά‰ηzjκs΄Σ‚|•Κͺ§Δ'½»o@υ”HQΚ5,ΒΓ"ΝRxw…v•ΟΉΒνb‹<ΓΖ–H&κ A؍i “<λt΄{π†©>‘V6Ύˆ™χΒΕ”»O_ξ\€'Ε…Ω‘nڌR ‹ϋ8Ζ?GN άoCΫηΧ}>UΑŒctά₯­—Ρt¨ΦmΓΞžΠΈ™t ‘οjΖUνΑΘOCή#ΩͺH„=„υ}gΝ‡υ>\ΤfμGA’Ξ–+’Mӏpg²Gζ«~ƚO¨˜M^³΄Onθ^ρ˜rΠ09¨ΧεΞ|³Έαk© ξ g.“J§ΣȜνΤ?©ZV9ΈNΦσ±;Δ5 «ΰχ²νa}7ω-ίVιO€ςšKΞ:>˜ωτη¬|‘ΊΞΌš09`r TH‹Ϋ‘–cζjq`ήΥC –PΪδDίH[(˜ΧAί*8‹{Α₯##kγrŽͺγι8P]&7`…;Θ@Χ{‹ΐ»,εΝ΄γΞ΅AΡͺςΗ{Ϋ1P…‡Q+‚œ!άΏtUUΚΞx™yΓ@ήNΦ,y‘ΏοΑΦΘ–>t:ƒ•K{IΎ°ρ”L"˜rIΓ:cε’³χ.Z’‡ »YV(Tκ3–ŸΦͺI7JcύΆΧ=χh{Ϋ€-}~Άw•O…ΪH#ο–ΡG?V<_9ΟΚΝ§σ\3Λΐ=¦·šγƒ±γΓ`;mΘd}ΤƒΘΗϊ|>? ‚/Iƒ—ƒ^ 0x§λ ,d{…NΒ 0ε΅–MΖΚS^— W9“• ΅wjΩνvχT-:+΄ΔΑšdC\8wΗ\Σ”k„3ί~'[”ςbωoϋ)πUC°|± ->1ΡΨχ0lm.až@¬³όΧsυD€ΓO'(GπωΈ”t|‹“ŽV7vΉΣ ŒQιyϋ‘œ$XmX_œDwOΏΟ’l₯5HŽζμXl±3θυ“ήgaADΖيa·& ;ͺ·θ¨ Χ S­=6*ˆβΎISσQœ™ŽnσΜΧΧζ17ݍIοβΕ=­ώσBŽ‘Α1΄ƒΨ›Dο ±ƒ{FV&0Άδ4΄ua¬υ±ζSΧ˜ŸMžΕDΩ`‰Ž£]Ψηxω›u,―ΞcbI±f―_?[}RY;Η©Ζ§w5εξΣγ=W³Ε–K"φEF ‹h“ΐD‚ή&—@²:OΥ›k˘yˆΙmRvξ=b}ίYσ }cGZt/繐u'¦\οϊ.«~ƚ/ΔG(θφ…XίΣΜnΚA㸟wδϋdΡΉ˜/pϊαΏβ½ΛΫ RaΠ?±ƒrcΔWYίe}rXΗ3Ÿ>ΗYω’_šjrΰλΓΣ’sθ}===‹ υ‘„‘ΉηJ0-:οΉ.Ϋ“η’ΥζΧΙjσΰ£ twad|1Ω¨i>©·<Ρ‚ŸηŸνΘ‡ϊέΐΔάͺ&ΔΣ§§εqtuξמό4RžνuωοώŸ½7Žλ8σβ W‘pˆϋ ‚€xIΔΣ5wζΓΨ;0ΎvνkψΕΏντp -Ιθ…/Sθ΄Ά(²‘Ή±: λ¨ 4θΞ’sˆ(:KΝ ώoh+:V"C€!ΐ`0 †C€!ΐΨz*ρβΏy ™|A64½χβΑίΈυ˜³ †Cΐ(LΡΩ(rJΊ ΪΩ. Έί½uŝχVoWksΟύkόθk΅Š·βζ?ώ|φΐ›QY° †C€! ΖK:ΐ5ϋXrO`ΰV/†ξτ»€ήια. ΪΓlναΞίΕMgΟυΦuξNηoυί:δXΞ †€Œ―΅P1ζηίvzΈIμ‹’³:tνNΡ9ΌξΨΙ?“"ςw°—ΞιφΰM&‘Α J+¬Evj°2ŽΞζv,―hVC`ΫˆL‰ΒΖ’xή·F-φzΈ$Μ‹!ΐ`έΞ―‰eΒ`μJώKFραdf£ϊΜ dΗξΪ:Ψ„kέ£l~Ίσσ]ωΠ±F1 "Ή_xg­y;6-€…ζηvY‹τ7'9I‡OLμ,ΣΌΓp δηKV΄άΈ‡`œ(]–BBΰ:93)>QI‰gΫR¬]·q흷ΪΨ*ˆ »`0ΆΖK˜Sz˜ž•3“” l3H― Ο7@IDATΜΐΣ§Owtψΰν>ΉmμΒ6Ž\1a>;φ\¦Ωϋ!08²\ χ0Ύvžέ6wώώpΖ‚ ηœΙ ~°Ν&œZσΜ3Ο8d͝™’³ΓΑnφ™/εΔ)+“Λ. N(5!₯>mΟ†»Β< †@€Ψνό ˜X6 †ΐ.E€ŸΖ—ΰΔ‰3(ΘΙA’€δ Z»~§•{wώΉέο‡]ϊΘ±f1 €"ΐύƒ“³ΰ±ΈΈδ_&» υNUtŽNΛFτΖ<&Η‡ΠΩ¦²Ϊ㲡- _ΰ«+ΏCsK3ΪZšΠx_όW―5ΑΚ4ΥC»Yν»ΖKιΤΚo–•™%% Ξ’sχ'Ό?gΩYR6Ψ‰αj%ξΐ Ά»raγhwυ'k€{σ$°χC`pdΉ0ξ`|ν=!_ο¦ω»σχ‡σ|ž):λy:tΔM?xY)1œΖ'Ί›Ϋ0―#-‹ΚΨ©pυβςγ]”™9%‹Δς$,/νΙπΪŸ¬ή †@θ#°Ϋω5τ{€Υ!ΐΨnψωgNΜqY ―/ήΩ¬]θξω£ζ¨=; φϋaMΨ½έΟ+Ÿ!ΐ`μ4˜’³=Ά±±‰₯%¦θΌS§zβ)ΚΆ0%gΒ6€^ΆΟbvj3τ7kί† °" †€Œ—œΡqΛ) pΚρY‰ΌgNIbθN?Ÿ§T°ΣΓu@±η£²q΄η] {wλNηoυ7Ž KΙ`lŒ―£ΚρέnšΏ;σ·σ -\8η˜EgγόfΚύ‰©ΨΏ±ΫΜ{ϊαjίV3σdμhH₯Ÿ8…Sj–,;KJ³g0Σ8Ή'Γ΅,\οθŽf•g0Bσ™ μf~eό2«C dΰηŸS˜‰z‚¦;Χqη_`dskyQ»šΉωv(ρ?γλ"¬b †@ˆ#ΐύλ υυ ,/3©λNUtφ―χYj†C€!ΐ`0€€Μœ^™Α[‚“”$€ΌwzΈΤφΛ`0ϊΨιόο­ώϊΠ`± †@θ"ΐρΪy㿝ξάΎ­Rt~ζ'όΏ *Τj4p}볏<ζ’“—η1œ2[€€άΜYpŽ2GσJsνŠ•·½>ψΫή­•ΐ`μI8>έΝόΚψsO>Φ¬Ρ Cμ΅ω%§δΌόΟ•+)Y«Λ7Τi,C€!ΐ` >6–GΑΎ°ΐΠ0€ΐςς fgη €ά]IŠδσ zόψρξjk C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨάάδ―ςσσ aΧΧΗ§ sH^wμδŸ9ψθf°χ‰ΗœM&α,!ΐΨzx‹n΄Υ!.?ήEΙ™+}―…3 w[Μ±{g~ΩmόκάΎ½ΪΟ¬έ †€wv9+‡Jϋ˜’³χg‘Ε`0z`υ εwmm ++«{Μ‡YtήcΚΛ`0 †C€!ΐ`0 †C€!ΐΨƒ0‹Ξ{°ΣY“ †C€!ΐ`0 †C€!ΐ`0 νE€Ytφ……EΜΟ3kΨΜ’³ΟKΝ`0 †C€!ΐ`0 †C€!ΐ`„>[eΡΩΡΎsθγΐjΘ`0 †C€!ΐ`0 †C€!ΐ`0;I°½CͺΛͺΙ`0 †C€!ΐ`0 †C€!ΐ`0!†St±aΥa0 †C€!ΐ`0 †C€!ΐ`0»¦θΌ[z’΅ƒ!ΐ`0 †C€!ΐ`0 †C€!ΐ`lLΡy{pg₯2 †C€!ΐ`0 †C€!ΐ`0 ]ΐζζΣ]ίFΦ@†C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ:˜’σΦaΛrf0 †C€!ΐ`0 †C€!ΐ`0{fΡyOw?k‘η—ΩηϋΠ>ξžΫσ§υŒ&LRD$“Z+ShΕdH>g>TJΕ/Œ?}ΐk―DΙ<‡ο½}‰Τή‰ΦΛψυG·Ά¬ες8^§ωΞ’ηωŽ•ΠΛgRiALg”_t¦“1—šθαWs~­³<Ω‡FγΑΠθ‡P«…Μ<·ή ςk{7oύ·`.‘Ο”Ά/Q~1Ξ―ω΅ς8CχŠρ`θφΝvΦLwcrN-;Ε}‘μVWˆN½R顰؊w―½λφΫΡ Αγ]‘v¬<#½Δ0Ϋ…ΐVΙ&ύjOt4}4D§ *, ›OΧ°ΊΎˆωΕΜ¬ω•­fβ’η~€ΣΥΉXoΖgτ;lψM³\Α3ρ‘όεϊ¦ K^Ϊ§—ˆ4dΕŽ{Ψ\ŸΕψ̜δ Nυ‹ERŒ q‘ρΨNιh+φΣΜΞwb|Ε)*» 8&]8[L&7TC„ =ΏΗεkΑΫυi.6Χ`_[pΫN9žΫ”~Ε}z·ΙtxGήλ¨f_ρe—΄ης”άΈ+ƒ‰β€»Υ΅iτΟ;Faw»T™ΘμΪκ8<pp±H©ΖΉsGΆ{οWΈ~·=pεΗWβωK§Dν^Ί‹ίΡΈΌ·2'β[3½7cχEaώ[£ωΗ Y~Ϊ:KŠ+@2}όΣΫ–ή·kX\±bxή.tΟ \°σΜgηO— 0†€Ÿ©Ζ»Ζϋ§ώŒχ­δ₯ΐz;ηžΗ»ίzxΙ;ΗcΖ¬D",y9HHŒCdχΫĊ}Ý]0όΖΤβ—P@f+yIş;gΎδ?Oψί­‘ΗgΞm’ωΝΛχ΄s:vΏp«R³ΫQπž*σιΣ§ ™σŒ$‹ΟJΞ\1λλ*Ή’ε*I•όΦΟ€^₯ΔJ«Δž²]Η²R9b΁ΧρZY΅|οz‹h’Λ.ϊ ²έ)9‹‘3žΕΕϊ5όCΓ59™tq¨ζ_αtv–tλψS„η+^Εδ—t‘Ϋ±wΛΤb°τλ!v@ƒr=‹³gkω<;Wžl’σ6Ά/ `±Μμqd΄<έιόΰ—’ƒίΖKΕenŸŽ„δ œ?ΥkΏD—*–!ώ4\O NΥ‡Ν&U T—‘TW½°ΝΏΖ΅!χ¨U)Bηrω…ρg`ƒ€βΉUΟEt=Nz‘V5­SΞm’³n>«ΌtFωΕX:γσkcεiτtθymΥσξCK:nέ•·νsW₯α― ·pycl°³[έ±#—%gjδββœq™ΈHΑγ]‘pVή6~Ώkτ?σb0Ό#RŠΞΡ1Ε(5— /.E£ζKθΎŠζ™ΐͺ"GD v’#ιx:R·ΞΛ‚Γ…—-–°Ϊ/:o@λΫE?.±(Μ8Žƒ)9LP΅"} ]c h™q2Δ’,ϋ9δ™Μiψδ'0m{„GCχ5λ¨*!8—ρE¨ͺΘF-ͺΟ 5£kh‹¦‚T^DD$βA»υdϋτ|n₯KM,EZt’Έ?3)ωI₯Ωπ¨ϋ}tk·x /ζΈΌ 9ΨΡΡχ΄ΝKωϊΧΛ8ŠΒ³…u.ΦUάΥbhτcά›rκΨ^ΚSEΝJ;‰ςτƒ\o:ΈΓιƒhό ύ˜:Dd7Ϋ‡@|>ͺjkQR]NγQpέ_ώ=7 ι―“ε8^σxΡοt3>όy°7Τx¨rD -ΎnΡ³n„Σ’{ ŠC’%•Ο;|Š΄Έ ρ.W5sr 3‘«58Ϋ\܁†Ρ(#-γΣ$%Φ ,­ζ(i" dUΎΠφ‘t³ΑHΌ@Ι[ΉςΒgηO₯dvD‚Αgο$[ΙKRΫτ»½σ/γf+ώ~θε₯ИGnΣΓ°“‹M©ΔΡΊδ–Θs$‡ζœΆ’νΑ—Έ}ΏέΑΫλ ›/!τηKώσ„Χηΐ§‘Ηg\΅|OϋΤ\iλPρΩ»ώn]9,gΝMfΝΩίGat¦Mύv„k@Ή±±†δ’“Θ“ ±έG“lΉXς ύί€XI.±€ήVΨ6ΰ*«ί˜A—³πάrUJΞ‹³]hjΑ }‘QΙ°$γpn*¦ν*λ’ϋΘΈA23έ‰Q›γφiΜ/Ν#<* ΩudZ°>–`.G}54¨Κ,/'£)²’σ:»ΎΐύŽ'0—Ό„σEdΌ‚s‰Ε(Ξ2atΨ&άο•Χ•tCΉά+­gνԁ@°Η‘Ρς ₯3Κ/ζ³8©RržΏΫ]χ0NΚE™Ω§(¬B°žLk¨’Ke΅ί¬giωKJΞύ½Ÿ’‘χ&ΦbjQWzΕ&a5€2­%~ˆIΟŞŽΚψ3°έΏπLHLU)9sσiD—K³τ ΒŸQU‚™Ξ(ΏMgt~m΄Όΐ>δ»0·0nw!κo’mνwo‚Sk™οι |ώ!c)}Mw΄Vm_œΑ\€κLήεͺΜΚ#φκχ{€žY– C`;Υ·£pu™©)'q*γ ΪΛι:Q[²σG±m@ςΣ Ή’άγŠ’3•ΊΌΊ’YΈ8ύΈ˜Pž{Ε ’zžS–ϋRP”u‰vTΏ‡³ͺO₯ˆ,€ΉUrςH6UαHΨ:>hvΚ4ψ·iEΥ8R_ΞάΏ6°εŠΞΑ*obτ1ξή!£hτ4Ffαh}εΦƒQŒΚœγκΟh₯Μu;έ(δΖGΖ)ρά^m`u –·q”“μ³’3Χ„ wΞ[yR‚¬―‘&Ι,έ:ώξΟΑαΜg1ΧύUhlp¬έήΎK)EναC(.+‚³κi˜ΌUDe••ςΨιλ ς©ήκ&/ξ ην {Kΰ{8YX’F“τλ{b!f°xΘEQf܌XΎ2¦„2œ( Γ·iΟαXz[Hbc Q—υΞ«. τΟ ΄‹ρΖgζOνZ0ί-C ˜|€ρΰ°…Ό€τ«νžxοπσ;ΐ/…Β<2θΒ.(0-·€δμΦΕXPvβ[HŠϋ—Ώxθ6šs›/)σ&glΌέmΎδ'Oxk‡―α‘Θg0ψ=νk›YΌ­Aΐ+ŸmM±{6W¦θ€ŸiΖ—τ§νjπz…πǝ/ ©{'*–ε‘νbρ8Ί]†oΫ¦ ρbΙ³‚ςA06t ΏjΎ‚©]Γ ψς‘Jyˆ ΅ίΖ;έVΕ“.ΉψˆΌπ6 ΔγγdρΗQ] Μ…Ϊ[…OϊψΔ“#Γx–“*±ˆ‰δ6R«dοRΫυ›œΖΛ§lӁ5"£nΞά†²Ξ²I2εΰ:j_2•Hν !Τƒ ΑN)-ΨγΘhyFΣδ—ͺŒbycnό&ώ±αSΉG瞼‹˜ψtœΜxR’ ƒόi€žΡ΅¨(Θ• ονό%>|"*1-5βχαH<χ5€s1σ›Lͺ6ŠΘ wΪγϝΦcπλ}€Ρί[‘H17ΫI›–± $jՁωm%;˜ΟB— tΫvΟ |οπη;ΐ /mχ<@W²$,ΐJ ΪC#ƒ˜žΓΎψ\¬8ƒqא₯ϊ j‡ϊΡΨνΓ©;lΎδ€¬ξ›`Ν—όα ݍNͺ|fτ{Z»•Μ7ψ°oς``ΎΉ©!” FΑ{€ŒϊΪSΘYηFοβKΥ'䎁 :6J‰΅%ΓΎZΝ)<Šb1έ̘³’³ΊυzT_Χ°¦nVŸ±WJ'ΫIGΜΟQy’’3IpρbνYZ$ε8E<ΫνuωΒ΅©β%\:]ύ€ΌΎαK½ψύ?όZw)p}5‡/όυG«Ι²΅(ǝ·’΅α ~σΡ —ψι§QYVެ¬l€%Y@‡χn~ ΓΦ~τ=ΊŽΟnΆͺ₯αδ·ίΒΑδHΒlQirXΦ‘οβ{%Κ1UαtΨΧπίβ³{Ϊς§Γ—Ύšς δf*’π…ιAX{»Πrη4χΈΚlΧΙΊFξ‘ΧpϊΉ:ζHς7;\ΗΥ|Ϊ%ΙUτα" gίώ­‹μΓfψ:z?9n΄:Χ#ηίώ&²(NΕιΏωs\{…W~rIτπl¬ ΚR€,)<όψτGVατΩ#’<ފϋcpͺV~ξpδP5ς0ιCηέkψέ§·\κ―ΏΈ,αε?Ό€”θp,tί@Γ€§OκΓSοsνο8riΈ£εMηΉ:ξψΕ‚Τ8ι^@ίΘ=—l—]όxƒό©™δ«]Ο’ά2ˆRRΪΗqΧ%%g)ΩΙTi1)]βΙώ2ώτ·ΣŒς§šc‹qϊ[ηQV|Py‡Q΅ψwΓπΊ›oαφΙZhήGN㍋gQQΔνγœΦ‡hΈ=Ιλ³ ~ΪκεA>—₯n4ttΛΔs»u7;§ΖAς5ώk”Ο‚™Ξ(ΏMη Mwσλ­*Ο[}Ά#œρ Ώ¨WΠλ%€Π«#ψόo‘=7Ν<‡7_­₯ΥΘp¬N6αwΗ·eΙ·Φ Ÿϋ>κ MΨP}CŒWΪ»?ΗGW΅•žwΚΌΥα) Σ7ΞWT ^Λ½Z6#;1–ξ'I>ξ——q0y—•ηύϋΓˆ9†C 4Eg κ«₯Βhz†>‡©Π²b”v6>ε^;ί%%ŸD}*‰8*τVœ·6ΐ…”™ R%0:φ ξL  ­uγώ`8bKN€\ŠΞ€™tžν’κJ;>oiטΓί†ύ₯—!Φ7Nž[TYήέάp#δΡhQ―`—ΗΧ“Σ> ‚[ZDλψ*VWΈ‰Ψ0’ΣΞαDΊ k[U”ακ’†„(IYC£ Ÿ4‡X[uγσ8’ƒΗτ§ν p‚ όs½„Ξ •βΏSŸΛ‹,E!7ΎEΧ?rM’R€}v€θΕ‡‘…ϊ}ά[T•° ‰_ω#lƒ-χ1°dΑΙza½‘ϊU–ΙV‚Η>B‘LΆ2½ χume y'"–{τν³^Ÿώ ρξΣ:ͺΆ“S1Όδ8&'Iρyύ™ΧPaψξ™gόηεΌΔ\iΩ sΝΈ:Π$γ47Ύ-T䈊Ψͺ±Ι9(€?Kτ):¨ .-uoβGuΞήρ€όό2~”ƒςΏP΅Ο9ž/χ˜^Ψ‡Σ‡„>ΛOόΖZ’Z—CΝ«ίΖI1σ­h˜±™’€Ί‘‚κK?†¨!†7Υλo`Ό· #R‚b\όΙχqΌDYη‘Bb“σq˜ςΘΙ2γΰoQ²QX^"τUA*€‚δ_οxκ{ύGrΥ|Ί0ZžΡt^*ε–_–±ΆΞΙ$9!%γ5gήΛEžΜ?ά鰊ό«g\΄΄τŽwμˆv/΅Ω–`ƟΫğRoΣ»α{όcjΌ“δwCψ˜JΡΩΏχ‘‰6ΝόΑΫ/;ρv<,E'ρJ‘T)χΏϊxP+Ÿ\˜δ“-l˜wœ?h₯πέΟ(Ÿ7Q~1šΞ#~ζΧ[RžΗΚl_ γAyp dt0Ÿ7 Q‚Š#Ÿ`ΰ͝\Ν±z” D39Ok…2ΆaI_Q~π`Zώa–ΈΞεmάϊσ§s·FΎ;(YΠη­ͺͺ“5χΧΙ°VAnŸ·΅ θΈψ₯΅2™U\Γ—Αε]ξTcί·»=αd   " ͺ±D§’RSΛ‘#hώanΞYΙYYωxWϋξ¨k²βx8σ Pε΅Œ―%‘²1gaΩ†Ή%Ηɍ\2’ς•1²NϋPRr–@Z›„³Ι"ή’·χί ¬o*±HVμβbσŽγΨαBDΠv­ Ϊ₯Ύ<Œ;ξ§0Q]L" a_DnbYˆΨ@d’ςui.»„ y«rδπ`’ε*;Ηe?α"UgO θ@1L$°Ά“~t<ύΪ†£«ωK<κVΗχ― `zbΛΤ3–’CdαR£εŸ|{Ϋqε'kEη§Χ°–°kd”$*ύ0* %kΗ= ΟΠ){aβ†ρπ L ͺeο\±ΕxνG?F…b3d5Ί{pϋ’S‘ž_Œβ ΏΰRI•׾֎1ΔTγpIŽRpG}"ΦSYηeσ{€ΤΤ‹“%$ΛIΕ…~π‘Λ‘οΰΒIq} 7ύŸΡ ©9€˜O1Εχ ŸΖŸχΡ!\zM₯δ<έ…†»M˜)ΐα3’υ}±bξ~τπ VjΛμ˜Α΄Oσ­Œ4όŒςYPΣε£ι4p’½<Ν―·’<Ήΰ½`Δ«TςΩωϋO\6Ή£5xG–Iδ‰˜δLδΡ¦μf—d+έ²Ÿ_IH«,&uQWOVr•– αύ·#’²ΰΉW_CgLCtœ’3ηLYε8B)wήΕηwΫOi//‡.ΌŠIΉYΜ‘‰1ΑΜύε”Σ€ΰχ7΄•~ΤIτ\ϋίiˆ“-5Ϋ±°’ΝΤυˆŽŠ— ζVζ±aBjDΤ֏Y]γH]c§k:f½PΆ˜:N֜9ξΡpΊΚKƒY>bn‰„ωJž³‹:D%g**&‚S(ΧΖW£&‘γEcιΜ₯Phα―Ž.:‘,ξΠ_jδΊ₯κ”ΤBGΎ(ΖvV.κμba)9ƒ―ΗEαWΏ½"+4G™ Ι½Œ>ΌŽV ˆs 阽,AA{…7Ž»ο…Πž Γ.οd|”Ÿ­£mSRVΌ0Žγ¬₯΅AοŠΞζtd·rOŽmY gγΘ+_GUΎ€t,εMjτ‰Y(9‘…τ΄d\ωΨUΡΫ”Y†œ|ΧΎ³oJΚ\Ξ±ygpρΥ3²ΏPZ,Rrjpšώ$Ηε‘₯θœRφ"Ύ^&Ε’~΅ϊΟή•ς₯±ΠχQ2β΅ή αΩ‘U{ϊτ鎬w¨W:§π,Κω“¨¦dπ’ρqs¨WΩmύRTΗ΅;GJ0γd]1’ύ> Ω…θJιTCiZŸ\:•ΜWŠ“”ZΐζκΟΠξ {bͺω1N§₯`nc ϋH^+εΗ…NŒ^ΗΗ-RVΘIΆΘJΤ3t"§€˜uΟ‰ΨζΖnβΡJ>NζfρiΒΒ|*iΘΨεt1ωψ#όW²ά,Έ+›ϋ|γL[\[‡\RtPνD_Γ5LN6γڝVΗ?ύ zΎυ§xε8§ˆό²*2Ξv•Σόρ/ =y¦“ϋIΡω8ο?Υq]WϊΛ1Cα.χΜYTgJ!ƒΈωΞίγ³{ŽiΈ£°kW€H.ΏΓχ‹ŸώRRyΣoο8ˆSv&KœΉωTΟ —4ϊ<&πΩί|˟ –ES«Ύ7/tβןΖΰ­Χ.πj©\~ŸΎƒΟœ`γόΊnβΧώΦ‘ω?~ƒΤ@Ιυ^Γ;ο‘_ζ ςJΎΙϋ™HώGΉoΰ¨hœτ”9brwΫή «£—ψ4ωgN’œsyRZ#ύΗ'Uύ<=<Χ[2ŽTυwΎ4ZžΡtκςυπ —ξΡ@3Šˆg²‰ˆb’γ΅—s02ΉˆΈΤ\™{mMΈrηŠƒΡ#όi¬ž)ˆŠ’dΚΔoκ\„λ’²Jd»zοXƟΫǟII‡6‘όέpαW\\=ιπl}垩Oe μ¦βŸγŸΛο΅΄Ι䏉s…•$‡β<ίxΰA­„ Ι©τ֝°<©1g‘‚υώε³ΰ¦3Κ/FΣΉGΡσό:πεΉ―Ih„0τ{ξ<›9M¨Τ*ڐ—|™ €)}k:T#Z|&ΏA:€ƒ~εΉqπζ‘ώς`ΟυRN4NΎ3):{^UέσV©§κIΙΉ\|τw]Ζ΅a §PΩ¨;±8γ07“ιύ .οR ~ίξφtzϋΕg0ΆνUtŽΛBZ”Ππ……iD₯žΓ )Κ‘ξ\ΘάόtŒήΔ°{yΦφ §«Τ4Τδœ­Η.‘gπcτ‡ΥAΦϋZ±;Z>6„K,b#"ΕZ‘…έ%zΛΊΈD‹x»iz˜•R‚ƒe²0ezͺύZkΦ›N9ljΙ:œβθΉ%Kwξb=6‚”Δ6°?₯Œ,‹ ‚•©ΎŒΟ-;Xˆ˜SŸ‘ˆ#η_P)9ΫΠϋ° 6ϊXδ,ˆ ›Η^ΒάX;ϋΉzωSž₯ιaXΗF17c£Γ£H1°…9‚rbζ‘σ82{>ι¬δθεΚί~P[Ψ=GnΖ]ld’¬Θž`ͺΓ‹τ'Ή²j3шn·GKJ1υώκGn³7‘Ζ\%Χr² ύšνΤY^L&R₯ρ΅jΕΈ]¨@†ω<*d₯j₯R +κgTρν«lœϊΪk(δ τ‰Ξϊδ†Ζl€#Κ3σ‘GΧžC#γ2_Ϋ$ˎΞ>ά‚ž~zWd£$_όLΚͺ +wΔqΤ…Ύδρ–”S‘_JŠΞνŽ™ ™$ΡT/šϊœΒq[„ΒRiγΗ$Ί6(™ZG0IΖγIV”ΚμY•P—«¬”Ι8¦Ζ†ψπͺ—•œGΘJΐՆhs>ͺΚΈE'βΆƒgpΚ>ŽίίtlΤΰCt―Ε“Eg’FοKΐΑƒB=7ϊŒΟBό'υΟ©”œ‡Ρφ¨φ0 Šλk„|ξσ²ςށα]Έ΄Εψϋ(/£ΩςF+&ζ<υ–7wΧ XX[€@Nu=žŽ|σ_AΛZPž+mŠ ΰωGxB‚MήšI…uς™:©Γ΅―όι(DoŸωΦ1ψΜCάxοθF€₯ U%Β¦FӁ38V7‚«χ»Rκη%%ΉήyV^uJΙy’ζƒν˜˜YFDLL–,δpJ aJΞWzψeΫζοΏόΰ₯ν™G:wζVήοU~1#5M™$ΞMzΩΏ°ω’‡ωn(Ν—tΘ Ό< ΪΑ‘Οg.υφρ{Ϊ%]ΘzμU> ΩΩ±c·’λjp€΄XΞΈ³χ6z廝vaAJ'+Dθ Y1΄aq#IΙ…(O”†Ή•ŸD): ν4!=‘›wp›‡ω0ga΄«· ύ³σ0₯V’.[’Λ Ί°ν*₯e.?ξ¨ήτdϊV!q:gŠΐΑ~Šwo:xYMκ)[7…Υβ…C’EmR4ΏzοSδ=ϋοδ4λ›ΎV8+gj·/ [»8cΕ£ΟίW—ˆζ>GYm… ΤEr€œΐ@₯α£_8ΔUί4]mΒ³€θΜυΤΎύ„:α΄&lŸ¬²εIΎΛEΥα#ς]χ΅\”œΉΐΞ«SuγΊΠψϋΛa7›ZQGŠΞœδΟ”šξfόζ~ώ~ώνΫ‚bsΩ₯ογGΘ-ΧΪH™όhfΏ4ΟΙ€Θ‘εd©χ'gEεΌεyΜS‡id¬ΩρΓς=pύ² &ΆΏAce.ςΚά(8–‹Ηwεpϋ;Εžzžλ@Œ#N_ΡςŒ¦Sκ₯_ψt3}蟰";OR JE&χppλܐΏŽŸfGg„?Υ9θ©g7lάzm αx7#£–ŒO*›AR³_ΒI2Z"»Ε ’·ΘwΖ.’ΣΐbΝ₯—9Yλl*2—(Ί<κ‚ΛmdcόΉAd'‘§μAoόŽ[hRέ;_κyeŠ”Έ<:―ΚJΞ|žΔΉχkα|•4.Kξυπ V)ͺΝV3σSβZVLύ~Fω,Έιhμβ—@σ’·ωu Λσ‘?Ίi‡Μ#§oΰΙ£‹Θε9€E4oϊTΩWQY&Οϋ:[u…¨εΑšG‚厊RŒ`Θ~;aήΚU»΄μςι=3ΓΧπA‡ΠiͺΊ³φκχ .ο’½9ƒί·»=ώžc) ν@@‘>mCιYq΄ϋM,76φ J$Ή€ͺ. qQ:`Xυm£Šς—³OΚΦ}­γ_α!)Ή₯¦*Š’ΆU»ƒυecΈΔ#2‚ϋ˜ηu«³ή1ωf€BYzζ#ΊόSu 5€·°ΉŽp²-υΡF;ΖΘ΅ONcG·Oιe6νˆΛ‘I4Λ/Ρ()ί½‡ωWΎO–QM^Ω RtΎΕηeΈ< a€υ.αΥ‰ν}ŽυΊ9FžϋN󊘱Θ, ;΅έŠ@Θ1rξtφCtL’b½d‰έŒΉψ(—%Ή²±1τ‘—‹ΈαΠ<3!ϋϋ{‘wΉ+/5΅–v{‹‘«½θ΄j/ι-/•ŽΩ”ž²ΉΕI^XGJΥ9|a sΝθYΛ@UŠ0 ŸyΖ·ΙΎ»vl‡Zυ”IĊζί€ΖNΗ±—uψΖ©T” Ž?ηφ·}Š>½-xίΏŽΩ‹ GωγΙ²°%ƒΖ+Ήžξ>Τψβ–S2σ aΊέξπq˜V]$oˆ΅=ι–9…O ,uΥΘΝΩ{γ‘Uq¦¦&QH’jZ”K!™σι«κΨΙΙBΪ$fF‡Θτασ¨8ΐIΉ9ηά·ΡΦϋ<.~νΏ “Y{y€θά/DR<ό Φ‡’G|=’IΡ9Eξ|iͺ’ΊŠΎ‹]Έρ«wΠ%*ρ·ŽΞβuKΟΞ9χ>χŸQžΧ.VπΥΙƒRV©©§qX―œίδ€›>Rϋ§Ÿ ‹ψΒΌŸN3-Α©ΚtLΞ/#š,9K²ΌΨ{}χ幁±yR!½|¦€tΌς•?S…ζγ3ίϊΕ3Ÿiηa빎χΘr3οh£ΗτΒ[xΆˆΏΝ+-C):«gVΌ?ζYqρb»ψJάά¦΄£!»‘΄pη«σΐ/Ϋ5/πgΌλωπ‡—Άcιk—"ή^εKέ)TˆQΉζ‘.š·xpžω…Ν—ΰiΎ»σ%=<α‘ϋ} Ϊ |ζά_Ώ§Σ…κύ^ε³P폝\/¦θψή«ͺ9X͜Ύ‹―ϊEΗΐ—Œ­hhώ;4Ϋ{zαqξΧρ΅ͺ:AV™…\:«w˜›―g!1Vϊ‚ζκhΕέ†qq.?LŠ›?Ζω\aΣεώύ’ Pݞ9Œ΅‚¨Γ"˜XŒt’ε,ι’1πzΩ<ήk“lη"9V’ΕLblb?ž;ωŠ(_²’\ϊWd{—”c’₯:‘α‹Χ>»ωSόuο Y\ΖJΌ<ƒ1u•}==„~Q‰YΙϊ{­(ζ."FAΚšιΐ Τ‘ ’Ω™Hˆ"«­€°Νι˜ν‹±π²&%―’%λKw‘σ«ϊ3œΆaΚY©qf‘Πά‚€d¬?gΧώ —s3π-ήΆΉ9b”ω‡ψTΆ˜νš ’ψ—Ί›Vl.zNaŽ«Κ²VΪ- Ι;χΜψ£’W±ON(¦ί'=g€sK«œ_ύgOߟλΐŒ#Us½\-Οh:uuτπ ₯3ŸΑ·λΟςJ½|.+“"γa1Ȍϋ›βΌZ6d^βbαOΎρ}υœ]œ£t&>mfή+xc_:Ί§g—TŒΓςζβQгl‡ ­‹ϋ“yτΏΌιΕ"€S¦Σχπχρ―E+υNazoκEΜ}|CόIοή₯ΰδOώ/’%6‘ϋIΖFϊ00’Ό³άκkH.ۊαNEQΚa°—d^}ηA)WΗί$•ΒœΝnu τλΞ(Ÿ;`”_Œ¦Σ‚Υ—ωu ΛΣͺƒƒγA8ovΞ<²΅Ή Η‰CΈ·yY"Egα‹ε I›(:Π¦R€–Ϋ”yd`xP³Ž‹Πž·’^Uξ«xAΪΔE:RŸ=ΧΌhΓ¬°Q—k¬ Σ³ί}:`£›wYyΎ|ΏλοG–‚!ΐΞb’`•KεΔ"):‰~—θO6Ϊ14Ω‰±%:’)%I™b}2Q˜Zˆa_•lΕT‘π“•~QΆζ:g»ΫγΒΛ.Q₯(:Ώ<₯ͺͺQ\¬˜'αH9™Γ3%±$ έrΎρ‰υ¨L“π$οΥΜrΠ;Έ4Ϊ€Šž E\&F°5ΰσ!׏<)ωgTνΒΓd9žΪ;PΧ1aμŽμξ…+@­όδΘΗώΨ:(JΞ|δYάkhD~ώ9>ŽΙlΡ΄°ͺ§<.ΫΞΫW΄ͺΒϋu5Ά‘Š19‘Pψ>t  σ·βUΚνs+sdΣYΛ™ΙΥή«²+σXΩ C\,YBLP$³ιUΉ N^λ―Σ?Žά•X€b‹°ΘΑΕœ|¬Y?#ε%E+Κί‚EυBΤεˆ–£I‘Ίi  ζ‚bΉbΞcFρρ‚6$p½ΰFέ)ήμ΄;Τ)»[3 K*εΐΑ†Ο]”œΉΐᦏ‘Ά'ˆρΗ)ΛtάΉ-—Ν]΄vt‘Œ9Ζ‹7IΚΐt3Ԏ‘ρ3(αER2ΟΟ¦S*I%Ή¬<ςέhŸΛjδΗo>ŠKΛΕτ6τ΄H>J–Σ΄ Γ++§"ΙLυ±RSκρΛ§Θ2?¬ΞOπιJ€q!mvdΤe‹δ7¦΅ρK—>XθώνE8Ξ+!£ΤŒώv7£pΏΒ£Jν―2,Šυ›ώGχd%g>Vu*«œΚ’ϋΣ*w:ϊOI½Ό+%υ—Ή|βαˆ…ή£’#ΕγV7›"€(>.Y1fŸ‚™¬u Ξ„TΞpΏrHΏsMψ˜Ž«TœΡyƒ>SΚV_ωƟκ>_3>Ϋ±|ζΪΗdŞ”σΤηζ=δ— @’³@S-žΟΤqδkx‰‹ktž΅Iωdη4uεό†ZΘ†•{§‡_‚>/ jϋ7ήυ|ψΓKAžG2~ ΏXŽγθ iώτίΉε8gpVlΎδ‰žω*qpηKzxBUI—;ƒΟ\ζΫχ΄k:Ÿ|Ÿ‡Ο|κ I/››Oυ&aρ=!r΅Ω’Έ χ»/δ¨\OEnuΨ)9kΉΡρΠ\ˆγιœ,1‘άw΄ Hβζ”JŠήΞO%gΡ{hš‘DEg%¦ϊΚ†ίΕ•Χ‘Κγ4oΰ\Ά₯9€P8Θί%‘ώ‚δνv€ΌˆRJδΪ[/£ν“όD–N‘ gԍ nl€“O”fν^,‘¦ 9ƒh­‚Ψρoύ;\<^β½jSήS9ňA˜΄2E κcΞ ΛN±΅nmc#£U‰V:ύπŸΡPτ7¨W-±άώυŸγ±/ωτLbšΪ˜*?$Z‰*œ&ɊΈπXTei₯)ιKΞίώσOߞλΐ#©Νž–g4Ί6zψ₯―«”œ'θtΫ/?Ε¨˜]iΙwρB‘°¦w U}Νx€ZΧΣ͟κjŸϊΞƒΔw½(+Θ•7ΪdfEf–C†όM ύ;dποέ΅ίΑ“k)>ϋh%Ÿρ§ΐΖ½τςην†ϋ¨=τ2oρžγΒβΊ τ'–?oE[σ-|ςήenFΰ§γ”%Ή&ΞE`ŸB©‚—Ž}γA­ Ia.FZ_±ΑΆΐM*εŒςY°Ση—€ρ’σ뀕ηK3τ€Ξ™GΪάCχΕ³¨ζΦ¬sΈΣ/τ™r ωb '΅:Z“wnωΟ#ΕƒΞΥφtςσVσY²ζXhΒ|>Όω<7γΞcI „­Œc< ΄lήeεωϊύξι9fa †ΐφ! ‰“Ά‘)ˆ‹”œΉβ§ΠΦwσ B]f»1Ώy uœΉKrϋΒw§ ‘Bϋί€€gQ/)“’TΣΠ#±Βi’’(wk‡}I& Ζq™_ε°>ΚRSNγTx2†I³1š,μΛJγd,‚bE­-ς‡ϋ eJ.bz›·°NuœeήdΓ]^_B”©'(Ν­1mλ·Ά–ία½Ρ&J΅Š΅J΄fΐG¦T/~£c₯U`fB₯ρ(ekΐ8 ωM³>XX•’yϋ΅T’€Œ¬˜Νˆ€‘FΗrbΰπ¨TYρΪ[zΓύν‡ψΘΉΘ|Ω›.lθϊ=+ŽŠΠSΝH:†cYe‚j_Μ‰±ŸΗ΄: ΧΖΖ‘vyY•Š‘Œ…V<ζ=œœ±ςhLοW8Ÿ™ωT8- b¦Π:τY₯!%ΑX‰σΖ1MΗ·v€ϋκΌθΡ―Kή³-ψπgο«l΄ΈΔπβ±ϋih n­žTΑ€x΄ν"γov$[ttdwUτYZδXMrγθοο"Eη"ςHEFA%):sJΓδβk‘•/φΣb'έ) ± ύΛY@.-–†Ϋ\¬…r™ΣΨ)ζy ‘·<„4:"ΝBγ…sρ™y€Δή[J$nϋ”•ltΠΊY€ς.΄Τ^ΐ«ΩΟΣ† >™ςOΈτœΧG˝¦„ϋ|e&‹FNbbΐ΅Ο'9sΤޝuυŸΟ•sΡ_δ,±'ƒŒτR7nυ|…·%κˆ«Β™ό:eρsέ†qZ$ ۟ŠΤ(±ίΣ"ξnΛο[γσc|¦έ_ψS;₯_Ζg j;–Ο\zw–ΈŠ#+Χ…±αIδδ„φϋΙIό²λΓηnlž%¦ 5―O0΅΅ah`3S£˜˜ς^'ίω%ΘσBΔρη;ΐ8/uΙψ%8ό_‰ /_η₯φž/qυ뜁Έβ?lΎ€FCΌήσ%=<‘ΡF½vŸΉ6Θ·οiΧt^}Ÿ‡ΟΌv‹`fΡΩ(rZιLxŽ4}$ιέΜπ=άr³·Y+υNτ[^SΛ|Δ¬ {…ω»•.΄Σ‰]ΞnΈ~m₯΄Y=#νmqZz1i°$‘‘N'(V―pώ(εΒɍτŸτ JΪ₯Ιω”Ό±ΩQGλΤBτ k#c2c₯FE λ-|Π¦αΠw”œF:ΠΩΥΫ<Fν˜|œ=S+D–,kδν³Wr<’=*ύzΟi}•λ`ΊCˆ“…EBΉ‰€(ξή8ŒR»YZcQȜ…*NΫυΖΘ"Α―™_Γ™ξ ύ·εx{-Οh:7ύ$y»γ—ςZYqx‘,τ )9ΟI‰θ·½γ²ŠQΞ+Ԑό8-΄7‡¨’ρ—šόιΙιή]=ωhKΝxο:pΎ΄εf•†σŠ택K­C±‰“oΣζ…)_Ζ…Sακ۞N4]Ώ†8οv:ΔTαΨXκ-σΔ1ώ ŒͺLtςgΗϋψ―3‡ΧΞBaQŽ£a.:±μδ7‘›ž€ŸώΥ?ΡΣ(G'PKbΓ@eιK>Ρ*…9ύΣdΝ=`Ξ(Ÿ;Χ`£όb4Θ:ζΧ)Ο‘pχ7Œέc³£ζ‘xLsΕj3ΝΙΤ^qΥiRtΎ2is‘½Νχά·•ΩΚy$}πΘ.H<Έζ­΅ΩՐ‘ ‹BqνwQ!Mʟ‰ε Ρρ°E£φΘwQ΅9…†Ζ+*ehTί.‚Ν»¬<„βχ»o ‹Ε`plΗ΄]@>:1ͺGΗ%g±o&I’(*:‹^;η'‡³ΔIΚr―“’Td}ΗυΠ‰jŠσ—α©δ₯ZdEΞTSRE>₯R|£›ρΕ1ή–ΆΪŸμΨ‘ΧzjUζ‚ŒK¨ϋΐœ˜‹TRΌštL$ίΩ¦†δλPΊP¬χMΒ¦₯θL••dΊͺwΩsίΓρκοΩωkΥW£γύΰ€€Ώβ¬YͺΆDJΞZnfζΊγ³Q‘ΐ)GF“`€ϋυCΡΩθ8ͺ\L )ό§ˆ!vtL4ΈŽΓεΕ!Bβ³ΥE$€Υ –+©΄ώ‘Ϋxq€—’κ6Ή@IDAT°4ƒidρΠ­Ύα―•υ(²ž.Β7=‡χ‡Iψ Δψ³ΟL{TΠήιˆΖπ:ξΌΎˆWΈ±δ ”†Ή'ΦR”/σγ)C;Τ47f”—ΥΘυ΅Έω8ν·ΒFΟD<-Œ™“„έϊζtΥ"“94tlifYihz‚[ΈΘGY-Rœ Όž΄β‘q%=˜A^½8εvN8-8£<©·€ςόω5ΚƒάιΗs*dαιςBξυήqϋήΣWΗœP)9ΫlΝhj’¨³ΜηPoΞ峴€•!oΊύ΄Ζ£σΓ|¦Ρ*_ψS#™O^ŒΟ`Ϊq|ζP{Ί‘£ΉΗΦ½#Λk©$"κŸuΕ‡£σ¬ΆΗQZrFD™Wφ,ύ‰.N’·σnάφ8sρ_‚ϊά‘\Χ6_rΕ„Ά?λœοjε‘ΧΟ7>Sηͺƒ'ΤΙτ\ο0>slšοίӎι|Έc|ζΦπ™Cμ&ΐ0Eηΐš‘ΥΙwϊš;n.σΜΙ„δi6w,°«B34yΜ%Zš θiΨΦ΅„€|ΚλŸF*y-N~…OZE ²’%9πY'~’DάΖ+Y™ζ€ Ξ*‘ ³œκϊ³cQ<ώ­^VΆ ψ·‰ΏχͺcΝ“Ο‘ŒU+Ηp§»ΝuΟ_†˜¦S9Q—™ώb Xnu*/·gπ-”9)g—]z g‘e>έ2–yy<χΜbπΛqΫG­Ν@χŸmΡΘ!@γ(½βrM*σ•i4ά{ΰZ ΡςŒ¦s­“ΏΗΕΚ+kuPr2°‰šάϊŠΐύϋh^θ›σ?53ͺ§*’½Ÿ5Πm˜HεΕΞ˘΄“bfYό°H|?Νφ’“ί~ΉNάψ ˆπκΚψΣ ?o ρgΗUΌO Υ΄“sΕΥGoζ±EΗπμ‘«Έ|oΒcνΌ½Θ>•θ1Γmnrrώ,γ9e₯}Kλ†άaΌ›'#J*‹ν’·σoΘς Ώόi”_Œ¦Υ=Ώφ³<ηώtΟxΠ-6;lΩωΥC Ÿ­@5(«Έ2£‘_ ~㌷’υgs‹ƒC€Ρydg§OtΑαΑП·ζ"-Q΅O]‹=|Zf¦+x$Α¨ϊέu|m”ηwJ:Uί±K†C ΄πGΚΏ–‘Аώάϊ &\ΜΏaŸ|~™qηόšŠ₯Ζ°HδdŸC΄Σ‡Tε—}dm9χlΞ’cθ>fόΑeͺIŽZ“^†‚NJ(Ίυ)τO ,”‘9‹‘vΜ,8‹8₯ȎΏ½£ ٜαώ$$QςI>΄s •»u¬Ι“5Η:©O2w 1pWxήAΙyiΌCƒ°/RαaΤΑQ™8R[.d,kŽ('ΠI"T ψ€βc_6¦ ΌΊ!ΩΩυΏ‚†Η‘KΡ±¨L/••ηlνh›w‰ΓεΡβ Ώqƒ{Ύφg"OΤ»œΊ&ΡjtV,ν„‹œ^œ’Qθ‡#+δw-sŠ·ΌΒ°Ή2β_™€•ΛατV”ΫpγγocMη35Υλπ³HΙ"αjrrς€‰ώDdηΡο0ςDZŒr[aέ±Ε΅dIZL6ή„φNwŠ|£˜žZ >¦ϊ%%ΣΗm>Μ‚Β³Ϊ‚΄<3ζδ):²l¬‹‚²Ι2ΌR­ήΖ«˜ ΓFξΞΐΞά¨†tNΙ"(WΊϋ/(΅r-Ĝz',ε€9RDώŠ‘υΚΛ’co₯Ηc™,ΚίqΚ{xΌ©ρΉ(ΰ^Σ39. ύ3$ΰ08/0Μg2…oό)ΕΦύΛψΜ3d!ΟgŽΥ·―,kZR‰€Σ,d'Θ>ϊ.ό™g ]Η{οΝγΤ²˜”c‘-Y*GΗDΊKJ,~χώg•U©΄/ƒΣ„Eφτ›ΟδœΨΕ!πτιΣ-Κy―e[ŒΊ’ ΉΡC=wρ(P¬r‘u‘uJ₯Ψ½€ΕEϊ‘œΔU₯6E–"9ς„ΝuέAT_XJ‘+ νΙΘΓ€$R‘‡E”Ε6|q犒h9ŒόD1£E:m˜”ώ4œιΘwπ틇±W&eE’ |ψΝEY#©1―dΪ OŠΉΚ²΄pŸΑ)9snŒ‚kŠ‘ζA΄ίΊ*«ώΝ=tΠ«’σʊ’f2§Sj•γͺQr,w|[―PU+h—Ε—ώ N—§εM?DCW$κrFn,8ύΖΏΖπόK_[λ‘Ξ˜"y!r8Ε—dU’Δuί0 Dy¨˜Η ŸŸλ£’#―Qβb_p5›oΔ):χ8ΧhyFΣ9—ο|―Ι/)HŒ“i&1=£5 ‘G2dήΊ=…Σ±@ŸψΣ1‰p§YOˆKV•aN+§ t΄ͺΒ4ξ/Ɵλ%ωs=­ά_nό œύΓƒψ˜Ϋv8~œδηNΞχχQ'¬γVTgrωεΐRKΗ58ŽΓL‡u§‚Δ[ŸyP#yŽΚ@Œ}ά'k !ΛƒβO£όb(σkCεi<‘κΕx0p=3}/"‹›K&—ΰΜλιςΌΊ»υa€ΎŒΞ#Γƒzΐ ύyλ*–­ΌΞΦΊjMžoγΣ}H3©ΦΊΘxΞΔζ>lΪ­˜aΧρ΅Qžί)ι4ϊy1‘‰ΡJΈuΪe€QθI-P#0€½`’­MPEIρ1GT|Τͺvj}<­Έ cŒΰ²‹ζϊ‹0!>Œ+m vnΗwt ^0‹κK#PςΤͺ§U·±©*Ύ›ΚV3/U² ΙLŠ‚Φ!—xjz6—Ї·ςŠ $ TΤΓΑε/œ*γkQ@ŠΞ*qœ’ΉϊŠδέ’]lεguQόud‚’π³lΗΌλ*KWXΔο—Ά΅Ωa§=-gΚ«„9^5(VηΠΩΙ)rͺ]€Ζe™”\‹"ٌΊέdΑΥωQ~˜¨uyώξv‹Ε˜›)^/azqΨ΅x]>CxtΣυ9Φ•…ήΘφi,p #œε’(²τ«7=}ΆbόωVμ,ϊϋQ‘Εm(0!#Ώ’¬‡ξGfŽ(žξΨ%’¬²LΞσI[³¦²ŸaΆ©q’WΔΔ!½ΊIά‚Y»h GYY.L™₯Hwτ‡_ίU¬rΈvX1φπΪμBŽ[σο*Φuκ˜oM=h|ωΜσΖjg9Γ©Bz0u·FΫ}ΚΜ7>‹E‚Κ:φΔ\Ÿ†΅ ‹k΄J-Ό«Γ•―}₯>Ο όΰ3₯4ώΚ7ώtJ€λ–ρ™gΈBΟkO«θiδεΌΔ°4ΟΝΈEƒ,ΣρΙώ8ΏηYCψ’ώ€DXς2”ž‹άƒΘ-γEηT£’ψξΊέ¬βCν4/π_7ή][ζΓw€ΟΌδš»«oσHΧtξ|ΏΈCFπχ‡_Μ8ςΪk(±ˆs«Ε.|ρΑo}8-ƒΝ—<χ‰‘[=_’;_ψΓ―£σo?tΧXŸύΗGHή{ˆϋv*NΗ#RtΦTuΞ<„Γ™khrΑΕxω\I§ˆ>?ΧGœLA5Ž7‹λNυ‚ΡςŒ€3Μ/d eqδΓάwU*²-h˜q|Φ‹JŽ’H"&’6OOs) ς§αz ΰ¦:q­ΰ›K›Ι_!Ήͺψm8Ϋ„ŽswΌcό.4ȟι*@šΝΣ¨ΔΨ$g\FΰI`ήKΟϋhz’SMς+¬zΈ©Vt>ςΚ|wΕΘώ>σ œBΉ0Εs/]ΑMΩΈΌ»δAΪFψSlQ~1šNBYοόΪίς€rwΖ/γΑ@φΣ£‡­8[~†²ŒG.7δτtβϊΠέΤ°bŒΞ#ΑƒJ#6T—ͺkΕWuͺσV+mjύkU=Υ—&œ=ω?£’ί§fΓύ‡[άkčΫu|m”ηwJ:7ύΘΌ ΠC@– nkΥΘ°ΗΊK•#ϋΞ.yxKΘ±Bεb +«S˜γ”œ–< '%hi—6Υw•₯›αΨ€Ψ.ϊjώΰ²fSε‹r•5Ϋ![―*Μ fd]2=JŒ³>ƒY•ΠX2Άψ<Ξ/C8―ŒFΥRΎόνΗ.Š.κ4ώ\―­*ZΈρd•[ψsηԊΪρΌ…T§Έρf$JΗΞ-Ϊ0ΗIdœžςΒeMi+ϊδ# • ӊrΥ’8%ΐωjaœΨŽ{Z8α0χksŽγtοO?€F‘Eg1ΏΉe:"Ι)o_n£+U ΕKXVΊΙ!yVΩσ8zP5cŽ‘Π8"{ΉΕζBΉόρ‰ΗθΧ¬—εQŸΛέΞ•΄J› ϊξ+ŠŒρωEΎ«VŒΟ’s'»˜bδ•š1άξ}A8γΟTΦΞ>ŒŸ(η-θš-t¬L]„<dΒH¦žδAgAšsΣ-θxθΔ3BˆόοΨWnS„yeϋψρ½4GVsžDρŠΞ)9ε_Kεγ/MY!θec–#a^©ˆ¬>d£ΝK9r†.hΑk–F₯…τ₯"=+­Φ>‡œR}°hΰ@ǍήUg«cq0ϋ9T˜€Έ%τ[ΏDΣ€ο›|γ³xΔF‘π‚wτžYΤz-HŒ”œι%Jόι2+|žψΑgj0}ζO‡D;λ†ρ™kιδ3‡ Hϊ„ΓγkFRŠ΄±»Νϋ»Γ!O§›€Ν³0 k?χG§<ά½‚C/8|€γέXZcδΈ…Gη3Ώh^ΰΏjΌ;Ά•Ώσε;ΐg^ΘίΙΛΧy€S²Π½έ΅ό’Hγ囨ʑζςΈύώ;θqχnΊE'Ώ°ω’UήΑ™/© tΎτ…'(Ν^ΰ³@|O;Γ2χ»œΟ|τW!υn¬StP―&Du^œY{χ—πMFN‚fUΌˆ‚ŠcξƐm3‹΄βA'_₯£:‹“™ˆŽ,(7¨e¬3ƒ₯ι:ΏiœΎ[Ÿ―ϋ6Β;o£g‰d*NβhΆ‚Ugƒ ”œ˜γΕ€ΐT| ύTήθά).b}_<²R Q”]$++“Ϊ4φ\“J§_»Κjt,Š _ΗΨΚW˜ΘG]΅ARB€z6>nV₯sΊt]ΡXqJγηmαΩοβM:cn ωΨwpαΝ³²όwΈεKωΛz)8ω?Αjτ'xtoΙGŽαΩsίPNρβkύ.―Θ‘Ε–\ގDλ“AΒ8‚ΊΧ0Υv=œΡ5q‡O–€ο-σΌυογqσ‹/ΠΦGΒπ,W‘βΒ˜σ6*:Χγ­7/ρr;Ϊ7ί%%gA¦sω—"ύί—―jω7πΦ₯!Όσρ±uΖ~z^ΓΓ#GHœ“υ[φ§Έ}υΪ[ž`…dW)itmΤ-ŠL‰‰;οΆ}°σ­9‹γOi,ύ5ʟΕ8υ֟ "ΩJςΊτυt`ld˜NQ0£τπ)œ<#lα ΑXϋ7Θ5Υρ>κΌϋΓ*h6A#±θώθ‡λψτwΏΑtΪiΌπςP(oœ’sw½Πρ~ΟΙ½ˆr2Άΐιl’n€)I’™EιΗq>ΆadeΥN§Gt»iŸs Bω:ΰOJg”_Œ¦“αΣ9Ώφ»<ΉΰsΑx0p}e»ΧˆΦ‹gˆΫ(O^Ι™t>:ZqΫas‘εGϊΕƒ™¨Ι”ŽΆYÝš)©₯¦d’¦’ž6œ’e?rkKCxά:°Cζ­nϊ":&I$No&n3¬.·ΓωΪψw±±χCπΛΣΥ›,2C€!°Έ₯Σ-―“Z :Ιτ޳«”³θΘ·<ιMH’ΫRτΪ9Ξ†–ΎίΉ©n,ͺΌ‰όΗΏCο£Mύτ—x' … €‘<χ$ŠγDε©₯tHXFdα )“νΪJ­΄ΓϋxF•σK€ζΎρ‹Αω‹?ί†x)pσHΗ^ ΅»έΟ/ί6pί°k½ΈωήΟΡιεEκ%½όΒζKrξ·tΎδO8Uywρ™SγΔ[οίΣΪιBΧwοπ™*i‘Ϋƒ‘R³M ‘R³TNαONαj½8ωξ μ$9Ή¬I±GX#6!;«ŽΣŒ9ί‰Οεd%y€70P^S'$I,ΓιzϊsΚ`bψ>x"ΨΓΝ‰η€Θœ3!ΚΛγ4š4Ν―ύ ςά<hCq© χŒ1Uγ…Վ©ι„‹Οn;ΧΣ1JPξ’TΦωγQvφόŸCωΣρΥ»7d―ΫwP]—#Ψ΄LΐΩ·Έ?9Ψ· :–»ύΡYdU r€άCg‘{HIΪ=žOUJ[Σ7pωΧ9ψ)_σΟε}ςuξOIΓ]ΩΤ·.νS Χ’Ψ5D―OΞδ ZWΣυ^Ηεχn)™P{/Ώ—‹ώυ“Ό_ρ…7pvpΧHόγkΒ•άΔ«NΌΟΏEΚOΎΙ+έ!Η_εώ\":xξΏ βμqd΄<ύιόα—Η] (ΙΝB6ί£±(.ϊύ9t/³8y75ωӟz¦ˆ'ΨΊηk;ο8p§k;BΪΗe<0ώ4ή_ω³UmΔ‚²£άίΝj,tάΗ ~§‡F°žχΕύκZΎuVx―[ͺ.αmϊΫ*g1—‘8]˜Ή”‘\FJΠ‚οβψ”οŠΞ.IϊωLHάtFωΕh:‘ϊηΧώ•'υIˆ2τy§Ώ'[Ρց n³†8·μ}ά蚍KΈF‘|5„΄Iοο[;cήκΤι6& υ,ιMΉ1)Eρύ7ΈΌKΫ7 ~ίξφtΎχ‹Ι`l/ΎΚ\_KR€œ"ςOΰ5ΓΜ8œϋΒΖΓΊΆΉ©U(Sνb΄Ž΅«”_• ζaF―δΜ•Ί€yg…QƒΈD'ΓyR2·΅ala‹λkˆŠJGVRReΕ)ΪFΏR¬9GYP‘^€Wΐj’ώ˜!E¬el†Ε %Ž„+I9²r&'Rμžτ`‘B₯—"α©α%ω»Ί*+ΖFηŸΒKχ£›„ό›ϋφ‘NΨ:ζϊΒ*.Έ/΄·£χθpΚbŠpξ;ίΔΝΫ_’sšτŸ=γ‡ !έ]©W4œŽς°)₯7‘ζΉ·°v›,ŠtΞ ΎΈ•υη#ml“’Ήύ’“~H”›Μ}τfαδ«o!‘½+ΤΒππMΜtίFΏ³ΰHt /ΎΔΤ$κΗF‰;‡Γ£LD³Κ±Άv‡amΉ-“œB-Ϊ­ά{»r{NαmI©£ΙΒ…lEθŸx€©Θ.Ewϋλ΅Ό%•₯Šhd§ΔΜz+Γ-(Άf$\:­½n‹ υ€žPBγ…_HΔΕΔ’Ήρ>zϊGi»{2r‹pΰΨΔχ\•2ώ ΣΧۏΓωNB#Rpr—ajΟ–‘ŸMϊoϋ•U―”'pΗ°Θ1°œ@Α±œΕNt2°Wg·bΖ*Kζ#O’e!έΨΈ ™r½031(ggmΊ‡'ε•€pN^‰εΈψίΕαQC#ϊ{±FHMκ‡Bd— ž,₯Οwφ)–Sςq EZYΗFT€GΣ”hƁΌR R˜l¬Œ£ΏMν¬­Dχή’ςΞ}o?šš[0–޲ϊg•M"r x‘‡wΥΕjž«W,* ^& τbBjφςœ‘ρΟβp"iπ©\Ψ3›˜Ά=DοΌζΫASΌΤδ³ΨWθ7™ΣžEέΣ(τΜc=,ΩΙε(QΝ{¦§Ί”"η}Ός™/PόιΆ"Ϋΐψ,€|ζΤ•9υ/αyb—†Ϋ_zG_8*oοjW6Kpι π’ρyV6ͺ/ΎΒΔIτ’5¬‘α~ΜLMΠιIΘ=x5΅|pS£}\ν\+™ΘσQΗΘ[4/ΠδΗ’ξ<wΎ ρΞ#½ύ7»™_œώŽr 8%gnn0Ό@Vώ^Ζ)ΕΤΊΠad}ˆ6Σή₯y„μΨ|I†" [9_ς‡'Ό5rGσ™Π8ύίΣή@ ½π=Γg‘ύͺΡΣ§²lW΅+¨‰― ƒ’lc-]WΘvΤ.pΛ󘣍ΖI’˜βgοM€γ:3ΑOq_…»pΔ  π€xIΒ{XΖι’“H s$ž@{ΗWψ΄M1Ψ·1‡!ϊvΤaGΆ€‘α&4>½Œi½G•ίίω.j£ˆ•wU){|μξΦ}δ`Œ-ε*Ώ+++Κ[Χpi_Βψy±δT5.Œ<Ύ‰1rdRQΐ―δ ‰τΧΦ]‹«Ώψ±βΝ™Λ麌wŒ7ΎφuδrkNκ0߁ڛm°žyΉ4^λ/FbωΫ_·^EyibB₯ίeΥ Rυ£wŽΏ€Mύo^<λΔ'_fΎέ=ͺ…<›?ν—± Z;Βϊͺk>₯φέύZŽ\ΒΙbq½œ0Έόώ?`ԁ`τφ;Έ’‘‹Ηr)NJͺΣηpγ]ξ=S+K7t-χ yΒ•8&—₯ζ΅ν2~όΓxευWqτ`TΤξΧ6ԁξζ'‚7g.ΗμψωO#χ΅/ž#§qwσ™mΟ(Wςe©οίΞ—Τ ,ΕώYεdako>{ͺΘ3˜”ŸήπΉΎΆ ΏΪ݌t1:ϊΪ>B«†μt,ΠΧL~nΏόlϊέ"ΣλhBj}Ϋvœψhντ}χΖ{Ή½ŒΜGΝgΌ·ρ?ΰΒ…aγ\σέlGβ™3όζ;™.—τΛA+"CΟ¦*rΝθψμ˜f:Ÿθ8½€”˜5*?9:³ςΕ,Ο« ύΪ«φ$€ύ—ΙAŸΙA­‘nξγ4IΡ+ύό#΄έζl/‚J7³“9ώΤ#‰³rpeaš¨E}Ω‘+N—³KΎ;DouβŸ’"bdCηιωaΝχT;Ί]&―ΉΎ™‘σ;‰ΞnόΨC€!°<χ£?Χt@ŠοÝk»­4+‡»Dγ\wmΆψ|ΰ±»"^ε•^όΤpkgžΰ£Ÿ~ΰΡ §WqΔ‘•xiaሸ₯§ΈΦy[1<+7ƒKJς9œHΝvΓήΊoβΡ΄²#6‰hNΉ₯‘ͺs¦•r€ίδŠ7ρΪ €Λ-Α³ό?Γ±BmΟ{½w~†λzd~,%—pι₯#²‘œ‘Š,υ…O>Έfο%B•―»=2l}γ›t©uΆ§Wρώ'΅ͺV’™'πΦ[η^…2Ž}δRŒCaφ7PγΠ σεςl>‘cΡqης«eΞΉ€˜²ά‡ύΧΡ―¬Ω:•Ÿ;)Ηθσ§γ9βŽ|+ΝΎ„b±ΛσρEΟ˜Ϊ\§£½€€pΚ*IISύφγAχ5τ;nnPΩ QKΙE\ £5wwΞ:Ώχ±βαΔΤσGΟΡ[τqŸς4Ÿ“DΚC7ω<˜pαzY*`ϋλ~‰«΅ͺU” pήώζ9·}JΫpŸώ_<&Ce.¨οη‘ϊχπιm•QPDσoΡΩβδјzŠζ ζ kυοα•e"Mn½σSϋl™5xυ­ žŒΙΠως#:—^ϊ¨)”>Žj²€$νGDΛΝQEηρΚΛΟ{ΔeŽδΩ{’<σΙψΊεΒΉ>9V„3…'x‡ω*R—Ρα‘OpwBp‡Rκρη³\Ι³<œ(~ΑγΈ-Ο7αnOέI fτ6•KςΜ§ςSi9ΰbLžqCβy¦zήέςL;τ];CgSrΙ΄ž•‰3ί:»εK=7ρΛίWF`DΟς…^ [ΎhπΚ'Ήyή½}0,—|¨GΊκn ₯οVωβn^vΔίQTίΟL_ίTςΣΌΎλ?}Ι[9‘Ύ'ΤγΟ§»—ΤDκx Ι3‘/ΓοΣκώμ ψ^g?ωΟ§‰‰vIΞ-θά©«Φέ_hii³΄©”‚ύΉ|€ΉΉyGARσέ‹‹‡hueκ>ήω‹Ώ!OΎ ±1ωH‰CDp(Έ½S›«˜''έ“z[± /c?βBΈ­άX]žΑΐH»kcπˆlr†ˆΠP„ζ,.¬Mal°έσ‡j*KNEφΗ'"δ9jmc ³sύθNOδk Ό?Ωε'JίΉήΜ’αa“[&χ9”HΞ;Ν:–fGΡθ‘ΌΫΚ dZφBafŠpJ$‡­m”Ž·Έ8߁˜ΒδηφŽJκώrX“ι™‹ΰ熍Ε1τέθ΄ιΔg\‰‡K™»±2Ρ§wΠG³vC0,ΟΔNoYωb–Ξμ¨nu{fωτ“ƒΎΓ²μ‰·Ο”σŽάϋώφέλΎ«\«&z$ΆXξ½U Z¦mάzΑΪσηh²Ί ΝMΑFnn)0zzzxΊ  ρ%Y¬EpέhͺJο‰ζfξβ ¬β`Z%œ8±‘μ1ŒuzίPΥ)9O³+“NFΞ«fpΩ€ΕΏe’ η*pS³-轋AΓΣ ΝLΠΡΪάξ#ν°„ [:Ηλ0μ@λX~ΝΡ#ƒΟŽ΄f―›>ω 9Ε>…όΌtΪkAηUL «kφ1l­Ÿΰ·k³8Us黀ϋ]ΕW_Τj{sλΤέήH-ύ.§NR[ŽΖ4‹}x\ίƒΔͺ3H'~7<Λ>pοΏΏ†UΣ’½½Q·c96υƒ…H:±§φ?Άen7…υE,M«u“ρω“ ϋ₯m€IσΎζλώ8:τ1xΏθyŽ–‹TِۆnςbvΝMO{_ ‰\ΚU^Y₯ξΪθlξ»‹1)aΪZ―ΰ=Ϋ=KΗP˜eOςέZΑА}OM= «ΌLγλtΌ_ψDϊx%βΈ±Ύ!Ζž`°­Yάf> bπ© #g.mΏG\ID‘ξον2―’PΏOu9sΤcγτW0tκ“7ڌτ a’ ω=°#c˜pό&ϋ­‘3ΧΊ)ΉdZϚΓt™vΐ⨟qΜPNο£zΤ‘lΤα“UτɁΐ'z^ω’βQuχΌ{ϋ`X.ωRTw2@γ»UΎ¬,IΎι<ΏJz•˜Ύ΄#υ%oε„<ώ\d7Ι3Ύc&ή§νΩ9Lžνœ± TN₯ν@ερ΅ύΜΞ‘ŸγΊ‡!ΆhΝoPειΤνRΊιΏΩ0;έ„‡βR©Ω:Άš―‰ ΅ 4Ϊu–β)؝·Em]QΧεm-»Œ~¨ τίHΨρ3ΒγV?GfΫ3Lη΅|iG³ωbZ~šζs„ΎΩΊY#5r쐲L~nο@v5at+η…)’Ή·ΙάνEHλ†ε™XυΦΡ™•/fιτcg_r«Ϋ³o};˜τκ'pD4r&ρ΄ρΊ―*v] =[,w‚ήκ`δlάψgνωgY­ †€ΨVΞJΧ’gET0wdΛ&LΙΔά i£D₯^Ο1Ω³QBž«φA £ΈX‹ˆpμ{.›‹˜%ΓΪiΥ7fM¦B’‘°}!<WfŽσ³Ν z6XΥ¬0°­Eˆ’3 yΫΘL>ΒΘ€xζΫ ηΞO€cσ¦ΠΥΩγŸ†Ά°Φˆ0+,αQ΄k?Aδ½dσ‡ΜblQρΎ…μ\SδΑGΟa³IΗ).axΡp|ϊ‚‘(k2RβO+\_η¦ΠΫ;ΰΆκ­|ώά2β£ΜςΚ|ZτΚ<φθC|όΕ#Υ¬³šΔ\€%#„³Ϊ₯k«³˜™μΐΈŸdZTb ψΓΥVΗ`£‘ςζ–θΝΏϋ˟ασ†ŒονbH αε‡Δϊš ΪGtθ=Fυ‚½³‘ή3yψRž%η@|œΰmema~ΜκYk.,±Ψ&x„‘M]cνœ΄οCΐλ^Ώ“K{QdςΕ·ςΕΤSΚτ%S°ΙD^Λ Ή&FΌζӘ<σog³φ½.ϘGgsχεάά<Νn;7Χf S1Ξ<:Œ7†€{b3,˜tύΦΈΧσέ£Ηr ½Œΐn—{ylYί wdγΤGράβ>dWG~Ίθf«γ*ώύ_Š'άνςq»ϋηntXC€!ΐ`ψΙΖςθ¬ΐΆ€±g†Jώ^Ε… ₯ζ]/ΆΉDqmcτ―„‘v2lή’Ξne[[Τ%2j&c<Ύ·Š—@lg‰χˆˆœωž§…‘΄|˜vΧ3q…’‘3Hͺ<­ίb#gnH'{θˆΤί]q°$ΞΐFΖΣ “joέq(*Θ“Kιχς(νΡΘ ϊM}λ7ͺμQ€Mt›Ι3ίΚ³ρή'²—zΓ‘›ΔμœbιΝΰό₯›)‡‚―xύ`L.νE=’ΙίΚ‡GLί%Σ—ταδͺ”ΧrΒUΕ>NχšOcςΜΗάοˆκ˜<ΫΓpLnn> 8žC †Cΐ(™Ηs}"}wΊ1p·Χ‰|―η;Β †€ˆΐn—l  †€+2_9‰š3ηiW`·n FΞ»]>B΄τv»α` †C€!°#>~ςίωƒσώn:ŸέMˆ³Xάδn]Vr~2“’•1΄7Ά‚™imφ¬%†C`g"–Ž₯u—Μοτ|—sΚΓΜθ:›ρτΙCτL,8•Ψ Ι―ΰλ―Ώ΄δ8DG„#8$QΙ8τΒ%”dŠsωT#j―5°9t7 ψ.οΓN—Ožψ7?|{Cž™Η‡Q2<#ΰιωάιωžpUboΘ¦/Ή–ΎΨιςΛzΗ(,4”/ΊΊζιΨ4½5ξrKKΛΨΨΰTΫφΠΛ„xαz||g9œΘ9|ϋSiύ|iOnέΗ΄‡~²l†ΐnB@2°υM#υ@ž={Fžgδ.ξ΅όώΪΉο,Β`0ά!°Ϋε£»Ύ³<†C`o#ΐΛΏ£₯t{†lθ<Ρί„—Š3Ψνς1PϊΗτΦ½ύ²ή3ۏ·~Β‹Iϋ`›MpτϋάsΟΩu†:3Cg»‚]0 wΔ–Xx4 9iebΩ©θNΟwꐇ„Ε™ ΜLO`nvw9sݏJ/CQv2’γ­HΛ-F~ι!"1NΪ‡<Ζ£sšΉzχp»°μ@ ύ•¬]+Ώ8ω«%—υΒΎδ™^,X9†€˜|qΪ^/L_r=ώ,gg#°Σίο<ρodt˜‘³΄”²KKKŽ)TRχnl§:G$g"bcchŠέ»²wοMΦsm$# Ξ“sηgmΌ‘3ηΩY2vή‹ωj#omΤX*C€!ΐ€lΔ·[ε'c†C€!ΰί:ŒΎ/ΰΪOώ30iιΗ½―ΎΒ£ΊΎ]/I?fz«»»”ε1 #ΐ ύ„qjα1d$’±ΦΚ:[0ο§vX΅ †C`§#ΐ}$Ž+‹ΗςΨ’scœŒwzώNρ\T<’##‡F&ϋρΰΚΟΡΤόœ a—ŠηΡo7Κ/IώΞΆ;~ΖC`W#ΐδΛ^cϊ’GˆXˆ€€_°χ?a𘑳Ή›xaa‰74G½ϋ¨vͺ‘σdΧ#<―ΕfδΌϋnJΦ#—”}£’χΰΜιIΗ^sΖά‡:ΞΨ9&#nOζ»Œe0 έ.?™‡Pv«3žΰτE¦?φς0m·ώμi¬X>C€!ΐ`ψfθμ'lCγ’Ί±Ϋτ(ϊ»zαμŸΤO ³j †ΐB@ϊΘ=Σ<ιϊ ήΘ™3z–<;οτό4[ΞκΪt?Ί[κρδήM<νlEwG :[‘­αC44΄cŠνΪς1a šG`±nXςHΏ›δ—ZώzγΡΩ<ͺŒ’!ΐΰ`ςeoίL_ΪΫγΏ{―Φ/ΨϋŸ0ΒΜΠΩܝ>?Ο|ͺ‘Ϋ©†Ξκ>°8C`― Px©j#g©ί’±Fꁴ=™/αΐ~ †€+v»όdB]Λd0 ΐ@ ω”α)ΰŒœg[o‘ΗoΞΓΧNΞοMw`ΝΈ`0Ά έ"Ώ\Ιί-’5Δ`8!(ς…ΣΫΈMΎΦߜ:Μ ]‡{Σ˜¨(>cnξj#δœΚ-fΡFid φηςρζζf9E †C€!ΐ`0 †C€!ΐ`0 †ΐnB`ss“οNnn©nυττπtAAAvτΑΥΗOώ;»]τw?u[SœΕβ6Ÿe2 †@` x$ΩΙH†γŒχJ[e’scvt>σ€χγ‚!°•μωεJώn%–¬-†Cΐ@‘/ZFΞ§ήςgί[vΕ`μFΨϋŸφ¨2ΞΪΈΈKε —άΩsyΜ£σžrΦa†C€!ΐ`0 †C€!ΐ`0 †ΐžC€ytήsCΞ:Μ`0 †C€!ΐ`0 †C€!ΐ`l7Μ£³ρX__Ηδδ΄qΒ]LΑ<:οβΑe]c0 †C€!ΐ`0 †C€!ΐ`0xόεΡΩήΏ3›!ΐ`0 †C€!ΐ`0 †C€!ΐ`0^ °ΉIG@±ΐ`0 †C€!ΐ`0 †C€!ΐ`0  ΐ }"«‚!ΐ`0 †C€!ΐ`0 †C€!ΐ`0$― †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`x‹3tφAFΟ`0 †C€!ΐ`0 †C€!ΐ`02ϞmΚqa0 †C€!ΐ`0 †C€!ΐ`0 †€70CgoΠc΄ †C€!ΐ`0 †C€!ΐ`0 †C€!`‡ΐζζ3»kvΑ`0 †C€!ΐ`0 †C€!ΐ`0 ³μ3KΘθ †C€!ΐ`0 †C€!ΐ`0 †C€!ΰˆΐζ&σθμˆ‰7Χ±1V„κ¬`bnDgI}ΕΏύoπzM†jρOϏѧΜp)Ο}\ΖĜΝm½±ρωȌ³"*8ΟV±Ό2‡ι©& /i‘Y–˜‚ψ¨„ο FπsΑΐ³%LŒΧ‘{N«ΌcZ6J2Σ ’ΔςςΆ;bΧ>F υδπϋoUS«JΝ‘‰˜mώ'Όσξ%ΝΟ1ω~]§ϋrΙυ})—sɏηϋΪ%©F†χν™½―ΡyΟ§FηYΞE !©αΐΚrlSԍτΣψƒož₯9eΆζ+ψυ'uΎc.αΎω½WΜwέΐOί»ξ»ΊύYS„y ιˆ ‹@?obzΊΣε ·μ€₯T"-&ŽŸkAsϋά|ZΗ΄uΟ²EαΖ“Ύ$ΧεAΞK5αS’aΏ»-y¦zήgθyGožwΚ₯€cϊ„oYΆ )†&# «λ#˜υΡϋƒ,Kt0λI. UθαSGc¬ˆŸHΖώςB$&Ζ!<”{[άΐ²mOο?„ιSKΎψΉΊͺχ§\RΙϝ£/y»Ξ  u…ΜΚ tfυA³tzΛ²ύ€δYT"bC€υ΅I,.ˆόGβΨ©J>}q¬wξ5»μ3tv Λ`0 †C€!ΐ`0 †C€!ΐ`0 £0Cg£ˆΉ)oœ8‹x7EΤY-?ΓεNu’Wρ°πhž>*|όυ1!6σ5όQe΅>mxPχŸpgΜΉXlβQ/¨BI’Υ9― ωρ»ΈΦ'™h[p’κm”¦e R£4JΏ†Ρα―p«ώ †΅ς)­€π-/ͺ@¬Cώ‹Eψόα?βρ΄CΖv\&ΒιησΙ@~S·ΡΠ6ξ_.Ά¨½02³ H°οΞzg@࿐•Qƒ¬Έ$Δ€ 1&±dœ(„ άΎσW¨Χsoοk©½ΏήΆgφΎ6Jη-Ÿzρ`εόˆ@B9NŸ;ƒΓ5Uτ< ‘ιwΏΎnb³ΗώWπgφ{Hβͺ«Ε;·6Ԉ¬κ‘ω/!+‹η-j’ηP?­§’–8$gYωΊχΚΕ•}ώΙ]ΡΌά‹(OΛ##g­yφeŒ=ΐέΊΠmΟ‘WWigQSPΜθ(§zŽΣ&¦Ί'ο‘Y½1ΙK}Ɍœη3Μ§SoXΒΆ"°ςΜΟ»’?ε’ΤΖ6ύΥ'|Λf>^:υ]”Δ‰΅.6α½ο©ήLΎ?x)—œϋθ‰Og –²Ε€Ÿΐ+ηN πP±¬#©9xε΅~<ψς2>ΎjpσΣ—ψϊ’I9‘ΎA|7+'<Σ™ΥΝωV‰yό%Οhγ… GΈU`Ά7?ϊ“\<*±΄9„Kš!+h7Α_k“nšτœA–όI‰ Βζ³5Ϊ5΅ˆωΕ>L―y¦5Z’ΰ…ογtE6–ΖqνWΏ…Ÿ—ϋΨ‹BL˜0@λ›6,yθŸa\B’‘I8†„ θ9`s}cΣ}PΏχ90D—Qˆ΄ :,‘AΑDDž,V03ߎ±η,Ε‰UΈpι€Nw~‰ΟkŸ˜¨Δ -ΐZΘνΛΪκάί+μβ–―βΒΩ"`Fυp…X°Πυ).ί0¨@zέUcΟ»Ωζ Λ ±!Γt&δKD˜ΕΓ±5Μ­H[vΜ"ΐθL!ΐδ’)ΨŠ(Pε|bΝ;†ˆ  Μu…›χZ}[ΜΌxιβi~[Έ‡OΏ¨χ]έ~―‰t΄8QG£ΆVΧ¦Π;3θŸViήK!}0j_8φρzέιΥύδΡΜ΅Ό5#―=Σ(έ›[Ρή³‡Z¬%ν“τΟ5,Œ`p^»¬R‹ω6?ψή-©\k~PΙΟ9’ŸW½‘Ÿώ”σ[§FΆP^σ¬mΟμϋ»Y:/Γο )‹ω&―ύ*«ΣK67ŸyY#—H‹·κ6rζhΦΧUλ`R%^ύ*υ­{UkβΔ(Ιͺΐuκ–Vδ‚YϋίΒ›₯δαΧeˆB­Λ!’™ŒœΕB©iΟγβΡ5ό}έ ™LŠͺόœΞ̐.ν# πbω˜ψςC•a„}‘­ΊΚ>τ<Ξ­β›k_yκwCη­j――η>}C;6€ˆ<œ?{ĐFΕΙC/#Y«%zΏΥ0rζŠzs_k5ε)Ν›φΜήΧfθΌαΣ,ίΟ€ΕωNβPu9}I΄APΙYϋ,·W5Ǐ FΞTͺ§΅Εo§ΈeΒef°ό=#„N πiXζf5!HΏFλί*Ή ”γPωσΘtΓ`rJ5^;„χ|4~ ―•Ίl1–ŒSΟ Ακ_ C,ε•ΎdRΞ›αΣe§XΖΦ"°•ςΜΟ»Žε’Θ–ΗΜθΎdςψ‘KŠ‘3UΌΈ8 »―'&ίΌ’KτΘ§ KΪZ²K*q”Œœ]†θ,T_ϊS$[ΒρΞ{·\sΜ`ϊ’’79bγιzΛτ%“rΒFσΝΚ ΟtfυA³tF{ΞΚϋΙ³‚όύ‚‘31<>4$9sΜΣ‘]΄ΚΓOg”‘sDdJRŠ‘(²―ώYBχΰu4NϋΦ9$LπΫFΗΣ©›σ{܊Γω—!6΄Ϊ‰/ΪoAkMΜ8.QΘO«Aab„6TIDΗhžL;λ…̐cIq¦αΙO`Κφhς¨jE=!Š˜„$~Wπ€ΰΕ‰WωΦΌυΝ Β±©F|τύ18XžIKQ›˜hDΗΐŒWMz$ή’φBBΒHH’›Γ·’ zή·6θήΝςe\N-§3#_θ»CάqΌœεzaJΰfm=ΏFΛΌYiQ.™ξΜ!ŒΙΕΑͺ*W”ΙΚ\η—οΰfΓ€ρθ‘σΖkυ EH$β¬V~Š˜‘|Όψ¦jDE#ή*Ν§zqvh{‹ζ#u«Ι'Q–ZθτAθpj?ϊ―‘WσH4u ϊβ) ΥΘ‹KGβj`›mAsί]8:C3%―#βωόj'ofΞν )ßΰώ€’‹ΖΗU’4Ή)α’b¬P–-t’uθϊΩ†;”­Œ±ωa+ΡΪڊωΑςSBƟr^jc›~·J^Kέ3֞Ωχw³t—€ΧoΓΊ:‹ΉD€Ιk—Π°ŒνCΰΩ3OΛΫΗΫNkyxΊ ½sΦ€tcc '‘#uΚφ ²ηb)1πγ£€χΕtχ5ΑF_7œVο6¦ΡαΈxn½ˆ‹*#ηΕ™΄ Ρ‚‰>ŒΜcΡΘJ«DufžΐXάaTδ>Δpt‚‚Ώz/SΞβ€ΚΘyšΌEΧvάΗ‹¦gž’ΌrαDz7-ܟρ oτ%Srή$Ÿza`εό‰ΐ–g.—L ›Y}ΒDSš$%€ίKτ©ΐάβ4f₯ ξΧδϋƒ7rIέ<ΧΕ§#»ήFζΠχψ:»;1:9…}–B>ώ*ςΣ–²k^ΕωŽV\{¨ΓφιKލγVιK&ε„w³§6+'tΡ™ΥΝΩw]m+>”g–ƒΘΘ“^(‡ΡWΤTΟΖΠ9)ρ$N₯ΊιDΒ}½c–oMΩ++Y‡»aΒgYΕΩ5Š‘3ΥΊΌΊzGs Ζq± ,ϋ<ŠbyGίNυa_" 2.!hσ<šQ-Ά†dΠΞ!WFΞB5 tΣ ZΗg}Ξυ²ύηι^“~υ/Yzΰ€Ότ:ΤΣ­ι΅<Ή GŽ–ρ•χυωέΠy«ΪnΖ½;C‚‡° ;zΐ8€> ΠϋΌ›mΚΈœZ2NgRΎPs1azŒϊ7°Ί…Y w3]Κ₯] wb ͺBQiM:ƒd!Ζz―GΞ«Ρ—₯ƒδΣϋ‚y?½Ύ«άχνVΝGR§σ2Ύ†Κψιώ74 ‡ΣŸΗlηW>ΨT–‚τƒpΡί%Ά'ςƒπ…C{fδu|d‚n#gρ Ξσ–’_ΐρTρƒˆ”¨ϊŠΚGuNΦΫ―o»G4[{'κƒηΜX-ότΔDΩ­œ|:~”σ&`τΙΦΙkcΓν™}7K'kόύΑW#Βκρˆ€OŸk­aOΛkΟπ°"{Υ£sΑώ\χ@Y™°§U°ΉΉΩ9yΊ_νP‰·²(‡?υ~ aB»`§f#1F2.CΗγΛhΥΕm>^.~^0v’ς£7πnγMe':λπεc•QΞ™­β@IDAT*—;W‹_~\«*'EΉςγ»π]δρx*kΈ|‰˜Tδ)ο.­Mοβ3јkbhΟ“‘³ΰR% ‘aά†SΥΪ»ΤΔώΞn(ί=6ΧύΔίV·ΗCξdο„ggΪΙΘnΛσƒdΐގ˜Βoγ΅"Α°}|aΒΕ3gφΎ6Ϋ“ν™½―ΝΑ$ŸfaatΎE@+sθΌwν Yxε¬;ϊξ›?|β02Δ"ƒ΅wαj¦s_‹s§βΚ»ύΨ€VΥΙ°pίώ§Ζ=Ξ"[&w7gΠ3xƒ½_‘uΪ~nλ§Σ’Χ‚9j„y<(Ȝgo5ӊδuΖΩ±ΫψYέU9{φι{ˆŒIΕI±=9ƒ‹x‘/™‘σ¦ω΄cš]l Οθy'lτΌλΫ"—tsgΌ i}ΒxSZiΉoα%NΏηœ¬ˆϊ?WnfnΤΎΈΩχ/δ’šέ|ͺ‰X|[˜FΣƒOπψΣ_£}JΝBšoχΰ›Ϋ?G)oγ—kiA: ™Ύ€ΖQŠ ΎdVNH]ςςΧ¬œΠMgV4Kη%Œά{ό!ΟrŠrδ ”SϊNσ‰Š%"N_ Cη˜jQ9//υ£wΊ γΛK ‰E|dŠ-˜]V<Ώy?,ΫWCyš(εTW%,ΜΑɁŸ \2Θ«£ΪΘyd’m“MXΙG‘υ²"³ͺύIΕ螹 y‰3(ˆχd1»Π‡ΙΕIΨ–g±΄Ά„`:ξά_B^Ά~£bσPш§NΜ*}a±B ρ(φ—J>-ΊρτφmζTn=6·ΒΓΗV΅7Š&Ilν>:kω΅ΤΕ7©ΊŸw³Ν™|S&θLΛj0&TΪ|±„αΙ.ΜΡ ΆN&›sb²Ε읰sθτΚ₯Σ#œfβΜ«o#ίΑΛΌ œ‹:ž cθy€PϊφΈ8ΠηΜv§lΥ|DύΜ"ύO1r^BXΪΗaI9Žκ”l‰ˆldΔ=ΒτŒέΑhΖQŠL”?Ψζ»16?ŠιeΦΘΌ>9ΕρβΆρˆbμOθΐΥbͺy=½Ψ‡φΙE‘lw ››λˆM©T¬#<Ή\¦Ο8ςm|§X9&'8Όϋ\»οψž^„ΣίzΛ*DΨΪζΙw1ύNtΧγρνqλ‘ΊΌwν₯–ŸΖ2ddd"9ήΚΪ$„ωI Žτ’ηρM\»έ$χΑWSγ°Τ‰ΊΆN™…ΌΙΒΜΊ0N2y_ˍ˜lΟμ}m–&ω4 G ”?|ι{¨,+GvΊςEbaͺ#έxrχ34v9ή;Fž?‡‡πκ_@bD0:o‘n"§OV#?KϊDž·ήΔυŸ} ϊ€|―θβΙ©ΤΖ|>¦<- ™zόχρςn 0Ωr_ηžΕe,Ξφ£§Ώ ΅_ρω—I=σ?ςeΜύ9ƒ5"išξάβϋ/β›+@έΒtΛUόφϊCχΥ'œΐ›ί:Aλ`„C-όϊγ;rω²sˆ#‡*k7=hΏwΏ½ͺ”“ (Rtξ{8šoΑ†j.α5Χω9αΰ†—ύηπWΞ’ŽyOœK5Ήψ}Ά@G07ab²ƒKφuMασϊso’ά"ΘεηžSϏ&ε5} o¦Ϊ!'ΈoΐΌΉ„φqe£]N\Άd€…ΩF\οk«Ώ…pς‚vPδSΞ`"ΐζβλφ@˜4ΖίΛ|ήΆΘy\™/°ΥςΪl{fίίΝΡv•½΄ncώΪBJηU=£ϋ““€Χ?ύΩyV·nž={ξ^šž™έβΞΛ³K2ΪLY!{4DύΣ›.‹rFl\<€νρΣ‹6¬FXΙYGΦW'1Κ2₯wι€$zKA:ΝH\ͺk²€Θ'ώIιmŸIQα—ŒΰO~ˆ’%™3rζBR^Ξ«υoρOŸΤ ‰΄κlΎ½"œωζχQ*7‹5ς?Ρ‰Θ(ΰώW!#ε§ψιϋ·ΤΉ^Η½‡lXdδ6ΜΜۏ³Δ ΉϋZ’6ώk=³χ΅Y:ΐŸΖρΨV z–Ύρ½·Qž%I6…›¨„,δΣkΔ,:€d~ώˆt&ςˊ…g;―‚ΙŒR%νT$γΩWρƒΈHόε_ύ\6hŽΚ(F.μE£όΞΈ­ρΡ¨¨ό0rσν%2tB.υΏW7 v~i—η’μΘ N<¬CνDŠ4’•άͺUς*­)jK%ωίlΒ”Κsxbι‘˜U„‹?ϊjŠ•ο₯MTB._ϊ!²2RπσΏw6τNΞ=Œόbη±³mpλ›₯jμ~-εoβψ*ŸΖRV ¬5xώK!‘κΈ¬Q‡΅ϊ›ψA΅TJϊΥ?oδT/=‡>Š'ϏJζcΛX[ηΦ2Ή%£ 5G= 9ͺφ–WνΧ=5Ϋ5¬/ι‘σ~ΰS“ωmNdςLΧΈ–gΞδΦκ―γuΗd2ξ/?ϋ}€¦&βηη Ήδ…žEcώ?!ς5t4y uiθlLΎ˜Χ'!4|Q…·*Ξ ž'μΓη-OPP#ŽΜΚ¦Νvά5ΰςύΑ ‘^ΉδK>έ°³-Y»VΎΈG3"T1[^]u_˜r]Λ¦/ ΰν}ɌœπxwˆΜΚ ³tš|™ΥΝi2±}‰LžA<Λ¨*”Μυv‘ΓQΝW …ΦŸͺθΊ§§GIUιKŠ$U²·4–”T†,Α²³³ŽFΞjVtΌ¬¨‹b<Ί’Ž$/8[ΒΨZ<s–m˜]·γΨ .iρΉΚ‹4yΛ{$9K5―McŽgDΌ₯dΟΏXίTJΡZ±SˆΚ©ΑρΓω‘mΞ΄»9xyw?ω\^ ΄ήCνƒVžCKNφηξGrŠρ±I θB Eχ±Ι! wΤ£ώI˜θπc­ΐ™βSήAΟρIFϋ§α^mΙΔΑŽ!/'‰όΞA‘ή₯™LŒ cπi#Z:ΣΊ<€ό ii{]O€El½4½ŒμΈς𱁰ψΉ‚”KΈ£pL'M?ΉŽϊφ1ΉŒ!>Ϟ@Αώ"X—9²ζp΄ 6££ρK<ξT—χ=―ΖΑk#—^έΧžw#<©Λš‘½:―δK}°’δΞf՝Ψ-q&—| —œo†‚c—PH υΦ‹œΙΛΒ‘>’iwΡ5’l  ‘KEj^=ŽΈ0šκΡbK@e%ι%Ve~i{€ϋWnB™₯ h.9ΞΟ%‹=ψŠς΄4KΙy/ΣgΊo£Ά‘‡Ϊ[ΕςΒ†FΙsKΓηœ€Ο°orŒ˜ .δΌυ(^¬)BMΨsέwqΗi>th.ζN―€εcn~¬ΗΝΪ'rœΓQBΗ±¦ΫΑ ϊšκpηRN& HΖαK(͌…7ς ΉHss­;^L?Gtœπϊ’σΟ ²ΚΣψy7Iύ4:?dŽ&έΕ €οJFΞΰ Η²ͺΙΘ™ΫyΖι„4< ώ.΅£Ρͺ°ΈA ‘VπƒΌ.Μ¬DŠψΖ±`kFσœΤ°…ž½Dρ‚ΌύΣΖFΗ°Όξ‚OΗ‚|mϊΎfz«»aeσƒ;tΈ<σƒ·3Ί ϊU”•)ο‹θlΊCσϊύA!6#η½ΣηΝΏΊΌφΟόΰωύ]MuΜ5™χuΝ;"ΞδυžΥη―’>Ο‚οΨλFΞΎGT«F+ΞpΣβ’ε~Δ§ΕΡ)ΜΪΪiρκGF€$α7%™’ΖμΤ"σΏ?ΚQŽΊη MO<ΒύζχΡͺ +JφΑ‘jΡΰν%/Ζ’“Δ|€Kt’M―ΘNAρwP#›+,:wΝe©Ψω’›Ό/…ΚΫXΪ―ήΐZl(ΦΘ©Exκaς,*덴έΗΰ4Β$n‹ ήΐxΏzν6ΏυΆΚΘy-΅ ˜˜§uΔβγ( 6K/|ηϋΙ³'­«ή΄§τua¬}ύ}˜Ÿ ±‘dxεΒzJξΙ·p±»Wtι¬Τθ!ζν8¨=cS.ξ/Sχ΅Φέe›jΟμ}m–Ž:`ŠOwΈΌ"Όωƒ’<]a¬Ό“wφO`_DRs‹PDΉo2J0σόυς=3φΑΦ}Mm£ˆΜ«ΐαβ,!3οŽϊL|Ž’εIŠxOΚVδ—%Cη:ϋJpyezMΪyoΞEΌΎ<„Š*iγΗίΉ’ΤΨՍa:κέ’@¦ΙiΨO9ΆΨrω"kŠΌid΄_Ψxpϊνœ{Θ³ugί8#οšκrž6ιΰ«xγAότCϋώwάEΣ*ηΡyGΕAΟu»1“›§H9^ϊΊΚΘyΎjλ` ΞBεΩε›-•t]‡PŸηρσάυε|tπΰHΚωΦήό‘FΜ}œ6,s‚5Šώ[PšŠχ!ϊy’|œ:"m.’„‰―π`ΐA?ΰΛ©˜Π—tΙy_σ©ζ9PβLžι 7ςΜMάσήπΈΩ‡QsHψFŸTφ*.]θΑ/―>΄£4.—r£zVΩ©*#ηbhl‘1ρHΚΚCiA.U.κ“J3J̈žε…>‘4h&–σU―‹§β,ΰΙßΰqπE“ͺZ )ξφΧΓϋƒKZ½rΙW|Ίdd3φͺ|ΙFzΊ’$Nφx7ς…ιKnτέ@—ΜΚ ·†œmVN˜₯“Ά‹˜ΥΝΩ5ΎνLžqCΰYžε +7M­τ?}¬kδΖΊΡ;0Ž₯})vϊ’hv «?²"Η"bN’{˜λLβ#bLFs˜^Ρ2ς+ώ’Ό‘žΘ<,#>‚zΩΛΨZhu}σ’)Ÿb—πPaα’«bxn€7™πςot&βB₯:V±JοχŽ!2!9€ΰΚafIφ-§ω •sί8# UF!1«§ιΏζ6ϋœ ­ZHΚγim΄τ }Μ·Κ/ΰeLB6JΝ£‡ G‰Cή@žCΎd€)ά¬2:ZοC|zΛή ŠŒ­.~M‹ΟΓΔ§Δ₯Ζ/›]ψΦ›δ΅Δ9/"ŽΌ™Π€`ZhΦaθœs²’ͺdk{‚2¨SB<’P•9C^%•;IHήθ­•σωρyξ7‘C‹MRŒΕ-e8BοΎ‡ΟΩή΄g~$ήΜώšΎ― =οfΉ3''8£:3rΧω#°š]™ΗzˆI!α»FΖ3Ήδ+Ή€zHƜΉτς­ά‚¦}eaΨ<ΊTGΒ°\’zi!ΚδυήΦηΑ ύςŒnΪνzτK{Ύ¬ό³(‹a ‡υ͍;“ΔΥ£C/b-E8Y]„ψΗ?Α΅>z§C j(-ŸΖ&T Z£Šψ€ Όt†ήŒ―­vkοB%‡*ˆΣΙ‰˜έXΓ>Zη•κγrΗ‡oβ“'υbk@V‚U\Χ§83ƒΌΑUlΖEΌP ¦ΜŽήΖγ•\œΜΞΰi‚‚tΌνk¬±Λ šŒ4~ςsHw‚εd(:Χπ5MΆ]ΖΗ7όœͺ/>‰’iEx·φ—Έ&r<£ώ―δ5‘ΘbP|δ52tώˆ―Βt{hGOέ LL4βΖ]ήjZaικ―ΡυφΏΑλΌ!f rK’ΥλJΎ―cΗ!6!IY;§“0'4ξ-ŽE3χ΅7]3ӞΩϋΪ,έvΰβ ¦fh³ΟœE…τQ†$Εν_Ύƒkχ퟽’sίCe܊R½ΙηO©@ˆ >ψ ~ό‹Λbς˜ϊξΏΕωCάΗ(ς,œKΟΡ8ŸΧψΈ /ΠσΕ­Zζ—#υγ:Œς9Ÿμ3‘+^Oα©YwωGΙΘΉLψt‡ήŽΛΈ1HΊ~Ύ²ρr|qΪ₯l1ςώΰŠ½rΙ>]΅(ι{UΎμΏπ*ŽŠQt<”ΎΗjŒ{ωΒτ%ΐΎ»ϊ’/δ„φαœjVN˜₯s怓ŸζτA³tZ45΅`)œ Γͺ( ‘v-9•*#η t?jΕψτ2B"ca±f /‹[, tL*@~‰dx>ŽGuΘSΖέ{X !#£ „&–’‡lΑ(m²η α±lηαczT}FKŽœIeδl#>[`£E]ΞS[žh˜˜wό̎Ά’Ύ—kΪ›φ֍ƒBg:ζtιΉ― >οf™3%'¨1StήΙ—¨°8yγC¬₯/Σ),œρztΊ<ŠT*¨ΏL.ωN.Icœ‰S_{ω5%<½Q‚Γ,΄Ύ‹ςθΏnχ|š‘KTρΪ¦“‡ύΉΑ'θκ%$½ΕΉβ2vF9yΈ+Κωτtτ!‡χ˜Ÿ„Μά2tn•˜ }ΏΈR‚nτ5τ8δϋ⍜ΒMIt’9"β“ψΕψ7Mf$&Κsίδθ_ςΰ«φFΞCδύi`Δ†ˆ”\,>δZ ΟΰΤά>½mίΙώGθ\‹!Ξ4λξ‹Ea‘0iΞΝ|k^>GͺΎy?ίΜG°»8άΜ‘ιH’τ―Uϊθ2'0œ–rε²°‰…υœ«€ϋ*–“V‰LyΫΖg•»Γ·ςΪ‚Κ”ƒ²όŸ˜hA―>Ώ€…΅EκgδCΗN>ρω― ,“ZQ–-Sφόc<₯Θ;+xy_3½UcΈΩό ŠF’›ωA£΄”ΔΙΟΆŽA„YKq°8›OΆμ?ƒγΥCΈώ C*Ζ—σ ΉQ}ήλχ£@–Χ>Ÿ ΌΏ+CB1t¦ήμπ &―χΊ>ΰ7θŽeosσَε}g0^‰#%ΚΪf{w-½yξΤ`Eb4·Ζ:ήα~ςŽkΓβF0βςQ–Κ­ƒ ‘¬θ$ΊΘΠYθ'9³ˆγ ΈΝ’Βz&wbbGwzgζaI:€κLi]4ωUhU- 5f#•^€–ΣΉ­¦vaψ*~YΫ.Ι'Y±ΡZ²­“ςͺπ!Ρ£6š_Ώ9Ο+™f}z‡°ΒyU‡}AπηΗ™Ψ`₯φ }’³š%^Y&=r)ο(FΞ|‘q\Ήφ%JŠΏΞ―Ώ'edizX5WmέΗ?ηkΧϊΣp½Ο“!&wgμ •Ύyh•4žζν8$ͺŒβ§η'ΕwXG>Μά׎uΉ6מΩϋΪ,η€Γψσn‡² ΙH₯$»₯‡"Κ%·6Ρ›h ͺ€‰eγΰα#2A獝ŒœΉΜφλ@&hJπΕσΗ}\T2rκΎέΠ„j2tζV(-Ibh«GχΠ«tϊ,]§“¬-&φmR&_,ΙO ·Υa#‚RΜ‹X9WU‰τ“hΊϋS]£Cτε›7VΆ"9“ζ».B,ύ"~πƒK §υ˜l|ψώ’+BJͺΈ~;5„Α.:Ευ»εςΜΠwσ²ΣΨώυΚq‘7/Gήρl4ίU›ͺΨ wγ΅T,–§2τm―ύ\6rζ³›>@ύΓjjKδQU΅}Τΐψ©Κ]‰Τ[9ΘΥ“”ω.–†™|½dx|ΗW›¦{Π;N¨r$ά’ΞMάΓΜM c7ρcΪ,γ9˜Σ—τΙyjέg|zξ ˜<Ϋ±ςΜytΙ‹ύηφr―ρΓΟQZU.l‘ο/Y΄Α£δ™fΠ!—8:³zΦm”ƒƒκΚ₯ΫΪξ A.ΰ1"_ΜλΞνκM))ύΎ|Λτΰ |Ψ&ΜsΙͺ—3sC.ͺ3φώ ]‰>ΉδŸΪ-»LeςekδΛώWpα’€>xυS{Αi€˜Ύδ‰}WEΌ΅ϊ’/δ„Šy7Q³rΒ,+fυA³tZ<Ψ₯1y ς,9yΉβPΝc°γέ°i_Χηϋrj}IYν¦φkjFt’lόUˆbi]RΥjlt!ŽRFΫ ͺt+U‘€fž”½Œ}…Gd|””€ώΩVημΌ/›Γ%a!άb hX7…˜ϊoZj>Tvcκ,9ž—q •d΅°ΉŽ`ς-Ωεplτ’Z§χΨ!Ι’XΩϋˆ₯β ςΘh‹‹Έυξ/Ρ! 5 Οΰ-'OϞΪDΓο>ΖΓNΥvkͺ²χA¨vCMχ¨ίνxΨΪc_ΩƒΟ1τΒχqš7t‹Bzων¬ηΛ$W”"‡vσŽaβ§οŠ;ΐιI2{ϋk§\;GΗH‹Ξ64~ψΧ’‘°XύΤe@Z˜gCku…ΜΓ\W3΅«Τ!ΕΊξ]‘w¦G!CηJ>ΛΦ{΅T˜H/AŸ›%=¬hόέ/P/yί»ωΧΏG@Ήε³(δ”ž >p N΄eΆ=˜ΎQ_Ρq_}ήΝ²hNNζθΌ“/1αNŸŒδnGEpN6’?FγτΈœΎS"L.ωV.qγž\q…ςd5‚ΖO?D}»½LΚ8| …Ρ«ΚmbR.)±±–«ψψj­pρΰ&f.ώ Žs ͺtr€5δΌ°‘₯«³U$9‰ž“Km«έ†₯δŠΕ£ώΣNYΦ ϋζ―{9ίƒΙΙ š3i˜>ώ&ROωUs‘ }°ΐτπσ"Κχs«Η\pƒZ΄tΏH§œβ?”€WB:σ{ZŒ<ΊFΕ‹˜£H CηDρRλΗWΟ‘ξρ3=iq/¦Ή™’θfi֜]œΰ?‚FΔU“pOΌ0ۈ΅4LnόηžσόΕ 'n³’’Nγ°ΨWpbΒ~›/εuRRywΩYνFϋˆ³ιEοΤSd>)τ‘*<ͺ§€ΡΘˈ OΞfΛ‹mΈίσΐNWvΫΙΙτΥ}­tgoλ­l~Pξw1χσƒ6₯­λ&ή'ΟΝ|  ’S €ͺ ψ˜’R$“‘³ZK3*ηα…>ο«χ#Ήη$―}1?˜}7BgξύAF<ΰ#L^3}>ΰoΚ σθμ߁;XYCηΠ‰aκΎκqa %• θίΤ5ώs}φ£]7МύΎv°Z𴖁l:5©{[Ν@\”τΖΐunχκ~…»cβšι`=l›?ΔωμlΎη‘‘‹ )ώ™Εθhθΐ1ς‚ΈΈ"€zξ".™vo•Ξγύ–F±l6’€wδ ŒŽ‡β…“―‹ού#΄Žϊ.ω %£…‰'r˜1ν<&£·ŒΏιΎE6ZΛX §†—§νΌ¨ͺΉΫκxt¬΄θNή¬‡:›'#ΓAZš±p―­:<¬:W bΩΥGΘρGf:bΓΙ 6ˆs65ϋ"­όšƒ6•w©ήŽCΌΚΖ6§±θΞ³gζΎφ¦_fΪ3{_›₯γϊg†O“ΈQμŸώ/ίtλ‰Χ©ζ©ϋxη/ώΖΞ‹¦S· α—νς;ΠώΥC·₯₯LŸ<S6L:iO/’΄ΒΒό’Τύφ‘ »§—SœNo);Aί_…o8H8‡ύΌχvʚ„§ €U΅rΛΕ΅ίΪ rMΓ–Ί½ˆΦZ+x9hεfΌvd“cŸμαϋ™%d6ξ`4=2—m€Ÿ_ƒΝ‰ a.†μ3ίΐŸΌ}Ž_ΒχIςš<G‘<6²ω“ς Ά;ωP­΅z2t64~¦™• ½•ƒά‰―VŠσ3WλL>Ίύ!†εΌˆ€œΑ·Žžε7)π΅¬L`€œE¦!=Z7*σFι>”ηiνφΜκKΊδΌωΤζ^•Κδ•ο\y¦I!:5€^'#ζ‡θοAΡAξ[TΒ#’ιwά‰Τh‚9=‹τ1>$βδώ/Zl@ηΣ.Œυ oΘ3Oϊε‹7ϊ„Q$„ςiΩoΰ%:α•dσrν‘Έ ’εόΖK.Η†)r`§ŒΌ?hΧ G.yΟ§vۚ©LΎl|I8ο|χd½ΤΦό ~ω‰³Ξ #¦/©Ργ;B_ς^Nhτά)Ι¬œ0KηΔ%˜ΥΝiρ`—ΖδYΐΚ³Ψ’dŠζb+c½hςΩk7˜t1?… {σ JTτ%ΗΧ;Gr?^G!>"žκ_’bγ&Ϊ1ΊDGΠDη£8>]l?ωIωΤkdλGV‘zQφΦ7k{€Ϊ1A9ŠSώΝ/Oͺͺ5‹Λζ—Ι<—Œ“9<γΘπvQY”Œ‰;ŠΙžTdu3τv!™mI‰¦»ByΝ Ψκπω€ΖŠƒ˜½ΖymT‡ΰ ψΪL'Νͺμ:ο}|_6rζ›ν½‰ΦΆ2:BOZtV3£zΓΑΘ™+F–YυͺυΙφΪ+ΪΔ”ΪQί‚ƒdθf‘xπ>²ΠC’šΟΦ{φnŸ£εi ŽjσΉIζrp€”K_xB{•<…\•”‰…lθz")κι"ƒ”Ρ V‚΄(φηeΙ†ΪΆΆ‡Š‘3_xχλκ‘›{Ž/cI±ςJ› RΎ”‘φ83γΐ7δε£χ΅ρηέ,ƒfε„Y:oδ‹±aάSbÈm³+σXΩ Bty('/κRΘK=ˆαιλpš―€zi£ךΎ}1όφ,ˆ&τ6‘.Ηδ’―εR y 9 Cά_χΉ“‘3—9Ψπ Τ:/δΏΘ·Vn›‹4΅u ” Ή™5Ζ"ΣΕ@+†ΖΞ ˜»…ΙX5—ΦΫš΅2rΈx! χ8­ZIY^όz–σSγτuƒ7VNB| ρ3B &Ε+―ž’ θ‰l Wo=!2Ÿ(ΞI3c g(½X kf#υ_:ΑΝe­m4ηr otΤHI yxqρτ†*σ‹«ϋζ9’4zΗOňΡωH"52?ΔG(›=„7ςQ%z:&ΰ†Ύ€Π)l8κTR†—Ώ1qΗqΔJϊ‘Θ€ΈΙΞψΨ—ς:EVΑ¨€k‚NϐΪU.`tn)δU\$ESlώso)³ ψ„Ž«τI`σΓΧ[Ωό ο9πLΞΣζ Z#ΚHζΌ¬,e½ιΩΘ#‘;š•.  q‹³εδψVZcβjL„5έf IΐkdyLβŒΫΉ•c!˜Υ~ŒŽŸΤž7Ώfε`Rζ+dδ|L> aqκ|υ‘8_zΓG[‰·TFΞγtΪσυWeκ’βoγ₯a 5gQμiΔc§οά"¦υ%=rή‡|ꁌΙ3;”vœ<³γž.fζ<œ4ˆ„4ϊπΤδΩ¨Ψ±jυ΅Y=«Άξͺ½ΚŸͺΑΙΠ’κ τ_¬y~-wπΩϋ—9άeΠ'_ΌΣ'\6ξ*#ε,Ξ<,δΞ·8lΞH‚Όηoe c.Υ;#οŒθ‘K>αS£mWILΎΨ!γωrίψ“"ŸϋξΕ…ώΫψΰο~-Δ]ώeϊ’4;C_ςRNhuά1Ν¬œ0KηΨ>]›ΥΝi°ΰœΔδ™&#Ο‘ŸW σ6ΤιΪζT.ΔE—έΪ{I―έv4[s‘ˆθ0Ιΐ™kq-=ΧΡ6Ώ 4?Σ‰ωΝK¨ζάRΨ.€ο ΏρρΟγ¨d\LΖ$ Eξ“EΓ?ξrsKjeΥ<.σ«vΒKuRβiœ Nΐ YπEΗΤ"ΩhœœEP©p:*\DšcB ‹˜šνδw7―ӎAΞΣjΩο.―/!άr'ˆζΞ¨³7>ŽΨφδ·xΈ¨V±BDksn•\©EύΏ)δYCZ0˜ΐx_‡ιηR―‘σb;ΊŸhšά8Υe=€βRΪ!ž’‚¨0zdθ˜Any58π1ΊVΖIΪ©Βd#ϊβγxF©°θΌ/)qQ›q–L**χQ2β|γ_vλ9Φ©‚™'ψθ§˜άνψΌ3Ήδ„―˜ _.…"”¦!τ‘―ΙS)WύλΉ43Λ­1Ως,»*¦,‘B₯„1τφv‘3§˜%!-ο:sFΓbͺ‘+~ρ€Ή¦ί•°PΪΤ_=xŽŽΡ3WΔΟSqΌk“$ΣQŠVzΞΈ“žC3ΝΨΣ ΩpΟMސoϊ>¦θ\Φͺ x#σEΪΠΓ“)‚.…‘ήίβ³ΑH»$Α*xž¦τΡ™a{οΤ|ιςg «.ΌΠ’ΈοΒ‘ί·3r^jC{GlσΤH­ΌGζβμ™*‘½`Ο¨}ǘ‡š"T†0΄Ε`ŠΌŒš šχ΅™ŠthΆgφΎ6K§ƒWM>uΠi!/δ 7o ZχνŒ₯θ΄MΦlδm8Bήρ ]Δ}ͺωηo}•PΒΠ}ςϊ¬yτ­'₯…ε΄e¬)E…b%sθyδΒΩ@3ŽE-G^ ObκΠmάΏ―±^ΔgχΠ{κς ˆΏδZα,Gz†π­X ΞBF)}χ”œ7Πχερώ‡”U€š €–›C‹$VΔ&8OΟS=Ϋ?‘?ǎlΡu^ώ[x­€Bnmš ‘?$CδY9Ε»HIY•|bΕ"Xρ;‡Ί[Ϋnα{ΚψCh;9ϋ΄6Ky‘/ισΎγS'^LžΉ*ΰε™=ϋ6rφ7jŸΔ_…G¨dœΩ]R½ήθYmΰΏόΧYΌyφΙΰ,{Ηxt cιΙίCvj,~όΧΏςΞďϊ„ƒϊ·*³€Ϊ !(EUίFΉ49<Ε;Πβ3ÊPuδΫ8Έ9‰Ίϊ+ςF ‰ΤρΧεϋƒcAjAΟ{œΏψtbGJ`ςEBBϋΧkωR„ΧηοΛ'Y`¬ΏόOοΈέœΖ1Βτ%ναΨ)ϊ’#χϊε„#₯φ΅Y9‘ζ#9hV4K§‚F*“g ¨’ΆIžEζ• Wš€§ΫΡΥνhŒ£βQ]X[Ρ|ǐτ%ι«‘Šd‹’1ˆT΅>χ9†iͺ“ZΘ‹KIρQ‘Ά §τyϊ/–Xœ@7}Uw«Φ ο)(+­”«μyr_Žϋ*’xU›€MΛΠ™ςz|˜5>xq©λΎ6ϋΌ›εΛ¬œ0KG|z#_–ΘΘY+LOίEgL&Κc9γω„ογ~υ<™Z΅QZH ›[†xγ}^ύΌϋΰΎgr‰1²ƒω©YLλΣuΰ Ή47=εΦΰ=4Μώξ|ΪƒΙ£Όa½5;Ιd4ΜέιΦ‚\yž$cθA·«ωdrΎw6/bθlJΌΰm(%U΅X–’†4zδlτ± Qdfjœ[ΨΟE,yΗR‚E>RIsŒ©:Η,ΧΎyŽŒŽŸGΆtΠ5? !<«‹ˆM>*xH₯ϊ{‡jρ”Σigd¨€₯iLό6ε‰UξTš¬ryQry‘χ»οjκs>‘Χ‘•΄ΑNΊ«ζΠ6^§‘sζα„ΚΘΩfkDγ@ƒlx‘rGS²ωY“K‘3Ս^Ϋ=υŸΟgσƒ=L;Roeσƒύ j]ιœIιcχyLL’•ˆήGJCΧfυyοߏhΣυžΊΥςΪν™}7@ηΕϋƒ‘D*Μδ΅„„πΛδ΅žΦŒκƒ’>oΧ»π››žFΜgM|E†=6»ιQZξT$Hλ£}hl»ν¦τnΘ² !’[+βwŒ΄³A34yΠkV„h,λό»†u­[W2¬V9D]œψ Ÿ=©λ΅"#AZ?^ /OuΆ·uΕ6Χέk| 'YHΞ$CAϊHθΤ %»Η2΅§φŽ–*žœϋjwή».‘ Ώ ηPJ†ΞͺU ϋ|ιŠφiK―άπƒηg©ω—ήί%gl˜§ΝΜ<‰ΚZχ5‘₯–Ÿ@ΆEوŽ•)Τέη 9ν™½―ΝydΫŸι\hΗ­οcW₯}’>E§rKk)τ?„GiψζωΣΧ—q΄΅=ΕΡ΅xΧNcςL)5Πε™Δ§πk‘S@²)κh’Ώ0Ý#’Eη°θΝ1΄TƒΧzVΫu|@i§ φ—Σχ¬BUAnŠ0GDΗσGγ²ΛΝ*Dκ)ψHŸΠ'_²‘§ϊζE‹άΌ*€§’.ΌŽΗžϊΐη»xp Υ'—όΙ§Cς%“/2šoδK6.ώ³?Ζα,Q·šoΒoŸŽΣ2˜Ύ€9>Jτ·Ύ€Ν¦>9α_yζωbV4K§§«T&Ο\!#€o<ΛΟΟ•Ωκλ~ͺ‘ίΛΩv‘¨Έ8ή~₯Η.•,ΙD}I^rΘχ%-?!¬χ£;+έ!μ“ΟyrΘΨ—ω–Εh%( Y™η'―†+ bϋhΧqφ9μߜAΫΐL{ƒΛTΣ:jej)ςbΉΥ1¬O’wͺAΡ%Ȋδ<δΝazΑQ…– Ϋv?DbΜ%drφ]‘ρˆ'ς S xφυnχ•mzΜσNΓόσvFΞKcέθθΗά"iίA4Pαι8RU&tEΆΜSχ̝'9+D7ρώϋσ8u„v.gYΙτSθXΌΌC`MŒΒo?Έ¦iUTEFEš±΄Ά{g j]#ΊŽ5‚B+lΊHΧ*λ1ΝλqπΨ‚ΧL?οf[6+'Μq|ϊAΎpΥn¬r?Ύ δMΌ­ώ"dYλ©Ϊ l ‘D ŒΐδYεςN#M‰yΉ΄±fπ^œlΑΘΰσHΜ …Υ„dεγ½qΘΜ‘0τTϊθiΊCN„ϊεό0¦&hή'ώβθΨΙ\r€"< •Z‘œ“‚Yy‡Ž\ν ¬L:Ή@iΆ»ώ:Ζ—]{>α+ΝΣΖ΄m†Ηo«ψ₯λόΖ>n^ MG§OQ˜˜Ό…ΡΛqFT"Ώ KŸZœτ©LJI:‰ΦBj>Μ’AρWdPlF•Σ'―£p ΅D6ͺž΅΅’e^j]ωΝ c %ue™<>ίuΰivΆ'ΕΠ1€Ό"”‚„θdτN+±ωaηλ­l~πxΧλŸ쫚[YΦ|/ £Σkδ@:€WΑ}ήΛχ#έ|o΅ΌφS{fίί]yσώ |UA&―™ΌΖΦλσͺ;E}ˆσθμC0εͺŠP]P._ tέs}\»\jgGb3N© »°Έ¨Ρzu6αΝF΅@.Υ6ΒήCͺCΩ„Leτό$&»œ™3žβ€Ή­w;U–}¨Π³‘3Ge›χΚΙiI)ιΰz9JέoΖ!K΅QyznΜ£—?->tέΧDXpδ :b]ΪDL συ˜$Cg 衚‘Σ\ΆgφΎ6K's€qΙ§vρΐO@ρρl΄ίυόΞϟ@ΊκΫ0x‰N¦#βŒμR½*?w}O[|/›ΚΟα ηAš cχQΣAΞ9ςίή~2t·)" ΕGBψη|aͺχEς†ΞΦ‚jμ[ΆC,Œτ£™§μΓ$­‡‚7*"―ΟΘXΝC;rƒ¦"}t+'fqΖ‰Vdν§yΊΛήB<=ƒ“Lώ FδšcrΠ‚£‡ήFMw§pa­­β³Nχγ'”ώκ“g‰ˆ‹– '05­υμδ#)šΦΊω@zΑς€Wx§/y–σΎβSΝs€Η™Ϋ‡d‹j ”œΞoξΓζܝ #Έz°#Υ+—όΘ§?t±kεK2=/?BM€ΛwΰΚίώG4Ϊ=χ.ΖΑ |aϊ’ UΙ[£/©tŒκ’zίΜΚ ³tRgΜκƒfι€vwΠ/“gΞƒEς,+EάΌ=ۍžVks\MΡ‘Υ~ΉfE_²[£“σ·:²N»l5ڌ;­‘ΨIΙ°Θή&ˆS2lΙ [΄ψNŠΝ¦γ”ϊœ©Μ಍Ζ>ϊbA oμ·†9n‡kD%^JΝf—†0ΐ­κ ΨΨΤUΠΟ…V±ΎκΓ&4 “νλ/Κ“£ςuρ «ήυ ή||₯ςγ3wΕρΩήΉV>ΙPW«wˆδ“‘VK_κ–C Z/Ι{‚Jμ&ψž“ΝS΅‰H‹Ή¨©yiUα”p ,cqiΣάΛKj›{LJΠ©TŠY’΅`¬ΡΙS§mpYΆͺΚ‹@©ΚΊ^Ώ΅Kg'σYΣKƒW&©œ“p!…gqΆΊΑόΖ «ωv|ύ«Ο^˜kηφ&”φDα/@IDATS΄5kζΠ HNΛF£₯Ϋ.c‚₯J»(]Α²†ές§•’σ3Υ[bD?Ζ'ΗPΐΛbF| m"sŠf*—«lˆͺ‚5ΌS°Π'’-=d ρήTΎςop 7EΠ³>Wχ@‘rY‡ΟYεάDZŸΠ†Ž—nyIQΏŽ"˟€λΌjΕχ(ή¨CΪ¨$ΔpEpnΊinGέΑωRŸΎ~p¨»œ·=Μέ}άζ>χk₯?wΞ»qmΠύN‚€•Όˆ#*~˜kΒ4):k@¨ˆ­—'τζγj6ˆ_Βbφ©βζ±  C₯}[ΪΗxi=y α…Θ*NΒ@‹=‡j #xI«\Oa–ΆnŒ+εί§%™ιsWU!ςΌ`‘CG£ž π5ήGžζ$ΰν˜‘U²›η½ωi²–τ,”WtŽΟ(Eπ27―Π΄=n —=‚)n²7sσ Y}ΞIG³σ _˜Omό}€Ο—ωHΟ»ωrΠZB^Np,Ρa΄ξŠboTRž/{Ι‚‘)ΪΠΧpΎΝ(H?…2“τ"{=–―ρpL[‰Z£:§ οψ: …Iyrή‘Ρ&τhςz"BE{š‰§η΄ξ3bB%g4?8­’εzΆ¦gγΗ΅ΎυR`[Ωό 1κ}œμJˆ‰F έ’£v·Ybγ₯σ°Y=ΟΕve:\θŸ…π—>>Qž-ΛΧΝN(yωό+Ÿ?ΟNn•ΖΧl=ί½UγΆ“ƒYtBθsκΛ˚ b§ώζΊu±5(ΟβT½Χρ5΄T,₯ψΐψMB~ΩΛΘ);Šώτ[19Go‚Cθ‹D‰…(OγžeEG”λΤ{³“}’mQώ0/Ω"}±κ»n«Eη<=λζΦΰHΊ‚UO[ ”“κ€£θ‘ϊ†¦‡I‘j+»£Ÿ‡ότ|YY™Τ¦ρ€σ†T;ύΪTV£#Ÿχ&†ΏΑTH6ͺJ¨ ’ΙYίτX•ΟΑλόD㝈C.ε6E]ΐ{οξEγ³>js)X/cΌω:ΕξΦ»υh>{%ܞndήϊw—s u€;X}κΫ8_#(nrβ4>½―½§κC}²`΄‹Rσν?ΑRΨxzq‡θSθgΎτCFζy”’ρξΟ½Γ1ΕJkd²Έ•\³U’ƒΉK6²ςέΑ)δω1=΅u·VκΣ;υδσGN­voέ°Η_έΕΊ_xJ:„wώΗ(άώκ+44wΣK‰4δξGΩΉ“05ύ³¬θlΘύ§’¦¦g8QΔέ?*ΧGŠΑΒϋhU δ­ΔΩοV‘-O:(IφΔeKH.½ˆWΜ‹΄L¬hΊϊK΄IJ=Ή―’€T¬gζ κIΨ£›θΑ(Mv™ςkb z»„|}ίAΆ,·ŸΙΕu^Ώ'‡‘Β9сόwώβΟQ{ύZža‘φΚβι bdX(―²&²”>EŠΞRξΤ2T€J&ϊ—±L_Y•^&Δ§’’μ0œζμεω~45’λυθ8yyάͺο­?ϋάΊ}Α8tζo1[*ήπ__xW]ΉWάϋX9Εη t¬—|ηyδ”δέβΏŒΟ δ3‡ΎΞ;ύΫx›Ψε‹K·wτ{8χφiω Θ@Γ#ε°—O/ι_gβψ;‚²8 ι%4 »³•ξνϊŠIŠGΝIi=h‘ƒ'.xά+~α¦g=Αεσΰ4ωΕMž°,˜δΧςΣόαF9΅_Οb):xI_νq'§:]€ψ·3ΏTΌω§8Λ€β”œΉ΅A— IηήΓŽΖ|‚wcq°—―Χ)½ΖΦK FϊΦs½dOΈj«‘|ζͺ.ά-Ώθ]κΝηNΠ­ΗψŒϊΕ Ÿ ά§ψ…>t7ϊ£\ϊŽt αQ+RΦKΎήƍυ‹½°ΔΡ³‘M΅χ›FŸ|Λ’ž iλvpΗYΡΠύkβF <χmδς 6΄φ‚fNϋRr~ΰ們Pd"J3kP)*‹Μ·’UΒ2$ ¦(ŒΆ`Rͺ_ύK'PͺSφΛς τικwxDβy₯W±€©PΕzΊL?όc£cτ₯*a31«μ ²t‹JYThόaδ–(~T£‘5aάBΔNΧΎeϋχi€¦­άΓΈ 8–žΏhΈ¦J·Ωωiͺk{―ɜΝKΧά,ž΄Ϊ(±P}.αͺ’¬9K*A=-|R°³Ž'©n«)*ZΪΉΠͺθοD¬Ν…ϋu«AιΚ’[^Β+ύρΉ''θΥ€³σ₯>%·oύ δ}d pžΫXγš—”D–“IΡ™ƒΤσn\ϋqΏ;Τ½ΆΆ`²°¦<ͺcτς„ή|T·ΟόBεiqXΆ΅`DΕνR3Β’φγpF‰t‰‰ρV qr’-ιaΌd4/υc„ β„šEUΗΠΣς œ–>Qω(LY!‹ηέόΈ0‚—t 0[=Ί!)›vB’*P#ι•συw5xUδœΚΒόo­Ηu6_y~vˆ6œ¨8nv4‰‡Ζ{aν Εΰά€f½΄‡3ΙΝ±’›₯\EΒ|“Wy€θμΤ\Ϊψ|δΗ― ]μ)Ώύοͺr©j«H―7m~§yΐ‡ωO-³wσ嘷av‰,₯πζΙηΡ>τ•ΚzX&ަ”Ι묱ι^—λ,―η²ΛΊ/ϋ$ς#i’γ7iS²s΄Ξ¨₯wτΓΧ΄fL‘ž,–:Π6άλX‘xmΓά)ΣοαV-&$—MžΝΫ§MI*E:—…,ώs]ΜmήΈφm½8λV6?Έ»|μΛΚDvY1Ϊk[”ΰΒJdJsΪάxγΞJ¬ƒΟ3Ο+|Ÿ\>žΈό[–―υΜzŸίυζγτγωΛŽρ5[ΟΒ8 DΧΦΦQlCd^ —h‘‘{‘C_ŠλλλΓόΌ «bmaτ“ ώ“χ€@DŠ·ΞΞ„cω‡ψ/0pqscίΰno ν“;·ˆ!…QαyΤ„τ΄*ώO3εLΥθ`%Ή—?@ZZQ%d‰)Α‰ΓτηPΐθΐ |ϊL°γ™/ƚEυeΉάž₯}Ύ§ΏF·Q*»^4υ6£°XΨΗ 7•γ₯cεr,ο™kΗ΅ZG9ν“lψYkmyziϋ…=σΜΚΣΘ¬T€h ›@§¬l؈›Χn"σν“‚’MκA\|Ÿώ”δΌoΆύ*Ύ&λ¨šΞ‡ϊjοΦ‘œ¬œς’Ε•ατ;ܟf©oέώϋKΏ-μš'•‘ϊB™œ§Ύ’Ω4θBGNεΪcN*Aa²΄sβ.„” …°Ή‘qAΡΩ―qνPΎ7—~Υ§w\λΘη—œή±…LάΒε_dΰ{€΄ΖœΈ"ΤΌΙύΩΛh΅»Τy…ͺ¬ΫΫ•§\HΫ4Jˆ½oψv3:ή¬†rlθhŠaϋdΚUn:ʎTΛϋ‰J½Ή’ΉJy{Eο›ξ+ŠΞΥΗΚqέυ΅Ϊ–Υ…ρ~Ϊ'κ¦―ΥeσWιG¨€έΣΥ£RΠ&λυκCτmψδŸ…ψώ– d™κΧΉ?‘wWΏτ}œί/Ν)3jπνχk”@R’ώIγCV§λpι³\όΰs.ΔC'ήTxHΙΰΠ_τ|ΰ]΅^ωΙ8C²Γ«Βπ€rhΏ₯sJΆFο]ΠΤ^‡’Μ4€σρ(Μύ9'ž»‡[OUŠa|}λ%ŸyžκςONηφlΩΖgbΧΐgNχ{JN€³λ‰'ψζ£[vAzxΙu–%GΈΏsv²H³­pK>!"…ϊϊ«c=αkή€C΄”nŠτ`Tnώ=?p…κγ%I»_7rΪ₯ ”‹mΜ/‘Ρ⁩H±3r‘Ju†WέEΦ=Έ¬ `λ% »υ«ͺ½v靣Ι@€/ΟΕZΈσŸ'\—νsŒ^žp—OοzPo>Ÿ½20>γ;ΑŸqϊ%£έ {JέHzφΗ)C‘Vzœ«8tLJEχτ“uύ:šR‘–o~γ΄XˆζtH-ς@ζ) 7Α²Ό™ ϋQB›’³ ·¨”B€Πύ IB€dε><㨨—°˜£8KJƒ#Φf ώane™6ΥɜwldE+š‡Ύ!uΡ…šQ–ΌH.ƒΕJέζ'IρdkAሏ€‡ΙΨ Yω†³}Ϋ1ζΖ"…κύΆTΌF₯λwτa ϊξC‡_L)Ξόξ<|ά€ι d”~AQΥUΊF&ωŒ §ήΑr-Yi›DTaφ>ƒ ι`·Cցf²$q4Ÿ—',γΌ~aχn [L9ΧΌ.ΘοGΈLGωωw‘3†.:]>8ΠƒΙρQ²B‹Μ‚JT”VAcκΆ/Α| 9Ήβ¦λ\ZI ά'·΄$+Τ†eΗΕσ{ΠA/MΦvο¦wΫ+˜ξy‹8pf[ZΠuδrΈφ‡ηγΜχ~ ·kΏζOη—TΎˆκJINnS¬‰FΉ†σ‘>θμηZϋ1Ι)‘Ηq8₯‘ζυwέM_ά"Αk˜μ¨EέK J¦1ˆ5‚œ«’B<έοR:WΏφL€ΙΠ™OΏΠ\:}ς.eΔKύΓ ρ ‚ιPYšΛ7₯*ν! §-CΚuω/Iχ»qΌΤωθ)ŠˆG„—]ϋpώx\=CdΠ!)™ωΘ=zQΧeEgCxIηΈλ¦υΩ"JeЁ•Ύ~ιΒρ7O—₯¨5ϊ·Šέ1ΚΫΥψάc¨Ž_&VβώΩΠuK H“Άž·Y0i!EgyI5F'π»y†ΙΒFͺ,χ,&9)’³<Όg₯ϋHαœhΎ=―#ρ΄=]}X¦/ ĘΜΤyH/ΚAYžŸiλV,ΟΗg#7^z‚_Αjh,€eˆ)& ΉYΕΐ^α±suq==#ΨπϋHj(χλΛ|€Ξ§1hQŽy•…0€'Φ`r₯sΑfš‰#%pˆΫ,]κάϋ5η‡μΛy…,ε‹Y ζ…iφF½€1€©¦rA»Φ0a}‚n–6€―ΓΘŽlύθ}ͺyΠIaΆEΨβ!Ό€ΔPυ<SX ŠGz\)ŠTΟγνyfΓΗ΅ΞυR ­[Ωό`ΰό βΞ›qψ"^$Ά«}‚¨β³8ςωεH{‹έ‘Fθΰyύλy?ž€6j³F₯ήHΎζ„ΣQŸήηw½ωx1·Ύ γkΆžη†:sΖ#πόΉΌ81Ύπ-^β eζδD„“sVV`³IvφΒGE‘5α΄4affύœqGUF€gΞ14΄_!«jΫΐ-Μ`šdΖJŽMZ΄ }°uM·5Ÿ-Ζϊ?ΓGXΐ‰β$“•I{7†Άφoπ›Φz9xχͺ ƒ€Όͺ6Τ!ΗržY 5βρ³ΛhΧ辎Qω>ͺUΦ$₯μ£#p·ξ3el)Vω]\\T.8ߊ†Ι;ϋ~_έώ»Όω ΚJ²΅'*ΌT_ψγ*Ύϋχψρβ$^?mdK‡ήTtΤώ —>Ί¬i CJζu}—ραOƒρϊ·¨.nοAνfΪQ{³ζ“― ›δ]YΥ^½ΙYZ?Γώ/Kxϋά ”δΘ |΄cΉ@οϋΑŒpOΦΦE!F§GŸŸγZ,NψqlΆΦxρ³>½γΪη|~Κi‡K\ ίύώŠŒΌqώ4ΚσνΗ$/ώLΊΊνω^Χύg]δΏ`Ι—ι8^Δ@‰uV–4Pͺ;θxtެgπ9€nt<|$ϊ5~–ψχ=¬€‘B "K ’7υ<Κες[ρψSGUΧ₯τΠΖ&²ωέΟH©XpM΄yα °ά7ˆΑ 1Bϊi½Œε.Ύφ οΟ–Bν~­ƒνθjjP¬9Sμβμ$ύo—ΞεΕτ<½[œυώ?αƒωi\xω S•όc]΅hξήM{Α‡ψC$#΄Ώ-9Cϊπšw₯zιΧ; ¦ύioν9OtΈNμ8ό΄ψŒΛ=ίΞW£4Iγή‘΅AKOΎx¦Μοr₯ΊΦK:xή_9eΓΓψŒλ'ψŒBJΗ-Oob„ Ν9ΞVβ‹«ψc{kΞT».^½ΞšΔH{#’σI·Δq}ΖΩq΄‘>ΐ>γ―΄ώσŽ_„œ>―'΄*τ–_΄ςRXBX”¬θ<93dχάαοσtρ’Ά ξδΤΞ±υC·+ΏΜΝΊ΅:dΧ1 τ~Rvl½λ%ΏyBδYG>SWγθwΟ/zΧƒzσ9J׌ΟHΑ%Ÿ ‘·ΎAΩٞ;“φ¨Έη«(ϊ³φ΅`zOŠSi½΄λ‡όgτα-γݝk—άšA½Q’r»„Vλ|ΩΤ]ΏβJΞ>ͺ9+ΑS ψμƒO|²‚««βπ Ό”{@°Œ0 Χ:n+ŠΗbzpIJ<ƒcΙ™nD²‘sΰ&žLŽΚi(Οq·y€€Ξy₯ι7±ό ΌzjŸtΉnxrŸΎψς όΰV*sφٞ]ΕGŸΧΪGBΡ›o §ͺ­±cΌ}j «Ζλ”^Ω–pL \;–—Uύ]œ9\¨$pα³Ο—Ž“?x]$ƒη»oβηΏ¦§}•“Η1… Φ„ίάnQΕzη-»πop€@9s―ΞΥsη§ΈRž6_ΐ…—Ι κ΄’Ύο|ώΙ5—›ί^ΧηG?H²ΘΏιΗπζ›gH₯ΛΩ9Ά‘KαχΈφβ~WK’ξG>ά /ια L=ωτπ ΒφγL^•ό€¨n§‘ϊ£OΪ΄‹ Œ ΖK΄i0/™ŠΟγ)Yq WΞFŠΞ]Ί#Gλβ%OσB<ΝΏγiήΨ‡sέȐ%ϊκ~Ž«΅νͺ•—–ίzϋŒΫΆ ©­Έ‹OΉύ|rj~π…η OΏš}’2υ­uώAX똫~ • …Σk‚[?ωΐώenz5^yσœηCD€θ|ωΗΏ’K.ό·¨.ΠbY±*υεύŒςr+]χ‘!ύx=©dχe~HH8…γfI‰HUˆδ]κΓƒkθs<ό&ΕΣ―Ίω`­ωao!Nγ?\ Κκ;dωwΗh€ωΝΧ(ΙΌ€’hαŽ]˜yŠ―Ί Ÿ’ƒcE§<Ž―…™FάνΣώςˆ›β·J”q- οi|Kι€_?ΦK΄neσΧαΜͺρ% !Νί©6\ΰC;Eg]<―{|κ>’Ϊ³%ωZΞΧωAοσ»ή|†zž€ΌςΛψz§―罩QΒi2Ϋ¬ζqnο ΩA©†‡•ύΗΤlΉ©»vνBbΟδδ$, ž?_—mzY.½žκw=ΞsJjχρ“Ώό‘¬h¦· αλ η¬α¬`~z5OEXͺγΪ7aύ­OοΈφ5ŸΏrϊ†ΚΦHmΚ­DAz’`™Šγ λ0š]XEEήΘϋo#P:πέ ―Ι櫨ύ?v°VΊξ2€–α@Nφr”ΏΊBJΎ|„ήuβ4Sj&ψσ7τήc˜°“Oώ!ώπυC|3›ε?αΧŸγΦ½Ο¨‚θΨB€GΕΡ\-ΤΆ΄0Jσ{‡λω}#„¨#PδΤέη Ζg€‘|–Yv Ιd0†£¦Ει<\§υήuVrnΜ‰tξ γe\AούG-ώϋ<’” Ύ'”œδσσωaƒ€ θjΏΛ/Ί[/ι‚MΞΔxB†b§{ŸΩσٍŸ|u―Ωή(:k Ϋrb’BΙ¨_šέzI0©§‘a#‚lSwρ–°?₯qN’XΡ7ςF:6B” «#*$\Pr¦§ǝ”œ9Aτΰ²F›$άιP71MŸŸΎ‹EΒ ΅YŒΡ'sΉSΪncΦNtŒΦaΘ!―cϊe ΄Σλ˜ΔλΩΆkΈΌ8‹£Υ‡%[3‘ΧύΡ5ŒβΓϋxεΫ‰Ρ1ηϊ–—h΄ nuΝ ω,΅Έφ/A8^s†¬}87Χ‹§υ݈?x©αά&Ό}y=τ©Βλk―απΡ eΆ1<£|1ρΚ=K‹’D\ω6Lφ΅“κB>LŽυρΥ[Ρσ€υ_)Š}|pόapΚϊΌλΒ3JΞ\ΦΖΟEΖKŽ#/'•¬U˜Fν’ά²½…kΛηψυς4ŽW6§:ϋž\Ε7_Υj[s υΊ>?ϊA’_ώνΏƒ?^Ζ‹Gͺθ%ˆ½R·cΉ<ώŽkoξwY6ΞγhπΘΝ}€‡'Έ*τδΣΓ/X™Γ‘R΄)q‚¬Œ£Ÿψ₯Υ¨Ιƒ\’@qŒ—Œη%kΛ|d#Ž9‚‚ ϋ{•s ŽΨ ]Ό4»Δϝ|AŽχH/IΕZVWμy^©Ό­ΥȐyxΟ\(9s™–—yPW3―Rξ,θγ ‚σƒηGψωPPtμ•tYΊ1NŠΞόaΛΖlJΝΌ―Ώ—~2†#5'PV *J;$±τb°Λώs#Λd½„³μ•›Y„ΤD]χ‘!ύηΫό'΅Λ—ωalμ+4†`™ΚJ±TŽ•ΦhM½wa?š₯XΥ―γψԜ8Kΰή:+&fE-zωzo6’EN³‹¬™ΉUrζD\ξg@Eς>δDk)£9’gΌ G;ΌmΠ–L§k\K-aλV »_6?pp0?Πψβž97ώμ>&B³ζ[=_Υ}ρk;%g.½.žΧ½žΧω|Δ *Ί­ΙΧ‚pΎΞzŸίυζ“0Τσό ε ”_ΖΧ;}=(#5pδ\[s\ΌŽμFIΚ),Œc™,ΖΗΕς Ν{H±–Sfζœ™>»Λϋ΅” ωˆςί΄”–ŸG}j;=ƒ hXvtUΖ|/ΊθO―›žlΔ#Ξΰη6wχI±yƒΪΈ‘umP“hLϋ;}“ΤίϊτŽk_σω+§o¨lΤΦΞG¨σρfΪ^χΔ1TˆJΞdOίΪψŽlΔCϊ[_—ˆδΤQϊ’νŒΡώ«βqp‘|Ήΐ}αŒ9―˜žlCSΜ·"§W {HΔψΜX>λmΌcθαAWέ§wNξlΔ°σ—+<…ϋΊžπTžαρ~>?.Ο6,ρ‹±ό’kˆ°υ’.ΨδLŒ'd(vΊ‡ρ™=Ÿυ5Άϊ5$Ζž3Ρέf<·©•E )ƌˆΰ Z#ΕRΐ΅ xV’P Πν“-δiYΖΣ]ͺQ}ΕΕ„„Θh„…„bχ ¬­Ξašr'%-"Wb…$")4’Ύ$Βηγ’­Πηό¬τ ρ­όΨŸnΔ`iVΤDV₯ί­Jw}ύS|ω°›‹5Δ™ ΛʝΓ^₯ΟΔL ³£Ϋ»r£²‘Ÿ•ˆςQ$§δΝΧ>Χ§χω]o>!_ŸδŒεa|-t—‘ό²]ψšYtφώV^‘C’γγd9Θˆp$'%‚³ς<+Z αœBψΐν½ΪΌΨ(άd,ΧΣ’σ&7UΟ`0 A :Ν„ιΧ{<οH™e‡I/ςVζ‡ΡΦͺVφ§Τ­•7“¬6ΏGV›{›jΡΣή†ϊ’ΓJX:Κ«O£<_4R4R‹Ÿό‡oˆbγΦB‡Iθ:y’ί—ώΩ |ζ ,-Cΐ_<ݟο >;_ΨzΙ—ΑnuŸ<Ιοώj>kiξζ‹kΡΉ»[ΘD —*ηdGY·ήYŒLΆΕΆυΛW\H1dΖυfŠK—G1Bαb`ŠŸ‚•”«fΗΥφcP˜Ÿ#7aiyNφᱴ‘ςž‚lέhoθφ9§Υ «WξC¨δ ’πYύΖ*9s ӍΟ¨ll]:ΔΫ€,Ύς„$¦―ωτρΛό")«y°/IΈΏŒ—μϋΞX^š΅΄£Ν+>T€ΨH^Rj]/Ÿ±xκ’rœζ2ϊ[_·9χΡϊΆΙΎτyώD―}ΨVΊΪ,ΎžŸ@ŸGΠ[ )_dٜq­›lέΚζcη‡Ρ:ιΛπΦ™VοψτώωH§`ͺlΝΧ>Χ§χω]o>_ŸδŒΰa|mίIΖς γk{twΒΥσηΜ’³ΊŸgfη°`22Ά+Œ_ΆkΟΊo[/ΉΗ‡ΕμωΟ»ώ➏9g©l΅ †~Ή―δ©StfŠΞκρ°εύ©₯(ΜLDd¬)ΩEΘ+©DAAβcΒEΩΗπψΖ%tLΞΛAŸ›ΓΤδlΣLΙΩ_,Y~†€/9£¦——’‹Mˆ?œКgqlΑ©ΰ@wj—zρτ²ψ-‘ŒέG[’˜#ΐΖ΅3 zω,Πωί“όΞHy’OοJg©;ΖΧΞ}mΏxβΏ­―υάαŒΐ΅PΡ[^^!%ή%νΘΊΆΆ†ψΈXp›σΓτIϋ@ra‰ι[ΑΨH?ΪZΐv ©χ˜¬ †ΐF 0Ϊ<Μ+9s–C%egI‰‡³τάρEk@Η«•·7Ο@«cΑ††Ί―πΝ•_γqΓc47—Qz YTDŸΤ6;λm–›nzΪ†ωyfNBkδηfσΑMMMZΡ,Œ!ΐ`0 †C€!ΐ`0 †C€!ΐ`<kkk|²³³u΅₯»»›Οd—?ΈκhΝ_Ψ…tΡΧυΜmI1&αS}n±H†C€!ΐ`0vκΟ\s ζ―ι(Vdv”“’s Ζ;ΆoGt*k$C€!ΐ0Gώdσƒ ²" †ΐ: θόμ ’½{φπI––—=%έρρσσ‹X]]έρ8h+쇏ŽŽjE³0†C€!ΐ`0 †C€!ΐ`0 †C€!πH_ύ3ιΤΆZ…/¦οΪ΅Λ fΡΩvΑ`0 †C€!ΐ`0 †C€!ΐ`0˜Eg OΎΙ +˜BΈ6JΜ’³6.,”!ΐ`0 †C€!ΐ`0 †C€!ΐΨ>¬—Eg{ϋΞΫ/Φ†C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ@֞ Ÿ%άΐ*YU †C€!ΐ`0 †C€!ΐ`0 †C€!°Ν`ŠΞΫΌƒYσ †C€!ΐ`0 †C€!ΐ`0 †ΐF °Άφ|#ͺau0 †C€!ΐ`0 †C€!ΐ`0 †ΐB€):ο ΞfMe0 †C€!ΐ`0 †C€!ΐ`0λ…€τYΒυ*Ÿ•Λ`0 †C€!ΐ`0 †C€!ΐ`0;¦θΌσϊœ΅˜!ΐ`0 †C€!ΐ`0 †C€!ΐ`Šΐση̚³‘€²Β †C€!ΐ`0 †C€!ΐ`0 †C€G`7Á!ΐ`0 †C€!ΐ`0 †C€!ΐ`0ώ ΐ¬9ϋƒžϋΌΡQfμqŸD޳YdΏžoύ9^«ΞΗμ`-~ρό½FͺQ†η6.`ΜfΥΘ©EΗζ!=ƌˆΰ`¬>_ΒΒ’ “šW(>RⓇΠέΑή <ŸΗΨhΊlJ*ΧΎL§§"|οPN,,Xπt Νurγ=©gπ»οžF εmΌŒ_\Ίγ}^½)γ2‘ ,.τΒ:‘·ΐΛ—\σΎχf90±€Ώ'ΣMΏΐO>Ό’„mˆΟ„„(κrK+Lkή·ϊΡΓ/žσ(²hςn˜9q©ˆΩ†ž_–09Ω‚φIχ<¦” Θ2¬Ν{ŸO]σ„γ%ƒ€άΔbΆ*Ο§žΐ;oŸ¦΅Λ*¬MWπΛΟλŒ)ξήώώE$ξf:oΰƒWφΊ—΄λ,ΏψZΏœΎ­[νgσƒ=›zΕζ‡M…ߐʡζNώƒ?όΉžΊρ‘Λ{ΠΙtρ‹Ό›“}e)9€δ¬ΕG/ctδξΦ}†.Fd€U##& qQIˆJC4)' n ·οό5κ·H€lόοVδ₯GackŒ+Γ‰3'q ϊ ρ”ΰε?β—Χu*ς†η7ΆuJm΄ΞŠΛΘΰ砈qnζ3Π™b˜!Ν§2‘ψVΑΝGj‘6jε_sςκ•Σ·u«€ ›Τ#d‹ωΩό°ρ²σƒό)!³žle͊yνσ—D€…Ž!!ΪEϊρ+S™μ…W)μ$υMN»¬F^DνΓ‹Ž#–Μ—ΨϊοακWυF–Ύωe©Ϊ7GνϋΝvkίζ#@Π½#ή»$υςz¦ΦQ~½υιΝ§nŠ{~ Ϋkςϊ%šmΡΡͺEbΓMˆά…=AΑΔƒtdξω"¦fΪ0²¨–Α½_–amΆεYχ‰ΕXŸωΪ«R7!‘Š—οnώ[΅Κψƒ8wαχ “_γΛΪ†uΤ~ρR,½λ%σΙ\β…XΞ|F™BLH’u]ΔξPμζωl™ΦΗ}d™Μ;^βͺ•eπšΟŒθχ<ο››„ρΰζβΏUkχ…γΛqζΜ„­ΒΦυ nήkΩͺ­2@ΈίυςΛ§έΑzqΡ.…2 fΡy}Ζ@J¬Ωk%gN‚•›Μ>‹©”·βs^ο2ΔGHڍξ―`AEN˜‘ϋ&ή(!‹΄.]Βh\vaHw₯δ,&JNyη/γοκnΘΩ$OeΕογDzštižΛ^ΗΨן’ i_ψΊZ q,6Wϊ]ΟΦW=,(9S%έ-͚VΛ3+_ΐιΣy1ΪŸ­»’σFΥΧΫ}Χ>ο¦—G«΄iƒ³§­'Τ.Λ>zθ‚’δL©ζζ¦αύn‡Λbω=ό’ŸwΛPYφ݈”˜T…Wα#Gž;ŒšΚ—‘¨•—φ½§™’³2ΆyiγΏΑ5₯ΖΩS5¨¬*C„CΥAPΝηqξ.½αywωΧ7.X~B_€0Τ0n7j>’Ϊ½qλ,?ψš„Υ+§ΟλV6?HΓckώpŸω°­ΝgΎ΄DGڍœ νΧuδy0•E/κ­_W}zψSχ~Η’€γY-έkFωώw΄φ#άθ7φ+\5±KWz_»ͺD ί©|Y\Γ€δΜΉΕ‡œŠΣˆŠΑ­{­JΈŸΟ-₯θ^ˆβ€"dEΖk4a]ΧρxXU䐽‚έ†°½τy:ZΧ/Ȍy&ְԁ―ΪnAk―Βw\"—R‚ψ ϊR΅"yνΓuh˜τ–<½—SUΛϊx#"kNΰOξ{ϋ±FƒD‰ΚΗώ²tz„^Γtc΄χOT°ͺ˜ΝlŸJ ζέ\kPš\ഁs Ήϋ‘ΗΐOφq-Υ[Ÿή|φθzΰ—°ύx!―ΚΙ:Ž}ΚUΠηΈ?Ξq[JO!Λ”δ́|ςc˜°>ΕΣώšœ›SŒΔ°XD‡rI€T(ΥaΕӎOΠα¦|ηk©μ-ϊ»™ΌΔxΧΨAa$ž!{'ΝΗ‚e/#…5†_Ό‘HοzIG>έ|$ΕU!'&)ZλγjX§›ΡΤ{FΝΰŸΣxή›nΪμ4Œ7»ΆfύΎπ`H8bΜfώ&lΚΕ&ΧΦl₯R­ύ——X>νΤ‹‹vi,”!ΐ`<ΎΖ X†&[ρ°Η†` xWW——_ƒ,©^λ<”-K[76BZ'Ν’‹>ιj%K§½ϊΥI΄;nž›ΟγΌJΙynͺΝύ θ³Ν`/½<1Ηβ@f&l*«I»ι0D:*ŸaL',[€ °£ωZκ#ΖϊΘεθ†zZaFV^%’ΕΟΥ%δW’lx΄ίιΡ9ΰ)«oyΜΈΞ βkp<₯ΐM-a5ϊ$#_›b€φO7ΜeV+JΞTλΒ聓σJ3Ο’0𳳍αvΗ#?νωO¦||S•¦νuψϊ©JY‹΅Υβη—jUι$/—~{Ο½‹ρλξv{ΠQΥ(Ο•)KKγ‡ψBTRΐ €θ,˜T‰@ψ^ξ ͺη½w©ζ—ΘοΕY'#7υβκΐ±H;` φ.\έiΣ«Κ{€5Ϊ#\o·Ρυρν u:^°ήΝDJφ›x‰»―Έ―ο‰χWι”mΨ Ίuς‹^ή]›Bχΐ= τ|ƒ–I{θ£―Κ.7¨Nψ.(Θή2ντTjΫ°03@%ΪUπΫx΅P8@1:;Ζ”! ^Όδu[-‘L·6tά»‰ΆΩ \<νξΛ ξθ-Ο»/ec'αΚ‡Φ±­’iήε”Ιiή΅g*η΄6mτ:K/_λ–SηΊ•Ί„ΝΞγrSCΨό°yπo…ωA£=²)<οQ*ύ tσ Ξ*ύ¨OκΩ/;ˆ²œLΉ]mˆΟž‰‡—ζλρ›ϊ`Ĝω’Ή1YΘ$EΟ1Ձj9#σ‹€ΖύΊΥφŒmπΦ(mzb>ΗΣίό-cΒ)ρμlξmc8ςϊ9€ρvτ"K R/ΧσՏξͺΒ!•’σΒ|z&;1Ί0hΔ†g 0ή„ιo­»―n³cΣθΔ^I΄ΙNŒΉEœτηtΰ’fΆSrΆŒΥ‘uΌ+!y(4BFΈ`B:7‘]SwαnKΞk9νZ²M/TfΦ6ΒbΓ6…‘5Λ5Δ Š’σ<ϊF’md¦€£¨JFa™H‹y‚Ι)?ά§·>½ω[ξ ΏLΞυ’m|AοIΧΦVT‘X™k&«>βː  ή2Οτl/ΖηΖa]˜Ζός<‚CL0ΗΣWώˆΞAAΨc —|XgΊ023ŒΙ+–†Δ˜Ε¦ Ν +Bn\;¨^ λε3£ϊΑžχ¦―vtšΈowtxΫψΩt7<Δ˜λW¬uy›=­χύ——X>=Οzq „±Θdd065ΆiΆαpψΰq€‹ΚΣCχπu nŸ‡%#VϊXζπΦ²QFήŠω&‡•œΥ]αI…GvΛ*νf΅ΪgqF‰lmušκ“”œR\9xš”œΉύ:ΑJv©Λό¦²‹Έp’ {Hav5x7‚η»π›Ώϋ%ŒRη΄«1χ Ύsρ4½l•lσΪ`ioDέ­6€ͺ„‰§_βςυGvΩ€Γx퇧Kgfϋγ—ί―Όvy9ω0‰X[GΪΡQ—Φρy“ΛN`_I)‘k}Gp3γ°τ ϋιM\»έθPx™{ί9OrζsΪϊœγδ|‚ΊΪ1^οUΣϊΏ'ή:‹’Β²Ϊ­μέΝNτΑ2Π‹ŽΗwPϋΘ«˜Η°Ώ:_¬ wn©*KDΝwίAAά^+M,“γύ6~·ˆ{Q'Έ`ϊψδΐέ_αΪ}Ηυ>Ιωέ—±Ώ΄ „‹•69ΗΊκρτφ%άz€Nο_}~υƒΤΏ~λ€Σ8[&*/.t‘! ι1ά=4†‰)56:“²θδ)»Φ―[ޝ¬Γ57J 62xδΝw ΅CŽΞ‰RLΪNMΚαλaΌd/9χώ ίGEi2SΉ6‚γΉ°« wΏΐγNΗ±γ /qεUβ•uρa4/tάBέXNΤT!/C™_zέΔυŸ~ε­€Ήδ?—¬Ξ΄βΕiΝΔΙGΏ‡— ό?ή|—ssΕζ¦ϋΠέ׈گ~‰ΆA ωδ ΣυΏ žΟ=·Ο—ƒš…Ιζ«ψ΅Σ|θPYά1Όρέc΄OΛ͏·πΛKŠυ3ΏƒC•εΘΆλƒn΄έ»__U©K,<σ}Ξ3aU΅ζΝ½6š›/Ή“Eχ}Dv|–V‘YωNœςΤώΝGR;}ό]gIυzύ«“―υΚιΧΊ•ΝlέΚl|ζbΠ³ωΑ0r°χx,γΐΉχpψHΉςμ1cAcέšΤΟrαΠΓσώ­ηυ?muΎΦΛ»|oΟΪϋω™%ίΦCίά””œ₯!1OοvιY0YzV–ΒνWχ:„ν3ΈλκνΖΧΦGŸΰ—Ž[M2=θν@Z©pά<’ζν‘c΅=Nϋ6[@Ρٌͺδύ%ž˜€ΰ©J~ †θ$sΣ·Αψ.6‡ˆζΈG*τgw?tΰBΚΜ9 Γ%04όξŽ -wΰA_0"ŠŽ ŸΞ KAι<ΫT ~jt½—Sk“όQ1ός¬mjέ˜“,ΕR k«n6£ΦEj·_Kνσ_½u]d…ϊ‹ΐήbδqΌ ΊžΑλx(*«Ω¦FQFŠΞG’eϋέά`πs$θ­Oo>©aβ―ΧόB/|šθOΫεΰ·ΧΛσθ<ΪFU7[πeƒ–νn>±bOρ€ˆόλxna~‘#KXZδ6Τ–xΗ’Esλ”‹Γ!:ψZ»QΚx7pϊJ”Τ―yL£ΏΥ/{ Γ ~ρJ½λ%½ω8‘τςΩσYϊ”r#ΖΖ›00oΟύc€ψΌ²λ ”™L|³wν²ο]|fP?xΝσ^uΨM€q_-©_χ­ίΒ°υ§„ύmΗΩ₯ΆΏ°΅γώvϋ°mt΅ξχ»^^bω΄ŸτⲍΖ,k C€!°Ύ0‹Ξλ‹―SιthΎ\΄ ΚYF©vΣ)I DΗΔΚΗΜ'η¬X 3“±ŽRΘǐMK5ŠkUJΣ ΕζYΠΠΘ΅έ„”Ψxμβ”yάε³iύ$"Q0ΛL±‹XXe"#Q4D@ϋrύ Φ‡^•χQτ•2@QXδJ‰NΞFa~‘T YQœ•Τ’•0|¦²7π;οΏΑf¬T`ΜωΥxώ$ΏΪŽΛpxϋ”›€Œ’">οζπήαrd:ΌŒ5%ε£κψ4šIΡΉ…8ωφP␆―#2iωάίA€%}€>ΆW0‘²ΥοΌ«%g Ι)I©ρKΚfΏϋΗο#O£ΞˆΈ δџ9xΨ+…Β׏![¬bμQjI‘NqIH%e©Χ•pi©€ψ­ jλφ!$η;Ώ> UŸh’”Εrβ4ύ™Ν/~ρy˜ΟŸϊτχƒ½ΠΎ_ιΧdυμΝς“ cfδzρesς«_Xœΐ€γλ2!Ζηυρ‹›jόβέBδΘ<β¦>*&Ω½S3φ|β)χV‹gΌd/©z–8ζ;ί eΚa)VζΒ°iRtώL |ζ%ʚ›ŽΌ"σθΠK™Ršθ‹"εΩWπ^L8ώκ―&+4G€!›ηιH”έω·;2’°μ²sνyRt\/.Νb—x―έ•oy~RhNζΈρεΔšo|ŽZ;\ω²œG1}v-Υ“τ6ΦαΞƒ§Fψή\ω¨~ε(bφcΎΏΝΦ8TTψ†ηFλ4Ίw₯Ρ1K<()9ΣΦͺ2ͺHI;‘ XcΧ²γ˜‡½υιΝg'Ž~±Λ/^€W IœΑf­Mh²i₯ [ΕʚL£bΨ²ΟF,rσήhΩ?3o•ύjΎVη?γ]{J/οͺΉ9ϋOANV–2χ‘Xόœ22„gΡάΡ/ jΐ©"₯Ǐ©”œ-h}„Α‘9μ‰ŠEBFJς³)›7Η+Q~PR<·ΰι+Υ5’νκ ,GοΑ2A M>@²₯4Kλ}ΒƒΎB$ΦΌŠΡ>υ»Dœξ[*%ηq’σ!Ζf€„’£(KΞύ6Ξφ‘ΰFjκSDχ­”|Ί}ΊΖu&Ξ|M΄F?‹†G‹§ΑηqDb–ήΩH~?uρ‹Λ:ύγέύϋO"_"mRξξr£Ό¬ΆDILxΕc.ίδΖKΖρ’Τ•…xγ½χQ¦ΨΞA/YΟοθΓξ°$g’,ϊsο6§‡—(χΒ*qΊ½³vέGcλ0ΒsΚq (CˆΜ9„#•_ˆ<Ν ν(δ-ζ›‘Wr˜λμ Α1δ”Ζ‹a­hγ­9;$ρϋ Οwvah‚ΠΉ€ˆΔδR]ΊΨ²…ζ$yξξξέΚ^ΙΉ›,[wτށSς*γσ&μ―Ώ>€>΅oPϋ]4.qiΦέ‹ςύΒ|€97σ%ωyΙ-!ύgΜ|dχ"Ž―ίͺLju–ͺώz]ς΅^9\·²ωAι^ΆnU°}l~‘pλq3?ΈΙΗρηΓ§]τ½¨t‡J_Α…sέψωΥGv9}ηy%»―λyΏŸ|YΟλεA₯yΎωŒ¬Ο/ώt·_`B ―σΗ5ΝJ†τΪ4ژ€Hi?A#vλωΉa|­ΡΕ;•―γkŽ;s Μ’ΡOχ. Ω)beίFTsŸuύbΝΘ2eŠΕ£kθ)ω#…ΰ]€HΉjΓδβ6PpζZHV₯7[-xH›iτi6ή­LcFΪ4εταΊG9ύ9dληU#… |ψί'9•rΓγR‘E‰²›š—­tΛazβKΞ@DO)5<y‡_G|Ό W.έTΩΌMGεΉΧ‘#o")YnBχ—QJŸΦϋΏΉ%)IΗ"q_!©™:»(²« -Δ―φΤj$ά‡“^Bž9Β).,†,“Π_Βήtͺ>q$%Œ/y―–HWoΜE'ρjd(>όΥUϋ€x_~§HΉž>³Q$τYjδYL|π+²ύ’Έάš—P!Ζc­#€lg.‘M’Νf ޽%;ωPrϊ&†ώ?΄Kι8τګ؟-)oKα€Ζ“†’ciHNŒΓ•Ούν?*—6ss„ΎJΛ$;/ŽΞ3ž3‘D§ώ7O›δ ½Z<"*9Spx§xλπrGLοݏήϊτζSI₯“_T%ή(ϊ΄–hΑ΄νέ6ͺ`ζ”Φ1 21{€@²ά,½½‘‚μ~*© Ϋ0»¨…»>ΎΆ«&@.οnοJγ#jΞ}χ ²j%(ΏςœL/ΞdEgζ±:lsώ['ψ>ρpBάΏV$pφωƟπ‹³.Cτ—τζs)αŸ! )QόαΆŠτ†Ο θ£xήSs6)žρ Ώ<Έ‚έ¦€K$ “…w1Ϊ¦>Μ!tlnι>δdψV:Ό :τ·ρλOz*υƒM©%τπνό `[λ4υ<―^›Ήήݐϋ]//±|ς!I&Κσƒ^\„{“ύΟ`0ΌA€Ytφ%cdδFiŒX­™κ›Sπ&”ΟͺR»βhS!jͺ ϋτoq­—ΦR’+¦―JΗΡqε¨βטR¬π›PŽ—N.ξυΠb·χ.ΔWVΌ‰ρ˜^]ΖnΪ–ΚγbG‡nβσ†z!!ύŸg–•¨'ι `}v§ς…άΣΓ·ρt15™Βη7ƒ‚ΈΣ}œΫ=)y]D'Ÿ¬F‰„ΕL#~ύW‰ *‰owγœ,=»(HξΖ­Ÿώ=nLJΞ₯β–kOϋeά —yʁ‡ΡΉIΓ¬ ιαW8ψΓ»yoαE‘Ές»T)4*ŒŽKPήAΡ Η48L#Ϋ– bΌDΚ΄ςΧΙ™'O£\VrξΓνŸΧξΫsRα™ο£"fQ:yI)@π <ψ~ό—ΕΰO0ρξΏΗΩJn³˜Ύ™MŽΎ¨RržκEcc3ζCι@ΚAΙjΏͺ*-―/όι7Ώh ΰ*LοzIo>WrpαzωL(3+₯ιςΑ F§-+σ†Οόξ£xήu3ΆJ γA½=яφgm(8ZȐ–KOCm΅…e#=SXΣs§ί»šκhMW½ λOxpΌο :–£Θ’3­œwG£ @XW―:q£Cσι20Φ»tΏλε%–Οn`ΙΟzq±+]0 χ¬Ω}Ξΐ}Zλ8T,¬©ΈRΪΊjΡεOq›šΧŒψHnov =C}d΅ΤJ_ Fl}β;YPζΔ+-¬A'): ν4!9†Ϋtε €H/­hοzˆž©˜φ‘*]ΪΧΜAyήA΄¨”–ΉςH Ιq΄ξ€νtΞ€€ΊŠŸΧίΆ 2ΗHΪΓΐΈ΅ƒββ₯JΡ’6)š_ΏY/ό©œgeΕyΓi‘³Ϊ¨vτΉN£_Ξδ¨)ΫjΏ”•œωj?Aύ£*œ―t§J₯xς±ƒ’3έy Χ:•tu—~¦\8ψ^ˆHэλαέ{€w@ͺZΞϊλφ n~‰•8»_[ΞURL—€\Έ΅υΚ \yΚpΰΰA1rw%₯Wιiœ+½΄[RbΦN_Q*(χq±cξ(JΞ|ςQ\Ήφ5Š‹ΎΝ+&€ehZυ₯>X=ύΐ‹γηΎŽλβ’ΘVΠ'nΰΣVAA>QuΰaΚ6θ§TRv=ό"εuόΥΟ» ι―β|q™R υ!ξx8œ―:|193N i ‹KD2§΅Υν\ g€₯Vρΐ„sΌηΖKFσR&φ8$ίqγS'%g.²νϊί“Κ”βŒΰ% υΏ‘”œ…²o?lD):soM άΘ}  kπϊΚ1]§œ^D_Jh•"<ΙΘυ΄8”Q’ωασΜσΓƒ#΄ΐΰζ3Σi]ΥIˆ₯žΗ{ο]σΗψγπί‘ψB$%‹sΔ h¬~·L^τήΌμΤVšΛκχ•Ρœ›Aωːs4MwΥ*pͺ¦…Š_P9zΉ|θ?•ΎΞGRV_ζ#ΦYR½ώόzβk}r±nUZΕζ G[·²ωΑqLh_{žœσ‘Ρ/νŸϊ%J– 'IΟ%ƒΜτͺž‘μΚπ‚ηΉτzΧσώ>meΎΦΗ»vθΛΎρ§/ϋ°>g`“ΫŸHI‘ηΜρzΉή„τ‹¨!㌲›₯χϋς•>[Οψ>Γελ€ ”UdΛc~¨α)zΈm=—. Y9Ωb¬ύΎ²;γ2σϊE€Eι±ψˆˆIϋ’ͺ*£# pΈ€"Z―`@΅‡₯J²ε½ι5²5aΛΘ7xBz΄ 1rΫ­K6;λΛϊp‰ΒήnӁsΤ­k‚OύJrTz·κ(ή﫜N¨mXu¨‘~kηM|L–›yχ€³οΰΤΑ|ώ2«Έ‰€θ<Κ_υc°ρ¬τ©ΓG-έ|ˆόίƒ/1xκ8QžIAHΝ!»ΏΒΔΣyοŠ|’6b_):WπΩ¬=wPϋ„€έΈΔςC(ΑΆΰρo>E}›}ξ“Φ‘K.KiΎŠKWEε71uώχq€ˆ{˜&‹šζ’“SΘφΗM‘ώΧ_"ξ_ BMgπβh/Ύ|Š3/Ύi4υάύυ=ΞυΜχ=Δ—· σ ί>Γod`ΰί’°ψ%€dŸγΓ’bΉύ@Φ‹(ΛεΆ΅9ηˆI-š»^$λ‘Ηω<©+‘EŠΞB΅ϊϊO¨Gωί<Χa\'Πη9%κ›žγ7-ΓbͺH™7ƒ~vϊ1:—S°?^P»vyήτPZνμΣ[Ÿή|’FρKBΒA²Κ"–ΊΤ…6‹λWy9iPƒΩ΅“Ε{iΎαr[iCΉΞέη)MXxŒbΝgž5ζ }|-Κ€?Œw7w#£€—htψδΣΏqβεΊτ}HΩKR*§wK,/A–dʊ>±σΥŠσ!} ™§ΌE\-I£ͺΞ½Χ ϊΛ/ξ+vŒΥ»^›Ο±~εΪ>Sr Ύ„„8 Ξ \Θؘϋƒήπ™Ώύ`Ο;Άu«]3τ-Ν-°’3·’5"v-ΪΕC^\_GδŠŸιŽg΄„gθLt΅ώτ—-OΑςD:κ0βHΡYΥ ©9ͺίΐZοnΤύ——X>νη½Έ¨*σ2 <±!ι1Kΰ+ϋ+ͺk@χπMw――El‘τΤ=ώ[<ΆυΪ+ςuή@Sζ«ψΦώ*aofo2ΙΠBΧχά›†˜i7kŠχκώ wGΔgβzXΧήΗYρݞ=F’ΊΩΣnDm-#11…H¦ηΰ9ϊΊdxΚ9ΌY2ƒ›‹2!νiŽaxtNΥΌNw‹«»φΙ‡dα™” γ$™ΘΠΖ€sŸ ίώ1~Τu‹t«°J/LΪY·+σγ'“‘P€mœΚμ₯Ά·ŠΞ3OΠtΫΉN…R€)χͺΡντTD‡’+Rτζtw‡›…=c»LŽr:+Έυu‘œ.ιΣ™biρ¨ωαJο’γY'†ιΐχΰ¨]M.8‹Teβήύ,)Θ_sΑUV―Β#£cδt£ƒ²_φ2έ½*0q2xaITΞηΑγ[?x(ΜΛh_ΖuJζλxIzΙO{³ΧΘ`ŠΰhLπΈ+ξsΟލ;1³›=ό’]œ^ήε,ΏΏR!ςWτT#>»ύ)†΄«‘CcUŠίV›EχΫCJœποήζŸΙ½.kβ>~ς—?²³Rθu^:TΒ}UpŒ—άαζ=/…"T>7ŽΆoœΉ^«CxiŠqG₯χΙ9šΥ7;3§ͺΊ­tα@j…ΡW1KΡ{~Ni˜\άδςVνΙOsΝ3W ΐ|b}yƒg[ί 1N9?OΕ›Σ©’6dη 3NΨω6εΠΪw0œš iΦjιγχΙ³Β€ΝsΞ‚κwπω―cχnYwKλ}ŠPΏrHηρ ϋΘ§ώσ(”ΗήΟΖ¬³< δ!gΎΦ+g™λVEx6?(XΨωΨΊ•ΰ`σƒέ˜pqαΝόΰ”u’=Ž‘ΠΧeA!Μ‚Π°DJΰέ³ˆcIκk}λyžΆ._λε]5’Šί7ώτeΏ€–ψsΣT‘°ζMΝz ίٝŒŽ‰IDΖβ€|›φ(Uψ‚ ~½ecλωm°Ο°ωšτ?$οΝ<‘½4 %Dε–Etq>£…Η}Ηe·*Ϋz{#K•Μӟ΄ΩhCX†η癇’Xa»ŽP"/!”Φ[b=ε§%Ÿ—­²N[ vDΨ€‰ {„ YW­ •CZ€ΜΗαC »sΚ&ZTΜaμK”π€$K“˜β οrJ9…ίeΞZ™ΪΑ?uLuaZώ1΄“ς―ΪuήΎlμΌrV\’HƒbTάj«½’Njηo―oΖ~Rt榞ΰέtLWΓ…)­ V`5’RPFή'GυΥ}ι€δΜE<όr*Gmά­΅ llmG ):s=e┇p Έϊe2ήω– ΨœsμU„εξ†Yl’”Ι―ίkΧ¬hqNάΎ ΛΙRο[gΔγGKsόDΝaΊG|ΰ/)Κ—οtKύΧN˜Μv|‰–Φ|ϊl§ϊB&θ‹“θ$7νψ’σ·8«zπτm\G ŠΫΗη%φόGΎΆεYβA… Kμy¨Κ-“"οΓή‡H’ Ι­:ήkR„—ΏzλΣ›Λ_~Qš–ƒB3w(Ap}cMFˆ’ώM€—P4–he;IŒ·ΦαΛ~Οo0’TΚΡΣ‹ΣdΣΩΡιεkΗr|Έ&ΕmξΎΠΉΦ(„ΫρΑ¬³ΰi½ bΌλ JžΣθγέ5RΨ—DΊrΩ±κo ›/σX‚Y±ΎΡΣrO>τΓ—N\έό¬G €—ΌΪuϊŸώπ‹vνξBυ—τζs%‹/|f_FTΜQ2Σ:Ors­htsθƒKζ™ΟΰΧ|dΟKrσΛxΠ8²ώ΄=Aο³c0σ’‰τΒlZΣwΛmΚΞΛ•Χ‹=-Ό>9’<΅ώ4‚eΉχ(Οr˜†'0Φ»Fλ4@p;?°|ΪΟzqqθvΙ`0ά"°Άφάm<‹4ψΣ8˜ΞνqΊ—Α½R d7MJΞZn¨χ3–“)m$J$§qsΡ€ΐš)Ϊέ]uvͺdΜyŽτΆŸͺo|`ή<Λ`1α_,§)σV±fl|‘pΉ²ρ aγƒKΏpqπq|pŽ7kχrF ’χΡƝΞηύ?ςq>tΎ6Θ»ΞνΗίλεO=λ΄.ΠΣ„ςϊήεΘ;3λ(2ΕɎ’<œΦ ­ίΏ56ŸW JΦmΉΞ°Ϋψ:ugN#Cάχ7Ձ»_5ͺΫΡε.EΕ΄‹ —χq^·_‡\’ή!q‘’€3—ΫΪz― }~AΘzΆ σ›Q›"Ό\μ kψ’™•CR³¨…‹Iεήΰ#Gi΄λX %Ρ9ϋ’rΠ3ŽΛό*‡°˜™šr 'Γ“1DnΡ1Ή(‘„ΖIY…ŠZ[”Œ•S’­ωwxoδιSXΕZ ―Ω=,&ͺγΊ›Ε¨CˆYŽί‰±‘Iδρ‚{ΙiNχΓΔZ ΄œvধ#6’Ί>Θ-(†G₯κΧL)gͺaΫ‹½’Όt?ϊ[<‰žiDηœfη@s&΅™_&t³$ «C»λΊŒošp–Χ† «πΘ‘ |‘‘&WeζΈ£χsI|C·Oc[`‘Vψι$ΘHωΆ>W³Ÿ'ΑrUŠ”Μ QΡˆ| ΏΪΟ žΎχk ͺ‹^“5 ;UKϋv €:/§U,}|&§ΐiό―Ο)—?J-uαfχ7pl3’:ΩΌσ™ρv0“ηŠνzΛxΠΙeϋΜ?{IΫΪAβnvSPX‚Ftή »Tό˜Ϋƒ^…΄TΝ Μ?ΝαA©Μ:,‘=ί5w^η£ΌΔβiΏ?ΕΕ{K± †C@DΰιΣ§ΰ~Μ ž#‰Nq΅bfθnŽ2Ώ­O{y[Ιv2λ E+xό€Λ))^Χ/PtΏωφ₯½bξλcL¬€£e€{ΩJŠ«W8χ”qώd†ϋ~‡Ο{!ν²d«t*ΨΨμˆZ;΅|ΫύφqϊΠ¨„œ†ΫΡΡΩ Ϋ<5R­ΌΗδγΜιΓBέΓ₯dtβ§Έά‘pυhmύ7sxνΜIη¨ΔYQ~βχ‘›‘€Ÿώ§Τό>a9ςiuδ0|wξxZ_τX<Χ°κF[}š0ΟψέζΕ]J‡³«H4ΒaΒ’Prψ»¨ίοž‰•4;!²‡|7§ΠΨτ™WΝΗb’Fšό⒐1ή-(z/—UI©ΝŒάΐM_ψ&Τ­ό¦Σ³ξΕφ₯ |΅6ρ{Χ"NλqΤL#K½ΰ>υ„‚aΌD­@Ϊ†£ίέτ·‹q^Z_εBfψi»|ΦZkNߏύ•€’¨% Ε%ϋ‰ΨΡϋΠόΝ&Ύσ|/}gΆΣXBεKKG 0gf‰HΉ"ζ «œΎ―§ˆkUS˜ΈOξ%ЉΠvνŸ0L*EJsTNΊpšž§{·~Β¦»ύ€Ψ²Εσ,ŸωΪh9͜·²ρΑmgdγAΓΖ·ύCτπ}|cW)ιS;ρwQъ1Γί]¦ώΜηύ|?¨šΆ“QΤNΝ»«™ω™ΐŸnΧ Έš,=ΐ{Χ€seu¨HWH8―Œβρ@ΒRkQb‰₯€΄ImΚ»2>ΰ°ωόφ_gΨU|mEΝ‹'%Ν̘λΕ7Ÿ^'ι`Ο&¦  ω΄€ΠΛ‰ΐΜtΈ¬Ϋθ]Fςœ›ίθxΔ(rk”…œιL.J’CΠYO!65YMΛ=NB( δΧg@'ϋΘΖ\†¦Ϊ‘—j•S-•He(εxα˜ρΕ1^—6Œ–S‘žh΅M ŠΦΐ_ι$7k„ŽΌI³G*υό>ηεΟ}υU??΅ε )GA”χ%IKΜ8 ,{Θ^τ²ΟL{Lά©γ½φέψ%Z²WιΘ>.G_ό ž•Ε;r΅a–`ΆprεnM>hΧͺl,QO²›³M&ΫΟ<}κΧ‘V„ι\~oχ+XYέƒ±š€;!­NΠHNQϋ†π„γ:¦Nό€…₯Lλ\KR—"†ς3ΟD~AL5mΨwΙΫΡ>Ρ(p˜Ί‚Š»τŒ^‡R”Ή`ίET;Ζ”τΔ\€’ σ€"†ΪJΒ ‘bŸ₯ )+²|­ΞΛΗ»ˆθ~ς#LΤΟxΧΗ†ς-˜^ήmkmEYιiΗ‡ ςʟ₯Ÿ#―ΕI`uΧ€MLΎ•B+',Ι½lqfλ†ΑΓ§Ώ>ρ' ς‹O%ΠdhΎDIηR έ|&€ΐΞQŸS)}Δ]^hݞ[xLΜΩ>3ΪfςΌX\OWΖƒΠΩ>σΟ…V NΕ~ξÜ΅…Ω4ο€Χˆ΄šbΗρί΄άCΒ*έj‹Ο?ΝβAOUpφ ωωn°Ÿw£ΌΔβΉyώxλάΗΩ=C€!°σ`ڜίΖϋςΟ£*Y|_λΗƒφΟtKs° 9F܈k#a?Wf(”y(‹―8R^ιξΩΎ†u­Τ’€ŠBQεβδ7ψΌΉΙ‘œYΙβΊσiΧ|β9›€ω’’ ΏΦ  ¦)˜¬SW.krξoψόμ]'΅δ³('Ag…Ÿ€,δ;€»^«Ρ~οӏή"PX™τœύ(©:‚όt‘ΏΔΓ³Gΰc!ζ4=V#Uβ᝛šB R7–ΝuΟ_&δh9HΛ&8ϊνl” @ά Η‰qΌεg΄Δτ₯+ι)—ŽeΝX’―–\€%Šλ¬” m(qlΠJ43ƒ0[ιΐ# όΚγΘ΅Θ U°2Ζ;χ5Bzsς_( #Ό{°β{xžΣ>ε0ƒ}Ÿβ½ζρΦϋ•Ύ‚YΑΜ“rΕΙ¬’³ρkΰڍ§η-&γ%Σyiz sœΜl:ύb hθ&α]3xΙ[Λ ώho‚ΊnΓK ςˏ“ΆΛ(δs‚Εœo‘“«yυπό&Η†ι€YΛβsϊΈ΅ͺιvάν Gmm1R¨μ9{?ιΤ€ΎΌΛXζΏqυΐΐΧ’! »L~ŽόΫΫxd(i“ζYFΖ]|mF9ύ·²ρΑ}cσVβ.6>Έο œžρA’…NοΙ%§~΅3fΉσrθgΗ’ŸΗ+ϋ=Ÿ7ό~δT)O·fπ ₯ο3_›”_%SψΣΝzˆ™ύ.7ΰSω—ͺeLΪm΄qϊ ~XμXΗ™νA‡ί{ŸΨ|Ϋ}aΧπu.ž;†όΗϋϋςξ^½ŒQρ™q{GQQΎδΫίσΔeέFZ·BΛB‹†τ_0λθŸp­Ξιό1ΰφΉYŠeαΔ°HδdŸE΄b%/Tμ‘έ ΉgQΈ9‹φΑ»˜ρ—5¨¦uΤκŒr$poΉ³>…Ύι~„Ε•!'†“Ζ΄cfAŠ —SL{‹φ•eM ‘€Y2b+:§r^οAΰμ‹4:†Q ¨L9\!D“$”₯Tτ[βcΐ+“ΦSб±Ά*Ωƒc)¦γΥ9Ε₯ζ“΄m―ΪQσn«€ Γ³!¬azš`‚²H„Sdξ}dnΔ±ΚmBϋΟ•) L΄`ς§ŠxΊέ΄c8,y <Ψ›‰Ό½B„Ι©λΈηΠVœKšMιL/NΡΣ뇑<ό½ωŒgΏΔβ@F™$ά7g{Œ6:RL―鹏”ψ‹Θζpή›Δ §OΊ[(ŽPlH!ΡQϋς‚kvώπ΅kjή]FϋΡήtΡξ—Β°Ή2μ_ŸQ€ΙxW†)VΌ;x ο½7“G#;ΗΚkB•ŠAΗY:kJ,~χώe„Ε”-€K΄θj_ό*ωŸŸΡxͺΒγ³τΤ8n΅Πi{€oοyΩπαΘΨ>3ΨζρΌ $χ7Œέc³­ζŸƒθικ$AgξΓo*r‹ͺHΠω!ς dᐑ'mξλΚϋrώ) ΣpΉlΆΑ|7θΟ»A^’γŒ‚:ίέρωqύ“†C€!ΰ#OŸŠ q>F`Αt"P‚ΪβJ)Ξ`χmfjΛ‘?ΐw.Τ`/$K§ι΄²κΏΊ|0׈κ£S?ψDΫsΈνVδRιVKefeψ˜–oΑd™’<ΎyΕ%Rξ‘ύ.BΞ@FΗGQ•Ι‰?琦Ο\R-|«ΘLW¬ρ‹ŽšΧ ͺ"χkDΓ'Ώΐ™?ϊίqͺ‚K7ždΦΈο#κX•gqΣ,Κ™ρ;hΊζ»ΐηʊ,~mIηptW:=—BYxM Na“³e% σS˜κζ €6zς3Φκόψ;Ϋ<Έ%WύΤτLp΅Τ^Η‡uόρ­_―byq”φ΅ψFΐ'ρt,Šφ¦Νό›{°iΥΤςT|δUœ;(*Γ ζ›0E‚Ξ*‹ιbχ‰_Hk«>ή΅ ξΠ¨ΟΚr䷀Ǐ?ΐη]NνοR΅CŽBρɌ}< Z­Υ9βŽρR y qU(=–‹Ž[jΥjI3xI+]onέMνΊxάS‘•[ŽΊσ{₯q‘ŸΦ~Ό—ά[Nώ:yΎo€ΑmΪΙAι‘ž¦;qηa /θl-ŞUa»ΞΒθZωμϊ15Eί‹rΈρ„΄>(tŒ'|Ίώ9ROΟx€ŒηΫψ@1Lšgι π΅ετsήΚΖeΣo76_ڞσV6>hτγƒ*…dRΰGaϊU›Zh#ί>3 °Mψ7’λŸBξκΏ:ߏ(rΘς΅ΌλΗώt·^ nξ<ͺPPeΑΙωTΞa’'rςχΑŸ‡{_Γ‡u#έΝΨ|>Φg~‚„EρM} |‚~ ‘+—2eU"'έ!!7G§>¦5½°0U0՝Κ'˜7λ΄ϋQ#ΏθQΌOΓ3€`‘΄MPAI€1Η!ΐ¨UμΤZΜ[οw]Œ1‚ΛJτΣ/Β‚xΎ­ΧH)υ–θjΌξP9»4ŒAnŊv.™RN­JΨ-žfi”‡ΣR%–hG-·ΛM(–ι Ξ”HBΐθΓΖΗ_‰Ϊ6xoZχ<ŒtV,9<΄/›²Κ νφi,pnηoiΖΤR‡.]DΈ ο(YΑρ‹°ύ'ά4£¨«X]εX+–~£{xm>Jμšέ~fΤΖ5 t9χFΧP..‘•Β†/Ο?Βέ‘.GP Rc3φ%L/Ή$Α;Df‘&h[Ρl`aΎ “Ξ_z6Lτζg(žyό’”|Ε’όQΒΊE¬¨Ξλ6¨.>™ΘYtَyg,1ΒΧΞix½Δ£¦<^s ΐxW γn†xw° _ΣH„5o’2r‘Kgώe:4zEηT‘²δnw§Έ+·ql“Ϋ Α›QΨωω‚x/\½=κΠ^ξ ρ‹kš–ΌHWŒΈ«sθθθt (Ίθš/‰‘θj4ž# #|–g=‡šTqΑ„ΎΕN5ΰζΘcE‘ΌX}α3Cν`Ο{©Β›ρ  ΅u›Ν?‡Z:0^WΜ+ JΟ+€‘t<¨c.C”zΊ<σ˜ΊςξξŒΞ?γT€β‡ώ|ΧΌηέgΎ6ΔK&‹§ύώ`wsg0lnΩ00*œ@¨€`±wڌ¬ˆ:Ά ,Ώ +c θΡΨN°žΖΕC΅Ršc}M²`7­kIK[‰)ΨGKήʍμeΟ£LXF'ΊΊi-ΊuΩΙ| -4˜T‡Wιδ$QΙμβμ„|J، 6ZfNβ=π°νW”ͺh*ρrωQ)ήπX»O βΈ&$X`MV¬@OΗΘυp kτvx˜ΔR ο%GO£β‹‡P₯˜y•΅ς»₯Ρ<΄γΕ 6‰|†•Ύu8VDι Ω§'§Θ.Ž|Έ‘ 8ŽŠωRXgK†C€[Kwl’{uŽΗݟ!mΞβ jGΣΧΊμΖΖxΝC\κ–$NˆΪ½yέƒ—XηVEΕ{7εv hΥ'‘?>…‰q5lŽdυδ'—D_;Θρ6,΅ΐiγͺ—™…\ϊΎ1¦θp‰ίϊυ(mψΟ‘y Μψοq€WψlΓέ‡…›\χpc66Έo>Šηhq“Χ!’ξΏ(Η»ΉxξΨλ¨βŽXεeβϋqϋαί⇧Nc‰η&ΑLΩ8MΫΫ0^2›—:Πσ€Uιœp.PσάKh§ηΛEœ>ωκ ΧHγΉ0_0ƒ— υΔι+θnΏ€¬Rzn3λρ’ψΉ‹΅«υ¦OIΞ)ΎΙnΫ=ΖΡΛσΆnRΔF)ζ/•ί€C_0{Ik\K zηΟ ?Ž΄2:rœ‘ς¦ο4‡„ρ¦ςδ9<"Ag—6ΰBgBMζξ9ΪAJ@eِο”ι²+Άξ9’q@Ηψ§(²γΕ0ižεΫψΐ•Π _-§‘y«H… 0ό²κ›/mŸy+Oς —‰ΒψΜΧ&εΗeν•?ύY/ τSΦ$„κζ’ς²Wθϋγ tφΉ΅‰mhΆn’οy`|ν}ΑPχ30Ÿ?ρφΏζ7‘?ψšΘq}ώ©ݜΈ ¦Ό8βςηHO;ΏZ-ζ¬Xτ!½ΐy*(4Ug†¬yαmvΙΓκ†:bά­aeu s΄ΎΏIuS™§α$\Μ―ΪΞ«΄PΊŽΝe M­ώΰ²fShρŒE…Bκ ­ΗαgR9©&±%ηpΎαό 'ΝΪ—:ρυo?qDVaαΟMbγIΠYυN›Ž€q!s v›°Š.υϊQτJG Κ™§η*—Ζd…mmUλŠOβ$˜ι%ΦS‚Ό²t =6°’εKϊ&„Ι:ϊΤ:ϊδlZ"Py€Σ¨—Šš³Ώ‰w~ 7β΅:rΗμ,}΅°rΉiΩh{θ†f΄ŸŽ‚ͺ‚Ό_Sί”Ί'—σ*mRθ½+kθŒίΟ¬α ΅:ŠρYmφO/E•[Š‘ΝΘθ&'9Α…1šŸ‘xζπ νυ/I/’*1>ъ>ωq”ά}²Δη"Cά?³>KΊ3©Q€ΡΩα9·LGΊ (ΊϋΓΧb‘~eΌkZ ωΟ»³νγ~€έόφg8tι_sK±ˆαΏ,r θjγϋ86ˆ©™Iμη΅'Y‘²ΎnM©Η°Τ$ωƒ‹:ωΞgώ4Δ/r>’-«όyέ―˜_-ΆbŽXP ._}š/ΙΑ%›‘xzω,ϋ³ŸC₯Eό€Ί„ΎΡ―qoRί¨μŸj³x^B5τ-ŒΝk#{ϊ»#›ƒ&Π‡ΉTi>>ΠυΔ€w£σOsxPX‘?ί5ο½ΡgΎ6ΔK„:‹§ύώ`=™…e0v=›.‹ »σH:ͺjΛ©bD*gSλE<'«΄©XvΧp’= Ψϊ―4‘λτq‚ή€8ΰ?ϋS\ΏqΣα98rφ<―QΣ@²ξ£HίμSpβ[ŠΥθΟρθΞ8’Γ³gΏ…"n]Γtά~ˆ‘σ•|yb‹ΟγΏωα:Ύψέo0v /\ϊP~xΤ€8ω֟’2y”ΦCšΡΫݎ±α!Ž²š“8qZόγmŒφ:m(|εΩω‡h"!p]fyE:°0Άτ"~τv$Zž PŠ υ5L΅]G·C(Ψv« mηN£œ«\%ήψώ5>ώτ#4’Œ\ύsίΒ…b9–Gw4O„Žό€‚Ρ[•žvp­?mH%!τΚt§|ΌτΗŠ$ΖΊ„pμΩ³AΚK>F«J˜‚itb 'Χ¬D—θEΉ?ψELLοZπά³?& τŽΘτUvqά†˜τWρΒΎp1Eώφ α8| χΙ_49ΉPAJ Έat“ΎZ’Δo\@qF=ΞΕΦ"ŒΤš­ΪI›|—Ξ~+f²…WΖKβσn/=ψκjˆGψΡ.ύήϊŸγqγ«―ΠάΦK’φ8ζIŽ`¨ωΎjS# πΌρωΌοGb5ΘYΓ‰BδA1wWMΎζΟO7ϊ±^υ2ΎK›΄‡ξ’ozs«+ˆ#™”’μ£ΘΧ HσνΆΆ‘6g‘Ρ‚>a|½­ησΥ―O8Ηmΐ§%>~’;ΎŒ„§P뀕™^r±>Σ‹­,™6]Χ +Λ‘Ή`y½-Ϊ2niCθ²ό«όНˆdš³ΫεCdΡ‘oyβ̞–n‡§ΌŠͺ°°z“Ά‘Ήχwn"Ε’ͺπMς€fGϋΰϋhγ6‘‹Ζ\β0’LCEξ ”ΔΡ6Ξ,΅£]r ©Icbγ‘’(­H³Qτ’H“‹όΚ2t6<–3)9„\QhqΌrgΩ—lQˆζž •Μ|*P…Ί±MΠrδΑ½ŠΗ'ˆ+VZ!9·A:m―‡ŽγδKk£ορϋΒΒρΕ(Ω·N'{έ%xχΌηρμ±G> hiψ”4m‘’Σͺ—X£—FρήGΎν¬φTΰ™ z†K…½ΟE‡Ž’‹5i)₯Ε)λθtΑΕxϋy*—'Ώ€χλ%;Vi§ά^KθωJ‘U&ΗφUJ “sύwSΨxΚU;- kp¦Ρό Ε3‡_rφΔ>q€ZνBΗXΏΊͺβ]Dφ[β19ρX[(™vβΥSZβ°²Όhs‹'—d¬ΣΉ%7ΘϋΑΧb±·Χ•ρ)νew-Φ|N„ζΗ―›Š&π«»2κΗζlάΗ!½μβƒ@σeE²_œ₯ΈΧΆϊ̟†ψΕ5ΟΝΝe΅γς¦Ό. φώω’€Ρxbφ>σ! ςO£8Žvuρ+ τwπ΄s/:O|f¨ΜαyΥΩβΰŒΝl€ξ'8Rx„’Œ…•›wrοD1Cz’˜ίϋ™‘Ρω§<(}CΆn*첫Βͺσ]σžwŸωΪ/”,ž4ίU½?ΕEΡ;™•!ΐ`xCΰιΣMoA˜Ώ!,8^|„?َ‹Ύ8ω nυk¬ωJ{ #‘ Ÿ°’lAvV-Σ,Ν|.7ύΚIKr?―( ’ΊVˆ’XŽSuτsJ`bθ*>x"θWΜ‰ηVu9cAε—ηφ΅–ζ=~‡FΥϊq?ZϋΫPRVΞ§c©Β Η«x»τg±—œΛ)ωш>,Δή:/ΰ›^‰S―Wjζ/.·©8šά„ρΑ₯Ε£όΜψŸ²_aϊ!ΎyχΊΚΙΟξŸRΞϊߏ€¨>[Œς Ο84žŸ^ώτg½ %†Ύγ’qΏ!¬1άR­18U5δo ΞCΔzΉRΫ›†}ΉΕ(FηŸ~ρ`J> SΔ7ψulD%Ρ‹`,‰ι(Μ+"…Χπ•qτυΡ†ͺν<ίυχywΓΧΖΗ£γ ‹ΗχRοŽŽΜ. †Cΐ L£³`όuŽ―$ΕβΊΟ$š;?#ν΅;ΐ,ΟcŽ6r&‰Σ&η*­Œ’sΈ­74Χ‚&?Δ»XΖ©²Θ ν©j3‰ŽΞoπi{“δΌgÎa’ΜT*κ|9Λ†GZπΰΙΗθT¬ρŠAΊ~…†Έ£^‘-Zτ›Ώ‹[: c‹ΎςueeEΎαlλΪz²ΤτίΩξό#ήYšΓΕŸ£γ”ευ­Ιž΄υξΑα3GxαΫρ!Z§v6€΅Q,εϊ†φ[Ό*JχΗψΥί…γΥίϋς˜’|'΅Γzϊς©Σkύθ/ρξΖΏΐωσΞΒl£xHΒΏ)§OσΒc+Kb‰Έ”ghέΏΕτΝΓ9?>γ)t4|«ο~(ƒ·d^@§Qˆ7νxπA£ΓοrγηΌ~ •εyˆί›‚XE]VœΙ₯:vλΏβ§+3xυa#*gQdΧΥπ[|τξΗN‚ˆŠdυ9??ΪA#έ΅ˆΏώ›UΌyώΚ ‘n1Œs9wϋujtΌ$θ<3?’ωΌ‹ωσWηn©υωΙ/ΠΝ»ατΞu²@IDATΘW3‰±ι.E`+b"Hƒ‘fbŽή·©aΌd>/έϊώ)zνΒT«ŸUΎ›Μ §wPΥc ρ’m…_²αr~ώŽ"K――j P7Ρu‘‘ή'$T,˜ξVϊFyρ°πw`ΓΣρώ1~ϊοFπ+—Pw0_tU]mÝθim–΅9“οΚ'Π!ΟͺΞ7sKΈlθ92₯ύtŒGŠςλ̘gIρΕ2h€’Ν8_FΛ©wή*TlήΚυύσV6>pΈ™0>Π{‘(j1ϊθΖI‘šσxk£χ«/ώα§jmΞ”»!ž7<Ÿ7ψ~ΔΑδ0‘ΙΧBαŒρ~ώτg½`}mAόΌ%B*]ΗΖξβ!½_=ΦXcm‹‘yˆX7ΆΞ "‘ΊξTΎ^\ Ε>͚rΎf9ˆœσ“?ω3:Ι|sσςGΝΙ£Ε ‡p§€6Ϋ]|9ψΘSΏόΚ/ό1κKι%pΆΎσΎIΗ${(RL5^(¬vς/=Αε.‚ΗFpIO;‹γΉ2Ά£{θΞ(wœzξC9•±Σͺ^ΓΛϐ' ~Ύώ¦C…œ“«mΆWήω•,θLρ^₯xΎΌ6ڞ|χ>ipM“\*/ώ+έ/οVκ»ωwΈr·WιKΩœ'αkqǁΚΣqc'AηwEmɊϊi–#…κ‡Bύ5ύ΅2pλ–ˆΓ―|ΥωŽ₯‚‘;x﷟¨V-.αυ35Ž&qοƒΐύ•r© δ2dγδχ~Δ 0+έN“w<‘μFIeΧγληyα9·Eγι—…€π΅VΊ!λ¦xŽ<–‘ρGxOƒΌΫ7KΡ³qϊΔ©^6ζ,υ^Γ/wΝmYτŒcyυίΑΩΊ·i‰*Žιͺ‡?Νΰi>'–ΑΝ<Δθ|Ιh<‘8ϊψ ‘%8½8Δ©ΌX%wΧ‘ΡOpk’[ŒQ>3£Δ2ΐ'ž—B‡Ά…ρ ‰σOΧ¦Ξ;ρ=œ•6kΠνΥ7›>ή*Ϊ@ζœΟ?©¨Fy°όβΏAύ~οŸγx4hΞϋ!Νy'¨Ž†ήW4±QΰμΓϋƒΎV€,[u>οΎς5—Q^bρ΄ίŒβ"76³1v7ρ±Β.4ϋ‚ΌΑlw#βZ{»}‹‹ξήΪ]ΓοF—βΒ|ΎΪ­­­Ϋͺϊυo[\ΰ„“¦οΰgξ?K@fT"!Ύι€ν%:|/h966W1OJŸΚPΓ;ψ©“Φ5δMuβ±α4ώπ²νK$¬}έΓ¦f!%fΈ€vŽΕ~Ω9X„RM/ ­a&/Y avΊpΚ.76ΩΖΠΪβF[Ό£3“—‚ΡΜΔΣPy3i,+Ζ2l¬Σ&iL ίG€Έ>˜Ο‘!< FΪ.σ,γεΤ9o5ˆγvΜ~mxΎ΄Νζ­l|Μr+#ƒœpo‘+sCΈηλϋŽΞ‡hΤσ~€³H.Ασ KR>9-?ΓλVδ€§ >*†_gΨX·crͺ#;t‰Œρ΅ΠmΝ䗝ΚΧ››‚–§όό|―Οzή±oαp‘ 9έω5ΎΊέŽήή^>^X˜z«ΪΦit¦βΨgoα+¬βΰΎj$»”Δ†ρGΈ;ήε΅ΒΫ)@|DŒ δL…ž[™rrζκb—Mzyε6Fq 8™ι9:hμ†Δm΅NώZ·Ύ”SoΝIc­τ*½Ν±―­ςuδ›zrΣQω؟£<Ά=@γηΏ“…œΉΐ£ ΈόΟa8yβ,iνΰf±šz‘rψ42cΈΕtχεnωδ·€άγ$Š 2i—½Ρ^4«k8l?Γ»ΆIœ¬?κRN>ήβ(†‡‚ rύd­nbά•λ·λξΛ©ŒαΞ[ς¬,δLάψJ-δΜΕ³5„†΄tΤΘ’»T”ΥΑύΛ3R¬ˆ₯!oGυWΧe·M‡›ͺ¬ƒ ψθg“8zβ*χsιΊϋx?†{j荢Ÿ x£_ON~…Z―Th±Q±Ρ³ΫΪ Š^"zΙΧ°—Θs€-ΔέΖ0£ω'TΆωΔ/‘ωȐmθ!ν8žζ‚a› ˜€#Ή9- Ϊf “ΆntM4bΔ… -τ1ΕeLΖΆΜνΆ—Ύ–coγέ­ηέΎΛΤQμ˜θ€Ν(Ε°8c|7²‘οašΎΊι±SιΗϊθΘέ+›― ξX΅Σ†I<‘q3ρπ~ӊj,Pδ‡?MαIͺ£nζ!FηKFγρ₯ΡΙg VWOΧΐΊXm˜^…œ9]'FωΜ”vp”Ο'žw©Kˆ:04΅ZΈo”SίμΨπ΅Ψ>g!g.’bN§βœ@Ξ?)[£<ΈFΪσ|Ρ;ΔU σ+ΰχ²mγωξηέGΎζΰ1ΚK,žφϋƒQ\ΈΆ`†!ΐ`ψ‚Σθμ J,Œ3sφ.vvΥsOkFCMΎGXκGύŒšΉ™άW/ M*€ρ‘91² +λš†ΓK₯|—Wό^JG΄tί!α]ρFΟuΊχnψ(­Hw¬»c>exΥ!gň‡W+R ŽΥ06ŠΜΌ /¨Qόη— w‡gΖxIέΐζς’­ϋ>}βCΉ;‹+ΜΕSFI‡m˜Ζ2ϊΦlΝsΨ:©Sίσ,’ο0<Τ9oUΓ³CοΆ¦_ζΐm6oeγƒΉγC mΘ Β“h΄ϊώ~δ%Œσ ±Όƒ–Ÿαυ‚Q’mT~«5VΟЎΕψZέ>ζς γλύΘu9“– ΄΄«αvΊΫRΞrYb‘žhEl8wDΣ&8υξ“φ!Bmr\l’F)7šόKέίΨzq± 5.ΡQΨσL671GB¬3ξ4Αϊ[ΌˆŸ–wI‰‚Φ†΅… tvυz,•΅€ IQœ‹ :6bέ^Β{LL‡g¬΅YιIŽκM:κΒ>MΗT«‘άΞš’β}iˆΰ€ΉHΐ|mu³S˜ΰδ]ܘ­j?7Ε1Υ9švˆYcιΩ%8Έ>²<Ž‘E›©y(3šŸΡxΚΌjHCzTΑσ —Χ:Oj›r+όmNyτς΅9ΉnE*Œw·u9O‹5Ι–μΩ)h,"αϋρN:@&žΈ:OΰκΥ%Μ 5cΒάo‘RΑƒΗ/FηKFγIUά–ΰ΅ΓΆ€C³Œ5a1δ˜wβ-θ\Μǝjώg|pU‡Š‘ Μ?Dδͺ΄“η»FšŒ‹c”—XΨ5BΞ\ύϋ[]a`. †@π`Όδ‚΅YΌ”},ΉΗ Π³ƒ·ϊ\ςΩξώ.rγ`žn’ gφ…F;°R˜‹λΧ.xšΕg۝½•ί87fαι&yζΜΨ=0Ύvik£όβίΆ»Ώ P>:L ω~DMxν±αcΊΊ‚ τ<ρ>Ρbρθ,Ο΄’ΓΘNVΖΡρΰ1ƒ•1Λ‡!°…D¦DacΙqή·F9v»Ώ$Μ‰!ΐ`˜‚ΐNηWS@b‰0;’QRSΜ¬T>ŽμΨ½B]ξαjΧ›Ÿnαό|Gv:V)†C€!`"‘{…1kum›ζ'^ Kxϊτ©Ÿ©μμθΙIΒzψΔΔVlΠ6Žm^ΝyfΠϊω(š―ίΑŒρ€XΜ π œ™‹¨€D8fΫR£ ΈϊΛ 7ΫΨW fa0Žγ%s ζ„ζ†f₯ΔD![ 2μγηaΫΩ ‘Wͺ³Έ"ΐž#WL˜ΛφG€υksڐζΰΘRa0ά#ΐψΪ=6z|vΪό[VΎ8c![ ΚΫl‚’ίgžyF•4tf‚ΞͺΑnv™/ετνierΩ₯Β e€Τ₯νZ@˜C€!ΐ0 Ξ―&ΑΔ’a0v(όό3ΎǏŸFANE!gζάω)žΨ½σΟ­vh—cΥb0¦"ΐ½Γ9?Ώΰ=Π.±]£Σ²½1ΙρAt4?¦³™ e–G;ΠάψΎωμwxΠόmΝχΠάΤ€¦―~Š+Wοa”Iͺ‡rσ±²1v$Œ—ΜiΦί©‘„™E! N“sΧηνΌ;§ΩY6؎ώž„$ΜAp{§Βž£νέ~¬τΪ°~­‹^W6>θEŒ…g0τ"ΐψZ/bΪα9ΎήIσwηχηω<tΦξ~»fμ?Ь”Nβ]Ϊ0οwŠ,†@θ#ΐiԋˏwfζ„,+’°<Ύ΄+ύCΏεX  νŠΐNηΧνΪ.¬ά †@πΰηŸ9ϋ—zϋβm΄]έ_b$=jΧΞ?ƒ=>Μ΅ ; ƒΧς,'†C€!°3`‚ΞήΫ‘ :{Ηh» :Ou?Δ#”mfBΞή9ΔB,Ϋg1;5ϊΝΪC¬p¬8 †ΐD€ρ’ρfη8a‚ψ¬D^ƒ3'$1x«O*ΨξώΖ‘Ω}1Ωs΄ϋΪ|7Ԙυkγ­Όέωί[ω#Γb2@€ρ΅qT9ΎΫIσwgώv>‘…ση ΣθlΌΟhΖά›˜Š½‹°ΝŒa »ϊm5£1G†ΐΆF`±ŸDϊ‰S8‘fQ³³(d1Ϋ:ƒ™¦Ι]ι―₯αz[74+†τ-XΝŽWκ‹±0ά€_ί?EΏoΡt‡ς^ΗeLΪmΣMH*Bv’±ααΨxΊŠε;f¦[0²€Ν‚})ιHŠMFԞp„?<]ΒδD#zμZα΅έ€r―Sω–<—O;]“γΝοΏ„΄H`Άϋ*ώώέ+&&I)κ7Oυ{g§Υ/ ή>EΘEYv&b"χ‚ž\,/βΡPG‹o4ΏΰΔ“xΘ-ψ3ڊ‚δL$FF#‚ηΑUΜΜ ŸΙ@ΝON° 5>ŠwX]ŜΣ|PΒNōέŸΙQ<ηΗ…σž§Ύ–3 -γΑΠjP)Μ<…·ήž8TύΗ8•₯(¦ΟWΎŠΙ―?Ω΄Cϊμj4Ώ`Ζ3Ɵ•8Tω,²= ‘–^‹—O†α]žώŽGΊωΪCωBΖk y‰ρΉ½ΐT<Υ/Ά`L>γZΤh~Ξ½αΨ‘‹²3y..Ξ©Φ¬όε3½ωqαρ΅sN!x¨ώξCUM}nέε·…υsW€mα ·piCmΜ³S7^ς·ήFω“ΕΣ~0Š‹ΏνΘβ3ή)Aηθ˜”₯—"/.E£δKθΊ‚3ζŠ"GD z’#ιx:\ηdEMΡEδE;rXνΒWΧ‘΅ͺ—Xν«Ηώ”²(j‘1…Ξ±F4Οψz„‘οεTδxk|1Vf#‚>ͺΟ >@η`€?L)ΏˆˆHΔ“ -ž‘Šꟁ4©‰eH‹NBBχK'!?17u½.§γ|8ίθΔcx1§\ θζjG{οoΠ6οΖΫog/ύ3ϊ ž-ͺuΡξΰ.ΫΑ‘OpgΚΣ³α%?EΒYi'P‘±ŸkM•©Ιΐ½ΛθΣΐTέlρω8xψ0J«*θyLΧΧ?Γ΅{ƒϊΛd­Ηλož§²ΘL?ΐ‡μ 5ŠƒD«•/[τ,_BuzΕΖ!ɚʧ>EΞFLx—+Zzr- 3±/VkώQΫ\ZϋoACi”‘šρq’«QžV†τ(q" 'U±Π…ΗΓΧ1ΰF°PΌ@N[Άyα3ΣωSΞ™Ω‚ˆ@0ψ̌η]„$Ό$ζ±EΧ­xyήiΆRžύς,ιο<^Η1m{„Gƒw5ίUΈ zy)4ζ‘[ΤΆsΆ)p΄ΆΉ₯IUS£h»5ξ>V9{½aσ%„ώ|ΙžπΪ| z|ΖΫΘϋ΄OΥe‡€‚ΟήύΛ#pωμ’”77Ÿξ’ΪΏͺ#3νΈΧgGΈ†<ωΖΖ’‹O O,–ν.ξIš‹EΗΠΏ&Ŋλ θιomkυ3θt^<·^ΐ…σβl'Ϊ›1`ŸGdT2¬Ι%¨ΙMΕ΄]‘αzmκ#Hf¦;0bΕΈ}σKσJCAv-i…΄ˆ%€W .ι*y&$¦*„œΉMΚbΉΙΊ4 ΞeךuΉƒnΘΦ] «ΈωTT"IΘy_αnϋ€—Ύ„sΕ€<†3‰%(Ι²`dΘ§Ρh~ΑŽgˆ?Sφ!Y@ “mœμΗ¨}+ˆCΞΎjΤfΎ‰5¨ΚΏ‘ή~ώή―ρΘ_;ΚΘ.n`ΌλƒΞΫΟ`ΟC‚ΝgFσsnρ2/Žf¨΅ΒΪg0§θŸ)α¬ΎδΗ…3ΔΧ\Dfά#° ž[χ…g>ΆA<Ύ}œ8Μ|w‡δΌ“,Ύς„Ρ:εOΧx0Š‹Ρφcρ }HβŒϊ’™:5εNξΫο!αhDd¬Ϋ€ΦOƒfJsλe!gΚuyu΄±ΙΕθΗΕ‚Šάs(IΕσœ’ά“‚⬋Ϋ|g½/φψZN§\~›V\…#u|>}kύtV~#­Έ}s˜”’QoŒΜΒΡΊΗ%8S―\–—σ\·cэ@n|€pl₯XΛΆΥ>XήϊgRL²ΟBΞ\ι78ά=oω‰Q ²~ΥIιβ­ϊΊ75™Οbλ·ΒBκμ.h€”αpΝ!””ΓYτ4LΪKͺ―4εHΟΦpoOO πVΦ0ι£αžpξŸ‰†4,‰O“xΥ›z°xΘEqζAΈybωb[ΚqΌ( _™τάξK{Η2 4€‰-Bm^Φ;Έh Ρ?/ΠΘ€œΌρ™Ωό©] ζ0‚Ιg&<ο2δ%9“ ΫΆz^ΰνyGDά 9 p%[βHΨ:>οΰ‚Ÿ^ …y€KE˜ƒWrKPIBΞnMŒεΗί@Rάψψ«‡nƒ9{°ω’e›6W‰ŒˆwΫΏ³lšrp Տ“Ϊ€ϊyβά’±άLB ΎUς»Θγ–_αs‡πνδπž%Ag bΙ)2π³'Ν/Ψρh]ΣnΞ’wθ6†ϊΎΑγ5VtϊνZψ‡ϊ}/‡…)4⏠ς΅IέgK’aΌ»%°ϋ“©_γ˜F{B#¨σ`σ™Ρόœ}_ώλx/8%2ŽωdΦ>¦i˜ΟΤΙψœŸQΎVg·½ξ4ž ³+ΰΧsλwaΨόS‘F{ϋΜƒΣχρΩ―ξ«’ΫI7Ύσ„ΑZεOOϋύΑ(.›Ec0τ#ΰσψ’?i1βkqD!δΌΌ4€Ύ™nL,/!""ŽPΞAIŠs˞4­κΘo‹ƒfΡΞες‹ͺ‹+vΈΘ“ΐ%‹΄a)…œG'Ρ>Υ‚υˆ"”X 'Fί+L-EΟμ-xZrτΉœͺšιF‘"(ίR‚•ίθc΄ˆέœdΥ‹HΠYKΏ¨™(GG%J‚˜΄OI+„δWη1ο&³ψ½bΈ%ŒLuΓNΚ{\D%7νvιΨnΤιμKœYμGΗΤ"Β4 mn#!½V1ίΕ6 γ~±ί—όΈ€rθω–…œ—00~γC°€Cmz[t.²bfΦπαήb©ΩΥ4²qϊ(J4-A:‡ͺ…εbλΑ“Ν&&nBR γθmΎ‡½΄CvqPΠΚaBͺζ%,ލI‘6DΨζ{0>?†™eΦHά=-q?J“2…:E—’0Ήwύύ(W !η9έ6Ρ}δ f UχO€X‰_ΕAŠa`^ Υ Ύπ™™ό©UζHΆ1Ÿ…:/hΆ­žψςΌ#,ŒŸΓΝ-τcjq Άε9,­-!<ΒkRΆ#Ό·Δ&`τ4uωpκ›/©Υ}¬ω’?<‘»RΪB•ΟŒΎOkΧ’ΉφNnζL›³(O£ξπId;„8ζFnγkΕ+€ρTƒ3:ƒ6J9ς$ΕΎ jηE‰#ή̘³³²j!>₯«} kŠΫ.gμ-u‘±½KŠV/κD%š9χλŠ\KεKΈxͺ{I x#|Β—zπιΟ'±)m-λ«α¨9#Τ­"Ν֎uάωQ΄4~†ί|tέ%ωŒΚS8P^¬¬l€%YA‡χf~ C£}θ}t —o΄(β₯αΔwήΒώδHΒlQi•’_Φ‘οβ{₯ς1UαtΨΧΠ­ίβςνυ§š‹ίGuE%r3ε•π…ιŒφt’ωΦηxΠνŠν:iΧΘ=τN=W‹’qύ͎ώϋΧpεοή‡vNR}°€αΜΫί£χ‘=Ψ _GΟ—λ-ΞεΘΕΉ·Y&ŒΒτέψ{\½Ÿ…W~rIΤy6VWe-@~ςϊ"βΤ™#ŽυψQά}ο—ψH…«P΄Š³ˆ#‡ͺ―Β€·―βw_άt)Ώώφγ’8„Kt)ΡαX躎ΖΙtœ:‘Ο`υλ2:Y2ΝQλ9zήE!gϊ‚‚Ÿ!!nLB<γθΗΕh~ΑŽƒό‰™F\Vh«w†ΚNŠ™τOγQ`ψZo žρΏε]%7—ΰΤηP^²_ϋ¨Xό˜2ԏ7Ρp_ΤjΒ8Vx ίΎp•Εά3ΞΨ1Ϊω “Όœ­ΰ¦ύΧϊ1Ρ.…{Χ`σ™ΡόT5H?ƒs•U‚Σr—Σ‘Θ “΄~εϋΜΐŸΞΟ(_«2 ύΖƒώΆQ%ΝΝ^B ͝±:Œ/Λ/΄η΄™gρ櫇ι+f8V'οα—οŽoΙό“―­A,9ϋ}ΤY°‘xχ)½΄w}‰h =oΛωIΌδ©gεOOϋύΑ(.žΪˆω1ζ"‚ΞVΤf”ŽIžžΉ‹kC΅ΕiJhq,R(|Ά£5)ωκRIhŠSp @aΕyUΑ.$Μ\*.κ#cŸγΦĐΣZξ„#ΆτΈp$Uτ>€“Μ³])¨ Τχr*"ΡΊ¨ΠΌ»Ή‘ΡEoQƒ_>Nϊ0fiy-γ«X]α^τ†vΗ3\Ϋκ¬aψ4$D‰Βϊ3i„£§‘ΔtΌ―Ο}0h₯ŸΆ)ΐqξ[.‘cΒ½ΰΏΟωE–‘ˆ{Ύ¦oψ ξ9„"ν³¨$Aη(ޏ4Τοα>0p(fBιejΝwΡΏdΕ‰:A+‘2(—΄?|„n#‰2޽wv2΄Λu}ϋ¬Χή4ή}Ί@GΥΆ`rͺCKκgr’ŸΧŸy •οžyΖ^ΞKΜ?»`aξτί“pšΈŽ¨Θtδ'yπσuόΟ|fj9Pΰ³xzή© τΌϋlΆ„—|.ώ€[Œ½Oϋ‹j J>3%Α]žΘΣ§κΒ.‡#ΈΥ§ΝφU›$FЦ'Χ‚›ΏIΉ%$&IjfmXΆ’²ŽX¬―NaΔξNHΉΩβšΝ(š[ΈΊ[°/){Βhιέc\O/Aš¨"šD”–—=„%Ν|I΅ ³σ]ž#!#%Ε₯r˜ιi}@v4Οf­ύ^qN.ΊΚ3?@FF ~ρ_ήWθΌ-Αι7€rQΈY/.YΕάο0²ίΑ;ο‰BιΘ$!jaYZ"³X‘XCπΫh\ˆ»K>Žo Tζ8±!b“sPD?kτ :¨π¬ΦΪ7ρ£Zgηx~Ύ„%Ζΰ?όΥ/υsηΛύ¦φΰΤ!‘ΝςίΐXΛ„(Η₯PύκwpΒαωάλ'a»BR6SZ A2ŸT]ό1βWz§zύΫοiAγ°Ά~ς}Τ—ΚίyDŸΨδ|ΤP9YιψΕΟύm?J΅0E₯B[£RΜHΊzΗ38ύ:9ibO[@Χ Μuu‡/:6<Θίγι”Gz‘j‘ίb4Ώ`ΗŒρ§7DJP αν-¬Γίγx Ύφ±hΑ Ζxw‹xWldSΎχ'?F‘ΖX&)αc AgΖ1 mΆωΓ·/9ρ}<¬Ε'πJ±X(χWωSί<Δ}I΄|‚ΝgFσS”=ϊ0^§χIΌS?ΎlkFq½c&΄2g1 ET•Υ#Ÿ)BκΜ/0|­(OˆXϊΛƒkˆ e…ωΌ2‰RTωύwh~ιdͺΥ‘ΌX šΙyϊΖXΈo ζŸ4ηχƒΣςkPTκϊ`ΫΰΎ[k :y_‘€ΆrΎ«“'œšΩΗ[£όΙβI›$ iωύΑ(.>6 Ζ`˜‚€γ“΅)iJ$5΅9‚δζζœ…œ•Iͺ…”>ΫΖNZk2χ Ε]ΖψZ s–m˜[RORŒΰ²/)_~‘"ν΄E!g ΅Ψiq6ف·θμrΥQN1nl^=ŽΥ!‚Ά]mΠn«πε!άϊδK?ΕΤΉk"-ΒΎˆάΔ±Θ$ω-1½ό"Ξη­JΓι$­‰ζ+hκ—άK6ž9ŽβΒXhΑΪNςΡρt΅ ΅’σΑΧxΤ₯ ο_~–Ό*ζ"-݊€„TDS>Ό‘Εϊρ©aŒt6‘©ΉΧαhήΕP;¬βΙΈ¬ξΕ™ h~ΙΝΗ„ϊ!φ£%;ζ€A°θŸZ₯ڟ]t.ΨZΡͺΦPΔΠ‘_=ƒGΤβ3QΘ€7Ί6§–„œΉ‚Vu˜ YBQΚ [‹^Δ~Z·¦‹5¦ό³£˜ξGwσ-t: ΆιyώΈκ£ώ1$F†ci° mΆdTWΣxa?&Αφ»ΈσΩ5ΘμYŒγ―CνkέC(άξβ³~›eSυ‚ΉM ½#ŠiΕΉβgG­Γ=xδnm+Δλ››"Υ#iίό~’™³uКνU4Κk—Ό_z²‚LsΣγˆ)ϊ.~˜W"ΨΔ…™™|ˆ;­οα±OΈXQFͺ‡Κk2ΐX_ΉQΒ—A©™3˜φ–rbΝ'°ΙλBα­όcλΉƒ{z[ƒϊCΒ\-΅β.žοΕ/ΏΈο’σΒx/ϊϊ1=1‰ejkρ!T)¬£εŸxzγ³ϋάj\ :ΎΈŠ΅„½X#₯$Q5¨,„FΫο`h†NΩ slίΐΔ€rνΛΆ―ύθΗ¨”uF Ÿ΄Fw LbOt*2ςKPR`εΏΈRαΐΥ―₯} 1U¨)Ν| Žΰθ‘ΟεTΦi}πήΟ‘šϊ?βD)­ε$ΖωΎŒŽŸ(€rθpώ΄(Έ>…Ώώχx0M^΄fΎ.εcGΫ΅kXΛ©GU₯α07>‚=΅΅Ό0sr‹KHΠYX#:υGj!η^PέΥ?‰Ψ¬RΤΧVς)€Ό„W_Β;4ŠIJWίۏ’,oP«n<ƒΡ―SА) . Ž}:(.ύκ₯Νr=fνcς›Ρό‚κfˆ?½`rπΰi‹ί³HδΰˆΫ—@GJ^Ζ#ΣωΪKBΐ›ρρF0Δ»Žμ*NW9’­α>†Η±7> ©9$˜O!•ŠLόΗαβk !ηιN4ήΎ‡ω˜Ԝ΅φ{ΑΑ_ώΤ;ρR•w°ωΜh~R‘ι„…Γ―8N9Y@σύΏΕ£π 8*ϊ/Π·yΡξρκ…Ο€Έϊσ _KΕ A γA£‡’κΌ°5 ςpηc§Δ*QΌ_˜ΣSh£ΣZ°όΜ?ύγΑ‘Ξ[hYε4:ΣΜyoͺ σκu•Šg§ͺ;n·Η|W?OhΧΦ‹«QώdρTΐJοFqQ₯Ζn @#°'ΠxNߊ<‹(6…ž‘G<IΡρ'!ΐ ;fV΄ΔΤ<§’Ύ€mωxvc±uχhq ‹ŽrΰΝϊζU‹¦Ζp‰Ϊ+οz±ς"•Ί±ΠUN9υ˜δLδΡ‹’df—$-έ’›_–$€(!qQWOZrεš ώ} κ€$,xφΥאΗmζwNΘ™3–¬ ‘_Κ­wρενΗ‚#-iΟ/‡ΞΏŠi1Θ‘$w‰± ϋεTΠ€ΰΣλΪB?ŠΊ¬ώ·Cβ$MΝv,¬8}Dp”&:*^ϊ1·2u:Ϊ<5"*πΟ¬Αώι"³^$iL'mΞχh]ω₯!΄’f‰σε4χgΧ;6t8„œ)PL'P―#‘ΠΌΠ³tϊβ (²ΖΊ”/:‘4ξΠ/5rέέ”ύu?ΥJGJΟvV.Bθlba-=—γ’π«ί~& 4G₯ “φb0ςπZ4 Ξ)*Gf–  ½B‚Ξ‚Ηνχ?U&΄gΒ°Ι;Q ρ;­½mSbRό’ΗYKkޝΣ3MάΚυΫ²πΑΘΖ‘W^ΖΑ|QθXL›Δθ³Pz< iΙψμWAoKf9rς]ΫΞΎΩh)s)ΗζΖ…WOKBόBn±HΙ©Ζ)ϊ‰†KCKΠ9₯όEΌ\.†―ZνηοŠι³eκx”…}ρβs-ηaάΆFƒβ†:ͺvΓyŽ“«Δ#$~/ =›¨Κ©‹ΟT1Υ7Ύς§:Vhή1>σ©]άσ™kτ”ς³pΜneϘTΥ½Š” >ϋΘ ^ςcžEm~ώ;―‘v8Ήx’MΓΒiqЍ ³>~ΩΒyYΟ;N\6χŠ(Ρ {γΌ΄eσH±ΑΈξX~ρ ^d„όΑpu}Νs`ςuΟ/lΎ$€·MζKnyΒkπ ΔωΜ΅Ύ½O»Ζ a—]Κg!ά"!Y΄ΝΝ§!Y^¨œ’3¨ΰOR š’Β‹¦ΦΫΆΚ)ρŠ[§Z$XJp’ΆIώ—ϋiνΒaΚθTCqZŸ\…Z$’R«πΒiZΉς«Φή…DU§R0·±†=΄^+¦ΗωNŒ\Γ'ΝMŽά΄/ Ι©ςš4„2©‘‡vL‡«4·φΚ/ΟΙ֏πΧ€ΉY0ŸalξOρ­Σ‚°lΙαZδ’ ³€jz―brςήjQηωΕoΠύƟγ•zN "ωεIΙΪ>ΜƒO~±ηYNμ%Aηzή}ͺύc|tMn/u‚Β]ξι3¨Ο0€Ώό.ίQΗᎴN\ъλ έύ-~ϊ;όίΗτΫηqΒΞ€Q37ŸΚ9απ3z™ΐεΏωΦΏ4„¦όή<߁_ƒ·^;/iδξψβ—Έμ—γBη όϊΒΏp™ν·%5=WρΛχΘ-sy₯ΏΟ»YhύœθΚoγ¨C9\0ω·ΫΎMΪC/ςqςOŸ@ :·ςU3Φ~|TΕSπ @ΏΞIΆJ›fθDΚ*sBΦ<ηΠd87vVςq"7‹―MX˜?«Ί€Ρό‚«¬ώδArσ'§θ <οΐ‘ 2άγeΓ…ρ6™ΑΧnŠ’ΞŒw·Žw“’Δ‰m>ωΫΝ…—-tβqAτ€ͺίΗrOΧ:΄ΙSrΣρOξ/₯ρπ:mNωβjα ”*;Ο7:ωΣοyˆ‡›ΟŒζ'V‘Ž„œ+€χu~Œ«C7Ιι&g|RΨεΟόΙΟlΎΛŠWΖƒώρ`χmšŸ“ 3'A•z6ς%LŠΥδ–Άͺvh|&·:Q€œ:xσOy°ϋΪ?Κ'!'_@: :{ώ»½ζ»fρ’άςΪ6£όΙβiΏ?ΕE»u˜+C€!(ΆVΠ9. iQBΥ¦•z/€ΘGΊs>sσOΠ>rCξΧ³…‰ι¦‘:η”C{μΊ>A_X-$Ή―»Zσ±!\bι(3iΨ]’YΌ‹I@΄o/ήAg9•‰l(T½ρΝLCš$nέΖzl ‰m`oJ9iε3˜κmΖψά²JCΔΜ،"σD9χ‚BΘΩ†ž‡m°Ρβ3§°ΐ!°Ypμ%̍=FS՟όδ¬—¦‡0:6‚ΉvE‚e(Κ„3Γ‘α>άραHg9E/6ΫA©aԏάςHγοΊͺyώ(ρ΅M±¬6φ‘ftχΡX‘Y‚|ΗλNV%Κ‹n9ž£Nτvφ#Χ€œŠμό2t~¬NY(.1υ ^―“Ώ·Ε(*7~L’σa£œθθ0&IΩu<­ΉE'₯ς/m£²―‹-+%EΤŽ©±Aήΰ%΅σ0iΙ΅!:=ΛΉNΔmϋOγ€}ŸήPΧjΰ!ΊΦβI£31τžμί/”sCΥf|Ž?ω¨{N!δΌ8„ΆGΝ°‡YQRW­Z¬sŸ†”χφ3‡wαRγγQήΎjdK~£˜˜σΤZJάάΩ°°ΆHžœθz<ςžΕΔό7–W­¨Θ7Eχό#<‘₯Ό14/’ uς™2ͺΚξ+ͺ"…θ γ3ίΖŸyH€{ήΫ;‡i-ΗΑRaS£₯π4ŽΥγΚέNULύΌ$GΧ;ΟΚ«ͺV9O|π1&f–“‹5 9άGΡ09g›~Ω²yyΟ{VJ)φο+—>(OO΅£O”]υƒ—ΆfιܘΌί­ό’ŽΤ4y’875βdόΒζKζ»‘4_²ΐ#Oxιή½CŸΟ\κΰγϋ΄KΌuΨ­|² ²{ϊΤyM0d‹Ίƒ V#e%R}:zΠ#έm7‹)qάZι$ϊFH+² ‹αHJ.BE† ΄ΘΥ¨’δΊφή8ŽλLόχUΈ 7@ΔEπ ž)Ц,[–lΙ–ΫΗΨ=νξΩ9z;v'fb;b7:f7:6v#6v§·wΊ§ΓΣn·OYΆΤ:š²J"E $H‚NβΎoPΈ/ξŸgeUeUefeͺ€χ$°^ΎσίΛόςΟ—ϋ“ …qZΒιάζaa}˜ϋbbWo3ϊη`Ι¨Ε‘|i]¦u₯‡Ρξf΄\ˆμ4zV‘εt΁SύΏΊ{έ)Iν ]a=»0->Ϋ«•V9oeΚ°'}93†‡ŸΎ₯μχίώU‡kγ,ZG*Ψ τEšήϋ…SYεAσ•fœ Cgn¦φDKο ”%ΗHΗh"φp[ό½…Bμ?tT.ΠύΙΫnFΞ\fη•δΜ=„.άύύe§ΌλΝ-8B†Ξάʟ%#Ϋ)ΟψΑ όό­όί ›«.}?¨‰B‘θaΨFΖδΏzžjσΛ άςœ,ΝώԜhd·²€Κβ0Ik8T#ŸΡW/»ab»χ[ά­­ΑEޘ»%Η ΡzS0χwώΈ―±ΑSίyMΞRhIΜuΝ—ƒH-pKrSτΕIkŠc'Γ΄­›RγΉƒ’G{ΪθqεφG(:ροε&64lΊ” «DŒφμzάW$υσ§Κ€Ε€Œό―ΰbe£€­7|n’ρu?2ƒ―"iŠ₯e‚»ϊU_ωΈ5ΐ­Ρΐ¦0 s+’+ρ.Έ<6Ζ»›΄qIιΚ €)tά@³βΨ5ͺη>–«ΨΠyχŠlδΜ·I\}ηΐA<»ί»Ιž>ώt•–6:θΤCά[πœl>3Ϊ7‚ΚͺοΛήύg‡?ΑΫΒΞ£LΕFΊ9ϋˆηΑΚ9ΎψL(h¬?sωZΩS„ρ dΒDœΉ†Η/’η2”‘ξήό‘cG]Mm•¬/vΆάuΆ1’‘K4ƒε‰Šu8ϐΣT"α‘οšΙK* Έ$εOVOύωΑ(..ΣΒ #ΰX} pGjΝη%¦ΛΖ† εΨ'­K* ''–£Ύœ2:>ΐ°βEQ$δ£εω§dοΎc_ΰΉed8 Emkv'οΛΖpIBLχPΞšV•w 9Ω₯pΌzJ*Υ+§²[ά\+gΎωž[Θ;»j£ΘΠωŸn뿁Ζn"Θ ω΄³­@:Ή¦pŸ‰»’qρ­ΫXψκχΘ3*·ό™€’ͺ“dθ|ƒ―jΈ? a€εlτiΕ{ν}²|δΞ§yϊϋ8Γb& ·„όΤv{χβά€Ξ#σŸβπ^²L†ΞΉ€X·W²` ρτ PTˆΔαχpvRNχ7bΦω™‘q˜vm‹¬υ’sLύUήώ2θ3›Y6Ώ4ſ܈K9BFΥ|g‹σχΡ³žƒύιΒUψΤSΪ”vq3³~fέQ”Λ$2†ϋΏw;―½ΌC—Pž¨X6xύΉΚ=Ρφήϋ¨QHΎssΗψΟ;’gak]GD¬zΊϋp˜/ξuJnQ),νNy™ueςΖVΫγn™SψΚ&ύc=R‡"Ρ ½§lcϋ0==…’zA/εi­Λυλ«J1€…ό)̎‘λΓgP³—{ΒΧ9hD[ο3ΈψεΣό άΓQD†Ξόή ‘Ζ|LβAR=ΘΠ9] ΥωeΉ˜GηΰΟΞώ τ­'1ΜάΒ}‚‘£”^ΏchΊχΈop6ξω­…_Α—χΦ*cςPH_ηκζτυ<€$HOΠάhΗp«ιΧΈ9!κςΓτΒλ‡xΆ ™)DGK ό‘ψΟ<ΖΗ[@¨Γ:’’RlZΛY’―KΖη\ΐΛU x³MςU¬¬ηˆ§* hlv§ΕG!Elόϊ©†ΰ@IDATρ·½ΧΘΆz«±ΤρΚ,Ζω¦Gg†Π/1;ΪΎ‡Αή1Tπ†QˆΛ€,ΗšeοI9JDσs‘K^qΙ`”³Ϋoεךνψ‹E¬l/έ…Ξ/ξιopΖ†iWγΔΩ%BW‹’‘±ώ–έkάϋ5.ζΰήΆ…b‘…ψHφ˜ν^ ς/M7½±B€˜83ŽynYU^k₯mρqβ‚"%žύώΈμEμ‘+Šυχ8ΞύψjXόš?ƒxj?―­xφτŸ8<Ρ+δφ]Dσχ ­…Na|2OŸϊͺΈΎ;Fο…^'Οdœ–&αBŽgfύαΔB€κ/Ψυ8Ԍπ§:ڜ‡μˆ|Λ™kΑ»Χί†―ν«ΎοGfπ΅ΊΜͺ©ΉρΗΓ«>&{·_šΉƒΎxΧ ‰΅΅άLαk₯΄>β±ΡN›Ά}”²£MτΟxWδZ ιεέΖ¦;8|πήS>Η‘G.ПΨΫΒΪξίΐ‡o^΅J‘VŽ3–δήLq! {$Ξtύ«‰?U[4¦‡¨6ε–l>3Ψ_Φ9ςš}H~‘ΝesF’₯{Ξκ&|©iZψΜΟώΜΰk·©RK`<¨†Š˜>ϊ§νήmt_<‡:ξ]wχΥLΰZ=ޜߏbq4S[œ½Ι‹ιςO€υO³xP–WC$δυ]?yB.E ς'X=υη£ΈΈL ;d0Ž€΄œπŽά;HGbŒdΰΜεN£­ο :…’sέXΨΊ„#œ»K {"w§ …BϋίΤΤ¨—Œ‹ΙHͺyθ‘(p¦h(ΚΪa_…LγΈ,¬qΨ Wιgp:2 ΓdΩGv+d£qrA₯bΧ—ψϋq}““«ιΆGοΰΝΡfz€[ΓzοΫMxXt΄οO,.Azΰf'Ι Π5Œ `‚y'<¬ΊVχtœ`­ΕΎ*ς’•…„ΊΤθσ„ά2pdl†lxν©Ρtη!)&YξzΡΙ_N¦ˆ Cο‘guΩzϊ>Rγx^•°˜΄'Y) ˜˜―ie:βfœŸRwEy΅'‹-hε^zΈcύΡ5-°>³ Q¨έ{F\P™FΛΠg䕆Œ$Ξ›ΐΜ’{ί.’x>$£ΨΰK^=ρΊUž{„wϊ–ΒG‹[  ΡδG*2€o¦`R9ΪvaΖυ77Z#tδwMLY^βXM θοο"Cη2JΘ@NI-:sFΓ’#―Xœ§₯N z2Jϊ—σ€\*¬/·Ήy εŸ k§‚ηήcπ2ιSgVΊ^Έ”[DFμ`KρdΓmŸ#΄nγΈZ_ΐ‹ωΟΠ† ΎšγŸHι<#“'Ν‘―9–E$ώœΒδ€ϋœOqξ¨}:λš?ΝΒy,θ/ržΨhα@FzΉ7zΎΐ¬Ηud$ξΗΩβ#Ž—/6LΠK“ˆθ dĊσ–|ˆ^βΞ£q\ς6o\/0ΖgκγΡŸκ5}€2>νT [>s›έ9β*ެœBΖ‡§PTΞμAL ·Κ<ηTΒȁ1=K"L ΌόoaikΓΠΐ0f§G19ν[&νόd½€τz_ΒΜ|7ο-lƒ4zξ it YΩXF¬₯'ιΩα† ΌT=’ρKpψ%©^Έ λ₯φžΟqε–»Ξ ΌΞ™Ύ€DCŒ‡…Ύ€‡'TΖ¨1)|ψΜ}@ڞ§έλωLa|>σ9¬€'˜‘³'d‘nΑΣd±#­ήΝίΖ {›Ρϋv΄Ή²\σ%Ψφ σG«]h§/vΉ†θHύVGχh³zNζwQO­ΕgšJN<-Δ) hΘΤ|fΞζ*ΒΆΫΘ™ΜΈŠ±qΒϋ>KΪ§pπ[NFΞ‹#θμκ‚mΐŽ νψbœ;{XhMςH¬Άζ€΄$ΔΙ–©šk9άX[u:όΑA$Κ‹EBo)95d(άκIŠ9zΆς”'₯“; E™Ά«„‘%‚_Κvωε<=Οτ‰`ΒόOϋ:{naτ)—x;ܜEמDTs6λάtΗ— ’»>)ŒτΏƒϋ„M•iVω+•γs£Ξήα…βΪMM6Rθν/Ψυ4ŒH•?]κ•”ΎŒ―TΦΙ©³£Χρφݏ4l Ρx? _Λ»Fz:Ρ|υ$ϊφο!֌Δζrθυ )ρ)0*ΡΙ»oαϋ»yΌtξ4JΛ œ7ςΣΧ«N}…ΩΙψρίόΪΔχΧτεjiΉQ!yΐ£ΤC‚Νgϋ;œ_G¦zbˆˆEΕαo£FΊi>•ΐ;Šβsc*pψθ·±kMw?PρT―ΟΜλOΪρ«…―₯}Δz(¬τΟN΄’ŽY—EΊ&Ήθ«Ψ† ―‘²JΪ”hGού۞ΗΚηR”―>κ)H<ϊn yBu² ς'X=¨>?ΕEurX"C€!HΆCύΖ—„xEο£γM#gqΔSK΄’(:„€΄x‡ςDec₯ΧΕH*²½γΖ,θ‹jŽΰ.ΓΣ(Κ°Κ†œ–dHΆ—Žxγ­‰₯qή—6ŒΚ©hOŠΪ¦‡€hHύ:ΌχMΑ¦fθLJkΊf ^υτwΠP'~.Η[£ώzυUiΫψ<Έΰ―ΊZ–::[&#g΅0;{έIω¨IζŒ#γθŸϋυΓΠΩΔσρΘΰ?]ێŽΙ&αPΔp‰ˆ’ψlm Ι™υ‚ηJj»€Ήkœ,ι₯QXžΕŒ?kρQQΠmΎε―—υXςž.‚53YΟ§‡Q˜qύΩggΌhGΗ8£1ό˜>w^_ΖάX KIFΓάk-+–ωqšŒ‘‡$5γ ΥUδ†ϊyxΘ샍Ή$Z˜ΟJΌde+^2eε ‡.[f–l443Ι½Έ(F2yΑp x;iG‚JL:1U²|&qΖν r)£<©wώδύˆεAξλ 5ς"θΚbnχήτο‰<ŽœT9Ϋlχq¨Y6 ΞΛ:ϊ¬BΎ΄5³ E3½θη\ΆΥ σ™,°#’…?₯υΕŸ9αv|ζ$=Π§½i€<―eΠ"XœkM]ΗFυ¬ΆΦVTξ;+.t[PTu‚ώΔ—¦ΠΫyMΧ½j.Ϊψ%Θz)Χϋ"zΗAΪbΑ‘R’s Δg±¬”Bd‘σ—a”—ΈΊ‚¦G2~ Ώ”αμ‹/‘@46ΐX3>{οS§~έ˜ΎδŽ mΦ©οͺ΅‘7MŸ)[ΥΑΚjzβaΖgΞCΣώ<ν\OΓγ3'ΓgN]°3Τ_!}%@ρŒ6ΒTxQύr³+hΓL'ΊΪψΜΌώάEπΝΧξuΌ₯0τˆN˜ιŸ_<ΐπΉδΡ€ς*ͺ±77Ε%β³ΡD Zξyη188eΥ?S9~b†ΎΎkOμ,Ύ¦ΣΔΟ‡Q=ιR`Ώ †@ΠπΗΚ?!iѐώΒΖ &έάΏaόύ2©`ψό–ZΚF1(Θ?i'!™Λ ‘{ΘΫrαyμݚCΗΠΜϊƒΛ:TΣ:΁μ*”$s«„bؘFΜ"+ι%4η1ŽΩEaQΙ°œRΫaυ»uYιr\ω%sηG₯Ο:9/Oτb`hφ%κ<‚&86GW Λ–£ϊ1»J”ΒŸL|μ+Ζ ”Χ6%?»ώ hήω™€ΪμJΩxqή֎Άwω χG/Oψάω‹"ΡξvjϊšE―Ρy ΄£QμrfišB?y!οΈ{ q2§ψj+[«#ώυIVΉΌN_]yΜ7~ύmλ<§¦Ϋ06|ιyτς/­Eΐd ς‹(Β‡EŒ<–Γ= ¬;#‘β0y’«M4£½Σ“!ί(f¦‰IΎΤ4zH₯O7f ΟBm+2‹²0//ΤΠ'PΗ»(+Ÿ<Γ;Δκ½{“δΨΘΣiΐ9Ψ™UYes4”˜ξω ŠTξdeœΒIkΉœ1O†Θ_!²λϋΉ€ΞH}φV:=VΘ£όM—Ά‡'ξ"#©%Όcη,€%f’–* κ†ωΜm\ΪψΣ­šΦΖgή‘ y>sίΎΊ’κ%†Ύf!ω@NΡρGΟΊŠ7ί\ΐ飇‘_`₯-YŠ@Ÿ.9xΦτΌσΦΗ^΅Τ£AΦ Μ»ή‡Σ;zιI—Οι5Ρ©H%ΐ¦8R4ΘKΞ­«™©G‚ρ‹:ΘRͺίό’“―~Uώ’fZρΑoήσΊ9λšιK8†‹Ύδ,5ΰ‘'\ j<k>3ιyZ*Ζgͺ°Θ‰~σ™ά‹D€yt6œξj8RV#Χ"Ο¨Νz`•[ ­Hrήi…aχ"––Tδ£uw“ΪB”YΖ{“6χχ*-ΡωJJ‹φδδaΚΛ’JΒ‘Α¬}BΕ; {–£ίΒ7/Βή8Š|C΄ΰέΏώG7CdχšShƒ<ζ8Λ ψΞΘ™ ‹dθ)Ό#p8iDϋ+BΆβίΒƒε>œWWf]–¬lͺ­ΡΨ0±ϋŽ’σ¦ ‹’ې‰V\ϊw8S.Θ3σM]1¨?Ζ9Ή±βΜ7ώ; εΡ:Z/cΐ4­’€3`)@^-e]Υ†‘σηE0―Y?―ι ¦ΣKΜ₯6|vσ‡Ηaλ!KφΛKτΒa›ͺΌYGπL%aͺ½νsμξV€PΤhΑη,΅Ϋ‘wώ΄ ώΰ+hΘγL§Έ°ˆφφ·ρa·Άσ τ₯BCχ#3ωZ<τώeΌkڜψΟ»“θiαώšΠψώ/pξWβqn»Nωχη΄ξξ΄ίΗ:161†Ί\½XK ΙΝΌσ=,Χι}KGβ‘?όiD);ϊ"žέ/ήΛ8ξbš {\Ε 6Ÿκ/+KcΌMΕq‹Sx²™ΕZ49·˜άΪƒ-ϋ}[ά5hε³5“ϊsνπΞΧξεC>…ρ yS4s­‘Ηι iϋpφεlYοny`3„QύΣΤVθλ»ζρΔΞβkšeC<FυτœΘ¬,C€!` D+!6h·ŠqQ’Y JfH'eΒ"{› AΙπ±@4|T;#™‚6ά&Œΰ²Ϊ‹ϋτeAoύΆϋ*-ΕΐsY’9Ης†x#O“δTTΣΆ[Ζ|τjEj Ž Ή•SΪΤσ°Ή•p$ψκ―’Dς @]=ψg\ώΜΕ 2ι0JΘΠYρ8ιh\£υnɁ.ΰωYُIvό¬Ψ±ΰώ–ΐ­Š{B’’₯m³vΨ—Υ_$XŠj‘•€Έ(ΦζΡΩΙr*ƒyηgjΪa”ΙnΤΗΠ=ή’μHŒϋΡί–ΈqCΑ¨+ qgTZ(΅ #!Wμg3KΓ*ύλIΒΓλξ籞t—΅Ο`‘{1Βy.‰%OΏΊ0ηϊΣΦνϊϋQ“Ηm(°ΠŽμZςά2,ζΒL(Ϋ䐂ͺΪ*ΉΝΗmχUύ„s°MOΠqE|"²λJΑ;™λEΫH$ͺͺ aΙ­Dv”Έ3—b¦yyΧ°ΆΖm@ΰΖ1†ρ7Πf—» @d khΦ@“ΎxΧ@“NUЬΟβPFœ61݈£νς±·ˆ6>K@²Β;φδ|ŸŠ΅ Kλτ–:NΈWG:žΪέkΦ όΰ3Go|LΊTuΘψΜ;\‘ΞgΞ'Ρ[τLJr}U°Όΐιάβ"VθσΙώΏυ¬‘»ψœώ€X‹rš]ˆΒς䊞ρβ κPSq·{ϋwΎ–Ατ%οsβ_n υ%uι4πUά|fΚσ΄:Κγ3OΘιώρ@Οf,ψ…ΐΦσθμ€+WמB‰δat©·ΫΤΦΆ46Ε,¨,Δκx#zU Ά“­gqιΰYρώ»ΓnZ“—ΰR‘#mΘKWV?ƒJΙ`]θξ‘υΉΈ Τη§aθq£ΊQrj=^€/ΎH«šKs“N_;‘#–$Η皧mœ‡dί!9ΩkšbEx&ή1ίΥ ”(Cυ‰z4ΏΧδ¨{τ4*€%Κ… Μφ8²„X<Έ‘(ΣλqΌα¨2A5>>8N«UΒ“Ÿ%UΪκ­Z”;ΡϋΈƒ>ΗΝ ‡ž~7ΦέX8ν κχ“ΗΙm<ίkΎKκx992MόŠ<aζ„zΞ«­;_ψΓ― σΏ½+–1ώ31Bλ½Ήgg ζτ³xH†Ξͺ¦§Ήq(wΝnΈŸ?£RόΌž%΄ŒΚ_œ‹xΠφ:]ΥR¨ΑWͺŽΙΧνΘx‡Ηλ66'8&mΪ½"ΗhA­η’Ÿχ§ΏŒ:ξS°όή„άzπχΈ©Cu?2Β׊ιΏ(γ]SζΜ οfο­Y6c\Eˆρ)Ξ)ΐ―*Ω|’žϋΨΜg2+΄WΊp]iθ|աŞΊ‘ΣύαO#zΘζ&·&«ΠC–Άω²Db$¨|F}κoŒ6½ό­«δβ±ηNύχ¨ε>ΫpηΑ_γ7]*A;ŸνΟΎV8,’š9M΄ΰ\υYj2 …œήΙΩχ$φ‘»Y‘ίϋΩ‘QύΣ tˆΎ©ˆ*βŽTE,Tυ]£<‘šέY|Mƒ2ΔσaTΟ} Y C€!`δ5Αχγ½yZίp+‘‰Όδ9unΩƒ*—₯Θ:VΧ¦1Ο9Έυ?‰$#hΕηTΦh‘f+[+*^ύΑeέ¦πޚ€j…7Ϋ![―˜g’œ}BΕ³xΆ‘ ‘ΌΡ1VΛ]ψόwο»Ί˜5Kλk+ά$ςˆΚ½ψσ”IΌ‡T—²IYH‘ΦΉ–l˜W±ΝΥΣ_€l)=†>ωjι2Λ •’Ž ΧΨβΈΗNξlα‡Ή_›k—cζ!#–<:‹νΝ―Π']ΪΦr—R«0(^ƊcšœͺηU=ƒcεŠλ`©σdθμ ½Yηg*²Jεώ'&[Ρ―*—ύќΛΣΞυ΄F› ϊξ8 “Κω—.Όkc˜˜[”ε ΛH|Š*³0άξ{ԌλΟFc}˜8YΝ{ΠΝ²g«ŽDΙΧέm™4¨·:EGQΖyζΒΜ#tϊ‘;4‘^stUZΉ» dη£e¬Ο©₯ ž œ*θ8ΠΓ»Κfυρ`ΚσŸFEz·Œώ±ΟΡ<₯}3‚6>KBB,-Bπξ3Kjg )±‚‘3έD‰?U¬Ψ5λ~π™Lς7?*…Χγ3χωΙgN €$#…NυI§Σ7 ©ι‹„eΨmΎοNmΊ˜¦gacύά}εαΦ8ψΒΏΒ‘½ο& ž³οξ•_3Ώ˜€hγ³w ΉCς2Ÿ+¦oΜ‚»ΉΝΌδVΣ-A«ιV1Tv,Ώ€Πυςuμ/tω4Ύυ+τ8]χ&E'Ώ0}ΙŽŠδΰθKŠ]£Zx‚κμ>3γyΪސ9ήα|vο½Ώ ¨ΓUζΡ93—z uE…rGνݟC›i­\%#Y(«ωJjŽchΈCΆΜ.Ρ›ϋ(ϊςUfκςΈ51Χ&ελμ FI]η7Σsλ3GΎ‰ΘΞFτ,ӚΚήS8–οΐͺΏ³I0ŠL)FC"UG?υ7:?N_ί[Βƞ$δ₯—’,ΏL6–€ο˜ΰAΟ'RοόoAαETΣζHn­‹Φς-©3P–έ€gŽ ‚6,―ΩΙΫl·£\χ *οDœΊυϋ τά·ρ*}cξΓχ!νψ·pαΥsςϊοπ£{h•zν qκk†΅ΈρπφŽΗ‰σ_s|ΕC*―φ»²*ˆ,aί%όΰ»1hy­γ>Φyλ†/ԐB+‰eπΗb½σ[ΜdžΑs/|₯ς†+/xθΰOSτWQφΈ&HΗΑδ3O£ύIςΊόΖΑ"-YΡΐm–Q zωL΅JτڟQΎφΤYx€34ožl·ο’εβYβ6j“•ΈOΖΫ:ZΠθ΄)ΡΏώŒκŸ~ρ`n δJŸδXΗ:}mSz ‘‘ž‹5υtm‘G@ λΛChmo}Χ+Oh˜Ώ°ηk£<.υ4Μ!+Β`˜Š€GZ4΅΅Ζ”q)H£{•]a|˜GŸœ*’ξh΄t;B†^αlxΤχŽqP·χUμε`μθz mJ%Ϋ\’\0ΘDuα)T$ŠΖSΛ萱τCN—ΡΕ'$!7"3ζbވ]ʚqh›œζ?1“N%%K+3κ- UΒⳡ’EΧ‰FƒBω½uUΌ1$4;CKΩξAOŽΪ±ˆγfΜ*Q³ΏΦQΔ[Œ<θ.s‹Ώάπ²²Θ2)―> ό™‡2t–Βό²šRς °noΗ„βZ•κΔ%νG}A•tˆ™ιΕά ΉYΩr¬ΗΚ9期9ϋ‘#1έZ7:ΗIV ~τ·lΗ"yΎMζέ/£kτ3…w˜BΟ©‘τ©ω0υ5D_ίκEyšπ’iί‘“θoΛέs_R*r6ΘCw²ןκtωJ΄ίΕpίIdӊFΦœβ^πa C½€―ΏK Oκ[όnwΟΕ’7gΙD΅ΏύžOCκΕQZP£ζ8f²ˆΖΒSτy3[,F–Ž!—ꀡ˜ΩI+ΝNR­}ΒΒ|ιΑcθ&CgU“άτ2”₯o KœuΙε· tQ*βŠΒS\ίϋώ,ͺ9Œ’;}ώL―Η^‘[UL‹γ]r’­ω~”‰Ϊβ³(K$rεitθ}tp‹:‚6>³ci,£Ή³Δ‚Lϊ’Γγeg.ΚΙͺFΎμ*<β/‰" κ†υΕΨ΅σ§’RXDŸy›&½|ζάV!Šk*ΡΥΨξH8ˆB‰ƒ—fΐ;wvδΊΔ\䁗τλYk1½ΟθSέ86Λ+YΏ:ϊpŽiζ“τmόbP‰ΚCΉ% S“νκ›ΫΘγ]ιPγΨ m”΅CCΌdžι<+‘v΄σω₯ζβ«Β¦ξv½Χίό9:}<£H³€—_˜Ύ$!ηω7 ϊ’?<α"ςΞβ3—Α‰‡ΎŸ§Υλ…nκξα³{‘; a#Ω“'[a#kx jΑΙ²£ό—S8ω—¦Ύΐ́pZ'χ€: λδηαTK.tβγ»―»xiΰ T8"TI©Β™zϊsi`rψΌύXπ‡[Δ­"sΑ‚"ꯈ³LR €_?|MNλΉ΄~“U…Šli₯Ζ₯bZA iKӞ ]ͺδxiTh? UηΎΟ9υ7σ_ΌqMNjΌΩ„Ί#‚oΚ΄œ{ϋ“³΅EθσΪνΟ!oΏ°ŽTxπ :ͺvΖΝ η#…qΩΜ5\ώMΎEΖΧ<²τIξS/sŽ:\Μ¦«žήVEΩ[\ άτσ΅4Eaσλv1ή5>wy·EιTĊͺcάίU1;ξΰΏCD%[Ο}ŒΚ~ρI ^9'π‘u%|—ώ‚«‡‘ΟxΐŒφηνψ4Θo»‰λ'Τ7ζaš~ν­?£|νah!›ΜxP³ξ§[Πφ¨5άf Q'νm½λތΫΈ‘RΜ?α6<χ=\ά/=ŸI’‰Ώ§π΅ ϊ5ŸB›ϋ~ς_Φϊ7žpΎΎC£όΙκAυωΑ(.ϊf•f0όG@λš‹=ΉΆ@†”Σ€\&σ–aY8Tψ4"Ζ[1ΆΒŒύ¨RxEoW Ί6fΗQYH䍜9Ή±ΰj0j—Έ”γx–ŒL'lm_œΒΖ:bc³‘—Zƒ ΩpΚ†ΆΡ/žž½`ηKNΧͺ »)K%IΚςwmM6Œ+>η/F£›ω·φμ!ΟΊ˜ο€1ρ…ϋb{;zE ·˜_†σίϊ:7~ŽΞ²>ψ :<„tw΅¬¨ύA~ΏcΑ§_Γz#yιœERE jλΟ£ΐuQM₯;!iˆΎδ@KΉiάRoN½ψ’Ϋϋθ‹bˆŒάΒlw#ϊ]έePmzš‡ŒTZΤOˆ=‘D )ή‘Pζ'Wc=zƒ<‘D`}₯¦8ƒΛ™ΕŸΩή Ζg&ς™ΛTΤ?gˆ]š ©ςY{d’«έ±Y‚«g€—ŒλYω¨»ψ]”¦L‘—Όa χcvz’Ύž‘ŠΒςƒ8pX§0=ΪΗIηάΙDMυ’z TωΕ]L9ΕΫυkEMφ~ »c€ΧM/Ο†ŒlEΔ“§«<δ§ΘFΜiAχ”Β3–!^  )84";™_φžωŽq 8#gN7^$//ΰ΄ΓΥΊ0 δ͐Œθo‘!¦/ΙP˜ €ΎδOψdXσ™08ύΟΣΎ@ ½ό]Γg‘}XIτδΙΠ,€Ϊ8(­mLαQΧδ›n„•ΜΣFγTi™ΒuH«cθy„¦ΦλͺkySCοβ ¬ΰLε)d“WRη0…Ξ/πϋ‡ΐžM;FΘΨ%Wι¨Γ©"FF[pρetIλ=rΎρQ‚G19ΙCdr~ΒC°ΊΊκœ·‘βΚΡΉ„ώ#ςFΙ©j\{x΄±Œ_Ιι_[o#>ϊεޜΉœžΛxύg‘xρΛ_C1·ζ€ ]hΌΪλΩPL󡱩ς`$–ΏώΌόjͺАŽΕό(ΎΠ(5?~σψΟ΄©₯‹ηάδδΛ, ’·O±gsŒOύal“ΦΞ…°±ζYN©oΏ–£—pjŸΈ^N\~σ1ξRaόϊOπA^.+¦+Ÿ9O^ηž3…°Ί,ICΗβt―9ψcrYJY;.γΗ9ŠηΏϊκχ ΉόkιBoλ#Α›3—gtώLΐ3ηυ`χλhLό!ήΪ%H&'ξΰfΣ».›!€\ρwO΄›SžΩ… Unαjν/hυ σg$­kk ΄V=Σν\ΨΰύH/_;wGŒw·Ÿw[~M'Κ,&ΊZ]FοΔ]οcόi4Nz/όΙοz=©τάΗZίϋ+Ό±ω/qαB½=U†1<ΈΪ‰τ³gωM+NχE1νόiŽβvίτ’‡ΟD<Œφ§€SŽfΔ%Ι†Ξ³ £κ\oΟδN―ύζkEαe~Ο«ΤE΄Ψ%ηz+h³έΑ§C½ρ+―κ⑁{Y;χοώτ-Ÿ^8ύꌫΟν=$|"nω1>ξΎξfxl—¬Μσ8™]θE<;z†―βΑ¬rg«—βδTΦΞ¬{ _yΊΦ‘jμR€(’d€σʫ罎M(mΓνίόΏxH†Κ\PžΟ#wίΐο―+Œz„"ͺVœϋ!NՊΖΤ3tϊΉp²ω:ž?Y-Φΐ΅ŸόΤω%[~^xω‚o#c2tΎόγίΙ†ΞU—ώ-ʝ—άTγ©ξ»T—»c$T<‹ηΏtΒ'.vβ³7$>3eώΝΌ«ˆ&Œ©ΐΩς“ΌΓ|EUΡΡ±χqsJœp—RΚωη³<ρYT Nξ{ΪηΌ­,΄ΰf_““‡U#z‹˜ŽC |F³n:zΉγ3nJLΰ3Ευξu’η:qε§―;:β%ΓzV>Ξ~dθμUJ,χ]Ε―ήΉͺZHΏˆ5ΝΠ 4σ‹ͺ΄”θεzΟ g‡Σ^Ÿ€F՟!tσ’‰z€$Y(ξT~ρv_vW}Py>3}I|ώSπ§q}7pϊ’Ώ<‘<'”σΟ§{—”•”ρPβ3Q.έΟΣΚρ„Q|7πΩίΥ¦iF’„]’φE 5΅ώ…6ΙΰqjŠ< °  ²½Ε|ΉΦΦVMεC₯PΓw\{SΣυΑΑ#φAtΙ_/5―©%£ύ«žό)4XΏ:ω:Xb Ζ»UG“Ω{k`ΝLCtLOΩ\šΐΐν{n›Ut4ι½(} αP•ΐΥ›« |;D=ŸIνOͺͺΏαΗΧώ#ΙxΠ ₯ͺ_ό3ΌrΆ†?»υKόΧΧ―HYω5 "Θ<Έ“υ]£“j”?Y=učβ’ήKeμ^ΆΆ/±ΕΕΕ†@θλλγλEDΠ‚‘" ΑŒΪηnβ3¬aΞ€ΉIbΓΰΔCά™θ¦Hο+)*^0r¦žζW§έŒœ9Œΰ²E ;+T7–kΐ%ΜΜ·‘{ό&†½žΊT9•uΦ]=2xρμ ¬ηOΌεύί‘SμΣ(-Ι%―Δq^ΕΔ°ΆξμΓΦώ>ήYŸΗι†σΘUΩΝ;ψΰ#|ρY£Ί7g±MΝύ5βγŽΐιSΤ—«1ΝήνCϊα³Θ%y7}}–}θή|sΟ;B‹φΞFέcδΔΤ>Z u»θΔ‘:ΨVΈ]u6–°D'Y²ΪIΖηOcΘΦƒŽ±ΥσšoCϊGφz-&θ<_4Ÿ1ΕΘ– Ήmθ%ο†ŒœID-ύMM}†Z8©Qxe•†k£k°uΰ¦γ“οRFώΪΪ?ΐΆ)Ί–Ž‘Όΐωœδ‡³4†‘‘ §‘ΊώΧxNγr=_ψDzy%φ²Ή±ιԟγΰ†;PΐmfαΓ0†{0rζςΧΧωsΔ›·ΠΞ"ΘiΎλQ.·ί‹ΗœΉΚ“Sτ―`θ<12 o΄λΑ4:σ{YΗΘ»ˆ]θJώw¨ούd ΗNAMΉh(-g ϋΔFz»d#g.u}™σω€ΡΠya;?ΖεΥEo8Š"Ω‹™GίGοH$*λkωM$3όx„ώaΚόšyWμ–ϋΡΖƒœgn­Α†™Eu#gΎΧσΣŸ­χβΖcΰ@v-J’Uv*oL“—ώV4OΊλ=FτO£ΣΒg0‘?=Ι ιŒΟΈY0ΟΦ|=ύψ6fb‹έξv⋦ίq2rζz7ΔK†υ,;f»Θ΄»Μύ“΅œ0”Σΰ.ξ~vƒ?RϋGΏ5MΡ ΄ς‹š°”ζνzΨZΔΤ²œ7υ°Œ)λΊ'›0ͺς ‘›—ΜΤ#թԝΚ/«Λ’o:ίp―‘^%¦/…₯Ύδ/OΘσΟEvŸρ3π<νHψ0> ŸΉΪ.I·Άβ?c»†Γϊέζνέd¬θOΗ΄ζ7μπάμ³₯ετίn -dp₯cΐ=·―9<λ¨ηoQ[Ο=4υψΫΚ«?‚fϊΣΆkώτΘh΄μόl ξ‰―*ŒΆ‘§žΡώ‚UΟώΤƒ†euς΅]nSŒw· x±ΫρžŒσ~2C\}]Wo/BΪ{ŸIνOͺͺΏαΗΧώ#ΙxΠ …Nβ¨hδ Lγρύ+f5μΉϊ'‚Μƒ;Yίυ<1ήsŒς'«§Ž«Q\Τ[c© †€Ωl«GgΗ`•bEB$χ Έ-2 £οφaΓF‰Žv}ΗdΟBz= ωnΪ„zq± #1qQ±ΨσTΆ6—0O†΅³ŠwΜ&φMX+ꐚ@ί4δm#W1;όcӁίW,χύDϊlήβ zΊϋΣQ[‹±Β›@^O’AήΆžqθκ<&–4z ’¬ΫΡUy†±Ζ§Π5HΨlΡηW&0ΊdΫQήg‚΅ yY©‚§n¬φτχyν7˜ΧŸWALΚ,#―ΜgD―ΜήΖ{Ÿ=0©eΝ€£,'QœΥ.mœX_›Ηάt&Δi ιYΰ?ΦΊ6½ˆ΄7—Eoώ½Ÿ Ÿ6χi|w‹‹ΛCFlΟλ6{Ζ4θ=zυ‚ݍ³žΡ3>Μδ³Μ’Z€¦^SΦ'Ρ ύΗ¨že±#Ν’Œ=Ρ1‚gΪΤ5ΡΙA›B^/ˆΚDVl"bφDρΟτYoΫά°οk<\ϊxi7κ‘Œ_ΜεCW)Σ— Α&Wς›'δ–ρ[N}|ΨΑ„f뻝ϘGgυσrmm ³³sκ™,Υ ζΡΩ –ΐ’σ,˜φόΤΈΫσΓf"™  †@Ψ!°Σω5μ&„ Μ`Bԟ―ClDJ7 8+Qθ―λ#ό§Ώω΅Sί;·{|N`³†C€!ΐЍΐŽτθμ@asξ ω»5¦2”ZπΌΨΆ[QtχX'6»&θ8˜}hnΝ.―’1žŠg?·‚»4a™χ ³;Ώ8Φ…NΣΞΊ&jQ.9ƒXερέ 9s§Ωt}’±/ΐ'\ ,ιs°‘ρτβ΄[w *ΚJδΎΧΦ΅{y”+νΘςς0 Ή˜Χ«μR€ ›ρ™Ή|6ΩHφRo`:4W1zO±υΑ¦σώ₯Y(—‚!―¬Ob‚ώŒ}Ό΄υHΖ/ζς‹‘s•ιK†`“+ωΝrKψ-§>> μ`B³uΖg‘9/Ϋ-•΄`½έr°ώ †@ Θ?^„Β“%ΈΡ‹‘›ύn]νφ|7@XC€!ΐ0 Ξ―&ΑĚa0v{λpβΛ_sω>ο4]s6rήιόΈέγΫI§ C€!ΐΨiD9~κ/1¨Α^ϊ>»—b±xΙ ^VfιaδgΠN¨Υ tήo3Σ φ¬'†C <ˆIΕζς†GαΓ=ίγΐά2&07>‘ξV<~t}S‹n%vBBfέσψΪW_ANf γb…„Μ2|ϊ*σΕ{ωΜ}4~άΜξ‘;aΒwψŸ|Ιo|ϊvŸΗ‡ΥdψFΐΧυξωΎπTbwπ Σ—<Ν?Kί „;ω’_λΕDGσEΧΦΩgΣ”˜­­­ƒσκΜ‚6R…gθΙI6šiλΛΜRE‡.`o6­Ÿ/αѡۘ5³qΦC ĐŒ,l³ΘΝΑ“'OΘ³³Γ“ύnΛlμ ρcβ1αŠΗ§;™_†λ™ΙδfΈb:Qƒ±Ϋ…Υ!<Ίύ6>ψlDd·ιŸΑΦΏe Y„!ΐ`0όB€γo.X ΪΫl‚£ί§žzΚIfθΜ Nvΐ`0Ό!\iAz}&@χ€Υ©·’αžο6  KsS˜›‚}~g9sΓOΘ­FEa&S­Θ)ή‡ͺƒ(//GzJΌˆΞξςΊg™«w§ ΛrŸ/Ψ±όΕρ―/k…}7π™V,X9†€ΏxFm7π Σ—<Ο?Λ oΒύωΞ—όzf‡:«£΅ΊΊ†ufό­ŽJjΈ:Ηeζ#nsSCθ|Ԏ»’2i,iW# ‘pžœ»?μΰœ9ΟΞ’±ΕnΜW!ξ꓃ ž!ΐ0ΪoΪΡόΚψΣτS†5ΘΨ‘δWo`Ε2ˆO6ήωϋΔΰb’k³v4?†š~ΝψzG^ZlP †ΐ6 ΐ zvω1δ₯“±ΦκΊο·a!@ύ°f †@Έ#ΐ½$N©NΕΚΔ2‹“άŒΓ=?άη'Pς?•ŠΔψ8Δ$'"Κ₯“ιΑϋΈσΑ/Π2Ȍœ] a‡!ŠηΡo'ς—ΔΏσmΒΞΖ…Ÿ‰ΕΨΡ0~ΩΡΣλspL_ς +†Hϊ{ώ&:«ŸΔ++kΨΨπόΕ'υZ»75\ §{ΰαέFφΪRŠΕβ5Ÿe2 †@h ~4ΣΝH†“ŒχJ[e‹“Β:Ÿy@ σŒIΑ&;…Ώ<ρo0±d}1Ξ„ Ώ¨9s’ϊ+ŸσhΩC€!°`Οκ³Κ<:«γ²΄΄ iΡZ½KU"ΐ<:+Ρ`q†C€!ΐ`0 †C€!ΐ`0 †C`'"ΐ<:οΔYecb0 †C€!ΐ`0 †C€!ΐ`0BζΡY}z&'§™‘³:4ͺ©Μ£³*,,‘!ΐ`0 †C€!ΐ`0 †C€!ΐΨAHΞ1ΜφθμμίyΖ†Β`0 †C€!ΐ`0 †C€!ΐ`0A@ςΜ˜ΦY« †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`†ΞμL`0 †C€!ΐ`0 †C€!ΐ`0 ΝpFΞΜΠY3\¬ C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`ψ3tφυXͺ²OύίzΉ˜YsT‹NΗ|λoπ“Χ?p€8¦uήεrερ}^{¬ͺ’α…¨ΜΟE|L4θŠΐΚΚwͺτ䚀―žrΊφώÁ΄BdΗ«+°Ν„ΠHrΟΰ΅WΟΡ=eΆΦπΫχ›Μ.ν$^ύήσȌz>ΑOίΈb^ہl)Ί’΄\€ΔΔ!ŠΏoavΆ]³»εd%I¬@IDAT@NR ΟI {»}‘ν꺎onq€γK_’ΫxΧ#§C Ϋq¨ρ™βzŸ£λύηώ\οδ₯˜ }ϊ„Ή"[‘D7# kc˜7ιωAζ Βϊβ%‘ -rjθŒ 0™Ψ[SŽττΔFsZυ&Vl£x|ϋ ί1Υψ%ΐ£ΠΤ| yIΑŸα£/™³Ξ  {…Œς„ΖzFυA£υ<Ž“eπYB:’£€υi,-Š£H(Η±Σψτ₯‰VάΈΥκqxΜΠΩ#4,ƒ!ΐ`0 †C€!ΐ`0 †C€!ΐ`0\xςdΛ5‰ Τ³xρδ9€jlΏ«νgΈάΣ­±΄οb1±‰|‘„Ψ=ΤΛ„δό―ΰ_8βCξ4ύ?Έ1α^,9½ΗΛ£2Γκž‰ηΡϊπu|< ™h[pςπ+¨ΚΙCΌJiT}γ£_ΰΪέ0ͺ’_Χ€‚”,€%e!=)Ιd€&„)\ΏρΧΈ;+oσoΪAœ9QJς›˜ιΊŽζŽΙΐ €ώbΘΈΞ‚$ Νy8qœAΰ‚‘yχχΌΦ;ϋ«,Η+κμρ3]ψτήΟρΠΓΉ­·žΏrΊˆΗ·΄œ9‡Συ(„–ώ?ρΫ+ZŒβ]ήϋ<ώυΏώ:2Έδ‰Fόδά†—ž}ύ/­ €—-aš—Πw­%,)Θ,°ςmο—o$Zk ε‚Δ»\g%ΕQ“SBFΞjχΩ/arβn6½‹^}#πZ:'οʎ ?1Α­άqΪΔΤτθ ΄*7&ω©/αyN0έrΊ†%l+Αΰ33w €@ς’ΤΗ6ύκΥ'Μ³ϝώ.*SΔV—ZπΖ'o(ž >?ψΙKξcτ%§{ –drOβωσ'Q~pŸ¬#)%xώ+ƒΈσωeΌχ‘ΞΝSL_BθλKyBy‚˜7ΚΎλՍΦ3ֈqΕg΄‰ρΒ…£άͺ0ί…«ο~†i.ždΪΒ₯GΜ‘΄—¨΅I/]ϊΊ#KώŒΈtΔFD`λΙ:νšZΒΒfΧ}ΧΥ[’μιογL]!–'ξγγ_Ώƒ/χΉˆ—€€a‚6ΆlXφ1>έΈDe"/žpŒŠBΔSΐΦΖ&f |ξsΘΓ‘>9=4Β’%γΒ₯cό:Ϋύ9>m|$εξ—ή-δφe}m‹ϊO€ΐΙΰ–-΅/ΰΒΉ `NqqEY°Ψσ{\ώD§ι·¬ΑΉŽtσ+5±iτpΑ‘8wiu Γ ZφΗ€ˆCUΧΦgΠ?7Μ΅β!$ 5ή‚Δ˜$DGD/QOV1·Π‰‰UUXrp`ΌœΩK¨ς|zΟ?†ΈˆMΨ{ΏΐΥ[ν摐T‹g.F*έί–†nαχŸέ5―ν€·€—?Ν(.Ζ"&l­ΓΎ.m‘tn[.㜬zd_UΉWΠ}6‹τΟ„=±ΨΓσό:ιρƒδAM½?Χ†άΗ\Ϋ`Η&"ΐξ&‚ΉMM©έόi'ώόΘώ $ΟodΞέ›― τg”w Τσ} ϋΛͺ6ΎwΖ™ωγkΏ!d θG`kλ‰ώJ¬†!rR­šœΉ66λ`†zt­δhoΓ5Λ€γτΙͺΐ[ƒXqˆ",Ψϋ2^ͺ"ΏCβh}\qεΘχdδ,ΚΞ9‹υλψ‡¦Oδj|$§~ ™Ξ©Β=Ν{0U+θ΄Βƒ'pξάaΎ›ΞΥΗ7tV}·ρρϋ}τ²cˆ+Α³ηŽJκΗΨΌϋs^”?ύ<πG8“Ÿ§ήm|ž©ySŸΏ­0ψŠ©ηœκ²Τ ![gŸ>…ƒGjΰjzΟκ¨αx½`δLuϊΪΫφΥ")ŠFΚ|’θK¦†Ί_‹ JΏzΫο58Xsω^ΜΜ:‚―œŽΐ*<α₯šΗ¬²ςoβωŠ*ωΙdœϊμΡ(¬}ςKt‰₯ό— ςΌ9=Še`ς™ Χ»œς’£“ ΗŒθf yόθ%‡‘35Ό΄4§Υ-ƒΟ~ρ’Κ}Κ©R‡%ΒΚ¨'#g!±G.ύ12-±ψΙΧ<sΝ`ϊ’CorΕΖΧqΠτ%ƒ<αK~½ωFyΒw=£ϊ ΡzzGΞΚ›@ ψ¬¬t―`δLOŽŒFΜπτΡ.Zεαƒ/Χ!eθ_Κ¬}(JLΕWώ,£wψ ξϚkŠ#ψmˆ‹‘ΟΣ)» x܊C₯—P'v΄ΦΟ:―Am-T?. (Νi@yz„l(“=ρ&<šU¬’€Υ.§{]–’Š@T4’2ψ]\‘Σ‚GΥrf%Zπς«„]c3χρξΟU ϊ“Κ°Ώ&Ÿ–’Ά0?t]CsfυήNϊ‹ŠŠ!’€%7—w%›t½7ώ:ΟdΰœrU™•ΘŠ•ˆΘJυb7ΪGaΠƒr^ζ)Tg—»-hΚDσΰΗθwϊ€OͺςŸF‘%˝“ψ.ObΖφ‡ξ¨r C* ‘ΘKlˆ4œTŒύ‡c_]΅¬Μuώ\m/ žΧίͺ95’β‘b΅ςχ Έ9ΙΗ‹9M#!©Vι~ͺυ#Ξ.}ι~€μU*kκg€T"3.Ι±ά_KmΨπ°ϋ-t;q5εΕνΗ‰#nή›€ZΏC£ογφ΄ Sf₯AIJ.rθs3ξ‘Άω6΄ά„Šσ5ΎΈ‘ϋ˜{?,ΕtΨύΑtH}6Œϋƒό) $ΓŽΗΘΪχ<ž-#'"\H©@Ež£Γάy/£υŒΚ)υΛ~·  |γŒoκ~I“KΧ𑱉άϋ†_Ν™^Ω6„φ[ΧΑ½NZθ1ΰ­Ϊt\ ο¦ηΘNτ'§Ϊ045€1ϋ$V‘ˆ‚œ8’_"–ruΕχ0Ϊ'}AΑE^­‡YηpJaδ-<――E3KGΘ/§χDς~γΝkά„σ6Xχ#iΠΊωSͺhδ7ͺ΅ ²ΰΤΔ†KFΞT 5>M³‘3Χή&ηA‹…(ΛέwΎ„%Ή 'K#π™ςώ Φ6r«²Ÿ@#`Βu¦GΔΠζ3=#1P6˜χSη5€τ ^ΏUQ³]ΓMψό‘Β™Λ΅7βWο5*ΚIQό$b.|%<žŽ5\©Δό\'[­`ea˜ >;‘Tώm|₯B0\œ )μη7ο=Άθ0Π!Ψύργ‰u3‡Θ0Ν»ΡσΪθ φ—Τ€ΊΗq{ΛλψP4RœΖ 2t\% >†ΫΨ,ΎS2Zε4 «g.2­ΨΡ}λ*: πό9oυ½wθδ!δ‰E†oΒӝΞ{+̝Ή‡^ΏΐΤšΞ„…{χ?3)]mj…ψ΄ ρξΦϊ†oaΈ ΄Ο:ΏW€―%―Gώ4δχρˆcž½•ƒάŸS!―OΞO\ΗϚ>’³ηΏψ€lœϋ“3Έˆϊ’ž7,§“Πμ`Ϋ>K£λ°Ρυ9l /i–NAΓϊ„ώΤjδΏŒη8=ˆsϊ%κ\Ή9ϋΈsq£Ο~π’RΝr*+±ψΆ 0?3Š–;ογαο‹Ξ₯-h½ή‡Wόί Š·ρK‡5΄ †ΞL_Rβ(ΕCP_2ʐόό5ΚšλՍΦσVέΑgEEςΚ™nm_σIH‚%.ήI_ Cη€#8ͺ0r^YDl&W–•LF¨H·`~E«b'--δ‘§‰ͺdNuu„₯U;άμM ΰ’G^•FΞcSMθ˜nΑFT)*¬GQ/˜UνΝΨ‡ήΉ›πΆΔ©YNΗ0X,ΤH―Ηή*Ι§E/_€.‘Β­GPς«Ώ±v΄H΄AΆ₯dθ¬ζgRsR~ΰ $@­ΒΘyžΌlΆMvΐFφœΑρώμRΑσrt!ς­½urˆ9Œœ—18ΡŒΞ‰aX²ŽγHV‘ZΥKy€Ω9ρΓ>Ό§œωΕL/MΓΆ2ευeDη²­©•δΕ_ΰΓ„δ”ΗέΗc724g.X+!‚€V^ qΝ#g_x₯.^ζύκ#Τρ\œ@ί£fDΣ»Η₯!?½yψ”‡ΚΑΊQχ†ψΣƒΨZ’γbSFΜƧΨ·Ά€•Ff—Π9½„•―omm 9λ€ΓSΦRySaγΣεΆ…^L,ŒcvΕ†u2ηΟL)ΗΎTq›zά>μMλΒεβ­‘ϋ˜Šμ,i κ|PˆΓψώκYσξΤ>|ρ₯όόθ-|.­ƒΉ έ”Έl€JϋiΘ1‡VCν‚c¨λ͎»9+‡λl”₯Μq―c]±iΗ͌vΉMέr΅’$Ι DΜ{7R±Τ<KgjMΘ›‘{Ήά‹ίΓoαbF!·­?’‰Sί| εi14† ΔfΦΘMδύ6Ύ³ΟρΩΆΘh`ψζοπρmΧητ œωζ—°ΏΊ„­-τ;Υ{―Ώ‡kχ”εύλ/»ζ j«ͺ‘——ΜT+χΡ&!,Lcx¬}―βγλ-ς̊š#σnπΌ6ž·`jΊΓΛΞ¨O‘ασΖS/‘FΌ―<υ”ς~lμ>¦.K5v0FC„ΒύAeώ}Že[xή§TΖ ›―φg”wΦ#σ—δXιω`C£MWŒcΝjϊ‡€ΚυͺΌΓϊΧΈχΪ!―zŸεšˆΐ“'μ ήD85E›Ρλd†ΓΈϋψͺ±vΆΉVrJͺΌ-svΙ†΅8+9λHΐΖΪ4Fν6•’:_z–Γ£nμ䀦cO-½{­λ‘I.9«™‚ϋZ:XΕʊ—²δ™Φ"{’Άan‘Ϋ[a$g£’lŸ£ΜΜ’Ό>ηHτ'–…\2šžϊœΫ±δ–)6Β y›:"cΑΧώ臨Θr$sFΞ\Θ(9Œsτg΅ώWόζύ&!‘VχW³―~U’q³Ψ"“˜ŽΌ2ξο0ς²~ŠŸΎyM™λwάyΠ6οΖΞkγΓ3Φ_! 2₯3fέC©?|IάHΰx/—D_Έσάh=ΐ˜œΖqΩ–št-}γ{― ¦@Ϊ(θ"!­₯τg›'CηwΊ―?ͺΊ7₯Υϋ„k»€ ‚ΙŒ£InΓ{αΑπƒ”xόηΏώ…lМ·Εό΅—ˆšoαz²Ž―¨9„βΑ@{™ …0€ΛσŸœ ‹ϋlœ΄TΏxΕbα©{Mh‘jF#‡Έ’{ϊΘ\£5EΓ`©$[H˜RyξLZ~ fUΰ⏾‡†}Žχ₯R„΄bΊτCδeαΰnθY|₯ϋάηΞΆΙ­oή“šqϊ΅ΤΌ„?ψα ΘpJM‚΅¬_₯?)€S—UΪ°y?8"•’~ΥζΟή•Ϊ₯λΠΤϋQJdqτa<Ά‚υ nm‘›Q2 ZwΥ Q€θoeΝyR΅_έϊ’ž€œͺΒos"γ3Mΰ™Οά«[| _uM&γώšsίGvv:~ρίΜΰ%?τ,šσοόιQͺ’£Ιχ°Θq†ΞϊψΕΈ>α ‘ξγΈΓxΉξ,RωŠψ΄νΚΔ™YΑ¬«ΩŽ·t=?ˆ iε%3ετ6†νΘΫ±όβΜΈh‡ΨΚښχΒ”λ™_˜Ύ$€&ϊ’žπyvˆŒς„ΡzͺrՍΦSbϋŸA Ÿε.—7YΫϋ{Πεͺζ+fΠBλO‡ιΈ――Ο‘ͺΠ—LκΘj,#£‚eζη]œ•’hxXQΕxβΚ-$[ΑΔz*s–m˜_žt’Ψ.9©ΕŽiς²χ@2r–Z^Ÿ…gΣDΌ₯d·_rJuŠpόP)’h›σ&νnŽ\ΖΝχ?•O€r¦όZγμΙc(Ν“– 1=Ψ…Φζ~dTU"1*σC·q«ΩΥ°ͺ'ΏzI$ίςΨ-\mNC~^!’ΔlϋΜ†Ϊo‘ρN;/ͺ₯¨{‹χ"3ˊΤδ Gt!Π’ϋΔτF»ξβξ£>1ΡεΗZ‡³?{o$Χqž ~D£ο«ϊΎO4ϊΊq£ € ‚(J(Q—%Λ’Χžρ8fg³;b7vΒαΨπαq¬=φz8ζΚ—,Q"M‘‘ΰl°ΖΥχ}wυ]}ίΝύσέ―κUΥ{―ͺ]@&PύςεωΏ/σύ™οΟ?¬#:•τŒNRΪ8Σ–<|φŠ ‘&μΛ]žuar|ÝχΡΪ=δQ™Ρν”ΦΘ‚Κaτ4ΙB–6™>šΎ€‚δH²π±‰θ”2₯€ΜΚKΈP¨RA'MM4]CcΗΈ’FτηN‘¬€Βežτ£Žξαtέ»΅ιƒ«/¨vπ ΪΚmPύΪΖ{d…6–ΦŸ`‹>ΙΒ1ƒ¬²ΖFI<έΚ1 —K<Ζ!…/Ώ–•œAφ=ζ%%gΆsB΄…ƒ’4A›ΨΨRoi-*<ηK!ΰKήM_vβφ‘ ή™)χ<ꡌŽ O»…—ΊDΜm…/±e¨{ι$½4. 5’՝ŠΪZš—8ΥρΕΥ~·―~ u”.£±δ€0–l.υαSŠ3š‘8*žΗΙ*§@Φlο Τίν#V]#Λ-w?Δπ½‘5_ΨϋγƒΟ;γΉΊrDΣ 5ί{ 7½ΖCΪΰΜσ΅$>fγc#>oRΎˆ :†7GΧΓhnΐΝ;j:%yr_Be^t'eχ%›λύΡbϋ=’γ„76‘Qz΅G΅_pγ‘όœVΗ‡ναŸ25>λ.tŽ»”Hgt’β_Xv+~³ž}y΅Θ”Ύέ-h™Χδ\ξΐ}?S“₯MγqΕή8¦©7ΌΆϋ5Ÿ·ϊk^>>ψC‡Εω ²±ΡeG_BUuΉϊν±4‰ξζ›4hΏΤΜvψ|pσyϋίG»_Ϋlς]ΨΝI h²aysjwx||œ_?±σωχh>ϝ=ΈEg{Έ….—Ο—=MΦVE7Ϋ€‡Ϊ9zθ*Ϊφ’’γΣ”ηHΙ>‡ί’Ÿμζά$cό.υΫFˆΛ,Ež€€17=ŽΈοΰ· Υ£ξYš™ΙΈέςΪLαβDEΙ1ͺ<*)<cύdΕΨ‡‘­eZΜ`:P=Z˜Pΐ–` Eπ†δO3:ήϋλIQX'£1Y‡Ι²¨¨¬ηjΏα:½g΄-&bƒZΩm.~σ’σZλοbrδϋO’RRΨ¬Όπ†‡~-½GχΠΪΤ…rΑ’²₯•ΗIΡΉA_N‘Έ*M kG‡`ΝΩ#IΠ·‡PsDήψαΒΓ›WΥ{z1JG½;RIΥ5#%c ‹­€/wf*›FΖΕ 'ΟόΆ^ΙΉ,[wL‚)yΧ­ς¦| —/γGoιŸ΄λšΧ˜Eη *5E:7tm¦TOžjΌπ’σBξΤ7ΐ‘Ϊsuκš-₯τ]†X^ΰφ ίΥ-ΘUۏ<‹2y2BΆΓ‡FΕ6ŸΘΞ_Ϊ8΄ΒΤxϊ9PYz™N} ƒBQ₯8sLή„A“ŸβΐΗό@H§ύccΎdŠΟ‡šN-Ν»ΕΟω™Ή–πΓΟόΐήχ»{[pu‡Δ5ϊτͺ—pιB~όή=]Nλ|IΝnužUuζ”FΙΩEσΑ{_BTb σ‹QYVD…KσI΅ΥgežΔ|B­ΠŽ―Οω²t*Ξ"šξύF\Δ Ή¨E‘ύ~―6Ύ„ςΜς₯PΡιχ!Qδ“Κ_ “£NgΖϊΰο‡Ώπω’Ÿωξnš/ΩεΊ†m—OΨΝ§T¬σ؝ΪΝ§«ό‘ίp~ƚ 0?+D~QΆΤZ³μ|hͺεΗ{Ρ?4ε½™Ίω’€`ͺŒmHδD‘CVĜBο({˜x€Δ&"‚”δ67η1³j€>΄ €lw‘dmωTήaιXoξΗ^nΙ3b­sXΠ Mνα£%K֜燕Cˏe‰N΅τΈΤWq³ΛŠ•n%,žψΒ³Έxω¬’l)΄όZt ―αLNήΗ·­i•€χ~†žWώ_1QTyŒ¨^SγCν³ΨfΫέNΏζΡμΤ—Ÿκ”Φ«ha’N‚bŠ„IΉρl™¨p57vW‹pΊ W mΟQŠe7+ĝBεaς§ΰμ9ΤΘ‹2„荿†χoλί½ςσΏ‰ΪδUυ‰lΎj’oψΞΟρκ?_‘‚ίΔτχώ3ž?Δ£Θ²pA½GBάύ‡νx–ή/&΅,Ϊ_¬w0&Ĉ ΞD‘t?ω°Yα)š$A{K.<-Y 'Γ9-wp]§Ιά mn©€ώ ZwΜ.!Eg]ΌΎϊ¬,Ω ½ γ}$Χ¬ώ:NHΖ'ΰΥWπYλΧρί»$( =*RtnΡΩσρΏ¨ŠΥ©‘IŠΞFR-9KΦΩ:’UΊ[hΖ/ώβΟΙ@Œx£o ΏοeιYΞ©Ώšn?»|^_ώΞ"”3η—Ύ‚η$ώΐΒFzl’3Έ>Έ2j<˜γRγ«/εcdr ι ΟZrίΕΥ[WnΒ΅3_2ΛηCIgHI4ηgζ`χΟό˘lyυίί”"―blξπ•³ΥΒ}ω‘£( EgνΘa•/!ˆyVJŠό1…χΏJ›ΫΤηpΠΙαΕ±“j@ ŸώΜ|"P΅ώ⏓’s•Έt‡ώ+ψ`Θ/U7^N,Νψδ-Α~?0ΊΜς₯`θτχό»!ξIε/%^Βqi#*Π…{ςz¬q«ψη/|Ύψ™ο>ΒωR(ψ„qπ΅Λ'μζσ¦€ρ4{σA»ωŒhx”aœŸ1τσ³Μκ2dLj-΅8ά‹φρΐ­6?|WίeAΝΊω£UtNΘE†ό0‹ΣˆI? ”έ·μΡζ:Ρ>zÚοώΐΌΫRd 6Ι ή2zίEž£PτqVηυ–mαψHω (²°΄L³2/—„X o―(!ΐ"ΪB6·΄wδίΒ¦GHπ·E8ώ¬Fyxi­›0ΏΗ‰ςγ΅:εηM/z¨φuRž—ˆpδΛGS}-Ÿ[ELR&œEΉ²=ZΉΛΣΓpbnΖM‡ƐbuYj•Ώr=c#ύΈέ-[-ΓΙη4tΞ ΉΉΛ1€vδ€*ΧΥ ήΦΤj”œ'Ρϋ  3+ˆŒK‚Γ™‹β|&TάcΣ3¨ ₯²βω$Ί4x$ K·>ΓF|$)½n"*­’,d‹JiS}M„ΗŠΞΒΗ̘φŒ–d{ώ’³›θl…›„ωΜR[±€˜X|ςE̍΅‘±ŸUL}*ιΦΪAΝgΫηՏΜτλ ή#+„Ϊ⬂E,“ωm‘§'1_OcbαSˆŸ₯NTΘJΛ”dα!:i‘Fpq9H—ωΗ ηΕΰμΜηQ­(Ώ‰aμοβͺΆΟ¨αͺρܴύΨ—]©§¦§ΪΡOοix9Ξ—BΗ—δ–ΟΓ™/~₯²Œš‚]·14ζFD΄ƒδΫE($‹ώΊχΣ_’‚Χ·Ό,μΟ7‘§Ÿζ$9εΨ_$‰±s«ΙzΔ-‰Οw‘―k…‚ΕόtδU’s›LΌt=€œIR‚^ άνσˆΕ­>οΑ$ It’9bSaΌΛO•ΉiiΚΨ756$€<ψ’^Ιy„¬? ΉάˆΝ,ΒΑJqΑΛ±ο,Ξ̏γW7τΟ?5ψέλ‰dΡ™Fέ½IΨ·O Ηf‘Ά ί#Ν³nΏΠŒGΠυ?F€Ÿρ!δόSσΐf½ZKœ y’₯y΅΅™• l““­θ·Ώ0»yΚ†&ζ€ήh{3ϋЏ:]ύšΟ[  ω RΛAŒΆw #ΪY‰ƒϋ „`GΙYœ<:‚kwΊδdΒΥ:ŸW³[Ού}΄›ωυ6>ωΪ †>ω⣓•q Ιq_ ŸμΙϊ_ΟD#Ίη₯ο9"lœ_?ισω°ιͺ»Pθό(₯Η*TΩfGo=}y†«s"-ΙX'Ρ?:HV‘έXڌ@Jj)ͺ²˜TtUε§ΡCŠΞβs’1‹d&4`›χEy&;1±«χ.ϊgΰH?€£y²\΄5₯GΠζ₯΄\€,2x§³­ϊ:7ϊ~άxCdt“¦QŽžY˜’dkF)Ε°UfTλφξΑv.Ξ$E¨₯οΩ++1k Pύ΅U’# ™ΌwSUr’LΰκϋŸ bWω{znΎ‘…U+υ±bήω'‘t£?w―έΕΣ€ˆΙzΖή(yΝΓ(₯υ°`ΫΑ\»ΫιΧ֟EΝa―>g²¬Ik$ξn*ξ^8$YЧ ΧnΏ‡Β§P©fcCάΪΝΗN΄ώΎ+Υ[χ€f ‹r™a°νpK ͺΦ+c9 pππ1%kχoy)9³ΘŽkO*hͺ ΕϋΗ—%+9‹e߸ی£€θΜ$”Žt†„δΪΡ;ς>Kχ9Δkχ“ϋv9(έ/σO ΏΝc#‚š,_59"εŸBσ­7½Κ‘•oAYΩ‰Œ<οz±œ‹ψΑ.ŒΦcκώλψΗ7nRΎrdfIςΫι χΠ)ί«VF†―x΅ϋήΟΠx %πjŸ,@Λ-­J‘†œ?VK₯dΕEߎϊ%g!ΊωM4ή;JuI4jŠΦ{-΄Ÿ&£UΎ+g –²rσΎ„‹’b¦P.)ί Υ¦«™>τO)ͺB·t䰁½ΜlH―f™ΐΞή|ΙŸ§ΪCFgΰ'ηgaΛΟΌ[—¬Ψ¨η{χίϊ•GͺΕ ΄ώ’O<ˆŸ:|‰ε³;ΟΪ€ €Šσ˜Ί²pwϋMάUx{¬πϋσ οzΝ†TT~_9΅bfψΌΥ.Žsš—³σ#>Š ώϋ0Η—‚£ΣωΎ‚9ΩώRς".\’η?4|οWϊ9ƒWϋπω’$V滚Μ;;_ ŸΠοΗk—OΨΝgDŠέω έ|F4θΒ8?Ϋ₯ό,…ΕERS-`ΈλŽΩŒoΘκs«>vΎ€J»ŒsokhnBš²XΏϋeΉ€¦Φ€„}8Ύ"Ϊ―bX3·$Ωυή}y§«ΐρOρ€”ΣΥ…BχΪΌΞϊ²=\Ι„1ΜQ³n‰>νίμ¬RhτΖ΄Q‚ί*^hdbmX~GΝA“–ΰ–Ίpύ'?F—€lΩ<:‹—½,=ͺpwωξukΆ 8kp€`/©17„‘ζΟΰ¦#ο΅υ !ʟ;bδΩογAΡ-9Εd΄»QˆΞ¨©D!ν4άl>ϊΡO€ΰt„$)‰½ςΕ3>•e‘³χίϊkIIX*‹. yxΩy΄F‘aΎ§…κUː}=Ÿ]Uv¦Ηˆ$EηZ!Κέυ4˜Θδ+]_”/Ώ¬“ΈΛF£¬δύΩm,|ω7Ι(ŸΕ£°ς=8‘,Κn}6ΫA¨4ΤLτ됾G~θ·Η'Δϋ§;‘KΗ‚f’P0&~?ΞΘ’£(WK›ε–]YjΗνΎ; oJ§τrάgΞ£c“’ς[ΎPθβά}τ¬gγ`šΘežzΚ[Xœ{ ΅€yΉΈ΅²@£y>7 Β‚>ΦLSΰy9_ -_bΝ–Qs ϋ”ΑΚ…ϋΏz zž”{ψφ%¬©­l“/©ˆΎρΦχπΞ{υβ͝1{ρwpb?¨ΙΞlβσβ†–žξ>!ώΟ8vNa)υmΊ K5eͺEύΞn…ΧŠ‡ζ―>ί‡©©I3IL‹Ώiτž§όj©HM•Ά&13:>‡κ&=fΞ³ κΡΪϋZpFX(Ι9r…€θ,μi3ΐυΰ}ϊI7‰Η‘JŠΞi­Ρ%Tο‘ιφ³=Q/…ωBΑ?ύΤl**6.Y΅NΆLŠΞζΤιιGΘJƒTΝZ/:\ζU(ӟΑai\`%LNͺZ‚ΗL=τ#Nͺ~­>Ζ“=oe8πρAν ώ|ώΗγœξžρYnmœ^ό6ž=R&άVT"ƒ'4Y­ςy»ίU¬ΚP})δο"~½γƒ?Ύ«``ΰ ”/1ΖKL)%>Ž: 0όξΟh{Š’dW{8Ώζσω]έAw1q[[ŸοbκΦΦΡ9t’›ώ ŸφωPΠ’Σμκ« χχητŠΒ= ₯ΰKψβΑ£β·Lt. θΤ€ήa&ΝErΌ,₯bηΒg ‚[γ’ΜtΈξ­βω‚αΙ£’δαVϊ3‡±±fΠd#ΙΙεΘ"yξ.—}/W.ΰΦϋΪ ^ώB„{ή@ψκ‘cμΖ«ψ›ήλ€£΅‚ΥͺxeFgEΥ#ωŽή&$ΙBw²f=ν]7)“hΖΑδ5&,¬z`β(9…£ΗΘπG^’bΘZ0)2š½qNAζ`œ+ΈΠ`ΫΑ\»ΫιΧΑ<—ϊ /Λ~&16…gOY’gΉh}ΰ'd —”qRεw ΑΜ0^c7{>;tΪΔ…”bΝϊ†_KΌ^%OίΖkϊ7:+š^iόΔ FΡΛοBΗ§χό¦–#CςώM»1ε©€=³DάFt‹ Krut@;)vΞ©&?ΆUuŠΦ_Ε5€žG‰`½’ Σ—°¦4«^fΉZ’ύ.•χ t©;GHΦZ#π4'ρ:P@†} RΕυ3G1ρlάΔXNd±“Ϋ5(Θ` c‰™KΰμΧρoΚ.c―ηJψ^Ή_“ΕΰxβΗΆ]p’˜έ…αο6 Yk EgKνg›X%c°|Y~©VŸY©³ΝxϋΖ[UjΒ“yί<~NΨ€ ”²:‰!2Ζ³'.9 R»QšΛ•Σx+ΐ8mwΎdŠΟ‡Ξ€hq~FJεαΛΟΌΪwzύ^JΜχ0ΨλBωAΆ‰˜Ψ ΊNxe΅`ožEσ1Α₯ατοώο$Ό‹ξΞŒτa`$0MζωK0σ «Hˆι³ .γ:αUp΄&ύώ=IJsq#‹qcš Ψ»ΰΏΜπ₯ΰι4¦ή0”σ—α/©§πέοM™—Ί[ήŏίυž3hΫˆΟ—΄hHώ°˜/Ο' žά+Θ.Ÿ°›Ο‹ °;΄›Οˆ]ηg»–Ÿ%U”!OZ^ZοG³‘Ν^]cΝΒ4&υκA¨Ξ—?=A«‚²r:R2‰˜v/Ύt†N€ qMΗ―ρήυ&’!)i˜4;2–Κ‹eΚΜΜΥψ‰W,XΦΦ^Fc.ΌΡQ#™dαΕkΆ)>_”:ΎψzΰΠΌG΄HcΆύ4„Xδ¬VΖ‡ΰω§\«ύk’fsΙάꜴ‘ΛLyΕ(wŠΚ,υΰ$‚a&₯IL>‰cNšΚŽ6Π4+JAŽcr™V||σy+Μuχΐγƒw9tϊ mξΡΊž·QDΒaσfj.hJ/ŒΪ4ŠίŸgiνΞηƒύ>ΪΝό:ΤγƒΎ«΄˜—'p>’’Ω Ϋ —{ŒNXΐκΦ$ΔΣ‰Ct*’μŠ³btζšιqBΞηuεόšσk›rΫσy―NΘΜ πωη[f’ρ4ہ@Ϊ9ΙcίbΜΉq§ϋŠΟ£•Ε4»ο)9ΉΡ·ρ ³uYlŠG\4“cΉ66©9z;ήS•œ₯ΰ‘iRĐΥ”ZŸχZ^§eΥ:πC)P ͺΡ>Rˆˆ“ε»nΈ΅ς}€šΫ±‘ΝέξρͺΦϋ\˜6¦Ρ@TΤΤ½ς‡ΈX·?p›‘™¬ΧΪnσνnΉ_FΒo λυ₯α©Θ₯y€ν»ˆ φͺ‘kkΎ‚Φ₯iC‘†‘ΜhT‘ΪΝ' λtŠω,‰Ω0•?*X+λqΨ#―ΈΖ‹1OΕcD„βύsOŒωUЎŽΥ0M’£γn;\ηͺ…΅›‚}•€βuSΘ_rh?m%‹”‘Ή1\€Ηκ””m·)~§yS ΄Ή‚Φ,r3Δ1/?_•·"§ΕΤ9Ηςs₯‘ρ&œ­&Γ·ςš+1 Ξ]Ι7ς‹`0ˆ)·3Ι±θμΎ¬ΆŸ\_0W»|0=οERr>‘œ†°4}W?}ΫΟxi…ΚZΌ¬Qrž Σž?j|OQ ΨΌP&A–ΗΑΎϋx¨YηΦΥd{Ύd†Ο‡NΡ>n8?ΣvόLG=έΜΞ8i ©Ω$ki¬TμY΄φήξ<«ΎαŽzI8UƒρΠς£θ'•ΌΰBλύ›ψυW،ܧ3Η_‚›Oψ¬άWDζ9<π°»Πκ±9#ʞΏΥqŒϋœΦωύ`†/…„N_ „sώ’e{ψΛ!|ύw~ˆR¦‡Αάΰ Όωί&ϊ}ώεσ%#hΒcΎ$Ÿ0zpΟ0»|Βn>Οϊιήξ|Πn>Όƒ8?Σa²{ψYJ‹ΛΪFΊMκ„-­ψΥχ’?»•‚wΞ“†„hYΑ™Υ:…ΦΎkh_XI˜νΖΒΦ%efΙ퍈ΓΓθoJΚΣ8.+“rΗέ‘‡υB!»Ηό²v²j—…5†ψQžφ ΞD€b˜4ψbΙΒRΉ’4NΖ"(UΜϊ’pΈ£ΐ,§κάMΏΐ£wiŸαΦ#Iιw}ήο$WΝiΦ—I–5dΑ$&ΊΌ2N2s•f—:ΠΫdNU'ήyϋ+i‡xf&β£ι•‘c™x5"&]QψU‰ρ€³O’|γ#D§EgA THGΗΔΏόοαhmΕΠΐ0f¦F115λU–Q³HU*I —‡[½¬Bε±/·m ™`Β#ηΐ8 ρ£&&,‰zδφyk­|c)ΒJΏΕ{dž8ϋ| qΆθ¨*€ήpcœ„Ω{’‘#ρδ€Γ΄ˆ4‡ϊ1Ωj'ρ¬(IMoφΜB$”<#}θρrC‘ΥR†‹—yϊ8¦—΄|=Ω¦ηΊλ Δ)˜ε·Tb+ˈqΗ)βI7•ϊΜ#‘KIJœ—γ ~-Ηκ³›Ω&Όύ£7mξφ|ί9_ςΒW 0Ο—’EύBthφΖTŽΥ^CΒ—f瘌IοΘωš²L*Ս£ΏΏ‹ΩΔ,ΩΕHΡ™) “K<‚ά"ι}‘±fΠ—°˜ΪΦ_3xΣ £\§’Σ&CΘ £ΙρB‰9…΄)  ξ΄lΘ:άσS.²­CλXΡκœΛyδ.η=Gz+Ιt4IM{9Ώζόš:‹m9ƒ₯ω v>oΊ‡ς„ΆΆμͺςh α^8π,iΘ³ϋ™αΫΈiNΌi£έ‘ee]ϋ-.Ρ΄!ξΥξV»ΠF')yΊ¨λŠkχΘXDvΖχPG₯Εeΐ™BλΠκGŒΎŠXB©šO“΅ΙΗΓ­cΝ‡υ‰‡Ξϊ–NΙyq€]]p/P%{HςW„sgˆυEή@:Β”’v7μΧͺ&Ϊ°Ύ”qΓΐ*•WŒ ΦοɍτΏξ7T€:•Σ‘ΖfGE«λvσ‰ΕϋύkH§ί~"Ι ωݏ?@‚ιξΝε>˜ΤM6˜¬ Η*šαΖIό‡Ϊ6ΦXCZp#·Ιzθ pΣZOζ>쫦-cΝ(+ί'2Ύ>”-Tγ™ΤqμY²$-…ŽάΐνΫΎδL}τ:2’/#“$œΥΘΙ׊ΕάωΘ­€uOΩx­/O ή£¨rΝ΄~ό―Y"ΆβIˆtΟ,=Oχ=ϊΤrϋωxžν..}_ͺ¨Qͺ™!Eδ·HyN ΞSQuD9±b‰N¬ψ₯GΩmνβ{9ͺ„CHΝQ€‡F›₯‚˜/™ΰσ‘£Σ$^œŸωjΧσ3=ωn2φ7¦ξbb5<.ΨO­`ζYνoβ―ώv_=w†xpΎήp \yϊk(ΘJΒ«ύ/Αιlγ|Β^Ϊ(ZšΪ‹nO ʏ|ΥςΰπTΌ`@KˆŒ.Η‘cίΑΑ­)44^U6ZΘY=―ζΏΜρ₯ν’Σ“nεžσ COΠό₯_ώίWN²ΐx#~ό_^σ»9ΡΑηK†­p™/yRožOxζ4Ύ·Λ'²CΔνΞνζ3FΑ ”σ3P4AˆŸΕW H€g:ΠΣ«[a¨χ.―~cΘσ%yΥPŸk'ξb§©}t¬AUr–κŸ\"I’€θΌ$…΄Ž„ZΞ•,¬τz(w$AΡܘa'¨.\†§ΪQ˜ξTRΥH—t­Τ H!‰nΖ—Ζ[Ϊ°K§Ά@Ιοž2 USnˆW vŽR¨7³όZωμwQW#c’ΤnΰQ¬Χjιάλ­fUΤΪ‚Šύg₯ ΅…•OΣOJ±4‰^:ϊͺαz½Ϊ3QUY«ΩΧt[ρ‡Κ£ZU›„ΫHΡ™* Ί}<ˆ΅ήqkͺ_‡π=2Eͺm>QŒS%g·ϋ>ξέUΟr3Ογxf@‚3£…Σ½θ7)σλ΅%$e-όQΚώ‘zt2FšνςB–g0ν%[]D―λ:dΥiVIqφ%ΤJ<>3Ήι€θ<Ι"μΊΘHXV·Œ ΖϊΌφ}AΏη|‰Z>Ёωι9̘›λ |i~fΪ―Β{T΄Ύw wφaκx™ Xο,(&›εMB~gY‘2O‘2τ°έώμ3ŸI>ίο‚›ήΝDZ¨ΚL­Lefi„e™ΩΘ¦΅7-€IuMO0Α~’Θ:–κʐj˜§OfžαfξCσYm?3”Jcj|@(ψg JΕ{l°[5ωbΕΥF9ΉwΜ£}’Aœ;¨Ž"R—_­AW[q»χ–žΏΫΗTξ+šzdΒrήΚΗ}#έ™<³Ζ>tY€”d11$ύ³ž9-έ۝Ο}Dc©οԝζΧ‘«Οί5h-+ω–IΙΩΘΝΜάBwbͺ“ΨfΨXΔμeW3_ΪF₯QηΧz`8ΏΦαHΞ`u>(Οηu•πΣlm}n:-O:²‹. &U–ΰ~ϋΠΎ+Kr 5Ž-Μ±c€½š‘1ζ!¦&ΖJZ›Ϊΐ€ώulb6r$“raŒψ²()§ΔΧ­ 3>•Ό|dδ‘’ -z:νhY/Δ3|¨Ύγ•ͺ%ηϊΖk―_“³ŠΧΤσ¨$EgC/ίΡB‡"‘ΨΛΟr5Κ5$νn’_S…YΥ§PΰP7’cu ·™"§Uη£>yΓ€ΖΠοδ§ψuS£TΉ©ςΊΘ"Y'ξΓνζ HΆ:ζσ•m^ΰ@IDAT ΧίςξΗΎR‡$|šN?a’΅LϊΕΩ°(ΠΌζžeνν8^Μ6€‘¨ςYAS,fnΌ™,{‹ήΠύΝΐ‰“‡•βάΎi¨μ'&˜ΐδΨ$GΌ"! ωg ƒ)‘O·γNoŽ%™,ў%hΌΡΖ.Œ τ`E{±ηΔΰ'o£>(νu…\2’α΅β#ι6β»ΑV°κ»xNcm¨Wx£©ήT±ζψρ€xe… CcΝΚ .:aˆ}oŠs‘½τύhδ‚š/δσ‘£Σˆvγ0Ξόq‘Cw;?“ι―:-­Βzͺθ/Ξ²sDςι7₯`Ž‘₯‚žg΅_Γ›τ£&(©¦υό}(―9†’LqŒˆ/;‰§]ΓŸ›U(k ’ω„9ώR€Œd͚mπ*χ󩐓EsαΥ< τ BΌΉοs|i;ιτυ0œΏψBF †Ώΰβού6ηKs«…fόλϋ―&NΛΰσ%m\μvΟ—Œ©3Η'Ά—Ÿ…†ΏΨΪΝgŒ§―PΞΟ|!#†?~VZZ€5ΠΫi0ΏW’užψδdA₯OJ+O|I‘yΔo- ιΏθ61ΐΞJχp{•sž<"ΒΰΆΤQ¦*ύν‰F~ήy+ΐUΊ—vœGΙΦ,Ϊ‡ξ`&\ΦI‘šδM΅Y•Ί#d±1…ώιμI¨@~³ΐ8™Eq m›Ξ0h$ΊgΖο4,}^§δΌ<ή‹‘AΜ/Ρμ{5TLŽ©«Q4σ΄΅:`ς$g5ΣΠΗxγœ9F;—σ΄T¬qtbρ‘ p¦ΕγoΎoΈ|_~„,ŒJyΖο’­#8…Mνή ¬FnΛGΈQΪ€aA·Cΐ‚N°γο‘M>‘KΗnΚέc…,sή"%gν:Μ0ν$LO€cί„Ž—‰Τ„ τϐR- SX»Fε PχœœΊŽ»’uΟάψ4asziJoνΝΒ½£χ–x y¬Ό¨€P½“Z‚|δσLΦΔΫ?C¬Βk}¦”"φ`kuΔ­J E<ηK„"iε F#mjŸ/m―Y«uͺα§‘–K‚ΥΤBδύΙΘ+$ΰ1)/Y+Ϊ_jσ|~ΣS‹4ξ})©tμd@žΕςΘ(ΜĜ"ΰ‘£vΗΊ(*N.P)θmΌ†‰ί–O˜a₯ΉQژφˆεφΫ)z·‰Z"?R³ΑŽfσ+fΠβq «BQVžs·‘u!p­™ι§qΚΉOI8Gj>υk„H›γ˜R°UΒήΚΗ‡€½ήόψ /j~uΕπ»(šN―Q½³AΉ`ζσA~™¦{§ωuˆκ3Νw=€°›Ο£αvmΣβΚ¨9ŒσkΞ―±σσyΉϋρ«5ΈEgkx…&u9Ž–U+E υ|ζϋΈv%Ux{’rΟh»±D›y½}Ώz«π ΜY¦$p{―;(‘Z³²φ2mς™τσ©›―Ωπ?3?ΠΪ«Ζqμ[ψζΕΓΨ+(“rΙζήώΛΏχRtΡ’ŒuUΥΎsdfQQΎ•>΅:ΒΑBͺGΪΤpΤοΜ|IS‘§ΧŸ0ϋύg—OΨΝ'?Œέω έ|r½atεόΜ»±ˆŸεgJ›·ηzΡΧfR6ΗJJˆƒ2νWJVηK:Y†ΏΣž ΪekPgl€τΠq»;(ΕΪQJЁω’b έιItœ€·Κ.«½Έ?@ΏHeΏuΜ³±΅x!SR›]Α“NΌΠiτP![£γBX¨‘b²ΎόςbΩbΰzπK\ωΘCa-ρŠIΡYž’ΘΉU%_ζœερκ-|ΧΗc¨ŸΠH†³0)Y( ³Γr$‹-±ω5¨.ΏΟΌ”˜“Qy R)¬³υΎ‘‚’ΐ‡gΛτ9„N€d’BœkΘ«$ν‘z₯PΥg·Τ$­('Υ)–±ΌRΩέ{δ(<€ΜD ³X›CGS<τγLσ‰x$i¬’OΜυι”œΕάXZ'MγX‘WDΘ_Γ[Ζ͈±²πwF»%ΒHΟ‘όΛ€θ<μ‡`mΤ&6©μΠΉ!<ΌαέCWΎgIœ/…œ/ΝOc‘}θ1 1dιΧς€χ‘αK«Μb ΏΥΉlΓ‹ΩEΘΪerς%a+ ή):ΔΞ ŸŸ% –γ$h§±,.Y5₯Ha T³½h‰@%οθΘ©@V€΄ΐ@œ)ή5¬­ΡΌAPquaμΑM΄Ξ‡ψ1tΕ…ψ=•mν&Πxd­4)uˆψ§­ρA&8:Iέ8΅2…€¦eΚρ#.t“•@Πω<§ΛYZ³šͺΗΝΡΆ@ΩhΌί||@ΈΟ[ωψΰ]²2>θ‹J€Υ• ς\šX&‹Xl‘–-°¬Π±šΑΈ η󢿏,P½Σό:υΩε»vσ£Δ(Ω Ξ<ζ—-« δόšσ띟ΟvE蒐'¨:pΕ²εΥ₯fάn 5{β”Ίγdέ15‰?YΠ]$Ρ‡`Ω!'$O  @L;nχ ϊ΅Ηsnn²9Έ¦Ώ,mΡv OD}3΄αͺH:ύ"΄ώ„ήΩUγK•'”χad¬]}lε ‚N™€°Έv ·³5™L98όμ‹hΏυ7ή[ RαxΙ:Yθωx(ή?[πL_COϋEδξ§~–S‡eρ>qŽξ–›¦ŠœΣ¬%mmΜϋΝsެ9Λ*ͺŸT€vχ,*±€~ι9μΫ”–’ϊ:1Φ‡Ύ…s(Jp ΚΟ,|bd”]7>Bλ‡ΔτΥgžΗCRt6TΙΝ9„Γ9λΈ+΅ƒœ_έTo΅ιj(FFΖ¨>‘–Ÿ8‹ͺχšUώ™sΥoΥd ™ΧίΜσΑ<{ςeΤ°£ƒ…½3ψμΑίαγ»œ9~FΖs–IŽΝzI:ςœΥh˜ΡΟuΚφŸ@™»Ίu ΌoΜυλΠ½GΉ•ΟαΔ> XjΑ):@¨kšO$">FRh€'Ÿ[šPΛP|N$LjJΞτce]βJτ.(―K»F›)ϊ‰ϋ„E%‘˜5ΖgI eΖ‘υθ¬)αΖ ρy3™vSΞ—Ά“/!…™nΣσP£ ΎdTn 0WGΖOU λi™N:ξκh€2.ΈhΣ‘Ρ[¨LΏρωόΨ£€mΪq’°r―ΐχ–ηΘZRgŒ θœ–_…ˆu6Π?储—=ŽYφ2:γ…|Εyh΅0ž…Yϊ³σο‘–<+γ‘6ŸΉρr„ˆΪ$‚ΣcΘ’³δŸ[‘#•΅bθΟEyf©3>Ρ‚~uš „«žxμΛ{ΥšσnύOpwδ¦Σγ˜Zγξχν|ΏΆ7_ Οy+ ދツδ$$ΣqBχ1š‰”4yαbσξΐc±L{ύΣ£αΦβχεΩ΅ό:¨ρΑ.ί΅›Ο¨-Δ°Ψδš1μϋΑwΪέΓω5ŸΟχνΞTmy <Γ€θp&1ε4j ™ͺ—θΪΊ?9ΥZ9ΗnΌf’¬ϊ (>‰‘αn ΉG0³D+Α‘t"QF9jrΩ·¬δΘlƒV6;3ˆQ‹ ›yΙιsGΏ‰ˆŽzτ,Σ·nΙiœΘS±κοh•7“‹PWώ4P~ύTίθά)T-aco"rΣJQ–W¦(u’Ϊ4τ| Χ.\σ .’ŠŒP°ΏE²|GŠώ(φΑ€΅y²ŠΫ­WΜR ς^1XQRοYYUlŠί ?ψ^4š;ι™#IΑzS­ΧΡ#-Έ»o5’υω³¨d2έ„jΌςŸώόκ4ξ`έ³_ΑΕΣ’β&#ͺωαmc™ͺ…ϊΒHŠrϊ+€΅Ψ_γανq€££ΠΟ₯²l9 ŸœBuf₯,Β‹ΏσH!+΅ΛdξbοήMΪΌ}-:%jJf‘¬·{ύ:Π³’‹· ¦Ύy5τx”•ΎŒ±ΥO1Y„£•τnΚΚ„τώ5ΆάΧTm'_0tjͺούnα0½/Κ<†oΟ‰ΈρΡGhjν£E‰\—Dυ…³p΄ό«’θ’χΟ&6--x†):kέ )‹λΡΪPΙΟσ(Ως$&τ/*΅HI“Uυ"^r’(,‚ώΉΡςήΟΠ!+υ”| •UR= ΠHΚΐέt?&h°+P–‰]θσ E έσ€θά©Χsν<8vŒΞ)ˆ6ςϋOώυΧ£­©«$»JΛ -Ι°Pι‘ύp₯τYRtξ‘sηT£6G6eΎŽu:eU^ΎHOΛAmυqΪ8CuΘ­/‘₯™¬_kDχΩc(el¨ΎWώθpύΖg˜ŽΘΗ±σ‹ΩB†νψc…οjλ7ΕxφιΙ RΖhZξw#.σ2^ΘŽΠ–†=OΏωχ(ή”3δg€ΈLλ‰’ρ :s°δE|a+¨mΧχ’¬²ΰŽjΖχ±ϋκ(ΉRσ%λ|>tΚτξς+ηg!δgm]zξ;ψq—_Ώs©'Ώ… ί8§Θ%X>|Ιώ<«gΎύ¨Nu‘^BϊzΪιέ¦Σ2Qqψ NŸ•ηƒ.Ϊx⃏›β/μΑμΜ'XΎΞΏψΙ[‡²,?'lSRωύ ”cƒ/)υk=ώθΤ¦ γΜ_j_ώC<Ο6@1%g67θGζ…ΰ«²q9Ή"φbu€W5Θ!Ÿ/©X„·σ₯Pπ _ΟJ~ζ«؝ΪΝηΠέΗω΅‹~6|›βWΡΧlRg@ΣΜYUOγDί0šξ΅#ΗcΎdυυΠ€W»°›ŒTϊ6œΧ,ŠεΡX…ς$‰nGH'|œM}ΏπAn•ם­qΜ«”]πθϊ΅΅ωRψΜ[ωψΰ―Γ[τe ¨Ί]υmjpω!ΘcΪ4γΞj¬‡/0ŸW3XλŸ,_0ίG,εΧΆΗ›|—μv[ηΧρΘMΝΗϊ|Ζ5²†+s±‰q<ΏRΌ‘ΏΣSν6Ζ(Iw•‡σk>ŸίU2Œˆωόσ­0’6άIuΰTΩ1αφ$K“ŸβΦ@8ΙΙ}ΰOŠΒβχ¨yΉG…ŸaΚ…Όίψ՚¬h@Ψ€_U{TΜ’\‰gŽΣΟ£€‰απV§hΗ3?1MŠu κ+τ)ž%9ίΓ_  J5Ξ™Y‰ς,ω ZΑΌ©•€-†-OωVtφΘΆν·d­΅να9δeζ‡Ξ‘ΰZkGμ4zeΓf|όώΗ(ψΖYQΡ&η^ό!ύΤδ‚o±λ=|BΦQ …ϊκo5 †¬œ ”₯Vγά·ΩΟ°Τ€Χo|‚ƒU_₯ζ™Υ¨»T­δι S4[F|(β(©|{,·{PύΪ7>c‚ͺ°hEy…8Ÿ‹sΤΰ…S5ϊͺ–Ίπ~½χϋg9_PtκIΪυwΣΧqε§ωψ)­ #u?NΏΜ~zΚέΊ[›ο_ŒΖΊ½<υFο¨!zί؍VtΏ\u»;Πέυcϊdκ]IͺOΤ)ςD5‚Vh¬RW―h½ιΆͺθ\wκˆΧΧXolaY[˜ΰ§u†Ρ>:­HΈΓψϊ%μώή~‚6Y―ο™Σ;πζΏώiΏϋ5QΙ8‘ u—ΩO“Δ‡·ξ…ίΔΕƒςxα‘(4ΎςΓΣj )IΏΦό_Ικtήy»ίφβCΟΌ¬ς!5ƒG{… ύ`οjι0ε'γ6YK…q™50^₯}JσΝζ}ΠΥ€ύΉΘβγQ^φEϊy'^šό ΧjΓ„$φζK–ω<՝ήΟ³kC8?“š&όΜλ}ODεΉο ?]ϋO?ΐ§―_ΧΩαKΑΟ³œ¨<Α~t΄Θ7‹νwp]Ω!"‡Z½Ϊ‡X­'@ϊΈT(«'³΄N­1Θμχ[‹Ωwœ:<αξŒ~ŒωKB’΄a*A‚ΎψŽjφπjΔ5Œ+š>_ΑΠΝ_½ψ§0Ι«KοMBk+ίΕFψ žOψ.ΫrŒ]>α/Ÿέω έ|–zdΰόLh_όŒι—Lτ0μ)7#ι’ι·SΖ ·κŒπ«=vJNEοτƒm=M­ΘΘGŠS4YHŠe‘™8\π,φŒ΅ΐ΅…‚τƒ¨$α‡μ\cm₯:94L―‘™Hˆ“i_τ>>ά&.±Ι'ρ<-2Ž»[1Ά8‰₯uΔĐ9ο”j€+Š‹n΄Ž~J{δLΈ@tz‘Yί–£ ‚δ([Χ‰»mκnχqΎ$Ώο‘γK=χb?ρq±λ.~?χο §” :d »  %'!±ηš’θΎd³³υ‘`ύp‘Δε2hΓΚΰ|γy-Γ‘s•d)j‹ώmbo²ΊΊšVr uiλΔ•ΨΏyτήώΓς m‡ΟΟ»0γ’CȘ€ψ}‚oŒ,lδ(t/b†™H‘œλξmtV …s  ρφ␀‡ θοΔ:(μpR;”"o1ΙςόBGŸjy>­%iςό6cR ³Gr&J +€hρ³ssuύύγΨρχH~Pv΅2iσ A”ΓΤΦγΛοk| τι)΄h#YΫƒΔΈ4₯”Ό€*¬Gm₯±=X_ιGΣ€‡s,Y΄Q¬Έύ 7,‰Ζγ@ρKdΙS*žšuenΡ‰Oγp2i2kܞ§Ά0ν~€ήyΝγ°γύΪζ|)œζ­||αψ y?™7ψ‹xŽΈuCύ$V</œP6PŽw΅ι65ΒŸ·?ŸβϋH~FζlD©wš_Ϋ©Ο.ί΅›ΟθλlT“œaK“X ω<"h“3ΜRζΘ‘QN|iνVοΓΘΗω5ŸΟ‡QwέU€nm)“]EΧcILb5m@’Ώ9'ΡΤu•¬ͺ=nes΄A2Eώ|τ|€UΊFšΠΠrΓπ›drθmΌŽS­κγ6 LήιS}wγϋ[ΰε—P]YˆΔ¨4Δkπ^ќπΗ*»υχxuu—/~Eς¦7 έυ?Η;―_14Π!'3]_Οόδ"pω‹T“=hέBκ?n‡σμK("z76goJ–φ·ρW»†o\x•Εκš‹χ|FfΎl΄{ύšΡ§8ΟΗ6κ/AΦ7ΨύΤ'όu+©rύγwp«αmMb¬ε|A)Σ.Χ±[„Ώ #_½x5eϊ>)<ΓΒ zϋτ‚C[οŸ{U8ΑR(Σ³ΏH2ΧΩX3L@©n’ϋή²nœ/δϊΠ}χžδ7Έ¬¬ λ=ς¨dB "Kτι Έœ‹¨QΚoΗύ·<T₯t—al’Hˆξλ$₯bΡυ΄,ςQ~<8‚‘i)BΎ΄_Α«:ŠΏόŽ,’CuWχHz[šTkΞ»Ί8CU9š.ƒηΝά2­-‰Ξ}ϋ_π£ε9\ϊΒ³(ΟQσOφΦ£΅o/Ι‚ ›HΖ‡IΎ-»΄`šοΚυΥŒ ω΄YG2ηιnί‰=»Ÿ?cΉ—ο㍏η+κP•iπξΠά ­ΏΏξTΗw₯R[σ%|>X:‚ΓΓΓωk§π3²&*ΫΌs=όγdΚs|pΏxοŸ_Υ[s¦Ϊmρ%Ϋσ¬Œw5#«ŒtK<ηgB—Bι|πϊ۝ΡsόEΜiy>aT‘Yώb”—ΒcEη™…QέwGpίTΈ-ΎdL¨?:sμώΠΗ•Ώ,-²€ΆΝ ­O*ŽΟ—ΒrΎ4ŸP:yΆ‘Ÿi«ρτϋη/vηƒvσyRχœŸ1Ω‹/~6ЁΖμ)* ܘ$£bίW‰τsΆa.*Ϋ+<_zκwΓсk‘w7ίΗo‘ω…$\“”sύ%t»οΰΓ‘‡ώ’WyρwPΗ¬Ο6αν½iΙ ­ŠγjρBΙaΡ2Βr'ήοΎα₯xl—ΜŒσ8•Uΰ‡€yτ Œ3~h’LΠ©IŒš―βKΟPƒΆ Ovτπ‹_xZθάjeήΎωΞχπϊ»υϊRΘ|ωβj7ΕΏα―OMšauΈLιU±„gυή³ΌΒΊoβόρr5Ÿ>_Ξ~€θμ#±Όάχ1~ό ϊΪΧ8₯SΨHγλψՍ6M¬9oυ₯ίΓ‰}κž{mώ›€kεiGΕ%\zᘒ‘M+ϋ—?Ε»oΎοSψmΊΎ ΪA¦EΉζΒΛ/ŸwΦ+’ΗσYhΠύΪβ{€mG*?ο‘>ΘbœΪlΐM+ ΝΈΥΧ ³Δœžώ,Ξ8εEp3έί΅Aάι}ƒλbh:ρ€3~y’œΫ"o’³ν’+ηK$ƒ 1_rT\ΔR²b_nž_η¦m‹/hάψ@γΖ\ψΏŠ|…`°αΗx―ΎK’ρ’Βς+ί8οχΩΔΤnάώ郇LžONΛ¬πωςs?Δι’2υ4ΝuώQœλ8~ /žͺ §e‚λ―ύHΏ˜›W‡—^Ύ_€―ΌϊsEΡΉςΏGέΎΐΛBΕ”χmΚΛf&Άή£΄`z<’Πb+γƒUώ©©FρjΫ_τ3>μ+ψ:ͺ“ό½=b±+swρ.σ¨ΊxT\Β~)οΚΒC|Τw‡T|ΈθrœέwJ8(ΑG ]π¨λ]ܚ”:4ΕΨΗt%ξώ[ύZ~¬@ύ[N'_ƒ˜/…ΣΌ•¬ΑC0>hϊ—ά… ―³Έφ£ŸθmρyΫύΣώχ‘ό<»™_[μς]»ωbβ|ιQeΑGΖΤλΊ2€;ƒΧ0(―ς{%Ψύœ_?ισys}41^άέ5ΏhΈΫ\!Qͺιi7ΦΧ%ΐcτ\Ϋύ(e%EB---Ϋ]UHΛ―ϋήΖE¦€6}―ύιί(Šf‘¨$)±™dυ*6" ΄›[kX #½S&‹w 8·Ι‘l‹ν&ΦVf1δκπ­ [@ΖR…¨=β΅υiŒwθLVώΨ&+9φ ΅ Y¨t±—Iιε:zFΆηq…Ίβ˜5œ ,ύαώ½ζν©hK Ύ_[#6Ψϊ’ΘXNIJ"Ÿ’·hssσƒθRNυM‹Υ|Αι›’έγ(9„}y™’e*†­{ -Ν~ ήΙχΟ/!!Š<όΝ_>Q$”6\#Όκa­4DΥψ.&§‡‹sΝXώζ)ωNcjδΆ‰§9r μΏ‘ο€1RΐΞ:ϋoρo/θkύεŸγ§ΧŸΗω;t1I)εΘKL₯±Z,sme‚Ζχnίγ{θͺΆTRΈΠiι‘|$ζό %?+¨>…,2ΓXΣκά0ξnΣόΗξ<+«€Ξ z£c7—Ζ1pϋžo‹>ϊ™`«σ 3e†4 ~)œF…qώZώb„qΐ0>_ ‘ίœOψ…ηIŠδόLΟΟ>ψρŸα£ΟΪQdFΡΩ £Μ―G"91NgnΎ$šΤ3Θ°Aσ³·πΦp0»©^”Έ18ώwΖ»w‚”«#12NTr¦ηV§Ό”œ!vpΩ"! Ϋ Γ πpΣstόΤΨ- [Xx4C§Άšu $ΣF‡ΜΏΨρ>¬.βdέ1*ΦLhΉψ>zG"Pqό€ |;=1ι]ηϊυ6Ρmn™ ΟUχΉgNŸ'kΕ- ΰacŽœENΒλΛλ§#έm}ΗOΦz(³M’“ς%9&(­­Κ±ςη13ΨEͺ epxΦ'TοFƒF4~€*φ ΑiΗ±)λ 6”œYΦζwNΖKΞ ΄8‡¬”8KΟ%»΅u½…wΫ»ψΕϊΞΤ6»:Ό‡O?ͺ7Άζ,jΊΎ ΪA¦_ΉέΔo¬γΉGiD―ΤνωŒ,O°ύΪκ{€Z»“(φσΩαXοΕΝN 6λŠ“ Tψ7¦Θͺu ξNxσέΙɏΠL΄Υ«Ο2nβ1-·0.ΠuΟΦ"&ιHnΆ ΜΨ-cέƒξ‰ŒZΰMΖe=ΪPΞ—BΟ—άmWρΊ{’xΜ μΛΧΏ«Bk/Ή02’νq4ΨαK‹kΒΨ)”ihŒI₯ξ΅Ή‘ησj―kΒp{ς><ŒαNJΞ,)0ΕQ_o†Zξ"θpΡΑηΗ…ρPTtP6tΉϊF0EŠΞ'pcr^­Yπ ΥγΧ&qβτ3¨ή'ζχHωρŒτκY'λ%μH.Snaς#ΪzB~ΦΖ?ωΉ¬ŒVω§\‡ξκΩ?}ŽZΈρšTλŠ’oά+ΜJΖE!KQv£—¬7ωTr²1ΛγfΣ‹ͺ’3Λek3[έ.Ig«_Λ΄σy«Œ„ξΚΗGΖκ_μΫ‘Ή©ΞۘŽ)ςoηιϋͺαΧΏΠ)9³τΆψΌνωΌΝο#F¨δv/Ώ¬vωΝ|KX’Ž’d$d`ψ·ΓΝηΫ]Ν†r Ή ΒαΚωυ“>Ÿ‡^Ίϋhδw_›„+Esσ€΄δω=jιaθΫeΨΐ²£―2–ΠK?ξό#Πs››ύ' YμNΦ2’|ΏPGt°υΝΝ4γž‡ˆΐ£ Γ[«ω‚₯Ӑˆ]θξΉ‡‹/ΣγυNœB­€δL¦!πΰΪυo±‘fά₯ίφΊ dεLΠIz$£&ω«κ2pδΰ~εv…ΈΙ)ζf:Πbƒ/™*<„‰Β…ΞP<2ηg‘εgΝ7CΊyΠWΫSΖzš1fqόςEC p«σ‰@ε…<ž?„RΟ9 -ρΔΧΤ=Ÿ/™‚Ιg"Ξ'|Bσ€Ep~¦ηgƒΝνAu©αNLQ }ϊοΉGjΡY}’xd&;ΑŽ€Ϋ"ΕR› \‘ζΖ§XΘσc/˜ςƒΛk’ƒ½OνΑΦζζH!wFΦ" Ž˜]—;>-Β‘kγp“|ΐAV₯_–¬Jχ~ςψπn_Θhv–Χ %†νΓή€cb¦ΡΣm²μΔ"”f ’46Χ–13ά„ ² ‡³©Ž$썊wJ’2xS‚φved­σΙZηψƒ·πΞGΌmcˆ€M€‹q›mpΆΫahΩ=EZε"ε±±ΉHI$^!ήo¬»‰οΊςέXΪ‘ζŒKςmmΡqK+γ]2κ™B‘ȌI@τήH/±Π :.Τ=;φ κ.œ/‰p„’/Ε;ː›™"Z>a}n~ύύϊγu@7;Ι—<λގϋPβi‹Ύ4Λ²Ε±Œ&΄ d³S]˜Ψ&^Ώ“ο‘-²H’WςζΧ;]ŸΧˆvΒO–΄"±‡ΎΆ>§M[«s_2yZT€ςw[4ηΧb‹„’Ώ<.όš[tΦΏ­γγ“ψόσm9$P_ΡcvΗ-:?f Κ‡#ΐΰH$ε:07μ[FξρΑ4tAυq$ΠBήΖς:Ϊ΅JΐΑ”Ί»ςΥζΥ恖zτwu`xl ±y¨©;‡š2ΙHΡx=^ϋ³WwD±qw‘Γ© w’ίJϋ< όΜ <-G X½ŸαoŸ'Ώπω’•ΑΣξv?’?ό΅ό¬­΅O(ΚEηΎ>1ž=€p©qζLΎi2lwγ³ήD·§p*Υ*.€¨Έΰ[˜NOξ›Φd8fα&εͺΕ)­5Οd”—+ΩΦΦ—(<Rή΅SΠ|Ίšϊ,ηt»ϊΰ6Uαμ“”œAv6ξ¬’3{0ΫΨXFegλ²Aή#Κb•Oˆd./cΠΏ©NΓηYv€FO`œ~·γ|IίΎ‘εK‹.t˜β‡*;Ι—ΤZ·ΛZwLΑ™+9?-ɟ#ΐΰpB…ΐoΒΐΝ^ έκχ*2οd! N‡uΌΡsy=¨€ζ1Qπ^qα½ ͺμην\Έqυ-δμ Ωε<όΛ΅ ΑΟ¬‚ΒΣsl"ΐω‹Έ'‚Ώπω’ΎΡω]X#ΐΏ|7ίN𳈣'O‰oμΗ φvϊ͜μpψί©ΘŒ#ΘKOVΗΡqΏ ‘Uέ©§xrκΙ¨y_ως+ΘΞHFBl ""#ŸQ†CΟ^BEžΤ§¦ο£ώύ»OH[ŽcvlCέ-θlΊ‡ΎΙΕ'§3π'εμ8_ςlˆΰψRtZ 6—7< UξΓ=^yӞΰπ4]Ν#NΘί£GάΌϊmA€χkOXƒγgαΞΡο‰Vΰϋΰπ \>OΑxrΰόΪ³­CΛ_ρΏGοωτΎξ££’„¨΅υΗτΨ4_nΞ”œ—–lμœ6(λI JMe—;±½(tθΎ€’,’Ÿ/»Πtύ6Βΰ$ωΠ=υ5ͺq\Ρ™+:kΊΓξχΖηT‘Ό  )NdνGiε!μΫ·iΙqρ“ΈΑ;θžyμMN)΅4;‰Ω™IΜΟq%gξαμ œ/yƒm—/%U8v< W'WΌ χx―2`O“ΕοŠdό=ΪΝΐ‰1Ό_{j—Ÿ…;DΏ7RζBμβitžŠ#πδ ΐω΅w[‡ŠΏβ»!ήθ»Γ€+:«¨lnnbyΩϋ{MMΑ}ΎWEη،<Δn.`r|MmΰH_-ΜΓ9'‰Φ1AΙ™Ye‹ΉLΩYVβa–ž»έΦρZεν'΅ύ=χŠ«M αΣ«Ώΐύ¦ϋhmΊ‹¦Ζz4~τ*}p.ΎCΘ|θ¬β²±±•.{S1ο WE穞xH [M\ΙΩ|cσ”Žΐ‡Sf ΉLΩYΆπΕ”œ‡nυ X„{όΧ 6xe~³S˜‘ίμΌΝBx6Žΐ#D κλ΅‚ϊΗ‰iω/·P;―ϊ‰G€σ—'Ύ (πω’χ„1Ϊωώ3nΘνRtήk\έ“κžθΓ`€[Λ“ΰΆHv»/vίΔ5ϊ1Ÿ–‰ΈΨ8DsΉSB0ΓΰpvΞ—B7Sržm™Α\›²+Y{Ξρμ9Έσ|cΓcΒή―CΣv|| ŽΌŽGΐ7œ_ϋΖΖJ γΧΜ…ΫόέΚ3ς΄"[[twŽG€#ΐΰx! +53eg­’ œ0άγεηΰWŽGΰρEΐQςXς/™>Ύ-ǟŒ#°ϋΰόeχ·§#ΐ°†€<ΏΰίΦp 6υSΏϋώh[€Σ7ίΗ/mω……~γy$G€#ΐΰp8OLΉY« ,+;3 Ο1™±Š΄ŒHΈΕώΌW&_9ŽGΐ||°OΚΰp!α6?—7Qš…,1>^H:ΏΈh6Λc›niiσσόL<; \VR$dkii±“ηαp8ŽG€#ΐΰp8ŽG€#ΐΰp8»­­-Ζ’’"[΄φυυ ωφμΩ£Λqτδι?Ρ…„θf°·ΣoIΙ‡ίxΙΰp8Žΐ“ƒ€φ˜kφΤΒ=mΕJ(JτRrΗxΟη{rZ–?)G€#ΐOώΙΗ‡ΰπδΉ9Žΐv!ξό9.ΡQQB’΅υυ@IϋψΥΥ5¬sl΅sjŠ(Ÿ˜˜°•Ÿgβp8ŽG€#ΐΰp8ŽG€#ΐΰp8»Ο?'er›ϊΑn·xbϊSO=₯{TnΡYΏαp8ŽG€#ΐΰp8ŽG€#ΐΰp8*ά’³ŠΕάά–——Υξ3·θl*ž#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐSΆΛ’³ήΎs˜‚ΓΙζp8ŽG€#ΐΰp8ŽG€#ΐΰp8νE@Roo-ΌtŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ¨pEg ξγp8ŽG€#ΐΰp8ŽG€#ΐΰp8|ώω–Μΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8νA€+:oΌTŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#πX!ΐ-:?VΝΙ†#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ„\Ρ9,š‰Ιΰp8ŽG€#ΐΰp8ŽG€#ΐΰp-[[Ÿ?ZxνŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#πΔ!°χ‰{bώΐŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#`nΡΩ2d!ɐ”θD”Ι’&η]&SšKvψ•?Ζ—λΚ°8RŸώί―bΐ\6Λ©?γ &ηέ~ΛMJ)E^²ρΨό| +«σ˜™nΖθ²Q6²Σ2‘ŸŠ˜½ˆx*ψ|“ θ7Jo¦Π½Aτ-ϋ§ΟΈκ…@Ξy|χ{ηLΝWπΣwnz% y@j²b€Υ•Έ§C^ϊ-0λτπ­—k€ι5•Ζ¨4Μ΅ό―ύδͺbŸςήψ,7πϋξ3k€k|Β¨0©³[ΫpanψKvf-²“A\‰ψζϊΠ6ZήΊζΞœ/Yk—&έ­|>η|ϋηhξ² wΛUόμέ†Π˜z ίψΝ‘ ,τ|€½~-teo{I¨ΘΛA\t”ΐ WV\x8ά±=΅Ζ:QœšƒδθXD σΑ5ΜΜ΄‘k&ΐΌΞn>ΝS(γ‘™yd,a’&aB¦ 7W§00ЌIMyάϋΰγΓ#=ΔUώ9KόσƒαŸΫΙηC …½βv_ Z­/Ψο~«υ‘œ_ΫλJ۝‹σλνFΨ£ό dζ&!!1ϋJK(n λKnΈzϋ±δ‘τ­Δ―Ή’³iΔxBŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#πd"ΐ•œQ»§œΕεSηb²ϊΦΐ•žn“©'‹ŽIΕΗμΕv-&$ε} ΏU{41nάiψ/Έ9ξ,)ν8N–AEΊΣ;/’εαOπώ€¬’νΐ©#― 2;q©QωEŒ~ŠλW1jŸŸ[‡όδL€&f"-1I€<$ΊIάΈω—hœ‘οωΥ61ΡHΞt" Ψ;Ζԝ·Ω•Όˆίύ― υaΌ―ύ™Bκ!<σt)m8ΨΔtΧ άmŸΨ^’v¨ΎhRκr HΥ?ΞF¬ b« Ρ]°ο»]2¬ρ _΅”β…3ίC…ά-—šρϊ―kxEpό%;χκʎ"/!ή‹€“΄i£‘ιu΄X؈αU°ΐnδKφŸ&>B(τρ;1>„‚ΚOΎ|^γ]wŠ_ˏg­Ύΰζε¬Nkυ±œ_3v­γόzgš&η^< ϋνGmqΣzQQ‘RwναiτΆίΗ½ζ%Μ”G3Ÿί.Ω€):|%Š₯pι±iˆΩ³[Ÿ―Σθ%,, `fέWϋαeΟ~ΟΤ`yό>ή—_`»ΔS±ΡŽ‚ΰuΜ―.ϊ}ΛΈD:—†ψ½1Ψϋmν#,–Ι‚…z) Ε?{oΧuή‰ώϋΦΨ 4ΠΨwb#άΕEeJ²Ϋ²ˎ•ΔΙΜΌ©ΌΤΌΤLΥ[¦^½W•zNe*yΙδy’(ΫQlK‘ΕP ‰) A‚$Vb_{}ΣϋΞέ»ϋφv»δ=$ϊή{φσ{ΏσοόΞwDƒ.₯β-­Z1²ΰeη"‹».n?^< ‰dΎΔ>|—ΏhήΞv>oEϋ–¨}Ÿo|Ό ­ΧΞ'όŒŸί­w™N}ΥYvΖ_Ό—ιAŽ ˆ_ΣΖγ€εςΔE„qDΩΨ²ayδy™βΫp§σΑm κ3₯?|0Ή§ODTΘ&μ}_αϊŽg€¬ ΪψYΰΧ:>θιΤi―•.κΉιΎ:t <ϋЁΞO§ΣM>ƒœY 76‚-tΛωml ’cDΤ §6°"WEŠ˜•χ&ή(%‹΄n] ’HΗ&Ή¨BdΊ9 ‘γ\ύ:ώ‘ιš”Œ»‰ͺΗΡκ—I³₯βhώ7$ΰJξΟ—Χ ½ΗB‹Ελv αP=r¦Bϊ;ΪU­–[ͺγΤ©\5ΊVŸl;Πy§ΚμΏ‹+χ“s“Ή8sͺn;IΝεΘχ΅r~σ 7ͺ;/ƒœ)Ξ<VΫΰ/…oα•’R7%ρκ9S†΅kΏ@·ΫXzΐΆQ`ς₯mkλΣΞ8£gNEum9i]γΉcΗ'_ψΌΗ Ά50TΒ„Ρ‰AuAxowj<Ϋ]]υ‡8ži―Ρx±όuL}ω‘bƒ‰cߟΚQ]~™€kρκ±όΚ‘<­ι¨ Mr€ ΗκΏ‹£χwͺp„ •o#dλopmX·όοDy ΒwζOEw7?σ§%βξδψΤ~έF>―ŒΑJ²sόš―±ίε —³ύ.:ΏΦ»΅mωυ»φ^Λη•_[JͺPO gζΤΘ™„άͺSˆ‹ Í;j1Tύ”τάU@η¨θ"”‹‘›¬Rρeτ\EΛlp‘ΘaΌέ†¨:žN₯Τ`xE%ΒΛYξ|vtφν %ϊKcR-r2£FΗΨζΫΡ6x*Ζ/˜P…Τ#£\*RΆΨƒŽΡςτsI$˜X$šRΈ»‘ΣΎΦ€²γ PQžISθ-Μ· {x.H+²yšνSTCΏ}Ί0§EYZ‘‹§&mχ‡`@υ(<νuφ·Ό@ψ «₯Ώε‰-Ϋ>ƒΜ“Θ6Α>(–.^`Ζφ†οΑuέ*ωι (LΞrM›6ξρ&<žέƒJ†§Ι—tΎ+ΎxΑΉ“žaαˆKΗcή²Wp*Ιη’•Oψ_ ίmTηΧΊX“pWφπΨΗΈ;ΝΎ}νόE«(Ώφ—οͺΣΐ„šόσΘΕΚ΅|ΡuC…‡ͺ§ήΎ:άέ°λ*α ‹F‚ΙΔΝa’ζά,JμΊzͺv~ζ)W_Β΄Žz:uκj₯‹znΊ―NΟ ΆΆΎ~^šΊ«Ϊ96Ϋ‰ϋv„nΉVkssIG‘-ΩξαΎdΉXτάύΧΔQNZDΑm#Μ₯‹~s–Žwj‹ιΞ)@ΞKsέh~Œ!ϋ"hρΔ”T„K fμ +wϋhS;e3;Σ…1›φ,,/ 42Ή™΅dš·¦o,C}β54)ʌOHQ€œΩΖV±ήt»<ζ£»=F ²ζX›%TΊ-ς‡\Z±!€›ς­K΄ yμTy½MΈ)RJ"ZΠΩ΄F¨g€ω{WΟΞ»―>‘’kIُp0ηb°}iσβ»jε/ΖS8ͺ9Ο’ΡΖ ΕψŒΜcVΞ[ρ€5ΤΒΌ|tΡjΏ²ϊϊύ.‘€―|i—T7ΈΥ(Β·~όG(w²2P»žΆatάΉ ‚)`‘Wƒ΅κ€ˆγC❏¨*eΔgeσ"ΊΊΏΐ½Ξ'0Ώ‚3E|eŠPd6`l$@©+9]:Μ`rͺΓSƒ°Ϊ'±ŠXd₯W‘63W(―•90Φ/œ ’5ε¦EŽ,){Εδ<ΠwM}7±}΅%§Qdΰ·μΟ©£΅Λ0ΕΧZ}V)°ΫωΩΆ}»Οkθ·εΧT?Mεi•Λ5–§σk /³œδΉζΧbΗΪ15D†$''06ЁΠ²σ«‘&W—RPςρQ΄’ΎΣ«s’η:§$Ε±τBυBd°w2r₯Ι6HΊ-..ΒΠ&ΦT*ΰ?],(Θ¨€ΡCK ρ₯8’‚/zΎrš€§žΔ­hόN@IDAT‘4ApWI“Ϊμ0lt] ΒNI•Όy‘Ε‘DβΥ[’`…§T’ΎŒΛn`}p{€ΞO±}Α’“žO`Θ5U‰nΎήπ,ΤdΖΌΣwH‰ώ—§Ώ°zϊ_ίΊγƒaf€Ί9σuI2T .dŸ Άπά―e–3(ŠgφmUάΎd˜Οӎκπp.@ε‹JφΫκυω’ΞwƒΫ³A₯η6ΎZω„Τφέ&F'ω rfuΪd‘˜ΣΜ_@֐΅Θ‘ρkω.ίLηίbKƒ r¦ΐ•΅%ΠέήrΫψΎ{#DPΏ[w…=ΕφΉ«žπχ‹n!Hg_(w^Ξh’ΫJΐΟάζιC€ΦρAO§>ΠJΊJ’S@§ΐ3Nέ’³χ.ΘΛρ©¬ŒΧ1ͺElkksυžmΑ—τ§ξͺπf…p§‘/β~Ο^8X'‚'Πύθ:Τλ䛏—‹KGx_Γ{-ΧqzΠ=„/)ΐΘ,Τވ_^lTΔoYόIDœ}ΉΒιξΞ:θωΉ.`ea„6]ˆ+ό>^-β7“‹S:ΈD$₯ΏΧ€T2n›‘άμΤΒUΝ‘˜…ϊŽ4ή†»/m~S^GΪΪπa!Ξ_8ΕίιςΈβ#]Ά8Υ*ZΏw­ekδNΕ₯ηΌ‰—riνŒψ‹2gwŒ©‘ΏT€Iϊ¦ω‰›ψYΣe)ίω'ΏBt\ަ‹|R oΆ“{€/mgσŸjή»΅£ηΞut-fα•SžNnπ\[_ωΌη\Ά1tζ>}οΑ6 –5» LNγ·«βPΙψ¬ΰ:ZίΓgΈxjt‡ θΜ›‹At3τζ­ζbNn[sθΉƒ‘―Π1λ˜ΧΎϊ?‘Aΰ»!! KβZΣQ5ό–#£ <Χ"5 ―λψ艆_nΖ'Ν‘H8ύ €± Ω°phJ±AOJ¨ί—ϊψ\zϊ“ΫnTϊίkž ŸχZ+νvš_k-O£\-ειόZϋϋ΄)UΎΧέ¦gΨΞζ?­ΌηgΖΠzοc<ϊδΧθ˜βw‰ηδ°‰τFΊ¦pπυ³0sΠ‡X$$’@κΠΩYžί©~τLΓΈZΤ)@Ξ+ΛC˜νΕδΚ2ΒΒ⑝…’dζWφ 5Ljy\Έ~[ΖΨt/μdόΔe‰{ˎQgK­Zθ,)Dl }˜XΗμŠ λˆBjB!Š3ψΎˆ*F^R7ξ‰ΚΓΨ*μW€œηΙκsϋd'l$00`_EZ>o₯4άs²‰Ϊ±7ϋΒσ‹θ!Ta¦ak',6x¨ŠτlR ‹,KΘ ηe MάGΧΔ ΖC¨5 Ω(ϊώbvΞα@θιˆβ*σ­tΡΪz::ž- θ@ηέןυŽ!Sέ͏έΑ—{Qe•†Dq'mŸς‘ΜYωQ$€›w9+3q―(C\οΧ±@7»ΐ>—{ΠΤΩ#%ˍ“MNΞΝΛ ])‚βΖPώ Ξ/G8f7Cχ!tΉŸόΓ―α“T€ΰ6ο4ΎυΚ)LjΆyν°v·’ιF2κͺa αt¦ηs\Ίϊΐ©zΌφ““H$ƒ3‹CWρλ―€ ―F~n ­mέθiΎŠ‹—›Έ΄iεΗ±Ώ΄ fs&RM Cqx·0λϊ]Η•›­NεyΗρ­sTΟ†ΦgŽΥσ!š§8<)ο§φ[„γί>ƒ’B²Ϊ-½‹3C°Ž ’§εψbσ* „ϊΡzλ†’°T}λ{(LŠ wb‘©εR˜ΉξϋψA±|μe(>9rϋ7ΈrΧYή§zΎυ2*Κ*‘Bt±- pΊNυ5γΡΝ‹Έρ@?°ςκ©eώίψύ^kόήύ―Ÿ"(|‚¬-Ÿ)@–+}^1"3!† ˜Β̜²½Υ1Ρϋ!~«‹θ½λ’ΡΚ’‹ίžσΠωRψ’k―ל!ͺΚΚaΙ`ΐOήqΌ°―o†–^η±ΙΎΔς«Ζ…ί?‹δ(zn iʈγGk‘Ÿ%Ύ³v >ΈŽ«?ϋςΧPMcΙYn,Ω\θΔE S‰Σ}/ΧρόΊύ.^ecΕ –ζ‡Π?ԊΖ/~Q νΔσ Στλ†ΟηΓwΞU‚š…ΩφΛψ­ΛxθTXΌρΦZgγγ όϊβ-)BΩιίE]u%rϊ ]wα·—εxRΊ):ύCΤη°©9@c―Ζζ‹žκ’ω;6Θښ₯ϊ ?魏Δvϊ;>”ΠΙΨ©Bβy’λD3@Vœ"3[eΌ—ά ό% ίΩ&\ρ Ά“ΑU§5ΛΜO9²ΐR ΥABΔ=\AΞbΕ– B²Eš({‰ώ{νͺω½ΦεVO]­ž¨ΓΒ܌*Ι6ΦBQsφΗ¨?X)Ο=¬hmϊ”ΖεόAN¬…Ο&ΟkŸνv~½=γƒ;ΉΠRžΞ―u=ƒόυ³;ίω ‹ύ¬ρkΫƒπkgUk(η088sΏέ<–Σ© ˆn….z›]t6‘6­‚ΡR΅gfIPy€h€cd)‘mL^!{γ6ρ‘‘ͺ³k"œΊ/N#]Ύ^€#χZ15έ†‘e&τΛnŠ€Ο/Όr_Ÿ^U΅Ω qz€Εω\Ό/%™ΌHΪY!€“vΛM\WχEϋάΆΥhI΄ΘH%lmΊ™άl[ιΤ>¦―₯φ9φθΆ¨gΌΣˆ(A~Š4]ΕΐθUά6!Ψη&QN@ηHNdΩ~{|΄–§‘Ώ@kyΤ4>h­ηj>¬f3ˆC6„—œGΊ0jJϋ̜›"*υ€±ρΟp{Rΰςλ=Έ7Š˜β#όXQι0ζΩώ, όtΎ»Σ\"ΰςΗTϊ[– Ÿf>‘‘ό@Ύ[Zˆn£?u—‹#l›γΛθšTllΠΒ_ΈB4Κ‘Zω VΎλDΔ€£¨gγΫa―˜m,zΠ;ε±λUΎ‹`Χ9 ο6ΰΚθς§ UϊΫg>hοΖέkέΩνιΝόLc«΅Žz:υωƒVΊhμ>=™NΟt ³ο}ͺj™ΩCrOVžέ&£Ν…•’…Ο4?Ήξ6κnˆOH„U]²a-ΚD›Ζc31»4Š΅&e™EB³¬xάΚΪn@zb2φ…00§΄B2΅‹±©ΌΉ@ ]ΕʊZ$ΡΟƒd‰Ϊ†Ή-ΖP^γΣrPTP,{Ν,JϊxΩ3π;Cωψέw.ΐΡφkL xώD—ΌΩKpZ}ΚKAVq1—v Kψq}%,Nΰƒ±΅ΗζΡN@η^αΔw~„R§8\±Ι0°Ώ0ίΕ»ο;‚ Άϊέ·Υκy”κ)ΦRεJ`³όΙ;ΘW)3&) ωτg χ PXφϊδEL=hB#κdgDσ²7έ2ψνΰC':u~ζθCυόήΎƒ"£μ-‚ΕSrΰύ™L όq“!ς΄χƒ\;mwώΎΧΪΎwmu Ÿ λloVžΙ$7ˆΟΫ£ α5ΎB«3˜υGΝα–Ώ¬`}Cπθbέ™οY*Ώ‰+k π΅ίΡ_/‹/)ΊxΜ·~ψm”g‰#¨&ρΒ¨y:$ψΝ—(i^&ςˊyžG›^Κεά„»8Ο^ΐ’ρωs Πc.FΗ§cQ~λάμuIˆ’ςδδςνe:σn—ώϊrˆαπδίƒ{>Žt“/O]#'p1+Bγ ΕgH…©ε‡Μ‡\Ξύδ‡h(–Χ‡x‚γ&εhεd™ψω?Έ½Ssj_μΪw6›α<6 ™τQ¦ΪοΰΗ΅b Ε«Z2‰ωώdI|n=Γ²L[ΰΌ°±MΖ‰ΔΡ©‹€gΉK‰–»"δJυρ'½?ιΌΛ‘±Q²΄Ρ7Ρ…yͺ²Gβτ^λr«z/λγƒ:]œ|ݏNιΡTϋMŸH›ΤΚOύiiΙψωŸ@ž§>d~΄»ωυ6nεrmειόZΧ3ΘΜπ™Ώ<³όZI Χϋp¦΄άϊxvζ….zτΐsβν MI)CΰΓόΌ3ΘYYκή›Όs΅#E­Π>,Ϋ}B5ΣeΉ -ΓJΊ9ή/mͺig HΰŽyaqΙκ4˝έΚ†Z:9VLvΥδ#ŒΆŸnΣΠ•άώψsiR+Η ΞέζF j/ ¬ΌΙάξyΚwi =­·p½QœdΚe²+‘—“‡T£ ‰ρ)ˆΦ€<Ÿ˜ΕXw3šχΛ @ΒΙΛ°$„‘Ε†MD$ΚΪUcιyœΝ^“↉5“―’ΉkBςSή<BR˜Œς„dyΊ©ΡAτ>Ύ^«+@{sc©ω'Pu€Ύ“¨–^„΅σξ~z“Κ4έ' ϊά+HΕVΘ&Fο]Β£ηzqΰάiRξ‡"„βŒ΅κ»'G^;„8Bvl―#"Ω #GžάϊΦ°TΧο'¦Π~νc4:Π•―lvΝ9”Π±Ž4Α`knέ{μ"ϋeQ€† ‡θέΕςp3ΪmI¨ͺςž;υ^›s$εψ"ρAδL’3j³j €ΐ±ΌUΰ`μTΦ\ž&ώh-ogω Λkη䱉-ΩK~Σ©οΔ/d½υ‘r£ΟΒNμ3ID=xΥωn ¦•ο*ys&*NDnvΆ<φQ΅Έ1eb #OZΠή# AΗL•8ΡpPa‘cΣC΄ωμΡ,δQP.ώςO­|B½tΟΎΫυέfVΑ(HΦ‹Ά6΄Ω=ΧCUη/\ΈF9ω΅fΎ+7ˆ­BMF!ο³>ЉυDΪδΑΖ0ζ——`”Eντ½Ξ₯xΙfGAβ5°>‰ζ‹ŸͺΛ΄ΙπβρR: 8λ³νΈϊΕμS‘?ΉΦjδƒζšσ(͌‡ΓI0d yiψ.遲žŸ yΧ?Σψϊhτtκσ­tΡΨ}z2:žA lm©mς Άso4Ι„3‡…#ΌΡΎ&<ςy²»Z˜“,΅#1ύ~ώD7oλΒ£žkhΆZE/ώjΜG¦tŸ™@tώχρ{ΩEI‡,μΤCάm{>ΡΕ„’Ό:T—Φ €F`|€¬ξzΪ¬΄L‹YΜx+G©XβZ±Εν ε¬ίrΌτMxx‘χ›` ΝBΥ©Y‡EΕm8˜‘Κ'–ΈΜ”R X°₯ kg3Ff—h†₯8G ½8яΑ‘AΜLN‘=ΞhVW“₯f—qΞΡ7q―Ÿ>η„Υ8†’ž3έhΊs ΡΉ¨9Q'ιI…Z9\ʎQ€œ­ho|€Ρ‰%„Η%"%+₯9ί—m‰Υ¨< Ο­xtλS‡r€Vt]Ύ†υψp¬“”Θ΄²Νƒ¬w‰tΪSˆPNθ&&‡”k©8χΦ· ηiͺη}L-)Ε‡P*KΟ~g†Θ’d++:ςδͺϋΧr:Νw~ΎΧšΎw­• ˜OXpζΐk‚ΥόE<~πwxzΕϊ,Ϊ’xορꍿΠF‰Ζ@ˆΟ€όΧι΄Η1Δ噏cu"ȏ<¦ΎΒ½a'~ΘΕΫΝ?:_ _ϋΉoόψ”gˆΟΓ'λω=CSΨ•‚΄œ"‘EΆΆ);-|‰R―lOwtΆΎ»hνGtn%jгψΐά:¬ώLΰσΠώΈEœΕ|ςKλ θάδ˜ YΊΛ-Kό:Ρu•c„Nq}τΐη{ϋ06C_αecRΣ‘GE©`±₯ ™ŒΨ7>ΔlΎ#ΘΉŸ,[χ NΌjΛΉ΄)πϊλ#xχCΗφuίFλ³θL£nx"*+ψρHulζr π;’ZBZ―ύœρΘaA+ίƒά“œ q¨8 °Ή‚β AΪΤ'7bΞΎ-ηaHTTœ@ˆ# M.Γc|ŸKάάψ•Ξ«IΨ N§Ξ ³Ρ ]*₯¦ V€›Jθξχ π½ΦεV•.ΦΗ’¨xyTb‹^ŒήΤGθΥ ‘šΗ₯”]ΐω³ύψεεb4ξκ?Ÿ—“ϋ+Ο]§ω†ΈJGηm:Σ<&ιθ,`Mτ”lR$JnnY²-ωρ&Ήτ4Ž;睂όϊΧ‘œlΐ§―+lήf’ϊμλΘ•&%Š„ΡΩ_V­χ!>Ή!‚€‘ΊΏˆ`¦.ެλ:ο³έhT‰Έ'ΞΏ„|SŒKXTY&‘Ώ”ˆτ*Ž8#&—ΎŒWKΕ'ρSρ Ό‰χ~σ©’}bΈ?Χ9Ρ1Ε|ŸeĞΑΜ»Ώq°6žwτ%T αXκFηνL₯€$ΙUQ6Pxδ °&‘")(=u3cΊ¦ΕΊe’ξ΅WQ‘£ξψ°¨3Š˜‘–š„O?΄(ORΈ}†\dΠ"‹Ω’ۘμRnζΰ;9―l?r³ψ9’66ύνΌόI³ψ !£”&ίsϋΦ   tΦ2_!zν6yΧ?γ{Χί_­γƒžNΪ$I$—ηZιβoΏιρu θx–) [tή=½›• e B}HfjnkΩ=•σ³&ΙάQ•κ‰β E8Z[„ΔG‡+ƒ$K „NΧ§ΗρI•¨εdL1”Ώ&¦Tβ₯€·Ήϊ.:Tζ"ΥUοΰxj2ζ7Χ±τΓb~,υδΨu|όΈΩ1C§§ψ€YGL'M©”α”ΔρQD;ϊτ”v’₯"-ZρΫΏψ/dPΟςf4ώ‹₯goΕυγΖΟώΧΘ΄ΝρΞ…ΟΆ ύMΧ05Υ‚k·@j—ήo'ΌΖέβSZAF*―rZNΤ Φιqζ!ώεΟ+Δ7ψΔώδνσNϊΉž‰‰β‹?›χ a9ά@'«εFMΙnξςΞ–κ`k»‡*·–.ΥΛp4œ€Ξ \nӝ—pρΊ‚&ΞeEI¨3΄βζΟώWDχΗWΙθB@ΐ/Εu―R>βrΠ\΄υƒs΅ƒςμε½Φς½k­W |’ž@Ξe‚νšξKΈ6dεΛ3&—fέ6ς—Ώ<lAA’ ™Δˆ’“jπΖ…,ŒN-!6Ε"mΰX²έΗ§·?u[¦V:mw:/˜6ˆ|‰υ—εΔ)TJ η!άόείγΚ]GžTtϊ‡¨JX•»W#_’3ΰοFξύ?ύΕ%ΑϋΜΌύŸq¦š)‹ιδKρy¬Πς¨'‰³O(§Έi› „¦ZNT€bsnκQ«Δk― \<σωVXiU)}w υντ<:«ŒbEDσόVLτΰ΄ό[8X& ;χΑ%άiZpžΫ`”sβ(Κθά&fFΧήλ$«“ΞΑH@g17E4ι6Xί‘Ού§uό“j¬rγa|Θ’~`+ŸΜΝ΍p=βΝηp²€ΏίΔ£Υ΅πǜ‡„0+ Ϋγ²ςΏ…rX £}^6Ύ Υπ7w92‘‘’n‘Ϊ»ιΪή‚ύΘtυή3>Αz―ε?ίr+£ƒ>>Θoƒ§;ΟγƒzΚ©Ά‹ψ«ώψ)Ζηߏδω`͏€–ο"~ŒρΑΉ\[y:ΏΦυ Χ_ωΛσΚ―εΥΘ3F 'žqoΖς€ Ρ•z›§ tŽ5#U¨Τββ "SNγ₯d‹΄+’΅n~α :ΗnbD1“_“έ‘ ~γ ΅x™ώD·H»{'›Ργ|ί6Ρ%;½ ™PϊΙyρ₯YΔβϊU‹)γθ¬Γ˜\ψ Ό:Π„2‹Ά€ΰ…GxBŠ[·Ήεδ΅₯&s;Ε όΡ>ςέ#ˆ nE±…ΛАw‡jGqυ^·KΛ3#°Ža~ΦF‡F`«„,Uς ΫŒκ3¨ΐέΈ ·ο`#&Œ@ΰ›O.EΎ™ŸPLχ?ΖΔόŠƒΕ†Ωqη3Κ2qμo _œϋRŽΦ'w1‚Α@ʎR5$”αΰy+ήψŸEώ< ΧmhΉόKτΪ)ˆήy.΅ˆΎζ{ΨH«D‘™©+x7@»–— e(εΐΜ&˜Μ™tζ+.8‚œGΙϊΕ°Υ†(c*Jω «‘πŽΩ'πΙΝ1Kικ{Q’υ-‹£~ΣΣ₯Άα½ŽΞ@Šΐ±FJFgrιΖ3(—@sΌϋ]\u~Χδ0ŸξΆ©<·όEky;ΞέQΟsr1 ΣK%EΛΜt'ΦYόΔ„‰§‘Εώev»Έx*Ίxξiοjο>M|W(.»²JržBίΓLΞ ,:“™@LΙ’¨\ γX½¨9Ο ’΅΅Λ‘΄!ε€h΅_Q”Ϊ­?όS+ŸP+Χ«ίv|·T+$yojͺ>Ι­žψ ίMr€ΈεΧσέTTe¬Z/£wθc „ΤBΪ·΅jίΆ“>Ό49θΑ:ΤJat?ιBα‘".s½]N™ε ΣΒΛτΜZI_[Ιt OAώ ŒN=DΟzYt&Ιy_< yΉzΣ…7:5Ÿχ¦ΌλŸΉΆΤ­γƒžΞΈόA+]rΣt θxή)π΅ΓqΟ;5žfϋ«PWΒΛT¬]}θ{šΥ ¨l’c™nv cCdΩ†₯ΝP$&ε£,³°μˊŽ’—€Ξ|; HK`JWf¬C€ΨΠέws 0€μGm¦¨ΧΜEeώtΈ€–-HK"Ή“Τ:"°†•ΓΉ±ΛψeσMρΙν5YŽž]˜tιn£c•YmT::3Ψ‹3Ή `NWγηΘ™+Άυ4?¨ΕΉjOP*e‡ο;œYpο \ι•γ5]όΉόΰtwκ}& λα}α’ ΘPΦ³ωͺ#ΐνΑ―q―ͺg*ΤλΉIΐtΙ9‘”ωΫ:oαΎΑέM9j§Ρz[-Έ‹OοI¨ά[!ϋD³zόͺ2άΗB§ά’AΞ\τI|zεK”“¦˜³T-‰ϊSΛVK?pΥ πΗΏχZΛχ΅‚ρ‰’IVDgGαΓNȟͺؘ1guS9 όeΆ“Vdf‹ο} 2Ψ‡ΓτKμΣ™ΈŽŸ¦‚ Έ€T€QF>©Έ5ΓAΨψ šŠΧωR°ω’5uR_τ\ϋΠδΜ»ώ#A¦d Ύt£ωδΜη}σ~+j θΜV )μ͝Π7zN}£η Ӌ逄N1ȍ,‘Χ@‡ΣF9Zwήωόψθ μ›3!5“δͺ^’XΖ9όψΗηAΖό1ές+όχoQxŒiΒ·93Šή.—$Αλ—\ϊΐFcYσώrsΌΉ‡,h»­„ΐ)š)œ πrΎ ΞwδG)*ΰοx$&υg|0%ˆ»΄ˆξΆΚβ^ͺN.‘ }Wο^Fφα?³ΖΖ†B|ΏIΙ|ηJxΰ"—m0ΉεΓfB-ιΌΛ‘=°1όΙ›LήMO'ΉeΊYjdJζ+8JΖΎ$·4IλE“Ά}|Ψγr«>>ψφβ{\σ!+’Ÿ;ΞZ>ό₯Κω“„sΙ’ 3ƒŠ9’C>πy_«<θόh7σλΐΗδrm呬¬σk]Οΐ}τΎς—η”_«P^•ΓQŠύŒ=~„¦ΦsλΜΘΞΝBυ6²vΖmβν 0Ηξ!ϋ˜˜B‹zIE‘ρ±…¨/€€ΞO1²=r«’΄ΰίΖEΖ»Ν4&š^ΰl bG.’evRŠ·tII9Žšdu;5%υψbfžΐLΗiςSŒcϋΣθ(΅D‘₯Y±[V–:q·žoKe4¬Τ`ίΨz―γ}²άΜΉ‡M˜YόNΰΑ²Ω%₯H% 3OΥaŒΆήŽ:|ΠΡοX{ŸcτδpΌBώ1ΘΘ%»Ώ=όD‘χΞ§ŽΪ˜ύatβΪn‘ρ!M€=ΈΤΚ:JδΆ’ε“Ράε˜†i]»ζ6—‰φΛΈxYά»ŽΉsˆƒΕl2M5MιTOW xn3S ˜Cσo?GπB …§ρβδ >Ώ‰Σ/ζTX,ΩΐνΡ<ΰšΑςΠ}|~“θoΪ@κwNsŠ ŒάΑΥδ—Ό†τœ³œ_\"› Ω/’<iη˜s¦I#Ϊϋ^$λ‘ΗΈ4ͺ‘M@gΎXmύΗ—#…žΫπ^§Πw'~cσKSά’HTB-ζ²ΈΚ/Ξ· w=ΒχϋΒ ή•r«]οΆ£$V  Ψ£χ:ί}z|76N\D£Ν'ώ΅ _nΚ܏τR|)œΦq,΅²ΩdA†st$ΪοΎ'Œ‡t2mNω6ρj±6Šβ<ίzΰŸZω„ηέ…»MI9@Φ’„ςΦϊΠeu1πΏπωi‘#έ΅œω{βׁςέΒΜ£ιΦ‰―π>—”yßmΝξ› ι©» L烁ρAk{¬tf­‘°7Ρ-lςbέ“_$X|¦k7ž‰dΒ»’?εƒΦ‡W`}(T:ItV4ClŽβΊχδ]ω™’±>ίjτtκσ­tρΉΓτˆ:t <ΨϊZeβϋ\΄|w5²’ͺAΆή6s_υξ ϊU+šZώ-φAG pο5΄Y^Ε7*jyKΛfXΘΠBί›χš‘#jΣXaVάiϊ'ܞζΔ#Ν°m½ƒ3ΒΊπpqΒ¦¬Ψ<ΖΗ[A/baHH(BΝƒ—θtΙθτ³x³tο··(Έά'*6»Υ%άΩcόζOρ7}7³Έ‚ΥH*xeΦΑΊ₯s|Ÿ-άI‡|:+FΊΈd1:HΆ―@η…‡h»ιΫ»eΘ;‚Ϊ:Ϊ ™ψH²:H$†AήmβuΖ5q§+ΐm¨κιθ κ/ή%γθOώZΈž'½₯ ί£όj€Cq*Μ‚`Ή °[$€όΧ*¨€ςέ+6>AŠ<9Ϊ#έK7¦‘₯«ƒ–D₯t^nόλ/™ωμί{­ε{χ±".Ρ΄σ‰tΛλxI‘.ψ vα½»άΖ φdΓ Pw~ςγ ΌUŠsω­Na˜Œ …D§##Vΰuηυ|θ…/©ΧGαK Ξ?ϊίαζδ _Ο·3wρχώ7V ='P†:ο:_RRGyο;_ŠD€΄o€]_ΉT™―xΎ4cΓτŒ˜£p]’Qw‹ KŠΐAtšŒrς£SδʎΠ:? “K:<Ξͺ=έΣXσΔ˜‹¬νΗzv —\ɍSΙ¦L*¨ –’\X’xΝ·!—dάΒxFΔεu›uˆΣ“gG‰ΚsfAυ[ψ£‚Χ±–ˆά>YV‰ŽQ29Δςα!Hί‘_ύηC΅ΌDρ}|° )F\;žΒψd8N} #ΟdΌΖ‡ο‘…gΪδ—$“ šΝΊγΏ^*ε!˜YΎP%ȝ,ή\+>Ίω!Ζ<€aAZΣω"GΞ-ΝS Ω―α[ϋΠ33‹ΨΔ"ΤH›ϊH~₯Ρ+v€΅ΥΗ‡g@nΥΗξcρςγΛψΰ’ΕΜ0z}`¨ΟŠ"nΞ†Θ¨TŠ0ιΙοgmς|`σ£έΛ―ƒ1>ψ#—k/OηΧΊž}μΎσ—η_ψΘ±:I?΄8ςd<’‚kΖ— S€Ϋ:λmœΕnE²νΎAbT"²L’²ΡŽα©.Œ/Σ‘L±ω(NδΕXΪB‰ό”|ŒHΰ²ν[°ς7 >‚  6Xmγ˜_]ΐκVbcΘςbΌ I£Πά΄ ŒΝ^ιΆΘŸ.q ‡Pg"―θ°άκ ΒYΆbά> c²Έo@J,%ΰ4’tΏιψ,wnY+SΊΠΗTf¦v?…n*]οΝ»Θ‘—g%™a$m‚η\Wγ§Κ¨χέΝν¨  3λ©Π}„τVqΡ!rkBBε ¬JTς2nδύRΠPΣη. g8rcŒH±œoH p»ΡΑ³΅³₯tfSμ8Γ=ΖεΟΣπ½oπΐζά#―"*oLBν&Ώz§[΅ Υ%A}A–“Εή·-ΫEΧ–Έ‰£iΈ0α/-.Ύtkσ—.4YμωtlƒΎ ϊ#νδ濊@ϋφΠi’§οu β˜_•ZžŒωΪΧ‰Κ›!x‹ΐω¨Ν,ƒ`ξώΰ}I‘"ΊMηoM πρμςΌρmε=%>ΘΡ0•”*τR‰j‰΄Ά&|>¬\ω°b” 04Η’ˆΟ.Ι‹q υ؟*ŽcemslΘ Δ›}WΎνϋαΜ}`‘ͺ§σέΰΠQίέ"ΰ½δD¦+y«αΗdSΓ½σgK1ΙΦ7:ξH›~Έά‰W·?)ΑΑBQω¨^¦?όSŸP/Χ»o°ΏΫ\™Ψf)ή M΅ ςœθ£ΌϊΓ_X:-r€²<Η{Οό:0ΎkN;'B0o»‡Ζ ^ٜ Ψπ·°2νX!­O:tCΉ="ΪbπΙ˜8bAfQΙτύR›rςσ$yq ·ƒ³Ρ'ΝNɟΑΰƒR½Γεy„δ§r³7δ]±βώς31W­γƒžN}ώ •.ώυš[§€Ng[ΊEgΏ»Έ¬¬ΜcšΆΆ6α.Ι§p “ιΘ³α^Ο%0Δ^vσrVscƒα‘1 iLƒθ¦·Ά‰l$§θλΊ,ƒœοαZd–N ‘γΚw6ί:ˆιΐZΈ9•—­²²2ε3,Θ₯₯Ψρ¬ isΐΔθ0…—#)•Ι$’K†I± $ϊ:^ύμη;ς·ͺ ρΑ·ρ!‘ ,Ω‘\x%Lτ#ΧΡz MŒΧz…΄*>7± ­yqΕ€YGΎPuP:εciζ>ύκ#r``ιHHυIŽμθkFi.ιOωβa>HΒƒβΒ–τ‡mƒΝ τρAAQΊέ“r«>>8v’Ϊ“γƒs9»—“0’‘”NΨ―Φΐ€ΞZεωΐηGΎΚσ;Ν―ƒQž?rΉφςt~νόΡxxΦεy"ΞσΖ―³QκΔ}Σ]ΈχE“‡—„%#?·€6žυsρœυ6βtˆ άٟdΔFˆgVς4Ϊϋ―’sa‘―Ζ\ΆΞ£6™Ÿ\μ [½³΅ ¬4Ί†/’wu2χt ᐹ”W*μK…1!s¬νΑ₯ ³ ې%”Γ³άƒ[½_Αατ’Ψ œΘ©•' 6LΠd"$<)‘BΕאRyγκV m‹χΗξ“=…5¬‡Xx}›'Ÿ³Β*€˜ε>κΖψΘ²9ΰΔ>DD0Λ ςώΕΣ~—\£1τκΣqL‘™βΏeJΉP•»p„KxιA Άz‚ž©$g^sσ ™ΙΡ‘…ν5ΑgY;ΖΠφΤs_5§β4g ;&q­d©‹ŽΘp“;"<ΡT‚oˆ€pϋ ™‚Ešy kς7l:p―gΎHΐr‡)#™'DFIDδ"Τιιϋ{m@Uώ²EO§f©?.£‹¬ƒG… 3vRΏΟ.„aήqAQOζχ‡Ώ k6’‹ι2:~H»K₯#·‚Wžwώ’΅<²tΔρΑ{=•]ΒΜ|·ϋ~ƒ8³ΌŸD―βΚΖ2" υ8²Ύ„[ >Έ°Ζψ6Ώˆ”’|ΗB“0BΘβ(JW$mΦ‘τ+’ #œ²@ίο“λρϊοΎL£„nξ1>zχƒ μ!₯2uΎλα½DΥΔwE†IόζΝC{;†G0;=†Ιiy¬σR²ΑF²d%.ŒNar°ί%ΝΔ( ΐ^€ΞΎσO­|Β₯Z>{σ»Ν6ο—­Ά/Ά’-¦»uώρΆ€οΏ©^Έw>¨]ώLL<ŒzqSm¦»?όH¨υm„8ζΨa_φDυz»ψκ|Π…$²Ηή‘?ϋΙΪZρ&έδ摉€ΞόψΈ™Ε"X€ύ ΄ΤΞ‘?ƒΓ₯:ϋq³»ε]eCόεgΚ΄Ύήkτtκσ­tρ΅Ώτx:t <ψϊk(mяξž" 8IˆNqΛόμΘ]ܚxŠΥف’WΦ™FΕΙm( ¬v£γISΪ“*"f\‚άzq ³τισ.$EΎrqϊBŒd E8Pχ}TlM£©ωS ˜,&uΎΊγ/%e$ΫYθW9Ο+wt^#fΚΨRACM©<TΔπ󖬉߿~ ±jŸ£jV‘Ψ\XZΥ‚ι©σ%’&YŽR¬»ωO_ν|icmΥΏβFο’΅Λ—`Κ%]³±…εd’¨5E…B>vτ? ώfίω|?­3Ϋi,‘ϊ₯QDζ ³Έ@Κͺ˜s)­σ$‹ΊͺiL= "… ΄_Œ.Ρ°'΄ΚωΒ,=Οτ?}ΝοώsnΘv='ΖςΨΨ띋&‡‘ψ->ληω]I’‰?αƒόΗηΖOαbkΙΝ―–TJΜ†“x±¨ΈΡšŽΛΒW9rΉο_Ξ”Τ£Μ¨@8―ZΡ1Τ…”Zb(KΪτ0έͺ¨†[}|Ψϋr«>>x}ρ}³²‘‘ΞqG/ξ)2J1fΊΛ4y>ΐω‘JΣΤ½vš_oSyξδrRžΞ―Υί_]ž'’ΉAθ`Ο.:·941οg˜Ω.½Ώj$Ο₯ω‡hEιcγM2ΘYΘgj‰4‰Πٟ¬wSάe9«ΉΩΩΫθ‰ΛDy<E‘B]i‰?ˆtaΦD²Κ%eίΚb;ξφέvšδβˆδl³΅ eψΎ„6O£ήhαš`J₯£μgϊ0ΰF9g›VkκφψΡHnͺ!”G–=RθΝ`o>Pzςh¨ΜΒ<\΄–Λη οKˆIΜ:–=/Ωgg<Γ#Aΐb:­Χ›ΏDkζ.ΩΗςytω=x6/”f΅aŽΘlΰ”mξjƒx²’ ;ƒtΤ“μη|'3ˆ@ϋ/zϊτ^G˜Θ2³sύ½=―bumβΕf’μψΤzή"9%mΔRŽ€ŽΑ°°<‹?uIŽ΅ˆEXΚσΏh,oΗω ’J‹θ³ή€rKGnϊyT c‘1Α‚:O IF¦;‘b’€Ž)†r€(_u!ƒωO,sg(Kσλ>, ~ωaA΄―σ]ΏΊΛ[dωn;Yω*)>!,¨]z˜ώ„R–¦ΠGG6έh LΟeΗΐ’L9Ζά>Χ )|€OΏ>ρOhδ>Υ@=RΠΎΫθ*ΪΠ n=°£s²ΙΛ7ξa΅χ[ŽTi²OόZ+ߍ­BY°ά΅η΄™.>YΠI–;z αή‘?{Ϊ0=hτtκσ­tρ©³τH:t <'ψϊλ@WξžB95Σo‹ΝN镏ι9gQ)Ϋ=ˆ–Ξ›Κΰgπή€€h¦3gΞF`bW@3άl*S)Ο§χεwΎΎζ€―c‡!rnŒbaUΜ'ΰ+ΙHoθTU`²cœϊRΩ’σ`γ/πχΏΊκ!ι4J 謀pα2Θw³*`r―Ν輊θfΘ+ρ1«E•uΘ1ςοKLΑ!»ŠK. ζT-` txvDkEœΎζ«˜$ƒ,ξ”Έl|›΄άAθΏm§ηκ4†&[1υ‚g*8„nΩ1lΖ…‰<Ο@v8cjϊξ VAΝ1dΩDH8³4νh^πχωB‹<ά“Λ󕿐Ycmεν0τFΏΎ±HŽ;LΦ?ቨ}Jd¦λμ#½JUZ)rγEnJρ6¦103ˆΨdE3jΗμ’σΘ[ΙNαΦAt6ίA”»Η):ϋΒΆVG{gyκ|WAŒ άϊΙw‡―γύχp¬Ž,½d™8K¨R5θΈάάκ³0%Ηΰ·\ ΨYΜΩ@V°ΔϋmΊjεT'(ίm φ§•H›Ιζmh§£ύuω‹—ΜTεH§4>σk|7ίP oΖ ‰@VζiδJ<*R^ψίGΦO,§‘·5‡Ξα{†:§κzΤω {ν)ωs}=έtf )°δWΠω!²sεE‹‘'νξΫΚ…l§ό)‚iXA;ΐY1{AήeυτΰαgͺΩjτtP?h₯‹jηθž:t <―ΨάmΟ+žv»‹P[P.UbΈχ‰Ί ΙχΩΊ‰7S»±€Άy’τS LLΦδέ€ΝuέA sΈšJ`ΡΛdΌdJ€+ΖΟR&˜΅Σκb€‡«‘ξ»xλ\ φq Y+’.ώ£ΏόG—sYx €Ÿh±=‹-Ά›•GοK―#‚,Üζ%‚ε5Κ!tάΊκ’ΨR]θrΊ`°’2ƒΑŸ³Θ§…Μ6:κΜ2Œ ΏKJIj"ϋkBγΗ?Η©ίΏqΌŒεG˜5¦§sZΗ(? fY”Ή‰»hΎξ;ΰsuU†_ŒŒŽξΣJ§S,g Τ)nR¦ldaΣ½¬BŽΞŸς΄υƒcyά“mL΅Α¨ŸbΜkε8ΰώ'Xο΅Oί;U£ ξuœ©7“ΗB3¦ θ¬BBΉ>σ‰5¬,Y1»Eͺ]ΕZ—ΡΧϋjPΌ—dt`rkΆμV―Φ¨Έτͺό% ±"°z 3³Žίί€|€ΔΖm!>Έ2-άο•‹Ξ—Ά“/!ΆΕ‡,θΊ­φξ8Ύ#ΑΰKŽ9ϊφΤΫά‰‘σΘ9Ω$·”’ώlΈ4. ’ξΗ{Ν}+GŠε'Ÿ" 3θLγQq]ΗgΊqχa4t6ΤbίΏ]gΡ:„6 ALO/R6žΥηύE€γ —…_?;)«ηΟx€Lησψ@k€l™TrKνψβφ§ςΖS r¬9–θεωͺ8Ζκ«Ώ3{3™[DGΗ‡ψ¬ΗiΌζΏZΣ)² [-r$–­’&¦―ŽGW?Ζ ‰Π^ΉYF!7O§vN/$Δ!™ƒμ貓΄ϋQ₯Ό¨0ή§Έη½b.ngΗy«(\5%Ϋt5)βΐJ:»ιFάλP‘X β%«€φ›οwB3kKλ€5βΞ•ΉŠJ~;ηGD*η€ͺΔ2ν¨eŠ\&P¬Π1ΜI  ΐϊπ_qι q(LzΟΘ% ³B=&¨_Άd“κμ3Xd‚ΫωI–1Υcν*ίκ η‘+N…šε9Ϋψ_γΑp0ͺΊ†΅5Ζ΅˜RΊρ‡·ΠΞ6<ϋΰ‚έ>©!Κ$zƝίF²‰(η7|(8ρΚΒ#ά됓!ά/cfiD=Σ3Y‚ž,Κ&z0εΌCJZϊο 5π·<ίω •„ς°ν|Δ›Ϋ„ΗυάΥ>΄ _˜qά»;³΄U…—Œ<οΔς(†ΩJA@nnεƒΤT οj"›ΫDšψξp3Ύ€? ¦μt$¦Y`‘32‹^QY•(/Ί‹;]όiξ χ6Žm±Νœ³Βςή:³1Ά¦k0ψlΘήcœbΔ]›GWW·ϋ*ψέ&&@dΨJc@«ϋ²<†xα/nΣz—#ύβΧΚr|ζ»©0HΦΥ(Ϊ°“₯θe–μ>%ήB+…ƒžΉ<λ|Π…$’Η“?GZ»0Q_ΐmΈ4fηΡF:TehA©―Η3›νωͺUώŒΓŽςAjΔސw=S›ΙŸε%!ΉΟόZλψ §SŸ?h₯‹·nΧΓu θx( [t~Ίέ]Ά(rE#K­ΈΫuςtΫ!—n@IN VΗΡGͺggo:σΥ΅’χψ@³ μ&=š€JKHF:©^€ ι”’€μE”ˆ€et£§—τlQE¨ΟLΒπ“FuPrb=^§““Dmύά€Γi_RE„C\’δ5mc–ΌΌ»ψxLI τL΄άοΙ}Š1:J°Τj~] θΰ ”]n@Y”<γΚkε5Ÿ2τ9R4bIF• κq¨‘Nι!έΟL1°&Λ―8 άTŽ lŽΧω&MpSK]άψ›GπωΊ’Η)²ζ,jP»šΏτ `7>4ΞYbΉˆΪ½{Ϋ‡WZ[ͺ’μύ[r?P²ͺc<θΛarΒ‘lBΆώ”'ΧΔΏ~Σ wdYj‘Y„dΝΛ0ΓBλγ€—πν½ΰ{w*rs“­ω(Ύ£₯-Ξ†ˆS4G ‚―|‚2ωβφίΈdΕ{pκθŒύ.Ω†{·DΜ±fώBFM–H‡ΜιυSi*GΣ¬#o/(>ˆ‘11Λφ3κ?7•ήή:_ 6_κBί“NT8¨9ω :ι½ug&U£>o,žσοT0ψ’¦jζ*z;ΟΑ\LίmF^—»ˆ£φ΄ές)ΛyŚμΦ†έcωΌ­— ±QŽ€΅D ·‡V0ϋΙj\k4ϊN!'–¬θ %NŽΚۚ&Fi¦šoʏΑ#:»τK—QšŒuάϊAΘΚι²)?+ι²/žήwDγ€㟒Κ>Ž”bΦ±φDŽΧ-βaϋ{$½‰―–”δ³ΡρN·ς™ΟγυφΙCo’’ΝΚνaĝ‡‡Ϋlόσ账sΝΤW92ΕIΖεs²1œΧ"H4sχΡΔdέ=θžή{퟼΄wδV}|πτψ;>8ζU€²ΓυΈ±Iφ;†"qL[˜ΐl―δzηΟΛiό{?YΊ@ζG,½oςψjς8 0Χ…Φ‘0”οgυRPsϊw0ωξoΰξ ς½BtΌ8­Z˜‹7!57ν}£a0ϊΟχz:ΖάφχšήMιυdE―XΆžΌα [¬αj΅fΕĜ:χO‰+F‰©bd7f]ΔΤ”ΣŠ€Κσ—ΏP]*OhΛΆσA™fnοΘͺ}Z€Ί1 φ*ŽΐZƒ@IDAT«Ίu›Βzr ΚΦ^‡m}Š0ΥΤ»ίSη»Aλ£ΐωξ¬쏬ίωΥώ ρq¦r‘΅Ά²ΘθŽΞχqlΣ³S(δ¬'™œN2Ε΄γ–’ΘΚπμ|ζŸΑΰTsι‹8X(Œe¬jKm˜' ³t­΄¦ο֌"cΎ”ΧΔdd1AςχιΖWώβ”™g9RΏVζο3ί]ΗκΪ4ζ·h_ ₯qp_‡ZΡk€°ή ΕYrέ큝―“μΝμ=#“Aria.E’Η‡zži‘Uώ τ‡XΟ„Όλ#?σ™_kτtκσ­tρηEΦγκΠ)πΜS`k‹?έωL°°0¬―ϋ6Q`q=ΊΔ£¨Μ–υ>=_Aι{έQPώ2rΛax€ΓΆQΜ.ΡNΫ°$˜S‹PiOϋ v’eΏ&₯Nwvc4νMδŒ6˜ρbν[νjDοr$JσŽβ`¦L«&,“ƒ†"ΤΒ•76?NΓ%l싃99™tκ’D)<μ½&=±›,Λ9”Ρ&c6χΩ’Ή!QΤA“…Ω΄œ‰©EY³“ΒG ’”‘λˆΚšˆ[ΣΝΰΥfτœ¨C>zΣέoΗ?ō›w0š…ΊΣg9‹šš2v—HZ³OΖΡoώ)Φ’>Γ£»Hͺ;„Γ§Ώ‰|¦FWq]wbδl9WŸ˜‚³ψ£ίΫΐείώ3©Ηρ…ρυWIGˆcίϋS”'YIςύ½!«F”ΤΓΡ<πΪ°φ;υCή«(-Kζs]xˆfϋεVV₯ cŠΟγΗoG υΙ½CaX_Ηtϋ τ  `Ϋνf΄Ÿ9RΦώΨr|ϋ?ό[\ϊδ"š#Χpς›8wT¬'ΠϊθκΙ•π£<©b4«ς§\ΫOR „^ndtΚΑ+ψ§H$k¬ΛΕΎ}›dΌδΪΐμΝ§χ:€οέ΅’Ž>΄₯κ΄π ՌΟ¨l$5Η<Κ“’kζ/\^²Q6ό²xfή+xy+GŸ`}ιž,Q«ΰgγƒ-ς†©πέ£σ%ρ{_jωβ6jˆp£±ίϋ_γpσ‹/𸽟vb˜‘[Tς³'`hϋ θΎ€ρukk{‚γ θ¬tC ξTz(ο«qζ­ZZΑ¦ Υτ/<)G L+{L«΄τJlh»όkt‰2΄πω™L’Pe‘ΰV φργΓΠΘ·#ΥێIϊ6EΧ{υΦΥΰœ|hΌύήωŸΠxυ:?Α*­Ρ'§IΙd $ΏΊ²°vΕι1(Θγ«_a.,΅₯$+ŠΙƒΝm-Κ<ί«Žœ<ό"$ 1sΒ†hγλx)=Τ!Ώhά½ŽN–Ζt|–ZδΘxσ«ψ>mϊΉG§ΗŽb~m±€{ΛΟ<ˆ ‘&dΗωNϋ‡{К3O—―ŸΉU‚8>8p:ρΤχρβ֟]Ό€CίΕΩοœ’6PŽ<~ΰ°©ψΌvy>€ω‘ΨΖ]Ι―Yε4ŒšεrεQ2_λz-z†g™_W½ωg8Γ6ΰ“Šr'VΏ8j¬2“ ³ύhi“€dΪt]³Y°\°2„ώVu€’ͺ˜Η>γmwΚ…Ά¨$‘ΜnWθ~ΝtIΆ(Ω“κvtΪ+TeΫ«μ{10'eaέށ E›ΔτQq¨Ο*13έ)d4Σ%ϋsN  –ΠΏά`DΚΎαΡΙ^·ΞŽ₯5Bμ…3 ³©diοΙς Cμtc2%λ|dyšν0WqΡ1qHN4=„±Š€Iζv: rΚKΠέΨ!RT ‹ˆρ^šgάY₯»HD±oΒ3_‚ςŠύ±Τl“t„°©x\Ό8R‹Ιό†ι΄½>:Ž›WΘΧΑ@Η`αΈ₯oΕΙ~wmΏφ‹8|¨H(g­Ÿ%PzLό}”3«z e8xΑŠχ/ϊΆ³ΪS…g'ι.f@<«’‡€Ξͺl)ΉΙθv‘‹φώσT/OaΫώ^/Ϋ±ΈFχ-£{μ …U ₯—K Ž©ωA8B εšΗEΖΛܝ”­*ξ­Τ\Η›Tζ}yœΥŽΞαΠΎδco>ι|0˜ύΦϋ€uyu”e LLξdοHτFž(δϋ Τ*ƒΚUί”o·χ²―βn—Κ»šω™’iΒ­ΟόZλψ §“δV‡ωƒVΊΈv‘ξ£S@§ΐsLM_Lχ?Ητ›ΎB`ΘΘδ sCCCX^v·[šOE§θeeeqKΌuu)¨γNΆcaKS_αφ ŠΞΗ5αξφ! 0―I6 Σ\Λύ©Vx‘ Wšίs²ή7Θ («ͺε“$”βx=ύ9e09r >αν+fΕ1­.sdSyΩn§΅6<~τ[49θΙlƒ±Ei έ7Ÿ›TJ hώvibΪ=ΠY™fΫξ›pρ£<όθ{gyϊΛqόΝrΥΔi­C`€–qo7‘’,s°ο€rœϊϋsΘQύ,|~uΐ§*ΉpSΕyΌMΎ;J²Ώ³ͺI;οα†b­ŒEj8r@œτ77ͺ[ήTΝMπ€:w<:sΧZXͺOџœ +j½xΊΧ―\‡ε;'xDΖΌςύΙΡΉ»ΕξΛψ’¬€ͺ:?ΚΣά*ίΈω%*ΚΎΙӊޟ†σςϋΣE§4΅ϊ geτ½«T'/ω„Ηl£“ iΰηH?¬`νπ—Άξ&[ΜΘδ AQΑ7θΟ΅&KSwpγQ“kΐžπΡωλ¦ ς₯™ΈτΟYψ.¬Έ‘)©GίdŽ/„ΝαQ#_ςa\POeίlGΟ› ΘWψυt?ΒΈβΩα6/ε9Α!)$ΙZpZ·½+΅ρyZwλ§M9|AΓΨ} €6YυοδγpΏ]ψΰ_~ƒδŸόΏ‰(Ά ―³?E7· /ύη*DΉΔ)RΦQ|󝣲'€Ύυ%«ΣΏ£ τόδŠϋsGcΛ`;ŠJJΉDΡ†JΌt„—€\–Ίq₯ΡY”B}Ώ!γRiNKόΡΖJΈC „Ω[y ³ΦtBΝ΄Θ‘ΙΒIŠξεd^f½ν$³ϊNŒέSγ{-Vέ‡χ[ŒΚšε₯½$·κγƒΠεA\ή―8”žϊχ§|―0σ_ύꆃ—>―ωύ”Jφ~$%υωfω5W'Λ D.ΆZΖ#_;Ύ@ͺr‘Λχδ˜ΖωIσχ σkŽ”.zθ―ΪoŠŽρGž6τ xes‘›“£ΘMΎ]άηˆΠ*(͎̑Ό›μwoΠΞ[}ε‚}·<iRΔs80#j,'2ήλz8,)(UXE°Žw(ΐΑΘvδG Z:‚'嘰 cri k+@(i·]!C.”,ΈvŒυΘϚθƒύΉΘB΄ υκΚΌq‡Q“@Θ… ya 3Ά‡θ[`€εEΨWνdU€λS£φλHτ΍`#$™Ie(VτΓΜt· ΘVδΙέͺ¬Ω«x9§ θ9«ώΌˆp45>D\Ι|ι ψ–έsίo ¨:ω=¬7’…YΔ•cύid ί™KυΊΆ&¦’rŽα•sαθ‘E…­}ϋ΄ω‡°)EΧϋΰŠ«s%ο~œϋQ Zšο‘w€Μ6Δ€"έR€ΌCuˆλ½ϊΞ%8}φ˜Δ(¬>#3™C!wη³/όγopυ7δΖιƒΈz§[lž¦«υώ]<)ΫOpJNκs‹GMΝθΒ:Y M0˜ˆ.ωΘ,ΞEYβ\θκη-q£4՘©ΌΔ*^Zs§tΛ £QΘL=ŠΩV,…šPd""n2 >ΡeνsSŽρΞ -v,¨­i*O+aΥΥΨΎδƒ‘&”§UΠΉ.ε°Ώž^ž₯ +Ψ ‰Fr,)™³$°bΪ3%οJ8„3΄ieΒ֎ρΕ),m¬ΣbfΜ‰εHϋŽ΄}E{Ÿ §σέ@ϋQ+ίΝDεΉ·‘Ÿ0…>² 1:2€ΩιIΒ&ΒRXͺόΖ:¬Σcύκ•τci' >‡ Έ“J£²γυσ›ΈsσsΨ*QτudqΰUυb$_f©βEΡ5ς © 77nv[όέF‘%ιτ``ς‘{‹ šω‹V92~­‰οΊ‘=σ3"VzO± ²ρΟCκ]€σΑΰuΟbWzθ(λ|&‹s gΪψΪίƒφ *θ΅ΚŸρΑδδ%‹3ψ lF&Œ…w†#ς²K€~ΎΉ: 2 (5€ωŠ˜…ΏWζμβ₯™ŸωP7όZϋψ u\ΡΣq½εqήαCκQt θx¦)°εrŒΗ3έ\͍΅ŽΓ”–Šh0gggcddv»ΊV .ެ ›Ν!«& v-7œ ;ˆzŸ)<ξώ”¬Χ>neσ „Ε&η&­ZΡ=ϊMm7Uη\SΓαWXΑρ’£H#k|Žn ]έ_α“ΞfΙ{ί¦£NΜPκBΩΝ"FΗZΡςδΊ]ΊΛ„hoV·…Ό&ηIΆsγVWWC68k%Ž~Ax²έύ'Ό»<σ/Ÿ€γ”“₯§ϊΡήΏNΥqΰΫ‰S;;κ‹΅άΨt‘ c½—πήΟBρϊ7Ύ‰'ΰΊΡx½¦Cύμœ_ΫŊ_mώΞu³YρΐΏΙ'Npΰ±Υe±F¬ψYϋ·"­€toΞεq΅›FWγ—Έφ«λšq•Μ’η:Ρς‘6ΐθΝψ[ΰΝ (/ΝF\x2bοοŠβDHVΜψνΔOWgρϊ9’‘/YωΫΣψ\όΥ%Υ νb<ŸΛ  Δ²€kηGψ«Ώ]ΓwΞGi.κÜΫΘό}z―όήΕςΉ«σkια;ς—O8”γτ'gΖψR@όeΉο_Ξ”4 ΜθHo Δ ;šπΩ™Ÿ9UmO<κ|)ψ|iόφΟρd\θs§PY ςξ, ‘―ίQΠΔ—l«œΚ†{ќΏ?ΑSδkͺ(Φ-τ<8KD>܏žϋάΏ»+k4*³­IήYz€₯wΞΐηG¬”E—ΝH‚9ρ·Φ(ΟΰΧy‡F1:#ˆ—ΞKψ韏α•Χ. Ύ"GτuΈΪF»ΡΧφXΆζL‘«‹ Π!Ο œζ—₯qYΣw”ώ|υχi|βυΌ‡ΖΨwΠ °b/f59q·›>rΪτ&†*Ξ―ŸκψΚμ}ψθ¦0>Σ#Δ՚Ž%Χ&Gn¬/ŠκR—ϊŽίΓC―;\dV—¨»ήCΣ{-ΆJ—[EJ8\υρ‘#γ½_"ΤΒϊθ:&Θ0šσxk£ωΥε_όΤњ3•‰Οk–η5ΏoΝξδΧ|ύ’Λ©HΛc΅Τω΅gΰίVυ Ο*Ώ^Z$eŸn])―*•-*zΖ0Ψμ΄{]‘η ?ω“θ|Ψ΄"Xϋν­+=&Ξ"EoœσΡf»‡Ο‡yŠPXιΉ?DC1Mηγ£w?Ξ1ΙQ8_+)>άVpeχ†bHœ ύ¦KDNΨεnΛΖ¬γφ›Έ‘ ΛΕ‘β“˜‰χP]YhΕνώ&u‹§”$΅ς ΌzrΏœ8˜τs%ΰη›ί¬Qˆ~jΧΉ.\}χ=θLι^§tΎLmO.γύΥrEωωƒƒ…ς^ae€[?ΓΥ{ύJ/JΞα,―ك€ΞΏ­%+Ϊ§ZdjοςνW W+ΐ­_ΌφCTεͺ‚‘»x7;(V ϋ/ΰΝS5BSΈα/π`΅TκΉ™8φƒsf₯ί ςcΗΚ~”Uf.ΌyΦλϋ:_ϊιox ³Φώ =wβ½NI9‰c&€¨akCΈΧwCξ@baω8V|\±‹ς ΒWzΤΑ΅~—‘ͺψ]ž@‚βƒ)©§q,Ν’Bxg/;zGγα¬ΌkίHixLλšΖ9Χ]¬ψŽ<ΦUη»ΙΓjδ»lJ&Nόˆxͺ—9ΛύΧρΛίκˆηΟ8–έπNΧΉΙIφvΰρ²·_rV>‘(’<'zΊ‘CϋncPj9βx~d_Yx„/ϊοT[έiζ/ZεΘω΅ί|W½ΩΌot^Κ«α-W-?‘1ιζήέπ‘σΑ ʟ/MφΡΰ΄΄YθΌφίpλ±8DΡ2ΟΩfω“ͺͺ•–žχh(τΎΗQƒdޏH杀6jš―¨FAgζΎΘ»šω™’*β­―όšΕΧ:>θιΤηZι"φ~Υ)πΌS .†·.`_d°‹ηΣΝΝΩ±²"’IžOψΪκ^x©ΙdύS˜;ŒczΪq7Wrr2Έ,ggga΅ZρυΧΫ’¦χ΅Ϊnγ5ΌύŸqށ“fξβοόo$Ϋ~ΔΗεΓHΦ^’BΓJΘ“Ν­5,ΠfςΎifδ-3rΝyHc[Λ6±Ά2‡ak—{0x%Ÿˆ¨πp„Σ1™Μ­­Ο`b€ΛΈΘ<?† 88­CŒ@+νΔγ_―γZΦώ―|΅5h­Μ«;c43C²εωq΄<π1o²]SjFuΗζκƟάΒ 3˜L₯–iyε0₯&!<"Š;Yrsiƒw¨Z­yλΓksΈ\FίΕO¬©dT/Ž6Μβ‡m_&°φ τŽ΅)3Νύ ε°}7οZλζ'ŸΠZL€ό%>±™qτN (Ό΅•Iβg=ξω™Φz>εt:_β; ˜|ɐWΒL#Κξζ2ζmγhkuc-^θδK;ρΚ“žšκ›AcY.?–asƒ6Μ`zτ·‰Χοδw€‰Ε“‘ΌΔd„½@2{—νCθ~&NKΥHIg“ΝΙ­›vLM·bΜέ‚„ΦbvIΊ|―5ΛK{LnΥΗ ˜γƒ₯όΘΐ ›EΏྯσ?Ώ1­ο§?󣟽7Žλ8Σ?q…«PΈΔA\$@/‰"MSΦa©-Ήεφέ1έ»³»ΣΫ±3±;³Ρ»Ρ±±»1;½=ӎ^w»=m[mΛ–Z-™’H‘)’ ‚Δ}ί( p_Ϊέ―ͺ^οP 2ƒDεΛλσΛχώ—οΟ?ΤΙ’Wρ­–ΧΊι™ž—λ}1yΝτ ζτ O«ΌήΨΌ<εηη{ΙΟ„Ό£_GM‘`9Υρ9ήiCOO_Œs‘‚+)uΚΖ]3·q+¨Μ¨F²'Nτ=Δ½1i·ά2f–ΤΪHοŸ壑΅I 8»Π6’iτ‘—0;˜šœ9φV»qσ P^‚ S`β΅wςΗύΓͺ‡ΗϊρΡyΙ«+δ§C“Oξb**ϋsά ]ƒM¨ψ·Š‘3W|δ>ύ]NžxΌvˆ H? }xΨΠƒ”šΣȌα”ιΎωnωθ7δάγ$ 2Ι‹‡ ΡT^ +«ή8œ/αηN;βΕ'_oaCC*CŽy₯ŠW7‰χKΚzρr}Ν7ŸκΎβ±ΕΟ*FΞ„Α«ξFΞ\=gσEάJ³γXE]₯’τΠaάtZƒ•e‰Κ»Ώ²¦€mˆinΌάΒşLΰΘ‰S(ίΟ΅λ\c}κVΉ‘7:~ΰΉχυΔΔU΄BΎ\ε=]BΕ9ΫJGdά†κ.‘²”ί°―η–Ό…ψΪΘ«Ÿž ωB\κ§'tm«δ`ΨΖ<&θ(oΞ+‡vXΔΙλΞρz {lJΩ E '“΄Dύ]ηθm zΤΡ¦Β©LξnΏάνύ”n¦ϋ;h3Jlžο1ώφq’χAήτ{3ιyυQp—7^AέΡj ;xBοΝĚΓό¦·wŠΊωiTN¨Θ©Ό‘Š©>ζ!¦žΫΘ|€‹† œ‡χnς&αO§hXΎžGš“ΧϊεΫΈ]ΔGΔFΞ”:»<ισδV)T/˜΄Lj qοgπ#nψZhG―§‘3WI5§s“9›9$²Fεΰ*yΟ ΖοΧ5Μ-ƒίΛβσ]ΓςŒο€ΗΩ{΅˜ξC^sΉFί¬žφχƒQ\κƒ’‡ ‘,+.ƒY‹g°TέΚ Ρ»Œώon؞ηhsϋδήϊμt ξ?΅rΠ½―Α]­ŒΚ¦#ΈJ;¬ΤφάΧ†eΰ›·²χƒ΅ο‡ΎڐΉO˜Ρϋ3ψο#σΨjy­›žιyΉήχ“Χ]Ετ ϊ~™Όή\ΡΘ™Ό, Ώ₯Ν/€ΫκΡYα,φDbΓ#(iƒwο>ατk<’Τ5“=Jωπόg¦υθHlQ±΄ΛŽ iχαΖ—«X\žΕΨ‚βΤϋ[‹KttR£β±‡xεΒΪͺ‘-’ώΏiyHJΌ6¬Ξ££³Ηo#Žβ*$Eq~,Φι؈)t(ο·1™±Ž"dΩ“„ΥtΤ…kŠŽ©v?6JGsOGΡ”|e€!‚Ϋ|Aζ«+³˜™μΐΈ»ƒ·ΎnΧψΉ1±IΡ΄³Μ“Θ?ά=²4†αη&Qv½-’ƒi°GΕΡIς4άMI2Ž5uΞΠ³~GΑ†ΤΈDGDρυ6Φ0K›¦y«%Ώwl&“»Ϋ;t6G>’m Ψ³7RπX΄DΗ΅sFΠ›βIVη ²z}eΣƒΝχPfdλδ?·ε‹ωy€Ρ‘Ψ"Ήk”½¨Ηδ uƒwβ-ςθ\Δ78Ωό;ΌE‡‘Š6 Μ?±…rλRHΟw Κ3#C₯cτύΐκ©QTβFqQZ`1†ΐξD€yty$žΖšϊHΑέy+θξu\l νiΰΌ<Ο‹ΑcΙC8g8>8H:Χ&}`ιζΤw…Ντθμ›*Λ1Š@.ymώymξ{t ½ν$βkΡΩ¨:vF9nyμ~ςώxKκφΓΚzΉεuˆ£₯§΅ΕQ΄·m…y‚•ά³Ά;&—ΌΗΠJΉ”eΓμ oνπNΟχFΟ;ΕJ<½[φ…Ζ80.¬E€έΧήxZ)ΟvΊόΔΏ7zή)Vβιέ:Kaμ˜Όφk3ς%|ΫιωZ’ΣŒ`<:§ΠimQδ y}e#Γ‚Ρ /Ξ!bθ,usλ7ΣΠyλ{Γ(2 †C€!ΐ`0 €@Ύϊo^C&ΟͺοώΏΈΏΛχξ„Qc<2 έŠ3tΖigΊ€ ή­χΡ~GFF"ΣAGΚ‡s‡ά’±%ŒχχχcqΡί1F©Y_:[ιfΆ˜ϋΒΏΖΎVγ‡ΔnόΣΒ§χƒuΖβ§)–Ε`0‚@€Ι₯ @2X$ϋhr οf7nχz΅²Σσ½:΄‹Ψs΄‹)ξ:»―7opwΊόΔζ!ΗZf0΄`ςZ ciδΫNΟW£"鑃1tVΧ“βΎ ΓkžψK©•ΏύέOό6—h³ωΝίͺΜ΄Βd§ΖΛchozŒ…­"Μθ0ΆΘ”(¬/Šη}kπ±Ϋσ5 aI †Cΐžvωj H¬†Cΰ©D@Ι(>TΜ¬bT>ŽμΨ½B_ϋq₯s˜ΝO·q~ώTήt¬S †CΐB"χ ﬕէψψžxΝΝΝ(Α²}!°ΎΎŽΉω$&ΔσEΊΊΊ°ΌΌμ«xΘ₯η:‡}ι€?_Aσυ»`'ЇάΉ1τ œ™‹¨€Dˆ³m9€γΌύαf+[‘Aa†C`Σ`rΙˆ9£‡ΩΑΉ1ΙΒΩ7τŠ |ωε—;:ΏVά7ρF€=Gޘ°”»―­Cφ~°GΦ C€!ΰ&―}c£'ηi›Ώ{~xbΑεsΑfΠ>ΨιN­αNΙSfθΜ Υχ‹ο2_ΜH¦,O,yυ8‘Τ†”Ί΄]›οK`0!π΄ΛW‹`bΝ0O)όό3ΎǏŸFAN%#g8Ρρ{|Y±{ηŸΫύ~xJo9Φ-†C€!`)»έΠycγK,,0ΓH37ηΕ$%9 œr~ttΤLS[^7:-Ρλs˜@{σc0“χ-]—FΪΡ\_\ϊ-šš›ΠΪ܈ζ†[hΈϊc\Ύˆf© OV˜!ΐ0“Kζ1δZ¨ψζ!٘Y2’ΰ<9w~άΖ§sž%cƒ˜―6βΆ±§«φ=]γΙz# ΐξkkξφ~°GΦ C€!ΰ&―}c£'‡“ΧOΣόέσϋΓs>Ο υά:Κ¦ο?‚¬”ΞβM­˜ΣQ—eμT8zqωδEΖΓΨ™3²H<„₯±Ε]™ΏSΗ“ρΝ`„>O»| ύ`2ۍ?ΜΙ€=. τυΕηH:»>Γ°=jΧΞ?·ϊύ0Ϋ*μ€ήξϋΡg0; έnθΌΎΎΕΕŝ6l!Ηor’pΒαψψxΘρ揑ΙxH†²ΝΜΘΩL!™·δšΑΜδ8¦ιŒ+$YdL1» &—Œ8g(ΐΔg%ςœ9#‰Ϋ½|ƒœQΑNΟ7ŽΜξ«Ιž£έ7ζ»‘ΗμΎ6>Κ;]ώβί82¬&C€!°0ymUNή=MσwOωνyB —ΟζΡΩψ=£Ysob*φ/ΐ9=Šώ^xϋ·Υ¬Ζ;…>2ι'™Β5KΖΞ’‘ΕΜ£iL7LμΚ|-Χ;z σ †@Θ `?§YΎ2ω2·c„!²πσΟυILG=AγνkΈύ»KΪΐj^ΤS-Ήωv(Ι&―CφaŒ1!Žΐn7t^[[ΗӚš½Mwͺ‘³Ω~³ϊ †C€!ΐ`˜G@2fN―Θΰ=ΑIFRΛ;=_κϋe0 }μtωˆ}h° †C tΰδ:’;-ί³›eθό̟όΩ,˜P«Ρ΄ ~σΣ‹~[ΙΙΛσ›Ο2 ΝG@2nζ<8GΩ£y#ŒΩNJ—·έ–ί›ξ͝Q`0v%œ<}šε+“Ÿ»ςΆffB`·Ν/9#ην]ΙΘZMίΠ ±J †C€!€ψΨXΧόόDcii33³»²οVvΊh_>ίά£G¬l–΅Ε`0 †C€!ΐ`0 †C€!ΐ`0B ž—όό|C<υττπυΒΒΒάκ‡Χ=ρ—n)]τw?ρΫR’M8ͺΟo!–Ι`l*ΌG7Ϊκ—οeδΜήmωΜΓέ¦ήn¬q†ΐFΐSΎŠogem³šί©fɐŸμκ ²tΰb‘Qq|‘Ψ¨=Ψ¬Ε„„μ—ρύκΪΜ8q―ώΑΝ1οb )u8ZTƒT‡w&^Δ£‡ΏΔ§}’‰Ά Ηkή@YFb4J£μkώΧ.aΨ#Ώ <Κ3 ΘΘY‹ΞW1>v·λ?@·G½-»΄%"-ǁT"Έg”¬·2$Δ©g Ι S7ΠΨ6n=υνμŸυ½a-D tλ8Z\…ϊΟwΰ³ϋ?ΓΓi “—FθεdCN’Ιρv€Δg!A~'pγζί A“Gj*^Β‘Ό"/Ωt’ψ$΄‚«}Ϊ²έ=³ςLŸά!#λ ŽΥ";.ΦkTަ”ϊζwπ(ΠF―šΫœ°r‰Ι]kίJ<£"‘h—ήǜΉ³΅Αˆ\2ƁqΉdζyΧί?γ|rΈθ’gΜΛuΡ36p[[‹ΙΑ­Ε{§PΣ#ι{39'‡†‰δΎdžΦPˆ―œόJ₯ΧΒB ήΉςŽΧ7§™ήλ—Ÿ5VOu£Έh·ΖR «Ψ,έ€)ώ’Ι#Bjt ’ΒΒ°ρε*VΦ0·Π‡ιUSΝjV.zξ{8U•‹Ε±&|ϊΟΏΕ&¨ίxΊΡ‘ΆŠΰUΈ–η5y”uγaƒ=&±{’°ηΪϊMXΞ-τ“ t8zIqH¦IΥβλ-,`p.ΐNs, ¦°‘"λά™brΉ‘ΊΩiη»~―lέξ5ω~έ ϋrΥχύ"—σΩλΐχ΅Οͺζι₯!+‘dKDo―¬N‘wfPƒ’g’Ύzζωτ€Οw4€ΠΆ‘Ϋ₯Υ•1Μ‡’’6₯ /ΌpΡaλpukw[s|žΏpIΤ;ψύΥλΪήΜ–LΌ7²₯η}XΆ(\Έ–ύΏ³εΆΘy©E=|JuΨοSˆ€–βδ’P->}`Ι[ˆ@"y9HHŒCdχΕΈeΧΫ;ΰϋΛ!{Zς%@•-ΙήLΉ€’Ÿ;gΎ€_NX?NFεDυŒΞΦ³ Φ’.ΈΥ₯]5vcafθΌύ£ž‘δΪΘ™γvmMs²g’#J{k&ZρW5%VZνυWj K +rΑœ}―γ΅²*ωΪ;‹hΚ!z?²}9‹…3žΕωΊUόcύΉPŽƒεΟ"[•βM³Χβε“axησχ-]°φ€γσz‰Ζ_Μ”~}–΅8#χΰ³8s¦†o΅}ωΙζ:oc,†‹5gƒΥ §²³΄kΗαωςW1aασgˆ^tNό*΄Έ$}έμ΄V†'λώ‡μ6­L ͺΚο lγGΈ2ΰαωΨ=sςL·ά₯^ν&^,.Σξ₯&$—γμα¬\ω:|– ΑŒm”KLξZ{?XŠη&ή†δ’!¨ŒΛ%3Ο»ώώ瓃E―<3;/ΧKΟΠΠmu₯MΌίuΕηΦ±mμŸ/–vDΊ.άΒe;ͺ:™ηi G_PŒœ©“ ³Ζuι ι—ŸB#¬žφχƒQ\4††%1#R†ΞΡ1Ε(΅— /.E£›‹θΌŒ¦ikM‘#"Ώ Ρ‘t<U+’’β«9Ύ?ΰ.΄υό­sήυβbOEAb&2b΅p<ηl+υέ††σ $%V£,­φ¨h/FΜwβρΠuτϋ0tπͺ°™ ρE¨,ΟF-ͺΟ4‘c`“¦Άˆ^DD$βA»Ω=tϋλtnfHM,EZt’Έv2Ž—¨9ρ°σ=tj›aφΎ–(ϋk–^VΪ HίΟ‘λ₯χ£±Sτjτ‘+¨·žY>ݘcΫƒ@|>*kjPRu€žG!t~ώ\kΠϏγ^σxυT>ψΩζm¨ΡΝ\D ž·θJtݍŠbγδHεΫŸ$kg#a‹δ.ǚ™χ¦‘qutΏo£+ρla­—·_τ†?ΒέIeαȜ7Δ§/†Xϊφ °ς̊η]Bg3ε’Dc›~υΞ'¬eӁC…'MοW:q΅ύ:”΅ΥX”e?‡<›Β‘ižΤcΚωξ©κP“rΙ“ ˆOο,e‹H©ΐ‘Ϊjδ–Θs$7N υώηΈuο±[rΐ 6_BθΟ— Κ‰€ƒ―·€Q9ΈžΡω Ρzz{ΞΚ[Œ€Jž½σ׻ō?}Ν1CηνΣαι64φΊΎαΝΛϊϊ*’‹N OΚrήC£μΉXJ ύί€XI/1ξΎ8Χα­«_ŸF‡2‰:ε8σ*#η…™΄4£ί5‡Θ¨d8’‹q(7S.•Τ=΄©jOO΅cΨ9‚1Χζ畆‚μZς -xK°@]ΤK4S2,B9>ъ‰>ŒΈΖ±Œ8δdT£6»@ΘM<„ͺόϋξιKο’Ÿ5ε]W’»€σ¬›[ΐδ΄H6ržG{ΗUάk{{Ι‹8[DΞcΈXŒβ,†Β΅‰ΏFι%$¦ͺŒœ9>$ωFΡΕhqVzΰE7#ηήξOPί}«15¨-}Ε6aU£"0}›€ UΏŒΠƒyfDξΪΟΰ„ΚΘyšΌίίκΈ‹12‚ΚΜ>Iyε‚kZ#ήΏ―žJ ‚κι‹2Ήkν˜ξ<Κ%#@–K&žw#ύ3Μ'Šyfj^n€ž‘±ΫUuvΐs»«ΖΓhgx|η8s˜Ήv£­„t½RšΗIwχVνZ˜Ζ¬E\‘ŸiV@Πψ~0Š‹EΓɚa0 ›3(·ιΩ©)'p2cΏ:ΡˆΪ”<ŠoŸnJˆŽχσίψ:V4ЏK.Š2+aχCΜ–P†γ…aΈΪω…›±BFΪs8š.*d5κΗΖ’6/kν—·Η#…Ч΄’*;ΐ§τφmΊ‘σVΡ~„;7‡Θ)έ ‘Y8RW‘κυ&E#ŠQ‘sL­nS­Ή°ΰΓΨΜ}­>f†^AΦΧPδγ©Ψ›ƒC™ΟbΦγyΰ83RΟ ŸΑ£ΑJn )₯¨9tΕeElΑ$:aς^R)%Έί²Š ωΩκιή΄S‚γΖ³T˜ΌhΈ'œχίοYΐψ5yX’^i―ήΖΆJξΖί›zϋ$•7ςΎMŠIΪΘ™£³Ξ½G€`PΞαS"Ι~·­”g<ο Z›(—"[32Ÿ°’Ι’άcŠ‘35Ό΄²ZKTBD|9 Ε’m•8Ά†ϋšδz¦δ’άŠ Θ§R”ΕΆ ΄άb”“‘³Ογ@Ωρ7θt χραΥ>‹yf°ω’2oςΔ&Πυ–Ν— Κ‰@όλΝ7*'Χ3:4ZOoΟYy«(Ο¬&ΈΓΫc†Ξ!0€ΣMψœώk‡jΌžC9‘\ξ<;έ ΰ΄λ„Zj.Rβ₯Eί1t<όΑm›*ΔWKžŒγ¨K£WπΛ¦kͺΞu’c°Ÿ?TrΉ[xϋβ-U9)Κ•GδΉο €ΗΣγ½1ƒžΑ;μύ§έMϋι΄ΘΥπΗ2„~„…©υŸεo6Ω8ύ(L΄NJφ•9Δ»ρδF³…[ΠΤόzš±—vΘ. „ —‘­’»Fί›F‡ΐΰϋvz‘ν“ £9„gΨΨXC‚½š|‘Ša‘•Ό\)‹—†δΌA>%Ψοv"°ƒεY¨Λ%Γjt>a€”f•,š•%Ψάς–]pϋμ γΏMfηϋ0Ή0 η,Waƒ#©”NΫκΗ&`tžˆ•ΝΘ%7†θ"(>=+±λmD`#΄π>0ԏ©™Yμ‰ΟΕώςΣΘχ:ͺN£f  AœΊΓζKζΖq«ζKε„ΉΞΉΧ6*'‚ͺgt>h΄ž{ΧΨΥΆ" θΆ•'Ύ’5!Ξκd―ζ$²ΕΕΩα;ψ\+ξ$4’Σi£”ΘπŒΣΫΠG_r  X¬7=κi䬀Ηΰq«ͺ}ΓngμMΧγS•q‘šwΡ†BΑVώ".œ*Η^2^ίƒπΕnόώ ‹–·½H―­„γΠΉ ξHyΆυ½s#h©Ώ„__ΌξU>½ό*Κ ++iIΠα=B˜›ΔΰH/z^Γ§7ZTυpβ›oar$aΆ†¨΄r9/λπ·πνεXΘp:μkπφoπι]mύΣ‘ ίEυrδf*šπω©~Œtw ωφΗhκRt‘5ς“{π5œz…9’FΔ…ΎϋΧpωŸήƒ6%©v0Ώi8σoΣχΠl„―‘ϋ³Ÿαz‹'Ή8ϋ?@• £2½7~†+χ³πʟœCέ<λ+ˈr ‹Η>z½‘•8uζ°¨Α½wίΖE7\ήΌπG8|° ωn˜τ ύΞόφ“›^Π?~\ρŸCJt8ζ;―£~ŽS'ταΉUχu)˜š&φz–žwΙΘ™7T«9CF ά;=V(ρŒXΠď)z‹¨oλ”©ΔKΎΰΙ eΦσŠrΛ Ϊ‘}φ=\“Œœ₯ii₯gRJ—~uγ«”gΖδ©q3:ž‘»ηςοΒ’ω) ρ“»fΘ¨άU?WΕ8υΖY”οWή}ΔNμCgΣMάΊ/y ΅ΰ=ΆοΎqώ Κ‹Έ]g\pa€γκoMπφlBšφ_½ςΣ”\fΑgͺqΉdόy7?γ|Ζδ™OΘψ σςΝ ηŸ›νΙerΠ,ξε47{)4wΖΚ>ϋϋŸkΟi3_ΐ›―֐υO8V&ρφ;cΫ2δ{kPΏπ]ΤΪ°ϊφ9½tu~†‹—΅žwδ|—ΌάŸ-―nŒ₯n ,Ω‘ΘΝY'H―nώ‹…k؈όdυ|?Ε“Γ”†C`kCgjΣ+εc’§¦ιC~π‘ͺχ#¦Џ†E%…*ggDӐ%Lc`ΈƒA1n—/ηιΘ½LL>Βΰ’ϋ‚Ν>―=σΚm?Ο<£¨jσs%5ζg›pΉ―Qζrpό:’h|₯XOΞΨΖΘ‚ΚSεΖϊζ+AΆš-g}Έaq©-c+XYζ&TƒˆN{ΗΣ`ηΚ oϊμΝ†ΡϋΪ»₯ΰR ‹,Eaͺ¬&DοΠe4ŠΖύ™q”“‘sΟyŒίΓ)όΕgΖh=R·{ήƒC•Ϊd䏩yτ7ίCί’'κoF(U”ΙήυΗ^I΄.ζ¨ύ:^ρlŽŒ ΛΟ|ιι)ψωίΏ§ςy[ŒΣo~eZ†”q)Θ*βώΧ ΛώSότ]ΙHڎL2’Φκ΅-³HεXC`b½νcOnΘΓΚq|γ»o Q9Yvόό͎΅»/…J„±*(BΉBJŒΖskξλ\δΘΟΧ<:YWWsAάπ ¬ΖΣ©hτ1β՛଀— ›μ±ή‰™9oΎβ’₯υC {¬έδζιΖΑ—<3*w—°Ί&’Σf’UOΉž‹ͺ2t6χ³Ρf›?ϊΞKς>Ž’x₯HbΚχ―>ωi₯\ςΝ“”c\.}ލυΟ8ŸFε™„Ζ―ίyω&ΠΣ`!’˜4+W‘Z‚|;7š%(?ό1ϊξό#T­CY‘ h&ζΘ¦g_Ζ6Μ?ιλΛ„LΛ?„Βοoη:·n}ί£Ηά₯‘οͺΆσ]ς::9‘Γ8(τα³ΦfΏΠ–§0ν±LΓΣύǘόδN;66ΏfυδΝ•4VζΏ;t8«ΐ`ͺ%ονΑ#5υrKCΜΞz9«yΪ‘·€¨ϋ‡EWΠJ ΓΈ,Ά£i@›{|a]K;kC"2 ΌN“aΉgXZΣͺ§”ŠΝ;†£‡ AΫΦi·Uψ nτ™Ie’>ΙEJΨ―"71‚€ΩHJHE4Ρα)λΗ&‡0άΡ€†ζ1ΡΊCγ°:‚'cŠ»Gd‚ΜΠά’§IΜ2x_Λ λ€—•”/+ΥηIΎHFΞ Ώ§΅9΅dδΜΉ$ŒΈQyz0ZωΤ G(”/:rϋIξ°ΫdvgF01Τ‡ζΫθρ4lΣσόqMαΨKGI6…cq ­ΞdTWΣϋΒ!-'ΑΆ{Έ{ι”OΌ"ε(βI­/τΰ ΚΣzsΨJΟβθa±`¦ϋn5φ½,͏`h”<Ε4’ρΞ$} U½Ζ1b0T °JZκ$Lν8κπό±bD’›«ϋ6n604Ž―ΐΙ³Υ΄πE8Œ4ΰΪ­f™ŸΌCηQJΗfΊΑ ϊZκqσžRN@‘¬CP–7Oψδ‘oaΰ.αΰ‡G N?‚Β,ΙώiBk§φdZ―|1<ŸπΐΘΠ%ye?”Ή_¨Ί:„±Υ$Ψ£Ή9³‹Κ›3pΫλXΫPJΡλ+¨P.I­XΖ§Τ`hύ>mςeΎσy―Λ‹ wΰI{ κ„ο4›ΣΘϋ™[π΅|Θ6_1՚οnΣ|IδHϋǘœΠnK#Υ¨œΠSΟθ|Πh=n†zξ’g‘>[Ο3tήzΜƒ£θΐΩ’gΕ£V‘ξz<τό ‘m/•›"χ#)γ ΎO₯0λl'ν4Œ(ΊK>Ο^ˆlѐivj 1…ίΒχσŠε“Ή2ΣpχΡ»x.”’κΑ²Zq!νmΐC·£P$Ό++O£H"φΐ°Ζ€I=±ζ›Ψΰχ$z·fmгϋ.v#:χŽζj©^Β…s=xϋ“ϋ^ΔζΗzΠΧί‡©ρ ,ΡΘ8Š’§JA–P(0™@IDATβuœο~ŒKχΉoŠ΄r« {±JNI’‘Ό@0Vi»‹Αi:•*LtδΎŽρ~΅ξ#[ŒΧ~πC”ΣήL)τ‘ΧθΞώ μ‰NEz~1Š όZ€”―υΛυ―₯m1U8T’#)8Œ#?ωΤͺ\ZΣ»ˆΤΤ‹%)d”]ƒsίνψPωΰβάiΙp}7~υΡ4EY΄΄&7οBλ΅kXΝ9†ͺjC ν7.Β•Z‹Zޘ9ΉEΕdθ,¬Ιœϊcw#ηςPέΩ7Ψ¬«-η[H­| ―Ύ:ˆŸΎ_/5)?~TeiΖΨ=θΖs+ξλ”BdJ†‹tβY―(ŠJΎcςf₯¦·’žΪc=¦1ε%HΗ«sό;ɍχΪȌ2NκΏMνX@zΪΥΤ©>ε™aΉKήK\ΗcιΏ e…―©›ο£Ÿ'Zˆ“‡%cuJ˜ψχ<δ=_ngύarΧψx’»"Ή'«ŒœGΠzλ>†Ζ°7> ©9d˜O%Εχ_ΗΜ{μ .Ό¦2ržκ@ύFΜΕΰΠiΙkΏΘ˜―=ςΣJΉδ‹9݌\2ψΌκŸ > Λ3$H€yΉετ<Θ‡ΰ%“ƒF₯<@Υ9ak\Aωaΰ•£hΏ0§&ΡJ§΅`ιΕm˜š“ƒΓ·Ρ²Βyt¦™σή$TU σκ57Ο]/wΖ|—N~©yE<}iΝχΓΟγˆΤ₯y²’βf~ ΙO"ΘκΉ‘.?ΕΕ­5vΑ`l6{6›€φΘ³I†`“θ~HΕc‘p2:\_wazYΛLΝ«‘”/+jg—η°FG@§FDθΫfα’…ŒxA)ιŽΡ*0HŸttήΊ'ζipΘGK‘9 †ΡsLr&ςθCQ3‹²—n9ΝT$ iΕdžκβΙ+― BUςΦ{o)\ŒŒ_xυ5δq›ωΕΐ9sΑ–u‡ιΚνwπٝΗB"©΄ΣΛΖΑs―’@Vn‹Mr?16ΨΉ9θΐχρϋλΪF?ͺΊ’ζΗ! q²rζ—΅•JΖξk]]q+lŒ^μς}»HΚuNΎaφ1qƒ…hδLΙ1œ7Χ_£υΘdΪΠσ.π΄cώ³tϊΒWPθΰ“ξ!:‘<ξΠΤΘ9t]Ό©dκ~ώ¨ͺƒŽnΩW <ΫYΉ(TZc±p”œΖΛqQψεo.ΙΝQφdςΟ^ †\C‹Ζ-œSHΗf ΪΛdθ,„1άyοs£B{& ‡ΌΥς‘ƒΞΆf΄’α΄"x₯'³Wϋ:ΫΣ‘M²•7M[’έΩ8όΚΛ¨Μ—ŒŽ₯ΆιLΜBΙρ,€§%γGή†ήΆΜ2δδ{k£Π0RζZŽΝ;σ―ž–7 Τb‘’SSτ_ \Z†Ξ)e_ΕΛeR)ιWkόΜΘ]©]z–-}ωzo*ττΕΜΏo½θΕΣ‘’ς‰ cδΝY‘u^eω„`δό&π©ΝΜφ¦2yώΎε™wυ”²pΚ39&…u―"%Ε†K­K&ζY4ζηΎωy‡σd’“Ÿβ;,œ”ƒ> υΙγσ oξt¦Dβxφ!ΡΘcdd‘EGΘρamsAkπε㲑ΈW’O'€(+φR’χo°rΙJ>½ΉΨή”§VΎψ‡52BY0\Y[υ_˜r}Λ6_ΐΫ!σ%#r"ΰέ!0*'ŒΦΣδΛθ|Πh=M&Ά/q—Κ³ν<4)o¬«v=…&‹»’«œΒ38ΐŸ€@έ_hEΓ£¦‹CJΌJaλΡ‹[1NΤ#ια?ΰΣ>]ˆ‘4Υ!λά’«P«ΡDRjΎrš40—ŠΗsΰƒΥ?Δ©΄Μ―bιk՟ γΓΧπQsƒDΞοoNαx>7K.3Τ€t0skΉUc‘‰GρŸώ=±ς%ŒΞώ9Ύ~ΊœΏ.©E.: ¨Ά£§ώ &&špεv‹;±O~7ώ―γ *β‘_VINΦ.σeš>ϊ9€;Οvb/:γΣ'Ϋ>ΔΕkΚxΉ7(\εž>ƒͺL)§7ήώ >½λ^‡;Ί:qY*δυ;xο7ψρ/$γχ0υgrΖΞδQ37Ÿψχͺ£/aŸώέϋpό₯ΰ!4΅ςλxσ\;~υI ήzνoΆΙ΅ΧώΙΫψΤ6.}Ύγ~υ>αΏo ™έΧΙ\•BχΌύ.₯e.#―δψ4ι¨ ό8":g™Ίcς!ξ΄~ƒΌ‡^ΰλδŸ>dθόˆk“κ?Ύͺκ%xnΒ}“μ71LΣ‰”œlBΦy<'z2œ½‡Λω8!>‡aaf΄Ί€•τ’Sιn˜4α%‹R%ιj‰οu©°ς[TVlεo,0=ΏΥαOž™‘»ϋšPDγ˜M‚6&ω^{)C ˆKΝ•ΗvΑوK·/ν,ΚOΆ/—Ιέν“»IIĈ6ŸόΓπ’ΛΆ’γ(ˆžp»9ŒΎΗrO׊ήδ©Ή©ψ—Ώϊkω}x6§όΙjaʍœ ?ςΣJΉδŸ .ל\2ςΌλŸq>ΝΘ3-όΝΛ­¦§ΕC(₯19hNvέ‘ω9:sT©•΄‘/ωCr䦌°ν`΅θρ™ϊιD‘6ϊ•ηΤ[74+»ύ³rrςyΨΙΠYΛHιωΚοΦ‘‘σρEΠΫρ! ³PΩΰ;Ύ0mɜǘό4>ίeτ¬ύξPξoc0τ °½†ΞqYH‹؝ŸŸBTκ ψJJ¬ βrf瞠mψ}λ³ττwΛΛΖF&ΚΏ ΆZ|•ώKažvŸw7 ΣσΎMΒ%/£Ω²‘ΒΖg% ΐyΜ―’{cή”.žŽ‰zγs_@ψάsΰ@dJEζβ )dΌ‚Χ’Η†–NΖ«Zπ δIβφ¬ΕFQφ:φ¦”‘gQA4Ωӌ±Ω%7Σ£κ³qψμWTFΞNt?h…“”JœGΐΡ`³ΰθ‹˜}Œ†^Ž+3τ”^-N bdt³ΣN:μ0Š KQ˜#'f<‹ΓC½ΈΔ‘ΞJ‹bfΗAν‘δάΗsgθΎΐΊΏlCτb2‘*Κ¬Œ`Μ%PΘ°ŸEΉl¨P•q7Zš2Δ§ΒΒˆeγδΧ^C!η O #Oξb`Τ‰πH:’<3yδρwΝν>4ςόQγ«δcΩ=Έ›ΡΥKοŠΜb”δ‹Ÿ;YεδβΆψu §£yΌ'εTdη—’‘σcχFPΜ}’Š©}=ωV\‘°TΪψ1ŽυJ£#C˜ gΧρ€s‹NJε?Ϊ$I¬RbY))’ΟqLŽπ•/Ή9‘—œ'’νω¨,γHΆν?“1όώ†{'ϋ s5ž<:“Φ|Oφοψ\w3Ύ ρO>κžS9/ ’υa3\aΧU»)λ|·!4xό¬‘»πκ‹ρχ‘οχ¦#=q ή·nδl¨ΆWΚσŒ‰‰VτϊΫr΅ δΌΥ|ΚΤC(ΒδYpƒαGžωi€{ήΫ:ι(Ce‰°©ΡΆο4ŽΦας½·šϊε’R]ο<+―ͺZeδαIVίuͺsN‰^ήΡΥzΓj!ο7Yvy⊠Y)%؟Q&/:NMΆ‘7 νj°rΙ*>υ‘³5₯w«|±#5M™$ΞN€Ϋ|aσ%?σέPš/•n 9Ϋ¨œ0ZO&μ1:4ZύψΆ_μVyΆνΐ‡λnG…{»”‘j.-–ϋήή} έςΥN‹8ΗιJ'Π;άOήNXXGR2ρ(>.2tϊiCz"7οΰœuϊaΞjGw#zgζ`K­@mΆ€—)@Ua {-η"=™ΎU"Ι`²αOπvΓ ΟTΝλΤμ—qΎ΄\Ι#C½›>ŒΞ—9oeκ°'l“ΫΑΓΟήSSDΣϋŸ‘¬¦\0Ξ"=RΞ> ―K(RρηneՍ—ρ,:s#΅g/¦Β•₯¦°=²i§FI.)•‡ΛyWήχ2rζ2Ϋ/WΞόΧGθ@Γο?tΛ»ΡΨ‚Z2tζ4ΆΤt·<γ7ρ³χrπoΏ#6—]ψ.~P\ΡΓ“ŒΙίώθΎfσ‹sܚ ςœ,ώČhd·4‡9Κβ0Œ;v¨\Ύ£ϋ}θ…‰σώ―ΡPQŽσΌ1w9 ŽζβΡmΑ8άμψq§±ΑSί}MN€Θ›ƒ§Ξ—ƒH+pKYtβ€#QΩΙ0ιμ€Τ|ε θў6z\Ύϋ ςžύwrkAlΊ” kD¬€—’ΪD1=7)Ή©‰vΒΙ­R9NžedԐsFe“Ejφ‹8AΞ@δ°0Nz ωΚ+˜žW9ΑΏ<3)w§{Π;>‚μ<Ι„)™άΝΟι19‘2v ?¦Ν–„δ4pO ©@‹s/§Κ€ΜLξšΓOͺmLξΣΖ%9HBWN ™BΫM4ͺ=£zήc™ͺ Nν —e#gΎM’Υχͺβl₯tΏ{RυΘO+ε’67κT“rΙΐσn¬τμ’Ÿ&ε™*>h^n5=/Ό˜τΖ„OΩ!σΟ©λxςπΓΠsίΓ)ή3™δ§ΆSQ\ΉΆΰJη8DΗ$*ήKΙΠΩΗ3gδΎ6Σ#τRι~–F}va‚W"F'Φ’Q`ΟΚόlΊV3P)>Ο<#L’Φγ5Β§\ΆΊnZΥaμ—ΕΘš~>Ϊݟ½¬C°?N₯6ψόyφm¬υ\ό䖐|οfΞ+αw$ΟŽ zŽΘz˜BWgjθωβ–S2σ a»υΨν#/­ͺHήΨκ|)ΛΎ²E΅UΘέΉΊαሺαLNN  ‘4Ή΄(—BΊ.ΟΣWΥ₯““%Eώ¦‡ΙΠ9οy”ογ΄ΐ\πƒ[hν~ηΏv’_ΠΙ¬9ˆ<2tξ 5|Š‘bB|’ΙΠ9E•ο΅UU―bκBςmtˆ›Z†gπΊ—§gΟ„λ ΗΟ¨œΧ&+€κ”ƒRSή›R9½ΏVΎoSSkΘ …ΘΑJ7ΪG/m+η­δS/F[QžΙ³ΰPφ/Ο΄Ϋpv]Γ»δΉ™΄Ρcjώ-’γ₯|…UΞ;¨:„‡Ιzπ^΄‘σεHprΙŸ2±ΰ"LΎl|qΓ‘γόθ½}Σ}Ξΰ5ZlΎδ‰žωͺςΦΞ—¬*ζύDΚ £υ΄X1:4ZO‹·4&ΟΆFžΉΞ.8ΎόςKώ?C#„H9ƒšliqΫ‰{Zrδνvφp–Œœ΅Βpίx`/Δ±tN‹˜HNoν’8œR£»ύΕΘYL˜"ƒ&ΡΠY)©Ž9qΡ;Έ―J:XρCœ"§$\Θv” ‡ ξϊUωκ(ηeυ₯κ#²7θ…©{ΈτΕ>ΛKuG‡Ϊ₯θζΞΈx4MAr)ΠZγ―coό;œ?V˜―u©ΐ΅‘7„”–| _)ΦhςφΥ‘²§ ƒς΄δΩ ρ:j―Ϋ¦m₯ά“χZθ]ŸΙ]wlM^ι•»·κο‘ζΰKΌ§|N†מ£"s#hmΊ‰ίύ›I˜ œ±$·2Ε…μ‘d† λoPςVΚ₯ΰΨ3&—Œ>οΖϋgˆOΓςL»`ζεVΣ`Α+‰ΙA/H”„3tήΏ‹ΞσgPΕ­uηp§fΧΫθσζ…Jδ‹šxΨβξM^ι¨Ϋδω§UrΠ“mΧ!?ί΅Ÿ!oώ‡„.Μ΅zl‚ME‚4^Øφ΄Π_χ5ςŒΚOVOϋϋΑ(.CΓ’ ME@R'm*νΖS)8s%&ΡΪsmsσBρ™NΜm\@-ηξ’ΒžpχέιB‘PλDϋΐEt-»ŒN6‘/ι(Žf• έ{`OŒΕΨ Χwkqα<Ψ£ Œήb'nv}i5tq•8_«(ƒΦœ#₯QΨήT€F‰c”pˆ”Κ³Έ5ͺν-Ωό[Ό;άHŸt+X γέΥ`ΕV3²9ρθXιƒ˜'ƒBΟ0‡1R4ς›λƒπ°κYέΧu¬£%eδ ΔnGl$=jt aŒάΧr³"Fθ₯!a―¨ρ$΅Ετ\*φ“hΈJ¦XdŒ+Ι 1LΡ±o€Ρz\·Œπi ΕΎϊG_%i‘#Μ4γƒŸΎ§ςΡ’£._t/φΚvω}θkρg ¦΄mΙσ73 Ίς8Ώ"¦,.,©ςΖΠΫΫA†ΞE”–ŠŒ‚ 2tζŒ†)ΔΧ +_Ό/ΪΡοΛX(mθ/ηΉPΤ¬/Άzy ε£wB1/yβH££ΞτΰB|f±7Γ™’Ι†Ϋ59Bώ‰Ho)Ks8jΞαΥμηiΓ_Mω.έΧδ‘?Z4%?蘝<Iςsγ}ήc>ΑΉ£dθ¬kό‚fΞgA³r0¨χ¦Oκ2,xίJς²*§?σ-xΔ-β‚’σς%&Ο€,ΟΌΖw†d'¬άBF'·Ÿ[άΫƒΘHN›γϐ[eŸΖζY’ΐ΄‘ϊυΆΦV τ bzr㓁y ^Ύ˜™Oψμ²ίŒ€€gQ—&‚Σ¦ΖƁ‡byβ%RšΉΰZτ%+05ΫΙ{ [£=wςL2½B–Φe«ΓρΥάτρ 1Œ\2Ο§D-ˆ_&_ΆFΎΔWΰάKηδy©«λs\Ύγ=gP›/©Ργ;bΎd^Nhτά+Ι¨œ0ZΟ‹J0:4ZO‹·4&ΟΆFžΉΞ.$ΦΧ7€(ϋ lxŽ,v$νέτΰ]άτ±·9$Ψ΅€‰₯U΅ΞGlpMπΝΑ_-wΰ1Ψεφ†λ·:ΊO›Υ3Ύƒ"Κ0& Ž$ΪTμ¦D¨ΎŽ—K«d’ΣdΈχ>ξΝΚ)‘q’3™Q V’’%CyΚ”ρƒθfδ:€•Ό>Ž=q8ΐΩ¬sΓS€Rξω€0Τϋ[|ά#l’(MvΘ§TŽΞ »{‡Š7)NΨHa½h•A Iˆ)ςb¬›πξ5ΰliΨUΞΛ#xάߎ°ΤZΫb©*m ˜τsΏKOΕDΠςΜ ά-=P#p/Π Ώσ•Ϋ +­XττMϊρ΄\<μΣήό’bΫw΄«Χ .°±p¬/φ€–- LξZ£ͺr·ν=όηΏ›ΕkgN’°(Η}#?^\v␛ž€ν?ΣΣdU “«%u£UMzΆc₯\ςlΫΧ΅Ήdψy7Σ?|rοZωukjδΌά2zΎΛ#ΙA@T—;jώَG4Η¬²Σ\“\τWž"Cηλ(-“6%ΊΠέtWΥ9­θfΞ?ιCI[ 9Z;`Ύ[“]E[SΔ…βšo‘\šΜ?Λ;°γs#‹Qsψ[¨ά˜D}Γ%y˜T5θ_£ς“ΥƒζχƒQ\‚0V!ΐ° Νž~ϋζ3:1*κΓ£υŠ‘³Xkb4‰’‘³ο†B;g‘Œœ΅ΒττmtΖg£<3"‹¦!ξ— -Δ%>±ŽŒœΛ叹₯ωVάνΎν‘θ)ΐq•‘³ΣΩ„¦FΩ:Λώκμ‚' GZς¦ΊΡK:7­ΰœΠJήφ4Ε{ίœZ†ΞΔ‘€Σ΅ŠΩ²ηΎcU›στ„ΈFΐΖΗΑΓfΩΣ²T!­ϋΎVͺŠι§‡IΎ¬, !­Nπ$IΤ{‡nα )‰9Λvia‹Σ˜βuγFλ έΟ§!8h“xt›―F˜υ²EήΣE~§f1νϋφpλ”ϟkzΚ―φήHw4ŸΠqηuEΌΑ#·€ΜΧ›ωϊŽ’|Ω0t’Œ‘έ8΅βŽeΥrC=Ν>>2{Gΰ€{0žσφ$Α«‡=]΅ΘdΟ@½œivΩhhjœ[ΈΘGνώV‚ Ό΄’ “¬€Iœq;§D‚Q9©wό$zf~ΚΑΰή›F9³ξ}‹˜j'₯ˆŒΈΠ6^ϟ˜³`δΌ…|fˆΙ3Œvœ<σΰt4°i’X’<―₯’ͺ§wΖ³¦k£σ¬ΦGPZrZT(ِWφ,ύI/L »ύ>κ―ίβfδ>CpςΕά|Β'q_qΥ8”%*9—Ί=65&@ήΧ΅6 :ΙΩG˜GχΘu¨·4d\@΅ψ-fOΜE*:Oψ¨”\²„O_ h€³ω’(›#_ŠpϊΥא#`€W/~ζFΧϋ‚Ν—Ό1vΖ|Ι€œΠκΈgšQ9a΄ž'}Ί6:4ZOƒο$&Οά0ΩyζF‚]¨ΨΨ½•ͺyΥ‰@Fώ9T%Kίι}hj»‘³…Vά†δi6wΌ―·A3hCžΦό=>Zš θισ*Φ(?*|Οɍτώο6ί’―C)b#/·œVίΣdp~†σSC]δ-WPπΥΙFTώΦ/π“w.»w%ω”‘‘³J{εžοq΅±ζΛStϊ%§κ²ΣX=θmΕε™?~ eΖΩeήΒ™ώ€+mVp°„%^Οέσύθόά ϊκρ³’7ήmτ‘‘Υσnτ.ε•B0H㌝Ű0ρ>nn―ΘJ–ΦaζΙ;ψ©˜ϋo|1*“ΈΧRX§΅’τ{z– ΜγΘΠϊCœDnŽœ±x’ςΈ_W>­§΄!•Wη.aΒE¦˜Igπύ"QξΟt£{n|=τ¨ Γς,hΉK2qpΛ0:Lβόϋ‰a δ Q ύωn.^’ZΓ§ zΕ~>I3Σ‹i#_;J0ͺ~ƒ–ΧFε'«§ύύ`ΥΨ±(C€!°5˜±€2Η!) ιŸΦϊΡ7ξεώ {δσΛ€‚OΧοΚΊδTΥ/‹p±§žΐqΗ~ΉαY2`ώ‚ ˜=u)Yt §OδΒy„ΌνQfp¬©ρΉ(ΰ„Ϊ‘—†ήi+&NΝ­ύ»†UyεNY}’Ή{ށ«Β³nFΞ‹cέθθ‡kˆ‡ΡGeβpΝ‘aΩrΤ««D¨ ah‰ΐ΅€΅L˜¨ζ}Έšαšτh1ƒίHΑχήLδ‰v°“ΧΡ(z=͊₯†"Υ©…IΑλΊΡzAp―Ιgυ4‹ςΆ†;ˆ–vjR'†acyHθ£:YOœ¬ry'œzκΈ•5ώό­―jΘJ·Ά=.&[12ψ,R²HAšœ‡œ<`Ό7ΩyαΓ<†žHΚpΊ&.c‹kΘ“΄ΨΐX#·ϋ2δΖΤδ<IΙτ‘JG7Ϊ₯c Ήϊ€εΩ1+ΡΡ†£”žMžαΕφι§»α2ΖΙ±‘―Ϋ€s°3;¬‘eSšΨ’˜ξρΫΌ‰ϋήτ\ŠuοΫXT€—Κ›˜fΡ:BΞ[Ηg<1y樐—gξμ»–—4=’Dir?δ}3σ¬kxχέ9œO‹„ϊ“»–yΉ;Žξ=n}τsœωγδ8·]'q ά"ΞΈ―ΑΏΗΪ126‚ͺL½8 rΙΝΌϋύιΆήγEŠOZ~Z$—ŠΏŠ³•β»Œγ`“dθά₯͞’”\2ρΌ[Τ?Ε§->΄<σ¨G'Άš—¦ηI?„―™΄np¦.£ύΡydqsΠδœ~=]žwΆ<°θΒθόΣ9¨¬ΠŸο`iaΣ€BY£gέ-|Ήi6Υ9έίΨƒ Χ&έ AΛk£ς“ΥΣώ~0Š‹Ζ²$†C`s Η5Βν`#:B2CΤΘάρI±ˆί+mγαŽ‘ΦPΈΔ%Οq‡Rsd„Ζ&oαζπcωZ‰Δ"Aε­s|ΆΗΛš;ka•΄ζΡ‚)HΈ2‹PšΩζΨ†²e,'$ΩΙPpdΐ«œΪ¦>Μ+Χ=!½βΙƒ‘zπ;|xΥΓ 2Ύdθ¬ϊœt' ]‘Ύ[r ‹­π ™ ό,Ή0η½J qζη7ˆϋšjΫς*`­ΉΦVfΡήΞrκ >θΡ$’ώΉiA—ζβήp§Hΐ†ΤΨL1Ύˆ©…A!n΄žΨ’ο|ϊ goxίΗ*™ΛvMaž[α<—D‘§_έ­YσόGv}½½(Οβ6ؐ‘_AήCχ"3GTšNu€²-‰(«(“Ϋ|Ϊ€iμ'˜srŒt`$+bβ^Uή‘yεh GYY.l™₯HwζΟ$Οο VV$#}p­.™δ&DV°Ά² Νh2ά5Π€[•ΰί›nΥψ‹ΰδ™uοΫ€δΙξYGΠIήP‚εΌu|Ν˜<σU¨Λ3wξγi=’<— ηΈy.§όŸΗŸl&˜žg 4ΰsϊ$Β‘—€τ\δξ/G¦θ/:§ εΕwqΗηf• Έ·h>œ|IƒMφrGΌΡ―?/ιΤ„\΄υ^Δΰ»ΉŽ`N«N.m&ŸΎΖ„Ι_Θιf䋇_{ %qn΅Π«ο&ˆΣ2Ψ|ɘ˜Λέμω’6wΑΙ‰Ν•gΦΘ£σA£υ΄ρτ•Κδ™/d„tsς  o3|"°Μdΐgm–a%*N @ς0ΊΠ‚»­:Ύ­dΔ²Άl(Ν/Εςθ-tkl'8NγΒΑZ™ΪhoƒbΨ­^€LLA†Η†ΌΟ£T2XF:»H]ŒΊμd <Ή₯ml˜T‡WιΔI[Ώ03:ν$Ο}U©d°ΗΫςφαΞƒΐmβ#!ΑG²J#<γnΐ)χΦͺH<[‡Ζ‹υJƒ‡O’XR‰ΞaΊKΙb1ˆεΞ[R§Χαθ±ΓκΝψh(€/?[’δ @³(%Ά£ϋIΗΝ ‡ž{m·δm,œ|uϋVΙγδ6ήοείΐ…sU<ŸœμϊKo“'PΊLϋ_PΗyΥ#=ΝΉ?~νXΖψΟΨι{rίΞ@ωΙ³xH†Ξš¦Ξ™q(s^Έ?£\oϊ}=M HΔ?œσxΠϊKzͺ₯PŽ—ΛŽΘΟνΠh›κΉ•ΚΏ)dtμœwJkͺ‹θq-ΪβΉ‡I“NΞ“ΊvHυaB©\Ϊ€ύ ­σ‰ί\3¨ηd™Ÿ=ƒς̈ά%½Όkažτί\R‘ν(Gύ΄ϋ³\TrE’ΰ%mϊΤ”Ά‘ΊŸn‡X“»– ˆAΉ›Ύ―dٌQ &F'8§4‚|ΥΘζ“τΌΗ¦&8Σ4‘½ΒΚgjCηγ8P‘ο‹Œœ΄ό΄H.­―s:YΥΌ’cΕσg‘φŒ?ΐ{¬·;θx˜ΪωΉιλΆ^6εFηAš SΝh{ΰ!g„ωοθ('oΉMδ•ναŸοΕYςšσ$Š7tNΙ9€πUawηβδ»μ1ΜΜΠκoTD^Ÿ ²Ρ€ŽLΠP„Όfθ©tp »T€gε£e€Η­₯Τ <ΈUΠq‘Gξͺ›Υ'υΎ7Υ”„xpςΜͺχmŠν…2cγΠ«Όεt_‘ΐrή*>}q‚ιLžyŠNyζΦ@bij9ξ6]΄#)EZHX„ΛψέαΦ¦Η…eσ,Μ`€—ϋO^Ρο\ΒΑ—ώ[ΪΗΙέXZƒγ#Ήχ΄|±h>œ|YΕςΚ$f9γjϊvp _†“΄jΎ΅B ΔαΨ InCδVIuA§Ί€G‰ΧkΣΰ^Aή!XΉ΄‰|z3)O­|I€ηεP™#έ[}ΈυήΫθ ζ¦)_Ψ|)π­Ό5σ%?|%'‚ύώ3*'ŒΦ“ϊet>h΄žDwύ>εςμώΕΏέAƒ±υ¬2Ξ[Ή&Ε€¨Κ£ kbxάω9|›ΜI₯Bύ׎’ς―’ ό(;1ΰΒτ­άGΠΙWiΕ¨Κβt&b υjλt?†iΊΞo§s²ž―ύ&ΒΫo‘k‘t*ϋNΰHΆ‚Uo{½`™˜cΕdˆT|½Doxv” r°Ά'Y)…(Κ.’;ι<θΊ"·αΉgHž₯ΕK26_s"Ζώ*Ύ’!»¨ΰ3ÞYΗθΠ5ά§|Νΰ½’±&’YΣpbα™oαM:Σξγ‹Χ‘|τqξΝ3²ώw°ω>I-Λφ)8ρυ?ΗJτΗxxw Ι‡βΩΎœβ!•Χϊ]Z–"‹-Ή€|'-Oϊ γ²)ZΕdλutqNΔΠtυ6(?ZφΓxλίΗγΖΥ«hnν!ex Š+Q~ξ4lώe λπΦ›x½ΗvߍwΘΘ™Σιώβ€ϋoρό§ψ:ήΊ0€·?ΊΟηύΣuω >LΰΤPΏυ—[—―γqσ,ӚOJΌIu –ΐFž8gΘΠΉ‹#fΕψezΣοk—Κk{,Š _Ηθς˜‰ΘGmΙΙH–δDΓ£&½p %NΠ³*θWsΙΡ8½œάσ8@›¨Ήoσ ϊφΆ%IΊ (ύΞΖΦ"Œ ­ΈΘ+u§`π›υ2ΎE›:ο‘wj³+ˈ£9vaφdJ}#™t§υ}/oΞϊ限gFδ.gΈLλmœž… Ωϋ^ΔW7bπ`θ Vχ.!χjUςz΄―IΩΠΒΧΨ™˜ά5;nFεn1NΎυη(O!=_3zΊΪθΙεB Ε'HšfνV€2A©δ(@ήυfΡhP(Ώ―ͺŒ7†δ―¦§ΌF\ΊzB«άί(Ds³n ³R”WV(EόΕΘƒξ"§όεΊg·“dβ#€™qˆ%Cg)Μ.j!™Έ―₯†Εߍ%χ”₯ E+瘠·θΒΕ“‘z&ψ”ϋΊ"tϊV7φ' M%΅ΗΡϋψ=oΟ}ρE(ΞX#έ=|§¬xώ ‘γjΐ`ΟqΨσιΛΑ^ώzΒΊ›ƒjrAεI}ƒίνξ»ΪAςζ,m ι}|? !υό0)Τ¨9N2ΩDcα :ήΜΩ…‘N‘*/’LOΘ„§Η©V‰ ˜/€gZV ŽβONαŠ\ wz·Σ<Ή HPXλ΅ 3£ši¦œkΓΥο8Xiνε ”ο―²Δ•αδaϊ906p<μαfΕ$бδP}9œf’¦#Ήυρ‡¨“ζsΙXBͺΓΤsdJ%\Νξ†Μ6ΉVtΦ¬Οδ@ΰ₯i‘䔝ώ³«iςΎzχ¦T{§•ΥY‚mΚ„ œώ.χ“£υyθxν–Η§‘±O˜GΚ>pΩ”¬m“θΌ’R.›Ό‰KŸ…? εkώY #ΉΏΞύ”<œΟ¦ΎujŸ:RπΫ·ί9^H2ΞώδΫ(Žstέΐ₯χn+Ω©½—ήΛΖ?}ύ8V|ξΫ8έ7€λ΄ά’—{Uy˜6ΌΏGβOΎΕ+Ο!Ί5―r?₯Z-ŸαώΫT<΅(ΧΦ‹ζή'(.ΦΣ"-•xαX₯}F:aζj­#ŸP%‰H‡E₯‘‚§mšλ@€ΞnΈ>kJŠSΞ&U#_ΚH ZΈ[Εš\σA'έ‘x’\ Ν+{[ŸOόΜ{ΎΛ‘Ϊά^‡’μ dςtG‘ΈπτS5Bτ.ŒίΕΝΗuΞΫ!Δι=b|Χx·δ»MΒ‘^+ʎpΏsšdΜ·ήΗM~‡ˆF΄7γ₯ύκzή8-π#λΎ ψύόγŒσ%#τεKΖίwcν3J'Ηη9ΓXήΘ‘ ŽFδr_κSjhγƒΊe?οϋ± O[QΑmΦeζΞΕ8υs)Δ,ω>πΑš~ˆσϋ€ο3‰2ρšuί|K―ωΪάχvΣΓΆ–w#+5“dΠQMƒ2RoΖψ§qy—ΥOίήtKΛ`F@οœ‹α \f$EΚ bβ±ΌfX f?‡ ‘f ―†";iΚT»‡GZTJŠ.K  š M―A*0jλΗΨΒ8ζV–€`RΎ’έΨ…–t…V²4Ϋ2Τ‘άΒ% {σ.’…h±κΥ₯™Y„Ε<‹ƒq€9­rAΟl`φ]sœΒςπŽ©΅&,[Ql₯w“W€¦*θύkξRc$ŸqQQήΞ‡QBο Ώ\‘°η…†χΡΩ3DΫΦ“‘–]ˆό£‡ΣyMVt6εύ3ΨψξΜu˜\&·Ύ~W’κtYπΩ λΨ§¬z%ζCMβ*½}άΏYtέϋ"υςςΕzΪΠJΚΐέμ0¦†EcΙ|βq²0 δ!Λ?ι2έσ˜λ“‹Ώ‡§ε{Iαœ‚βΚqώŸDγqέτtυa•,ΖY¬ΤΘ,ΙC YJŸkλV,₯'ζ"?QZYΓzx<€WΑ—‚όœR L Φ—GΡΣ3бϊτUνE§$Gυω~(κ1”вΓΟ*›Dd MτxΓwΥΥj0=η £γ¦Ί"~M~fΒxA{d«Έ@ΟΨc 2 ]ήσyθTͺhγg&ς3‡žΞ:όž'ξRWϋ1₯gqδ…#ςFΡφe³—Ο_2.ge’ςόP7Ž.²†58Πƒ©‰1:=#ΩE°ΏJ’Η11ΤΝQημœ™‰,Ϊ'6"OΨ— y§Ι_4S !)ˆζψ7οζ1·*ωιnEEκ> ΅Γτ½2±8E —°I–h2>KVrζT :Ζ5,cΰK* ―;:•TΫΖ·“ωKώΙογ·ŠSr枭y²ςw'SλB?‘•2R’ΏKr„μ˜Ό$Caͺǟς’|ΒUcΝδgκΰΒές£ς Ρ|ξ ΜΈ]ΓΟώ€‘ŠYt€ˆ© ƒάΖ8Ϋ/“uΒΰ–ζ0C:β₯i Η&-£}°uΝ·4Ώ}Ηϋ?Β»XΒΙγH%+Λφnmν_αΣVE `Οϊ,iQ9]m¨Γ.Σ<‡šΠπτΪ₯ω>>˜ζτ:šΫ™μp™xyyΩ>nMΓ”£} οοΘ₯΄·qψρ ŒΖΚB~&O.ΛΦU‹+Ώώ©bΝ™‹ιΌ„w~ŒWΏρMδrsNj7׎Ϊ­°žΊˆ\κ―΅u#1ύ­ΏύΐλQQ–ƒ˜ΠDD©ϊwIuB£Tόȝ_α/iSkηO;ΡΙ§™λCW·j"Ο¦΄OϋclζΞ·ΆβšN©~wWΛ‘ 8^"Ξ——ήϋ;Œ8dΉυ6.gdΰό‘\б’κδ\‡ϋΞάς’D έ‹έ½L{%ΗŽΙE©im½„ŸώΕ^zε"οΛ•’Ϊ]mƒνθjn¬9s1FϋΟ<7γΉξλx΅Ρo‘FeύWdlτ>ξΤ}δ°BŠ―{BŒςL͍jς.‡±ϊ¬ˆ ,:Τξt;63*‡­­Ξ˟Wr θΉG­‘Ŏ'I©ŒΤη?σ–ος”.6ΰ½ΐΩ”§Ψσ">žx}KO>{ͺπk©…ΫζΚψξΦσέ¦ίγ2…Ρφ&€V Ιqγ¦ ΄ΡΊπυw?rϋhy3Ž5όŸπξϊ?ΑΉs5Β†Ήδa<ΊΡ†ΔS§ψM+vcœπ†γKͺΚ8―γ°θB1Μ—|xߍ΄Ο0…!~ΖahP.7\WηvpŒšΖ΅Ί»Ή—“@E«τsΠz‹ΣΩpp*™ΞŽηψSώ$ŒςΑεω)Κ-ΚΩMqΊYπέΖςnRDŒ¬θ<57δR•Ϋ“_sιπO–ΟυχƒQ<εΎc†C`Sxζ'ώoθ %σέν«»-4+‡&»βŽβ¬Κ²±V›ν>>ο¬eJXΩω?A ·X;݈~ώΎG+œΊ*Ψ‡3Υς€ε2ΟR/ξχ]CŸ2·Ε'υ—°bœ*:ΖώuY—*bhψά' ;Ξ…δαXΙs•Υ–ζšp§»NΫβ“\ω^~n/_$ΗL<•Rν|ώŽi[ήλΉύ \»ί-§·”^ΐ…Ɋ6r„Κ³Ψχ>yͺ½•UΌξϊH‘φΥ7ΟιΟlO―ΰ½OjU΅8x3αυΧΟ8|$ iΫΘ…zΣEΩίFElŒC…Ξ·K3υψ„Ž ƒΟ΅Ίdω½“΅žλKJz'¬’’Tr)^,@IDAT‘κΊ‡ϋ]WΡ§Vϊ‘h―σωH§Š’mα΅”žΗ9RZsχδΜ’’σ»+N ½τ½Nο·”§ωž$RόΊ‰ηΡά‹sς5d©ν«ϋ ΤΆ«BT^RΐyγΝ3nΫ&€Άαήίg<Ω¨ϊy|π.>½₯RκQοθ->ύŽο•©'i ϊ₯0Y«Ώ…—Ž•‹Ι{qσνŸΫ/²eΦΰβλη<ςm’σ₯Ÿώ^Vt.»π/PS$-Ž:RγpOy?’Όœ-„¨β³xιΕg=β2Kόμ]‰Ÿ™€nΎ«"_τeάTΥΕyΥύΟGiρ3.Β§ρ6 eΩP"ςμ₯ΉΗψ‚¬xΪτλ5Ÿχ™Nmσ‡ρ3«LΰgͺχέmηO·αΪΟί±St6Δ— ΛY™8υ£“’³[*±Ψ}ΏωVα4œ.ώ"ζσZžΠ¨O7ΡΘΛEξΗ ω…CbŸβjΗ-Ϊͺ#Έ€δ38‘Κν*·>‹Ξx4₯ΆŽΓEγKš•Ή‘S3ύ6ά©όΕέΈμΨ-Žς ϊyfς’ψύ§βŸΖε]ΙKΎσ ε©Pχ?κJ^R²ΨϋŒς wωŒΚƒFσΩ·hΫάν~φ³τκꏘ(ΑΊΐμΌζφx]elΗDγγ`VΝλΉΒό\Ύ°ζζfσ έ„’j~ποpώΝLήΓΫρΧdΟ<S€”Ψ8D“"bιΰl¬`nž6'Nθ­Ε‚ΌŒ|Δ…p[ΉΧ±²4ώα6ΧΚΰΩd #‘‘₯ΝYœ[YΔθ@›ηg>υφϋ“]q ©΄ρkνςΜκ6ΉmDώ‘“H‰δ £¬aqf »-Μ‹HKώe¦ ©λ‹˜±Π1Υ‚En/ŠΩYIιXοƒyγ:΄’——'11ψ½ƒ›ΉUύηš"σbbγ+Ÿˆgξ™νC»O‚έΌϊ¬ΘJIDLx$Ο—ΦΧf1>Ρ„!OζAλeI^ς]±τΨψbdΖ$P…€•₯1βΧω΅—TRrΖw·Ά7Rσ+`M¦g-,‚SΦFΡ{ο‘ΣfΣ¨€“– Όz}y#Oo£— mωΓmΎdτ}χΎ}ΎςOcόΜxίnv}Ζ)υ5'γƒΎ"¨δ/υ_αS|ΐπέ_γΏΏsM‰τ‡Ο€ό‰Mδƒ\“w²Όk΄K½ηŸBM,Ÿ6βFqΡ.…2v/’άά\C twwσω‚‚ďH±Αt£‘"}Ο4;}_`ϋφ#Α‰ϊFγώh‡οmv k XX"kΥα.*^›@Ώ­­ΓM²²:₯χΈpFυ:&ηEν<. 7|ϋ)°?u/ςb5vN­=Ν¨sί«ŽάXvΠK©§tMŸόžΜ5Ÿ@A^:ν–· ‚³*&Ί•U{‹Ά–Oπακ NԜAΊΖnήΎGWπΥ΅Ϊ֜Ε2uΧ7\‹«„Η©.Geš…^<~ЍΔͺSH'zΧ=Λήο½·ŠηTΣ€½½R·c92υχƒ…&H^:±₯φΫ·«ŽœΟ΅PˆψWΆz-ήk=/>Φ7>ώšh"£Be•\’Α6σ„Ž »£y»Χω|€S’i»\m-—ρmœή₯#(Κ²&ω6, cppΤ9†ήΏω²Λ#:Ηη…¦Ε+1z}m]JιpmΔ@k ²ΈΝ,ΌΐΐSJΞ\όκ*―8κN‰[(gk’‚|βaΙεwα©N%gœΡ±qϊ+(:φΚm†»1AŠΞhVΓ!QΙ˜ΐΣ†kfμΊς'6‘r„οdyΧuΗΈρž ε±|ΪΈΕE»4Κ`˜ΐ–ZtV…”8+’‚Ή£6HŒήgt(ρ(%υΙ–…Ό΅(€£Βˆ0+,αQ΄C9A΄Λ|γkR’[žΑθ‚£E4W…m..H Α’•sk«6κ‡αMι‘ΖΝωk-D|iΘλF.cjΰ†'όS7_W8w~"›7?‰ΞŽnT΄‰₯ϊώ\{G¬―υE₯kd\olΠρ†K£Z°y$ΒΫ|Ύι‘ Le-DFJΌ`i…Γvv==ύn)έΜχΟ-!&E’Uζ“’UζΡGΰγ/™T²ΞbsQ˜–Œn· mœX]™ΑτD;ΖόΔΣ’SΐΒΈ2 -DZȚλ’5/Ολ»uΎ»“m—ρv»ΠiΖΣΔψ`&?KΞΩ‹ψ8ΑjΚκόΪύ$•³,Φ\$Xb±'4L°μB›ΊFΫ8%hσ·ς„ωx(1$)αΡΫB²’°urŽυΆMΨ)F{(…E»A€ρsω‹¨]G1yΙ56zbŸΠƒH³ΫωΩn΄θΜYέσΧΗεxkœΙ,:;cΒBΫΨ f\5ξφψ폌N†C`ϋ!°ΣωλφλF1C€!ΰ_²qψL%Βƒ’WUƒά”h‘Ίφ+ψυ[»ͺw:άκφفΝn †Cΐkv€Eg…yŒN»·¬€έ>ΎΕeRΦ²€¦» ›‹Λββϊ<›ˆΤM} &n#ΕζM"n3λΪ€&Ρ3νλsν₯ΎΦ·Θ[jρN.΅·ω|₯Σ{ ·>Ηόp;ΪΌ|™vΦ;±E’’3ˆ«<}°ΙJΞά#0ΡMG4vϋωaˆƒ%q6RžžŸP[λŽCqaž\χΚͺ~+r¦]κΩ.γνv‘ӌLjρ3sωΩXO£l₯ތώqU†Ρ1Ε6ά ›—γ—+<…{+Ox*ΟτψΥ1Œ9!ΐψ‹ΉόΕPO1yΙlr&Ζ'd(v»‡ρ³έχ0kΞ»―ΟY‹ m2ζ ϋXzow‘NS’έο `0&!°Σω«I0±b „@~%žύΖ7ΞηΐΝ›φJΞ;?nuϋv#ΕΪΒ`0vΑΥG{4ͺ―λ©Ϋbγ,·ρ›™\P…Μ$Ϊ ΅<ŠΆ†05­ΝBžΥΓ`lWΒΓ±ΎΈζ’όνο²aN£˜EG3ž6>DχψΌSŠ\ωΎωΚHKŽCtD8‚CB•\ˆΟ]@i¦8–O6 φj=CwB‡οπ6lwώδ‰~γέ·;ψ™q|XN†€g<½ŸΫ=ή3RμώΒδ%WύΟΒw۝y’_o……†ςIWVWυfΩφιΦΦV±΄δ“‡mΩ HˆΎ‘ΗΖΆΧF³œƒηŸJση‹ΓhΌySfΓΚc0’’…­w ©{ΣπυΧ_“eηi™βέίWΫ-·y †€™pόt'σWΖ?Ν|ZXY Œ@D.>[(±‰sΛύhΌχ.1(7z·ΙŸ›-Λ@3C€!ΐ`ψ„ΗΏ9g1¨l³ §j=σΜ3vt0Eg¦θlχ@°†C€!ΰΨR '4&-/9%έξρN ς°0=Žι©qΜΞμL%gωQιε(ΞNFtΌiΉ%((;€’’"$ΖEŠθŒ£αϊΗθ˜b ΰ€Ώ”΅cωΗ΅ψ²^Ψw?Σ‹KΗ0‚γ/QΫ ό…ΙKϋŸΕloΆϋχ'ϊ½ιέ¨θΌ²²Š••o`bi= °]#’3±>‡ρΡ~΄5Ά`ηΞ€xθ@½λ”H8KΞŸ΅ςJΜegIΩb7Ζ«•wέΑΜ`ψ½ί9Έ£ω+γŸ~}|Xα ƒ@fω–,}ψόΣπαΟώ}σέέ›²£ωc Ι׌_ο˜Χ‰5„!ΐΨb˜’³Ÿ: ΅θ2IYky O0η§zX± †C`»#ΐ-Η•ΗcitΡΉ1NΚ‚Ϋ=~»χΏθ&*Ρ‘‹FˆC%} ΈωWhκcJΞΠ°ΫE€³θ·ω—Δgž;~FC`G#ΐψˎξ^cς’GˆX‚mˆ€$_°ο?‘σv£’σ Vw‘λΝxM·«’σDη#<~P‹F¦δΌ «#@(φ~ή‚3§δά§‡§ŠSzΰκ8eŒ˜ŒΈ] έΓΘ`0v ;Ώξΐ.cMb0LF€ΙŸ!_3 ό&?Ψ¬8†C`Χ"ΐύΤυ‘qI]_€mj}=pΆO꧊Y± †C`! -rO7OaκΑ8―δΜ)=K–·{ό6κŠM'uuͺ]O ρξ <νhAWϋt΄_ιt έn 8yζΦTΡϋ(Έ¦όπ»kz”βΞ φgίB£ς Ρ|¦ΐΑ 1Ž€Ώψmb²`αΎφψθ<$°LΉψ| ΛΓ˜3ΌΏˆ+…9 Δ*œ»p„A§:ΎΔ硍RŒ4k!³/«+£˜Wψϋ―Ζ€(Ω²χ"Ν.¦UΜƒή‹ωΞOqιΊ—€·- IF½α!!zΨX›ΖθT/όΏό…kž\Ξρ£UΟ| 6Ζ‰m€ό+«“θ™π©(Δ„ ΥΪ† ‹ͺς² –ά_ς½ΐΘ¨|>±gΞADΠ:f»ΎΒ»-ζα³Ο_8xίϊοβΣ/˜WΆίK2ƒzG€7r€<Έ¬Β“άj¬}Lώt ψΦE°ρaλ°7«f­ρAΕ?g‰^ρ…ϊ“Ο›…Oεγg>UI™e>μΉ\.[‘³ΛηΌWtTΕ’ψŠγΧΎ"Θς; ΐ,:;²Ε·iρVέJΞ©kkfO(ε­ω ‹Δ(I«ΐ]kXRH‘f忎ΧΚΘΒ―K…šŸ“]D2])9‹‰RӞΕωΓ«ψΫΊλr6 *žE¦*ΔΡ›œR—Oαέ/?P)F8¦ΪœϋμΟβτι*Ύ²Άε§~Wtή¬ϊz»οακ'έ4ΩJ–η#ςpφτ!qΗΌH3‘Žδ₯ ΐΎ<Χ5y ς₯Ύϋ'33΄λˆ,Δσ―b\γΉ6’Ο:΅ d‘›†@ϊaœ}ξ8TWΐQυ4*>λA5G JΞ”§»ε‰ίN π‚$U`y]7„N 0Υ-Ρx-(]½-³ψξVŒ…EίΑKΕe.!‰%εΤ³‡B°rύΧhSω$/δσFθtΩ(±Ήl&?3α}Wΐρ#_R*ΩtŸyΒL"Ί (9SΑ 3°[%7ψύΰ_h G:5ς° ΝE »t?“’³K…κ ŠdK8ή~χ¦ΛdŽL^Rδ&Gl<έošΌdOx’ίΫx£|Βs>£σ!FσyΫr–ήlόΕΟ ς%g"xlpPPr戧C»€σ7<4& #"‹QšR‚œθD ²Ρ5p Sζͺ"‡„ v"Βθx:ZΝŠˆ;г\ uΜ’΅ϋwx2η\£·Έ€$T#/.idξΫΩΥΐ6σΝ½w aόρqϋQ–\Š”π§¬εσhΌ‰Ύe§(ΰ !‘ˆIHβwqOQΌΙξuZk ^σœ°kl²ύRC‘?¦ϋ*2i*j3ύ hοŸφΊ―2lR}!!aΔ$iΚΝa­dήwΉ(€Υ (1 Β7ͺšR'Π>R‡Ζ)νc΅T)u{}α/Iq₯HŽˆGl8χK‘MR΅6<ξxšΗςi2’£<΅ΘiBσ`jκϋ’ΗM^©ΐŠƒ#±›•|Ρv.Φ”lΜg>Θ—Μoe`•“‹}UU(©,—…ΉŽ/ίƍϊ~οιΤΓη½/՜!‘ˆ³Zω1(bZ²ρbNшŠFΌUOυβμPχ&GκZΝαŸκέϋ½•#}W8JŒ΄ΙŸξϋpKcΩψ°ωπoΖψ`”ρ'Ÿ—κΨ’«~f”ΤM“Λ#φαΩ‚j'+}θξϊχ&μΏ]ΌW\•ΝΒMF€ρk“eΕ1Eηΐz†¦ZQί3‹`™ώυυU$GŽD²ν>κeΛΕR`ΰ_γ£€οΕytυ6ΑF«N³wλShwœ4²žΗy•’σΒt;žτ7’ovaα °&γ`v&gUχσΖ=¦&Ϋ0dΖθμ$ζηžŒΌΜj² -XνŒM)Ηαψ먓κLL“?Ax/†gΗ°Œhd₯νGufžtάATζ>ΔP·dAz‹π_S˜uΕλ?b6«ΎΞ:άκ›‘@ΆIΡYΛΎΆ™ KR)9sΑ€η•Ό‹Σ.Ÿ6ό\$ήh}εεd HVržG[ϋΈίϊ)%/αl!α\\1Š3,ΰΪ/8£ωŒ)ΥΛ[…@1Ύύγ?E…ƒ5uŸ¨I§wΈ:K,’ άφ©8Σ3ΫϊΡrχΈε€ΉNΦͺM'Θ‘ΐΝβ»›=ώ₯œΖq•’σ–PΫ~£€,šžy‚β*„H§ (Ώνβ)ΎΘK†ψΌA:z‘έn ۘŸ:_2ПFε Uif)%9θHͺ K f¦0#έpWƒίΎπ%uυœ_Ž™Ψύ"0‹ήǏΠΡՁ‘‰Iμ±αΰΡ‹(HHΚΉˆ³ν-ΈϊP‡ξ“—|λΗΝ’— ς ίgŸΫ(ŸΠ•Ο¨Β2pδπ^BMe[Pž}Ε±Ό‘}ηΊφ$’0γ‚6ήΗ£ieRΨ9‘ώΓό%€{³jδgΓΖ΅Y,ΈQTΞΛψφΗ»ΰ2‘Y8˜ώ,fψ‹]ωβMIv’δLaK+  Ή*梁δK[Γ¦Τ™XŠͺƒP\VIΗ_ͺ7HΆ"…θ»κασϊJςGͺ yqzO0N„y•˜πάnΦx$5Ϊ,ώ)•ηικ½ ²²o\n5>&zκΕ-Ž7α=σ¦ΝΟΌi‰΄›9>˜Ϊ―~δσ`4+‹~fΈξM”Λγ#t+9sνYη,%ͺœ‘qE•yύ‰€©ο΅gBw5Ώφ ΟΆOΑ”œ° §π%ύ΄έ~ΌžE1ό©χσ¨οψγΪ 84‰1’rΑ(Ϊ_B‹.j πbΙ³‚²₯鿎wn¨rv } _>V)₯r±³΅ψΝΗ΅ͺt’—K?†°s?@§2‡Λ§Ψ˜Fχΐ] τ|…–)ϋy½>:-r5ψŸ£&MhGP1Λ¦%f\gΦ•u šλσ·Ϋμϊψφ„;©Γϋ₯™3Σm€d·„₯ΉRτmCLΡχπr± <6?ξβ3ϊ\m‚ΑϊbjP™§¬ ΅4½ƒΟD%ύρΑ€Σ(,,ŸΉΘlewo m> /vgQί}υD†˜d φ\tξKρcμδC\~η‘+Π*:nνrLzΫ΄ρa›Ζw7yόΫ—V,·ΞŒήΒ/κΘΜ<}‘1©8.Ž·rηρA^2Βη ΣiG4»Ω2Ÿ%ΠϋNΨθ}ΧνΆ„/ι¦Ξϋ„†ε ο«Κ‘–ϋ:^ΰδ Ξȟ(sι¦gGμ“ύ~π/© ΠM§:σo 3“ChΊ ϊ;΄MͺIhBσ­nΌωΏs”ρ:~‰°f€CΡ™ΙKj%ΚKFω„Τ$―Fω„ξ|FεA£ω|Δƒeχπ³œβΩ€ΐd{‡ΎΣ|’b`‰ˆ΄“—CΡ9¦‡TJΞK‹}θ™κΔΨ"BBb™…βD f–μ- ωή5›SBL¨€τΈˆ‘‰NΜ~ ήj„]ν³tT,4‚Kd’όh›λΒθά¦–lX%uͺδΈ"”Δ‹Ϋ„"JŸΠŽϋ’π½{UJΞ3dυωΙX+l$θ'VύΎΤΑ:mh62­ΤŽνΩv˜ο†›ΔΓΘ/“lZtαι­FνV«Μzll†…ΝͺoΈM£J―a):kΩ9ΧΕϋΠ ²ͺͺVr―CλDΦB Pl=„¬HA­1?©]Σw`ΖƒQώ§Rrζ(‘ψyWζ0η’ωYd)GQr^Dίh=ΪF`I9Šκ”l!Wρ‰ΈG˜šΆ;ΨΗΔ *§,–ϋ„WάΒς,Ω Λ|;½|iΗ4XݐLœΊψ ¬Μ«Sxνt<ηGΡέXPZ{\θίbkVZΰnΦxDu›Ε?΅š‘fDŽ€‚ŒŽ+†ΪΗδOΝΫ΅ΞΟόΪ1Ϋx|t>o ί ρ3υHY6S.ŸZθEΫΔ‚hNΒΡml¬!6eΏbqα YΝT-ΆWλaχ;]Ν―w@ιhΒΊJFΦ‘œ%ΩbW@¦Έ(?3t_Jσ`[L—WΥG€"^ΪoI†τ*jgA±˜ojΔQΙYM¨˜©rι_ΕͺjŸνTJ֝5ςΟ~wΞRρ.œ¬@() ―οAπb>ύΫίΑAΒ]β’qό;ίEQB΅a αΙrϊŒCίΓχK”cƒC;ΏΗΥ{ŽίιΕ8ω±―ΌI„­&-tοz€Η·>ΖΝ‡κτΎΥ—Zq{ΛΚ‘‘‘‰δx+wh“ΰζ&00άƒξΗ7pυV“ά³<†ϊa±u­2 y1’"R„™QΙKr ς|ΥExε7X_)Dš,V4Cο‘€δL3ιx±κ4)9sσ»QBŠgŠŒζΫt\’7έwπΒ±ΏΌΩιʊΔόd†»ΪΡxη34t:>;ήΌ\sΰβŸCbD0ζ;n’n<'W£ KZ"Λ[oΰΪ/ήW- ΐ+?9‡x2*΅>׊)N‹C¦ύΌxˆΫEL<Ή„―qοβfϊΠέΧ„Ϊ/Hy‡μΛ€žϊ§|cŽa_M‘˜΅M·o ώόσxσ|%¨Y˜zr^{θΎψ„cxν;Ηh]”p軉ί}|[N_~ζqθ@%rνϊ mw―γΓ+J:9yŠΟό‡ ,XW Όf;>'άΠ’ί~ι4*ςό‡Ϋ›Pw³ ι‡ΐB“£“TΖ%2ΦΘ VφΧpς9Oύηί•Ϊι5τqό“κΥw΅ψ#a8ξΑ{NΩ–܏·N(ΐ£Όδ5ŸχZ΄BγgžzΑ?ΣΘΆΆŒƒη~ŒΓG*ιδq]vnMu—‰‰|Π!ŸΎδ›œEγΡgQV\€ΠH4ρcΨ@/:n£φ‘Ά•{oω‹ayΒ#C·d•ύl…ΈYg© ύK)ȌγdžqLN«e^O₯»ω~p“Υ#_’ςšF§T``]w±=|Ώs).α8sεp;¦U£Πό²›Υ")3»šƒΐ6ΰKζ44K‘'ΙηΡΧx½‹V?\l˜P½|ήpΎfœmΗ½λνΎ–βe~w9Dγ6RŠΫ΄ρΘ$ώ©PξΙgPŽ€εMCr«Αφ1ωΣS?nA<Άt±Κ@4ϊί# [Βη=Re<A~fΌΒM–ΛI‘ͺ™~Ϊ.Η8^>_Dۘzc¦ΡqE»&j﫟Ώxe’^ώ”)e£0‹ΞF‘Ϋ‚|΄‰ΌRΆh8€OolΎW/oΏŸZ°a%ΒJΖ’°Ά2‘Y›‹ Pž)}K£±‰k»iρ‰ΨDSNnσΊ(’ N)F²`Ύ–n–±΄δ&­]T1ς’EvαΚMlj.Š K”€Ιyy>^ τΕ—‚tRšΡ’Β’^¨2x Τ±ήϊ™}e€,ψέ?y Ε)J0§δΜΉ€Ό*œ¦ŸΥϊίρχŸΤ 4λlΌΎbœzσG(“”›ΕωKt"2 Ή_2R~ŽŸΏwSλ³ίχ~Θ†EΆ@nΓτ\‡&MƞkΝ’t«/Yςs;Ž~…‡Ί n$PΦεbθt€k―Ρ|€1:uA8‰θ]ϊφί@E–Κ°ˆH]TB θg˜!Eηš½~(k~& ΚK„w;―Ji’/†”g/βΗq‘ψΛς+Y‘9*£Ήό»ŠΫογ–Ζ’QqΕAδζ Ϊ‹€θ,Έ^\ϊ«`W‹ΈΟΖ.LοMω«Η+&X‡ΪA)g(ˆWr«˜Ι+4§¨‘,₯δ―Ω„)₯ηžΤρΕGbT1Ξ䇨)QΦk€ο:υΐ³Ωi?Σ…Έk~ζœέZύMΌβLΚύ§„ΤΤDόκoΜΰK>ΘYΤηίσ·P !£ΙcXπˆKEgοψ‹qyΒB―ο#ͺπzε)Δσ{ρω“Fֈ=³<‰)o–«|?θεKfι5H~Ξ°cω‹{ά"Bň₯•χ‰)Φ5aς’ή6‘—Œπ O‡˜ΐ(Ÿ0šO“.£ς Ρ|šDl] γg$“{ζgUEς&λٞN΄;Šωͺ΄ΠόSέwww+‘*yIα€Jτ¦ϊ’’Κ‘%hΖafΖQΙYMŠŽuς@ρ‡ΠD­Ψ>,ΞbF']†qYlCCΏλJΦ΅fg-ˆγγς‘ΥiR,wtKkZω”TQ958z°!΄Νyv7/ ΰΞ'ŸΛ“'JJ|Φ*œ:v΄Α<&ϊΪΡ\ίƒ€²RD‡a¦ξΦ;*V•βΨ+Ո!ϊ‡οβFPsό23²#N`ΟNφ’Ώε.jο·π„Zr*‘Ÿ›δ+βc“@ΡG“j€έb ΓΕZ‰S5D§Όƒž£“”φOΑύkž‰}ΟA^NωƒBΉ‹ΣΓΒΐΣ<ιpΣΙ2{QP)Mm ³QšδαΔΡGΣ‹ΘŽ ! λ‹/”s₯”]ΐΉ…Β`:iq¬ρ΄ΚiΡyϊ σ‹a!\fI?šΓΡ6Ќφ†/ρΈCή·ϊ|κͺ½ΉυζΉN‹ΟU&²ΘϊΩ#IΙYͺpu ³τ%Hό@ χεjΏπUγιθ°\»5,VφΟ-j*ΤF‹˜jžψ΅€δL3E¨Ξͺ&%gNs[°Z •…Ή`Ξ½Σ‹„ ΥAŒΖ“7—Η†™Ε1!|;ώe|ΙΎδάρ…G. ˆ&κ­)“G£Η {‰§έAη°²DΘν _βr’ζβQi\θ€'ΆμίOr‰U_†[ογήεPžΞBKŽςcΙϊB7Ύ’8- ΕRzGΛ­o=ŒηkŠF‹»³]wpΫi‰αηšΙ­ξ:ξΠαβ\ŒΩΈΡ…ΥQ^Q¬|{,Œ££ι6κο%³>ο›²lMσκ€/υ)͜νFo_/&ΗΖΙ^l$)@E‘0Ÿ’{όuœοjΑeG:+%zπωΪjΛɘ€‹ηΛΠsνtwΡ†κK,@Ί€ΘD'τˆ―YaΙχQ#o’Pj•q7šŠ2D§BΒ6πγ΅Ώ…Št…Τ^²NήΡ7Ž=IHΝ-F1YόεΦdgδύ£άKλτΞΨ;[Χ=4΅Ž 2―K²„ΘΌC8rΰ3ρ=zˆ'ν(ζ-)[QPv˜λμ Α1δ•'Ša­hγ­9;$ρωφ*«€Γx|ϋ²Rbg†θ¨wK©Ί&§!Ÿb4t±ετΕΦyΣΘHŸΐ{Oώ±½’s7YΆξθ§δ]S]ΑηMΪw―Ύ:€Ÿ`ίώ‘φ;hZα,:―‘ρ¨ά'ΠΉfΧgrυδ©ΐ ίT)9Οuγ~mlΑYΨΊFY3’”ΛΚσάζπ]ψΚUΝΧ5ώ©{φ’%ޱFΡΟ‚²‚WιTΡΠΗg,ΐ‰C&  χϋδ>ϊyIŸ7›N5́βgόL_OΈαgn ΰήχϊΗ]ˆΘ>ˆšΒ}RωE\8׍ί\yh—Σ{Ύ€dχVΞ*?qL₯δόŸΗ©¨y‘όn―FΏτς%³θtۈ-Šά­ό%ι銐85ν7ό…ΙKnδέ@’—Œς †m”OΝ'Wlη1*ΝgWω–ί0~Ζug~–ƒ¬ά4±·¦Ρχτ±ž›νBOχ€ΨΙKβ2–2όΘŠ‹€ˆ9!1QˆˆA0)Ι­―ΟbjYK}Θ€ψ©Θˆπy’vfyk!$…„{h›ΏpΙ@ZŒ0IhίάUϊ•ιθΌuGΜ“a• "5- ₯ηΘ„t䐀+»ιEΩJ·f‚'*ηΞΏzJVΆŠŒBbΦ~œ€Ÿδf7z­šHΚγσΪh θ%ZΜ·ΚΠBΘ„l”˜C7):#Ξ½Š<‡4|ΚH RΈ_V9­χ>½i―EΚVηΏ‘EηA’S’RγJΚfηΎσY-qŽ‹ˆ#k&τK ¦‰fŠΞ9ΗχC•l­xB uŠ‹Gς^jΏ ϋbΘ*―0.a½§VΉα|Dη™W_CM6INR·d”γύοΌ‹ΟѾΤgΌ$ڌ^½yΓCΤ†fϋy•_£υκΝgŒΏh•žŒhΩςό,ζ—΅&‡’‘"σEZQŸ’ΜqʨδLUD†pŠΣεΥλc™ι9Ξ £ž}2ςOςwX›ΑœΞΕ#!Cΰόe|Ι,Ύ€κSβ1§.Ό€+7‘iοd^6‡NΥQ„ήσ%*—&Β3σσž—‘M‡r:Ί(XKNαe:γί_–šΓSςΞσιH =Ί&‡G+%«  ι‚‚φ2): nwߟ’_ΈΠ^ΓΞ5Ÿα'8΄ΈΪηYΡ9%™4†σ[–ΪDz2qθ•—±/WRϊVȌˆΛ@Ι± €&'ΰς'ΞŠή–τ2VϋŽ›αBΡΩ§χˆHK,{/—)4 >­ώσeγr€±qΕhϋ|—?u€±₯I|z™άͺέwl|ΠΖΕ!ΤυψΰnΛΞ@”Ζ”ΘΘ$~‰‰\ώΨ >M¨D΅FρI•xα}_ϋ9Z4ζœμ '“1³ΎŠ=4Ο+•ΗU16tŸ4>ͺs{Ν*xΟggΘi»t*H“Ωα“_Az,ΗCIΡΉ†―b’υ>Ύ‘ΰηToΙq”Js›ΓΈυ‹ΏΔUIΉψ“kdυ#Λ¨‰”-%‡^&Eηψ" Χ‡6tΧ]Ηψxίᡦ’όoό[ΌΒ+bΖ ·lQ½¦Δ›νσ²b’”ΉσiYΥ&ΘΘs­]’ΎP#υe%XΕyZZ˜€8EΒ،σxPPΈšΉ…ΗΛΉ8.>ίAAΒ,–Ρ|\KŒΠ©ΐH•}κ4*₯EBτΦoήΖΥ{φο^ρ™bά²B°ΑχO)@π ά=~ϊλKbπϋ˜όΑΏΓΩάbYΞΞ₯χhŒkx܊ηθύβf-sK*ϊqFψαOφ©}ΘοΗ7ΙnΪi27a˜6·”Ρσ ZwLΛ'Eg»xϋκSS%3τΓν¦y͊oγˆh|N}p wŸ|ψƒ Όrξ©γ('EηfU‘7~«(V'œG ):%.]κ©’UŒžkΒ‡ω‘αώVχώΜΙ³vQΊϋΟ(ŸΧVυ’JE€\\χ6 ϊ?“ζΘ„ƒxνbǝ”-σ¬[=.ίΉμΡΈ˜yI/Ÿ7“NPli0γgϊΰwΟΟ΄Λoώυoή#/cdζ_α›§*ψϋβͺjd“’³zδπ–/Α9+>^ϊΐ˜ΐ­Ÿύβζ6₯:Ή8/b\ πδsΓ_|‘'g 8ώil>Δh>-Ά2Œρ3}Οό,₯’iαBOΝt‘uΤs―Ν<Δε+Β\ΠΣΆ&;yik£3,5f~αIgπBbΆΌϋ–kΪΜάS΄έΒ€κ»ίs“'ETXœ¬πk©Ζ‹τ“ά<ν’ο{€Η#ψό„KNΪ~d†J΅clF̚Ηό*™γεUœbθ؟g16χ1ՊςlI‰‘’Μ=ΖSšΐsrλA0Y$‡ŸS)/ ΰΙγFΜYQ|xΏςσΊ=Dή*)Ο‹TZ²€£ ‰ξfŒΞ,#<6Φά Ι­]{'0<2„™)ZNŠΥ₯d©YPώJ?p‡{p―C²,Zˆ£Ο«θœξESΣ,†“bXΥ^e"Τα&§rΏJΙy]Z06΅„ΘXX¬ΘΛβ&Νƒ4r:’ TR<Gϋ£:‡d)γΞ]¬E…’ϋ:BΛΘBΆ ”6ΡέHx,ΩYψ˜QŸΡ‡Cg_P)9ۈΞ'°Ρ€.g©-OTLΜ;ϊfFZ𠇫ڗϊ½λ%ŸaŸΣsδ깎BTH˜X Yn_€―"'‹‘ί9E 0Δ_΄κR[πΡ―Εo#Σ‘$ΡΏB“†³BAi)gQ!+E(…Ο/«Ÿ.<ϋ³NŠVβΡΩχ z‚ͺ!λ%.ΟϊΗΌB’Ÿ|Œ/™Η—€.ΚΔ‰oΌ†iŽš‚‡ŸήCˆ ΑašίΞEYτ_³{?π%*xuΓΙΒώμ@#:{H&I/FI8QAΦ#ξˆ|Ύέν½Θα-ζ'!3·”[$βΕλ^€η‹3%θBo}·CΌ·nψόπ ΖiH’ΝŸΔOΖK#ΎVΝ‰‰ςΨ71Ο'ΩwΡ^Ιy¬?υΫ‘’‹}eΒ‚—₯θN̎βΣ[φνŸθ{„ŽΥ²θL£ξžX γ‘ζΨΜΧζγ{€j”ηώ3g<‚έσΗΰj| (Ÿω§ͺzΌ>Θ‘†ΖΓν3AώΤƒΗ–₯ρρΉfr«FΟ±ρA 7γƒFj)ˆγŸ­ν³–a_I6lΙ?…£ΥƒΈvΏ]JΖ_½ησJvoεyŸΏ™_+°(ΎM‘Λ•κŸϋSφΙσγγOΠ£ώπa\q¬)0οΏήνς|`>—[K՝–Β\ #°‡J•ΉΝΆZϊςάΊΔhnŽu=C}dΧ†…υ`Δ' <•›\yρqt’’³ΠN2fΗMpΖ:„ωLξ€°φzτLΟΑ’΄Υ™Όh* ͺΠ‴œT2xšΞ6δ‹q—‘+ψΝƒ[ͺΧή€Μ—qΎTPLαS‘βΥmJη˜uP΅Ϋ.ΞΔ+₯ν‘”˜Υ(ώύε‚#2ώπΆ’δΜ'Γε«_’΄δ›όό{RF–¦…Uoκ㊭ϋψW|ιZκ―ΥγYRΔ䞌=‘œ«VJοΓ|ν‡D•RόΤά„Έ†βH‡‘ηΪ± oξΥg“΄3iΔΦAVα…’₯xΪ@qνήδ<ϋ―eBΦΦθC•œΡ|ά:οίwΉzο= ΙH₯\jΡΦu!άφ^ΨDUΧιάΕdcίΑCr‚Žλ8)9s‘mΧώŽTΠgΖϋΗ-.?ψTRrΚΎUί„jRtζf(-I’k}€Α‹tκ"έ§―-! φ­R$PP"ρO §Εa#‚’Μ_VU‰ω'Πtη}§²Fiε›WVΆ"9“Ζ»NB,ύ<~όγ £υ˜hxΏ|ο6ε+FJͺ8;9ˆN:ΕυςΘΠ{γ’SΨώφVΰ<―^Ό£ΩhΎ£V)T‘ξΖj©˜,O΅Ρ₯­φsYΙ™nzVS]"ͺ’ν½^τŸ*£·|WΚκ+δΚρfό“κΥ}κFΟ™’Κ‘pKB:7 p/37$ŒήΐOi³ŒggL^Ηη©vΣθτά0~Άmω™sο’ϋΟνω^ΓŸ£¬ͺBΨBλ/Y΄Α£—ψ™¦ΣΑ—Έ|Fε¬uΪ(;Ρ• ·΅ήF½œΐΩγ 1.O8Χ«7€΄μGς©SΧρA«0Ξ%«6^NΟΊ(Όο}|Ι7:]ο*˜ρ—Να/ω/αάIώ!yπΚ§φ2ƒS0yΙ oδ]UζΝ•—Μΰ*βέxς £ω΄H1*Ν§Eƒ]γgΚΟ2“—+vΥΪοΫu›φ Y}~bŸN-/)³]ΪΉύš(/¦EE‘Dš—TΥ]„ΓEΡz*ΩJ•$ ½1αNS₯2½Q‘4ρ‘“θΡ05&‡ϋ—€€“8˜¨h·’G…gΟδSdΠ1)4IU‚{SιhΊ%DW©[–Zq―ϋΎ>K΅~X±TξC)mρn‘7ίω ΪEeΛ¦‘iΌξdιY†Τ…gυψ1v¨Ά X+Q•½‡T=9׏Α¦»°Ρ‰[ΊωωΟύΟ1ψ܏p’Wt‹BzΩνxΐG'W–!‡vσnΊ _όόq8!IJbo|γ„KeηθiΩ††ώJTΛ’K]ζ^€…Ω”>ku₯LΓlg3Υ뜰σξeygzΤήRtήΟ'²υάFν#&ŽYιHγά,ι©GΓ?ώ$%ο»χ0χΚΙ(7}…œ²cΤnΒ‰ζ’ŒΦg°ψJΝώγςΉŽAX7Κ9b«‚Oύ7-΅Κ¨Ž1ξ7Β_΄j‹ˆŒS¬Φ,’’³Š7Hι“ˆ?H½>CΗ™s!"βͺI)"‹O2?Σ€ΞΥ4μωΜ3ΟΨOe—­£~…G€„™”€l±­Μκγ-Are|Ι\ΎΔukrε!Ι/Λ0>ύΪμyRΖΑ (Š^Qžƒ|I)@π>Ή‚―Τ 7χo`ϊόŸΰH 7‘J'XΣˆΟ Z:;ΊQEόŸγΨι9°ΤΆΨ)κ'W*υŸvΘΌV(؜Ώξω|7&&ΖiΜ€`ZόM€&8žς«¦"!AZΨΗΤP?σ<*ςΉΩcΞlζƒn@IDAT9φA-žt=O§œΰJ« ‡ω=-B ?ΊJ?ρ&ζ0HΡ9QΌΥΊ˜υιξ?Γγ‘υb˜ΛρxόΣM­šQΎΘ‘FΖ_ΪgΊό©‰ΘΦšυ\+ΤοnΉ•ÁΚΣΰΞη~|ΠΞi뼁χΘr3οhƒδδόwρ\U!›SZ†dRtSeυ–Ούβͺ4λϋH&?€ψ΅L“Κ³rΉͺ:ή›”TEΦxΔΠ•.΄ Ϋ«Κω28ΦˆχŒ_3y>ŸΛ­¦‰Ytήκπ\Ύύ5tθ&οβ«n ZRš€Ύ£αgh˜ν΅WνΌŽζμ—ρ}ΥœUX²ιΤ€n^4qQ,ΧΈaά­ϋ-s¦`Ϋx g³³ω–‡†J+ώ™ΑΘHθΰE²‚ΈΈb€|ξ.™v―—Να½' κ N~ΞςνΕύ"}\μt>Ίυ†œR #·~ŠΏξΊI:ZKX§Š—¦μ¬¨ΊΘΆ)ΑΡ±€;Y³μp“” hjΖΒΝΧθ°°κ\€vˆ%ͺ‘αΜtΔ†“΅`R€εtjφDZω9ν\Ύ…ϊΪρ*EΫ¬Ζ€;Ož‘ηΪ—v©/ QάΟ8FΖBράρWΔω¬aZx‡lα’2N‚τ‘!˜)ŽΧΝǡϝq!₯Ψ?ύ_ίtk‰Χ©δΙ{xϋ/ώΪΊ¦S·α—υςΫΡφΥC·©₯HSήΏI&•΄§ˆΫn~nAͺ޽h%Εƒιδ§Σ[ʏΡϊ«°†ƒ„3Θη­·SΤά#]¬?I˜dσ#…ΎmAl˜…бaΨ6BVRη°Ό„θ(²ΜKΦƒ%——ΊCSΧ τ“ωΈΔΔΕ!+)βJŽ–›/±8Œ‘Ω €UGΑYM>~f‘3υψ„Ž rεV9«j{5Gu€1šUΩuήσψž¬δΜ—Φs-­εt„ž49繎§Χ”œΉ,€™υ@5?ΩV{ΩeAνž`)Ίq=Ό‡4ΔE—€¦³ε½‚[Ηηxς΄GŠ΄ιάΨΰ€\θ|#νUςδrQ\Z.&²‘³QΤ]η‹ Rz+(X™Κ‘Ÿ—%+jΫZ*JΞ|βiά«{€άά3|KŠ•ΪTς©Ό©Λ`€ψŠ|ό£ΉΖά©Η‡rmHŒ£χmAαW1q‡±7Yβg”de ΣλσΙα/ΪΖέtήΜςŒ¨θoŸ6>BΩ΄!X¬.@u–hω"κ{λ‘BŒ’[Wρ„ŒΤσ²ΥηΫ}Ԏ ‰qͺ sKRVίdΒ–{'5t΅5Κε·c^ΨΩ ο9ˆρ%³ωR Y Ω+ίWχΉ“’39P Τ2|‰ŸδΏS+ΧΝyšZΫQFŠΞά›c‘”ι¦Ώƒ£§PΒ ε€μŸKσνiΞZr9 Ί‘n§Y+)Κ‡«g>?9F«Ό²rβSˆža"0ρ0^Ίx‚,Π“dφάl$2Ÿ(ŽIΣ£ c(;_(KfΓΎtκƒyΛZZ iΜε&ή訑²πβ$m ν UΖW 6η=’E½ύ§"ΔΫρHΚͺ|Ι»Ζω§TŸώ«/r€±qΕ§φω(κΗ…R²ρa›Λ­l|ΠχΌ{œΛ‘Σ_hsΪuήΊ‡\š|ΰ7o&d€Dz~|P§‘ύ:ψ<—Φ¨<ολχQΰςkA;Ώεr»Κψ›<[%0ξΆoœN;²KδΛΈbWώΖ―Ώ68Ο`XžΧtξŠ”ά),_ύυhλΆmdβiTerίbœ³α~Η%—G+ iο )9kΉ‘ޏπ(₯5©άLO"ΓΈyk}dqί.JŽΆ+Š’³ά?IŠ’’³’Rν³αaσ»΄L’Έ{ίΒI2JΒΉLk ²HͺO‰Άσ%eΎDJΞGdkΠ “χqω«\¦—2 ΆIή€Ί*Φϋ†1> M£ΖT΅Om¨yγ_γ|M‰η2ΦΝ™¬ΧξR„‰”ζυm°Ν»žΟτϊΉφŒ„ΫήΧO†;Δ"f‘Xt₯ά«F₯ικΈ¦Ρ:‡<FsFCόͺΡ||ΡπžN!ŸΧΓCεωnέyC}΅²‰ iΕ•6^ŒΠԜgΖϋgq« ‘bšDT[}+†OWπk7ΩEe€βu›ΟŸ „Ά’n˜”‘΅ΉžVΉJ“#‡jδΘ–;ΧdΏ§©s΄Ή‚Φ(3’…1/+K™oEz6ςθαΙJ—•†FΉΙΩ 2|ˍ’K„U΅,#…Ϊ_₯Α>Tί§άΞΝ nCςxyυΆΌ,^3ΉQ>htόΣ$Β)p?^W)9ΡiΟ_<Έ"o *-ω^(Φ rςc_w»Zg3,/ιασ&鄁Fγgv l;~fG=έLΟz8i  i΄πΤδY©Ψ±hυ½Q9«Άξ>ͺ\δOΥ %WŸ£ŸXςά0ž4άΖgο]β$r—NρMžpYΉ«ˆ”Σ8»ο ;χΔasbδ=Λ£u)ήωφύ=|Ι:] Ξψ‹(ώα/πν?y œήηϊnαύΏωΰwω—ΙKZΠlyΙG>‘ΥpΗ0£|Βh>Ηϊιή¨“ή#―ϊO7q.κŒσO—•»πEŽ42ψΠ>δO·P¨#Ωψ°δV6>¨iW~=γƒSήiβύσ·sνGΝ²aaœ…?}ί"vΕ8ά“η₯ΘΨχQΰςkpΔ[ΚεZ5ζdμUN™oB3§fη|Wμ wΓψ5γΧτ€žgπJTΛσϊΟέ’jζΌ˜ d,xŽ4 €Yœ©{Έ­oz3ε–Ά₯Uυ·Έ˜”SωI]nG €δθBƒ½W\{HΖ"’€ΒH*-2ΦxZ‡Ά›DjΙ+x/—VΚUN‘"Φ€ˆ5#‡lgΟ*V\X0•=ψ;%ηωΑV΄΅·Γ6G=D3ο‘Ή8}ͺJ2ΨσκMCIVF8ΝηΪHA:σhΦ-lX¦B"σPΚ=χδ{>ΔgέΒ惫| ΰΘτ`uέh>‘x·5ιt›ΓM$Y!―ΏqΡΊŸ`¬/vƒ–5Œ;²6!Λ+Δψϋ·ΆΒu€nπY}ΦhT4šOPΖΟ4@Qm?‹Μ+E4O΅‘³ΛQGE£Κ;ΏΊ¬9Η&ΙKͺ‘*Λ&y#b©ͺ}h€NQrI_ ™DQΡy“¨2½šERrΦrSSwΠ“‰ŠXN12α{Έ+)Jšˆ gEΆ&«BB—ζŸΰ^ΧϋcI9ρ˜JΙΩfk@C½¬‘r‡S²ω&X“ː3Ω…“Ά‰~­¦šΖ)7(β΄―2>H‘^T©wK_ΩsίGM₯xŒ‰»”²υZ5{œΓά•AqOš›QZrJ¨-Θ){–~b¦…qtΡΡWu7kέО‚ς²ύr-ݍχdΏYΕͺΪ8lZŠΞT‘Ούγ@¬χύΰP€·zŸλ‰Vδ$YeE$K’D]GuυœϊΰθΒoΛ^nΔο5Ρ¬ΔAαxYkp‰FˆΔ―W›|X°πGευ Φβ)MršνB§0ΙΝ­FοΗΑ Ρ2ΛR—Γ&‹XΘzΡkSάΙSΎ»x­nβ‹υyυϋnΒsΟψ=ᐠΜOΞ`JλqΤxRΜΰK³S“nήCΓ쟁§έ˜8\Θ+Φ[³σLJΓ܈o-Μ•ωΐ)ChΠλ[N>ί3 ½W1΄P•/XJIUM–₯€!D-$ŠMŽqϋΉˆ%λXгΘG@*aŽ>‰A8†λΉ7η=ςΆτPζ)ΎρΑ τTΉ«xεHοΗ£ν3Oώt…]8μΰΐΆ”[Ωψ`ί‰Zw:ΗΗ¬t„±‹Ο;1%YLL’™ˆžiǜ^έ•η}>’±NΧwͺQ~ζ ϋQ.Χͺ9r?mΘ”€€Y΄ŽΥ9£ψ8hUλ6Œρk{xΏΆΓΓΣ<ƒ·ς $ΟΫUΒn°ΆfΎεT«y€εžCe‚4?Ϊ‹†Φ[ζ%YΙΝ™sŽ;FΪY‘.Œ ΔDˆZ›BfW±ζΩμ+>žWY£ιοωο5Φκ,λ’m¬Ή—ψΚ²œIŠ‚΄HθθΤ %½Η4½§ϊ—)–œ{k·ί½&e gPFŠΞͺY ϋxιŽ&Zε ?X~–ͺ‘―4)cΓƒpeITΞ εΡρ\SΆΤŠcΘΆp3Ι’[žDέ=N‘Σ[η’>RευAU†~ΖΏΒgΔ ¬ΘHΦEζΙ:ρS!άh>d» Σc>W ΪpσηηΨUjSΒ'ιTWnj-…~‘,JÜχO_[ΖΠΪϊ‡σΈ ‰Θ-;FΦCΓ‘Λ)sn΄‰,{ ^σώ&γΘΡƒrqξέΦTφŒa|d’#^‹¬S{‘Μ)‘OΆβ~W0ͺ«iN–hΟ ε5^ιhγa ρτ.a‰_ίΰΪΡ‡Ύ/?B­OΪλ2Ή.~F< J^aBH“†rΓ0œΜ­μ ²Πϊ~Τr>ΙKωΌytjΡΖψ™6.Rh σ3‰Nαj‘Σ²Ιλ¨’??͝#’EΏY,ψr -•ΰ³œΥz οӏvš Ώ‚Φ»²ŠP\yΉ)ΒUxΟΊ†K.7«PVOΞ$yBΙFrœjΝ‹6x»ωTHO%YxΉ =΅χόύΐ%ΣΗ—όI§«Ζ0ώβ !άώ’σμq0K”­ζšπσΏι8-ƒΙKξϋΔ·XΛKΪΤιγώεgζπ£ς Ρ|ΪxΊ eόΜ2BψΦ𳂂\™¬ή§ς½mη‰Š‹γυWΊνBI£V”—δy ‡xί€!ύάZzΉ³άωœ'‡ˆr»²Ύβά“pII:ŽcΦ"ΉόR`ώŠ˜ηή2θ>nή…sKdΑιŽCšΪY”CΗ@ρ†SŒž)N•k{;ΫԨ睆?{oΗ‘ž ~"xΰ €Ζ}ί H$ ρπ‡΄FΧθ˜f,y=φ{ή]―γΩaGμΖΎpμF86ΌGxύΦ~žη=3žΛ3š‘¬MΔC"E Hπ €Έ/βFγΎ1ϋWuUuUwuwUV‘Ρ f’ΚΚσΟ/³ώΜΚϊ?‹Nh„œgΫΡΥӍΙZ}o ŽŠΜDυή2Šdž žδμΞΤsο½7…ΓΥ€Ήœ“N"π*GΗβTžDzR ~υώ]aη˜’½daTΚ3x ΝΦT΅λx—°(ξ†zG­ψχNi Δr?¨ΓŽ$‹$ΘKϋ½»ΣJQ'wΌ4‚ΞΡ.lΨΊ9ΡBNblΪσΦ΄eθςmΧέ&•ΐ1ͺΙ9ϊ8$*¦ύΊ9y’ΌηπΘά’¬ΎeΕ$Ή,ΤS’Ρ™j%Pδ(v ?oΨ‚œμγ(PΎ„DΊ? l$λ ΉΗQΈ2ަž›Š’…‹@ɚxSύ—ˆRκ”wVζϋDZ₯ F<ηK„2IεŠF#™gηKΛ‹:s²?:F’Ώχi$eΡΖjbrς€‘Ξxdη‘GtΣθ{$ςWΉ8γ|ώ1FG¦‰ο} ‰tμd>@q <»jLGJ^*&” :ru …’²ιδ7Mνυ14ηΫς‰`Xiβ1)¦­±3έΑ’—‘2“gΣ:R―~έy…±}A_ςω!όΧ­|~Π{,5aΖηM6LΞΟιΎm‘Σk§ΌΈ+!ζi5.Hι¨ώ^?΅E‘cΞ’½ψφŸ½]Τ$YρΟΟ»₯ο©iT”oZΥ2ΒΡBͺGΪΔl·τΤFΪΌ)3SŸΫHs7―]τ*,·r[`!g!—s ΒFXΉ&§fBhεύό9+ύ£2τ069Πʟ†Ζ5e,~ŽX—•(`ͺ#$謽^5J˜ΟϊθΛ ζγΰΜC|vύcχ‡Ητ=Θ—dH1C§υ:]e²ζS(χψ€S?yθ‡n­ΐφΉhΎψ;€Ο mυMθ=M'ΣQζ¬άRμ;ΉYyξΊ=΄Ÿ7•Η.Α‚΄ΰo ώ²ŸqΕ(;»IΠ‚RDΆWoŸσιΡάΈ- :§Waγ‚KbΊΏĜ]‘ύPˆBEdυy' «¨G©ΙΣE'±’pbŽ œ˜ŽœBš§ΫD‰k₯΄Μ,3­Ž3ΓwΥ˜γƒΦη?cό, ρ[eAΔaŒŽι=;EHήJ{έ’£uξι€ΦΦKωΌ]tͺ{$ΔύœŸywI~¦) ‘ ːβF—F ƒΠ2>"Έi22¦7ώ]±FώΪΆΞ"Σ>m Β―΅ύΗ~χΗ‘2οΖ’Šπ|Θ‹ΓόΕ¦υ„1ώ²€Ή™~ŒΡ——^οo6"Ε‘Ϊ%£sC+±2ΩOgp~ίδόFω*)“jΧuΛ_RθyωjŠε΅| >ώo;šηήGg˜δ/|½δGUppΦKͺ =½†ψ„Ρχ?V>ΑšOn λz5Ÿ\o]9?σξ,βg9©’ςφD;: ξΝ %m†²μWJv―—4{J|°=K€e«SgΤ&©Ρ:qαƒΨΝ²ΊΨ$&gu:•—ΌτΨ“,/ˆiΟ`€Χ7κ@ƒ8••䑉/AhΑZΖΜ"‰GGΉDn#ά«cςV3hŽ#°±|]Αdmω%²Ε ξΏγάgk±{Q@‚ΞςEΞνςνΗ€ΞΗbοΝw9§tν©Ηητβ‘ž—„΄\δΩa™’Ε–¨œ ”—άΐ—^BΜρ(έYͺφθα]‘%ϊαsΣ‘Jqύ=^%©uɜͺ΅Όˆ’οΚIuŠe,―TΦζΫq§‹~›ˆΎHΒ#΄±΅Ο¦Ίž!Μφ‘Gg\;ςθθθXIŠXX˜@s³ xhΦΰ/r‘[βάυs“˜ τςG5»ίsSχpσq«TŠΙ1™’–{ɟ‡bu‡nI@:GΥ4)±rIŽΛ₯7Μ.Σ›υJ’§χzGm;ο8_²/MŽbZxΡ,tD’₯_Σέe_2Vν8Ί:;Qž%(Ό8H#{'Y»άŒΜi³•6ή)Ϊfg†Ο“ΛAΪh§Ή,z+*А | oΗΓΎ”ρŽŽΜHΫ$}`  œ‘ή,,ίEŸϊ1pχ š «ζl~Ž,Πh>b*š‰zΧΔ4?0#½kB|Μ+Lν[‹υ'ŸξλV>?θ?šJ¨™ωAΙ$zbιλJ ω©αΛ†χ„žT„Φέe;‘@ΆΌ:Σ€ πξ΅#Χ@ΝμΘ߁ωZ΄ΣΦ³§‹K?ŠΣ•UJπ@g½[°[-Ÿ„ ΪrV•±£μ+Ψ! ,£­m΄U‚}Ω‰θyT«/œš°/ΠΙzςnύΜψΪ•Ϊsρ́—Q!έ&ΚwαΛ»„λτΚmΖΕΕ9ž¨ΪIΦ šš)Μ@ځξΘ+:G‚ ŒβΫ=jkΗ™*Χχ„άέϋQφή5IhΠ•gχa—0€xG§Aυιe¦>wφhΔΠα!Ϊχα@M΅;‰?YНϊAh^fri?i €•~pΔ ΔΊάˆS°Όθι,Œk’–—…5ΈjΌΜ¬Έ,0kY¨oŒή©ŠqΠOγξßΡΣ"»r|­tΏς<τ 4ΉŸ¦|θ”I ‹k3Ϊ5‘"UΞφae]²ζ+ “?œŸωλ(Ÿm™i“ϊ;4Y“5–*5QL7Š„n?:”#ΫάE₯ηͺ·₯ˆŒŒ c›HK:’2¨/A3•KNpoˆͺ‚uΌγθ§#’ϋ;ΙΊΦ—£ςΉ€=…Ι”.†ήυ…2„ •Λ«F±`YTp£χΡt—6t ΊΕχŒ%˟€οΌΛ$ »XΡ¨GΪΨTΔ En†Ζ•°£ξαΜΤΗΦ ·Σ3Ά‡…was_ΈzoƒP Κ1λE§ΚJp ΚTΦzœνͺ8UeδΝ*ύ φoί¦\30A‚Ξ:j3zάβ/RžδH²θ,ω'ζθΘE²Δ[z”ΗAX aξŽ›nňΨmβG%1νB?ΗiC ›0Ώ0‚ Ah„x™Ζύ&‚„ Uν\ υ•¬Ύ>‡Ρδ‘Ξ—V“/!Ίy;RΡΫ¨ε‘zΐΎ€Wn °ώζ ,Ώ§₯¦ΣqWU›”y‘Ÿ”τfΥ@eϊ7Ιη ₯tδ•nωήμYKz) :'ε”!bQ˜WhΪι‡K.{γγτ…8]ΰ dυΉ MΜ'ba¦ώ9R“gf>Rη33θDtκ x6C1© Fnxj}—q›βuέ’w¨Nw"֐Ήyεΐ¦˜ν§ρζ[Ππ¨›ΪΌ‰¬1ςπ Ϊ€ξΞλυxxβ(J…vn-Η«ι?βά―Ο’Ždkžy§Ή7RξέΠίS5QŸBν’zρ±υ ξέDb5…~όEΙxl{3‡GPžšD)σqζχώ d₯v–Μ]lάHύqχxJeλ€$֜“{ ed|DΨΫ\‘½KG‚ΌF&‹[i58S… dfa’¬!· yΖu Ά'og₯ΎI•5τ½Œω/0Ύ)U₯τlΚΒ„τόΥ?Έ£ͺš%Ÿ:UU‡χΞgΧ±‡ž‘ ₯Vγ›s,~φξ?젏Y((Ω…ς“GαxπoŠ ³-Ο#6<ΒAΠYνΊI0Ψυ=Z*ω+qβυ*²εΉ,ώۜ˜―€I+;ƒηηι;BύsβΑω_ Yκ)όJΛ€z¦ξ’ž„ΊΡN Ρd—«|&ξGW»+_wο+ΘWθž$AηGJqm/αnu5 œS)x~σ/ώ΅― ρώ#ΜΣ·Σ€:Α– Un‡ƒ,₯“ s›œ;³»3eSζ‹X€SV#₯Έδ€Lμ.ίGŠ3dQ‡άβl4΅σ‹υh=Z"AΑ†κ{υΟώW~‰ΡˆT?)ZΜ3¬Ζ3|W]ΏΣσ²qώSΧ-ψuω .ΣχD—ρ :s°π ΎΊ»Τ·‹ι6w?ͺTσϋ@Χ·”\>ΓzΙ<Ÿ·N™ήΏr~f#?σθλ’cίΒkΔ]>9{‰Ύ“―SΎΣφήΏνV–ς1π%φuV σQžΨOr χΡΡΦDkΫ^:ν!;φΖ‘£ςz°ŸO|πqof’£¨%4Œe=!δ ΰtω‹Ÿέ$fH˜i³ Θμ@ YT}4Ϋ₯I‘Z†lΕ€&Yž4ju\tL,’D‘W)rδi \YY!AΎ• ΦΘ«2†€‹«Ε„τ3Γ_ΰzW8ν“ϋh% ŒΊήGΘΞͺΊ)§šq‘ώgnk²b’.QΏlw•+K|)Žμ£ŸGC½—πΑ#—ϜΨ$)ց<ͺ/Οηφ,νgέϋκδ}`RξOσΨ*N­€ώ0ΙiO6ψtφ oΥoΙZkγ½cΘΪεΪ3Ο­<†άJw­ΝQ£hS„ pωΒeδΎvΤ%h“Ήgή’Ÿ;Ήθ›n9ΟΙ:ͺ3Q_νυ:T•S‘²Δrϋ¦πΣ-5`ΰ•«ŸcWΩ‹]σΤrԜ.Wς4Σιqϊ|β(©|{SKQ’&οœx€K,%!hWΨΜΰˆKΠΩΈφ(ίΘ­₯ϊ›‡(ΩQ*Φν¨ΐ³+΄΅Ξ΄ΰB­χσg:Ÿ%:΅$…όέθœϋyΎABkβΘI܎C/ ?-εNΝ-γσιC^TUΆΌμWiΌW’υεΈΥ Φ–{Π€Rέf£|²Ÿ¨ŠA2ΝUξ―Wτ½ι†[ΠΉζΰ^%£ΎVίΒ²Ί0ΡOίwΠiuωβ{Π) `wΆwͺ΄Ιz}›`μAvΝxί~‰€ο}έ%dΌ΅5/?9ήχ΅ζΩοΰΤ.yΎπH—s/ΎuΘHB?hψ―duΊg?,ΔwΏy… ρ‘#/»ω;ƒGΩΠ0ΑwΥtς―Αόχ ₯Ϋs³-ƒ’βί’Ÿ7΅3Γ_βΚ=•`˜˜„m½dšΟS]ΦθτnOΘ†p~&u όΜλyEι±οŠ?MήΕο^Ρ±π%λλ¬t”ξ~'5΄Θ7ΣM7qEΡ‘CΝ^YΧ!fλ >:ΚWςq'U§Δ0Ώ?(U²ρ%%»Ϊγ‡Nu²°ρ―cώ²5NR˜Ϊ*υFA5ͺT:Όκ>rnξΕ9U_/ΉΐΠ¬_½ψ§ 0Ι«IοM"ΝΌλΰ;Μ:Ÿπ]ΆιV>α/λz5ŸιF‡@ΞΟΔNπΕΟω’‘ƒ†=IMkN Ye‡ΕίξκƒξΞ¦υRΐηޝΪf ԍΠb!N”KŞάg°aΰϊ7#7yJiσCvύ*‘:94”―΄AKG=e ƒΞ ΡqπS sΤ+$ ›‹bG¦›x²ŒΪψΈΥ}Ο„K vώ‚tTM8-'—2Zΰ/TBr}Μ‰‰”,‘l@l΄{γ.; ‹›—ΘΙ,Ξuβώ°,τ0«ΈBvΚ!Œ-5`&"%ιΔλδ6?kξoάΐM©Ψ* 9 I§1₯£ΈΠHΑω’όΌΫΗ—ΪnίΓvβ#];qκ»1ΈSmdF(&ΉΕ( “δ7ψ%,G&@fŽψTζνΆΈ–ŸΛσƒθμDП#Ή‘ΒΥΜ|€Ξ§3θQ›ω§Lƒξό TΗ²ΎΆ2―°΄ΟΖυ§ŒG^ƒ>ΧKα΄nεσƒσƒΗ3“³ο ΎBάΊφ.bwœΐώgχ+ ”ƒ-₯F0πyφυΌ…χ#Ή:ΜY'ˆR³π3Ή?W_όš²¬ΙΊ<Š,—)ΦΊΞ‘{ΊŠ©J‹˜ζ%wXx8Ώζλω°¨A"rqQΗόVκζΥψA ΆœδwΞaάoω˜¬ͺ­77…‰)2r&Ώ>z6iΎ-}χQχΰͺξ\5άσ!ήΕŽμ8„΄-ž™‡Ράς~έT―Dl\žD /dͺ u(±‚g}pηΡ9΄Θοαb|½ŸuτΞ=Ϊκ3ρόόΌ6niυŸΉ«?όΰεηP^š‡ΨΝIˆQα=§:αO lΰϊ?γνω1ΌpκEδΛJo*Š[k‰³οžΣ5Π!'3\_Ϋ9όμΗxα·¨.aοAν¦ZP{Ή ιGŸC>Ρ»΄¬ΏzS²4}ˆΏϋ‡ΌvςJ ” 1Ϊ³B ρ~HGτ&²laΐ M ΊRYךͺ<›­7^,ΦΧέϊ3Τn} 5*+©2 Cƒ7q½ξC%W¬ι|ι”i —λΐυŸβoȈΐK§Ž‘’X;&Ε6Lu£½C»qΘτό9ηΕ,Ε2=Η‹(s₯έ”κZoŸ$λΖ9b ­·nK~Λά‚ψ½Gž•tRHAd©sNςfžB…R~ξ|ΰ) κ»”^ΪΨDΎ˜ ·γ »\ΫΪ‹<½Χ΅άέ‡ΎQ)BΎ4ΓΫωgžϋvεΛ‘š«³―νξ»­9Sμότύu/ΡdπΌ™˜₯oK.ηΌρ―ψΡμNυ”dΊσ·ΧβaΗFΪ •H{i[vΆτ`˜οΚυΥ΄oώS>>Κ4θρ3!nφή» œΨQƒ²Tg‡Φuψδ‘{~—‹Σz‰Ο[₯S!8<<œŸ ύd?#k’²­§ώ{—1E§—xΜNβηεm­5gͺ‰/1―³Ζ0Ψ€΄bϊΆνΉ>‡μšIΰ»ŠwzŒρWNΣλ ½ =§7_όE//…%GΕ*‚ΞcS5ομοReL|IŸPtκηύΠυΚ_f¦ι%Χ ›£ο“Šγλ₯°\/YζΚ Ο*ς3u5ž~ό…u=ΘšΟ“ΊπΈηόŒδS}ς³ΗθͺoΓ†όόΐI{TΒϋΩ+…³»›3ΌςΘλ₯§ΎχGFoΩο]8λ·Πœ<Ϊ\“„ύ%t:oβӞ{ώ’XŠ+=υ{¨¬ίΗ‡?zί”\ŸGνΒρ’*eaδ3έ\nv_D·ό6,%4Λ–έvP4Tλ³.UΔγώp}XΨ ·©·?PHxnͺΧ;κ ΌζλΉ”Š—π΅gvΊ£μΔΣ]ͺxτπ™―>-nU°—wςΡyΌϋQ­6œ2_~Ν₯Uν€ψχ<γ΅©I2¬/PzχΆ„gχ½gyy5―γψΎw>mΎlύξ›$θμ#±<ΫqοόŠήφUNΗΦW.~}΅QkΜ[~ϊ?`6·Ξ½:Wη΅γ’JxΪ±γ4N?[­@¨ΣΚώΩξ/πΡϋ|n~ΟB?Θ΄(ΧμƒxωεγΊ<Ϋ(δ1:SSŽγ`ZR·gm½—qwlΘ;J’ξG1Xο9²Θ_ΆεΎ‚ς8azποζ&nα#:ώKvΙΙΟΰpΊό\U]Ίq³ύΊ-GοΖ³…{\bfαBλUsΰͺjCΑ+‰Ξω’½|Ι±γN’•Ώ‘:I‚Ξ¦ &Ύh^H’yγ·Ν;qς| ς灠ξΊwpΎΆE‘Mγ!εW_;ξ·mτNάψω‡{t­ζfψ|Ι±·ph§$L=JkŸΈΦ:ιU_Η™ƒei]Έςƒi?ζfΧΰΉ—O\€Ο½ύKEΠΉττ€šm?wˆSή)―ΐ™ž#[ϊ0<Ih £σƒΦώ©ξ‘LλVΣλH‹σ SϋlZŠX„π¦q-·'Πψ–ΣΙW λ₯pZ·ςωAθpζΥψ’‡ξuΌτ3 3ŸgŸμοGr{B™_]ƒάΣΨ.½ ΜMέΓg7IΔΫΏ3=―ψ/.$c9Ώ&™›χΒ‹_–±1.λ“ΣΊκάΖ ρTΣΣ3˜ #„8‘aL^qaΎHύƒΒͺ5oόgœ„ΤFoΰω}EΠ̎FΔΕ!•¬^EElιέcyeSdD }Dg T‹Y…ˆί$¨Ψ.can=ύΝΎ…Α£rΙxC’6oΖζ .€…ΕQ φ6kΥΊήγ «PΏ…Q{–„^ ­ouZ-Φ-XΓYΒμΔξάnXŠ‚XͺυqmŽX«υΕ‘±ŽΒ„$lzŠž’εYLLv£ΕΟ©„2ufσY₯S7œŽΒJlΛNuY¦°uΰAƒ«θRΓ‚ωόΛ=―/x~ΎXUoνπΆ‡΅U§!³{ ²°E`ωΛK$δ;Š‘ΎΫθZ%žζΘΜ…¨CίH;νθΰ^¨›ωπί?Ώώ6’ŒϊeiΦK.“z:‚49~Ÿa»2v#Ρ‹'Ίοαζ`k0H±·Ž₯̐Άr\€b—FΠγlCSƒpŸy\ˏF£Σ’Τ”e±Χ»Σv’ NG€—hνy€[CώϋaΡΓνˆ%ΘTΊιζ 87?5ΥΘS¬™Πηώή;hο‹ΐŽ};EαΫΡ‘aοrh΄ΉάςŠϊϊkqαί7ΰπ‘γdνΓ£Έ™.ά«ο@ޣȌ6α΅εu‘nWžΗΎ»=„Ω†ρˆςΕο­…ΗζeŠ„ς'1ΦέB’ ΕpxΦ'VοDηέzΤζ샓φa› ¬/Ίv ˆŠζ|Ι~Ύδlόο:‡‰ΗμΗΆν³*vώL?ϊϊ΄#މ/M/ˆΟX¦ησ'GRi΄-/iωΌL—ϋθmͺAŽΒ‡{ΡϋΘ‡³iqQ(ς'Δν*{dήε,πωAq>t :φu) ]ύ}!AgqζοΔπ€T—|ι©ΕΩ c‘#(ί& JΛqur° }νΪγFΙz tΥI<2 ·Sσ›ΘτΩζζ?ΉFη!½-όΣs|κΝq¦Χ‘–ζΖφΩ΄ώ”ϋ#T―LγZn _·ΚHh|~ΰ°a~ ρ%¬]7ςθF#σ½ζΫIzΏͺϋδW!g!=Ÿg^Ο3Ύ „J.tωυ¬Λ·δ#MQxt’¬τr`4=―Θΰ‡Ρ•σλ'}=Fƒu•IεW`^Ό.“$΄δω>ͺ›W Νi½:–}%ŸνB;ύΈσ@Ϋ lφŸΔΆΨ`ΦeΡ ²>Tΰm΅Ύ‰±άΦn{Τ k6ŸU:υ©νPgΫmΤ™|˜ΦΧ3q»%!g2 »―ΏΓϊp‹~«λR–9D'ιΡ·JΪu»μέ΅]ΉNΨεΞcΝxΐΐ— nc’p‘ӎ&s~f/?λjΈf«ς ―>fSΪ0`rώςEC p³λ‰@εΩΟίl‡Τ³@Ξ_με/žψΊηλ%C0ωLΔω„Ohž΄ΞΟ΄ό¬»‘Ιι}„*‘£Yϋ>·¦έ-ŠAj|:b"„£ΐVH°gšnz }ts—ΑζS,διYNe+RΙ΅%ŽΘ8έ„ € ΏςnšŸΐΰŒ«J$ L\’’²‹D«ΰ–ΤύAιWζώΖ$₯B<s;²₯15z΅n=!}9ˆρAτ΄>ΐ£ϋ·Ρ1<ύδ ήRŽ@ˆ ΐω’gGXγK[’"±<»δY¨rξρJC {¬αiΈš5Nȟ£5ξ^ύͺ ΐΗ΅'¬ΦψYΈσ@τ{’ψήžΛη)8Oœ_{φ΅½ό%[λxΟΦϋΊί²y³΅°ΈJΗ6ωͺ8Hασσ ~ά­.‰ ½Λ‘‘`¨ΩΧ–Ό='Q˜Fϋη³ύΈεΒΰ$yϋΟKβp8ˆΝŠGΪΞ όζ7Ώ!ΛΞγJYˆΗΩ5Φρέ΅J›ΈΗ§θΔβ„ΨD&ΔΓ΅bt§ιo©Ε₯wώo\{ΘΏ>»QαΎp@`½π/_ό7ϊ€ΣΘX―pώ²^{Φ»ψzΙ?><6ΌΰοΖϊKx?œƒD0νε@IDATQ>Ψιt}κ©§4rAg.謑~“Y†’άlMHGFώv•VbΫΆmHŠ–HƝKgΡ:fΙ”v¨Γ ‘of|γc؜ΰBΞ`ψ G HpΎδ 4+_ŠΫα@Ύ€Φ<σΓs^‡{ΌWƒ °βi°ψHƟ£θN„Νπqν (+? wώˆ~o€Œ…°βi¬tžŠ#πδ ΐω΅w_ΫΕ_ρΏPˆΧ{οπFXο‚Ξ33³XZς­pͺ‡ 3@Έ :G₯d#jy Γƒ=hΎίΎiΎοyŽG`}#0τp@r,‡ΚΒΞ²`ιΉυ“¦°ŽW o―οždkέ\3ξΧ}†/>ώξάΏƒ‡χoα~}-κ?{/έB?Χb–ηZ3ΦγΏk,―˜#ΐη/Oξ ΰλ₯'·οΧcΛωϋŸ±^ε‚ΞΖp2*mΫ~d%‘μό0Zο<Δ”ιx†`"πTLΆFGaKάVlς¨x€ϋn~όS4t?9BΞπ[ŽG` ΰ|ΙΠ!‡ψ²Μ Ξbk~¬—°sΈΗΫƒϊ-…?Gλ·oŸδ–ρqmOο‡;DΏ=(ρR8+p~m=w^ί©…†ρΏP‰Ÿxθ² αn‰Ύo½ :ONN‰Xϊ­η‘v!‚Ξ#mwqΆξs!g»†/‡#ΐX‡ΒΐΒ‡\AΨYΆπ%9χ\ο[ξρλ°ΛV₯Is“γΒύΖ'W₯ ^(G`U({e·h~=ρ/5εκWuψπΒ9~ΰόΕ/νι;>?Ψƒ#/…#ΐπηΧΎ±1#πkΑ…ΫϊέLΧkΪ……E¬¬¬¬Χζρvq8ŽG hΘBΝ‚°³ZHP& άγεvπ+G€#°~pδ&¬Kώ%σίυΫsΌeΠG€σ—Πο#N!G€#`y}ΑίΜαf5υSίϋ£?£βνwΧ.œυ[hN^žίxΙΰp8Žΐ“ƒ€ ά¬–… Ο‘©QŠ΄ŒHΈΕw²]&_9ŽGΐ|~0OΚΰpցp[ŸΛJ”F!‹‰“NNOΝ6ιœΞ ΜΟσΣΡ‚ΡaΕ…ωb5<FuΌŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#tdΓωωωLuwttˆω6lΨ ΙQuΰΠ_hBlΊιnδ·€x‡Γo<δp8ŽGΰΙA@}Μ΅ΠjρžT±ΆζΗz 9‡cΌgϋžœžε-εp8ΦπδŸ|~°†'ΟΝΰpV pηρpΩ²y³˜daq1P°ŠŸ››ΗττLXΡΞΔ&&ΈφΓ‡††ΒΉœvŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΰίό†„}Θ9僝NΧ‰ιO=υ”¦Ž5³θ¬‘‚ίp8ŽG€#ΐΰp8ŽG€#ΐΰp8D ¬¬L€ͺ₯­#©γ$… ά’sΈτ§“#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐ`E`΅,:kν;³RΗσq8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ΰ‚Ξ6‚Ι‹βp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰpμA€ :Ϋƒ#/…#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐ°.θl#˜Ό(ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽGΐ6ΪS /…#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8»ˆ‹MΗfƒ…OφLi,ٞWΟΧcΊ―?ήF—±l¦Snγ†'~ˍK(Bv|:b""°ό›ΜΝObl΄gυ²9‘”Š„˜DDnŒ@ΔSΐof1v‡Ωξ³πόΩF‹Ι±Τιδ–ϊ1a+Ÿ`kŸ|Π6xxAZ8_βŽw‘Κη3ΰ›―£΅Λ2œ>Ζ/>ͺ³έΔƒxν;g²˜j»„½{ΡΎ²W½€\μΘΞDτ–Ν ζζϊq―·yΥkUψπ­;gυΧuJΤθΛ£¨mIRΫΘ$αςόΊΊ0μ§Όΐu^'ϋ)žGYA€ΟVΠ ΌzσƒŠŽό‰ώΉš|>$ 6ΏΆVŸΒOύπy=XδSθΰ¦;?x€α·6#ΐω΅Ν€*.©Yq؍mE…”x‹3Nτ·wb&PV_ρΏζ‚ΞΎβαŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐXKŽβ…ƒΗ`†–‡?ΖΉΆVƒ©'ΫΉULΉ«υ1!.ϋkψέUˆqβfέ‹kƒήΙβ’φα@ρ^μHNχŽΔ<Έχ3\θ’E΄8ΈχU”fd!Z'5J Ώΐ•ϊρΨ#Ύ Κ3 HΘY―ž―bhπ&Χ}ˆv|όΦ$‘[ŸšŽdΚΆq@w^eWxψ‡_λΓ`-~πW:ύ‰•8ςt),c΄ε*n5 ­.QAͺo λ; $j›³%ˆ•­†cώμ₯¦Ο~;δα5Σ€w/½«zζYιdΝXεƒφβΓKσB ω’‘λ, ±GŽŞš½Δ§\αίOόβ"ƒ°«>ΏVπΡ:+1'GœƒbF„™ΟFηˆGJŽ<Ÿ’΄3‹ |€&mΗΆ—q €qκ@ς₯€Ÿήώ ξyDXΈΝΙͺAN|*cS‘›…8¦a\½φ·¨χ¬ΛΊά½;ŸΓžΌb―5θ‘’ΓΈΫ|Ÿuy―αωό`‘ƒƒ‘•ΟΑ@Y[G0ζ;ψ§LυjςyΉŽ5Ί“_ Md©Ο4Ÿ—°4Οό°Fψ€UΛωupz<σ Ξ?ˆm•ΫΡyΓ₯΄žŸŸ―Τ½{Ο(Ϊ›ξΰvC›fΘ£ZΟ―Φή€!:δDk©Ω°~-RΊ¬–%4 εΎ\Υ«šS«J(cαͺφ…Ÿf-c›Χ}6keζα±VŸΒ‹ύh°)i §«‰ΖΚ—Tυ)4ψ‘Σ•œΝrhیْŠΞςͺψ‹eΝӐj˜DŒͺ}œšθ  j.nMΠ―›4 ψ ѝ‘Ί±ρ’5 •±Ι©4·ΊΖŠ'k>ΤF,ιvJhͺψ烑Ρ%!A…>ΈN-/(|Αg‡¬–EV~Νσιw+.ϊ₯ρPŽG€#ΐ-2 9 ”/--ΪάwyK6—,—#KΚ!zΧ%ΜΉIQδΎŒ—JΙ"­Oƒ¨M›ά±QېνKΘYJ•–ρ4Nν[Δλ.Ήσ‘•εO#[βιMI­ΒΧoΐ»Ÿ ˜τLΕο"0GγXJ$_汐 ζΐ>—3•ΡΡψPΧjynεΣ8vl―XKσό£UtV}]7pα£2΄Lί“ pβX΅$ de~ώ ”m"ɁκΣn!gΚ733iu~V:YσQέVψ štξ_%B/­RKΧΎΨΜ}8ρΜ!TV•#Ζƒš PΝηqώnπyωW7.BQ$ΫD'RΨκl·ΑšδvWξώ=ΙΞ’o΅Χθb|₯ό Ϋ΅ΞŠΪ‡C•_EŠΆΧέΌžBΞΓΎ.OΗα}ίΐžTYlί£-ι¨Ψυ6¬|—z΄ί ψόΰU¨έΪπœ™iRhσ33-aHΜωΑΦ~]E>Ο£]Y‚Κ―‰h¦ϊψΌˆC>φωΑαεDΐΦη:`mxRωuξŽέΨGBΞ‚λΤƒ)2»!6f|Ω€—B7LηΪ :―±fΓϊ³H°[–`Σ$Τe«h§ζ”Yϊ‚‘±Ί–ν3‹O²€…ϊIΐR_05ΡΨω`šNTf³ΜÚΟOΗ„JΤZςΞ?νv⹊š‹ζŸ[λ0…:Z˜‘u 5ΕUΘήκΉM γ”λξΏ‹:G$³βɚϻ7Y:ςΞr!œ†\—„Afψΰ:΄Ό°VaXψ΅0^x>ύ§†ύx(G€#ΐΰ„"Ηšp«s+ήΤ-//"±ψςδ(ηMάR,ˁ‘Mˆ‘…>¦ΡNGw;IζKΤgy -ž'ι§pJ%δ<3ή‚‡=χΡ=9…-τρ$=±{r“1:©²Ž·1tJ8ΖF›ρΨُΑΙQLΝN!"2ΩUdΪeM1.΅ ϋ.‘N3)C1z;4ό=Γ]θŸΒ<Ά"'c7ͺ² \@ΗοAEώm<ξ-H‡>ώO4…™d₯»*G‚  w>pYςΒdΙύ.»½^Ιl V}muΈ*RJ$,HΠ9έΆFθΔϊόιΕ΄£μ»ΨŸ¦΅š:93† u¬t²ζ£Ί™ω šnξ_εK룡­(Α+oώ>Κ=¬Μ{$2wκx:{ΠψεUl‘…ΟTƒ΅jsh˜O¬ωˆ(+#ώμržFsΛgΈΩτ©ΫΟΰDq‰‹φψ”d9πΈΧiΎ-9ββ“UBΞByςz”Ό³γΠ«u]Ύ£μŒFΘΉ³ύ<κΪ―b1z/ͺvG‰Γυ½`g~5ξυ|ˆa­|~Pρ€{CŸ­j„ρόκ|ž‘ί‚Ν―Yλcασ,ωXηψy–p@ΰ‰ζΧrMbΈ»ƒCƒxάوˆ˜tδU"M:.ΉΈε}h ύΞ€ΞΟ5t^{Ν·ˆΥ²`EΣΞ΄E fΛμš„] ‚¬a‘&;(«kΨ>u[Ήί:Leͺeͺ/¨šh,ή0Π VΛ¬ω,τ]Π²!αόΣή^ΆΟΥ,Ο­E˜BŸΕΫ^Η™’RŸ-£γΆNToΒΒ₯A‹:+ž¬ωΤuKώ€–Žtς„\Πjw ΅υΉυUίΆΟIan ·υgyΑΚ{*k2ρkͺŒηΣ·XĊ kρ|ŽG€#°FŒέΑητΣw»ρ² £)³=[­ZΑύ<‘šKG…ΛB‡ƒhΉw†H,ΒW·?­ύ=Πs ?»sY•³-½uψόžJhEˆ¬Ε;gkUιd―~[NΎιΨr’·v»•qtτ~‰ήΞ/Π8¦}ιΌƒΕˆ5vlΨΐfq]ΩζKLE‹œ£CJΓƒυαjΟΑ=νFφΦ^‡―'mbΩύυheΙΐ‡8₯%lž`Χ'Rι₯^ΐFΌΏ\¬ΟŸΏ2MΔe俌g H)až2IΟΉ}|r@[ +¬ωΐΚ΅dσ;ΎdckC«(…έN’υΛΛhžΞΑ™cώNnπOΎQ>οΏ”UŒ½v{+Π+šζ]A˜œζ]νŠΖ;mΠζ£ΨTόYr ?Γ'’Ψp_/ž&Aηh1.Ρ[’ΘˆrΉ$ίΧ‰ρfΤΆΜanͺ—§›»ν[ψZ‰K zhzX#l¬”Β².Ϊ‹ς‚\₯ˆφζΑ‡$‘φΩzόΊ>ρΗ iBŠψ<δ’Π°¬hΗ緐ρπωaνΊ"ζώȚπω€T±'6ΏΆPŸ'd˜ς±Μμ½ΐsA@ηy ΅}#Ν·4£Ρpσ#άϋυ/Π8μΟΟ^ΐ{ΡΫ<Œύ/œDΦV‘U[Ÿ@ R‚Ξžλω`υ£OμŸΝfM;‹Œ–%¬hϊμάυDΥυΫ“ΨV2V¬Xλ ͺ&#_0a‘¬–3Xσ±vή“’σO{{: πdzn- |0υ©„œΗo&κ ’efφaŠ+wmΤF—`[aZΪάΦΖXρdΝηΩ†,yfβχZΒΰΉΥΜοtX‡–˜ίSu ΘΚ―y>ΒVΗb+.{Чΰp8pB`ίήΓΘ–„υ&‰Ο΅']‡GS’ ~δ rǝϊB%:-Ι)ڏ)ίΨ€§³:ƒA˜E,ͺ€›5bŸcuΈ ¨Λwω'fΌU!Žς38}€›I`v9b#"fΫρλώβ•ͺΌ…ΗρΚ™c$T“.2‰ώ:EθJ32«+α؁ΡΦOqξ’§`Υ><½gιξ‹ψΕΐsΟGQA1ΦΞΑ΄Φ_ΔΩσubΩiεG°³΄ YYΩHIHGŒά—S#θνοDΗ½ΛΈp΅AΏ1…GπΚ)’³XΦœ@η]ΤΥ‹r¨0½Ώ%8ςκ ”–l#«έ±J‚ιΡnτχv‘υΞ5Τή6bσ vΥKω;ΠpνŠRΘΖγ‘ΧΏ‰m‰[hL,!2₯\‰ΛͺώΎ½]ψPηr›ι“έυ_βΒ O+ήDηλ_Ε² $.Ξ)²IΧαφzά»zWn«Σ[«ΟR?Θ aΈΪ;ύ< ΄ye‘½™ε’°δ\;zζR‘/XΠΖθΈΊ/Όrz°ι'#τ ,΄o9_²/ywρžΣίΑξ²rδf ‚Ÿ.'ςΒφάΏώ ξ΄ΉH\±fψ’£ΟύξI$EΡΌΠzuΓ©8r¨ E9ξω₯λφe\όρϋp?E•4—œη’ε©&œ₯8½™8νΐ7πΥjyxg/ sΕf&ΊΡΡέ€ΪΟ~ζ> νθΈHgϊλƒΟžΒk§*@ΝΒΨΓσψ•Χ|θQYβAΌτϊAΔΡyΣέWπ‹³Χ”eΗΥ•ΘΧτAšΏΌ„_w§S2§δψw°―ȁe՚4χNά|Φ-ΜΟ°΄°ŒάΚ—pδ™@ύgm>’Ϋiv~Ψ‘SͺXWž u,δ bΫήc΄w>ME <›άS‹εΏ³­¨kjUŠ)ˆu›Ÿπ|v”d>=ΎΦεΕΉ₯Θ”sΡι+—e!g9lvc΄FH“ΧPrΈpεσ_·*γΑ?Sβ΅>?hρπΎ3ŽηBφœ|ϋφWΈί=¦ϊΡPχ1Νκχw-,|ήΪzžύύ(Τω΅₯ω•Ο³ζsΟΧό I7ΜλΎΟΰ―{ΧΏvή~ΏπάjRθDWW/²Κ\κζ[Ε΅W§«οΩζ΅o³ζ‚ΞXχš ¬šΨŒ)X,KX$ΤjA ΥΡΔ°»ώ i¬κn\³V7; 4ʘˆ΄P_P5ΡXψ’¬–3Xσ1u^ˆdβό3D:Β8–ζ#ώ^… ΣskmΚ0჻2Jh#άε&―βΗuη•vLΌβšη]ηG1ζG‰Α«tV:ύδcγƒ^”…lηKvρ%Uyε;―’R †Ήω!9Κ:j­=ξ5νΎ½§%Ε6}—‹’έΚrΈ΅k.Κ #NŒO™,ίΟΊ|k”{ΥΠ>، „ςωΑ_·Ύω™Η€βσƒ ϊ·†ρ€μιU/BZ5Ί ۚŽςcίEZZ~ϊvπy λyκs+οG‘Ν―νœXωiΈψ™ά*τ}–Φ!|ŸAΏƒΧ-ΏΦoΊYΨ΄“άβ’bͺ_ςΊfνέζ΅ocψ»WiAXš ŒšvΜ),KX$”ƁYM«ΓΗ¬ζ”y ({4V…všΧΐ0£Yˊd ޽ρmδm݈•ˆ%΄ϊ\iς(,'ήψ:™ίˆ ”¦σκOpιv–€‰ ,/Μ#2½Y’ՌάύθtnΩ…#Ηͺ₯ή~ά|οœΥ±ΨaVΓΩ| MaΡ4ΧB`v\[(ΣVmθΞR}ΑΤDcΰK 6Σ ψ±œ‘TͺηaΝ§WΦΪ†qώiVώ©ζ±f4km˜˜-$Ρgb‹SΆ?·Ύϋ,<ψ`:Yn’7Ό§ΡΡwΓ«A3s~,±βɚO¦Ξ6KGr‘sε|Πj_”“5Ÿ3HΪLε,ταΣό©ΚjͺμΜγxν…½ˆ"k7 Γ·πΞ»ƒk²Ž)bδƒΑ³Όόuk°-Β°ςkžOίb+.ͺ'”{9ŽG μHΗ‰β§%… ―½χ&Γ³Qρ1IJ;2Žαwθ'» g3ξ΅^B}Ώ‡©κΤ"dK‚£ƒˆ.ϊ~'Ο­`*δΎ‹ήC£!\±£°•₯U’ $0ΠIVwgeJό_wν:ŠbE@Ί =u„cT'½ΈJ[AΰO:ώλυŽ-Η³/ͺ„‡§:p³ΆΈμ>V£~^˜‘”J"Αn™¦δbΙς-Eυ7Υ£wlΡ YΘݞ―+ ==؁ξ.Œ “=Ξh¬$KΝwαόC/γT{#>Ύ-οTβτK*:G[Pχε-LE`ΟQyoΩ»uBHΩαƒ*!η~<¬½ΎΑlŽM@rNJ‹σ)™θ θ*Q±W<οΗ½k{δh@σωKXŒΫŒΕ•eD¦ν! Ω.‘΄ώ¦„Η 6lκ‰XΖPχ * N½ώͺJΘy„θΌ…a²Φ˜ΌύJ%ΑΔ“ίΒ‰n².ΌΆRŸ»jsύΰΞΗμ³e\[{ώΣNί9φ>/YΏŸΖύΫ„{§°_Ξ8ν„Ίχδ`ο++σ1ρAoC4„σ%ϋψ’άΕ%xιΝ·P˜ˆΊΘz~kχ06F%#-Ώ%dΡQΓηYψΥ7·L<]λœν7ΠΠ4€θ‚ μٞγŠ,¨ΖώΚO$>ο· D΄˜ŸŽ’}$θ\§-QP–$…5‘Y΄ζμ‘Δς­>ί֎ǣ΄χMς²1)(€Ίtd± JS•Ήo Ϋ5Ηω]­sYΆnν† δ]SU.ζMήυ^x‘?ϊ@ΫώΗ-ΧΡ° Xt¦Yws*vΉζ#έΉY,Ιβs€΄„NΨφΜG03?$!SV`šιB§΄μ+ήώmΤ(J}ξFŒOΒyjyŒaΤΠϊQ¦Ιߺ܁ψ¨()‘“NΠ;q"[εφΛEJW>?Έ€Π}6ψΊΥc΄·|~ΠE'ΘΟό “Zψη­{νˆΚέƒšJ—ffrΩs8}²οœΧ*šησr-€ΩυΌεχ£PζΧvΞ¬|ž5ŸΨ₯ώζwŸ‡ΎΟβ:„σk.~Rωu.υc”ιqyH"1(9ωR€{ί&tΧ‰f›¦έ*Y€ Εže +š„ςp3§ι#ηbΏšΣœbΡ€²Ac•EC‚ΔΈf-+†Cήˆ#•—ηόψW1Ππ_‘~½ΪύΒλ8$Εcͺ·ΊˆΙΠ†ΏlΥC[s*H;Ω½ύ-Δ¦£κεW0ΨNΗ"*Φ0X4œYϊͺgΤ4W·ΛάΈΆS£LM…/Ώυ­₯&š>_o΅E:…BύXΞΠ―S eΝη·Π΅‰δόΣmY‚­ω§\™iΝZkσ³…$‰^s|Pn€ϊjΓs«.Nγ>8‡Ε%YP”&šVIδ)+θϋΑ‚Φ—cΕΣd>;-ωjΚ†s>h•.bS2Yζ-“mGyυ'θΊαύ2Ίϋΐ>2pmψ Oέ’΅YΖ¬#飫₯8£ζ-μ„ΛΊ`{Oe}pYω5Ο§ΛJΠ»-±βΒΪ<G€#ΐΰ„"9EΗP/Q6συξ„"™†hJRξ™!ΞQ‚CU%HΈχOΈΠΥ₯DοHNW„£γ+P%φσp Ιxφ( ¦^όu–+wΏ…#)I˜X^ΔΖh‡RžPΜΠγΛψθ~½G‰ϊ·9E―β+Ήc7…}ν€e‰bύb™Bӎ֠TΖ‚φsυ7[$Θ%Έ«#ψC/KΟ8ί;pεΗLΖ/άΨƒ”O”l‚«ΨftΤ]Βππ\Ί.JλΊ‹: ΄½ϊηx^t‹E~ι.2RyQŒΟ=Z%Yg€ΫΡ»ψ·Ώό/Gπϋ£7N{YL– NHώώΣ* Λ±΄ώίNΒsQΓξΎΒ“O+48άΔ ·;ύT‘Λqh3 :׈₯4ΓΩΛ*L<λΨ~;Š]BΡ$&Ž«?ώ\…Ό?ΊH@„,€ ~±Ψ^ύ5jƒΛβ*s}΄«ΟždΫrop\Ϋυό‘y 9—IΖ4;[ΞαR/SδV°šσi]“•N³ωXψ ‘Ά‡BΞ—μεKBŸζ=† EΘΉWίω.άΠς$Aq{wόΌ{0ς%w._οΝ_βν‘­/ΏΡ7ώ3NT ΒΞtr@n>ρyΧώН{Mx†ψΏπθεo/GΪΩ:¨ESsξr[f»Χ πZW-φόυΟηΠOJT₯‰ι@b&2 IΠYg)IK“Νσχc°ƒΎ€–Ώ‚ύe”Wtž}p_>|…N-8-*ε=„2t~ FΧΆΛκ¬N<…Tt–KS%SΌv=G†ϋuώS(Φρψ™r¨β€,cγ½θ&\Φ)<#ν+N \Ε½ω|’Φ[6l©ΐZP\b²rΒƝdΉΫxyώΧεIˆŒŒ‘ #Ί—½Λ-.έ‰lο`1„Ο>€Ρ ~²Χ­$|~Π^ώη―δbΐπƒ³ψ;²άμrc`βρβΡrρΆdorIΠY=›ε󰰞·λύHjœ[σU p{‚Ν―ν¬•Ο³ζPσ??Έq uŸ]λw;9Ώ~Rωujy% S#₯‘0@<ŒΈ‰θK-/F†”\½o’‚ΞλE³`΄³έ"…k4θ[–°¦I¨Œ33š>J&λ3šSBmΖ5 ¬j¬²h`xγX³Φ;Ρ;ούΙΙ‚CΒ¦jβ^œό―‘ω‡1V•ίΐΙ£²E Ϊ4ώω_㎰{MLΔύ.:‰‡—/c1§ρRBέΝWΟb2Ή UβqM9Θ-.!Ag—υ ΞBΩΖϋ3iš ΅¨œ™qm§F™ŠŸ^;λ[CM4}Ύδ£Υιd³ΜΨβ†jC>˜σOφ.bβŸRuζ5k­ΜGμ’tΜπA%“ΚcιΉU•£η >HGέΝ & „ MJ‹^@χΰβ†­pάςαjωψ=Šώ7{ό,κYρ4•Ο.KGzZaœ²φG3ξή½‹Š“bεΥΐ ω#—\f9Š·Ή„œ²^Vχ1­ΝΞ¬Α: šε…`―[©›˜ήSεξ5{eεΧ<ŸiΕb+.šψ G€#ΐΰ„7»Q½£DiBs{-Ϊ•»pσ€#ik2=ŒΞΗέd=Ο‰™ε$$’!4·πpYΙ!΄‘ ³«€Ε G²B©Πf'ZΪo‘s| Žδ¨Κ.Ι ’h/½„–s‘–˜ l!AWBχίΗηρNύUχ½_rφΧpj‡λ·˜Μy Χ|Ο VՎŽλ΄ϋγLJΰΊΉφSEΘY¬Άα}ΤίΒ©J’Tj»οy9 ΡmWpA% Vwφ§ΪLͺ»[oαitzxγf[r™j:λ/jάn7wWβΔ.}:—I0]q αΞ¦k 5Λ{φξ•Œ αΊ,΄ΰ;[\„»·6l”…˜υΣο.s χ ±Γ·―Ή…œΕδCψψΒηΨ±ύEQ09+GΧ’¨™ϊ„bYϊA$ΗβΆqmΟσg„τ₯ίU¬Žυ^ΒM.ό•‚Εψ€b₯Ε£HV:ΝζcჀšΉMLA₯W‰ΐϊΙ-X!ν‚Sψ6Δθ8_²›/εbΧΪ‡‘\λ₯Ό„œ…¨ζ‹L"Sng_ZPkνώΟΥ[ ¨"AgA Ω‘,Œ,ΙΡIν}ΟaO&έgœNŸšδHΪέ.ΟΣ@g£‡’Œ;™_`>?ΠGΆάEaεt€dΣΊͺΛ<…7ί< 2揑;οβ'ο]#Jš&ΝI£}θ₯9°ζrΕΒsΧεs^}ΰ€Ή¬~g9ΝΉ‚x9 δβΑu΅œͺi‘O!°η92Ρ*ςΜΞGrV3σCzΌ¬₯EΈ;‹Ω{ρl₯tr )τ]ΌqyO©\4––Tk%Ԛ'I₯τ665B+S£.ΠΊΌNZί‚ΚΎddΠϊc€^)<9ϋ ΊŸΜ ahLŽζσ_· c!0?s>?ΘOŽ«Q<Υ₯ΡO΅ο w>ψ₯{Λ]Š“©ωΘ!…™.Υ;’:7 πy!=λzήκϋQ(σk;ηV>Ϛ4?hF‰ΉΎžσ}†'”_§ξFωξ|e¬?ΎΒΆžO—…Ό‚|)V»oγޝρ™9ψλE³A@ŽEΣΞ‹ž½ζΫ²„5MBΟz”{MF%Ξ&qΝ)6‹μ5ζςΓυς˜}nυΚπN|π^Χ“eŠl:Κ8:q^z.}Γ3ؚœ«|TŸ‘β_Ψ§!V<Νδ³bιΘW_…b8ηƒΦψ`Ϋ—d‘€s©s“wΡQ₯‰η4BŽΚέ’ΕgJΠM'ƒ³„[’ Φ:* ¦εαΊΪλV‘–χT!‹cεΧ<ŸΎΕ"V\XϊŽηαp8ΠD`Χξ·Υ·Ρ/ρE‡Α™Π$ίƒͺ~Τέω'ά™μ ”΄]Βƒά―α·vUΉ,-oΙBn–ν½NʟEJ[‚"©μϊρeέΏβϊ G·Ξ•·p"WX­‰π›εγΒΕ[ιΟ°‰Œ:Πy%ˆ/A½―ΝΜO#:γ$^.Β{eΓκ|nΏ`iπΉέ}Bπx>Όϊ»“h|WίΖχΫ―lυζ#©βΉ1uKMb¦›\$%9€œύθmΎνUJ_W`TΠyκ.\56Ά…QU½9Ω™ˆ‹$k…$€$llŒN…ί΄„xι-ΰΦέNtϊtυ—Λ%αΠχώ€άΌ…ΦGmθλ@WŸ±χΑ"UΉdœsšδ/x“ %ΩδέΦ8Ωκ4YοΆ< Συ’|C Α€%Qά>oΝυƒΟbLE°kλϟ"3r_ΐ³²πνΉ\Έ}YΚFcPT°nχ5ΞYι4›…A@' qώώzΝ―εX―\£7πƒΏόΎΖJ‘WŸžΟ;ηKΎ 2Ξ—"©θ΄ ω oLυκ°…/:1β)τ>6C³šΛMOΝ¨ͺξB)μΙ,§°tδ•HEt‰ΗQ(Z΅§;škωv₯fϊkΟζξ>ββ<•”žMυ4#wGr]Κ,ŽZΰ2σ‘$ΝΞώnΡs^-$—{τό~ρ Ψθ)q±Ρ½V‰Ž‘yŸΩΩτ™κ?fb•ŒΖη‡\$Ζ*Q‚ΖΐΠfnG1²γ\I<χm<—έ~ Nδ*j6§ͺZX4νμ°H‘"Όώ-KXΡ$tΧcFΣǝˊϜζ«”L‘9U6 Ή.Χ•M³V[†‘»kψΙϋ9ψ“7\‚Ν₯§Ώƒ7Λ7!w«+―“Žαxη#ύ’YyΣ‚,ΠΙroΓγ’Žλά¦¨αΥtKŒ«°š=μΞVϋΟ”¦Ή 63γΪN2 >½vΦ·šhώω’~³ΝΡiΦr†\'k>9ΏΑk5ν΄Tqώ©ΕƒυŽZΥ¬53Y±$£b†ΚyΤWsΟ­:g`XρΑ±tυ#;OΆH•ŒLa’Μη'/γm:ξ7cΕΣh>k–ŽQοΟω  ςm˜¬#G―ΰΡ½SΘ7ςŠQLΦ nwK”ο,u+Ν5 ‰ά<ι¬u€|P!}•-/(υ˜±δΞsόšε=UU™I/+Ώζωτ-±βb²ΫxrŽG€#ΐU’ŽaoΆό^αΔΝΦs~•%C΅jΊ&HΘYΟ=ξϊwιδÚ4A0$Ρ[θT:ae™ΰ@œ"δ΄7Ÿw 9KυŒGfIΠY―l‘œΫή…zΧ³rη[8’ηŽΞNߎtŽNΧs‚υ½ηvοw+ŽήΔΗ_|θ3½\Ζ€tκ|oοUψXζΆ4Όb΅π ΅ οΒj^ύSœͺΩξ;³,ŸΥ¦s6Κίεεt΅u7±·ς9—Ρ $‘€κ$ύ€LSύxxη>yοœΧ;ˆ»Ψ\μ―Qn―_Tόvyά{?ύξ% :NFC'Š)Θ|?0U£›ΙόΈΆφόια˜zŒ¬‚οq…N=τPBH†"‹>?ˆΑΟΜς=+ζσ™ζƒ2‰f―‘›…C;ΝΉΝV¬Ο«Ÿw€σ%_Π›αKΡΨ Ω'ŸOΑcUΨΑ—œC~ή·D©&g’£™΄ήϋ•‹‚υΉΫJIYώš˜Ώ°r;©,Ή\? CλsI 1lΟ†.ŒΠ‡L}ΒΜJq­­rrgΙeζ’€ δd*Κƒ}€ˆCΦUS„5‰μ’Rξ—C΅W““&³=Ο‘ΩώӐΐxcl~Hΐž™I$m;…\cΓ9Τ <:= ŠΝηρA<O΄Υ‘0y΄°Y/8'œΣ>'Wω―Αuyc{=J rEΕΜ¬ύΘ”Ή,Ί βσ=Ξ.ΝڞΟ*€όyωΊUA|~π7H„8ƒσƒg1γ“NΒHBbiΔ4Xtf]Ο[?’ΉΞΠ{j°ω΅υ1ςy3«9?x5Cχ|=―…),χž΄υ|φ;Š4ωEt€7?«Σφ£Χ]Š ŠΙ @‡γΉo#Ώye[«€UΣlX“±hΪΩa‘ΒέX#–%Ψ5 έυΧτqη±δcМbΣ€b‘Rxι”σΧ¨–sˆΧ`jΦήώWœΛΝΐ«GΛ©κtδζH”&υω|_C–ζF>M‰’ΒH"€ΐΡLU HZΞBΎ(‹Ξ–ϊOγγΪ^2 ΞΊ7φΦlM4#|I―Ωζθ4k9C‘5Ÿœίΐ5θšv4qώιˆ…[&ώ)οΪ±[2F±§₯·’œίΏ…$W*γ|P.U{5χάjσϊΏ #>˜z―ο;& *Άi~=γNlˆΞ@ζΦW3)Ν ₯£ψ €Ε0V<δ³nιȏib9Τΐ‘½ Ÿud݇¨!Aga—–Iμ„άA)VβšπP%-F ‚²Ž΄‡*4›π„φΊUhΛ{ͺ 4IYω5Ο§o±ˆM§πŽG€#ΐ[x†$:%ƒ&뽁kΒώΫ:vs‹sή­#‹ ²ΡΜ· ρ‘·ΕάΝς»·wv_!·ο_FFΚ(€L’Sž@‡“(G‡»s½Œ―ν¨PΖ_Ευη5B)Jd{†ϋ[œό†FΘyΊ― Ν--pNQm Qήθ|;JG΄ Nή7vέIι΄IecYαϋ¦ι}όέ?Lΰ₯c‡QTœ#Ύ(‰·¦£τΠΧ‘›‡·ώ_u…Υϐ…Q)GίUάΈ1€d·ί³ˆ…EύR—•A¬o*Τr?˜ͺmU}ώŒVΎ7»τ»ά†H”μύΚ7HχOΕ(–€°₯{«Ώ…]+#¨«Ψ§EvΉ(V:Yσ υκςA™ ³W²&~λς%l•ίΙζΐςl Κ,ΝjΞ—A²6₯H|² ΚΞ—–‹ &\ί ²vω, H 'uΆ•] )(.Ω&2‰Ž»φ+›ησθΉ„θKIE 0gfΙΚd‰9Θ*ΝEI’,;‚‘ξΫ^’Zˆ/ϊΘ―Μb€Ζ)ΑσhΗΪ/ΨLχŸ‚Uφ$lu)° Γ+Ί;„uΉΎΞ_αιΤ’tR’ŒρΗΪS@\Ι­ύR)ΐЊn”φξ;λςΩ;xο2pbΗ>”₯ͺ$œηϋΡΨ݌ ΙU(q;¬€Ό0βύΗ-|~p#ΓηΒ‚ΟξαΓg|~ΠΰœΡ}/ŠŒRΝV΅Ή¬¬η-Ύi[λη.ΨόΪΞϊ˜ψ½ΠwŒΣ“0Φμ΅ocvΙησdK„AΝ7[κ R!¦5νl±HαjœQΛV4 Υ0ΣτQη°ΰ7©9ΕͺΕF!›†Ί`kΦ>ψΰ―QWόΨ'oς1΅?/x &Κ—Ώm£΄Σ•μwsچ³Υώ³‚§±qm§F™/ ΥαvΦ\M4£|IέZ—ί,ζ-gΈκaΝηM±Ο kΪyPΒω§ ΦnΝςO;4kQ¬Άτ`ήB’Ίc|PCφ›}nε|FαΒwγe•σ}Œ>€?–šΈcϋ·πl1mŽ“Λ+ά‡]wpoVŠτΊ°βi Ÿ-–ŽΌφΐω olh۞Ες‚Ί@+λu9όΞΫ7Πzκ*ΕΆœRμ"#nWšΘ.Βρ]Θ—2ίkΐ­ς:mΡΞτΧΟΈΠ_·Ί(6ύžκΩPΓχ¬όšηΣ·XĊ‹αγ 9ŽG „ΘΘ?‰ εΨξ.άiΊΒΤΪAš‰Ρ$|$:' x 4cqΣ:UΕͺ .θDϋZΔR€Τ»ΚΎ―Ve$ΧΣωkΌwΏVΎ]γλΜΚ ω%XW0Y›c_)½H«φ_πƒw=֏£”U"bj·o7Ζt„ΙŠ5]Δϋτ#Ι4–η#5gJ*ͺ‘Ÿκ/1ΕπtυEœσbNΑώ{d’qχΖ5]‘%ΟΚ’ιe―τ9HΙ¦w~ϊνι"T_ζ| ΗΙyΥΗΪrωΚUmΠD±Œ₯Δ²'πσ'V~ΉΩ̏’ξ† x¨vΉH‰wΈHpD–s‡*ΎΜ4κ£ωfάSBόyŒΡι]k>|Π»2?!ΝΈςχxτ“ΑbηKΆσ%΅‘‘h έ$Όk_260†ΠΤτϋ …—$δ—$k—‘Θ‹7Ψ@{]^ϋώšασCθŠi.Ϋ‡Ÿ½7ŽγΊΞF?s'Έaˆ‚ ‚ ’7"E“‘,YΡb)–mΙ/N^ςןΈ’TςώTε―TώͺΤ{K½—ί©,Nžby‰­ΘR$ΣR(Ki‘"$. ΔΎH‚~§§—ιžι™ιΎέ3˜ΟEaϊφν{ξ9χ»έ§oί>ηtφΎG"½ηjΔ…Ά…(//@ɞ½d,}5ΰΆGήiLΟH!…₯~t’σ³χQVo—―#Ή7BΏ‘ξGBͺlK½ΤSŸγγ«΅JA:2σ”ό$E1Ώα­¨ΛY»?θτΩU‰P>t LŒ`8ΰϊΌ—ΘφΌ|ό>©‘2ŒLφΜ¦10NΥ UψfdδLi΄ M}r6τ/ί ρΌ•t—.ί §‡Όcηώ`$§¨ς9TΤa,Ζδh'•HΗ15ι,ΤΌγωΌπσ‘O§‚νFZ_»ΔΟΣ%=/Jgϋώ sΣc<ŸG¬―3<4ϊšΎ`Ό'r“”ηχι.\8ρ …a •V!??W«ΤΡvΓoέF·œ’Υ›£L˜=ζ¨WΑؚzΪ© ["t‘ΒVd‰0yλ»ΣcΆ<§œx@‰κΨƒœ]]•Ά‰2¬Τ­JkΦ’{u½•U†QLΣy<Ρ⯎-gΖ/μxΊιQHω¨›ό"θ‰fK/ωβ $§±ΡΘ’tFξΊ½9φ΄cύ© W²6υg€…Mš±Γ8Ϊ.άWΟ‘pΞ#ΙέWKƒ±0oΥ0 œ1}N \=ψQ}Νt0X$ŠKπQ⣌#ΐ01@!Κ €y—œn΅ž β$©ΦŠννκΜ=:ΓξILQ΄DΏDAƒύMNsPξ5Fξ ύΕΣnϊ&δ¨V.3dόd0ΐΗφ²ηQ™™©ˆ0‰λ׏ΰγλƒρ_Ε‹·b‘ΗH–"NOΦγύΏ‘ί sΏ>Z.θ@ ½lΟ–^Ά§#{=/­Ζ΅έŒΜ4Λ­Y©θ΅)ιΔυ3>FΞΤ@NΩ?#g  =}=(̟͐³)'™ tŸƒ3RΥθ™‘€θ§.J5¨ώπ'¨ϊΦΐήb©έUd³&ydφ(y›₯Θ’Rκ;Ϊ“ΦΗofΖk~Ÿ*α˜Vo#ο‰κS71 I’xRšΔ`«œΥΪα'6znJ~d”•ΠONΝπ|™ͺΧ€šΎΘ΅σ:θυηεXPρ4φoNςLΤb ήΕτT†Πσ1ιCϊυ"€ΔλΞ―©τ?X„γ=!£JyΪ±(§§΄#HgIϊ1‹¦ΦKαΤKXYŠ;sΠtΦ¨CΝΞ7τ’Y»‘ΚZkΡuh€»gfNΆX’έ:n\sρ¨HbSΟίμ$CgHN;ΩΨX±Ψ£&‡šqώrœΗΠ9½ ‹ξΚξ:“=Jp¨ N‰t?‘¨Ο³„ϋ‰"©Mδ―#½pvξGz:Λχ²T1«L]Γ§g?ς~)#}+r[sLu £Λ<Ϊ²΅ϋƒ^Bo>› ΰV+»Γγ}Zo ߜƒyω]DκxμΡ}­₯Ή»^wΜ—§qŸοF<¬μ‰Ν—bsήΚχ“3ΒζύΑΠBb<’Θ¦ΓΰΤBŽuk₯η.)Mb€?τ½Xkώ+v~š΅eσωˆšˆZ}νύABΙΎž—±΅Oηΰώ ³ŒΒίΘΟCΔΦΧ°°Ξ r‚‰ΝηSh}ζΫX=₯>©χβΚρΡASθ)³Ω©ŠρβXΪ―Σšή‚2ΓάΡp$Β;αχlˆp‡B²³ΰi'‘B(²„λž„!pTΑŽη”c(ICz¬:φΐπaέͺo½„"ŸˆΜE‡^BUη_ΰEζsžΔ=œέ?η}1iAuPˆ”Η±Kό<=π`ΡΧBzI΅€œzr9/9C”Ξ_Ή$žvF9XρpΊ'€?]ς¬ u?r!Ι)8Χ­εΘ 1‘i·B]"nυΦ{h5l{06#ΝκWxJ-ςye<=†€ g€#­£>Φƒ>€xwclΩτωetU•Θ/¬ ‹±>c9r5ÁzΤΧωx{j#':L@€υ`LΜ[C"oα9•Ϊ»ΎΥσLg)QΘΣ€+0Œ#ΐDŏμFžΊξ4Uσ׌¬Q'pHβ±)wfz«Ρf5ouϊ>*+ΧZι½Yλ5μΦΏπ\“„΅Λ]›ŠΏˆMͺΑ2šΡΪBŸœ-Δφ¬DάΊQmnΌ’°O=ͺ}}j΄mχ<ΆσY”&S„X­kΞ]ώ>ΞZŽΈ'7΄zu<ušCqFÍŸx¦»›ΜRΛδξ…;φ‘ψX½χ‹}QRΎŒηaN‡’Ÿ‘d/¦₯νΨYY‘νι3Cƒ΄+Žεo~8­7 Ψ…βGrυΥ ω4Ε€ΫΜ·w`TkΧ@€μTQ4gωι›Μ”k?³e`ΧΫΩλ‰<$IŸ Z)›qn΄Άα°‚uΞ–(~χŒwˆdΛΩθΟCέίg„Mi?―φΖΑK§δθytR:―₯ξed"‡ήτ :ό(`ιΌvtύyΞΞNQξ:šz ―’Tξ!#Ήο ΅½xTνώC<β ψ<‚ —g€ΣQJ’rŠΑ”%މ_ΦKnλ₯&΄έh$§sΙ8ΨϊΨa4ωξγN$–aϋϊ{ρ\ž/Έ‘—„NΈ‘γhm<ˆΜtέfTβp†ΪJZΞ¨;A·cήΕ<Έ?΄]=?ΪιΉδP«Ι §’ΖΥΗ‘}’ Ή+)ϊΒ±ΏϋΆΖ»―ϋέoεϋXɞύΈB†Ξ~c ΥΞ(Γ֌{Έ¨ŒƒΦ€!3λέΣ[€{K1wΧέlάt"[»?HΓ#!Υžΰ‰Ό?‰ΛΧή’Ω›šJπTΡm~ΦέΫ¨›Ÿ©uδ­΅ϋƒ‘Fέ‹_ε –08"Eh žμΞΛ“}ζͺrλ9ΨSρelMVf&£Q#ΝY=‰οΰy+μκ3Ι οΚ%d²±§Ύ‘?Ί?¨ρVμA‘zO›θΓ°jΛη­‘Λ…ΦσήΚφησNž$Ύ–ζσRΕHλk—ψI’ΫΥσ”μΩ½?Θ\’wξζ!φ‡ΨYg˜ϊzχ+ΏηqBΏτ)Ηϋ·qιη h΅bδL—CQΑ:¨ΛŸ·Ϋ=ΙF3g'ΉΉ»„ζ£gCp4-yΪΡ=Ο^ήΪF@IDATD η‘% θIhΩΣ'8,֏Ϊπœσψ0Š"κ±jΗcΞΘ1r{…‡ώ+)eqpθ2jš—bϋi‘${Ÿϋ=tύυ?š? ΫQάΓٍρ³%ͺ²εσZ‚E’·Η±Kό$QΓο‰ζ‚^’SκOŒœ!qΓ‡{τμ²ώtm,œλOϋž΅ΦοGξx.ZΦƒ&¨ΪΧ/τ₯@K‘yˆYLθΑ$¬YιysF`hXβV,Ι+ΥΧ¬‘lZ}»¦χnEπ”¨CΣ…1‘WόθΚ±to<θ…US½°’ζ’‰±οΩ4-2OKύe[†…GΊ£Λε$&ζ­ώbJ,=§EΨυ΅¨žg:K‘Ž ƒΞ;Œ#ΐ0я@Βn”“Lpδt½ε3ϊPz¬§T”| y%;q««·FΊ1<5,Nτ|υ¦4SύD9υ“ΦΩj΄Ο—Σώp'n“έX‚ςeœ/–Ώˆ…MΥh½³ EλwcG–«›M5²±Μš\T’AmαNά$~·Ηz1N!’ο/Z…Μ€|dhF4σΫεΦ ΐτΚG_£ΘΚ.½m™κA\κΣxbνB₯Pή,ψΒ,z»O’ŽŽ›&rΘςM&EΎUlνw―EΛΎ δK†ή‰ΫπόŸ~§NŸΓΠΒlT<~ΐγ h«ΑP•΅wφIΨύΜwpwωΗΈrΎ‰;ρθγΟ _ΕΝ§¦sδ0y@v˜\QpΏσΝϋ8φ‹w0”²O<ω Y~y·{^ϊJ{pνάU΄·6ζ]δTœŠM[χ`χ>iM[J=d¨ζγ °ώ)©kΰ—QKFΰΆτ ΤξΨx―Ύ²υ7:ιZLKχ0xνZ£ΰ‘³΅ΈΆŸXde ž£ίΓΡ_~€šΫ@εcΟΰΰnUNϊ β•σ0=clπΣ#`;γΰί&τ‘zIͺτ ‡ϋ;H h¬w°‹Ρω}ω( ΖμTΝδ$φ+Ύώό%τ+‘ωΏ­΄|βΥ₯:s$γ:-‰Κ)JGη­°Τ„Žώ λ%υzwO/]ϊτ,Ά’ράνR+πŸ―ΒιO?ΕΥkνd‘“‰ΌΒΝ(9°ρ ?Χ ]ΡK‚§[CΓ μ• υ©“ ƒυϊ|φΏXN±ωg=Ks΅ƒiΕ‡ρdϊ ^ZHΪ³αΨ;hRt/DτόΠMτΣ€*'[eΡƒŽ6ωώΠΩυr5ΉΗΡί}C­„Φγ'pΉ’‚ Ξ©ˆξ·/ύ埑ϊψ)\Ώz3ρ©H’―φεm(A~ΩFΔSδωQ2t&39e”`K†’ψξΕ%C‰Y‡δ€ l)ΩNŽr0Œ{wnΡΧΤ(Šq€οοͺ¬ΦΞύHOηw30½eΕΈΞb ςŸEοΜη]œ‹ς"š+z  ©Νk.ι9ΟΉ?dηDqβ <ψ5πΰΑBr`’Φ₯ *±E9Π"ίέqŠ.έβ3_°9/_ω^&η½[]ps¨cτEη•«rŸ΅jίhξyξΪ]4gΎ?πΌUlήΚχο>&ΏκeΌ@ΪϊγN!qηWqΰ…*́²λjΑ©z^|>οΰωHνcΤκkρϋƒ¨ž₯σ@iσώ Β ۈΟCΤo›Ο·±΄Ξ0Ÿυυ–gϋ%|ZβσLrϋ¦±ϊ‘½(χ‰ΚL“-άnΗ₯m–LNΧ[‘™©D.˜ξD{}—ι%dšgZ?,…σΟ³Α§ˆ6(V#RxFE<²„}OBΣΐ²§?©`‰ˆη”=½`φ ΔI†ΜΙΘJ/AΝ°qa΄`γh š#2}½ιGO‰04`€#T±ϊΓzΠΝ‘»rΉUΕϋ¨ΙUΘ‘ζΓλΚv΄\ΤE8pΘPtι†τŠ­"μxλFλΌΥΑsͺ·sž\Ψυ΅θ|—ι4#­`‘Ž|†“wF€`’xμ*¨@Š"γΤΐη8ΫAŸmŒυD%²­a<²2Λ=¦]šhΒ'΅oωDολΐ₯φ (ήR.“¬)ΒήντοΣ@Χ Ή!ΗWΜ^₯XΕcρ[—ιSYΫΑΥ+Ώ@κƒΊj|ŒuγRKρˆVߘY<^ΨΠΩX5L{5ψΰύυψΖKd|SK°χΩS^Ϊ;ύQ²΄2-ΧΧΡε«ΟΦ ”"{ΜƒKPυ’τ―«(K“ŸŸ ΰ*y]:}σ!ΌBΦS:ŠvHLI&/ΰ”ξ]™T©rΧ6-*g{m΅ύΐ$συ+UΘά,Cε”U!§ΜΛΎiωZ5γιzœόδ$r^Ψ'@dlΓαΧθί[έ“›l>†Ο( ¨i²ΑOxLŸ:ύ6?#cEηOε!οωΣtΏƒ λ&Mψ _~-ΉP—ˆΥj3£#θΣEƒ•S”Žτ Ϊ‰XΨ²^’FΙU½4t G–―’‘•η^JŽη»Ÿ•ώηƒq•QP/YΈ/„ΊoτžΎ†–g+‘――₯ω Μ"σ{ͺ¬ΟBɎJež #’l2Ν‰’΅’A žχ:‹ιωτέn§HΉr«}·pS1ΐΎΩvSg MQύ[ϋε:žί&Όχσ@·Sv"ZY€Κ§₯]•ΩΚ'ΎŽƒ›Υy‰O₯μέxζ΅έήB2’~£ώ)€ΰuδΒψΑΖύΘ+Έέ[:‘pS‘‡(.ΎOμRί[+νL5γ“jίω ΖΊι©E(L“g’Ζ#΄—XDFΠrιTί ‘³ύyyR­•R <ί•ηžgΥΉ§T™ο †dͺg,œίϊF„ηK±4oεϋƒ2δ.άόΞ―U(ͺϊ†η_^‚~ώφ)C‘ˆž>?5ΞφŸ4RΛ™Hλkq~’z^”ŽήΔΞΟuνάœ‡¨τ~Χ“zΐ|+|=°Ύφκ·Ξ`Σϋ¬nxμΜηWVϊ{e€ζ!/7Wך7;ΉhΨ»CΉ‚ Ήτ¦YNύν͞―j*(;‘δ5£q·l^z68π΄‰HAŠS4²„˜'‘Ι)`ΩΣΗ„V°Θ²η”f“ΰ ’MU AmΗK/ :NΏMFΞςƒϊџΎ΄?ΩγžL ›/Ί…7?¬sΐ βΞnŒŸ¨δ–Οkq² ’ΤΠβό"η‰&—$LlΛΉF02(]Ё‹ώƒ¬?Ž‘¨ώtΑ³ΦΖύHάsQ‡e=(pέκΨΜΖ΄$Γε)ι•Β Oχ²ΦΖ—Δα2EΈ·(…9;P‹4ΦΫqΙϋ)f’°­Eιrγ&X€#c͘Ϋc=θސœ―EύΑ}UΪτ9#υ¨φτε€₯h€Gz0’‘€£’ZΧžSU>ΆλkΡω.Σy†Θn€£@γΚεŒ#ΐ0sΐͺδ€ͺ†ΈΪόΕ izc4wLP_|ψvi¦ΝέWQΣpZέΞ[iΰΦϋxΣΨ»i7–zΛεܚš?Η/k΅‹fΗΡMFkT,΅CJfέ·λqιΖQ4λ-€¨‘VΣz‡ZVΦ‘ΙSιΎΙ. ΅υ#η?Ό3†C_zŒ>§μ5€h«Ζ΅φEΨVUαyJνλ’πΒΎ‰Φf”²ϋ!ϋ¨bλQΌυγ…xϊ7žAA8&šQ}²ιϋžD.³o{ όޞύίpΰ€―1[.“ρoΎ}γ±™;ͺD’`ΓθkGZA ’}ωyδDSυg8ρφϋž=ν‡>^*Eς€F\:R£²“9ύƒž}%Eλ°jIVθΞίι»χ Mυžύ^ŸΖΣ )β§Oj©ώ|πφQσhΞJ]ΛόŒƒX@γϋψ‡Ή‹μEQž7Β₯TΟ·R™•σZόϊ“8ψ$ν]Rnσ:J^ΎJ3tžΈmΠ/’rŠΑ‘τA&ͺwY/Ή―—zΟώίνοΑWV‘΄ΐx­zN†‰N΄΅ί2œBzidZΰsίλΟΣϊ¬χΎqΧ΄Υ:ƒ–ΊέXΥΓ’s|χΣwA‘#΄w—†NvθωZ)p η;Ίz¨‘\OC]ν7΄―“΅6΄£ηΠ6Ω™§³έC /uΣx―υmώς“ΨΎY¦W©Ϋ‘ξf΄5\υFs¦3“’A‡χώ¬Φ5ݎέΡπΊŽ\?ΐςύHΧ +χ΅zgΛ[¨^ω*ukεκ±ώΎ 8[σΎΣ›zT·υ=ύή·XŽ˜­£6ΝφυΛζεχοΡW©-Φ‰Εήή ΈLχέλ†Ή'UΰϋxήͺκKϋσVΎ?H™ χz.Rο=WN’§ωήoGθωκΨO_7Fs&ξBz^x>/ψ|$Α€€θΥΧ€ΨύATΟ‹χXΩ ΝCΤΞρ:ƒŠ„a;_υυΤ€τ’ΨZΊ§Ÿ―ΕoFφ:u‘η6:j}ΌΧuM|©«Ζμ<υlpδig?"D–ς$ γ΄i?OkžSΒzaμz¬ŠxΜωυO/€œwο‚MΑώo?‡Bu1Άν$ŽΎ{Ζːϊ{τέόξ³²ηpαηPΥΩ…αΐͺ Ə7JM‹y8 _Dρχ(σ‚n''Ξ/bžhτ’„„]9E#gˆΩ­¨¨λw=°ώAύY―ψΰΐ³ΦΞύΘ±η’=”μ^·φZχ­zDnhΑƜLdyΔ_Β‚ί ίΎΠ—χΞαΤγ‹VQξŒυβRωχψ{Ϋkψ ΞUckQ&–pΜΞL χΖtHΖdG~dB׏Soύ-NΡι‹Yι)‰X²t9€‘œκCΗω:Σ‘[χl— Υ¨^WυYΨψ𽏠8ύξ?ΏOq€]6« mϋ2Φ>…VKŽ‘ΦωxΩ?ρ?ΒΟθίJ²r^ _&Tτ―PύS“‹nΑίΡΏY•S”.θA³~Dkλ%γΘΈ’—Zγ½:Ž_­/Γ†¬T.ΔμŒτ’‘ފώ“£~Ε†‚‘:ύύ“³όΦ<ω^†Ωϋδ2„Αξ:t˜θϊ‹o_ΈψΆ‘Λ;Ά―#—Ζdώmηώ'uΘΚύAίρšKίGcG Φ'$aρθΎ.ΛγhμΡW ˜·~ ―~ώ7ψ4`KAΜΛ;ۏΰυφsΘNMΒͺeqžωημύq ΦγΆξ«|ΰy«rBΟ[ωώ ]RΒχz.ς½Υ–μBZJΟύvf¬ Υ獛œΥσ†{΄εωΌΨσ‘^δθΥΧ²”φο’z^”ŽδΈ?θΗ VςΆη!jΗxAEΒ;υ΅^>xπΐΣηܝυ€¬ΫΈ^stjnќυuΤΌ+οKΥΖloη«gƒCO;»)@·SΡΘBž„&mΗΣΗ„άZ‘¨η”°”Q,»«Ά=0\ς¬5JmΎ_q»7*Γ]γθ»?ς[ξ=ύ>ΚΜΔΑΉΤH:Άν}'ήκΧΌΧ Ρ4”$3w½6θYή“ξλ½ΈE<œEΗΟ<νœΧbe2FΪ―eγH{°‘„Άυ΅Έ^’Ξ7»Υ’‘3Dι΄1‹• λO-ςA' ŒŸ°ώ¬wβζά³VΩΞύH,B’λzΠώuλε’ΛΝ+=HύΊs οžφoͺDqͺItŠRvύf >Ύαk*Ч(n tΩ`‘ŽtΥb#ΛzΠ5=h6ΰ ½TL†ΞRšΈŒΖΣ&†)ΊΉYΔζ‘$ލŒhδ6dŸc’BGH²€―>§σ•Sοym¨(:oeΊ@‹\yξπ#ήeF€`ζ ±ρ2bqΒ}m]ΎΟSAڻӁ6ϊŸί)iύθ%γͺ‘n}_S°m³2g'¦gοaλy2ήυ+΅P0T‹§£h ΥΥ*½­υθ΅ΔpΆxΦ·%ΚN\>.™IG6 c# f$yΩ/V?Q9ιœλAΫ#1¬—Œ »«—FZλPcIz₯ˆj]αΣbΞ]<-25Vλ¦{ύ‡7ΝΝuή>[Gρ ζΖ 1»ΧƒΞ>kΫϊ.ςύη­Nη­|pχώΠQO™ϊ‹4LyΡ{΄υη#η‚GZ_GšŸs„ζc s3½cλ ¬―7 '?YΉp†ΠYίτ"ϊΒ·ΰO΄†ΰΑ3Ÿ| HY²ΚWώ;JŸΛ:7ώϊ{ޜœD€Qˆ·‘Β9bιφ< 3t­…‹žS*Γ€‘%Τ aΪΖΫπ¨“ΡΧ¬ gUψΉ?•Ώ•νκqc+νϋΦ‰4?_ώQ·o72ΪQ:•>·¬?ηvΠμDrEDŠ*a!Ι•ΖηΆ‘XΡƒ« ‘΅Š’M-ρΊ;έO‘Ζθ₯ώάΒχPsg=θήπ?ύ<Ώ―ΔΣ`ΟΉŸβŸί:ξ^γf- Μ#a=ΝσVηΟ©fƒΊLT_39Ά’Έ˜·Ζ₯Œ# ββbO•ζΦφPUω8#‚υΉžc λDγpŸGcc]¦ŠΪόκΣθh¨ΖΝζ&tυφβώς,”VVy?·άW7ώηλΎ ‰fάrJΆc%}₯ώώ^45FΒWnqΎ!˜ θHΊΛS²°|v}·ΠtυΊ©ν|«XξΟtOΦ|ŠΟ?ϊ.]½„kW/βjm5j?}ΗO\DΟp,χŽegXD€υ’;£φΘ‹[΅χvͺ‘„ΙΉεγFOΉΩY}ο‹Ηy]:ψyΒΧQp|ψhl"ΐη΅;γΖχwpδVF 0¬―cc爀―ηΣόέχωΓw>/=›H)>>x Φ@ŽŒΘλπ_ψΒ UzCηu[`}ΪJ2tξΑΥSηΑλ|†σƒwζ)«2Χ ν‘΅Ϊ’‡ΪMuρCς«8π–`@ΜwύΩYέ¨λ\Ξ0Œ€iΎ86”€G-Αj“‰™[ΈΡϊ1ϊΣβy~ιγLξω5Ÿ–Œ#ΐ0‘A€ #ƒσ|竆΃­—q… e―²‘s̝’Σγ£μΗ0ύŽΗœψ,0#ΐΜCX/‰ͺd( ¨λΣ’‘Δ­³7= JF±~\™‡’―£‡oΜ†σy->Κ±CΙ/Ž S2Œ@8`}-Žͺ€οζΣόέWϋΪ™HΗ₯Δ†ΞβηŒ)%G€0…… η9ύΧz΅EIΉH‹ ͺΖ|φ ‘‚υΟΧΓdžŸά=F€@`ΎλOΦƒ'“0žcΝψτϋ?BΛθe ΖwβΜ±_αμ‘:ž_*/#5Ώ~ΘN=ξ.#ΐ0sŠ:Ο)όσ†y¬:Ο›ΰŽ0Œ#ΐ01Œ€jΜ,)9«]Šυγj?xΛ0Œ#`XΧ‘δ·‡ΧfF zτ>…±vά·α2tώΒ·ΰOej=š.δΟ|ς ­pŒ#NTγf)‚s|N‚ίβΘΓvόΜϋ«pΒΝm3ŒΐΌeFΐ·υOΈυ›έφ}ϋΛϋŒ#ΐ¨Μwύ+ύγy«zFς–`Θ ΐ#ƒσ|ηηϋsF€`F€`F€`F€`F€#:σ9ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@„ΰˆΞ|ž²γˆΞσt`Ή[Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ# !ˆΞΖψΞ;Ξ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#0w°‘σάaϜF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F lθ.fF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`ΉC€ η{ζΜ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0X œ‹F€`F€`F€`F€`F€`F`ŽX½*K,Κ00ήc±¦΅j[Ÿ3|Ή²“έΥψΩσ::¬‘9ͺ΅:!Yk±bαBΜώϊ.¦gΖ1(ΞΟΛ9Jr¬£d ’L ;z0c/^z‘Šžύf1πήω°&Κ:#&NθΉ]θηT1Ξ’ϊ…ιΜρΕΕΌ5.eη°‘³s ΉF€`F€`F€`F€`F€`Fΐ}φαι]UH°Ψrσ΅γhk‹ΕΪ‘«-]ΆSiΕ²EχΛ„ΥIΫ±³`6%§›v WήΒ'^SλΥYOα›[ΚMκκ‹Fp‘ζαLŸΎLΞΫε§Ά J§‡mΏ)ΩιH&‹zΙΪ9’)± {Ν'ƒόY 5ŸΖΕΖ~χΉΟeάο ·(ˆΐ¦ Οbga)VϋΠ±°Ώͺϋ7\φ9ΰpW”Ÿ-:z>/χ JΦζ‘‘³™ήόϊϋ.ΰlΝϋhσΓ!Ϋy[Χ ΞηΨξΒ=Έάt ŸvΎ—ΨκŸOϋήέ|<±ηl’¬A₯4U·OΌΫς^lόΞ₯^b½λξ9β&žΛ–bMͺz?VOpχΔuηϊ³"¨ž₯“e²ΧΏxμΪφ<ŠΦfϊι2OkEΏή۟γTνGu‹=~^άDηƒ’όΌœ£,Ηz0Κ$JΔ±£ιy31;Ϋσ ³bPz’‰ύδτ9UQύΒtζˆ‹βbή—2Œ€[„{m’œ‘½YΌΝ˜z*{ΫΞE*"Eθ>†φΨ±ν8'άΆ‡€ t€ν~_}ΆΊλ-]’„±†Ÿα·>ς–…9§―χιΌΌΨγ_«PžΠηu@R“Ξω‰z\Ω£s.§IηΉ(vHΜA₯˜™ξΐΘPu#œ²:°#zίt0¬kS·`νͺ5žθ3R€•ρ‰v\ο3ΎZ·x 5_Ϊ ‘ηΥνΘ©πv"`¦ΟtΧ»γΘ5αΤKQ1φζξŠl%B’ύΘ'š.± l(½$7aEN ΜΈJ˜HΑϊ’ HJZƒeK€ψi³˜ΉηλψΙ!„Hfϊ%ID‡S/ιτgμΜ—μλ χΗITOX€ŠΉ·h ͺC<[2peF 4k-9K­έΏ/t£ΆjxΫ»o‹Ξ^εμυΟβ+E΄.0­ΐςΕ‹ G“VX1Ίio4z~±(Ζ8œ™i₯}uNvϊΆsΚEUΥ6OQΣ̍π:Οaτ}εόά!PΆε·±7+Σ\€Έ|±δi |v$ 1›9aΰRQ~vιΔυ| ΚJEVΰ. %΅OνY€· Έ€cΟφ―bkjΌ9εt”n~ |'nω―SΪνŸ9`gΕ!―‘3UššΓd ΚΡZ>‡z‰υ»'…«x†ρΌpλϊ ž¨ž₯“%²έΏεΘΘYιdΪΪGqpϋ=ό ζ„_·mσSZŠςσ<š ΒxΎ‡κ¦«Χm fsΨΏ@"ΕDΉ-άj΅‹ι‹>σ!9yNνΏ¨~a:σηQ\DǏιFΐ:soθμΐSΩz7׌DD §;v=ηΚƒ;0Κa8β¦g­ρ"Δo)}V,«€D£Pχ—‡wR—Y‰μ5©H\•Š€U™X­όΐι3Z“(NΟkcCο9ε'κqe—Ξ©œ‘‘ΰaG ±{ί‡­•Ϋθz”SύώίxηΈΐηΧΖοώozΌPΡW7ώgd>ρj £pzΘΊαΑ!½+a%~ί΄„΄i₯΅™U¨,(GΦΚ~ΗwηxkΎύ'ΥΞ—DτΌ$˜m9ύzΓsŠ@$τ™Χ» R8υ’ΚcŽΆvηξŠ*B’`δ‡zΙΏ‘δτ§ΰ’#± ‡ί… e΅9’^‚ΓOuβΒgGρΑ1›Ÿδω’xΔΕˆΝ—υ„ώq%/ͺ'BΣ‰ΞEι\ƒG@§ΟΎϋ'ίo‡)!p{ΈoŽcᆳ³χX°λΤC#pQρX-ŽϊmϊAΤ9O6γΪ­«θŸΐe‰HO,Δ֜d £‹&¬PWn&ΡΦQ‘YȎΔϊΟ£ΩwmSDιτςΜΧό}ο :λΝΞΧήrΏζββo茜'ΡΤό).4ή@κΖΓΨ_P(K΄¦…™ρΈέ%μ‚©υL”Ÿ°žOZ«½JκΈ†[θοΗ V"{ν”gε)ΈlEinn·Λρ769ίl;†šΆΣΈ· ε›GaΌΌ^ωHnάz*€HtδZvηŽ4cΤΖρ©aŒi58Φ»!!²U!πtλϊ³‚‹¨ž₯“dκί’…X@΄ΓCMΈ=ƒΎρ!Lά™ΐΒe)ΘΛ*§―„Θzfuj1Ά'œ@nN(ΔOTp>(ΜOβΙɁΈnΝηR#·pύάi,%s˜‰Vwρ†Ζ’cGψ9UP|QύΒtΈΙσƒ(.‚ΓΗdŒ#`97tχTΆΩΣ€Υ½αΒεΐ‰ΗŽ}ΐΉρΰo˜DΔCO'{€ψu΄ŸΗ'ΆhU~yφWUθ€Svωvμ.ϋ€8F~ifcΊ‡>ύq'η΅Ύ«y'όD=DθœΘi &2Άcc»QV^_ΣΣ0F ²*AεΞν²‘3΄_ΏοΗU­ΆΞzaτ΅ε©kήΗHι]@τΎi.·•‚ /βpaQΐͺ«Ι8uΕbά=ρS4+΅Ν—υΌˆœ;Ε"‹@$υ™ Χ»œ0κ%/“ˆηDζn 2B’`δGzΙ€ƒ!ε4‘α’Θ"³i Ά“‘sΐ΄2ε‡~)ρΛπΖΫ§Vσ=ΐσ%oδE_lBνGlΎ$¨'BΙoχΈ¨žM':₯³Ϋsο6!υ™Ϋ Ή=Fΐ)Γ—πύ›§-x6›Žx‚Lβb‹Ρ ͜&ΪJσρ₯jŸο½uo]:©²Ν]5ψμŠjΤ¬Κ‘€ ͺ‘\š―ΕuυPΠ­(?QΊ ΒDζ`bŠΗQmd¨?lόΖf½oWάΧ{n‡₯aκŸ8„ϊηάΌUΧ,g£U•(ΝSŒvIͺλυoαcΕhw » ’‘sœGΪˆ[šD9‡g‚(?Q:Q=`ν]ηΠuσs\6φΉ³οξ-ό/¨\+λΙ ”υνεΫP’—£m[ΣOρώ Ε¨θN-~Y»k €I5Φ¬CN0 Ύ#νŸΖMΞ¬Ν}OHγ9CϋZΠ`tΌΧ§f ο²ήΉΑst3oΧ 0\Ίώ, Œ¨ž₯“„νίx5ήό Ϊ€[ό±KΌ‚z«ΞΠ\lοˆ>§ φZTΏ0ωσƒ(.‚ΓΗdŒ#`ΛχϋM[£φTΆΦ|TΤφΨρœξ99z‘βΧZƒΣ­ ’‰QB†Ξιaxυšd‘³΄οεxg4ΰ’ πyνmέVN”Ÿ¨Η•(¨œΆΐΰΚa@ Ο½ϊ;(ρ‰¦ξˆQ]ΓεΫF)5β‘3r6Z~£έC6RzWπΎ)<Œ©UΨ­3rκζσθ#cь¬=t¬D~°Š+Δ†υωhnmρ°r2_σ‚r γΒ„."Γϊ,Ϊυ’ΐ(‰Ξ'X™’XА$ωΔ‰^ςΦ’œΎDΌ?‡Œ£γΚe΄΄΅ wp‹β7`λΞ'‘Ÿ!‹”Sω$φ7_Η'u ixΎδl#5_ΤΞ:g€Υ–θDηƒ’tΖρޜ"iCΌ9ν,3Ÿ§lίΆYŠρΖΨνsψ¬'φ:šΏ…+eΉ‡{}œυύ1ρay:ŒŽ"Žκ©|σ’όDιTώρ%‡qho –AπμΒEXx§ ΏόΑ;—Yίύ» ±υΐ«ΨΎ£”"bΣ₯4ΡƒϊšπΞώNii%{ρHQ123³’Ž*ΆƒθκΉ‰φ+'ρΙιzΉΟo vΏψ6$.Ε=κΣ²”νXfΕΛψΪFΙ‚QN —]gŸœ7°υΠΧ±₯Έ9’ͺœ&‡:ΡΣ֌«g?Ζ₯Vyεύ»³Θ)ϋ φ>VŽόluζ©u'qόΗοΉl U―| λV.Βƒ…χΡφ«Γ©z_9r°•ίD&ΥY@unžώ7œ¨ΛΔ—Ώ} ‘nφξ –₯η!Σƒ .x7—nΖ^Zσ—Wΰ{pαέ7ρWΉΕ*ΚJ‘kΐ€MηNΰΗόΧ폟ħ O~λ’θk’“-§P3Š½»να©σzSv‘φcŒτ„jδ Ιΰl[­₯MRVΘΰ}Aή8ωε'JLΦ z~ΈŸ¨FΘ&Œίς+-Θ)‚ςθFφΰpR5rVkήιΕπ¦κ΅œΆτΦχ—”Κ­N·αΦt*²ΦHc7€‘Qs‘!ͺ³¬w¨ήΥλζBμ}~?Š 7xο}$–ηžΥ–KgP]§F uα>Ά~/ž;X…’υ=Π8zš/£¦zΐcΗ »ϊΣ•λ/˜@Ίc’zB”Nbžώέ£9Š·ctkΦ’(?Ρω (?MΰΙ°t:P%47;Œ$š;γn7~υ―?1ŸΣf<Žžή†ετ-›»ρζΫ}s2ττVP>ώulϏǬξΕΒ…oω>8^g dΜΜwŸSM;m‘PTΏ0ωσƒ(.†Š«0Œ€KΜΉ‘3D=•] ό͈zμzFΪƒ;όšrˆ΄‡^€ωy:½LΘe ƒ+…c£Mdd7ι‰.ϊ€[VmxOzΪξŸπ’@τΌYŸ¨Η•(ε……ιάE@ <3Ž–s'Ρ4™ΓUΚ’«§­»Ά"S‘λͺ>‹@±—šv‡dN3ρΰ‰Ηœθ₯R‰WžOˆ³ΤSZސ$ωā^’SOΔω9A`lθ6κ/|ˆ+Ώ|MCzκΡpΊ/όωA‘Ηi, ι™4 ²`θΜσ%=Žj> ηK’zBν’Γ­e}ζΓΗ2θ|P”ΞGNލ<z}yξΜ‘p ’Qͺ=?v‘φ†> ²‹|ΒΪT>гδuH Wλ₯>ΔcmB- ―άΔνqgEžΥk ˜οbxjw—§#;nEPΙ(RŒŸ(ΌΥiΉ(,Ψθ-šTΝ2½e.ζ˟Α—}Ϋ[™N5Ύ΄΄$όδ_ίΣΈ(ΔΎΎ"ΓF¬LBfτΏ ™©?ΔίU€S‘AFΤήΈ°^fρϊPž³{+¨ΉΔ]xξλΟ£$[Iυ™¬&f#ŸώΣ—‘‘σϋήJ.½όΌZξ[ΌŠŒŸŸΔ«kβπέΏ‰Ύυ¬μχchrφ*_4Ι]σΞ`š‚ΝΘI”Ÿθ|P”Ÿ*oμlY:Υƒχ°8y#rS₯1߈’ŠΡq^οΜ!Ÿ [θkΒE²’˜ΈHsΊ΅s0€§6z0%w+ς7ϊ?ŒΜ6S'Ν EžW¨©9˜οŠ=§ΚckWTΏ0ζ$I {ŸDq±?rLΑ0βΜ½‘sΩƒz*‘‹ͺC‚;’ˆ°·Š΅]ΟS•ΞϊΦΟZ'ο‹_ΒζβR$Σƒξy₯ΗΣv ­WN€Su:qœρσ(Σ±Μ ΓΤ4zώςVyCڎŽωOž=’ žΧ‚έ‚h„Q+Q:Q9…q™CBϋ‘Vμ\RΗD"Š”)« 1;ш(z‹Ω«°΄_Ε—*²=θ ^;Jž‘R4šiLu’½³՟’ρ½\HΫχ»ž:b?»°ΉR]ΝjGύε%Πϊƒxα`)(P †―Γ/x₯j3!³±AjBD/9›gΩ‰μbμ€]ύ"<Ÿ0²Ϋs-BRΰΘ'Α ©—TbΧδTŒν|Σ/#uοα³ufμuΈt©EU²yDRr•¬¬ TύΒσ%³ˆ„s4_R$2߈ι σΆLJEυ„:Ρω (I7£½θαgΡ>,# "Žύ*ŸZΊΫjp%ƒ”§ζ#K1HκC\ώΛψζ:―ƒ°ΤΫαΛ8ίπ.ϋτo͊$­ k«πMϊWΣΨH΄œ@mOˆkQ~’tͺ@Vχ%Ήψ4U}=—σ#mηqρJ–ηlEe™ΌV•\ό$hΗ›Ηόηk“}νθθμΐP­–Ε‘ΑVEͺ”Χ2rw?‹ƒmΧρ‘Η‘­MΗNΰήκ%Έχ`ΛΆΊ‘l¬ΠΣx]ΓSX°€ΐ€΄pύ}r^ϋ-ΔW^} %ZhY2{€¨Ρ-X΄<iΉ…(€u¨{†0o±–‘ϊWίΨ‹ΈΌRlέ(―χ!―;Κ>VδΤͺΪΞ\zχHNώcμޘ$nÁo>…¦(FΧe_Ł}ͺαϊ NμoqIr\FC­qΗ΅“'q/»₯yΤ†’šθ]Δxr9Κ=ΖΜΩΘ)($CgΩ„z﷌FΞν‘Ί₯c+27’²\žk'o~O?έ…©Q›ΤΆΦǏH¦giŒΙ6ž‘8―“ς‘‘θ Luΰ¦rYlό*5go?FΗΖIε'Jηέ'ηLΟoήΌš_nέ–ήΕcΝςε ŸŠ ¬7έWΩ'c₯Š·Z$mχ" oϋ²ς‚I\­ϋ>,<ˆ*Ιψj υP¬mY˜ήUΨοΩ₯3rξΑ΅κ:tχMaΙͺ$gη‘Q`.ΥTξK'χ±2ϊŠΞΘy¨5η.b".[χ©QϋΑmμθOΗΧ_ !ΜΚEυ„(Ιΰz±‰ΚŠΚΗ  χ&ΩάQϊ+ΚOt>(ΚΟlxb€Œυ θ@5αςεΛ(= »Ζε•Tηϊ4V‚‚ κϋηA\£―΅`ϊπΜ?ιΑΫΝgQWŠθL3η% (έ,Ο«ο‡˜ϋK`Dϋ|Wθ9Υg”-οŠκ¦3@¬=?ˆβbhwF άD―‘³#OεpΓf½}1QΐPrΉνΑνεgΟσΤKg=ηΜ³d,ψoΏ†BœΜU2r–Rrή6TΡzϊ?γgͺ‹ƒNψ z”Ιβ8ϊu>9ˆ_•¬Θ0‚Ρ ―΄^0±σZί‚½Ό?Q+Q:@LN{XΜym‘H+Ά―?κ₯ ‡₯΄θŸλΉΆW’δΜ{8έκXaΙVδ*/³œ:pτŸώΚPy©aΟήNρΣ»« ΤΥ Z‹Κ²k)zO<KΉΫ ˜8εPτͺΏ‚ ξ\V‰Dv‘Iν{Θςw E&xM·hηiJŠLPI‘ *™h-ŠΌlš4Y°γDοjbΐΉτΆE&˜¦‘Oτ5με§qοΎϊ)2 Ί7βCžƒuΊH+Σw₯Ί!’νω’=9CtcN³>³{`}ζOn/bƒLo_/9˜gΡ˜Ϋ‹μbμ£=ύ">Ÿ0rΨs3BRΐΘ'Aδ²ͺ—ά”3ˆ8srhήκ—ΰh._β]^˜Ύ{7xe:XΏπ|IΟ,‚^Ξ—DτDΘ³C© ͺ'DιLεŠ™ 1w…©>›;ΐ™3#`μό*―QκO]CmCΤ}GΚRg6%§kΖΚ«KQ Ρ'$—β‰}d@{ό‡Έ¨ΠΡ$]°­²’Y_ˆέε…HΈς}|α n!ΚO”ΞW.ΓΎΧΦPμζΞ@ΓψŠά,§Π;φ<³O6–-άVŽ2t–ΡiB{Ν \Β‰³R@]:φZŸ3|ΩγΠΏ ΉE›ΙŸνΈ§Β₯’}Α,~χ2t–Χ‰)°ΐI/ξΊΦ΄lΞΎ*”f¨»8ύζψδΌ‘FrŒέ²fF­δ·νΊπxύ§κΪή{zεΏc™dμLλV9Ή–Ύ0βΧ¨‘ ŸόΛ€₯!4yσ3xα@~v,/}們»ιΨ›ψΔ6©™ΙζΣψΩΒύ}dόώ3rΤΟΆxσ]*˘ΑΊΏι)‹OM£ΪdpZςvΛFε€/&GqξΪs=τ‡&wίn“‘sƒG^±ρσκ~\Α3 ηuvbΊφu΄αΡ.B†Φα3β1%’αXοi\™ΙΕξωΫz ,ΦυΚ~V”Ÿ(] θωμόηρE©ύn)؏G&aΩ2i₯YJ„Σ¬œΣ=‚,}’wΪΏνdδ\/7v³ω(NtΩω^‡•ώ©aΡ₯MŒ’"Φ»ύGB\ο&$¨#r>ωώ_ψιεψ»·|ΐ Ÿθ},g_ΉMžšΊŒŸυίiχΓSδœς€«•Σέΐ/θNύιτϊ ΚΧο ¨ž₯#]ΰ‚ž/Ϋςφ¦$alφΕΕkσK©{ύ·OβΓ«΅ZOEω‰ΞEωiΗX†υ 3=ΨzŽζηdθ,}Λ"y39ς%ΕEΙ™NIρe[”ˆΟT@Α».6V›SGnώιTΆžόwh―π"• ΥY°ΪWγ6vζ»"Ο©ΖΎZίΥ/Lgώό Š‹υ㚌#ΰή7‘n΄ζZΞ<•]Γ…†„R3†1δ)ELθΌV‰ΆBόD=Dι¨_Br ΰ1w$"‘VD?κ‘PD‘:\»ΪŒBΟ‹—tδm'CηΈh1«X ˆ&O4gŸ*ŽwΛPΊMθƒ+g>ςΆΨΪ†Ϋτ@O/ξV€¬Εz:’=ΘykiΉΒτTν₯Io§μxΰ$²‹}Ω<ρŒΞΘy’ͺk0²0[ͺ*ε4Š΄‘ΌlCG„qGοΊ!ΙόΎ© @†H¦%Ε*½PˆGQώΣθμ;βyA#}>wO…ϊΉM:<π9.άς‰<εΗQ`ΎdIΟ»-§ŸΰQPΐϊΜΪ ΡgA°±ΑΎ^ς2Ά;Ο²ΩΕΛΛ“³3Οr0ŸπαjsΧ­I!"Ÿ”Κͺ^rKΞ€‚Μ၇UΏδ #Γ»ͺ>άΫb ‚θž/‰HMσ%Q=βΤΠ‹κ Q:±!#:₯30Ÿσ‡UŸΝ9π,#`-¨ΨT¨Υkj«F›ΆK™x€­‘’R¨Α’μ#hn»ˆ›£ˆO~εYyJ‡ςPšΏ Χ5#•t$­”‚5 ΰζνNZΓΑΤμB$$R‘4ΩΨQ",.܍V2t–ρε'J§ˆlf€heϊ΄hΒϋr†Φ€~E΅ΊtιΘ―P΄­D6ΞJΝE6-Lu( S5όDWӘ½xό"₯υ6 ρEKΜC¬^θνΝ‚Erdgc+ϊ½lήZ‘΄œ8βgδ,l:ώ#Ιό7@jFν/U#gΉΚι‹υ('CgΙΈ,>Y2v#ΑΏ½—?~E6l.:τuΌZ²9J•2&σΓ:SFw&¦δrZηTG`T1²›žΐ•0]ΊBn¬rk‰ΆΨqς¨&#uο φ‘τs— ogΞΚΖαNΗΓΣήyd &|Χ-Β%T4pgιkΌƒ#ϊθ6¨ώc…9ϋ6{#-_©7.@ω2ά_ΰQΝ›€αN,™λΡCŸM-"u$f`-½Pj572MKSΓΠχ ―^νGv‘Ϋ΅λ!›Ά―’dUdš¨Η/Ύϋ·šηπιφAόΎ_€g£όκžερs Hεε·΅©UϊΐχM΅†ΨφJΗ%ΠψgΡ§#γ·β+Of£{` +“s΄EΈ)zρΡُBF1™/YΥσnΚ)†Tx©XŸYΓ7Έ>3oΓzΔ™ή^’’\‰Ξ³D"»˜χR) ’_œΜ'‚ς qΠI„$;‘O‰aU/9‘3οh)XυΛϊOb»ς©rΙH’Ή.°IŠ4VΑυ Ο—€ΐ şSƒ\%Aτ™žΚ =‘o/X^TOˆ™Ι":₯3“a.ΛV}6—˜3oFΐ*›·Tz£mΓην²‘£Uϊθ©—IA$G`5υΰ\ΝΏγlαI©‹^ά?x ϋsΘp…’%’AššzPsιϋΈ4ήA¦ΞΊΤz 9Oα76—Λ‘ό–f"'3m]R›’όDιtrQΆχτλψ^Ϋ)²Α™ΖΜ²eδδ?lX³2Φvaoθnϊ­9Υ‘³­…Γ‰ΕXΆ<…υkΜβΧοByΕdge`υ2ŠφJ£4aQ\ΊύΘ”Z«f™eX¦ΩK7£ισ:³JΑΛ†F0θkœ8ΐŠ’9Έ”ΠΫΏνώ²Έ°Υ—ί’dœ¨β…ža':1‰BόDιδžωώŠκy)υ“[ύ'5:ZχOΑmƒΡ©1Ϊ“VΟ)δΊ/γΉEihΖΚ„Bl՜KΘΖ™ŽΗQΐ†QOMρώ­ΝyO¨ΖΣ΄ζωIέIO‹ X•²ΓŠ΄;‚‘Q'γ¦4™qΏσG/„ˆ©ΤU7CηρΖ_O‰n― nYο gB&€wιΎεIIΨύν).’εF+z»ΫΡΡν½Χ™p³YDηn’| =θjς ͺ uΆέB:[ןβן*έ­˜ž •aύβνΧz{뱘n‹χ(Zύš5…H£[κΤΜ$βΦΐ³ExχšϊυQ:‰Ν—¬ιyβ‘{Φgζ§b@Ÿω½Θ5~ττ’D#:ΟrΩŎ~ŸOψ‘bΉΐY„${‘OΜ…²¦—œΙiΞ9`)λ—Θθ—υ‡qΰ:!w„cΏ4ΞόˆηK~FΠ‹μ|Ι =αίs³Q=!Jg&ƒθ|P”ΞLCλ³Θθ3θΌΓD)IUΨ–₯>OŽΰBΛѐN²QΪ !«5cW ­ι˜ΧΘYϊΦ&)†ΞΎύ##g³t»γ}\¦/&V¦IFH+·T pA¦’όDιL„λνξ fB"^4:"’iΧ’•m½lόUωόŸΰ`%-€…J³³‘jX8‡κ›)2lου5XΆΠΒHoPΓΔ₯Λu'—…φBUi8ς·¨)ψl—Φ•Tύ³ΏCƒΊlΫ:€!κc²Lΐ΄n -Hηͺš’γ₯–·ͺQ­:?'xZ:―Wε"eQϊΠ{w05Ή‰j7§Ζ‘΄α 6I—6₯λυGQ3H™τ4hЎφαΆτ15ᔀ₯BόDιLΤσR4ζ'·μπRΊ€>_ω’œ—ΟυΆZεεh3™;α „―U”Μξot(χΑώ₯VQTΫ­r›Χ|Œ“±Z='fϊΠ'₯Σ΄l Œζ\βbt}Φ»·^Εή­Ή€meκΧ)“PX~€ώ~=Έvι >~χ¨_τSλ©5%cI5dΤb,Ru†zΨΖΦ’ώ„ΰυgCίͺbz‚τr$υ‹AθΤ5Ό:]YΩ#―aο:ΩY.+}#²ΙΠΉΣs\Oαω  ?]_leY+vζŸ#uηΡr° ₯’C\v6Σύ½λΞyάF0―0Ο?έƒAΜοPΤΟw‰m?§ϊυΤj¨~a:σηQ\¬ŽΧc·P—“άjΟq;’žΚއ₯w"D¨έ Ÿ·ΚAήZχ<5Ebo₯ΆZBρ)Ί₯O›ω$22μ"»Γxi²h!Βͺuΐ]Ge[ ~ΐι8$θ>62ή€™Θy )KΕ"όD=D逎ˆΘi Jsβ‘+ζικΚυg+’HιΣw[3J·t¬+ήΠ'Ι<)ρq¬χDo§=ŠΈrCω΄£|Н_)r‰€K(M§V?1±₯nκμ¦Ε΄RsERzΥlBΞ¦<δ$Κ‹cρyδmŽ3θΝΘE’ΦHO'€ <λFv‘δ²ž|=rυΛDr+έ™ ”‘³­ρ³.] šNυ •ϋf ή!ΛSχαΕνUžΟ'zκΞ ΰEΟ_·+%ίlJTηι’!Ρ" ΘΕΎΏ’σ%KzήE9}εφΫg}FFε"NEΏ>σOΘ5~mX,›g©oΔ"»XΧ/Nζπ©ζΜ•]+zΙΉœζΌMKYΏDFΏ$ξΒΧΎρ›ZΔ¬‘†~Ί['ž/©HθΆ11_r't=˜Υ’tf‚ˆΞEιΜd0”±>‹Œ>3€Ξ;Œ@΄"ΗΘbg΅"ήpΧyœ‘5͘M*Xϋ¨ΐL3ίπ_·]²PΓΫλετ½iQ~’tώD΄dδΞ”iΔθeΛUCyη"RΩW FΓݍhjnΖΘu~6Ηε’jŸβΨ¦F$vZ[Y¦Š5tδ1ΙT†•>”kΦϊc½Ι⟟X£˜ΦNvΏƒJΑ=έ\;ωstOόͺK‘ž‡ΪΰΒψ…Ορn4΅žΓν/θYρμ0š­D±d³. w\6IΦ·”Ίoώ+Ρμ7Ρ—Σ”bτŽήΌE¦ ω›°Rvΐ°ΛO”ΞO 1=Ÿ—,žΪTͺ΅6|ϋ4ŽΤ3w„Ήs οRPεύ›Ά£8Ugα<ΣƒλMX\ŽΒxi’œ•σ[°Ϋ²JΙDSI –‘pΫΛ(QOκ/¬πFŠ_Zˆm/cσƒAΤΤ~dˆ@­’[Ϊ»Ύ‹'O`₯Ν2$ΡBΜήi‡€―…iΛ¬wMaqPhSο6Ύ‡ψ—1|₯jς ²=‘P5ζ+ΣQ΄ϋ7‘“Ά―ΣΏ»`μ¬Άœ„eαΆ΄ΌώT …Ά"zBb$B¦ώΥ]=‰΅)― @ΊAΔ₯ ”Qη0εEω‰ΞEωIxŠ$ΦƒQ‹©ωghŽYšJsMZu-άΌ— OaS‘κ”8ŽΆKηχΥs$œσOνξNœ" ₯ώΔΒ|Χƒ{πΣηΤΰ$Šκ¦ƒισƒ(.Gˆ0Œ@˜χτΫžΨ‚žΚφ˜DΆΆma@~…ΧƒΫŸŸ5ΟSΊp—x£χυ` Λ―νvΒ§Ύ}~’W’t²ΐφετι¨Υέ9ρΘσtuγϊ³Q€ιb#zͺJ<79Šθ#xg<^Φ—m€”Κ©‡Œ‘Ν΅ΥA0«—ƒ•ځλgkyC¦Ύƒδ\±’>šš"Ώ\ΚΞΞςVΙΘA½μιΝΞЌ†ϊΊΙ Ξ"»xXΝι#xί}Y₯VλΩ?•ΞΙVTZ½oŠΙΆΟꌜϋι…Γ§τΒαΆΨ¦/γ‰ŠπMiέϊνΨά~ Wξ(}7Βσ%+zήE9}ε6Ϋg}f@Ε7βTΤλ3ƒτ΄c3r/ΉΥ}Ρy–‘]¬ιgσ «8hυ\‰d'ς‰ΖΩ›±’—\‘ΣΛ2dŽυ‹’πθ—2<χΫ―!Ÿζ4žΤyούλ;Ύώ;<_ςΗ„L"‘P’Αš>ΣKλPOθ› ”Υ’t&rˆΞEιLDπ/b}fΐ$<ϊΜΐ‚w¨E`mξ”&JΖgRκΐ₯ΖΣrv>όή›Β€I?VιΎM(ŠGbœiqC£ώΤε'J@pΗS”[)Ž‘oάλΙQ)ža6ύS΄\9τνvΝh‚κWoΌν³¦EΑŠΘΠYg"TτχΙh7XκŘd£+9ψΗ D` Φv˜ŽU}λ%ωgz UaΟyšΖτŒ4ΉΫ‰ΞΟήG΅EλK·ΗΟy_ΜZθ@ν5ί³Ρ¬žOΩͺέ²C„d쬀©ΟρρΥZe/™‰κό&):ψ ΅šq»ͺ›ΤπΑ‘YšƒΧ’ΣwνM5d³ΛO”Ξ(%Dτόζβ―α‹yZK·nώο^­ΦφM3γ—πI ύ“γC²η-ρ4ΖGΘ° ί,Pξ3£mh’S) υ/‡’xΗΛτ/ͺͺιήR-—‘Fλ’3MΈ’•ˆdšpκˆϋ«ώV%a½k)kυ„τnγqΌG@ Φ—δ"5{ K+›*Ο VμΔ£Ηqτ|P!BέΗf隐S'†%γYŸδͺ+ŽΠυη#ν¦•μBNΌΞcgf5ηύƒΫh”vυ„Jh—Ξ₯ώ©μ½Ϋ{Έΐ»§εάΰgg>θ?Mx+ΦƒQбωgΣη—ΡEοΊ₯χΪ™…ΕXŸ±ΉyΚ3N_=κλ‚λ±€8ˆΞ?Q=H2ΗΖ|ΧɎ…ηT’²¬―Eυ Σ™??ˆβb2\Δ0αE Š Ε<•Γ Ox[7υΨQ¨ΔΪA$‹°{p‡š0΅~w¬±z'c.°vΑ£Μ)μ7±\χ©0ςυ’(£"ΙτΌiΘ")?Q+Q: ²šΚiΞ΄Κ\xδ:φtΏώlGι>ΞΆ'.=π₯nΐ†zISŸ‚‚Β œγhΏμσΒΖh{…ρQ$i…¦ϋ4Ξ\,kGOΟ8E ωRRQHΜ™ϊWEΩΘ,ΚAa’κx0ˆώNiΑ‰{ι‘&[‘]T’9ΨΪΏ9QbiλΎ) γ¦βmΪ'!§†Ξα?}’ͺ\oχ{θϊλ΄ΪΫ P`„A2χΟ– XhmπZιNCϊυ"€Δ«kίtdjύα}etΠP1ΖvXοΊ6`Ξυn?Zλ₯TψT}됗ήΑ¬ΒΚΥ’—Ώ υϋXzϊzPš!΅—Mο‘r(ΜΌq?#Uw~@Ε²ώΊώό™T<ύ›•{™tx’ƒdθάκ_ΥXbUO©(Ίs8υ‹/3“ύτMΘQσgϊ1 €»§ω όLΊ΅E¬έš‘γhj8ˆLišΈϋžMΣζγ-υ—]z†Ί£ν€5ζ»–žS ΛϊZTΏ0ωσƒ(.vNdΛ0 @—kt$Oεθ\T ;v<ubDΔƒ[Ηo³‘Ζτσ rZTιν¦'z!²r5²χ=‚)"ΜP#.΄-Dyy’Hφμ%Κ*ύDn{δυ¬ΥΔ²™™FΔΏ@ΒPz7™εb‘ϋ¦Ί5}F:`ΕjMž[½υή2ZiΖf€ψU+<%‹›žΧΡ|)€žwON­[!3¬Ο‚CνϊΜ(½Θ5FJλ{ŽηY.Ev *±θ<Δ§Qkϊ%œ’D>ρ‘Σš^ §œ>i»¬_4(L3NτKώοίΒV5>QŸVŒ;xΎd:.†{Ύd.¦5=^}ζŽ~Š™γ¨”υY dδrgϊŒLƒ7ΟG(A ψ‘έΘSΧΉ¦κqώšλ ‘ο©ώEβš$¬] θΦ#7›΄ΕΚf΄΄J‰ρΨ”» 3½ΥhΣΥU…_Ύ‡ΚΚΥ]τή¬υ„ ρ£¦Dι4)δΜκΥρHOΤ ΕyΧ~}κΊ³[€βG·γβ5ήζ*φ 0CٝθΓ°ŸuSVH_’¦e+oڎ•ήέΉήΞ^H¦θ’ΩW|‚dD,5‘νF#}Ž[2Ά>vgΏηo,œX†νλοQΔΙ9<ίKžΓ‘₯JgΖQσΡ› ”vSώ­=Zcβ6ψΦShϊΧχ•:βΟέΚδ`%{φγ :ϋΏΙ φ3Κ(ΨΒ=\τΓE|όD₯ϋy=L_ž$g…O$ΰI\Ύφš5aKπTΡ¨A‚»{Ρ¦3f’hM̘FΠ?"ιŸ$ΚO”NΗޞžΟΑc;ŸEir<L’ιΐΉΛίΗΩ>]ƒ²Ι>ΊV–ƒ=_ΖΦdy]£QγΡΉJ#Bύλ!£το"U»ψτ}\Έόχ8ΣΞj7YοͺH8Ϊ κέ΄υ%τώ·ήτ½Lοΐ(‰$λΧ@²ΩΉ H'¬ά^ώζGΣϊgŠ](~$7­ά²ώΊώ46ZfvVςόΝC¦θγκhυ€Œž₯ιίςBlΟJΔ­ΥΪ3 H؎§‹ΥξS£ύήϋƒ?©qΡω (?C‡bi‡υ ›£uεr=ͺŠχQ“«#Ν;'(»²-uσ{‡ EηŸnθA―θ:;˜61Ρ:ίuπœκΒ“³¬―Eυ ΣiχΓσƒ(.>γΗ»Œ#~hZ Ι§r4ΘμLK;tO·Ι"‚ά>έ·μyκC'Ίkέ³–>B¦›Ε{"€ϊ,&f!I]{Δ ί/­وHαšGΩΘ„gΎ*ωύ&§f@ŠƒΡ0'γM‹}ͺήπxŸωΓaώ–ΞkjΓ²'š(?ύ§Τ†ΥH’t’r† ‹ΪΓ6"­Έqύ‰ΰΠZۈCΫδOϊδaϋ%Ϊ2VǍkξΏΚ.y›₯‡L)υGmˆˆ+7;₯7F˜ll¬X ι:ŸjΖωΛqCητ‚r,Ί+/”Mφt’ŽK Φ’‘]<δΆ:Π?HŸ3ΝΞ&Κtd+ …ϊf22%ΝždGοκ%°§ί7­ι³$¬YιYΉ'Q04¬_ψT₯ΟGςJεeE`™š–K}“³ωRh=ο–œΎrGρ>λ3Α±©Ο ؈Ψ` ³±γΪ<‹"·ΨμbYΏΈ4Ÿ°¦_ξ†/BR Θ'†ρ²ͺ—Β(§Až(Ϊ™·ϊ%…"!}•κΛ±f|τΟ‹K†HΖΑ¦~αωRuΕ‘™/ιϊf-ι «Ο’zB”NνŒθ|P”NεCΫyΟNόλ_ΔΠ`°¨- »QΊ.Gλώυ–Ο@O뱟†;q›μŽ”/}±όE,lͺFλe(ZΏ;²Ό}ΎΩT£7¦’ δKΘ+Ω‰[]-Έ5α)zγΏ8Ρσ•€ΜώόeόΙΕΟΰ₯C·πζ‡uJM±MλρΈ\QAΰDOΤ/ύ埑ϊψ)\Ώz3ρ©H’―εΡ§λςΛ6"ž"qŽ’‘³ηU†γ'&²αλsjξžΧγΊwd+P,zg>Ηθβ\”‘.P­œιz―mΈ€Šΰ³MGJiυUŸ†1jΆτQ~’tŠLΆτ<}UιΡΧ(r½BKN0S}#ˆK}O¬]¨ο$|a½έ'QGΗ₯΄:σ)ΌLΞ ·Ί.ΰζP7Ζ(ΚΕΚU9ΘΟځ KZ»Φtξ2Ί”xή?­(8€ίωζ}ϋΕ;JΩ‹'žός5G­ x˜(K“"jΐελO‰Φ/Ν’¨ž₯κߚ\T’yαNά€ωΰν±^ŒΣ'<ξ/Z…Μ€|dhFlϋ˜Λ­'t]ΔSx>(ΘO'q¬eYΊ7b#ηkQpι6j“y€ˆu#υ¨68%:γ':t€3J°%Cύ$Η=ά‹K¦'9%'e`KΙv`Ή κޝ[h¨§wͺQ?ίuπœjθk!ύια%ͺ—˜Ξ_ΠηŽPƒΙΗFΐ ͺE7·Ϊ†=Oe«­Ξe=;4"Ϊ XŽd!υ5Βά>πZφ<υ‘έ΅γY{£΅ ‡Λ³=¬rΆμ@ρ»gΌ‹ΈTΊel ι©Πίg X‘h‡ŸBB‡eAwRςΐ—632‘C“Ψ^έb°—7ηdβWIα:δ48bφΊΔΑy­6¬l­y’9ΰ'κq%Dη@N\’{W,Šן.τIŸΦFϊ€ΟF2ΒΙ¨Δa5Z -d΅4œ±ΤδΨ¬wYιΑύρ 4UΝY5Qmͺύ,€!υHk§§Žτ2'Ωσ‰3ZbkΏήϊ8΄OT!weΊΗψYbΪί}[γ-κY«5`ΘhO…F]ξnr―(“υgαŽ}(>Vο՟Q’θV‰kY1½K φ–#$‰ί7υ΄¦Οi‘m’n Y’Œ¬τΤ T 6ξ@φBaCCς =/§σ₯Πzή9υ2GgžυY°q±«ΟŒm‰DlΠ·Z/yk۟g9μbYΏΝ'Ό=SsΦτ‹`„$'‘OTik]/ Κ©γΩω―_vΏς{ςη^₯Ευ»8ϊOƒšΟ(κΨύμ½ tΧ™.ϊ1I 4‘MHH$1H` Ž &&xŒ‡$'±»γδvξzι¬~yέoυ]ο^}ΧΛΊ·ί½χε¦W§“ΞsΗq&ΗΑ±CLcc 1,,b@Bš%4!1ενOUͺsͺvΥ$ύΕ΅kOΏΏ]υΥ>U—S~‘υ’‚œυ>€λ%xBΠ>€|ΖϊηΗ»δmg=—ΡW2wψLϋΚ;ϊζ4"±΅°©2“ŸΰT‡7w6l8Χ~%λΛ₯Α$cϋfφgZΧQμΏ"HʐN‘U.ώͺK‡γMψ°φM_τ>1—Cž«v¦š…6“Y¨οDIρ(ϊͺψ§‡υΈt±₯‚³†Ό&mk¨υοΖoό«(9^­?α‚+ύ v―ScE3yŸ³ O½,­―ΕζάχZύΏ κΧ»~§0°}ΘΟg|ΌDςμw‡νΉ£Š„!ΰ»Ο\άΘάΦ‘§rΰ’§Τ…Η—G`$<Έ hϋμΥ“,΅ΜugνΘ©Z\ΪΉΕΒß₯μ‡η_%Ύ5Μv°ςα§°›EŽPΆϊ §Ω‡²L6ςΌσ(kBϋόQiš°ΠΛÞ―I,JνMΔ`ώ|ζ‰ώ Œ{& ›d‰ΜΙݍ’δ%Έχ'ΰή½φIAι!΄PX˜^‰KΚ1…MΌ5v ΅‘]œΧ’Δ™2‘yατ(s£gL’°ˆ'Š'Χ' W°]0tΦnμ“Ϊ mzvΎPΞ>tWό·09O-L/Ωƒ½ӘǿΖ ‡ίBӐ\Όκq—ΘrΖΟ£VϋFνΑΊŠ~ζO+Ω³Βt΄I/{:»žEžͺχ3tΎ’6ζυ¬;ΰπν8R‹–RIζΉΏωŽŸψC19¨xd—τEΥΞγ„ήՊ6!=,ώϋ¦V”iΪ”Ο˜ας€pw‘Μα³WνΑgοΕα<›ΫΫσ³P”»εšHU½η|ŸΦU„p¬—œσΌz*ϊFωžψΜC>3Μ΅νˆ B;^β_gyΩşL,>ρΘ»1€i<4εc%Νq I n"ŸΘ28xI£/HO_­“šΝό²ώ™οb§ΰ%GAΫv½„§}‘Φ₯yŠ™ιξZLaϋΪmH_dךš?Αϋš—ωSγek‘$ΕψΤΨdΊΝέQΣpΒԈѱ<ΉήvZυ΄_bσο˜όΐΠ6ΰI³΅΅ηΒ1τ1Η₯²Bί3_‘Λ‘Άjώυ«>Gv!³υ ήόE žόάSΘ3PbΌΥΗ‘±c/sΜg|΅ŸoΪjΆ?ϋ πΜ^”―DόΒ,ΡΜΣԭۚšR²χΤ―πƒώ<½»ΚOO±Ζx'ΪΪ―ωڍψΖηϋmθ+B½MΛ‡wnii΅Ul¦+Γ6εωΓΰΰΫ?χϋΪbο‰Χp(+ »·δ±^3°iϋ#8ϊfΏ:Σ7mX±<έΣ,‚²)1tΊ6Δ«ί»Ž=OμΕζuyJUέ~€»m ₯hΞB οόy€g8ΞλΞ–7Q½τeTjž)€τχΑ©šw N J©ΌŸΏ=ΟΥoΓγ}¦!Τβ•ΗΫŽy>†=£Ά» °ΰ9-jε;·ΩWδΨ‘kA-aAvzΟΰ|γ»Έ<¦ΙΤ$ΉΗ§ιCI.χ}]tόΊε\(υ£zOΌyή­ ;E†ΡΧ\τΒR,7ήΗΔhMΥγθΎwžNNξc ώ ϋξώvνͺ”°”{pž}ρ3eΗρύ‰ξ^ Ta{'όιΙυgΌ-Z¬Cxy‚·‰ΣρΝΏ;†nζ$‘™ ¬‘5ΐŠΙ t_―ΗΉ+ΡlΒiNε)½σyε)r£~O<θšΝuC‡π½oΩ–…½ƒnΖ:φι»εBYZ)*+Uk5έa^Sݚ(j‰½DFZ1Š-~&3#h©ŸΙΎAΙΠΩΥymO']-WςΒθQζJO݈£€' ουgΓϋ4Ψ ¬χΔ%΄CηΚ­›Τ²φΪj{ΕΞցΎλν@NžTΉοΚΨWΫj ΄{ΡΣͺHΐΩEΒγ!ہxwΎϊΕ]Γ:ΖC۟ρρ€ΌτΏn><˜?ΑΨQ$ ­2Α.ξ›ΑΊΆ*ohΑšά,d‹– ¨πsμΟΏφδΐ§8~Ac&Vα[/9ζy&˝žώγ‰Ϊβ3yj<ΰ3Ώλέ^δA^rΏΞrΩΕφ Ν»±-ΐ^Ε’άE>Δσρ’©βτ4­ν™³˜_–.“Γ )+ω(Χ|^;5# »pP“Aλ% Œ™΄^rΟšΐm’—'΅γ]ςΆs‹A$ΪΟ%>‹Ύ$“°‹ΐΨ Όqΰ„έΪ3²ήυk‡ρζ΅ΣΘΟZ…„ ΩξβΦΤ \λiς7κΎY‹ύΥbY|ΨΪ$6†02‹Ώ»χna|bmƒ&/ώ ¨8’§iΛΫNι’χΤkψφ­ϋ^ϋξˆΪ­HOY*zNvαlωσδ‘Ίwρ:ϋ[U±iq±¬;ΈΙ>N©δ]Ώζ8ρφΏ°?σRΣάΦ#xηGGπΗU°:;M2H½{£#½μ3Υ†§lμY‘q|Ί>»αΥοeρŒœώ9ώύΫͺίόΏΑ‚ λ6ΩσΌω τšεΙέ ΥαΰΟΨsޘŸ…E‚•.³ŠžžΒ`w:ŒΑOX1Χόy€gXΞk6Ύšs?EcG)V%₯`Α} αλDσ` Z€έX5ήOΜνjΏΒ>Π%m­ νθyl“τΉΠΞnt Ε΄Od֞ΛC–΅9ύΌ~s}φaeϊ~P°@—ΪηcSU…θDΧuέ§₯'σΨζ]Ÿd›‘ψο›QRŸ 5ožΓΫΗ€k+Q’¦ηs±#uκςΥ|pE©J’η‘]„†ξ‹젝Ϋͺ#­u¨Œ–hσ!ΐ‚œœuθ$RσηS:t©ΡαzΤ Γ΄ρΚγm¦a11=θμ³a n‘PτΟBρ0fο†lQ½­υθ ηύdˆqυ s'"υ\e…οϊγε ήv,ŽΗw³mμws,OΔ·δ—§ ž1 βA―¦j+*v(Α§qεœή‘Ρ+)Ί~8֟# ΊFσzΧύοTέlΨ>ΰεjg1/.ζ½Q.!@xΐ}―|ϋoώδu§B'?<Šn=ο³ςΕŒέ‚‘ΪΠiΌφ½;zθL7‘%€ΎνE²¦HΠς nξ ]Ga1*Ε2•Bό\ΗMφ9#φπΦ$ ‚ͺ[Fΐπ’συαώΌv¦Έ[yΛ’ψ"=8mηVOg¨DGνD;‘V ͺ†σϊ3ˆΙαΖώž?O tUΏŽWχ 1ΒΈ9ˆμβ…V‰™ΉΏ$;ΥΑ>{Θ’#μψ&Ύωd…Ψυ₯>~{$<τΌK$ϋX–T„μxUbž€Ε­©~©Š½€€R&²gŠž&ͺ;Ξ">Όδ³\›ΓO”‘ο:Λ]dƒA'‚tη}±‹Θ'ή+3;{$~ρ–_ΈΞZ/qΑ¦6"žP‘˜λ‰ΉΞg%%%β)ΠάΪ>ΧOΏ  Wε‰­\τώ¦‘|~ώѐDB€eY‰ν±l<ΧΛ-‘B€ \"0ΫωΥ%<Ԝ fΉΨόHΟ[‚όM•,€Ÿόi=φeςψΡot£νόιριΐ¦B€ Ηά»wOl“——ηΈ­Π ½½]l7ožlT#‘θ,+1[wξ=vψ<γιΞΓΉΌΘΆ§—W8e… Uχη΅3MέΚγυΈrΪΞ­žΞP‰ŽΪ<‘VfΧ5±λe#g»珄ΩΘY8 x©HΟμG/sιΦzΗ§bΣΊ5joSΣB)©ύΜ…Δθp†Σ™’'οψ΄νˆΟΌε3§΄sα$Ν{O gd§λ 'γχ€ΛΘ'žθ0Λ;!~ρ–_ΈNZ/qΑ¦6"žP‘˜λ β³Ή~Πψ B€˜»d?°Ή[σΡq² ΧN]υb—ϋB„!@x„ΐlηW`’nB`6!°ͺ ~ξ)ΓΧ‡qόΈήΘyΆσc€Η7›N) !@³ ˜ςΆύ}(ΥΩv%έzήgvΩΓ(ΘH`ŸjοFέρ3ΈαΉκ Ω…€ΰA9=6e9¨™^n90Ώ‚N uυ Ήώ Ο: Χfη$wΗWπυ—ώς³ΣΏ /FBΞz<ότ±© EB₯―οΏρGΊ‡ϊ#”mΜt~ ¦??ήsƒΟψρ‘–„@p‚]Ÿ3½<8V5ζΏΠzΙjώ)6 0Σω+˜ώvη(55U¬:4lΝΣn_Toξ"œ”(ΎΏΏF°rγ.¬Jg‘ΔnφΰβρӘ~»3 _R6ΊPŒ,F:†‘~ όιOb‘}ΟηZygu{tOiG3Og3ΏΞΨS“'Β‹@l6>XŠ%²ΤριkΈxz?}δϋ<ω\[†{ύή 'i„!@Μ^ώΆΔDιy¨Σ‘ŽŒHΟαο»ο>]S2t&Cgέ A„!@B@ψρ΄ϊ±bΏ‡ϊJ›™^ŒΓξώF7ϊ{Ί18θ{Αa·νL©—P°V―@Bj6VYϋΛ·‘¬l“εΟ%‘'ή~u=“3eH€ηF όλ•³–ΏŒ/œNσ\ΰ3§˜P}Bΐ Δ/ΦhΝ~‘υ’υόSΙΜF`¦Ύ ¦Ώ“Ω!Cg'hQ]+fͺ‘s,{{w}ΧΠtρ2&¬Hω„ΐ,C@Έ(‘œ[>hŸ'NJ±Ε\,Χ!Ξ²ι¦α„@„Έ…³š_‰?#|‚‘xB`† ]rS‰ψγϋϋρ‡ŸώνXxΪ¬ζΗh[__ϐ‹…Τ$¨G€ C4E‘"DΐR·„!0λPήΟΦ&³nΒ<Π} ,’σ,NJΐBCŸ=ΝΥ8ϊΖΐΙKdδl€†£ψ¬„Y‰"ƒDι‰GjΝ ˆ_ζΔ4[’ΦK–ΠPΑ F€~ι' υxΠ3ΥΠy°υ<.ΤVγ"9σM<΅š‘”<»^|~Πq² ΧN]Η =/κc eύ?ΧΚgδd’„!0#˜νό:#&”$ˆ"@λOιύ]€ΧΧτž-’— 'Y„:‡h2)"Eˆ€₯n B`V! Όδ~\ΜΖ&³j²<ΜTO.Φ|„Oύη.žΓ₯‹gq‘½ΰ¬ύθU9z=τΝZ§ξB‰@₯^υ₯€°Έ^RΞ&~#OσPž=Τ7!β—ΐψΜφRZ/Νφž{γ›Mλ#³ί―<3J†Ξ<¨Q#3ΥΠΩ8:&ζΒν΄FʘcητϋWΜΙrΪ„!ΰ5³_½Ζ‹ϊ#Ω‡­?£c}MοΩfί΅E#"Θ *Cηϋ^ωφίό)C:ωαPtK}„!@„Αƒ417Ιοα½ςς[ˆπ<“ΛOώΏ 3’$Ž "ΐlα/+ώ4Ύ$Ÿ˜ΛD ΏFΚgΆ•tΒΌΈΥo.Ο-˜+Πο?σ™.)) š[ΫΝ+P.!`ΒUyb­††΅© !@„!@„!@„!@„!@3{χξ‰Jηεεq)ίήή.Ά›7ož}LωΫώ^—γΡAgۏz’nB€ "‰ΐlχ %ΟΜHž]$›ˆ !$2Έ“TB`. -όbfδ,ΰοVΏΉ0‡4FB`#@ΏΜϊθlŽ ε:C€":;Γ‹j„!@„!@„!@„!@„ΐΜC€":ΟΌ9# B€ B€ B€ B€ B`†#@gψF‰ϊΡ9J&‚Τ B€ B€ B€ B€ !ͺˆΞϊψΞ!SŸ:&B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ Bΐ>dθl+ͺI„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@aB€ Γ4‰!B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ ϋ‘³}¬¨&!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„ ωa’CbB€ B€ B€ B€ B€ Bΐ!Λβ3°Πf›±›5νUΫψάίβ‰ΚBLtWγ·σUtΨkζͺΦ²€d'd`IL ξώ馦Η0ΑΟOΛ¦&^ΙSϋ 2>Q…Ψ δ'g"aQ,ά°kvxψ2š‡ΝqQϋ6Ρߘε5Ÿϋ§γ(A 9鋁ι©Œ E‰N‚™ΫρΕη«Ψ½θ.Fα­χjΌS.y+žΚ€.Ζ[βυ}GΌλ;”=9Όή½PeEΪz¬ˆOc‘_ΖΖΫqΉΟ|­γ†_‚·΅ΗΧj?vψΣ €¨θBΐŒΟ4Χϋ v½ΝυJ^Š $s±6;q‹ŠΧόΤT.t5…I³D,g7#ΆέΊΣƒQ“ί@"V€€!iI2ϏAŒΈξΉ‰ώ΄™«©r‚y±.W»ξαm§λ"ˆ@*V•FJJ/ξ`w15rWNΧΑ|…lCU3~±Ρ,δUBΙKώœ9λ%η<αύΩα33©ΑΫη¦`λ₯HςΌΩ˜)/8!ΰ³%)XΆΈs{“²KVcΛCλΕόΙΎœό΄ΑR52tΆ„† B€ B€ B€ B€ B€ "΄On­B’Mš/ύ[[lΦ^mΡβ₯b₯%‹η#Τ/–₯lΖ…›°vy†‰b{ΠpαM|Ψα3΅^–ύ8ΎΆΎά€6kgjώNφiσ€΄SyJΌν”φaΩ'oΐφ ˜ό] 5ŸΐΩΖώЊ “ΌE̘6ρ@²~8wbE8}¦‡G9Y•ΘIHCr|Rβ³°Œ'JΫNœόgΤ+ΗΎ½ΫσΣΧ“½”y<γΛΟۍωΜΘΩμzύ,ϊϋΞΰTΝ»hΣͺa>ΣͺBi$—bϋ#;°±r»₯­ώίΌu„ΓmΥ|λ[ŸΗr‘›ΎjΌφαq¨‘ΥΌcχΏδœQ·%ƒ’†λ;)ML@jN†Ψχό^•Pœτΐx0|<Οu½;_νYU¨,,Gφ%~e0秚‹ϋΠ 5,tΑ/αζOΏQFδŸyq½+…’—Ϊ―]ύ (*Γ2ƒόΟ5γuΏΔ“΅–‘ͺ‹Γ<ϊΠ‹X› w1Y}GχαΊΪc"ΆnzΕ+²§ζişCουOpΌφ¦ +ηε%ήv•(!2·bΟ#[±zΓu€ΥdΟγ8σρA8μΠyŠΦKˆώυ'OhOOΑψΜJHπvnΦK‚ΤΘςΌΥΈ)߁Pρsbά΅«BxͺŒ6γΨ»aPH/‰Γ2ζ"δΟ»Α¬ l‘~6@΄―(ΈΥΏ―Φ“Ι—ΛŸ WDŠΰc ζΩη"x=kc™EŠμ-7ωM’££ό0SK-™ΰΛ/VAX+χΧΔoœΤ–†&­^‘­Ϊk€"|xq½«ƒ’.Λׁ‘?ƒ· /Ώψf$ŠRΔKQ4œͺD+Ο“'―Ε„†ΛcΥ­η0‡ž¬#ΥϋE>±8˜Mχ‡0‚"QfχM$Š$ w Φeΐr/䏼`TΑ9οz‘§Q :v…ρ΅+ψ¨1!ν¬HΚ°mδ,ŒεΝΫΙΧߏ{Φv—³κ<]Μ"υZnK»@²#e‰b`وάΑ”ojEyBcήvͺΰ0%r7<ˆͺͺM’΄¦ι+!7t—ΌŽφΣψπ½vΰή] 6;«*BhμflΫπY€šIšΑ¨…፛σΣLT°  0G s3v>Ό ΚKa4==?οLͺQωΐfΙΘ™Ά_Ύ–―ΨΥ ,ž¨ς}ϋΒ€§Ϋ”pw’6eο΄pρ.ΐw½;Ά~ακ°§¨X›₯K/cΖ©;+ΰΦΡ_£Y.qΓ/αεOέPθ R„“Ο<Έή}0…—|Bžڰώλ؞e.7Ÿ)}šυ„yEώά*σ9³n&'G‘˜{]l+#gYlϊб{σmό¬ζ¨ͺ//ρΆSS"bδ]ΝΜΘΩr[šƒςΗΎΤΔΕxmίqΛjΖZ/ωΦMFl‚‡m½ΔΙΑτwZ”Ο,:΄ΣŽ{½ΔdFšη-†MΩŸ¬’Œœ™μώξnΙΘYΠƒ}΄‹=ε·{ςήj§όF³*}~„=’‘­gƒΣόž΅‰Ψt^l\Yθ獢­θ!œo:Œ:Ό‹ϊ“+J%,^„„4ΕSΫΞΓx—γ°γαFΟoq4a’‰n―wG³ν‚?έκι”—„ΟωΏ8šέπVŽF^ /α—ŽHα•ΏΔPFπ"B˜ξGZ`Βγ±κήsΨΉžό<Ο9J‹)₯CˆέBEΧαΈ?xΑŸŠϊ‘δyEF„φΞyН’ήΘ yAΠ οz£§;¬¨΅ ΔΧ& P!0{Έ>܈³WΗcς€ξέΫH.ά†•ΚpGΞΰ¬&β±’υϋŒέΨ­1ržΌΡŒKΧ.’sl‹'##Ήs—chLl:i‰Ktm,PΗ{+βgŠvwΝFCTNyΰm‰ Έγ;aξϊ’‘Σ$\ςZkp’UF2‹(Μ Νβ {9Πe Λ5FΞΒΗ¦•σŽ%oή°όό4χωΙ©<―<ρ₯¬Pƒjχ\Β΅τŒυcK‘³b=Κ³σ₯Q$lDY^·K‘ΨηŸqΞ_τ7+Β³/}₯†hκτΞdΧpyŽάE#ΞνCP ' \ΓεOO`»±Œ·rD«v"‹§nΈx—σzη’Ψ&­ Ϋ4FΞΓ,:|uσiτ1cΡΜμ‡XY©τ;«W YώŠ…~ +rC ½C`σY΄σΗ$•”|Ucδ<¦ζp¦ρ ΦμΑΞΒ"©Η„"e%βz—°σv[ΛδoIΧGν›Ζ¨VΜό°Ψ€jΒυ‘τ aόζ8b§"?»œ}FjΏ,­›“Ž’FώνΑΛKΌν΄*S:Œ‘γΒy΄΄΅ wpσWcγ{Q)ι•[Ή;›/γΓ:_έ‘υ’»Ι Χz‰“'ά NίΪŸι›ˆGvΫρ—"Νσ&C¦,GxΘg‰λ•―ό ΌŽŽΪ+Ž4Q*GάΠ9ςIΎpΌ^³ ˜V{7ž Ξ#DπzΦfΰ‘Ν_ΐΖ4ΝC:ν€e lέ‹˜wοΗ8z­G[Bi§xκΉ\Έ―°y2Ικ†K^$"|ΈΉήƒΟ¦Ύ†ώt£§s^"~ΡΟ\E!/E!Jή¨ΞHήhμ²—FπΰΌ ΧύH1l«.=‡λι‚ηΉ"G)ˆ>δxp9ΡΡΞΊΥI3ͺn8οžΞky>‚θœέ)λ•<;‘ΰ‚w½ΣZΤΪO―kS ΊΜ9ΝΧ:$θ€Γηπ1ϋ3ίΦγΑFLόκύΞΆΌ;ΏΚW€ΟyP ΌΡ{ν(ήEΧΥOpyXotΤΩw·cώ#*WHΧηΌyšHΏ³žΟxηo†΄Sie -ŸCΣDφTŠΔx\·n„Ώ³«ϊ¬ξt{ aιP½YBf]§"Qxχ?ΤoιD‘΄ ος^χλVa™άf΄ο~QsXνaτΚ>ΔΕ§c›Μ/jΰζ—0σ§Ni:ˆΡΐgΙμzgŒ°λέφ^²­σŠρ•(Λ—£XλΛυoβΩ9j » 2Cη8±Χ%ˆ[”ΒRϊ5‡sϊ+ςžΑ£‚όi–/ώž’ΚoŒυκ+ŽUγΥϊ<ρHψE»^DΎάžω]ϊ6^^βmη“L©!0:tυgήΓ…χίBӐV‰z4œhΗσχQ,Ϊψ₯ #‹­‚l:ΣzI‹£’ŽΒυ/O(CrΉ·Νg9φΫq—"Μσ Imγ@IDAT†α‘BΑg+‹VͺΣCΝ-φΎζ³$‰±qΊυRΔ η‚G―gW„NΟΪ΅%{tFΞWΫ£¦νnΗmBωΪGP”(}ˆκώΌ \Έ6˜;ΈbgSU»^αςdR° —ΌDψΰΎήlμέπ'·ž‘kˆ_Lκ\¨j——f%38Rο|D{„pݏ~aυXuα9Μ£§žηŠΕ{>R»θF€ξ332V΄σ<ΗYΟΓƒbΤ&^Ι³y—w½S8%f.sš―g況͛BΆόR}τϊ§ψxΖ§Θ)Ψ‚’₯ χœ΅sg0lˆMG’ά7F,ŒM΅ν₯4―<ήvЉ₯{πΨφR,dΘwcζ#ζfήΩ[0˜Q(Υ9φ©ΨφΒ±:yn3‹SKΥ>²*Ύ„/―,8€-f!Πuκwψπ΄eWΙаύ…Οb]I–3lGΖYμbΆh«Ε…pΌN[ߝΌτνΈΏΈYYΩHMΚΐe.ΗΡΥsνŽαΓυ>Υ=Š?φΥS°DΡ#_Αζ‚DάΥZͺ1ΌΖZώΘp ΛͺGπμž*”ζϋποiGΝρ&dVl@βΒ ±>šτqηΦ]δnxΫ6ξxW§c ΑυθβΏg_Γ]ͺ`8φξΣ~U&§<ζ—pσ§ίˆ’?ƒψ,ΨYπ™I³;·b°qΧKΨΌ₯Œ}±$^ͺ1ήƒϊšCŒΏd4΄γα%wλ,v?zn'Š‹Vϋtd:‰χ°΄œ;‰κ:σ(χNωemN±ϊՌQφ;@1r˜ƒα¦*fδ<Α$K6*ΈΟŒΫC=~g©μ¬3Υ†kSiΘNd `θ†vΝLΠmΆφφΥ±λ†Η»ξαmηΣ0ΊR³_FκήΑ[–Λ…:œ;WβͺRqR–g³½eey’,ψ…ΦK2>fλέ­—dΜw|ρ”KX‰ά$ΆΔ πKνˆ&™αΊπμzx…Νσ[>'Β-O–ΌΧ;ηΕΒνΡΙ«'/ΏpNnˆ›Ν^ 1‘λ>"„sτ‰0…žΌαφXευζΡΣ%ΟsEŽ η9<ΧdΡύ!r3 χ“ω HDx>¨Vόxx_ΰ‘<ϋ‘.ήυHO7PQ[&Χk΄=g0hL‡„! ˜3z™Ρ° ΅WŽ…BJˆϋ,@Iv‘,£λ…1$bER ζΟξάΔυ±S–%$A6ΑπδnΕf 'nIΐ6‚ΡŸ<ήv>Υ—₯瑨p/chB1ΫπεΉJ₯!“Νψžςϋ:KΜ,#ϊr€»hf,ψΕ―ΏŒ’4_Ά`δ,lΛσ7‘Šύedό+~ϋ^” 7ςаγω―’X1n–{wKSU(όmBVΪλxύms£m'iχσ‹D5’ψnŒϋ  ΅zπŸΪœ₯½“go|΅+B~ͺΩ™ Υ¬ΰ3y|μZzφ+Ο‘4Ga(ίΈ—$η €ύeĎ2Cηw}Ž―?ΦtU6 JΦHΧv~!$“_—μΗ3žέ‹—βπƒώ•jΠΌ$k ςΔko)JOΎƒ­Ϊ6RΊ¨t#ςς%ν›ΜΠYΪ:pπG «,ϋΩθςμ”<Ήyr偺T3Γii[ˆŒ+ΩAκ­fΐΔ0X©)ξs¦¬ΎhšvσΌ\T„έ―|•kƒY_‹%ΙyΨψΨΛΘΙJΓ―~ζo蝚·kόηnδ.ΣΕΒ)±τiόΩΛ{‘|c@’ŒΒJ<Αώ”-…υqΠ€ŒςηρRΉRKΩ›ΝŸήUϊάσ ―/ΑAΖρυmξ—žΒν;Ša#3 Ίm\δb₯†_¦n uƒlAψ%Ίψ3ΘXΒ]L|f qk>σožQώž0f/Ν@iΥW‘žž‚_ύ›ΌδbΕζόΛί~&k4υΣkiθμŒ_r‘£^ΟhΉζϋ-³yΣc²#€ΐξ'8š™―»”:ΆχμΖ3e;ΐL^Ψց?^ΊˆΒJyf¦‡0μΔ&­©RΨiΦΧ4¦¦ΔN„—,σΆ³μ0‚³–_c»ΠχτnκΦ­ΐ•Y©5ΏΠzIo†¬—xx"θΩ!Wΰε3‡νψΦKδy»ψyQψ vψ,kΣjΥΉiμj+šΛ|Ν\$²ηO›Ψq{{»/W³^ς1©―8jR³Β#‰Σ³;B‡gman12•Y9ƒcŠ‘³’w³Γ,zCΊΙ’V©βΤCOiΗ΅ηφŒήΜΌΥ½Υ':ΰ­O€½O<‚φHyh;׌–Ϊ#8pXz`λΚγqΥv<»›ypζΘΓCOσyΤTˆ_@±;Ώ§€ΎO /±’žLN" Έ“ηjτ 8:r|^s^οŽ”²Y9 rκΙΓK^π‹Ν!GΆρ’εƒ ύΔβ%}MαhΆyΎQδ“Ήω$Ί‹φN`ωšP,lοϊvv²HΎBpWΈ‘η=Ρ׎ŽΞ υ°x±qΜ0p{ž.'ζm{»Ϋ.㐍O:ϋz ’r;ΪηͺƐαΌT€sŸJc޽gςlŽ/ŠλΦν@‘jπӁkΧƒ%Ν>A)ΒΣ/½ŒRυ…3ŸbΡΙ[:0?v9σŠPΔ"ώήΦ… ζΉώ˜°©»μšΡo#m§QίΨ‹Έό2l\#Ώ—Κ―ΐ– ΘΧQ.]lF‘I9Ε›™‘³τ.ΜΧΣVδ—€Θ‡h£9ϋJ½Im@Ω&Ερ£NςuΫΪ†λμSο‰ΜžmIκ ¬b%&ΆΨjύ’Œ4Υi€·S:ΧΆΉήΘΉEΆnι€`δ]Y^*Ά]Ύn/ž|² ―ο׏zσ)Τί":3†^˜„²u’žwts¦Šg‰R<ϊ”ΖΘyΌgͺk0“ƒυU•:γgλ>€ώ‚ΟŸ7ΌλεύΘωυΕΞ,ΝH¦b]ΒώQ\π$:ϋφ£S¬Z€‡*γG–1π Ξ\3άηΕzΪ‚σK4ρ§VσΘ§‰ΟμΝA> Ёp½Ÿ½Π†Ψ܍¨άP(Φ\^²νjΗ‡λt-σ’―ΉΣuVΙC[5FΞ=l=X‡ξΎI,ŒOΒςœ|ζ±Ξευ€OŒ/εd•R€LΕφd²WεΛΉpΝ—Q©:sϊΊΎ1ζΥwPr±sΣςWq&p±ξ§Έ³[Q#Π’•l}Φͺΐ†βrΩ`θ½ΚΎ‚rΣΏ¦>'8/ιλ+GΌν”φΡ΄Ÿ«ό’‹ΜLί"qΈ·=Θ€ΰZ/XοFΣz‰—'‚œj1/Ÿ9oΗ΅^ŠΟ«…!A|&€œΟV"'o…<7Πyε‚­Ή™θkΓΥkύΈ9?M·^Š^CηYβ‘ΔηΩΰ>B„ωYaξY»46Q­ήΦΧ„QυΘ~Β™‡žύ~5]yF―ZŽœ5kΔ ˜ΔK›Y„ e- JL+DωC£ΈΔ [™'2od‰Dφ™©?{QσpCμ_πΰήΖ<Έ£»τ”ΤτΐΓK¨εσ›ιI>΄hKiΎλέΏΧ9Aψ“OO>^ς‚_\γβˆ—X’άZψ­=O΅΅XzΦzΎQδ“Ήω$Κ“›₯w·7ψ™-|& :wGΚTϋ•Nœxγ5|xZν=ς¬O˜V1ηυηλ@Juω^ύ΅}ω ½ψŸ±sƒ`μΜήKεζ±λ¨_¬xξB#fΧ—πV0oM)Τ@k:–»c/ς…z•SΔΖύ·jΧƒr€N`€α Žλ,™λΡÜTŠ“™ΓCr&V0KηV]Ή^‰τt% }ϊΪ›˜έρ³ΨR"9K€™Ηκηΰ >½τ,{wχ˜ψž0oΗ6”0CηM—­Η~γ3¬Nލ4fθ¬τ¦©¦&ΣwT2]εΓρzόαίΗYf¨-l'Ϊρ-ΏHΟR™ρΫσΗΛσFΪc‡<¨4εΉή•Άφ:Ξ‘Ν6s˜ˆKވ§χζ {`K—ηb™άprδ,:τ}Ά~‰ώ „I$ʈΟμ‘˜ΟΜϋh8€²ΘΝv½£ίΑS;$'Œ’MεΘe†ΞΪ;‡S^‚‹uVR’ςc'~ϊΙΞmΎq$aΞ0±ΎŒ`©ό’ΓsεšΎΡ%:4,Λڍ‡ %CŠΡήΈ0‡mςΊbήΌΑ€Ω*ί̌œKdӘ«Νq΄ Θ)π9PφO[rΛ†υ/c{j FοήΖόΈDυwŒ Έϊ1Όw±6¨vxΙ¬ήvf}E:oςΛͺ]{±YvDšΡ\ΗΦ-ΆΐόBλ% ΐz7‚λ%/x"ΐi‘+βε3žv<λ₯HρΌ€Ÿ 糴B¬X,MΖDWmxuΥαΠaιYΠ•¦zέz)J gG—gƒ"L.XsΟΪD$ΔΖΚ΅G0tΓμ†ΊK Α~έ;ρΠσkl7Γ₯gτ œ!‹Z^X¦ νi¬e-n".) ΉkςTοo΅K8σxά€ΗžΦ95£ζΣ³ΛΗΖ§Δ΄k=%ΥΎxx‰uάx2ρDp#O”Γyπ΅γN9<―Ήwnε¬ηO.=ΉxΙ#~±jTδ/υΰVη)/)ηͺη›2~»ϋx’'otyςFΗjΟa.==ζy"GΩ½‚B_ξtˆΒΘXN|Š$ΓΐαβΑ +r-Οyδ?•μπk=ύ€FYρυ\ηλ(;!IBΐ&λQ±ΆH­ΫΤV6υh&%‘ž ¨)Ÿ¨tAsΫY\½1ŽΔεχ£<;_P>Κ 6α²j<”₯ΛYΩ^οdQuG0y7IΙΜQ?έgdYR΄ ­ΜΠYΒ‡Wo;Yuy7-DΥnση!”/g–ΕψzŸ7_1bΦ*ΰK―/‘Œ…œΊ“>#g±J?}ψ1ΦyJ|½<+Η4ΒͺyB·5~%φnφίΩ#gρ 3ΔfxώΒEfUΈσάΞCŠΖ¨ex|fΟωi֏έ<οδΩŸΉ^Λ³Ηξ΅’‘–Xƒ"ž κ„B>KNE:SDcRlΈ˜+Ό#λΐΘP€*A‹r±nc…Z«εθ~?#g‘°ιΘΟ™ šoσβϊ^.ΧΎ―9K}Ÿ8[rfθ,Ψr%.7φ>¬­{/6f²γLΖ™,`qo£R¬QxΈzΩΰˆΰ«ζ"UŠ›6ΙνQJ1φσuΩΫΝή|‹ΖΚHΝfχ»V†XζnΌτc`Aλ1xn~ωφIΦ iι²ςP7Ί˜Atε‹₯κ;ΎŽcύζ`€ξ-Τή_Šέ’x)ςΘEΓ)­I‘O,΅T–―1μoͺώ£jδ,ΧΏƒΪΊr&+©΄PΣΑόΙr…SήUšΊεA‘Ύλ]Ρ Θ~ΈWϋ{½RΑm92…‚p1 ·„Ύcx•9ΛίμπKtπgΠ±ŸΝX>σŸ[Εώzή;·(ήT*9€€ε!‡9xtX9xΨΰ%A&ο:λ.3ΰU7ΓUΘi<‰³j„~ΙHPΌD―ω7αΡ ςk˜#η‘Σ‡±ςΑοͺBξάΡθ¦ζ:K¬-ώͺ-zΈλ(φ7JχΉT危n‹Ns‘žœ+ςΠ2cλ‡ρFν cΙ±^2iήvf}ςˆ_ΒΓ/«φ`ΧcΚϊ‡­Ώ―_3¦Eψb­—Œ Μ„υ’‘ΗΡΥ|Ζό€Φ岨ϗτυ΄λ%ίΣ.]£ΘΜ&$Ο†PDˆ°φ¬MΑβΕΒ'€„yΒέ•RΪ ‹οGΆ6ΓNΪdρk§Y :^yFϋd΄γψ/~Ž£uš‡«ΆcgΡHΟ³ψ"Kδξ(W½Ρ1tΏή?©^οΗΩη±ΎΝΌΕeGAŸ*rΚ+OΙΐ^’0ξˆœΈεΉπ<υΨmFσšηzw«’±½ώδΡ“—BΔ/ΖAGπ˜x‰=(·ιΑm‡—„©œ«žoNOγΐx’'o4yςFcΥ‰η0ŸžήςΌΫΘQN―£PΦ§ϋέ’32–ωYO‘d$\ψxΠS;ΉnερD^0κe‡wέκi”mΗΔΧΔΧΡvN’>„€Φ­―τ=«ϊŸ΄kžmΪι jκd!a‰ς\ZPͺŸΦό§ϊF$ »j1rοeμΜel[ΈP Φ!υ ζάOqn¬CohΪz ΉγsλΚ₯k‹X`‹¬D΄u }ςΚγm'θιΫzOΌŠ·g6ZS˜^ΜBΩL λ’¨ϊj†?΅t™½E£λ M 32μbv‡‰‚]Ί«†Φ–‡‰«Ά’Όb=r²3±l1{7Α X„Η―σγ2,ŸŸ[vf³ΐν<$i aFΖδo¬ϋΙζ9?ύ:qα<{γσWMˆΐΈw½|έ Ε7κρξ‰ύΈξ_U—2>cF±ίψληFβΥ)" Ζkίϋ±.Ц_€‹±X΅ΛoFΣ'uk+…ž\C#4iO2Ά‘Ά‰ρIEΫw ‘vmΜŒ3°²d+ΐ ΧΔ-ω¬£·³£ρσΈbe,Υζϊ_X— \ΒΆ ζΨς‘‰-uSg7s{)y %Cx;Ω„ά΅ωΘM–œ6σ‹˜ϋIτfζ!Eξk€§SŒΔΌ2–…–·άΟβ…ObΎρMψ|ί½'n‰ZLiδhŸ‹”εm_ΊšόηΌ»γΜΠΩΡό9RΠ΄²[δ½ήM•1f¦νΐ ›«D'±hzΧXτόyq+ΉTž7VηΙβ!μΏ€|ΓΐΨ‰tl_"ϟζΪkr‰ΟΨχΠg.ŸifRJ]ΓU?#ζ:tΆυ h`άΏ‹cSΩΎί―©Σ Ύu[‰[ Ά½ς_‘zζ,Z΄’·»έΑu²Ο/ΉH^"x0ΫzϋβαmO@πΑΦωΥηίdž™qo²ΒΧ]θvχ›gEξ“xt•μΜܱ>¬;&Jco%eJαP h%g½½υXΐn·Ω<%$°{»εLNO nΕ.Οo"Dh‡Ψ³Ά#,βX$0?η+˜'Ρ`­Ϊ|yφlS}Bξd?ϊ‡Υb5αΔCOmδ0αg΄Oθω· FΞBQλq|¨ωΑγρ˜©υΰ=’9‹’™·ψ™υ°Sό±βΣEIΉυ””ϊ ξα₯ΘSφN<Ώ½ˆ0ΰDž #Ο<(cs³wv^σ\οn΄3kk‡?yτδε%oψΕl€–yaφΤ"^ ξΑ-Ν•]^’Θ'–ηΆ 8žω„}*rK§χ#₯©“ϋCΨ=V%Ω:'ψτdюΈQ±±kν1ο:«Ίζ 6mPΎZ‚’ς]μOξyΌ—ΝΔoVΦ–›=~IΒ"…~'ǐ²z7Φ KwΆ]?ˆa‰•‘5ζσ>\‹ωώK«bΆ₯Άγ— ΞXΛ‘ϊόMχ‘Οry7‚Ί†}¨Σh°αώ—±}e˜“±9ΜΠΉSSK:ΰ%OΪι:±8 ~Ρ~Ω€gΏώ2 ؚFά:Oΰ{K'Χ€ΦKώ˜°_τΧ»f}8Ν³ΗgΪ^]ς„Ά+«4/ŸρΆ“υpΎ^ 3ΟŸιΘθα³δͺΊu·˜xΉͺ₯šΔδs*²ή”ŸέΦ5Β\2€0CΗγ κM„eΈvaZFz„½2ϋχ‡0{¬κΤwβ9Μ―§—<Ο9J7l³Ί?XDD3ήΗ’yέJχ³Sۘgηώ`lŠ$#CΒΟƒ~˜ΪΚΰ—ΗyΑ_±ΰΌΛ―§Ώ49ΔΧΔΧμ4αŽ$κ(²‹6’‘s“ͺQƒ@"f–r  wΖIΏ'Q£lpEXθ^!z―ΈM7γςHΒ c ₯’½ύΤν)ŠΌςxΫωk0rnγ–ΕΫ€»κdy0Œ _Π9Ot7’©Ή#γLΘ1Έ{³]ώg`Ν-KY΄αXΥ"Λ²V€ώλοΞ­ιύšuŸfΡCEF>3M[Υ₯,Ξs}* ‹VΛ•ΗΠ~ήΒΩ€;»Y‰³Hrνξ8}Ϊʐ―==c((dϊ₯¦‘ˆ0gf)N>Bϋdη’(Eq<D§πlžΑjΈκ±ί£›½Ψœ'‹4ξ„HΟCν‘Ώ‘:ž?γ@ΒtΜ½ΫSpmΙ&υ‹“μ‹nΰ’ˍG™α{Jďd!#5:ΜήσzΗ/‘δO{¨°ZΔg‘Šz>Σ«?rsτ‹‹c5Ηλ5‘ˆr³Ξj|?όΙ(žzˆqp ‘§Ω–f xΫη‘›Ύ ―ώθ75­Μ“IK%‡Gαφ—΅,2²°u_ύ>h—λ΅ΙZX~ολϊ―Έˆ΅ν·)» IJυy‹Q΄ιK(Unχ-ρ}IdQ6U| λξ ’¦φκh‘45ξλ.ÊΤQ(θ—Š &€Σ$` `‡Γχ;Ž·QS‹cβ `δlΧόR„'ώκ«κ—,ΠW‹7ώΧkΣΙ΄^2Ÿ–™²^2joŸ'Œ-͏yωlEˆxPΠt½fž§υ’ωω’ζFˆΟβςΧ"OΉ7‘΅ΝžΧΔνiΣg Κz)Ί y=™ΤΩ‰Ύ„cΟ#DΨυ¬½άV‹βό\υdfΦφΠΐKavm€Γτ„j;χhρ—aγg΄Ϊ¨ΉΑΆZ.'œ{N%XΧwr^;Ύή­Ε:/qΐŸŽυtΑK^ρ‹-@Βξ©₯½ήω#6¨c#^bPPδυ|°LΨδyŠ|’CΠθΉ¨+δ<°w³Ηͺn,N<‡ωυτŽη™Ρ­ΝΘXΊaΪ9 ϋƒ%5"šφ>νλVΊ?θ'ΡμΘζύΑΨ”"ΙȈπσ R{ǜς\F^Πλf‡w9υΤ ²D|­ΗŠψZ‡G°xžN#»(‘ uBθ€ˆrVδνB™ϊωζœk<ε;Pοφ$&LͺΗΗΚV&eΦY‰HŽcΖqβ&|~Ϊί€ΌςxΫY+–’{w,¬—ύ€η 5› 2£γ£y“€Ψ…λ(ΗΑδm.φErξ¨ώ5^Ϋg0¨L~ΕΜΠYcς£t­ί³½ͺZκ}S_ΕΣ£ψd(ΑΨ0>‚a«H’…Ϊ8?Yϋτ­ΘMΤΔ$žBΝi E‰…φδ‰UŽo]Ι—ρMt¦kWίΗΫ«ƒ«Δj„žΟšp|ΏylK9ήJC½νcY NΔqD”fΖ»^\φΤοGcγlΞ RWΌ•E]Œ<Α°XΨϊκYDM)ιέ©ΨςΐF΅»σ§OšϋIϊ1ΠΫ 2XΊ 9;ξGͺ`D>Ԉ3m1(//D Σ=g‘hρ °(£ΧE}§05-Ό<ΖщΏίE΅ΝΘΪ’\§OΑ©ΉS vλγ]»ύXΥss½Ϋγ3ΖUKW.φ.Ί·ήδ]tF§…Υ‚dz9ω Xοψ%tόi…³y>ρ™9.Jn΄σ™’§΄OdQŠ…ψΏFύ‰Bΰφ7†Ι {F@Rώ»^g5Α;μyš`UirV£¨¬yi=bIαx°βZ:«ψλδ—£8j>809π >ΈX+WΝ@VrΎœž`_IΈβΧ…a_r‘šθkΟ «‹όΔΘLgkαι&\𡐺;6 Σyy‰·]… EΔ/@ ‡nψ%»ΓŸccŽΌΆ―ΗοΏ±ρ΅ Z/&ΑΣΓP―—Μ•΅Η‘ε³Pς ΕzΙ#ž7ΗΤ,—ψΜ _^dψ¬  OU‘£νŠΙϊ^-Φ%–$$°_©@».PΦKκs CyC쑁iκΩ \πBc‘,yΦή<‡·;ΧnFIšΖΒyΊ—;›0oy9Š…Žμs[ƒž?έSHΚϊΊ f8*„Ϋc5Ș,=‡έθιΟsDŽ 2\_1έΨKΦ`Ρ’|έJχίωl‘²Πw@‘dd<άπ R{Gœςx#6\7ΣΚοrκi&ΞVρ5ρ5ϋ(o$QΗ‘]δHΆΞMͺDDE(/,U5ΉΦϊ©υηΪΥZ3(ΑΌόMqsQ˜Q¨’€GMJ,ΛzHc>Iα3…ƍWo;&?±β xaχFΜŽ™qΦD=ήύηŸϋΊUε=žžφExMLKgέX}jm„Ε©†ΊΙΩHŒ7…m|ƒ­RRϋΏyΎ ͝Έ|R0€ΡoΉV7ršŒŒcœν„˜ΛΣ2!Œ²—ύΪάΜC3VΜπ†ΗΨ'Τ ²(³u~²Ά…O²O¬ ―φδmΌƒΜΠΩz₯†ιή<‘±ύρ%bσ†ηP™₯ΌKšΐεΛϋρA‹αΌ1ΥHȜε|& qiΦ<‹¦SFS6‘PΏyqύι{΄wΤZۈΗ6A˜Ε¬άblή΅P½ξ:\ςž›JΑ:!‚΄°υFν±ΐηΛΥNfθŒ5μ/k*ˆΧωΔP3NŸ 3 Λ1–δ1ΡΣ‰‘_¦υΰ 3„ŠXΤηϋ™±Z9b3ξ:Π?ȌsγΔ δ¬bχιVύ;ΤΜ,™B³9α]­ΞxΠνυn—ΟR°T1DΐΠ°Ω΅S€εK…wΥΒΖξοSƒRRχΏwόώΤ);3ˆΟόηΙ!Ÿι:HND sάθΠ9a0΄ΫFϊΝΞ©ΤΞ­³ΠΟ(Mψ«Aυ{ΏB՟l/x7žω  Γ~?ulσ ³ŸΠ™PL^ΒG§ω  26"OφeΑd:ΊFόd φΦK·05Ωƒaf|‡­εu۟ζ#5Qω:+™@½ωΈ7Φ3†Ρ΅2Φ"Wρ‚›fN:¦Ρœyy‰·Ÿ–Ρ›1kω%•]/― ²PYΛ7γΠΏ~ηtΧ½Ε΄8δZ/Yΰ¨ΙΟzI#И΄Ε‘ζ³Πρ εzΙ#ž7Β΅ΗΔgώSΓψ,'MvήmCϋe{ΟτϖΖA]φ«=ϋΦKΊ5„ZDθ=’"0¨€"-<΄m8#Dpy֎Γ‡5μ}eΉxVLa`Œ-“ͺπ΅Bω‡γ64 ιΩ<φŒφ­ς-GΓλρθϋŒ_'†M΄ΎGΜ’Ή=%xxYΘfΩφ=™Ό‰0Lο<ψq¨JxΪ§‡~C‘aγzgbνyjωληΪΠ“‡—ΒΖ/αφΤ"^ ξΑ퐗(ς‰Λq‚'E>ΡAgγ ΨύΘFώUG‘EΎ’ΠE&πΙ°NYx»ΥΣ žw9ΚzŒf%t€ED΄³n₯ϋƒΩ‰­ΙsrΠ4cIŠ$#γα–εnl―ηΉδyyΑοrι©?ǜ__{σœΑήy'E²°W—j‘G δώmΘW~WLΦγτ%½!Uδ5δΠ@ϋβ+!+b™Έ&BξΪ’Ο`­b8€f΄΄Ά0!‰X›·Σ½ΥhΣΤU€/Λ؁Η6”+‡θ½Zλ3η’ΗΊβm§j!%–-KDF²ς²›ε ΕωžUκzqΨΫΩ α5’`Ž’˜€X)›χ|₯΅ {Κ%›άυ[PςφIΩhPͺΏώ!ΙR<κοƒ`~hܜΘσ΅Γα3¦Ί7γΚ _•@)φ;aB‰ Λ>Q™Λ ‡zƒΈ™‡Δxε›«ΐΰˆyΡΈΉ8? ]έ½;Ιr4ηΛδ=°₯™aσNžΠqπρ ΅rρπΟ l93H_ttΰΣσ?Ε)οf%Ÿ Π0g‚Ά+(KŒsοAγ©ϋ»$oΐζU·Y„n‰Η½ΈώDN:‚ΦΖέΘZΓΞ³ΜJμΙT:θAKΓIε ΰ~ΤχP½W X·ŠEsVLT›j?jH=Ϊ)ΦΙe½.Ο” š{Ϊ― ·>νγUΘ[ΚήeΚϋ»―«²ϋΊ―€ϊ₯νΔfθljRΉ3oγ¬<jΊ„Ζ"ΞβRw7s―Ψ ρgΡ–(9\ογΟΜέ(•ΉUΧ­G|Ό ΨηAχΧ»0T{|6ˆ±If€'œ%Λ‘QŠšaύZ§pΝͺQXΩ†ό νσK$ψΣ£‰K7Δg`vΚgϊΎ Qςΰfœ=PγΛxE χa8 WSp^ςuμ|•.;l˜9Žυά`]Kόκ“‘OΩζ—αŒ°₯N’xMOΰό₯7Ωj_ΩJρxρφύWiλξmD›RdΨΫγ—fDύcCKε0UΫώ χ³eποΜωΖIΕΒ9Ά›³“qνJ΅Ήs[f 4 Ÿ-šl«\ok΄η@€v˜Ž¬Υ«ΨW‡ΪΥhΦKμ1]4lsΐ#Ι³₯gƒΆ[«:‹dαή³7{0 κˆ‡ŠΚΥ(Νέυš2΅’˜°ν‘§oζΰ(όžΡ>[h'‘%šΠΣΧƒ2ρΑK2ςΩc˜n½ηefšςψ%ΨπzJ:τπJwβΙ€}žC>΄(Z§m]ο¬Ή=ΟS£οψΣ–žŽyI£/'Ώhzˆ²$ρRPnΌD‘OLNw‡x’'― ††,'χ?mSΫλν q‘ƒF&Πjh‘ΆςφHOήu€ ­ύΘQc‹ͺlΊ?Πύ!Ί#cι.Š$#ΑαΪ^ΟsΙ[μi[ΌΛ₯§ξ ‹ςβkβkιak”Ÿ¨€!ΐ,Ά‘l₯`κ%m—[>†™‰₯R>cφÝΈΞμ%’ΔhmYψLω ˆiͺFλΝΕ(^΅ [²}cΎΪT#?€‘°τ³Θ/}ΧΊZpm€Γ“μ ς‚dd₯‘,KωΔ5CύώͺQ?͎ΉδΉhgœ+UΓUc#ΗSΣPLa–¬y /½ΈυW:qgώf`}ƒ—Ž£U~α>rͺ—vξ@13ΖR<χΧ‰ƒο@ ³¬|ψ)μή&n ΪΤ_8ΝΜ@L6ςTŘ!οΆ§Ύƒ[±ΰΒι>$W°O‘?ς =lmMθDiš`œ‡=_’X”Ϊ›ˆΑόωwΡ{ώ tFΤ¬šƒyΘΙݍ’δ%Έχ'δ^ 3χχ¦Wbη’rΜc/n±(„-‚Až‹σ3ΨxΩΊΜs'ΟωψΨW|™EL—5YΔ.³ΎΔ₯=‰GWΔθΤ›wΓΏϋκXΉn›­|&ςάG§°‘]/"{₯Uΰ‹}„‹—Ϊ™%yς‹Φ‘tΧ$6ό^5tφδϊӁl ‘α Ά †Ξڍ}ε΅Ιr‰΄;_(g±<οŠ&η©-ΣKφ`oΖ4ζ±λ/†±DΓα·Π€υ¬zΕ%²œρσ¨eΖΐA·‘«θg7»ά₯f:Ϊ€v]Ο"OΥ{ ύέW”Jh=rη+*˜Α9ΛJή„/ώύί’ϊΘq\ΎxΣ‰iHIΝEώκRlXƒD)ύ3tnUZg–b}¦Bτ6nΗ-‹Ÿ#nΛS2±Ύt3Λ"ς³νφΝkh¨gQFΤ’eG Η&οΉΏωŽŸψC19¨xd—1[lŠœπVΎ-τΰzΧΚΤ¦MωŒ.O |!™Γg―ΪƒΟή‹Γy6··ηg‘(w Κ5λ‚ήŽs>G&₯oGόnώT”œ9{β3ωΜ0νU_ΒσŒ]>8pΙ|»ž―RAΊ.Φωœ%„vΌΔΏΞ*ΒC_όJ“{pιΣ‹homdχς.e9 k7>„m;”υ`zΪ-xάΏΣΨΐ,AaΑ3θώ7δ‘Ό˜­υ+gΆž―m8'4°·™ςK€¦±+‘˜¨”ŠΖΧΚςPYτ ϋΕΈΚ~w\νe“l-¬”fͺFΞΜ]η[ͺMΥ„#^R[Νήίςg3Ώ¬ζ»Ψ)8@ FΞΒΪ m i»^ΒΣ>Γ# …˜ω˜ξΕΑ#§Z/ΙgˆΗ»P—Όΰ «αzΙgV2„ό@<θκχmˆx>ΠX"PF|Ζ@ΐg]§YωT'Ϊλ»ΟNzΙƒΨή…‹uΘ4¬—œ^Ž…Ϋi0ϋ<’\x‚²Q'Εv$ e~ΟΪε†hœε⑊'°qΉτ£7Ξ’FŒša>£Ά=τΜ›Ϋʍœg΄3Η!φpUρh,XΗΐ'΄†Ξ[QržεxέxJ:υπ*αΔ“Ι‹Nδωτt6Ύvr*d>\\ο%νyjιΩηOzrσσ½χ€_τ#Ž#β₯ΐάΞyiφ{ΎΟ`Š|Βόfsδ ΨW vΦKQΒσοA!ρ™’Ÿ ζΝύνΝβΧΖ‚’½ΩLλ*-FVΙCβίϊŠ­ΎΆ^ zέϋj‡(ΕλΙ"uΌιΦ…'θ0O$ ~ΟΪeYγKμs~ΧΊΞΰκP7FoMci|. ²· Sρ–c^hŸ^ΪoΝYΔΜΆ‡?ΒaχŒVB^8Œ,Ρτιytν*’,)ά…o|να- ₯nΗ£{Ώ*yv›ΒΰΒS’ΗΓK«ƒO&O" 8Ηοyͺ U„Χ»QEγq0†vğ.τδβ%φ 4―ψňK/πΰζδ₯Ωμω&ΊωdξD>fֈŒ{‘Ητ½£ύΌ A'ρ°ρ]όπ'·πόν(ΞχE\ʌcςμΟCβH‘[…vΆώΡ>©Ψεω©“‘Ύ›sΝΞWς8ΖΗ^;ΞΣ)θ`½C-ϊ ³œΟ”Αφžϊ~Πίƒ§wW‘¬PNŠuΖ;ΡΦ~M©.ξΉΏ‘iL*½Ο1.¦ες;·L+°“h©ΫΕ’ηΘ5ΫΡrΆNN›μ¦na‚e+w%“rϋ1%'3w£LνΏηφ T­{ιθκa…yb…φ+Μ¨XΪZΪΡσΨ&ΙY’³έCr²k<ˆWΏw{žΨ‹Νλς”\έ~€»m }ќYιτΔ0ϋ_1lΣUχ?½©β;rϊ7xύζ(ϋμΓ(Κτ΅h«Ζ₯φωΨTU!:‘τu]χυγΙό±8Kx^n]^οŠ0ao<ύΜψL¨wσή>μ\[‰’4“k‡έγ/_­ΑW4둝°9ε—°σ§€ζLϋŸψL˜1ψŒ½WψΊηΒ1τ±€%ΖϋΓγ‹ΓΏ~UΝ™Iηβ%ξuΦ0ϊšλ‘^XŠεΖυ™xς’©ϊcέχxdφŸ=~‘ZvΆΌ‰κ₯/£R­]ι³Ώο NΥΌkpZTJ5{»ό’i’M.W ‡Η―λ~?ΜΏ;†nfόœ™`uΧ›@χυzœ»rΝcΪ^ε΄S^RΊΰm§΄Ÿ!ϋΩΚ/“B(g{ΫΤ­[ΎŠ΄^š‘λ%Χ<α;μ―—΄m4ι@|¦©ζ— ΨΞΥz π„ηύ4ŽΎ β3αΩ‹Ÿ]GGm+ζεεŸ8φŒJψύΟώF:/ctα Ώ6ΚzιΎWΎύ7μΓ[ήo'?<`£SζΙ΄ωk(—Φ )~{*Όk+_όΟΨ-όΘ:ΧΎχcυ‡² ε­«$νΐ‹[«d]C*#Kό †ΕΟςlf|¬D²°θCˆdρFϋΕ'lρ›ρŽΟ!]: ϊΫε_ΰέ–±^ώκ/αρ’’m/΄·q΄Cy„`^5wΗ7ρ“ΎB/ρτυ αSρͺg΄&ߘΉπ;όΰgZ(Vƒ}κθ[ίϊΌθ9>ΐΚh,7vΒκƒΥ7ω9m¬ c%{71v D>am…ΧuδΙόΆοGύmέδϊ9/ΰi92¦ _RŒLπK4άτeSΪωΛLξ9lMχtΐ5«ωڎGO7<ΏΉβ―PiKQ•ν'ϋŽαΥ“ΟΎiκDk’λΌVμόVκ){λ₯™΄n₯ϋƒ0αά4η—r ™ξ™gτΎού“ξ% ΟsŸŸόΏ”ρD#_+ΊρπΦoŸR…―Uξ^Ξά8_όΆξεŒPŸ—w=ΥΣOρθΘ Ύžλλy{ηaII‰X±Ή΅έ^ͺE˜ PΈ*OΜmhh0)ή,υχˆΙοο΄ND~Φ*$,`!\˜EΤ­©ΈΦΣdiΤ½,Ύi,ZVlΜBΔΜc-ξέΒψΔΪ?ΓφιλLžϋvΎfBjUΕv†/ϋL›h‹}“½Gkwh4eΕ1YLΨMφIπsuό˜C£‘σ^ݟŸΞd†[ž3νζvνΔU°:;MŠLuχ&FGzΡPo]†*œΧ_8fg#{6ω„όl²«ϊuΌjˆVr2K±1? ‹„π`wο0g‡! vΧ‘#Dœ–˜™ Ρogͺƒϋ³wiμέι7εw§—ώύϋψν‘™Οq!Ÿ3&`YR²γ“±έγ…νΦT?[΄X €ZΞ'ώ΄ρΰ%Ÿε–nEzΚRρώ0=Ϊ…³!Zπ³„/Pg€²kpQ¬¨γέΙ>tœ³|ηoLς―Ή,©«’R°ΰ>FΣΒ½r¬Νƒ‚£K”l±ΉΘOHBμΒ…Œ“€X“·n‘―«ΙοΩ[”h<γΤ ~ρ–_ΈNZ/qΑ¦6šε<αv½υ<―N€ϋρ™žΟŽΎρψθΣFδΩ1t6μφ$Δ/FFF΄λ%ΛψB&}xŸ5[=’\z68ΑοY{ηφ„θE¨oΦΜroοœg. ±5UΤ€=΅G‚Λ3Z‘Γ<&Uφ`‘ „6܏@ÁΒΎ»]»ŒŸρκΑyφyΏ”;ĈΟΣ7œž’.<Ό©ΚζΔσ›+Β€"HήΫ–ηb "PDψpy½λttβyκ”?]κιœ—Ψλ ψE‡Q/™xp»δ₯Ωκω&žΎωΔwΟϊΘ'P=ρX΅qpλ9Μ£'?ΟσDŽς:3%EχΊ?Dmd,Š$cJ#<<θΧ‘ ΎVΪx"Oξ,`δ±?οz©§2φhΫ_ΟuΎŽΆ3’τ!ζ*#hλ2‰ΠhΗθ3v²ρΜΪ’9Λv&ΟΧo;_3!Υzš6‡IΡpΚ ΣΨΉιφόt¦iΈε9ΣnnΧi­CΓ‹iv][±^ ΐ€Nœ?r<ό'Dw=Ξ²ΏΠn©HΟμG/3žιΦ:ά€bΣ:ε *,Ω΄«Wh‡e½7‘A°βψΣ>ΐΔgήςYGύIo‚ο™Bή{Jok=zήΏ‚¨bY<:\Ί0\ο– +ΈΩ6φG[θ ~ρ–_ΈfŠΦK\°©f9OΈ]/E=Ο«ι>A|¦η³ΞϊFW v]a‘ŸX°Χ&ύοΉGtv5&O‡2"…[ΟαPN"Yπ’œ΄Δ/Ž=ΡξήΓΐ`=ˆ,Θ/Λ»–ατŒζυxD2σ/–ΌΕοN£χ ϋᒍ˜i‡OI/=H-Τ ˜ΞάσpήΊΏή½Ρ#X/ξυtΚK3“_‚αhUNΌ$!γ%/‘η›ήσ"ŸΜάΘ'aσXuι9μ\ΟΉΕσVό,ŸξtvŽπ”{yΏ₯H2ΎpΞƒΎΆ<©pΛγΡQh3SτδŸŽψZBΒK~™-λyŠθ¬\%΄wƒEtvƒ΅%B zX–•ˆΡKgzΉεΐlδ–nΖ,(ΚΝ^45ΞNC1εKB ΥΈΪά„ή^ά‰ΝFYeΚ εoΖφU³/ν½ΓFΣBUΫΜtώ ¦Ώm XΕΉΐgNπ Ί„€[‚]Ÿ3½ά >s_h½δ䌠ΊΡŽΐLη§`ϊ»Α_Λg—/΅‹]ρFtno—ΪΟ›'ζEV,²e%fλΞ­gd §ˆφ ³/Š>PύΘxFσzs Υ'8 ~Ρ7'ψ…ΦKϊI§£ύώ³žΎpπ:[γO%Qˆ@ξŽΟγ₯'+`κ/iΜ<£Ο˜žαώSrG~zΫηo#Z΄”Cn ^2’ηŽ—ώφή:ŠσΚχύρ’„ήOτBBB Ι ‘ΰ0ψIόˆ3q{ΞdfMξ:s²fζΞά;wΝ¬¬{ΦΚ:kΞ=ηΜɬ̜œ,Oœ·γΗ8γ˜ΑΑl0,ή „„„„ήo Ή»ͺ»ͺ«««»«Ύnu·v±DU}οοχUνο«κ½wω³ ‹τx=-ηρτ_~x€ΰϋ(<Ɓ[a/Ύυ<“g‘.ύ΅_OΛy`<ύ—Ο)˜ΐΒ!ΐςZ?ΦφΚςoΎγυ½ηs&ΐ< ΔĐ+Ny[ώ1Α“‡0&ΐF;Gdef‰„V)XQβ‰τxmŸx΄= Œw‘₯=ΉEωˆΧEχΆžBΓ‘ΧpΎMΑ§L Μ D‹ός&Γ?7 D5–/Q=Ό^;Ηλ%―h8" x[_D‹| χ翘š-uί ΖuΣΥ~=ΕΪ^f^εc(ΞNξτΰΒρ³³½.ΠNIŏ jΝJ$eδaΥΪ xΈ¦••λ‘•ΊΒY YFΏϋS\蝢³Ϊ°.kl ½=β«7¬Š΅X.y­¨\’kφ–αχΏ=}ξΡS¦EzΌ')s!’<Ν•©ψ> qΰVΨK€―kOž’ς,εΏΏφ{’2"ΚΣ\霊 ,,―=ΗΪ.ωβOώ…CΌΡs‡' ##CρώYz£|Ζ΄RS’εӁmpΨΗ{ΨΨΉI φίBΛ•k˜ ϋs™`‘%0p΅O~Ÿ)yUήkJλœ荛#:ήμz)΄ΤΓ§Ά™ή\iψŸϊ-.^Ήˆ«WΞγΚΉS8χΙk8rτΪ,ΰτύ‹φρδώ1&ΐμ" —Ÿm|l@ g'Ύφr=’(j ρ ή:p ‘ΝA©ΘZΜΞtbtΨζ²ΓΈΈ¬ΊWπ•ύ•ΐπ]W+—¦aΌι-Όώζ!W˜ΝGvά·’M½o-η‹ΝFQj’–ΕbΙC1Ι²‘‘khρ-<ϋ•ŒτΊ8i»{ΏγrΠ3‡ΨN€ε’νHC^`ΈΚωœνxι…zZσΜa΄ιήω Α>4©[ρΒΧχ!c0Ωv?}ϋˆ}e½€¬ΛΛAά²₯ Š™™^\ξn B­ΙX™–‰”ψT,_ƒY^ίΑΰ@Ϊ'ΜW§ΞkχiέyΗΏœ_™Ή+’δΎIσΓΔdυϋ_Γ‹ζ3ίNi™Ο–‘…]£ωA#?ΗH~ώ"ωL90C%―•ΞZ­OLΞ«r]©Φcογ=C,΅1Ν9‡‘λΩΉΩ!tv6bΠ£ )–Χ!Ε d 37+β°¦x5Υύχ¦GΡΫ~Σ’-qΚkVtΘω˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ “@Κ<½΅)&λh½ϊsl»a2΅dΛ–―Ε/_Œ`˜˜Ά[J6b]zΆAΓφ‘ις›ψ¨Σ₯j˜χ$ΎΉ‘Ζ ­6hgώ'NφkΓΗVλSJΝ§δη½Λ—!)3ι”lqŸ€ξδmυ>|ϋΫ_–λC)Όώχ ύ©UΨώh1ΜaΈυΞ7·Q!ͺo)α&#HuοΞύXI­,8[ χ­h«Dο[«ωŠ χ be)9Ι±/b ,N7ΌvS)ΖγΫ^Ζ:ε6˜nΔΫGίΖmSy9‘­ΒQ.ΩΪΑ0,,΅Ϋwξ@uνF’SŽ­ρί+ή9" μjFΞΟZg₯ζηΛsPό4σΩΈ%'!#_™OIΫYd Ρ|€mΪΊ5ϋ±₯΄‰Ϊ@:ώBi+>Ύπ \ΡE&cλΖηQΆ2qFωΛΎ„ΎΫŸαψΉC†27?·ωI™HMΘDZB.UΌƒ8qς8η₯+sλQ[RƒΌρ΅n!£Ύ†+o£Ι@ΑZ4ŸG%`?žμgκ―ΔPΜvΘO₯Α”σJ󴍼vuΞZ}βr^όy%~Υ«J<ζ–ΊmΈΤrŸtΪχΖE†L`ym Sΐ‰rΆbίΞ­XS΅7Ο8ŒΦ Υb7T£½ω".4Ά©a¦4λω`Ώ›4ΥΦb"Υ#…>ϊ°ψpvߚŸ˜eŠ‹΄UKWΞ Ωi9΄FP°¦‘gY@Ώ£:k¨ο#Ρϊ¬ζ LΎX΅8—Ÿ΄3Ϊ,ν4ς%`ΛΣpΌg5ύcωia€BhΉ¨ήΗ&=Xθ….©Uy¦da>Qωb1ŸΚ\钏½αϊΪb}>Š(œ`9C­°"£ήσ‚vDBα1,„rWξΧ§a>fL€ 0Θ"°2%Ϋ΄’³Τ³ϋχοΩάAWyχm.Y[\ώκύxΆŒ<Λzέβ»d‰[lZΌ’ύη¬;ΉWΤ8‘ϊ€Μ’ωԊωΐ?ΊŽ©”½Lβ)j·lv(9SΧz-/¨zυυεJZf―]Ρ9TυuvœΑGts₯9 Ά»κ7‰ƒ4™3ϋΦdΙDο[λω*PUρ(ςΞπ=b9Ύc3Ÿ-³"£Ψσ‚ϋίcXθδ£g\Ÿϋσ`L€ DΫ#Ν8s1<Ϋ>7w©%uX₯DžΕyΗc%8μχΩ{°G£δ<=֊«· kbΛθGμΤRT€cxΒέϋQJΌς#βΪιS°£€«ι‘"47‚V½Β‰`}Νφ°€˜Cήwkςšqρ=‡Η!"χ]7ΰœλΠ#™m‘ͺ―­'GJ©Δ‚³mλ„qAΒχ­qqώCEο[‘|i+UηΨƒWqk°½˜Ε δ―ά€šΌ"G{“ͺQYx·;\κυYWώ <’εξέubzγϊ„|}ΜΚ₯θλ9υ¨Ο½ςΗ¨Πy™¨«αΞsτ}~Λh3Ω&ΰ­: 8&2‡j>’¦”“άs)9O‘₯υœmΎŽΜ΅ϋ°«€ΤΡΨ€R”ζ&γvχ¨‰ΖϋH²8‹(zdΈ·G{Ρ?1ŒΙ;“ˆYž’ΌϊΊˆCώ&f–csΚQ4hΦ’‰Iι%g©Κz”οŒΑ°e™υ¨Σ(9wS­gΠOJW9yΫ(Βαύ3kV£Uω:‹h>]η¨&ξς,¨h#x~w9/0n!•ΧΤ>‘ϊσ"Ο+λΚχΉ)9ίl?Œ†φΈ·5λv’4ΩaΎυpα&\Ύυ>Έs–"° ε΅2NμjA@?nίΌ†˜ψl¬*B–σsuι%U¨θλA#½οτ»ιxΞ»’σBπH!fραJΛγX¦H5ZΆ„ρ{Ε٘ ΔΪ–‡Δbuϋ§ν+N Τχ‘h}–σ _D-Ž…δ§p;£Ψnε ΛΟΐeŠΆ[yλΊτh ν§ΥcΛςΜYAθς‰Κ±|βλk±ϊ¬ŽΧΌ€Φυn’3Άή·ήκ›ΗώykRD„[βžτγla‘“»Žžq}6y:_(|Ξ˜`‘%0rŸŸρΆϋ%MωsΩS8#0+ΖΧ>ͺ~Ϊ΅οΦQΌyρ˜¦»7ΠΪέ€O/k”HδΨϊTΈ’؏ΦΛqM“Λϋ‘h}’ωΌ·„cœR3d‘ΡαI¨~ΈͺήZ Εodχ©Σπv§ΟΉ|K?Έoβ‡8΅'b‘Onεr3±ΖϋΜ%zίϊ,ΤG€θ}+˜οΑ:Ί?GχΝΟpmΔ]Υ­«"ξΕό¨]ι[‹yχL»²p?/"₯θYκš,ί]›θσΡW޲•@Θ%[ϋN…©βv7>?†–©|μ«χυΕߍ7+η}—ΔΨα 8τζ… V`T4Ν»’29Ν»ξ’Κ3mΘ棄ZTJrΟΉ]k|:A{Ίρ():ΗΙqρˆ[–FGώZ”δe?q o8e)­;°lχΛ(rΚ_²£sΫΖΗZHIy3“έ€pέ‚„5_Ε“₯E쁩ACε΅υ+K‘θ,eΌ~ήpX-sόϊۈKΘBs~P#θ@4ŸΆ >Ά™Ο6΅P\8Μγο·σ"ηύΆJΡυ΅h} ίΒΘχνΒˆ{…žτD‚ν1,”rWκΧGμςt€ΏXψœ 0&ΐΒ†ΐζΫηTΒΏύ9>ΐ/ ζ?‚RωGςͺΧ§WrΦ’Φ)΄Δf!Ε™c£†J%ΪάΚ±h}’ω”z“+φaοφ ,%…ΩΉ˜ΕˆΉΣŽίύδEmqυN<·―ž~lΝvV?ήΦF4oAΞ¦*$/Απqπˆ^±j3žϊΦcH‰‰ΑTΧΌσπΔS;Q\T‚d'λΡώVά8w7ΘegUlΗΓeεΘΝΝCFJ6β•1™BwοMt\>†N4*άχ«·γΉ=ΤΞΕ£²ΤΞKh85(λwΊ'֞•bϋσ»PVΊ†Ό}'¨SΓ]θνξč‹'qκ‚―˜[±ΎΆΔ™Ώ'«e|5Φ½ψΦ€.Γ=³εj\ξ¦―βkk₯κ[ΜRϊΙξτΏβ£3zοΌΤΞΏˆυε•H'.£“δσ‘φƒνηpωΔΏ MX}ƒ½ελZπΎhšœEτΎΝ‡‘|δCiaβξ΄Π»τ]N₯Ξ™vܚΙD^’δnΓcΪkΖQa•‚ε’ rΙsD«χ~Κ+P#)~:6YΆ·βΚιq±Νe@∡"—€Uxβw#-–ζ…ΗΡ0˜‰νu5(ΞwΝ/ŽαΘΟΧΥYEsΙny.™›lΖŠΣΝΰrS²Ά|_άδCWβΐi˜Ατx:Ίqκ“wΠdνψ9½Ψ^δόκ=xaO%¨[ΉzΏυ˜u΅₯nΕ³/n%EUi~<ŽwœT”οόlͺͺD‘Ϋt εσ£ψνaW:5”ξό:6'cN«AKsοΝΝ|΅Eψ>ξߝCAΥ³Ψώ˜Ώρ l>Rϊiu~X—_¦zI§υ ’δ αΙΖzRrž’’%YHΫCŽ]πώΏGsΏ«t3 ;7ΠΠ|CMP”ΰrA>6Ώη€dΩ΄Pξ™)tτœQσ*Σ3Fσƒh>₯ΤΩ _ΧΌnυ5ΒAω"nq,(?EΪΉP-νX~†N>ΨTS@σ‘Αxc!(βΡ@¨< e>Qω"šO‚)²Ύ€>α ƒŒχ…έ­ θΎ Έ1ΌŽtCh0ή¦ε`΄y^pέcX(εΤ7Ο^OGΊλ…O™`L L“ŒJΥσ[7Ξ]?& ³Œb”η•:3τβJ£Τ‡d¬LIΓβE’RΞnO©G‰I)PT\G¦Gq76ωqρ>σHΚ2bυ‰ζs±HΜ*DiΙZWΐπ”’γ ³α(ΉβYόΑ«O@ρuν(2Ω%΅xŠώ”-m‘ϋυiu:ςΧ•σb―lDξΗΨδΜΤlΗURtnC)vΌπ ”ιΘu¬HCn‰τ·Ή™?ΕOίuWH&e«?xΩ¨uΤN₯•{R6ϋڟ½Šbƒ:γSσQLΩ1}¦~€,z+ U ^hΐ)R¨sm™Θ!e—_.WLr)~»Nε£ΉζέC¨/ύΡ«(Νt+ΚβιEQOΩΩo}ΠΰLH}βγΰjΨ‘ΥλZμΎkΫ|ήοΖ-.EQ†Ρ₯IMοfφWξ€γkΎψψκ”Τ>εH0;ŒJԚRΒξε’]rI3΄$cžϋϊσ¨ΘWfBWœ* cΗIΡω}W„eΉDYWη‘Έ|­Cζ‘ΡK…«4ηQ)Ο>W’βπύόRUhŽΟ]‹BYN―@ΕΙίΰD›GF”VT£°Θ‘ }‡['ώ―Χ-ρ2·3k'ήεόR¬€9Y’εw[_ΚΕR•4ΏPzIΝvπΞ%)„ΆRμωΦΧQ»VQ`u„JΗ§’zο«ΘΟΝΔ/β©θQXβ΅žc7Js3τs³³Ψ€ξ#*#»ζΌRγ,Lݍ_ σ‘Z0¬ΝΘWεγnάr­i7oάλ4ˆ“θ;Ά„8I±Ψ₯h¬„ΫΆΟ,E†Γ}49‹™_% YύΒΘ(Ζ&Ϊ5ƒ{χEmR»§_Ϋ`•ΪRχΏ+₯•6Ρ|Žά‘π@Χ5―[‡˜ηc.ΊPοσƒ.!fΧ<ηjΜΉ"υί@VV~ω/vΘωΦσ4ζ<…·ΌόΰCΞ‹<―¬ˆu=Άχ·`άu₯DΝΛk^Ο›_ΟϋΎμ—J/ϋœΫ½ϋͺ«~%ΘcŸ»qΗ{ΣΏλz”‚€hπH‹ ­°ΕΈΟqρn™¨%ŒUKŸΝ4iΥrΚΊ”=«RW¬[ΜY±¬5Λ0Iκ_ώV­XŒ1χΡώρ/pΌq@—²»^ώ2Ή_ŒE”ζζ‰_ΰθ…\§%60wwΛ³‹+{ΝΒ₯ήΓΝeλ±½~“σEo/ΞΎϋxμ°jαl}ό€ˆXš»#°z]zΉΧξL΄>Ρ|Ύ[δMΎ`q,(?EΪΉ`,νΛOίWˆXQω©•±V,km˜„=$ΡΟΛ"§,{4πOέ[ QyΚ|’ςE4Ÿ7VJΈ·υu°κSκ §=ΛΑ@G£‚ΌωμCΪR*ηn>ώ—_jΌφhΚΞΩ‰žήˆXςvswπ<ήx»^Φ‘r‹ε`θaL€ 0ΘΖ’G†-@O{.O„¬rϋ*Κ,FžSau|ΈqΕ_Ε7WΉ>ν-U42x gšήΕ5]’βΣΤώ§¬¬Η7ιOΩΖG[pωΖQœλΥΉΈ­O4Ÿ i―ω‹#ψό€£-ΐΜqF£<<ف³§0“ υ΅nΚΟχέάH:Λ&E₯Mι%N²ΥΫ|έ#w—’‹‚΅…† ΪSύθμκΔπΐ ©εΔ‘buyjv(ΦνǞφk8tAy7R…½ΟjΪ9܊†ΟΟc2Υ;”wΛΖύ-ίΆU£δά‹«§. §KRž_„²’BΚθα{Ρ °*TnTΟ{qωδ!]šF΄>Š{‰KqοΑ–gU“‡l‡RZoσβ1E‹œυΔΜa «_“?{^|^£δ²²ž΅ΌΆ½>rήϊσJ2’bc8J_`1ϊ²P:V(σœk¨#θˆε5―ηνZΟ§!%ΩaΦ+έSc~ξƒUΘ/\ιLγzoΎŠΞQα‘"Ԟ%ό\^-S·„±fι㧝&’­YN‰X@Ω`±*b1ημ»yΛZ° “ `xj1ΆW9ž “žG_γ?C;νnxϊEΤ9γ1وσ$dθOρκα^l*Ι:Ωυϊ[ŠΝFΝώηΠίNŸET½aˆX8‹ŒU/hiν—΅λ:πϋH[·cΡϊDσωi‘Wω"nq,b1η§•€Θcl‰½,ν6,?]ž%&Φφ‚ςS©Δ²em`σ‘°‡$g{­ΙA₯“Ϊ½ΪτVŽEεYhσ‰ΚΡ|> ϊX_₯>Ÿ™ΏH–ƒΚΑ{X’NžydΟdkQ±ιCtžρ|έ°e3)8^ψ Nž§΅ΩΚyXGΟ’žβθ΅ξa'RΦ­šϋ/$ΓB+wΙΥ’ ' hΟ§w>dL€ 0ˆ'_\ς$g7¦―β\ΣňμΣΊτlUY91΅5’ƒ>έ–’^‰Ηw‚ι‘ŸβšFΡ$Mσ™p]$&—’¦)—Œ:;ΥhΡϊDσ©(ΕFq‚aY;jQ¦0€χΉΏύώ?ΰ<)rIΫ‰Ž!|ΫΓΣ³#Ξϋ8ώσŸ‘σ Cα%pΫ‚Ž†£Όˆ£§em]WQ‡ίAΫσ§dE·–­''•Gδψ‚5NοŒt:| φ½„r'%±?{y―Σ‘†«8ε(%EΉπ‡pβΗλTVbiύΏ–”ηb]^ŽVο~TmΓhΣY7Πp»ψΑ/Υv%Χ-%EηZΉ΄‘ζƒ8pLΓD_ΗΪ:¬+q(E“š8NόόϋψHQςώΰyύ ς*)ψ%`ν¦'©«ΒυΡ[}‘qΠ7Ϋ–s?Χ΅Θ}+Ϊ.ΡϋV4Ÿ―vζ?/8>Ο+₯λiχTœΫLJΞεNgp7[βh·δΙeΠ10=‘ήαX.Ω+—€λ§`G=*U%η.œxγu|tΖ]&I†Ϋ’f₯δŽMP.)Ω•}χΩΕkΏRΌ/Γ/vUIΚΞτ倂B’σŽχC/7γ1’%]ΈΆY UM-Ψ±ήε™νr£*k•zμΨϋ–σθ%c¨²T2ΘIΝΑΚΥ€θl0(νΘΚRάσχ’Ώƒ~I­x”S^yӏΑA|~υ9ϊjΑ^Ωΐ¨pGΚIΡΉI)ŒφmΗ~νR¬NέƒLRtVJΣ$SνΊLŸθό§ΆΨΰΐΗόOγθΜ22Φ-+'ζξΑcΞχŠγ}'pyΆuN9ΊhΡƒ Δ‚ͺ6ΌŠνiŸ»‡ΕqΙκΊT*mΰφ1|pεœΟ‚SΣΥ/Œ`l”<~'Ώάy%ΤΟ<2x‰K­Ζ³Oδ£gp+ ΤΎOžΗ‘Σ‡άd½h>γV„W¨]Χ΅«W {έ*qΰωΑu5ψ:ς=?ηl:€"Ο͎νϊΖΏƒgvTΘ§₯kP@ŠΞΪ™ΨͺœGλy»žΤž‡‘ΌΆc~°*η­?―€aωςx'>šŸζT’κAIΩΓΘSΟ"ο€ε5―ηνZΟgVTauζrηMΠGeŠq—ρ}‘YQ‚•ΞδΪχ6aͺθ%)h,¬[|P&Ϋ-ΖύX¦Ψa cΕΗψ ΅b9%U`ή*P‹U‹9Oώ-k=σ˜ ΉψξOžώ¨“^ͺ¦nΔξo>‰–Ÿ8?cUυμή‘x΄ —Ζoύ.Jo―IˆΈΦ6ΈzμξεΧ’ωy)©ξ–0‘^ƒωsMω(()%Eg‡ υφ,œ₯²Ν%²4—jΡlVk;ξ#MΥ~EλΝη΅A~δ }¬LΜRYP~ ΅s!XΪy‚aωιΙΔlˆόtnέ²6ωHάC’ΚŠT3iLy4Π€·r(*ΟBšOTΎˆζσΠΧϊ:υωjKxΔ±‡\Ίt •»+εŠ*6g”Ή”2+P²Ζ‘δ χ²†C΄6Ϋ7λΘΐδ`ΘΪ|dfιg«@υƍΞ4Ch<­(-xΟ–γ­E‹%fγτΚΚ}Rμΰ…“.%g9ω}τ)Φ­}FVLΟΝ7τ$j₯>©X‘q›ΰΦk‘ϋV΄’χ­h>ονLΟ{{Φ9aδT€ΘvRgœ²μͺΧ‘ξ£x―Ωa8‘1θ›P½Ιx―ΜLLj²(FΦG.Ι;]'F₯ί†7–KvΛ₯¬―¦χ0ΞνΖΡχ<”œ₯¨–#?#•)Χf‡\ZqξwξοNœoD ):K ΝΙι•εάθKν=O :‡Ξshn¦Ÿϋš•H x­2Ώ7―ι e\Ι8ς/ηϋzΘGΊ¬¬œŒR²Z™²“+-β>*yΜވǫœ_.!ƒΎ#gcΥ£©ϋχ5k5Tδ Y©-QυΩoΖηNθC=ΞΣ4ΚΡ#“C΄2υ²tΰζ@/ςV)λ›tδH $IKK€ώcxŒΗ<6Ρ|™ΰω!ΒΧ­FΩΖ ‡αdf!ςΙ`¦SσŒδV† 9/₯]Οϊ|Ξς:πωΑͺœy^ΉQzš$Ού+WsζΠ9υHΟΫ‡ΊΥu¦00’F‹°Όfy-ψža^Χσ™P±‘P½ζo_ΉŒ›λ@―[.V:cέίΫΈήΞxΝϊˆhρH!‘³nρAŸΩ ΐ“…2ZV,Sμ°„QκUχ/Υ8›Μ[N‰y4χ  h1§γbΦ²V—ΝΒι>ϊΡ{Θώξ«ςηώΧ?ƒv·ΰ­ΓqxιΩέκCzΛα7<ο- –ƒΙΑΆΟΙC):ΣOH_OŸ*M=θ¦D‘\΅Αιρ™tΡ—A€³€·œ[¨Φ‘ΚΑPz^PΨHϋ`―[•ΊBε1,΄r—Όž zŠφ|ΚΈσž 0&ΐ"Ÿΐϊ ΅.o@ßγ³/Š3aίΥ\r’x>’Ϋ‹Ο~Σύτ#‘΄uŸΓθƒW±«@Zu—έ—*Ÿƒ•ΞzΡpρΗΈ8ΡιPvMOβKλkω–ε’ 7νέR™’υ‰ζ“ΪιΪϊNΌ†Ά']–Μ.'o3#nή-])E ––μΜά‹ξ– υtήΜ*:O^BΣ sΧVςκ­¨Ω΄ωy9H\N^¬HIz}°8.Ϋΐ3³Ύž n]νΤN/ŠΞ€βΕ1 uίϊ/Θ8{7·‘―§=ζžs$TNηœS€X‘g<ΨY X‘¨x&o=’Β–n#eΊn―K–Ϊ`Β“¨.·ΧSkγΰ΅KΦk‘ϋΦRs4‰Eο[Ρ|šͺ5‡’G'68ε‘>ֈχOΌ‡Ϋš4+ žΖγŠς)Atα˜3–ξΩ C:•>ƒmξ~ΤνyHJœόη/ψτλ‘iψ ^ήέΌz€ρ ΏίY.yCe^.-ΗrI)RήZΡς™'S%V»·E. bH―τ>2M³šc›šœΦTΩ‰fRΨ―Ξ© °l¬*ί !ŠΌ₯ξΔjΩ«=Ρ\sέ›°#΅ΠfxΆtυНU)ΟSiΩyTO Φ‘ ΥaΜ’\TJF'Ρ—Sˆ4ηœ1ΪΫ%{b^Kny[ΑŽηπΗ%Oc±^γb±kOσΎπfΣ}diό„«f4?? 5^ψ•ΆAτ ,ΕcuO9_#φβΤ₯7ΙΓ3ω₯*<»Ρ;bƒ<”λG__#–ΠπΠχ됔DcNC;=;…Έ•»±Ώlο^UΎ9!gπψ/Ec2:Ρλ/dξΐ‹›λe#ω|v·Θϋσ’Έ•ΘYαμ₯yΊlοiλΝgά ί‘Ynή;ϊ-ν΄d€­Xžz±όt§¨e­žxHRZmE*y΄{Σ ΄™L‹Κ³Πζ#―7B–ΌvΛ%λk»λ31ˆ!Ά8voΛAwgΓΗqύςΘ/ςJPBή ΞviT<\ζ2šk$]‘ZGΪ!Υ¦Ωσ‚ZIL–ŸΗBι1,΄r—žΒ=E{>ΝεΒ‡L€ 0&Ικ±1Oρ7г7Ί}ή:’Ί–’ŒDUY ho9μRrvvδΦ0ύXμTtΦχmœ”œΆΫογ}1±6Kϊ‘1qΛθkvŠT΄>Ρ|λs~υΞ Κ† IΉΑεiψA %Ž›ϋΆφωΏΔžΪ΅ώk›SΎα«mη,V~—χ_‚œβTΓYl¬zΒαti(­ΩMΞΜ“½Έzρ$>|χ Η3ˆ«ψ<²©V=½vϊˆzlׁλέO/»ΙˆΑ¦Π0ˆ ²>BΥf²r][Ύo k4(zߊζ3h’δ½ν‰ ¨^B§‡ΟβΠgο“ΒžfΛ¬'οεՎ€Ι«:%θt¨:σ³ύθδ=\ΎTϊh§΅mi ήη΅χ;ΐrΙz+r)‹”_φΙ0¨O―xμ₯ ;δθ@ŸO…χe±šIΪΡBVο½υ²b}Αš2ϊΕ怜uΥZ2=rl½€ m,%½tΔT°Iž’2“ι'Μά ΗΪ*?_Rxvn9("GΓ}ω9ͺq@β7ΠΤ im‘liΘΦχ+‘ξ{‹“[f{ξ#«γηΦΑsσC –)x¦'ΆfΦIK8Ϊ5Dƒ$ϋ²³ ϊ|λΗν 9Ϊ†Fq‘ιm\Π”Tυπ«ΨΎͺ@ΙΛ^‹|ROΞV ^Φ­ύ*§/#KΫͺΥ›±Ύγ".ί‘ΞDσIy6žά‘EδΊ•ηχA4:39?賎MψωFRW’ELc`ŠΞ’λωΐŸh3υœjymG}ΦεΌΘσΚ΅φs(+*P srA޲ΨΡ\O’™Τ­ΡΞΐήα°ΌΦ₯C–Χn<ό½g°Ί΄g=Ώ ›λw KyjΑΩOάΪνy’†β’2τοm”Η!Ο|σ=)$€"vXŒ[±L±Γ†&Ώ {€Π]–SbPΊzMJJBσΥJyoΙ’Β-§υ“ ΏΖΑ‚•x~GεΝFAΎ³²€>ό/Ώρ^žς5%Hͺ ‰qχaœΌRΐiε, …s@γ'ΘΣόumΟ}δΆ>F΄>Ρ|Ϊϊ­ΘΚ'lq,"?ΕΫέ–vZ.tΜςS$€S!ω©Ό΅χcE’\,\ΐœ” 0&ΐ˜@2#N§CŒtŸΑIιύ[€nδ9Aqž€ΩV\»~Γ£'Kc”gh(Ÿ3χ’šd’υ‰ζΣT‰‡ƒύ=ώ=NW}ΕMΙyͺ§-­­$h‹θ'ΆΈBΤο OχJ›ςήΨqζόŸΎ.€ΎXv‹π~όόӏΖρlύ6—δΛΟ#jβΩ(«ϋ2 ²ρΪϊ΅‘²sς¦ΗΘΓ¨3GΟ œ93 f·ΰξή3.Uο7Ζ8•ΙΠ€ΗΑd=ANfxߊΦ)zߊζΣ΅³¨x?ž\W©†ŽbΫ{€Ψ&ωzΣnσ*‘’,ZŽ_EΕ"gΐCρͺΗ+,+ΕΖM_ΕϊCh8wHUS²šή“7ρσǎb…ςLξ7c ζξtΐ€.­ίMΐr‰’·αXUγS„¨Έ\ΊwΦZ…=gΘΫεγΘ."#œΜ5XC?Av6f €t³œ t\²ίΨΔΌœο@oοΝ%ΤΎŒL”’sNbL&51Ήe(MSY‡0Π%©Δ’R*Ι e»zμίΠC.•[W Wφ’§ηαŽω_°Y?₯Αή§¬pΎI—W\ΦIZ`΄υάό->t~΅d}ΉΛŒΎ±Ϋξ_σp$·ν WŽaeΖΛ(‘*ŒΛ@6 ι/ΕΗj RHΒ“—fύΆ|£ͺψ6M_bωwέ\p­ω()Ϊ—’\ώD.²3 θ+ΉΝ§―ίτ9Ο‘ΏnεωΑοεn~~p/jτΞ΄αsΡςX͜¨5W λωŸά{λγ,Τς:HυY’σ:^ŸWξ\Δ»Η€]λ6£m«¬Θ—ΐ,Ž-ΛOm3i‘hΕ;Ί-νάΐΦ₯5ΛΣ@ο?]ν~N£_~ΪaYλ’3ZλιΑΊ‡$mζδ 6‡rlΖ£’Φκ^Tž…:yž΄δΝηAδϊΪΆϊ<`r‹c]Xκ€ˆŽ^8ƒ{κQ)Άε—a=9q;ήLΎLvG‘³ΘΑˍΈθ«ψ ―#]퓃ΎΊ  tή ϊΊ5ΤΓBΎn ΅œ”ϊτW*Ÿ3&ΐ˜@$XYΈ•κg»;q±ωD$vΓΈΝχ¦1e“ qœ`ν%(©q€΄$o£€tβ©@ ΡϊDσyi©½Α3°ͺƒζ³~CΕdχ›Λ\žœ;Oύ ―Ώ­SXKέ‰2RtΦ¨ΘΈ”|»0b <δW•ω~C€™†Υ…ΘΜ_ƒΚM(ΜtŒ{|Ι<Ίιz(1gΰ‘-Υj'.9i¨΄ &πrπΰΎνeτωΘΘ#…8ϊ1ZΏΕh~™σ¦§δρWŸθ8(ε«{­CΥ3–δχ-΅ «b+ ’WP0;Œ†3’⑏MτΎΜ·Ύόkψ‚δ}ΚΉέΊω;Ό{ε”rͺΩ #)ΩuN ~₯Š&Ÿ+T=ΚΙ’kiΆ—Υ‘ƒΟσz)Ι\–KΆΛ%­“‘8έ€Όk‡\27ώhnΎŽΝE’ΑK ΛΆ’·Λε(”‹₯­Ώ‘<φ:νϋߊœΐ`_PBsيDδοxοœΓΝ8Ϋƒšš€QΫσ—Κ¨}5ΰΆάήΜΜJ.…₯~t‘λΣχq*¨Φ6ίGΐφ7 ­˜¨Δ€ιΑΟπα•sΞⲑ›Zδ<ž"/ζΧ «š KΊ‡ϋfRαό@2]£‘=1k ₯Ή->Q ΈΥΧθaπ"9ΝŸ•VΑ’9["ω‰ζ“‹όηDϊΊ•η?ΧΎ•ωΑ½¨dς*_@AξΑ˜λ’Ƀধs5πz^ψωHΧ)_§‘–Χ6ΥηΩ% rή-³Ÿη•‰‹ψ¨ώH>]~Φ›Α τΕί”z|³Δ!γ1֎–~·BNX^³ΌŽ”υ|ΦοΪ‚Β4ησϋL7ΞύˆV>ώΆͺ‰:Ϋ―{Ό·ΡΌNQΣΝΣA”y€0AΡΠβCΨR~=Yx΅L ’%Œ‰ξ”Δ’εT P"­ ΨbŽŒm}+m¦UX‘y?(εHZIζՍfή2Œa†[ί½όΥ€±dαlΓψg¨ο#ΡϊDσω\x“/Α΄86”Ÿ‚ν”³- K;–Ÿ~.ΛΡεg¨,kέϊ!ΰ!Ι-Ώΰ‰ ‚%Σƒ‘ §‡Pη“:(*_DσΉA΅°ΎΆ₯>·Κ½ŸΜ³Ε1ΛAοCc-¦M΄V¬Μ€5#©.”ίNŠΞΗ±NUv˜@ϋΕ3~Š ζ:’Μ}Υ-Dr0Φ­!χjΉΛυ!”žŽΤ[Œ˜`L JQS"­»Ϋ­ΆΟŸ΅VB"|OΞ=UG P’νRυsˆD!1w›F!| ΣδeΡc­O45 yΣWπβžj,–•dI‰eͺοΰg?˜{΄Υt@'†θΗφ|ιΗφlδ―¦λ₯ΝύέnNn–ιΜ$tιBwαΪI’3PP΅ΖCΙhAo/*s$υη|ςτIj=ξj9™ŠχL­ .J 8υΑ/Q‡ΫΛ₯rHgM²Θp/ b'ΦKžE₯­ Ξ3―π9;λRΏNΞ”8zΟ«ΥN–=κ¦ζ!Mjž΄Ma¨Νq¨ύίJ}bγ ­Νy<:‰I:”θ§gζ@κeŸ3ΚΫΞλΪΤ}K(Ωτ4v­Os5gς†HΡΩ‘+θ}k9_26W=Ϊά\gέSΈvν=|xC7ώjΛξbfΊ#θ§ͺΛmϋύbd$kξƒιA !―Ο“‚…ωΔΩR »ΠίGΪΖY™΄ωLΟ€©β¦¬2}Ÿœ>δRΞF‘SΧӝθμφτš,Υ+4?h¬g―C’½΅ŽƒΔΔdd§j4‡γά{tιEN{zH-΅Κρƒ{ι#;P~ΈΡυΕΎœ=¨¨Q~Œ)έWž8ΔKv†’Ύ˜ΊmΖ–ΪMκ™φ`xPRβq(Ž―8‘U ؊ς‡ ΅Ιݎ³œ άF Έ}ƒcjΉn™œ'υδΝYQ%j9χ©%»Ύ>ΩσΤκδEKΩ¨ΰz[;φ9YlxεοžteΩ°Ν‘τ'ηθwΗζ,J}VXW>ηύ1%y“Ί—“‹ϊ½ ΟM‘Γ#Μ]Χά·Ί*ηζ¦)DsM?ΠϊWq₯½oEσ‘ŸΏΗΆμGe:)΄Ι:ρψόqΪ§ΗΆ^Rζϋ‘«ΝnGΙ¨―ϋOxX֏ΕΩK?ΐIιΆ‰ΐε’έr©νΧ›Ιθ\RΞͺΫ‡fΊŽ<ΤιS«°yυ=ςxξX/Ψ!—„.Ώα#hkήƒά΅tίζΤb_ŽRJ/n4TN|ξΗ]/wπΰώ„Ο΄Vεόh[—<P©ι²ωΧν ―qq蘬Gα ςΚΊw‰@IDATθ¬q ηΆZwΟ-šoσXΕΆ]ΈLŠΞc ₯Ξ©BuΞ=œwŽƒZ€ΫΑœλL«‘ξ ΕόέG4X˜4M69?PŽ‘QŒ’hO‘=ΪOαΥ7iΥ§lx²μΘQΤΣ׌v%J·75?Δ–bs^*n]?e ”L¦lΖΣeͺυM x­Oͺ>9ΑεdahTςμͺί†01M=qκ#yΩhq_Γ—¬}%JιK΅ΓΓEnΡ|ϊ„σωό]ΧΦΦK‘³nεωΑΧυnu~p/«εnΖω ΰMΫPͺΜi“ύQtω\)4GώεΌ+±΅λSΚΘσ‘”ίάzž†R^K ©OXΞφΌ’{—!5ŸΜ~±mΣS¨Nw>ŽGƒόNΓI³ΌζυΌΥυ|έΛ*‘_ό”„γύΫΈψoMh£%‘™­¬d”ΧŸ·Ϋ›eC_w5g‘œ™Bƒ“&Κ=R@3eρAsž]ž,ΰΝ2EϋβFj§ ₯€iKBA,§μ°€΅X΅b1'ΔΑ†L₯{# ηΛΑαKhh]†ΝH/I²±ύΉ?EχχώΩψέRέβΞvŒŸ₯¦j›ΎmΊL[‹Φ'šOΓΔπΠPΎΟβΨ”ό4j¨a; F₯,?u@ΔO—ŸΦ-kΝΟGφXš›–ƒύ{4πΜΆrΠ.ω)*_„ς°ΎͺΟs<Γ6„ε }CC?X΅4ΡVZ2u-vμΟR=σάhΌdIqΐ{£DΧ‘φΘAονςŒ u«}Γ’N^‹ΚωHΙηyΉr`L€ D”:T’TpΫ΅Ÿ‡£`ιΒmϊ½(Eφ—‹/ΤΌˆ˜–Sh»³e«λπHž«Ο7[œJ/™(©ψ"Š*ΆΰVχ άνΑΘτ$°$Ή₯¨ΜU>mN|θ=wƒϊΩs:ͺ/€|ϊ!")ύf€ObιΌσΘ9άΨ± Ε’‚xκF'ƒΙέƒΙψ’έψγoήΗαίΎƒαŒνxό‰o8Ϊ―$vΫ—bΫKίAEj/~~mΝθλι&―™XW½ u;Šgΰ{;ά‰°ϊI”)οΐ'/α)[Ϊff‘t7~ν^Όςς24^οΒύΕKHaύ†G›S)xττ9\έ΅ΓαXdEžσ?ΕΑί@ιΘΥ>φ φΤ)ν€*^>CjM›…ϊΤ†‘°•qπ¬΅ύ€„^‘)ύVPˆ}τ€7Φ;ˆΑβΕsθ»tMnΚμ”Μΰ"φ ΰΎυl€{­Η ·ήοτ5­G_%OςΞ–,#ρΣ?ŠΈΜ§ρψΚ·ζ-zˆ8φΓŠχΉΕB²¬δ,₯—•}¦γH–KΚύnŸ\ΊψΙiT“‘gΙΜMxιopβ“Opεji^ζ’¨t=*vο@rΣΏ©ŠΞΆΘ%Α묩ι:ΆKŠΞΪ­‹ƒ½:YͺΒkΘ7œόoij‘š3«|žΘžΕ"’K1$=›ΏƒΕ CDΞίΔ-ͺ ς•*zΡΩξ˜ΊΊŸC‘Ϊξ τ\W‘νΘQ\Ϊ΄‰Ξ)ˆζΫ—ΎϋΧ8uδ8]ΉŽΩδL€e hMŠ«Φ"™<Ϗ‘’3©y8Άœ lΘQ\ίΓ½Έt8}Φ!=-*6±τεΪξέΉE_S#/Ζ‘žί-uόoe>ζσœ Œ¦ Κ1‘Ρ…ˆGIρ~τΝ~†±%…¨)£5Ÿ’LλΊsM΅5ψ>6š’ Q[JV₯[p“Φ‘·ΗϋHyšζς䦣$―DUr&σ;\j;κVG~Α”§ΖγΑοbΘπΙ‘μ.%*ΙͺΕψ,’—ƒw'Θ+υ ι:"ΕεiIή;”άςVοΓΔα]Kχη’΄ΰΤhΦ»}z’ω€–DΞςλZYΘY\/EΊ•ηηέ­T\UΌ@ϊΓΗ‘Ίε+ΨύB½j@Ω}ε‚›Q#δΌψz>€η#₯α(―εΆ ΜΒr^όy%1χI|•Œ­ouŸΕΝαŒίΕŠ„η=‚e£9εσ«οE 7gΗEΒςšΧσVΦσφ%vIψτͺN^δφΟ ραν¨Ρye¦Eξtΰb“ΊJ&£λjδζ:=Μt‘£±[‘Tn{£ež[‚PœDŸGŠ,>hDΤA1λΙBΨ2…FWΔΖΰ’0mιcW,HΔrΚΊ”6k«bsJ]!έW<‡½»+UN αΠ8x†N3ώol–ΌρΡϊξ?|-ς~ΐΝ άΒY|όDoϊΊΆι>2eq,uF΄>‘|ΒςEΤRYP~ ·ΣquD»₯ϋ=ΐςӝ‡ΰ™ ό Τ²ΦΚ|ˆ₯ΉBΕ΄T2hφώ=h;ΓRJm‘ŸΞ>‰ΚΡ|ΞjΙ–5oΦ§Τ{–ƒvŽΣεK¨/ίAE& @Z?J―+:pγΌΖΓA€Š#퐃¦«oΓ/v\iΓuέjŸΗ°¨“Χ’r>RςΉ.N>bL€ 0ˆ#Œ­%›αlχτΰg8έIŸmŒŠ­;Ξ’|C£7IeΨΎ™ώt}θ>Šχ;ύ$’B‰Cχ/yΉ5ςŸ.Ήγt²{Sη…O >Ή4Ρ|†- r`ΌΏίxi·ƒSfΆο―0¬Sύ BKšV†αΪ4šγS§PIž‹e5ŸΤ ΤΏ$ύix;$ƒΙώ’p½γ½tφϊ½x™ώΜoΩ({DϊΫm˜eͺω,Žk~+“Υnέ¨zεμ8wΚΊcjσ΅ΛυΘ]οPj*¨ͺGA•«ϊ–Ψa΄©ΚӍ8φΡ1Ό°Γ‘‘³ϋ^₯?Wrωhͺυ0>%/ †›…ϊ„ΗΑ βγ'>Εϊςg¬θϊ©έλΊ~Zξw’’³CΠ «χ €ξ[οΕϊ޽oς%¬A–’δμlT\f%φΐ%ώγR‘¨δEΏ{%:όχ,—€1²U. ΗΑ·ςρR²’ηD2<―Ϋ/ύΉ_ ’z₯k”K&ζσFί‰«Έ±ΏΕΖΰFλeyζ—“¬ΞCΕ#΅Ξω^“‰ΣiM” aθŒKΡYLΞw’v_θ(΅n:°oΆίΤ(h“WΆGωόζίώiίϊ²ΓˆhE jŸ–ώ4IΌΦ>ώuμY―SόVζΧα™Wλ”3zΗv―7ώ39Όl?X˜\ ·rDsKηU”+“3Ε%Wβρ­ΚοΦΞr¦[ρΡ)ύΊΞJŽ΄ω χd¬’uδͺ\oeŒβΚεί’AηI?;³ ₯YŽ•¨GΞΤ2R‚v„Nχ9¦Φ¬-ΘEž’/џGnL~Žγ—]οREσy–Ξ!‚Χ΅%Χ·’TΪ ―—"iέΚσƒsΘm˜<―”ΥCώΣ^W '‚Ÿ½}ά-HDΞ _ŸjΝ֟Τ¬¦B'―M²^Ÿ°œΰy%-Ž~£Νϋϋ ǜrZ7§8ϊ)³Ό–FŠΧσζΦσ+}N}ed‘¨°ΠπbŸZ<β^²¦~ivl­ςW΅ά8Oό=ε±7,*=Rˆ[|y–H ΔQΐΖθ 0mιc”Y,Μ΄ε”ͺ“€G‹«"sbΙ΅/½°W}YΠyβmRrv<¨όΥϋΘϊ›―Καιτbσ₯½·πΖ©LάΒَρmΉιλΪ¦ϋHίN―Z΄>|ΒςEΤβXP~ ·“>Ι²,ντ—ΛO=«η’ςΣΛZ σ‘Έ₯Ή†‡i9Hοƒ-{4ΠΤγν0δ ά6ωIωDε‹h>£Ευuΐυ©GΞΛAϋΖjτΜ94ξΩA^Υ¨LYΙ™ό•47β”ήΣWUŠzΚ H†ΤσBp”¬δ΅’Εm¨Η°—Χβ„Δζ‡ΠΧη6Ϊ|Β˜`‘D ‘™ŠBΕ ΄"ߞѳ ήzocΫΧΥ!‹Ό Ίoƒhiύ Ώk>η ž™Δ8­9S”L\1Ž£Ω^΄φ\ACΣ CoI–λs–/šOΫ<νšδπϋ 8mΑγΡ3ΏΖOοŒcο£Ο)+ =δ—°ύv,ΖΖϊM²ςmχmΟθΓ¬3τΎ_γ>JΨvoώ<Oικ=1يSǚ‘½γ xιΛk:πx{ξ?`χn½2[/.‘ςoڎ²ςΨμ₯ERΓFΠίڈ¬’ €λλ“Ϋ=„–SŸβθΫοΛgκ9{P)y’·f\|Ο₯H€¦1qpβ'?φ?Š²UHXš†xΝu8sχž[ }§†ΧfGπτb#yόΤm7Nύ+Ό}ΠΨ›³3­ιϊ]³€ζχρO?Ί‹voGY‘ΛS₯”NίG)ΜΤuΰ}+Υ£nκoΞχ‘θ}k=_ y—5» ’oψ†ίΔι± ͺ’σΘδmCy淐0JΐrΙ~ΉΤwϊ—ψώ@/žέSΚχ{UϊΙ.΄wάr» „δθ,¦•RτχŸ>ηš7ξ& T'qγΒnςnœο,I2Žχρ{γΜ]LQJeυγΜd°£ηρgprΎ³»— )” κξΈ~¬­©½{7:ŒyΊzΠ3μ¬KΩ5Δkί»}O=Νλω•(e?Ϊӊφ¦+.oΞ1;%)tΈζg%­α~όŽΚWθ>²eόΣ󑦦ζgϊoβԊWQ«ρn¬5Π§ήΧ―)±š½ώς3˜ΟM ‡ŒGr’Ό]]SθΉέˆ‹Χ’uBSΆ|˜Έ%OΫϊύωΐxΏ+θΞEΌ{ Ψ΅ε™χ*­]―έlΐ‡Χ5λ])·h>WΝq$t]+=γu«BΒmΟσƒ„Γ†ω/eώλ½| ύδpM?ߎσΥα_½ζξΝ™j’σΒλyΑη#ΝUŽςZižΥωAXΞπΌrή”|­¨Ξ›•ΖΣΎ―ο,.ΡσΥ59E“(BY^σzήμz~zJϊ‘ΨάvO»^K^όUΚ‹žΫθ<§³^ΧωΠ·ώμ―θφo'?:`’PςH±ω›¨qΎ¬•ƒΗ]Fzα{ω_ρO?9θ.Τ}σ?c—Σcƒ>AΛ€7T ŽΨ¬-ನΦgpž§£Ύ―xKΦτΟ°9Τ?wτί0ήKΖΑΨυ­Ώ@ςΩ₯φcψα~ζfAUχ ώdΏb9ά‹γ?ώ>ŽήΩ€Ž« ₯xφ―ώOωMΪ°η(¬‚^βΊΒ¨%kχα?(ΞΖ s„’•ςΟΏϋώ‡Ρρ³§•λڎϋH•G rI΄>«ω’/±°η³NKe₯Sž{ΙRωίO„όσŠ ό €E$CŸτ)Ce§gOΒ8Ds?ψl%ΛOŸx‘‚ς³Q2$)ΕsC²QY£y©mͺωώۏ~γ%ΦΪ|TώΔT=$y-"άd΅&‘9ΈyΣB­7š2§ϋα΅χΟΎ)Ρα(•ΆY•ŸR>Qω"šΟΡVλλλΐκS…ωžε λHΟ±.ϊ/ρΌϊ™hΰό»Ώ=αώΜΝΈdNΧ‘ΤTQ9XϋΝβέ΁δa‡ΦΤG‘ηC6šJL<X‘Χš’]‡iυψfνǏιc—π«Oίυωcz΄Ιk „ˆœ€|Αζ#&ΐD”——ΛΩZΫ:D²s& (Y](ο›šš"Šˆ:οϋxOx‡’Q”»IK–RQsΈ;3†[½-^•ΊŠ‘I^bbc–"fεxp“Sƒh­A½6ΜZ}bDσΉJεQrNdύρ™NR²θώŸ8ία_ύχΐ[GΌσzιΐκMΫ‘K±χq‡>ρ‚Ι²ΙtuY.–ΕΠ8ΞN’οϊItκ•Ι κ”Ύ˜•‘Š₯ΛbAY17ݏΞ3άήo+Ωͺ_όπΤ#…ςiχ©Ÿβ5Χ5%]°φ2›Db#λΆί!eνγh³Ρ0TΫnαqΠ€γΐο[Ρ†‰ή·’ωDΫΉ0ς±\rŒ³r)yuΦδeΚ²sw0>Ϊ‡¦F/ή❗Y(εR(l;y ΅—Œε«‹sζξ“Θ0†z. 3H²>”χ‘ΑL‰)X’†%ΡΌ.]Λ]h’Ρmήb P””‚Ψ₯K±”>›.mwο £Ώ»Εη»°@[‘˜RŠΌZ»ΠΪUΪξΞ Πzχ†Χυ#9Ş䏔}(―kαυR„­[y~μœ *Ά"+m…<ίΎwγΌΩη‹7‘θυiεωΘb“<’‡L^;kΆ\Ÿ œ^ΙF~f–ΗΙσΚάύ 5βΆύ:¨ΐςΪ1XvΚ—h•Χ<azρ謽μWmy‹Σε αΦOρΙηΝθθθΟ-r.žœΌϊ]rΖw­)°ψ€[΅ΆLqŽUK£‹ΒŠ₯Q~Sa’–SΒPξ­²j±jΩbΞ&ΛZχVŸ%oΪλRr&οίuWr–rυx‡rs±G~ œΫwβθ›ͺυš›7 §’Ω».τ,/oχ΅Vά"Ξ’γgO+Χ΅χύŽγΎi-Xάc ZŸΥ|Ι‹cAωH;„₯ΛOΥσ›LέWfN…εgγ―©ψΐ-k₯6Z™Δ<$ΉH˜—ƒ‚ \U9ŽΒP*M΄*?₯|’ςE4ŸάVυu@υ)€Β}ΟrΠ69h4ΤM}ΌΦ5y Νz%g)F³6 Ω:’ͺ•ƒ!υΌ aγ±”©ϊχd^^ΛzόgΩcX”Ιk ˆˆœ€|ƒΞL€ 0&ΐŠΐ(Ϊ»užμ|΄o|‚”BtΞC|$7ˆ²VŸ«Ρ|‚”¬œτ‘rΥhVρ;Χ;ΧμԈ™Ω€zt£ν )οz„šnΔω&•’5Ευ΅5’ΟT…[±Α©δL+>\:r\SJh…Ω4/”uYm^ΰχ­Υ•τ’χ­h>₯^ή»°\r±Žμ•K£mΠ`JΊZΞ²ΒΥJ³Gφς4[«[ΊšΛθ/ΈΫόάGΑν“{ιγ#ΈΰώsχvέιD;ύ…ziA“@Dσ…ΊbυΝΟu-,#lέΚσƒ½σCg#dŠ]θ–r‰^ŸζŸ,5Η0qΘδ΅³vΛυ Κyρη•^tυΑ0ǐώ|²Όv'o―|ay½N%gςͺ‹ΖfwάΊ³yφθ¬kΝ<œΣ#…ΈΕ‡Β’ΕΈ eŠR›eK%γ<ξ­ZN‰Z@ΪE Œ@λ ϋόΞσ5~VX†ϊ>­ΟrΎ€ε‹5Keaω)άΞ…ei']Σ,?­άΩφ§ ₯e­άzAKsϋ{n‰–ε™³ ‘Λ'*_Dσ‰2u}’ν΄/ΛAϋX–?ύςθ\!Ψϋω―πΏί܏ΝCem½λsΛύ§πϊίΏ’κυ훏σ‚ŠΝXA_›Ώ§-Ν‘PO˜^rL | °\ς;εRbn2Ζ»G=+q†DzΌΧŽi"μδ©)6¬ω> «αΰΖΨD€―kOvΚ³H—ώΪοIΟ3ΔNžž₯sX8X^{Žu ςş|‹τx…–Ξiτ•·εδͺyξξzoΙExσθ̊Ξ/φTε“RψΌώ½.˜—{Κ…Ε{&ΐ˜`L€ 0&ΐ˜€8­ψΖχ* ε†pόGŽϊ6Ά―Šs2&ΐ˜˜'¬θZΧ‹?>>Ί0ΰ# G1&ΐμ#ΐrΙ>–ϊ’ςΆ¬BΑΦ"tžlΗ­Σ7υшτx-ྏπΰGqΧωΊήΰFΊόχΧώΰ‘γ’™0"ΐςڈŠX˜?ωιρZ*V΅ω”coŠΞ‹”ΌgL`α,@|m =ήŽcL`aˆvωΈ°G—{Ο˜€yΨΌσIlίύ|νϟw*9SξΦσ^•œ£]~Ξw̏§dL€ 0&ΐ˜€511δ Wށœ«πζΖ‡»Πή…)ƒvφΆžΒoιoYΙΩ€ 1&<,—μa+)=h7E b΄sDVvŽτxmίψΨ“ίGžL8$ς πumΟFΊόχΧ~{(q)L€ B€εu τ\y£mύ—ίžχ(¦fKέwƒQEWϋυ`k{™y•‘8; ΈΣƒ ΗΟbΜφΈ@&~jώ¨ΏύοιsVžWΌ$ŒΦμ-[°ρα7Zά"&ΐΒ‰@΄ΛO£y!œψs[˜«·γω?xe%«‘š°ΜΩ¨ œ»ς} šΧ—ϊQ φϊZ_Ÿ3&ΐ˜€ύ222δB‡GΌάώZΉΔh#šβp<00Yžtc3ς;7‰Αώ[hΉrΝP6ΪΖ*’ϋ3ΣΫ‚+ Ÿΰ³CΏΕΕ+qυΚy\9w η>y GŽžGοH$χŽΫΞ˜@$`ΉdΟ¨=όb΅ϊ»’$!yrΎρa³.yvV~χ‹Δx~/νϋ:αϋΘ7ŽL|]Ϋ3n‰R ΉIΘzx₯ϊCι¦ςςC²_ˆρ ή3&ΐΌˆvωΩuͺΓ[Χ9œ 0& Φ‹γΓ)xψΡ $:™LΞήΒυΆ1•ΜλK1a°ΧΧ|Y2&ΐ˜@h°’sh8G{-‘ͺθ<Τv —IQφ +9Gά%:31†±‘ŒΠίΨDΔ5ŸΜ˜@`Ή$>¨’’€€L ΌŸ–”$nΎ)()DzΌ8™…—“ο£…7ζ ‘Η|]‹r€Λν'Γ9™–ΧβT%yMλw½όΦλ™HρƊΞβ׌aNφHaˆ…£œΐΐΥ>υ₯‡$\€— ŠF4[H/|υOoaε—w 0Ρ.?Y \œ… ,0²‡ˆρV|ςγŸαΖΨ% %wαδαqϊ½ ΌΎtώθͺυυ»τΈ»L€ 0y%ΐŠΞσŠ?j*TEη¨ξ`L€ 0& (3KNŠ΄JΞJ—"=^ιο™`LΐH—ώΪo§fL€ „/Iήi7ς/βυύ –’σCίϊ³Ώr¨PkiΪp|ς£6”ΒE0&LŠr³δΑ9Ή ΕγεΘB‹?ω?>&n.› 0("νς1ІлΒ˜€Ν’]ώEJxέjσ…ΝΕ1&ΐό(//—S΄ΆuψIΙΡLΐ;’Υ…rdSS“χDΓ˜`L€ 0&ΐ˜`L€ 0&ΐ˜ˆ`<[_XX(Τ‹ŽŽ9ί’E‹άςΗΤl©ϋ[ˆM']νΧm*‰‹aL X"ΝDqγ―π°»ύz ₯ή3&ΐτμ–?Α–oVΛΧχ—Ο™` h—‘?^·*W$ο™`‘!ΐCΓ9ΪkaΞΡ>Βά?&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐΨ£3_L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0`Ξ!₯Υ±Gη(Xξ`L€ 0&ΐ˜`L€ 0&ΐ˜`*`ytvχο¬VΗL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ω#ΐŠΞσǞkfL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`Lΐ Vtφ†ƒ™`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜˜?¬θ<μΉf&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐΌXμ%œƒ™`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 00"°2sV&$!FjΣοοbb²Χϊ{ƒΦΒκηOΥ–`ͺηήϊο―‘3h5Ή NL)F^R6βcb0G}œ™ΐΘp#nίq₯Q޲±T91άΟ`pbΤ0F 4[ŸΊ”AuoL\΅θŽR·β…―οCΖ2`¬ν(~ρφ]‚?Υτo’ϊχΣhλ_„Xσ °./qΛ–Κ2mf¦—»[Ċ2•Λj}ΙX™–‰”ψT,_ƒ˜‡HςώώΠ>a¦B«υ9Κ΄*ηύΛ&rΠΥ›d€',—OοήοΕΈNξϊ―ΛUΌΘAWυ֎4ς…ε§5tQ:g'Ύφr=’¨“ρց“Aλzoέ§ϋυŽοuK`°*—ƒ±Ω(JΝA²X,‘εη]ŒŒ\C눟ώΕRӜsΉμ››Bgg#}v<€vjΚ΅:V塦ͺπ;d9~c-²"sΆγ₯κιn£M‡πΞ αΠƒ€Ϋ Κ―%YYgy-Δ ΒͺΌVŠΰ| χ½(χRψŒ 0ω'ΐŠΞσ?ά&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`^ ¬Μ­GmI ςVΔ{€ΩBJΐ WήF“)Ε;μ>–-_!ΗΗ/_Œ`˜˜Ά[J6b]zΆA›φ‘ις›ψ¨Σ₯j˜χ$ΎΉ‘Ζ ­6hgώ'NφkΓΗ–κKف§·Φ#Ε³Ð֫?ΗΑΆ†qA LNBF~6©‚Ε}€νΚ-΅ Ϋ-&₯σ9 ·žΐωζϋkŸΟώΩί›_βΊ5ϋ±₯΄‰:_(mΕΗ~Λ#ΊˆO­Υ—Œ­ŸGΩΚ\ΔΥ[φ%τέώ ΗΟΒm£x ³VŸ£9¨to~1ίφ2ΦIZ6݈·Ύνκc$ΘAGΛ­?Ÿς…ε§υρς•ΓNžΛ—!)S™W•ΓWεζγςsk‘Ÿ”‰Τ„L€%δ"QΆqβδpΞf(΅Μš\—ƒE…{P±²ˆ”œΦs_Δ@YœnxνΈ’±ρα'P½ͺΔCφΦ•nΓ₯–Γψ€SΏΆo§T½θ8ˆΘkξ†[ΛΑp‘πh9Hύ©ωως³HότDω›½λ,σ<¬ΙkWΉœΟΕB{$ΚE[3&>‚ύnTOύ[ΑΈŠ±Ϋ8T)όχΡΏ₯YΟZZ.²E‹λͺ έQVέ+ψΚώJ`ψ«₯ioz ―ΏyΘδ#υzυc9¬¦σΪΧ΅Χ¬Χ'z][Λx; :ΟA‘K ΅Yδcv¦£Γaԍ`ZΦj,Ώ#ΚΨ‡†ΥŠΕΏΩβjˆΏυ’Z–9―”h₯JήG!#y¦ΉίφxLΉΓam=ao“}{drΤeύωA•%&λO.)mπε9ΚD5œ$$2°Ίb ’°|©δKr3£·qύΜψρΙγ½uFςΕ{κΠΕS.iδgδ¬—¬Λ ϋˌ<3ͺΥd>Ρυ h>£¦rX dP]APΔ aΈͺ…C dΝ‹ΨWZζ΅Γ‰©Ψ΅i ξύZ½¦Έ§fΌ―ِΏz?ž-£χ’^·xΔ.Yβ›oFιθ>f\]Pσ[­oeJΆi%g©’ϋχ *UkΑ Υλ,ZΩ©&b ͺE}ύF9Όeφzpη±ζ€€Tmψ#lΟΛ5.#_¨xƒŸΎηR°5Ni:Τr}±kηMΙΩYkΦΚG±gσ=ό€α¨G;,ΧG%ˆΚω@δ Ύα[6νu)9Sδττ8¦4‰"BjΪkιpε ΛOK#ε7±­<ƒu]ΔnF]Υ!=xl³£‚’³eΉ$,+PUρ(ς<:ζ ΘΘ¬Α“Ϋαm79Ÿm›Ώ‚κΜdWBνΡ²lT‹όGoiΎš!άN*\pDε΅Ά;ay¬λέDgm½o½Υ7ύσΦ€ˆ·Δ-F5Œ]B_扆ΝΞu–Y–ε΅³`Ξgόό ΚΕμxq:&ΐBO`ώηΩ8)΅τ±δYY.J—`DX΄Ψi‘kζΎ Q}Λθσ=ΙHRέu?6Έ‹A‹Υ@―kχϊ? ΄>ΡλΪjΎ@ΫιŸ§:ϊqpϋΞ¨έHχ£ckόχŠwŽ|6qυ>|ϋΫ_–­WΡ ―}h>ρjŠQ0-kν°ό‘ά•X‰{0EΪ0‘e‹ΧK"r^jΈεvφ–η@(δ™χ»(˜rI©cžφVΧφ6ӏG&Ρη‡ε’gύ΅Σ3‡„˜@ΞVμΫΉkͺΦͺk$m φ=Ω…³ŸāΓ?KΘλ%q‹![/ώžA{­ˆ‹Κ ωDΧƒ’ωΔpN[hδΩχς[ΆΙ…0 Θ¬GFΙy„Όΰj=ƒ~ϊΡ9'oΕU8ΌήΕ•bΝκb΄†Ϊ‹°Οήƒ=%ηι±V\½u]“XΆ<Ω©₯¨.HΗπ„»Ώ”xεΝΝΪι“ζ£s€Η[ΤΉϊDΊ‘υέiΖω›ˆy +‹Nηζξ!΅€«”¨Ρ³8―ρ<­GυώΎ ̜λ0ͺ»Μ#P^ώ ’σZZ?ΑΩζλΘ\»»JJ…&•’47·»φήΊŠ+=ύŒ0 !‘y@ΓABB ΙM€ · ¦‘ρΨΪNΫέvΏξΞM²^nΦMV²^ήΚ]YύΦΛzΓ}χυMV’ξδΉΫνžάn;vh<0Ψ`a@H€šΠ,‘ ύώͺ:5œsκœS΅«Ξ$νb‰Ϊ΅kώvΥwώΪυ1»R*Β1υ·< Λ¨…ρ±6ܜΐΠΤ¦oO#jU*ς²+)κΌ₯pMZ1Ά&ž@½†c˜ϊ³ΐσΜ<¨ $%6ΡΌlKwΎ85;ŽIM9Ξƒ0μLrώ΄MςψQ„ΒυχhM|ŠΖΘYΰ9YŸ‘δν[μNδ^dβ%VL^«ΌβΉ‚#=˜Ζυ.{ν—Žΰͺ¦–χ$cγMψ‚ώτ·-x6‡ΞˆŸŸΑ…Ž~…ΰζ&₯Š&Tc‹b?Ή Ύ]Ήo*Έγ#s±!pΟΊYlE_jέΕU£4ΟiδFcΏΪό>uΉτχαa2tŽ1Y˜•Ι”²8£¬ύMΥανΓu:³#πΡ0Vξ}yβύ.|ίF³1φΗΞσ¬<¨‘™’ksŸΕγΒΌΜӁs\B‰[SƒΒNέ"™ΥQ˜Kqώ4‡W”Άτ{€3߁0€˜ΌΥFNks˜›ξ#‡Ž6ΔmxOJŽΓ3#ͺ―x2ςXyπώ-tχEίυ/quά•Γ{‡šp7κOPνΤ[—-sΎw‹@IžCmWΫ―ρα5§‘δν|ά…ψΗΎ†t‘Dό:8ΩΑ„UNjŠeΨωZ^δ%tξ »aιΎ΅, Χ#] Τ™oΓ<8ֈOήiti.²μΡ³ cΐΚΧΌžώσ+.†'ŒδpB…€αί₯@ Έ<€™=}"Kΐ‚ηbDy΄Ϋ³/XύuΦ£ΆΣy·%νC :gκζsΆΛδ±Ju™―kΖρ°φΗz]³Φc•“^Ν6 ράkίG‰[4uKΝg=\)ΌεΆV4:-%Γεpχ¬ ο2F`žFF+ϊΟ3ΚɌ ―h#ΜgαΞK ³ΔͺO0t₯[ΕHD&Φη+Όδ.¬!9έ+ργ"0…žKΡΡՁΑΡ1,OΨ€ςν‘Ÿ)‰δ¨>ˆ=νWq¬Ρ€! Χ—¬Νc°τ% λ Φ¨Φfε CυXυAΦzκ°x*δΫ/δζD$H‰•WgΠέΞc³s³y‘”‘“Ώ …±’ΔγƒξFΞΪ‘ΈΛ :‰ΞzΈ5aΨ(ˆΉ?­(n魏 Ϋi8yσ,ΎΠ|Q].šPrϋw•`/D-GΤν.|ό³χΰfF(·ΌΏw' ε{_ΓΦm₯›Ύ (lΣhοφtJK/Ω…‡ŠŠ‘••ΤΔ ¬–±Eίΐut_:‰c΅ΝR;β©ΨωβKؐ΄wiL«RK”sYU/γ›‹Ii‹Zτω7;§ |«ΨR\G¦`Ψ*m3c½θjΗε3Ÿ’©ΣS―Όwg޲g°λΡJδηΘχ驍'qόΨl 5―|λb—γ~Τ=t}φKœjv—Á=―|YTf•Ή^ϋKœhΜΒ“ίΫ‹DŠd·pg«2ς%β?Š‹Βυ•›±‹ΦόΔaΰόϋoγ° ψ‹ϋT••"Χ“n΄=ίυ\c4?B?e8ψ½H¦―IΞtœBύHvν4‡§ΩλzSN‘Εt’ξwΩΘ „Š2R˜!ΉVK < ν¬ό˜ώξ5―JES­llύYΰyFT΄Έ§€Tʚ덹4dΗ s0‚±[ϊχ¬TΨυ#<θZ#|8ZVώΤrl!v=ΏE…Τί0KόmθλAGΣiΤ5ΚΡBmψ=ZΏ Ον«AIό>g νQ_7"ΪϋBΔ,Šmέξ@}k‡l^œϊbκΦ€₯s‚—όuη1^c²²N3Sw<υΦGœKJδίr'e#gΉώνAŒOι²n"ηϋέϋS¨kz,π΅_YΓ«ηA«σQB:Φ$“Œ;ύψμ'ΏΧM3Γ OU šΎIsgδή~w($z€8ZF,|μUlΝO /άh0‹ŠΒTΗg8|\ίθ9RτVΦηM ¦’¬|Νλι??°βbjxaŽG $„άΠ‹ή˜ΥΣ‡1²«ηb„y΄Ϋ³/Ψύ‰l°J»D8~`ρXX―kΦq0φΗz]³Φ :.¬xςzΊ(g¦Πqφ$Ϊfrp ΖΉΘ«[ΑwfωŽrd9‹τ՝·˜?Ύ[ ΰِxΦχŒο²D°0-Μτ%žg–Σ6Όͺ„ŸιxώϋaHxΙ―Tμ˜υ φ.΅5 Gdb}~°ΐKLrj+ρtH˜»‰ζσαΗο‘mL+B3Zj»ρΒ_ ŠΔwsΙΘΘ"-Θ€‘3Χ—΄8Κι0Τ—XyB’Ε½a>sλΗp=V}΅ž›œό0ψhωLΫ{qq±φP7]°>W7_ΘlομφzŽŸΰ°#0‡»χδwd¬qΧΝΨ—Φ’Φ₯ͺπζξe#iΛGqv‘Sΰ\n"9'`mb2–/£―άΕΝ)χ1KΕΧΔ'ΒiΎ‹ρΩ ά‰Ξ@NΜjŸucJΦώΌ’JΑJJ•ˆΪ}hΈ&ŒΑs[“ž‹Β‚κ‰±ٜSΝ³1•Qω4žto/6ƒk| ιιΙψΥO>ΠΔΚ-ΔξΎ…"=’ΨddΘJ{ o½ΚΩj2ɈZ½ϊΤΞ2 œ†ΌjήBλ§κœJځη^}%9ςLΚ'ΘΤ5)ωτ—=I†Ξͺ'œ©ŒΚπZ₯{v?Δkρ1ψϋό•f|ξεŒclf9v9Ώh’<›²YΠΒ–§^ΔNω‹'ΣΝΈΠCΖi뫐³q£ς…7΅§d”ξ+¨|φ9 u5£Ύ_.Yˆ}ί{Υeγm9_ΐ$εΤFNV~υ3«σGνΟF~ρFiς θ›gξ›<Ν]Χδ(|5ƒŽκ½²΅bΏΣαa΅"D\Œπp‘*' 'Τ_Z!R₯°Σ$Ι<ζζdXϋcηy6”ε₯=EQ}Άt7(8*m=ψμΚeT;™c~ γ>ŒΕ*ςyP.ξ{Ο!βOωΒ ί†oώιλΘΧωMR~’5†ΞΦ~Θiζ^9θΖΫqΘ(Ψ‰' d‘ΌοΝρ ^;$(_¨˜ΐ­i+Όηή>+/Ή·γvμ•έΚy"OωPOΖFKξ?BNΧP&ΥSΦR¦δ42μ|mm Α―ΝyΠ*ήΕƒ)‘›&ΜέF”T}ŠžsžN [θ«ΐEьL_ έlmτHzϊ²ΐƒ©ΉεΘίθ©ΛO,΄ΣΨυ Yž;¨© λ­€e=K˜~Γ+_σzŠ“$a­>?°βbxΒxAŽG „„ήΠΩΗΰ…0£Gu "Kή=­z΄0y¬ϊ˜{ΟS6xδ‚<€_ό*6—R$r %οΟڏt5ΰRνaœjμΡtk­?6O4MχŒI¦y0ν±JΒ1^׌ΓbξυΊf­t\˜΅^Ρ|€3χŸ KD‘2§§k¦[q˜’·θ½ Kίώ |΅*GaτΚς(m¦τf'{ΡέیΊΟΙx‡^.€οώC± Ϋ;°ΉZ^λFσiηK υϋπΒΎRP Œ_9ŠίyρfUϊ€E½g^άAŸ¨₯Θ*½§(βΞiε”ΩΘ.BEΟZ±ΓυαΉΡ O~Ι"D4 —0§ΪYU†„Q#οά#:γ1aΗοΚΐ˜ζA†r_ζχρψχ«/™ζωΐΘi―ΰΤΰ|ζg/|¦SΝl€‘ ^²¦g™‰γ:H³όΒ¬OΈvΛvdSD&_ΟΎσΛKreΫδ” ―ύbγ—‰Ζπžήϊ΄{#šššQT#™G$§dSΧΒΞ‰ςΒ/\_r⣑0Dϊ’S"ύχuύς&sYyΒL=V}΅žIΒ‘ψβ³p@œΛΐΠ"@/sBτqΑψ/EωO‘wθzΕ"ωx€J6€Œ‘/qώ†N(a±l˜ώ—–l§!ΣδΨbς_Ζ·Χ:ˆΊ\ΔΉ–χqU€A³Ε―Nv~’–Ύ<·Άί¦?y›œhΓ₯ŽhpΓΓBrΫϋ μ)xX‘£Ώ«—άδTΚkΎΔ εέ‡β£ͺ²?1Ρu.u!ΪQŽκ2i­*₯ψ φονΖΫG=υ΅™‘nττφ`lx„VΛbΘΠ«Œ"\JλAΉ;ŸΕΎ«ψDthkFΫΡΈ»fξή_ΐͺτrZ7’ŒZΟ‘o|Λ–Ρ˜°E-`ΈwHJ+β™Χ^G‰Β‘Μ,)jtGο–G§ =·…΄uΧ%<œRYIγknDL^)Κ7Jλ}Θ«ΒΆ²Or*EM'šήRRώ;7&IΨϋν'Πφ3§ΡuΩ7°w·lΈ>ŠΪίώM‚3ΰ*2ΠWzšΒ•“'q7§₯yΤ†sk£wS)•¨™sΰ(($CgΙ„zΧw\œ»)BuGΟVgmDu₯€k§l>ˆ§žκΓ[‡κε&•½ρω£*s 4Η›i<Ν\ΧΙωΘ” g{pέy{lό&ͺgUž[SγΫή_6‘!{YQ₯Σ0ΌNο–n;efη™xP˜"’W<ιŒF?ƒΛ?Ε₯¨}Ψ&ŸŸ™€ϋ]+Ÿrέ›ΰA׊aΔω“}Š˜ψΣΩ]ρ#;4FΞΈR׈ώ‘Y¬ˆKDJNζRIηο‹XΗΚοQφ?£1rkGύΩ ˜ŽΙCωn9ϊΎS0o;3<¨Χ†φ}+Ζ1ζMΠ«λ/™—Ό5쇽UsζoήΌŠ£HnάŒΊν,1A‘δ΅.Erƒ)ˆ•?δ,Ÿ{9 Ν;_ϋ7ŒOrdœ6\Όx₯{%·Ό’*ΰά·ΖJP°A~<Š+τΎioΆŸAσ!’3iΐ+QΊYοωΡα0ΒZo%ω¬ιYnΣν―y=d•ηV\\ZγŽ@Έ"Ύ†Ξ‹Δ˜ΝΣ'‘%„+Π«η’uλ«ώnkΉ cΑ—Ύϋ: EΟ9©/ΑΘYΨRς*PC‚ί~$/ZιΡMΗΦηΑˆΗj°=ΨXϋc½Yλ±ΚiiΚƒ_™%Šιϋ†Εθ™),ϊηŠχv,JN€ΪNOˆ KΚ‘λ|Ήp› ₯­G~τ—Β+]ŽΜ?΅ΉΞ*#υ¨S’²¬ΐZŠή“@ηRο΄:†Α.=9(z •^gŽάΎθ<ΕΩEͺjή³––™J(’ΑλšΕ>±)!’A5E4¨vΚ$“wξƒ&γv¬π"¬σ Ϊ™`κFΠ–0—€ΗΏi}ΙΟ@Ns@§4η3C8{η3Οκζ"=HυΝσ’=‹ζά\DΧ1šγv}Β΅W†#»"2 ]{}~π!—Q^²SNβ„δΤ’είhF―P—ζξάρ]˜Ξzη/IΰιEΠ C}‰…'ό^Ξ¬<ΑZOW.V}΅ž‘Λ\’|Φb s#‘ M5Θ sάΈΤΣ„‚€ d“aHLR9ž9˜ƒώ‘YΔ¦8ƒΰΩ‰ ψδΜ'φEΐs“!P‡›R2#α5I₯¨ΏαΪ[bJ)ίM΄ΗίΒUΩ Š$k>σξZƒΦθ ±³²‰—~Šc=jp +ύΉχ!ηδΧ 8ήyfφ ZL|ΟK΅†ΥkΪ–Ό‘–Γψ'Šά,mŸ`pςΟπτnΙXΆ°’2t–ΠiCwύ ŒŒ4αΔ! €f;ϊ:Ÿ+<):τΗ!·h3ω³ 4}τ+ε f ;W‘³΄N4ΪJNͺΈkZS’Žέ5(Ν”{Qϋφ›8vΞ΅Žΰ»%~^.δ±ο;oxγΧςΪή{εΏbO™`μLλVŽ\C_ρhΤ%cΗώυ2ώVŠ,š²ωiΌ°· Ώ=ƒ—žΩ«Dδn;ϊ6ŽΉΑ&43Σ^‹ί"όΧίCζ?-E ν:·ί§ΌΜy¬Ϋψu1/!-J“aWΙsΨV,•ƒά\19‚³Wž£¨£ϋΕ:Ή»w’˜ ₯_,Άωs*Ψ‚§λ:‡xLvbΏΥ':l¬ΙΪ‡G‘ 'kqi>;7ς–-{Π]DSΗvτWΆεuμJMΖδΒ],IPψJdψζI|tΉA‘ΙJ¬<ΟΒƒ²ΐ[ΙΘΉXX€¦νzϋœθ8Mu ž7τ›b‰₯ξΓςΟΓ煝?εVr"ωιίxπkΒΖΘ‹q‘υχΘ±»Mžš»ˆ»P~ΧN‘“ΙŸη:o—ώ|ψΰA½zk’R”/TΰΦ½+Ε–g…—δΝπ \GoŸ“<Ύβδwα|Ώ„Lk2V­ή€ ρώ‚”ώ_Pτ²΅:i«rVΎΦ9μ³8ZγΑΞ³€g“‘³πυ“”Ν䐗t§8η–PΆΕρ™2(Χ…VΪ+ΊqπτH«<Ψyς7P^Ε'νC:ΛΪ¬ˆ,OseΒ(LΑ}́΄;"…άTμ{ρy‘3yΕΥ]ΐEtNΩΈEΞOγν}{zλΝVϊS‘0剦VcOYC«Aφ`#4˜ξ#VO-Φz¬r²Οvj²DZaΉhhLEqεr; Ε/Θ/ΪJ†Ξυn8Ρ"X±A₯mb4g·"–ΛPZ!Gtΐ₯ӟ¨-vvα&=Θ&Π‹»Υ©k±žΞ(€j)%U˜‘¦Ό4μΌΫ]"»˜χ¬-ΑγOkŒœ§»qΎQ9ΨRS-½ qJλΟ;ΧD{xΧΞί#ύΞ3νμφψgΠ— ρΌέr2ΰJœΟŒμƒΟ|4`&ƒy^R;6«g™£φ%¦ΜθYτ ·^MΪ‘ΙησƒW©Œς’]rz$„'–*Ώ8™©Ζvϋ™όΒυ% ΓI_bˆδηͺp=ΝΚ¬υ\{—XυAΦzrΏα±_ͺ|θs)8.Œwγϊπ²ΧΙ―ŒS™B%ϋOΑK{θ$ή #ΥΘې/D₯˜‘?Ωΐeν]pύΦ4RBevžsXy(Ν―ΐUΕ¨0Ι±#Έ~³—’N`v! ‰I@$]2’*ξD':w‰­XιOlΐνΏ-¨ΪT¨δ΅uΥ9ϋQ²\σB”3νΆ|ϋr†Φ€>#ƒZΝΦtθ3U”HF]iΉΘ‘…©ηΒTύα_iJΊ&/Ώ€‡i½M@|ω ύΠk’ΤΡ,[.EvvmE{δΐζς*%£γΔ!#gαdΫρŸ ζΏ^Άv4||Δε\ν…fT’‘³`”–’ξrŽύΰ4~ωAώόΙ°Ήh«x­δA8œAT&Șόνu›Ώ==+εΣ:§<ϋ#·œΖysӘ¦³¦+WKU——(wBΟΙ#˜L4Ύ‡†‡J°O4ζ.AήvZΞHΖαVη`ΓΣΜu―z2ŒNλœxΌΜŽŸ;Šu…„ύοή]%Ν’°ήŸιI‘gΧΈ pσ(ήn¨uΙ΅ΤΟ³π $ς¦’o)Q΄ΗϋNΰP«d©Ÿͺq Ή5₯Dξp§λ9t­λη()Β]μέΥA[_ˆΫƒ ™φ¬ω4ηOσ˜ιΥ`γΟr,P6™<• ϊZoλi\Π»'Νόej oΫŽ+FΞb›ΔΉη·”aΟfYrοI:6Γƒz-$kœ(Ζ§GI³±o³ΔK’ζxΠ›δ)ΩO`ί¦υ49θVœΓ:0AzA\»ΆmPΚ¦dΐΞυ²>HΩ³ΓWN;Φε4<L|ν.―ΑcΞƒ^€Š=rμ]Ϊ‡Θ!( όΒQΥ3δ‘"EοkknπψBq°τH;xP™¨UΪhϋJG"τVΉΆωηM‘Ξ`εk^OωΓΖ r8!E@]} ©/&`O;"K˜ρ\ ˆG‹ΞΓ§λ,›?bυΘΕƝΨT / φcβηυH†ŽcίχώΥΒηηΘgvcΥdθό‘(s΄όΚΓ<"j˜œ£«,Χζœx@IDAT΅i½aιυΊf­'Ο"§ΧA‡α ¦H+ŒχŸϋπFiΊΤŠGιΕ‹°$’»±ι‡λ‘ύΘ‘cχf5ς₯fΧ…+χNΧο}X‰0Ρr§\,™›1@ŸM-’&HΚΔZz‘Τιrή΅Στtα…Ÿ° `¨›^ν0Gv‘Z1λY›Ύ»šd•κbΊΏϋϋ*Η΅έ£ψcHΟΞ²n;Γσg![—κ‘I”+z0 —`ΫΫιρΟ’/εy;εdC*°΅8ŸΓΧ7Ÿι·a<ƒTί,/ QXυ,–ˆ0ϊ£tζϊΰ+ϊ„Ο>ύœ΄‘ΙΜσƒ71Œς’9½υ.ωK•_Φο=ˆ­ΞO• FνήMR„ΉςΝ/\_ΌG$dNυq—ψΰ3m-;xB۞―4+O°ΦΣ“…Ud­§'C(σ–*Ÿ…sή7G@΄έxqkhμ%žŸΑ Šφ·,f-2cΖΑTζ©’1Ίb"š°ngΑΞ̒ಁ³ΠχΞΦg†ΘΨEΨϊθ…ύΧ±ΗA††΄­X!Φ\8@}ΣOΡ4ΥγjΤy-Ž'π΅Ν•RδΥ•Ypd% «OhΣJBŸΫζ-ΥjtΑ±³ψ²[28u-₯ ΦΎw"Ϋτ9Μ―ZENώγ.kVjI›Rc7pέcΝ©½]( .ΔͺθTκlXι0aύTVmANv&Φ¬’¨Šdh*¨ Λc2ΜG΄TZΥK¬Β*Ε^Ίm_6κς76Qw£ΖρYBWΪfd#cί­;Ϋψq¬Εσb4μ ΠΨ€mϊ"Ž*³uš’m=hΊ•qQΞΜ±ALQy鏒ΡΡΆέΉ9v?‡ο<…εJEη‰εκ=³šΦl–ζOγΧ΅I«³naΑΰπ <ΊσIgΰΒΤ]|‡"<“Ρl’<Ύ> ŒϋΎ§€ΆΌύoG“lΖƒσ]Š2_ˆtš’ΩωΔ¬έ‹g‹¦ρΎΒ»ϊcζyΦ:žΒγ²Ρ k<ιΡα4θ'0vΛ?ώfyΠΫlyδgξΓχΛ ~"BΊΥ;‡7ξΗΞ(υnηΜrώ4‹˜χςLόIΏ?β–Œίϋ?zώ:ub°Ώ=ύκo–χNž‘k>Yx“$lθkS ₯< ²ΪuπcθlœεV]χ‰ƒ‰©Χ“–Ž,π’―T*Ή$„Θύ·8υ2αΜ­f|X{75₯nΝN‘4™λžΔsΛΣΡ16ŽΨΔB”+NoΔΏT*fn ·4u₯€u9 Ν3_{μ?ƒσ Œ"GlnΊ‚jβA»)*Ω‚2tžJ€Θ/“(ZqEc-žώ Ši*2›H„·ή* „MΟ2¦(+_σzϊΟ¬Έh¦„'9°Fΐ}™$ „  pΠGΗβιcGd sž‹vx΄XυX5;5f&ΜγTψλ­’Θ¦υ,‘Ν`εk^Oω£σΕΛq8‘F@^N ΅JσVzf‚ΕΣǎΘf<νρh±κ±ΘY‰UVg(>EΏπI4·Œ ϋΘξ0AP2 DXu«νυΠ’'šΧV}Ÿ°:†b½Yλ±Κι{>½ž ‰'/›‡¬-χŸ©ˆ"=h₯Oν•g–|XWΌ O™‰[cX/Fo§#ŠΈrΝωiGι€= K.‘m†>΅zLΗ–Ί­·ŸαJEηŠδŒl*ΩΗ¦<8’€E΅„<Š‚ΣΜΜE²³­‰^AxΦYŒμ"Θe|sχδΥ.λK­τχPD†Ξ¦ζΟΈtήJZεA#Όυν7ίFV}ΙΟΫ(§_L8Ÿ‘QΉ·ˆSαΟgσΛρΖ£ ƒlz–όΖ‚-"Œq~±’Oΐ­˜υˆLfžά:wα%λrκχ­›Λω%8ό’΄ίόΦΧ•H[-yύt· ŸΉ€Ξ8αΐ¦β Εΰc–"9ki―Άž@Vj!ŠEΓ΄,d€:p©Gίψ7*0ߎ«Χ<ΧmWDΙ:Ό[]?‡sw牡©― @4&‰ρuœŒύ’ηυx°"»$²΄-[…ΒŠ—Q"_d¬V#·―,DEΥΛΨ|υ Ÿ(6rU!ςj@yήΩ]8y±r4K΅c/©(,άξƒΟ„n{œ?ua±i’?[?ΐ?ύλ$ž©yω9b$T₯σΨ νό:ιkπƏ~cƒ±³άr2V…Βb"Zγ`@Zή}΅ΓΆ‘—όυο•έ*ζε?‹'6•*Ήγδ°wΘM—UNήnΒϋ'=›Ά’8McαvΥ€NΤθ}ιӏšaG ν(¬z’iΫ2›fŸ#«’4¦―k³ƒp+oΎ?Φ뚡^q ‰'/›‡¬χŸΩˆ"mZ1PS"ά86‘/φi1ΒΛϊ²τ‘Ri ch}6p»ψL:°­ͺZ©qυΜq%ν’hξΑθ4-ΗGSS₯—K99Ωj‘LςθeΟ`N¦b44ΤOΕ°ΩEνΐhJΡ@}χe΄Ά\ΞμόΙυ¬μYyΠh„6ΩlτψgΦ—ŒπΌrŠσ™ Jξ§ΒžΟ\€§“oά«=fΥ³μˆcŒ_¬ιFqPΚΩ‘ΙΜσƒ³š0ΒKΆΘ©vι7ΕωΕ’ΐπKžϋξλΘ'FάzkρΑOήsιΧσ€λKž˜Π«Ί G$d0ΖgZi-ς„Ά)oiVž`­§#«>ΘZOGΟ,Ξg.˜†Ο\ΊPŠ‹‹•΄^’₯₯E/›ηqlC i΅lJKΡλ›]Œœ₯N09?CIΑπ‰Ν(X¬κξΞB‰ϋ§qψv?ηύ8I1r„Ζ 2ς4 †…ώΦζξEi’„9hΕ©©΅Φ»(!<“@Ρq…Έ³ξ¦ο3·„ψ³9τ7…Ω)dξVΕΨ‚ΚΧύoΎλΆ¦EΑŠΘΠYc"νsdχο‘Ρ―ml“CT@pπaˆάκ«ν«ωΞK(r3Ξ.Ϊjz'4_“cο~sσΒ|Χn/zΏψu­6νž?φ1ψ¨);hmώ|‰O/78+e +Iώί EωΎ¦ΫXzΙ84ησc¨?ηœAπ’mΛ-φη)Δ]ά“΄'™ϊ# Ολρ ©ρ ͺΤdp^([–«ΉJ*3Ύ0ί†KJŽš<ΆαΤ!ϋWοΥψNqώτΩ³LόΩzАŠυ%ΉHΛΩ€Β*δ¦IΏο« Άγαͺγ8rnΨ§8ώ~D’šθΕΈΰ΄ΰΆά₯&. ς’ ¦'0~ΫMΓ°εA¬›‹Ώ‰―δ(97Œχ/Χ)ΗΊ‰©&«§?rΘJ­Wζ02E†ί‰5ψvSοΊΥ…6A0΄yαk½Ί~η!|­'ΗyΠ2ˆ0=²νΛ‹θ£wΦΒϋι¬Βb¬ΟŒFnžσYe¨͍ΎyΜ+.'XυΘD›#BouΑVο@OΟς,pΎf?IN^ΟΠs‡ηŒςŽG \#Cη{‡ β9t=}δ‘œ‘,Όz..)–»ΈγeUUβ4Ě΄Α΅kKυ x¬i_χΊ6R‘±Œn¬Χ5k=²λΚi žn‘PxςZφeΏLGι?‡ήΗ‘!<(¦mΐ†zIӜŠ‚Β N8§Π}Ρ텍.Πζ2ͺ₯HΞ:ύ΅8ηu‘­S€δKMC!0gfi_ε «ΘΒdω“e£ξμiqYYx3ΩΕάPl-mzώlνέxc¦" oV)iŸΗΏ}ΙΟΫ'§2tί ΞgΎρ {>sίTΔΧͺƏ¬θYΑŠ@}B(ϋ"2ΉΆξυωΑ΅γ₯@Ιι!ŽœΑωEFBo™_ ρδώ–ς% 5ΰνρ¦‡!{η\_rGD:Ž}Ι]zγ<α^S˜•'ΦΪ™ŽUd­§‚N.η3P4Y–ωLΣOrΒ ψXΩ mcγξζͺ‚°ωH‰u~™πμάh˜ΐ„8…ΒsΩց‚ ΥHfxbΐPƒk²Ρ".Χccξ―•΄ΠδάntžΕ%FIBρ„ͺoΰΕ}εX.“QϊL3>όǟϋ՟δΎLL†Ή=.Ζ²dθΈV0rΆrΆ’+5Hs/žφ\3s”mπk䀑ΐ£dξŸ#ΎΠΪΰC΄x†v̟Α|ž2|]Σ›H——‘³Wπω™OTŽŒrδŠΡι©»Ωττ‘q›ΞVPυφlvΞ…p~Ί£dθάι^Φ¦ώά›EΖ&8d«ΔωaŒΘ†‘Lύε#P<―Οƒw07;€ρϋ΄ΔLθ²ύ~9Rδ΅h:3;‚αϋΛqjžΏ,μ<θg8pώ΄mv¬ση0:›…ΏzΤ}τ+Τ|η#>ή₯Δ!vΰ-γi hόχ¨ C(ΝΪΛ‘χI 3οͺoe¦iξ /¨ζAϊ9d`+»΅O ιDOχ¬Ά<(Šš€­eΟ£:K0ιΆ\½zŸvϋ=«ά¦ ebBψ/hΎ’Ρήί¬9§Oxγkώη!9`|­#Nxdq΄oƎ£­e²]2i#v?›θΥΝmz`Υ#ναA3`E„ήκg@ϊz–g₯€σ5“ώIrςz†ž;Z9Μ€ _Χγ˜ §ƒD‘³fpρΚ;tWΛ[ ž(Ϊ™Ξϊ[Ρ%ŸrΫ/,ž šϋhφΎ6.„Zš₯ΏθBlΝNkuϊΖ†‰[ρTΡʜ³·†U9Yϊ#b6žgεΑ2.±Š‘K*5;3ύk&pώβ?β΄§…³XΓ ΊtΦœ?m™FώL_OEΝΊοWGn‘hOz“ΡΜοΡ؈p‘Kνεo~¨Υ>μ@ρCΉήΊQς σ RCM$Δ ?Ί6:!|qΑΆ€ ΨΙΒ^Os·ΑΠ‘UΟΦόηχΘ΄zT‚!Υmy0)ΙςΪλτ(F=xι™ΜDD Ϋ<Ρ&¦E=WπNIΛ„cΠ4VζΑΏΗͺŸΞι΄‘λšΚφ`σΣ₯Χώ΄/.„6ŒFˆ`­Η*§Ÿza{ΪD€;ξ?:ZΡ·ΏBϊ£[χP–Ώz]ρρ*›₯7ͺSς6 §Β6t ~"\οή /sr°±κAzeIΎνcν8w1F4tΞ(¨Δς;ΫΜ@/ZθΌπž5²‹Xέτ=₯Ε΅œͺ™η£Ά™Μ,™³™α]­ζxΠz„c|f—ΗΏ5}Ι?ΟΫ%§vFΒ<ΝωΜs‚Lς™K&"=ΈΤ3q`›žE_ΜF„1Μ/6ιΖψňL:“`(ς‰Q^  œ:’‡EΦ’ε—TŠ τ=TΘΖνψδ_~ˆ&—H^fΐ$Ώp}Ι ŽšμΰθKšέ“†xΒθσ+O°Φ“Γͺ²Φ“ϋ ύ"η³?ω›š .κRC`lV0\–Œ;²ΧΐWοΗΰb5ά]ž…BΗ6TfSδAη6ΨΣ€τΚ™αΎοΕM²WJύΌ³π•ΚΥV‡ΞΫ«P΄~'ΆiΖw½­ήi™†‚’―"―d;nτuΰΖD?ΖgΙRΰΑ$d₯’4+O5­Φ_nP™ϊS«#q'JΧ©˜_νψ‚>tob#‡HχM'Λ½ˆ₯γόš—ρVαΣΓ§΄ύΨϋBσŠϊ.7:Χ›¨ Ε&!;Ÿώ3ά‰ώ—Ξ !©j;~μiδ ϊώΆΉy₯™Υχγ΅WV’ωZ/ξ- ΊοbτΚ)tjtΖ¦ΟΟ |ηF2‹’-­ /ύuj?—―tΣΛ†,δnFΙήέHhωχ:oΕK/μ'σziλ©}—Œœ‡Εƒ#Ώώιύ²(JρΣxi ΌύQ£³$Ϋσψ \¬ͺ"pͺOΤ/ύν_‘ξψ)\½| σ iHNu >]—_Ά Ιψ:‹―2μ˜?6‘]Ύ>'7‘]Oiήu­FAώ³œ·ΜEeέΣ²•3έ· -MrSώχτό­Ώ1τŸ‹κB2t,܎λΔ/7'Ιy–α8d%η£ »@1r&· \μ<‘隑?ƒ Ο[ΰAΔ.ΙθuH/tг-₯λnVyP·ΡπΜδόiu^Xω³Ότg(Iΐ•³—ΡέيΑώ>Ί*Σ°©όμά-9Θ€\kΊ½8Α˜ψ=j;{}{KΔχH« φβϋίΎ‡£Ώ{c©»πψΑo!_qΈς‡ιιd‰ δ8φ‘8i5ξΈ?ŠƒT£ν‚τjμY]‰e΄ψygŠ’ήwxŸ»(aΑƒτ΅·‡_§/j8…#§°Ω‘ Δ€=…ΗΧFΉHΌμšΣ“h€σΒΆ&λ ΌLNj7ϊΞγϊX?&)ϊNlœωΩې)6瞽rHζl‰―ι•—ιy`εk—‘GάηAϋ¦lβ\šχν&n£6E#g`’΅u.Ξ…ΦϊcΥ#-ρ`f ΆdΚŸδΈ‹»1)τδ!m)Ι™ΨR²•θK6΄έ½}-ΝδLφzkτ, M„C9Cή³θ‘B]^ODΠγωy>ψž#ΐwΌͺΏΑ|ρy[πτ‘Q&Εh$ +ž‹¬ž>nˆU·¦ šρΘ½ΦΩ…•9b»Ž-ΫPόώiu—r·<"CІ‡\V8₯1ӟ³ ν,z’QΔΙΑΣUXΨΜΜ‚ƒ”ίAΝb°Ϊš²2ώ=V-\Χͺˆbʘ›…ώX―k¦zδtΓ%ΌΩ"­Ψq1αBŸκl₯Om$#œΜj£ΥΠXGΛiCMN.¨ΛQχοMω¬SCќ₯WτaΞ†/όROtφŠe„—9)β§Ρhiϋ›cΠ=]ƒάΨ ΡψYθtΈ¦7«G€KByštυΡ”ιο'χŠ2‰? ·νFρΡf•?3χ‘ΔΙ­š*Ά%Ωx—Ζ GHb0 €1>³ΗγίͺΎδŸην‘S‹Ox¦9Ÿωš³|ζΪK€m ώyI-m^Ο²Ζ0Ώ0ικΘδ”1~aŒΘdεωAφΖy‰QNM_‘‘\όό²σ•?’>+,ΚίiΕ‘ύ7ΤϋyF‘ηΞ,Ώp}IFΞϋ> ϊ’M£φΩ#ӱꃬυΌΟeψY:|¦5Q Ώyΰ-uZΪλ±Ρ‘…lˆΥ(,ψύy’2;r§.Ω Μ³‡@ετ ©ϋ<Š·TJΔaΧVϊsλnΈο]s ƒ Ι/ΩY•βŸ[qιpΊ ΗήQ£­ŠΉ ύ)'`GARΗ³#_βLΏ8Μ6²,Pή-ˆ’Ε‘¨ζ[βŸ‹€cρε»§”¬Ί3υ(₯5Ρά*©5/ Κic Z‹»z©Y›%£-GY ejΥΆθ1tΊ’²Β‘ίζΰd|-Ξ)}Κ{η³ΒŸRBLHfPΞ<ρΉ–Ž\ΗοyήxN*φ|ο9ΚFn]'q„ή+(χΘϋόα³;Ε¬Β½Ο‘¦·'(ΈQ\MΏ„fΪπΑΏ’ΏχuΡ豨~JψSzΥM0Ο_PρμAKΟn*Η“PŠΗw”ΊŽgΆΗκάο[Χ"ƏΜχ—';s&`ρΛΊ,o½Mΰς₯ί‘^«lζϋͺ2ρΌ%TvMΔ$aœskC:σ…ˆϊΑƒς8Μξ=ξΟf!TΛ3ςg³δH"΅“’mΒί^΅YMj¦υ’ŠΘZʝ5nθμѐœaž—˜y0ne#ggχ1i₯xHΕmΰT³bθœ#ςΧIœ{FΓΉΜr:ε`™&ΎvwΨr4¬Γ™ŸΛf\ΉάŠΑYΓ©[v΅4x6γ1žEδ»τHXΰΑκΗ_ΕΎΝ²ώ$KζάημΔΣ―Kz²˜CNzo63Β^o „žεη‘yΎ–Ϊΰυ ϋόΐŠ‹ηΜπŽG <0Ίζ8ι₯°O–ΘρΑφ4ΧΉT{@ε€N–rΞrΒ„GξΔ™\Ω³EΒCV,=°ώ—?Β‘£žl«}ϋ(r„Ό5_:G~τ:›‰ώμσDkΓ}6©$MPsqໆDŠR{QXΎœ<^/A‹»§Ÿθ:YβΝ{¬ZΈu uΙe"+ύ±zj±Τ³"§ aΐiΕ–ϋ™––kΨ%:k·^ϊδc«6C›.Þ+ιΓA βΏIΉΚΙτβ8˜1etEK΄}mcΞΣλŸ@Q±³Ÿι‹hΠΎ΄QZpKŒ]Ηp/ΰlˆιδzΊ€—=½}Ο!W‘{Š ―)•Y=rΕω…Ud­ηKΠπ<·dψLώ|wοήΥ9γ™%”εG `άnΒϋ'=›ͺQœ¦FόSϊ›ΐΥλυψτZƒ’i‰‘β]ΜaΧ¦H_ι.ύΪΪΏΔΗ­šρΝMc’t‘DΩψΤ½ aήυ-΅jΤ?MΣύΙuγJΰH“ “FpΉύŠ.inΣ~‰A¬yOηΓ\“ž₯I7±\:‰!r\*-p½v&ΊκpτΧo¨ŽμB+GπΞ/’πΤמF›‘¦ΫQw²»’c>πΥ~ΎΝM‚ΪŸύ+πμA”­C܊d¬ΦΜΣάO^<σ+όύπžΩWγ!§Ψτt/ΊΊo¨½L¨γSŸ ΥΣBˆΈyηα½;GZmƒι„ͺύΨ)―ΟGήΉΗΧkίΔ'YYΨ·-—ZΝ@ΕΗpβaeζoΛΠiηtΟS€Jy“c,ΈΘΪzoόέMxς ΆnΞ•‹Ίμ'ϊΫΡΥrYŠζ,œa?π4s]χvΌƒΊΨΧQ­‰Φ.lxθ<ΞΤθζœ ŸΥμέ§ΥΗ}dΆΏε Sθ'#ίΜxω^Χτ+&gΠ³M׎ }Κύ`Ά?±ž·Θƒž’S Žθ8ΕΠy|ϊ¦.ΒΤλ;lς8†ž?›C—Γ8†Ϊ›‘^P‚χί#ρbE[έ8ρξ‡>/3ΏG-‡ο.όOΨ»·Z‰ΰ/5>€‹τεΞδέ»Εχ .œιέ8f Ζΰ³Γπ€ΛΛ–<EοΌn#Τ«C)|οξŒψ»©oVΞPπ―ΑσΈΨϊ!Ίq5ΎfœΎΦŒ%"’œmγA½ωnιΎΫν΄I‘wΙ­΅έΨ}Σθf.œH=’d`εΑω™qͺν|?ξ>χγΙΫΎα·Ϊ©g―ex™τOͺΜλxξAζ{ŽG μ0ϋzΙζ,R`Kž>ζ#KXσ\ŒP3ΉhΖΙc'αxa·q5³^§?·«y¦ύ(Ύ ‡VέΝD̞h:Ÿͺύ›ιΣw)ΒΉ΄Tο/QJ΅έ£ΉλΧDΑPΞK˜φX΅t]“Ι₯”₯ώX―k†z–δtqψ°DZa½ x­ϊϋ¬½‚Žg«‘―AΆ£ύ’ΗK ετϊl”ls_Μ’Ξ¦PΤρ>G1zN5tήQ‘œλn¨£Ψ+FΆ έμ¦odεJ…‡nΰΊΣϋzΧuφ :΅‘ Ψ"»°xΦφ ‡?\o½΄WZδ#Ϊυ¬ΚC’π.σaΓό ^Δ¦"i…ρ—Άaΐ_ΣήΞ[σψgΣ—Lσ< oMNo£Γ|ΞgΞI±Ο<ξwcoXxΙΊže!"ŒαK™AŸ0άΆ‰‚>"2Y{~d`γ%]ι}Θ©[>ά31ΏΔq~ŠP6XΙ«B₯ζλπΪ©™XΡ‡#š /I`D’Ύd'4€Υ$+OψͺΗͺ²Φ³ŠA(κ/%>sβ;KŸ§‰‰A^^z{{qϋΆn8Ce6’££‘““#ΟΡKaΎq‚ΐTŽΥ7‘>±ΩqIXα΄"Ή37Œ¦m"£ΕFoή8ŠwnœC^ΦzΔ?Έ‚Z[ΐΉ[4Ύ6Ορέnΐ‘Ο°&.i€›DG­@a²p¦gFΠ5ͺc0ΰ&Ÿ©ώδΊS΅xϋp­|Δ΄<σ&~@έϊγΝΏ8ξECΙ€'Η’γ>0?Ω‡ ϊλɍβ-ϊ[_΅ i1ΡTϊnO’I.ό—vυzPϋώ?ӟώYέάΞγψΰGΗρΩϊ2lΘNεΔΒmLN η­έVΩh­Θ}|.mφ‚7ώβ—,Φƒ‰s?ΗθΟίVχΞ Bμ²yΚHλyύ{pEP/ΟΩΜX#ŽόŒώΘ9Έfsw C}mϊΐb ι?3ύ)ΥΜςΌ <¨τνLŒά8„ ?Ÿ› <θ³ύPŸδόόIί·Δ©w~ˆSt=_fΛH%έge΄ψΫ°0;„žsήίοΈ\Cζ~Z>" ³u(/’8wa~ƒΧN£gŒ=δϋ·ΐ8ΧΞΎόoψάENσaΙƒSu€'Υ™ Υθν>„7ΊΟ"‡‚~Ε­ŠywΎ°:2ڌ›^Η¬ρ΅…y0ΛΧLˆ„°ηAΫxPo‹ͺAπ@K³ώ»d]έLOgΤΛsφΚ G 5YxπΒ»'.Ό«7Zίya­·Ϊ¨g’―΅3ιŸΤ―§E‘§9HBΐε=[Π_¬ΐ=}ΜF–°ζΉΘξ±£½^Œ{¬jkYK›ρΘ<σsΌ1?ާφQTŠ4Ο~;κώ ‡ί=’ΝΩYάp¬žhžbδ©ϊOz/μέ…’<ΧθzQ0ŒΟƒΗͺΕλΪexF<Ψ,φ4O4‹rΊΰ¦#­Π˜˜ξ?Χ*{„–Σθhά‹|!ς Έu£γB£3­³›»ƒΚφ³C­A‘:ηœG™ϋPͺ΄ίЦCšΘ…jέTOŸ°€Ÿ+žλλΎωU\gK7φWHŸ ννGΏ°˜¦έX"»P}&ΟZͺ7qξ7xλφ$φυQfͺβ#θJχrTΤT‰N$C}7U)m™?ΐ0οͺ=ΣK7έΘ.μ4]II#|&”΄βρΟ€/1πΌU9%D"ζΞgΒTΩΐg¬‘¨w&^bΦ³¬G„1Ζ/-ΐͺ‡H΅ε—JꁯˆLVŸμŒδδKNu4‘•Z¬ό2;Cα nswξ¨%ΉΎ‘ϊ’ežP―Α^ΝuΣΥΟ\‹hXyΒw=V}΅žvD‘“^j|ΦΣΣƒμμlΔΖΖbέΊuθλλΓΤ”[ψ0ητΕΕΕ!‹’x.[Ά ³d=0¨uPœ9ζ’F“γmhf-Ϊm]}šΘΝ~Ζ99EFήϊ·§ŸšςisύΙ΅"qίΣL†Z&οƒD‹·:Qμ‹Χv4’6¬_Χζ·ΪλumΆžU9Ν‘₯ŒDZq5˜χŸ[Χ9,ρΕ“βη)ΎΊ·πΖ»B¬ n&"»Ψ!UB¦β—dηzθσbUaχβŸͺ›Ύς?Δo/Ξ…@;°ΣΆ±&B"qEŠœZlYӜΟ;ωΜa0bλ|ΙυXυ,kaδލνΝκΖZ΅±”Εη%Y΄Mq~±—_˜./1Α¦Tβ<‘@±ΤK…Οxΰddd 11QœςΑΑAŒŽŽΊLrr2ΣΣΕΌI²΄ΓοεU—~ωAδ#P°>WDKKKD &ληvI#°&+“}^1Xκη½ΓOp8KΕΏK~‚9Ž€xδ©­x`v9₯Ϋ‘Ÿ'•£/ŒΰGΏΣ‹C=>/Γ³9ŽG HάΏ_μ)77—©Ηξξn±žhD»…6’³V’E˜Άξιc2²„EΟΕ₯βΡLο°`φ¬[ΘϊumNR«ύ±^ΧfλY•Σ*αQš%ΚβΊ'v`‹ΣΘ™bγγβρ 9 —‹GιΛ'ι™Γ$‡‰~m4“TTlή¨΄67o)”’ΞRHDŠΗ€ΘiΗ5ΓωΜ^>3ιuYS‚Ζ¬>ΑŠs=‹ΟΜύ.‘Šœ_με¦K‡λKL°)•8O(P,υΔRα3Α`ωζΝ›ΈC‘ιcfαo}Ί~`@Š0¦5‚ΗψΔ­₯~iπρs8E@φφupμΘCΟι.ά8sέcΌKύΌ <ƒ#ΐΰ8XμόΘ'š#ΐΰxC ϋΐNTο~ 1.Fqκ”dδΌΨω1Ζ§§·»L?ΰp8ˆD ͺrϋΞΏ „δ½]ΧΡ¬νmf—>ŠόŒxϊ€|?O=a;ΔΌAŽG`‘! x`ΞOΝyU€Ÿχ:0½λ@{σy\σ*ς“%T†κπρ۟ρίPk„g„‘ΞOώδgΗ{iπ;>Ό&Gΐ?ώξΟH?οo%–Ώp}ΙΫόσόΕ€@€σ—?ω½ΝΡνΫ·177‡ΈΈ8ΔΔĈρρρX³f½yph“SΣήͺσ|Ž€.I‰ bώππ°ξωpΝ\WΎλΣciύ|—OΓxΈ ΚεβΩHc’gι­&ϋΤ5ΐ₯vΎ·;(σ&9ΕˆΐbηΗΕ8g|LŽ€=ˆό·΅)±YŠ‘σHo3Ξy 'šna±σcΈŒλ­φ\ΟΌŽG€#ΐŠ€όΔ„i=Τl;W΅„/0j7nθΜ ΅ΧOs8Ÿ'φy,κΛ•"ύΌ<£ϋ[Γύθ§O«/8ŒΦ”rρωΫPΆa-βS³±nγόLd#ιΟwώδχ7;BTη™™ΡΨy9| ‘Πws·o{wώυΧ.?ΏtˆTCηhZˆ^˜ΖΘΠ ΄]ΎŠ™₯;…|δK αwDŽδάρi«Έž  /λ„ηο₯xήΚΊΓ»|ψp9KΕΏKzrωΰ9Ώ<τb9zΎ8c?ύ9:n]ΔhB/Ξ~ω%.Φχ,Iύ1Tϊ3Χ[ύ^ͺΌG€#ΐ(άΠ9@πςˆ–7Λΰ,:δΕ©ΕΑdΡM˜Mz >ƒ"9―ΖͺΔx¬pks ½'ήώpϊ 7rvƒ††)qYρ‹:χPΣ ‹΅$ΰό²$¦Ωλ ΉΎδ~"‚ΰΟδέ»w“““HJJ3znτγξέ»<³\τP"©†Ξ£q©‘—Ή‘s(/ήw(~n‹Έ~ΠsΊ ςg―c αE`¬!λKν|§wΗΰD ‹?ωϊk^”\dŽ@τE?^Q΅ώδ©ηέq8Ž€nθ¬ΓΞ$Ha'šΌ-ŽG`±" Ώδοc“Ε:ovŒkn  —λ?Η—ŸόM—›pες\¦œ ŸΏγ'.`€³Φ˜yAB`ψΚ ςRRP…E–ΕΔoάC=Hο†# ƒηP–PΧ—–Πd/‘‘.&ύHοωΥμ4ήΏiii>“72:fΆ:/ΟPˆTCge<ΑXB_΄Σ1ΛC—5Z»$ΟΛ8π=G€#ΐπ†ΐbηOΎώκmζy>G€# #ΰΞK] υψεyα{ŽG€#ΐ.2t~ΰ{ϊ—ΏΔPN;ˆfy›ŽG€#dόG’Ηβ½ός[ˆπΙηOΏŸQήG€#j yγίPγΛϋη,eΒ…_£ ω3Ϋra^¬Κ·”疏#°TΰΟϊ3]\\,žhομΦ/ΐs9(XŸ+–jii1Pšαp8ŽG€#ΐΰp8ŽG€#ΐΰp8‘‡€²γ3°:* 4ΖΉω)Œ5γζmϞΦΔe`…gΆ&g#SšcΟ€Ρώόχ₯Ά=2Έ9Q{Yz©τ―αΟ–cwΤΑ―HΖdΛoρζ;Ÿ¨yN)ΧΒ=ΊΎn{ΏΎ”r^ερ}z­ͺsΒώ”vόŒO!:yI™ˆ_ f’{v|ό*ΪΗυqQΪΦ‘ί=‹ίGξˆ,γ$Wσs=˜ £1fξΒK/ΤΠoΡ&Z>Α{ΥΫ'\Όπꀦ;Oΰ­wΫΧv [2yΏΫ!Š½Η Ώψ―kŒ―•vŒπ§ρ6Β =>Σάο·θ~₯•ϋ=ΌH:°);1+WˆΟ:ssΈΤΧ$ɐG?F΄έΉ7€Iη k“ӐΈ: «–G!JΤ{ncdΈ]Sϊb*œ Ϊ%W«χ°Φsi„T¬/Ω€δδx¬Z!<Ή/`nβ&k„Ύ†l@T=~1P-ΰEΙKώŒ}Ι IqiHŽΛΒ2N”ΆԞώG4ŒΛΗκήκυ©Άd,e₯?–ρεεξCΙΪ<2rΦ»_ΏŠα‘σ8S!Ί΄βGΪ}€•§U’J°λ±έ(― ϋQښγΖ{ΗŒΡΦΐρΧ‘"43T‡7―ΰ8Τ8Εφ½£ίΏ€œQΆΥ£’„ΎΛ›9›Τœ ±νεƒ ‘˜ix0x<ΟtΏ›GiΣz~ 6z –g„`π™χ»ŒP yIξ#DϋMžΕφΒR¬qλ+…νψ¬ρ—Έ€£kΉ΅p˜Ηy›βMΜ6γέοβ¦bvT<’΅YˆQς4‰’―aπζ—8Υπ‰¦gε%Φz‘x2DdξΐΗv`CΩFEGJrΰ‰^œβ5ι<Ευ%„ΏΎΔΘΪ Δ–΄?>σΦ‰zVτ%‘ΧΠςΌ·qσ|―ŠΟ(xΓή½UΒͺ0َ“~ŽQ!½:kΘ9DΘ_v‹¬ }l^›τΡ΅zΚΏΥΏZVλΙ€ζ²§‚‘Βύy6F#KHhXυαžμW•Ÿš™α›―Τ@Π•‡›ΰ·‡Oϋ©`Γιpυπ²ahΎš—’Œώ= |ΕΧ9~ρ_GνQ—wmπάWdΰžν*Ψ‘Jq^ ςφυ<Ο=y½Μqυ,K|Ν.§9½Υ&ώϋΰŠGHψοCHα·₯s½ίM$IΖΚμ<θ―eύσΦϊ3ΟΦ ’IΖdgted~==ΝΡΟ œ―ƒ…4ο‡#2 6Όˆ…E^ϋ_CF{ͺĝΏF»ΧR¬'ξ*ο))ϋ9λŸΕ3E©ΧλΆΡΊΎμH^-[#x­D'ξaN‚RΠlk3 9 ά»§Σ©{ΰ޲‡QSS!vΤ6-ΰ†ΞΑκ―§ϋŽ}Τ ά_’󰧦*π`FoΕΞ²―"U―§ω Lz1Ό±r}κuε/Ή?¦ρ• ¬δadϋ*5­O<² ο~qH1ϊ‰΄ϋΘΗπ–ζ©Μ­ΨσθN”U–ΐέεf\ωΩ(@ΥΫ·JFΞT‘ϋκ• |5ΐ¨l x’ςKτι ΆnsΒ―“΄Ι{³ν‹wΆϋέμx΄εYτ+ό\ώԎ”§C†@0ωΜ†ϋ]Ε)€Ό€vτTΩ–οbWv–~Ώ1ψJΙSΡθϊΩs·WνWœ©™ΩΩIΘ&ΕV£7 Ϋ›‘³³Ϋτ΅cίΦ»ψYύ EV^b­§tΜ!Cΐ±i Ά’‘³Χ-6•ϋΏΤ„UxσέS^‹ΉŸΰϊ’ͺ7Ήcγο8hϊ#Oψ“ίμyΏ|ζ₯A#υ˜υ%κ3Τ<οeΨ<ہⳂόυ’‘3υ=άί/9 rΠG»h•Gάξ;χήvς3š·σΟ±GR0"RXυl0Y‚|ƒ˜<Κ43Ν=)4`"Ήj%βΣdOm#‹ρ…0βαDΟoq4Aκ/T>푌"¬?Ήϋ°Ocδ<{«Wn\FοΤ4VJBFR!Κ)›rύ­I\-ǝA9ήLΠ[S΄…q΄»’2τwsΌO!JηΛΒΒ]$μΔ:y€ηqAyZΞκώž*θ‚š œΑκ―³΅Ξa$QDa2tΦ‹'lη@ΧΔ§hŒœ…MΛΧ%oίςϊωiζλ“QxΦώ˜Ζ—ΌV ͺ=bœ‹ΕY­Ο½φ}”ΈES·4ΦLΊ‡+sœM΄’ιP‚™xβž­ΕJϊa™ξdˆVm¦/–²Αβ]ΖϋeHbF½Η Ώ•?™ανC ‚ω,άy‰a’Š‹Ώ₯1ržA[ϋη8ίz i`OA‘Τb|! ³p³OΠΓμέ6QΫ]£φO͎cRΫΝς(―?ΖΗΪpsbCSc˜Ύ=¨U©ΘΛ€―ΡHυΧ€ckβ Τ;Ÿ=Xy‰΅žVdž5SθΉt]Γς„ (ί~ω™’\ŽκƒΨΣ~Η |u‡λKΦ&3Xϊ#OXœkmC|ζZE<2ZU_ 5Ολ ™g™BΐF>K،¬<ως&z™’D.rCηΠ{$©‘X½fe0½ν­x6˜,‹ž"ά“ΒΫ,ژo«η¦ΉŒxxΝ“Ι)n°ϊ I„)1β₯SΝP Ώ°σΟ}¦Θ † ΰ…μ@ yɎa…eΑŒ0Β€ Χm°~δ©žže―IXV9Mλ­Θ΅#^@IDAT0όχAΎ<ΒsoΓ}ff`FτV3νETΩ`ώ>Ψ:―δωN +²ŠΜΤ 2―dΰ‘­ί@yšΖ¨G;Ψ•(έό –έ1NάОαι`!`λ}ν_θ%ΝΧώαα%–8λsύ"P\\μ΅LKK‹ΗΉΝk •O8OΥβυG•2“ΧήEL\:vu}9―ˆˆD>ΎΊρaΕ‘fπΖ ΌΣtR#yΪϋκρΕ%χί!’γδq‘ύ\ΥΤςždμoΌ _ПώΆΟ Άz+…³3ΈΠρaΘΏv0Ή ΎνΈoJ_lsƒέŸ(ϊ*³vG€65y«œ ζ07έG6mˆΫπ2ž(” o†gFΌΜ5λυ©φk.ΕήΣψξίBwίYτ]WΗ]Žz‡šp7κOPνδ₯eΛ4‘~#μ>27K ΄B+Sθ8{m398Pγ+ΏoLΚw”CŽίΩWwήΦw+<;ֈOήi `zM§"Axχ?6μΥ‰B4ήe½ίeAMξ™υf~ 2šΔƒαΐgItΏΣπ&θ~7Ό…„— KgΎ`\5JσœΞQTϋjσ;ψΤι5ί‡‡ΙΠ9Flu5bV&SΚUη0ί‘k΅ΉΟβq‘yΚυxιό­©AΧ‚Suxϋpkžx$<§ cεήWη¬O~—κΖΚK¬υԞy*DLŽέDσωpιγχΠ6¦’-΅έxα―E’_22²H 2`θΜυ%-Žr: υ%Vž‡dqo˜Οάϊ1^Q_ 1Ο» —š@ |Άpβ0=Φήaμk>«γγ’/…άΠy)x$±z6€!²,xŠpO wu€5κα,O&·`υ‚ςε½Q(ΉΌΩ= Ώ0σΟ}¦Θ fΑΰε#£Ό£1)eG 09R₯xΈGΦοT=Λ_3ΛΙ’·.όχAΉ[x‚>Dfd¬pηy†;‹™ϊͺ°φΗğŒλ›ŠΈ9_ο:ŠϊZ܍©@ε¦ΗP˜ }Έϊ‘ά*\ΊzΓ.Ζ©ΰՌ"°€ωΪ(HΌGΐNθ«p±ΞgΠέΞ£ρΩΉYΌHΚΘΙί†ΒXIβρAw#gνHά ’ӑ謇[^ŒM΅υ₯4sžM)9[+AΆΣΈaςζY|‘γχ“Prϋw•` /D-GΤν.|ό³χΰfF‘΄i>‘Š/Ύ„ I+q—ϊX•Z’4‘Uυ2ΎΉQ°ΰΆ¨@ί™Γ±sR”]9(ΔΏŠΝΕ₯tέ‘)Ι4Ε.¦ύHW.ΥΖ©Fmykύ₯—μΒCEΕΘΚΚFjbVΛs9=ŠΎλθΎtΗj›UΡlJ1ΝΓνΤ·v(δΕΙˆ€[“^Œ“―O₯³ +ύ±ŒoΌΗά#₯kdžΊcž—ŒάGš.Β>YΎUl).#S0Μ’Ά™±^ t΅γς™OΡΤι~혹„φΚpπ;{‘…™ŽS¨IݕΘΟ‘3(ςVγIΕšΘexς{{‘……ιV¦snΜ* šΎύψj•iyτΚ>.ά‹s˜μEwo3κ>'γ~ }χŠεΩώہΝΥΞͺέh>}JJ―ί‡φ•‚†…ρ+Gρ»γΎ›Oځg^άAA„Cο)Όwψ΄RΎψ±?@UY)r]ζ mgOΰwGΥrJJ>φ*Άζ'`Ak©FxMu|F8ψeύcxξ@ JςTόΪ›Qͺ ™UeHX…1jγˆNχξ,ΐQφ v=κoώ¬ρΣ©vοNΚχΎ†­ΫJι‹%qR‰ι4ΧBόεδA·z,ΌdMΟ’ί£ηχ ¨pƒ*#Ι$ώ†υυ £ι4κυ£ά›ε—M9EΚW3&ι9@6rΘ1±’†Œœg¨giΝ Έcυ’Ηο)q:λΜuαΖ\²γ…ΎF0vK«σϊλθ.ιήj£nx>yImΞ#ΕZΟ£‘0ΙXlό2Ρψήσͺ.4’©©E5%"ϊΙ)Ω΄χZΨ9C^ψ…λKN|ττέιKN‰τwl<‘ί–N.+Ÿ™©Η¨/…”ηu  dη3|Ά9ιΞ)A_[«ΧιXΈ· λhΝ(―t'­I­Β–ͺτ‰U_ Ή‘3½G£gƒ ΐ±D²`υαž^o"Λ't<2ƒuγυπ šη·Μ`χ'v€ΪλΕΈ”Ά–™4#Ώ°ςΟ}¦Θ f ΰeΝ!Όdn@T:"DCOή`λY¬|Ν,'£ήJΧ"}ζ i /ώϋ`€ ‡ίωχ;ڐπΌ_©Ψ 0σ c—ϊcβO–υ‚θ zYοPΨΥφk|xΝωBλv>nˆBόc_ƒΈDΏŽDz%δΓθEiˆ'¬! sΏ†Ϋ:ƒ΅ςځΘG@/2³―Qyς<‡»χδότrμξ„[3¬KUyzξŽP6’Ά|g:ΐεζ“”NΐΪΔd,_ά»3Š›Sξc–Š―‰O„Σ<γ³Έœ˜Υ>λF¬ύyE•œ>K•ˆΪ}hΈ&ŒΑs[“ž‹Β‚κ‰±ΩlCΝ³”JC&Ν¨WƒΪXBf1PΝZ?Υd,ψw_Gašš-9 [J^jθ/#γ_πۏκ₯LXι―»_ψŠdγfg‹β.6YΒ_²ήΒ[ολύh«˜I[Ÿ”HβΈ5­@kε`»>΅-˜KΫן±ρω–y^ς]ΦyΦΰ}d¨­P’{ιΉWŸGIŽΜPͺ@«“rOΡ“dθό‘zΒτύGUΧg#Ώx£toη@2™Q›1€£μ ^‹Αίγ―ƒζΥY‘+ή{±(9ύj;΅u€taI9rσ$νΫdθ,m=8ς£ΈvϊwΈδ=(~jr…GλQG†ΣΆk‰+θ υN; c,—χΒ”Κ‹¦i·/:Obίχ^EυFΩθX­±:)εϋ_GNV~υ3OCοΤάrδoτœ»‰’Ε‹1RBΙ3ψƒΧBώΖ€Τ[2 ͺρ$ύΙ[2΅qD§ŒΚπZ₯\Jήλ͟ή•Ϋ₯ Άώ1άοͺ(:©θ=~ψ%ΌψS’Pfq>3„Ύw>σ¬žQω4žtώΝ@IΝ·žžŒ_ύΔ^² gќσO_GΎŽŽ¦ό†E z5t6Η/δ(ϊΒ :n¨:τ֊ύNGHέ₯-.Fp4ΣΧ»δ2†χ΄ΦυlιnΠm=ψμΚeT;gf~ γfΦ΅ ‘*…¦Άζ17'6κϋ??Όδ΅2k=― †πΔ’εߘF―PWοζξάρ]˜Ξzη/IΰEˆΎΔΒ~―gV>3YM_ !ΟΕώrœΟ`„Ο²*6(ΞMSΧ;ΡΏΤ'ΞH­?UPͺ»»[!Ύ€2©z:lR‹Β#‰Ρ³!‘%οž"V=)ΜzθYΊΘ˜=£·’·ϊ£’·ϊLοqΌχ%pπΙǐO‹@ς’νΔP;:ŽγπQiΑΦ’Ηγϊ]xnypδ8‡;…φ‹¨―Ώ€βvOIΧ6½xx‰…μπd2aΐZ–ζΑSG–k3P¦€fδM IŸΌkΕsŸ%2ΘΟή›@G‘i’ŸΩ›v -‰„„„€B” ΚκΪ]‹νvΩκi»§ύΞλιΣΣoϊygζτysŽΟΌy3ουΈO/ž~Υ^ΪKΩκrγb(S,e(((XHIHHhW’ ~Ddl™‘™7"S™βΏ‘7ξφίϋ݈οވψ?Bz—ΐ ΜKal˜g-/™KJG³Νς=Ÿ<ΌžOάξ³B―Ž()‚|-ΪOWϋV^Βxτα}k€³œΧ‡HθHyφΧ[φ$cΖR”Ν­Ψ?r%Οsώ΄~^Pκ«@ž:$U•œΥ΄;½&o9/ΑΤ"IρΛϋω‡v?ςdȁHlH‘rr”Ί(½δOEEΙ θμΫ‹NΉΣ%x|“ͺ@ ŸβΜM WΒrΩύ/»5dd¨)%_Α7V•‘gN= \ΐιΛογͺƒ!¬X’ψ”5Άr'ΎAjρ7γβυ#hθ ΒΓ…<΅mσo.v•>¦υ£»­ƒϊ©•7|QHI{ΝΦM+δ&ˆζƒGpoωά{0E9ΘXIQΦλi:α Μ™π17wύ}aYΨσϊ«%ηA\9y΄Ζg–?ŠŠ€ΒfΕξ―`W'yς•œ»Β<]τx_;::;0Τ?@ώbSH1°†ž§+Κ‰EΫ^ƞΆ«8`γ“Ξz‹QbnηΑψ<Γ 3ίBηg”GΚφLžΝρEκΛΊu;Pͺ)όtΰζ­hJI£H‚"― /½ωͺ΄ 4©O‘wςλ˜·89Ee(#ΏχLξ‚E?μδ4]3ζΰo;Ζ¦^€WcCyΰ½Tρ&l©ω(pΓ•K-(“=)η’€b3):+οΒτ–Ά’Έ2#pΨ„fΩ›³žλM¬ΥUÏ\QΟ©τ™©ίΓπpCn_²ΰήFά–CS]ZJ[oα%•riωMύdF΄ƒβ- ‚jΫ>γ—Ν»β]'–ϋ^x‰0Ž8g1/‘’άΖιˆΜK†’³Φς=Ÿ<œžOάο³ W‡Ρp|-ΪO/χ­Ό>hΜϋV S„Χαl―·Τ{’1’(ΚƒΖ6œΔ½”η†y^°t±δKM m}ΝQfΡ/οηξύƒc&MζFτ‘J­{HΟΓJtn5ε›;‘“£Ί‘οA_{3ιΏ‚-•бΘ,Θ<ϋρΩ•WθέέΣς{Β’ΫPIŠΞ— MΆύΉXΎΩ€θ¬Άf(¦EsvΤQ_‡cψυw gIQ[ ΗΫρνOΟJ^πΆηO”烏ς ZUδzWλFϊυrίc‡_…?#a2yΜgφPΜgΦm \ή‡Ώ%ΟΝJ8€ή‘?Ε‹;#Œ²΅π‘’³qεpΚKp±ΟJKS7Άƒ8ώύ0nΣΗ‘ZNΖ0‹τ„h±όRH<―7ίξ’ 9—ηοΑ₯Š"ΕHοq\œ*ΒΆΐΎbΜωΡ€ΩΚίLJΞ•G]7ZφγHPX’PφO ‡½§ͺYΆge`dϊζ₯€jχ1’ΰώ[Gρα₯†¨}°ΓKVˆΦ³jk¦ΣV~Y½ϋYl’-h9Gϋ–!2Ώπ~ ˆ°ίΑύ’<α΄0e‰ς™H=‘ύLρΌ €0ŸIGη³μͺR¬\€LΖxWšlXvΓƒΚ³ k͍¦ύR‚*:Ο‹$!Λ†x–ˆhQζ…%… =a2qi=IŸ; ΘΞ,­ΦzΡΣΤ@-ξ %-Ύς"Νϊ[+@g5xϊ%ƒ’σP κ?;‹±”blΨ±Iω”˜±qCά΅₯€ΦV /ΉŒK&nδiƒr8z=α˜ΠyνάJ΄BόV˜;ήudΉοg°Γˆ{σRT nmN’ρ’Zπa΅|SΗoχ7žlΙ›X–Ό^μ³μž6Κ…εkΡ~zΉoευAŸAή·κXh1^4("F"¬κ±'G”#ΰ1ΛKyψ3’g‰T¬XΌ80 ?†n[=€ΟΔ βˆγNΈLήΟ?μϋω„;%ΉCŒ€ΓνΈΡίƒ‚UͺͺU&ς2© €'·ώϊŽβmRMΎŠœ’‚Ϊ8ύ- tߏ–Ά³Έq{ ©™ Ά 8^Œκ’Έͺ)δ"c©Βnάκ$―Ί~LLΟEZ:bζθJ–•eΫΠJŠΞmr+nδΊaϊYMkΛ΄”ζΆ“9Z’)2%y5†ysΛ—3Ληκ­Ο™§*1; ΗΧW*JRΚΐΉΊ’³\€}‚΅ε/ΚΟ΅3σ -=¬:‘'5[Ώο§rλV=|‘"¦4ΓσH'ΉwΑν¬­ϋYlΘ£γ<βLrXάΫ€f%ε*ο7"θΕ\Δͺ°aγΖ@ύA4žR•ύτ&{»ιΝ·¬¬œ‹¬βΩVB,oή|σiΣz ž?yU(CvN`mκF)DΧ½Q₯­(Gχ‡Μά{hx€ {d%π*?κΓεSF•B½XΑki X±A±Ώωδǚ’³œέψ+4œ«%YκϊmhΫu0†zNyW­κ–₯vΔw΅Q~=ΫχΨα—ΔΰΟ(ˆ?σY²ςYθά’ϋΝΌw~οΗ¨ΨX₯€d‘ <:ΒxΨΰ%I¦θ>kšx΅΄u•ύM'pV+qΒ/Ή+T+βuΏδ‘#žͺ |)… Ÿ>ˆUύΉ&δώ}Cί΄Tg‘΅_ΧΌEwΑή&eΛ2PήνΣ¨9ι>ωώkyp‰[ρNΓρΰT‹c;ΌdQ ’υ¬Ϊ Jc~‰Ο~iυ3Ψύ΄Ί‘ύΰΑߘχ AΣ"}1‚χKΑ $Γ~Ι ž·υ±(Ÿ‰ΥΫ/ŝη™Ο”Ος±ͺΈ(p"‘«εŒυImJ%―ΟWΜεŒϋ%ύi—©ΜΜ&‹$Λ/”ηYbž%|;j5kt ]ΐΏ|η―5«χcτy¬?!kρ€‘ ή•@Μ+KΙΘ^Š0a‚„εΉ°< Ψm‚σZΔJ΄["όN–ήujΉοΦ3HΈ1ΜD:σ=(·iΑm‡—€9|X-ߜžΏ‘ρdKήD²δΙ>Λι (‰―EϋιΕΎU―*VΏχΎUB„Χ«σ"4-ςϊZ^JaO2 .’υΰh*σBΕφ^Q}ω& \ωX±D]g€>χΰ³ϊŸγTŸ_@WόήΒ.)PX°@5Ύ‘ŽzPώϋ8?ΪaV4m=‚ΛΎηπ{λjk Ι±E~*ΪΊ€6έΘ“dšΓΊυuϊ8τ>m7£ο‘'/Ÿ…ΜοΠMάQb>‡ΞΆ”­“Œ"ζcΡβ,ϊν©κ4AlŸEϋ19d`Ϋ73²ΞœΕυk­θνnGGwτ>Ωη—H&mR@o<±νyH68>δ…_‡gRξMWωΊ =Γ‘χΪrΥ­τ½€§VŒyΘλΠΉ£Δε²₯t(ω‡“3‚ήήFΜ§eγΝӊ΄Ρ’315Ž”•»ρrΕޏr?f—B!Z/΄₯ ζ—ψπ‹τEχ―QΫ—ϊ/ˆw> έ3g‡χKF4ρ€Ψ/Ήη ‹‘‡$‰ς™h=±η/qζy泄ε³εkKQ°šκ»ΖS:4alτ ΚτύRπ흹܌ΕΠ")ξγ±lπΒ³„3K/,)œXθ‰Nƒ7–ΡΊτ ο)9KY­ΗpΘpƒ!bρ˜g΄ΰn8¬)9Λ’ΙZόΜϊμ’oVτΎ¨1·–’J;Ρ-ΌTyκ―Λo/< 8‘'υQdΤ±Ήωuz^‹Y@‰φP„_ΒΙη]Λ}7žA@K³₯σRt nenμς{>ΡΞεˆ‘θx²ηϊZΨ;ΉIέ«Ž=uδJ6Z˜φZ2y―žR„IQ•rόπ†ν½γσ3lKφ2Ό‘g|Ζ^I{ΒgΧoΡ>??1t>ύ@ώ½±\H\π: iΗ*aΡ8V_]ΰΦΛz ζ¨o\Ι`£7XρΨͺŸ”ζΕυηο ½p±lIfσΩ&τμ¬’n|k*ΰ#₯a‰QWΧ”“IˆzHښ „~|Ψ²©N«yυΤa-nŠ4v`pŒŒ+θΛ1ωY ΧΜ+σ|(&G ½…yšP_7)“χΓτ,‰σՐ\EkNM°ψU•ϊ,²’&IΚνŠς΅TτAΤςΦœΞŸu+ΞREyPψz·Υ=χ=ψe&ωΣ,Μg&˜’ŽΟL½§ƒΫ£QΎ4τ•dΑΡ]©8Έiγ±θ>λdύl¬QΏZ²Ϊέτhy¬WΟΐGοο—vΦaƒ=~IΓB•~'F‘±fΦJ[w Wχ£^Ϊbεζ@σω|»·Fεl±²w’nΖ₯ξΨ• c¬Lh6S}θ »½σγάεwqΞΠƒšGήΒφU>9₯ ·…€θάiΘ7Eπ’'υL„9`~1~©Α+ψJΤ―αuΗ―ώρ=“άΠή/…bBwτχ»Vm8M³ΗgΖV]ς„±©pqQ>­θ‡σύRœyžωΜtΖ$Ÿe €ΈTλ[χu +W-Χ™˜$£’πA½ν_"Ξ91³HŠσ8q"– ^x–pb)β%…} =Ρ‰πΘ2ZOΦ藏[? W‹¨ΏΞ,ƒϋz‘vΆΡ—0ŠΞ’₯¦Δ,%₯Ίv,ΌB„~<ρ0 ΩΩ<°¨βδΌ·€²l+I„_¬ε]QΛ}QΟ Φ½7€ΖέR+ψz7ήή*ύ²ε±Aσ!ΑžOΤΣ!―žgΟ'„`XO‘Π΅—g}πfŸe―WαKEηkΡ~VΉπΐΪ_^B1‘Sx} x}sv˜’ν¬¦ {’ @"Κƒ!ˆΪLπVž3ώtςΌ€ήΑMŒΠ˜”·My«žΗ+σrp}hKΣΚ°‘@¬υ•J™Εm›Xγύ|–Αχ‰όœ!ωΪςlδDF !X[ΉQσ3wίgΒς‹‹8NΤjBεfŸΥτ+όν?Œΰ₯’Ι»!,ΝEΕΆ/Β—³oύΟ#*;jYGΣ–*ς•RŒ΅)J±ξΏΖGνΚύΜΪτ\ε -”Υ{ϋ–ω+.Φ­†MέXP45wΞ"”mό ͺΤΕαsKτ/‰,,ΓΖM_ΑΊƒ¨o8 ˜ͺUƒΟ]:Š•Yo TκJrIH§₯Q^­άΣ0ΗΜ/a€ $»ζ—2½€·ιωΔͺ»Σβn©eΌήΕ=6hcb^"(Ψσ‰v>„Ψδyφ|bB0ΨrΡ”)x`k} ΗgqυL`1{|-ΨOOφ­j§y}P‘ωευ αυ!δΌI°Ή>ΧcO2Dy0OΫΗ^ΚsʟNž'ΆTϋ4E»Όό-€d:PιΞM‡ε¨ΠaRx?oFσ`iΌοHτη ΙΗΧfΠωˆπΘ›#ΛK_’ͺΗg’JΞJΝŒΠ§’%―ϋR˜7ίαƒHΉV‚όwoH‚Γ²Ε­‡ΰŒˆΗ©HO!ε89HŸŸU † y+‹v£ZϋŒvΞ7Ψ›DΘ|p?ŒφrHη ‘U@Š‚€τζή$©z!ΑeΤγhς6W螜;Nώ ?x7H‘2ύIT’³AεGmΪόK.{΅niλ¦Ήˆ§GΛ‘:cØΓBΤmœŸΤιœͺ­π₯|O ‘ώ΄€Θι4Ψ“'·κp|λ*ΏŠΟΌ3έΌρΌι€­Ζώ:jΖ±½‘η±­Ξ‰κΕHU&GœHπ(MΚ»^\φΊί¦¦kΨ\,d ¨b+y]„"I±X }δQS‰zχΆ<ΊAkξΒι–Κ~J~ τv₯ΔK—£pΗ#Θ’”Θ‡šp¦m.jkK‘A}/\ [ϊδeτ–άίILNI/Ο₯qt’σ“p¦gmEΣ'αTΗά©»ε£ρέvΒ•ss½Ϋγ3β*φ=ήρKμψ3ΞΦιΜgΦΈ¨©‰Ξgj?•ίTςR,ωUTyυΌρΫ’ΰBϊΕΔΈ=% ½Ά9ζzŸΥtΏ’?²4Ακͺ"dAYυ&e+kΔ’GρΨ¦ΓΨΦXΕάΛ#ΥΡπΑ‰OρΡ₯†@ρ\δ§«Ζυγτ•„k–ΝΨγ²V€κυI±Ί,Β-F^ν…§šqQ―!vχm(¦‹ς’h½Κb~ $θΠ Ώψ°η_6φVcψ—οοl|-ƒχKA“ΰιa¬χK֝΅Η±ε³Xς`˜ύ’G‰ f< Μπ>Λ6_‹φΣΛ}+―aΟH^^žj†ύυA­‘ό²'™’ވώζŸB]΄Ζ]F¦¦t―©Ω9ΤZx₯O£Žpͺμ!5¨lz2$εM)Œ b°U‰w"Owά‰«'$EsπΥ¬‰δ,UρaŒ~$Ÿ™ΩyFΩK‘‚›y($E`Υό`x”>‘IP˜<[η'Υ-έτ}b]z΅c $Eg θΥ–ΏvεI•ν/›k^E]ΎΊ7ΗΥ«{ρΡυ σΖ²GR’ψuΆΙDΛXZςG}h>eΕέζΞzqύ™[΄wΤΪΠ„§7BšΕ|_6ο^ ]wΧxΟMUObδAZ }§Ρp4ςωr£“QN…(ί4_ΎΞΗ‡ZpϊBЬθœ[Z‹ywsˆρžN\–Ϊ₯^’ΩŒ¬TD^Ÿ!e΅(rδjΒu ” %εΔ\¦υ‘Υ|O”—/1Sl‚ή5φΐΊ½ήνςYΌΩχxΗ/±αOγL$Iœω,t’ς™©τTdαF‡ΙƒΠVJ<"…qψϋ£―JYλ=Ϋg‘Ÿ(Mϊ«ΗΙŠ🰽Rβέedƒ"m ϋC:`›_HΒ€B1qΏ=u@W€Κέ€’€- &:ΠΡε‘%%ΨΫ/έΕδD†I!ω>έ˜Βοζ!+Uύ:εL  Α<<큭;«ά΅π©VpSd€cιΝY”—Dλ™F˜Ψ³–_²θzω&κJΥ½| όΏΒyΣufjς ο—ΒΰhHŽΟ~Ι 08j‹'bΝg±γΑ°ϋ%x>Ξ„=f> β³Βμ€ρφHΪ―Ϊ{¦'7΄4ΪγN­e}ΏdΪChω3‰½E *’Θ0– Ζ:.ΊΏή₯‘Ϊγ³Ax±ο±Ο/3ΑŸM|\ša>‹³S>3·UŠΚΗ6γμΎz=yΣγ(S9x¬Γ­š’σ’ή°σ}VNΐ`ΓΚp¬wΰ65­π«.Γ³Ν/Γ~ψi«“&{VΗ…+Ώ έΎͺπ\ΕϊΎŸΊ{›Π¦fύΪγ—R’ώ^PMυ0;·ύ/©}R~Eλ™[IΔ£ΩΟ/ΫήψcΕ(`ŒπΏΫ„ύ_QεE)§όΒϋ%ΉπΏ1έ/yΔRοcΚgΤΎΊyώβΟ‡ŸΩDΘa>‹4 Ÿ-œh’‹άjk²g@€5˜ƒό5«ι«CνZ ϋ%ω•ž3S±‡ΐ")Ϊ°– Ζr΄WυΚ“ΒYŠπJ²-ζl[θΗη(Λh]§Δ‰g‰fττυ Z~πRˆ\ϊΔ/ΊΝ–—yΩκγ—h8΄”thαe”ξΔ’Ιψ<‡=|H(zgeΟςΤ8sΦq[όβΨs†{Λ}©·φ=ƒX-±R™—’Zp»ΰ%ΜZΛ7g±C<Ω’7:ΦNΦ?ckΆχ=ν³œ­|νE?]ξ[y}0žaΞγΣΎ•Χ‹σΓαϊ`j=Ι(pxΑƒΤ’mΎφHžΤyOψ3άσύ;=ЎRρxY­ζΥ°₯»Ρ§Jποηy?―Ω΅ŽTΦ* MHŠΛŠZXΑκgπ…)ΈΠ} χζε£Μ·΅’ϊ—z;Ξλ ½jb’wβιK€ΙήΪςρωΪΧ1·ω$Zο,BΕκmΨbߍζϊ€ςC6J«Ύ€βͺGq³λ:nϊ»1†«—a*5Y>―©BIM9RΙSϊmRtnU+ηUa}žκBτξ₯d‚όηΘ!3#λ«6‹•5ϋޝ›ΈάH^F7ΰϊŽM(‘ sHή«ξOqμψgš[ˆMOξ–=fšπώΗ ο₯ΫβAw£Lcά’ΟΘ`ΛνΎΗΏΔ›?$GœωΜC> šς’_ΑkΔ.ν;†τGΏ„έ―νΤ AΊ.Σ%€zΌ$ΎΟ*Γγ_ώST₯χΰΚg—ΠήΪDkyyYΞΖΪ cΫu?Ψƒžφ0Dρ(nΠ}Η­‘^2Ș ½τ2δg” ΄ TSr&sM\h=’UΥ"ŽxI«E7H.ο; M%bt6σΛϊ—»$(IΙYΪ΄"{χ›xI£LΙάy˜κnΐώΓ£ή/Εζtε~Ι ž7j/ω,œ )=ΊΊΏΟGΛ δ1Ÿθψ¬λ4εOv’½±ΛρμδT>†-ν]Έt yAϋ%§—‡cαv*Μ>‹$– 4#Ϊ€ΨυdαΖRΔ#K ΫzvNˆ0efΞ2Ϊ™Εγ=\U-KΦΡψΈQΡy+*) 3BςζΒR©…—±N,™Όπ0ΰDžήOgσ Χ ΔbζαCΠ4€ƒv-΅\π‹A¦3ήυΖr_oΟ3ˆ‘£ e^ŠlΑνœ—fΏε[π)͞OΘh6{>ρhŸeΟ’W:»ωZ΄Ÿ"ϋΦΰ‹ pΜλC`';Ϋ/%ΟΎ•Χ‡H§‚συΦΨ{’‘ΡεA#”·ΝΧΙ“ΔGεO7Ο ¨ύΜ οš’Li½y|ΣσؐπΙvϋ,κe/›Jn2ύ?sϋζλDρd˜Lη+χ59˜€—h‹-Dqq1:;;qηŽ…ΫaΓP/^L_ΌW΄Έ&θΕΉ1\n©GΉ/rβ”•ώύK(ρ‰Οpμ’αih‘Mιΐωφ3¨\_«τoEΆo¦Ώ ήφwΑήkœ€hͺθ"€’ ΏVώ *Ž5γPΓ/‚Όͺ ΘΣOΕΦMτ %H_D<Υ!ωKNΰ@ήZ―^ά‰όuŠr―f'|5z›‘US6lΔΡCGα{m‡’h“·ΟΌEzq96ήrŸwTΛΰ@ήΙSυ¨&/§rΟ«°σ˟e«Qλ*_T<»fW‘ξι*­NσύRt£ˆ£• ΙΝ@Yަύb.˜^AJΠJDί ’θμκό47oλΘ₯<Ηγ[Ά9ͺ’s ƒ)ΩΥx$Lgη6):'αufla“‡Ža/ ρ%RZ“Οœτrl{Yϊ3Χπ›―?ΐΥή%šΪΣ’εχΏ‚λ/Χ‘D―‚λ-aεΙS.²ΊU[κ‘fά£}V0%ZnψZ°Ÿ"ϋΦΐXx}žT—ΗΑΎ•Χφ$3»<Ις.Q…cώtρΌ`yώsψJM-yΜ<ƒCέΉ;…₯Λ|()Ψ‚<Υ»y­ωμΚή$τζ¬π.οηy?οrζκŒ@έ=½ΘΝΙB )0―Z΅ ]]] )'%,[Fήΐςσ1gΞŒαζΝ›ζrwΞγύ£ΐ΅u¨ΜΦ=Ιj…¦zpυF=>ΊΦ %%[dΰζx“ΨΎvrχ~Ν-Ÿβ7M†ρMŽa„Όc₯©/Žƒ«&-έ—PωΈεΪδXžΪώ²*ψ²U…Χ\j9@ήνœγ…δšχ-¨;k2jιγ?όΰεgQU± Λd`‰·Ι»χLυ{OύޞΖ {^D‘δ 5(\?ωΟΨχξ~ko΁²Άε΅ξΗ/~</όΙ RœΕX NmBξŽgQDύ½oόΌ`PŸδΓ¦π·p―νގŠbσu“ζΜ>£wβ*_χ\<Š>2H^όΔφΆΩ›3Iβ%α}Φ0ϊZ‘SZ…Μΰύ™|ϊ’ωδ'8ςξς‘ΥφψE©Ωyύ8Ήτ-ΤΎβ’ΆΩίw§κ?2ZTs ΏvωΕPΕΝ\ΌLSt»eΊ˜7=ŠnR~Ξ[nΥGχ­FœΏΆ-V·{NyIν˜h=΅~’όΞV~™—\9Ϋ “wοκyΏ””ϋ%Χ<‘ŸφχKΖ:†x$>3 ‰F¬ηjΏxΒσ!=NΌζ3rΪ–Οn‘£‘sŠŠ’O=£’ξ_—ΡŸΏσ*F¬ ©£ξ—>χΝ?ωwτα-οΓ‰Cϋl4J–L›ΏΪΐCBΙΒ/O9HhCPΨ"uoόGμ‘n²‡Nγίωžv£Ά‚Œ΄xcλN€E++{–ψ.m~2 θe’κΙ"L’'‹wΞΡ“n …kΎ‚—ΚΚΒ”4&KeογH‡ϊ8@Ι+,y/,ζŒ₯΅Έl1χ\6X±iyˆoΗαΝ6ιΙ^β©· ιSρše΄!=8κΏψΟψξ6PT‚>ρψνoQΆ όΏ Ξn„Κ‹Κ[<Š .‰ΰφ*Ÿύ_ρκΞκrΑ ζzexείoτI˜ΰRζγρ¦}ψoπ+S’vSjϋс9xX€6΄ν »>Τ4υ·ωΓΏΒ;š‡ς<ύθΧπ†καC-τ+yψψρί<¬υΏmy.ζ!¨K@ωsψφ7>‚2ƒΗ(e»>―3vβu;”›€Ϋπ³Oή7έ$uΖy”σ¬#—ό"=†tΔ»Λ6γυΏ‡œΰΞ†9n»ϊc|pύΊ–»yΣΏA]8Ο'Z)ι3‡Gρv½Εg} e5ΚΌxΝK9ώΎξω$ΜΔϋιίύGύŠ/E[ςhέψ³hλΖV|υΏΎeφ|rδoπ“}a^ ψŸ|ϋE/qδowΝ2ήΘNx~σλžΩR€ ΨG{’μuVοώcΌA/”Π‚_ηΒYγKςgπ―TΟ'R–?δ½δΗωwΪKΊoόηπžO‚<ŸP]iW"ty2€νυΘΠ'λƒϋ,γόΛέ°Z\ς΅h?ξ[Uy}P‘ 6ή·κ`D‰ρϊ δΑϊ`ΰψ“eτ»ίωkΣK!žήΟ‹ί©γJHΎtN”wς§›ηΕτ¬αΉˆΟ¬Ÿ1¨ψ'Λ―Π>Dœαz2ίί«‚~…― ™ž3$_ΝQ˜ΓΚΚJ9§₯΅=L Nft>χΉΟ!+ƒΌƒ-—Ο½½½4»ψΚΘΘ@NŽς΄exx===ψέοΒ?¦_žV†‚eιX0G‘sw²7{;VΆUj;ϋ_»±ΊqΦT„©(Ξ_σΙ… iDݝΌMγk;ΎεΛJMή²Ο]€Ή„Ιτƒ»@Ϋ ωΉwxΞδ…ogvζ¬ή΄π₯Ο:ΘΊΨwHιεZ»c3VYV Ι"awθ“ΰηΟ‰{`ŽM·κώόt&3ήςœυξα.ΊΊk ²ΟTΣw0βοΕεΖ0^ΡPΕσϊ‹Ημl g“ΟžMvόήςVσ>δUaCq>JξΑ¦ο“±Γ»Ο‘#Fœ–šηƒl·3ΩAΚώτ.ήώQΰέι•ωWψεαδ縘Ο ˆΧΎ‡ωΣώl2Ÿ^ς™―j+r2–ΚλΓΤHΞΖh#ΊΟ’Ύ@›Eχ Λ}œžθCΗιsaίωΫ?“BK.O«Βκ΄ ΜΡ΄΄VŽv’eP2tI°Ψ‡βiXΌ`έ‹)Ύ&οήB_WsΔwώ ϋ€θσ‹·ό"4ιΌ_‚M«4ΛyΒν~)αy^›Hχζ33ŸyηΏΰ·Ÿ5‘Ȏ’³ό£χζcΕ²EΘΝΝ‡qΏdιΞ’~l’f«E’KΛ§ž%άZŠxaIαΔBΟΝΙ$d­ $‹IΝ‚=š'©Ž°Ε#pyί_γέι…έ~5όή@IDAT»ƒ?γΥƒ τyΏŒ;dΟSwΤI-%]XxIRΥΰΔς[ΘΓ€*(πk[ž‹y ΔΜΓGˆ$9!’”U;–§.ωŽy׍很g+`;yΙΒ‚Ϋ%/ΝVΛ7ωLfΟ'ϊ=λ=Ÿ(CυbŸeΟσ‰Ύ·¬uΊoUPαυ!¬Gυ α}«Š„ι—Χ φ$£ŸΙνIFl}pΟnžάΏ7.{œ7λΰ“ή\ ϋ««A†Ϋ†"IεύόΓΎŸOšS•;šDH Λ}ƒΈG 3Σd…ζτb\Rf–Bnn.VJΠVCnΖeΙΡδ¬ ~΄u5ΨέΘ()y»ZƒœΙ³έ±YR°υ4)6Ηi,ρ”§!ΡΉιφόtΦΣxΛsΦ»‡»΄Ώυκ^L³λšΨŠυͺtβΒαcρ?!Ίq–ώb²“׏^Ržφw n²°qϊςt6εjαŠν¬υxν{˜?νO<σ™·|ΦΡxΒη{Q¦PtMιmmD―Γυ+JWΒf 7β\"ίηάι@ύqˆΜ/ής‹ΠLρ~I6­,η ·ϋ₯„ηym"έG˜ΟΜ|ΦΩΨδ ΤΑkδϊ‰œ½6›οηfΨ£³«1yR9–)άZ6HžWx²€KK‘d³€ˆ§e΄¨Ε#ΙZΌB±ŸžCο5Ίq1zΜ s;±”τ‚4Lw"&ΗΣΓ€πKΌŸχ­‰NθχΧ^<>₯δζΌ\oΩ“Œ>Cβ<¨·α$7yΒΟ rQ˜e‹RdΟ5ΣχG10؈[wœŒ2yΚ2_+sε%ΏΜ–ύ<{tNžλ8ΡzΊtI r²³ yy—»·dΙ?O΄ωβώ0Œ# ‚ΐςόTŒtωΓVMφό°³‘α«ΪŒ₯σΙgϋ^47ΝNE1υKB—OβFK3ΊθKχ Ίn'ͺKߌν;I_Ϊ{;.Š6¦…‹0ΆHvώŠΦΫ@PΑ‡ΟœΰΑe·D»>“=ί >Ώπ~ΙΙΑedη§hύwƒΏ‘Ο^i—›υθάήԟ3gŽ©K3λΡΩΤ•ΩwΰΦ²ly²€KK‘δ°€˜ΛhQ‹G ‘΅ψq³u3έΎ₯€Ω"b&,β…±±DP™xΚ p‡ξω%ᆔΔb^2Ož·ΌΔ–oήβiž+›GlΙk¨ΘΕ’cŸˆχΣαΎ52\³$—ΧσDzΛgΌ>x‹'{’ΡΟVqΤΫp‹›<αη=θμK O†:ΧvYζk3Tής σ΅]>zψŸΐ½ξδεfCRp–Β}ςτάΩΩ‰;wf©ΥΘΓ7Ν›[ϋθΆΏ ίρœΞΆkβ•γX³ ϊ ”δξtγά±3ΈGΩ,Κ9Ύ_ΓΎω―Q\΄eK±`Ρ"¬(\'^ϊ26–d( ’eτoήωψ!™ΛN uυ ₯‘>|κ8.ήδ3ΨωYΕ5w0/γηŽ—$ ²©ΡΙΰF΅γdΟΧb;βOΫbfΈ _G3<,>&πy «;>KvώΦ`΄’»Γ3zϋ\‚xx`Ύžkoω%Νt~πθΓgeeΙYCΓα½5†«ΛιŒΐττ4$…ηΛ—Ι`΄ΆΆbjj*i€Y΅a7Vη,₯ηη=Έtμ4ωΛI*w”`fΛςW η‘•ψέο~Gžυw4ͺΏc8©σ;OΆΟͺωςz0Ÿ[‘Kο+—`QΪ ,jΌ§ε$ŽΌσίpβΚDP2‰ΐlα―pό›ΨθsοΩσΛμžίp£γύR8d8=ΰϋ?{³&έK!55Υ^… R~Ώς^ϊJž1°’3+:Ο‡„―(Ω‚š5+±"««ΚΧγ‘Ϊm¨^‡œtzΨ.²Œ~G8Χσπ<4Έέߍώžn κΠ~"ΉƒŒΐ,B€y)t2EyIΊΉ]σtEΘKUB²η«γpϊ+ЧS93Yž―£™DŸeΗ >―C‘ε³dηhύEΚ^Š(žφZηRŒΐΓƒσuθ\{Ε/Ρψ/ςΚH‘Hθ)¬θ¬cΑ11‹ddA@ΪI/r%εfΥΓWΗ‰6άδ,¦&;ΰнΈD‘³νM|ιεj`θή₯ΉόKόΰτ4cΡ―₯θΧ­έ.E—₯·dyέ.ΞEqzV,\ŒωŸ#ζ%NΎŠ–αΘΌΡzzw υύ>αq'ŠΰϊλΡ6xΟΦ‡(r8ΫΜΧΞπr]: ΩωΛ±tY Φ”¬¦Φΰή„=m70!Ϊv€―YΡY@Η0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐā•ω;QWZ‹‚₯KB€=JJΐυ—ήΕεh/άBjFOXΈh©\hΙ’yˆυΛ„ε›ρhιF¬ΝΜ΅θΨ3Έ|ρ8Τ‘«Z//xίX_kQ֘δΗ™ϊŽ}Ζ4%ξH^ΪΌ°u'B›±LiΉςcμo½n™Η‰QX΄+²s‘IΕζυJκΞ1«ŸΑ·ΏύEYϊNβΕB‘?½Ϋ+!₯ϊi ΅ΗΩ¦ώΨv*Nς’ςn*–ιζαά_,›R˜=:r{έ:ꆋ뢸hͺV“’³}ύ}gpͺώ΄uH΄žΤLa~ Wd#}Y62–εc9)'*aΗOό †Υcώ;‰ΘKq!ΞΣ«°ύΙΨP·‘xJ σΖ{‡”]νπ|œ‡§‰£}Vza‘Ό-”V>Cκ dͺλ©F(ΞΔi=2vjνš—ρhY5–)ώω²||ξ'ΈS.,ΑSΏ΅κφc’οy· }qΓσ†fΡ(ς\¬c‘²8%&πϊX#6υΑ ώTKžWeΜΠoΌωΪ©<±ϋŽTlέψ**Vζ#Š׊ίCο­Oq¬α€imŠz»>X η4W0_»‚ΟvεΌ­xζΙ­XSSާ£υ’’"­ϊϊ Chk:s­Zš­ˆa?λg“Άϊ݊BoΖkK΄xy€ˆ>Ζp–"ϊΨνz–PjΈ°0ΡE&–ΕΈ—–S†1&LΤ0Ύδ³¬MgIGœY’Ή΄¨ΌψΤsş-ζ’Λю΄9γk½Ν„‹xΙ΅ΕjΒ Ž:dσƒ Š£Ε£vMΖάsM|ψLGYTžήβξι!²g ©gΪ|»iŠGί''˜aB€NxpΦ{l0ΞItž0–‹‹ς'Χ³Ζ[λΦ8•`F v”yΟ”U„°œ^φξΪ4wό -aK‰fάΣ*ήΧbήG WΏŒ—*Θ³lΨ°‹ηΟ7εf,Q΅PLΙAχ1©AΛs*oeZm%gIΘύϋB5ι‰ˆΐ$α( ώF,ο2³ξΡ͊’3΅Σ~υŠ₯Χr_ΝcΨΉs£,©yκZ̝γ%―£ύ4}ΨNΞ•¦ΕΕΨ΅s“K4£WwsέFoέ\BόΊ­BMΥc(07g:ΚΚΕsΟΑ»Ÿμ5(9ˆΦ£¦oΖΆš/ Λ$%p0εΗHLϋ¬„rš δ%SfΣAήfμzbjj«lΪ5ζ}€έaΫαy»my_nfH6ŸΎdαiπ།Χz€Ž»fύb{AΎzhώM)Εη«^ΐ€‰wΝEά=Ίιi]Ι™›˜ΑΈ©QΗΡΦΡ?ιj†¨M£%XAP@ή­α&œ½1ŠΉBg{zϊK·a•šε?ƒ³ΟΣj2& yδ΅·Ά0Π±&œί«x ιι}}β§υhH1Οβ%―΅ΗUGJι„):ηz6놄―[λζ"¦ _·+5'ΧύWps =£ύ˜ΒR\Ϊ‚bEξŠ ¨.:‡[νOσ’υ¨΅ε+2 JΞ~JQω’wnCJαπ `——f%exεΝo‘*ΘΛΌ«‘&:žώ›ΈϊΩq,€ ΜX«€·jWΰΨ¨―υˆΊRYωuƒ’σ8š[~‹3Mא]ώ v•–)]Q†²όTάκςžΧ’ό-9f―Ϊ£Γ1Βδ‚ηΝHq;ς„Χ±`a|<;Ht>‹)ΚIΌ>$:Ο Μ[ΌωZTžΠ}ΗΌΉ˜C˜ 5γ–Ώ}£C»3†Ή‹²P\PK_ŸRΦ‰εΩ•Ψœvυκ³Χ)α*‰†ΐCΝΧκdŒb ³}ύ}Έuγ*ζ.ΙΕͺ’δ>“–YZƒͺήn4sΆ¨!ΟWtžyK4έ³B¬ΌYŠf©g [˜ΐD·³……ρbŠ‹Εκ ŽΟ8VŽΟ"–hnz+*/žυΔψSΜbΞνz䘯έL^ΌκΞ /1οz;ɞβ«σbφ!ρδ3iFEεŸ ρφτMžΤ?1ΎYΗκ|·1TO―Ϋpςfp|αΊ”ιŽp›‚ηΙOΧqr,ʟ\ΟΪΣ‘(.NζŒΛ2Œ#ΐx‡ΐΊ•eΪ§»GϊŽγΗυ΅ΖG½‹”e9ΨΆ¬”‘HŠH ΎPώ˜φYΨή›Gπ‹σG =ΏŽ–z|rΡ τ'ηϊ±LwZ.ξΗUC­πQAyΓηρ ύY‡υxY••Ώ ?޳Χ?ΐ€uAN΅B =KVιτυkΉρzq΅aλ¨~#»NžBΈ™Φί=ΈoγEœ6±HΌεΙ½\b& Φωˆ΅D―ۈ†Ο½nάF{ΧgθΊρ)›•ι:ϋΞγήάuޝ3ΗΰaV΄`δv3±Lbr¬‹ψš±lΝWπ\™’ΨΧ?>ΐœ~–c““Ό›'@«ݎβϊgGΡ<^ˆgvFϊβCδ>ΫεωΘ­Δ0wθόβ\ X5Mλ€LNλ™αBΛΖm=ZV‡κβ€ uγjγ/πQΐˆd » ‘’sŠά½%HY˜A±h=K€”•E/γ)Iώ•’χsJιΫ£½ζj.xήؐmy’λ˜QΗ½E€ΧoρtZ"¬σu3ΒσQ{%^ ή|-,OπΎcτ$ήΩwιΉD?ξ~Łu‚μ¬υΰΡϊ 7Θ1ΧX\―‰φœΑυ°‘‘[h<σ!.ώζ=\P¬Δ‹Š€ VΊš°ε…έΘ_*u|)V€Ρ†Τ†’sπ~>^σή‡ΑMΘRDBLΐ³D-LH[Œ‡=Mι[yΊ›†ΈxlˆΠʝˆZ’‰’!*/ήυ„ψSΠbΞΥz$ΒΧ’“χ°Τcήυv¦“ΟxοCβΝg’ς‚O„x{z°#Oκ£_ŽΝ$Αukξ0Y"0 =6Σ.OΧ³{,ʟ\Άπt$Š‹έωβrŒ#ΐ0^#‹Μ₯ΉFΗΡή}:DΐΔδDHZ2%–lA™ό’ƒΌ&υ+9G€Π²8izΈν·­(,ΟΨ• ψ捏£ π²sδΦgψ€'¨¦V=ƒ§·Wa)ΜNϝ‡ΉwΪπ›Ύ‡ υ™ΠŠ")«ŸΔ+ΟμDU±z§₯υǚ‘·©© ζbθϊΗΨ8X±j3žζH›;㝇ρή§ΐ³Ο?‰’βR€°φχ΅ΰzΓaμ;X/χ,§j;©¨D~~²r±D“±Atυά@ϋΕ£8tΌΡz«·γ•=ΤΟRΥ£²ΤΟ ¨?9 λYW’RΛ°ύΥ]¨([CήΎ—iΕΖ‡:ΡΣՁληOΰδ9;^1·b]]i ~;OΣΪωΦέφϊ—±&}!ξќ-Κͺςς7}_-—^Τ)aξzewκŸqθtΐ«―š!υσυ/`]e5]Η€’5Fηύ΄5ΰβρ}8vΞXޝ¨—Σ*P€μΙ―asI*¦R΄φŽΪΌ/R_„―#zΝ}wΎš—°ύ‰hσηn=RΗιt}X[X‘y΅‘ύ ͺδ ΪƝ€δOU΄{(ʟ\ΟΪΣ‘(.vη‹Λ1Œ#ΐāIά»―*vΠK΅{ΑͺB>¬Κςir'οJe“)” ² ,Πα\j€jλύΈ=¦+@[΅œθiΜK^ρ’a¦‰c^ωΪ«¨*TWB=OγΒΕ#€θόžα˜—¨κκ”T–+œGF/UzkΨ2Rž}oHΑw槚Bσ’όrΙ<½U'~…γ­!QV΅EŊ‚φRtVBφύi*ΌΠtδμ <Ο/ΐJZ“%.ΟΊΫDR.–Dϊh}‘ς²κλ N”aΟ7Ώ†ΊrUι;L?K‹°αι·P˜ŸŸώ0TΡ;«hJΚCηΞOk3‚Χζ@³#j#·φ5ΌYhLϋ±š?7λ‘Φ0œ­>jΌ:Žλ7υ½ΤζO β$τ•°,E2ρˆoΔΛΥ; |E½_Ή„ΊηASCŽ`τθŽαΗΟ{%ΟΥ:fθς G]ΧΌo΅ž=^¬q J Ώ>€ΓάΪ`=si.ͺv~99ψι?zΑσ.φσ4ηn―ΕΧ‡˜άwd—!KωΌ S˜œΤO‰Θ1λCδf<—ωšχσφχσ‘OΧΓΎ@Έw_sΥ―&…όζo\ςάΖφϋِΦβ0+,Ρ-EbαYˆ`a"Ν§ ‹q§–>nO§–SΞ- Ό±X•ΖιάbΞ‰e­(’YΨωΖW±jι<<˜{mΗϋƒσaΧ_$·ρσ0‡Κά8ώ9—°Δ¦οNaQn1ςe―ƒΈπα^άXΈΫwn <θνΑ™χίΑ> N-œΟŸ4Ks3ρ:―…-ΡΜέ΅}$*/ήυ ȟˆΕ\€υ(6|m{:γVyΧ-Τ’Όkδf'Ή¬cž•=UΉΨ‡8xσ™¨<ΣΈβνιΑ‰€”|ίXUFυ0¦υ£»­ƒϊ©•7|±EI{€θ―t΄Ϊ6#UxκEƒςπX;Μ¬‡n!Φο¬3)?ί7Ή‘ 4O/jΥ>e–<RVOSΊ†ο %-Ύς"KνρΎvttv`¨€όq¦bu yjV”ΏŠΆ½Œ=mWqΰœϊŒ£OΏdθηP κ?;‹±”blΨ‘>[Άrεγ[ JΞ=ΈrςΊϋ&°`Y2 ‹QQZDMΎ΅¬’gΗΥUΕσ\DͺyΜΧΌŸχj?Ÿ΄TΕΌL:³Ηo«ΟˆΒη«PX΄2©?·I\EηYb‰&f)ΟΤ;²0qf1ξΜ'άIj?έ™ε”ˆ”«"sμ[ΦΪΗΜ\²Cγσ°½FΉy.Zρ*zΖϊ­αul δc¬g;ˆdhW½z˜ΫΛ@5Y'돿₯ά\ΤΎό ϊΪ賈š7  g‘ω#ρ‚–ζΖqΕηΌ·D3φΥ~\T^Όλbό ‹ΉˆλQŒψ:Ϊ0f ŸyWχH!Ώ οͺΒ[δΊ[Η„=+ϊλž?νCT˜μύΖ›ΟDεFoOεΕ†― γO(σ [Ό‡ω™δΡGφhVŽͺM‘γtθMμϊG7“r‚ς p`μ,νιVΞΐώ“^v‰z˜£σΥΉgž$άο:δ ±ΛX”?Ήž’ § {:ΕElφΈ#ΐ0Œ€w\μ8τ\b]JϊΌτl!Ί&°4Σ§)OψΟβΐ©ρNl\ZZ›™«) /O―F­δ /(€eVγ©€`zψGΈjx‘˜!β2¨pΰpyjΆΥ–!νβχq¨£C+δFžΦˆ!RX²•+ WΠpωΌ!7JTΥ(ŽRΜIvΎ:T¨σά_χ―p–Ή€pΌ}ίρτ¬δ…ΏΗ~όOδόBΗd Έ«l>”f›Ρ^ηq䔬­«7uπ=΄Ύϊx^Vt[†’Šuδ€ς°œοΫQπΞH‡Cπ/ίωk¨Θ#%±?yγι€# ½95––¦>ˆγί%a5—φρε€<·x@O[½ϋ1­ώΛgpΜBΓνό‡?Υϊ•Ίm):ΧΙ­ 6νΗΎ£L‚e”oΓΪRE)šΤΔqόΗίΕ!UΙϋΓΓδτί’PIΑoΚ7=GcP< Λ£§ϊ"σάmOŽ£œΧ"Χ­'ύ24βζΊ-,yŸχ)ŸΩ•šμn³§ΰΰ΄ήςτLΝc=nϋ1`ΰ>ΓP’"ΚΌδ-/I“ξΫ±՚’s'ŽΏσ:mζ$Ι{ύŠ)ύδ%½%ΦuζŸρφΟTοΛΏΒΠ»j$egϊr€―ˆx^yΞsώbž ώ—<&•W!g_=Œͺ©ΎλtΟl5U€xσdžoDCUΠώ ιyXΉš-Φ΅'99ͺ{ώτ΅Σ›ΤͺW°₯’κΚ!xφγ³+―ΠW ž– ŒŠvlC%):_V£ίΦ£?Χ«Σχ ›ΥΦ Ε΄¨WΧ‘νω]΄[D"¬…4ΛU†owΙ}Λσχΰ‰ΐσΑ‘ήγΈ8U„mώ3gΎ…ηI›IΙΉ2π‰†-ϋq€ (,Ρ ιϊ'†mο­νπΌWςά¬cΞQŠ] ―Ξk½‡χΎUΧύlˆ‹Ό>XΧΈΌKž›•p½#ŠwTΙ‡ekα#EgγJμ”ηαb?οΥύ‘6ςβk7λƒΫϋŽšυoa{VF¦οa^JͺφάBΒ©ΦQ|x©Aƒ,RΔΞϊ©~"δ1_σ~ή«ύ|vU Vg/ œΦ½d0δœ θ„Ο*ΕΚ@qγs›Utž-–h€₯H ‹ΗHΡMš©y €“U yΖ~66+Έ{gΦΧ`Χ:λ~NΣ‹f-A*₯ϋ›N€Μ%£„*lΨΈ1Pf§T₯…πΥ–ΟΥgkΞόO€2₯/x hAΓoΜΟqŽŸmD-):KΊ’©™™τ%€Άξg±!Žσhm¦Χ½Mj&PRοΐ«A†2z1±θ<ίΫMΎzeeε\dΠzήJˆενΑ›o> rζΑσοβ'>”!;'°& u£‹ΦΐΊ7ͺ4ΟGχ‡ΜŸΦ²†GͺhΝ•”ΐ«Pό¨—OUΰ C[ύ+ή\GζΟΠ=§λ‘ZΥΙϊ»B΅"άύ’Ημxͺ&πΕ 2$;|ϊ V=φηjΣΈί°ΠREΦV|]σ=άu{›”σ0Λ`Hw{΄ΫV£vxή;yβλXΤΑπϊδϋV^’žγrθλCh;δEτcσύΒω½£bc•b8™]„B2˜ι0ά#™Ϊ°ΑσRyΡύΌΫϋ£DζkρυΑν}‡9ι>ωyΛrΣdΑ­ƒx§αxpͺ屝υΑ²b΄DζkζkΑη 3ΊŸΟ^ͺυEΪΩ}λEܐ† ωXU\Θ5?·ΡŸΞ„­ŒΩb‰&!'b)β…g ·&-Ζ-2z}&Ω·œσh ξAAΠb. »–΅AΥφγΠ?μEξ_Ύ%ξ/sέ‹xmw3~y0_~i·v“ή|πΟ’ρ–γψε^ΪΤ­ΎΌoΏ(?°FΫΌσ>₯εMaUωε΄Τlια= Άp›Ώ` <Α3η΅K΄ΰ1Ϊ9•οzXDψ3"sΡΦ#/ψ:RŸ-y7Τσ¨³9η]‹\Ρu̍g₯°x8δOΧϋ°!― ‚"β]OBΌ==ˆΘσš―Υ±'β/σ ;lύŒ<’3="Bζ:ϊΔiϊ~“ςEjΝϊ€Ηg*ΠI_‘^‚I/Ε!^ϋO·<O *6oΌφ»"ΏΣψΌ…]>iχH_v_ )ά©‘υ翏σ£fΐΦ#Έμ{Ώ·VρΈ΄0ΎόT΄uImΊ‘§ΚΥΧ­―Cz8τ>m£ΐ(Σ{όm|―νι¦Objy“˜6y·T›υ!##5P½]ΝηBšκξΈ ΨUt»€ΛΗ#IΊz+j7­GaA–/"/‹€€$=˜—’kα™9ΈŸ‘ nmΤΟ0ŠΞ€κΕ1ΫΎωŸ‘uζ,_kEow;:Ίνέ―H©ͺΞ9ΗI±ώPhΤ‘ ύ.]z&o_έ’ΒVP eΊ.―K•ϊ`Γ“hPν°‡Ξζ!l3Ž2œΧ"Χ­£ξD-μτΊU”<‹>»>ΐ+RβνF|p|/n©ΒόŠΦK3(ΪωG{Β΄.LJœίϊ³Χ"zŽ iuθ4~πο™Ό†” ›|½3/…ƒΚ>/-Β"Νn€͟†bj%Γ^ςc0Xι}x‚V5%ŒMDw ‰G7δUQZ.VUnΘEιOb΅μ՞Žh­ΉNX)-τΏ<›;»ΙΌͺZ^§2r₯½Ύ΅Επ₯+Ζ,©Εe΄:ήΌ"dΦ O§μ‰yΥbϊΜF ψvΌ‚o•Ύ€yΑστ=NΚZχ…ƒGΧ‘£ωξ¬VΡώϊΰCϊΙ$J θν_€'Ά=xΨƒ“~AžIΉ7]Ε³ =Γφφ'J›‘―τύμ½ pΧ•.όρ’xι-‘ΗABB Ι! #ƒΑ‘Αβ'ρ#φΔIμάIR“[3“šΙ?σσΧLMύS•ΊuοΘM*™ΙMyβΌΫ;Ž=86† ‹‡xH !!!!‘χ[BDώΥ§§ϋœ>ηtοξs€kSθμή½Χ^k»{νέ»ΧZύ8^­Ϋ“ΣΚ‡u‡”J„΅Χ‘N:ΖΰHx>VτΌ›όDη±@όJx~ΈΦ­³,ΐβψ4ͺ`νYΔΏ%ύ±ΨzήΩσΡάΥΧNζ§Ο£θι©ΗšΎι;₯X±‚Φ4υONO aεNμ-Η›aφ_¬Μϊ±·œg}Νϊš.α}[λAΧσKΦ`ΛUΪώΠDηYZγ] yΩ/_WˆΕΣΐίΖΩ²‘蜌 'Zt: γ"β)βFd η&v=Ζνxϊθr΅η9%κ₯ hΟcUΜcNε%ŠyΦΫ°rtΏ|+ϋ‚lΨ\ΌϋKx±tε'υ$Ϊ‘ΔψΉ«―Î λΑ ΕΘϊsπ0.Ϋw°…υΰτ~ŸUAι½Ε>g»z2lρλm΄ΦŸnθAMτGlΠψΨ‰¬δ#‚]}-¦'t mdEυ'Σ™G:ΕΕƐqUF€`ΧΨ€½:#ηΎkGπΡ©ύšaέΊ΅Ογaϊ’š”V­ή„υmgpξΊλBDΑ€D,׌΅€Φ¦ύ>#g…λΥAzY¬:ϋ 2JFΞfιZϋ;8K_ΰͺΞH€ΣK°ˆΎf'­,ς3πJ©AEŽqx'[φYϊ΄yςΥ;C[HΖ ΎHΓ·Ά;:† mT?ύmμͺ¦Pα̌RC/ηΜWίΛ‡£WΞ«=‰ŠςGδ HAQεNϊ―œοΖ…3GρΑ›ϋž%|Ν{p_U΅vxρψ-οVΖ·‡ΣώN b’T4LN Ω!6¦DvkΫχ­)GΑBΑϋ65g9ί5šΫδΰIΌΙ;dx:‰‘CJ‚jτ7Œα‰ΠŒμœ]ΌPϊh§½΄ΠIτyύύ°^ ½½”€yκ›}r κρ7<ΒΒ ½4άΧΰ}QΌnR'9šΘ{½»¦ΤkXοYSLWφQ/ύκς΅δz$§n2†6Χ’A:b©Ψ"žυν ™‰τ 3;MžΣss5&rΌχ Ÿ χδfiΞ½]δˆCš“ιSφΎ”‚Μ,ί‘yΞζdghĝϋΘξψD<°6?$a‘ ΟδRΦμΒ:i Gιbύ>ΤJ*03ZΜη‘^\σžϋ“^C_Ψ(ӎ_πsZI…ζ«4έ‹ή0κΧ’žw‘η1K@ρό`„)&Χ­άύΜMάΈiήκŒvρ›Ÿ·Uκxlq‹XeΣϋΦ5nbχm~Α^<ΊL“bˆNήφΣΕΪI]F”ΞΫDΌΞЎ΄ώ Eρw-Q4ρΣ‡b©ϊlΆα8Μ\oƒE[Ϊ°­9­ΐz‰€hΓρšΕ§’βzι֍i{ »NP΄Λ‡‘™ON8ιk°†^AΆΧ§‘°hΞΪΞΊοlb]Ο·‘»{Œζ’/-Edΐœ•­:1I"ζ"»Ψƒ’Υρ`}uTNNf:~αΠοΠ5IӞ+)σ`Ϋμ/lŸG"uœ΄Tv|“.―„|¬£ˆ™RκΊς{| |-c}‘Q)FΟΘ5γΧ<δκ–Vδ”‘ιœ’ζ-FQΕσ(Uοž%Z€A,*BEΥσX{΅§ήΧ UR«zή-~d’Ωυ'Ο±ΏnεωA½=ƒώZŸŒM _Ÿ4}.Z―›3œzs9YΟ;|>2φ6ΔQ”υ5"ΘOδΉ£ξό!¬L{…„”†LšL:†ρ²:?RZ,a}ΝϊšβŒ‹ξ3Ψ^:^ΟgbγgΠ"3c΄ Ÿόα0Βψ’Ρ’pςθk‘ϋb¨)`ίΖξ6’Ε»K°Z$=ΡErJfΫSΔ•ΘΞ¬4vΉƒ΄Σ•rsΕ™‡³Σρs‚§₯λzYl9Kΐ^ΗδΔB$«οk’α©,μω&κ1'J'_xΆυ§Ιυ*μ1ge>rE_›¬(κz~‚°ήυΔΩ‘]½λ†G5‰υ"μGVσ°€?υZ>‚‘kbEF;ƒC~nθkmψCeX†@'v֟Γu'Π²«e’C\n1ΦSπ·ΓτςΠzδ)=μ?W3!z‹―?}‘πœιΑP]π?7ηΧ»υ„Γ‹#™Ξ<‘(.αGŠk0Œ#ΐDδ%ͺ)-p•>›ͺ7r–Ήvc”>*E-–όκ&“χ0Άώܜ„Τ΄L8Α\πγD$'Ρ’7IŸ4 †~+σv’Lϋ|z;Ξ4 .JTΟLΑ ZHρL “›Š}‘œΫύ―Όαg°–όŠΙΠYgΰmΐgδہ!“—ΓaMιΰ-ϊO–iX]š‡τά5(*«B^Ί<ξK 7γώͺΨ`Ĝ†ϋ6oΤ:qφΔQS£­BΜν[A¬—κη"-‡ βθe΄ŠΣ½™Sν«όλ¨Ηαψ‰ŽƒΪΎφ«h’EΖΞF8cαΎ% 2J·ΐ“¨†‚’‚ιAԞ C'‘ϋv}Ιρ)Š”’^ωή<L= ϊ+J§5Έ,ς72©d|CFκoΒα·―G·λΦKλ%}‘έdΌλ†^²v©τ‘±ρ6εK/)Θ+ήBΡ.#O2,–Ro=Eμ•³ξύ΅£ηϋΠίΣ\Άt9r·ί‹4ι=η`#NΆΖ‘²²)${ξBεε}5ΰšWή)LMK!…₯~t γγwp,’ή.ίGΐ7 5­:’iΔ€ΙώOπΑωSJs™ΘNΞWςΕό’)kσƒ‡ήε&ϊθΙ°ΊH΅ φ•jΉ¬ šΓ§›pN+‘3ΦυΌ;ό$"σ˜ŸΨay~@¬―[y~sΫ™ŒM%RTyω»OŒtP©ApŒl>œ„š―η…ŸŒ} yU}M’ΈΔ/°O֞;ιnβVƒvλσC`λΦKX_³ΎŽ•υ<}‰xΗfδ₯(ΟοS8yπC w.-CAAžV©½υRΐΎn;E«7K™{’ΝR―B±5υQΆDθb$ «&^y#ι1 ηlyN9ρ€²!“VΥ±ΗΝΫξJk’…Θ”c©nPͺΈb%ΉWΧ[ΩeΑ]·‘mώκκΨςpvaό"ŽηXš.Škχ„FΑpvfΝσ—’Dzx’§²°η›¨Ηœ((σSύιWUάcΞβ|!}νΧ ία,{θ±ήυ …;9›z7ZΉ†Ξ DV2Π Dr"ͺ—’LνHξρ s+ϊ:*H λΑ ΐPqL­?›Π@kΜ²tZk’ΙCΡϊmdθ|λ4#‰1΄ž9Ό―ή3‘\’›°–’€c`½I=‘Α­ΟDYοΖΜ:9ΪΈθΗ„σŒ#ΐ0QG`ΕRΥƒ‚ ωΏV•Δ)@κRΩΘd&<95u]cHΑMG=(Μτφ ‡"Ι³<ϋ!2αBQ’0Ώ"TJλX9]₯ύΐs«Ύ€gwmΔ|―‘,₯OΤγό<ΰ…ΉΪΆύίvτ ΠΛφ\ιe{&rW“œ—{»YΩφ› Aα³…ξΐΕ£~FΞDη)_`δ 4‘»·eY’ωs.Eϊ$³.γυ•FΟ Αά{ͺΊ(ύ―Ε±χ~…š―ώ Ά•Hν.#›5Ι³²ΟΨ@ιCX/E•Rο œ:dέΰszΪg~˜.αœVo#œθκW79)’xRΐΐe9«k‡ŸΨ8θΉ)ωαqŒSVB?5= R/{”SΑ~άΊ-έ·$DaΥγΨ±>Ε'Ξψ) ‘³ „Ύ:}Υή}›ˆMεO£:;[ic/ΎZόΖQΗAΊΚ%CgΥΝeh¬7 Ѝ±φ\?b½I½„₯eX»Ωƒ¦γFjvUΈ‘—ΜΪ WvωT#:wW@Ί›²=ΕΨ΄s‘6/΄_Ίΰβ¨HbSΟ_ι CgHN;ΉX[΅ΐ«&›qβl‚ΧΠ9³°σoΘξ:έJp¨v L‰4ŸPΤη{ΙΦΖ|’Hjγ'ϊχ‘^8;σ‘žΞςό@–*c•Ι ψθψϋ>ΏΜΘSMMΆ£½sXΟFΛ[›n`j²C·ι•5­ ιOσ‘–¨[Lφ£οφ|άλΦE΄«ηςS%΄;©tsω7ϊΧ΅Ψz)6Χ­I}—δ›‘υ)tψΏhQ sνς‹6Δ†²πϊΣ‰ΗœΠ|δͺΎ6tVwm=kΚ²ή5βατHHοΊδ‘nsYΙ)8λkH°hλ3!~юτΰΏΐ‘――iB•° ŠNŒ­?›>9‹ΞšRωEWQ VgΕ#O38¨G}ŸABЎ‡:!ΊώLB΄υΰά_οΊ§'ξ,}Mןž!ΊP·ŸcF€ˆ8c“τ a ρIENf)j‡ŒF«…kο“?›κ•„"š~D\PQϊ—+R°2θΧνe­+ω Φ©/ь–Λ-Δ)λςΦaΊηZuuU–gnΗξςJυ=WNω ‘…ψiMy3%χnEΎΊ―6YŒcb¬m3Ψ/εΛ†cλοŽθχU· δή<}uC>C1ΰ63ΐνιΡΪ5)5ΝYΊ£€Τtκc[v==ήΘC’Τ‰Iͺ•²·©€?—.·b‚΅gΓ}(yσ¨o¨φ†d£?/a_―6₯5;ό|؝’£ηΚ‰^ΚKέΛΚ†‡ήτ :(`νΊvpίϊ±œ™™€έ}4y[_Ε―Ά|hοΎυΰΑΝ{Q–JŽ&^Ϋφv|zφ'8.α2‰6šΈΜη|;0,E ŒνΔzΙm½Τ„ΦKδ<.ηάƒΖγ? t½H.Η¦Υ7)βΉ™$δc'±ΎζυΌέυόΦώΒλ„~ζcRŽ·αΜοp™Ά8­€βΒUP·έ΅6zΌfΞ~NrVL;Ρ-4R–i“$۞ϊ t~η_ΝΠm±χpvcόl‰ͺ«ρλZ‚Eβ+詜›^‰Ο¬#―q]j½8‚Ž–] eEωE›Ξ(uΐQhύιΤcNp>rS_τxްήum œλ]ϋΉΦη1w<ԝθO‘uˆ΅ˆ 4„ΡΦgBό;Œ,‘^ͺVυ™[‘%TΎΎίΠϊΪW/fr¬έ*zΡΥΤ@/Ί€5hςZlί›‘Eτi©?kΛΰ ΈP’λOwτ`pΉΟΜύυ{zβΞΧ4–Bz>†θ/W.aF€ˆ"ƒ“’α²l–™³z>{;g».αζόlyξCeŽd–#§žφ3>ƒ^΅puΰ½/’}χ³ρ™ΚgΧt —―/Fρκ­ΈOΧΏ+M΅ŠΡK: K?‹όΝΈΪΩ‚«Γ]š€΄ ’‘V„²lυΣζΤyΪg«Υ>{NΗBόt &mEΩ*ζ[>¦ΦΫHδ εŸLŠό«Ψ:n?p -Ϋ«P ˆ'WΰιΏϋωƒqΉ¨zh§ΧΡΠVƒα*kομS°υ‰oαFό8w’ΙU›qCO ΐ/°†Ϊ\Σ§δψΈSv|\RΈ_Κ-μύo1˜Ά ?ςeY~΅²α·<χ-”&wγΒ§ηΡvΉ=]υ1λ6>€­ΫeΓ?2S#C5?#τՏ’Xέ?‹Sdn+MMSh 9-Y»/Ύ°υ—:pkώZήΔΐ…ΓΈ¬?… ;ΆΛE––βιΏω μϋΓ»¨%ΉκŸΐ­ͺœτAΕs'`κ’`ƒŸ&Ϋ‡ΐώ7‘—ŒΠKΣ₯wyΨσηίBEc½Ž8̟?ƒž³ϋΠ`0f§j&q`‘ƒϋ6PHc ­ΗC&[χ-}εοώ—("Όβ"R#½ΓHH―Œ3°™wαΡuut^rΐ£“›ΜυμBIςάώpϋvΛΖ“ΩŒjμXR‰yτΠxcŒ’œΆΨΌne³ϊ—υ’zΏ»§—Ξ|tIxg€τ*<χΛp䣏pώB]ŽΩΘ/ZΫ‘Ψπ;ΝΠΩ½$x%54\Β6ΙΠYŸ:Θ08h₯rμxΆ’bσΟx-LΞΣ(3Jφΰ‘ΜiΜ#½GΪ³aoΡ€:dˆθωΑ+θ£Ιά“«²θF{«|Ÿut>…ΣNfSQŒιl!– °`/z¦?ΑΘ‚ ukώ2d§ 0§P3r&χlœ½|PAΟΩs€:sύ—υ5―ην¬η7μύ6vHψ΄Uη]δφNaω½ΫPι•™rqk¨ g΄U29]oDvΆρ`ͺmυ¦·‡έeži#N ο~’ΒGόΊvΙσ-…’ŸΣ0ϊ†[ŒE‘(Ώ¨9П΄΅'qΓ•­ωHD_ϋXΕ`Žυ+ƒ&¨wzδΪ™Ηœx¨«9џ"λkHΊ¨κ3Q~юτ ΚΟ‰ΎV―”Xϋe=θ戝;[š’νΤδ2x€u§τΠ»΄ -§u‘2]Ί‘}’k»θτΡ ]ήWA—›«λ]Q=‘λš’½³τ5u*&ζr!—0Œ#ΐD†ζZ¬υd#ΗΛs Š ?G˜μ‡ΟΉ·† δ©’vœi;‰’ •2ƒΕΨΆ‰ώϋ±λλ<ˆ·/)qΙPΆAIDNv₯χΏ_uωpΌ žzMeI*ΰ§5žˆ-…UHSŽ'ϋ?Αρvϊ|ζœK΅xχΥψςs;eœK±mo©©”Ϊ;ύY²΄2-ΧΧΡ可EE.φše&—’ζ9ιΏB°,9>~r €kδ}ιΜυ»ρύ·ž2Q|Ÿτ§)ΙDγIΦ½+“*Uo©Π’rΆ:f?°Ι|ρ\ ²ΧΛF¨žςxΚ}μ›βqY3žΗ‘ΑσΜvΩ"«{^’ΎκήάDσ~|LQ@M“ ~Βγ`Βψ𑏱Ύδ +Ί~ͺwϋŸ¦[νdθ,`hλθΎ5r‘ΝϋvΩdψm³'€—αή όŒΥΛ†Ξ’tJ»™ιΕ(ΚΠ¬λŒά’‹ΙZ.šμˆICg€υ’4‚κ₯ΑΓΨχz.Ύ@FVή+‡Θ·ξ•ώ/ŸaΓ‘ ^²0/„›7zŽ\@Λήjθδii>³Θόή*«sPz_΅2ίλˆ(›JsqͺV4€>Cg1=ߎήkm@nžάjοU\Q °―΄^ΡhSTΛ}rοί&Όυ»@ΚΧ>/;--Dυγ]• Ωκ‡Ώ„]λύ ΏΥΊΉ[ρΔK[Υ#Ϊ+;…Wκ•V0‚χ‘ γσ‘Op;9š[Ϊ/ h]±—(!± oQί[+νL6γΓcώλ:;<,ΤMHΖr΅ΪΘ0zυ_q¨ηΥf Ώ‘ψimΞc]¬d―k΅{o΅ͺτ+Ό^Š₯u+Οʐ»0?\_ΛP\σeούu "ψΙ‡ E"z^ψϊΤ8Ϋ>H-g’­―ψ >wδ.SηεD¬’}†UΩΑ@ΖωsΏG­ρ?σC0Φ³ZΞϊZ‚ŸΧσΦΦσK—+}н2σ‘Ÿ—gzOΜ2”Ι£7Ζrκkkφ~UΛPA9χόaFγnΩι‰&θ)"!+Yb…¨‡‰<”xŒ[φτqος±μ9₯Ω8ˆh`ΣcUΔcΞ=d¬Ά΄ Ο=³[Ϋ,h?ς9Λκϋ~ύ2ώαy―Gx*ml>·ϋ*^}―ΞjΓ¦υ„=œέ?S‰,FόΊρDσ—;)K}[;ςΩ!Œ¨ ,CuQ~Ρ€՟.xΜٝDτ΅aq υ»ΆS46jΣkδ 7Φγ˜„0,EןŽτ`T#68G%΅‘―UΓoH=a¨i~σϊZTΟΗ ω°q)#ΐ0Œ@”Έ~ov¬«FIΊ/Β§Ζ}Ί―ΤβƒK§΄’XΛτ_}o` ΫΦmEEO5¦~45‚?4κϊ75ŽQZ;&©/LŒaάu΅ G(ΞR`²ΝOmbY)<ιͺ!b?Ξ7ΏOQ„ν%ύ—–Ό”·Lbφš4­=|β7ψΩυQμώμƒτ9eυ…-ŝj=† mσQQSε5ΎννΌHO{ΣJι­°NzTρς>Όφ‹8<ώΉ'ηg Šρf;ԈΜν ΖΛΏ½†wΏ7fώ vξτ7fλΖY2ώMΩΎέk<6}]•Hl½ΝυΘ(,Eͺ??―άh:φ1ΎρŽχHϋ“΅ eRD!ojΔ™·k΅Sv2G~ϊc`ο#(-^…e S°DwNέΈihͺηψΟρςτίEΨH?ύRΛ±ΐ»oμ3ζ¬Τ΅ΜΟΑ8ψ‰4ΎƒώψžΩΉ ΕωF½γίG‰ΦuνπΎ5Θ¨½+PJCέGΆοΫ8Šk5υ£g°E©,J'‘g"aΉ5ηΎΡήpUζμyΦKξλ₯žγΏΒχϊΊρδ”οUο…0ށ֢«†kBH/ OcRmΕώσ–Οψ捦¨ΦQ΄Τν€θΖΉJK’“{ˆχS70A5ΥYW!2ω‘ηκ)₯؁žoομ¦FςΌ uΆ]Ύ2vΉ‘ έ»+dgžŽ.t *ΌΤŸΖ}xω;Χ°η±G°i½L―žR‡»šΡΪpήΝ™NLOHΎωY­kϊ;z]ΓWθ>reόΛσ‘–ζ₯~GΛk8Άτ%TλΎζ‘6ΥΧ{Ηkίρs^SΟκ~ύ/ΏPσƒŽLΝ¦Ζ/Σ ‡Ζ―ω­#θy•ƒρ74?₯νyΜΘ#Ž„k΅cΌnU‘0όςό ΑαΒό@Χ—:uŸ;„^ <ι?ίΣσΥώ_ΏlŒζLά…τΌπz^πωHwΥΜe}m{~|ξ˜?3†.rrΙZlυ1kυ8sišΗtΰΡχ%ĞτmΔFžυ5―η­η''€ΎΦMύz-q=rW©=ΧΠ~ΚΟ{]Χδ=_ϋ«Ώ£"ΉŸŽ~ψ…FΙmΣWP©lJ‘^?n“Π£ Uͺ_ψ'μ’Oΰ•οόH{€ J`εDvΌ°₯Iακz#Kό eH©9βy5’E6€H―ΦΡN7₯ά5ΟγΙ’’ 5υΕ’‡Ι›8Ψή/Δ¦ͺΏFu0q]ΝΙήCxΉV Γ―;AYΟφoΰΕΗ«|…nβ©ΆJŸhόζ7?―σΦUOψύ’ηΤίωΎoQAt_':“G}?BΪπ=χψαOχ”K[Ώς/Ψ‘Dlπ―Πτήwρͺ±A>›±ωΟ|ΥώΚρ0}:κ{j΄d]LεΘ’ώάΣσAx˜§aΗΧώ[ΥΟ.΅~πsƒuΖΦρ½ͺηp7δ{8x½JŸ Exςοώ7ο'šτeOQY)mβϊΚH’΅{π_TgsΑδRςRώΕ?«όπ/:~.ΰλ:·ΰY<©x*›BβυTώ%τήΓϊŠρxκ‘ǐ₯/9_όΆίƒΈ\A”_ΤθDυη²Mxvϋ琑Η!DΎυβ/πNK‹†Ψ|dW_λΖFVw…˜υnHxδ“‚z·^r@)ΒS@:U]Ϋα6Ρψ.ώŸΏ䬽y¬δ‘ΏΤ"+mNtΌ’ύιΖ:D[Ο©2„X‡DMŸ)²ˆςS»bψM©ΑWͺ·Λ›#gIΧΏi’λΕτ™zŠŸ¨ΎVێ•_Φƒ.?½δρoγiνσΐι7Ώ?b|Vn |:'ΒλOUTV忏Μす‡ΦΌνΤG‘ηSltL,H΄xe΄£©—’qΉ‰§ΌδτΎ1_žΛ0s‹œ@1ΠU‡φιϊhήGBx-O*Εκ€,Έ‡ζuιZλ@σ€dˆΞιn@ šΧ΅πz)ΖΦ­VθΜ†‘ΛF€`’ΐθPŒ_tŒΎε8ŒΦN]δζ0ΌFΗΘΘΫ/xHΏΣφψωΟρΓ4ddυ‘‡Œ«†»τ†ίi¨X―¬½©Sӎ ΐΰς 2ή (΅P0XΣG,EλšλΉ\K ·`ƒbδ tΰμΓΊV’“ΖF@Όhς²+žσϋΦ.G?w`½d wυπε:ΤZ‡>)ζ²πIi5η.žVΉκuΡ\F#›fη>ŠlŸŒ­Υ£ξŽ^οϋΛG³s] λΐ[·ςόΰξόΠ^O™QΈqE―OλΟGΞ;m}m—ŸπsΗυv΄Nf°Ύ6’β~a}½ΕΘ™’££ΎΡ·ίΡ,Gtφ“f#‘BΨSDΓΑfd‰»ΠΓΔ用”6$‚ AV±C&ΰα<[γ Pνz’9•I”_΄θœλO§Ω₯·©―ν6?‡κ³ήέΑˆ¦G·§‚곋’5ξΡgͺ4’όTϊΉϊ{ϊΪ9’¬c¨ΆPςψ·(’s©χ°ϋΣ_γ½v@=™_υ'’¬οδυ蠊κO¦3G\σΦΈ”Έ{ΰˆΞwΟXG²§N":GRpmGr<o>oυ‹ν Ηp₯Ή ==ΈŸƒ²κίη–{α•ώrT^ΤΫοϋžMXΊ€*_οAS#ΏΈvan‘λ₯@|άΤKΛ³1Ϊ9ΘD)‰υσA;¦;α&žΊfηT–ο£95,ŒKπu€›ϊ,Φυ8ωΡ ,qΟΐΦΉ„Έ{`}8ΦNτK8ύληU΄μDtN‘―Ό-¦PΝ37FΠ}mΐΫD°ˆΞlθόΒ?aWy.…Ÿΐ+ίωΡ]³Ή§^XόΛ0Œ#ΐ0Œ#ΐ0Œ@τΨ‚/ί/!ΟΛx‡όΏγ`h'έθ‹ΘF€`6tζKΑ ΨΠΩ Ήpxϊ ΌψΉŠΥΊqδίΓ‡u}!κπ)F€`άC€υ’{Xϊ·”³y<[ςΡ~΄W_ρ?X?Π‘»Έ€ο£»xποΰσuΉΑuύNώΘ!Η-3Œ€¬―ΝP+ §ίbύΌ;†Ξz:5ΜΠyžZFΰξA@ς •ξφσ‘°αsŒ#ΐ8AΰNΧ―N°aZF€Έ³υŸ›zΫv~_ό›§#gκwσiœηυi¨+ σG(ή|Ž`F€`ξnββ(7ΝWα4Ημ@Sk&Lδμn>†ίπΩΘΩ.bΘ!ΐzΙl%£}R †Ϋ‡ΌΖΞ±~^ί7Ξ"ΐχQ &\ϋπuνΞΖΊώ'Ώ;(q+Œ#ΰΦΧNΠσΡήiλwύνλidsq•›·ώs$Xt΄^ŠD³·™Sφ 2WΧ»Pwψ$F\ηΐ 2sΚ?―Ɵώτ'ϊœUΰ/)£5»‹οΪσso΄X"F€ΈSΈΣυλ2NάF€ˆ ήυgR v}vŠ W#yΩ"…ΡN ΛΆέ½λΟٞ"3βά*#ΐ0wiiiή ,ψΥcξM$HN’»ϊϊb+’n|ZβgΖΡί{Mη/šΠF/nS ©ξ&œ―ύŸΌ{œ9ΟΖωSΗpκ£—qΰΰit‰΅ΛTŒ#ΐˆ"ΐzI9#έ½ΟnΤήΫIϋj$η–½ε±ϊή/Ο›½―4"pwρ}twΪ{ΎέYžάΑ‘[aΰ°ΎŽ3’Ύ–ΎΔr§¬ίύŸ?όΧ󳉔CΊ †απ°ΌΟ=χͺάυ†Ξ«6ξΔκŒ₯dθ܍σ‡O€χω Χά‘,Λ^Œ{Wj›j7ΥΝΙόn<―βΐΏŒ#ΐΈΐ_έΖ‹Ϋc;οϊsm>R—fc‰½ώŽz\Όπ ζ₯γn]F{~θ8Φvη]\ά#F€`’€:G什E¬:\>‹sd({žœcξ*ΑΘ@†θΘXΜ‰Ο3Œΐˆλ%ρA• $cυύžd$qυψoƒ’QA¬ŸGζξ£δϋθξσ»‘Η|]‹r¬λpς‹#Γ”Œ# X_‹£*ι»;iύξ―Ώύί?Jη₯Δ†Ξβ׌)%G€0…… οpϊ.τh›’r‘6AT#‹;Ωƒ$œ‡»Ώ‡Ι~pχF ŠάmzQ„–Y1Œ@Œ ΰ]Ξ `*±όΓΫψύO~Žkτoα½ιw΄sΈυg΄Οσz7Fn“`ζlθ<η†$&ŠUCη˜›…fF€`ξ0Tcf)H‘ήΘYνf¬ŸWϋΑΏŒ#ΐ0φˆuύN~{hpmF€`ζ.’ΎΣ§pϊ/ΦΞϋχ/R†Ξχ|ν―ώN6‘Φ£ιBώθ‡οΊΠ 7Α0‘D@5n–"θ%z’6GξΆσGΏ?Fnn›`ξb$}ͺzθI0άiϊ•υη]|qsΧ›άiϊΟεβ\ιŸ$—jD­ŸlWgF€P())ρζš/·1&Œ€0…«σΌ΄ Βm0!#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0sΫ·o{ΕΛΛΛ³­­ΝK7oή<}\εζ­l(qι £υ’K-q3Œ#)bΝΔίHΓmωύ=L"…;·Λ0wώϊΕmύiύ}ώέ}#Μ=f«άiϊ/œ~œ­σlδlυŠδzŒ#ΐXC€#:[Γ‰k…F€#:‡Ζ‡Ο2Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@μ#ΐc ΉŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#cpDη°9*.Gtž£Γb1Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ€kD*’³1Ύ³kβrCŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐˆ#ΐ†ΞβΨ1%#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐD6tްά,#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐˆ#ΐ†ΞβΨ1%#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐDωj—›eF€`F€`F€`F€`F€`X™Ύ+—­@œΤζŸn`lΌ {»]δ`ljγӏΗͺ 1Ρu ―Ώ/£έx:"GΛ“ ³"Kββ0C}œšΓΠ`=]d·|Y&λJ¦Π?6¬;ΜΪα§RG{TΎ!“·ΰ™/νAΪ"`δςAός!«ΗάI]Ζ©?»Σϊs2›{°.' ‹zuαΤT7Ξu6EP Q~btvτKxθƒ₯,ψ\aG†η½λλΙΚιτλέ94.³-JΦCψβ 5XArτΥοΓλDbϊEHxβ•’θ\ ‘73=€φφzτ‡kL”NΧ¦on‘^Ήz='“9ΓΕ.?;ϊZ–/+S‘΄$‹ηΗ!ξZΡι:ϊϋjΡ:¦λx,eYΖhEOV;z0kž{¦†žύf0άπ>~ϋ^mτδŒ 'MŸε~½”4δ Q=Θt氊βbή—2Œ€sΨΠΩ9†ά#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#1VfΧ Ί°9K—πΨLFΐ΅ηί@C $-^κε·dρ|DϊeΒς”MΨ\Xu©™}φ αάkψ°έgj½<ηQ|eC₯I]}Ρ0NΦώOνΥ—Ιy»ό$ͺΩ‡@ιMJW -7©tj~Y;G3%—cΫύdt>ƒΑζ#8έΨη>χΩμŸϋ½αX·f/6•aΉύgŠšρΗΊ_βάί ‡‡’όDθlλ—€νx|K ’,φ±ωΒ/°οr‹‘Ά]=8zΧ π\;˜M½ΔzΧέ«ΑM</Štu>–̝έM"ϊEL‚DTάϋ6*D‚_[‹ΐΩ¦ύψ¨έ¨Sδj’t@nv5rW€#yY:R–ecΉΆœιΗ‘£?ΐ©:^Q~Άυ5±₯βi―Μΐ‹YρηΠsν>υ>ωa=ηYΞω!šνθAzήLΞΝυ>Γ,ždb?9]/‰" ’%^LgŽΈ(.ζ­q)#ΐΈ…@€χ&-Ιή›ΕΧL(c_-λΉhE€ίΗπ;v<ͺA f7<5Ή-{JZǞk"±υE|ao0xΓwra F^Η+―½ο+‹pΞκΈkυ‚ΚώΊJjrΒ9?Q+{tΞε4ι<Ε.Ιd,¦§Ϊ1<8‡ΊIYwLEΨ‰ΟD~rV,ŠΗ―'ύ ]Dσ•HbckΗγ?ΌnρΙn½€΅eq~·#§O Ξέq˜ι3έύξ8rM$υœ {λ wENDκ2šŒ(ݸՍQ“Hx"Οš.± l8½$7aEN ΜΈJ„HΓκ5HIYΕ ₯X’3˜Ύ†K'κ ˆM ρ’#Sϊ8ϊ?~Ϋ5#1Q~"t"ϊeeR¦e#g ΄[·ŒΚPDF[οšφ*E½ΔzΧέλΐU<#x]ˆθ1€2ρΐ¦/`cz’9ω’L”­σn―κ£Ε‹›ψMΨZώYHOiiz£!Œœ…pδ'’―Ώ9ΑŒœ•Ξf¬Ό»6έΔOktNDπzΧoWοΫ`Μf±ΑDЉr[ΈΕi΅ θ‹>wBr²^νΏ$fLgώό Š‹θψ1#ΐXG`φ ]π8ΆήέΐšΡˆHαΤcǞG΅3@QΟΕ@d#\β¦g­Q£ΔoΧ%blκV|du"γξτΊ6φ0ό‘S~’WvιœΚ qθεΰΆ‡Άccuݏrͺρίψόακ=ψζ7?ουBEο1Όςί£σ‰WKECΦ ξ(ι] «όΌ](]™OFΞ™&Π}}½'qΌφ΄šœ-²νροp½$’η₯ΎΩ–S¦‹ ΡΠgnάοjο#©—T³τkw=α˜xψ°N΅™¬ΗίΠ½ψ|~p¨—ϋNΞ@ .‰2Y[°η‘-XSΎV[#ι%ΨσhN~Όοξ·ωyA^/‰G\ŒΪzIPOθ/Wς’z"<θzP”Ξ8Έqtϊμ{ίώšx;LΙD τlΥ9Ρ3κ±ζθ₯—ΗY9ΠΉR92\BΦ¬.@³_΄Ξh‰ιˆOζ.μ9OŽ4γΒΥσθΗ’ΕΙΘL.ΒFO*njQ“–¨;7h₯O¨Ο»¨3Cδΐμ'Ώ»aό`²uxλΆV}Ζ—ΥΚ8Γ8E €δΛ:#η 45„“—ΎvvΙΝ―(BQv"u »`jbŠς’Τ/Χ†qϊΚβLξΉ™™›H.܊Uj†Oβ΄.">Dτ ΅U½«ΚΞΏζ°ή5ΗE΄4π/‚x¬+Ωc0rΎΊ΅­Gp3‘•λBQ’ό…‘{σͺpξκ;θWψˆIδΛW€κŒœ%=σ({}$¨s½(.Bόυ5ζΗauch° Χ†»Ρ;6ˆρλγˆ[œ†όœJϊš‰Εvyz 6%D­Ϊ•h9™ χ­‰Τ\δΐπU\ότΡƒάψewρών́cαυ’ μ’zιp“ηQ\‡ΙFΐ&³nθμΤγΨfMͺϋ<˜#εΐ‰ΗŽmj'‚ž‹& FΌ(*zΊ^D‹_{Ϋ |ψ^p›vεγ󱣦J'E„²‚γξδΊι‰~’W"tNδΑ…i\D kv<Έε•₯·h|mΟƒ1bοLθ\υζM²‘3Uk»xΎ«†¦‹ΞΩzΘΪςΤ5οm΄τ.PŠςϋ‘c.†·4-½>0oΈFΔγίΡzIPΟ‹ΘF>M’©Ο\Έί}ΠDP/ω˜D='²žpSΘΝU»}FΞΤπδδ(&τ Ÿι%=%VN.Š.žu°‰Œœƒ¦₯Ή¨άύu€%.Ζ+oZΝ―—|‘ύ± w΅υ’ ž'Ώέσ’z"<θzP”ΞnΟΉΎΫ„Υgn3δφ‡¬_Y„εJ£½Gπ‹ΪύZ‹£—ή@Β² l]˟ψ-ΐgΧή―}Ζ»ηκAΌvζΦG ͝΅ψψœΞΨΕ{ΦCŸ4Wϋέ‹ζsϋpQG<+Ζ/¦Η!9Νk*4<Ή(φ£3Ύ·+·o‡?"g¨RΰκŸsσֈȍ:E`Y5Κςσ΅V.ΦΏ†ΪδΦώNάO†Ξ ή³K°(…r―Q~‚tΒϊeθ >¦ζiφζ™EΩ œnρ"bzˆή5οWŒ”²ή‘ς‰ιh3oΧ 0υ‹―‡6rρ(Νχh­MΏΖ;—γΓλ§π‡SqXρΠη!ΥX± ž$ _2Μ₯S8Ž4‘3ί¦Ζ;Ιa₯ ΛΦ<G‹dG–Ύ‰~͘Z©.8ΐE„Ÿ°Ύ;†Wί=f]>ΦΉ}X΄σδ{υ΅τέ΄;$™άnχΜΡ}λX^ 4oΛzp°οΏVgh.ΆDΧK‚½ΥƒLgώό Š‹ΰπ1#ΐΨGΐςόbΏikŽ<Ž­±˜υZΒ;"Υ<…<g έh{θE‹ίεZΉ¬€šLFΙΠ93Β‹Ž»πu-ΨQ~’W’t’r ΒΒd!P„§^ό:Jύ’©;j>‹ξαJi7YJ8σφQ9;WώΞuΩhιέ”•ZύΎώ ΈΪߎξ±>Lc)rWn@eŽςeΕF”εΥαšςEx=ώ¬—„τΌ œΒΈ0‘‹Δ°>›λzI`”DΧ¬LIΦQΔ«ϋ2TγΉΚΨδFυ΅Ÿœθ%={)oIN">žEΖΠ~ξ,ZZ[Π30ˆω‰k°qσ#(Θ’EςT?‚ΝρaC^/9Ηh­—υ„³Ξ©Eυ„%:Ρυ (±k|4«DΫoV;ΛΜcL€.Uw'ΠΦu" '“S“e±T[pŠ–Κυψ9λ{βgΈŸ$…#ΓζΖ/zr%/ΖΟω8$–ξΑξm₯XHΑ3qσw½ψιoΡc"£E·nΔaγΞ±ιΎ2ŠˆM_”x7κkίΗoί tJΛ(έ†{‹Kƒ΄€L,Q±@gχ΄;„ΤΛνx¦aλ³ΟaMς"ά€>-N+ΥΞeW=/ΦŽγΗž0°qχ—°‘€ž,Ι@UNƒθnmΖωγΰΜεΐuε­3π”?‰mV’ W½GhZw~ρ– ΑPσΒ±jι|܎»…Φ?ώ‡λύεπ`Η ŸG6Υ™Guω%Φeγ±―νDE€›Ή1Ε™ωΘφβ?€³ο½+‹Φcνω'z»Ω“oΎŠw ΈΚύ/yθΟPU^†<&mhϊτ ~Ώ?pΡώψI|ΚρΘWw"…Ύ&9Ρr΅ύιΨΆΥžΡΊΧεkQ>GIO¨FΞ^ƒέŠ2Rάy—Θΰέ#8ω+ΚOŒΞΉ~1λ릊£͍^ϋwϋj‰ιA’ͺήυΙ+9Φ»NGJTοκusΆ=½ΕEk|s‰εS:ΫΡrζ(ŽΥ©ΡB]˜ΗVoΓS»jPZ¨ΎCwσYΤλ§χ ‘“]ύ)¦_BΛμl‘§ΚωœΔ!ΥΘY%Έήƒ‘q C]+(ε’tj³Έή‚ΪΖν0™ο…έΘ¨~œ΅*p„‹m~‘ΡΧΐMZKωϊDKˆ˜M¬])­Νφ …ΦΞΈΡ…?ώϋ―ΜΧ΄Yα™Η+Oί²ΉΡ―ΎΡ;+λOooυ`ΡC_Β¦‚DΜθ}ΔΕa¬εxχ€ΉΡsΜ¬wΧK’W¨d:σηQ\DǏιFΐ>³nθ acϋ QAj"ž‹³ƒ)m½hσσβΊ8:2bγ.z]‹^1‚όD=Dι„#ˆβΒt" žCΛ§‡Π4‘‹=5eΒ,6nوl…ΊσΨq‹­!Μΐ)α¬xΘZχpŽšή½=‚ΆΞOΡyε\2Ύ4νθ=ƒ›qΥJd¬yσΔ"{λ‡JΨγίΑzIDΟ Λ©ο,ηgΉ ΟL<ψΓ2+z)¬Tβ„Χβ,υ”+σφβa)β•τfEyΉ)σ3₯}~p —„δΤq~VΌ†ϊ“οαά~‹¦A½υh8†gώαΏ’Ψϋ*™Ω΄ ²`θΜλ%=Žj~—Dυ„Ϊ%‡Ώ–υ™Λt’λAQ:?9ω0ϊθυYτΉ3GFΐ.SΈyK}GF7Ο­RtΝUiΎˆ{S7€Ί±” P’S€܍συR$ηD¬LJΑόyτΥƒΈ6ζίgΉϊςIPΜw149Œρ™ΘMX’F2Šγη|–g䑨p­op'T³L_™‹ΉΜΚ'π˜{d4_Zσedd€ΰWώ–.ζmΆ?σeϋ,yΙ—¦ »Pϊ_μτŸαgoͺFιΘ"#jίΥηc–˜U¨ΨΌχΔLγΎ j.y žϊΣ(ΝUGR=A&«ΙΉ( ™ρ£dθόŽο„’Λ¬|/Vϊ/#γηGπβŠ|οΏυΟΏž•γ> NΜΗ6ε‹&y+žFOύΏB5“ZΨπψ³Ψͺ~ρdΌ§ΫΙkurΧΥΎπζγ”‚²έ/ΑΈΣ˜‰Κ½O‘·΅΅]jΝ"μϊΪ—P½V5ήVΛ%Lς°‘ΪΘΝNΗ―~κtό¨έΥ9((Y+U~!}σΜ?…Η3:Χ΅Ήšž›@ΛUIOΘiSΕnΕQb‰Z„e C‰ΟPN;a9#ΚO”ΞΉ~ θQ*Σ"ύwβΤ%fβzˆή θ՜/`½;KzW½2hNωβ_½„“ΉL›Sβzt†ΞΞζ±DrΆω³ρΣχːYΈͺB΅§?EυKpώ‘Ξ,OΤN·φ6&hg3’t-I%$j_ξΖΘΈ™^w+ό" ―₯¦!Mώ,LcjJ*ŒΝΔzΠ©Ό‰©k‘—.Z”V}€φFώθkΒΕ…²’ι?MkΊ•³°ώ€§6z0-o# Φ> Ο4SίλLn‘ηjfΦ»bλ%“.[*ΥƒL§9IΞΎηQ\, Wb—˜}Cη εq‚lnτΨφ¨Ωϋ0Ά=}Μμzžϊ(­ζ\π¬yς>ϋY¬/)£H(δ„Jή¦‰τΫίz 玼‹Γuν:aœρσ(Σ±Μ ƒΘΈ ^Χ‚έŽ κq%J'Ρ@—Y$΄iΕΞύ'uL$’HΉβ±‡™ρFΌKΡ[Μ^…elώ>[•λEoΰΒ>ς ­§ό&G;ΠΦQc‘ρ½\ΘΨώ o±?[°ΎZέΝjCύQε%Πκ]xfW(P †.μΗοƒx₯j”>«$έp32Vd<ώΓ—lλωΘΘβY/f}n‚θ32»€&Dτ’³u–Θ.ΖNΪΥ/Βλ #[±#ŠΚΎ£Ty…>Պ«SιΘY!½ψνΗΰˆ~Νω0ΟAΘΓκ%•Ξ59ΥηΦ_†λήΒoΝφ™½°ΧαΜ™zΧΘζ)©9T΄²2PAτ ―—|Μ"ΞzI‘ΘόGLO˜·eR*ͺ'μΠ‰EιLΊ9Χ‹ξ.}6ΧGƒε»ϋ Î))ϊΈ΄–KDqΑγθθ}^ π@•jδGύŸΰδU]ΘNo9ώ'½9ŠAθ`/ žΗWVΡ>ˆ/ υŸΕ‰†7qQ‚A—V,IQ>5 $­¬ΑW迚F‡›pε Nuϋα!ΜΟ…qΠ}‰A–σ64UUπό·žΐιs­ˆχlDuΉΌW•ZςvοlΓ«ϋΧk½mhοhΗ`_?ν–%ΑV9Eͺ”χƒςΆξΕΦ‹xίλΠV¦ύqsωBάΌ=ƒΕiίH6Vθn<Ξ‘IΜ›G`RŠ›A_G―œΧώαΙ_B©2τՐChιθΗόψTdδ‘ˆφ‘nΒΌiΔZFκ_}cςΛ°q­Όί‡ό*άWώ"§VΥvζΜ›?EjκίbλΪ Ή;Ώς(š~ͺ]—;·«†λ8ςϊwqFr\Lϊ§1\8t7s«Q–Om(©‰ήEŒ₯V’k̜ Oa:Λ&ΤΫΎj4rn£Υ-νύX’½Υ•ςZ;uύ#xόρNόμνZ΅IνΧϊψΙΤ ±1ΩΖ3ΧuJ²TΓΕΙv\QnλΒ΅_Τ‚θ{ΰά«?i%/ΚO”Žv°έΥσ™ΨQxΏ¦»ZkqN―?…υ ]½ke°ζfΦ»βγ"€wv%lΡ9wγΒ±:tυNbα²$€ζζ“Q`ΥTζ%/“y¬»ŸΤ96£φΣΣOΘΗΖνjΤ~E°`?vτ§°~ ΖG?'ό\Ÿ5¬Ώψχ7Ό‹Rδf9½žΡoα‰ν²±lQE%‚Χί&όWίBΦ7Ÿ£~ΆΔ«oRYΦ4V­ύΌ·,1=ƒj“!YιSΈ―D6*Ή31Ω‡O/2ρœΣq°8ξBΧ΅x―Δ"ˆz\‰Q’‹HIE"­ˆά$žPD‘:\8ߌ"ο‹—Lo"CηZΏΎfV‰A₯MήhΞ~U–£¬BθsGίχ΅xΉΧθ4‘^ά-I[‰ΥtF{σΥrE™ιΪK“žŽoΉ“Θ.φ=dKρπ:#ηρ6œ Ρ€ˆ φυ’±έu–ύΘ.>^ޜύβ`=αΗΥζ‘;*CŽΧ[gηλ~‚sq»pŸΪΚΔ0ό㨩§ŒΏΟή¬>ΗΉ%§QκΉqt·κ²²|»κC=ma†#„~αυRˆˆ„si½$ͺ'Β\ΪiQ=!J§16dDΧƒ’tζ³~p·κ³Yž`jΓ•Ύnδ¬R_ύ¦"+•ͺIφŸΊ―χ^&#ΥΨK‰ΘX!E₯˜ ͺAΝ0š[OγΚΘ8SοEeNΎ­|”Tΰ’fό‘‰”₯ύΈr­ƒ’ό cr&IΙ@$C6v”KŠΆβ2:·z[qp8ΣR΄2}š?‘}9C{RTœeΖgήώ#Š+Jeγ¬τ<δΖT»²1Uϋξ―τς§œΖύ΄ί&!>‘yh€εqΎήΜ›O†ι!“λ7Vi5ZΎ`δ,l:πsΙό7HjΖ©?¨FΞr•#§λQI†Ξ’qYbͺd<μF:Š_Ύ•‹Ώ}A6l.ήύ%ΌXΊ%ˆΚ0“Ώϊ^)£λγ“r9νsͺ£ί?’ΩMcœΞJ˜.Z"7V½±T»Ϊν ΐdΈξ·8uo)vyΉK‘ΏΩƒ†γ²qΈΣρΔπ΄w]'"•‚„ή0E+°p!υ_Fζ ŸΔΐ°ΕΤ@IDAT΄7W‡Λ•ˆΕdΘ{ΰΔ~¬ΊΫZ·nέΤς"Q~’t^κ_?7 j]‘vΨΤzLΡj‘=8 zWΫΞor€»?Έ‹„Ύ1)jm;†udϊ³φσ¬wνcfF!¦wgΘpTKͺΥ θ+ΏGqZw쟡3e)ŽRM§hFΞή6IWŸάPŽλΥu›?'ω؎ώt€_ΜΩ‡(mΑ0­«@FΈϊlεΚ `ΰ”V?5gΆVΧgT<Ω‡>oPQ:­iC&Eg<4>@+Ύΐδ&.Vψy%p€―=ΘH&σUZJ-χοΞ΅ύxυΤR±cΦƒAp‹‘υηΰa\:· ―)D!­έOοχyΤ•ή[¬­›κO|Ω8ZλO7τ 6P‹υΡφ΅€Ll¬wEΦK]΅\ ͺ™ΞόωAΛΖFΐ|»O4ηN#α<ŽέαVDζΤγ_•OϊY/YΥσnΚ©—yδYŸY‰ΠϊΜΌ λdz»zIŠr%ΊΞ‰μbήK₯4„~q²žΙ3ΜΙMdδ\"M‚”4οΓΑNIWψ>ιέ794ʟΣ牧U½δDN‰Ο\Nw«~Y½σlR>U.I4Χ7I‘Ζ/΄~αυ<"‘ψsjˆ;'„>ΣSΉ‘'τν…Κ‹κ Q:3YDΧƒ’tf2ΜfΩέͺΟfsζΝ˜"ΎΟnͺρmyΟOχγ*E΅›—°YKγ`ͺσxρ ήΎ`ŒΪiΪޜ*Μ¦ ͺ³$X7>­ύ Žχ’q”:ιΕύν—°ΓC!”.T?£.u£φΜOpf¬έhψrω <βsλ+εy‹²αΙNDk§Τ¦~.ŒCΟ‘—ρ£ΦΓdΫ2…ιΕ‹ΙΙΘ°g%υΚΥ4xWφœκΠΡڍ"―αΔ,ŽO#–}ΫΔΥ[PY΅Ή9YXΎ˜’8’Α¨΄L˜Ÿi?2₯ΦͺYf1kφΝhϊ€Ξ¬Rθ²Αa ψ'MΊršPŒC·bνlέo°Ο³O{£ag‚>ΐ&§ρ³Ψ―EΜ6iJ΅Ω αΦ^ΔΕ)…ƒ=•ΌPΥ­?ΚΖΗkήφπl _/|σ5B₯ύωΎ{&a 5¬KŽΖOOλΧ59Ε>π _€aάΑ³8}ς],Y"™ƒK©=} ρΰΦΗ”ΐ…έ8vφ5ŠπLΖ½Ι*.θ’Ώe»=Hβ'JGςΉ _Τ^ίPν‹²:ψ)>iσǁŒΆήU;eη7kΎώ7Ο„‰ιΧΰΰ Ός)ΡνύΞΩ=d½k±ΰυ…τ.Ν[ή”‚­_ϋoH;y-—.£§« ν]ΎΉ.8S«g²₯fηšFX΅ΓOjΦΉG™W8ΫœŽƒ΅qΉmwEG ΖOΤγJ”΄}f?’Œ›v³QχΘσtuγώ³Q€ρZ»ΑΖ,4‹’ψ¬z€Οφ(©`­ΟΣόΚΕΐ (΅žψo)6V‡»7  ώψ[MυtΡ[ οg(3‘–C6.“!m>Όψβn,§P%gήΐ/ίTpP Δ"ΒΨΥ»*w§zPj'5ηQμZWͺ6IαNγ¨ίg}'mζ†άŠΔ%Ά^²¦η©OΙiΦgζ§b@Ÿ޽Θ5ττ’D#ΊΞrΩŎ~_O bΉ`]ρ—Q½R~<Τyo7Κσ\šξΕΐΘXWφœ??@zΉ2r”ΜΪ™œAΔVΜϊ%:ϊeυμά­ΘaŒk†€ραυR$‚τ’»^rCOφά¬DTOˆ™Ι Ί₯3“ΑPΖϊ,:ϊΜ:0s Ψ«3rξ»vΪkŠhλΦ>‡ i_ͺΥ›°Ύν Ξ]WNΖΒOR"–kΖ@kΣ~Ÿ‘³"ΥA2LR ύ»4JFΞfιZϋ;8K_L¬Ξ t– a‘ΰ‚L„ωΉ7=]‘ΑΜϊ#\62&’i ’W’•m½lόUύτ·±«š6Β₯™™p5,œOΐ<υΝΆχψ,[haΈ―'€aβ’xέΕe‘½pUήώ.j ŒMž£’޽ώ}4¨‘~/χcϊ˜ͺ0­[Šdϊ”½/₯ SΗΛWΟ©F}΄gθpόœΰiιΊ^–‡΄zΩ­δ―crb!’ΥnNŽ!eΝ.¬“nmJλχ‘v€2™Π ιΕ΅1οiΑ?IX$ΔO”Ξ=ύ‚”Tδ¨ϋ΄Γ8Ω²/ΠΡYXΚpFOο ίβ… ϋA{i‘‹ΡυYοΪΓ>Lm»zχXνIT”«_§LAQεNϊ―0οΖ…3GρΑ›ϋ’Ÿ†Γδ΄d,©ΧZ€ωͺΞ0©Θ’ώ„¨~ Η=ψω‹τ₯8ί£9Ndeί‡,ί34BΙ=ηκp»¦kDι΄΅ Q&¨N.Γž”½r+όάΠΧΓ¨kxuΊ”ίϋΆ­’ϊr2Χ"— ;tηmgY†€,v֟Γu'Π²«e’C\n1ΦΣύ0½λφ‰ƒδXŸ‘Qy°ˆSs_ŸŒͺ@δš€6,ˆ­³Τ7b‘]¬λ'λ ‹ψU[ιy«Ÿ$ηŒλ)5H—{?ι-cpΔάτJΒiD+zΙΉœ~uΘϊ%:ϊ%y ΎψεΟk³†ή ϊιnuΈx½€"‘ϋ‰υ’s=‘λqΠ¬¨ž₯3Dt=(Jg&ƒ‘ŒυYtτ™t>`ζλJ*4“IŠΜωŸdδ<ͺνbγAd§)R³‘™ζΑΉφ`λ=α\ΙR¨`ν£ΣΝΈx)pίvaœΊ†·'τΤΝ©@A~±:ΓΧ'M#F/ŽW ! ’Ϋ Lε_09Ot5’©ΉΓγΪ<2lNΘCΝvΕ±MHˆ°υΪ‹Χ,S­“ιkήΊ1­?ŒBΎKύ,(W¬€ύΗz“ΝΏiF0₯]μ'•‚›ΊΈpθwθš$ψƒT—"=ΆΡK )Ή0~Η“œn›.ŠkχΘ"[ϊ;3„ζωKQ"Ω¬Kݐu’U₯+ΏΗJ΄βuτε<₯=#׌QήεκΦ&-•0μς€sOΏ$βA²θ\τt¨σŽ*—‡‘σ‚zΠΠF7υnα‹ι]ίιC±Tf–"3ΧΫ ΰkaΪ2λ]SXΪΤ»oα‡?Ε“5  0Χ UcΎ4Ε[?OΖrΌόoΏqΑΨYm9‹#mi!¨_T …~―ŸΑ›΄΅Έcέ&”€λ,œ§»q±£ σR+Q”Έ„š&g₯έ<(Jη/d|*|―φGi?sΨΏ9° κλΐ–θ“ αωΉ§―ԝ?„•i/ PšΘ™t λΨ:b=˜Z6‘Φ˜eις»ξ’υΫΘΠω0Φ«N‰ch=s"x_½g"Ήώ€ UKQΠƒ―XXοj˜Ϙ—‚W}FT2LŸDq =J|–`"€@€—ίφDΆβql―ΕY―mΫcΗ‘G΅άa§V<‘΅ζyHι_τΎnτwšGΝp#…ΎN=ΚτmΩΝ‹ƒυq·}]Ϋν„_}ϋόD=DιdνΛιΧQ«‡³β‘+ζικΖύg7’HΣιFtΧ”z n2οέ—Uj΅žέρSιœόŠκΑԜ=dδ|ŸφR`rπ$ήδgτZGάπψW^/YΡσ.Κ©υ=D†υ™ˆSs^Ÿ€§›‘kόΙ­‹³άˆμbMΏ8[OXΕA«—^ƒλ7Κ‡γόœ3tυΣ½θ5 €β₯tψό`E/Ή"§ΦλπΦ/Œ"£_ΚρԟΏ„ZΣxSΗΌυοΏ5π <ΰυR &τj0Κ %¬ι3½΄υ„Ύ©`yQ=!Jg"‡θzP”ΞD„ΐ"ΦgL"£Ο ,ψ€˜3$/QMΦ(Z}ζZoδ, ٍQϊΤ΅΅XJσˆ{‰gϋΟΝIH=ρOΛtίώη‚'"9Av&—ύ ¨a™΅£γHQn₯ψ€ώ¦ο#Rœΐ\ϊ?FΡrεΠ·›4£ ͺμΧxε Ώ=- PL†Ξ:ιΰπΣ™Ϋ·Θh7TμΑ¨d„)9ψ'D` Υv„ΞΥ|υ9ϋgο~5ˆƒaΟyšΒΤ΄4΅ΫŽίΑ1‹Φ—nŸσΎ˜΅ΠŽSό―F³z~eΛΆΚΊέ“ύŸΰƒσ§”Š™ΘNVΏΰ7AΡΑ/ω5 .+Βϊ$_@`†Φΰ§Πα_5ΆΛOˆΞ=ύ²2o'Κ’εΉ@ΊλΟ41ΗA_jYꉂεέΤ»ΑxX)oΒα·έίυ·ΒYͺΓzΧ*RΦκ ιέΖx‹ώiX]š‡τά5(*«B^ΊΌ.XRΈχWΐΎ}!…7ΝΠ=/§ ™₯ΊκŠ#€_Tω|Ώ₯[ΰIΤyμL’φD`pbμ >¬₯δ •κ΅&™B'Υΰ+…ŠΎiE“ΏS…(Ζ˜2τu:u« γΓςΧΥR]—pρ² ΛΟ=}νεgψs·n ° `Œ­?›>9‹NzΧ-½ΧΞ.*Ακ¬xδε+Ο8½υ¨― ­Η‚β`8!ΊώLBTυ Ιλ]Έ&ΦKDeY_‹κA¦3~ΕΕd€Ήˆ`"‹ΐ2tΆθqY<’ΪΊ©ΗŽͺ@%I\ŒdaΛ#Π‚ηbTrΩMά²Ηκ[ŒΉΐ̏2€°ί„Kγnz]Ϋ—Ζ2…)?Q+Q: šΚiΞ΄Κlxδ:φtΏlGι:ŽΦ‡‘)=π₯―ΑšRΪή­OCaΡΞ1΄υ{ac ΄½ΒΔͺ)’΄BΣu'‚n–΅‘»{Œ’ |iι("ζ¬lύ«’\d{P”’~šk}†}Ž–ζ5يμ’ΝΒ―νρ›%–ω{ρθΊ2ϋ}ψmΏhYΪIŒ{ΦKτΌ{rZ‰υYh ζΌ>3Šo+r‘Τϊ‘“uV΄"»Dp=aTEN}ΔRIσ£¨βy”ΞSŽοYβύ‚€χhQ*ͺžΗϊΫ¨=υ~ΨHυ֟¬ι₯HΙ©v=ΰ—υK$†Ηϊ₯ύυ—΅/Y χ^ύŸ―x―—ό‘ce½δ/½u=αOi~,ͺ'VΊ€EΧƒ’tζ(˜”²>3EWδXŸιΪβ,#0ΗX±4Q‘¨ƒCf‚H]ͺš™πδΤΐλ q( EΰΆ­…™…Z#}ΓέZ>Tfyφ:ƒ?Β…’β$ΛόRΰΦ8$V}Οξڈω^#`2JŸ /HύΰηaΧO²[-HND ζΆŒe=H[)9Ki‚ =ελΚ€Ήξ™yΚΧ„5ržžφ™u%¦gPϋ —–aνfš"πε5o7]ψS΄ϋ/±­$Eniπ,j›aΣ}RD½Ll{κ/Πω΅ΪΫP`„2χΟ• Xhoπ^Ϊ³Ž0Υ₯Φ‹#θhiΡ•PV”Ÿ]Kϊ₯•…΄€«9ϋœ™Q ZAύ΅¬U‚ΰΏξκέΰ|ζόΦ» ‘s½Ϋ‡ΛυZ{οW¨ω꿐—ήΑ,Γε’—M  υy¬ έ½έ(Λ’ΪΛ₯χP 3o\§e₯«οv‚CbY ι—@Ύ…US e.“NŸΒ:_¬j,ΉNAΔ΄’D< ‹ίάU―;§U’3’tDK†ΗΛ•ζ†ΖzΝχ0]ΒEbžŸ{λA₯[ΎŸΜuπ¨VέΣ}θ71œχUށλAχiπšv![Zƒ&―Εφ½ΪzΌ₯ώ¬KΟ’λOwτ °ξ„υ₯υbY_‹κA¦3~ΕΕΞ…ΜuFΐθvIΘγxnˆ.(…W=ͺmx†υ\μr„ΘΒyΦϊΨζ"-‡6³θ%‘ŠΣέ ͺ]ˆυ8?Χ<ΚΘ±Vk†v"\w Χ5υΓ²'ZΨ>α§: D%ςBX!©B9­šΦ™\Ǟξά¦pφ‘±ρ6εWΠ™δo‘ΟH.ώΩ{ΰ*4]π3b“Ψ΄KhΉHH$!.LAyo/ewΉ\vMUυς"Ί+z:Ίczβ½θθ‰ι˜7Σσ¦_Ώθξͺξη.Χ΅Έμ²Λec(ƒΑX%Π†„„v]΄!±Υό™y3ofήΜ{3OζέΔ9„Έ'Ožsώ|'σΛ“™' Γb!‘§λΥΧ΄€B§g`ΛV_4MκκΒι†Ÿ•€Πʁ>ΊS‘"K—#ηΓΘ"ŒΆΰLgͺͺŠ‘FΊη/τ=₯ŸμΗ Q_VΟZΦ±Ν β_5Q5οš4³\ΌΎμkψRa±Rϊ΅ρή₯ze;XΖŸΈΚΡz)$Ο»§g0Μ΄ϋ8ŸiρΠoΕ:Ÿiυ΅ΉFΫϊ–γu–K‘]‚jΜΊΡuj_ΘPa…lCΠ§|K„Oš€œ,Z ΟΆβ’Ι~m±΅ϋkΌN=΅Zϋ·8Ώψ±0Κ9αφόα7±Q4Β Ύ'›πλiΕΈƒ―—ŒfΒ­²p―—Œυ΄Ζαε3wψ…u=ΘΪΞO³RΞgfΘHεΞψLˆzΘG V˜˜&£Η$Α9yΩεhΣ>Μ(^»EϊΜ΅8/FG όbu|ƒΒiX™ «ŒσΦ•} λdΓ΄‘½C0HLΖΊ‚u˜¨G§ͺ<ΖεΩ;±·²JήΔΐ΅FΏΑ=hUž΅ΪηΦ<,_žŒμT•Ρh’_Ec73Ε({d3ΞξoπwZ½%9ΎΝΙAŒX7%a‰ΰEI­όi3ΆΦTϋ7Mr=LΡ³―δΑˆ,XjEηΥϊ·`, l|tZN~?ΠX8΅›Wί‘ˆ“Ϊc?XΟο+{wˎρh8ψsŠJR2ώ7zφHΟS7aχ7ŸDλΏ}θX΄ψE·J)Bωφ]ΈH†Ξo2HLN%[Έƒ³Έ°Ο«ςa?ΗΌπ’³BŠxŸ;… —ί&6S9ž,έωΈo ς.έo=Σ&/†Ό:#g‘«<¦v#pƒ_ΚE‘όdΊ §/9_y0²Ό«©ψΪβΌλΚ|1ςnΦj2ψοh2|/30|“T“ψΥLG;Χ±ΡaΑΉLκ―hύ#ΐqυ=Ε6”=\`&F)·ΜŸLό’ˆQ2χξ ž_ͺuΘτ}u\₯žIΧ­Ι€l―~ Σ…΅)₯›gΡ Ν€MαΦvώ€\ς2%€FΌΒ—( ’KΈ=‡–ΗΘΧ‰%؜—ŠλW덍΅S6γιG”λΨτΝ!Σλ˜1ZΔyΠΝ‰Ήx‘ ue;©ΛeπλΞIΚ.νBϋYΥϊή‘@Φυ§<θW]e&&VΧ»ξSύ@ˆ9Λ|ΝΚƒΌΒ»šϋV\tσΗ79π# <Ϋ Ώ¨`=Žƒuγϋ,yμΠ5έ­H°αΪs1\˞§M™J¬{ΦGΘTk£d1Bͺξρ`jδg―“# xΐKφ 6"RΈζQζΧ«‚ίozf„8!Πr2,σWΗqM,{’ιθΆMε©Ψ m¬Fz`m§ΣKΏiͺ§ΎbΌlۈ΄βΖωΗKGc zχn’>ιγ)Εζέ •ΗXέW/»*»ό1¬W>t!"\λή /sς±Άz½²€8:£m8}!I4tΞ.ΒόΫƒ²©ώ4‹ °z֊ώλΖΠ=DΚΟ§ΆΩΘχ=(Tw”“+0Sx’ήUk`“±ΉςΤδ \ωŸ΄λNΓ­ρ™[ΞΦK‘yή-= ‘ŠΝBΞgσb“Ο4؈ؠigcΓ΅uEn±ΩΕ2ΏΈ΄ž°Ζ/·13ݏ±ϋτ_΅ζ!ύέ|d$ W_šΖΠύωΈ?ΡαuLΘdιώΑ*/…Qϐ‰R…9Λ/ ιΫ¨)–_Ž΅αΰΏό=Ξk"š`n“_ψzΙGUqdΦK*ϊ¬%ž°zΗΚ¬νδΑ°YΫΙrγθwŽσΩ‘ϋΟq4\Υ ΡiΑpY2&Ι[½_ΎŸ„ }Wqg~.J<[P•ηQ θ>ο7θUJc<3Φƒdw”"ϊyηβKU/!‘΅·£tu-Ά¨Ζw­΅Αgܘ‰βς/£°|+χΆγΊ·cΣτΖA*r3JP‘[θ4=lΈΤθίf’GδnΝƒκ+]²REς.W~‹κ^Α‹XŒOφCκΦ―bχ‹uΎ# θ½tΞχΌ‰D)χi¨}ζ»Έψ .žDjυV<ςΨ3(ۈi73«t³dν^Όώκ"4]νΑέω Θ ϋF.C‡jΝxώ³“ΨX»βQœY—jŽφ.]ξ"‹£\–¬GωξHnώu 7γεχ*_Ιι>ώ9‰£?π³‘υW―ˆϊ§—=ƒ—χ^ΗΟ?:g„Œε²ŽΓGp‘Ίš ΐ© PΏόΧ‰ϊΓΗpεUΜ&g"-ΓƒBϊt]QεZ$S$Ξ›dθ,ΎΚpcώ,k©«hpιΩٜP½#[‚bϊ"ΫΐμΈΉ U₯Δ²•3οΝηM:ΞFΪRΥ½±Xk 7 oŒY屴s_RjQ±Κ-Έώ9LL%l˜x0Όk2qRΜyΧιD±ςn ΆΏό]”§φγς©KθκhΑ@_/EΟΔΊΫQ»Sr¬Ήδτw™8ΨΈŽ΅žΊ€ήέεβϋ§%Ε»ρoάΕ‘ίΌ‹ΡŒxό‰ΧP€8jΑΓ€, Ѝ~ "WήEΟ/ςά'ρ 9]ο=ƒk£}§h8K—yP”·92ηRηS—?ΠDsfm'θοΩƒ²Τ%Έ;ΰώύr˜ς₯gΥ`Χ’*Μ£‡Β·'(ͺ»<μΈΨ—ΗΘΧΩ¨)!Cψ’­ΈFλΦγδΰ2Mk£eΘM+Bq^±blGξ~ΈΠqΔhJβŒσ {Sζ=݈¦=;‰Ϋ¨OΊεq‹·₯ υ§DgςXןŽx0§rδOrάΑ€tΊc‘RzZ6”oι 8”ξάΊŽζ&r&‰ωυƒυ’4tσMψšύϊΐʟΌ8IAο;Μ§‘οαpάCΐ”έΊ'[Η‘»‹ι³–Œprj°OŽVC²Ϊ›OXκrόž±ύ»AΫΤQ4gιΥ#}˜³ρσ†Τގ±Žπ:]όΔ=b뺊¦$tMΦ‘`iΆhό,κ»‘Θfυ¬U:Πd”»B­GˆͺN_ΉWTJόY²e'Κ5ωω3gΚ}άͺjβZ–wλ<θΑ£[ŸCEz2y³jwγΤ…ΰ€ΐ»6’5>cτψΧιαt½šηέΡS§v nr> 6)vωLΫKΔu‘yΙ_Ϋώ:ΛidΛόΒ΄žπLΞYγ—~ϊlοχε&ΊίdΤΥώ)&š£G 8sαqB~‘λύƒu^bΤS7’ΨߜϋόRϋκIŸ{ίnΑούBά£Θσf—_ψzIFΞό7¬λ%—xBΠ>¬|Fύ3ρ +λz΅(4Nώ{pψlnΌJŽ“ΓŠ«iζΆ¬υδ"OlΉ%Ε_‘Ώΐn¦‡OαΨEχ’zJWI7ΞwAΩ†*IΐŠRμΨL:qC½GπΑUŸC2ΎˆΛ[ϊ?/·JόΣU—6'[ρiγΫΊ¨x ς¨·Έš²Pή-ˆH,CiέkβŸ§Ρ ψβcJQύΙTΠ3Ρ¬(΅u/ ΚnkzwεbrΧKΖIžΚ:x*ύM[GΡAΟ•”4z ~™―’ρ΅8§τIξΪη„?₯†˜ρͺ7Ζ§ή)ε΅γάo½$»Ύύ姇ΏΐΙξ~P s <ή5T=V Ξ#Ξ»μSΕΘ»M’Š$7₯[„Ώέ†jL΅œΑ1ΡCΔ`·λΥύβH9^¨“ψ({ύ^ΌJαIlόΒͺKZE₯dΎΞςβΕίΰ€όŒΡ'ˆ΅Π<;³%Y Οם'΅”Œ ₯ΝιΑ•‘3;.,ςXψ:™$ «hέΊJŽ·γ/'aΪ Γ4 Z¬p΄Όφ³?…MΈ|©ε‚³†oMΪΩάΨMΐV‘KάZΒΦ<ώuμY/Ÿ²fΎίόZ<󆴾KΘΉο­¦FΜ―w­—tXήdεAή†χ¬ΈXž0^‘#ΐp «Ο\\gЍ]cƒ.b―ȁΗ‹Gυ gφ= χΫ*; Š”}Ž36ޏ²¬yτμ‘ΘrjΊxšΜ@ ’ yξy”΅b>Tž),τ °ο[ίE E©½…̟ Yο±gΊA‘8@ϋσξΰΈ6€TSdΘDNδE£Μ‰žb~ƒ%Š+η#2ΝΝW±C0tV§ϊδc‹Ί@―Δ—ͺθ@χΔ S ”YeϋπDφ,ζΡω—@,Ρ|θ]΄Žϊv―~₯e>9“Π¨~i£τ ΛŒ^Γ…ΧπH6Δ΄³ݝ˞žήηQ θ=A†ΞW•Ζ¬ž΅b ²έ‡ΡΎ³ZŠ@@‘d^ψ‹οβΨρSMΘGυc»₯—.Šv.gμπZ΄ι%γΡGή@…οQΰχA/’2ŸΖγ+΅·ωσ"Ύν;Šs΄ίR2δ3F΅@†υ’}žwAO΅Ξ1œη|ζ"ŸιζΩrΔ‘/±―³\ˆμH&&Ÿxd]‡θΐΤoς‹Ύ’j;q’•wγβη~•½οΔ~xI‘―ΞΣS]/Nςs™_6<χηΨ%8@ω"ˆ s™»_Η³ώPλ,%ΜΗl_#V\ρυRxŽΰp—άΰ ³Q»Ιgf2„ς όΒΊdmLΡΨάχΐπYlΒΟ΅βHά:χŽ»ΦΥ ,ΣΩNgΆW5ΰ“«JQΌe†―ˆw0ƒλj‘EχζΪ4ŒΦΆ/πq‹j|3“§΅HŠl|ͺm@ŽΜύhλ»„†ζγ†FŒΆε ύ»4κ/1ˆjί5ΈΑЏΗξ6­ ¦}mϊ/Ε 9.Ukog=ύμMΏ#»PΏγήώIžώΚ3(Ÿ•Θ²'ΫP΄Ω;Ÿ Η|αK2*UΉŽοχψxξ ”—Β²…iX’š§™Ϋwt΅)¨Ηɟβ†ϊρ잺=ΕΚ“=θμΊξoηυΟoθί-„z}Ω©θξms=Υ-ΜςΙΥ{Q+?Ÿ# Όχγ€―- ι+a{ΆP7ΩΨ΄γ1y{H™ƒΩ[²6΄Ϋ7έ³SNrŒ-πζίήΐΎ§žΐζυrUΝ―·― Ν—€hΞΒΦωsΟHΧ=νo£~ι¨QEy—<ƒ“ κœδ½Ύίω ιy6Mr„P‹US;'ό²¬žLω¦—ΪRτΪΠΙ6FƒwC#vjpލ>ο6ύ‚އ1 Ά5!«Έιϊλ˜x΄Œ ΅ώsyηàǎλXσώwξύ/Ψ½»F‰ό/uޏ τΕΟ΄;Εχ'škJΊώdβ•,1«Ώ,š¬Cξή™―cJπfU?gp‘εC\™Pϊ²¬ν„λg)rk`―Ϊ’‘qm”6\ε1πυό{θ#ǚœ2WkΗ#|a΄οFΞ_=€6Lυ΅cv›σ k “ yΜe‚λιΣwιΒΎΜrΤμ-Wj΅ή%―’>U e΅Œνywt\[ΣISΛ‘ 8ί­E`α%ηλ,‘],Ψ λ Λ}Ϋ¨˜”Šεruz¨>H‘ΕδδτώΎ%Ν9J–ϋ ’§f|lΞa~YΊάM6X)¬F•κλπκ ς.μΕU_/I`ΔΣzΙ9O¨§YVž֎u=ΘΪΞ)Ρh ρY4πε29V˜8OΞ£!₯yΛR±pžΤπφΜχ·[2j³**Zυn\?„·―ŸFaξj¬X°ΤΈ‡Ϋ37i|­γ»Υˆ>kΔςeEΘ€΅Ib0&χξίΖδΤ0:G ^όλfKžάΦ…y8ωώ†ώšϊγ­??¬ΡXΎ YiKECΟΩρ^œ=gό<Ω{ξCόˆώVWο@fR"υq·θληεϊ‡ίΧτkΌΡγού3ύο5,ν8ŒχΏwΏ]]‰5y™’Aκ½[χΠgͺuOΩθY‘~|š>ϋβΝ??¨)bέπžώ1ώ†ώB₯ϊ·OP0aM Τ‘žηύ·oC‹ Q™―›Ρs8πCϊ#ηΰ…ΉX$Xι’Uτμμ(FϊΞ‘[ό„v3͟ xFδΈ¦ρ5œZΊΛ±:% "8„cd’m#ύ>Π‚όLΤγνύυA*ξb•ΗԎ•_&Žγηϋ*o‘ΔF‹w-Œ#&ͺpލ ή₯οbβΨۏctP_tΛΞ 5Σ’Dρšrozέ§Ο™ΏHφcΝ‘γΠ©zl,•Έϊήμ$ž@χ(uϊAπkˆ]ώdβΥΨκφ7¨™ͺΐ$ΫΣυήμ:…| Β΅lq­=θ4α‘&άP=[Τ7gm'ϊμ‹ΏΓgϊ-nΫΗŁ<›|έΩAŽ8BρD W€ qαBOah·οŒb°·ΥΤιΖβπc£ηAΧxΠhBΛ<~ƒΰώζ&γwΠ†k:£΅¦Q™O*ΓϊShΙΒƒgίω―8ϋŽΡhƒ—ΕτzΧ…υ’ σξπΈΦ ϊ'šCy¬WΆΫ9ΤSƒKl؎΄Bcb:Tή§μZN ύάn ‘ΕΤ…φ³η|yƒŸ™Ϋδ?-˜n…J©sΖW'g*”ώ[pώUδΒέtχ β ΔZ½]WιÈRκhξBήMηB{ϊΠ'<S'–Θ.ԞΙC–ΪyO?Ί5޽_~%9ώκaŠtΉk>6ΥU‹N$ƒ½7όZΊ2€eήυK¦—>ώΘ8b±ad‚ŠΞm5 c`΄έΌ²>Z3xό+B™ΦK <οTOEαψΘp>ζΙ>cΨ@™x‰yε<²‹5~‘ŽΫλ ©™φ«ό’m₯l₯'.S Η&ohœ;» LΌ€¨¦ΙΣSS1Ž6ζ*ΏLOQψD‹iζφmMΎ^ŠΛυ’cžπ‚½š6Ο΄UΤ[¬<Όλz΅zDρ“η|?sΕ5ϋŒ΅’Y|5g“½ͺΘΝ!Ζ9>AFގ"ίΩ“'«σΠέDWς,όvœ>ζl‘Ύ[UΌηΠ ρδG€‚œœ΅θ$ZσηW:|Ήρ1 DAd•Ηή.5‚«η΅nIΡτΓ°ώDyPΠ5–Χ»ΞΧKšΩ°ΌΑΚƒΌ1Δ¬ΈχΖK9·xθΫςΏs»S‘ΏŸξG·χYσκΑΑHmτ4ήϊΫοΫzθJ'‘%€Ύ“­E²™λς8ώŠQ)–ST ρs·θsFτπΦ ‚C1bsΣnt₯>œΧφw*oy [€»νœκi•Ψ¨l%ŠNΥHž:ΡaΩάψާΔΟS½υ?Β›ο1"˜lDvqC«δΔ/ΙΞt“ρ/EGΨωψƒ§«Ε/Ηίγ—‡#σ@ύ±D³εq‰+^τtc.9Ÿnς™ΗbΔ0§sΗΊΞrΩŞΦvΧφzw‘6ΏpΔΰ]p~q—_‚£m²—―—L€±XΜyΒ"PsΏΪƒΞgeeeβ$·utΝύΙζ# Ε« ΔΎ›››Γ&#‡σωy8τε}rΐςάdŒχzM»~Πχ›Γwp8‡Μu~uoΞΰΜ9<ΨόXΟ[‚ΒM5ΐΟχi=ϊ2ωί|οšΡΞu~Œφψ4`σ ŽG€#ΐ°ΐύϋχΕ6ΆΫ ΊΊΊΔvσζiCF7’³¨άύϹǎ=j<€,GO$½Ό")‹ –6Ώk{RΚcυΈ²ΫΞ©žφP‰Ϊ,‘VζΦ9± |FΞ@.ް‘³p°xΦΪ>|2•3„rρφ©½Ξ3°iύZ₯·™YG‘””~„Œm(/zΊη3wωΜnΔΦ9d½¦D2²‹έυ+Μνψύ3tVr~q—_¬β©ΗΧK8lopž° Ω\mΐωlΞ,G€#ΐΰ„B oλ*xΆ’ϋD'ŸΌPύAί/ΰp8.!0ΧωΥ%˜x7Žΐ\B`uωΚ3Ί―ΰΨ1­‘σ\ηΗho.R|,ŽG`!P΅΅φ―Γ1¨žΞ«αθΦυ>σ*EQφ ϊ€|Ξ;ƒ›Kΰr8Ή…€ΰA9;1c:¨xίo:°€=ννG[Σ\8y―ΟΝ+ˆgηΧρ­Χ…y™HYΆ /Ɗό xτΩ—±©(MBe°ό·όpŒπ‚XC ήω)”ώμx?|Ǝoɍ@¨σ3ήχ‡Fΐ¬ΖƒΑ/|½d6Ό|. οόJ«s”‘‘!V3ζi΅/^οΑE 5%YόΠΠP\°jγn¬Ξ’Hb·ϊqιΨiŒΕ•φ\YŽ€3d# oχ²^‰ίύξwΩΩ πAΫίSίε Pޚ#ΐΰ˜ πι\ζWΟ&Ο‹9-‰ΨψH9–ψJ'g―γιpπ3ηΙ΄υg€ΧίΪ α[ŽG€#ΐŠ€ΐίBJN–ž‡ΪνΗλ•žΓ?τΠCš¦άΠ™:kΎΑΰp‚! ά<­Ω[πP_nοϋεqXύ½9Τ‡‘ώ>ŒŒψ_pXm/υVmAεš•X‘‘‡Uk7ΰαͺZTT¬GVͺοsIθΗρχ~„sύΣρ2$ηŒ@Υ·jζ,ι_؝ζΟμbΒλsμ ΐωΕ­_ψzΙ|ώωžψF ήοοBιogvΈ‘³΄x]3βΥΠ9‘ž$ή›Δπΰu΄^Ί‚)³ςrŽΐC@ΈŽΘ‘œΫ?iŸ'Ϋ²±ΕƒΈ_m„8Η¦›‡#ΐˆ2Ώ΄qNσ+ηΟ(`\ϋΫκqδη/N\ζFΞ:hψfŒ"°,wŜŽΐΔ#ƒΔθΗΥz ΰός@L³ι ωzΙΎ#ŽΰχΪΙγ†ΞZ<ψρjθΓήψζϊΘθώ•eFΉ‘3 jΌx5t֏ƒos„/Ϊ©,δ1ΛΖΞY―| χΛ8π_ŽG€#ΰ6s_έΖ‹χΗΰΜ=ψϊ36ΦΧό=Ϋά;·ψˆ8θ .Cη‡Ύύ'ρ»p ιΔ§ϋΓΡ-ο“#ΐΰp"Œ€ΰAšμI xx/Ώό"<Ησώίo#Œ(ΗΰDΉΒ_fόm|Ή|ŽΐƒŒ@¬π‹`”!f[Ž@'Μ‹SύδΉεcη<(πϋ?γ™.++w΄utWΰ₯ ―.k577[¨Ν«p8ŽG€#ΐΰp8ŽG€#ΐΰp8ψCΰώύϋ’LΚwuu‰νζΝ›§iŸP΅΅φ―5%.mτt^u©'ή G€#ΐΰDΉξAΚ=3£ytqفθ ΐ#„Dw.•#π +όbdδ,ΰοTΏaω9:όώΟψΰqα₯φΰναΕks8ŽG€#ΐΰp8ŽG€#ΐΰp8ρ‡θsΖ5ζp8ŽG€#ΐΰp8ŽG€#ΐΰpβΡ9Ξ'0FΤηcd"ΈŽG€#ΐΰp8ŽG€#ΐΰp8Ž@ΨWDgm|η°©Ο;ζp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Φΰ†ΞΦ±β59ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8!ΐ #4Γΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰXG€:[NJΧδp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp"„ΐόΙαb8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐp€ΐΚΜ XΉl„>~w“]Έ2Ψο ΗΰM7Ύπ—xͺ¦S}υψε{έΑ«»²wyJςVdcIBξΡgf'06Ϊ„·»_Ύ, ‹U%3žπͺΆ³vδΙ­#=²άύ7«φu|υΉ `τΆŠ…ioώ%ήzϋ Ώ,Μ9εΈ»KΗΧ-σγK©gͺOθγΣ΄©Α·δ)ύ„Ÿ¨Bb6 Ss°bQ"4_|ŸvϋM­—η=‰ol¨2¨«.ςβLΓΗ‰Au™”·+Oh­yΤ>DIj%vJ©ι?ώΌ{˜Αmυ>όρ…nλρΦ‡ŸΪΑθϊ—šŸ/κΆdDΤ0x};{“W #?[μ{ώ€B(vz ŒΟ3οφFPΫφυΦΏDš?Λ ’‡@$ψ̍σ]F(œΌ$ˈοΊ5ΟakI–λδ©€ Ώ=χοΈh°ΦUu°Y„Η·ΏŠu+|]L7α#οΰ†c2Άmz₯+s‘€”©2₯_Αΐ/p¬ρ ͺ νgε%Φv*•x6JδlΓΎΗΆaMεZe€Φdί“=8σωμ?dΣyŠ―—ϋλ%FžP δCρ™™Π휬—©Ρεy³qσrSΒΕgΌaχξjα©0ή†£~†!Ώ$ ΛΙ9D(Ÿw“¬ ƒ€p?› "ΪΏ+΄ΥΏΏΪ“Ι_ʞ‹TDŠΠc εΩΨ‹,Ꭷˆ’7χDt—E]T‘x$™PxG―EUμΚszίoW)Ιω:ΤAύœ―£ƒ;—Κˆ Εk^ΒΎ’RS‰ΛΙHcWυά>ς3΄™ΦbέqGixWΙΉŸΙ_ύž-₯H½¦i h_v€-‘­Lю»˜ρA©Θ"/Ίσ ¨n)γ©|uu›ΔΊ­³WΓnθ)yέ]§ριG]ΐύ{΄.)ΔΊjKx8ͺ”Έ΅•_F†Q'³^Œ›ή89>D…*c–Η4ΎrT–?‚Ό JedVαΙνσπΞη(F?+S²-9 ]ί½kpς‘Ιw…œΝΨυh-*«Κ‘wΉ™-?[Υ€fλfΙΘ™t]Ή‘―XΥ OT~‰Ύ€Ύ0ΰjšNR’νφ)ήΨΞw»γQΧgΉή:α—Θς§z€<5"Ιg.œο~œΒΘK~!ΟUnψvδεΛM*Ζ—ΚŸΖ°j=a\‘½tkυ^Ώ‘3u3==9ΐ€Ψkβδ™9ϋΔf­|{6ίΑŽ(аςk;E0ΟD ΟΊ ΨLFΞ¦ii>ͺφ~Ι‹ρΦ;ΗL«ιwπυ’έ€Η&ΤvΔΦKŒ<J»ϋCς™I‡VΪ1―—Hf΄yήdΨΌ8αβ³β’Υ’‘3Ικλ“Œœ=θ£]τ”GLχ}Ώf?ς=šΩώπ—GΩ#))œz6Ψ‹,αΜS„Εs?όΙ“°xVdʞΪVΖ;Ώ―z~‹£‰ΌhDψpzΎ³ΞΆ=ž0“ΚSΛΏΨφΐ7S“—»@,ς’ϋ£Œ­#) FΞnDBˆΠυH=‘ςXe΄ΒΪN#Ϋ:2›~WDC¨-َ ­‡πY7ή€>†"šηΧ‡ˆΒ- ‹ΔυΑ ώ”‘ 'ΟΛ2’τ)Ύ–‡gOž³uΉ Ӟ<‘ηk…˜Mœ―cvjΈbWΘ¬C­ΚΘyŒ’€Φ·Ζ Mδδm§}εZ:©kV‘-£ŸfοΑ•‘στΝ6\Ύ~ =“X΄8ٍŠΧ@IDAT©%ΨθIΗθ„φή e‰Kt δ(ι₯·"¦hχΖΠ¦7De‘oσpΧjθž?λΚ!iΨI€δu4ΰx‡OƒTŠ(L†ΞFρ„ ud,\Ύ"]eδ,|lZ>ξ({λ¦ιη§™OF=Yε1/m₯T{hψ2w£b³XŠό•P•W(bΕFTœΓ.)ϋ±œ½6ƒcςή½;H-Ε*yόή38«Šΰ.σίh!P‚η_ΚuΡΤi“CηpUΎ―‹œ Aμ(콎+§Žc]X&;’UΫ‘ΕR7RΌΛxΎ³ IlΓx½uΒ/εOf`xCχˆc>‹u^b˜€²²ΧTFΞShmϋ gZ"sν>μ*.‘z\Q‚’άdάθΦaξ¦u$K–6jΔτΖΥbζ'€b³`l΄7ΌύœΕδ­I$,Ξ@a^}FjΏ<³ ›SŽ ΑwοΑΚK¬νΤ*σ|΄˜@χΕ hοlΗΐΘ(ζ'―ΑΖ­O (GΛSσv΅]Α§η,|u‡―—œMf€ΦKŒ<αlpΪΦ–ψLΫDܲڎu½mž72/²…€‹|–ΌΉ…ς ε t7^΅₯‰\9κ†ΞΡχHς{„³zΝΚ`šύ:ρl°YΒ‰§“ηΎΩ¨yΉ)znšJQvXρπŠ˜'“O«HΙ‹F„'η»2i63ΆyΒ€žZψ…ΕίDM^b—Β1̘θ3’‘bbΐaŒ0ΰΒq©λ‘<‘σXe΄ΒڎFΘ΄ŽΜΖφΝ_ΕΖLΥKb,αwQ6*ΦΏŠyχΏ#ΧϋΥ{x>RΈpžΩQΥΚΊΥNqU7’ΧWη5Œ<Ε Œ_Kƒ΄-ΟΑΊ\h[™qΎŽβiE΄«ηuh4_‡†‡ΧΰΈŽΐϊ•%Κ'œΗγ' ‡γWίA²,ΤΤΎœW*ΔE¦_^ϋˆβψ8pύή>T₯y;ΪzπωEύ}ƒiΛδq’νβ\Q΅2Ο²Ι‹·yΏηΫqξ„9.퉴ρ9G χυβ2tN{]‚€Ei”Σ9μ ΤΆXYπδΟRΉΈώφߜΠVœ¨ΗΟχΧkΛΔ-α>e‹vΏŠB_{ς»τ'V^bmη—ΜsQB`|τšΞ|„‹Ώ‹ΦQ΅Mh>ή…κ?‘T΄ρKCv.­‚,:συ’G9ƒλ%Vž‡δπΧ2ŸιδXoΗΈ^Š2Ολ†Λ7m >[U²Jq˜mk·φ5Ÿ%ːœ˜€Y/EέΠωAπHbυlKd ž"Lžϋ6N^5 XυπŠ”'“ A€δE!Βσω.ccχ—…' dXςΤbεF|5yΡ\@ΐ*/Ν…±Œ!Ž#ŒΕbA¬GˆΤυˆΰЍΗ*k€Φv4>–uδΊ²}#ηk‡ΠΠyw’6‘jέc(I–>„ϊpA5.^η/8-žuρ[_β32V¬σ<ΓQΎ&ύ˜δ±ΛεqΎf8ζr“š―ηςΔς±Ε.τUΈ₯Ω>υ¦ΠΥw:@Υι™ι€²x*Θ/Ϊ‚’₯’Ζcz#gυHt† ‰YHρ΅ΓM―eƒH6yΞη!Ή|φξ(ΗB2@Ύ—0 ·:ρρί…ΞŒB=`›ω ΤΎτ2Φ€.Β’±8£\iŸ[ύ ΎΆV°ΰRΒB χδ―πιi)Κ\”`ΗK_Ζϊ² :ξΘ”d’bΣοpg#.ߏcηΤυΙΛ*߁‡Kː››‡Œ”l,‘ηrr½ύΧΠuρ(>=ήδWΝ₯Σ<άjGCK»’Aα29psάΔ8‰ρψT„ΨΝ8‘Η2Ύ±|ͺ”yβΆ}^ΪΌi;ς|FBγ7Nασ8χwήΈχλΨPVOŽ`˜%₯©ΡτwΆαΙOpΎCμΨ9„ώ*ρΔ7w#-1SνΗΠ0œ‰΅U(Κ—―yλάQώΙϋͺΘ•xκΫ»‘’€{“-ΨOϋtΜ**š΅υ«ψr΅iyδςμ?,œ‹3˜οAWOκ?#γ> kηˆυΩώΫ†υ5ΕΎ¦]h:αϋ|ϋκ=xqOhX»|Ώ9|.xχ©ΫπμKΫΘ!ˆpθ9†wχŸPκ—=φϋ¨¬@fΊΠzκ~sΘ_Oi@™’ΗΎŽΝEΙΈ§ΆT#Ό&ΪK8Ρeυcx~_Κ ύψχ·5‘αX+rͺ+‘Ό0£ΤΗƒ>ξήΎOε³Ψρh¨ωsΖ»ς8mσ`ΞwY—ΐ_ηΧΫΐ> όiώ4R0ΖΛ8Ÿ…š >3hvχv6ξ~›·TΠK–I5&ϋΡΤpψΛΗƒΊv,ΌδlEΧ£v‘΄d_GIΌ†υv£ύό ԟ3Žro—_Φε—*_Ν§ϋΩΘ ΗΔMudδ|ŒΦ»QZ/ω42ώaγ γΎ JYωΜN;ΖυRTyήͺpq> Εgk_œε›‚aτΆΆ˜NΗ½»σ°ŠžVΤ3©ΕΨP½>±γ_/EέΠsή#‰Ρ³AXΐ±D²pΰ)ΒδΉozθρ ™‘:ρ¬zxEΜσΫJ€ε‰b#αƒυ|WŽ›FžΠI±μ©ΕΘ/Μψ:=ω¦‹Δ/Ή8ΪΨκ*"D‘¨DˆAOήH{¬²FZamGΗ”νudβ&zωγQŽΖΞ֟αΓ«Ύ€·ρqcV<φˆ·<+VΑ“BƒΌDU:βgπλƒ3όœ΄Ž…λƒΑό‡RTx>€Vμ"ΝΧ¬ςΧε`‘Ηωšύx gKƒσ5֞3„sψα껬¬,dΧΕ« Lλ΄ut™ξγ;8μΜΰΞ]ω?½»γΥuεΑͺ ΊzζΆP7žRΚςJ| χγRΣQΚ'ceJζΟξήΑ ύ˜₯κΛW€ΐg‚±i/n'f#?iIΠ6‚Ρ›<ησ°<«%Εkύ“3:%›mψΛε2‘CF3ώ£ΑίYrN±1Π_άkωD½ ±ΰΛίz%™ώbΑΘYHι…›PGΩΩ‚_~Τ Β‰Όμ|ρ5”ΚΖΝΎş₯iΘ-ώ6!7σGψΡ{ΖF?κ&vςΞηΑƒd%’Έ7'ύΠj=؎OuφςξΙ³6ΎΰΪ• PΕKΑλϊφR0 %2}/― \§‰Ξ₯ηΏώΚσe†ςcIj>Šθ/;qœ ?το°}ώQΣΥy(*[+Ϋ…ŐLfό]‚Sω^_‘„ψǟ*ΝKrΧ’@<χ–’όΔϋ8ή‘n#εKΚ7’ P2ΠΎE†ΞRκƁού¦²Ο.]Sfu£μιm(πU>Χ€z2œ–B¬$L¦ŒΫm€a°\Sόυ¦T_4M»uΑ·«{ΎύuΤ¬•Žύ-–€`γή7Ÿ›‰Ÿώ0ΠΠ;£`#ŠΦΝχιbbŒ”\ώ,~' c@’Ά ΩΕ5xŠώδ”F}0θ#»κEΌ^%Χ’ζΟ οΚύR°W―G η»_ƒœσλm@§!ψ%Άψ3@ϋθp>³„Ώ9Ÿ6ΟzOι‹—f£Όξ5de₯α§ζ/9XgќνOή@‘ΑMΉ†% ˜:Ϋγς•υΒΪ―ϋ―ύ›7νυ9B μ.₯eI‚£™ρΊKcω—žu=W±τʁR7~{ωŠk|33;Š1;ο!2K!…¦Ύf13#vόΏΌdژ΅i‡Qά1gω%8¦‰ ύOοfnί^™φšσ _/IΰΕΙz‰…'BΎ ¬|f³Ϋz)Šƒ>Λέ΄FqnšΈΦ6γG}βŒ$Σσ§M”λκκςϐj½δgRξ˜ΙΝ $FΟΆΘ‘¦.„§‹ηΎO€]½PšέΟμ½™ΌΥ½Υ§zγέ/€'žz EτH~hλlC{γaμ?$=°uδρΈzžίCάΕωΎαL Ώνκ‡Ε/ ˜‘έSRΫ§‰‡—XΙ O&;œΙs4ZPlmΩ>Οw[J©*»Βv<΅T²³fόό@ωQ.αΌdϊ`C;3ΑxI[Sؚkžo<ςΙƒω$⫬‘VXΫ '¬Νud±§9B;!yΟΰ¨lδ,•P£θaYUε*qρΛ―όϊ ;P£K§‹°Ι#ΙhA‰4_‡GžΩΊ`‘Ηω:T6ώœA{i·βa=οɐ'Ž@l#@†”3€’π’?₯EO£gπτˆJa{΅l@Γ_ΰΜυ8 šY„<ߚ|tIE―ΰ«J(2§? _ΐιζχpE€A•V,Iσ}ΚHYY‡oПœΖ½­ΈΨ~ύ:<˜εΉ0ͺ/ Izή‡βλ&+ξθ· ­‡ŽΰΞς…Έsgm$ηRΙX―Ώε4zΗ¦1ož/Ζ\Β= υ ͺ€e`ΟK/¨ŒœGpΉώ,†ιž,}νV”ϊ 6KwΏ‚]=ΙWξ 'ςό’§»ΠέӍёaŠ›D†•τ<]2N,¨}{:―ΰ …O:ϋ{ ‘s:κηΏΓ¨ξΈ”₯3Ÿrc†_ΧδY_0Χ―ί‰bΕΰ§Χo„2JΚΖβG”σΉ―³Mp &76φ•ΰΩΧί@ΉςΐƒΜ§(:y{Ο0ζ'¦#« %ρχŽ&\0ΛωG£ΉGηŒ6y;O£©eI…ΨΈΦχ^ͺ°[*?ρGηpωRJΔHΚΩ(*έL†Ξ»0OΫPX–ζΫlA«Νٿם\%*6ɎύΈx⠿ێNά O½'“=Ϋ’Œ•XM{ l±•ϊ%Ω™ŠΣΘ@t¬νψ¦ΦΘΉ‹"[·wC0ς©*Ϋ¦―O?έ‹} Ά“hΊ-Dt&†^˜‚Šυ’žw5s¦ˆ§L9Feδ<Ω…3υ π&δcC]ΖψΩΌ©ΏΠσηοΒ)ͺ†o|W56ΜΊp½Υτš_b‰?5ͺG}ƒσ™΅)ΒgA:Ξχ³;‘θوšΚb±fzΩΨ»» ??tNΣ>/ω›Ϋ]g•mί¦2rξ§υΰ9τ Ncα²€η’΄Έ€:χ­'ύbό9;ό’V„ωΩt7ω–νΕkΏ†ΕωΙίυΝ ·ΎƒβΑMOωΎ"1…Kη~€‹ {°E5ε…z•,ώfcέκjT–Vω ¦kτ”[5΅%‘yI[_ήbm'·₯ί•_<ΘΙρ/ΗΊBLJ~αλ₯ λέXZ/±ςDˆCCΩΝΚgφΫ1­—’Ζσ @Θp>@Νg«_°77Ρsυ’₯Ή™μΔ΅λCΈ5?S³^Š]Cη9β‘ΔζΩΐY"Δ±`ΛSĞηΎ=½zΩνΘ3zu:ςΧ, c―o¦ςΪ'39³UΫΗq™ ;θS}¬‘%’ι3SΏͺκα†ΨΏΰΑ]KάAθΠSRέ³Ή‡—PΛ‘η7ιΙ#|¨Ρ–ςlη{`?ΦJ\ΰ ›žZAυ2ε—0xΰU$ς;9/Q’ άκ ΞKͺšsΦσG>y0#ŸΔšΗ*k€;νB―#—& ±y€Τ9؊qycύςλΏ>Δ^d¬ΐŒG’QciΎ“<Σu9›<ΞΧ!"°ρη κ“ΘŸ£υ< ›››ύc±³ ΪB7Ό Gΐ‹έηQœš<2LJ݈gŸΘGίπ4–¦{ƒΰiοY#'E«iYΰΠ»θxα/ρ”hˆΉ ₯λιQΒa~·s6ηayjΊI7½V“jΥXŽOu{»y·δYŸ™~ωE/ΰKž\ew_ghƒŸό’:”­π5™ΎŒΖfω(VΊ‰›Œgg*ϋ•ω[ψτ΄φά+yμλΨ°bΦ?&ΖσΟ߁”λ=σ+Όω39ϊςϋ}υΏ`W₯`μLο₯<t ‰Ο_lΑ£t~ Oe Φ–#kΤ¦cžλύ‘–/6)œ"6vιΏΥ»ρEκ$ίχζ38¦±dnB?9©”u©9XI–ΞšύZ%²²δ0τύμj%»γη±₯ŒΪŠI?pκςστξn―ψž°`g-ΚΘΠY½ςλ8ϊ Ώauκd’‘³ά›V²΄•΅³†tυν™lΒoώαοq– ΅…tΌkιYΪ§ίςό±ςΌ^ zΫ&ΚMYΞwΉm°_7―·Vψ%Vψ3&ΡΨΗωΜκΑωΜΈαζύψ'Šά,₯ƒ.žΩ)9a”lͺ‚‡ ΥW»Ό묔ω‚<‚γ?ψΟ>η68’Χ’3Lβ°Ώ T.ΏδΟΛ΍c7{EGΞεΉ{πh±dH1>pg Pλ[WΜ›· ”4Kϋ7“‘s™οΥΔ΅Ά8 δω(‡¦ΗLο©*7ΌiΏwσ“’•ϋAπЍ£ψθRcH¬π’Q'¬νŒϊŠvΩƒΚ/«w?Ν>GT  mηhέ$ηΎ^‚¬w£Έ^rƒ'‚š]¬|Ǝe½-žΧ€ζ Ξgΐ‘ω,³Ό+K“1ΥΫ‰ E½ηpπτ,θjk“f½£†ΞsΗ#‰Ι³9²„ΩYΚΰ)bΧsߎ‡ž™š!ΛzFΟPΔ2ŸŒτβ EZK#E΄Έ…€”\xΦ(ήίJΚΨσx¬ΔήgUFΞ£mh8u“I…ΨΈ³Zϊ”˜ΊsUή±§€W/±ŽO&–Nδ)ƒ²9ώvΜ9›Η5ΣωΞͺœcž°ο©e¬j(~qΫίX‹θ•r^ ιΑ­LN(^’+>¨žoςψ­ώΑ“{ςΖ–'oŒy¬²FZ±Υ.δ:2+}»£7θ€c©Ξ!ΝκΩυψυ_b02V“ƒG’!p"ΝΧΛ ±.g’ΗωZύωiΓlό9ƒ³ΔΧzή`Όˆ#{ŒuαΪP?ςVΙ¦VιΘJ°“[DƒGρ&Ζ_JFΦ Α@mŠώ–ψΤχ’­σ,ݜDrϊΓ¨Κ+τ•’’h(ΖΩH[*€0Œk7z(ͺΣχ’J²όF–e%΅θ CηN±'ς¨‡σ0+DU§ωσΞ—3Λό½Ο›/1«πη7”IFBΙπΉ~#g±Κ~ϊ9Φ­}F|ž›oaՎ<‘Ϋ†ύ?{7ϊομα³x„ 1…žΏP8ΘέKNη!MeΤ269BG Qb9>ϊ±Z枩6)τλΕA’–ϊͺͺ ϋ[λ«9‹»›ήGγΉ*’%_ΏU}k²6ζOΥΞ.οΚMς ΠΫω.kβΧαυΦί»~‰ ώτλl’γ|·|8£Εώ·Zή;ΑoQΊ©\rΙ,@>9xt›9xXΰ%A&λ:λπ*I·tΚ½-'pV©˜±Γ/Ω+d/βu―‘―τ}αŸŸ>„UόΉ"δξ]•nJ©½ΜΊΧ”hΡc½GπA‹tΛP9Pޜθ3ιΤƒ¬Tx΅\_γΖ!όΌρΈΎΤ`Ϋ /4k;£Ύteœ_"Γ/«χaχ^yύCλΑCkΧ ΊiΎΑΧKzPβa½δOθΗmΌΝΚglνΨΦKηyΞg1ΚgΉXUXΰ;'ΡΫvΖψ Φ”RΤηΛΪzκυ’i—¦Qt7ζ’G‹gƒ“ΘςΜ9υqκΉ―XΛ Ήπλ–g΄_•.ϋɏqδœκ!ΖκΨU²σ,ΆΘžUŠ7:F/ΰΧϋ?―χcτy¬?!oqŸ£ __Ξ-OΙΰ^’0ζˆŒ˜ε9π< ΨiΑMΊK–σ]έήNή)O°xjΙϊΩε7=πebε—σ=(·θΑm…—„y}P=ίμΣΑρ䞼±δΙK«¬‘VμΆ ½ŽLΓβΕ²!EbΈx—>ŒΌΐβΈ)αΧ~}ˆΝΘXΖ§$#αiΎvCžu9›<ΞΧV#°ωΟϋ9ƒ€CΌ­ηύsΗsE s'^Ϊ\'λ‰Ξγ:E‘—΄’>υμ[SS§KGρΑεx‹‚š‹Kδϋatύ8Υπ œτJ“ΡΫού7°ΛC”.”%…­~4œΞOtk M;Ž Ωσ$Ύ²ΎJаΆˆ[δ&£³WθӁ<ζaΰψ›ψ~η1²MŸΑμb e33¦‰’*Œ*Ziιr9zE£λ Mt‰Œ {Ιξ0Y°K·aUΧΪt3yυ6TUo@~^–/¦{C2`ΏΞOΚ6}~nΪ™ΕNη!Eeγθ7‘Κr|šte©Ψ=yΦΖ¨”ρ‰ ΎσNΨ}³ 7«jJΦo¨ρίϋžΒ]ͺw5šš67Θ(φ;φbΠHΌ=ŽžΖ[ϋ}MΝ€:A c±b—ί†Φ/Ξ­-οtεόυbDo€=6Ml#₯©ΙiYύv£… »6ζFιΩXUΆ Γ51₯>†ΥbτvښΌ€«fΐRm¦…η%ε—Pš"Η–O l©[{ϊΰE…ΘiΩΒΣ‘VxΦΒ“*9m$–Πuρr ζλΛΫί#Fb^•HŸ?π%ΟΞηρβ§1_&|ΎΪ“΄„ψ˜9y–&ΏνλGokΰœχu_B:ۚ?fe•†Nyυ|W–qαz+wo_’ϟ²Ύ¦ΏœΟΘΩ,~ω,`^G―γZ€σ9τtφ£d½ΰ±‹3θw( ©έΆu­ΗΔ”†Ϊo_Θ8sνW;0ΠΧ…ξΎΠ:YηR—.mBΖΐΠBJaSΚb&gMX@—;4O+VΠ΅ˆ.9Σ³SHZΉΟ•Nβ½χcΦxΙ§–ꇡͺ γ,η—Θπ‹πEχΧ~OY—z›?ΒΟ? \3¨'‰―—Τhψςq±^rΞ#(bε3ΦvlΟ_"ΜσœΟb–Ο–―+FžΟChvπšzιΐ‚ΙQ Σ3(mς―—τ·wΪzQΩ £GRΔΗΓβΩΰ0²„8Fηž"v=χνxθ±Nƒ;žΡ~ιήΣ9 »:ŽαSΥ ‹ΗcŽΪƒ»ρ°bδ,J&oρ3*±KΌYρλ"ηœzJJύ„φπ’εΙΏv<Ώέˆ0`Gž #Λ<ΘcsςkοΈf9ίY΅sΖlžZ² ό2ΑΘCφΤβΌΪƒ[:r¬ς|"ŸiΑCγΙ#ŸΠη!Ν"Χ¨ΐ΅{=’›ΪΉ>DάcUVRχΛi…₯]θud;Όq  KˆάΆr%y²4*§ηνC­όΠQ(ΒИ²›-Γ―†ΡβgέΚ―ΦόΠΧ‡ΐ~x$“Hσ΅syφΦεlς(ͺηk Ψδ£ΰΟ␯ύΣΗsD`žS9έ8ŽΟ)†ƒλΦΎ‚Η‹KD½W­ήŒυ]ηqρV ΓL₯”d,WŒΞΦC~#g_›λ£dPα3tΦw3NFΞFιFχ‡Έ@_B«Ι’ξ7’₯Q5Ί`–ηή< τQTLώgύξ5ΦΡΐ?ΥΡHj^ψsμ©‘P²‘=·%SτZζy C˜$Ω(Η οԈ©φΆOӞ¬νpGžυρ©΅ξαŸΨ°EωόότθόβCρτκzω΄:lΚ“#έzq¦ύ€ι§βΪ†*XΌΆΝW:²ž„yςWrΨΠ›θμΖωηj ½(QEΆ€GλΩτΧ•‹7ž5₯dβuBlΏΊr-Ή„H©ŸŒ‘Ωΐd –Š=ΨR]£ΤΌrς°’ΧdšΊ12IΞτ₯―ά ιΙΟWΉΓηxPH@ςs£‘Α>2(¦θ‡©ηΛ) Ω’Υœ\`π+υμ Y$·KΖΧBΥϋ!λW°;Ζ½Ψ+eεAζσέ’zξ]oaƒ_’ɟ–`α|¦)ξψL£=mܜρ₯4€$ަΠFΕϊΥΫ¬λ¬ϊ†3ΨT)΅: %U»ιΟΧσd?.Ÿ?Oή; ¬¬M“5~IΑ"™~§'ΆfΦ KwJWš AXbegA‰ω|s7&ΔέleΦ‘mΖF©νδe3V:ŸΏΩA š.οΌ8ΧόΞ©4¨|ψ μXεKς²Χ"Ÿ {Tϋ5YΌδJ;M'&œ_4ΐ„‡_*ρό·ή@‘όυžγxίήΥΘ άΰλ₯@LθŽήζzΧ¨»eΦψLέ«CžPwe–gε3Φv>=μ―—"ΜσœΟ4GLμπYŠ ‹έϊΪ Ό\•½ͺΜτ 9™'ωΆΫΌF„χ„Ν#)ΒγΔ±x‚:ˆ,‘ŒΡΉ§ˆ]Ο}λzŠ’63.yFΛRΙ½ωΈρΓpΉŠόkΟγQ―gΰ‰ΪΣI\L OM)±yJ m­xxω„0ύΈa€A²½y``ΠΔήqΝrΎ΅TΔΞμžZ²b6ωΕE|YΣ߈{jιΟwυν­€₯₯ˆ ς€8/<ς‰|8ϋ΅Βσ<ς !hι!ΊΦφYΏ>DΨcΥD}ΦH+¬ν¬¬#oN“ΆΣ˜UOαωωYhΓ”lT>OM6ΞT+if7MΖf©˜_L"’ι―c±ΌnεΧ+ΗΊ•λC@?<’Œ’Hσ΅ςμ¬ΛΩεqΎ¦ϋχPΨδ‹―η ‰xδkyω/G φXWΆI‰t:M‘NƒŒœ…U΄œ΄!°”‰Αxs‘αΑΕnkΟ;ε>’ϊK‘{…θ½bšmΓ•«‘„&ΘΟJεŠΦ~gξΜVd”7ηηAƒΤά6y›tO™,MΆΚ―jŒœ§ϊZΠΪΦο$ ™G†ΝI¨ΫΉIκ;!MF8Z%ͺ aθl₯θκ,ΙπψdιΘbΛςΖWXτž\W‘h2FθΈJΩ©Ι$γQ²œςvΒXοiœˆΨ€i`oƒ’Ÿ=zK-> Έw«Λχ₯O{’”Ϊm8Q±ΘRJmdΨΟΏ»·gmΘ‘ͺ}§)zθγΘ.$#έΜ5XSNqž›2P\²ΖΧΟΊ.˜!Ϋ“€©\ύ(E’φυΗιΣf†|]θοŸ@Q1ι—‘‰2`ΞΙ•β…φωΘ-υ $Mv<ΑPπlžœT\uωθ―ΡG–ζωDκ„HΟ£]nxz ΦΆmϟ΅n]―Ε~Ύ[SΕ½λ­{όNώ΄† Υβ|ͺ˜η3­ϊή[Σ†_τXœ¨β8V― Y”“uVΛϋψ§Η³uΫ‰ƒσ)D‰*-ΝFiνοΑ“΅o~οAU­Œ³)K%‡Gας•TˆuYH}Χ~ƒOΊ€ϋ™u©ΩZ¨|ΰζ νW\ΔΪΦΫ”WΉϊΌΕ(Ωτ Κε‹ΓCKό_YT‚MΥ―`ύύ44TLε¦ϊίs—ŽbeΖ«(τOΚ@6 ι1 ΨΒΚK¬ντššls~1ΖWμ˜_JπԟΎ¦|Ιƒψω+¨sš ™―—Œ§%^ΦKzν­σ„Ύ₯ρ6+Ÿ­  Z—"Μσ|½d|Ό(₯Qβ³€Βu(/ΐc­θθ΄ζ΅4ugVσόS‡Ό^Š-CgVO&yT1ψkΫ³9²„zπN=EΘθΑbd΅Tϋ-κΦ‘ςξxF+RΖ­ΜΨχxTλΉσm>‹wξ)iΡΓKΒ~ƍv₯ڟ»ΜλΫ9mŸοζbƒοaε ‡žZ’RvψΕEόΰˆH{#ξ©₯>ίΩ#6(CγΌDPπΘ'Κρ`š±Θσ<ς‰A½η’f'ㆡλC„=V ΖΒi…΅ψ©7 λΘ+(-τ(†9Ή[θ₯Uΰ„g„Χ½έ†74΅MJψυA ŒM}‹υu+Ώ>h'ΡhΛβυAί”G’ρ!iΎvCžu9»<ΞΧϊ“&Θ6_Ο8ρΗΧAfeeeΑv£ΉΉ9θ~Ύ“#ΰΤ%² ­‰ι3Ιj#g©ο~ŒΣ§’…―€iώ›"ΕV1ςߝi#Ρ§e‰>«ύŽ ΫΙHM"γ81 ŸŸ4 †eyΤΧ˜‡ϋwM¬—pΜGF ’Ρƒ>%¨ή$Ιv!ϊ:ςv(y›Kύ‘œ»λ†·ήΡT¦>†R2tV™όΘ]k)d―’–rŸ£­βκΦ²TΘΑΨ0ιΕSu Η')UΎ ždULβΩQ4œ 9ν&kςΔ^mŽo}ΩΧπ%Ut¦λΧ>Ζ{—κ-)Έ²`7*”ΟΡwγ|ΛqKν¬WjΕ±cλνjŽ`|ΪQ N$1D”&γ]7Ξ?kš‘₯ε*6 i((έFΡC£@0,`EΤ”²ξύŸ-[7*έ]8}ΒΠΨOͺ0„α> ˜Έbιrδο|‚ωh Ξt& ͺͺi€{ώBΡΣ (£7D}g03+Ό<ΖΡƒžΟ?D½ΕΘΪ’\»ΟΐΉ] Vλ‡β]«ύ˜ΥsrΎ[γ3χ·ξρKψψΣ gγrΞgΖΈΘ₯±Ξg²žo2E)βJ¦Όώ}S7…8ΐωτ7ι)kF@ώΦڜγuVΛaΌOδi‚ΥεΘΜ_ƒ’ŠjdJ׈%Ε[ρHυa0uVΡκcΈ%; ͺ>80=ό>ΉΤ諞άΤB_~ŠΎ’pΥ°kόβAƊd{2¬. r‹‘“EkαΩV\τ·’»ƒ» ΣYy‰΅]…u»8ΏθΡm:αφόα7±1ί·ΆšlΒ―η?[ψZ_/ι&ΑΥΝp―—Œ•΅Ζαε³pς ΙzΙ%ž7ΖΤ¨”σ™*ώ²θπYQQ’BwηUƒηšΚnMfɊt— tiJy½€<νΒf˜=’’0’P" =δ^hμb$ [ž" žϋ‘Ζkϋ‡ϋ‚?LΖj!δκ°§n qbΎ`œ˜όΥt\whŸaεδ Μžd‡wΥΨγA§η»U>sλzλΏ„‡?Υ3'yΞge“Ο4€&#7Ί5Nd€ΆRΰ!MΑ;ϊΪ!Υ5ώί΅u†ˆ„ΏΤτSΤ}σΐŽ2w—‘а0 Pΐ2Ώύ„Ζ„bϊ2>;yΠo•½>_Lw£»Χ K(°Ά^Ί™ι~Œ‘Aς]ΊΠ€ίΝGF²όuΪ3=Œ‘ϋσq’–ΧΑ#{ΑΝ’“Ža4gV^bm§aloΜY~Ι σεΫ¨)–Χςm8ψ/σšσήdjlς _/™ΰ¨*ŽΜzI%PŸ΅Δαζ³πρ ιzΙ%žΧΓ³ΫœΟ§†ψ,?ΣηΌ=ή‰+֞ι‰-M‚ςΈSιΩΏ^¬!”ύQΘ„ί#) ƒ *Δ³AέΖrd u#³Ό5O±΅MΟ}3‰ξ–»μν_ε›ͺΙκρθŒ_Ζ ΄ώGΜ&’™=%νxx™Θ¦bλžLξD%uFHͺžϊιa@ΕpX8ίI¬5O-~–y"œžZFόBcŽxΔ›H{jq^ νΑm“—xδέ ί΄ƒ'|’G/Τv¨λQ¨φ†ϋeΗ”Eώ½α‹Lΰ—!δX#­°ΆS€ΫYGNœΗ§ τGŸζK/3ž ‡–)uψF±Ο`γf'Z…ˆHŽΏ>ΐ$"Zά¬[ωυ!Δ`ηϊ νŠG’ραiΎvIžv6…-£u9;•Ηω:j£ώœ’μΕ_$C£©”ΛxΔf ώ-&¦ΙX+IX§#/» cZγ©β΅[€Ο$‹ RδβQc€hιRϊΕ׊4¬L†UƎλΚΎ„u²αΪΠήΡN]&c]Α:ΜΤ£SUW–΅<{'φVVΙ›ΈΦθ7 d”ηΦ<,_žŒμTωe7©8šδV©hμ^f gΒk$Α%9EΆR6ξjG'φUI6ž [Pφή ŸΡ TΓvΙRά„`~¨OvδωΫ&a‰πSM‡›±΅¦Ϊ_%XŽ;Sr]ϊD‡ ‡B8™‡δeς7W―yQŸŸΊξέ›¦Υρ2}_Xι’{ς„ŽCO¨εΑ£[ŸCE:9bˆ/:ΊqκΒpΖ}{ΩΓ΅(”Ÿ“L7ατe-· Rβ3΅’σj *2γ\`γ£ϋΠrςϋ.©•ΨΌϊEθ–ΖνΖωΗ„Χθat΄μAξZ:Ξrj°/Gξ₯νΝ'䍠Ώγώ‡ τ^i"hέ:Šζμ{ƒΦΖΟCR{;zΔ:κ5=G2hξﺊ¦$tMΦ‘`)=KςIκ»‘Θμ»TJυΛ·οΒE2t64©Ξ©ΔƜ;8λ›₯MFegςN©―ά+*%ώ,Ω²e‡šόό™³ε>nΥtλοΦyΠωω. ΥŸΐλ­u~‰Ί4ρι†σY0˜νς™Ά―b”=²gχ7ψ‹«·£DζΰΙAŒυj ΝKώŽν―³²|FŽcΓ7©k‰_ύ2΄9Λό2ζ…—–:)bdε)\Έό6­φεTŽ'K·Πχ’€Τ7Π‚Ny—ξΧΏτ“υχu-εΝdΤΥώ)¦epεΜ…Δ ΩΒ9±›σRqύj½±s[Κf<]ϊˆ’ητΝ!C=­σ’¬“τΛΪNΫK,nΝ}~©}υ$§€IΒv |οοΠβEž)»όΒΧK2rζΏa]/ΉΔ‚φaε3κŸ‰<q‰ηΝg6φp> 6 Ÿ-šn«άθl±ζ@€t˜…ά5«ι«C]J Tλ%Ρ€ΐΏ'ZΉΐ#I­©gƒΊ­U݊d‹ž"‚xλžϋ~e-{θω›ΨΜEή3ڎNd‰Vτφ£B|π’lϊ$;ϊ΄ž—9™ςγ—PΨτ”΄ια₯–nΗ“Iύ<‡GψP£hž·tΎSskž§:9–y"|žZΖόβ–ΎnΌ1΅Ιy)€·^œυ|spΫΔ“{ς†ΖΪΞυOέ›εuϊEΊΠAX#Θ²FZam'Λ•~YΦ‘ΈΥa₯›dl/©R’d΅υ5©φ)•b<Γ―όϊΫ‘±4'$#ΑiΎvIžf.… ³ϋ~·δqΎ€άnΑƒτœ!^ΦσvηΧηDΡiΑpY2 Λ[½_ΎŸ„ }Wqg~.J<[P•'˜Ii ϋΌί W.Œυί±ά {‰1Z[.ΎTυZλΡqk1JWΧb‹j|ΧZ|Ζ™(.2 Λ·βzo;{ϋ06Mo€"7£Ής'iπtΥ |ώšΆ™δ‘Ή[σh₯j`Έκβ€ΝΜB6…Y²v/^ušφΰξόd`}#—‘ΓχΒέ{²—wνD) ci9^ψ³?χ£lk}{j%ΓMA»¦‹§Ι Δ Ω§(F†Ό΅Ο|·?ΑΕΣƒH­¦O‘?φ Š=,₯V  <‘=‹ytώ%K4z­²QΟκ'QZζ“3yd 2^Γž|Ήf?Ί;₯v=½Ο£@Ρ{Ctm”SΗα#ΈP]MηT’Ί /υ_’ώπ1\Ήt³Ι™HΛπ pM9Š*Χ"™"₯ί$CηΉqN96δΘ!DοΰNR:(~Ž˜Σr°‘|3Hω)έΉuΝMeτp#ΪwV£HpΜ!y/όΕwqμψ)Œ&δ£ϊ±έbΔl±A8ώ³Γ»jω–xΠ…σ]-S7δ3·Άψ%ό© >ςœΟ\δ3έ”Υ½‚‰]>Ω ©[ΏŠέ/Φ)Ž ½—Ξω%„v ΌΔΎΞ*Αφ—Ώ‹ςΤ~\>u ]-t-ο₯(Λ™X·q;jwΚλΑ~τw™πΈ%~6‘²Y‚β’η00ϋn.(@U)­υe+gZΟ76ŸXK†ό€iβ*$'ΛϋΗEγky + PSς}ˆb+Ρ}ǍρrȘ¦΅τ2䦑8―X1r&wM\θ8’4U2ΆxIiE7H|½―λ₯ Ού9v P‚‘³°6θœ@ζξΧρ¬ 4Ρ σ1Ϋ׈‡UN|½€: \Μ†s½δO˜ ΥM>3“!”γAGχ·aβω`c‰ΒΎΉΌ^rƒΟzOΣ€Μτ «©Χφμd•=‚-]½Έt9Ίυ’έΣΓΆp+ ζžG’OPšeR¬F²pΡSD˜/kžϋΪ™΅μ‘§mfk+zžΡφ<GιαͺμΡX΄žΐΗΥ†ΞΫPφpιΈxJΪυπR+aǓɍvδωυ΄7ώvΎ\Ψ"|88ίuJZσΤ’F,! ΉωΔ%UΛΧζΘJξDhŽo«λΘt]΄6ιάπ`{υSؘξ‹ρsσ,Δ¨mϊ3'φ·£w\Ϋ[/ΕΟΊ•_‚υφ―·κήx$Hσ5‹<ζu9Ežο0α|­XV¨Oςœ―c%’‘ “Ι»ΰ„ ζΆ¬υδ"O”°%Ε_‘Ώ@qΣΓ§pμ’κi`•-ιΖω3(ΫP%ι·’;6ӟNΫ‘ή#ψΰͺ/'šJΆΙΘΛ­tΥ₯ΝΙV|ΪψΆ.ͺƒ<κ-n灒΅^ΉX‡άυ’q§²žJ?Z­‰£θPŒ ›pτΣ£πΌΈS2΄ΙΩ„}oПΏΊ˜›j;„Ο):ͺa²!―ώd*(Κ©¨Yj9κ^ώ { YxμψητE£g€Θ™ε¨Ω[΄i½ΫM†Ξ&†8J-σLvf)J²λmΕΤR2‚–ЦG$CgGΗ§Ά{K[εΩί²5Θ’œ} &eVΰaeL4ι “±­ΈΎϊΒ―Nv qΗηP=†ΏΜΗWΙhMμkΧTΪ½ΎcHͺ#ώߊχύ+€}ϋχ$#γ₯Ε¨yZψSU1ΙΦ<ώuμY―3ό–λζΧβ™7jε-2`jΔ[MLZ6`‡«ρΪΛ»%\ˆ‡v<ηη!έ|Ή0°Α»j=,εŸο–€h*9»ήΪδ—Hσ§f€q²ΑωΜ7Q.πYΐωΎ ₯u―‰š£aτΎx瘦ˆ…—œ―³²QΊEψΫ­ΡEޘj9ƒcЇˆ\jχ—Φhέ—Q²Tl˜”\Η·Uh;™nΓ§υϊυΌΆŠγ­€T%ΰ nz1¨ϊbLώ2ωzŒUtί±*ΧLš—.ώ r$h₯šM^rάNι φ3s˜_–.χ9L FΞB*¬F•ΚW*”ώχ.μΕU_/I`hΦ―ό©Μ—ΥΤάM_R²s_lԁy™sž0οΫφž |΄―`ν­—b„ηƒή…œΟDΝψL0oκjΏ6ν… ‡YuZŒά²νβί†κmώ΄^ yήϋk‡)7'=’x‚Ž1D²pθ)bίsίΰX°μ‘gΠΦbQΔ=£οΙŠΩ‹,Ρzκzw—‹Q–οΖwΎq‡~σ.F3vΰρ'^“<»ε5Ώ<%Y<ΌΤ²mx2Ήaΐ†‰WθsΧ{ΟΰΪhΖoΟbι2ŠςΆ GŽΦ@QN]ώ £9KΈπλΏ>Δtd,ι0Uώη‘d("Ι׌ς˜ΧεŒς¨ηλ0D`{ž3ΔΫz^8CτiΑ‚Έs'πkϊzΒΆP—'Ž@ΨΈuοv­«AY¦?’¬"oΆW5ΰ“«JQΌe†―ˆw0ƒλj‘΅H―ύ0ZΫΎΐΗ-ͺρΝLbœ’c₯Θ/ŽυM“ΆΎKhh>nx/a[žΠΏKσ ώ’¨φ]ƒκϊρ8ά>ώΓž{ε₯«°la–¨p›Ή­εΉ“?Ζ›³cxzΟ3("‘κR{ύ―°Ζќ}u-Λλ8€·’€§ΏB²t†³˜lCύΡdο|€ο]υηu:‰›-βŸώυ6^ά½₯…ΪσD?F‘ΎυyΘF’EŽ”4sx|JψώWΦ Ύm£γΕ‘<†ρΡkΗy%ƒm c`΄][aY9<™²αψ0.΅€(‘s/ œό)ώa¨Οξ©CE±φ˜G;ΩƒΞ뚁3ήYL˽菱όf}ϋοήώΩ{ΰ8λlτΑ Abˆ‚ ‚ Έ@€H"E“Φn-–bΩ’’ΨψUœT’?ω_ώϊS—*WώΌ?οωΩe'ŽKρΩ’΅XŠ,š²"EŠΈ“ b_‰ θwΊ§»§§§g¦ϋvΟ`<…ιΫw;η~·ϋάΫ·Ο9mZ€r’ιΜ.ςnœ§”lEΣι3Jάδ0u㔬Ž’I %‰ž―¦”hφnThνΧγμ;Φ sΪ:Ί©‘Ή‘ŽΦΛ€Tμ Νu­θή³Αc,Ρή‰ΞA%C=ΤοΗKίιΒή‡Δ¦5jͺΟqΈ³-uΌήœ)χϊψύͺŠm>ΕύOF&5|‡Oό ?ŸΑžΟί‡’loύώ–cΈΨ:ͺ7ΚF$½]ήv\?ς³dCΞ«Δ­ΙA‡χ»JL:/?3y&•s2ίΪ•/—ŸRc/°<“ΖΜyFοΔUyέ}ώzɐέ8? “Όψπ•—|½9u!Ή$ΌΞBoc-2‹Λ‘f\ŸΙ—οŽ}‚ƒoΌ+Ÿ™ύX“/žšνM―αΨβQ₯ϋŠ‹Ϊf_οI―yΧ`΄¨ζκŽVε‹Š>šŸ¨):uωp‘δxnk5’—πδȞ%^Aaρ“–KΚͺ'‹mHž,^=C;έςV>‹ΗJJ”Τ'Keoα`›ΊΰΙΫ΄ρ/PΘ3ϊDο!ΌTcςΩ *“Ώγxᑍήnβιm§β5Λh]Ί1:|ώΧψήΟτ6PT‚>ρψΝo~QΆο§όσPω―Sy“­(cIΫ+{πΟρdu…_9c‚o½<ρχ> c,ε{>^Ώςγ·}΅λ˜R[ύ;~nc³HmhΫ󈝊‡5M=6Όχ]Όͺyψ2·|Ο©>ΤB†£δαγεϋU@λΛτŒƒ%`ΥCψζΧ†Lc₯lKΧ΅Γϋ]Ο†~ετ χ‘]9‘§γO­ΖσU;<sΧΞα•OήζΙ—ψ΅xόώΗΟC~T΅ΙσΠoο‡n›OΛ‹…Λ%ΐmΉ”ΉεΌžO\Γτ‰Ηού‡wCEH.…š²iήψ«PσΖV|ωΏθλωδΰπ‹}^ ψ·Ύω¨…8ψΓYΖλεƒ9Ώι遽› <(φZηŸ=k»ώ ΟΡ OhΔoΎσΏpZR`Υ^ό‰κωD)ez ο%/ϋ_΅—UΟS`Ο'Ζ$Ο'TWZ•έGŒ`y>ρoi~PΚη=ΗΟΊ&ΌQΩ3Α/P§σΰΝτΔτγ/§˜Ν‰›πτŽ/ ΣX9ΐyΛ₯—ρnS=1ΦSΪYGΪυ‘ kWσ5k€Dm²Πu­φ&Τυ­–SΦK±΄nεωApζέυ₯^B¦G²Œ~γ;ίχyΙ"$η…―Oρη#΅?Q)―ζμΞŽΦεDΣ.=‰M–ΧΚ`)ήg°”[ςΪ;Ξ΄ι𐐀[€|ΡήގΙΙ 4ͺΌΌ<̝;Sτςϊjg¬>Υz1ΰXx(^Q ¨««³MhIr rS0Ž§κ©>\νnŠˆ’ φ —&#~ώ|zσψšΌqs½ Ϊ»τ(α4fΩ`ωβ|Ίx½$›Vi–Λ §λ₯¨—σΪ@:°<σ•g_ύg|όY=€=w‘0zs–&.DVVτλ%Sp"„κΜV‹$‡– v=K8³±άχm;zώ΅­§YF«ΝΣK'Ν‚=”'©Ž°Ε#}pίχρΖτŸ`Χ.γgΌΊqŽ>ο—Ίc‡μρωϊ€Κ‘DPΠR…—DU v,Ώ…< ¨„”£ezΖΑ@‡‡‡χ»6,OνΚ :†“`–ZŽδ‹ |Ρ|ΚrΙΔ‚Ϋ‘\š­–oςu̞OΌ·σ¬χ|βιͺ+«–ζQO+’υ€ώ‰­#oέ—½XhΞ›½WzzNβΝΧ— †€Ί"1εωη‡¨υŒΕždLεHδ䡇Ό]zŽΦεD.=‰K–ΧA<°y†‘άπ>ƒ …ώ[λy/ηmδ 77‹/ΖςεΛΡΡсΡQσEIbb"rrr0gΞLBtwώ“ιή69ΖΈ…ΐΘPκ$G“³6 £₯γ”εލŒ’’·ωνi± {τΤFg8xzΪ|‚›ΥN‡ωIZaξŠΦΌσλSkΚR$τ,1Ε…d†›Ο ΖζΝ4»ξ‰­X«(9Σ Ξ8ω+£³§ι?Ό!™Ω}θ!ειαN½ΑM:6¬Y₯‘žΊξhβΪΉ"‘šoY~ZΏšXžΉ+ΟΪjΊγ|/ΔŠΞ)=Ν΅θ±9…`%`φΘP-ΞDσsΞdZθŸCψ`ωβ|)^/ Α¦UšεrΒιz)κεΌ6Ξ#,Ο|εY{m½#P:.“λ'rφΪΰϋ<7ÝυΙ•ΚατHαΤ²ΑΆg‰Yn)bπHZF‹Z<"…¬ΕK=ΦβΣΧΗΠs™\τ3RΞνXJΊiA€ Ι‘τ0 <A{ΰN¦σϋ]”14Ά©9”/‘²ΐ·έ/—+°\ςκ¦\bΛ7_Λ7φ|»žOξ$‹Uk’5 y©H\˜ {B˜Ύ5ŠώZtwœh­ι(,ΕσΟαΈ,ݜoΩ“Œw„"-―mΣsΌ.·λ)‡εuΈ<° ?ίΖΨ>C¬­ηοΊλ.ς‘…δdΟwΪzzz00 m©zCjj*233ε„΄μΔώ–ζy‰rlV ΰΔ£σLΞύσ™μΣfFΐ-–δ$a€c8`s±ž°c2ςΛ7aρ<2’œμACύμTSΏ$ΤVw WΠAλΗ[ρΉ¨¨ͺFE±ςΝΨήcτ₯½—"’ΨhaXΈ#`X—_‘ψ· Όδ™<Έ,#ΰPχg¬ηΫΑηN/Ό^²sEpΩhG ΦεS(ώΰ―—g—.ΆΚM‰ztnmυΤ—θΓΜztΦs2 γN-ΘφΧ–' ΜrKΟ%23–Ρ’$kρ#ΎΦV.uλ–’Ύ3a/Œ e"IΛ@:δ©σϋ=$‰lΚ‰­„Lv(_"e²a)ΐrΙVwε[ΎΉ‹§οXY2Œ#ΐ0ŒΐŠΐέO―CΫΡ\=~Łά-Λ‘Ώ΅0¦σΝϊεΧΡ m΅5rfQς\Ο‹χό²*Hώ‘Gή‡•œύα”(G`6Θ―`ςΧ.όw„<³ —g`ωβ ά!_x½δ;θ|Σπσ_ΰα‹„ΰF€`€¨/»%'z%g΅B¬η«ύΰ##ΐΜ^€/nΞFω₯Κ_+Ο³wtΉgŒΐΜ"ΐςefρgκŒ#ΰ>κϊ‚ŸΜ± —’σ]_ϋΦίz|E›ΣN=ϊΡ>αΊ\‘`F€`ξ,$eζ«Η―hV•›%ΟIωΙ~›k±–τύ½Φ7Ž0Œ#ΐXG€ηλXqIF€`fX[Ÿ›½Ό†_YY™œέΨά¬η1A(^Q ηΧΥΥ-Η™Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐΔ*’σ)ΘG»?­­­r•9sζψT«ά²νΫ>).΄·\v©%n†`F€`f;FKϊΩfgμίlOξ#ΐ0n!`”Ÿ¬θμ>¦ά"#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ8D€ΘΥF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Fΐ}ζΊί$·Θ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0n#°,c-–%.EœΤπn`t¬—z»έ&£΅·ώΙΏΓΓUΕο<†ΧŸ—Π¦ε„/²$ΉΉK³°(.ΣΤǩ룬EΧ€?Ν%‰Y˜οŸ¬K™Bθ°ξά?j‡žZ;γ ½#ŽΩχγΛΟUc)uΆ―v?^ίw4όέNΙGζBΰϊT†ΓO.Z(dn{_zΌΌαei~*Fκ^ΗO_{ί›ζr̍ϋVŒ₯|¬ΞΝFΒ‚ω² šκΖωކΰMΕST₯ΉŽšΎ>€ΆΆZτ©εV΄vn‘› .Η‚°ΓYn ΐrΙ gΆh•σΩΫρΜSΥ΄ζ™Ζpέϋxσ½χpJي§Ύ²ι €±ζƒψωάk;μ- Θkx²"w΅2θυ^£‹¬?™ΑΕBWοά"„ηΧVš”Υ' γdΝ‡£½ϊ4Oά.=©ΦLƒ?χ³8eα,ΝΘBuqn€ξζ°b/ΎωΝ/ΚτΠ{ ?ύg…ώ”uΨ~O)ΥOc°ρNΧχ…—©Ρ[@/ϋ“€ψvηVΌlJα›θ™ΣϋV”Υ+Η–’ ,14πΉ’FόώΜ/p~ȐAΘlΈϋA¬_^ŒCΦΆ’{qαC|άΦdΘœτ//§ yK3’˜ΤΔ,!εDOθΗ‘£?ΐ)?Υ|>†h”Kaοτ H)Ηφϋw`}ΥΊ=‘φ·7ή<Β8ΑŒm+rή¬^$h•’—'ΟA‹€™ΟŐ΄ιyκ|ͺ {"4ι™²/―υ΅νΕmΛέδxdk5’-’iΌψ2φ7ϋΞ"λO‰\$q±Ψ=.&!ΐσCδ―ƒHΜnΘO™pΚy•Ζ #-—μ+,؍ςe…€δlΆΏπyτυžΔρšwΡ?»ςΪΙs@8ΩMX^»‰fΰΆ²·bού[±rέ*\9α1Z/((ΠΚ―]?ˆ–ϊ³8SΫ¬₯YŠθΦσαή›΄ΔOh«o3Α,ίΌ₯¬Η"ε‘"tC[nΨ±=φ-KΝ@ς’,œ‡8Ω2eύ}5h ΅ανΠ’Ε:ϊ6KΊi9e“tDŠλϊ{–΅Aθ""`‰ζgτ4ωfΕ³„€ cΧμΡ‹œ…žΚη¬ς裓KŽ-VU€’ι¨λΛ]‹GgrΙForIό~θŸ>%<¬#5kΔ`λr«τ,™Ω":9Αrpf‡"ͺ¨Ϋ‘ƒ³ήcƒ~d’–Hnπ(ܸՍ‹ϊbqω)βzζx‹βbή§2Œ#ΐ„β•OcoIi@Kθeο΍σpγΰ+h XJ4γ¦Vρ–s?’·βqWώϊ?y]Z‰,ά»ιKXŸ‘ͺWjžΘ‚,T¬ysn―ϊzλξ_ό&l[χy€HΙ§Χ‡1ΒJΞfΘD.- εRδ:aJΩ›°σΎmXWY£iΧψ¬rfEΞ[mΛύrqš!Ω<ϊ’…«Α…λ6Rσ‘ΪoϋςZ­)p»Λ’³,+9KέΊε»YJνD‰ λΈpŸY'D·<³Σ²‘œ\Χ0ΚyέͺiΉdŸ^9Φ•ίƒά NΟ¨ΔCχΞΑ>Οž "ςZψ9 œε"ήΧ‘ωΊSεuώκ΅ΨDJΞRΈbΣΒ­Fβ’y8όY½Y Σ4=ž3―θμ‚ε›i/-&FΒ#…SΛ {–"IΨΊαI”.Λρ³2—!)ύzΊ>ΕαSολ6m<`9΅h±Ήx17-§μr ‹Υ™μŸ]<Έ|Ψ°k‰ζ”zΆ-œe&Ε<`HUEθ9•gφδgf₯GŸ™”K,w=–[Ώnβf‹GΉ$“Έ\rrΏΫοŸ8Ÿ.Άδ™ λr[τΔ.²΅XFοX‘fGΞb ΎΓU„ξ}«U]£‰ZΌqπ ΏgNί:φΞμΛOOϋ\ΟgQ\Μ[γTF€`°"Qm:%η!ς:t¬ρzι%Mvξ½”WξΩN(ΑΚEh4x +on5ž΅»uJΞΧqρ괏Ža½ΙJ)Αϊό4 ŽϊzΔK^€*!Ž£₯­Γ€«ι§"4=DŸ€50*BοNLwΔi6yωͺΜSΊZ³οx<ωυύΦm-iΪΥ\DŠ^s ލޔR RtΞr½3Ύ ί·ΎΝX>++ϋͺNΙy γdύed¬Ϊ‹Ε%žv–– $' ]žΟW―.Ϋλ£δ|₯εCΤ΄ΑΝ„ ¨\}?J’<κ—wlΔω«ο’_Ǎh–,MΣ)9K|¨ς’“ΧΰαLGˆ£³«riV"P‚'^ψ:Κ ^ζu5ΪρΎŠKŸΑZΐŒ5 x«vŽ…Κ‘šˆym‘‹ˆΘέ‘zœΎ2Š8“΅ΐττM€oΓr•βπIœΦ}‰"λΟΐEeŸQˆ@΄Λ³°BΓσC΄Λyq‹΄Ό’—ΊLϋhM_E\νoCχhc1ς–­Een‘§ηKΧ£’ΰ ΊZ½_Ž•Χ’ΟCΐU’;Z^«ƒ3Šώφτφυ’λΚ%Δ-ΚΒς’uΘT>‹‘VΌε=¨₯uUΘ`ΐsƝZΎ…μpΘ^KΊpypbΉaΫR$~%r)9+Xd.»»7έΔΟjκΠqfΡ’k(|Ρ[Xθ;‹Υ쟾―Ÿ9μ[’9γUˆž€…3h{\Τ„θ9“gΆε. Γ¬υθ3ƒr‰ε³ϋΫXΫU<Γx]Ι%cg-‹Λ%'χ»ύώ‰σ)Α`Wž9]—Ϋ₯gi¨fΊP―χP]sυΎ Dlϋˆ₯˜H·…ΫμτΨ`§-χx•œ)sbbγΖBΞνΛO1gτLη CΘUF€` °fY –(υGzΰεš΅ΦF.Ώ„ΔLl[ζς§Ξ5 ‘ˆασ«ξќvτ\=ˆΧΞnBcG >9―Sϊ“sσ‘š¨φ»ηχγ’V਽Ω? {NJΊ¬9<Ψ§‘ŠΤ‹«υ[ΧCυσΫqμ8ΞjψFF¦½onί²π"Ξ·Ίν³HΣ“\θg&`›οΠDοΫΠ-›–H¬BE‘’Δ@.ΥΎ†%†ώΞάCŠΞ rΕEHXJ1R'Žί€ςΒ|­Ή–†WπξeEωpς~w*Kο2₯K—#Ÿ^ΤφkΖβύΉΦ@F,S˜λ …λ$|•x±ϋΖϋ}”©5ζ8>b@.…―σ3ά²&nGΡτΩ!4Œηaou°/>ηΧͺœήJsΟΰύΧΞ„‘€YΣ4οJΚδ4ο†2’ˆΨ|$"―ΝΊf#MHξΕ'τoΦβqΙvj”;ŽΣMzC±υ'fσΎqͺ†ΟDΓό`2ώ!q˜9’+ρ‘–K’τn_CkΗgθΈς). ωΞvν½gq3ξ@•²2gŽώ‹‚ςβΟβƒΑ5ƒ"`rΏFΫ>CPώc4sd° ΅'ίΓωί½‰KύΛ°‚‚λΤ›t4τcσ#»³Xκάb,M¦©Egγz>RγpYΎl5Ί2„-7D,ϋζΖauh°]ΓέθΔΨδ⦣0·«Σ<›ΏK2Κ°)ω jΤ '-ΡwxΈ‰ Εjx:ΐ­F;B–h:%JOΔΒΩ‰ zp"ΟDδ.{τqp%©Κr78Y1€§¨\@ΒrΙΑύ.?a>%P䙣uΉ=‘±»£κΔΐ}{G‡hgg‘Η#«ΙCΪζLUΙΘ“;:1„cAΑsω)‘βz‚Α3\€ΊF€`f,€-ΞR£΅σ„S~i±”W΄%ςKΪΣξ1*9λ{βϋrρ™HVκαΪ°e%@1zΞΗ!©|/φl/Η|R˜Ž›‹ΈΙόξgo’GίE·β+ξΗ{«IYS½vFΡέX‹šΓ ΘήΈIσγ0Ψτ{μ?`T¬Ϊ„‡Ώv’γβ0ή~o~ <ψπύ(*,F’‚υpo#šNΐΎkdn3Λ·γξ2δδδ">ηΎH“±tt_AλωCψθH­yΟVlΗ»‰ΟbΥ£²Δη9Τλ'O[ΑB Ά?Ή₯%+ΙΫw’Vp|°έmh:{ΗΞXρŠΉkͺŠ•ϊ­¨=zXk δ[wΫΣΟ`eΚά€1[˜^εεl|_^εε0n>½²;ώk|tBηL.M|>ύy¬)« ϋ˜ThΗΘG/ϋ[Nαό‘}8|F_ή=Gγ υΜ~Δφu-xίΪηΜScu^©ζ%y„δ‹ͺδ Γ†jRr–Μ3=ή™q—§Nq~)²U‚δσͺ䬦Mφ`ˆΖ2S½ΦΥtι耓M¨©oZ+LτΊ΄½6β5Π ΔZ„ε’ rΙΠΧοω Φ–•#?[RΤχYΆ4βΒρpΆΩxνΨ‘KR{λπΰοBj<Ν M‡QӟνΫ*Q”η_Ϊ΁—ί†W’­£Ήd—<—LΥcεfp™ΡΜ-_Βη7zδΐΕύΨw@š+¦01ŽΦφZϋψM4t½Άγry±Ÿr~Εn<΅»Τ- ]όΏρ› ΤRΆβ±§·’α™4?Ζ›ϋŽjΚξ#l\WŸ1hEΓgρ›½ε΄ )Ή+ΨT”„ιi]*Ν½£47ο Ζ‹π}άΊ1όuaϋ}‘ΖΟΩ|€φΘξό "―UZΒG—εξ¦ χ"WVrFΊ>Γ'έ^ΞΔ֟ΐŒΰβe;21αλšΧ­Αˆη‡`θHyζ“j·nΔaύ°is…χΩc¬΅5οΣ| ~πV‘σΞΦσβΟGΡ.―…εΰP >RuαΌC£ΕFo˜ο£ˆΚkGΟWQayΝλyΓ%jΆž>σ6ή4n5iυ ­­9esσΕς3ο-Χ<²oίfƝ!lωfήΕθK΅ά΄=†Wχ3Aς|Ρ‡»žC‘²ΘΦ??AΨ’Ε„T€“L,1άf!b«¦Œ[·¬5­Ξ‰Ρ€¨%šhΟΠ³mαμΘmˆx²–gbrχŽτθΓrWτξ›±zŽζ1“ρv}ι@.ΩՁ\ΎίEϊη€Oω…ˆG4αuΉ˜ό΄=vΡTΑδΎp›=Gχ­cfxύι‘Ιx[–ƒ³Νcƒ0ΐ²‚Ηρ€δ!MσPž3₯"ΧF]RΩ‘Ÿ\Οί3\€ΊF€`f)άΌ₯*βέΔΝ›FU‘|,OχzΊ!•₯P„²ά…αn\¨=Dρ$,KNΕά9’RΞΊF}φ_²4ͺŠλΠΔ0nΔg!/aQΠ:³’=ηγ°$³%Ε«Όƒ38ͺWzΣ\ˆ%•?†?zρAψš‘%"«Έ ΣΏR§±†·O+·j•\·xaSς ʜIΕ¨ΌwIΡΉ%ΨρΤWQj(#ΣXœŠœbιr2~ŽŸΏε«DΚVτœŸΫˆO•K“#)›}ω[/’Θ„ζ’”<ΡV\₯elEB’L Ž‘B7d ›”Όw—7')›Ώ½§rlΊώίβσ™?}%ήdUY<­pͺι?+λίρϊ{5J'τΔΗΑ˝XΜξu-vߊρ½Ž£ιͺ$_’6²*ŸΒ •JcΪΑlόœΜGZΓ°7?ˆΙk/57bε.9©ΠΎ°S—½sŽψϊ3pqΫΐm8Ίyέj,ΟζΈRΟ†‚tšUω(6&/ΞByυW‘™™Š_ώ‡rήΑzžΖάΙσQtΛλpΙΑjΟ ϊΑέ/ά{Πσ=q–ΧΌž·Ύž~έΞ—6ϋ”pσ–ζͺ_Mς;ζlXι·ocωύ¬_kHfωςࢠΚ5m†λ΄›ΙPΥ-ZΤμZϊ¨υDv-§μ[@Ήc±*υϾŜΛZQΣQύά—±|ρ\܎»…–ί‡kϋ εcηs_$·ρs1‡Κ\9ς <“£XbΣ7caV!rd―8χή;Έ²` ΆWoT6z»qς­W±ΟΔc‡] gϋγ'uEΔά‚H]ΧΒ–hΎμZ>sDΟ¦…³#Rl“A”gbrΧΉGΛ7ΓYξ:QΉ«—Νv,r]˜Η„=+Ρki›žͺΙ%›C#.—Δοw‘ώ‰σ ˆΙ³ΰ@[—‡ƒ^pnf&—ε SάΛΙ Π^€Ξ§vntβχρK·]ΫΩχγ©G6 žΌδάθ?Wί蝑υ§Μ‘ ŒœΗ†^ο’—ϋεΚηc§Zpu*ΉKεΧ~ΌΦ¦Tρ¨ˆό”¨q=U!ŽΐΈΛ‹Ώ(.ή8Ζ0Œ#yHΑmj”ΘJslJ‹A{ο;h—)Β½Ue=Jθ'―κ\ΗΙe’ό'£ΉŠΒκΘ`/ŠžΕσΛKΘc’7 υŸΓ‰Ί·pI‚A–.JU {€δeΥxžώΥ02ά€σMqͺΫ€‡0=ΖAχΕŸ·ϊ•ŽΪ#«Ηr<π¨Nyx¬'Υ`8.k««|”ŸoωΈ‘Tڟ’}i%šV¬¬σθΌ»ώ:†&‘œƒόU¦ Ϊγ½­hkoΓ`_?ωγL Εκuδ©Ω£όU°νqμnΉ„χΟ¨{λ°η1Ÿƒ¨ωμ4Ζ ±~‡Ί·lήη²{·κ”œ»qρΨtφN`~b2ς QZ\@}ή|˜7D{ΗTΕσnœ?ϊΎ‘\-><ˆ›Kζγζνi,Μ\O²=Jiέυ' Μ™£Π‰›F_{―~:v?ύ€NΙy€ψ<~ςœΆj JΕΔ]Οbg;y“œ˜Β =/i{γΰ­'³y] έ·’Μ₯![UˆŸhΓE―ϊ²φ™j}ΣcΝ$,W’‡ιΉΖΜ3x«νκ ΈkύΣΏWΔ ςΟ@6ΚOY.Ή'—Τ‘.Αc/ΌˆrΝυ8ΠFήσ›Ϊϋ17> ™%(!ώ7}伈\"zSΣ$Σ}ΓpΛ ΤΦχ ‘°λWεy2 7bσΊ9/4’Dφ˜Ÿ…’M€θ\γΫy,,KUκΡ {s6q|DΞ7· kVVdί°(}V-]lƒ’¬ mξλiχlc_%ηVςlέΤΦIΙ»ͺ²\›ΆζA<ςH~ώŽo»£φ†δΡ™fέωΙ¨X㙏LηfΉ%‡χ‘ΦϊΊ@Θρsg>‚ωAH^λ:εFΤ‘άΝΒΞβ{΄uigK ΞλεΆθϊ3pqΫ€m8Όyέj‚,Ο& ˜$™LJ«I’ό<}ΎρωλQ΅Ξc™™Vφ φμjΕ«ϊΪ—σ*ΐξzήρσQ4Λλ0ΙΑ5kv 8AΕΌ W»£BQyMMΉφ ²UG–ΧΌžwk=ŸŠδ€dνκΏ¦ξiI†Θrδ,SΌϋ6Ρ«θΤςΝΠ·(>³ά· EF 5}SΖ§Σ€•Y΄x+Ψ³τρ֍ٳœ±€rΑbUΔbNΔΊe­(‚}Ÿ‹νλ<ΟKŸDOνΏBΏm·φ‘§±MΙΗX-N·‘Y±QσκαK9dμέώ–r³Pωψθm‘Ο"jή0D,œEΖΘ Zšλϋ™λ:\–hϊžθγn mαμΔ†žkO<4=:Ζ”@ςLTξ:χθcδ0ZΟYξz=Rˆ‘ άU‰ΩΆΘu6 {VRψ΅'?έ”K*`βrIτ~λŸ8Ÿ’ς,0fΊ.½ ¬ΜdΛA§rπ&ζ₯‘GΩ£Ω*”oόm'όbΧnΩDΚ žΒώ±Σ΄¦[6λOzΩ%κaŽ.Rϋžybp½K^η―ΨΟ–D~ρŠ«ίΧ1δ³pΦοc1ω)깍λI#³HΥ£–ΐF€`Cΰ|ΫY§d!—φuRΦγ±σΠΩ?ΕiωšBπΔπiΌό}[žGg¬C:Β«Σ²4₯%)¨”ͺBrZΨA ¦~ŽK“ήΜTω—ήs}lIR ΆU– ωόOπQ›ΧΛ =ΧΗAΥ(Φ3ξ0žΉ£ ₯*†΄Ÿϋ›ο}§I‘K GZπM?OϞΌΐΏ­8ός’σ /† cΐ%σΰiΆ­5ΡߏΛΪΊή¦>|ΝOώ–έQPΊ†œTσσwT*ήtιtπώλ;ίΗY₯ζaRϋΦs{GήζΤXrςR%:€#?ωŸŠ’°šKλψU€<ίοM[±λ‡αΊ“8l’αvφ½_j|%m›OŠΞUrkυϋ±ο#UΫ°ΊΨ£Mjβ8ςςχπ‘ͺδύήςϊΧδTRπKΔͺQ<W…ιΡΎΘ8Ωvε<Δu-rߊς•Grs‰RyθZ‡l ²$g7ξSž7GzŽΰόυlΛχ|6wΜyT: ͺkb:Χ9Rω(.½Ήκ‰αθV–€€iλqm˜<ΘΕΠ)Λ%wε’4τω;ͺQ‘)9·γΘ«?ΕG'|e’d€½v©τι%%Κ%΅Ίzμ8ωkΌτŠκ}ωm >χΨΉNRv¦/δœχμσœ=_ϋHώK“ V•#s_ τί}Κί±Ζλ™ν|­&kU:nƒΛωZt“1T)Ι €dcΩ Rt6™T>23Uχόέθm₯7©εO`sΥ•ƒq φ㳋OΠW φΘF;Ά‘ŒλΤΖθΨ|θW^Εκ”έΘ Eg΅5]1-κΦ}dyόDη?c“HωAL^›ΠpδDξζU£L]žL\Δ©:uUγaHtύ Έ8€4dU·k/‘;{έ*αΐσƒχj >?˜Χμ―Ϋ‡’ηfOx=#‰Gw”Λ§%*‘OŠΞϊ™Ψœ‡ƒυΌ[ΟGZΟ£H^‡Cζ=‰Ο)λ©Ο-§p^Yk‹Κk©·ž€Ά’-°ΌζυΌ[λωŒςuX‘±PΉΔ{Π£Z#Έθ3Κ‹±L)ί·‰REη–o:ΙB–,EΜ1ΘΒjRP]WZ©Όˆ]0^m^Η›Π’Ε[„\=ά֟Q<) $θԎε”TΫΊ”S‹U‹9σώ·Œφ―c5εμ[?CZΪ_c›΄©š²»ž ?S>c΅ξKΨ΅CυhA›Ζ―g₯έk"ή΅Ν(.:„›yU¨P>/%Ρn8²£i•¨”?Χ”‡όβRtφ¨Pow`α,΅m}ό¨°₯ΉDE"q]‡ΙMΧ ί¨›τBZ8;σ€αΛ8…€ηWΓ/! <–».xτργ2ΊXάUΘΩ·Θu2‰{VΠ±#?έ”K"Nδ’ΰύ.Τ?| Λ³@˜…X—»N/Ρ“ΞrPt,pξά9Tμͺ(,ίœP_Ž©m–£x₯GΙ ―g5οӚnο ¬?ΙΑˆyl˜±υ.}ωeΓΓΘ] Ϋ8.œω ΞΗνΖfuΗ‡‘χg§&Ϋ> ΙO’Βυ| φx¦s€‹Ok|Β0Œ#0# ΅βJ_7r—«*0iΘN#N$ύ%i>ξ=„—HΩ4φB2—JŠCΊ/ΠGογΚ΅1$₯ݍΚάB₯[…¨(Ϊ€KN)ηYH],Π+]νδνtΣqHN!CΜL’T°¬dšIΡΉEε„5ΰpK^υ>ΧιφΛ™Bέ Ϋ†cΏΧ”œe²΅oγΤ™Jμ^§^GzfΜγηή2(9KŚγ#2XΝΎ_šW¦ΤΣNγRt“Fjξ|yρ(—ΝΦσyκ€―‚Ϋ™7qrν:μ\cΞηττM/=€RΖpύQΉdˆPŽυ6(eP{\UZ\mIœw΄ζΜU•˜ΝΛ―-σ(χIΉύgŽz•œεβ}x£O°zΥ£²`ZNž©'Q;τ€fEΖAfΗᏽλZδΎg0k©ͺυOO—Γ’—Ά x`βq“ΡœψΛοωΐ­[΅Υ†a’'HΤ3aΩ2ΊNTΉCΉsχbΫ U.Q‘‰>τiFžξυ/•θ«>‹†ΖHΉR‘IΝιT`ƒ4.y·&Lƒ ‘ΕrΙmΉ”5λ7j¨7|ΗOΙYΚl8πŸ€2ε nΘ% §~经sδt-*IΡYΊc’€+K τ%€–Ξ±>›Ξ³in¦Χ=υj&P΄Κ{]Ήd0”ρs -η{:iηBVVΞBzn Νo„XφnΌπ3 œ}Ώxλ(ρP‚ŒLeNμD́UΟ•kfΒm‡φϋΑ0Νe§ξ.§9WR/Gα–|ΤΧ«ΐιΊΆ0τWάΉlŒŸŽ=»σ‘ZΥΞό &―UJξΕεξZl\M׏ZŽ)λN5E|ύq\x~ˆρu+Οκ]όz~π―O^DοϋΌpφί£tCΉΗp2£yd0Σ¦{FςiΓ‚œ—Κ‹η>E³Όv[¦ε>„έ«= κς‘ΑψQΝ8E\^K νοOψ\%φNX^³Όάg˜Ρυ|ΖZ”―-Πυ ηqEΪ r°Ό°@Ιυέ·ρξΞ¬ωŒP–o‘ηHœ’ˆε†K•Σuk_ΔφτTŒΠΖί\έ¦ˆ”ίΧuοi›Βj σc0‹σJͺΙ&cΠς™Φ-§Δ<ˆ{P΄˜3``Υ²ΦPΝΖi>ϊρ;Θϊφ‹ςηώΦ<Чv5ΰυπΜc»΄‡τ†_υσŒ!o<‚Χί‘E݊[Θώζ£ς†5ZβΥ·(-ϋ:–―ϊ’œ–”!mnЁ°…³ΨψpΟ0\Χα°D3φ]ξ&½ΠΞΞ<`θω–β‘ιkψž“gNδλ}|َͺ3–»βƒ".wE,rEη1'ž•bD~Ί)—Χ2œΙ%‘ϋ]¬β|:‘gLΊH¨uΉΫτt€£2ΚrΠ™lώŒ<’s>nΪϊΔiΚ~ε‹€ukΟT Ύ("½“^Š)!RλO§r0’Tl€c€Φ»›HΙΉLz‹IαJγ~μςŠΌŸŽο›rΕ›€˜ό$^„<·q=svžqζ_F€`D cžήT-+₯Ι\\οΗUςξ9'a²/ς0Fe)Δ;}½ΗΝ ΧIηΠη]•>Θ5ΊρYΝ―pΌwΨSΏγ†oΏˆωκ‘Ύμ>_RΈSC7jΞώgGΫ|›’.!|aM₯GIpAςs’Π!΅ι€ž γΠsδ%ό¨ε0ι¦OαϊBς&15δγέRν™ψ1©©Κ"Όw4œρkͺ³ν*`UΡyμκŽPΚ2΄œ΄b+*7E^n6–,$/Έ€0*mΜMΘ2ρΜlδΣ_Α­½…ψ  θ H^w₯Šm_ϋ'€Ÿ<¦ΛΝθιlE[§΅ηΙ#UΉβœsœλ?ςgΑCBπwρΥ­#½‹ι”l ”ι:HΏ.IβΑ‚'QCν€§φΖ!`3Ά2μ]Χ"χ­-vt…σ‘²HR±—B?zϊζγΎm+—έ8vξ5ςπLΚi)ͺ κ@χηzΏ61Bu<χRφς‡ρΔάL4 aqr ΦkΖ€γL₯¦FqM"!χϊ—¬σX?<Ϊ­p~$%Ξ―ΥSA=Ηϊ<Ÿ~ηG>^ ύΚL0ήο,—Ae].-ΔBΝn€ ŸϊcjFΓΉ48Œ£ϋΠΝjž0>&έjhC}}-):—SB–—mΘE)χc…μ՞ΞhΉHΨSZθΧ ž νd^U!ίν©YΉD§ω« ‘Ÿβ1fI*,‘υΧQτd U™3†»ΫeOΜΛγUSι}πψzρ#˜kΤΈ˜«Κ’‹hή.έGΆΖO˜Y­’υωA\^kΔ\ˆˆΚέ5k«Ό^ώ?Γ§­Ζ΅“θϊ3ΒΈπό0 Φ­2Sh˜v•qW3€ρκ©#ήσ ±ΰ-ΎνXϊψΦ=³g9%j₯rgΟbUΜbN₯ε9ŠYΦϊΆaεμ(~ρvώϊ9bs鞯ΰ…ςyΘ_μ©;LŸαxυ=σ’IuΣ‚<Ι©ϊkύΧίSc£&€­Δ‹<U­·pv:~Ά,St°Ω»“Fο[nθκ‹Ξ§ΜώΙaΈm‰Œ¦”η&½ΠΞM<`ψχ$4=:jJpyζPξ:τθ£ςhιa =_žXξϊβ!z&&wZδΪ™ΗœxVRQ±#?έ”K*ύΐG‡rIΰ~럨!‡ςΜΈPλr·ιω1ΰŸΐrΠ9%F֟ƒ‡qωόnδΛ€Ε(&―§?τj”ί]κ5Ά«%ΕCo#΅ώtCj¬‡ΩcƒFǎg%o%Ψ‘ΧR΅Υ₯_EΥ2ΒΐPΗAΌC/.₯{m΄SNsϊ#&?ΕΧ»LΟΜ£ΣQδϊŒ#ΐ0ΞX‹ΗuJΞ}]Gπρ©΅q«W=‹θKjRXΎbΦ΄žΥ>ΉκŒn„j''a‰¦¬΄4|θUrVXΈ:H/‹Eg#W#€δlΊΪήΕ9ϊςLUfe/BΒϊš΄²¦ηή8τ(_½3γΫyš€άΰυ4|Ϋiƒ#zΞΐU=ω7Ψ]΅*p5gzZ‰ιωœ‡Ήκ{y΅\ˆγ±š“Ψ°ξAΣ Rv.©άEJ₯±n\<{Ό΅ίοYΒΫl>6o¬N/? Ε݊xχpΊΡίA@L‚ІI–P’ύq"cZΙΞumϋΎ5₯h%1 Τkkb©+wc΅$(\ͺݏšŠdeBσω|­]£r6.Ρη«K σ5Ε΅μœΝΘφ:Šχ’_IΝρκp›‘§;ύ#₯ΖUI{Γγ³.……σ₯vΪ σxŸΧίοw`–K`ζ¨oφΙ0¨Η¨xb7δp_OP…χρΊIψh λυξκrY±>e)½•λ―X·ŠL<‘›φΜ₯d€ŽXJΆ(ηkΫ0@/2“θfNΊΗcs^ž€π¬„μ|’θΙΛ֌z;Ι‡<4§£1oHEVΆχΜ<¦ $σάΰ©ξάGvΗ/8OΦr­ΝβςΪVJ ΚέΤjlΘUΌ}ΣΚγdΣ~Ÿ9A¦,ΌώŒ0.έXGzΡ ½.w—ž—r€ΛΑΐHΙ±³ώ¬={U€θΌˆΈ.-_‹$Rt&΅ [Q€y—«ΗE΄œ-ύDdύιŽΤxΆ‰ξυ.°,< ~¦™>λφΡ™CJο3ωΣρι0―™+Ω€‚ŠŠΚOgξ™N{£Ζ₯F€`άE`uΩMΡn‚<Δύ–”œ%?£jΈTsJ”ύ¨d₯ηγ|›σ°J!ΜGςœ :OΐυF\ΊάδGp~œϊ,μ—4aκ¦κ_RWLή¬DϊhoghΣλΎδ£δ<ήY†ΖF Ψsθ[Bͺwlπ4«ξ뉐’ςBmcΩ'#πIύΫψαGπXυ½(*Ξ“Ÿ+΄Β‹³PΊν‹ΘΟ\‚—ώνW¦ΚΞIο#£JΞ#8q’O«ξ~δ&nά4ouZ»ψΝσm₯:[ΤΒVΨτΎ₯–ΌΨcHqH(ΔjΕωjη•ίΰΕΫζjϊŒ’Œžk]^οπ“gρ=κμ\½ eͺ:&΅s½—Ϊ0'­%I-)™ψο›bΩrβΣΰu >BΟWž'ζ@νΪJ'oβ§ΔbυΩ:dε8LOΆΒ’.mΘ֜`ΉD’·αxMC_QqΉtλ†tCٝ'ΘΫεΘ*$#œŒ•XY΄Υ¦£Έd₯Θ(ZΟΉolb]Ξ·’»{”ζβ/=%€ΐœ£*­J,ζ!§4%©ͺαΑϊΪΟP:™ιdψΕC…Ξ šφ”^’§ηΑVι…ιΜΫγ)vΘk·x’»IΈ,­T‡sC'pΤl˜ןˆ4.­Ÿ›zb ‰:Η ΖΌΐηIHI ₯%9HFXώ Τ°LΪŠ™q˜‚]΄ΐRŽ©b²oM₯^OΞmΗ^ΑOί0(¬₯܏RRtΦ©Θ x•|Ϋ14δΫ¦tR•ώή¦LÊςdδ­DIΕFdxΖ}Qρά³ρφϋ)1§cσeMK΅Ο8jͺ΄ ρ,άΎ@{Ω―RsI!Ž^FCœξΝ\ ε8΅N(z’γ Ά―υM4ΟXZn˜#ξ[β ³|+ς“TWP”p}5'τoΒ6UEΝ! 9κ\8₯ΘBNJ‘'―Έ—•Έr=‹jθŸX䱚Bθ0y†―ΖσΕ™‹k-h0SjσmI9³Φ?Ή0}-ΗσL:ΖΠ€iƒ‚‰ 8όŽυ(ؘ…j,—\—Kz'C ΊIyΧ Ήdaπ©Hκλ/cS‘dπ’Š‚­δνr! $Εb)τΦ’‡uOΤ½_;rΎύ=τEͺbšΛ/Aގ»‘.½η¬ΗΙ–8TV#•xΟ›―Όό£―tΙόNaκΊδ^κG;Ϊ?yΗθiψ‚Λχ‘FCΝGBM;•Χ QΛσƒ“rwYΑ.T€(σω*?[Δ¬eί4ΛλOͺζ.Ύ ;γω±Ύnεω!ΨNyvζί¦’θ+ ’–•Ρ€xόš€m%y%εΣ ΎU-Ÿ9^Ο ?YfΡ5ΉdY^» Χ”}Ÿ“ΌΒ*ακ•ία­ ΗΤΣΐG;ς:p+JŽη€mIX^³ΌŽ•υ<}‰xη€*ΟοS8yπ#t‡ΌΞQTT •jkΉμ·o£ΫNΡΚΝPΔ’εΫ q²¦–ͺΐ–ΊθΙβΜ…CX–ώŠ¨έ„td%Σγ—Ι&’e‹–pb£M[–SN, lπ€ul1GλWw₯5Ξ‚DΦa±nP*Έt™WΧZΩeΈ†)ΊnƒΪόΥ•±eαμΒψ…OϊΉΣChœ»ef«ˆg ŸΖ,žΈdω&S³jαμ– «τtPX–g‚r7β}fΨBεξβr%jSξο ±Σ@IDATFΚ"Χ§ož•|κ[8qS.Y 'KΒχ»“ώ π©m€Ju΄Ž΄Έ.”ŸV‡Κ―ΛA?H΄„˜Z6 ŽΦ˜΄Φ$•‡’5ΫIΡω0VkJ£h9{Bλšy$œλOzPBδ D+Φ»r+Θ4E s’dΓ³(W52ξZ„$5oA 6l|kn ζΤϋθRΣνEε'Χƒ©g:Q\μŽ—gF€p₯‹Υ–œ _«J€ŠΆXU°ΗΔΤ€«τ#Ϊ9υWΝGq–χ₯dίpθΧ!ΟKrξΥ)ž.δeΡ/X¦— ·Ζ!iγ—πτξυ˜++Ι’Rϊx-ήύΑϊ½0χγΥrBϊθe{žτ²= y+h½έμ»·›“iΉ5+½ΊΠνΈtΤ δL δ―[ι§δ,½˜νξνFEΆ€ώœGž>Im ΣχϊΞΞP½g†β’Ί(ύΧΰΨ{ΏDυ#Ά—Iν&’ΞšdYΩηΫ@ωύX#y•Bο œ:d]ασϊu―ϊuR†„cΰΊzα$Ω¨‘lJ.R%φ€06€fOTk‡žΨ8θ©)ρα1ŒQTB?-#R/{”¬@·kKχ-1QΌρ2ΐLυ²3v €θμ!½ωτyω9qίk0’΅ͺγ’‰6΄u³Y˜μφzz¦§ž{uή;;kuyf•½iVϋ'ΥΘ#…;ΥΜeh΄Wό™ΚK~c,—Β)—°Έ«Άδ£αΈ― 5p7δ’Y»‘šOΥ£cΟδPΑœόRlΪ5_›Ϊ._tqT8±)η―΄“’3HΡ™ζ£UηΙςo|°'Ξ%ȊΞYΕ•˜{Γc3ήέ8‡jΓΐΐΈt³Κυrξ&ƒσ‰Β©Cδο#=svζ#}=ΛσƒKςΪςό gR‰Ϋ—»%¨,–φ5=α*½>oΕ(Εςϊ“Ϊu •Ηθ;FώΊ[/ΕζΊ•η“+ήζόΰΣBJRΙ¦ΝΗ¨%ιΛ€η.)ŒcΈ/τ\μ)kώ+v}š΅eσωˆšˆZyνH&aΣΊ'Q•#­@€0ŽK—ήΑM†η2O¦―yν_Ϋ'ΕΞs€OΕ¨9ayΝλy‘υ|:νΟ| K&Τ'υœ?πΪh 2δ”#/CQ^iAλ%Ϊ œ3Η§šΟ³ΎON„O„,ί"Μ£»δ,XnΈj)r·nEKπfΓ’kΗrΚ±”‘!-V[ΜFΰ΄ϊŸA©d©¬ ₯{žAuϋΔAς°η<ˆ[8»=~ΞϋbΦBN]Xΐ&nσθKΚΞJ°εYB­”X‚5ΙκΞ¬”8M κSh7>X« iNιI$μX8»αΓ=bOXžY–»$Γ#ξΡ'z@{Λ]/nΔ„δKΉ‘ζ1Ǟ•μδ’\²l¬ςfK.9ΈίφΟŸj産eyf¨G§Bλrτό9”Βr02ˆ±υgΓ§ηΠQ]ξyΡUR†Ωρ(ΠjQ{Ζ °γΑ2DןɈ¨€.Dz—6n—ͺŠVΔ0}ϊΉD2  ²3ι%ίυœ7Ι·,―Eε'Χ3χL'Š‹Ιr#ΐ0Œ@䝠7 ‹ˆ`r³ΚQ3δ«΄ZΌj³Η©…Μy.  ¨9–νQΏΈ\šŠeρ@Ώn/kuΩη°Zskڈ¦ζ&j? « VγzΟ1΄θΚͺ„—dνΐžu•κ)zœς*žsk–,IBVŠNAs0ΑWSγZ<ΩIj©λ2Ψ/)ε{NJΦάΡο«nEΩέϊβ>ρLEΫL·§šΦO%倚Ό9Kw”N}bKΑ§½Gφ<$q”¬j)ΛMωύ\nnΑ^λό΅›QφΦQο8Pι΅χz”ώδŠ}½Ύ°)­Ω‘ηeΐή8xλ)1z—<KέΛΞA>½/θρQθπ«kΧ΅ƒϋΦ@rzz‚RtχΡΔm½oι‘a SΡdωΉeη.Ύ†F-·•n¦οrzBgO=Z΄<’ΈYδΙΚΗ½Ζϊ4ε Ίv5²L’rέλŸάZ’fbЁα@ίeυp Ώ,—ά–K hΉ\OΖγ’r.°ώΎ½¨?ώ#Σ‹”uΨ΄β&y<χ¬ܐKBΧΫΰ4ΧοFΞ*Ίo³«°7[m₯MuGΥ“ Ηο& nί Z֜nn—η‚|j5M6ΐΊ[Ιk\mZΗͺQ°˜ΌΊ+ϋ:»4Ϊ½WiΎυΜcεχξΔyRt6UΚ^‡υΩ7qZ­ŸiS©A―‘¦Ρqζξ#šlΜ:–-ΞTÁΌΦΣ³ΌDΩΙΜ]ΧφΦK±³nεω!Ψ%nw~πm«eχlΒι}5ήδχ’DΣΖz1€κςyKθb‘εΌ·°½λSͺηδωHͺom=O]’K–ε΅0½|ά·εqT€Ρϋ ΩV΅ Ÿϋ ŽKΟ9Α‚Όvχ9 {3™ΗςšΧσvΧσ۞ϋ3Ωύμ'$ouαμΥ‘™Ά8­„βεP—Y]-υv|՜ FΝV OAΛ·π0‘V-YnМη–' d­FΎΊ1|>ΗγγΝΩ‘E !fΩΗ-tmXNΉa%j±jΗbΞ-hμΆS²ηΟIΘ(›ƒƒηPΣΈ›6K›$YΨώğ‘γ;jώ€n‹Έ…³γg‹U]α°_Χϊ“DWΠ³D^F%>·šJt‘ε5΄75ιR(κ=©QϋΞTɁ λτΚ3ΛrΧ=>ž1XξΊ6LΞε}‹\λσ˜;κ–ε§KrIΨcƒ%Ήδΰ~w©BςΣ²<3^Ϊ‚λrazFϊQ|ΞrΠ½Α‘] uτ’KZƒ¦¬ΒŽΗ35 ©φœ-…ƒΐL‰?έ‘ƒωςΟ‰ώυξ LMtcˆ goΡ½ξώ0ιIκk?Κ™θGίνΉΈ=Ϊ-o@ψ”₯ΛςZT~r=sΟt’ΈΟF€`"Šΐΰ„€ΈμQͺΛ]±ŸΏ€s—qsnJς7£2WRΛρ„žΆ³^…^51ڏCνθ’χEΫύ|ςiΔ5CσδB”Ψ†ΝΊώ]i¨Q”3P\ώy–oΑՎ&\ξΔΠΔ0/9ι%¨Θ)τφšφΩj.œςž Ρ#r·Ζ ŒΑ$ΙXΔΦyہShΪ±E{€” xςo‡|†ΑΈξς>.*ή…―? ώζM ¦oΗ~ΥΓΏZΨηX‚{ŸωK”§tγβgΠΪ\žΞς›ΥλοΕΆžΆΊIQΝ t΄β!”ͺ{ΰcηpŠ”ΐm…©λδZΒ­Ϊƒž[€ΪΛνΈ5wmΉήΔΐΕΓhV”‚‡ŸΒŝ;<ŽE—γΙΏϊ3μέ>ΤtUχ=ŠέΫT>ιƒŠηOΐΤDΑ=1RΆ3ώύo@/)‘—gHο °χOΙδuq˜;w=ηφ£ΞG™Š™\ΔώIξ[&}ShkFuοΦ‘Έθqτ\Χζ ²”dˆͺεLrβTέY­‰%9αY2–ΈΪqW;1B_ή\œ˜’άΝΘVληΟ.Ύ£σζμ¬yω»Q–²·άΎGŠτεI‰©βΜ*μ\T‰9τΠxc”ΌR7ΩΌn΅žΝ\„ε’zΏ»'—Ξ~|λIŽΘ«€Œxζοqδγqαb+½¬ΝAaΙ”οځ€Ί]‘K‚—Q]έel—υ‘ƒ:YZ‡OW’oώiωo~JV3³l/ΜΊNΚqτ7ŒΊίDƒj!"η― μ ςσTέhkράgνO @γ{}΄SCσƒ8·q#)œS Ν·Ο|ϋοpμΐa\ΊpΧ“2šžΒ•ε(Z· Iδyώ):“š‡'d—cmΆκΈθ&n&€AρY‡΄Τl¬-ίΔΣ—(ܜΌJ_E#―σ‘žί=œz~νΜGϊzώ“Ω”A5Δ䡞”i<ΰό@ο7Θέδm¨Xξ]ƒ_jϊAMR„ΦŸRΒ„‹)X3“ρλZ]ΘΩ\/ΕΊ•ηηΓmQTύ,ž"iύΑΎΓHΩς%μzͺZ3 μΈpΖΗ¨r^|=οΰωHνcΤΚk9H_«½ηEϊΒ“ΉτΊ’w ΰeqjε㜻θω¦σΞPΎ„δ΅³η†’ψ„ε5―ην¬ηΧ>ώ7Ψ)ΰΣVΌΘνΒ’»·£ΰ•™rqk¨gλ΄U2]―GNŽ’Ψ:ՎΦΪΣ;#Θ2Ο΄|XmYΎ……·u`ΉA#’ ŠUOρ%Ψ”›‚«—™Ζ*y)½G³PŸΈΦ§³P΄h1@fΩΗPOόTΔrΚΎ”ΚŸ=‹U1‹9•VDεO`Ο …δ(jήϋOΠiϊ‰M’W=z@ίυΗ‘α?ήuΜ–s gρρe>μΧ΅°%šoRΙΫ±oFίp“o’tζ=©)«Ξφ=`H­ϋkτε™ˆά%Onyτροm΄¦°άuedεS‹\;σ˜ u#ΛςΣ%ΉdΩ˜΄/—Δοwύ³Ο'uNHž©£ζ9ΪZ—»@Ο—z΄Ÿ±ts„ΞŸ«EuΩj2ωΊSzθ]܊¦Σ:Ο Š?ݐƒ^Φ΅]tϊθ†.ξ- ‹Eλz·›>σό#Ÿϊhͺ·ύξN’†qςάpT2±,ΛkQωΙυ΄η~Οt’ΈGNfF€ˆ u5X•Ÿƒ\™ά"”ώύiOτ†Γηέ[CωSWJΞΆžDΩΪJ₯₯ΨΎ‰ώ δϊ:βΛŠŸDR”—τ››S)Š{NΗπΡ©Χt{ΰR²=ͺ[γPƒ}οΐWŸΩεΑ)£Ϋ/χ`bψ₯Η9@šV¦ιώ%ε”cΗkPAž‹e΅Μ”rT?#ύ(¬O&ΓΗO’p΅g_:kΝraό`c>ς2n'&&―νP0–—»IΨJΧ`Ί τ…ήγmέΖζ ηbλOiέ*2ˆGω©ΰu­φΚΒυ­•ŽΒλ₯XZ·ςό  Ή σƒίυ•ˆκ―Κϊλ δDπΣ7ϋ$‰ΘyαλS£lωH«j9iΉ$@/q%2 j3 Έ;@ηΦzEφ >`+ “Y^KƒΒλykλωΕKƒ>E_…(,(0½ΗηϊxθEρΚzcμ }­ςW΅Μ*†zώ0«γnš]Λ7w©‡©5–"–"K PUrP²WΘ“EΧH)δL7D䀑8·X{ΩIΔΉζƒJΏX΄‘³lιc¬(~nΩrJΣ'pΰΡΐ¦ΕͺˆΕœ8’57α™§φh›mGή %gΟƒϊώWήEζί?+[„§ΡΖζ3{βΥχΈ’λ [8»1~’œ‡ύΊ±D3v& ©‹Σ ‰CΈ¦ίlΥrΕι‰X8‹yΐπ0kŸžy&"wi›Π5>ΪψD„εΣ1•».XδژΗΔ-ΤuψX–ŸβrIGΝ?`…+&—œάοbύγ“`’g:ψμ˝ӑŽ•(ΛAχFjψΔ)ΤξήAήΨ¨MYΙ™^ΒΥΧβ˜ΡC˜’’λOGr0’€£V΅,―Υ †cόr$iοδGδΟCJ? ―Ε=׈Ι]¦§ “Α£]πΑγ\F€`°#0yovBY†ΧΓ§Fχz7.]©Α—OiI±ιΏϊ.ήΐΆ―ή†LςΆδϊΡΠψ)~W―λίΤFh혬Ύ0ρ­@Ÿ¦νFcηΤΤΡy[υ²MOͺκ8θΏ΄$stΛd!ζeU86|βWψωδφ|ώ>ϊœ²W‘ͺΏε.ΆΞņꍲςmoG—? Ϊ;Έ€ή i€G›χγ΅—γπΘEα…2ΖqμP=²v<ˆ/c{uϋΎ7¦»v•ΩΊqŽ”Sw쐕ΗOͺIŒ ‘·±™ΕεH3“ω@Γ±Opπwε3ν'{7*$Br¨ΗΩwj΄,;‘#?ϋ1πψƒ(/]ŽΔω©X€»§nψ~›³ηψβ₯λCxd7a#yό4„¦cΏΖΎ7φ} Y¦η`|)Yύ»ψαoΰ©]ΫQZθ+wŒ}”κZΊή·>.)txηgŸ Ζ“‘Im^Ί\?ΐς|€γίό ”‘Χ:Rž¨ρς 8?8»‰εΘΟP―Μ~\h|ŸΎ*:­?©YWp Νތ–ΊUŽyέͺ"αsδωA‚Γ…ω/iM(…ξσ‡ΠKŽ'σν0=_}ψΚKΎήœ©Όœ^Ο >Ι=σόD―Ό‘ƒqτΥ«‘=ƒM>…mΛkGΟ>€£ώ„ε5―η­η'Ζ₯ΎΦΒMύz-i ς–«=]h;e°^Χ5yΧΧΎυ·τA$χΓяφYh”,ί6=JeQ(YΎ½~άΪ’ΠBγ–ŠT=χΨ-=\ žΐOΏσ#νΖRε@…’wΰΉ­ΥH”―¦Λž%^Aac$-—>₯z²PΛŽ’'‹WΟΠN7…Ό•Οβ±’C ³SΙΪό-lSΣ7αι_@¦YQ“΄–K/γέ&_a―Λίρ ΌπΘFυΤ]<ΥVιίόζuΦΊj†αH–So|ηϋήEΥϋ:Υ3yΤ7T$5πσΏΖΆί/]JΨφό?b§β±ΑX α½οβUΝcƒ'7sΛy-ͺ”σaϊtΤχToΙΊώ™ς‘Mύ+OMσΠ0ONΗΞ―ύ5Ά©Ÿ]j9„ύΰ?},¨3·½€oq/ΥxŒ) I6=T6d’ΫτΚ3»rWf5~-Ώ1Ε³’ŽyCTς¬τΫγϋΝ=ξΚFέ©ξ> ΚΛέ πx2εn­d€R‚'ώždͺΊΆ @mΌ~ώεΗoΘ΅7•=ψηšg₯€ R†ŒΧ΄#?Eε’Ž΄υœš`]',—άο"ύζ“ϊ/$ΟdάΔΦεβτΤΑŠς#ΛAןώc]φΘίΰIνσΐι·ώΏ9’ΎRRΚλΖΐ+sΒΌώ$’r°κω μ™Ηδ™‡ΦΌmΤG‘ηSltD,n>β“ιΫ706ޏ–ΓZ2 7φθ©ΝΜδ8¨<Ψ9&eηCΦŸj£—Έ@&ναCΩΓΏψΫοβυήy0°bγvd$ΔSξ-L’#–³g,ΆMž Χ—ζ`}Ixϊϊz.E›Q™Μ„¦τ嫬tΊ'Δƒͺbz’m'Ξψμo«ΥΦ?ύ?ππζω΄γΨΟρ’ΑλšZ.\G›%„¬Ϋ>IΚΪ‡Ρ쒁§žoαqΠ7¦ΈσϋVŒ±%ΙεX‘œŠywΡu2=‰‘Ρv4σΐ™…ΌŒT$.L ™‡ι[£θ¨EW ύy…­™κŸ*3W‹ε’{7εRŠuX™›!ΛBHΧψpκjx‹W†>’r)W››x ρKFολ =s 2Δ@η΄…IΦGς>ΒC°’}y-HhΖͺ‰?νΞc3ΦAG„#y] ―—blέΚσΰζό_Ύ™©‹εωφϊHN[}ή±ygˆ^Ÿvžl²δW<ς:τ$s«ΘξOψAΥ ,―=Γγ¦|™­ςϊφνΫ2X<:λ/τε[Ε†’49i°ρ|όY=Z[[εσ9s”ΝP₯B@IJ~x‚–oαeΚ…ΦZnΨ΅™;=ŠΞkΓΘ^ͺZϋ0ŽΞZœ½Ό>JΥΞ,ZτTμXϊθλي‹ZN [@ωrgΧbբŜK–΅Ύ\›Ÿ%mάγUr&οϋίςUr–jυω)ήΟΙΑny8 Άίƒ―υiΦk>ή4$Χo¨ΆΫ΄i¨€ωXq‹X8‹ŽŸ xFβΊvl‘;—^θ†yh¬7 ‚‰=1 g!r_Dθ9“gvεΜ¦K} Γ]§,w5 >²L`”„εnν―ˆšs‹\‰e;σ˜˜g%/0v䧘\ς’c=6Λ%χ»H„ω$0„δ™’ΰΊ\˜žωΆn_^ϋ֏ώ3Ρυ§έy,ϊ‘πr83Χ΅° Œ±u+ΟξΞm΅dι½xΓ½>­?9g=ς:τθI:ΒϋΞΗ$ό-°ΌφΕΨ]ωΒςz%ς%gςͺ‹φΪz_Έ g3μΡΩΐΝ œ†Σ#…s n{–"ˆΟGαdΔϟ/[šKpήΈ9ˆήކΠ/œg{7HΪ΅œ΅€rΚ«ˆ†SšQ__ΐΒy¦Ζ/XFΪ-rτΔ<`Dss6εH¬yτ1ο»΅T–»Φp W©HZδΚ}΄Pι¬Θ%Ρϋέ~œΚO1y&2vž:‘¦'ΩӚ,"θ­_φΘ_’Gηr9‘ϋ³Wπο―πf†#&°ώDε ΤεΩΌήRϋςΣC‰λ™#.Š‹ykœΚά9°Gη;g¬ΓΩS'ΓΙW¨ΆΓΉŠ6ηΫG@ύbG[έ1\il@GOnΕη’’ͺΪϋΉεήcψι?Ώ‘υφ{ΰ~όςMX<*Oφ ‘>κ ξχ[db–Kώ£η¦\Z’“„‘Ža"JJ¬ημ˜.ΓM2Œ#ΐ0Œ#ΐ0Œ#yΆβ«ϋEΘ„pψΗƒιFžE¦Θ0Œ#ΐ(°’3_ n ΐŠΞn Θm„B ώ?Γ _Ψ€X7ŽΌό=|t¦/HΞbFΐ=X.Ή‡₯±₯ά-Λ‘Ώ΅mG[pυψc6b=ί―CwpίGwπΰΟβσuΎΑuωŠπ!Η-3Œ€,―ΝPK %ίb=_ŠEg}=5HΡyŽZ€Œ#pη Y€ wz~0l8`'ΜvωκΛ0³όΛΗ¦ϋΒφ]_Β—κIEΙ™ϊέx'Ηx}μ χόŒ6η1Œ#ΐ0Œΐ@\ΉΒ•ÐsQŽΐΘ`;ZΪ1nΒgwγ1ό懓•œM°α$F€,—άΑVRzΠU bΈmHVvŽυ|}ί8ξίGώ˜pJμ#ΐΧ΅;cλς?ξ Δ­0Œ€X^;AΟ[wΆ­ίςΫΫΣπΖβ*·lϋv8H΄·\G³·™[qв–“8sψ$ΉNd’Κ?­Βώπϊœ•/ £•{JοΨόθ-ζˆ`f ³]ΎΞ–qβ~0Œ@xΧŸΙeΨύω½(-^”Δ ‘œΊπ6ώφήΊŠ+ΛέFL’Π<HH$ΠΘpΚ`szHg§3ΣΟΞκΚ^ΏΊVW­ͺυλ―ξU«ώϊ΅ϊwχ―ΞͺZ5dΧw₯svΪΈμ"Mac 1H !$!!‘YI ωoDΌˆρ^Όχ"nΔ›€,τnάΈηžsχ8qβΖ9'βv,^ϋ3Τχ‡ΐΜ8υJ„ΐΒB --MΠψ„χΟ‚/¬Σh@r’Ψ52Y™t£Σr=?Ρα›θΈ|Uׁ6xQŸ|ΜvΰrΣgψβπoqας\Ή|—›ΡόΩ›8vό<'ψϊ%*B€ x ½Δ‹œ–nΓΛUΚ{;aAΞδ|ύ“v±^Ψ—ίϋEβq½χ•Zχ]G‹{ώκθιΌΆgfιώ`ŽΤ !@xG€τ΅wlΜτ΅π%–…bΏ»?ΈΫσΒ³‰°%&ϊNtε C‡CZ‡δ‘G4M½£σκͺέX“±Š9:βςΙ³ u>ΝωA; ΈœdlΘR=δaΚ‹Bψb<.γ@Ώ„!@؍ΐBΧ―vγEύ„ΐΒC@΄?Χ"uUbΓνkΕΥ+cΌ ‹Υώ φύ‘―±gα\4"B€ ‚€9:δEΐ"RΗΊ.βs”½LNΞw–ΞNέΖν±L°·§"N|˜  €—ψ'Upœ δχ{‚“ΔΝ37Δ§‚H?ΏΜβ£€λhρΝωb1Χό³ιϊߟόόΘ%!@Χό¨ ϊn!ΩοξϊΫύύ£p\ΨΘΡ™œΡ₯€ŒΊ°PεG`δʐ²θ!(aDv²XΘ$ώ"άέ#Lψi@Γ# "°Ψ"τ‚-±"A@΄?ηΗ0›Ψ‡O?>€ίώδηΈΕώ-ߐΎ #˜ύٟΑ>Nφn„\0$&!@„δθvS‘Eͺ£sD‚MB„!@ Ω™YHR€vr–‡ιΗεqΠ/!@„€9"]ϋ“ίԚ πE@Πwκ͟ώ‹΄γξγ ”£σ#oόΑŸH.Τj4m(Ÿ>zΠ†^¨ B€$²s³A/1?Ιcqd±?ύ?? $άΤ7!@,b}*Gθ 0,4ύJϊsŸά4tBΐ$ MΉΏ\ —ρ rΙNΤκϋΙι’ζ„!@NΚΚΚΔRgWaBp#PΌ¦@€mkkγξƒ B€ B€ B€ B€ B€g>|(ŠWPPΐ%fOOH·dΙ }TΝΦϊ?ΧΤΨ΄ΣΧ}Ν¦ž¨B€‘βξ€a·όξ&Βϊ%Ε‡€»~±[Z?ϊλί}|‹o†iΔ„!`…¦όιΗP''g£g$΅#Bΐ”ΡΩNΤΚ7”ΡΩ7>t” B€ B€ B€ B€ "ΚθωsH# B€ B€ B€ B€ C€2:GΨ„…©Έ”Ρ9L'†Δ"B€ B€ B€ B€ ΫTFgm~gΫΔ₯ŽB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ΰG€ω±#JB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€δθ `©[B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ΰG€ω±#JB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€KΤ/uK„!@„!@„!@„!@„!@6"•Ύ Yq ˆϊόέ=LMχΰκ𠍴]U½ψ§xΊwρξ_½‰^να€μΕ'!7!±QQ˜gcœ›ΒΔx+nέυd—‰εžΥͺšYŒN9TϋžE3όDκθ|¬OΙF̊εˆb©dζηΖΠΫۊQΟƒ[“Ό /}{V·»Žγ—ϋ— Ή©Ζ7ΝΖχ³…6Ύ@γ· ϊgΧ`σd㚝Δ₯ώŽŽ—/z(‰H[)Vά{0ˆI=(΄ —xο+Όtςθύύ€ιι»Ύυ΄LvΏ*½Dz7μf'te?Žo½Ϊ€&ΑHλ!Ό{πtd±CΏ‹WΏπ‰b™_"²R‘›Œ•K£υ³”w£#Mθžς>NEymβiGϊ§qu6:ε²Ρyι\½…i‰τ`˜NLˆΕ2£³wΰ•—Ψ³ί<m‡ρήGM!>μ Ϊu–D0«?efD'#‘ύεΕEΫ ν„€}£³}XRO„!@„!@„!@„!@„!@„€νdε4 ΈΉ«b=ϊήʜ€›.οG›G"ƒ+V[Ζ\Š@ΏLˆOٌ­ΕΥXŸš©#έ>΄]zG{]ΦρΉOα»›jtΪͺ«8ΧτΧ8=¬“Κfω‰¨ήπ$ͺV#Ζ­»ϊ’νΈΨqŸυ^w;ΔέΔ€εe"•±\:ΔΌƒΉ%WbΗ£EΜι|㝧pΎ}Δ~ξ‘Ÿύ£‘9XΏφyl-©@ΌύWJ:ρiΛ/qiΒν€Ε]^~ΌtZq‹πΔφW±^π–Ά™Vμ?Ύ·€=η_~½Δ{_α₯ΛΛ©C^B:’γ‘—ƒxEMβΤιΏC³Νs§)P;‘ΤK€wνU;ρ\Ή ιςύXΎ€νΧύbD^ύΒK'Ιdn|‰ΨVύ"J³rZ^~Όtξm­έλrrfgf&qGӈ_/ρήWxι½υ•_…`}ylsLF’“³0κ%»g’₯ [ρ ΰya—~ρ―~α₯“$2=Ύθ΅ΘυζδμdFΦ£Ψ³ω>~Ϊt\3l;2+)Σ°“³ΐμΑΙε₯Σ;<ίύ ΩΦλΦ³ŽΟ›HQo ·(% vϋ’ΟBέόΫuΦFnZ:ٝώσ/.Φf‘¨ Bΐ‘wtq[02RpEͺfΟ\f ώΘΕΒ‚=(Ο*dNΞ™*ξrρ«>‡3M’[ 寝‘΅FΖ$~+˜sy"β€d­P’kΤρD[=―΅#τΏg•oΔ•Y:«rϊG‚ZφrpΗγ;QUWΝGikύ·ŽχŽq|ώpΝ>όπ‡_£P1܈·ώ[p>ρj£@FΘΪΑ$½+`ŠϋŸιΜ'ν%=/`cZNˆΆπA ϊ̎λ]F,zIζ’_³φ„½bϊΛΐωό`Q/yŽΡŸœžTd²·aίγΫ°Άrb#©%ΨχTΞ}~˜όΌ ΩKόƒf/qκ υ bK™WOψ§γ΅yιlƒ:αG@₯Οώζίΰο‡( `!ή€z•“σ[£mμ<‹aφς8;w;;V.e°‹)ΑΪ5Eθ²ΖEΪ–Ή{TNΞ3·;qεζeτMMcΕΚdd&— *?γSΪ±%ΕΚ+7wΠέΫ Η<ొ:?ΑxΈΒΑo}Ω>“σξ#hκ>…ϋ1Υ¨Y8J₯LΫ jqιζ‡ucΉΰw’‹λ±ZΨqη_"α₯“»’_/DΐuλErͺV#ΰΈ‰«_žΒ φ 7έΕρ.^έW˜–ΨuVD矌!Ρ1tžxq±2‡DKΖΉ£sθ#Ψ\ι•ε€'"PžBΣ™%Έ#ΛQYώ(reΖ:Ώiι5xjϋμ·1"^‡‘ͺ Dθ©$ Ώήž³8ϊQπ­ΚGbWC­JŠ9#魜Χ<#±Β7βŠ‡ΞŠœ<ΈdoΖΗκQYSιΥ”«ο%Πf rρ]ͺΫΊYrrfΝz^λγͺΎι‚s4€²¦"uυG,½ ώΗ“ωΔ’½Δ©ηyδԟMͺ :ΑΤg6\ο.|¨—\L‚^β±'μo¦ΞηKzIg€~εΤ‘‘ͺΰ"Ώ~63'g―Ϋͺ<ΤμύWβ­ύ'½6s?@φ’+σ’;6ώφƒf/qκ ς›=Ξ«'όΣρΪƒΌtfGNννFΐ―>³›!υGXD`cV β}LŸΒ/šŽ(=N^ۏ˜Έ Τgiα”Q(ΒWΧ=ͺ|n|θζqΌsα„JςλθμoΒη—TNqβΡ|€ΔΙγFη₯CΈͺ’ς^δΰ]ςΒ|₯ΛξŽ_γΓkΞ—πw›ρqs2„ «‘ΟΎg>ͺr€QCUHN] γΛb?9οz»ςπΑTGΚΖ'$aγ³ξήdΡ‰1βκPQX¨΄½Ϊϊ>ι‘VZGϊρ(stŽΖ"fE +Y<xωρ)#“ YΟγ aΌsl…λΰν©!׎½Δ{_α₯„žΌέΑ‚tf1;έΟΡ;·φ›xͺDrPΉ3Ίπ‚CHοΊΞΥ)YΊιΜ·ν6ιCΣΑ«_xι‘xΗ7Ո·6κ K°G°bχ«(tκQφζ]΅qΪ‘π9ϋ―ΏmΒσyμˆΘοΞ_WΎρι3ŠŒZλΒnΑ-]·–…!ϋS‘Ξ|Φƒγ-8όN‹¦»…΄cΘ³2`^ύItϊΟΌΈX™C’%SΎΏ˜κΥDγΕΑΖ(BΘ‘YΌ‘‹)YJα‘Ρ+Έ9Ϊ‹Α©ΆŽ² yY›P“λ\DJ¨BEA n9‘LL΅½Mƒ‘,~]M8Υε„*™eΨfŽΞ™φ"ηΡo$=χyν!± ^~ΌWΌtΌrCZΌπΪPξ–MέΏlv Χ«Β֎ NKΕpωξ²Α»ΑΎqf>±b/qιyN9Γετ^άrD°> w½ΔqbρΪ¬tI e ΰ|~°’—ά…5$§;퇁)τ^ΊˆλέΧ146Ž₯‰kQ΅υIeK"εΧ=‰]Wq΄Ε€# ΩKΦζ1Xφ§ž°68-5―ž0DΗkςi‡F{!E ؎x!,1X2‘ΊJ^Όƒž³#™™ρ¨‹€ŠΌ’-(Y%I<1δξ䬉›γbt’œtΈν0μ$ΗΓ―8ΏNS‡ωOžΓ ΩΙYοξ&¦ YΉ^υ›XΎ{w”c9sžZЍ»έψψ§οAεΆ¨jm½ψΰ^ͺvΏ†Ν[*XFlφAa›DkΣaΌwΠ3(-£|6”–!''iμ³μ±ςX¦ΗΠ?x=—Nΰθ©V©ρoκ_~k“Wΰ>ΣΚ΄rεXNν7ρ­u‚‡¦΄E-ϊΟό ŽžΥOP΅χΫΨTVŽόlΑAUΪξŒχa°»—Ο|‚ ]žvεƒ{σΘ―|;«AQž|0;΅εŽύβ’ €‘αΥoaυͺ₯xυݟώ'[έεΘΗWΏŽΦf ksγΤ/qΌ%OΏ±I,#έό½9¬Μ,DŽˆ.~t7VlΔΆζŸ(sηή5ΈJγ/{όί‘Ά²LzΠρεqόφˆη£ωωψTβΙονF ϋšδλ'Ρ4šŽυζπ Φy½>―TΙ<Ιτ„μδ °ΐ…κζ€p‡'VοιΗΚ_^~ΌtYٚάς ©jΆ7gΣ‘› Œmγ·]ΧΏ^β½―π9Gwχ:šΪ―+C-Œs-ΔߞtΏΆ”fU ½kuΊxυϊό)ΑŽw‘΄d­λήΗΔο)ύ½Έ~α4[δl‘6άΗΦμΐ {P^,ΏšΒ`ηE45ŽŠq Ύ1«?mΡ/ΎRγΥ/ΌtλΐŒο>³Q\c·fΧΖiGΊ:π,mގ\§Sυδ­/ρω g½^:½ΎB]GzΠκ ”3ΫlR˜νŒ{ψτŸ₯oΣf?Ž—ž©F4ϋ–Ν½Ρσx{pHμOq΄œz°δρocsQ"ζUΧ(’’0uύS<¦οτ‘φA»ΞΚ™Γ«?‰Nω+sH΄„!`;:cΑG°qF 4<™,x#ήFO—θΏρNhϋ†/ΰ~Τ@33Θ’%|™M͝šΎ[;B/ΨόΔΡ―Τ >wβH˜E`χΘ/ΰ˜³Ζ}νΊ-ΨZΤκ4W¦αΩ{BΫHڊP–[βx—[O°r"²’R°t ϋκΑ½1ܚr³Τ<>! Nχ]LΜ8p/:y1±>i§H~«’P»‡;0©μ/Δg €x‹`όŽμ–ιͺ³±”Yσ,žvο9Ν—7|)ψΥ? Κy[‚/}₯²s³šnU rŠ…ΥΘI~φΎμ$ŽlζDν:ϋ\D‰ΩΕNG^Wέ|ϋ'Ή”Ό /|ϋE”ηΙ3)`.«Ιy(b3£'™£σ‡ΞRfΝKx­Ζ½:Ž9??‰Χbπ7χ+ΥψάΫΩΑψ₯Ψαό’IAΒ‹jύΘξqB›žyυςO¦[Ωηι™³έšZδ­[§|αΝΕ){_‡v₯15ΟΏ€αξV4 Θ-K°ηo£nμΌ-Χ ˜ Šυ‘—“Ž_ύΤκό±~Χδ’¨l4W…Εμ›gξ›<ƒs^η#OΡswpύ¦ '€msυ^g D¬\…Έα‘ΔεP«0\ΰεΗK§ŒeC}Ύb'XRxΆυβΣ+—Q\ηΌ’ηΖ1‘ΚΟ―—xο+Όtͺρ)Ε|$*ωΈ=meΎ”NC^ ½"½+Ο<»§|λ^G‘Ξ½LΉ§D ©­έΗY°ΝΏ{υI7}‡Μβz<], εύלώ΄AΏxΕγ―~α₯μΩ€θωτ€IιώΩη0;λ*Ÿι’χ(±δuΚVϊΡ|Νu―ςh«ΰ₯SχFeƒVυΰ},K]‡‚taRΧ‘ΌφτžUsH“½‰}MΈ΄XR4£Ση™M—ϋ“=΅YΠƒiU(Zηω ΰ˜οdƒl‘ͺωΛσΌΒ:₯½kΒΣ ΥΤ―ώ$:%H’ανz~ΰΕΕΤ€QcB€°ˆ@θ} `AD°qFςd–π₯σΘΕ‰&U-’Έχ5uΟwf³‘§ξύϋί·!²,’χε―bcYΛ„Β’o°,‰μw΄»—NΔΙ–^•ΦψρE”©ΨsΉζ'’žσΌζΐɏ7βŠ—ŽWNn\BHh>ӊ™λOOF‘JgΔjζ§ΫqeoΡ{–±υψjmžˆήΨ•C,2΄••g13Ω‡žΎV4~ƜwΨΛ…ŒΏ'Άαϋ³ λδΥ¬΄žvΎZ³/ν©K”‚‰+Gπ[/Q© OΆ8χάΛΫΨ'jYf•Ύ“,γΞiεΩΜ.!O„¬ΘpΝγxaΛLP(Ώd2°—0';][‰ΔεQgQΆ‡tΖc<Î5½+cZZΌΙ|ύZΜ|β…‰_{Ι΄žŒœ^Δy5ι3SΰEŸι™ΝΨ tΑ£—¬ΩYf2»hiVΏpΫZΆ|{Άe πρόΰC2ΏzI¦΅MNΉΓπϊ]hϊΕΡςήΣ[gaoΑ… ­(mά#RRsY­ΧΖΞ‰ς’_Θ^rβ£—‘0Dφ’S"ύ>=‘ί—N-―ž0CΗkςι 3ά«—> χΩ ωΜlVΘ>.8ρ%’΄θτ @ŸDΆΧΚN~¬bτ œ»i0uœH‹λtHšFLΡ7ρέΥ%lΔ΅MŒ^ΔΩΆχqU€A΅%Δ¦8?5 $e5ΰ»μΏΌM::pιϊq4ΊαΑΕ/ ΡΡΞ,£ͺΪΥU昊U:ŽUςQρWυ%©ώ!”UMC{wέgqώR7’σ«PW)­U₯–=‰½»{πφO{νΞpzϋz1>2ΚVΛb˜ΓV%ΛT)­Τ?=έWqX hkEΗ‘γΈΏχΞceF[7’œΫΟ’bK–°0a‹šΗHί°TVώ–ΰΉΧ^GΉ’*›Ήu²¬ΡΧϋF±4:%(aλPχ5iήb₯ Œ―΅}1…¨Z'­χ‘°[*?qΚ©45]ΈπώO‘šϊG¨_—$WcχwŸBΗONΧ•ίΐγϊN½ϋ#\‚W2}…Σœ8ϋyu¨(d}8·φ.b*΅5’3sς‹K˜£³t^νψžΦΙΉ‡e¨Ύή;ŠΨœu¨«‘lνԍOβ™gϊρ³Mr—Κ―ρωc$³σlŽ΅›i<ƒq^§![ΎΎfzqΓyY―ϋ–’œG=ŠΫSσ€σςγ₯S„gΒ«Ÿvf½ƒΛ-?Α₯¨=Ψ"Ώγ€λ*²’—xο+ΌtςTΏκχ=˜ΐΈ›~W΅ŒΘ"ι]ώiγ»NveΫ·©œœq₯±Γ3X—„ΤΌBζXΐZ:οK"•ϋX%φ>§rrοDΣ—η1SˆͺrΦ~§`ή~ΜθOΛϊΕ›zυΌϊ…—ŽΙ`ϋψ2±žU–Φ8G€‘ΜΰkΌ\v€‹ά­”‰]ŏ*vι@w.kΌtnμΓp—τ ο€tΰβΕ‹¨Ψ-…Ζ–ΧgΉuVŽβ΅ςϋη1\a_kΑμΎ؟Φτΰ­Ξ3h½'dtf–σς$Tl”μκ~lŒΘ°wΝΨunSlf—WeεωMo΄CF |H_D _f Ώ'‹ΘEί΄%(T"ζυ[š‹<ΥοΓw­΅ΘZ0gΑWΎ:JΔ8‰“ΰδ,l©…Υh`33ήύH^΄Β3’LΗ_λσ`,’žοΌζ?ވ+^:€ON~\BBΙ“iΕτυΗFΖa),ϊˆΧφ*”Ÿώ§Ίrϊ'ψ-HŸΒά»>σ$7—±A’7―—,ΨYlΞΝevюќ~α·'΄\9φμΜΐσό`T/Ω)'L%Y°ϊΕ7jΡΛ]Λ ³χξωn̎zΧ/d/IΰιeΠ C{‰GOψ=;œ xυ/\Όφ /‘«\€ϊ,t€gB@K½Pœœ‰\–‘.&Ή Ο=™‡Ρ¬JΝW‚gηqψΜaLΓϊ\ƒS»>5Sq ‰O@ψu-ο€Τ <±“9ΠϋͺTRβt;IγKP_S‚€K?ΑΡ^Wr >~)XΉRX™6φ₯Γy©€ώ[\ΊΉκ #e—7¬‘Φ\mFΫ_ŸJ@IDATβοYζfi;Œ‘Ι?Δ³;ΛΕέ’κδ3Gg τ4Ηθθ?#$PmGήCΧ‹Š§Ε€ώ8”ndρlΗΔ>ϊ•ς³ΔϊεΜΡYZ'kg‰NΈpWυ¦σw6 BqrξΓ©·ίΒΡ³Z!0vSœBγ^θ?χ/xσΧςΪήυΏ`W₯ΰμΜΦ­ς }aΔ½OνώŽώΣdώΉ”!4uγ³xiwή=ƒWžΫ­dδξ8ς6ŽΊΑ&τs§σή=ΐπ_σΩ?|VΚϊΩ}oΏΟκ²η°zέΧΕΊΔτ ֚9:—Ώ€-e’S9X8ƒ“CψςΚ ,{θ^‘¦`g=ʘ£s›(0ίό‰€ͺ?Άΰ€σ:ι?9ψaβvΏθŸ³93NΒ₯ΉΤηKίΦ³ϊER^~ΌtςlfNΞeΒ’1ΫntΒρ~ ―ΘΠ123‘ρΦτο}…—N•λo|rͺ’‘·lέΫu,K€wG,N!ΏήMJJpςfΑ'?ωΟz9qέ6Fjδ㽏εο¬qf“gݍ_ΔΏώεί*χΓ“,8ε˜v^Ξ~>w|θO«ϊΕ'_ƒΌϊ…—Žι:τ|ε¦Χ±#-“σχ±4&Q±/…αά:.7kFΚcGj:Pνδ5 L>ύf ΉΝΨχ]yιT¬Γ²HzКμϊ’ΩηΜΡYψjJκFΘ—|η…`:η–XΉΙ™ρ™U°δ]ηΫΩ―bSΟώ΄ͺ»NόΚ+όδ=HgŽΞ²,UϋYφ9»N;R3{Όϊ“θτŸxq13gΤ– ¬#ΰzi½/{X8l\\™%|Αο?rΡυƍ;Q¬|Ϊ₯7o]χln&ςΤ“Ϊ@•ΘΪ4μyωE•“3‹nk<Q–Ρ9uέV”:?WΊϋ›ΨΥΗ2[‹‹’VψΉ†c*’ΜEΖ_²:#ιΉΞkώQ‹oΔ/—œp >)O¦žλŒ+£H \ξD‰ψβ%E₯›™£s“Ll1«LΞ Ž1›³[Λ»•¨¨–3Ί βιΓ»Ίq‹=&²wq±iYXÎ(rVJ©$3]yi2Τ'ι^+™]ΜGΘ–γ‰gUNΞΣ=8ΧΨGT65ΤI/hœϊ‹²υŸΖ½ «zPA0tS΅χ_΄1σ‰ΘŒΓ^2€ην–Σ?2ΑoAϊΜζ>τ™Μdl0―—\ŒΝΪYζ3»Έx‰%3ϊΕ‚=αΖΥδ]™xŸŒκ%»δ4 OPš/Vύ’μlΧͺϊΔP΄}θ²—|d$ '{‰WOψ95”ΓΌz‚—Na¬)πΪƒΌtζ!ίY¬ϊ,δΐ“„€'=Έ12ˆάΥς«ίTd§²f‚§₯=|o2'ΥΘΫ‘‘ d₯ΈΓώΗ:Εw ³ϋ– ԁ™ω($%³"’³£@XVR.ζθά-φΒΛο:¬0§AΞ¬¬j`Με,“š»υkd9Y“™Œθ|9qNΘV¦ή–.A`_Ξ°5©O?PsΔ…Ÿ’΄Ί\rΞJ/@[˜κu.L5ό•¦­zηό±σx”­· ˆ/]Ÿ >Κ5š%K₯ΜΞκ>΄ε|l¬ͺUͺ?ΰαδ,μ8φsΑύΧΛΦ‰ζe'g©Ι©σ­¨aŽΞΒL%¦ ΞΓvl§ρΛςπG―JŽΝ₯{ΏΧΚ—!ί™DΕΑœΙίώ¨E—Ρέι©ž­sΚ³?zΫιd7;ivTΐtE¬ΤY]UΉr%τž8䁉£ε=4o(ΗΡ™»…[σΡvFr·:žζΞλD€²δθχtΡς¬\ΞͺFο:™ΰ jsλ£Υx’™9“9”;{«ύc₯ƒξ+ež/?^:AΖυ₯ίQ²SOτǁvΙs>MΠq{JΙ€Α(,κ%ήϋ /ΫD€¨œ'¦Η˜&·qKNƒpυ{‘Pσ²υχΒ‘r S5_&½k3= >½;Ο\•MVΊJϋΚoϋiœWν»ΝάΗ²BΝΗ'g±O¦«Οmͺč²έζΞIΪ7£?­θ}ξΎjyυ /lΠσωΘHfn‘ΜD‰wΪ­#x»ω”[-ιΦ…²» ΅λK”½ŽξF§έ©Ty)πyιN]MzP†ͺ!φηψI\»΄ω’)F1³έΟqEΤ•o(UμŎΦf/Λώ΄C*“³Rm_©υ(D†½ΛcΧy ΥpούθτŸxq1:†=oόκ„ΟΟ±ςu΅O1GηEΩΈω±εWž ¦1B`rŒFσœΧFΔυΦ†‡oΔ/ ;œήΖŽυ\™V8―?χρΝ(rαR;c/^„λΚ‘q° κζοάθΚ΄|©U»εΞ”sΝξG•h~GΫ9œΤx2·b}6΅”E¨#9Yμ…R—ζΈ–iF†œ†~Γ=μΥwf©_³²;똬N™¦[ρΫΏω‘9|ͺg ?τΘτ¬•_ή3<2ΙΌ<~MκA™žϋώ'wΰεΧΜ'Bχ<φ’Q=o§œ^ i5ι3cπϋΦgϊ}ΟΨ Ρ›ΥKB–+^;‹'³‹ώ(΅>τ‹{Β'O?­d °γωΑ¨^²"§B~x±κ—5»ŸΔfη§Κ'‰Ξο.)Β$ωΦ/d/ή3ς?§ϊΈ<|θ35•zBݟ―2―žΰ₯Σ“…Χδ₯Σ“!”u‹UŸ…sβMθ"Ύ/onΆΔγs£ΈΙ²_.‰ΙBφ*§s0kσLι8\1–=N—OH*sXΩΑY`_6ύg†’4ύμΕύΓΧ±+Ÿ9°mωrΑ!MήΡtα'Έ0Υ«uλ:ŽΆό§π΅5R&Ώ9ΘΟIDwΏΠ'?ΏΫ3“Œ^Xmb ΣV?–fΰϊψV%• JqΖf>ΞμxΜμn‹-΅†N½‰wŸd>8³˜[Ή’ωOhΦ¬΄­mΨΏ‰kN-θλD‰θ8± +£Σ£…Yβšm¨©έ„ΌάlΔ―dΩ«™Γ¨`&,Ι4Ÿ™RιU―°+ιNt|Ρ’ΧΘwέΈcξΞ‰3 ]i»#;ϋξΕΨΡ–ίΰP~^³ag‚}€MΪ¦/βˆ’1[§+ΩgƒM·ς".ΚY9>„ΙaF#/ύ±bt΄’mω;_ΐŠŸΑR…ΠΩRΧ5Λ:Vm–ζOγη5 Šέώ{Œ—*Ή½οΰόΉƒˆάΑ…mC#ΛρXύΣΞΔ…ƒhΌψΛπΜœΕ’e\ϊ18!9K4fζ#™‹/• žƒ%Xvώ£-'œBη;:„]ΖokΗΕ­—xο+Όt:S€rΰvL κ΄ΰ¬Κήƒό§—όd„tλ{ό,ήϊΛ;³Ϋ»3»KzΧ,bήΫsι]vί·ΤΏρ_‘vξ<_λΒΠ@z\χ:οLaΧfŠdΆK‡ΛQξ‘―ϋ&Λ’βΫΡΩΈώδΧ/²€~φrͺξUώΜ.‚ˆ-TΊt4~ͺ89‹}΅~€ζ––EF~¨φΰΰ¬ΰΛcVοΚά­κA‘3χ?™―αί »2qρΩKΖτ<mr@†τ™~Ζ©Πgž³k.s½½$ΠπΪYV3»˜Ρ/όφ„*†+Μg€RwmΗσƒ1½dMN΅ΜΚ€_‚£_ΦμΓξ½²ύΓΒŽ|¬΅<¦Šμ%H83θΧ^²COxŽ\―†WOπιΙΐkςιΙ ©#}}¦vp@`žW99ά:…Οšΰ–S΄υλΎ‰'ŠΩΊΫV―ٌ=pισ`$ό$%"^qvΊ;ŽΈœœςίgŽINGgχ!M2'g½νVο‡ΈΘΎ˜X—!8!Ε"f…ΰ‚ΉXΰw•%(-ΜWY²sΆ Ϋ•8ZCpS½ιθ…ΰ­· ψΣ£α»=ε'£i ’³˜—m«δόUχβcO[Hσ·ΝΟϋkaΰx –Θo¦˜cϋ»Γ²#C>WD«N.ύωkvΰGh*ώ'l֝[γ»‹6yΗΧoΧ(ΖΩS“}5*Gršό:‘] 2UΌτ)e§>Άfhqώ¬ΰi輎+@Z‚ώ(ΌΧήΕ̝εH–‡93…”΅{°^Έ΄Ωv΅υšΖX!3 ΄·‡qkJ<Μω' +Έψq₯7°¬―U’¬ΣWπα©ŠŽς}ΗΛ˜Ν cX«jγΣKΌχ^:•ΐJ‘9GΕΘΞλ8ξΈ LiΗQXΉΜΟΡάΆάΖμϊ€wΝaο§΅Y½ΫΨtΥ•ςΧ)SPR³›ύw2™Δ• §ρΙϋ‡<²ŸϊCη°ΰ,)'ΧZ†₯²ΞΠiι―ʐώ§~ρΗάΗq>ύΒτ2—½dΗψhiۏ՘*7ΌŽ«₯`ΉάΜuΘcŽΞ}ͺγ¦νH­RLi@uό~́sΧy΅‘ΐK§ιΔΛιA/ΐΥ‘c:ZΞβϊžTqy₯ΨΘLτ“μ]wώγ&’yΨώ΄Kϊ˜0CaoοZ°λ<k¨‚Wώσ/.†&‹„€ΘΛI6vi­«€E°Y‹“š'"?³„KH³‘‹.JΉŸ³OnrfΎ*o·Ί-²Θ-₯_γ‘§ZΊ`μ­RVƒX~ŠαΣfns2μg~‡‰‚±h Γͺ΅Χ]Ke^{υ}ΐκ<‹€η9―}Λνϋ(?ވ+^:aΤD:ͺΫΛec‘§rλΰύΊ²χ b΄_?k†y(Τ#²Q¦ξΛl™ŒG›>―ΝΒ­½y~ΌWΌt’ΐζεt¨ΡݐDδςEΊΪqύ™Ν(qΎƒ ε’ΓMώΪRδ3§aα5ߚΚuμ#₯6Ȝ‘υ΅ΡIΠk—-΅uʁ«gŽ)eM‘΅cΣ,Έbϋhjšτr)//ΧΥ$;…μeΟP^Άβ44<ΐŠa-³‹‹Ρ’:3λέ—QjΉΩω“ι¬όςκAήϋŸ1YmΜ|Βm/Ρσ6Κig”ά3N…½>ΣHΟvLfq'7ΊΟkgΩ‘ΩŘ~±fOΕAigK¦kΟ†2‘Ψ"§2j/Œ£_*ρΒχ_G³iΔ­ο>ψηχ4|=wΘ^ςΔ„ΉD9#‘ ƒ1}¦–Φ’žPwε­Μ«'xιtδΰ΅yιtDπ¬"}¦Α$0ϊLΓ‚v°A 9Vv`Y‚ΩηΈΥNΞ’ƒ˜dŸδ² Ϋe|NΑ"q¨άŸ0χ-Nπν~Μϋ~"’cδL‹ζDηι@ ~Sp΄‰ύgŽΒ©β[•YŒN1½€|·XšάξF‡!'οΫu$‘eΉς kbκνΞm!Ÿaϋ?Ε²εJ©o7+N¬}γ―ρΦ~·5-–< ”9:«\€Υ]z”>`N»ΎΆρ!L 8 ώ1X}υ c ί{₯nΞΩ₯{_ACίΖq–aΟϊ6‹Ω9a>„s·}ŸˆFƒή—vϟυ±θυΠ‹ζ+ξg£^;·ΊΈz) B• {fτ |rΉΩΩ09Ιςόξ°μΰΧά:pξΖ•`c’œY¨›g6x3ϊά³ΰΛfωqΡε³,Χ‰.y™#w‰ΰηeΛΞ`όη:pI}ά”^bΊ‘λΎΒK§TUŽK†ό‰i&άη@ΥΤ|±'ΨΏκoT»F‘2֎KοΆΓμ?†5εHΟ[‹’ŠZ€KvAlρVΖ2I;iNα¬ΧΕ² N±¬LΎ΄t”0ζμυ«’<δ”ζ£$Eώ„ίFϊ„'Ά˜Νξςf*³‹L‚_Σ󖁾ٗωΔ‚½d@ΟΫ'§Α‰$}ζ¨°ΧgZρMeΡ’ί³bg+³Kν = •)ΐθσ έ1”Α$Prκa"Φ‘~ρ xΐ²~)ΑΣρ;Κ—,0܌·ϊ-Gw!Θ^rGDڏ{Ι]zγzRŸWOdYΙ„§…Χδ₯S±φ]$}ζΛϊΜwχt”% «dΈQŒOθ9!u•μ`q3³c‘Χo–…ΒsΩ6Ε™ΕJΏ#ŽA₯μ«Ÿ³]εxΒpaYq=6+όξ²dJ‡‰ΨΚζΧ9Πͺ:¦4 ‰΅ίΐΛ{ͺ°TtfNιwΨξη~ν'm/&φ’‘Βs{5Ξ²μ|–ΰδ,lw˜£§t^Ή’4χακiΟ5³όΚ΅~œηζ\n]‰ι¬ƒΞ†«*°nk>:πε5q˜6ό)ΩϋΏcGYŠΤΣψE4uΐζ-BF½LμxαχΡ—`t΄>€a‰Ƙ»žΰΐΒΦ7°uΐΖ0΄cώ|ζσPΐΟkφSσsζ >;sΨψ‘Y…Ωy¦½ύ]yσkπ•υ SΥΦ}υ6ϊ_WΥ°"/?.Ί•˜ΔsΔ{ΐt’fϋέR€%ΚkΓμΘΜ(F.ΕΓ©AθjzCz)|χ^:͈”<ζθοά›˜–²S+G#Ό@zΧΆ ΄wGΠΥ*όoBγGΏBΓχώ/¦Η…w0qX/DΩx:Ώu`pxΩByμ=T>K3―΅Σ²ΣUΧ―T λO.ύβΙ΄ΈφμΪθΌ— ‡§›1Ɲ»<›jk ι-‰Έg”Ξ¦ρyHΉωrTΕάFu=hX…!;’½««)f/ΫMφΕ‚K†‚6xιdNπKzΠΎI?†ŽΆ=ΘlΠδuΨω|†b_o½hΣ3―ύi4VψΫ»χl³λ λk^ύItϊΟΌΈ˜9‘©-!@Ψ‚»\Γcγ| ιy€0Θ“YΒ«(ώ#7–} _),VzΈyγcΌΉQΩΧ‚ΏΘZ—άyHΛe‹Yμ%‘ϋ₯Ί–ΈtΫχΗΟΆˆ2X«ˆ5οΎε&”»ΆD8―™¬†#ΡόŽΛ ?9` (™ό Ιx‘Σ©n›DδZŽt΅ηϊΣ…Γ£rννΧ°Ή°šIAAι6φΙ•(‹…EΊ^5ςUI©΅ΑΏiΨ²΅Ji{ρμiέΟƒJ Ψ’ΚΠPΜ^ˆ¬ŠGήΞ H2Œ·γ\wjjŠ‘ΒdΟ[ξ\₯ŸΔ-Q^ήΘZE,“…Yύ+ ^$τ§w½Άr3¦Ο˜ΰʘβ9Kφ’_=oŸœž’{«!}ζ ©>άυ™Vz3™k΄”Ζχ,ΫY6evρ)1―βΦ©1ύb_¦7φlΧσƒ@cL/RNOΙ₯/ސ‘κ­θ—|μωχίC•θ„Αz›nΕΏώFœ;Θ^ς='֎Ϊ^—Ξ˜ž¬>³GΏπΪƒΌtϊxz«%}ζ ©ήš>c.€Ύ»§£„@˜šaN1‚#s*r3ΛΡ4‘]Μ(^·Eϊ·(#Λ\<οΰΒ!ψfΝ>•΅Ο„dE£*'‘υe_ΑzΩAΈή%8$&b}ΑzΜ 5’[ΥVfŸΉ{+kδ] έhv9žpρ“ΊJu“MͺΝΗφΪ§Q•κt6Ώ}M’Œ {M!>>™Ι*£ρΧψ5-νΪ)FΩ£›qώ`“«ΓΪν(ΙvξNcΒΓ»)±Β—¨Ω²•kی­u΅]/₯‘Ύ!θ‚ΫWb’ΰDζkλ@χ΅vφ9nΑY¨zlΪΟόΨΣY8Ή›Χάg'΅ηΎ―žm?Vώφξ–ΓL‘ιπΫ,(γ’φ°΅GΆΦ˜\έί{ ό‘eΦβέ*₯dεΫwαstφ|“ΑΨdW²d χqήώωγ>ΰηυ„¬$f:Ύƒ‹WήaΪ@ήΚρTιΘI†ΪΡ-rϋMakbΪ́‡›“³Π€—έ sΪώ±V,e/ υΔxΞ]ό;œvσp6―—Ζΐ{_α₯S†£*$ΖΉ>w?ζ2Μ/€τ-³Ι©w3Φ0ΗΣVέχ2C£·™h’~υ&£™ϋΨψ¨pAJύm|8₯~¦Ψ†² ήΨ(υ†υ'—~QΨ(…ωy!ςKe‡Μ΄±γΒ xήΜ."Ήι?½c‹ΝyyŒ2yΞ…Bu7Ω9‚f ΜfFοͺ%0§­ίŒι3»2ŸX³—όλy»δTΟH˜—IŸyNI}¦ιΐDΖ ‰Ϋμ,–ΉΕlfΓϊΕ&{˜~±/S€Η4ψ|~[ΥK”S%ά~¬~Ic™ή@]±όr¬‡ΧpA“)ΠΛd˜Τ/d/yΑQU{IΕΠ½hHO}ώγΥΌtς`xνA^:™oύ.p}vόŸsM‰ΊΨŸ—cΕaηΩ‡―>ŒΑŁkΈΏ4%ω[P“›―@2Τ{ΑεΠ«Τ†ya’·˜ίQ’睃―ΤΌŒ¨ŽFtέ]‰5υΨ’ߍŽ&§sc:ŠΛΏŠΒς­ΈΩ7˜˜aoό—%#'­9…A³υΐ¦ΛΝ}.~BfΏ§πMζ<}³nŒ`’E…―ŠΛGQξdΛ–,σ—WxΝζ, ‘ϊJ—,”N•|Θ–ί’†oβ%¬Δ'O"yλ7°ϋ₯ητ_nq71VΚϊy κŸύCά‹ώ—Ξ#Ήv+}όYΉϋˆκI7;§t»n/^{uZ―υαΑeΜ‘ϋ>ƜD—ΚfΌπΩTΥ―ƒx§Χβ•?‹Γ©Ο>Γε+=ΜS:…%QΎ{'Ϋώ5„ŽΞ›ρΚK{™{½΄υžΪϜœGĝCΏώφMQώΤ²gρΚή›xϋ£gKΎŸcΗq±Ά–9€3zζ@ύʟ)ΔΥΛΧ0—˜Ž”΄|²OΧUC"ΛΔy›9:‹―2μ˜?>‘5_Ÿ“»°χΌžR½#‹E1ϋ"ιΠάΈ½¬5₯LΘΧ »ή›Ϋ.Θ"Έύf"e•°ϊͺή&p[πSτΨxωρy UD―F’|β±όΥ‚³·zγΣK, †λΎΒK'Iœ—ΏeΙ±xψ;ΰαΓ(αr6-Ξ¨ΓΨ,a‹=χ¦XΆξλƜΥX„[™τΥαΥ»%ΨώΚ’˜ςIΣΐ²9K―Ω‡9›?χλHνθκΫΛ!©β'ΞΨ[Ο5 ΅Ζ gΊ«2EηgιΘΐ-…7od­¦ <j#BTmXxE₯€?KΆμDΩ‘V—ώΜήƒr§nU‘ΨVδΣ»lAΝp†${ξΖτΖ5 Vν%zή9Υ2‡g™τ™―y1«Ο΄}ρdlPχΰ_/ΉZ›·³¬fv1¬_Έμ ΧΘδ’1ύΒ™)ΐσƒ,!X†£L8εt±ŠΒΧ/υ―ώΎτΉWaqύ^;ύγ@“ŸgyςΜκ²—dδΌΤ^²IOTŸ±ώω3αρΪƒΌtήη2όŽ,}&ΏςΏ9 ‰ ­³ λςs+‚‹’β―±žΘ̌~‰“—μΛκεΙ!P5½ΈΠse›j$ ₯Ψ±™ύwc79W09Ιχ/Ή95β·ζξtŽ6Ώγ–έ•ƒλ-%F lχΞρ˗~‹3ΊN“ΊRύ…@‘KJΎ#ώΧ0Ώˆ/φŸTͺΟ4‘‚­ρˆξ‡ΙεhxEψ―6V`kqW/5 g£δĘ_Ω€όJiGτ8ΊΨΊ’²ŸΔ‘wσπ ζ|-Ξ)ϋ$wύσΒ₯…Xp¨w=Ζ§>(••w+ž‡LΦ€aΧ/ DvVλ>C콂²±ρz?Ώχ|½XU²ϋ4τυγ8Λ4nT†(₯3ΉΠώυ_ςΖΧEη9¬*Fέ3ΒωΈώ/χόO}ΩύΧφ’­χ JΦ—ŠMc+πΔΆ -ΩL'Ž6Ί_οͺ&ΡΩH”}iδκΫ/ Όόxιdά~c’/W1Y‡έ2Ψσκ%ήϋ /0„ΜτR”dHš[’ς›\ʜ ₯½™α±ΘttφΈŽHο*σkΊΐ©w[₯‰]&J·wλrΏΣ~'ŝΓfξc¬νΗΛρbƒ€27ξΕ«μ`6›υ‹!yυ /ΰΗ¬žΟ‹“ƒο±šΩƒ«εΣΡ¬~i£τΰVΏ‘>j"ω³ƒƒθν–^φτυΏ€Eξ)ζθ|M!捬;ΰˆν=֌λ;k₯ ,“Μ‹ς‡8yκKŒGε‘φρέKE:› fτš΅Žσ¬²ρώ§ζ-”uυ™΅Μ'" {ΙΌž·ANw<ΒtŸτ™ϊΜmŽ glθ8τΏeCfOeβ叼vˆ˜ξ»ΊϊΕ½‘jίW¦ξηUzIEν*ϊ’ΣΥ*bJ YΏlzώ±K€rfAχwΏ†η\©Φ₯yŠZŠΉf:¦rΈ"{)0ηp ν%;τ„·QΫ©ΟΌρκ}κ^{—Ξ— αylΡθ³π„Ÿ€"$ξ^ΐϋ'€]λλP–ξΚ€©ΐ37ˆ«7šπΙ΅f₯* £7?Δ~ΜbΗϊzd°΅iν6ŠŽΞ/πq»j|³Σ˜dΆH’μ|ͺ%`‰<Ρ9pMm§tMσcύ?ΈB2U9q¬šεΠΠ9\lW§Τ΅ϊeυ—Δt0τIΧ2Ϋ@Nό:xι†YΰRE±φάqt7βΘ―ίt² ½wΒ;ΏˆΒ3_{ς»™λt'O΄#sη“,0Ÿα‘ώ|›άΖω{κ§<$ΚKW#ny bUσ4{οΎ[k–ΤγΜ―π7#ƒxnOƒ‡œbγι>tχάtΡ9\γs=Ί ©ήΔ\.¬κΑ=U ­Ί‰Αrbν^ΤΛλs ƒCοάγk‹C§ήΒaφ•Μ=[ X―™¨ήρ8ŽΏ3’ΜΑά]YvΨ9έs,#ΈΌΙ94²ΆΒ›y ϋž~›7ΘM5ΏŽNt·]–²9 GxηΟ<ƒq^χ]«^G*Λ» ΘΘπ9œiϊΠ-¨A>κό]Ίœ­ηj·‰ιa]!΄βεΗK§•LΪKŽS'¦oyΘΚ­—xο+Όt캈Y&edΤ§Ίnddφ%5q(Λ€wC―w[ΓΞ€ wΆ"£Έ©ξχ1ρόCGγη8ΎCŸg‹™ϋXΫΑΏΕώω »wΧ)™₯Ξq‘}ρ3eηNρύ‰ζ^ βnFΪ’_άo‹^μ^ύΒK'@bv|Kη§0ΐ‚@²ΌQ°/WάjΕ…k‡Π©ΆΡ,Ϊ‘ˆ+G~ΊΜs—;³¬α6^:]‡EƒΆιA½ωlλΎχντeaο ΫO±μΖξ›Κ¦Σθœ@ڟL^=8wg‚Q;ί«»Ε}ς„oΫ»ώμ:χ!{<ηxΡםYύ)σ":ύη^\d\ι— ‚ƒ€ΩΧK6K΅@#Ψ,EšΟ,ΑΉ·n|1ιΨΰe–—M΅zwtφB°j3‘΅hΕ‰£'N)γjv5φ½Ξώ» w§σ>gŸΊ› ~άe:ŒOžϊΩ§οR…cιε¨Ϋ[΄κxΐ’ŠTY0”#Ζ ¦#ι-ΧΖd΄²Δ7βŠƒΞ’œš‡O¦ήλΟ@τ©ΏΨΠ©+Έώ|ŠTΘ^οΌδρRB9Ό&ε[ά₯€£©,J[ΌΕέ1Œu9:Χm«VŽυ47Β‹QΨH…^ ίκς €έα›ΈαtΐΎΡ}Cε =„Α.uFΎΜ.žΩ^4αΰ‡kπWvK‹uLνxή₯‡$α₯Ώšω°aώ„h`S™€ΤΒψ+‡ΰώg%σ o¦ΣzžαfMNΐ‡ΡqgΞΙ°AŸy\οΖ2Χπθ%λv–…Μ.†Oa{Βpί&ϊΘΐύό °·ρ9Ξ‡œ »H*,`ύ²*ή™MvX)¬Eκλπκir,οΗ!UΩK‘d/YΧͺΐj‘WOψ’γ΅yι¬b ϊΕ€ΟB/ρ$Œ"0uG›. )©ΉqΙXΎD"Ό7;‚›ƒΧ9Wε’v·nΑ;7Ο’0g –-gRΜγήμm6ΎΟρέmƁϚW„tf›DG1F†ΙόΓ{˜Ύ3Šξ1nγ2ŏΡφυΐ›=_"%£ˆ[Γζ σμΛ_£c­Έε–eՍ•fwθΜ[ψ φ? Ϋΐ1ΌυΗΗ4,šΛ·!#e•θθ97ُσ-ϊλɎ–ρ3φMν€ΗD³>ΰ.ϋόΉύ±4ύκοτβΤϋΐώλΥ­ν:†ώρ>]S‰΅Ήι’Cκό]L:†ΨgͺέVΩΨZ‘ϋψ4}Ζ›|XSΕ»γ8ϋsόϋοok|ηK&¬Ωλ^ύ/Ψ#8©ŸΕ[ωcS‹~ώ„±’YBκ;ΡX& Y³‘‹2έ"ϋ³RΔ³¬βη:ξ²Ο±Ε[,vΐβ5†‡¨λη΅9Α­ς‹OβΛτ`–ΞͺœζP Φ‰F2­Έ‰Μλύu@v«^ώ?ρ΄ψyJ ΏρgxsΏ3 ˆ›‰Μ.vH•˜ρK²³½,ψ…eGΨω{ψ½gjΕ―όۏπξ±ΰ,θΩ1–Pφ!™Έ"EN;ζ’τ`§>Λ7˜1ΜκάρΪYΦ2»˜“Ϊ¬=awZΣσƒ ϊξ‚τ‹½ϊΕ7Ϊ^Ž’½δƒΥ€' ΅π›-v}VVV&NrgWΟŸlaΐ(^S φέΦΦ0θ8λ灐—ϊ$@|N"&ϋ^»^μΗ½CB€°ˆΐBΧ―α!rB€XpδcσγXΉ$…Υu,ŸσΣzμΛδρΏΡŒv‘λΗPO6ν„!@˜FΰαΓ‡"MAAiZ §§G€[²D›Β7΄E‘ξλ&3KpF..άΠY0£Ό‚ΙK΄φΧZ?―ΝΙd•oΔ•Y:«ršC%Ϊ'ΒνΤNς˜egηŒ Y‹ςΈŒύ„!`7 ]ΏΪυG ²?ΓΓΎ¦χl οΪ’„@h”£σ#oόΑŸό.C:}τ` Ί₯> B€ ‚Œ€Aš˜Ÿδ±x/Ώό22Vs³½pŒ‡PwΦΩ;πΚK μ^4GΫaΌχQ“{ ώύδmxιΫϋΆ˜ξ:ŽŸν?ΖίW0)M^οvˆfΖξ±’_όΣΣΧJ?Fτ§Qα…€ž>S]ο·ΩυώK+Χ{ υRX Ιlμ\§Ν䙝Δ₯ώŽ I–ˆΤ8v3bΫ½ƒ˜Τyξ‘•’Ž€Ψd¬\…(ΡξΉ‹Ρ‘&tOι‹©θύÚZ΅έΓK§ιvBˆ@Φ”―EJJV.žάη1λΈ…kg[ o!UOΏ x“@κ%•ώŒ{ΙΌž°ŽŒθ3=ώιόλ&φR(υΌή˜©Ξ?Πg±)ˆ_<Έ?†™;N bΧbΛφMbύΜpNΩζU4rtφ  B€ B€ B€ B€ B€ B@VNκŠk»*ΦC˜­Μ Έις~΄yyΑξA`’bΕΚUbλΨ•Kθ— ρ)›±΅ΈλS3u$ά‡ΆKοΰh―ΛΥ:>χ)|wSN[u•ηšώ§‡ΥuRΩ,?ΑΉ‘zΓ“¨Z]Œ·ξκKΆγbΗ|Φ{ένHˆv“+±γΡ"ζ>ρΞS8ί>XA‚Δos¦MD¬ΞƒhΡυ_[iγ^^Nς‘—Ž”ΈΔ3ηDiΕ©Σ‡ζ yίυkυόtυd¬d…Οψ φ <«99λ]―_ΕΘπ9œiϊέjρ“vβ™m HRΧω(w^ωu…Ι5ε{–`ς@IDATCΞEw(Ή;ί‰ͺΊjv=J[λΏύwΌwŒΓmΝ>όπ‡_GͺΠΝp#ήϊoΑ ¨qŠνϋ‡έ’σςDΩbΗD }·7s41iy™bίK‡…b¦¦ƒ§ηΉws£ρhmΪξ± _‚­?=K‘C ϊ̎λ]F(zIζ’ίυkŸΗΦ’ Δ»ρJI'>mω%.ιΨZnM-μα‰ν―b}‚³‹™Vμ?Ύ·”±­ϊE”fεx<ˆMJΏ†‘[_ΰdσa ;Β«—xιy©2²·aίγΫ°Άrb#©eΩχTΞ}~˜ ž"{ αo/qκ υ bKٟ>σΖΔ?{IΰZ=οmάTο@ι3–ΌaχξZaU˜μΔ‰?ØPŽA< κ—άf^Π>Ά@―Mϊ`ν:δίλίΥVΙδͺε/+#…1ϊ‹lΜe–°)‚ˆ\ώŒ@ΚμΗρ­W ΨΚ#­‡πξΑӁDΈFxxδ‘Λπaαϊ³ W<‘§’x|γ³CΪu€E€τ’Hά W=O‘Ό^Ξ¦ΠD¬*zΨGF₯ΙΥΥΊv9Gf3<ύΫΙjΉ¨l#t°Μu₯wPeB L2ώζ%ΨϊΪ?EŸϊΠσz#6B§΄Ρλΐ­NχώΰΦ†vmF€τ΅Ν€Rw„@ψ!PΌφeμ+)υ*XPJφςΦ<ηJY¦^―[,’—i_v€ΔΚή^‰Ψ˜u Aihž_&Άoώͺe·>₯+©°"_Ε’‡?Ζρ›‘ΟB›_ω(ͺEΩ:ζάΡ9Xόz{ΞβθG=ΐΓy Ί»jέ&"»Ρ›Q_ωU€ιu=ηΐ€Η+η§+uάόΈΖWŽΚςG‘λC¨΄τ<΅} φ~@qϊΙJΚ4μδ,tύΰΞΕλƒ' 0Ω›±λ±zTΦ”Γ=δf ΄ϊΩ¨$u[7KNΌ ηκ• |5ΐ¨l`ίN_’/c_°u›ξN&šν?Xzΰ»ή͎GݞΗξ±’_‚«?Υ#₯rΘ¦>³αzwα@½δbτRε¦οcGnŽ>ߘb|₯όŒͺμ ύ†ό΅[kχΊœœY733“LнF―E7'g'ی¬G±gσ}ό΄ιΈ"―^β₯SS!dδ―ί„ΝΜΙΩλΆ*5{€΄Δ•xkI―Νܐ½δ²›ά±ρ·4{‰SOψ“ίμqΏϊΜK‡FθΈν%Ζ3ΤzήΛ°©ΪgΕEk$'gΖ{d`@rrδ`νb«<βφΠωλνG~Fσv<πυ!ŽH FF «‘ ζ2KπGŠ„""7π'XrXΉ ιr€Ά‘Εx‹c0αΔΘoq4Aβό όןΕYv#χqΕ+'/ Τ°˜aΗm€΄k7α¨—μcΈυŒLα0ζ@f°#BξGκ©fΔͺιŒL–μrΎΜftPŸaX¦ϋCπ'%χ;τ§ŒL υΌΜ#DΏΑΤΧΒyψ™ΦσN,MΣYΊ?„h[Χ‹mΖiΌ‹ τΤ«œœ'X–ΤΖΞ³fNΩΉΫΩ±r)³XL Φ)Bg$f?Νάƒ=*'η™ΫΈrσ2ϊ¦¦±be22“KP•ŸŠρ)mfΧ€XΩιψΊ{[α`oE<\Ρζ'ΠιξˆΚΑo}Ω>“σξ#hκ>…ϋ1Υ¨Y8J%·Ώ ΅ΈtσCŒ†ϊ<}ΰz54ο*Nͺ`ρλjΒ©.η0’YFaζθ¬—OΨ΁Ζ'€ͺœœ…MΛη+ή½νυσΣάη'§πΌόΈΖ—’₯$Υ½‚›£½œΑV!/kjr ₯Q$T‘’ ·z€Lμ·&ΪqώΖ’tΞΙωωϋH.ΗjyόŽs8―Κΰ.WΣo¨(Α ―ύεnΩΤ-I“Ναšh’]½―Cƒχ@σuhx¨!ΰ:Χ”¨Ÿpž:‰_4QeL\{ ‰YΨΎΖψγΌZ &Eψzιcκg oΓ;ηλ4ο@{_#ΎΈ¨3.Οz–¨τ{ναͺVΰ$‡ΌψΝ¨(τ¨Mv΅ύ ]“ήn7α·MqHzβΘJ$­…'ρ5VkG&11―ύΪqήdΨ…FZžΨ‘~fνaιηΔ­6ζ\0‹Ω©>f`Σ†Δυ/γ›%’αΝπτH£vήλ“· όςΈϊwΊϋΎBίυ/quάhtΤ;twγώu2/-Y’‹τ;~_°?σmžl^— g§q# Μ}psUZ™DΗWΗΡ6ύυΑ"ρ‡ͺz[5”ψ} §θΚήJώ5γπ;Νa`Φt’…ίώΗ†:Q(΅"Ζ»Όχ»’¨Ν=χΊ‡›_"̟6ρ βaB ψ,•έο¬{^vΏ[ή„—,kgΏ`b* eη(VϋjΛ;ψDvŽιοΓcΜΠ9Alu%–§±”qΝa_ ±Ζš‚ηπ€ Žε‹λιό­ΙAcΑΙΌ}°Α˜' Ο)ΓXΎηΚυ™ί₯Άρςo=M2₯‰±›h9ϋ1.ώφ=΄ι•hΑε“έxρ?ΚDΏ4dη²UCgZ/ιqTQΈ^βε ₯Kχ–ωΜGŽυzœλ₯ζyŸξ‘ ΒΑgkKΦͺΣcνΦΎζ³2Ιρ †υ‚:?IΌž ΰˆ,^O‘H{δΪΈ¨¨¬zxEΚ“IιJ€δE:Βού§ΰβΒή’Η―žΌυXΏΈyΠL¨‰(Cΐ*/E™Ϊξ¨Γ‘xˆφ‘š~‘φXε‰ΘΔ».wٌζή›kΦ£ω!6#cE;Οsά*‘ζk^y<d)ϊ(ωΊ}rΕ~μΫYeΜy>n)βnwα·?>fΊv“Ψώw°>u9ξ2+2*Τrk_ΖχJ i‹[τώW|zFв«δ%ΨωΧ±±Ό’]w¬«¬OΙl?Υ„‹'βD³ΎΌ3yY;ρHY9rs󐑒• vS£θΈŽξ‹ΗριΙM5—R\γp»­ͺ…‰J"ΰΦDγ$ΞλSb7αDOΖρicώΙ;φyiΛζΘ“„&n~…/μ‚]ε«χ}›Κ+ΰΙ ³€mz¬]νΈtϊœοτ½vμάB{U8πΓ=H‹ΓtΗ 4Ždbηφε+s‹ΌΥ|Gρξδ*<υ£=H‰‹ΓόT+²s>Μ**šυθ·ρυZ)ςθ•C8xTΈg13Ρ‹ξή4|Όwϊηνϊ±<ίΫ°±Xڍ–SςηΫΧνΕ‹{+ΑΊ…ρ+Gπ›£ΝΑ›Oέ†g_ΪΖ‚½'πήΑSjως'Ύ‹ΪͺJΖ m_ΓoŽhεΤ ,QςΔχ±₯(σzK5†ΧdΗg ‡ Ί¬{Οο―gN1ών-h<Ρ†œΪ*$/‹ΓkγIχξΜΓSυ,v>jόœρOΫ<†ϋ]ΡΕžuOP~‰4ϊw:κsˆΟB Q>3©vοNͺχΌ†-[+ΩK₯Shi<ΜψKζAŸz<ΌδlΕζ£v£¬d½¦#ΣIœΓϊzΠqώšΝ£άΫε— ωeκW3&Ψs€bδ 0ΗΔΝυΜΘyšI^)!ς0NYτψέ²³ΞlnΜf"/I5‚±[ϊ5o(AwΩΪ[+cΥ /(/iΝω₯xλω5%‹_ΌΝΰ½€Λ…fœ?ί‚²ϊ ύ΄τ<ΆXX‘όBλ%³υξ­—dΜw|ŠΨ_vό3tώH;aϋώcUΧ周ΌTΊ· ‹!™ΜhM‚1€§κ^KJΐ_ύΝ[ͺAσΚάRˆχή*Tœϊ';υu€tIE5 %νΫΜΠYΪzpθοάPXΆK7δY=(z δΒ#͍h`†ΣΆ kW ¬›q§01 VJŠ{Γ”•MΣn_O•`ΊRΕθX«±2΅Υϋ^G~n&ήϊΉΏ‘wFA5ŠJύΗΞ;Οt `Œ”\ρ,Ύϋϊ(ߐ€%"»ΈO±?eKcm2i#»ζEΌV£”Rφfγη„w•v™σ««σΗύ©b’ ΓΊ'ΏDš@²YΔg–ΠΜgώΥ³kžΑSΎΩΜ©±’ώUde₯α­rƒ—¬³Ψ˜ο_G‘ΙMΓβ:ΫγςΥυΒ4:nhs–ΝϋdGHέ₯-1Ap43_w)e,οΩoΟUξϋ ΫzπΩ•K(“Gfn γAœΉόdd– C ;ΝNΝavΦ―„F^ς― ηπΦ ΨΰžX΄όΣψeΪΫ»Ω;w‚fgσ ­—$πbd½ΔΓ!―Ή/ŸΩ¬Η·^Z@ž·ŠŸεˆΟ`…Οr7―W›&―w’έόUŸ8"ΙμύΣf–κξξΦFH·^˜T;5©Eα‘ΔιΩΐY"τΐρqθ‘kΧC/΄AJp{FoaήꏋήκΣ½Gρή—ΐ§ž@{ €Ό΄υ΅££ι(‘^Ψ:ςx\·ΟοeάΕωrg&1Π~ #βPχίSΨf/±žLv" 8“ηhŒ Ψ:rχΊrΩ*@a;Wš²yυ R“ƒͺm'‰—ΎΨ0U0^2–Ž›ηE>yp#Ÿ,ˆΗ*OD&ΫPΝ ΄.wΩŒζ‡ }hέͺ^|& šL@1dYŸo)’Œ8Dš―ΙγεyήzF¨Τ£@σƒZ V΄ž`ΧσΏd‘ i#’fH9;ΙT~δOFYΡΣθϊ½’EΨQ«°Œ‘/qφFŒ…@Ν,BžlH116„„’—ρƒ΅%,2§Ά\ΐ™ΛογͺƒnKZ™&ʚ}IlM=~ΐώ”mΒΫ†‹ΗΠ4ΰƒ—Όd$ΕΗΛM{Y„7³vιXeb’θ#ξu_’ςοCυu3δ=hAΫ‘cΈ»zξޟNJ¬jYT2Φh=ƒΎρ,Y"ǘ‹›ΗpοNPφΎτ‚ΞΘyWΞa„EtN/}e²Αfٞ—±»—Eς‚»Β‰]2N,Ψώφv]Εa ŸtΦZ ‘r:ϊηXŒcΜηΊT€s]ŸJe޽kς,φ/˜Š7ξB±jπΣƒ7C%ecwρcκύάίՈ‹p &7:Ξ•ΰΩΧ^GEަM‹NήΡ;‚₯ριΘ*(A ‹ψ{Χ.˜ηώcνΟΞ³{ΖΈy»Ξ ₯u …•¨.•—*¬ΕΦͺOδϋ¨W.΅£DŒ€œ’²-ΜΠYϊ-Lki ΛΣδΓV΄‰Ρœ΅³ξ€ͺPΉYqόΐΕS‡΅f;»p“}κ=™Ω³­ΜXƒuμŒ‰-ΆZΎ$;Suμ•΅?49w³ΘΦ=#ŒΌλj*ΔΊιΰι§ϋπζ‡Ζώίl?–;BDgΖΠΛRPΉQσžaΜTρ,Q'ŸΡ9OuγlC#ΌqωΨT_g0~ά†Τ^θρs‡wα”uέ·Ώλ*›&έ^χ„ζ—hβOSH,“ψΜτAψ,HΒύ~ξbβ=Υ¨«*K¦—ΐΎ=έxϋH³‘¦}^ͺΫ]g•οΨ¦3r`λΑfτΝ`Yb σ QV\ΐ—Χ“š-e‡_А£¬Ÿgzp]^Ά—~uͺσ“Φτ­I·ΎƒβΑξΝOΙ_‘˜Ζ₯ζŸβbά^lUDM{‘_%+ΩώϋllXW‹ͺ²Ω`ΌΞΎ‚rΫΏ€1'4/Λ+GΌυ”ϊΡ΄PωΕƒœm‘8>ΨbP‚π ­—‚¬w£i½ΔΛ!. υ4/ŸΩ―Η΅^Z0žWŠ@‚ψL94Ÿ­E~Αy[Jz%žάΕ vΎ‰«:Á΄D“ΒrέΥΙ%Ψ^S‚”‹?Ε§==j‹|ς°b…`h.l³PΘRJqΩ#ΘΣgXI»kε,J<ρ[8/ΛNήΎŒ:K‘DG[αΰq ?υJ·cC±d ΰδ/ώ Ÿ*ΖΕe‘QU0|LDiν7™‘³‰–[ΪΠέx ##ηqμ΄h5­©tδ=tΎπgxJ4ΔLDAΩFφ*α¨vήν”ΝqXšFΗ-/FtΧ€^5žλS_ίnΪ-yVϋHΏό’π5OzΊΏ+΄ΑO~Q=Κ“δ*3WΠtYΉŠΥfb&αΩUJΥ~₯'ίώ>=cΌχJžψ>6%Νi}βΌ΄€TίΩΕΏR’/€±Wώ vW ΖΞμw)O»†Ε‚η/Άβqv “ J+u°zΣ1ύZ€ε‹-*§ˆ•]ϊoݞΗδH€χςYœ0X2·`€9©”±y©9XΓ,; ηJde)aθ0ΤέΖ쎟ΗΦrΙYΜ-Θ8‡πΥ•ηΩowϋΔί vmG93tΎ¬k²σψΏh†Υ©{‘Ι •ΦtΕΤdΦ:¦«|8Υ‚ίόΥ_β3ΤΆ“έ£ψCΏHΟ9ί-/Οϋ ΤΫδA₯*ΟύΤ Άwsέc…_’…?ƒa²ηˆΟ¬‘œΟΜΫΉ|Λ"7KΫa Nό žΩ%9a”l‡:λg»Ό묔eBΕɟώo²s›ΦδRζ ?’e„Jα—|ΖσŠsγψ­>Ρ‘suξ^<^,RL žΔΕΉl—ΧK–°uΈ Ϋfδ\.L‚l»ή~Ηϊ€ό"́rxf<ΰ3UΥ¦Χ±3# σw±4!Y}ŽΪΎy_j’A7+ΌdΦo=³Ά:οAε—u{`‹μˆ ΄£½™­[‚lΑω…ΦK@υξ—άΰ‰ —…α/ŸρΤγY/-Ο@ σρ™ph>Λ¬(ƚ`Lχu‘Υ‚GΡd_3‘ή]kk1¬—’ΤΠyρx$qy6pE–v‡:σ±δ‘kΗC/˜ͺAΟ9τŒžeŸ;”ΫO/T% ΄6±ˆ·‘’ Oiκύ­` {UΨχ¬ΞΘy¬_ΓTB!ͺwΥJŸΣ7K;φ”TΫ βα%–qβΙΔaΐ‰<΅S6ΗA«ΗrεΊvv…ΦέΎΗ•y›Όz†ΗΕƒζJFa.ρRHnuΤBρ’RπAυ|SϊouOςδ.OήhπXu‘)ΨΊάYd3š€ϋέ4’­[MȐζPL²‚Μ&₯•,Š$Ј4_»)—ηyλ‰N°ωAΉ²baOλω}= W)ιH`ΌΧ‡·V1΅JGN:ΓE°“[Ξώ†Žγ f4{[2²’΅iφ§{ΡήuΧoM!9ύΤδΚέ*DeΡf\U²‘ΆJaΧoφ²¨Ί^ΜΜΗ!%•Ɍ,ΛKΆ£“:w‰­πΚλ€—΅fΜ θΉfΝf`T3bHΟۏνλ=Y‘™a ›|ξzNˆͺί–.A8œY§΅Ύd©bΔ¬W@Ko*—Œ…œ‘ζSš‘³Xd‡?ύJŸίk§ηζ›FX΅#OhΆρΰ[bλf;z1CLa„—..rχ6§γ¦3jŸeW ΩΖs}š΅c5Ο=yΦϊgWzή7±wƒd¨%–`§B-oB톡ΑΆω~U³ψ©Θb΅u&ΕAΪ’Άχΐ;€HΘSl¬UKuϋΠΟΘY8ΩvτŸ™ šΆΉq ?.7ύV1r–Ϊ>y5ΜΠY`δt ycΏ‡uυ@΅`Γ8“,lUNE₯Ÿ]Ώκ㈠sͺ@υfΖ£β6Š–Σψ΅5ΨΟ~ω•³‘‘ǏN†XΞ^ΌφΪ>° υ=.~ωώ)V―™Yςά8֏>f]χJ…:£τ?δ7ήζχΠτHφŠFΰ(|ΤƒΛ§υ&…:uV‰Z*+Τφ·5|¦9‹§[>@Ss “₯ΜίΊΆ Iγ§«g—w•ͺNyPh‡ο~W4±wmέc…_’ƒ?C Œώ‰Οb•ΟόΗ–E±ΜΘ{η?ό e›+$Μδ3ž@xIΙ»ΞšgΌκζ³tς½­§pN-ΰŸ°Γ/ΩIŠ—γu―‘3ž¬’ΏπΐŸŽž9‚΅ύXrοžN75Χ^bCΩ«j΄θρΎcψ°Ušη2t”·&ϋ4κAVͺG|ώZν[βζΌέt7ΧδΨ /™To=³Ά|ςˆ_"³^Z·{φ)λΆ<ς[γšΑgX„/FΠzΙ”XX/ΉΑΎύ6?ζε3Ύz|λ₯ˆσ<ρY”ςY.ΦΘςϊΪϚ_Τ†\υωбœ~½€½ν2TZΨƒΕδ‘ΔγΩΐYΒ8fnyŠp{δš,~Ϊ?rΛ3Z“܍ΏψgkΦ½ΔX·»K†τ>‹/²„gWκŽ± ψ·ΏψkΥλύϋ<Φ3oqαε’Ωζ–§dp/I2wΔ Ξάςxžšaμ(ΟβuνΦύgEW+₯]^=νΦγαAEΗhί/±ε=Έ­π’0ήͺη›έk=8žδΙMžΌΡΰ±κ$"SπuΉ³Θf4?ΨΉσμu+ΝΦ―•ΰσƒy;IFΒ%|ν¦<^žη­' |~0ΏΦ’1—Φ󴞏Ζλ’t" dξΒK[κEc=1n7XΩ% kΨ§žeγ`Vζι²1|x%Φ’ ζ"i₯bΰ,τn_5ώ Ny%ϊšΰ½:v{˜AΫ–- •mηŠσ“=FCΣΞcΈμω&Ύ±±FаΆœΆΘMFWŸΠ&ΏΌ[3¬ΎτF7gνSx~i:ΖΖ±*₯Υͺ16³qf₯f'qKQS·<ω~u‚Ω¦Οbn e3;nˆ’ͺ+ρδͺΥJτ>_04ρ٘‘a³;Lμ-DXυ©π0yέ6ΤΤnB~^V―`Qϊ˜‹πϊuiBvΐχη³xΒι8€θ aΌ“€ς\Ÿš²”νžζήήΛ-ΘQ=’"ήΟήΘϊΞΉγ)bΗ#׎‡ž^S;iw<£5‰ήχ1rNužΐ§Ί Η½wΣQΥΘY”ΜΌΕΟnͺΒnρaEΣEI9υ””Ϊ να₯ΘSφv<Ώέˆ0`Gž #Ο8(}s²η»έΉ¬θΝηq₯΄Μ«§έz<<¨θΘ±°§ρRhni­ςE>±vΥ‡Ζ“"Ÿ°ΟCŠ\£Ωξ|€T΅3?DάcUQR·ηΘj]ξ$²Ν‘#ϊhƒHλVš΄«!X*τόΰ_›"Ι(˜Dš―έ”ΗΛσΌυ°ˆ"ΙΠzžΦσ ОˆN6α9‘σπΝ“ψΌιˆj8Έ‘τe‹·£³'¦Z₯$c΅jt΅ьœε 7ƘA…lθμΫΖ3r6Ϋnφ|„ 싉uY‚ρΩJ$,Oc{/ΰ@ήΥ&”zTƒΜœά­ΘΡG«jζu7Ό=?w=ΨΟ’’Fᦽ“ΐHŸΉŽσ.λ]χ±·Ž…’ ΅Ν»-™E―εf“ εxᝠ¨½νλ3`KΦNΈ#ΟzτZ QΝlΪͺ~~~fμ,ω‘ψ z}9ΏtZ=6η)‘n½8Ϋq(ΰ½γW7TƊe°mΎΊΜi”υ,Q~qeƒΎ†Ηtvγώσ5Π^―#[¦GΫΉV ΤWˆ7žυeΜΔλ”X]U)s ‘Άf mΞ:b)Ϋƒ­΅ujΙ«§ͺiC’₯£SΜΉbsQɐ‘ό|ΑΰYήr<(d@σsT£‘‘~fPΜ’¦fœ―liΘ–¬ζ” “½bΤgr*d–`ά._ Eο‡,o^ΐξψ™·b/——ΉοwKκΉΈξ±Α/ ɟ–`!>3ΐs|fОܚ ρ₯4€a-‘Š}›Φσ³Οbs•ςΥκ4”ΤμarΛSΈrώ>y°²ΈYγ—,Wθwfiλχbƒ°tgΫΥ–Ch–XΩYPc>ίΒΝIρ4ί™υΜ6£Zͺ;uΕΗ+ͺΟίά†.οΌhΎό.šuT=ς:vυˆ9yΩ₯Θg†Ξ½Ίσ†€ ^r₯ž‘‘Δ/`ΒΓ/Uxώχ^G[ӈ[οI|πOοδϊΠzΙφDos½kΦ†έ6€χCΗγΩΐYBλ’sO»ΉΦ=τ4-ν₯\ςŒV„2oτΛ'Ν_†+E”½=G_=ύoΤή.φΒ%€‘³ΰ©)m|ž’B]+^²+8$Ϋ&UψkηχŸ‰*~YόWJSΌzΪ­ΗΓƒŠŽ6χχΤς½ίυ·’ξ–"6(έ$^bHPδεrΆ·Βσω„!0C0t­³>?DΨc5€ϊΌ™¬¬Λω#›Ρό2’2ž4?0$h~P.‡`{+σƒ_}Š$#CiΎvW/ΟσΦ³2?ψ]kV2h= ‚₯οsG4ΏgˆEΎΆrqRB`aΨPΎY5¬a‘N9 q…•νjλ1fV‚r1o.²3<ΈΨcν}§Ζ‚ξYθ^!z―ΈΝ΅γκ5HΒΛβ”w₯JAkϋΩ»³ώΘ»}οvoΨ‚ςLΕ ‰˜ΐΥή6,Ig_ψK"Ξ1γΖQžφW&ZsξβN€_“ζΥΑrAχͺoŒœ§ϋ[ΡΦήﲄ6' ~ΧfIP\œ ]j"^gΓξΖ1]g3½>y²XΗ²<Žώ=‡on¨T5gϊp•zHΖγΜrJμ„ρΎ38ε±ΙPΑή‹B~ξψ1¬²|ωΔaώv·ό₯O{’Τ,ΪpΌj‘₯ζΪHπίχξΜِÊφŸaΡCŸDv!3Ν\υ@OKŠKΦΛνL’ϋB#d{’ ₯“kg‘€ε¬ώ“8s&!_7&QTΜτΛΘD 3`ΞΙUŒβ…ϊωΘ-σ $Mq<Εp―πnž9θΈκΚρC? f½Dι»"=u»yαωJ°vl{ό¬5λz)ώϋݚ*ξ­{άγ—pς§5TX)β³ΰPE=ŸΥχޞ1ύ’NJxΗρzM(’œ¬³Z?ΐίώγž­ίΑ88ŸΉ κΆUΩ(Ϋώ-x²V㍿— ΖΞΊZζΙ”U’Γ£0}%bƒΰ-ΘΆώλΏΑ'ςΧ6€fK_haωƒ·nΏβ"–ΆώίζΌJ€(Ε—¬@Ιζ—Q‘L­ΤΎ$²Ό›k_ΖΖϋ£hl:¬:˜*U}χΝ—ŽcMΖ+(τOΘ@6;ξ[J8ζε%ήzf:˜δΏ˜€’ΛrΜ/%xκ?Ύͺ~ΙCMxϋό,¨sš ΦKΊ1Π%ce½€SYLZη ߚζΗΌ|Ά&L<(hiΊ^Š0ΟΣzΙόzQsˆΟ 7 @™€ΗΫΠΩeΝkiϊξœαύ§e½]†ΞΌžLJ―’poΫ³ΑAd ­ϋΞ ωaCσCΰ D9cq~PŠ+{Š$##iΎvS'Ο Ÿζ γό \bΆφ΄ž7Β₯F°Τ?wDϋ{†Ψγk#θtDD©+@%˜}&Yoδ,i:€ φ©d!j±°-}Ψζ‹H±V”όwwBO|·ΔxΩκΑχDΠγd€&0γ8q>?νo@ y“ηρi#ϋc†(ιβ―*³™d†)υψA±lr« m o3η‡Ξύ{¬—ύJζ## 2£ί-NχK’bβ[F9%oK™ΙΉ§αWψΩ»>•©O Œ:λL~”¦{²WUK7E\=JL…Œ S^ŒsEP·p}2₯³*ΆΑ“¬‹I<7†Ζ3‚!§έ͚<±U›ύΫXώ=|MιΖυίβύK –\S°•κηθ{pΎυ€₯zΦ ΅αΔ‡ώΧ±υϊ%Η1!ά,'8"J3γ]7ξ?kš£΅υΆ i((ΫΖ’‡@`X,lC-,’¦”tο l}TަΙ½pζ”©±Ÿ$o#ƒύ@1γŠU«‘ΏλdFδc­8Ϋ‡ššb€1έσ—‰ž>‹2zSΤw³sηB?zΡϋΕGh°Y[’kχYΨ΅1·+ΑjωPΌk΅@εœάοΦψŒq•Kλχψ%|όgσ|β3s\”άhη3EOiŸΜ’ ρ{ŒΩ˜Ύ%ΔΞg“˜™ΆfδΣ„zθxΥz°?ζi‚uΘΜ_’ΚZdJsΔΚβGρXνQ θ¬’ͺ8‘8 κ>803ς%>ΉΤ$ΧΙFnj‘œžf_IΈfΪ–5~ρ #)Y«Ο «K‚€ψ:αφώΟ?DuΎΌΆšjΑΏύgαk΄^ςWΓ½^2WΦO„—ΟΒΙƒΦK.ρΌ9¦fΉΔgf¨hy ΓgEEͺ =]ΧLήkͺ§ ‰•IIμ)θ6δB]/©ο|Ξ/ΐa˜=’ G‘Dšz6(7ΌPΩΕHV=EΒν‘ “HκςEΦΒ‰Η£ΨDVΨ½ΓzJZχπriώΆ€;[ΒRΨκύgU8―§ΦΝxυδ­'¨cΚƒ!τ xz! f$ DΪcΥ¬O™lESd3š΄Α€ωaAσƒvAHYŸŒ P$Hσ΅›ςΈxžυ›«^˜ίΫΠzžΕ„Š`εοb―¬HG„@t!΄JωA~cγΎζ‚EH_₯ΔY›ΖΜμhtuΐŽ6,ˆ―Ώ)ΕΩΕj+Γή5,±:w‡Ξ€’αΒ’yϊmNδέΠE”KΖ]TΪφώέ9£ΤδΪoγ₯½ΥX*3£τι|τ7μgθb¬Ε47§ExMΞΜb 6ϊΤΫ'‹R}Κ¦ζ!M0ήΆ©QŒvJIύvδiAš{qυ”`HcάYέβΪ§Ω'Φ…Ÿφδmͺ £ΜΠΩz₯„ιήͺ<‘²υώ%cKΥ ¨ΛΝ•eNγκΥρI‡Οucͺ‘Y‚šβ υμΞ―p‘Λh\m"ϊ«*Qϊ¨m§ΝΈΫ¨χŸ±EkGM­θΫ·Β(ζzΚ°eΟ2υΎλΉvΕ}nͺx…Β6tMΗƒ_/Χ{™‘3JΩ_>Jkοσι±vœΉ :gΧ`ιΙbz —…v™Φ££ΜmF4*bQŸaΖj!δˆΥΈλΑπ(3NΜŒ³‘ΏŽ]םF ρœ\™Β³Ωα]½φxΠιύn•ΟΰΞΊΗ=~ κG"FΔgώe“Ο €&#9nτœ0˜ΪG„mήαΠs‡TΦόΧΦYf”&ό5’αγ·PΓ;ΛήMd>(ΒΒpΨOΛόΒμ' &3WπωιÚTv5 d_Μτ §9šlΦΦKw0;3€qf|=Άί-EF²ςuvffΓχ—βώδ,=Yeo€Gρ‚›cN:¦Ρœyy‰·ž‘‡Ρ}°hω%ƒέ/?B]±²–oΗαψKœ7άχ†Ζ&ΏΠz)ŽΊμΘ¬—t}“–xΒκz‰—ΟxλωvΖ8ΰzΙ%žχ—₯9ΔgώΓψ,?SvޞθBχUkοτΔ†V%@}έ©Ά¬­— kυό$Βο‘΄ *2€gƒΎOd }}C:΄§ˆ\ƒ¨°Έμ­­ςjΛλρ¨}Ζ―γ& ZνsΡܞ’v<ΌΘfΩΦ=™ά‰0Jο8ψυq¨Jxϊ·‡~Γ‘ϊώ€†ΧSΛJΏ¬ιιίo= <θ/,HN€=΅ˆ—B{pΫδ%Š|δϊNΩΑ“"Ÿ„Σοt¨ωΘ―‚• ŁmΉV8|‘ 4†”ΝˆLB]ΫλrΧ#›Ρό`CZ·²¨MΛpMψΨ™Œ•)’ŒŒG€ωΪ%y’φ<Ο[Οφό`Όά,Ρz"XΖΜ{†δk &! Ιf¬• 2§#/»γFγ©β­g’E Yδβ1s€λ@(ΑϊΎ’°&Ρ;n(6(†hGGgk1 6`n°]Ί²Š¨ΥΩ»°―ͺF9Δΰυ&Ν€’KžΤTΊnR;jŸBuΊ0Fl»u’Ž‘ο«W'#;Uω±›KΠήUϊvαx°wΒΟH‚9JrŠb₯lήπ΅Ξ.μ―‘ l<›Ά’όύS²Ρ T~ΣΙR<‚`~θ»Ω‘§ΥMΐJα3¦†·ΰΡΊZ­H°›w¦•Ί9Ήπ0Γ‘ΑNΖ!9Qωζ*0κ"/ϊnOŸ¦ζηgXŽξz™ΉΆ„τΩά“'4ΊB)τ9T¦3G ρ‡Ž|uα§8-ŒƒΕ­ό‘ν(Tή“Μ΄ΰΜ#·Yl& ‹΅‘λZ+*3γ\ ϊρύh=ύƒΤ*lYw—Eθ–ϊνΖύΗΖΨQtΆξEn)»Ξrκ°?Gie—O)AχΪ"•ύ4΄l=‹ζ,³%ښΎiHννμΛxX«ι9’Aσ@χ5 Ά$ {ͺ«Xt}YβpMUφP  J*_±c7.2CgS“κœ*TηάΕ9yΤ E\€ί”ϊϋ™{E•ΔŸ%[w‘όH‹ΖŸ9{Q!s«‘Y—ψx°ΞƒΞοw‘«Φψln¬{¬σΛBπ§K‘fˆΟ‚Αl—ΟŒm£ό±-8w°QΛ݁…ƒ§†0Τ«)4/i Ϋ_geΙfŽcƒ#·XΣΏj2Œ)Λό2ξ…—-uRΔΘΚΣΈpεΆΪWΆ |³l+ϋΎŸ΄υΆ’K9ε³·Ζ/̈ϊ'>5•ΓdΤoxDτ/υβμ…ΏΑ)ΕΒ9Ύ[ςRqγZƒΉs[Κ<]φ˜ͺηΜ­aS=­σ’’“΄η­gl%?Ώlε?HNS ;­8τχ!žQ”‘²Λ/΄^R ΌλzΙ%ž΄+Ÿ±φΉxΠΙϋ—x>πΘFΓβ³`£ πΩς™V±ΘΝVkDjƒYΘ]ΏŽ}u¨[́n½€Ϊύig"υx$ωΐΠ³A_Ž­U݊d ž"Ξ=r-{θιϋg+yΟhΝ¦ΔNd‰6  R|ρ’μBφ¦ίθy™“©Ό~ €MOI›^zιv<™τοs(Β‡Ε ι χŸV/6€ž.©^oίσ(PυžΔ0›•­σθ1\¨­eη,'u3Ύσ_ GOΰκ₯k˜KΞDZ†…λ+PTUŠd)ύ3tξT*ηT`SŽBτ.ξ&€ƒΕΟ·τ΄lͺΨΒΎŒΓ"ς³νξνΈάΒ’ŒmBΗZ Ž9Lή ϊ'8qς+ŒΕε£φ‰=bΔl±B8ώ³Γ»zω–xΠ…ϋ]/SŸ6ε3ζ°εtέc‹_"͟zb#M|ζ"Ÿω yQύΛx‘±Λ'O υΡocΟ‹υͺ#Hί₯fΝYB¨ΗΑKόλ¬μψΟ "uWΎΊ„ξΞV6—χ±(Λ™ΨP½Ϋw)λΑ tΰqKό"tlRg³ΕEΟapξKάzΈ5el­―¬±ΩzΎιςy‘‚΅Ν”_‚T_‹δdεό„h|­!©u%±Q<ŠλμΉγζΔ sȘakιD䦑8―X5rfΠyL­ͺ&lρ’Z‹= Ρz)VΧK›žϋ1v P‚‘³°6θšDζžΧπ¬φŽ4ΠqK1Χί„CGuN΄^έ.&ΓΉ^rƒ'uΥM> $CΘΖƒŽžoΓΔσΑϊ²ησzΙ >λ;ΓeΆέ-}ΆG'«ό1lνξΓ₯ζVδψ¬—μήΆ…[©°ψ<’x‚²QΕj$ Gž"ξxδZφΠ³rA(³pžΡφ<ΗΨΛUΕ£±h#[ŸΤ:oCω#zΘ"ϊ:π”΄λα₯WŽ'“μΘΣτ΄7Z=9Žξ?£–aυΤβΥ“·ž/#,Q}DΌάƒΫ>/-~Ο7ί š"Ÿ0 ΕωΔ%UkσƒοΥ%[‹Θ€Υ΅».·ΩΜΑ:YS3κS w]Ϋ[/ΕΞΊ•ζ‡`½ύωVίE’ш4_»$OΠέ.Ο+£o·žέωA‘ν{βkZΟGϋ5Jϊ=Ψ\noD©'y" +QRό φηΙΜΘW8qQχ©‘(ΝιΑωξ³(ίT#ι—T†[؟ΆΓ}Ηπα59'34•l’‘—[#ώω—§ΪπiΣ;>QΥ8δ±ΦΕ6ΛσβΕίΰ΄ύΝT‘ΘdΡZ―^¬GξFΙ8ΧSUO•¦G[ό:UcΓτ8Ν[:r(ΟvΧ#K1r–LΘ¬Δ#”}x²ΕΗΠ9ۊkΩχΚ€MψβΥι!ξψ"ΪΖNΰΠ―σρmf΄&^9©₯Ψώœπgμ£ΧpΘy1 \υ·DC{ΪA¨σƒ'― γΉ:iUΠΡ~f‘<Ε"λςP±΅Nζa]%–Lgc«…ψΕθΝΠΉnΫfυ\wSƒy„ecsμ¨C7»™ggK³mθΛΨΧ»λ ΄YτϊΞa©Œψ>ψ·EڏΎ%―*FέΣŸH€dέ“ίΗލ>†ίJΩόνxζυνΚ3`jΒΟZώŽiوƒ­Γ«ίΩ#αΒxhηsi|ΖΛ…ρƒ ήΥλa)νψ~·$ΕPΘΩΊΗ&ΏDš? =‘β3y \ΰ3Ώϋ=eυ―І«aμΎ|χ„!‹‡—œ―³²QΆUψΫcΠE9˜n=‹ͺ‡ˆ’kwΟΦh=WP²‘L¬˜\‰'·U™iΗ§ ΎλycΗG ©X­4rΛ‹!έcς•ω kΩsΗΪ\₯ ο^zhτ{°ΙKj³ΌυΤ’?±ˆωeΥjΩaJ0rΆΒZΤθ|q₯Lιο²>eΠzIΓ°~υγO`rPή4ϋ’’ηb³η9η‰ΐmΫ>„Ο‚Ά¬ž£υR”π|ΠΞ»p’ψL1Ÿ ζΝΓένβΧΖB’½ ΜaVΏ­@nωρoSν6ν[/…Όο΅aJ-J$ž γ‘,Έ=E\τΘ΅μ‘ΗEά3Z ya3²DΫWΠ·§B|‰²²x~χpδ7οa,c'ž<πͺδΩm ƒOI/½6<™\‰0`CΏη©ΎƒB:L>Έο?_ύLŽν2t0+^=yλ9ςπ2Α"J³ˆ—‚xpsςbφ|“.cŠ|ςΰD>FΩHxXŠάj&VŸ7<1$:Ό>υmjοΔε\³λΕ‘<Žώ±Ÿ—” v0‚Α±cΔ x2Γρ\j?Μ’D.Ύmπτ[ψ«α<»·•ΕΖkRμνT/ΊΊo:ΞuyηDnRΛ7;9ωπήΣμμ)t4οaэσε’έθ8Χ¬oʞ½ƒi–£Œ’ρ€ώˆ=οΜΚΗ9{Q©ΆίŠσZwΜιι`ˆ υu_cFΕΦyΉϋ6KΞ½ύθšƒΆζ@IDAT“O(»ΦCxγ/nbS°ec’kΨ{ϋΫΡuω’Ν™›g+†m†βώ·U|½gώoޞΐΎ―?Ž’­ώHWt/ΕζϊZΡ‰d¨ο¦ΦŽ+γΗβ,ΩΰyEΈ5txΏ+Β„½οεgΖgB9'λ»όqώ:{ρ™0f.πϋM\XK ΫΐΕγb¦|η/γ‹#ΏzΓΝ™•ηβ%ξuΦ8†Ϊ[U\tίυ™¨ύ(ΪΎΐ±w?Μώ³Ζ/RΝގwΠ°κuΤιΎβ’΄9cA›ςΩMτ4ubIAAθc宅ηW!Τ€·χ*&–­ρ«£¬—‚˜IψΥ CΖ"υHrθΩ`7’·§Θxδ:»ˆ8=£‘<~”’žΫγ‘y}yŒ}β―ΎRl.{γ>ΌΒώ¬oφ=%ω<ΌtΩςdβŒ0 gΗsŠ{τςδt8"|pί&ϊ9Ξ βqΕ«'o=8βAΗHD°β%l3nn^ZĞoβ…I‘O΄ϋs±G>{yUΫ™Τ±Ώ.ηŠlFσƒŠΈ’0} £u«Ά§ωAΖ‚"Ιh…”2[‡ψ– }iΎζ—ΗΛσΌυ3†ΕyΦσΒύav=(λωΠό@%F`ς<>m<Ζ”δ%¦b™lexgv7:…‘ΰΝGπ΍3(Μ]‡€‡Yfugφλ_›n7αΓΟ›°:±™,ZV|ά2Δ1LζοίΑΤτΊF3ΈΐγfKk¦·ϋCΌΡύς3ӐΈ"AζοMbd΄7uQίK”Ξ žώώœύEvλΑΙχŽύY“κmώo²Ώu΅;ΎρΜΚX¨w›½œ@gΏ•6¬Λ3ΘJ`²˜°Ϋμ“ΰη›εΜG?°"P*ΣzΏfV6λγ0€ΟΏόοψάJ£JO₯©†_ύ9~₯Ψ;’ΗΡΏΙΌ}°!€2²'O²ϊ'-\E:βƒΏ?ŠΟΦUa}^¦™jώ6&ΌƒΈάbέpOXΉΨo:?ϋρΡΐ`υΖ?}_4ό‚]kΏ܌αŒΕ6υuͺwl‘ ’Yf_ΓiœΧŸ ‘<ωώœύωmύ‡π?ΦΗ@τ+Α’χ5γΠΟΩ_Nͺ s±\69;Œa΄Ώ=&œvξέηή5iΛB–·εήfΙ9ˆ~;³=Μ؟}ΕuΧ¨_*˜Ώ―s0qiό„ΘΧvx^θŠ%tzΏλ0³ΔgJyήu]~‰4*ύ‹Ε=ρ™:jά|ΦοΟΧMې•ΆJœζ&ϊpNY¨€//ζΛλ¬aœxη/!Δ”Ύ@Αž=–Η‹:ΞΟ ‘ηLsΰˆ²ή–ψEΧΗΖσ?EkOΦ₯€αα‡M sεd/ΪGt₯'mρ‹I3#7>Δ_³?³­«“Z ‘«γ=(LJAό²eβs€PφΞέ1 υ΅ £ύΪ°ΛKJΌυ”ϊ±΄_„όΒ{Οrσ oZ/…^ο†k½δ˜'tχk8ωL'Ζ/Œαh½$‰rΚσ~ Gkρ™:2z>kοU Τ³AήΛ8ρΦeCΙ»#)qϋϋ _/™ώn¨ΞƒΕκ‘δΠ³Αnd ~OχψΧxwώž=ΎŸρΐφyΏ΄]»ΔˆΟs·œž’<Ό©ΚfΗσ›+Β€"Hή[–η`|DaˆπΑωi'όŽcάyΆK©GΑΡξκEωDκͺ+«–ηžˆLςp¬ΛΉ"›Ρό€ }”;„Φ­ †=ΝIF»(b;’ ίόΐΛσΌυΪσƒ6F±‘’υόƒΎžλ”΄$&ΖΫpY4Ήh7/Ίϊt‘›Cτsb’y›EN QO;mO‹Ώ‡ή!kšŒΨMuža†ΝR?’²"Τ%vm:½>νiiyφ΄{°K{;›ΡhσfZ\χΔ6lΪZ _½ΈpT0Ÿ‹πΦί‚sμ/Ό[²r†Ωπ,ϊXΏήα&›7–ͺ’gηM\j;B"RλβOλWρ™»|ΦΣrJRo}μ—δS;[0hsώ²―TcbΌΝΡόœs»]쏢π!@όβ.Ώp­—Έ`S+-ržpΊ^ŠzžWy‚ψΜΘg½-­Ž@ν»†QΦBw›ρyξ‘ύρŸώΞQΛ*Ÿϊτ`€3Ρ•]χΚΑ^α³Icgπ³Ώψ‰«‹J'‘%$”’­E²P ευ(SκΗΨήΜ3ϊž{qείΏ>jΌΨtOŒbaζρͺΡTζ-^&y‹ΟΟMaπ{pρύŒ–Iv<%«_ϊ_ρ”ό²¨―αMΌρnd_ρGψ0ιxˆ,ξqΡ+§cεώγΥ“³žstet"Φρ’΅›Ό”l#ς‰2Π‘δ%Ef8χnβΙ₯§Θ'\νϋTŠδ}δ#:¬‡«Sψ#„U1ǍgsE6£ωα@λVgλVš7ηΕH2N)ƒw=oηωΘ©Ž‘ζλHΛsŠΟb―Ιuού€{Ο°XψΊΌΌ\ΌόΫ;»ϋm@ύ #Ελ ΔΦ/_6F( £HWšηϋsW€FB€X`Vη&c’ΟP‹X?°cNx*Ά`ΥΓ,fϋνA΄΅.NC1‹Ϊόϋm²ηr··‘opχβσPYWΚβl ₯‘όμΏ½ακoΠΰ§"„€cbΏBιo ΟμΰAe §„Ί?cύΌ|~‘υ’+‚ΚF;±ΞO‘τw‚ΏžΟ^ι›*((ΰj²»[ͺΏdΙCύ…θlPeρ8υl`ΎΏΆ"Y`‘{ŠHWΘΒxFσzv†gθφ©!πΰ @|ν;ΦξςK(ώ[θσΎ½§cB€πG .Ž…β·% όρ‘B€ Ό=γ’1³€„ή(X1β‰υσϊ>Ρhϋ#01Φ‹Ά δζc₯Οιφ4~η:}NΠ!!ε,ώ ΔΏQ?©G,jˆ_υπμ­—BC'b@λ‹ΕΒoΡώόWσθφŽλ¦·λZ8šu½ΝΌΚΗQ”άξG󉳸εΊjΠM’ŠΆ’jύ$eδamι&ΟήΓΖΟOadθΪ.]ΕtΤkL „!Y†― Šο3…Θ‘Κ{Ma£Dνψ€5¦Ο[]/Eυθ‘6;Π†KŸγΛΓΏΑωKηqε9\jj@Σηoΰθ±s]IBΐ ‹‰ΏΜψΧ T† ΒƒρKxp…Vi½ £D:ZE€ž¬!%< [r²τ>ΤZ-­”Χ+½‡葇΄L–zΰ ΧVοΑΊ,f${{—Nœ=o¨;x())‰+±"% Λ|΄<£½ύγΤ•ΗΘΩ:$@€xΙΠ•‡[Α.λ‘5κJλ±~^ινΝ ϋΘʍmθΊvgόbCιοJΤ !@8A€ψΪ zZ]οτF0‘ψ/ZΞχ6tk’"Cη ΰΠ)ΛΔͺ‘σhη\d[—ΘΘΩςXSAB€xπΦAΒΉ‚qsbn’ψ~³ηT—α9ΦΟ?x#ΚΧγΩΙ[Έ5:Œqφwk’― ͺE,$εΟoZtό₯η_«Ο 9$›X¬Ώ,Φ‘΅ί/Z/ΩnjjDϊυ=™:›γβ8—"R8†0’ §ODα&a„!`β% Y(ςΘKΥ^ώ›yΨ+F±|^X캏cCgbΊέ;šάΑ‘Z!ΐ_ΖΖ΁―c1‚‘Υu::ΫΉ¨l bΥΠ9P(Ÿ Bΐˆ€ςc·ΔAo䬔ŠυσJ?hO‹α‹›‹‘Ώώ΅ϊό·xG˜zF,Δ/ ‡=I&π  ¬/θωΟίp:?τ£?ώS)V΄Ή\ξάSŸδK B€ BΰΑB@0fΎqϊΊΪiΕΈYˆπœμIρ{ΉkηOύΏŸ©}£!@„€uh~°Ž•$B`!ˆ΅υΉΩχΑπ+//O·wv+F灠―+Ο_Ύ|9h9:I„!@„!@„!@„!@„@¬"pώ}Qυ‚‚.tww‹υ–,Yb¨WσθφjΘqι ·λšK-Q3„!@„!°Ψπυ€_lpΎύ[μγIύ#Bΐ-|ω“淐₯vB€pXηηPhPDηPΡy+PDg+(QB€ B€ B€ B€ B€ˆe(’s,ιN„!@„!@„!@„!@1‰EtŽΙa‹:₯)’sΤ )D„!@„!@„!@„!@.#ˆΞΖψΞ.+MΝ„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„!ΐƒ:σ FuB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B ¬‘sXα₯Ζ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€2tζAκ„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„@XXΦΦ©qB€ B€ B€ B€ B€ B€p5™›°&1 qBkΏ»ƒΙ©n\p₯m³Fͺ_ψ3νΡL­Wη}?ΨTcRVŸεΕΩƁSCϊ<)mWŒΝ@υΪb$ψ4·½d.΄Αη=>gθΠ6+–#)3ι¬βAΑά9ΜΫΊύψΓ?ό–(C ψΩ31θO­ΒΞNJ˜Qύ<ΖΪOβ\λpx•АΌεΜ¨+‰@ͺ±;χβEW cfXŠπδŽW°Aξ™Ό{μ]άtIf~nς“2‘š˜‰΄Δ\¬fF6‚“§ώMγΚ±qΟΗ»nςDxq1φ–Ž‚"ΌTαEp2΅;ŸΨ…κΊΝŒ§€­εί/Όw”ΓΨΥ Ο/dl•šŸ/ΞA+G…™ΟΕ-9 ωΚ|ͺŸ=šτJmX-©Δj}&K­€Ÿ5pΆOρ‡…{Q±¦9›­;ΏŽα‘³8έψΊ|Zβ­'4Γ7Ή9―ψt†#@σƒs νΆ‰ωΑ ώTϊNžWd,Π>R|­tϞΌdlΫόΚΦδϊ=»‹ν•}ƒ7ΏΔ‰¦Γ~ΟNxžοωAι!νÊρuXαUΟΩ†ύOlΓϊͺR\?#9­¨§7U‘«υ<š[:Υάο&-ι£z«Y(=2ιnt ŠHtΫ‘,7εΞ7=§άΡΘέVtύ‹=ΟZw‘ Φ’έσM!λz:ζy^9GΞΦϋ§ ⿏ρˆ:^rμ±κΞΒηθϊGΌkc8"βρθΖύg±OΌ<Α[OTΛnxsΙΣ°γ[ΪνŸ&/κR:ž ŒΊΡY8…μπΰ"Ψzm:r"ίςς Υ3Η›σΦ(— B |― ϋKΚ XΝ~μέ]ϋ0ξϋΪ–β=qW­xOMΉŸΘ_χž-c‘en+πΓ†³i+«HCΆΟΑ=Μj]PΟΩ——[ΎκLΕάJmJJ,ΟFεΖW°δώOp솻ΏaψHZό‡³€r­)ϋpvΊξΡ-’‘3}υŠiΤrOΥc¨―ί,ͺΡ6w-μ†Ξ‘’ΧΣ}Ÿ~άΝ‚+Νρ…Ψ]_N¨Άύhν>ΝΘ™•š™™ΐtΐ6OΔoΑφͺ―#ìڜ ζψxΧ]ž+.fxP^`’—+γgrΆ`χγΫQUS_Χ%0¬φΤ Ο[mΛύrqͺ#ΩΓμKn.\·‘š”~Wmϊ=μΜΛUϋ„b|­βiŒ|ρ‘ŸQš± •£ TU<†Ό E32kπΝKπAo=&ˆk>rw^ ]:Ε‹€ χ™ΡΡΝgvzΒQ6’σƒ«γFžη€Ρ­*‘γkIcΫςβΧ#/‘³ B֚ǰwΛ]όΌρ˜~žη{~Π‰¦dxpυΎ­κƒΚמ ›°…9 Ϋu3˜V€’pS=W>Œ_΅š•0ΝΣγΉπ†Ξ)»πτΆz€˜ͺκŸΩ~ε8Τι^TŠH‘EΐPΠΆΙB©ζ½›žSvU„ΗκBφΟ.T>lΨσDs―<[υπ<ΏΗœ3g[ύ 8 ‹ βΖBςρnΐ+‹λ„›x†ΩγѝϋΟ JΌ<Α[OΙ^ψ=ŽμΙSjΌλA^yšδ(KFΩ€D‰:vxpFlp9‘wyω…κ™#Ξ‹‹yk”K„!V2λ±]gδ<Ξ’Λ5΄ŸΑϋ‘&'o;W!E(J(ΑϊuEhwρέyXϋ₯o<{/φꌜgn΅γʍK蝜Βrφ#Hvj ͺ=ι›4ώ.²R1:žFWO ΌΜVΣΟDh~œ}z\/Œ₯9δm(ίo0rΎήu]'q7a3j6<’dΙλ‘‚Z\ΌρF|Da”"Γ’9ΦδΛΚ΅βό‡RΔ!?mοέW³ζ΅€šηz"Rς:qR €”Κ°`†ΞΩw&xƒΚ_ΕΦ,cΣΙ™qL―fωμκ€t‘³—ΥSxƒ%oί‚γ·qς›<n\όϊLΡƒ€U^Š]Τ€ΟΏφϋ¨π‰2οH@΄γ齁«_ΔrΆ€™κδˆVν •#51UΚΩ| 9O£­ύsœm½†ΜύΨ]\")›T‚’άdάμ3eo ’‹€­Q?f0 +p1Mηƒη‚:―IΙΆlδ,ΐqοžIψ'½Φ^8£؏D6"…ž\°σTа‡…^ňx¬.`τ}₯τΒ!`ΫΝ‘ͺΌςμΦγηy^9gΞvϋhEčδ%βέ@W_Ύ«x†ρΊpλώ /OπΦ“4²έ?ncNy2pΌλAΫύ =P _"ŒΧ{¨ΞΉzίΆ€ύ €RLδΫΒmρElpςœΚ;ΎΌόBυΜ#ρβΒ;~T BΐΧ”¨Ÿξž:‰_4QœΈφ.³°}ΡHP-‰"|½τ1υs²ƒ7ŽασΗušw ½―_\Τ'Šg=HKTϊ=„φ‹‡pUW+p’C^όfTzΤ&»Ϊ~…ΙΖH·›πΫ¦8$=ρ d %’ΦΒΓ~ΈQ~(UkQ" ©’ι©wlX-©ͺ·UC‰ΩΧpηU Œ‰‰yνΧ£ϋχ,όg¬nϋ(ςDWψΉ ΨΦΫn…5ΟαΙBfL6Ηj.ΧjߚΤ¦&n΅1ηYΜNυ1ΓΈ6$ί,‘ 憧GLΈxΧEžˆ.a]όΥc€—ν ¨t;‰Ž―Ž£m:ϋλƒ}ρ!8Vy>x+a<;֌Γο4‡Q€YΣlήŒΙΩΌΚ\8bσQb*…ω@ήΆΌƒOdγβ‘ώ><Ζ Δs+‘°<₯Bi΄`ΊϋΎBίυ/quάΨVοΠy܍ϋ#ΤΙλλ%Kt‘Δyλ15lΟG.Ξ+P lh~ΰA͝:Ρ0?˜ŒΘΞ-Ο‡ΤŠΏ@€ωšWήdή>Ψ`OαύΒ0–οy…ςσσ—Φ6Nžηz~Π€R*˜ά―Ρφž!έ^θ6'Ζn’εμΗΈψΫχpuDς/(ψϋΠΧ6‚­OοAξ*AΛUHJa R †ΞΎλωHc@,oŽ·βS<ΞΔ ~~ώ.R‹·c­RΫ{ηzό#+§£vΟ!BθK$#RˆΨqκ΅Έ»©X=VέT›ΪŠΈ<ΡtWO=nžητ˜sβαΜΣ?³a ˆf¨ΨΜ#ή΅ Xˆβ1€§[χ_$ΔΣΌ<Α[OΚΥ?^c^y‚’œλAώ ςh Œ@ ά·•§3*‹0bχsͺ н/ΏP=†³I€#^\썕&B€pl€―Κ–››FwΏ¦gfgόςb)#Ώh+JΔ9X΄₯A_#g}OŒF(ˆΟBŠ\·Ό¦ΖŠϊΪJšG^±§ 9Jμ7ŠγŠ‘³’w{γS@–’’―Ϋ'WμΗΎXΖ fηγ–"ξv~ϋσχΰž9§NΨΊ'πόώzfœ­\;“hoAγ‰6δΤV!yYΖ:>Γ‘£ΝΊJBr žϊΡγH‰‹ΓtοQΌχ%pΰ©'PTXŒdΉoή‘vt4ΕΑ#bέ¬Šx€¬ΉΉyΘ`AmV*L’oΰ:Ί/Η§'[|δΘ‡λvβω½LΟb%’² η46Œˆv―ζ•„άμ|a7ΚJΦ³hί‰j±ι±^ τυ γό)44[‰ŠΉ λŠεϊέh9uBm ,πφ—Ύƒυ©Λq—ΩŠŒ υ\nνΛψ^©πC΄Ε-c?ٝώW|zΖχ·+¦ηK_ΗΖςJv3“,v8Žt5αβΙƒ8Ρ¬/οLž£qP:Β±wt]³¨g»+dγΕΩ.ܘΝD^’}c·τΨp(¦―r»­jNa’*φΦ„f\―`1­yxΧ žuˆ.Z‡#“"^r—ό‡ͺzίχ±©ΌžΑπSΪD.μjΗ₯ӟΰ|§ο5n‡—„φͺpΰ‡{Οζ…ŽhΙΔΞν5(ΚΧζ—žζγ8ϊ‹ έ΅Ul.Ω#Ξ%σS­8ΘΞωΜΰ’’Y~_―•ψτΚ!<*Μ³˜™θEwo >mύlnέυbyΎπόΊ½xqo%X·0~ε~γ7ϊHKέ†g_ΪΖΟ„ωρή;xJ-PώΔwQ[U‰Γt£ν«cψΝ­œZ%Jžψ>Ά%c^oYΕζήI67 ¦ χ}ΔΙέ™‡§κYμ|<Τψ9›”~ڝ6δ—©Ρχ'ΨzP1r˜ƒΪζzfδ<͚ζΆ=$νύ?ވOƒ8₯Mή °Ύζ­'(ks>rm^qT*s_Χ΄n 6:4?CG8`~0©vοNͺχΌ†-[+΅g©΄4fσώωA«ΜΓσΞΦσόΟGΡΞΧα™ξ²g£ύ‡Žζ1“ρv}ιύgi$xy‚·ž ox=Žyε /Žy"©qΛ³4bΡYΘδΎp[QGχ­cehύi€ΠdΌ-σΰb‹ΨήηT’Φxω…κ™G:βΕΕϊˆQIB€ Χ˜Εέ{Šaϋ1ξ―©k3΄HΓ³w„²±΄‘<―DVx—Z޳t2Φ€€aιΑ(g7'}ϋ,_”ΕΔu|Ζ‹;ρΩΘOX΄Ž`,Γ#oU|² jΧP&Τ#λ‰ΥY().Υ*ŒM+ζ:Zž ©δŠgρέΧ@‰u-5™ˆμβ:<Εώ”-mΎ‡ΰσλΣΊtδ—–ŠuG0ƒΧΆTΒ£.Λ“3‹Q³cW˜‘s'38ήυβ«(σ)#]•†άbαo3r3ίě™±Υw_1Σs;ΣSΡdό;χΗ―£ΘDζΚΤ|±ΏμΈAK?@–?½ ²ˆ‘ζF40ƒ:mΛD3fΠξ.νLr3όΦΕΤ|λ'Ζ¦ηw~οu”djي±xzαfΤ³Ώμμΐ―?n” 8‘Η?šv|)ξ뚽cyr—ό΅Χ|vεŠλž’”˜Γxγ3>M•Z$«‘ΰ½Έ5Υ‘œΠνωxΧ žΐ‚α’λ~’ΔKnρ’npΗ<ύP‘―Μ„Ϊ9• γ'˜‘σGΪ ΫΌΔͺΛCQy©ΔyΜι₯BkMN%2γΩx-)υ7o©Ν+sKQ ςτ*Tœϊ';ύ*’€’…’φmfθ,m=8τχn(,šr¬ζωeXΓζdΛ3ξ΄ΑŒ‹q6Ώ°ς‚™νΘν BΫJ°χGίG]©bτ-ε ―L-@υΎΧ‘Ÿ›‰·~ξoθQP’R±σ²ΉΎs³ά¬£ϋˆ΅‘]σ"^«‘Swfγηd>R†½ωΑƒ|u=;ŽΒzPΪΆlή';ΔΙFΞ,;1ApX1γoΉ’γ] U}μ4f§^θωΘ•yŎϊ PΦΡuMλVσ£ωΑŸάΐσƒOAv˜]σ δUͺvrU6*κ_EVVήϊ'7xήΑzžΉ“η£θζλ0Ν™%Ȑ>ΐΖt³³ΪΠOβyΎη‡ΰ²’λ,ρ5­η­―ηƒ_»Λ„—}ςvχžͺ_ΙςΫηn^οχήΖςο³~­E cΛζΘ“Ÿ`&n~…/" Τe<"D"‘BΗ­§Œ—]OΉχΞη”}(w½ρ,JΝ‘sxϋέ‘YŠqς`δ"6,ΐz—σ9U7ΒΆ’ΌόBυƒ8·./.Ά „!@ΈŒ3Δ›dm ΖΙ(+z½C’W”R„΅ŠρΛωgoΔΨ τΜ"δΙ«cCH(z?X[Β"&jΫψΘœΉό> 0θΆ€•i²cϋ2βšzό€ύ)Ϋ„· ;Ž‘iΐ.yΙHŠ—›φ²H³f‘‚Σ±ΚΔπVΡGάλΎΨ"είGθŸt -X8¨ΐ“ΟθŒ‡§ΊqΆ‘ήΈ|lͺ―3?ί3„‘”›f?π*:₯Λ‘vΩ©Φ&τίFBJ.<₯¦ΪΣCέθινΑΨπ‹Η™ΐ ««X€fΙψ«`ϋsΨΫu‡›•wUΨχ¬NΟ±v4~uS …¨ή₯Ό[6οnωŽm:#η\ihFΠ –%¦ =ΏeΕ¬’!&—yCμέqεfΕπ|Oφ)Χ‚Ά#Ηpwυ2ά½?YΥ,BΆd”6Πz†α1ƒ%Kd9qσξΥΟΐή—^Π92=Οa„EtN/}e²abٞ—±»—E”lͺ:‘§‰Ά7Z=ξΧuΝ~wΨό”όΫί4.5γφb«’Δ΄z4•lWφϊηŒcΜ‡W$<ΌλO, .€¨β%χxIΑΈΟΎφ:*ΤO =,z~Gο–Ζ§#« %,’]Οσπ“7;Ο8έΈy»Ξ ₯u …•¨.’•±­°[«>‘yΎW.΅£DŒ˜Ÿ’²-ΜΠΉQ*§ώΏ …εiςQ+ΪΔhΞκI—AxΎ³ 7ΗΨʊΩΛΜXƒuL’‰-ΆͺGIv¦:χ φJΆ;h4rξf‘­;zF yΧΥTˆuΣ7ΐΣOχα͍ύΏΩ~-w„ˆΞlΦ]–‚ʍ|d:7‹-9ΌΤž°― „?wζ#Ψ™А£¬£fzp]^Ύ—~ukŒ[BWnM†ε{*J7ξB±jΧƒ7­UΫͺr>rc^Q»₯ ‡Χ5­[MΖ•ζPL²‚Μ&₯•,?Ο]μBΌ§uU’gfzωμΫӍ·HνσΌ"°»žwό|Ν|νϊό λjQUV#;\ƒΧΩΧvnkψKζyžη‡`’’νρ5­ηέZΟ§!%9E½ΐ§o)οˆΤ,ŸΔZ䬑σ΄χ6ΡkθΜ>›]©.^ϋΠtMσήσιYςEˆ:ɈΌ‘,τΐΫστΡΧδKΫσœβρ€rΑc•ΗcN†ΓΊg-~ΐ0Ζ¦—bg•τπ\τ[ώϊΧτ›ž~ Ϋεσ˜jΑΉF2lβW’z%§‘’y'k―Ώ…³Ω¨yξy u±Ο"ͺΡ0x<œyƏ‰ητ4Χχ+2Χu˜<Ρτ1€yερΦ378βys9~gϊ·H#n(ƒFΌ«E€P0±·ηδ]Eˆm\gσwd%Y_{όιΒύ§ΰdaΟΛΌυXȏπD€θqΜ+wέΚ+ΟΒ`EYβA§bD³RTΤ~‚ž3ώ±›έŒ€…#SηؚnΝ¬?ُ]ΌζΨuk?2Oμ¬wωžSyof^~‘z’1œ„»ιˆήρ£z„!@n!p±η<ŠS³‘Η .R«ρ³χ.ΠUgΊθΔSΌτ–Πc#H2B 02282˜@όŽq&NbΟ™$krΦ™›5™;sοά5³fέ³VΦ¬sξ#7³fζδdyβΌΫ;Δ ŽΝΓ ƒB$HHHθύ–‘ϋχswοέ{οξκή[ό₯₯έΥUυΧ_υUχ_ΥΥχ3η ³oKR|ΊBπΔΠ|pς!OΓ^΅S€žu)Ί²ς²€”IϊBbJ ΫA ¦‡†‹†Ις'. «§Λ PQV€Δs?Α‘Ά6½Ώd,\ΈX­cyΠ«Σ#ω… [?³Ρ4Šm·S,}G9 5 i?χχ?όΐ"—ͺZϋρ OΟJ^θίVϋΕΟΙω…C1ΰΞ‚yPͺmBkυτυΥαΘIY[Χ_ΥΑίβΚσƒ'eE·₯Θ-\ON*ΛωΎeͺwF:8‹ί}Ÿ }σσ)‰ύΕΛ{TGώκ΄Xbβr5ڏͺŸόͺ$¬ε:~-)Ο-κσ'„ˆ­Ϊυή†‘†Σ8f‘αVχώ―τv%TΜ'EηrΉΆώΖΨΤ€I ΅X—―(E“š8ͺ~ρC”Όί?L@ΏG@%Ώ₯X»ω κƒβqU˜νκ‹ŒC`³=9·q]o!%η"Υ%φΥζ8!9βρ.τN FM–-KJΡ=Αcxˆ<³ZχΪΉάu/'¦kΌIeΉδ­\’FΕ·£%Ί’s;ͺήx‡N™e’d€½aωM Κ%J¬γτΏγ΅_kή—ίΕΐˏ₯’²3}9ΐ—Kr^Ωη©;׈GHώK·zξΪb€ο―†Q5Υ·c½ί3ΫΉz]Φ*\Όω /ηλΡEΖP…΄ΎBR&V¬"Eg‹y@kIzΊζžΏ =­τ&΅ψ9―ς‘XtΆΨS€sJy>r?―D "ΟͺυκΊφ7θώ^·J8πόΰΏΒΕΒΟΦ”} ϋρ/δΉY  {δ»xzG±|Z°© >Rt6ΞΔNε<\¬η½z>{>ƒδ΅σCι†W±=5#S·17>AߐϊΫ{ύ(ή?_£w=\$’œwώόŽΫΜΚcyΝλy―ΦσiΕ₯X•ΆP½ΐ»ΙΠ ΐ9Aΐ₯ŸVœjqγΎΝ UtΞΐΞό‡t!ΣΩRs––Υ½œi§B"”NΔΞ#ρsΡNr'–>:‘ϋˆΛ)‰›} (·«"sΑxDΆ¬ ¦±›RχΞO‘’ς=TH›ͺI›°λO ι§κg¬JΏŒ];4΄iόΦP'ν^“ρ―mFqαθQάΞ)G‰ϊy)‰wSΥ~Œ¦”‘Lώ\S|ω€θ¬¨Powaα,Υmό¨°₯ΉΔΕbq]{n‰fhΏUT”Ÿ(Uδ4wrήΪbΞ……³λώέ«7‚εn0&vS„δZΉs‹\7σ˜Έg% 'ςΣυύ§s΅•’tΤ$ΟϋΑβX”ŸθzP”ŸΡš©EXŠŽLΞ=‹’]%ryΕ›SΪΛ1­Ξbδ―Q”œςzVύ­ιφNΓϊӝŒ™Η†iXο =§jΓλτ(*_˜Ξ„΄ξιHSm|Β0Œ#0- Άβjo²Wj*0)Θ”œΫIϊK θΏη(^#eΣِΎ\R2|‰€>zίάrW‡ΗςΚ²σΤnε‘dυ&\Τ_Bf y‰B^o'―¬C˜˜ŠCbp¦+J0aQA’s‹\‹(ΏΛ’ϊA/E%c’+6ΡRΥ24%{/*Viν€"½θ”š~nJ^>ΧιυΛ™<ƒbNΣ‰t%g™mύ»¨©-ΓξRν:26Ζ:~φ%g©Ψ•c8dP«ή+kbJ=sψ "E7i€ζΞ—.V%dΫYsΨ¬ΰVϋ[œήPŠλ­Ϋ9E/¨υ©”>Τxd.!cγ&G9τ£ώ€¦΄šlYœ΄ζΜΥ”˜­Λo(R”ϋ€άΎΪγ~%gΉx/>8τ Φ­}ZVLΙΚ±τ$κ„ŸT­Θ8ΘΝqωγτΊ^Wψuέ;η`ΗμkTδS † Γ£ΊΧ—­ &O6(7 Žυ“ Λ]wr"¦Έ$₯"ΊmP ‚”,y³oÐτnH0°\ςZ.ω°~#ν§¨ας‘}AJΞRVΣαŸ“Κ”?x!—€fΤόΑΌSu¦e€θ,͐ )•₯ϊ@KηγؘIη™47ΣλΖξF-“άo­υΟ›W/Κψ‹ΉˆE–σݝδ;^VVΞ@jvΝo„XζnΌςʐ3τΧ½_ΎsœΪP€΄tuNθD́ε/λžΫŽƒ!šΛj(¦9WR/FήVNUΰ ][ω+ήάGΖΟΠ<§σ‘Fκd~ΘXYiξC’χδMx¬TΥ™Έ€Γ§bεC₯U;w k=Υ}$%ϋ μ^§(.Κ΅‘!αρΝ+tύ"t‘η#wσJθΦ†Ιαωa–―[y~su²"Ο†Βj”Όˆ~d~^¨Ϋχ 7+†“iΉΘ!ƒ™6Γ3’©r^*/Ίžwϋ|4“ε΅ϋωΑ‡τ$ŸΌo²Μ4(trύ ή¨© L΅<·%η??X²²—Θςšε΅ΰ>Γ΄ηΣ6 xC~_?W₯νΐ! +σrΥ\σΎw&$qμ3rVW’H3Μ§lEdμ[™£˜‡₯ήΨy€ Ο©»πœ‹MƐe3μ[N‰y4χ  h1€ƒ]ΛΪ2§½8τγ}Θψ‡WεΟύ₯¬/μjΒ[γρ3»τ‡τ¦ƒoyƐ˜Œ7Wα­}΄¨[u™ίyZή°FΛΌρ₯eήΔΚ΅_’Σ€Ν Ϊ ΆpΏ@ <Α3 Χ΅–h} w.ΚO”.T[άΘωΠsβΞnϋw―zά?–»ŠGŠ@\μŸ‹Λ]‹\Ρy̍g₯X„‘Ÿn￐<-3Dε„(y%ςΐ#…‹cQ~’λAQ~–Γ3 YΊ“ƒW>#Ο€θL[KHYOŸ8M:`RΎH(έ z|¦ντEι%˜τRL ±ZΊ•ƒ±τΨ a#c±ήyN5ΆΡI\TΎ0΅§#Q\œŒ—eF€ˆi;πβ–JY)Mύf‘9ρ+θί‹†Tζ©Βμ»Y# -tQe–/Vϋ Χ…Οͺƒ“=CJ5Ίϋ*vϊ€Υ#}Ω}Ύ€p§….TΧύu£mfEΕ+GΠΰ{_\_¦8QY_VZ:€:Εω OŒ}‚Μ8A³šΖΗ€YP mh$C†™Ε”•EΫ2D‘C£X%{΅§3šk.…RVJ ύΪΑ³©½“$N‰²U …ΐ}›ΐew؊b“I‹Υud9©†¦–ͺΗ-eΆE=DHύ‹₯G 7ντ…K?•›˜3Λ)Q (­…Ξ,VΕ,ζ4^ΚQΜ²Φ\‡³γψε»9ψήˊbsឯα•βyπ-Qh‡θ3oΌo½QrCΫ΄ OršώZί°κar cT…τhΊ`±RYωFq g·γηΘ2Ε›³λ:)τΎε–>\” ΒιΣxCpo‰ŽKpž(?QΊΰH)βr>ΌΕœΈ…³›ώέΛ7ΜγΗr׌‡θ™˜άuk‘λdsγYICΕ‰όtsiόμEε„(­κ\{€pfq,ΖO|=(ΖΟώˆ•Œ±₯²™?ΛA3gΗpιάnψδ ΐ|δ“Χƒ3ύZΕϊνκI±%€E¬ΦŸ^ΘA½ιQφΨ σqβYΙO'ςZμ9ΥΐΜaTTΎ0΅§#Q\gF€π xΦ δά{½ ΧΤ.Φ­ύ £/©Iaεͺ-XίZ‡s7}¬ΓQ:Zάژ¨­?ΓχBΝεωΑ Σ¬\·ςό`D«3›σC ιπh„/a$#iYΔΤ»St]Ο»>’ΉΞΦsj¬ε΅ό†PΫπ6j cZϊΐ«ΨΎ'§dg¬E):‡’χφδΌψσƒ‘Yφ£,―ΝX±Ό6αiŸΑιzΠ›υόJl©άtνA΄Ώ §?6΅;ψ$«σςΙπ¬UΞ ά·Ρ‡‚ι¦)eύ†r}ΓŸαΣVλ ΛijžΆβ"$ ±σHᦝ~8μ[ϊψi\Ε,§Δ, DZ)=tjtφ-ͺ5 ωθΘ’ΒDιό€φ78ΰ[ηwm|9jdI}πίή ]Ÿφ5%HΊ ‰SΊ1B^) Z9K•,riαμjόρ΄]g`ηΓίφ{’š!ggNοΗβ˜Z*‹ZΎ‰ΊkˆŠΚy;sbΞβύ»·=nMŠ²ά ΔΕ©άΥvϋΔ=Ωkq ‡Ώ’Fή³’RΚΎόΏ΄φ8=ŠΙ ZK yπς’N,ŽEω zRεηtΤΤς1·Th'ΛΑ@ΔNλλ. œyaρ$’3©PΨ†ΥΊwΉF\0(@ΛΩOL֟ήΘA½Ν"3{½+uDδ9Υ¦’’ς…ι¬=‰βb>aF€ˆ1λŠ6ιϋδ΄Oώ€δlT ½Ψx„s Τύ¨,d€ϊpmν₯“ηΝyn6γβ₯ΛAϏӞ…ƒ²Β&LήΦόKŠΉαw£οvΫ‚’4M=‹κΎΩ…‹νM˜“R†‚i…KJgύΑΟΡ†V̚h_OgdΣ₯_6)9w6’©ΉCcφzΕŸ‹Κ›”>kϋΖ&θλIϊΖ²)#τIγ»ψ—ΰ™Κ‡±:?G~Π /Ι@aΕ—ΰK_†ΧώΗo,•6?BFUŠΞ*œ:Υ«“{Ή[·­k/~λ|G©ΗΑ7‘Β›²KH•M s’`ΣWP’Λ Μ+†&:‹ςό0ϋΧ­-\d˜3άZsΉYΟ»|>2χ6ΜY¬εu”ψ՞?Š©/#_šXβS‘A)νƒΑύΆ+η]=?³œΒςšε5ω'έgpΌt½žΟΐΖ/<¬{fΖH+>ύΓ1X™/ώψΌuΘ₯{³u˜R›‚φmœn#λφ>ž\‰MΩΪ„0„Σ—˜6o½gΕ]xˆZ3.ΫiDО₯‘ΒEܑ唨”X Ε,挼œZRiEβ ϋ~€κόc‹ΆΙK•œxλŸΠ`§²+} ”°›+ξ,œέŽŸ%)ΪK“ |{’ΚŽ a0Θ>Ι·rΧ‘œπ½W‹4αΨΎΰλΡ>½Σ’,—<—KF'CρΊα\²w%τ’±ρΆδI/ΙΘ-άFή."WR,–BO=yμU’ήύ:‘σ½θλξςi.[² 9;@ͺτžs §[βPV–dj{Ξ|υε}5ΰΊάήILή”\ KύhGϋ'οαDT­<Ύ\€i>ͺZ3DΣˆ}ŸβΓσ5juΘJΚSγγδΕό’%‘ωa}ΡWρyΙ[ ]ύή9B; y₯Σ+Œ8ι%GσЁΞq”ηΜφu+Οz'σƒΉͺς*ο£€6s2Ζ‡Ϋ)Eς 8J:ξ\Ν»^Ο ?t*άi¬ε΅Gό‚»tw"(¦Ϋ—σΏOvΰτ‘CδN)RXŠΥ«sυBm-—‚φm Ϋ)zΉiŠ$ΰϊƘΆ};Ψq Η§mSΠ4Α+U5“=RD± ² G–Sn, BΆ L†k‹92φtW:L[υ¬R,1μJΙΛWyu½]†aLu>Πζ―‘Œ# gΖ/κxŽv’ιΚgΈώΉπ(˜r§ΡQ[κΰϋϋΘΨ8'σ‘‘Ξήό@€©bRV™Έ€O~ΰ7πΛ؈\ΝΡΤDΪ:ΘΘΜ"8›°₯τy”gIW¦Ζqρβ>|x9`ΎV2 Ώ’t†*(y>2——ΟlΝ+t36)φΧ΅Ψziv[y~°ΈπΞ¦’L†0m&£2X[!=wIaC½‘ηb₯¬υ―ΨυiU—Γη#ͺbΖΚkζ‡ ”2ΦΑ§Y?ή$£'“α­S9οασCPCgJΛk^Ο‹¬ηSiζ›X6‘=©wγάαχΡFKθˆ!«9iͺςβH Z/^ΰœ9&2ΣΪΡ”γ“Ή» m¨k¬Šq ’ΘNΔCDΘζDΙ#…ΔΟΣv†μ€'N,§\[@΄8’Εͺk‹Ή†18­όΣ—P(Y*Bαž—PΩώw8Bφάq g―ΗΟ}_¬jhĆμ EΫ₯₯2–`}’φ€/΅oŠΤ5hτJ‘)²9ε'J•ˆœ·o1g`ζΤΒY¨χƒΗ ¦eΉkΖΓ홐άυΘ"7<ζΪ³’p„ξΏ`Ž=68•K§tυOcο?†°8φ‚Ÿ“υ όό²‹΅₯²ΉI,ΝxΈ9kϊτ,:*‹•]EX•ΉΉΊΒA=κk„˜‰?S9H}›λέHƒ`γ9•ͺ°-―Eε ΣY{:Ε%°s>#ΐ0Œ@T 7ρ’Βn ²3ŠQ=hVZΝ_ϋ ςΉUΉδΉxΐZρ#ͺtSΉρΕεςd¬Xτφ²Φ}봐hΖε+—‰[ΦεΓΝξh1”Υš±,cφ”–i§θΎZƒsZ9!~JU)mSR}xxσ“Ψ˜"…α3¨–Ϋ¨œώ.[–€Œ$ƒ‚ζ@ΌY±'@ΰΌ³“ΤRK•ξξ@ΡΑzϋ2w£ΈL{/PyX’x,–μ%}1=lΑΦςΝϊ™12Π')ε+Šc«Χ?TχU·‘θ\cqS<]UΰΆRΐνξΦλ5©'•δΝY-4Υ|βHΑ»½[φ<$΅:!QΣRΆβ\Ί‚½*ΦΎ ’θγώq ’ +J2uo6΅J'όό­p6~:5Fο5Ζ%ηCRχ2³ΰ£χέ&…Ž Ψ»»HiνGΑΔrJ*+ώ< ΫuΠW^Οώ3ŽK—Gˆ055A9†ϋhβΡΏJ*%9a©ί¨΅HςΐϊαFξ:—ήαΨ“™tΞrΙkΉΤ„–Kd<.)ηΩ‹FΊΏ‚Τ3“J±eΥmςx¬ΌKBΧΥΐa\i܍¬΅tίf–co¦VK.7ΧNΒGό›4Έ{g4lY§r~θJ»<ψ¨ΦΩθj%―qυρh«DξϊŠƒΚ±·σΊΞ»§σΝ·Κ‹’šxd¦6|vφ'8Ρωž(]@Cι4ς|€Π8ŸW‚yΝδ”黝­—fΟΊ•η‡pΧ»ΣωΑ\W>ŠΪ‚3ϋ«ύΙ›F6§υ`PΣεσ—0Δ"ΛyagΧ§DηζωH’··ž§‚±–Χ"ό`Kv]:aaΤH}Hά‚§ 畉α^ΓΌ""ηέ=?HψΟ†ΐςšΧσNΧσ/Ήl„^χ Η;ΧQχ»\±£δL7DaώJhκlΧ[eh³šs€‘άτέD(Λ/ΦΩ_#Ο¨ϊ€ž:‹#4wΝ .ΪiΫΗ«at`9ε…”¨Εͺ‹9― qZOΑžBBFέ8‹κζΨς ΄I’νΟύ9:Ύ―ΦθŽ‰[8{1~Žšj(υλΪψ‚Eβ+h©œ“V†Ο―#«qChΉ8ŒφΛ— )ε'JgβξTΞ;΅˜31SNμZ8 υo‘gžH,Z>3“Xξz6.ξεs‹\ϋσ˜7κΆε§Πύ<Ξ<6θνΚ ‰΅KηQΩ#”Ε±όœ¬½ΰΤΉœΐrΠ»Α‘]M τ’KZƒ&­ΕŽgΣu>—λΟ:R8έ(Ρυ§7r0t»‚sξ…υ-Ο‰ΤuΫςZTΎ0΅§#Q\‚/WNaF€ˆ!’β²’–™½j/Ύp7g;/αφά,ψDYΆ€–£„ξΆΊΩ·Ÿ>؎λτΎH±έΟΒηΛ^D\Σ \Ή±…«*π ‘W›ͺU₯—4δyΕ[q­γ2 ubpb ˜—„¬Τ”diŸ6'\hŸ­Zμ9 ρ“¬Ξ~™šζ ωqώμΒΎήœεQ"Γ£ΐ`‘XΔΡyΫα\ή±«%ρ€Mxώ―Ώ‹cUŸa .›έ%:ͺ0Raz~TB2*žώ.n-ϊηNυ iσV<τθΣXΰXC+έτ>ξR ηοΒ·Ύq[ €nΗc]iΏVΨt,ΐΓ/}ΕI]ΈπΩy΄^iDwgy}LΓΊ£b‡’ψGjj€¨f6 ΐͺ'P¨νE ); “7Ι΅„―έƒW^^€ϊKνΈ3wmΉήF…cΈ’*¬Α…;Η"KŠρό_ώ9όa?ͺIGό‘§±»Bk'}Pρά)Xš(8ΰ§7Œ€ŒCp›ΠCJθΕi»‚\μύ³ο"‘Ό±ή@ζΝBχΩh0)³S1‹‹Ψ")˜•–²h%d%g)aDVvΣ²li*δψv£ˆΌ»ίύ#pχn)¨+J‰Rωότrμ\\†9τ0vk”Ό‡^–2”»žΙ ­3nqΡκ™G–KΪύξ\ͺϋψ$6’‘Wi›ρί.EΥΗγό…V ΜB^Αzοځ„†ίιŠΞžΘ%Αλ©‘αΆKŠΞΖΠNŠΑ!,•bη‹eδ›Jώ›Ÿ”«S¦νΕγ71‡δRέ³ ‹&Ν CDΞ\E/Ω=ψr4]hkQζ‡φŽη«·{½΄ΣΒ•ΓGpvσfR8§šo_ϊ‡ΏΑ‰ΓΗpρό%άLHCrͺykбΊt-Θσό0):λ:p™Εؐ©9.ΊΫρ)P}Φ!%9Š·‹θΛnίΈF_E#/Ζ±žίeξꏓωΘHg1X$Ε¨A‡b1ςW?‹ξ›Ÿbx^.Κ iΝ§­΅h]WΣPgδ>n9?ΠWgz•ο©€ hΉΨ3„ψ΄§π؊8S}s>Gσ^ηQΤRΎdh'F§Tι|>ςpύiκΥΜ:‰ωu­-δ—fΣΊ•η燀ΫeuεWπIλχCΦ/cΧ •ΊeΗωZ“Q#δΌψzήΕσ‘ΦG αl‘D₯c)―₯Ζ π[ž‹ς2€-؊«΄_p}€› 'θ™m)²’W#?;_Wr&3kœ½rDEATΞ‹??¨ŒgŁε5―睬η7<ϋWΨ)ΰΣVΌΘν™Δ²Ά£,ΐ+3=ŒγΞ`+κτU2]oDV–κρ`²­υ–χˆε2Ο²d‹¨@-&ε0QSn2E±mΒU²:Έ3Ω#…P;ƒQ±mιL*˜"b9εάJkœ3‹U1‹9WLΕΟaΟ•ε(ͺ?xNΡiκŽ-’W=z@ίυ§O ιίήsέ,χΞβγ'Ϊψ¨_Χ"–hI¦Οξ™Γz‡.›“€3Q~’t†8“σ"s 3! g‘ώέ7 CHQ–»f<Οε[‹\'σ˜ u ΫςSθώΣΈψφ=6wAO\Bt"ύscq,ΒO‚Qt=(ΚΟ?t³,ΖrΠΛ;wΆ•E;¨Κ₯πIλNι‘wI+.Ÿ1xFpΙPtύι…τ7]ίE§nβώ†ΨL]οΊπœh蝡-―Eε Σι›΅&OG’ΈŒŸ2Œ#ΐā†ζj¬υe![f»ω_€ΰ6Lτ}†cηΌ[CsˆV }Υ±υ4Š6”) –bϋϊ`ΧΫqϋ.©~IQQΡ‰L@vV™όP\9kΒ‘š7 ή™€d~D•OkU ‘ω αόΉίγd/΄r1ω©ΖώχVαλ/νRpJ+Ζφg‹-9λο.ŒΉ€ie™n,cˆŸ8Yς\,«&£ς%ιίP T” ?=B ΐ•ΚΎtΖϊ=x™ών‡ >(ύο²$o<c†weR‘ςm›t―œ­5'œ;φ 6_ˆOΘ ¨epΐOx,«ϊλ‹žV°’λ§|ϊiΊΣFŠΞΏ»‹OΒ2­ΓCθΡ<°ki.Ži…(HW$FP5I…€­€Nττ«ŠΞ€¨άυ\ND— ,’žΐrI‚ΨSΉ4p ήΚΑ—IΙJΎΒΙ€ΌβYιί<˜C¦SAΉdc^ˆ4otW]ΐεgΛ±ΪОΛΝη`ε™_.²*Ε–«σ½ˆ’)ω›uYςοΦΚ―θ,&ηΫΠs½ΘΙ₯Ϊ)τ\ΓUUϋjΛUƒ‚6yυΏ«”‘›πξοώΙίό’bD΄$εOI†"!’ε} »Χ(~kes*πτ«Ϊν•Υΰυϊ₯Œΰ}δΑψΑΑ|δoΈ“Ν-mP°P&ŠO(ΑcΫ΄χΦj=Ν8t"p]焇Zvι€ΌNO+Α!ͺš7Z―(:‹©υŠΜGžΟ+!ϊ8½Ι‚Χ΅ΦhΧ·VT: ―—fΣΊ•ηuΘ=˜‚―₯(¬όΊόoΌ@N?}ϋ˜)IDΞ _Ÿ:gηΟG:©νH ε΅ά&ηόr–jσkV~ΑΚ¬PSžα«΅gxr^τω!TΛff:Λki\x=oo=Ώd™jΠ§κ+#-yΉΉ–—φψάASzώš\zc¬„ήΦfω«Z¦κI€η+oΣ+P²§Χyρς' γΙΩ„‘Ž!δ΅°<•ƒL§ŒSI‘Ζ•ΣF€`ΌAΰFή9 μ\WŽ’4Ώ'R½ς›]Έx΅^ͺΡ“f[€οΪ{x“ΨΎιš#½}hjώh4τor #΄vLΤ^˜θeΥaάyΥ U–ή•σ£jοά}Q]7&2²μξ>³οαβ¨1Υ:nό’\βNπͺ˚YκΠ©ίΰg7F°η Πη”΅½δ―ͺε.΄ΞΕ¦ΚΝ²ςmOΗυΰŠiο@ώŠ;εά‰h€G…ΐ›ΏˆΓS_|ΉŠCkΖ‰£ΘΨρ8riΌλkΨOx{κ?aΧ@eΆ.œ%είδ;dε±›7΄IΝDOs=ιλ )ό€lRzk:ρ ŽΌύž|¦dξF‰δQH¨ΫW­g9‰TύτΗΐ³£Έp%–ΞOΖbΓu8yλΆ©ͺξ“?Ηk7ρΤnΒFςψ.Ÿψwμϋ€΅7g΅¬m~.Ζ! Y]Οςγ[xaΧvζ™εN`%Z·ΧuΚ’₯Ί’σΰΨuΛϋΦΤFύ]šς>Κ@ό<Ε#ͺ‰ήβ€w€ΗŸ*(w½’ZCγ’ΞΠ#Λ%οεRχΙ_ᇽ]xfw%JςΝχͺ|Œ΅£₯υšιŠ’KC7ε9P(πώS5)}η–e*u—kw‘wcMKFξaή7NήΒ8QΙJά2P?΄:©ζΉσm]TI\QGλ%ύ+cWZΡ΅g“bΜΣή‰Ξ•—vh<€ΧΎ{Ÿ|[Φ+τZ–vκlFKΓyΏ7gΚΈ9.)tψηg­¬εqδ†>/ έGžŒ`{>2tΒΙόΠ~ωMœXς*Κ _σΠͺκν9“Υο―iΉ†cΰεg9?Δ‘7p»‘έ—ΥΒ’tΉΨ|δυΌb·Χ±.'t]kδu«†„ιΘσƒ‡σ]_3 ΊΞE9( œo‡θωκΰ―_3{s¦ςBr^x=/ψ|$χLω™™ςZi›ΣωaξΤ(:Ιx2sy¨UΔ8:―Χ£ξ4›žα]ΘyΑηΓ̊(Λk^ΟΫ]ΟOŒK/|ν…ΫΖυZΒzδ¬Τ6z£­&ΐzέPεηΎωMnς>?΄ίF₯ ΨΆε(KSΝDί§xλδτͺΨ…ς—»₯‡«Sxύϋ?`ΌhAJ6}ΦNσH’BΙ#Ε΅΄c-…Δxy[%•³ΠΏ²GŠ_£Α$|Ι’Υ)?•ƒ(±ΎίΖ+Omφ'EOΠ'Ώσ/¬uύμL1²œzϋϋδ_Tέ·ˆΞβQίD&τϋwόΛO₯K ίψ―Ψ©zl,Πτώπ†ξ±AΙMίϊ'~‹κ@υ|ˆ>υCΝ[²‘–νΘ€ώ₯Λό<¬“S±σ›ίCΕZυaΊε(~τΟ?7YP§WΌ‚o?«YwαΨO~ˆ#76λcΰoCžωλUώD“1ν9J+¦M\΅dν^ό'ΝΒΩΊaJ*Y)βώUyψ?πŒΕu³ϊE<£Z*[B"[* ‘ΌY,Ϊ„η}™Fβα3ψυ'֟Λε'J'mG9’σK·ΰΕ_DΊ±?aβ-χ.+› ykΎ‚' Β”–¬σήΑ‘ΆΆ 2βύ ͺŠφ¨*ρςΚ&ύπY‹w"o[T3#’ χQΨφ°ά ’)(wλ%”<χ·$S΅΅]nγϋρψέΉΞζ±’Η‹ξY)d…”a’ρ†‚Nδ§χŸΎžΣΪb"*'Dι€ζ8ν_Ι²gΒΚ2­“Φ2Ν)?­6Ρυ (?οŒ?²τpύ<ΪEOύžΧ?/ œyηΏβχUσ΄a ό2'ΚλOjͺ¨,Ζ?†φ́䙇ּmΤG‘ηKl Llo>εNαΦδ0υ―)d–-]4ς³(n>β“©»·06ή‡–ώ€΅€%/)Ρ?II%'-KΖΣΔaκΞ(ϊϊλq=Τ~]HΎ±ΝHΘτAΦŸl#e φπΏ­ξα_ψΰ­Γήyη]΅y;βιJΈƒτ‰ΰΊZ›u“'荅YXGγxs έ—Ž£-P™Μ6ιΛW©tO,X"ΕΤDΪN՚φ·5²/ώxςΑ\ω΄γΔΟπZ€Χ5­\΄Ž26ΛY·ύ)kΓ <νc%—p.wg§œˆυp³\RχR.%¬*Śμ4YbκF†ΊΡPΒ[Ό:ΰ±”K±ΈΖΌΔS¨½dτΎ1O™Λh‘@F θο¬E[”d},ο#!<‰–%cUb2ζ}ŽζuιZmGsΏ€ˆ~Ώ†ϋk^‰εu-Ό^šeλVž/η_ρ6€'/‘ηΫ›#8cχyΗ‘½><9lRPρXΛkΗόω·<‹ζΟ—Ÿί₯άΊ=€žŽ¦¨κl8~‚vV$°ΌV†ΙKωr―Κλ»wοΚ`ε†πθlΌΰWn}›V§ΘI͟ΰγΟΡΪΪ*ŸΟ™£n†ͺ!ύ'©ωΡ=,-†OUr&UœoŽ­’st;G=š)$ ·Σ8'–>δφ’D-§„- ΜΝrj±κΨbΞ#ΛZs«­Ο6ορ+9“wο˜•œ%ͺξͺΧρAVvΛ›ΐΨ΄ύQy³W·^3yΣPάΌ₯ΩnΣC¨šf²β±p?πŒΕuνΤ-hDη €ΔΑ±ž‹4Q~’tp,ηΕ-ζάX8 χ/{ιτžςΈΑrWχ˜`’eγ)IXξΦ†ͺvo‘+΅ΟΙ<&ζYɏ‚ωιΙύgΛc½SτΔ%J'!β΄βΗ ώNωi£&Ίε§ρρG–ƒžΙA«±nhλ¦δ΅JΦΨY4*9K9†5]Μ֟ΔVTΖΤcƒ²SΗΟ–Όvι9ΡΤ°ΐv-ΆMΛO\T.1 IΘ|dF€ˆ9#ƒMh0Ρ1ζmˆ.Γ!΄t<7G`62JJήN@"d;γG~ΌΠή3[mR‘žΩ‹nRκ4*~§bΣzuνMhLήt`žδάω)ο₯ΪH¨Η™*›JΡ†κΊ―Τ£ΫΓmΨ *9Σ g3Τ›¨06Ν‹%/ζΝ*ηrw6Ι‰XΛ%3βήΚ₯‘+΅¨Ά%ύ­Έ·d…·xϊQrλ€ΉŒώ£¦η>ŠnŸΜ΅ Φ£φž^οšϋωμ~˜W¦ηΊ–³lέΚσƒ·σC[=dFΎq]—½>ν?Ήn"b-―σ»Ρ†ϊupώόλΊαΗςڌž·ς…ευψT%gςRŒφϊF3άgΣμΡ9 5ΣpΚ)Œ ;υda€žΈSΛ)Q (·½±ΐpΛsΖΣ X8OΧψΕKΗ–h.%ΚO”Ξes»³pžωύsE”Š²ά°6«₯Eά$A u›έ1‹έύ'*'Dι”n:ξŸK‹cΗότΡ[ŠσΣϚΛAο†ͺθ©ο’GηbΉΒΟ~ωζaο*·ͺI`ύ‰ΚA©Ι3y½λήs’Υ DN•/Lg­(.Φ΅q*#p ΐοŸ±ŽfOέxtŽf»"Υ›ύσH­ΰ|»h_μhk8«ΝMθθξƝEΩ()―τnΉη^o―ΕδE½έvG³œ―x –Μ#γηέhjŒύ οhφλff,—‚GΙKΉ΄,+#CΑLΤ”Ωž²c† /ρ4T;£’|Ν¨αΰΖx„_ΧΑ@z)Οf»όΤώ`τ‚SΌΔ3ΈvNaξX^΅ωIΎΝφ| -'“ι+o ΙUσΤ­at]ο—«εΡ™_ώ{μ.Ν!₯πSxύϋ?Ίo6χ΄ ‹Œ#ΐ0Œ#ΐ0Œ#ΐāmψϊυ*reΖύ8φγ GΒιΖΎ‰Μ‘`F€P`EgΎΌ@€½@‘λˆ„€οΡ?Η+_ά¦Xͺ~ρCͺν S†³F€π–KήaXSφΦ•πmΛCΫρ\;y50³=?¨CχqίGχρΰίΓ]ηλ:zƒ;Ϋε€φG9™`¬`ym…ŠXZ$ω6Ϋσ¨8Qt6iρPŠΞs΄|dϋΙ$\ΈίσΓaΓyŒ#ΐΈAΰ^—―n°aZF€Έ·PδŸ[}Ϋw}_ύΛηU%gκwσœγυiΈ+ ΪσG8ޜΗ0Œ#ΐ0χ7qqδ Ws@ΞU8ΜpFΪΡԎq‹vv5ŸΐοεοXΙΩNbθ!ΐrΙl%₯cΠ” †ΪeeηٞoμΗƒΰϋ(N™ύπuνΝΞvω©ύή Δ΅0Œ€X^»AΟO{―­ίε·Ώ§ΡΕ•m­ψ‡h°hoΉj=―3»δ¬ΞXάθDν±ΣφœWΘΜ<Κώ¬όγιsVΑWΌ$ŒΦμ)Όoσgήhq‹Fΰ^Aΰ^—―χΚ8q?F :ΘλΟΔ"μώΒ^ζ―B*£~ԜK·ίΏλΟιž’3β\+#ΐ0χ©©©r‡Cόήκ1χ&$%*†]½½³Λ“ξ’Τl,šC_Ο54Ώh©@ ΌΈN1&»špΎϊc|ϊΑοQwΎΟΑωš¨ωψ5>r]ƒbυ2#ΐ0’°\EΞLχΐ‹υχv>‚ζΙως‡rΊt½χ›ωVο+Νάίg|έίγ―φž―koF–ηopδZF 4,―Ccγ$G’Χ—Xξ•υ{ΰσGΰz^z6‘BBBxGW‘0Rφα?χΉΟ™ŠάχŠΞ+7ξΒͺτ%€θά…σΗNχωLΧŸά£,ΝZŽτVθ›Z7΅ΝΙό~ΜΧpΰ##ΐ0^#p―ΛW―ρβϊFΰήC@^ΝCΚ’,,V»ΧΧ^‹ώ€ά4ά―λΟXΟν'Zk‹{Δ0Œ@ `Eη€|°˜­ŠΞύWΞβ)ʞg%ηYw•NŽcΈΏƒτ?<:λšΟ f{–Kβƒ*) HΚΪϋ=IIβΪΙ«r…’RΑlΟGζώ£δϋθώσϋ‘Η|]‹ςl—‘Ϊ/Ž S2Œ@4`y-Žͺ$οξ₯υ{ ό|(εKΕ―KJφHa 'ήγτ^θΦ7=$α"m‚hJχ²I$ χ@ “{ό2ΰξ1Œ@ Έί,τb-³bY‚€ΌώœκΗdB;>ϊΓ>όώ'?Ηuϊ›@Ϊ=mΑiύλ|^οΞ’†›Ι03VtžqC2+4[g%ΨάhF€`FΰC@Sf–œ•œ΅nΞφ|­|dF€p†ΐl—‘Ϊο .Ν0ŒΐΜE@’wΖIώΝΆόΐώEKΡωsίό‹ΏVT¨hz?~hΏ΅pŒ#M4εfΙƒ^‚/1hsδ~Λ?ώ~MΈΉnF€Έδ©f‘'Αp―ΙW–ŸχρΕΝ]g"p―ΙΏΐ—‹3₯R»4%jγόγpΈΈ8#ΐ0Œ€Š@QQ‘kΎΚ˜0Βδ―Κ•i„λ`BF€`F€`F€`F€`F€`f2wοή•›—››+ΤΜΦΦV™nΜ9&ϊΈ²­`Jρθ€½ε’G5q5Œ#-f›H ’†Χν΄0‰ξ\/#ΐάΚ―εW΄εc€ϊϋw0χ˜`μ"p―ΙΏHςqΊςYΙΩξΙεF€°‡{tΆ‡— {tη2Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0ŒΐμG€=:Οώ1δ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œΐ,C€=:Ο²›‘ΝeΞ3t`ΈYŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΰΡςθlφομYsΉ"F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Δ`Egqμ˜’`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`’„+:G X–`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Δ`Egqμ˜’`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`’„ΐά(ΥΛΥ2Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ€‡¬HΫ€K—#Nͺσ·0:֊‹=]r0W΅ρωΏΑ“εωο<·ώŸΧΠfΎΚΩ²ΔΥΘ^žΕqq˜’>NήΕΰ@=ίf·liζ'R&Ρ7:d8"Σψ‹χ†ΒΦ‡uΩ™ˆ_0_‹ΙΙ.œλhςNG,i^ψΪ^€.†―Α/ί><­ˆOCΖ¨?»Χϊ=δξΑšc}‰ςsJ—€ΙiH\œ„…sγχ9’τΌΎήj΄ŒFΖEΘKΚΔς‹0O¦»…ΑΑ‹h4Λ?­–鐃‘yΛk­½3φhK,wgμ(ΕΎa™β«/Wb9qξ­?€·φBœΚMXDΌ’Υ5ΉΠ›ΊΩΆΆzτEͺR”ŽκuΎή•Ÿ±¦Σ@‹αψi,£ud9-dgw½Nδ`ζvΌτB%=ϋMa¨αόφύκΩέχ°­O@Κ…r‰[wΊ0bρ|–άV¦¨|a:kxEq±SFΐ=¬θμC`F€`F€`F€`F€`F€ˆ+²*Qž_†μ%‹ƒxl%%ΰκσo£!’"\eδ„ —Θ…/œ‹hΏLX–Ό[σ7a]J†EΓφ’αά›8ΤζW΅^–ύΎ±‘Μ’¬1i§«?οQΣwΰ©m•H4 oΎπ ΈrΩTbݚg±΅ ΛL©ΐη šρQν/qn0 #V§ Λ‘š“β7·›΄c’J±ύ‘Υ€t>…ζ*œiμυžϋtφΟϋήp‚ΔϊώεηŒ.Ϋ6=ΒYˆ·Β₯π‹θΎώ)ŽΥ|€λωyΉ»QΌ"”œ­δζΠΫs'«ίC‹‘n䠐Ό6Άy¦Ζ§S.±άυφͺπΟ… °€“qζΝΙ6 Μ DΣBΦ`Α=«<μ8Όί½M'ž tΩeƒqΰz)2­=y­ΧcG~Ϊh'™eXΙ3ΓύξΪsM4εŒ€z:-Ώνx pξΑD— 6π5Κ%Q:lΈHLHΕͺβ5HN^Ž…σ%_’S˜ΊŽK§jϊΙ!BΓ¬δK’˜dGS.δημY/9—ޏ“yfΕ52]dΩi½4rήͺϜT*EΌΘŒΉ#ΰό5/boAaHΊeIΕΨΉynω5šC–ΝΈ­ήΡcήGrV=‹g i_4dXŒEσζ™r“ko‰MΙ'w0ιοV$fΨVr–*ΊsΗ@Lη₯ώ Ϋ³³x¨§ρωψ|ρSθϋdŸ§/¬­™Y€NR{ΥdνhQ**IΎ‡PYΉI»ιζ₯θ(:Oc’WκXί’όΣ-ZƒμPJΞ*Jι+Βξ-·ρΣκ#܊QZό² )ΡΤ΄2<ρπΌmKΣ!Eδu`_fδω4Κ%–»ή^žβΕλΒ±|†)oω26¦%XΧ° %λ_Ɯ»?Β‘kΖ―_ˆBλ]Qωk:Ε؍Ÿυ°E%5ŠΧ{€φzzί†b6ύ Υ€Y‘ξ·8έ v}Ρη^ [7ορ+9S''&F0ξagEε ΣY?Ώ‹ββαrUŒ#ιWtφΐr8Dίl%ίs) ½vκC#₯Σθcrτ²ΦNƒcΔo}V,K$s£ξ,Šξ’.'«9ΛӐ΄4 ΙK³°LwψΡ‡ͺγŒ /$±ΆΐwΓO€Σε Α<ς|6-ΠΛΑνξΐΖςMt?*‘ώ?ώ;~{Xΰσ£«φβ;ίω’l…ŠžxύΏΕζ―Άp‹¦…¬ά1’»VBχ»-Crμ™ΐΕz)Φς3t―9'ζΔBžyqΏkΐDS.i<¦ι8½–ί‘<z0•K’tΣ4vΜΦ€@ζ6μ}tΦ”ΥΧH†\μ}’§?9€ύ~^ΧKβcΆ^”Ζ Δ“x$yŠId:7λ%‰λτΚωPύζτδΩκ›!‹q#0cH«D…AΙyΌsžh>…zyœ™ύ0ε+^φβ °fΥj4xž1ύאŒέΨmPržnΖ…kηΡ>:† “‘T€Ύ Œš½&.ΦvnΖΡBŸPš‚vQ§ΡlΨΫΌ>؈3WGw7ΈASS·‘”_•ZΦΠiœ1x.*ϊΊAΙyMΝγtγ%€­έ‹ω Υςd%ΰz‡° ˜Ζ}vοψςGgWΈ΅3Xί’ό„θζΖa‘?8Π„λC]θΐ؍1Δ-LE^vyΉWΌ.K+Β–Δ#¨ΦdZς ύURoί\λkCΧh/nb rVl@Yvž2¦Λ7’$·Χ[ψΣ!EδυŒΎ gBγXξz; ³O!ω"ˆΊ’½&%η«-QέR…Ϋρ›PΆξQ$(_y w3Ξ]{}*Q:ˆwEεg¬ιŸXŽŸΰ°Ο>²YpίΞ>P§‘ΕCΧpρ³*, Ή±+οβ§‘ΙNY£ηΘΣΝήͺG'1β΄’εEε Σ Οο’Έ„Nf˜vEg·–Γξρπ{dˆ¦—ƒXy€Ππα'ъi|cuŒ‰…ž‘3±βΧΦz ‡ήoξό’<μ¬άlhE”’‹Ά ’τ ό…›CΡ6Ν2cm/ΜO¨Σγ !b>5™[°σ‘ ”–CΩ’ρ7`Μƒό9αcε[·(JΞT¬υβψ?ž.6ΉQ΄ud©kέΫXΙ]@μ~·n΅½TΟnΦK±•Ÿφ0ΰRQF –ςΜƒϋݏFε’ŸIΜcΣmωΡS€ QΉ$Jσc†AψΦmΐRr–δ lΟ·š°―Ώ},d±ΐ ^/ω=/bι9§)5kY>rΨ υ»Νηΰ’–ξ8X‡Oθί:lΐ³9”#;Η™Λ~Ε,-GIžͺ4HE.ΦΏ‰U₯ΑΎΞ<¬šΞ.˜sBρ^μΩ^Œω€<7q7Zπ‡Ÿώ½ήbxηV6ξz[,!ΨτA)Œu‘Ύϊόv°QZzρvϊ%ŽΥΆΓ‡/ YTf•ΉZυK©ΝΒ“ίά…DςH7uλ&fδ!KΖΏgίί‡« Φc;νω+;π]8ύΞΨoΒUιΡ£‚Ν₯%Θ5aŠ¦ΟŽΰχƒχŸΔ§ι.$ΣΧ$Η/Cu_ΆW8Γ3VΧ΅ΫϋOAΥώ―(?QΊπ-»Mχ˜Ώ]Zώ0XC!ΥH…Fo9Ÿ’"£ ―ύ ̜Λ]·c!*w²ΉΫŸί‰Β‚5ώΉš%Ο)mΈ\w'j5o‘Μc«ΆγΉέ•(ΞΧލ’«ω,ͺOτΙϊlαq*?£#_¬[˜ο+„ΊΕCv[§qTSr֊ίθΖΰ­ΤtQ:Π›πθ¬wΓΘO­/–Gοιb9~–]ŠQ"ΛA·@ΣΪl/’iνŒ[ψθί~e½¦Ν|/<΅ ‹θ[6·ϊΞΰ·{¦eύ)χVP<ϊ5lY€)Γqq½όφ΅rVwιπΞβ₯?“-Έ6™†με‹ιΌΓΦΟF–“(*_˜Ξϊω]—0CΔYŒ#ΰ1Σθ QΛaˆ^u1φH!m¬ yΐ₯‹rαjŽ΅…^¬ωΙ}_hΪ² ‡«Ό‘α&ϊάε$&Η:θ“ŠMXΊζ+x’ @³wΌ/ΔK‚X[ΰ‹σκ_¬=!ΈA&φ έρΜ(.vMγ9Ψ[©>|0ΩΈm#²TΊŽ'ΚW@ΥސL‹…¬} η˜Ι]Ρϋ]p„=―—b,?qa2˜ ςΜΒ‚?b/§E.El•xiΆόΆν)@Τƒ‰¨\₯ ¦τ‘λ¨?ύ>Ξύα·h0VZ†ͺVΌπ·…²ΡX22²hdCΡ™ΧKF΅ψ \/‰Κ ­K.ΆεYϋt‚λ₯i–σέεSε™2.ΚL“Έ}G{GJ·”}αΓΚTΏΗ½Ι[RΩΩV£([Ω‡ΊpΎ^ςδœ€‰Ι˜;‡Ύzp«ΧGϋ¬τoΩςD¨κ»œΒ­EΘ‰_–&,2δ€DχŒέšKR[΄ΰCŽŽσ8._σηmΩ΄GUΤ–^X+aiΌ΄(Ί¬ΚΗeιΉ(Θ_λOΧΤ’ύiΖ2ΚžΖ“υ‘|qεΧ‘žžŒ_ύΫ»ΨρΒΧQ °$“/IFVΎτΏ Yi?ΓΟήΡ”€ΣIJΤώ«ΟΟ,!3ίθJCΘjόΠ_@‹%mΓs_{Ε9ΪHj€2ž”ƒΥτŸ±h„ίσg¨±Œ²πJY`ςRR~~―,ΗωW†ώ–³sή‹ρΉΨ~Ρ$wωσθWhκqR žz‘Ύ”¨ŽιX=Ξ΄‘²έͺΝΘY»VΒ›ŸS2JφΌ σNcʞ}=-υ¨ξΤJ`χ7Ώ†ς΅šςΆ–.a’‹TGNV~υS·γGυΚΖκ’΅ΚXεεΣ7ΟCd%9θΉΌί‹iΛeΉ;MrWqšSΎϊ―b΅Ε\¦Ο)qέEgwσXΫόΙˏΘϋ₯ΘΘ―ΐ“ωZ£BΙΟ(Ι—Ν[²H1Η‘²[zš0’\`²(₯υ¨ότœ.Άγ8.±V §i½€ΆΘϊ &'¬λ²H•gNθΧKΣ*η- Šfύ%Ο’‰$ΧΝˆ 0„αIΙϋψbϊO@ακ§Πή³νrU«ρπfMΙ–ϊ>ΕιkΔr™ώ“ΆΩͺBΘ@βWίXY@ϋ ώ0Ψw§ήΑE CXΎ8YύΤ,Έ’ί -Œ 5αάε#¨ι²‹Gvζ?€ΧΧΩRsF~Ι«‘©)NM΄αͺZmώΪ―’\WŽΦΈ‡ψ ±αK JΙ»ΠmTύ€žΗ†ZNαΜΉ,ςmDy©²W•Rτ8φμjΕƒΧkγ=­hkoΓ@oν–Ε“ΒV)yͺTφƒr+žΕξ–‹ψ@6h«GΣΑ#Έ½l>nߝΒΒτ΄o€(+t5žBΗΰζΜ‘ 0)ΔM‘·½G‰λΏxζ•WQ¬»Œ€Χδ5ϊr{ζ.JAzn hκΆΙΝ›N¬G€ώΥ7v#>―Χ*ϋ}ΘیK?TΫ©u©{η§HIω*Φ&I›°λO ι§ͺuι—±k‡¦Έήͺ·~€:Ιp!)θλœFqαθQάΞ)GIΥ‘†&z1šR†2Y™9ΎόRtVT¨·©YΙΉ•ς^Cε₯Χ™}7ΞͺY"ž]R粴­ULž ^5lΪΙUIž ΚΙ3AΉΪ& ™¬lX(4Ωχ°γFξκΝ€{9θ―‹T0{>1’Ε£ΰ™ ΒzifΙΟ @¦7ε™-όCΛ³`rgzηrΙΕ:‹Ζά™gsΙ—i΄όφS€ˆ“rɌͺαL”ΞPŌ‰ή³ς%<Β‹ζϋ·&oέ _˜rCΛ^/)ΰYyΠ›λ%9ρκP ˆΚ3‡tbλ₯i”σvρσ’ά}*ΟΌ€Žλ`ΌDΰ\[ς“2M kρIρΜγ9θμ›ΐ’Ÿ<1tœόΐΆΗ=/Ϋη¦u)Ίrρ²€”ωύ/θΥ&¦”ΰ±€@{ψgΈhPπK68kΠ «‘e ¨(+@⹟ΰP›ΡΉE`IεRtVΠiBkυτυΥαΘIΙ!€!ό-<7xR6θ_ŠάΒυdΟvX.Pχώ―τ/˜%TΜ'EgeŸ¨Ώ‘  »oG%J25>ν¨zγu:e¦‘ c7,Ώ© :vœώwΌφkmoο] ΌόχΨY*);ΣΎ•/ΧΦF‚*5%τβЏχ!γ‘)λŸΖ »šπΦΑxΌτΜ.έ#wΣΑ7p(6©šρζ*Ό΅π_u™ίyZρϊΩroΌCi™7±rν—δ΄„΄t*MŠdΕΟαΑ’ ΅˜ΐgž#ο‘{dšά("EηΉ΄Ψψ©Œτƒ'xFẎΚύ§χ:8"ΚO”ΞΨ‚ ―b{j2F¦ncn|‚.₯2½Χβύσ5Ζβ!γ9«ŸΗηUy$κ”œύδ§a4ε —ςΪͺν3)εn―Λα—»‰‰ΪDNΖ'?ω» Ήœ°vςυ™Ϊ':ωv”©_s κΞβwί'}>ΞυξRr.R'‚«Νp€ΘYν7ΤντδΩ]TΎ0υσ»(.ζk•ΟF ΪψίDF›“£ϊ#X;ͺk ΗΪ#…(?Q:#΄N,OtΆγn,kS±ϋΕη JΞdέvβ ϊΘ£sΚΪ­(T?WΈλ+ΨΩ^­>όΊαηο”#‹2?™xΜν8=YaFΟ%†VΕΪί3~6ϋgθjPΤsOAfr‚ˆ§‘ϋ0ς(R‹ η›Q ΏxΙΐκΒ-€θ\(mfiTΡ${s(βϊ΄%›4.]8wόWZpHθΕέβΤXE9ϊƒœΏ”+ΘHΣ_št·+†n<»8·-ΖcO”œΗZqϊD5†βr°‘²\yA£Ά6’•md0ήΘ]Έ•ƒ:ϊ€σϋέ@lυή3AXSΤ†™$?-!™ΆD–gφ #ΟΒTΰΔcƒsΉδgμtεά³‹Ÿ—s"_¦ΝςΫ+OβL"Ι₯TΥΣ{δωOξΝύ*_|ΘΜτοͺv·Z΅žFΎπz)ŒGΒ™΄^•ϊE!"*ΟœΣ ­—¦MΞG€ΝΣμϋUžy "WΖxƒΐ`+φv!{₯φκ7™’ŸIS²ξ9ŠΧHIuφ…€/—ΌRŒΣΏ¦P3„ζ–3Έ:<†„”P–§v+%«7α’䗁δ%}Έz½φ0‡01‡Δ$rθ‘(K„EΈBŠΞ-j-Φ‡ ΨΌ@Οjj9T>cΉ_»HΪŸΩ„ΗJUΠ€}ψΤA¬|θ―τ:ξάΉ­Η΅ΘMΙ[™1̝ƒθΎœ‘=©H‘Φκφ}„ΒMŊrVZ.rhcͺMݘͺή+CIsτΜα3xˆφΫ$ΔηΞ·v °,Ξί›9sΟΞζZŒg>¬ίΈYOΈ|d_’³”Ωtψη’ϊoˆΠŒš?hJΞJ‘ͺ3υ(#EgI§ !ERφ"Η/ίΝΑχ^V› χ| ―ΟƒOu’2DΚδoΌ_kΙθΖΨ„’NϋœΪθχ «Jv“c£\ Σ‹•ΚΚ7λwBΫΡA˜ Υώ5c·¬Μ]ŒΌ­>4œT”Γݎ †§³λ:)δ$τ–%ZΑ‰σ)©οΖΌΈ‚k"ΚO”Ξί“H­‰n±eώD%vύ ή¨© L΅Ή―Λ³"Y{Ζ(ΚΕΪ#…(?QΊ°πYWoή€ d*xΎjΧCΊ5PΓi3i2Χ£‹>›ZHž€”‰τBιŠ)ίΜ4=]sCί…žVz΅#μΩE©Χ©…lϊŽrj«Ϊ¦±zόώ‡?Π-‡«Zϋρ OΟζφkgΆΗΟ…' WΠΡ‘ΤθEξw6άΡ­gcέvΦK3E~Ϋ=β,ΟμBxyf]‡} ½SΉ$yΉ]g‰xv±ξ₯šFΎL—ε·O’LŒΩ‘KΖςZ\”N£ŸIΗϋUΎ¬Ϊυ8Ά¨Ÿ*—”$škC«€Hγ^Ύπz ν‘Pό95̝Fž©ΌΖϊΒΕE噝ΘziΊδ|8ΜΌΞ»_ε™Χ8r}Œ€kvΰΕ-•²–\ΧΝ>\£=»9ρ+ΉDU¦2O`ί³bΧΌ£^Aηj Ξ³.|Vύœμ!ε)tΠ‹ϋ»―b§(̟/)€i‘ Υu?Aέh©:Β•#hπ=//S<‘.Θ‚/+-j†’Ztύ†rΏWΟπi«’8ͺεƒό©%-–ΤQ₯Π‡ξήωx€βIΥqZNœ}“<<“’`’Φ—t ΦtW½†΅#ΖIά\ΈŒόM{VJύώ\ΓΥ =§Z΄·t‘@Vœ˜‡…‹R‰a―Ξ4aΥ6”mή€œμL,[H^Ia[Z&̍Οpξ™R―Υ*² u}ιf4}ZkU(|Ϊΐϊ•']%ŒkJΖαk±—[ϋπ­ΐσ²7μ ΠΨ”0vuΩUi:4άϊ‹Έ85q #χͺ΅­?Š.ZDnΫΥΰΫρΎ•ζκ„jΖ\ν:#΄ΕT±!Έ?A<ν_Χdάϊπ·ύžΣ νΗ™Σϋ±Ψƒϋ/4ΐΡϋ]”ΞΘέέυ˜GΓz›Ό¨._^€tΊ$&nŽ#~Ε.<[8†w"ΘyΙΣόγTω'U=\χͺφαΊ‘E<ΊrΠ;ymΡtsRζn|λ/_ˆΰL‚Sxύϋ?R½Ϋδ9=eΉλ±Πε…δ.Ν[rHFΕ7©§Οΰς₯+θξlE[§ ΝΤnŽΙΙ()t‘£Ι―€¨€‘“Υ–kδE%Ό’³}ωι…|ΡZfο8<1B•>f|ΟΝMΗεA,I,ΐFέδ•ŠŸΕ°Z­(\―wEεg,θb<~,Γ\δ³gύY_wε$C€U_aρ$’³ς4³ «K5و h½γ1Yz#υ6;ˆΜμυ.°ΒχӌAΘΨμPνQ΅w„™l¨+a`8ψyΡ zbΟ©’r‰ιμ<χ;G¦`§n“8₯BωΘ–ΓQ`…*cν‘B”Ÿ(2'–§fJ±3'–΅Š₯G‰S_νqΏ’³ΜΊϊλΦ>-?²₯dεXzXuΒOͺΦ½E™ά8Η?nΗ!Ωπ9΄Α±~σ‹½51Άΐ§m)―<΄ΨλŸήQS$ZžLLœœΔά"WΜΥ‹ϋΟ‘G‘Ζ΄t>Ž™f&yρYK/’€Οφ¨aυZΏ₯ωΥ‹ΑPZ9ρc16n" w9τ£ώδ»AUuw[ ω3”HΝ. MgR’Ν‡W^Ωƒeδͺ€ΏξmόςγDW€΄tυu τrͺόeqΟ.A ±a!›gτLpβ#]ΙY«ώ]ΤΤ–‘ν‘:ˆƒš ζΖ©άΥΈ»•ƒR=bχ»Φ‚ΗA―!œˆšξΤΔ(’ΧμΖ:©j λ ΊŸ"ιΠμΔ1άƒλ£rvΠOwgxc°Ÿ½wβ:Ο†$@θ.‘ΛABB ɁΘ`pdc‚λKμΪIœΖIγόIoίϊΫοοjΧίυ[ίκ·ώϊύi»Ϊ&νηΖMΪΔqμΪ!vq° 1,,W $„$$$tΧA7$@ψgζ̜™sfΞ™ΩgΞEβέ,qφμ½ί}yφΜ3{fήχέA‘$ܜγΡ4ιkHΛΆYQώͺ{ρO°―Ž^€… s&{Ψ‡“ ΚOΖ"υΛ)Ά*,•Nπ „TL\–€;Ή‚Ε§΄ψK Ϋ€wŽΎΠπσΏE‹zκ·c£4ΖLν$1+\I₯sU ΘΥ΅₯¦Υ“ήF8‘ΰiλΌ^U„¬ΥΖή‡?Ί…ι©₯HW‡αυΎ=©„θυ.*§ο•g[ήΔY]RυC―`χZΕΨ£ w IΡΉG—―J^VŸΪΌ]σ==z‡>}Χ²Ό&t…―΅‡ˆ,_ £ϊˆ²jΦR½λ3οͺ¨Ίςλ”wOck΅Ί;eΚjφŸ―+“ύΈtξ>xϋ ΥŠΐAŸ%eIΥeΤƒX’r”ƒΤ’ΆψS˜—ΤVœ^ξlBy±G3ΛΛߎ<†Z…’yΞuo·Άv“sc½+ʟ±sγώ A>Β<£ω³ώτž=…«ϋκQ%Δ–c-яѷnΟcœyEyύι†˜° ¬„_οfΧ“7-JΏ'/›e"E] ΟbPz†Œ8ˆς Λ™?Ώ‹βρDrŒ#ΰυu’C±θo9½Άέ­9Φ)DΫ•3’eίςΤ(‹£•ΪͺόSτI[ R2μ%½ΓTi±hΓΓj€΄εaDe–΅†Ξˆtt[fx'ϊ-‹‘ΎάχΪ³7ΎΰaGΟBp[ΆRβb‘+fικΚυηΘ£H7Zi ˜-y•e.ΦVμhK29€?†u²χv:"+W|[;*™ξό/y@”Έ„Βm΅ϊ‘‰.u[O½L«’+2r ¨d<‹αIW^Ž₯“·œΐ@^2|uyϋ{ 9αY‘g©_φC Eώ5»RK_7y&§θμhώμχΞͺd€<(z½[υǐ±gmφΦKρηO-bΜg€₯Η©Δη³ Yπ\T‡Ν±u–ϊεAΜ³‹}~΅l·9x“b‘{ υ`βοŒ=^ς—Wc’rͺΌε/σKlψ%}'ΎώΝίΤ©ωΘΝςΰB·Ής―N,q’δ*XΫT`Ά—―Ώ·]ΊX]Γ;λφ̝©x”4 R|%ΗzOα½# i+…μYΚI.ΖFI«‡Bί΅_βŸχ獴s—/7oX8PδbυΏχΦ΄©ΗθεIͺb7υ䞯7Υ_5(9Oυ΅’­½ήIš‘E€Ψœ\„ϊ=>Γ6Υ#q$‘w`I!•~ΓW~χΆ4!± ΥX AΉz ½l6yωΤ­›˜ΡNφ L_Βέ\:ϊ τMόΕ%OΟ£]ΎΦ…ω‹:ž΄=w[ΗgΈρ€Ε€Μ’ηΖΠΎd%*$υX]’Χ»¨œΩΈuig/ڬ—Q*LrrΣΘSμ˜€/Z\ς<žήX₯eŒ‘á€{†–iˆΔŸνρ΅‘ΣΦτ­οΜΡ#X©z³΄.ιΛYŒΉ[]°΅0­™yΧ–ςnλ;ψϋΗsυ €΄Pφ„ͺ5Ύ2ε»~žœΌϊύŸΉ μ¬ΦœεΡΦ΄ˆΏ¨#0ύ½uoίΈ Ω: ηΩ~\ξiΓ’Μ”₯ Q2VΡέ䒡ޡ˟γw].ΦσΗ<8₯ώγy΅ώlC ­1«²•oέe›v“’σ1l,W'Πyξ”l¦±h?iA’…π ΤΦ3œ1Ρα3C|ΐ$ ι+T\ς–7ΠlPrV:ُρΩ)ŠJŠ& ‚bJΑ²pΌ»3 i$a•Ξΰ;0Οϊ8ιɊ1Ή²-p°΅$»¦h/ͺμ@oŽΞ΅7―’TeUƒΰιαOρΑΕ&_ω\δ§«;ˆM‘wβ+ζυΔ85•ΌLK~`Uί§nJώ` ιo‚Όε*§·iJTΎα§xνΝ€wZδ< œu*!Gsο.)ν† £—tt%d¬‘κŽR^ύ·_By€rvωώ—Pίσ8Bφ"3˜™•ζC:w{ΠσΙ»h°©}ιφόE>³ΊΡt)πl4+Άj—;Χίͺ2lJSέθImΜΡΌ =^πE―wQΉ€αήΑ]Υ !8SNΩTρu|‘ΈTΛ½~νWxϋbƒv*΄ΗΧ‘Ζ`ΜkΓ±ξΏυ7Άa}ΔΌkHŽοΆΖ;τda]e² Χ£¬ͺEΩΚΊ`Eι<\{O …μRΈϋ؜Ό0ͺθΑ˜‰ρ«¦8.ρKNεNxRu;³£h<μάFfβ>j€?2Κ”΅If0<α%ΗχυψνRίϊιf'Ϊ|67brΔQ[ο†ηO­Ο†ˆΛr.͟‘‹!˜-α™gλΟΆOΟ£—ΎuKί΅σΛ*°./ EΕΎgœΑf4Ÿ Νc–82Dןiˆ)RŸ½λ‘έKRύ蒁l™d¨fςrhg¦Ω6\0Ι·ΝΧ’όΒrζΟο’Έ˜Μ!'1Œ@tH Eg›–ΓΡΕΓ½ΪU"”jŒ…G ΡφDεάC*†5έΑm‹w¬ώŘ έqΑ’Μ…^8―"I·e}:½I¬ΑU |νΫnO`|Qχ„`c|¦Eβa‘±₯«ψυηΨ£Hί)τt>\ι/{=ΦWGšζ,”–­χΑ9σlLv–˜Zϋ(y’φΙτΗ)Λ—e]θοŸ ―ΤΏ¬l”‘s^ΎώSQ!ςΛ=(ΛP F0Τ#½p’‡βl58ςμ’ ΕαΧρόΕ‘R“βΧ»½»η™ΐ½υR4ωΣ*TŠω,4T ΟgΖξ;ς\c΅Ι:+Vž]blω-Oφ=˜ˆς’¨œΝΣ…ω%4PσKžω£oj;Y`° ―υkAŠ4ΰυR "Κρ|Y/φή>OJš‹ςٚ(zL1]/Řηy½d~Ύh©σ™VG„C`υJυCι0FΗΜKΉ§hBjΒΣ3# 7Ϋ"/Α―m=(Νυ+ο y­vŸ3Ά’’ˆN™p!―ΈΑ‘ 5₯τΒΘ“§Ω  j&}A1|D™Ύ„Oς+žηnA‘ͺ?9ݍξ^σwͺ©΅_ΕWφmΑY ˜”§šρξίύ8μϊIν†γίτTdbn·AY–>ΐ―‘”œ₯0EŠžΚyεwάƒΛ'‚ί™yͺΧ‡Uržυ«u₯fηPύ6• WVaΓΪ’°σš€Ϊ;o€wΝ±ζA₯Ÿώνρ΅Ώ|Βǘw]›’ΘywΝ_#ή κΏύ߈Η₯o0«°2E²² V΄kC`?ͺς€ϊ ι;”‡Άy0Σς²Υo;֐ΨζO—ψ₯΄φY<ΎΙw/“Ί5Ω„Rtξ°ξ’’s‹œˆieRρˆn7ŒφΎf]žVȁ\’Άή ɟ}ΥΊ-ηό默ΠqζAχ¦gτ0ΪZφ!_Zƒ¦oΐžηs΄υψΥζσ.=Cˆ?έαA'`%ώzχ6f¦ϋ1v>εΣ³­!|ΎY©ΊϋΒτ0†ξ-Α=Ϊ]έμ ή6_‹ς Λ™?Ώ‹βb˜l>`X @—kbΫ–Γ‰Ρ]g½ˆ΅G ΡφD圑αzιp–΅ώ ‘U@/³Hι!0,Φ] ‹3ŽΓ΅ηšEΦjݚ \tʍΓUιPί™a‹1«—ϋ!Ϋ²goΫ-d[R¦½φδjŽ/&žŽΟͺ@,r#Άtuηϊ³BĘ>„ΦΦ+ΨVΌ•’3PTΎ“Ά‘\Ž"I±X dιzY·›–’ιYΨΎc‹VΙωS'L·U ΠKι> ”>ˆ¬LAαž‡%y„mΕιΞΕ¨©)Eυ½p©ο+Ωd?nΘύ΅¬ΥΊε02ƒ˜οjΡΓpΌk!f;9’λέŸΉη™ΐ½υRτψΣ6πrAζ³Πx%:Ÿ{οΔsQώQΔλ,—<»„μ±jH‘Η7{ό➧€ΰ1Ωσ`"ΚK’rΑύ΄Ja~±BFI„_<Ψχ{ίΖY ƒj›lΖ/ώ‡ε^/…ž“Θr£½^2ο=žˆ.ŸE“-ΦK.ρΌ9¦f©Μgf¨ψΣ"γ3RτWΕ1F Α˜˜&₯ΗdI‘9Ή•h3ΎΜ(έ°₯š—(/FGΝllXώξθ?$Ξΐš$`Xχ>rcΕ°Q{Yَ«’Bb*6mΔμ@:ueΥJSrχ`uzˆkM¦ ΜνB±Ί^ŸnΖ©KFl΅ €Θν|GΚi2ΦS8ι ΄k*ρtωv¨ΣΠ7ЊN-ΟIIIEnΊNΑh4ΩξΧXΤ₯£RT<Ό gήkτΧWϋΚς|‡“ƒ nJΖ iΏezmεΫ°£Φhθ€€Š.©}₯¦IJd‘B:―΄vά’²0°εΡ'ΡzςΑΚΒιΥΨΆξyœ 1?‘šq#―ςμί[ε«i‡^'O t˜υΏ»GzטΎ{Ώύ4Ϊώω݈[“wt«Vœ!T>ς8.’sπ— j&―šœ-άΑ™ \ΔηO΄σQ?―]Ίώ2θΫ€1x1δ Pr– ˆΆ'"—T†mιΈ~₯Α|Λς΄mxΆόa_¦oιψΕƒGw<ͺL2ˆ‘m ΊρΩωβδ q”‘Ž’Οƒξπu¨1$^σ+s"Θ»9λΘ€©£Ωτ»ΜΐπMκšΒ―V}tr–TΣ”ϊJ6= Χ?SμDΕCEVΝhιΆωS„_΄Vό‘Ή9ΙςK·™Ύ§χ«γ/H±Μ€5™’ιΑ#΅Ο`K¦΄6₯pσ ε΅™r(ύο\nBλ]QώŒ΅œŠKσ'U5?σ ›σtα|3κ+φP•«ΰ‘֝“]Ω…«gtλϋ]ΊΑƒώλτ`ΒκΔ$κz·ŸŒaΰ’!–Šϊ]„‡d;f/NŸ;œn#Α6_‹ς ΛiλkΓσ»(.σΘɌ#=4=Κθ5a§f–ΓvͺK΄2toŽ©G ΡφDεoΫ–§.͍}ΛZΪ„L·6J•=€ΌL/@†ϊξur#A/xι]‘Y”y'ευͺdί•™ΙΖ@ό"™‡BzΩ—β«lbΠόεZ˜φνZΰΫΆDs©=©ϋγ‹‘'„0γKΨlžVάΈώDpθhjEοώ­Κ–>žrlΫ»T{Υ}ε’ϋŸ²+Γ&ι!S ƒ§ΠΖγΚ΅ι‹‘τ1§j€O–δsc΄§Ξ'ˊι₯5Xr[yQ6ΥίƒΚ—>ΐ‹zv‘Ε׍‘ΪΞ΄°$sQθ{Q¨―&/_b¦θ'Ό«ο3Œτz'}u[žάςLΰήzΙ._KΨΪηOύLΜ“8σYπD9δ3C<6δΈΆΞ"Ο-N=»Ψζ½Β†46AoφψΕ=OAΣ`Λƒ‰(/‰Κυ2q,Ώd‘'€ο’Tύ8֎Cψ=œ3x ΄˜‡όΒλ% uΙ±Y/ι ŒΪβ »λ%Q>• Lπ±εzΙ%žn1AS8ŸωηΏHPΰΉ[ŒΩCOKŠΛŠ2IΑΊ'ρΕ{Ι8ίww–δ£Μ³5 ¦ξs¦ ½ZDŒŒυΰι₯ΙvήωψBΝW°Έ­·–£|έ.l׍οZ[£OΉ8₯•_Dqε\jλή>ŒMΣΣ‘ŸU†ͺόbHiήx±Ι¬Ζv‘j­»ΛW?‘ηC… έ»ύ(-y³ŸβζƒE¨)§Ύ¨ZΞΤ^SΛ9λŠt»t©…L’Τ,W~KκΏ†/c9>xοw|{Ώ\ο;£€ή‹g})νύyv}ιq;ι\85ˆτΪxψ±/‘$PGΤ¬w3³Z5+6μΗ·^^†ζ+=Έ»δARθΎƒ‘KΗΠ‘[3žϋψ$ΆμΪy&²kρŸ―Βρ?ΖΕK]τ±!Εe›PΉwR[~GEηmxιΛϋI½^ έΗί$%η!ωΰΰOίEΟMξfΕ—πώλxύύ³Ύ’b?‡ΰ|m-)€“<)PΏτ_ ‡αςΕ+˜MΝFF–Ε΄u]Iυ€’'Ξ›€θ,ΚpcώΔΊlΨ}N­Βέσڍλ/+₯·―ϊ0†›¦ &’ν Θ­.B])H–νΐ5β³γ€π7MΧΜ*δg” ΄ TSΒ 3œο8βνŽτπ+δΉήwHFΣƒ^$g?‹'Φ,Φ‹˜Γ@ίQœ₯|Cˆ ΊΐΧ†NϏζέHηI”wΛπΘKŒΚτ~\ϊμ"Ί:Zιάο₯έ²±qΛ#Ψ΅G1¬™δτwYΟ8Έ΅}v½{+εοO+Jχβw~ϋ.>όε[Νڍ'žϊ&J4C­x˜₯IU ΐ/!šΥ²,4DRςŸΖΧΘhμzοi\νΓ8yΓYΉΚƒ’‚νΘSΧ<ΔIŸ]:`πζ,&G†z"λέ\Aώε]Q9μ(͟6‘‰atoNΌ§šΠΌoqΥI<’Η:ok3 F‰‘΅'ΊώŒˆσ*±9Oέηξ$g‹23ς°ΉrD;ΰPΈsλ:ZšΙ˜d>―w“Φ"U}  ;“dDλ(Xπ΅ψύA”—XNž·pΟύŽ&— 3Œ€–΄(R™¨Œ#ΛaΡFb-GΘjΰΖΒ#…P{Ѝ\žΆ-OδDXΦ^ιθΔ“5…rSžΝΫQρφ K\Jέόˆ’ )4:¬πuΠI{>ϊ‰Π’Œ<θNIψ‹ΝΌ|xh; {μoΗ‹dRWIξ:”0β5{½οžΎ=K4χΪ“F~|R©{Bšœ7AΜӊןD΄₯OG+m鳁”pςκπ€κ­†^d]m9a«Κρ9k₯{w'BΚΤ“7gεΣ#mΜΩτIXEjoG\Fϊ˜“)oqF―ΨΊ` 9]“υ(Z™++?KυέΠΪ΅¬Υ*0D΄§B£EˆL_™WT+όYΆ}*>lφσgή>TϊΈU'βZTŒwϋ<ωυ. ΦŸ z&@Σώz)όΠΩ„>d> 5=NωΜX—ˆΗ} αyΙ_Ϊω:+RΟ.ΆωΕ%Λo{ό"θ)@Τƒ‰δ˜}^2 ŠΚkIΔ£…Ο/»^ώ}e»WιεϊνVόώƒΖ0Ο(κL9ε^/©ΘYFu½δOH½*ŸQύbS"X/ΉΔσΦ3›9χŸ©*C‰€:χD ₯½<ω(3V ¬τ7θ/°)Έ †cάσκάB΄RΊqλ4*6Χ( ¬.ΗξmτΠάPοΈβs\‘–λS:MEA~όP\9œlΓGMo輟ͺ₯R±³΄YΎΓιαOq²[ςC*t£₯ϋΚ6–Λ…’S«πΔΞ*£ΐt;>j0kΟX,κG€! }“[…ςϊoΚ†ΆGΟγΣ7iI 'QEοxd“ϋτJΤΏ$ύiΩφ"τ.ξς…zδoR χ=ΥυπTϋEΫ’FΡAο•΄0z ^ˆ―’ς΅όݟΆδήυΌτ§•#υΜ ρΛJGΖρηΫOΙΒγί}eͺ²ZηQ€ο Z ρ|Ϋƒί}~—œTΆχΤχτβy·Ϋ£JͺTMήωΕΏ#γ»Ώ)+Οae)κž•ώ΄VM#ΒσSΦλ,…“NͺœδkLTNd½+ʟ±–S ‰νόE2χΒ²ΜƒΆΧ~Ξ1nΖ₯‹­¨”Œ5|kΞ–¦ΰj‚ζ ΈˆšβΦϊπ`έίΐΎMκ:Hν™ο·pΎτвΎ–SΘΈο΅ζΐΌ^ο&ϋ ‚Φ ƒ&; `σP”_X¦Ο؜..Ζ0!`χ‹k UδΨr8¨†ΔLˆ΅G ‘φ:QΉ@Τύϊ€ZŽI’–qāe­χd.=Ύε˟•τΰωŸυIw°ξΡ/ayŽPCσ…S0ΌA―Ζγ_©‘ €ζδKΣ‹΄ΜœŠ'ρTξ,Ρυ·˜X’εΓ·Π6κΛ^χ4Κ+|νLžG“ώ£VC@dτ†Θžΐ£θSf?Ί;•==½/ Hλχ):_Ρ„E-kε ,d»7ακžZΕy’yρOǎ†ΡΕ…¨}l―ςΡEλΛ'Ό«oΪ„τ‚“\Έήυmκγ¦|&θ™@_―£υR¬ωSίΡωg>s‘Ο¦άΆΗIN€—ΔΧY.xv &‹-E-Ϋΐ <4ε—ΐBΊγPžV z>ΡUGΌ€•ΣU‘ΘΡ…Μ/›Ÿ<.@ω<ˆ sΩ{Ώ…ηόΦ•©YΌ³}M8xX§pΕλ₯蜢Ρ\/ΉΑV£v“ϬڐCρ`DΟ·QβωPc‰Cή}Γgqΐ–›dl#pλή> <Ύ±Ωώχvšόl?._kΔWL>vk…;2|ύ]Ό‰μήΈ 9Λϋ:ŒΆφOρ«Vέψf&1Nk‘4Uω4P„0iο»ˆΖ–γζJŒ«*αΙ–ΥjIrΫ‘O­π‘ηκhXω κt^¦U©‘ΑΣ8Ωψ‰R΅ZBωΥοΔ §ά5yΐ0Š8?’΅κ ¬ΒQ ’αRU©ράρv6ΰßΎκ7d—Zι8ˆ7ώu1žύ/‘(@“νh8ڊά=O‘a>9πΥoίΠΓγςOΐσO‘²|-V-Νΐ έ<ΝάΎPšœzœό ώf¨Ον«κ§\x²]Χύr^ψόΟ†ώlΙΥΫ¬οπξm!­ΎˆΝxjν~μRίΟίώqΠn‹Η_Γ‘ό|μΫ^D΅ζbλξΗpδ!mfo©½‘lίtΟ’gL5¨> }m=ˆWκž|ζ)lΫT€5όzϋΪΡΩrQρζ,εˆΞŸ xΖ⼎ψϊ[²”ήηΓΨδ 9GP1ΡφœΚ-™›@)»δ­V9ΙΨGΪ}7šqξΚA΄OθσΣ;j»a˜œη\5ŽFΚΧΖ^'ξσnόy·ωgt~Œa°½9₯•Θ ΌΙgΟΪ>Α‘7ί y.9Ή΅Όχ·xsξΒή½ušη₯ς~œ§?3φμ‘ΏŸξΊΦπ§S~Ρ5γή-Φ!wοLΙχ1Νy³Ώ œΖωΦwqΩΐIJQ9¬wEω3Φr*t̟ZY"ώ2ΊΖƒfΣΫ-νχνΣe‘oΠ­ΗΙ»q`Π­ι œΝυ'υA”g§ΖHΪχ]=p,Ηγ·|ηρz73i•WυΙ–kPmθ6ωZ*/Κ/,gώό.Š‹6wa˜ ΰτσ’˝±vΉ Q«.Φ)Ϊ“Η.*5ΰμUμΔ²Ν8ϊΡQxΎΌGρΈš·OΎB-M΅ˆOθαΣ48hOΨ’Μ€αcΗ?Α&Ϊϊ.SΚΛDέώJ­TΫ]²*κΣyΑΠrμEr³ΛQ–cρ-½œ” •z¦GEηX[ΰG؞γρΕΕ‚½ΉJ˜R"žVD―?Φ§αn`Η/ακσu(Ρx΅ύBΠG -{]*·Ύ”Rr3Ιۏ|Κ‡#9εWtΫΉUΛλjj ί+vB7ot…EJαΑλΈζSΐΎΦyM§ =€ώ½G1Ο.R#"²έhΔ{οΓ7_Ϊ«Ό¬#ΪύΌŸ‡”Ξ+ζΓ…ω“¬yw&\<βλ=\Αω"ž ό΅8\/Ś?ύ?1ζ3ί\ΉΐgAΧ»=Ο5RDx)ςuVž]lŸα bωΒS€¨?yI•Σ*HόΘζ—•)>7hͺΒJq-jt»Γλ'Η»΄u Ό^Rΐ˜Oλ₯ΘyBwD Αg!«%Ρz)Ax>δΰ]ΘΌŸψΜΈΈ F jLœΓGηИV†‚UιXκΣn»=3„λύWm)ιF­o.U|γϊ‡xγϊ)η―Γκ—R­sΈ=s“ΖΧ<Ύ[M8πqRV• ›Φ&I‹I‘0™»w“SΓθ1ωπ―οηΔqΌώήq}ŠνxγΉ’΅»λ2πΰŽ·0>Ρƒφ‘~[u œ| IQ }‡ρڟ64ΡTΉ9+eEΟΩρ^œ9kώ>Ω{φ]όˆώΦΥξFvrΥq·ΖpN-ψC½ζέ8ώφ?ПyijΗaΌσύΓψυΊj¬/ΘVR%l½΄Muΐ[6zW8>C}‡πκŸ2$‰xOύIαBΓ;Θ™·!χ‘ήηύχοˆ Yš―šΡ³8ψ/τGΖΑ[Šσ±L%­θΩΩQŒτEw σΚš?πŒΙyMγ‹θϊ›hΐο5ψΐ΅χ#ڞΉΞR°<Λ&yPΌ: IK—Η+*Ω·οŒb°·Ν\†ΖσΊΓρF+Œ”― Nΰζέ„ΰ]ΪΗήψŽΡ©"νθ–›Ek¦eIς=enzέ§ΞZ2œ^Ξξc-ο“αΠg ΨRpυάμ$œ@χ(Uz τ=Δ):αÐ| ?ύK4όΤ,ǘΦΣu―v}†BrΒ΅jy²ΜKs΄γιπH3n„πB**'·ξp½+ʟ±–Σ#ιόιλJΈ8σ k¨€ΉioΗ-’φΖG―<|ߊ‚0NpΟBpέ‰βΨΣ GθϊΣYŸŠ{h9«gχ’Dς<(‡.\=sΦ7ω™ΉM~2`}oRδΑmΖ—ž·UZύ­8w@ηΉΠLT—Φέ+}+’Sz»ΠƈJθhιBώ­Κv‘=}θ“^Šιƒˆg’²%9著αG·Ζ±‹’,Ο@=L€.u-ΑΦϊZوd°χ†Ώ—Μ`›wύ-ΣGΏg9ΩΤ3A„Χ»½ σΣ΄=πL 5γt½sώΤz:―"ΜgtΉΐg’¨u!^^gEξΩΕΏ(—+–ίvΦKJs¦‡ς κΑDkΘ)/©‚’rͺό<ω]¨ό2=Eξm†™Ϋ·ύ%y½4/ΧKσ„ τՌΑj½d,₯…β3­I$€\Dλ%q)&έLθ$泄žξά}†ΐψXZ$ΗW 6xΡΩ«σάfœγ€δmβM0ŒXΔΩγcΝ8;Οζ‘»™ŒΌγΤ1Ώ§`r‘υvœE£€τΙΑ999γΠΡIΌζΟίιθΕb}ύ‰ΆηXξV7:ιoΎ§γ‹_ΗOζέx’Oί£:šι/†}%>nnDδv/œ^βνχ£gО!—± Q9₯Ηλ]QώŒ΅œ€Ψ͟qVβqΔ<θκ;Q»Gu>5‚+ηŒn΅b¨G`ύ‰ς ΤΧ…Όή5Μ…ƒQ~a9sEq1―SFΐmψξώιηnW*Υwβ£χ’Q­λuΦ½ό_°ORR=…ΧώκŽ^ϊΩοLͺ=Ύ …=Rhr֞&Fκ}Άbxvq£W©yΘ;ΙΞtΣΆ‡δaΟοβwŸ­•«ΎτίΓΟΗζ…žc‰g)1ςΔΕόi–™Ο7ωΜcΣc˜ύ2/)ΊΞŠΜ³‹y_¬RSΔ=ΎYΥιjΊSΟQ6~TΖόβ.Ώ5Ό^‚MZΰ<ιz)αy^›ΘΘ#χ;ŸUTTΘ ΆwtE&Χpί"PΊH{KKΛΌΒ 6οΟη$άΩϋ”όTŒχz-G~Ώη[ΓŒ#ΐDˆΐBηΧαaqF€Xpx°ν±*,_΄Ε[λȁŸok=Ϊ™ό/Ώ3Γh:?Ζ{|°ω€`Fΐ1χξέ“eŠŠŠΛJ]]]²ά’EF—₯ρυθ,wι~ψ/Φ)œ΅ηŸQ9 σ!K+―XΆ+μcmλφb…γBhGΔΣΚΒΊ&vb³OΙ™|Ίαόα+9K'‘ˆe­γ“/ 9yC ƒoŸή»HΆnΪ Υ63WJZλσ+βΨ3ΰπ˜?νΗ|ζ.Ÿ9υΨ`¦Œ%Eο)±τμ’π–ί’LŒSΑG!`~q—_B@mΕλ%klμδ,pžˆt½”π³ cF€XpμX ΟΞbtŸθΔυ“Χ‚ΖwΏηΒ Œ#ΐΈ„ΐBηW—`βjF`!!° Ζ—vΑ±cF%η…ΏρίB:₯x,Œ#ΐ,4ΧμΨυ_£1¨žΞ+Ρ¨Φυ: ͺEIξjΪRΎgΖMΧ[ΰ F€XXH”³3–ƒšοω– ΚθΑho?Ϊ›OγόΙγΈp}aήA<{Ύο|λχP\΄U+±tωr¬.܌GŸ{ [K2Tπ«ΧΝχΠ s„ ωΞOαϊ/ŽχύΑgβψ°$#pΧη|Ϗ€U‰ϋƒ_x½d5œΎ˜οόvη(++K.::fνΝΣn]\ξώE =-UόΠΠΠΌaν–½X—CžΔnυγβ±S›W½ηΞ2‘! *Yx»ΗσΠ|ώωηδΩΩπ~ΛοiθŠ P–fFΐ‰O2Ώ2ZL<'3Œ€€"lyΈ+|©“³ΧqρΤϊΨΏ=ωύΆώŒυϊΫ8!|Δ0Œ# Š€ΔίRHMUή‡:­ΗλUήΓ?πΐQVtfEgΓ ΑŒ#ΐ„B@zxZΏΏ<θ₯Ύ*3ίσΥqΨύ½9Τ‡‘ώ>ŒŒψ?pΨ•/εV—lGυϊ5XU€΅6㑚]¨ͺΪ„œtίvIθΗρ·„³ύΣσeHάΟϋšοΤ-Xώ όΰtšο>sŠ —gœ ΐόbΦύΐ/Ό^²žΞ™ίΜχη»pύw2;¬θμ-.k…ΐ|UtN’χIs“ΌŽΆ‹—1e5@Ng}Dυδ|υƒVω}‚t¬*[܏ωz%Δ6έ<F€ˆ3}eΛ‚ζWζΟ8Ÿ`ά<#0O(¨Έ‹™ΤόϊWπΛώ=S]XϊPφ‚ζΗD[_3_Ο“‹…»Ι0 +:GiŠΨ#E”€εjF`Α! ΎΌ_¨Lά„Ή4 Vη’'ηXžΆKκμooΐ‘Χ_œΈΔJΞΠπa‚"°*υ‚φΐĞAτΔγnέ0ΏάΣl9H^/YBΓσ~ώ3N+:ρΰ#1ζ«’σHΗy\hjΐEVr›x–š—TΌ°Y~Π}’ΧO^“Η )=Hκ$e uύΏεΟΛΙδN3ŒΐΌ@`‘σ뼘ξ$#ΐΔ^*ίοβ½Ύζοlq½ ΈqF€X@°’s”&“=RD X–`κGnιαb!z0YP“ες`fϊΫp±ρc|zθ—8wρ.]<ƒ‹τ³ιγWqψΘτσž΅.#ΞΥE‘KΪGIiq-}€\HόΖ–ζΡ<{ΈnF 4Μ/‘ρYθΉΌ^Zθ3|o!­Μž_Ef”EPc™@ζ«’sΰ8ψ˜Έv΄Σ+Y¨cV•sZs_ζ«8π/#ΐ0n#°ΠωΥmΌΈ>F€Xxπϊ31ΦΧόmα][<"F€ˆΡRt~ΰ»ψ§ŸGcH'>z/ΥrŒ#ΐ01F@² Mυ€½ΌW?~Kžηsώ‰οΧ1F”›cx#°Pψˊγ/·ΟάΟ$ ΏHJκ6Ϋͺ:i^"νίύ<·¬θl+.Ι0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ01B`IŒΪαfF€`F€`F€`F€`F€`F ΦdoƚU«±Xͺγσۘ˜μΒεΑώj -ΊεΕ?Γ3u₯˜κkΐΟϋ«θ]ά•ά”΄¬ΞΕŠΕ‹1Gcœ™ΐΨh3nά >eU.–'λRf0<αΥαeόΕ‡'¬°υ`cA’—-•ηbf¦zΫό‚‹ 9»Ύ…―>_ŒήφΧΏ4γ-?Ηkoς§E9¦CwιόΊe<ΏτMkετ‰†xπωiΘvxΰV{Z=aΖ'w/)ΕιyX½, >@ΜDΧμΨΨe΄™γ’ΥmclΦן a.2Hχ g90;Σ οhu;o7^ϊr=έ‹ζΰm9„·ήot―sι;ρεo<‰¬eΐdΗόθΝΓξΥ͚^οntΕΙΊ'~ /k―΅zμπ§q‰…€Ÿιχ›t½[$Χ{4y)!Œηϊ:™«θfDαφέ~Œ›υ0{ε@IDAT3k5Ό\xn ·^Š'Ο›™ΣΒ#>[‘”»wF0=ελΑŠυΨώΘf9}z°'>k±μ+:[BΓŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@όX“_Ί¬\Τ™€άxρM΄X|`p°lωJΉτŠεKν )Ϋ°£t+6fζšτπI΄\xuϋU­S žΖoo1)«Oςβtγ_γΔ /-mžέY4}‘ρφKŠƒW %6;ΚͺbHΎP֎_Ÿύ7\ ȈΗaz5v?\BJΰsm?Ž3­CΡνEŒΪ[FΚ΄©X€‡s7IVύ7&ΊxT˜_‡ΒΥΩH_•ŒUωH!εD% γψ‰ΏC“Ιœ Ÿj΅Ώ‘΄'2Ύβ’}¨\SLJΞfΧλ14x'ίE§~,.\ϊκ8'+±ϋ±=ΨR·•G%4Ǎ· {¬{πΏ‰L©šΑΌφΕΖ ΖΧνΠ?tK/,”ϋΆbDξaθςNrSW#«0W{Ι€F(Nj ŒΟ ]οΞFTΪρΊ'~‰5 –β‡@,ψ̍λ]E(šΌ€Ά§ίψ―KπΔ#/cγjίΰ§›ρζ‘7qCΓ";·Ύˆς5ωHΦt‘ςίΐΐOq¬ιN†ςEyITNΧ%ŽΖ Όxς±X_½A[#ι{ςδΣ=8ύΙAΌχ‘Cγ)^/!ρΧK‚<‘?A\‰‡γ3«FΒΛE²^’Z/Ο[›Σ-ˆŸ‘σ†½{k₯·:ΐx;ŽΎϋ1F€ψŠd€qˆ”Ύθ&iA‡Ρ~7’iVx­Y½%“?U<Ά=R’αΔ†^VTN_ΗMΘ{ _ΉZy¨ω ~ώή “B.'%ͺ…—ΛΓ ¬.^>ΒsZ8K¦ΐ‘Ψ?½nΛΉfΉή2ΜώθΉ€0ΜKΒΠ%Œ`’ς<[ςZœ"±²XuΗrX»―ΩτDβΔӊ Q9}wΎ?Έ hͺ3»?θΕε1γΉή3xw'ΤωxiΡ"§_ΡλΟ \6zh΄2«ŸEΫT!ž¬ε‰?tWΆμάΥ?~oΓIX1sθZ’˜;z‡ή8ΕΜͺΞ}†F‡ΒήEbΖ»’Χ»Ωπl€ ―{„ω%Ζόi.Οιz§‘zιz·βΒKΆ{ηΌ`œΧΧkŠžΗϊ~–Ί.―•!ܜ0Že’―ΏΧ`L“€η”!,Ϋϋ2Š}ςdwι’Ό$*ηo™cqB`|τšOΏ Ώz m£ϊN4£εxΎόη 岎_rσidCΡ™ΧKzΥx—DyBR„ΏΆω, ϋr‚λ₯8σ|ΐpωΠΡೡek5ƒιΡφ«φvσY± ©δ˜YΏ^Z"yoφŽ γσΟοaρ’EX•’‚€dςήΌDyωp›Άf»5=‰ρqYzdh©™²³ ,‹ήI1τH!-ΨDε,g—3βŽ€] ―XY2©€Δͺ½8xψ΅dR‘qό+z݊ȹhΉoΧ2Μ1,ψΨε₯Δ‰@η±§ΡΚ"‰ξa Vχ##¦«X yrτ΄Q9Ρσ‘εΎ?ΜOΟX‰Ξσg}Lωšϊ'Τ^Γ':ϋ…εšWίqκ§ͺδ ’φΦzRr–6ΈVξ‰x Έ­ΤΚ'±w%–’ςάβ%X|«Ώϊ—· F,h;% »ΎςΦ§/ΓjcyV₯&™_ϋ5|}ƒ€Α‘„ΕKή“ŽN)^vΥt  »ΏςElͺ¨’σŽo&Ιw1ύw6αΒρχpμ¬Ύ|dνεTξΖCεΘΟ/@VZ.V¨s99‚ήώkθΊpoφwΝ₯˜Π<άΊŠΖΦ«ZŠW©ˆ€›γΚIQ8?΅˜E"iOd|cψHη)=°K·σR¨λ/°ώωpΌe7°Ή’ž<ΙπA S£=θοlΗΕ“ΰ\GΰΉγδϊ“κ«ΖSίή‹Œ€Ε˜Ίz ΓΩΨ½«%…κ=ƒyFRιύΣVŠuuuωgH·^Zrοή=HJΞΩΩΊ7Xώ’ZLR€–Κ ΚΚΞγήQ€e†–Ρ„# Α")Φ)DΫ•S§Φ©…ž*'τ+l½¬Υ•­Υ§zγ­O§žy %τH}iλlΗΥ¦ΓxοCε…mDλvγ…}dΑ]ͺXΎθo?Ζ†ay뱋[Jλ΄°π’ ΉaΙδΔΓ@dνE4FP9>―-™uJWXτΊ•ƒ–ϋN,ΓtcMψ(σ’ε‹ γά…β%cIιh‘YΎ±η“ϋΧσIbY¬†±vμΙIΤӊ¨\0W$t ίψώp‚ΖΥ3V@_€Cφ$c%Φ|φBπΌΐσJ©§y*LήΣ8ͺ*9«i·0FήsL>‚©EζΕ/συ}ΛΧFž 90‰)RΞLP%T”—<‹žΑθ‘;]‚GjU%[Jώ§―λ\ΛeόΏμψξ!㣃H.ω~{myζτ‡±ασ8Υς6.K0θΒκδEY ikκρΫτ§†qo.\=‚¦~»xδβρ‡΅ϊϊ:qAί^F ςΤ{έt7ωͺ-έπuΤiΚΡjλδε7p»k)K·£Rς4[7Ώh±f΄}xwR–βΞ½9,ΟΩBΖJв^λ)τŽMcΡ"ŸΉΕsκΤ΅•…}_yQ§δ<‚K g0LχψΜ ;PξSΨ,ίϋ5<ήCž|eGΛ‘΄ηozj° έ=έ&±Ι€XMοΣεΔ’]Οc_ηe²±₯³ΏΖ0±HηAΏžΒFυη‰iwΟO]ΕQΧΪ³9>‹nΘΙ›6νA©zq’ςΠυζΚΰώ:Β\ώ‚σ V†ηΎυ *΅4©O‘wς«=ΓX’”‰œ’2”‘Ηί;wΑ"ΧA13G׌1x;O‘ΉuΙΕUΨ²Αχ]ͺΈΫ«?π]Ggqιb;ΚdOΚΉ()ίFŠΞΚ·0M;Q\‘α;lE›μΝٟλN¬U[UÏ~\8qΘ_mG'nΠVο©d/²"k ΦQމ.ΆVΎ,7[3θQΞ΅έί6*9w‘gλ«έДΌλj*eΩΜMOαΩg{ρ£Ζρίh?‰ζΫ’Ggbθ₯i¨Ϊ€τσaΞ΄ζ)R‰'Ύ€SržμΒι†Fxbs}AωΩΊ₯ΎπσηοΊy?r~½λ±3‹»½ξ Ο/‰ΔŸfˆΔ/ωΜφ!ψ,Dυ~ζB'’<[PW­x·Ο¬x ϋχvαυΟ$σ’_άι:«β‘:%η~ZžEίΰ4–JCfa1ΚK‹¨rίzߌ?ζdεΖϊΪί²ƒ˜o}Ζ·‹Λ.žύ!.,ή‡νj S^θWΙjrπo.6«EuyOaΈF» ά .iL ΟKΖςꑨœ*ŸHΏχ+Ώx—η_$Ž t…™”όΒλ₯λέDZ/‰ςD˜SCΛε3ηrBλ₯ΈρΌP "ΜgΘαωl- ‹Φψζγ&z\°57SƒΈv}·–dΦKK/Z${rΆU ’Ό>χΞ\ΗνΫ³Έ=;ƒ₯Λ–ΫuVnAX$ΕΪ#…h{’rώ)uf‘η—s‹Θ2z]& 7l_,or|kyΈP_Pϋ:’š]ŠšGΖq‰;h«>QΟ©΄ΝΤo½¬{Ή!Χ/Ypο" ξ£ŽΠRR_³΅…—T*BΛoκ'{ψΠ£­ΔΕ,™‚λ±—"zέŠΚ…λ• Λ}‡–aαZL”|ζ%ςBΒ‚[?O‘yIWrΑZΎ±η“ϋΣσI‚Y¬:²ΆγΙIΤӊ¨œŽ+<ΚχΎ?$žg¬ΰ‹†=Ιθ1‰5_G©½»τ}»Ϋ/',Ϊ³ €θά’«²γθΟόŠΥιϋMŠΞjmΊbZ4gOυΥw8ٌ_ώΝχp†΅₯pΌkδιYΙ όίφό‰ς|`ƒϊc‡<¨ŠŠ\οͺl¨_7Χ=vψ%Qψ3&ρΘc>³‡zh>3―cΈε=ό=ynVΒ! Œ1Ύ΄G1Β(ΫZ):λοNy ¬³ΤρŽπ/|Ζmώq€n c˜€aBΈX~‰Κϊ:\()9Wψ^u]k?ˆ#½@a‰ί€rhzΜς™ͺzσ+؝•ρΉ;X’œͺ=ΗHΝέ8Šχ/6…ν^2«DTΞ¬x§έ―ό²nοSΨζ3DΪΡ~–Φ-!Bh~αυb½Ηυ’<β΄0d‰ς™ˆœΘz)^Tή]ik6¬—–¬JIδ­ΩnΚJ2^―3·Θ‚+*ŠΞ Δ")Φ)DΫ•ΣŸ4N,ττrŽβZFϐγ _{™₯UZΛύ­MδΡβ’ΣςαΩP€Yk(βΜβ±ϋŸΣ)9Ά£ρ³3˜L.Ζ–=΅ΚVbϊΚuρˆ-%΅ΊBXxΙe"±dρ0I{Ϊ Ξƒ_N8ζπΌ²dνœθu+*¦Ÿα-χ[†…i2A²™—ΒZpk3Ž—Τ‚χ«ε›:~»Ώ!πdKήΔ²δM‹UΛa[žœD=­ˆΚΩ½Fβ]Žο|H@ΟX!. φ$CΰĚ―]o/<Ο;^IΕκ€$ί™γΕθM³π™X`@βTKΐ,ζλϋ―π€δ.1ΑŒuαΪP? ΦͺͺV™ΘΛ€b’žά2ϊ<ŠWIitώ…Tδ¬–Τ¦θo…―ϋ^΄wžΑ΅›“HΝ|5ΕΎτbT•lΕeMy +%†qνFyΥυbzn1Ιΐ?GQ6–+Κv‘ƒ;}΅˜lFνΖ2-«­³!¨|ξjU‹ ρJC·β‰jŸhRŒ>|κC¬}ψO΄:ξή½£ΕΥΘ¬δT–,‚γb}†;ρ”ΕώΪ-Q•˜Νλή\‘(=JΉΓgOψ•œεβC8τΡ'ΨΈαKς{νΜόBS«NΪ“ͺm|ο'rνf9|“"¦4ΓK–J'Ή{!yΘΠ)΅ŒMŽΠhά/ΦK‘σ„ΙΘƒ’DωLTNμύKŒyžω,aω,ec) |B³ƒΧΠάtJ'LŽb˜ήAƒ½΄diΠž±¨Ω‘*37gς•ΛLΐQZ-’υ#Β±φH!ڞ¨œ'zFIϋGξXFϋΫ;v€’³”Υq ι0D,στάM‡5%gΉe²?½ΉΛ+ώΎ¨±H-%•zΒ[x©ν©ΏN,Ώέπ0ΰ€=©"σ Ž-’_g硘%“XD―[Q9λ^Ϊ±ά³ ³n3dNŒ-΅˜—Β[p+σe——ΨσIΘσ[Λ '{>‘ν!­<Χh8‡8tbprˆΉΕͺΦΡΘ-‡m{rτ0'*§ΡA„ο¦ΡζΟΊ•οφΞφπχ‡ΰzΨ“ŒŠI¬ω:ςφœςΌΘσΚUxΙC&Θs‘δisΝς<2€BF^ΌžΔ.υ#‘”:=„‘1-[,Β|Ν|-θITΨ“‘Ψ™ΚRŒ@Œ،ηuJΞC7Žγγ¦5ΕΑΎ†'JΛδΎ¬]· ›ΊΞαΒ­u͍fR‘’)mϊ•œ}υ_%… Ÿ’s`“γ€δlntΏ‹σ΄£Y]ŽrJ^–AΕθ~f2걡@υ΄ιΕι«MΆͺNΓ2Uηczλχa£T5…ΛΝΡ8B‘άh>ŸoβΖ„œτί@y%Mΐΰ'ݏα^σ>Ίύ%¨ξΕ?ΑΎ:r%.Dα”ψ<"L²ͺτξ…wJš|σΰΚωi^΅iͺ;νΩŸΎšπ©ΝΫαϋv‰ιΡΣ8τι»d&ΨΊώΒΤa•½|)«―.ΤΛz2© ΅d°1¨xlΡW7?οΠ@HνeI:²₯~΄iE}₯¬pγY_) KŒΊzTŸψύ€ mΞ±•μΑφΪ:­δ哇΅Έ!܍‘I2 cς³Ž.,Τ™WζyPL€;P˜§) φ‘B1y?LΟ’8_ ΘΝSγVΏ*Α[ε‡J—”Ϋεk©Τ½PECδ9ΏUΩΞεAαλέVΟ\\χ8ΰ—xς§-X˜Ο 0Ν;>3τžnN„Ωi ιkΘ‚£9ΌRq`ΥϊcΡuVCγil­Vw­Ξ@YΝ^ϊσΥ<ُKηNΰƒ·Z­¬ε‚φψΕ½υ΅~ά–ρμzΝΨ’dO^ 0ΖΚ„fσ7;ˆAΛεg[ήΔY]#Υ½‚έk=rJAξ’’³εϊΗ/隠θμ<―$μ0Ώ°ŠΏTγ…οΌ‚u7ΌžγxηŸί2΄|ΐλ₯`Lθ‰ήαzΧ¬§iφψL_k„<‘―Κ*.Κg’rΎ~8_/Řη™Ο gLβπYJŠK΅Ύυ]5±rΥru‘ι2*²KX΄Θ:Χ"G•ωόσΟ-Jˆ'GΝ"IΌK‚’±φH!ڞ¨œϋzF9ϋG.YF« ’5zΛqσ—αjυΧ™Εc`?ƒ/ԞNzαb‘θ,Yj*AΜRR’΅cαεkDθΗ-;›LDœΧξY~›t% IτΊ• hήwhΗr_ά2̼͐©1·Τ Όήυ·JOmylPΕΌDH°ηυtυk‡ηΩσ !hιι!Ίφςμίbl±jθ~δ–ΓΆ<9‰zZ•3ŒΡζί,<’ήΗyέΚχ;g»ϋCP=μIΖI¬ωڍφœςΌΨσΚΝιqΒHΡζΚ[ϋ ^X’ƒ«£cX™V†-ώm­%qΙ3Έt’9H`ΎfΎ¦ΣEΨ“¨#Ο.zO†ΞQ.Κā[5OΓΣδiψ?HΙYbe5\n=B `e¨ρζ#7Λƒ έφήwͺuΔυ—\χJή{ε0ێΛW‚= /]¬Ύ+U ΪϋΉ3c£`*%Ν U9s¬χNyŒ‘jV* Ωζ–ΙΕΨθsΪwν—ψ KΑ{czβAšŠ άΌaτ2m£'‰Sδn[|MšΣ&Λ…ήVΥ δ<Υ׊Άφvx'©‘E€R\„ϊ=[•†/v‘A—ͺH)ΒΠΥ8JήΥE‚½σS€fsΫν Œ―Έδy<½±JkxŒ 2p•–iˆΨΌώ 2Θ ω™£G°φι³s·Ί|;}:hG_”Ό '‘ς­xΏώξ:έ}·οy}ΉΕ€€›½λ+ΙΟssJΛΦϋΊ?σJΘβDjν£δIΪWAίqœ:e₯ΘΧ…ώώ ””R²²QF ΜyωͺQŠ$_ˆόrΚ2TΓƒ υHοζΙψGΗU—Žώ}τ bυ\ς6ΪeFόΎ>ΖθΗρόΕ¨_Νˆ_ο5™»·ξq_’ɟζ(˜€2Ÿ™€’KJx>Συ•’ή[Σ¦;z,Oqœ¨Υ„ΪT$λ¬Φwπχ4Žηκ!.$“w]X™‹ς]Ώ ON ^ύώΟB*;λ€Μ£1^_o-¨BšΪ“EΛQΆυk¨To¬πο$²¬ [kΏ†MχFΠΨtH30UEΟ^<Š5Y/£Tz>HΞB.5cκ@”—Dε{jqΜόbŒ/9b~)Γ3τMm' 6αυΏ~-€qšΤ2―—Μ§eΎ¬—{oŸ'%͏EωlM”xPκ₯ιz)Ζ<ζ3σFMŸ%oD‘zkCG§…W΅ŸΎί©;³†χŸjΆΊ^’ΗΈ Ρ΄HŠυ0cν‘B΄=Q9<[΄˜Tb™δŽe΄VύΈ½°Ξ-υύ|KΎ‹άR¦…—„σˆœΆκ|œΆ`]ήΙyνܒɺݐ9’Χ­¨œIglYξGhfl耘[jι―wq Ϊ ˜— φ|’–›<ϞO Z.2μέbl±jK€–Γ€ΦS•¨§Q9ΓνπύΑˆ•ζMKτu+ίŒ“hvdσώ(ʞd|ˆΔš―έhΟ9Ο‹<―\ξlBy±GS΄ΛΛίNJ'’΄Š{»M_@—ΆHaΎ6Γ|mΐ#œ'Q§ž]TO††Fψ€H0W¨*ΈΔ±΄M²^ΙYιj?Ζi«dΙλΎ–<θπE€,• έ™†4’ΐ°*Ι§U˜ς8ιΙ€'iϋι`j)kMΡ^T₯«κέ8Χz\ όŸ”ζd½9CΤιαOρΑΕ&_Ι\δ§«Ζ?SδΕυJ` q?ΎwΧB{9¨g…Θ* EAϊHt"Y* ͺ2αΪΫVξχδάέπSΌφf€Beϊc('EgΚZ΅ρ—\φjΈ΄ϋ¦±ˆ«G«‘:cΓ€cBΤ흟9•;αIΥω$žEγ)I‘Σi°Χž\«Γρmͺψ:Ύ σΞtύΪ―πφΕ[΄}ύΩͺΝ¬PŽ>ΝJΊ–6:€qIg–q"Yΐ£4)οΊqύΩΟZ[―`[±dP’ςδ=t9Š$Εb) 6“Ηz%κήYΨΎc‹VέωS'L•ύ”CθJ‰+V¦ pΟCΘ’”ΘG[qΊs1jjJ‘A}/\*[ϊδeτ†άίΜΜJΟ₯qτ η“wΡ0ͺԝgΰTΗ<:ύ oΆy^¬‘\οφψŒΈΚ₯u{ό=ώt6 Μg‘ρJt>3φ>•v‘όš&Nέ”όί¦§μ)kφEΌΞj=Œwθ,M°²Ω…λQVU‹’lε±’t=Œƒ–Ζ*ώΎXΖ\Z_Ϋγ²V§ϊ»B†‹e!1ςrh-<Ϋ† ~‰±;ΈkC1]”—DεBt8 ‹ω%€ΓHψΕƒ}Ώχml)τ­­&›ρ‹ρ6vΛΰυRΐ$Έzνυ’ygνρDtω,š3Cş>+))ΊΠέyΕ佦–mˆ¬X½šžR.C* —΄χ@ωq8Œ²ER¬G€^ΈR»±πH!ڞ¨\¬ρtΉ½αΑΎ/Q|Ebρ(W‘εN―°-%ν[xΉ¨Έ‡G­G<ŽZ‹ZaSK&ΡΦD―[QΉ€~Ϊ΅ά΅(»ОνΓxXjΩξ\ψ‚ΜK„{> {’Ψηyφ|ΜXˆ΅Εj˜19²ΆαΙIΤӊ¨\˜αYgσύ>²†σˆ–ΰλVΎ?XŸίΎϋχcUμIΖ‡G¬ω:Jν9βyγ©`ξyA*sλή> <Ύq*²uΞ³ύΈάΣ†E™5(K•”Δh{ξ‘΅!˜―™―iS:QO’Ž=»ψ!)ƒ§z}x%gIΔ;‰Iϊ‘|ΊffηAεύ… ‘ΜC!)«ζcƒa½ό™υΓήωIϊ΅Ολ§=_˜lΒ):›@―–0ύ΅Ϋž$l|©ΨVύ"κςΥ΅α._>€œ7¦=’\–u$xΖΚ*lΨαAΫI3ξ6φݍλΟX£½£Ž¦Vτξί iσ=εΨΆw©vέu_Ήδ>7U>†M’i) žBΣΡΠηΛ΅Rt†dQˆ ΅ΚΧωΤh;NO–sKk°δΆb1Υίƒ©^κυΘ™ΝΘJEδυω!RV ӎ,&ό_7†FH9±PRNΜEα:Ί―tŸ‰ςς%fŠNpΒ»ϊ8γΑH―w»|–wΦ=ξρKtψS?σ$Ξ|LL“²V²Δ³™(Θ­Dγ˜QyͺtΓve›dΉ{δΉxΤ\Α6>½·ΡͺώΓΧκ ¬I†uΚΖ+Ύ€ͺβΪq΅γ*UšŠE1;Π€N]Y΅΅”ά=Ψ_]£bΰZ“©sΕC»P¬>§M7γΤ%#ΆZRdΜ /)K§Ιžί¦pώΤ5TβιςνςΞRJί@+:Υ¬€ί””T䦫»)s4Ω2 ¬‡=>#Iκ(©iͺ–²yΝW::ρd’`γΩΌoŸπ) *ε7?’(CΚGCƒΤƒ“φό²ΙX!mcj¨pvΤΥϊ‹„ŠΡsΒ”΄ώ†G[NxHqh ŒA$σΊJέsρJžƒ;η§Tλܝt²#_ΣχΟβΎCεΗ½φ€ϊO*εΑ£;žGU&bΘ:ΊρΩω u £λOjrή„6t^iEUΆ€œ lyτI΄žόA°‰Az5Ά­»CΊήqγϊ‚hτ0:Zχ!ρR^žΜSkιΗΥ–Ÿ½wβ:ΣDΏ žήz!!!d„@d^Ž Ζ?‰q:NbχtzVηιΙκι;}§οšY½ξ¬•5ΣwζήΎέ«_“εξ$‡γΨqβ˜Ζ±1Δ`°°@<%’Π[B!ρΚύ«NUͺ:uΞ©ΪUηθρo–8»φσίίϊφͺλΈzςwάPή+M„,[Gޜ•;΄6~V‘z¬½[.S@­¦ηψšϋ:/£Ώ)7λPΈ„ξM”{―k}τ^ͺ|ε+ΆνΔyRtΆT©Ξ©Βϊœ»8­ΜƒΦ€!’ӈ ςN©·—Μ+ͺ|όYΊiΚ6ωω3g7*n54λсοφyΠύυ. ΥŸ Γ‹}}~™ ώτhβ£ σY(˜ς™±­”?Ί§χ7ψ“kΆ‘Tεΰ› iΥž—ό ;ίge)V†cύC7¨iΏϊϋ0Ζlσ‹Gϋk{όGFŠhT;JFέ֏Gh[#πŸ:χ·8j8/*ΕΖΌT\»\omά–²Ο–=ͺέLή΄Ό°ΟKšPrD΄ž±•X<šύό²υΥ?ςά$όο΄ΰΐ?ό4„ΉGQgΚ)Ώπ~IE.ψoDχKρ„$}DωŒΪβA7Ο_<βωΰ3 9Μg‘fAⳓ-r‘λ-φ ˆ΄³»j%}u¨SKnΏ€ιύωsg"6Λ-’hΟU’ύ‰Φ£SΖΆ…žπι}ΛhΏ.΄Ο­θθC₯όΰ%Ωτ‰_τ-/s2ΥΗ/αΐph)ιΠΒKί»K&ύσφπ‘G1x<¨%“©Š=ΛSS%ΡλΦq=§–ϋ‘³ 3!0ƒ‡ΜKa-Έ]πf­ε›‹SΦ!žlΙk'럾5Ϋϋύ‹{©AΟ_Bλƒ^`5nΣrX*ή““¨§Ρzκ βα—Χ^bΫ3–α*bO2>8’ΝΧυg˜KιΐΟλλΪ½_Αν> i“±­΄ZσjΨΦΫ€ΛΣ Εx„ωšωΪχ°5ΖOTο!F`dRR\φ©…ε­ά‹'$β\οeܝ›‹‚M¨Ξ“ΤΏ|‘Ώλ¬₯B―š“Ώ£έΈNϊ)²7δ\|±ϊe$΄Φ£ύφB”­άŠMΊρ]mmP”‹3QRρ$Š*6γZΟ\λΕθ$½Až—ŠάŒRTζω‡Jχ_ ύΗj,e+*Wψ±»tεSX©¬ͺΕ₯OˆϋŸν/FIρ>τO†σ Q]F²Θ ΠTšϊkl>λ―fŽ‘‘“9X$™‹ˆOMƒΙaρκ=xνΥhΊά{sη‘‚υ] _<Švε…ϋΨ‰F\άΉe€(Œ%xρOώ~³ €;XϋΨsΨ½Υ§Έ)5Φtώ$©Xύi‚‘"οΦηΎƒ;‹>Βω“H­‘O‘?ώŠ%9l…V £"SR /Δή?ψRΘKνm$`ξάϋθ?wΝ%j*fΊE’ά{~Αn”§.Ζƒί‘s €0ξWξ)ΙͺΕΞΕ՘C/ξL—ο+’ͺη§ά³Ε΄ ξϊs>>ϊ*λ£―“ΗtE’tΪŒ!1σY<±<Α ޜ/ώ½Gp†ς Αρυg¨σg?9υt½Θ “YƒWώ< Η>ω.vK΄\•EΕHnώ•¦θμΙυ'ˆLsσel—υΎΪt‹T…/W“/ΟϋςΏω©…ZΝ¬ς½x*{sθϊK –h>ψZU₯ž•O£¬\ιηζ94’2pΨ0rƒDΞωjΙ>tuψκuχΌ€BMξ Ϊ¨†φC‡q¦†Ξ)%u^ω‹?Cύ‘£Έtα2¦“3‘–Q€’U(Zdς”~ƒΫΥΚ9X—£ΊθΏ‹»‰ι 9rHOΛΑΊŠΐ"ςΘOαξνkhn"/ώ‡qeG Š%ΓκοΕψ=φ9FςQσψ.ΩcΆ\!9α]}€˜δΑυοS·δ32Ψr»οqΔ/ΡζO=ρg>σΟLS^\χUΌDμςΡώ£Hέόμz©N3ιΉpΖo,!Υΰ%ρ}V)Ά½ςT€φαβηΠΩήBky}Ε$kΦoΓΦκ~°}Ax<L¬Ά^40φΧ&l[.Zδd΅‘qΩΈQ=Β²BΤ–>J’،«tίq}ΌŸ 2&i/„ά΄b”δ•hJΞd‰s퇡ͺZΔ/i΅θΙιύŠnDg3Ώ¬Ϋχ§Ψ)@IJΞή c™»^Γσ~Ε#ί %ΜΕto#=π~)2go$χK^πD°Q[ξ—‚¦τP|’ZθznφKβωPc™<ζ3=Ÿυœ€ό©nt6υ8ž¬ςG±©³Ξ΄ Η΄_rzy8ξάN…Yi‘DΘjΰFΓ#…P4;’υLkΫBΟTΟΙαΜYF;³x‘‡«ͺEcρZΪΣ+:oAω#…A‡νΖR©…—^'–L^xpŸ_Ngσΰ―§Δ"ζαΓ;Λo{–Z4ΡλV΄ž§A Ω€‰‹νζ₯ΠάΞyiφ[Ύ™Οhφ|Bφ@³Ωσ‰G«ΆΦ-‡₯σ4Ό''qO+^xh1_K±vθ+#ߊ_ώκHϋΦ—}JΖKJPϋ¬τ§+$ZϋΔΧ±{­Iρ[-›ΏΟ½ΎU="¦F|ΏιοIΚμ%ΎρΚ..ΔCΫχωyΘ_Α4_Μπ^[qΧΧ»­^ …άν{ςK΄ωΣ089`>S&Κ> Έή“PVχ ωΟp6ŒœΓgo5$‰π’ϋ}V6Κ6I» ²¨·ZNα¨f!’¦:ύ‘ύubͺfΐcΠ}1&?I]’±‚ξ;Vδγ.œ5TOΠZ1‡ΌδΊžΦ@μGf1Ώ,YͺLIJΞR(ͺA΅ΞΧ—θϋl~θxΏδΓ° ΰO`JΤP>0›Ύ€δδΎΨͺΰiξy"xێsBπYΘΆBΥs΅_Šž9x2™Οdƒρ™€ή<ΨΩ&m,,ΪσIgΪPh!rΛ·ΙλjΆψshΏφΊχ—ŽPlΆZ$FΩ#…P4§’υΜ§ƒm =sEϋΗQ·ŒV]^8τ,Ρϊω9τμͺ’,.Ω…?όζ=όυ;ΙΈΕ©φ@IDAT؎'žϊ†Ο²ΫrΨ.,%E,Ότ28°dςΔΓ€ƒώΔ-Oυ”β‘ςπαΖ’Ι,£ι8C‹^·Bυ"`Ή/jQf‚'™—BXp ςlΆ|σ³μωδαρ|"Νx„,V­Φ—–ΓΞ=9‰zZ­ ¬o_^x}ˆiΟX¦S™=ΙH€D‘―eόϊζyρϋ•₯ΉOγ«UΥδ1σŽτbόΞ4–$ 8orTο•δ΅ζσ‹οΕ‘7gί…ΐ|Ν|ν;ψF FΈ}οv©Ey¦ί“¬&νt.]mΐG—΅€x‹ ]{oc ΫΧlEΦ³τChmϋ Ώiэoκ&ΖΙ;VŠϊβΨ\…0iλ½€†ζcΦkSR 2UΕΥ!\hϋΌΤ…έWήBύ’ΧQ«σ2­Φ8… ο[(U«%|Ώϊ/ Ι)χ,¨«Έ>:φƒοϋžBEΩ $ΝOΓbnSwξΪο?ρ/xczΟξ~…’'TSΈR μϋ€΅7g₯¬νώΪΰ­%ΰΩ/Q_&ΕYάlCύ‘dοx …$ο=ύηM2Ι‡-ογοΎw/νڎ²"γub£Tήώzν8G/cΘψϊGK^ΖFb¨ΔOπΧƒ}x~w*KŒη€,ύΝntt^3 Dθϊ›Ζ€ΪŠω|‘ΣοcZΙΏwΗ²εΗ•3»Θ»qΎR²WNŸQβ?Swp‹’U΅(‘$ΡύΞ”ΝٍJ­ύœ}ΟΎaNWO5R(7ΤΣy™”Š}‘½Ή}{6ψŒ%Ί{Ρ;’d¨?-πΖw―cο3OaγΪB5Υπ;ΦΫ†Žζ ~oΞ”;}k”ώWΫ ΕΖokψŽό~x{{ž| ₯9ώϊCυΈΨ9κjd#’žλώv<™?ς³δ€ηΥΞνρ Λλ]νLϊ5Ÿ~V|&•s³οqΚ/QηOi€ρ˜Ο€9σ€Ο蝸ΚΧ}η`€ ΩΝλΓρΕΑŸΎaτζL½ ρ’π>kmMΘ*©@Ίy&ŸΎΓh­‡ί~_>²ϊΟΏψjz±ΏΆΝ/VΒRZϊ’$MΡyτζuΓύΓάϋθ%εηœeΑV½[θ½ή„³— mΒ’§Ό€6!ZO­'Ώ³•_&oIœν…©;wόyΏ—ϋ%Χ<α?μο—τutρP|¦+ YΟΥ~ π„η$޽ζ3rΪ”Ο£«±s ΓO=£’ξ_“θo¬ϋΖη/¨£ξ—ΎπΗϊŸθΓ[ΞCgg§\)+G½6ΆqόγύΖΛ#²dΪψMT+% ??aοα’es‰΅―ώμ–n²GNβϋίύGνFY ©€*ιyτRPυHλK9ό·ψρώ /HόΏύœΓ8όw‡f―η'<Ώρε{7ϊP ½Ξ_ϊφ:+wύ^₯ΎΠ†_χΏγ΄ώ₯ΐκ½ψ7ͺη₯”εy/ωΡ_ό½φR φ›-Έηs’ηͺ+½€ΊŽ<™?ΐφz€“ίΦϊ ”Ο/~Ο+žΏtMψ£²η―£ωΆ?ΙΣΟΏœg±>δ―ϊ*ž/-5W΅8–< Ό‹Γ]κλ!_‘5΅ΑэΆaIov…•5Ϋ _ϊ¬ƒ¬‹}›”^Ž’½72c”ϋJ€Ύ¨³ΫτIπ³gΔ=0GFBη­FϋόŒvΞyxk$―¬ΒͺΌLŸg*‰3ΖϊΡάΔ+ΊS4―ΏhΜΜzz6ωŒςl²§ώ‡xΓδ­4β2δT`}Q.HξΑξί#c‡ χžAW„8-9§²έΞT)ϋΣ»4zwϊo•w§υ―πσCρΟqŸ3κ ZϋζOϋ³Ι|xΙg[•ΆD^¦Η{p:BϋΡ}–τκμ ΊχX°H–ρώδΊNž ϊΞίώ™X2ζχΧ‹ P΄,‹ζΟ§{1Ÿ―Ι;wG0ΠΣΧοΆgbζR˜_Όε‘™δύ’lZ₯YΞnχK1ΟσΪDΊ0Ÿωμπ›‰O>oA‘Eg ψ'ξΞΓ²€…ΘΞΞ…~ΏdεΞ’z„’fΉER΄=R8ξO™VΡzϊ³Β‰…žΎžΣΈe΄Ϊ YLjμαOίV%’:΄”taα%υͺ'–ίBԎ”_ΫύΉ˜S—@$<|Έ΄d2ΘhΧ²*‰^·ΞλyhΉ― 6€e˜ψ8`^²°ΰvΙK³ΥςM>£Ωσ‰ΒžυžO|CυΔbΥΖϊΰΞrXΔ“OΤӊh=Ω1^x}ˆYΟXμIΖ’C’ΕΧjηNϋζyχ+χξή’½iΞ›Uαι·ΏΞΡύΥ%“ΆHάD™―vΎŽ›S•}ΘmE³δhrΦ†1tτ4Ϊέψ)yΟΐ4>Ϊ„3³z|SΠ~’›mΟ†»‚Ρμ˝€φkGϋόŒvφ‘ΰ’cνgΠΰπbš]ΧΔ¬S0 ηώIΡΫ„Στِ¬œAτ“ςτX―ήΰ&ΦΦΊžšž…Kλ=Ύ"ΡΪχ0Ϊ?/˜ΟΌε³¦γž:ί 6“’kJ{ϊ_Αd—σϋλΫ]θ ?‘C€ωΕ[~š)ή/ Α¦Ušε<αvΏσ<―M€ϋσ™‘ΟΊ›Z\:άs™\?‘³ΧVγύά {tv5&O*ΟNΞ<`ψ­ηo!š±hZF‹Z<"•¬ΕΛ|Φβχ§o’2έΈθ=fΜ‰₯€—€AΔ ™MΒσrήdΊ΅d—BτΊ­'.ιΓP“yΙ7Λ^ς[Ύ-ίΨσIόz>‰šΕκ Y‹zZ­ok ―Ό>Dβœυr½eO2ώŠ_+]:ξOηΕοW²‘Ÿ™†€…‰²ηšϋχ&04ά„λ!ΎDΰG3ώbΜΧΎ9σ’_fΛ~ž=:Ηίυ‹»ρθ<“γ‰Ξσσ™!χΝ0Œ€;–ζ&cΌg,h#ρžt`62 *6bΙ<ςΩ~»­-³SQLύ’PWs=Ά΅’§Ώχε‘²Ά•%Κ7cκιK{oDE±ΡΖ΄pFΐ6ρΞ_αδ· |ψΜ \–p‹@Έλ3ήσΰσ0π ο—œœ\6Φˆw~ 'Ώόυ|vιb§ά”¨GηΞN_ύ9sζDšYΞQfσA΄=R8λϏΌh= ‘ΝŒe΄¨Ε#FΘZό˜ΡΊΐFφ-%3a/Œ Le’Ω—©λ°‡n-™Βv΄€θu+Z/¨ qσ’qς½ε%Ά|σOγ\ΩbF€`Ω‡ΐ#/W‘λxΈ0ΈΌΝ+P°₯(σ­Ζ0Π ]M ArfQς\ί‹χ‚ςZH‘Η>|•œα”G`6πW(ώu CΑgNAαςŒ€ Μ/Fΰ ~αύ’qω(ΰϋΏΰΣ >cEηΰψsN "P°γΛxνΩXZF%ω$&Λθ³Ηf§exΰ”Η‘Ύλ·ˆ·α-:° Na70/™ΡsΗKα,Θβ=ߌVψcwx†o?6JπuσΐRx‹ŸΧf<έρYΌσ8ωΝh…?v‡gψφΉ#ππ ΐ|mžkoω%ΝtΎyτ|Μ0$$+N9ΜΏLΔ‡SF€λ••™%$τJΑͺOΌηλΗΔ³ˆΐψH7Z;2[”Ε¦μΎΆz4|ψN·›2ψˆqf γί‡ŸΕcf5Μ/³zzƒŽχKA‘αŒ8D ΨώbΆπ[¬ί%lή²ύ/DΞ›±1ίg˜–$-³¬ήέqΩ2=Φσ*Cq6αv/Ξ=…±& Λc@`Yρ&T­ZŽeyX±z©ήŠΚΚ΅ΘJ]’”#Λθwˆ3}“†z³ωΰΖ`/ϋz1<Μgοlžg[μ"ΐΌ87’Ό$mώVν)Γο~χ;ϊάc §Ε{~ RφRDρ΄Χzl”βλ(6ζ₯π>―ρε³xηpς"e/EO{­s)FΰαA€ω:p½β—pό ωVχˆrςΘhπΟ[Υγ4F@@jJ²|888¨OŽωψ"z»θώM \Cλ…KΈσ³€Œ#ΐDΑ‹ύςσLΙs¨ϊ\SΪ稞D―|ΤΧωvχKΡE=vz›κkΕ…†OπΩ‡ΏΖΩ gqρΒi\h¬Gγ'oΰΠαΣθYYFΐ³‰Ώ¬ψΧ\†`"ƒσKdp‡VyΏ³Δ2ΪE€ομ!%έK!9Ωχ<Τ^-)U/ω _ψ‚?‘b½’σŠυ»°2‹”doχαΒΡ“ΰϋMΓωs_X–”€ΕX˜² σMI–Ρ‡ίόŸ8~ραQr6Aΐ‡Œ#00/yΊzs+Yΐe=²\{) Άοωκ8ψΧΎŽ¬qαΤψF€Οkoζ/ήω?œόή Δ­0Œ€˜―έ η―+ρ^ &ΕJ~w}§!b¬θΞ²@Ό*:·ŸΓyRΨΊΐJΞΆηš 2ŒΐΓ‡€΄’^δJΚΝIΉΛδη›]Η;4Ορžπͨ؈§&nΰΖπ FιοΖ„X\‹˜IΚ_X7λψKΟΏvοfrΈoF`Ά"ΐό2[gΦωΈxΏδ3{θχ|g=?¬θl‹λTφHαΒ¨6ΐ–>Q…›;c0/ΩΙF‘G^^ιαΏ•…½ͺΟωf—Cpψ: Ž ηΔ/|^{3wΌ>xƒ#·Β0Α`ΎŽ“‰―γΡƒ‘έ}:+:;9Έl0βUΡ9Ψx8`Fΐˆ€ϊ²[rβ WrVKΕ{Ύ:ώeΩ‹€τΕΝΩΘ_*Ϊ½›½3Μ#cfζ—™Γž{fΘ  ξ/ψώΟίH):ατ?ω|E[χ4΅³³SΞΛΚΙ·,sόγύ–ιœΘ0Œ#ΐ0Œ€I™ωΪ‰«Z²ͺά,yxN.H xΈoωΗίίjcγ#ΐ0Œ€}x}°—dF`&ˆ·ύΉΥΛϋPψ•——ΛΩm흑Šq#’•…r~sssΘrœΙ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@Ό"πΰΑYτΒΒB‘!¨zΙsζΜ1ΤOΨΌeϋ_RlŒΙ%—$-³¬ΡέqΩ2F€`F€0#`Ά€Ÿmpζρ™ΗΟnj#ΐ0Φ˜ω“Χkœ8•`™F ήω9~μΡ9Bœoφθl%.Γ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0ρŒ{tŽηΩcΩF€`F€`F€`F€`F .`Ξq9m1'4{tŽΉ)aF€`F€`F€`F€`Fΐc"εΡΩθίΩc‘Ή9F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`D`EgΤΈ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐDVtŽ(Όά8#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐˆ ΐŠΞ"¨qF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€ˆ(s#Ϊ:7Ξ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0ž °Œ[\οnΕεOΡzͺΌηά#>Ίmδ£€2jBˆίΰΌ’gΉC€yΙ~±P;Vy>g;^y©Žφ<χ1Φό!ήω Α;΄R·ΰ₯―οEΖΰfϋaόπνCή΅ρ–’ΈΟZ”’Τ,[°σΎ@;lΪ{ŽŽ^BΫ¨5_ΊύuΜΙΊ’­!Α;Φrx}Π ˆ^„Χ‡θa©ž¬Φή ώό±ώŒ$ΟG GνF‘―eΉœφ—Œεi™HYœŠ…s σόm 6 c"Μ@…Φύ…‡³]"ΐ|ν@§Υ3™»K’±ͺx%U~€»“cθ븊I§M©εΎfEgώeF€`F€`F€`F€`F€`bεΉu¨-©Fή’Εm&%ΰ† o£9ά‹Ί€šα,\"ZΌp."ύ2aiΪFl.Ω€5ιΩ‚νEσω·πq—_ΥziήΣψζΊj‹²ϊ€1œjψp|@IKفg·Τ!E_$DΌνβp ύŠ‘ĚUϋ°Ή΄K ©ΐKΫπΫ3?ΖωQS:C`α,ΛΜF:՚Ϋ/©;G8¬ά‹oϋΛr¨ΗχB‘?΅ Ϋ-&₯ϊϋi;†Σ-ƒ‘*Jύ- ₯d$©Ζαά[$›R#zTŒ'Ά½Š5κtO6ανΓoγΊG}Šς§h½όάZδ/ΛDjR&’r±”” }aǎ-Να/©=πo„ˆE^ŠΠPc¦ΩΤ l|ΦΧn žς…¦ύΏρΞ!£";Cς2dδ«λ©FDΞ:ˆz€*Zϋ¬’Βέ¨X^DJΞVϋΞ'18p 'ήG‡^Έ q{λ˜γu…Χ‡ ˆΗL―џŠh¬^π§ŠL$y^νc†~£ΕΧκπœυ—Œ-^DΩς\$ͺ θΛΎ„ώλŸαhγ‡χbλƒxz±8A˜―#ιœ-Ψϋψ¬ͺZ«'}Fλ………ZuλGΠΡrgšΪ΅4[έ~>Ο&mΙ£/δΔ‚M_O4>=R˜±°λ#ζ-½΄œ2ƒ ΗΊρşem,‹28΅(s;§ύΉ΅(sڟo|Ny><7zζ Ždh‹κπ}ω[Ž+ΛhΏΈΆ<υC;1έψ˜?LK-΅k+„η’‡(κ”—\π %/‰ΎˆdLSΌ~ΝξO£«« C!Fzœ/lq¬kΧι<8εk]W±Υρσ`μMόIδ„g©η‚N‚“}VΠF,2œς΅ΪΧS‘0ώŠβbl…F€`b’U/coiYP—Λޝ5σpηπOΡ΄”hΖ]­β=-ζ}$ε><_Fžeƒ†ΕX4ož!7m±ͺiH6άΓ”Xž’m[ΙYjθή=]e:Zχ؞—kκC9L,Α+žΕΠ§οΌ,΅ΐ©–LξJ†ϊkYΞ£ΔΪΝ}JΞΤ^η₯‹–^Λ ͺE]έΉΗΦιΛWtŽV]'ρρδ\ι>=―(ΒΞΊPuΦΜζš=~%gͺ:99Ž[ΚZZ”?EλaΡFl­zVMaά¬δLεάς’UWœζ11ΘK0všΛوmEUuΜ¦]s`άΨΪΟΫmΛϋr š!Ω<ϊ’…§Αƒσ6Zλ‘:ξθν³*PUρ(ςԎ-~32«ρτΆ9xΫΖΎΞΞ:&²πϊ`11±–δΑuζdH±ΝgNF"P6šλƒ§σAž€Ρ«*ΡγkŸΔŽϋ[΄ yΑ”œ²–?Šέοβ ‡u°ΒύιΊζhdπτΊ/κΓΚΧkΦa#)9KαͺL SQ΄I‹ηαθη-V%,Στxƌ’³c 6Λ‘9Oœu)t8ς€^ZNιp²†ΕκLŽΟ\Θ Ξ,ʜ΄l]ΦYξ-ʜυη“Y„η…<σXCD©a,ͺぃŽ-LΖLς σg˜Ιq˜ν%ž΄\tμΉΖ! Vŝρ’8ŠYςJ'cΓ#OaύŠ’λα­₯Ϋpυ >ι2z “κˆZK=ŠΞƒ_KύΕt`Œιι™1αœπΰ,τΌΰν>Λώ,:γk»\Ϗ…>&Š‹Ύ Ž3Œ#ΐΔ8™uΨͺSr%οrυm'1@/irςΆQ^…ο#±«V£Νδ}8ΖGη/{7vλ”œ'o΄α⡠螸‰τ$;΅λ 12aΌgJY¬ϊxΌ…2 #]Ν‘ϋ£τιq? ΧG[pϊκψΣΤΨύϋw‘Z²+Τ„±S8­σ ]^ώ ’σ-΄Ά}‚S-—‘Ήz/v–”ϊj-+Ein2χ8ύάΉΪ)FςζX―tΩ‚³οω<ΘpΟΒάχGŠy–­ώΪpLu€”JX’sΆgƒ°ΧΠΊ6e½˜NLŽbά^υΠ₯DωS΄I³tYΊNΙYβ•§(zϋ¬˜Α /…€sγ»Ό—ƒ 't)^xνQaς2VΘόXΗsμ.}~ hs³]ΐ[uΘΑ{­υˆDκ>+mΉφ1ƒΑ‘‹Έ6Τ…Ύ‰ALc ς—―Cu^‘ΌeλQYxΧ;ύ_1£jk\Wx}0£ύΗ:ŸEtzβx}ˆuž˜·¨ς5Ι'Τίܐ―)ŒŽ΄βϊX&FpσφM$,Μ@Q^5}EΚw±4³S£A}f Ί>ˆφ'€?W‰jΎVηgCέ­ΐυ«—°8+Š«₯|^-½€ ύ½h’ηsaƒ ϘPt±` ;PΫό"ι Z)Τa;ν/.,£la‘b)ύFΕbuΗ§+Ηέ#ΰΨ’Μe—ŽϋsiQζΈ?Ÿ(Ο‹xζ g8‹κΈΰΑ`ƒ —>ƒόΒόnrœε{Šg€Ξ Ο5ΞP,ν˜—„yPΠ’—^nΫψ¬ΟΤ½άcA6*ΧΎŠ9ώ‡―υωs„ε€&ηA”―ύBΗh,R绍αzzέλoΗL€ΈHw„ΫμσΌΰε>Λξ|;ζk₯agνR»σΕεF€`b΅ΛK±Te|ΰ~ΤpPlόςΫHLΚΒΦεF%A­@\DŠρδκG5ƒΠώk‡ρΦΩ#:Ι― ­§Ÿž7ίO -IχΪΞΐ%]­ ΡΡ³ψ”ώ¬Γ:μ“t^ε―»ίΒι+οϋΏΎ“T‹Κ"Eι…Š\jz )J/C½=x”}ŸΔ]ŒΔiTΒJΡΊΧ‡>55CVΤ ˆΦ‹«υ[ΦCυΟέSΑΌρϋώ·GξΩx§D,νώd)˜ ˆ ο ΦςΒ}xBΊ¦©’|έω*ߘθwΠJπ’’ό)ZO’dόF+£Laκf<΄"iΥWρt©Οbπ֐ŸSτb‹ς’Ύ Ž{‹@π’·Ž‘Φ4Ίΐ•Ϗ υV>φΦ…ϊβChΩνς|θV"˜;rΎu&‚X5Mλ€LNλnΈέJΤΦ£hο³ά@gΟηθΉϊ.Qθ8‹» j•ύυœ9Α=‰Ϋ]Η„Χ^¬Nΰ™Mγυaζπ…υΑbώΓ2#<V*ρΡζkΡώ&κρζώz‹qJΟ±`Χ«(Rξ?Θ^ΪDΧΡώό=sΜk,ΧX{Ξΰυc‘½ρ‘λh:υΞζ\ςY‰J7ό=θiΒ¦gw!w‰$ι,K‘ © Egσ~>ZσOA Άΰ Ζ`N=RΘ£θ-Ü7Q΄X # gΗ8Be.Ζ$ԟ ‹2‘ώ\πΌˆg+8νXT3Z!ηAσ§ ꚈΛ.¦B|Ms=ΑΒ3€(.vη‹Λ1Œ#ΐΔ ΩH_’­s ½'›œš H‹§„όβM(•_r·₯~³’³~$F%,ΚBŠR7Ζ¬•υΥmΔ7nΨ†<εeηψυΟρ©ΞuM~™ζ₯uœδT•œ₯/ˆ=Ή‘Ž”œoQΎ{;|!°³δŠ½Ψ³½σIaφ~Β\$άξΐo~πΌQη4υ·ςqΌ°·EκΉ3ΎΆ&4mENM’η'`δΚoqΰY±j#žωΦcHIHΐ­ξCxη3ΰ©gGqQ ’¬ΗΪp₯ρφl;Νͺ؎GΚΚ‘››‡Œ”l,Vηδζ0zϊ’σό||¬Ι$ rΈr;^ΨMr–¨•%9Ο‘‘~HΦ{΅$₯–bϋ‹;QVΊŠΌ}'iΕnt£―§ WΞGύ;^1·`mm‰RΏMǏjmf{λΛ―`Uκά₯9[˜Q‘εεΦ|_[-½¨σ…„ωτΚξΔ/πρI³·G’σε'±ΆΌ’cR}ΏIΎ}ιw¨£ηνΗΡ3ϊςξϊs5κ@~]Χτ bg…’Ό8ՁkS™Θ[&]CCΉ‘ΗF@0ΉŠ(ŠΦSδΌ} -W4‘‹’όioŒjιv#‘xΙn1QŽyΙ^ œΙυ{ΎŽuε(Θ‘ l|AζŽ6\8ρΞΆ›Ο9'Ό$΅W…§~ΡΊpε(†2±}k5ŠσύλKΧ™#8τ£_ΒΥVΡZ²K^KξίlΑ~Κ3­ΰ² Y›Ώ‚'k|ό?|ρφ’ΦŠ)LŽw£³» υŸΌƒΦ^ kΗΏ•Λ‹ύ„ηWξΖK»+AΓΒθΕƒψuΐzhκ-u žy žIλγQΌ³ίούΏόρίCMU% sΠ‰ΦΟγΧύετ-–>ώul,NΖ}½f­½΄6ο%‹πuά»sŸœz=ν…›?wλ‘:N§λƒΫ}–Ϊ―νίΡ|¬zﴨ4qΗΖώΪφ:ζr]±OJβυχ­AN 9™Χ‡PθHyAΦ‹jχξ$`ύΧ°qS₯ήγfš>€υ@ΰ―,ΒσξφσβχG±ΞΧ‘Yξ=žΎ ζž^¬ώ¦•XˆώΚΖp‚π>„ω:Τ¬Ξ6Ύ;σKΌc~Τ€p]]=Θ-χ™›/‘ο•―jΉΦ‘UΟmf\ΡYΨ‚Νz„1˜eƒUρlha‰αυ‰5‹UKΑν[ΦZVηΔθ! jQ&*‘h’e‚ύ‰σΌ gžv-ͺΟ!¦G0ͺ>K©%ʟ’υ¬„-@²ζy~ 7nyΑͺ†!-$/JΖτσ’WΌ€›fβ˜Ύώ"*ςΥ•ΠŸ§qα’qRt~ίŸα˜—¨κΚ<—―φq½Tψ[SbI€<ϋ^[–ˆΏώ۟h Ν‹sW£Pζι%¨8ώKk¨ˆŠυ(,ς)hί&Eg_θψΏ …ŽœηωωXNk²ΔεwΪ€PΚΕR—΄ΎPyi₯Ί}NJ‘PŠέίϊ:jW«JίΎTιΕ©…XΏηuδηfβ'?TτΞ(\βՁs7Fk3Μk³¬«λˆΪΘ~ ―U+i?Vσηf=vΈοqΏΟςχμE¬EΪΎ/H{ŽΦ1/ΧE^ˆŸxίjyvςϊ` ‹91ψϊ`.)ρηsPv©ώΜ%Ω¨¨ϋ²²π“ς‚η]μηiΞέά9ΫΟG›―#Τ_f)2|Ÿc’9ΖΤ”jCΗl¬V χgΥΨΜ€ΉΪ‡0_[OΪ¬εkλαͺ©σ₯‡}JΈ{OsΥ―&όζnXπάΖφ{έ€ΦR–H£ηy!ϊϋΦHx@ΤΝ~@T”―ΉžͺΨFκkφ-ύޘ°πΣ¬ϋ‹―μ„₯£oΥNΌO<§SΎΩ‰Sυ KΘΗΊΊZƒςσ=ƒI₯mzΑ«Κ”^’xΪ₯¬Ύ–FτŒήFbJ. VZ*hίθDWwF‡Θg")VW‘§fŸςWαΦ}Ψέq žQŸTaΟσ:9GΪΠπωiάL,Βϊκ³eλρ–oΫ’SrξΓΕϊ3θ˜Δό€€η‘¬€*|rY7Dώ+7¨Šη}8όCSΉ&΄<Œ»KηγξƒϋX˜΅žŒ˜}Ji}-' IΜ™£τ“pƒέΊϊΨύς‹:%ηa’σ4†θή?}υf”)Љe»ΎŠέδQRrb 7ύω»v6ώzΒ1‘σšή;lxFρž~ Ξό3Ξ'μΖ&Uˆ[cΠ£©&;εOΡzκŸoc#z^±(nL ΓKΖΒ1|ΔΌδ/©Σ\Šη_{ΪG ‹Όη_ιΒάEιΘ*,E)yτΏkΰy^’ώ¦ξ§ΓXΗI4΅τ#±¨λWηϋ2‹j°©κ#…ηΟΰβ…6”Κσ³Q\Ά‘Œ'Ν’ς4%­­²7gSΧ‡!xΎ½ΧGhgEvI‹3–c%υe‘‹­IPš©­}ύέ>ƒ…νΏoTrξ$ΟΦWΊ† )yΧVWΘuΣΧ>…gŸνΑί3ŽzΫ 4έ‘<:Σͺ;?•k}λ‘εΪ,·δς:FB_;ή¬Gp²>x±ΟΡmtνΪ(ΡΰΊpνΊΩHΕι:ζαΊ"ŽΧή·ZœκΌ>X€b‘b}°(­&Iόyϊ|¬Gm•Ο23½ό)μΩΥ‰7 HσΌΪ ΰt?οϊώ(–ωΪσυ!kVΦ ͺ¬Z1Έϊ―Χvnϋρ Ώ>˜k»λΟάΪΜ»ά‡0_[LέΓΚΧiHIφ™;K άΊ‘>#²€HNZόΒεJ¦ΉΝ +:Gΐ‚-Ψψg$=Ϊ)Δϋ M‹@g–>A{³αΜrJΔΚ‹U ϋ–΅Ά!3$§!s±½Κwσ\ΈμEτ7ύ=’rΩuΟΎŒ­J>n6αt‘ -όͺWcƒi¨$λdγo)7Υϋ^ΐ@}Qσ†!bα,2Τ½ ₯Ή~\ΞΞλY”ι2Δ#Τ_P‹2ΡώΔyή΅gGΥp6yΠX)v˜?ύž%ΔfI?ΥΞ[ΦΊ[„=$)ς:γAuϊ_—žkτMΔEy) !cBP4 <²Άδ]²Θοη©c γΕRΙigΔωZl3W‹yΠ-ήΕΌtςΜ#{&[ŠšΠu2πftέ捀dΰ{ΰ7tσ4νΝ–Οΐ>’^Z‰zŠ£SΤΉ‡xΩ·’GA―= †Ό€Eωšλω”Ϊ|ΰϊ=CŠβr’8“`F †8ίu%©ΩΘ#…‹ΔΤυxώ©|τMbIz¦<9vžψΠ»ϋ(α±&=[S.^šZ‰jΙ²)€€W≀`zθ‡Έ€{™&βTX9\š\Š­Υ₯H9ΟψΈ«ΛΊ.5ΏΈεΛ”„Ι‹hl>«Λς UωzτF¬hΎ4w7Sφ»γύΗp~Ί[ |Ÿίœ3gž‘ΎεͺQl™)–˜΅£e*†τ<χΧύW8MŠ\R8Φ9ŒoxzφεΏGτ/δόB‡!ξ,_³­θl8Œ‘‘³8|BΦΦυ7uπ΄ΏψgxFVtKBaΩZrRyHΞ/ΨQ­xΑ¦Γ‘sψΥw*βGIIμ_έ£8π7§ΖRRΤ‰Ζ±ώϊ’°šKϋΥ€<·hȟ$ΆrΧ£š cΝ§pΤBΓνμ?ΡδJή:ŸkεΦ†[`&ζ>VoŚŸR4©‰γ؏ώ«Jή" <€J ~IX]σ4ΑηqUΈ?zͺ/2f±=9Άq^o$%ηrεQΙΥΆ8άCΧX±ίpaprΤ3.εOΡzf —¦¦kžηqcŒ<ΑšK?ΗKΑkΖVσ’·Ό$ΝnΑŽ:TjJΞέ8φζχρρI#'I†Ϋλ–MϋOA^ς7ΰ‹υœϊήψ©κ}ω—yυΏ`g•€μL_(($žχ=:{ΎK—zακ dνo€ή¨`ΗZΏgΆσMΧϊzρζΠ<ί„>2†*£υ©9XΎ’-ΦU’¬,Υ=:ιMjΕ ΨTNuε`žƒψόβ τΥ‚=²QᎭ('Eηf΅1ϊm?ς3Ώbuκnd’’³Ϊš˜υκ:²=’λŸ&±E$Δϊ‘}–…v’ς‹_Δ•ύœTΎ·#PNdσj]‘dβυABΑ*<άϋV ^¬Ξ‹ΐ΄ΠλC`y)e¨y?ώŽ<7ϋΒ‡θžΫQ!–n¨F):λWb§<ϋy―Αω-_΅$Ϊ|νEUλ^ΗφŒ4ŒίΏ‹Ή‰ΙΪσiTƒΧΰƒ ώ†ˆΩY€κ^υB”¨gy΅ρ Ξ|ύ°ςufEVf.TN…~24νœ ³’Λ•βϊη63¬θμ΅›ˆ‰X΄=RΈθΟ/N,}¬;Jub9%u`ίΚ­ΕͺˆF α-kλΨM9ϋξžώ°Uz¨šΊ»Ύω4Z |Ζͺκ+Ψ΅CυhAώW8+=½&ρί‹Nΰβ‘#Έ›_‹JεσRRί­Ηφc"½ΥςηšςQPRJŠΞ>κν.,œ₯ΆνΟ²4—zΡ'η΅ηe:9¬’žχΖ’LΈ?qžwη™Η©E΅ΘRš ΦDŒ¦3ŠOŒ*έ9·¬u³‰{HΠqΒƒZ%]Δ•η];VQa^²jLJ ΓƒΑͺ)ιΦ–ΌΙXΆh‘Rb #7τ&EjƒιX’zS“Bώ ΘikΔω:€Έ1œΙ<(:9­8wξ*wUΚ UΤ'Υ—\j›(YεSrΘ{YΓ‡΄7Ϋ;ϋHw<5Ο Ρή·4ΉΫg©σlσW”―Ήž`Ν3€(.†Φψ€`F νΔΥΑ>δ­PU`‘“N#τ—ΠίΐΌAΚ¦ρ’‘΅LR}Α€>zίΦqWoάDrϊ#¨Ξ+R†U„Κβ Έ€½„ΜFΪ „!\½ήM^RΗ0y?)©δ$Λ§l,U,/݊vRtξPZ±ώY‡š5₯ZVkG}@ωμeͺφ0νnΗ$―~πD•βš£<ˆώ©ΦΖ½{w΅Έ™–Ό6κ}Σλ—3E:ŜΦϊίjJΞr·MΏDγ™jμRΟ#½0Φρsοš”œ₯bνGρ±N¬aO¬+SκιC§ρ()ΊI35wΎt²ϊBŽ^ΞΖCF·3οΰΤΊ*μ\k-η}zA­€RϊXΛq™e˜Pυ6(e†ΡtBUZ^mi‚ΆζΜU•˜­Λ―+χ)χIΉCgŽϋ•œεβƒψπγO±fυs²`znΎ₯'Q'ύIΝŠΜƒ,ŽΛœžΧkΚΎ‘yAν9ŒχZ| ς:Γ…šΧ—QuQώ­g’8M§L1zs˜ΛnΟKv[ (—š,JΤ©ΐρ'HΟ΄Ί0&½ ΜK^σRΦ―ΡfγΚαχ”œ₯ΜΦCB*Sώΰ/mhόρωΟ±ΣM¨&EgI‘99]:³”@_θθ} λsθ8‡ΦfzέΨί’fΕ«ΥυΈzΙd(γ/ζ"žηϋ{ΙwΌ¬¬œŒ<Ϊ΄b9»ρΪk{@Ξό1|φmόψέγ$C)2³”5i€=΄ΦΎZ‘yxξ:r `Ζh-k|€‚Φ\I ΌE› Π|B―§ΪΒπ_!πζ:r0:ρœGjU'λƒϋ,΅_7ΏιyOcχŸβ’ά7Ώ ―c­+―Αζ˜χ­Ό>;7ŒιαΧcy鈼ˆώΦxΏpφ½ί’lC…Οp2³ωd0Σ₯»G2΄aƒη₯ς’ϋy·χG±ΜΧξΧ‡d₯ΘΟM–&…Δ›ΗΜ©–ΗvΦ_Eoϊ³BŸΘϋω8Ξπςuζ:T¬+ΤΞδλΞγͺτ80hΘŊ’B%ΧψάΖt&hεΘfxiΑYI·mnϊ³+‹@‹‡ŒV}ΈI³o9%ζΡ@άƒ‚ Εœ »–΅¦jρρχήCφ_Ό.ξ/}νsxiW+~~0―<ΏK»Io=ψf€g ©“[mΗπσχhS·ςrΎύœόΐ‡ρζ»”–3«Ώ,§%gJ7聰…³Ψό™πΟη΅ef™C{џ‹27ύ‰ςΌΟ<"ΥVx»βA«c$ω3Π󨳩ηOΛZΡυȍ‡€ x„ΰA«:n<ΧX΅§OsΓKj;NxP­cυά’7 .VͺG―ϋ΅KΚA^`²!Ε­œvηA”― ΒΖΙσ ;lœ<’3="BϊZϊTiκƒErΥ:Εγ3θ¦/ƒH/³€—[JˆΦ>-FΣσ‚Šτι}«Τ‡›}–TίIεkgνR'sΖeF€`bΜxyc¬”&K5=„kδtNβrδ,Qξ5¨Μ³e#xο’κ7†δ)J._©χKRΑ>|ήπ3œσΥκiΔΨƒΧ±³@Ϊu—έη«F€QΞώ3ΞNtΫ£Ήΰi|im΅ΟSΣ‚\δ&££GiSͺj kΧΥϊοΙF>ΗgfE€€.–Tu₯0„ώΑωxlλ3ΚφΆυηή"Ο€t’ͺŽ₯}£ζ6HΑλΨψǎ£€›>…ι… ΙpΤΰέΧΎ› ––¬4Π‡žΦ3υv]#SΦ Δ…ožCσ±ΐq”£„δ•[P]³ωy9XΊξ}IΡ[z|071ΫΒ3³YΞ@·ξ’3ˆ’3@νΛ! [Ώυߐqκ4\nGo'ΊzνέηH©*眷H±ώγ@”>Δ~–,U½N“—°^I1ήH™‡τλ’%lx5Υzθl‚6γ(ΓΙy½ΌΰY<±RQn$屏ΟQϊ’sB6\%#q{η]XAEωS΄ž…@):>‹ΦIαyΙΊ^ΨTRβόΓ?y)€ηΨ€6FNβϋίύGƒ—Β€2AΜΧ;σR0¨μσB,ΤμFΪΠϊY ¦V}xΒK#c6+½Nͺζ ·nNκΊξB 2¬Ο© ΄l¬(ߐ!ŠRΗJΩ«=ΡZs9˜°―΄Πvπlνξ%Ζ©”Χ©΄lιιl+ Φ‘ ΥgΜ’\TJϋ―γθΟ)Dš²fŒυu˞˜W,’Οl(‘`Η ψΓ’g1Χ¬q1WέΠ9ΣΊ/<ΊŽ͟°°ZEϋλƒ7ϋ,­cΑˆτ₯ާΦ)ϋG©MxΨ{ΈkOxσp]αυA7!ϊ(ο[ ^τ§D°Έυ! ξΘ5\m7§žAwGJε{–yXΈ(ƒ Ψ»1·€?ΫΟ»»?Š]Ύφb}GζΡ2Lί)Ε²e΄ΆΣ>9} ‰Λwa_ΩMΌζ9ŠυΑ?‡ξϋσ·$ΖϋωYπœα!δλΕ«°e[φ|θVΟ9z–v5ΘIξK^Ί¦yŠ…‚ωΉyΫ²‘ˆd޲G ΐ n<`XΝ¬3‹@'–>V½9Osf9%j₯ΚεΜbUΜCνΛχ+fYklΓΞΡqόψ—ωψ―ϊ›Λφ|―UΜCβYrŒ>ΓρζΦJn«-ȝͺχ6tCρI0u7©{ιΐ‚ΕΎΖjΧ‹[8»?G–ζ:؜œΧξ-ΚtۈΊοΟ™E™«ώ„x^ά3°EuξΞx0 z¨„([ΪEaώ4β!z$Ɵn-k¬Gn<$©¨8αA΅ŽώWάsΎλΈ+^’›tΖƒΦRΠZΣΓŒ‘g1 Ρςεδ1jΈQk*=o/Άͺ/ω€ΤΙA ŽjΩJΔ½œΆηAˆ―ΝςΪθΧ¨x€Μo4ΧD *¦ΡFkιj’GΨσ‚֏IώJpΖΧβϋ,]—Ά£’|Νυ¬=CŠβb{ΒΈ #ΐ0Œ@ !°ϋtJ΃׏α“ΖƒšΒŚΥ_Ετ%5)¬XΉk;Οβόν?œ()ΙXͺ)k­ύJΞJέk#τ²XQt677NJΞVαzΧϋ8G_>¬Νςέ‡%. ―ΩμH•šiuؐ§*ώŽαΤ•h4 ΤwΗ“H[΅k€¦)\j:€†aŠdgAσω|cΧ'δμ€ϊ•―ήdx’ ½,σ{~ΰΆΝρ ά°ΡFν‹Šέ΅δͺ3\Έ―Zώκεœ‡Ή*Άακ+ωυ §°‘κ)ŸΣ €‘΄zύ)™7ϋpρμq|τξ`3N °©¦Vλν‰CZά«ˆΩO†zΘˆEPΡ°ΘJr>BέXV²u^gΦ‘—ξυΎϊ7/š”Η‘ι†O`@Ί¦\Qώ­g%0)'&ͺFc»es`ΆxΙͺ?i ηKνtζ»ρ>―Ώήζ₯`Π;α₯DΜQίμ“aPΏYρ8H^πΨ`H…χ‹t‹:ΙΡJVο}u²b}Αͺ2bίγrύ•U«‘~{‘”‘­Y2Θ@l%ΫΔ³© Γτ"3™^aζfψφωω:w9(’Ε½??G3θ%CςМš!ν-Ԑ†lqΏšjόuΈΨ*{s9?ƒ‚ΆΦx·Ο“žοο%%ηMPti09r ~φ>²ι‚π:ζαΊΒλƒnBLQή· Ό>˜Ξ ‹C›λƒΉζ‰0_ΒHCκr²ˆir§θ,ΊŸwDk­ϋΤhσ΅ύαLσΫ8£›ΣͺG^ΗφrJ^φjδ“’³οuem­Ίςs7ύš vΐϋy#2qωœαaγλΨX·Yκθp+N}`œΗ€£4•αY§œc~n£ήT‹J‚‡lQ‘ΧQ'ΡφHα¦Ώΐ9΅΄oιΨ—PŠ€ε”˜”ˆtM§ZΟΎE΅ZCώ¦eν™Ÿα@ΑrΌΈ£‚ΊΞFAΎ" Y?ό§_Δ2¨_S"Bˆ$AIιΗ8y₯€bε,Υ[δΒΩΥό βiΌφΒ’Μ€n˜/ϊsbQζ’?ažσΜ#lQmΈS΄hΒ:)κ–v&1˜?M€Έ8βOυ‘¦Έη!{›==ψΥϊ‘=$ωJΩηA΅Uγ―¨ηc+VG.xIkΞ j• ;–Ό7&₯ΧδΎ·ΰ9+žΑ s³pedKRJ±^ϋ 3ι8S©Δ)«Ιξε΄5Β|m€Δήσ`œβgΩtφ"jIΡy1¦¬b’IΡyLΩk^βZpQ§­ <*ϋHoxP“ΩA$Άχ­@ΔφY ΠεkgνRέ”p”`F nXSΎAσ4…μiΚH,ΒΕ‰cοΥ_γ#ΕϋσšΤlŸi*γΊΡΛ΄Ή½89θ οqΊκ+%η[½-hmkΓΨMšΩ9€Κ›XˆΊ|#VŸΖO_A,2‚΄όχ½q<_· Ε%ωš₯\ M"¨@IDATaI6ΚΆ~YKρΖ?όΜRΩ9Ήζ1ς0ͺ4ί{ 'OοΛuΞ]άΉkέΘ}νδ·Ξw”κzυ&TxC^%©²)aΞB”nψ**ζ(Η_X¬yvΒ‚Rl¨ω*Φ>FCγ‡ša‡ZΥξ―(ŠΦ³”k‘N›Ψ{„Όρ‡6y)|CΦ%Θ›ψι#‡±D½'·.₯KMΐύ۝°©K««™(σαJή†‘ς­xη₯{w€…ΠAθ=Iή.Ÿ@vαdΒ*zΩΥ”’UJ#θ<η½±‰}žοD_ί­%$_F&JI9'W5~’DΜGnYJΣTƒ…a vŸ‘t22ΣqψΕ#ΏB/=ΨU)Mœφ#yzι΄Ϊ`hE’q<Q‘Š:™α}VQρ><½¦Rν(ΎgΪsK™’λΨ2ΟφσΌ>h“dαυ@αυΑβΜ0&Ω_ŒυΖnOZή-\€[3άZsΉΩΟ»Ό?2Ž6ΔQ΄ω:BύΉpΛ3^E‰t_Ÿ˜lΊIιp@EJm!“³μφ-Ÿχσρœα‘βλl¬r›ζ™γψμ7GΞ8±h ιΪμΌAgώhkΐs§‘΄λΗ}ΔC 6χΒxίB΄=RΈμΟ€ E =KCOβ-§D- Δ³ΐΠχmΛΪζχώ %ίΓFυ!/ SσΏA³^¨`ρφ!ŒΠ“τWάY8»?7xΪ;―½°( °UΊύ9±(νΟΟ;φΜ#lQm± Z΄˜uK;“̟&@ά:εO/,kνI¬χτΰάC’Ύ{<¨―‘Ζ=Χ¨ΥCώŠς’ΎQ'<¨―η‹Ϋ΅δ½Τш²’MA!'w=4lOΊ§Ύ6ΦeP\π•r'§δ­*Ό!w|8š0)Μƒ!ŠŸ}δΨ™“Έ²»•’a[~Φ’·£-tΖ=Ύ…Κ‡Ξ7αlˆΡ"ΒϋHΏG;w<jζΌΨί·ϊ$vΌΟ2Τφ±(_s=kϐ’ΈΨž0.Θ0Œ#C€.VUpι^>·ͺWrφ‰Ω‡qϊδͺτυ)̝'¦,WžιξNB‰9$ι'˜σ‚'#5‘”–δ0FΚ… ΤRΦςΒ]¨LυaGͺW8ΫrΜWΕό?)3ΙϊLšc 2Tϊ ]hTJf#7΅H‰ί"οš—Ν-Dιx NuΠB f©˜l¬±±Œn”ΠUS|m“ΒZκγ(#Eg €\Ϊ―δۍQ‹—ΚaUιZα—τGšiXYQˆΜόU(­¬Aa¦oή—lΖ£5‡p @‰9›6―WEΖΉ“Η-•΄A"ξΡ^(ŸŒκιiδ‚ΗΧ‘ AΓ­GBM{΄Ο²·>%\[ώ5|Qς¨„kWƒw/Τ«‡Ί_ΡuΜ»u…ΧέtXEyίJά₯sBΗλƒΕYβd}0VO¦―χP’Ω€ψ֍nJ•<N`ς–΄.ˆΧϋyαϋ#2G›―=κ/p„wq/ŒbΊύυ!°υΐ”πύΦ •ΒϋyΔϋs†‡†―ι Ζ;7£0MΉŸκΑ©Γ“¦p! ΕΕ…Z‘ŽΛΟmtS΄rQ‰xj‰v’―T-)<λ/a Vά‘ε” ¨`„JwmAΟ=}*JX5― KtΟ₯ΤeΛΙΌΊΙΞS†˜’σ/t ‡ΏΊ2Ž,œ=˜Ώˆγ!‹² ˜F¨Ώ e‚ύE’η­<σˆZT_:Β<8Γ–v̟ξ2Α!FΛ²Φ0*I†ϊ‚Bžklφ%ΘKαZΚƒ¦ŠŽ,yoŸΕ»G€k6’TζHκΟωδι“ΤzηwN¦κ=3œƒ4Dι―υόuΏ_±½\j7‰tΦ$‹ΜAcc­δYT 'ΡxΔΎΒητ΄_ύ:9SΒ1x]½Žp²μ ΤT65i’xRΈ9Œαv_TΏ“ώΔζAί›»‰›•ΠOΌ4Κ~%+؏½σϊ¦&ϋ0J χθZ7„ίΝEF²nΎ'‡0ψ`.LτYzy*©y;Χ¦ω›ΈΩˆaRt6B˜1ώ­ηGΛ'EgΥ\etbΐ†wjΌ€ο(¦γΜK‘δ%,©ΔκΝh=aδP«SΒ ^²j7\Z{c zφl€τD4·  wΝΧΦ…Λ=\IςόΥnRt†d΄“Υ5σdώ»5†“ηeEημ’jΜ½γ3ΧΉΥΧ­8‡κΒππ-ͺ"­'δυω2Ξp°ž(’:ψ‰ώu€ΞΙz€―go} ν³μ­ͺ„ΙΨXυ"jsΥgυ·pι{ψθŠi½V‹CtKΓOφσΌ>hSα""Ά_ŠΟ}+―'ŠΓυΑΠBj2Θ¦Λ`ΤBΛ₯ϋ.)άΒΨ`ψ΅ΨWΦϊ±σΣͺ-‡χGΤDΜς΅GλCJΩkP Z#N“Ρ“ΑπΦιϊΠz`BΘώ‹Η^Jτχ!bΧσ5lˆ[8{=ξΗbΡ‚jh°ΐŸ'βΩΕΆΕ±Gύω₯UcA,Κ„ϊ‹$ΟSΫžyD-ͺΥ±ϋ#ΟƒΡΆ΄σMŠ1ρp{$ğYΦ†[\{Hr Ž€ηš˜εAB–ΌgρqύΡ§¬εέχ†&θεwJΎY’(&άθ@λ€£Ρ |mU'μ+°RΔωZhIrr½ρ(xΞp #ΐ0Œ€s&&ι @’tΏŽΌμ 4Œ•VKVoς}nUnš<X+Ψ:ο9J5τ/.—₯aω"`H§lΌ¦ό‹€’Κ†+νWθ k Χ`ΊΏΊ²j©₯Ω;°§ͺZ=DΥFKζςGΆ’H}Ž7Ω„“Ψj H‘Ρ1Œ‘²tŠμφΞ]| mZ <]Ά ͺsΪήώthyΖΘ₯ΙΘNΥ)hŽ$¨Ε…Žz{I-΅ΚχΒ½tΣ”lς±/g7*ͺΥ—ρBΝ‡¨”ˆΕ’‘€/¦…Ψ\[£ι##C’RΎOq¬xν£ΐ1½bΐ”?R¨/nˆg) άV ΈύC7΄v •”ƒ:ςζ¬ά£΅ρSG vύέύ²η!IκδUKΩͺΰr{φ*X¬Ϋ„ςwϋηͺ¬ΫζSϊ“kaSštŸ_ gσΰ―§Δθ½Ζ-ιΉ„4<ϊU½/θ7(tΤ€½σΊŒώ1°²œ’ŒΊ­Θvc8uξoq\:=‚„ϋχιb$Ο°Z˜| χ―’$C”?Eλiςθ"ΙI~γΫα1Ιγ_θΰˆ—B7SΉΜK^σR+:.·ΡΉ€œ ¬l/Zθϊ PΟL­ΒΖ•wΙγΉo}σ‚—„N¬‘ChoٍάΥtέζΤboŽΪJ4WBώŽϋξΰΑ½‰eςόX{·ΌP«ι²ΠΧI^γšΡy³…KθYγ`οu­οήk΄ήϊΦ±Šm;qžζ@*S…υ9wqZ™­CδΎH―‘ξOΕΜ]G΄8Xt"Ϋ\¨†Gϋ,{λƒ$aΫΌ•ι΄πΘ6L]ψόά?γDΘης’λX²πz€Η’Χ=^ĝν—βgίΚλC¨³Γιϊ`l«εnΔιύ ώδšm(UΧ΄›Uuωό%t±π<ο/μμό”κΉΉ?’κΫΫΟSΑhσ΅H‹J±1/Χ.Χ[¦lΔ³ejχο“7uχο냫ώ$τγ#Μά>ΔΩυΐ|ώ9ƒΠ'°ŸίϊκΙFθg?%rΌwgՌvzΔi'”•¬€ϊΈξzG‹lmTs69#°Σ¨7eΌ΅ŒφF¦ΆBkWT=Rχ'nhΫΗ+˜XN‰Y|΅Xub1gμ1zG₯{ώ‘ŒςppδΪ`γ&ι!I6ΆΏπGθωξί[ί ;QάΒΩ‹ωs$ͺ°νσZbFͺ/θΩΕΆΕ±Gύι†κ‹³(κ―XΠsF€T ֞yD-ͺΝΝ‹σ Ή₯˜=fώτljάσ§sΛZϋλ‘7–‹ΆyΠUηžkθKΆ<σPgBΌd!€9)Κε<°δ½έ‡!­Οdl+­ΦΌϋ΄υ6ις΄BΦ‘r«„Ÿ‡‡l_.ΑΓΗHB>jί%(:j0\aν}Ά>χάYτΟ@jΝf<ϊψs(69ΦP›kύœ &wω &—μΒ~σώϊŒdlΗO}Γ'ΏZΨπ[Šm―|©}ΈψωtΆ· Ώ·‡ΌkgbΝϊmΨΊΓ§ψGjj€¨fR^_ω4ΚΤgΰ7Ο‘‘”ΐ…©i¨Γ]Όz^{uš.wγήάyτˆβ.†/E»’ ς v£xΈ>˜NβΊ―β%bλφEκζ―`ΧKušeΟ…3£FπΌψ~ήΕύ‘:F rΆH’ΡδkI8ώ–’Ά” iK7γ*=/Έ>ήO'“tΟ–„ά΄b”δ•hJΞdfsν‡Χαώ”nγδ'κϋζλΈήΟ―Ϋχ§Ψ)ΰΣ£:y“;0…₯lG΅Ι+3έγήh'Ξ6k»d2Ί^ά\ΕγΑT7:›z,―ΛmžeIOΕ-ͺ=#’²ΈΡπH!ԟ7Ά-}Œ]Ί8±œrfρ‘Ξ™Εͺ˜ΕœΎΏ¨Ε+^ΐž]•JwhψπM8I‡ %o|tƒΎλχŸFλ?½οZ$χΞβσ'*ΌνσZΔ’ΜB(ΫΗ"ύΉ±(ιlkΔ<`ˆz桨6N„4ΆΛG̟žΜŽ Ί΅¬u²Ή±\T1²Νƒjέ―SΟ5R՘εA!O>0M^Ι|©ΨVσ Φ§+Ύ€nœFƒμŒrέπ΅―qΓαηA”― έΔΩσ —vώ\κΚwP“I(φΝλ’N\9­σpΰ²CΡ}€<θ]{Ί"‘•?Ω2«ϋVΡ}Vΰ #ΚΧRwBϋOgΧ£dΰŒr #ΐ0Œ@,"ΠάΦ€ΥΉΘ“…[Œ’/Ρ_ €“CŸγθyοφ^=D*₯ g;O‘|]΅―ƒeeΨΎ‘ώLέ φΖ{—?‰€8θΣ‰LF^n΅όg*ξ;ΌΩŠίygRK%cKI 2”Cι‹l'Ίθ3˜!Cš».’tM™\*1ΉOlQŸ§*'Ϋπq½U!Ž@fφΏΏίxe—§Μ lίWaُφξBŸKšV–ιϊ2Ίxύ‰T’ηbY3΅u―HΊΑ’d0ωΩaRσᘽv^₯?ϋ!e›€Ώ]–Un΅œΒQέ»2©Pν– šWΞΞΖzηŽ=HζKη됻֧ΌZPU‡‚*χ­‹FΠ)O7αΘΗGPπŸDΞμ}ώόΕεΨ­Άƒψ”Ό€Zύ ΟƒEΗG}Š΅εΟω°’σ§vόi½GΧi{S5pάΓ€…§v‘ώDωS΄ž$cvfJ³|  sj)AϋR'†MŠΞ"ΌΠC '0/I“γ)/ٟηγ+€d%ŸqdxΎuŸτg< Ζ ‡‚Όdc]·nτ»ˆ+ϋjQ¬“ηJΫyXyζ—‹¬ΜCΕ¦Ze½ΧU’h:­αιZ0†OϊΕxΎ Χ;όB_«ΧpUQΐΎΪqU§ M^ύΫ}eδ[ρΛ_ύiίϊ²ΟˆhI jŸ•ώtE‚DkŸψ:v―5)~«eσ·βΉΧ·ͺGτŒ­ίoϊ{r$ xy0p°ωw‹β>+i²T%gEΔΔΜJ<DάyMαΓ¬cnΦιK&Ξχ­A“Ι‚η΅:η·ZTϊή/ΕΣΎ•ΧeΚ=XΞ―$”Υ}CώӟW '‚Ÿ½}Ԑ$ΒσΒη§Φ³σϋ#­ͺνHωZ–ΙyωIκϊšŒτΌ`En°ΑαΒω_£Aύ’Œΰϊ ά_0±b6ωZšήΟΫΫΟ/Yͺτ)ϊΚΘ,BQa‘εΩ}kξ¨!½dU!½iφ…ΑΞ6ω«Z†ΚAΈϋ«:€y`Αζm"Ϊ)„ϊΣ!ΰΦ"ΠΒ¬Η"IΧ‘ϋ¨mΛ)MΑ…G‡«"sξqΪΒFΌςνaAΧ±·IΙΩw£~ΰ§ο#λΟΏ*[„§ΣƒΝWφ\Γ›œqځ‘Ό°…³σgΔΑΕIl‘D X”Ω#(C τ·LΤ‚MT ?²¦σœαg3Ά!-ͺu…ές ©X2Ί!Qώτΐ²ΦΑz$niΓΗ‚τ,’δ <ΧθΊ4Dc‚-yi KsŸΖWι³ΙΧzNακH/ΖοLcIRŠσ6!GυϊEVß_|ΟοΝΩ_ΣsyΗ„DωΪ0Sqwΐ<θέ”lDΣξδUΪ”•œ±–&Τ›=}ΉθRtιŠ£κyΑ8jU rLŠΐ>KνίKΎ–ΫΩJΉž _8’r!ώ`F ζΈ}οv©Ey¦ί3¨&χt.]mΐG—΅€x‹ ]{oc ΫΧlEyΥ3†!΄Ά}†ί΄θΖ7uγ΄ηLQ_˜+Π'ΘϋΠΦ{ ΝΗόχXϊ2I(ΘT‡p‘νCς!>t_y υK^G­ΞΛ΄ZkpΰN4Όo‘T­–πύκΏΠ$§ά ά­kˆό~x{{ž|Œ>§¬Ύθ%UυΈΨ9κjdεہžλΠ3ω+ξ”s/¬qj?€·~”€gΏτ MŠCΈΩ†ϊ#-Θήρ iΎΜν5οΌ}ί`Χ.³2[Ξ‘ςoڎ²ςΨτmU"IάQ ΄5!«€ιζώ€lrΌΠZ)ΏύΎ|€ύ—³•’G!9΄ΰμ{ Z–“Θ±|Ψχ*ΚV i~λΞΓ©;w MυŸψΌ1=Šgw6’ΗOSΈR μϋ€΅7g₯¬νώώφήΊŠλLύŒ˜$š4!!!dΔ 02L žγ!NΗIμά ·sΧMguηέ~έwu―^}ΧΝΊοΎ;δ¦W§;ηŽ3;Ϊnb3Ψ`°°Δ „„„„f ΝDή_uNΥ©sNsͺvΥυKœ]{ϊχώvΥW»vύΏ-ŒƒG³€¦χπ£ŸάΖσ»Ά£¬Θw<ϋ(•΅z]§Η'ͺŠΞΓγ7υο[m#ΥoΞH_χ‘(Š–#u„¬Ϊζκ…ϋGϋά£yΙ½’Θ>c^²Ÿ—zOύ?μοΑΣ»kPYβ~―ΚWΓx'ΪΪoΈ]BΌ42ƒI₯ΟϋOŽŸu=7nλf \'q­~y7VxX2Žχσ½qϊ6&¨”ς΄VΔ{ϋ΄3ΦΟwtυP%…rE]νWΥέΙZΫΡ³g£Γ˜§³έCNYΚOΣΌϊύ›ΨϋΔcΨΌΦQ^IR~GΊ[ΠΦxΙεΝ™f&$…ΧσYΙ«ϋ;:₯β+tΩ2~€α瑦fžvΜ³\ήPΠ}>Δ‘7p£Ηz‡Μπ9&ό\!Ρό|ΰy+ΜΟ[ωω έΆ6<θ½Hyώυ\<†>rPδωΌ‘χ«CΏyΥέ›3IβyαωΌΰϋ‘“σˆLΎv4ΞμσaώμΊΙx2'ΙΧ,bέ7pώκ΄Œ)HΏbΟqyZΩΡš‡(]γu ·ίXελΙ ιC±±γŽvΎ–Όω+”…ž›θ8λa½©ςΎο|ο/h#%σG{{»\(+Gy1q―γδαύξžgρλπΜ#O;=Rx&ΊΞ%vκt–έ\™,„ͺ_ϊkμ–^†Nγ΅οX}±P₯Z4=”[j¬{@ςHρz=­XKGΚΌ΄΅)Ž3ίΛ)~ƒF7ς%KV³ςT dΈω«¨r.ςJž,ή_o°nς½‘,‹hΗψΩ™qτ^=‰Oe2x₯³²3θžXOŸ₯©μd:NΧ»­o+Ε6ΌπŸρΔ…ςiWνΟρͺ‡Χ5%_°~el–6²nϋ)kG«†‘Ϊv ƒΆ’ ‹ς§hΉƒΟφξ0/9 ΅“—’WΗͺΌL™ !=›FzΡΨΰΓ[ΌsDCΙKΆ_D:Ϊ‰§Nυ£ΘX~C‘γY†Ω»d2„Αξzt‰λCyξΌ}9’mžeΆηό\ρX(―kαωR”Ν[ωωΨω|(¨ΨЬ΄₯ςσvf΄ 猾οψΏτ½RE―O3οG^BMF„š―MΛ‹/@QR β.€5ιmΈ}g}]Ν::"&;―—=ΤςτΪΒ8ζkΨvςK¬ςυ½{χd° }xtΦ^Ά+Ά<…ΕιrΤPΛΗψθΣ&(zΙσζ9C|ϊ]V”° Ά 4ΘώJCν‘Β΄<₯Λ6Xš±τQĚώ΅œΆ€ro‘Y‹UΣ6YΦΊ·Z,yΣ—’3yΧ8πŽ»’³TͺχΔk8˜›‹ές"p66nGίθW­ΧάΌi8Μ§Jε wyωΈ«΅β±p?π4s]›΅(Sprϋu;£Εoߞ]ΜΚ³jQfVžάž·κ™ΗBι4 E΅”Ι”ͺ‰ΨƒωSυ|ΰΖI&̟ Ώ%iΦ-k₯&›y‰yHrcœ-xq‰£/“Ϊ GŠYςJ=Ή{gB~nͺΞ›5έλν=ƒ δ)ιŠ‡αš5ΎΎΦτ%*‚ΜƒΆρ ήx7vHŽv$_@“§’³”’™›…lIbEy0€ž4Ψxρ Œj`I†ψΪΞyVωZξ2ύ'4δr†t4A¦ήelsœθυiόύΘzƒCΝΧ¦εMu ώBv„Z^Θ:¦Δ|­E°—_˜―W‘ΐ©δL^uΡΩΠδ·ΗYψ<:kN ΆΨτHaΞ†f(’.hΦrJΤΚ*0"VeF|y ηpŸ,M[”™©\'―iy-ΚLΛsΆΩ,Ο‡Λ3Δ1Εόή‘ ₯e­άSAKσπ’dLΊi^²ΘƒΖZ₯Ν•όΜ4$.N-‡gοŽa`°7§΄ytΒ!o§£ fωZ§εQΕvœ“`F€`sΔΕ‘+\ω˜rΒG„#0:Τ‰ζΆNLθ΄³§₯ΏϋΡ_±’³6Ε0ΑC€yΙl%₯ν‘(AŒt ΛΚΞўν‡½ΰϋΘމ~ψΊΆg £΅ί”ΈF€°‚σ΅τ\ecmώξΙߞ7·eλφΏ12βΨgib’nρΞΆ«Ίρ‘™Wω0г©Sέ¨?~·"­άF T}½ψΓh;+ο+^"£U{Κζlzΰζ*F †ˆuώΤ{.ΔΠπqWFΐ.VnΗsτΚJV"5q‘³Φ1œ½τ6mΝσKO˜ƒ=Ώφ”ΗηŒ#ΐ0φ#‘‘!W:4μ{[pϋ₯r±†@jŠΓρ@tyΟΘCόμ8ϊn ω]ΪX«hξΟtO3.Υ}„Oώη/ΗεKηpιl-Ξ~τ*Ž=‡žαh`’ζ%{Fνώ6¨ίν% Ι“σ΅šδxΙ³³ςέ/Σy]ΪuΒχ‘|85:ΰλڞqγηƒ=8r-Œ#ΰζkίؘI‘ψ:–ζοžοžσyιέD:’“ύ;bυ…‘’—|ί}χΉe™σŠΞ+6μΒΚ¬₯€θάƒKΗOƒΧωά>‰Qs“uruΡC馲ψ!Y€ΟΕtώeFΐ±ΞŸ΅νΎΊΞρŒ#ΐΘHσΕΡ‘ά`–91ŸΉ«­ ?+™η—Ζ„Αž_σeΙ0Œ#XΡ948ΗΊ”hUtl½€‹€({‰•œ£ξ»…[ƒύ¦Ώ[cQΧ|n0#ΐΔ ΜKβƒ*) HΚΚϊ΄€$qγΤuΉBI© ΪΣΕ‘™{%ω>š{c>zΜΧ΅ψ(G;jΏ82\’`‚σ΅8ͺίΕόέ“Ώ=υL€tι`EgρkF·${€Π……#cώΛ½κ’‡D."ˆ’„Λ$"ΏώyZ˜Δψeΐέcb?™. .ΒΜ1d£-ψθ§Ώΐ΅[0˜ά‰“‡>Δ©}υ<Ώt~t ΥόzŽ]zά]F€`Š+:‡ώ˜­ŠΞ13άF€`F ŠP”™%'EZ%g₯KўτƒF€`Μ!νό¨ύζΠΰ܌#ΐD.ίi@όmιžύ –’σ}ίωή_8T¨΅h···ΛΉ²rςusŸ<Ό_7ž#F rP”›%ΞΙ)^‹#s-ύδώ0r‡[Β0@¬σcDƒΟc°"λό-ύγykXoΞ0sςςrΉΧ-­νs°χάe»(YY(WΥΨΨhW•\#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0…ΐ½{χδφ ΅KΡKž7ož[ωΈ-[·[ŒΑ“‘‘9ηΔ$ݝmWuγ9’`"h³Qάψ+Ϊέ~O E2Œ#ΰ‰€έόl~3[Ώgωœ`XηΏhιΟ[•+’F€ μΡ948ΗΊφθλ#ΜύcF€`F€`F€`F€`φθΜΧ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0!F€=:‡πǝct`Ή[Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ# ",ΞξώUq`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F |°’sψ°gɌ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΰVtφ G3Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@ψ`EηπaΟ’F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Fΐσ}Δs4#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐDΛ3Χaybβ€6ύα6ΖΖΫq₯―'h-άπܟγ‰κLtΧβΝυ*:‚ iYb6¬w`Μ½―ΛNc`lΔOνX“—ƒ„E eL§§{p±«ΩO~½€d€'.–nίνΑθ”^žΔ₯nΕσ_ή‹ŒEΐ­Φ£ψΥ[GB 4„"4ύ§ώύ<ΦϊB(£_”χ­Dε ”‹§2iNN"WU³3ƒθθhΐ€ζζ@WAOώt₯ΛRŠ‘—”%qq˜₯gΛτΜ†‡pΣƒΟμκ瘢ŸΆ‡5ΌΔΌk;ΊΡ[aΞ#ψK5H’τ7ΐ›ϋO‘/ό"Ϊ “Ό€Š-'W ήΏˆη³ψl₯ζ iQ<άG3zβάαα+hφ7_UQΌσ`δI$΄Θ ζlΗ‹ΟΧΠd#ρφϋu‘Πƒ ΅!όΙετ]ύΪ8–`¬#ΐŠΞΦ1δF€`F€`F€`F€`F€` !°<·Υ%UΘ[ΊΔKΖRF«»τΗΌ’,G,ZΌTcΙβωΚΗ„”xrk R Ά΄ες/q υšœ{YήγψκΊͺ%Gp¦ξΰdŸwΆ5«žΑ–J,σHϊLi >¬.{$θžγΡ‡^ΒI›I:&πΦΡ·pΣqΪ““‘Ÿt’:Ώ—΄Cy€Ηφ‹Ia}C-'p©ί~ιαμŸύ½α°ηΎ5.\TžωrΙΨxcΨ°’ ΝΫVϊ.4ΒGξS“-π§RΗ²΄ΝΨR²k³•(Νο^4^|‡;œ&.ε…λ9¦ιύΑpςσ½γi'ž‹!)Sy+ϋškž_De π’,J΄œ£’ύ‹t>+*܍ŠεE€δ¬Η·ŸEίœͺ{m’ΓrΜƒαB>²εšαAzίLΝΟ—ίa– Jo2±z½Q”?Ήœώ5'Š‹~mΛ0v!”΅I+ ΅%o(Sρ$>ήPayΛ¦=.%gͺdrrn•…πdšπqŠS~C%½`ύƒ¨©Ω(‹kžΉEη0φ/T8²Ψuίϊ—βJ•gΎ\6ΪόlΘLv Χ†e£rνK˜wοΗ8zΓεΥή JΥη―|O—Ρχ(ŸΗΔ/X ¦Z‘ήη˜Ϊϋaδ%ζ]{‡ΣV<ƒx]˜ηQœΔx -ηh§h"ŸΟ*°ΎβAδωŽŒΜ*<ώΠ<Όe`ώ駚Π'ρzΤ[ο[_ΒΒΨ?_MŠŠxSΈΕ©΅ hg‰X=‚ύή(ʟ\N½_—X½~Ή_Œ@$!1ŠΞα²δ ΊG Νh›²$€rV=R˜’gΡ[ΣΝΠν΄¬5βΙ[DΫΤ$#HuoΤέψΰNκςs«‘Ÿ”‰ΤΔL€%ζb™κπc'Nώ=Ξκx/±z}Ίχ0π™y"ύ²¬Άϋ(0μs3}άώΘl¨ήHχ£γhψ·o1»m)•]Ήίώφηe+TτΥβ΅œ-^…*˜²vXp‡ˆw%μ„ξw!Π]…LΟ{,πK¨ωΣΥK…Pπ™χ»T0yI‘¦ίπZ~ςŒ­ŸCΩς\/―Q2\eŸCοΝOpόμAw%Q^-¦±c±rΆbο#[±jύjuŽ€IΕήΗ;qζγΨΘδφ‚<_χΈ²ω’ Oh/[ψΜ—ΐε¬Μ—$©αεy_ύζxŸhψμ‡ίϋ†ΟlœΐD ™5Ψ¦Qr&oo΅-§ΡGsς’΄ Η<.‘«V£Ειν8bΪ !7‡›pξϊβξygœ½ƒΤ’mX‘$œΑ9Ε³(Ε₯,QVn&ΠΦΡ€‘Yΐkuv˜ΆW*pό–—E£δ<ζ–p¦ι*2WοΕΞ’RG¦€R”ζ&γf—oS5TΟYξ^ΗΖ&‡1κ.nnœέu ΰ¬+87ϊΞ½ vέ·F+*O€άšς½nJΞΧΫ‘νξ$lD՚GPšμπδα&\Όρœ°ΒŸΘލέ%ηΙ[-Έ|γ:ΗΖ±hq*²SK±‘ Cc./Βςbό9fτš²=σ½Fž"ό" ’(/‰–“Ϊ)άΏh೴εκ§ώΛΈ1Ёž±~Μ`)ς—―CU^‘c¨’6 ²°7۝žτEp”‹‚ϋv …₯~Žάΐ•OO`½Θ· |‹·$<4…ƒύή(ʟ\ŽΖ_η½_—Π\M,…`"BΡ9Ό–Ό.wΑτr`Φ’PΊ4­x€0+ϊ%v8n£Xθi:*yν§qψύvΰ­ΚΗagΝ&M+‚ŒίŒmλ? ɏ‘Χ13‚QJ+Χ§R‡™_ayBύ³¬ΆϋΘ ώs"oΞfμ|xΦWUΐ±tμκυ<Έ»ϊAΥΨΉχΖQΌqώ˜ΪΰZΊκπρEΕ˜Δ™$(/ζŸcδΤ σ E΄,=ΗtΖΫv ~_”—DΛIνξ_”πΩ½[hοϊ]Χ?Α•aχΩJgίyά‰ϋ¨vΞηηΝϋ):άA+§s_Ψ-Λ}kΉ1‹t^€p[~ς0?σ¨oΓCΝΈ9ƒΎ±!ŒO#nqŠςͺ°&έ‘<²,³›SŽ’ΞωAU”—DΛ ΐΟE‚†ΐ:.^ΐ΅ΆkθΒόδUΨ°ε1η8T?†-WpΈή€" Ο—¬R¨ζK‚\_΄ΫiΝί±ίƒ3.ύnΈ:ϊ_ώΘaΣϊJΊaŽζOβw‡ΌΧ͏Ÿ$g=ϋΪ.€Ρn’׎£n Ϋ·™Γ3TΧ΅-χ­ZC‹Κ)WRPη«ΩUœΑ1EΙYiιT/†Η,εžTβόϊγΟόβPκ¬o˜xΠ]ΙY[±τ½ΘΨα[ήάyŽ1ο»V|ηε]-7—bϋs;QVΊΚυμ#ς3₯«ΧΟDm½β-Τ†ηΨΚνxvw *J”ο@cθiΉ€ΊΪΩΚw_ιK¬ΙyΏψ“ο/M”—DΛImν_ΤπΩp+F*:ΰέŽω<σ ΞΰšŠͺ ΉΩ^€Ρά·»ρα?ZN›σžr#βi/›Ϋηπϊ[}a™Κ]δΑGΎŒΝΕɘ%ίꇱkb‘z5JˆΚωΐ{£ΆΟFΒ’όΙετίϋEq12Vœ‡`μA μŠΞ±oΙ+hI(κ‘BZ ‘%Ά=—‘ωZBm‘jy2"‹i54Ηθ­fΪξrΣγ]΄c3W}—–Κ’ϋ'||$τ˜"άqyBύ΅¬τh ΄ΥρΜ}z ΝωΨ[γόh% iΓΦ Θu–λͺ=_Ύ‰ͺΆ§HX,d[8‡ŒwEοwΑQžχσKˆωS.f3‘ΐg:ό{^ Ψ*ρ aΆό6μ)`¬―ο―Υι§δΑ©‹v½„"§r‰vέ’Ό$ZN§…ZF‡n’αΜϋΈψϋ·Ρ<€•έ€Ζνxώ/Κd£±4dη,Θ€’3Ο—΄8*αœ/‰ς„%‹Ώ†ωΜCŽρr‚σ₯0σΌGwωΤZ>Σ+//מκ†KVκΖK‘-­ν>Σ8G`wξ*ΰξΰΞO₯³¬ΘpyΎ-卑ƒœ‡Tͺžͺ»pφκ1·Ž-KJS}Γ“#ΈŸό„%Έ{{7Η#ηύ4Dσ±έΉ£Iasθmψ(κqR λž|vJtŽιxΞu²έΚMΘ_½ZέαΝ%) •{^ϋJc6ͺžy}m ¨λVr–bχ7ΎŒκՊςΆ/aRˆ TG~n&~ύ3«γGυΜCqωjΗX•ΠžgžG`F€°0+:ΗΎ%―°%‘ G ay~&ί–ΨBf-O]%†l°¬YςΎπY¬-―$O(dOVπΙτ;ΠvOμΗρϊMc¬Ι³(ӈ ΓΤ5Τ5Ήμ‹].mozOžε¦ ^Ÿ‚έ¬Θι_,kάGΒψ„‘ yO+fξ?©C"EΦ;-Vγ0;ή„ύδ½Eο³VΦ–/ΰ³›ςeΤ/ ΛPΙΝ4&G;ΡήـڏHy‡>.dνψ–œGμΏ­X[­¬f΅£α€σ#ΠΚέx~w%ΘQ †/Βο|X₯ͺ2iqξιΆ΅δY₯σ8yά9©&™υμ"±•|Οξ%ΟEΚGΙ3}„9ތœMλ‘Ό0Cde{@§?Ζ=μXγ]Σ<„ϋ]i‹χopζ=~ω%Τόιέ鈏a> 4D>ψL§˜Y R"ΌdmžeΖ³‹{'ΝςKX-Ώmσ@Κ4νfz|:ός’ŸDΛω©2¬I±Ζ/#υοβm½ufεzœ?ί€²‡zDZzΕϊΜμόΒσ%'>z Γ4_rΆHGŒ'o(¬@IDATτλ‰ε33εηKaεy¨‚5·ψ,˜Hr݌€#Έ5-y_BΙ(+~}ϋΠ)WUŒ‡6)ΚΉ1π ΞάΠΊ<–3EιΩΨYς s+Y »­%4G’45=ey ΎJΚ1:Œ‹ΧŽβliΕΘQ &;pέ™\²ϊKκvαJο­1OΛδΑwγN/ΣΈTS\ŒΫ”B#θSžΏšIχ Ϊ¨zζ΅ρ|€ν4Ξ]lC|ΑT―w¬U₯—?†=»Ϊρϊ!οωΪD_;::;0Τ?@«e €°΅žmΒλ?pΆΣ»ŒΡ˜σοό ιι†m«Σ€ΤΨυΥΗΡό3§υϊ/`ΧEq}'ήόΞKΖ€‹IQT0†ΛǎαN~5*‹¨ηΡLί"Ζ«P%+3η£ €”*ΤΫΏζδάNͺ―u `IξjTW9ζΪιkΓ“Ovαηϋκ”*Υ_γγGE¦giŒέΣx†βΊΆ|ίΊχ1ΰ™¨<‘rΙHŠw6i„<ΒkUι•–¦c©Β[J”ίίό™YŒ“EyI΄5D΄1ΒgkΧξ@I‚2 ΈqΣυΝ^‰Ά_ζAΡkΖ… PΉΛaWT± 8}ΐ£² ”¬RΎ?β2νΦ‚ι½a˜ZγΑ›-§Πp[ςθL3η…)¨\λ˜Wί 0χ—ΐˆŽω…χFχ{*ʟ\Ξ Vυ½_·Ϊψ„`‚@˜cέ’Wά’PΜ#…Έ<Ÿš_KlW)s–§rΖCΦ,kAΚ‚/~ύ”Κp©’’³t€mD ύegή|_Y΄"OΠ’ΜΡK[‡$'¦;Ϋ@ Pγϊ/SbΧ§xΧμ“g¬ώ[*`Ykπ>ς/7BRE<­˜Ύ¨―‚–’‘|o/EΕΙwq’Υ·Š (t~\˜"EgΗсψ·n™Ή™;)r+ EκλP«zeYˆεδ½'™2n·:ŠΑn’ Θ{ ε—>gL]p&‰xvq5o!KŸQ+Θ3Α+šE;Ή*Ι3A5y&¨vΆ‰Φ’ΘΚφ€ŽB“q;VxWm¬σ «.RΑ΄Ω’>σžόYό©Ε6ΒΜg†Α7Ÿy7η±ΑQή…ηw5γΝC xρι]ͺGξζC―γ°lR5-'πζ>Βε]δ|ϋ)‡ΧΟΆ£xύŠΛ™ΑŠΥŸ—γ’3³(7)ΈV<‹Κ³-πΔδ>½ό,yέ#—)ά± ε€θμxb‰ŸSϊc žAΈ­ή·j D剕KΓβΕΚ―tίΜ:BΪKΚξGž6"@8IΟVD–₯V’ΚεχF­9%½ξ Γ…#?Η•)5Z7HžTh.=ǘwϋu―γ‘βΌ›’’LΘψδ§εΕΛΙ«·’(~ΐ­)’Ο±‚UΞ] ¨Ί‘ ψΧοϊ<Ε{Ϋδ쟿¦š·¬5qωi"žVDξ?꬐G‘z\ΎΤ‚RωΓK6ŠΛ6“’sr΄˜UxPiB³μΝΩ#‹εΣυ¨ά¨xtιΑΕ“]5ΆΆα&½&Σς’ŒεXI)κ‹œ+—*ΝΞT?šτv: ¬xv1o![GŸ(9·γLmFβς±¦ΪρΖΩΪ@VΆ=ΒΨΓ»°Κƒ*ϊ€ωϋ]SX7hχΌ'0ΏDκBΆHζ3cΠϋα3?˜ρΨ`ž—\‚ΝΞ³Μ{vqΙ’Cfψ%l–ίvy ΘΖΪry}Y•sKn χΊ‘…φΐΌδͺσT΄œ~m፝«όR€œΧͺϊpo{€aπΓ/<_ςγ‘0’ζK’<ΰP“EωΜ|9‘ωRΨx^(ΉΚg!€–E0fnΗυώδ­P>ύ¦#GςS ιJVΪ}Ηπ*)©ΖΞ±›Φ”ͺέin«E›z¦²‘ΆTaΧovζ&g㐒JŽ@²JΚRΞςmh%Eg₯|v’K£opDZgوGΧ;=G“Bυ‘Σ‡°βΑοIEεγξέ;JkΚΎ’z}ξ:Š}MΝΦ Βυ­1Υ]-§f$oeΪcώ<χγ ­I}¨(9;Ÿίχ!Κ6V8”³2 ‘O SΞ…©ΊύΏΦΆΞ-|ξΘ9Ω\±ΡκbΩ’ΧŠ%‘ˆG +ςτΖˈ%Ά^99NYΉσ™Α|‚¨e-VoÚeq΅'~ωC–·Χ£6Ό»Ώρg¨–ΆŸ#O«7=NŠΞοɍ–GΛ―"0Μ#b „ΙqX–šN(8[#΄¨œΈŠ\Ÿξ5˜;³KžΡώωjˆe­₯ϋΘWCΒ/δiEπώσμ’Q"η/6αaϊπ"- @Φώ:h7-Ψ±Φεiωbƒϋ”§PΑσ•»T­ωGΟΰΈ›&szhΫΤ2²PGj–Σ₯V·tw‘YYΒ³tτ ―>ν{vqΤbΦB6kG5΅ΥQγ ψέ ZŸhΔ·½<=;σzό? ž€Fΐ2™;πΒζYiKkf7hΝn^Βrδ,u*©Qž'Λ†°ο²·ΧcΛςΓPΑΪuΥ.ο₯CŸβ“v‡"§{SzPwώ§8?ΦAͺΚ£υ( ΗηΦV9泋rQ›ŒΆ.R$$Ώh©K$΅Rι@oB<Όν §΄Τ^xƒ<<“’`ͺ’όΧ…ža‡μεOβQEِ”PΧsTCu:₯Σ έk«#kο‰WργΆγ€›>™Ε‹ΙΘΨmΝΚY‘}?C7pέkΝ©m=(•'`q|ΙλWe&―܊ͺM됟—ƒe‹Ι»,)zKΣ„ω Ωζ=Sͺ΅κc±ͺ/έ‚ζOκυ2ωΑ §rβπ$‘λ8&%c΅K­-,Ηs²7μlΠlŽcό©³uͺRt6hΈΥqqΞΘ‘^ŒφQe鏂ρρ·°‚Οβ›%ObΎZΠY|εϊ$έΨ%T±ζ°4~‚xΏΙΈυ‘oΉ<΅kΪν;8sgφc‰ΰ}λ»^)’az ·δœϊζΟ\r*γΊ†€5ηOλ~‹S}GΡE Sχ^ΑΞ‚ωtαBIΨχX• εs,g7Ύω§Οπιџ‘Σxνϋ?vz·χH3{ΚΌk1ίω…xWΩ…! ΫΎρߐqζ]mEow;:Ί]Ο:ίB¦Π³?ΝqΟJχPW³KQ©‘³νyQρ―θlœ?ΕωEiΩ_Q^+'ΪΏŠ¨ζ3iG‘ΗΦ9η«έjΐ{'φα¦ΩΑςΜΟ<θ‰ˆζΥΒϋδλŸ~Ε,kΝέGϊ’}Δ†ά"WΜՎϋΟ”G‘¦³hλ~ r·ςⳚ 8&r†ΐ|ζ]9Ο5^ε π’TFtžeΥ³‹~΅€χΒΔD„5sΘJ₯™€l°ΜSζΝCxύμ ΟXs#Ό€SLR& θ±O―œ8ζ}vvΟ—VξΕ=Κό‡Μύή}Ξΰ5Tω…ηK€„‘/ΩΑ^ƒn„(Ÿ‰•›/…œη™ΟBΓgΊW$G2αD`žΡ(9χί<ΞR Φ¬ώ"-‘u:V¬άŒ΅νη£~«k€Υ`cž²Ξ0‚3Χ@RΤ;FIΙYοΈΩρ.ΠΞ‡ΥY’$,’\Hͺ)X€θ@MŽ!mΥn¬‘²Πq₯ακ)…T9†ώ»Υ‡›cτ›YC^78bΗ/{(‘€cY’³ΐLϊ€:ό½έώΑό5Ÿtk,€GΣ4€.'-Ϋ‡ςWυsίΓξjZH tΜΞΚa =σ”/S€`Ωλ©°l †‘ώ^ΏŠ‰‹βιεΖΖ£qίPWςl–֝G훇FεΔίo놨ικΕ₯—Ή‚–G€kU9­‘₯ΔΊ*4­Z?+xΊ ‘‘ά+ξπs6…Ι‰…HUΊiζΎυS«$AžεjΜ•Ά³(+*P }Te(Ϊ>yΖϊηέ(QΛZ³χ‘·d1a±Θ³t΅εώ3εQ€M΄uθ†œ /+Κ·΄%™|€>‚•²χv:#+W[;:νω_ς€\!q ΄είa]κζΞnZL«”+²σ(g3 Φ‘ Υ±8–\TJžšN’7§iΞΊFz:!9αYaΡ³‹Τ.㇧En½WΡξςLHΡΩΤψy‰0a•EοwC ΅qήcŒ_Βϟqa>|zœŠ|>σ_Ο5^uŒ›g)_Δ<»η—Π[~[χ0Šήή, /‚w°IIτ,’―¨“3HXΎ Ο”γρ’χ‹–σΙ#†ω%4ό’Ί_ϊΚηUY#οϋάΊ[!ž/)Hh~£bΎd'4=φε3Ρr’PzυΩq Μg‘α3cΐiŒ@˜XSΎQU|›$ΟΖFJΞZ₯ί+MG‘›Qκτš‹μŒ\μΠWώ SLŠMΖΓ€‘€ή wΖIZ³9¦οL{KYκPπ›‘€„"¬‘΄ιθΎώ;|ΰτ½†vΰrF£χΦMΩ ΔΖΌJϊμ<ζ-FιΖ/’bžσόΎ%.OΗ‹J±qΣ±φή κΞT•’‘ώ™šΤυ½8^Q$§έsΆjύά”œ'Ί›Πά‚‘qςη<› Q³c£#³β‘ΨJ‡h ,ή―oΰΚοή–2”Ηz,υΠ LZNλ :‹^ΝΊ…ι€;hά!Ϊ‚—ύ+Ί' ~W”[Hςτ<ΤξΌAlΏ γ9֍ζΦOqσ>·nψ?™FΛό₯(—sMή·ώ+φ“*Θ-'5eκ<ή9μ\³ε™ η™\ιlΖΌτ*”&/‘Œd0θλz3ȟt©—ΩL \υώ^Ά0NY;ρƒ1ŸΎωsŒΎυ;vKo–ώΊ §ΕavͺΆΊ53οκΒb!$ο6½‹ύdOΧ<„β’|Ωͺ*|i6ΚΆ}YΛπκ?ώΦeg₯ζ4,Ά¦…~QšiφW”—DΚ‰φ/Jω¬¨ψ<Ύ¦R‘a2dάη1ΗWEΜƒΎQ‹ͺωg3iŽY™ιψΦ]Ίv;):ǚ2x–1΄?ν»―rJ0ηŸκΫI Jύ‰‚ωnΘίEω“ΛAο½ί|^Ύηψ?F€Αž~ϋιGˆ-yύ΄$(I- M{€°(Ο C–Ψn%δc–§ήε‚γςήΧƒ.}λX;όPhϋaΥ’L[—Ω°ψ8Rc‚²}γF&|» 1}}šν„G~{δοŸVΌ°e­ΰ}€•ν3‹\1KW;ξ?³EšΟ5‘§¦BVΈ)XUF›ˆž”=Ό¬\ΏΚRq)C볁OΤ $ΰMΥjΎ+§Ž¨a·@CΗΙΈb)胀γγR~~ž+KNŠθcOo~Žͺ4ΤΧM Ε°ζΩΕ%ΐhHλ™ΐυνΛhi%ŸΩρSΚYωεAαϋέPcmœχ˜ΰ—pς§!X˜Οά`ςτ8ρ|ζΦz:1ιΉΖ³ΈΡsΡy–ž]Œρ‹¨e»Q<ςΩβ)`υoAk²ώώW°}yy¦#/{5ςIΡΩ§gΌδΦzΡrn•ψ8a~q&8ό²Ο~ύӜF>:Oΰέ~ΫMχ Ο—Ό1!•…{$”Ϊ`ŒΟ΄­΅ΘΪͺ|…EωL΄œ³ζηK!ζyζ3·+&8|ζ&B=)//WΓzΖΖF½hŽclC u‰’ςK^<Ι(M«δμƒQ2L“ΌKΗόF”Σδ¬ωίςΒ]¨Luτ΄’sΎι„`;“‘š xZΑΠ-§"Ÿ’£ρf:9π >ΈtΦ)'Ή©ΚN`δeψ*ŐZ§Ϋg))H—*šΠΞRڟœ,ς°=ӌ‹ΪΘ0…“Ι;΅4›χT}ŸΈ%ΝκσιoŒΌεJ.«Νͺε―ύ ^{ΛcM‹œ”‘’³FEZ.ηλΏ{wIiΧί1Τ‹QIGW2πOπΐκ―ξ ₯Υ|νE”y(g—νy5…£δaΟϊ1ιi<€k·Ώ‡ZƒΪ—vŸυΎθΥЁ³—=―F½|q‰ΫŠΉ¦ξ[:€ΣΔR¬MΡΊ”ž₯9ψYtNyδβ ͺC΄œ"~μ<ΧΡ"€Λ_m§106BŽθkπΥ'/ήjC³S·])¦ό ρηIHOΟ#QγhΓ3M97&Έ8δΟ±fίgͺΏο@ΏΜ»2—.Δ»MGπ.ύXYQˆΜόU(­ά„ΒLΗΌ`IΙ<Έιœξχۘ@Ο±YΊηG'†‡•°λΧVS«όβlVVΕV$k,vf†PwZ»θjΏε%³εμθ_”πΩΪς/α3E%*Π7ο\ͺUΟν 0ϊΔ1ΚζŸΝŸ\@}λ–Ύkη––ceN< ‹œο8} h¨χΟc>qpK¦ €–Χ+‡)Ο.J‘0όšΏ0΄Q)~Ώk°}σϋψ%˜όi ΚΕ|ζͺˆη3χζ›ς\γ^Τψ™•yV¨<»ˆZΔGΑ-g°<Τ_:†ε/‘DRδHΘ@69jθΤωxC¦;†<9Ή5Z>-η]“n σ‹.,j€e~)Εςu' τΕλη5/EUž3ΐσ%ODηΡ2_ςl½qžπ,©.ΚgΛƒθiSwΎbžηω’ώυ’ΖZζ3΅&0‡@dg›04¬§ XŒτ₯N8RW›œŒΈ>oP)ͺJhΗyά Ο―=•ΔΏΛr(L.δW>θKˆΫǐΙΛψθΤA—yφ*z“θθ’ΦFcz²ΓχhIΖΣSΖζ##YY»‘¬“θΏ7χh—<½‘HήτΌ°{ζΛJΐ€”>Ρ€χώώηOŽΖ όŸšŒ4RΜνpS–₯πΛ%%gι˜ EOΗuεrά‰+'½ΧΜ Φ― ¨δ<3γRλJΞΜ’ϊ *.­Δκ-hΒΞkr7mψ―tΟΔφς4GMCPΧ²›<κecϋ³ŒοƒΡήϊi 9F$΅Σ|Z/$Eτάϋiπ˜1 ν?? σ›τλZθΎυnr~f>³†0ΥmWn‘σšΣB‰•'ZN‘«όN‘³%LοΪiΌά·t7hΤLδOβ4οΟe(Ι.Q+οιQΓ€Qyi˜[Ο1BˆyΧu™X Yηέ~΄6Hu¨}Χ¨ωΪ!—ΎΑ$bι2ΙΚΖ[AΠψs¬=}=¨Μ‘κΛ§οP΄=„ϋ<-'S3?π…aώ΄‰_J6=‰kΟ2©Mγg1HŠΞ­>Ϊ§F ρ•6ZΎώE<Ÿ%cσϊηP+©¬JΗ\Ω‡{Ξ;ΚDΙΜƒφ ΤΠ47ξF4M]Οd©σρk lz‡ΪΓƒfΐŠόωξmΫή σ΅(r9χ~ΊEq1s!s^F€°Ί]Γq„Γ’7ύtΚ΄`Iθέj)΄-Θ3f‰­ώp ΛZW σ‘‘G‹Y€τΰyΔiξ„yž‰ηδΩfQF†΅j³fι--ΨGb*glΑ°ΠΗΧ'υΓ°%Zΐ>“'Wc²V,kƒ…Α"Χ²₯«=χ_ΐKBΞЏ¦¦«Ψ\΄‘ΞPXΆ•Ά‘\ŒBI±X:ΘυŠ―]ώ9ώΟΐ[6¨ε.œ>©»=¨#C?z»ϊ ²tςw܏ Ι#ΜPΞ΄Ε‘ͺͺiΤφό…Ξ―kγ=Έ)·WΤ²Vm–Ιΐ4BΎ ¨β]Ε G[Ήίρ™}σϋψ%xόix9#σ™Ό"Οά[oΖs{Iγg–ηY6yvρΫbΕΡ’Η)cόbŸ§ο>έΑ]Rθtˆς’hΉ@νq₯3ΏΈ°Π Yα—μώχ_ΓY ƒκoΐΏώF”;xΎ€7vΕ{Ύ€ίNc<\> &ϊ˜/ΩΔσϊ˜κΕ2Ÿι‘⊳Ζg€θͺΚ#Δ›=αӐ#06IJ ’"s:ν°QΊaχŌ’Υ8Œδ–‘ηβ!1§!ΐςϋ·‘H™?O6ΰτeχΎΊŠ$cMαΜτΦ’MgνrYφμY_₯fο½~Φ₯0=L;Ψ‘sŠdΘG &.Ώ5g/{rΕuχ6‘MNλ!eθ«ΉάΙ¨Ωφ'Έ_ΦGΑ™ “zΞΞBΛ–%#;U£`4”ΰZϋu―Ψ¦³”?ΈηφΧΉκΫτJsœ§γ}φnJΐi'jZΆr›±₯z“λΤG¨·³’J€€φ•œ")‘ω;šΡv΅‰Άγ–”… οEαμ΅jŸΊ›Wή!“Ύ2lJ«x{vU:+CέΑΧΙ(fό­=ZcκFμϊΪγhώηχ, ”wt[οp†PρΠN\$Eg/L$)9λΙΩΒœσΒE|όDτλZθΎυξM}p?FΠ?β‘δ,e•'ZŽD¦Η^|V€‡6= ι3€Ž[ηPΧͺΣ^J2Ο”Y«ΐ‘”†ε²Χ”kԏD-Έ¦#ΣΈΌAΜ₯η˜4L΄ΰΟΌλΒΪ‚Ό›΅²‚Ύ6θ~—ιΈEmrπ«―Ζ™yŽ H|G}ΕkNhί)Ά}YθKŒo˜?-π‹*Œ³³’ε—f2yOλWG›U˜—„ψL΄QΓgxxΛ3¨L§ £lցO/ό§ϊά ‘ζA;σβ…Τ”ο *Q Ν;Η)Έ΄ΧΞiζχŠΞ?νΰAWΣ5z0ub"uΎkί{£aΎεO.§σήOW£(. ™CŒ#"T=ΚΙsŠ™c–Ότl³ŒφŸ)΄Y…ε΅ΔΦ s„ [žzŠ1nY+½ΌΉD$ΛR=–S󐦬½ŽbΠk—ή=Lx€°Ν’ld\ž―JvΏι™9ό`τΊΊ’²2ω΄Ψ·ΜYλπXnκJπiθϊ€* [’ω£ς€jŒχΟͺe­ψ} »‘“lΒӊχŸHΗ[Ο6‘kΟFΗ–>eΨΌk‘ΊŒΥqυ²ŸOΩ"¨LΕ#X+½dJGίiœ ΰqεz§τΕHϊ˜“Υ›Π'KϊΔ6Τ‚ΣdEημ’*ΜΏνX(›θιD#₯KΰE=»ΘΕMׁώAΪΞ4?ŸJf#ίΉP¨­&'Wb¦ΰfxWΫs†Ε$Ώπ|ΙŽšθΠΜ—4=ƒ†xΒθ|I”ΟDΛyvΖϋάη|Ι&žχ–‘11ΞgGω―"xn#@φΠ“’β²CΙ-oε^|φ^.t_ŝωΉ(-xUy*L½η] ½jl”RΆ‘r…«/W} Zπqd’€β³(ͺΨ‚]Χpc€Γ“τΕA*r3JQ™[δ*GσπΊKg]ηΣ¬Ρ/AIρ3θω·’ͺŒκT΄œ©άΩΖσšr>‚ρ+,+9Kι£²΅œŽhΝ.]J>(%Ι–ίβš/βyςJύΑώγHέςμzΎΖyE]—κλM$J]?OΓΆ§Ύ‹Ϋρΰβι>€nΪ‚y Ş:’z­›žQ«Y²z^~ivβξό€[yƒ—£U3g<Ρ)lΨΆςΘgnΒ‹™ˆ}„K—ΫIS:E₯kQ±k’5ŒŠΞ›ρβσ{Θ―γθ8ρ)9χΛ'~σ²ώς‹rϋΣΛŸΒ‹{nΰυχλ9Ε~ZΕ…M›HœΚ“υ‹ση¨=rW.]ΕLr&2 PD[Χ―_dςΔy‹εOvŒŸX“έvŸSͺ°χΊΆγΎΝFΪRiυU{ γ–€§θuˆΚ+·,χq|‘Œ3ntΑυ‘nŒ’Χ‰₯‰(Ξ{9 '‘ηO/οΣχζlŠ?©³ΓΈIϊž)²\|¦κΔ5Χ’uj1ΚVnΓšηΚυζ:1ˆ(SςΘg<Η4Χσ ‘ (ο–β‘Ώ‹ŠΤ\ώτΪ[›ΠΫέEOηL¬ΩπΆνpΦ€LrzΪ}ϘxŽ5z]»*δοOKJvα›_½‹CΏ{CΫρθc_A±²žζ²Τ‰’Δψşh9Ν‡†ˆ(/‰–ξ_Tπνfχΰ+΄Σˆs4Ρ2qί2ŸΔ£Λγά†hή}³tΝC=₯GϋΑ‹†έ;ˆΫ¨Nzε‘<֍45 ΦΝ(њ<Ρω§%Μ©ΐΊe+;Έ“No,Ž#=-λ*6ρ΄w¦n ±ŒI’yΎkφ½Ρ…λ|-̟ΒΟΡηQ¬—s ‡F 4ψ€ΕΰŠŸ–Ό„¬ aΛh )„乏²qKlχr™aΛSο’B1f,k―ΆΆaoUΎ,§`έ(η€k—bΧ=δP†”3τχΉ;¬pΆΞŒ'XΈ>•ŠΏΖ,Ρμ“'‰ ά?)—uΛZ+χ‘Τ‚Θ=Δ<­Ψq aB[ϊ΄6Ρ–>«I '§{o5΄u­ρ€‘*Gg]ΛJχξŽω-SCޜŸicΞ³T€iν”σHsε-Ξh‰­ύ*zΠ>^ƒΒ₯Ω²ς³$΄ΏΫev jY«ίxυ­Πέ"D“Ή»›Μ+Φ;ψ³τ(?ΤΰβϜݨpr«¦ˆmA1ή5σ<²~ΏK5ΖgφΜ{ŒσK8ψΣΆ‘AEΜgώ@6Λgξu‰xlΠΦ˜—\ΉΝΟ³¬zv1<Ο²ΙςΫΏz ˆ/ΕζΌTάΈZ«oά–²O–=¨ZΆOήκwz΄s€2ΞKφ”s―%ΟbŸ_Ά½τǎν^₯ΕυΫM8πuήQ”‘2Λ/<_RσύΤω’M¨|Fυ‹yΪ΄0_²‰η}l$€Μ>; ps4ΆΤauA.ςδτ%(-ωύygžψΗ/ΪηΥΛ[B0c’±΅d2œ"&>Α©Ι/°#%Ϋ©tšŒΌά*ωO7ηx3Ÿ}ΓcہƎΛ(]S&IHΔ£[+έ‹OΆΰp­g9χ,κY‚Λin ΟΛ#«š3tPΏIΘRQVσωΟ­CπΙ[ΗΥ¨ΪSu¨€5Ωδ>΅5/Jj²±­Ε]ΉXƒά΅Γύ‚υ5(Xο*Ϊ?„VZWR‘γ8πf>Ύ@ΚΧ²"1mΙ½νιOΝ!άΤ}ΌϊηžW:sοΏwΊρ˜ μόΖ³(U”Υڎα}WPκοw π­gΆΙQ₯»žEMgŽu`΄ ξ*NR5Νxχ_iίψΌ¬<‡₯%¨~RϊS₯κ„Η/€xκ6έ@€ χm|’]E"έ³JΨνWTžXΉ΄‡γ ί|6‚K‡SΊJΩ&ωSξgΞ·ŸAωΊ*G―“Κ°}3ύΉa@λΡ]G±οͺ‡Γ ΊSMρ5Υ9'žc^χσΗεdβTw(AΩ({@ϊΫ₯+w’ι ŽΛ":Ιfžc”χ“£xΖ1Θ^»/Ρ_p1~m‹(/‰–“όˆΝΟ’€ΟW!KQrvHBf%ξχ18 Ζ’SΡ™yΠπάΟΗΠϋ‰nΐεKM¨Œ5œsΆΖ³ήω½Ζΐ;‹cΧόx°ϊΡ/cχZΕ‰†2ηoώ6<υŠc~-ǐqίk €¨žον½Qœ?Ey—Λ™X/πΈ΄ω”`μCΐθš‹}εšζ€%―%‘Bς4ΓjΚ[SN Ίτ•Ÿ[ή¨¬LX֎œ:‹Λ;w Lz™XJ/žϊΗ8πϋύ¨#έΑκ‡ŸΒnς‘ OΓmρTI0!Ο>‹²fτΡφG™D―{Ώώ]€—Ϊ)Δaώ|²μΌpž{&Ζ!Ώ`7ΚS—ΰή€{χβhKAΗ"΄Τε’¬jμ\R…yδ6ρφΨe|tMZ„Άp}J•ϊ;t™Θš<σύ³Α²Φκ}δ£Hρ΄bΛύ'ΨχΖΖ«Ψ.):kNΪς±I‘ ―ΗΞͺh YωίΒΤB51«|/˞Α<Ίβˆ%½ζ!gςΚΗQVξ”3~g΅mΤ<CΧΡOφbJμAG›γcOgΧ³(TΫ=FŠΞWΥΒ’–΅r²GΞβڎMδIζΉτ]?ρ)†βς±ι‘]Ž.jλl˜α]­hCv«™"<X‚LYΝ•:€K-Ιϋ’Ÿcz£4IQ”O=³&-έ—PΧxBW‰±σΪ¨]ϊ ͺ5^K•*ϊϋΞΰTέ{ΚΡJͺχoz|’kwΌρ›Ίς΄₯΄;1Θρwu^0΄DΒ47˜t–λΉx }dΈTYβ~팴ΥβΠo^u²Kω[ΰ_ΖαΙΟ=…B…Œ· φX²wζAΫxPo`;€ύΎΊ,τ Ίιy7φ<4s:7Ξ ζό“Ϊ Κƒ3ΓTΪγϋ½gŸ”σΡ)ΎQ<ί5ϋήθυžγƒ―%ˆDω“ΛιΏχ‹β’\όΛ0‘Aΐμη%ΫZϋ–Ό–„=R„ΫΆ A΄"3–΅hΐ±ΓΗPπό‡Η՜Ψϋ ύyȞh9„ιεSχ0!OΨ’LGπρc-m}—.₯eV zO…š«ω.YiukΌ`¨)ΖΩ™e(ΝR>$x”I-#%hGάdί CΡΩυιQΏ‘S‹ςLχΟ²e­yF`ˆ¨<"žVDο?Φ§`½'.γΪ3Υ(Φ€x­ε’ΧG 5ye*π\”r€¦“w!ω>”O1xΪ₯θ\½u£šΦ~Ά–|―9:Πw³Θ/tdλMŽΰυΆλν^τ΄j=ˆyv‘j±ν@φΏ·_yq—c±Žxhϋ3.r΄ΨρΏΫxΨ0~’5°)O@ΪΖ [Ύί πN·6ο1Ι/‘ζOοξF~ σ™sŒlΰ3―ϋݘη©"Όd}žeΑ³‹α+[Τ’ή°cύx ΘOT“±‚<α­ΘυU₯Γ{T—χ(“Ό€V/ZN­ ς1Μ/K—9έ ) +E›P₯Ω^;8# »p@Ασ%Ρ4_²Ξš ΐjΠŸω­Ϊ_9Kσ₯αyΏ·!q.ρ™I2ϊIHH@QQ:;;15εί=k||<ςσΙ„ŽiϊΈΛ#ΖΞγpέyΤ₯”"/1 Ϊ·§ϋq£ηš₯ΰ 4ΘζJΗNΰυύ'ŒW:uϋ>:‹e‰ΕΘ€ΉI|)0&³χnc|bmƒ:ώ=j―;S4uT`eJά'ν<0…Ρ±N΄ φxδτ:pcώŽώŒ½§^Γί_Pξ#xν{GάDœ­ΨЬ΄₯²’ηΜhΞΥλ―'ΤΏ‡ŸΣίΚMΫ‘™OuάΕDžWςyΧ­^ύ“œxηθO?U7ΆυήύΗ#ψpεz¬ΚΛt(€Jc2KΫT{¬²ΡZ‘gάκμ>ˆWΏwΠ-Jτdδτ/π·τθ¨}γΏ‚œ€»ήm€υΌυ Έ#¨η¬f¨~FdΌ‘(‹$-]Šž™Β`w=:<ŸP²ΠψΩ€gHkκŸ₯ϋv¬oμ―u‚kμGTžΩrνϋπjϋ§Θ'g7‰‹ˆγγh¨Η00Ψ€›ώ§!dcm’?5]ΏyγήΈqEΉ+‘΄`!₯Μβφτ-z4ϋ~ˆΚ‹υησnDπ.ω!Ηρ7~€γt5K;ΊegМiQΌόL™μCΗιzίί…4χ†δ]ΨΜs¬ρ}2ϊ΄Κ\=;3Žή«'Ρ1D•ξσ 1˟fωΕ­[tRϋ›Ώ₯?ΟXοsQ^-§΄@΄ΝgτόyέδσGΑ#ͺ~™mγA½q//PΦρΙeVcƒώ7hέ9ή\S/Ξ)U`ώ)•αΑsoύ?8χ–^oύΗEλ|Χμ{£QΎVΠεO.§ θώ+Š‹{-|Ζ0ΑDΐν;[0yΥ=,yM[ZτHaZž2("–ΨJYη―ΛS’Β§f,k{Oύ―Ξ γΙέδ•"Σ[δ΅ΪΑώ·θ{svf7,OΤ’Μ»YYμθ'·ρόν(+rχΎ‘ηΓψ8d#Α Χ‘ώΡ>GΛ,^Ÿnέ3b9lIž@hΙΓω­Θ­©ϊ':–΅6άGϊ²"+Φ΄§jΎΠύ§±>υ²\”!1β‘ε$ΥοB±δyP>Ϊqν\½3¬σ3}νCύ_S€<ΈM;Osv£R­Ώ ηχi<jJθ;Ί€h…rRWϋUZBs­νθΩ³Ρ±]hg7Ί₯E1ν!βΩ…Κ YΘRΉ‘ΣΏΕΟ§F±η³£4ΗυB=@€.·ΟΗƚM²I_ΧMW+m?ΐ0οΊ$ΣG]KW‹χ»FžΧυ©+ X™χ˜ε—σ§θ 3ŸIceŸ‰zl ιBΌ$<Ο²ξΩΕΏ8ξ[,ΏΜ—βtχη)`ώμΊi«ήœ$_O½ tίlΐω«Π2¦S½Y^Rͺ-§”’ίXε—Ι rŸhπ˜Ύ}Ϋ•“ηKQ9_²Μ+@›p?|Ν—άs©gώψLΝ€π[Ξ|IάcŠN3#:jρYGGςςς°tιR¬X±]]]Σ{‰‰΄ yρœ7o&I!Ί§Wk ΡΓʍ‹RF‡›Ρ(9ΎβCF`tŒ”ΌυoOCΣΦΰsώRΈ2„Š#Sλιγ.OΑ&ΚYΝ:ZΊV«΅ΔXyrrrΞ€£“p_(υ}+*Ο|Ήtφ™3΄°ο΄uιxnΆ§r―ZζsŒyΧkψCΡΫΪ€ήP>O†ˆ«OθΩέqσό"ΪQ^-ηh§x˜ΟDG:Xε˜νBv+6νPœO βκywƒF»€ΈΥ#0DyPjk,ΟwέΖΒΔ‰(r9}EqΡ―cFΐnξϋΞχώβ"•Ά··ΛΕ²r2χZNήοαηlY=RTΏτΧΨ-)© Ζkί±©E??]ςHJ6emΕ#…C°9yωSΩ+Ε2ςJ!oΧ1EΫΡ⭎;€πιÎΚΓT‡υλΣ\ΓC-Ο\λζvξd#žV< εύη!:(§^ψΟxBޞθͺύ9^}KςΒΓ„g;Z•œS€EREΣ΄yGΨρ-|λΙMrΥ—νxσHhτμθK8λΥΌ‡ωΣψ(3ŸvςYAaΖGH?§θ<˚gύΆψŠ]–bέSœ―Ίm‰/@QR β.”=GIuήΎ3„ΎfŸΫψΪ"wUΒόb/Ώ]:<_‚M-γ€2°qνj΅Άι ”ΤZζF TσζOγΧσ™½|fΦcƒρ‘rΟ)ϊL ₯g—ˆ·όžκ@ύρ<˜_με‘‘βω’lj‘η «σ₯ˆηyu ­ζ ŸI Λ7oήΔmςL/)3K Ι ¨§ΗαiQ«=84Œα‘[ΦΑεF€`"Ό-+P°΅'ΫpγΤu―ΆΞυt/@8‚`›ˆu~΅ &†`b ••xπsOyμ><ˆγΗέ•œcΓέΏXΊ€Έ/Œ#ΐΔq[Άn‘NŒ8¬Χ—&&ιοl»ͺi‘y•£8›ϊ0ՍϊγgΐŸ'"m„Έ=Œ#iH”3cΣ>›νι>;ζ•Π‰‘΄4œΑ…S'pρFl>A v|_ωί£(/)‰K±pρb$ε―ΓΓOΏˆΕiTϊjρϋΧ?δg¨Χ5Β‘†@΄σS φ‹γ=7ψL.ΙF Πύνιπ•cnπ Ο—|?ΗΗΡΞ_ΪοkŒ¦¦¦0==ΔΔD$$$ΘIIIXΆl™μ½Ή·―£c㾊s<# ‹@jJ²ίίί―›©‘+6μΒΚ,ς$6ΥƒKΗOc8RΚνb‚€€’d11Œ¬ϋ—ΛΟ€Ρ.Χΰ\Kο¬mΚ\%#ΐ0€Δ§±Μ―̟|•3Œ€!β ±αΑ ,qfŸΉK§χαΰGνΙηΪόS2HεσΑΠ8q&F€`€(; &';ΦCπΘ θ%K;0jVtfEgνυΐaF€`ό" ½<­ΪS桨―Šφt₯Foυw£Ώ§›Ά2v}ΰ0Z6Zς%?€υ«–#)#+V―ΓύUΫPYΉY©Ξν’Πƒοόυ=“Ρ%nηF κλΥ1Λ_žΜσ\ΰ3³˜p~Fΐ Μ/ΎΡš όΒσ%ίγΟ)э@΄Ώίj Ρ‘Ό:OLLΘΚΞ‹ΙΰSςμ<;;‹›½˜šςmό¨^NŸ»D«’s<­Δώc οš/]ΑΔάBξωC@zŽ(žœ―}Π$―'H犲Ε\LΧ*™Μ±Λ»Λ0AFΰώ6Δ4Ώ2ωβκA ―ό.¦“;ραοχαw?ύ:'Ϊ±πώ̘ζΗH›_3_ΗΘΝΔέ`°#ΐŠΞAφH$`ΉZF€ˆ9”ΕϋXυ`sfS‡ξKΚ&OΞK°8% =κμi©ΕΡΧ'N^f%ghψ4BHΜMŠiLμ$B/rK/±θΑ$–ΗΞjί¦{šq©ξ#|rπw8ι<._:‡KτσμG―βΘΡsθα=k­BΜεCˆ@ε^υ£€4Ή–>RΖΏ±₯y/&Εx ΐόβΘ;εωπ9ΠέXšι½ΏšΒ{χξ!336yƒCf‹s~F@E ZΥp€˜CH;Ϊi•,”+ΚΞYχ/Ÿ“ι όΛ0Œ€έΔ:ΏΪΧΗ0±‡Ο?#c~ΝίΩbοήβ1Œ@x–’σ}ίωή_όA€Kνννr±¬œ|έβ'ο׍ηHF€`θB@² M.HρZΌW>~Kž£9ύδώ0Ί„[Λ0–ˆώςΕΏ–β F@HαI)CΩf[ρ@'uΚjϋ„α‚Œ#5πϋŸώP•——Λ -­νϊ8–0€@ΙΟή›Wq₯ι‚Ÿ›$΄―hCBB Ι Ω\ŒMy)»ΌTU—«ΚξιͺžΧ/⽎7Σob^tτDtΜτ[¦—¨ξξρ+WumνΒm·Λ4.πΠοI@IDATŒ‘ ±H ‘ νΫE jNζ½Ήέ›yoζΙΌ›ψ“yςlΎ“η?ζύ?7Š΅ΪΪΪLΤ¦*„!@„!@„!@„!@„!@DBπα(,,ΟV“μ’W¬X‘i³kχΎ?Υ䘼pΉ\bΝu IΊ-ϊ{nκζS&!@„@t!°ά=HΙ33ΊξGβ–pŠβŠΤ!@θ!)ςEΟΘYΰΧ.zc¦-)ρ©X»21’ώrγcMθ™Ρ§k[.ρκYϊμPnΘΘΐƊMHKKΒΪΥΒ“ϋ\CΈy‘ܚž| Ωxό ¦\RΙΟθΡ—¬Λ ?θr™‘gz][kΗ£/i©Z£§mKW‘C ς,> ‰«€χ'0?ηIό&μά»M̟mΓΉ/Ϊ ‡H†Ξ†ΠP!@„!@„!@„!@„!@„!~ΦηΦ£€yλβ}˜ΩŌošE›Αμ> ,d¬Y»N¬Ώv%‚ςcBΚ~Ό°»)&yκΌώSοξk'ζ=‡οl« Π…‹M…s£ΎΥΆlz »J+‘θUτ₯NόΆεgΈ:εU {YŒ§φΎŽ-IžΒωV=}CΊuC˜™Z…}O3ς%Lv6ΰRϋXp‰‡ˆήf›Œ U;œ±’ιΏ6ΣΑ«όά:δ'e"5!i ΉHdΖ‰ξc η~€f{Εξύ)Q0{ΆCg|`3±ύρgQ½‘q^Lξ)έ‹+'ρiŸ{­ͺ‹‹ £b}3rΞVg{Oclτ"Ξ7}ˆRʊR+°οΐ~TΧmgwϋhύ·ŠwOYuam7ΑύΡW‘.t3ڈ·"85n.-ώΟφΏΤό|‘·ψ ‘C‹ψ©žœ„Œόl±ο•#²@ρΣ@§(DrW ŽukYﱑOHθ&¦νΐ’νΨ’'ŸŽ νκ;ψ€Oλςe™O‰#PΘ3'Φ»„V0ε’D#Lggτr^ζισΙΨ½ύ”­ΟυΡyDŠe_ΖΘΠη8Ϋ|Bϋ `K.ριYΌP;‡Θٍ#vcSΥfYGRχ|δΉ~\όμ8Ž΄θη-¬ŸYΪ(Ÿ3σS˜φ©†Œ  KJ2xŒ„Š^wΊ=ΓHe‘™‘³^άM'š˜”2rξιΎcΙ»w ??Ν{ςςΞKg|[ʏhŒœoυœDSOξΗmGΝ–(Mv›Α>^X‹«·?ΔΈ4¨΄υr0ξ±ρλΈ=ή‡α™1,bςΧoCM^‘»fR5* [0Τ«œ*uCηp PŠ—ίψ*Ό’©Ϋβ$‡­αš|OνΈόA‚YaΨu7ΎhΐΆ±ΜvsD«ΆB‹§n¨δn¨Χ-§ήcGŸ@φaV9ΟίιΔυΫΧΠ?3‹5kS‘ZŠκ‚tLΞt)3ΕΙ§₯Β‡@Λ³H—K“κ”^ΞAZlbJŸ_ƒ¬φΤd†\Ý™ΔμέYΔ¬Ν@Q^ ‹ο~HΜ,ǎ”Σhς<{πΚ%n=‹jfΠwυ ΊzΊ021‰•Ι›P½λYηΈIΤ=‹ƒ7πI‹‰―do~B₯/qΚ {ƒΣΆ6%Ο΄MΔ+Σνxτ%;τtΪRV8pPž%oEn‘τ@9„Ύζ›\ŠˆˆΞαυxTΒ9πz͚AžΗ³ΫŸ1d•ΏG™™ΡS ŽznjzΦ½0γα2O&‡‘’ŽvΦ­ξϊΙδ_·ΌψΌνΨ Έ"ƒψ<9‹@Κ%gA½…2R@D ;ˆΈoC΅ISρ‘ ŽΠΘ#—“₯sΠp`Yαьήj₯Ώ¨ͺΚύΑΡy ’œγ†Z^σΠγzξΰŽ,aγ9 ŒσψH‘vt]Fׁα‘„€γl]_ŠDO―Σ£ ψiΣI™ΖτΝ£ˆKΘžυZc[ΉB4$¦.γ3φ§lΓK‚ ά‘t—ΊT“(@Z‚4ξQt^=ŽϊhsκPYδ1¦d%7ZίΑΗcΚρΑ<Α γΔρˆ[“ΖRϊ†Ξλ _ΒSB?‹¬ŠΘŸΨwfFά‰0?½€όΪρπΑLΠΉ 5=q@k}ΜΪƒ2Ξι;ΜΉ` ³Μπ½ ›ΎηJέρcsγŠ―†:ηύ©ιΓΚ?=Λγ‹έŽŠ’™ΉžŽ_ΰΓ›#Π»ΝψMs ’|YB€ (HΖ%gƒ‡wΠ;πn}ŽSΪ΅Υ?zχcώ=κ<ςlΕ mδT™ %Β‡€,VfΠυΕtΜεγH½ΏΈώY­ή] )ώ@γyνώ{ bιd NΌΣDz]g YψνrΜ`χQΪ„Lξ†xέrλ=άϊD1žήό„gοFnŸΖ;—Ο(@£ MψμͺΚΙ…•rσ©κ™’aD δY*[ο [憐°Θ%ΣάY―θ^n°»…i}~¦Ώ<Φ¨CFcXsθuyž˜ί₯rπΘ%;z–B™RaB`zr­?ΒΥίΌ‹ŽI5­hkθΕ«ωί£L΄ρKCv.Σ‚L:“Ύ€ΖQJG ΎΔ+'€!Ω<›–g^tΜ·γΣ—ΌΘΑ<=ο–tj‚!Ο6”nŸ';»Μ}Ν'>Ι±q})ό†Ξ‚Η#§g―>η)―GY¨Ρ³ˆ€Y―Py2Iμ‡Š^"|p―[  gξuΛλΟێ‰'2ˆ(¨j4!`V.EӘLσΕ‘LΡ«b€GΥ~Δ`‰ŠΘ6δΌΧΜÌ0χ>ζMŒ—΄?Dgd¬H—σ«#Τςš—Χsod χŽ)‘&‘†ΐ#-―#m2ˆŸGφUΈuٞ‘Ξ‘wπ‚Ο°ηζ}ς–KƎν{‘η1˜ϊŸ «F›…”užλ;.cSU}OrK~™wzδ΄lδ °ξΆΧ3C§9VӍωΆsΨo+<Ζ} =Έ½‰Ό$‘Ν8&οθG M8‚gφU`53@^ŠY‰˜»=ψ͏߅sfΡΨσΪΧ±)u ξ3k3*dζskΏon,²έGΜj`ΰόΏΰ“ ήΌ–bίkOcky%»ο˜αΝ,‹]ΜΞγ=ΝΈΪp g[ΤυνΡΛͺΨ‡ΗΛΚ‘››‡Œ”lΔKs9;α[θ½zŸ4΄J,;vζš‡»]hjW’x%Hˆ€;ΣΖIœχ'χ@νΠ³8Ύ’‚2x‚Ρ±›δ"ΞHFΞσwG0Εξ,iN₯|α<Υ„O$£guΎ'=soωΘ³κgΎ…mε(Θ&άΗάd?†{:qνόΗΈάν}οXYBUxφχ!-6s]gΡ4ž‰}{jPœ/ν,ςVΛœϊιϋͺ«πόw!%&K³ν8ΖΚ΄ζζn>³v} OΧ ^&ΐΔυγ8vJX‹ ˜ŸξGo+?eΖ;ƒlŽχ‘X‡οΏέΨZWβiΪ‹ΦsžΟ·o<ŒWW‚ SΧOβΧ§§ξΖ‹―νfA ‡ώ³xχ˜Ίόΐο‘Άͺ…š9θEΗ§ρλ“J=5₯Ύ…ΕΙXR[ͺ1ΌfΊ~ΛpπΓΛΖxωH=sPπξlEΣΩδΤV!yu &YΗuϊxpo U/bί“ζΟžά•ΖiY†tέGορ§OδοD©G^M1½@kδ,‘&œΥ«%8|ͺ©ERšδY Ω0g:Νά‹Aυ‘7°cg%‹žΰ1;ŒΦ¦L~yδ W;ΉdOΟbϋΡ+QVΊIα‘ρ$ξa}θΊ|-ϊQξ­ΚGτr/ΌL_rθσϊ}ίgΊ·RbΦ ΟH.Ω³6’&΅άδ‹«ε}Όk¨.΄ΰςεV”Υ»ŸΣσΨ<VφΜ‘|!}ΙƒžΎ&}Ιοͺγ“~»TςΚ3 νψτ%5“,mžWΛ¨Έ$yHžmB~‰θΝζsν†σΊτ`6°wFE•{Ψ;©΅ΨV»›}bGΡ—ΒnθΌό=y=x=π9ιρx”ήvT A@Η#3T Ο¬‡WΘ<Ώ=ΐ„šžH6$>xΧ­ζŽ1Α»ny=πyΫ±YŽ bͺΙƒ@Θ%žaEE›HˆJ Βa =y£%2 9―Ύ­L{δςξcjb”vΪœΕΣJo‘°?θΜΐ!„EΞ䊿B¨ε57=ΞηήΘνόC-}ΠY―‘φžΑ‡gΚ NpdxΛ~»―6²Ί,ΐ† %²κΒ=‘ξ29XπJ9RυšožΡ ,1)σLΝ»p/6ωqρxpoC3ή8IM /γ5‡ΫJŸ;Ά?γ1tŠ—*#!N0hU \Εeν₯Κύ`AjΩΡ‡ί^Ώ†’ΊηΕ+,NbΚΐˆ31«₯%›έυ„'η$sj%ΟV*9ΜhFΉ”Ξ’sJĈJ°Τώ±ϊ`Ζ‚_ƒ7Qš©d FΞΒ‘^΄υμ/;ϋπ«šά™°C―ϋ_ύ6Κτ aΧ₯!·Dψێά̟ΰ'οιύx˜°|²?H–#‰»pgΦλώπpΔwZŽάΐ9zΗ·.6Y¦Ϋ3ځiωΚn’Eςϊ΄ΫWΫ³΅τς·^AEΎ$‘^βSσQΜώ²c§™‘σ‡JευǚnΜCqωfχΪ.*aίθς>˜ρμ³x#)ύƒŸΛ&šρΉ›Q(½u¨8χ>Ί½Ϋ₯Υ(,rhίe†Ξξ£ΗώΟ4•=~(š<³ε/μF‘§ςxK™α΄ϋXυLV wYΖ½N@Η0Xͺ)ž ¦¬Ύ ΉΗο^ρ•βπwΏ…ΊΝ’Ρ±">΅ΥΟΌ‰όάLόόΗΎ†ή…Υ(ήμ;w%Ζ‹1RrΕ‹ψ½7Ÿ…τ7΅d—Ταyφ'i¬γ:}dΧΌŠ7j€ZYoώμΘ]©_”ΖΡύΘιu½Η―>QŒςΌR8ΓΈΦ*θΙXŸ’†•+ΰG§ŸΚENŠδ™©Ή0–gΎΝ³kΎΦ¨2§ΖŠϊo#++ ?ŸNΘ%z›σoώ‡7Q¬££Ι{Ẍ‘‘³5ωβ€^ h-Ε©ΟλΙ,E†ϋs0¬x Ί΅΄™~δRπτ,- aΏZΆςΕ?²±«•·w χξω―ΜJε ιKnπ’D_β‘οO^yf©―Ύ€„%zͺvѐ$y3ς,wϋ&9θΐΜ­nt½ΆcsžΜή?mgηήή^εPιKŠ$UŠC˜Zώάž œψάτόΜΊ‘G™Ί‰U=u[ΛinΟθΜ[ύIΡ[}ήύxφω(f/€—ΆΡNt5ŸΒ±“ξΆΆ<7ξΓΛ‡™wIΎgˆ3ξΌ‚¦Ζqρ‹†Ζγζχ”Τφiΰα%VrΒ“ΙJ„{τlΝƒKW–οkΞuk‰)“•ύ[^|ήvΟ#ƒ˜fδT#ΉdψbC;Iώδ’Ά¦p΅ά<ί(ςΙ£ω$j"Ψ‘σvΘ#Χο>&ъ†3ν΄?xέ§aŒεΕ‹pI‘d΄ „Z^sΣ Κs‡ŸΘNμZ¨#οŠδυ#+―Ζ"AD6̐ra†±(˜p%£¬ψτ~€~‘ιbμ­•ŒsYΖψηΈx[ςX¬₯eγ`‰ςωΑž&\`PIρiςgζSΦΧγ;μO:¦]ΈΪuΝΓ^x€#G2ܘοΓ-OqΙζo’N6ͺ–zaΡzgΌγ-ΰΰφη=Q¦ηp­εGΈs;₯&s.ŒJiο³κ‹Bξ’‡}έΌλr]·’γδiάO\ϋ—°6«šEuλ ·_ΐΐΤά7"·Πeͺ–βΕ7ήDEŽBΊE'οκΗΚΨtd–’”Eό½― Μ³ώX KlΝhWΟ΄Ά ¨Υ›=ΏKΥbgΥǞuΤ‚λΧ:Q*FRΞFqΩfθμώ-Lιi7ŠΚΣ<—νθ£9+₯Ξ€ͺPΉ]rόΖΥs'”n»{0Δ>υžΜόLβ3Φc#+Ρ±Ε–λ—fgΚN##ύξ{fίοkœ{YdλΎqFήu5bΫτ­Οβ…π“΄γκ<Φ{BDg&‘W§ r«›Οš9“Ι³DžϊŠΚΘyΆ›ΰŠΙΗΆϊ:ρ³qξώϟ3rvε jψΞ―[§υžϊDf1ς<ςjzrqΕίΐw6”²αΚ15~ΪήΓ ΌwšO…^δ€Hž™› ?ςΜOΒzΏt΅±Υ¨«*k¦—?‹gυβ—'[4-­Λ%₯ΉU=«|οn•‘σ0Σ[08:Υ )HΟ/BYI!λά£O*d””ωb[/WΘZKΩΠη5„²±ec-ͺΚj<ΐΘ-φ”»šJ:ώδRπτ,F˜υ¨Κ—δδ(JβΤHo€9π#_H_ς£οF’ΎΔ+'άr1―<³ΨŽ[_’΅HOjg’gΒ4–g_Έή3£wΠσͺ©ΩνΑ­ΫcΈ»2S£/…ΩΠyΉ{<ς{6πyΰσΣ3Ό‹όx”©ΫXσΠS·΄–Άε½1ω›7‹/Ζ17v°^/ά’3KP³wΧ™‘s7ψ=“Ωg¦~οuΥΛ q˜‚χζΑνgΜ6=%Υ={x ΅lz~3>)Β‡mwšoέϊφc;ΗδΊΥ§Γλo₯]ΰΘ ϊΌEf.Ι%…ď·zΦόΛ%UΝeλωF‘OΝΘ'Λ$2Σ‹FVrΚ#ΧΦ>¦’%aNώ@ϋCδEΖς]IFI¨ε5?½ Ηη±.½@6Δ™w]Β‰σ'Œ¬κΝEh―σ‹λQžδ‘9Νm—}HK`VpGbr)φΤ”"εκπI_Ÿ\+Ÿα(/Mέ ΖsγΙχ Ϋι‘\],Ğ‚\±ΝŠ«δΆBb3r.Œ²γVηqœς‹ƒλ±ω)σsକ³ΘΣε~ ©δ=«™‘s˜?Ρ~ΗΞ(8ˆ™κ6οΑ–)‚ι0~ϊΧψD2.ώθ‹ŒϊΏ±Θ¨‚αc6Χ>Η έ‘hΉι‘½M§1>~§Ο‹VΣ 7'ίEχ+‚ηECΜ–me―N)εN§,ΞCbjΊIw\,‚¬>C<χ§~Oζr’x|iX»VpΌΆ>–ά)υ%e#Oa"_ό ΎδYwBυΑ3†B&:q•‚ύυ¨”νWϊΡπΛ·ρΙνΪ+=π-lKZT8γ\JξΤΐΕΑ[Ώ’/ΏΙΧ V ΖΞμw©‚BΆŽΖĊ—―ΆγIΆΎQVΈΉYǚ vι(ΨΏU‰΄|΅U–)bc‡ώΫxθ O}ΐΥvg5–Μ­fN*eL^#5λ™₯s·¦\ΛDV–†~£½Μξψeμ,gmΕΓ{Žγ‹λ/³ίξž',άΏεΜΠΉMΥeχ™V «S#“:K½©ͺΙΙ¬ύuŒWΟεl+~ύΧ‰KΜP[8z'πG>‘žέeή›ž?^9οMP}mQJMƒ΅nΤ{ι[³e§©ΔΤJΤHs) ’S+ρΤ~ΆGžϊ n¨dΎ“|ͺΘEL’δ™Ή©π/Οτϋo;†Ώe‘›έΗ ŒL1Ύ²ίν„QΊ½ΜΠY½sX•K°‘g₯€H ψ~τzœΫ”q$ofΞ0±γJF ”ωbW/Dڨ܎>_΅νMμΛHΓτ}¬ŒK–ε‡@klθ >ΊΦlDVΞχ/—‚£gΙΔ#$ρ¨Κ—‡žΕ#*Π‰Ξ¦·ψ9όΛ—?ϊnυ%'δ„ŸΫBSΔ+Ο¬Ά³£/ [₯§d„_<&(°<Λ¬(Αϊ΅ξɜθA»Ϊοή`ŽgZpβ€ϋ]Π͎VΎfCηeξρhΓ³Λί=ύ{ǟG™W +z^MΝ_ΪτŒ^`Λ<ΔK*e²ΓνΝ,’Ε]Δ₯δ’`s‘μύ-W` kUxζE•‘σd'šΎΈ„ΩΈ"Tο―_ ©ϋV§m{JʝωρπλΨρdβ‰0`‡ž<(‹σ ΄γNYΌ―ΉΦ-7sF -¬[.x=π-΅ D‡±ˆΝ"ΉΠƒ[ž»@rIͺψ¨zΎIγ7{φƒ'yςF–'oΤG&pί“εΌSΉφφ1³+(ψυh ύ!#cωΉρ)’ 'ΤςΪ=gŸ;μE–Ό?ψΉρ"’ˆδυ£.―#β6$&@LυβΦΨ0ς6H¦VιΘIg;Ή5μoτ ήbF£ΛηΨ†Ϊ-gδ™©FO#z|—΄uγΈ5ΤΟ’κΊ0Ώƒ”T$Λm€,4)/έƒnfθ,΅ΟNR,˜&\BδΟνxͺΚ9šTŸΊpžψΎΠT<<Έ/%±₯μΫrΤ穁Σψ έm ›‘2ΈΎ33(ΧχN, ΡAΥΗΚζ3‰1Jο+VJFΜj”τΆr·Ρ£3ήrN1r«ŒαΔ'ŸaΛ毈ο΅Σsσu#¬Z‘'tΫtμηbοz]:u O0CLa†Wnrη»σ¦2j™š`w ήΑwκυd.Ο9zΗΧ[o`8‘ζΧ―ίL(F=ιyG°gc‘ΒφόΖ¦”K½Tzήs8ΌΕmΰ%–3Ǎs:Ξ zmύζ₯f ‹UP™ϋ©.D©ξƒΛc κ§’Ÿ’l­•Λ»Nΰcδ,vœϊ'f‚¦N¬?αΗεζίHFΞξΎ.΅’†: 3•œ. α9Ψοa=ƒΟ’Z0ΘΞa2“,i— βΝΚόέΊα删T³‘ͺ@υvv߈ΗZΟKΖ~J—#ƒμ—oΡX9yl?θfˆεΖo<΄—βgοc J‘™εΩ'1ΐ ’λ^―γλ;sάg\-ο’ωρ ΐ+P΄«mηΥ&… Xλ'j©§Z‘Κ@Ώ£ρ·²‘³Xάϊ>š[j-iVυ­IZ˜?U;«rWjjW ύmέ ;¦χ'’‘•$ΚΟ±?ΙΓ…ΞžKΈug–­›ΗQ“'­‡"ToΗ ΅£c| ƒp<‹Zyζ;³,Šύo΅rοςΏEΩφ ·Hf!ς™ƒGŸ‘ƒ‡ Ή$ΠδΥ³–˜―|x©BΎ«ύ.Ι|Vδ‹½ά—²Ή{ϊ|²R Δη―DorC'ρΛζο\λ@rΙy=K‡ mΙ—ΠΘ—GpθIaϊΰΙίhuν¬°+—| ±’οͺ‡V_rBN¨˜χ“δ•gΦΫΩΣ—¬Σσ3θ@E$Ο"TžεbCQ‘gφf1Πy1ΠL²rυωΊΆžZ_Rήv™θ*U–³Η£Ο|;ττζΦΏG™^ UžŽς«*εJ:ε­οΕٟώN·¨^blά‡ƒ₯«ΰ~ŸΕY’`μŽΙ+ψΧ?Ωλύ,ϋ<Φ`ήβΒΛ%½Γ)OI^nΚά78# pΣ³αyͺ‡±­Όχ5ΟΊ΅ΕNc;λ–Χίj»ΐ‘At‘Y$—Ψ‹r“άfδ’0͏ͺη›Υ[ά?žδΙIžΌΡ™ΐϋ~4#ηςΘ΅³yσΞkΪhˆΜΘXϊ«‚"ΙΈq ΅ΌΆCΟξs‡S‘%Μμϊw]δδ’Ό&y9w#qB Ή―ν¨υΔ‹γΈΝ’Ȉ[œu£Vη…²I|p]ŠεkΠW”doέV§DƒόŸχͺήέΚcFΣεαςLŸΦΠ΄ϋ4Ϊ žΓ—·ΦΈ#¬­a-r“Ρ3ΰb- /˜Ξ Η8FΖVγΙ=ΟC°υ†ΡxεᙀJΖNžrΣ^_πž’Œ7™ζ'-gΔVBŸnƒkα…Ι;zΌΊ«Ž4Ό…φœeΆι X\ΛBΩ,Li’¨z: Λi]’½E£ ΐ½fd8ΐμ“{0V½Z^&o܍šΪmΘΟΛAβZ˜– ―_WΖeΎ?7μΜdέyHQΆ»f† ¨ςܟ]™ΚvŽž™ρέ™Ÿf\ΉαΘΩπ<^^™…Ι)¬K)E΅lφMMf½0Γ~’4>„ˆκΟnσ¬W‘ڝV|Ψπ†Œ›˜+aF±ίϋO―ϊΔλΣΡδΌύη?ΤDΡτ©γ7c-ΦΚvωθψΌΕom©Π‘υ7ιΒ„·‘φΤ<“6ξcnV˜ ιθC;sΤ¨ΞŒΛ³±‘|7ΐ ΧΔ#υ6ŠΡΫΩΥμά42vΧζϊ_ΠΏ+YŽ9fPϊ‰Ž-uG “¨•β]––Ηjv `K RέNΙE₯l_<‡‘œB€yϊr χ‹‘˜7Δ²ΟxŽ‚ύ/γ{%/`₯χ/α+%9ΟξΡx&ΉΆ€IΏφ c ΓwΞϋn -Ν7³rC»r0hλVΰΠA½'°>‘‹€xε^t/šώηG]n¬šαzψ&0ΓFv¬^-8Dxω”Ί4<“M­fπιYL4μω‹—Πu³#ƒ½θ Μ“yωΒ―—[ΕAͺo_ŸŸΖΘH+V±mγ>›§€$Ά±-g~qqλα₯²YΌΰy,°\bͺƒz–4vΓ3Ι—ΠΘα‹ξίώͺ¬—ΊΪ>Β/?ςΥΤσDϊ’ O:*τ%ϋrBgδ>YΌςŒ―ΏΎΔGΟgΈζ2HžE¬0žω„}(r d«ϋ‘ΤΤΚώ}‘ €QΊΟfδΌsΉόϋ˜–k+Ϊt#’EήJϋƒΞ]­“xπmD‘d$LB-―ωιΩ}ξp&²„™ύAΒΦ™δ5ΙkΞH’ά‘ -έ T™5Ϋπ’ΚΘyl¨Ÿ6Ÿ” ·lώž*)™Ϊ°qΆφ^ΖΥ»‘ζΡaziυ؞'EΎtαbΧq&•zΗ43rΦ;†ϊ>ΔφεΓΊ,Αψ,qkΨY0ZJΑΙvc~i›c‹P…7Z£i‚%²³*ζ°ξŒbh†3λΩ»άjwξμu/#ΜtΘ6Β‹£ϊπsŒ ²¨€x(1> Ογ’Γ|Χ½ς}c‘dKNSfΡkΉη5ΖIΖς.ΈζŒ'άϊύεΞΠ37Ύ=Ν(+*rrw"G €.3*˜›ήvυa!ϊσ³ΫvBŠŠ8?y'>98p¬] Λζ««νFYΓ ιWf(9βmxl0,'֟klΔ―φšXΩ[δ’γR;†λ+Dƒ›‚MeΜeγœΨ~cΥfHS9̌‘υ₯Α@Le`gm\σΖωSrZ“hνΓΔ,3§_δfΈχ„ό|ΑΰΩsδ ˆ λ‘όΩhht³θ‡©‚Μ—Ž4dηHi£³΄1•ϋΛŒΫέΖΧB­‡ώͺϊ)³:~Ί2]Δ+ƒΊn™³‘cz}"%‰ͺ₯ΡΣqR1rφ y{’vz pδSιΤ8EςLƒMΤΙ3 χμβΞL€/ €!u=σΰh lTμέ΅ϊšWΟjlΊˆνUW«ΣPZsˆύyzžΖυΛηπρ{ΗEΝZMO6'_8υr5!+iGτyZڎBmžZυψ›Ψ·‘@δ$/{3ς™‘³‘cF.±žœ³LΑCςESpδK^ώƒ7QΜtρθoΐϋσ] ]ί —|1aOτυ]½>¬ζ™“gκ^mΚ uWFi^yΖێW_β₯g4ξ@ω$Ο4EŽάε χ|+¦¬s4-²’Έ"l¬0Ω1xλΧψΨ5zKjΆ;4ΛΉ3$F‹ήžWΙL€=NJ΅(έώ T¬π\?―D^SŠν΅ίΐΦ‡hj>!€KM£γ|χ ~MZ π₯;Kγ«ϊšΖΘyn°pΝ2"+˜as\!κχowwc©λ VŽUΆ³Υ8Ι’«σΊχ'OG&ۘ¦gv|w/γ½3ΐΑ-;Pž)™Ε2f‡q£Ώ+Ω/“γY3φπ}ΞΨ.*~ Οm©’β1Ε9>π’qRΧ™E!Ώtζ4Φ™Ύ}b°t·Χσ₯O.Š,ΪybeO ž>ψΧίƒ{‚`³p ^`ΡCŸBv3Νά„M@_kJJ7y:™Aο#d dΌ«&Χ>Ι"I{rpα‚‘!_/†‡gP\ΒψΛΘD)3`ΞΙ•œ`„φωΘ-+@išδx0±~αέγu”ΟqΘf ύSzό˜”KBSτ,=tσHΎθΒ"gΪ–/₯xώ?~[ώ’F›ρΛΏzΫ―sš@›τ%y4‰hΡ—4L³ σrΒ»₯ώ5―<[Οϋ^ƒS_βεsH؁sIžωΗ(Lς,h ₯jSθξ’ >ζξ/jήJ-$})Œ†Ξ!φx”Fͺ3―gƒ‡?Λψ6ιi`1ιQ¦iΓ.¬{΄xχΰοΪΟh™Β΄O¦Iυ¬{<ͺω\…•ΎΟΐRΧΊgϋž’&=Όt©›Λt"Β€9JJ-λσ ΄΅›²r_[^·v™S·η\·ΌψΌνΔOzšŒ|’ž©tΘ=΅Τλ?bƒ<6’K Š|"ί† “rž"Ÿhτφ\Τr^˜Ϋ’12SrήI\Ξ}ΜΤτΡώ …IŽˆ¦ήΗ"]o₯ύA;‰zW&χο¦IΖƒHˆε5oDI·φž;μE–0΅?xίgf―I^k‘"y­Α#P“¬6rv³:Œiφ©d!j±p¬\eρE€Ψ*rώ[_x•©’9E.·7p2—ŒΤ8)Β¦‹£z —€θTΡηΗ?ΗΗך=t²‘›ZδIΟ±h¬7YΊIΙ Μ@ΊΤc ­d*©œ,fd·Ψ«JVD€>0°^φα.yl μGBο#FυK’‘Ρ Τ&½e›₯ͺθkόή>κeP™zeΜΠYeς#ΧΧ$XΘ^™-yίΤΤpφ"!R06ΜΊ0ΕAέΰώτβ4«b7 ’U1‰'ΡtA0δ΄z˜£'φje|3—ρIϋc†Yιβ$,`|ΖΕ§Χγ;%žu|§:6€[ΛΏ‰/©’:έΎυΌw­ΡκΐΤοΐΩ|ογμOŽ`Z/ Δ‰8ŽˆΜxΧ‰υgnchoΏ‰E‚CA Λv³θ‘kQ( Ηh+‹tοN:χvξςDΗg^ΉpNΧΨΟMo γ#ƒ@ “λ‘ΏqdFδ“νΈΨƒšš€1ήσW‹ž>‹2:$ς»€…EαΗsaύθμC4NΊ{ Ξ °jc>Ψo¦ε<vΦ­9yΖd•Cz—>q‚Fε}$ΔzoϊΞριMΛψšδ™16BI€Λ3-χΙμλ!Bόί>m6ζξq€σΩί ζηΜyu!_ΪΦ³ΪOα}φΗ˜0L·,—lθYΎ(ωΛ!ωβ{ς₯‡ΧίGuΎG·šmΕΏώgβk€/ωŸ{₯ΑΦ—τΉ3''‚+Ο’ƒ¦υ%‡θιjKςΜOΆ}‰_žΚlυυάΤy―)kρIIμ)θΥδBΦ—δχ@^εAΏ ΉΗcΠGδE@RΠ„l ž ^½θ^κzΰ;FΟ‚G™.wΡ‘9>:θη%Šg v<Ε.°Φκ ³ι)iήΓΛ‰yβ0`‰Ίνy°D-h•uΧ­cΤψΦ-―>o;qΈf#ƒπ`O-> ڐ\bΐP䃻CΙ6/η)ς‰‚ZSQ™ΐ¬œwΞ#—o3=³΄?˜ˆˆαz+νowσϋƒΆ+Š$γΑ#ΔςA€Ησάa6²„ΩύA{—YΈ"yMςš}”Ž7’¨εΘ.žHξPͺJ„€u’ν8&§ΌΝ!vŠ‘ΎN2 žΓόΒDΘytŽ`)jJ*δξnw«\F€@bξ^•Α4Γ…EσφžVσͺvώ:>=Bω‘%»…›9Μχ‘o€m²/O-ΜcŠ0<πφΈψέJd$KΡDYΥωqŒ=\‰‡3ΓΠ›‰δΪ―α΅ΓΥX)£1£τΉV|ψƒς1tq3kΕE%ΒkrfλΠΨθSm#œ,FHυͺ›š‡4ΑxS8f'0ΡνNͺ·BO ܏ηCνQP΅)°‘³ΠΔ5‹Yvf!=3Β(G؟ΏΓΞ<δ3C`Ιύ`jf”+j·αύιΕtIν 8ΈUψiΟsΜ6c‚:λ@/ΥΠ=›₯'4ζίέa1ςΉ›x2φͺ’²wΆͺΚ„ΙΨQυ κr₯(ΠsΈqγ|άεuΏΉ;‹ξΧUbσtœΧ“έΪ‘9±ώ΄=š»κnnΗΐ3Ϋ!ΜFnAvZ-―»Ύ›Χ—M°Uˆ -£Π|ΖΌίκg†Ξœ"ς±Ήv•ΈΞη&;qαJœhθœ]Rƒ•χάξsΓύhϊe\OL0sUΡ¨ˆE}~œ9n #6γώ―cΜ81_0NΜFώFΆuk-ΔsrΙœΓŠάUs`MΪ_·ζδYœΡ{8υ ΆΗϋΊ $»D†nΜ5ΜNρ)wω ’gΎsdQži:HMFsάθΣ8a0ƒ°υ‚Ž9ΈΖοξΊϊ;¦g1#ςξVα― ύυΏa_Ή w˜Š Žω0`ZΎpιε>δ`NΎάsLŸχα { $/ΈEζ€£Ν™S. Δ,ιY>άE~Ζ²•/l½|u%’.ί‰π—Έ¬YχΣcQΎΎd€£*;4ϊ’Š w”œ`ώ}¦žxεo;―Α˜Φ—’ηE>’/IžωN“gω™ηνιτήti“ΗΊ8Θ―;ε&ŠΎ€y·'—=Η ʘ€iΟγ.”ψ6θYφ(S rΚaΟhEΛ7δ›ΧγQωŒ_?¦tZε³inOI+^΄YΆyO&g" ’Η;>#d2Txκ·‡>ƒ‘abέ2²ζ<΅|ωγY·ΌψΌνd­D‘™M„ΪS‹δR`n‹r‰"ŸΈΩ­ΰI‘O€ιSh?ςi`&CrD[£T1L©+₯ΜνΞxȚ—σΞΠΖΘ³Iؘ;ΣώƒˆhQ£·ώΰV·²?h»’H2s ΤΞ©BuΞ}\ς̃܁&Α¬9€Γΰ7₯ΑAζ^Qε–Ÿ₯;χ£όd«"?s£Β#[₯nœ<σΙ]ζdz?rfݚ“gpBο1―O°™PZ&₯a½—lΫRώ%l‘ ™ΖΠ%Κ΄dGψtς>N_$ΟόαjUžiϋ*Aω;pιX“’]»₯’ žΕ”_―¦ΐrIιΨΊž•εqΨΠsΏΓΊvΛW…†6eZΎpιεZZΒ•9ωΒ©ΟΗ–bG^*nίlΤwnKفʞŸζοŒyž΄|Z’K¬)Ÿž₯₯ΩWΛ_ΎμyύίΉΜ{ν8ώχ MžQ€9³*_H_’3>U_rHNάUž±ώΉίkpιK6θOe–<σ7)‚<[3ί.VκiΧ `ά> Ή›6²―υ*UTϊ’lχ§”†"υˆy<2Σœ'h`μMyΰsΣγχ(3ν‘xˆ5Bο­ΨB[‰,сαΡaTŠ/^ς‘]Δ^Γ j=/s2₯Χ/C•³-zJZτπ’Ι°„O&υϋŠπ‘FΡ8mjέ²ζζ<΅ΌιX]·ΌψΌν΄όrEΡvAW$—zpېKXΆžo6na‹x’'o`¬­μκήLλ=κ@‘SΓΤ”άisϋƒ]Y«rή.=iœVχ1©]$Ÿi ύ!²#ciVE’qΓRyΝH:DO3—μΒμs‡w;ψ,auπι=‚3H^“ΌvΏlΰ›”X{Δ˜œ —έfayΰι‡qΈ2xχWζ’΄`'jςσ/χ1wY1θ•2£εœ²•”±άθϊ z&€ξαd’€βiUμΒν.άv bjžύ‚Ό*Ή₯¨Μ-RF͞Ώš5+ΧμSΰΚ;ϊx”Ώ„‘ΕΟqgU!jΚXŸ’•3kΧάvYΥΞ »Ι’‘³P>-QΤtgϋZ©κϊνΑZαΒ"$S˜ψΝΟΰΧΧ υf?¬\ΕT‘ϋ˜Έ~ݞά]η›qύΰ~”1Ca¬«ΐ+ιίαψoŽ‘‰ΩΦ=ωήγ6άh½zιsX '3Ζ yχ|εq/φc\½0ŠΤZφ)τ_A±ΐ‡©££γ¨Θ Θ qδώ),Jν]Δ`εΚ%Œ\9Ž65«faς £<5Η‚ƒ<ŒaγŠqOIVΖΧ`ϋαή ‹ή%­ΪΉ? ˜ιΎ‡=zΦΗ'θ›ΟαΜ™ΰφΐEܚΔτ½E¬K(@qήNδHkˆΕqώβϊͺhΞμ+NOΌΙ"­{F°†½u!.σ<΅>F3¬±y<ƒVΗεOΟ£š­Q’eΦβλ9 Ÿ~ŠkΧ{™%y.ŠJ·’βΠ~$·ύ«lθμΘϊγ«­ν&φ †Ξ꣟ͺHU8ψZ ‹εΉ$ώ[Z(·Μ*?‚g³±‚­Ώ&%ΪNΎ‹Ι¨gγs(+χΠ™½‚ff π˜Ό…1ΆδK5‡ΡΧγnΧ?π2 eΎg0ΖφFιθ>uWjk™Α9ΛIݎ―韠ρΤYάΈv‹Ι™HΛ(@Ρ¦ WmF2‹”~‡:wKs*°-G νχγY\χ‘ž–ƒm;€X‘ŸχοήF[+‹ώͺ]ϋkQ,Δ2z―όοŒ³ _`2&΅‰³ΕΑψϊάUΣ7%ƒΈnuεsΨ²«χX' Sύbv›)β”ηβK5―!¦£έwΧ’lγμTιY·:š<ΞQπ©ž‹N“8Œα^9nJΎsX/Ί]ωβ.ύߟ>ŸTˆΊ'€]ΈΕž;†¦G˜£Γ<Σ₯›VŒ’ΌΩΘ™Ή€αJχi_εŸžεK6s–³|ΩφχqPp€Œœέ g™‡ήΐ‹Šα‘{zbVbq°ΗO©œH_ Ξ­L}Ι 9a4j'ε™ !ߟΚΉτ%‘‘ΑˆžA³HΝ&yΖfƏ<ΈΐΚϊΡΫ:`y ³ΚŸΐΞή\kiGŽ—ΎduyX&ίΐΟLύΎ#$—!+ƒkΑ”;"=-VV=ΚΤ­M{θ©YL‡Ο3ښΗγ${Ή*y4oe pƒΪΠy7Κ/4ΉOI«^j&¬x29aΐ =…Okσ ΄σ€‚αΓΉΘζ<΅΄#³Άny=πyΫiyΜFρm™9$—ό{p[—KΛίσΝϋN¦Θ'Μh9G>‰†ΘβMΙ#η9#!x-kϋ˜WγΎ ίΤt‚V@IDAT}mM_н•φ·»υύVέE’Ρ©ΌfΉθq>w؊,Α³?¨ο―ΘO“Ό&}>ςοRβπQF ­³ › r‘'‚’/³?_DζΗΏΐΩ«ͺH}«DpN2v—Τ"ΓΓ‘πœσ}BbƒƒšΊm‹“‘—[#ώι֜νΐ'ΝοxEUλC[ίu”n)›Δ%Wβ©έ•Ϊζσψ€Ρ»ΆŠ|—ŠDι⎠£>n₯Β0Y΄ΦWλ‘»Υmœ[PU‚*…—ŽΨItΛΖ†­8σΙΌΊίmh“³GήdJu15ΧyŸ±θ¨Ί‡zη›PΙ’œŠœ₯V ώλŸn―3Ο6|†­ε_qGvΝ¬@έ3r›ŽlΞ qδZΖ‰μΜ2”fΉο8ŸZ©eΜڝ;?:α6tΆuϊPœa“žερ1ŽβDΎŒΧŸ ΧώηΥΡΝ6!K2rφŒ*.³ŒpΥLkΤ:cς,Ž*_cFk❓Ί{^ώ΄ƒui.9Χ³ΐ•ƒΤτ§\*iΈŽ—κP¬4AWηUθEς«lΜCΕΞ:V5bΙt&Λ•?˜Έ :Χνή.—υ67κGXΦvΗϊ0:Τ δ²4;Foγ–ΗϋVΟ-•6‹^ί=ζ#ώ߁χυ_φέ―ΊŒΧ• ξαOUΕ YχΤ·px«—α·T7ΎςζιŠ05γνΦΏc\6αΨ‡ρν―rγΒδΠΎ—9€4πš/ζδšSι0¬[{zE}B‘—{/’|[’€2μΫΑώΌ8n*{Ÿ=>½:δK’gžΩq@žω¬χ”Υ[όΣά“WπωΡ³š,Ήd_ΟΚFΩNαιbύ"ΞΚ"RΥ³ΓzΉUςR}?ϊ|~‚΄$c{ξؐ+5ς>»uŸ&΅ξ#V±.—Έτ,ov’αzΛ—u‰‡)ΑΘY8ŠjQ£ςΕugΊw­ΐqUιKn04ϊ«όTζIjκϋ³/)Yy.Φλΐ8ΟΎœ0ξΫr‰yζ·―€νψτ%CšιΆŒΜ’gβΌΙ3ΑΌy¬·SόΪXΐ \Νl¦5•Φ"·|―ψ·­v·RΒτ₯€λ^©νdκπxœβρ΅αΟEO5§=ΚT-έIΣz>-Mg„ά3Z ya1²DΗW0p¨B|‰_rίϋΞœόυ»˜ΜΨ‡§žύΆΫ³[wΤ6<%y<ΌΤwpG–Ζώ—pT y- ώ(ΛλpάuD“°„ΐΜe|tM)₯ΘKHΕj΅ΰ½…1άξςol‰P˜*Ο4ΰ—ΗΜΏΫŒ>mFbB12Y΄¬Ψ˜Υˆa˜,=Ό‡ΩΉqτLHfpΖ]6]ώΪϋ*°1% «cm—ξbz¦‚Aωcόφψφgφ96ώŒύ…φθCΓ{ΗώΜQu΅|ˆŸ°Ώ΅ϋΎ±ΜͺUhw—½œEχ ™>ΜΣΣЊc΄±»μ“ΰ—[<˜O½o† »Nϋ όŠύ™9ΜΟϋŠΡη ŸšιTͺγΐύ)uΥψ‹?Cγ/€+ƒ³-zγclτχ~€·zΏ@~fΦΖ1™ƒ₯3ŸhŐQTσ™FΆΞ ±L³»OαύΏ?…ίn¬Β¦ΌLwd*AΦΈFΠΦͺD†U^³&Μ¬?φ›ΞΫί?₯ξB›<·Ύx]4ώ”έk?Υ65Ό2Ω§Ί}υήnƒd–9Πx—Υ…# oαΟ؟Ο1xπ}u DŸ,z_ Ž˜ύεT Ί(k„π`K˜³Γ$&[Π§#Σ.ύpι¨N_&²\­ΗρKφ—œSΡ^v‘νYϋPŽΌτPε`βΠό Ο²VδΌ0SrΠΑukJžIσκ=Vυ ‰;έ>‰wn_@QξF$­b‘δ˜₯Ρ½…;LΟκ0Φ³xωTэš$Ι3yͺΈεΩ ―Όn؍¬΄uβώ°8=€K’ώ#Ss'xε’fO1­gαμ; !¦΄πκμ φμ±&Vδqi~}ZŒ#ώ{ψ6%_Tc΄«—[’/*ΊRŸ>ίΣΝ …ΘΥ±(JJAμκΥ’ή#΄½w£ώ9δ—ž% &ΟΛPΎπYnωΒζτ₯ΐϊn°τ%ΫrB΅nƒ)ΟTd|’ώδ Ί2—Ύ€ξΐ“6KO§idg‘<“ηG-Ο&;»DgΥBΉΤOΒΥ†³?oΣT˜ΉΏ I k128΅Ύ6Cg[ž™š‘Eξ…eΟ[ψ€ezteRSιlΕCOjΓsζςŒ–1IΩƒ=P$‘ ·Η#ΠvμoptιΑ‘CޟρΖφyΏ΄ύϋΕˆΟ‹w%Ž‚œž’6<ΌͺaΕσ›+Β€DΘs6MΟΖ[q‰ύχΘ@VΞϋžET;άd`ϋΦΝ2ι…E—άΛ£‘½ήγBΟ€WδfP‡žOL© Ι3gεY_λ99J}¦Lμ–wOιnňΕύ‹w―—ίνCϋ έρθιY$_œ•/\χ*ιK\°ΙB.'dΚ!NπιK!f2¬δHžiεYk»­ω˜Έ‰ ΦCo‡φyξ±#GŽόާηήή^±ΩŠζM#Œθ$†1"Eέλ‡…Ο&M^ΐΫώΓ )•Ι–²Λc¨ε΅UzάΟΌhμeνI^»'ΜIω²\δuyyΉNgwo”έΥΔn$!P²±Pd§­M‘$’xΤγ%4οΟυ(S!@с@bn2¦\†ΜF{ΉαΐLTμΐΊU,fϋέt΄‡PΜsU)`Q›ί`ΏMφ΅5βVgFFπ 6•uυ¨,ΙvSmΔΫρV~ƒvh Τ ! ƒ@΄Λ―@όλ Ω0λQg†ƒ§B ZŸΡ^n²GAΎΎd厠Ί‘Ž@΄Λ§@όΫΑ_-Οn\ο»*,,δκΘ.9|UΓXώΦ<μ{ΰ[£§šŠ(H†Η3šΧγ“Μ[ΌΑΊΑ΅yOI­GD8<βΉ±αΈΫBIΛ*{φΧ­UŠT?r Ή€ gεyΎ9‹§vL^‘'―I όW‹ψΘώΩ§R.hΠΒζ¬<£ύΑY<)’Œr·†Z^[₯ΗύάρΘD–Pζ|Šδ΅+gε Ιk-ΊtE„!@ˁΗ_«BίΉά>Λgpy»6 `wQT—λΛg }­M%Λ({₯; XAy„?ίc '> #g_`('ΒXς˟ό΅ #!Ο¬‚Bυ NHΎh{$δ ιKΪI§«¨F€žŒ§/ς," ! B@‹@Αώ―{F%Έ+3ΟθΛ ΛΣ3\‹†pu§~t_ρˆ7-Ϊ·Κ!;\ςFϞ\ δAνεήhΎΆ‡gΰώ#£­£Θ˜βΒYθΎφΖӞ<‹vωˆo΄_ΫΓ3pTƒxt yν=ΧΞΚ—@ς/άεή£§kB€πE &†…⏠|ρ‘B€ \}S’1³€„Ϊ(X2β‰φrυ˜hΆ}˜žμGGOr‹ςοU<άو¦oαR·W]Žΐr‘_Fς7Βα'φeΙ—e=½†ƒ#}Ι*ˆBŒτ‹ε"ί"ύω/fΣ¦MΚsίΈ\ξΟ0=φΨc<Ν#¦M^ε“(ΞNξ’εμEά‰Έ=’Šw’jΣz$eδaΓζmxΌf*+·"+u§:σŒ~ο'hžΧkΎ,σξŒ blxtχ.Λ ¦AE<$—|§ˆW. Κί¦gΚπ»ίύŽ}ξΡW¦E{Ή/Rζrxρ4Χ{dΤ’uσ@\8‹έΧΎxςΚ³h—ψχEΚ\/žζz§Z„ΐ£ƒΙkίΉvJΎ’‘Pχάዐ‘‘!fON–^―εjRS’ΕΛ±±1uvΔ§cΩ{ΨΨ₯YŒήFΗ΅˜‹xމAB€ B‹ΐΨυρ}¦9Tz―)θ9R$яۣΊά¬ΎZΤ#‡ΪΒp5}ŠΟOό—―]Ζυk—p­Ή͟Ύ…S§/ax*rx%N3,'ω₯'Ν`@uB 8| ΡΠ+ιKΡ0KΔ£YθωΟRΒ³±p$'»ί‡šk₯Τ2²K~δ 7TΒΖ,f${wΧΞ^=o*7M$¦KΚFJB<Φ¦$a΅ƒ‚gτι_ώwœ»ώθ9{A@—„!H.9Ίτp+xΐe=Ύ^ώQ@κ=ΪΛ₯qΠYZGϊΈPnt#@χ΅3σνς?Ξ D½„€H^ΫAOi+Θ;΅L ω)εύ½Κ ό€ΘΠΩ8Tdh5tžθΎ‚«Μ`λ9›žkͺH‚$ό+7'δ&‰ο7ϋΞυΘž£½όΡ›QΎ/ΜάΑ‰1L±Ώ;3|}P+B œ”ΏΌmΩΙ/΅ό5ϋόΞ9 Ϊ„ΐrE€δΛrYλγ"}Ι:fΤ"ςPλτό§??d謏‹ν\ŠHav@ž>!…›ˆ„€ H.™ΙD•Η_«†πς_ΟΓ^2‚ˆζrAΩ₯ΓZGΖΨPIτ"@χ΅3sGϋƒ38R/„!`ŒΙkcl¬”ς:#šΥΣΙΠΩΚέ@uˆVCg£ρP>!@„€ιΗn!ˆƒΪΘYͺνε8θLΛα‹›ΛQ~IςΧμσίςa!>HΎ„{’LΑA@/θωOί`:?vδΘw¬h}Ί†Ή½½½bي+ λP!@„!@fŒ™oŸΏ%W•Œ›…ΟΙ)>/Χ’­όάϋ[yl” B€0νζ±’š„!@„hΣΟυ~Όχ‡_yyΉXάΩέλ―•~(ΩX(–·΅΅ω­G…„!@„!@„!@„!@„!@D+>Y/,,δ‚‘]rΜ¦M›ώ”§G—Λ%6{μ±ΗxšSB€ B€ dΌ=ι—›œχψδS‚ Bΐ/ής“φΏpQ!!@aC Ϊεs ΰ(’s „¨ά ΡΩ JT‡ B€ B€ B€ B€ ’ŠθΝ³GΌ„!@„!@„!@„!@„@T"@£rΪ"ŽiŠθqSB „!@„!@„!@„!@„€Γ+’σ ‡ω€ξB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€°:Ϋ†: B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ § Cg§₯ώB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ Bΐ6dθlBκ€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ œF`₯ΣR„!@„!@„!@„!@„!@„!ΰ<λ3·a}Bb„w3³½Έ1:μ»τ΄γ£+G Ήδ(œaι,Rε|Ξ>|ύΥzΔΗ,ΑΥvο~Τδ<©»ρ귎 c 0Ϋ}?9zΚΉΎƒή“ϊY`&•»ΑίW„%¦#/)›έ31XbΟ ‹3˜šlΕ韁'<5hͺ‘νSoPΙΟ;L~ώ̎ό ¦œ-RΤB#―βότxδ§U}ή >•>(ε($―…3pgΘΜMΔΊ„8l*ήΘͺ?Δύy†{na>pcύyM†ΞϊπP.!@„!@„!@„!@„!@„!¬Ο­G]I ςΦΕϋπ³‹74];ŠΆŸ"ΫkΦϋˆ_»Aω1!e?^Ψ]“œv^)Žww‰΅σžΓwΆΥhιΒΕ¦ΏΒΉQίj[6½„]₯•Hτ*ϊRi'~Ϋς3\ς*Π½,ΖS{_ΗΑ*W8ζ[qττQ Ή―θΦARf6YΫ•#°<™l³ρώ菾*Γh#ήώ ƒώΤ*μ{’˜δ/a²³—ΪΗLvΞY-DτΦ¬‰E2€T-ŸbEW m¦ƒWα’gΚ―[;ς…g|vθ)γ’TΠˆDΉ΄ΑFHΗ©Ψw`?ͺλΆ39ε>ZνΏβέSV‘X[3r>\ΓfzVj~ΎΈΕO;ŸƒGr2ς₯ύ”Y;σ!ڏԬ9£Ÿ©{ΤO;+wƒ»―#HLہ]%Ϋ±%=[g@GΠvυ| —Dr”₯ @ϋƒ‚E¨R‘ΨœŸΑ”σ0C%―₯αργ‘Ÿ<ϊΌ]>₯φt$―ƒ¬W·9»qδΐnlͺڌ[άNλ………r₯mΥ“θiΏŒ–Φn9ΟTB₯Οεέ€)& *ρ{Dt ;)ΌY°β)β„'‘z―‘ž‰ί³“žS~ …©P5Ύθσ¬ fΛ–,Ώ'$ΌτψΪY‘/e 2bοˆ>J‰5ηΐ4E²FOΝgΔ₯UrΙΆΗjΔ Ž1€Ι] G>ωbaJΥXF+Ν½k°΄8ΎΎVŒ+5τSΌνT½Ιςζ“+wύE“ΩΓΕ*=+ςΪΝa2Φ§e"%>kWΖ ζ1φΓθοξb|¬ =A0ΈP κY%'Hιθκ܊\¦dyb8sυ%Γ¦~ xε ΅Σ‡•ύή(— B x”lz GJΛ $²{ΦΒ½ΣΏ@§a-ή‚ϋrΓrΚΉΔϊ”lΣFΞΥ~βΝΑ>ΐ‚DfΌjΫ`_^|­IΔ•ΰK/`ό³,οͺ}F1rfΜΟOcNΣ]XF`Ν³§‘tΆά‡…u»vΈœY›ήΧu£–T=ϊϊνb―‹7ƒnθ*z}½πΙG½,Έ[„ƒυ΅γ«^yζζΩΜΊε•/Όγγ₯Η7 ΤΚ2(—,!ZδμΐΑ'χ ͺ¦ή]+°ŠkfδΧK»²/cdθsœm>ΠH@‹u\‘Œ€Iˆ@¬ΘΑe±ΑΎΔ;£~άtZ=΄ΘOρ~4xGΧ­±0ŽΟˆ₯¨Θ·„Ϋς‹Ψ`G_β_.9ȈQ;ύH”ΌΈπΞ΅#B€°‡ΐΦυ₯Hτt1=Ϊ€Ÿ6”;œΎyq YΨ³^kl+Wˆ†ΔΤe|ΖώτmxI°ADηp©λCΥΧw ˜©4ξQt^=ŽϊhsκPYT$ηέh}χΊ?σ=>8€'˜‘³Ϋ6qkX=}Cηυ…/α)‘ŸEVEvbξ̌Θ}SΒ$©Μ}–!=9&7ΥWΥ»«!Ευh<£;qzIωυθα?ΔΙ#αK„šžΘεZ7>ζύ΄ ·<3Ώnωδ ψψθωšŠμ"rΙξ#Ά½,ngΠυΕtΜεγH½ΏHΆώGbVΞϋο%ˆ₯“-8ρNK θuΝφ]Α˜œν»ϊZŽ&dϋ‘Cϊ™Βy ”3r7Ψϋ PŒ§7?!Ή}ο\>£\:šπΩUA“’#$Πώ˜u‰DΒώ 3ΊΌͺ3Γ"ηΥ 8œ΅Όζ¦Η'?Ήυyn>žκNA@g½FΪ{…Ωε“šžBλŏpυ7οβΖΈΫKΌ°Pxq6€Žqμ|αrΧ γ]‡€¦š0tφΦηC5Ζ³bΓ#ΒΈΣ+αρaCΰφ$δ‘χ(ΜƒΫ"„«vΨ€ΆΡ‹@¨=Όxιq΅γ”/v"ϊπz8‡TξFονΞIξ:‹sΰΙ%_8QΪR~Dcδ|«η$šzp?n;jΆ@i²ϋȏΦβκmε‡tήv›‰Iι*#gα²κεγέ;†/•yqα’Η)―±2+؈¦&;0δΖθΜ$fοΞ"fmŠςj°%έm|˜YŽ)§ΡδΗ¨[ΐŠQ°niL ° #6pλK&ΰ«Β+©CS'%/.zsCy„!@‘@ ιλ²=„ζΠ;xΑ‡θόΒΌOήrΙΨ±}/ςihυ’γΉάΈ/f|–H•>― ©q\΄Χo$δ–bί+QVΊ‰E1L«ΝMφcx ]—Ο‘±ΕLTΜέΨZWβiί‹ΦsgεΎΐξ’=―}›RΧΰ>›³΅rYnν7πΝΝΒuξ#f5ϋΙξόΏΰ“ ήsΟψ|νil-―dλ˜rΟ²7μ<ήӌ« ΗpΆE]ί=[σ „γlνΎ³<³²nΉδ‹ρqΡ㘰p6!Ήδ€\ςΐκgΎ…mε(Θsά‡( {:qνόΗΈά=&e{ΞVδ’Π€ Οώώ!€Ε²}‘λ,šΖ3±oO Šσ•ύ₯―ε Nύτ}(­Šν%‡Δ½diΆΗX™π&ΤϋΘΪυ5<]λ–׏γΨ)a―Xΐόt?zϋ[Ρψι»θ²φ‘wS Χr~γaΌzΈlX˜Ί~ΏφΩ½H€ξΖ‹―νfŽgΒώxοS’—ψ=ΤVU’πgοM «Έ²sαΟ“f  IFh,ƒΑ‘Α4΄ml·‡ΆΣξn;/¬τ[/―W’εσ―de½¬Υλ­χώ!geθτrOιv»ΫξΨq›ΰΆl0,f !Π,‘ 1ˆό»ζΊχΦ½·κTέ«+±ΦU:Σ>η;Uϋμ:΅χ.Ώ9hCσϋρ›=F9s‹%λŠ’15eJ₯΅w”Φζ]αϊ"|woOΑWυ,6=iώά­Gڈœ­τ5./δ3Έ£|7κλ 9t*ZUΆ"ΉΥ_ΙΩοNž>Šw~-Ί>ˆρOqy^΄ŸΖU3bΜ―YžΈL­δωαSοαׁ[Mz½«hoοDnΉbnΎh±dywUΟ΅Ž¬ Ϊ·™vEga‹λΖaͺ˜₯ jI(FoFΟƒ…%†ΧBΜ,V-;nί²Φ²:'Ζ?±Άπ₯'XO˜Ώ{τヱζ»ρa†ι!σέ0ΰΔg–«uΜbΎ= ω‹Ϊ‰5τ²Χ§Wmmώ>Έ€Ύ½yΏ=‘€₯YR‰₯Λα£O¨τKŠΉ’υTJ#7šισ“˜λ€O7cρΚWπTI‰œΫ7ήoύRή."τ„ωυθΌ΅λˆ:RσAς(Ρ‡ω[_E‘ͺœ`ήΏ7—œqq‹ϋΒλ1ΈΊo]w†εO?-ζΫ6œm„ŸSύ΅"ΚΉž΅'JQ\μΟ—dF€πIάΉ«)ήήΑ;J >,Ο0žo&oKegI g•Ί§κNœΈtΐo`K–¦@SqšΖνΔlδ'-$Ež\ ΔI«κCΎŽΧ8._3Ϊ\W³]U$‘–•°8IzιrY;UŽτlψ\εf(_ΫlΗ'Ξ‘Έξi%οΦ †Bv.Ι*@Iq©ΡΦΰΈ¦Nm€yKxΏϋϊ“Π|]+M.Fvqž¦Ÿ¦Z°oŸV€#Ώ΄Tۏ ΌΆ>MqY­˜œYŒΪGGp―Βρ濁²€2rΡEiΘ-–~5ΘΝό)~ϊΏ@2)[ύξ«VύάHύΤziq$e³―ύρλ(² Ή05EτΛNθ±υ²|η¨$ϊO5ΰ)Τ!9€Μ`ά]FNr)~§rlͺιcκηΛΏ:J2dMY<½°υτΛΞώgΌύ‘’0Έ‘'>FοΔbΞλiδgο[1ώ">>1zbs6΅˜/yΕ—L³G<ζω―Ώ€Š|m%4ςt^˜8BŠΞŽωU]‘‡’ςR…η‘Ρ‹aς‘5»˜”gŸΔkK“π½ΏSWh^˜[Š™O/BΕαχpθŠVή8–TT£ PQΠΎIŠΞJhΗξϊοF!Š©[Š~ivOBσωyXFk²ΔΛ3n·α”‹%b>Z_¨Ό$!τί<#₯P(ΑΆo}u₯š·’*ύ_˜Z€κν―#?7oώ$XΡ;£ E₯Αs7Lk3Χf΅YWχ΅‘]ϋ"^«UΣVσηf=†³υΑωΜ m+ζšοΖd])ByžςώθΖΉFInMΖ²”4̝#)―‡“ymΑ0ν…\]Χ,·ZΟ―ΦΈ€†^ ivν3PŸφŒΜEΩ¨¨²²πζ½ΰσ.δyšs7ΟGρΝ―EΧQώ)*Ο‹φΣΈ€β=Ζόšεyϋς|ψ«yž$Δ¨αΞ]έUΏ–tΜ­Y΄ocϋύlPkž$ˆ[DxB>ˆYŠPΗ- Ε蹟§–>n‘wj9εάΚ‹UiœΞ-ζœX֊"™ϊWΏ†ε‹ζβ^Β]΄~ςslμ hΜ‡-―~…άΖΟΕ*sυΠΟ±Tj‰ LέΎ…Ω…Θ•½f ΰΜ‡ογκόΥΨTΏVέθνΖρwίΒ. N-œΟŸ4Ksbu]ΗΪΒK”žX=χόΕV”³p}Δψ ΅SΎk5ͺψNcΎλv~Dω™7;±Θυ`φ¬DΫm=U‰ρ±9)φ•!G«:|4%g-νf†ΘΛRVΐKSΡzZ³Έy MΖ ςBΩJQΙ½1bžg½†;OŽιE‡_€Œan&G)360t;uδhζQ;·»πΙί4yϋ1΅σ8^άYƒDς’s»$ήz§wZδOΉG‚|0v¦Aή”—L3μ(*Ί>p=M!Žΰ6y’ΕΕΡ€qaF€`ƍΙQjSR­IFYΡNtτΎ™J]«)ηRBη8~ΝμςX.4CecK±ρ™ξΦœ•`0…₯ ΣτΟx§,«Η7ι§…‘αfœ½Ό'ΊπH+BŽφ¬7ю«jvqιΧP§+Uk­£θΡ@Λ΄_Zσ΄κezηNύgΆa½Ve|½Z<πhϊb‹’u‘_ι6ιΌO‡m­ρΡ)νΩ· ۟5υs° _œΔXR!ͺ7k{ΛΦc-tƒIΙΉŽœBWοζ-NAz~!ʊ ¨’'Ο*TΦhŠηέ8{ψ£‚hή³w–ΜÝ{SXUMFӊRZwΣ1Βcsζ¨t¦ΠΧažω l{ι“’συσ$ϊi―!½τa”©Š‰e[_Α–Žμ•œ˜Β =£λΞζΑ¨'st]O?s~ί ρRρεΧbτ„g-Ζ™/yΗ—΄©+Α³―½Ž }ƒh'οω—;ϊ171Y%(!ώwόψΌ_"z“SΔΣύΓpλ146υ ©°Υ₯ωJfαZ¬―ϊXεσ§pα\ JdωΩ(*[GŠΞ ώ'ΝΒς45­ Ν²7η€"OΓπω+­Έ>H’Ω3-ΜX†DΛB[οAIv¦Ύφυt(ϋ»›~Ο_ΙΉ<[_nδ]W[!ΧM_ύ$vξμΔOίχυ–£hΌ-yt¦Uw^ *W+λ‘εΪ,·δς>GB_ˆ8ή¬Gp²>Έ–ΟL΄uΗwc΄d!O•[G{‘Tτ ΎΉΌ„<‹a¨ Žδd£D<Η\^Χ,·ZL.― X$…Y,JkI )ɊΫι’Ώ‘ν…Ί–#Ώ`™šiμΫL³’³¨ED¨AΖ[Ί¨₯ˆτys’τάΟƒ3KχσδΜrJΔΚ‹U‹9ϋ–΅’Xφap|.6U)ΟK_@Oγ?Bυg)7ΊfηKΨ¨ζc¬'Ϋ‰Ι¬X«{υπ§œ†J²N6ΆΏ₯άlΤ>χ’|0Φ|7hTqŸΐ|ΧπH!6Y‚|W#ζΨ"Χέ:&μYIν―3ώ)Κ_4pœ%~—Z{›1b³Ίh=λζ}H^¬ωΧ’η1CΪ(ο%.vθE_KƒΙ,AF’6ͺ[˜ |;’eΝ€#σA·|πL'>²G³RT¬ύνΗ‚bΧ<ΌŽ””Βώ±“$Σ-›ω“^v‰z˜£kΩΉgž™#οŠ=§Šήΰ’|λ)Κp ξ†'JQ\Dηλ1Œ#ΐx…ΐΩφΣ(NΝFΙΥI©ΥxφΙ|tυO`QΊOWt˜>‰Ž~dϋωΖ«ΎE«ό’z”/U[ŸΈ€ηO‘J3f.I.ΑΖΪ€œύφΆ·λΩω„£¦2t£SV_’» ©ςηHΟ!œ½U€>ε3šsζ<¨Χ•"λHΙΉ\}€ΌΪ²ϋ;₯OŠ Χ}Cφη@Σ(φ£ΰξ$ksΚ$'ΤR ύάί|οoq’Ή€p¨mίςτ¬δ…ώί†ƒ?ϋr~a`2άRς ”f›ΡΦ°ύύ§±¨¬­k4΅ηΧΈςŸγiYΡm1 ΚV““Κ}rΎos­ώv žΑΏ}χο ΝπARϋγW·«Ž4Œζ΄XJŠva ΰЏώRUΦrIŽ/%εΉΔ~#!DlΕΦGτ> Ÿ?Žƒn§?|SοWςΖy€θ\'·6Π΄»˜0 €QΊ«Š₯hΙ㑟}{5%οχ‘Π?% ’‚ίb”}ŠΖ x\¦G»ϊ"σΨmOΞ#\ΧΣΑΟDξ[ώ"α':>QzžΜY”aΎδ-_’¦Λ·Ή•Ί’s½υcμ=ζΟ“$μ5Ko³+Θ—Œ”XηρΕΏΠΌ/Ώ‡ΑW [ͺ$egϊr€―€ψΌ²Οsϊl#ώ/-™₯ΘΪΥ³ιoσjΓ3ΫΩFΧ*TΌωžΟ7’›Œ‘ΚH.@j–­ Eg‹u@λIV–ζžΏ½mτ&΅βy¬/§ΊrœƒέψβΒστΥ‚ν²QΑζ('EησZctΌrΰ—†buκ6d’’³Φš©˜υκ>²=’λŸήc‹H˜υΑ­|fA-b’Ύ«ueUzΆnΤ·$΅΅šŒg]Jz%žΨL2ΗΎŸββMSΖ ˆzu]C½ΏεV ^Œ«!\,όϊ`]³ό.όynVΒGθωžΩ\!Ÿ–ΤΤΒGŠΞζ•Ψ)Ÿ‡ yή«η#}δqΔ―EΧ7όSDžν§ŽyœG˜_³<ο•<ŸYQ…™ Τ+Ύ=šχχ@fE1–©ΕΝϋ6Σ¬θ,hbq—,l)B_JρH!LΟƒypbιγαD9±œ’ΘΪ·€rk±*b1 LdΛΪΰ:vSNΏϋ€§)6J›ͺ©5ΨϊΝ§ΠόeSU_ΕΦ͚G Ϊ4~ϋoqZΪ½&&bΘ6£ΈpΰξδΧ‘RύΌ”D»ωΠ.Œ¦Χ’Vώ\S>|Ε%€θ¬¨Poraα,΅mώ¨°₯ΉDΕbq]ΗΪΒK”žh=ž,L3aŠFπθ#ΜcΝwMCšaQζ»β&ΔwUrΞ-rέ¬cβž•ttœπOaώ’SsIΖΔD΅ό0o˜M|΄f±Hσπ₯%ΡΆΌX=½ˆΩ#*†0hεqΑK\μΠ‹Ώ^ERUe΅κ'A,'pv†mΈϊOœrΖ|Π ;iΝ8sζ *·VΚ… +ΦΗ΄—cZύ ―T”œςzΦπΙt;¦AώtΗcζ±aδ]‘ηTmzEω ΧσCZχD)Š‹_k|Β0Œ#0- ΅αj_7ς–k*0ιΘ‘μ&%ύ₯ωτλ=€7HΩtφ„5X»JϋL7ν5ΆAkΠ಑ΆH‘W―wΠ3Υ0&¦’JπYŠ’²T₯Όd#’³V?{©‘!20,œΦΰ‰*Υs4)Tο;ΆΛω3©ͺξή½£E±ͺμΊΧη‘ΞύxΏIQμΝ0)\ίΥ½=θυ΄Θ-Ιk£9Πη:½~9S¨*hKdš|’+9ΛdίΓ‰S΅ΨV₯]GζΞXΗΟΌ δ,»r{MΚ` »ή΄L©'χΔ#€θ&ΝΤάyΕͺ„s?OμσWp;υk_S…-«­ϋ95eΜ‰ιAAkΓM‡Aζ’BͺkjΤ2h<ͺ)-„Ά$Α˜­9s5%fλςkΚε>)·ΤaCΙY.ή‡φ~†U₯ΟΘ €ιΉω–žDΠ“š™Ή;.9ΎcΜΟΔξ[1ώ"C)4>τDζ/5YTΟ€¦i­ÊeC˜r‘³˜/‘]Oω’««Χκ€_ή~’³”ΩΌο_HeΚ^π% '~뿏sθd#jIΡYRhNN—,5Π—Z»žDuηΠΪL―{š΄L ¨΄P?Ήz1ΐPFΟq‰Μη{ΊΘΏ¬¬œŒ<’;b9ΫπΪkΫAΞό1pϊόόέΓΤ‰df©k`:i ¬{΅Bχπά~`wΠ ΣZvβ‘ Zs%%π >μΓω£f8ΣΨDώ 7χ‘ƒω3uΟιz€Uu²>Έ‘Ο4zΎβ|7vλJ2²–J φγτ[¨o-­'qυΖέo‘6O» QYTƒ‹ηN8ƒ!°4―3\nευ!π’Ά>Ό>Χ#/’Ÿψ?/œ~”ΥT(†“™Θ'ƒ™vΣ3’_6ψΌT^Tžwϋ|ΟόZl}pΙ?δy±~ϊ]%ΞN˜_3Ώάg˜Vy>s *ΦθΧϊυsgqUsB†\,/,PsύχmŒέ™•£›!bέyΧΊKKB7τ<Ÿ‡€}[οP5Z²o9%ζΡ@άƒ‚ Εœ149fΧ²6 šƒΣ>μύΑϋΘώλΧεΟύ₯―~/nmΖΫ{’πς³[υΗ¦ζ=oyƐˆŒ·ΒΫο“P·β.rΎύŒΌaΦύxλ]JΛΉ…ε₯_‘Σ’3₯Ν Ϊ Άp›Ώ@ <Α3 Χu¬-ΌDι‰Φ“ζΑKώΙ£>kΎxΞ„sζ»ΑžGΝ›8ί±Θ]ΗάxV ‰Gώι†Ώ„€2# hƒδ™k*Έ`qΩCΘ J­Ԑœ°$5όœ¨αΖ0ϊoj'ΖΡK\μΠ“(»εΧUk^Η¦Œ4ŒΠ‹ηΉIΙΊΗ ©νΎλπ‘ΫΝV©‘iΜέρΑ+_gRtφΡ<¦―¦Oœ¦ξφSΎHZ£z|¦τEι%˜τRL ±’?έςΑXzlΠ°‘ޱwEδ%sΔEω Χ³φD)Š‹“9㲌#ΐ0Q@ s3^ZW/+₯Ι­ίκΗ5z†˜“΄ 9‹Τg*³³lο_Π|βF‘1lrυš:γ™lπ |ήf₯ԍ†Σ?ΒιΡvRu6…+ϋqήχΎΌΊVy™Ÿ _n2Z;‡©© %•[)τ£§oΫψ΄*nvγΘ™_‘‡gR²N՞;Ρ=€Π^ζΫ‰'V¨Κ$δ={/}ž^ >UαZ:“Œi­ϊͺ”μ9τΎίztΣ'qkΑ2θςσn©”rσŸϊ’–¬6ЍΞζSAu΅_μ*:ΑωC‘Ηcn_Z€ΊέH š?ΖԊ†'|ipJοC΄ͺ)a|lΒDΊMdTSAiΩX^Ύ …o9€>޲W{:£΅ζR(`₯΄Π;x6wtΡΚ])―SiΩnp3|« αKUvm“ KHώ:Œžœ€©kΖpw‡μ‰yy’ώω:ς ϊ<ώ x'ζj\ΜΥδ ϊ"ΗBZχ…ƒGχ‘£ωξ¬^Ρώϊ .ŸιΔGΔψnlΧ•\rŠg\C"Ύhψ%Žφ+£ν<α{―c‹OΪeζΝӜ»(َσϊ0 δV^μ\χvΦ‡ v―αjσ)t΄v£D~fy 3¨š½g‘ φM bςΌ»η£ψεΧ’λC…8’ηEϋišx'QζΧΜ―ιzήgp$z(Ο/\‰ Υχ‡Ζ;ΟΠάΥ°Wώ’UΕΘ[’ ά· »Γ6•L‹ˆ¨τΓσFέXŠˆXΊ‘Gƒw9N,}ΌΪ™ε”¨”ΦWg«bs-ε(fYλί†³Γψω{ωψΣWΕζ²ν_ΗkΒ§z²¦ΟpΌυ‘υFΙMmΣ‚<Ιiϊkύ7ΤW “c#ς«ƒω •ΖκͺΕ-œέΟ#ΛlΞλd€ΣsδmSύpQ2'ΕΆaΔΪΒK”žh=—όΕΐ1’G7|pψ10ϋ±[θωwŒω?’gb|Χ­E“u̍g% 'όΣΡΪ>^Ζ0yϊ)αJž–-#N†§ƒτΌΨ¨½Ό–ΪœθCߐ­'Υ i&%ΰ‘±σjq/q±CO&λŠ_ϋ•J«τ²E}ξ0~}ή:qΘ8wc>½"Δ₯³Ϋΰ“7‹QL^Nξ1΄ **3ŒνiΓ>`΄±’?½ΰƒzΧ£μ±A§γΔ³’Q Nψ΅τrRΔs’‰œ£¨(δz֞(Eqq4i\˜`FΐcΦΰ9“’sίυCψτΔ\W©¬*}OΠ—Τ€°|Ε:¬n;=σΏ ’Vš<Ν“ο0Ž_ލuΌ‡RrΆ ΧΫ?ΐϊβW]–ςά—4ŸΎf'K–)˜―½žEΪΚmX%‘p±q7(’έησ^\—ΎΎ“YOή…«₯b€uz_ŸiχSΧi½Υ‹^©0‘Gύκ]˜".²$εέ€χ\΄$WΕ mΤ½πgΨVG:#…)ΝΨάΟ1W›“HυΥό# ΗQSυ€βti(©έJ?5s¬NΖΗοξz–0šχaύΪ:ύτβΡ}zά«ˆ±‡ΣώNrb44,²„’œΟƒΛJφλσ3—χ­sώβn|ΞιYNEδΔσ€v: σάxŸ7ίο`Ύy'|) s΄7ϋ€πΨ¨x‚†|iΈ―'¬ΒϋόD][ξE3Y―wΧWȊυΎ•edζrXΏ’ͺΪ·ΊIښK†ˆ­d›x6Άc€^d&Σ+Μά EφΘΟ7ΉΏΘρ‘„‚žόέ8 ·‹ qΘCs*9z0B²sŒ3λ˜ΓΕΞ―oξ#§σηΧΑ{λƒ |&Ψ'­šcΎλu%%KL·TkσCΙYΔ΅ARͺT΅q y}π‡nFΚ­Ό>ψO’Υ™Νυ!°κΡ_ΒHCκ2²ˆit§θ,*Ο»>’΅ΞΦsj¬ω΅ =aώ)*Ο φ3π:³{ΞόΪ)ζΧ~xDΪgp*z#Ο/ΗΊϊΝΘDšqόΣΏ~Ÿ€‘¨°ΈΡ&gξΫhCΑυb‘"d‹ŽyAÍ₯ˆ%‘ zΜƒ}K/°₯6,§Δ, Dϊ+=tjυμ[Tk5δ£#K ΏšΞONύ»}ΛπΒζ ͺ› _ΎΪYRοωα{‘ΫΣΎ¦D Ig$ jβ`FΘ+T+g©‘D—ΞζOOϋΧu6Ά<ϊ‡(7œu„ΖMΟΗΙγ»°PΠ“ŒήŒ£ˆ¨E™h=κœόEbd>.ψ YC;χδ†ž6*ǘ[θτωn .N…Χ’’@IDATψΆ*ξ±Θ^=D ˆZύπž•”Rφω§ ώ’uΘαρΖ„τš\y›³όiϊJ‹΅ςoŒ».H.‘Ζͺf89Τy ‡₯ύE0yGσ/iͺœ²HQΉEiI…X₯:cμΊϊ|¬z^•𭙦ηΖuΩ(΅&―)Z3s €ζTΜQX¨{€ΑόΤ¬}«ο  αΔG&eh­ςΜ:φχvEφ8]υU?%ηρ&4·΄`xŒάbΜ‘WlI¨ί\£ \Ϋ7φƒΎž€o,ϋe„>izπƒ<[(ŠŠσuCIΉΒ’l”mό |YKπΖ?ύRΩ9yνcδaTmΎλŽλ MΛuΞάΎcέΘ”ζ9Δ:ΫYͺλypFN€t¬ωY4ο[+ώΝρYΡ™Ήy?y`?iΟΦJΐΤΝ6ΨΤ₯ΨšΫΜ—Aς6œHΚ·βAœ/έ½-- BΧ1ςvω² Ι's%V+ΘφΖ —¬TEΫοMμσω6twZBύΛΘD )0ηδjΖVRσ‘[ζCIšφ5ˆτuœ’t223ρπ ώ ]΄‘¬‰κΰτƒδιy°MP Ρ[qq<ξIΪkAP>³ΧΈX)+ΎλuEΊΖτΛμV .^Ί4˜y Ϊ;£ ,η Ό>Μ|Ή•Χ‡ˆΧ½ύυΑΏ©α›–ΟE Mk†[+S7ςΌΛη#Ρ†9‹5Ώ₯'Θ?…εyΡ~†:lσkζΧτ^tŸΑ±<θZžΟFυ—Υ=3c€ Ÿφ "ψ -»U( Έ6Ιϊ~¨9hίΖι6RΨ{ΚY¦¨E„3*ΣVZΨRDι±cKBazήΝƒ=Kfđ唨”XoΕ,ζΜ΄œZR˜λŠΔΟΏ·h(ώΦi›ΌΤΘ‘·ην4v₯ƒ΄Σ•vsŝ…³Ϋωsƒ§­λzq2)9KΐήΔΔψ<€jΟ‘N<ΙΨ™Λ2’e’υΌγ/°γΡG˜*`ŎοZNNδĘ[θt‰ωn ξNς]/,rνυΨμ!ΒΉg%3 [ό“^ yΤ2rΏΨze…>]a 'w=mb7"½σΎ6ά+ˆΦ n™”(“΄ ςa [‰σ^βb‡žόz§ΞΏi»_ U½ŽMΛ}ςi^v)ςIΡΉCΛ92 ƒΪΜ‘?‡OΓεmυ¨” βςΛ°šœΏl"$―F:Βώ³8f΄ˆ²όixΒsΗΓ !0/ξε]΅ΓŽε₯ΐΪ>εƒ\Οε4¬·Ά§š 2Œ#ΐ„D u‘¦ςKΟ&dThVrV*uc„ ₯―ΥHaξƒΪ&“|:γώ-+؊ΚTe,€ …ΣM‡ǐŒΤ$RZ’Γ0o¨Š!Ϊ OέAfφŽΟPΛf#7΅P“—ΜKχў_²šFR.Q€D#–“EΚO·šqΦHŠalNuΠΒvΞR1ΩΏΖΊ2ζΥΠ~δψρ; k©£ŒM*riCΙ·CςW”΄V”cDUΊ¦}x~€™†ΘΜ_‰’Κ΅(ΘTζ}aρΓxdν>μRbΞΐϊ‡«ubgŽΆTZΠ „ˆά»B{9¨|>2ς蚠—с!Ατf.”rœV'=ΡyΠΪ׏f‡&Ίg,=ΧE„ξIψYVΕψ’©£ZΈ5ˆ†cζ)#šχ­ρn|Ϊ°Œ£=#Χy¬ίΎ·c·σ%Οω’ΩΙP’€‡nRήυ‚/Ω»ϊΠΤt λ %ƒ—4”m o— P )K‘·‘Ύ¨ D½ϋο„Οχ‘Ώ§ (¦΅lΡδo~{ΞΑ&oM@mm1¨οωσΤ—τΥ€λr'1yKϊδƒ4Žt|φŽDΥΐγϋΘΨ‘Φ#‘¦…δ³`JφΦ‡ΰzΑ)V|7ΦλJ@―ξL@’ψΓb“ƒ±ΐ<ηηΌ>`¦Λ­Ό>DΈμ¬ώM%ΣW€·\&Εγ7€·]’ΑQωΦρΰZž~>rΠηXσk/θΩζŸ.δy/ϊι`@ίΒ`y~†ο3ά7όšΎDΌεa€©Ο8Ύ/ΉSŠ£¨¨@/Τήz)hίΖ΄’—‹IDΨ""&½σ€ˆΖΠ€¦<Ά΄³²$΅μ›©σΰΘrʍ”Θ₯ΰΪbެ4=έ•Ά3ˆ*,2νJ5–.#σκF;» 70IΧ{ψ@›Ώ¦2Ž,œ=˜Ώ¨γ9Ϊ…ζ+_ΰϊαQπ˝BΛάE(—^8τ$γ׎“Q‹2Αzήρ›}fίu2e~e§ΩBωίlxpβοΖΚ"Χodž•όκΫ8δ/6Z]δζiΌ{Ψ²jΚ3MΞ·Ίq±£skQ’,½\§Ο?˜ΦAΡz=I4}ژTo –ΌΔΕ=οψ΅PN;€e―’XRHΚ@6Y_vXΌΔφ―ζŒω`hpf”όٌσ$cVf’¬I*%«7‘’σA¬•$FΡzϊXθ±Κ9Ρ”?ιBΥC ψ Dk&Θ»:&‘#–Ο©‘‹‡Οεƒ\Vž(=]WΒΟη2Œ#ΐxˆΐEš‚-9 |­**Bϊ"M1x“RuS%¨-–δC%\£}Ά³7΅3gΗ%Ήš¦ ιs=R 7!~/C&.ΰΣ£ δΩΥ(ΠL΄£½SzV[€Ι‰n έ£­MrPμώc.2’5#VΚ™θGί½ΉΈG_ν±š‰δ΅_ΕKΫͺ1WV’%₯τρF|πχτΒ܏†£“vτ ΠΛφ|ιe{6ςWžWLΟ΄”š“›ε¨ΕH… ]θ\< δL•}U+ƒ”œ₯³έ½έ¨Μ‘ΤŸσΙΣ'© tω_ί9™&\Γv’†(ύpδΓ7Q{ƒMεR»‹IgM²¬μσ―]ρ8VKžE₯Π{ 'ΨWψΌuΛPΏNΞ”p ]Χ¬#œ,{ (›š‡4©{Rΐΐ%jώο„žΨ<˜©©ρα1ŒQTB?=3({Τ¬P{ΧuΌβgΕkwbΛκ4£;c'0@ŠΞώήφμΎ5)1kώβέψμΡ ,ΟηΜ—’Ι—°¨₯ϋΠ|ԟ‡Z]^π%«v#₯]9Ρ„Ξν5v`s}eX·užΎ.΄_Ίΰα¨φΔ!ŸΏΪAŠΞŒvςQΊφA™ΆΰΨ™$YΡ9»Έso+ζ:γέͺs¨v ΪiΎ΄žΧη‡Θ ΕΑz’φΤΑ!φχ‘ΉsNΦ#s={λΥ’ΟΜ””Έ½υ!Έ^`Š5ŸυΊΠ+’AƒM¬|(Ξ.Φ φ GV ΗE$φΧ΅˜Ό43εV^,.r‡λƒ_ ©ΙH#C˜v?£2€X&=wIaΓ}‘Χb₯¬υ±λΣͺ-‡ΟGΤDάςk/ΦΫόΣ…<οE?­¦2n˜_³s€`ΧΣΡ#{’zœ’i)[Q.]iΕkߚυ(χ°1TeΝ£ŠŸ\»―Χ6΅I'τŒ^8›£ž£ηΚqiD}ϊΚGο zό:‚jΐήu=―ψΩΤέΔδVχΜώUΤdΡϋV”ΏˆŽO”ž>ϊaΎδ5_jFλ₯&2—”sκΗv ‰Φ©s ΅ λVά!ηΚzκ_ΊΰχαJΣ6δ–}›S‡9Z+έΈ|ώ°vφ8blΰήέΡ°eςωα+ςZΰ£VΣe »ΌΖ5&‘m¬‹hοX₯ΨΧu]§έΫuΦ[e«xt Ξ’’sΠH₯sͺPs'ΥyΠπ‹–ΜιZ§ο>’uΐΑϊgκ²ΝυjΙgfJJάήϊ Κwc½Π˜ΜŠsKΣ°,θ7ΙΎ«Κ«τ— -Έ|εr0(qž2}Χ΅3yiζΘ­Ό>„»δώm£ό‘u8Ή«ΑH^ϋ(J΄5m¬Cš.ŸQΒ‹ΜηΒΞO©ž›η#©Ύ=yž Ζ”_» 'Δ?“ΕŸW<ΒEš‹x Μ―Yžw*Οo|υd#τӟsΌ{§ν<Π§PVΌΪφΰυΦ&Ω‘€Ώšs€;zSΖ…E„7ˆm+΄vyeigmI0ΫτΌ›Ϋ–>]>u`9ε…”¨Εͺ‹9a,\V,Ωώ_ˆΙ¨›ƒƒgΠΠ2λΦK›$ΩΨτό‘σ»hύ€ξˆΈ…³σ稫¦ΒQΏΝ‚–DΧ–'SΥh~f-~gY›BλΕθΈπ`+JO¨^‘Gž:=ϊΨζƒ&ΠBD½ε»!ˆΜ„dζ»žΝ’{Ύλά"Χώ:捅Ίmώ)Δ_‚§BΨcΓΝnτλΝ%γΡ’Z,QΟ[ΊMyz!%"Zjη“β±Fch΄ΖΉ‰†GΈH-F¦ηιΖ›sPγӐΐ|Π;ΠιEWσyzΡ%Ι ©₯Ψό\–ξΡηrγG ‘;%*zΓCχ+8g6Θ»Άδ%Ίm~-ΚΉž…'J^—ΰΛ•SF€`bˆΐΰ„€Έ¬¨eζ­Ψ/έKΒ™KΈ37%Ύυ¨Ν“Τr”ΠΣ~ΪPθΥgΚ1e#*—cΉxω3ϊ|¨‰βŠ/‘°βa\뼌kΓ]š ΄¦"7£•Ή…FEΪgk8wΒ8§O {τ Q\τzn}Ž ΆŒΪΤ΄œ©ή‰σ§MυBD—#YVr–ςGd%κ%•d2< IE·ο;Λ›Χ’HzK­Α ν;8xθ &δcνγ[eCCG F*LϋoJHΓΖgΎƒΫ‰γμ±^€}<ώ Škh₯›Ώ ΓΗ­ŠαγΒβ­ψƒoήŞίόƒ›πΔ“ίPϊ―φ;–ΰΡ—ΏƒŠΤn\ψβΪ4‘§«“ΠΟΔͺκG±q³΄§-…nRT P–_ρΚ΄=π±38AJΰŽΒδ-r-‘„…₯ΫρΪ«σΡx©wη>H’Φ \8ˆ+ͺRππΡΈ°e³βXdQ^ψ“?ΒξίξBmΤ=φ ΆmΤϊIT<{ŒΎ'eΠΣ;F ΐNζ!˜j3zI ½"SzWP€Ώ€7Φ›HΐάΉSθ9³ηύ”Ω©˜ΕEœD†Ρβg$η: aο[Qώ":>QzŽF<ν…™/iχ»w|ιτ§GQM|D^93ΧβεΏXŒCŸ~ŠsΪΘ#…%«Q±u3’Ο›θμ _ΌšΞŸΏ„M’’³9ΠWυšC:YͺΒ–—jΙ7”ό7/΅@―™UΎOfίΒβK Δ=Οοω5šUή >?x}$tψς5έhoUΦ‡ŽΞηQ χ{}$ƒiαΚΎύ8³v-)œS ­·/υŸγΘΎƒΈxξn%g"-Ǖ(ͺ*E2yžΏAŠΞ€ζ‘„œ ¬ΙΡέΑ€tϊ~„Σr°¦bH_~ pηζ5ϊ*}e"Φλ»εΏ“υΘ\/x1°Z2¨†Ης™ΦΛυ! |7*λ b¨ΧI―Jρq•‹ί©} ΝGpεζ”­Ψˆυ¦η€«Ν &γ= €ψ?ΖόΊΦ9‡ςL’[y}πp}Έ…Šκ_Α‹Δ­?ήu©[_¬Χ (;ϝς3j„Ÿ—η]<icŒK~-uNp}⟒ςΌ‹~jψΟ€#σk–ηΘσkžϋ3l‘ πi«Nr{'±δ‘M¨ πʌ9 Έ;Τ†Σηu)™Œ«‘›«*Lv ­±Σς±σ,Kzš(jαμi'’Ϋ!«ƒkΫNΤ’†"HΟ+KzΫ–>ž‘.b9εάJλ3‹U1‹9VLΟcϋΦJ•δ(>z »ΡiƁu’W=z@ίϊ{O‘ω‡Έξ–{ gρων|Τ―k,ΌHiΞ? £oψ²’t&JO¨ž7|ήΎGŸ φ$D/xZfN σ]OζJοΊ΅Θu²ŽΉ±PΧ0²Ν?…ψ‹FΕ8ΪσΨ ”Oπ~ €ϊπθΪ§QϊvΊq ^Dλ½TbΙ‹Sτ€α―ο=ΒE"™ž ΏN,ΑΊΌT\»tΔZY;ev–=’{D›ΈΡ§zDΣ‡?#Μ½œ΄³gQ_Ύ™š\ Ÿ$wJ½‹Ϊpω€Ι3‚K‚’ς§|ΠθΊΎ‹Nέ0ō¦XΌΚ».žSM£“’Άω΅(δz:ί5K*€dΣw$€ŒΌάZωgYt¬{Oό*ΰ€ηΫ/ dU™\%)ΉOlΠφEΥV&Z°χH`=K δmΫ0bōaτšΌμ…¨ƒδμϊ`ΎρςV§Μ lzΒ’.mk΄²L.)§9Ϊ€Jς\,ϋ΄L­@ύΛ/Das2>~ΎŸ€λό³WoΗ«τ³²QΆ^ϊm΅¬2ήtMοΚ€Bujt―œm'Ž8wμA}ΎxΆΉ«žΎͺzψͺ ςΝ‰ƒΈ’+O7βΐήπ½ΈYQ€Θ©ΑŽΧιg—cγ-{πy΅ θ ΟƒჇ>Γκςg¬θϊ©Ϋn\?Νwι"£p‘7ό,ά}λ‚ΏΟ=‘9˜Ύ:Μ—$μ=εKƒ±ϋν||•”¬δ5‘ Θ7>'ύόgyΨοT/ΩX"­=‡.ΰςsu(2υηrΛYτ˜Ξύ’+ςP±ΎN]ούrN2CΊž4€c†’³ŸoGου6ςQ ΄Ϊ{ WUμ«­WM ΪδΥJŸRFώߌχών_‘φ­―(FD‹ŠQ·Sϊ™Š„ˆΦ=ρul[ ψ­•Ν߈g^ί¨Ρ^Ω όΈρΙ!€ΰ}δΑόΑΑzdtάIΜcω,ιhπέ(­+ Y?έvεkj•--Γ¦uτ __η~Ό)„,P6ώN―km 6o­¨t–—f’άΚλƒ:ε¬AΧΧb”ΥCώ™―+ΑΟί9θ—$Βη…―O²ση#½ͺνH ω΅ά'QzbόSHžwΥOΫΐΗAAζΧ$°q«Ό•ςгκ°ea--&ΰφθ|zY{a(Ž‹sz‚ό:»u%τ‰α’‡q•<©]ι‘O;M7«ΕΘM+Bq^±lGΦΓ™+ϋ₯!Οψΐ|Π»)>vΫ6“76jSVr†›q$ΠC˜ ’’ς§+>S .ΐΡͺΪβΧ.δ%N¨c~-μ±AΤΣΧSfΘΛPσΙιŒ#ΐ0ή"pσ4ή=lYU‡ςLγ9B'r«―6ΰγK'τ€Y\_¦¬¦E]οΗΉ–Θ;o˜09†’S΄&E “–sh8Θο™N+ΦqωW8²θuΤ™Όΰiy}½Ηq΄αƒεh-7ψ˜žΈΨψZΟΨuKzζZζ/-Ιιw-1sΑψπ±_β§7G°ύKΡη” EͺώΦ#ΈΠ65υkeεΫήNr/hοΰ–šv7’‘Ό²ΏϊYv~ωϊakΑ‘MΘήό$ hΎΫ;ΏλοπΞΤΒΦ­Κlέ8CΚΏi›7ΛΚc·nj=’:6„ή–FdW =žάο4ω ϋίω@>ΣεlC₯δQHM8ύ~ƒžε$rθ'?ž{eΛ±x^šΓΙΫ†Ώp©Νž£‚7n aη6ΒFςψ.ωWμzg·΅7g΅¬mz.ζ! [@Σψ‡άΖ‹[7‘¬ΠŸοŽQͺkϋΊφŠŸιο Ԟ;ΌΒή·nψ‹ΘψάΠ šΈψN`Ύδ=_κ9ϊ&ΎΧ׍g·Υ£²Ψ^•―†±΄Ά]σ»0„ψπ-Lh­ήrϊ”±nάΆ,@₯γς©­δέXγΓ’‘{˜χ“·1N΅4ι@#|€ύΣI5ΥŸoομ¦F δ†:Ϋ.ι_»rΎ έΫkcžŽ.t ͺ΄΄CΣnΌρέλΨρτ“X·Z©―eiΗα΄ž?gxs¦Œ[γ’B‡±>ke-#7u|…ξ#Oζ°½™a{} :žΘg—ŸΥϊΎ΅u…pιΏφήΑ$6­Ϊˆ¬ω&pεh?š[>Ηo›fπsCθΊΦ `ΉUCΒοΘ냇λ]_ΪϊΧ}φzΙρOΰz;LΟW{~ρ†Ώ7g’.Δη…εyΑη#ΣU—όZνŸθϊ Δ?Eδy—ύ4MCάG™_³σWΣ²Eι ΥsΕ_Θ£ΟΊo’V}Ω%yτyϋh„—]4HΗ|p:ψ63αhΊΒv—ωnXx”LAΎΫ( ”ΰωΏ žͺΙv!¨7νΒύƒχBδ:[Ηʟό/Ίg₯ R†7tΒ?…ψ‹‰–Υε9-=„RΈςθ‘ό<Ϋε; /θŸ—NΎϋ7ψΝ!ϋΟό `πœ(˟ΤUQ>XχΝΪ3O ’g’yΫγ]ήu)/™‡m—_KuDω Χ“ }qβ&FF;Π2 ):͐œγƒ¬3َRΠΚ’=ό?Tχπ/όϋίβν}š±­ϋq―X» ™Iτ %ϊ0ύM2„=}ΚfΫδ ΊΊ,σh.n‘ηa΄*“YtOϊςUvέσAU15Ρ‹φc§όφ·΅jΥ/ύŸxz}|Ϊyδ§x#ΐλšV.ZG›%„¬Ϋ~“”΅βЇžζ~ ΟƒΉ‘(Η§“ŸΩš{ώβŒ_»₯ggLρT†ω’2^ς₯δUX™—)σBHkΪpΞ7†χπKΎ‹λΟK<…ϊKFοΥ…ΚZ†©»d2ˆSh―ε}$„‡`₯XΙg±ζ»ξι%£0w–>8ΒνΙτΠ“ηΑ©ͺΛλZX^šar+―€—λƒ―b²Ιλν­‘Nœ΄ϋΌγπ޽><9μRPρXρk°8=1ώ)ϊΌ"ήOm€3γΘόZ™'/ωΛlεΧχξέ“Α*αΡΩ|Ε/ψΤ₯ΛIƒ-ŸαΣ/šJ/9€$sƒQ‰»°ˆˆJ’Π¨cK—–„ŽιIcφhœXϊC-j9%lείS§«Ž-ζ<²¬υο΅υYςΪν†’3yΧΨύΏ’³T«ηЏρQn.ΆΙ›ΐΩ¨Ωτ8φͺO·^σσ¦‘: ΉEž1΅@ΟςrΈkΆβ±p?πŒΕu-j‰¦αŒΉτBG?Q"Cc½!½Θˆͺη†Ώ8υθ£bΰ˜Nί ˜―Έ>eΎ«{Lπγe“&ΜwIΤά[δJ]v²Ž‰yV2€qΒ?…ψ‹AJ‰ΩρΨ@%οή—Χ1έy³©žžγ8Cž‹.’IEDλΜ¬’|ΠD%t΄o€Χ/S AzόzξΤ(ΊθσΜ9KC)q£λz#N_ڍ LύΟ'Μ=γƒVΣ|Ύ]ϊPi©’5vMJΞRŽI¦‹™όIdEω`L=6˜°‘χ!²g%[όΪ₯ΌδΧ±ΐ~š-Άύ Š{τγŸLΟ‰Λ€©βSF€` 02Ԍσώ_tŒΥψ%12JJή.ž3F†qjΦ♁¬œ>τrΥp—Yρ;5«UΩ›¦vς– -.+ΗHyΧ"=b`#N²©mj¬ηJ#zlά€5ͺ’3I|8³ο ©•ΨD…±θ^,i tOοόΜ=qƯݝ‡ΨΦcΎδ··|iψΚ)4Ψβ‡F/f―0z)ζ-ž‘¨YζwΡZFΏθ†ιΉ’;&Φc%ŸΕšοΊ§7ŒΦΞ™νΉΩ¦ΝgΣs] σΐ&·ςϊΰνϊΠήH™ζΛ7JqΡλΣώσ‘ϋŽΗŠ_k=§'Ζ?EŸWΔϋ©4žΜ―ύgΗ[ώΒόz%|ͺ’3y)FGc“?άgΣηΡΩΤQ‹SΒΡΨx€pf)2]–}Σ9’θΤrJΤJ΄Z= ­ξ¬= X8OΧόΕbbmα%JOΌž3Oξ1Ÿ|Χύ8cίσέΨcn¦K‹\™ …ΊΉΟvγ’όΕnϋFΉlδg¦aρ‚$ς†–@N6FΡ?Јλ‘<ηλEλι Eb‡‹=Ης`’…KS8ožŒ§ΤΚν;ƒθνlit#DUb>θέd”οόytμώβψη_νσq«–δOĐJ]ŽgyΧύsͺΥ€DNεƒ\Ο[Q\¬[γTFΰώA€=:ί?sΝ‘ΊρθΝ~Ej;6ϋη‘zΑωvΠΎ°Τ~ώΆ4£³§wσPYWo|nΉχ~ό?ίˆΙ‹z»ύŽf9_Ε:,"δ»7{Πά υ„hކΫffΜ—‚ηΜKΎ΄$7#ΓΑDΤ”™žr`¦ /ρ45WQΎβj:Έ3!ΐΧu0^ς³™Ξ#υ?½ΰ/ρ nSϋζΧΑsν†ΏDβo3=_CΛ‰Gη4ϊzΕrΥΖςiΈ+ ΪλG8ڜΗ0Œ#ΐ0χ7 δ Ws@ΞU8Δ9#ƒhnνΐΈE?»[Žΰ7π—¬δl '1Œ@τ`Ύδ Ά’ƒ9hJΓνC²²σLΟ7γΑπ}Œ §Μ|ψΊφfg:ΤoPβVFΐ Μ―έ gԝmς{ 6FέXΒΚ•+Z„Δπ°ςœx@€zάΤΙ«| EΩK›]8uπ8nΔMΟΈ#Œ@τ¨ύύ:όΗό}Ξ*ψŠ—˜ΡΚνeχm~τPη–Fΰ~G`ΆσΧϋ}~yόŒ#YώL)ΗΆ/ν@Yρ €.ž―Vΐ‰sοaρ¦ϋWώœξυ!όΜq.#ΐ0Œ€„@FF† ΔΰPθΟ‚3RŒ@$RSΓΎΎ™εI71#‰Scθfζs-h#σc‡ΐdw3Ξ5|ŠΟ?ϊ NŸ; ηNβά‰#8ριΨ·$Ί‡bΧ¦Δ0Œ€„σ%oƒ‡^ͺΦίΫIϋš'ηΛ7ΙιΉφήo&ζ[½―τΉΩΡ ίG³cyώπu폇θ―’Θq=F€°‹σk»H…/'ρkιK,³E~|ώ”η₯g)$'‡wt ΅PzΙχ½’σςκ­X‘΅ˆ»qξΰ1π>_¨KˆΣg‹s—"λ‘eϊ¦‡66mσC²Ώσ5ψΘ0Œ€ΧΜvώκ5^ά#ΐΜ>dω³΄ι‹r±P^G#.^ψ- 2qΏΚŸ±^:Ž΄ΝΎ‹‹GΔ0Œ@ `Eη€|˜©ŠΞWΞΰ,)ʞc%ηw•NŽήΐ> ΡοΖθŒλ>w˜`f!Μ—Δ'UR” ΄χ{’’Δ΅£Wε%₯‚™ž/ŽΜύW“ο£ϋoΞο‡σu->Λ3GκΏ82\“`’σkqT%~7›δχ@ώψώQΚ—+:‹_3–5Ω#…%,œ8Λθ»Π£ozHΜEΪΡ”,f³I$ χ@ “Y~ππF †άoz1„–I1Œΐ A@–?§0™άO~ϋ>~σ£Αuϊ›χPζ¬Ά`Ž$Ζ:ŸεέrΓp7F ξ`EηΈ›’Ω‘™ͺθ<#ΑζN3Œ#ΐ0³ M™YrRdVrΦ†9Σσ΅qπ‘`Fΐ3GκΏ34Έ4#ΐ0ρ‹€ΔοΜ!›iωγ‹–’σ;vμPT¨Νhڈ·΅΅Ι₯ζΜ™c£4axD@Sn–<θ%ϋR‚6Gξ·όΓο'ρ8Mά'F€˜HόT³Π“†3Ϋψ+σΟYp‘ς!0Ϋψ_ΰΛΕxŸΤ/M‰ΪΌώΔhš™ #ΐ0³ςςryL-WΪfέΨx@±C xELμόωσ±#Κ”F€`F€`F€`F€`F€ˆ!χξέ“©Q ₯—œ°rεΚΏiqxxXφΐˆTη:Œ#Μ4 @% ―ϋhaSΔ]`Y‚@ ρšE›?Fj?p|³dΪxŒ#f‹Δ§+Ÿ•œ£pρr“Œ#p_#ΐολιχlπμΡΩ3(Ή!F€`F€`F€`F€`F€ˆSΨ£sœN w‹`F€`F€`F€`F€`f/μΡyφΞm,GƝc‰6ΣbF€`F€`F€`F€`ι@ ZηLΗ`˜&#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0α`Eηpθp#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐL ¬θ<-°3QF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€‡+:‡C‡σF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F`Z˜;-T™(#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐΨG Ρ‡Ui9Hš? δΒdκΦΪΫΡoΏΗ%«_ψs<]WŒρ#xϋyνŽ[ˆ\aΙβlΜ‹\L.Ρ?ΪνW2rέIτϋΥρ?!LσTL)cr²g;›ύ‹˜ΞάΣ35ζu4u^όϊdΜn\ُŸΏ³Οk Σ۞i|c4ΎŸΞΆρM/Ί3ŒΊ³ϋΦύΰάΡΣωΖ]βG7Γρ#₯§Λ2Χ`Ωβ₯HNγ6FΗΪp±ΧŸχ)1…©9X:?>@5©ήΠΠE΄ E¦ˆΟi?u‚:―%DβΧZΉ8:šψσέ8š—ιξJΞγψΪ«υXJύθk܍·wŽBΔξ[‘Ž8”?#ίλF/Μrh=©΅ΘuCρ—d,KΛDΚΒT,˜›€™ήD_ZG~†‹-I)Bήl,LHΐρήΙ[£lΔυ›!j9Δ3D+ρ“Μ|0~ζ"žzβ„ζlΒΛ/ΦΣ=4…ασαΧ6ΔΣH<ξK2/ΫΌ}·#‘ψ„+ͺ’λΧ³†]λΦ8•`ά#ΐŠΞξ1δF€`F€`F€`F€`F€`(!Œš‡žDυςb$PΨXς(Ξ4οΑ§ν—rΌ9Ώ`‘άΠΒs•— )›±sC=Rlv·εΒΟ°ϋŠ2Φ%yOα›kj#ΤΖρ†‡{ƒ‹­Zω.©Δ’€¬ί)iΑ'§~޳Cώnιω·…³δ₯ΘΘΟF:5=·‡΄cR«°ι‘"RXŸΒ`Λ!œlκσžϊtŽΟϋΡp‹‚8½oΙθΥDθεηΦ!i&Rg"mq.–θ·c?ώ{œΰ-±eΉυ¨+Eή’…Z’~|˜”ζΞ½ƒσŠw…ΫP±¬”œ³υ²FδKθλ=Ž£  ΥHτ‹‰ŒO€ŸqΟ?ύPqp2|‰ωƒ‰²QΤK<ΜΗLm=–ԝ½ "χ­XδOQΉN΄ LŒΏ$cCΝ ([–$[ΛX•}=Χ?ΗΑαzπ–€­ΓΓΕ5X•nΕwΰόΩ_ao»ΩDPΟ΄γ*™ω`\MGάtΖ €ηΝΤό|ωfα€τ$3[CžxτU¬–…‰FΌ³±~qΟ?ƒ‘³—2|‰ω½)²[ΚS<£x]ˆά·v1π/'&ŠΚu’υ€> ρ—Δ•Θ ₯䬑΅μl[w?iΨο ε―xΟ–Ρϋόa!|Π”+†§©ψFρz4hOοΫPΔ¦q|‘Ί4#α– Τ>HžΡgkxxνvCΙ™911‚q+Ί>p½ΰη~iZDqρpJΉ)F€@ά(:‹X‡“£δ¨{€0υΖ©eŸ˜’AΠ)=©ζtΝƒΡk›1/-k퐌½ωτY±d,Rύ;u71ΊBˆ‡·Χ§#ŸΉ‘'2>!O.,Ž##ΐ%b†moz|3ͺλjθ~TBγΏ/όz_θΟ–†μۊψφ·Ώ"[‘’χ~ό?£σ‰ΧτΓeDΣBΦ ξρ] "‘ϋ=Ά6ς―·.ψK¬ω§αs‘X! ~ζΕύαMΎ€Ρ˜¦γτZ~Gς θΑD”/‰Φ›¦Ήc²&r6`Ηγ°²ͺT—‘LΉΨρTŽΆ»φ8όΌ ΛKβc&/ ς σβI<? E$r=7ς’Duzω|¨qszHLόμ{φ­Ε8ƒˆV•οπSrΎΪΊ ­‡p'©΅«GI²βωσ‘‚΅8{ντΗKΗmφγϊPN^EΒ½ΰ SSwZΌΛ΅¬αγ8iςŒ—²PΫΉGk{#†§€ ]Τ©!΄(–—Γ€δ<Žζ–OqΌι2Kw`Kq‰Bmi Jr“q½Σ0ε₯§uVο8eDgυyp±E@τΎν₯(½%KΣMJΞΠψEoή°6Ν¬ΗF“’σya>r ½€$”“χ(εU(G“J°rEZT―φH[¦ΏJκλΏ€kύνθνΓ-,Bώ²5¨Ν+T†Ώ΄•§p½Νπ,*4>Ρ~R/˜*Sαιζ»žΒ‰€§Π}+ˆ’¨ό)*Χ‰Φ“†'Δ_ζ&`ΥlΖυαnτŽbμζd 0―–Ό4+^e—d–c]Κ~4˜eΙμmΨfRržΈΡ‚ ΧΞ‘ct σ€";΅ΥΎt Ž_[ΕSpϊξŸj3ΰΎ½&ΓΕH‡―αβ‡0ŸδΖΌ‹wA:VUWΡσηϊ,oΥ£Cρ¨’λΧ£ °xξΕΕ£ιδfF q‘θ,jal6³ wΡτrΰά²OΠQ΅½ι›Σ₯‹‰…ž©K±’Χήv {?lξΡ|b!ΆΤ―5υ"JQAB².† LOh|bžάX»€†«z…@Ξ:lyl#ͺj+ψqΐ90[^Ϋ'Xχπ:EΙ™ͺ΄]Όc+Ω~Ρ+E YG–ΊΦ#Œί…KΟ'Φ½Ÿ*²ήΊα/±εŸαΗΞΉ1B –όΜƒϋέ@%Š|Ι σΨt[~Gτ θΑD”/‰Φ‹ωΔ1Α |«Φ`)9‡ ‹ςQ»ύ‘Ό?~η`Θb,/ž±‰t3yIODκΏΣόˆό,Dƒvκ ΛKDsΊω|ˆasr"ς³0u9‹ˆ9‰5¨(τιd[›.©/ožΐoO$`ιγ_F–TbιrψR€~³"†^3Ž#C§ρύ¬Γ<—O9σ₯άqœΌlVδφ!m±φ²Έ-gwγ’u#ώ©‹λPY¨*QΞΕΖ_αcUω―Ώ«’s’\c!’ζ§QLSt€ηO}zΞR3dUΛαΑθy±™2ήά»;γqψ$Η!4>mΆbά&m„ο[ΑŽΉ 7r£™””'19ΦI†ΝXΌςˆ†ώLlΪθ ΟX]ΧΒχ­§γθέΌŒ†¦Λ:ΝΒΕΖ†σ‘ΐkH*–τEΪ5<ŽΆcz]-219‘EύC ΨΖΈeτΆu=±ρΉθ§Kώι?θψ=cΎλvnDωωΎ*Α¦Ά ¬d₯±φQ·δ5₯³—OΖ‘Sš·PΦ±›πόΆzTkοFΡέr Gϊe}Άpˆ8εŸbχmΈ„Ξ‹–όV έ„­ώr‡d£C΄€λ!Ώh=JTiˆδH%g½E γ“hαi¦/qζƒng’‚d³H#Ω·»πΙί΄–isΗ‹;kHί²Ήέo½Σ;-ς§XςψΧ±(S¦{ ½ό vν³Vzž‘ς.½ήRQ©\“­Έ6™‰Ό₯ ιΌƒ7¬Ÿ”Βφ‹\ΟϊΉ_ϋ3Ζ%Fΐ-Σθ,nμvθ±ͺ/`Ω'wMΤΒYŒήL›‡X[θŚž| ,0?:Eοzρ0Q Yαaˆή€ΠψD=![ Γ½D@w<3ŠΛ_@σx>vΤ«tͺ7T#W­Χyδ(Bω&hΪ›*Σb!kίΒ9f|Wτ~œαυV˜ΏΔ˜ βΒΥίN+Ÿ·€*šIχ?‹&’ά6#ΰd,MLT+ “Η'³Š₯ΦV:Y(τhΉ3χ˜-ΕΖgΑ»Zp6ΐ ϋ…iϊgΓS–Υγ›τΣΒΘp3Ξ^ޏέfΠ”›V„ ―‰v\U³‹KΏ†:]©ZkΕsΒBτŒ¦HϋεžωŒβχ Ϋ¨δxy:άz 'ΟΆ"ΡWΊ*e―*½όIlίΪ†·φΛkγ½mhοhΗ`_?ν–%‘ΒVyͺTφƒ 6>‡m­ρ‘lΠֈζ=ϋqgΙ<άΉ7…YΥ΄o€(+t7CηΠζΜ‘ 0)$L‘―£W‰λKπμk―£BwYN―ΙkτεŽ~ΜMLGVA Jhꎟ›7½²‘ΖΧΨΤƒ€ΒJT—*ϋ}(\‹υU«ύΤ‹:Žœ~χ'HOSl,%OΣ©5ΨϊΝ§ΠόUιΊκ«ΨΊYS\ΐ‘·§%cΐ4Υ:₯Q\8pwςλPYHm¨‘™ήEŒ¦Χ’VVfΞ‡―Έ„•ϋ{Σοω+9·‘‡κΛνύX˜[ŠΊZEΦN_ύ$vξμΔOίoКԏφηͺLNΡϋΗxΖβΊvqίϊΞζ™—τΜr&†0ΐΗ”‘τ€”±~Ι(+Ϊ‰ŽήχΡ!gαΡ΅š%τŽγΧψš\.ψίκΥ›Q¬+κ΅γΪuUΙZx|βύtΝ?ƒ‡Χ)ΜwΕ§GˆοͺδΚέ`RrξΖ…#§ΠΥ;y‹Sž_HJTR]—δ:nΦ±*lΦ€δ<Ψ‚†/Nb,©Υ›5―ύjΗBœπOαϋ6ρpιѐ?#ΛuΦ=Š\Ο[ώ’Ud°TUV«*&=WI‡ΰ¦Ϊ»Μ"δ©rδΘ`/’Š^Α7——Πϋ;# υŸΑ±σοβ’Ξ§A/^cΜEg¦gΜAεVΕ4°b-plw@c(^©½ΐϊZ &wLƒόιŽ^o9ŠΖΫ’Gg’œη₯ r΅"Wߍ ϋK`Μ y—ΎόRσ΄ϊu’qœ;υ#œMΨ†υΪlŽ#πιHΛrt]ΈžΜ7FΥο,‰ββΧŸ0Œ@΄˜fEgq ΰhγMϋb–}m1 DQzξηΑ™ε©Ίξ,kAΚ‚/ώλ(‘-ΰϊ’’³ kPOΏμμΖΫj›ƒnθ Z”)έqυίύ<Ψρ0 z}ŠMμ~°’go|V5΄PžŒA±ΗAεγ9AΔӊγϋ΄°”6ύ δ{{*Ώ‡CW‚Α,©¨Fϊrα&):+‘»ιΏϋžοwζμ€|η¨UϊO5ΰˆξ•e–‘χždΚΛΈέX(ϋQς‘χ*/msχί<£f‰xvQͺ:·₯νυ ςLπΊiΣNnJςLPGž κΤ>Ρ»B²²έm‘ΠdίÎΎ«wΓcIχ»Ρ‹˜ϋυ6¨Ρό%ΎψgPο§7ω™-όCσ³ΰκΞ<6(υσ%rΝΉ3Ο.ώct&gM£ε·—žBz0ρΗΖο,_ς+k>­gn#^β³–Ώ„8qž±½0yϋvψΒ”šΏ°Ό€€gεA/ε%>ρκP ˆς3‡υΔδ₯iδσvρσ’ά}ΚΟΌ€ŽΫ`ΌA H;Rx˜RbζΕe!Ϝ0KβωEυ(_ͺfβNœώNVΪbωS–#^’\‚΅%H9ϋ#μm7œ[δ§fλΚ(C7:eEΒ%ΉΫπ˜κm€ηΞή*ΐFŸς9sw5ˆΠΣκZ mXΛl/ϋΟοΒ?ηf%|„ž‘οΰ™ΝςiIM-|€θ¬ ΣŒΆ†ύθο?ύG%‡¦°ηΧΈςŸγiΩ 1 ΚV“=Ϋ>ΉΐιίΤΏ`–Όq):+ϋDMδXΰ€»©5=κΫ\J]ΙΉ‡ήϊ1φσ―#ΖYzK―ι<ώ―xγΪήή{|υ―°₯JRv¦}+_­/ŒΆιή‡½?xΩ­xM_ύ ^άڌ·χ$αεg·κΉ›χΌ…½°I팷ΒΫοώ+ξ"ηΫΟ(^?[χγ­w)-η–—~ENKΞΜ’€θ\ρ<Φ—g«]Δd7ΎΈπS9ο:ΩDG]¦Žόι–^9πKθ―πS·!“5)X«qfΙ»λHΙΉ\]ΆμΖώN ΏΘ0Τν›²%Σωc|&Ί>p=λη~Q\‚g†SF šo"£I%dΫβΐ!›Œ§ !Λ>eBˆΒτ<˜'–§BsδΖ²6Ϋ^zΑ€δLΦmGN’Ÿ<:§—>Œ2υΣxe[_Α–ŽυαΧ =c€Ž,ʌjβ1·σ`ΛΓ t}ŠΚ;z6Η«!=!„¬Ωβ8dΥΈΛρ΄"rΡΐ…<ŠœΒ…s-(‘_Όd£¨l):7 H›Yεš•&4ΛޜŠΈ>­BeζΡ₯gd΄x₯Χι4™6@f,Γ ΚΡδŒRz¬$;SiΣ‘xέpγΩΕΉ…lžxΖ€δ<Φ†γG0œ5υu?{οΕ‘¦ ~FBo = ‘‡BXƒ[ΣΠψΩ~΄=νφΨ½έ=w枽3g¦ΟΞΩΩ3χά3{vΞέέ»w{zΞΜtίYO{ϊιvΫc7m6Ζ`ƒ……B<$Π ½Uθ…ˆή?³2³2«2«2#³JURGdddDό_d~ωWζιyA#6˜—mπˆ0Ξπ“’¬_οΚdΈίjzΞ/Žρ΅ό©ϊ‚οp>3·ψ,@V"6Xη%―`«z–υΘ.^YbΊž΅`žίNE ΑΔοnp^ςΦUηXΫ©ϋˆ”όRε²²ΌOΥΗ»ƒ,H~αϊR€ˆ„‘€/±ςDSC9ΜΚgΦΫ1ιK Ζσ @aΘ,U> ΄\Gΐ4pOΊΙκMxCuλ*ιΣT^c‹ΤœΨΉ!ίΫΫΜ0†ωό­·Λ…ΙmAu±όYp2μͺG—ί@2‘²:•JGpνF/EIucf>IΙ$Γc€,4)-Ϊ‰N2t–ΫgυZ€ŒΊ…η,•x¬BŠMΥΗΞΕϊ‡Ύ/4Σέ»w€›<©±Έ™’•©}γ<΄/gθ™Τ§ο©%βό‘OQRYζ1ΞJΟC.=˜κ‘L5|πKM]υΞΉcηπ=o_ΎB?4@BŒw6Λ–{";«ϋΠζ]ΨΌ΅Z)κ8~ΘΟΘY8Ψvμg‚ω―AjGγG‡5ΗκΞ5£Š …+&15CsŒ}η~ρ^.ώβeasΙώoαΥ²ϋα’‚¨ΈΙ˜όΝ›t»Ώ55γ)§ηœςκά”Œμf§0EGLWΖ{:«ΩZ¦<μ9qΨwΣ;h|  ϋDcξ2δ?θBΛiqΈέυΨπ΄v^'"•‚ΤίΦEΛΏpάrƒύΊυοΣL‰“ςRTFsγS£ΔXiΌΧ†³^6ρIE–prvώΒ%7t―“3‚™”šσ8φ{Δϊd }Jε,bk~Lγ΄ΟŸfζ­ΤINƒpυ»H(5)#|5‘n•™ϊ¨υ<η]λ˜ι΅`γέy2TU’LΊJ}ε·υΞ©φ}³VξcY*G‚ΆΖcŠ‘³Ψ'qυΩ-Ψ³YΎž}%yφ­π§­λV_|€R§υO3zήpΜ΄³Λ/.d$“9)ρl‚οnΕ›uͺDd¬’©MΣ_ΌTξF{Χ9\»9EzΗ¨Κ‘υς|”TβŠh$ν4žͺ!e9 %ϊηΨI\½Έ.‘C QHΊϋΉ£^Ί²J”3°­ΉΡοΛΖα?ΰAe‘V©£ν+₯~™θΠwβ’W”―χΗ‘VΟϊ₯©uoN*όζi₯€υώΐΫιξgΕΕʚρΊŽ€}ΌOŸμχΕΤ«0“°07bσμσ ’Εю<ΗΧAηG€]ψY=k±i'Š 凫¨ϋωρ‰ψy=чǰﻁασsδ[Ώ©ϊq2t~_*³Ίν-ƒΩ,η§ξψL:%ΟμόŒ†(‚q›ΰhŒΪFZ9S€ΖλΟwξf#ŠœΏΨŠGθΕ‹πB#oS2>h€τ±±KΧξΝήHΛ›΅ |…2ξoΨϋβΝοn9‹“Kζf ΠgSK(B’³°Ž^(ujŽk…fdΘaθ0ΤM―v˜#»xϊ΅κ!›±»†Ζ*iͺΏϋαΟαΊξQό‰_€gνψε=Σλg#,Λok‘εφ,Χ»ά6ΠΦΙϋm8"Θs±ΛŸr?‘²ε|fn%σ™~ζ#6xΪ[ε%!Κ«žΕΩE–Ri~Y(Οo;‘¬D01ΒΕ /ι΅em§ΧΧB—-U~Ω°χ ΆIŸ*Œ$Ϊ›ŒMR„5 Μ/\_Œ#²N puΰ3u+'xBέ_ <+Ÿ±΄cω½ΉP<3§-U>sGήGΐ.7g&¨ α)κZž]žŽ±q¬N*ΒVŘΜ)γf'qS¬έmήRγR=φ%Ύθφrjg5€†σ?ΑωΙ­α`ηq΄ΈΗΧ6Wy"ξ­Μ†+;]}njξBrΌ`9(€ ―ΐ#;Ÿ   ώΒ[α™Œj’eγ•> ŒΛ²Yδy$ΙΦ½Žw$[šYΜ­ZENώγšgVr=ΗΆcΧqΝο™Sz»P$N܏U±i$nX™Έaͺͺ· 7' «(š5z jΒςΈLλ‘)•^υ2«°J±—nGΫϊ†Βz-•²17F}Ηg]Oš–Œ•62MΏΖaΧ:<'FΓΞ}€Ν“¦.ΰ¨1[§Ωfƒ–[y#Ž bBψ^΅ό菲±±ΞWJέΟβ{…ObΉP:°\>?随§ŽUΙΦϊ1βiώΌ&ηΦ‡Θ©]5nγμ4ΝύρΜΧ­qΟΖGμπ„―I*ƒχ䀑$}7^ΨV+ηŠζFp’?/‹[‡¬ΥzS'KΖpθ²t{u§B„ϊƒ[$ώάlΖϋu‡pC©dc~Μγ΄ΟŸΚπƒe²φα{ώ|ˆ>ŒΑϋc)Ί½Ο1«»œw­"f\Ÿ‰wε―0€`ηw+ΞCΗΥN φw£§ί{―3jφˆ ))έ @_›ΧQξ‘·λ:ΔΠΩ<ΪΈnεYά:©šΣλόh]~™ΐΰ`3ξ§ΫιϊzΚΪ΅EΘ [ρΜά4βΦνΕ3%SxWαέl Κε½ keΓ―qzHΠ1)υ‘Αι½Χ°ΗE†Σ”V¬)<ΙI<ε> ·œ ‘’Gl>5Δ!ΒWRΆ‰dθμ9Σv  Bv’hΕe•΄2ρ°θŸΞπ 2f ™ΘΦwu'ρ˜μŒLΞfŸ4fG˜‰ŽΊΒc7εί™&οW•υώΐΫιξgΕΕoaxG€#b|“„XœNχγΞy*λτΎ€E¬ž}Y<νΘ#‘6ΧΑŠη©‹bΕ³vK©ΗθQ;tΚkδ,dG>ωΕ›žΦ¦fηκFX΅"OθΦΎG™88ΛΩ]sXΞOΛSQ5pNžΉω©D«²Α"!¨ͺͺ²f<ŽUΥ­dΓξ‘ΛζικΔυg)’Hk#Ίϊbk™EQ|6ƒΒg{€T°Iφ¨]ρ%Χcί–ak%EXΣ(šOΏηΧΥ`?½Ε?C™‰΄œ"²t&C zψπκ«ϋ‘@‘JFΟΏ_Ό{ŠΪ!=CϊΑ:֏>z9Uσ2{dΏ˜πΝWG&¨T1rϋj~MUEFώQν'A*`‹c•weιvyPθ‡νz—Gdkσ~λνέ ΏDzΗlγ|¦q* ψΜE­Eρko‚—„6¬z–έΘ.Vψe!<ΏνE °ΑΔoε€3Ό€Χ–΅^_>eœ_ΒΓ/`ο~Y!w„£iuŸe!Ο-/ωa ϊ’<α7qέV>ckΗ¦/…η9Ÿ…‡ΟtΟH^ΘXXt5’$ί₯ώfeoG–7`±28Α<ςΊ»Η‘Οί*.D&₯•9ςs7Ξv6œΣ9λ₯=ογ}ω°&C0BŠGάJ!ΐ…`„•² ΤΜ$R6ξC±P…•ζΓh₯Lfdo܍Iρ°ψŸuyήΆrn°?°3˜\Ο‘νΝΙ MSΌŽ¬l›=Ζ_5Ο}ϋjθAZ°4?¬†‰γqX&Ώ™"‘A_ƒe=Έ‡&ŒU,©MτΌJΛ‘ ‘πŸ±Mxζ(₯ϊίό=Zδ@ΫΞŒΡS•“K―r’Σ„sUN)ΘTΙ’K΅[ω„¦g†6ΧΟž¦Ξλ5yH[«}π½[˜™^dyš ΧmpΎ5μρ„Ά72h‰“+άpO $γ›Άΰ•‘σπ:|ΦxT1L.ήτ+€ηΗ”ΦoΨ†Νέηqρ–ož}!ΚΑ-Ϋ•¨€3cgqδ‹χɁCXηgoœNπ§z†ωU+ȌΝbZα`t}Ξ»Α\έ*οΦ7œEe…όuΚUν₯?IΖΤ.Ÿ?…ί=μύ4π(τŽ Ζ’rp­ϋ±\ζ(½ͺAΚLρ§Mύ%Θt;¦ZΠλ4±ΠΞΏΈΡΤς6šTΒ+x »Φ{Œ•s27!— EMJD‚J΅θj;κ5r–Ϊ_#J2tVu ΗπTwj”ηΞf©HuαΉ! ι©…~3VΐͺΧρvϊΏϋYq ΆNό8G€#ΰ4ςγ$§ϋ5Χ³°ΉξΆ»gŸΰh="… y¬ƒyΟΣπ―ΚjEk ψύΒ' }φ‘έa’ ,šˆ°κΣΪpΧ–G™a―Ψ]S˜ΞΟΐγ|”εzΠοΡάόόۏ„ΰίF(1ηq¬ί6`ι‚xδ²yΊ:rύYŠ(ƒVϊΜΦ¬2‚0λKwτI21%?Š bτvΪ£ˆ+W₯O;z:σΏΉLΰJΣτΙͺOtl©ΫzϋιaZΉθ\‘’™C5Ϋΰ*Ξ‡+Ωσp,1ŸΌΖq ƒYyH‘ϊrτBΒ³ήfda\ζ“―Gϊq§—ώŠLΜΠΩϊ™QM»<Θz½GSξΐύVξΟΏ,<Κγ5άr>#g3£ˆS‘Οg~λΚΉΖ―“lz–όζ-²‹y~ Ώη·ύHV"˜θ/’9^ςoΛΪΞΏ'ŸΞ/αα—δψζ+_W"fΉ[>4όt·ΌB\_’‘Pm£B_²ΟͺfYωŒ΅Ϋσ—0σ<η³ππ™αYΙp[ηρ.ΪSΌ ₯ι* ηΉ\ιmΓ²Τ*% ±ΎΘXtTη!ΔߚψD”kΧΡσΗf3ΧέMΜύ‚ΖŠ νΟεΏE Αο-δ„HΟcέβΐϊ…OϊδΣ—xq~NS *γ(»Ύs'Žc΅ΝR%G?ƒω[έ`π΅ΠνŽσ.,6 -ςnλ{ψΗžΐΣ΅£ 0WŒ„ͺ_‰’_‡+#―θΧ;Λ=§`U¨--―[y„L[GτOV½Ž΅LYψ₯ι ¬K{…‚B—†Μ$ wœςtVnΣsνΈrΥίή`EŒόμΩg,ŽΰιΣ§Ρ.ηA#dΘ$šτΟ6΄ŽYžξyΧ]΄y:ŸDq Y<‹i]ηΟΟU<Jύ“. %…YQ οVζ”“kŠ”–­BQεK(“•ωϋβ½_ΘYY„Κκ—°ωή((nrSΣ[Φϋoέίύ¬Έ˜^0^‘#ΐp P«ίΖiΟ8@Η‘qΘ†gŸ0ΛˆΜςœ[sž§α_oτΎŒτιGΝp"…zfv=ΚΤ}YΝ³―ƒ™žΡX>?­NΒ§Ύ3ςΜΟO-ή\$u )oΑγX§uΰ’ρΘeσtuβϊ³Q€ν\+jΛDƒΧΖϊ0ι)1ΒΛ†ŠM_ 1΄>†>πQΆWΧ(Uœ>¦δ5™ζŒN‘sΕjΠƒjΟΛ₯άάo•,ςιeΟ`n–b44ΤOΕύΠNd―³9udο»/³­εzVΧOnggΛΚƒΜΧ»©Α:wΏ…~YHώ4 η3 LΎ§"žΟ4£§‹‘k|››έgΥ³œˆμbŽ_ΒμωνH€ LτΚ/iš³ΆΣtb°ΓωELhψ₯Ο~η5N#¦ή:Όχ/οhδϊοp}Ι2M sDBa ζψL=Z›<‘ξΚ(ΟΚg¬ν€qXΧ—ΒΜσœΟ4gLhψL#‚οp"Ισψ€ώΘ@5U|š?‹‘I2˜KͺΕ FΞ”nv‘M²yτDίλςφ’ˆ‡ͺαπ™α€£ v›§kΙ“z1.Αϊ$G]q˜[ŸΡnFΩΈU;sch8γάFiiSdΥλXΫ)γV2¬όrwο)θgξΜ@`fί΄F¨ΘχlβιןaηACh’Llϋβϊθ]·π^;»¨²b‘—/ύΖjFsS`3ΔAs€ULBXyΖωϊ‹Ύ^’θE—k‹‡ ƒ”•A_μ˜kΓEγ¦ωšυώΐΫιξgΕEg yG€#ZΜΠ9”ΐ‘…Μdο2 Υ­zφ‘λΘ(oΡ―ƒΛ;ΈmπŒΥ«Œi°ν8ΰQΖ&Ψf+ΜHΠ=?Ν4d¬cZΓόLGBπ»sΗ~]  α‘kΫΣ•ύϊ³Q€ z»C¦πƒ/}#6–ΡKšζ4m”ΰœDχŸ6Ί@[+L¬~„"IKmϊλpΖπaY7&)ͺ/-Edΐœ•­~U”‹μŠRδOŽbΈWxΰD?zˆλεd)²‹άhΆ–ΧoΖ(ˆdΏήΝ ΨΉϋ­sόJώ4‡ Υβ|ͺˆη3νπ-EΡ65ΏgGΟ Wd—0{~‡*R€aΏΥbε%Φv~Π/ΰό’‹\j›_ŠπğΎ’|ΙCxσοήπ3€‘ΕΙ[/ΙHh·Ρ’/iG ˜η ί–ϊϋ¬|Ά.„Stυ₯0σ<Χ—τΟ₯Τ6Ÿ)=ρ G ςΈEA”Q&βaUτγφώfΥ1₯ReŠPUHp€t"Ώ^τ3 ”ή&d?¬2˜žΖ EΕ½ ΡΌ ™ΉŒΟNρfnEžl9Σƒž>2&7‘ εω΄M¬ώ^Ψ·ΛE#`2VœnΖϋπ³ ϊ“O7ζw“‘B†Ή=cYzΏN0r4zz O½Aš{qε”33WΕΖ FΞss^³Δτ κί€±ακrlzΠ…Ά|yMœ¦ퟱ«4ΕΣΣΨ4΄―ΔΆνBD½LμzφΡχ·dvΆFCFΙl*W0`‘gƒΠsΐζ0tbύ ,ΰ‘ŸΧ]·ΉιUψJ1aͺJ]Wn’·Cr„Λ’'t—K†Ξ²σψδN΄Ύ¬]-Č`l\ΟΌ©«γ₯ΡŸΝŽΚ#₯m"ΆU<‡šlΑJHΣΈrε>ξpή0Ν―ΐζ8=£Σϋί,ꡍΘ2Ξ»Ž-‹}ήFg³πΧ€ϊ‰ΪoοΔγΒ;˜5X xΩψšΏ΅a`hεYBΉτΚEŸ‡Π^ΏYις»cHLσ'Σuλ/·°ϊIμΩ,έΛ„ΓS%CηNͺΪ&ύ“U―cm§²°ΗΜ/™ΕpΙ^*sΓΡ1d'_ψ›ΈP˜Y¨ dΨ= δ5&<5=DφηAηΦgμΪZφ![ΠA“7aχ3Š>ήΡ|Α‘ί¬ϊ§3q„&ύ~9Uχ…™ ί[Ž{“PkvrΣ|Νzΰντχ³β"/ίr8aC€.Χ…H‘τ^ˆω‘ΙβΩgΨ₯ DΣςΗ:σ¬υB™‹΄z˜EFΎ)Fu%,σ=θ³LžceδX« kήW#ς”»A# ˜bβό€nL{’iNžΨΕωYŠ„ΰ3Nη<Ž}:Vvΐ#ΧΆ§«3ןAΐΜ0Z[―b[~%ΥJA^ΙϊŒδ*δ †ΕB"OΧ+fΎ*ι©mς4lp«RχΒ™SΊŸυT ‡#ƒύ@!½Y€άέ Mˆ3֊³]1¨ͺ*D =w…τvmj7Δρ²zΦ*Γ²˜™EΨΏj0Β`ΌkΠΜt±λέŸ9wΏuŽ_Bǟ¦+r> ŒW€σ™vτV"Χh[šί³­g9Ω%ΰˆeD›§Μρ‹s‘όηd"‚ 5bε%Φvώγ4*αόb„Œ§άΏΈ°ο?|# κmͺΏύΜwp})πšΨ;j}Itζx"΄|J4Π—βy}LυJ9Ÿι‘β-³ΗgdθνŠη8ˆ@j,0βgπλΒΓΥO`kͺdόvσ:}Œυ"p.†TϊΐNδΛϊσL3Ξ\6zp“ˆβΌbΜ Φ£Λ2jΙ܍ύUЍΑk^ƒιq7άdτœ$FΦšΖ…Λo‘]©Y†ΗKΆCΊΥ?؊.ρ˜ yJߞLBB"2“UFcqήgΏ>uΩ-DιCΫpξƒowΥ£(KڝΒΈŸuSβ…ο-Σc+oΪ†kͺ½»ΉΑήA&=‚ΩWb’`D(΅‘λj+}Ž[0Ά>r­§μo,œ\mξPΔI£σ! ‡Ž•=‹ύ{Λ₯Ξ&ΡpδMŠJ»i+={€gΙ•ΨϋνΗΡφ/οΫ(~Ρ­Β ‘μα=ΈH†Ξώo2HLV[Έƒs~Έ°―λΰC~^3]·ώ³I‘wΪδΖ°[‡7’'ΘJ\£|Ό£n!’ΊoΕδΜ4E5Έ<9™ehΧžλ…›Ά£P&&P„ϊ1ΩΓ…G|ε©d(-ϊτΰΛ ?Αι!_>ϋLσc§sόι3‹ήεΌλΘβ0ςnΖ†2zΫ¬ϋ^fpδ& ΝΓ―Fc΄rLΣ<ύl~¨S¦ΨςŒΔ(ε¦ω“ιΊUΔ(™ωyΑσK₯‡ΜάSΗΥQκ »ϊ§y½N#–p ±>[„m9ΙΈ~΅^Ηω„Ζ’΄ O–<€θƒ37‡%}Ž© ΰΦ¦`Ž^\ϊΛ€av¨ts»xjQŠτ=ΞƒNΠΕ Ν¨-έM]KΠ;§(»ΊηTϊ½M¬ϊ§<θΊΚ&¨ML€κ»δDϋcο”4ΉDΤξόS< ϊ·ΉqφΒ?ΰ”p1H¦ωšυώΐΫ)<ούέO‹ΑŠ‹Α:ςbŽG t(v”‘‘Χ³]Oe½>#ΈŒξΝ̞}>Σ2εhZžsλ`ΪσΤg>¬»ζ=kι#d*έ(QŒκσx09)ς³Χ©QŒϊ=ΰ₯gE"R8ζQζžυUΑΏ+5= BŒΑ €ΩY‡ΰ‚§Γ¦ΞOͺgΪ-ˆH³ς„nΜϏ!‚fœΞykΊ€ ‘VœΈώX¦ήΩ؊Ύύ•žOϊΈJ°mο ε1VΟΥΛΞΏΚ.{›…™B:ƒΖ Wυ oŒ„—9ΉΨT}?=Κ¦˜cν8s!N4tΞ,¬Βς۞eΣ½h‘γΒ xΦΘ.bsΛυ`x”ΒηζRΛLδJ Υέde Μšd…wΥ#°Ζƒv―w³|ζΤύΦ9~ ͺW"JςœΟόΚ"Ÿi:°±AΣΞŽczEn±ΩΕ4Ώ¨| scŒgN_r.R€ί2˜‰`B_`‹ΌΗΪΞo”‘[°hω%"!}5…ςΛ±vω?ΐyM€@ƒe±Θ/\_2ΐQU}I%Π7kŠ'ΜκK¬|ΖΪΞw2ώϋ†ϊ’C<ο/1BK9Ÿ—ΏŽPΰω°8ΒsΆΗρν^ο;‹kcύ˜ oδΥk\(Θَ,Επm_^>έќ“v’|½KYς+ŸCΟ$ΠS!…e_E~Ωƒ„K»ϋ1>CoόοOFvZΚ³σ•~=ΌαR£w“ͺgτρ(,xƒs_ΰζύy¨*‘>eL©]cΛy©y*ΡBVυ•.ωˆN‘|Θ‘mAνKx«πρ'‘όΰ7°χωZ&•Bκ»Τ$=o’εωy v>υgΈϋ1.žBrυƒxθΡ§Pΰk#*φΰσίμœMό¦ύxυε•hΎΪ‹»Λο'Ϋ ;½|*ρόg§±uη&ˆ+Ÿ^j κ>ϋ —.w“…h6ς‹6£lοn$Άόv ·αΕηχSά\Oκ©{›Œœ‡ΕΓΏzυ’8ώΤ§πβώλxσΓ&©&Ϋ¦σΨq\¨&pjOΤ/ώ—ΏDύ±“Έrι*ζΣ‘’ζB>}Ί b)ηM2t_e8±~lCΓyΝrέϊN&)«…§―κ4Ž›Ί&μςr]ϋPš{Ώξέ‹!ƒ―QeaF φΔWa=ΤΈ=IΡδ;ƒf2\žqΣΦsUζl8€―ή‹Γ…ώ«Έ³<Eν¨Κρrγ`ΟyΙqƒΎŽτΠkΉ^š9‰Μ Ή—ώ$[£ž$–έ7Αώh’γžΔ2?Φq:ȟšYEφη]»λΓΚ»ExψΕ?CYς.y ݝ­tξχΡWQΌυaμάνq¬Ήδ tk ”[Έ΅}y}{ΛΔχOρ…{ρ½?Ό‹£Ώ{ci»πΨΑWP Ό*½ϋgt”"jΗrέϊ‹σ+1°±­ZλT£²ΤŽ‘_Φ摦ˆ Σ‹Δ5#oL ’ΓΙ ι*kR€ΒœBΕψ\ q‘σΈw€γ½ΈAφςIb|’l|₯κΔ΄Υ£σΦ*”lΨ‰ν*ΎΎΦΦ 8ΣΩΖΣ;‚¨Ιqtn©άgΡΌo7qυI?y@άβnmF½Ζ)ў?‘c$‘©”Μ{Λ-’eΛiΕ‰λ !ϊ€Og+}gαdΥΰ€­†du΄œ2ΥεΔΌχ±½»“ΫΤR4gωEQ[γηA ©έ½bαQuͺψ‰3zΔΦ}ƒΝqθžͺEήκLΡψY:άC‘ΝκY«t Ι(Ώ ΅!ͺ:ύύδ^QααΟ’ν»Qz΄Ω˟YϋP&q«ͺ‰cY6ή₯Α¦#$ΩΏή…Ιšγ3gτσό²όιΨ‡‘#Ξg@ΆΚgΪΎX"6¨{ΞKήΪΦυ,»‘]Lσ‹Cžίζψ…1R€&ήE°iEՈ²ζωLΫ.ςχ?Ώμ|ω=Ÿ{ίnΕαύ74ω"―›U~αϊ’Œœρ6€ϊ’C€|Fύ³EL±‘/9ΔσΖ+ G–Ÿ©^]Gπ|  )q‡κœμ*ώɍK‡ΣΊΖzώ΅#³$; «‘& nfδ œξβ$2τΌ#N1ΡΗ…ΪN΅α“Ζ·ΌQψΔξzΠsEΕ%β^\b9ΫQ4ӎOκUνlΙΣv–=²PήIˆΧ €φρO#μΎxϋ€RTΊετŒG4ΛL.Cν‹ΒŸrΨ\†žΕ]ΉX‹μΝγNWE-\ή¦m±cθ€ηJJ;‰ΓΏΙΕ7ΘψZ\Sϊ$χΞg„?₯†˜q«wύζ§>θΙkηοά|Iφ|χYΙΖj]'p˜ή+(‰ζ{ψ]ώ虝bQΡήgQΫΫ‡γiάμ΄&©B7mxο·†”ο~]4žΓκBΤ<)ό)Ru3ΜλV3’!”βAς(oDΠ@ΜcK†Ο"~>*Ž€ˆΐέ;Σ‚=Ɂ†Υ° žΕ…ΦχqeR]…ω5ep₯Λ†#ΈΤ~„b\H³S˜ ]$I6>υ­:7€φώKhh©Σ5bμνx υ«_C*κžάΕπΠYœnx_kmSžά·°U‰A,Ώ«σCέ€%OΊ lΰβ ‘γRy‘7ͺ¬Π₯»«GυΊΧ‘](μ<Œ·~ƒ'Ώφς| (1Վϊ­Θά}σ)€―ϊσmB[UͺϋΧž9ˆ²’υX³"ρͺuš½}GUΣ“<ύKόpxOο«υ§Xcͺ]έΧ½νάήωyz ‘ήζ€έ»·UŽ΄κ*&σ‰Υϋ±S~>G~χg~_[¬{G²³±o{υš‰Κ]βψ[ΓΚΜέ’GC‡₯垣Θμr’c,hΖΪz―ν xβ ΆmΞ“«jΆξώvt΅\ςDsްŸx†γΌΆ|έjΠ’ε+θy6O ιr„P‹M^&βξχDΤJςίž’ΫHιΦyΌ{ΨS\ƒtν΅*Φ N»r­_m”[Π6†žQ›M#<§CS™i~,γt?5ˆ΄Ξ» Ο»ΝΏ¦³bCνΝΘ(,Cͺο}L9Χσ»=W³*qΰ5ϊσ9 ¦Ϋβsϊρ©›,Θcφ(Σ|²ξsl¦Oί₯ ΗΛP³ΏL©Υv—ΌŠϊUQ0”#ζ2–# Ψ:?͍ISΛ¦<Λσ³ AΉEcΝd£d‡% λυgΒϋ4Ψ l°ξ2:ž©A ގφ‹~/%”ΓrPΆέχ‘”ηh*E―Cqw£gΌ†Ξ5;*•cݍυ{ΕLκΑЍn 7ΟSyθ:IΨΧΊ© ΄1Π©ŽHΐΩEΒβ!Ϋƒ|πώΌςβ^ΟΓ:β‘]ΟxyΘ3xϚυp`ύo`K‘€Τƒ –·}½ΰάήύΦ"Ώ„›?ύ§ω%œΟ€5r€Οόws‘k„°π’}=ΛFdΣgv„x~ˆ`/‚‰„E^R°cm§tω™EΜ/«€0h²ΑJ~5ͺT_‡W/Ž{E« ΈΎδ#šτ%ϋ<‘:μfπYΐ΅³₯/EΟœΌ—Ÿ9ο‚# z»αυξ/‘KAΦ¬ŠΓŠe1˜§/NŒ6γ†cQ B1r }NΦαΝκΜ7ΈΥˆCŸ5"aMI7‰!F²ψ›ΏwSΣ#θΥyροΣ{ΓωŸ ΅§ ’Rp}Β—nab²ν£>5iΧyr§ƒ§ίΐίΠ_HS1Όρύce;‘²Z4τœ›θΓΉ&ύηΙξ¦χρSϊΫP½ ιq±ΤΗ]ά’OΊŸ—λ{OΣ―ώNκήύ'ϊΣ?ͺ[Ϊy ούθ>έP9ιƒTaMάƒτ™jŸ§lτ¬Θw~š>ϋΰυοΡ±ξΈΟό CΑRύ[(Έ&ω‘žηύχοB‹ ^™ΤΝX+ύ‘sπΦόl¬¬tΙ*znn £ύMθρ ~B‡™ΦΟ<Γr^Σό,]·ŒΚf²o}P―μšΙX—G_[ϊβΏα33ϋΦ™<OΞ£!©9k’‰λ=nΟγϊ@‡ΏσΝηM‹σρi}~ΤƒΥq:ȟΎγ¨}Ξ»Α»τ]Lœ|λ8I'‡πE·Μ4Ί–VƊχ”ω™!τœi2~/€9‘¬έΗZ>$Η‘/뱡ΔΓΥσsSΌz =cΤι‘ΐχ«όΙtέͺζV«ΏAύ―TY[ϊ§U½NƒΥvŒόΥI†mBDοXςΧ&!vΕ QΏ†qϋΞ†ϊΪ‚ ήΈ~o]?ƒόμ X{ j9Ϋ³7‰―ΫόωšŽΪΒSX4$ΞƒŽρ ήr—ΊΌΑ-Νϊο uu:=]S―L’Κ  -YxπάΫ'Ξ½­7ΫΐeΡͺοŽ\?„Ώ§?³Ι,_Λύ±ήx;Aν–m/|#ΐ%šχl‘δΧ7‹°_'‘]`Ω³ΡQFΑ²<‘‘Cλ`ΕσT―έ­ΟΪΑΣ?ΓλsγxrE₯Hχ—άQoψΰνΓϊќ₯κ¦ε±z”ω  Θ,ψΟ·ρόή](ΙΧzτλEΑ0Ώ lžŸšι™ρD³%a~6#!ΐͺΗ±θΩ±i…¦Ζtύ©ΌOΩ#΄œBGΣ^‘ΕԍŽsMR^g3{ΣTlδΛνmA‘:g₯½¬}(WϊoΕωCͺΘ…ήΊΉž>αZžx¬―ϋ*δWq-έΨ_ιω\ho?ϊ…‡bκΔΩ…Ϊ3yΘR;χ™_γ§·&°« (Λϋƒz„"]ξ^ŽΚΪjΡ‰d¨ο†w”ެ`šw½’MFH²ωD%NxŽ₯M‘lέo­ςKΨωS A΄μq>VΚ>cΨ@™x‰YΟ²ΩΕΌžΕξI―Ή~Μς‹¦‘w'P€»L˜υ«|ζNTε+ΏΜLSψD“iφφmoM/E₯Ύd›'Όg€y}IέF•Δgͺj~Ω€νlιKρΌίˆ#―€σYδ­ ΡRD`½C:ΈK ՜'&ΙψO'žͺJΐμΔx3š„@b&“]y&Ε„€ZO3\YθΉσΜIo€` νμVuw6‘A0>βΙ‹99g1ΠΙB­ŸwΠ‘ΛY½nνŽ$όςΪΠb—j~γΦΖΝόɊ1η]Vδœi7ΨٌΑpήOƈ«λτˆœ™‘·—πρRtθŸΜόr«]τǞάθκΣFnάWtΰx֎r΄†—qν¨ή-ŸΕΥσZ‡Fγv6Ž0θŸ# 3[Μϊ.λΚ±ήx;}ΔYqΡr8N#p߁~Οiww·ΨlΩ2Ι½˜₯©M‚YOe2ŒšΦΌόŸ±O0R;ƒ7ώφΗ–ϊυι_žhΪ³Ohk'"…GΆ5yςxrδ1„c+F₯H ¨βη:nΡηŒθα­N'ΖbÉΨϋη§΅‡[ž΅Ρ-νΪ‰f"­ψ@ΞλΟGtHv·ΎπΏα ρσ”@_ύOρϊΫBΜ€0& ‘]œUb– +…Žf{資aχᏞ¬»Ύόο?ΐoŽ…ηžsYΘ>ΒuΏεόi~•9ŸNς™ΛdΔ0σ+€_“UΟ²ΩE,F₯ I&#ΕuκrLB=΄Ε?ηgω…ιΌΰϊlJ£EΞvυ₯ˆηye!νg–:Ÿ•––Š ΆwvΫ“χ°d(ܐ'Ξ½₯₯%ͺ0Οσ󨂄v "ˆ‰>·αΜ—ϊqC`ψŽG€#`ΕΞ―6ααΝ9E‡€ Ϋ-ΗͺeρΘ―¬‘~§υθΛδσ£_kf»Ψωq‘η§›οp8Ž€eξέ»'ΆΙΛΛ³άVh`d—ΌpUΣ°κ¬j%Ykž}Μˆ ΦδΙΝ:xfN/―pΚ’Χ1Τ[ϋη§΅†[ž΅Ρ-νΪ,‘VΧ5±[$#gŠι† ΗΒlδ,œ~,ž΅–OΫ4dd cBάύj/χ4Tnή€τ6;g#”’ΛΘ„λ~ΛωΣόωΔωΜY>³±ΑόJik²ήSΒΩ%β=ΏmG0Ρ ίσG€σ‹³ό⏰‰/™)@•EΞvυ₯ˆηωKkυη3«ˆρϊŽG€#°XΘyp=\;ςΡsͺ ΧO_σ›ΦR?ξ/ΰp8!°ΨωΥ!˜x7ŽΐbB`C9ϊΪS>_ΕΙ“Z#ηΕΏ =ΏΕtJρΉp8Ε†@Μƍ Λ€άnχϊ}χέΗŽG€#™”s“³†ƒ‹φγ†σ;Π‹±Ύ΄7ŸΕ…ΣuΈx}qήA\»Ώ…οΌϊŸ“Ž€5«±bΥ*¬Νέ‚Gž~•)T†κρΡ›Ÿς{¨ί9Β " hη§`γgΗ{iπ;>Ό%G 8ΑΟh?£Kƒ_ΈΎd΄ώΌ|1 νόlόfΧ(--M¬:6nΝΣl_ΌήE 9)QœόππpT°~λ^lΘ Hb·pιδŒGΥθω`9φ,ά=γΘx`~ϋίSdgο3ΐ₯vΌ·ΎΫ Ό5G€#ΐ0@@ΰΣΕΜ―œ? žs8Zbσ°υ‘2ΔK₯SsΧqιΜ!ωΜϋyς₯¦†[Φ.ίγp8VώRb’ηy¨Υ~Œμ’Ή‘37tΆz.ρϊŽΐF@ψρ΄q‰ίC}’h?.ΟΓμφζp?†ϊ1:κ}ΑaΆm΄Τ[[°ΧamZΦoΪ‚ͺv’Ό|32’₯Ο%auοώM3Ρ2%>Ξ%Œ@Υwj-ωΎ °ΊΜKΟ¬bΒλs¬ ΐωΕ­₯ΐ/\_2^~$ΊˆφίwΑΖoeuΈ‘³΄x]#’ΥΠ9–žΔΞOadθ:Ϊ.]Α΄Ρy9G`‘! άGδHΞ·ŠΟ„}ΩΨb)W!.²εζΣαp^ΨΊ¨ω•σηŸ`\ξέ»'://iπFvΙ17nό/,=Ίέn±Ω}χέǜ·αp8(A`±{rΟΜ(9ω09"ΐ#„8&οŠ#ΐΠ )ό’gδ, Τξψ4“ε;Žΐ’D€ώΣ_VΡY^j ΡΩ^Ό6G€#ΐΰp8ŽG€#ΐΰp8ŽG€#}πˆΞΡ·f|ΔŽG€#ΐΰp8ŽG€#ΐΰp8Ž@”#ΐ#:GωFΘπyDηY> ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG d„*’󲐍˜wΜΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰpΰ†ΞŒΐρfŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@θΰ†Ξ‘Γ–χΜΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ0"ΐ γΝ8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Π!°CΩYτ0.΄Εg=>GœΩ]Ήj΅ΨQόͺεΙΛ„€έxrG-’L·ύςΟqΈΣ3Χ„œΗρ‡[ͺ‚΄tγlΓίαԐ΅βΟΰΑ’r$ψϊJQ;>mϊ.ŽkΨ•§ν-Δ{ΙΨυPΟc¬½ηZ‡C+0LςV’Ql"ΦΙΪι܍Mΰ΄…ξεfΧ wm:’Χ€#eM6Θ8Ρ“FPwκΠθsΗΒ}ΎΨ‘Η2?ΠJ°πR~ή>”­Λ'#ηL Cυζ«:‹Σ ο£K]Μσ‘…@rv=Ί*ι,π€ζΏρΞ1c'Γ l8€?ω“―#U¨0T7ώ―Π8ΤΚt€ξΙΉΉβΨβGΕͺmνXβZ€εfŠ}/TΕZaβ]aP qέΛEMarVΗϋας 7\z-jΓBϊ„, !e,¬Dqͺ?@ΛΕ·πIΦεΛς8ea|„ƒΟœΈήe΄BΙK²ŒΪZΥ˝f{ψe―•ziΖΫΗίΖ EH"vT>‡’uΩ~ΏΕΔ*%_Γΰ/p²ρˆͺ ±ΕKlz–2džY²vΰΐ£;°±b“’#©rΰρ^œύό0>8jΡyŠλKˆ|}‰‘'Τ'ˆ#ω`|f$Δ|;}Ι_ͺyyώmyIXŸ‘γή½ΥΒS`’'ή £B>> δ"”/»IVΠRHžMτPΈ=Γ‘ΒwV<‚{yχψ·"OkΈΧA–»$ΆYβ›/ΧBΠ•‡›γ7œ ύ΄#ΥΓ+Δ3_¨N\·lΠ0xΊ2x‚:5?₯3‘AΨα­Μ"ΐyΙ,R‘[/Ryž{ςœ3 |mΠ“•b3Ό«Τ1Ρ±Σ‘O€…ΑΕΔT—n~ˆώ΅Χ»?¨"!πH2Α–8άΌΔ ΟfD-+Ο ‚ί#‚?Ÿ†8?ΈηkFΰx3Ž@΄ ‰‡·}[Σes2Ÿq―ΜDωζ—±μޏqόΊ~„CŸwο(υο*9η2λ’2M9 RοήυŽ'%^ΆF4ž»˜υ6Q*Vlωvεd+ϋšL\!ΎRφ$F>?€1V°#OΣv\‘ΆΆR”Τ6w5δ†Ξα’ΧΣ}Ÿ|Ψ ά›bσ±§Ά:τhΖnΓΊ―"MOœ:FΞBΥpŸ/Μς˜ζΗΚKe¨({9zXJeiιUxόαexΫηϊ Π„ Y۰瑝¨¨*ƒ―ιι2~m4Ě·yŒœ©Bχ•Λ!ωj€‘μΰε1ŠƒΟύΩΧΡ4Kχ3©Cyk΅pρ.ώλΆpγ 8PTbI§ξ©Ύ· νR-;ϊ„ΠEξ†gπt }1ΐ0Ε#φ~νyΞ2NΓξωπ"N>sΰzχ‚B^ς {ŽE/wrVοχ9SΗ33LŠrb7"ΗΘΘYHΖΊ‡°oΫόkΓqehμΌΔͺg)’yfpoΑ62r6L«sQ΅{HK\…7ή>iXΝχΧ—Όz“/6ΑφΓ¦/1ςD°ρ[=”Ο :4ێE_iVž^[^BΕg…F’ ‘γ­8wm1:o2ζηο Ήp'ΦΛsrŸΕ9U$Ε€xΩψ{]=ΝpΣ[?S΄ωq΄ϋ’––Ύ’2ržF[ϋg8Ϋzι›`Oa‘GΪΪ"e'βFŸχγΒ¬ςδα‡u{Χ θΌ7Ί!„K^gκ:₯i$Sd`2tΦ‹»ιδDΦ¦ͺŒœ…σA>ο({λ¦αη§Γ}Ύ°Κc™3/₯¬S‚q\Ζυ‘ Lc«‘»n ͺrς=K·v+Κσšp£[9ΥΙuε}YE ΟΎϊ=”ωDS·Ϊ‹¦~]ΓUΉRQ+Ξ CP Ν‚μΈ―γΚ—uXI7–©N†hΥAΊ·}8\Όξλ6½;UFΞγε½Ύύ †ΘX4+ηa:V扨W„ Π.}εΑŽ>Μ}Ψ§2ržΉΩŽΛΧ/‘wr +W%#3Ή[]©›μπ.γ8½πάΒ!Ε|ιΌΔ°¨¬z9ƒ(έ&Ετ»`{†6jδΜ8&Τ΅—Η`폏΅α†{C“c˜Ί5…˜UiΘΟ©’(πžφ ι₯Ψ–t oV^bΦ³ΤcζωF`=/ £«ƒ£cXžΈ[<ˆ‚,Ο°\5±§ύ >i>N/Η(PpιKŒ<hθV™β3NM·cΡ—μΘΣiΛ‹ω,q3²σε”7ΠΣx•iBaθΌ°ήp¬^³fgρl`φΐ§±Θ[Ψu0ƒβ"©γ¨ηfpLΜxx…Ν“InΈδ-D„;ΧmπΥΤ―aέΣ•έ”y~L‘AτηΛKC€@ςRf]†3R@DΜ8„8oΓu?’—Β:_Λ-Ά ΌΛaΐ3>ύShV\ \MΈΞ¬ΰgFo΅_TΥ ηύΑΡu !Ο/ΰ†›—¬Λ³Q‹…―™,ΰ:.)ю^ΧΑ‘[|^ƒ#ΰ,±•(Λw)}v΅ύ ο_•Œ­n5β£Ζ¬}τkΘj¬]W0βcΤ«4ŽΤΜψy|Nϊi žlΰV G§qCmΘνBΚΩ(aνγŠ~'Ϊ55(Ο—Œ)ιΘ•ζ·π±dL9ί‡‡ΘΠ9NlΈ•)”“ εi₯‡mobήϋΆγήέΙΛ ·2|oڍ/αρ"AόπτˆsAΈΟvy–ηg‡—ξέDwί—θ»φŒΛΧ–gΩz‡ΞγNΜDΝ:Οu½l™6rjH—wj …V&Ρρε ΄Mηβ@m Έ»ίΊc+δΈϊ}υ§at'άKŽ5αΘ[M! Χu…wcΓΚέG―–P6ή σu»y]€IO Υαη G&ΎΈ5Ψ)ρ„r@Θ0λψꦇ€{?0xύ8ή:BΥuΪϋπωE•“ e§ͺgž]@"Ο’ιz'άt½›N ΒK¦Gg½"³^n]”^‹uyΟΰ1αwΑoxjݜΤVŸ¬Η›ΤkΛΔ=†±rοΛΘ—Ϊ“ί₯7±π’=Λ+™η‰±h>ϋ!.~τΪΖΤƒhFK]7ž«ˆΡΖ/™Ω€™0tζϊ’G9ϊ+OΘS²Ή5Νg>rΜ·cΣ—|ΔΑΌ<ί–|?ά„‚ΟΦ­WŸΗΪ;Μ}Ν'~ cγ4ϊΒ:/GFΟV|ξyξK<‚ε™υπ —'“ UΈδ-@„ζλVΖΖβ–ΕΣՎ'(λόX"ƒX„‚WΜςR΄ΜΗ8£8R€₯yͺ*Gz„pݏΎV!i9ΛΒ»¬ΔΑ1κ»αΖΕ2ΌAψΰχ‡θŒŒι<Οp‡›—˜δΩ‰¨ΕΘΧ¬Ώ–€7‰t–4_Gϊβπρ-F ]%‚>‘ΔYœœεΙήΔψ±Z.X\Ϋm•#G2˜Έρ%>PΝ/6IςΌoΊ ŒMUυ₯lqn‰wbπΈbδ Π‹»ΚZ2t>Tν‰’ϋTνεΙ=$–ΐώ]eXAΘσ1Λs« ύλ;π1£«3lΣ°σ…±1y%UieJΩΥ/α›› OŠYτώ7|rΖ7Znv½πUl.-G*aλ¦s+‘Ά#]ΈXχN6©λΫ“—QΆ ””";;iI™ˆ—Χrj}ΧΠ}ρ>©k–‡μΨ–inu ‘ΥΕ3Έ9a`œdσ|±?Λ‘A!αΝL"Όdr&ΡW-"„΅‰0žΌ,|ms˜x—%Β€8N6ύ €‹MXs~XΈ5Ž„ϋƒΞϊdAx>θ¨Ψ+„›—Xε1GΤbδk°`_ ή2 :Χk€=g8~~#ΐ0ΐκΨD₯nΧP›φΚΚ‘Eš!ηœr%bc―žΠL4am$σŒΟΈq;6ΉqρΈ{{7&ݚΊήrΣδΩΣθΈξνs[ε~ΙΠI0pπ€5q‚A«Ηΐ•Mžά‘‡’ΒMή‚±iٜΪ[f+—Ž,2š‘g§ξ*1«PŒ¨.›oύX½ ±ΰ‹ίy EιήbΑΘYH©ω•¨₯ΏΜ́ί|Ψΰ)„yEΨύό+(‘›₯ΕΝκd •ΘN)~ϊΎΡΊ‰•Όύup!Q‰$ξΖΝ)Οωα;»η‹oΑφ“|~‘γ₯"δ+Χg°GπqΊ–žύΦs(Λ•Κ;Φψδ\Π_fμ:Ώο=`ωϊ£¦rPPΊΙsmηΒc2γνЊƒxum~ψΏTL4γ³7!OΌφV£μΤ{¨λT·ρδ‹ΚΆ"/ίc }‹ =©‡τ7šΚ’ЦΜμNι“;'Uij@=N{ ¬#ξ~i·ΫΓ`Ή¦Έu¦T_`ξ‘[€CEΨχέo‘f“l0λmŸœ‡­ϋ_Cnv:~ω―ώ†ήiy[Q°Ινάσ4c€Δ²§ρ―„'Ή,k 2 kπύΙ)…ϊ8¬ΣGfΥσx΅J%oυΦΟοΚύ:}?rϊΊΕ»²Γέρ½Ÿ»°^Ε³·…ΊAR@}’₯9ERΈΤ,θ‰X—”‚εΛ@§Α8ƒLcAs>3»1Ÿω7Ο¬z Oψ―ΞDYν+ΘΘHΑ/Ε ^²‘gњσ?½†MΉ‡Ε :[Σ³Ψυr_-οΣ»ςgΚwƒ>†C©Ÿ^Ύ„ΒieζΖ0ΐ)ΛOVz<Ÿƒ‘Cs˜υ«α_€—B§gωcAK-ΏF5v…χιέμνہ+ΣQc~αϊ’Ό(Ρ—Xx"θΩ!U`ε3KνXυ%Υ$,ΙS΅‹†,η3˜α³μʍJЁΙkhχUσUkHϟ*iΏ»»Ϋ[ͺ—ΌLκ=Ζάβχxdφl`τΐg“g¬zθΩ:ɘ=£·‘·ϊ#’·ϊtο1Όσpπ‰GQ@δ‡Άξ‘vt4ΓG=lmyEωΜ|ΊZό!ύΙiΒέ†‹ΗΡ8 MGS %γ5ΣƒkαΒMίDbT-χBΡzUŸ­f’ηνŠ―{κ=Κίƒβλζs„m·mGγNΒ άΉ7U[)²¨ΗXo υ ϊΖg°l™c.fΓ½C*1iΨχΒs*#ηQ\?‡ŠθœΊιA”H›%{_ž^ŠΘ+ZΆ#Ο+zz¨=½=‘x±qdXAΟΣ=Ζ‰y;ŸΑΎ+8bβ“ΞήƒδμƒZ/Β8Ζ|ΞKYΊνσEξΘδΦ1yAη:^ΪΌy7 C‘\Ώ‘oDn’ͺV„§_} eY^ρ=Ό£wΛcS‘‘W„"Šψ{G.˜εϊ£ώgηιšΡ&wΧ4·".Ώ[7Iο₯ς«±½βcι:jΒεKν(#)g’ d:ΛΞ r_;_š"ν΄’MŒζ,sj[ςJΩρcOρvάΩ…τ©χDς3‰O[‡ tDΗ[©_”™8 φzΞ™]ίΦ9wSd뎞Fή5U“πΤΝρδ“}ψι!νόo΄ŸFσm!’31τŠ$”oφŒσfΝρ”)ΓcO©Œœ§ΊqΆΎξ˜\l©­Ρ?χαι/ψϊ9Γ»NޏœΏnɁdV ΦxϊKDIΑ“θ:„^’<\-;%QΑΘ8{έη>/ΦSDŸH/@Ž€LŒ !ΰ%όαϊ"ŠξMγ#p¦ε]\Ρπ½ΣγτΚ‹œη3sk€Οt \οη.v!Φ΅5…bΝΤƒΨΏ·om΄΄ΞKήζVυ¬‡w¨ŒœHlBΠ V¬IBjn>J σ¨sIŸτŠρζ¬θY6τr―@–œ {*ŸΎ3KM?ΑŘ}Ψ.w5ν†ZK–‹ύ·™(ήPŠ’*Ι`ΌF_AΉε_S[ˆ—B§giΗ°Π{K•_\ΘΚς*‰γƒέA"Ώp})€ΎIϊ+O95”Γ¬|f±³Ύ$Τ’<ΉYTl9Ÿ ΛœΟΦ#7o΄’7Ρ{υ’©ΥκΒ΅λΓΈ΅<]£/-°‘σbχxdχl`σΐg•g¬yθ™:gu+ΩςŒήŠάM›Δ #˜Α«Ϋ(Β…ό`[’–˜^ˆͺ‡'p™ ;Αξρ˜HŸ™ϊƒ—U7ΔώξδΑ­;5O‘MOIuΟΖ^B-›žί4NαCΆ'Οvέϊχc„ΝΣՎ'¨sσ Δ‘Q‹σE! ΰΑ­^₯ΐΌ€ͺΉh=ίxδ“₯ω„―UW„Y›Ό Β€πygΆΘ'‘€‹Πθ‚ίψύ!ς"cωŸ°<’Œ“pσR¨δEΤbεkŠψΕ1Smdη9_/mΎ7tŽμ tɏ.«V †>BΊ˜χδΤ–<€uΑ"ΙηΤ’t­4™™Λhl9ο7³”5B΄eύ”X„UEHΊψ|Σ£TΚMΞTŒ—Ζoφ‰†S ΩϋπH‘ηνΔ`.Ξεa§+[l³lα.%yr[έ­³VΞ’ˆσώ2R‰;W‘sX>Ϊzœπβΰ7žM;Q\θ1ŠPχσβΩΈψΓcυ/(2j 5[ƒMՏ“‘³'-³<΄‘»α8FFΞγψiΡjΪ;€£ο σΉΏΔ’!ζδ•l¦G ǼǝΞY\‡„δT%’8nΊ)‚¬ώ€?_τΕ(₯NΙ >ΏΠπRnΑsψŠtέ “κο2c(€L?b2έ΅(WμWzQχζψδŒφΪ+zτ[Ψ²vΞ;fΖλΟہ'Χwφίπϊ―δθΛοaμεŒ=‚±3½—rεΡu4,V<±Πυ•H{y›ΚρAΕ#ž\»7{#-_lV8EUΕvvΓή‡€ϊ€»ε,Nj,™›1@N*%ΔΧHΞΒ:²tξΤ׊ΟȐΓΠ`¨»μŽŸΕφRj+&ί58Œ//?Kοξφ‹ο σvοD):·¨Ίμ<ρk―auς>€“‘³ά›ͺš’ΝΨ]Cc•v§šρ»ώηΘP[Huέ£ψΏHϞcΎ›^?Vžχ¨ή·ΘƒrΣP]·{Ξ£Φ?‡β’·βιƒΉθ™ΑκT—rŸqŸΓ‘ΣG‚~ι"˜>Qœš©8M%$—£J^Ky’΄MJ-Ηc»ιyμ§Έ’β|'Η©1YΞgζ–"0Ÿιχ1ςώ‘"7{ NόžΪ]&ξUVΑE†Ξκ;‡U^‚ =+)IVΐGQχ“Ώ–œΫΌσHάDΞ0±#ή‚`ΉόbG/&6Πρmdδ\*ά)]k?Œγ}B ―επΜΈ!·Tly »R01ΛγώϊΎq^j²S`^ žp@ pp©ςΛ†½±MrDΪΡήDzK€˜_ΈΎΠwP_r‚'œšC¬|f΅}I°UyšIFψη3a‚σYzY!Φ­ς,ζt_ZMxMφ5αΘQΟ³ «mΝ}i ΉΗ£ Ο&|fy¬ƒ=f2²ι=K3$Ω©…εΚ(Z)’Ε-Δ%eΓ΅)OρώV*PƚΗcφ?­2rkGΓ—η0—­»«ΕHκΎΥy۞’Jg<ΌΔ:v<™X" Ψ‘§LΚβ:xΫ1η,žΧLΧ-λΰ˜<]νy‚:6Ώ ‘AXAYˆvœ—‚zp+ΛŒ—δŠKΥσMžΏΩm<Ή'odyς2ρ΅Ωσΐd=[Ό(ΒΙgΥ?#“π±Uγχ~ˆΐΘXNfI†ΐ 7/…HžaD-VΎ&hϋΰ\ΈCœ―—:_/άΉΗ%sΜ Πχ€›¬|„7ρρX·υΎΧNΝΞՍ°jEžΠmΓΏ{Χϋοά±sxˆ 1…^Ύb₯^ζ2»λ’2jŸ₯3P/Ω?_τz5.sN^πω9ΟK©9c_±ΗΐKœ#0žqn0žΏΑ‘δ4dΠ!•I±AE‘Xˆžί·d  b€C.lήZ­ο8~ΘΟΘY8Ψvμgd‚ζMN\ΒΛεƏd#gOίuηšQE†ΞΒ$1U@BJτ>¬« Ά ΩYΔ™°x°U>Hξμ›Όχ•kW|ΌΥlδΚ°΅’ξgbEσιχόϊμ§7ί’±r&rθ~ΠIˆeνΓ«―ξ­Ηθω·ρ‹wOQ»"€gHfΘcύθ#ƒθš—Λ”w|='ϋ­»ι4>P†}’xςt‘ε΄Ϊ€P5œU’–JΥςUϊmυŸ*FΞβαζχΠΨTE²™J 5-¬Ÿ$WΨXε]Ή©]ϊ Ωu+t>ލkΓΘY/γ–Š,α† \ΜΒ-aθ^'g™ΰ)˜>‘ˆŒ΅‚‘ό4ύɎen΄wΓ΅›Stέ<€ͺωzΘGyA%¨gπ™€σYΤς™κRϋO΅ΌwώΠ§(©,σ8€€η!—xτ#­Ξ ]Ϊγϊ’$Q‘/9Αώ3Χ+aε3λνμιKΦειΝΦdη³ε³l¬ΟΟ“q }νgM,(E}Ύ¬­§Φ—ΌO»LtŠ*‹Ωγюg‹ΎyŽ―ƒŽςkχόqΚ3Ϊ;ŽnœόωΟpΌIυcΓ.μ)ΊžηYl‘%\»«otŒ]ΐoφο―χ“τy¬DήβΒΓ%½δ”§d`/dζˆŒ˜εΩπ<ΥΓΨVYσšεΊe›§«=OP§ζ<2+*αoΗy‰”›τΰ6ΓKΒ .UΟ7«go`<Ή'o$yς²ρ΅Υ3"p};Ό8ΒΐͺF.Q³w”ίψύ!2#cιŸΧ<’Œ—pσR(δЍΕΚΧ:NύΠ?Ά”σ5ηλ…=ΉtŽ@pnΞLP%Ο“Δ¬υOΰΩεθΗκ€"lUŒo@ί#{hϊΤϋΝΰ]F|Ν[jΌQͺΗΎΔέͺg·ΚθΠpώ'8?Ω£54ν<ŽΧγψΪζ*O„΅•Ψ";]}njιBrΌ`)%€ ―ΐ#;Ÿ€`λ'D1ΏπEx&γƒdΩΨ©γ²lybΗΚƒu―γΗ]'ΙFks«(”ΝμΈ&ŠͺRq2«δθ}_0χIddΨGv‡‰‚=˜‰«>­ w7μ@Uυδζd!aEΟ&ΓrαρλςΈLΓη熝™<`w’T†0ξΙ©φΟƒŽ Š“gf~Nς’Qύΰιzfw³οΧΒ ƒ™š.&£Ψούωσ#ρϊυ5voόν5Q4ύκ,X…UŠ]~;ΪΎh X[>θΘυ7ζΖ¨―‘φψ ±'MO w 9υ • »Άf Ζε™X_Ί Γ51%?Š bτvΪ›Ί€«FΐžΪL ϊw™ΐ%”¦Ι τ[κΆή~ΈQ.ς@JfΥlƒ«8dΣFb~±ŸΒ`VR€Ύά½b$ζυ±XJέΟβ{…ObΉο›πε2ΟΣ½3žψ˜9Ή’"Ών@_›šχχ\‚:[Z?ζΑ* νς`Θ[a„ι»ρΒΆZΡIAπάSτόeq됡ZZ7ͺσdΙ]–Ώa LM“ Od“S―χ\t/~ΣC‚Ξ@©―ξ{―a‹ )­X!8DHΙΑqΚ]n9Ÿ‘ρ{τς™ίΊŽ]Η5?#ζ&τv  h³`ά?VΕ¦ΡvΨ―©Υ6=KώšI v~χΏ"νμ9t\νΔ`7zϊƒΙ<ΏΨΡΛ­"α©ΏΞυ$“DɩꓦRGΔε’₯°λΖΨMY—+› 6γ~Ίmά‘uZ»–ξEtΛ™™›FάΊ½x¦d οΪζ%R…ΒωϋσKxψEψ’ϋ+_WτRwΛ‡xσCA9Υ(Γυ%5R>*τ%ϋ<‘3sΏ"V>ckΗ/±Ισ›ΉΞgΛg Ε…Θ‘<„憑™Ύ€4Ma„žAi“W_ςύy§­޽q§<3Γ1X+2μx6°xΰΫ‘Gσ²ΉV<τ¬ ¨λŒg΄·Η οϊ9 ‡:OβΥ Η,΅wγ1ΕΘY”Lήβg·T`ψcΕ;9gΧSΣOp/YžΌ΅βωνD„+ς„1²¬ƒ<7;[kη5ΛuΛ>:6OWŠJΑ ΘΉω ŽKΈ=Ϋ9/χΰφ¬¦Y^β‘O̝ύΑρδ‘OθσF‘kT [½ΙM­άΨψZ–δΜ–wƒE`Χ?ÎK˜=yωύί"52–?«πH22&αζ%§εލΕΞΧ‚ρKΔLWΛ[ΞΧΊ,£η9Cκσ–ORή€#^t5’$ί₯ώfeoG–7`±2Α¬λΊ»Ηπ3ΛJΕHΟ€Τ’2GŽΰθΖΩŽΓ†sš #g½t£η}\ /ΤdΖgρˆ[™B[Αh) +eۍ™I€lά‡b‘ ₯+Ν‡Ρ0J™Μ (1ŸoαΖ€xXόΟΊ¦δ5™ζŒN‘sΕj ;ΝsOΘΝ ž₯”εB>‘υ`n–b44ΤOΕύ09Mΰ|9₯ 3KΞmεƒΡρ@ε‚q»ΗψZ¨u/PΥΗ¬_€LbεΑ^·δlτŒΚΘyψF>k<ͺ8>oz ‰s\Ώa6wŸΗΕ[S6£O$%"Auit΅υ9Kέ^#ΓNΙΠΩ+ΙΑqz;5Ξq>Σ`u|¦=νܜ ς₯$―#ŽζΰFΕΎ]«χYυ¬ϊ†³¨¬ΏZ‚’ͺ½τ'υ<5€ΛηOαγw‹š΅Zž:oŽ_μιεjy¦ςι΅d›±ΥSu겏SU*ŸΏΉ! ͺwn4΅Ό ΅yjΕ―aΧz—ΨoNζ&δ’‘³‘c†—¨'§τ,SΈp~Ρΐ~©ΐ³ίy €Σˆ©·ούΛ;Ήώ;\_ςΗ„~Ρ[Τwυϊ°ZfŽΟΤ½Ϊδ uWFyV>cmΗͺ/±Κ3šw°rΞg„"‡ΟRP_¨Œ­ΏCΗΛU9ͺΚΜΜ’S‘q’vΧε‘pz<†rΊ}³{6^£Φ#Rؐηΐ:˜χΠΣΛD‘CžΡ²$ςFo©Σ.W‘·Φ<}Ηι‘φvΡCgΑSΣ“Ψ<%…Άf<Ό$!LG" 0HΆΆ tšX;―Y[‘¦ŠΨ=]Ω=A›Ÿ™Θ ¦`π­vO-ίλ]ύσΦ38Sδyp^"$xδωt΄5Γσ<ς !hι!ΊζŽ™Ώ?°σ΅Ή‘˜«ΕΚ»‘‹|f\ψύΑ "šο},’υV~0s΅›Ή?ψυΓ#ΙH„™—lE”τ[E¨eγyΣσ 1š*α|ΝωšNζH’–"»¨#š:;y%ŽΐΒ!pλ<ή₯`c{Š·‘4]6?£αΜ ΰJo–₯—εγ©€ŒκFύυΉ…8‹δDŠλpJύΧ~‡₯¨ΡΕΙ™žHΠT>xσ†6Z΄X[?]yϊU#ΌτnΌMšς₯;K«ψ†ΖΘyΊΏmννpO‘edΨ—‡Ϊέ§cb,uΚ±*C2Α£(£,)άη‹iyfηη/ε<ƒΗ‹ΛψΖΙ ρ4 1μI…όά‰γXmϊτ‰Αό­nιKŸŒ# hΓ±Š§KμΧίέΫ±YHύg(zθcΘΜ'#έτΨXτ4§‘°h£ΤΙ$Ί/![γ[5±ϊŠ$-•φΧαΜ#CΎn L’ Ζ—–Ž"2`ΞΚ–`„φΉΘ.q‘(Ev<Εp―πlžŒ`U\uωΔoΡOΑ¬—I"}7B€η±nƍog6φ-―Ÿ Yvš†ϊΊ-.­T»fθ‹ξΓ WZ“α{Jŏd#3Ν…‹=zοyMκt(§Λ\;\υ’ΑŠω­9ηΖιν3`ŽσY@xρ|¦Ύϋ֌ξ=VΕͺ8ŽΥkBeGΟj}ψΟxΊφaβΰ\rT₯Υ™(ΩωuΈ2πϊ~ΠΨYΥJ?B½\O`eN9ΉLχœžΣ}r¦ΟριΞtΟd’γ$NFρ/Š-EŽ,…²"EŠ$HpI€Ψ vK.Y‡bumA{‡Α›@„Oޞ±}6 ξ—ζPΡ9Ə@š•,QΛ₯3-π…εω7ξ-Zά οe΄&qΜΩ§έ[<ϋΉσC.ΨEΌ[J:΄π²ξ0ΝEiΕάΟƒVΥsΔΝyνϊΊ₯«KPΖGJU=ŸΈ†'ζ–ZΖλ]άcƒ6Nζ%‚‚=ŸhηC؈CžgΟ'&­–‹¦LΑgλƒ8_ vΛ¦š ο:ρ0 ΌŒ1.Ό>˜Ο Ν#šq‹χ}+―ζI΄;rΈ>X«²'‘σ’G’ΖitδQK˜―ƒ’όΉ0φ:LœωΪ σ΅ hώ<έzvQ=š„π#―ŒŸΕΗ τG ™ςΣόi I_μJ«Η7Κυƒh™{]-O,ήƒκtU’ g›Ά—ŠτdRŽ“ƒτωiEqI}Agπή85τ>ΌΠ¨”ΝE~z‰Ÿ$o¬W”x΄Ÿ0ς’U‹aώ½;a΄—CϊPˆ¬R€—„֐dx“€κ…XΛ¨ΗΡδmX«EΧ±ŸαoZ*ΣC):T~΄ς¦ΉμΥΊ₯­›¦ώ€€CuΖ†‰FΓy(ΥΩω’S΅E©ŸΔ3#h8))rΊ ΞδΙ­ΊŸ^Z_ωU|ΞΰΥιΪΥ_γν Ηά,Jω~'τ<ŽRΙ[φH?Ζ$&GœHπ(MΚ»~\Ξ1ˆζζ+Ψ\"d Έb;y]ŒbI±X Mδι>υο,lΩͺxΣ€FϝρΞgζή§ΧC$ΏVύΙ’ΰBϊΗΤ€3% sΛϊ‘η}Vσό’ώΘ««Š‘]ΈεΥu(ΞKΛΆβ‘ΊΨΦXEοKؘOϋrgόR„¬©zWΘΰ±άziλΉΘΛ‘½πL ΞΒGoγŽΕtΧΌδaŸΎ―v9Μ/v¨θi^ψ₯{—ίΓΖBeo5Ρ„ωώΖΑΧ2xΏ€γοlΆχKφ=vΖ³Λg>ρ γύ’Oςμ “Κ|%ynψ¬΄΄XλVWΗ›ύ½–mŠ,]±‚ξRNS* ξ—΄η@–όY?ŒΉΕ㬏Θ"@έ IΙ.,A-­ΨΪZΰ Κ»οηΑA`h 7ΒC₯’‹GΉ‰ ,v{…y΄”tnαWΙβ\‰ρ<€ΝZaΫλVTšKΧY²u<>§žAD°™ K-‘~†©ΓΌDΐ°η“0g‡žμœηΩσ‰ŽΪΖΌπ΅_έβ]‡χŸˆ5.Ό>8πˆηϋV^’2‚συΑά{’Qπˆ5/ω$Ο±G-QΎ6Ÿ.ΆGŽοlk[™―™―ι£t’žD]{vQd⁛}Γ©Ψiπ~άΪΫdΘ‹οaΨχ΅eUZΦ΅φα?G―•²,ΟίiP˜žΔyσ”=§5=ͺΊ„OŽ ΏhΙ݈bEgS]θκ!er!¬œ™Ρ=Ό¦fηP;α•>:Β©²‡TKΩτdHΚ›R˜Ζp{0jόߍ<έIs7.•iΜ‘¨fMt%g©J`τ#ωtΝΜΞƒ4Κ~ϊ‹ΌΜC!)«jx£γQ½όΩυΓιωRVχ,}b]z΅§„‰F “’³ τj Ϋ_§ς€ΚBγsΕK©Ψ\σΆε«ήι'qως;ψ°ΝrΎΩŽ$Α—UcνΦ"΄·ͺ²…ŽΓλ/΄Υθ)νΝθyr€ΩΘ/ͺΐζ= ΅λλΚ%Ή©κ1¬—=l–άOUe¨IPΚrΛ4ƒ>ŠϋΥO­Ωψ0Ÿ…Ξ‘K>35žŠ 2άθ2aBΨJ‰G€0‰ΐ έωΜuςΏoϋ, ₯I 8φώOQ{»*%ήM!ic8ΗόβΣΎάΏάΒτTFI!ω]λ¦πΫωΘJUΏ@9SCΌ7χΖϋ`Η0¦ΊAξ:©Vp3d€cλΝY—€φ]ν³€ ξ[~Ι’λε›ΨV¦ξε[ρΑίύΚϋ0sε’_xΏGCrlφKΦ¨#ž ϋ>Gχ’|&ZΟ2Ηϋ%ŸδYΔΗυ!σYθτŸf+ΖΫcθΌ,ν₯†eΙΠΆύZ}ΏdzΆ§εΟzd.,g}Pα8Άlί„žγΐί±ΌDšŸ-£υ]Ύ­%&jρ¨Ζ―£6Zύ³E z(l)ιΖΒKϊλά’ΙΡδ‰ΞCΘȈC5Β3>= )8 [λΜR‹ ͺŠ ‹τΎΊς@γ»%¨³ρΙ½uγDžΓX¬-΅˜—’[p»δ%φ|ε\wƒ'{>‰fHv΄υ(€‚“―|­ΘpΌ>ΨυI€w]{δ:ήRYŸp±}―γ-aφ­Ό>؟ΪZͺ›υA«$GΨ“Œ‚‡OΌδ˜―}'μQΛ _›O›#χ6΅C“˜―™―ύyΞznΩ₯=YΨεp#Od.!‡ !^c‹°³ξlΜT”}nœFC{[Ζψ)©'KgI& r«Π0jή ”­έ‚2u‘}±a$Τ Ιω~‚Δ-Wd`₯eΟ΅ςsX§*0Ž‘Mήk₯ϊOŸNYl†ω,ΈnωΜάV*ٌΣο5θΙu;QrπΔF#Z5Eη%½aχϋ¬Ε`ΓΞp¬θ5δW]†9ζ˜_„φεfY‘3~ι#γΖο…V–SRQΏγίαaΩΞ"€SηΎ‹£ͺ†σ’rl.HΗ΅+ΗμΫ6γيG΄ϋ‡©ƒΚύƒY”+^’ͺbϋ,³Μψ>ΊωeΗ+4 ˜ ™ΈΥŒύϋ?ΠεE3·όΒϋ%ΉπΏ³Ί_ς‰'€ήΟ*ŸQϋB<(uLhΏδAž$3aσY€©’ψlΡT³\δzG³3"­Αδ―YM_κΤR`Ψ/izzn,b˜Ε#ν9Y‚FΗή‘ΎcyώΝƒc ½θC S"φ–ΡΊ.΄Ο-θθC΅όΰ₯Ή%τ¦Χly™—­>~ 3T-Ω₯₯€K /M EάX2Ÿη°‡#ŠαγŽ[ͺξΜR‹ 7’XQ4>Y‚:ŸΤU!Ο RΕΈ ΜKQ-Έ=πξ[Λ7'³K<Ω’7:ΦnΦ?ckŽχ=>ρ΅γυΑΨI%ξžw= 8ήRΗ|ΒΕfΈq’Δλ―ρνΛt‘°'™ >ρ’cΎφ$Ο£G-7|m:YBάά„ΦŽ‡ζkζλΰΓΦx8ΉŒ€ΛσŸΖWHiχZΟ)\ιΕΨ­,K)BiΑδiŠ>C8qιΔφ朢Υ«$UΆ`Έάφ)μTHƒΉΩ(«ϊ‡½;‚Š›RcMηO’z™Mp!Oλ)ςξxξΫΈ΅δCœ?9€τ:ϊϊcΟ‘TꇣЂ‘aTeK δΕΨχϋίFy©½‰$̟ύηφγ’I‰šŠΉ˜‡Β’½¨L_Š{ΏξέK"…q]Ή§,g_Z‹yταΦ8yo“ς|<_¬γ§ύchπ&ΟύψHARˆ—θ«QΌFžΦ•,’Λs €δμgρΔΚ$Σ°ζ=DσΦ{g(?ΓΩOŽc#]/2£eΧαΛ)G>ω.u’&y>JΚΧ£jΟn€^όMΡΩ—λO¬‹―`—€θl έ€v‹TƒΗ_%_žwε Σ‹΅š9•ϋπTξ ζΡυ—D,qρ£·Π’*υ¬~•Šœ‰sh$eΰ¨aδ*i1(*TKφ‘«#X―»ηEkύΗ`ο΅ΪΔΉΊ:R8§€τMψςŸύG;p—/\ΑLj62²ŠP²¦ ₯5k‘Jžo’³¦S˜W… yͺkΫΈœ ςŸ#‡ΜŒ¨_°z>/ηhnoΟΟGyΡΤθ{…ώ³Ί!“:6Wϋ ͺ4ڍ뀷™&Oy>>Wϋ2’ZŽ‘ύζbT¬ή-yW[γ(ϊ©φ7Ξ™Ο|δ3Λ\—Φ_$vωπ½ΓHίϊ%μωb½fsαŒn,!Υΰ%ρ}V9v~ωΫ¨JοΓ₯ΠΩήLkr}ύ$λ6ξĎέκ~°}axάΏHΩ—Kυ’[~‰PgΙ*€¦ͺωc²Q€z„ΕΨVώPΎWιΎγϊX?:LΡ^:ω₯(+(Σ”œΙ4ηΪjU΅ˆK^Ϋgi&r?σΛ†ώKP’’³΄7θGφžWρΌxœ§€ω˜ιmΔώ£ή/ΝΞ9<›ϋ%?x"ά;Γ³@IDAT¨ύδ³p2€τH<(ε ν—€ŠaB4yaͺΕk2σΝL>λ9IωΣέθlκq=…9•`Kg.œiFžeΏδφςp-άΎ‚?–™φmΗI*!«λΒTΨ#… bTtήŽΚ‡‹Γ’ΰΕR­…—±n,™όπ0ΰFžήOwσ ΧSb³ζαΓ?ΟΞ,΅h<,]έ[‚ϊ7>i&œzQf-ξ˜—"[p»η₯ϋίςΝzR³η²ΊŸ=ŸxΰkγΉβx}0VRβnyΧ•‡‘ύ'uΜ'\l†7Isw^»Ϋ/%ΞΎ•Χ‡H'·ϋυΦΨ{’‘Ρπ‰—σ΅°%ο¨ΆΑ…ΌcΗPM^Nεž₯W‘ώ˟m«Qωλ+Ÿ zvΝΒΆ'«΄:-whΞ{Γ(βh₯ΒGr³+Pž£iΏ˜ ¦Wt0ij`8¨θλσΕ£<Χγ£α ρRΚδ¨JΞ ŠΙΩΥx،¨v΄`Ό)a1rϋQˆ/‘š|怯Ŏ€?mxr$`:ΌώHW{ijO?ˆ–ίδΪ^Ψ†R½ ΪZΟΓΞ“§\duͺΆlSxΨP‰’™ΔεΊ‹Ÿa ŸΤ·mί€εu6³χ°lnŽŽΊ0p½“<§SœΒΐ5\U°―v\5(h“χϊφΑ`ωός_ώίόBPΙxYΆ=+ύŠ„‰n{βkΨ»ή’ψ­–-܁η^Ϋ‘Ρ:ӈ4ύ υ²ο½»_ςž .ΔC»^ΠyH―`™/ζ.xΧΨGρ9Έn/Ά6`mQ> δ.EyΩοΠ_ho§†Nΰπyƒb˜\Δε~BΣ…³§PΉAΩc­¨ΐΝτg9Ψsο\ΡΧ>oύ΄4Ο‡ΜgΚμψΐg!Χ{ *κΏ.™N‘sψμΝΓ¦$^ςΎΟΚEΕιo©/κΑdσ)Φ,DΤT·Ώϋr·"œ”ONΗr΅ά _Œ)LQΧƒT¬’{±UωjAλoπž¬!δžΜ=/ ν³¬έI„γϋ˜_–-W ¦$%g)”Τ‘Φ`‹L ώXΨƒύ†ή/Α0ν_CψӘ5•Ν¦/)ΉΉ/Άk |šwžίΆλœ|±­¨υΔφKaeF•Άf|f0ŸΙσŽΟ$υζΑΞVωkcQ'p!ιL› -F~εNωoCέv=‡φKQ―{½΄Ÿ±ΐβqTΔΤƒΎ<ηΑ±…žψysΛhΥε…KΟ-'Ξ‘gO•όeiΩόΑ7ξΰ£_½…‘¬]xβ©―-»maπ`))bαeμƒ K&_< Έ'nyj Ÿ-[k­ΗaZΜUΜΤΫψD<ƒXaˆηcζ₯ά‚Όt?[ΎΟeφ|ςΰx>‘f\Œ―£ς^ΨυήΈφ8eζΓ€Έ%ο,αbΚ\Gy}ΰυ!=cY.φ$#2KΌ–―Eδyπ¨%τΌΐΫ}€ε4‹ΫCζkζλΈ=9ΉcŒ!pηφ$¦θWu4l₯ΏΞ5Ώ‹ΛγΖΤŒ§T‘([U$Β…ΦΘk\„0=1ςŽ•¦Ύ8ΆιCkο4\κŠ/%‘—_§aύ#mN ΗeΉώγ?Ε_φαω½υ¨.3Ÿ“r‡'ΊΡΡyΝΤw‘λ/0#―rCΪ»,c³w1£ήΉe[€r’νΜςn\¨”μDΫι3ΖFΜρι[˜€•΅Ν™Ζ#Ίί™VŽσφ’ZkΏgί±*¨λ™γ]=}”P,'φt^!₯β`hΏΨ‰Ύ'7%Ί{Ρ;’d¨?Νϋρϊwcί3Oaσϊb5ΥτθmEΗΕ Ί7gʝ™₯UΕ6SρΠƒ±›Ύ“„έΓ“Ÿεyzύ‘ŽcΈΤ9›κλd#’žλz;ΎΜωYrΑσͺpg<θγuk=ύμψLκάΝ³xϋπψΊm¨ΜΆΉvhΏ|΅^iT‡’ΊέO(5‡½‹71]λv g‘ή\06„–ΦΟπλf‹Όε>tvvΚ•ζΝsώˆΒ$eΙΌπΨσŠe¦)Ηt Yfώλρύ0άώ™ς½l{εΏ`―t“=r?ψΞχ΄e―νJυ3 θσ‚ͺ%h˜%KΠ7ΞН›vγ•νυH …_φHρ3\΄lš\Λ“$ψ4E»―>[§χyπ”—>―YFλBbσŒΏό‘ΡŠŠΠ§ŽΎυ­/Θ–γC”ΧΦ|k+Tώ¨ΌΝν΄΅$¬νU>υoρR}uH9k‚Ή^9^όO}ΖZΚ|<Ωόώηί”¨Η”Ϊyθοπ#‹Τ†v|γΏβqΕΓ‡š¦ώΆΌxCσπδlύ^Q=|¨…,Ώ’‡ν?…΅ώw,ΟΓ9ψ]όδ½0/HόΏυœƒΓ8ψΧ»foδ7<ΏωεϋΆQ ½ΞŸχ:«χό^‘ΑЊ_}ηΏγ΄ρ₯ΐΪ}ψ7ͺη₯”νy/ωρŸύφR`Ϋ7ώ[xΟ'Φ$Ο'TWb‘λΘ—ω―G†ώ;Z”ς"|m%Gσ/'DXΔy—< lώj%Ι“Ϊ/ŽGQ2 Ξν?©žΈΘXΔρBη΅:žhη·ZNύυ°_J€}+―„ϋ°>Ξ/υ²ύ%Λθ7ΏσW¦—,B£<›μ9φ#ΌnρVκ·Όφςͺ°±$‹$χ`wΓ†{Ο k–8-5―²Ύμt)νΣ»4zwϊ‡Κ»ΣKϊψŁΔηΈŒg!ayZ9 RiοlόΦτ υ΅E6†ςԏT”δ―ƊδJŽ4nMί y-QεΕΎŸžι©2σΰ'ŸUmGNΖ2y}˜λΑιYڈ/PηfΡ5Έh‰άΗ»Sθ:y&μ;/'—Ϋ}ΉYBu—‘dE–,\(ߏImάΊ=‚ž“b΄PΫΆ•Ό}σ‹Ώόb{ZEKδύR4„"ηǜ'"wgφrΕφK³ΧŸψk™ωΜΜgίψs|r’ΕNm¦sόφ¬HYŒάά|χKaύ Ω΄αo`ρθΪ²Α“>ΰZž4£>Νƒ =/'’e΄*,&5 φhž €:ΐΕχώ oήύ7Ψ³Ηϊ―>œ£Οϋeμή-{|žΉ©φH(h)ιΑΒK’ͺ7–ίBTAΚ―cyζΑ"˜ ―[S]XžŠXΊ Y‚zŸ˜g& pΐΌdcΑν‘—ξWΛ7ωtfΟ'ϊU}ί{> U„―u”˜γυΑο xz'΄€zΎΰ’ΐ―?Ό>πϊ·ž±Ψ“Œ-mψΒKŽωZ„½yΤrΝמξl!ŽΫDζ띯γφΤδŽ1 }θ―€ϋ Β46NΚN' n°mΒΙq§ΓΰUžC1qS¬ύ$)6Η¨7±”£!ΡΉινόtΫΟXΛ#”ΜK')Π~ ./¦ϋλšΨŽ ͺtγ܁Γ‘σ±XoNΣίμ†,δδ ’Ÿ”§½Fƒ›,lZΏV==γaαZy0"c£-ΈθbφŽJ=Ο͍}?tj–Š0ŸωΛg]MG}uΎnΪEΧ”ώφ&τ»\ΏΒυ!ZΊΫ}y΄φ|ΟΏΩ…ϊ‹]xπφYΜ/ώς‹ΠΉΚϋ%!Ψ΄J1η MrŒ#bϋ₯wrNΕ1Ÿ™ω¬»©ΩΣ| χ\!ΧOδμ΅Ε|?7w Γ™K‹ΗΨx€pgΩΰέߝΈω₯e΄¨Ε#ΙZΌ"h-~wfύWθΖΕθ13Μ€έXJϊiA¦;“cιa@x"ŽΐŸLοΧ­X?ά[ΊŠY‚ΞΥψΔP™»ZΜKAμύδ%Ά|3[Ύ±η“Δυ|➯ηŽΛΔ$‹ξ?έyRλΫάΧβυ!8Ό>ψ{.ϊ‰'{’Ρη&Φ|ky‡¦έxͺzΠξ˜―™―u60ΗΨ£³>C@Μ£³˜,?kΕζωΉŸ=ζΆF€ˆ-ΛσS1Φ+4ΡσΓΜAFQΥf,[@>Ϋoφ£₯9–Šb:ηSυKB]αjk zϊϋqgIͺ·Υ£ΊLωfμΐ1ϊήλ1QlτiXά # #θό­n¦ωAΰ37xpYFΐ+ΡΟDΟwƒΟƒΐ/Ό_rsFpΩxG Ρω)Z½ΰoδ³Λ—:ε¦D=:wvλΟ›§|ζEιΨάytV: ύ܏ξ,Ό[ΰ»“§NEbΜΓάXF‹ZωΰVr†SβϋΏ"ρ―[ψ>s —g`~1χ@π ο—Μ“ΞG ί…ŸΎXπY\(:‡‡€s3E»Ώ€WŸ­ƒ­etIJ°0YFŸ=rZ†›ΡŽŽβΐχoλρΌE‡ΆΑ)Œ#ΰζ%+zήx)šY’η[ъ~μ ΟθνΗG ΎŽβcΈώ"ΐη΅Oo|–θό­V΄’{Γ3zϋ\‚xp`ΎΆΞ΅Ώόζ:ί:z>fP’’Θ§ζ_&„βΓ)Œ#ΐΊFeef £R°ͺΔ“θωΖ1ρl‡"06–Ž,δ—b©%»―υ>x§Ϋ-|ΘΔ9χ …γί8‡Ÿ»ΗάΧ0ΏάΧΣvpΌ_ g$ αφχ ΏΕϋύ_š5kώLδΌ ‚Ÿaz葇DͺΗM‚κGQš»ΈΩ‹3‡OαFάτŒ;b‡ΐŠ-¨Y³+² °jν<\»ΥΥλ‘“ΎL)N–Ρogϊ¦μͺί—i7{1ΨΧ‹αa>{οΛ ζAΕ=ΜK‘S$ΚKζoΝ“ψνoKŸ{ ε΄DΟEΚYŠ(žΞZR|ΕΗ

4&Η}| =‡]rwCΧΠrα2&γΎΗάAF€`b‹ΐΰ₯~ωy¦δ9T})νsTO’m6'tΎΣύRlQiΣ}-ΈΠπ >ϋΰW8{α,.]8 ΗΠψΙλ8pπ4ϊFγ§―άFΐ χΩρ― Έ #ΐΜΜ/³ƒk"΄Κϋ₯D˜%ξ£SψώΟR½±RSƒΟCΥK…ΣK~ΰWmάƒΥ9€${³Ÿίoκ'M<ΖZ‘‹΄”₯XœΆ -”,£Ύρ?qτƒ£δl€F``^ςtυζV²€Λyx₯φR@m=ΡσΥqπ―=|ΩγΒ©‰ŸΧώΜ_’σ΄ώϋƒ·Β0^`Ύφ‚ž^Wβ;£L4ώ‹—όξcϊ "ΔXΡ98œεDUtn?‡σ€°u•œΟ5di$½Θ•”›SςWΘΟ7»Žvhž=Α›Q±OίΐαAŒίq±6Έ#0—TΎΈαΎγ/#:½›Λ9`ٌΐύŠσΛύ:³ξΗΕϋ%χ˜qψCΐΈΏΰϋ?ϋωaEg{\<§²G ΟΖ΄Άτ‰)ά,Œ` ΐΌδ$E~y#€‡vφͺD"ηK›]αΰλ(<6œ“ΈπyνΟάρϊΰŽά #ΐ„G€ω:<6nr$ΎND†Nχι¬θμζlΰ²αHTEηpγαtF€`3κΛnΙ‰ƒQΙY-•θωκ8ψ—`ξ_€/nޏό₯ς―ΣϋΏϋw†ydŒΐά!ΐό2wΨ³dF€˜ΤύίΩγ;[ŠΞνΫ·/θ+Ϊ^nΨΤΞΞN9oήΌyaΛp#ΐ0Œ#ΐ0N”™―ΏͺU•›%Ο©Ei!Χ-θσmlaF€pŽ―Ξ±β’Œ#ΐΜ%‰Ά?·{y ΏΚΚJ9»΅½3R1Ξc""PΆΊXΞΏxρbΔrœΙ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ@’"pοή=ΉλΕΕΕBC§—œ΄f͚?i1ΘΥzθ!‘κ\‡`F€` «%ύύfgŸ6pŽ0Œ#ΐDDΐʟΌ>D„‹3F€˜3Ÿ£Η£!ΔωN`ΞNPβ2Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#Θ°GηDž=ξ;#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ$$μΡ9!§-ξ:͝γnJΈCŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΰ3³εΡyžΟύδζF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€πŒ+:{†`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Ώ`EgΏεφF€`F€`F€`F€`F€`F€`F€`F€`F€`F€`Fΐ3¬θμBn€`F€`F€`F€`F€`F€`F€`F€`F€`F€`F€`όF`Ύί r{Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΰ3Kа.#Ι‹"‰\˜άFWW†|clnγKΟl+Γdο1όβ~]ΖLŸβΛSr±Πa[Cγ}¦’ΡλNch<`ͺc> L L)czΊη{ZΜE Gήεγ¨=yα«―Τcε6νΗ/ή;j_ΞΟΤτ"δ,f¦»ρ³αψn+gΗ«ψ ΥΐΘ-½£ 30vρψΑΟ?ΠΣ|ŽΝέuδξz·v*2Sθd‘pλNΖnΪ— ¦Ί•—Š•ΩH[šŽΕσ“τPπΫ›l@Ηx$9œ7λ0/Ν:Δ³. ^y>oΎόΕz,MΊ‹ΐΕπΦϋ ώA‘Ύ_όΪ>d-&ΪβGoπ―νYoΙ-ŠvΘήΥΦ΅;΄οΌiί©φS||ΛΣJQ°"—Ξ™$άύν-Lόct€ Χ#Gͺ\ώυ^|‡4ζ Ϊ­ώΌAόω/ό9›<s°μŠσ™]kΡΣδ-ΙEIzV,Z‚ςώϊFG/£u4_ϋ³>Ηγζώ!:\BζkAΰD«e!;9–₯$cMιjjδnOΠΧqS’M*|͊Βr=F€`F€`F€`F€`F€`F`ΦHΕ¦‡ŸΒΖUeHΆΘΪQΎηZ>Β']m–-^&7΄tρ|ΜΚΛ„΄έxv{=v·υ±Ώ=8ΦεOγj£Τ ΰTΓ‹£‘ΕΦ­y[Λ«±ά’υΉςVόζΜOp~ԜαUžΉ5> ‹ΐβEX‘‹L*0Ώ_Rwžε°zΎυ­/Θς0p ?ψs…ώτμz€”ςοb€υN7Ξn§b$o½μOE nΝ%€`;Ka#·Χ»ύπKρΔΞW°N=-§šπζΑ7qέ¦°;y©ΨΎι%T¬ΜαxΉιŠίAυΟpΈρ[Y6β9Ιoβ‘—όcΌ΅—^…]νΖΖm›ˆ§‚‘ι_/Όu Ό1RΨ!8αω°•g9ƒφYι……ς΄tXZω| ©+U¨§€ν,b΄»ζŽ?5έΔ½ρnaώ6ΘFzJ62Rς±\ƒwGŽ~–=€±g’γ[ž±[Λ6a]f±9%ΎΟwΝ†I’8NΰυAΗ"V±X¬~π§ŠΗlςΌ*cŽ~EωL΄»nε•οEΥΚRrΆγΝΟcpΰŽ7Ό‹S‡Ό­¦¦δηχ‘u9ΕW˜―}…3lcyΫ±ο±νXS³WOΦ‹‹‹΅β6Ž £ω,Ξ4΅kiŽ"†ύό¬<›tΤ‰0…VfoΐΚ”£ΪψD'.˜½4„©*” ֎Ή±΄Σ,­hΗΡ湐·?Ί5΅UXjιΓ<,°€8;tΒσΞZšRIš!ΩςΠλkπἍΥz€ŽΫ5ͺέώzαέ%›±£ζσΘ²“9ΐX%gΡρ~ΟWΠΒ†₯X²@μϊΫ$g8Cΐ‡λΜ™ `©ψζ37#(ΛυΑΧyEž€Ρ―*’|&*ί½Ό*ΤT=‚‚³²kρτΞyxΣxίοe}°‘ετώΑ¦*'ω€―ΧuτΞ=¨|]΄n6“’³ΪΑ΄8%κ‘²tŸhΆ+a›fΔ3nWζΧc[Y- –Yo[€­τΉ† oββ,|šiΦ=R¦ΐ­₯WΛv·ς@6±sεΔSψ¨Ÿ–Sα₯ΨηΔΒbu.Ηg?jNάZ’yν’¨<Ρzζώ:±`η%ΡuE΄ž n3.qt4—ΌΔΌλο‰ΰ'ž³lρθΏ8O”_Dλϋδn|β–ΓBϋHQOj’υœLΣ\—aœλˆOωnxπ>φΨ`ž'ϋ:s ·GξψSoλιXc’ΈΫΰ8#ΐ0Œ@lXWΉΟ€δ|΅γ#4tΑνδM¨]χΚSƒΟΣ.Γωkοb(6έςMΚυΡfœΎ:Ž€{‘Mή½{ιe;°JΝ œΒiƒ§Ί΄₯ͺςχ$:Ίš ]Ν‘»£τIZ΅ΰoeεΧ JΞ“hiύ§š― {ν><^V,΄’εω©Έή£ΞVTžY:Εyδε«ΆPιR3ΞΎτ8Η;ϊ zW†σ-!VςΪpDu€”NX’soƒ°o(ΦΧ‘θυnνύ:β-9fo«γS£³’7? σ¨Ρ‘\τa`|7'΄8 %΅δ½3(wyv%6§Dƒ…Σ,]ΰΓDGΐ)/%ϊ8mϋ_Ž_ύTYΌΜΫušοxας‰#XD˜‰voΥNq-«υˆϊ'ğ’γςΐ»ΛWd”œ₯}’Ί₯θΝΠwŽζΞ /w/φ”œ§n΄β΅ θŸΐ"RΚM/ΗΖ’LŒŒΏxb–ΚGχρΞg³ v―ρΞσσ&Μg²€*Bς2Vj­Ί„kC]θΔ –‘pεΤ”{³b#ͺ‹Οΰz§βίΓϊ`žΣϋk=>Ύx ωZΏq u·``pΧ―^F\¬*­AŽς9·Μ²Tυχ’‰žF <γBΡΉlΝΛΨW^ΆοΛισΧ-ΐ­ƒ?CkΨR’Ί;‡Ωτ biηΕ²έ½ΌΉφ β`ώblaaμQL,Vηp|Ζ±r|ξpo‰ζ­―’ςDλY{έ‚Mœ—DΧΡzπ`ΑmΕ%Žη—˜wύ=|ΕsΟ Ώψ%:z’ό"Z/Ψ#Χγσ`9,²υ€&Z/ϊ<ΕA‰Y<ί£ΞΧλ6œ°9_Έ.%DΊ+άξO ΦyŠΎ―³Φpwμš?•ζΉ^¨'J Q\άΝ—fF€π%›PUR€5ΥΡς3Ό{EQ‚ΉΩˆ_7&aΕcΏƒ©ΔŠU(’C‰¦7zŸŸ}Ψ€$Tωsΰ“8έfTδ.’O…«J‡h=Ώ—ν1§¦lCu‰ςR“r.7ύ*/5‡z{π):'Λ5–"yQΕTuAyfι|d‡@z–¬"ΤrcυβjγφPύzχ;ŽpgβΨ]ύνΡ½;^Δi#‹ΔZžάΛΕ!fbX+ΖΧ‘πυnΔΚβπ„Δ3”.σQ0ΖxΏΉ ¨Όρcxγ½cζΆδ£6΄φ bўWP’Θ%{±@ x)0Μ‰ nΗΡvβZ& ±―>’'ΫΘ½tΚσ‘[™Εά‘3ψΰηgfQ€]Σ΄ξJΚδ΄ξͺ»»RRZΜΦ#Qώ ΧρhιxwμF Ž΅Ncz’‡ βZ²ζ+xΊΜͺ½qϋ…woΆ‘‘ΉMk΄$EwA~cΜzΝ‹‰Ž―°t Κ•½Υ(ν[ΝJΞZ(bw•σγ8.|^σΎ5¬ςϊ )/Μϊ`SνΞ­$lάσ*6o©Φο=&ϊΠΤπ­Ζϋ½²Ο{ΫΟ‹ίΕ;_‹ς'Fπq#πρ[Sϊ„9ŽEYΤv\ά?¨Uβ—ωšχσ–Υn?8σKΌe}Τ€Υ»ŠδWΝΝ—Ι{¨«Z}dMΘs›9Wt^Ώ²œn ‚alΰ~άπ‘Φχ±+o"9%;K -#‘"’–v’–νςέ3ˆ%†ί§HΜ,Vm;ξά²ΦΆ:'Ζ?’–h’#•'ZΟOGlxIt]­' OΘ‚Ϋ‚KB2ο&ΤtIυ΄ŽΩΜ·οHŸψΕΡĈς‹h=©S’γΆάGŠzR­ηhΒⴐΝuαwO=]·ž;ΓϋO„6σν˜ο7 &`Gϋ:KW‡’όΙυμ=QŠββjΈ0#ΐ0Œ€Ÿ,[’ͺ5Χ1Π‚1νθˆ3jν½@―2 zωŠ4¨*£SάZ’‹Βδ₯€Θ3Œλγα”=ŠP˜₯zȞDΫ5½ΝΝ›žTI$Ζ`HI–W‚Š,bςΤ–ΘH>§εekυ„‘IUZOσ!–Zυ<~χ΅§ ϊΊ6™‚ά²mx†ώԐq·ϋayϋ΄:…kΧΚu‡0…W7W£HU\V*¦f—‘vη.‘’s;)ςξώβΧQa)#]–ό2ιoς³„½mVH%e«ί}ş;¨Ÿj/m~IΩμ«όJmd.M/D)ύε&υ;zYωμv+"†Ξ4ΰ)Τι!y€Μ ž-z:)+η‘β·1βw›?4§P?Ώόϋ―‘<[OV•Ε3K6‘žώrsΏxΏA)ΰEžψ<轋Ή=―½^Gξz)~½krθYΠ Υ»όΊn~sιΚΆ=̞Α¨IyΒyš`C$»YA7σ”8ƒir•hyΙ/^2ΜΨγbI Ώ>X anνsPvzζ²\TΥ99ψι?ψΑσφσ4η^ξάνηEωL‡Ξ]lΆδ•£D{.ΰ’GNΦWχ.dΟqQζkήΟ;ίΟG>YJ›%άΎ£ΉκW“B~σ7­ ynγψύlHkΎ$δ’%»z0‰Ξή“!­NM‹XR„43g Β–v‚–ν"ςόπ βΦΗλ„Έ΅œroεΕͺ4Nχsn,kE‘ΜBύ+_Εͺeσq/ι:~σn΄4V„Η_ωΉŸyTζκ‘Ÿΰΰ™|Ε›ήޚΑβάδΛ^3†qξύwpuΡzμͺ―SτφαΤΫoΰ=n-œέϟ4Ks3±:―…-ΡΜέu|$*O΄ž©c-ΨΔyIt]­§ŒNΐ‚Ϋ„K0οz$Qή5r³‹\Φ1aΟJτΈΝ₯§*_ψΕα‰ς‹h=©[³3Ύ–Γ‚ϋΘHFτ€‘’h½MΞYσ Wθ«Θ Π>d,€vnυβ7πSƒ·CΫyα‹ΟnΒς’skθ4ήxs`NφŸry0vζxΏλp_g˜]ΧQQώδzφž(Eqq=q\`Fΐ'R±bΙ₯­y΅σP›‰e6 Ÿ>u`›ΙΕγeϊgΊ{;p~άܝK3΄Οx§­¬Η7θO cœo;ˆΖ>£ hΚΝ(EžŠΧT*ΩekΏͺ}ΆVmCϊ½1ϋ[’glΜπΕ–`ς=D₯clΐIΌ OŠΦΫ*hOt’«» #ƒCδ3™«kΘSsπέOρް·γ2>8£>γ¨Α“Οϊ9І§1‘\‚»ΥgΛφγ­άΉέ δά‡KΗΞ w` SYX‚вbͺθΔηm ͺ7©Šη}8τ‹ΐ&΄|t·—/Δν{w±8g#yΘ*₯υ5Ÿ$<¦0ož"'ι.» υ³°χε— JΞΓΤΟΣ"Ξ™k·’BQL¬Ψσ<ήMžΖd‡Χ^δι’έΝƒ^O8ζςΌφ|Ήι¨‡λ=(†ήlzFρ*?‰ gΎσI{±EνΓdΖYχΒ/j“ζί\¬[]‡šŠZEΡθΏJήΐošKΕσ’Ό€Ξv9žυ5TiŸ|ΊΘ{~[χζ/ΙDNq9ΚΙ£mΟ‹πΙ›ΎKœnŽ“hjξGrI56- f–ΤaKΝ‡ ϟΑ₯ ­(—=ζη’΄b3):7˜!Oš%•JZ3ZdoΞ–"ž#π|{Π3l²gZš΅«I–.ΆΦƒςάlmνλο*²ξϊ=³’s'yΆnλ‚€δ½­ΆJ›Ήώ)<ϋl~τŽyόΧ[£ι–δΡ™Vέ…i¨^\lΧfΉ%Χ‘6ςϋuώόYΰf}πΜΧ†zŠ πρ9…'χt⍏Μ€ξy^•ΈέΟ{Ύ?ŠgΎεONΫΨϊυ»Q¦vαΪu;#cU§λƒΛϋ£ˆΈŽ3_σ~ή―ύ|RƒfΔ)?yC}FξX…Ββ•J¦ώάfŽ§qϋŽϊŽ”5n,½/Β*ƒ%Ετ-©l"qK;1Λv1y~xqgιγ}έYN‰X@ω`±*b1§@γά²VΛAŒLΞǚΰΝsρŠ—Πίτ70Ύ.ΩπμΛΨ‘δc’ §»ˆdθΑšκΥΓ,9Υd¬?ώ–rsQϋΒ‹θ Ο"jή0D,œEζΔ ZšΗ›σzΆ,ь#1ΖEε‰Φ3ΘvaΑ&ΞK’λŠh=Γψ΄¨ n­pΒD˜wub“&Θ»ͺ0ΧΉήΦ1aΟJJέρ§ό’βδΰW”_Dλ‘Λaa‡ΑrXlAZOjakŠΦ Ϋΰάf0zεΑΫXI}dfkQUχ!ΊN†ήΔnΨΊ™”‚ ‡&NӞnεμ?ιe—¨‡9:Mέ{ζIΐύ‹}ψ•+ʟ\^Υj°λž(Eqњβ#ΐ0Œ@ΜΘΐβΕ*§/ ―‘(«x‘Ι ŸRXZΚΚ0¦.‘ρβِ1e>nΝ\žZŽ΅εH;}|άΥ₯e¦ηj_—½ΡƒnΚYžΏ*ϋΟ±ώ#8?SŒEΑΟhΞ›GΈ+ADžZΧφWΥ(ΆΝKΜΩ½ ’j)Πσά_ύε_ΰ4)rIαHη0Ύβι9˜ώNώρ?’σ C1ΰγε lΆ 14tΛΪΊzS½…φ—ώ#ž‘έRP\±žœTσ‹vΧjŸaΗΘ9όΛwώ κ &%±?~εIΕ‘†ήœKKSOŒaωώV”„Υ\ΪΗ―%εΉ%CzB˜Ψκ=h}\<…Γ6ngί©Φ―Τ IΡy›άΪpσ~ΌwΘ€‰UΖΪXWTŠ&5qωρ_βcUΙϋύδτOΘ¨€ΰ—‚΅uOΣ‚W…εΡS}‘y°vΫ—γ(η΅οΧQ„N{Ήή₯f7“’s₯βΊϋjλ~μ Ku‹Α©Q“—}―ς$™5^Γ¬ ϊ2ΫmΜONՌ9€ΌΑλ‡πώ…F)šPyΙ_^’&Ώhw=ͺ5%ηnyγψψ€™“$μ +fτsE—τ‚±žSŒΧ¦z_ώ%F^ω/xΌFRv¦/ΟŸσœ=ߌG‰₯K¨xmrήk€n:$a½ξ™ν|“Ζ΅A)ώό™η›ΠGΖP΄/@zV&Eg›u@νINŽκžΏτ&΅κEl©€Ίr°ΞΑ~œΈτ"}΅ΰIΩΐ¨xχT’’σE΅1ϊm?τOΊbuϊ^d“’³Ϊš‘˜υλ:r<’λŸΦc›H„υΑώ΄‘θ(Ι+ο.OΟΤΎ0‚ςψ*Vt|λ2s΅u`yz5jΥ=žADZf5žΨM{Ž?ΒeΩ†’qυλΌΦφ`ο[%x}ΠΟ†H±Θλƒ}Ν‘‹οα―Ιss0|€ώ±oγΉέUςaω¦Z‘’³q%vΛσπ°ŸχλώHyρ΅(jc±‰–Ύ„Ο)χϋRvo‡½!‘ΘϊΰφώΑ¦{q™Δ|ΝϋyΏφσΩU5X½X9ΟϋɐΧβœΐrdW•a₯RάψάfŽιΣ’‰™τΐ6₯Ο’{ΰω#PŠuκηβ({θ3œΊy–1Ού‘K;!Λv!y>yqcιγγΜΈ±œ’Δ:·€ςj±*b1 LtΛΪΠ:NSΞΎύCdfώ vHUΣ7aΟ7žFΛ•ΟXΥ| {v«-θ‘ρ/ώg₯§ΧD"ϊήf—ΒνΒm¨V>/%Ιn9ςΖ3kQ+©Eeε€θT‘ήεΑΒYjΫωόQa!KsIŠ!Δ⼞%K4Γ(ΜQQy’υ4ιn,ΨΌπ’θΊ"ZO qbΑ­—NΈσψ” ρ"Ξ½E—uLά³’†ŽώτΜ/šTQ~­G]ς}|Ρ-‡…φ‘aΡ‹ξIΝΎͺh=ϋΦβ)•yPt6Zpξά9Tο©–(©ͺNͺ/ΗΤ6«PΆ&¨δ Χ³†hO·oφŸήx0fζlΏλf_§Ξ­ΐ―(r=ؚ'JQ\L­ρ#ΐ0Œ@lhC`œƒ²›τό|εΚM΄E•ά2 φaΗκ½KSƒΥ7ΆuλΤΟtӳƎcθL.2–eRκ^ο&οyLέMBZ:9Ι *)KU*Λw ΥϊΉ+t ‘α€δ΅iž¨Q)wθΜQ]ΙY.>ˆ>ώλΦ>'+fζΪzu#OjVdδξxόΟέyνύ:rΣ]ρ띾ΜUρuΝΛϋhΟAΌΣTδΟ2XάΧΌ»Θές"/8"δ€t©,·τϊGx£ρˆ5Uμ8= 9TΣ ‘ι«]ŒD(%‹yΙo^*Βϊτ$ψΎ•Χ‡Π«Ο.%ϊϊZ‹ΌˆώΖ|Ώpφί bSUΠp2»…d0ΣeΈG2΅α€η₯ς’ϋy―χGρΜΧbόiBίtYπ4φ *¨ΛΣ8jcT-9°r»/Ή0uΞΝσ5σ΅ΰs†9έΟgo@Υ†bνLΏ~ας–‘~€(„Σ'ŒπΫ-’L)OTžh=I¦{ 6Ό$ΊˆΦ“iN,Έ ΕέEcl‘gξσΡ#1ήυj‘λfσβYIEΕ zαUžσ_Q~­'Ξ»ϊ˜άZ‹μ#uiζ˜OjζΑ#ΡzvmY˜-€¨‡ ²9Œ+ηχ’H~X†2ςzpϊ#]« κα έΨ‰Ψ«ΓS~c΅τƒ΅Ο²ΗMŽΟJz%Έαk©šϋ}A˜Λ¨θϊΐυμ=QŠββrΪΈ8#ΐ0Œ€Ο\¦Ο¨V”iŠΏyω[§;,Φ€Iκ6Χ] η(D€Ι¨Η¦υ=¨Xβq@IDATA§Ϊφ‡Σ)9Ϋ…λ]οβ}ωp[N*e/Eς"ϊšΌ³LΓ"υπΤ82ΦμΕ:©…ΛMϋΡ0L‘άh>Ÿo ΰΊτ1J%Έ—§ΦΤϋ•―ήι)~Ζ$εέΣπ=―M9SœίφŸbο6rΥ-ά½«”0φsζ«s­Ύ’¬α6Υ<tΊ ”Χξ‘?%s’—ΞΕ‡oοΉ—Π›/Β–ΊmΪαεγ΄Έ_ύN†zΘˆMPΡ°ΙJr?Bbl+Ή9―ύΈŽl;’(x½gΧ“7ρΑΦ&.Y”2‘ι°Ο `@β -ΚΣκK‘Ξ\|Ζ·15Ώ†]«‚JlΉkQHŠΞέ¦:./”>Ϊι.,τβ}ήx½ΜKα wΓKɘ§ΎΩ'…Η~«βq~πR`°?’Βϋ’%šΆά‹²^ο«―’λ‹ΦTΉΡQΉώꚡP·2}€ mΟ’aβ(Ω!žM]¦™©τ 3?+Έχ(,”ž•W„ΪτζiΖ½dˆCšΣ³€½…2›§ΖΓύΊ\μLΝψsΉ?Sœ­~π§`=σ.)‘'KoΒ₯@`΄0“!8Ύ΄T,7\R-ιJΞJΛΧFH©RQtV’Δx}0c—ϋV^Μ“hwδp}°V½1εKH_I1MޝEχσήοh­stŸ*ΘgV<ϋ'OϊΦSΆθŽVGNαƒΟލ°―v±/Ύp „Ή σ΅ζkў3Έέϊ³Ÿ_…Νυ»‘£ήˆ·ΰΤ' ¦~‡d ΄€Œ :ε,λsυv(΄^,R²wγεΝυςg’dq3CΈv#€yΙ+‘·li°TζيΌγΥR9γ1ΙΘχ`i'bΩ..ΟΟ Ξ-}L ‰XN‰Y@‰tQΊιTλ9·¨VkΘΏ,)L5έœω'μ/Z‰—vWQέ\*M%υGπΛπν©_S"Bˆ$IIιΗy₯€bε,5²Δ£…³§ωΔΣωy‹Ηwώ!*ugαqΣr&qϊΤ{X*μIFkΘEDΤςM΄ jΑ&ΜK’λŠh=τ£[pΫTr’s =K§˜w-€x8β]υa¨ΈΗ"g=ΆzˆΠΥϊ‘=+K9ηOq~QϋγφW”_Δκω1>w–Γ’wχžΝμQtζI-΄h½Π–,)Μƒ@Œ‡‰³l:{ ΫHΡYΊΫ«¨Ϊ€TRtΘCَRΝ»\3. ΅‘Ζdιj}v‰ούψΎΞ†’’όΙυμ=QŠβb˜Ž2Œ#ΐΜ 7Οβmr&ϊψΊΝ¨ΜVΥ‚¨+3}Έάέ‚y™΅(O•vV€μ4z67•šŠGIcUqΨ‚Ρž“8*=_Σ·§Ck₯- *ŒHV’K°NqΖΨ{υWψPρ½ŽΎΘ£$£Ζu³·θΠ΅[yZnbF†z£{œω’IΙy²·-­­L[ŒyτŠ-Ήυ»7PŸ›ΰ ―'i–Mαš‰Ώώϋ1<_Ώ₯e…ς}…VxY.*v|E9Λρϊίώ“rŸ‘εΚ‘ΤΊGΙΓ¨’Φ{'Oš ψzt·nΫ7xWυbŸν.Υσ<Έ7[₯}½Ž―χMΥ€’¦„y‹QΎι+¨š§?΄Tσ@…EεΨTχ¬Ώ7Œ†Ζp]Pž**άο™ ‡°2λ”IΔ”œ…\κ\χhΈΙ›ψιC±L½·ŽZ% wovΒ‘.mΤΦΌ`^"ΙΫπΝ"GQq^ΊsKZ@]„ή“δνς 䖐Nφ¬©Ίš²PVΎFidηό76qΞσθλ§΅„ϊ—•rR`ΞΛW­€."Ώ’εͺ"λ0»%S„rϊr2ϊΉtθ_Π;E˞ždŠIžžG:74¦–ΌΈž?oβœΧž%ώtήsIWΌ»Δ`C¦y#€γDΗGη˜všΝ΄βς•Ά¦&©οŒB²ά'πϊψϋV^’žχΞΧsS›SΆχE‹—Φ ―Φ\^φσοΜ£p$ΚgšŒ˜ε“Ό’πτΊjMΤθυ#x§ρ£°ΥZAK$άϊ |`iίρ!σ5σ5}Gτ9ƒλύ ηύ|.6~~§ζ™cψμΧ‡agfΌ’KΦ‘˜ξ};oPκhKΘs·‘Œm{Œoΐ %ηA"”OˆP+­[ϋ>MžKΛ)Q (±ήŠYΜeΉ΅€0Φ‰_|η/ΠPφχΨ¬>δ₯FŽύβ―pΡIcνC‘']™x³pφ:^πtt^§#Λ•’³μMLM.DΊz*ΰIΖΙτ˜ΛˆZΎ Φσ`Α&ΖK’λŠh=3ΊΑ#'άvυ€ΕάBΟ'ζ] ήέςΉΞzlταή³’Q†#ώυh`δ2.Ζ/δαKΘ“š šΖδΒrX©ηzi’§Έπ€fͺ.ZΟΤH˜ζΑ0ΐHΙ‰³ œ9‰Ά½υ¨– β +°~-pΈ™<ΆΕP( oΒΩ`ΤώYήκžπΌρ }ηνSγ~Ώλa_g?βh©’όΙυμ=QŠβmž8Ÿ`F &ŒŸΕΗ τG/R3ε§ωΣ'EŠ΄z|£LRr¦p£-s―Cμ‹ΰ+‹χ :]ω|<Ϋ|D°₯T€'“’€t’(†¨ #šƒ `jθ3|x‘Q)›‹ότ%>I^2―(ρh?aδE«ζ{ώ4άκ Eμ‚­b²ΉΖζ ΪΜ+‘λΨΟπƒ7- k鏑‚ *ri]Ι·£6J›QUιšΰ—τGšiX]UŒμΒ5(―Cqvpή—–mΕ#u°?D‰9 [ΆnT»Œs'Ϊ*-hΒDξέ £½RΎYτŽ‹^F[C’αΝ\8ε8΅N4y’σ Ά―ύšhž±΄άYŽ8»ŽrͺΆ£(UuE]šAΓIIρΠ„χ"zƟͺ7Dε’‚q˜—Cs;Σ‚σRΎΌ0 ›’oγŽWΕS{-8όNθωh*βλσ’οΌdt2”,ΰ‘›”wύΰ%g§Ι š›―`s‰dπ’βŠνδνr1Š%Εb) 4Ρ‚QώwΓσƒκοΚh-[Ά…»F–τžs€§:’P[[† κ{αBεε}5ΰΊάίiLΟHŸ|ΖэξOίΕ±Y΅πω:ςv΄υH¨iŸψΣρϊ΅“.x7%ΑoS£ŒΪι±ψ1ΎΫS˜΄ιwŠΑΑ˜MΆΛ$^θϋV^’œσnΦsS©τ՟"Jκ2'cςF7₯HΗIηCZΔƒηύΌπύ‘‹>ϋΑg$Ξ1_ϋ o}εWρ9Ι+¬]ύ5ήΎpL=tωk·>xΈp)]/Ξ|Ν|(ϋyϊργ[Qœ‘άΏOχΰΤΑΙ][΄‚b­PWΗ•η6†Η)ZΉ˜DΦUn>Ή75rj±šΈά|>SxHΝGnVΞwY—˜tULˆJΌRmŸ-νl-Ϋ½ΘK@Ο ,§ΌX@‰ΜΎg‹9z.ζλSi'ƒ¨Α2ΓσA©ΖŠ•d^έδδ)Γ LΣω9ΠΓ_CWΞ>Μί¬γ9ή‹–φΈώPdLΉwGΡ:*₯—+³ΰIΖ$K=΅|¬ηΙ‚M€—DΧΡz*¬¦_'ά¦ .ζΨByΧΕ\9*κ’wce‘k껀g%S}‚όβ επEψEnL€ή,/œεpψAλ9ΆϋH=[‰‰zR­ϋζA{\€Τ„ΪΆΰ"ν1«³i―I*ελw‘’σa¬Σ”$ΖΡqφdψ±Κ9³Ή$3a-Δ€%Y °ίυ΄―ΣπtεO[O”’ΈΈ˜2.Κ0Œ#nφ< §b§Αϋqko“!/}ρ]D9jΛ€ύa0\£ηl’NO–ηο4(LObŠΌ,ʁބ˜^†L]Β'Η?Π=9εnD±κΘ`ͺ ]=6^ω”¦Œ?aε Q<΅ξKxyοFΜ—•dΙσΑdήύξ?†Ό0·TsqΨ…ΑazΩ^(½lΟEαjΒ³έόl7/?ΗE{Ρ‹κΊΠέΈ|Τ’δLΥ‹jΦ„(9-θθCuž€ώ\Hž>Im Χόή'/[υž­ƒ4Dι―Ηή)κοΏbW₯Τn ι¬I–•ƒζͺΓzΙ³¨N’ρs…Ο™]ύ:5[Β1|]£Žpͺμ ΤR6½Rχ€01Œαφ`ΤψΏybσ`”¦Δ˜ ¨„~fvžό%Φ~›bΖ$ΏΞk§ΧQYέ³x|}†ή…‰F “’s„BΧϋbLOυaτ½ΚΈ«‹cΏ¬TΓy95„Α{σqoΌ/θJHžE†έaξ:©Zt3€”ic`W-~˜—f“—°¬k·‘εΈ™Cνζί^²k7ZZ{c3zžά„|*˜_TΝ{jλBΧ•K>JO\ςόΥnRt†d΄Sˆ΅u dώ›iΕΙsΙ²’snY-ζί šλLφu+Ξ‘Ί07ǍΣhho‹IfKHεΓ;P’>―šjΒΙKf]]n*Φ―ΓL1t„ΰ,Οݍ'kj΅βύWu…ιΡ€τœ&{hΔΉK?G«V² OWl‘ο€Co3:δ¨yZΫΑΘςε©ΘM7(hŽ$›―-εE{{I-΅&ψΒ½|ΛnT~Τ€±/o/ͺjΥ—ρ"­Gͺ“Œ₯’½ €/¦…ΝΨΊ­N;2FF††ι0¨8VΊώΰˆρΉκvT>\l,nŠη( άv ΈύC7΄vM•”ƒzςζ¬\5hiόΤ•‚]wΏμyHκujšͺ₯l'Έή} ΦEΆ ςν£ϊ²§ίkΠ“λv’\]Σ&0ͺκςι% ±θ<―vw~JυΌάIυνη© (ŸIB Α_Kε…εαΡ­/ :“6ξ²­jNœϋ>ŽKχ9α‚πϊΰαώ!\_β0ωšχσnχσ;^ω#Ωύμ§DŽwγμΏ\D»%g:+ΚVA}r#I…¨{llhθͺΑh…΅wφΨρά·qkΙ‡8rιu[ρΘcΟ‘ΤβXCmε>ξ >.-Ϋƒ?ψΖ|τ«·0’΅ O<υυ`ΥΒ¦ίrμός·Q•ή‡K'. ³½ύ½=δD'λ6ξĎέAΕ?RS#E5‹²όκ§Q‘>Ÿ8‡FRw¦gΘ΅D0,]ϋ³χ&ΠU\gΊθgΔ$1i–Π„„„@:F$° Gžˆ‡ΨΗ±ΣIϊuξΊ·³ΊσnΏ›·ϊ^έλfέw_Ώϋr“՝Nη9qF;6Ž‚cˆΑΒΒ! $4!!‘YMH€Θϋ«κTͺ:uΞ©ΪUg΄Λgמώ½Ώ]υΥ]ο=xωΕE¨ΏΪ‰»σΠ« ^>‰VR°ϋt-.οά!9YκΒ3ύ—8όΑ{¨!ΉŠ‡ŸΔξmr;iCΕ‹g`θ;ά‚<₯a€le|ϋί„>RBw₯ ί r±χλίFyc½…̟?ή ‡Ρ Qf§l±o”ƒχ‘ΎΡ4Ο5>XξwγšΔΨΨUˆ—?i'Mhy+rQQHŠώ…ΰρٍ‘^Œ’ ϊ»σ—!3)YŠ’3™ΌΰBλq­ΘrΖyIΎίγ₯σŸΖFβρΙ™ZŽηΏ» UŒK—ΫΙ#y…λαΪ΅ρ ΏWα%Ζk‘α*Ά ŠΞ꣓ƒΥκp)v>WFΎω§Ε&ζ*‰iΕ{±/} σˆ—bˆ=ŽΎ&Ω ƒ…燑Ÿ&9Ω²ˆt΄IχΧ‘«΄{ύέWεLh=vΚΛIᜒθyϋόί-ͺΔ•KW1ŸŠ$Ϊ₯:o ω₯kOžηo’’³’—αΒ† ΩqΡά‰K†Ηg’“2°Α΅ˆ•œΏέΉuvE£]&Βύ|WzJ+Ο#u9ί‡Ρ#ƒJ0π§ZŽΏ°ΡσΑ&οfημFqβάϋpο^ >IΚξB *°sIζΡ"ίνQΪ5€Ežg0φoΈ7H―Jςq•‰Ο•=‡˜¦j΄ήZŒ’ΥΫ°%Λ;wΎΦT£2ήσHτΕ‡ύΊ–'rηK3iήʟ>t·L~ε x–ΨϊΓχN"ρ/aΧ³•ŠeΧ₯:Q#xž}>oγύHξc4ς΅Ψ6ώ€]g|…vxςtn©ίτΉ—ϊ]#χXόw½ίtŸ@₯ΓζσAS±|τύAΞύΏœ―ω|ήΚ|~Γώο`§`€OKuβ$·oΛοߎ2Wfš4αξp;Ξ7(³d2ΊήˆΜL%Χd'Ϊλ» o£ižaFg#ι…}ˆ™“‘•ξBΝ°<α“$¬έ‚yq‘^V†† —{œm–“΅² Έ¦-νlXΆ3Ι“:μ„gΣ–>ŽaΜb9eέJn5‹U6‹9YVX]OcϏΘQΤy‡ΟΠiΚΑfΑ«½ οϊΪchϊι!ΫΝ²oαΜ>~¬ωuΝl‰¦νQyΦnτ»[΄QΒ«<¦rφ,Ψ¬σϋsΕΙη‘) nί‘™!1œw(Fή΅k‘kε9fΗB]ΖΘ42ρ‹,ΕϋkΪ˜ŠXηIS9–ώ1[ۘGz‘$ΟYf=©© Q΅œΆ–h?γ<θδ]ΌPΚβTε2δσNα₯wi;ZΞ©<#ΨΘ:t‚½MWVΡiΣ UΨ›AŠΦω½yͺƒA(=°‘$ήΘΛ)J^–κ‘γaŽG€#ΐˆIq4G’#+³Lόσmƒ—.ώ§g°ΘΒΦ‚r€x:'μtvΊƒΆ₯τwB‰€k*<Φ„jίΤy?ν@CΗe+k‹/Α£[εuQΐ‰f|T­*gKžΏN„2ΎοZ—žί%α”κΒφύ.CΚ· u*iZΖ«σ¨ΒΥ§kPBž‹E5ŸD*ŸώTόΙπρΣγ€\)៾~^€?σG:ŠΆ» ‹Œ7žΕIΥ·2!SΕΦMŠWΞφΪjλŽ=¨ΝW.V"s½€Τ”SZ‰œR―ψ¦Ψ!΄*ΚΣυ8ρΡ δ<»CR€ΘΨ„½―П7»o>ŠOΘ ¨αaAσ8>Yυ Φ?)aEΧOΕουΣt—ξ‘nνw<ƒ*|£"r1άοΎ-χΖΔ%bΉ|vӍ>ςΦεe/“?㱊x~•Ό³Ά,Gω•ΈΎfΖr=η%a(ε₯‘“8όV6ΎDJVβ3‘ Θ·νώ”‹F hΏͺ3ς’‰ηB°ηFoΥe΄μ―@Ύͺy-Νaδ™_Μ²: -žη½ͺ“iΐ¬D bπŒWΡ™η;Πw£ΘΞ•jν»ŽkμkmΧT ΪδΥΏ΅_Κ#ώΫ„w;$}γ‹’ΡT]0Z/*:Ϋ}>Θυi~ƒΎ?hrGω ηka€ψ|ήά|~ιrAŸG_©yΘΛΝ5ΌΖΗηkβ ΦδcιθoowΥdπœ{0*γ@).O―XKΔΊ²VοΕηοΕαYCή™Ÿ‰Βœ-(SY’υvœχn1η€τ°TΑdigΓ²ImEΰ”gΣ–>Ξ‘oΪrJΡ'°αΡΐ’Ε*‹ΕœsȘ­i3žv²XΠQu€”œ₯υΓ―BΪw_-Β“iaσω=ΧρΖϋuf+6ΜΗlαμΔψΆΘDdΘ―kK4}»Σ‘΄Τ»΄#₯γ¦αΒ'«<ΦrϊΆzΞƒX°±ρλs…΅œΤ6 n?ΈΜ€hΞ»v‰•w°Θ΅πc·PWαcš?ζΉ ~fΈlόbgΎΔΠΏ¬}lΜ#eά,yR“ Ρ/k9U3%ΘyΠΉ‘rŸ©Eύξ䍍κ•œwc=ͺυΒlˆdΪβΑ°zl°Ž\Τ4_ΛtΏAζuΊάΎ§~ψšέ£βεD4,}‡‹Ηp8Ž@xΈ{‡v9$‘Š/•ψήή³ΈΠxWFU‘31ΈΜ…œTYad—š―ΤΗδFhξ˜ 0ΡgκAsχ%Τ4TzΉξlyΥK_A…κΫƒ\EίYœ9€UŽΆ)O[ψUο΄$Ζί5˜ˆ© 0†έg~‹_άΑžΟ?LΫ){©ΪͺqΉ}>6U–‹_eϊΊnψJ ΅qw_JΉΤH2΅Ζ›ΏŠΑ_xΉΊΚkFυ‰F€οΨ‡\/}} ού¦»vι•Ωzp”“vμ•Η¦nΙ-š;ŒΎζz€Έ¬—'$Σ¦¦M՟ΰψCβ™ςOΖn”…Δ£ηΦ(IVU? °\E«°la–¨ΓΙΫw4Uυžώ%^Ζ» Αγ§ξh©ώή;pΨΨ›³'―iy6ΖAΧ,€xε_~rΟξڎ’<―§J!ŸΎBœ©λΪΑϋΘλνNNG€ϋΘςύ.Υhψorμ2EΡyxμ†#ό2zέ€4±Bζ@½θqtί¨Ηω«‡Ρ<ΓΉžσ’σΌΤ{ϊ7ψAžΪ]‰’ν½*^IchkΏΉ¨˜xΙ=%ΞEĊ”ouκj§½ΟΫ†(σ)΄Τν"οΖ2 FξΎ7NήΉJSΎ]ͺ₯iΓτ?鉱Ασ]=TIXQWϋUe—±Φ†vτμΩ$σtv£{Θ#Kώi<ŒWΏw{ί‡Νλ₯ςr’όλξnF[Γ%―7gJ˜:ΌΟg9―αοΘ-_¦ϋΘ‘ρL?T0υ|πδw„―υ—ŸΑσΑο¦#nδi[ΥMΓ`HŸ&ž΅Χα&±}έ6€‘WRν1€¦ζOρAc­6z†1]ΧrωΌUFBσ˟<θϊήΕ…£ηβ τ‘ƒ"ύσΦMοWG_UλΝ™ς3ρ<σ|žρύHμ™τO4ς΅ά<λόC»>˜=Π;Τ"fΆχ|0–gζύΑΈdtΖrΎζσy³σω‰qαƒ―ΉγŽzΎΏΩ«δ…žθ¨ΥY―«ͺΌoοή½΄Α†υ£½½],4Oο^ΪlU±°‘§$ΔΐgψχΣ‡a°μ€€ΉδŠ+v /WCgπΪχ~¬Όΐ˜+8Wrm/([ΪωΙ*XΪ½QwBJM؁·V"ΑO^%ZτHρ:t‹–εQ…yk^ΐc……JΥΎΑZόοθπMRΕδμψ ΌόDΉ7&x‚βΏυ­/ͺ¬u½β4!²œ:π½z'Tξ›TΞΰU_SL8Έψ;όΛΟϋΔ ΫΎϊΨιρΨ ΟΠτώχρ†β±AJM{ΰΟΌΥϊžs7mυΩ[²ͺ†νΘ ώ΅ΤΓt?2Œ£S°σƒmςΆKm'πγώ₯Ζ‚:mΫΛψ‹ύ²εpNώμ8~«\o ρΤώίΕ-šΤqOSœ‹q½qΤ’΅{ρη²…³qΓ€X²RώΥίHzωg?π Ηužςx’1„Dτ$σk4ψx‰πδŽέ„§yκΒ7ΟαυOŒ·-e•ΗZNέ,%œT‰―V쐇o^ ΆΎ£Yfζ%Φη k9κΠζςΏB…? n₯ΓΒΆ('πjΝ ά^Pu©ΊγδΌλ‹‰O #οΦ (…xϊ»Δ©ςάΞ§n)bΌρ=ό??yΧOͺ΅ηXρΎ¨xVς[!%h8^•Ρ :Α/Κ|NnƒŸy+Ώ°–šc΅Ω47{*ΰάLξ€nŽfs)zRΫόU”y” Ojo’d 6…<°1•“ϋ応œϊŽuρίΑ3ΚφΐΉwώ¨½w¨ΖΐΛ9!žRSYy°β«έΏg=‚gšσvP™ήW ±Q 1ρώ`…―U5{ƒAζuތRΘ,_ Ή­ς§,‹—bΒƒ±eώd”ƒρ.{β‘—Ή+,€OγφδM\οi lȊMΛ…σΊfž/Ν°y+>N>r\[‘–΄T|ήNtαœΩχ‹χλυiεύΘb“|²³σ™OU¦"Β&/BΟS DQ&ΞΧ`8Ι/³•―οέ»'‚•λΗ£³ϊ²^υΐ“Ψ”Ÿ,F 5‚?k„?½dΏώ“Τ†$|λ<ή9μ\WβTTςΎpεZ >Ό:s-Ρ,[ΪΩ΄l·,Φ)Ο V,}˜―'VΛ)f (mK­Z¬ZΆ˜sΘ²VΫjγ³ψς=^%gςqψ­’³Pͺ·κ5ΙΜΔnq8›Ά?‚γoφ+Φko$S·½6θ]^<ξͺ­ΈY,œYΗΟ<Γq][·D“pUώOt”)0<Φηw”Uk9]ΣΔΣ`lΜΌΔϊ\a-Gζ¬άFΈDeη]Εc‚†Λ‹™wλKμ[δ MΆςcσ¬δΖ :Β/&<6­cεΦr‚L«ύcΆΆ9„UOjB焃΅œT:ϊε<θ vC‡°QιZ)iμυJΞBŠjNΆω'‰eεΑ°zlPaγγΩLD5Έg%+|-V©ϋ'ΨΌN—]ψ£=ΤΫΪΛό)·Κ»Ό`θΑR†r8Ž@„θAgŸά7.bβGF[H9™]όΘ0mQ«έ!3`evε¬άρΔ€eτ£—”«άέjΕοlZο™{“ΜΙ)΄Ήυ )οčͺΗΉ*“JΡͺΚz[λΡkJΰVlπ(9Σ:.;©ͺ%tΤ“Afΰ Ϊ‘TΦλΣόϋ‘ύf²σ›μ°Ι‹Πσ •p—β|­EάY~α|½9%gςRŒΞϊF-άΊ³ΘytV5dyB!²–‘υύ<)ςφd?Y’Ρb₯*O¨‚αρHaΝΞΎe»5y e½H{a_«–S¬P¬ν“Λ±X`Θegν/ƒ…s€Ζ/c6K4OgXε±–³Ž‘=^b}°–³ήΏ™[‚σndΗ.œΉbO-ΤYPŠ~~±ΛKΦ<†±z–°?d½ΉU†σ sγ]όΔ·Ι£³K¬°η³Χρoosr£šζŸ# MžΝσ]£!1Ηϊ|ΰεŒΡeΕΕΈ6Λ˜;pΞsg¬CΩS6Ξ‘l‘ΉΊΓ³~n-šΓό>šΓƒ?‹»Ξ―λΠ ξLη`νrΌfŽGΐΞΧF¨°Εγ·™žFŊ’³Ίœφ§θμρ‘,gγΏŽΐ\@@° tΜυτ@Ψπ4ŽG€#`ΩΞ―v°αe9Ω€Δ9ΨόΘcΨΎλKψς_?γQr¦~7ŸΓΩ1>? t„ϊωH6Oγp8ŽG`n#CpΕcΘΉ ?’‘‘N4΅ubά =ΝΥψΓΏόWr6ΐ†Gq8‘C€σ’3Ψ JκCV‚pw ‹ΚΞ3=]έ7φE€ίGΎ˜π˜™ΏΓ™ΞΑΪο JΌŽGΐœ―ν η-;Ϋζοzώφφ4΄‘˜5kΦό=‹·[ΪηΎϋξc)5e²JF~ϊ ΰV7κNžΕΝ¨ioG t”}½ϊӟh;+ί+^ £5{ŠζlzθPη5s8sΩΞ―s}|y9ΐˆσΟ„bμώό^¬Fβ²Ežƒ¨½τ.–mŸ»σΟH?Oεp8””ˆ‘aΫ‚s€8ΑHL »ϊϋg–'έΨ”,ΔNa ο:š.]1T  Φwž>&{šp©ζc|zδ8ι<._:‡K΅Υ¨ύψU;~=Γαk —Δΰp8/9sάάF廝°Ž {rnω°QŒΞεο~31έθ{₯3Θ͎Zψ}4;Ζ‘χB‹Ώ΅x°žρη+rΌG€#`ΞΧf‘ œOΰka'–Ω2ΧΏθησΒ»‰pΔΗvtε5zΙs^ΡyΥΖ]XΆ”{pιδπu>—ŸM,Λ\΄ϋW*‹rίδΕΑ|.¦Λ8π_ŽG€#ΰ4³_Ζ‹ΧΗΰΜ>ΔωηΪ<$/ΝΔOχ:λqεςΚMΕ\†ϋωΠYέ>ϋ..ή#ŽG€#Έ’s@ž"fͺ’σ`λ\$EΩK\ΙyΖ]₯“£7qs°ΓτwstΖ5Ÿ7˜#ΐ˜…p^bTAQ@P&Ώο JΧO_+” fz:;2s―$Ώζή˜Ο…σλš}”g:k?;2Ό$G€# 8_³£*πέlšΏλω[ύQHθΜ~Ν–δ) aα‘³ώΛ½Κ’‡@.Β"ˆ¬d1›-H‚YΈλ-Lfωeΐ»Ηΰ„Ήf‘FhΉ(ŽG`† Ξ?§1ί‰?~pψΩ/qƒώ[xκ¬Ά`6 w:Ÿοΐ†7“#ΐˆ:Έ’sΤ ΙŒlΠLUtž‘`σFs8ŽG`–! +3 NŠΤJΞr7gzΊάώΛΰp8Φ˜ιό¬ύΦΠΰΉ9Ž@τ" πϊΖ3-]ίΏP):ί·wο^I…Z¦‰p{{»˜kήΌy&rσ,Ž@4" +7 τβs|GζZϊ©χΡ8LΌMŽΐ,@@ΰSΩBOθΞlγWΟ³ΰ"ε]ΰ„ ΩΖϊ‹Ρ?‘]²΅ϊω¦aζb8Žΐ¬C ΈΈXμSskϋ¬λοPψ(X+ khhŸP.‰#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ„{χξ‰rss™€ϊΣKŽY³fΝί³Τθv»ΕbχέwKq^†#ΐˆfšˆ^IΓιφλ-L’`ˆx8Y‚€ž_œζ―Pσc°ϊυύ›%ΓΖ»Αΰ„ΩΖΑψ1Rι\Ι9/―’#ΐ˜ΣpΞszψλ<χθμ”Ό"ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG Jΰ£t`x³8ŽG€#ΐΰp8ŽG€#ΐΰp8Ω‹χθ<{Η6œ=γΓ‰6—Εΰp8ŽG€#ΐΰp8ŽG€#ΐΰDPytž‰Ξp™ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG \Ρ9:<#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐˆ\Ρ9"°s‘ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@ Έ’s txG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ζGD*Κΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž€ybs°.)q‹"†\˜LO ’££ζk°œsγ3‹Η+ 0ή]·ώη«θ°\CπΛ—₯caπlbށΡMΞΰe'10κΦ”Ρž¦YL)ar²»š΄Yόœ-OΘG֊t,‰‰ΑτŸncrjΓCυΈqΛOPG'nΕ³_Ω‹”EΐΝΦγψυc‘–ήϊUύ£ώύbΆυ/ΌhF‰4φϋ­ ςbΣ‘—˜‹b±ΰΎ€ξυαα+h6ζ•ΰœδmΉžΟδ”•©°rΩ 4QήθX;τiΉOΞλ7ΙΛ‹Ι·οφ`$/Yζ³<όχՁΏpώtΟΩREΖ#ψς‹•XAύι―?Œ·ή;²ž)άq—ζ-·ŒωΕα‘ηAu;ΩωΜj;γ±2) K±x~ bDΎΎ…ώ΄ͺ[dv€ΟΒ7~νw*Šσ SHΞz¬π`ΖvίlλΦμΗ…%XKϊ\a3ώXχk\Φ%xN—'mΖ›°.9έ Γ^4\|u„B%ά@œ:*~R²Σ‘Lqσ{IΫ9œGb)Ά?˜O λΣjΒΉΖ~η₯G²ΞχfΞΧΘz±gU^^ξnΈVζ‘’³Ρ}ώyτχΕιšChS7ΘŸ Υ¬Μ¬DEA²–.QΧ*† #ŠšKΠLaO̝GzλνLᘨǁγpC:ΣόkΟ"χ<4άι“Hς ηOgGΣI</ŠTωΉ*ίPΞ47;³Ω+R‘Έ,IΛ2±\yl κΤ?£ΦΟĎτ°π §vψΜZ;γ±uΣ3(Z™ι3G›Rττήψ'kp ;ŸEbό쌽©²œMΑ4η2YαAzoLΜΞίE– o$3°ϋΎΙŠ€5τJαεΌX¨C¬Έ¨λΰaŽG zΙΪ€ξ±[φ±I ‡G }Λ¬XF;a!dEžΨV,υ}ζηζHΫφ2Ύ΄ΏΊν-°0 # oα΅7xγBR» –ΓJ>ΏνqΦ‚Ν)yJ=Aϊ'v+όΒΙf&‰9H#ηS“pEQBiY«²όžQv,ήοNŒ¦•yΒ]&λ=Β/kŽ―•zΜπ§‰vς,3 #>SέοΆ=ή„’—’κHZŒ›ρδdέσ‰Β &πUσk9bx–° ‚Υ5HJZΕ cӘtίΐΥ3u`φ9dΔ/aιK!‘δ%Μω’už‚0C²>3ͺ6xΉΰάlΎIž7κ3 Ž@ e "^pΑ<Gΐ"ιxhσ—°15ήΈά’t”¬σξύΗ―[υψi\₯6φŽrzW 9X™nZΙYzχ·=IKΜ(έΕ€·ˆπ _Ηφ¬Lε\ˆ+ΐη\O`ΰ“ƒ>J1Ω«χγ©"ZΏυ{,Aμ‚~SCš0IψxΘΏ!•§ͺ<§τATVncš¦†FΡ9‚ύSu•@€υώcm]ž ₯‘@`Jj{h¨xΒŸ¬y{ ‹όJ\žθΒΞςΈ}όu4ϋΝ%%΅= ~fGK"α±!8 χψωΦΩ=ξΫΩxˆz㾎+ŸUa½΅2|SQ³μTΛϊΎΙ*“‰I/G ΌΏ³βΒ:~ΌG€#’BΡَeŸ}˜ΌξBιεΐΊe4`ΗBΘΊ<–‹φΑr a±μS΅*\ς:ΪΟΰ£χہ{΄*›‡•εͺV„(Θhyjηϊdι ³<¦ώ…ίc &ΌŒΓdlΖΞ‡·‘΄Μύζ€σΐ执βΝ’’35΅ύΚeD`Σ …Π²Φ’…―qΓΕ»Ϋύnάjs±,σ;aΒ˟ζ0ΰΉBŒ@8ώϋέ‹FyΙ+$μ‘H[ŒυδΔθω„•—XΛ…}ΰΈ@rΦmΐfRrφ{,ΝFٞo"%~1^;po6}Ÿ/y=/κ± vΆω#OkΏΥτ |ζ§B3ε˜ηK$3<ο§Ϋ<:Aω,@YžΔ;±›ΰΚΛQΔΆ5½ŽCW=oΥβƒΪ¬xδ Hr¬X…œ`@§Τ«ŽΦΐπy|BΖΗμΟ¦q;χqœkQ+rηΠVο²2_š/ΖγJ΄±Λ*P’ηQR€”+υoβC’β@w$Eη8±ΔΔ-J’¬θœΟ―}PΩ½χϊqΌyώ„ͺξ4wΥΰ“‹*e%UjDƒ‰)’ •{(t^μG¦½_Wξέ sw©‚γκŸVyχn’½λ3t]ϋW†΅WUgίyά‰ω¨X)ρΟΌyͺucF>[Ώ²Λ=Mι«Β―jŽ*ΉzqΛ°Ν#OI0¬ΜݏG~›’D‘7₯L7G{uΉψl.<t(‰§œ?P‰κ8[Ο#ƒρ…"ΕΘΝ&2f˜ΔδXT5aٚπX‘dhΥ?>ΰ¬ΡZ˜y™ΟXΫ9Z7ή«6Έ&…yY?νzy>€/οa“ΟΒ:~r›#ωkp_8έ[χ­νΖπy€Bƒρ6ΝƒCu8ςf¦Ί™}ΒψΎΙΪiVδεŒίίYqa?^Ž#ΐ¦ŸK!k‘ ΛΎ΅ΙιŠ,£…&0[1Θ³cΉθ4\¦κ ·e_Έδ΅Φ ͺΥƒ@βnΈHΡ9έ μ™X-O™―OΖ¦²Κcκ_Έ=60bΒ‹9‰@!ž~ω›pιΌ©Ϋ’Aχp™π5N8qώΰ))-F»emΈx—ρ~gFΖy³GjhXω“^Π9f0ŸE;/1 R€-ΖMyrbτ|ΒΚK¬εΰηEB†ΐ(:.^@K[ z‡0?~ 6>°ω’ΐœŠ}ΨΩ|Υ™P€ασ%{£ω#OΨ뜢΄)>ΣΟΜ–c/Ešη ΊΜ£,!nE·z1<€-•#fΧοζM!Λ£œ2rγ3|£κ_lδ~ίt›V Z—]€xQι=(9€ψ·©’>’Ž“ ό}^yΩω[Pθ‘7Lε΄JΞή|^ΕhuωjtνŞν.,$…ΰι˜ωˆΉΥ†~ώ6τκ‡ΪRμgwoΗ`γ—±yK yš¦…c¬υ5Gπφ{ΎFiiνΈΏ¨™™YHIHΗΫ±Atυ\CϋΕψ¨ͺ^ͺGό7۞{kαυiqŠKIΛ,_^+hZJGΜB λτοπΡcχ|Š]ΘΙΛ₯c|¨=mΝΈtϊCœoυWή½=œ§°ύα2δgΛ+θ4O­;cΏzΧg)¨|ρΛX΅t>ξΕάEۍ“υϊvδ`η‹_D&ε™GyUύΗλ2ρψ7v!<ΩMߞΒβτγSχΔ€ y΄ζΈΣU"•lΓυΙTd­ΈlC7΅χ ŸΝ₯ηηOŸKΠb+ͺ9ΆΫŸΩ‰’Β5ήg΅B|6tu εό)TΧΙήBx­ήާwWΒU ΟEOσΤTˆv°Κƒb]·ZPΣΨ’T›·Μϋaκζˆ% s Ό<ΘΞgΜν ˆΜš£x3Π£YΌ€CŒ έ@ύΩχqρƒ·Ρ4€΄ Uνxφ»Eβ·Ή$€g,Θ„’3Ÿ/©q”ΓQ8_bε ΉK6Mσ™NŽωrŒσ₯σΌ»όΤj>³PŒgεD₯±’:€ Ό­― #iE„„’3Εƒij―ͺ½'ΛW$ΐ£Ύ‹α 7nΗ¦#;n ξήčQ·ŸFη ;Eφ=Ž–λή:7oΪγQd₯cYœ0Ή‘ςQœUθ‰νΑ₯z‘\3ηύ4Dσ±έ³£IξŠgΠ[#ΘjuB žxΫδOΖκqƒ”ΣV—#{νZe‡7―€$”μyΪ•Ζt”ν}mυ¨ι–sbχ7Ύ‚Š΅²β«/`’‹TGvf*~σs»γGυΞB~ρZi¬ς hΟ3ύOkΧ5λύ§o—ΩσPΙ+DžΒ#&ېΟ&qη¬ AJywτό•ƒU*y“·…ΌΊƒΎρν/ΩrκOGώxω *< 05„a6ŸΝ₯ηηΟρ§|YΣ³αΛιδ<“”gCL―JΡΩήσ(žŒfώμΕ}:ή^†τ‚mxΌ@n”_k_ž-1xω0Y” ήh&11‰φΞzTLΚ;τq!mΗ_ˆyΨώيυς*X;κOy>­ήgw—€₯`ψςQόΑ5«"“υžzn+m]HžU:O’ǝSJ’UΟ.BAΛZQΰκGπτ^ςh'd<ΠG˜“MΘ(/EόΒ ‘uξaƒώ˜χ°cwe`,σ`ξwΉ-ΎΏ‘™χψχC-°ΓΧ,όιΫ騏α|lˆόπ™A1«ž„*XxΙή<ˊGm'­ςKD-Ζ-xrφRfμωDŸK—τ™Uη¬εTUDUpΆρ‹»ξ]Όm΄>-’^‡σηλQT)©G$%gQ¬ί̞qςΓ/|ΎδΑΗΘ#a„ζKž°ρ„q]±¬|f₯γ|)’ΕΩλ:^#sƒ›χxΏΗ₯ΊŸαbΜnlΛΣ?γnhξ>&>››Ο#ΟςEdύ—‰?=bŠΪͺRrξΑεκ:tχM`α²$gη‘R`.ετ<_Δ2vžG₯Ψσ”JΙy¨5ŸΓX\6ο{ζοΗ Υ‘~Ε0†όΝ#ŒΚ‹ ;2ς™γνLΗ:2<*-*σ€½ΧHΰ–˜Γ|Κρ 6ΎaHη<Θ r.\Έ€’]’‰[ž«8sXW™ kδοΘƒΈL»`roζ‘φxπFσiΤί<:Σ xaJΦKσγ»AζπQ=o₯φ1½oκFΩτ)+ςrˆ•χwV\4΅ρŽG Zˆ°’3«e_΄Β©o›e΄P ›G 6yNX.Ϊ·XΥc§?·g‘ R|ώλ― P΄œ“κ”œ…#9o*ι/=ύίπΦϋςβ yŒ–hRslύkΜYž²]Ÿμ]sNžΉώn©ΣK‹ΊTO+–ο?κ5£e¦°θŸ+ήΫKα:υ.ͺZ},tmDηγΒ-Rt–ŽώΧΠd^€9³vRόΔVδzŠ ΤΥ ZρΚ²+Ι{O<₯₯άn ƒ5’rΘ{ ε–Ήn]π$±xv‘ŠZ·¬ YΘ£Α+ͺΕ>±*Α£Ay4¨π΄‰Ύ’uξa…&σvμπ ΨηAo]€‚iέC‹ΊΈO8σž€aXη> §'ψΣ¨ήΖq>3Ύ>σ-nΝΣƒTή:/٘gј[σ£ν£5~‰ ΕΈ%ONΪ>ϊœωρ|β“O„—ΤY5aΦršJ’δdΦςK`|cz—&oίœ™Rύσ Ÿ/IΰyΠ‹Βω O½:<XωΜb9ΆχΝςΌYόœΘ7GωΜ θxgHΒβΕŠ€p,¦₯ϊί‚’ϋ‘₯Ž˜%αμόJ―πtfβ2j|χΙJRmσοφςψBl++DΒşα£―s‹μΔtE9yψf—¨HΈϊΙA€½δY4yύ“xvWή:‡ηŸΪ₯xδn:ϊ>Α&Τ3ή\…·ώ«ο"γ[OJήBێγw(.c «Φ~QŒ‹OM£ά€θμz[ŠΣ=MΠcrŸ]~šΌŽξΛδξΨ†bRtns³ŸGςγžkΦϋOi Ε@(δeη?ƒΟyψAhN·ΰD'Θύn†Ο.vœGρS)PΗ%nΔSϋ²Ρ=0₯Ι9 gMΈΟαΘι#>žύ7“’s±°ΨLΗ΅ζΓ8ήdη{ Aϊ'†5eΨψlξ=8φKσΏμό™ OȈδgηΓ―ρk·"/v@Σ2ΦηQΎ2ΟnTέΠόώ{?Tžk'ΙΘδ?ηzn/Ό€'xΠ¨άςΔde‡ άtΣw £\lq‘ΰA>s’₯^Αφ”$ŒLίΑόΈxeή& ΧγήΏTλΡY> εψ±Ίs₯8ΪγΑΦΟhžMŠΞΒξ'ΙλΙ /ρ0Ξ Fqž#ΎtƒΗγ3Esτ«ΜΓ7΄Λƒ­'~ εS|βn€’’³<›•ϋͺύσV‘Ν,ο›ΪΎš?cεA^Ξψύσ#Ζsr8‘Dΐϋ%2"­`΄μ‹H[„2YFKr˜,„˜δ9dΉhΧb5(Όv,rS°ϋΉgTJΞdW}δΡ9yν(ςlW΄λμμ¬ρΌ4Ϋ‘ηνŒ%K4o1φέq0iyΚt}²χΚ9‹9“ύ ΤTη=6’mi,žVXξ?κ7“G‘:\ΎΤŒBρΓK:ς‹6“’sDZ+–=¨4’Iτζ¬Λbϋ΄%›d.=ΈxꈷΖΦ6ά Ωxϊ Ά$e%VSŠςθΝ₯„ ΣS•&½’w;ž]¬[ΦΊπθ“*%η±vœ­;&*+€4žΦ³Ξ ξΖή…]TΠ¬ίοͺΒ†A§η=Α<Β8hqμB±HΞgζ ΐg*°βιΑ:/y[gYχγ•%†¬πKΔ,Ζ-zruΡ{Θσ‰7—o(8/ω–bXΛΧΩΨΉΚ/9ΘΘπΖχΆ†όΒηK<FΣ|‰•'‚\J2+ŸY/Ητ~1žW C`ςY ε"8¦h{ΤMZo‚ŠΝ¬\Ή‰Ά¦’•4h]3k/Ά­ΞσΦ6яώaοιΜ m@ωΊB₯ωMmΥhSΞδ@:’–&ΣΙέθ$ο‡nLLΗ !‘€IJΚBΞβΒmh%EgΉ|ϊ ―†ς [XgΩ„GK=ž£I‘ϊΨ™£Xυΰw„’βqχξϊGΪ Α{Ζ8ύ-γi―@4·Γ΅›cˆOΎeYς8δ‘$(Κ4žμτ3%x9Sση!΄ghMκοͺ%βόΑ?’h“KRκJΝE6-Lux¦jήϋ&―ϊδά±sxΦΫΔη/4v °<ΖΫ›yσ%ΟΞκ:΄α¬ίXD΅?θ£δ,$6ϋ₯ ώληhFν‡5iUηκQFŠΞΒŸœ¦Ic?9…_Ώ›ΏyQRl.ΪσΌμZ€7)“Ώρ~aυ·Ζ&€xZη”Gΰ¦G9or c”*`Ίh‰TYΕF—r…uœ8색»ξmΤήοΒnQ™Ϋ…ΌrΠpZR·;~žVkΆϋΟZS‘NΛKΞz »ΧΉΌ²Iρψ”†7ƒ2Γg”mΈΧϊ{΅JV JF†pqzώΒ-Χw―’1‚ώXWτ’β~Έλ86Jχ)*C›£Š*ΞΚgx%¦@Έ‹ύ›:¨Ρv?θ€[₯@¦N΅ζόi3£lό9MŠͺΚ!“§AOΰΖS8§:Χ­<2T† M΅Η%g±Nβά³J±s½|_κ%IηVxΠ¨†$•RξπΨ Νlœ;"Βƒ |fΏ9HK$uRβΛεzψnΕ΅UͺXgω,”γΞƒͺqSgΘ$ΆY-Ώ²xΐ`„%p1‹γ`Φς”εϊ άΠΐ©NΙ3Ϋ?­ •Ης’-žΙΣ γύ§ο»Y"η/6βaϊπ"|ΠΘ]λBΪ{5πl2*V™³c½ΧΣςΕzνΒ•^(γωκ]*^ά gqR£Ι\Ϊ6΅ˆžž΅ν—ΟLŸ O@²,Ÿ_‹<(—gΉί岁~œχ˜ρ-ό“H€q>3‡z`>3ΓΌ§©ΌU^Ό\±Ξ³X<Βχ€_"e1nΥ““Ίζ=Ÿ¨KiΓfxI[B:c-gTW€γζ*Ώ¬ή΅›=[• JΝuώUR„1 Μ/|ΎψχHΘώžΰξΐgκRNπ„ΊΎ@aV>c)Η2_ŠΟΒΜι΄ΉΚgNγΘλγΨEΰζΔU!¬rƒ―UγιωihΖ„BlT”kA2nr7Ŝ3ϋŸυ*Ό^ͺ‡>Γ§ν’"§ΆW=¨93œνΠ*΅GCΞcψΒϊ2Ι“ί’LδdΖ£­ΛMΕsΈDΠŽτφ/ΔΓΫχ8NλAυ…7ΙΓ3)%&ΚΚΜ]θd»Θ ƒ'”νΑg5ΏΕι>‘N:ΊH1αή+Ψ™C 6t,\((άω½U―βΗm'IgS‹“‘°fΝΚ·„Ν˜‘λΈζ³ζT‡ΞΆŠ  °86…„τ+‚βWoEYωdge`ωbςfMŠήΒ4a~\Ίη*T²Ϊ ,ΖbE_ΊMŸΦY―oȍA½Rγπ‘+γ²’±υš}KΤύ‡sVβΡv:h6黀£ŠΗlίbu=hΈ•q1žΘ‘^ŒτQy鏂±±δΞΧsδμxί,xσ•‚ž„ωήk1n U¬:l#žζ―kΦϋOΥAKAgε žίχmππŠΠŽ›υ8Tu7‚΄ΙŸ₯ξΐs›+E₯^±Ί©\'―σβV"c©gΌ)ΟEC8xΩλέ~eΞxT6v!₯λκNxZ“γQΜNέΊ©ζΠLf> λσ(c7ΎωΧΟριιό3t―}οΗ/υr$γ/ηOFΰ Š1ρ§΄›ωΔΆoόw€œ=‡–«­θνnGG·χ™e Νbέ+IKxΆw5yεŠ:Ϋ“7”ΐŠΞζyPUϋ› 2LpφhmE€™ψΜ‰vŽ ·· θ±x‡vAY±’iτH˜GάΚ]Ψ_4†wTόι$Ÿ…lό8ΈϊgΞ<²ώόeT‡Oσ"ΧΔ“’³τ±ω₯2·4β²JZιxXζ‘Ξπ f θž· ayί΄€&++ςrΖοο¬Έh…Ÿp8QŒ€~™$όMf³TC­Jd΅Œδ°X±ΚsΖrΡΕͺUt­Xδn(–”u§ΌJΞ’Π~ωθ¬[ϋ€ΈX›œ™mθaՊ<‘Zϋ–hbγ,cwΜYž²\Ÿ–»’*ΰœƒa+Ÿ±•c›/…η9Ÿ…‡Ο ―HΙˆ,WΪjQ”—£(ώfdnA†Χa±8A=ςΊ»‚ZτŒ>’*±)K^gpγlΛaΏ}!%g£γFΗ!\ +ε₯%ˆ[$8ΈT °H֝šEšέX'd‘γJύaΤ R = ‰b ύs³7Fι7!Λ₯\ ­ι¨WΙΩ“χϊ)^yεβFΏ½έΑŒΚ0Ηέ β 5 ‰+IΛΆ^R«xζ;Ψ]A iΑŽιι`9L€ΗažόeŠΖ{υ Λ&jpχχTh\«4υΛpπϋ¨)ψ 6 kŽž£ϊ­’A> τΫ:€!κc²rqevΡςˆp­ΚGU²δXν―|AӚ‘Νρ³ƒ§ΉλšρώΣvΨΒ™sςοωϋ6lQΌ„N Ε‘O‘aDΓŸmΐ~•’s*|\{TQ ^·φlπYXŸG‹‚τ­ τ’ΟωΣφAr[εΟꚳΨT*ο2™„Β²]τη2ΦƒΛηOαΓwϋx? ƒdAYRv’΅σ½”j7p”94ͺƒ” γd#,7άγκΦ(Ώ•Έpσ #Ÿ±ΞΟ4PΈQΧpuͺΈϋ_ΑφU’ZVϊZd“’³ΜΫΞρYǏσ j4υΑ™3tםAΛξJ”†mΩEXOSν“τΝ:η NΉB<tŠυ£θ<ϊη­Rλ­Ώoκu 4VΎζε ίίy/žΖΰDy9)2ν`²μ‹LS­Ke·Œf³b—η„ε’]‹Uλψš/±TYΥ!έΒ–„Ίƒ” »Hο0^˜dšπ°ͺ+νχΤ–%šίZ'Ψs–§α΄`ϊλœ Ÿω½*yG Βά:wΘIηΞu›QœͺpžκΑ•Ξ&ΜK.CaΌΰ#Œ”E !"ά|kβγρ0i2-χξ:ƒS΄fΛrLή™τ-–°TRXž’€Έ<¬΄ΓιθΎφ|θρ½ŽvΰςD£χζ Ι[4Ή4V6?˜jΖ•«ΎλΛ cδw ©ΞhψΧ}kΒΠcτβXY‘œZyΟΣ/i”œΗ»ΡΤά χυ|)6Ηε’r‡Η°MφHl§“΄Pι7xεwo Ξ£Kuš—+Vϊc½™ϋξ&&•‹Θ_›ο¨.4ΰς‰ί£{‚ΰχ“]πτ<ΤξΉAΏγΙzωιΠh‡δεεοΗcλJqΓ€ˆ|‘G”s|Άx“bΘ2Aμ]Wχ•ΖγΘL)D±¨Έœ‰τ”\μθ ƒRαπσ£pΣ pΙΛ}KΌΨbSω Xo5΅GpΓŸ…σyDίμΝ8Ž₯²7KΉ―~c0}« 6†5rώ4„ΕF€Eώl|ς“ εψqΤ©χ|FΝ#›Π@sΕ’Tι›uαϊν€θ|λŠdγΒQ΄?γν›a(”σHe6A’ΓΔƒ3aήj8ΪHΓχMmσg¬<ΘΛΑπύσ#Ζsr8F ΣvO—Y-ϋ"Œ˜Yρ6,£–-„lΘsΚr‘έbΥ,¨lωΌήϋz0Πeμ5Γ ?κΦΩ΅DSΧe5Μ>ζ-O-_ŸV;‘ΛοŒ<σύS‹­Η΅$ αˆXς²YΘ:qYυ(t=•.Qα&gMmLzJτπ²Ίt-δO‚=€ mΜΖΑ'kΆ”W(±WNSš@}ΗΘΈb)h‘ZϊΈ”εΝ’‘ƒ<ϊΨΣ›‘( υu“B1m•jΗ³‹W€ΩΪ£χΫ—Ωr>«γ'—³σΛΚƒΜχ»©Ζ:8ο1εFjT$ωΣ,œΟ40ι=NE=ŸiZO'=ήθ‹›=gg9αΖΏ°Z›E@—Υ““¦kžO4E… Ό€)ΛZNS‰ŸΞ/`BΓ/₯xϊλ― Ÿζ4βΡY…wϊΆFο Ÿ/ωbBͺiaφH(΄ΑŸ©[k“'ΤUω ³ςk9O;¬Ο—ΒΜσœΟ4WLhψL#‚Ÿp’Ρσψ¨†ώHA5Y\͟Δΐ()Β$Tβ«‚’37ΫΠδΡy”"fήΏ+sw‘$ΡΣZΙ9ίXΕΨ‰x$ΖΙέ€4δQL–όTŽ~'>Ε‡—j=r‘™(ο6N^†―ϊΚΏ3qίX,S¦$G$*žΌS ~ υ~―Ηo ώ ³ιoγ‚Λj`³’lAω«_ΗktkZδ< ˆU*b9ά»KJ»Ž‘^ŒΧ«`ΰΗΰΉ5Pέ!J«όΪσ()gνy•‡γͺέδΨΕObrJαΪνDη'‡PmRkΣιρcοC€’NάT}šk+rβUηSC¨9γλœA°N χϋϊβ/γsyJ§_ϋο\ͺVΞΜρqΥ’εJ5Χ{λ ¨{02%°ŽΔσF9HY―” 7 E>?GFy„žjΒE}: Ÿ…νyΤ„“_½ΧCΰοœσ§?dΨβ™ψ³ρή₯? «]ΉHΝ^ƒΒ’rδ¦JΟχ%ΰΑςc8|¦?`£‚=¦E’ͺθΔ°¬«ͺ1δ&5Λ!/©`̍aΑc{#:y•Ο¨³π΅1dwpχžqŠλŸ1Œ_€ι’8κρžΞ°ydΣ§ΠEί¬…οΣ™…ΕX‹ά<Ο»J_=κλσ˜·γB¬σΘ„›gΔΌ5ΤbšŸχM]Ήσ5+ςrΑίϋucΙO9θB bŠΞΜ–}Ρ…ŸΦΘ!‡Γž -„μΘsΚrΡ?Q’r·ύ¬±z'q4ΥK4Za½ ‡,O ―Oλ­1]Β΄<†ώ…ΪcƒιNκ3FΒ’ΧΆ…,ϋύgΩ£HχtΆ=ŠtαE1u ΦΈθ#M} ΧxEϋέ=Ζ ηρε“'iOΑξ*œρ»Θ֎žžQςF@νKIE!)0gdͺ?e#³(…Iς–eƒθομiQšΈ^>,yv‘ EΰΧςψE ‚Hφϋέ\ƒ›χ˜σc¦U‘δO3ςΕ<œΟCυ|¦mΎ%7Ϊ’ζΟμΜ³Βε&Μγ̞œ‚ Πσ‰¦,+/±–ΣχΒωΕ?6BŠm~)Δγυ’²“ϊjρΖzΝG‘Fί>_#"Ο”ω’ΎυζyB_ψœ•ΟV²z΄3n†&ΦpΎfžη3͘ψœΨζ3ŸyG zΈEN”ΦΕγ!•χγζξzUš’i QV@ 8žγzλgΈhBΩGΞ―ώ]žωJazδW<θKˆζcΘΔe||ϊˆW±0}#rE―©”{’]€L?Θ[†οςr ½Κύξ})ρ<ΎόKxnχFΜ•€IYqΌ‡ώω—AηO†•™‰LŒG)ζvh”eIAr₯ δ,γdl%©A{4wβΚ)ί5³œ5A•œ§¦Όκ`ρ©iTΏI%Ε₯%Xϋ@šB°σšΨMώ)άσ±½8IͺiθjšaσΑ_:Ά?ύ—θϊޏΜφ6@kΘ1Β )΄f Š/΄6x?­ž0‡‘γ a“L_ΧNάΤ’‚ς'°s½g,„–Υb[υ­΄%/›KŸAE¦ ’$γΈrε >l17Β9>KŠ₯²Βς††υf ‚μ|$/]"θ >›€ί؜θΑ0)πέ%Nš”xyM™R&Πo>ξφ@(©9lπfυσˆPβό©ΉTμœΨηΟ~΄Φ 5¨~7¨όΪ? ίR–aιrΑZΖWAΠόσ¨ =}=(ΙκΛ¦οI9΄V’½3RUχ“ Lσ AωlR”•Ν†GϋpΓ >*:y•Ο¨wΆψZŽκ<}rd-ς©~ (²‹ΉmπΛψ©ZέA΃΍ΟΠ145μF¦0—L\‹ϋΣ”yuKύ‡ήXη‘Ξπ °fΔΌ5H‡όΎoκΚ…œ―Yω“— ώή―K~ΚΰDDc‘8lXφE’Ήve²XFϋ•iΒBˆEž–‹~ΫΪ„`Ή^ιΩHΙ’BϊH¨?bTwΒ<}’ξ<˜<Η,ΡΘ1¬iύŠ•QNœ:byjβϊ€ΆšΆ` Ϊ/sςΔj,φ/τ‚v.@†XςΪΆuζώ Š*©W±9oΕ%!·h+m#ΉΉ‚b±p…μ3»JJΉMώ›‚-lTς^8sΚp{P)-ͺτvΣΚ<}YΊΩ;ξGŠΰf¨gΫbPVV€$j{φBΟΧ΅±άΫΛj‘«4Λb`aίΤO ƒρŸb¦£νάοζψΜΉy90fΊ:ώ4#έ›‡σ™ £P΄σ™ΆΝV<ήhKš?³=ΟrΘ#LΐΛˆ6_RΰA Τσ%γ&›γ‰ΠςY(yΠΟ|Ι!ž7ΖΤ(–σ™*ή8{|F*€ήͺxˆ#…$Η> Ώ9x¨όqlLφ(Ώέ<‡šΦ–(l½ω&ίΏ yςόy’g.ϋ[Έ‰ΗΊάu˜κ­F›.ΐςτΨSZ¦ξ½VλU˜vΓMJΟ ’ηΣq\Έό&š•œ.KPέ–h·Ϊxίτ!†BΞΧ,ό)΄Œ—Sžšχ~έψρSŽG zPτ(ΓΫD–}αm¨3μXFλZ`ΚBȎ9†šqζBœ¨θœ^P†ω·₯ΆρžN4PΊπžΥ³‹Xάς?θ€Ε΅μl*™ŽlΟ£ΊšŒL™BsXα]u ¬ρ έϋέ,Ÿ95ο1λFˆq84όi,+ͺc9ŸωE>ΣT`ΑΣƒ¦œ…ΗζYδρΕͺGΣό’ώp(τΕS37_ΊνŒ''£10εω„•—XΛ54Jγf-Ώ€₯o ’@V.hΖ‘ϋ>Ξk<ϊ‹όΒηK~pTE‡gΎ€¨šβ‰PσYθxΠο|Ι!žΧΓ΅η³œΟŽτο’zή0ŽΐςΜΗπ)ν^ο:‹kCέ!kδ₯ΛrŸ΅ŠβΫ>»|pf{sNΨ†’UδEΡs\iω„6χw€’ΐυyδΉ \Zpέݍα XˆΜ”B”dζy <ΌζR­χ£*oΜKPΏ½SŸβζ‚\”Q2¦TΆαΌ·άp'n^U‚hž‰Ο•=‡˜¦j΄ήZŒ’ΥΫ°%ΛΫφkM5*εiobH΅K—œb%'9ς›_ωž%ο―Ύw‰| »ž­„ R)]—κ<λMtBί€# ۞ό6nΗ~ˆ‹gϊXώ|δIδ ϊΑŽΙ)₯š%kχΰε‘ώj'ξΞ_@ έw0xω$ZUsΖσŸΖΖmk!’—ZŽηΏ» UŒK—ΫIS:y…λαΪ΅ρ Ώ ’σf<μˆ:£ΤŽͺ€δά/"qψυCHϋξ bϋ“‹ŸΔσ{γχλ‚‘0½υΨq\(/'pΚF ΤΟύί’ϊΨI\ΉtSρ©HJΙAm]—_ΊρδΙψ&):‹Ÿ2œΏ€- hpDQŒχ_Ρb’ί/œ,ςhΧ‘_!π‘d|1ΡηF\κxteŒ¦%σξ›Foχ ΤQΊζ°Δg€ΈcΰλΉ¨($ΕτΒpζƒ7FzΙpd‚ζː™”‚¬E‰Lq‘υΈ‚š> Ιψ)-‹ΎηAηΖΔ}¦υ»w·Q’’3ΰn¬G΅ΖΈΠž<Φy€-ΜpaC†Ό%Ξά‰K¦7ιHNΚΐΧf –v²‘γΞ­λh¨'c’¨Ÿ·Ϊyί”ϊξχ_GωZΒΐŸbγx9ύ{ΏΙαpf~ι4΄·aΩΪ†9W;!«€kΪΣƒ !&yRw°\΄c±ΚΊ‹ά«­mΨ[–-ŠΙΩ°Εοœς.βR솇$eH1CŸΦa…§qVδyŠΠMK4ς ;.x 632‘C“ί^Υb°WŽ7dg‚[žΪΈ>½MCζ,؜“' ή?!W8=6ςfΑζiΕ‰ϋ %Ϊ ¨΅‘ΆZKJ8Ψ+{«‘°–†S¦ͺ™φ.Gέ»;°L%ys–?5Υ~T‘ΪέΪ)ζ>ζ$‹[£Ρ\ϋUτΦΗ‘}¬ΉKΣEεgAhχ E6«ER& ΌMj-BTyΊ»ΙΌ’TβΟΒ-;P|΄ή˟»αςp«ͺˆcA6ή%οM¦=$ΩΏί…Ξšγ3gζ=ζ=ΒD‚?ϊ0TΔω,ΘVωL[‹§u ΑyΙ›Ϋϊ<ΛGΣόΒjονœ2Η/=΄έ6ƒ''›žO䦚η%Ή„τΛZN[K4žΝ~~Ωφβ_JΫΔ ‹ς·qψ_ 5AήQδ‘²Κ/|Ύ$#η7€σ%‡xBh}HωŒκgβARY »GPC…)s‡ΟΌŸΌ£px“ζ<Iq’AuVf„?ίÍK€ΣƒΎ)3'&[ Κ‘βiπΔΐ§8έ!ψφsB€Γ/bbŒ •kΒG΅ojΌχ δ —QΈH¬<.Ύn-Ρ šhΖGΥΎεΞ·ŸEρΟ¬(ΒφΝτ§-‰ώγ8xUη`C—'δ§€Y |“…-CQεKβŸFφΠ|zΰ€U}Ί%΄Ζ#ͺ[%ΊPωΌπ§$› ΠZά•‹•Θ\/)mε”V"§Τ[΄)v­΄€C'qψ­l|‰”―Ε1₯­Ό·νώ”bΐ­>υιŸ:Q kϋο›n>&;Ώρ4 e%·Ά8Lί”ƒϊ{ψόΕώmbTα§QΩΩ…γδiάl΄ͺ³B5MxχχΏC7Ύ(*έai*žώ©†ζρ +ž¬χŸa—MD2Θ[Άi²’³GB\j ξχ#mΑh½NΡΩ"ŸQ½ Ν5X›“‰,QΖ|ώ|N |†“k|τ1q‰X.Ηέt£ΟΗσ}XψlN<|ξΟς₯dύ—‘?λ%CI^:ŠΆ» ŏ7žΕIΡΓ ΩΚσˆς~zά…g*₯ω@ϊϊ=x‘ώBu€§‘0MšΙψΘH,"%h)v’oΠΌ’³OErDxyΟ¬·3{}χx¬’9ςͺLΉΟϊ_i\£š+Ϋα³πŽŸΎ/a8η6ͺ#ΤαRμ|Œ6š[˜˜«$¦οΕΎτ)Μ£ϋ/†X’αθΫhς$―~ EΕ9cP«ώh£Τ  ]C'©ΦK:Δ”ΨƒŽ6ιcOgΧΣΘUΪ=JŠΞW•Β¬Ήb –΅ΗjΡ²£\ς\@ždžωΟίΖΙͺΟ0“ςGvI]”Φ9°Β»jΡ€ηεΐύ–©ς™σKaΒ͟jfF˜σ™ƒ|¦rӞ„r ΌΔ>Οrΐ#Œ/™o‘ V‹x˜ϊSC~ΡgRςδ΄‚έσ‰"Α/)₯Θž}ͺr3$8›ωeΓώο`§`ερ<‚ΆQ€ξzOy]­K£3Sέ΅8|Lυ!žΟ—Bs‡rΎδOψλ΅“|ζO†ˆΙ’8μA΅5 Σζ ŸE!φΌI»wΖ!8γ” ΛρΒooοY\h<„+£κΨ^ζBNͺ¬π3€KΝGΘkc€cr #4I•OυY§zΠά} 5 U†^;[ήDυWP‘ς’*WΡίw§k锣₯ԁλ‡p“ΨΎnΙ%δί45Š ”δ,τ«ή‰AŒΎkπ‚‘ΚΟ€Ήμΐ΅ηβ τ‘αRIΧ[€P§»­G_ΥkΘ.DΆΖ›ΏŠΑ_xΉ:EOŒ5£ϊD#wμ#Γ|ΰzϋ6‘¬κ¨ϊωO€ύϋΰ*Z…e “°D5N“·ο¨rJΑήΣΏΑϊ{πΤξJŸvŠ9Ζ:ΡΦ~έ[ΞννŸχέΠ›,Έˆ›ςœή½­2€Ug1Ž/ίƒmςϊapψ_ϊμΆΨ[υŽdfbχ–\ͺ5›Ά?‚γoφ+c0uKn %{†{Š<³Λ‡μcAΣΦΖΓxυ{7°χρ}ΨΌ>WΞͺωuw7£­α’δΝYHa?π΄r]³ήšΞλ‡5ΐ}d]^ ­ύš=Θ)M‹6³U>Jί:wN;ΧU 8U{―Š•§]ΉVƒ―ζΉ!Ι±ΛEη᱆<ΘΒgsβyΔω3ςόY[Ί”‡ΡΧ\΄’υΟ#ρBDSυ'8~ΰ|ΩώZy5ΌχC˜ώsμΪU‘xπ—*νΑΪΉ3iΗρ;ˆ†ΣURΝσ`:βHžMUΕ ƒύ#‚,?G΄ς  >³ΚΧσ§GΡMΖ+δ9€«qtί¨Ηω«‡Ρ¬›+³σ™Cγ§oj4stŒ†΅‘CΨ·Ϋ£“Bί’«Θ»±ώPΝΝ4œΚy$΅•§Ζ‡©΄ηϋΈΎ/ϊσ‘[ΎΡ>o΅ωΎ©ιvHωZ’d•?εφρrΖού2>ό—#ΐˆn¬~^r¬7μ–}Ž5!Δ1XFΫ²bGΨ±\ 1€«·b‘‹zœψθržέ!y\ΝΨ„½―ПNΒxσQ|B/­†‡yΜ–h‚OV}‚υ΄υ]²–κBΕ—’«ι.Yiu«Ό`()ζ–-Om]ŸζΪ€ΙeSžεώEΐcƒ¦Ώ3α„ΕΣ λύgΒj5Ψ¬·κ2ZφW _…mKσEŸJςκ,ΈΆθ³€Τdς.$ή‡βι Οx+ΆnRΪk«ΙχŠ™£}7ځμ\)sίu\σ(`_k»¦RΠξEO«Ϊ“›gA‹emjπή‘Υxιω]"ρΠφύ^’/ύ«ΖO°"Άδ Hݘ`aΫχ{0Ύιφζ==Β„›?}»ύ1œΟO¨.»Α|°κ@εlΝ—’„ηvށĹΔgΐΕ«ΰ„Ξφƒx΅ύ3d“„e‹γ°p^ ¦iΗ©ΑzάπρŠ„‘ΞΡ*Όρ^•yA·jqπγZ,_–Tš›ΔΖ,D i&Nί»±ρ΄ ( θj―934vΈ°:! ξvΈ…‘ΡN4φθrjOo\?Š7―ŸA^ζj¬X°§q{ς&χ4VΞφTΣ{ϊ5όύ…τθ>†ΧΎsL#’Φ΅iIKΙpŸ”­GΊpΞx=Ω]wΏ ΏΥεΫ‘KΉοβm^Ξμ]M½Ζ'¨zηGτgœjΫz οώλ1όqu)Φd₯Šν„0&ξ^ΪήZ·ΚFkEϊώiκμ>‚WΏsDΕzβ>σKόύ;ͺίόo 'ΰšΓ·΄žχ?Ώ-‚Fqžj†κpψητGΖΑσ2±H<ŠžšΒ`w:τΞO(™iόΐΣκuΝzΙWΏώ¨~]> ώkIήh5ρQuπJύε°Κgr=£ηρQΝyΤ$"kY"q½”p{²Ÿψ₯ΕΏΘU \?ˆ_°Γ*ŸΝ‰ηηΟ¨ΰOΪί'ίό>NE,μΜ–žBχΔ’XρΩ0=Ρ‡Ž3uώΏοh.|kΟ£†χΙθ³jl,’8wzj ½WO‘cˆ*=ψY`žiWΆO kΪiύ$ΊyΟ¬πu[+)¨ ½cs·"± ŠσdΝΫw†ΠΧΥdhθ!€³σ™3γ'΄!jΞƒŽρ Ρηx‚{ꍿ%Ξ͌ζŒFq© σH‘$ ž;παά£ήŽ‹κy«ο›rοCΚΧ²ϊ΅ΒŸͺbΌœ ζpf?{o]Εu¦‹~ &IH:š…&$$’Œ @ƒ#ƒ‰‰‡Ψρ€γ$vί$};w½ξ^ύϊ½~«οz½²ξ]+λήΎ·ονN―€;έΟ·39ާ;8Ψ† ƒ$Π„„„f4!ΒoWSuͺΞ©:§jW:ƒώb‰Ϊ΅Η{Χ·wΥωΏTΏ³9*ΉΛ>Gε΄Π˜iΛh‹B¦Ϋc}γ·\TcάbU]ΞΚ•‹ά‘S?ΖKσxβσJ‘Ψjgγ―πΞ뇴½9{³nΧ-P,€yfωΑΏάΖ³ϋχ ²TmΡ―εΓψ8pXžZœŸͺξ±`³ΤGΨ«ο;D•¨Ϊ6ylΠ<ͺcM{Za½αΊV«όZN’³y?ΚΟƒβΡƒΞsΝή°Ζiξ6fX΄ž Έ―σΤ9η½Κ?€Ήώ6œKαΉΠW@3ΤΫ/ό€V"¦υχ\ePυ]­=|d«ηs‘}^¦)Ο.¬<—e-+η>ύ Όrk|φATδϋΔG™ Λ=Λ°΅‘N4"ξΏα“–ρ σ―eƒ’,ήοŠφ槞'+ϋ³aηO% ±&>ΖΚ>γυτΐZηβ%ξ}–u0ΖχYμ₯9§§8ΥddΏ€* ΎζΙɊη±³Ό$‰Ζ[N*#ηxε—Ωζ>Ρΰ1wϋΆ/'ν—brΏd™'|3@ΠSzϋ%u.ω*ŸΙ™4AΛYΪ/ΩΔσ2G[ρY΄Ι³8DίppάňΛδSώσσΠg‡Ι‰4 ΘLntχσ¬jΊκ0θmaŠZ&κξ:}άη)ΨD9«Yέ]Νh”–θπ!ΐœœœ3ιθ$Rγη:tˆώ ]·V§ΫΣ’ΑHάδD;ZΉxΙHνZyΜςΩβ[ˆ?΅ζsqC]-rr]gœ{BΫΘΉ^‡§%§y—ΟLΛy«έμΟό±ψψΜσ`4ο[­>oςŽ‘iτ6Dε΄ηΕE»6Š%hA`ΙΑƒ?妧§G,Άt©qΥ@½vRm°TΦ«;T|ύ󍂒ΪψiΌόέšzιͺn_ΊΛ”§+)n±Ο ±—·^όŠq]κzΐΰͺ-: YŸŸζϊαt{ζ€[άΉ]F<­ψAδδύηΧtX.·<χŸρΈψyJ ΏρΌτΊΰkΐΑΓ„g;€rεc₯PΡ\/ϋ<#σͺ°χπGOΤ‰U_ώνία—GβσE Ψ)λpjίCό©D=x˜ψ °“ΟŠ z >*‘SyχYΦ<Β„–K™#5έΌ§8eω°‡9<Ÿ„]¦8k€ψΕ^~αš΄_β‚M.η‘οΝΣh]”oρ"‘ξ;?22S ¬έ²λrW³χηƒΈtό4&bJz–°†€€€αξ@ξ}kπ駟2ΟΞΎw€‹-½―±Η Tš  ρΏ‹f ©£„!`‘ΆW"ku¬θ<ΪΧ‚3‡^ΑΡσ7οό-ύ£}«ι©KB€°αύ‰pΈ\žχ‘f+ΧΣK&EgRt6;—(?!@,b„‡“υTΌΤ— ‰υt©FΟ7G028€±1ίFΛΖJΎ΄²¨]ΏiΩ…X»a3ξΫΆ55››Α~δAœxσ4ΞΖJ—HΞEŒΐΆoΤΗ- ό«ό±Υμ0/>3‹ ε'Μ @ό’ΦbΰΪ/ι?₯Δ6±ώ|J~3£CŠΞfΠ’ΌzΔͺ’s"{Έ0ΡαλhΏt3z€xB ΞΦΙ“sη{mβϋαZRv^ŒιVή;ΔΩτ ξ„@❃t’B€ΐ}ΟmAοGgπΑ~ŒΞ›0ζκΓ'Œ M½²’³π₯Ϊ_†wMϋVΊ B€ˆ,€θ&όΙ#E˜€₯j B ξ^NΕ«“Έ0›:΄$-yrNΖͺτ4¬π«s°£G_ύ[œΌLJΞ~ΠΠe”"RΧ˜ΘB=J'‰΅( ~YΓ¬ΫIΪ/ιBC 1Œ=©ΥxΠ±ͺθ<ΦuΟ6β)9σ <•ŠIͺžή,Ύ?”P€Ο^ ΚΒu‚²³΄_lι19˜$4!@8Š@Όσ'½ut:Qc„@L" μixM»HοŸcr‘Π„!@Δ €θ¦$a–ͺ%ΈB@ϊ‘;^-Lγj°lξΜά`;.5}ˆη/ΗεKηp‰ύΐyφΓ—pδθ9 7kmFœͺ '#—‡δ%…Ν΅π’%žψ,ΤΓ9{¨nB 8Δ/Αρ‰χTΪ/Εϋ/ΎώΕΣώHΛCψ’’3jTƁXUtφο]‹α‹vJ%f©Ο’²Fξ}keΊ„ B€ΠC ήω“ήΏκ<Ε„€„€?O,φύc€ϋ/  B€ œE \ŠΞK<ψ)OWzzzΔbK—.ε)NeB€ bΑίUœπς^ϊρ[ππΛι'χοcd$HLB€° xα/=ώ΅ 'ͺ‡ Μ#-ό"(eHŸΩ–<ˆ½±*ŸyD¨!@Δτό§=bUUUbBGWvŠ% PΎDΜΥΪΪj 7e!B€ B€ B€ B€ B φΈwοž(tII —πzzΙ λΧ―On·[,ΆdΙžβT† B F ό(“  #i ςp·oΚHΆ#ξϋΫhύZJΞBg–ΧσPg;`T!!@Dτό§=$δΡYŠ5‡yt6‡ε&B€ B€ B€ B€ ΨC€<:Ηޘ‘Δ„!@„!@„!@„!@„!γGηΐ(Ÿ<:GΙ@„!@„!@„!@„!@„!6ΒεΡyiΨ$¦Š B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B€ΰD€9£b„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„!>HΡ9|ΨRΝ„!@„!@„!@„!@„!@„!@„!@„!@„!@„!@„!ΐ‰):sGΕB€ B€ B€ B€ B€ B€ B€ B€ B€ B€ B |, _ΥT3!@„!@„!@„!@„!@„!@Ψ‚@b16fζ#iε $0& σcθνmΑ¨-•kW²ε™ΏΔγυε˜hΔ/ΧKθΥΞf)65%+ Φ0:5¨ΚΊμF§άͺ2κ †i‘S–077ˆ‹ύνκ,:W©ιe(LΛCrB>½Ήω)LŒ·ΰΖ-mάέ/ΰ‹OΥγ·}u­ΘΔdλ/ρςk‡}qaΙσξ.›_·τη—œOWžPσS· f‚]νΙυ„θŸ(//%ζ‘4#i+±|Iΐ‰+θ˜ΠΗS³Σϋd#w0?Χ χxu'ΎτlγψΈ[γw›μ.cžύκAd―¦»Žβ•׏ΨWw8kŠΐ}»&g3Φ€€±„ΘSΣ=Έ2¬ή H]–ΉKŠrφίO(³ς¬οfδTΆEα8C@‹ΟχϋMvΏΤΚύN^ŠŠ‘ΰί—[ί…¬Ά±γφέALjξη]X“™ƒτδ ¬Z–€qr £#Mθž–ΐ2/ρőXΗΘΖΊκυΘΜLΓͺΒ Ά€9χ \=έ ξΏ8֟ …“—ό;ϋ%σ<]Ξ$#|¦U΅Ήr<ϋ%u«ζΪS—₯+ηŸ%g"u9pχΞfgΌ=I^lγg‡[qς“Vέ.’’³.4”@„!@„!@„!@„!@„!@DΆήχ(Ά¬-G’Ÿ(»+ΐ…φχρao§_Š=—+W­+J^΅ aω1!}/žΨΥ€tƒβv\ώ uyϊšZψΎΎy[ˆ’nœiϊ{œΜΆqύSΨYQƒTΏ€ΟTtΰχΝ?ΕΕ Ώοejζvμ,ߊYy’υβkψ 7*αΝιEeΤbΟύeL|γ'pmD/§=ρ΅·’)ΕΊd¨ΕΎ›(ͺΐ©#mΌ**¨GQZ2Rr™R€T¦œθ9FqβδχqVcXŸR FΟVΪγιΨHππRiΙT―)eJΞZχΟg12|§šήF·ΡŽS>ηȨƞ‡φbKύV6 ³γ~—Π '/ImDθΜ»/·Gά2<όΐσؘζ­mΆ―}7δΚ]Ψ΅υT)x³T~C7>Ζρ³‡eXŠ%^βΫgΙ"S 2δοΒΑ‡va}νy€δΰc}8σΡ!ΌσΎIγ)Ϊ/!ϊχKœ<‘œ Ά„Cρ™^#ΖΛρμ—[5ή^`YŠqpρ3bάΏΏNx«LvΰΨΫbL''!•‡ρKo2-θ GXήMi/d’ӏNx€πο΄Λ†ΠV^‘-ώΝ΄'ΚJ–aώCfοuώCψΚσ φΚ#-‡πΛwNΪ[ΏVmΡjα₯%«qΡβαΓΣ%η,’dή0βqƒ ΗΕ»Άρ„sΈΨ8΅β―*β₯ΨΣhεy²δΥ™[z&ΰυ΄Β[NΡcSλ‘mλŠB ZG€ΦλFΊ­υAα <Ι„ ωZΕl{x·Έ·$–b_C¨ιT•Έ»k?‹l­δy7&5”œ…¬Vζ§VS‘βΈΫγκ//U£Άϊ~ιLvΞ6<φΐRΌq)FIN Ώϋ܍ΪmΥπW=] >ή«ίΉέ£δΜδοΉr9,_ ΰ‡&A6πYΞ<χΫzΜ±υΜ[‘t6[ΏSΌ 8ί–―+*u!IeΚ©ϋκ–γφџ£Γ›ΛΚ~B¨‚g}η‘S·S”ΰ,Nς™ χ»œ0ς’―ΗCΌϋr»έYχˆOΙ™U:;; ΙΑ€ΨFβzκ)9{…Θ]s?lΏƒk:*‹ΕΟKΌϋ,Ήi Dβ›±)9λ«‹°ν‘o!Ϋ΅ /Ώ~\7›ν—|ϋ&lB];Ά_βδ‰Pς›MΙg:-Η³_jh{Ze)ΞΒΕgεeλερ8-‰‘σ]  Ύ`ψDqͺ½&œθςv#ƒyfŠΞZ~νμhjZ–BΙY˜ΌcΑ[7u??Ν;?yeηm§άΌ”ΉFvΖ=2zΧG{185‚y¬FњΝΨVXκι~ΪΤ”4γFO„=£σF\–«ΐΣ/| Υ~ήΤ-u5ŸέΓۊΌU΄αό[82#°ϋ:|r+ΩΒ2έΕα­ΪL[4†$¬I\7>ή΅—'Š‹Ζ8PT’—‚HΫINz ˆ €Βθaΐ†yλΤz$ …sž x=­π–c=δZμ]W$œιl#6άgf€1²o5S_Lεur}°u\ΓΘσ@ηψΪΣIΣνq{ˆΰηyΎη‡βbkΪΦϋ:4x‹š―CΓC9{H܊κbΉΞξφŸγν«^e«[gρ»³ H{θsΘr€­Eq:0κ§Τ+ŽΦΐΔy|Δώ΄ΝxJЁ[)€Ξΰ\§R‘»™)’RΒ0:.ΒνJΤ±)υ¨)υ*S²”+-―α=―2εθ@?ξgŠΞIb‰d$­Μd!IΡΉ ŸέpΏόΉκ‘λGρΪωcŠΊ;ΡΡί„.*”`©N'|Ώvά»;φζnOμΠͺ΅φ°τsςf;S²›Γάt?S|oGΚϊ/γ± BόΘΜ¨Žqηόδξ{¦ϋg…—ξέDO'θΏφ1LHχ–§Σ}Γηq'α?‘~ηΎ^Ί”ΟC07„T042­L‘σ“chŸ)ΒΑ†`ξƒWΉeΧH~υϋOAo%^KSΗ›qψ΅ζ06 Uu6\Βoγ#ς꣕KˆsŒwΎo7­©@ͺ·Σ“Γ'π“¦χe&―ΎŽ€”\μφς„œ Έχ|λ;·œ*‘ι"bDŸe°ϋΰfχ»α#"ΌdX:σΉχεζ›*±¦δ)<,<Μ³TρyΓ“λζԐ:ϋT#^}§Q'^ ϋ¬άφx=Dπς<ησόT$XΤ| D2ΖεΕ•π:}bZgpLRr–:zkΣ@ξj)"ΎΞΫ·>€B―ΐδOπΡ ’‰ΉH—ϊ}Σ­£lͺΘο n,ͺ”½σN••œφΓέΦ¦Θ,|¨Ϊγ%K|ε‹Κv ΒΫή+§Vrφεσ)F+γ˜ΰκƒxdO5V0δ…„eHΈΥίύΫπS£P2u•έΟ} λ3VβkcUv΅\Ί ξΛψΚAƒΓs$¬ϊOύ œφχ–[=Ο}›ͺjΕϊκfsΛΕΞ£έgqρΔ;8ή¬Μo­½άκ=Έ―² …ΘNΟC²4–ΣcθΌ†ž‹ΗπΑ‰IdΫΞ\γp«Mm>/έ₯)’"ΰ怎rηόδφLφΟ/M4αƒ ΖS·gΉ!ˆΆ‚[ω*6WU£8_0˜π3γ}μξΐ₯Sοα|—ά1s υΥβΡ?܏ΜΔΜtGΣhφμή†²’[ηρ΄·‹)Ζ2ϊŽγw|^‘«ϊΤΥΦ D5=hδ(~σΎ/ŸRϊЇΎŠνe.,(5Υ^SΏg8‘eέCxϊ`3Nςα?ΨΡ‚¦γνΘ―«…kEΖY‡4κΈ{{Ε΅ObΟƒ‘ΖΟοJύ4ΝƒŽή·μkΈ«% gΠ3pZ[>ΟΞ™η‰`ϋ Ύυ=Zϋέν—‚ήu|<΄Je"/Ÿ™(Η·_R ΙΒ&Ϊσ+—Δg‘ψl=ŠΚE7 lG{d¦{Ω’ a‘ιԍgΤΒΛ1Λo/ N·'6됇εœqΒ"Ι΄Η & οΪΘNΰ’ k Ό€!u|DEƒ§'‘Œˆ‡(΄δuΪ3―§ήrlN™^l\Wœœqί­‘βhX4Ζ?$ αωRρgpš―yΫγυΑΙσ\Οό£@%  qΏFΫ{#έ <„!Υ‰.9Sχp»ϊΚrJœ˜σΩcc?Ξ^=¦κhjZ:Όκ!˜˜uγvbŠ’’qχφnLΉUy}Ε(Κ–^ͺ@©|νyζcχΣ_}ΥECωdLΞ(BϋΛKœdŠΞoϋLί¬θΊB”UmπάΫ₯επ¨ΜψͺcΘβΪGρBZΎχύŸΙ ΝΙP"ή{«Q}ςΧ8Ρ₯,γ WToAI©GAϋStφ½8τOE•Ωk‡’Š3zQυΔ.”x367‘‘)N{ŽXΓΈRXύ²owŠΑRNρ\Μ0eωζ½uΑ›Tίό*κ7H ³ΎΙ%ΨςΘ‹(*ΘΑΟώ-PΡ;»d Κ6Ž{Ι’£Œδͺ~πβ£πψ"—ΪJA^y=g‘Ικ8€QGήΆgρΒ6)—tΦ?+Ό+Υ˜ΨΊΩ}ίΞαΞ]Ιΰˆ)έρ_Ο‹±VΑs·…Ό!Ž ϋ ήυ= r†θFD’‰Ο ΑΟgΕσΆ}ϋG3εώκ†―!77?ϋW;xΙΒ>‹ωWώδE”iμΡδ5,aHWΡΩΏπξΛύδΈfΏMΓ’ζ17#0"/…oŸ(FDcβ–_‚£šΈΒχφnξφνΰ™Yͺ>ΏΠ~Ι^Œμ—xx"δμπfΰε3SεxχKŠN˜jOQ.‚Δg0Βg[ΧΛN¦u‘Γ›―k{΄•]χττψbϋ%“ϊ’ ΕΏΕ#·e§>O{vX†™΅Π³4ΙΈ-£·3kυEkυ™Ύ#xγcΰΡΗB{ $½΄uw σμΌσΎη…­%‹Ηu{πτfΑ]^δνξ;. ©qTόŠ>ό–’κ:u,ΌΔLvX2™ρ0`­=Kγ ΕΤ•₯yν”E’IοΪΑ"ψNαbj€mΘLΌ€ϋbCn0^RηβΝς<Ÿ,^Ο'Ž{&ΰυ΄Β[NΈaMGΆ­+BΫΡ|Πϊ@λƒίόŒ¨g,?Y„Kς$£ΕiΎO{A[S†BoΉΙρa$•}__[Α<ˆϊŽ‰Ρ 8έϊ&ψΙ)ηP|QΘw²­›œΙJ νοŝΤΈso«r·0Ο’e½ΑΆΣ蟘Ε₯^s ιV4–Ο=£PrΓεΖse³6μD₯Wa³r—±―yδ-[iΟΧτΜpzϋz1>2ΚόΕ&1ΕΐZφ>έ£œX²ϋ)θΎ‚Γ>ιμ«1DΘκ8(·ΑΖuΖ›k~†=X²mν…μ_ψxiΣ¦½(—nz¦ttύ†Άy0"ŸV'_xΥω>Iz™wςΞΎQ,KΜBnI*˜Ηί;*wΑ<χ«nέ3κΓέ}-mCH*­Α– ήί₯Jλ°£φ=ο}ΤŒΛ—:P!zRΞCYεv¦θ,/HuνBiU¦χ’ ν’7g)Νs-jΆJ†ƒΈxς°―βnά`Ÿzw1;“δμ5XΗR4t±εόy9²ΡΘPŸgΞμωC΅’sσlέΩ; AΙ»~›G%[‹’’5ή½‰Ύ« ξΜp7]Α­e9ͺύR„γέβ‘ί²ΟŸ―=;,ΓΜYθš³š™,YF―ΛBΡ† β‹…QΜβ…νΜΓ…τbΫۚ+§Ϋ˜Δe¦θά~‹GϋΜΤ<―xΉ!Φ/Xpοfܚ]σDZ΄”TΦ¬oα%δ²hωΝδ$J΄ύΒ³H νqCP΄δ±ˆ·ƒ'1\όΖΗζKβ%ζ…$ˆ·ξΰΌ€Θ·–oδωdqz>‰ gΕmε ςzZ1S.τzdΛΊβλTT†h} υ!ϊ±8ο?_žP™_α₯ŸKή—ρηϋjegφ»Tq »FČη/ΆαAvΉΨUΙ†jδΎΣ„!1Εσ_ρήM>OΛ[dNQd±\·~―}ΐέzΗUšΜ-dF*•Œ―‘‘5LΣΉK•n>7WrC?ˆαžv¦wό4vT±²βα?‡πΙε§ΩowˆΏ–μݍ*¦θάͺ¨²λΨ/|ŠΥΓ₯ΪΩδ`ξήz&«χrΊΏωήίαSΤŽ=cψv€§gOš†Η—ηύT^›δA©hΈξΫ‹½ηQΞΖΏ>$elΑ“a`t«³Šε5|Φ}‡Oω₯‹Pϋ +뻝rJ˜FΣ™ψΜΨhη3ν:F[ίΑ˜ηfΟqC“†Οο­/+ΆnC1StVfy φYιι| '~τzΫ|ύpm`Ζ0‰£ΎˆP‘ όΒ»/Υd¨τνLΙΉJXΩq­γŽφEe>Κ‘Ω ]n©έό"φdgbrα–%Ήδη‘‘Ηπξ₯³B0θœ—Β³Ο *P+Ώ¬Ϋ(Ά{ Qt4³}K#8ΏΠ~ ²ίΰ~Ιž2-TIΌ|fΆœ•ύ’ °ΩφTŒς β3a€BσYNu9Φ¬ς ζL7Ϊ XMυ7γπϋžwAWΫ[Tϋ₯+:ΗΉΕ£Λ. |φl² 3c‘ΗMF-£η|Κkd)ΫΞ2·”^€β %²υ·œΜY<Φβ‘'JΞγhϊ䦓J±eoηSbΚΚaΛ–’r]A,ΌΔkΦlΖ|?žgΔξu₯Ύ³#1σ™e_Ι( mFέΖ Y¦φξFtΛWR ™«³ΨΕ(έθc^uݘ]H@zs’λQRrVUμFSt–Κη₯IΪh J·ΰωs+υzŽf ΥGNΏ΅χ…PT<ξή½ΓΞ.δ¦ Št3μORl+”Ζ‘5e[qECΙa^πͺ<–-E8œIMπΥΎt™€Δ¬ΐή\εQzbF›Oϊ”œΕ,#8όΑGΨΈασβ{ν¬‚"M«fΪͺmzηgbνZ;rχ3ELa„—­X©•…;Ξκ8d*”Z&¦ΗΨ Τ:ψζ§VMΖβμk/tμη₯¬ΒΗp`£GΑKμ/S`<©aά` EŒlδ²K…J±"Ρ?(xΟο…Ϋ« κŸjμΊ›ΆΤΙY;Ύ δ,$Άω1SAσv܏Λg')9{κ>qۘ’³°‚Έ²$Όϋ=¬{ΰQl²σg2‡ΕCmR"PΆAβ3¦vΕΟΑ—ΝB¨[Ά²υL<ΖΠrκΧu °_ΎEeεKCuρ‹3ό²ξ φ?"νΨ~πύί©χ κQaW΄_ €$&φKvπD`Ο΅bxωΜ|9kϋ%σνiυΦ`ρY”ςYΦ––xqύg (σϊ|YOΉ_ς½ν2PU8²Δ³Ε£Λ |ΎφΒd¦±ω΅:첌φΙΡƒγ?ω1Ž6+^b¬Ϋƒ}ΛαyŸΕηY’xο6ΩγποίύΩκύ8ϋ<֟0kqαε’Φa—₯dp /OΛά78= p·gΑςT cKqζu$-’B{άπτή<οZη‰HβbiΜC&^b/Κ Zpα%ξΕjωbͺ$Η“,y£Ι’7Rž & ‹ΰυ΄bΆ\θυΘϊΊ’ΥΏhŠ£υΦ‡θτŒ₯}—'.Nσ΅νΩε!"Ο›~ОkΡK|M|σ’d"”ܜd—ž7‰ωkΗΣΛrΡ9>ΥιΨ"+Χ‚}»ŽιC³O½ίTŽΡπ¦Νυ>/ΥγŸΰγΕ»[ΉOƒh:#œŸκU+švEkρcψά¦mk+™c‹Ίϋέ¬d12’M)αΕΠΘ <ΈϋqΊ~‚γΖ ―1ΟLω CRfξΗΰ„Πv5’₯8OήOš~SΓBμθ? χ½±―˜)>°cΕ Aa2π:ρ~Ψ}œιhΝa~se37‘ς’XΒΉ˜Υ©’χ>ζn@Pχ;˜’a?Σ;t ϊή<¬ϊ•Φ½t­Ϋ…mu›QT˜ΤUΜ{6S,^Ώ.KΚΣ}[™Α«γP„qO κ΄Κ3?uͺ2m_{Fϊg'/ Υέμ½_…ΎήlΑΫ'ήΒ Cύ’‰)Ε~λϟ κ‰7 τψiΌόέͺΌhδ ± «d½ό΄ά4·”hΛύ7ξƘΏ’φΔ,cΟ13-¬Ρ‹6¦Ψ΅%_P.ΟΓΪͺ]S\Œ‡°NτήΞ¦/ΰͺž°'7ΧΒώ»ZΰvΜ0ƒ‘4t©Ϋϋ˜»–‘2σ YΞvo,Eq†ΗhΓUZΑ”ΨOb(Ώ™ήΊάƒ}’'ζ΅‰Μ °χ(ήϋ4ΎUώ–ωΎΜΗιIɌΉbdfzΦhaιoσήλ@(EgSγΗ-¬\Π*†νΎ$ΜΩ‹ηΆ7ˆF ’ΐσ£ΈΞΌη/MZƒόΥήqcyž¨Η[—₯oΘ]SBο' ψΧwεT ­uA|Ζ”ίc—Ο†tό:(17£―{›εώεX•˜ΝΞ#EΝFπν³<_3aή°ϋ› ΩgΞ‘σj†zΠ;Z&γόΒ»/7‹‚/šβ'π°d$ʌͺ>h>ζMd\.P —nŒίΤzφ&14Τ‚εlΩΈΓΖ)-­ElΙ™ŸAšύxͺroZζ%ΆrςωψΕ~Ύθώ΅/ΘϋRwλ»xυέΐ=ƒ0Λ€ƒφKŠsLμ—¬σ„’ΗΊA^>γ+ΗΏ_βkO·ΫΑˆΟ’–ΟR7–£Πk!4?| -μK !ιqŒ²wPκΓ·_ςΌSηsβjΒ.ΛL'„5Σ†Λ |ήφμ± 3c‘gEe^{,£}5^xΣOΙYHκ:Ž<ωJ ξ³Gd%g±ef-~fs-φ‰+>Y€UKIO=‘-Ό€φ€³Λo;< ˜iO‘g€ΎY9›ΧŽZ$it,΄Η o!ΣΌk'ΕΕaK-β₯ΠܞYg”—Θσ‰Ζ­­Oς|Β>©ηΉF¨ΩυH*jf}ˆ„gINε™ΧΣ OΉΠλ‘΅uEΩ/ΓaZ4=’ΕΞΎ•Φcs=τϊXy’‘0qš―­·g‡Clάπe<\^!φqνΊνΨΤsoιtΩΘ~‚{}·QNρUΡΔg*8bŽΟT³‹›S!Ύ4‰Œ5Μ‚£%΄R±ΥΚkή}VcΣl­•ΎZ‰Šmϋٟ·ζιA\>ο½yHάY+ΫS†ρ ηΎ\ِ™pNΣΝΨβ)1}ΩΟ¨* ²Νίό0†u·wn4·Ύ₯zjν}/bΟΪb±ήΒΌ (bŠΞΊϋ#ΌΔj²kŸeβLαα—Z<ύQΖφ4βΡwΏώΧ7Tν^Π~)φDorΏ«U‡Ω8c|¦¬Υ"O(« σςo9ήύo{zύO|¦B(zψ,e₯ε²lVrͺ"0;njŠτι±[?G8Sœ΄x g?4λζ·l,Ν{€ΰoΟΛ0γzš`ˆ΄Ι2Zj‰Y£·žΠ~.e‘Ξζ,ύε ΌQϋΊΩ EgΑRΣsπYJ eXxyα:Ωβa€£esγΐΡ€F3σΪQ‹$ Y…(#7x-βyyΒQ\·ΤςΏί•·žA2δ±AOβ%†y>‘¦C°³ž'Ο' A]OΑΠ5–f|}pή3Vx=­π–3²ρ+Zύ GλƒŽG4u,šχ­΄>„œη,ƒ‘υ! ς$γ…ΔiΎΆ£=λ" ρΌ“οmˆ―‰―ΩΙνIΤ”g₯'Γf€B ΊΈuo2gcϋ6nGUŽ€~ΖDœΔ•Ύv,Νb_–s%³¦T7ΈŸ‹Ξ„’Ζ…™&…€τ8Ρ'<Έ„ͺΓ“>wg.0cϊjΒςz=ŠwΟ΄>ΐ‡ƒ|&NlZ΄ξouœ<%Ι“Œ ‡=ΙΨ²>XσaŒηωŸ³Μxφσj¬d–Κu%Ϊί3Δ_«A§+B J˜:šΨS€ΘίζΟatŠ)X¦7ΰλε^υƒ›έhΌ–%Χ”μGM†€NΡ‹σm'8λs!#‰)Η‰‡πωi―b²τΒ±ιμθΗxοYoή<d”zΓ3ΜλUoXqΊ3‹Ε₯LIτjMKQvΎwWG{9@Ξ"d2EAφ#‘‘ ψ%I ρΟ#]‡jo{₯Ο“soγΟρςλ~ •‘’):+T~€ͺΥgζ²WK^7ΥYl½JΙ€δŒ ΣnLθy Ϊ¨Ξότ+“[½ Ε.…Oβωq49ΝΖΪk5Σ? Ό΄©κ+ψŒΒ«ΣυkΏΓ›—Νv,Dώv+p‡(d-y|“3GœHβπ(Ν”wνΈŒubmmW±½T0(ΘDIε.ζ=tJΕbαnažξ=AϋώΟƎ^o𬠧Oj*ϋyΪΑθΠPΞΈbu*Šφή‡lA‰|Ό gΊ°m[92™μE+DWο nˆςΞan^ψρ\θGϊ>z=k{Ϊ5ϋΜκ˜›mΑhώPΌk΄½|Vξ[c|ΖΈ*Y2ub_JjΡPnΔδΌ° {φ Λ–kΛ΅Ÿ0ΌΎΫ'§ցρΔg˜(c’Ο”²2FφυΑ―ΏŠώΜMΑpϋ›ΒμŒ1% uΝΎ+Λϋ¬Ά#ψ5ϋc–&XW]‚œ’υ¨¨©CIŽgH.ί‰ϋλŽΰ±ŠOݐϋrVΉ1~)FvšΛ' 3x¬²uΟΟe{αωv\τ•Ίƒ»ΣMσ’…}Va5’ˆ_4@QDYα—bψˆ-Eή½Υt ώύϋG_Λ ύ’bl†{Ώ€-°1ž/ŸΩΔƒ†χK6΅§ ¨N,ρ™0ήθΘπYYY‰,VoχUύ½œ¬ $§₯±§T G Hϋ%ω=_zΨ/·x {ό6hB΄ KPΏZ4/5-π­΄η€e˜fœςΕ+‹G±ŠL¬2{‡Y΄”4nαeζόL΅nyL΅Ζ•Ωq‹$-) xά°Δ»<α8.‘°Τ Ξ8β%y> 9{Œσ ¦φLΰί%^O+ΌεΔφ ¬Gb>ŽuΕΏ†―i}0ΰ-Κχ­΄>„œξΖΧuUδIΖ‹‡Σ|¦φŒzˆ0Κσ–žΤSΝΨρ5ρ5ϋ(―'QӞ]Όž,ŒMNΚED ·=†Eq\x@αύΈc E‘%ςš£ΫΚ«εΧ»>Ρ½œK;Zπ€Baz³Μ›§x°χ΄ͺW΅³—ρα©ΓΎZςΆ Δ«3‡Ω^τφ3erƒ9T.Fy^ΉœsΔ=(‡•Wέρ܁-X&*3嬙Όύύ(Ί(ΛX ΟΟϋ<ΌΊrrYUϊJŸJa—θ!Υ/oF!2εMα˜ΓX—'¨όίL{>'Ν}ΈrRP€QΕ΅λC+9 EάӘf'Α§kVN>„^±Ώ`‡•q(bŠΐ’ήΔΤpH/ZrθΞOΏΜεuO°O¬ ?νyι³cŠΞΠK94ΟFΫ sυΟ/Ή°½φΤxeΑ•+oα½NΏω¦Ω“‹\]ƒ ;‹Ρ~Κ_•-°v܁΅†Žι:Ϋ†ώGΆB‚βJlίΏBΎοz―^ΆŸ›ͺΒ&Αƒ΄p ŸΖΩcΑΗύZSt†`Q„ uΛΕϋ|fΌ§/$‰ŠΞyεΫ°μΆΗbf°­B½Lκ±1¦+*1―Οχ1e΅νˆΕΈλΕΘSN,”σP΄Ž­c]j ρό™Βs˜α]₯ζxΠϊ}kŒΟ2‘ΆZRDΕψ„Φ½S†¬Υ’A[ίηΖ”ές†9χ†Χw»δΤ=Z£ˆΟGΖ$Ÿ©*Θp!“nτͺŒ0˜B؁G„cξ­ωοI5ςΏmϋ,Œ0JώšΠψξΟΠπ‡{ͺήMa6(ΒΖp$@ΓόbΗΎœ΅nŒ_ncnvL!ω.»ΧUǧː풾ΐRfG1roξM B‹aTe…‹Ό(–¬ΰζ™‘Ž¦7gN^κ7΅Ο ΔΨ·ό’Νξ—o’Ύ\ΪΛwΰπ?Ξ«ξ{±2Ι/΄_ΑQνΜ~IΡ ΠO„›ΟlβAΓϋ%›ΪσΗ2š―‰ΟG‡ρYQŽΧx{²=W΄ί•d1«“ oϋε Ύύ’κݞœφ@$,Γή)ύ [6θWαK1`ΟӞc–aΎž˜ ΩlνΫελŠΑkρθϋŒ_&46΄ΎWΜ:Ms[Jš±πi›E·d²ΗΓ@¨φxΗ! ‡ŒCeΒSΎ= Θh6Β>‹$c–Z:ς…τΈaοšβ ϋpΡι±F΄Σ–ZΔK‘-ΈMςy>јΧΚ(3x’η%rFΒ‘Φ##uδ‘ ΡVϊRL{ cEyΦ^O+Όεδ†\δœΜA…Sžιh}€ŽG΄˜Ω·ϊ Έq΄‚fΦuyς$γΕΓiΎΆ©=υh W‘=Dηyž C|M|mΟ{†Ν›μρda,/ε""‡@V"0ΰ5ΆΤ=Ž-Y^eŸ›ηΠΤΥ9!mhΉκΎέ(•ž›f[pϊ²ZQΜΧ„ K6b~¨έΈ©y{ρHν69ϋΠ΅³>…ι 7άLι9]τΰ6ƒ —_C‡œ³Uξ`ί™ςCmθ–”Ši™Xγ7&«>ƒ’‚«±Sg,RS]Θː~μf•'ωήUJmΩxκ‚π3’ ŽβJ—΄”΅ΈΪՍƒΫ< 6Ε›w κΝ“^₯AOώΝx”!Ε«‘aκ‡ώ‡™φ|e“,|ΖTUαvμ¬―σe bΟ 3Γ,ƒΠ½ό3Ε‘‘ VΖΑ•"}ss žύ σΣ―ͺ…6YEFή„Ω{`[HΏΓΎφ„ŠCχΟΣ</γΑO‘&‹)2Š?τβ“ ?Β)aόβζhGχΥ6ΤδΚΉΐ–’νΤM 2j±}έζ‘ΫΓsvά\ŽAWΫl`Ό”_ƒωR-ƒθl=)]=Oϊ^*°ί•¦‚ζm`ޜ%Υφ³…T€vwυ‰yŠY­Yω…ζΑž«jIBΟtJV³―x[Έ!·=+Χk°‘e864z“UναW_κa~αέ—«›ƒ1~dƍ?τ+)]ΊΠ°ϋOqŸhgαΖ™ ίΗIIΓ9±Ϋ 3pύj£Άq[ϊvν³H2fyͺ9_8΄Η yΧOΨ‡‹―—Ρ"^ iΑm—·–oζ±I<Ι’74ΦfΦ?em†χ=Κ@‘a¬˜ΉυΧΣ o9%2Nx€R·W΄>Πϊݞ±Tχ y’ρΐα4_ΫԞj,…‹ "ΜςΌΟ‚FKρ5ρ΅ηek΄ΜH’ƒπG ΅ΰ1|™)ν^ο?ƒkγ˜Ό=Υ)Ε(+܁|YΡgŸ\~+Ά½9§οFΝZA•Νs\ιόZ*€žΤ”W₯Υ;.ΈξΐΔ,ϋyy ²+PSP*U#>5]:λ»fŸχ½£OFyΩSš7——`[%«SΒ”=·m=ο+7Ρ‡L―#]τφ\€Οl{ νθΊ΅ •λvcG‘OφkνM εi_b(PKUCqΥ―Œ•ΛΉyHͺ0ΙΑ Ο―DΛΥ>ά]ΆœύVyc—£Λϋƒ»ϋΤY\ή·•LQ««ρ̟1ύξ41έΑϊ?»=Š›‚8-O3υ2ΓD{²`L‘wχη ·ίΓΕΣΓΘ¨cŸBθσ(δ0t΄cxt Υ9‚y ~γϐμΤή`L@IDATB–-[ΐΠ…ChU)Q³l&Ζ‘¨ψͺ2’qοSζδ^Sχ)χ”ηΦc_ς6,e?"ܞbήΑ;…<+σ3D‡Ωώ1π°Φžωώ1I.^rαΑϋ_džΦ½=XΙnΟa7’ržΐΓkTέZΊ„Ϋΐ14³τX<Ξx [Ψύ"²BNΎτW)8ρα‡ΈtΉ‡i’ ΄bͺχο…«υίeEg[ξ?N°Z[―b θ¬<ϊ˜b°ξ©ϋžΫΖ|y.ˆVd”Θ%s«βΡΌy,eχ_c‰Φχί@»€Τ³ξ1TVyΫ™Ύ€³L8δ1~ #l1(.’r’·ΫS―i”ΘrOadΰͺ” ]GŽβB]S8gQ[ρ₯οό%Η•KW1οΚAfv1JΧW£¬v\ΜSϊM¦θά%•Ξ―Ζζ|Ι΅άIΚσŸ#Y™ωΨ\½HdωΩqηΦu΄Ά0οGΞ’soΚƒΦή3χŸαψ‰O0žP„Ί‡φ‹³ΕαψΟ ο*Ϋ7ΔƒaΌo5ωŒ).Ο χ½GΎpέA|φ^.°±½³¬Ε;°M±ήυžχ2I}3΅Ÿ`…ΈΦwδ”δς3ρ™|ζ7Φe _Ζ³Œ]ή{η82v~ϋŸm Aϊ/5ϋŒ%„rΌΔΏΟͺΐ_ϊ3Tg βς'—ΠΣΥΖΦδ~φυ“lάςvο•φƒƒμΡαqCό"tŒs_. vhςK‰kαrIι“’Q€t…΄ΤWάTμΔ5φάqcrˆ:Μ²½t 2ΛP^X.+93ΣT\θ:*•&y‰oŸ%·3xζ—ΝOύφ P‚’³°7θžBΞώπ€OρΘ3N Λ0?p‡Ž(ŒhΏž9Ξύ’<‘Χk;ωL― !> ι\ϋ%‘ Ξͺ=bΡM|ΖF&ŸυŸfιs}θiι7=„ΉUχcGO?.5·!ίoΏdφφ0έΈv{,3΅λŽ’X†¬ aO,πΉΪσ`e‡e˜a = Γ9ΛhsγμεͺdΡXΆ‰m€O(w1Λ½]¬XJš΅πR aΖ’ΙfΪσΙin|εΌ‘°yψΰ΄ Π¨₯–FAΪγ†5ή5Οφα’έγθˆ%^ nΑmž—βίςΝζ’ηfϞOυL Μ.^O+Όεόg΄‘υΘSΖόΊΨV4ΗDn^›Ϋ/ΕΞΎ•Φ‡`σέόz«¬<Ɉh8ΝΧ<νYςΑΓσ֞”³,šΓΔΧ΄ŸζωI²™I)"…Ϋ όn\Ίψœ’ΌŽfˆv•Χ!Ϋ+©πœS½‚bƒ)šzt\"&ΪΈ°²Σνψΰμk~^ΥzΡΪ{+ΕΚ“\5xxWΊ‘Ω|ΠXξ|ΟTmφŽAZ%φlgκ’ι?Š·jϊ υΛιΠ%σΦzεb 6y”s‹kP\λk»=q]²²a Ž}p ΕΟξυ(ΪδoΕΑٟ/»šιx1祥‡‰φO5‘†y9%Λ¨FΓ—„?ΝZCF?ρ6U}ήγΩ5§υTΛeΪο²1ΠQΔ‘sιςr*Q‘+kΏ¨3fT2%hOΤμπ˜GΡΩόTWoθΚb{¦ϋΗ„ββ₯”υΘ•”œ½KΚ©Α}:\>Υ³ŠΞ?ŽCΏ,Β™š8s26`χSŸΊ³nΥ%ηύΗ4pεί Uυω.B₯ΈŒΞ§κQζ+‚ΞŽ‹Πςδ)fYWˆκυ^VbΑ,Ζε>?c;νStί΅UNλ9Ϋ¨νaY]»κΕπfQ_ΒΒμΎŽk^μkέΧ ΪΜ{}׈'ψ;~ύοΏBζ7ΏΰQ2^]Žϊ'„?E`ύΓ_ŁM^…lΗEΟυζ‘žρkc!pΣ™VeZ…‚ͺΔΏΝu»|)lΏςΎχεΆ3΄,'x<=X°ΐηjΧ_c.ΆΠΣ(k0ΚqΛhΙε…IΟνŸ\@ώjρ%Jrω~|λλwρώoήΐxφ<όθΧ<–έš}Ά`)Ιcα₯”Α„%“-L΄Ηoyͺμ ―‡ΦΔk«IAΪΌΗ ~ή΅έ‚Τ*.š`G&’x)ˆ7'/Ε³ε›g–’η“ΕγωDq'=πzZα-η™ΡζΧ#χŸ’ςZh}ˆjΟX~w y’q’―9ΫγφΑΛσόΟ~S,ͺ/‰―‰―£z‚’p‹»wf0ΛP +:ƒ moγΚ”26Γ)Υ(Ξ‘IGq©γ0σδ˜›Ζ$σŽ•.ύpμŸu~—ΠΤzBΣΛu_ηkh\ύ"κ^!₯*F†ΟΰTΣΫ~ΚўΤΡλoγuΜaΟΖέΘ])•Ξ£hοψΏk;+Ehž•_3άΥx‘Y’?ςΔΏύ πΤ£¨\‹”™HVΰ6wϋŽͺβ‘S?ΖKσxβΐηQ"xBυ;:…w^?€νΝΩ›Χp{]‡πΪOπΔηX[~ °˜ξ@γ±6δν}%Lή»ΚΟ ϊΙ$^²ϋΰrΟξίƒΚRŸΗe!ΝΏBœρqΘCrηV‘\°cdrΨ“lq~ͺڐ›πΖjΝKνqτ‰ΒΗK ΜΛ―ΡcCγF3GeΎ‘S?ΓχFρδΤ”«η€(πtΊ{«dηΊάσβ!Vδ?_Ό‘σήVξήΦΜΐRO’³y?σn\δΝΩƒΞsΝή°Ζiξ6fX΄ΔΪ9ΌQμωjΞΜ?€Ήώ6œΛ_AUΏ–ήώA–X"fθοΉΚ”Š=GWkΩκ1–θΐΐΈ7A:΅ΒKί½ƒ?Šν›J€XΥΩ=ЁξΦK>oΞ,u~f‚ύ/)Ά©²^Lή‚„―ϋτ/πΚ­I<ςΩQ‘ο+?Ϊ݈Λ=Λ°΅‘N4"ξΏα«Η–ρc~–LπΌΤΈ1΄ρΎυŸ~Z|&wλ<ή<μΫXͺ{‡­ρW5Ὣλ­Ωύ„ υ݊œ ΔΘ™ψL(ψŒύ&.μι…cπβ1 3CvυΑΝψβύŸΏ€φζΜςsρχ>kΓ-Θ-―F–ώL”~ ναθλo‹WZγOIή}Ήͺ]£ό’*δ»ΘJL‘'¦o¨ž–-La€)?η§ι­z3ΈΡ‚σW‘Cλ™Œƒ—ψφYΎώΔR(^ωevFpεl옻}Ϋ—‘φK1Ή_²ΜΎΐ<"*/XXoΏδ—MΊ ΖgR­³‘r\ϋ%­ΖXœ‘φtŠFm4ρ™πξEΟn χl––”„?φŽJxΎ\>Έϋ`rŚ€2~iΙΑƒΩ‡·Μ===b‘₯KΏ’P΅’ΈO=τ€Χ2S•’Ί,3{κͺt«υΟ5Ωγ§ρςw(?([­W(ŸUΘ>/(yzΠ©Pπτπj3{rŽτ½x~W=Wϊ‹)~ŽVΏM“ιφX ₯뿌Η**τΫb―./]|G{₯WΪY‹χώ^x’Ξ—<…Κ…OΕΛ–ΡΎΦBξ‹ΏΒχώMiΕ²°O}ϋΫ_-ΗGYϊόΣύkaωΏΕςk9ϊ}ότ˜ψŸ|ϋσ~ΓΡό?²eΌ’Μπόφηώ3ξ(ρ 8Μφ:γΩλ¬ΫΗxžύ ΰ9:π›οώwœSώ(°α ώƒδωΔ›KσΔΌ—όδ;((Pυ¦οωΔΏΑσ ++μ0Έξ#[Ζ0Ό)δ7³>•=‡'½ΓUψ‚’Η°Ÿ’Uα-ΐ—θ )Η_ŒΡZRΆγΉ½ŸCaλξ+?Α۝μ‰³œ·^žυΘφuE§‘ŽζšΧ’Π‘ζ·”O:[Ψ/ΕΎ•ΦaΐmXσKšBšgfύϊwAυ# ΟsΟOώη#©?QΙΧ^αΜEμΩύΙ ΟξR―ύžα­π<ησƒ$I¬œ‰―ϋ~ήΨL­ͺͺ3vtυ+@Ή ΚΧ•ˆ±­­­©zQy(ΚΙDΚͺ$¬Xš€…»SkΑ Οz5ρΖΛΟ#ZΟ!Ό•Z,—šR†ζ-+1aΨΟ χnczfέcΑίaKΝ¦¦Wc]z&–/Ύ°v “S}θκB.”¬CΪrζj†ύy{ξ&ΆWΞUe¦―«ΫΓπMd? ΒέbJ/ΗΡ5AΕΆ’X[¬±[μ“ΰη›ω=0‡GBσ΅ZŸf[tΊ=αk–‘ζ%³E*Ώk]-ΦζxžΦnύ°υΆ3Œλ-ίϊN ―έρ`'ŸWοBnζjq}˜ŸμΗΉ0νxχYΒ¨σ²Ω=Έ2Q”qav½§›uσמ5ΖbωχεΖ규+±₯iιH\±B|κ»}gΓύνAσηowρν³ˆ_μεΉGϋ%.ΨδBŽσ„ά²ΓΎύ’ΓBF΄9β35Ÿ}υoπα'm(1’θ¬1rSw–#-eςς  ά/ρͺQ‹Q‹ΐβΡ΄eƒ% |ΐt{l<ν² 3c‘geqYFK 2‹IΙΒ:€'‘ ·Ε#ΠϊΞ?ΰυ…€ύϋύ?γ5ˆ μσ~™{χŠŸηoI rZJZ°πZ•3–ί\€†ΌgΓνYΏ&°yψhIŒ0m‘dΨR‹Ογ―EΌ]|λ»σrςφΟz9β3{ω¬·ε€­ΞχτF˜wMκjΑΙυKO†PρόϋςP5Ϋ”~«έμΟΉcρν³ˆ_μεΉJϋ%.ΨδBŽσ„ά²ΓΎύ’ΓBF΄9β35Ÿυ΅΄Y±ώ«ΜυsφΪ~ž‹œGgEw"iρθŒG s– Φ-πΝ΅«ψNZFσZ<"ƒY‹Wz¬Εζ§1t•=Έ(=f*ξeЌ₯€€JŒ†τ0ΐ=F;³ˆς™ηέΕgAΚ3ˆ—<¨ΩΙKdω¦Ά|#Ο'±λω$κ=πž₯2‹k]‘υΦK·‹Na;Χ[ς$γΩiΎ6έ^„»rΉG¬ŠΧ£sO§ό₯ήΟΌx‹œGg―Β)ώ-ΝY6X·ΐ7Χ^lYΰGΖ2šΧβγΜZό„ΪΊ@1υuƒΖ-%Υ‘°ˆηΖF·χϊ NΆ₯/E|€˜ηέΕgAj|€‰—ΤXΩΛKdωf/žκ±2xE–Ό ž-κ=? ©‹a]‘υA=qμε3ZμΕ“<Ιψf«Σ|mΊ½yˆ0όΰΓ4ϊCΔΧκ1²—_ˆ―Υθ!@„!@Δχ=W‹ή“έΈ~κZ@η wEρ˜NΧκW@Gu"z[štRβ(z™η‡χβͺzΗ N~‹”œ‘˜(G ψ+š…Qπ™YP(?!ΐ‰ρ‹ΈEΑ/΄_R:]Ε4τό§?|NπYT(:λC@)„€β½_ΐ OΤAΣ2Ί4Ε“™YFŸ?Ÿ–αj4„«“8ς£;>‹xή’λ B€°‚ρ’?zΦx)”Y¬§ϋ£ϊΪž‘돎tEΗ8φ"@σΪOk|λόJ~΄B_[Γ3tύ”ƒX<_ϋ΅½όŠ"ξί{Ί&@˜+NρX ϊ1!Š!Bΐέ;!*3 H(•‚%%žXOWφ‰F;Ιρ>΄wg£ ΄Ι~Ιƒh:όΞuω%Π%!εΔ ιρo”ΓOβqρK\―nηhΏ€ %Δ zϋ‹xα·hώKXΏ~ύwxζΫνω Σ’%KxŠGM™ΒšQ–—ά@σρ3Έ5’‘ Z€•ν@νϊ5HΛ.ΔΪ ›qίΆέ¨©Ω„άŒΥήμΜ2ϊΝWΠ<8«U<.γnŽ `dpcc4{γr€©SQρRΰρς’°ω[H%>ύτSφΉΗ@N‹υτ@€ŒΕπβi¬φθΘEχQtŒIa/4―ρδε³XηPς"e,†Oc΅S.B`ρ @|8ΦvρK(ώ‹†t­ηŽ@D€μμl1z|B³τZε(ŽP"‘ξ/GFF”ΡQNdοa¦1:|ν—`&κ%& B€p‘ΛCβϋLΑs¨τ^SΨηHžD;ίk‹ιt£ϋ%gQžΦζΫq©ιC||ψ78ι<._:‡KgqφΓ—pδθ9 ND¬$ !`xβ/-ώ5‚ε!π @ό\c‘VΪ/ΕΒ(‘ŒF η?cH ΟΖΒαryή‡+εΛ₯§—ΌθΧnُuΉLIφΦ .? zήτMšh -IΛCzJ2V₯§a…Ÿ€‚eτΡW'//%g?θ’ "€ρ’= K·‚\ξ}kδ€Ϊc=]ꝡ ϋHŠmh^Ϋ3~±Ξ‘δ·%ͺ… ¬ @|m=_Yο”J0‘ψ/Zϋ{|"Eη ΰP’abUΡy¬λ.2…­K€δlx¬)#!@,>„}πC άœR&Ύίμ=Ω-{xŽυτΕ7’|=ž›Ί‰›c#˜`7§ψκ R„@$¨zzsάρ—’>Er ¨mB ^ ~‰Χ‘5ί/Ϊ/™ΗŒJDΚύ=i):kγb9–b-&ζ‘4#i+±|IΐΈebβ :&B”S Kaϋ ^²S§kŒVžΟίƒ/=Ϋΐφ p·Ζο6Ω‡LΖ.<ϋΥƒΘ^ LwΕ+―±―ξ°ΧΔΏ?3'š k2sžœUː ςξ-ŒŽ4‘{ΚHMrrμηεuDW€Pϋ]έ‚”`Z¬"ωςZ냂?o2ώό©ώ 'ΟG=&Z’Ϋl{Vyή#¬ΜΓFφσŠώρ–STAA» ΎΆ Iƒυd#§ «S’°Ύl+swfέμΎ†Yƒ5dσς5): C„!@„!@„!@„!@„!@„@΄ ΰΒΦϋΕ–΅εHςiwΕΈΠώ>>μντK±ηrεͺΥbEΙ«–!,?&€οΕ»nP܎Λ?Α‘.O_S ΓΧ7o Q3M“ÁΩ6 ;+jκ—τ™ŠόΎω§Έ8α—ΰ½LΝ܎ε[±1+O#ΓA΄^| τ†C%\£ΉxŒZ΅i9yΘb}[6$¨;‡ωXwίώφΔφ0܈—FC‘?£{ξ/c ω ο8sm#αΚ‘φV2eZR€ uwξ&2Ϋ0Vο[SbYΰ©žϋ½¨ Ei9ΘHΙAfJR™’‘ηΕ‰“ίΗY n)-9€κ5₯LΙY‹W>‹‘α38Υτ6Ί₯ͺθμ,ΡΘKΞ"ΰ|kΥΨσΠ^l©ίΚxΚs΄όφΰ#ƌ‘TαyU/Ψ>+£¨H\ƒ’Η„•ΟΖΓ•†μ"i=•‰Θ\­GJ‘xχgΚ:B‡]Ψ΅υT)Ψ[‹e+?‡‘γψΩΓΈ‘S™y9ωφσŽ›:}₯θ Πϊœ0%9±>ΨΑŸRχΓΙσR:›ηAk‚škΟΟσμη…ήρ–³† •6„ρ΅!˜,gΚί…ƒνΒϊΪ ΈvΪc΄^RR"W»yΛ8ΊΫΞ£Ή₯KŽ3PμηΓςn:™Φδlƚ”4ˆ―Q˜₯ςΤt «½4θεŠvΒ#…Ώ`f,Ώe Jδλ@ ½ΠeδΒΜ›…Άf-a|u†-d§εTΨ„΄P±’±gYk‘ίTT§ο?ήφΜ–³`1g“E$x0t›|­1ψΡ₯ΰ%Λ«ΡΥ34Šώοš G,Νς‹ ωύ³rxP«ΰ-Η ›ίοςς§Σε$p?©ΙpηtοξstŽΨM‰³{χ^{―ύνξ΅Wο^kν <Ήsή2KΊ’ό4D‘\ G7£’Ξμ-Ψσθ”WΈ±LΗΠ°Ν―fδΌ©žΖ©Žd‹h‡GξΫHΝGJΏYυ3…ήτoόZδ2r–+Ι\υφmΉ‹ŸΧχ«Φ:Ÿμϊ|$ηMΏŽςŒΠ8πœ…nΔ["Ίε™—Ο°€"9?8:a”σaΪ\₯Φε Ήz•²άž9Ο€Οη¬t:ΝσEΐΡη:4kͺΌv­ίˆ-dδ,7Œ`Zš‚‚ΥXΎlNžm2*a˜§Ε3j WεT£ͺ¨Ή‰ϊΧ`mχV{ε-4šΪ"Δ°Ο3Γ‘BΣ²UΟo&=<Τ­yΒh:žSVy„Ηκ\φΟ*Ό|ΨˆτσΗڞ5:v9¦Hs ™δuΨξ"+žKΉΔεƒIU9‰g˜=­Ι;0±EPΕa€f]ίe•Ÿ‘¦σŽCδΖΟΫfXS\†ޘ­άŠœΗ|Η―ο|λ[£ιΌuό-?Γ _kg¬ς…Σγ̊‹qm<—#ΐΰpΒ‰ΐϊ>FΞ7ڏ’Άύξ&lFΕϊΗPœ$­§?œ_‰Λ7ίΗP8™ Cέ½£MΈpcqχύ+Ÿ½‹”’X­\ςœΗM€δδeŠρχΪ;ΰ![M?‘ΩQ΄θ KKΏ1ržBsΛ§8ίtλ`OQ±ΤΪΚbη$‘·Ϋ£΄dνΓ>‘στX ήΌ‚‰I,‘5Y)ΕΨδJΓΘDx’k{α)ΗΘ¦(ΊyruM¨?$Eς«žχυ&ύŠ9–©φΪjqJ €”BX‘s–c0ˆυΉ5-xωΒϊΌ―X™¦1rδ‡"§(yk ‰βe>u•T{pθ*nu’ob·‘ˆΌUQ‘[ •]Ή eωΡΫΑ#Ζ{Α›‡)³riv(Ζs―~n]”y[]v<=7qνμ),!f²!Z΅-pLGj>"V˜υ3έπ+²0 (st€½ž> LŒ`ςΦ$β–¦£ ·‚v퐒k―Θ(Ε–δγ¨Υθ’,|ΪΡη#9oϊαΔ3’ h—gaE+†η‡h—σ γΖ"šQI˜Ϊ³!η™τyβ–•Nν(OΜhy­ γ†Ίš108€ήΧ·, « Λ‘)oη–VTwh=0δ‘Γ3* ‹ΦΎˆΕ%y_AΫμ©\„;Η‹–€₯X/xΓ9„3:‹η7‹‡ž]u˞0¬°³ΠEΨΓBΛbDφ%d %V†‹> i 1TΒhNŒΦγ3ϊ3>6βYΑUάm} Z΅†ά.€.WΆx@Λε#Έf\‰oξς*”ΘFƒtεZΓ›ψX6κιΖ#dθœ R,CΒ’TJ)f‰…ψβΊGΤνΝϋoΗ›υ'4u·’₯»Ÿ]Φ5jςdRESPΟΘ Z(R6mί%wwΝΊΗg½_ξί3ρ!Nν ["ν‰\.υs`c>(γs΄Ξ ™ε ϋσ>>֌š–ΜLv“£D3–―}OKƒSCΖΞ(χΗΠΡ}έ7>Η΅QEζHύκ¨ΗέΈͺU’Ό[°€-’m”ψ%#b@.±=/ςTq;Φ³'Π<•‡ΥΑvRήk³r>x-aΌ:r½y1Œ UMσ`LNσ―Δρ/±ωˆY?σηΩTΞD ή8\cPTΠη±dο+(υO€όθΌ ŸΆτωΟ›ήžςT ψό™πηGΓό`0ώ!;>'r>$WμXδ {kk{¬ržxeηmΠف‡ΣAΐΰyΆu† άΗμ₯ρ‘^4œ—?|Χ†$/ρόόΫԟnt7aλΑ½ΘIΊ—ˆ•Ι€š0tΦλσ‘ΗΐƒQ#ηсσ΄pτρ8;w']sK‹‡ ΕX»¦-m1 1‹‡žu&O˜ΐ#;ΏDΠcu~Η{cH?¬ν1Ρ±zΜ1F²˜ 9Θ"―Νήl9.wϊΐ“IΎ0’ΔA•¬ϊ.«όŒ4C$ǏqΨc,žΫΨu8ž‡τ(§ˆˆ[3##ικΔτ(ΖυΟYε §#ΐ "Q²βΒ8|œŒ#ΐΰpl"Pδ*AΆRE3>‘9+y·ϊ1: dŠ ”Μωσ»eσNδΚF&γ½gρYŸ¦oρ™HVϊ=ζ16ΤW’λσJΤh«γύΗU#g€ 7WΣ·Α]Kήuς!… Θ+܊bΉ½Q’σ5rφ–σFkσ(¦«ϋφοrc1ΜΞΖ-Dά­v|ψσ·Ρο[Μ™³5αΉΥd$Ÿ%Χ7ΎΪ5σd3²+Λ‘΄8#­Β‘czΓͺ-xκ["9.S]ΗπφηΐO=†Β‚"$Ι}χ ΄ ΅ξ­λΞtοΒΓ%₯ΘΙΙEzr–)c29ŒξΎθΈ|Ÿœj0ξך]xnρY€DTψΌ„Ϊš!Šdμ(Ζηχ €x-EΡ^œιB_w'ZλO£ζ’™¨˜Ϋ±‘ͺH¦ο@Γι“j] »dΗ‹/amΚά₯1[šξV―εTΎŒ―σr·˜>ٝω>9§²K|ΎψEl(-Cαβ‘gUΐq¨½—OΖΙ‹ΪςφΪ³5jΟ¬',ί׌ϭuΞBS“/Άžχ[­¨mς~Η,Xξ M;6ξ5ζχαp΄ŸqR™Έ3νS<&OΈ\r@.ωό¦ύ_ΓΖR7\Ω‚cŽtˆ²°½WΞ|Œϊ6ύ=gE. υ•γ‰oξEj<Ν ­'Q;”];*P˜η_:/žΐ±_½ ―D+§Ήd―8—ΜN6α0]32¦Νάφ|±R’ΓWΰπ1a˜Ατx:ΊPσιΫhξ!gχw€Ž1ύ@Ξ―Ω‡φ•Ί…Ρ«Gρžί|¨k,e;žyq;VΠΎS]'ρφaoτΗώ•εeΘχƒ4Ÿ=ŽχŽzΛik,~μkΨR˜„ΩYM.Ν½47Ζ σsά»3 Wω3Ψυh¨ρ³7)=²:?°κgJ{Ξώή₯Ήί[£Φ ˆ…O[ϊ|Ν›^DN1ίΧ\o 6|~†Žp-ΐό`@vοN6ν}[Ά–yί=&ϋΠPϋΝΪχ/1‹œ·§Ο³ΏE»Όf‘»ή‘” ,ηE }^ d₯ Δf΄εsyΝυyέ=i€Ο{.Ύ‹·υKM*έ tvv#§Tr7Oί•o¨WkύΦmζάΠyΓͺbz1ŽρSψUνQ•χρλo!ay&vȞΚκ…˜J°z~3zθ±z¨³zΒDΓXxb8ΝVΔ­ICήΊu"ν¦ρκ–2ΈΓe™0)£;Ηq• ΫPŒέ/|%Ί2bΡΔTδ ›‘“ρ όβ_#€$2Άϊ‹WŒψάA|*\ό’±ΩWγk(4hsYJ ι/+ίΤΘƒΫ‘/71t±5dPη=2MΖ ΚέβΝ§‘Ο&Γom₯g›>φΝ!>_ϊΛΧPœαΝVŒΕΣ 6£šώ²²ώ~A­\ΐN{μγΰεŽ-eυΎf{nΩx JTΎΨή½m»€Fžχ`lR'Vb¨rΛ*mt”ηrΙ)Ή€O’1Ο}νyΈσ”™Π{M•…ργdθόΎχ‚eΉD€krQXΊN’yδτβφΦ&§–“ρμxue~ψΟΏQ š—ε¬CΎ(§α>ύ.N΅ω’Ψ½ ω’φ-2t–ŽNωߏOaΝRƒOΎ™“ΐr~1Vќ,Θςτ;-@0γb‘!Ν/T^Π†n]rθ(ΖΎo} Uλ£o)WψYJ>6ν y9ψΝΟύ ½Σσ7‘pΨyhn†~n–«΅υQY/ΰΥ Ή2υΗhόμΜGjΕ°6?°κgήφMe#]Ϊήƒͺ½™₯v6>νθσQ3o*8όkλΎζz«ρhπωΑ]nΰωAWN³*žΖSϊμΔ,Έ«ΏŽΜΜTόζ_σ6τys;οGΡ-―Ωδ~ΈόΞΚyΏ’”ΑͺΟ³ρ0χy\^s}ήΌ>ό~],,’ΙΗέ{j¨~%Λο7gσZΏuΣίgύjs$#‹<Ω•€)tτœσ«uz&Ά=•™=ΏΓΰ‘ΜCέ'ŒUOΏΆ˜aΥsΚΊ”3«B·¬{ΜYρ¬΅œZ<Υ―|«β~ά=΄ιΧ8Ω0¨^•.μyεΛ6~!P™§~γsdOlZΌ½sK³ #FΝΖ₯αΖ’ ΨU])/τφαό;oΰ°AΔ«ΞΦΗOθ‹§Ή/‘Ί―ν>Ύ\‡>cm•.8GA<ζΒΙ",r0 ς:8fss•Λ]»Έ³Κ]­lΆβ‘λΐ<ΖYΙz€ͺπΘγ1c ΐJGΛ awƒΘOγΛΉΞΣErό‚v-ΜΉ΄ °›’@κbͺηNώτ―ΏΡDϋΡԝύ^8Έρ%ηΞΠΌρΦΐœθŸ"GŒr0rζXί₯hυ{άςφ±3νΈ9“ά•βg?ŒŒuj•=Ι*_8q$JV\ΨGSr8Ž€=’°2>^ΒCσ«Q„Ϊ4$|Ϊk7¨³°§θΩqθi―Εε _ΎV.KU―'―ͺΖ7θO9Ζ=ΝΈάzu}ΪΠt5΅Ω ^ӝΈ!_.ZχUT©FΥJ-筌BδΚtγ#H(|ίXν ΰ"PŒ]ΒΉΖwpMΗ§Z›fΗ)ο>BQ©M&άxόiρπdΞΧΤΒ—‡ΥU>ΖΟχ|ΒHΚΥ“!ΒSZ‘¬ηΡ₯Ύ¦:tήBBr\λς ΄§:ΠΩΥ‰‘Α!ŠΗ™@†Υε©Yϊφ“ΏγYμkΏ†.*kε،†Ο‘Ԟ½€Ι„lΪ­¬-wΉtηv‘sΦ\DΟΐ4/OFZ^JŠς‰P{ΡΈaνΈl³bxή‡Λ§?l@σΡγΈ»b1ξޟΕΜM![2Jλk:GxLcΑΉΈY v hθΣ±οΕη5FΞΓΔη QDη΄uΫP"&–μ}{Ί(’―πΪN{ή¦­ƒ—Ž9eρΎfzn™™ DBΎ8ρΌ+Mk׍1Š‘@ςA)oπ»aΓn©wΈΩΛb,mPqΔ²Έ\rN.)ƒVŒg^} nuΛ “’η·v aa|2σ‹QLύοϊΘyΉDνΝΜ’Lχ=<νηΠΠԏ„‚2lZ—'],¨ΔΦςe9W―΄ XŒ˜Ÿ…Β’-dθ\λ[ E,(M•σšΠ,FsΦ±}DΞ·΅£w„Φ°ΙŸiYϊ*¬‘Ά l±Uг2ΤΉ―ΏKzw}ΣΧΘΉƒ"[·vA0ςͺp‹΄ižΐΑƒέψΕ!ίώχΆœAΓ!’3ΝΊ‹“QΆAš ηf±&›Ο‘ΪΪ] δψ93ΑΚόΐͺŸiϊεL2 λΧT’Ό€Ιr…ύ7h†[ς Ÿφτωθ˜7AΧΏ›χ5Χ[ύ!% >?ΐβ—d~π+λΝδη…ΛνˆwmBUΉδ™™VϊφονΐG}H­Λyo;VυyΫοGΡ,―™δKT9οO°κσ¬tF<Μy—Χ\ŸwJŸOEr’’eScΚQ ›|5ςςWΙ½λ6slθ<ƒ»χ”pdtqΧ£γή…ΥOε™;BΩX:Ψ=ΏχΠ κ‘nίƚ§ύ1΄ζ9Εβε€Η*‹Ηœ yΟZV,)hΘBμ*—^žσW>ώ†φsΙΖƒ/b‡|“ ΈΠIB†^𔨾-§’ŒΌ“½ΛίΒΥ,T<ϋΪi[D5‹‡3ΛψQσŒžζΪ~EζΎΆόiyfm•.G–<ζ΄u1D²“t\^k»Ei.w½)Ψ†…Qξ*YφΘ΅71GV’ω΅&?Γ$_μtΏ¬Xι„-Γ’ο²ΚOΗι";~ΊαŒθ)—ƒvεΰ],J£ˆ>bD³upW~ŒΞsώ/±·m!γi‘phςιt«ζ@€]¬ζθ΄™'υ]ŠrlΩnωΓO'ώtυ ŠͺδΨ·G0dΫeσ.«|αtτ©V…Ω‰’΅*žΰp8ˆ#Š₯K™Ύˆ’ψ3PTς0rύ³c>'―°₯+εnL_E]c½_ŸRΕ-.ύ²ΕŒIΕΨQQŒδΛ?Ε'^¬Ό”,uwΙΡ±ntQι9ϋπ¨¬ŽχŸΒεΫωΨα’ΆΡ\°€p§c}Z–jT½"₯ B gέ‘œV†Ηw“!μ±_ΰšb£+γsͺXϋdΪ;Ιά]……7ZΟ}ο‡?ΐ2δŽSΓψkΏHΟ΅ΐwΰδ―~IΑ/Ό‚œχ/‚Tm3:jch¨ΗψֺήͺŽΎΆη+ž έ–#Ώd©<&^w퐣gΣιΘ%όρϋe„O’‘Ψ|eΏ_Δd₯βδdεΖΖ©Ÿώƒl$¬\%=~ΟΕy3€Φμ}DεΑΣx' ,άκ?ψΚWŽΕdθ\%Φ6άt‡Oh0Ρ·±nΦIFΡd&ŽSΏϊ!>QŒΌ?8F@–"€ ~Λ±ςIκƒq•Ή=ZΥg=ێœ‡Έ―Yž[GψTJΎ8ωΌ―HIS#ΟcΜC‘`5Œ˜Hζ>/ΘςH(ήΣ1Έ3A EΈ\rV. cκΪ]2ΥΘΉ §ήψ>9η+“μ+…­—δƒQ.)δΚoχω?ΰυί*Ρ—ίΕΘ+{ΚcgΪ9ΐ•Or^Zη©Ώά„GIώ “σΧΉ‘yΈΪ}Ÿ\»7x#³]nPe­ŽΏΑε|ϊΘͺ„τ€dcΥ2t6˜>23•πό}θ /©ξη°΅”hΕC?Gpφκs΄kΑ~ΡΑ(χ”’‘s£RύΆψΧ°:e2ΘΠY©MSLM:υ™?ΦωOεΨ d~`ΥΟ Z±œUΎρ5μJOΕψμ],LHRυ=‘’ΑήψΰJZ'Ÿφτωh˜7UN8u_{Ωz°υV>?xο†`©ΰσƒ1εPγaόˆ"7KΗGθ.žήνO‹7WΐE†ΞΪ™Ψͺœ‡ }ή©χ#΅ηQ$―ΩδΪ1aEΞϋRJg¬ϊ<+sΗε5Χηη3άεX“±TΎ₯ϋΡ―Dp“gΈ‹°J.]·™cCgΪͺiFpal“PRx]‡ΔFa;Έ•ΚvqtyθsœΏ©‹ΐ ³Q“mΓσΫY½κNxΒXρτqp€¬xN ͚χ€²λ±Κβ1ηLhΟZ³9υοόii‹Β’jΚfμύΖ“hώΉΌUωW°w·Ρ‚Τ «Χ$DΌΊΝž8»yU(“·—Ϊn>ui¨·kΚƒ«¨˜ %κ]6<œ…ΊΝfς4ZΡ‘Έ―xώ4,‡L²ΆΗJ!9M]Φ#Y„O:+―5Œ$—»μΓ$wεζ¬{δΪ™ΗΨ#+©θX‘ŸŽΛ• ƒkV:§υ]Vω&ΊˆŽŸΑΞA—ƒ¬ 7γ₯K(Ϋ[&VPΰΞ)Η”:έ(Z+9υ¬φ#ίώiOF,bÜ黴σΛ槐»D·)\ΉψS\ŽΫ‡­Κ0Ny g§d[ώe•/œΞκ± ωs2+.>΅ρŽG€#ΐˆ,­πLP`2ΊΦΟW­ΪL*’ΧΨ"-χv¬)π²4=ˆAGœΌUΞMj#*Χ«M7·Χ ]=SYHML£“!άθν’(©LΟΖ!9…dJFΚBΙβh#Cg…>k₯bLPz„ˆŒ›ρxΉ9š ͺ;ŠΥό@*χξέ₯ί$d œ”€-Β%ZΪ/ΰΖΨ$’FE2(+܌k£‘΄pά’6jΪΣι3ƒΘζš?©FΞb³ ο’ξbφ•3₯2\zGgδ,\n;‰O4Ζ`΅‡γK€9»pμ!C7a€.•GρjΆ–ΟΊcΎnίΖωεΨ³Α˜ΟY2DR€BΎ§ι4.¨%άΨ΄™ž'ρFΓΕh!Py2ˆσŽΦ‚…гqω₯’qŸpuθβi―‘³X|}ςΦ―{Z4LΛΙ3Œ$j₯=‘Z–qΩ±ωŸ΅ϋšνΉ΅Ι’Ž<”|qζyWMΥ͍N“Δ2€ε>‰}λ%‘Κs§ œ>ΜΧ(—LIG&%5&°Aͺvθ„Gψ6ΔxpΉδ΄\raΓ&ZO‘Φγ‡όŒœ…KΝΗ~I&SήΓ Ή΄ ξCίuœSPA†Ξ‚¦’”&άYςA;΄χ<MΩtžMs3}nμoR.’ΐ:eήn\Σ9Κx‹ΩH…–σύ=΄r!+g!=—τŽ6B,{^}u?(˜?†λίΒ―ί9M<##Sž“FzΠMs`Υ+nΥ½ΈσΔΏ1πΠ\Vχ°›ζ\Α܍‚m.4žΡšΐiΊΆ4τ.Ξαy“Ο1·ςωΑη xz~π'₯(’ς}_¨?τ'”lvKŽ“ωΘ#‡™NΝ;’O&δΌPžUŸ·ϋ~ΝςšMξjΡ·&η΅”JšUŸg₯SΪ ϊΛε5—ΧŒλ sͺΟgl„{cΎzkχ^ΉŒAcη`uRήwέΖ»:£VΩΔεΞz‘Ηd.m½”² Ο<‘‡ž‘i$¦ΉT₯rš^ΰ?:σΖ#˚νΦμx~;ι‘ΚCέ O?° ύΚΨΜ0ο9ΕΡ€=‚£Ηœ³ž΅:2 §ƒψδ'‡υ½ΧΔνώ6<φ6γχGπ3{Υ—τζ£oψEΖ™j9…ί"₯nΝ=dυΣβ‚5ڏγw(/ϋ6V―ϋ²˜—”!,nΠ³‡3ΫψιpΟ0άΧayώτΧœ³ΆΗJ§iv=ζ”ΊX"Y„S:)―•>Fλ/—»RD φρa—»,Ή¬σ˜ΘJ± "?/Ϋυ»ΐA•NbΐΎΛ*?#AΩρσЈgp9hOΆ₯ΘdθLŸΆΆ8M9βc|‘TΎQŽψLΊhGα#˜πQL>"₯Ϊ•ƒ‘ŒΨ `#όFJίέBFΞ₯ΒWL:n΄Αρn ―Π»uόΰτ¨#οξ¬ς…ΣG’dΕEiώ?G€#ΐΰΜcΣŠΈ4ρf―~ Ο-ΜDλΘ(“‹±I5¦©T›+FlwΓΖ*o”κ‘³ψΌΓΘ0¨΅υ?EύD§―α`Ϋq4ΊžΔ—6THω–δΐ•“„φnqθBΚ2ΑδV8†Π?ΈξxJV7ϋPsιM ΐBF)BPαθFί¨ΠΆ+—)yB~ΞΦώg„:ιθƒηώkΨγ΄\ځ~±`θτŸz?n?IΆ43Έ½”’ǏϊD·τ§°šγBjͺ¬€έΝύ*θιΌ ˜5tžΌ„ΖSFΨϋU‹€5ΫQQΉyΉΩX±”’`“Έ° °0!KΎ{΅4z>ύ ܺډφ΀eHŎoύ€ŸΏ€Φλmθοι@gΉχ!"•[°]§cŠ Φ?ρgAΊΘψβ %κ4Eƒμ κuΣu“}]’ΐƒ‰H’:κ€§ΦΖ!`5–.X»―Yž[Kμ„,ZΎδ8ςΌ+Œ$k"Ο{&Μr"Ν?±Q–cBec xΤ!τ*³ώ’η·ζ… ‘cύͺ9‡Ÿ}Η>Q ύΚΜΠ?ο\.‚ΚΌ\ZŠ₯ͺίH š?χΗΤ¨ GδˆΓz£χΡišΥ€cjRΠF”£MM dθ즌,¬.ݐ#Šx€<†5bT{:£Ήζz `©4Σfπlξκ!·₯2qžJΝΚ₯všαZ_WŠδΜ’TPLN§ΡŸTyΞπτu‰‘˜WΗ“Qƒ|Έv?‡oΔB½ΕΕB―Œζ}ζΓ‘ηΘψ13«šŸXυ3΅)‰qτχ7` '±w0ΥIDATνC‡•+iΜih§oO!aΥ^<[2‰w*{N°σΙΟGpήδσΓ<Π[ωό`F˜™όκΉ‰~FΜΡΥή‡bρe–Ζ§™ΉwΏϊ5lϊΌ½χ£θ•ΧμrΧ ©9ο₯¦XυyV:mΫ†i.―ΉΌ¦ƒyΑ’>θ >Ώl-Άο¬TΧ‡¦Ί/Ρά Γ[\Ι\±ΎΉ²'š~έF―v+4‘ϋνΐΑ>δV<τӐ-¬7 ξΔΒΛΪΐ ΌN۟ΕήaΗσΫI½PκτŠΙΙΒwD¬xϊψR²žYσœbυ€RΈ³ζ±Κζ1§΄%ύ²yΦϊΦaζμ4~ύnώφΙ°ΉdΧπͺ{\‰­‡Άαxγγ…’[Κ’E’SμΧ†Ζδ˜3“˜€*„GyΙ2©²ͺMμΞvΗΟ’gŠ6kχuθ;Ζ }°$9„ΣVuGžΏ`νθ―±>ο¬tήφν{Μ u±E²§tR^{Ρ ˜Š°‡ž/\ξϊβΑzΖ&wνzδZ™ΗμDVRP±"?νΛ₯U3Ώ¬ΡXιdžl黬ς32t‘?Β“ΛΑ7zŒθŸ#'qύς>ΈΔΐ"QΤƒ G½Vξ‡KΌΞv d0’λm€τO'δ Κz˜#6¨νX‰¬δ%²Yp}ΙΧQ΅J2ν>ŽCταR85πΗ&z4-°'Yε §3ŠDιΜ{?ϋhrJŽG€#ΐ`EΰZ{J \ͺαovΞVd{«Υ ζ67=Ž8©•ΞE"΅›s•οœo=°OγdδltτvΎK΄ΣbUf]^†„%΄›¨Y&c‰ς xz©kχa½P„Žk GP;L‰¬L¨1ŸΗΠ+lF™œ„ͺQΠή|Τkδ,Σqs„>jΛ†ΞRŽρύςwΖWνζ Ζ ήHΓχνV7nΞpΎκωΏΓΎͺu‘[›•Λhω\„…Κ˜„A,QS{›ΛŸ‚n±sqΕ^ϊ“‰'ϋp΅ώ4>~ηˆί»„·zΆVV©§ΧΞSΣN%Όk8}κ¦ ‡‚†Α%¦,λγΐԌ!‘•ϋΪϊskΨ$[¦ωβΰσ.8W€&HοN‚ ςL B&τ!DλbγVo ¨‘σψθσχεpCΣ-±t±°i§΅c±θσΪηΰr)τVδR(_φΙα¦_ox  'δ’g°?¨Αϋ’xΝdI|4“χz_΅[4¬w­-‘'β΄HΏ¦|U¦ΦŒ₯d€Ž˜Κ6‰gC'†ιCf}ΒΜI—tΌ<ΑΰY>²]( ₯ ?/[uθ!Gr€JIt εHEVΆ’τkq²σ©Ζ™ηΘκψω°ΐxbn~`ΤΟyς%σΰbγ[Π~/ψ5μZν‹εf­C:w‰gμ|ΪΡη#6oςωΑχֈI½•ΟΎƒhtfr~Π“ŽM„Ψ #)«Θ#¦Αž‘3«>oύˆζ:Sο©μrP©Ήs'Ϊ³"獸bΣηYίŒ8πΛγςΪ.―}π΅Ξ`UtFŸ_-Υ»‘©Όˆ7γό§΅>|ϋŸ€’° ˆ~;ΔKϊuεuȟ.9»ρβ–jq›$±ΉΫCΈ9ζΑ‚„UΘN\&q@e–Œΰκ1 ƜhÎη·sz‘=ԝπ„‘Ι/μ)tcΒΰ9Εζ₯kΧΤ©π©4οQ­PˆΏ–<)|(­Ÿ\όŽΈVαωέn’Ν‚+O‚<©ώ뻁λSvS"€ ’89s€γ•²—³PIΌMg[γLj§ωϋ: {v~₯ή`qS―LαΒωΓXΖIF­Δb‚υyg₯Σ²gίcŽ5’Exε sςZ‹–a:βz:.ΈάΥbγ”Iξ*‹‘μ‹Μq¬α5@TθƒGV’J™—ŸNΘ…3sΏ¬Xι`[ίe•Ÿ‘ ‹πψq9δ&ύ³‘ώ*ͺΘΠYxΫ+qoD:{ĞmG‘] W5ΠjΗ#’:#Už-$’[ίVΉβρ5ςφ²΄λ'OΘ½#ΜΔ­γ…SFƌŽ,@AEYε §3ŽDɊ‹΅Qγ₯9ŽG άͺΗ;4εξYΏ₯ŠY΅s»ΧΊš± ­ΕI‚fEΖNΓώοoaΰ(ŒU&αQ²X•Ά`΄ϋN λ‹ ΗΜέͺδDΙ`Y°’P€υ‚u8=7ήΓΗrΤθυ΄σ€œώ±^)Z4ExP‚<ΰv ]o•5/ŽSήΩ5™1žθ qΊό+>FΞS=Mhnig’[@ŸΨςQ½{³„„²nμƒ νž€.,ϋ\|τ.~τ“qoσύΘ··AΞμΘΑ ΥΌ¦φΚy#Fτy±V:#τy\^syMϋP°3XΦmλσYΨτŝjdfŒwΰσO"” pBΑzδ“Φ!l[7Ϊμ·ncuIΩ8߈g5FΞƒτΒώ)½°χΚ5_χ2/’—:V―Ω‚ υΈ|KΎ ?6=ΏρΠ3γ‘'τ9>ΎR'—ΝBNŠμΤ…)Š’y]ΞΧόܝ¦+ώΗrM€«‘Κ™U΄ œ&ϋRl)!e^>:k~‹Ÿ½₯3XKy %dθ¬1K{|»0*鎐¦tMΗπ.ύ‘eΦΈσ‘‘·Εe•ΘϐΖ}YΡ6ο΄λ΄Χ%ρ6ιΑhˆο›JΏŠ/Q«δγζρΞ•εΤ‘ίfœ<δ?:TΉA5\.9.—΄A†"t“ρrΙ`° ²ΡΤt[ ‡—Tδ—l§h—K‘/ Η@ν¨ %ϋߊœΔP?νHUDsYβ δν~ιΒwΞ‘&œoCEER‰χΌΕςΗ?Ϊ5 Wδw3·…-„~t‘λ³χQVo‡Ÿ#`‡š˜ͺvB?£†Yηžοβž‘Α’]>ΧηΝΝ›ώύ ”ΓηΔΊήΚη‡@7·œoe~π­*‰vύqQ–>΄ΗΤXε 'ΘζC˜ΨΫϊ<σϋ‘žνΚAΉ)ΣςΪ‘φό{@Ξϋ€©ήš>―VΑJ§V,Αε5—Χ±’ΟΣNΔ{Ά!?U~ŸιΖω㟠/Ψν-^[ŽΒΒ|΅TgϋuΏuΝrŠZ."‰υ₯›Υ-χ¦GΞβίt^ΙךŽΣV1Εr„Τd₯»pΉS?}D„UΆFΑ+P;ιΑœ‡žIυ0yΒ°fžΚ’η”(σ,yKΪφ˜#g`GW₯½¬N•#Q³>(”[ΉŠά«Μ¬2Œa†ξχΰ-ώjΚXςpv`όŽ'mΟέάv½GΑηκμ(Z&’TψΈb5’ŒOENXŸwVΊ¬™υ˜cd1χrМΌ”ryŽ=τΈάUΒ©_‹r7RΉ>έcˆ¬δCoβ$Lς%hΛ¬θΒ₯οš•Ÿz§‹τψq9¨RοyLιŸΝh$³,ƒtM2y(ή°‹ Ob½j$1φϊsήΎ¦Β©&kZŒ€Z‹}wsn™ΚΚΗ‚₯(ήό2܊EΖCː€\[RŒΝ•/cΓύaΤΦ}€:2+—M²ΚNΓH”¬Έ˜0^#ΐΰp"‚ΐ­>)Β°ΨXvj’·τ4hE„‡)FE‘ JΗMZgc z²"g§Ζ`z ΣeQ<θKˆΟǐι«ψτΜGήH©Y›―2˜ξDg7“λ RμoβκBQ–Χ8qΠcόΩ&©ς+xqί&,d)ςΑTήη_ϊ}0Χ7iώΌƒΓτ±=Oψ؞…Ό5„g›οΪnvN¦ωκL”τΪBwαΪi‘3Ρ»ΚΧϊ9ΝθθCYΆ`ώœG‘>Ιl Ηχ»Ov†=3ƒΤEα―5όΥίόGμ*κ]N6k‚gε oξΗ°Aˆ,*ηPwΒΌΑηνΫ^σλ€ Ηΐ΄Zα$1¨lJ.Rφ„crΓmRRϋΏ•φΨΖAۚœφLb’’ϊiΩβN¬ύΕ΄YNέΧŸ[mc”.ͺŸNλ3ίŠiεM½—}€NR‘C9nδeΘΖ‹γνθΈFkl ”‘5‰‡Ή8ΘΛl™ςŠάμoπ.(ͺμτaόΆΠΛebΞΒEJΨS΅@μ$μz~ϋτԜ‡žiuΕ [0Ά”Λ‘,ΒώZρœ²ν₯λWHUΫsΊ#pZύΝ—P’‹Θ\²%TwύŽS„=ϋ»‡³ΣγgΏ/F5t’ξ*ƒ»|‡dmχω[^Œ ΙΚ—ΏYR¨λΠ₯ΑϊΌ³Aε“ΪcΞN$‹Ή—ƒζδ΅$AO"ν‘ηΛ —»ΎxΨ=c’»yδ†šΗlGV²ŽCςΕ΄°ΒkKtαΤwCΛO₯«ΎΏΣ94~Ύ<;γr0 :1¦6~ έΥnιCWq)ΦdΗ#_58h@ΓEABΐŽ»ΐͺ&#’rΊύϊ.-άTM™ik° [x8²3ι#ίνf\6ΈnZ^³ΚNg‰’ƒ1δYŽG€#Yβ!ύϊΕ“ΪYω6₯Iλ滀ڢΦΘ2ζpk₯ο@²>6έ€sW} t½Ν%a}ώzάξ―A».ΐЬέΨ_^‘οΏQη5˜υΐCFΟΙ’3…KWίD‹Z'KΆBQqzϊ›Π\Σ~`]™ŠUΊ1Y_ϊ¬W b¨ΖΦc±bE²R4š# Ύ†ΧJ{6~{zΘ,΅\ϊΰ^Όu7J6xwμΛήw…ς1ήF#†€ X&xΕ φbκ±Ϋͺ*Υ3mbdh˜N%Γ±Β §΄λͺΫQϊpΎΆΈO:S6ΰ62ΐνSλυ!’Oͺ)š³όΤ Ήξ3Kvύ]ύbδ!λ€dΕJΩ¨ΰz[;ΘX»6nEι;§½γ@$wJF"υΰ€/lr•VΪσramΌtrŠή+§(-t/;.ϊ^ΠοcΠαGsχ΅ηVΧδμ,=ΔV=¦οk㫨ΩΪ„yωBT=οBϋIΛUWQ {„ˆF‡ n{eiτΎ%Ϊwβμ₯ŸβŒ0σδΰrΙiΉΤŒφλMδ<.η›=€¦3?φw½H)Η–5w)βΉ4Ÿ:!—˜nΙ‘chkΪ‡œuτάfWα@ΆRKZO+'AΗ½‹4Έo"hY«rήΣΦ%Ξδrƒ4Ρθλ ¨q 蘬F~"ν¦!·8ΨΣ«Ά=Πs“ζ[isοάƒΛdθl蚐]ŽMΩwqA΅ŸΔ¬χLk‘ξΝΕά=G4X˜4,›œˆ‚U?Σ6FiSσC|1Άδ¦ΰζυcη“δ-8XςˆͺN zυA|ZΧ睛7u0EΥιάέΧΦτ₯ΨΡ[ωόμ·:?ψΦU„GΆΰΒαZovεN+sΪδF[>o M*΄œχΆv tvޏzsϊ<΄!…v”Γ”Ό ³΄gGΞ+ j~Νισ9ΙJη_StδpyΝυy«ϊόŽWώJtB―Œ„γ½^Τ±mfŒœι–/)Z ey°·½ Βκ‘―™³.ˆAδ“T¬LT>”adT»₯pQˆ΄DeΩ‰"/ΜμΗθAsk€}ΝyθYπPΧ.܍±D² 2Ӟ>ϊ±ž[πœrΒŠΥcՊΗ+vιŠχ2ςβΰΘ%ΤΆ,Α–­Β"Iv=χWθώώΏΏ [j˜έΓΩ‰ρ³Δͺ¦pΨοk‡žΏΌŒ |a=”hŽφkcθjmΥδP’΅=V:ίΦύΟ‚zΜٍdy9¨ο 9y­§Šβs.wϋrΧΊGωyΜuΣςΣ!ωΒ±5‚‚)Ί0κ»Aεg[Υi:‡Ζ/ΗΡu‰ΛAηΖƒ>t57‡.AMY‡έΟfͺ}Z.Y28Μ«ώιŒ Μ—•θΧwο`fΊ£χiMB³.+φδΟ ‘ž€|φ£œι! ή_ˆϋ}β„Ύ·¦ε5«|αtΖ‘(YqΡ ?ηp8ˆ"°"ηIΌLF»7»ΟγΖHΖiΈΔε.ζnEΆb‘KqœΟ^=Ϋќ“w l΅`b$ΧZ?£ΰ(rξm„K+nzz0:= ,Jw‡,Λ)π:wν•:ο9m)μ]£_†’ΒgΡϋsŒ-ΚGE Υ©`Jtuυ^ΊΡ.τw-)Ζ@ΎPρ"βškΠvk)JΦμΐΦ\/ο7šk5ΖΣή*Δ9ιƒ,}KηΗκΠΊ»…‚αuΚf<_Ύ‹“§Ξb$.•ν -Uͺ°ͺ¦bΗΣίŝψqωάR*·α‘ΗžF‘.°†R]σYr|ά+9>.+Ϊ‹oγŽΎχ6Fwαρ'Ύ.ρ―φω-ΖΞ—Ύ wJž½‚ŽΆ&τχtS ¬ί΄;vK†d¦F†j:cω5O’DYŸΌ„:2·tΜά¦Π±lέ~ΌϊΚ4\οΒ½…‹hΙυ.†―žD›lμ9S‡«{vKEέxώoώ G><ŒZ²‘«zτiμΫ‘πI*^>ƒΨα€…φTΖΘΨΚ8ψχΏd„ξΞΎδγΐ_~ɍυβ°pα,ϊ/A£1;3Έ‰ύ³μ<·ώ\ϊ䐞τ°$_¨&Ο{žkJS–αώŸϋχγΘ ^2‚ψ+ʬžeX@/w&(š|«pΡn„ΌFθ…t,‘Χ©2βρUqRžό‚‡žΈHΧcνΰrIyޝ“KυŸžΑ&’#βμ“Q‰—ώ~9N}ϊ)\ν Ϋ*Εΰή»IT ‘KŒ7_cγuμ ΅G ²TŽ=/VPlώYρίβ”|•2³τžΘΊMΖqτΟƒΖ£o£YqΘ`‘σ#70HJ‡+Oi’νόΠΥύςUΎ'0Ψs])„ΆcΗq©²’ Ξ)‹ζΫ—Ύχ_Qsμ$]ΉŽΫIH₯]ͺ ΦΊQXΎIy~Œ Ϋκl76f+‹ξβnBδ˜uHKΝΖFχ ^ ώvχΦMڍv™ˆτόπ*όZ™΄tώ“Ρ”AŒϊ™Ά-£΄Ρό°2UΕδ`UΌ 7HμοΗmύqoαrδ€’(·H5r&WC\j;©™O6}>Œσ¦¦GsŒψ}­(rυ₯X[ωόΰΰό {@ «_Ζ $­?>|)ΫΎ‚½/T«”έW.ϊ85‚AΞ³λσ6ޏ”>F£Όyc»ΆδΏρΩΏΓΑŸ–κD%w`+ή… ]Tfz9Ζ½ΡΤ7ͺZ29]oBNŽI`¦  έ†‡‘šgXΠΩΜaR§(”`Ȝ†ά,7jG₯₯’u[Q€,.ΛΚΘHŒ½ΐ²*Έ¦#=8γ‘gΙCΕF$Ν―iO ½$‹η”u(…Gk«lsJ[ύu?‡ύ{Λδ&'PϋΡ8rŽNΣ/l’κΡ ϊήo>‰ζ}ί6[φ=œΩǏ•ω°ίΧ=©΄ žοαΑ §Υ7K8cm…Ξ–ΗœύHα—ƒΞΘkAŠζ.wFΉkΧ#ΧΚ©ρ§«ο8R‘•%Ψ΅…ώdεg°ϋ8]7Œη¨‰ΐo-ΏΏ_i―„S†»žuΆ«~»Π^%K+Γ|mMΊζL-Κ(r±hΞ™βFυKŸ¦@ $9>~~œ €«%ό³6μΗ+τgώΘBΙVαo―!ΙTΣyœΤ|+ Umί¬Fε쨫±ΨƒxΎvΉ9$γUWy5\εήζ›γGΠ¦O7ΰΔ''ΰza·d‘½^£?oq15ΥrŸQPΓΓB{Μγ`ΠπΙSŸaCιΣVtTνχή?ΝχθκρύŽgP…–­ηΦΏ:σ9ε‹Xq'XŸχ¬ŒgJʏǔ2‚–r§†%Cηεk‘©[ΦOΘ(ΓΓ~ΔRΖ’‰†˜4tΈ\FΠQΉ4rG~Ÿ‡―‘•xΗ‘ωŽg…?ί›ΗγsΚ(—LΜ ‘ζώSWΡϊl 5ό΄Ά\†Qd~±Θš\Έ·VΙσ½†ˆ’i€3€©YΓ>η5tf“σθν Λ¦|©Φ›Έ!`ίhΏ‘1Π¦¨ώmƒRρfΌϋΗ? υ[_–œˆ‹PuPψΣ ¬zόkΨ·Agψ­”Νہ§_Ϋ‘œ‘>S‡Ÿ5ό `|Ž?X˜ΌŒ[I±κgVڐΚζ-WpOΒj―WηͺC±k}tl6>™τω9›7α|ΖϋZaΗΔύ­~™υ₯X[ωό Ήσƒίύ΅%Υ_΄χ(ˆΰηoτΙb‘σΜχ§Ϊ²υχ#•Τt‚Mšή― υφμΙy iUŸ—yf₯σλrΤfpy- ΧηΝισ‰+d‡>Ω^(ΘΟ7Ό»§Žϊδ­Ν§/Ζ1ΨΡ"ξͺεS@> υώaDγ@.O ―XΛΔΊrΧΐο'ΰyCή]˜ƒbΧVTh"!τwΦ{·˜s υˆTΑδω퀇žUu§<%M{ϊ8‡ΎiΟ)՞ΐFD‹«,sΞ!cΆ¦-xι…ύκbAη©·ΘΘYzQ?ςΫχ‘ωχ/‹αi΄°ωώ›xニf+6,ΗμαμΔψrd"3μχ5ƒ'šΫYHMτ.νH—G1ζσ±ΆΗ@·’Υ3ځH‘ƒΘkeXbθ—Λ]»ƒΕ*wπΘ΅0±{¨kπ1-?䋦™€Ι.[ΪΊ‰)’£Ύ›Ε(?Yε.+~˜Ζ/ΰΐΞύ.ΟΉ:4μΫMΡΨ¨NΡΘ™Μd›P£f£IVύΣ–ŒhΔΰ(€¦ε΅B ϋ_$ρΛͺ?.n―+ό4€ΌfθΓ*—88Pϊ–ΑG_εp80#pο.νrHm¨±@4νυχŸΗ₯¦χqmB“‹ΙεnΈ2ebWZ>""Θ13‰q“•&ϊ’·ϋΠs΅§ £\w΅Ύ‰šΔΧP₯ωφ T18pgjίΧGKW‡nΎ·0ƒ]λw “’ϊChnω6ΥωfλΞ΄;-‰—ξ(b:–SΟΉία·Ζ±‹vʊAΕ%l―ΑՎ…Ψ\])~•θξυ―žΦnΛΉχB:ιQΑΆ#xσWq8ψ₯§‘―3ΨΔd jN4!kχΘ§ρΧΧxψŸπΦμΏΓή½zcΆ>\"γίΤέ»Eγ±Ϋ·ŽΖF1Π€Μ"7τν‰|£Ήζ3λ}ρLύ/{Κ„ˆBβΡ„ϊC΅κ%+‰S? πμp—¬ΖςΕ©X¦Ήgξάυ©ͺΜ/ρϊνQάGΨ?uGkΝpψ­#δ*ψ0ݞqπkδʏ~r/μέ…’oDb‘œΎBž©ϋΪζs+΄£κ·9'ΨsdUΎΘU²=οYHX$E`Uy ―ΔωmΑ€„²‡Π?ψr”_αrΙyΉΤζ7ψα`žΩW²"ίgUΌ&»ΠήqΣηΞ`’KžΫ’."V€ώδLEJί»cX€JFλΕ½έ8OζGprς½qζ(TšϊνR&2ψ‘χψ9Ϋ†œομξ£JςŊΊ;«»Œ΅5v ofΙ™§«=#r[ΚOΣΌώύ^xκ lΩ Ρ+—”_OO Ϊ―x£9Σ…ΫS‚A‡w~VΚώŽίRηe¦ηΘ‘ρLΟGšN˜šδς¬ϊ™¦9 .ΰsFЇΏž΅pv=cd―TtO έy=½ ¨Ώ~-:6 ŸLϊΌ“σ¦Ύ‹QvΞt_+}ΰz«‚„Ο/Ÿ8˜θώήΕ…£ος P !ύ|λ‘χ«£Ώ}έ7š3•g’σΜϊ<γϋ‘Ψ3ιΏh”Χ {Vε=9Ο’Ο œ²)½Œ_.―Ή>oVŸŸž>ψš;ξjυ΅€ Θ[­,ττ’³N罩ς‘ΠFJ֏ŽŽ‘h>Ό΄Ωͺβ7βΩǞAnˆςΣCgρogŽΐ`Ω-₯ΉΛU―όwμ^FΞαgί±ϊcŽ:x©΄\Ϊ^P‰τ ¨ιፋ'€«Ι»ρΚφj$(«f‹)~‹F?%›<Τ·|ςβ°γχgB,S₯y…/β9’…Ϊ†6!F²ψ5oi3}ΣέίΑ«+½™aΐdΧύe··9ŸyN½υύς*Dχm’3xΥχ!N†.?ϊωΏ|!cΗ7ώ{δˆ ϊΝόo¨€«™ΫώΒλQ­'Ο=΄uΤ•hɚώς‘Mύ©†Χ΄aœŽ=ίϊ[μPΆ]j?σ/}<¨3wΌŠο<«xχαδOˆγ·*Υ1πςPŒgώΛ·hζ=GynZΔυζ'λΰί)ΞƌIΉδ₯ό«ού‹τςΟ:~ΰ‰ϋΪφσΏΟ=φ²΅xŽ]ΐo?3ήΆ”΅=«tyk_Ζ3ΕΕZ€ΟθwpΌ³SΊΎ| ^άύ%d(­ΟnΏφ+ΌίΪͺɎ΄-―5,GsRσe“Λέ πHεnƒΰ€RŒηώždͺ’Ϋhmͺι0ώηOή pΥΪV:0軬ς3t ΤNŒŸRWTώr9θ ώι?Β₯Ο«ΫKήωGΌwJΦ ”βš1πʜ0λŸΤ6«¬ϊΖ™Gι“ς+Dζ!·“ϊΘτΎbˆR9ύšx°"―55{“©ΥψFΥn¬rΖ.‘ϊŽ‘Q‘B`V^ εYε §"QϊΏΏ³β’Œε<θ”––Š΄΄u<θPπώΫ@ hMΎHέΨΨh‘–,δe€bω,¦mgοM`hΈ½AΦi-Tnͺ¨:xΟ2U‰Γ…V,/DE‰‰[ŒΈdΫr&§†Π>¬Σ%΄»"ٍ5Ι©Xτ°ιΖ-ŒOt‘eX0t u$‘ g V.ZLgqgf 7ϋšƒg‡ͺ2ŒΧ“²]ν²g:ΙHΘ€5όοΘkψWνψύ1†θΌψ]SΉ  ρtυnΡVπυMΦM‘ 7•δ`I!z{ύΧO£SoLfΠ¦°σUVz /‰‘bvzη.ϊ¬o+d›^όΏρΤΦ|ρ΄»ζx]uM)_›„hsu‹Œ΅O’ΝAO-ίΜγ ­$Li»Οm˜Ψ Rml=οA:U—Έ\’†ΓIΉ”΄¦ks3DYaNστ£±!@΄xωnˆ€\ŠΔ θ$žLό’Σϋ¦i.#eœ@F0άsa’υ‘|Ž˜π`$bΧΟ,6οBΑΚdΔ/^,κΧυ»#θnΊ¦₯΄bO6}>φζM!ΆίHήΧΜϊRŒι­|~œœ\ξνΘLMηΫΫγέΈ`φ}Ηβ#ΑzZy?²Θ’_qλrΠ― K–Ϋ³)η-1χζςZt'εΛ|•ΧχοίΑΚΡYϋψ¬ήφ46¦‰Y#-ŸαΣ³Md—0~’ΆΒ°€oΥγΐžυU(Ν00A₯θ ΧnΤβγλuai>•ZφόΆλ‘Ηθ‘nΥΖ;+ž>Fτ¦ςX=§˜= |Ή²κ±jΩcΞ!ΟZ_Ο’*χ{œ)ΊΖ‘w|œͺώS?ΓG99Ψ'.gaσΗpόΝAΥ{Ν'š†μ{ϋŽβ»M‹Λrž7‹‡3λψ9€g$ξkΫΟίBϊ £ζΡɁ€/γ¬νY₯cχ˜³Ι"Rrм֍YԞrΉ«FLπ‘e Ζ,w~G­ΩχΘXΆ2±EVςcE~Z•/ήV4)„LlЁAίe•Ÿ‘¦SΠwdό”Κ’ρ—ΛAΗδ Ρπ6v •“.M^B“ήΘYΈ’Ρι"¦R³¬r0’4ΨψEQ 9~Vδ΅X₯ξΏ΄ψε’‘3εNφΤAU2“ςZ(Ο*_8q$JV\Ա㠎G€#ΐ˜#ϊΠ5`ΖwŽΨ›£fΗ'ZΙ8™½ρρΡ\τέ!Σde΄wGϋχŠtdf’ŸŒ«<=ZΓοtlή λήΤΫ™Ϋ64@«νοδ‡Μiΐ…S&’5•υ·5 ίTƒΫ±Q6r& —ŽΤΤ™$36 μE²-«μΩ}n­ΆgΏ|,<οφ{™Έ\ςΕΩYΉδi»ˆZSςΠΛE4Λ /—fSΞβiΆUŸr=4—Ρ_xΉyŽΒΫ'ίΪΩυ3ίzBžέκD;ύ±ΦωdΣηcoήdAtnξkfcz+Ÿœ:Θ!“ε6·HΓzš?²ΘAqλrΠ  Y–Ϋ³)η-°φεςΪw°•/\^―…K6r¦(Εθjhς…[w6w5Œ¬H.FξrςΎ_ eή™€H΄X©)dd"RXσόž+=˞0α υZυœbυ€²ΐ’aQ ÊζS&ƒ‡σ\_$`τσΗڞeΊσ˜³ΪΏΉ’Χ‘Έ'΅Αεn d"“I\±GŒκ,hX}ώXڐhΨ"(ΫΩ‰€fYίe•Ÿ‘¦“"rγΗ>ςNQr9θ’5ωΰw)’³[¬°ομoρή<ζ\εF51蟈 XžΟϊѐ˜Ιc•/œΞ]V\Œk㹁ΡωΑλpφ”-’s892WwdΦΟΝρΒK…F@Ω±£³±7ZšΡέߏ{ρΉ(«ͺφn·δxΝŽ€\^‘Β–JΎΕϊu-*V ΅tJ:‘³CY)Ζ9Α$Ψρ _† ΏΖΰpμ 0ίε«l8-G€#0ΏδŸ [{»φ~_ύ›ηe#gκwΛœŸδϊi°; άσG°Άω5ŽG€#ΐΰplββ(x,WαG”#0>…ζφ.LπΩΧRƒχ~τάΘΩžΕΰ„.—œΑV0zΠŠ„§sT4vŽυλΪΎρ΄?ό9ςΗ„ηΔ>όΎvf c]ώ‡βί”x-Ž€ΈΌΆƒž—vΎιοzωννixSqkΧύK΄ ΞC=ΔB54Ήe’0k%p«OžΗXΤpΖα„ŠΏ¬ΒŸόgΪΞʎ„ΡΪύ%μυπ‘Ξkζptζ»|}ΠΗ—χŸ#ΐŽ€¨&—bί €h R–/‘ †Qwε],ίυΰκŸs=?9~•#ΐΰpΣΣE FFo Ξ‘β„B %YrμŒ­HΊρ鹈ŸΔΠΐM4_Ήfh@ͺοόzδ˜ιkΖ•ΪOρωGο‘ώJ=^Ή€+u5¨ϋτu;~}£‘γ…·ΔΰpΈ\rζ>xψΕMκw;aA‰δάϊq“˜/œ+ίύbρΊΡχJg›΅πηh~Œ#ο…/όΎφΕƒυŒΟ¬Θq:ŽGΐ,\^›E*x9A^ ;±Μύ]ώ‘Χη…wαHJ θ*jμ’xCηΥ›φbMf":χαΚΙsΰλ|n!ž?ŸXž³™―R=”Ύ)‹‚ψƒx]Αr8§˜οςΥiΌx}ŽΐόC@Τ?Χ -1Λδξ u5ΰΪΥ1’ŸUŒτόΠUΣ1n.ή#ŽG€#Έ‘s@~šˆUCηαΆKΈL†²WΈ‘sΜέ₯3cΔ(ύMΔϋœaŽG`"ΐεϋ  †‚1ς}O0’Έyζ†X‘`TλΧΩ‘yπ(ωsτΰωƒΠc~_³r¬ΛPό³#Γ)9p ΐε5;ͺ‚Ό›Oϊ»^~λΏ? Χ…ƒ:³ί3†”<"…!,› ω3δ1ΩΩ9U-![¦~η'ύ>SG|²Ωι#¬ΘE.J‰(‹=σ,Η–μ,ιπ&°QωβΠhYΞ²Ίeζ„Ι˜ ω‚05"²δλά^Ζέ|ihܐύŽ$Φ 0@©\v`d=ΘΖΒ¬ˆπ!½wš ˜Φδ±bcQ8'zΘ?Zΐ“Ε 3[,ŸKfS*͌σςΉ™Οc ϋl,δΗ&(βDΫςρU ί“dΖ„ Ω;άzuΖύq/θϊΖΈ.°ΕΰL~ΈœΫjΏU:’ρ·Zω"Ϋ‘Qς(²/ΩςΗT¬UœGΌΘ*υ}-q₯ŽT+`€ηΗ<Ύ«ήΓ~΄Δc‡°σΨ)μ"Φ„Υ&vkΐZ°c2YOδkcxΆhy<™Πΰ§ωΨCsΚͺ&±«±λ±ϋ<Τςxy²—% G4S,Hηη1ύΰnΝc²„œ±c˜vvΘφ~ΕΦς†!ίΣΖ₯oΊά“Έ—Beϊ7ξAG» Ώϋ¦3y —ύ Ž΅q€β|…—]€S40€{—%ΜΘΈOΰ ‚ΐ bA˜λΜ‡λT f€Ω`(e`X6€-`;Ψ φƒ 4SΰΈ Ϊΐ p•.πτw`ABCθˆbˆ˜!6ˆβ†x#AH8$!)H:"D€Θld!R†”#mH5ς;r9…\DΪ‘ΫΘC€y|B1”Šj’ϊ¨9:uCύΠ04Š¦£Ήh!ZŒ.CΧ‘Uθ^΄=…^Fo θ ΄˜2ΖΐŒ0[Μ ΐ"±d, cs±R¬«ΒφcπI_Γ:±^μ#NΔι8·…λ5Γ9x.>_ŠoΐwγuψόώοΓΏh=‚ Αƒΐ"$ 3%„ ΒNΒΒYψξtή‰DΡ‚θ ί½$bqq)q±–x’ΨN|Lμ'‘H:$’)’Δ&ε‘JHλI{I'HWI]€JΚJ†JJΑJΙJB₯"₯ ₯=JΗ•*=U «‘ΝΘδH2—<“ΌœΌƒάHΎBξ"PΤ)/J,%ƒ²€²Ž²Ÿr–rςFYYΩXΩ]y’²@yΎς:εΚ”*€jP­©Τ)T)uuυ$υ6υ F3§ω’iy΄e΄jΪiΪΪΊΚX– WežJ₯JΚU•—ͺdU3U?Υiͺ…ͺͺ‡T―¨φͺ‘ΥΜΥΤΨjsΥ*Վͺu¨υ«ΣΥνΥ#Υ³Υ—ͺοQΏ¨ώLƒ€a€ΑΥ(ΦΨqZγ1£›ΠθϊBϊϊYz—&QΣB“₯™‘Y¦ΉO³U³OKCΛI+^«@«Rλ˜V'c˜3XŒ,ΖrΖAΖMΖ§Qϊ£όFρF-΅ΤΥQο΅Gkϋjσ΄K΅k΅ohaκιdκ¬Τ©ΧΉ―‹λZλN‘»Yχ¬nοhΝў£9£KG}GΥ³Φ‹Φ›₯·]―E―_ί@?D_€Ώ^΄~―ΓΐΧ Γ`΅ΑqƒCΊ‘·‘ΐp΅α ΓηL-¦3‹ΉŽy†Ωg€gj$5ΪfΤj4`lag\d\k|ί„bβf’f²Ϊ€Ω€ΟΤΠt’ιlΣΣ;fd373ΎΩZ³σfοΝ-ΜΜ™Χ›?³ΠΆ`YZΤXά³€YϊXζZVY^·"ZΉYeZm²j³F­­ωΦ•ΦWlPΝ&›φ1„1ξc„cͺΖtΨRmύlσmklŽeŒ [4Ά~μΛq¦γ’Η­w~άW;g»,»vwν5μ'ΨΩ7ΪΏv°vΰ8T:\w€9;Ξslp|εdγΔsΪμtΛ™ξ<Ρy‘s³σW±Λ~—WSΧ׍nšnQnKέ.ΈάύέηΉ7ΉτpρΘσ8θρ·§­g¦ηΟgγ-ΖσΖοΨΛΨ‹ν΅Ν«Σ›ιβ½Υ»ΣΗΘ‡νSεσΘΧΔ—λ»Σχ©Ÿ•_†ί^Ώ—ώvώb#ώο<ζœ ΔCK[ƒ4‚β‚6=6N ξ q™r2”Ί2΄ƒ₯Οβ°ͺY}\'Μ™p&ŒΆ!μQΈuΈ8Όq":qΒΔUοE˜E#κ#A$+rUδύ(‹¨ά¨?&'EMͺœΤm=;ϊ| =fz̞˜w±ώ±ΛcοΖYΖIγšγUγ§ΔWΗΏOL(OθL—8'ρr’n’ ©!™”ŸΌ3ΉrΠδ5“»¦8O)™rsͺΕΤ‚©§ιN˚vlΊκtφτC)„”„”=)ŸΩ‘μ*v*+ucj'€³–σ‚λΛ]ΝναyρΚyOΣΌΚӞ₯{₯―Jοαϋπ+ψ½‚ΑΑ«ŒΠŒ-ο3#3wef%dΥf+e§dj3…gr r rΪE6’QgGξšά>q˜x§‘L•4δiμ©₯τιΓ|οόΚό3βg*P/΄Μ΄žΉdζΣΒΰΒίfα³8³šgΝ^0ϋαΏ9Ϋζ"sSη6Ο3™W<―k~Θόέ ( 2όYdWT^τvaΒΒΖbύβωŏ ω₯¦D₯D\±ΘsΡ–ΕψbΑβΦ%ŽKΦ/ωZΚ-½TfWVQφy)gι₯_ν]χλ಴e­Λ]–o^A\!\qs₯ΟΚέεκε…εWM\U·šΉΊtυΫ5ΣΧ\¬pͺΨ²–²VΊΆs]ψΊ†υ¦λW¬ΌΏαF₯eνF½K6ΎίΔέtu³οζύ[τ·”mω΄U°υΦΆmuUζUΫ‰Ϋσ·wοˆίqώ7·ίͺwκξ,Ϋωe—pWηξθέgͺ]««χθνY^ƒΦHkzφNΩΫΆ/p_Γ~ΫύΫj΅eΐιηΏ§ό~σ`ΨΑζCn‡φ6;ΌρύHiR7³―ž_ίِΤΠ~tΒΡζFΟΖ#ŒύcW“QSε1­cˏSŽμώθφρό§„OOf|&}^χΕκKγΧ°―χ³El1[ώ)€Α†¦₯πz΄$ψνΠe²βl&Dqž”ψO¬8ΏΙΕ€]ΎΔΝ ~£l†Ν 2ήeŸΰ±ΎutiC"IstPψ’Β αΓΰΰ}H|lό²{€“ΉŠ3‘LdgΠ­:2jιΐΐςoS=p6²E‹ pHYs%%IR$πiTXtXML:com.adobe.xmp 1166 2872 1 ―”}@IDATxμ½ytWžοω5B !„$$$v΄  ±ˆEF Ζ6”—Βe»ΛνrΉ–W―_Χσ^Ο9σΗϋgfN1gώκ3o¦·™Χ―«ΊΚ―μv΅ΧςRΖ`ƒ Ε"v!„Π‚„hCHhΑs#3#22323ΆάΔ7Ξ‘2β.Ώϋ»ŸχΖ]~qγ±ν;w}$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$DTH€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€hΰ́H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H jΠΐ9jЂА                     ,$‚Ψ"πν7G‹-©-    „Ÿΐφ»Ύ ͺL‘H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€HΐάΑΩŠ”A$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$` ξΰl F !           θ&ΐ―DFwωP;   ΘΰW!#Ý©’   @0άΑ9!ϊ“                     „ œΓ†š ‘                     #@η`„θO$@$@$@$0? €d"+3%ϊς­zE)jτ(`½x”J›y%        Ψ ­σ–ΡͺWl”*΅œ―X/ζkΙ2_$@σœΐΒy•Ώ”jμίWƒeq 0qσ<ή?£ΩΛΑS/mΗΚ„xL΄βΟšb4T›H€H€H€’‡ΐϊ=/bύͺ$Lέΐ₯ž%xf_-’„zCWρο7F…’y΅Οΰ‡Q’—šΧW5βVTŠQ%’xœ ε΅υβΘ0ŸγΟΠΦ«š]ίΗFΡφ>œCΣ矒e4΄ι’ χ{ ύΝωe’΄:Λ9’ΟMίΓ­VτD°Με#L±,ΆΧ /όΕΙb.gόώψq#FΒ€6“! °™€ΕηΝΪXΗu π•H€H€Hΰ#°ΥΧtΩ™¨η—ΈΞό&Qσβ:Cp^CDρ8%Κ™λ ο¨χδ:CΤ‘‡‚œ'χΐΑ Μ/ηδ$δ”"C€žΊfžΘˆ¨Ω³Ϋ* ‰·ωSd”`ͺ$@$@$@$0―£tm $‹ζ»Έ—λ0n–²˜Q±›2Ρ4ω ηD‰^žΌΎŠ<šΨΦ jΗ)±QΞQ[/’§ηΕψ3Τ•kις,I£τt&‹ŸˆΦΖΖύn_ydbΫΎΨT[†4‘θΌxG„nί#ξ`±½½‡‚š|1{Gn❣8PfŸH€b”€ΕηA΄δšλ ΡRΤƒH€H€H θ³3ρœ_β:C°’υδΕu†`Ό‚ψGν8%6Κ™λ Aξ―(χζ:CτPjωnόθ塈™βγ±hδ~/τXkΰσζe·όGM^΄ŽSb€œΥ ³·’©ϊδΝk:)φǟfˆ77'gaΧ8έ–ς3‡Ψ Zˆηφ6ζψΣ< E5 (ΚΟΒ‡γ=\Œ˜ΡΉ?ύ"θn±½Ύψεq”–’:X³c*…sK³Γ€I€H€L°ψ<0™ͺ½ΡΈΞ`/OJ#  ˜χ䬀σWήσƒ\g|_xσ šΎΑDλ8%FΚ™λ Αn°θφη:C΄”O!žΪSηΨxbάqΜΔΓΫψ”σδΡR^σGο{lώδ,FsR³­Ή.έ››/πSΰ1ZŽT›H€H€H ΊΤ¬ΞqνŒ<‚ήf\lΖ©$Δc]ηΡ%κ^όόˆ_½’S—#7CΪoΔ†ςπζΚ΄(;rb₯œΥ ³τΜΤ'_^[Ν&Οx ΨS~•ˆβθλχντ0nξ½rΝWo`K_R‰­ΥΓβH-ΓΣϋpρFη5Ϋ@  /w ΊΎXΘ*Ζϊ]Εh9ΒΧmK$@$@ pΑ 0'   ΌηΉΞš7―ΐ‘ι«b₯œΉΞ«wXθτζ:ƒqΆλŸέ‰JΩ°Y]~IΘνΔyr7 žΩA€ΞvP΄MF9*Λ] θΒ΅!ά•Ο6)ˆH€H€H€’@&ςr JŽτ£³]:νΓρ#ΡΨΧς―ΧτάCgΔ‡sβ³?!;΄x…,1 ށX*gυΒ,>γυIƒW¦ΩΤΟ*[ΚΟͺQΏεεξ­›/|ρ[|tΪύΌki>‹«Οα=5Ž$•”b[f#ŽGΙ— ’«Ε η^aΰ,½Ό^Ί¦yΒΐΉΗ@|%  λΈΞ`!%   €7ωA3xCR]kρRyσtžˆ₯rζ:Γ<ΉιlΛΧ ’,Ω‰=άkΑbsž<!ϊ!ΰ2pNAiužcW»;=ΝθMAΝζ*d₯%aQάL Άγλ3bΗ™”Τδ₯9δ;Βi$%ΒTŠ0 ΕΗzo5·zν@읎Xμ©ή„ΌUiHι@j ίΊγBΉ»M *kΛ‘“ž*ςζΤrμ:››Π©η³¬)…ΨΊn52’ΔyΒΘdrb=ךpM,¦ζ#?5QDwsF4πrΚͺ-Αš$gˆα6ρ6C ΐτ#   ΠG 3ΉρΦPοMΧnΝ™’š GΟm€Χz5:‚¦ϊ}Vϋ»Ύz₯fŠ>ζςx$fΈ:Š"ΧIΉ(-}hΡ›lF§¦ašΤο­B~f2œέή‡˜κΗ•ΣΝ^}t/ŒšΌΤatΚUΖ"ξμ=\lνR qg’R”ƒcP25,vΦvαɁSsΕβόκ,,KX„8ǘa C7oΰd³–q10[9SšΏ:ΉzΕΝ+©Aq^’Δx ρΙu1>ιυ θ}©YΞ‘βη-Χθ8Π·^xgG/ΣυI“—·ZΧRΉFnό©—‹–ζ†άΌΫKQŸ{Zγd}rτέφ–Ÿχ}9OζAr³+?.&ΰ‚ΚΈY.‹ΞΝΈϊxkώa!βΙ>V]mxξ8EJν4ίrVcΎE'•JƞξˆVλAja5ΦeŠv6^9γ™ζΦžΓ^GY:[Βΐω–#₯ΟοΫ†%rιΙo=κΪπυχΠ€κs{π?–†ΊβTzEoΨ΅Η?ϊ= γ΅μEi†Z.°iK=j›ρώGΚ ‹y›Η+ΟT961‹•™›πΤωΛ+ξψ oΐ7‚νΧ~ΨΊCzžαͺΔΜ­Αώέb<•ο•)ΐާq£ωΎϊθΏ»†j•s¨ψyΘ53Τ¨f9˜©ORZZΌόœ*א?-ή~²€ι\Zχ=1Ξ^ο;Nχα΅Π53§Ov ΔΙ»½²³όΤχ弚ιmΗΑ/ζ°4.sχδ—zdΪͺ_ο©•—™ΣΤςmxaΟ(ς|\9D5μj@Λ©FΌ{Π=ί’—ΏC€‰η#žΕz0;³OΌπ:vΦψΆχ;…ψαΟ?A£¦ας(Ίz°­¨X¨‘„œ’ •―°;Κ„HΐF†Ϊ‘‘獒¦‰vΔΦωsϋ³ržLq#λψΥ[.Άr2ΣΏΤ‘—@Aq y?/b.?3θ€Δ $@$@$@$`€ζό` yK!Ÿλ NΘΚΊŒ‹y ώ΄χ| Χτί¨FΈ*RMŒ{•ΈβD«^¨Η…-6Žk=δšͺ―9Ψ9O­ζ©u¨\C>ώ4ΘEK½n\gυ)Šν-kžή…uςrdίiΌ{¬ϋΧ+]Ξ“#Dύ€mΎ°h‘؍Ψu”nρ4n–œ§η\ ’ͺΟbΛNr<εWfAœ[δ―N§rΗ“ΖΝN)I9Uxρ•g₯΅~’·ω{ψεΛΪΖΝT±¦n/ώςΟ ±‡Κ]/γ-γf—j₯[žv7K³Ό„λŠδρ“ƒ•²υΕz}w―σΞ     ] σεΧG»Ρ%οΜ;=‡Ψ“^7+ύ>Λύ]-½ζfζΣ»_žW€ί›”ƒ†ύΏΐσ›e.žβ5y‰ F厴Βgηά}ڍ;v‘RTωn4ΘΖΝΒαt7CΌ όΚό7;…$e—αٟώΠC¦z_γfgΜ lΫ#Ροχ5n–ΥΛ­nΐ »ΚεKίκg~ iάμ$ΨξάηΨ+v₯Φ{εκ”[ŒW_yΞΣΈybͺD ͺλρ’Ϋψ;΄Κ9Tό<δšjΥ GΖLp0XŸd~ZΌd?­ίȎ?MpΡΚ„·/β5-γfWάR1Ζ~*ΐ'Λ ί6–ŸϊΎœ_σ ƒΈxϊ$ŽŸ8ξg§{Q8ε«αn₯ξc|\Ga’Wϋ ~ρ²Άq³3Z*·μΕxa“"E7“Οΐz=ΘiΠ4nvd")»_~›R”,yœ\»9€a—Kڊ Νy&Ό 0L@;bΌλTΖd;’šχξ§+™T… 8nsΦπsWQX‰ξrQ1°ΜΙLR–|BFΆŸη£Ž†Χ4 Π‰H€H€H€,Мτ;o)Œ›-Ψ—¨ϋΥ¦μj΄τ28―fuό ΙK”‚QΉ\gΠwλεκ”jrά«RI«œ=ξ_Η΅r͌΅κ…#/&8¬O22-^²ŸΦodǟ&ΈheB‡Χ\Ts%η‹Μά:ΚΑoΒmhΨ"o"ΦsA₯―?8OœCθ#ΰΨΑΩ7θž9‹–k71›ˆIρΩλΠh:r MΝΝx°Έλλw/eΧbΛΊsψδ‚η.oζτ¨Α“Ο¬wGιΐα―Oβ’τYkρiιΝ[·b[…Σΐ#£¬OΦ]Ηϋ'άΖ;΄5Τ—Ήγ΅αΠΧΒρΦ>dΦ`K}6Ι―*Έƒ:KIΗ2ΩΎyδ0p6›I€H€H€H€4 ”#/ΗωϊΪDηMœφ…Ϋϋ}Φϋ»'|„›Η΄ͺxΡΥ'½vμcόρς0’‰—=^Œ«Ζ}ξ~οDίe|έΨ„φΫχΌ’u ΒθΧυ•Ϋ·£γτοΡβΑΝ/sr›>ϋΉy―9ίκM*Fƒ0nkωΈI€( ˜Ÿ¨S>etνΨQ4vΉΙΫΌ λδΎ1Γ/›pρΚ τˆς«ά\‹Η·Χ!Χ±ϋ¨CCδ–#­ξΘ곉n4ώg/ cEm-vμρώ©Θpά8ωΕqœ8݊Ε%±]π©vρ)ͺZƒΪtΧDΏ½rσ4<³Ω΅SxΆ>!ΎΣό!\ϋ…«byŸšγZZΏkδέWGΊπΝΧΗΕΡ]Bx&ΦΧoΑΧ‹™iekρDa#Ύ–Ό<εμ?λυBΤ cυIζ‘“—‘šα’¨nδ$e#vμp~αΙMά‹‡Ε½ΨΦ#Μ:Σ Δ8y»';Ϋ_m±ΖοΠ–ί|›Ρ’ž‰Ρ~4μͺUvάΎqζbπg£–(ΕM*ΗZ₯=‡Τ&5žΔω X\X ’νέκšoΙ©ΗήΆk8 Ήλ±6³ΟϋκΑ„Ψ}ϊšΞ·’σΑb¬_χΈΈο«\ός±n[ š>Χ؝ωφΈγ₯ι `IΛRαGf3]]½§„³lΜP³Ύ\ω¬9†.‹ψPβί꺈OΔίΘKBο ΉJΛΒ ό&'"Y>1Ž1ωœΏ$@$@$@$@¦ €Vη‘Τezσ捠rμνχΩΤίtτK§ fύg&‡12Ψoc©RatU$‡κ;ƒρ/_(»"ŒžEOϋ]ΌτΛΧP-u[…ΑqM}1ZŽuΘ1ΰ—yΉ]ψθΛFδΏΪΰ0ξ’ŒΫv_lBOΡNχ§ŒΊOγήΚΣγθμξ†τΉ™;WŽΰ³Σξ—[NΖΝιόΥσλzg,χ³}¦0Œ>όξφΘ™ΓΈ=/βΥΊς+Ζ=oC²‘]ϋYΌHύO{]FΠ Ÿ“g>ΕoTm-§‘₯ ξ§O:γ¦V`έζSθTιν#D8˜εš΄,Awνά7ΒΈYζ3ˆσΗ>eΪlιƟ€ΖΰώΚYκ8 ?›κ…ΠΡυI摏—Z”k„ΗŸ¦ΈΈΥΧ}VΉΉά]WFΪπξίΏη~abT'ίΐΔ«?DC‰φ8Ωμύ/Συ΄‡rFτ•ίό›‘σΏuΟΕςΚ#²³γχΪ™ƒx[Υ–yxκΌ(έ₯zξˆ—Ι?όϋίC1χνjΖρ7Ά/π”σΑƒ²ςRaΰ,½θ’>π7ω<°«\ψβ=|€jΛΟύFΕξoμpΎŸ΄d©:#ξσΡ[Έ3$ή©—nΤΘoΧtΊ&~݁xF$`νˆΩη]툡<ΪΧ3ΛΑšώώΛŚ\οΨφυ/½%{_GΊŸη­ζ5Χ4±Π‘H€H€H€¬Π7ΏδNλ Ϊλ2ζΗ%\gpί]ΎgfΉZχκ«φk=snί8Π3]‡ς,/W\gπΟΖΏ}χΏ4œ>Eυ;°ΙΉ_,0tGΎlΕӟσδžΜΦu†ό<''0<dH3ρ¦Ίό²Ί:.Π…ΑAa*±sLΪS`žQxE$`š€vDέNλΫю˜Ξ+’vΎΜτΗΜs°’mύ­HԎΎηkδϋyΪΈr!z‘   €^ϊζ—ΤΈΞ ΅.c}\Βuυ]&Ÿ›ηjmά«―^h ͌kεό:νZγΰ©—+}Όάρ#?ώ4Λ…λ ξR Υ™χ ·ν©C+ΐPσ ρeF3‹œ'Ę~ϊ (¦»ϊ£Δ^HΕlcθzPΜΝΙΛRΩXΉRtΊ$‹eq¨γίτ·ξˆ•ΫŸ•[ΐ”Tt†g0    €r οκš τάΤeΜͺτΘDΏ1tύΎ€Z[ςTτR ͺΧ+OB3Vf#OxφHπ²$Χ‘ψ >ϋμ+ώΕ“pšΥ'πξ±.‡―ΦΏM{^ΔuŠ1΄Vknκ\ι—4qΰϋΣxΰςΝHK‡΄?Άϋϋ4ΎΡΤ*―ζ/πΩͺT<»₯Ψ%4 ΉEeŽΏM—\;w ŸiΌM œ}5 δ’Φ>PΈΠωXα W-Ό2šε²HΌ@μH/Θ‡Ύ|’hλ|-œέγl!ΠΠύ/+ ηΧDωιKan΅7α³vO³ΚπάΛ Θ•œ“ŠΡ°k+.~t3Ξ+}χNa~‚™y˜­*ΈΧZ<œΕ7ΙΰxHΞfΥ¦§ε9&ΟΧ‰Ό„ρ’H Δ”vJ€cθyŽ~†εΌ«sX˜:€!Ε>rΎ ΗυστW΄Τœ‘H€H€H€H€01Ώ€τΘΈΞΰ±.£pΔ͍KΈΞ u³šζjeάk’^hι²Ζφƒ«-σˆΑτ4ΑK)׍?Νrα:C°›!FόΛwc›cƒX‘οD}Φfά™C ύ=8OξFΕ3σ,Ř΅1Š]¦t)7©iUe”γd,sμΖζ0‘έ”ί,[’OΊΕγ$Ξ½.¦<©<π‚H€H€H€Hΐ’Υ«cΪήbŠ !νχSΕl葁>LθW.Œ[ŒΩαŒ»ΠΛΛ¨\YΤΜeH”/ΔoRζ Τ€@sΧК§_Ζ»ωͺΠbό<2„Ι©YΡOŸΒL\*ŠrR=όΓu±8ήmΰ雦ψπδT@γfοΈFΉ6ό=Ϊ―oD]εjδ¬ΚDn†šG*J74 te ήόηOΡ©JLo9«’Dυ©Yz3e‰WǟfΈLί»‹kx8㾏՜,ˆΓh·†Ι~|.Š >ν`τώWλθάRωγ~·Zρώ'Kπ‹ηk/‘dδB‘Θ“Ί­0œΕΔψ ;λ–)"Xy˜©ftԎ“ƒ\Ε°_|} Π£C[]I€B@ΐθσ&²νHΈDε:MbXrώ;g\gp³ΰ    Δ&KσK\gπ[θfΗ%\gπ‹Ταa”«Ωq―₯z8 ρ5ΛA―²–xEpόi† ΧτήΡ.{―so@ug‰›·’a‘{GΉΉ€Λ;Ze€cCύ6L‰―Hέ»yMνκc9OΝ%KΊ_iτ“›‡sΐ"l «|?’Bμe=5u9²ΕEΧz΅’LAR’l <‰α;ξ η’+U.βΆjΕ_‰μ•j£­0άT‹]‰β³έ’€‘ΑιE$@$@$@$˜@‘0ϊtθiΦχٜ°τϋ«­ΣW«/κχbMοώ'υeΫ‘¦^Φδ:3TŽο=΅Ω=–Ε‘OμkΐΕwA”ΕXSζ6nξm>†£ΗΏΑ5wχ\„άˆπΏξ…Ωo§(I™8Yœ 6Σφš™θ473ειιseλHϋY‘šYˆόΌUX]ZŽu%.2Ω5ΨΈω:O;ΏL#…σ_Ξ’olf8xζT«>9Cη₯*׏?rΉΥό ήnφ$γJo> ‘ΉRžεRKSΕ7Ρ^©%v–Ÿ§dο«X˜IΝ-ǚάHΟ³‘ήV΄τj?Fξάwgoφ!δ½†έŽϊΞ”ηfR&D3„–.}ρτ…²ώ<0Zτι₯/”φ«ϊβ2 €]¬?o¬΄#Ρσά°ΞΑΡ’=œ΄΄S»©8FΈŸ§ΦΚηœλ >Hθ@$@$@$@VŸ„c^Ζ™fνK¬dJ‰«5―¦κχš˜·σΟ˚\§Κ\gPŠN9±ΞΥΜΈΧ9+ŠΕά‰ž™ΤͺOΞΖy©Κ5ΒγO£\ΈΞΰyWh]E ή•οƒTWΤhΗ*ά†Wίx oόθuμίαgNF+¦•ηAXꁖ.·”t,“mϋ'ξβŽζ‹φβΣ‹Hΐ&ž76΄#Ρσά°ΐΑ¦’$&z8RςSs Π‰‰u†`y₯?    €“€™ωA3Hμ|ΧeΤύisσ\gΠͺ—Έšχš©ZΊG‰›ižϊΫ;O­.׍?mββIΙϋŠλ j"Qeoir»άiο΅QΞ“«‹˜ηΊ%§Ίί8)(―@εηΡ’J<΅z76T‡v΅Ί§πxΕ*ΔO‘ωΨaœμލH₯::Ί±ΣeΰRT· OτφγλVuΌB<»»Nω„ωD{Ž«vˆ;ήΪƒm"_’ύrZΩψι³sψ賓ΚΛ•υΟα{;ΚΤI?μ†ΨŸ–QSΣ°Rl8Ψ©A˜΅NΌρqьA$@$@$@©ίTδΚtOξμ‡₯ί§[―€Κ6™@ζ ©ΣΨα@Έtτ)ύή5;Άc[·θΧvyΫφΒOπTσMΪή3ŸβW’OŒ—YΉRΚY΅Οaw…ΛΚk’ Gί#Ζ6/@ι3NCΈκ=ΫqγJšδξΉκΕ?€&#]ρφΘ~’ΐΜ<ωΈ#:Ι?δGžxξ)άzλΤwVQέsΨZ¦X³αJsSPMΜq½ƒύώ¬s$5‚γού#΅ϊOjrτžβ¬œ•€1q’cšƒ#{:κ“Y^‘Zδ’»μGq­£ .λeνqv9^yBυ3/ΩζξΧλ*!,?/5 σ ή:ΊΎ3<¦xΤmΕΆφVŸη€hH±wηzecχ0¬Δ2v&ζ[v—9ίJɭݎ½7pΰ‚z2#OΥoƚ|ηα#κY€ i™~„«Π_ΌΈξ€"ŒŒγN€ τ"-sΟσύ­h}n˜γ ο5Q3% œεu3eΖ8$@$@$@$π(0;?Θu@k]ΖΚΈ„λ ώk 9ζΗ½fλ…DΗβ4nΟιsh­A΅Γ ;_ώ)²ΟœGηΠ„Ψν) e6£@Yyšΐ…¦σž2[αl{)\FžΔ_U‘wb §";ΓΚΦΝrR}Έs[X8gHJf#3OX8ͺΌ‚ΠΛšπ—H€H€H€b€»ί4€Ύk]ϊ³–~Ÿ~uΤ!ΗοΙίϋ/έUΤፒΠyg wnGK―3dΟι ’ί[εκχζΰ©Χ#Vž;&ίΓ’₯ι(*«BeΎάρΒ•KN£…`ΌΜΚ…θΏ?³ΟmŒ|αθQ\“T=݈γeΕΨV$υ£σ…Απn4½εκΧv»_ό~ίρλΘcŽ‘©‡HLΟCΝ–*·Qž3ΫaŸT΄?ε ΏΤ1ρε—΄œR1R}Ÿ©ϋ’?WΛ,Χ±‘ 1nΨ₯bΫˁ€ΠΦu 3 ΛQΌ¦[+d]&Πίί―(¬œ•€1q³€μι©OfyEvόi‹‘’ο9qW―ΐΗpΨsœ½hi&*Χ―Gv€‘²Ωϋ?ΤεηΝ βσ ή ΉΎu¦-β%JGSο|䜹„«Χz0,#ιΉ«Q³ΎEŽω§°³—/(/pογ}λΜ)œέPƒŽιŠTl}ώX^p m7†±(% %••"-ωFBΛε³>2ό:˜~„―ψΣ½('Cω2Χΐ;Έε/ έI€BNΐμσΖl?#ZŸf9„ͺ€"Ξι_gUΉR.    Μ7fηΑuΝuΣγ3¬ZfΉšχšs)Okσˆ\gΚΝsΚhIr!Lφ– f€·+ȚAΦIŸˆ”¦ώ'§p««ΛcS(99Ξ“Λ$ψk•€ΣΐΩΏΡ½—όfœ?Uƒ’-…NχΤ|lέ%/ž{պԝŽVdαΆ8γ^²yΒΉGΎ~>«Ϊ‡χ?=ˆ€Wž†Γ†BΤ°5΅υX#ΗSύ6ύ‡ΪΥ[Δ9=ΏσΔ½ϊ,Ά•ΈVS³‘+Ϋ†ˆ ηqab…ΨιΩΉžJ€ξΣށۀkw»¬ΑυŒΪΐΉ«hΰ¬&’   <”~Σΐ:Τ]*™Šί~#`©ίg΅Ώ@―‘ζv\}ͺΦeL˜„’a &ςsυΘMaΰάεΚYή?π’_|{²TToyΥrΎUΏ'ŽγΈΓ0ZΥΟτΗK|ŽΩΈάμή·]ΩI{Έ½)ύΫQ:t«βIρjŸΥαΥϊxη˜τfο ΜΉˆužadΜŒΎ2š`"δpΘ(ΔΆ]…Κ₯r2?8μ9πχ›βύφŠJžv½ψ™uuOŠ?Eεd ω„ΨέYΫθ(η`™χ›%IhŠΠttΗ zζ']sœ©―O:xωΡ ˆμψΣ — eα >iDϊ« —΄ΖΩžHBšΛΎΥσV0wK*ΨR~žΚxδΜσ"Βσ žΚθΈκΒ»ρ—JΉ€’²ΆAόiGν<υ)>QΪfν0]ρΙǐόgb·ΧIiM=JέοΆ(Ρ[Ž~…Ζ.Χ₯.ώζŸ¦λίz­dΓq’Vί9±ζι_³RqΈΩΧ­œσ„HΐFκŠP¬Ήηιv!~nθh§΄Ρ˜γ­–§vβ!CΜI#E§G|Αƒ/H€H€H€H€|ΗχVζΉΞ Ή.ΓuίΪΖu_&ΒEsh©ι¨]ΫΡΟxΪόψί¦yj?zqA]Œ\gΠjFα?Wͺ€x€ϊ>Cϊpž<όε2_S\ elϊή}εs€SS3σzρΰΫψΓ±ΛJxwΰ άh>†w??#ήΟpݞŽ3=ιLOO)ρ}tlΕ•6±Λ±λhiiw7Knγ3JάΩΉ99˜σ·· oώΧ·ΡΨ¬½°4άΧ†Cού3ή?ΪκOΉκΓ‘wώ oq W;ϋ0 Œ?ϊp£σ Žω1ώζ-ρ©m,VB›9ιlξΐ WΔμόB”ͺ…ζAlΔƒH€H€H€H@Ήίt£»[{ΧDuΏqΖ«ί(ŒΝφϋ,χwκ%Œ ?<ˆ«}#Ό»½θ:‰ίόΧίγδ•>pςŐθχ~σΙΫxσΛf§“ͺŸι——¨ά’υΨθϊ Ѝγ‡eœΏƒ'Ρθ0hv^ΩP­Cχœώo~~7ΔWΌρbα‡Ώ;€N——Ίί”΄{Όοbw$4ƒ©Š`ο€ΧΏΒ‡_žΗ€―jh;·ώχ8οmT―.Wο3ΚUBŒm~υO ιJ·2ώQ+;1Τ…“_~€φΡI·³ŽrΏ r…–ǁj~κϊj†ƒB$H}Α+jǟ–Έ(€tŒˆώα7ΠάνΩ.I‘₯ϋπ›χώG[ε1ψQΞ^bΝάΦΛOΟ})kΡyY #ΏRΉόΣΗb'yνη€$ΚQ>ŸόotξδoDΌOΨΑ³’νϋ­˜oιl“€ω–Γύο•^bqzω›}˜j'%ΥΤνw{ν]ϊ™›u]ˆ94ωΤν]ό2—΅χDZ-»₯ςŒHΐ“€ήvΔΛΜσΖΒσ4€Ο +ύY3<±½2R.!ε$4 ΨΏ|ΔΧ‚$   ΐ#H@žξU曍Ξͺη-όΈΞ y—pΑ1ΠΌ•Q’T3γ^υ"θΈΠδΈ6¨\‘₯€γ@5?u}5ΓA)λσΤη#…n³s³ΔE€λ„λ a°·ΤUFy§ϊΞ‘K²8On„(Γ&πΨφ»Ύ ğo&J«3{χŸ‡ρώτΘ›ƒω‹-ξ)9¨ΜKÌ€ϋ₯˜Δ΅^o+OeS33ζΛ=wcS‚εΰ₯_ώΔυ9π!ώΝ?‘±WρΤ}²uΟ±·ZΪΗhϊδŸρΩ§^•»~ˆWκ‹ρΤSO=¦[’   ΐ#JΰΠ‘C’;γούF΅ƒ­>ακχιΣΖO¨”d ―’χ訟ώ©πΛύήLWΏ7!γwϋΡ3θΩi—ϋ™†xι+©fΗ‘WXŽδ…S˜―'O‰1Gΰn»IϊΘΘΫό}όό™*‡ϋΠ•―πο; ‡σJŠ‘0;ηSLφ Σ‹­ `fΈ¦ˆqΩΚεΐΤ ΚχξjŽmL•s0}£Ι_'M•5κ“­Ό"9ώ΄ΒE–Η¬Βbd‰[p\܊ gΗ5οC±…™ϋ_κςσP:Œσ ²‹Ÿν_ca<βσ-ƒζΜbl*ΘΒ₯ρΒ*WΌ†>7»·zqΡ;¬]ι©οwΡ&MήλGg―ηs'Hnόz›~„±HΚηΥ‰gΖη3£χΜ§ψΥη6‘ϋ₯B ΓΜ΄ˆ?½GΦΊοα—Ο―wΈˆ_σ§ž;G Ÿ’Ί .γfq1q&Œ›₯N6΅b“0p–6k¨p8§ ?Οiτ,…αA$@$@$@$ ƒΐDΊZuL’©D…³ί§JΦψ©0jΎ₯'Φ θχŠ?‡ͺŸi„WPΉώS4κΣΣΥj4JΨΒχ΄»w#΅%Q3\GΕΈLό>L–s`‘Ρε«‹ƒ•}κ“ΝΌ"9ώ΄ΒΕ.Ξ·Ί:τ΅Kώ˜Ή%Y‘.?}Γ7’WQΧφTx€ψbDΌhύΎ/Zv Iό;lKΟΰύL/΅ΏιηA끰ΤGM…ΣΈYϊŒδ…34nV—!ΟI *˜yޘnGΒχά0Μ6۞ Ί‹bNΑτ7ψά ηx“λ Α ώ$@$@$@$ˆ€΅ωΑpφϋε"¨ŸΟΌšŸAΖΒ²ΣmΟΒu?ύ;sΑ?›°ϋ˜ M}κ“Ιzα/Σ‘Zαβ/?~άΉΞΰŒIηπΞ凞δ<ΉšΟ­°`ΰl=ρX‘p«BY‡‰qv ~ψ³\hλBί­a,LΚ@Αšrl,ΛQ²3ΠvΧ”+ƒ'½ΗΡΤ\ξΨΕ9©h½ψ½‚=ΉΘΙO2(ˆΑI€H€H€HΰΡ&0ά}ΣpŸ,¬ύΎh(ž”b₯Ÿi†W4d:θ ΐrΦI$ΒΌΉvH…ή–Σ—Ÿ-yB¦'ˆοϊgΖ09m>υp§g^ΣθŽ™·y 6Ή¦‡zϜΖεΡ­/΅# ψ\πGƚ{Xϋy\g°VXŒM$@$@$πh°8ΏΦ~_4””E^ѐκ ƒΛY$UσzδΪ!z[N#\~ΆδA‰ΤόηΙν*AΚ‘ ΠΐY&θwπ,)ΐk»œ»'%ε”a›ψΣ<ϊ.βΰgg5½τ:žόθ8ς3v£ 9Ε•k΅8Y,jN`bbR―†#   GšΐΔΔ:Ίngζ~Ÿq퍑U’­τ3Mρ²Wθ•·@Ρ-1.N9•–³±’Š8―G¬2V:ΑCGΌό‚«¨+Δ­ Δ߈ΏpαN/\ω w:εe«ΔW½&0ϋ•η:ƒύL)1(ΆCA1 @  ³‰BJΝΜΑͺΜ4Μά»‡ψ₯K{Γhικ3!Ιx8gΖ$@$@$@«Ξ2±HφϋdψK$πh`;τh—?sO$@$@$0 °Ÿ7Λ–9#   5φϋΤ4xN$ l‡"Ai’ ΨE€Ξv‘ “8‡ 4“!  ˆiv8Η4*O$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@1J€Ξ1ZpT›H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€ζ#σ1SΜ                     @l sl–΅&                    yI`απΠ`X3–WPΦτό%V΅χ—ΨRšŒΆΰσ7?ΐ€Ώ€t'yD`Εφl$d&ŠΫ~c­#JΞ–•§"₯2 Sƒ“€Ώ‚'$@$`3ω޾ڌ‹βH€ζ!GsU 6dmAΊ+#νθ<…ώτοΩώgΈŸ=tΞΓ»‹Y" ΠHNJr$2>1ϊƼ%ΐϋhή-3F$@$@$@$@$@$@$@$@$bq™™™β4<Δ§€¦z\GκbQJΝέΗΘπ-τ\Ώ©H)ΒtI ŒξwίΎƒΓ˜Yϊ}04ΩΈB2z>;τHϊKx @(dξXιx©dΎΆ―l?CqΧP& Μ/Žώηά '\ΓΉ“Gqςqσa/f ζuϋ(½<MύkΆΧσ«^17$@α#°xΡ"GbΣ33αK”)Ν;Όζ]‘2C$@$@$@$@$@$@$@$@$@a"πΘ8χ·γz[3:iά¦[ΙD ‡qƒΛΘyqz–&{μθό(ϊ]qοf-εD=H€ζ ΡήΚ;ζΟΗφ•νη<ΉO™ 1ωΨώ©ΏˆMω“_fτΡ/ΔeLρ$@$0_ Π05ό%;22†„„ΕαO8„)ς> !\Š&        ˜ΧYηy]ͺΜ ! ax7ΛΡ5G~εΜσ—H€l$ΰέΎΜ·φΥ;6’£( yF`Ύ΅ςΛ+r1EKώ䝣½υ“υδ/  €14L5ΖΛjθ`bβ>–.M²**ͺβσ>Šͺβ 2$@$@$@$@$@$@$@$@$@1Dΰ±ͺͺ*±· cΑcXΎ+ cMw1;:m ’3h^Aα8Œ@$@$@$@$@$@$@$@$@$@α$œδ4΄Ÿ˜g²lZΓΓ£˜ž6>ίνΐJV:Tlii‰vU©          „—@{䆴Β2žΛΑš4dΎ”‡…)‹ Eg`          PxψπαΌ4nVη‘η$@$@$@$@$@$@$@$@$@$@*:μ‘υ8»„-)Nv€ 7ΣΘY›§$@$@$@$@$@$@$@$@$@$@† „{η憆”—―ρ«gZj*φοߏψψxΏaθA$@$@$@$@$@$@$@$@$@$`’€N{δ…ΊΔ{ “γΘFΞƒοχ`vtώ}>PΞ'I€H€H€H€H€H€H€H€H€H€BC`zz&4‚5€ξάΉίμμ,ώφoχξ{„’Œ›ίψΙO’’‚‰‰ :tΘΓ?œΛ’³‘χŠCγΆͺΆαε‚ηλJ0qσήύΏ~…n[₯»…Ογ†ΖGά4Ξ–₯#7%Iqq˜ϋnSΖ1|χ2ϊ'5KN‰Ω(ZΎ )‹X β ·’}8p:HΜGyϊ*,YΌqb똹wΠέ}C~’ ›σςmxεΗϋ°b10zύήzοpΨ’KBͺόέω{sΎε/,£-Q—r]uI¨655€K}m!TZzJ;5+Ϊ£IνvB £#šν΅ΩvI•ž’C=ΑS±2=iIΛ‘°0qŽvpC·O£Σ󑨒.šη%&š.Uν ΫΟh*˜λ²j7~τϊ.€5n_ώο~vNυ5 ‡Ωφšρ΄±šε’-$@60`άΐُ0›U¦8          G@Έ œeγζοΎϋψΓǍ›{zzπΝ7ίD4vΰ…m»¦Sƒφ+ΏΓηΧ;t†lqΒRG €„…Ύˆ\žVˆeΉΟα'λj΅ΌTn#8sϊΑρA•“λtYϊfl-وςŒl_OμCΛ₯ΓWέnΣμ’Β§Q΅²H7k…·ΟΰδιOΡι#-«ŸΕ†‚,ρς«/ێ‹m_β›nϋΨ{%ό25+ς²‘!B.Ό%¬œΓy,_†Η‹…!ώξΆΓΉ«·νO=’ω³?7ΌΔς±΅¬ΛΌHm™sΕχp«Oh<{ύάΝΖσ‘l_Ψ~Ϊ{OΨΙ3a1R2εηͺdζlίaΌήZO;ΪΫA)‡+sv‘€ΉK“|2ΌUΌ΄vΊω=΄hΌ€a–§Ωx>Κ‘Omεςmr2ή;ςžWκ+ͺ\ΨFUqD2FΪA1n\ž—η‹$έ‘F$±X§š%`¦½–bR8™°GφoΰlB˜’OH€H€H€H€H€H€H€H€H€H€H ™™Π›dƚq³„¬ψ*ΞέGάC_€ss3X^RΩkδ Ξ©v*–£ύ7-I6ž@gχeŒ;wŸ%ρΉa΄{f?§UΖΝχGΫq₯·=γχ°8a9²——aC~vUN_‰ε. ·‡ w¨γ·ρK‘·rjs‹œΎ)PSxύ]͟Λ+χy7ίθό§;afΙFΤ–οFYͺs§ΑκΒMΈΤϋ)†’ΊέϊΝΊoΠ9χ©έ©Pή< PYω†ΚΈymνίΰΜΥkΘ\³O–”9s˜R†²œTτχY ΥΑΓlzΛR2TΖΝ’r;%N'G‘₯™ιφΪd»$eߌžX‡"ξπέ6τ `pό.ξMήC\Β ε֊έπ»..Λ¬Δζ΄#8-·½fγIŠςπO€ν§6f|b€§©zk†…+NL΄ƒ™»P―2n_Σ8Ρή„Aa\Ή*w»π«rξ8Ώ€ ₯«‹ΡϊZ‰YžfγyEΉxmΙςά­vόώ0ΖΌςΪ?¨·ώ•§B`€­§Ža±Θέ»ή¦8Ης‰ιqͺΙL›m―OΧ?˜εb²ψHΐE@2nΞ|)οc Γ½σς€ ‘I{δ…KΧ§ω 5)ΜK%Γ—‰‰βs/‰ιHX°Ώ›Ατμ}ܻߍa χŠP²SL¦ΤδcrπΎϊύ'Α‡ΣΌRT_&!y±sχˆΩ‡#˜ ’?Γ\βW g‰ΰ(v¨E‰‡³£ξ†Ζ—[ΤJρ©Θρ’&`αcbšC”Α½ϋ=蟌Ήw =σW©β‡{v‰IΌQΥΝ ΚcβϊψόΘι°ε qqͺσ »‡3Ÿρ_ξJ8Ώš‰ψόΗχ͐Gΰz\GwbγbηΟ# iKR±tq2-“~Žϊπ£χΪ0ψΐ3€Ο•Ωϊη#ˆ1O@|Β0u03=ˆ‰  ps›^ƒέ»· qΑΖ;„£§ZνK<ΉOμݎ4‘οϋ½§πΕ7gν“JIxώ₯--ΒrρΩ&iQAzήή0€Ύ{ήm‘v¦ χ |Δ„²ύτIŒσ€V{¦ͺογ’Ύi₯Ύ‡²]Š ώ’ožβκ› }¦gξβΖh_˜4 \ߝJXθχΈra€] ήG G?2Lψη]2)Θ.Θ ιK±8^z‚=Δƒρ!τ΅΅›ίF«}‰n‘l—Tνgμτ—¬·Φ‹5ϊΪ3ο<)ν[ρ΄w<^G‚@ŠHt4 3M?ffTσa~ΒXqŽEγfG~‡/ΰ[ρ§}¬Γ‹yΒg±δ;s±hX›τdΩ(dν—>‡ΎŠb<³ζq§±‹Θύ­ή#ψ· G%£ν}§ρν%•Q’δσp]}§ΠwγOhφχˆ5‚™ΈΏDέJ§> Έv~N܈ͺ’|Y0:ΫώŸ^s-ΪOžΕg㐲ϋ{Θ’B€ ? ς³~£ ηΙςΣΜ‘»‘[ύ›sΏ πp6ά`"’ΥΊΘŸg‰†2ΣE Ή5E—D„ΦΛ†C—†nφαqaΰΌΔ!( K§‹3‹%j!½±Ρ6a\7…©{}ΒΠΊ Ι₯ŽηʜΨ·'†΄_b0Ϋ^›i—\ΐMι9~ο|vΒ%Aύ#΅›·±xΟλ(rB-sͺmό’xλΦ{ν½!^ Szρρ‹‘Œ$1ξ uNzΥ-„GFJ9V$¦aY‚τ—)ŒΫεΔFp©γ#tLΚΧξίΔ”­x&Ο§‚œ!Ηq΅λ}\ΉηŽgοYz”ΈΧ*ƒβ`iχφ@Σ©n$‘"w' R3}λCΘ6άΉ$vc9£QgΝΥΏ`ΊΡ?Œ’ ±vγF¬©©υΡyt|ϋ=Χk\‰μ:ΌψΚηώw/ΰΣ·Βύ"M•γ— %;Ϋ‘[βhj€€&Ό’–"-;Γ!;r6s„©έ•T‹Δσ/-e*V”#3AξΈ!UNt υf#zόΌHaΌ_ΰ–ν> UϋιNgQ@ ν™υ]FΚvIN#BΏ9+κQ™U*υς<Ž Y=8Χσnhτ΅<ZΊRί-υ{œŠm—’£i κ£9½[jΧ!M‘GςΡ0€+ηΏΕ‰3ϊL’”Έμ/!ϊϋKVΖGJIΫp}ν™”)3γi`P„ͺφμ½Ώϋ?¬Hb\› ΜΞΊ $m˜5nbσΖνΘuSŒυŸΒ·ΎSΎA$Dwb–ΊτΡ6ΤP3―x Κ\ρ†oy7«#xHŸΖWZ“π(γΣχΥ‘η%ωX%»Š]²ΚΖΝ²Ϋδ- ‹ωΟ,9²»κ7΅jφ6Ta‘0ž‹[ˆΈΙN|ρΫχ*σ—Ωι8lΨσSlήR#v²vΝpέΐεΣρώg*͜§YU ¨¨DNN.V€eC υœΗ½;踁KGρΥ±Λͺx+Pg―’tωb̈<%¬¨Rόr6ύ9~΄Ζ=©'¦†ϊN~€―šΊ•0κ“ {Œu•UΘ_ε^—˜ΈΫƒΞv4Ÿ<„ Χ}Χ„f§ηΏ~?vΦ’8ΟΉ`±΅Kχω£8ό» ’:Υ`η+°λυ‰΅ͺ…x7‹Ξ―ίBγeo=ςρδλ?@޳@„Ήqμ-9Ÿƒηύ€‰ιόΉιHΘ.BŽƒ\<π1n,^‹†]›œs…ΐ™ίΑg\zUξ~ ›ΦΧ ΠƒIΪNΑ'_χQήxωI"ΦγٟοAzb&:qz( υΖx½―ΛΕzΒ —φc’ήΚΖΝ€xaaγ.aœ m–β9‹M{¬–›μΐι«ξέί‹’ε½ί…αژχ½\Σ€ν΅‰vIIΡf=Ε6’N+ ¬›šηN+ZΞΨ~Z- ³ν§Ί^•‘αε'QQVκ~† ΅Ο†Ύnt\8ŽηεέAmx­nΐKOοBU‰τ֘tŒc ύ"NŸrΨ­:έ΄mRl―·ΪΊI±ΡŠο–ΚΟς tέlςΙΠύ)ίώ™Θ,O³ρδ„ΕΣOVΥ8―¦:Ρ;•‰άι6„»£Φ{"r2‘ψe;h•z•θcνCΊ΄<:}_ϊmνΎιͺέx免HOΫι‘sxη½Αˆτ#Ή5Ω–νώ16§bNΥw@\Ζ;ΎΖg‡΅c₯ί “γT³wΩφšρ΄ΗfΉ˜-?Ζ#€cΗfyηf5»ν‘ζŒŠΠ‹#Θx.KŠeΣ.uΐμθ4ίοqόzϊ˜ΏΚH―Ηφ•₯$"A< ν?άηκηύιxJ\“_η6n^SbβtΚ3ˆγΚ8—TTζ?‰²eΪe‡…ι(ΙΩ‹?ΒE1aμ>ςQ²j-2έ>g©Λ*°­xΎιψ“†Q§Oπ:¬(©Α¦Ν•Ž4nΜt‡άΐ9\ιέξoΑ©γ7ΕN"βn\œƒ-›«CΚΡ!<Ύ ΥyuIU―δΔnχύά$/–gΉ½βx\ΞAΜ5‡μV–,Χmά,)9'q—Žψ¬πkάμ ²7Άg³WzκΡπύn΄έΉB7ογαΓY,Λ\eͺψώ΄Λ;Δ/XΰΘΛΨD7ξάΏƒ‘©1LΞL".>ΩiεbηgύMZV„Δ ΈζΚ£ιϊη­―#@ ;ž}Ε^»§[R$}3VWΘwX'kΆ$ΞφΘƒθj>‡Eβέ‘ϋ½έΆ‹·,0\νnΈŸKΧ‘Zeά<&ΎŽpεφUŒˆχ­€'Φf;wŽ_”œτlΡΎΚAΤDΏ@«BΪ~j%H·0ˆαφ,ΪΫ%%™'ϊύnγζIτ žCΫ`R3·’6Σe (κ{ΚE šœ7‘Έˆ’§ΎΓdΏΗ‘‘Ιv)ύHs4ΛM`bΧΒή›=bGš1,LΞGiΥδΉμψ³ΕΟΖή8Ϋ‘γ+;μ/Ή±š9 WΙJ;a&_q’΅=3;žΦΘ""BΐώgoD²1O}ψπ;±λ“ύ“|ϋφνΓζΝ›ρέwίαƒ>Δε˞cσΌό|Ότƒ`Ω²eθιιΑ[o½…ιιι š'Kw}ŠΈΩy—”‰ήP_₯bŠψš lK—Άr~"ώδcl€M|]ξΞ¨ΖΖ’gf1r]†OcwΕF-ŽŸΈ?m.Ίˆ¦–Ρj€ΛΪ΅;P"+#ŒUzϋ%#ΖT€$ʯˆώΪΔUJI:2°TΓΛιηϊ?λ}?„{돐Ά^Œt6αά₯N$ζo@έz§EFε³Ψ»§ ο|ιkt01Ψ…ξžnά½=$6dY" ΌΦ‹-σ[…υ/βιΞV‹^θΓ›Ÿ–E*ΏϊΛOD™šσΩtΗ0O#χuz1VΙυDΜΫίpUλ’5?Bς²†’ŒŽ[άίάΞτΤ;ψ‰νξhW V ¬΄ΧΪν’›“Η™E=Λ…ώϊŠZ—ΑpλΖY\ ΊΎ“ sρ<4Κ ΆŸζ‹ΕTϋιJrϋ6•q³ψRΤ‰σΈ9x‹’Ӑ‘W$Œ EHΧσΕΗΚσh=φξW7ίmΗιSηpoI6μwΫw)ζοΗH;¨%ΓR½Υ¨r‹™vPΌ82%5¬Iβ/Ε/ˆ9ԏΡγΘJ1Άo’_‚CΒ™^―~‘#œλŸYž†β‰/8l|ήυ• 4Ÿ\Š{[d=&F’γkΨ²>~Ωš…Χ†‹/’fσΥΆ’ͺM@Ση^ΒͺPR*ΏEqWΔWV0΅/ύHkν`ϋI\ž–vp=ΰEi¨YλμΟιΓK0’Ίί*τ35Nυ*eέ—fΫkΖσ@¬ŒΜrρΖ  £&»ξaθΣ^±‘r.‹σύ$“]φȊ³€`X›ΕΰΎ6k­Σ˜G€}wX|β­ο’ŠΣϊΕ€aKΏΤ©ύ#my=6gˆY;i–KE}βχ«|&Έ#ζ’ Ω˜θΏu'oχ9‘ΝtΰLO’ΦlƒγCZ‰+‘)ζeΗεΙ‰ο&Π?rCwZΠ7ιΉΐ3$ žgۏͺT§Qηc©Ž‘)“ϋςN»"ω‡sχCDΈΣsdH²: Γ19ΥƒΛƒΣ˜~ }2§‰+vc[–ΣΰfdzΤmο‘Λ ,Kτ‡ΕdiΈξ4P‘ΊΠ]Δ§[ğφQ„mRepΤΓI΄έVό?hΕΧΝ­Ρ€φh‹Κχb₯«ώ*KVκŸFJtŠe½d=ΝgΠ=™ϊΝςn@Ζυ)©PvΕΌx ׍‹mŒρv4im>S$­u:>8ιγ­r[»ζη_AJΎ²CΣΔΨξoe»ŽΎΫHXœŽ΅η­μξό5Ρ/πΰΈ yϋ©‘&"@ Ϊ³dQίEΦ'D}Χ}D€]­ρ€‹ΛQ,υϋ]Ǎ›‡qΞυ’ΰψθmT g±φ-ρ₯š…RγθΩwxYψ§»Ύ›ιχ8τ2Ϋ.EΆiι#υώΨ:|‹Ž“_£ΟcAΏ 7šoβ‰7^E‘γe±T,_±BlΆΌώ³Ώ€u[EaΙt;‘•?γnΡ۞ζΖΣΖ0†½Τν™½’)Ν Η‚¨qίxγ β;a<ύΑ‡ΎΖΝωψρ"Œ0C_o_ 7yΕ»Pιx‹—φΟΆ\Π NιɎΩjMe—₯–‘ΎΆ i—ώ_u»_Ξ.sΰ²ς²ε5¨Υ‘–Qƒ§vˆ~φα7Ρ*ρk¦βtΜ+~Oδη(!nvΚ†}ιHHΧ&ΔN4ΚxK Š’ŠjδΊ/υIλ!>†Z>Γ?ŠšΗAάϋŸρύUŽΛ²΅ΘΞNͺmθ:}CCpδδeO­Ύ|Χ_ώ/xΎDΈ'£°b­ΨŒν°#Μ…oCΎσRλ η:‡ϋ«Ÿγ³£ξςςθΌΚί± 5Κp©Ηήω ΎjςŒ#}ςz]Κ­θ·Ύ3ΰW*‹|„»―οxr½dδ,vήΜ/zήφWŸΗm|υί?Fφ_;wΝXϋ}Ό²§ ο~Ή―ξί£Μο΄}ωΎςΒ&ɟh?†w?όWΟbΥόΎswΠΞ#xηCαΆκ Φόΐα–š™%B·U/aK₯ΌΎγΝδsœΊς’Ψet―#NαŽzT ηGFΜ•Ÿ#ͺκŸ-<άΧyΛ³•Mv†Ε:„dΈΆ,ηiμtν\8vλ.=(D½«.X κ›…ΓΞτ–-Οpo #Φ†t΄)²κVΪkν’,έσΧ¨žλΧύ +167ƒ…KR•vU’z»(4ŸυLΐue6ž¦°(udϋΉφ3-Mξΰˆ—Gώεσi_SΕ:wQβΗcφy”Ώ£Φ΅{Όwχ"ώπώς\k/—όgΡζΚ+‘ ΊΠjE3Zo΅dψs‹₯vπ’ψZn‰xNδŠή’ε°Ω<άΊ₯ωΚ³γώΘ9δtυύŠ]Ÿ„³σ»ίkμϊ45«ύΌ5Σ/πΡ)βν§FQαΐφ,X1ψiΟ4’ΝΝ.@Iν³¨¬*CzJ’3Δ}ayωΈhΏ\ν W<3ν’΅~–xνά‚’‚·ŽB'Η3l°}Χ.ΰJ‡v§Ψhϋ’#ϊζςSrBŒsdγfiχ¦ΪΌZaά,­ˆJcqψΎΘκt7ϋί¦ϊ.Yohυ{$΅L·K‘μGšεi2ή|k_&:Žβh‡?νΈΦ֎’ΝΞqZjj¦ oαγ§}aΙY«Ώ‘ώ’ΏbwΈϋo'FΣλΝν™”3γi½y’pV{Eΰ1UfΕΨΡξγ±Η\,ǏΖη½[9ˆ΄Γsμλ°©άύBv[η ψ{½?ϊσ”τ₯\Γnτ‹―CŒΰώ\–£2Λml\YVλΒΐΩ™ΟTd₯H} iΦΗ5ξ³ΠνηpcτR3ͺQ›[δΚzjŠ7’Տ‘ž+2rŸΓΣεUς₯˜0>‡γŠΡxF„^ΖRz+Wnώ2rχ‘~΅œžr6n»EΙg€]ΝΤΗΒκύOΤ>6ΰΧyΘΊπρΧ¨ΨXε4ζΚ,DήꟽχŽ#;ΣΏ†χ(ψ‚C‚ 'A²ιΊΩdSl£–ZΆ5Θ̎ζφvοφ6ξ&vγ&β"6fγ&ΞΕήήNΜΞLΜι¦₯€VKέC±ΕΆd“l’ A’°„χΌγύ/]eVe‘2³ͺ€πYΘ—ΟΏοeώωηΛού¬&·‰Ij>ψ'MZυΙƒΛπ<œΩHEDιοό™.M΄Rš0a§Ίwvο?€Ά^ΉΰAnf‘Ν—Ρ~½Έάθ’&ξΖƒ:$‚3)[z–&ΞϊΙMόόύ|όOί Νη?¬ŒDd‰ΨA$ς_~ψP·ψΩ)ϊΑYJ–GdB"εΝ‰;'2L£γΕŽξ―Tθk—<0q<ό ξοͺΔ9Δ]‰β#¨Ώ-’Βύ?¦»[ΑΣΜumOv­Du°‹xyŸd‰žΎg]Ύϋ) ŸS†˜ΰ––e―₯c λKS‘Η§FIbuΦευκrIΏ~sν,@V*Ν_Σ-νϊ"$•Ϋ)~y†~%DΥ²–ΟKqή‚S3ΐξbοKΤΩάJ*β˜:ΦΌŸΛOσ˜ιε°&?—‰p―8Yx*τˆnΊ‰ͺsw―™ηQŽjaSσύΛ ΉY(“dξ½½ϋpfχκT=3rΠ½­μάά}«W‚χ° %Ηiρόπς eΌΣ‘Γ’L0Υcθ~B‹±|9«xΝ·£βϋΚγ½Wp‘I\α”‘Z°7αμσΥLcρ\zΑiƒθ‘cΧρτρ92€₯€ƒ?ψTΌ^XΗ*ΙH–ό&Σ\wίƒS³Vzd δ 2P1ƌχm½•}Γ1žͺ aΪcU^σ|ϊοVq1=p<G€# ‹€/’³{&³|dΧμ“{ItnΆ0"ΌΩQh“ `£hοLιβ‘›f­zyΩ‰ρy=zš—βB9˜¬»ΛΫ/M ΰmo—»ν€Ψβ₯ILΝͺo —˜(²H!Ή~g@™Ού;ζ";Q~‘Π/).5…΄5β&f«άJ˜_ždμ*Χ]ρ•HΦο\=+Yξ¬ΦΦF$Α—ήψ* ]shΉ™%²εξΔ!ϊ₯έ~Ÿίi”ςωS_φ}Ε2©YέšΛdΏόΘHΉ€λ“}ΤYΜψύ‡ $(–™˜žΠ­>6&QYΝ?9?…₯H#c‚ϚΊt›.vκ%Š…Τ!²ήΜdA—‡δ(9-YΎ–&X‚wΙu…Θ‘ξ₯Sη_F‰]~νr΅+6َ|ϊ₯GO‘탛Σχe΅g"> χvnJ\₯IΎxΨ·ŸΒλ 1xη·+Dζ˜Μbδχ^ϊ]CΞ%œ_Rœ\φ©ƒζFˆΰ,Ί!άy•όβΦJXv…Ηχ* mMOΠ@„iΡE Ϋ¨±~Ν.vϋ&8“—<’­ΒR˜9ω“N}ωuμ.b³;Z›œ‹νΗr‘•‘Š?τ$xΫr*_δ9vΞϊ’CNf₯ΗžΒΉ7N)$=±Ζx€εοΕIϊɎ•‘GpN«ψ^―SΙG½ρσGξΚε²Υύ|ω~ώΉj6β[$’ {ΰ³]"™ιγdΐžΰzή.(dgkz¦E‘ ?5 .Ο ‚wyζ™=­β%HΪ­+2.%Uo -Ν†?„\ςCΟ’1?ϋ­―"_GGSžaα΄œ‚³9ω’Lε~ž₯ν™]ΊFYήQi'“’‹‹dŸuZr3Η@έο¬N/z›ΰ³ϊ·nz€ ύM»iεΛκΐDGΊ&± ΌΛ/‰Ho}Ι«œXύz1βςΜ³Ζή§=σ…pΘ•g!<"›ΊiKK: ?{όӟώ―Ύϊ*:„―}νkBiuuΚxϋg?ΕΧΏφuzχΞΓwΰπσϊ',,Έ )ψΩ„ dί½χ¨ΛZπΨάκ ŽA©,θ… ¦φοQλμΫ ΎΰuΌΊϋ 8‹šΛiοuP‹ri»`υάΖξΤό ·‡XΉ^"¬όg ΔοQQ.½[L ύΛ,ΘΎΆWͺ‡EMΤα⍠θW%›˜™€3q.)§πΛψzDZΗΖ‘RŽύ ™šΈΝ”*ŽΆXw_φϊΌρόmϋuβθΜa>&†H―γdΑrc=θ”ΘΛ*’»}εΡ"1±5¬DΫΆΓΑC{‘Ÿ—C»χΡΜιt켈³»Ν )Y,zbh+9k šo=”OŒΗu'3ŽΟΊ’›–ΙΕΖKτžςα―p© ί¬_ΫQ/%z„O Ω:Ωeυ˜†[ωG†76ˆΙ!ς1Ύδb+)@Α©―γOJί@„’QJαΊφγβ©`•σkό,βiόΊ.@jΌ<—9‚Αα(ΌpόΛόιͺ½C‰ œ*χ―γώΘΆΐΦ—’"9œΖίέ­Κk#rI5τŠΧ\;'18Xϊ¬ƒED"9ΉY4_2Cίdγ²Οβ͊)ΌΧ ΫhWͺ Υ|κ2|ψsΞαOώΗoκ~τšsμ.ήώ‹Ώ•¬{Me,‚ΛOc8IeI~Κ_fpόΗ2ξ=@λΣ6 φu «ΟυΜ2Rύκi „ωJ1Νz›]:’œ―»½πAp6.εR΅Gsχ­6οκgHfžΒ·ͺN ‹„>юΓ=d-?,.9 sΌQ1† ΊrΙ…„U<δΛ.x/Λ‹Ϊh1άg―IΣ΅$,Ψc§Ϊ-ٟη—T$—ƒz‡£GΦΥ6ΰ(ΙvWTΞβΛ1”μ“Ώ6‘AE|VzΌ&zd`δ fžΠΦ[YG¬Ό§š@“ΤͺΌζωτί¬β’~Βΰψ‰€Q’³>rΔ³εgxޱŠέœ•Β܊π~𐋠ifzz 1ι/αε4ΧΦν,γδΤS4υί@―±eΊήλZט μΝ?)Y‹E[χ‡θ ;ˆ ΉMσNνͺ,KΈΔ#>Rž$‹Ί³½rιͺcb΅s^ͺ8οήΒμ½ΘSžΤ™ΐY^q+`Eo·>·4fNιΕυφ,ΕG9lQidIT|©νx‚‘Ι9ΪNRτΒ—1>¨6“‘ŒCg^V‘›hΤq̘ΐb‰¨Y|δL6β~'k—?υΉϊ5;Fqƒύ˜wΠ"Σ"VεωβD^ΞΎ38ΤΧ‰»Άnv•θΓηο8¨-κ#/χ]|t²B`O²Δ—θ'»ι²ΰ;|­Μ²I@ΙϋΘkέ6μΝά­΄d€^ϊ©-Β†ά΄ν(ΛP,Œ6‘SXLΌϋOΫ†υ>ΛΓ‰WΏŠΥΔϋΐΣ»θt <šΆ"Ο)B!Yψ]\‡Vξ?κηβ ΩTΦ:gο΄u³"§Ϋ‹€ΏάJT”ά–ξ£t΄t‘P°œœŽΌ’DpnΤ‚]ΘΩ&~ΩύιzΠαˆΣR”μ|Œ εQ«Π>ŒΠWΔd’Έ¦€ “΄:UIŸ›–&ΫφΔθ M¦‘Ϋύš–άάΧDc0ΰ@lfvW” ile§pΒ9„nhϋ?Ϊύ­‹‰dΑy™Ύ¬$‘¬Llη²fΜ„"€?E¨zAEnžιEΓγ'p†ΩQ^E/γͺ€ήΛωΏΐΘ]xτΕϊσΘΠσO…oο4¦ΩηNφq5…Οcxκ–τ׎2ι‘’§γ)Mβ Ξ’^ f·όT·%Tό\ž‰UδΩ*°ϋ½©₯Ρφ μή.’ lΫNαΘΑ>\ΎΧ’Ιi^.Ή²›Υ³ χΠ‡z…άyρΊgή€‡L8}X>MCj6ιou„Ή£ίψSœ;Ίέw3hG]Yy–J!bϊ ;QΩ@ŽαΑU‰ŒΡ±ͺ‹Δ@yΎ’Τ_ψΟ¨)ύ;TεΈRVϊ/Qο:υξkΑυ1]e|Ε3q%R3TΑi°«κRE¨Ό2 ΠρσOcΧu ’εζΞ8‘VF;ΣI‹u—PÌCΨ³ @41„~ι=ZΥaή@ΦGδZΌ-:ӊ%‹ΥΫcQ^•Kž•›m§λίΕCUAϋvύ' EΩ™gߎ|"ΊΛCFή³–OU‘/oL”ςύΖWR%>*€VρΉόT` „Η¬ό¬Ή‡ϋ^“v,NCωΑ³τ“Z25€†Ϊ›ψδ½KΪοκ–ΚH’Μ s‘ˆe”`κ―19¨W€ΩϋV― oaEξΕ›*rσ0qBήTYhΆcϋwπriΉΠΙΒmUΨέQ‹Η£qκώ[ΕΣ@ΎΜΣdΝ{ΏXΩTƒΫbΈt$Ρ7?ΑΝΡNΞ’ίŸ—ƒ« ·qτHΗΓ»h=w{Ψ”i>ϋV\o’Χ”—v£HκαΘγ:­υxχžY ”toφjηώΎw_o[oϊ=u΅N―gU^σ|ϊοVqYux$G€#`_$g«|δˆ‘‹=H=OCrΆZ˜Ρ~ε&€)/©ρρeΨ.ςU5Ω“ΚPUFM£W j’7ΔIYήqŚοΐΠ-<"r[zΊ‹ κXpj¬-[Γ%‘&ˆdk4;θΞ7&€²³JΤ a—ž~ϋΣ\ͺGFdB§μ˜ηt«’νΞΗh“ΒβwEΑy―pζθΌI+ό™Ή/.o/Šςε‹k΅ΏξΛ€β;w1υε?$K¨βDyaΕ1"8‹–g-Χ‡τΥ݁Γь‡ΪFέϋ}/|'f­ƒο]ΓΔΉ?ΖανμƒYΆgΣ}D‚•\[kΠύΕ¦₯r K`«nΤLteμ)uYV~ΪͺΘ!s€ώΨξA‘D sΆΥ㱆Α܁ΡΡ'Σ€8m§šF]ΠΔk‘š*Oλ`ΌŸΞ…/’r›<‘ξ>Υhhη^=!sμC!œ…5R±>Γΐ#ι$± ©DpV:ΡΦN‹@φμ¦ΆJ‘3-ΈώΞ/Ρ"}\¨λŸΐ›–έKΟ ŸU9―_­jRΚEY~ώΙx9vŽ=En|2iαPLόvœΨ•…‘©9Δ’₯WωI57Σ„»χέΐš^ΰjΐzΘOWν‘ιγςΜΨΈ¬.ΟτΛp΄]Γ{d©Yp΄ΐclϊ-Όp@\|QΈ£‚¬΄¨μƒ‘ 4)—ˆ.`YΟJH”?Z8P{αo€Em~ΤδνBv4&ŒΊUδK:έης==93",dˆM>H‹¬ς…§'kΡΆ˜έ’žύάsB=£u{IηΟύn\ο!›y~ΌΗ­‡ι oUωb?x•TΥ€§…τ–Uάκς…λKXMί]G}ɌœXeψ Emyζή£οΣξωBυ|«Κ³P­Π倐&υ‘ΊzυͺαδμΗΫdν9τIΞ6Ό@ yVnΌχ.nj§eτΨΐ‘s‹sž­'“ΒŠ½οω4όŽ»‹ χΝR*.y―οΨ£d'BΝ"ΤL*!*Οl-ޣל3;ͺ°3SΕl¦έο»›–~ε6φ@dέQO ͺ’ΦΜ똝ѡ+δ©)ς7„}ί֐›§ϋšΠάΗ!F/>qE8}κ€ΨvΩ±?=IMD¬<εe±œ₯C+,–—mν|¨ OΞ$‚Έ‘ρžΐœrΡjΛpΡDΌ*MΓ΅Fߌχ%ΈΜ²σX‡$0~AΗ3%A\˜ΐ†-;€ΉΣΎΞίαΙ ύŽT»ςmbp’_kΥέ”1_ λ‹UΧHBŒΙ Vm‰5ymJ.ΉΧo©ΪB>Ή†μŒο‘”Oν4—tXm5ŸΆvΥY[3\»‚ΓS%αXžνΐ˜ͺΌ\~ϊƒž^^“ς³ι}όΧΏ›ΔWOŸ@IiΎ2Ώ&”LsθΗΏ†‚¬$όδo~₯ωφ£W³ρ0β+\]s€ϋΦk›7ˆά±σ€²€l†v&ω½›.ΦΨtΉεΨ)|§Κ…=£»τΗΑ*žςΘΫ‰’ ‹Aωο 2L:.ήe (Ί}»WFQsc…¨-g5|δrΠ;TJlF=ιŠ{2Ig$“Wε»OΑω:vTΘ‹ h―½λ½―BL0υHεͺ¦šΦHn½ΥLj°hέχTωt“X•Χ<tί¬β’;8<#ΐπo$gψΘξ…ϊS˜±Ζ#%–=4ε­ΪY.'zFš1H“o %؞"/QΟAIz z2‘±B!UnΦ9ΕJΫ€γͺ‡D₯;YEšS/峊˦hϋ; “Y†LK&βμŒkr71Ή »2d<)ΙΒ8&Όp‘KL>‚Cv*GvDΈͺσB]dΦ@Υ.< †ηΤω ϊγdkΝ”>,\š σ’w[qΎ@vdю¦‡.r³~wkθ%!-ΣkQΥL}¬Ψζꏅυώ΄άoΐn"`2Jux„b[/©ι0Η!QE❜Ÿ€;RΟ1+)¬υ 8h+½ω)Μ―„!!ž,&)μWgνFψeHΣ¬z3y+ΊεvΡKΡ=RΏJϋ2hΫ<šπ§I φyBγ5ψΌG=yψϋOSŸή ―Ω(xα »ε`K†0­? ni½f’dϋ.%²»ζsr3‹μ}π!z•T@ ξ?F’iΊ-‘›₯²λšZPAg&ρmͺ/"=θ:…νμR$YQπPΕ―Ι-€ΙυwΘK&δ@‹PΎc§Tm4)μξΖ†iͺU )§#%“Ϊ3@ L«Β+― Kόtg5‚O―?‘lyHI“ΘΜd΅d˜ˆΠηJ‹ΞχΏπƒιΦΟΡΨTŠ£ω»Ω;2ΡΩθε.Œς-₯³ΙrŠμ:ίUΘΝBXη5ͺk'Υ%ε”ξGγ§ΚjVξΚYύ•ƒ¬3Ο?Ή^ΓΗΩ :G‘IΦΉEgCzωΨG,6‰:ωvՊQΒ_«zXΔϊΘOUσxΉ<Ϋ°ςΜsxΙj=‘ςΤνΖ]ν(~€ζ‚T-Až©Σ(~r‰₯΅ͺg­Π‚%ΕΉ©,|Ίη Z”ž3ς%%V¦Πm-μ¬R‚ƒω΄ΐκAΧd‹ΦGXMΛξΊ΄gυ>Cό»ίΝθ=ώΘ₯5Φ#Ή|Yωb?ŠΓΗdύθΌ}S«3x\½\_ς€ΔŒΎ«ΚΌΆϊ’9‘j€οƐgž3φ>ν™ΟP—gk#Ο O ž={†`œY›7Ι9»θ,φ€Κ³T]¨mΊŒα‘2i·°86σΓΫξΫ5Χ-†Ρ_Ϊ%iZ9qycγ\':Ύέ;Ώ‹‹K•˜žΞπήνά“){œ΅ψ¬†~DNgοο˜ΓΫΑ.ε4~P*ΛSπ2 #³VGΝι°YPρk„«Φι‰n:Ι§Ÿ3da•B² τΥΏΐΫο^ve`ΎΤ—PAg5ZοvΆ²δcΖrŒζ”Nlώ.Ξ‚₯V·ϊΦβττ½… Υ$«³βό[8έύΏΰ YβσίΝaŽvϊd;~Ρ¬5ΊΏΈˆjƒlΝ@Ÿ}Ρ)^Η…7r•aν™‘[ψδΙ})±Ή©βNsτvNV½ŸκdUCMΕ4ŸCΝέ‡žiTŸPpb*Ψԝΰ¦χρ]₯³"―-Ι%±Uβ_ νTgύ‹΄ƒͺg¨ο«ωΌ•άŒλš½E=œΛΟΐBlI~6]Ζϋτ2°­²ˆ>υ”‘œ πeŠzA|ι<θ2.έ^΅±ΎžGΛ‚`bEtƒΦ»yΈ /₯±pίn.9HΊ^Όk΅g°Ng‘Ω}‡fڞ¨kED²ˆΝžΒ ϋΜW€ŒdφEVr΄P§|U3'‹ζ|η›ρXNoιΘε WΨ6˜Ω|λzOW"—:”[ΎΫrbQT,½γ Υ‘ξακrΜ+š«zd ΦZn½Uƒ­ή‰χTΚtymUίεω ½wθ<γp¬!h>r"Β j;•‰αχzΐHΞ)QH?Ÿƒ_ΣT˜Ξ›mXl8’₯aό=|Wž™θM’e3ͺ,Ϋ(:.£iJš’€ Λ©•σ8ΘΜ[’‹WMZ!‘'%εyTΙ€b"?θ‘UΩ ‰ Κϊΰ„sV­ΈXΗeja'*Dιi'q"<½4IKuΛ²8›z%«‘^&Y‹˜cζŽV κ³­ΈΩv :οwBzΗ“ία½ώ΄‰Ο#‰΄»θ ΰΚY‘ Λbγ%%‘J&"‘»θΒMϋ‹!‹ͺξΩ½ΗΫwa{E9²23M³ή€!2.MxLΊ4JήrZχw£]/’Σβ½ΊM4χ|€Άωa-z΄])Gp$WΊn"2™‘ ½Ο κςVχ[»τΛ,Μέε²b>]‡zΆ]₯W7ƒ±ΙV0kKte3ΛΤ©tiΟ-Ν"ΖV…ctέtYδύη΅Ir‘aίψƒ/­jyWNͺ'žΰβΟήΧXΝTβ y’Eύ]ΊκZδ“UΉ&&A»ΒiYΌ]Bfg˜T“έ:;[ˆΰ\JιΘ.ήEgF&—xΉE$ΔL3Ί½ΕΤ–ώ2‹Η%ǎΩήλ ¬ΠήΑ!ΊwΚ9,XξμAF­<§ϋ…ΉΔœB"―?#-2wΫ9:€гG+RφgρFή‹΄PBΘζϊξzΆΖΔ*ƒζŠ7μΛDr²,?G0άε9ζ#Μό΄/‚³©ρ3ά8― ύ•ƒfŸ^’‘°§ŠΊΆΫ\r`ˆΆε ‹JGzŒ4nIϋiϋέIT+ςΕΊ^°~ςS―σ^ΒΈ<­PΫ°ςΜcT'HV1a₯q-μAa[ θhfncB“ΒΚ‰5=K˜6μ}σΏƒ­‘=]½νΗπ¨ο6—/€λGΙ“ήτρs*»Ά”ΆΦE]ΟU²DEαρ²ΌΒΨΜj:‰o„όΏίΝθ=Φε#¦¬™ΙεΛΪΘ—Δ]8ϋΪYE/uΆ}ΛwF‰ΰάζž:@υ±bσιΓ‘όΥdά9dΐ§YyΉd©ξ ΡΉ} d67}ρφAΠ=«Υ|ξε„Κ9—Ÿ εη0ΪκΨ―ΥώNΡ$yΜx‰H .yΞ§5c`h{rXyω°}ΪgQN¦/γ.€ ψρ|7/_€Ν%Ӑœ Ο‘Ž`l\‹Ώx!–ρΫΣ]fΌ~»Ά"―Ε|Γζf0ΎBί‹Ω‡~΅{ ›κ:™‘oi+Xqσe;.7xc—Ρ\ΉL—LݎSof)zukέ£½ XΥ##Ν€΅!τV2τžJe]^[Υwy>Cο>.Νΰ@@Ν7$9"ηϋΫΠχv«@ržν ‰"+3ςrφγΉ¨0Θρj3‹Οόz’2ˆpώΖ?4Π)Il"βT3ύƒ5.r³”dd†ήž%‚³ρ‚C$eΒ^μΟ•Ά—˜kw#'Aα3,c\=9λ.½£M(L·+Ξt[%εχ,4ZD¨lg«‚/³φ|4ΏR±Z;7έ€»ν·½NΞΚ£=²7€Ž.k}#4i«ίFz' ¨«xα»8ΊGΆ8°JΡ°Φη^Ίυqp#ή #άKΟgirKύίFkb*“ΨDl,mιĎ~œ­ήGz‹ΫKDyςΣ‰¦α―χ€˜}νΧα’0ΕΩη±W’I™ΙH'’όA#PχŸ^Σ=Βh…²iΪj€ΏVΥcΘZΊΤ’±IŒ;=Z₯ˆϋΟ9>Ά*1;*Z‹FοSΪΦΌͺT ΪΨ Ši!Ώ½”VϊK­%t―n‹ύ ΜΔΊ½JOξ*~ °Ω@IDAT§s’ϋ‰΄Β;3EœψΘΜb“h’ΛΜF6έ:ŽŒL…,46ΜΜΪ!)E-ΤιC•ά!9―ΗQυ υˆσΐHνςΔ‘kΧR_Ήάγ͎Ÿ{~+ηVε Υ矱6㘊άμpΤ’Άη²p(7σ%Te$*9{F ΗΪΡΙΎZΥ ΦU~ έ0φ‡Λ3 NNžiZO'S3:δu"²ή›N;Έtϊ&«sΉϋ­κY υυΨ±ύ”°#"VΘύnBο±*—€ž¬™Ιε‹ζΪ Ž|)Ε©7ΎŠ|ΩjΝΐ\ύΰsM½ž'\_ςΔ„–=›ΤwυΚ0fLž©K5!'ΤΩΜψ7˜<ΣvΝψϋ΄6Ÿ3.Ο4 Gžiͺΰ'λ€ΐZœYΧ6*Ιyηγ(–-ŸΞΤαnCέ:ŒT «΄aGΡΜV£]Ηj’ύΞο;¨T8ΨyίEθ&][V·‘œ†lZ78’*cΗΞ±C&θΡ-­m­R9xαΘ›ΨΓ&Μύ» wύ=n³).έ­1yNϊ2φ§Ks'P£ΤεY`R’ φTyn’βΗβ\ύπL€Rμ|Ύ >¨q•uθΚs€Σ©!Œ·Ή’D_βι• }κπ*9zH λμηS¬-ΕΧ„U3ڟ6Ρvέβχ“ύ/ΌB»·ύ­'I8uͺΆ-’…ήuΌή+ΏŽσgχH}v’ζγ_’ΕP:ΝψŸQΕ¬ο₯ΐΩ?zΝίE]\ΜυυϋΔ9ΒΚgπ˜ΞΊηœ}؟³ˆΈX?3νT§5|];„ωΠαέaήQν T‰Χ+C~­θlΜΙ«λ[^f/ΤͺϋhfE΄ ­NΔόͺeKd7…θFΜϊκΜΌΆ.—ά[᳝±ε¨ΚKEΟΣj}’v U‘yyf&†Εq°šΟ½κœΛΟ€ —Eω™΅­Δh†γ`p„Ν)ͺΎ₯θ4ΤΜσhldT)―dχσΐ 5Αφvξ*©AdXj³ g>ο[<›KŽΒ9Cߐγ˜.•Ž<{%jΖ΅Οόν‡Q* &Ά£Η˜C1Θ ž,§ο|΄(ηo½ΤkΓιγv ŸξΈχθ―p“]Vήq9Θ!|ό¨§wž’"QΐτΗ)ς&t υJOχ³B«zd δ «ιͺΛ*Ώ+Κͺz«ο©ͺή1oΠε΅U}—ηSτέΥή;ά†“Ÿr8&Πγ3’s ψΘΙ‘H=#‰ς%‘›y™‘›Ÿ#ΓΜήβΉyi|“5&΅5b”Ρ-u£kXmIA ŽS¦*ε”ζXb+UVu#,ωy/‘8Ln~ŒkK«²\πΆ­L ©ηž°ϊΟ2.‹D€~ μΝͺ@±°rUͺoic]KΨAŸi6–l‡ŽO«_δvΩ.ύ8ŽΩΛ”€I"`έ"–jŽX‰Ϋxž%,.ι·Z½cΉ~ ‘%g4δζΩ‘vtυtΣKUF£“ƒCvŠ*ŒQε+i€ŠxOΤη½TZp Λ rιg±|y]Y;ώ€£ μεΑ€kοˆ΄ΔσΘc|Ϊ¨€¨?nΰώ3ά²:ήtb™β+gVζϋ΄·}eq'6`tΣ=άπΉυϋoyΡδ55Ϊ€ήη‘–K“"©…Θ/†;“‘WHΑM£οι}Γ-7š0ΎόYŽ–R=@c³7_?ΖΘ"K>›΄II₯m‰Š‘±`GFa&&•-―θΐ ³„˜GoCΦ΄ίΏŒα9+ ­‚μ7jfC“5 '¦Η/ ΅/,ΨΟΏ\ϋv…`?GVšn»=[{‡ξ#=±Εμ1M)S2Π9>,(KVτ‚P“Ÿ^G‚Λ3―Π!/Ο΄ΝwΞΟΡ4³§‹¦έ+§\ΠJˆ9?zVΟ5Όχή‘ /ίNK±T..ΕϋΞžί½Ωͺ$gU.}/m‡-,δdzgT ₯u8#£Χρ@Ϊ="7>MΩ)el†&συK2Έϋ][W½‡ΖPΖΏΗR—/Ϊu?σ[ΎδαΨ7Ώ¬μ\±z|όλV]”Ζšΐυ%χΟ7ŠΎδήz―rΒ=‘Ασ -Οτ>­ —gΊ°(~Λ3₯$ξYGΦ’ΰΜΊΉαHΞ)Η±§°@‘ΖΦ/h#υξ2QZω%WAOo+z}d„&λ"iž$£{rU†#ΘkΝΥ<Ξx7ϊiΚ%%™a‹~ αΝΥh›AΕΆγ8œηΒͺ³ΉF"QΪπΒσ?"‹ΠnDŸr .σ Όœ-―θγž[Ζ`ί5<€xζ’r_ΗwˆlέΣ{ζΨϋ0Ή0z/Ι;Œ…p3‚; CbInΩϋ›Σ rKαίiΙιοΰ›τζρΙΧ‘zδΫ8ϋΝΣΚόh¨—‹Wζ›pό+ ±Ÿΰρέ!€:‚η_ϊŠKη“Σληζ•i«ψνηρΓοE£ξi7–""‰Θ½ˆΡ†λhse¬½zϋo‡0Z™‡π֟%βΖΥ«xΠAL£\—οFεYZ ZΟλHpΒ[ߊ!™’ΛO‡Εͺό,Η‰·ώ-*SΠpη :ښθ™άKΦή3±c ?%£%5nχŸάdΟ£ζ;Π{Ά’΄ š―(=‹?ωΑ>ύέo0–q/Ώφ}”( ¦δΒuŽ:BO'HΘhϊΎΥ©Ξ#hCΛA",Ο0}‹Ύ•‘ΛΫφ Ύ΄‡G}O±‘Kό‰Γ8¨λ»j] ή(½U<­ζιώ'–vd΅Ι“Βbωl£Ή ά:ξήGέΉS$Ϋ¨LάLFšκP­YTθ_}VυHΏδ`N%φζ/eΤψE,7fh‘Ήτ΄μ­¬"#N‘Βωβlκ눟ςz«ο©BOWωpymUίεω„Q2ϋή±ΚΠς(ŽG@‹€l,ΩίΨWΌ7>rΔΚμ2βJ’σΨgΘ|3_°ΜΜΘΛ㗐φjΧψΑ_wbyΪ›ΊνˆξΩˆ£εαb#εG GTˆdΐG«―dGΔ†|‰Ψ ©ιI4·Τ幍–\ζΫQΫEΏHΦΫ"œσDTέ‹—3%Ηlztȝ…φ3dq"_iΪΠh5nφ7*η‘κYY6zνΩ‘’™ τxtEΝ₯χF”3ωͺ―ΌΨ5?πθχΈtU5Ο I<€b"8«μ ΘEk€ο)ΣλA°τ¬­ŒΞ’“\DŸ9'¦˜εPΣ.‰Qςl€NΪ²QΟΩ w!3QuS,L’ΉΉΕ-i€ξ#*5…&„K³ιhτ2ραΦΟΣe,―x†*!~άJ†<=x|Γσ:6”Υj"η¦ΩGφςC–}M—˜ϋΟX΅θκμDe.[H`CvΡ.2™…œ|q’c- θ»dTμͺPΚ|ΪP«KςLΐ1:D³/$+␡§Dό(7ю†ΎpTTΐ–³Y‘s„¬ŠŽ ν]ΐΒΙsa²gƒn’ΑFœZož,™δ–{+Ιίp_rΧίςύyώ“gρHRYΓžμΠY8δΐΜ"-'ŠŸΥα}š\έ3¬„’όtuCλγςL‹‡ϋY¨Λ3m{ΣRΙj>-*ΡcvŠιμƒΰ4ζf™΅%λΞo=«η>Ύ  {a6R² P@ˆsθγ%s±ω{PY~wΌ.R’­ώ‡tA]PMXΝM=Ζ½ώV)Ÿ ιρ9’–&ςi©Ž3&_wΏ{6Α‡ήΓ2–Kž₯{†Σ#=σy αςΕ2bΈ?ς%‡ΎϊUl·KΊΥL ^ψ­έ1ΈΎ΄ϊ˜ψl}IΏuδeάς, οΣϊ(\žyCF χOžΡg«Οcׁ₯₯Υ&[‚Σ5Ιω+_ω ΝtajΚυ’νΗΫ?ύ)~ψƒy‚,lΎπ>ωδ“ΰ4fΥRm8VzHΠ³Y²™‘[Έέ₯?ίΆj1‘I„A‘ bC^ξAα§ΫΔ©f|v7k]¨νΈ‡{ŠY’+p²Š~n χ^Α…§Νbhb²dr³”..shΖHΧE:λ‚sš4Ο}ΆGΫz―ψ¬Ϊύ~Χ&1~f½>{fΚ³D εQ_j‘ŸΕΠ™‘Q7‚³Iyν‡\b-0ΫΞόDω‹νhEr·1:u(Σd›VVσιʁχ—ŸΦ‡Λ’ό¬SΟ(ΪQq˜ύΞκ6cΊι·ιFΡ &žG”φΦ•J|γ΄(μ»Ογ{τ –3{ίϊ׎ ©ƒυ-5Ψ^ΛΜϋ‹Gyι«τN4fFξΰϊγM˜U<­ζΣT.ŸΔ₯Ί ήM80΄‘-Ζq9hX‡“‡ίψ± OšPΙiHΊe{=ϋFαζ<Ζΐ-^u(=’ΙL«rπθΛˆs»eύBΥ8ζΝ?Ž―όHΤ“…Zœχvέ_#δυVΏήSέ00|jU^σ|Π}°Š‹αγ 9UΙΝ29ΩίΨWΌ9bθ7]`›Ι9†H`adΉ™‘›εΔΎβWiΏο(²νIQΝ@n’‹l;1 3„Ύ»"¦XΔόΒ(&Ήϊ¦qΟhΕwœjrd,s*π•9Λmώΰ²θPY‚‹ΗN•υΪG»*Ž΅.ey/ ’¬ˆn_ΰΑˆ>ΩBJ€9Δ—ŸΑ™£ΘΖ4…7Ϋ‚/~ϋ‘ΑE“ɏ“Ε…E%w"Y@eόΌ95!5Q°ˆκ–61Ις7­π,ΙL}α Czjλ"R±₯ΎΙΝ,ντ ˆ]-l[?vtΠo5ηΟ8€Ηg©πΙ9¬Ψ}Mή₯"ΟbΞ5LšfηVΌˆΓeͺϋ`¦“DpΦB ϋˆ¦ƒΛ3K”ϊ‡†λΡι₯]J"o²Ξ’E/‚[Η„·USχŸ·ΚB8<…;2ΡΫθϋCp ξ?+H 4w`θΨNΑbn¦½ε#•ϋn€¨§Κ¬”ο‘§πJ™Εhζƞ ι‘›œc”Ώƒƒ¬l1„…Βύ=;ٍƧdmˆΞiω;Ύ(Z<€ΘΗΒ»θ2Yy.ΞCƒz” -yh« Ί+νμΓT:²r‹P7Π‘))]cyZεχ‰Ή«ΜœτωgLž%">F^ψDΟ™½+Ўδi!џη]Φ•ώΦ BP~*1—gžbRži HNB2]κÚΛ7)iβnRαtψ~vhΚt; ˜ž… t²νκpηcμ{ν_b6&wγiWΔ:’I87gXΎ.¨¨ƒ¬ŒZ|H Em ˜lmΑ- `h‚-^ρtΖδK ξwΟϊaDο1,—tΚw 2ͺGΊe έΣM+_’ι~ωvηΛΊ|ͺί%Ϊ4χ½—a1)_ΈΎδGUπΪθKͺ έ½FδεΩ ς,οΣξπ†Μω&—g?ψ›z+7d­-8ΛX3’σ³gΟ044€!7Λρ2Ιω4‘›?όs9xm‰•(Θ”Ÿ»#xς1Y1άnn “d€#E&Ίwi~-}OPSCΧ*ςHΟEΌK&SNξ8Ž,²Ζ¬u#hnΉ…šΤ€p­ŽΝΰv6‚Α1yq"}·XœζhγάR±ΣΑΑ{xΤtt‘ωωym Kž_D΄ ,œ‘ΥJyIιΐγkŠ%kΨ₯ςϋ˜Xž£½Ÿώβ'.λΝ,ΈνήωΗpΌρκWP$Ο“ΛΥO΅ ϊZμ§^CΧ*ΫMίψιίoΎ†ΚŠB2‚‘†xΥψΞ©ζσε’oώ νμωΥs§=Ϊ)€™κF{‡jŽΝακŸΛϊ›\;.CFyiaYaΪo;tΗ·§‰ωƒKούέJΌρ6>ΞΝΕΉΓEcǁ“/αΚ;ΓΚΜΟΚ­‘hiΈηΙΈμd»-šΆ6]ΒOώ’―|ω5Tν.’“jŽŽΎ΄Χ?qΜ±:~ΐΣΜuέέϊͺ~„£*kœrΗ†‡ξαvΝE·Ε r¬κθ>¬«άGΦκ³#.R΄4¨ͺUΧ;<ι6ΏaZ^[—Kμz3ΫΈe'ϊˆ|—£μθή-Ϊυ°Ώ΅O/‘E%Σ¬ζs/=δΟΉό\ωYχ+ΊLΖ1ΤR‡¬J€»?„‹hΝΥ_ΰΚ»W½€Μ<κ?ψKΌ»ό/pφμQqΑRς]kFΪ©SΒ’LWΖε ωϋVUΛ»©δ ukΆο]Ξμ8Š™ZEθ4鄍5ψΔcWV«xZΝη΅/=6Q!8Oυλκ­κτ!νηr0`rPoœλ»˜&)Y‘Ÿz„¦]žΙTΊ™FζS€VX•ƒσӌM"ι˞½Ρ†LΊψ†Ίήκη{ͺ¦ΣA—Χ€5}—η3τή‘L~ΒΰAΐάl”ol–±@ϋά³Lφ?(ΘΝ+σ΄›Κ2³―x#Ρ€QψMF*Ν8U€Γ\ϋ~ΚDBΪt―^ΗΡ ηŽίyin<φlϋ&Ά 3’N4υΌyΦ‘επ—D7 Εd`gΑq²4 ±(f›Π€Α2»ŠN‘4Ψ(‚rDΫώτ|ˆ&š`6γβ⑦ž™ˆqY6SΑ΄ŽαQ0Κ;S™“tίr•’z{h΄B|)²—οBαυ'YPL²mO…@‚ΞΖΗt_>ΜΤ§TL›pΔ²I\ΦPΕν@εξ]ΚΩͺ²˜;;F)Xχ23Ιβ1œUKzyύ‡x"8ΛnrΦmrNˆˆGnj>Rέ«ržΨΔέ¨Κ―O16Ϊδ•HΌ²2§€z;Ž!³ˆ>fξΕqyύέα=νO •6£²œΎ²¬ԞΩχ‘υfIΚ.}¨§ϋi 5*†I&›Dιλ‚£3}3l‹Σte2m|xD©pœ>ϊ`{Ίp^²ο0Z‰ΰ¬»%­₯iKh‘ΖA)@γQ½Y©ϊͺN2Βκή.ΚΟΒΚ(ΌΧα’ŸiUΨ&ΙVuž@ω­Ι]2Šmψy˜ηŸ1yζΔΜQ£ΨUbCνάπtV+‹²3w"O1Nπg$Β£E½ΐ²’@ΓςS•gcxΉ<[mœΜΚ3mY(ͺ܁–κFWpω>"dH§3cŒ9»bέ|Ύε’+ƒy=Λf/’<:tŒ J–(_]uh}†εΛ¬Σd?IΈ§gΡύJQ8’]©θ#“]}BIFcςΕ’ΎδήcI.NTczώΝ/_*Ο}S\ ΐT£ΕvάxοηhφρŽ"“YωΒυ%9οΗ κKώΘ ·&o.yζΦ9ιΤχϋ΄~ΎΠ έ:ςμaθΒ–jΩzœΘΧ][kFr~ούχWMΤHη όςƒA­b] Ÿ½ ΄λ]Rb 2“’Ά˜qyeSΣ#hνςΩ¬ώžOρNΟ]ηnCr$SΎ—±07žfOΈ³šp¬φY¦^‚ξŽ ψIΗδg¦!1&QaαX^rbd΄ύΚ*F½œΪ°ΑΫoγΟιTΧwoιeMχ+!+-A˜«ŸŸμΕƒ‡*+Κͺ”އρ3ϊm;t™qlώb ³“ƒ¨•Σ_6rt‘~ψΧτSμΛΫvοΝe|ΎmaΙΏ),Οb1HΫXKΈε2Θœ{δ(αΨχ1~ς§k‚¬ž8ξώώœ~Ύ\υ;+Θθ°ΖyΆ‘,3§C‹ ^˜TΜΨC\ϊ)ύhΫούΕΉˆf&ϊˆ =??†ΡΎ‡θκΣT'œXΏΰiφΊ©ύ{4uUb[J"Ÿ£n±±vv£EσΝΚ³rHυ/ώΥΏΟ|ΝΧ7€«·ώ/\υ]΄g ³ςΪΉD“¦ΫΩήFrfρ6ΆΕΙ)ˆ’]Iž1·°8†‘ήfέocVσ o€?\~†„όdϋΒ]η?γ:];YΫ*aΟHETt¬πlXžBΧέ‡‹Mτ/3sΟ£ϊiαϝjμ―eξςόŸήDϋF{aυgq9hώΎΥλΫ¦’ƒr΅ψ¬¦5)εΘK€1'Ή…ΉaλZ=υ:!Φ*žVσ •zόιΉ€Ώ€ί¦p\Lκ]; «EtυupΣrΕ]έLOgΤ “ · G²œVδΰƒwwyŒψ‘#ΐ,ι―ζBΆάl†ol–,ΠX¦‘K}H}9[Cn–»δ+^NgθHΚQšLa™Ψ_πΒλ1°…‚τέ¨ σ²lT‘δΠ zŒΜDBœάφiLΉE-β›|gˆ\:δhΐ MΟ,-"&& Ή)΄ΚU!L9ΠΠKe½9»Š_#‹»R{θ*˜›t":ρyμO–ή€¨°ηV0ζx„φ)} s:μT½ Ήγώ”ςc‹Nΰ•sQh₯νW""ˆ#Ύ„ΙΞG>΄O76’ύπ!š΄‘jγJρ·Ώ†΄Β·™^L+φ½ˆ£ϋDΒ&kTkK=mžγLΤ'ξIΞΚ°aο oa±ΊmΝγH,―Δͺ—ΟΪaΘυ`άα ‚³Rηβψo!©±ƒV·…!<|γ­ΥθԐ§)™Š$W‘$D₯§Π6dρ1‚•ρ••0$ΖΉλΌ€XŒZB}YXœλΔ“φQΆŒΜ9ŠlTuΦƒα™L-ΜαDn'Λ]₯ΆΉJΑRa£² »+Ψ«OœGσναλ>’3ΔV’D± t?֝€’ΗΨQ™΅›fM*1@ύ'BβVΒ␖@Ϋ#₯δ+d$fK»u€VΦξ?%ϋ†ρ΄=|ŒνtΏ9uΞ}?΅χο‘­“h[ρΘ.(ΕΆ#‡H&d‚s@ξ?‹u΄wb»TŽˆmέ΄ζAί•βΐι ΔΡMΜ(χΙΉJ²΄mΗp4m‘ξ>φΟ‰φ»Ÿ£W&σ؏‘x›TΟL3šˆμΣ90N\eΑ8²˜¬υ‰ω‡Θ’†ξiŒw+Ε <Έ‹§;wќ‚’wβάΏHΐγšϋθlοΖ"YMΆΩiJ·½‰d}ͺΉΓe=­Ϋθƒ–θ–°“ωρ`KΞΔΆΒ@΄Έ`y~ˆΆηΒπƒFtΨ…|φά’ϊ^ϊnΤ>ΑdX*ͺžw-‘J θΑŒάUW¬#τ<ƒψόSΧΝόΊςlΞyΊ`€ΕF™Ογ೴Mτb), y©;±]₯χŒΆΈˆXΤ ά›₯œC~*…o—g”gnÞ_υ ^$ιRSύ‰;ΞΰπΛ‡• C-E,ŸΉd]ΟΚÞsίCI2‘%ž8‚ΡώΦ:Oη)LτT/Κ7+η",ς2Žc|©3αv”ΫI—’…/Yvnhχ¬Η[ˆ|ρ–˜ΒW»ίύΠ{`I.Q\‚υˆΪΜςeΫΙοβ0[ψΔΘΝL7θFκ‘ΧpΒeZ]„œ>’/Π’Α;€G(ŽλK υS_ςGNψκδ†–gbηΜΏOϋ%τⷌ< =θ·d‹Φ“ΰΌ%‘NO:‰΄"Ο―Xj—ν½χ-ε4—iέC4‘³]W΄L΄»νξu—e`ωόMκh{ˆFΎδΞ…@_Πό[―ρ3ΣΖΙρ:<7“ΓΏ΄k]Ÿ­]ƒάdt‘έΝπ‚‘Z­ζ3Txh&βςs}Ηe°­ƒkω\#™{ÜΜ]_„ŒΧΎQδΰδx3κΧπω`Α­›’ΛΑ@ύ1:U)6Ч΅Ϊ‰ͺESŽ=k,CYoυ=U3†O¬ΚkžOb«Έθ—ΖC9_8 !ε%;F.φ`yZ»k™/Ύ±―xuέ"£‰Bfš'…Ÿ:Rνχ―N»Ίm# (–-ΎΖcoύά29χP=¬kŸ-ε9L’―%GΦέξgZj—Δ(±ΤLY#vγσ‰΅9ΡΦ{Mj#€ΡΉHU#¦ŠI*Γ6Ή}nLjΉvοg·΄A?%λ¬O#³L΄΄gί~viWVwηΝI ($Γ<Όsφ—‰²’yό ϊΉ5rΆϋ‘5T]g’Ύ†'OPFVMΊpr)}‰ύtKυψΈφ>J·½DΤbr©₯Ψ}¬TΙΣΉ<@ηεά¬'%±ωIdZΟΕ£XΊ6ζ&'ρ„MƒΗ¦JΧn"]cή3*l χΊ―z΅F¨Wι0Ÿχ+1;Dμθlnκ1Η^«JI–βa§ώΩuο#–DΌ—žͺξ%KχŸΧ–„p„σn}bΗY"« WN2ΙμӞr[ϋ]ΚβύGι}ρ|Ε;ž΄£ϋτ^δ« νξnΡ΅ά)$±ΙwΧ^±oͺ<ΜkΛίE?9Ё‰ΑΉbΟNε:λk|€oQYΞͺ‡06BΟ6»D’#‹Ξ’ψθ#3, ΑycύJ. _\ύΙožΙΕqΨύϋ©’xρVT½Ž£e^.lΪ5α…7φ»r9ϊβO~KO€FάΊ~ Ά/=/βBrhi—rep―ŒLΘ]u; ωΧαωΧM:O~YγK–ŸŽΡΟ³΅sSuxά―^»mM/π,Y ‚ότZW(Gpy&Nδ™Ηύβͺ7„Ÿζ˜hΖ“«4AVδ’zV:Šw±ίσšΆΘ'³υxμ7oacνΘ·‹€ι˜Έ2T•”ΙUˆΗ…nάk_?}Ι½‡YΣ1ύΎJz€v$Ά‰εK,ν’ 8Fnf.wΘΈ‘sFΑΩΕυ% ώκ!?]xΙ>Mz9P} ’ΎδŸœP72ώUτΪiAžIέ1ύ>ΦΌˆ­$ΟΦ\^‘NnV£ΑύŽ@¨"”kΓd―χΉε­ͺγΖΫΕΰ¬?›]>?ΒΌŽ@h"P€oTαΉ™μ9‚"Ή‘-p₯I<Ωμςq½ϋ'CΏŽG€#°60’ςΰ―:ΌVζ‹oμ+^.8Lφ¬εΡ9qW»k1¦%nKMpU„λψΌηρZ6)θu%FΖ)ηΙωQ•5eWΥVpY‘­ΌΘ–›l@ΝΣίΰΡψ°[<³DjΤ906νν±ΈΰΖΤ^Φ1qg΄*ƒικ>ό-ξ<¬Ηθ„³*²)ΛΎ°¨½¨βwΏΏŒ>ΆŽλ~τ)~χώgή‰”Ηp}ΥψŒΥ₯ζ$ΚuΞtαρΧΠ'΅wyΕN=7ρή{‘%’ΉεθήGa|l΄΅]„RΦjǜ΄\vi3ή.2Vΐ(zFjπYΛetΟ―V"Ε­ΈΕ›Ό^ŒάGˆ.B–Bΰ&k.CχȞ’wΆ2ZtΰέΝbΔQ‡Ϋ:χ’΅ϋΟ{M‘γhόοώϊχxΪνyM νž@_ߐ¦ –ξΏι—LsΏ^„iΫQ©–ε%oχΡτ6©εV/zŸΆhΪ¦9Y\\υq₯Ι]Zʘ%CΑ΅γι •₯B)ΤΫahΨ…αP_ΡΕD7ΠΡ‡Q9ΣΐFά/˞j|πφ/Qχ΄WNεqtu‘ιq‹Λz3₯XœτHη5`jr§›?Γ₯ Ÿ’“,K«£·jž(˜©ϊƒ€ŒŸ Ή«j˜19ΈηŸayΆΨŽ›O―’}R]U«ΙK2΄sπ:>쨁$u•x+z’ΩΝ ωιVΕ†9εςŒ UδΩ’K^>%+σ:Ο'Ι‹Λο½£΅ήL΅[’K–υ,'ΖΩ"=ύLΈjθ|tώξšp¦χǘ|sŽŒ\E3Υ―γ€›ί$ΩΪ- Z4Bϋσ/€ϊ’?zk›iΉH=^!ΎYεΛΌϋKΧ*˜/^₯8/mH}Ι_9‘Œ?σl&y&tΜΒϋ΄sΒεΩΖ«άεew!±‘{ΓΫΞΰlFςŽbΧ·φυάVΧΓ„‡q8†ΐf—|”9Ž€7ς^9Ž£§Ξγτω³(Ι‘ŒFΠΧίλΧ%dΩμς1ϊηmlx8G€#ΐΰllž«¬¬|Ά–]Θ/TOΕ#3َψp2aD_Ύ–‰hθμU>³]ηώG9mβ .ώμ}…`Μ:—m’ƒˆηΒ°²<ƒI"Ԏ«Ύ-―{󦴗οAJ|4Δ=Εη1ήϋ^ψfώ’ ΤCuQeσΣchkνπ·ΘuΟm‡-&Qa‘{ŽξΨgD ŸΔЌLΟ\χ&ϊΧ€Θ dΖ$ :"RΈXaKΛdm}’WwA‚«²­wΕΫK‘›™"ZZ^™ΗŒs ’b0ίZήšŠƒtRzϊG8Ή+W(}θΡ|ΰf4HΥΊŠM+Biv"ΩjZ0±Έ0‰‰Ρ I¦Ε“bφ€ΖΒDΌΆνω*ή|a—Πžφ/ώŸ?θόόΟκΔΖζ"=&‘dŒ˜niΡAzΟ€½Η¬^°z;x¬ .Ο€@Κ³ŒΒ]HIŽž‹ΣΓh ’ώcUΟ²Ω‹jKBDT΄ΠΖeZΜ5ΤΌŠ…Χ₯bΪ[{\²pΏ―°gεάϊg΄ FLΘ –υΉζδ¦Χ#eXTG._+_TΠχr}Ι8Vz)ύ–z…!Μοvš“gAθAΘΉΥεYbΌΈΝ•sz:δΗj£5pvv““ξ+{7Z/Œ΅·t[‘°ΎΎήX†IuόgvΣόωΨ}όγ_ό5ΪB€]Ό΅@€‘3 ŽΓΡ5[A ΊnΆ£ηv§RυV‹Ώωτ{8ŽΐjlvωΈZίyG€#°΅δί©s؟uXάρ›ΰιCÍίβΚέ.aρΧ/ƒ―_s½ukί‡ΌχŽΐζEΐ˜)Χ υC­A+}γl"HM…a"Dh&Bσ΅m-λZ£.™™HxΎ,4―Uc‚QΟβ0†θgήm½ϋoz Ν&o¦ΝuOμB™DnI•§χ™ΏlόΝ1ځϊΧ%Γ–6‘¦§GΥΦΉ“Q^Z¬T½°θfJ_‰αwfg{Ρ½šIyχ ΚΉY½@ΙΘ=>ΰς,°ςlΈσɚ,΄ϊLq tΐaςωεγς=;Ϋ…vKχ»Χ"aYο‘›aN.mz=R†Euδς%°ςE­q/Χ—Œc₯—o9‘WhΒόn§9y„„|‘\ž…όmΨ.›ά₯bΓvt7|Έ·­Q£Xžκ§=`ΈγldržLj–ΟŒδ,Ÿo₯ψ­3ϊΌ§Ž€?lvωθ6<'Gΐ7Ύξύοo)Ά†|αϊ’·ρηᛁ.Ώ|΅3ŒΡFοΓΚΚΚFοΒ¦oσ§€ζMίKήAŽ€_ίλa±YΆάΜHIyΆ-―EŠŸq8-›]~ΚΟm―ωG€#ΐp! “—Yˆ,3ΆΊώΈ^ύw χq8Ž@°4ίΨW;Γ9ώ|%2ίέώtΥδΙ6Ϋͺρk™Qryι ΐόškΑνOςΌŽG`#"΄Γ†΄ͺ ΰ‰ΝO’σF7;&3#˜srσΪ0ŠΟΩ‰ς‚ $€Ψ‘]΄%ϋPVV†΄δ8 Τ^ω­γ›Ω΄»Ω+ƒ§Ur^Ιί΄ς‹Ι_=Ήlt,Ά‚<3ŠOΗ°‚—/ήQΫ ς…λKήǟΗll6ϊϋ―φ›θ¨(!ωΒβ’™l<­fff±ΌΌ5HΞ©)β|ψ𰕝à €Ι“p8C μ|ΤδΉΰΙή <{φ Y»²·dΌŒ?r8olvωɞάq8Υp—[]\οώ―6V<Ž#ΐΰpόG [Ή…˜(αΉ›Gt΅ΐ9_œσ W™%Už—8\–LΤγΟ~‹5ڭڏσ¬ŽG`}`‡“w¦`nh1™±$6Η1ΩθP³Ργ•Žpψ’c8²w'2sνˆΥΔ£έ΅¨―ώZψΓΣ ~ͺdœ°oJω%ΛίξίΆ‡*τΌ]M—/›~ˆWν Χ—V…‡GnPdύ‚Ώ‰˜/ξ^γœήΌ‹[ΧλR‘]‚–—Χ«ϊ5­·t[‘P_}}ύšΦΛ+γp8ŽG€#ΐΰp8ŽG€#ΐΰp8FΐŒη…ω9ΜΝΞ`aa+|pXx8’’’‡¨θŸΝΫ²œ£’Σ΅<Ηψ ΊΫ:αiΤ'v<G€#ΐΨτΘ·©yόώˆ`•‘eKΞ=~Σ \οF{Γ}<Ήs O[Ρή€ΦΖGhzp4clʏΒyVŽΐ#0ΣE,-ιΫLςK-ύ±ΰΌΖCΑ«γl:Έ|ΩtCjͺC\_2OΌPλόύO0nΑ9xξΤΤΦ!s ΞΑ»ŽxΙŽG€#ΐΰp8ŽG€#ΐΰp8ŽΐΪ"`Δ‚σς&ΖF0=5‰%Ϊ!ρيk7?ζgaŒψΌ8?/ΓΒΒΌv"ΒkΜ&θ½χ!zοmςNςξq8?Π³H([nf$Αθτ‹¨)^n«m™¬Σ£CΨ:Ÿž·Μ°nΉŽΚχόf_zςwΛ (ο0G „%ωΒ`arN½γ†Ών !¨CΊ)\_ ιαα3€3O0VhϋΩ³€n*°Άρ‚8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽGΐ;7?ϋΐ{$Ε°Ή_yώχΉηžCBBβi·ΔΘΘH!ί"‘›§iΧΔ©©)M:–VΟmY Ξz`π0ŽG€#ΐp!v(CCŽ‘cK‘τ2‘(qCΗs‹§ςˆς#G`λ °Yδ—7ω»uF’χ”#z„Š|q'7ΛHωΫ>Ή~δp6/όύOlΉg}\ό ]ZZΖμμΦΩO[pφχŠαω9ŽG€#ΐΰp8ŽG€#ΐΰp8‚€Lnމ‰AvvΆ@nŽˆˆ³Μ~Μ‡ΔΔD,,,`‰¬=3ηΰό܏Ϳ ¨Ή _ νό‚5o'G€#ΐΰp8ŽG€#ΐΰp8ŽG€#°EH$«Μ9ɚwC`žΆt8&W`ˆ—TΊ­Hha}}}ˆ·”7#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰXG€νήΗ#7ΫνvC `nN4ˆΑΠξΞ3Δ=?ηp8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@X^'ΉP/‚#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰpBΩr3³Δœ‘‘aΈE,­l½Y.C™œΥhp?G€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ Np΄Ό`ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°$$$ <<άpXZ–Η›‹πΑΓ9ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#HVV–Yά¦.+)ю(ƒ=qLi,Ωώoό{|ωh)¦ϋͺρλτtΛf:•ο>ΞaΔιX΅ά€”δ%ΫOC–Ÿ-`nή‰ρ±:τΟzΙkGqj’£cω}l‘<γγh_½Δ`GZβ’£N¦c–ηGΡΥU‡/Υπΰΐ!uό‡ψφ›{€±W‘Qi˜¬5ή~ηcWX}ΚυΊDΧε¬χλEIη΅=Ύ―k―Yu"ό―ν<ιΪ¦ςηζπΈ·Y§&χ sωόo§{ύό|C#Z€¬`~ ޱκIΞIΌυΝΣτLY†£ώcόζÚΐ5.υΎω‡― #˜j»‚Ÿ½{9pe³$«ΟM?Ϊ”ΉΩ‰Ι(τœvNu qH_Χρ-[\ ρ₯/)eωσr‰fΪ)ηαΗMˆ€žΨ&ېžH#r K˜Τ}°!;-)ρ©ˆ‰GΈπώ0‹‘α΄;υ[£ΘύhM¨/Ή$&6NM±όd]ΘΐΆΚ2€₯%#&Š=Α–1ηθΗΣ»αύΝΑGCυ䋏,kLΉ€’ŸG_2/'?NVε„Α|VυA«ω/ΡΦε™l}9>>^[c|’"₯ΕQΜLKQρe8|b―>3TΛΧξΓιt‚•![s– αg ~δp8ŽG€#ΐΰp8ŽG€#ΐΰp8 "ΐ-8„7εή8v)“·4ό#.΅΅Lν;YtŒh5%>&Αϊˆ”χ:~°χ Ζ8p―ζΑΝ!ΟdIiU8Rz;νž‘xυίΑg].jvqΡ9TfΉY/ύ—0Ψf–ΰείÎd©Τ™:Ό{ε]τ+•Ψpμΐ7P‘λρ $©xƒύ·pύώΗͺ<γ§\RͺW<ΎΪ©$δžυB η^yιΚφmWt$uS^y½χΎΈ„>5ΉhŠλK}}Ι’œP_ ρ[•ΎσYΥ­ζ ΌλPžEF›Yv΄xρμΩClV˜lΑ΅‹W1ΚόρqH’E!,·’νΨ³ϋ{[ω[\ιΡ·,ι–#¨§ϋžΗιΣ„:šηŸΰΌVυuuάΕgv! π±Ε8sϊPPq ­Βρ}_B†^MσLz!ώϊs]λUε+̟ϊφνύcœΜΛΥ―"/VΎΝύ &΅’ΟŸvκ7‡9U8σΒqμ;X wΚiT­M4θθ‘*‘άLy:‚ΆK€‰&©’†+ {"Ml©¬*ΐ»wŽžΧR¬|τžX?f­δ.,?7υΫm$΄΄μ[x₯ΌΒk$"₯ž9‰…+Ώ@‹”Κ/}Ι’œ·N―βk‹ΐZΚ³άο.p‚(—\•¬ΉΟŠ>ΘF9tήEn¦‚gf&!”κ‰-Cž7r³Τ¬μηqj?­Ή’4Ν/Ή€”βςψl§+)χ­;φ’ŠΘΝ^]B>ždΨbπφ»Χ½&sΰϊ’KorΗΖΧωšιKε„―φ›·*'|η³:b5ŸΩžστF ς,\υ.UZ²M$7Sƒ‡ϋϊDr3k{8컍\_ςΡj)ΦJ_²('VkΊΩ8«rΒP>«ϊ Υ|f;ΟӁΚ3ΫnδΛ/”ύθΊΤR»CŠΰKΫςΔ¦!&, +Ο±°4ƒ©™.ŒλXh°Τ[U¦hςfOf‡jρΩ―~Un½ρHŒW5/­80룦q‰Μ@nαH*ž#£Kο‚zΗέDڐIωβ#bρ©k4S3έθŸΥ¬UΣΝΚ vgΟV%Œ·~Ο«ŸΘδgΪ:Ο,. aΪηΰg]!”έF[Fž=M“°ͺ›‹ο颏pιJΝ·Τάύn΅q¦ε„T‘ι|&εKl΄M±vΰ«oN²|Βέ#ΐε„κBUΞ§νΑK/FlΨ2œν·pνNcΰ:ŸΈ /ž?zΎΝτάΑGWομ —D:Z²€£Q] ‹cθœθ N­~ιuh§ωηŸςΜXY„s‘λŸΑΉ0 –ΚŸ αdzΟ•όt’όόΤωL9°BšιˆυY‘Ÿζίψ|™]³΄\^―ΤΌ’ΐ!ΐ¬7?{Ές6uIγ΅ψ‚~ϊn/ήdά0awϋiš`­ 3ΉμGρζ7ϊv%Ζjqρη:DώΔRμΜ£MΔV0ΩS‹–ž 35˜O»FυEFF‘<ž>,h›ΈΜ–ά―©3~Ώ[m–y9!Φd>Ÿω»Ο—T&₯|υ±§Cάυ”QΎςρx?EΉδGw6DΦΔ"μ>pΫχμTΆαhύβm\{ΠcΎωFδΌωR“#2Ιv»π Š`Σutρ H±ΛΟSb9[qkτξ‡ϋ†χΟΊλ½zοUΥ+€YI>TVfώ™ώ…‡α@IDAT™υηŸ™ώ9Gί‘¨ά Π‚#§IΉ™:¦υuζȈŽθΜΒΑ$žbΉ{ιyψ₯ο ͺ¬Yiς~Ϋβτ \½]hΎω!šz<ϋŽ‘οQ’―όρY$„‡b±ϋ&“ρμΙ£ΘΟmš“₯­{Wqε§ο*6Ž«ρΪχΟ"Žή\θΐϋηΑ!9§:ΎPΓ[Vžj»ˆχ―°oqKsƒθlAύ§€΄3B<οΤΏζ›ϋs‡κ Π>΄άΈΖϋσΞα«η*AΥΒLΫeόζΚ=Ωǟΐλ_;A{D‡ΑkψΥϋ7€τe/ό!jͺ+‘£jƒ>tήϊΏΉ,§“ΘSτΒwP›οΐ¦RCθ5ίύ ΡΑ.y/ΰΛ/Ÿ¦Γ02ύ]]-hΈΦ‰΄šj2@ŠiΚγ’Fk›Θͺ~Ο>¨ύ‚γ»b= σAγ¦X–ρ'@‹iΈˆΎ‘Ϋ^Y,­xΣ^‰<ΚK†ωόφΰιφy΅ωY ¦πΑΟ4ΐ6ΦBqψμχP{¬’n‰ζS,ΈΠp‰ψ—ΐ=ΰΜπ₯ΰδ,Ύr₯E…2Ž„7†  »ικοi[΅7Κ_LΛ42υJVΨΟ” ‡tVz1΄’ŒŒX&σLbzV)σΚ}do9^ „€|IΜ2<Ε wΧσqγ/ξ{οβW>Ε…{hjjAιιr3θι3±ΠP>ψ‹-/ τΡ’w‘Ό$`€ύ0Η'΄σ5Λ'Œΐ™•ΝΒiTs·Ωό,?+Dfg€šrÝ>›ts#Ω΄f”[y’Φ€ΒPUs‚Τ‘ε%IΐgΫ‘˜pΟ€ϊ)%a4‰΄ήIGτ =¬/Ζ#Ηβ¬:YΉ™βVhαtΕ# {5NΚ²Ξ (FŠ=σά—€‚τ—²υ.ξΣ‚±μ²PvΙr€—ΟSŠω!ψ΄ϋsMEl/;@›λϊΪNτΉŠ ^Ή™°ιλΥ΄RžTP‰šΪ2ίώυmWpή©ς&F[qλ­΄±+O¦γXm…v›ls¨ήοέ,Ζω_’q8sό%."^·r3ΓlΣΎ’ΦlW0· ω’ωΚμrΘ„9\’ˆgœDŒCtΫ9!ψ§>―†ΨΙ·ιΩΎΠk Ά ίξΤx$V<7ύ‹¨Šσ!mΘΔα΄§1g‰œœ\gžΊΖΏύE¨Θ¬“d‘Vά“¬Œ-ΩΚΝ*’μψ‹ί™œw7?3Riwr|°΄]·‘Ο› £U VρA½ψ˜*/ώi|άΈ’—vΊ (`ιw'š_&B'˜gΫIη9TJ ‡Ρψπj>π˜Ψ8ιΰοΜ’kt»cfD$6Φ¦0:―\ΏV●²Œ"!ΐ…ζVwR㰏¦žώa•ωxϊ‹›$[jc£Β’½γκ+«₯ž˜”Λ‰¦E΅Q9,(_2HYΖ{’LZΧœk³γCui€$ψ?yEŠ)+Snf.1χNΣΟιό;όσ | ν$˜/―§Ύϊ]”ŠJΝBŽάƒŒί€°ί€'?yG[ΩG bΔ|;dΑ!Ywcv‘[³xsύZ3+]ζΚΛB¦ΤίΡ=$σΪ#/ ˜’ο’i`υ5 ˜ΓS@`―<θ[ϊςwΎ‚ςLο=ΊΘψLδΣΟ>G ΞοΙ52όύh^ςˊωo;·ΌͺŒœ%ˆ³fUΏ‚οΕFΰ/κg’"sdz1rΈo/ ε7ήΕυ% ο/*?Œœ\^1{™œy7€‹?ό3Ubα|*LοKΩωΘOήk@=mγπξR‰W2›΄Φh(‹)ΉgΡ”³ž:Ή|_ˆ*ΒΉοuΕ’’¬ ŸƒΓ/½‰ΜτdόμΌΌ“r#ΏΨ»νά›„‹%$GωλψΓ7_oϋ_,+Ξ‚:ΌF?Ρ%P5ςpύ*ΎwTL%>΅Ϊ/Ύ+ζKί‘₯γ‘φΈ)—fΤ·‚υ ρ`)­{ΚYΘ–ψΫ[gi8Γς’>Ώ x¨Ζ#‰Άω™.²ϋζgήΰΞ£_ΒkžΑ€Τ_~ϊ»HIIΐΟώ‡|)9‹Ϊό[ξMδkΘh:ζSΑΩ1/Ox’Ππ;έΞςFε)Π₯+δπI[3 κ„–YΖŒŸΓ^e%!‰·§HQ«XΡRψρΛ—¬ΔΣ‡GύώΨς„ ? «ε­¬­ωOL±Ύω‹-/ρΔΫ#ς’>°w Μς ³pšx™•ΝΒi"ρθm~F2y`~–~€P:\=ίίƒ.O1_Ρ‚Z:Bο}}}r¨B^’9©½sΎθ£¨Q(7―,’¦+ΛΨΏ?q™(Jp`ne/š π&c: -₯1ς’(K±΄:/ύ tI'+ŽJεfΧd:¦Z°±?EΞZζΥ©ς‹Ρ;{σ"z ’’{‘γ dubōuRΏJŠ-Dq\Ÿ2Όyρ]Έ3=!BΪΟέL„Zδ•Š‹8½xx½Y[…ΥœΩ_Ϊ©ς\νhΩ­Iε“‚3Ώ,§M†νΥύ½›-άŸΰŠ2g–ΏΜ,  sj !WΟnmm &Ή b/ΕRΊ,ΆΤo–΄6ά6Q@/_Ϊ¦βmΆ8υΚWοaU>(œv;=ΗΡΧ|d€KCAUu[€wj<"δ3Iώ“•›—18~γΓp$ΗΡda :< ι±χ13«cqήA‚λ¬ΒSοψ«Ψhg’©bimd0ΜvO v;?ΫΦvΨΓγΓnησ&ΪΝ*>¨·h³ε™ζŸ&ζb\ΡK;έ’ΐΝ―χP;νT·μΓΝAΆ’g ž&λͺΌιmΐi‘7Θ¬w<–nλ—zD?ΡΝΉ;ιV—Ρθψ„˜δ|dŠsΣγˆΘ&ώ([Ύž₯š™ΌΫ­ο έ]:…RveʜΔ†‹G”έdΡ­S@BωHD”†"ˆ26ΆT―d‘²ι(S―-θΌό1Φc`Ύ―°”ΓdI”Ÿ_Ή:ncx†ΦζB2‘›˜W”’„s_ϋŠBΉy mυw1I²Δβγ(5KΟ~gΙ63ζŠ`Κ“‹^οΓΐΰ¦'&ΙL)V£Ό€_)Μ9ωΞυΆγ’Ž«›εψ‚m₯b23ν£™κΧPχmͺΌ„|€‰ύ–Φoϋ…Ο¬ ψ[¨“OΘ₯JΧ΅›…£¬Lα)£°|Exύ{o’\ΨNc5ςξΑIμ ODJNŠΘΒοΊΚ<°™ο2^Ωτ2šδ–Ž1DδVβpq&O―ά«ώPψŽξ‘­Ή Eœεd'ςKkIΑΉO'ύ=ά²α­œυf)"O5*ˆ>\xpγ’œoO/FιJwιΣG&₯"b4t°₯τENΊ Lxδ<ϋΗjεζ>²dέ=0 ¦ά]w΄œKxθœ??ŒŸ\PΧ΄λ&Z֘gβΠβPyˆΗsCΥfRρδ)Η‹_R(7/ταN}ά‘™¨:]§RzφŸ_ΰφ³†οZ9i›JϊυΣΑ‘ΖXY«:PšžΦP/`Λ&ΟԈ‡/(`ςsάςΈtΚ?&δ%]|ήj<•8οΏΝΟτ΅„~ζ'φ½ί}Π‹π¬Γ¨«ζ­Ω'–½‚—Ξφα—ο© σ%ά¨œUφΜ …r³‹δΑ{_θ8$fζ’΄ ‡2δIΉΩgDΞ Bž 4γΛΒ™#― ·ΰ,’ωޏπ τމY-ΊuήfξDI^ ͺK ŠΐX?έzβ₯π#f,>υς%«πΛέMΟ'•Ώd!-MgΖϊ4ŠώbΛK~δέέ$/™εΊ†m–O˜…“ VyΜΚƒfαT…?ς›Ÿ±&ΜΟ²‘™“*΄Φ,>ΠΥr‹γ½θšΐςΎd•Ότœ8šraϊΣ3tΕΫ°²2.Œ’aλ¨8EΥUΟ]›(.ώ$jiΰb«— ͺ/z3ARbΞM”Τ1:φ!nN σ΄XοƝΑPDŸ;gπT$ΣΊμΌ(dύ~£ξLN΅bxY­T3I ΟO½Žr―”ύΤS~WΎ4ϋ―’Ρ±άT|q~V έ) T”JVΉΗο?πΉ΄€ΨTΪΪ\’πά.ΟN—ΗΥƒiΧν°Σ½›EΜŸΰŠ2 ‘+7[ι§νrq‚1%Ž.£sBqπBΐ΅‚{€/YQΝ]™Η¦ˆΥ"›ο``Ω‰“΅’Υ)1NS/ŸΧŸ£Ε)η»pϋcfαd'»l—Ζ]΅DγΓŽGKΟδ?Αυ\Α]α°ΨόμΚIΑ™—…ιΖ’} ω@˜‹9ωxš•λ,ΒΣΘψ·Ό2ˆ–ρ5¬­²«ί†žτN€π ίξ΅Yω0žͺΪΑSΐ,&¨μvΓψ ΡώkπHψ|@¬Μ'°ˆκF ˆςΜρOσV³γŠnBΨ S@γ{έ©ο—? ΣxTΨT6|T8μεr3σO£L<•Š?ΈB–PW²„š@qΡ(y•œίγRš.θkψ““Mψψ&§-ΝεΗύΉό+τ|ε?α5N39₯‡Θhκ9ήjŸΑvˆ‰O”ε ™“>ϊ–™~LΥΜ”—ο”ŒήΜΠ||ˆI?‡η xE«Ή±λx°šƒ“ΒwBύŸœY8kO·W\Φ©Σ¨”–qύ?ΖG·Υί^Ρ ίAUμͺ\%“ίŸœοΎσkΌυσ‹Bπ»˜ώφ‰3ΥLΙ™, gεΠw4ΑΕ5=θΐsτ}±έΎœβr€Όί€1.†“uκlYωA‹ΔSI‚φζ}Z°Έ[οΰšJƒΉ.:ΤRJύρiH% ηUΌΊψ”ΡμΌ γ}€oόe+χI=Ϋΰ"n΅}ψν—8ΕγœS'QF Ξ­Š,{ώ“ΌΙ€ΰ,ζ¦H&ySNΥΒλB ~σ—Ak~όϋυΎ)όΟ^–%P•Gwϋ™εσͺ<^ ςAΪχΈ)¦0χ|0Π„j θ#βγυW212Ή„¨Δ,‰g-ΉοβΝKoT0#/ιεσVβiŽRΫ eσ3}τυΟΟ΄σ˜l}M–šyw csŠ/*η^‹ŽE)8+G£| AΘYqqβc Χτ‡Ϊδz8HΟ$7|RδσΓ_‚‘'λ/Ύ–”›Λx•τw]ΔΗ€J“™/ΈœXšρΙ[ͺ«ήΔ³I ˜Ϋ\ΗΎ‡4aεMŒ^Ε͍ώŠζβτς₯`π ˆΔ#Nπ€ς—Ό³― V8€ t‘λΙ-~œώbΛK€yχΚKVπ ?έBe–O˜…S.Ό˜•ΝΒiαπ(Γl~Ζ¨˜Ÿ%— UP ^ξE‡ςΌ½œΎ‡K—ω΅ ‡-*yI‘jλz›‚ː)TdnΞSΉYYhŠΚ¬•?ͺŠ/δK_Αψz)3λnΜ-σ‹ "jfθ’—#Ÿ¦…νϋ’r³˜ιϊ ζWhM@Τ&ΓΩsΉMCΚ΅i“ύΈΘμ:?œύtŠy34‘+ΓΈωΑ'΅W~@G9ΰΤ‰cΘOO`15Ψ…Φ»ύH,-AΤώΜ έΖ­»]y—ΰΔkGMψ-»nα*­Φ<†Œτ,D +βσΣd™£ύκο΄s°ŽμJδεδ!)Ω‰Έ˜D„‹+ηt]βψΤF»ΡΨάηQŽπκ¬Δ©:Β3S\ώ`x’²ώƒ¬iC‘8τά1δfg#!V\<§&šuar|Γ›ΠΦν§±€Ό+_™%Ό £§ωΎCΆθΊ›/ +v?g-ΰ`ΏhΙ$—Ύ„³Ω2†‘΄n9Ρ|ž\†π<}yEp]ζI/šΡΡ=܊¦ΟΘΊŠ2}pεΥŠZυΥ― |οFρΣ›α Φ \PόEDXγY˜Q…daZt·’u^#Ρ^²ω’|Ι»‘ ޽„BΊbΡ™,¬6PŽŽ O»‰—|p„‡6Β—Dκ^9ŽΨƒ4. 5’͏ͺ*’KœςψβκΈƒΫ—B₯ h,9΍%›K}ψœβ΄$GΙΣg{―£ώn•·†•EFΖΊΠ|χ O‘ŠΚΧ"&>ο¬ΕσuE8BΌΉχ&nx‡ΕEWΰ™3Ut‡ΈZί,%Θ>|%EEHS΅Α0Zp㎜N Oϊα—PšՍ!!dΑω6ΡΑslV@šώŽhycIω§Pu$Pϋ7‰ΨIF{ρ"Ι»’r3h‹δhζQRnf;’L&$χκ―IΉΞ<Žλ.<wIΥuŒ‘ό ΛnΙΏg=¦ϋ΅-·ϊks{|πGηc|ΠΫάAΑΡWPV^$Ο=–&ΡέrƒΖεόA6Γ烓ηΝϏv;ΏŠοšΰŸfζ\Λ›Wδ^³|6Ώ~bεωΛ$ΟΫξΡP`K5ax48μέR«PS"”νμ­‡―cε»ΏŽN$D±9ψ$ϊGΙK›‘ˆ‹ΟGYЬl\Vt=€ΰΜΧӁ”X¦ΠΖfγβΪ©]½wΡ?»GbŽfδ UΟEeώ΄P6HΜxηJΚzβΤ IiΌnΒ €ΔΐΚKM=LΙΚ ‰/γdžX%Yšΐ„§- ^eΦ@•n_ˆώ‰2ΖL¨°ΰFΉ…pi}g[UΖ+;²“χnΘΚΝΘ.}τJŠΏΔΝkΣ35-ͺ)eΫπώΟΈά΅ώά½rO“&λϋΤJb:,ΨvHP(³Μ,LQΟΥrfϊ΅V>zΓΜ•ηŒ΅2©K»™εΫ#x±Z° OϋKWn_FφΣ?ΨΨXηόfαΨˆρο]*ήΈ'> )₯P%φ“[“€[PLυ“ΠOT‘β»?Ύΰ₯άΜ";―ό#©žΙΊοm*7ώNTnζσΎ~·GIΑ™q.G"£„ΰ:Ρ;ς νU{ρZ2P<Φ!F-˜Ε2?λo§M4Λ]9!>ΚΉ)΄ά|Χ«„±Ϊ[βΦUHΚ ρ‡(–vίϋήK #υ˜jϊ%ώΏwn\’S„ύ·ι “"tέ·Λ₯‘aΰκE―6pίϋ+ΚqŽSώ.Gξρ,΄ήTͺ*Π |„0Wq0¦³ώIΉ™Λ₯ε]4ή;Je‰{„ŠΌU^ν§€3ΚwEΠ`ω ΛΗΈ)–dς9Σ‡ώ 2²EΊ%" μcfCΒψUΌE‡d;sς’>>O₯[†gΰšΐζg{–Ÿy·.Y­DΝχš.|‚#εόΑδdζшDόLΣιΰK Ξ¬œ΅IŠ»’σ]YΈ»γξJ Ό=Fψ‹yyΒ»\½!%₯ί•n©˜ώ:ψq.Iqΰrv~ΔGvYH‰'½ βCς†tτ2~Ρxέœ2X_ Oey:ό6Ωώ’χ2ΞΎ$Κ?$^ώZfπj*[^ς"‰yWΌ³ς’|BΌ―Y>aN ³ς Y8-Ta6?Ϋ₯ό,ΩΉ9BS-`ΈλŽͺΩ΄_ΘΚs›:R^’W»΄‘·)Τ‰l œ›Bο(³ά‰Έπh„’rΗζζΑ’Νπέmα/t=vΎ`žV₯Θz3φž³ω’U|IΡφΔcN½τ"ςβF₯'ρΒƒ θyŸ-d Ξ0_"8ΊΒ0ƒ6!9žG‡]ςΕΌ€g$œΕ§πjTήώυ%I‘9,9iŸŽΐθύ«h‘u3%ΘΜόR€₯³-Z{%gލγΦ»]πσ:CbΪωζσϋΉλΒX½–Χ+8'§ ƒΖpξΘՊΈΕ’šΧ^Ε‘Άz¬vα±ι(>‘Ž”€x\ϊΐ[ΑΫ‘VJ׌x·›αCΑ9¨οˆΠK(ύ^-UγΙdJοφ f<’σ76>$!9Jq—ιZ`™ΧfΤ ύεf*"b?[ΣθTrρAϊ|Ιuΰτψ—„¨0ώ»!υ|,n'‚$£π ϊ΅-·jSΨ΄ιβκ{|πHH― ₯/@˜•Κ‘‰Θ―=„.½oŸBž§6f~΄»ω΅|Wj5=όΣά<@*Β§ΗΧΈβ`ΧEΨόϊΙ–ηa+8?²oVp6OϊCUu²΅ΰι[ψΌΟ‡b–ω"v…†¦‘i~@­(Ϊσ1Z³^Εε-£LGΝ±{‡έ„[:b#•sNn5όn޳8rÍpo½‰3YόΎΓς|‹O ώΛ,ΦΎR%”Γ’f[πήυ U$›]š£7~’–ύΎΌ/έΣ3ˆŠ+ΒaI™št›)UΔΚ<<c³¬ΖΏ…Ών½F:+X VfTVSYšGε’bDk}dθb„)Ίz8R.' 0½rU= }Ύ:ςNΰhM23F+$€@ΛtiφE8=Φ}fa8"ΨvˆS(ΐΈη}ΝYΝτkΓUQ˜)/ ρ‘βšΟ$Ζ&ΰΉ“― ϋ .Τί›,:“NΌψ­ Γ5ΓxY8†<Υ4β%eΨυΎͺΉα3›ιΫψρŸ­Κj¦Ο΄šacΚ—œλBηηχΔΏOKΎΏi7¦<•³g–ˆΫπnqq'Ρ  ƒΊ§•SΝΚN€°ΖΉψΗYk§·…ϋxθKρ—Omκ/³x\Ξx ΉE:˜ς‘†uηΰOͺδψ@‚3ƒRv"«$YρόΞ•#·ˆ”Χo`,- B^nΧ gy9[²RD½υΤ—ρ― ΞcŸηψ>±_ώ$~lΪeqσfά…αNο6)8j?ΣΘJ€ΑςA=γ¦T˜QOς)|­φ4w8₯ί†ΘZ~HD*’„v£4ηK§q‘MΌ³@»³ς’.>o!žΪΨ+Bm~FΚδ{—Ÿ)Z’χN‘ΏΗ3τ{](:Δφφ#,<‰žž‰ Ώ›“³Δ«œόώ…€;wΡύ°c#} Œ“~ώŒοΑ$ Its9ΒγΉI³ΖΘ-!‘ž }Sc΄θNξΠ+jεζ‘j—αdAΰPi—ΖQx Ο̏γwΧΥυŸΌξυh²ΰL£ξΎςγ‘ζΨΜεδwΔεΑ ά~֌GPυ?VΆΉ'" ‰’ό΅FΧe –κS“Ο \:δ!WbqU9ζΚαVω|ΚuAγiΑψ·?Ρ"­HΑ™Δ³=μ‚μΧΆάͺΡφφψ A ?γƒFj1ˆρώat–βP1― δΘ;…γGGpεN—˜Œ{ησ2ΈQy>θωΡnζΧAσ]™ΠΓ?MΝeψπϊW|€ί}Α6Ώ~εωέΧ'ŸŒ|Οž˜ͺiΒiΙζͺ΄’|§ϋ’Ο+”Mε€ζHΉYˍΌ‡ϋΙω¨KaσλHDL §ˆs F\§ήΞΛ²r³ΡΠ4)` ΞBζƒY_~₯κ˜d…miϊ.}ώ)vͺ]{o#Js³$Ες΄τct¨Y†½±eέ!χ€Ο6{Γ>ΚΩZέ 8¬£Έnžu_ωΞΥΎnŒ΄Ϊ™oR€‘Γ€ΌsΓ½8ε5ΓύΪgNϊ"Œ—‡ƒ’Σ< ι/a)«½ε"X՜)μ›ΜŽc”[Ο0 ΗΧΓ8žϊκο•*쀴ξμη+ΰ@°VΥ#ΘZΊ9ΈσT8φQߟ{bΜ―bφΑpΣ$<:οvΐuΊœ[3Μ*,%΅υ|^u1!ᝋ” ΅ΉŠθ ΞΒ±š:)eϋΝ+’_εiΐΤν7EΡ‘–$~ΜΛΜdŠΞ‚KΛB.uΞ±Μ4IYh|„­i–“‘[6Vˆ.Ξ4Ρολ)~Ύβύ…3₯v^ιš₯Ϊς—ΤOœΡφσ“•ξ(³|PοΈ©UΒ*Ό‘Pnž έ€O/KŽJŠΏ‰ ψ½έμΌZκkΒ•ρ0Ef¦ε%=|ήB<(ϋτΪόLEš=ΗΟTΨΣΛμ|€›ŸJ›c-•‰=³VΎ›•³κξΰHυ+α (:z–~BΞ .΄5έΐ‡ο\Tλ΅( &Ώ>ώœ<αQdΰΧδΣ8sθ0Ÿn‘Νγ0c"€³~«γtƒ·―μάΈΧϊKάSDWWΌ‰g³ωuΤ g12IΑΩs!%ΧΓ—,ΑS*1°Ηζ/*m©Ζ—δMδ“LΓΉΑλxχόJUχ‹-/yΣ„V Κ»Zy ΣΗΟ”ΉΙ'”Yως›εfα4π0+š…Σ@Α;Θζg*šμ~–€|Ί­]t#έ§[ΕHεsi…ωvβ΄ΫwŠmˆIJ"# QΜλWͺJЉ*Dm!Et\Β°Ώ¨ vΧKaΖIΙ °kόsά'₯£ΔΔX©ξξ΅y•΅est‰¦)Ρ5§ΖL:5% }1]DJL|‡Ε#Π19ف~=ν`ύΊ#•‡+“XκΒ΅·.nQδόΡYΌαeΩ9P‡qχ·ογ^·BυίY‰#YϋH₯†Ή!Œ΄ά‚Ϋέ‰{ν}\ˆτηΞ'yξ»x–Sp‹DZ.Ωύμnδ’“*K‘-*)ΟvβӟΌΝ§ aπ€”ΓΎςΕg|*9GE‹‹!n4]ψ‘ ,•ІŒ €€…όΞy΄RΒaΎ§•ΚυθΉuIΐ‹Ά*φ“‚s—Θέƒ,4(h⠚Q…œLρcDΣoŽFQΉϋΦm,Όφ²ψΙVC#‘]z‚κΐŸώ7]žΙvπDΫ’wύΪθχn/s|‚Mρ]λωKbβδŠ,k­½y™ͺΝ—ˆ³YΘ—ΨχTYƒBi°r‘ιwΠΨ©ζIι‡_BaԚόω˜δKrΌoΌν2ήΏ\ΟΏάΉŠΩs‚cΕln p¦Ÿη²τtχαρΖ±Σ²σα¨oW-θ$UΘτvKΌ–ΟؚΏώω|¦¦&iΜ€M7ΊΆ7ͺΰDLβγΕνͺǏf@φσ(Ο7μ<Ϋ m½ΟΣ-Οp‹ŽT#›œΉ³,B†ϋΑu_x‰E<)8+·ΔrΕ§Uί‘ξφ3;ώ‰k=ύŒ‰‘ Τƒx7·4ΙY% =J‡<2ΉΐΕΉ&τ¬§β o=υ”pΐH«œ ΓόΙuΑβiΕψΛ[gcυ\&g=2g4Ω.p«ϊ΅Œί“-·2:Ψγƒάόωόڐx‡,5sŽFN/~Οα²KJΙZK—ΚnŒQ>ov^Επ±j~ΔWŽώξ"~,ί•κD=όΣά<@YŠ·ίίΈβzw†ΨόΪ–ηwgΟ|2°²-8›igž# Απ f†oγ†zΊl&Σ] ³²Ύβ™ψ₯Ό[νB;Ν»=݁Πΐ kΉωoΰΥ’J t†©."՜’π,7α—Ξ”Τ’,9]Ž [gΪ;’xE6σ#₯Ζ)6r.»Θ·Ž5σ°M‰θ [ύu•rσβH:»Ίΰ^ BBH`‹ΘΑιSGψ‚B·oŽlΈ&α κ)ΣdUԌΣμΧf2 £Y^\P€,ŽΘE‰°Ÿ1|(X…/‰wJsτ±ΩQήΚΊY8Έjβ©N3 YΏ{υcDιξ>‘Ψ\ξƒNdΝ"AΦ…ΓΕ%6νBΝkOˆά&k‘/Β™K«›Ι…(,Z’PPT(ΰ8Ύϋ>”ΤΒ_΄£ζ9²-€ΉŽΫ·'|$Μyδ~IΙ("Εε΄t^Ρ™ΘDziŠΔυΛ)L ή£(R~UπͺΆ«‚‘%ί&ƒ˜eηιΎG?n?TΫξ`Cγ¦ dJʎH‰–θ†ŠίzŒΙν“Β{ΚΈ}βt8“²π`@λTς’>ož:‰dσ3„ΪυόLΎ{yIσ°pΣΠρPηΰ-9«γ]όυίΟαυΣΟΞ”φ5Έι–Κ“€¬”ΌυΓRν‰ΐΘ;zε οΒ@D+'F„„‘θΘ7Q"<)Ρ;X„#5ίΔ‘­)44^’Xˆ žΟ{ΝW‘šτm09*" N*dPΣ~>Ύ΄]xzβ-½ΫόE"…¦'hώR„Χώύw₯›+0ވ_ό??φ{(αaΛK𭁽"/yb―ŸOxBjΏ›ε©ρA³ς Y8m*h„ΪόLƒ(Š GΔΟ"rK#ΐ3θι<¨iyΧW5ΧζDy‰¦q;ν"ΞjŽWŠZnσšμΔ wQQω(ŽgΊiΘOΜΗπ¨χbεNcm΄Ότ”s’uΎ9χԏσ“­Ψ0q)šnzZ™Rdk–..Κ‡:Γ¦nŽ„XRΈ]’ι[‹Š$‘ž”dm³ΎNΆ ΨDΗG“ςέRY©ΤVB\gV•.4ΊΧŽ”p~ό©d1@tύnKΚΝ\XU΄w”‘X\ΠSϊ~>όΨCΉ™%%¬F…Xgύ%Ÿt5Άα)Έ1UήΠ}€t‰J<Ϋo©ΫΊ?AΫΓ+ΤΖskK±ϊβARVΐβP3Ί€’|yrPTR&DΊΡCΒu !Zk¦„!‘Βj¦ ΌάLIAΫέqOVnζΟβvC#rr^ΰ8’š–C”Η²5Σ>Π7l΄_ή ‘£Hl–O˜…³šΏδ’Θɟhe•œ$+κŠΪε%“΅μ›τ±γ‘5³\1ŽE}γ¨,jσ%«ωR2ς‹+$Z6|β₯άΜ"‡ο~€a)`_’e|tά”›…Ό[:ΊPJ Ξldv(v(†Ϊ12~ ΕL›”Ts2€{€,Ίτl άh_θ΅π˜ΟOOΠ– §€œˆΈdΒΗE&ΤβεWž‘hΛ΅σC\ΎΦL8e Nά k<4–ž+$3Wγg^m°HcY{GΉlΡ­©%Ιθoχρ, Xσh?EKDP#γC\Έ,σρ7lδγh¦`ΑžxάΈ‹dΊZSt›ž2•δ3\ žVΡ$Η† υœ[œYqάφΈάjbWφ <>xΓΣm/t¨GιzίF]ΕڌO‰τάψ L#ωuπy–Φ¬<μόh7σλ`ψDΑ˜šx–$ΏWδ”}6ΏΆω΅ΙuΣςΌΑ.j'·†Ώ=ΩfΨ vηή\φR.©9gQΟ”h™@SΗuήϋΨώ₯[œ"،œ9v]΄ΌΦΝ‡Ρίυ%,J/²':άϊζ‘²oαy…™‘ώίαfυš€œ›ΰ›oΒG τ#”Dn7e“σn²(}T ΄Λ,βχ1=φΚoΆ6τ­”™HΚ ω)mzΊPΕ’¨β™F|T^m©lΉy ώηψρ/―ˆ ό3ώ”’‚³BΥG/ΎΡRBk,=‹ΕHΟθxˆΖΧ°ΰΖL€ύ NεΡΡ―)}Jω d9Δ2¬N£α6Sΰ4κ|”·!θ* ϋ.M~Ž›…œHoˆ\$kΔωp³pΡφg@8_ :qν‚w?φ•Ϊ’πι1̱F˜° mΡχ§―.θθxˆΪ\v 9d¨-aΘa Ε̍· ές³I8vό0Ÿ?ύ½ϋ†¦’Ÿ`“c#΄μHΌ"*™§*Δ–f§;p§7G pΟ< XD"«’£Ύ+X‘si%—~ƒόμ=ΤΣιφΉΥ-ί.\ρέ`Λ55n …κγgΔ"ε5Τ‘± ₯έφΖF}~Μέ·ŸΉ5\PςR@>ož¨ϋ²ω™ΒΑ»Ÿ©±wΫε΅EδΈΕΩAzΙ€ί<–‚Ω΄€‚–³:ΰ]ϊΡ δ•ηΠX!ŠΘ0QN2?FDΗΣ5WpΡη! δ,’'τρ—,$Ε²cΑΡΑ"?S…΄’…W;ρ@LοχΉN7eϋMΐEκγKΫ‰§/mώβ‹2|x0ό% ηώΝγp¦ [-΄ΰ_ώϋίθΈΓ–—ό·Ip±Ϋ-/ic§Ol/?³†Ώ˜•ΝΒiΣΣW¨ΝΟ|Q†4ό,??GBk χ‘†|/E«<‘±±œρΌ>U(ι% ς’΄δΏ― ˆ:(*6³b¦ΠΦw Β’$-X.l½„£Μμ Ή}‘ŠΕ.dχ‰‹{΅’R1)ίE‘$:/ Rσ˜_VžR6O—…5F;~LLxΟ„Ζc˜„ΰπ:Ι,)‹+”*ΜΗβ―HUfY°.³TR2Αr7nτ|ΝCgδnώ ή½‹ύXΓϊώ΄Έ<άΙ=ι™ŒΨXA []RŒθ™dζ)υ*8/u’·Yίjs€³Ε₯EHINFδAϊTΘ\Σ= K¨-bΐžžxφ)#9ψαιCΑY^’u κŽΆ6 cfjS³^yi0 Tω‚ήςp›—h-#aα‘b;3Cή ŒΣ’­θ²ꝁvˆ±vΠΞΓh¨‘~mξ{7Š‘˜ή,Ÿ0 G1,δ/Ωι²5ωΕ΄²kC­p€ΌyώΏΰΧR¬W1³Νxο'οͺ¬z₯ρΰω½Ϋ|Ι©τσ₯8@CοΘrˆ7MΕXεΣΎ4;ΗnS»Z€B–ι* ٍ£ΏΏ‹œ ((©Ή€ΰΜ”…ΙEAzŽ0ΖΣX3θKρ—Omκ―zΣRX7NΕr–‡”E–-bωΰθ΄l: Π wB*Dένω)h„‚σ ,s9œΕωŒηι ͺ‘² .5šG"=―}G†ΪO^ώΣθHζ; Κ|΄ωΉ°yΟ WΌM‘eθS’jhA-R€η8¦—,β‰Š*–λΜγiεψ}PήΘXTTTƌΧΉΥτt}=γƒW>³ΔϋσWΉ.Œ O"››³μΓΑƒlΣXί\D•Η‹9y^€Μ͏v/Ώ6Οw=ΘΚ½ζŸζηZεW΄ t„ΩόΪζΧΤML―3’•ςΌŽΎi'±œΆr³’αhAΉ8ΤsΛχ΅μRͺ½ν‰IF‘Π½ˆ%²Βιεh‘Φ[u7 N6_ηέ„[)μ8P[ύΤ₯§ ±‹hoΏ€» (B.»xKΆ\<£°ͺέ5’ˆŠŽš―γkηc§lLJY΄&φή_ύ£—‚‹ΚόΫκͺlΡΥ‘Μ ‡ψ£R7ΨΑ‚φHŸι’Η…)Lυxγe€<Ω(σ Ϊo0΅Λͺ. ¬άΜ@ά X 3%’˜œVΛ1ϊωsΑ΄C&-x‹³Φ™ωρ€Vύ΄πΠΥ― ° ζ<]₯ž g±Πˆ)RpΦ ½œFΓη³<³EI›[jΓ§7/ΙŽΞΓΘtG±DktΓn>w³pΈ)ƒ|β©L΄—όQ•(>ž…Ξ›ž*lή•°βϋσΞ5pHOc†_’uLJšžUŠΪ³€οnΰa›υΌ©όb£™ΏΖ«|†‘ώφސŸ†ΘDqΝ~ξ;_œξΒνϋœ‚³³ΰ(φ­ρϋΗ‹A΄rt«ν“rΚDdεΉ’PŽT )ΟνΫ‘Rb&SJt"3ΖιžUNiι²α&U„/Fψ²8c|0ψqS?K@l”Έ†:‰ι­o'‰QόΪ6 ’X\; N^ Μη­ΒSΩ"»άoσ3ο2ΘΟTΔ;@ϋ紏.;RlΝ»HsI‡s– K<ύΆJ‡s4iτς₯mΔSGUI’Η–Ώ$Ρχς}Τˆ²|.ύέ_ Iυέϋ ΈAώbΛK>θ¨ήyIQ §WŸΠ;3Λ'ΜΒ‰•1+š…ΛέCO›Ÿy7ρ³ΜdAηd}νΚ΅9οδͺ¨HbΏ!ΛKͺ΅ )~;=αшP”::Φ +7 εN.‘ (8o'*Ϋ’wT§ –Vz=”ƒc ι±lΜ`FΉ8]†§:θ”εHηƒŠJ².4Ύ4ΖΩΞVK^fνΉ.³\Ίvde± ·{oϊ\œέSC’wžL©AœΈ’•—`K EzA•ήoN₯Ο} u•’₯?I%k‹J<χy+„ωΙ‚E΅΅Ά’€ψg–. @vιΣτ€H¨ξνΌ‡†kυ~pOFYi•TJ_σmΙo•GΆ’6I“,ν6Ί}<5ήρͺ«_›ύήΝβe–O˜…#<­β/ˆ¨’’@?Ž‰ŸΌΘ0yθΔΎa5ΛύΑX›W~ο6_ςΝSπ₯0²"/΄ότf<Ž}t +ψόΜ΄ΖrŒ\ΰƒκή5ό°S΅d-„’8³rι,{3ο, νΨ)AΛYXδΣIΟ~ά$_DΣIτδ8~&9…_τηINE*ν)ΈιšGρ‹œž`r§hΑM¬Ο(:Ÿi|EXσm?_Ψ Χ5>m§ύ"yΦ–“TΛ[D₯‚ϊGκρΙ€Š R,Ο`Zήƒ6‚ŽΟ΄ϊδ:“xZ:ώyδ,ξψ¬–±{|PΣkOΚ­φψ nD­7γƒ'θΒ’†R2‘1‰tσRp ΞfεωΰηG4Φ隧šδƒJRς[YžώΔ<ΐ³ZϊΖO(ο6ΏVΚζΧ*zZg0*ŠςΌͺϋeΗ(`+8'uYΕIδŠ–V—Zp»M­@e<ΗG α@IN VΗκΡ«a7Ζy /U•λo”ΊiŽ%N³›€T:/:©Θ£€μy”ˆŠt^wO·Ož;ώ*Ω‚97οΐ­ϋ?ΒM60=Κΰ3ΜΒ35―αp’°f={ RYκ’'&ΖgΌ8§ΰιΉR*λnΕχgŠ*ΣWΠΣqιΕΤΟκπrš˜‹ έ­7ΔΏΟ92$Ί­yΡ«ωHN<‰ΞBQΜΉ›πωΠ]λ₯œ­Η=3ΨΒtώ•rσςx/†i’M‹6!ΤJai¨9RΖWDΘSΦ˝76Λ@CWρΞ; ΄8~™N°Φ’\D"r«ΟΒ™‰ίΌϋ‘¦’sdΡ²(*@ŒίE{gpŠRٚž ¬ΛλWͺ[>ΒU‰τΎέz 2ŸΞτχnΆH³όΣ,ΓΣώΒ«H)‘2ηάνhcΒ½Uެ‡w4ήBΈΔke‚­Υ∻ΓΩ|‰Ϊ΄q9#‘¦›Δ<_Ϊ\_3VκT\ΓO#!]㳑™MηΥϋc‘‘MΞ-bδa£±¨;Ο„V–§‡3Pΰ{\QΐςΪόΪζΧ€ΊevΑ°<(Θσ†ϊ¨Ψ2 lI ό–eωxgw•ΩYRΫ»?ƒ–j₯”`Ox’QPώδ–ΗΠp7†ά#d„‰φΣό5©•ι ƒdYΆ‘Y1ΏžΔ(-yΖΕ²Š¦γω£_Chg=z–ΓPšwΗ2dZυw6J›<χτ›dZ )‹/»‘|/¦Š'­ωΈ§616rχ(žΉ˜τWρMRΆΎCkμ#˜[[ETtς3Ž!MΤh Σ ·Ϊ.ψ7’±^ͺΔ#aΕί•UizYόΎχνƒhy8ˆ}ϋI±zSmΧΠ#l΄»o6’νΜ)”2ϊD•γ+αίββοήGι Φ=χ%œ;Ι+l2΄ZάΦ”a < 1Rΰ=ω₯?ΕZψ‡xp{ρ5tεω _’n' L†NŒON‘<™4iέγε?ωSΔ‘UΪe„bί>jΗϋΡꩍ­At θΜ¬s(‹ΔΦοi/k+”Εe₯ž‚”:œ‰½‰Γτ½p\(Ήίψί£qύΣOΡάΦGϊθιΘ-:„ς³dΰ¦υ_$gKΎ?“΄im}ˆg™‚³ ’B0Ώ­ όΥ8σ΅£d»s“ϋw >GJ“Rφ2^qb(ύs£υς―Π)*σ佊2‘œ…ϋh$%ΰ€nΊ4ΨeρΊΓ”ά…^npψΛΘ‘πžΗΔmŒ ηΚΗΈ_SCŠζίψΟ υW‘½ω!Vdθ!) Ή…εΘ―.†ƒ,£Ο’‚sœVŽͺ4np‘u¬Σž3Ε\bBͺΚkp²ΐOn}y­-dέόJ#ΊOΥ Ÿ¬‘ςΎςΧίΒth&j^8K£Τ6:#|W‰†Σσ2?n*‹τkς3RX^bγ.Sp¦κΌ—ρ…­ά§Ά]ί—NϋθΗpT1Ύ 4ΙŸ8ϊcB^2Ξη-ΐSΔw—?m~f!?σhλόΣίΔW‰»|ψώ5Δ:Ξ~υ΄΄o:ά|O>$ΑΰLπ%σrVžωƟ’<ή…Ά[Νθλι ™x˜nwHFΙαgpς”(mp}>ψΈ73Ρ8 Ε*fFž`pœ&ρN7rΚΝ,ΝwψKJ›ƒΊ’§’γθ§ωΚθάιˆ,‘,τ„|dHΚΝtάχ{>–@% Ύ$Α*=ώπT¦Ϋ#ώΗ™ΏT½ρœaŸ˜ώ“ zη‘|φ{x]6­Ξ·]›»:ˆ‹W‡lyi{zπvΚKVπ _΅Ά’Ÿω*ƒ…ϋε/fεA³pώݝq6?£vρΓΟ†™=Φ•Aτ΅7 ˜Rφ4Žυ £ω^<δ%£Ÿ‡΅½gc€;γεΒχ‹SG―¨]G„pΥΓ”Z2…-ΔchΉcc@žD‹‰ΜΠe΅MτΫο@4§΄ŽωΥEbLUx1YP—]ΑT=\Άσ YœV 0>U£ν©Υλ6 κžωΕTS!Y Q”+/€»ξ?mT'ˆ>‚\RpφXώ¬άλΒΌΧΥΉxΏ 5β3ϊ±pf§".% Y΄ΰ’F‹©Μ…gV’Όθ6ny)/Η’΄’”KΓώΏω;Ϋ‹Ά‘P”–fΑ‘V‚”ύ‚ΌB·LqψamδnIΝE›7Π6oq5TΩYό©ς6φh<2–›zK8Π§΄WΰΞh·ΐρ†ε‡@IDATΔHΡ<Γ2-δk ψfΖCr)<­8bŒ‘v­Μc! ΐd€Eμρ{]n΅Η‡ήΘψ Ξ*šξΕL’  u0–Ψd¦ΐ±ˆ•ef=ΞΌ Zž7=?2€³)>蝿n~mQyFω§™ydh\ρ&Ξ›_ΫόzηεyΣNf1l ΞFκΐ‰‚nΌfPK“Ÿγζ€·‘#9€(Κλ8‘~”ϋiβ΅Π‰ίφ°†6€¦Ύ;(«:ΚƒΔ–βΩZϊyd01ό1.<μδC£ ‘"*7 ι"’+A3yM·ΎERpNΦω}γιFσƒίΰ¦hνM3ΗGHΦYΫœFϊ!^)7«ϊ4²ͺe<:Γ§Ρ#)ΆΰκGW‘υΥSΌ‚MΪΌό&ύδδœo±λ2>#k¨šΞ@yυ7PIVM9ΜβΛqϊμ§™kΐΐkΧ?Γ‘²/ρ–\“ΛQχRΉΣI{.­#ζםΙ₯(J‘΄^€|9O|))?σAKγSΌ‚sPύZ½· Κ#Ϊ ΄‘¨„ίOˆpTβΕ•κb—ΊπQ½χχg.(<Υ(νϊ·ιkΈψΟ™ψ:)«q='Ύ'ί`?5ζnΥ«ΙOΛMͺΕ—@ρcΧΫΠύFςEzvw=ΐ˜β]εΝΛ@ω±:«bHcU’4…©Ϋ²‚sέ‰#R\_c½ΆEe Vτ `|΄Φ6sψ€ρ!τ ŠΧύ½ύ Εl²Vί£œΡvβέω5ΎΌrqTκΞ³ŸΏΏu/~ηyξψ ™'ρ₯7OΚΰ€ύγ–Ώ!+Σ x½<|χgyΊzφ ™ΙνeAϋΑίUβ‘ΛΔΈ©+D­] (ΞJgζ7ΘE’¨ΰ‹τσNΈ4y Χ4xD˜“— σy*58<=ΠήΝ―6?ZΗ~ζυ½G£ττwΉŸͺ LίΗηΏΌ¦ 2Γ—‚—³œ(=Ζ~gUΈˆ/‹wp­G|3ϋ4+‡˜-Ο\DΌl°p֍qΕ­0™Ρβx@7nΣ|%Ϋη‰~.Πΰ50Η—41υƒ§fϊέψσ—¨α Snf.·Ge•#>Lψλ>0Œ‹Š[^≑’_½ψ§‚`‚W•ή;šnN22/ΦΚΐwXπ|Βwή†cΜς pfεA³p†+½ l~Ζ5‚/~Ζ΄&ϊΊΈΫΕΆ)Iϊ|\β0€—=ΓύͺjNΘΰ$/όξεΤΫΰ£π^Ω&!=FVΆ]φ’ Ό vOΐ:VΧ¦0Η6-©n*χ{:ι‘X[#‹‰tϊkEΓb_0tYwΣΩ7ΡE’La5uΘέ«ˆci"Q˜ρΚιτ2ο–Ροϊ w'΅•l„DͺGdΡœ©+E(§KέiΉ Ÿύϊ―r‘Ί’eΦE{μlΩ3)ι9hqυ©rHTY¦TE™z •4s]θSZ rK*ΘςRn†053‰B'R‰¦LΑLαγβoώΌ³pΡUΠ~²r{λͺ_ω78œΗ–ˆ"ι–&–Η¬8»Μ’(sΣΝθΈ?Δϋuό]_“΅ˆ’Ι'«‡/·IύZtќεO΄ΡɈ7 θΔυ5›§3RžΉvπ,‘ή—ΐT3ΨΧΗedOυB"x8}ύΪ’οΚN/}Η όa©s€ΰ¬ABS³|Β,+ΩQ₯SφΙςRιψD+ϊεn'&ΪcO›/m'_BD²K’1άζ‘ZΔ Ύ€•o 0WgΖO”q7‘&;sQttΏ4.Έθ°ΡD  ŒΖδσcc 6sv"»tΗχ–ηΡώ¬Z‘‚sBfBΧω­‡ε)8ύfŒcv–Vqœl©gY¨ώvp"b?YΜΠα&ζy9Θ~­*Κ³ΪZύ%Θς»ίF}Τ›¨SXEq˜Ώƒ› οy.ΰc Γ‰§ˆΣ^yŽέόώ’n¬}ύάiT¨ϋ$W‡…Aτφ©χTL}ξUŽ7qyzφ!Pδ:kš (Υ tί;K֌39 έwο ~ΗΚw³¨8*i€‚Θ2ηŠΰM;‡J)4]hπ ζ30ΜvFrΈΠαΎ‡€LΜ»žΦ>Έ^:Β’Α3˜‘tρ֟βεΧ^Aν‘eŒδwt‘·΅Yexju‘­F‰ mRRmΟά2DϊΊo~²<‡—ΎπŠdψΙήz΄υνΓ‘Σ5ܚΧψπ¨œ—%νθζ»rΙ:ω ωqSQουμ~ZόŒ₯\nΒ;W3%u(KΦψvH6hοoΐ‡Z·&š’—Lπω`ρδ)²gώΪόŒ5•όŒ¬‡²ύiζ\b<œn+ράΔ/.ό-΅υfJoŠ/™–³f0ήΥ‚”‚r$zΚgφSθ¬ ς=ξMλ~9 0,Oh¨—ΏhΑRXbx΄€ΰ<³0ͺšwμۜΗ)=§I· zfB·ΈŽΆ ιαEtiΝLρ%Ο2ψwxjCμώΠΗ•Ώ,-$W§[Y[“SΪςž”—‚ζrPέΜϋ’—”0 ΏY>αάЍDeήW‘Η­ˆΞ£cθ]΄‰R-ƒ‚.Ρ4δHBYΦIE Ϊ3ΛθPΡ2 9§PEέ„[S₯kG†>@‡ώ±—+&"2 Jo6ΜC»žΗ&˜Ώ““@1?©Ν.?‚μ;}‚2εšP‹ΌR o0J°ag‹Ώ*ϋ”ͺR(=sn7½&rA‡€ζΡΘ)HWΌ«½gΝnϊ4ŠgάL:ζσUCρoΥd½YΤ‘κoΏgH±Ξ=A'P)Άτ£9k‘Š’Ε7ΦΞ’ d_k–ہRεU–rΚ~ΐΜ΄j2 fb€<†ΜΉjNπ‘εΏeΆΠΕͺ—œL–’‰1jM8€ϊϊuί»’,ζέΪWύ„ˆ•-ω&!eZ³|Β,•mŽΏΘHg¦Bͺ8¬u£sl@ŽάΓ>›/YΝ—†0BŠΑ…ρL)—XώΡθo^Ηm’ P”ΊAΞϋΈtVπ%.#£ζ1άwΙ9΄¬Ÿ\…“ΰ$†z›uεΆ€°(Ώ΅©ΌΑςωΕQΊ*Œ²a££C8492wF–ΨUΊ‰œ3+i†±‚›‘MσγM~υ1t“‚³W°΄ (HΨ@—Π"Όϊ©XaRΤU™ζΡ}G4”8λby‹΄FΓ™#_FΧ觐·2²p<΅\ΊκrrŽ,Σ( QψudΧΝ”\g OλΖ?VΥHRΠέά²/Jˆ)vσΡυkcςή‘[νρΑ_―7:>¨σΚBNy ΊκΫεΰ’jR€^—¦Αs–c=|ωΌ `¬2Έ`ζG ~ΧςkS|—ΥΘΫι⟦η&Ηo4wmˆΝ―my~ΧvΞΗ1Ϋ‚³žΏŽ_ΌέΐIΊάˆ t[^Lt>’ΙΚUxθ°CQ›[kXXœDοTΰu£Ρ‘Λx{θ6rΣσ»ŸMΊ6±Ά2‹!W§·ψ|=Ρ±ήqϋ.ΰ­Ύ[ΘLN@tXΠΝ€›σ˜œjΑ¨tz5pΦc7Œ?£ίΞΊ\ηoθ§―Tχ½χπϊεΥjhBC\2’γiΜε#ΦV&h|οφί%83ς’ >/•gO~/=m~&΅–i~6βΝ―ΛO %!ŠVη†qW”€xYΎ€StΛYΈφφ_€ΩNΙ+‡3‰ΎΑƒαŽ›KγΈ}Ο·…o]όEQGCς„Nτβ/"β99t/ύ΄\oτb–ͺΓ³‡πtλ¬pCψΪϊ4Ζ‡;5u €Ό,œΗωΓS*o/zCώbφ›5Ν_¨έmy)°Ό»]ςRΠ|Bρέn'?SγευΛ_ΜΚƒfαΌ°ΫC6?“KΙΟ¦»ΊΉCͺ9R¬»Χ~ΦͺJ0ΏΎŸ 4…aldJyIT;S%ήΦR\˜’@6Og’g=‡±VΈΦ +ρJιΪ*ΡΉΖΪΚ bθ}ξOF§άΜπ_τΎ~Ϋ$]ΒcγLf)Ζέm£Eΰ₯u„…₯ =ŽNΩqJ5¬<7ΪF?WXoŽDEξ+(ΝεQ/X™›ΗΑθ§q8V˜520r!OmaΪ}½ Ϊ–΅΄0[έ|&AώΈΫŽΑ#Θdτ‹-Γ ί:€»M͘ IAiνΣ²RmεHΰ’₯bͺžϋΦλλΡΣ9ƒθ’rTΤΎ€ΜX)₯Κ3άΦ‰ργ>α™OγόK›ΈuύΜΗV’φδy„ψ’ΚsίF~,-β7?ΔΘp?f¦&θTg² «Qu„Wψ‰ΛS£}"tž@nžpn~©w<βΥ©½ίθD…Ψ^α9ΟΰεsΠMΧ]nνΫG:χ˜λΏ—  ΌΨގήc5$ΜS6xαλ€λtb³“kJ«ŸG]΅ˆ'»Ξ¬•;ΡοU ς`²ΌΚ$«Τ3Lω<žΡ)'Ο1ν}t $‘‘[˜ιGΏJ‰’‰DQd¦€ˆυπϊή=’{½²E7-g’Oΐ$œ9ώ’@<Όω’@ βIŸt·{mΎ$~οΦρ₯ž{PL|„“β+pξ»‘hjΌƒž~R LBjVςŽΧ šEQΑΩΎd²³υΡ•ˆ‡™‚³ΡA•Α!e€_@§PKA̍aΨ+zIΘ;Ί„uβJμί?οΒ ι*s—p(ͺ‘>Ξ76N'Ο%ΌIΑyPBuχ6–U’9Ρx{ξŠΒƒ†Fτχbnˆu8©ς‘Qœ‹h²4ΏΠIVSDθ„δΡΒο6°Q qΔ&#/»8Θ‹›«γθοǎG"μid#ΧYŒ§Žρ/1Žu‹ γn;ΩΪ AtD‚T猘2¬Ψ@i8¬―τ£y2°rƒΌK<;ή―MΚK{In΅Η Ǐο$³φe’KΞΰΨ‹Η€ƒ“γ]νͺÌ0ΑηΝΛσȀΔ:j0g Jm1ΛΧδΧ,|y¦ψ§©y@0γŠH€έ΄ω΅-Οοώ^ϊxbh+8?žνj¦Vsσ€¬$Ξ{Νd@λݽͦ Ή08.Ν|ξΑΤ=·I‘y‡πήΙ²v¨JΤ§ƒνΧΖ0 ΆΌΉ™ά›1V&Km.X<cψθ!ά=χΠ`πczΌΎ‰¨:–#4Δ ξ_ΉΆσ2‚»τΫ^—„”΄ Zw₯]X2.!»$9T,½¬5ΰIω< žΉ™N΄šΰK;M›½‚§t±ω™΅όl ε†d•ήŠφρ•‡Ω1e¬§cΗ/_8 7*OΚΟςψετΟvΫG›ΏXΛ_L΅”-/™"›dσ ‰OΊΗζgj~6ΨT—˜~ΘjνλTΟηv^Α™μΛφLΆ!—”r9ž‹ͺϊyTΟνΎƒϊ M»)χΘλ~ωϊmfΥΟ­8°ΛΧΐ]’πZΚΙ²žλ‘gΕη;žαλθP‡<˜ŽxQΉY _XL!ς|rίJ―og0Φ·γσkŸΓρ…§9³δˆ/ΐαΣšEhξ#ο‡!«mΝΝ($KŜΊMljΎΐ~šΕ©Ι’gs)ώΦqα …€0L?ύ.Ήμχ΄&Θr_+x¬§—V–IV8GΪοk[ΪΤΜM$œϋCr!o±ΣY| Nyέύ7ζΰ’”¦ϋpοΦm8_¬α’ΛHY˜~ω/~ŽϋdυSΣ(Οt;hό ©y/π΄’ώsθ„άϊ7]€ΰά§DPΐοέlήζψ]>nŠοšβ/RΥ"QšT"υΟ•…hŸ!EσΗΖΩ|‰5₯₯|iώ>>Π‰³€\E†ΦIΑ–dƒΣήςz9Ψ$_1.hŽ' /ΑΉ›{1xΊ ™b=»h‹Υ‡s’’oE_7$ŽΜ 8€Œά˜m“œΝρωqLO’ 唨§Ι’³ΐ–]#΄β.)8OaztVΝ>ϋτ2bί8ΛŠΘΒ‘ηΨO‘Δ‡·΄φUΤj "„Ηa?’@u{,ζƒΛ5_ž9ώibΤΈ»(Ν―Yc<Ιςό.κŒO*Ά‚σΥάvem Ψ°)πΨS &݁ΉaŸ«ΨλρζπόhQ4έXγŒδ˜ΟkχBfϊ|ο| ZɈNW'†ΗΖ°NvλN£2WXϋ―GΣu[AnχΆ’™/ μuώ_υφ2ψ™w½ν›ΫG@ίη^ΧOΉ'ƒΏΨς’ώa§άύΨλό)ώζ[@ΝΟz|ΨΟ5Ÿ?lfΰηgoβΣΑ&LsWyζΰ&«ΧπΙΠψ=ύ½?’Nράκ”Βš²\-3tΩ’λ­Vδ,TΎιΉ64<όξΟL¨ΒΙ.3ύΣλܘ^τΠͺU€―yhjojΫΕR€˜ς.v~„‹.£Ÿ,O*{Έ wšΙο¦'&•ΡΌ} kBθζ–ό\υψθ·W0’Τωs]ΐƒΟbDPχΜ―Ώώm\ΉΩ€ΡΎ“xΨx[RbZ[1bΟc†)Εi•Η•λFύ+ψΰ7WE,ψgB- ‹E‹η½xx½]―σ­εƒ_γΦ½VLΝΊ±¬T„'ψ΅uυGκnΏa΄!«ΝZnπώeόζݏ|+ψξς‚h/ά†nΰw~G–]Όϋ‡gl°ύZΟχΒQ²Ύ(„ϊωŽΜπ –«8sόE¨ΓΑ€H ldUgόŽτ )φόΓζKΦσ%wϋ%όςŸ‹‡ƒήί*Χa–\WυS|iqM;=Ώ?.wΊήV(esΓ׸ьαεψ8Œα‡]*άT/λλ:ΏEΠe Ό ‚Ϗ+ΖΓq² "JΎξΔW€k“jq`¨οψhy8¬B_ω2?>€Ž]²υfŠ\_žS&ρο_X…XESί‘%νg`oZž79?RτšέΙ―yΝρ]σόΣψ< ΈqEΡ »ήkσλ']žίυ]τ±DΠVp~,›Υ”M›6žX T|­Η³5λΟΒχzΌfΕt΄4 υ^:;cεή}όNkVYž=]|γϋΎύνo’²@ά·sαϊ₯ {ςψΎΞfΆ“=¦xψ—?ώk΄Ωž~f”(vz›&)`σ5αžώbΛKκF·ίφ4όɏ ¦qv‚Ÿ=υύχ ’ž°7>zί3Hυž™­œμG"9Φ‰ΘP:ΖKχΧn¬/’’Ν°N UΆ†_JΟύ κ˜rθl3ήϋΙ»’βαŒΆΐ(]HŒŠAψώ0μ{*[›K˜#Eά™@J3Ϋ‚ϋφg™ Φc°67)f9*_ΗΟUpχ~φS|r·σ[ρΗYT‰Έ°ƒ”Υ&V§ΡΣ­3οθd'a?­ol-cfΈžJd:œ9ˆwΔ`߁ƒœΥιMRξοΤΆZpϊM<[‘Ξε2~ήχ°²¦‘½₯Am"‰6œξί*Υρ>\S–!efΊ€GQ>!ΐ(ά“Ε_D*}Ϊ|‰§˜•|)Y€τδ8ήΦ*–ζ§ΡίοΓ:ΌΠ`;Ι—Œφ3ι­€§™ς‘@cY*?–‘pA‡?ζ0;Υ…‰mβυ;ω™’‡I ππ,8#bIF#i—υε•qŒ.©l™ΜΪR°½‚§₯•ށΜv²_›–—φ˜άj€•γCRvβbΓΉρv}q]zη;Ώ³ύΣΘόΘ J^Ιwšξty #׏jύΕ‹Ψ»0ΐζΧ|£XΙ_~Ι›+˜_ά&Σ»π{ΨN”ΖΗ'π{KW’·[λς.ΘΛα2kmm΅.ΣΘιδύœ9DληӍψιŸ vθΆκ¨™]„M›6¬‘@Ω—«ΰȊΓΐ^ έμ—2e›ΫY'rα˜ΩΣρ7ώΫ'Rl7Υ―β₯“Gž›)ΈSΉΊκΡpι-ά΅O‘$φsPΰqα_ΎψοiM›%lώςX6kΐJΩςR@Ω φμωŸΎΖ \δδδθπHΥΧΧΗ…„„πJΕh}&ΤΔΤ–?1>Ϋmy{?C£tqcraχ)ΚXΫ±p$ΜΒMJU‹SJ띱(*ΰ―gε­­{˜  W')νšΙcΎ]Ν}†!έ>ΈuXBAΉ„αΓFυ† 6`š6»Ό,θ="£|BDΣ(ά“ΐ_DΪ}Ϊ|IM1kω’« Ίψ‘ŒΕNς%ΉΤνςYKOSXNΡXFΏνuζ;Ϊή:©s_^@―xΥ„:jW½νϋ²ufϋ§ώωQπΈξ4άις˜p{ύΕ³ŸΨόZMkω‹Ν―ΥΤ΅ίΨaΏ­'RΉy/·ύΔp'ΊLasa”FΫΩ°)`Sΐ¦€'ZΥΔYpfΚΜΜ1%gQyGTzίχbΊgVŸ’,ΝNbvfσsΆ •'¦ΡνŠξ* Ψ|Ι»9Μς₯˜j“Ίͺxu[Ιy―Η{SJ_ˆYzκΛ}w€²Ώ£έΡ6ΦRΐξΧήτ4ΛΟφ:„Ώ7₯τ…˜₯§ΎάνT6ž ΨόΪ»­­β/ψίnˆΧšwxS8xΰό³χ&ΐq\ι™ΰ'€Έ―Β]@αΎ^β%ρE΅ŽnΉΥ—[έξφΊ=3ή ―cΦaGlμnLx#»³»3vΨΣ―ΆΫνvj©₯–DS’xH€H ž χ}£pίΠώyVfVVUfV¨χΘBΎϋύο{™»ώχΏ₯εe½`ζg••U,,xΟχLd±e£&% λα##qoΒ–…‰Ξ`0Ά,S}“tKΑHߞIσ©²2[=\Yfg0žLŠO•?‘όKβΏά“†Cΰρ ΐψΛγΑ•Κ`¬ψ‚Ντ1ζζƜqX”v»…££O=υ”ͺ€§~τ§!δ¬ςΆξΈzώ΄ίΔΩΉΉ~Γ7*°ςΤΏΕήβ`ςΞόμ·ά¨‚Y9–ˆ)<€};+ζr"J“ΓXΟ<¨{­¬5Θ0'C€!°ž0ΎdΊœpCBE"†η™Eές¦zτ]lυp{PzrsaίΡ“ΫΆ_暱χڞΦίκό?ύφ Δra0‚A€ρλ`Πσ€εψέVΏχόΆΓS ?ΆΈαΦ°ιYvΈάL†‚199e(ξ“©¨ ―ƒž΄ͺ±ϊ0 †C€!ΐ`0 †C€!ΐ`0 ιΏΌΌέv”η@JMώΘ,­ bΚΧz‚Nσ|Χ:0kπ0~<†¦rHEš+±qΡ(., ”kXžsc°£ s¦ςQDω5pV`Β¬ †C€!ΐ`0 †C€!ΐ`0 †C€!`LΈΩ"–‰Gπʁ£H4˜Ό΅ιη8Σήf0vΰh‘±|€˜ΘmX―M„ψ¬—π;kγΖΝϊ‚«ΓήΡβ“χ`_Ρ.”₯8½ρά{η»=’Ωωy'Q™‘OΒΝzρŸΗΘπM\«^Ή9°kϋ‹¨Ι-B΄&μ`Ι!άm9‡O»νΓ^Sėǁ„4'R¨ΖΫ†81ηu6/ΰOώδχψς0\‡Ÿώ'Aώ€j~Ί¬bΌυ n5¬/QT^ χ;$©«³Eλd‚ύήM‘ –N³| ΤŒΏ˜jݍΌωΖ"°ρ₯%Uβπ±#¨ΩΏ‹ΎΑ4ώλ‰·/Xr5Βη7Ύ†B‰4ΞJΚΞζϋ ˜1η³Ρ8š-υ§$εlΕlP€$­¬ψUμ+©BΌ“μΟ–΄β“Ϋ‚{šKNμz ε.―1Ÿ]ωW04π9.7œΕ€όΝΣiΟg»φ#;! IqiHŽs!^nΞQ\Ήϊwh°eήώ`ύƒ|Φ#t#ϊ;ψ§TχυδσRιižG¨=εβΉC―£LšfΞ5β­‹oyρϊ`ψ=t‡K­ƒγΧ: ¬ƒWζΌp슫KΡuC8¬ž——'΄³fΝwp»±]φ3dQŒηΧkm,C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`<Ή¬­}ρδVnk–‘θ4,άΜ‘±²²l35žόVlΞYΚ.9FΪ]”|τž+Xπ"GΘ.x_+' ΄>M ’ΒΒ‘•¨|Y ­55­/ Α[Ÿ½§ΨθtβОo‘&M³€Šp’jΗλYϋ\μ΅W‹Ά¦€'ίΉ@ο±XK鹞•ήΏo άL…t>lΥRžSύ4ŽέΕ“Ρ²ψhέœ7ͺΌξΞ8a')SZ’ςqόθξυ„šΟ;˜οέ,qΑπΟ`θ4Ο—1ΫΆς₯ Η`£ ΜάƒγΟDum%b4e†@ٟkύ8πy?ΙΧ9(T>@F7PΨjlxo7ͺ?’κ]½σp8Λ%9ΥΟθ"<[ω FUγ3uΓ¨bdωn3IΟx'χ,γŸκ/zekžΞ ψ|Τ¬~©^TΗ’SLΈY™σ³α;3Cμζζgfjb!ξFφΆΆλ:ςy 0Ϊ•Δ< d»ΚΫ·ϋ”GΈ™Hš››Β¬–΄ ψ]tjIbn°υ»LΟ—•_η”νΔnζL—L‘IΘίyq1aΈ|½Y/†ŸO&ΰ¬ σd0 †C€!ΐ`0 †C€!ΐ`0 ``œ­!80ь[]Σ]σNΏΊΊŒ€’ƒΘ•‚ά7qK‘©XςήμΟΔIhxݍp“¬₯—ˆΟκZ΅Ξ“8©nž›lESο}τLΟ ‚6MœI%¨ΙIΑψ΄B«rr†¬¬vd΄ ½£έœΑ"b‘±΅Yω\ 5¨Κ»NAσsYΕ *αζŽs¨οΈ‚εθ]¨-;†‡ †΅=o7ξυ~€ΡΝ:£O@ “΄yΧf‹h4γΞ{‚†!/xV<ΰͺΗκΝ6*―½W$ΕII„ 8;m«„~F–ΏwύμόϊΓ?-Σi/1ώβ·Ώ|Fω‰L Ύώƒ?F₯F«|PUέμxΊ{ρπϊDΠΐg¦έ‚vκ ΐ1x£ϊ#"₯’βϋ αζY΄΄~Š›ΝVϊŽ•Δ&” Δεΐ@ŸΫρ~’l EOŒ·`ΐ=ˆαιqΜΜΟ 42ωY΅t+ˆ M;>­{/’^1΅Bg0|>>!E!άΜΥ[7“u~A"α$΄ιΨμόl]ΫΒύΓfησΪΝ ΄PŒœΔςΚ¨ŸΩ›Ύ-aznSrI‚Ε*ί΅‹N 9ΜΉψRσk©Α¦1ΪΣ‚α‘a t=DhŒΉ…ΥH―§K)ͺFεP?i½3 ΡΰΉ©œ£’θΊ”¨dD†„`ν‹e,­Μaf:V4@„’gh°\•ƒωα;8λχ±Ξ‹i¨‰A\„pΪte͍ωυ3KX*\Ρ„#i¨yŠα―Lbx’ώ_$F;‡πά?EΓϋ/19C/ή’†όvΖmΗ³§!1˜ξ½ŽsŸ6l4λ[ž’~sTΏž΄ϊ­/zOXξτν&ˆί.Υliy]“}λXG«εYM'T%*Β!œL_[Ζτ²ΧΩ8u}-π39uN •»θ£\ εy2O>›ΐ¦ΰKŒοn‚φΨ,$$οΒ‰S{Ή L1Ρφ>©»Ώ”mΰwdυ{·šŽΠJŒΝG]KΕ-’‚ΖΊs‹ƒθ›ρ·iu|f5ΊIe~j„_[ͺŸΊΌMεb|pS5Η¦!Ζ LΒ±c{²ŠιŽΟqιϊΓMS ϋ 17Ώ΅VΎΥώ₯ΣΗΫ*.ϊΉ1_†C€!&ΰ!αwπύτΝNΌΚΙfςΧTΟβVΫV¬Ν‘«Ά₯MΖa΄ή;c#¦B<_ϊ΄|­ψPοEΌyη’¦6΄φΥγ³{ !.tm}ΧΡΧυ9N¨ηa=΄G°ϊίc†@OHˆ¨)2j*σsδΌ;Z~‰‰BHσ ψ¨! ΗΎ‚t.FB.rhΓfT!#'d}’RyQχΈgwf£6¬jΤ@ΩWw ΎΎ΄©U.ι΅;,ϊ•4η»ΡερΤEz+0G΄‘ΨVΏwC™{G²Μ?­i/1ώβέn›Αg π₯ΝΣΊΠ ³Ϋi΄]Ώ„–ΩlΌpΤίM ώ©0Κηύ粎‘γ·qφΝΫλX€^ΦΤοrBδΤοͺGBήq7¬?ŠΫͺ|ρ‘ρ°ρM|,2νοΓΣ$ΰΝ“ƒθˆd²’ά».*Ÿι:όκtΚKppγΗDœxωόψ swc…Ξ ωόΤd κZ°0ΣG‚έ-ˆ+ώ^*ΎGfGΩ‘:OλlŒυƒ³^)›‘Πi=RU~…Ο«(°Χa…CMεe佊ηΈ~†“yω;GΦδτu–ψMtzΓ<¬# σ½nΆuλ•ΫΌ)§ΖΠxσCάϋθm<N‡ηεq^ϊZF±χ•pΕrτΗ"!‘€œ΅γωjGΏ(GE— ,­Ή±άΐTkζΡΡww&<‹\ΪVάaΒp8ŠŽFnΔς‡F'j O!7JτYjΓ§-—‘·ξi—fμGqr6"= Άτ1΄Υγώ„φšΌ”g=ƒ\Gšw>εŒ»ο‘φ‰›Ί4j‹YwL,)όbgθI9o€‰+ŽΚ,Ίόh S½wΠΪ;i鏳~φΧ†εhWκAT€{]½U“ήƒ[=ηΡ5o1cΙ¬–g%]JBR£Ιύ#χ»άG­%οi4wΎ¦ΙΝ=­•'ε`)ν¦|>NΎΔψ½―„x†…#.Iκω¨­΄nάwdυ{·šŽ›v’<΅ i‘Π]Εlφ_Fκ@™Υρ™Υt=Φψ΅•ϊyκΏimŒnΪ¦y¬„™αƒaΡHp:ω9LΤ€γ±’½Ύ…ŸίZ₯Γjΐι#nύܘ/C€!ΐ0†p6†“™X{vB–Έ975pŸi—|ΝdφΈβF₯Σ!P±πI·a!μΒ½(ΣM i…›••ΡΐLΤγΌή"Ό˜dziN™˜·ε”#Sς%-Ω—$αfΙo~΄Ύ”.ΥCςW<•/ΰΤαJ„“ μjθ6„Ξwΰ£zήΫ©ŠDV­ΗπυŽ’PΆ€‹wƒ­¨Ώά‚ΜέΥp„‡bΌνœΉp[SΒΌό£gŠΩž xϋsΰΕ—‘0Ώ±nξαV΄5\ΐιsυ|ΪτΚΓΨ^^—+ ©‰NΠJ03cθμBη½K8₯QSŽθ,8Œ―Ÿ$:‹$ ʝwQ_7Κο;λ'β|Kpψ΅γ(/)&-έάρkΑ̎χ`°―mw’ξΆ-˜°c‘˜ΊW/KYΡ3Ώωm'E`™Ϊ,2΅RsνώΎ[κ™Ό‡VEί΅ίβόn9Ž`!:Ώω_pί8Yͺ&šΞα}―ώPSZ|ν›O’³=—ρφι«r„ŠcΏέΥUΘS΅A'Z_Δϋη<ρδd)9φ=μ)t`U)9K}ο4υΝ§ύΡbω;V–V‘Sύ5~&PϋΧIυ4Ϋ?”Ρ~^ͺ˜xŠΖu’p3@Gv%αfNYQŒƒ”Ί­―Y¦ΎίS‚R~Δ Aσωω6Τ7·ΙεΗyTœONiΏq9ΪΦ±X~―ΩΈΥ_#³ώΑ:\˜ώA'ΩΚR(jNό{φVyζ3ƒh¬?KύrώΰIl…Ο7ž·>?ΪμόΪ ίυ΄„hK;Šγ•βa©…τ.€!+λSF1>ιΑΘι,π][θ” Ψ€Ζ―Ωx^σjκηέ·ίΕΫΪ₯&9]Ί»ϋΰͺŽ™Ηςcš.9TίRμ΅n#‹™ι'Xί”δƒ8”Qμ§ (Dΰή~#υQŸΐ³Ώ UŽ₯9ϋ=ΒΝ²@ § ͺ‚Γ<.TδGIΌgaO•νΆdΉN!dν]ά₯cΩ„ΉκSΈYˆ•δ؁έ!+ψΈΫ—9·υ±,{NI*ζλS–&ΧΤ’*μήSΑϋv-w―€σc¬Ÿ¦ΊΜω˜Θw};ΣτKΟFMζӘjϋάΆCVΛ³”.¬Ϋ³χ+/NςΤ“΄žΜι 7[δg”s\„΄›β)ΖΫΆ ZΣQλεq™XΒEQϊ¦΄>FΎΔψ½o„­xγ{±qί‘Υοέj: #υμKχh‘ΠΆpLL!jsΓ°rR Υρ™Υt\Ή–ψ΅ΕϊIυάΜΟu|ίUΫΦοΦWa±~ΎHΪώ¦p ‘n ΩΥ³B€Ρω­•ΌΉ4Vϋ–Nώ`«νΗ1  &ΰ,!aΣΣyU’¦aNJΓ£K6eΌ±ΩΔ'$ς7q₯NΜΉ±D·;fGǐ Ξ¦λΧ*² Q‘U"ϊ β~#Ww2“±†\ώΣͺ28JŸκΡΤ,ΖF9$+:†[Ό°•ύXβΣσPRTκ‰1>+‰ιxόl°9*Ώ†ία‹tPKΖΑY΄/ΣO2Ι«­8ΝSA ²KKω΄£˜ΓφT!G³ΔζH+Bν‘)4‘€s; ωΖχQ‰Γ—AJl\Eάo\i?ΓΟήQoώ;HΘκχ_Χ£σ Ρ)Q©σ$!³οώιQ¨SfLR6 ιη 2΄ρXρΚδ‰EŒήG yL2IˆΑϋm 7-“Ύ=yΫjσΗj’σΫτC”(–z%!ρ”ό]8J?§σΏα7Φ‹ι‚)Οz;¨‰6ο2ϋ^[ϋήΝΣ0EώiNk|Ιώ°Ύ9γKvρ%ECωϊχ^CeΆχ^°Μ £¦HΐωO"Σ|‰’d‘°’TΰytΨ₯“›h‹#‘Ωρƒ„hόΝίύBdŽq•"ηΣ±¨Όϊ.΄{%DIe ςςΑμypL7Ξόψ―T‘#T.sί|>Τ'sΌWΥι\νΦ<Φ'΄²¬Zlβ αζyτ ίBΛpiϋP›&.₯Gεΐ•p“άIεΰŒΥς¬¦‹ŠLP,όsœG±x³4R`βe,σ3.χp)y Œ΅cϊ πόμ=uύZ―‘q‰ΣΰL½nx"ͺvύ‘nίΜηδw€¨[ΰφ³§?25ξI.D¦4ŽšλF—8μ+*ύ.φΛ‡ω<•˜œ^—ϋ/¨'Κ v£ΊΌV„†ΊθΦiѝ6σyε €kάΔ8Χƒΰf±ω^³q«NC²ώA/?ύƒNlΙ‹γŸ·ξuΠrk φW '2S*^Δ©ψΥΉΫR4ώižΟ{’›Ο=?23ž·Δ=u3m ΊΌίυ²xλΥ,ξίώ ξ…žΔ^‰Y7”³8Ι[υ4Βwƒ¦SUβ&t0~ΝΖσvη“‘θŽp/ϊμδH€χ=ΩybΟΊΝcpv’6}‡ ΤAdOΠo}χ•Δ->¦Š -hML:ˆ=)4λδV ¨Ο.j†Xΐ…„˜σS„ECš‘qm€O@iΉ 7{BSzόΕ%QH£uΩiiPΎψŸά(ΔUύεπw#Όμ2Dz΅K±ͺθΓ—ΐO,g§'Χ­τ9ZΔ”ΜΪκœdέ 'Տ[;₯ϊ/ΦΊA$³bΜ!Q†BŽ/ˆ¦«n Μ|š˜z% 8Gςa€Ι~χ2ω&X-Οj:’x~‘ΓKXZδϊθCTκ1H·έK“žΓ"†ŸΡEVρ‘!’ ڌͺ'=FL0εKͺ6o0γ»›·m|PT?¦ΣήFΆ }’qߑΥοέj:ͺqnBŽΌ>;uΊoΙ8τ\FdD2v8$Ύ%‘‚‹γ3«ι¨hΣό:˜ϊ)ͺΊε¬:ί…έuκ» š6ώTA¨Σή†ωΰt+n\lUeχ$9ŒΟo-ΦΪjΐιΟ¬βb±ωX2†C€! E`mN3c Ω…GQ‘ f5Χ„†ιΖ=j“¬Έf[›]Ό£kKxο'8ίν9,VFkΰ’r|RjωouκΔ”*όDΎŽH'IP^«+!(ͺ}•%HN˜ηFΡΦx—κξzενΘ­BA^RӜHŒOA”΄N׏υc ΅ χ;ιθZ‰η‘“ƟrŽH&Q\„΄ςS8‘»$Η ₯yΤΘύ hhΡ?ίS΄χŠικ&gšΨ{RΚωΙAŒφw£ύώ5΄z f―¬"΅πvξ’οΓ™"–5‹Αζ›ΈqφΤo‹LŠ KͺOΎ€ŒθP¬…¬’ζά둆]'Ρ5<‘€bwθΒΆTxyβH’cuyΙ.€ρψ»ρθκ' +BυžνβδjM?D WΔܚ“(+)A¦ “>t7ΦγκΝϋ^υ0ί~\EΨβ>$D„bΎ·Mξ$μάiύz―]τνJoΗ,ρAIΈ™;-\›]KΒ ά •γdžΑό΅ZžΥt<­Λƒx4μ頜r03οφͺNPό,Œ6•ψάόtΐ)Wx0ε…‹WΝ7―γ»ΑΆUΎ«δΝYΨρΜ^δηζzϊ>"‹οS†ΠχθšΪzEBmθǜU8²/ ³₯εΥYŒυΠ‘³{πτ‚ϊΈ˜εŸωYύή­¦£iυEάΖ%gH«ΌŽΆ―… ™6ΗgϊYHg’_―_ύτ©œΎŒ‹~Ν‚†ΧΐςNŸΥΣ&οΒ³‡ΛAZΧ–'špαΣ‰Η2ώδkk‘ΊjN‘<+^}σ iVŸλ½Ί[­Ί@nΙρ‰ω­n₯ xZνX:ύωƒU\ 4‹Β`0 !ΐ48‚Ι@€Ψ]V"Ηkι¨C‡μΪj'’cΉ΅ΟQt τ:7ζVC‘˜TˆŠt°qEΙA΄“€³PO8A#nΏ@\¦Uθ֎[蚜#e;j³ςE ςQUΈ Β)b€κ‘’υN–Uzόά·pUoƒ›θ ½pεedμΖ<Β.)Y/ΰ`TE™ΑˆV— y/rZ•†ε΄{S&_! έRχ‰,άΜΫψ.nΧβd΅4ΗW£oΏϋŽFΈ™‹Φ~ηB`υ§‘Ÿ˜|o]Έ…§IΐkαmαrΌL% Τ‚m·ίΖ͝Υ8ΎCŸΞU@’RΞίέ|ž#ΕrL₯5»¨y3†ΖkοjΒ½ρ‘žΦ αPxΗ‘|vVB}œ{τφUp3agΟ†²―ςλΑ)l]Ν‘fΚ㲡<9Aώ1χ^[ωήƒ$Π+Ήώi…N«|ΙώβUMI©H§p…θ«ŸΨܞD7άγ~’b|ΙnΎ”ƒ5»eΤΫ.Ύη%άΜΆ\ψg•ς;ψЊ†Ξx2%Ϋ•[¨%g‡t€po–hHσG‹΄'NξLκΣIAρP³–zϊΝ‡š2žhAΨσω‘~ΪΣε…”HΝ’qU;!–y?ψΑ)ς~Œέy ςΞU’‘iιbŸ4ޏ>κχΏ^)@Ί/ρj7υe Ϋ+©Οε„Ώ+‘Ώ/)EίU‹ |„ήžοΘDϋ)Θ3ΫIIΝτΞιtαξn£,vαΉjρ¦’wΈpγrŸώs)k¬¬(Ζ²―K“r@‹²€΅œΛΐ9όͺαŠμδ,Φθ$jΓ8R"$Y!„=13F#h λΆψΈ•υΖΎ†ΐύƒw>€5τυ|αΞ{Ÿ |W₯p`2-ΩtP¦[1GRεa€Οsρ­Žηƒmf~mο θ—•_Ύ`’ο"ήkΖ©ŠΦ“Σύͺ¦sα»ΑΠ©Wf@?Ζ―ΏΆΈΞπXΗσi;QΉ3O~½ξίC—_1`rσ₯ψκuΟꌜέFXœΘuΠΐ‘7cθΈGΆ$FΕ!”„ψVW§1±θ·FbΪ-π ­²jΔς nΡυv.vΐ›•)πSΦΑ.‘α’Vή<έΛ‹D*s΅lΝBMζCXu£ι„k.]'›ΙyY+·μg£%ΉόDτ<ΉF§ pΟ+HNvΰμιK ·Y¨>ρ ς%‘fO ~a:&iΩHM|]–„£‘Ί½DχΔliΣυ -dΆΪU§ΜU°ΗmΗ‘SΟ‘Π)-΄{’D%8‘MΏ”ˆ΄Ÿζ&Θj“\ώ<^*Wϋqί†³τ^ŠΔ›Ώ=«¨Ÿ6žχ$ Υ‡υQB›eΖΗψΟ~«r[pπ9μ”ζZΡe=΅8ƒ•0RΒ"ύφ)ΦΛ³=¬6㻏‰οJ―υ)'Ύω5dλτerŸJWžΚΞΑυc1tΘζδWŽhψ} ’³kp˜[— `Μρύύެ~οVΣ‘$'γz/_!^€Ϋ¦Β)χ qΦBtΕ`γ3݌L₯ Μ―Χ­~ΊΔ?^OΖƒεƒ+ΨζΘG&Ώg‘‰’kiQβΪ· b;ς³…9’›61@‡ύ6~όI#Ε ψ #³œMςžL―Ρf–€³•ω αυ8Η»¦ζ·VΏ]«ύK'Ž$θ=σ«ΈXm?–Ž!ΐ`x#ΐœ½1±β³cη~ΆΰρλψΌΣ‡ΐŒ•Μ7<Ν κοόw¦»Υνρ η%|eG­°ΖαBŽΛŽ>7QθBBŒr¬5ˆλυΏΖ΅a.ŒL_άk?ΔρaLξYW"¨r_ά)–ΓM6βƒ+οa@mrnŠ\œψΙ>後―oKGΫψbKP# S“l3…G/LΓ{”K‚]Wήΐ?t\&š,FΙό… •6K>σ ώδπλβBƒθkΉν•[7Š6*ΰζΪΑg6¦Μ½ΧVΎwSδŒlŒZ‘Σ:_²ƒΏ¬Έ„7ψ?|CwίKŠβυΏŸώυ?¨΄zΕρι‘ύή_ς•qΎI7ΑIΉ΄’εsoL₯PεΣΎ4ξƘVΨ}bŽz5ΑΜΞp½ dΊΡL‚D5™•δA{ή:€Β›€c(ΰ΅Ψ“‹ϊšGΎ…Ψ–ώΑ³₯§ŸŽGUρύT²3‹ΚiANY>r’„`G~ ΈŠ‘Μ<$‹}†{°‡ΧΌœ+kΡβ4¦~\τ Άi%-ΆyΖ*Ρ1Το[66}G¦ΪΟ2±rBγύC’b€=γQ „㙃/ƒ“ηφBλξΎIιpJ’„g'ŒOdb|Z¦04ΤΪ>€ό0$$P›ΣώΛΙ¦Dgœΐ«ε3x§ιŽ˜Ϊ:vςωD…`ž{Ϊ{oΥgU°ώα ·²ώ!ΠkΞ…ιΌςοEW»Φχ6z:QΒΟYΒ•JŒΝE΄9)έΦΖσΑ͏6/ΏΆΞw3r^Αs!d:Ό|ώφ%fκSω֜ΣM·ŽξOσ]λt*Ϋή°ρkΖ―ιe±ΌΞ`j¦ν–Χ‡fϋξ―Λοk_V#ΕνΊvΨν7#Ϋc]HΗτ³³γˆL9†η’=WxsεLΝC˜špΣ υHΤ*#Ν”ΒΔ)³ϊ8vχwαF·M ’Χc%&Œ„’Vž\ŽB—0y뼏α©j,žͺ ]ΕĐV-G}εk('½!ƒn wȍΠ­[ζ!Χ•‚/άΤ$sυkο’o#³₯y’¬«ε…ΧD:ΥρΝΈΪ/‡ƒ©Κ£Εω„ μ=5ˆw> cο.I`ݍ;η~…φiΚ=\y γ,:nb%½ Ε΄Α ™. Μ9*PΞ 1;αte‘€3-J“Ωρ’ZΈΉΏ™0t#ŠNΆν(/βγ8ŠΰΠτ0>Ίςw+o?J΅Όζ₯aΤ4ž^ν³οut&R€οr‰·βp&“‘v•‚/ι¦YΤΎkRˆΑ§Υς¬¦Σ#K©aΔ―Όψ{pό,&"A>`ο¨Εστ“ΜμiNi@wbZ6A”g'.2=›ΫΒψυφ±ΔwΕβr«h£PnEΗέ‡€jaΡρp8]$ 蒘! β‚ιNJ°οY…p3Mπ›0IQvIZϊEιYΝπΟ ύެ~οVΣqΰΜbv™[ΰη6Υ㐛ϊ4Ff>7ȑ³PπΜ=<’«εόγ3UFδΧ\vΧOEτ¦t0>h΅YzΡϊ¨ΕϋJψ \4j©Σd–‡,Q…[`κxPOcΊύŠyΕF?ƒγƒc=wΡΆGœiF΄-ΕΕΒΈzΥ‹7jͺOΞ­1ή59Ώυ¦1«ύK§ΒWž?XΕE•s0 ΰ`ΞΑαΗ§N>Š]Yβ!—nΆ1ts• %―[S$ά¬gΊ?ΐέ΄BμOηΦΗbΝߌCσ₯Dβ₯ep ιh9ηn3κ§Νey\©—»ΰΗi_~qη^yν{nό&Ξ~ώ5Ί2ΥΔηηΘ‚ε™½Θδ¦αΓMΫ{έέ>Ϋd¨Ÿ΄C›α„2ιu1Ξ?MΣ_²‹Ώ‚*2\^77Ÿ‹ŒΆyεχ0Ύδ u3|)!Ž>μ ϋ(ΒΎδς+θ₯θœ‰Ž–[Ν*bΘΫ žέ›‘Γ&±tt*U[egs‚Ξ’ΙΜA>ΚΞ” χs{•HJM–bΡ3NAWα§΅šμμTΙνωŽΜΆŸŠ‹cύC""$x榑\L7sC?2Ο žS εL―/σœ&%oœΕγΖνoαΆ"«κν?Δα\Aή ΛYŠlpξαΓ­ΣiŸ'Α–vέFšωΝΒξ@Wl²<™Ž!‰νοβc‹±§˜šΟ’oΩ;|+ψg”΅Ž»$?›’βΐs/M«΄-[Γ%Ž&’6 jN•‚ŒτB(δmu‘ΛwΒΞΈΜ­ ”4BKοΩM§[κIσ΄!θΛ1”‰HξφKx‡45σζn=ΖgΏgvΡKN&·¬œ΄7΄Šη€zΡίxθoΑ퇝|Έόηζ'θζϋ8\ΕMVb™Oz~Ϋψΰφλgω“Έœ#f{ 8οδύέ]Wι4©XπcR«v£X{w>z -κ4άΥΥΕ±K>sn:‡ΣηD‘›—0yς°·”›d“MgΡΙ bc&Ρπώ'HϊŽβcxv€ŸάŒΔ±gŸζΕ°Έά»}ˆΓσ=·πΙΒίΉ‚ΤoN[τ]Η…Λδ—Ό„ŒΌΌ_\"7νμ₯Fy•ΔK‹Iš:ž%m‘‡ψ4™»ͺ‘KΞB±ΦΪO‹Œ-xΓ{“L-*˜©ΉQ^ΰ-*‘;Σ²yΟΩ©;h_ΞΐρˆψSO‰‚υΪ t[-Οj:=²’’d ˘'g/ή?‹‹ςθMWτΠβDlίiά™cX/ΟN\tΘέt^Œο>>Ύ'mR‘“χ~μΕ—λ³Ά##‚6zΖj?–ZUŽ\I˜z²ŸώμM±?¬Η=:”ςρj‰Eqώ­~ψηΖ~GVΏw«ιXΊΖΑEό> EΖ”βΠφtŒΞ, Š47K}ΐΒ\3ntήT %P­ŽΟ¬¦“Κ Μ―ν©ŸTήVx2>lzˆApζF΄Žβ]©C«bS"¦°DΤπL[ρˆ†΄O$›ΛοžΗΰ]‘μΈ=H"gE5δϊx,[kΌkv~λ©§9›Υώ₯ӟ?XΕΕ\«±Ψ †Cΐ7_|ρΈ3Α ΰΐ3$Ι)­zLτέΐUυrc0™oΚ΄ Λ ήt‘j`ϊ/˜ΕV<|Τ&Ήδgx¨$)#{yYς _ΕKeU²)Yy―᜾pςόΌCKžΗΛφ "MΛ’€t+ΩÞ„€Τ’ΔΑΝξHΨlΜfuΐ2…kξ¬aΊϊ[*αζΩώf΄΄ΆΒ=C-B Ρy8zd—@x¨ήš&νΡV†)Σό.ώώ§π΅£‡PX”-Ο©ωΘωQΚ<ΑΑπAO.ΖmΛΫ•Ubέ‚ ‰DΙο 2Dt?#Θ4qΈμΪύμXC}ΓYΥ Nbl[e€οZ€S.Γ¬…ρkΖ―ιή «λ ¦ΗƒAη¨yώ¬‰Sψό£Λ πήGη—!>δNnKz’ΕkέΖμ2R€βŒΗ 1Šc-•έ\šiτŽΆ`ˆ:‰ΨΨB”&J+M™(L)DŸQαZ#ΕoPWϊIY λ”ϋ&κ†…Αx‚BofAΩ|VqΔ ]Jζ4&' ξœgq7.aΆ§JxR”₯ LrΠ«L*]C1½ άr¬ΚΈλρI―οΕΩeN;™„†ΐπ‰2aϋ(ZIθWiΪ―ά@©)η…²’\H£ͺŒ 1ZκΞ*£ͺμ­ MΨAΞς έF’G:&ZΦLa!‘βμJ'žΰ•†ΒνrhOύ'^ΒΝ\`ί­Ρ'ΗZHέϋ5QΈY jlnE9 8s-ηjCQΨ}œϋ$ίώŠ Мΰ%DlƒS¬β4 ‘_Έήͺˆο±.Ξ-”,΅Ύ{FΤ.Ό4Η_ΙΘa.^ΥT^Z$ M6|ζ…ΙlΫ'xΨ\„ύΌw2ΚΠυp˜/#Ψφ£eKxš{―cG{'Šu X:6ŽιN/Ο”Ά₯Hc=―y½΅Ω;„ΓKΈΥ} it–dV΅ίš`πi΅<«ιτȊSž˜Zœ"Ξ―5Απ3N‹χζΉ1θ"νΠ3X\ Al iΈ—O ?}&.@xΓ¬—g'.Ztέt…«½MNcΒ0f½ΦΔ3κd|Χ(RώγYγ»ktπH6Σ•=H‡nο}θsk!’™~,…4"H¦λαuω°οGΌΊιQφK »RLυΣ άΨοΘκχn5ˆΛό †¦Η–,‰8:BΪA„;{ι9u vίQƒ(»¬ŽΟ¬¦“ F`~-Ζ ͺ~žς ΩτΣNίEχ£pς<„4ΰ•δјΎSS^a<^μjHϊΑΥf£ΖŸvπA™ςpc³’­1ή%­F¦η·2¦-Vϋ–Nώ`Σ Η0 ¬­1αfΠφζ” TΙΧswγNσΓi·fDΊ/š[ ε w}¬g­[π£Ώt[ŽvΜΘ…Ε)Ž—γ*,;*Ύ‹g9m0’ινϊοάW―ΕJaςsϊΞΧӏ6²Sψέ”Œr7„%Ε‰«ι“Π踐“―ΏefeΟό€+¬N±§ά£ΉΉ»ξ—ψι[A΅€c('gΕΦ?ŸGΈ·:—Υ‘kΎ€wιGi(¨ΜCZv1JHαH^šπΎΔνΓΣ»/ΰŒ—πr*φξ«‘+qχΖU]a9‚Λڊ±•9 ©Y΄K›ΠZΚΏC‚―΄ί#Ή•g΅€όεg$Ώ5$8eMXrθ:[ |οDAzεδ8ˆPΙ,Ž£ώΖmΙεσi4@§Ύ΄aό₯—ίσ~}tγKΆσ₯qΪσΰ65Έ­Žh ΉmβKΖ^47?ž|ξ K2ςʐvΛHδqŜn$ ½‚ΥΎΏfψόF‡ϊ"κΛbγ‘}d;RΉ­ΧρfάμEmm’‰φμπ<Ί%`€§w t33wS‰Ύ’η³P·§lώŽ„ΪXϊ¨?²”)m{π;άv–hζF?ΗΗχD—$ιΖαYZώHЦzZνT™πŽeΊΩΩΫ—#2(:νΰσqIΰΆx3γΖ„—œ‡hεΙϊlυq+λΌψfϊuVΪ3Ν!/AΚΛ6;ΩCŽlϊMc.ΘΝψ Ησ–ηGžϊ΄ΛΕ σkKεε 5“€ œ)‰–ήΟΜtš«-Άΰžwΰc„οZ’ΣWFόΏfόڞu#oI\1ž'Ε“Ηχ!/YœΏ/ταζER°ΰ8ζΙ±Ί;y­Ϋ(–SδxλlIFl„€q˜+j MΠ<#.I‚εΜΪ)Τ& Λ_ΫB‹λL™]Ω'&>=’P1iε»Υ+±ΖTQ+iΣσJ-Φq™Yβ°&†)Ι‡q(4 }Τ™F‘ΖYXΰΔR#uYζ0>Υξ4ι Βΐi:M §ψ+σˆtμΑJsu¨ƒ#Ϊ˸ᅬwnQͺ%,‡Q’εi] ^ ­zLΙZmβV υ"—˜Ψ†ˆnΙ‰τ &ΖΉ₯ε%HOKCLU’VR9±ΠΘσš(₯LuŸα'ΣM'’[%‡ρηδθΆ ΅!MK’ΟΌ$\¬ŽaΝΥvŸ7€β―ύ:NiΕyυ’†l½œ₯•Wκ•Ε6$AπιqΜrz…vD„ηvξ:W²ž%rMΖ‘ž%ƒΘG ͺύ,βiό½v`gαאο!_S1=ηΗZyφββ©½[ςΌςϋΟΠ©I;yόμ]Q›½&Μ¬“ρ]³ˆωŽo‰οJ “ψΝ«ަ&τvχabl#cžΎΞw‘FC .2ιξτJ8άOpgγόsƒΏ#ͺ΅οέz:Δξΐ‘ΌZO—ΈβΖ0]·ž‚”H‘ΏΗΧΠ΅ΛS¨ΣgYŸYMηir#ό:ψϊyΚ hc|ΠD[gόΩω¨;ˆ‡po~A κIΐY荷#«T:<сNςχ22ώ΄‡zΡnΐcswIvΗόΦ@Εu£XνX:ύωƒU\t‡y2 K¬­ιI XΚκKš¨΅E•rέ{ۯ㞭B rΦ›Ζο:€θžΕiGτ2΄Έλ-jšƒ"g‘uΔ­\Dv`OυkΨοr‰α³xψπ=|άfBΰxŽΚΉ;p¨Δ£U»΅ΏQ&Gβ-ŽέίΒ7OΦ`/K ͺ³ψΰοώΩk£\ΚŒ«›Φh“=›Ϋdw"»€ή—φFU™.ρfU€E‡GΊ―^πΚ%§ΊΨKΈhΑΰπ ͺ2ΉEθlμIβύjqΜ4i^ΰ•₯Ζc„ͺΘύκQχα/pτ7ΰς#Y5NϊO³ŽZy ;8M’œΎ†KΖΫ}qΡ#vνHγpτV)μΰ5jβ&eAΌ¬Ζ0ΦΞS€ϊc¦ύ\>½vΦs£†³y’Œ9ζhΟ½—ιkύƒNFΞ2δHRΔ΄Ο8*Δ²‰NΑη³IΠNΪ]˜ΦΧ6ͺS₯Νι΅ρο΅΅ρΦ·²ώAη­7Ω?¨rHr ™d^Ί9Ωِ m7οβΜ,άtKz0ΖΪϋ©W’Ιωe±iω΅%Ύ‰…ΉAL¬‘ΌΙUζ‹mHu(ζ™s΄ΎΆ kΣƒ>΅Ιβ»–θTQΆΙŒ_³ρΌ•ρ|*­ΟόρsL}χ.|ˆna3Ψ;οͺDvš([8E{ΕiM/DΪ’ͺƎώs³)4*ъR†κ=ΒΝb£s4jœm*u㲉݉—¨Α`‘WΫ?‡4 ?eyΕ• L(gƒΐ₯o¬Ή)Nώΰ.WΡG%ύΌ«Μ½ ΓsC:W Ο’cπ2”"Μω§°Slƒ΄„€ΰgW·{¬Wν±ž™9Εke€Ε5%θ„ΎΚŸω.φWI'<•ρ4φ ΅γ ΉE’–g1ίρ)Lh•5Eκ9§'Ζ΅Λ―ͺhαjα_U GΧ•_‘1λF%·ξ+š{ηήD—δπχtc’`vHLέΈyˆOTΎŒ4T”₯›D1₯ Άύ‚ΑΣΠ{α$MΜϊ΅πν»ˆΕ₯mˆ—ψ i½ŽOέ#h §D]ύuxΔρΕ„σχ¬₯ϋΞΪgH,Β,•g5!$\!½ tΐƒ?ιξ/~6O‹zfbβΪβ²PΟ-㻚 Ξi–ο6=x€²#βΥ9δ–?M?‘š„u΄άFύε:]ΝUζ(ε„$cΔ$ΫΌ’˜ΘΜ$Φψ’ B4Q­}οtσ‚₯qV>(„›έξ;ΈΣ{KΊŽaOZO‘3΅Ήγθςڝ·:>³šNΜΏΆ£~RyžŒϊiλŒ?gΫ w|/ŠΉƒpΞdχh‘ZS„L±†nΊf\šφκVzΗŸvρA]Ϊ}xnϊρΥω­ϊφΆΪ?°tϊσ«Έn)ƒ!ΐ`E€ 8EJ?^ΕφƒΘ—4ΫΝ5βF“ZpU?Υfφu ,― ‹CuθΠԎwΑ©κZΉC] nZΫ’–·Œ Z“UδQVρ,Κ$ΑΊλ¨­½MΜ'Ομ{Uά‚9ΏΎΦλw‚kœ&Μ&ES†=‡vΏŒšq=y υrYήΖΗ;ΰLRfŽG{καέ’OP-l΄—μ=‚Šs’0e—I7MΦJ›π–²χ“(1΄NNL6{°onΩ₯΄ŒŽ‘S+άρ4pE)pΫσ”ΡUφtQp›jκe†FΉ½!_―@ς8JΪ›₯ΊaPYͺ^|₯ίPΟ―iˆΛέ‘θaϋQ{^±ΞΩΉο\υ΄₯ίyHφγσVΓ&j¦<1 =Μ΅ƒ'h#Ν³άχΐU/Σ…š³ ©9ΌRΐΨ{Δχ)ru•[0W|Gsk‚FMM<₯Σ8 ‚NΛ|‰φρlΰ/Κϊn6;γKvσ₯t W)}·™ϋρ‚΄πC΅νΑUCYNyΤώcmeΪo³|ήέήΓχάκl πμ$-qΡθœ9ŠΌXΊ΅A,q€@.{ΈŸ²ͺ…ώ¦ςΠqά#gΝQ!nf5j2—qKl9•E!₯”DWΔy|ίυ&ϊ?ΙϋJ1ᆛX{b4—zw›ήTάTY‰—ΚχRο&˜ώ‘f• ƒθΝ? υQ%Ψ“•„ήGuϊΒΑ‰€dˆφ]€ςζ&G<εA§]|ήΗ Ά3ζζ4Ηnmσψήksγ₯­3neύƒΏ/Βl Ξ«OοΑ­Συοέ‡P"υi3Øπ»™˜Ο{26χ~rι‚™q鍍η)b|+G2†ψ5ΩRyƒtHζ€’4OŽό°SqγζέΏΓUnZκΗβ»–θτSθ& bόšη͎ηΎώοψΓηw>#ζΈ2€;Ώ{€v#ΒΝτώ—εBZώθhζ ¨Ε›k‚φ½¬τ_0+4!©kΩ"/UjB6Ώ³ΠQ$Ÿ’CH²³Ž!_F=s…Θ6œs k“hξ½ΙŸ&±ŒΛ2 R?’²τrδσ DœVΖΠ5ލΨ2dGΣj ι5˜5Ά|Χ1pΙq§ΕIΥ…'ςBœΚγΗΥΣ‹ Ί’#H³l$ «„›η‡;ΠέΫƒι9Ί/ „"Efbχ !™,™,ηbή ^y΄ω”rŠΥε%ΩΎ1–"DK\B,06%€l; ?ƒ%ΕΈL?a­ˆΣΡp# Ώ~dp§Τ¦Δ#6΄ίΊγΉ8†žΠς” ιy―M£?$Ή›#xž‰\ξ;#3:v·ΖGx»+&YΠ8LρΉ1΅Vb>†‰?t='°ΔlyVΣ鑦8ΰA‹Σ >z²uΰg9K«>Ύ-+εΩ‰‹VZΏΑn47\G”―GŸΎ°΅ΕώΰήEžŒο*ΐ°Εj’οφ^Β;οΜΠζι.de;yΝ§2Ρ)Θ―>gr ήχΌ BΞRΞ„Kv$/»Ÿύqτ[ωή-¦s9Kεƒg €λ 7+φέΡ7ά€”Έ7€!)6]χ΅Υρ™©tψυzΥΟgέτ ΆΤψ³m­$ΰ\DυIANa 8ίEnΎtq}€ΕΗΏYΟρ'wJ2ΐΉ’ΆΐxΧςόV‚μΣjΐAwώ`³νΖβ3 ?|ρ…΄Pη' G ρ ͺrsδ°‡mŸΡ…θ[έ€‘¨ςyδWξCo_zέύ€dK‚+΅U.ilHυ$M~υς5εδžθΑν/%ςΚ\xΆφ›m©Cϋ|$Κ bo–«–zQHƁgžώ!i„q£uΠΉa7’Σ^Αsκ‰oΘS«κΏ„ΫΞ™xΧKψ [χφέ€5φ~L--"–ζq…Y{‘)IΐJλMοωT ΒgΔ­ΗiŒŽ—&†9gχ…΄ٍBNΐ;i^ϋ‹?Γε+Χ1šέΗNπ4Νε ΆΌή›Œƒ_ύ3,E}Œ{7†‘΄{ž>φUJxk²iΉ~}'*yzbŠNΰ`ηή㩇ρά‹ίθΧ€œ%8τν?Ce šίGg{3΅UiyLCYΝ!9›‚—P^! ΖΞάE ›2 ‹ςςvLι)όΰυ4>κΑΚΆ0T_ΖXΣe΄‹Βΐξk h:~ε\ύc+ρΪψw8σΡiΤϋŸω*N”θοέΠέ瀉ςdΒHπΧL;xΧΏΓ$|^™ΖᔇώθϐHΪWηιώΖmΫθ»Έ{ϊ5©t^bo― ΎwMq^Ξ@[ˆ¦ψgtZβK6ς/`6γKχn_Ίσι5Τα{»΄έψφ‡+Ÿ~ŠϋMtΓ…ό’¨o}<ΔόHͺγfδΧ£gnΣsC ₯™΄ΘΕ™¨μ*T–άΐυξ$‘o¨[“'³ƒ˜Φ/ψϋl}—κ#Δ¦οΘ‘»iqŠwi --­> %o³ί»”“©t1ˆ—΅aӘeͺS%ά,dιΖά2‰žVΗg&δΧλY?ΥγƒΎΑφ5Ζωž"ώ@ZnЈ aβX†νhσΟΗ|β  °:ώŒ#@RFΐ©¨Ν?ή΅i~Ku5Μ―­φ,ώόΑ*.§ΐž †CΐΦΈyf, ΰΐ’έό:(—xnτs\λΦ¬gXΘυ±'! aoс,W-Σ₯i¦ηήτhΟγ#uγNηMTμ¬’$”γπϊi2黈χ΅ΎqΕHΧΫF§Ua»&δ ›n”œ“Εu~ίtΊqήϋΈ@ϋ“”χϊ>λqϊƒ|Ϋ'|Σ*qψΥJέ"ΛƒžpڎΡυχΔPΩκΥ£Š4σβ6I•8ϊm’ο žŸ_$Αί£U|ΈsΗ)ΌN?γΖ‰ς½άο„n’Ωζ›ΈάΪ`—¬…³³‘N_Σ¦:‰ΪE4?Όw|m‘S}”~ž(-Qγh—…¦qιό%δ|㈠ψΉ /ό~žθΌmΆυ>#­ŸΊΖDy–ΫA§ΰΛW>Ί― XΡϋ³”ηύi‘=¬ύ:©xυ½ΘΫo°IώψΡΎ΅ψ‹_°ύ2ΎΔc+_ΏŒ3ΏΙΖ·HΈŠοK“JqπUξ§n·Κi‘/θυCWšΠφκ~*θik½‡!…[e₯«Ύ*χξΗ ͺ€Π˜(EφΓΨ €³5>ߍαN ;OΘuΈ]’ΰuWG—B0›΄ψ·qψΏ-xχwΏEς~O8<[„ύ―p?EΦύΟ}'wψΨ‘Ξ>ˆ―ώπ '% G΄ρΏ’–i‹ί‘ νύ‘‡p36κ[Ί›PRVΞ'ŠvTαΉΒψ@Ξeηλ΄γA9Τ°%;NnΘ€ρgΛWRalW―ΫY£3>οL+GIΊ0bφ’4©œ„ŸίΉα±-)ΰ «ο΅†χ[ŠΚ=-—ΆΈ•υb“ΫΠ?x½_q(?ϊ}ώ§|―0~ŸΏuYεe…Ο[~?ε’ΝϏ䀆-Φψ αμ½"Ϊ\^t’GAι€ΓJmTbΩΦψΝtzα°<,ŽC$½Ύ')@iω{`όšΤkΑώvŽηcγEΑCιf΅΄|δηει6φμΆ •QqrΜHg+‹–*‚θ0¬R/qΠ~΄Ύ-ο!Λ™₯ΒORέ’™œW"%οMϊ\Ζβ¦Ζΰ&ΊUΏ9υ”Ktυ ωΟθhf —e7 6s?A¨΄"½L>EΤλξ s† i£H§ž7+˜Τaτ\XLΙqΌςύWΏϋoιGΟί;%/Ό ‰mώ›ιΝ–³NCb²°ΐHRܘvσ!‘ςΫ=ˆN₯Ά1]jQN@αζε%8W\’f5\._Η]‚ά2ξοζ5½ίDM8AšlAγύ‘ΨΤ'ηA“?ŒIωεq"5?ΛpŽv΄ŸαΒ4Χύ½¦wS~=Ή²—θpmΠȟmΎpΧlςfiΓ“άχμmRβJQγ: ψFa‚τ-(β[-Οj:EΡ’5%’48‹Ž©7Τ]–Kσ΄‰ŸE%lGQŒθ<<Ÿ΅Ί@£εو‹š€Mκb|ΧΆ† žοNb°λ!i+:‹ώεΑ­φQ‘ΆDσwΒz“jΌλΕΨ„”ŸΙή}XJb’wΓόΣ¦οΘUώ,ύŠηwΈΚΟ₯΄ b~οŠ$ΌΥPΊ8ΔDJƒ7¦ζ”‹ΰR†N$D*ω’ΑšΑρ™TŠό4‘.0Ώ^ΗϊΙo2 γƒφ5ΘtΊΫΕyQB>jžΩ)Η{Ϊyb΄V°Υρ§=|Π Ν›ΌkΣό–@1Μ―­φ,ώόΑ*.f^d—!ΐ`@`mN[0cΈJδ€I‚ £Έίz–t =faS:jεš-’΅γ~ωι/ρ@gš4ΪϋήΊs…4όΙ)–Q΄΄Ύ_έΎ€π U―Α)BΌ­£—”ΠΎΕς,5ή1‡†nβγK»»½5>‹‹bWΌwD4I,9έ7~Ÿύδ·hιW琉vΤαςΕς­OΓ}€NXkHK£DεΚκͺ6ΤΫέ~oώόwθχΒL+κώυ4:ΕvΦζχΰτίβ­su:Ϊ‹qχ%Hjη%ŠΈ2&0άJ·θι•Η“0†–Ίίαηψš Μ“¨β4ρ¦wή«W‡t]ω§Δω+ #εκD Šύ.dθΪ?γ a‹B™\muΏΕ?ώ΅o?ŠcΈΌ ΪΑ‹°ζπχψ4u ziλΘE0τ^ω½«ΡΎ–ώΎ#³ό3H:Νσ%ϋψ‹ £Mθ`|Ι~Ύ4tνψ›Ώ%ξΆz«ό+0ΣƒŽΞ^ΥΫ`‰/Ή=} φϋγs_υτ>―z½ŠΆΫ€&Y6h»u[vyY–δΎΚ+LεAD ψ|wŸΓΎΞG$L,˜φ‘Šž~τkϋžζ3xγ―υχ:Εήw+nΥέW)8[œ5΄+&d65/γkι;²₯ύLτG  υbόžΆ7QΧ+!―Θ„¬#Γ7ρΑΕΑyγT.»΄ο§N°m•nΦ%‘6ίfύΧqΖΗΨΞ ΦΗ‘ND‡ šΌ}Σ+„ŒLωlJΈ Β-½Χέlά*!‘z²ώƒΓ†ώή/i8xο’nλ¦ωΥ[?ώ[΅φf*έŸ·<ž·8?RΌ5›‘_KδYα»RZν3%*Npž˜ΠΉ}Ι:ί΅“N-έ›ΕΝψ5ΟΟΟiKόΌΔΛΚρšc²s%YΜt7hN­+ς $­ˆj“5D!Ψ•€$£M+„Ν\ΞδJ‚΅tι^˜g‚aλ˜ μλ|ίGώ1¨*ψ x%’Σhξ}MRοΘ₯—8 †©¨Θ9ˆ’XQxfΎΝ–a.;β0:ςP_Θ0ͺϋ3vΘWγ,pΆ―!rtL’€Εv*y2’ZO“ƒΌΚ2΄Φ=τRRM ώ’snΌ2gO(Ω"ŝP­ν–‘rΗvU,=‡{„NzQ@2ύββ₯J/&ηΧ‹~’]œ$\₯XZ{]ί•eεTqE(ΙX! “²Χ†[rŸΕΣϋJΔbgΡXχiώ$gβ’’Σ’—P½/βΣWƒ&mb„Ύα>ŸΒκ½h»Ϋλ š\„’δ΄zαb½ύ¬Ώξουό4f—θ*:^ιθ…gk!ϋ2*εοotŠN’ϋ¨H «Ν4]«‘Γ3­–g5š(ή£ ujήWθ;3ΛΟHlΪ•”ει‡Vτ% Qq;°'»\rb|¬]ŠxζΛ£¬lΔE&lS[ί΅₯y,ς]‡3!θΤΩψ£ν=7·Ϋ+πW_4šιΗ¦άά"Ÿ_VΡΰώyEΆΫ‘WδRΈυ­†ω§MίΡښ΄š-³°ζΉΡIC’₯ος0ŸnsK΄ς΍ΑH₯;Ν«j3*%+ž&ΝςstΕκψΜj: >’30ΏΆX?©€-ωd|ΠΞfkԊέ»)Λ8Ήq'7'ŠξCί#Εψ>Θ­Ž?νΰƒW=Φ5…έγ«°mΦρnσ[Eν8«a~m΅`ιτηVqΡ΄s2 ``ΞΡ›Ύ‚_Ύb1ρ&N6ί€χθ–½ψΈB€‘v—¨Πpp‡ΎVΧ–03;ŠŽ1υάI―&½ηπfο δ» ΖM¬V±΄0‰ήΑo!πι:Β±N/›€~=οαΞλΘNKF\d4ΒιΝΥ•iŒŽ5b °"χ‘k?Ε_Ρo#Œ»ρ ~E?Gf"ΈΊIhH?ςodMΧ«kŠ…1‰¨ώ xγΟ/H.COχνπ3ϊμ>Œ΄hnώ»‚yΊςύΞmQΣο…w}ζσΰΓ7πΰzjΚ]ˆ Ν„ΥΕ =ΊŠnNˆμ½ΦI7‚Λoώg\¦τ‚J8S“ΕοC¬Ξ £ϋΖm]αšC{δCΠ}uΧpG'gc^έΈςΞ₯Ÿ±Ψ*lβ ^¦}ž„΄/£½ίHΖΛS•e²Ό(i>‹ίΠψ1τ^Ϋπ½K΄Τύς―PχKΙΰi–Ϊ@§)ΎDδΫΕ_ ±)‚_R7ƒ-|©ύήύρ|RPβ¬4aOvuSξ!< ›³τŒŠWαK€ ο§ώϊ…ώ³Τoζu?§oχηzιψΜS™2<‡ΌΏ’Ÿ—ι?ƒφηgΌΌUγ·qζŸθ—Y‰š|‘/£AώΗXmtλπϊ[oύΈυ–*ΓΣί‘Mνϋ6Σq2Τ?(j^η'hξDAb2ž’1χ.Oχ U’iPΔΥ³ι:Ϊ?@'+•C·'"*œna¦qg––Η1άΧ’#πΖΛΜiΟβΣΟ/|*—όδZLΏΧlά*!αύdύƒŒ‰εώή/mΧPyιΙ±|»8Υ‡Ÿ½7Žγ8σβW£qΔ} ‚€xIR_MCFnφ9„x"¬νSp.Γ™s'dο£>%εζY„»Ÿ^CΚΎΖΛoΪwgγΚέN7m5ΪtO+ͺHρ›’βτω.ΡΧ3€5²8šh².…Θ.-@όbζ;ΔέΡFτίΦβi§ΠΈ‰5‚΄σzΊ€°^μ΄γ˜YoΕbΈ%–£ΘΖ.Yvξ•,k;lBB€bsmΓΌrγ„œEo}zσ‘Šdσξ$ΪΝΝ0ΔΗpΫ—P΅½λ£/XkΛ}h™>^ιβ3zάegf¨$ΔΔβ$ζ‰ΟN›/Θbi‘)Sͺ–·”ύx€KΎΦWΨκR_@IDAT—]?.rε!ζaΌλk‡ιεέlTŸ‡,³ΣGή–§κΓΜΤι&!·ψjj DΑ&15«-€Ο±‘φŒ)’Ω­υε<‹6pχζ°%V£ώψEδΘσνͺψP ²Τ’€~GΒΊ€“€zΗ»Ύ| t’MΔMfζ΄ηQχ, έ³CXKAvrJσέι©NaγEΌΞω™σ:οωZgϋœz%΄Χ_ Ρuτq•Ι+7Σ†Χή.΄«6#ϊVŸήω§O<˜’}΄Π)ΈulD%Ρ‹ΰL‰fμΛ+"…ΧqτυΡ†―Pžοnυ~+Άέε ΎΦ|Πϋ\aωψ>rϋήα²YC€!ΐπiQΫ£Δ,ΡA`ΞΦEΚ+Ύ4׊ž‘F_ π0ο(Ζ5Œ x˜;°Ιž91Rͺ²+ΕΣP»ΏTe™{_5Πuί#₯]=εM·’馨 νEώ±ξVŒyTα1ΤΞKΐΓ+7Ό¨Ε˜€Ί±ΡQ} λςV<ίΗ»·5κKﻜήςR(ρ‹>LAη½2^Rbg,/Y» Α#>΄ΛΜ\a—SŸ±xzZ«*έ0=ΛθΟΏn{Ζ‘Ϋ€.}n¦fΤa~Ή"#$=†HΌ©Η{9wΟ{ƒ 2νφάΧΊ90Δζ­μω`μσ‘Ώ•6b*o_?ωυޟžΏω.Έχ<θ[O―΄‘"§Ύφ1ΎVγf,Ώ0Ύ.Fn‘dΜo­OΤp;\^Α™ξžlGdQ3Ί5ωτη ˜Υz·'†BCψ2"l”‰Ž¬(YœuβΏW(Υl*‡|j‘TkCχΠM‹£Ž€œ_ΘϋT‘WŽ €‡,ΊͺΏΗ’ ώ"§cΆ-ΧΚAν--(.·Η^'αΠΛܟ홇ŽΡξ}zζbaPYJΓb_Fί­9Œήο΅—e{ˆ―>΅ΰ)]Ηs‘tτvΝiηϋ[΅ŒμΤ>{q’Oέ~)TΟo"j_?‡½ωΘx|>rψQ ’„Ώˆ-@HˆΛssh_ τπ’“En'tΕƒT+Y¬Ή? ΖSW}|τγβ F†8#Ζ»ϊ{J'οφ O„zSQPΕύ=―)ΖRoΉϊήκΝsŒΆ4αL} _OJ1mμ‘?ΈΐŽ#½γ]oΎšλ怘…ηmΓΚ1£?g$—η[ρhD°¬’w~¦7Ÿ$ΎΦΣ>©Ύωe<θράΟϋ>νE_W ΉMβœtΈGΓz³SΈΙ¨ω'|ΰΑςϊΧp΄ΨΕ‹RτΒEa~Ν·‚6υ}τγ_#€η»[ΎίΊξ/χ1zŸ,4ίτββΎ—X,C€!ΐπMnη3s †€ίΘ=υ{ψΑΕCθo»ΎΞ a=š6N=κqnό6šoβσΌί›λA·pεοΧGολKcθΰ¬C3Η`ΖKŽpΛK Y&Μ Y+‘―C=^nˆK±xΊ¬f›#Ψ8Ϊζ`Υϋv_;Βj,Ÿ…:o%Ώ#zΞΧΖβι\> aμ_;φ΅oό²Ώ…zΌ#Z[_?EΫ΅ D‘ζςΖκ,FιΐkwnœΙBΧμ:Zcϋ3jμ$•¬"<Βύq»•Mw •ΈψˆYΑyneΚnMYΡ=ΈlQ-d«TaqΩ^ΰτ\;ΊΖξ`ˆ”S•.ls“€™νBω¬*NZ»Ρ5Ρ€‡ΌΚr8Ϊͺƒ¦φ†ΆFΗ|^]―­ςmδςL=½‡ι¨|ηHZόBIΆ‘f4|ϊ»υf.xτ6>mN?ƒLI§[HNΦβϊρ¨±)΅§IŠnŽnύδΧdtϋ 2aB΄€Le­ρηΛI₯ςΏΦΗ—ρžu'Žv’“O°8Šααq{ž{ϋμVάμΡ$Αm¬ϋ†olΙσ΄‘@TΌ n^ϋ„lt«΅εn§™q΄*‹"RQvπ|>#χΑκŠ$ E‹Ν_]·‡mŠa*Yoγ?Lβπρ“¨,ζΚuvΆρ~ χtBΦΡΣΫΰˆϋzrςZι(ΕJ…O +έΆώ;•›Ή„adE\νζVf4Ή…K₯·>}ωLtΌ€Ή«…―¬ΛφmΩzψ λ‹X$Lˆ,žξΡ) Ÿ=muΒFW}b5ϊpq!c03ήέ~ήνϋœξ f:‰§‹`r|Žρχ}Ρxν–Ϋ»Θ›ηXίν_ΰΚζλ¨?R#[ϊ ŸΔSzn&Φβ•vUΟEνήπ§!γHΆ~* αb’wΌλΝ‡΅άz Τ€W‘ !Eθ%nκ›jCΣ„}Ύ«w~¦7Ÿ ‰>ΎΦΣ>g‚<„ρ a<¨ΥΣ}£S,Z‘_μ@_‹bn,ePΜιTœγΟω'Υ­—Χ–Έmf.œ₯6IΏσ+ΰί’BxΎλΙϋ­Τ\ώΧCΎζκ}>°|ΪοzqQυ»`0> ΐ,8ϋΛΚπ=ΒJanΕQpΞn7/λcΞuoOHkΓφTΜje0/9έ FρRφ‘<δ+@­ ήιsͺ'Τγδ"ΐ(<]ΑlG?0)ŒE€έΧNxΕg‘Ξ[Ιοœ‹£πtQ< fμ_;υ΅^~يίB=ή (¦†©]ΓEͺqϋ~οnφ\Ν&K>’M Ψ³7’¦lΠζ€ρNωΩOެ°ε \½±Ί„™‘LψirΈq€wΌλΝ'τMttR£βyžηBΦΧ¬4ίu=ίΥ;?Σ›ΟΗ[ΘλφωXίvfg^\ΗόδAˆ<ίΥ{ηθ}>°|ڈλΕE»4ΚΨ=ΔΗ ΗΩΆ0!±{ ρΊ₯γγ“xφΜΠεg―eΨξ EϋςyΪΪΪΆ[―κ?ώύ„³ϋiύ|Ίό Ο?9xU Kl¦―αΒρZdδΘ†V€’G;o£αςΡΔ:Q‚„ύ2@€ρ’1 sΚJ%fIωΑΪ?Sn’“’s¨ΕίϊΟ_Τ-…£Ϊ±»ΌYμΎ6ζ`Οcpd₯0`|νobBm~ξΈ‰r+ω±Œ]δηη;FytέΫΫΛ§ S›όάfgdχK’ΰVpφK“Y‘ †C€!ΐ`0 †C`›¨ΒΛζ dςRXΡτώ‹»|ί6w«ž!ΐ`0ά ΐœέ€γA§ΨΜ)8οvͺ Ξ%ηΎ‹ϊ‚lΜχβκΟ?ΐΨnοΘjΏ)3 ρ΄Ρ–d^·΅’8„„g’2;ΖKϊ»υΨς’¬Δ,)HJ;αZ©Ό­₯έ‘“£έΡΟ»­•μΎΦίγμω ;–“!ΐπΖΧήc&εΨm|ν/gn‹9†C`— ™…•©e—­ένρ.a †CΐGv:ΏϊΛΞ`μ`ώK@ΙΑ"D†E#½¨ZTn¦F΄£})ŠsΟ=ΗJ=χ£?ω3CMiάϊό’TΆζoN^žfx +/όχ8\œ ΜΆαγŸό£€ΥΗΨNXeަΫ~sRΰΔΰ”++’°<Ύ΄+γ·‘+X• †ΐ.A`§σλ.ιFΦL†Cΐψωgf5¦FŠXŽu΄Cγw1’ςlΧΞ?ύ|ψu½Θ²2 έ‹@|l,ίxΫΒΒξΑ‡–―bfF½ˆοCq!›΅h_>/{[[[ΘΆ Ξ`0 †C€!ΐ`0 †C€!ΐ`0ά!°ΉΉΙGηηη»Kζ2··— S₯Ω΅œχ&¦bοΖ"¬3cθξss(² /vΑiϋηy ͜2³dΙYRΰ”žg'weΌ–Eλξh&&$‹Α'“ˆ!ΐ`0 †C€!ΐ`0 †C€!ΐ`0B=‘ $“‘!ΐ`0 †C€!ΐ`0 †C€!ΐ`0B¦ΰμ{_%Δ[°ΧΓb&m£¦τ,ΩΑoώ9^?Z„…αΫψευcτ{–ΝλT[·q“6«Ϋr’ ‘hAlx86ž­byΕ†™ιVŒ,ie3!#Ō€ΨdDν Gψsαΐ³%LN4 Η¦•ή1,eΩ™ˆ‰ά Κ‰εεQ<κpLΨλδcxλ»― -˜νΎŠŸΎw%°υϋ»6Eϋζ©}?Ωiνσ7~AY~ Η‘ήϊΌΝηΏd˜kŸΘs ˆΛlσ½x<ξšΫυσ§rF&)"’ ­•)τχ·b2(ο3„Rπ γOπΪ-I2Οΰ;οœF"΅w’υcός-Ώ΅\Ηλ4ίYr?ίρMoωLͺ-€ωτς‹—ωdΜ₯&Ίω՜_{YŸ›βƒ#Šρ`pτC°Iα fžΔΫo¦w± XΫ.γWŸ4[k ”Η„Τψ(ΎΌΥυQΜiΎoϊZ]y—•Υηk±ό †@`` ΁Α™ΥΒ`0 †C€!ΐ`0 †C€!ΐ`0v Ϟmϊ₯‘I§pρΨi$yXxgϋ?γγξ.So,2*ŽO΅ώϊˆύΎ_S·…0VάoψΏqkά9YBJ=ŽΥ’,Υβ‰WΠφθψΌ_RΝ6αXν7Qž‘…Τ(ΖFΎΒΖΛъ§°²β7q€€ ρ/–tβ‹?Ε£‡ˆ@]š‘–cA*Υ·gŒ΄œι’ΰδσ…€ˆΏιΞ›hz2a|νΫΩ>γ[³λK τ8[Ÿwω|γ—Œ¬Σ8ZT‡μΈX§ϋγmΦhhym0τρ§/ršP[υ*ζ9qθρ’xΨρυχ rΒ_ΫΙ/Œ?νU#ρŒŠD’YzrjΞΖΉœ¬£ΘI4#9ތ”ψ,$ȏνIάΌυWhτΓ\Β;>³·5pωτς‹Ž|>Ν―uΤg‡3x}Œƒ·oΆS2oxή“srψw‘Ψ)ξd§ΊBΌtβ”I…ΕVΌwυ=—οŽzPο ±ϊττΛΓ`l΄Ώ–9†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`‡ΐζζ3γ Ϋ…%e$Yύσk}υ{—ϋ©4έοˆkθΈuUί6ΆΟ•H!ξnας†Ψ:Qg§Ί#‡.Ψ•›©‘‹‹sX0°±γ]AhVί6ΎΏxί°’» _ΨM²Ά2 †C€!ΐ`0 †C€!ΐ`0 †€ˆΐζ&³ήμλΝ02σM}6„k@Ή±±†δ’γΘ“*±ήG“l©X ώί€X“(δzϊ[aݜ>‰oΜ ΣQαΗrηΛ«ε.Ξv’}°ΆyDF%Γ’\‚ƒΉ©˜Ά)¬‰ξ gνefΊ#ΦQŒΫ¦1Ώ4π¨4dΧ‘’΄`m,Α\ϊ€«hPΤYQρ=œΜΞ’eνθΌ†ϋOžΒ\ϊ Ξ•α‰%(Ι2adȟΗΛΛMΟΊύέ°{ƒG>&IΠ θq€·>]ωτς‹ω4Ž—”Λ}43~·;οaœ”Š2³OP\₯`-9¦Εϋ Ρ©°―‹?uΚYVρ š%Ύϊz>CCΟM¬ΕΤ’μ JL‚ειͺόCx4ψ&ε1[Ί…ΗλΘΐ3!1irΓΈω‚}\aiFΟ tρIΘ|zωEo>½σk½υΙέΝ<Ϊ„ΐΈΥœ…ͺ°βρέ›ˆ€ΉωξUΤNΉ(£χΑΓιjλΤΆΕΜΤΐ@ς.'2«@Ψ­οοέ³¬†ΐv T ΞΡΡtάKt ’ΒΒ°ωl «λ‹˜_μnj†…_Α*z%«s±4ތΟε7πΓΑinDŒE|€`=b}ӊ₯-Ϊη5.iȊ!ΙBEΨsΐζϊ,Ζgϊαp‚•ƒ|±HŠ1!.2{Γh±χ9Zξ}Ά‚ΩωŒ―8$e—†#`’£½Ξ¦ΕπYΕΝaΒBχοπρΥΓλsU`t€IΨa·Ήۚλ=gr:Wς―ΈΞο2›WξΗΡΦ2Ϊ+³ΡΞ譝ϋϊΤωi &Šc"VΧ¦Ρ7;€NΒv>tĘi/°Ά:ŽχX,RͺqζΜaD‡mΐΦσί}l\ύρUxρΒ $Q»οβw׍+۟%ߚιΉ»' {ψηίΝ?0²δ?KŠ+@2ΫΔ₯AsžΕ•Q Ν{ΒE€Χσ'μάσ™ρόι$ 5΄ψL1ήm4ή?σeΌϋ“—‚λνœΈο<ΎΏxΓK[sL ζ‘Aqc„ ‰°δε !1‘άl+ΆI utκ·V‘Ε/Α€Œ?yIΑŸ‘3_ς'|οΦΰγ3Η6ΙόΆΕϋ΄c>v½pcg·£β]U'Sp6 »gšρ%ύi»Ό™C1ό±ζ hκ E…²\:š]ϊH<ŽΞGΓ³ŠBΌ\ϊΌ τGŒ ^Ε/š―+`κBηPΎ|€Pβbm·ρξ₯ۊt’—K?Θsο @<&žτ¬ν.ώ(ͺ δλΗ­Ώΐ§½ύόυδπž'ηώ*1‘)δσμέ^.Пžδ4^uΚ:νΏ―sv›Ρ›λ^£φ%€ΤΎ Bݟ=Ίezι­Oo>ό²?£ b―΍ίΔ?7|&χράΣχŸŽγOΚQδΡɟzδŒEeA\yOΗΟρΡSQyi©Ώk Gβ™―!K‘˜‡ά$`R±ADΞjƟ‘Φcπιy€ΡίώP ˜›ν M ΛXž’ Qˆ/ώ6^+6JM,L»9@/Ÿ2Ÿ^~Ρ›»«υΜ―}©/δF’B`q‘ˆ5ΔλΣΈυY6TA¨Ρίσΰτ\ώΕUq;ι"#MΌΔ½r:Sβϋ"ΧΎYۘ1Ν $οr³ϊ‚χύݘ;Š•ΒΨ±xό\ς'Ρ΄ϋΈΜ\ŠΌ8nΠΡ-‘gθ šgŒ]„‹ˆ–£i+‘“UG ½Άΰ`αδE‹…vαZΗ h½ο{K, 3Ž’8%QŽ2§O‘s¬-3£1±(Ο~y&³s>ε1L[Ρλϋš2:ζΛψ"μ―ΜF}LŸlF砟?H¨ΎˆˆHΔΣ±‰ΰΎ±)ά·Υ͏.5± iΡIHˆβώΜ€ά'UfΕ£Π΅$]Ϋ£ΰε»U{ŒgΓ“ή_‘}^f€‹q½ΟΦΙ‹ƒ[Υ<8ς ξM9Ž e-κS$ΝJ;ŽŠτb7Uξ`ϊš>GŸ¦ͺ„μbϋˆΟΗώΪZ”VWΠx\Χ—€λMƒήΛd9Š7ί:'쿟nΖG? τF7"GΔ Ρbαe‹žuψΨη&›GQ±qH²€ςe‡O‘–³ ήεD3'Χ‘ 1±Z󏣰Ρ£­Ζυ΄ΓEž€Δ”§•Α%Mμ +Ίπxψ\l,ς~^`/ΫξΫ‚Ο ηO{ΝΜ@ΑgFŒw ς’TΗ6ύnοΌ`‹ρN³_ίΌε₯ΰ˜GnΣΝΚΥ¦Tαp] rK δ9’ͺ9'GΡώΰKάΎο™J’œ—Ν—όσ%ίyBξoŸ<ΑΗg\sτΌOϋΛμ; >{ο/ίΛc%ΈE`sσ™Ϋxιυ΅'-~\Ή‹/έ-kωV•rG§#)N,~Φκ±RONαa”ˆωfΖ•›•βz£ςΊ†5…V³rEΆŒΦA%k‹sTŸ€ά ’uνiϊ8ΚmŽWΙ؈£3UΎ‚ '+±—7Βχ |©ΏϋΗ_Α ΟαŽΥa}5Ούυ‡«Ι’΅ΈΒ5?ŠΦ†ΛψΥ₯NιΣ+O’ͺΌYYΩHK²€^υ7?…‘Ρ>τ>ΊŽΟoΆ*ς₯αψ·ήFqr$aΆŽ¨΄J9.λΠ·ρRϋ’F8- έω5>Ώ'(„Λ EΟΑ ίEME%r3νλ2 ΣνιD˝OΡά=α˜…Ϊ·άoΰδ u(Μ±ˆρ6τ?ΈŽ+ό΄kr*ΖM@NΏσϊV΅›αλθωβ§ΈΡκ(G.ΞΎσ{Θ’4a”¦οζOqυA^Ρ9$ΡΝ³±Ί‚(K²xό§ππ“ΡΉ'OΦ 1ŠϋοΏ‹K*\‘*Ξό¨FΎ “^tά½Šί|vΛInοϋ+β^ύΓsH‰ΗBΧ 4LšqςΈwxz{_ϋ:ŽœΎE€ήϊτζs/Ž+~!ƒOq=Ό€ήα{NΕ,./:…ρ:ωS»0)T[Ξ’άrdJIθ΄€λ’r³Ά4†ϊ”.q‡‚ΏŒ?}ν4½ό©δΨœόζY”—۟a$lκGWσ-ά~ Y5ΰy΄ο$Ύqώ4*‹Έ]cœ³a΄σ!nOςzlB˜φής _ΚRžtΙΔs»t7;§ΔA Υ«—Ο™O/ΏθΝ·šζΧώͺo+yΆ#žρ ―¨Wλ€pŸGW‡ρΕίύL{nšyo]¬E4i)­N6αέχΖ·eΙ·V'–œω.κ MΨPΌC!<Ά/p銢²s¨Μ[UwΆqΆR<9hΉƒΛfd'ΖR’ILΟϊώζΑΥHήeυmύώΞaΔC€!œΘκŒΫ%^jΚqœΘ(vS}4’θahΌ³[P>w―G]biξQ»r3E-―.bY„Ώς*rΟ’$ARΛs(tO в. lσ<€cΩEd!Ν₯r³*Ω΄‡ΒΦρiΏ+‹!ri~χ€UγP}_OίZΏίœUίΔHξή&#ht7Ffαp}•ί±DD ͺrŽŠ‹ͺΥ‘΅EŠΈρ‘ž¬Tm€ΦšύζΆGI1Ι+7sBnpΈ»q[Υ'e-Θϊj’Μ₯ϊwof>Ή―‚c³€ZΊέ}•R†ΪƒPR^D/“j&Ψ4WzpU^U%­αޞŸ°•€aςƞ=αa[%φ.žŒΠK£Iϊυ PΌΛY:)Κά#–Ϋ”PŽc…aΈfΠΈΝH{GνVŸ±‰-D]^Φ;`Δ!ϋyCβεV|f4jKΑBύ†@ ωΜ€ρnΗΑΌd―$ΰΎνžl5ήαγ{€^ †ydΐo„PaZn *IΉΩ₯‹± όΨ7IAιC||ν‘ΛdŽlΎdŸ79b³ΥuΐζK>ςΔVνπ4>ωLοϋ΄§mfιόƒΐ–|ζŸjwm©Μ‚³»ήrΥ²EΟ!4>½ξΗΚόWtBb’ΌyjfъU:έ1'&–X§0bS¬_«D(DEv‰2Š–Vν&d$₯`-qΈΟ«*H}a.Aš`…ΒW°,/Ψη"'M²\Ί€A;Φυ΅DEkξ·ΰβiMθ’.ωί„τ|”•ΪΓ¦$uh{˜>KέΧρΊcy€DYyϊ{HOOΑΟώξ…΅γœzλ{(ΧZξ%c4YEά_-²Μ?ΑOή—”£ΝΘ$εi eU¦Μ"y=L ίxς©δ΅&Γ7ΎϋMTζ8ˈMΞA!ύY’ηHΑω#{Ρg©{ ?¨s Ž'₯ηWρƒΔό?υ3EϋΣyr=ι…=8y@θ³όΔob¬υ―!©Σq%Τ\όŽ‹ρ˜oES?)₯ν;„œR8ΫΪMAυ…BT‹° ξΝo`Ό§ τI@p%8£οβh©€π*…“ϊ|r>R9Yfόμ}ν?*w_6 +J…Ύ*(B₯½*Ρ·5žήέΧΎ#'έθ­Oo>·Β…Wό²Œ΅uiƒ)―9ς^.ςdώαΎ%ri§?₯ά.~]Θm’3τŒwv»\hynJχ=Ύσ'?D‘Ζ3I~6„)œ}{™h³ΜΌσͺoΗΓRt―IBΉώυŽ΅ΚΙ…I>ΙΒJ'*«ηZ9<ΣΛgΝ§—_τζs‹Ÿ›ω΅_κs+ΜφE2τ•Χ‘ZŠ|ώΓc)*}Šώ{4Otp5GκQ^$Νδ|ΝΝ2ΆaIoQ>π`ZώA–:Ο孝ΤΪ-ζ.υΌwPΆ€Ο[’“υφ7«O§ ׏/Ϊ[PtT|ΣZ™ΖŒ–KEvΟΌε]ξΫΈΎχ۝žΟ³ήb© νE`{œγλpH‘άΌΌ4€Ύ™nL,/!""I19(I1an9MP8wlMŽΛμ‹\ŠΕœτHuΰ’EΦ―”ΚΝ£“ x2ՊυˆB”Xhq-FPΫΫG“ͺžΩ;΄Utaa ΅_Μ-τcjq Φε9,­-!<ΒKRY*δM(@qt3ž: + ίMΉ’M»W3ά¨ϊF£UΊΝi.XH Ξv»†·Š/0:*Q±ΰΜέŠIθκ<\_Žί+₯[ΒΘT7ld‡»‡TnΣ†a?έ+žŒ£™Ε~tL-"LΓXΠζζ:Μ5—ŠΫΡιΖBΌ'υqmΟ‘ρmWn^Βΐx:Ζ‡`2AY\ςΞEVβCΜΜΪ#UΈ±‹m@ §^ύ& ¬§ϋ$HJ=φ•KwXžήlρ©8Γ3/Œ£·₯ {iοΠβ`ΏαΕϋ\` x7&EήaοΑψ3’?΅d`aώD „ω,ΨyIG·mχΌΐ“ρ_ήtςvΟ#ut%Λ’B`£d­kpx€,TΜaO|.Š+O!Gά-d‘ίΪΑ>4vypΚ›/©υϊ"Pσ%_xΒλFigV>Σϋ>­έJxΨ;y 0φ, whI°ΥaΑΩ’ηΕ#Uαž<’zƒMVχς$iJ’NqRΖi|Ÿώ$7gν Σε’qTρnΜEš ‘-*>ΝM#¦πΫψ~^‰ό~Ο%™™|ˆ{mογ±GΈXPFŠ©ΚλΔΧΐX_#Iλš)…Θ”­h½±O§¨τ;8*+™s΅ Nσ˜βuΗ±° »ι)§ρΏΦž{hzΤƒθάƒ8z@P H­xΞυβέϜ•Ζ{Ρ?Џι‰I2ΘC ^Θ’₯°Ύ•όMœοyŒΛ8Vt|vk {±FF#’’²@X/}rC3΄&&¬ ίΐΔ€γΉX%xγ?D₯l–ΤΘJtΧΐ$φD§"=Ώ%²ν~λ<ΧΎΦ'cˆ)¨ΖΑΐ‚C8|ΰSQNύ˜6ΏHMύ·8^J+τΙ΅8χύΧΠρ’²υίΗΉS’ΒϊnώςΏ yšκŠ"{ΉJΪ―_Η©. 2DΧqσl©u¨γ•˜s[TB Ξ‚κτΙ?T+7χ’EκώIΔf•βh ‚œΊU\Ό8„Ÿ|Ψ )zή”eyΓΙθŽΧxzs_1Žδ–zΰΡ[Ÿή|.EΪ‚_Hv™#ͺXϊ3‘Όπ"}Sψ|y…8qHΪDA“_αώ uρ'_Φξδ4!1Z2 b₯χ@₯ͺΏTV*β$ž”‚Bό—ρ§ώΤşbu'Ž)”›ι€¨Ϋ0<Ύˆ½ρIHΝ) eΐ|J)>_ψ<Ύ<ΰΒ εζιN4άmΒ|Lž’¬ν‹‚Ήϊρ†΅ΚPZb'³HΣΝ[΄ ΣΛgΝ§—_τζΣΐIr7ΏφG}rΕAλa<¨·k:ππαCTŸΆΆTξ}μPX%ŠŠ₯]Sh§SV°όΚ6Μ#}γΑ‘Ξ;h]ε,8Σ xoͺχ σγυ-ζπA=o•{‹Nl©}]<5i-ώΒΟγ°Ώ`5ζτί€ς. Οκ“zΥ|W₯` †@0!° Ξ΄K=}Ώ ΜCˆLΟΠΡFC،b„^–ΫFΈ—ϋΠwIΙΗQŸJ«vά*—υ…Η­=:p!%ζ‚TI™ϋw&†ΠΦΊp ±₯Ηΐt3­GΨ€EΪ•Ηψ’ε±ΐώVμ-»€ Q^Η₯XL~ZTXΪέάXάqυρ β΄ΰ––Π:ΎŠΥξ!D§Α±tAΧΊ:kW‚WΙ’†„(IIƒ# ο4U*]x<Žθ¨Η6ϊΣv8Ζ ώΎ^BΗ„Bαί!ƒΗυE–‘ί’λΎ‚&Q6;JRp¦5nrd‘~·ΰΟ>¦ςpΛςχ’ ΄άG’Ηλ%k@ή YTU.[ψέήαίΆNά»Ϊιί:œJOD,wλΫf·ΌϋΖσΟ0bmΕδT†–Τcr’žΧŸ{•&οž{Ξw^ΞKΜ•-4-Μ5γJ?νΚέΠΔ DE¦`ΏXŸ.όκ˜¨ ΰ―<ζ3ƒψSC‚ΟβiΌS[hΌ{μΆ…—<–Ξϋ„Ϋ|κΙΗΈtέή_κ…«άS§Q-/£ΰ滀Οο©σpG^Χ$heηΓ†ξ?ώΉ€,ς¦ίωίqφ§δL–7sσIΞ —y=‹˜ΐηϋ!,Q°$šΊλxλ\~ωY ή~㜼ΎΣρΩ»ψά6ό…Ξ›ψ凄Ύudώ_¬ƒφ\Ε»οSXζ ςJ3™Σ)uPω Ύο8bς1ξΆƒ¬Œ^ΰσδŸ:Ž Rpnγ’―ψ¬Š ΑΣΝ}ν—q€ίΡ«·>½ω”υ{Γ/\ΎGtjjρL6[LςAΌρj†'—š+sΟ’΅ —ο\VYNΦßϊδLAT”τ–ψM^w²—VT^…lϋeΘϋn&%IΪ<ςχΑ‰_Mτ» zRuι}εžͺOa β¦β_β/εηΪ Ϊ\ς'ΔΉΒ—Uuξ/άπ VΖ„δT»Ω)ϊ?©1gΡΚηI˜^> l>½ό’7ŸkδάΟ――Ο΅$ΑΓxΠ7μΎKσlRpζ4.RχΣFΌδIgΐή·¦5’…g  “@žΠ―<7άo˻ԝο·;=Ÿ·ύΖ3Ϋƒ€BΥ6°€¦V GΠψΓܜ£r³R΅‘2&dόd΅ρ`f± ξΪ0ΖΧ’HɘΫυlΕά’z’€—Œ€|a‘Œ«ΆJΚΝBΐΪ lΛdl@Δ[ ήϊwΚ ¨abσŽβΘΑBDΠn¬πp„/αΞ'_ψx œ²’D:>οeδ&FπV"“ΈUΑ™Λ/ΰ\ήͺtIV§iΊε ;­Bdcιc(ΪW-ΩH/:ž~­Cmθlώ’¬(ΣϋVŸ)―ϋςχ!ΝlARB*’©ήΡ1‹γSΓιlDcK―h܏~XΕΣqϋKd‚,Πό’Uφ«<tt€t-Ω ™Έ©ΚwwαΕ8rWLqv Μ"σ-XΫΠ¦RPδτ’Ύ,ƒβ Δg’r3h*_—SGΚΝάΚ„hιΰ9E!θ-:|Εtt‘Ε,΅˜>ξώbrΈέ-wΠ=κ¨ΠβΝψγ)ΒΡW 12Kƒh·&£¦†ž–T-²ψδ>ξ]Ύ;{αΨλGO΄±Ψ‹―(NλΙa*;‹#βΗ‚Ωž›ΈέΤKebyaΓchi"₯)²—Qύ†X—žŸ*Vs―­œ"L ^K=^νiΫƒ(έξβ³ ~‡ˆ²©zέ!ΪφfΤΰP™}CvGΟmΈΪήΏν’n)€)qάZΓ$ϊFθt›‹αHJ.DEΊ ,ΜQQrέ€ΰ,΄Σ„τDnΑ­ϊˆο΄ έΩΣ„ΎΩy˜R«P—]ΐe#W€κΒZCήσNΞ³ΎΎ&ϋ%Ο gΥLιφ„)νŸ(c ςβΡ¨Κjώπ ”ΧV Κ\ζ|δμ#«ΙέB’†K?S₯U^4]iΒσ€ΰΜυԞ½š†KZ).Œ7μ ‘HΚΕώƒ‡δ««:)7s‘Wώ‰Sϋuα:Ρψ»Uq7›ZQG Ξάj₯)5]§β~ϊAών;‚Bsω…οβ•Θ-ΥZI‰όέOhΏ4O 8G–’₯ޟœ•ς–…“9L#c…ΒŽ¬”οθώλ;ab}π+4VUβ<―Δ]‰‚#Ήh»#(…ϋΪάά]žήάΧFŒ#OΣ[Ÿή|v±Όγ>ί mEvž€”ŠLξζΰτϋΉ!7~?¦Mj§‡?•%x#g¬ΔΟ Ν οfdΤSφM ©Ω―ΰψ>‰w)Ιβ&f”uιπ'§Ε·8(ΛδΎΉτΓͺPSΖzοgόι=fZ9τρηm<’Džr}Σ}r MŠkG―7Ο£LqcWFGγYΉ™/“8χ~Νœέ/Kǚ„koxP«„Ε&«™ω)šητςY`σΡΨΥΕ/FσVσk£λσ ŸΊ)Dζ‘Σ7πτΡyδςR„"šƒ7}fίWIF²€7™ŽΦF'š@Ν#ΰAΉ£’<3 σVMeεί“Oλ™ΊŠŸύ—¦Ψ ;k–›ο‹'°Ό«ύv§ΛιK²Ό †@ΰ°―>NͺΙ‚<“€6…ž‘G‹€θx„“ςίΖ† 3+Zκi˜ΚΘΊς±μƒβ‚ι(šFΊ΅ο€Pφϊζ—”ΥθΓ%j/Y€݈mW₯”}ϊΛFβ^©²τ«ρB“œ‰<:Hv³K²Un9Μ'OͺJ4w|Ε“U\{Λ…J6ϊn«k#%Α3ί@ž}-šWnζ™²*pˆώRξΌ‡/ξ>σωR_6œ»ˆI©Y) ½¨šΉΏœ €%}ˆίέΠVφQfρΖο{?€!NΆΜlΓΒΚ¨fυΡQρ²U“Ή•y¬G˜ε1λΥ8]€γΤ e ©γd½™γ ηU}i0ΗI Kt £½Μβμ£βFQΉ™ͺЉΰ>Ÿhγ«!IπΡX:uα%Z€Χ.»hΡ‰δΠ_jδ<Ί/έ²Gx=ώ(«ΕŒlZεΗvV. ν₯‰ΎXXJOα΅Έ(όβΧ—eEζ(s2ω±ƒ‘‡ΧΡͺqNa92³ΈΕXZ %gΑγξŸθ~h―„n—wΌFήhk}‚vR˜\ŒΧ₯΅­œΙ‚K6q+wηX—₯O:Ω8τϊk؟ϭr«]tbJe!=-—?qVπ6e–#'ίΉοl›τ1DC9™+=6οΞ_<%+ο 5Ζ"%§'ιOr\Z Ξ)ε/γ΅r)•τ«ΥΎπT.gεΔΘηQ2β₯qm―CΏoΉ>Χ£λΔ™Žsœ4Xd!΅{YΩYίΌ@%§W|¦Κ©Ύπ”?ΥΉ‚σŠρ™GύβšΟœ³§”Ÿ8»΅GΖ€’°ώ"RRLΈ|Ι^ςažE}~ξ[o GcŽ&?ΓΒι88 ΞήρΛ6Ξ Œο\/Ί|ΠΟKΫ6΄ί•ώχνX~q]d„}{UC©Η1·k~aσ%«™/Ήδ ΗΧqδ|ζά"Οή§σqΘ.ε³ ξ‘)8ίmϋkŽΪ­dNίΕW½‚‚£ρ5’ΔQ44=šmύj…žξ«hΛ} _Ϋ_'¬AFf!—Φrz†HΑYHŒUmŒβnΓΏΰΞ8Gnˆ6ˆ³ΉΒw‡½{νλqBξ9Œ΅‚–3±†$&– ήι[DLΖ9ΌY>χΫ%ΫΔΉHŽ•Φ`&16±/]\χΕν‡Ώ ‹Ξ€“,Ι4„Ρη>»ωcόMΟ U\ΖJUΌ<ƒ1»@Ζϋ¦Ρ'*/Ϋ €žQ”πŠˆŠN£¨ 9Ϊ΄οκΥ ';“N1šΣqŸφΔXΦ…δ,:=Qt‚•”΅_=.<ΆbΚQ™qf‘Πά‚€\μy‰S>ψ|œ›oςΦ―-ΘΝ“Ξ?Δgχλ|τ˜Ί[ώG†x7=†ΉqςqΊϊ’‹–­€Ή§Ύ?.Ίˆ=rF1Ρι>£5°X*Xα|κ?xz~_3ŽΝέΒ«·>½ω”βxΓ/”Ο| ίͺ?Ν+σς₯ΠI›ƒdΕ5,&™qbSš‹εΣψPζ%.₯ώδkσNΞΩΕ9Κgβσf潎oμIGΧτ β’JpPήTBN._κ³·kiš΄ΗF07c₯ζQ€X†ΒaA<σΐYξΓ=ŽnΆ—Έ…ΟΧ~PZΤέG.Ζ]ld’¬ΐž`ͺΓΛτ'Ή…E²ΰ;ш.nΗ­‘ΞΛqδ²njΜϋeω''ΫΡ§ΩN/λ‹ΙDͺ4ΎVG1nΘ0ŸE₯¬LmjaEyΪΓƒΫ—_{…Š…χΡ§χ08fEx$Ež™<²π»ΊυŒ?Bam“l*«m¨έ}τ¬Θ,AiΎψβ—U‰ςΒ;β8κDog?ςxΛΙ©ΘΞ/#ηΗκBP…Μ}ΒB,ΘξOS―CΌ—E(,“6|L’σaƒ½ΠΡaLκn|"©Έ&₯ς‹΄£φX'_VJŠdσSc΄˜Fn«jεζα'Τ£VD›σ±ΏΌˆOc*>…Άqόξ¦ΊύSΡ΅Oœ7θΛJŠ‹97T}Ζ!ώ—ϊΚΝ‹ChΤ[˜%υτ2HκΊ !ΡΦύg οΒ©-ϊŸGy5Θ–7ψŒbbΞ]o)ΐpι]ΐΒ·ΜΟ}\G^Ϊσ˜˜JόˆkAE΄‚’ηα)}ΜΰyUψίK>SfUω=εOU¦ ½`|ζYΗΈα37pγύIη"-εΨ_*(˜φΒ‘Ίa\Ήί©Κι=/Ω³{;ΟΚ«¦υ²rσ$Ν“E‘eDΔ$ΐdΙBANf―ΐΡη ΏlΫΌΐΈρξφ=ΐ^ڞy€cgϊσz·ς‹©iφIβάΤΘ »α6_r3ί ¦ω’λ[ά ΪΡΑΟgNr{ψ>ν”/hv+Ÿm‡„¬`››ΟBVφ <ε4j³₯αVάοϊ8°'«ω”9RnΦr#ύα‘ΉGΣΉΥ‡XΔπ'"Ρ{r’ 28Ετt|fWn œ&(QΑY«lξcτƒΆχπ@y κ‡8™'ΌΏd[J‘CŠ„||"%]«ERŠιD-N$r[?F·©έ’ΩΖμ8FΔuA>‘βΏ±aiσΊ"Π_ήYΫ–OSœAσ·VŠάΡoώ;œ?ZΊ΅4t‚£ο.†¬<‹₯bϊ˜£’²X'Ζά*2FF+nΚΫ*IΫ‡ E‹ϊL{ΚΫΏόK΄Ω/]ϋΊ'1MmL•o­€•HNKQD€ΐ’¨K‘πJ7¦ούη žžέΧƍ#nΌzλΣ›O)Š7όRƒ7ΚΝτ-τZγgή¦ΚJΏ—ŠJψΒσφΥco3)Œ%y͟J1½βA⻞F”δΚl2³“Uό·μ2hνχνΩ΅Wώ~γ\ƒ‹½ZΕgόιd}Αήςην†ϋ¨=πͺxbq JκΞџXχό(Ϊ›oαΣχ?VWΧ%§$Ι›Ψ‘άΨc§T―KσŒ΅Š%E92!8+¬ ²₯­Δ^†ιε³@ηΣΟ/†ρ’‡σkΓκσ€'ΊA)tζ‘ΦχΠuώ4ͺΉ%Σξ[ pγ ½¦œΩ|±…“ZΥΦγ[ξηy€Q<θ(Ά»k_ί;ό>o5Ÿ&λύ…&Μ·γ£›Κs3šΡ#ΎρσneœNnύ>ύšwY}žΎΏϋΤ­,3C€!ΰ7€ε$ΏU UpV\Šό’[ŒRA_U•4!υΕρδ2†΄kU©ƒσ’8ϋΈlΝwtό+<$εΆΤT»‚¨uΥ¦²Ά¬—xZh•¬QPw:κ4ι…Jƒš`d]@ iή-l#œ,BKϊš\b+νNj ΛΣ9#Φ9*κΎ{έbXlU)8ΧπWΦΎ[d)ƒ3wΰΒeΧ ?GΊΉ&Ρό۟£QR*Ύ{σ―—,‘ εyεΗHΑY°<«»> b7Ν@IDATΈυ.αՁ{ΥBέΓ/|'yΜXd]κ4F^yΩΡ1‰²ef,‘‚³‹1•ΰRΚΨ:†>Δ ]BσΜ„ΛtήFx;Ž\•ŸšZ‹i¨¬φ cT8ά1½·υ₯Ζ¦π;0Ήrζ'y…ΕθΔ:R¦Ξα‹^˜kFχZφ§ŠΟ='m½t¬9x―Σͺ‘XŸ„Eσο>Dc‡zμeΌ€β8…j²ΞρηˆΒxϋgΈτΩm!ψώu̞#.ε>θ‘%aK#Α&DwW/ji|qΛR™y…0έ~¬ZθJ«.²[V~Ϊ%sŠc}Ύ\[κͺ‘'*ΠΩΊΫπH₯Ϋ‹©©I$’§šBMUΕ«kNN–Ύ|LbfdΘ{•ϋ€/Η>Έφžqώk'xΕγΜΪΘ#g~Ο†XμθΓΟ1ϊPΌˆ―G2)8+?¨k§M ΥϋIV1t±7~ρ.:ŏt­#³xΣΙ²³c Β΅Ηύ§—η΅«B½δA©¨ΤΤ“8(ŽW.lrΕ)ƒ‡Ώ}ΣO‘E|a&Ει¨ΨRœ¨JΗδό2’Ιr³τ€Z^|‚{½χ幁Ύy] oω̞Sνσ”?ΥΉ‚σŠρ™gύβžΟ΄Λ°v_Ηϋd©™w΄ΑczαmΌP[Δ_ζ••“Υ•N…}0β@/y‰>“ιžgΕΕK-¬hώ𿉛ΪμνhΘBF$)LxκάπΛvΝ |οήΌψΒKΫ1τ΄KH·[ωΕRw•βTͺΙ`'Ν[ά8χόΒζKp7ίέΖω’7<α¦ϋ=Š >slˆ§οӎω‚υz·ςY°φG(ΛΕ,8Ω{&Ό@>ͺάΜΠ=άR/ΛYYP”΅ΌΆμ,™ζ¬ σn₯i}ΗΡν χ^KιAΛud€½ƒ"nM'†NXJfȟ'(Tsb P&ω χύŸŠΦ³Λ’-ςšκΨμˆΪ΅£pΊΆ.-jZˆŽŠ–δIιίW)7/ ?AGg'¬σ„t½ψΔδγτ©ZArΙ±/νHŽG΄΄δ₯³œυUM‹:Kσ$Ϋ:ωP.1£’ĝ-~ͺSqW³X–oZηX!„βiΪ―+†]oΑε,;OχŠ`@ωΟ@#½υιΝηͺ[ΕpWόRVQ++ /’Eώί’r󜒬ΗO"+­όϊl,iΉxΤ―½)D‘χjς§c"‡kWrςΙ–šρ>-χœ-«G…Y‘ΩL§€>θ@XjJLάκ&mZ˜ςd\8TΌμξ@Συ«ˆσψJ86–zAϋ qŒ? QQˆ—όωδόΧΏΓ§O °(G^3η €5τςγΏ‡άτόψΏύ‹κۏ’B^W ^ Έ‹V(ΚΡθŸ– ž!ˆ^> t>­zωEo>Ύ^Μ― ©OUΉλ Ζƒ± ©ydΪhXm¦9#™Ό*Ω’œo ¬\ΪThCOσ=Χmεcό9€ΩˆC`ήZ›] ™°(”Τ~•a"PΟΕڍE– φΠ·±s —JΠ2¨žyΝ»¬>γϋ»g7 KΕ`plΓ΄=IΡά£A:ͺΓ†ΑΙŒΡβ[\\!J“€-κ™(L-Đ§Κ΅\QAβ²ΟΛΦ[η¬χq{\X|HT(ˆΞ/+·φθΕeσtμH)™³ ™’Hг‹φΕέψΔzT₯IxR’ΥΜ*vz p₯Ρq{΄ΐIw· ‘rΦ|1θzQb³ͺtαaπxνA™ΟCŒd­™‡…‹«Κ.ςξ+Θα•Ήhλ“vεf>ύ,ξ54"? ŸΖdΆhZTυ¦>ΨŽΫ—ω΅ώλllΗ~RΐδTͺΓχΘ¦A΅’zζk?Δ+”ΪηVζhDj9ΞJ '½£V:Joe+›aˆ‹%Λ‡ ²φ+ χcdζ ΔeV­‚<σ~Ή*Ί%Α —b`²MS>=υ%EKŸ—HΑ™· ^ˆΊΡR4)R7υ7Α\ X[ΰκήp3\ 7Ž6"p½ΰBέ‘$ΞbΙ8΄;Τ!­«K3 K«δȁ†/œ”›ΉΘ‘¦O0$§Œœ’Μ“;’r³Xvλ“N”“‚3Ηxρ&Ε‘ΑΗ?…RξV$εςόlΰΑ ] ¬< έH―΄eB 1β7%ebAVtΣΗ1G7=AK­Ό’r*’Μ$Ο( ˜RW^=A–ψidu|ŠΟn΄PΆl$₯ˆΚΜdύg‚‘ΛΟɝGΏtκƒ…/πψIŽςΚίEΘ(3£ο±‹QΈwk–Ξ D’λ{tOVnζΓϊS]T—€p-₯tόυ’Y½ε])«―<Θ•Ÿx‡,τ•)·ΊΨ !%ρψwicΆ)˜Ι:·ΰLH#χ‹›Ν5α“ώf!Š_οΌ@(BŸ)*Wx=γOEΟ½ŒΟB–Οœ;™¬Φ“RžuίΌ‡ό²"aγGrhͺΕσ™2μχ€—Έ΄zηY›΄OvSW.|a°rg7όπy‰λΫxχζ=ΐ^ π<’ρK`ψΕr‡Iσ οΞ-υœΑi8±ω’$ήΜw™;_ς†'Bκπ†Ÿ97Μ³χiη|…0> ŸyΤ,‘·<{&iPz›“₯wD #ͺ“₯UΫ~4?Ήι˜d‡]Σia1άΚηΈγνkέBύO§$-ΘvO|tŒύΒcߝ¨‘˜^#ψ7 nyMt‹“_αΣ–FρΚ‚¬dι$―²FόTJΆ­Ώ&ZΣαVA…―vQfθ"‡ώlX λe% Jϋηψ‡χΨ3pΎδ3('g…j΄:ήαjs}‹ΛiZSζ–«Έυ»–Zκ Δει?|εŠ%HΞς oγτΐΐU²Δη»[Ζ2τɝψE«Φψς#άφP[Σθώσ½-%4Ž+!Χ€Π4_™FΓ½Ξκ­Oo>g B΄ψ…8.ΦώMap¬U₯ά,0Jί_8–ΈO„§›7<ΰO …K-9 mΝψΌώh£D*·Ž‰eLr'y&Ζχ‹ΔηΣ,•q±­(i on|Ψ±EE3ώ4[]όωδ > ? ϋ*σιSO1JΘOΎY˜ΔΑσ‡ΰγ{n…έκy΄Α?ΰΉ"0Γmjrp~ίJŸ ξΣο歘qϊn/EΪƒ–}εO½ό’7Ÿ©Χσkλ³χδV>Ζƒ. ±ydΗW1tΊYΤ ¬’ μˌF~ψŽ3ފΦξyΜ%ͺ½σΘ$šƒޚ‹΄DNCt΄Α΅ΔΝ«ef:ι~¬tΰ‘”^ρ»γψZ/Ο‡J>Eί1/C€!ά𯒁1q‘’Uζ)΄χ^Α“yqI’,η7/ Ž3oInOΈbΡ‚ ώ’’žG½€TLΚQMƒ£-MTεΪ`ƒmI9qяΛό*‡0!JM9‰αΙ’EΚh²¨["+‹sKd5RsρwΣs]ΰv―Σq<œ%ήdΏ]^_B”©Η(Ο­1mk·Φ–ίΰύ‘&Κ΅Š΅Κ΄f3pη,‡“~+N©ˆ™‰Aη‚Fϋ1N‹…τι‘EUη΄Cb-U(-/AΊΩŒΨH•fˆœ.MxTͺΨKΪω| υ΅β#ν j *Ε{₯TVt ^BχΚ„ZzͺύIGp$«\°ό½' ζΔXŒΟj}fP–ηή―oi—™—Ue·bΎΠŠ6ξΈJ§―>Σ{₯Ι.-BΜG jίIρ­)΄^#Λ-4Ž•8oΣ‹Ξu;ˆβϊ’”a/ώΑΛn-ο:ežmΑG?ω@e5Σ)Ϋ€½ΨKC[pύθoν”.άώ2ώfη@§Β©YΌ]C–9V“ά8ϊϊ:IΑΉˆR‘QPE Μ²0ΉψZdε‹ύ΄ΨWŠΏBj]s ŏKCνNΦAΉB‡ΖΖiμ”π<Θ[DZ.Yΰ ρΒΉψΜsngοΣΞωΆ a|>Ϋ²#X½ln>Σ›•εS!P‚Ί’J9d°ϋ.y #gAOBΦ …Bχɚ­“£ΕVgUΪ\YΈu!ΑMX^R€(υ―₯ Ή’–­{NJ τ!½IπΫqνΞe»"’ε ςΉΧΞ-šΩ)ϋi8Σ‘ίΗ·ΞΔ^ω—”imς£Ώϊ''d¬ϊ‚’MH‘5ͺ~•’,}°Οΰ”›9·λ„ ώl7Κ<€Η·”›)eξβ-•›WVμj`&3·aήCεΔΈj”ΙEΗGUlNΖΰp%ώ NV€ΒL?DCg$κs–χ,8ωCρמΆΦMƒϊιΤ7ZGΟαΦβrUU\χ C#ϊύ`n£<Ύ― GE‡.‘αb_p’Ν7bŠœ»₯Τ[Ÿή|Žυ;^kςK γ€o “˜žΡ…dAX3ζΖμ’Λo6κ =βOuαJSN„dΐaR6αD‰ύtΞαVEœœ(΄<Œ? λ/ίωsέ­ά_nς3œώΓD|Μι Δ#Ž7ΈδόΝσηQFΗGQΙ•—KA.0¬‡™ζ­Œ»Π)˜><ίsθΓ΄τUvΖ6ξ‘υΟ εA£ψS/ΏθΚηΓόZW}† -ΔxΠ8Œ§― £ν<²ΈΉdr)N½™.Ο«»Zτ. wi zVπΟ[W±Ό8Š™M—β{”ξΩ€™Ο…EϊvΎΉ›ΆQtsv;Ž―υς|¨δsξBΒ`)D+vΡρˆQΤ:2Φ`WnE™\€UDQΑ9ΐω^]\ f‰ΗK,χ8(G%@Φs\ŸΑŒrqΦ\†¦ž /Υ"+p¦š*‘*­(ZΔ)m/ŽρΆ³Αδ]@Οθ (U˜ 2. Fμsb.RIαΚΎp‘ΞmTΙ•έZί$-ΪjΛHsC]ω ίΑΡjΙr‡›’}΅β«Q΄ώ~pPΌη-FhT@AK΄Θ―εffξ +>• άBl4ιΔύϊ ΰ¬wi SCŠώβ§ O&œΗ€ξϊβ!ρΩκ"κK•$Gίπm<εΖΈb‘K3˜Ά―ωkIλ>Œ,5x­Άα«Uυ(²–.Š5=‡›{₯X#ƟmfΪ­bφήH5COιXσϊ"^ΡΖ’[@{ό[ψό–"Ϊι/ 6EJΠC’†ύšQQ^#—ΦΫrOφ«<}£°=O;>ΝIΒ‹9[D94t¬ifYYhz‚3{‘„$%©Σ‡*©AR^§_ιΖtŠπ €Sj—Πν§–zQ•ΔΫώSeΦy‘—ΉΣŽζTΚ§,/΄γ^Ο—Ο=οΔ+ΐ1…r³ΥڌζΑ&Yq:Λ|υfZD%gI+GήtϊΈ―΄zηΊωŒAύŸ'ό©Ξαωγ3V!Ηg*ιιb~QCΉ@™ˆ¬χ¦ .}[++s9ϊυΞ³ΪΫΪPVzŠ?>? ―όyϊK§Ε¨žŽhΈqΫνΜΕ3~ πΌΐρξΕ{€^^‘Ψ<’ρ‹jθψ‡_ŠpκβΘ‘¬XŒ6αΪ₯/Tυ:_°ω’3&΄νΩΛωVή†yΖgΚR½ΰ e6oό!Ζgκ¦yώ>­ΞηΑγ3Hώα3UμΒ@ž={ξ9ί¨¨:ŽΙ‚πb+ξ΅·ϊ^θΆ–`BY~VΖn£GCQ;Αr ΤΙŽυ5ΪΊi©C^νHLAνžT”QVρ"Κ$Ee:£₯«»‹ή­KPŸŒΑ§·΅•‡’Θ˜½HӚΕΩ ϋωŒ•_ΗIβ#π°ύŠ“_*ρZωa9ίπΨ{>YzΑ“`‚%YZ›€°ι{;sY„ŠηλΡt©Α^ά‘(Ι/ηΗ1Σm|1ˆ₯W6 +Γλqδθ!e€¦l`L؜O±¦€­¬:Πστ Χ-|?9ψΒ+tzΫί8+ '@ύΎ5²Π»χ{ε7pα\΅Ψf.ΏKCι2νC=g}/Ήηώπ5tόέGšΈx8><Φ+OœΕ#RpΦTqΞ<€ƒ™khrΒEy#§2­Ηχ΅AγhcƒUεSς.n Φ•Bq~½υιΙ§›_¦`[€o'1άϊk*²-•h˜QίλE₯‡Q$gΙ~šΫ@‘“?uΛΙJ:p­š‹‡^ΗΑTq yΆ η†ΌcόiHκδΟτ}• fŒi16Ι­)*Ύ₯h₯ρβy4=9%—WΈyΰ¦RΑω*ͺς5jPyΜƒκlό•)ž{θ nΚʝ°°΅ JδΔΦßbsυς‹ή|ΚήΞ―}­Oͺ74~ΩOΆβtΕ)*2ΉάόqžΌq½θjj0¬½σH#xΠή…Fπ†ΒoO πλΌu”6³ώBN₯Χ„ΣΗgTρŸκ­Έπ―p‹{ŒΈp;Ž―υς|¨δsя,˜!ΐ>δ5Α€‰F₯τOpλθŸpΆ€°',πbI"ωϊ[h*’w]",9ΩgP&•e?rfYWΞ=ƒ}›³x2xŸί €—5R€~ Τ€—£€ίΉ*Φ·>…Ύι~„Ε•ΡΗgZ… Ϋ‘3 Κ—4I.ηߞ‘H‰Ώ€lNpo’41œσgΘ:ΦΦ΅%SžXΒ‹ΠΒ³*εζ₯ρτΠbUF½•‰C΅B²Ζ¨εϋ+i„BρžT{lΛ΄Έ¦Γ­n¬κΘ₯Eχ8r*.Uιe²βœυ1ΪΉ—§»>:φ’ί°Αέ_{3‘'κΫNNέ@“h%:+6EΆ;½H‹—u{uIVǟ4ήE΄Μ)[εΓζΚ°ou’6.ots«ͺ\Ζλk^ήSSνz)Y΄°šœ‡œ<`’/Ωyδαέ†Ÿ6Ί”ToDlI-YŽs7αq‡+ΎL“E–nρ:)™Ž%ΚGšΚ€iyfΜΙGΰΠ‡΄±N*8›,ΑΫ₯λiΌ‚‰e’{ΚΗ킝‘Μ ©’zαuT:{eζΤγ8f)–ζHω+R@V|#•γτx²,₯²‚ύ2YiΊγPφΠx#RγsQΐ=¦)er\ϊf&ψΙ’žyn>sjœgόι”ΝΣΖgξ‘ z>S‹o[YΦ<Α#’N―|CΛ!ήy|™g ^ΗϋοΟΣΗ·ZdηXh+–ΒΕ€’ΰΐ9XRbρ›>w«δ¬Θ₯ν πΌΐΈρnŽΛχκCΉ ~3r Ζ/κuΌς™_²qμ­Χε“+0έ†ΛΏΌδvS'›/9v„p*σ%Gι]ς„cB―CšΟ zŸΦ„Šρ™&,r Ο|&—Δ<~@€Yo6Τ€γ¨ΞΛ• {άυ%€κΌ’Κ—QPyƒC]΄“Z¬‹ u’΄Tg) GΕδ†Ε:ΞΜFhΙ%‰·šœ…λΎ…πŽΫθ^ŠBωΎγ8œmΗͺ―£APFNΜΗΡR\*9‚>ͺodnŒΦj±NΖ²R Q”]$+)“Ί4v_UlSlδŒEQα›[ω ³ω¨+§6HΚ‡$gc[³"Ÿƒ—[7tpA)|»,<ύmΌE+’Ÿ^Ίδ#Ώso–ΧG‡Z M*^^oJΑρ―)V£?Ε£{γH>tϟωΊ}Ξ'₯Χϊ]^‘—­bK/ΰοD’υιaAŠάk˜jΏξi{Ζζkwpπx)ψή2ΒΫ>7―]CK{/ιof‘ d?*ΟΡΥΆέFηzΌύΦq“,YΓΎω)7ΣZ Ήώύ·yωS+ΎŽ·/ βέOπqzλΎr"Εo*§ίώŽΫWnΰqΛS¬˜ΘB­W’π@)LdΉx–œ»ΉΚŒθ?½BkάΔATΊAγΘQN—ŸυΦ§#Ÿn~!…εENa™ΦˆΙeο{/oΖΰαπS¬νɒQ§ΰ³±ώfq£‡NώΤ-'υΎM›N‡ξΣ·ΖaΜ­ ŽΦ1 ³#Sβ@βΞ»νd(‚‡d[cόι+όzω³'ήώST&’ύn z»Ÿ`lxˆNM0£μΰ ?%£-5£½κ ²Δ^<:ξ>ΔΠΉJϊFC#±θώψϋλψμ7ΏΒtΪIΌτκχP(o˜’KwφhžFŸ/'χ<*’cΑp²ΉN‚μΚΪEιGq6ΆŽ …cΥF§EtΉhŸ£ΑΐƒΌL:ψ“ςιε½ωdψΌœ_ϋ\Ÿ\qθxΧWΦ{h=ŠΈΚδ•›ΙΘΥ“VάVm*τ­>½σHŸx0³5™όK Ώ†5ϊΖΒZδ\jJ&j*λi£)\Cnmim­€ŸσV^dη’ιf^Ή™‹šγ7Α:'rβ|­>―οωψϊάτ‹b0‚ —t)Χ—A:ZN.:Bz:Ey@L1΄ϋJr€π˜#*FK.+=hξ§Ώβy­·5ΨVHQ5Ί/™E5Ž₯a j(w*e²ϋ7°±iΏ Fί憫WEGi-H2g£ƒŽPκ»R”2mU_I}~ταoρρ΅F)«π_‹RpVΨλPΗKW4ί“ ζΒ–ž₯jδίΘ»’Ο² σΞη;ΚI]{bΏWZΡ²ΑFGτh9S^ΜρŠA±:‡ŽŽN‡€#*5‰„‹d³ι£θΣZπ‘>#ό0Q0ιςό#άιΫdBj¬de‰.}΅<ˆG7οc½΄McϋΑ½|E‘e_―K7fόyVν,ϊϋϊP™Εm$0!#ΏŠ¬…ξEfްXŒιNP΄Α.εUεr™OΫ›5•ό„³°NΣ©gΔ1qH―.>ΚΝφ }8εεΉ0e–!=B|ސUΡ)^ήU¬Ÿσ‹ή£{x ν>iΚΛβΊπ¬bέKέrωΌοϊZAžε,YΙ‘‹ŸΊ[#εkwΟψ, kΨs½ŠΣV,‘:u΄π¬·ŸΣd―ήγy|f―χyƟ™ΌΊd|ζ`η3΅τρ)Ιd5Ÿ6•¨ƒ±4ΟΝΈϋ,/qΦ–τ;ŸηYƒψ’ώ€DXς2”ž‹\ϊ@œI8SΚ’{Έλr“ ŸΜύΝ <γγΖ»s£!°±δ‹Š>΅n³2›pΌπ0/gs5.Œ…{}Ϊλm›E‘_κ!…αΫ° ™ΥόO³άΉv\τΎƒUδ>4φΈ-Υή«CUu–`3±§ΏΗύδhο©O‚όΚψ Χ2œώžlΖΣ¦6Tp›4DΩ²»…ϋFαΰœϊΐ!^qλ/9’γ™Fω`Νk?ΒΉJiž₯ Žσfΐ7ήδd>†6η½ΧόΧΨr«C[€Ϋ¨D»ΛiFύe! ›ΛwiΫ¦ΑωνNΟ'u4»2ΑŽ€·k.iνTtVQMFFœ]Ωhzq;͌W±Ό2NΉΪ¦rΟiGf”bς²B–9i—ζΖ’†EW_pY΅)¬΅F£\a½vΐΦ­ˆSQη|C»°SI˜βέΪ¦] ΤΡΕgp¦¦ ‘Ό²1=N‹ψςwWœ\œ+0²ΊbΧΎ% ¨ά?WN© Λ[DuH›‚xqΪ1?cu.IO}‘²†΄=Jλ"b±Ι…Ωž•›Ή΄σ ΰT€Έ§…;֏»ΪθηΞωIdΑY,|fΙ#v_#γχ)‰±dο&Ωe―ΰh‘β=XhΑ )8«‘χΣ{DΛΑΕ)rύ£c-θΥ€Λ‡ϊ¨ΟεnηjZ‘Mτ‘E~]b‹ψγ2y"V¬ζ”T·±‹*FNi [=φΗϋg)k{F—σsS,y(“ί;+mQ.•)ί)OΞar£97Ω„ΆΗ|Fˆ‘ŽŒpp›!,Θ)ΫΓΏί‹3ύh}FΦ†HΑٜUŽΠUΑβιβ„‚>φ(¦9&Μ+‘•ηΌL<υP\‘!U:Mo₯…ϋ0•„ΤŒ\4[{T%%©,O«’|ΎΡΓw••ιγƒΡ(Κ|dGp‹θ΅~‰ϊqο7!xΗΟb!*¬'ŸYΠz-ˆ7"χXZΥΠ^χZ.πŸ)Ατšͺ2m―ΖϜϋK'?S‡xzΤΗTo ΜΒn1kσjcήEΒšͺTΒΨθCά«ϋΔA [Š΅_———ν7œoΝω‹ˆ:;²Z)m)΅>Ή…ΡH²†](ΝΗ„ςlέ΅Έφ«ŸΩ­7sΑ]—ρώ/BρΦΧΏ\i\ͺ~΅·Ϊ`9uΉΤ_knŽ›Ύσχ Όse9dÌhE.)Φσ₯’GξύE'{Ύ}|šΉ~tχ(ΦΨlφφΩ­ΏI₯qΧuH(―­¬+#tϋM‡ΟγD‰YΘG\ώπ0βPΚȝχp5#ηŽζRŒ‡NΎŠ›οΙ}°Ό(QCΡbw/“ε[ΙIv[T΄Ά]ΖΟώΝ0^σŽTζJIUWΫPΊ[šμsŒφŸπΤσ\ϋγ=rκw7ο‘Ρϊτζσ‰Ώ,6βΓ[ΐ™”§¨ίUΎΣ‰ΆφΦα3εi„ω§/t­ΞσΟu”κInFFβqΫ'hΥΰΙƒ7ˆρΟ­ηŸΝΏ‘ηc £ΝH-¬@’γxΔ?=h―ύ7?ψΔν³€g  `Ώ2>θ7>¨ΥΥ-}œ$)Z‘Ÿ{ŒΆ;}ΞΙ²™ŠηRŽ$*ŒςΑεyN›D”—[£™Yπέ&r«šxα.)2VVpžš֜§ͺςν0~Ν΅ΝŸίNωTύΗn  E`Ο¦S¦όπD’ιgJ‡–ƒΘ‘kιΠ½!RπΪ>Žv+χ|μ‚άhTεωόJΐ,Ϊ>ΒSiΥ‘Λα.± $£<ϋY•¦ΫΠ&a–"S,ΖΗZ΅•Yi΄&­R>Jb‰”]M©’’caV.OGΨ­»@Β—`ΫΨ8•wNdŠΣœεΚΕΠ"h™°8d)ή‡œΫM’² $ΏͺŒW‚δο¦&5…=υΙr‘ά"J7Ώ•ϋμIάωΘbξβ$%ΰš—’BIΑΩΓ"‘/ύM Ξ’›YΤκιhd$fauΆ£ŠwUΚ[‰#Ye-&'Ϊ\(sG/-ΙιxΟ†ΣΪ$§Ξmψ=R”žEΟpšΔαV:Ρ>’1aΰΣϋPίβ,ζΙmoΦxΓ_`X¦!Η*δχh|¦Οε{$g JΟ†H1Έ(‘SΚ₯)XυqτΆ~δl©/ΆΕikd‘»‡Oηχ/HοŸΩGμ9Ž”\ϊ˜²'$ύUzΓΊ›Ό*mAa9}c]Ι¨³ λΝ"—%\<*PΟΣjT Η™L’’πψPl½ZΰŽφK’Σ¦ΖΖε §θ£J8<Πq”GΡI ΚͺΈζBšΧΠ!φƒ\€Κ£˜Y)ΪͺL2ΞΥ]"πϜŠCΘyΨcηŸζ#Θy«2ΏόΖψ.ΕφzΑΟι—ψ$R’Έυ‹5,Ό QJγ#EjWή>’š~β5Β»nΰ£ΏΉΟσΠ&τᛇ­m„ޱ,pΛΉΘœcϋδ8Ξ3t?ϋσ«ͺ £7Ά€Ώ€Ÿ'Wϋώ2ή­rΞ4’eζχS¨Τ ‹™lΐεΏ§ϋ}0/αά£JΪΠΛΛ“˜j@ߐͺ:ώΖPωO½Ο΅―οQν―ώ΅ΏrnΏ«£υιΙη3™mΔυΊFΤ%#36‘x“Πš•₯1βgNό ω§/tφχ\ΔΟzξ#+Ō؈(ž―Νb|’Γ²•W½°MΒ ώɝ wϋύΫτΨ€ζWΐ’LοDx$?6¬/Œ’οAƒΣfν'LίxΤr…6ώά―ΕΑ2η/ΟaδΩ]τqίh/Ί ΌηƒV|ρΥΏΕΪ{Œ|PIΌώΙε3Κ_Œζγi5 _ϋTŸ `φ3>θ7>¨ΥΝεٜV‹ΰ¬-Νpr…MΩLKfΤ  7 Gr9πΑϊώOΤ Φ«γ²]δVΗ&\Δ€Ÿ·n§ρk©έzωόvΛ'ΡΛ †@π" ©m…€@9Aί8^#,³_FΘH ¬«{‘T‰2:fIrΦ‘V…² ΊM―a)ˆ‰’hŸΗœ£’¨A\"γα )—ŽΪžb„ΦV‘ŠŒΪε*+LΩπtψ+»υζ *R+i–X«m€ϊcа–°s ‹•%+erΚ¦γαΞW…>Š©$Eω~]Y‘b#s_Βληφ’“ŽgάΨ³‡tΔΧ0ΣϋVρCϋ|k+Ί¦Εkͺ6ͺ―ώΑ7q‡vψΆΣΔ΄μΐ+¨9 (lrDuv΄ΠαιNG}Σ˜°εοa΅Ά]νSˆ-ΐΎ#―"‹£Γ+7€)›œM”:'ήϊβZ{hw[BC70ΥY‹^•ς4%Σ]#ˆ―=)ŽcŒŽΰ­Œol„ 6Κ.XgΖ•cuοBθΛΒκR/šΖΉ tddz PAΟΩΖΖ1GΟ BIΉ,wšωrω?dΑΈuΈΣ~οΙΗ-κqžή#©¬Θ ΘV#ή±'?VHYUWυ-JF8([$2“O`j­ ‘[3ι$\Ϊ­έͺ’·ΣMWΓ”ΠϋΒsηΔ}8χγh4>zˆ^RηŽNFZv!ςF,}˜œύςώ©§»sΉχGαH±­Ÿφν ”ΰ‹ί5ό,ψ ίQmlΘ‹d;ͺ]¬1ώC`f–”χ€υCΕΪΠ=ψΘϋœ΄ΩΈΫaΓ±χ™™©f4LιΙ±υiϋšIAK]nΫ-λΘηkR[Wκ8%tζμ 5£ž~zάVυŸ7ϋ=2ZŸξ|>σ—v΄θΰ/†ω§a:­θεLvμΗψηΦφυHW3F6s\˜$ž{GΟέZ„Ό―]7?‹ήΌ|Fω‹Ρ|ήc§NΉΩυ©kߊ;Ζύ…ϊq>U!6g7όU°λr Θ‘Ψd>ΈδVΧ&fσψ@?«/0ύΘJe0‹ΐζ+8Σ.Μρ§Θ“,ΎFζa.ύΪi³=D혦}J‡”Ϋδ6,ŽΎYw³9*8Δ%v―PjЉ¬;θσ ΅Ν’kπΪFH“"βEBba‘|Ν|\!ο3E^1γΦ]Θ:kΟ³£H),νYJŽΒ"žκΑΥ{wVYΙ° χΐςΪaAΑ†¬džx‹~Τ/φ…Ηd UΣι¨οiSŠΘͺ)―._ˆΓ_γ~š₯z |ψ…ω―’j1ΉΔBT/”στ[IΑΉGΎΧλIˆΝEVY.ΥrΡyΘΤ₯™4qΛΰ‘‰β³KϘ«ηŒ [κΓΓώ/k₯Ψγ{Δ5*eΙ₯vYsOΠ:eγ"τ;υ‘w²YA9*"ͺG ŠΤυ¬τγaw€qQΧθ»ΩΗψκ3 Ξ’²δΔΟ>νΜ·Υί₯ Ύa€;ο‘žβmMέθ?½YŠrϊϋ;4-wςI,€δ»oΏΠ6EΞkΚΪG?)Π†ι§vη²ͺrω9j}¬mQYΚ*_G19Nc›ET’ž$‹Ξ"ϋ±‘YΑy“ΓΣr.`_~q ροœ”‹£²Qω2χS$qα-;ςjŠ\0z:5αε·Ϊs’rτ'?ϋH­ψκφW0}νEβCOΫω=ƒCω‘ ƒο*ιπΚžDy0rDΔ!ίEζ=Kέή+8»(£Ÿdž,3Yγηγ#ΙβΙqϊ9'^škΖ“aεήm?ΛKωG“ω§sƒ#„ρ3±όΐϜήχhδy‹©:{ΊM_Uz)Py  ΌδŸPι0ρ3±9ΊηΣ~€aΣ‹ΨMόlΣΑέ=2ηέΣΧ¬₯ Ž@\† 3ƒΧ–w{όNοΦ>†Cΐ8;?G†εd0v6Ωxι­#xaa²«Ž!WjlG=nΆ 7;?nuϋ$ΘΩ•!ΐ`0v![ќΩι{ψ’Ώ“όΡπŽΨh7πm|>πΔ1b[ίΗ†EΙ Ξ3ΛvkʊVΑeƒŽm#[Ίšnrζ)κžύ§ΖTρ!σ'%kΧnγΆfάΣΘλ˜guΕAS{]Γĝc&ο›―όχZ01mΓ’ƒςυΚͺϊ‘²΅^ΑΗΏΏ!ξ8! Χψ>ώθΊkΕGΚγu}ΦZ\ηκRκ$Ju.ταΙ—·0$»Ύα§»ψπΓOΙΙΈT‚|ul#α}?˜θh»=rYξ<Ά%ΡlΐΪ\=d\k―ΓυŽθ_vW"Ε9πΡωΌxσ!<©²7Ys}Hφ9oκ͜I^ g£wπnϋuτ;Ό&Iƒ>ΘΦzόΣορ¬ίω™δ‰_°bhhTΥCοίόŠ§9>/|ιtμ¨XΛϊš«χ¨ ƒmΚ>Δΰ³mͺ›ΥU/Ÿ‘y‘|Α™ ˆ³dΘ»n<»£°T(†ΊΊŒŽΩ1κ#ebΑY{† g·Žbά‘MΤβ{ΏFσ3RvαfGϋΠφ€Γn½™­.ΞΈH­<· ©‰στμ^Ύx ½dYZιlƒ¨―k’1›T΄~ι?|WA˜w|³Δν­³ar^ω9δs|>]ρ³Υnά}φΊgδήUD<΄wδ6τΤAδΊrΌΉ@Ξμΰρ†Ÿω“:TT·ŒŸqέα~ΆjηΧΟΘΚΌΖψ0KόβΖ‡ο«­7Sν†ψ’a9kSά&-ωŒ2mθ}|W>ΎΕίiύρŽΏ9ύ"xΛ_΄ˆ₯0wο»―σέ|ɟr€‹φSπNε/ˎ“.7 ―\%;&/mKyΙW>!χ?ηΩIόŒo˜ω΄ νsΓψΩφι«`₯τωσηΑJ£‹!ΐ`x@ζ±μϋξpW-·Ϋγ΅0aa †C€C`§σGΦΛ †Cΐ™―Ÿ@Ν©σ8}ώ, E£τυχφνίπYv: †φΉκΞ`0ہ~ϊgαΧη»Χ/ΉE$+GΉ”x ’CΙ„}ωZ[%ΕΫΩAω# Ϋ‚|Œ,;χΗ¨α”Σ¦›πΙΟ?’Μ|,ΦOΩυβbBRL"Γ"°η…l¬/`†j§ί–5 KFJD Βχ„ρωΈ4kλd]zzPS[³Œmh)BBt8„3Ε—15ψVϊfΎ6‹―+‚κ’Κ–η'ΡΥΩγk‘[ž?2άSD4φ†„!δzcŸ“Rθς F$υΜ-'qK ˆŒΜ†%*žή%Βfc™”ΒG1Ό V έRύXy΄₯) ‚₯e­³“θνΝ»¨g3ί?$ψ5Έπτ»8Ή/ƒ/sτρE\r°NκΧΚ΄ 3η’0-aœΆ.m˜X]™ΑτDΖΔΣ’Ι17Rce6RΌ6U½w^ήΗSΦύε/πy}οgά#™€ˆXžOp)ΧVm$χX½{τΚξι`±v?όΙΟ’sφ!!>’VηΗΠ ωΗ¨œe²δ"Ρ‡={ΓyΧi3Χh» φGE·/θεŸηϊψn”#ρ/Ρύr˜Όd69“Ο|B.)°ŸιΤΗΟۘΰ,}·σ³Ψhα˜Ωωωΰμ  ₯jzzKKžvΑ)ρ «0?—/΅₯₯%₯ΘτΏαL%­ŸO>Β/ώΝ_£+pU±’A‡§œ‘}<ΆΎ)˜²Πw·χze:w[όέηsΉνΜΓ`0ά!°Σω£»Ά³8†C`w#ΐσΏSηp0υ¨pβ7Α1ήߌ§w~‡›ϊψΝLΎ Ό|ΝδΦέύ²Φ3[€t²_nn!bzzzψ|!!jΣ…ή™r5T₯7™ζ1:έιMΒ]–F/.€ 5g@‘ru £τΫ-ΞΪN Ν›ΤΨΝ¬k“šDΚΜ€„ΗΎMΉ„{q±έFME»,58#ζ­hΧω2ν¬wbŠDεfWyφθρζwΤD:θX“y6RšžŸPZηŽGqaž\υΚͺƒ)}9†yX\DΏ!>‘W.p¬™έ»B€ρ3ς³±ή¦MΩ4htL±Y{`Σ9~Ήzv<…½\ΰσ<@_ڍr$γ/ώε/žή9Νx&/iΒβu Ο|Βλš|Kθ3ϊψ™oΔnΟ܌ŸmΟ~Ϋjͺ₯…μ­¦ƒΥοcƒνθά;υΉa:†9†ΐξA@RΞ“”š₯{NΙYΊίMρ»§χYK _ΨιόΡlX^†C`η#ΐ)/χέΊŠ»χώΦ./Φ&9…rσn’9<8·ΩςσΞX  †ΐξD`‹œw'θ¬Υ †C`;"nŽΐςΔ’K·{ΌΛ†9E4αΑΕ5DΡΊΆ<‰A²hΌ]rΥiΌAVš­]ξοΕΨδ$ΦΓSPXyE‚3L6βY“Rωy'"ΑΪ΄ΨξόΙύΖϋhwπ3γψ°œ Οxz?·{Όg\₯Ψό…ΙKϊŸ…οΆ;ςDNθ£`nΓΖ†_ ζ¦ξhΪΪ―ύΪwt YγΞ”kΏ“ΕfΙr3§€—iΪ΅ρΞh±†C€!`G`§σOi,°·˜ω †€Iy™ •xΖn—·ͺύκžaw †C€!°­>vβυgCϊ»ŸΉ-.ήdrΏY‘Ι‡™,’½±Μώδf!Οκa0Ά#q₯&˜$τryάYΙy»Ηλν“…ιqLOcvfηΪ0ŠN/Gqv2b,HΛ-AAΩΑ%Β5ŽΖ›—Π9ΕL»λ}~XϊΝG ύυ¬ΛΏ8ώ«Ε—½Ey7π3o±`ιF`όΕ5j»Ώ0yΙu³˜νΐvŸίy’_Oο„οέΛ'_Y]Υ“mΧ§Ÿ_ΐσηLΙYz„υπ±±έs’žΤvvel7ŠΞ—A©œ"Ρ?38Νσ΅Τ}i»2^] †€+v:δΖζ †€;ωΔn—·ΊύξϊŠΕ1 †@ΰΦ„Mυƒm6Oά /Ό "ς…ŸώΩ_ψu΅ωξυKͺ o²rrƒΆδΎβόΏΔΡ’$`Ί—ώ;liΥ[VV)C€!ΐπξγp|y–F‘Ils 3­Β Β•»έγ}Αf'η.8ŽcϋΛ‘’aA€CC'ϊΡRϋ1:Ψΰι€ » V’_²μHώ%ρίώίu+τŒ.†ΐŽG€ρ—ίΕnΘδ%·π°ΘmŠ€$_°ωŸΠ±ΡΒι5³σ;wsk ΥΡΡq¦ΰ¬Ά0?—ΏkiiQ„2/C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ9lllπΙΝΝ5Τ¨žž>_HHˆ*΅ΰΌ7> {Χ`›AW/œν‘ͺpb7 †C`W" }άζ”š§σP9egΙ’σvί•κe£W§ϊΡύτšξίΒ³ΞVtwΟδ%Ÿ!dJω‚Ν„Ξaœυ?€œ•Ξ‚3sv˜g;ΜΗ`0 †C€!ΐ`0 †C€!ΐ`μLeΑyΟΞ„Λs«^ΑΰCΟιX †C€!°[Π²H(Ynζ”Γ“"œ,’n§x‰ΦέΪΏzΪ=?1 f―Lb,m0" ½σ;iρί`ĜΡΔΨ-α0ηψœςΔ _ιΫ-ύθk;™Όδ+‚,V#ΐζ[έ;§~ΙJΗΞik C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`l»Φ‚σVΞκe0Ϋσαd•rŒD7o)”,‘ΖδΖnλxfρTκQveμv rΕwOO²–2‚`α/ŽΚΝRΎ'•Γ †ΐΞE€Ν΄ϋ–YpΦΖΕ]θϊϊΩYyJŒ˜g%ΜΟ`0 †C€!ΐ`0 †C€!ΐ`μDeΑω…ŸώΩ_ššάέλ—ά–•“γ6žE2 †C€!ΐ`0 †C€!ΐ`0 ­F 6:š'avžiγm_¬¬¬`jjΪΫδ»"]a~.ίΞ–––]Ρ^ΦH†C€!ΐ`0 †C€!ΐ`0 †C`χ! ξ—››k¨ρ===|ΎU~υ*Šέ0 †C€!ΐ`0 †C€!ΐ`0 †Cΐ;66όjKΓ»JY*†C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ‘0ηΩ­¬Q †C€!ΐ`0 †C€!ΐ`0 †C`s¬tln­¬6†C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ‰μΩ‰bmb0 †C€!ΐ`0 †C€!ΐ`0 ΝE€)8ϋοΈX φzYδψ¬ΥΛ”ή%;ψν7k 1?T‹ϊw?CŸwΩt§ςάΖ%ŒΟΪά–—P€Μx ’CC±ώ|KΛ³˜šlΖπ’V6Μ)HˆNDĞP„Ύ <_ΔψXΊg΅;†e£43Qα{A9±΄dΕ“ΑvΗDμήΟ€žψ ώΰ*`rΕ^ς^3fZώ ο½Υ`ŸόΌΡsΉθϊΉ”ΣΉ€Ησsν2«F„ου}υεσNΖ³ ν‹@b6R#€ε₯>Ψ&ƒ¨ι'ρ½οœ¦1eΆ–«ψν•:—xίωΡλHζΊnβηάπ_ف,)‚ΌΔtΔ‡G"Œ7W05ՊŽ)Χ|ΠWrRφ#-6žkAcϋμ\ZG΅eΟΌΕN'yI.ΛŸ—JΤC§”‡]w ZόLρΎOΣϋώΎΌοδKAΡϊδ ’lBR, FδVΦ¬˜ρΣόAζ%^λ‰/ ExC§ £Ο΅ή|Ύι-,]H¬ΐΙWOα`Ν!zΧόϋΏ½a`“GώλψΣ?ύ&’ΈbFkρήΈ4"©ή_hόKΜΚβi‹žΰ)τ>―§”¦x$gYψ²χŒΘ ΕS.uό&ρ]Όάs¨HΛ#εf­qφk}ˆ{uŸ [M‘Owi§QSXΜ˜h§rŽΡζ₯Ί¦Вܐ䣼d„Οs„ι¦Σ©5,`KΨ ~ζχ])|Iͺc‹zε ’Y€Χ^ϊ!JγΕRšρΑΝsƒσω’s=Ριœƒ…l2ιΗρϊ«ΗQt D–‘”ΌώF?~y—ιά4Εδ%ΏΌdO(Ώψς ΟωŒΚƒFσωVˆqΕΟhσβΩ³‡ΉU`¦·>ωœ?: q΄)„ ™&νg7.Pk“nͺdQ †C€!ΐ`0 †C€!ΐ`0 †C€!°Σ`œύΧ£i ―•›ΉZΧΦVύW9_’½Ό5?—,gŽ–΄ €­λ–μ€Θ ²ςίΑΫedΡΧ₯‹Fd˜βγHd2])7‹e€¦½ˆsGVρχu7J=°q23Γ)œˆ*Δ+oaόΛ‹ …퀁Ν>π"NŸ>ΔWΣΎό,ΰ Ξ›U__Ο\Ώl¬‘y8sϊp ‘€zŽΰā―!Y«¦ef4”›Ή€Ύ<ΧZUy σ₯>£Ο΅‘|ΎΠι `ΰΜΛ'p ΊŽ*§!PπYdΤ;"(7SžžΦ§;%@IŠ€‘ςƞ0:ΐ―n‰Ζk±@ιͺ·όΝβ»@TΌˆL7&§T㍗BπŸΖΏΒ’οβυβ2—5Ζ‘Rκ™ΓaXΉω+tˆ©|’— ςy#tΊl‹Ψ\6“Ÿωα}·ƒ@Ύd―dΣ}Fδ yμπy»r3Ό°0Ι $_ΑωƒO|I£ιΤΘΓ‚6μύ8BΚΝ.]LͺΟ ’MxοƒΫ.“9F0yΙ.79bγι~Σδ%ƒ|Βύzγς ΟωŒΚƒFσιm9KοoΕΟ ςεf"xlhHPn戧CΊh•‡wβΥΥ…)8»B†…3 †C€!ΐ`0 †C€!ΐ`0 †€Χll0 Ξ^ƒε!απTκ{gͺ±ΒΏΎΎŠΔΒΘ‘Κ°=D½l©X ώkB΄dtέ}Ν°ΡW 'U²υ)t8*’ZΞαœBΉyaΊOšΠ?;‡πˆDX‹q0; “³ ‹Φ{BBLMΆcΨfΕθμ$ζη‘ŒΌΜj²-XιŒK)Η‘„›¨SΤY^ώc…rσ<Ϊ;ΎΐΓΆgH)yg ‹ γ‹QœaΒπ αΓ‡ύΣakφfέξυOΩZ₯lV}]uΈΣ%HEIΑY˞¨‰FΓββ“ΚΝ\ΏJΟ+y§]3mψΉ6H¨ΡϊŒ>ΧFσ₯Σ ,,›ί(Ζ·~ς'¨p°žξSριτWg‰E΄‘ρβ]ŸŠσ{fΫZοίA8 Hs]¬Sϋ ‡7‹οšΣd£ωcγO10ήλμ–ƒ¬΄ύ¨ΞΜ‹?ˆͺά χH'&8ΠλνmΚiœP(7O‘uθڎ%%ΡτΜ—(B8!ͺEωθO­πE^2Δη ι- ,] ΨΖό,Ψω’n3*O¨J3K)ΙχGSΥVϊg¦0£Lmpώΰ _RVΟω½’Σ1»ίBfΡχδ1:»;121‰=¦"4ˆIΑ9ŠO¨p3ωΆv.3³n· Ί±ψα͏‡:ΒI žφχŸ™ιvR[Βά )·#Άθϋx£˜ΦœΙΝ»xηŒ>ΧF©7XŸΡηΪh>€Σ(,,ŸΩΚ,:οίBϋ|^?νΞ‚Ύϋκ?ˆ 1Ι`ν=Έιά—ΐΨΙ\}Ώ!€h χΝrΜγ(²i|wc=ƒχ1ΨϋZ§Τc[?}[_ ύW¨IΖρc–Ό•HT¦#N ˜½ƒ_Τ]“£gž}€¨ΨTœλ“#8ς’>o˜NΡμfΛ~–Hο;`£χέk·%|Ιkκτ'4,Oθ―J+GZξ;x“ο9QώηMώ¨“?ψΐ—”xM§2σo 3“Γh~xO>ύ-Ϊ'•$4£εNΎσ?ύ+”ρΊ}fX2H ςBΑ™ΙKJ%ΚKFω„Τ$―Fω„ΧωŒΚƒFσωˆΛξ;ΰg9Ε9ςΖΙɎNοNο‰Ž…)2J%/…‚s$νΆ,M)AN ·θθΡ=xS:„<Η"4ξΓΒ…eΗHΪ‚»9Λa,8œHρ~₯_΄ί†Β „”ϊq‰FAZ ŠΜYˆK=©θ©CΣ”Υ!&e™/#Η”βœ‡Oy“Ά'x2πP“F‡ΒΨ­;Βφ"61‰Ÿ΄„NΔΈKιŸ8K ήωΞYΑΔd#>ωG EώΨBTVd!b˜hDΗΐ΄κvUΚ&ΥNŠδΡ@ΌšunΛύ¦:οίw£dιηBMϊσα/t’cό1|-Λυ‘b5³hλω-žΞEε3Œ@0ς%ÍΩ&csQyθJͺΚεc8:Ώ|·κτ7ΐ>―ΏTδ‹BΌΕA‘Σάr]t ,xJZΞFά&GJ2’O <΅Θι(Οƒ©ύ¨οΏŽήEejγώ”ΔjδΕ§#-ZKmζ)ZϊξaΤ‘ Cό:²/TΛŠtΊΎ‚vY4!~?Κ’K‘! Ζφ,εσhΊ~ΆΡΞΚfϊΨψ°™h umΖψΰώ)!H>/Υ±EΧΝβΧRστΥgtώn4ŸD%Ιυ[°nc―ω\"ΐψ΅KhXΔΦ!πόωf˜ŒέΊφKΝG½„LρcόΜπ}|i³ƒ…DΟtD¦"AZ"ΆΉPu.&«ΰ(ŠΕ|S#ŽΚΝΚτje,eŒ³«d=ZrΚΔRZΧJ#f¨>IΉ EλC§IΉ™ΫDJ된#c#ŽΞTρ:Ο¬ΐ^R<^έƒΠΕn|ϊχΏ…ƒϊ„c6χΙ8ρέο‘(1œΪ°†ˆδ 9oΖαογ%φIU(M‘ούΧτΙiO1N~χk¨,―Bak£5:]Η»αɝKΈέ Lο[}©'±―¬™HN°€DTΑΝM`ΠΪ‹ž'·pύN³}Ύίκ‡ΕNΤ΅Ω­€ηΕJ‡HfΖΕχ*ƒΟ΅α¬Οθsm4 i—-Μxπό°ΏΌΩιφu™ωΙ~X»;Πtο34v9>;zή?ap៝…92σ·Q7ž‚“'ͺQ%Ω4'K[ ·pγ)>ΐ›?=‹„ΠP¬Ο΅αΕiqΘΤc€―,+O<½ŒK7Έwq 3ύθιoF퀴3€žϊ> |•5…bώ4ί½-ψσΟα;ηͺ@ΝΒΤΣkψψFƒϋ:γνο§5)Β‘6~{霾όΥ?ΔαUΘUυAΪοίΔΗΧμιδ δ)~υG8R`ΒΊb,α5Ϋω9αΰ†–όWρ­ΧO£"ώΏ΅£u·Ϋ‘~ψ Ε$•qY£Œ΅•udx'_φΤΎρ]©ΊωΰTk}Ό œ]YŠφΓ•  ΕHΞ£gθS™ Kϊλσ(/ιζσ‘Σ©±Aΐψ™§ŽpΑΟ4²­­„βΰٟΰΘΡ*:i$VH1gEsέUβ_"tΘg„/ω&gΡxτν3(+.²ΣH4ρcΨ`:ο’ΆAΫͺ½^ώbXžpΐΘΠ-Ya?S!nYκΖΐR 2γ9Y~“ΣJ™ΧSιηξrzδKRfΏΡ)\םΖ_l α·.Ε…466£μ΄0O3'eRgΈL,v” ώΒδ%-yw‹δ%·―–1>αΆHe€Q>‘'ŸQyΠh>eϋΆ‰Ÿρ3Oό¬Y…©boŽc°½ΝeΟ―… ‡ΦŒςͺNКTφ>NGκΨε₯-WpN2ŸΐKiE.@ŸΡA“H;y‹”σUΧ£.±$»ΖάLQK4\R'αοτγbByφΗ‰B±c™{Μ(Μ8π˜Œe–d—ΚΝBͺD2~8d Ÿυέ>jΉΫΒ³j·ώ±Ο\ΩΎ}‚r33ΤΣ­i₯<Ή° ‡ΦczWϋΰΌYυ ·ΰώ]ZiΫ €Γ3pτΘΎ-yDΌ}ߍ§ŸO5ιΟgΏPu±αW w­\­ε1·!_Ϊ 6₯Ns)<€β²B’lΤ.Δƒsujϋ7|ޞz³}!ς²=‘!ώ­άΟνfGRΓσ2ΎŽύ )­ϊΊ7 Σ_ΔLηW~ΨL–ΒτJΈ¨‰―ΧW†γ!ψΒ‘>#ό:!*Ρkεfςun\]ZςΛ8–j·‚&…KΧθθTη„a­ύ†₯@vέ<όπžι!6Έω™ž–H»™γƒ_ϋ5€|ތώΚ²yόZ Xw}FηοFσ‰ΐκŸ?ψ«GX9πλ{ν±6μj~ν–BD`cγωΖBΣ³DάYuv™ΝrU²ΓAΐϊρΨτ.}λGίFE–σ7ΊθΔ,ΠΟ9C ΟΨΙΤύώQΦόL”—οv^!U{‘΄"OJ³π“ψ(όΥϊ₯¬ΘQ‚\ώέ‹AΕݏp§K™GπWDnž ˜½H Ξ‚λΓεΏωKUβp՝Ύ›ς·Ž#WΜ2ήP‡ZϊŒ#Έ½H#^i’›δ•@C!XJΙ_³ SJΟqΰρΕΗbT1ΞύτG¨)‘eν9’sqπό»ΘΚHΑ/ήYΑ;9χ JœϋΞΆN΄ΈPB2UΌ?|χΖR]±°ΦΰMϊIΞLe\Φ(ΓRύό€ZJ%]΅ϊΟΎ+•Kο‘_Η£bδΙγ£½γΎ%¬I†HhΥQΘFŽ’Ύ₯.­§[^ς†Ο€NΝΨ’hΖΟΌ‚έ5?sΞn©ώήt &₯ώŠΣ?FjͺΏό―ώΰK>ΘYΤη?ψ³wQ !£ΙcXθˆKg}όΕΈ<α‘ξϋΘCx§κψŒ}ψόi kĞYžΔ”›MNuΉœ?8₯΄xΛ—όI§½φΰπνXώβήΘ½v΅Ό₯•χ‰)Φ5aς’ή6‘—Œπ O‡˜ΐ(Ÿ0šO“.£ς Ρ|šDl] γg€οκ™Ÿe*’Μφv‘ΓQΜWτ ‰ΦŸΡ}OO=T!/Ω9©=zσ|±Υ8¬Pn^ZμGοTΖ–‡„¨,›M˜Yڎ&(œaΜ ‘₯,Ž›žΫέΒς,œ φΐ%ƒ¬8*•›­γuh›hΖZXŠ-‡iqXP§ΚO*Aχτ=ΜJ$„„πǁΟΜχabaΆ₯,."”Ž5·$”’UmήθΈ<E6β™±RAμT˜ ΏLZΔιΖ³;MΪδ­Ϋ­κlΨ½ΪiύΊYυY[Ρ,± Z“* gaY΍π ―ίwοŠsNe€Oπ…Θg˜ΏP…±{₯EΑE Ota–Ύsχ&΅Ϋ˜Εγ-jLv❷|i'Ά™8uαΫ(p°*οSSƒΟωQτ4ΥƒŒ”`a Ο§¦$σfGD|ΙvεζEτΦ£}t¦”c¨N?AGf##ώ1¦¦½XœwH”YV8ΆΝuctnSK6¬’Z}r|J…ά‘%ΘOμΐCΕ1xFψυΤBΪ'’‘Γ²±±†Έ”ύ€,;Ÿ7Πo›Κ―‰>CυΏΝΗαh`ώ`~–e; °«ωυvθ ΰ ρωσηΰ~Μ ΞΎHVƒ7Τ]‡'ςBo λυΩρtκŒΤŽ„΄Σψ#ϊInΖ֎'7ρΘκ0H)@¦¨x139Ѝ‚ογrμGΪsω§ΖγAΛ‡hυ  Jσγ@Y΅¨θŒτ’ΥbiΚ\€tIΡƒζ?½"9…%?@¬d.Q­q¬5΅ζΈθΊ»ι{^γΎf΄_»‰ΥΈ½X₯M₯©Ι’¨°gm{€Α)š³…ˆdBΧ1Φ?ͺ¨*ηΎϋm…rσžΦΦcœ,8'•C™¨¨Yvφϋ8ΣO–<9cπ₯>{Υσ£=θλοΓδΨ8€‰"…ΐ¨(fΉ'ήΑΉξV\υβθf{‰|Ύφƒ1mOžtρ|z=ξ.ΪP}FŸk£ω¨†θtΧπ ‹+ΖΫ?yβ² G^Y#ομǞΘ$€ζ£˜,όͺΜy¨ΰ₯u'£IΆξhnAT^–d θδΖΡŸ‰οQž6u ˜·œlAAΩRp–6-ɁγΘ+—Ύ’΄‘·ή,ΕωλzU‡€ V<Ή{Υ^pW7†ιHwν‰NNC>ΕtΩc|Ε–y³ΘHΏ°αΰδ?S+7χ%λΞΎqpΚέ5Υ‚*xRεΌυΦ ~~QέώαŽ{h^α,8‡ή›€ͺJΞ5UŸ)Ι¨ΐkίP(7Ουΰaml‘YΨΊF₯τμΊ ‘<ΟύηΎλΟρ¨²ς ₯Aœl… koϊP"ζήOG–8ΖΚ©¬›PVπ­‘^D?Ÿ©/–6QΐψWx8ΰ πι” ΘK^ρyΣ©€9XόŒŸyΧnψ™›Έχ½ώI7"³’ζ€`Ν>©όΟνΑ――5¨rκηKφμzε¬ς—Ž+”›­$6`ht{c”•‡²Β\*\”'νΥΨ}zδ,δ {…F|Ω8sθMρœy45όž„žΓQ©¨y›Σ©—R”ϊκaώ N¬Έσ–/ω‹NEΥAγέ­ό%ιιv!qj€ΗCΈα/L^r#ο“Όd”Oxx4δh£|Βh>Ήb•Η¨ojͺώrψΫ°·τΑWe Ÿ/ό…φβΔEH›:¦h‘«"g2Ϊp–ΟWΆ_ς΅‰A›]’lύMΡ·hΑ‰#’Υ))Ξϋ«·|ήϋύœrΆnvψΉPOΕΡΈΛ}Γ₯qΧ“šπ¦Gα₯(ΰδ?Ρυέ@½¨T<;=† RpŽΰγθΔ’=ρž(—Jrq}>a[3Ζ'Z0Έ¨.kœžΧ^x&/Ώπ‚r|4Θ―ιhεϊi»<η„O^Ž\Dϋ˜}ƒ]N|Άόj~¦7ϊκε"Ηn#"܌J‘N9‚y‹‹―»ƒa|Πθw$σq[Βη=Re<Αfσk£υΏΝGΫTvΣΊρhsjΌ―Κ=”½όΘΖ³²½F`·[oφ(fœFΉ΄y–6>jΩΎ'ξ™cωΥjM4βLΕ8Q]Œ„'‡λ}φM³₯΄.ιSΕ%V‘Z£ˆ„€*ΌvŠζW7~ŽVi \Qˁύοβd²3λ«Ψe’Λγ’Œ ίΒ•¦Grκ¬D‹Ό‰tjzW΄ŠΛ8‡— ω43#wπd9'²3ψϋ09―K΅›ωj―ό“`:±—œkψπ‰ΆΛΈtˎŸM%'PZΘΝE9gŝ_όKJΕWn%Τ‘,‘š).%‡ί gΑς¬αϊЎžΊ›oΔΝ{ΌΆ4_3ηΪoΡυν7yΜXδ–U’ΡΤφxϋtφC\b’lqτέd\γΩβH4ς\ϋ4#υ}ζΫ \|ΑΤHήμS§Q%/τγΞ―ίΓυκw―ψΥaό²½xƒοŸ½Α7ψπwψΩ―.‹Αaς‡ ΞΘ’{²$œKοΡΧψ€ /ΣϋΕ­ ε–T υRFψαOφ©J»eε'Ν2OQ$ρΩ›φEΡς=`kyˆΫ* ζfXiSKρ]$¦#4œ»TρκκSS%³σVŒφ΄ίΒΡrΚΛ;Η>ΈŒϋOΏ…?όαy^ρ8χΤ ”“‚s‹’Θ[Ώ±GK<‡Rp–JS$“½©§jˆVρvΥΏ§5?αώNΟώΤΙ²³œUερΊŒςyUm7:ω ”;«ΰΫxEχΈ°‘nΕΖ )‘λ:EΈϊ?“ϊ¨ΔƒxϋB†Ζ“”-Ε Άz\½w3Κ7"/yΛηύI§‡flI4γgήΑi—1ήr ™,5 ξ*Ffώ{|γT[|¨Ω€ΰ¬9τς%ψ g%$HŒ άω»YάΤfo‡‰τLς"Ηνž|nψ‹/ς„§jέΕ!εζrρ“uoΗeά€ΦYφ —c S.y‹žωƒ+ΌεKΎΠιͺξ` ί­ό%μ7 θh ΉΕsΟ_˜ΌΈ‘w·P^ςŸpσX¨’Œς £ωT•‹7FεA£ω΄hΨΚ0ΖΟ8τ=σ³”ŠB€ Š˜μF›rΏ½‹œlΐΥkΒZΠ³φf•Ό€P΅u‘;@ΑIIεΘ23γ¨ά¬¬T­œ‘ŒΩ6ώ˜ύtτx‘@ξκFWHɘ³¨lΓΜ’°Έ ΅Ε.i Ήφέΐ΄°ύXRn– ]Βμ­ ˆxKΑž―λͺ ½!’sjpμ`Βhσzh(B—qοΚης±WYŒYαΤρ£(Ȑ|šΗDZκ{‘TVŠ˜°Μ <ΐύϊ‡:JqόΝjΔ}‹ΦϋΈEk§5'Ž"3#±βŠψμ$ν0n½Ϊ‡­|^SNςsσ‘œbAB\"₯•s:.qtbÏπ¨©Η‘ρΦR…S5Dg–΄όΑΡIΚϊO¦°’C ΝDεΛG‘—“sΌ]±qڊρΡa >kΔΣΞ·%‘ϋPP•-¦DWΣcEžx:ξζkȎγ­„'‹ρ\‚”²σ8›c§0”ΦγǚnΰQ»#—!:OGa~1L„Λ,ιEs8Ϊ[ΠΡψ%YWQ¦χ­>ŸϊAΡj½^Ÿžkο»^Ί€τFψ—ΧH>ŸψK5*ρΕY—C©]ΫςΚψ’ψ’sΟ=":bΡ’"6PžυO»‡.«}㈐[_βr’ζΒ1Δ‡ΣΈ0πOm‰ΨΏŸδ‹}|±Ά=Δƒ«·`₯ i,9Ə%λ =ψŠβ΄$SιΣ§»ο ΆΎ‡κ[ΑΌC#hͺƒd‡’κmŽƒΞŸ·Α+5Ε§{Άϋξ:‡ΥΕξΓKgφ“’)7>>Β­Ϊ&9AΞΑs(-.FΊͺΡΧ\‡»νιδ δΙ8xe™qP@#hluG‹αχX_[GrΑ)μ?δ©|€vκ2HF“žβy’w%εfp cYΥ€άΜ}εdBr/Ÿώ.Ά£Ρ¨°°N‘– Ώ.Κ܏q¦1okAΛ¬T±‰ή=ξ9ηΘΊ?mhttKk.θtLΜχ†Ÿk&·ΊλV6>ΈC‡‹s1>hd[_ Aaυ”WΫη γθlΎKγrώ`Οl„Οϋ&ΟŸ;ΏΜψΰyώnοM₯Οu>#σeΙΫΒΟψυ•η―‘<Ϝxώ|Γ…²μΗαRϋFΩφξZΈΪn¨Θ€^ Μ1ά|½Γύd Χ†…υP$$ .RpΪiBj<§ΠΖΝΖ₯΅S:ΊλΡ;=S>TgζqΩΘε‘ͺΰZΚΚBx6Riέ4²²”N‡―α׏ξΘ·œΗ/i―6Ξ:ε!Όv@΄ Mλπ7\CΞ‹.ηY[[•ύ’g™³ͺt{B”φO”1~ρΗ…Š1*-„ίHλΊΨύε‚²#—bΌα]Ή™Ο2†«ΧΏDiΙ7ψymRF–¦EU=υqΕΦ]ϊ%_ΊΦŸϊυx‘0Ή'cΟ^κ$?:_ϋΑ¬P†Ÿš› 'WΛy΅Κρ6ΜX}FŸk£ωΈ5ύο»·h€KLF*+T‰5IAܚLl’bͺͺοšΚƒ‡ε,7/:)7s‘ν7ώTΟμΞοχQωΡ§’r³PφϊfT“‚3·eJβ]Ϋ#t] o•tŸNΌ– ΄I‘t f‰Δ?ήVϊˆζwWƒ‡‰₯N ωήGN5Œ Ρ·%~]Υ‚δLοΊ±τsψΙOΞƒŒΤc’ρόγ‡w)_1RRΕοo“Cμ’o~?¬G†Ύ[—ϊΐΦπ[<ΪWsΌςwςŽe£εžR•PAN„η-„y ίφΪΟeεfΎ”ζπ¨‘šκ’Ύ*ΚVyuτŸ"Ÿ^Ύ+eυ•rε$eΎs₯R‘τa°wύ΅Ωjͺ½cVdζHΈ%!Έ—™Foαg΄IΖ³3&/yΗη©vΏΡιΉ%`όlΫς3ηή%«υŸ«ω^γΕΟQv¨BΨψ‘’‹¬|‘ˆŸi:/ψ—Ο¨œ΅Ndη ΊrαΆΆ»°›(‘SΚ=όΕΈa4Ÿ)FεA£ω΄hP…1~€ό,9yΉbWΝa°γ‘ͺΫ΄oΘΚσSu:₯Όd_νΞ P rL΄Θ» t?!_4"cJΚλ볘ZΦR³l§ Y?=žyP\0΅’žŽιΙΘ?)΄`ms‹ΚΖΓ%bo¬\Θπμ―*#ψβ‰ΙD<-n+mν€Ξ‘£Id7½([ε–Γόΰ‰Ξ9…so’•„„"£aΞڏ“τ“άμFŸ³‚³…ΏsσψΌ6:Όλuϊˆo!…\₯‹₯…ν²sθ!gš>γΐΩ·η†OO ™)ά/«Ι ριmυΗhR²:χu-:Κό€dvφ»o#K£ΞΘx ²θ—JGz‘ΰœsb?Έ5*ΞΩښπ”ιμ.Ιϋ¨ύφΩKV$νO’Όή[+Ησ’σΥ·ήFŽ}m_V7e”γ0ύΜχ>ΐηχ[Ε|ΎΤgΌΤDλΏ3ό\λzίυΣ%δ0Ζ'Έ…d#|Χώ+[Α™YžΓZ˜ Ia;†Η3Ύδ/Ύ€xˆΗœ: ,‡J{œΜ ΓηΠu‰[ȝnΎDωθΓΜό<ηΡf—©,ω KΙ)ΌχwUVdŽHΙC:Ο§£0όψš­rΩ“UP†τ A₯u™œ7ŠϋύrΞC{H ;Χ|>Œ?.Œγε‹«ύžœSR‘Ic8ΏεjIϊΔ’‰ΓoΎΚ\nυXν"γ3Pr<©Ι‰ΈzΕYΑΫ”^Fnj8χ76Γ…‚³Oο‘g.ϋή(SΣΙΙ”ΞύηΛxd/_ίψŒ”iΔ]€c9yWpE™5βF?QΉ™‚£Ββθ―ΖC%ζρύ’΄X‰ui~ηΧ±Υ(-0’υf{ہUΪ@Η ΐ\ΫΧhLp”ω“a‘q£νΫPΩΩ§ηšΙ­κ‡SΊcツ„Ϋ«λρΑ9›ΉμUˆ³R{dT ŽΌ³Ω„«—όΑη}η©Ο}™7ΏΠψΰΕόέήΩ ŸΛ|ΖζŠ’ƒήΛψυξ–ηΑœςŽn¨v;€Š]]hεώZ΅έδ}|ΥγB1KJΤW+ꍳ}jEΡ›hΙ~_―¬Φ”Β3MsμξA΅&ρΡΚ9§χλ~ƒ{£\ΉΑG°mΌ‹3ΩΒw‡½{νσ-!χw##Ν ε)š™„!>Ύ©4Ο_ oQigρNΩ>|*ΩBΞFb΄47ΗΘΨ^Ό|βMqέՊΪΗο“EgRVH”h„uΚΉOFξό ₯ϋ6ιf-a9‚*^šRYM΅ΣΆωΎ˜8ΙZΊβΈ)Ž’’$§Wξ…EU‡ά.oMωΗQ}x?²2Σιτ7Z!!ΕpξΣÞ(‹ΓϊΏΛ"tGψΪ Ϋ¬«Ή»‘ηZwSŒΤgτΉ6š#םŠfκρ’2μŸόίΡόώᲘΙxοίό•ΥL—i5#"θ$*)’ν_5H7n―~y&m˜pTΞZ n#Έω9²N#»>΄‘BΧΑτ !YΏό8@ kΌK|ωΌ΅vΊ›{Œg…Τ†ώr+8^Bnž6¦\ΧΠ‘nο"γIU<0[Έ―Ω₯yΘNΎ\™ςˆgγ.FsaΛ²YϋyΛΛ9²•" ϋΤ·π'…oaγπ=Ώ¦uΈhβΗ†]6?o²[1ΨξάηC}€'g]ύg˜X9£―|;ΑΰΒ~q|ζJnΖ'w.bXΑOΚ)|χΘi~s_Κς8ΘZ~HTcΔ~£4o•Mβ’&Ιβάq~~I―β5³ύ¨j™ΉghΎƒAοΆY†NŸKMΖώ¬“’υΊEtυ_AoH5d=œεY΅₯cCΈD#:LZ=! ©‹ZOE"uΝΥMΘ0— (­LΆd19Ρ†^Εζ=šυ Ω+x6°ξβϋm.ŽΌ¬P^ΔΣ'M˜ ± ψΘ~Υ’ηΊ=T;Ρ-ΡdΚ*–Ι™θiΑθΜ2"βR`Ι͐μ'Κρœgq’¦G†13e£MΒ€PMGΝg ΫιΞΰπP/tJ–D qμ$77?Εb)„Ϊη€<¬¬(§Šty₯9.tݏ[16΅„°¨8˜,ΘΛΚ πeώBΠ‚ΰΖΡρΈΞ!MDξέΗZt)­c―ΉŒ,b ‹=M„ΗBBΔέι‘λ˜™RδΗα3―)”›mDηSΨHG‰³Μ–'*$ζ{3#­xΤΛeυ₯>{ΥϊϊΑžΟ°Οι9ςζΉΦωΎ%ΞŸ Κ εσΏD‡ΗΛβLΥψύ$7Ώ@–xΗ‘“,τlOΗψ’ψ’τdβ₯―Ώqqš ΅>{€BΓMτ-9dΑMυ~αKTπꆓEύΩΑ&tυ’L’^Œ’\Q 4£eχD>߁žŽ>δπς“™[J Ξ­ρβuσM’Ώ}υ=ρώΈuΓη­C§!‰N.GdB?iΆΊ©2Γl–ΗΎ‰Zt'WyA­ά<ΤF}`΅!’,T–ςiLE§πμ(>½£nDctΖ’guχΔ‘¨H4ΗfΎ$ί#Ύ αηώσΟxΥσΗΥνf|ˆJG’$­Πq™³­i)gP!+ aάίωeε˜kχ—/'m?2χJ₯Y16c:όΛ―M؟R)σρρ§θUΙσσ˜_ε>°qΚ±ΘI~cs_‰J ”gKΚί=χΟθcΖφr>>ΧLnΥθn6>h€’δf|ΠH-qό³­cα–2T–Κ@¦όS8V=„;€dόU?Ÿ·gΧ+Οϋ˜”ω:)7•Ώ/L>ΔΥ―>ΗKβ³ξΗ; εζ1 ψβΡ5YqΊ΄δϋx­PψΆ›“•=x’2¦¨ί°Όδ Ÿχ# ’]z?SA³νψ™ŠzΊ™žυp²€‰iτq¬Ω³2±cΡΚ{£rVmέC:pA<1܌βκ³τKž³βiγ]|φαe΅^‹²bς{Η_|“'ͺτ|›rg* ιζž:lΚH‚ΌΧoy”NπvUœžωƒFήπ%ΏΠ©Q·« Ζ_TΘ†Ώΐ·ώψ]LΓ»ώ;ψθΏώVU―σ “—œ1‘ΌNyW« ½aήρ3e©>ς eQόFω„Ρ|t•ζΣ Α9ˆρ3&ΑΓΟΜ( ΣΪ%7Τ©±»UŠT^–8υN—Nšv»LˆˆŒ³ΌΘ]„AΏRUU\LŽQDΫU Ίk*Wpέež­[GΏΒcR:JJ²+όΩVfUΦ–αK ­’5 κN™tZjϊbš εeœΗ~ˆšίXC(Y„–τqΈΔ6ΪΝVG–§½rώ_w„©ͺy’1‰…ά~Χθ‹›‡§ρŽ“egO”’ώχ—ΠΠ©Pύ·TαPφΕ`¨ω>΅» ­=κΒ~Ž‘—Œ“Ό‚[4σΘξgη#>MrUr$%e:nύ‹ŸΏΟο§aπ„”ΓΎύυ—\*9ΗΔJ‹!64^όQ9Ψ^u]ζ>€…ΣBΎg©’i˜νj‘z3tέΏ*EŸφ…‘‚σ~>‘­χ.YQ`β˜•ŽšΟΝ’^Φq4ώώWx$)wί€Ή7D?ΉUώhδ”§6» ΧcύΰHΆ_ξ½xυΎοFι2Ζ'hAΠίυΏΔFˆ[r4EGχΡΗ£˜ΑKhœΣHάAŒ/gσ#_βz;Ήκ0ŠδΑʊΖO/βQ»š'e<’˜ϋΓa/Ω |£O―α΅Zαζα-LŸϋc-αΡι€Kρya#KWgη8vzNL΅­ͺδͺB»ύg2― φΟ_χ|Ύγ4fG7:ΆΧLM°jŒ%‰‰gΨqL ΣΗ€œWP‘/}°sμƒZ<ν~…N)x‰ίX”~θrHΑ™ίΛ"h}|ΦΗβMμ$’‚³ςΣ‚T―tυΧ{δu$‚΅nΖ‡€h3=A‚›Yηx#γ«Iω7‹œŸiDΧj*E“3/Ό n0ͺΗΗ°€€“8(™Ά‘²ΖΗΥΧόΙ―“’!OMWΊΡn“V6‘wς2ŸRΈŽˆ.ΑKϋR1>·„H²ά,aΆ΄Π†=U²²²Œ`υϋλΉΆ·owΛ­l|°? ξ|ξΗ휢[ψ,5σŽ6FNΞ/rJΛΘZK‡ΚnŒ^>δy͏δ–ΏφΗψ`tώ'Ÿ±ωƒŒxΠ{Ώfς|Π?€Ϋ”@fΑ9PgΒΛ€a ­²L >ΐ]υt9PoYΉK«KΞu“‰_ϊ/Έε΄ΌΫΡν Υ―°ΦΠt iΙ?D!·E'Κ$ύάώΣ„A‘šΫ°•‡R.žάPοΗψL΄ž]šh‘O/™V[£’o“Ώ«Xqρ f]έM9π*εζω‘6΄wtΐ6G•„ΐ•‹Σ§ …nެ»%‘ ΪZ0ip#ζs­›ο3hΦgτΉ6šΟ r5ιτ"Ÿf²:^λ&bΌ~|B±ΎΨ/u’5«YŽ”–Ψ΄Sx5ώώ­­¨v”{¨‡’‡΅ΠΧ`Ι£ΥΝ”"U}ΝΙ(,.σΞ’η± εcΟ₯»La:ό2YŽ£‡ξΰΑƒ1i{h-s…D_r ŠIq9=CPt2d!£,Εfiύrcύ EΚ― ^υτΦΓΠ‚k“Aœeηɞ­HuχŸ ΤœWπή(­’«™"δ‹€€<#‡ψζ)-?$ŸP±@'Tόή‘μΦΆ›€π^Œrώ;q,ΙΩx§΅IΚyΙ >ο?:½Δ‹ρ3χ@=?S“o[\Π<Α#"RΑγ4t<Τ₯xΈσEΞjϋωogπφι—ˆgΙkτ|΄f_vβ›ΘNΓΟώζ7ͺob(rŽ <α\hƒhH΄\HŠ}!βύ Ρό·.ώ.Ό‡•¨{tUή`!¦tΊΈœ?8₯τŽ/ŠN'r€Ζ_$$΄―>σ—bΌωίύX>Ή£πλπžΫMi!L^ξŽν"/9Rο=ŸpΜ©}o”O€ω‰•ζΣFA#”ρ3 PA[ΔΟ’ςJ‘+ ΐSνθκ<€iyηW—5η’ΌDΣΈΝvΡHˆδZ"MΝΥ?‹ρvŒpS€’i¦›Ž‚€ z«\»ΩMqS_Fκ9Ω:ߌν!jG…ΙVΌBαoniBQ‚Q\¬˜[’‡”’9KxζxRΈ]°/ξΖΖΑΎd OJ²2…i§­Ιtά Πτ4HJ%2aΆ:|>ΰZ›~•³¨t‘!πzνH™Ο?,aHχΙYΉ™λ½…ΦΆrΤ”H RJΧΧg7”›Ή€€‘υH‘Φ^{Υež’’ά8UήΠ=€™#Ί$%­χՊmŸγι³R-¦sƒΛeη)>?Π„9+O.ŠKΛΕHΊhqή“‹’¬5SPq•ήE¦όΌ,YAΫΦΦ`WnζΣOγAέ#δζΎΚ§1₯X4-‡κ©+ΦH?Έ _W°ήηZϋ‹Eb£|Βh>_ψ gU‡{Kl°ΪF0³<‡εΔD“Er²š.ΉΌΤJ Oέ€ΟΛ‰΄Aƒ«ΝΕ·©:ρΚYΕΌwγ¨C^α–ρ%σ₯”μ“±ξ―ϋάIΉ™‹¬Ώ‚A9Yρ_’e|΄έ•›Ε²›Ϋ:PF ΞάΘkR|‘hΕΠθ)”p0)©ζf v‚2r(@tΓ=]’׏WΟ|~rŒ>ΙπJΚIHH!z¬D ω^Ώπψ@odϋgΈv»‰hΚD‚τ1€¬LΡXvPΆθl}τ₯SΜΣXΦΪVHc.·θVˆ΄τΆΊx{χz–όσιθ?EO菀¬zΖ‡„HIύ€N&αOΨ(@u–h٘λϋκ‘BGkJnέQ¦’"|ΌΖΖΓa Ι‡’#Εαf•±?ωuŠ-ΩRMθ§Σ2δ;…gъ‘Ω €qΑ™Δνd_£7;™©Η•ΎF!ΚΧΏl|Ψζr+Ό{<ΞεΠi/΄©GιΊξ<@.ΕoΪLΜ‰τόψ L#ϋ½ΰσ\Z£ςΌ―σ£`ζΧΎFηοzς?ΘOˆ~γ׌_\g0,ΟλJY/xώœYp–`m‘YΚ¨qMΛ=‹ͺDiΥΆmw4Rν€ :Ε)Š›‘sŽ;.ΪΎΦ-„Ρ_:f^Ύ±{b#έ―oΪS*}«tς^τΣό„›’@auaό+|ΦτHL`AF’t’ήκxι.B˜:ς·°τ,U#_c!_Ü SNίWδ”n<^<Χ”;΅β8²MΤ@Ι-O’ξ§ΐ©ΧΉ¨Οθsm4ŸG²]Πι1Ÿ«νΈ}Ρω9v•Ϊ/α“΄φΝ-~pλ…Q,Hϋιύσ-chk{†#yάF3rΙP š#Λ)sn΄™,Τ ^ύMΖΡcεβ?Έ«©δ'$ΓψΘ-;―ˆ‰CΦ©}Hζ–f'Ϋπ°;ΥΥ…0νY{E‹HdUt˜§w Ktb.wRmQA—Ÿ ––Hη– W·³†_̎Ν¦ΣΗΣS(γ3OΘαO‡Οςσsd±ϊΊλŒοεΛOt\o<―GJzIβxI5=εcΛNq \2λΖ2‰–žλh›§$iΒr~σ2*9³ƒδφ…ͺ&sψ/>ώͺ$₯bR"y0 …’E…?s˜[R―R6Λό*‡ΠI&%žΕ³‘ €Ap$YH-”•ŁeŠ‘;ω»ˆ©ΩNp«–ΧΞ²jΒ~ŠΏΎ„[NSš;£ξΦχΈZ8ίΑ›Γ(Υ*ΦΒ(ΡΪ\`+χΈL5ΎΈ8q@60Ζϋ:4WΉ“ Ξ<₯QηΕvt7r³MΎ]΄γ0ŠŠ ‘b·#:œΐ!sœξqhD’ˆΆ:W9{ΤyΨΙιAΑY™’₯mέ_ωO°΅΄` oΣ“ΓŸœqΛK/€³@•/κα- ΆΈYΦKγOXd΄Τΐτψ€{‘>ŒΡ€Ν²ꞁ~ˆν Ÿ‡Ώ‘ώάΧζžw%’β›ε ³ισόβDϋΐt­ŒΫ©άd=ϊβOβdz±`)~_2μqΡ›ϋUTΓ^Rή|ω·?λΥR¬[^3xχGoi¬ΊΕρΰϊΌ3^ς•q^ڏύΤ…,‡Έc*]U-α₯™Ynw0­#K²«bΘm…‘Έ1τφv‚s%!5χ0)8sΚΒδbŽ!=Gœ,‘Ύ¦ί“β―ΫΤ#xŽŽΡ3WΘχSqΌΕή$g‘e zΞ8“–M‹αLL…€»=79κ‘ΰWΖ\Žc/ΰεŒηi!ŸLωͺŒα""εFSφYτωΥ~†…σΡx@cΎύδ}όœΓαΌ³βo“hψˆF54‘-α9†©EυΈΠ£~]ΰ,FWgŠ|Λ₯\κĝOΐ#Sœu|~XΩ5d‘ ΝάφΠξΐœΛ©TΆq^wbŒΆ{ٟ„€Ψ ڎz5ƟYzΜ8*#κΨa‘ζ2Ϊ|Ε3Ϋρ―γk—*°W6&₯,zWzχoώΕMΑE7±‰ΐ•Ε’«ΝΞρ¬μ©Φ Άρ‹ ]β&d@ή h~“]ξωSžb”Ή­w8­Λ*?θ[Ή™KβœΗ<8S"Iφ4p΅₯Ÿ7H;d„·€~7=7ζΣͺŸž†ξkJXpόeΪJ=QΙbΎ“€ΰ¬½GΗη±<³χ΅Ωt:²©ƒ<Κ©ŽLώe(:™…φ»*lξ•°βωsΟΥwHW]/Σ<&EMΟ*FΥ oμ›@IDATϋεηοq‹υάTzG8‹Ρœ»‡Ί›.<#\‘χφ‘Ÿ[ ‘‰’γaόsΎ0Ձ{’xgGA%φ­ ߏFϊΡΜ§μ£]νθϋ―LDVž>Κ‘ 4ει£οv€”˜Ι)%:™GύtW“&§΄tΕp“ζ‚'ώπΊ8xΠ†ͺς― :»S8·€ΦΦ·ρ›Nον'Δώγ³DĐζP'05­χμδ“a„h1khŒ‡I%6^ςΝσVΙ)ΙGΖgξδ'Ÿi2H°!‘ΎŸχi_βY*Η#œ[€s\οώωoΩ8‹Ύœv5qΏZΤΌχœέŒ³%οΖΠΪn5ϋœΏa~±h$ΫΈ‘€θIes6ηFHsΙ€στώ Ij”—ΆPN<;θdΧςK2=/ίCu4–οΐϋψ—¨Χ<χΪΑO~aγ%8ͺ‚·gΌ€*ΠΥkˆ'ŒΎ™ε ³ι€Κ˜šM'•DGΖgξE|–iuNf»ΡΣjpnŽΛι@ΜtΝR/iζθ\£mΙyd ’T₯Φ*ΚΝb‹4‹(*8o‰ [™ι£¨H-,w»(‘ΔBΦcYŸΖ΄zr6\'ېδJ’l₯H’ήUuεn‘±ΕQ­ΎΠ=r jζάΤΛ8*Ά=. I€`2‘ΚKνuN¨O-φsJ ΚLcΠΐ)Q£,~ξ[¨.“,px)RΆΆ¨–sŸ»B˜—,ΈK-ΝΝ8TtŽ·@KP »ψύΔD4¨ξnˆΪ[5^d·£€ψ¨\JOγ=Ωo•G±’6A/YϊmpϋΈλ;Έdΐ©‘ϋΪμσnV.³_|BN74Ϊ¦€“₯<±±68€w% ›ŠRκα׊ΣΡώQa3ef‹χώbΈ«/V Š5YGO δΝ;’²  ΙΡg%HώŒζ8΅CWηOyJΪ(DΣPS›aNVW’xσ‘Εάn*ƒ«^Z:²HahΤ‡β@ ν`‹α„ά€“³΄θκΈ―]²ΪΨΰ& TχΛβ¦`I\/€ςΜήΧ¦ §¦Ύ;ύ„Œκ …ώυ4ΪαWδV)ΘΚ£9ήŒσ`ž;ω ΚΈΝό|e>}τάεxΧgŒΟ&1·Hί†’Έ»$ ŽRΤNkΗ:E'P uΤάΞSN7)/ωζykδt|Η0>σΦ$ώς™6―”œͺΒƒ+΅JπρgQ(qπό¦»”Kξ>ίΌ€€ρœ•".ΤΠ[06:ΑΝ ͺΎ1)Ι>ΓόbjσΦPŸ…“!`Ξ w·[8$g˜‚τƒy΄ΛPΥxIžTn±ΎLΘ'ΦιE•ΫέΕν Ω~±\D0}šo+Wσ#$™"e‘leΆ¬+g]@ήζ Ϊξσ«ΗLγ²FŠΤ£)ΕΘεWΞ‰ε­O’wͺ!!3Šf|Ι¦γτ‚―ι!mχπC$Ζ\F§Χ΅?ρ.Ζb AwpNωΆ0Q£άΌ4֍Ύ~zΙ¦I›j₯ˆ4?V"Τ]ΦΘSCaƒΑ›•D7ρζ›σxφψ1dd:HεSε’’[ώ‰Ρxη­kΊj Ρ…ΗΘ’¨˜fμZΫSDP•γ]ǚ2₯ΉΎι!\ΙθIΐν`΄ σρL?οf‹4˟fΣqrnΏpΩn¬rkYo«ϋ‘2ΧϊΚ6›+CZΛΎ’lαuΖK.iγςF"Mγlž—6ΦόΌ'[02x ‰ι4隐ΜlšLοCF6yx·€‘Ηu¦kβ)‘qžΖY,Ιδ&…γΘK’νͺ•θ4•œmΗ¬Ό5}°ν b3θ-J)½»ξ:Ζ—©ΫS‚4>Ξΐμ°dΦJsi[OόnΏν’ŽΆEζτqύβώ4d‹zς“·π@΄jœ(X²§(S‹4In‘lφ€38ν8(η8KŠΔŸ"±κΫΏ|Ν—Η_GγpΚ!ωƒΥ¬³-ά$Ž‹KwΙ –ΙjΩ]™Ηꐓ…\~ dGdτN»δβΗ)λ‚άΚϊŸ7ΌρώA›ΥάΚ²ξ{Q8νV#;ωUρΟΘx>ΐχ#Γ‚n7_oQyfίί=¦ δύΑ0ψͺˆŒ―_“κ–ΩyΏΗƒβx^u2―…ln>±0·ΰΜ*Œm¬­[₯ΗΕυκβΟ ,;KŽΪω1τT+εAα±£ τ³Θ-=‰ΑN 8‡Θ½<„Ρϋkr!ΚU'Θbrm£κύzΊΓ4εΟ[MNΗσ•_Ch{ Ί–"Pœw'2¬zΫkeδΈTž O’—Κž₯9ήE¬ΣbϋτΔ|dΘJΚ€.G]7T(Ξ©„E£ Œ|‚™°TS$e+’³Ή^•ΞΕ«3_ͺδ’(€Σεωυ>Ίθ2^{5Mϋ©Ξa€X½†Ι–[θ?΄;οΦ‘εβ9s;ς(ΕWώ—ˆ«ΏΎ‚Z¬~ξ‹ΈtFPΨδ€ijΈ§;~„εΙ‚‘ο™/ώV#ƒ†{cH8N[ž_ψ’Ό;‘οΪ·clb₯vN8/ώή!ž¬.!”v©άΐ裫hvΥΖΦ]'ˆ/:3λJ’ΑQΪζf()Š+J=)ΥΈ]I υC±:GV½;9EΌξk_•ΥύTHyfοk3ι‘Σ0;λzύGwQAΟ ΟBφγψΖƒΫ}„Ζ–ZiŽάΒ#(} ά4JVpΆδω3 CsσcœεœΥŸ‚…οΠκPΡ_Ž‹_«$۝όίώ„9NJΙ‹xΙ±Bsˆ‘τηDσo ]δδ}Ε%b9σPGJΐ>έT/Ζ©³Λt‡)ϊϊΊ…tύƒ_FŽ,χ)8Σ‡QΡu]ΏGǏ“’9$Γ7ώμOQsύZcΕF†’iΎι`)ςΛ‹`#Λθ3€ΰά%%N+ΕΡ4Ύs‘5¬Ρ79Ξ`η’Σp΄΄ŠΜ}φښ›Θjυ:tž;Ž|na •χ•?ω#άΊύ)¦B3qόΒ Ό…l>ƒ­ψηοͺΛΧ!=χ ž;υ]ΪIAL,Ž9eŸI₯ a• y†ψvθ&uCN—ΟHay‘KOsΩδ2ς^Δg7£πˆΪvm_:}G?JU>ΪW―,|βSΠ?γ%yή9%ywψ‘ρ™…|ζΦωηΏ‰―»όζΚ-$œό:^ψκyy>}°ρ‘²H‚Kg‚—̏³ ρμ7ώ₯ #hω΄=]mτl%vͺxgΞIγAΪ Η»“‰Ξ-bfΖ\:N—_Ό€‰€Nyεf.Ξ,Ώ¨QŽΠϋƒ˜‹ ^’ΛW{ΌΙ©Ž$ώέΜ/G_ωc\δ>qίΕΈ±Aχμ/Ό†/)¦Υ…V’msW†κpυz­jlΌ€`a₯o+ΗKVπ„§ΊZΙgžΚΰΒ½ς‹Ωρ Ωtήέ™ΧŸQ»xα³AΞλr?zšό7 ˜Rr 'zΡψ° i.γ%kοžυeξŒ›‹ “^έ.νπ€dΨ’8K€’#…–LQ‘E R“biΊc½Oy‰–.šΑe₯υ}τ ³!†ΧFZΓάΚΣQ|Ζ.ͺΛ. a@GΩD*V{€‰ŠMmΘΣ9[ΕΊŸΊg^εΤUHΦ¦(ΜU&Gύ;~T§s Ή€ΰμ2ύEΉws:8ϋό΄1P‡ιΔΑ‘Šψ”,dΡ„KM¦r.2³ ₯…χπ©›ςrŠσqΈ[κυ'›εϊžMΥͺ{ύR¨ρφ šWδ£zm‚'₯8)²―ςΜΆƒ”Ώ|€y'yΪEΆ„%_ ΐcΡσNΨ²Γ£"‹ΥY΄·wx—Ν Op9šIg9ΏD#fΏτhsKξ ]ΌWήυκn»ί±¬;gΌd9/ΝMaaŠZˆ›8 ΛΎ~7–5Όd¬Ψτυφ’4[θbCjΞa²nΉi™WƒΆL€Λ;x~†,VŽΡ‰Τ—E@JYΎπρw¦-C‘(.Ξ‚-νRΒΔρ ν0ΙΛ»ŠΥU7πSj#τ1πZζ,†&;‹Ÿ#MήώψκόΛMŒMc(~₯i/Ο7ΰώp§Α†€hΙ<ΓMδλπΝτَ‹¨H’Ώal²w†[MUƒ»Œπu<}Θ)·)!‹?£zΡˆUνΚ1>Ϋ££pνΔβ©aG cΧPΧΙΏkΑϊϋΈ•υ>ξzϊmV1΄/f2kƒ±4ύΛ8Ž,/qΦγΜ»€Ησ¦ίόy»ωΪ’ςάkhφύέ@:3οξϊa|ΝψzϋΗσ>nJvΩ$Ožπ£`“©ƒ;Ω2}<‹ˆG.Ν+φχχciΙϋςΒHσfς[Ϋ“β)άΊ;NηϋkξΪβΔ'ΈΫθό‰{)ΫBŠ’‚. ι•όOW†ωv\«{έΕ*rκ{ξ£δh₯$g«θη’Αψΰ ΌύΈ͌‘fpiΗ<*/;έ%²|κDcΓ;¨•,·ρα}hξkAα!aή5ΚV†Οœ.“SπžΕ\«q•SeΫΟΘ:kkΓy€”r³ΚΟ#«\‘’=r ]²’an^»‰¬―žlŽαΕοO‰Ξϋ:>ΐΗd UΧωQ^ΝέZ”‘US^²„RœχΣΝΥgΰ­ΫγHΙKφRT_.•Σ΄Σ7—ζ!½χR9ŠWΓ^ŒΒYλE7‘˜”Ÿ… Ε±IAΑ9 ϋZ›½‘³€Κ3{_›Hœ†Ψ9‘¦nακΟ3ρuRVγοœ„"œy…ϋiEtjNM>τωT5έ€ΙQ:ρu}τv :_©FΎ”€Ž UkΌy΄γ‰j‘Ώ5WD}U’4‰Ι{Š‚sυιcς΅žΊ}‹ΚrZΙΣ‡±αšΫΜΖΠ+*^χvχͺ³ΙZ}—ϊΆoύκ—Hόήo ΚΕ Pύ2χ²ρφΏϊ3ίΖ₯#Rα3σ Ύψέ3J )G°ιοΘΚt-Ό›‡ο|γβ‘³―(<€$pi/ Ϊ~πZCώ˜ƒH‘”›ΕQφ2Π Έ ›k2ଛΠάQ‹’¬tΞόΉh|Ž~ξ‘'>Ε­†Z— ζΖK~σ<•˜œ.bοδSΖgbλXΐgnΟ{ ŠΟ‡in©Gψδ·4Afx)πq–Ε'Έί Y€“…ΆϋΈΥ%™=šO˜-Κ[Ί¨Ε`αŒcͺW·ΐήΈBΝρ’Έ^δԍΏΣw1ΏˆJqΚ͜Λ=ŽJEεH;χβͺ*„—04γW7ώT&z5ρέ/“e)ή‹υ2π8OxΞΫο+fyΒ[:³γA³ιότHΐψŒoO|Ζi=Œχtπ»‹ωl-R ’υωψΘH/y–=~ZINγ%_:ˆJδ­πΡ ψu·|“‘«(eΜ,ifέbff5¬¬NbvyN’[σγW ͺ€]%‹‰Λs˜šΧ±Ψ.kNRlζ~ TX4JTΦτœέ΄.Ξ #λy)Τqπn}3ͺ:‡θΒ‹xω; ―|λχιGΗίΊ,OΌ«γ™χΣ–,3#bς$€€ηΈe•€±LιvΩο€Pω©AΪJˆ˜SrA–›r30€Ιι 1†‰©’9e₯ψ€ψxεΔ«o#½dωπΣχρλύoxΠ%εM»4ιδ‘}œ%QΞM5’νΡ€ΰ7πmUQ»Ž!KŸήœZα=FΆό©JcGœ”έο³R³©’ψSžΉvP&y!}&βΆeτ05-ΕζΖξk‹žw*1½ψyœ99εwΆL˜θΧHεrb–'̦㊷ˆ_"γ«α–°¬ά†.•ά©§Œ—Ά’—UˆμCξͺw7XΑKzωϊ iο©σΞξΘEaeŽά/ŒΠb£q_ψ{έOž•$p »ψ Ο{K³ύh},sbf ²…OK“#τ±Η0#wφdε9W˜RφWTγρ·9RΛζO€Ng¬ 4–‡\«΄>ΔΛΓ)zΙγΆSζέκΖfΈq›»σ―ˆΖΑŒΟ©”›—Π;ς›”›IΟΨ_“5»ςIllΌ½ΊΌƒθQ±ž–bΝ.Jχ©ΊήΔEHΐpύƒα‘«:“§θίώϋΪάx)8Η­¬ΠΉ΅ύμ49ΔΕ"Nz$ε vΔ' Š0 ƚsJ½Α/ΉϋS―?ߏ(‹ΛΧυn(|7•.χ·wJγk6žοΩ)7γ“c/[pΕ")5οΫ·Ω΄ΓOLŒ[G+·7w‹ΓŝŸŸG__Ÿ|MφΔ”"Λ.ΝbM ±γ}²-Ά άςVtΣγ”ͺHθoςΛO “ΜΈ΅7±‰λθΫAJ―=ͺf˜TuUΗyzΟυ~τj™υ”bi 4GΛ›#_BΗπGͺ ψ,œL-•ΗY³d™F]ˆΚoΈ qίαœs(8@­œΆ“xmσͺΜάΌΦπu&S₯7ŠΥN΄φΉ•$Μaq•ΎόοηF-6$ΣN&—΄qSν%ȐMΈ“…E}Εoμˆΰ§w_ϋ7^ žq+λΌέΨώφΪΌ²Sz5­Jpa9)R‰§‹Sΰ9+W]|Ύy^IΰίύΙ₯ δύˆKΏcωΪL`φύέl:ΐήΈδΑΰ_³ρ|0ά§Α(γζζή΅ΰΜΥ}xd Ι΄KBll oytt““άΜ›β‘’’ΒLOOcddOžΠjW7w?»rΫ54ψΟ—κπ6ν–“;YΉŠ έnQΤΖζ*ζ&Π=©}GΠ«ππΐx}ΰrΣσΖ½@l`uy#νnJΰέ]ο’›ϋ¦™…άΈxDξ§]£ΔώVΧ¦06Ψ;‡©.·Άώhλ+E^|"ž‘6–0;׏i]YΗ?zχ‡ψsϊm―λΓν7Ž~ΖJu>|?’_ήρ³Τ.τΞΖΏW.‘²Λ-t ΙΓxyš²’ΈχΓu,͎’ώ‘hqωΊgε7IΪήΗΟιgΔo‡|τΙΕGF2•βXp_KYΥότΟQσSιΜΓΡ‚ςΜήΧ~₯³@Nμάΰλxλο―γΓΌrZ„nΎ•qœαEsS»άšgΒΘσGΦθ~ψΗΧuσβ‡ήΗχΨχsQσcΊΧ~μ9ΝƒyͺΣT<[%q¬Ή‹zυEώΡΫίǟΣΟΝ ]Ε?ώρU·`MΐΤC\ύgϊ₯•’"7αœ90Ϊ½tee “CΡ§Γi~ραΑ/4Ή>q6]ΕΟθgKΛB8—jΉ”~”sAήa`cSυ‘Δ’φ©}ϋΓσœh†xp†Ζ5\τ€!>“J™«Η΅ΪzΤΖ"#&ϊjαΒκς8υοnύ»” ¦ΖK&x^*Π¬œRϊ`:2>“[Λ4Ÿ Ήσu]ιi€$ΰϋ‡•ΩA<Ζ?ri‚Η,/iϊΓγ¬qάzύ/q‹ŠNΙ+…#™žΑπH^ƍΕ1τέ{θu‘'±!~ͺΖχk<‘J'yύβ)‘κ81π6ώš~z.ΰχSΌ€' ΰMNύAΊ ωΕμ3kš_¨©ΩxΙχxw«ΖKσ„κQέJ>SγζυΚ/fΗƒfΣΉIDŒΟδΖRσΩTG'ΏH5GΎκΕγlΖ­Ÿ4k"Μ­…‘¦Œ B=^’Τ4‘·τdi “€Ϋΐ½§“V*²žCΘh3FΦφ#+ιŠiΫ*ɍŒΆͺ”A€Π =†Ωq€Wnζδ_ΐΌκ}–―‘I\"γNβ") Ž9[0J“ΐ‹λk΄b γK‘$+ˆ8Ρ2ό‰b½9”#4J-ň“,Έ-M“ΒΙ26C’x€ΆŠΟ”•nH^¦Tί΅₯–Ρ ’.™:Ž?hE±ΓΘδπ‹+Α…oνΗƒϊFΜ†€ Έκ”’Tk*wDς·Ž>χ ¬ΥΤ «}1…₯8\u™q:i(h°₯c' xy"3OαεΛψτφ‡˜‹+CΥ™—ωu“f μ«Θ£IόΖΗμΕτδ8­κŒGΦΑr=&(όΡ0“Γ=Ϊ§‘›'ͺ©-Ά£νΎΛumlχ3ZQ!΅WdΞ³xρ~tv—›dA&„&—g{a„ϋξIn‘΅έ'ŽΣΗ:‰*ΐ…―nΧ|Œvš¬).Υε’œάvfΝςj+>±τϏς`²€’”γ¦9εσ§tœyωˆmν‘U ! έΔtg z΅ίšΈο"nN'Θ-Žΰλy—#zπp“nzΞ$Oΐd:SόBJkiΥHE)ρΖ'0Oό‚PZ A–ε liJΝΘ’iλp§rD>ΖKσn/u=l@ρ? H8ŒKί‰F}έ}tυ’]†θd€f οδqΔΠ@QRpΆ„—Lήw=΄%bEŽΘΏR΄P₯ŸΦ‚θ»;_Œ("7n ΓΎ8eΡKbήiT'+qsθΎχ!Eξ…žŸΑ4ι*;δ!YΣκαΕs"M–{Σγύ²Έ#ξαqΙaR4§ κo/ύΠP[‡ήξ~¬Ρq6΅C>2Šr³ΨŒωv•Υ”ΔδΡĜΰΦ±ib‹³#/ϋ. ;7VΖΠΫ;†mŽδš’ΗŸώHN§3Π ’KΒχ`>m$2’Ο`z½ ‹‘:ˆ#%pˆΫGΊΥ%xχλφΡ8œϋYΖ“ΜΛ³s9…Š8ρk€x)δ™ML9‘{žSΆ€―#K‘/[{zΗΌ(,Π#tc‹‹ομΙ§Pω$]3ƒXIDFB ŠTοS“AΉfΫοk“γ₯`·²ώΑΒώΑ…a2«^ΔσΔΦ΅5sθ"N|ζ„Όpr¬£U³˜&xήόx>€χ#©Ž:δ¬D±·“―9αL”gφύέl:^Μέ?oΓψšηΉ[9λΠUΤ΅Ύ˜›#W±‰I¬‘…ΒΔ„x^‘y?)ΤrJ̜sΠKZΌΈΓ›žςσŽ­Ψ6;GΚJ{―©όθ¬3ž’Wv»,°4ž˜nΒΓiRgά{€ΠΌM’ogYΫT%Ί§½―ύ“4ΠςΜήΧώ¦ TNPΩ±]QληΓ΄»ž‰Σ8z"GlŒ~<Ί~kϋf¨ θ·΅.)iγ4οJ_RΙΈ„β’qμH‘|ΊΜΝ‡1gΩιv4A,rέG$ΖgΦςY_ΣΩ*½θΊlΆOνjΒ¨Ÿύ—YAύO˜-ΗtΊίL—»‡2~±–_Lέ:lΌd 69γ нξa|¦ε³ώ¦Ά€n‰ΙΑΗΌ‘֞vνϋάφ+8“}Ω‰δJ<#sq4‡~.Υs:ο£f\Χn KΜ 9 ‹%»¦’#«MNWg“ΈΔμr΅ΫΘz‹ž•PΪΊo£Me2)"N$JηΠMΗE>V₯nσ‘ŸάϊΆΟžΩ%$EΥTœ/Π•AWο'Œt+ucλΆ46β Y*Nδ.ΗΰψgΉŸ~\M(Yτl¬%ΕίͺB>8ρ ) ΣΟΈKBξaξwJ7ΙRO3„ο!ςυβ²ROάPλ#}K›rlΙάσψμ‹Ž’p(σ.θ½3‹YiΊ?½ΗgŽ ŠdeρΜΛτsΙv©<"«ŸΊΞςL·ƒNΑ υu(Θ» `EχΟ‘ΣΚύΣ»1B Ξ=:©ςωΌ›ΝΫ,šKg†_™ r] q’'^’ϊ“%ƒϋύy΄Zj‘νKΗx‰ΓΪR^š{„O~γΐ €\Εs} Ξ»΄ΣΑ&yΙ@Ώΰ«ίp6v£όQdͺnΊώώZδΑ9HΙχπQ‘n.Ql™‡a“3rb¦EQp6Ησc˜š 1”CT’ž"‹Ξ"- ь»¬ΰ<‰©aυ6ψψ£χΚ Β⑨,yŽϋΉ¬sZ\υyT”z$—΄;Ηs/W(€ύξχI#“Ο‘ν?ϊ#Ep|γθκF¦CPŠˆ:ˆͺόƒΪ VϋqΏΫ OG‚<ΘŠˆˆ=ˆξo)*w4=^ ¦q+λΔ&· p»Ώ’‘[υ2SίW˜iGγG4Afxήτύ)—μϋ‘œΤ°gωš—ΙςΜΎΏ›M'@gξύΑ0μ;""γkφςx~Gά†»Lˆ½l½Ω΅)§3X[[CŠ=™Whζ”œ9 §ΑΑAΜΝiίn]σ`η †C€!°σˆM·avΠσ\H°_7ίwpύk8@ο λK£Ό‘σyνά”Yη~ ―½|}ΝdD§£ƒ££X€»ΥηQ–ΛΟpc5¨Ώ­V~ήΉυa’1Τ;ω’_]Wοώ½Αgή1`WΦ"ΰλω φλΖΡΪόΒΖKΖοsη#μόδK~σ- ε³.ΞΞΪΈ-ΘΣg–s3wρQ=¦ψ­Ξ\£;Ρ?v 4Έ^κσ˜°(YΑyveR±¦¬ͺ•\6i{+²ͺλ¦f[Pϋψ <šΧ\Ω\ΐ)Y{vK˜p6αNZΧ4k«.šΪϊv±\Σω{ΎΠ~ Wίώ½dyRνœƒυxPΫHv°75>‘Ύ,ψΧV±*†nlo€Χώύ:†Τ:_R‹}hψψ&†D₯oΧόzk^Ηυ»υ:ν;ΗuχdeΞΥI".γ9LsJqzερε:Ρϋθ:ή{η¦$…pL¬ΒΑ"ΙΞ―@ͺ’©ηΘ’φσ£?RΥȟώabβ#4q¦΄uœ“ΖhwhlΣ/‘‡r½?uϋΞς·QηΔΤ‚(S |žƒΪz[pd=mμΎο{|­w„ξΩI}©θ½…χzjΖZτλ@‘¦ξk)76n•ΠYΐΑaA@χ—4L›|LVϋuϊΫ9zΏΊώζλZλΝTΊ)ž7=ž7ω~€Ίkv&_ ϊΫ?˜}7›N‚ΡΜϋƒ”6XŽŒ―χϊx>XξΤΰ‘“)8kΫj~aC#Ψ 1<§ΨΜύΦΙ²soo/SnΦBΕΞ †@Π"pψkεΘ8™­+?μΧu+f0°―©ΝkΡήΆ‹•{χ 3rY%Υ8ϋςwπούoxυΥo’¬@ϊn7‚ΫοΏ½-ΦZ 6 ‹Ζ0„ΐnΰ/oόkU€=Αgͺϊ2/C`+`ό’EwOπ /i5ήΖ»ίiœνΰ³gΎχ‡ς$!]ΣήΉvΕ5Hsž™­~ُ†=΁θPZΖKϋΧ―‘βνά oεMŽζNŠ/ύͺ9εΠ™FΌϋ£·dΕsΉYΚ_\lH:‹Θ°μ{&›‹˜%Eάi_J3aΙ°G γΓψt\-Φ7ΘΊ4mξͺοdu Ι/š,qw VΗΰ$Ame_Β+Οζ³μώψΗψπAο·βŸ£° ρα”ΥV¦ΠΥi0ο˜d'#Œζ76V—0=؈q Ϊ9H°ΕbίώpήκτΖς4ΖΪυ-‚œ.ΞNη«9φθm\q±²fEύ½εΑcMΨπΊ+TΗGρ ―δ-#ΧL·ƒ‘Μƒ6ŽΏ{°/ήFΫΙKΫqηZ‰§)y©/Kϊ2\ΠβYΜLv`|‹Έ~;Ÿ#Sx˜L™GT΅ˆ Ή{yy Γ‹Ϊ[&³Ά$ΩΣβλΘΘt$EΔπΈpY_s{ΐΘΆΌXœΑLΆσΎ6=^ ²q+λ+ϋ‡δμȏ‹δϋΫ΅…qt}ί1ψ HΡΜޟώΌIe™=n7_ϋ]žΩχw³ιd ύ}•‡ρ΅Π\VςΛnαλRJεάάΒ™ž ίWΙΒ΄=vEEύ¬ΔΎ}ϋ)Μίuttπ–ύΜβ©E?σ;ΠόωT~ό‡mΪ­ϊ©Υ—Μ`0όE δΛGaˊGߝn άν•“s·³NηΒΩ7ΤΧοό·ε:1;ΆςΟγς™cHΟΝ” \I±F:jPϋώχρ€už$μ$μώςΔΏA LL†ΐD€ρΛlVŸ•bγ%Ÿ±A„{3ΦX’Œœœc \bυττπ!!!Zoϋ\βmσιΖf:·ΉΜ`(Ξ_\H!dή„’ΜΪ8Ζθ.ΆΔ8I©jaRm½3…ΉrVΧ\LΛWΜyFΪIiΧLΉt4φψ9§‘γ ¨ά ’πqv iΏ 6‘ΐ46;Ό,β=₯$ώς„$¦ΏιΜρΛ )©Ή…f 1ΟGΖKZl¬ε₯…‘΄βCEŠνδ%₯Τ­ςY‹§))'©/£ίΦΊ§σmm΄Ή/-υ‘ۘωnmΒm:{Z|½΄4ˆώŒK`π?ϋΪ4ΩΈ•υΦφ㽴3°ήPj³χ§ρχ#Cbx΄έ|νwyfίίΝ¦“ΡςχύANΖΧΪF²–__kΡέ gOžΈn?²jν»ŽœΥζgž‘ՎδΦhgŸ`rγƒνθά?‰ωaΪK‚9†C€!ΐpE ωzή‚3§ΜΜ9NΙYRή‘”ž₯σ`ΌΞWŠύσˆ€σα»ψύ8gKΛBl -δ'ϊ\ϊ†ψ`φ!TH|΅ψKΝΗ\#¨‘U£0a»Ζ/»€!MTƒ—L€Ζ’μXΨϋίΣmš§¬ΰόt+ΟJ’ΛΞγσd₯y€«Γύ½ŸšΒFΈGNΰ`Ί`MSυxά¨V~žϊω/i#ξ½½Ž(z‚ΧW¦0hΐ:΄e° †€7/Ή’/…'F`erΩ5Sω<Ψ―Λ1μ OΓΕ<εˆμ9zΚ ΐŠίΨ}ν k`|μόοK~W΄|Ÿ†§οόY †ΐήA€ρ΅k[[Λ/Ύψοi_w­=;ΝMK7 \ –Cΐ΄π/h8–C€!ΐΨέHJsœ’sl†ΝΝbs°_ίέ­g]νœC}0a†Κ:XN Π³Hμό₯–_ςKΞ`˜@€ρ‹ Πvi6^Ϊ₯ »Ηͺ%)Ψϋίφ7|hεΙ3fe±ύݏ½fg³y½Ύ]“σ!#ι°2†φϊVXkχw»j±wΚ‰N+AaV2Δ;šS„όβrΚκښ―¨{ώϊββ˜gύΫ !^˜׏ΐB †C€!ΐ`0 †C€!ΐ`0 †@#πδ‰`ΓfR?Ψιtς<σΜ3$žωήώ‰₯ζ5ξ\»’)ΐυ$3;Ϋ5ˆ3 †C€!ΐ`0 †C€!ΐ`0 …@Lt4/ΟάΫKΜWΓLNNa}}ΓW΄=y½ /‡―wssσž¬?«4C€!ΐ`0 †C€!ΐ`0 †C€!°ϋ `δδδ˜ͺlOOŸ.$$D“^{¦ΉΔN †C€!ΐ`0 †C€!ΐ`0 †C€!ΰΝMKmhx/Œ]e0 †C€!ΐ`0 †C€!ΐ`0 =SpήΝΜ*Ι`0 †C€!ΐ`0 †C€!ΐ`0ΆΙ:ΗΦδΞre0 †C€!ΐ`0 †C€!ΐ`0 ½ˆΐΎ½XiVg†C€!ΐ`0 †C€!ΐ`0 †C€!ΐf½9p =εγΐ~O]Β'ζF\B;­ψʟβ ΥXͺΑϟο£/°μ<¦φ]ΗeLΜ9=¦η.ΔΖη##΁θΠPl’b¨Θ­`VχΉ5'ˆ~ρF‘E—w#ΘMHC\x$Βx~YΕτt+:¦½σ˜’+qšΔύλΔKΖΣ©σ`~‹`ΌdO1›Κσigρ―ž§±ΛœΝογχj­)α4Ύϊν‘Μwέΐ~qέΊΌ·<§mgΔΧζετoάͺœυZ<žκλž*ό–Χ?¨ψs†ψσ_αΟ­δyK4σ}ρΣu΄όW»: Ζφ-<β):bΆκ#BlΖηρ;G+}γΔύڎ;cξΡb«p²ΰ%9ά/βE47ΌŽk}’jΆ §}Ε©ιˆ‰βΟatψάͺ{ΓzΧ)μΠΑWp²° ±.ן/μΐ‡ Σ.Ψ©D„#Ξξ@₯Ϊ7Κ©9o±Λ{πΏΕ—‡±όπΦQδO(ΗΩSω΄Π`S·ρ m|k…Ϊ¦ςΒIωΦ† A[υHNm;]>>σμ«8$5χb~qγŸA$3Ε/πnnΞ%”¦ζ’r³}γcχq·φ]tλT"3½™qv$ΔΨ‘“ŽXRJάnίωΤ1n‘ΩώγNδ₯νGa{KL(ΕΩ ηPQ}ŒxJpMώ_πΖu‹‰ŒπόφΦN)ΖY ™™|=Ιυ|:[’3₯ώT& Ψ¦ώH-Τv³αkN^³rϊ7naύƒϊΩa~Φ?lƒlG`JΘl%ΟKe<₯£Y4+™ςόηΟ@ζ l8vψ%TdΈΝ5œ)|Ϊ?ΐG}ΦΝ՘ΕqΟ¦c|½=MŸv/^8ƒεEθ½',VΟΙΙ‘Λ>Z1…ξΆzמ QΒχ*_g:Š*Rnζ\―‡β‹H@ξΡσˆ‰Γ­OΫ”p>5žLΑΩXμ2C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`θ#°ΉωD αι6<θC¨ŽώψΖΖ Ξ [*ΑydKΕRΰΞ?ΖGKΠM[·:IΧMΕgc ~ŽKΈ€Rn^œι@Λ@#ϊηζNM …¨ΘJΒԜΚJΎPΠ.±˜žjΗ°scsS˜_šGhD2r3*Ι ΄`=1Φ^‚ͺψ¨U•YRς•rσΪ;>ΒύΆΗ°½ˆ‹…Πq…(L·axΠΉσgidm·2SD’ υo †ά YWΐ ΕλΝ²€ν*―«·»D© RpvXV c’ηκDŠΦjιάβ4f%χΛ Ώ˜ζέΔTΩφψD &ϊ027Ž@fκQTfδ ςΖU ,η!†{$Λς@l\’JΉ™γ‰Ι»4Ζ(>›zχD0ΚK»§ΖͺšβΛ―ύ(u±*―ŠΰΏw§γι@λ§·NŸω.Φ©ύGΔΏΫΥ‘TΫ:Ξ €―MΛifάJΈ°ώΑΏ[vWΗήι|Ά₯ΰq°ΣyήD»™ζAeqIΜ–gŠ?MΞ*yQ£άάΫύj»oc-κ*]@‘MXΆu8η8ήΕ„I,X² A`Oσ΅ΤFs˜θoΗΨψ†{[ν@v~9RΔνι’ ΚQ::„&šοτι\πάQ Ξ‘‘΄]Jd""BB°ωd «λ‹˜_μΓ΄Ž…Ÿυ‘ΰ9š”,ΛΒX=ύΫ;ΨβΕ\€‰FLΈ°Ϊt}Σ‰%υσ—°d€GŽd‘"δZ„Ώ>ƒ±ι>Έ=’Σ%±u§1‡ρόεgΏ˜ψ|Tg]ή;!'Uύ©~ΏήmυΫ  τμΖ‰Ο.ΙΌΊ6…ή™Α-”ήlyfΣ©«β#Γmςκuu*=Y²ΠΊhΔGΩp <ϋCθγΥ3τωκΙ fζ©#]ΡΖτv&Λ°Ή†Ή5cΆCόζko<Νk*^bΌϋ4b‡•x /\>Αm`ŠιΏρaMγhΏΛμxΙΟt2—˝Ο(Q˜ vΧEο‹ΐ>žΟΦh|܏α%cΌΔ+Λ`˜Ο¬hοw\ž3s£f-¦7Ι/fyws=ƒŸb°χ΄Nk9 ŸΎA…ώO¨Nψ.$Dk‰vv¦5ΛXž€νˆ9ψM|ΎPX81Ύ0Α” ,Ί# gΌdΈ.ΑQ¦Ϋ9t~zν ™xρΌ·ΌWΠ(Ο{Οe ―N=Δϋ―?άΒτ²¦~—S"§~WΛTξq·­?Ϊξq–YΎ6-§Ιq+5 λάοΛ§Βϊ‡§NθtΪί' O…η}Je>‚i4Ydε™βO3σ‘ΗPš›%W°»ύ§xχ±Έhi©Ώ Eά…Ο!…‹—,RπœP-€–2΅θ<―;mžΑΪ οŒάf§†Ρt=4όϊ νϊb@IDAT΄NσΔ99ά Ϋ'pβε~€“υββi@j@ΑΩu<Ώ]νθΡΘ¨B²!ϋ7θκ–Π=xυΣΚ$—k 3ηaαΒ΄c$-άήι*ς/#;R”z΅΅ί‚ωK4ςS«q01 €L’c΄ΣFΝή—Σ΅(ΛΟ£ ή‘ΔOv†N’–σvΊ˜)͠͏61;PŽλKšυ³Ύ6,G“€'ŸAIΚA·­·*Rϊρ z—Lfμ!™Ως̦ӊαƒ_"ΰT~%b΅‰<ž Ώ‡{“·E£8γ9dΫμξΘ§>)g­Ž»―ΛΉIq‡Ψξg'eB©H':ίB§—6πŸ―₯Όwθρiςγ]ko +ρ ۏ˜©?ζG –Κj ΏΙμxΙD:Σ|Ψ*‘—†Τh½ρq5œ³-hξ»‹1*ΒgΦ΄ƒžΧ‘yΗ1άqM²#ς‡Γ’ηpπο0‘3Ά!ώΦ±υΟ»Y^bιτ[ά,.ϊΉ±P†C€! ΐ,8oPuμYdˆJ³ΓŸβc£SΎΫ/ͺη#S/½ZΞ8 +ρeζŸ@‘˜nzΤUΉY]œ/Υuά5¬©΄šΥί eΛΦUg©„.uγΧό¬RγΤ”—w_~ρ<}d•lρΞa€£ ΅·Ϊ‘vΌΆύ‘˜κόW―»*TUα ί{ρ‘‘X迎7>^ϊΒδηΐ&bνλ@gέu\ω –/2₯τ,— ==ΙρΠ+”ΰζ'18‹ž†›Έv»I#ž|’w_ΎDrH”99‘Άf‚Χw•γΉy qφ+Q\x¬tsΛ―·0Տ‘Α>tΦίAΝC#V0OγHu˜ΊMwnIYΡ1gΎφ L§{bΙ₯ς΅τγίΔ·Šλ ‘τ©bπξ/qνžbWˆLr~ν³8RR†$ΒΕ9O6yι8Ρ]‡†ΫWpλ‘:~`εΤrΝόχt_ΫΟγb©¨΄Έάe;2βΈghS3jlό—KNa’_δτ:―Ό;]‹kzωΔ|ζVurƒ–:QΫΦ)_ύQLΨΞ̎ΛαAλaΌd/Ή·~ΕεoγhI)²”yCž »;Πxχ7¨οr½wόα%ΌrΌτ»/ 1’ϊ…Ξ[¨°γμ™Jδg*ύKίΓ›Έώγ· <΅εΤ—Όΐχ%σmΈBΧτzβ”“_Ηg ό?ΩrWs}Ε2gϋΡΣί„šή@ϋrξ?ΈWάpˆžΟ»„―^*U Σ-ΰ·ώΠ₯€„ΣψΧNΣ·*Ό…7ά‘#”\ψm//Cަ zΠώι ΌσON@žΒ ίFUΎ ͺ1¨ο£ΎωŠ7YL?Gΐϊκ²ΚΏ„³ΟωjΏΐϊ#©žώφŽ³€r Mς΅Y9·²ώ[ωΫŸyΈιYΰ9Ψ8žλ«‘¨xα5T(Sή=ζGΠTϋ>υκχ9sS<ΨxήόϋΡNηk³ΌΛ·†εό©?_PUŒ4©ωiW­›’r³Ά4ŠizL‘ή•₯π`;š‡°yoM½ΫψΪωπ-Όα:Υ$Π‹ΎΎA€—ΛΜποΌ½ςU}ΟA·yY}K?ΑΦ‡&%žΑ³©½‰ά[οδ₯>PΏGX_Ž6Η’¬jEΉ™.-ΣΔΖ²6 ζ?.6”d]Da¬2±§Ιv_" /#dσ-<’ c_Ξ¨œΎς±δϊδ6ΪΞΆβdO.(ΓρͺΎ½k}[£ΰόλgIϋ°LF 7ύs8oΧΟg&*NaΆσ]₯\ύDήCΝ–g6«4Ύψ%>*Α°r3—χΖ¦Θ aιHφ¨ά,H‘`;‚γ!λψMŸ‹]–°BΞ¬Vo¨ˆMΦY½(7ϋΟΧJΦ;Φχy‰ρ΅w…₯xnα}aΏψFΟμxΙ\:Σ|†,€‡ž―¦-Ά§σCπ‘kŸYΥΎxήw;ν€[xΏϋͺ₯Ο­§Βžbύ<‰α~α"/€έΥ3#δV?οfy‰₯Σ0‹‹™{ƒ₯a0φ››Μ‚σΆΆ8ms]&Zε,‘Τ=ΎΉ­Ε[UXl\<ΏC—ίτ’«΄»cfT4)βLbxΞΣόu>J2 EFΠΨΔΥέ†ΤψDμ£!—χ΄b2½ƒ½Ι‚=ΊΊ‚eyΒ> ™Ι’E¦t(XW»,*ZsŠ™‚‹‘9- S:叱)9(,(RΒ¦$uh%ΜŸ­τKψνοΎΙ&Άe Υψύ$—ΈΡ«pωκ”—„Μ’">νρZU²\>ΒΪμ¨|v-€ΰά…BœϋκwPμ‡/ƒŒΨ€pΏcH·?zSϋρίFJVΏύͺžœgHNIJ#)™}λΏ‹|2£2‘O?Gθ¨!EΒ’—O#G,bβa-jH‘Nqv€‘ƒΤκJ8έii€π­ FΫo΄!$η7~ο»(T½ΠKJβIΉΗpž~Η?βηοՊι)Ο|;h…φΜτ}MVΞ^);2^FΆ4’ ϊ ‚+S˜φ’$,D2φίΏxΙ; ή-DΜ#^Κΰ/eΑ&[ΆwŽ„Z>ρ•z§]gΌd/©Z–8ζΛίώ J3έΏΛ\9K Ξο*‰όζ%Jš—ό’"σh±K©’›θ‹!₯Ω—πZ\ώκo~"+2G§!‡ηι(½σnwΉ%DairrΕμ%Rp\ώύŸk"‡kΞό;ρΜσϋ‘J}2ΗεΙ«€7₯bΘ,κ_(>ΧΣO,=βBΘβχΎκ"IΩ[εώG'δ βςw‘™nΗOώΩ]Α;9§ωEξmη€Ύ}³˜m@Οεα¨ό*^«3“zνH$g ϊ‡ΐΗYJΙVψ<ρ΅Y9­·²ώAna6n•‘ΠxX ΓΣ‰ηώΑ=…£ς‹G©ΚΕ”žRRρ“Ο ž`*…‰6Μ.£ Wψtš)ŽUHŽ‹±Έ27½9Έ€;ͺ5ΚΝ#΅h›lΒzX> ΗirX0—T„ξ™»˜sO1,§œb{6”4μ[Ν.nη§X΅LβEΉy ύcΠ>6›ύ$*νβTzdγaz†³˜3[žΩtα—ιΕ>΄O."δ‰kj`ss±φ£§Ž[Π!Yψ Χ-Ξ.τarqΞεY,­-!4ΜGό!Ϊ%@ΰίθΨ\Œ¬ΗcωFFΔ©>Pp ©šdZ-Σw&ψZ?#*#ΐxW†ΒOΰiΏΑΛμxΙl:Σ|•(/τpΞwclžVω.;±†H$ΗDQΌΈ&8²y Έ―ΪΞΧ,ŸYΥFxήH[νι8Aπάξιφ1Zω…1τ4>ΙΓβ@ŸΡTAo«Ÿw³ΌΔΡm€σώ`— Ί)™° †ΐSC€YpήNθΈXpЬ n¨» ή&z·S4?ˊ£έj€zΔ§žΗοΠOr³ΞvΪMλκF\Ύ Ψσ‘!*ΈΞN!*›ψμBωύ‰K?=ρχšίD«!\8”wεΕ•’Β%0ΪKVv₯9£Δ|€I ΅4_Υ+ŠSPτ-TΛJζ’Τΐ̜Ž]ζue~YˆΉ ߟr”<ωJρ™/ͺ”†η{pΏ¦ΞΠL=_­Qz^טs'…nI¦$2ψ!Ή‘Ά: N/!*>YE9ΊŠΩ c=θλο£έξ'ȐK)T—“efaζ.ηΜ+ΈΤ݊χŽ‹Y–γς—TrNu φΣ˜ΚEΕΉγͺΉ9IεXςμi•rσZjbhlϋcβ‘”™‹β‚ŠlΔPN9ʎI η#hΈσΎRοkBϋ7°»kdT!"₯‚,b σ„#mχš³ Λ έΐx˜*}2.}ν+*εζI’σ&hb1©θ$ŠE…ΔβΎ‰‹ύdρ—7pHyJΡώ΅ƒ’Ξ΄ΟΤ}…‹ΗΎ ZŸ_@γΓ !τNHB,8uw©’.ϋs4Ε/ Œw9‡‰μH©{`Ψ‹²Ϊς4™;™2ΔcΚ/YΗKRSβK―}₯²©@Z&@Φς;ϋ'°/2 )9…($ ώkž7ΓKTής†›q.gχ=4΅"*· E™‚PΉΗq’ό7"Ο?DKc y ωδW‘‚³΄˜CͺΓiδ–$Š'mhη­7KΧ¬:zαωn OΡ‚ZœŠ<*RG[€ΠA;}Šg£ύΒ³{φw΅ΚΝ=dΙΊ³oœrwue);ιΘKxωεAόθmmύ‡;ξ’i•³ΰL½ξώx”ϊ#έΎ™Ο)ΐηH ν&ΰ³ύ¬ιΰO`Ε8KUΗ@½ωΪ¬œVŽ[Y 4/·*XΘ>Φ?ΘPxυxιΌ€γψσAC7M·V Ί\X‘™Tς.ΏΠƒŸ}πP“žW’ϋ;žψύh'σ΅YήUΰT|ρ§·ωβ"<κei'šv₯LΩ—„|‚LžΗ!Œ―u{―ςu"βmΒ2g”…™qlΤAΩΘΜI”y›§¨ΰμ@eΚDˆ"MM“ΙφΑ•Δ#&h–^T—‚ΠŸpUIτΦΙΝͺP_Xq]’nRbΞM& 9h†Gƒ»γƒJkΈίŠθ’ΣΰμG 2vβΩ9i’Vˆ%7.§œδιybβψΛ…Ή™-“aQ² K%ln,nY9ϊSύΈΉSͺ_ΰj­ϊ%°Π§Œ@ψ!δsΌ Ίή‘λx *©Ν©—’‚³ΐ‘dΙ~w3x'˜-Οl:©bβΡ0ΏΠVΝτΣwΉ8Ν‘Ο£KhW-ΨXiΕ‡­:ΙΈώΔ‰ύ‡.#Uδ_ΧOKKΛύh[Εκ ·β "“/ΰtŠ `ξ\ρ°(Δ_λHTAŒwƒͺΉ8aκΗtΪΫΘ§BΏ@²ˆ_ •ivΌd6'”Y>{²€ag&&›1Έ€εώ Rx^ζK(΅ ‹6žyFΫ*¦ψΜ’v0Μσ†l‡Fy.¬–4 η6`aΨψS‘N{kŸ8MlνΙ\ξέθΠ†ν’³-ήΝςK§ώ`—]tΟ²ͺ0[‹ΐ“'oΩ[[ή^Ξ=3nuΉG¬ο'²\Ά3ϋIΑΉš4ΩvWnͺ0qMZt‡ Έ9\΍ΰφ Χ$εξχ“ΕΟ•,~rŠ}1(:ώyͺƒ`aΥty0ΧΌxV3p_W‘rs‰h§·γ*nΠ'¬Μ|e‘Γψβ΄eVΟΜπ‹'HαέΜό―ΰy‘Έό‡ΊU (t ŒMHRΜnΠ|φ„‡ι$Ϋ‘AŒ—H‰ΦB^β9λάy”ΙŸ“ϊqϋg?Δ΅{ZN*Όπm[Qξ “Ό€d ψοίιU1ψ-L½ϊβb9§δL;dεΟ J υ mxŽψŸ{ΤsŠJ‘r₯κ₯?YηŽ(–Ψšd3Άδΰη›0B‹§Š©GBRσHΑY§II‘Μρ`¬‡—JΏŒ%”–wmpŸΆ|™v)ΈΜ/,Κ9w%€ΰά,eFΗ›¦(T'\‚œ₯άTΡd―UΟ‘αφ3ΫΙλxΌτ[2ΞΑH7Ύ6+§γVIvΦ?HHθχφΈ•C„υzχ…{˜χώΑ=>2Ρ|K–šχ>Fg_6 ‘ 8m{869„αŽ:Τ5φ¨ΕΡΆŸEV\ΏΚ9<^˜¬ζ"Ψ‹/γ…μU9n(υSγΧQΧΆ _FΑ‰Λ8H[79μβ¬]ZšΑΔPΊο’kΔ]1{c}Ιωηpτ=Ž$1³Œ΄έΗ½χoB{·(eχΕ‘ό‹H ΕfΘ†ξ_EC―«v»tΆe %k§M ;“qϊ 'CkkOL‡Ηί‰Ηw>ΔHXΚ«‹“ohΉρj4Έ fW\Β‘ΒB€i0D_S-ξάot«†νΗeQ€κ—N".<Kuhq&ΰθQπάϋ:ž]ιξX ””›iΣ(TfV’r7ƒ)όzΖ ΏΜ–g6F@ό’I/žΜ8 »Ψs-8›Ρ<§K/lC³p<Δ5Κڏ)©#elƒλΡ9 jA?ζ(ΓΉκΘΟ”¦W0ΩO‹Ξ¦‘τ‚ϊΈψ˟–π‹Ύ(n‘fΗKfΣΉ ΰΰ•Ο–ΪQ/5©K:ξtqƒvžœ >³€,βyOΥzšαŒE?‡Ζfg@Γk`muWήΧΣ&Γσg‹NVΧΦ¦[pύ£ι§2ώδkk’Σ+.£8#–vœPaF;L,άCΝƒU β Κρξ6<οfy‰₯Σ0‹‹r§2C€!ΐπŽΐ¦¦σσ—] £8~¨PΞ ½»ž–‡Λ‘v¬ΗΔάάηz‡ϋΙJ©“ήsBŸ@[y§Κœθ%…gΠE ΞB=mH‰γΈο‡D':Ί wfΆ€Γ¨ΜΘε’‘ΛEYώ1΄ͺ”•…π,€$d²β²N‡?ΐΟκnΛ§œΗ'i “NΞrγ1|¦\΄ MσπΧο}€μS,§Y__“ύ’g…³¨v΄-§8΅₯ ȟ«R l―ωPVnζ3mz u+q©\zΗχ]Τ£7]”›Ή$]·pM₯V{ε'3zpύN‘‚ΧΒϋφΨ’KSΛYw]«Ψφπ ά?ZŽ‹Gτεά …tΩΉ@Κ…;ΫξΰΑ“§ǎ‰'Ρtχ-OεπΨP₯΅Bxς%7ΟΡA©»0ρπŽ’άΜΗΗϋΧ>Ζ‘’/ςσΑIι™Ί–Cύ)ΛΦL;πβψΟίϋϊPρwd«ηΣƒ7πv› Ÿ¬Zθ037 TRr3ό"₯u=šηέ€ŒΟγ‘R%Cηάρ±(%Q΅θbz~’B—ŒΚN₯ϊκ%sξ›DœβB /=^bΌd5/eαHΕqοΞo»)7sΫ― ©J)Ξ ^:PχkIΉYΘϋφƒ&T’‚3χ}Λ–ΔέY’#ΛέC/Ρ7q:O£> ΆIό"©Ÿz[]Θ(ΡπωζωΡ!ϊ¦Λ+);œAγͺ.B,ν^{ν2Θx?&λ}σΙP{ŠΨ'M aϊΐκWKεHίΝ«nmΰ€Ύ¬ξp)υΉœςw)rOf‘ωZυMU΅ίKθ­yŽόh?•xώφGRRϊ+ΖYRΉ}ρ΅99­·*΅bύƒ‚…«[YΰzOθŸϋξάΣ‘ΥΠ΅ο υoˆβc₯Β‚I{2i‘LŸκI“‡žηβ›Οϊ~΄“ωΪοjΠ—OόγOζ :α€y Πψ›ŸHM₯χΜΙ:Ήά€Œq&Oχ`qγΆOεΨ=l<δσ {”―νGQz4GΎΙ‡ΠλU 8ΩΉR|νΌ2;#g·²mYbA“θn 4β#cJJ|s˜^ρZ£νš2ΘκίιŒ qΒthϋ©t²vΐ»υYΜ/©‹1‡KΔ~Ι*ΝΓΞ π*‘κ\ ωύ’SΙ1ŠVΈfΣp²›Y’­rΛaz‹/@DOΙ5* ωU/#1Ρ†χ―άTΩΈΝ@ω /#χgοΝƒγ8{ΑŸp7ΠΈχ  Υ&½ϊKx±ZνΗ½φͺ“x11oόφ#Eύ<γιqO“P}$]%΄YnβLΎώ[ *’–{{₯E†ω΄’½š·*‘…qέΡm¨8ϊ5TΈ=Θ–κSg19ό‘}B ΘΗΑ―Όˆ=Εά²ΆΪΔ₯δ‘κh²3ΣπΡΑΆεMWFεΣdo«ΌB”©‹#W`γzxΎοŒ/yA$zθηK±ˆ•Ο‹t ύ oL΅Κ°„/M:1α)μ>5O£š`ζfηEχ‘0Τε֐ν‘μ: Πή€F)―Ş\4Φ<ς%ψ+Δ6υWžνύCΔqjωq*ݞOε΄£pg Σ„`[ Ν p #ΉΕHΗ §£ŸΧΌ\$kΡβ4¦~Zώ’<%-’€y}—'ΠΈoΪXτj?ΣΔΚ υΦΜ³δ‚MZσk³tΦX0ouWŠn,T66o%8Ψψ κ>zΖ―€“θνςτ½ƒώn*ωo–hΔΖeR}ί"ž9)έζζσΑ}…/Ώ6Λw•ˆΊνΖψ§‘υšβΟΟPA6Ύ°ά’―ΰλQΩ蜜Bbj%κδΓΧ΄ή@1β]πήsΣΠΖζσΫ`α δΧ 8zό Ό>47xΦzύvχδε =RΌρ\·ρœvϋΝΘ²ΐΔοM~Έω0>hΆEΠρ¨G*ω ςJιk¨½Α#³bδ‹‚(άΖvwK#Νικ7aώœθΏ‡Ξ•$ΰL3η¨dTTσκ5/ήθQ}rnωnˆήw³|‰₯Su,ωϋΑ,.ͺܘƒ!ΐ`ψGΰρcΟυAρY¨ OaΎtΠΡ‰[ο“¨ξΦ63$ά¬e†ϋήΕ½¬2ΤgsλŽ ˆI§§H΅!YZ'ŸξφOάΒΝbF“΄Ή,Ο+EOΥΓ‰;-oβŽΒoίξβD‘°Ύœo―B 8χσᩈ‘φŒη]H― ›ιΔ₯Π‡ΝSμ`ΟŽ‹?=JΚGψ„^F†H;δ†n“LΚβŠϊmœΡ·ρZΚ_ΰ\}UΰZΡ͏‚Q( Ϋΐ9π1oaΎH΅gQyΰ,ύx Κ9Πzχ>~λ}υ~‹,< qψ`½μσπϊEΩn•Ε­EnqΤns «Κ4ήV•LZYυτλ¬S€•»N(tΆΥCΘ7²Lψ(έΈim†ω‹VΡ&ω.§­ν…½‡ε΅θωΙ[ψθ‹wEΎ’UδGŒ€ΜG0N8η,$v‡Ό.•πΉ#mσΚχρ%Α|#|)Ž>μρ8φQ‚|Ι96βWΠ=&N18ν·Ϋΰ8UΓ ΤVTΣρ–k|ϊ}UtTI0‚Φζ’>*’Λ['žΝ}˜˜₯ΪD::•)Μ­ 8AgΡδ’„χ‘‚\ωPΐθ·ΧYƒ΄LnN"™tΨs%»―§ΑΑN•5ο‘ΡφS‘`‘k|€uσ,“dBΏ6I§%σV©fl|πz²y+AΒΖ―~αε‘s|πL7ν pσE:rH(¨™ΎAƒ0fησΑιœΟ‡œ_›δ»šm`”Y/v7‘Ί€P>ˆž›wΉdGA·Ν?ΰμ n ‡Νηˆ’uK3»JψΫW‘ωκiα΄Εΰ \ΌB~ιΛΘ)>Λϋ%₯rΛϋΤ(Ο’¦TZ˜σΔ€­έΟ’ΆΠγ|šάύϋPDΞB±ζΪΟXKπά€~‘N-*˜™ωq^[M\Κβ-ΰ=ηfξ’k%{Δ#βO=% Φ{VP§ΫlyfΣIdYΕ_22φ£DκœΛέhwψΎ„΅$ο<φ&₯`n}‘€α^39šœ€%€‘4ιϋ3qρ)‚– . 8kŒAζψ΅ΏRΓ;ŒρέΝ㻉I&%:yηΗ^|Ή17rbΤΛδfΗ±ΜΪjIΒΤΣνΈτϊβx؈ϋt(εβΥ5Ί{¬ώ,ΡMΡμ|Ιl:ίΤαgžΉddœ@€:„ΗΗύΨΠΓΟ‚m«ψΌg]ΓΝΝψ`p|ΠΡϊpζf΄ΆŠJ”_m@‡Bψ#‘¬RΤπLxDSH’YM¨ζŸΑςAΗ½ pάΙN:„4pVTCΫ²΅ζ»‘zίΝς%–NϋϋΑ,.ξ~Κl †C 0Lƒs`Œ‚‹aΓ3$Ι)*0ΑΤΰM\S/7—}¦^\Yτ¦ŠTΣΑ,uΰα#ου‘Ζ‰ξ<ΈŒœΜϋŽΟ„=θητ €& ΥάΑχψμΏ—‡z{ϊx:v¦Ωε5€‘ιa΅6j>ΖΦϋ3>:XΓτΎ?T 7Ο ΅‘½£ΞYj‘Zˆ/Ζ©“ϋ…ΚGj­iώme2moγοώq_;ueεςΊ*Ÿέ’W}μP˜ŒΧ~ό/šBΞΆƒΟFQ±Δ‘«ΈysΜPρΖ"―`Yc=‘ΛcMξΔΖrԌt;hζj©ηώόZ‰MD,*χ 5’ϋ©aosΖTbΑoaΟϊ›> ¨ιXΜΑΤC“ΏxεdŽο–”½ŒwΦΚΉM‘§wš>Ρ'Μ§ψ¦“Σκυ>9S3~ϋς§HΤz5σ‹ΔΪBtΚΠjζ`₯'γK„&iŽγΆάLσ|iuYKŒB†n’vΛη`/‘•δ¬ TΤ}Ν™(―¬ΉΠsΟϊC&ϊω|%D_f*Ip97Ot,@^u!*Σ₯}Ν Œυί‘ :Έ―ΰα­—‡‘y΅κ%*œfηɞ͟°n?e%6ΎΙσ,έόΪ,ΤWδξμΌ•>{"6>ψμR€ώρAJ!< σšίE±qŠ1CC6KKW0σω ΏPζ6Λέ9³YYžόΣηzW«…»x‹D€Ξμ<„]Y ΙfΊόa;"2 ΖIΡᴉ ―bσω­ΏΞπDρk;κΎt\Φș|ραLΰρ%;QL =ά–τT»ΧΊΡe€Ει N@j·€±@?IZΝ…ρvŒΠ ‘˜X†ͺTi₯)ee Œ¦§ΤPΗΙΛ>'kaqήBΓ¨°θ™+-E“bEeσ™ΕΕAωt ρqx¦§ ξΌ{q7)εvgJxR”ε)LsΠ‹Ζ8RJαΉΒi'SšΘθ^#Q¦ΣmG ύ*MΧΥ›(&5εΌPVZ²hN1ζb΄7|€Œͺ²w4΅b 8ΫΘ72JV…¨Š/ik&߈Hq[CιΘBYΥnΩ£Ώρ3/αf.pπφ”cyZθϊ¦λ’p³ΤάցjpζZ8ΙΤ †’°ψδ³l|σΛ‚@sΙΡW»XE ‘_ΌΡ‘ˆοΆ.Ν‹ €)Yj}笨]xyžΏbΓt‡xUSuUΉό¦;š>χΒdσ3Ν–g6GV°όΕ]΅TΪΉΓ‚ιoοe‘LΊ>”˜ΝMUΖوΟO“BΡ3K3€ΓΩӘεמωp“ΐ6χ^ωΨρȈӘ0Š9oΒ=βιu2Ύ«)ρΜρέuΤ—Δteξ>πΪάZˆddΛ ΝS’ι}xC>μΓϋ―n}΄‡+€…])¦ϊi„Γ_Τ₯κq™/™Mη‹&#όLGRΚ΄ΣΐΩ"σOΧ=τ=: ;ΟCθD{e1Νι{δ:—•ΚσΕή‡˜“CK¨ζŸVπA™τϊΎŠΆΖ|ΧΚyŒO‹YΎΔi?˜ΕΕg±†C€!ΰΐγǏΑύ˜Ω88e΅i*GξΆ]έΈΒΒ"gΊ/ž[ εŒ“„όάkέ‚ύ]™χš3raIŠ«γεΈ-+t“ŸF$ϊηΏΘŠ)ηΗΏΐΗšΔΘvδ₯I7αΝ‘6ΝG™„ΒkFeΟόR₯)¬Nq¨ΊJφθkψ%~ς¦‡ ZΪiT“€³b럏οξνΗ”ΖeuEθΪ.βmϊ‘DJkŠ‘UPJR8Rœ%τ—„ς#xϊΰEΌο%Όœ‰ΓGκdšοέΌ¦)¬ GπaY_Υ·2 3ŸΦuiΪΣD*vδ$9_Ο8’;PyfΫAΚ_~’v™,Y–„₯™)܊¦hθ @eΌδπ~ζffKνΈο„μš£(΄)ΤX,M’ρζ˜ΌtπΚΒ ίέ³λΫx–Σ6%šήρΦυ^¦ωLJ)”Μ¬SŠ}<ΙΫό³Wήρξζσ ”’ρ%ΛωδfΈMNΑRΌ άρ₯@-/„‘­ν•p]Q\}”΄[Ζ’˜(ζΜh3ή¦βκώk„Ϗa|d(§±,1'w#“ΫzlΓ­ξH8PŽt’½`GŠP:έ0ΜΣ»ˆEΊ™™fτλGηο’aCOXό ΅1υ7Πxd*S‹ζYfΖCόΪ :ƒ·²ρΑwcσVβ]l|πέAΈ#γƒ:'ν™r ‚”—;lnΊŸτsa>ΘΝψ η󦿏άυ h³‚R!Ίω΅Eερυ²„ϊX/€sέΕ…Fϊ‘ΰ{Q΅ˆq—“6_Oαϋεβ:Ξ4)ογζqA6ŸΗV_gxbψu!φœ9‚βtρϋ}q·>%εPϋΚʊεX}ݏΌΦmδu 9Φ†[‘# 6s…M ΅η"ΪfΕmlZ°œ]?ιΒςWT€bΡbΓi³¦€ΤΤ§qH*&α“Ϋ’L&i}t\p-Œ) 4Λμ2‡πa˜‘~Η#Σ0Hƒi\<0•…ΕN,5V1‰6G§‚d²:όo ίF4–±½ƒ—]šΤ©‚pM;θd­gϊŒ Ž£ˆ˜ˆBL χΡΙ‰τ &ΑΎUΥ•ΘΞΚBB uyZIεdΔ"c3Œk’”2Υ|ξΐ‚@0}t"ΉCrθNΟ€n»P›Yϊˆ}$αbu sΞ ψ’)§yνΧ°K+Ξσνh”4dkε,­Ό’P―,Ά! ‚»&1Η}Π+δ°cbάο°}YΌ”, ”{dιζ ±q2ˆ|€ ΪΟ$žϊϋ΅ {ΛΎζΦ,μQ-mηΪIxά‰Πbεl4v—ž―Xœ@σΐ%ψB Ύ .£˜œWς νœ}ϋο1UžΩt4g3Ε΅kP”·Ϋ­…~-άu£>Ν<&g:ΑŽ_%Ξ”@|0ΊΤβκbm‡p”xΰ΅ίڟΉl“bάΒηsͺƒ(R‘ζω΅”ƒ‘gϊ!ΌτG_  #Ηιxχυ·EmφaFŒοEΜw|S|Wb˜Δo^ώχ°΅Άb oSΓ›puΎ Υ’…”q‘™8ΠX_WΒΡ!€8ληŸζω‹a:=ΜΞ—Μ¦Σ"Λ?sηΐiψ―/¨vk€_θΔ΅/ ±μNDΆΐόΜ|;XΙηUDk9ΤBEτΫ:σϞG]ΨC<„›έ””V’ρV(”²ωUα‰nτΏ— ΙόΣ>θE»πžοZ;― ‡YΎΔi?˜Ε%pK± †C@B€io–Ψ¨g%”ΧΘ™tέΐ}K…ήδ¬ΓΖ’œw\!Π=‡yŽθehqΧ[Τ΄εφr9κ˜ΣkYSYμ;Q(I.‘Π“τ‘EŸγ9Ύ—δΦΔj―C±(ϋ„yZ €ML c;ψ‡ψΖΉ:DρΒ±΄ Jk[οών?{m”k$ΥιΥGλ΄Ι^ΐm²ΫQPJύ₯K-9–›η>Π¬3SΏΡά²$ύxxΝCΈ™Rξ«πnΪαu 6—[„. ͞$.0€ΘΝ’Ύ όOcTEξ׈†~SόŸqb—oΙͺqk‡5§±‡Σ$Κ™Ρ›hΊ¬_ΠsiΙ-vmΛβpτV)lγ5zΔMΛ‡|)Σμ&ΊxŠTŒ”gTΕ η,fΙΖ‘Ÿ‘• –#BˆΟΏϊϊυ2η˜Z§uZnCFiG!Σ¦hοyZ‹ZΒΊΛ‘©Υ©όΰK8³'ݝΓl&HΐYBw ›.ώBZZρ]ν{υyyb‰sxψπ|άιΡώτ(½ HCZ•žrn¨keΉcg|i#ωkQu€νΧΥ CB)Ι32)Σι(…Eσ,cγƒ ~mAΞ[Ωψ μaΖνζζK[sήΚƍώap|PεfC:ΙΌτ©³ΠΎξ»‹3sp-ιΑsύS«DƒίG”EΨςk+ψ‘%όΣΧzg3,87:Ωp\q WΗP³"Μ3aΈΊC?1χ>0~ λ fz™Ήω|&­ΟόΙσ—ϊξ_ό}’8°_:ςjP%ΚΞΠ^ρCZΣ‹6‡…”ͺ5:Ώ™Y—„xE©Γ#nαf±ŒρyZEœ­*6dω$ξE]ž¨Α`±ΫCψ$²Όβꦔ‹³Aΰ28Ρ†’ »,˜a«A†$;©¨8ΧFηGxέΩ0K§"?Ικœ¬œΧXΌVkCriο„ΎͺŸω6κk%MΚxφ ΅γ ΉΕ’–g1ίΙLy *{©εtMMz.Ώͺ’νˆQ ͺM8z―ώ Νω;jΈu_Ράδ τJO‡Σ³MZΘ׌[ŒδTeg€‰ ’,Ν$Š­ƒ`Ϋ/Cmͺ<“ι,δ/ˆίK5€ΕkΪΖζ³sθv\R„Ή$η<φŠcJVJ!2HΐyάgzQDαOδ{D‚_{δ€Ο Γo~΄…ΪτίΥΧN:cε»­--ΨYuRΌ²Σ†’κ§ι'F›?ένwΠx₯ASs•N’Δhœd‚hς>ˆb 3]ό“t˜γKρˆjjΎDy˜MηQpŸ>#2λΚ‘+ΦΠI׌KŸ½š•ήΰω§U|P“vža?ί υϋn–/±t>ΎB?ήϊθκΜ›!ΐΨΖ<~L’kΜl»vCIŒ˜ύ|3nΆͺW7¬ΰ ΛΨ†Ε;±4€n AνdϋIœίw@.}€·Ι-ΠMk[ςR‘CkrγŠ6œ:φΏ`7ΏuΰΔ­{‹k\χπaΦΦθeTͺ˜_ΧΈQ1ώ’(Χί-Δ3G^F-·!Η―ίχαΖ½ΒuOƒΖ–Δ½L‚™prš·Άa|ΙjΎΤŽξGm¨ΝφŸλžyžn/ύο#iϋp¨t…4œ σ+ψ’©ž8y]mηWEγ_n=ž—~ˆ£vΆ\Σ•εŒ[ν?ΦW]~ΣεσΞ~~,(€\3ψƒ7€£‡΄Δ5Η£gφŠI £XβΨΠ°\φθ-dνΖ›šγgpŸœ52δξC]ξ n‹ν g ²¬Ή]JIt·/6ο=’qΐΐψ§ Yηψ@),šgι8 Mςk³tš™·*TΨΩψ #(«±ωΦ™·²ρΑ_·0:>¨σ*Η§αφ{nοƒΗQ)i³£˜ς»™˜Ο»36Φ?ΉtΑ|qιυΝη)’Y>Θ’0Ίω΅EεqEδŸΑ¬PώkBu qόΰWP—!~NίF#·6±ΝζΝCŒ½Œ_^g0ΥύLΜη}ηίρ‡Οο~NΜquwΧ‚.=ΒΝD`uy€εΟαξ6ώΰ³ZΌY±&hͺBfњ7ύΜ*}@Œ‘Τ΅‡‰Š—*=BΒίYf+—OY#"ω§Q"£KΫ’‰"νΚ…§QΊ>Ά[ό)vΣΈ¬ υ#Z ΛF ―‘@,cu½“}ˆHά‰‚xβtMΒԜ°|gšN‰ώMzΊ–55Dǐ6fΩH@–Q 7/Œv£o yΊΧ ‚"Εζβΰώ]B2Y2YΞΕΈ%)Όςhγ)εk+Λ²=4–rΔK\B,01£˜€l{t?‹eΕΌL;a­ˆΣέtc‹Ώvdp§rf†E5)΄ί†γΉ4ώ1:qυ” iy―»0"ŽΝ<Ψ‘‹"Qzu|β n‹Ϊ‰σeM“στφaθzNώ`‰ΡςL¦³ŽΏ$`wφNybΖω­³ΖqθΎƒτ€σΘηpή‘Κ ₯+7ΐT9F+’Θ¨kQcΔ%φ!±„bsτ‘­ιβ|½8ͺ pެ/ Χgy2Ύ«Γ«AΎ;po½5KCϋ‘_`η5ŸΚdΔg dίYΨΣπϋ·/X δ,εlΓιΐŽδeυΣ$ Š σ%Ύ<³ιTĚγgYΗpΤ^!η4γΌ‹/n8θ!FΧΓΟLΆƒu|^š γƒΎρΩRσΟtwv€s9Υ'…e΅$ΰ|E%aΔ9 ’f#矜Ι„€rEmωnΘίw“|‰/ ι|wΫ—'½ μΙ`0t °Ύ.!λˆΝ’B υj‹ ε$;?§ Ρ·ΊΙByΝ—PRsƒp‘Zμ‰NC^f%jσ€Ή!Υ“4&7>hrWxͺΓ$/–Κ+[ΘΓ³ΎΘφt-Δ’Ίτη»±κmo„‘SŠQ_I‚΄•GΠKε όΠΪπΖύ›£H;xOŸώ*Κ·ϋ)sjΏqƒgkxzΚΟβOΏΏŠO~Lfžΐs/|O _™@ΆWβψ75i΄ήx€ž6Œ ’6ν,μ¬;Žc'?O#5A¨ONZϊ"ͺw‰ζ³χΠDΒί†Μβ’ΌΌPu?ψN šυSŠ&AυL΄^A—( μΌή„Φ3'QΝΥ?±―ό‡‡χ?|$WΜWqξ˜D'Π|¦ζ> ”'F‚ΏFΪΑ»ών%ασš,§b<'ŽTΎΊ@χ7FE­aδήϋhςH₯Ρ‰5Ό<)œqE°ΙzQfψΓŠΠΐVΝ-Δ ψ‹T’!ΎkΓ3O4Ξ‹‰iŸe~Τ‰ψ¬—π\Žza-β)Βqθ2ξPΈd ΟaWZΦΣZσz$ Π»…τΛ³λq&α)Τ‰Δ²‹΄Ηwμ·R!›ψd|Izί­γKw/]Gρ~΄Λ:ˆoώoIΈzι΄φOJ*χ ζ,)Κhω,ΰl _2ُZZαD•Θ₯<ϊI ΈMrx>χαΜ7.ώ5ώߎ΄b9Bφηρ‚}‰v>"ιŸ-ŸόνA 3|~²c4©*,Šp ―[xΟϊΏŽb™nΖ†h^4]?Ε½ƒIМΈ£:Μ|ήό|>ˆο#©ŽΜYΓ‹b›δƒR9Ύžšόš‹lΎ<Γό3ˆυ‚δΌρ-:œ=0x‹dς†0³Ό„Δ€B”εF΄V@ͺͺn΄Ύ£Ca•/6Χ?δσΖ―·τ|~οˁ3άΑ{Nž‹ΧΎ»ˆδέ'pΐC 3§5vuͺw[δY2ΆC^ž(M»ΨžζAΝΞο“mhΖΆΪsu$λθeβ’₯)½WP˜{dΒ―Ψ'ΑΕQpQ‹πŒdϊ ]νsάH‘Μΰ²Τ»}τ‹Ά!‰‚[kiŽ>†φβΉ,NΈ™ΜΒxα@‹θr ιί$Ί"“Jσ(uaΦA>άΠΈΣό΄n- KΠζ½Εϋ—šxωO~”€³Ηη΅μiYWœφ γέIΜqΤά‚V,iΒԌ^žϋ^8ι{Z$­δθy8G~Œ;VΠΊŒεeκ‡όTΟA‹‘ΧΠκ—―Υν§―T£±ΖΠ9βΩuδS#Θ*8πβμ}άξې‘ [ΐδΌ6GLi~Oρ)Χ07Ϋ‰qχߺ(k΄§{QR³ QH ₯Ή΄ Β™Έ‚ZΤTήčvN3ˆoh[—Ώ\pi&τ:ψ.Y#ΔρΞΗV΄YIŠwyννή%Cσ%)=Ν¦³0Γϊμgθ„/}ˆft’Χ†JΞΐO=όΜT;XΗηWBŠΑψ „„Χs‹Ν?›iγόP9―,«¨”hЂ0q.CWvwϊηc^υΧτ0;L"@R†!ΰƒTTψΟw­{ίuσkS|‰ΐdι΄ΏΜβ"½ μΙ`0t °ΞIf1³Ψp΄ό ΏΚe>?ώχqλŸ[ܐŸ ΣhC~ήώ§Y£Ωv\hzΓC+rξφάΒ½„$)Υ8qˆ~Œ ~Šw ϊ ’€•_Ί‰Κ+Κσˆ,;xpχhTiνCK_+*wVσ±βm΅xξh­œ‚·ΜwΰBƒ'κ(‘q5β½wKρ½ožπΝͺΑ‰—k4‹V,ΊΓi;FΣίCekΈήˆZTΜ‹c¦ΥΰΤ7ΉŸ*ŠΆƒ4}ρ) ώžp΄ο9οΠOΏ±£ϊ0χ;«™dνt©ƒκξ—΅pφ45hkΪT'Q»ˆζ‡χO!o_[ξ;E?w”φΈItΙBΣΝΈ|α2 _=)>δξΗσ?€Ÿ;:o›λψŸ“ΦOMc <Σν Qπ•«ŸcΟ― XQ©?οξ?ν΄‡ΥBΧ*[jβΣ܊‚¦Uhc7]NPό…+Υ ίMͺ@Ά$ά,ŸU‹έ>*νjV 8Ϋ³ͺQ™-pD―$iΥ$ό,ψΏNlIg€ρ%-εK“Wπώ― π‡$\Εχœ΄*{™ϋ©{Sε4Ι—tŒ Ζ‘«­θ|Ήe z:;ξcDαVYιͺ―šΓυβxυ―$TŸϊSφ+LήΓo^Qy™ασ¦ϋ§\²ρο#9©n‹Y>¨»ˆζΛ3Κ?ƒY/Hε}―kk ΧUk U {§ΙyˆT/―χI Π~š~ΏζυZgЁΏ•σωΔdQπPϊ›U‚’βbΝƞ‹šRω—WΣ!GΑŒυtπ·h©"ˆέϊ ΅νGλίς²œY&ς’έΒΣ [ι_Αςf'ΰ$ΊUΏyυ'%–ιŠ;ž›œΥΠΜ .+Nlζ~‚Pι.…φΣg7wαŒEtRN •gπχώ=^ώφΏ₯=ΰΌΌπΞeυŸ”d€H=[Ξ; ©ιΒ#IqΓεεC"εήν@RΫ‡˜.³Ό0 pσΚ²[œ+)Υc΅J._Γ_‰’άήπ5y‡ΏΊRqmΊΝΊEb3PwZό8šόQLOK«“vd–δλΞъφΣ]˜GΔ οΧΤ7εξΙ•½L‡hƒFB τ±Ν]³Ι›eF§ΉχΩΫd$U‘.ο¨βwe)» ˆoΆόωΑνq‘ΆΔσwΒz“ͺΐΔ””Ÿι9ήcXFjͺw>Ίω§)ώβQ9σͺŸΕ±S_vNΤϊΉ”V‘^Χ|I_²šJg”Ÿ% "Λ αζτ:>6&άLτκβg¦ΪΑ*>/ΊžŒZΧH&τu‰ίE)%¨{f―<οο|δuˆΡ\ΑfηŸΦπA#4‡|ΧΊχ]7Ώ6Ε—u–NϋϋΑ,.F:2‹Λ`<ρ<~L§)˜±€f‰λv€οηAΗG€­v˜ΕYΜh¨•kΆδ@Gχ'ψε₯_’EXΘ–ƒ8Λψΐ»xσξU€¬ςγhοψ=~u粡F7©‘π€o3‡‘αxςΓ§}}^Ρϊ;ί@Γ€·?qlτήύτηh‘τΌ’σKKΔzοˆh§4ζλΌω/xύŸ~‹φ!υ~Κxw|zSΎυitΤ {(QΉΊΆζκνξzoόμwθ™τΒlώυ=τˆνμ™_Λ{ƒ7?iΠΠ^μΐ½Λ—!©yXZ(βʘΒhέ’§UOΒΪ~‡ŸύγΫj‚rΟ‘–Σ Δ›6ά}§QΣuυ§ˆ W›ΰ˜œ εκD‹Šύ.dδϊ?γ5a‹B™\ ΏΕk?ώί~GwyA΄ƒamοβοώρΧhνvxyΦ‘‹lΏΞˆK’œ§f‡k5σμ–ZοQό†ωn€zί 9₯Η8F&;vΔG šZžšΦ±I3vxy2Ύd=_Ήώ όχΏϋ%ξuxΏ«|λΟφ£»g@ΥLρ%ηUR”•ηϋΗηΎζ7|^υz wHM²lzΠyϋŽμς²,.Λc•W˜Κƒ4;.ŠAπωΎA7†ƒ=H˜X0]-=n‘Šώ! yŽ=mογ΅Ώώ[4ήοSx?œCΈέπ@₯ΰli.ΰn“;£™_Sο‘%νg`C'Ι}T$‰„qΥΖEΧωiπL³ε™Jg )ΘΩƒi„ZξDϋHŸΊͺ’+:Ά$Œ=ΤFŽ«D=ε% +‹tΨΔž\– Lg|Δ ‚_Kdo­'γ»–΄—IΎk³Σ5=΄½ηδv{ώκ‹F#γ،“ΫτςΛ/ί<Έ Θv7ŠΛσnm«nώiŠΏx—ΉΎ.­f‹a‹λ^kšR*γσ%!₯ΩtRΉΊωŸ »‹O’<1I<HΧο|€ΆY)7ύO]όΜT;XΓηυΧ$b2>he+t=κΐΑƒ”eμάΌ“ϋ&ŠΔΰ#Εό>ΘΝΞ?­ΰƒnΧάΦu…έν«°…λ|ΧΊχ]7Ώ6Ε—J–NžοͺΎΜβ’θΜΚ`0!ΐ48BΘdΈλ*~υήU“‰Γ8ΩBή‘[φ’“ʐEΪ]β"w€;τ΅ΆΎŒΩΉqtOψXQTixΰΌ1p%y₯H‰ζΧΦ°Ό8G»—xwΧ»θζφFβθΚψ”TΔν [χθ:LΞ,―Lbt°= `eγέB[_ JSΣύ•ΆΆ€W?:δ΅v>;ŸFEΏPgσϋψύlΉ…ˆα \μ#‘J ϋδ$kΊ^[WlΖHD ]ΔkqQrιz:οΌ‹ΧιWzπ²βΉ=ˆU,̌ΰξQΣοEacE-Ό†– ¨«ΞC 5ΗΪ,F]C'DφΞ?+bJΦ1\yγΏβ 9³Kk`ΟLΘ8~bm~}7οh Χ?$‚lΈŽ»Rv†Ÿ}ΈϊΦίΣO_B6Ι„ /ΣΎ@BΪWΠ5€'ύε©Κ2Ψ^”΄}„_ΣO Ά_ΌƒΏ‘Ÿ^ΣπΛΏBΓ/Δ–Ώε»βΣ ˆςμΐ₯/ώo\ςΌό_R7¦%|©λ"ήώρE|VΊ”$d {²άΨδA ݜ₯eTΌB_"Mx?ρ7. }DγF`~Ρπ3zw¦E‘†ŸΞ<•)ƒΑsδκkψ+ϊy™‘χρώΕϋ^ή*Ι;x§τΛ­A]‰0–n^ZšΔΔΠτiπϊΫoώ_Έύ¦*έΓο‘Eνϋ62ώq2:>;Ο5>Ε―…f2K§‘y«PΨΌ0=oeγƒπΡ_Σγ}yŽM5G‘žΘ·K3ƒΈ-}οΘ₯ ³|^5FλžΟ›ϋ>R’–όZA qΎkœ³^Πίσ^빁‚¬t$ΕΖσλ k«.ŒO4c8ΐ!hE5·„Υπ&Ή7ώIcτBsίO Λ‰λ ŸAΔH +;P˜±Υt”d#B’ο}Fg!‘nζθŸΓ¬η:’I\βRŽΰLA5F­‘EΰωΥΔΖf#/΅Όπ$Wž­Γ_ˆΪ›9·ˆNΟ€{υ^ž©‚rzΟbξ!iη~ξ0D1nZ$|ˆ^)wα!— {Ÿω&VΠΥ>…€Κμ>t)RD?ΟεeYP*ψ8ž?·tδzTΙ€―b¦χ m"]wξ£j_‰x=ίnœϋ^ξ6έBW/‰―&d"§°₯G"‰Φζ 8οΔι³ΗeοŽ;“pσ4/!ύ_ζι·•žΖιΓ£Έx£Γ@ƒ·oβΡέ$ψMqIpϊάΏIΔύΖ&τvχc…4ަΨμ„Kς«J4ί‚Ωvρt΄ν˜<νXΓK;­.ί…φϊ8δgΓΤj3ζ#ν¨΄Χ#GzwI³s»C¬ν™± Ι1ŠΓ|° ³Κƒr³ε™M'¬Άθε/q5(“΅²½cχ}o6ΕΪQ“M‚˜Ω5p8IσβΒζ—±τΔ<δ§ΘΒ/μWoed€υ€ ±ΰnΤ]_@RjΟ}‡4³Σ&οƒGμΕΤΔΙ¦’°bφξ/ ΗΔp6‘Ζ±ΑΦvŒ)§Ωνύ<—Ξ―αΖΥΟΰJ©Ε‘c/‘@žΗhΕϋj0K /Šj1‘H’Q-cvΎd6Lƒ~Fž»K^@9Ι{ς†fι‹3.Δ$=ΊΪρW˜ˆ§Φ1ιΌ‡ξY·†SόΜκvΠΛηuΩ*VΖ­k©Ήφ‡θ¬?HΌςδ…›ιΐkO'ZΉS…³σΟ ψ`z1Ji‘S0«X‹M₯/ΑΨR²PZ΄ˆ>ΏΧ–FΡΫK©Άς|7ΨχέΏ6?>˜WX:Ύ—ϊύξ;2{0 H‹Φ>‚™7C@W' kιτt’{°Ig\ŠΆΠ‡nϊ™53SΝΈ3e6u¨e";w #$TεRΦ5ϋχTΙD,.ΌœdιΊIB»’ΓΘs²·―ŠΒЍt5cDWG±χp±˜s?ξ]δΔ£CkLcc‚ΜP–e‚Ό& žΏ„”άm^γKκΆ–/9»ξ Q?tS±½x…΅xΊQ2`’±Œ~k6η=ΪΨ:©sίσ,ΐ<η­jxΆ©ksϊ΅iΈΕζ­l|°v|θk¦ƒ˜!xΝφOύίGΑWΒ<4WvΘΚ3½^ΰ@¨†ςAsΥ ΣTŒ_«ΖZώΒψu Λ$e~“θonSΓνα ½€3]<ά5ފΚεM\ φΣΟƒ0§σΖ=|·°3:™ΔVDCZ”œžΞ&qIΪ!δše«†|k‘Tt‘kπ*Ϊ4…UG@:5l΄i¨Vο' δΠKόOUτt;\Ί'{΅>x€Šj»pνuJ9~‰ϋΙΑϊ,tvΟ£ΓΘͺ^*{ΥaΨέλΑθ½6Η­w^{ψβc;Ξ’Π5ι^$^κΫ§Όϋ·jΩ«~ξμ$›Ίώ’―™g φε,Š$!΅Α›ψβΚwFTί/>ΝΑΛ§κxΏ’#g±od wθF@½4¨E°Έlπω₯OςςY^hρ…Ψσ χs«e3έ~!ΕS‹r=~cθμF]NŒ―ΐ‘² uΒε~άκΎδ[Ϋp4“$ϋ₯”Δ[f$»κiΆ<³ιT…»ΊψKͺ3wΚ§tgογα§UVΫdΔJ'’`'>hχ”ω–“ Όπ‘/LM*FA2ΆΚ1eKB JDΖ½83ƒςηΛ0Žy½GŒοΚύΒ°Ε$ίνžΕe d7χ{Z³τ…žάχυύdd£ΈΛqϊP%_Nzμ‘ίΖ‹ωK"ΝΞ—Μ¦Θ1ΖΟ“‡4y²(δ›\Ru‹ZμV 8›εgAGJϊtρye‚0Ά3>¨{ξgΌ{ΠΫٍ28'κΦΠήμΥΎK²jώ‰ ψ`υ‘Q_αc"B·=σ’0ΏζkA‡ϊή}ν·Ψσέ {ί͎,4ΏΜββϋ}c! †Cΐ¦ΑΩζfl…'?xι ϊZΠΫюΑ‘¬ΖΡΑιϊS¨-ΧΎFpχj(Άη7u©ΧpρŸVHί« #hη΄C3Γ`„Ζ—<αΆ–/%ηΩ03θ{οd«‡{’ηνΆOοόΓΓ‡½GαΡŒ k`ύΪOkωΩVηθχDΟΫm-žήω3†ΐ“ƒγמm ΔίΆzΈ'ZέΠri ±$ΉΌΆ< ‡[―›fMp& ]ΣΧικ₯eμΙΩ‹4/ œtΚα>nvjΌU=“’γeη™₯ MmΚfpY§k‡ΈΛΩc5€™œiEηΘu ’pͺ^£‡Ne^+Λ’ΪkΪz•i ΫW–ω:rι&έΔdl1* $)~!7Χΰ]4~ό{·φfΞΫΡ€ γΗN#W’’“ΆΈ>άoκAϊώ“Θ%ΑŠ5?ΧF7π[RΊ}e%ΉˆΆ!N¦Ό–Wψϋε€\ω§σαGxΣ9Žγυ‡½θδ#Μ;044κN3ηŸ[‹›;˜¨£·E0k«Αα›Pω4(/ƒ«—> Άjγ|π2³PΏ;2°³ξ ξ\˜’Ϋ`yI’†‚Εκ/―ΊύΦE?­ xο'γ8|μj*Έ|½k΄CݐeτΜΆŸx†’__B3]₯X£ΠZ/‘β€w·₯οΊoαf.bD4iW›™₯)MήΒΕ2[žΩtjΚ—.ώSŒlYΰ˜N5ή"ύ’ΎMΔϊΖI°;#Ξ‡2₯wv‘s¬Γ^ΌΠFΧ`z Bš…9ΥjzΜπk͌ΓΥ“ρέΝη»½¨wΈ0ΥίA|Ί6ΟqŒο;NτήkBΣ₯k~{’‘q¬·α \\ Ω+kϊ2Η#7Sφ䫨ΖEιFψ§%όEΦ~*αcbvΎd6OA~FŒέ‹―+ υ°:19'˜fžŸY"uΊψΌGMΒΦΙψ e|P«{δ-j‘ŸoGοΕάXJ ˜Σ©xΞFΞ?©l³|pe;fζCΐYͺ“τœ]΅…细ίwόšƒΘ,_bι΄ΏΜβ"uWφd0xόΨ“ΙJΑΒ  A JX),άUξηmΈϊΡ;ςρ}οπνηΣΧάΈύ*ΕjΔΨJ0ΎδΥZVρ₯ό#E(Θ±Τ;.φψzw ,ŽbxήSμάΊ"Ν–g6u”Θ):Y±‰tσ{4ΟΉΨ«k€-zΠ§Πw€uεΧ:³ ΓhŒοnn£ΨμΕH³%#jG ?¦¬‘Πύh;'όΌA†΄›— ΌzmySƒ0¦Ί~ΐΊrCΗ_ΜΞ—Μ¦³£PδΊvEm6¦ Ζ­Γ΅θΨ7qz9ŸαΔƒΕ;ŸΈ^ά &ζŸ!δͺ΄η»fšŒKc–/±tڈ›ΕE;7ζΛxrHJΨpΝP!ρδ@βUΣΙI'VVΆρ"€W{”—σ‰ZZZŒ'ήΔΗΎŸqf­ŸO6αgύχΠΏε°‰D?ΑEΫφ½ˆσΗφ#―€@V΄"Ααθh@γG―α6kD φd0B€γKΦ€Μ ;(…˜%αgίl…©^BΞ[-όΪωΜ Άi.μ=Ϊ¦ ϋ„W‹υkk:¬Α‘εΒ`ψF€ρkίΨ ΩjσsΟC”θχΔb}]P†Q\\μ€ΛέΣΣΓΗ‹ˆP«όΤ§ΊRWf"Νatz{ij6ƒ‚w£Έ81>»a"Nή䅁ΟX/ Z ΓΡ~Ο­Ψ@Ί`£Ξ9:ΠT°l†Ϋ!ύD:θgΔlVϋ‘Ρlά……>tϋSQl6cιΜ–g62¬χ^Γ(ύBoŒςλΠShU‰ŒοZ…€Ή|œŽ8C9žΈˆW?θ1G¬ΑT‘γ/fηKfΣb“£‡6Ή’AΟψ`ΰ©’ξΖNQΈtL£οΡ 7se›˜"„|#q;ΟwΉϊ™1fωK§ΆY\΄scΎ †Cΐ€΄hνφaΆν‚ΐΨ`;:wL`mvLΔ?ό[Υyη]όŠ~œ±ε"9) άζΟͺ«}CΌ7ϋΓ`0BŠγKΦΐΝijζ 'δ, HB’{+‡σ•c|"ΐή#ŸΠ°€-ŒλΧΦ4¬Α‘εΒ`ψF€ρkίΨ QήΌ²ζοžγς0¦\ŒΖέdg£δ²ψ †@0Δ€ΗbibΡgOzΈO`XC€!ΐνΞ_ƒ„‡%g0Ά1KFe]9b"β]^‹\©Ύύ­h]ˆ%›ŸJx>7zόπ,Ή †C€!`Η­FΣ±ψα@ϋ'Œφπ'“Q¨€s¨oγn|(y1 @0Ύ!ίαœ03'DœoσΨ, lυpί΅g!JΨ{€DƒΩ· ¬_›oI6>˜ΗŽ₯d0Œ#ΐψ΅qΜ€αDΞ½]ζοΚο©NR}7κyΰΘ±deζύݏόf—b³ω U`fΩ~δg$K£hΏϋσ‘*˜•ΓΨDrŸ/S·χ"IήiCϊ‘Μ'6|›…Ν`lsΆ;έζΝΗͺΗ`‰?LͺΒΡ£'QRP€”„bŽN4w|ˆΗ»ŸάωηfA6-KΞ`0žbvγΦςΚΚQ_3•œeΊ}α––*¬‡mΖΝS¨cα †C€!ΐ`„33ƒΣxόψ1²wη@)!ΡΌΥΓ₯z°'C€!ΐ`C`«σ@τCƒΕf0α‹Ηο”&ΫjαžυγΎ]8c3)μt:ωτO=υ”ώ<υ£?ϋK!gΙ'Θη΅ οωΝ‘ ¨Θox¨kΞ[Θ¦[πώλΏE(o}UY9 O2Ϋ›Gέ~ 3¦ΐΕα„+Rv₯bqtα‰ χΔ‰Ή †€UlwώjN,†C`ϋ"ΐΟ?skQ—}ιb5Ž Žήΐpϊγ'vώκρ‘·έΫ·“±š1  D )!Οέ5Η„x΅`^__ΗΨΨ„VσS P^ZΜ»ZZZΎΜΚ`0 †C€!ΐ`0 †C€!ΐ`0Άάz1gŠ‹‹ω§Ρ?===|’ˆˆU'VƒσŽ” μX›‡sjύ]½~.EVαΕ -ΐ|ί,―‘™f–49KΒœΠσTΣψ₯ΡzK74#ž!ΐ²Nζπ‡JΆ+eό3lΊ#„!ΆπσΟ΅ LΕ>Βνλ—qύ_?ΒΠϊVŠb·5δζΫα4Ώfό:l_FC€!ζ0 Ξώhmm ώ#±P0 Ξ¬0 †C€!ΐ`0 †C€!ΐ`0ہΰ΅έσUΏΑ[`π–―PζΟΨΎHš›9‘‹˜ŒX/ΝObΈTηνΫκ¬f †ΐf! Τ˜/ρšνΔ₯:mΎ¬\†C`k ρŠνΔΒ•Ώs=B–p—ž[£·0* †C`+!πψ± ‘c+ΡΜhe0 †C€!ΐ`0 †C€!ΐ`0 ­ƒΐ«Αyλ4£”!`=Ό·Η@bq―YΞSθαI gν¬οc,G†C@@ΐ“Ώl7ώκY?Φξ †Cΐۍ…λόΩSΈΩW{0†C€!ΐΠ‡Σΰμ§ΥΥ5,..ωΔB™gΦ †C€!ΐ`0 †C€!ΐ`0 mΐFip~κGφ—$ζhΉvα=Ώ™ω g †C€!ΐ`0 †C€!ΐ`0 †C`³HJHΰIpΝΝm6)aYώΒΒ"ff\aI[8U^ZΜ“ΣNd1Z †C€!ΐ`0 †C€!ΐ`0 †€e¬― 7ώ›Κ³§§‡O‘J―v©‚˜ƒ!ΐ`0 †C€!ΐ`0 †C€!ΐ`0ή<~,,X{‡0†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`pC–C€!ΐ`0 †C€!ΐ`0 †C€!ΐx’X_·τbΐ' ;VY†C€!ΐ`0 †C€!ΐ`0 †C€!ΐŒ@Tΰ(,C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0άHWΊ}˜Νj’“μΨ‘3Σq—CgL}Ρκ^ωψJ}9ζ†πλη5τιKf8Vΰ:.bάετ›orjςSμHˆŒΔΪγe,.Ή05ٌα­d6δ€g!5! ±Q‘ˆ|*xΌ€ρ±Ft»΄βkϋΙt―} ώιΣΞΑBί΄£xυ»Ο#3˜ξϊ?σ’…™‡AVŠϊΝRύ^ίnυ ˆ· …Ψ™Ÿ‹ψ˜ 7‹‹άlί@ςΝ–št2ς‰€ώgGIZ.RbβΝσΑeLM=DΗ”6? \–›γ‘1~νΞ3μl ΎΔψnΨ΅Ξζ”{ίώΞ)€cΝογΧο]Ϋ0ZδwrΓη!‘αgn Μ–ηΞ°!#)–χX^u`Ζc>(c§LβΓΉ“ψ/‹ΈL?όΪ]PxΩ ―φjŒπΑάψζ«§θn Ξ–π›Γ₯@G`>|‘fω'K§½Y\΄scΎ †@π0ηΰ1d90 †C€!ΐ`0 †C€!ΐ`0 ' ¦Αyƒ›;υ$^:z ©:‹ιhύήοκΤ;p΄˜ΨD>RBl6j!9E|οΔ8q«ρΏαΪ¨w΄δτC8RΎ;3μށx-χίΐ…>I4Ϋ†£ϋ_AuNβ5b£ϊΛώWš>Β°FxA^= R²–”…τ€<$“0±`ΖqυΪί’iJroΒΣ–‚Μ;2¨θ¨™°Π’Ά'ž.#Aό5Lv\ΕνΆ1λΛέΜϊY_–£IvVΌŒ#•΅HφHle>»σsά·ψ4[^¨™εŸ%ΕηP“SBΒΝZ|σK½…λο’[‰³γ‘1~­,„›3³ΰΕγj<ƒ σk ΫrΓ²ΪDΎΔψ΅­j)žΥ/6aJ~Ζ΅¨Ως<{Γ‘ƒηέΒΝ8??ƒ9E€`ω™"+ή¨<.’9~νYRΊ7ͺΏλ¨ͺ₯ο­―ς6±~ΎHΪώ†p‹”FΣM<ΫΥθαΑΤέ,dιΤσ]© Μβ"₯gO†C`γΨ(ε G1Λ™!ΐ`0 †C€!ΐ`0 †C€!ΐ`06¦ΑycαžjΓν^"5δΘΧΦVV~ E Ξ[Έ-k*–<Γ™š`‰œCw_3œk€ΧΦφΪ:<ˆνηpΊVΰόtZ ί5‹˜Ψ4ΨΣ*QW˜I—B£uT$8m/S“νv:0κšΔμΒ,"c3Q’€₯­aΙY»p(υS4*ΚLNΙ@¦\š“lέd]˜ησĚUw]s[ŸX8XΕ­G`ΧοαD~ž˜ρΪ;.αVΫ#dU=3ε•‚J%*σl ώm4[^¨Σ™βŸι9H‘oΕΐx1,!9{q ΏDΔ³΅Εw0ά#hΐj<2Γ―EΩΓŒοϊΖ€χΐ3ΤσPσ3³εyΆψN/g«΅ΐΊζ§0£ˆ?SδΓYυ”ΗΕ3Ε―Ή„ΜψF` Ό·Ύ‰g!2Ξ<Όq1τ8ΫΥ.{o'‹^>aΆΞfω'KGˆk|?˜ΕΕlϋ±t †€1ΒJΐ9.Žm‰KGlDΦ―`yu³σ}˜ΠΠ`¬šή±ΛŸ‘E‘ΪB,ŒήΕ…ω=6ΰβ4οBeŸ$ΕΪ#VםXP?ΓΈDg"/žp$ Oλ«ΣκƒK._―ŝzseρΌ°ν~gOΡbά΄’3DΫ0Χυ!ή΄Ρ;ΑωΔΕΨ„“rλ+p­(Ο΄ͺ ”γ©½.JΏδ;½"bVύ30ξ’]€i%°ρ_ž:=½ƒ)β;HΛ+“θTGaν]YjΫ¬,bΞ8ή8|kqϊτaΔE¬ΑΥύ.ίxh]YI»ρμωγH₯zΟάΐ‡—š¬Λ{#s"~›EγfBT,’ž’νNšƒΜΞχcxaγψXjb θϊ%ώ* *o~ɁΑY=Ό0&bΩΜ–κt0Ι?Χ§Ρ3xƒ½_ΰα”«~Ϊ+]‰όŸQŸ#πεˆ…|Σγ‘I~½ϊ¦/ίυ…LΨϊ5Ži΄χF^„tj~fΆ<•Sό2žγΖ n-SœΟqQ¦]#꘦ω™:έε™εΧκβΆ–Kγ½°ΊA½·AΓζŸ*5Ϊ[7œΌƒήΈ£Κn;9τσ “΅6Λ?Y:νο³Έ˜l>–Œ!ΐ0Ž€ξρΕxΦϊSΔΕWbgVŠΉO³€ξΑ‹Έ;eν"\tŒ°μGG‚Ό΄Bx’`©ΫŽΊ²σ(Š3]ξΔ₯φ+P(„K3ŽKΚrκQ‘^€X9Ρ’=Ž‘F<˜rx†ψpλ§ΣGγTŽ=5ωˆ¦Ντ™»θΨΰ ©•ƒ$Ί6ά›Β¬qGΦ6Πd€μDf\*’cΉ_ χI…9qΏσmt.Hnχ3.εΎTPνφΠ΄ΉΠΦσ΄ΞjZΰ ΖνΑΣe¬³€αpsΒί» !·wP–πγg\uΜ|OK< ~φζίόΑηΗrpήΌNphqδ‹Β3Γ7πΉΏe­Ν#ΣΙqΩHM£L;u ”F₯˜njΔSΈYY€ZxOβm_ΑŠBͺΩkEv‘mnmΠ%I’Tœ™ρΏoa«yηOΤ` ―EF!r‘ώτ7π·ρ&Ι€Οκr$κΞώ‡Χ’&kq…kցζƏπ›χxεš]s»«w!//™©vΠ§ž`f'0θθEΟύΛΈp΅Y‘.ΗΎρMT€Εf«ˆΝ¬‘Γς~ ίr/jDΠΰυίβΒΝ>9ŽRwώ»Ψ»«…Ήξu™ΉΙ~8Ί;πΰϊΗΈΫενκς χ} 'ž9€²»˜ }w.γβΟή†vIΚRΩ3qκ;ί¦½ͺ(¬G’ϋ³ŸγJ³'…8σ?@Ε‰ 8½WŽOοδα+?:‹Tκx½1{pβΤAa­άzλWxO…«@ΧΣ„ƒϋjQ¬Β€ν7>Εο?ΉζEΌρφγ²Ψ‡ώψ,γ"1ΧyγY8qΜž‘κΧ;i"S¬υ ½ο’p3@‚³ϋO‘p§œ AˆAΚ~‚5fΛ u:˜δŸ˜jΔ­ΝH8ΧςΌaύGΓ― “Έα ί b³|WΙ›+qβ•3¨¬p}D?¦ φ‘σξ54ά‘΄ƒZ0Ž•žΐΧϝBM9wڌ3.8:ξ‘±aœ—―ό΄šβŸAΜC΄©πνj~fΆM·p3G䇻¨<)iIή—±75KrͺŸ; P—ϋ4f:Ώπ)$€Nΐ\!C }'φΧνCeu9}ͺM„ Σ\ν©ΓU½{·όn υt‡ψ–€@FΘ{’"#E6NJθ₯·IzΛߝœ/Οέo,OΆ-ΉGΛ"pΙ’χ6'σΙvkρΔ&!‘ Š’±Ϊ~ÁΖηˆΞ@όΜjώ©Mσέ0BΙΟ,xίέ8l _rrΫfΟ ½οˆΞC¦Oαf4ΫŒXΕΗ}ޚΝπ₯p˜G†Ό#lƒ3 +QCΒΝ>MΌΥG_!₯wπώ₯{>£y°ω’{ήδ‰M wΘζKAς‰@υΠŽό &Ώ§υΦ™ΕΫς³)vΫζϊψργm[·°―˜ύjE ›$>ЦG—Γžd-“SRεΓSSσN,ΣνŽρ X]žΐ°ΛΧϊuvεWŠΩ9π ™«» 9©ιˆ’%i΅¨ύ²*‘)θC!%,j-ΨΛΙ a“5O;ιζ“N9DΛ’œ]ŒΚς*wΠδœ$Žιφ³Πf?πU|Ε3ΏD;jN}ΩΩιψΕx[‘γΆ'_ύͺ΅–{IM^9χۏΌ¬Χρϊ[’ptrIxΊΠ³ rΫrΛευ0)x­νcΙκ~¦ΕΧΏϋ j Όχ2 PF?{ά 8ΏλN#Ϊμ^Εxz'‘Πσ ψAJ<ώϋίώBQ?Οxzάc˜œ‹Β‰}B›§Ό‚‘ζΏ‡$Ηε°χ₯oΰ˜ŽΩfάξ#!»ƒ(¨ͺ‚€“ά]R:jΟ’Ψ•θmǁ—ΏŽΡξf4–€`*qξGίE}•$΄-ω“ψnZ1κ(‚Ό,όβ§ΑΆε[š²]UB[•”£Ζ]”h Œghϊu! 2₯ž6‡Ξ7―;΄ΌxЁ`Lν ώίG)φΣly‘NΊUΗ Τ΅Ϋ·%2ήn_Ώ6ΏγΡρkΏmN γ»›Δw₯ζ¦1εΫφC”iŒeς˜9’pn³Ρ!›?ϊΞ ό> φςcψJΉD”οgπόΣΨ<Δ7%Z!‘ζgfΛSΠ·/מD*οΥ‡ΟZ Ό^œ -MbΚΟ‘E.€_~¦ˆi°ΌαΧ zΒΔΚψ`°|pΡU(ζ7,«Psπcτέ€ω₯‡Ω{δͺΛF3>{›ζt9›0€9|0³ΈeUήίΞ΅ͺ­–€³™οΚj3η»ω„G3λtšεŸ,|8’v?˜ΕEgs±h †€%l€sT7/.τ£wͺ c‹ ˆŽN¦«’ P™nΓΜβVTAαέ>y49NΆ©ζ—\π’#5KiΏR 7;ΖΡ6ьΥθ2TΪiq-^Ϋ+₯ΙQχτu:KκΫθ¦Σw²ζΎϊ2$·`†ͺ<ΗC4Kݜζte$ΰμΦ[±1pΖΕ¦(œΉ‘˜L.ΟΒ—ςε€RΌ OtΑEϋY΄ 6λ. yulu³.=ύsjΎνσˆΠΨk[__ErΦ^ΘKΕσ­θπ£!^Oy\] θύv 7/ τ6ΪGaΛ:‚YβBl\!ςRξajš;ΖLx “/Ό‚2νιAΡ–~₯ΥRλΖ£«‚ΚΞςΔs£θyp;θμΠό@Ÿεٝa¨ψn|Ί|Β9ۍΡΩL-:±Bbξ™)¨JΝͺW…΄ά φ:ΧΔ½Ψ­nž!νΠ­cmpy+N€pOv™ Auρ‰t;ρWiP 2LΜ ΄ΪA?³’jΡΐό6-Μϝ/™hΆΝžθyίΑΟαfζϊ01?ηβ Vmƒ=u'i,Ύ[’KPw”s;“|i³η‘&š’%Q!0Η£v υ“œD%’’ζ$ ΔΣBvΪPΪ?Π‹¦N·μ°ω’ YÎPΝ—‚α†+₯ \ω™ΩοiνZ2ίΠ#ΐΎΙ­ΐœioΆE3yΨq¦όiρJU`¨»χύ-τš)"DiRθ6%I¦85ηΎO?ΙΜ8ΫιvΉOΡδP|sYeΘ˜f&G_φ-|Ώ¨RώΎη’LίΓΝ–·πP.vμ$ΑΤ}ΥDΑ`€· χ•s_.S₯Qjβ#5“ΚYu―g Ω¬Γ­zE™±΅vgχMܾߍΈΒ:Το!2v½€σg{π«OΌ…ζF{ΠΧί‡Ι±qRΘO‚ZϋH3₯°ΎU|μeœλ~ˆξp‚ΝhδS¬$οΐ )ˆΝCM‰°^μh»‰Α)Z“ΦDa¬ίσ^¬J|ν?DΈμΒΥΊ΄Dwφ#*.ΩΕ•¨,±“vhGηΉϊ5· Ύ€uUx%qxίΗ"‚—™Ώwίϊ)22ώW«J§E›ύ8ϋύΡώSQΨzίβμII`}Wύ_qw’J‰%{Ή0Z/_Ζ )©-‘‘Κφό&NΚ‹©ρ’’ώ4MrΥ‘˜Π9έΧ'mυΨB?mW‚SάΝΐί‡‹θχπ―»ΎΈ½(εξoΡυ _Gƒ¨ ιœG)8Σ79²HΏ“›πgSy8Βεό½dMΡΏhΓιΙPΰB–UWΚVΗŸ ;π"67‡³ntnn₯§!‰»τ3~―ώρξ³yŒ8š11Ω‚‘Eυ=9A Οk;ήD•Eΰ»;‚ηε’΄BΩBΣόμc\ο§ΥΥ’Ώ…ψΈLμλ“Β…£qΊώL7Ÿ™ΔŸ"° P |–Bχ;΅užξwέnKxI·t'άβqξϋ}Ή Ÿ5΅i΄{s vοeδˆο-j• £Ό΄΅γH†² ,ΜN «υ tέϋ C*ž^τ5 γ₯oΏ~±˜ΩΩd4ΝύΟΖKZΰ‡αxΙ0Oh΅/π°πε3ΐΨϋtΰ°ζ" δ3sK~>KΫΨΠXUώ|BV”žΗ>ώΉKΥ’ύϊ–Η!­ίΜΚ2SψΩjΝ"S-8}΄ιOΎOϋ]‹³χΈ€—šqG5ŠHΟ:€WΞΡ$Δυ’McόΠΑοΰlv&fΧW±3Ρ"—Η 2>r5ΥkΚ$¦fdΉΜDΠΈyB£)­ζΡ₯«mFΰDΛUόW²Τ,Έ1:ϋΗψκ9AIΆβΘQ’‚³€jzλn`bβ1nάkVWύΙOΡύ?ΓWN–Qx Š+χ“Q΅λ|šΗύ €+Οr:–œOςα“νΧpυ¦«ΏΤ g…ηΞγ€<:€ΫοόŸ>PηαΆ>˜Ά¬•zψ3|οG’Η˜ϊ֊ ‡8%g² YXLrŽ{Ν«/bŸώύΨώ\°š΅«ψζΕόδ“DΌύζEy~§γ“wπ©l\ωσ·ρ“+„ξ5δώαW+Ÿ=7πΞϋ–»Œ’=_γΓ,Φ]”Ί¨ϊ:Žο“ΎοΈcr χ[ΏNΦB/σyŠΟΖ>Rpnαb¬ψ¬Š?¦ΰΉ ΧuA†M^Ό0Mί/HζΤΌKxQ΄\8;zO–‹qΊ0oMTTŒ’U{Φκ|\ˌπ§/D JΏ—DΉtΓ=~zPΟ#3ψΪ—ΜαΗxwλx7=]Ρ’“ο^ΆΠχρ’„ Υ%cτ9Vxξ¨h=žŠ›jΔΏώε_ΙΟΓ[΄(又«…/ ͺκ|ŸȟAC|Hj>3ZŸΤ„Rnή'ήΧy 7θƒuA©kέψΒ4f₯Δ>ŽώψLΚj€>³ωZ’%ŒƒγΑξϋ4>'gNS#k?-ΰΛΈFΊžΆ:(Zx¦°ΪA€Žς˜:tγΟ`y°ϋζ]ίΝ3.ΑJ Ξ(ΨΥZ₯/²Ζ»FxBΩZ½~£όΙςiΏ?ΕEo±t †€9(TmΝ)Po)YYϋP hόavΦ]ΉYYŠZιH1~²Ϊx8·\wuc«ι€dΜYTv`vQ=Ψ1‚KNz±0IΖΥ@ۍ’r³P#°: ηρ–‚=ŽΘ)εM*:‰‡KC«ͺΦ££½4„{}δ6pRιά1ΆΟϋ Σbx« qιά„ͺକ—q±hE:%ks4 έtυξV!ς±ό)”ν€…fΐ€BGΗP :AΦ@”郫ΟRt»‹w#ΫjCzj¨ήΡ6‹c“Γι¬G}S―hήΑP?¬ΪρtL4{@’ΨβReζ²_剑­Ο€λhΡ©λΕP•?˜Χ§Vuεωa™oήΡ‚•’†"GυεΡ=(ΎCcžψLRn&Tq΄ΰ()7s_:+κΨ‘¨#½eΗ/£œΆ.΄Y₯ΣΗύ;&†ϋΡέtέvw…–@ξ?2œ|νβ’±8XVG€η…-KD‹,Ά?ΔƒoΒŞe8υ•H!Z_θΕ]ŠΣzrXφ^ΐ ρcΑLΟmΤ6τR™+Xš·cx΄M €΄3I[λxS¬ΛΘ‘₯ΈΧOΞ &‚ΧVƒ—NV .Š8¨ηξ4ψQ0N©Ζ™ ιƒ α`―ΗΝΠεώ@IDATZ—θ’Γ—°·’Ήͺ>Bsξ #ΰ#D”gΟ6"Dν$ζAΫλZέΡS oΛϋΓΏΥ6d&ss θ‘έ!œ,¬G#=£ϋv ʊ\φUœF7)8 ν΄`W7Φΰf}Δχš…ξμi@ίΜ,YΥ8š_Βe#W‚₯GΠ摬\ˆ]4oGŠ’BBΧί‘OπNύmΧΉ_¦B)zzn’ZΰΫ-sΦΙ”ng”ώ‰2Ζ$ΏO>ϋ@UΦγ+Ÿ‘ςH• ”e-FΑn²šά-$©»ϊ/ͺ΄Κ“†λ xœΉžΪK iΈΤhq’•β’xΓ‰δ Bμ?|L>λΊqΕCΉ™‹μΈώœΪ―Χ‰ϊ_JΚΝB’Ϋ Ν8J Ξάl₯%‹S6ΓέΑ?P€ω[‚BsεείΒοTΕ P΄(μ %ςw>z€YΡβ}€ΰYJ–zbFΌR–„9Lγ’„ΒN’―θώ›Χ<0q<ϊ)κ««p‰WβBΙ‰B΄ά”Βƒν?nμnΟΐk ²hjάυ%‡GΗλŸXŠ™ οΆ4Χ †IχBr―-ΨΣw°λ>AΡ "—³ΆΆ*ϋxŒΦκ|ά7‡ΐωΣ;"Yω―γή*WGξψ]<γοyd_»DεΛΘwχ{_‘,…ϋVΣ‡BqLΈŸρnΰ˜iε0Ζ»λ΄`IvιΚτ-Έύηξή@žcΉŠ…υΧeεfΎLβκ‡αΒ~ίͺzρ§»΄΄ΐ!ΐqˆg ήCBΝgFλγZ°·ςΫ²5ι‘Έ.¬8ΚV, ›q{o¬γΟ„„Ζκ3—―e‘½yzA&BƟS·πτΙ%ςR†2»7|"\Χ\ΓͺΘΈ–τΤΡ\ο‘‹ͺρ§<(wTΌ>γR‘1ή5“—d„ΌzŒς'Λ§ύώ`―Δ" MAΐ5ϋ΄)Ε{+Τ†"‹€6‰ž‘'”0 ι )ˆ&εΏυu'¦—΅ΤΣΌ•Ζαd]ωTώaqΒԎΪΦ)oχYAΰ΅YΜ-*e7†K|,Y€݈sW₯”Ξu’ΣUjbF.Šh‹ΩΝ,ΚVΉε° <ιΘΠ\Ή•BVq]-*Yο«UΧFJ‚/Ώρ&Š\saΌr3—Θ’·Ηθ—yο=|vΏMΜL}ω8tρ ”HJΝJIθ…ΣΚύ φ!;ύ ~yK[ΩG™%πύdΩ2³σΛ.Εg₯ ρ)²U“Ωε9¬ΡζY1ρ›ΟΌ>•²σ~ΪN½TΆ:FΦ›9ξΡpΥ— k²4a±HΫ0ΊΚ,Ο?).δ•›©ͺΔξσ‰6Ύ’„OέKη.Ώ‚R›τϊδ-!Ν†ϊeΕΝ‘ϋκWDΐχe΅Y‘Ώ»DΈ·σ Qκ*Mτ%ΑΆη^OŽΗ»?ϋXVdŽ·– —Ώχ1xΝ”V"7ϋΤA€ΰ,Έ1άΰύΦJvE§Κ fνMh%…iΑΕπΫ‘qœ΅Έ:ΰ_Α™,Έδ·rWŽcIϊ€“c_yϋ‹ΉO j—–‡=§ς°+;δ©ΰmΙ­DA±gί97θcˆ†r2WzRΡ9\z㜬Ό/Ԙ„Μ‚ƒ8K?Ιqeh)8gV~ ―WJ©€£VΓ»RΉto™ϊ<ΚCNŠt_»κ0ξ[%EAξΟυθq¦ϋ'6™G胏¬μll\ ’3 >SεTŸθεOuπœτ€2Δ»LœώξŽμ‡ θzڍΡα^τ»žuzͺχ¦ŸηΨ1ΤαR<”ς τ ~œυσ§Tͺϊθ8DΫΧY¨ωΜh}@Nαx…Ύ#ςŽe|ϊθ¦Ψ0κ#~wκ έ‹ύ?όσY0υ™ΗΧb½zΗ†4W"eόΩόΈ'‰CΈΡMeΥAXHΑYxΣ9…C7Λv΄*Ÿε†‡dόiΚ2ΰ ορn0<rR£όΙςiΏ?ΕEξζa0B„€ϋ4IhͺMΞCΆ83??…ψ¬—ρJ¦kλvNˆΩΉ§hΉ!}ΛmC#wΐ΅dγ`ΑYΡZμ"Ί>B_ΤQΘϊ^ΛNυκ*CΈ$!)Fš$‹Ί‹CR¦"A=ηε–&@9•ΉΧ7”gδί {of:z½wkI1€ΆŽΨΜJ²$*LZMφ6alv QQβˆ-zӣӊΚΣpμΒ+ εfz[α 3Ξ`‰¨¨YrβU̎Ά‘ΎΛL}ͺ§hBmt³ΣZ1O {QZ LΘεΊ€cΓ}x cλfW‰~|Αφƒ’θ:ςrί%Ε₯Ι μ©–£ψύ$7Ώ@|ΗλΡEWΜuA\Ÿ*A,8hέ/Λ?1ъ>ΝvX_b.²€ϋkŎ1§PiŽυͺdej— σΛΚkΤήΎ|œως›(ULΌΫŸ>ΐΰ¨Ρq΄yn1ŠΘΒοšκ:4r «Φ<œCMθξ£gEnφ‹/pyU¨,½'ήGθνμGo99 ωΕ{IΑΉΝ jδa=θoθu‹7γ΄ ₯{₯θl¬sjΖ·NI#Χτ,~²ΥξŠυπεefJ6Ώ19J“bδφΏ¦Vnn§>°;`-ΖώΚ2>₯όΞ8ΗπΛΫκφO4’k5…,8CοLEyΉ ηΊͺΟψ"Δ?Ε¨yQ‘άΌ0„Φ'MpFΩPQC/Պ€ήΛωο?sxm1ώ<*Κ9ˆ|Y±ΟŽρY_½₯Γ«wσ«œυξγj в_ΐψά]ρ# ϋ ₯Ε=χOi‹[ήY…Ώς™2«Κ―—?U™Βτ„ρ™ΎŽρΑg> ΰξχφΞ!ΔΩ*± T`Ω}'ŽγϊΓNUΞΐyΙ•=ΠqVΡϊP/+7OΠx° γΣKˆIL…Ε–‡’ΞB\”«w_ ό²eγσξχΌΜ=(Ο©”-ΪMMΆ£O2†/mΝ8½37σόyε+²²]ƒΔΩIŸΒ}π /ωο†ΣxΙŸ<τmώ|ζΡDοΣωΒ6ΰy峰퐰lC΅EP؊Ή}Λ<#ωGmv] νΞj›€δ,)7kΉ‘ώΡh-ΕΙ]άμCω‘θ=9έ‚Tiœbz:>q)7‹ N‘"“¨ΰ¬U6§μς¨ε=Qΐg¨ΎPη0jΰ‘•*)7—ίύ¦βγ»ϊΰ?±=Ο#SψZChoAρ±ςwoI<ΒcM΄¦ΟxΧή`εέΪΊ‡8rθ5q§γLT½H?Q‚9;ZίΑ―ήΏ¦ώoH@NI’3aΓΉμ”8Cθ―.ώΤ,ΡΨ8D³(ΐPσ™Αϊ¬ηΙJφaAϊΉV·EYH•ž9Λc΄³²G#Υzψ,ΘϊΜΰk΅Π^Ξz† Žœρ§γΡt]:άTkχΈΥN―7/οG1ΧrOšΥΦγ…`ΧίMšΕƒ.ύϋ‚}_Ωτρn<αχω,ŸφϋƒQ\άϋ…3›€4΄Ωυ¨ΚΟKΞ”_6“’Κ±GΠWU₯IM.GM9E΄Œ!ιƒΊ*EψŸ”ηŸ–­ωΪΗξ’‘”Ϋ²²\ ’ާΚΪ²1\RhβE²FAέιoL0εμ*Uπ.P9= P˜1Ο©,όέχ?F·–TC Ξω3GίZ©Ο™;πβς’Έ@ΊΈ&πψ?B½€T|ζΎς[d U˜(/ͺ³²Ž DΊUVzΠaΧήΔ3Πϊ²’2ω•”\»f&x…Ε„΄£€L]ΐ7u~φ1ΊWs°?SPόΨ±CZB([—>ϋΐ1” β“v<ώεΤw¨ο½ΌΓ—QžΌβΰύη*@π΅~‚«ŸΤ 'obζοαψξƒYΆεΠ}DΔJ»«Gθώβ¦—r‹Ja©mSMXe(sYV~Ϊ%s ŸΩ€?Ά£P$*Π9»[πD₯Ϋ‹ΙΙ ”€ΡG0ΪN5“š`WΕ«…ΘȐ¦η'0=2½„ͺέ4χ>¨EkΟKΈτε3Όβqξ‘C("g~Ν†X¬½ρSΨ%Γρ)5Θ gε§uν΄δΐ~’U ]θΔ­wίA§ψ‘ ydoyXvv/A8ΧέFy^»Z!4@”ŠΚΚ:‹ΓβύΚ…ML(ϋ€DŽ}SO‘G|a%Ειψ€=8S½ sKH ΛΝ“ji‘zΚccγ—pς™+§Ϊ§—?ΥΉΒσŒρ™Ύ~ρΝgΪe8Ίoβ}²ΤΜ;Zΰ156^soˆήχiχ|αzώΌςYΈφG8ΛΕœCΩ;ΌHš:¬άτΠάQOΛ„R˜Τ΅΄ΊδY™ζ¬ σnΉm4Ώγξb£Χ6zΤt9ΩίB7§“H;,₯Σξ%‹η ΕR1Ÿ’({IΎΑŽΕM Ρρ ’‚ŽΉ»©qš2ε•”³n%yμ$`f ^}ν Yβ§;«γWψδVeΛGz¦¨ΜLΦGΖIΊςR™lΡΩ^…GΜw}†Άφ2œδ•ΏΛ³ΧŠΎ6/wa¬–Ξ! (’λ{ς@VnζΓϊnR]ϋ¨.IαZJι~  Yε])k°<Θ•“’vΗlτ•)7{Y !%Ρ}\΄cΤ9 +YηœYΙδγfϋΉΡΨl>κ,DρŽ „"Œπ™’r…W*2θχ2>‹X>σμd²ZOJyJΧ}ϋŠχ– ?2ς@C-žΟ”idΏ^βgmβμά†\ψό`:εžž@ψ%δγ7Έϋ=›Άα₯Ξ!’[Θ8κπΩ ς£}0Όβq$γ—Ππ‹ν$ŽŸ’Ζ?@ί½;κ1ƒ|1I6^’p#aΌOΈZfΔ|ζΩ2}οӞωt…0> Ÿικ –ΘgϞΉ±σMB §ψ"dH£΅~νΐ­+ςY¨=ŒwΝEάοΆ_Ητ²±»ͺ˜>•£‚ χ[…ρDRΩ Όpμ:=χ)¬ΏηΨ:O\˜ΦX ΅ιKp ŒCvUB‘E±Rgy uyβj>3T_!ν ΐ}!-€©π1τΛέEίf—;πDJ―8κγ3σκST-zύσ΅g_!Œ½’aγώ»:_…μΞM@q‰ψn4֌ζGΎyΜ+ͺ£γΟt„šΓΌkOl/Ύ¦ ΞΟGP>Υ=ΕN P ΐ©Τ„Ψe"9N2£ΚU=‰ΦήλhŸ§$iΒrnγ2Žrζ-ΙνŒV Ίωπ“žώj$₯bRŽj”†ΞΩ’‚(Χ'œ‹Κˆq\ζV8섁MVζYœ‰ΞΐMR&Eέ YYX’TρŠΙcrr²»œ£ιηx€6γYΑj )ν:M\λͺLj/!IμQζιρAΟ"μύ£ΙBzΤeQΥ³ν$[5φTV`—ΥŠ€8ΊΕh€ΗιDΗg‰½€/˜Π`ϋ!%.U~^₯x/“ǁŽΑ«θ^W+@O>Fϊ œΘ«,ώνΜ†5- c3ZŸ”εωφ›q}J5εU»¬˜Ο7£…ΫΝ«ξιXιeš>jΜΕ zχYq+¬I4~N–#θ;IβΌ1L-xΦν&ŠχSR†}γΏϋ’OΛ»™gšπα?PYΝτHγ3 ±²>~?ϊ›;}¦–"MΉffA»»©YΌ]C8V“άϊϊ:IΑ™›œΝBNI5)8sΚΒδRŽ ―Xμ§… xSόRϊΛY<.?v,΅zXε £{§‚η4ήBπ ² σ`£ϋ…s)ΉE€ΌήGf$έm瀝lfΣ:έ8Χ³Πvδ"ήΘ‰JπΩ\’₯댸>Aξ4WΌnŸiiN`Όί³Ο'8σΣώœκ?έΒyM,r–ΧO–O2‹]ΈΣ}σ”^eπ‘Ό犏ΊΆΝ\s`ŒΆΧŒŠΝBVΌΨo©‡iϋέYԎJΦ协 Œρ™ΆτzψS;§ŸPΖg jΛg½;C\Ε‘•ΚubthEεάbˆˆ‹γ>(Ξ¨R916Ξ’Σ‚ƒoύ°΄Άb°Σ“#Ÿτ/“~~ ρΈ€ ώ~_ΐΤl8+`k4’ηvδΘ GΘΪ"β-58EοwLΰ₯Ž#Ώ„†_Rͺqρ΅‹ςΈΤΩύίχ3(οs6^R’!ϊ#bΌOh΄QgPδπ™gƒτ½O{ζσΒψ,4|ζ·#Xo0 Ξސ1;ΌGΛͺδBΙκwΕ<9v{xRσΞ(Ίη±@Φl=MΆzͺ’ΜΖΝ nάαρ’"E©Ά½(”΄–iήsΒΗD@M$K³¨ΣΞ1 k€κ’Ή3Λ±_Η―]:ŒΌς/­p§ΉΙϊ==s Ι° “ζ¨ϊiήΫεθΓ{§άΜΉyRπN]F™ΠvΗMΉ™R*χ«άΌΌμRη²XΉσ:• “`Ο‰Btά3 όΚ5#βςˆ³ϋ2…š¦QΧ‡šγœ=Ξ~ύΏΗΠ_ώήΦϊΆŸv}£yτn.yΥΐM}šΡ>σ΅ιΧ5½£JoςΌ ­ψόήΗ. ΓΆΓ(ζ¦8·@sΦCΑοφ·ΐz/ν%L§m]]Šς­/ΤωΤR{œωζO j}'σ8•)ΞΝ£­ν ~Υ₯οzΝkz™ΙΧ‚ΰαχ—ρi}<»™ϋΥ‘φ£ΑωίύΔ㜾A ’yCMžίητ?Η:`³γ@.W^l%…ΐ°ϊ–kυg&Έq‘qHΩ±7paΏψ,γzj“€ΰάΝω•.Τ|f¨Ύx,-Ψ1½Aσ˜Δ-*χl'²- όθΫΦΖNl8퀉βξτςيIυΉΧψζkΟτaΒxΠΌ.šΊŽŽ–KΘγΖ {pξ­]ςxΌ«ΉΡ€w£γOsx0°ΒΌkOl/Ύ¦^6Δσ”/ ™₯e0LA€h%Δ.!‰ŠZGFλ\ΚΝ’( 4‹(*8‡XΊΰ«K>ˆΓyά$Ή₯7ε¨TΘzŽkӘVN΁ΛΠd;вl²g–₯ Y’Ξ₯ —SΪ[εmgΓ¨œŠς$―crPς†ΥΡe­o‚&m΅e€w S]ε‹Ώ‰“$Λ>Š֊―FΡΖϋΑMρž·‘Q-$Ώ–›žΎ‡”|T₯r± ΄5w BΑΩΔλ‰IΡ_zyw’}ΌNΈ” 1\_2b$>[Y@jv`©’ΚξΕSξW|ψΐβ4¦\sώJ τωcb°ΪjL°VΥγΙZΊ(ήΤ,¦ϊD5γώsNOωT̎S£1τ”Ά5―)γml…%΄VΏ‰Οo+£ϋ’Ψ“€=€― €²b_εA9}oΣΩ―ςτΩα k"…V”[Σ…‰λ.n2LtΦδΠ­γΘΆΚΚBSγœY›b€¦+I>TI ’ςz₯ Σ#BG§Τ.(]s‰ςd ύ§C0ΏIŒς ·ΫΑΙ‚*Ωzι|+τά nkKYΪœR(7;ρx°AVœΞ³ΎŒk!ŸΪ–]‰’©τq_iŽ σ™,°Λ£‡?]©σ1>Sαq|¦’žNζ4” ”‰Θzoνΰη_™X™ΛέotœΥΪ‚½{Ξρ; ΠgUΎ@?±tšμξιx„Ί[΅>G.ϊψ%ΔγSξχyτΨoAZZΑ‘R’sΕw1kZ!²HΑy‚‹0ΚK\^r!G2~nΏ”αάo’@²’coΐηW?SΥλyΒΖKž˜Π²ηΗ»Ze¦Ο”₯ΐΚlψ#ŒΟΤMΣ>­Ξ§γŒρ™ €Να3Uμ$@66˜η!3”|_υi”HEšρ ΅ΩP9α“Ι‚½Ε{±tTw΄―ή₯ΠMSςlGZ&rh½π„’Œ½ϋ^Β^IQ™φhικ&Ζ„ Τδg`πi­Ά2r: χiX³03Λ‚ˆK ½ΧˆnΑYDφοRS-°eHs“”~*ΡΥΩ €(ΓΎjΠp΅Ξ•χΨT䊧sc˜ξvE ΎD$qMV†ΧΰΔΙcΚMθΐ¨°8Ÿb-ιώ&¬:Π󴝢έΎŸ~ρUΪ½νο<•„3‘fχ*Y˜άΒλ½κλΈ|ρ€Ψf'κ>~‡,iφ‚Ί^Ζ\όέΧΡρί>ΤΔ%ΐ±αAΰ0GXuζž‚³¦Κiξ!Ξ]Eƒ.Ζϋ/9•i7ύΊžvπσ¨ιόΝ9ΖΦw;/UαυΚγς};<ΪξυΎΝδ­Ϋ(%w`άα¦άΜE­/€ω‚ΰO²λώβ‰·p€ϋpΘŸθΗύΖογ7υ¬Στ<2ΒΧ:εΟdŒwMιƒΌ»kwH££BŒNps‘Šo0ZixŽMMLΚε•ξΈ­Tp>…}ΥΕ5¨ƒ‚αO#γυuϊ(%q"οΒgTΣΣ…”Ο¨zCυΩi±ΛίyΚΞ‡Xpώτ„jώSšwΈξpϊωΜh}Απ΅†ΐΔxΠΜnz،σϋΞQ‘)(δƝsδMξEWƒb|d…Fǟfπ KtΕJ…u…ί•@α ΧρQžP4Mτn/Ύ¦FβωΚηΩ…,„!ΐΨdδ9ΑMΗUσhœ>ώτΘ¦7€ρ™o€ΒžΟΤβ;——4wπˆ£έ+d'_ΠrH`ž`ΖYƒ7ρώϋs8sμς l΄Kα³Prθ"l™IψωŸϊTrVδφ†x\`ήύnNΟΘ#d¦\F>7‰MG:Ζ+ŽPΚέhς{œ™γH0~Qw¨ϋYΠό’SίόŠΌs¦ZπρOϊ\”Ζ‰ΐΖKξ!œGΚxΙ]z―<αžPηyDσ™IοӚP1>Σ„E šΟδ’˜Η Μ‚³AΰΙ–~Š εm]_Π†θ‘ξ¬(«ϊJͺN`p¨ ƒŽa2B“u14O’]y Γd±΅I13=€šrIη­Άζα₯£Ώ†θŽZt/Ζ£rχiΟwaΥΧQ'(C¦γd) Uœ@Υ72;Js΅ X#γ y™₯(Λ/“•$iΤ‹Ζξ*€ /a_F8}ώhRΰu)I•ν:‰ IGΙ0@4Vœd]ΆΛ‹2.7oθζ4‚άRwZzώ7πMš‘όΥΥ[Θ8ρλΈψΝσςόθPΣ#΄HΕΛσM™8ύΥ?ΖJΒ―πδΑ2Žΐ /Υ5ζ“k—–εi«€=—ρ;ߊCσΣΒ8†ΉW1Ωz έSŒ?Ώ‡Γ§χΊ%9λ1ΌύοSpϋσΟΡΤΪKy(©Ψͺ‹΄@΅ε_·PΑΉoσ²ΈH–¬aί~”›i†ά΅}ˆ]ώ7xω³φ}o_Δ;=βγŒώιΎ~ΗŽ‘β7•@ŠΣoωŸ‘φϊ-΄5=Ε²… !dΣΌQyJ큅,oΐ‚s7W™ύgTh‹X#Θhι”Ο©XH„²·0Ί|31Ε8ZI"―J τZ{©Η†ΜdΕΌŸj3š oFλ e>£όiΑ‹/|‡,γ‹0Ρ’™…1­oΰ•Ι²‰΅c£Γ7ρˆβU.Πη‘ΎVUy'Œwƒν3£Ό[3o1ͺ2μh½ί„ήξvΊ†‡ΘΪ»{ŸΑιs’A2ZŠcουςœΰ9ΦqΏC«θΫΝs”]Δοφ>ωωO1•}―Όφm”Κ ­|ΰ‘A–A|¦ŒCάEρͺ‚J>γ„2ZŸ{ƒΔσΪ!•WnζΞgωE2š)ε3ΝB(Πg}FωΪ[e‘ΞxΠΌ~r<¨Gσ₯sΔmT&§Χ@άβhoF­j1bpυΕƒΉU8˜ΛΏΜ‘π«X₯o3œFΞeeζβ`U έ[΄γ ΉΥΕA΄4“^S$w}ςίLί"ž―ς|€δσέ},–!ΐ0―΄h~U%-t΄<\BŒτ(σˆ σ€lXi•δHα±@Tx”‚”Η¬TšΖ[λχάΖ.Λ=xάOΏ Rx­·U8—IQ5α ^±Šj‹ΓδAdΧΤ9•ΩΖΊ·W>walH·ζφAχ(uι½) J™όΥWQβš€·7ώΧ>WLΐs…€A )8+μuHE«4n“§•6Α³Ί2:‹Ku)ϊ,91ΗY Ψ%!%VšUtΒΉθΉp+RT kŠβ¦X™EGG§[mζ]Ÿι4!\&›M·£kTk#ˆϊ6DE“.Ν=ΑΓ‘.±Md%IζQ1΅¬νΰA<Ήνy»hξ©s σάGξ%*ž,ϋ\Ί9χŸΎjgΠίΧ‡ͺsΥΖϋτρ§[¦€NŸω†+άωL-}Jf.iQ‰:‹sάx€S˜Η"g-ΔΈ zœ5X/θ€ΑV”ƒτ]…(€ΔΉ€¬ΐΉ„‚¨ͺx€ϋ^©πΙ|1i\ _Μ»ί=΅Žuj‹O§›—|–"FκGκ)IHΓψΕ7VΑπ‹Ηή|{lβΨj‘Ÿ_ω™Žέ1ΨxΙwŸ»Ωγ%mιtπe|.ψΜ”χim”ΖgސΒƒγ3ΪγΜwρ,Φ/Ϟω0ψ-‚%π‰€§ΚŽργl.ΩΒΔ]άλמoσYLΈE’‚° {bA~ήQώ§)β\>­ΧΝ*k?χ>ΔΎƒ’…η΄Jœ­‘Ÿ[γC7pεiZ"ΝΔN.T_§‘€ιhzςsΤΉ)>Ϊ¬•¨Ψ%kΛ¨sfT’ς³΄06ι]ΑYksΞθsŠbz’κHAεωoσ?U…SΈϋή-9¨φ^-l[fTαόΫάOŽΦη‘m΄ΫžœGή~ξέ(hΎ?ΕEWg±D †€‰θs1±JEQdωΐSE5y©.e£™E·YEEφπσbye³œr΅Mεž‘…‡DΕdθ Yζ$«K]ƒΑeΥ‘°Φš„} 롃Ž1Ξ$9©Ipαd%’yecΊœ;ρΕΟ>ςPpQaΔΙκŠKϋ6…, rόΌ9₯bF oΥ-mŠiΔΞ‚³vΟ’©/Z֐Ά£Wi]D,6»¬ΠΏr3—v~œ w΅pΫϊqGΥ„.»»`ϊ!+ž,8‹Ξ.9`ΔξkBZ΅B‘xKnR‰šWωŽ—+ξƒ…Μ’‚³z³Ο „w••ΖƒI(ΟUdGp‹θ³† ύ‹τρY ’β₯…OτœYΠΊmH‹—ˆ‚γO νuέγ‚ ψL &}NΣǟͺL‘uΒψΜ³Ώδ3Ui©H£K}\uωZ‘ž)|ΰ¦"œΟU™n'¦³0{χ£]ξŒC―ύοζx7 ‰όžΜžVψuσ‹Iγ}όbΦύξ4wJVεwΡδ(οΦΘΊ•<°ΓΈƒn^RδρβΥ;Žτ’=ό‚·-Ώ€Ρύς5μ/Ζςύ¨ύΰt«ξ{/έ Ώ°ρ’Α‘/)*tχκα Κσ<π™οΣξπ†Νω6η³GW6l ŽTA6<&?#΅%a*wJ ­swM“-Ίmΰ–ζ0K8%εQχ&-ΫΡ9ά„Ί–ΫšJˆƒβ=2™rvοiμ"+€j7ŽΞ»ψe»λγΞu'†IΙ%Wή-Kƒ[Œ9<ŒΗO―‘Σc\cCbŒ`AΜ=—ϋωψ¬χχεεeuς5Ο/"κΞΘϊ€΄€Τώδ&ΖΘv™τ>&”ηθ©Ε'?ϊžΛz3ά} οώS4ήψςWQ,Ν“KΥΟu’φf;lη^C1υךm£oΓίo½†ͺΚ"2‚‘‰$E.)ζσ₯’Gού ώ_ΪΩσΝKη=δδΣΜ  §W1Ηζp΅ΟeΕM*;CByme]°ίrμ2NοΙςΧήGŒΊ•2zϋψ8/—ŽSŒ GΞΎŒοŽΛ}°Ό(ICΡbw/―ΈΒ$»-*YΫ―α{9‚WΏςjφsεz:Ηp'zZš\sŒφŸ x†βΊθz΅ΙίΑI…uv •ρ±‡ΈWχ‘Ϋ")V<ξŒu’ƒ¦ηΖ4Ή…‹6Z_ΘςζΟhυ7  νΓF§ΊΤQŸGς΅Ί8cΌ»υΌΫόcΊP¦1Φٌ]eUΘrŽρ—Ρ$:jΏΐχ>τyQςkΉϊWxoύίΰβΕ“ΒBΉd;ov σά9~±ŠκY §τσ§9γη¦qHΘψLΔΓh} 8eoVBЬΰ<=7’ΝυωLDαρYŸaΎVT ^Ζƒ¦ρ Vw·τs#PΡ ύ\#Ϊoχ{&SŒιTœ³™γO’Β(.ΟsZ(β8Ϋ³5κΩEίοϊδ uk…3χטmΐΧFy>Rςiu# c06›W΄—’•ώAs„N…ažν0Š€κ΄ιή0)xEŽ#K½?χ"nμώ&v'rΡN΄~€ViΦ‘ —7 Ήβ8+Νϋ O“₯Qij±ν2–AΘ).MLJA¦r‚x&ήcHNl‚Η1> Nεϊ€€jΎ­Κ΅ $h₯0‘k«¨FΡ­&QYPH²ϋ@%―ɟMOiΎμRŸ\1m¦‘ΐMβͺtσχ’j΅+‰/YΜ]œ’\σ¬V²xL ΞN_ΘlύD Ξ’›]ԚŒOB^FVmSά«Rž„”ύ¨)¨”N15ΩξE‘˜ΫΚqINΗ{–6<ή­9unΓχ‘’τ‚œύΘ‘n₯ £>}υ-:1O–nSy³Ζ‹θω#² …8‘S%o­21Ϋ‘φ‘1LŠΑεœR.½J=…ΎΆ<-υ₯”‘"g,rχςιΜΈψ‚ύγ¬ΗPο)X‹ι# υ NKϊ«t‡φ4ι*mAa9}c]IԞΩ‘υf‘e —G~¨ηGh+4*†c&‹¨$<1άG_<†Ž#—Άγ‘>_NOΘNΣGμαπ@ΫQG)8kͺβf–‘,s b?Θ¨<Š7$E[•I&ΈΊχόYTuE{]ό™Yƒέ"·*σ˜ε7Ζ»π`6ͺ‹Ο‘,™Θ•Ι§νλ?B;}` Διγ3'VH30–»J,Θ¦ž.ͺΉ(ΗΊω²it²€Ώ .„08.-‚X8€e|ζ«ε3uY…(Ϊ‹ΞΪ6WpΕ!RΘO¦ΐsvΕΊωόσ’+Cΰγ,‹­˜vςθΥ\06Ν²~uΥ‘φιg™4.ΠΗ/Η/1y(·€`bΌM{Q)Bœ€1”τ:ΆD‹εΡ‘!^2o©ξ•p;ΫώόRuι›Βbnh΄ΪƒΫο3:όΌ£H½(Ώ°ρ’„œχ㦎—‚α 7‘·ŸΉ5N<υ>­/|CŸ>{Ύ’={φ ܏ΉMDΐyο\½½‰lQΡ‹υΈB»ή₯¦”Βšš†„hR@€qζϊΖ ζζ'Π3©~gΦ’rdπΌ;ψ%y»‘Γ½P―ceiƒφ%πžnR€δ,6&’$- ±΄;Y”`Ώleu cCšsΒB½v|~χΒηZB6zοψ ϊmͺΎŽόΙuUυU§°+3™Ÿ«_žBΓ#…eEJΗ£ρCϊν>vΦDnώb ‹³£x,₯Ώώ"΅7o?†~ήβ5Β»―γƒΏ½ŽΟv’EθVα›Βϊ"f£΄΅`[ΞE–βάΫ'Ηqžαρ½?ωXdτΔρΰρτσηjίύί@ΖƒUΞSF²ΜόŸΏ 5‚Zab1SpνθGΫw.ΙCw©’6τςς&‡‘XUb¨Lΐ3$Χ5΅°ξρχΡή_…έι™ˆΩApp׈sς·.OLδg-ή½Z+Ÿκρ­/$ωŒς'απN€8¨° βy_«κŒ„Ζ»aΑ»ά~r·ήύ/ΈEΧΜέU°eg 6.¦¬/Œ‘Α#E*Ϊ—W`Ο±–hΑΠύZΈz}y£OϋΆ{Εχ3D?š3©ύΡ_ φGΪ­Φ Ÿ)*6ZŸ’ή;1xE?Ÿ.>s/Χg}FωΪ½’p?g*Π–‘Ή'‘ƒ*ΊΞ1Ύ0Ή•% š”ΫΙrW™%—/—CŒΫFΊ\ηώ|ά$m Nου™P…RΩj$Π7ώΔΗΗ ψ­oQ2ΒA…$ ?ϋ4¦Χš±mC…0“ξAΒ₯Γήγ£’πŽκ~τ{θ~αΩ9£—Ύ„ΗυΡέGκάIΩΘ),ΓξǐB&$gSξ?ƒ°τφταp1w()Ά КmW†#η+‘H71§rΏ3-ON–ΉϋNfέΗύs’ηΑg’”yl§P²[¬g‘ν{ε|^=N;¦IW™7ŽΜ'"«ΓBΎΡ1²($Λ=ιρΉ{Γ<έWMŠζ”Ά—ώM2žΤΥ£―g«dq4Νb£~(Eώž€eτΉŽ^—eτΜbμ¦Z‚[Γz|:€KΣ’fΕξ’½@œ0X_C_ίΖΪ0p€άs‹κ{ω7cΡπΈ ³Q»PYσ‚kqˆXͺ©‡@xWY±ιy%‘Ίδ5²8/f€f/Ν:—ς§ΡU…‹Ϊ±)G#zζ4ŸŠ”’W“Οζα\¦ F\ldΝ~GŸΕ£{fkQ™ΘΟΨ‡=ŠqΟΤd§kˆΑq§`bˆ_>Σ™ΕŸ^ΩΪΖg&ς™[WΤΌŠ—ˆ]κj‘²χŽΏr\^2ΦΩζZ$Αε3ΐKΖΗYω8pι[(M#e‰¦§κΓτ$gY+…ε‡pπˆ4œΐδH/'§σ$­‘εΫ€q&ΏxŠ)‡ψΊίγm¨Ϊ΅ŸΎϊTΑNγΊΙΕiZˆ±„¨Dd&η!?½@VnζuM<–‹…!^ΪΔq€K²°πmg~Ω}φ7qœ[ψΔ)7scƒ‘yd{ g\¦Υ…> e‘RžΏOγΩ±ρ’ …©žΝ/ΓώΡ|&4.πχi „_όsΓgα}DIΔ¬7GTw…₯°³Ξ.RR F4z†κυ@‹{άλΟ™)ϋ›IΡ*Ρ»άrY _°IݏPΗ)‘3ηB`Έ τ ΔmU"£Ρ΄³ΣΝx4m4wΰωŒΦͺ|Ασgΰ˜—#@Ύ²-ΝΝxwKαΗhw3ύB(ΓqυνΐΈ:„UU¨ψLh}Rώp=F_$γΑΰ1J8…cηͺΔΒ&ρτ±z!£Y΅¨Κ10ώDˆyp;wU}ΐ‰Qώdω΄A6Š‹vi,”!ΐ0Π+8ΣjΚξ‰V”H_Jp°˜~n-s8’v\Σ>₯[Κ9I₯―EGΦέξ ΞqI‰J΅ZΘ±›>ŸP›έC·ΡξΫ©$ΰWNW-ρ‘uΦή§Ηa-,νΩφ‡Mܝƒ“§οΞ,μ²’a/έΫ+Η²’yϊ ϊΉ Ύ8pd UΣP_kSΚΙͺ)―.œV†c_β~š₯ϊ |ςΈe»_&ΥbreΨͺLΞΣ·n'η^ω‰”|« mSδαΌ–‚jϊIΜ΄Ίœ+μ“―³αΆFm‹ΚRVω8†© zΆΩD%κ)²θ,}˜Μ°Θ Ξ“˜™‘sƒψβσOφΦEAΉ8±ϋ_δ~Š$^Ό•5―γdΉζ‚δ8Œί8μΚIΚΡ~οgτDjΓέ[waω .ΔC‡Ο»xΘ•Α­ΏLθ?ΐ»J9tωγς!?Œ…ρ©εΨν%σΞ₯ύ Ξ^Κ 1OA&YγηγP`=E?ΟΔKsΝx2’\ƒmςxΙ/Ÿq2™ΘŸžM Ζgb?˜ΐgχ{JjήΰͺΞι@Σηͺ #Όό8+ %Υάο•,Ιbo žΠ”ΰ\˜Œ |άοYρŠ»Ψh\gσςxΰvœαή!žͺή! πR8#ƒλ\Ή·1Ώ$Πn1Όγ”›9—W 2R€ιœ1c€ΰμŠbγ% ΥψΥƒ?]xI>Uz)PyάΔρRp<‘8ρ™Ψœ€ί§M€!δEO‰I”œg—'5­)ΑeƒΆδ"[ΊšnjΆuOŠΖιqΝx­@=r*σ­Έij―k˜ΈSf0ΑίόΡΟpQ &gXT)]+«κ‹ΚΡφ~ώ‹λζΆpŸΰη|κ]ρ‘ςθΟ^‹OΉΊ”:‰R ύxςΕM ‹ςoψΑiπή—d‰dkž]@IDATB*A>Ί·‘‹ΠίΪΪn§\–/cI4‹°Ά€oWΐΪ$'κπiηu ,ϋ*‘βάΏx½θΊ>㊱KVΰ&λcɞ’1§§Ύ‰‰ΟΡΜ™δΥpΊοt|Š·ΫD#iΨ9Ϊ>Ζ{?ωžx^“Όπ v ©Ϊaθώ›_qqšϋυΒ—NێŠ΅¬―y»š0Τμ“! =νTΙ¦:Y]ΥyΜƒŒδ .³εœ%Cήυΰιm…₯B1ΤΫalά…αΨp?) Ξή;ŒI)“} jqqΕΥΌƒζ§€ νΕ9ΗϊΡώ€Σe½™­.ΞzI­<· ©‰σtν^»ς ϊΘ²΄9†£‘IΖlJΡ˜πB0}<ΘYβΦλ˜šW^Gnωά―Oo|ΆΪƒ;O?GΟ¬ά»κ‚ˆCϋFoα£ή:ˆ¬+ΗΘ™έ’Ν>Κ63*h9γ33E”²žw>KIΆ€qΞΟGJ—…DΞ₯₯eΜΜ°˜6$R…o%e»‹yαZZZΒWH ΙNφΔ…ύ4>UϊΛΏA·FΔΨpΚ…§JΰθŸ†₯0ύwz0x―OnξσηώLn;σ0 3ΰψt;σ+γO3―VC`#{ ποΎ)ξ Μ-’£αψπ½:ΉΡΟΫψ3Τγohζa0   c*§··—Ο₯6]¨Ο”«‘*υdšΗΨL—ž„ΟYš@q!©Ήν©HifΗΫ;H‘ΩΜ}”ΚΊ|ˆajΤβ2)αω³Πlj‘UΨβb?zŒšŠŽ¬¦bήή‰Žo¦νuOT£\Tn±ΚΣϊΖΠχΰd/:ι·Ή. –Μ8Hiz~Ri; e%rΥ+«n¦τεζqG`qq†x"Πq{ΝμάŒΟΜε³ρΎ¦,4ϊLqΨ{απωενΪρφγ‚ΥqŒΡΟΈ Œ—žΗq$γsωΕΠ΅ΚΖK†`“3ΝrI›λ ZΞΐψlsž₯3> Ο~Ωj©€‰κ­–ƒΥΏΉŒu +vλs#΄ s ηIyDRͺΞ98%<ιόyŠ~zŸ΅”!ΐ5άbΞmW~ 5ž¬>†C 2Θ/hGγΠ?Λ‹κ€ρ&wάόnό―\l™W“š!ΐ`loΆXΑy{ƒΛZΗ`0Άq™ρXž\ςΪ€HχΪ0ˆ&<Έ²†Dz‚-Oaˆ,oG—}ΰ<^'+ΝφξΗθΓψΤΦγ¬(Ϋεy‚3L=ΖΣ&₯ςσvD‚΅i; ιόδO~γ}τ|π™q|XN†€όݟ‘οo)ž~aγ%oύΟΒ·‘Ξ_ώδί}΄•mxφΜΤ ·²)¬nt|ςθπϒہ}_?θa±YRvΰ”0Rσ-ΟmόvμoΦ&†C`λΰ‹lw~έz”™ †@8#ΐƟα1Ύ–Ζόα|­0Ω †ΐσŒ@τΡ§άLzžϊ,.ΝbρͺΘμ#ΘΟJ–ΗΠρΈ Μώd¨gυ0‘ˆ@κ^ 2k²ϊ†Ή<α©διρφΙΒΜf¦'ΰœέΎ6Œ’rχ‘’0Ιι6δοAiε!”——#3-Q„ko\EΧ43νθυΓ‡άW Ά-qό«ΕΛzQ~ψL/,CΐŒ_Ό£φ<π /yοΩDϊϋ?ω靸ΨX>ωΚκj ΩΆ}Ϊεεe¬mϋvšΥΐŒta>||<˜4Μ’†•Γ`ψB όr₯l9O™nvhάβŽ]Υ9ΟeΌ ζg0f"°έωΥL¬XY †ΐφD€?Γc|Ν=˜c0 ΰ cX κ;^ˆ;v¨„Ωρέ?ϊSSMnάωτͺͺχ“‚’"χ -9―Ίό8^žΜ΄ΰΪ†νV½%me•2 `ΰ>§νKΗΨ"β­ D›Σ˜m*\Ή‘ 6Ϋ9oRι)œ8ΈΦ<ά:9π-΅?G'{xΊ!ΓNÁμ3ΆmΙ_ό¬'\‘gr1Ά=Œ_Ά}ϋl /ω„‡EF(ψ‚½ ˜’$μ^γœίΎ‹[\ͺ33³XZb‹]υbWΆ»˜OΪ’7 KΗ`0 †C€!ΐ`0 †C€!ΐ`0ΒΫΉίΥ”kή.F...֌χΨΫΫΛ'I²•«’>·œcΣ²»ΎΗτ(ΊϋΰiT…;a0Ο%ΗmN©yΊ~‚·€Κ);K–œ#=ώΉμT^@Ok=šξίΔΣ6τtΆ’«­ν WΠΠЁ©9±d 0@`‘Ÿ.XZ·ψKΙΏΑXpƒξa"0"Ζ/έ}A ΟΖKACΘ 3”γ φώ't³ΰ¬}‘...a}}];’…z ΐ,8{@Β †C€!ΐ`0 †C€!ΐ`0 E Ήθ°¦δ«sS|x°œc“3UεοT=G'C?ΒΠΓη¨Α¬© †C @΄,J–›9%ΑΈ¬x‹¨‘/Ι ,ΟeςωΙ10{eΟeΧo«FKχόvΰ/-ώέVΕΓˆ0Β‰_8θ8žSξΈ¬|Φ[&./mτ¬b“`ο&ωœσμΩΖsRΦL†C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨJž[ Ξ[ :«›!ΐ`D™Η²UΚ1’ΜΌ₯P²„š\œΡρΜβ©Τ£μΘx~Ψ.όεŸŸžd-e„αΒ/ξΚΝRΑΚ'•ΓŽ †ΐφE€½iχ-³ΰ¬Λόό"ž=£‰ζt!ΐ,8낉%b0 †C€!ΐ`0 †C€!ΐ`0"P[pήρέ?ϊSSg£ο|zΥ'ΜEE>γY$C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨjR’’xœσlOe_ŒM0g% ~όe»‹ω---~R²h†C€!ΐ`0 †C€!ΐ`0 †C€!ήΨΞύ¦€σφ§|xqq±fΌΏΐήή^>I’­\•4JuΖN †C€!ΐ`0 †C€!ΐ`0 †C€! gΉ™YoΦ†1 †C€!ΐ`0 †C€!ΐ`0 †€ι0gΣ!e2 †C€!ΐ`0 †C€!ΐ`0 ν‡Snή~}ΚZΔ`0 †C€!ΐ`0 †C€!ΐ`0α*“‹!ΐ`0 †C€!ΐ`0 †C€!ΐ`0π&$ΩΉs'8Μvμ؁˜˜¬$ujŠ ±:sL8ν:SκKvψ†―œ,Γόp-~ςŸΏ‡~}ΩN忍K˜p:|–›š^Šό4’’£±ώlKΛNLO5cdQ+›9™V€'e ~g4’wDΟ11^‡§Vzν0Yξ5’oΡ·|Ϊ%°Π@Ψuϊwπλo¦V\Ωb31Ϋςόΰݏ]a›μΣΫοr:―ςψΏ½fՈΎΎBμΝΟEb\,θŽΐ’O†:4jr ,_πrΊΧΟΞ#ŒBμŠ–—ϊᘠ£–δžΕΫίΖO?ͺ3OΈŒSψζo½Šμ8`ϋ~ψήuσΚήΜ’l(ΙΘEZ\bψηζ ¦§ΫΠ9½yΟΏλAδ€€ρœzΆ;ηzΡ6¦=ΦρΟ-.pό—δ²t>ί‘Σ%σm;΄ψLqΏΟΠύώΟΑάο›ΙKaс'ΜΩ‚¬z‘[Y³cΦ€χ™Kt돗„"τΘ©£2–d“ΘΖξͺrdf¦!>–U―cΙ1‚§ΑπS‹_6ΉΊŠίL^RπgδŒ—Μ™gΠ…½ΧDFyBg>£γA£ωΌΆ“E„Mΰ³ g ΞAΘ²3 †C€!ΐ`0 †C€!ΐ`0 η¦ΰ¬Ώ—γββc³"*JΨD±€€X\ΤόjξYpϊ9Όqκ<=c4C:[ ΧΊ»4γŒΖΕ'σΩ’βwb³>"€ζΏŽί>xԏx<¬ϋpgΜ3Yjf N”Αή,›g$^EΛ“wρiΏ€šmΑ©#ί@eN5R£ςΛΉ‹[υcD#Ύ ο$ ¬ΘH±"3%©€œ&Έ άΎσΧ¨Ÿ–Ξ·ψ˜qg_(%ΕψuLuήFCϋψζ ’ϊβH©Ξ‚ Cݜ΅Nq`σœ‘~φΊ΄5ΑΦ··ό-œ¨8€T·Š_ͺθΔgώOΌ\ہζ VN7ρΨιV Q…³/ŸΓα“Gθ~\σ/ώOότΊex7wΏŠ?όΓ―!‹ «ΕώΝ[HγV³Szώeπ²%MςϊΟ£7…% Ω6Ύμ£ςƒDon!]ˆx—«¬€ψͺrJHΉYλ9ϋ%Œ=Δ½ΊΡX |¦ΞΙ;“eG‘Ÿœδ‘ξ-^ͺkz-ΚIAŽ—Œπ<'Xΐrz΄†l)‘ΰ33ξw €Νδ%©Ž-::ž0WΜRΌrζ[Ψ›&–ΊΠŒχnΌ§x0ψώ$/yΆΡŸœž9XHˆΘ=…W_>…ςC{δ1’R‚W_ΐΓ/ακ'.šbγ%„xΙ O(/SόFyΒ>£γA£ωLƒbΝβ3γΙ97knR€y †C€!ΐ`0 †C€!ΐ`0 †C ςΨΨxωA ’“a΅f#Š,7ΟΟΟσ5&%%‘¨¨CCCp:•š9Ϊε€Ϋt+7s%¬­fZ»Ve¨«Ό5e°‰ώΜ$I›ΐW‘kXr‰"',Ψύή¬$‹Ύ^]ΘjΆμΚ‘οMΉYL΄+η\ͺYΕ?Τݐ³ρž„œ>τ%d«C…³ef½(€j%ίμ°ΒC/ΰόω#|5ΛO7]Α9Tυυχ>ΐ§υλ@B .œ?ΆΩPR=Ζϊ=˜λΪH£‚©οΠΑίΓΩό<νjΛπRΥ˜ψβŠBΡGHj$_0rj ΘBC†@n .Όx‡ŽVΑ]ε4 ž @ “'jεfΚΣΫΦΊi» ’"i΄Ό°'†v0Υ-ΡσZ,P:Z~¨x¨Β‘ͺοCΐlλQΌ~& οiπ„l^£ΚΚ ―VTzO%₯Τ Ηb°rγGθS5^2ΘσFδτΪ(ZBΙg&άο.p6‘—\•„άgdZ юΗWξUœι™ƒh»qτ@šλ6`Ϊtά οfζΘFσΗ'Z18Ρ»sΛHFAΞAΝ/K;Œŏ0+ν˜ΰ&―ήSλyœV(7O“uθΪΞ#%Ράό3W%μΐXςέ₯θw­fΌdˆη Κ©–n3ˆ`> w^2ΠmFΗͺΜ²—ΖAΗw©­τ;¦1«Lmπύ!^RVΟωuΙιž‰o!Nτ?iDWOF'§°ΣRŽΓ'^Ci RαΙΧp‘³ Ÿ>±Λ/׏‘/δ‰ΰ§Ξm”'tε3:4šOέ4vΆ₯ψη3\ ν»RX)8'$ΠΆ< ™ˆ§mϋ6ž­bems ύ˜Φ°Πl?–½H“7 ±8φŸώψηΠρ ΆJEώ$€Δ «šΧ6XτΣΎ€q‰ΙF^"αH*’vQƒ΅ŒMχΓΏ]…ˆΌ709έs³s72ΰβεγάFz˜ξϊŸΥ6Ή%Ψ„SΪ2Ρ ¬Œa>π ` M‘–κΧpρ~ωy½yeozIς§9%ΔYΛ3«pͺlΘΘiδο'Y(σpτœ΅ψ3igΟzΎ,λγ{5Ξμ,h_ !+ pž=cœ½‘Άƒ¬5geόμ½yp\Η™'ψ3@€ΈQΈ …ϋΎ/β"!R"E‘’(Λ¦₯φέ>Ζκιžcgc§cΦ±1»±Ρ1±1ττDίγ±Ϋν±έjΫRΛRS¦$J"E$H€ nχYΈ χ ν—ο~U―ͺή{Uͺ’,Ό|y~/σ½/Ώός—_Ζ!–ΞΜ9ƒ˜'''±΅΅…δδdξʁŸέΆιB+>₯ŸΆ«Βk ƝnΏŠ–ώw0«π‡f"!ZL£―ν*τΝσπRΡ3<Θ‰žnjμ#ΌΡzCρœύθoΒ§m 2‹]nΔ/ίmT€½,ύ Ž_ό.rΈφ$Ή%\—{ d΅•qzφ"ΊΰΫψR!ιΙΝ¬ΞͺΆ_Ϊ•m‚ξνμΏBψ λγ=ΜΟϋϋΉ~7ϋ^›₯ήd}Ρ ¨Μΐ‰TuwΗx_'ΞNŒγ8Gp$E"βxω=€Ω|0I§Ωf δσo Hleύχn w5/ŸχdAίsυΥ§«!Ϊ oΌ w#ηRφ1vώ!½ρp+Π*: "ŸŸΏ6­D\؁ρέ½E ίΓψπt/¨u£΄ΆΎόοАγAAζ,y+²"₯Ό,MίΒϚ>’— ΡΙ8#Τ'E0ς’>ošNс›'Φ‡ŸΕΣχN ΰ ο]·{"|I7uΖš–'ŒW₯•#%ϋ5ΌΘδ ΆF-Θ,έβς”:ΉΩωƒ|II€n:•™ώ'Kσ“θxπΪ~χkτΞ+Iθ@η­!|ύ?ύ;”p›Ε`K#)Hΐ9 /)ΫQτByΙ,ŸΙΗ«Y>‘;ŸYyΠl>Ϋ#έχ0ΒΟ|―ΝX ‡ΰN»-‹­EȊbŠg·ŽΑρλh]0 δ9‘qrœWΟ„ΣάƒQ‡‰DΨPwYαΒύV?>ι½ …A1!Œ·K$ςRP0©Α“<‡Ύ©&΄/πCœ£]ουΣιš7’Ω!‘ˆŽOδ&-ΑsQšIόhkΐk_ΏΘΫ™oΕ;SȝŠ²t:DlKc­θ[τ+ .…P}!!Η H Δͺ)Ψe[ξΤνwdœO°9Ά %IΕ°†‰ŒHn”Υ~tOάΔ¨ΰqZ”&ΈEW<Š–Ρ1Ό.—JU’~Y«+O⒝Ƽ£ mc4y ²€€ŸZΰ0ς₯}zΤCSlt6*jjPTYΚmxatυϊάh3N’>oΌTδ‰@,Y'cŠΊπEφ׏.2 q6q<%”³w@γ‘’4cόS™ΣΈ?1ΆIαqˆ c?+ŽΕ2hλ ύ*^Mqαx&―VZDS»»ŽMΎ‡ϋsΌLi―ENl*R"΅δψ8–ΊΠ9rξN©13ŽΉ£+ξΗŒ~lLEΔψΰώ)>Ξ~ςy±Ž't=H~ΝΡh}fωΩ|α±§πR†ϋ#‚ωnZFΟΠ―Ρ΅ς„:νσ\m€_ž{‰={ΐ‚³vΣΈ9ٚˆΘΘH°6Ης²+Έ”Ymf η4ZΤd֜CΘ@ΕΨΨ—G»dνΠϊšg‘.,Ζ/MήΓ§zUΎΪΕ=™ΠπdΪ|/T½θΠ ΞΘ;‰B!ίΒ”3ΈYω(j0–2ΖΥΏmͺΩEƒΈή¦ž~)[N΄lΚtqΙσΊ…₯μe\~ ‘<ή >†ΰυAόξο~ 'ψ„TΆqOΞ|γ[(ˆ?NΟ°ƒ°€2©ˆ΄Ίoγ;E²’/˜¦ΠγwƒοHixO!žϋΖK¨(­D"΅­ƒΖt ]g›Ρvλ]ά|¨Lο[}ΙeΟ‘Ό€”Ύt$ΕΩ@"*οVζ0nΖPΫ |x«Γ‰>ίoMυƒ™~7ω^›~B“υ“|—$TΊDί‘nhAΝy7³Νk€_gŽŒθˆΞl>˜€S¬χ(]«/U₯eΘL•υ$«σ£°φ‘ύξϋhpζFΎ?Φ'πΚ\DBx0Vϋo’i֊ηΞΤ"/C΄iN–ΆήΐυŸ½ωΛ=/ΡEΔcw₯οRœ‡L>υMΌTΗvΟs]Wρξuφ-n`miC£hό„@;@ςΩΝ₯1χη4*ς…¬CθΈ}“χη^ΒΧ/U‚ ]ΰ·Χz.>ώ4^ύΖieQ;ŒήΔ―ί½-₯/}αχQw’Ωͺ>BoπΫδtRςΎπ=ΤηYθ„E(΅ΧrΗΤhΙ}_}ω<Κrδφ·χu ιf/RλN’`ΜSW5ΚΨΩΪEζ‰Wρά9oύηίŸΘ0\hΒ‡Z‹ΧBΛ[kbΡ~Έ’΄(± W14qί₯Μ΅ γυy•— σωύ‘ΣεaI@€Ÿyλ7όL#ΫΞV0ͺ/ώυ'+ι€f άŠM׈ |•ώšαKΎΙY4}νJ d‰n Aλm4>ΤΆΤh”Ώ˜–'€ΦρΑCVΨ/” ›t61ΆaEz,“yf1Ώ(œήkπ2pS€WΎ$ζσb‡λϊ΄ρΗΓ·πk·βΒC΄Άv δ!yΙγ§eŽOx,Ri–OΙgV4›Oω|GΔyζgέEάα +λKL8ƒgS Δ[k8Βhι'mΡs±ΘΰΊδ‹2dp3oΠpCŽ–|ΖΫΕ‚Μ (Œ„b©$Αs,ωi—΄χ‘ΒΨ›ΣK§·rρŠΨ–­(u$Š~υ–”—σΰf*ubhPΣJyR~%κκKΉz‡·Gφΰ|PυΝLvβήm΄νQKOΓΙϊrΏΆ­ήΒφϋ;2Ξ'€”€s8•,[ηp~–ΘΘ<Τf…`§χ:&"sΎˆͺ8«S¨pšκΤg°ΤG+‡€!Ι-Έ™Οo©@]Πή9tv΄Ÿσi =„|ιikbιyŠQS}…%ωpήZΔΫΦ•’κυθασzΛςΊ iΩ±ΰ ο‡χφ Ζ#ρΑ σO1£™kH!Κ3$@UYοZs7S‚ΈˆxέΰfVή._9—‰όΤ ΈΈ–˜œΞ Β'ΚρAΘmf².ϋέ~ψΌxΈω™‘'1‘φ ΗΏφλ>ςyΝθ―,Κ―‰hγυ™ε»fσNŸQGžZy΄6pO’όϊ]{€Ο5Ώφή<Ÿ›€³vWηζdq;;;ΕϊΊ†ΰ-deΐηααaddd ** ΕΕΕθμμΤ.X+Τv •’Γq4?Ύ‘•κΠ‡ΕΔΖIΦΨ’Σ3""±³5‡Ιewϊλ<”¦ ΟfG{{v RβpŒ¦žžσzhk!’x{(”hZ {){&,’εiPΦ/Εhyb’³Q˜_$GΝ―Š°Q9Μ'Ÿ©–ΙΤ(Γ’šο27άνy_’@‚ίϊΓΧQ¨˜Ψ1p3s‰958O?›νoπο5ρ44__!Ξ~ύϋ(Ρ/ΘψMZ>ϋΥ ΝϊSότMm°@„α‹ού ―ίΝ½Χ†GΚ`ΎLd$‰oΜ*ϊΗdR_sYΨ@ΐ€>Ό‹&mΟ§ŸΩ|€9:ŽΚ…Ύ₯―~οk(Λp]£‹ŒΟ@ύlαKp~G~"ΓίeΝMG^imη䃇ΚΘE’O ΩWπƒΨόٟ\2G¦!›ϋφ’Pvϋ-άPζαύ…eΥΘΞαΩλpζέώ՟¨Wέ»)½rΩB–Ω‡Mh€eή…"…x₯…n’Άϊ @°˜’»fR›Rzφ¦Ξ?’ q鏾‡†"(+爌ΟFυεΧ‘‘fΕΟΞΰ”]Ό"ΧΎsμ-n@H–²Wρϋ―Ώή†±XW4lω ψ2ύD—@e\Υ(ΓVϋuό VL%^΅ϊΟΎ+–Kί‘_Η£BδH|DΓΌoΫ;βΖ m;Λ™ΘRΤ·±Εzq†ε%=|~θτςO$:ΐΟt5»{~ζšέVϋ|Ω9˜@ύeηΏO'»$ΰηΓ|Ι9‹ϊό;ΫλΘӐр1,xΚ-ΐΩ1/O87‘αϋπΌVyq\Ζ|άՎό‘g6η±ΰaS‡K]†ζBn½|ɟtΊώ„žZώβΉ]ΓCeXήmxφζάσ—€ΌΔ·έ‘—Μπ o/‡o–O˜Ν'Φ«Ίš•ΝζSUώδoόμΐϋ@ζ€^5U]‹:Έyc}Γ ˜ΩX'λ1ΆΘ@a‚KGΡ…kƒ¦‘ΠRΓ¦η²[Ϋ\†‹ΊΫD»€‘G%ΈΩ>Ϋ„žΉμ„δ‘ΠVGΚaN•›X„ΑΕ»X–Ipρι¦Σ%g ΰΠ΄@B=rKD%Ξ ίjΧ&mwO 'γ2ϋοͺ>{7:DΆA:©<8σjΉύD±†}ŽLπ DU‘\n^"«š]3=pΠ~4HΞγ--‡f"-Α†IΑ:'{¦ β_2Έy£Σ-蝇Εz ΅VA!NωbaaQP.Φ–°΄:‚Ή΅986–°Ύ½Ž`:ΫWLVϋy~“ƒ‚πVv>o’ίš_›ͺΟ,ί5›Ϊ1:TGΦi~0€e+˜Œ―r{˘Θςͺ&y*o>Χόϊ©μQΣ΅·§!4š.νιΛ888H Ϊ}ΰΕ14K[PΰΙπ‡V!6\Θ†¬«ςnb° mž½ZE’°X:F|ŽΈ”σψτέ’£—NŸωΝvQΑ'ΔXσ./–ζ§‘χmό‹,ωH{–jaφξwΎ‰n]νbCqnN”Τ @`j˜¬{Χ”–hi›Ό·zvœ•{M―ˆOμΛ΅½|„ν˜PlΣfΤ°δj²$ʏίφžϋ_ Ή^`@&x3£ΣŠΚ’pι_S€›ηΠΥΨ‚Yš8&B‰Τ,Ήψm\%KžΜ˜+|©Ozuz#£#˜Ÿ™%0<²|~ζ™}ζ5\μΖ5G7Λ%zρωΪ:ϋέΤ{ν…tOΡ¦κKΘCͺ`"}ΐ°π™ε} ζ ΉVιΈv³ω¨(StΚ$_!^ύΑλ(Τ Œΰ²Fή?:‹cα‰HΞ.D!YψέV™6σύQΑ».F“ƒχΡΡ3…ˆœJTeπν•S‡“'ήΎ£‡θjοC!g9Ω†Ό’z8‹›ψδΐiδ”&7=θε¬7‹qώΊž@eΈαÎΆΫΧδ‚1IGΊ[O™”‚\Аc]|…6:±Lε7š<χjpσY²ξ™w7ΤςPπĊWpεΚ8~ϊΆϊω'ϋξ’c‹Yp&‡Κ žΞUŸ)Ι(Γ‹_Q€›W†π ± Žΰ ToPžέ—Α—η½όΓwα+T<~EΕY䋃8Ω ›τΌΩG‘Ս—6 m°•υͺ%yWh κmŒr©σπlΈω‚fοΰΑ˜“|ΐ₯Sώ1!/ιβσώ¦SIσaρψ™ΎžπΐΟ<ΐΎχ–ΆA„gV£αoΝ>±τ\Ύ8„_~πP•Σ8_’³•³JŸ=­7ΫI|ˆ‰ι5„FΗ!1#%ωΩTΈ OΚΥΘ>#όΕyBЌ/jΎ,œ‚³Šφ‡?F[π%œ‹ZuΈ=…RLΒ_MΜΈŒzω’ΏθTS}8ξ>―ό%©©²Έ05δ₯;<π—€ΌδAή=Lς’Y>αεՐ’Νς ³ω€ŠU³ς Ω|ͺʟψM€Ÿ=‰.x‚gj“+x0=ωόΒάoS΄“‹½θœ§¨Š¨#荋?ƒϊDΈ˜φRΡκ«›Ξ[ΑL΄ ˜s%Ψ &§ήΗέ™qΎ•Άϋρ`4‘E§Αœž+a—έ(iυΣy;α IŽŽε¦β«Λ‹RΝD)?<ωε%’5ΕιGmnAk’FfμxΝU{,γ λγˆaθΊvϋ™ΰΤY±™’ou©ΧGZ€–ŸΉ‰°γ ¨°¨7ap Ž#ρ/Α O\G‹R[^œAœΓΈ8²ΈŒ- ηΝn|άή-fS\w ΄ψ2R~θΌΤ£Hπϊ³Ž_ςηγͺ²vEjV1Ϊώ#λ6œ©­N‰qϊ―zωΌώύœrΉχ?κσs‘ފ£q—± w½Ωπ8°ρΘ,τφ¨βΧ7FΡ1½…­Mv€Ϊ8Β“^ΐιd~#ŠckQ{“‘άI?m—ƒΣLˆδψυ:zgε>[Ε€£³s_W·ϊ,žwΎπ*Κ„qε _PŽΗζΖ1mϊ‘~iΐψΰ—f4UΘa4ϊίλ³<>ο•*σ š_›­Ο,ί5›. η ΄hέAΣ`Ύ­9}kοU9ΒϊVΈηά‡^ώτL~ ֏-πΩgΌ§ζΤnσI+ζΙΘ;Rqσ,m>lξ<Ί'b%DsΪjρΡTΧK!ΞΤ"νΗψpDή4[L:pO_‰Z"β+ρβYš^)Ί5tΰ'ͺ^ΗsI XΪέΖ±‹T#`fςήkoVΡβ|Ÿ(o#%ύΦ¬FΞyTχώE7sE·Ύχsˆo‚εL(œΈπΉž«xχ†ά~*:ΨMΡ糉4svάϊٟαCTόήu²„ϊΏ“%TxŒFQέ—ΰό—t}θΕPΣG˜mΕGw9΄4Wχηƒ_cΰk_ζ˜ΡΘ.© £©Χεxϋ φƒή~7σ^ϋςhfκˈ·I›•Ho0JΔ€]ΒΉό|Ž”₯©[hΫΜΖ™Μ4ξ>((„»šΝΗ2›‘“«τˆόΙ<{•’ϊ|·~ω|x_ύνΎπ=TΕnΚOdςϋ“ ΰ}γ~ƒύβͺόζΏϋαΒ‰ Ί'KΒ™ΩτΝpq­m=8Gί“ʐόn¦ΈώOζΩ Ω²r[‡ΔSI|φζ^|F°8:ΰζ€²ΘΨiSK ½ŸˆOE !œTρΚ΄ ‹§’Ωy;¦‡z²―βd)εεœs\Ε½―βχΏ{™gŸ=ƒR8w*ŠΈρς:Zό%X ΰ,–¦H&y“Ο6­ΒνJ~ϋgJk&όύ­‘9ό/.–₯¬*ξώ3ΛηU΅9έδƒb―αy?°°‰A/ƒΔŒ^mtΚg>υ: τρΥxυ• LΜ!*1SβYkŽ\»{ K^Κ2#/ιεσώ€ΣΛc<‘θ?ΣΧμžω™v³οβ/ΘR3οajιρ•³eάmaM-2 ΰ¬9Œς%ψ gΕΕ‰Œ9άϊρ)lj“ŸΓB8“œπY9ΐ›ΟρEžπV­§ψz7— *αΎ«ψˆ\yς†Λ™΅·ΌΕΧω£K/_ς…NOΟβ>―ό%χβ+¨6 }θ{Hr‹η™Ώδ%ΐƒΌϋε%π ―…*Κ,Ÿ0›OUΉpcV4›O‹†'ΰg¬υϋΌ PΫƒ­;1±<"KKΞΰf%-j°„2ζΘψ£ͺPZΐ“»=ιν83‹Κ,­σΚρYΜ΄KJ\ΆΌ˜ۏDp³Xθφ–7H' ΄·μr5@§˜72«§ͺσB»˜wƒƒΌ1Ž»ο},{%¦σΛΥVƒ³§O"/-Q(ns£}θlFbI1’B‚°4vχZœ?€bœώr-’‰Ύuϋ=ά έiΓ™“HOΛD΄ _ž§ΖέχΠψ ›+Ϋ’U‰άμ\$Ymˆ‹IDΈ¨9§γ§η&0Ω׌ζφ!νΗ²UβlΡ™!ͺ?Φo[ΐ–v!4ηN"'+ ±2°}юΩιIŒ?nEW˜ΗψΘrδUf ιΖ1ΠώH‘'–Ž»y ™±!œ΅€γqΌ’%°–\ΖΕ,™Β`[Ξ΄_Gsο΄"?σηO#?·j—eΒE³vtŒw’―υS²’Lο[}>υƒΥFn}z―M|GFhciΝπ Άλ=–ΜΌ#λk΄ΔΩmμ£ΠpiΔc„9V‰_‹ΰfŠ―6£–ΐΝl%‡·/h ΄«2€™ζψ’ψ’k?矼Œ:bΡfί<€γ…#ΔΣξbΐ.oαsαK,G>^9Eߍ cΝθrΔ£ͺŠδ›<ΎΨ{ΰώ΅Gι|KNqcΙξΪξPœ–„b)Ύ€S‚2}qπ[†¨Ύ-l¬Ϊ11Υ‡φ–1>G_d嫌“Ξ Ÿ·Υγω†B§jyπ.n»Œ‡NΥE—γΩ U΄ρΝΈΡΨ.%ΘͺΎ„βΒB€ͺϊ`#MΈύ@N'e OZυe”€Η@u"Yr_£±ΉΡ-¦Ώ#`wgIygQUγ­|Δη4:>μ©qsέΆγρ΄]Š΄‘ό+λΙ―ΧS^«0cXut’sY‘s½­D“΅]νqΕά8¦¨χ(xMΏΧΉΥSχΖO­Γβ܌Ωvw‚_ϋ JΛ εΉΗΪ,ϊ;nΣx œ?Θ™Νπyίδyσσ£ΓΞ―M&ω.Μζ ‰C΄¨GX_v»Π#Ώ%GΠΰן[yώ’ηΞ\ μ©~ser™m*ΤΛe{αn›’Ω.Ÿ Ql>‹αΙQ²‚μΐΪn0ββσPšΜƒ*-₯…g0@gώ9-HŽe€66u§τ Ά`xq–ΔrΤ¦η°lδrP™Wƒn°r&’γIozœ|Bωοδψeσ-ωލ/AŠ^X™£'πμ6™5P₯;€΄’Œρ‹?&X˜ΐQiAœ!χΕV•ς`G–bφαmάΜe™Α΅?EqΡW8½`bZ†¦EU#υ±b›ήύ9WΊΦŸ–λ-x†˜μΝ8JδGηk?θλw3ο΅/i>[¬ˆΚζΜκj ^f6$Lίΐh“ŒwgN^Ηη©vΏΡιύIΰgG–ŸΉφ.Y­XΝχZίώ%5eόΖk62riD"~¦ιtπ%–Ο¬œ΅K$η$Ί²pGΟmΘ&³€”’Η1/OHΥφ—|_:₯baό#ΌέÏsIŠ —‹ΛnΚυ}ώθγKΎΡι†|wΑώr0ό%χe\Ό,Κ?$~π;΅Μΰ?yΙ₯IŒΘ»ŠΜ+/ωƒO(ˆχΰ5Λ'ΜζΣ"Ε¬οƒ<7I¨ΚxN°z·ŽΡχ0T ‡³Ή¬Άtlͺ]""jOΘ’ϊΈΖγΗ άγ\έ Κvχ”wδίΓSˆο·Ω¨?§ ―£«­ΛA6ΦW©”ž».τPν΄ιP€Ι’Q(‘37Τ‰ι₯M„ΕXaΛNνΟJρΜ³>O Ό©I,-8h“pͺ‹Ι23―L=quΓΈί/ZΝΗ©ηt’ άΡΡ…υ0„Υ”»€‡•eU’BW7ΟbπQ7f6‹- 9i”ί‡‘Ύdqς‘ž]Lηn‘xαZŽΤ\‹ΰΔHːSΌ?n=πyϋfiH’“Λ—ΘMšνͺLKHΖΎΉ)RΊ“«xE nžθ‘>°;N*JςΉ4–‚³xvyΏ»₯~ώΉΡGθߎ& Ξ4κ‹AA?iŽΝ\I>~G\όούηŸρͺχΥνa|π;T<°^―ς&HN4$W[Pe­6ΝΞvaΨ@ώ¬”*€‡Š„Ϊ1³$Ό¦Η1±¬Γ~υρ½Θ­4E#ΘΓψ ‘Z bό³§oΗm%¨(βΑ@–ά³8U;λϊΔdάΥ8Ÿ—³•η}žf~½Oγƒ[Ύ+wƒ¦ΟSΎΘγ±8c©ΕKτέꝬ1ӌ~²Έy4]€_ήεω£ωή>yͺ?ϋμ3°_ΐyoR‰:;;=Ζ»D&œGMΊ0W%ςƒώ«Gή²ώ›΅άδΘ;xdΝCC2›_G"‚;‘ŒΖ›8 bD58Ε φ~ ƒ›…‚Ζζ €!œ΅Κfΰ…‡ΏΒCEδ‰ςΧρ\/₯ۊAΐ©QEΌΪK@ΪΖ;«*Λꀊ»© qS±"πxek}t‚ΰΈ6’^έ_δ6|ν‡ΈΤPδ½8:1ίΞ|?θοwΓiΌΎ81LkΛH( ΌΨ§F»γ*šΨ+mK†dίdqšŒκ°X³ωX^Zο3ϊ½σٌ •δWέ™C}΅ͺAΦ…ΪhΓΕ”3ΰΨ !ώψώ3SΩΗΓL“θθmιύ|§3Μ,(!Ψϊm.ξ‰"ΪBΒ;; ΅Ή›Ρœ‰“u RΚξ»Χ%ΏΚΣ1‚ΉZoŠ’--Iό˜—‘!mν!kΞ™Θ‘—s*#U MO0fΊMP•[ͺβVΣ+~š‘^¨]³„Ξ«€^2KΡFϋOΚθƒΗ,LL™ΐΝ'₯5΅ωΈvηγ₯"«πšά“ύΰLΆ_ξuΌΧ~ύŽ<mŽOπΟ?FZd¬8 ‹,Β³εɘ]Ω@8Yh{vc­χ‡HΌ)‘‹qKtl9;v3<Ά–@o\‘«K­ΨNA…`2α _ςŠgΘI»Œ*B\ξν ˜,Ξ‡)β΄[Ά‰,Ϋ5ΰKΔΩόΘ—X'UΦ‘@¬μhύέΫhξUσ€΄κΛ(ˆΪ’_“|I.€χMw}€w?hδoάΐβ₯?ΔΙ"¦D§“l)Δηω,ύC¨!ώΟ8vjV,έ*…NReΎlAqΏΔkω‚ύσΧ3ŸΒάά,™΄ΨJΗφ&Π#Ψ5Ζ‘’ψxqΉj “΄υ<ΚrΕ…Zη>hDΧΰσtJΑ³άƒԚΘ"€3·—E(ΠώθCΨ 7Ρυˆ'€³riA¬WΌϊλ;έfΗ?‘`­λV ζώιΎt}1α±’εM¬ΐΩ€L˜XƒQΔάD―}P_₯”*1ρ9T‹¦tθ~vVήΘβΛ8¦›€'˜Π_ο΅όŸoΉ•΅C`|ίO>ΟγƒvNΗΐ ΌI–š9G#ηWΏ…s5ωάmVq YkιSٍ1ΚηΝΞ«ώšqΓώ"~½γƒ'Ύ+΅†Η[Ύθ0v:‹Ά‹Œ £Έ 5ώ.Zf΄βΠΏΘσ‡ψυ<Τ€¬7?©ξ±ΰ! DΌ0~·ΥΣε'EΨΎΥ»±½αZ6™ψ₯ΌΫμC7Ν»]h°qΐΪΓφHIϊ.ς™^7‚N8‹FένίW!b>/p&δΘέocΛΝ|qWjt?<Τ‰oͺΐΝ«=θνλƒc…* "-"ηE @Α:F?P`?υ»ζ{mŽ"]Ή4λ‹‹β7 ° Μ9(fο=Ή‰αίβ}Α*|qΌM%L-Nς2Μζγ‹χψW“N9Ύ΄_t:Σ-έψ‹ΤšŸωK!ΎόοΏ/\ιfόςΏώΔγ¦4FG@^μ yΙ™zύ|Β9§φ½Y>‘β'>hV4›O»4BόL£QAOˆŸ)(π«—¦qν"ΞD Ά½RDM,clΆS$άEEε‘(Nœι¦"/1γGό––|I²nΊδx€Ζi~²«X \٘S4ΎΩv±ceƒ`Ήdν™K€Ϋ5YΉ[ς$±=)ΙΦ;[Σ© ™ΌΫΜJ£A·ξH™Οƒ?…,ˆnΈνΎnζΒ†o »§ E’BCLιώϊψ#'p3KJˆ¬f¬·ρšΫϊš»PA7ε >FHQΑ%*ιμΎ§ΆυŒΗΕ8Y Mη?%ηΤ€,|u¬}Rwžl— ‘ rή›‹­5SΒ `A›ι&SnN†Πvτ<”ΑΝ\ϊEάojFvφ \‹Υ¦i9ΤH}¬X3ύΰ†|CΑFίk_Ώ#ύΔ™εB λvL-ΟΑJV[yGGL³ƒμυc£ΑR ήi壄ΏqαβςEsβσP›!Xτ$ΐ[ΛH ¬t4œθvy’θΨCš Sω‘b"ρκhΒΗcgΡ‰ρF fί€›΅§’˜εŠi¬ς;œβτέψ’Ώω’yEεRγ6}μnf‘γ-οa\Jψƒ/‘=wp³PvGOJΰΜFΦh‹b…b¬ΣgQΔ€ΨςΟNŽΙ₯eQ€ΰ&‡D――ήωόό -Ιp εDΔY‰;˜P—_y–N| ½οホνDS:βΔΕ²Ζ3Cc`Ι₯|I2³7κ«4–uχδΣ˜Λ”nωH)ΆbΈΫΝb@¨wiΐ?ί‘ώSτ„ΡρHΜjd|πŠ΅šΏF+6•,m. Ήτ”—ƒB[¦”pt–N½ξ<{’cO‘ΞFς¨θhγL‡ŽφqΛ4r ŒG\n Œϊ^wογƒk9tΪ mκQΊ[χ‘]œΟo˜ŒO‰τάψ L#ωuπy–Φ¬<ολόθ0σkžωΤc.οω˜•L&a;`wLΡ)+Ψά BT$0D§ ‰.'Ή“ Χub>—k€_ψ΅I=ƒiyήε% θi½=_WέυΤςt€1l‘ΩΓc§d_DeΌ¨UAkΟ-©Ÿ†(:Ε)‚ΝΘ™cΗEΛΊn>Œώ)e«μ‰χ¬ί”S*}Ϋtςήƒ?:’.¬8° Π³{ΘυΔ’φvτiΚ€ $₯“~]0Σ NΔƒˆχΞWoυΥ—Θ–›GŸόκΊΊˆψPBgΤG/ή…ρͺLξv,=‹ΥHWΏτ»Žχš*L.;L = θ6ηΡtŸ8:7υ‘˜ώ ΓΎk³wπ~{³P iρβ ‘«dψ1n6ŸPͺϋ‹:έgπΣ‹›o»ΎΗ^2ω=O²2Sš09Β„i?}ϊb==QŸSCɐM†jΠ†l(fnΊƒ,yσ^ύMΒΙSΥRqξίΦωρ f0;5AjGβQ1Θ8[Ž$¦šοΑƒΑ`ΤΦζ#hΟ,"‘UΡIŽή lΠ‰ΉμδJΪ’‚ΡOίA#©HχΟmΐ(Ά|ΏhρΖw}­·’τ;x>'_*flψwx³]­K—"<ϊψρ€Hy jlͺC8m§ω(υyYθX)Ή5œOς’W>ο?:5HwΰgnF>μόLM½…0LΫΞ£EδΈΥΕQΊΙ ί2Φ|Y΄€|–³zγ-ϊΡδ–eΣX Ι0QΆ•#"σOα™ΊλΈκv“ eυζό$Oθγ/™HŠez-ΑΡΖBS…Τd’…7{Ρ&¦χxΥ7ΠΗ—φ“Nwΰ/ξZ†χ…ΏdβΏωTg²ΥJώιΏ₯ŽΣ1ς’η>ρ-vΏε%mκτρ‰ύεgώα/fεA³ω΄ΫΣ]h€ŸΉk>όIπ3Οω«POωRŒ‘Ό ˆ:.›YΎ9t ]Gϊ ’$…εΚήeΤ2³ƒδŽ+”9\Θαχ κEP1:ZΖDQ(IX dΟ°Œεuε.eσν²²Εڎ$žΓ³Αρ'!8œ,*J`q`ƒR…)”Ώζθd΄ΛΞΡώ[Ό9Ω‚la;$””ΛΛΎνά“‹|VΔΖ Ω ˜ιsI1ΛΜSκ8―υb°i›Ό»H[9ŠJ ‘l΅"ς8}*d‚aƒΓ…ΦV–αLη2’σOOnΞ²J–Žƒν…₯« c#γX˜›ΔΜά’KYZΜUž€Γ[οr±­•ΗHXx€ΨΐΒ̘kVϋ¦IiDz]–C] Π1ΦΪe 5ς^ϋγ;OŸy>¨ œΝ•άq`šŽ! MDb˜ΐ“cͺιψΟ%4N‰V:‰g…Š“?Z΄Y AyξsΒEsθϋ„ΎJšFŠ<}σkJΎΖžl σKύ`VvˆS0KoρΔ*6vΦf©ΗiβI·₯ϊτ·„*%7―όώK-Εͺ³›ΕvΌσΣ·TV ]Έ pώή|Ι]SιηK‘₯χ‚w#d9Δ΅MΕXεΥ/|iq‰¦vdΩ|KY_c£§θ¦1<άGη| HDJN9œX˜\t ²…ο…ΖšQwΐ_>΅©ΏzΪs|jš$ŒBnœŠε,θŽ!)“,[Δς ΰθΤ,Ϊ ΠGB Dμφςœ4BΑv\–Ήl5q%ύyΪΘγDj°ψ½“L.ušS"=·~ϊŽ υŸΊ<§Ρ?>ψƒz¦EOlτqy`U΅±ΞsrωτΥt²cžu8fαΏ!£DΆΤΏήΫw ?σaΣQΏK’ΐψπΘ­ρΑε½ΦΠ3>Έd[$ήϘΏΚυaj|YܜεŽg‹Ζϊζ"ͺbœnΜΙσβdn~txω΅Ηο|Χ©3„[}ωθ{›3κ 2s­‰;…SiΏ?–+ΙΣ‹‚NG»JΟ‘~ΰΧτ†˜Φ3’•ςΌηΧ2«έŸ}Ά§έΗ(Dm~™TώΨΐ=χΗ²K©ŽΆ'&νY {kd…ΣΕ‘’ΦΊ›‰|›―σnΖα"μˆQκ«­™"j™Ζ½Yy£NGw€ψgY ΛΣ^­»±,uίΔ7.Uγ6&PΝ±ήωσΏwΈΈTf2`sSΆθj±2Γ!ξΑžJl°…Ϋν”6>α<+s˜p%ΚH}²QζQtίf΅ΛŠN.ηjGσLDVžΛ /υHšςŒΠΊ3(Ρ†Œ\§:T%₯¦Ι†›T~Έ1Βw•ΥγƒԟψΨ›Βά*Ί»ίΖϋύžϋOΛΥΗΟ%AΝb~AλΫΙ#C=Όn›Ρ±¦©γτM^ςΞηύE§²…Ή?ΐΟ\;Θ ?SoA­ŸΠ:Ίμx–Βψs«pΜh½|¬žΏ~“³hεt ƒύšΠψήΟqώώχ±ΖϋΑ©nu½Χ~όŽt‘jšOδΰ΄άμp΄’u¬Eœ₯Y_@½5“#Α–T‚¬ωA s«DQωυΦb’κy‹~”rx’S,μ`}σςŠπH«΄ί„™f9)—Q%πxkl& ΰ<+€6u‘ϋ†a–!ΎX›W~οΎδž§αKadE^θύω%,8ŽέΌώΰKΛ σκΉΒΠγκ·kόρζκΙZ%±eζΠ^φv.Ώ-Ÿv΄ Ωζ=.α'ŸΞφΆΓAίf4νD·Ζρ k2―τ籦 …ΦtΜ£8ŞŸa²§Hα&>Ϋ'„Ϋ"όσν?ιŽ5>M/ίω§n’ά$tΪXΗY²q“TQEδΔ·c=3MΌμ¨L£αg§†4d”IΦϊ7V»pπšΏ›Η4*ΤΤ­t$εΦΐψ ξD­;γƒsΦ•5 P2YοMŒ#‘Ο7€³YyήχωuΊζ©Ν―ύWŸ.Ύ«μRΑo$ί:Ό΄άΒΒ]τG§£,†ΒvŒ]έK…Ze¨ΒόZΥπkU{xΣ3•Ey^UIΰFw μν}¦;m ‘Z ΄ό rDK«kΈί₯Pω§–ƒ,Ε‚βμblN5bPΓϊqŒν,.Ÿ¨•šn–έ4•f‘± H‘ύ·³Š2ŠKŸG±T¦³πϊϊi˜*D}z<Ζ7jƒ‘γhΣ<ιaEcnk‹3*–Dˆΰ±D“|$Έ9³ΈηέΕΔX`‹ηX”~>B~οΩ §˜β71SNKœη‰ύγAΌ\Λk2«N’τΝΫX―ΆκYΙέ‘ξ€Α‘ϊδΌˆdM©*°§κδ$ž|d1w•©2Ψγ₯¦!“CS^€Ύτƒχ~χα½vzΞέ]RκHςνρ—Uι|¨oΑΑιβΈ—~ΊήPœY†/•œ”Ύ‡‰©ω{0•Ο:UΟ{ΨoΘ¨ΞγTZωuΑκs/ΣiqνΊ΅ ώκs·Ι"7ΟΗύρύ™j™ωλθΉ„΄"βK© x9U,ŎώΞΫβΗλέήΞ²θΥΌž'λΝβ _/η Ύηε°ΥŠΔT^§izŒ©Ž ­œGv”M0ΐB»‰I©Ξι‰1ΰŸΎμΩ h#€³&7υͺS·Ρ"τƒT€Κ£@Β)‘θŠ4΄­βΟ? OžEιd @ŒO₯~ή*ωσjŽοϊω`&Νz •l‘™[οΑ½G?Ζ]Ζw 8}όlΛk4—Œ`oI"mehZPΛ:ωE'‘/Τμd‡y‡ ΎΚKήωΌθt!όΠψ™§.1ΚΟΤeε£τ™z΄ΌΫ$Χ=‹B‘―Lca@ŽrυyηKrγrV²°QCkΓΨΤ,Σ *֘δŠ$ŸnώbJžͺ‘<ϊψ‹6qύ΅”Gν±ΰό™rn͏ώ·Ed³Ÿζϊω’I:Υtξž~ώrζ»–ί °Bέ±Υƒ«υ_ΠδeŽ"vœQώ—Δ–sέWyΙO|‚QΏ―όŒΚ7ΕΉf5+šΝΗUzDώψΩ“κ(I'x`ΠΚ„΄8±CUv&Ί“;tπd9‘`ϊ6Ο’/Yq@Πqd€Ώ€œ ±Έ0ω»cd]9σδξ-’gμ·{Μt»lϊ1P•\’:*;sžAPT12"HγKv—Vyυi:ΕG9’WΗΒ΄w ΣyTΰζυιAŒŒ$›”6AΤKa©¨«)ε[@Bδ)ĝ'6Λ™ΖnΰΝ7Wπl] 3l΄D¬p‰Θ9qΆ„Hόφ­5—# kΘ’¨gΊέ½Ύ΅kxw°-λ―Tρ{nΒU‰τήψάz+2ŸξΐΏ#“ό3ΝV$/7ΘJΜ]7+Φ0>݌ΔθLδp/žρQI^ 0λΙmHaύšŠ,η9;w-‚5Ο΄ΘΙRηό)yt4ηΰδC$D_F:+/4qT―rAJGκ$d=Ό§ωΒ%^«Žv½ Βήζ„.Z]σϊ?$ΐ—¨M Λ‰4έΌζωξφ–±ZηΊ` i€tΟBF)Σ‡c‘žEΞ­bβq³±2u€ΦΟη'1OK2˜R8.ž¬±d#ΙͺΨ‰NЍ€,+–€£Ήhakͺ(H§Y”LΘ`σuΜlΠ°'©|Μΐ€³VͺΤϋwcΈφuΙϋΔ?Υ•xΉ Ql¬#ιayƒ ΌΊH”'K OKŽnt1eŒgM<ƒΣΆ)Υm€Ήγ4Φp‘&Η1©`£žΐψpτεΦΐψΰυ­Χ?>¨‹ZήάМ§Σj$'MP₯c_δyηGΊ =h~ν§ϊtσ]§†0›Ο©ξvkΧ  ₯UˆΰΧ~MΠ-³zΓς  Ο‹―_ΰj¬φφ|ŒΥχΉOw•Y™R3tχ }Z)Λ!τX‘_φrΚNalΌcŽ 2B“ŽšΏ&’2Map‚,Λ6΅+ζΧ £˜$•gg]6 ΟΧ~Α½XCIξœL—ΫjΈ·‰mΖf£‘π π†©ΎΙ₯)ρa‡6η€%δ!?=_s’v >R΅YFζ%”ΖG‚aϋχφ‚ 0,ƒ;ς“p!²–6lck™¬ΰφ«YRAϊR )ΉΟžMizYt?ψξqt<₯g!`υ6ζΊnb@XhwάmFΧ…³(a'ςE•αkαίβκοήEaΞ}—Ξπ€MFSGΫ}Mωκ“#ο™―ό1ΆΒίGΫύiΔΧΡ‘η/|E:Π{τbzveVΟΖΛψLj#«΄λ¦Sδv1υθ*:UΰiJ¦ΡθA\ΥΖϋέ‡χΪΫΓj.•ωRί²b£c$ςσ^ΓΤζ,†d£Ά„ΎMDHί_sg«‚:3ω|‘SQυπΆ~rΥτ½p\ΘZ‡oύ§hάϊδ΄w ΡNƒ4δV μ"Έιό' ΰμ—οΟdΫtv>Ζs ΰ¬t£ξQ(ύ'pα΅d»s—ϋŸ-E&—ΎŒWl›€C ¦t~πkτ <Ή_BI©PΟΚ#4Ψ«›Ζ v™1€β':EzχυΊ…?›Κ&Bέ]˜#+νώW?iV'ŽAœΤ?Α½v,sν¬ΞζυΣkΖ§τbaΛJA\r&2Iα’JJtζΒ3*QVxχ\ΐΛ±()/α°?»Z΅•ΝR mϞbΧ½v 1Τ†8k:ι•ΖΔιͺά›ΰ'&φVŸΩ~Λ—€w’Τ.’%,)֏Ύ#KV9¬Ρ f±΅„ήή>Ο΄ιζ‘ˆQXAŸYR›ωJXΫ&Θs8Ο+‚Ea{Oؐ’)6VΪπ`²_ Ν‚ΔHq{ρ:)’τΪ¬%E(•ν?7†Ά[ο£Κw.)ΐ—όΞ—–η±:OνΜ§adΩΧΉΙ½ήϋ‡/y­†K°ˆ‘αa”₯±.€d—“uΛP€fπΌtd"EϋΩασ‹d±ršŽH€±," Ι•yόβοβ Ί&‚QR’ Kj1’Cy…N ˜γθέΒΦΙ œJΝN‹·Ρ΅μηΗPηηοHUΆ±oγ‘±„Τ~⟦Ζ‘ΰγ1ς†©e¬xD&Ύωq#dΉgʍΒR¬ƒYΆ ¨N”V0=ΧˆΫ“έŠnΌΊΗ17ωuΖuΉ50>xyӍŒκ’’ι\Μ$ šQc}…m@fΐUl¬3λqζΟςΌιω‘šš_ϋ‘>³|Χl>ν֌Dt¨ˆ~YΖςΊλΖuν|ξBό:ΐ―^žwχ6Β=·@ΰμΉ}όkΑιό:nΌfεΝήΑέ_ω­)4U„y,ιi΅άO³œ•^|Ψό†l=–K4‚Φ‘(­ͺε³Δ–ΰΉzϊ903ώή~άΛ…fD‹\:1κΛJsJ,έ:Πήφ[4‰–Ϋ„p›΅…ΙϊAJΝyβKόΜ­MΟΉ8«sνYgνn;΄ Œyβ<2OΘΥφ†Οc@vΰΖ‡7ωυ³<ΐ&΅/ΏN?99η[νϋŸ’5TMg ΎΖ»M¨$«¦eρe8-φΣ,ΥkΰΝ[Ÿ’’τ+Ό%Wk.—IyziΝ₯sΒϋ|VΚΰδ1άο>½ΧN•λΉυ©>j›‘.σλ –JΌxΊR]λZ>ltύώ ησ‰N5I‡ώnώ&ώcΎI`5ŽcΔαΜk짦ܑΊ5ωύΡς©B]―*QΌρ?u« ύ―5 OΜ@ΧώΎ6L)ξUή\:½εdƒΐΏU1H€±*Q šΓά}ΰάpΊFŠjnΤΆ¨,ε=#˜ž"έf60=†ax=<8¬f“΅ϊ匢oύΣoπGΏΗƒ‹£ςΡp…ύψb<ύmxρ{ΈT!ŽN)3Ξΰ+―Ÿ‘ ύ“ŽΏ$+ΣMxχ\|[ωv!>τάk2’38υ—ϊψ’]ώθ$‹ΰf!C„΅€Χt!ΛϊΚ%}M(ΚLcζ7ΘE’0‹τsMΌ6{7ۚœ"ΜΙK†ω<ΥκNdζΫ?zΗόΜε{FΙωοs?Υ+0w~uSd†/ω.gΩPr’ύ.ͺhoV{ΰζ€xgφjV1[Ÿ›|ρ²ΑΒE¦VΑ|?°uCΏΝγ<ΠιζΙwπSΜ_’b„R άΜ\NjeΘ&όu„Žγͺ"$ /ρ‘’_]ψ§’Α―*½k4œdd^¬U€ϋ0ίω„ϋ² ǘεžς™•Νζ3όΠ‡ C€ŸqΠ8rη@;ΓλwΏ―Ԑεƒ— ’#ƒ$ם΄Š.ιSΐ66·ζ°Δ-ιΩTξ3²π‘P†n‘ΕD²ϊ°·‘aρΤ—vΩvΠή7ΡE’Ta…oΜ1(Δω‰Nͺ&²π.4” ˜Ηλ΄ή‡OσžΛBΉH‘ρ+Ι²h§5v¦φLDrZ6:μCͺbU–)UQ¦n‚%dCJ+!BiIω™.ΰf` s ³(ΰh±!!…Ά‰3€™Β%ΖΕ)ξsύΰ\#έ―A3ΨΧǎedW΅"‘œœΎχΪίQZΙσ8Y ΰkX"€³FΚ”κζш €ŒτδKk3r’Ο†Ψ0άL16Ά.Bί‚τ9°΄[΄‰‚’€y )μ8PΞmΩ1½Θΐ‘:Y‹N&Α”s; X” Τ‘χP$ π₯ύδKˆ(DV±γέjͺΥυώΰKZεz ³χaϊt)gέjΛAamˆ4.Ψi³‘ΦWζ­LρωόΤ£€ΝœmΘ*9Ζρ½υ₯Qt?&«VpNΘ(Eπ6Ώτ°>g‡oΖ4ΩΗh‹δς%ε€£Λΐxβ‘~ΝΘƒŽ”d”ωτ”ΓOόΣΤψ œFœ† ΚΡτ“U«Ό΄5=Σ‰aYLΠΘ‰‚τs(#+8Ό[Η°ύS΄Μκάμ’{Σ¨ϊΠό{mN^:šrk`|Πxρ ŽͺbcK"βŒνጠπ뀃d²*©v³θν»ƒίυ0Ό;Ά»Œ -€J§‰1β•Našμ@λγ«θSΙE,ή†ˆήb§˜ΪέufΙ½ά΄ΉΉ©ΞΆγΊ"’Nΰϋέ­Ώϋ[ΰ΅WPV’E›’©hο …>˜Υ4uχορ£Ν\Ήτd‹Σ; ύΏΑ»ΏΊκQŸͺ»Ύ«xγgΑΈςEͺKΤ#‹u­τ‘ρFlg_A6Ρ»³»+Ζh_{ήΑ_όνΎ~ρ9”δˆ2,ŸΤωY¨ώ~0Ρο>ΎΧͺt~l­χΕΗϊFϋί@cΤλhPXEi˜™~€»Mο8m.ΰc ησ‘N‘¦£rΊϋsόXϋκ₯σ¨ΜWΏ“ά3¬ŒbpH½¦bκϋslrλ\™Ξο‹(r-Ν”κ6ϊ^$kΖ\`ύ-ΏΖec‹;YT•4RAd™sCπ¦^B₯T~ZίnrŸΝ)fdœ­Œds‘γC LΜ»Ξ!Ψ/Χπ›$F'0Α f(]ΟUόθ?Oβε/Ώ‚ϊŠleŒδwLτa°³]exjs•iΝ€4=KλΫΧqπΣυ%\~ι Sεό³ƒθ:†šσuœnnz|R./ύθζ»rΝ:ω`°zMH‘ίΥ;‹©ω~Χ`1ΔωυΣβg,νz+ήΌ\(n@©UγΫ!Ω {Έ οkšhJ^2Αη}₯Sl“#r π3ΦQ~ΰgd=”­O3go»ιp:­Δi|pΏψΰ?R[o¦τ¦ψ’i9kΣ}HΞ/C’³|ΖQ?‡ήΖOρΡ―ήαξ΄ώθ—³Γς„V…zω‹V^ K –Ξ +“ͺy‡oσ*ά_&ԝΪ9θΣΚ_ΦVi’«ΣmlmΙ)ς‘”—|ζς :]™ v'/)σ(όfω„η|fεA³ωt„Ό~vπuμΐ«T.θ…Η"žt„ΛŠΕ°4[5²DΰΊ7Aΐ›£γΘΓΠoݐ‰Κά―#7‚E/£gμ-t‰R- ς‘]’Ϊ²οQšy…Qϊp½=R[ϊ@'_Έτ7"2 Jρb˜l-WJε›gv†ΤΩEό€6«¬Y†0•›Pά ―oU ΉΓΞ”Ώ*Œ}1Κ*Κ5K_r8(œŒ₯ηWν*•#;?Mq―φZlΩ4»T/8˜v/W‹Ώ;AΦ›EŒιpχCCΐ:Η ν@₯b˜κ%:FsΦ"U9>FΚ7‘­m…εΘΊΩ.χ₯Κ­,αΐ~\†…yΥd@,ΔH}b2ηj¨δ|‚,­3E{<«•,%ΐ™5©§ο½φίw΄·'jύ’6φδ“„”tšβ‘XΫ"Πb({K,H"ΛρΧG”₯"ΕZŠtΙd.Y`[€ΚλΛX%;†‹[Gίδ'Uq™8•R&Υ6»D–X©!i(°Dcv¦[LGψ†” )߁αέ/©Θ_ζG,‘εΧ¦Η“|—τΖωu$β3°½άi…†΅+sαΡ¨Ο(αoθοό\— 1RCε πλ€<¨^Θ#DLΐ‚σvΦς-όςέ[XαU΅ήŒ·ι΄Ό˜θi I»nCωό@§6‡8tΰ:ήϊ«λψ8χm ·ςke¬mSθμθΥ$\υMθωώΘέO~x]³,.pβ~τCοίEγΟθ]ϋ™ϋbT1:ΛTζ©~Άž"Sΰxγ]΄*#½ψ§nύB?7qσΓ«.Αͺ€ω‡ΈϊwτK-CuNŽ3–Oš67η17ρ#<­εWZ~₯*Eχ£γ*~I?Kj&޳\#ϊ’Οώk鄁έ=ΕΔΚOύ‚}ασŒ4]|pΉ‘δF–άg§‹Ÿ‰΅,·βΓ¦V4Ε"=:žΖj>bkc†Ζχ~—ρ]ΜSς’ >/Vh–N1QΊψ™Τ[¦ωΩ„+Ώn.;δ„(n|Ψ\G‹(H΅ρ³|I5¦θ–³fpσ?³!œ[[}ƒΗΓ9wΧ¦1r‘{ έΊψ‹β ΙŠ|’Χ3)³coγΏΡOΛω6 Mρ%-JOtjη8"‘O!1ϋ͚ζ/ΤΥyΙ»Ό»_ς’Ο|Bρ©ξ'?STγβυΘ_ΜΚƒfσΉPw„>ηόΜvφ΄³DΓΑUJ‹9ΒΪ±y:³UyAS°o‡"3±%tl•θμSέ 0zD―!VDEˆ΄―Ίn²]ΒcOα-.N;Ί0EJ࡝m„…%#-ŽvΩq DV§]“w–E:4ήθtΞ’XΧ£4‚Δ(SΧ™–nŒΦ”#ƒ΅_l)^ψN(ZZΫ±”Œ’ϊgdP­©52‘nήYPuξ[ΨnlΔ@ο’ ΛP^2bΕxυuΌ«Σ§ς9zΒ3žΑ•Λ»Έwλc,ΗV’ώΜž~uα.•—Ύ‹ΌXRβ·?ΖΔψ0ζfhWg2 N ͺ†ό‘‹ΉΙ!u ΆΣΘΙ`jk½θyΰ―NνzG;ΔΔώ Ο~/_ E?wΉwμaξw°4όv ΌΪݍΑ“u΄@ΕDδγ…oώnюΝ^RΦ”œx 'D:ΩqfάŽ~— Τ“ύΰR'Y₯^`ΰσxΦNi8sε[ˆι’]φAήΓB#†Κ[ιΔFQ„i)bΌFΏ#§μnw ˜β«Xή€N6;X“žAνgaXΗNPγKQ€ΰ»σs} €Β:ΏžΑΡŽτ€3XΨιΐZ° …Ά€ˆ<†,;χΪω§³‘,Ή‚fΑe°;ΘBδϊ¬7°„(:f,.C73ήΤ?kD΅ιάPOξ>ΐ—Δοέ|iΰaŠˆpR@|9.}?­Ν00L°ϊΘ$€dζ#χT’IPΞ~αK&_£!:±šœ•Ž6ͺŒ^m—O»PKA̍ma8+ozIΘ=†„mβJμί2οŒqχΒ Ÿ_Άc°Κάα1dMcbˆσMM“ε*‰ξU,̌JδΪ[ξγqi9Ν)ˆΖΫK2 mMΝΕ6 k±Q?δ!½(Ρdi~₯—¬¦ˆΉ²‘KŠ9ήν`7,"‹°ΔZ‘›U ηΕΞέΝi OγΐΏ#‘Vv52)σi A”ΓTΦγΞΟeάΈΔ8:n92Œ;Edo/Ρ RΚτ˜Rl‡ξ ˆΫΓhŸu „—!O²Ϊ Ο΄yXδDyΞ+dΉS(žΊuciΗ£ŸAu¬°ϊ D}aσŽG\7Ξ<ύσ€―MΚKGIn Œ~$ΐ{2κ_ΖσΔ­›!ΊψNΎxRΪ89έΧ­ΪΜ|ήΌ<οΓόH|F ζ¬D©š_›©Ο,ί5›Ο‚τT’υQFz†1Μ¬Νb…δyΣζf:‰%ί’*Ά2wΒKχdΏ|„|~ηΠλz¨Hύμ3Iψ8Ttbϊ†ά’‘Ÿ›ΝΕuvvΊMσy‹XZ&°’8ο5υπ Ž7λΟI›ύ6όλΟόωI9pŸΝτΈYΧ=½ΣΎΎΧΖ(υ΅Ύ₯…<\0V'Km4Ÿ―t§πΙηp αΆi>o~v0=~πg²/;0Ϋ…ΡβOxͺ²ιητΌΗ4ΞhΪ tJyDnCδcΒ™U?‡bΓ.ζΪ%:”G—X-d=Χ gΕ—»Œρ[θρlRnD―tΚIΞ׍;7οΐς3 ;TΝGυω|Νκ5q?!΄«™Z;°«½d©˜ƒΕζ£ξ%φΣN« %‹žνMό­/δ‚ 0L?ύ.9εμχŒf–υ‘N΄IH2>IIe©d…s’ϋ‘Ά₯MΝ„@’yθρIX x‹Ά’“°Ιz ί^‚]Mαα½ϋ°½XΗΘκο™+τs*}τ‘ΥOMg >Σύ Qq[k3ςs_ΰۊޟŠΣςϋ3Όk'€σF.‚φν;2Η'F‰ηf$υjξ‘Β‘a=M?ΧηΫXι@Ϋ€’Δ †η‘aγΏΓ" PŸW ΞΈ5ŠƒŸHV˜Γb…ψh؈/Ω4ωKΒσ¦Ηzy“ΊΦCpΰK¬όΚ—–αΞϋ6\$pΗλcI68ο*¨ΥΑ&ω’ŽqΑΫΈαhΔθω*d(ήΖΡΡ>‚ν»q6ω–WρΟζ”Δ’Q‹T‹]2ΐΩŸŸΖό,ΙP6D=OΆlŸ »pžΓόδ’‚š1|ϊΙˆ}ν"Ο/"2QqŽύIάxKκΏ„†7<ΞqξJ΅œ“ΐΡοόθ7$šόŽόΠ00Ι„ρηŸFJΧJŒξλqŽΜAŽHήXZB»J‰’€bIžΨXiCχ‚Ϋ7™€κiˆΑΝBMa1Θu­• 9Ά1(œ?σ“ο΅Ψ~:ήo1)»š–—Ž’ά„.χΓψΰς~E"§ώ χSΎWXμEϋ'TAfψΌιχSͺΩψόHΚͺΫsΠόΪD}fωΩ|αρά1ΚtΖιά騁Ι2ΩƒQy »ΙMΒΏf]ρy–ηΝ«xΔΩΫϋμˆQ 7Ё΄@ -°-“fΑΈ{ΚQ7ίr·qύΗۈ’9θΞϊg$Η|Y‡7gζΩίΓΤa€“Œθτυb|j ;α΄a·α<*sέt#Zo)ΑΟ‡χy”Z@ΩGy£_ω¬žύŸ~ζΉ ±πo xϋ>zΌώΦϊ|π—€Ό€€<ό-pΤω“7ϊ{= —οβ“ΡVΜsG9SΰΐθτM|<Φζq€ο£C"„EBΪαΎ9§iMΩL»μΡρVdKIΣΝ/u‘ιρ―ρhaF3^+PΚ|Ϋ[NHν]m»XΚ`}}£Χπio#œΗOL|Ξ¬†³“ŒΉA}s@!‚60A‡8ά»%LΨ[pK§lr_ήΞΕ0ΉdΎ\²?Ύ€ίόϊ_ρdΐ΅―ς-½hΓππ˜ͺΡ Ι₯…UΗΨ©i€Œ·©l¬»7a¨]Ω7†0τ€SΕ›κamM«Tα.  Λη‡œSŒ‡cdADš Ψz‡!KΫ&œ»λΰMœΩ―ΠςdΘ…3)`n¬ν;Φ›)bmiVŠφώ;Ώ©Š†ϊ‘)ν§cŸœwu7qΊΉιΏΧΛϋΝψΗZR„ˆp*j+ Sθξς±μΨ<ε¦ ”Φ76V—0=τγΞJd Z¬yH΄Δ!$,œ·:½AJHcΪA‹NΎƒγϋ2ωRΖ|ˆσNVΦ4Š75ˆΗ&š°αuV¨Ž`“΅ζL%Γν`.»¬4½rB`?22Ι±$+„ηυ5;Ι]›WΉ™kT<Ÿoss…”Ζ0²¨>p (4©1 εε·ΎAΦλg†4¨rδ“KB³™)—’­EΘLM,πsοάάϊϊάX‡ߚν”KΫρ’š‰§!~“h,KΖ2š\ΠαYΜLvb|‹dύvφ#CxΜ€[~€xٌcVΟν|― Ο—lήΚΖΐΜρ!%wβ#ωρvmaΎ~οθμŒFίO=ίG:YrIΎέςz»ιΉTΨK@dΈ–ˆh„…"ˆΎ6Ώ¦ΓZ+³[”ŽMy) ΐ’™ΌΜLω²Wδul΄puΕάΒB€½Υ[Γξθθή”[ƒ–£Τ’‚<ώ‘΅΅ΥΎ£πpΊŠΦΟ§šπ‹ΏόΟΨ¦ΫͺΖ"C€!ΐ¨ψΦ~XrΠ£ƒ·ϊdXΈΝνœ#ω°χOtόύsΉNΜγŠ€₯ζœ;Z‡ΜόlΩΐ•”ΚΦy~Š{lπ” aΏ‚ΐ^‘_ξδo€4c“!°'`ςeO6«ΧJ±ω’WˆX‚B€}©ΛzβΗκρiΑφ„χεεεiΖ{ μννε“D[‹UI}3υ¦ΚbζΓΖfΊΜ,p”₯RPœχ hΈ'P‰‡%ivRͺZ˜TZοŒGIQΎ\ΓΥ5'ΔrŒ1­ƒ”vdλEη£^έ9νΆ^Ψ}"ΈΕ’r3ˆΓ'Mκ+€u6Α06»œ–φv(‹^9!°Ή΄4„ΙδΉΞ—–ϊΡ£'ίΪ8Ζθoo;&—Τνk\Z°u’Γ'yθΰb;ε’ƒκVωΜΕΣ—“4–ΡίΦΊιG[['uιΊε§:ϋ~26Ž ;σ^–6oeγƒΉγΓxΔά†ŽeτύτύϋΘJl·ΌήnzzZZ‘Cn‘Ω{™ΌVcd|aςZξ^xΪά4ΥFΖ^€dΟΧa|¨]a“Ψ˜‘»$˜c0 gZίkζ-8sΚΜœγ”œ%εIιYzΔxΎRμ·ΨοŒ_Ρη,9ˆ‹%Γ2δ_ŸkA0Μώa’ΌΪ ςK)ΉFPB ¨FaΜ2φLΎμ‘†4P 6_2Λ²k`ί;Ϋ4;¬ΰΌ³•gԁ”κ“x…¬4ΫΊ›12Π‡ρ©)l„§’¨κŠ3k:˜jΖ“GJεηΐ©Ÿ~NαΞ‡λˆ’ΌΎ2…!¬Cλ§Αr0ž`rΙδRxRV&έί‡θρΞhyφOοεοŽ¬νŽv`\˜‹{―ρτOžΊόχΖΏ3ZޟύΓΣ{ω,CΰιA€ΙkηΆ6WΎx“;ο\{φμΝΝMο‰XŠ=…@ΗΕ@Ǟͺ« C€!ΐ0IiŽSrŽΛ²ΈXlτxσΫ›%Ϊ‡ϋ±ΧΝPνΝ–c΅’Π²HθςKΙΏδ—κΛ~ νC€Ι—νΓz·Sbσ₯έήBŒ?_ζμϋΟ΄ΜM\ψθ_˜Yδ@`jΪ]™ρ‹»¨m O)¬CVr °2†ŽζΗ0ΧξοΆVε© Q’œΔ$X‘žWŠΒς#)>J¬š―œGΧτž71%·χβΜf¦'07Λl¨Θ 0C``rΙl£r)Μ‚€ƒ)[™pUrτxW€| 1Чo₯οŽT¬νŽv`\˜‹{―]ρ4*Ο]ώ{γί)ίBŒβι[ι,CΰιA€ΙkΧΆ6KΎx“»!^λ»Γ <,Œ^][ӊ~ͺΒ666°΄δϊ½φT`°²‰ Βzψψψvά›`I–!ΐ`0 #0;4ƒ―Ώώiϋ!Y>UθρΚΊ0?C€!°7(>WΎ'ε—$Ή_ζ A€Ι—ΑQe0Άi~ρ΄ΕδΦj‚Ό6?Ε‡[ κΫνΒΡΡ°˜$UωΟόδOώΜΤϋo\:―"ΰό›λ΄#Ο•ηώ '3­ψδηΏ…mGΈ`D}E Ίπο―@j¦‘N™&šΡzσ#t²FtB†=2[‰“Kζ Λ)7ΔW$`yl ©‘4,Ocφ±ΓήE Η›ƒή-…υ£½ΫΆOsΝΨ{mNλΊόχΖΏ9(±R `ςΪτy9yˆσχίφ8*αΑ-ά6·ΐ—―¬¬ΐnŸυ€‹r‡@QAΥΪΪκ. g0 †C€!ΐ`0 †C€!ΐ`0€υď5ω\° †‘σςς4γ½φφφςI’­Εͺ€!ͺ§§θΑ>ή‹P;6—&ΐlμώ†_躁ΛτΗΉθ€TDEF!˜όK½ŸδƒΩ? †C`[`rΙΈ9εfI©YRγJζ”$€η@ŽW*{˜ƒΨή*…υ£½Υž¬6μ½6ηM`γƒ98C–³@IDAT²R χ0yν=1œΌζ\ ΝίυΤ‘₯Ψά4ΥFƒ•!ΐ`0 †C€!ΐ`0 †C€!ΐ`0^xjœ‡ξ~Š‘»^ρa v! “c`vsvaΓ0–O1L.o|Iy™+ARζ”$Β“#\,:bΌΔ³q„žžœ¬==mύ4Υ”½ΧΖ[›Ζ±c9 ύ0y­3)'―uώ.Ձύϊ†ΐζζ¦o Y*†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`˜„@pύα£aRY|1=‚©iweΖ[,ξ’X8C€!ΐ`0O+κ{ψg2 “+[vVBhρΞυSΦ…ω †Cΐ=Ξς3ΠδΏσgώλη Γ`0v7ΞςΝ›όΫmρήΠ  㓬­yKΊηγWVV°ΆΆΎηλΉLLΦΓΗΗΗ·’xV&C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨ6brk5i­ΝOραƒϊΑv»Ο“€*™Ÿόɟ™zΏΰKηUœ²ssƒΨ3C€!ΐ`0 †C€!ΐ`0 †C€!ΐΨUΔFGσόΜ-°»Δffζ°Ό¬> Ί«k3STΗsΧΪΪΊ‹Ήd¬1 †C€!ΐ`0 †C€!ΐ`0 οXOόX3Ρ‚M0Œœ——§ο-°··—Om-V% R=±†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`(ΨάάT<1/C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0Ά¦ΰΌυ3 †C€!ΐ`0 †C€!ΐ`0 †C `ψϊk¦ΰ°Ηg0 †C€!ΐ`0 †C€!ΐ`0Š@H€ςΝΨf0 †C€!ΐ`0 †C€!ΐ`0 m@€Ypސ5HΔΕZ¦41gΣ 6VϋζŸγΥ†", ίΔ―·Ÿ’ίpIž3z―γ2&ζμ ‰K(DVΌΡΑΑΨψzΛ+s˜žjΑΘ’V6 “R‘ˆˆ`? |½„‰ρFτΜi₯Χ“ω^'ώ–<σ§] uA γΎφIΔSΔxΛ'ψυω.ILHΜAZ°²άϋ”ι₯οΪӎώίy£˜Zuπ–„ΩΦ_γgο^p„™μ“ϋΫr½χw·Y½Dθ“Z…YK/ ΉΥuf·@Ύ€§ξGzlm4ΐΔ#ψφ^BJ80ί}?ΝeσΚής’rP–•¨π0^./Ϋπp¨ck¨FZ‘Ÿ˜ψπH„ςσΑULO?Fη΄—yΡ|ŠZΘγ‘/σΘHΒ$IΔ„Ln¬L’ΏΏŠς˜w`γΓ€n2I­ρA!?gH~ώ£?ςs+εΌΙP+nε5Ο ^zώ~χλ₯GL2ymμUΪκ\L^o5ΒΫV>Spή6¨!†C€!ΐ`0 †C€!ΐ`0 †C€!xln~xL:Η 'πΪ‘“Hπ±mΏΐ'έ]>¦φž,<"†O‚­ΪDˆΛz°Ώή 3vάmό?qcΜ5Y\A.ͺCY²Υ5/‘υα»ΈΤ/©f[p€ξM”§g"J#5ΚΏΡ‘―p­ιF4β³3ŸŠΔΨT$Εf"Ž”†7λ7ώMΣ3ϋ5Œ@D8βS­H¦BF95η-v/αψχxz»‰ŸύG EώΔΆl`ͺσ:o-SΫD/œ”Ή,ˆΥΥYδUkՁ&=ωΫߍ²‘ONΈ£Rˆ޽2ι΅\lΑoόF!+ό“/ι™'ΡPT¬˜hΣaΖGΏA«Ž.…°γμFΉdΌ6‘3±ΗO@mCΙ)Α΅όλŠχ.PrυEΞο*4ΟJΜΞζΗ θInδ3ΡYβ‘’-§ς„Em”L•ΏΓ%ՈS’ω’N|~ρΠ€ΉV~ήYT¦η“r³ΦόρEŒέŭƏΡγΔ‡Ρ|\1Ζζ‘Τν{΅ΉE.sΧ£%Ηπ γ"Ύθ7oξοT]φθ 6>xCΘόψν̐ŸRΝ·RΞK4vθw»δ΅T=}τό›—s4υΡγr0yΝ‘°k“Χ»Άiτ2ΆUk“zω`ι †C€!ΐ`0 †C€!ΐ`0 †C`—!πυΧ_ƒϋcn{HO°ϊ¬άΜqΆΎΎf2ƒŽςΦM.Y*.)Z”B΄~Χ±μ`EN]π^/' ΄n]4"CC±‘ΕΘr§ά,¦JKgαο―8ςqΎΘƒ8Zσ"RΤ‘Βӊ³&)άhT…-Σ{,VXϊέΚϊ7>((7‘ήΗmšVΚsjžΕΙ“u<+OΆ\Αy»θυχήΑ₯O{Ν zΏσqϊ䁭„š/۟ώn”9έrΒ ‘ΓΞ9”›)Νββ,”iύ/EΕoα₯’rei*)σœ>ŠΥ+„NU {Ψv‘\Ϊ–zο‘Œƒ8ύάQΤΤWΒYΥ?Šρ\oΎΘyΕ™œ4X>@J7P˜κLxo·k<’κ]³q<+SzTFαωΚΧ0ρε‡Šƒ%κ$Ύ?U’¦ςYdyȐ’ZWŽα7*zFσ!CσH+ŽόjS%5'†Γ­¨zA›‹+ƒΜΏ:ΫσhB?ΣΓθξ–gzjb νvަΆλΚy0š•eϋδ΅ΐ±nz~ΜΛ9ŠΊιΙk³ή­-+ΗΤ~νΛ§Z^{‡Η―LΑΩ/ψXf†C€!ΐ`0 †C€!ΐ`0 †C€!°wΨάάά»•ΫΕ5™nΗ½Ύ9kΐΏ±±†Δ’£Θ•ψ·ίΕ=ΩR±Έϋ’%₯τΠUΫv΅tQρ٘¦«Βκb=‹³ εζΕ™N΄ >Βΐά<Β#aM,AmN2¦ζVνB‚A·zczͺ#vΖζ¦0Ώ4ΰˆδgΥ“hΑzb\j&\A£‚f\|²BΉ™»Ά\β›ΌK3ΰB˜ 02Θzc}ΆΘt;š?Ό‘]uGάpx΅ΣšΊ]τΊq½[d8‘° g«ό{(ΓpχP¦Η(#rB£ΐ²ŠβPšΪΊκάβ4f•iΚ—Τ“8ͺPnž&«‘7;ο`Œ6α3²ŽQ\₯`΅3ͺΕ…θ4ΡJΏ’}ζί%ψ*—v »ζ²Q‚oύθPιdUή/»Oϋ ίΎŽpšψΜw°Nν8>dήρˆX© 9λPn^@GηΈΫώ©₯/αtQ‰ΐl| J2-ςsΦ•”._^0>Ρ†Α‰~ΨζΖ±‚d§οG}VΎH―Υyχ1+ήb4•fdYVρ’JΉΉ―η"{c-ͺυe§PbŽμΛ;€‡ƒcBΰšύ»WΨνςlKqΰρa·ΛyνΆ­ςšψ3DΟθΌά =&― ΌH{9ΛS-―·Ύaw•‚sd$]—™„ˆ  l~½†ΥυEΜ/φcZΓBƒΏΠ=G“εκ,5γ?„­ΊX,2ά"ŸΐΤζy s+ͺ³ή.ΙtγjAjT’C"ς -Ϋ–σ‹YςL‡#œ“DΊ.[μες-Ψ04οηΗW–?.vž?w aΐάΰm\ό’ɟv_^Eύ©~ΏΫkυΫ}ˆοbŽRO2¬Λp}pum }3C[Θ―z~ΘΠVΡϊmŒFB”1α± ’M/^~`fΎc+^š!”κFr—o»gΘψΙϊ Ζ¦ϋ°7*δ“»^ΪώiŠNͺΓ™s‡Έ L1έυ%>Ώωh jo\NθfFgΏυ>§sp0GΌΤΘ|ρNΣΓ+_Υ=:xο6_UΐΤ…Ξ‘F|ωΠ’#οάMόκόMuΔ₯Gψ™·‘/ήβNzΦ*7;ΣAJ‡ΛXž"ŚΔ―” 7γ L©D…–އΔ^Uά>ε؝٠«Ϊ#΅μDέΌw=mvΓaKzs}λWϊΆ›ίZ.Η t4’―Iφw_ΛwNgPN8“žχ^Θ'e7nmX”\’™ΉQuJƒς₯*½qbI³cΧρ‹Ζ‹rΉ³O~ƒ¨Ψ4M—δ€Ε<[‰@Θ₯­¬ώŽ–-‹Ϋ9tέΎŠŽ…lΌtΣM žΉυUΞ{.e c§ξγΒ»χ·€VΡ4ξrJδ4ξ:―^;§ήΆρ(Ά՜œέγ–wρ™¨T<1<„gIΑ9Š‹FTxωΌq.•δζws½C·1ΤχO«Λ ‘΅ΰ ’ά RX7šΨΠ=Œ¬Ce~Ž\žŽΒΗOD%ψ₯&ό)ρ§Ύ4.E|.r€ ΕΑ<9#σ˜‹ΜΕSOi»a|Πh―UΨ9ο•+γ Ά[^₯gp^#τ˜Ό6ώ>meNώΊΫΦΆ²ϊ{ΉμνjGFιγ²ΤRδΖpSg·„ž‘Λhžv,r9§0ς.L‡#ιhδV-ίDΖΖ‹Ωξ―–ψžC{ο{h›w­…^\Rλ‘Ÿτh-`ŸmCk-ŒΉ’BBό~”§”!5"%Άb‘ ‡―aΐ›‚ŸKN“’c`Mζ;ƒ'IΛy;]lͺ*³θς£MΜ6£spΖ|κ;Y?σkΓJ4ˆ@fΚQT€»\½U›6€{—Π·d°`7ΩτσGΎp,θ₯'±½=r0εYΟ!Χ’Š‰°κχ¦μιτ]ΈD£0½ΕIΩyΣ&Ρ9ڈGΣx=ΤNΚ%&wUoŸίfβ†ΨDi<Žρ›5ηŒΚ ηrΌ?θ·‘UxΆ°^ήtςFcpδSά™δϊΎqωbtι―ΌΦ+w΅±°’Άπr₯iεjΎθΈ¦!C΅sοŠP&wE3μ:&τΘΑΠ(Δ[­ό7LδŒeΧUE?CΖε™~ZκFΗ–O£τd)?ϋe0žN67Ώ~:+Ύ‹k}°ξ²De»Ω‘Ϋψ2—™FΖ6Dgμ>+ gB‰˜ozΤYΉYΩhj₯eŒ« k ­f—ύ‚₯.4ΆwΙΩςc&&gf=ο[X*_ΒΉγ•#Eٍΰ/υΰwœΤ#ε²ύςœΒ·^:IJ1’-ή9Ψ:[Πx­j` ΖTΧηψδς}'2ρκOžCBp0.γ½―€—_=…Βό"XD¬νcθjΊŒσωΌi•Η±―Ό™™YHI°‚>‘7?‰![z^Ε₯λ-NtΔΗ‚γψΦYⳈΣηΗη4ޜΰυH…0­KpόΝΣ(/)&+έάρkΑ-L ΐ6ԏζΈyί+˜GPΥP$ζξEˍkRQτ›‚£o}Ε‰ατN¬#"₯RŽΛ<π=|ΏΤ±IL[C·~‹Kwϊε4‚‡ψ|λETUT#™p±Σή‡γDO^?kχ•ιύ£ηW;8q­ηQχ{m°ΏλαI™Φ9AΦ•OWŠΚ•Λ=\NEV|4‘™ΐԌ² •”΅όξδ |Š‘ϊκz‡οΈd^\^t Έ&—LK­^{ξΨ_Q‰œ Η~0/ {:ρθΦghξv›τΘ%Ž^ ^ώρ$EΈΠu ©8~΄…Ω;;‡ώϋWqωΐΡjh,9Ï%σν8OqZ#qΪαοΰΕ‚όŸlϋη/scΕ2gΠ;Π‚›_Ό‡Ža νΔιZqŸCάΘω‚³ψφΩjP΅0έvΉŒ‡Nΰυ·ŽΠš07>^Γ{ηoΘ *Nύ>ΤT#OΥ½θΈ}]t€“3§δΤp°Π‚ Ŝ4φΞΡΨ|ή/†ϋ°ΎΊœšΧqό9oνηίx$ΥSοψPFz)bζYšΧIΚΝT©;IΚ͜ρ6Nφ’#γB~»ιF\rέθ“‹[u#wζγJΦ9,Κ)G†ΔέrURn–Β–F1Ms‹4iξ%…Ϊ―αχšΝ[=55<‘ΓΕΉ4²­―£φ̏pπP΅γΫcή†–Ζ 4(Ώ™ΘyζσΖΏv»ΌήšρΑέΌ0BΙkΆΞΰθύœΟwωΒ₯ή ςϊΒΓ)*Ϋζv\Α99ι(Ž₯{¨p$"hroΎ“ϊ@ωa&Ψp_f– o §—eT!Υ₯$G€%G ƒπEΧW*“τ”ηp8Νq:‘CπEG’>7λ—1βΉΟdρO‚Hϊέ²”’j8XΑ“λ[λίη¬ίvαΘθxF ?σ؟ΰ¦χ†e£6γYΜ:υ[Ο%zŽΥOΟΈ|α8ΡOOΰΫδ`h&Rά*7 Ό$Zͺp hŸυ+νΉXP‘s%qŽ !΅ψoHŠ2Ο!hσ< Ί€r;(—˜ά5χM1Ο-|/ŒΚ ύhλ· Q‰>+7s“‚sA2²KKωΌXďV#Ηι“Τ’Z„ϊc³h#ηn”ΰΔ·ˆr§4< 2b“YΔύΥ!3υηψωϋκΝ )YύώΫZ|%>%.5~IΙμϋς 5hF'f£ώ¬Α£>)VΌvy"‰‰ϋΈIŠt—Š RbpΨMtΔX2HαΫρΘϋ6Ϊ?S‡ŸίύΓwP’Xκ•”Δ“σλp’ώ¬ΦΏώ΄QΜη=γν fZ“ήχΪXΧΟ—Γ9AΦΨή¨>2ŠIŸ·=BQΓ«Bρ+S˜φ '$RόλVΎ,cm]Rά#e‹5gΉ—ƒάΗ›ΈΌΚ₯ ,Ηδ’YrIΡξ$cΎυƒ7Q™νΊ'!ΛΒΘYRpώΨ‘I·\’¬Y(¬(dv©t”&ϊbIiφeό(> υΧΏ”™£3K‘ΗΛιTήψΧ»]2’€²yω‚bφ)8 ŸόΝ¬Jzχΰ^Ξ‡!ΖdN–§¬vž”Š9’94ΎPzN½vbιBgς4”JΚήB(χotb)«ΌƒμΜTόςο]ΌSςjQXκΪvv›α<6‹ΕϊՏ¨ kύ·ρ£z±0ωG«ύόδ‚‘o|ΘAΆ,ηΠ5θ˜Σ¬;'h•›‰D,­Ρžη]NŒψJ/σ£'Ώž|ήη‘1‘ŽΩFΟXfυ° iύz―ΩΌU»•Ωψ ‹S¨ϋρΑ)!=ZλΏ qφ爀Γi•'ˆ΄΄$ός3CΞϋ1Ÿ§6χηϋhwΛλ-άΞˍΡcςš­38„ΰ³|ΩKςϊαWJΆάΏ³ Ξ±υ8 Pn^^@ίt7Ζ——‡„¨l”$Y0»ˆ&(h’&}€,ad²sdμ„ΦYΥnsΓΞ–Yΰ•$+ήΨη{06O§χ–νXC$Rβ‹Qš žυ‹,EAb'ξJΧΎΕμΗ>…rσ,Yyno‡τΏ9…Ύͺ΄BΑ*iX2“¬Tΐl 5θ:ž66εΔ›―Ζ< Θ¦M)‡rσΖξ‘cl–ΤΓ¨O0#©Ε?ΐτŒ‹˜†θ•/Ž!z¨Ϋ)ƒ‚xΩ<»ΠΙΕIΨ—g±΄Ά„ΰP ¬ et»€°˜—βΘf<ev¦΅A₯άl›hDϋd ΦC Qb=@›r‚ι‚δRτΜά"[4Μω„“»>Αδs’ΐΣ°œπGB£ύvz±“‹0\·ΉΉŽΈΤύ—΄ΫΠ)έϋ„‹ePS^/*2£}deΧΣŒ-™™ςFgέyQyΣ+Rύύ­Δ ίT( ΟχβξΝFΨƒ³±dƒJιy]e6R€»LΚα’7™ ~HΞΦή„‘ι%D%d"§4OS1{a¬ύύtΫύl"…κ²Μ,|!η}g{γΒύq±Θœ{]ΑηT'oίΓ|T>jOpQ–ψΰ~+ŽQ(7ΫΠvσ>†Η›€δμ|”εQ*_ εΤ ΊNR8·α፠\ρ Χ‚Ž‹W°†5:Ό‘VK±…}[ϋΒƒΦ‚D:ΑPή—™‚³o½©Pnž$>οa‚¬,&—FΉ¨X~ζ{8=@$[8²ώΠs°­―ω ϋtΎΧ†ϊ»Qζό–98]χͺh%ξŸΕ!‰Ÿ»ζ-©R΄γΧ›|‘˜α”χ,(/|φ>Δ_@!ސ”ϋ(`β+άt’‡|Ίέό“KζΙ%©KπϊήA₯lΪ•ΤοΙZ~ΧΐB"“‘–W‚²ΰΏ¦’σFδΡ[ήp1V`οΉƒ–φQDεW£Ά4[`*Υ|&Κωϋh{Τ‰ήBΎ…εIΑΉQb^ό=‚όŠ$Ρߎήz³SΏ=ΘωξŒ‘9 ιΙF§€£€hu{ WbM•ΗΎΡA±φψΥΚΝ½dΙΊ«œrwC}%_ZrΥΛxν΅!όόCuύG:o‘e•³ΰL£nXͺ«„ρHslζKς³)κζ½ύ̏ g|H*D†tp‰ΦίϋD1WTϊ}4Θ‡ω•˜™Ϋ’ϋ/dUU'P$MNιpΛΰˆoΚΤΊςyGZ)]‹h§:dώždΔHΈ9Θηη{Νζ­mΝΖ P4‚<Œ©₯ N~ή{ΨCΛ­΅h¨Nd&WΌŒsgzρ«‹χ₯dό―~9οΘw>οχχΡn–Χ¦^ζε†θ1y­<\­9—aςΪΡΑeί^“ΧrΕΆΕ³ƒ ΞVΤ§U Κ³TΥ©iΊbcθ‘’6ŒΠ€­u„ϋΈD—‚ΈIΉcš&Ας©qωz#φLLΆbhI­9A ΟλΟΌŽJ‹ΐΟ3Ο8ϊrγs䏳…Ωf\ξΏ's94~ αI¨σΙ»ΕΟσΎ07³e-J‰ΒζΖβ–ΡΡ.˜κΗ­RύΤ-ͺš… αe(Lv¬Fυ _Ζ=ρπΑάΜ8*IΑ9‚―Y²α^?ί£τ Κ₯Gj‚†Ζ£|<ΖηkΌ@ά8dGXΩ9€‹£₯Ό%EJΜωΙΒf —qdτ3ά₯όZξ#ΊτΈσδˆLG*­GΜyΪγ‚cr7ZIΕ£_γ˜F{;f*2Ζ Λ $ύι·t…p+ύi»|α:;/'–Π18Π`DΎπD Ξ#ΚA£rΧ „Δ£8ȍkάΞΈβ+caEi#§BwΫ£FΏ0›EΏϊ­ίΜ°ω§ BφφYΞuβΞ•NUqύ`Xž¬΅ΡρεΣώ~0Š‹ΑζcΩ ½‡Spή=mš]xρ"?tΈ²©UyΣΤξαΣN’bωUΝ€q–­/AΒΓΏΓ₯~Ηa±2Z‹‘τNβ«Q―QDBr5^8Aλh—ŽΗk15ϋίΑρ”$Μn¬!$Κ"—Η12>rŸ>jδI ŒKL–-OƒΦ&4hHi5%MbΝHci'P.a1ί‚ώκ 5F‘¬λ½“ψcΛΞήθτβΪ/ώWξ;°GΑqœ. …Plz―`b’WnρZΊŽ/Ύ‡ξ7―ς n±Θ+―"£”—ωψœυ’5Fzœz€ωΛ |”Γώδνsn•œ€Χd-΄—9αpγ+8σ¬Μƒ½υ.ihΆ5ϊK™/ΛΡ0RpnΰK›lη―*0q¦QzeEά.ηlΈώ‹ΏΒ%IΉϋΣΛdρσΏ%‹Ÿœb_,JΌBu,¬¦cνΐ³gφ?^ήk#ύέ(‹ώΚ‰ƒ€ά\!nνυu~‚+΄δ›]θ81Ύ8ν֚¦^ωςn ,J΄"‹[Tb-^9Γ‹ˆIΞ‘n,ΪοαΒ­ niΕi«σ1ΉDJ΄&Κ%½rNœD΅Ό4€λΏϊ.έQΛ€’S?ΐώψGσ”KŽίΠέίβ§τ‰ό¦ήώŸpΊ†Sr¦›rςHΏσqΝΫρΙ ε•V"ν|#”*©9'ͺτΆΘ²–Οl?žε| ltxͺœϊ3^@ Ξγ€ΔJZšdŽί†±^R4­όUHϋBΞmπ n·}‹n)8Η,Κ;q€ΰά*FΏέWΩ‘Px©€ΰ,•¦H&{ΝκG>·ŸΡρOζXΓγa|Θ¦vˆ³LΟ ρ<β2ΟβΉ’">tvτ:δαhN&ͺAΐœ μΒ7ρΌH‡+qΈΗˁ7‘¬ή|ήη‘Iˆˆtc¨Ύυ+*ί‡,Χΰ€ 1λ½vTψ鞷r8°ρΑρ6xςy΄sN΄žΗ"KΝ‚»€ΡΩ?Ε7OTς%uυΘ!gεH¬WΞÏωΌYίGrΝw‘Ό6c|Π3/7FΙkΆΞ χψ*_φšΌv °=>…κΑφ”¨$'W [ΠάΓ쬳r³”ŠϋυS‘OYΤvϊCιŠ=±~XšσyρΑ0.Kht_ΑōeH:UB Μ‚#+Σ§—Χ΅ς9ŠŠΞmΐαΪB„‰ΰΰ`/αΦ§ŸΛΧ9RšγΫXBQύΛ¨¨,ARΌ8Α_œ@WΛ \½ωΐ…ˆ%·yHI΅"!.‘ 8]{869Œ‘Ξ&4=κUδ‹§k%^DN|(Κ9g>RQwφ]ΛLΦ(60L—v₯ΰΘ«‡KkkOΚD*ΏOn|[hjξχ'ΠvεSάTα*π™[{e%%ΘPa2„ώ–FάΈϋΘ₯2ϊۏ+’ /¦w;KƒMh³'b~}xnΧ{™'/Ϊ/””›ιΤgΧ“r·C"žΤ}Ζέ†ι’/€QzΫ+½ΑΈ‘:p$&O§Ά“z(hCρ€ά,·69Ÿ‰8 …ΰ/“»ώ6šQΉ«”ΝY¨zξςssc±Ε)c#zŒΆ.i`Β8f­Ζ‰†C(ΜΆŠ•_ΐδ:{8 Η(¨‹^ωiTNhSχΊUύΆ8k?RΕυ‚½­sžωpΔjΛ>ήΰ<ε΅aΉλ¨ ³΅ΕBΘΪ0ΖΦθp7†Ω1»δ FIj»ύLϊ‹xΝ͎‚¦ΧΐΪ8šΞ_ОΣ&Υαωγε'«kkΣmΈόΕτŽΜ?ωΪ”ƒ™΅ηPžΥΝ/dωxqπnήλΤroΜw=Θ3ΝZ{4:>°|ΪίFqρήR,C€!π΄ °Ή©q•ΙΣRω]UΟύ8PV"sΤΡsξŽaΚ‰v­ΗŠ€nee}#dَō`$$’"MPbαX―(9ŠnRpκiAZ<§hΔνˆλΒτ½ΡΩs}3σ°$οC}V>—\>ͺ λπΨEY9i‰9 I§¬P#€§G.βWMΧεGwž$…Rττό$Υΐ³[α¬4*]Hς<¨2Ζ°?_‘ΣqσsYΉ™/°ε4έ―ΗΩιί;™ο;)7sYΊ―α’B ¬ρό/έtος=Xγ₯ΣY„»½‹Š¨Γ 5βM%΄οvωΞEδ>ϋο₯’±Ύ˜ Θ‘ώ{’³^ΑΩ²JGAt°δ†‡δσ>μ‚ζΕ ω&7ίMO§yΛd“Μ[rΦK8ZΰθGXΗΈΏΆEΨψΰσV6>ΘΔ£Ηϋψΰšn{ω\ύ½Πόαη(―«L¦ζ!›Κτ+Ύ‘Teψ ηΉτFησώ~νfyνψ o^nŒΝ•™Όfλ |§χUΎμ=y­’yΫπΰXΩbVδZh!‘w“θyHΎh$DΖ"˜”ψ66ζ0½ ŠΝb­"#beλ³+σX΅ 94ΒKέΆ —L€ΗJ $"ƒόΟ)ξ-‘[¬X'ޜ1O5Ζ‘oUCΩ9ŠNΈζp²›Y’­rΛa&z’ΚOαΈsyQΙ(<ψ’’,ΈpώͺB%> 5g^CΎ€Τ¬ΜG©ά_vR>ΔοIΚΡ HΩW’yb6–¬ιJφ€’6ϊnJ^Ηoμ>œ8χ ­B»#*2ފlϊKŸGχyξYν’Κ_Δ+εκ0oXKOΰ•˜ΌϋΫ Šϊ9§σεy†”Œ‚ιϊ(‘Ν2bNcκηΏUY/8ϊφK‹ ‹h#%;k9]o•/+γ:(YP|δuˆκLbp2ΚOžΑΤΘ‹ŽI)eΌϊ ͺςΈΥ9΅‹ŒΟDι‘L€₯$βΒ§ώΆ•MWFeΡΗίV™9(T“£'οxnΟ{‚TΉ-Ρυ†œ\qVƒx„λ›‚‹ εΞ1Ϋ€GΏ[Eϝ|1Jo»ε (c²O‹Z‚[ΕͺΈζ#sƒΌ*Ί”j―ύ2Ή»CrWz‘hL9σΦλΘΦΛδ1%˜<•œύΗ’ιΝΩoœp’χΡHΚΕqn]Φ‹Σ'?Κ /LΈ‰ή’~[Bω¦‹1²ήμεnΨp»‘/\cσHGΡΪ>wςΪΉKΦ±dՊ 6ά£λϋ2ΙΊοΦg1ΟM7Ψ19θ―\Gˆ%όžE>¦KnaΌCyˆCx9 *φ!?[ψF΄Σ&θ°ίφΟ?i¦θ‡΄d”#;Ου`n“6³4œ|―^»mΎλAžλϊFΗ–O>Iΐ;ΎŒβb¬υX.†C`o"ΐ,8οŽv­Ϊίΰ°Φ6u_υΊQ˜ΩμzαΒ†ΖζΏCσ\ΏZAΈϋ Zs^Α7ͺκ…΅υπLδdZΠ3DŠΘD|΄reΓνΖΖ­1.ŽάPμ›οΰtŽ0§ s¬« Έg1:ΪZ¦ΗB_‚4ϊή^€½ˆ¨τ3x£|ο·5;’kψŠŽφ9οku£ΧŠΏνΉFΊŠΛX‰ ΒΛΣ*k–$tεπλβB&†:ξ»δξ§CΡΎ*8Ο?@λuίή-KΑΤΨμ¬ ΊΝ’N4’β·teuZWΰXrζΣU±m ‡ψt£ΰ j/Α%αθOώ€ά½‡'έξEπΈηω‡³X)γ\ ΕψK,x.ΐKlLœdeš £ sŠZNŽ”θ†H―ΞΒρΰƒεP§άnυ΅ƒΫbtEθ{―τw]μ(—ι9―αIiŒ”Ϋ.έΏ*–Kο. ƒ{΄cjΖ]Π)_ROΰ­ƒ'y₯cžΠΚΙ*|PT:2bDYGi^+ŸΒ‡^δ’Θ¨ϋRήό£χmΝ}/·™¦ξΰgω·*«„nΣΊD8χw&—\ |—KtγTJ':ΎrΕTŠUώš"—¦μ˜tVvŸ^€QMp σ‹ ’ύh§ƒ΅•FkŽG:€Β»ΔS(ΰ­ΨӍ5Oά)ώ © ύλ žΓΤ“«ωq*ɚEt:S–œDaΟΗ’OsάΐhF’Δ1Γnΰ-/ηΚV΄8‹©ίΒ½†gM‹Η\%*šΖ}ΓΞ€~€«ύ 3+gτ}|ΘAb΄΄g<Ρρ0ΈδDŸ‹ςς} τΨPΒ³„""2…²»dΥ`l>οίχΡξ•ΧfŒzζεΖι1yΝΦΈΎξ»|Ω{ςZ―¬σ7½σ΄Ϋίς|Λ“‰qNΏ°0…ˆδSx!)‡Τnvώ ΪGcΘ·γό»Δ/+ϊΖYκρ"ύIna‘,ψŽ7‘‹;Ρ‘t[„Knϊ~dΙ z6ŒΟJ ― XXγ¦Ώάbo,rSžΕψόWβ’²9’’%EΟ?ΔZ\qq›NA›Z·₯8₯ρqnθΪ;‡NŠ·U₯Β’΅₯ΰΧγςέNKSτα3:‚Ωi;P E­2²L)|8eԜƁα>άιβ>hAτΦm¬G‡’ςχΒ’ΚQ˜)Ό™“½06»LVΕS΅Α˜u>™…cίx…βG/LjνΙ ŽΪn‘uΛ<δf&cέ75Λ\ύΊϋ¨od” 4OT2Ο¬Dyα-‘Ouz=OέΧ>†ΕBΧTεΡΗQ|³αύOΕ†ΒΣ8T')¬ΫΡ|ρW螣ιύِ‰, §ι.ΦΣͺQL ’λ£ΏEKΚy%f+¬™Y€ΰLƒΉͺ—ΥΚΝΓν„‰ΝŽH:ΩVU^Δ§±Ÿΐ±Ή1όξϊcώYωονGΉΦ6],ŒκΖΣ₯}Άΰ½ŽΚ@²΄Ά±JΧ[q8“KO=JYYNγώ]Xq~Χq>ωΆˆž[ωb”ήΆΛAwθY™TŠβτrΩ’ΟΤd;ϊψβш•VΙBF!q€ ¨ΐALξoŸζ­žδ‹PCσH/Έ•Χ~ΛέμΟ>.Z±^Bχΐ§θ ͺ‡|^keŽ6 φ†crΠh;’σIŠ—πdΠΫΡqΣ©°{ߟ98t A¦φψΦeΩo–ΗaEnqns ³hκo³(“UVο΅ξώn”M£r"υ$Y―¨Ξ·9)·%CΦ]_£›Aέ1§GΎμΗ εζqΪ ύ’ι’¬PWVϊ=ΌP$|CηDUo3ϊsx<"L^ΏrΗ½Kx˜?Φζ•ύ`rΙ]1@\Š"+ςb6:Ψ3κ¬p솄rΙ>>κQΡ=ΝΐŒ s{•HLI’RΡo¬‚6"ΜΩ«s°Se7§ιm? |.Α³8‡€bΊ˜›ϊ‘{άς 9YkMo/ œÈΈΚ=šα8kΘ/ο?$ο.NέΕ…―>φ0¨ΝΗφςaωΈ§ εω9ςΑƌΜCȐ:’βάΆΡ ½ίΏo6>(%o@Ξ[Ωψ nD­'Ηη¬3s^nΎHBb:)΅Π7¨Ξθ|ήο#_ησΫ-―Ν §g^nœ“Χ:^|ΆΞ@`ν=y διx όO*}ω_’Ž2c’διθθb” ϊ£ͺβbŠq°˜"Ϊ/`ˆW(SEοϊ‡ΨΞΪͺΆ‹Ž"Σγ΄h3tΝӎo+pIN>ŽZιˆ)±31!)θ ΌυM=AftRI5"ΊΗφ₯ab~‘dYVj–εΕvάι½λ›…R³Wθ4 ΄w_Εϋd©™w1΅π]ύ:‹IεΜ ι£Ο‘ψ_A-Ε§πόx?>ΏSΟ?Λ«»sΜυέϊM}œOν–ξασλ„Ώu)ί>%œ!ΊΛΧ(,iιygψ°Ψ>ϊsŸGe΄ποŒΙM΄υσŒ¨Xο\AŸ·‚ž'ωb”ήNΘA ΒόΜs؏…Νu“…f₯~²¬v4’ERΑΕΒ‹dˆ†QΪτ΄BΘ’@"ΐΏLξξœά‰•6)ιΠΙ‡γ"—³φ!=œ6zΞθ8–R]Ž\I™z¦_όό]q‘μΆkώι―΄=ΈΫ‘νΨƒH$gE5δϊ8<7ίΥ+Οuυέgt|`ω΄ΏŒββ{‹±” †ΐΣ€³ΰΌΣ­lΑs€Ι)­6OέΑ υrγN3h:ύε΅eΧ2Ι40ύ/Έ•N<~"­ΣHd£!X”q„yσέtι)o£ˆϋŽ’ €wv"ŠŽ€N2₯eΔΑ]?16μέΒtΝwTΚΝ Γνθθμ„}žZ(ˆ’ςpςDPΣ`­5MΪ’%5]ύό§g―Ÿ<†Β’ly]•/ƒφ2ʏώrβπΣΏωgM%gˁηΘ’¨Hqψ:ξάΧE^_β5¬ΊΩΣڐ_b}%j¦φ»4Kέφ@Νώn” ƒr’.«Τυ’Ίο‘2H|~&ZΨαΓKPwΰ{¨ΪœDcΣY!YLιςγNΎ”UΤɊk‹d‘_IΉyV‘ϋqϋRΌ,AE<˜ kJφχ+Rθτ’υπ{W― F«;jŒ₯^ψ¨C«Y‚™L.šd]8’Ϋr3μŒΛ₯υUŸ,:88ΎCΦ-_€5ŸV’S‹Q\ τ·€ ¨€XL3‡ήζ2ρ]ΞχΒf›£±„ψKIE ).gd ŠΞƒΩΘ,ΟAI’΄―9‰ρξh:PΘπΆ«‚αE΅ιtξΖΉ©ήŸ°ιn?e%ΆŸ#\γ^―¨|”‰ϋΓ}α³^Aή•%ZεΫ²GgFΤ·~ψΙ[~αx₯¬Z.ešš|θ$‹εH…Ηh>Ύ_η‘KΝxŸΆάO—DEͺB³yΕ†ΗJG‰…Ϋa¦Γ“~^GΑΖ‡ΐŸ·²ρAΡC΅½Ύκόφ₯EΝHŘ‘‘# .ΕΛ“?σy?ΏΌpζˆήny½EτάΝΛα=&―Ο@{Q^'ύΨKΛ›­wΙκΡHˆδ– ΈγΖ’VΘ':0JƒDLL!J€•¦ &bHV*3όΆΑY“ΰŽΪa³bve+›Aˆ‰&K‹q•·ό΄*ŒL_†πyc>.±ρ‡qΐJŠ»’#Eεgε›%Fη&‘š$m½[L§V…»δθwφ>νo–Jpω]㬓)]p|^#QζσΩ?NRϊUΊξλwWV$(e%f"•ζγ6!EΗΝ Κ€*gSͺHΑ™k©ΰπΦpQ’΅fŠ Ώ4 A©(,έ'Η4~ξ’άΜEέϋCr*g]ίtKmΡ₯½ε€ΰΜ)•ΕZόZΑP{„‹Ÿ§α»ίšσΌ‚Θ‚XΕ*Ξ‘ωε۝ŠτοΚ’ΈΑ@–’₯Φ·Ο‹«ώ«‹ό•8¦aβUMε₯ErO·5}ι‚ΙBΧηxά^„^‰»ιe©θ{,τ ۏ–M α©ο½ŽF,ν(Φ5`iψ8‘;·Ά@rPΪ–’nΖ[.D}Άh ”εξυίC*]…%Ή ηΎ&Eψψk6=oςΕ½’ƒ<†)t j nY@εμψ|PΉH`Γ<]ϋR‚ζΖ±€x’³‹ŽM΅ΨψƒΨ—"c”du3ώXΨΰ˜!Εk_ΉΩαR(g1a Δ’9ŽΙ]sp4&w7Iα^v’Π•ΘΊϋΰ#hKk!‘žq,™,"Hορmω°F²ΊνIK »RJυ―ωiLN¨ιωώdvΏΝG‰•;$%Έ‰Vq>'…(υΘ.Ÿ‘y€’žΪοY^ϋ'w3ΣΞΚ·ΜΪοβ昰ψ―8θ7Ώ<©fΘ蓃n ωηάτ?9+/CΘIIΝι{ε:εΘσΕΎξΗXcΟvΝ?͐ƒ2λaΎ}Ζ|Wͺ•^y&εΣχkt|`ω΄ΏŒβ’―ΥXj†C`―#°Ήωυ^―βgL ZΎž»ΝνΧw5Ώώ3G·ΰEqk.œ³“±cΝE£ιVBη9#«Έ:^NλΥ³F7ωyM$$ˆM·tΞ»y;¦ύ]ο‘ΚςλwzuΟ<’ΣTHVη8Xξ°άάσŸπ³ί8)ͺ%žB9)8+ΆώωΚ½˜ΦP"χͺBΧ~Πi€‘ 2©ΩΕ(!ƒ#y©Βϋ]tΟΈŒO\”—Spθp­\‰wnh*+Θ άx6Χ}[™²‘’EλΊ€4δμ‚;rAΞ‘NΟήθm'2dω†_‚eΛ….©Ά(ΐ‡ώN”Σ* Η’0G±2…Ζ;χ=σ䳜ΘAJ<·ς*:R΄+χI€ εoF΅νJ*έϊ΅δ Υ9Ϊ±708Ϊ’RnŠ²ΡΎ"'ε„•κPΪ€πΛuΰΪ‡ο£_EzΜΜδ’ιriŠφšΉm3n‹9Κ€En“δ’Ηf—#ΗΡήώσΉƒ.IΘ+?BΦ-#Η)sn¬…,τ ^σώΥ#ηΗ11: ΡX‡μϋΒm½N΅γnO0κ닐DΌg‡ρ' θ†cFx~—±L7Υq7"ΣQ( |ω1nnι)“ϋ‘`{ MΫόΞ·%ΊΕ‰―πΩ£&ρɊΜDαf4Ϊ!«εO€dͺ_#γCUΕχρ|~‘\Ξ`ίοπώ#υήΌ©πΝ'‘g9׌KτGŠ”ΙόάaάΝΰ 'ρEβ.ζ ]αδ‚_Žτy+Ότ=γƒΊ( ν™r»€Β—#naf€²ιo‹~nΖϋ=Ÿ7ό}䨏WίvΛk“θΉΦKk^N©ό₯Ηδ΅+ΤZ!lζš{p>B«±·.L±œ²uDΤ%'!&\Rlζb&ΡΦ{νσβ’$-XΞožC}’°ό¬X΄P΄‹Ÿμθ<ξ•qΦn²ύ ‡q8³\° ’‚ΤψhŒΝpu7ΞlCΆH‡ca© 7ΊΏ‚jέ0¦ 'ςκΧ»¬Ϋ1FΧΐ…%#9Bl£ΈZΊp7G΅­Ϊ}„χGξ!«X £Εε-Ύ†|ΖF'k˜ςήNŒM —W˜Ax8χΡ9#'ŠΆξCiy RSN―<­€r:bΑΙϊ-QΚ₯jyΒFŸN$wJΎΞΜ‚n»P;²¨½*†,IΚΕκƞΊ.᫦œβ­_'Γ*­8/v Q²­U²΄ςJkj²Ϊ†€>7…ξƒ^‘‡ξθΓΦΊ3x-λyR(w*8Ψ!""eωD~΅ŸA<}―-Ψ_ψΊΓ‚§S΅΄—ΠAΦΐ#Γ€ESΪ ™ΕΎ‚γβ‹“hό‚N"ΣBj΄„Λ¦Η΅‹σ)4q&σ._Œ#Λφ&ŽήωT‚·ˆ©Ω.ώTύ:I4Ξ~"½ŠΛλKˆ°ΔZΏ‘ƒσ«œάδ’“ŽγXp"†θ#&’ς•Θ‡t(?₯Šp³˜€ξџt―ύώ‹^,@:•0σόњ½SœήG&wυ"ζ>½!Ή+ L’7oό[XΪΪ0Ψ?„ιΙŒO:Ζ:χD}IE|ΌΈΘLhΌΏΧ%γΨ0 ΐ^œ}—ŸFε„ [>˜Ωos3χ9¬΄/΄ •»Ω­Σ'_Έ |ύσHmβήε ρωgBΒ³8(ζ Ctχ₯­=jΫpiŒ›Γά’'l΄ωv erΠG@ΰΜ?{Ÿt£Šd7»Ι/(Aγέ^Q)e²J₯Γ=θ₯p·-σOsδ  ο>μξω²zε™2――~£γΛ§ύύ`_Ϋ‹₯c0žΎώϊkpΜν%¨/ͺ”‰vίΖΓ]‘T+³dΊ'.σ˜B‘{‹dΡΕΡβ«ͺiЬErq»Λ"²§ςXː#i-Σzώ„j]•Ω€˜"©%NΟΡUικhΝ'ˁοΰ­³΅α•ciA•Ύ!?ώλpΩ(ΧΜμS`?­Π&{6·ΙnEv½/έΌ&–œ;#Σq YτΓγΨ›ΐγœΒ±ΪεΤ»(7°ΩPΑ-Bg“eORV« d€Jίκς\ŸΖ©Šά_#n~ϊKœόρΐρ άXU㴜ΎC+O‘г$ΚΉ±;hΊκ»uΊε@IDAT’ηʊCνΪ’Καθ>―R7ΨΒ[ώtJ›˜ω²ΝωILvσ©ώΡCΟX;¨Θ φyΜ“C?95\-G…·šυ^ϋΤί‰‹’―αtU’ƒŸω&L’‚³„Ž4>Λ‰U,/Ϊ0½Iϊ άΖ‘}‚‹β½\€5³ΝlΞΩhgΣ§)_’#­›L`jZέ„R ΙQ΄H€δ Y‡Η}`ٜ$L.m₯\BL5Jη γ–Φ»£nA3δ’ΊDߞΊ›Ϊ1tŽμ“ ςœr<& ύOΪLE~tΚωΎaΚΘΦΙFιP^ώ-LuβΞƒ(^ΑΩZTUaΣtΑ6€VžL?&'i_(›OΘΚσΎ@ΗxΒ‘λŸνοGJφτŒGΚ|>΄ν!ν|πωΫπΕ­ ŽΦZδ‰:ζX€=χ!RξΥpϊΖ ΦΌ‰†LξΝδά?ώŸu9ΧB€β_£ωEΧΘ<d¨nB.Ζ‚cŠ[]:‡[qr’]ξΩώχΪΨ|)0η­l|ΠxύuŽͺ-H"—~Υa:—Ξ}wqnvΊ%έgμύΤ’¨σϋˆŠΨ΅ςΪ€ρΑ%Νy9₯2‹“Χ.λ 0Φ˜Ό†λ zΫ‚KοΛ|^˜-)έXΥάΡX:sEΖ"JAud΄Ρ‘ά,5±H«ˆ’‚³ΞwMς%Z ΥrΣΣ·Π›…Κ8ξ(’bγ~ιƒΘD\8λ‘ Ω•²ε…6άιΉε4ΙΝΗ…r³έތζΑ{²tfκ)L₯EFrΦΊ²~ͺ}«Ζ|Ό}rέ–ζ5―•”ΙκarΠ'(}•?χ}4TK'<•ιœό~ZΗJ‹ +ΟbΉS³˜vVTv"©υ87=εΌόͺJVώUExθ»ώ+΄dύ¨δΦ}Eχπβ»θ“<ύΪμ˜!˜-¦fΪ<Δ%H‹u\š*hifQ|ϊΫ~ώΰιΣ{n%KΜΪ΅pΊ‚•ΥΔIr¬^Η₯,S¦Ύα›x²HΕ† –¦1εXKw_΄Ϋ˜„šDΟ7ωbήΆΛA%` θ±]ƒς(G~ϊ9μΗ’Τψ$“‚³΄04َάd«¬ΰ˜l©D²ςU‹ζΤϋΗGω; ”ΤtωΙB‡ξžj’5}&wu5—·Δzεn[k+ΚJOπΌ9š[ώ,ύ‰ThS₯§γ>―έ•½QχΟ)IJ'!QOΎpΠ=Τ¨΅Oςڨ܍ُΪLn€άrΣ!Ί8ΘηsΦ§1͍iώ:&= 8σΟ…V NB1wΞZ€‚,ΰ!}F€Τ!C¬‘χΈA½ΕσO³δ ‡s‰Ϊυσ]Ηϊε™*»OFΗ–OϋϋΑ(.>5KΔ`<%ln’Ζs;†@ΕΎ£Θ—,Ϋ-ΆΰN›ZquΗ3LΨ‚²Ό2¬ŒήD†’vœυΞΥΤΛ₯φ59ΊimKZήB|iMnBQFYΕσ(“•ι£ξ.Zs/ΑΑ¬D >Ή©­Œœ@‡Κι;;J€Έ83Z’=–XZwέ€³άεέΕΕY`M”Ύ!)ύT”£ή³ϋ”bx˜ΤQk„φ’C'Pq‘βJ93θζzi^ 4λ7 Ρ$œž˜μβpΓωIι™šΰTB…-°ΒͺgλJ…€#¨Ψ—§Lς§‰ŠΫTS7:ΑνΈίZ;IΦ›₯ΊaPIΥ₯0§€ΡQpͺς\ι–Ο ΫOΊ{π’ˆuΞώC¨x†£(ώc‚²Ob|L HŠΕ:θ‰YθG_;8ς‰>²$΅ΐY€δͺ—‘‰ϊfU)rΈδ€oο΅ύέ‰δΖ·Έ θG‹›Ϊ7*‘Tς·ώΦ‰’τhΑΙ£ φρλΎvά}πΧΈΑ½Ζœ3,_&1·H{‚Qά[™Œ,k%§Υ²½¨τŠ$ΑΔY²ŸVμγωΨ₯0ΉdΆ\κ@Ο“vT§ λq΅Ο½D·—ώ­λ‘‹Δ,X# ηΒ;e†\2τŠM]FwϋYd–RΏΝhΐKΒIΤΦ>9λ0ϋΝυ9yτΚy{χ?p»ΰΙόΑΐΦϋ£-Qθ?‰Ό²š+R‘i ΣBV0ήT;‡€ΰ¬©›QƒΪŒ5άΫA.@εΩp<)5Ρ‘ΨΉ~dt<‚γUrΪ;‰φ^Φ-ΰAΫ»Š›*+ρJω!y~6<Ϊξv~ζσψ@vXŸ;όͺΉ<~Ώ΅·όnqγŸGg4Ÿk‘ΎΞ#“ζΈBI98vΰUΤ&‹3š™{hδζΊθvξ½Φ7_ œy+γ¦BZΑ›sŠB.'ζ„e WΤ^˜Ό†{’ΠΜθ$Α;%™Z€EO­²| £λ9ωƒ%~σUΎccτΆYzƒ―gδ>’bΟ!‹kŸ°^™]ή8[#…Ύ'΄1‘VŽ|ή2ŒXΪϊ$ϊ¦ϊS†μ(N€ΞazAΟΆ‰WΆ~΄7έF€»Žγ’%›+Γώ½3Š2™άU€aŠW§άΌŠχߟ§Ε«:de[yΛ§2QΙΘ―9kR4>ϊΰ’ JΞRΙ„Iv€ ³Κ ψ0₯ίFc_Z™Ό1:kŒΆyύLy”/^ŠΣœG:ερY^”»…–"Ωj‚Β‘u ω²ŒŠp\ΩBVνsN‘`sνƒwεƒtNμzdrΠ=F5DOW')8Q}’‘SXM ΐ›/F\ΐYρρμΆrώΙ<•ά6ΘAŽT Μw%Hάόϊ#Ο4‹4:>°|Πό~0Š‹fγ°@†CΰiE€)8ο`Λ'EunŽΜΐγ/ιBτ@w©(ͺ|ω•‡18Τ…Aϋ0Š€ͺΠDd¦” :SšR=Ι’_£|M9=O`„τΕxc ™xΎώ-wάDχRΚ ŽβP–«ΎŽFAI&> %€H[r}Dodv”Φ†±NFG2“ Q”Eίθ2€xΠ}E~β<Ω9gQ‘M2bΎΉL %Ϊ’΄œŽ'ƒΑX#«ƒ]jEΉ n=ΞΙi9₯ΠχΨΉ ]' SπN¬Γ›φ§Έvύ6¦‚³qΰΤή‚¦Ύ½€–Χ{“pτ›ŠΥΘΟππΞΖ³§Ύ‰BΕν~Κ’:n?ΐΠ™JžŸθ’3ψ£?XΗŏήΓTΚqΌπςώ•d Ž}χOQ™hCΫνGθνnΗθπYyLEYν1=!(ό‘z)¨9΅CΑ+(―cη ‰”ΏuΉεyy;Ίτ~τv8Zž Π;JŠκk˜l»†nQΨ~« m§O œ«L%ήόw>ωέy4’n\ΓsίΔΩ£Ÿ@ΛΓ;šϋΠAOfŒυ΄ƒkύ;0FΚη•©Nyxι d}u‰ξo ΩΐθƒOΠ:μ”Kγ%v ς£Ώ;‘syt·…hDNΈˆΜ……WnζΒfye<9Φ°|!…εEn—KΨΟ*x /nFαΑπ¬…d:Κ!Τ+δΩh³γ ‡L|χ{˜\’ϊ»yr©ω‹[¨%9v©πέ>ΧΏψΪzιF&ςKͺPy† e΄ώ‹¬ΰlŠ\2ψΊ΅Ά>ΑqNΑYιH!Έ] τΧΰτ[υd‹ƒ/,1OŽL«x /[Who1˜ώ³£υβ{θb‘σS}§IUެ—cC0> } y2ίs§Ύ)ΉξΛWπΰΐR4§oΏϋŽ›—―αρ£'X±€")…φΥ‹+QXS YšŸ!ηn)sF%φgH£Φ°FkϋœΞ%'e`εA:8A7=[[Dk Y-ήξρ§.ώ£g’κΈ+ε5ǜρΑπΌά =ΚΖδ5[g0²Ξ°χε5Χ§ΆΞiN󢎜SΙλΛ ]G*Mι]’φ@@4bΓ€(wm·«‚7 β’k=M'χδ―1ŒMήč‘Η˜E#NΆHΆΝφΊ(@sΧ£/‘Zt$―αLŠ§κ ΎF‘ΫKχ@€%gUλ₯yGnyΛKάi~Z·–•%hiσΑΏβ“/šψpωŸΨ:δ“‚³Ση΅νμΩTœvŽγŸη¦°ΐ}PsHd S3Ρξ ¬yως₯οi‘΅ό#η`ύά4ƒΧU¬.PAάbCo mΞ·rΝn?ί¨κM5ŽQη·Ρ‡2Β+…ƒ Ό<wGΊΔΜ$GKΗ–hΑsH»ΠπL²ό,,„ 6°0ί… Ηͺ€Ό),ρƒžος…Hš@oλε 6€κPZH£ΊΈu+=hξ§ΏP byΕΎ5Μ­ΠϋΉ/€ ²KΓ4 ό¨¦9ˆ‡ΧMικb}|brΧG |LfHξ6αKϊβaΝMGBZrh‘4ƒ6Y9™]Κ’;ΈέΑYq-c›ςΗ¬ sο­³hqOΙ‡3δ‘±δξCj¬bΔ]EGG§{όμ· ΄p]$›'&‹#£-ξiyŒρ"_άζυ>Τ%―•t|ž¦ΐ₯P₯ƒ:ي&PΙω“γrθ@OΏc1ί9OΟLΊ…)ΐζŸC-΄q~°ˆ?h™š[@4ΒΙ@˜8—‘«@{Ί<Λ1·8¨"ŒΞ?cΙ"TΠ6ΘA"σ] wΏΎΙ3Ÿε΅ΡρεΣώ~0Š‹»ζfα †ΐS‰Spή©f·ΰHΡ~”γ`qβ+άκΧXGή)φŒ%aAWΠ‚¬ΜzώO³¨ω\jzΧΙZ_?š{ο’b½%ΎΗŸSγCWπα“>4;VZω₯‘ˆ^n¦SbωюG?B£d™U ·¦–£$MΰXN*yΛIωYxX›t―ΰ,₯ίίFœΈ?όξίΤJ£R“’byΠOΫ1šαŽ*ίΝ[¨&KΕΌΊwb%N~—ϋS%Ρ~ ‹ž_]!Εί“Υ|Ό΅κή¦?ߝε‡ΈΏ3šYΪοβZ·:ͺαHl…³·ι¦Ά₯MuυρόψαIdVρ΅ENΝIϊs$鈜B·¬4έ‚«—"ηΫ'Ε‡Œ:Ότύ9’σΎ…Ξ‹ψ’¬~j:τ ·ƒαkΧΏDUΕ7¬θύi8ηx:θ›ΎuΨΐϊ‡_ύ]ƒIŸ‚τΛ ΕF%:xΟΨ1¦°$δ|iνlDiN&²xβΡ()ϊύΉr²8qΧ6ΊFD“K\3™*—¦α“_gγ;€\ŏL‰₯8ϊχ§~!μͺGƒrΙ‡qΑΫΈ1z½ ]o4 PΑOWηCŒ*žU^Ίκ«ςPƒ8OPΕ ™ζDΙrΠ$&ο8œΙω~ŒτI¦<‘Τ±Aτ‰ŠΧ}=} Εl²βί=.€ανΐς[$ύδχ„ΓC1EhxϋS$qγmxα8[%ΝKœeΕ7ί9κ$ε蟡όg²2m°™Π~Π19Χγ£±₯Ώ %eε|¦(K5^8"ΜδR;qι¦σ|PŽυέ[Œ4IΉYΜ•Z}nJkœζΛ52LΧέέΟ“…9λ-§9«›ͺμ`ƒο΅Tήo))χkxΎHσV6>ˆMnΒψΰς~Ε’όδω?ε{…©ψκ7ΧTAFδΌαχS¦¬ϋHΞκ³gε5Ο“~zώΜΛA£­‘ρˆΙkυ €9/tιOκ<ΞO†ϋ“Χ<”.λ >ΰ―ΩnІΡ=ŸWδέ ―lkm+ χZ&Y>χεΔ)Ȍs(ιΞ,τ M•δ‰Œί§PŒYΒ²–Άn\’Qœυ …rσϊlŸΉQnζ8‰EtD¬Θ’³‹Κ3‰S+β#D=R^^ΣΦJ.9Χ~ψoρΖχ ύΡοή₯’LύCΌΔΊ\p*’„FΊΤsφ1>&X~»mθUZϋσ₯εxUn^[u4Pl‚Σ׏L_ΓU‚ά2ξοξu™‡ήBmΈ@?Ӂ–G=?{oΧqζ ώΔ ξΒ 7AA/‰MS–Δ–Ϊ²Ϋnίήφ̞;=ΝΖDΟFΗnΔΖNΟ8ϊ˜υͺ}΄Y–-5-šE‘eR AIˆϋΎQ@αΎ΄ί;λUΥ+ΰUΦC‘dFT½|y}_ώς½/σe~ω₯Μl"*ΟΚη>³?‚©)eΦϊ€\iΚΞH±f΄Ÿ:zi6ύΉ¦gS}<–HI–h€@ΝΒ1›’[ΒΘ” $ξP™~\σ;…ΌXε]Π€χ‰ž·ς…θϊDOζ{Σε O^ڝBΏθV&‘>Κι—m€Ψ,ό„vŠΔ~uΧ>['ν3άζŽΛ]ΣΠwΉ;…‘n²|χ*>ψΕF}ǘΜ[$j§Λ§ρ~¬γ“JyV$€Ίχa‰qϊ4΄„ ΛO3δN/y'Ξ|Ιρ;UΎΞ‘΄N™ή[²’“μ˜’mB·c˜ )ά€Χ¨|q)jύq$ƒΌΦ–oXξ.cqiΣ γ°Ρ8έι'Z ΊDG .Ψ11γγIš"·ΔΛε y°ΫλΠΣ!/΅Εζ’ςΉ u<ήΫώΤm#aΦρ§9rΠžwΔxΧ <3,―YϋžOϋodž–#ΐΨρpη-jβθRd%ΛσvdŸνqΫU²ΊάΒ ¦u6Τͺ5[B[η5όκ“_‘IgBe¬ο=Όέp‹,ό©94ž1΄Άύo>Έ©†νY₯“ΤH)Ρ³›Εΐΰ]\Ήω_p£§Η%™!’%E—·ΫΡii>Ϊ-‚]˜]q_ΡΛηm˜νή―ρ³­Ξλ)c5ψτΖ=υΤ§‘~2'μκΘJ£ΒεΚκͺk¬ϋ}ΗΌυσEΧ„{fΪPσ‡Λθ’ΫΩ΅Ό¦Λ?ΔΫΧjt¬ααΝ›PΜ<,Ξ+ 4&1F§θιΡYGkΝΏβη?zΧ™‘΄σ(?¨¬5΅ α›’譟ώέͺΓΠΔ8—p&± Y?b†οό ή°ρπH΄ΧόoόΣ―=+ψQ†ιωΠΞ΅ »–χπ?ϊ š;‡ά’\λ($0τ\ϋψΎ;1βϊXσy+'œθΈά$†G« Ξ“3ƒNΦ2}’/σ xηζ»hqΗ[ddα“Φίγ;W σΖΊpΈ·\.™/—†οόυ~…‡mž™^tvυ9=LrΙΆΙ”εϊώ‰₯―:ϊ G½ήFϋƒ^ /]h― Ήwρ.,©}•KŒΛ-Yv\ƒ|σ=ύ ϋ»ž’z“δ:šΊΘ\“μz0ΰΪχ΄\Αϋχ¨}Τ₯€r»ΪΪP_σΨΙΰΓβ¬|z­[j€ιy_¦χΘ”φσ’?TΑP §οm 5} ςšBΘ;:rοέψšΤ…SηxυΞυωΤ킝ΧdΥΜzž1 O΄Λ¬ω„μlγΘ•εYΗ»ηΒήππ}|¨;fuIΈ n™žk₯^|άͺ αtεύƒ‡ ύ=_J7τθ¦nk£ο«·ι‡ΞΦ›‰:“œgΟ3~ižšΐ”Χƒήφ>Λ‰€·τ.ΉΌζσ Σκύ<ΖΧ(›φΏ‘BΆω„ƒ4Š}᱈§9B»F9$έZ‰μ0…l/ΖΥΟ%0€―‘HΟΔ²ύ F4uR.Cu¦΄Q›oq(Ζ0γ’„9§‘EZΏβά(ΣΦχ>Z\&Ϊ€«sKτE°WΠ ΄ ‰,λ=wώ€HMޏ ΥYšžΣW°ŒˆŒFB¬2ΩNΕM…Ρρ@›ι²SZŒΆš'"…iΒ_Ύ›€hΜΩKΎ0„ Ησ9Νν£΄ΜΣήLGfΫ(ντ’[aOmtΜF Ξ} kρQŠEUΗΡύδ]uRV-5:…©+da²K ς»'ϋy<{΄P&;‹ΖšΘς'έΖ}₯‚½Ψύ8ςήΉ|ΫgΦ&Gι.JΛΙ;xνϋά1bς‘Ÿ°‚67\Ψۏ•ωMην˜]’£+ΔwlmƒŸh&*³p4΅T=šjlšv’{¨HtXŒKŒŽΙΣ‘™ΜτXδ ±ΔJϟr0$–hŒ>‘%^ˆc©ej;,žΆ’]ϊ.©„$μΟ:Β(Y;}Ύ-ΫͺΣΑA βrΧ2^…3Κ]‹5‡ ΰwι,όΡςžMXν•δ«'^ΌιΗ¦mΒ’―T^F~πψ#M±“ŸΉΧχ–Ÿ¬rΒ…μښ2›-G,¬ιΟΉS΄―οm&Ι„TeδΌΤŽΦa籓Κ³|ρaIΫΛΌnjrχqΧοΥκ:{"QΎο+Ψ!„ΪΡχ.š•Ω η„ΫμŽΛA3¬γiο;LEFΒ*Œ;…g$’ύO5γ{ ²Ž?͐ƒΦWή5ίͺρθx—Yžiͺ&{ ΛkΦώηSΗ­Nί¬ΈΈ7!αpv1kk΄Ž;#`Ώ…7/ίς?έΝ¦8_‡KtΚ^Lt’cbΌΒ¦―Υ΅%Μ̎‘sάΓw–†―ΑΎkx«οrΣχ!6D˜\[ΕΒϊ†Zέ”ΐ;;ήC§`Ρ7œŽŒCψ^:u/Hš½^ZžΐH«“Β’† y‡πΙg7>qτϊnψΞOπ7τσ‡³5^Α›τ³€eN_zHIH9ύoUKΧ«k: ΧρΖ_]χŠEΫƒχπ3ϊν;| ΙΒ\Ψ ζ§‡Ρπ@Άτ{έEΩXSzΣϋo ιn *KJΝ±Ί8ƒα§·Ρ#(‘]ϊMJΕ;ŠOίϊ;|J·)ϋJaMŠΗήΠpqbun=χθ* Wž¬V7AχΧάAƒRœΧΧάzηιg,£61„Έn3OJڟ’cΐHΖι9Ρς²ά8iΉŠίΠψ3τ\›πΎ+ΌΤόκoPσ+εnγ«7rb½Ζϊ.α‡τΣsΎΙ*Ρή€jPWˆŒhz¦I nia”δY»›<“b·ί?—KΞmfŠ\긎wι:>ήwŒ_%Kk²«σ˜Ά £‰NΞsN²Βˆ\"Kx?Y―_ΈJύΖΖς’ζητξώ\#0ƒejsϊ‚ηπ­7π7τssWπώΥ·`§€‰ΈςSϊ₯•’2WκΛ@§/.N`|ΰztd}ύΫκίv*ΕπΧο‘Iν'X΅τ¦*d¨ΠΤΌΆαΗhι)ΕΎΈ„ΪπxžνϋHΛr@Κk ƒήτ>Λ‰7τ6ΉΌζσ Βsΐ<Ο°Sε΅Κ&:EMcIΈ=?‚q€ ίO Γ‰+³žCΠp†–χ"+± %tl•ↆŸh”ώ”Π@ΎΡziǐŠRŒΨϊ0:7†™%RΌ &%`²l•oIs0O[Ÿ Ά;ξ™p‰Δά—Θ"΄\ ΅ζΒ΄‘ΡΟ’2Vž ‘£‚žYΓ„ν!:gEεY²4JJQ²^r³¨ϊ< SύX J@Fό~iΪabΌΝ‘ˆνΰXςι¬ΥλΉζςι>³ϊE<½¨­yˆθβpδ G «$αt+₯ΣqΌ’³ βΉ―aΉ¦­“ˆ.,Łκ³ΘŒUβΧΉ.-©ŠRα9'ρβω½h§γ Χφμ! Lw?Đ _&»ŽPt0W>žοΞ; uχΡΡMϋμ#“š•}G#šΦΦ)8γμΉ“dΗ[rC>$εζ)ρζξ‡Ÿ α»_ω·μ;‹³GFpύn›œ’ν2TOχ ΕoΚOŠΣη»(<ͺ­Cwg/–Ιβh¬ΕJΈδ!£(ΡsM˜i•wG›Ρ~l, λ"nN'Θ-ρ€yi^[ΜŽŒ€˜\iΔ\°…V’!’β3E’œhR,k»–nAL¨fsmnj" =Vω"0ΒBOΘΖ?0ςfEi )p¦”bˆδυψό$mόXΐZP’θxΐΈLUI€ZΪ>ζX =Šh³Κˆ­Γ΄ψ6·²Œ°°€Η•"Qi;ΚΣ<ψΩφ·ή,>WtR—»2¬VΉ›ςσί$Λμ΄Θϋψ)ϊ»19>JΊ€qΘ*8ˆŠC†Πrμψ`—>s^τcύΝ­9šO£3ZϋΝ|/¬βa-Gυ‰‹Θ•VυΙ¨‘:ΒR'ˆ’3Κ •-Œκ9ŸίΫπRδ©§Eέ£ΙΑ„죉NΙ­`5,ŽΎX$g‰MΖΎμb Tϊό^]Awχθγ]fy&W|½‹yΝή?°φ+<ŸΨLλ~w¬Χ<Ž#ΐΨ p Ξ»‘•ύ_Ηi;)οiζT½ηΐ†Ξώ:γΩΘΈG§‹γ™·KΚ$€€b˜”ͺlZEρ$*+R+± ¬ ˜θ:ξ‘.Ky¨Ώ%+C{‘Έ£Γ†GΕ‘Ήδ^<Ό.¨GϋΧ1cΓΐ¦?iy˞οο»·•τ^Κ %›·WεΛτd+š&½%Ί]sΉδάRζΚ%[ΗΤ’‡.YV8Έ4κ3O£T P_FΏΝu[σmnœKŸžlΔƒ+λjμn½ž,ό+`€ΪšηšYn³q+οΜνzi#¦ή*ΦηΣψχ‘ο•π·ΌφšžΟγroϋ#.―•§ŠΟ3(HxwεςΪ;Όό―ΰLwŒ5#W±dž‹ŠϊΉπm³έGΝ¨r ™Kd ή†Η“2ΑE#ΩRB?Œ’ε„ϋ½Ÿ8Y₯ΓVΌΗ%4ρŠr³L*,¦ϋ<έ³Π)+8ӎjƒΜ„dQ‰‰Τ˜h'ΰqϊΉg\˜iΔ£AύΏξ©7)„,₯:―G"·ϊ’ψs’8Պǟϋτ±£ ͺοg7RρΪ™J1,ϋθ9Ε:Π(AŽd_ώψΙ5ΔΎvNzή"²PφœπsKθΐά~~ΕΣ‰e/nFΡ=Ρ‰L«€œQ€κΌηόK½Έίι*'4IBhχ’Ω―“…ΆiΕοte ηƒ|δ[ύό'Γ­*ΑEΓJςΪκI^“ŠrG-<Υ(ŽGο•―g9/εiΡδ‘hm£·χˆΛ]φΦc”»έΖ‰n"rΏgu٘οjΒ#γνbboϊ1JϋΈ6g« Ε¬ ΄±‡~›γXε7Ύ½·‘(I*¦3/$·0σO&ma–/¬γHε΅©γςy,LπPŸdΫΞ Ξ\ϋy|ήe–gJ=΅WƒςZΘΒΪ?π|ϊί¬Έh›ϋ9έWpήένΟkΏΨ#mϋΛΪ ΒΟέ αΦΥK~±>ζN{kBzk·†0§ΚΰHpΉδφ$˜%—2Žf#λx.znw’οN·νοV!fαι‘ψΐζοQ`΄ηΒ\ψs톧Yςl»ΛψwΞC€Yxz(žsv\^»΅5«|ΩHΎmχx7 6!ΰ™όε_nfΉ·?ΊΌnq™ΩٚψH$ΗZLΫθI³se™Ξμύλ*h2ϋδ-98Vd¦㽟½KφFΝsα‘VXΒ"±WP@|†jφω2ζ§12g”Šq OGbX4φ―‚[YΆQ; ω₯$Šή'e@\lΈhYnyvmν]λb-,G\X(₯YΕβμ:6HΏna^DFZσ‘ž'Yΐ[[Ĝ}‚Ž£ξσ’„˜”ŽοΞOMBˆ0ηNŠεΛKӘoΓ¨ ηβΑmUϋy`ΗΤΰππ,X#bΕχoMxFF08ηͺvnΙνCΟOr0$ ΙaQtb|΅΄΄²JVG§ϊ7PΜ³ 1*α!abΎ΅Υ9LΣ¦I—=ζ΅άΦ—ΔεξΦΆΕšƒxK φμ ϋ”Υ…IŒ΄ ΚΟ›δ’IVgK²zui“ύ1κtό€ytύ'—όόή2ΚίΗ‘¬mγ'ΉΛΚ^δγrΠΌFΘ>ρ5œ=”/8ώψΈtΓ‹γΕYΨ`rP¨R@wεKSiσ°φ<ŸE‡ŸG άΗ؝DGJ'ψΨggw'Tλρρ ¬ψΈα~Χ‚'W<_ŽθkjjΪVPœψΞΒ e4>Q‡Ÿν?’c[qΏϋ˜΅|NBzn¦ΊρTAa¨­΅Wί@=oD~εpό€—Kζ€,(;h•˜ε[Ο$,YqnJΞΫ-ώφώΨ vh)ό=Ϊ‘ »Λ«ΕŸksή?˜ƒ#/…#ΐπŒ—Χž±ρ&f»Ο]7QzβίzϊϋΊ0Μ=Γsrrtγ7 μκκ“DZ œ’ΊΩOvŠέτ›YŒL­o!xΣYΨσ‹€μ“υNβ2?ߏήυLnFΎ9ΪMŠV^2ΤϊΠaΨ‹|Ύ&jC«j’ΨΧvHώρ.΄ΡΟ·Uνη ¬iηη{ΠιΗχoϋΠσ“\ΕύΌw΄dfΣTK½gΗ9ΈάυΘ됰 uΑζΟώΔN²ϊqΧ:™ε?Ήδηχ–QΎψ>Ždm?Ι]Vφ —ƒf5ΒΛΚΝ m=O7YΉY`›aό ?ΚAΕ€ο2Κ3‘^Ύ8ΦώηΣGύx(G€#°›ΰœwSk;Χu΄Ών{Η±:3ˆέ«βοŒI ίΩΌ‡7ι'8KZb’Ι  ωWμθƒωG€#ΐπ+\.™·`©Yp‚’³’\ ((χΫ9^¬σˆ€h½φ/h `ώ8kž° τlή‰OžΙςŽG€#ΰ.—?°{ǟ[έ?°·*ΟΙΰpv‘{₯~kiyyχTZSSΑzσܜΠήIήψ8i>|t”婝„― G€#ΐΰp8ή"0έ?…Ο?)R‘UŽPΚΩξρJ=ψ•#ΐΰpΌC`»Λψχ žš#ΐΰ.‚ΌΣΊδίv‰_Ϋ³O[-ΥΏ<3!ϊ-ŒϊΑ6›MΜΏ7*A-Sπ<σƒΏόkSΝpάώθ²Χ›ΜμlΧ -Ή/½πίγHA"0Υ„+?ϋόyκϋ–T˜εI'­K§Η~ΣO$‘ #(WΔξΓΒΘόŒηG€#ΐΨ,vΊ|έ,άxΉŽΐΞA@¦•£2ε”OQΫPϊGξb0ασ];ώτwΠϋ»ΞσPρšp8?")R³ΟΞϊ‘jΰZ^^ΑΔΔdΰ0΄M9Ιί—#rήΤΤ΄MkΐΩζp8ŽG€#ΐΰp8ŽG€#ΐΰp8ΦΣίΧ…bvH2Œœ““£ΏQ`WW—˜$Zΰ”tΧZpή›ˆ½«s°M£·£{C‘πβ7mΐ\όh‘YPfV,9+Κ‚σdέ،׳h½­š3Οΰ Ι§SΕM%;UΎrω0g„#°ˆγΟΥqL†=Eύ›Έσ‡«XλΓrv؎–Βx;ΖΧ\^μ+ΒγpέnΑyee ‹ήJΟ·ΰψmΔ9δp8ŽG€#ΐΰp8ŽG€#ΐΰpŒ!•]©›p³,8οΡ₯Ά ϋᅬώϋ» ’ΌŠΛΝ‚Ehb˜›Εζέ―ΤΩ*~Λΰp|F@k1_‘5;Iώ*uς(^G€#°£PdΕN’*ί…IQVpW;ϊ!γ•γp8MA`mmmSΚε…r8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽGΐ»Φ‚³pxŽΐNE@΄ΰφ9•-Z–sUzΨmρά’έN}y½8[€«|ΩiςΥ΅~[8η€#ΐTvšό Τρ³«rs >œ/ŽG€#°]Ψνœ—––°΄΄Ό]š+`ωδœΆi8cŽG€#ΐΰp8ŽG€#ΐΰp8Ž€—ψΫ‚σ3?ψΛΏ&5Gσάν.―[XfvφΊρ<’#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰl5Ρ‘‘" φΩΩ­feKθΫν3˜››ίΪ;‰hώΎ±:MMM;©ZΌ.ŽG€#ΐΰp8ŽG€#ΐΰp8Žΐ.DΐzϊϋΊ΅žz*†ηδδθΖoΨΥΥ%&‰΄8% rΊγ7ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°λX[[Ϋυp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG`λΰ Ξ[‡=§Μΰp8ŽG€#ΐΰp8ŽG€#ΐΰpΰΝΒ™βp8ŽG€#ΐΰp8ŽG€#ΐΰp8»=»¦¦Ό’ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#`ΰl¦MMmΕ^ƒΖμCSKVωϊΏΗ+Ης1;Pƒίό?o ΗX6―Sm\ΗŒΩmλ–—‡ŒX+"ƒƒ±ϊω혜hΔΰΌ^6 R’°=Α~&ψ|c£΅θ΄λ₯Χ„…[‘Ÿ†ΨΠp„ˆω–09ωm“λσ§)asΌρΗρ•o½ˆ€P`ͺγ~ρφυΝ‘³U₯jκ7CυϋΩN«ίVαΊ-ιf‘8# ‘{Ao.†π¨Ώukβ=UΎ­›ί@N„­Ήndšjuq==σ’vήΡσMžy'w₯J€&W 5:Vl;¬ΆΟtαɈΉ}—pω–T#—Έάυ Κ•;ν,ΎρΝ3ˆ₯J6^Αo.ίή„κω&—ΌbΘΉΔώΎ3ΤΟ><ŒΚ3UΖq½qΉQzΘlm.·@₯ξL;…―}ε }Γ­ΒΦtΏ}Ώ6Pke_$F‡‰ε,­ aZχ;ΥW2 ςS$Ισι#ϊ‹~i<”#ΐπΰμ;†ΌŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°£ΰ Ξ[ܜq§qρψΔd£­ωηΈΡn0υΖΙBΓ’ΔD‘a{°Y‹1/γ;U0cΓύΪ‚Ϋ#ξΙbͺq4Š­ξ‘xMήΒG=ŠjΆΗ½Ž’ΤtDθ€FΙ—0<ψ>­»ŠA—ψܜσ(MΝ%εf=:_ΔθΘ}ά©}.ωόvk‰ER¦‰DpΟ0i9ϋΣΕΔ©gσHm·Pί2j>υ­¬Ÿω΅α%2"P\πŽ–#Ζ%σ…mψψΑ/πh%ΒΗ[z™ιǐ›Œψθd$D§#F}Ηpλφί£N—G x •Ωωn²ιDαIκ¬Έθ—ΖC9³ }ΐάq8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG@BΰσΟ?ΗΪΪηŽ-D 5ΞjXΉY`seeΩdn存\²R\B€²Κ«„θ]W°ΰ`EMΉο5|ηΨ—<(7 Ι"’¦Gx2<)7Λ©RRŸΕωκ3Ž<’―KŸυ ά,%MJΒΛ'/"Υ%§ίn¨ύebΚΥ_΄³>‹3g.ΰΔ™—P”™Ό9d·°~›S!^ͺ·¬ψ |AGΉY,'"Ο—šϋώ1Ρ ―Ζ‰ƒ_DUn%r΅ΚΝΔε’ ΣΊΚΝVœ¬ώNθ(7‹u ΅’Όμ›8“‘³Ή‚‰žoςΜkΉK•Θ/ψ*^?xZWΉY¨cL|)^8όuδ‹ήF[(—Έά5χ91ΟM|.˜δTμrΙ—χέϋϊ±σ)ΐβ­<σu\ξ-=¦¦σw¦M|ή7ͺŠ©ο­'b[X?O,m‹p―p V7†ΠI<;Υ=|Α‘άL•œ››Ζ¬‰•υ^~JΔy>ύοV\LlR^G€#ΰΝ2Ύΰζp8ŽG€#ΐΰp8ŽG€#ΐΰp8@F€+7o}λ NΆ ΎΫŽΰ5w^VW—ŸΩJ”ν>κUKΕJ`ΰ_γ"-2“³θμi„mp[Ϊ^D›«b υ<Ξ—”«œ›jCsίcτΪgk|!*³1aΧX=έ ΑΪΛδD+mC±O`f~ΑaIΘΝ¨"EiΙjXLς~TΗέ@­B3!ρ2₯Ρ±fτυ`Θ>ŠED!3΅UΉRll%Κs`°K±­²·³=+ŽtΥαέΩuζ΅σ+ϋχ§2eš³hmϋχ[ž"ΉθEΌ_(…Η’0έ‚Α~›ΟΌ±‹‰MD’J]ΰC‘o䝟‚gΕϋ_De²#]wη5ΤvήΒrΔ!TŸE‘E²x| η0υ½‡1΅|R f _δ‹άM>ƒ…%*Χ“dνΎ¦νFHω)-γ$Ε•JV«# Q°/m&žB έ‰.wΝmΥm€'«\bŠY.ωπΎ³Τ™OyζΣΈœKΫνͺ<Ϋΰ½έUνΑZY[žά½…Pϊœιhe-% σΣ8φHгujϋά$¦MβšE~ €y>Aηϋ“š“Γΰl€@@)8‡‡Σ±-α  ΒΪηΛXZ™ΓΜ\&u,4lP― £σŸ£I‘ς,̏4ΰ£_›ppšΘCx¨Eέy€ΟΤ2μ‹λοΡρ— ’#Ή' {ž‘i[ΒrfƒσλΣψ‹‹ΚE<!šφ¦|s‹CθŸΡ›zΡ― eCΐBG;C“qSš‡ΪqΆγ\ΉQΛV(C.υy]£ηrΩσσ’¦σHcγηΪcVίι%!=–d Ymžν₯ε tOυλPr ς.Ÿο|ΊηχΫ:ŠΠ²X^Αl ±—P޳g €η/œDΥ{ο.>ψ€ΞΌ²7³$ϊMVΆΌιo7–-.μdf=§–΅œWΚπ†O%Ώξ@τδ™ζ}·Σϋ~Ν—χ}3εR@4‡wγ sYŽDt¨d΅neΝ†yΝPΣA'qD…Fco)}ˆί‹˜šiΕΘ’#•Φ§Κm FrIΚf„Ox°ˆ…5;“£"ŒͺΧ°hCk»Υ =ωβΗy$΅™rI#?·ΟxΙ{9α[ζV9a0λx53<£9c§Μ)j—²ΆΖ5·Όy'πGϊι» Ό–I1‘Bμ,κ۝ίτσZh’•Εή΄=Ίc3yψbΡ³’RUiΈοήjΈ©©\;ΪϊkρΗG₯A1^ƒ7/Χh)^!ύ(BΟ}Ή"žιY;άΪΊϊο’Ώϋ3<™tώζξ₯΅…εΰ ΗR₯zi,F;JΨ:_|’¨bi›Ψ¬Υ`zΥa3zmΕί`T?Aϋœκηά2[9§l2ΡΗPž+o" ’Ÿ4Ύ…εMcύx–œ#D’‘ˆM ŸO‚τ¦§ZIyw 3ύ€hέŠθ‚―γεBI{tvΜI9Yd9όJs³D―πΧΩϊ+ΌχTVξ™―ΓuΑˆ=ϋ%€‘±ΩȊΖ”δ5=‘fyΖ&wΛR #Π%7=r ?―½&έχOίFDt NΘςSΨξ.w·] ϊԏ鴷ιŠ>Θ%―ΓΉΔόΎ³ΤΟ>6yζq9#=―/€2θΌfsηΣ{λ33|όι‘N{–ƒpυ­NΕν€›ΤœΧπa+¬±Θί™Bύ¦μΓζT“E~ ”y>ύοV\ΜiM^ G€#`Γύ‹²˜“„Σξάβδ"dG nύΧΡ0iξ$\H¨4νN[‚ά¬BΈ²ΐx{_ΜtμNΦ/Ǝ–ί’yΖ=Φ[\’㫐›†ΤH=Α6݌¦ž;q'…ΈΨ ”$#9,ά-vl;ž |Š^ n63 :e₯‘ΕτιΎ΄υmς‚”Ÿθ…„„"šŽM„°Ζ¦q«Β–΅Mt‰±ΕH CL˜πK&₯x…˜ ΪίEϋΌrοΈϊϊ\;J2ζσ•^z μO)Πur•)½¨ούέ:uz›ΟW>˜γ7[ƒ@tΚBQω~z%Χώǟΰf}ŸχόXα΅―œ“μtL4ΰ½_lήF―™ ‰@¬Υ*ς>eρ:ϋΊ"£gMΛ'-gη'Ή+°ζKΏΙR5!ΧύmxžΝ«R6’Ϋ7ψ>ΙXδ<Ÿ*Eξ ό!ΟΜxί°6S.)4ΆθκνxΒ\6­¨Μ»€lexΏΤŽOZ?…c=4%Ο!Ϋ’Œ0]ΒΗ1a{DV’ξkςPBε’;©ψtΟΑCόŒ@Β©ͺ@VQ:FrβΰΤšό5χ©$©yωx ?^b”j#›εa•ηc²ζ3 ^#yφφΖBvO6ΰΨm]}θ$2δEιΑ»ψ£γ30°ΧržBΖ6δ€)›»ςŸ6­ΖŸ™w…rΎΙaWεfMB―—±¬Ρjvš‘¬ΕGŽA΄–€θ·/ΝΉ…i,₯/βΒ©Rμ%EΰΥΰ=žοΔ?ύ-LZΦΦ’ύ+KΑ¨<χ]T)'KΦς ΧΜk―β·—?uKŸRz Jφ#==IqVΠ§žδfΖΡ?ԍG7ρΡ­FMΎ$œψκΧPJ˜­ ,©TK?όu|£Θ±ˆLSCύw~‡ξυ¨i΄žΚ ίBΕώRd₯9Φ3f'z1ΤΩ†Ηw>DC‡ϋšΠΚ*²ΎŠSΟU!/Σ*gGΟƒ›Έώσw‘OIKu#Ξ|σ΄V΅kΑ+θόψψ΄Ρ•,ΌπΝ?E:₯ ’4έ·~ρΚΞ!ŽžΥ₯E„Ys‘.β?އο_BwhN9,Νbχίy—p•ψΪφΟqψ`9rœ0ιBλέψύ΅ΫnΜ{ί~BρχΟ!!<³νŸ’v,§Nx‡§ΏžλbZ_K’k=Mο»’ά,*¨:CΚ ‚‘yζ9‘ŸθΝ·£ΆΕa5>7Z±ύNŠ,ΣϐŸU‚4…W²ΒSQnVΒζ‡1Iλ†)Κ;©„+W/ι‰Ωε›ά%ƒVQΚ;:‹{ ηκuna}ω©& p—»Ύ6«άΥΎW…8υϊ (),pτ}Δ–Ψ§τχ ½α6j(ΦAMθΗφΒ—ΟŸAiΎ°ΫLpv ΅=D‚ύiϋ@IDATm͘¨Η&…ι{+?}’Kϊ,x e—Kμο;KύΨωΨδ™GΘĈυΖε›Ao}nΆ&–ΛA_q/₯±Ω‹H–U—πρ?RL›v_Ήxα€έ΄4V7ίΩ’ρ§X[F9Xxφ[¨Ξ³`Uσν…ΰ`ΨΫ?ΖελϊΚΞΫrΌKVν_(•OZθDίB22b…1λ&¦|bΪ€E~ς|žΏXρ0εŽ#ΐπͺ:£ΘΉSIL8“©ξjH8Β¨S3ί9, hϋO3ιD‡zšyΠRYΝΙΉ9οqΙB~Z’έJrXbJpL±δσ…OC@πD›‡@B1UDaI>}:»  lπ;§vά•8 Ύ[]›vJ€ƒ’7Ύ ucϞΰ o2nœ–,ƒ*]šrέ8“s Ι]€½ίtζΨψKoXΉYΰdUθGΗ(ηYψTHςλ#ΰOyfΒϋξ@kε’ƒˆί},γ 3™,Κ:ζPn¦‚HρbAK $I•›₯„ρ–2ZΑ‡=ˁ>Ι%-}ΩΏ!Ÿ:yxHΚ*D))7{tV””.αΚ'=&sΰγ%ΗΈΙ›ξύ6^b”ροm<«œΨ8λx5Ÿ·5ηιΝF`Cyf6Αm^Wpΰ€cΛU‹—ύ¨{z3€™υΜZLlœΊyjrΞ†%:έ13"+Kγ΄{²Βš‡ύ…r‘Cxά(Τέ‚ΤΈμ‘)ŽυσzζΙ…H’μ‘P’E,8 œΧΙ‡Bδ&9,°κ₯ŒIΙAa~‘#jbVQΗt„™θ³Vύ ^q-” KΟ|)) ψε?Ώ«Qύ.Δι―|%zΛdŒ&=_ψBzςΟπ³wεθd€‘ς΄^­-iωκ|˜ΒΒjΛ‡ŠΧq?Ž/λu”f*&Q‘ρ™Θ£Ÿ5|šœίsDΘ>kΥWπέ*ΧΰhRz~ ߍΐύϋ_jκηšΞΘύ(&fχΰΤA©Νrb_Ηpγ?BQ‹J¨ΈψUœγ1ӈϊR²Ϋw™EElykι$ όΒχ «7ΘVT½φeŒt6’––$Wˆσ?ψŽ) ‘J8©οΖη ’ΚΘLOΖ/κkϋQΉϋ2·ΏHj«ά|”:HΙΎρτΟs…LυύšE{ŸCΦUΊ otE$Msh@»rΛp5“^,ͺ…zδΞWTΈΓπDηH«G•oLoc@<Ι3VΉ»€εE6‘,»Κυ,d«ν+ΜYi·§γrw‹δςΈPŸςΏόςtϊ2΅O Φ(8ϋ֏Yh“ΝŸσ%y kώ Ό’―0εωκό4S.yζI‰a—K¬ο;[ύΨωd•g B:ΧuΗε›@O‡…@βrΠW9ΈŒΔ"δˆ* E(=ό!zξΡψΕU­FIΎ$hΖfκiL—ΊγOϊϊςA&εT"―ΘύΐΆΪF΅ΥSpfω^‘’ΆrΌKVζ_+? :|ƒ\>n~ŒόcςΪβ&ΧΩ<+f1τΗ&?…΅qΆρ5Ο§nͺ€φρύ»ΓP#σDŽ€ [«ΰ]…Γεζ…ω^tOv`ta!!1tTr& ,˜^؎&(H°νU:ηy Žwΐώ9@σ¬Ξn͎WER\"T(ΫL'Ffhwχ‚ Λ€—[€’8y/xxφΕ·αΎr,]Th”›§ΙΚsσh l€-(4”₯δIέφf!=ΑJυΨβΆXuι—“2ύEoθ hι±Ι#g‡έ ηGΖ¬»π°XΝ„³ŠUžWς.Ν@Η¨ΈHšωΉfdœ•^&}T:”›ηΡ;RΦ‘~X’’*Yž‚§η:φ!&§“g¬ωXωd„…g3  œ~ιuδŚV P}%ΚbD'žήzlbα&5;‚ΗυΨK{‡ζϊzL(Πδ"ό%wYϋMΦκ2φ·“s=hŸC!\έΪΪ b’+ -Ρzν–cφb™6Y‡₯T’4WšWjΉ‡ώIšΓ’ Φ―b΄wΔ₯J…xυ»ίC©jΊ––ύΙJt{οφ„'"%§…ΉV²­ΩΐνR‚p+Τ―±eΉε¨,Κ”RδΖ‘ƒΚ|κd2ΤπΞO‘˜ψοp’ˆfθγαάw^FλOee냆s§…υqάϊΝί‘a‚ #{΅|;šoήΔ2)Ο₯2dΧzλ2μ‰U¨•˜3‘•_H Ξ’κτ©ο;+7w‘Eκφž1D¦αX•€‚œXφ.^μΗΟ.Υ*EͺWγνGYV7ΏRΧxϊγΉNΘCš’°Hσcέ²8Θ/ϊŽ©›|ˆςs–ΈάΓΐ½+.…•"Ώ@ΩE1Žf: /nΑψΣ798ΨvK‚g9οCy™4^Ω`μ/€±=Ζ»tΛ‘WδΣ–fρψΑρ(ψ<Ž(­9kƒλΧ‘εΥ•I~žΟ ζ)»|+.N₯ρŽG`³ΨBgΪ₯žR¦‡<1IG0υ?ΤwƒτQί4(|όnG—„˜0E©`’&7kΡo¨ŒΈ|>‹A[#ΖΖ›Π?οΌP3F Ο+ΟΌŠR‹ΔΟ3Ο8>δ²c³T‹³Σ ΈήC»½dΧ?ϊ)ΒBP&ηSΒ·ς:§±LΉΆ:·ι¬ψ›žX!AλΠn~‘#KXZŽΒθGxYO‘mKSt ’žc}υΚ2ΖH/΄y‰ŽYςξλ¨—•ϊνS£(%gšs&Gβχπς;ڏΚc{ίE&ψίV# —Μ’χρ}τΜ[q’Z±δ=sωJTkϊ#‘Γϋ"67‡½ χn΄m. ·c)Όjφ)εmsK‘ψMξ2φ› Ÿή^™ϋ[:ΊΆ‰~ϊ.Ηγ4βhn­£wœd7‹œgζSŸAκoAžEΣϋNυž₯χέ°ΫΉd˜;ο2'Ό'₯—#.ώͺ…q°ΊωΪ›]t1 °ψ?~’S„πfΓήβ H•σ;©dψ —΄Δ σ©ΝΔύ[‚ΐάτΪ›ˆφ;£ίι#‘ ݏπό·Ώ†\q³˜ρIId4mγχŸ—τš2ΗK¬rB―z a¬rΒp>Φρ k> xsΠΚ3sKή™₯­X`ά™5μZeζΑ~±ί%>i“k]SC`3Όw ΡΒ­Ύ‹±βDU!βύυ86g'ZU₯θ˜ψrTι—XŽ/œ¦Iˆλ?ΓEεƒίΓ©€L―.cO„E-Oΰdtπ&ή\§Ο”Khfήλx>+] θ4¨νΠ‚UσšνkΊŒ KΝ’»ŠαιrΊTΌ-ƒruΪΆ·ήό >ΊηœG8ΊΊ"vQ/»ΦwxγWŠΗ»˜ψζŽ JΞdA3+‡ψυ˜ΧXΔ(>ϊΡ%X£d4±μOπ•s­ψΝ΅|νΥsκzJλ΅7ρ‘ lBω³m·π›K„Ύ€ύ"Yω켁7ί‘°΄Edύ©fIN‘Τ­@ι—qdΏ²}έ“+ΈΫόe²zAΜ“sϊφ“‚s“XΆφ³jώLΑsžλΜx«Ίya’Φ/ΕؘτσxNΆ\8=| spB~ƒ‚B4΅ςήk&½˜ψD‡9ϊΎs“E  SΦ>‰ou>ΗΑw~Ιd8nΧυmLoέμXOžω"wΡiPωԎ΄$"Ύ―Ύ”‰±9D%f©m;g«ΗΥ;W}΄`½~ύόΛεξΦΙέΈ8e`D›N~όάδ²₯θ8rΓǜΦ~,λt•l=žŠ›xˆύΫͺύα§΄)ε/IVK+ρNδΦΏYG~š)—ΦgBˆυM.±ΌοlυcηΣy¦‡ίFγr³ιιρHa\ϊ&;ξψœœMΔ2Ϊΐ…t-l9X![x¦°^:A€…κ˜ΪγO_ε`ΗΝ_;ΦΝγΟ#™œ•Q°£ΆZίφοV“rσ~Ή#θn»‚€ –™ηΨΨ;:7iʘ‡M~/ŒγkžΟάονΞύŽ€q4KήΖ3™‘21q?2% CLO»*7k)Ȋ‡Ϊ νΰ‘#φδϊaήnΈ£bΖeΎ }ž™[]Π‰€]Ž€ΐ,9²2­³K|aE/Ÿ£¨Θμc8Z™‡ZτX FπB?ξΌ±Ηΐ9ΚbιψΌ/"+6D΄Ϊ'L¨J.ΉδΞe/)·dmŽ&‘_G]«λΎ§ ”9Žό}…°ΠDŠτ’£ιjλoB[ΓΙˆ6½oτ,ΩεΨ—³IΙVΔΕ$"œθˆŽŽYΐ`[κwɁζ]˜ΪayOG»β­‘1*C3σ6Υοδa|Κπ憑^z\Ž:‰0KςEQn ‘«2«HΉY˜Q”-$<γ`ˆ5ωtPή>Ύό#P@GZ“Σ4σSCθAΗγ;θrUhρζύpΘΗ±—Ž’l Ζ|_šmρ¨¨ ώš(ƒD–[ξγήΥ›p|*ζγψ+GM2hu ŸQœ^Οa)~GεΕ‚©Ξ[¨©ο’2—°0;„α6<'₯q²'QώͺL‹εryεΒη§ΰϊ “‡’ΧZη"4ˆdPηάo“Β=ύGΐΙ*hΑ„pͺΓΝ‡θμΚσ(.,DšSτ£§±·ο;i‹N―Ό€’Œ8YΎ'‹|s}χ‡ux±ΒιγG—ξΐΌ· MυέH,)FTH¦©Œ»:e¬¬")ο4*mΤ~ΎΙ]₯ž^ΛA¦~S‘ζνΥχώVbAF’ε‘ά¬­ MNJg”Γk9Ώ9|κρa\žmΤ δ™NΆΥ• δW½„ύ₯…Hˆ•θζH!²ρ6Ι/YΊδc‘KΎ³¨?zξr³³<Ob62ˆώ§ hnΧL{+_˜Η.1έ’φΚ΄)λςF–γ,Z…²azήΡsn\φͺ“‘9κΎ Ή ε’RŠi|*Φu§Ι—Ωφ›ΈΩξ γ6Φρ k>mύΆ‰wΙ³m(~d“[pφ#Ψ†IUΰp±cCvkg ~Χ©¬†K£δP©€”•œƒΜ}d5ΉCJR{ω—Ni΅7υΧλρ,)8 -΅g/¦γb‚ε‰ Š  Iθ$Rƒ²PVyX½kΏqΙMΉYˆl½ώ/‚Ϊ―Χ†Ί8ΕέͺoD)8 ³•–Δ§8φ›ΫψΕ»™ψwί”šK.| ί- A–lQΧFJδoΎ@·ψωZ€YJVZlJV[NN0 ” ;VYͺ>Ρ=7―Έab{π[Τ(ΕyQ‰»ΉG³ΠtGR χ΅ύ„±; žή=Χ$TΌc%GDΗγί^Š£υ k¬cΓΈMψ 9„/”-Ψӏλχ!ϋΩΏRΛYYYVύ,3ι%h6OLΌ“€suν°‘ά₯δYjκ!`ά±Ή"1γEœΨ§Θ3J27ŠΡIΧ2χΣs€uυ­/Ο|”»“΄)vtيκR"„‡_ΨΏ ˆ”‘›xƒ6Y˜ββ“ Όύž·Fh©kC=°iΗ΄±ήϋΉάυ3½lrw•6,©NΊj­·άF½ζήΥλM?–¦ΩΨΤZw]UnΛ$Y}Ώβ ^(SžwWJ½7ςΣLΉ€Ο6ΤGΉΔπΎ³Υή]&ωι£<ΣB%ϊ7—›Mύχ.έ1CΆΙψsβS<}tY’ ΙG>έλ―9v•’q-ε ¨΅±ΞMΗ_γO3δ ΪPaƌώmρ.P\ςmυ”‘ΙώΈΤ"΅_’fcο”}@­Ύ/6ωIš2ŒγkžΟάο_ڞηεμf³O~EΑŠl‹’6ŽΞΑGD=qαΡ&eΓΥU;&υΤΣόΚ€OΔΒΓ’UλΣ‹3X‘£žCΒ6¨Ϋfα’ŽΤh½ͺeR\˜§z σ+Δ›+ζI°F9ς-ι(;GΔ§!›ŽψQέΤΌj•[ σΙ‡€…Ί;·’Ι /Ωβpr«έ5Nχ %Α³_EΆc.LTnYχγ0ύο>‘σωB/Ο]D’Τ¬ε„&ͺ’…_ζ~$Ε]ΒŸκ+ϋh³xγχ½’₯Z·cvqH—<Ϋs­[”‘@6zIHVŸΫy:Q/’+Θ8&o¬žyΙE„ΛB}YσΡΔτΎΛ l— ½K§/|yVεσΙΑxx¬™τK AΗεێ―ί?ΚjMFMފοvzς₯ΙΎHX‹Nγε¨0Όυ»«ͺ"sXr.Δw/ƒo’QηΞΜ+AZΊ0iL€ΰ,Ήά}χ“ύ…φJ0»μκ†Y[Λc4“Β΄δBΔγΠ„zΝ/χn¬ΰL\2HΆ OͺmAYΙΐαW^FYŽ0 μμΒcΣQt<)IρΈϊΎ»‚·%­™9ξmg_£Εεd‘τΘμΣ8ρ΄ΊY@’‰„Μ œ’Ÿβ„2τœJΎˆ—K”TΚU―ύ|‘»JΉ‚3ϋ#Oύ¦ƒžw>ίϋ[7zΡUΘSOX!λΝYη–V 0"η7O}fΆ6”Λ3Cψ{–gξΩJΞβ”kpD"ςͺ/"!Α‚«—͐K>Œ³¨ΝΟ}υUdκŒΡΤ>,˜Žuσ ΰμ|aOΈBθυ}HŽgTʊC¨§γ±ΣχΙ-³2aΨoΤEe VXUψ‘³@€ΔͺW£rΙL>UββΩ±ςe}|CC“ΡK” <Λ>^’ή&γ%9±ώ£δˆe•¬ω”5>Φρ k> ι@πξRyΠ\Α9ZCβ₯¬β˜ΓšηΔ]|Φ%)8§F8BmÏΡ`οqVό븁¦¬—ρ₯²*in=4Y4—ΣΩOŠ€HGl€vncwk;#BΉ~Zθ_ϋ^Θ’ΦφξuΜI „i 7‚¦ι±ŒΔΖ"…Ύζh-""υ^+™Α;͊mbG.­O° ϋR…ΜŸ1Ոχn]Β 6‘Ζ?|λ ό·ΞOI—o‹aDxaÚxΣ½}θ–•—e?@oη E…‰„…'QΤ¨mΩwU‡+™‘F§ΤΡ̍ι„O€=V—y!5 £'ŒNŒT²Ά‘υ³ʍρλ„ γJ‰“s„δfεbγ%zNωΰΧΈ’•ŠΧEλΧVdeΚIgβΪ?Ώλ9Ÿ2<¦ζVΰΘ0ƒθ&†1=B>AW_vαͺ• λτ—ρoς/bšQN΄ΗρμGDRΑηSϋ1βiόΉΆβ…“Φay^Γ·gο,κο_Fd€2:†αΡ½xξΔ+ςΌλjΎEIΉ,^Α₯C“ΎΘΔ,Δ›H/N£Θb³ιVujnšΒ-b\Zφ+ψςž΄OL"*•κf ’O”"bΑW³"ΪBΠΣ¦WόΛ3δnςi|΅ϊŒ¨t,£“DϋȚuPD*’δv£4K&piΉ«πλρšvζϋŠξ:’Η<χπ“Ώύo²5{©ŒEpΉk '#©˜δ²’“€?ψ?‘tΏνO;0<Π…žG_g„όϊi²ΔyN)Νϊ[%Ε5mžήΞ>`gγςΣ\Ή€εΣ“ŸY.1½ομυcγΣy¦ΨΖγrsιι°ΰΔε 3NwΫgόΩΨЌc$C„^²€΄Rp–ΎtŽ#ο ’³Σ‚fβ³ZUΏŒ?Ν‘ƒ*Ο^x{Ό €f]Δ”Νi΄ωυ£7εΪfβΖ^αΦF§ͺϋ2^Uc•Ÿ<Ÿώχ+.J{π+G€#ΰ/\§IόC7*IςΜμμΒΟβ Yκ#‰ι™§hΌ…~cΫmύΓ·T"CcUEίKΎH?ΕΝΞ‘₯ΣΡ:΄ ; ΅n“pΙN­@†ͺ 0„ΡieBe³ΛΒτˆ0ٍμ€g1:σ™<©lΕώ,E”’gα)M>ΈΉΥ5— 5½Σ΄\xsK wξb%2„”±W±7‘„,‰J“γ]12½€  yΔΌŠΙaν6φX~α εf:6ΓFΚ‚ΐ\YQ3χθ‹˜~‚Ίn/_θ9κ5?AjΓƒ˜ž΄ΡŽρ0R,F^¦4!—vπθΖ=G7;Jάΐηk;h-ƒ,Ž{xλ X_/š‰^D•9ή₯!ŒΨ% ©Ι/ TUtPUkgΝGE1ρι`aψ2pςK―"O3ρ>ττϊ†m₯£ΘΣrM~WœžC–χ X^s³ζaοŒŽnκ+ Q”#ΐ₯—’$οŽό΅‘«­Ω’εδDdδ“‚³²iAχφIΖ »?=υ]J„‰Χ|δ+>ΖΠφ°ΦQφΠΖh::–$n\’8ΩͺHbG"‡/=!A±1Žρaš#Wφ’³rσ@ ΅Α αΙ9(+ΙΣX Nγ€}άrxοC΄/G“ηUZY‰AAΔηͺS›‰EΘ9¨~N£ά<׏ζGa²’°š>ͺ5I=—!%ΪΈύΜ‘»p« {δΉίΤTά+― ύ­= *’ΛΤqΖΨX3Ί=Θm5›!9o6Ÿ*υςpyf¬1Φ‘gλ Όο-mύ΅– ¬HR*°μ;£UΈ~ΏΝ)§χrΙ‘έΫqVv9-Τ«ΚΝc4|B–‹5Ή™‚…Έ WŸ7ςΕ‡ρ„+Yοξ“P‘yJΆκ>ŽήχΡTuŸΙ’έΝͺƒ~ω€'‘ ΅D΅h71ή‚n1OωŒΙ%³ψΤηbkCw«|IFb’c8=ξI΅Giuδ /­3ή €ρ«œPž¬r‚5Ÿ>?¬γAΦ|ϊ\lUθn•g[…wΰε ΞΦ6 gp(CYΤΆα~ϋΓ'XMTv¦IΉYΟ φΌ‡‡Ιy8–"Μ>D"B<ζ₯γ,ˆQ•civ§υšCΉY.¨o‚™dg½²…EεMoγ&ςΰοαTΆτύ’a-B&)Ϊυjβ΅^ΑͺκKGΤ±ςάΔ}\ύμ=ι•ΌΓΚζu%d―Sφ ,˜& >•Ζo„Ήc―Ξ+ژ!:ΑΡwAVžεRH1}ΨUQΩΫθπΊ ‰‘αš‡Δ@y%iΊτw¨ΝͺΣ)k~σC49n=ϋ:Ζ0AuLΤ_qO\Šψ€Mp¬ZšWQζσ½ύ|ΑΣΠsƒ$šυΞΝcnv/β•jΞΩ‘P@'ΪΙ’O― V0*aM νΤεuοh)©γj=Rd‘Mί’³Α6«ZΐPˆ‰Χ'u(ΙΝR7€₯!γNIΔa:£ΟΦ³ŽΜ7FΟ΅dCςŒYξVΰ5rσ(­υ~RwMέR\τu|!ΏPd){_5ΚΊπΘ›MΩ• Ϋ«Ξ“ΊFyΌίk’5}.w=ΒΜα­ά­©½C_OPXuŽ~2ε™!47άΖ‡ο\18/ΆΗ‚’€`ΒFp!Ψ£Θ )ΐ«CςfΚ%cμ±Ι%Φχ½~L|2Λ3쌌ΛΝ€§Γ‚[—ƒn8ΆΟψΣφΰΪϟAΉ0՚)¬±ŸΆΠηΝΩ2δΘ{Τθl=ήQQΙ·ΙγO³δ +Ϋλέϋϊ½²ιγέδ3d½ΏRͺΒL³ΛζΧDΔ(cαΕ:ρ}½šc•Ÿ<Ÿώχ+.FΫ‹§γpΜB@™N2« Ν/˜1Οι[Ηέ«PŒND!η 1…­ϋ6νΤΜxpΘΙTj1††?ό uŠRρέ{˜yε[d Uš(Ο.9N Ξ·Ε‚˜ι‘wa³΅βΑ“.g¦ξŒηΎS’f$rσ€φ:η4fήyΩα±ͺΕqΜ“‚³‡wŽεΉφ₯Z,τιyVZ}znLT؏­"eΐL‘•Ωιt,§’L~/žyFRgΝ'ΚΒ§/Έψ;oRωa¨bd \B]«σ»—^yQKΦί?G’o€ω._«‘nξίΔΤωΏΐ‘"aA, [Sι=’lWt΄wα½_ΒτRZv,5Oœ&¬’Κσ–•ŸΆ«2E*؜kU9²e:{G9i0wa|| Ή±4ΉMΗ©&P†œβyˆW¦ηΗ09H ΞΩΟ£tŸ21ξΪ5hξ|ηΏtRTΨΠpιŸδMmŽzΤf@j()LuλΘ_ΖFΙλ₯+Θ8‘ž"24ςRχ˜˜θΨpi[²{Λη¦_@νΐ™][Aπήhυ;M c#k΅d z#gT.ωΒηFiΉτ€BΩ²w:¬IYxΤ£ΏιEΓΆgoG+κoή@”l ΙsB%&«σ]˜Pn}ΌrΉλ#€nΩ½”»-οβ~4WϜD^~¦Ί>(Kkέ%'ώY)1xγŸ~ν΄fδFΦ«s yΌ©ΞLΉd”QΉΔόΎϋR?>aΖ"Οά‘38.7ž;Ί!\κΒ"n«ρg+šhŒYžLcM2•UXvŠœ?Eq‰²ΡŽΞ†{žλ*Ζlζψ“>”Tη9(ΠΪγέCε΄%EvAa(<τu”ΙχΟD:Œ†…βΠα―£lm΅uWՍ_JVΓWVωΙσAχϋΓ Ζr8f!°ΩΓo>#.ˆxA]VΡΞ±£o¬Γ4ω•‡’8e‹zςσΠo`Q]‡Π Φ$ΕY†ltδΨβ Χ‚IβbT-A䦔apς:€ι(σq‰Ž=ŠΓVR€U)*7Ί*AΝaΨ>Žd²*9 £Θ'Œς…§cΊοχ4HQ:Λ‚5P­ ‚α9m>ƒώΕZ3₯ –g΅<δέ—›)*; ΡΆ–εf1ύξΥΦ!'η¬˜Ζ’lΥ΅¨κ =‘Ψ֚«bιzmuΝ(#LαΙή£šΤΦKκu˜―ν­Qf™^œ&ΞzŽεΉΦ+Ηh½ΈpeΉ‡ίω~"–‡ͺLΩ))ΦχΤ#9W² p²*?Γ¬ω„cδΌߍb “ސ„gΘƒΊKax³ϊ κ’ΦΣm2ςЍ‘½΅»)7 ‘ύυοC@[qfΌ‚’LΛYΉY.Έ±₯ %€ΰ,¨ͺE[4+"}O00rE‚ˆ%eφœ ΰAŸΒ m Ι¦Ω v)[&”39(,ή/dC-ŽΉΊ‰Qš2•”—Lό ƒ Υxρ₯“ #υ°΅~ˆkŸ>¦lˆK•™ΙϊΘ()B—œΟW{Μ‘Ί?Ί΅ΑlϋΗx’c’ςw>R‹“ΡύDκ]\ωΐލ₯t*Y@Q\χ£{ͺr³Φ}“hν'ZŠΒ΅’υκEϋi²z+w•¬ΎΚA‘Cύ¦BΠΫ«ύ­ƒ\. ­’e)!¬w¬IG8RθωŒΙyΚiŸz\Έ„qyΆmε™KK-Y­'₯<­λΈu9ΕωƏψtΠPK”gΪ4ͺί€\²Ž³ΦHqWu.CW!|Άο1ΪΤξoδ ϋxѐτ”σκ)ΣΆϋ¨‘c5.gΖ=—DΗπRγΠΈ_X6urΆZ|ά·Ξ"ͺšΨ˜\ςO•˜1—/ώ‘/Φc8r\έwn;άZ‹—ά ρfΌ«Ιμίρ’rBΓό:^V9ΑšOΦρ k>=œΒΈ<σ7_ΉE_χxη±σœ•ΉΕ Νι³Wƒ™Ω©^ΊΙ€Ÿ¬γJ“…Υͺ²₯―ω~ςφuGΑ%€ΰ¬QvŽwΉ[[Ω`Ζr‚ΦJ„ι*aώ.‚Αβͺ =ܞωώΧP’™‚h–\ψΞτώάh1ƒƒ,Π‰;4+EΏ^τώρ=ΤΤΊ4»ύΜ¨{=¨kv}έSΉ…DŸΡ„ιmΩ͍}†ΧΙwV€ΗK'ΤΡW=Yͺ$sΎF’,N±β D­ΒF§«φΊZσ‘iqζΐWz‰θxKl’›±a•–'\ν ψ¨–~΄!‘ΎΛŒ 'ΏΖΑwςeΉ?EΖ ƒΣχVTNηT9ŽρZ±a„Žϋ Ϊ›ˆΔ0Ήb*ι8ΐiΤ λ[‡΄=ώ=ή¬§Γx–°BJ»ΛFΏήόv T&ΙΡ>w‚C=‘ΙBšo2dQΥ½ύHλ•"%9‘‘τŠΡHOΠ₯ KTυs²‡ϊΪΡ‘Ž §Y 0,Ο5{„ ήΏGIˆΩ« "iςp&φ’¦Gcί'€‚EΛHE`bNψ`Ν'ԏ…OF\HφβŸq]Λ»n%O=Ζ{?{ΧΙj¦[šuφb―ͺίƒžΖΆuS+‘¦ΌSΣ ΣݜY˜_’Cζη4q#θξn#η| KDjξRp”…ΙEBzŽό\Μ΅’Χ“β―”šι_°xœ'/vΜχ7»Y ν‘>‘P”±’ρ>$e‘… ꝖMΚλaKH…’»mΒΕYCUiλ‘sΈ˜ρˆΡρy2._|O° AkžqΟ’:IήJ›λϋ”©1β%TΩaŸχ$+ζ01έΑ Ψ θ…“fβ© YX™G˜₯ΗiώΆ‡ο…c#rΙw>j\ΎψGΎDΐΉ—Ξ©γR{Ηqύϋ˜AΫb|Ό€ECφo‹ρ’οrB§ζnA¬r‚5Ÿΐ:dΝ§ΗƒS—gώ‘gN σΰ¬ ΧBTε—ͺŒτ‘%ΤGλ)Λ©)·―'&ύ€F‘{sdΝΦΝΡd«»*mς­ΒΌδFmn)J”σΥZŒ,E‘ζσǜ&Π-¨>ψ:Ž₯ *‚›Ε“'—πa»qE:Λα?ΓWΟWb¨όKJ|τ-ήί‹›²TΎ ρ$ΠUΝ{;-Ό§ ΚΝ‚›%OIαΤa”ΉOn»(7SΚ¬ƒ*7/.:ΤΉ,ΙΒ†yƒΨD•£θhZο0(Ώ Υπƒ+ΌπΏΰΤώ‰ΔCΤΆ…’ϊˆ`AϊS_ώΠ·h΄ΆλpΫC§ΎΡϊP¦0—‰τ…ΐMcšΡ~λ0ΆnΤ¦?Χτͺ|Ι‹ŒΜ5γ“;WвΦJδΣ ‚›£9λ~›δwωΟLΒσΕ„©Ζu>™Bo{»&„Ό&Ρ Ν€'e΅e>bΜ:S9²ΰd‘ΓjΫ@£&NM€zŒΣσQž–» ˆRζ#Ζ01©χŽη‘‘%iN\IsΧ€ΤjΆ‡Λ]ΣΪΗwΉ;ŠŽFαW‹šχ‰3ίO$Η}ƒhD‰Θάηnjχc­ByšP^&¬ΉYΐ€σ󝖼‘Q2™dt\`’\Κ?|/”Ι}™ΠR3u'ηΑΏž3$—|xίMͺŸ`°ΕkωiXžΉΔ8.g¦ηJ?€οΉ4―q&£΅ι<…1h|NΏ–’ŽΗΫšτ Α:ώ4GzVΰw—°07„Ι5Z_‘wέΙ}ΎIMΏ0Gkξk{°f" 9wgX^³ΚOžOϋχ&δ!Žΐ&#@―«Ÿ]x4"4T‡kΚΝ2+cs4‹(+8ϋ™;ΣΘΝΣd¨ž›œΌƒφθ ”ΖVαt„p₯ ,q‰Ž­&εζRΥ ΫΒl3ξuήΡ πΞrq\£άl³5 ‘―^U€NO>‹κdϊ8#gM*AφD'ΊέgΕxΫxŸx ΄?‡΅Ύ1š΄Υη‘Ζ¦Ί’羁cεŠε€uŠv΅|½NR£Qμνΰ’#ZŒΠ§κυs­_ŒαPοιE!D‘/KsˆIͺ–,GΕξ<D4Œ˜ŸΔ„8ϚOͺŠχ|†ΐ9!Y2πZm5ΔW«κad-]fcb“vg–<έ™ρώΩ''ΦUΜήκŒFS:ΦΌ:_T΄±fε’Ϊϊc1Ώ5ŸvμˌŽ“tΏ'¦™Γ“±Ώ€BΝέυψžκwςtΑFΟ`4νάLŽ“>h’S€ΝΪη=‘hcω—°?N¬Ϊ‰ξ.Zs/AMV2ŸΦ©&‘3z>՚…™q…nœƒηΏͺZ“αΧϋq―ιGΈΛ-Υh &X’Εgyͺ8#χCC;ώ-Bω‰4\ͺ—«}%Ž}‘˜Γt·œ%ΔbKlV¦ΧΰxνQe‚j|t`T؜OΉ¦$_ VθyΪNŸέžc?2}½ν܍„“‘¦`•©{Ίδ™3Hšτrθ9Sυ3&‘ΗM-8S~ššŒG§wΞQ4] υ†‘Ρ«!εN(,‚ΧqΉ€"ͺϊ•6αύƒ‚OeΤ„3§ώ=π―ψmxΠτ·ΈΓM#‚ίςZ―όdυԟτββaY2C€!°yzδ@λγωΪϊΗέ=)μ >[ΑDae}ŝœAΈ€₯œΒIK±Τώ,.N†ΛŠ΅^>/ΣR*ό-‘Χˆ».e†Ζ"%>ω΄ΘΒ}3.9.}ΣγR»Ϋ+²†Υ5uŽ•_,W/‘!΅π¬“qσβXϊθᎈ‡ΡGeΰθ‘r‘AΙbTCϋ›U4BaC¦=φ%Z|T―kνψ[E•}†’ί@Αχή δ:μ_'&o‘Ααε43Φ,y6ŸZ ‡oŽ ήz~0«Κ§υT‹Χρφ‡χ¦š«’†εagOς*₯Ό&‘5.οtΣk!o™ϊοΏυUYιΤδX‡NΐœK/r‘ Œχ%"+—"|˜ΗπΣ‡ήZΠ•[r„|šW#gE-υθ&κj ME’W(„E";λδK“C”όIά=9(Ιy3h| mhTk“KλyD// ‹Σ£φ&!Iυ₯+W?Ή΄Y|r¨&_Ta‘–/Y8ωζ«—+0Պ«ΏΊδuSG›ιK8EΆ‹ΎδΔ4ψ/'\kͺŸλ•ΙΙA½ϊ ήzκ(¨€2y¦Š")`y¦h‹Eέ`œέ ٚ„€S¨ΚΝ‘h·u}Ο¦rR±€‘¨β%δWΗΰPmΓ΄n#h$΅U™ Η䱡ΎY±Ž3=€ZrIβ½ΆfβKΥ_GxGΊ£PVp Η²d¬ϊ:κcΘΔ<Τ–RΙqτ½‘ΩQZ«]ΐ9Ι4’(«HzΙIζhκΎαΐΟ„ηOΌEž€§ddΎ0fCLΪkxqŸθ @Θ {f£Γ7ρˆςU·NιT’\JvZxζ›x“V@{钏.Ξ½yFZOj~„V±yi½ΙŒS_ωS¬Dο!ωθqœxα+²Ξ'–W;.-KΛV±₯π½oG’ειaAΆD«˜|r έSrΕΖOοβπ©Rπ£•vίψΛxάώτS4?ι%ΛΠLδ—T’βmPmύο[hΰ\ƒoΌyΑ±I–Όaί~‡Œ›…w#—ρς›<)ε_Α7. β—WΙΤλΎ~MG’α7U&ΓιoόΗΏ@έυ[hk~Še9BH₯χ4Ε(ΉΘύ―ϊψ€ώλ’g ά΄κεSή.Q&)Ϋύ‡h9šd΅Ι½$ΩbkoAΣfΔΐθιΥ?’ƒ8˜Α?Μσ«X₯w3QŽn€˜3p°’†l6θ‹7\ξβ Z[hΙvΦw£ιΛΝ&Gif✠i δ΅ώωAŸάeτ£ζυΉCΣΘ²Β †€N<ŠEνi«ΆΆ²Ρr ΡβTζ–΅bΏW\‘ΰ>νnΰ ΈδZΞΞξl £±Ι:άi“ΞεH,ή9Ηg{έ  IMΒΒ*™EG & αςχδfΆ8Ά±ώΘηΞ–IiYdL5θ–₯΄₯—μAάJ Ύθ•δΛ πΦ¦ΕεO π\ρGOΊ}²κ”Ho“–Ι7ΑΣ³ΡΘΩΠgɎ9žΊέκ9%ψq]SySξ€Ε;¬ŽΉϊ+³θθθtjΙΏτ6(’miξ1Œt9š5!%VtW²H m_ΎzλωdΦŸ>λy*0ˆΗ·έ―cO₯ I·Oaž{ Α=DE‘g_͍sωGvύ}}¨Θδ6˜°/οy έ‹Œla1S lƒC"Κ”Im>}¨jδ'˜mrŒΎ^F²"&ιU…ΒKΉ™<GYYLϋ‘A»qΉ@^E'y~W°²2O \?¬mΊƒ'Όe>Wh3Β Φ4Ϊ–o\›Ύδn tύŸ7έ)ω'ό›o“θW‘δŽΥŠQ ²ξ¬>εΌq|ͺ‘WOcςL15Τε™Θ§pŒ7'“Χ|ΪT✌Ε9NΟε^μΝciQλκscλYƒρύ€DXrχ!)=9τ‚8ƒ^Br!:» %χqΟγ&Ύ˜χιώΙ—T˜bσΗmμΚφ2I§$δΠ7ϊ}~’οα:όqΪθŸ\ΪL>= “/ž‘/i8ϊϊλ(΅8t«…N|ϊΑ―ύψ:Σ—ΌI`Ή›­/©s矜Ψ\yfŒ|Ρ«κ­§Ž§§T&ΟxΪΑ§fΗ‹+±τ%’—ΛY$©šˆzΡπ1Ύι’q³£|LZh₯I5DΨ[<8«Φ08‘^§(–C©ρx”ω.s’4Υ„ΟίΉ%%Υέ­GUuΆΰΫ2ΉgΎΑύ€l"τνΆΗgYΙ=ϋ9‡ΞΠOΪ=…ξkS·pωWΩψ]2Ίζ―ϊτφ©7ΈŸ\‡‹Ω”§nύSf qηώ»ηϋŸ’г?ψ*JD#΅ž›ΈόήΉ:υχς{9ψ·oœβΣJΞ}g†pƒ^₯ψΛƒ΄φ/΅Ϊχϋ―aώΑοπFsˆ+BνkάO* Ρ=~AΕS•u?ϋΡΪ%ϋ…uΧS^S0ΗE³Oα+o ϊ5ŸC›ϊ~άςwΨΦϊnL²μ †tΠ1W”.ψͺO~rrPŸ~ΝκΑΧs‡ƒΗJ2 ΰοšK$ΌT₯Νξ&ͺ©ΘLtgUžΰ½4κYΡ‰J‹XR3&Ռ5M§@IDATK,гžGνζΒ"ϊ¬Ÿ‘aΒaΌιJϋυ7±Υ@«+2`ρδτΨ€0#žχˆκR6> ‰βB5ν(Ÿ΅Ί7₯…^Έd!mE―»ˆ£ΩΤ’ίΖΝ\Ωωp&@ά’χY?ξθ΄ Kη!qH‰"Ύg—l>½ϊΉζΞύΊ©\fΩ—p¬X±Ψ·ΠŠY2pV^Œ”摍4 \ι•ώUi1ϋ|%V¬›αŒF)θ­'Τφψί#Ÿk„xFL rχ§a¨Νχ‹`#ξ?=hX;z1v²œχPŸfΙGIu„tίYϋ{Œ—MΉGQΔyŒζΒT3Ϊ›\䌐#ύεδ-·Β‚ά²=όύ½8;€Ά§δmˆ œΝΩε_<‹,NZ!Ψcaf†bޘˆΌ<ηgα‰:A]ϊTι έ•ξΕT 3σΠbνuj)ΕΙσ΄SVΐ'Zδ’˜69¨uήTRβώΙ3£ζ[ςn’V(116ފ>y:”=E|Λy£ψτΔA¦3yζ>(ε™S‰ H$ΥrάI]LC’YxΑΝι’v›οΉΓ©M—Γτ,ΜΐΪΗύΘ ϊ½«8tρpΈ€“»±τυΤ$:’K8—ΰ·|1HŸπOΎ¬bye³œQ5=;8…/ΘcTŒBίZ‘/©%Η—+œ «œΧ¨tZεΓy·’)eYε&ς©d'”β;VΎ$ύς;¨Μ―­~Τ½Kt;έχB£|aϊ’ΙΑΡ—]£~Ι ŸτΚ ½υΔΞθΥυΦιn£γ—g.ύύ6Œΰ³Ίξσσ°ΑηiΧQŒ―@Nš8οN Ήσ*ω|Ϊai³δ…,I4uν²ΓΝ¨o½­j„81ψή!—)Ον?…tςͺμ&ΠΡω9~Σ.Ώόί³nΗ0½LΐΎ–ε\ƒΫŒ9<‚Ζ§—Ρι€Χ„;―1ΊVs:Ÿΐθ”θ\Α)ƒ?Y^^vN\s#β\@ΗyŸ·”ZίΔX4yΓ.ŸΗ„φl=uψψ?”½7sΙέ—ρφOΓρΪ—Ώ‚+―‹¬­ΞσΧKŒJιΡΡhjmN2I,¨‡^`ςL«άε9]lΔ{7³ϋkQžζ,‹ψ|’υm}υψν&|mQDjӏLξn½άmωζiŒuΆ ½¨)σL’£ξ3άxη#―—„–y¬υΕ;ληΞΥ u€–­hΊΩσιΣόf§Ή@*h‘Ÿϊδ’‚u=θ!ΊεRχ»žώιζ“ Π%Ο8 uκεΊιq4·C`rΠ09¨6ά­ύœκπB?Χ„φΫύξΕ:“ΜΩLύ“ΈΠ+—η§©ΆCΟvοsΚμ’€ο6ΦwS’γ%η鹏:¨Τq?ε5W^όdυAυiUjhAΛ„ΕKΙδήjv E ͺΚx#HώlzJU©ΠBO"Lӈζq9F₯°•€3―ς˜»8E%Έξ₯₯‘Ηc2pV]Μ’[ dbΙΐY ³‹ς"›˜ΖόθΎεFψΨΖΖ’sΚ†Ϋ³u@τν˜'Ο³ ΌΓEtŽ|ЉbŽο«>u21Ϋ/ϋkUΟ8\$C22ˆa2 .NζŒrιQͺϊ$ϊΪήwχΤ_„’}kδ‘»—/gΔύΗ7€υŸύ!†zO"-^¦Δ)qίέαƒ=Ν~΅Ά πœΎ±.ΎR―zˆΌ7s’” }m|PϏЧШ,'™L#α‰α~Ψϊ’0Όΐ}‚0EZ›ŸΰšεΓ4½τAi /θ•ε§ΉΩͺ¬cT\Ÿά%§Ψ~ΟGzζMχήω'ό™o³χUbŸ¨±­t‘cΤyΞvηΞ9Ε·œ7†Ogͺ‘xΖδ™·QΡ*ϜΫΚA^Ε~tΦ΅ΙΙ%‡Θ ΓqΊ0ή™³œλσ-—δ Ϊυ,“%ΰχͺn›ζ•,AΎΚ4œc~Λ]ϊ„3-ξΜ?ωBޜz?t―Μ§Δ’ͺΰMπoJνh|OΔι,"Ε¦xLŒ·©oj#CˆZ’9βγΨmTΣύ—K:ωτΠ³ΠMήως₯βό›ΒfξZZνΑνχ~†Ο(βxi•/L_‘σ|άT}Ι 9ΑqΏ©ςŒΪΧ%yXυκƒzλρD·ΙΏέ#Οm“Ω*6™η­B^AΧ~ΏΌt[‘°C’‹ρ}υ.!Ύi ‰ˆ'DZ_ίXΑάόz&}?οŽ ~Œ·ο#?³‰ά"ΰ:V–f0hνp3οι&HΞcctς“½—ΎN&ψ/[YΒΨP‡κš0μu„! ήύ1ώŠ~›†―γΗvέ‰ΔʓH7ΗρkυΛ³Chx€π’¬(i{τ~BΏ‚£Ο!-†[εZΓβμ(ΕςΧίW”φν'ύποθη)_%½ϋ:ήϋλψ€ΰ9oIή)¬/bΦ6JŸ£~[γ}¬žŸ~ώβSχ‘ρš2Πϋ~Ψ{ΩifΔGΕπri}͎‰ΙŒ¨n2›ΣAΟy¦EΒވkυ¨O*AV|2υQΘYY'yέε&―₯zΫ%ΒδnHΘ]ξ{r·ήώ/ΈEΧMzA,©t­EFσsΚϊΒϊο?rΫ€’~‰i›ΗZ―Π†‘{u8\&Θκυε9Œ>½ƒ~ξέξήη­ςS»\rξaέ/ώ uΏpNS;Σ/—¨΅ξw­ύ ˆObUŸ<Σ―—λ’§6@‘˜Ζδ arPmxΛs8k!X[[ΰ’ ͺ:š©–ζh\‡ώΙΥΤ#ήωίΡπŽƒ†ΓvΥw'?ΐ₯ŸΏΑ_y-Ά§U~²zœ…†η OΟ-²†CΐhDs£ΫυάPNzo–†Γ9Ο#l΄ΦΥ½ΘI©D}¦N ΦΡ6…q’˜ΚGϊ΄^F-φ‘cΆAŒ/L`ne '#`ςpTdʐ™'Ο²m#]ςΉ.\bq "y„v4C£Ή4kGdό Nt¬8²ΒžΩΐ”­ =sœ‘ς<μΛτ6:N0ΛKK=κ/’Π=3„΅03²’ΛQͺ‡©ΙNΩ[ζXˆ)μQΔ,•$1+πγʊdχ,^>Ώ]τyƍ={Θ«Ζfϋš`uΌhŸokCΟ±£΄xMdcŠπΒοώnΣNέzΐ,;τ%Τ 69¦Ί:[ • ΘƒžL8ψό7°ZW‡ξŽiΔ—Tΰ@Ν Θζψπ+ bΪf#g•ΞΔ©ΧΎ„Ά^Ϊ₯†ππ LwΥ‘ΟΙxšŠ©€’ΔSOI’Ο1ΖFρήώ66Β#+ΘY εXέ»†0z³°ΊΤ‡ζ ξ₯BΧ5OΡΛ?n‘Φ-BoQtŠA­F#+υ¦ΧZ°nA‰…ξMήπ™²θώλ°φ((λ©Ÿ Ϋ Ϊύθ1Jι~α₯sςœn,>@w™Η¦b_N ŽE<½˜ œ ΉtbΣΫΣ‡Γœ³2aΫνyPE8r¦ 1ts&χ{3₯bζ‚“¨5―έΗύΩΡs 9d ,'‘_࠳Ёφ½R=»Σ€?σΞ‘ωBδεgX¨7:F…$Ύη1=> 5cmΈ§εΘМ’ΛqώίΔαqύCτυ `•<Ž&š,4…Θ*ΝGy¦wόΈ5VMz«~B[^“ΙA£†ΰ$Žžp46‰§Ξ’βԎύA”ƒ―;Yίu 'Ϊε§Π8«§²^\Τ[c© †€Ρίΐ™vSvOΩ δZ-Δζ#ίqM-ΝΞ’™[θΊV#β#- zγθ›κAΆE0VŠŠ)FMa±3Α•<θqΏ4Χ ˆOg–BώΜή„ΟkΑ92V㯜D’ΩgάεΆσ{)χ_ν ρˆ―|[sΞDΆ’NUϝ| ω8(τMQ‡‹š²ΠOL΄aζ‰lΰ\VU.ά£”=άΦ€ξQY¬*Η05As›ΕaD=EβΗ:LnX$ηILΜH΅€A|φιΗH|㜠·crPω<χSρ-«y΅Ε&$ϊjΒσ―–k’qτG?ό5ΝΤmψόΦη0½tBΐ…δΠα3²’+ΈŒ—γ rWΙ‡_ρζMΏΪW)Ψ|‹²ΤύuΆ4χmΣ6*ΞIšεΉδΤ„xβ…O±ΘΆ:ξ`ωM_Iΰƒh8Ÿyδ€H5Ψ#ΖΘΐYΞbϊ’€…“ώκ&?eΌΔ˜Sy1QyάD})p9‘d4ΐΈ^9᭞^}Po½!Ψ’κ»Ižm ΐΫƒ(σΰΌ=Ζ‰qΙ`l> ™&Μy^‹Ωνω›?ŒC€!°[Ψιςu·Ž+λ7C€!ΰ ΤΌP…¨0zΟr€yb±ΞάhO„γN—[έ?g΄ΩC€!ΐ`„ a[Αˆ}ζ.>hΔԚuνZΎ…O«e†vΪΪΘa³Η°6‰Α‰z\뼎eχRΪqα<Šϊl˜šWXmΠg…ο<ύ=³“κ ―}£·p₯·^ύσՎZ«+ ‹ .m]Εŝ:έ©-W~{Z19cΓ’‹ΡΕΚͺσEek»‚υ:†ΉΟ©„¦ραϋΧ<>RΏιYλp£₯΄Ii.τγρg71μΰw}ΓNƒwπή{Ώ‘b Ρ΅\†γ`’OΫν‘Ϊς±-9ΆΥx];ѐΌ\;RΥ—ιML|ŠΞEJ°Ν>ΑŽkpΉlΉ’šλΘ§ {!dk»Šw~υ―x:ΰ~MςŒ/X1<<ζΤ]χίό $1κz½π­ΣgGTΦΧ<έGΝjW^CzΪιΔ›ΣΙκ*ωάτ'ΜcMΌvΜ5(ζ<ς‘Oo+<ϊhjl\ΖplΈŸŒ‰…`ν†$‘­c˜pΆ'η:\ϊρ/Ρς” €=ϋX?ΪwΚή›©άκ⬇*ΙsΛ»8OχΚε>Fy–VΫP#κ›%Μ¦ύ!γ§Aξ*σO0o*hρQΧλSMžq™o#σ.mH‘]ώc$ά]Ω‘ΟuΘω@ω”‰o‹“gά0 ΟVey=ω”ΌΜ«Μv’Χί{ΫΩ{3QΧ%—tλYvLs›\Ττ3ώŠ΅‘―ι:|x“?SϋηŸ|jjΦ'Τϊ+_ΤκRZ|DŒdΰ<»¨·ž+wΫγœΙ³ν1N›Εε_Πν»αzo5Φ.C€!ΐ]²Žηβΐׁ;ͺ…έž―† Kc0F °Σε«±6 †@AN|ω+8sας❛ĭ[βΤѝ.·ΊN`³†C€!ΐ)žωΑŸό9-[ξ\»δ΅±μ\εbP,-ˆ 'Fτζkm•^ΈΫ‡€—€^ 0³μό –3N›iΖG?y_20 °YΎzt€¦¨Xμ ‹@Ψ3Τ³/Θxnyc *Fͺƒ‹Ktt&R’ⱇxεΒΪͺΖΑ”q(ηΏ₯€ I±‘d„ΝΡ[ΖτP¬’5‘±<𴒈[žŸBwW―±Ά ΅ΐ―kmLJ/::–˜DώΊήΨX¦ΝcYp6ΤTγHk½@ωTγ!ΤΣb-EΘLK<-sΨΪ§ΠΧηpCμω`ήX04ΉθΜ[xξ@&ίζXΣΈδβΤPbj™σP΄/ά.Ϊ0±Ί2‹™ΙNŒo’L‹%άL•1ΨΘ.ΞTυ:ήxώΟYΟg?Ε' ½|œύσŽΐv™o· ŸήΡφ/—Ι3ΐHy–š{I‰Ρόό°:?ŽΞMτκY&K’M Ψ³7’ηq6suxρποίe€ZJ«>‘ΪΘf&F€"-*‘{"HWΆL­“·η™!'ƒθΝda§·Νδ‹±ςEΧυΒτ%]°I•˜œ Ψν‘έ.Οβc…Ο\ΩηηwΝ₯°N›7'&υ?ύλΏCχ&ΣcΝ3B ΞΈ"ηd>lύΣ0ε$‘NοφI,ξΆό;Χ'RίY„!ΐ`‰'Ow²|eςΣΘ«…΅ΕΨΑdœΗύ‡7__ζ–ΡΡπ―ψθz©Σ»M Άώ-Ν" †C€!ΰ–ΣίW-7o}Κ§ηεε©ζϋJμννε‹ΔZŠŠϊηΚΥ©Š‘'σ›ι2²Αhkq™ŒƒU<4ϋΟ\pqY\Β€ξKύοB–΄vAsψ &­ u‰ι@―kmœJoq±=:k­υεS*‘QzήΪ‰7ΣΞΊ' Ψaά ’*O6`&{ΡIΏΝ ‰0™g`#£ιωI₯wξD”εK€WV]\ιK9,βŠΐv™o· Ÿψκ9gςΜXy6ήΧlθ¦AOcͺwN±Y{aΣ8yβΑWΊV}ΒW{†η―ŽcŒ~,lLΎ+_tΣ—tΑ&UbrB‚b·G˜<Ϋ}WσήΌϋΖάSΗ‡:Π΅wλs#τ »ΡxD4ͺΟ98#<ρ|7εοžΡg=e0‚·™„ ;UΎOF!ΐ؞de·£iθg¦:QίδŽ;U>†šόWnΆΩžWγš!ΐ`μlΆΨΐygƒΛzΗ`0v‘ζ(,O.yμvΟχΨ1·Œfά` 14ƒ-Oaˆ<οĐZu―—fkw#Fϊ0>5…υΘ4UCq¦ΰΕ SxΪ¬4~ή‰H°>νΆ»|ςΕΏώ1ΪςL?>¬&Cΐ7ΎξΟνžοO%v‡|aϊ’§ρgι;ν.Ώ|ρΏΖh³ϊ°ΎΎ±YM³v·3:Άό]†@ ”υ ›ΗfΡ؁3ΒHΘ2νΪό@±eυ †€άf‘._ΥϊΝ †€ˆΣ?CCΏu~q\Ψ‘!ΐ`0B πκγ§ώ£‘, τ¦=΅™h2yΚ jzjαd₯ΔΛcθhlσ?Tψ1†C`›!°ίsM*π‰Ν w#η힯u8f&03=ϋμΞυa›QŽ’œTΔ%Y°/―…e‡P\\ sbŒ 4ήΈ„ι€>Y zVž!  Œ—³w¬όβ䯚\φ¨έ ΟόΕ‚•cθA€ΙΟ¨νωΒτ%ΟγΟrΆ7ΫύωΞZF'rο^ΎψΚκͺ–jΫΊμΚΚ VVvOƒ1XΙIΒzψψ8ϋ‚F0πf4 P|‘Lςœ§lgvh_|ρμΫ•ωJ,Xœ!ΐ`‰ΐN—―FbΕΪb0v&L ύš›X`0 ˆΛ=¬ZxunŠO7ι΄ΆΩl|ύ½qf§φŸωΑŸό9™«ξ\»δ΅±μά\―ωΑΚ¬ΈπG8VœΜ΄βςO~ }­:Xέct †€ap/‡Λ“°4Άˆ¨΄h›Σ˜m&ŽΘvΟ7 ¨ΦPlαI?XŽ΄L ’]ϊ69ЈֺΡΙ&OdΨi¨"ϊ¬eGΚ/QώόΊ'T‘g|1v<LΎμψ!φΪA¦/y…‡enSDύ‚= +|½Ζ>Ώs7·Ί^ͺvϋ]“Ωyδρ΅[[[h…Ue0 †C€!ΐ`0 †C€!ΐ`0[€ετχU™˜· Ž‘σςςTσ}%φφφςEb-ΕNEw­罉)Ψ»ΎΫτ(ΊϋΰξΤ 'vΒ`0v%βΛmΞ¨yϊαο•3v=9oχό]9¨~vzuz=O’ωήM<νjCOηt΅5‘½α44t`jΞΟ†X1†@ °ΠO,mιΫIςK)ρΰΓΓX`lk˜|ΩΦΓ0σL_ BΦ@ˆ! Τ/ΨσŸ08»ΡƒσββΦΧΧCμκάήμ0ΞΫ{όχ †C€!ΐ`0 †C€!ΐ`0 †€Œ@°=8ο‘IοΨΠƒ+z°»ϊΜzΛ`0΄  ζ‘PτάΜ F¦DΉyDέNω"―Z0Ω­eη'Η°{ό•νΦQήωύοω ΏΤδοΞAΦC†@θ"Jς…C‰“sΚ/nΚ_θ"Zœ1})΄Ζƒq£φό§³Zccƒ7οΤ±eύb0 †C€!ΐ`0 †C€!ΐ`0Ϋ ]λΑy» γ—!ΐ`σΡT'γ‘>ο)”<‘ΖεΕoλ|ζρTQvdμvŠός$wΟH²ž2BP‘/ΖΝ"Rς'ΆΓŽ †ΐΞE€=©νnτΰ<7·€/Ύ ‡~ C€yp6 JΦC€!ΐ`0 †C€!ΐ`0 †C€!°ΕΫƒσ3?ψ“?7tΕϊΞ΅K^!ΜΞΝυšΟ2 †C€!ΐ`0 †C€!ΐ`0 †ΐV#Λ³`Ÿίί΄α ›ΗΖ&ΆφGΏ¨ οSkkλŽλλC€!ΐ`0 †C€!ΐ`0 †C€!°»°œώΎj‡η­OωτΌΌ<Υ|_‰½½½|‘XK±SΡ0§3vΒ`0 †C€!ΐ`0 †C€!ΐ`0»]ΧgΦa†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ]˜sθŽ γŒ!ΐ`0 †C€!ΐ`0 †C€!ΐ`υυυ ΠaD †C€!ΐ`0 †C€!ΐ`0 †C€!ΰ{ό)ΔΚ0 †C€!ΐ`0 †C€!ΐ`0 †ΐΞE`}yp΅ΡMˆ·`―ŸLMΨ­~–τ―Ψα―ύ^­-Βόp~υŸˆ~ͺi.廏K˜°ΫΌΆ›Tˆ¬D bΓΓ±ώΕ ––ν˜žjΑΘ’Z5φ™Σ›Œ¨=α&ψbγυ豫•W€E[ŸœΔΘhDπυV0=έ†Ξiοό)Z`Q€Ÿϊ~χ*`jEna―³­ΏΒίΎ*§mrLΊ^ΧθΊ\τ<ξR9όψΎ=VUΙœ^φge &r/θŽΐ’‡:T(Ή&i«8ŸτΩωΆF 9ιQΐςR?lS!Τ“Œηπ7ΟМ²[λUΌ{₯ή8ζ’OβΝ,ΤH`ϋ~ςΞuγΪήΜ–Ά`ώΫ—vϋβy™šΫνs½hSΧu|Λ_ϊ’Τ–9/Ά¨…O±;ξ@Τδ™β~Ÿ‘ϋύgάο›)—Bb8΄ιΖ²lBJrE΅Φ ”OφΨιV \η^8Γ΅Gθ~BΛΏώ'Ό{έcx† ^Ζρο …K«ΓΝΫHγBΩχ)ΝΙΩΩPDΈ– ΞyΞ‘8sζO¬cωι¦8‹^ο}\» l¬Ρω8{ζθζ]ƒS‡^Bͺ₯ef=ώr]«‘ς•½CΟeeͺ“ˆ)Β—*^Γ„Κu­§^ |ͺ3ΘRƒ†@F Ξ> ‡ͺ+ΰjr…œΥΐPνρΑΈ™κτΆ=Ω΄―h`IQ4\ΪΨA_04,Ρ|νhPŽeΔ!{ίATgε @'FUή#ŒτŠ£·5ω‚Y—£›ΗL°θuΧγv·£ΙδQ› œΥόiΩΡ„Δ…q3χQiρz₯θβŒΗΟLλΎu2―—^yωwΖΝσθθόڟ"­τeœ-*ΈI,AI¦ #C\… ·ž^>EΊμΈU”ΰ«ίϋCTΈxOˆ› Ί‡«³M΄£ρƒ;5gxeΫ ΪξέF$MHsέ:ΌSΐKƒΑ’»ΑžΞΰ”ΒΈyšΎŽPΧycd$š‘υ,εU_`ˆ)AqA!:_­D_%ηuςι2ŠμtKΨΖς,Τε’ŽρΤ«Oθ ₯Ze?ιAǝ½τΫ¦1«,­σω!Ή€$ΟΕύβΣ΅;ίBμθά„ž.ŒNNa©‡_Da†ΐRNνEœνlΓ΅G~|e‡ιKc°τ%r"°Ξ9ΧΦ+'όͺ§WΤ[ΟΉkμlKπ-ΟπApŸ•BΚΐ9:š>ΛmFTX6ΎXΕΚΪζϊ1­β‘!Πq,zžoͺr°8ֈkς!ό˜Bt‘ŒŽ4I;}ΥX…}Ωi/˜[1ΝΈD˜cFμž(μy†–m ΛΉ…Œ,z§ΓNŠΛG2}ζ„[μεκ-,[14'/^qΙ,θDΐ|η.γ>€‡ιΟπI]³Ξ†4T£Oη™φ«+c˜W~²ICΫ±¨ιΐEœ;C‹°3 αAχΕ|χopω†ΖOh "™tE‘‡˜°gΘ©ΘΪ Ζ¦ϋ±π!_ΈξIνlRύ•Υ)τΝ iD*ρ‘‚w‡΅ C₯±!V<˜\ ½Π¨ͺrή\…^8†θ°uΨ{>ΗΝ{mΖα_Ίπ,’h~[Ό‡ί|ϊΠΈΆ7½%#δ§6&΅θ‘|ΰ‘„/½U_˜ώιπ­Λ`σΓΦaoe΅ωA!?ν$??D~n¦œ7 ƒ€ΪΡ'Ο"I•%9Ό zΉΤΆLΪΙ#‘§ e^ρΤK7&― “5Ε!°kH†΅ίL7β3ϊ©‡ƒxƒ³ γΏn?†0‘^0„Ss`Ž ΖΠωψ2ό{r,ΔK₯'#'κέθΰ ΌέxSΡΟ.tΥγ³Η cT.Χ^‡_^ͺS”£\ωqDžϋ6ςy<ι^³ΈγΖ z‡ξa¨οs΄M;Ο‘τna5όί‘vŸΠ°0}žL•δΟΛ>A7Φ6cE™Γ`Σγ©GΉ™Α;3eΠΩμLΧ-ainˆ |;_όMΌRBkΞΖη'<άsz―k½Lλ€_‹ͺ|‡q>‘nkyΏuηO α8Ηπ,Ε"&L1Η΅―·tς©VΟX$±bGΧ½›θ˜ΟΖΛgΌyΠχNώπΙΓύ†Υέ…§™Ξ{+›˜;υWί~΄‰ԚN…‰3"Ÿο6΅B|ZΠδnηΏΚ}%Hpτzvμ6~Z±„ΑμΣwŸŽSŽωVΚΰ"θKzδΌn>˜f'[†@(Θ³dΊί έο~‡-‘K~s§½ n}B;)΅ϋςήΐ‹œ΄LΉύŸ+7cu.χω!Ή€dΐo>••X|K˜AΛƒ+xό›wΡ1₯d‘­·{ρζ_ώ;”ρ›ΕΜ°d’䇁3Σ—”8ŠρΤ—τΚ ±KυΚ ΏλιΥυΦ V=p΄Θ³ΐ©ik!$ œ£i·εώ΄RδΖq %a=CΧΡ8­AΙsmBε<"RXž‰¦-Έ›΅x/e{ώ”Žΐ–ν½οβɜ;“ZqIKF~bφΕͺαX Ϋμ΄φί…š—π€Δƒ(Kݏ΄¨h7FΚη»Π6| œ’Η‚~"φ">9…h ŸŒΣߎΏ5-΅xγΝs‚_‰©F|τ3Cώψ"TVdΡGΔ60;؈ΞΑ[ΧW.Hτ"""ɐ<pωΚε:·ε~ΣB, χՒ؜(Wι“θ­Gσ΄Υ5Gχy ς%%q?R£“Εύh3„Θ† »ήGΧ’xξ~ΜL=…ςτb·OΡN@Γΐ5τy©+·fΑαΒ ΘΕΝJ>νΈΡ1Ž\ŽΕ6P”K›ήι-&Ÿ‡Κ#GPZUΞoxαΈιϊμΗΈΩ0¨1δΌφV©ƒD‹…Ÿƒ’gΈε:Cl’,β|JVΞzBζ#%kΖΘOe‹ήγZυΘ@ζŽ=ύcϊ§χ1ά\6?ώ`ΜFΘO™Ν”σ"-:κ‘gzY š^]‰…ΥΛb_όŽ\ΑύIηg­σŠ/,ί ˜Ό6H֌ˆσΰ,"ϊǚ#Ο"Λρ2~vδ>sΫ‘ίŽΓθtrΆα`uΖζΑXΤ½+Ω…ΗPβ¨7=κjά¬,ο0ΘT&yŒ―bUaΥμ΄‚8]k^­μ+ [ε2L/γΒsΨK†Ηλα{ΎΨƒίόΣ»p1ŸπΪ†χΜTœϊϊ7PœI}XCTj…T<σθ7ρ­RyQ?œ‘‡ξώΧξχKe„H žϋϊK¨,―B ak£w&:Nτ<ΔγΫ—pλ‘²|`τ+žΓ²rdff!5ΙRQ…07‰!kzίΔ΅Ϋ-.ό~ͺk»Pίή%Ϗ—]ΨΞΜzx_₯σΊ–ˆhθ€·Ÿή[₯:hΝ}$7΄ΰΘ2nζœ`Πϊ:Θ‰‡τΦΣ{Ώ‹t·Σρπ…οΰ`yr2δχtσS°φt’ωξoΡΨνzνhΉ8$αβχΟΑŽω[¨ŸHΓs§ͺQ˜-ϊ4'O[nβϊOί‡|ηΒ«?8‡€πp¬Ο΅γε©IΘτγΏ‹—Žr»g€Ι'—qι:w/.aav½-¨ϋ”Œv†τΣ–/£οίITΦ9ͺφ’εΞ-!^pož―u ΣO>Ζ‡Χyo>ω$^ϊIzΖ!nαέKw€ςε/όŽͺBžΣτ’γή |ψ±\Nͺ@‘’ΎƒšBmφR€^φO/ΌΌ€―Ύ|ω2ώΦΞΤίκ@ΖΡCδ€(SΤΖe•6ΦVΦ‘sθu<χΌ―ρ LξŠ=,œDΊώΙZœˆαίΊU Ÿϊ’f9Ώ9|ͺρ iLžωςL₯ΪΪJ8ŸϋjŽUΡ—F8Whζ¬h©ΏJςΛ!…TιΏΉ˜žEσΡΧΞ’¬€Xζ‘Έαη°‘~t5ήAέ#uOZε‹n}BB'€ya?[αΨ€³ΤƒΑ₯4d%r:Ο¦fδ™Σ7/Ο^*ϋ”Kb]Γψ ­γN“/ΆGογ]κΒ#46Ά μL?ζ”,:z,μ(ς…ιK|Ττέ-—©τΙ υΆTRυΚ -υτκƒzλ©t3Τ“v³< φΨHfmΑ&,K1ŸΒ³ϋŠΕS•c4’θ!ψ mΡsφΘ` ‘ψHquΞ[£λ gX· —eT"Ν­%9Α”P†“…aψ΄λs'CΒ}©ΟγxΊΌ[_!Δbc Q΅ŽλqΝdηώ#°*{PrΫρ³dف‚q3•ξνQυRžZT…£5ε|‹}«ύ›nΰ,zγ#­Έw‡VΪ6ιΘL«9ΰ'jz‹™Pžs% އRΧfφ˜Q”ya^ΨtΛ—ˆΘ• '^Θ«Λ‚εόΜ/γ`’)³7‡3N`ΦEΎ8΅ο8)Ν©•›)m‰^-©di›@Κ₯ΝοτQ0οΗ‘Γ‡PRVΡΆ_δ$ΜΗ·ΔrGδΌkΰ‡IΘφ„‡KΦ€λ6Xσ‘Ψq£δ§Ψž―£v=δU_Ώήͺ§Lτ5Š[œoΐ}¦₯‘-Ο΄τDGΩ`Ξ†Žλ&Κy0UE<ΣM;ˆzyRL²ίΖΝ\ΦΉη(EΠ3―(ͺ³θf"`θ}ν›Ρ]-―}Γ³νK0γζm4„–σ¨’<ααΣ›Ϋˆy™Υ„Δ$iγοτ‚ +τuΗμ˜X¬­LbΔξiύ¬εY%ŽF¬hnαϊnΒΎ$3φΠ£§χΊ2m·XZ R(”΅Œ%ΏͺJŸšγ֜2!!=%E₯rΤΌh6*§KCΛ¨qaΚ(r[\o­352όΖΌ…Ε’gάΜ…”ό#8C?‹εΕ―Τ ‰τB?½œ~σ»(S{ό$η7™Eάο2Σ~‚ŸΌ§nμγ`Bσ!πqȁIς8nΓΜ\—*ϊkΥ¦όJΤG/Ωu;AY†ΤΉΰΨ@ΐϊ!žtIڞO?½υ}|:Ψ.Ί—Ύϊ―‘"ΫύAlr6 ιg‰ž%ηδiΎ¨jA ΛK…{;Ώ‚©Œά$­πΡμE|/1σ·?— ™c3K‘Ηί{q¨Έσ>nw+λρ’ŠΓΘΛ ³ΙΐYύΈόχεT8ιLΫIωk'‘η¨2ρ¨uτG{±d₯‰NRW:ƒ`±$Μ!L©κΡΐY›|Ρ―OΈB¨ω<ϊή¨:$Ύb?>yŒ’ZΗΘ,OaΪΛ¦F7Zzžό•KFςιΖψ'μXωβΧθ½²YήʊχΒ”λYΎ0}Io›θKzδ„Ο«ΓQ@―œΠ[O•/½ϊ ήzͺLl]"“gAΗ^–€A'Mγ«qTaάΌ΄8€ΎιnŒ/-"""I1Ω(1›0»΄]PPχφŠΓ‹™μ†ύ €ΦYΓ†Γ…zp‰1K/,ms=›Ετ’ «dF•šXŒ€ nt) ’;ρ`j\8;ˆ γζYςςόdΌ6²N6U’2½PπF»7™f υc{Ž…3θ»ΰΜ\ƒ‚2q§Oo7«wZριэ υ"†¦‹ž΅ -β₯J·a!8Λώ νίX&yQU7['κΡ>Ω‚΅ˆB”XŽΛΑœ± ₯=3wa7€½ς%:*QρbƒγD”S]™9hQ ΩτΠ%7/b`¬cC0₯GušγJ4Ι‰Δ&LΟx^\Κ€vΚΈeJ9,,Ϋα*ε\Ϋ1ψ+—vL‡•ΙΒι‹_C‘‹Wye ΝρPΗs~ ½Ν '%XμΧά½M―¬ωˆ:b”ότ=z$5w^ΡΥ?¦ϊ=œ»’`¨Λ³M„mGNZ!²†³Scˆ)ό&~?Wώ€=Wjz’ χ[ίC›_ΈX°Ώΰ(•U; €Ρ>ςZμηBUeεi‰ _©ƒ#*F―k‹]―ˆ=δΨ‚Žo`5a/Vi“RTϊaς$*¬χYΫοchšt€0‡™πuŒŒ)ˆ₯βόΧΏ¦0nžΔ“ΊLΠaJιq”9 5ΛΞ}gΘ“5ήГIϏυ’ Sγδψ † ‘’HΠHςN½σ=mΈκΗ§›ε}Δ₯§dr3εαϊu]ϋ`έ[Ά.zζBdˆL€'φ9n³’o‘VΪΧ·5₯‹O™…m+Αλί{ ŽΧpΓύ䍼k`{’SžW‚ςπ»κδXΟύG /­»9 ±υάGKϋ(bς«pΈ4[ΐ+(Žϊ­γ>z„'͝(α='[PXVCΞυB9ιIδ—›gνθΰ½7K™E‘ꈸαÊΗwΚνvχ`„>ιn"{ϊΨΤ}( l©|‰…ΎLι8dοsίw6nξ%OΦ]ύΰŒ»k«+ψ)•ρΪkCψΙΞύιΌ‹–Ξƒ3Iθ½I¨ͺψ\s3‰ΐ_±Ο7_PΒΔηx0θ’πε”tθK~Ιy£ωTς*q&Οό /ςΜKάύήπΈΡ9‡Q{HπfŸR~Ξυβ—?rͺ©].ΙΥ΅κYεϞT7[I|„α±μOBJv>ʊς¨q‡>)“‘cZδKϊ„LPO,gΌκψ Ξ<šύΓΟγ˜ΨΤΌMυ+θbΆ|Τϋόΰ―\2ŠO™γΠ‰νVω’ƒŒ YIœνυ1$^δ Σ—Όθ»‘€/ι•>. )[―œΠ[O"μΡ«κ­ηD|ΛO˜<ۊ!ΨBg ͺΣ+γYκωΤτάz¬ΐΐŠ‘™΄Žˆ¨Š¬mMEB”hΔ7M‹›υς‹oΈ|1[ &&[1΄θl\8AΟkΟΌŽ “ΐΟ3ΟΘ hnbŽ΄0?ۈλύ —Cγ·iF₯£ž”Α"ώ!ŸΘc;oŸ‘ΚΛΘKI›):P&yσkzμq!hAα™kc}aSxQ6lz3Ž 2pŽβ™%ϋ{Έ(Ξ2HμGRς)Τpνpoq³Οό²–-±bkμ¨ m —tυk;TZ™œΗ@στ/ZpͺFτ:%ζωτWΞϋί’Α%흸£ΣΰF}5Gσ.'‚hήU—Brύ ΝGΙO™s_1z$}˜V—ήͺ³Lτ5Ž[Οζ‡-έA2ζ•ρχ Θ–ΘyŸ\ι/ Sžι'd½|±­τSω8Ι=¬πϊω":Ζ•2υΞ+κ”Xͺ¨ά―›όΔ+1ςϊ§Δ)‹θE€8λE.Έυ² Ο \ά}²ύ2.έ”ρ“˜#₯§°Ώˆ{ζ‚·ϊ7Έ&_ΉNžPς„Κ<Ζ£τθ+dΰό_R7=t ·ώ&&qγ.o-Ν·Ηϋψ]tν/π*o€Ό²Jršz]Ξ7:¦q’Sd7τ…Ύ •k‹cQΟuHΧτΠΛNΆHΞr¦i}x€HΘ<η‹C«ΩΡΫxΌœ‡SŽλ;,,‚gQo=²>y’Ϋδ_Ξι3¨’–Οpϋ—?Ζ΅ϋΞχ^Ι ίΑΑΔeΉG:ο?Ή!6τΰΧψα/.;’ίΗΤ·gœ=Δ9“'αœ<ΊΖωΌΖΗνxžξ/ξ-a^i/Υc”Οώεœ”=+?n‘dŠ’HΐΡ‚s'Β[λάr²`n•6΅”Ρυ‰δ μ# ηn§|gςιι’Ϋy+Ζz;Θήψ«8V.Ύ§qƒΛΈχδ«ψ½o_ΰ σNŸB98·*šμΎω/ς{΄δσH#g±5E1)š~Ί–xuœΞ΅ΰΓΏω/τΞD8Ώέ;‰?vσμ,UuŠψ=~zεΌ5—rP¬­{ώπp|ά߈",šθc’γυ‹ΩžX@\JŽ$³l Έzχ*f=΄!&λΡ—ό•σFς)ςJG&Οό οςL½‰ΦKψΘS³btφOρ•ΣόiΙ‘j䐁³rζΠ*—€ž•”$>`Lβφώ'Η¦6Ή&zϝ=!'ψŠy‘/θΎΘzΛ―!γζr‡ιN_ηeά WωΩ…ς†Λρ…i²ΕˆηεR |zλ(δνVωRpξ"jPNt>"½ΕKπ._˜ΎxΡw·P_2BNxΉ,œ²τΚ ½υœˆ;Nτκƒzλ©ρ°•iLžqθw}&fΑ₯’RŽlΑ"³³ΖΝJ^|™¨(Λ†P<‚>±ηθν"WŽuγ²ΨΖAΧΦδσ…υ%ωDŠ™HΜB /ΣdPξ–ΦΤκΙ₯bskqόp!"hσzx8Β—†pχΚ'g―δ’Δ,Gpϊδ1f¦8›Ηδ@'ZϊRΆqa˜Ό{ 7~œ|΅ρΔί’υnΪiν©cΘΚΜAΌcEά>E6Ϊξ‘ξAίΆ)· yHM³ )!ΡβΚ9}.qlr#ρ°ΉW½S–*œ%>³ΕεŽO2Φ<υŽΤ,T> ωΉΉ0'Κ†ύ‹3VLŒ`θi#žtyd©ν(¬Κqœ ‘»ΉIΚ!_ τΉ›—“Α{ ˆL-Ήiep.Wζ0œΦ-Η›―γaǘ’>%>ϜDQA L„‹μ’9mC­θlόŒΌ«(ΛF/ qpαZΛ©–λz_RžΌŸ^,5‰ΖΝ"ΑΥiΨι6J偘ΘQ§|αIZρtΜ*Q·D&HρΉE›WF2©Žg>Μ“Ό›AK|ΥΩΥdάΜ­θ ^ͺ5F@IDATρŒ²¦"w‡3Š…„ΥaŒ­&‘±7WΗ†ΩEa‘UQzϋD™\2@.ΉwΡ± (¦O,ZΔ+Œ€8Y8άO2ν.Ί­ςΖ‘ΆΉΔΥ(BνΕγ4Ό0ψOlΙ8xτ‹<ΏXΫΰώΥ›―Ξ"šKŽσsΙϊB/>§<5 Ε΄,Ž;Σgzn£‘—θ­`iފαΡN47|‚‘IςCQυ:LjΞΰAΞ[jπ₯ΪD†‘lξΉ‹;nσ‘ ΉψxφμAڌΓ͏q³Y*{ψ<φ—” Γi †ΠίR;δrRŠdΎ€²¬8} ,Œ<8ί'\ηfEMέχ°ΎΆŽΤΒΣ8xΔΧψ6‰άj™Έ:†ΘO‘ΈGέz€ΞyE_Χ?ύ€bλ‹θΎ™ήκmπΨόΰ .ΟΓό Rm}- EΥQ^Q"?{,L «εΝΚηΉ²9˜>―ω(Τε5κVιεςς±β¬ƒHs¬ ΝΫZΡj— θžWδ&B?ΖδυΥη?&}žgΦH·f!Τ8ˆ£ϋ卲=uπ΄}%Τ{Β­)™γΈgπ τ 7\ΦΓ‘”\ˆςtΩhΈΌδΊΙΐYθ§ ι‰œAχ4.ΪΠΩΣ€Ύ™9˜R :+ίΡυ|TA››±r“iέ4’ :%₯ΓΘΗψεΓΫ©·HJΦ+8ΏΏB.BWw<›/sή@•aO˜rίΏ2ǐxBΈcb§ΦΒxGž›=X.;r%&έ‘›ω*γΈzν3μ/ύ Ώ.˜’™­κQU =ΩϊK?η[WϋΧp½'Θ“»2φμ₯A20:f…1ότά$]ΉjAΟu­ΦŽΏiϊθYE«L`ΦEĎΰΕCΟπ΄Ύ}ύώΗΘ=ρgkk«|\o=}χ»D^{$9ιTKaJμ₯ n}Ί6‡aͺ—‚^²rPyψ¨”ίuγ7γf.³γϊ?“ι™ŒΈΈ—Κ#7 mίnhA58s«ͺ¦ Ghˆžα‹΄FOη$kΙAρh»˜I_Α,ε'ΠΧF/Ρ 8|䈣ΥI΄ά}ߍΒθ0½[βΧU-HΝ’ω›Λ8ο}οΘI=&ίΑΟή»CυJ–ξx65Œ!2„ύv…43τίΌμ6ΆGοβၠœηΏ+<­w•¦„ v’|o!ΜWlpι¨ϋD2nζ[iyU-ρ‘’m§¨†ρSΤΣ*wΕͺΚA-σŸHΧογt/ϊΖ­ΘΚqKA7!p737%ŒέΔi“Œο O_ςOΞuΓψτέ0yΆmε™ϋθ’ΧϊOœε^γŸ μH…°ρ#-Ω4#‘!‘ΣΩ_φ]ι+ΣC7πA»0Ο₯*6\ΞΨ‡=΄kΔσƒr)0>=°ο)™Ι—ΰΘ—‚—q>ψρoœu·ρaϊ’$Zτ]EεΰκKFΘ σ^’zε„ήzj¬θΥυΦSγΑ)Ι³-“gάZB0ƒΌΪLͺ΄€™k 0'Ρ3ς˜¨Η"):αd·ΎnΗτ²šΩPP™ ˆXtTΌδύavyk&€DDωθΫfα’‰}ρβ‘²[«τE’EJΰqֈ7WΜSa‰“λ­¨;ΗΠNκ\ϊ4‰f%―άRš‘ΨάΣ8ΪiΙΘRh2ζμƒxŽ~b°oτ»8[hρ;/Ÿ―k£w½L/ρ-d« ρ΄°]vh½dΰLΟ8tξ5δ»”αΛΣBfχΛ.GjψΝ­&e3ˆ%#«σ_Vγσ0ριTΤω„ŒΜΞ}ύud«ΠŒN΄ ›~)ατ‰@? œsO·FΕ[{3ž!’z€ϊ/'H±xςΒ/ ‘υΎ:ηβσ…Χ^Gn²œ,‰›2Λq”~ζ»οΰ“{mށΠΣ?2wϊbZ먽2j#φAήΤWUkι“/jν§"Nς4oΗό²U₯P*$9°HŸ΅δδ΅гjU8"„˜ξυK;δεϊdΦaΗ‹#+θs™Ο Φf1Η‰‘m˜\2J.)ŸdΜι /’Π"Ύ¨”σ$Y9‡ξKάBΆ#h–KT>a˜U/Θ<ΪμR(Ά%ca)=Wβ’πφ――J†ΜQiωΘΰεt Fšn’ΕεRηͺg–!#“{…@k―dΰ,„1ά{Ώ9βφθžε|Ή0N*-ψ6pNKGΝαάl[_±dαθ«― 2[=vΡ‰™(=™‰τΤd\½βnΰmΚ(CvžϋΨqs3<8t{ζ²—πJ™3ŸœNι>~ΜGrϋZζWδ€ε§Lڏ˜~=RίΌ’·λŸ~€±₯EΊ™ήͺ>vl~PΗΕ%ΥσόΰRNΝe/ΐ‘Ι™1)(¬y f³ W/!ηΠηiΜy> my-C.Η‚€—Λ…X|5 ₯/6‘χfYΧη QvϊΊ “Χ»[Ÿ3pv•΄.Έα–ΖB Κƒ΅΄jιSχπy―Γ,±LH­¨oόνύΞ†’έ7Кσ Ύ\Y-¬­Gf"‡ž±{†lΤ›L$Ζ*Ÿ9­ΈW/Έ;ΖεQzΫΖ[8›#ΌwΨ»W^― pg1:ΪZ¦Η*"˜X‚tzΞ_ w1ϋΞ፲9ΌχDτ…,ΧRΖ8O·:ψγ2fZπΡν0’,€ˆήώ!ώ‘ηΩf-a9Š/M;yMU z4.AτΦGŽ.†9CW—@Ζ…Ccd$ΙΩ•ϋαQΥ₯ΆΗSSΑIT=ˆμ¬ ϊ𭐐-gK³'Ζβ²ώο± ΝŽC’ΒΖfWYβ9s]k‚z9HŽΧ|&0:ΎϟzΥρ>ΑŠΊ¦·Ι£3α$‹χΪ¬Σœ¬Ρ[cWŸŠnj‰’1μώ‡7Uίxlfκ>~όΧΰδ5ΣcYՌ(ϊͺ˜Ρ‰ŽΟ‰'^†άS6LΊgO/΄Βόy§‘B?ΪΙ λpF₯_~ ƒ5>$Ώ€ή[;Ν5α©'Γ_‘΄œΗγ N–P˜§)ΧTl¨;†ΙJ/ΜnΖλ@Ξώ|δ$ ο`Lω$³q£y0;Ϊ²YxΟΛΉ’—"ΊZOXτφΈΎί#^Χδ!8–δ±ξΓ?7 Υ­κpσαώAΐ—³¦ρΣΝ¬T1P9¨uώ“ϋI;―לα7'πΕι €ƒδ-?,f2βγFe^+›Β>ζi½ϊ’_rή@>}ΒΒδ“o_yζ6ΎSƒθs3^~„+J*Ή·φˆŠN₯γΈ[U­ ϊτ,ρ•§~πΏ!υAΊžvctΈύΓΎyς_Ύ’OhEB(Ώ/η5ΌHοω@›―=Ίιhˆd9Ώα’;΅ΡW==[ώόΰ\ œOG·ό90ωω’|ίϊξοHz©­υ ~yΕ]gPΣ—”h8βΫB_ \N¨τά-I―œΠ[ύJΠ«κ­§ΖƒS“g[*Ο,§wƒs\&RώσσSˆJy/šs€έ΅ά9;χν#·1δί6k§k8Nb#%CίS5^’ŸζΘεψCt‘g §°IΈδξ;ˆ¬½"%+ΖgΕΈyΜ―r άboάο=‰αψ—|’"άς‹Qdvδ€›ρ°’Vn-θJΖΝθijΓψτ"b`²d"?;“Ї)«xˆ‘|„0Ξ¦z—rτ rχΦb#ΘΈ}{Νeδ[X˜μm&<–ζ؝ΎŽιΡiEύD=ϋ’ΒΈΩF|>ŒS9ΟlωƒΔόγ/cv΄ ϋΈͺΠ“IkΉžξ˜ίΧu,b#ΔΥKςΤΎ8€B2с¬•©΄¨KΎ¨΄₯ΗNjς6&)"+τΉ7»ΠΠΎ΄³¨Œ!δΖη—•Χ —žŠƒΩΟ9ΌΒ-’{ΰ ϊΒͺ!Ω#.Ϋ7Ηγ»Μ&Ř\2N.‰C”…gΏό: ‹Σ\ͺυι} ŽΪi’χhyΘ%ώkNχ§ΉD ―nΈyΤ·5£»t’Œ”ζ9ΆdV ¬πCΞw’·³ΉΌ‡όdεν'gq3‡Ψ‡Θ(09NzΠίΠ+fxτ"η­Γ˜ )‰Ύ\Žθ€ώ‘YœρΥΘ4›₯Ήor”έ)T^t6nn§1°ΪM*ˊψ2¦βΣxΦ>†ίάvξδ@ΊVγΙƒ3ΝΊ{P\,ΜGͺs3ίR€χί†πΟχψ3Αιϊγh{Ρ{–ŸŠϊ @Τ5―θξŸϊ§?xlY™―k¦·ͺŒ›T@QIς2?¨”“8ωΩή9„HK*Kc SΑi―Ζυb1ώ¨]ΞΛΥ΅κσ?…²Ό–a‘cAΡΛerBΜ„ƒi•ΊΕΔΔτ)Ÿ˜W\)…ζ9“Χ»]ŸΝλrkΉZ§―³±Β˜ΟΰH–γY•VRt]φϋ‹‘Ϊ«Y2nV #ύ‘)­΅ιάσu,bψ/Ίt’ β2ετt|,7;œ" ‡³ZۜρΒ£ΦwπH‘yθΐ[x.WΠƒ²,₯Θ&Γ©EΎ2š’υ27“Ό?/L=ΐΥΟ?ςX^¬;:,n*SBγ({λ£―f ©σh΄d¨ύڟα|m©o6A&ι2€‘Ν€B°Α6?ι‘ΝΧ΅Η–όΛΠN/ ‘’ Σ‚ζbϊ‚—c)«­ε2κΉY!ω7™ΓΏ¬·žΠν|ϊΧ·RQ{%ύΦ-ΟSΒή@½ͺǐ·tGγ΄αbΤΥΰΨ]#ξ?Ϋψ¨WΓμΘh…Π$>:Ϊa=SΑ―ζ—‘ΩϊΎ~Α‘RΪB"+A«Kρ+9ǎΦJ%Ϋξ^—βN‘–~LΞΡϋ¦8Ϊ’*ΜyΩΩΦςζœƒ|Ί8G³3$c‘±anM³‚ݚM™aΙPœͺFΕA5ΣG"gΤ.]s7|”φ”­uό<΅£%]―Τ;ωΗΫAΌ‘0n'Ϋ€O~,mΪ_ϊMΌX$ΌΫΝ-¨Aeo#{rš£[_ςGΞΘ§?ΐ0yζ„Ά“gNάΣɌέΗ—ΜHήG/ΗZ|»6­<Χ«gΥΥ?ΐ‘C_,6£€ϊύ-ΟYρ€ρ~ϋήe―οsύ“/ιΚΎϊO;ƒ³•‡…’sO\6%¦@Ϊλ·¨·ž ξILž9a:ςΜ‰-ΓNΔΗnΓτ§‘Μ8³΄Θ[ŒRΑΎ©jB\1jŠ)£ύ*†θEv ρQœSυCŸ¬’EΣΈ‘KψΩ{ΰ8Ž3]πA4ξΖ  @$oR"%Q’-Λ¦-ΫςXφΨήρΎyσ^̛؝‰Ψˆέ˜˜1»ϋβ½9Β3ž™υΪΦΘΗΘ²%K’)S<$R€@‚ βqί7χ ν_wUwuwuuθ2ΙFeερηŸ_Vύ™•ωηŸΥγΚ@u-pIH8ƒVfbgd€ *<;Ǟ -2I€Y€Sϋ’12=p²Ψ*5Λόlξw<0f™ΦκOβΩV²9’1‰Ωάzσ—h•,λϊ'pΡΕ²³>ξJh/ώξ΅’ω ΙΩKp(s;©xr}uχΰp4γQc"yπϊžώ6Nσ n‘HΝ!»Ÿ­U|tbI!²$%ε‰f|όϊ›όΞq:5€φΚηNΉUrή%M†8PύξEε`ΉTT¦οCJ(Mδ{qφ²™‡©Άz*Χ5CΫ½+"_΄D°o)8ΰ9:&ΞYιθβμ ι©Aυο~*IΉϋή}Lα[dρ“› DVα ͺΓž‚ιςLΆƒ3Ϋ–ά»}£hBX²CβTg&+%9*}MKΨ1#_τ ˆ‘-ΝcŽœU²AJŸ@ςAjυI:Άœ;~1<¦Œ”!2ψ$3“Υh[JΑ~QΞ<υ”¨ /Ψ“~RΆ†>0τ)“ςeB‚²Δ±8eLΆH Θ•Ι%’lΚ%YKcό²  ϊχο’ͺY+“Ύˆ=»•§ΐ€\RΎ‘†«Έt΅BΈypηG ΈIt:)ΐžBr^ΨΘΦځC$9‰š• [E£fB'±$O± €U–΅akώz–σ‘>“έθΨήxͺΒ€N? q'-W`ΌŸ²žAρniΑΞΉ *ΠΠώ RpŠίX”z¨Y€ΰΜοe <Ύ†ΗβMT9βHΑY½΄ •+]­z ·ŸΩώObXοκΆ Yη§όΤ+ΞS˜?γH3ύŠ?υ³|όι ˜u޳κΉVΨήΪγVΦ?(Oƒ'ŸηώA?§£ν&ή&KΝΌ£‘c3―βιCyόmΦήB²Φ’±㫜7ϋ]Ε1`Υχ_ξOΙk™'•g=ΖεͺβxoBΒ!δHŸ2‹νhhΧ$ρ§_Ρ Π&―Ωx>@Ν e‹)8o(ό^ ·αi0f›Η{ογŽφsΩKώΰ‹ž_šwešLόΑ-΄ ‘Ύ»έΞίΦΥήDJβkΘγζu#θDΓX Ϋy>Eεδ^ΔK{Kδ"ΗIλ]Rΐš”C‚Ω³„EyAF+2θΤ―τλεζ™Ύ&4·΄ΐ1M…l£[D6ΞJ€B΄sŒ”nžDΈJ†Z|LΟŒκΊΟ΅|f“θ–»KΨ(ΐml‹ΘΑ^ξΉ'ΧΧω>­ΒΛsΖƒύ‚A³ωςκςι1‡‡H²:ώπζ μ2όψ„`ecHz"λΒα›ΧΔz ΜΏΛ‹κŠz΄Βϊξ“΅ΠηaΟ‘ΩΝ€=ΨS tΥ%"/˜p έ(;‘ςεΦvψi²-ζ軍ϋχ‡έdο ΉΜ)δζ‰IΘ'ΕεΤ4AΡYȐ΄ΒLδΗKσ—£ξ~DQ€όͺ’U 7‹ΎYχ&ƒ8ΛΞcί‘ϊά~nP[λΰ΅ξφ’O¨˜₯*~ηΤ·66έ …χ|ρλΔi°'f’¦Ko“”γ%rή:> Ά“gž xy¦eί17«{‚GXΈJΖι¬1k©xΉσgœΥτώρ_'ρ₯³§HgΘλΒ|‰€3RxςΛΘLŽΖ~ψοš51/ΉF―αxΒ΅0ΠΡΠΠ^pېθ(–μΙ=©Ρ ΝΗ‘ΓίΐώΥQTV]‘7XHY―FΏHΛΕΠwάZριΜ·|Οδ‹ …Ηoω’/ό—oΛ'W`¨ Ώό»Ÿxά”ΖρΑΖKΊ­`/9so\N8ηΤΏ7+'R,’ƒfΗƒfσι£ Κδ™(ͺ  ’g*,υgάz»HΔ†sC n{₯΄š6…ž‘f ΰnΧ\ΔJ_Ί©ΘMΘEoΏλdεzsν[yœ5 NΡӁΗ YEΖΒκ6μŠ$KΌd-Xr9ΙϋΡ?~Βg΄υΈDΕΕa;)ΰJŽ•λœ-17€Α©Q$‘GΑِΐν$β&Έ§cς!>θͺ’tώ.qVΥ.d Ο©σyπ§ΕΙuΦά—•›ω°Ξ›hl*Β±iBCJιώϊ䆓r3—”4²ͺTJ`ΝWάh©jΐ~RpγZ8d;i†‹.AΝgγ=­b[λGhx²GφθσΉΊͺš}q‚”#?ΣS‹© ·Χlδο-ch£Ιyo.B²ΦL ·…ˆ³™n2νΞɐ΄Mεf>ύξWV!;ϋŸΖ–dΧ΅κKyY3νΰ†}Ÿ‚?Χ˜ž'΅ψœΊc8βcθ}›UδUTL9φ%JςŒ’,ŽcΒέΞrΓš‘/ϊΔ£ˆο01jraRTπΧ¦ —–ΟHπͺsQ–!Zz#Eˆ‡]‘DGΓInE%’ΟΛVž'P1$L:Ε¨6€LϏJYύ»’ΙZξt³γD›³\1„aGƒSœ±[&—¬–KIΘ-Ψ'ƒί]ω‘‹r3ΩϋπτΚ©+δMγ£ι¨ά,kjA!)8sov”M΅BΡӈΎ‘3(ΰΊrRςΟNυ( ₯eQ€θϊ;Ϊ$―…Wοr~l˜–dx%εΔ&?Δ`|9.|ώYœ§‘Iσ‡Έz«–xJG¬΄@Φx†©,<Ÿ'Μͺ>qiƒκΛ›ς¨Οε&ές²7 nvz XσωΠ~ͺ–π΅?’²οΘΈ˜ςS*Οψ՟q€Ή~Ε―ϊω9ώ4Ž ₯dύC[Y`μyχή?Έ‘Σ^hSΪ΅έΎμ½yΒ†ΙΈ4АžοΤidΏ9Ο₯5;žχχϋ(p塌 Ζ³ΦγrMaόMςν™rpχn$ίqϊ !γ7L^3ymržΑτxήψΣΉ%RrΚ͟}φΩ–¨k0V2%ϋ9”ΔIΫΟ»Pέt;«αΟtŠSχEΞ9ξΈheM£Ώt*αŒ|£x’Β=Οo*)ΥΎ%:ιN}οκί_τM<““'GτtώoΧjηδΘς¬.›)2˜Nσ{΄8θμBΈ5ΡIϊ ½σΥ[yε…ŠεζŠ_ΰ'o]Χ’ˆ;‡BRpV©ϊhγ₯;šΠ”ΩZKΟR1ς5*’ρ5L;0nj~ΧΐsM&Ÿ@¦*(Ή…1Tήη8}unΚ[υ@U†}gG>Ε‡΅Ubv€ΕI'Dΐ5β'BΈΩ|^ΩvΓ§Χ|ξ4γΦ»Ο±»Τ–„Ρ 7˜ζζ #LXΆθύ3V—a45=AyΞ!Jl2TƒΊ0ds ŜͺCcΰ΅ξo"Ž=(“{|Ž’Ÿ`#ƒ}4νH²bW42ΞμC"75;Φ„ν!(+ΛC<ρž±S΄ˆDVEϋy~η1O'Er'Υtς>*όZΈqwΎκ–»§ε_Œ7Ήλu:νϏώϘ<#©¬Aυ Φιl uvΧΖBΫwΠ$·ŽσkΌδUΞ[Η§λn‚˜R“i,ΌΠŒ)½Η«χο.»1Ή΄–|Ί«“/ξΒύ‘/™8ΗίΓΑ ql5]‡ίώΏdΰt 6^ςά&ώΕυxIŸ;crbmε™5ςΕμxΠl>}<έ…2yζ!|#δ™gŽό‰•ηό!β[ήxμ •›Ήœ£h踎¦iqJ’&,§W_DgvάφΥd hξΉ„Ά…a­Βΰh5ΊbβhZ‘ TΈ=I1‘šΰκn-.œ…Υcb9ds­ΈΣφ)4Ζ'vνΗ™μ2εΈ±e†θX²m;&ΆQτA:pƒZkNR+8jίΓΫύ±‹XΪ±“&—§όΫΉ'–―Iˆ‰d+`Έ«EŽ‘<#œyJ£ Ξ³Νh―εf›Ό»Hϋ>ζ#9) ‘‘τͺΉ Nχ8$,AVτU¨8σΩ‘D‰Ύ‘>βӍ‚³2%KΗ_όΟ°54 §«γ£ύp‘₯ΐY Κυπζz\¬@λερ%,ώhς~zφν>-Q4ŠΊžι­€ΒHI¦alV°Ύ{ε’r7mxΨ#}M~ΗΣ¦ζάYkΠηY7””7_ώƒ/•bxΛκ=HΜ$Λ4ήΰ\Tjm¨…#>’ξφΤ訇‚=TsΩ=‡—ΣŸ‘<|6εOˆτΎ“L —M‰7μ³θ=ς©ύ 3η6‘ρώΑΌόt[ΈΗΖ‘fϊ?κgΑψΣ#κHΦ?l‚q+λԏ΄;Ώ‘ώΑ%οΙ~Nψk\ {GΕ³lGh(·hlμ[DCΖιΖάx^κ€Μ}ΌvGΌ]ΛqΉ^‰Yiϋ”SffκP?ζ<&χ§_Ρ+ΡK“ΧL^Σ#bzžΑ§ρ z<οεΉάbΡΜzs 7x>ΚςŠe{ΪξΉ?–]Nܞθ΄S*…ξΜ’NG“΄ͺ»™Θ³sίλ‚vΈ v€(νΥΎ™’φ*Νηh&Πm(/}ΗΔ<3hl|ΆW ΄ώ:Ύvώ ΆσΚΖ€”E}οϋ?ψ7-Sζο‹Ά$Ξpˆ{^ΥΊΑ6~΄SΪΈtΘ‡CNb΄Ν•/_ΚSŒ2w£ρ§@£u™₯{Ό+7sYӘ¦ gJ$!)\-ιηΙωΣ4α-Ν’ŽO y΅κ§Η‡‘ηš2ζ~™ŽRWHLWa”œu Wθψά–GΓli€Νg›mΐΗw―( …φƒΘuG1Kst½ΊΩ|:Ό©ƒάς©NLώ]%(8š‰ζ»Ξ*l•°βύs₯κ=€­ͺ ½/<&%MΛ,Dωs;εχλIƒυ²©ψφs£97tU7δŒ#νμξ#?·"‡wποωΜX ξ?ŽΰœνyeΨΎ(¬Ο t£žΟΩE§ΪΡ: ―LDVžχε^Κ‘ 4ει’u;RJΜΰ”νΘΨMύt[†Rj'™ΦΖω"wΥψ&ύοŒΙ³xΔμ’Φ F06χξδ’a.an›:QΜκeω7^ς.η­βSέ"ξgςΜ΅|”gq6ΔΣϊy­£+ŽΟR89ΒΉ8†υž!ΦΘ_ΛΖY΄rΪVΗύ*QρΑΟqφ{§‹8ΉE{OΈέ<ΞsHœεYƒγ]‹ΖΖδΛ"ζg0ΎJ›»8΅ϋl;mάHRtt‚ρπκv¬N ζ’ηρϋAΚoT.­!Ÿ+vέ΄ς%‘ή—ογXž4–oΑ•ω[Tkή{7α£|aγ%78ͺ‚ΧgΌ€*ΠΩkHNύώ3+'Μζ“*cvή1Ϊ#S΅ήΓ)5HAύs€HΟ©£zs…OΗJ$KRΛΦjΥ|nwUσ@‚‹j¨―Ηή‚3ΌZξΈ’¬Βγτ3Ρ Ί½ω*oUxΰ= E…δR:jοΛ~«<Š΅ϊΘosΏΫΗ‰YίΫΑ‰€·FŸλήΡ&d%Ψe[1€ωUωœΪΰΠμ o»^lΚλ³|Ρ-ΕIј·pΰœpvHςzqΡ‰ε‚E?JΦΩW'ά“j‚sγγΦPvΐΑ4Ρ"Λ|»ΣζŠhΘϊΠΛγΧ[€rfΓΫ=νΨχYΝr‡?ΦζΥο;“Kξeͺ/r)Œ¬Θ‹ =6‰qg…c7Ο€rij|Lg:F)pg¨φικ}Ρr²BIμ™9΄—½–ΟoΟ£νbΆQR‚ξUHXδ3ˆgητ^EΡNτ€Xa‚&)Y˜τηIJA =tΜ£τ‰=6ΜmόΙFt¬ZxΡ„›T!·5„Ϋ"¬y|m? Ž2Φ?˜”Ÿ†ΉpJθη8χ~Εlύ¬:! Λϊ-.A9neύƒΆυξ φΞY§gu”‚Τ‰ΘΊ{B, ϊόSp6;žχϋˆϊ:Cί©fε™+ύk8.Χc-βmΔ”FShtύFρ³_Ρ+Φc“ΧZx˜ΌΦΰαmžΑΧρ 4žΧΒn°μ²βΛ@ ŠφDŽdiuΆχ΄ TΒ§q>lΨ›½ ƒhΧ±‚m?ƒKΛdrƒUŠB7}‚Κ_‘1ρH‘ύ·#*{‹žΑ^IQ™ΞΒkmk₯9χ|”§Η‘ηI…ΎRj,mš§yXɘΫμΔ03™xϊθE”p}ΌΞpξ=ώ1!Χ!:Ϊ{œΤχRπX„R9•užΑξAa3‘΄Εzώ°֎ e‚bMζ#(zϋލ,(πsΰ” ΙίΡά§vθμ|)OɁHjj –γθ±ΓJO>²˜;Γ΅W½Τ4d’ΒΠ ΕΪΑΕ1+ΈQgiΡΩωρ\;‘ZY‘IyΖ†Ό³«όa›Ϊd~”7ξΰηbω‡~ήTYŒ— ΘοCί`“ς>˜ΚηŸΪ ψΥy„’$a>όΰΣθ΄ΈvέZWŠςέKd‘[γVΌ¦€»ŽΆ¦σH+ Ή”z R%*h­Ώ#έxΌN’1 Ι­.OI^έλY²ή,­π5Σ‰qήΤχmέ|nu2!U˜Σθx‚ΑΊtLŸEφ.»h€…Tμϊϊε2‡ϊz€R!}ρ©gQC ΞΊͺΤ©₯8˜Ί„‡b;Θ4•&œZ]•¦―ΆU” ς3Θ]₯£R|*l)ΚV)ΘΚ«9Ή —ƒΦτΖδΩ(¦fi…!‚{Jn/FεΈv¬“WpyRG͝μ0ζpΣίρ’w9o Ÿ.Œ\“gžšΔWy¦₯•‡’γεxx©R >| ω’ žΒx›εκσ.—”<Ύ³’ōzΖGΈΉAΥ“Rμ3,_L'δbd1ω2@›ΈώYΞ£υΨpφδΑ>~͏€;’f³_ίJ)Ζε’I>•’‚Δ·ωεΛΙΧώ£°`ššd± —ψίPιεEj<_ε /IΘΉΏιxΙ"9ΑqΏ¦ςŒθ›’ƒ<¬fΗƒfσρ…Ι&Ο6ͺ‘δ9Αuc€V&δΕ‰eϊPεΞDwrΫ·­?[N,¬ινβΚ’+}‹pIJ8‰φ=2ύIR\ώ”—Us½|\š½@VĚ'«wτU!!*94QΜΝΖνJDηψ°L7X=Žρ!ο¦sŸΥ(7Ο ΅£«§›>²if5TX** 5ςԈΨ`πΔf%SΟMΌύφ4N>„τ ;©Ύ«\DrJŸƒ=>ο½sMWΙ92Yσ =Dc³ŠͺuΌΛXRζ―4ρ«nΒ5‰ŒήψέF ς3έ)π>$"‡ίΉ*[EηXΆνΪ‹ŒE§0>γmϊΞO^(»|Ρ#»C₯hLOΥΤώdύCπ[Y χZjŒχšl˜Z˜Χύ. ₯Σjd'ΈΛ!ΎyόΟϋω}d˜Q“ςΜ0}# Χp\ξZ|$φ%ο• &hΰ&ݝέφ+ΞEρχL^3yMͺ[fη|Šγyέgq ./[9‘³…΄Ίκ±'Q’•)Smlύzͺ•r‚ π$!―ψδEOo+z}΄ω:£τύš˜’4•Α ²,[Y«ϊΎοF?MyΖςΦeΣπLΩΧ\ΆΉ0ξ>‰#ι VΝ•‚fL6Žες’“ΚλŸ€9ήY,“Ρ‘΄ψ\δ₯ηΙʜ€.Ηm7DmxϊψwΙ’΄xKJζ³CD$½ŒηS€ΪBάΆ§V0Ψw(^ΧιΌ^:AΊYMΞ/ȟχ‘/β;―…’ξI7Υy)V/a΄αΪΔ…vΗέ*4<{…\=wγ•ε?βςο/‘’t=ύEœ?)(lr|ΤΥάΧ?Β‡ςdΖHχδ ‹α’ζώβΣ‘ηηΎ(ŸNθ½ήΝEq§8ž τgˆ%«΄sΑφνԏ/£ήY[t ΎθŒΜσ(Š‹Δκg΄–΅BŠβŠRO^ς1<YFυC°8E֏[9Eρ9菉ρ’οrή>%~όΚδ™…ςΜ©­sΟ~_%ιςα₯[ˆ;ϊu<χΥ³ςόLoν#e“—Ο„\2?ΞΚΗ©W ΕqhΈW‹ŽΆ&ΫφιIΨ{πNž‘Ζƒt\‡9ξ*Lt6hq33žΰςyqΊςΕCžp:ι”WnζLς›ΏδΤ¦Ώd ¦δ’*·βυΔ§’*h|›YΎΈψηx–ΫψΔΝ³rcƒφ)$=χ|I1­.΄›»ΠW…ΛΧ+•vcγ% +}k9^²BNΈ««•ςΜ]\ΈGωbv]’6A@$’vJ³DS˜šsUπ†I\²μΟβ`‚όՏ‘Ρ άιoΤΑ,Ρ*«ΘΓ“. Πdο ³K€.¨Ϊ†8wΎ:TΧ&hΛ>κžyδCW!Y›#?G™Hxό;\ώΈJ› κrHΑΩiϊŠrο¦t‰½ΎΪ=Uψ„~@ μY)ˆMΞD&MΈ€d*ηΒ3JPœχ\”—cPΈ―OΓύyP­?Ω,§Πχ¬ͺvέ말BνˆMJ§y₯)@Ύͺχ&ΈSŠ“{+Οl;Hτε+Ν;ΙΛ²%,9ΦΟB;ͺ»θ·Γ†(ΎβK€42CvΟ'‰κκs}θΡy.8lYtDt”¨=Μ,N’ΉΉ…σωθ Θ‰bh΄’H??…i½tUܐ’κ)ζ§kπ ΏU€bCB€΄½xŽ&’8›΅‰°Ep–ιEGŠΡͺͺIΑ5!š¦}—»”ΙD)Β§kjn»>>‘π)1“K–Λ₯©1̌Q#p jadΩΧ§φΰ[#—Œ;ΞN§q]lHΙήGΦ-w"5CΥ #)Ϊbη‹œŸ ‹•CtD"υe»\’+,ώN΄£‘/……™°₯ξEςρ=₯SFy~±ΈHr‹ŸR Εΐ;h˜²ΈrΏGΪΎέxλ|£&¦6%?]K2Υ?˜GΊ–Ξ…ΈιWLΥo#Ɵ¬@°[Y jΚ‘Ύτr&ήEηb&’oXŒΉiξϋ”Sΰ˜Αόg=ΞΌσ{iζC3’€\:1ΚΛJsJ,ί:P[σ*%ΛmQ{,)7‹i"’J@3ΊnΗT{gέkHΦYkΞ"mΏ ”›Yz™₯JyΝαch“• λpσΪMd~υŒ `“zΎK?%9ο›iΉŠOΘͺ󑼊»•(!«¦]ΧΖ𦃸ΆΜΠψe—‘­(ιNΜI³Š. ƒ2 γ‰=ιŸS)7Ο‘sΰC7ΚΝlQˆ ›HvrV= ΑjGL˜¨˜IκΟσKϊZN‘ωΟβεog\όζӏ_~Qžx—(ωw₯#Y&D HNΛv!— ±Lινs@ˆόV  Cm%D€”˜—ι’ά τ`t|DLaG|ŠdNY)>!6VΉρθ›ΐ@'YΊwΏΩΐΓ6‰n$€C#λ0ς8K’œ«EΣγΑoΰο’ςF‘₯OOn…%%[ώ”Bθ•„‰νΈž”šM•Δ—ςΜ΅ƒͺ0Ι;3 I5ƒ;–ΡΝΤ΄”šΏš~—€ΨΜύ%Α"•u΄G;νKΥwi…ΟΰδΩΟ)ΏΣ%ΒDΏ~r·‘†δ‹˜;!Œ,8‹ώΙy‡ΎυdzδׁK»HJά΄$ηΡ …;”w‹šΰ꽄…ΕQLΏΒAς[σγwβ‹ιΉΛ"YŽ%εκ±iΑς³*&ΐ½L.­₯\BD>²φΊΚP½‡Β Ή€GΧ[Ψ@sH…˜wIφδ—eΛύΒmvΠλU½Ρτ”8°#«p/χζ&»ΡψDΜρEȊ–ζF θcabBz»ΙΚsŽ0₯μ‘/Ώ"Χ=R³λK€ΞgΈ0%?Υ% ~SύƒΟγHΧr₯·ύŠ©ϊY7ώ”ψ Όλϊ?ΧζΖKΑ9neύƒΞοc ‘ι“PŽHBlΌ ρM9€ήNNΰ“Ηάσ©W„ίGD"(δ΅XΥ΅—;cIΦ―’†‘αzt*ŸƒΞ‰•{ ϋ…θFϋ˜ΌfγωŽ~όΓ›ήŽυΝΛPT12“€Y¬ΤΆ\!Ϋb›ΐΝOcΎv hiΏŠ_|ό ΤλL€τΌ·ͺo“ΕY=,FΠάς~ωθ¦Ή}e }€΄ΰήΡ)LύχpωζίαFW—*YˆvNLγκΑΰ˜d ΐ5vaΑ‰Ωu°˜~ϋ§Šk·«006Š'ΌηUσΑ·ƒw ?zγ·θp3τk­ψ ~τΓw―ψH4 —Χvoreq›άέt *~w "ΏΛ++Ξ)΄χMογυWhhw„v#—Ρx;Ψ±C°Τͺ-ΠυnxRΝΟηZCΩΉΪzΟ‹Ÿεu·Ύ‰Šυσp0<τοίψκ₯)"% >ησ“OUΡAαΌϋsόύ?ώ[\ŸIΎΣέhοΠݘz ςz‡b­S Ρ $©³Όθό@Iιξ υQ·tCΧ΄>|€ΊwςΞ/κž,κ”ŠnΙ2ηΌšz%œ%Cή5‘ϊέJΡούΥ«`ΨΫρ„”‰ΧVίAφœEΧέ‡>gYt?ϊ› ²¦CJεruτ΅ΰaE­ΖΰΚŒ§ΤMΞΙψ:ξ;^ρoΠά§]Ηi―ΐ­χeΜ†zϋ>,i?δR²A9h]ης|κΙ3ŽΏΉjΌ}σΤΙ­«βšΌ46hl~?Ί{*$…4¦ΖK&δΥι‚ΙΏYεΛ¬σG—‡F™_\TbΩx)(ΗK~Λ ε XSy¦.ΖΩοYΎ˜šΝηΜ]pά3yΆώνδucƒε,mS)Μ…Η ŽζЦT‹jiφƒΘ “JνF)ޏ‹DZ\–¦1€ͺ“ΔxΤ~”g;γΉ°±Ρ&eAΡ4.‰Ψ—}y»hušΧ§γCz>@“ΣΔ₯ΔƒpΒμ"ΝPνδ4mH$ ͺOζ€)!EJRešdiz–S\tu‘QˆW+»N„)Φr]“› ¦ae°ΠžU|Y:De,"_Žέ…"Ό)ς2…!|Ekζ&φ’x>έ<“n²<KΟΫΤ^S₯Ϋ‡μΌ4Υ½Φk³g“Eδ]ΛΛγn6_ «Ν%ά•’υfIΗ΄³ρ‘OŠuŽaځJdβι-i'λ•τφΠδ›ˆ΅=²nΥ*ν@Yv—a5’Σ| HΑΎ”'ε!s>΅ƒ’Oτ‘εΏ9«^RYJ&ϋδ: $κ|Ύ<ΧQN2L “ˆ’Μ“Θί%ΆΜ\š<Θ²ΥUiΦOδb~Υεی۹nZΎ¨+'ϊ#IΑYr“snV0ζ¦0Ccμh^Μ‘₯cΥR&ަΛG΅L’ež YΌιxO"νtDΙξ―bw<…¦žwΠ }έ;₯ τ[&—¬–K=θ#Εΰ=qΒvΦ‚²θl|œMp‹ΚC~Κ2Y8οΰƒ­KϊFo¦ͺΠΫqIΩ6’+pR~#θi―5DeVeQ~uΕσ‹ΰ«œŸι§£Βˆ w΄‰›€FϊΊΰθ Cίμ€1‹Δ9οΖΉ>VtγΓ”«@θorK •6ΜΈ΄—6>yρΛhΫAΚ―½ͺf˜TuU§ΩΈχˆϊϊ?5Ο†ϋSςS]’ΰ7Φ?PZSγH?ϊSυ³nόιŠTΰ„lάsνΫx)xΖ­¬πτtϋΪ?hie"»x/Z*•ΰόRR€ogΗΐsVb|ήεΌ’Α·η“ΛηΟχ—?`ε5ǜ“[»qΉΆ Œ”ύH‘f€[Ρ<¨Π€6Υ―h(ό “Χl<πι:2ΈB;GWWi7s…ΐΤmόςνΐβΙ nζͺπ.–•‹$²r²ά¦¨•ΥELό }ΤC$–ίίsoφάGNΪnΔμΰ&­V°8?žf%πφΆχΡΞYš ΟDNL,Βw©Qβ ‹Kcκm֝ΓΔTα_aEIψ'ψkϊ­―λΒν·‰~ΖJuΪ]JF‰’„΅2[Η κλšuωΦΌFή?²Fχ“?ΏK‹μ»‚ύΉχχ’β zΦήpOFc¦:ΟΑSε²—ήŠ»¨VGzρήώώš~.ο2ώεΟ/»kΖαςOι—ZŒƒ9i ‘XΪΘ΅°0†ΡΎGθ‘iίϊΏππ- Γ7ŽΊΛψ%ύl©™εrΝwΡ¦ ω̐OXYU-[Τ~ ΅o_δ<ǚ!9hagHžqŒqnͺΧ*«Q›τ¨8κ«…ΰΕωaκί[]ϊw!–ΛgfΌdBΞKšεSΚLW&ΟδΦ2-Οϊ\εuUρ $Ηοβϋ‡…Ι^<”Ζ?ri‚Η¬\τ)†ΗYΓΈυζί‚³!Ό»φDzCΓyWf‡Πu‘ǍnΗ†δ‹P5ώ―Oγ U>Ιλ“|‘2©#=οβθ§ηL?HΔLΙ%)³φκ‰OmΚ »Ϋ„ςΕμ;kZΎP“³ρ’χρξZ—ό–ͺWv-ε™ͺ―GωbvO‘E2Ԛσ“S:Žƒ1βן΅ν©UŒ9£}šSTž! ³΄˜%*_&%GΩgah›θΕςΆx€Η‘@Υc£-Š"ΆΒ±ΰS­kKQ:AR”©λπΓFtΪ‡ N)2¦ηΎΉ«k1Ή-…εΗ₯ZSΤu2Ι–Šm8πτ«Xͺ¨@[σ8’ς‹±―ό2Δ&œsφ64cθhΟOxΖqΌόβ ξέώS1%(?ω²ΐΏs&ώ>%η_Cn MβΧ>A_o'ΖG‡iWg,2χ”βΐ!Aα4έ>Ϊί‘₯`?œέ’šΪl3š8ΕkS»ήΡ1©½Β³OαΒωh₯γ.W·o']©eLv>Ζ·ξIn¦±νGΣbέDδαάΧΏŒΫŸ ™&k KŸΑ±R‰Oξ8³zy·ŸYϊγCy0ΩRQΚ΅γœςy‡SNΎό*’;h—ύ6„„¬bΌ΅%vJ&’Ρ BxΜQ\±R6;“S€¬$}χšͺ¬ν½UΖs’qv'Ζ3o”mχI‘yͺ»že­S•θ™φχΉφSΛ›―Γ£qίΚδRϋšΟ_>}ηpγs8Ϊ‘Η—is½'pΰHΆΨέx|ύΦϊ7J_om]"’S‡iή•VΘΈ„βqh|;Ο­Η2gΙρfΤ›K†ˆ[˜(Xψ΄’ΚLžY+ΟΊκξΘVι­hw4Μφ)ƒmuτ±rΗƒ·p_ΗήθYΟΎ,‡Τ™ “/ΦΚg| έ³ρ’!˜ά&brΒ-4[-‚Ι³υiρυWp&ϋ²m# Θ‘,‡ηΰ@6ύœκλp<@Ε°έ@§”tG6V9…$Y³u{’9₯ΌΊ?–·ΒMΰš†8IΉY$½»ε‚΄žνσν’‚3AmOΦlω$αΘH:A?mzξn~Ί5ύϊ;Λ]S―UH#>½υ)l/'dΙΕεαΰΩ<έΒtυ~vŽΉnjύΐ†ΪZμ!KΕΌϊgLΏΐύτΣjBΙ’gm%)ώ–ησΑρ{Ha˜~Ζ]rφqΏγΊYζ:κQC kjWXR$[αμk|¬oiSΑΩOΎŠ˜‹Ο γƒˆLμšϋ©’Έρ–Ώ„c{ά |θtާ_>¨δ$εθχτš|,h?ψΠ)Œϋβ³X~z-ΪΔ8―~Ε\ύ‚kόιt7 L>Χ5Ο·””»š/ΣΈ•υb“[Π?Έ<_‘Θ)™©Ÿ+L4£φγǚ 3rήτσ)—μϋχ‘œΥ°Ηœ<3L^'αϊΛ#Q˜ΈWώnœŸAγΈΫ‹Θ±‰~E§Δδ5Χ>[y<ΨΟηϊrΗœΧoVC€!ΐ`l’Σl˜μu?Άφxσ-uΧΌ„]τ Ί<7ΘΙ1O+psfžω2ΎσςatΥ“–fτb9œ6μ;‹’q-f¨Υ·ΥΚρ[ΖC@@°Λ/oό«λκΩΏ5δ™g X,CΐZΌ½ŸΑo­­!_ΨxΙψΑR>Α.ŸΌρθ-°m#œšΈ‹»«1¦˜ΆS±α@χΠ-|ΤS£ ος,fΙ`³[·<Šž‘J\kΉŽξΧTΎγΒYz4κ›QiΗ.΅γΞ“Ρ>9ͺO€xνΌ…:*αi³μ’“†βŠŽ©,ύ| iΎ†Λο^E'YžT;Go5VΦ’DΑ ¨£"ΕΠ•Uό TΰΪο£O­σ%QνBΝ'7Ρ'*¬:Σλ¬xΧοVλXλΑ“ͺϋ²Rϋβ‚ΔGx γœRœ^y|Ήt>ΎŽή»)q!\γΛ±§@2Οَ'·΅ροκ>ψ ξ=ͺΗθ„sNŠΈ‹KΪ—ΤΡψήγ°!«ΝzϋρUΌχΞ5χ ~”Ιpy~΄ƒ o=wπφΫΏ'Λ.Ο‡sΉΌFŸλU:^Ξέ+?6Ω€Κ'ΏΖγρav\dλ‹bŒή{δ—|±ΡQlΫ]ŠΥ pΜkίψ‘‘QΗ™‚Υqͺγz7»Δ€NR>(jG„¬ΰ<Ή0ͺσžΈΛ˜αL.Y/—WπΦ―~‡'έο*Μ ―oHσ@˜’K3‹Κ»λόώρΤιx[±”•ewύF-z›ΤοF/zŸ΄hxΣά,-Ι}•&άεfd ^p~Θω!U8DD$I4ΠΡΉηˆVcθ©ΐ₯ŸόuOz]8“¦†ΊΠTΣuν—ζ&₯hοΧιHU4υY~>τGͺνΈ,–ΘOηηS―ωσyιWΏb²~?UM^SΟ΅T6n•Π\YΐΑaA@Ο—4v}BVϋuϊΫ)ϊΎΊώφ›ZλΝTΊ)9ozΧ¦ΗKA6neύ`e˜΅±1α|»43Œ£ί;>ΎfŸO_Ύ|dΙ%ΉYyζBh֟Oίϊ•5ώš‘gςZ€ΦJω²YδuT€pάΡΤΜ̚=Mx˜ψ««Ξ;λ6š«ΝU~ήξlΎBυυυAU±“ψ_ρμ~š?«ΒσOh *ξ³ †C`ν(ϊΚΨ2cΡu§=w;εΉΕνΜ9ptuόρ‘\'ζqEΐVϊ^ŸΖΏL³&g4+ΟdλδY>}λWΦ ‹ŠaςZ €΅ς…Ιk-Ίz·B'„0εζ@mηkΈ·­;G±2έOgI0Η`0ΞΤΊš·ΰΜ)3sŽSr–”w$₯gι>γωJ±?np&B¬ͺo\BλΈ_¦³ƒ ΛΩ‰LŒ`j’ΩP ͺ†cΜn˜\rmJ³r)z― ρε‰ΐgΤ-Έ*9{Ό+RΖBΜβiŒz`€bοQ`΄γΒZΨs튧YyμςίH 1‹§1κ,C`λ ΐδ΅k[[%_ΌΙΏ@ˆΧϋξpEέΉ“^\ڜŠΐ³³sX^^Φ«: ³ΈXa>|xx=ΞM°qFŠ!ΐ`0 !0Ω;Ο>ϋ ΙϋR Y>Ug φxu]˜Ÿ!ΐ؜μy±pSΚ/IώrWζ A€Ι—Α•Κ`¬ψb«νΚ:¨ ςτn3©μp[GwξŠΧΠκϋϊ€Nd»sν’GbYYγΧ+²ψΕ?Ζ‘= ΐD=.Ώώ ¬WΑ¬SDζžΐΡEHJ³#ά‰Βhw5κ+ήC kD'dΨ-C€!°–0Ήd ΊœrCLQ,ζ‡ζ–Nές8&{Αo J›— {6oΫn嚱ηښΦvωοkPbT `ςΪτ”ΌœΌ Ζρ{χoΪ•JxπEE §†MΝlΞΝεΓΓ£X]]υ€‹²ΌέΩ<™ϊϊz+Θ1 †C€!ΐ`0 †C€!ΐ`0 †C`Γ°ŸωžnΩ3‚aδμμlέxo|’HϋM횻-tγξ@χVηFΰj+r $Ui½ƒλτγ\d|"Β#Bώ•ΉΠZ s †C`έ`rΙΘ9εfI©YRγ(sJ}0Η«•=¬AlsQaοΡζjOVφ\[σ$°ώΑ†Cΐ=L^»ΗΖ—N^s.ΨΖοΎΤq³¦]\\dΚΝ›΅qY½ †C€!ΐ`0 †C€!ΐ`0 †ΐ&A`Λ*8χ>ψ½6I+n±ǰasΪΝΩb ΙͺΛΨD0ΉdΎ1%εeŽ‚€ Μ)I„&„ΉXtΖx‰gσmœμ=Ϊ:m½•jʞkσ­ΝϊσΨ±œ †€ο0yν;fRN^λψ]ͺΓV½ΞΞ2“[΅νY½ †C€!ΐ`0 †C€!ΐ`0 †@° Rvτδ_YΙlw»`jΪΝ›Ν] g0 †C`‹!°0’]Tηο?veGΙ–Υ[ΌsύΤua~†C€!ΐp€³ό 6ωοΌΑΕ™ηϊΉG‚Ε0 ΐFΐYΎy“ο έН;ω$‹KKή’UόόόfffƒŠη`f6.V˜ζj0ή †C€!ΐ`0 †C€!ΐ`0 †veΤEaizŒ·™Τv8|ώ»β5τŸϊώŸώ©Yηξ\»d1F‰!ΐ`0 †C€!ΐ`0 †C€!ΐ`lEEE|©-mP:+r³ ·;›―J}}ύf©«C€!ΐ`0 †C€!ΐ`0 †C€!°E°ŸωžnΝgΓΘΩΩΩΊρή;::ψ$‘φ=š€Ϋ4wμ†!ΐ`0 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`l LΑyΑgE3 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0ZΆkoΩC€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0@t”; 2125`0₯±d_ωK|αXfϊ*π«ώ#tΛζs*οuœΗΘ”Γ#έθΨ\€ΗΨ‚•Ο1Ώ0…ρ±:τΟιe³!%> ±‘qΫ‚§B€Οζ02\‰φ)½τͺ°p;rβRŽ|ΎEŒ7’eά3* Μλ ΤsψζkgCi†λ.γW—ξxJmM\\&’Γ€…ω.8Ζ¬! T’O~_ΏXŒ-*μξŒΗdύ―π“7―(a–ϋόx,γΕ†„(jtr‹Λ˜΄TN˜«ŸrΠ2x!-L.iρΖ»@•σ©§ρκWΟΨeŽϊ+ψυ•Φ‘w_ύΦ$†Σm7πϊ[Χ­£½ζ”2±7=‘;A#4ΜΟ ¦·yΝK•επ2;ητΗurάθŽΛΓ©nρbέΘαΚΒ(ΊΊκ0⁞χ2½“=gQώ ΐϊΠ ŒΌzύƒJ~Nόό™?ςs-ε|@ ΈήςΪΏςdyκAΞλΑj$ŸœF€S˜nΰ”†έZŒ“ΧΊqδ˜‚σΖaΟJf0 †C€!ΐ`0 †C€!ΐ`0 †€+±gπς‰³ˆuΡ iix—ΫZuγΜ††νβ³E†mΗZ-"D§Ώ„?Θ©9―±Ϋ}ς'_ζΛΓP~ςλ(ςΗ•βτρ\Ϊh°‚±–ΫxΨ4ΌΆL­Sy‘€€oC§­Ξr8§NΆΞόϋg-7ΉxώΤkΨ+=^³uxλΖ[ͺwή,ŸfσώΚAkρaΤ\DΉδΒδ& ˆ+ΖιsgpπΨ!’S‚«ϋέƒ__7‘δjDΞo|4ΊΛΘΰϋ ΘQη³ΠΩb˜!υ§€εlΖ­S€fmοž‹8š_‚hu ωŸΙoΑG~†šq§?n3Ž!#& qQIˆJC΄ ΣnίωͺœΛςk\nΓ‘}ŸΗΑ¬<—1θΙόSxά|wΉŽαYΰG―GVΦ?¬ΚΪ2Φ£°B~J\―₯œ—ΚΨ λzΚkŠfΚσYΞ‹XϊœΟ―ώaƒp«Λδυ¦iρ΅š›ά4±Š0 †C€!ΐ`0 †C€!ΐ`0 †C`=H‰΅VnζψZ^^²˜=…ή²Ε”%rρ‘’–‘’w]ƼМ cχE|©,ΠΊu‘ί±C‰ ίƒtwΚΝbͺδ”γ8_Ύ„ŸVήPς‘₯ΕΗ‘ qφ&&•α₯SΫπΦ'οͺ%S±{―ΜΣs,&’^σψ‘ΰΨΡrAΉ™ht46θZ)Ο,=޳gρ₯4/}Π¬α9xφμa?4Υτϋg€ΆIŽ~QQn¦|³³“˜Qη7Λ§Ω|TΆ?rPΝ:σ―(—Φ¨¦O6΅Ο>}₯eňtβfTύΉSœ§[#rήSώ΅ ‘7ν (,u<·λΥIυ.=πG8ž&έj―yx¦ψeŒX5Ξ /Ηɐ¨-EΈ[p`YΉ™b̏Λν8UώuL’Τυ ΅£dkΨΆϊΟΈΡ£=…υNXΪ­ο™/U lyζKML€]ΟώΑv]C9oF«²¬«Ό&¦M•gBΞσψ˜ΘgΎ°ͺE―Xϊ^{- [Z^{‡Η―LΑΩ/ψXf†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`X‹@xvN!dΥ•ξΚΚβςN"KŠr<ΐCΩR±ψΧΨHIΩcνtD·ƒt-]T|VΖΡβ¬hb?σ*εζΩ‰4τΤ’{j‘aq°Ηεγ`fΖ¦TΦ𢇀NΗψX3ϊšΓτά4BΒ‘“^FV λ‰ΡIE(½J©ΜψΩΘνπHzFΊ005ŒμBFΚ”₯η@ΗDIφ#τwH£-Νa*Yε.Λ!hBυ»wταXV^ΐΕ«ŸΦŠΠυ*―­·ΫD†γ RpΆ[ΑΏ;fί?wτL„ο-ϊ6Ž$k­€N͎cRMΛ,ŸfσQ٦堚oζί•K›£ΆN΅ΘΗWΎσ?£ΨΙͺΌS"ίnOGοέF( |¦ΫLX§φ ίS―WDœ‘|V”›gΠάς14=ARΑ<›—/π“ό4ϊ{ΎΧΕ)GtL‚JΉ™£'GΙ;7½̎Λχ]Π(7wΆ_Eeϋm,EBΩήsΘ· κόϋ²£¦η}Œ¨xeύƒ Œ­ξ tyΆ¦νΔύC ΛyνΆήςΪlyfδ<‡™|fϋπ³,Α€ΐ––Χkί@ͺΰe§£½ŒΉ‘)ν5cΉά§:ψΚ_β Ης0ΣW_ύw£Ηάgυ)Ζ{η12₯7TVЉŽΝEzŒ‘΄ƒsε³EΜ/LΡDlϊη”4_ΈŽΛKE 3Άγ)ϊ2’<γγ4μΉ„gbo|*"Bw"„f{WFΡEΛκΑ΄¦œυΊ‰;―~λιx˜‰ΆψΩ[ΧΧ«δυ)GUΏiͺίλ›­~λƒb€•BοRΊψ.gσσ¨ι]Λ Κ“εΤ2Ι£9}9!§1€΄Ό6+—TεΙ}XΝβ’O…2 †@€!0^Oθ§οΰ"§›Ι§=ƒ‡­Z…ύ<šIG‚KΚ†Ch©ΉŒFC,ζβ…‚γςίƒ=7πfυMUΞV΄τVβ“›*ŒΌSψε₯ mΗ₯Fθs―!G<žœτ¬·:Žή{θνόNσλέCΥX ωO8–"ΤcΫ6s&•ΒΆ˜/.‘W)rŒ Λ_―«ƒ'B²Ω[qξή΄ΙΕ–τκ²Η‰EΉώxΦ»<žΧ0—mώTA?―ΩχOŸšΟ‘)Ωρ|mFX ¬β{Ξ™˜Τ2Λ§Ω|0+΅l³; Ήdam‹”,n§Πzο&šg2pᬧ“<³oTΞ{¦²†±cpεΝGkX€iκw9%rκwυW•<λΦEC 'ŸEΧXχ&>7‹τυβ8)8Gπq‘€ΏO>oœK”ά_''šQΡ2ωι^R˜nFԞoΰ₯|A‘zxfD_/ΒΜΈ<όŠs2eFΪ›χŸˆkΕsUψ}UbΞ}Ι\Š˜,dΖ#;Φ?ΘΈŒ‡υׁΠ?θ΄ΏW@6DΞ{εΚ|‚υ–Χ~”gJΞ2¦ς™ιΜ·Λiχ5ΠζŒTƒ₯qE`½ΪΡ΅δΨ3xωΔYΓΗμ΅4ΌΛm*‹ } ΫΕ§ Ϋ.㉣Σ_Β(󒁕‡;CΙ’γΛq4οYΠΫ;υ5oβšΚ2GN6ν΄OΙ!εf½τ/`xθξVΎv—’l8΄οσ8˜•'O KINζŸΒγζ«ψΈΛ:μ%Ϊ†―Ά$fΨωγβΆͺfŸ π#a\)NΟ%EόŒ΅ά^›#θ6²~~@Γ²κ#°wΟEΝ/A΄Sτ3ω-ψθΡΟP#œ:%0yk¦ΌŒ΄cȈIB\T-$₯!Z~­FpϋΞPεΜ£ςΪΌ\|ζ“–DNz…ξŽ-όϋ?Ε­ͺ+NΗ…šΝg²ΡΦ3ΫFΚ&?­mi+ρ EL’Τ―rjΞΦ9ίί[Λt9ΘΥ0%ν,Žε•!}—σ‹ΐQΪ΄VYϋκuΦIΝβi6ŸkkδβωS―)Η·ΞΦα­o9ΙPΧ\Βδ`@5Gΐ0γ‹€οΖΈŒ ώ[$rTRΐ ˜š˜bΔίοTS…R&3ςš+‹εΣGά,.ϊΤX(C€!ΐ`ε‡N!]œΟ™μΏ‡OŒο› œͺ†'#V˜’'-C‡Ύ2‰·ΉG/ζtVnVgπEf K*­fΊηx%9Ο•©Š™ZœUέΉzmΕπβιbμ$EΩ•ν™kΗοϊk8©UΊf4²ϋΎrα,)ΣHλSh‘oΞ[ΝH=\ ΫΞŒ΅~„ΛםͺΚρ…ο?X2°2Σ}ΏώψόΞ!7'6kΗP Z«γUaΓ_rρiμ+,BZZ:cΙ8‹Τ–Σ£θθDGΝM\»]§_‹έ§ρ•σΔg^†Ορω•#Όώ©~&.4§_y…ω{ΘJw”œlf¬½]h­ΎƒŠGFŒLœΐ~2~#ΈΤέΉ%ΣΩt<ω΅W±'.”ž‰e„%Λqi‡Ώop²‚ !λ=½wƒkχ­vŸ_{ϋ‹J@Έ8¦Ι6$]GΪ«Psϋn=R§χ―<ΏΪAͺˆ‰«΅Ο΅‡χΟo.Y’ΞβΩbQIrΎ=σIdPˆ›ŸΑΨ„Ί-\r:˜εΣC>“rΠ‰±ΐΎerΙΉδΪΔ_ό#3•Sψ/ Ϋ[P{χCT· KΑβΥΉΔe)ΕηΏχβΓ©_h½…Κ‘$œ>Y†\Z«άΊέΔυ7ށς•R_ςί—¬L7αΕιυΔΙGΏŽ ς΄α2.]ηϊŠyΜNv££»Ν}@ς™ –eζβFΞο>―ž/U γ WρžKθTNψΧNΠzΧ?ήΒ―U†BŠΞύ—– [ΣhΎwο]Υ7(’ξ[(Ο΅aE5ζυ½SΤ7_ςΔ‹ιχX^\Afι—pϊioνη_$!ηk°7£PΆ¦χ”)QΎ=¦PWIFP.©Ώ”RΜΘyΖσ濏]^ϋΥ?˜•σfσ)€ΖηΠ$ †Σγ6Οΰ©y7ƒΌΎR3橊–Ηm˜‚s MzΡF4ΓnyyΙpZc zς¦c §Š4’4΄Œy…™vΖξ‹ψ’κ˜=9BφD"|‡Ϊ"D1J‹#]Žwυ$&•α₯SΫπΦ'οͺSμ8UώuΝρ(šœ‘v”μ ΫV7z6h¦|ž>ΐD¦€«†Η5ΌΙ,=޳gρ%4/–βΉVΟ…™χΦO˜_y{Ύ† ω…nkWŒgοΐβ_ EΚ,žfσ©ΛύGΏ¨(7SΨμμ$?₯¬“4pƒΦκy7PcKί[wεm`ύά±α>α"oˆέA‹N›ΑωσjΆώ¦δ5Ζςι?˜ΕΕlϋ±| †C€!`ΨΟ£D΄Lꕨzr3ΐ4ΖNtL,$ΥρYιτ―ŒˆHRΔEΏΫsQ”.XΨP[Η՝N䊍Ηφmœ§ΌψJΚG’`-Πilj’ς‘“¨XζΣD‰7ΡΙΩΘΟ+P’Ζf$5%ΜŸ­ψKψƒο~žί˜§‹‚=οΎ@?ΙΕ―΄ΰ2œœw' £ €Ο;‚Y|§Ό™NΚ6Ά€<”šD)8·‘’ρ™―~…Niψ2vΕ#-ϋBZλxύmν⿍”¬ώΰ5=>OŸ—:WR2ϋζŸ~Ή:eFΖe —~φACŠ„E/Ÿ@ΆXΔΘ£JT"β’JJ z­jK%…o%!ο[iϊPB|ΎϊGίE~’,)‰'δΒYϊΩν‚_Ι'ΓψSžωvPΈ3η³τΉ6ύώΰ¬g^,9#EvᣆZδϋ‚qaŒN>5@CJb–OωΜΙA‰‘ΐΏ2Ήd•\R΅5ɘ―|λgH=¨'ΛΒπIRp~_‰πY.QΦέιΘ-*dmv)V¨‰Ύ(Ršύ<ΎΏΑΟeEζΘ΄dσrzŠοΌƒΫm.‘_|Ω9‚bφ)8 —ψךđš;ίnάΛωH‘>™“剋4λI©˜+2“ϊJϩ׎Μ=ζBΘεγόχΏ…cvαVυ72._ό.οIΒΟκͺΰ˜}Ήmη ΎΞ}³HΧ―χˆhΨΛΎŠο”©˜δ½zνηO€Πχ­ΘD†<ŽšAk2¦-?τ’Έ‘MTn¦"’"8EdE1Y)Υ_&lς‰"LLϋHίΓΈ|WΈ2jhjΖ€l²ώA‹[χςΜιbύƒ ϊ·†ρ€μφ²/B5*ΔvΩQ|φΫHNŽΗΟ?+δΌγyjsΎ[^[Ω?˜•σf󉏋‡ώAy ίηΧ8„Ν3θ7πf’Χ5ŸκΧqB7LΑΉΌ ;§²κZ³••%ΔεD–E»Ϊͺ,KΑ~”3hοͺƒƒvdΊ,‰―Œ£Εy…„έy•rσμD zjΡ=5Π°8Ϊ!”ƒ™ ›R ²γSΐ λ97<€ž‘. L Σtμ.d€@YΊxΌKΜA”d?BΏxΌΛή’ εζΞφ«¨lΏ₯ˆC(Ϋ{ω6αΓa_φaΤτγQ‡&¦.+θŠβ5MŽeάΌ}[₯ά<ƒζ–ρ ι ’ .ΰY:B‰w1ωΘO³Ρ‘GΏ0[^tL‚JΉ™γC’S䝛'’Τ š–Χ&εWΆ>±=΄–…ρ±fτ;045†ιΉi„„%"'½Œ¬α V£“ŠP{•’μ5›O σ»"ΐδ§+&ώ„ž¦ή[?0 9HV‚Nͺ”›Ηι4Š–ϋ’ΕςΤτSW,œž‘=»sΡ’:­Δ,žfσ97Ε^κ׎$ rSŠ›šχi"VΚ·e―AπήnΩΆρ₯βŽ4ή»Pϊ›n3b Ξβ“ΦτwͺIvΝΚk–Χω~0‹‹ΙζcΩ †C ΰ°Σ<ΣqωΎΎφJΤL“†ЉŒ—λ›rH?ΙM:šQΣzUN7’rιd!ΥδΨ"rΏ?ΜΚל€6>ςχλίF£!\μΨ»ϋ0J Λdc,ƒdewNβΔσuώ3Θ“£»ΠΣ―š―—²ͺΎ „ U٘‡”Δk1ž’JixΊ**αΙΐ³Η4JΟΛ³‘bΙτ*IΘ-έRΤ@SzΗ盆̂l]Εμ™‘tuwΡiχ#d3‚ͺKΙ2³ τ•}ς"Ξ·7βΚ£a± RΌψ%Ÿc-¨ΌχΣ98xζ°z–’’S'TΚΝh¨x„Ύ‘Y쌊EBF σ²)Λκ‹ Ξ*iΙ!Iα|5w8₯©CσΥXŠή‰₯Υ„%$‹Ψ‚2Ϊ@Σ}ΒcΫΆ‰ε„¬`Έ[}4g"Ξν•rσ(ρω#d1‘ΰ( E…ΔΒ羁g»Ι28oΰڟςΦ}k%ŸiŸ%Ο΅οŸwή3ρμ‘/ˆΦξgPϋθΗ¨ 9#RΖΤ­'»^Νςι=Ÿ)9θΚ`€†0Ήd\’š8_ϊΞwQ,›„ΊΘZ~kχΆ‡' 9›ΦŸΘ‚’FΞ›‘KTήό Ιt­s΄ίG]Σ "rJp° CˆΜ9Œ#₯Šrώj[Ο[Θ·#·°œœ+΅Dp9EρbXšyλΝNIόΎυ ηΫΪΡO†ζl΄ ™˜‚έT–ŽΆΜAΎ=Iξϋ»…>ώτχ΄ΚΝdΙΊ΅kœrχ±²b>oΒώΟγε—{ρϊ»Ϊϊχ·άEέ"gΑ™zݝ±d`Lθtϋfž’Ÿο‘\:MΐkϋYΣΑ—ώ!>©Ζ₯Ω.tŠΓΎΌ‚o☼™O©ΔΔΤœ‘Ά”Œq½PΚσξσ4.·!&<\$α τζ°KͺΏSa¬Ρ}7ΨΈΥιiαnY ŠN‡ώA'΅ΔΙΟ‡5νΟ<ˆc₯ΒŽΜ„’ΟγΕη:πΛ«€dόΥw9―dχu<οχχQ Λk+ϋ³rήl>ΎI=υJ›ΎΟΟq“Χ:MΌΩδ΅NΧ0hΓœ1^Oθ§οΰ"χmΚΕΞΰak0*Φf"^ήρ7„–šΛhΤ―¬S(ΉR LRφ8³ΧŠ–ήJ|R£RJδ(¬N £χz;?Eγ8§΄¨Έξ‘j,…ό'ωc`Ϋ6Ρς3ν^/ΞΙ”Ά7οKΗ£ΜUαχU!ˆ9χ9$s)b²I&·G$…@9ΧzβωIOǘ4Aj=/“άG¦θV—}ϊͺ‘²ωq₯ϊqZλT?m‹ϊA’e]’Ž‘$GάD@%4Φ½)£4Χ‹γ€ΰ,¬uD""”›Όρ³Eύ(o’>’+Zζ1?έKŠΦ͈Ϊσ Ό”/(`όθjV^›‘Kb ™βsͺΏΌT‘ΣƜάFθs―!‡οW€u*³ωΤ4‚ΝΟδg°΅όκtΪ{-€¦ή[³-$rpвΠ>9toT^•k<ωδ-DD%γ€Ξd-—Θ,žfσɌ‘'%ϋ"žηϊ5ξδ]Qnrρk2‰Μή§σ^XΝ†_ο­ίΜ°q€Bφ6,ΗαΚ›4δ‚ϋΖμwͺΙZ›•Χ,ŸώχƒY\L6ΛΖ`0‡@FξYň|Ν6 ͺήέόzΰρξΜQΌκ8pηΈh[>N–ε#ΆζΗΈ¦2|²7Α.φ‘΄9>e’Ł؄<†R―ΏŽFEείΕιΔxϊΞ^Βφ›L#1άΤV©¨ΉχfδΎ‚g2Σδ}ν£•ιf9―Ώžδ3ΗP(a1]‡χώώoρP<)τvΗ(ώΔΕ²³·;pλÍG]JΒέ§ρlώd›ΡA§£ŒTγΖ]^KWIwυΧh{ε/ρ^Α- Ω…ϋΙ(εu>>σL™h‘nΗγ·σžΰ[€φ§―½θVΙ96VzπGqϋΗ‡¨¬k+ ₯Ήπ%ΐoχsΗeυpKG³­ϊƒŸΛ|ΩNξ€5”c<΅Ρ¦ΛΈtS…‰s'±7OP†ζ,Œί~γοqMRξώΰ:Yόό_Ιβ'77…‚Γ/Q «¦ΛƒΉvpfΫ’{ƒΟ΅UοŸžΛIΉΉΘ&€μlΉŒ½@F²±bΨΓ&n³|ϊšΟŒ4Rχ@HΓδ)ΡZ(—Έ6ΝOεfe"Nε™,₯‹(ΟN©γΣS½ςX˜¬dŸ•”›₯˜χϋ0BΦR}μdΡlŽ'qτ€a€Ό‚ΰϋmψγOίU X₯δ¬ΈΞΟcΗαo`—–ΰš,œθE}Ν‡xχψ9―,R°΅Έ™™YHŽOC”T–‰!tχήE;νn>u^9 ›ŒΚ/½ŒΝ i—σ<Β“Ε K8³β|e‹{b 8ŒΌψ[― ‰‰Gi"‘Δ{›΄έδp'zۚqσβGtD”8ΰ—ΒΨu~vŽuϊ‰φžΛ^ššφξŸΙ‘Μβi–Nʘ¬Nr”ŠOΣmθšNAVkΓΙ„rͺF"X;W.­+υ±žD"υ1Ϋƒχ―΄ϋ¦γ₯gw"‚ZΫΩΑ«xλώιG ₯5)Ω‚ΰ|fQGYp0Ζ[>ΖqΗ—•~+LŽSHΊ5+―9φψΑ,.†*Gζp8UŒΐvT‰›Τ“MmΥh[Εά.ΞZ£Ω‰1ƒΈ{―“¬ε91΅Œψ„|”€Ί•†K +ΡJ Ξb9mHcŠFŠv’Œ4·]ΕέΡ Ψ’ΆΊO1D.JσwβΆ—²²© dπƒ6rJ 52ŸχNβ­Ϊσςγb7IYOγH‘ΓΕy|(›Ο( h!A°zQ&W‘hέTύ±¬ά,δW>j―•γH™4>u³νλξ=εf±υN)”ΐjŽΚ9žΎŠGHΑΥpH˜{Χl†’ΟΪΣjΕΆkοβΚφ2Ϊ¦Ν';υSv‹οΞΖ Έ*GπuγΐŽ;]C¨Ώ()+ψŠOο ­yH.(DR^–|ΤΧν%’RσΌvΑ­ά,Dΐ‡§>EΡ–ηΕΏ€ΜlMΛ‘Fςcɚ©™{―­ωώτ°^Tό5ΩΰΟHχkΧ€’•sαγ=>’2Λ§Q:3rΠΛzΌiγ/3fδ^αZŒˆYν€sx±8‹‡qΉDfn,•KvlΫQ!ƒήrζ˜ζΪdΣιŸ“ͺ”ΫY!—€fΤώQRnΣ>΅ε€ΰΜ™mIμΝr9²όίΦσv°Εη jΣ·}R ­˜mq Ί{[ό.έ‘Vάω—σ}=d»]PRNCrυ«Ψi]GπoοΗΠυwπΛχ.3…HIu΅IΓ=θ¦6pο«i₯gOxՁ“Ϊ²Ϊ­jsΩ|ΌΉ{μhΈθc>5œ\ύ8kΎ#υ§ΰΗh{$‘iβ€έY„»³…’Ψ‰'Κ\Fΰh#ίιΛ'±ι‘οJIc~^ѐ}»ITlv!έ½ϊ€Ώ~y œΤΏ₯ΟΦ‡ΣΣ©1T+3›”υ$*σάί¦0 λyπφχ[Ω«β_ž‰/oδkΡ½x*‘Σ^>VϋΕ;’>WJ²i£L‡bŒ€€†9Οβ›νΟ:>ZΝςΪΚφΑ¬œ7KηΏ}P½%Ζx~Ο3¬?ymμ<Ά{v&π΄¬I!νJeKvέ¨½s֚t—9•ΨΈxyΗίΘ”³iȎŒ"Φ!άcZMGƒ=6˜\/nΦ³²ΫŸšχτCλ"ΣΌ"7™&n=\tλT‹­ΏΙԑ㱩9(, ͺδ†'εΑδeε5­ό9<γ™ )9ͺΎ†ΤΤDόŠvPΉΡ-ΔΑ—Ύ†bI©YIˆΜφΫ‰Μ”ŸαgοIΚΡ)Θ εio΄¨&2ά”RR I·ξkΒ>ΌπΥαp9η !LB6ςι—1F Ξ(ƒ„ϋ΄ς—πrOοRz~ ߈‹Δ?ΰWŠςyΖΣσ<€αΙ(λ,'ξEτΥP=αρμ—Pι YόΈΪAΚytTcφ–-Β€΄:—D”} ₯*Ο4”?ϊΫκQΣ#’… υ±MRHTBvPΩ™)ψΥO­?J5/ ω4k"ΌέΉΤύχtώρ4φ^Ϋ‘-_“hιrΛ¬];Ί6,0Ε0ΡΕD²;¨›uVζg‡MΆ4οΔθ„AΎ’ΧΪrI•ωd‰¦"Y4£M3˜žΦΞΙΛΧ,WB+οΑεη ΙO©κ©mψΚ_Ύ¦8NU P΄ Α} ηΐΪ#m–ω³WΗΎ Ω‘E‚JW·?—ƒΚΑ9„&mAΣ)Α8*>BΗeκ'zΈν{vΡρΠ’ œ ƒΌτθGRί=9˜œ³ƒέΌ•œ ΝTΪk%ffΖDΆμύVRΠ05NΥ(²./³ςšΣΙ›# gχψΑ,.Ί*‹Gβp85€ΐΆν{έVή†/α3yƒύ`ή‹Ε^Τ\ w¨IZΟ Αώ4ώt[ΉhYyc&μ™6΄u³ρT&β’άslΜBξ₯š_γbΏk¬Υ] ηƒΧpΘ.Ξμ†…IΗ‚+3C__=BΓΩVψPΔΕ"•拦f&™~ΟOΰ½[’Ma%ϋžY|j»‹?ζ=ZΞΓ=wΥ]ίωΧρ£Άs€S=™pΚxzΔbγ tBG’Ν•g/Ί›Όϋ«=]dB[qXΕ,{˜¨CΓω/o-[ή>”WlGvVbΓΙ:!)1έγΘ4qnVEδΙ§·b[gριCΑT_’KDε·ώΙW’εN+ϊzΪΡΡγ=.Qeνz`¨Βx†ΤδI1ώ”7 ZdΊύ’cγδΈ=σ¬€DΧMzu6ΖƒΛ‘rb~nŒΥƒŸΔt›{―ώτ°—nOHJc΄ωΰ½ƒΒΖ φδ\d·Y>™‘ƒ’½ςζ·κ₯E-Εz%9|o|οGΪ›½"{zx~ο\.y"$=λ—Kαί(Q5£ι3oL₯PεΥΉ4μЧ²ϋΘ΅j’›œ˜RdفFΪP°#ΓA~iΨT² EoΑ%<Ž<ΑŠ==Q[sΗ—β―ΫΤ=x6uφ(Ϊ©Δ΄,Κ§ φ’\Ψ]F΅lΉΤ7ΐτeδ ΡΥf8{;ΛΛ›"δE&²˜ϊΎ]π,BB:5Fˆ}΄ŒMΟΰ…T΄  :Ύ;²άΚΝμ ŠœΗ¨Μ/oxΏ• κξ·ςφAώtΉΡ§"‘α.άυR^Ύ†ΞΆ^ c–P„G$Ύ±ˆ"e―[sύωΐΖG«W^[Ϋ>˜•σfιτ΄^/€ޟ_σ λO^λyu­ŒγΩνΆ2mi₯αPkgQχ΄ΥΰΖΈ‰dVI\”ϋ¨«ψτ*|~’s6αFΛΤ18*—’,—2ξΨp?"σ_ΑΧ7Ή6gqGλpΉα=ά6€ΛΆmQ Ή:ΠuMΩ!Mς²Ιεž^‰«$Dk)KΑμ:@ωDχ„ILO˝m—qυF"μ;°·¬@H?©δ)=܎·θ(O7ΩO€Aw$)x•‘EKqR7§ςyi»…#”κΡtς ζh›ξάƒ„§ξ #θDε†ήΖΛθ¦A{PkWmπ:iFRε ρ…oΌ۝μrd%Ί₯s!IHΝ)DanY’]‚5―¬|υ}ˆΜ-Ŏ-Ωbœά μ.ϋΘΕ§&™.ΟλούII •l"!a'ύi4ύΤ₯l]φe>()¬ΣqΏω'\g4wΖΗ­³g1—½₯Ή”†Λ5?Žρ€r”oaΈfΓ^PH Ξβ{uΰ›jεζvšTl‘c£2·`o9›θ’Ά=…gŸνΖΟθΘ&O§ΏώˆrzAžX‘1Œ§‘χ:1w2Ձ»ΟΊ`ΛWd+μ::<K’σήΚό”ό0BΦrtς D L^kΛ%ωΘg)θ——»φΘbΐ]=G†¦Α2¬"o.?ΝW†)ωιΚd>…rs/nU_COΒbβ‘”KΚ€9Si΅!φ¨ GΏ PnnFΝ₯«˜ˆΜŎƒ’΅}?8‘ƒZIτέj%¨π[3r6ŽΠΔ€¨€fCqώ³θμ?&΅Η,ό﯐6ΑP”ΑΟp₯Λ£_¨(²Κβͺym¨θ:Ύ5KX,™ΔΝk?Αΰ#Ψ-ρ1ι„g―G ZkW.ΝΦXκκκPzXάΪ–λ¨.«-ψ0Λ›ΕΎ9™%Α-:eΣO@?209x―ω"κg™gκ‡Ε£”Ž enήOžΕYΥύVβΟΤ8•̌3+―9 myό`Ujό#ΐΰpΦ,‰UΨ™%)¨:q₯ε„)c«©όc€ά¬εξu|€:š'ί›ΚB’Ή‘Ν?:xbeε. ­ι€[ΉΩ•PΧ0-.»œ΅fι\kxG΅e­lλk8°ITŠΞJΫ‚lRpξΤ&³ΆχΤφέ²υη©α+ψπ³|Ζ—’ιsΝ‘JΟΦ^Ω"™{sžηl½αΌΖ” 6Ύ©χΎψ]Ω+Ν#ϋŽη>EΙg(B€υψEH•AΥ5W°“Œ€ˆͺP‰(,?L?W :αρŠυΡ{'Ψ›βΓΩ±»b―vϋβiωήͺ·΅^ vk­·hžPPφΖλ! μTΔΖίλΐΎ?UζΎΨ©TΫvˆ‘·<6$Ρ†OαL?ϊ‡|%b–Oγt†ε /–ύω‡‡±%c.,MKΪ@IDATkσΚθΈ\"#$­θΣƞ>O…c[!—œ}‹*ΊoŒP4ΞΔGΣΥFτV9…zϋζb2(uA Ο#ΓJ™.>{I Z[Jϊ(ˆ.orΎΎC΄JNλz™Ιbί*;›):»\†Ήd§¨/;CήΠίΣE$$³>‰δ‘–!έϋΊlμTΙXσ­? &τ΅ρΨ(Α35ŽΔΝGPΔΊ~δnן@ “Ρi©`&£7ΪO䀫€D)φ,XΡ9ι³aPg¨³_~»­ΕΉvyƒbFζndH"E¦ΒΡεμPυνyϋ h±[ή>:Ό}XμΓtΆž Žϋ9ω" 鴦>0g³ύωΐΗGΤΦι§.·ΌΆ2?“ržz/KΩ>xΎjΊžy^ “ΌV§μ/­φy†υ'―u½,ρ“4Zβlτ%Ÿ_…i‚Ž©υq¬›ΎΤV6V’bǟ''±ΆBT–"ώΖOpŠŽΨ“\QRšh™‚ώεΗcψBΥ~δdΛsΨBŠtΒcqεaOΕλϊkM%g[Ε£dQΤ•Οy\Φ8Fβ.πλfη΄Sa{(-sΧƒeœ˜NHοχ§7ƒY₯²‘ …£pη+pΉ¨7DΉηΓ6bgΕ+Ψφ`5΅ϊ΄ΐ.εk–O³t,_M9(1dτJΦΓ―ž=ƒh­ΟQ3­`,άo‡NZΝ¬τδr‰ΠLˆA„Ζš±~œΝΛ₯ωYίλ™šωχ\&λ–O JٌΝ £>…›]ΡΗΡ^gύ&ύrΎ½½γΤ–Ι)t&—ƒ”N•³>ΩΘ,Ά£0QR|"cW׈w:Y!ΓoύzΘτ$b<±`–‡ΫWΎΓfΈώ< ²TΟρΡβΖ5φz‘a–"¦εKηξορQ»Έ_Dσκ.oτήSŸϊ!Fμ?&“7ΎPn˜ΦIύ;ύςϋΧρήYΰPΡ.”€(4›gzq»³ AI΄Žc‹’,iӐ‡Γ"ŒπφΑ o ή>Έ_wϊΫuΞϋSšγ’πE›θ.@ϊσŽΤ₯]δiΉε΅•ω™’σ„…):νΓ"pϋ βύω΅?Ο°εuβ7}Ύ²K`ti)xp₯InjΡΰΐεšΪͺΡ&=¬Ήkšλ¨«Aά½ΧIVQ˜ZF|B>JRέΨ’ΒJ΄’‚³XNRγh‡&ιΗ:³Μ9ΡLG₯ݝ€-i+ΚεγJrQšΏ·}(鉴€tυ4ŽΡΘQr€@sAVo“ψ)±όΣiΒq¨VŠ)X£¨”ŽρbΎSИ؝ρœ‘ dW·œύ"7½ΈρρϋͺπλΗ>FρN‡¨Μ•’ƒμ<,·ŠQjŽJWωpυτU“/Z©©ύΦ”iΗ݁^dm’πNBk$ΩΔ-λzτŸΕλ΄˟3‹§^Ί’β―Ι§ŒtŸΑ1²’Β\²bΓήθx?6υ…s9θ§5>‡;7Žΐ.ȐPόκIχΌck±άοkͺ§#Β=J»\ύH+δ ΜzΈΎΰ΅ΠoeΗÊG2§ΚHΎ1+―9φψΑ,.†+Žp8ŽΐͺC =η0J€ωβ\oτ5·±κX7ɐ ‘<,;yΠ[‘sSΒ,Ίg1Š£γ=Γ|?ΟyRθy[ΙWπXnμΫuχxοf΅όΌ²7Σ0ͺ{Ά(Ώš ΙjŠ]Ε[dŽκ7ρΖ;Šj £˜œ₯‘°Ω½”Π‰­΅)’―kγiΌO?­"Ο‘ƒ”μΝ(,­ M–βϋU°TœΖ /εεdμήγ²κKΤu—/h*+ψΚVς {^7ΙY΄ΦE‹ΠžN±άΰS)N’ρ—ŸΩz—―dΪW^‘-aΙ‘K|γϋc €:φΑnSΨ žFΝeΟυ ;’γΨ*ŠΛ‘Β\‘€'ω)©TG3tΪͺΒΟχ­>>½ιΝ鐃ޙ-βΣ„sΗΌίΗE βrΙrΉ4ά‡±~ͺΆŒiΒ"7Ίj…\χb  ±ρv岍.‰d`jY· GS(fΏž,τŠ·Φύ7"η0ΨGσœΤ–EΗ"ϋΰV$³eΎαF\i Fyy‰χμ°8‘=:%ΰžΐο4¦g˜ aVŽNt~ϊͺ-[»³R·ψ;R'nθΙ_{d(1)2­‘Λ$lŽάε¦θ”Ïdέ‡4d&δΊB&Ιjω)šκͺ―}P‘ΈhξΫ΅,L81rίδλΞpΏ|ό:NΥЏ"“„ΖvƒL?#žN.pυοGΫΠΔΎo]Ž·*˜xΏ•doTο„Χƒ‘φAMl#+ς€qΰ2¬θ›eηύdΣoS“™–Έ?oz|δ.ί»ε–Χε'”Λ„œ7KgΈ}π ΌgޟΗZŸgXςϊ η{Ί΄ΟςΌΕfγ?υmΫχΊ­_Βgέyώ)WcŒ^Τ\ Σ1{.΅O‘ΙΦ3h°??έV.*ύlΜ„=Σ†ΆnΆτŸIΗKΥ,z/.ΥόΪ}Μ^7)Κρp}η_ǏΪΞ‘ŽΞ4fΒi‚izΔΤδ G²Ύ‡»p·Υ3ψνξE‘ hŠπˆdŠ0 G²ενCyΕvdge 6œ¬xΠD$4…D¦ΉwμΛ±Ήaζο%ϊf4}vMzΠvbΘs@<2EθŠnRR.֟’ο˜Χ~φtΌ(XΏNƒυ؛¨ΓIΩBΆθ₯ϊ/ιx('>₯„R(»ˆ" φƒ/ΰΫΟ‚ν\VΉχ»₯˜¨€H՟I<υΏΧv$D1M5ζΡ7†G+Ÿq*μEuέΫ4ΝAΚΐς"T7zGĝΗ"ΡΦζ―P\sŽχκfΖ¬ΌΦ#—΄˜0ΖηϊϊκJ―ΡBWˆTšΘžš™Ddϊa<_<χθ¨Qog–Ξ;%Ÿ>GπνΏzΙkqΗg|0|o|οG^ƒ§Ei|rωι γώ¦δ'΅?‚KDε·ώΙW’εN+ӎŽw›eœO :6'QlΫY_’»Ι{ΆΈ³­ π£ΰ¬_zζ/>ϋn΅ΣΠφ]Cr0ε Ύ΄«JΨΤ ”ef]d"(2Ρvβ<[<Œcšrɍ€Y<υΠ₯۟Ε¦6Ϊ wκ™•½KΡRΗ” iΏ\Ir9θBλ²vϊ‘υΧoa/Ιφ;ΆΓF Ξl4μC~™€ΒЈ[ Εg!˜ύ[–~€5rPζΩΐΝκξ·²‚˜§@Υ¬ΌζtΪγ³Έ¨*…?p8ŽΐšD ε™σΦKΣωd―uw›Ή_‘Π=‰)69νιΨΌ§³£ ­@φpκœλJ+’>`†”žTŠ·6μ*{{3%£%“Έ}ϋ>jΡ―(h«ψ2ΎtdBεXš˜€yϊόܚΉ‘΄’Eφl6Ή›FΖ?θ}iUΟddZe4C„Wš f ^·/0…c΅³—m֘jBo/~ΘΖ ΩdΩ“ΤzΤγ̌i ͺNΟϋi€ŠΘ~5¨¦Σ«Ύω8 œ CΊjLϋo@Mβxۘ%Qζϊ/£φ¬ώϊ›™q[.•O,Sςϊ―Τ Ά –?=ςIΘB"c9261δ΅ΞAϊΆς3WbφͺN·Ρ’€” a£OΑϋΑ²χzΡοϝoAΕ³΄Y?Ρν1Q‹!RpVC8‹ι©^Œ< % ’*χy’mŠχkjBπ€ζΔ‡T}<θδΣ‹Ϊ$.9θ•Ωjςΰri)ε’K±… 5Ή -VσVΘ₯ΕχΦZۈξ£;iε›VΏνΕΨu8Ln:ξά²° tq`PΞίν$g°Ν:ΩΨR*mšnΖεΊHAΑ9­ !³βΧdo§λΤΩ M kOΘΚσVΪ$a =qqjΰ²όί‘’9#ν‘’Nwϋ@λΔͺ₯b2υ‰ς”Γ΄Θqι˜cͺ‚.…2'ρ^_ϋΰMΗ|²iT2”42ήοך?³βmΊ_~ΏW‘3bΓ~Ει,Ν=υŠ0m^%_ή>HH迚λ/­Ν~+o4ή ƒνƒ*…iL‡Jw‡6Τ₯KJ5“p¨Η3*zζήO­„ Ž(‰U+―-jJΖ弈­qΊΪ1ΛUψωϋ!ζΎ.―‘cžΑΜ ¦§?/­›Iί ͺοh&Kh«°3K*ΊWZN¬ω£έΖHΉYΛέλψu)ωΨ›Κ”’Ή‘MʐJ@ΌM<ŠΕEΤΦt­άμς릉9—‚³ΛKσ’”υ$)7ο–;εSΓWπαgΠt£Ϊέn«E1M$fΉΌ32wΣ1<κ8μ‰mrοrvψ¬“Ύ‰:ο$¬σχcω4 ι4KHœΜν}ρ»ͺγς|2’εϋŒδ/ AΥOΗΙ¨:;ώhΕpη@ί’ϋ²΅ΎύΔj8φO¨)ψ1veΈ#VζϋΑΊΫOσuΓTΖ$Ά³Ω§s !Y1ρH»΅Σyi“IJ€Χ_ xκ{―γ±Qbwj‰› Θ₯Wx»ώjΨμ(νξ“!₯r@ω¬Μ”"₯I]'œ“Ί¦riΓ½9y­W.yΏFωtβZΓ;Έ¦H¨lλk8°‰MΘe₯mA6)zΚC&‡ΝΡ)2ςwnΒ²B˜…VρΉότWC†ΒΚΟκš+ΨYφ”0YΚ,W–¦Ÿ+K²qλϊ|τή /k§†˜"3%I6ΙΚ\(B$%zϊ―Oj%iτ»ΥJΓ—ίZ‘ƒΫρΌBΉy€Ž.ώ„Ž.Ύη*VΡ–WπDM‚“Ϋ”· ΫΪ―/’€`Ot)U΄@θ²b5qΛc3œβˆΎ™~τλl&\EΤΎp9¨‹ΰ»vϊ‘Ξk—Ρr€ ₯la>»Ϋh=θ\# Sί†W oΤ«­Η»όεΛχ#­’ƒ2Ώ:nw,}ΏU,„αqͺ޲kG1+―9φψΑ,.Ϊ΅Γ}9ŽG`ν P²΅ΉtΰT=.ίR+’HœΪP”S„™>:½QΓJ^lΪA-“Λ@ίέZχXIΉΠ—ˆt²1¨H£¨δ1ΙfψšΡΪBGΛbWVΊξTΛγ1‰αΏ‹6ΊNb#©ΡΕ©’v<Ίηy”&ΡdŸ γځKu?‘9{U ~bcmHKP̏Gͺzό¦ΰ?BO©£ §γ‘κΝξƒ(‘Ν† m4u”K‹π’§UΧHDΕSZLOLv»°go…ό€Ό&K―όmη•k(ϋP²5G]uŸκRάΦRΌνd¦Y€υ%™πPEΦ›£\ήM΅Ÿ.:ξIέΧΩGΫΕΤmρ’v²g,ρωNkžtam§υ™’χ.Έλ’lί/*ϋ ±ϊΥ°Ή’4’Ÿ‹„.ΖκΑMηΊ#£%“μ½fΕ£";Mfϋ[ΫΠυ^τύ©Ή\X˜"Εw4υ@〴^RŽϋ‘šP~²‘ͺς?b«0wOku?ΐižΓ,ŸfιΘμŽi9(—gυίpΉd΅\jB۝Fš‹‘Ir;}τΎ{­Ξ&”aWήY8ϋ VΘ%SoΫπi΄6Aζϊn3φβIy]°- t%9ζ6ϋσγ‹•σΞΦN‘-`«FIΒΖΪή~}υ‘hŸ¨BN4YΫuε8Π#Νθ™ž.joΕφΖ±n‚³W0ΊŒ2μȘΓUW=Έ’ςΈ(vbψX£^ΉοˆΪퟲ`ΊΪF0Bλ’$Ϊ㙝ΛQwλm:“Wr<]Ό[>!²§―QΡ?“βˆW}νƒšFz²Ε°NŒθ†œή«†R˜t5Ϊ/Oς諊ιΨ±ΏβμHrυLF―’†υYΗΫπ~+ŒΚ3:;œ·/HλbOe*(yd―q{VμG‘Τ¦MτcD½ΫΞOΈσ/ηέΖϋ󁌏XΎ«V^[Τ>°2•σŒ†9£tFΫ1—Υεϊ!ΖΎ‡΅3ΟππΙk«ίrIΣκt €gΓ£Š]j#έ—qΑΰ$‘ΜVEΤιΉio>$Sϋ,d¦·οHYwΤ°`ZJΉωΟγι’R™h„jŽ‘B͘죸ΉονBIŠB³y¦·;›”TŽBλ`“²ξΠꘈ˜eηαv—° ώ–Οψhqc[δ #οŠ„8Νιίύ=>j'θ‹δAxίθ=έ»p5!²2Ώ…βIˆa²*κί™“Χ†δ’'¦ψT'rνζY€'ΏŠV?‘ΙH£9‹N•5u|ιΙ,Dοu₯c)―ž=ƒθ`―ΑXΈί{%4ΣγςS–< ΚΟΖχρ/?Γͺφ#Ώ [^X  ΣβΚ/ž‹ΧυΧ(9KΕJDψJττ,ψn₯x]׈,*Ω)o ›’“IώΝ£/v»ρ 2“ Q"X‘ΘDZ²7:” »Š’›ΕSέΞ¬RΘΣΈAα(άω R#½!Κ}ΕΖBμ¬xΫ ‘¦φCmΕΛ>oΉτ ΦT?² ΤW,M‘>#)n;@ ΞηP$S=ŽΆλ—}—UYΚ~€όVSNΛ$ΧBΏΥO°`Νqͺ:Ν(fε5§ƒζψΑ,.š•Γ=9ŽG`Ν _‰RΧ†mΖσν–O56l―™ΈMAγOλΨƒξ2ͺΡƒ‘© ڟ› Œ‘J3₯£Θ):Yς«‘)§η‘Nά%EΧ8κ±ς/!Έ©­χΓQœW‰έYβζv–Ρέ¦QI&.{ I‘ΆpξR~χΖϊ0N&‘ηCb™˜‚¬yގΞVG'0ŠŽζΐy,I»IΙ|Š ZD¦Π 8ιꉝ  t:ΣY\£pM§1ͺα₯IͺΧ³γt-ZV Ÿ)x'μΔ‹ύœ; ΓΑΩ¨xό°`ASoZΊβΙkυtJΥsίΑlΔGΈqΉ {πΘγΟ!_ΒΝ#±¦Kuθ>μψ‰*8Œo}'.†“ΰ‰§Ύ&ςοA#>bΛ߁#6ˆ_Ί‰φΦFΒΌ›f4SP΄c?*Š μΔ’ήvyνΌ§Q\βRŒ₯“ k΅NšΡΜΣε9=©ΈQ[Žβ―nDύNz‡hS9ΩΊu­Ι;ηΕZά:tΕ¬όΡΌψW'ώx5€·χΡηp€Rⓦίo\֞1ŸΜ{ŒΤƒwq›ΠOΚηŽ†Sžόσο ž¬―ή§#xBBθύ;•;EΣx‰½ΌLήzωοŠΨ› άΜR”κδ4Νςi–Žή[ΣrPfzυίpΉ$}οΦΙ₯λŸ\Δ’#Bk—R—6η?ω7o΅“&N&r ·Αqψ l Ώ“œ-‘K&_·††;8ΐœ•ŽΦž›•Κϋ2ϊR9bHΈ±Ώ°„90΅„ {₯ΝΠΪb0ύ9Ρpς]4Ήd/ΜΘωα» }Vωd[j?:ΪΔφ£³ϋδΘ|c ηŽΜGλι3¨«¨7ύS{ϋςίύ ͺOŸΓν›w0cKA"ΝρζnvΠ g[`#Kσ£€ΰ,λΎe8°=C2I<‡92@$-Ο&%f`»cmΜυζξwΡάY-^ξφ].)έi”t^f“AγŠΣ8’P@ϊ }3Ÿa44εΕΤWt­·²ώ`mΓue‹ί/>dۏ „Nά}π9πΰA0lρnέ‚‚Τ½8UŽ ˜'k-ύ ƒύςΨΜ§ρ mΪλκΎ‚»Γ=£υθ;ς³Θ؜T6κ{^ΊuL±nΜΫήo5Χoε탅탇„Ι―z/‘΄ώθψ9$μω2ΏT%―οvίΌ¦ΪΜrή|>€ρ‘TΖU+―Ν·fεΌY:JƒνƒZΈ.{?Dxί₯y†υ/―—φΝ^€›·΄K©§ηV9ׁλη₯ uz΅!!2ΖU6vάw‹w9η¦h―’·‹‰{Όήδ³­δ+x,·@λΊϋGΌw³Z~ΦΌΏŽS5τ#α$αm˜Ζΰ8MΖΖWαλLΉ™άhšϊΕΫ•ώo#kΈlπξ©49ΚvVfΣoS“γ›»d% Š_ύ&ήxη΄ΰ/KxΕ€ΰμΎΘ!š7„c5ƒDO²t0Ζpb–"MXj]$ι₯ ͺϊζΛβ„«"ƒβ£/£ͺσ?γŒΟIEdΏ·Σ4fυΑήωNt~ϊͺ₯I?΄VןŸμΜSΗOθϋmt“O ~†δΕ—4d&H 3“dωΒ=β¦Rϋ`·IS23LPΧ”QΔ{‹ς££—d£6NŒ(,ήxg,ϊ˜‘Χ¦δ’’|*ΙΕϋ9Μ?πφυοc–ΞWΚM8wLs?Ώ/KύΉό΄N:ώΤ„όl<χι$#Ο‘ƒ”μΝ(,­@NŠΨ/ˆ* …ΐŠΣ8qy`Qfύ΅GnγΡPζg{2–Τ™ψnΧ—€Ύ^T¬ qW_½ΖF³^ŒΝ°ήžΨΧ ]d› <…ΜύΡQZqςꞰQ§p‘fF*YœžiΒ ΉdfnΈτ‰ΪλG6}FŠ U’bBfa ς2"#ω\ϊk‹Λ1Ÿ8¨Μφ#γ±άrpMτ[UΨj=θ§Ω’Λk³ύ]N§kά‘Uσ܏#ΐΰpV+6μ+¨ Ρ£θΨ|ΣŎήΥΚ¬~ΎH‘D…ؐ•Y.ό4‰'špͺφmk}΄vΠ~%ΫΛE’ΈbΨE?ΊΟΰΨqώ%;&ΡjΓ&Κo“ΒΖ‡šΜ‰›7~/žΖΖb6#ΥCI72₯[ΥDςSθx½og9ΦRήΤΰψyψΪΛ‡E|i3βηšj.Ρ΄€¦Ώf @υΕ”’₯ba^=Αͺ—ΩΟGd₯7Yτόμ )ώV• ΎiێβUϊιw΄A|7ϋΦ$™lΌ‚s­κ ½ϋvΚV8Ϋk«΅-mͺIΤOΔσνUΘά&"ΨΛͺ`/sGiŠF«¬4]³§ΞΒώAq΄Ÿ±OΎF?wtαn²ω$>%«ŸšΞ@~¦λA#γsη?₯υ₯ηD¬θύΩ{Τύώ4Νw‚³‡’—Fž^¦Ώ?Ο„¬xŽLO<ϊθWΜ…›εΣ,’ƒV€±\ipΉΔΆT. ŸΓ‰ίdγΛ€\%΄₯ [Pω<ϋ©λΤ©z4)—t΄ ώڍΎσ·Πςό^δ+ψiiΎ‘iΔJˆ’—Ηξ½nƒ Ί$κI•! ]v+8›“σθΏΧNΛΚ9b.ύ]ΈλZ½ΫvW‘˜MVό[•s\MxwΏEβ·Ύ(nŠ.ΐήgΩOLf±{Ÿψ*Žl“ϊ%1³+ράk•nORŽ~£ώ‡΄nς;² ώ` =r3nδŽΪ–Ž[(,*ˆ"m₯xbŸΨ?S™jΖ©jΟώ jψ&-₯…Β Ϋ€ Ε€ό,ϊOΡQ†jgγύςD—.ˆοώΨχΌ8€ΰ…· 0Δ[M9£γύV&dΊΏ΄–ϊ­Ό}pUΉνƒΧϋƒβͺ― ?ε{…α:|φΞ9•—9oϊύ”s6>>’Iuί,·Ό6ŸŸY9o–Žv˜­Οyωέ0Ω‘θ½Ύ')@ϋjϊ{ΰςZΤkžAώšν¬’z χη΄Kq+Ωh[Š΄u€YˆςχDIWλ%χ‘s:¨Χb”ΨΜύ …ξIΑoG;ζΌ|ν(H+}œ½ς=œ»Κώ\‘ά<‰Ϋ·ίτ―ά¬Hχ{I±™ύΨΠΧ†ύ…ες„O3M^ *γ*ξm_Ζ·φρύτ£λρUqχ°"Ž₯· 6$zL.Σ[$§3εfζ&α՟έF™;qϋ‚‡r3Ε΄—mφ«ά<3γV³₯€ 9θϊ]Š-{μΊ’T€Β£'HΦ+¨VsIhNÁώHΙׁ‘!I]?™[υ§jEύ™-€ξχš$ΎJθΣNβO.~θVdKہiCφνΆξVO-IόT<‹'ŸΕύ{ϊδIΚ«Eω±$³IρMRΏοΧaΣ¨ΌΆ@.™βS ˜λ>­vI›{fƒ ŸTd”$fb«ΐ“ΛOΛ*!pω9€ΦϊTαWψΩϋ+œkΪτDΗ²]2ήN{Τ„ή~)=ZlΜυn‹2RάΣΑή9‰>Ίε FΖε °Ύδ`"β’…eBgΓ#žΫ²hωHŠŽr‘GύΑiεL¦ΛΫu1ƒ'#υO7‹ι©^ŒLτb`ΤγητθωM b€6Γτ χΒv\ZWy4aΠΤΰzhAν -XI›[κλΌ6#šΛΨl?9h„η5ΡoυS ]γTJcΙε΅Ωώ.§Σ5ξπσπ`ŽG€#ΐXMΔ8`Oq+n6+ζ›VŸFy™žΐlφιθdΑζΆ“xσ“7Ρ0ξk°λΌsύθV»7—ƒVΦЍΊzT•€$c`gύGΆΠΝ«ύτ34ۏ΄BΊYW¬”ψUφX­ύΦΖ©n „»%—Χfϋ»œNξο.6ξπ¨NώΘΰp8«ρσxλψ:<ιπ~-Ž}R‹Ψ˜|€ΔΖ!"8 ΑA4&|0‹‰ΙA΄ )Η―Ϊt―λ$ήάΜ<Δ…†Q€ΜN’«·ΙmtΐEΪΦϊΪΨ\qˆ°0„ ‘³sΓθοn6μ1^MψW»R μwρ ό=ύ–Γ9λOΰ-ϊΩ2μ–]¦;HωšNα8ψοeKΧ Τ Ή_=§ρϊwObΡyνόŒ~yI 4›y¬Χ―ΉΖΏ§ίχ™^Γ^GΓ₯jμ(ΞΔFͺŽ…™ τέΉ€¦Dvμηt8χφ?α…°ω•΄δ„mŒ«Ι…©~tΠIxZ Γ;φο’g[Ί«/βΊFΚϊΌ:pώ½O_l6±„ Σ~Ÿ”΄Ο‘U΅Fα+=ύω©ς2X^Ή7~ˆίΠOΣσ^›ώώ4¨~σοA‡tšvƒ]Ηπ}ϊi9³|š₯ƒrP««ΥΛ%uΝX"—Zι”ΐ=σΚ°9+E…XΈ1gκ5Wί ’zδmlc±v‘ηCj7όΛ‹κ_Π·ϋ 5>Ÿt¦©€ΟΎσ―γοιηεzNΰ}χ„—·ΚcψNό”~μΘΫ2vœΨ Ξ:Τs ²ώκ;WίQ₯’ϋΑπwdQύ±σ”΄¬@zΪeΑkδΕ'"t΅λμ]οDσ¬fŒξu―Ώ} ΉπΟώ;>ρJA‡‡‰~ygϋ1Όή~ Ω)‰ˆ ϊŸ σγͺΗ=…ώ‡*wή>π~«λ…0έoενƒόI™nh\δΩώΥIά©‰ΡB{;3֍«xGΞMΌ1+ηUm΄ξώΌΉρ‘’εΥ+―E.·fεΌY:βΣDϋ ¬ƒ΅roΈ"ŒΟ3HHx_Χ«Όφ.©₯>+§ΰ_‰MvΉ0·[>E§ό΄VoRPΰψδ:φ «»]ΞŒLΡJh2“ Qš™λ.Yz­ΉYλ~ιΔ=oЬ½fβ±ς/!Έ©­χΓQœW‰έYn¬ξ6ΥΈ”(mxτ‘ΧΘ"΄+š΅œκw"2εY<‘Ξ¦χά.hΓϊzΞΚGεΕf>WHΩΊ«ϋ ξχ`lvΡ1vδgνF†¬p3ˆK·ŽiOςJIkœΠπ’b[rΝ―z/!?‡„=_Ζa:މ©1Χ}σš{·”¬‹ˆΚηΎƒΩˆpγr?*φΰ‘ΗŸCΎ„›HͺύŸv•HΙDm9ŠoΌΊυw:1JŠάsΊE“’lβΥεr;*·ˆV¬S*πςίΖΰό'Ÿΰζ­v4ΚDnα68„­αw+¨ΰΌ /Ώt”μt‹γό;€ά< <œxσ€ών+It$έΛG»πΦΉbš»΄ž>ƒΊŠ Rό&zRœ~ωοώΥ§ΟαφΝ;˜±₯ 1™6;_Ά6:vi”œΩΊƒ <)ώš?s,»&ΥΔΪο5픣E‘ y² σFCsP^L²@ϊ–θ{―m00…ξS2›Ο/Ϋ~„ŽWŠΒƒΟ‚Iaί­LYΊ‡’ΚDζgΗΙ u‹Z†δ΅yΉΔ 4Μg\φ’gαά%Ή{RΖΙ4ώ|H 2σQU +{0K>u­gΔ3K'ΧχΪΌας3Πz3+? ±εοΐ‘Π‹[—n’½΅‘ΪδnZxMAюύ¨<(nŒm©ιmχψώ$– ΄GM—κΠ}Ψ!“UpίώϊlߝγJ©u4½άΞ46&]ΞΌ ³·VΎ?³|š€ \‰ ΰrI Ί΅rΙΩz T©sπχ΄ͺe…?ζ½Β­ΕΣ+y=tςUϊ-­[™οhiΛ€N}ŒŒƒ\3`ΰZM½šŸzΡ)ŸΆ©ŸOή>π~k ύVή>XΫ>tΤΣFLύŸ°ι˜fΫhύγ#Σ¬Ι„Λ-―—;?Ή όFΐΚτCΜ~Xcσ \^+^5·>—#uΠΕ†}Hv₯05ψ.vθΫ‰@¦KOJ ƒ’.ˆ Y™εΒO3Σ‰&œͺ}ΫÚk·_AΙφr‘$vΡΟ#ξ38vΗ΅7f3R=”t#SJ±ΥƒFz §)@3—IVΦΘωζΣ‰›7~‹«ΑZi¨_ΤW}Mψ …ώ Χα³wά•ΥkPZž-ZiHp κeφ“"λΌ.ΧΫ7ͺΉMT΅—UΑ^ζ¦mŠFλIΕΰuψNό&_&₯kα] #»+Ÿg?7 »kΑεηU>u\φ€.ΏwΈ~ŸdϊΦ (””ΫΪΞβΔ{άδTήοΩρό Ώ€ͺΞnœ‘έ€zyP«Φ³dšπώο~‹Δo}QPΆCtφ>Λ~ξl΅ξLΧί²βف†Ž[(,*Ši+ΕϋJΥΕ™jΖ©jΟο]E“ωόRŠQ˜*Ό•ήΩ%“ς³θ=Υ?δ‘ΰlP^ —Fω̎‘,_Ϋ°‰δξ¦Lοβ‰>’L«qΙ4³tΎR_΅ώ^ί—ŸζλΚ€ό¬7ˆω¦‘x7ϋΦdc²ρ Ξωš”6QάΟΞ8πb•(ΆΕ«τ[*gτ» Œ5 ©€ Ν5ΨbΟD–PΨ(ό)ύΌK>5x ηnΤ¨Μβi–N•Ήτ™ έ :ΞΉί—U )ώjΎr9¨»gΌλqλf#l“†«oΩΦ ‘dβUΎs²ͺ‰δΰή'ΎŠ#Ϋ€ώ…―Ω•xξ5±Ÿ,„ΠζΌ7κˆUίo hœκξG³ςšΣAsό`έΖ#r8ŽG€#°Ζ°ό"Ύρl:ͺq·Ή έ}}˜ΘBιή*”²W˜λ―ΖuΥ)O’χϊό§2‡hΪ›8ΏMΓλ³”ΌTΥŒ—Kž΅c­\ŠΝ΄a¬[΅Ϊ¨Κp­‡« £ω`-žšY¬Oώ­‚Jΰ,XŽ―=!΅Vž­uωοOτΌŸ­ΕΣ;}ξΓxxΰςΪ³“/ώδΫZχDΛκg½:‹Φζγ€=ER΄ΔΝζ½Ž³6ΓeJmzcd½,^RυΜv¦Ν=7QΣp^Σ*ς`ΧxΣ8PT‰ΤžΔƒhjώ lT* #Θ3šΟηA:Φ£EŸ›3Ζ'˜•θ¦―ο κ?ΐmΖfff”€4[θΛΎ£:š‘'²Z)μ½qύd »ΐm}–₯εl«ΖΙ7ιh;eΒ­'πφ/‚ρμŸ>‡EpL4£ϊl#>…ͺ―ωEŽ›>ΣΟ?Gρ&Δ„%"JQΏΣ³sΚ…ϋΎ‹ΏΒ?τβ GhςΨƒO!ΒD'ΪΪ»άtNwωάΦίάΑΜ$œ„ςό¬lNAχ½­β(*·Έ6ƒούάλψΎΎσoΰΓΜL,\€aηΗqζνΉfξKάPΆκž! ΰ’£S˜§β΅ρ^ή=<ωΜSΨ΅-GŠͺΊ:{šΡΦpΣmρΓlύY€§‘χΊ³εmTGΏ†½ kœRΑϊ―ΰb …)yψΊzVλ"ί‘Ήό*ZτΕ‚δ?0Φ/݊WΓςΪΌ\"υfΓ|†,Œ£‡”ο2β€6EΝ>0‰ž{υΈ~ηš2Ν,gκ«ώ™ΛΟ•—ŸυΏ¦Χd„Ž!­GjIžν‘π ‘©ϊSœyηƒE_)#νQΓρο㝅‡Γ‡χΚϋΕΔ{QwΆ ‰ ›NT2]‘»~9hό»UdγΎ]WrŠu:ή; *Ϊ‹’uŸE(4υ oί­ΑGw”ύ:bO³t7^’"bd瑉{šύV/’ΥκΑε erP«Š:ΨAΠ.«uhΤR–PτΝT2g)ϋ‘Δ•Y983ΙLΖψPpφa쾈οjο·8NU{Ιε5`ΏΛιt;T•Ι8ŽG€#ΐXW„ˆ+φ’½`?oΧ‹σ[λcήy―ŒOG½zCρΚpΑsε<ΔpΉδUωVΙ₯¬=›`ί—‹Ž mθΊxΧ+Ÿ΅ξU Vαι#ωΥαΝΏ£ΥQœ kΰο΅žVΙ³΅.ύροœ«πτ‘<χζ<<pyνUΧfε‹?ωΆΦΓ½€Z ίϊΛΏώάΚt/œ:nerK–ΦήW Ž”eΓ—ρΖχ~dιΔ^lL>Rbγ†`šW\x0‹‰ΙA΄ uθ, Ή™yˆ £ψ ˜EWoΣ(§!;%1α‘ ΖΒό8‡κqo Xι³;φ!51ΜΚΫΜX7^SXQΦ@9―βR"#(dχΗϊpέO|$LyΩςΚ°9+Eΰ χ1ζμ£c¬]ΈM₯ΈˆθΨοΉ™ΨΘ*΄‘gf†1Τs ‹gΎRυgνΨxς⺁ŠΕκzΌΝC½F’0wΉσ3ΔάJDް#7.aa‚Ά¨uš ŽΦiΕ>δΕβο΅5/o¬Α‘§ΒΰψF€ΛkίΨ YkύsΟM”ΎψO;ψMM&{οώ999šαώ<ΫΫΫ…(Qi›UQΉ‚σ(8«ζŽG€#ΐΰp8ŽG`έ!°_ϋο―!G(ΧΞύψΖ™ΖuWH^ ŽG€#ΐxΘΰ Ξω `QρΧͺ‚sαα―bWn"&ΪqζΝχ—ncE8σdάΨ2숍‰;Ύs~Ό~QΓn*~Ηΰp–.—Μc»οzLVb–” $₯ƒυπ¬Tή6ΓAΙΏ£‡£žΆRςχΪ|σφΑμα>αŽΐCΐz—}s8Ψ±λρR„EΑ^ΊΗ₯άL€ΝW}*7―wωΉεΣYq<G€#ΐΰp8Γ4ό9ςsθ cΆZœ=π=ΌZΈδ|p8\.™―m¦Μlί—‹Ψ,›—ΕfI9x­‡›Gηα’δίΡΓUίKiω{mΎ¦yϋ`;NΙΰG€Λkγ˜IζDφΌ^ϊοlόΡzE*ας\ƒΛχTώ•YuΆ‰¦¦­Ls)Κ*}ωiqΐύ\;w£K‘ O“#°Κ(σ½ψόσΟIΙΩϋg;½7-~hΓWYUqv8U†ΐz—ŸZνΒ*«ΞG€#°Θ;€μ9δ!!f£‹£qΤή|MΌιYEKέΏφ̏?s8Ž€υ$'' ‰pUAλΡ}xRLˆ· …xx ΝKΚΰp8Ž€%°y[Ά—Ί5]Άδ¬Lx­‡+ΛΒο9ŽG@?k]ώϋγ_?<&G€#ΐXέ0y§tώδίZ ’§,–|?71,άΫlβ|¨ σΖιηαΓ’UΎυ—ύΉΚ'ΐ‡ §Ž˜ΒςW~ύph[0\‹_|ο‡h]žly.E δ…ν^;ΌC1VΎ‘‡2|E+…gΞΰ¬ Φ»όΌπ?>^υΐ™δpVΦ_μκά‚χW/!ΣΕΖΔLξή=‹{QŸ{-²=μύΛ₯.Κ½ kŸ—Š#ΐυ.?Ή δνഁ‡­_ځΟǚρΙO~Ž–Ρ: Ω:qαδΗΈxμΪCΩdύι•κ??o/%G€#ΐXp ΞΛ[L±9$ήΎΌ™.CnqrCμ2δΖ³ΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8K‡@XdœfβKeΑ9D3·‡ΐ³ιδΟΡτ”“‘#ΰ‰@ΧΕ»‚SʈͲyYl~Γ₯2{bş9Ž€IV¬Wω©,+Ώηp8ž0eήυ*Φ’|—xυ¬ώΜΰp8υ€@p,ΆΗG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp\<΄œωΐx˜`–:™ηΤ­ι^Η‰3\ΆpnΉτaώxΩ9ΖXοςΡ<6G€#π0!°ήείZ)ο·>L_/+G€#°ΰœ—±‚Bš”lΨ°Œ™.OVά‚σςΰΜsαp8ŽG€#ΐΰp8ŽG€#ΐΰp–εΆΰΌα[ωן[Y¬ §Ž[™O‹#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ,;%%%BžΝ­ν˞χΓ–aPt2BS Χe±³Ρ-”«™λ²|ΌPŽG€#ΐΰp8ŽG€#ΐΰp8ŽΐΓƒ@TRΆfa'{οώ999šαώ<ΫΫΫ…(Qi›UQƒTOό#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ˈ@PDά2ζΖ³βp8ŽG€#ΐΰp8ŽG€#ΐΰp8΅€Wp^ ΅Δyδp8ŽG€#ΐΰp8ŽG€#ΐΰp8끠πεUpή·-›³“}’i‹ŽΐSϋ φ‡p8ŽG€#ΐΰp8ŽG€#ΐΰp8Žΐ"²΄ΙσΤ9ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€# ΐ†ΰPl Χ\ίΚ\μ/ΝΓόΒόθύ ˜Έ?£Κ…)7ΏςΔNΔF…cjzgjΕ£U‘–ι!*4a:σ™»―3¦Ύh޽αHI ¦[ρϋc—Ρ£, XQc‘…ˆ  xπωff1:=‚οdύc³€‘ΉYoB…‘όd0K§LΓϋ¨lί‰„!>TάD4ϋΰ>&5δΌoΪU’K\ξ‚ϊX-,Ψrρ…ͺB°m{ƒwpΌΆs 8³βϋΣΙ–Y9a–N`ΛhωΈpl B η1rΏ]szΚi4?wšζϊƒζσsηΌ΄Β3@IDATJξΈ\%±ΚΨ0"m›πμώ͈ z€ΡŽΫ8qm9FœK—Ύqͺ9.ΝΚN§·Y\΄SγΎŽ@ΰpηΐ1δ)p8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž€ 6lŒ6AeŽDRnώόσΟρoŸ5,ͺάά=0ŠOλZΝedΥΖ <‘‘›Ξ΄Ϊ‡nβγ±1±ύG Ϋ(DŠά„₯^Dˆ OΑŽΈ4Dj½ ³hΈ 2ΣQQ9x)%C~ΦΎ™F]o-j5τΎζ'₯o–N’_²kd8’Rβ@,umy”"*»·$!ΰμiG}―ΰ$†W²|†™εK…@^\>v$€"Ζ#ƒGζ†ρɈFυ^XΖΝζgˆ.9ŸcGa” φ-Ή Mυΰj_;ΊΌŠGBΆΖ% Β3,a ΓνΈ4α»-1T>ΟτεηXμΟ؊±™ζϊqΌ«rψΈYIΉΔε΅/ˆ•x†† .^j­ίΌgΝχ§>³rΒ,Θ“±ς…agr!6GΗzΛ2!Ή Ltα@‡OΩb,?7nfϋƒfσsηΌΚξΈ\e²JΨ1"Ci³SJ‚0†‰‹Z%Œ@Η©fs7+_86βfqΡNϋr8V!ΐ69sΗΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8eG h£§ΊΪ° TnώύωzάjοSe€΄άΜ”›}κ*ζζWΞ€dςΖ(έΚΝ¬ σ¨Κψƒ»μσ'ζ3…τΨ|Ό”^ΰCΉ™‘…!•›Ε4“£³p05S³Θ†σs₯bΆ?h6?MζW‹ηΎοώŠhιwλ+³,Ÿ/–Φ„Ώ!ά‚ žε„zŒχΦDY5˜ dœͺ‘œ./³ς…Σyφ“EΈΝβ’«²x$ŽG –y;@ΌrbŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐXGl‹\ς¬5εfΘΐΜ0nŽΞB­Ϊ+BυΰΑlρvdIΘMχ ^aαXς^υΧH;&¦Κlή§2ίΐ½Ή9„‡Σ‘γ Ψ η¬Ϊšhœ¬ΰ<‹Ž±Œ}oœL£έΣ’«Ιό`–N.Ω:ΎQ(Φ/h(”―γ’σ’- ΕΨλΚm­#Έαt"‘Ž@ίŸ(ϊoLDnT7&gζΚl~fθLΛωπ(Δ»J:4E2sz ³χ1KΆΤΣ£RPγ ݘŽβ˜ Œ‹πσ˜εf²Έ)ΉΡ6\½‡ωΠ$l‹ΟA^x˜T—ŠΖΙvŒHιj¦| rω6κ³,JέξOΜOcRŽΑoό"ΐε_ˆ EXxZυύιΑΕ¬œ0KΗx2UΎ  BίΟyύ3š%9²0‡ΰΰdG§ΣΖ9QΞΔD&cΫΖnάPτ MεΗ5Ω4Λ“;mΦΐw«Ν8χU!0εDσνf„Ρ€w²wMγ *†ςΑτ8U™ˆ{³ς…ΣΘγ³Έ¨2•#ΐUpŽI#ϋ ϊάΰx―Ύˆ:cνxρoπΜήLφTγ7ίλθΠIg4š2NcpάΉh²±ρωΘ’#ϊ’‚ƒ±πω,¦gΖ12\{ΎN{‹HCnBβ6F tν{"š‘‘ΫhY<DΨQ”˜Θa`›€f†ΠΡQΑEΉγV Zω |ωωR`X1–ˆ±†ίΰ·?΄" ]iΘο+M( ήχύΎΘρ|¦κ½φIͺx~τngΉήmJzΊ7Ί›4rςτ2F8Ÿžωση5@‚©4_<3έηπ**IΖΌόR΅) p6|ˆwPcs ϋπWŸD2/8Ρz?{η΄ui/eJfΫΝxJOَτ˜8qw2΅ΣγνΈέ―έΧρ/[܌ψλ/Ιiω‘σRŠFψ”hψu" %Οίϋ(}οΏ δ{_JΉ΄*ͺΓXΒZ–mHŠ/gη{1¦9~ ‹'‰)ˆJ@xH0‚…ρΓ} Τ m\›Y–h«|ύΙ%1²>UΙς‡A yŽΝHLŒCx³―±€iη=άΉ| ΎG~Υ’/~H–%x)ε’B~ώ’q9a}=™•:ιΜφΝYOΡΜΖγϊX<3TμUyY*^J·•›εˆόf₯ΘΨ‡'ί‡Νe[δ>’’•'ŸξΔ•OOΰψΙ₯·{ή_Βκο/™”ώkί` ³rΒ?Ωώ Y:ƒηΡ­F@!Οώω»ί²:užžY‚‚±!Dܐe6‰ΕθΦ¬rσb…’°mΙΩΘpMŽOτΰςΤ KKGžKwΩI–BΥΚΝJΤΚ{ŽDœ€σ<3­²0ͺ€ςΌ7›ŸY:)ΨΜΝxlk:BIx!ˆŽa&…ΖO>^:£"σσAplΫ‰²’,€Έ6;βώ(n7ήΖ‰Ϊ»[ς5)sΆd§"-)ž6GΖ!RΤξOΰήπ0:Ϋ[p^5OGΠοہΌ˜ΜR™ΒmrZι›wβ Yσςs0-Ότ6Φα|«Άϊ±£lφtd&‰k5Œpj|˜Ζ!hllΒ­oΕμωωΘΨTŒέΫμΘM‘;ΣθnΎƒOΟή‚RE^fΔΠM9XŽμˆ ͺ―謻‚Kݞ|Δ’ς`)(N0‹ΣpŸέΕα'Ά ŽŽ™ŸGxBmlg²m 57ΠšŽ=e99Ευσ΅8­ΒUdr³c;Jσ3aWa2ˆ–ΫwpςF§WIŒΧK"ΪB‚0u―ΧΗ’±»ΔžΛυ^ηΕ$!ΡUκq’’r3˜’YJ)'0ωΰ\Έ˜ΝΟ,έb¬.*ηgϊqAR>ΦH„Y1υt›Ky听ώ_””›₯ˆ S C,ΙWɟ–”/"•I©bͺσ#虏"%j–ΩFfE ӊ,ΧΤ-—»V—YΉ«”Ν Ψ½·›³Sάm{»X›20Œ»mνΈzW²BcA;–Ό Oξ܌’LiQwύέ]Έv{‹|šPFε§%ߟΞ*2+'Μ1Ά–¦|@έy#…k›‡€‚ΩόΜφΝζ'0»†ώq9he%Sί¬ρLii~ŸΊέ§₯Σ+žΪ“p²_>7Ϊ‰cΥ+JkRζ:v`{F{$ι(ž LτάΑιzmeη5Σί59N5ϋφ˜•/œN{ό`³υΗι8γ,•n―_NγΣt+7³Δζη½δ~3Y4‚;=χ”Ϋ’†£€ ΆΕHη1νfEŽ˜χ<ΎP\*?{ίD!"4Tαν@™γχ±„Šι69₯OοΒ;ŸS()€a/cGŠMЦΎnLCιΆWτΰG8ΣΥ«['{Ω#¨ͺΪ)δά4sgΙœ—+ΏŽφΛ8υ‡v€Ž—DD.UU,=Ί»PYφ'βŽ|ΟάfœρτŸy―΅S\ά7όΚΆ9dejgY€ΗΟbPυ=ˆQΝΠΒ§6ƒάwΩΘΨ…CV’¬άO•Σ :Φόۻg—¨άLΔν·o-Ω)fxc³:RγJ'Xꦩ½v%(]¦Ώ\r0Ϋn-‘;~Αζ/αΙΒb·‡Η],)₯ͺΕμ™7Ρμ ¨ΏdRΞ›αΣ£(όq₯XNyfΑχξ†i ε’;“eΏ3ӟ°’Ι=GέΚΝ”πΤԘϊΘ׈ΝΘς₯άμb$5ύΩ5‡ŸΦœ‘Y H.Ι©ΈoόςιŽΚοV{Ρvμ"εfŸ.:εGΏd[8ήxηœΟhžΌΏδξ7ybγοyΩϊK&ε„?ώ†›•ώιΜφΝ-9o5~ε™Υςτt!κinA™HλUΉ™]β²ΜIΆyqΣΈJ§.@-‹ΝΡ’Ϊβ‡XΒθD¨p„’βόΒ4ζΨΒ£·‹’8’:¬sn³ty:Ν“/FΓ”!Νεg–ΞΝw΄-ω™²Z!3Uͺ½ΑΠMΠ]JαvρL!"Ee{‰χNέRX;Nΐžƒ{P()5+ι"’iσ3ϋΩ‘wο^’”££‘JΚΣZ3qI).^wB ]ξι.*OVν@QΚΟή›Ηq€w’? ξ£qߍ“ΰ’β!qD‘βH£‘fdΝhFžΓ#‡Η~ϋ6ΒλΨηπFμ‹έpΌ±ρώx/ΦλφΪλ7‡Ηή94#F‡9’(RCŠH Hqί7Πhά7ωΎ¬««Ί«―μn°f"U••™ί—Ώ¬ϊ*+λ—_ΊNnˆOJC ύ²cVΠφ‰kή¬Šz|£B-HέΖ"ΏΌίHˆΖΞίΡΥO=οΟvφ•]49]n3kβ&Ω`pSuψŽ*η±<‚–)"Ωe&4ι_₯Ί9$&’ϊΘqT;"h/ϋOξΗΤψάΥ–BIé珠ΎΠυ›R<Skd ?=Ώώ4Πφ#ρ™εΘm•›…½έ؁w<·ζΊND]»rXC?MζPCmf©2A"ZB‚4YfN;φ‡Wo>dηS`WqsȈΧM&Xš1Ž8’™μ‘~δέυ‘䯐Dά²M’(WρΜ½IΨ½1BM΄ §(aw“έU/z¦|υ•γ(1y–iΟ”ΘyΑ9°ηX2M²yυL­“½EV~9Ξ™=U=•­φ3χŸ“|O‡Όv‚7¨G;gAšφiokΪΗ*^yΌύA^yžZ)<Ο ;¨άΔξδX₯Gc¦K;0£ŸΔ!·{UE*ς³€Ϋ2M|ΛL~ ύOz³ ΐ¦η’€Πυ`φ!954%8σΌ―D‘ΏΛχžΚ{OσΪ‘O›IΠ;ήxqαm?‘O ΰA@ε8ρδ (ΟθL;½LΜ#°.ˆ\δ&Ν.N+?‰"U‚ύnλ<«ΡαΎMMPIΓ‹θh…Έ«.T²Νt9IsΞᜎܼ4Ϋ…Ά‘{΄δΤbbӐ“VƒΦ Ψζu^•Σs΅—©Ι©6 M ΠςT“4S4…ΉϋQ_P"Γ•ruΕΝν“=?ο­~Ρ@nξο½€Ζή«X?„ϊ½Ο‘Β"ΣύφFΛΠϋ˜zά KS.e%6M «·UςzΙ“…’}yβ&‚³nΨ;θΥb&§dθΘΝl$U½^i—Όz°³ΐ}]›ζC―ΌκκοκΘΝ‹θθϊn΅w"«ςEœ)WFΑS*θEΐ‚ΡaGmyσρκι"IH¨ΐkίϋcΤΈ~}ΰ—šGχp}‘’Ώwή½Ζ_V(rΪ‡πΰΖUΔΠi‘§#+s«μ.ηs“»rY§iUΉy†VUhθΊ‰ "‰ζi¦ioAτ—Ό!δωόVυ—8ν„gεύ;Λk'|ΚΗΫδΝη_ΥEκ" _2%€‚Dα> ‚σσG*q¨²=Β{W[ΡΦ7nΠ¦€œ=Όότ>$ΗΗ`xrΏψδ6Φ7hπ6μCNX ”%UΙ;ξμ(ΪMœg„5,ΘUx‰σΛ‹ˆK©Δk)ιl};-Ψ—ΖqΧ֍§ϊ%οŽΣκoI,ΖΧ駆ω•i<˜@λ’!€ˆ.\ςxσ© ±­Α=™‘MΧ' φώμhξυM#–Ό}Χ—ΛDˆ΄’Z<[kΓ»-ΖϋΙ^š™ΒΠδ μ³ τMΘζyδ™R&IZχνΗ©ρ \ξgΈN’§©ρ‘Xψ1©…Ψ›+“&ϋ0:ΏNNΨWΊ»azΩ3kΎxζ8½o0©rξιD₯‹ŒIDfvΚrS°ξeπŸΥ―}hq9ω¨-Tφr‹p ¨CΡS-έmۍF€₯œΖΡB’'YqκΩτ~ͺ­ ΓSuκΘύn\ώ m‹$ƒˆT +θΈΫ‰ΜTηͺt| ϋ^ R¬Ψ/‘˜ΣŸ›FgΩ£θΡ3Frσy€ξ'LβΣ³Q_!wΈΣJkρόΒ,ήΎ9βR)ίۏ²?tρ0κ7ž[q]Η¦ [±δ¦ΓKr΅‹,{Q―Mςp@1Ώ¦$pDω·Η+7Ÿ[ν³σ•ι…(ֈ}³]d#ΡHŠR?―ΐΎ6k"=ρ*ήϊ³Χ/'²*”UΦπ`’νVPe¬­<ώοŽͺ.nΩ}$μ.ˆ\vW΅§ŠV6ΦΘΝ³θΈ?„qrGΎ;.i™ιτ =pτ>|yŽeγΩ:rσόn?ΔRL:φΥ©^ϊ½`ΰύ ψώσ’‹α4―ΰΝGΒƒ^Ώ8”&g£&=Oϋβ=9;†v΅‹Ο+·?Θ+ΟΠ.Ϋλ@ΨAήφ²‘­wΥ©REVΪRΨ2Q¬›Ω !ΔZίσϊŸΩΑ‰‘^kΡ‘QΩΩ‡³θΎαώΟρ`ΖAΦd§'ξ`=ςίβX¬Ο]ΚθFά!Τ”XY)τvό οw*d·ε&|Ψ‰”ηΎD –QH)’fM9“±ε¬[φnΣ1Lψp#τ€ΆZžd¬ >$ψΞΝvΉn+ ΓDπν@ž7πεŠ IΦδβ”›A%ή뚷 œς’Ž‘D!υ“θ­oαc…Τ?52ŒγDp–?Ÿ% ž ΉyσSO^XDΎΰ" ™•ytίΈŒŽEζEΖ“}Οβ2κDύα†λpχ€σ\JΟښρΡ[Ν!`Vt&,μ[yη0>‘\Σn™έεynΊͺλsLmnω‹’ΓάΔUόsγ-ο\η―Ÿ”“ΚsZ;Αvθ/ρΨyn= J‹ƒΗ†@8Ψ³4Ίί ;έο>‡Ηb—|ΦΞ„άύ E™εΘ-~Ο³~σ€$½OΙ©fηH σ ψω &E°χIĜύ6J”όκw)qvI/Μg=υ™ΔώcA`Ξ6ŠΦ[ΏEΛ‡o£Cζ_(z΄βώΥ>|ύ?ώ[TIœ’tδδS/Θ‚³θ/™5eφ—xν„Yυ8βxν„ΟωxϋƒΌω80Y‚‹€ήž·dQZ DDkŒ”@Š1δ}γμ!XsR‰ά Srs!‘›ΏyΆž­„‹‘©ΉmDnr‰Y‘φρΦ'qΟ6m¨ϋv9(£Υ e“β²Q§θ*`‰ΟΖ)ΖΆhCCj!‚³»›Ž#τK™Ό‹k Z2^yΌω4Αf;Ϊ{›ΩΙΰΔΩϊ[πδ©Y mݘ\z/ΤΙ$Ω²ςBδΑyD:iΓ`{;ls#ψΌΛι₯ǞŹκ,J‹BςNŒώ^ΉΘζ;PJGre$œKε†ΰb#SΊyUε¨V?›ΐ†Ÿή ΗΖwͺbηsSΚq\Αƒ•?¦ϋb₯²— 'z>:‡’ΤLΘVΒx&ΠϊΥf–£BqΤ84Ӎš›β˜¨2½±β‡7i£nαt$μξr€ΝΑowSΥ~M:ωπC»|…Ό…Ζ°™(ŽΠΖωΛ«*D™*n~Ώύε5εy؍“‹ψC²Υͺ5wHσ²ηΑ~zy‘μtšΧNπζ#[;_•Qƒ§βγ0OdΙ¨έ±Z’Unz‘ŸΪΫxερφyε95ΜΆ9v00;8Π9ŒαCς*)i₯ω¨iμD«Ξt%ε)žι’˜ ±Ϊ1Ϊ²1JΨͺώg vp ­…½ήΙ!‘ DpfoξΓφιοςΌ§Ί―·η3ΌφEδ3ΰΕΕs+‰³@°x|g59rθi(΅s£7π{@o·@³©κδόY»²¨k₯ ˎ’BΙ73ξLnΦ§w’ˆΝ4βδcmφ‰ˆrk•cΐ‚Όd_VΙΝjšεqΜΠ8pΆZ5^·΅ΤΌˆž©A47#£Ήά‹ρmŒλΆ›‰“―{bΘkΓyœ¨ΡŠΛ?όΎUιX»*’Ζg†― >Ή9 ₯‘w*πΜλ_Dmu2¨.vͺ“…ΆS½MhΉϊ4λΣ&/»ζμ«ͺF~~2Ss b·0α±~τ΅\Ζ'δ5&؁«–»ΡΨN³ϋ”ΐ–ώSΓμœΣ€Άz‚σΊV³ϋ½ε”··°JσN=Gχ‘JnhΑ‘Σ4Νήdu‡"μ€78υ”Ψ^Ύπ쯁5O]FX΄ b¬· χŒ;=Ξ׎?χΓβ^ϊΓ³H‹Δbχ4Neα™“υ(cQ€@ž›/γβ?Ώǝ{/,R##±ΉΠŽθœ“…”rf?υ |ρ0›=CmηρΑEv/`in}ƒ­hψ‘vθλNφ©?‘πύ;ΪcεJΦ>΄^»"ο—žΓΧΟՁͺ…™Ά xοb³ηβΣNΰ«―Ÿ B,α0xopMK_ύάογπ:Ϊ 7.α½ ŽtZΪ©xξ;8RfΑ¦ξƒ ―ωξO Ί”>‡Χ^ΟlδΙΞχ°N}oGj_§ίy΅Kj‘AΣS-0ΌΆ;ΝΎΨ›ίΑΫn» ΝΈs§U§k€FHΟ( ­ΫΔJCΉ±/’Ώ€ΰcΦί}Lύ%E#σ Ÿ0/Λ$–ΧNψ“·?Θ›Ο€šαυdΩ³po«_Δξΰ{pŽˆP{ΨΖ„Δς.ΑNPΖ‚ή6!΅iŽρ˜ςή<΄mtΧ+ŒhΦG]£ θJa}DΔZ]Cr\&κ’ˆ€*…TTΡ*t=9%©’Χο% ‘'[ϋΪ*–E %6 2Ι‘e«HΛǍΙψπΚγΝ'kώ_sφΤ΅ ‘ύ(3‹Ά»*k@Φ’νf'φμΙ“IY©ιΘΛ$rΏ2„w·ΙύΤόΦ–A&‚35ŽΌΏͺ5“·‰l¦€vνRΩχjŒσ6{ˊ΅Θήζr3;ΩΫz½Z*η ΄άVΘΝΚ©›έ£¨#‚3#•Ι€aη<<ΗƒxηšrF&4W9‚„’Hδ+ΔΆY"‘ΏΫlώde™]ΫΘS²Κ[³-*„ϋυ5ςΉ ӘXωϊ?X–«‘¦‡οήwΑdΏw»rρ¬DβΞCay2:»ζ$Ά1dΈπτﺎ¦q[ωŽ—”φς‘2³Ή†Œ•EΘΞvŠΝΐ3YŠ{šΰqmbω9κxyΠvΎΧΌΘq>Ν+7Ÿ³|ω˜ίΞ§&γTšŽ"΄2Š[Ϊ$˜9Μ‘§dωΩέ¬ψ ŸTHM(Βa‹jw)z}6εΣ[ υ+M­ΌmΫηϋpΑ.ΔLΣMT™_cίj‚βθ ρυ:cN “ ‰„έ B R|vwσ‘nK·«κ476φ%Θ]πη9–iъιξμΤ&ϋH‘ΜVχΰ™RΟgμg χŸ¦¨Ο;Όv‚7Yυ€ν<­ό@^7ΩςΩIΞƒ— ½xorΤP{>yόύA>y•ύ;vΠ ^Ϋ€ΉΨžž½Θ—lHŠK3ΡΪ’tΨ©fE9Z±»ΘΈR#ίͺώg0μ ΦP»οZœΙΞφθοςΌ§šTΦΗ(^ϋ"ς™Ώ?πββcs‰d@νX’9ηP§y0FSηežR{žδ”TmvωΜ’kq9(ŒOΐΖΪ4-ΣΖcΜBͺ *”cΈΧΚκNΛηΡ #{zΙkVžW’L‡§f56‘–TQCοD‡KGH=ηi›œ]ŒŠςJGΫ’JuΔ΄—…<"ΛΈjOΘδ•λ'¦IR6Ϋ?6J#’ΰ7θMTθΖuΉ™…Œ’C8MΏœœ_ώΆQŽ€9bός*pκλίE•JjVJ”6‰ιΘ/gΏCΘΟϊ ~ςλ+ϊ³οήVX4γvΜ.t›κΔw]›εS$Ÿ<+ ΅λ}έCrδΠ ΚφEIρlˆžΥ—7ΐ§§’ΐvΩΠ½τΪwΎ†šBΥo†Cρ„4š΅NΏœΈ9"8Ώο8αχύGYK PV])ίΫ%ε¨q”¦μ%iφ%|/%ύ7?ΥˆΜ ω•(–ξ½DΤ\{‡>ΈdDy).‘?.ΑY8w‡!±·O1†ΔNΥ―œ@±7Υ܈†5A4rΙV2«›ΉΦ˜‚Υ”ΦJ˜Rzv₯N-ίUNUΰάχΏƒc•ށ{5OBZ1Ύπ& iy’Ÿώ£+Α;³ψ Κ*]ΫΞΎIΊΈ!!YjΎŠίσ%i`X•CΓDΘ)?†—駆t*γΌI9υ_ΗχκΥTκΦ¬ύ±»jΉtυydώάtHσwo…–:f#ζ¬E‰ ΄ξά°’H³[4αΛΐΎίύ%_μ|ττͺ­H/μ™O(»·gΩsκΏ‚—£‰Τ_sϊ»ΘΞNΗO »@?‹Ϊό[ϊ&ΚLϊhΪ3,rά-ΑΩ?ϋΒߟp†ΠοcZεΥΊS?IΰΣΆ{(?¦΄Μͺ 3ςwDߊ₯εc35Ρ*Vθ;¨Χΰ«] ¦ž^•Ϊβ;ΦΎxΖ1.Ϊ1¬°²¦9ς3RC !ΊΨέI€!ΉœΛγ=ŽBŒΦœθiwά—>—8Ώ„gR"΅³κeI½Ž|.ΠCB"1_Ό›‚/Kή―Sh\_I»<„+ͺ‡l³μτ-G TW­§¬Αη±ΐ.^—46Ζq?δΧΐ·ςjεLԊrŒXΖΕh₯Jbj?N<}Ώγp"ο Γ󼌌—kΈ7ή…xmΜ&—#q”VG“GEpkͺ“<:8NΕn“δε™?$"•Ko>sMyν<σlύ\–bXΡ«Έ0Ϊ ½)˜Ϋ`w‰μJ9'₯/μJ@?½μ'Δ¦aŸ6©`–!ncMω^Θ_ΏΜΔœRIΣDΆΎ:₯”S™D¦θ MT €έX,eψΦοΥ{ρ)'ΥώΟχαΏΌ‘x³Χbωv„έεΓΝ,—έU f"Ž~ιKHο ‡6#Ә²Ν`ΔξxΦ™‰σ/.©Ικ`Ω,Ζ†υw˜\Θ8x/gίν'ύη_½©ωμMΨbϋβΠxV©˜ž™ΔrNŠIG&={—i’LΩ sdΛ>š™V’σβ™ΚΩoε•稝_{Βz€kϋτ?;zΗPO6„Yš ςΨ|…Ξς”ΆB•«½ς1tκˆΟZΕ·€;¨ιμΗNxχwYExήSύΐ”ΧΎˆ|ζοΌΈE[€€q$d z‘ƒ3εΗ΅ΩG#½h™χœ#\Ο¦$€kυHΝ=? ŸζμhιΎ„¦1'ΧΤYe(PˆsΆ Δ—½?(r,iΟςΟLέΕΝϋΏΖ?p©­=…rυ‹|ž22§)qκ x;ytλPΥΣm3hBΡ%`Σβ ‡€Γ+Σ ΞΓVt\Έ„υδhrx°‰ΨμƒδI4I*kŒ‡‡g–h9Iεε5r“ƒ:9™8χϊΧtδζi΄5άƍ—dT>…*…¨Yuφ œ$Ψή@δ9D/Nτa`pΆΙ)’‰'BΰΤ”ΛΓoΕ'_ΕΉήψΘ‡₯›%zΩ ΄τˆισ€ΝΝυΕu]{QέΣi.yιeΘS―Ϋ₯τ+·Yyε·pL›<αͺ-ΧΞ›ŠβΣ‘Β6Ψ«ΐWΏχ&jςͺ7ςξΑ)DΕe »Έδαwέΰ˜ηώ£ςW6ιž1{οM΄ψ’:¬,”O–ΖΡ+χQ3Ϊξu‘Bςœœƒ²ͺ#Dpn4‚(©NWβΪΡ!yovJπαΤR'|Œ‘εΪGŽ{z1J+NZˆOŸ™‹R:cΒΑΦWδdi“EΖ™ΝžωC#ΉΉ¬NΎ Γ©ΟqkΘ© ₯Σγθ/ωdηƒ­§^ηpΩφΜ·–π`Ο<ΐξχΫ-½ˆ³Δ±εRʌκ—πΒΩ>όόB³!§vΙ‘έί~VυΣ'tδζ1κ6cdb Ρτ/£°UεΕTΈϊ1Δ!GΫσ§Ÿ@B“Η΅cΕ™C/+«ΰ,β^σΠyGΥ²νδ—Λ—ƒ½₯‡q ͺ^ϋή>ήO«žxύδ«] –žΎΤe«Σ<©φŊΌψ’ΙΆk―<ή|L§0e§A‘­ «’olχβi|Š₯aΉ“πΨ)<[-[»ΟCgτŽ+—½»Τ/R4?e֐• ?©φy„Δέδ;/EωtΊσζgΈχ:f8’ίΊ| FŽs†½ΙEΜΠpΊΠ‘αœv ‹κ‘EŠKD–N––̰㸁mΏ@πτιΊήŒt7ΫP χX^„E­ζϊ*R-Ε(g·4…©΄°dr(€ρΔW1±.ζόZ¨N~ΙγΝg’&§gή—ŸΛΚΧ.-/ΰςXΐ‘‡Όδ—§€her’ς‘#j3$d_ GVη;ΛYΏΈ|œ€1p)¬M:‘­ι ^›‹˜rώ`ΠΖΗš<’ιcš}DoϊΒξϊ »/ ύ΅»·;Θ‹­δHDYEύIΛ³θθξΑ•\NΎŒϊ2’€bˆh‘Θδ>ΩOΊͺωμ·Zΰ³τ­k+ν‹‘zkh³u·―7+ΗϊiΥ’ά?7Υ|Ϋ–;(§φ/  GρiρΥ— 12΅„Δ «f³–μ·ρΡυΌΆςτ—|΅σΑΤ“©ΠζφΜ7|=Ϋ3σ2¦ξ€Ώ%OΝrψγs†―œͺ‘+ΥΓJgύ“Γ_»„ϊY©©κ Ζ4ώθ?)“Ϊυ°T$˜Έ)G„·=φ%ώ„7±žΞ!rs5{Rθο:KΓμ=ΐ1αrriΖ­m9°M<“™ŽΉΝuDΕ[΄Iš¬¬ΙΡΛψν½&Άλ1ψj—ΡΣ£apςI΅/₯g_Βe*Q ΠΥLύΑ³}ύ%ΐCχ1φ—‚a'<\†SΌv‚7ŸAΈrΐΫδΝg¦ΓγŒ{RνΩγΔόI–E$"9‡*|vW~ρvGrΆΟ/γgۂ䍣–\mμΞ>?Š&7cw‘Β2¨ε>Τ EoΪΠ=;ηR|tkhν‘IgWo>—ΪlmΔ,­¨aφv£Ύ‘>T7)ΥΘΝKScθ!OqΛ”`ύΘβΙ:«œVυ@¬dεΪω“Dpža˜πς’-MΌπWo>=ωμ|AJΞ¦ek₯Ωπρδι$lN㣑vœHΛEEΌϊ…²n. kn»βΘ)G,σˆ½B€cMΞϊΥ$fKγτ’bQ(Ν¬D…z Dμvx†LΗΎ¬Jμ}ΔΌlq;6ζU%—‰` „4pήιΔc'˜@ž|!ͺ_›mΩρ)(fΟέ Θ gψ(ϋtΙ+ΊCμΡ ϊ­ΌςTYώn…tΨΆκΪΠΡ?BgζL"₯ΕEDpξGΉUύ’»‚ώή!χu•Ξ„²©φΌ˜ -°ƒLΜvθο2=½ΣχT/yܞζ΅/"υuMήxqqΫ@β„@@ *ˆΰΌ‡χͺS*‰ΒΠΫ€ήPΥ:δεζ =‘M³ŸBθ yΓ΅ci3©ie¨Ξv«+N’‡Ξr=-ΘNa„6ζΆ@%ΫΡΥ{ύ³ °dμC}A‰’y κΚၲAFΑ—qn―L,‘2qκšFτ‘˜ΌάάCΐ΄ƒΌQπ"N–ͺς(Ι$&MFˆV™7P}ζ¬g}ΉΚ~r€γ’έεy4t΅LvdY§š―9ΘΝRY“ψθ“Ο°·ς+@KF~‘©GUδ±b?ψ©TΊΩΏΫoγ80Ω•ν4*j–ΑΈ@Ϋ!]Gf™Y ₯›Leσ\Χ¦ωΙ'/'Eee%mο&Y‡πόΕ3ή~Φ&w΅ΰΤueρφφkΈ­%pέρΗΎπχ'\εϊ³·κ»Ϊ*3Γ—πn»όœΛΤMΈœqSœΩiDX ©ξσ¦œvτ~ήtΥM>}΄ov)0=υς|ΨφekμKι‹8ϋ‚Ϊ‘ώΰ…}—¦ύ%Hόιοκ2om)vB§Ό‡]^;Α›ΟLήώ o>3 qžm=3€.Άˆέϊ€‘‘ΌHΞ™IVTΗΡΐfΡ63°G©ΤW_2‘›₯°MΞΉŠFJ”ŠΣ μksIyερζsΥ δ1)δ.˜ 9Ώ,-Ϊ(–›`yUY¬+tŒ­ ίoΔ[ N_d6°‡Ξκ4|oΚ?€=†Εy,°o Μ+],‡ΗU…‡ζδρ3υ¨pϊ Qqδ­άψ!>'z‡ ¬―P14α6Œ΄΅γ6ϋDδCvϋω ’#ΙZgόΟ·;W&”ι†1——†pΕ¦~ΉˆCN,»XXΓδŠ]ήuώΏ;•1ϊo1‰ΐ?…QηKU%°ω+7Ÿ“ž^KUμηκ z—•|\υK$―έμzVΤK=˜τZ —‘#¨ιΉΆ6άΈΙlάγ Βξw.»;Φ‹ιšφ`ΝOEzf&JKŠ`%b3 ρω%8TΪ…O{Τ‹[Švωην9ζxΜΩ0kb«ιn ^ΰΊ\Ε³οίy‰ŽoλX_ΒέΆΒ_;‘Šτ7_κ§Šwli₯ιGŽ#m/ςόιCž¦Ό/;ΒΊEi›υ?{Ϋ‡1z€eQ…r©―n}…Β\εΉ:3BhΟvΜ-†ΌύΟ8l©$·GΧɁο©”Λg{Νk_D>σχ^\LZZD ‘E@Χ£ ­ o₯Χξ?ζπl»Οϋά³ΌηΗΠxηGΈ3?`$Šφ\Β}λ—ρ₯Ϊzy) Xσ-θfƒ/ωHIP‰Ν¬cΈΡψ \ŸPf†›`ψ&ΞX­R ££=`k_Ϊ―Θa9f[ρώΥw ΛRΝ.±A^‹T^^ΡΛx-*έΆ$¦Vΰ F¦&n3₯ˆ_™Η¬”ψoόκπχ½WˆA³Αb©sE3»=Ό3‡ψ(Q·Œαδ#Ί:"ίΠΒFh}π¨κ”Ϋν‘₯τκοGaA’ci䆴ŒKŸγ˜΅ξ67ί‰@Ϋ!UG€±ΟΉQ‚ηΊvS”OΡ<ς¬HK`ŒA¦0>/œ|YYvm wί"ΞDΒISο΅aŒΝ0[Γ›ΙαΡ“εγD†ύγužw]J΅έďΛίΌfΊ€ρAžU΄1ΰ.t|ήμ1΅z2(χŸΝŽiηqIZΎ’ ω³°Έ 6€v"tΜc“:rPT} šžC©δ­Žξ’ΣρWNΝυŸyˆzšk―‹φŒΘδΫמιZRή΅ ‘ΏΗ9Άƒ½c¨¨e€ώ݈Λ€ν€s"ΏωϊYκ—4ς>φύ ™·n£»³γ#} οdή‚οφ%ώ„7-ΜΟηZ_Ασκ€DšΜψIσe%!ΩriΒ%;΄Γ6λξέjγγ­`+lS;₯€Π³ˆ9Kδύ*>χ,^­Zΐ―ƒ`—ΧΣΌώ¦±ΒΎl}I;o}χχ΄~©ύώoρσίΊφτm$ϊKz4”ύmΡ_ άN˜Τά%ŠΧNπζsQ€"xϋƒΌωΜt0Δ {Ά5φΜΊ8Ψj"΄eΎC+y{“œSP›ͺ L#φ΄;σB _hK'ŠλΔDΣ’βj°QίΤ—§#‚―aY7ΟQΛΟ+7 N.­ΕΛυ…ˆΪ` GμΙ•Q||ώΆ YΣ1Н€x€PÈΆd€§©˜bNρšΉKfCηƒ^υ@Ϋζgz%7―ι<*§€0&°σ`žVœq'eεΙθνbί(Β3”8cE‰²rσCΈ=…ƒ{Ω;n Ž=s cΏ †“ž9ΜΜα<‹WhΕ:j§6ί0 Fϋρ"ςλšMט^X'Ρ0>ΰπLŸ…BuΜz}–wsZa.}“9žΖVρt„ΫF=ΗσΚγΝηP‡φό΅σΡ¨Ν¨@}R²RΚΊlψlΦμ žAγ`s3Ϊ³$‡u«τ‘ΝΧWύ"±²Ύ;ΩΝMϊΒ£]HuŒs3’ε4Ε=\[pΘ4dΨ&Βξ­‘·»ΛfΏάnΎƒγgΎHv<…τ‹EB³ηΔ@ߟc6LΨgQΑΚK#'5tڍϰμε™αŸν'Χύη*ΈxO-ž)Υι΅LN‘ˆΰ<ΰšΤ㫝0ζ’?”φΕY˜Ιq|ς•ωΨ$οώςœ.ii„€Ÿ+ώτƒΤ~&5 Ο(aƒΧ.‹½θι―B.λƒ&εΰΨρd­?ήKޝG‚"‰·;θOvBΧ§χTΕg{Νk_D>σχ^\όΉEZ€@ (8Σ£‚R¨ί…€ŸΖ‘60Δ‚·ΊΟq™ΉΤ­ώ?Gδf³0:π>ξf•αX6#% ž–ycuFͺΙκ€ Ετv\p›•‚†lDΐPΞJ”ι†y_~iQΝ Ϋ’ν>ϊό}"vΓƒή&T•X5by^ώQδεΣ°#6ά0dpΫ&γ#™Β Ζα­o SΓζ:jc8AχΨΧώηŽUz/m3Ψ’Ι[-w;&^%Ϋa_œv«ΏίΧ΅Ϋ’|;αΏΌTΔ¨¦₯y€ο9‡½μV£π υ<YΥr²%_%RδμFηΩo>©ψ―§œΟο΄Dκφ+DοB`†>»ΤhΒΕΈoγλΖύgŸτ<Θ§3šJΗνvŒ‘ˆ6Φ=UD[Ώ& ”¨€)$r#΄Ή5π U§ΔV=|L‹{pύ’ΆoΨiΐ49,±Π;i~¦όΜ+,dDg%δYQBί0Ζ σ4²ΠΔ‰QCŽnυριΘΙS3ΉΫͺ7‚»σžβ©έαš†&.rۏKˆS&^;θλsΣIœ‡ϋρͺŽά<9zΏkΊ M8Ϊ[ωž/―Κ**=‚ΪΎ;hqg•eqχ—|±σAΤΣd„=3 ΄νμ™A{:˜χ²²@:r‰”ΡκLμ\΄ώ˜·ŸΥΠx ‡Ό$­’€£’ώ,ύ”’ΖΠvη>ώυyΦ#w|³/υ'ά ww"λ4ΞΤ”Ο.΄9MfΜ€6Χoun»wv4ίšu2μ{ΟΙ“* r*QHgηχ-Ή/v)(zj½οϋbΐ(4φε^ϋ£7Q¦~ΌŠw~ψΆAλθ/ΉbB#~φwΝΚπ7Ξ7{¦/5@;‘/Κέ>―ΰΝg’o7Ÿ‰ Qž0 =3ˆˆ(ΏG9Έ΅ά$ης΄XU6ΖϊZf4Ϊ7=£ώbL²¨~’PšVˆr•˜BdΩώ9FŠFiR*Φ–Ζ1d2¬šŸ‡g³ƒ%“³c"8—<šΏŒ@IDATΙ›Ο ΰΔ8ͺc’Ϊq’“σ»«sΰr˜…=•yhmΡhRd™:ό»LŽL\^Ν’i²<dx)ΚΓΑκb—#¦¦ζ1A‘Œ†Ÿ’―§sBιΨF€³1Zv[«­έ‹ξ+y&d£.ϋ!y˜tQԴԐDζΧΰτ!uάn·i’μ§lboΚσ8ΘΌθ‘gυSgΘΣν'ν‹Ÿž¦ϋΊœζ€½ϋ*π Ν qΪ’š΄‡huΑ…Ώύx•ωu½Ί‚9š€`‘†8ΧpŸΌύš²©x.-Ÿό΄ΚalΙ6‚j,.+¬ΐΆj$$JωxερζΣ)럝OΔΡμ TΗΣ5(ΩΒY4OΆ’ΩέX’NNͺ“­•O%βpV9φΕ+Fwuw$›«dδͺί2nŒίΥIΦοFΣ T‡±Wzό―ΰξT3šVτη·λΎ°»Ai9N»›Aޚ19it8¦(45ΛnΩΎΊΣџη˜}ŽΝ’Λ+.."';-Ίb ±§D}Ψ꒝v}ΆŸ\χŸ“0:ά|ΈfŒ\!ΗΖνˆΛNPn|<υ‹€ !‰±›7w£“…³ΤwVŸΛ«KŽη<† oWžΦΫmGΨΑ`ΆΨƒήQœ,ΪCEΖ"Ÿυ;™)‹£•γ{tύϋςφ?ƒaͺλΎ@?Τν;θφΒ΅Ώΐ{ͺvlΧg{Νk_D>νω`xΰΕΕ©ύΔ‘@@ zTΪZθ%Ή•`Αˆa Ξ5žΎ‰klDl‡iΙ1§ Ϋ„φB±Ϊ…έN h7;a­€μU|yo–w†ˆTο‘ΚdΘ†:CwπλΛΐ™½GP₯(λκ v`W-Ώf‘G6Η§[΅2·ίΞ:Φh0Μ,lj ›υ3ξΐ7 δζΕ‘vttuΑΎ@BvΡhS|1NŸ:$©~™πSF(’Ηι0t₯ΨΘ«(O0½y ς1©ΌΤDy’›‘_‚½Š3€‘ώχπ±β~oZŽμA’ŒΟŽΚƒΌω|ΠΥTOς™&!―γ·/_B’Ο—O$M–ξσΥoŠ©HwαΈ4σSΎΕςίkκΤjί$aδ&y }9%DΞΝΪƒ=5ΐ@k&Κ+ΨK σθ»{Qή βΛα/ηh₯ΐ‘«ΈyΣέΗ—>ŒΝ“w/3 D\ΞΛ—?θΘΉ ‘_eEEΊ:6ΙAF9«Π= Θ‰Λεί`dIW1­σμlλ{όRΏΫΟ΄6‘τλΉΙ‘ΞήκCΪD’%Z‘β_žΙΪ/α>LHγ’ωΘΙ΄’e`ΐDRύ%μ|πτ4Qέ,JΨ33TqaoΟͺ²=ϋς’ι ±q:ηm|ΚX€λQ ύ¬φwπ·0‡―ž~šlp!M1Τ…ΔTό=XΙλΚώξΖοωΊd>ν†°?a&PA΄²³tnW,*½t—BD‚c吘 :όjN£±ι#m‚…’eΣ|ο2r3Ώr֏ŠΟDN*08γ’Œ"|³K‘ΣL#)NΨ·ΠH'Ά/xωί}W[ΉMψωϋ±WΟ?’Ώdή,Ϋ₯Ώδ¬½οvΒ9§ω1―Θ ’δνςζ3GΑ$VΨ3PtQΫ3]Ybχ±!°UœΥ n;’sL.ͺR€œ.;-W¬Vf;oW‰KC>iήz2ŽgοΑ™Q lDbOJ$9κD/ρΙ(ΜΟCε‘=HιΏσ ΞyxεTF‰ΎΗΘΝ2ƒτΣΛ-ΘϊΖI΄’ύxε€ο6Ά¦ε@kξWρ›Π&βτW߈ŭζnt La->©)ζε’Έ<)δysžΞΘQ0ΪΟk»I Ιvœξu-―Š)—’”2LmŽ`~W2jΣΘ¨ŸΚθ~Ώg›v(aΨ‹Cj΄ς@‹_Ɯ)‘–Wo>E!Ώμ|4ŽζΤ‘§z%/}#X^Z‘³Jπt‚: Ÿ#ŸΘ˜\FΫ²LlLH(ΖWhΘΘό†W°@λΛΗοNFQEͺXZΝΆ^'OΚΦOΓ]Υ9‰V=U#Ι›Ό›οvjŠν΄v7ΠΦβ΅»i8ςμiμMšEΗƒ ŽM`Κ6‡$’Œ&χ­SΗ&g19α滍Ο±ήNκ‹ΚC.U7>Ώ ίzφ!4ΆΒžT„gŽ>…υώτ‡Οφ3ΘχŸͺ“f―ΰΝΗΦ’s<7|΄σ1)¨'3h’ΛυΗΧ–°HύΑ͈hκ¦RΏ%M#―±υ©οΟ«΅¦-‡<–›»?Θ)O§ρvΫv0x-6Χ3„υ{ΘΆQ™Ή™|Μ Žβ6…ΓT1ήώg@vΠ’‰ͺ4΅#°‰˜DZ%^iδ­₯Šή#“ 6VgΡ9L 'ΝfπΎbŠ€‘šlGZ‡έRγxOU‹p·uc―Ήν―ωδςψήαEΌ@@ LܚΕ` ρTVnρYΤ₯©4ƒάiΏκ)ω8gAZΌ:2Θ–‹v%2³e™tc~Z“βœc΄SNmυ·πlIΉ9Τ!~}―A;6έ™ΏƒOιG” ιjXΑΤ<υŽROγΚ•v™νEΗ„iξΗω bϋ ‘Y@Aϊ8θ"uw€qΘ9%υŸΌΘ;RU©ehψ~ό«‹Ϊ±΄“φͺˆΰ¬ΎNOꎨ_§©OΟ:Iς.½πi>Dμ˜‘Ηj]’yŽπαΊ¦²kNΐjQ;±jCγMFΰτ7Έ‘G½J©c©φ†©Ψ₯©Ορρ½&E ž§•(ϋ‹δXΞηΝηUm7zzΝη.AΌλz»K”xΫ8ζΨύΟά°']λωX|pξ?ί„M’½½GJΨD‚tW o‘±4ψ―Ψά‰Vςδν[IΎ§ΚΔΡ§ο™”ιξΝk¦$?Ή<ς"0N³kΛΙV$›SϋΙΘγΆvάκD}}9IχΒhεCy•τ]Α ’Πϊ bπ³χΡΰ£'mYΏWΰ/·ά_ Ύ¦χfw}-Η]:η¦R˜oφŒl@‚:…‹VCo5™p4†9iΉ]ω™΅[ϋͺ`P; ώ’W;<= J{<φΜ#<δƒ"Όν™Q{ ­Ž`₯(ι«ξΤβμ oK‹ΜŽρ‡€ϋYνρύh† JkŠ‘UΈu‡Qœ%?#ʟΒρΓqήν$tRΒ7ϋbE&}δΦMμͺππͺGž°Ϊ½_-―Λ ΐ› ή9'σΝ.…ROgΤca_T$Μ·Ψ+Ξύ/ˆƒ…Jίj‘Ώωώ»«cˆώ’y['6Τύ%s-}³‘΅gΑ±/ΌύAή|ζxΊ‹φΜ2r|`φΜ΅ηβYš8ΆšΰΜj‘'9ιD5i΅ͺ…eΗkϋό2~φρ-Όρ|= ²,xΊ—š4:hh€0-5‡,Ή4Ί!‡ε₯!ά^ΰ΄3-ύρF. mvͺΗε˜L<•C?'₯¦ηϋpavVŽIP€Δ"/)~N‰ΥΓ΅i|6ΡιπΦ'ΕsΘ (ŸͺΜni(AO–ΔΘOI?ƒσCΈΥΰπƒ{»½Υiς²Χ„λΙgΩϐΓϋ-£έΥSάRy<+ŸΖ½ςΛΩΊ—0Π’#•-φγβe ˆ+e1-½}τ$ύY€=₯εεX—ϊ9%¦Ccύ]Οϋ‡“Ο@™JRνΔΕμέV Tί‹WSρ“r%ΛΐρΙΛψ|Νw\ΏCΨπαη·‘ϊ₯ƒiqY¨?Ξ~ͺPσ-wϋm)žζΊ{]@ηό$ytΟ”’ΖΕfγT^Ά1ΫΊ ŸQϋ cG‘d7tί €䑍¨τ&Wo>¦‚Ÿv~·™κu©Τ .>{MjΓ’’Φ§5‚sj” „{ϋΉ‚“]hv!R?ΕvΗJ#άj‹iuv„I°rΉ„έεo3N»;¬ο₯ b/ϋU™ͺ±48€ΊG‘!‘?Ο1J{«9_>P ‘UZƒΧθšδϋΟ‹’Όv‚7ˆ†ξ―ΟΥΌςΗ’€ϊ-r+˜ULΆi-›ζΏ<Ήdώ~€Ώυ3«IXΗ ;Δώ§sKO’«w {Ω$ εΩ?00μœpiΧ$jL°ϊŸΐξφƒΉ<¦[Ύ‡οu^΅»FZuηtbiΧrψxύάADIδ_κE-ΆβύΏω'‚‹1Ρκͺッ%‹ hΉ―£žl‘<’:₯₯YžιŒ΄ΙΒΒ4¦{δ]ύδ9œ2βΑ5F 1λ=ήΙΝ,‹fΠΣ†ωpΝ ~VΛqϊy ΄C!ίTϊέΜό—'Ÿkͺ@ωαWh)uυΣ E,4ašΞ&Π{ͺ.άΚ#‹f0jKmψέυ„Βœƒ(VΈ£X %•©ŽΌωŒΒΓω1˜Y5™ΆΝΩ «:ΞΈJ“sLΏώϊj—B¨§¦p˜νμXϋ’IχΛχq¬\νΛwα£ρWδΡόύ΄/’ΏδΣ­ι/yΠΓ';αλϋ―ΰΝ§Φ‹·?Θ›O•»Ά;ܞ]ϊαΪF±sUPW[]CFr~τθ&ΩœŽά¬κ‘’œŸ+ΡΡκΉ-ΫξNG~Ό:Ν| ν³¦1ΆLŸ šYμΓ8šNο ²“.„%τΜ α²]η…yc k4­K¦ίέ\@ίσά½jkδ|™MhΘΰΓΙPi^=˜’%Ϊ«σΥAP9μh\ΎιπήΜ’';ρή'»πόΡύ°:“Ζ—'pλξ82λja%bΕ†‡e£o~ϊ9y™¨Fe9ˆJDΌBΔ`"V]^X€©;ψαμΎxˆV΄r“εΑ² cΚΈ-;^rΤΟαōPΓC¨_ 6Δ7Ήt/Ž*/D„Α'D<Φ]‰’ΐ©φ&|šnΑ³{Ω{W κφ•γσΟ΄6X]Σ΅ΉςΎΆΊαˆ#ηΉR0θ:Φ‰ŸbΟ©ΑΑRέϋœœTϊ?;5ςvΖρΆ_π܊λztΆ·vG£^ηΥ]­ϊτnχΉ'7³„»"Ι‹Έ1ΨΙΫ§ι+.%γ•Η›~Ϋωμ2VΗΓΡ&Wζ΄σlΙsf#t·¦vnrqm3}θqύ()₯αŸ&Α±“­œνk nΫΒ‘#Œχ„έ}όvw˜Mγ_Ζτπlδυ“#5 θΎίk ν&ηQώ<Η:›αύ‡‡ρΜ‘RΝΣΏ\,ξߝ@jέi²ŠαYΰE+;žR΄‡ηVPξ?;47ςxνo>¦“Ώυ‹|΄Š1š‘£φ‘ 5£ƒ5ŒQ°Νޏ~›ζ―<΅tήώ ―x\Ξp’!hΕΣ‡_ΖΑ …l5{š,Mum'9Ω‚œ4υ#7EΫβS-epvΖΗ1FE±ξœ%Ue'›—έΩΣ‹λ ₯“ΦύGQύλk YPNΏi™)MN€Ρƒ?ςyγ‘ΐ–“3xO;μHβi<ζ.ͺsσςa%ΒΠΈβ@ ν`Ρ-α8mΧy£Πt ΰΊΦʐw67YΗUw½,=Τ-A€&@ތv‘*y0\ΔέΆ·Π₯‹|Ήκ¨ΆγΘx;zΥs\ωΠS•»-ΆθνlG]#εΏπ"Ϊ―½λΤ‚΄8RΊNΉe;Œϋ ΫEτ΄ŸC~%]gyΗπbžZΚ d]SĝFq"yΣWςNŽŒj₯LŒ δτ5OŸA œM©Τyp0o·•vΠ 0μ(oΆ,NΟDΧ₯'y²ύ¬8z ΥZφ3οjΫͺΛ΄]>»K |~ρ?7υ•τ͞Mc~‰Θιρμ*Ι@AN gŒ}ςΚ£(ΧΌΚ6έ8zκρ Ο}aΟ<΅‹ΏφΜXV9ͺΑνΡ‡ŸF…jƒ&0Σγ8εΊηέ.9ςψίΟΚV&jes γSΜ/˜2PθrVŽπΩΎpυ'\…ϊf_ΖhΧί»f–b,8}ςίaŸ4ΏΒN€„ΏΑ5•ΩW#iκl0ŸΤ–z―TΧϊKK³“Žώ’Nšοv‰SO¬ν±»σνΛΙoy2ΐ΅ΘZ;ΞݍF/ο(jΫωk_DIEΞύ6€ύ₯ Ω ¦}Hν•Οe%XyϋƒΌω$‘Ϋδί“cΟ.m“ΩΙjFΙ ΎS΅‚ΕΥmTΘ΄hFr~κ}Σs[Ή>Šχzγ["s‹…L.α- •’ˆˆ<Βϊζ*F—f]Ιά›SΈ0<…„έΙȈ¦Ζ""±+‚Vά{΄IK“―`h…uR<ΏδιŠβΝ§1ΥΥ„JΏ{/ήϊ‘ρšnΙ/DFr΄Dπ\[šCk€© sύνx›~Φ"€Η°ΟEi2%y+TΣ·Ά™ζ3FΞαζϊc=MφβΓ{ρyf6Š3e"κΓ ,,ΜΣrΤNMςη\?CΩφnόό‡έ†(ήƒΉžΫψ―τσn“ƒ“ΫNC:’gζwίΒ‡†ΒΜβ”‹γψτSϊ5g’&;ΡΜD±|Vόœ‘o#CFΰjΏ ΰΉ%Χ5UΏeͺ=σ©°ΖΔ!ŠέσμYŸGŠξγ™_έΑϊ8>θ5 Π₯qΪε•Η•Ο_;OυyΟΟϊ¨ΥοΕ/hsn\,"wcwDaΉΫΚ &uC2jzη-Wύœ ‘γΊφ~άk΄U&ΙΆG”°»aawΑωΖ΅Οΐ?™™΄ΪY‚ Δξ4δgV .ΏΔQ ς,ΫxO7°93H3mˆ˜)9VΘΗ³υ―#²£=Λ±¨*=‰£¬ϊ;¦_8ώ&y„VŠ%²ψ-«Ÿυ žΟ5ΞMί±‰ρ‘Λh¦σ,$ηoΩzhψϊm#˜[[Eb’eG‘§­¦p£ν]Ο/ ’ysΠφB°³² uΌ%‘ς|οΫ1hνΔFΤn"V―cΊν z”ρOϋυ&΄9…*†Ob Ύφο ΞψιΫΐ±/|ηNVj ΆΆά„Ιψ ΰ‡ši’ŠZԜ=Λύίhη άœΨάΏί‰gΑY‰μv’ώœy½žΌGlJΡiΕZΞμκρRΞ*yΗ`?μΈαmt¨ίXJΏŒͺjEΞΒ]4 Ψk°υc’vΦB5εzε|ƒΓ―‘XΣ{“#j"τ\Ό„»‡ќ’α›ωΠpρ άλΔͺ% ι™V”μ©AفJXΘ3ϊ,œ5.a^ φηIΚΌŽυψ ¨σΫ3σ°ΏζΉο όμ,ΝΎίJήΝ/6‘ϋΤa”±‰5$οkρgΈrυl‘…8όάYΙCΆ”!ό±»zω&FΟ5ŠΉ©eΊojψ°ΌΔž.ς@DAι‹ψβΓxά₯Ά]ΚG…υ(κuΟχρ;މOͺŽώ’v>zͺϊ†ωVΨ³ Ϊ3§Ά.;ύΎNΦεγ ν©oΰμΧOk@†ο5;&I°|v‰ΏŸU§Ώωg¨ICۍ{θλi§>ρ0­ξ…½ŸΖIZYcλscΗ]‰YΧ‹ŠαιO(β=mL틇 qE°XΤσsδ/υ)Ε8Vq¨x ύτΎ2:7N1–¨/„ότ2””kδfšn‰»=—΄¬Ϊ‡]ςκw<ι©O·Mφw²}ΩκŸγ ›ψΔxC¬oΠ;¬³ίΓWΥεVŠŒΒκHΞ_ΤMvύ₯Π\Α‘μ/ΓNΈ«u0ν™;,ή£}ανςζσ€hxž{bμYxΒDi±;ζ‰ͺ―¨¬;Φ0΄8εξ€KόβϊM<ςΉ$tαŸΐόςnσ@DQ™K`AA~½τ3­ΡB>izΛi¦ΥξτέBυώz9KJž9B?§&‡/αέNΕogd;‘fγ³κ°Ο)zΈ{ΎU#8§ΗΛkυΈΧӎ{-οαΊκνM-δqoΙ;λƒ–ΣΘ―•IΉΦ§a=ΰPͺ#Ξ†d؊˟\†υλ§d‚Mή!Όψ&ύΙ₯½Ε ψŒΌ‘š?δ5\oDy5•4K«Αιo²Ÿi©^#―\ύ ΅Υ_‘=ΉfΥΰΨ 5ZžŽ"8»!ΰh©άοδdU‘"[c½¦UωYŽZš˜– Ξ]ΧΖβ}: Ha3Π†Š½U’¨xKž?Qg»Τ…O\ο?Ώσ€§Q₯°?²]Αω_βDV“œ΄Jœ|•ύŒšΫ ‡œχ1o½=˜ΌΏΪ†ξW‘L§OwW ά~*)-@ΝΡcŠύΦe’έ zVehQӘΎι 8;qH;ΧΧΤ`ξQYΛ«ξ `b΄(,–#&†@Nr€ΠίΫ―#f“·ϊύΰXήωΝΏ ύϋΏ'“‹Λqμφ“σzϊμωοΰ\­α[ΝPx_yσ€zDΔ₯&όΈυΏΣ­F|π~)ΎϋΝ³2.d‡žyΥa‡œΪ+ν?μ^ŸφxnϊTΎI’ϋ]¨΄ζ£@:—€Šς/ΡΟ5αΤ \iit:ΑΧ_ςΫΞ“ΤΐτtR;œ…=SZ'φΜε~OBΥιοJ?Γ%`»‹ΟuΕΕc—οgε κ(ϋ5θ’,ΆίΒmfˆλο–·β―/ιγӐ¬&™΅cBχύ²0I}XPDο+EωjBη­ό.Πθς.ΐg—œK—Ž=θiš>ά#w°}ILV&J1r3 %‡Q―›»+GΚνΡΓ8―‹ύ% CΥΕ~κSv ι]OΣΚIώΌ›ΰ>.p;αΎlΏΟπΪ OωxϋƒΌωόtdx’μYΐύD«EQ€@@ ζ$€>ΒβŒμLΥ'ύΌ&"N n_ƒ‘(C ΨI$£&—<“G£°ΌDv:ΖͺG“?3Φs§ΫΗΗ]?#ΪβH dz`R ¬Y*Αr χΊ>"/j; ΠRxsž& Ž‘«χ~φ»ŸαώΌk}§†ήΗ―ξ\%³η˜΅ŽχπσζΛΊ“΄ŸξΘσξΖmέZ’υE,iGƝρρ[ψψςΓ₯γ “£ΥU'e7L\ά™δ $κκ?ώ>ΉΪ„1Ϋ4π^Y3ΊπΏώOψΑ?}ζ»ώ?ψ»_Έ'>R6ŸευœΗ[L–ΝDΦBώυτ)ϊnlnš$E΅ΏΏύ‡_’­Χ©ΗJIœλΘrωή9ˆί-{jΥI3ݝœS@ πΊ6ξ\m³λ%@yƒέo‘aΘόڝœΈ…χ/ύOάΧ}TύόΞ žͺάν²ΏώSόυίώ w»\―I© ƒθν2T‡λώ³―:l“συ"•Ύ Υκl¬™& TΧΠέLn’΅Π‡ξΫΝΪ‘ΛΞʚλ§.‰Xyζ\QNδCσd(…vάyΧ™˜ͺœ2Ω ;0ξλΤΌγτάοƒvfp#ΞΆ€ύ<~π_ώ-}&₯ΚQφ‘.άnΈηπήLΡ«‹~x8™[Φπ΅ίό~ς£ALj‘έ6ΥΫ€+—nj˜M :τ Jϋωaw’}΄ƒόΟM(yΧως3³g,εςόϊς;Έ?‘΅±(κ<θx?Έ~:$ε4\ύ%;¨žΖ…ύ‘°g¬‰‚`ΟΘ{¨Ϊ—kΉlϊ|°“½ψΥίύΏFοΝ$Λ.qχ³f0ΡՊ)g›ͺ]©Σθhψ ώωήΡbœw|οg~χ'œ…±c_ν‹Y^ŠΛˆKΞ3 £†ΥX’6η1B€gχa#£7pήέ»—]2—ζIOσα»SνΛ’σK—‡¦XY[sœύ₯mΩ_ ΨN8€Ϊ3½η}Οφ…·?Θ›ΟY»νq,μΩφh§νeD”πΰΌέΫPθ/Ψιd•=DιΡ °­YxΟ›a"β@0Ψιφ5‰2†@f.?΅'Ι’55V©άξ΅*ΊΣνγγŸlq a…@Δχτ/S£kŸ|ΜβBVΦ±ogœcδ4ΫMόψΏό½F0 †ΐδ€2d‘—«ΈΘhDyσαh©½ήis₯«L JςK‘²;šNmbmeCc! η 0+I±ρˆή‰ΝyLM·2Uν„˜ΓΟP»ΔA^S|™Θ.WΠ3ššI²βI [¦₯Ώο4σ{\†ώ—ψuνŸΜ@ε%§Φ 45»ΙΑΖζζ2ζζΡ5ν†`¨SΝί|κ©½mv-₯°§ ‘Lc†­}χ[έxAWj΅•χίVyπυ/-–D 7ό?pςNrςjp°$1¬67ˆάkΓτH3BdΣ,yVHŸžWh² }κOπ'―–ͺΩφ―…_^άώ6.δmF’S+P”FΟ\YΪΪΚ$=ί»Cπ|¬6ΫEΟΐj)ηφ ¦=³Φœ@vz’τ|XΖνυxϋYΩ₯5ΘΙ€{0&Nqsi7›=Ntγ½ΞόνOπΚαΞgEIJ*β’£₯χVΞΪΊ ΓB4wω"#„} }αΊ€D‰ 6-“°OϊΞ“nΟͺ««₯K «§οIΏ‚^¨Œ2D&Λ+΄½π0+°Γ’FƒςšLa¦{u?ϋE‡]ΪjlΆ‹žΑΐEΨ³ΰΪ³Φk[Bzΰ}¦Œχ΄bάΟηοuζo‚WwΎετO„Π! μKpν WK‰ώlZ&a'4(žτaϞτ+ tυœC‡m°Jžžž@οξE<\žΥVo VΩ’@8# ’GTR…zΜtf$<υψI:Ξν%tΆ7l2 ;ΥΎnοΦΪ […@Vz'ξ ?Π&Υ©ύΝ¬2y’zό$υ?·ϊω Ÿl³Uν.䁀οX‰”€@ΰ‰F 9ί‚ΉaχΛΪoχσΎ7ξ5\όΡ:ΙqΙΖς8:Θ£ρN ΦSΏ‡ο‘—ζϋ θοκΐπψ86β Pwμ4κJ’δ*O4ΰΞUAΫ‰νΏΣκ΄έν“7ύωΫλΙ°gόψˆœοx»?·ϋyοΈKρdΨΡ_rΧώ"~' °έν—7ύwBmχ:‚sψ·`oΛmτWD₯…†(9Όαβ±Y%;0’EBκΓ'φ|€ΠŠμ€@ΐFΦΫιφΥ΄β"R (ˆώgxτ―Υ>ΏΈ0€@ <ˆ¬κδ_S΅Α^ΩΥt0Λ EYu_@Y-±·<‚ζ+·0 !’L€@@ °C(xͺ{^¨Β£Gˆδμj1·ϋy›ivr“c#˜žvΕΒί²Β5}JΩQΨ“‹”ΜUξΗΎϊ“¨««EvZ’’ςώϊ'h[ Χ*½υtlΗΪ/fΝμ²Vy/;O‚=σ8-a_άΓχ$ΨΡ_rίώβΜφF`»ΏίyΣߟΦΙΜ”ˆ΅ΝΈŸμλOy"­¨΄b b—#bο₯@^ωhΙ;Έ–’j@aν¦ζ9O_£Ε™:Œ@ZΑΓ'ςΌ ±/‚‰ΐN·―ΑΔJ”%μLD3<ϊΧςσhg^c’V€@ DΗηΦ$¬/Θ"-‹ΙYοQv»<˜nHόΔœ‹žEi6‘΄–ΗpοΚMlƒγ 'ΐV!ΐ>[O”ΐ>0ƒμ}Ή.$Αν~~«pάnr"Rrš”€ΨΤD;)?ΦΥ€K?p­M› ‡aŠ@R~ʎ΄_ͺύlθ Sδ…Z€°/;Ώ=ΥPτ—<‘#ΞmWΤώ…x“[PœCs%GDF!2΅04…‡a©‚ΰ†"TΈA`’;ξΘ ,ώI>ο2-F`§ΫΧ€;'ΉξφG_x’r€@ @Α9@}ΝG)γ6051„Ž{°θkF‘N ―Φ%Tψν€rν# 2ο€}2λ’ήσ;Α~™Ωί'³UE­α@8Ω†³sΑμΏ…Κα―…θ/… =# ή<γ#΁ˆ¨˜ΰ(J€@@ €@@ ‰@dύS'2˜5μν fq’,€@@ xLμy‘Κ@ŽQΥ`žB™ημ}ΉΫϊΌπxͺΆ¨Ψ žvŠύrgŸœ–5„αb_œΙΝ*Rκ§–#ΆΐΞE@Ό™·­πΰlŽK ±»βR°+>-ΠbΆM~αΑyΫ4•PT €@@ €@@ π‚ΐV{pŽψώŸώΕ#/:ωuϊΪ'ψ•^$€@@ €@@ α†@uu΅€RWO_Έ©Ά­υ‰J+B€₯`[ΧΑε 1,%DΎ?ΩDZ€@@ €@@ €@@ v$dšκ΄8&;F...6=ο-²――OJ’³Ηt—αH€@@ €@@ €@ TDF‡ͺdQ@@ €@@ €@@ μ Αy5¦¨Š@@ €@@ €@@ g"’bΒY=‘›@@ €@@ €@@ „ Qa’‡PC €@@ €@@ v8QΒƒ³―Mœ°;Ύ’5³Ύμk±>₯«9φ,ΞUgaiͺο½{#>ε ,QBL2r£·+mbus ³+3˜άt-Χ;6›˜Y_sΝ¨‹ρGž.xσιΛϋώ!Qy―œ,ζ7£±Π o]λvΔ…xO»ξυEΧ§» ₯s—ή―O·YMNKžVŽ—ϊI*DΖ‘ 6I‘»Π=;·:ƒώUs\΄²MτwŽ Ά=s._‡  ΙΘΨ ¬­Οan1LtbjXŠπΚΣ{Ώλ!fΰ|sŸ€ …xιt΅Tο…ΡΌέΠFχ ŠŸχ»‡’|>•—ެθHžΪΘΎ,u³lήΧ ΔΎxΟλ›½ΦΚρΕ~ϊŒ‚HΈm0³gΊϋ}–ξχwΉίCi—ΒδD”&Π;@T€tΟ―m,’}qv‹4‹FκξHIΦΪΓe,šΌw€ήΘ2c㐋˜]»°Kκχl`fyCλζjj6Αό΄!VίοαΝg(P―“χMίΓ§sܟM]€D©ˆ…ψ˜]υG„„Ψ,LΙAωΟή›ΐΘq€ιbϋΎ»ΊϊΎŠ}V_μf7›§xH)J#νh™™Εξ^Ο‹η?ΐ€ Γ π³ΧΨ‡·6vwfΉvτ4«—#‰’4”HQΌΙf³Ωχ}Vuuυ}Sώ#ο¬ΚͺΚΜΚ>He4ͺ322Ž?"3Ώψ3β‹?R‚δ κΊ<puaAΊ–šZ†oζIηڞܟΈΫ\(£ε‰ω›M'¦ί–cj>Χδ ž&ΣύchŸΠh+Ω¦ςhaD&’€t΅π› [»Ii!Υ―01ŽψTd?ηΏKΈ1vν«jyΨY΄ΟgpŽαC’)ΟLύJ]p§:ΰJΦz_ι₯1ά™ΐˆRμΖ3₯(Ά?ŠHΝΕαΖJμ«wΡϋΘ»G_\Δ…vŸρLs«ρΓΧZΰd)gϊπΛwΆg!.Aγ‰δ‘ηδdK™KΥ•Dw€”$δδeryΗΘμ]· wYL½οΊC;bnj1Z…(J^βΥBdΒ{Σ=θQ £ΐ—νΖOνΫ‘;ہgVΌοbγl%.‰eμΠ±"³-Ξό@ΗΦ}ψœΎ:5t-λDΝΐ‰’}¨7ZŸΒω‘x€p Χκ΄ $KaJO< #ΈξR€‘λfqΙl:₯HΆgZΐQŠηšΚQQU ιH*AŽψpοΑC\j3ΈhΚΦ—°ϋυ%“8‘z@¬8‰„g‘ʈœ.}‰•Ί³8ͺήvxΘΨ*< Y ώ &Ώžτ`Η΄[ΐn»μ°[ΐn»μ°[ΐn»μ°[ΐn»μ°[ΐn»μ°[14½GbΪ ¦rSu“›Y6‡ΙΝΜ%Ω|™Βf™ŒΒ¦)Μ¨Δ‹Ωωaβ$ )VMb͊'’kDχ«Mb¦½₯f/On¦ό††'·e—€ΡÜʡŠθΒ$w‰ˆΉbŸ*χ²ϊ’бΆ wsο»(§™γήΜjœvζ†Lšžœ‡ω±XιΔ +|Ω^ό Y-ϋΒvΆΐvβ™ο»ά4[ˆKr!Ϋξ«ΛΩ‡#ιΪεΖ;q,»>…>‘Ρ|hs^…Ln¦l–iχ—%ev±†$7σsΣJp*foOŽJ)Νβ’ΩtRΑΆgΗZ ¨˜ηΉ9€Kvb‘ΘIύΏΊ&φ`!cKl} ΄ο9·mϊ’Iœ0W«Π©"βYˆ€z™Φ—¨ΜΖωΥΆƒΓ΄€<;ί£1θ&οh/Ωηh[ΠNo·€έv Ψ-`·€έv Ψ-`·€έv Ψ-`·€έv Ψ-`·€έv Ψ-±lλΝ›HŠΰYυαΑμΏ5»Κ{ΣφηŽ,JΔπ•1΄+,‹Α»ώ˜βΒ)Ήy™κά=οΑψϊ:b“h+h'φe€ΐΏ¦ΆL)œΧ04ηΑά—n§Η+$ š,fΣνΔ Pέ7·ci»ΚσŒα¦hN ͺΦΑ9o‹Ϋ751YAn^‘Δϊυ•ΫL›~>MΦΗly¦κ—D–¬9§—θ]]™ƒgmkd3Ό05MιΒΥΔBΤ₯{ΰ™η-―%πΜδύΫύɜxω…¨ °ž•άŽJΤΈ9ΫΝ”ΝήŽ*;Λ/ωΡσ¨Μ@όβ„<–—b>ΓνΒ]“ο»ιŠ%γ ‚άμgΦΰύ“π#=%‰£hΎ=Μβ’ΩtJ‘mN·ΐ FϋF009 ΟάβrΠPӈς^βϊŸΒ•A»μΨϊRt7s»τ%“8]εΤ©uα™: w¦7Y}i§q^£Κv‘ˆŒgθi3”c΄‘w”ΰœ‘^€ΰ f΄«δŸΠΎ`2΄ε­ΧŽVaqμώωό ™Μ'R²Θu\wή6›Œ¬J”Π}©±±Ψόr +«σ˜ρ΅cx²1χπŸρ“_}°eYρΎλ.rYrNψ9νVΰ’/ςΩE>—vΡΝ0)ΚnΕω’“ψΞ7O“ξ² Γπφοn˜¬ F2η3ψζ^F.mΆΠχ1ώώΧ—4"νΦ ΒΒAΧ"WV&Π6Ϊ΅Β’eμ3 «Ψˆ`~MeΏXŸΔoϋ΅ϊφ²ŒΧ>Έ„τͺu…fqΙl:+ΗΞΛT ,,ΜβQW;έiGΏŠ%οAw§―|σYΈΉN. ΉΩ„:ΞΆΎ€u+v‘Ύd'΄ͺg"L7žδ­?I}i‡q> Ίφ©0‚g²΅$κΞœ³NαυgNK«½#Υ¦§γq‘―7R4έΧ“ΈΈ©IqΨͺFΘ(y?άίA&?nέψΏqu*8ZFφ!©:€Ϊ­ν ^ΖΓΆ_α£!™š]^v …εDn֊"΅El6ˆzψ™ZΤν-“Ψ$³Δ·Ι€£o|βϊ 2~tεεοEMi> r²hqV&Rxφ ν Ύ€qŸΓ½Έ²cΤ¦ξΓζY”λ^’ Μ“ΥbMgςωΤΜKO`4ε™©ίκ†αΝ3«†FέΣ€gΚ:74· ΑUˆβ~’][šχΡxŒ]θπ>;Fή?–[>ž?SC =b°4ή‹{si8\οByžψ1@–ΆzΊρΩεΘKFςqφ…dm.Oβ]“Ÿl–'οrͺρl5O8›κΐ₯v6_΄ε%†<γΈύ€H;΄=§ξ°˜ΔΔ±΅υyB:/: Ϋ΄ηVβ•ΕH"^όμP'.ΆO†Ο;΅/ž(GΩΦ\ςτβΒνa)~uΓ~4UΓ₯Ί^τ9ϋb›OJ@žς†μ/J†bm ƒ…±nj‡0²δ–γεƒnΤΚν?5:†»<Θ―¦±.Zα§<>ΡΘccγ1ŠφΦαpc€ϋξŠυ4Œƒ[πΎ‹²“‘/Ύ3΄b!x|Ωj|Ωnό τ±ρ,- gΙ66bΠΠxΝ΅%Θ§c™‘Ώ Hg—’Σ³¨?:κFuiž,#ΙΔυaϋpgΠ %j_*s€]2ζ$r3hφδT^‘›™ώ/(ό{4‹4HΦβηδσι7f0Ά‘Š"2ώG5ΕΜΪ‚|ƒ`\"H+–u…ΝΓ¬ήc6]XavπβΣ†/sƒΈ ύ*S+OβaοάΝόwš3ΓΑ……oώψbλKB³iι»;€/…½‘ζp"l–Κ‹fρΜH:“ϊŽβΌ²ΆΑUΖ³mh^U[ΕνU’uR˜U ›άΜolΡ*W“σ“‡ψδ«Vψ²SΕΪpΉm`EEŠXZρ&ή¨k’Ξƒ=©HŽW7 Ήα˜Ό-‘βŠθΝΝkΕ«'bπλΟήULtΰΔ‘o£%u€.±MίGΜγΏΖΗ#ΦZΡΦ(νιZaCAΌ[Yα£Gρδf*dΰQ‡¦•rWσ1œ>}€£k΅{Λ ΞΫUήΠΐM|τ»€ΆλDr9Μ>Έ•MΝεΝϋnTΈhπ39γ’/FονΆΗί…Έ΄νm°]Β™g£Ή΅Μ‡ΕΠ6žfœœ7“―5ib₯dρ΄…₯Ξ‚ηv»ϊ#±ήΝϋ'KŠΕSυ1₯ Ο5Ό―J?SGΡ}–\’Pδf!“όΒc8wh?½ρqPΆΖεŒη“αxσ‹Θ ’‚Vύ˜›ΡΊ`‡m[ Xπž‘uwγ™‘š˜ˆ»ύƒ₯χu qήD3Z•Δ8FW²Uε9ψ’Ln&‘––ζΤ[j21£ΐ]«δŒ΅μԚ-`ι{­Y‚*π+Χͺ–°O’jΫ‚sTΝΗ%Nq‘^²`8‡~™Β}ζΫ•CͺΣxKΈ΄7:§Yh§ž$Δ‰acsžυb³ Z*Ε)PώυU¬ΡΡ…4N. #K˜+Οl:ΉΣΩ¨,.ζΧ΄€Κ1 ϊOd­/Ξ̜a%{‚–6<‘ Ξ9ΤŸ½•ΎΥQ!G'N½p­₯ΑΟa ‘ιε 8; ο|LπΞ.(Eyiπ½›}L ₯ANffΧαΝμμ$!―Έηθ':–‡Α9Ο݊o»ΕXβQλώEƒ»bΎ@τ8(ηEΛ`ŒΏοΚδAώM" Š„FF ΤP’,ίΧ=dηψ²»π3¨Av6ΐΖ3]νΟ‚“ηΉχγ\`0=Σ΅ΝG—•‚w>²—’г螿ρϊ1”kθhR;’ΰl _P$½Οk€Εš’kΜ­@Κ=MjΓfm½KL§ϋ›ƒsΉ{γC³ψάηΑήBA ή$ ϊaq•‘μ€SšΪ£?τ?"ΰRPb€Ωtbϊέt|jρ%|#'ΕΙψՍΘKh|±υ%Ύ₯Ÿ}Ι N„”δ«fρΜ`:sϊβΌάB[ο³ρlλΫ8 „#8Οt’4XΥ~ Όt›τaβ¬:޽’°ώ[Έ£°T,οφcVͺH^DP;όΔ΅ ’ψlΞ g& &ηpNAn^’­w:FΠΦ_ HLr’ΐιF‹+Ύy…UεμBι#ΪγνΐˆwˆΆ σ`•†{K χ£΅€œ/$³Mew1>0ĝΧΦΏ¬"7φ_čώ+XO9€ΦΪηαvπ4¬}eΡ6ςΌ’Ϊ§»΄ŠΘšwk© \'ξ½{U[Pni!iSγ]ΤNEθv•Χwƒ,‘r:©-ˆΰ¬˜Fˆ’‘“š~ίCgςJ4ψiZNΈdγKΘ[ψΥΌ —žΚΦqγ?ϊ348-¬άnoO]Ώ‚DR|ϊΊ,¬ΈEYmWDβΦΧ‘‚άΌˆžίγVg7ςj^Ζ™*7_‘L7άΕŒJ³:ζ*Kvk€_Ζύ˜" A d+6)ε%­΄+oM;#―‡²>Ζ …jFΞhp>#3GAnfυυfς’υŠ([Β\ϋΩ©v¦v;žmi«<ΑύΓnΗyχΝ š(FJbUy΅ΤΟΞWο–0Ώ44υcw­’SͺΈνyr[ΰ+ΧOξmۍ’Ϋœ£½+ΙxΖQ"lΩLΦxgΗΡ©a<#ΪRΆ<=Mτ Ό…ωεE$gΦΰ™ςΦτ¬|$ξϋzΡPΏŒψd©ώŽ΄2|“~’›_™Ζ£Ω!΄/XH5[žΩt’@μ¨2ΚHF0”ΡΜϋ=θ»έ‰”X¬?ώ‰Ydν«'ιM `|~ŒkœΉ˜/1νQZ¦KΖ©- rσΊΓG hœ4ŸΰˆšξαχΌ‹+‡0šςx1Ψ₯/F<3πΟ.Π‘Ϋ‹JP[Μ“Χ\ϋφγΤδ.λΨΊYΞ1‚/Ϊϋ ΄\…eψΉwBρ¦žΟ’‡»lYy:λN–šμR”IDŸYŒ/F"#=%xΖ5Š/ž9Fγ.r φuc€ή·ΨDڊZέE\gE#^ mδίΎ©ΤX?­3 Ξ4Q—‚ϊ ^ΞMΥ=SΚ’‹“Ο(ΘΝΛ^άλΔ\Lš+€ωZ–"t|~‘οŸ5Έkedό}WΆ– σ› X™r„κΜrŒ/χ ΖΊ2p0O$=ε₯΄-τσAYFΖ—έ„ŸAβοh€gϊš? ž…Ι€½ο¦‘D»±΄VρΦμ{ρ\£οΆ©­ΕΗ%Ή`£zVuν.‘›gIΑδμβ“SΰΜΝ¦Ή ΦΑΙMΉ$ΑgDΟJΚDΎπ€υYŒ.ρyμuΤ’UZΔ)—0Ώ&DƒLϊπLž[Ψg ¦ΪΡΉΗ…f1·΅<˜dTdδ£!»HšΡπΜN “x@α]d\No6vn;ϊUΕ— δgΛσ_ώΕΔœζ ƒ/ΆΎFίέMϊ’YœΠ| 4Νβ™ρt¦τ₯Γy¦Ϊ² ΟΆ¬iΓdΌcgΜάΓgτΣvϋρ&γfrΫT/βNο“H¬uΡVΫβhΖzΪ.ΰ‘veB+ρbΝ1ιΓ|rδcόκήeEœ^τŒήΐgmr'Θ]|<‹ΡλόfΤ”α©{Xύop΄—'&FeJ>€†r6Lΐ»ώŸγ½n„΄|οߎEζσ_£ ―Θeξ…‹°y#υ·B^φZΐ™Λ)Ά~Zύ'ΊνzαZh[BΡjΗθ΅/κM›Ϋ”Wˆ=ή Ρ£-vΫ]W€ e[PK³ο»IQLγ§Y9Mΰ’/&oξ'{pi‹[`η²—ΰv½Χ/£k‘Yu ·SCxQυβ|ψ\Άπͺο.>ψΥέ-,@+kκwΩυ»jM(8ξΆυGιGΡT.,2#1΅  ‹ΜΌc£8FgήώS*R™υ²H’ΧE2 Ώ8Mğ0ύΡƒΔ³ίG9§_ΣδŠ2–9£ΔωΉΩ.\λYΑΚΒ(»»^ύ]ΌκvsRy½:••°ύQ΅€έ?DΥ|Q%ή ύƒΖύX§ΑωˆR™`Ν—XT^aΩ›xυ3Œα ΰ;kv^=)ΖΒLαEr²ςmgQ hΌ―»mœΑ’šΪΩ<Ε-°ΗΆΰΥέ-ΜtΑ-bώΊ|<©+ͺLw qE2νN(”›žœ&ρD!‹#%§Rˆύ@VDϋ0"8‡rιIΩ8DΏLΟ}\]X’™-Οl:©`-€i]4ΦqχD[«5±Dpΰ2ς<Β₯Ž0$Σ‚2T‹Kgqύ£ΛΈ"’Šοφ`ώ…Σd •“PU]CηN._ΣεΑ‡αΞNψζΖπy Έ-{Yν˜ ΌέΈ;ά€7Ο4pΔcWSͺ‰ΰ,΄—b¨£u7ΌK­Dœyκ‘pΘ©ΫK² ΛcψΰέΟоȟߜ\Δƒ,;d œκΎfq^»X>Tρ8†‹xΝΜϋ˜‡Φy'}ΗξM"‹4…œ\ˆΛ31±΄ŽT² /5υΚ8.OοX‘|Ω-ψ ϊŽŸΪx¦ο„Η3ν<|ƒmψ)Yjζ-ππ,ΐKMόβ‹ΚͺRΑyL‘Τ(.1μ3«ge¦‰ϊυΏΎ°¨MζS²r_š(€œΪ_ iαψNϋWΈ… ©©.Νb}0Ώ8„G›τŠ˜=aˆΥ‘%Ί˜[· φŽΜτβU§0S^89½±[κrp$%σDδŽ‹O’ΎcX!Σ ƒψΔΩD \ šΜ¦ΣΚk§ΓΎͺψβj¬G‹°˜Βΐι-a\x|±υ%„ΣwwP_²'Β<ͺKfρΜL:3ϊNαΌͺ‘ΆψΔΖ3ΦΐS[άΚΑΩoΧ›y·^’Ω,q±σ¬_5PNδΚΓp ιf&ΙΝΚ”˜™ψ( ωXku[•«ΌΪLω’•μΛ"ΉY,fy34œ/ΦC W /γ₯“ H ’μflbiEνϋ?}“Š8–y+žΗ7^>M€lq…χ<&zΪqγΣ.l†#!ΎήOpαR ‘κ^ϋΣg‘‹ΕαKxϋsΰ•ΧžGeyBέόS=θ½} η/ήΰΔΝo8‰}uυ(..AnVRΕ6X˜ΖθΔ Ϊ.γ£+νΪU«8‰oœ#9ιc„wLΞϋΈqΝ΄²^'ί:ƒ:w5YιU{`Ρ7Œ‰Ρ!τή»ŠkwΊ:aΐΩ3hιώEΧ‰52Ϊ?Τ–ΦIVŠηH―ΙΝ-9pšΘΝlP0•Ο^0¨%–eύqϊ~9Wες3rFσΛ½ΈΡΩ+ ΔΆjέμ\ΰ;.^y‚ަŸk[o w—νώ!\λ°k!ϊdk±h9ϋ#:ά${,L ύΖΤ(ΏδΔfp>:}ήόχΡnΗk3Έ+ί Α—wg„ΕR+ύYΙCI&λSΌπ‘εΚ gw-‘3H]`γυWVŸ'ηm·C-GNΆ3ΩΩhtΚίΙ}d½yΔdN;›,9 ¬ΟZ£Ÿψ<¬`€‘#«kΘHΞES:‘ς8—…:Ϊύ₯O" $#+-]ΒYΰτ―­bωΛ=ΘLΚ‚;U&WΊΕ’owΎ}Μ–g6 ΊpX ΄hGΫoε€LZŒL‰‰&YΤ"Igu\ŽμΘ|=}2Ή™‹±ŒΛw{QUΊŸ‹γ$’€–EU#ε±lοίeŠhoΖA"`²―ΓΈ8k[)ΪϋEΫ£‹Τ?YψӞŠ1σ|rmςŸuε髟Ά˜Y©e8εTPA‰€x+ββ‹-Δ³Τd01C˜ΘŽšΓž1ν2P[Y&₯ξΏΫDnfϋΫο@IΩ·βύc“Κmw”4]ΰfο8šˆΰΜ¨Ύ™Μ²θ&F1δmD#kœœ\0CΚ^ΕάλήvwΓ#[1Γ—Ksf’Α₯t>ΩΔb©€gšŒπp$εLd琕B8*ρ­Fΰ뽃ί\¦Ndg dζωYLΠ0RΛ©BΙpΤθύ‡Aχ`n°χ{ ρGώ.BiUΊ{ζδΒ•ΎxG•ΑJiC:ννθ–ΘΝ\ΰh•ε’²₯˜χO‘Τ(ξŠI£ΕA–Ήχ]” ΒquŽ,Ή. (SœMAλςΩx&Θ\Δ/'G#dΒ.λΑ—݁Ÿ+cγΩ‹gΑχ–¬ΦίWγ^ΗΝnTWρ ?²²Q” Œ…ׁK¬L³zΦζcΕāΒ+Φcnbl¦+”3‚/9‰’FEƒU6Λ–ƒ“yΒ5΄€σκΤŠ ΔΉ:š Τ₯C &Ό"«N²νŸΐE?―Ι9 'ηΧB)΄Y#e8”Ξ°Hιϊρ[ΟΈ2$„_.i%5›N+―€0_Ά_r«qς¨€ψHj!ΰΆ€fm})°Qž}Ι œ¬·φΉY<3—ΞœΎ΄ν8oγَα™<¦§ύΌZjν(‘œC“`i˜θ•Έέ}ي\·=ŒΜ,iυΩΜ’kΙ(MI%"Ξ4m §E‰b"V’ΎΔ-Θ:ν¬ξ΄])΅4ξ!­LσΰFyάqŠQh‹=ΡυOuma+^ wΜΘ/ƒ»ͺFŽβ[i:r˜>GΓψΓΏΒ LΙΩ₯£ κ(^£Ÿθ²7{pwΕSώX‘ƒš.­—Ώt¨ .ρϋXˆιΘ«Bλ‰9tΑΉnœϊζ‘. 5-ΕUμwΕyΏηSUY"Yύαχ΅δ£Ο΅ΉχݜlaSEΐOsršΓ%+π%l]wΑE—¬Β%ΕΝ$ŒωΖήBC©bπ]Έ,aaςœί“Ζ%JZQB[2Φπ˜G‹]δά_:‘f_Α2Sπ—υ3‰ΘœZ\ƒ2§ΣΠpυ74P”n²ΖRVΞO8/Α™wCΈπŸUδπSŒͺ¨A'‘q>…Τ'3,Ο]λΒ‘ŠY.κ_(~*y½ΛχY97Ξύιp΄F@βΓ‰†λ,CΛK?Fiq~φΣ`‚wnmk[|οόΤ7#°o2κ=’< ZΏ‰΅ŠŠG­ϋM$ζ λ\(•τ―EτŽΘ:ν‘/ ΪXλσ.=…MαΚ„_1ά²#mΏ–Λ&8·Š•ΡoNNkqή‡΄σ‰³ [Ψb΅·πΥsmλ­ΪwΖξ΄Ϋ% 4t‘N ZΏŽΧƒΣ ΠpϊŸŸŸύ­8…>Oχ<šο£έΧζpWu»ΘŠώ›M§ΐSΏ†πIΗTξθͺw:€/ΒΘΈkœ*‘wί‰Χ_m}6ΑyΗ^JΫ‚³ω¦―Ι)–U,βΦό‚ωΜv4e*2Db3dw'αξ²@G€]ζΎlΐ‰ ž+μFΘΙΌŒ{dΉc}AM0EwZžΟ-βI¨±ι(JMΐΘ"ΛΣlyfΣq‚JΌ7ρ“}DεήΐZŽ„{’›%W9ωηhljŒΞEt–‰RόœkœK-Η^ΞZ;- ?ρ—mκ?³x\+¬]Y²Κ2νχΜb%dqfŠŠi>.7Ή™YKσ|Γπ:²ΰςšυΝp*Šε~₯Έ©ί+jD\ -N‘MNŒfz<Yβ ¬Gƒοω€‡ΐ3ΑΩΠύ3ΥμͺDΡβ Ωχ]%D¨“δ"ΌBVΝsΕλ›K#kω1qi(u†”½8›΅‚‹3ύ•˜ŽŽϊπeηρS!²ΆΧΖ3²zσδβYΠMŸΑHPηH›ΗgQYΑ΄ŸX$rΊΖrPR£ζτ,0Σpψk_Cv웆—0vΜY&ύψ’†¬x?—ΰYŽΕαB7ψΩ¨άςv“Eg"υ&‹˜>YyŽΖ妕γυœ£EXWΌ"q‚dαN²++΄p2T9kdm{ŠλS6θ>₯ΣNœΉΤο/o!™ς>·±†,Α%^Dε}x¦L‘ΣoγΛφΰKj)ή8Ϋ"ι₯³΄Ψκέ»Α:ƒςΩϊ’²5‘/E5 2‹gfΣ™Ωfœ·ρlGρ,5§4θ9έΚ€hΎΰΆ@œ©:&­²뿁6Z°ϋ$ΊΜΤl©Y…§ρCϊ‰nΞί…Άήq{B±<š]Μ«D‰@pσM!₯ς»ψα^7YV”έŒχ>n>| ΄Kcγ)T‰Ί"}ꏌ3ˆ™Ι⠜Ÿ,,1;1AŒ ΏoSΝEΡ¦Έ8ŸΝ sι]eω(dœWYšΦέDPš«ΩH%οΊ;™1 7JcB4^•IS—…™\„"²/9²κ\šJ†hq„hƒΗ;ν§ΛΉpˆ–xΈΘiΘΛ‘R…π(:’1B3R;λcxg'ή?±ΌhŽfqΠτϋKΨlœS›§†pΝ3"-”¨pΤΰcΔQˆšΉitn†ΘΨΎμ$~†^lγ™ͺ=ž8«κφΡZiƒNdL.zώ©£¨Ϋb‘ΏύΛ w„ρΦ+Σψσ ΛΞαrcΧπι?ώ>Ύ+·=*NβŒ;|Ά]Έρ1Όή{ψψ Ž₯+gxρmτ½υορGpKGY]#₯ΌΔ]wj¬1©ο>ώε?ό?ŸΰO‰φoΎRH’3Ώe3+χ? δ`.[†HsΙ^9 „―βμ1IΓ[ψTƒΩvοw?“δrO ‚σQ.·ιΞ 8YΡ&eΤGmO†&z8όγ_β#‘άύ»KdρσΏ#‹Ÿl!5_₯:ΌΗε`Ί<˜»b[rαΉ6σΎ["—"=ψiFNsΈ΄Eψ’¨οN{m\"­…ΈΔξ§λΤi4Iδf²βρ‹Ÿΰ£›jLr?μΟ\•oΏI\’3ΰ}£·ώ ώζη„ΰίΐχύ gšΙ™v p•Ξ{ΈkχΪ:ρ,α?³\VΣ€όσ7 €€ΊN5ΚτΫΪ%¬ε[τ/<Ξ·c‚OΥ9 h§Ζ"VΑY£EΙΟ§&05Π4|‡₯IΖΐ{pΧ;ΎA»ΌΔ-,*;uυDp~(fFΗΎΛΏ” ΥΞsΘ#‚3IYυιΎfϋΏ5  aϊ‡RΊόT 03;JSF4?_|ΟVρΒΉΙ+h[-ΓqAO‹‰‘Μύ„+QΧ΅ζύ?ΖΙάlΜm#.Ε!ι—,±gό2~χΰΆ”99­Εω gŽ4!ŠY?Y—Δ{βJ+ε֞₯™°N,܍VNVΞnv6^Ϋϊόn~>ŸfΩφ0KΌ{φ<ΝUά’Ί%ΰ0zΔQ9ό8n?Α:3Ωǐ‡’7}蝝 j·„="σ!θRΨ€΅ΗΎΩςΜ¦ +αn½ΈI Κ΅eS­3׎’?to£ŠάΌδ@/νΕ>·LC?²ˆwΌΙΕη£?ί­ŽIdy‰CΆqύ«Dœ7α4ŸOωθM’»<υ+Ι¬ΔYgΎ$ŠŸ‰!12·w‹ρŒ¬Ž?Έί‰ݏO ―ω€έΫ€ ρΠ’Š$ €“βš6Χ50OΚWΓγΑθxς ‰M–•‡rš:MFY‰8FΈ‚αώ~„ΡeTT’εh!oξχ…κΔfΰρ­\$Ÿ#εD\ΞΟ'Yz' J2P.-ψYΐ΄‡Ξ’’)ΊξίΓ$ !‡z b©‹ρO‘εžv†οίΙkώ}Χ'p‘ŠΣΛ΄CΕ₯,ισ‘ %nŽˆ˜άδ4t.hέ?λπe+ρS_«P,ΟΒ7ΥΗ3΅ψ³kkš;x$&*0ŽT‘¨\4zΦD~ϊ―+xq%ʊͺω$gΒ½―%YIψωϋmǜΒց¬νs ™ήŸ…*aJd‚ ρ}&μNSAό‘κ!‚σLΨ Γ_lHΛ—Ή{βP‘[·ψ9Ί'^ή9$6ϋςjPϋ%³V:$-°•{‡oω)™(cςΗ§"‡πi\1u)§3‹KfΣΙ%‡υΩψΆy5Ύ8qφΥ#Ξ˜Βoή»vQΘΦ—΄oΛ“’/J―'SjŸ›Ε³Ό-ΒA&₯¦Ύ΄Ν8oλKΪΟ‹ΊCx&•o±gœχγ`­ΈŒ¦Bϋ―mΑ*a‹[/dvΘNc_λ^ VKΎy?–6c‘ε¬D}ΎL6wGœωας3Ω ‰Η~ττίΑΰμ9ϋΠZR.”XަΚx€ §T‡œ’Wq–Ÿ ζ.ψοΰͺDο…Ÿδ‘^Xy……ˆ[+“]rJ^Ζρ ±<вδΫQ)Π­2+JυjwefΌΏ\AΠξΊφ‰DnζΆ·οΆβ\s8 •:ΟϋΩεΎOρQŸοΖωŸΙ'Ύ;—ξΰάΨŽKΰΎ¨ΉEJ9o_RΫ[ϋ›q¦Q[ΞM" I. IYΈΏσ*ξHByΠr€ξ#η¦Ρώ…HVŸ₯XbβΒν―ηI},7οέ«2Ή™Λήƒ>ϊ ΅5_η>rŠK5-‡)ekζ>pβDωΟΨsmζ}Rΐ δzπӌœfqΙ| ͺfΈ' vuΝοΗ tμΣxΡΟ±qΙj\r‘±ε t§z?~7ˆάΜ.v]ϊ’JΙΞ \zpϋύ r¦δ»r§­Dpf=€#Gž¬Yώο{-lΔ΅ˆϊτ²„Ϋ)'­¬‘ϋΝΑG dδhQψ"γόδYήηHΚΘ-!½ͺZ¬θ~τ£—h `κκούτΞU’ΑΌ|‘Oςa”ϊΐ£ίo4‘Λ‚ξŸϊ²Ϋϋ¨Οeδο”qααJκ›’jI‘'£­y ά?…xFϋ#1©‘ώ‘ “&W7νο%ίΌΠ,μTB ω.έΌˆ½Ηώ ]@ 5γq!ίIΒ€’ˆk)—ρ‹ψΕν+)σ˜““0Τ=R$[AžY ­οΔ Vνώα Χ[νώAίkΉΞ‡v{ωDύ½pοέOPw _0™W† ˜ίHͺηD6YF%faPtF](² x=RyM₯ςΛθΓψΥ΅"eκͺ‰ΰ,R-Ε|ƒŽτxH£Ϊ[`ι9¨Ό„$iΌk+˜ΥΫ¬ͺŒt<ŸŸ«₯I΅Φ—ˆ ͺ\^―Κ4Μ‰ΎςΈ Φ―ΖY‹cŠ1±Ω^|ΰΣ'γΦγ™Χo?Ηa*ϊK‹σX`sgΜάd’ DΞ΅βύΣW‘eτL‘₯ΖΘBgi)ρΖ‘”Š™›CΟ(ο΅ξ2šΕές(Σ‡έaΖ}–α›ρΕ4f™œ„’Ίδ°i«ω ܏Α~wœ4ΗZ/Pί–η0ΕΙ»UΞ²:«‡cΈ™mE7°nΥ0^R°€‘p7ΚμΝϋΟΰˆ—ηYΗ—¦5J,c~sͺΒχρq±Ϊ½‘uψ²uψiμ~ΨxΎ½v;ž©₯Οt¦sDώΐ›₯EΦg±y„,―κ›αTη,ŸE­gMτγ}ϊΓUœ…μά\T”ο…‹ˆΝΜ₯—γ@E> ΉH…‹ώίca‘£BΏ\^Α§>qF I’ύζ5xV¨OΠpϊπ% Ω΄#‹δˆP]ζ£€vgΗζ4I ΒyhGσ/Γ]η―™Ε%³ι"K$Ζ°ρEl νc4ψ’S/EcžπμΡ'Ώϋ@οΝΦ—΄ο…5‘[­/iK©'ΆΟΆCθKαΌv›j…Ϊx¦Υ*rΨNΰ™\ΊΥ>ΕH‰ΥYΛ―qQΩZ°ο:>A˜1–νŞΐ{‡{σCκυΎρΠυ*ΎΦΨΚ―|K,&сώQ¦œ#3U$63±'pύΖ/ρΕ” Έή†ρqΖΕθ3.Aψ€ηΞ‚1 ―μΚa—gΫρή•wUΫcΜ.±A^—ΈhοkψF\>z}3HΛr£E"S·™b€¬Μc–‹©ώ7yεoπΧύŸ‡f«IΤQ―Μ¨¬Yͺc›9s!;›—‘΅ΙhΧέ LΖ†F½η…ϋxxEί³ε¨x­χ£΄€I€ρρˆqγR δΥ~’4rΫ†ϋIΞgZή'δDV*ώτCξ­;θνξΓδΨ†ΘŠ…Η,P5£Ώ‹DŒΈΛ…žLqΫBzΖQ+ΐ‰n”xu&ƒΛ‘©Cž»!³1tΑΨsmζ}7$NΔΘϊπӌœζqΙ |‰Xq1‘7μί~3¬₯X1ͺtτέΔOώΓ_«¬JΧ"zίw—B5™~\"K'8fΊ>nS­2,Α%ŸA»°v’+B‹ ¬έ:‰HΤRΔ`oύ3-@αœσyTpVμιŒϊšξPΔ_>Ά©zΪ³kxŒ¬Ξ4qύTvA •ΣWm9\4€Ζœ£άM‹b²¨ ΩBŸαŸζ,/οMNαβ°SίΐŸU½ŽΈ@M1NΦURΈm₯$=½G†ξŸA5’λο\p¦²₯PΜy1ιIΐ³Η_¬‘LΰΪύ_‘EgZœβΫs΄ŠΫ7‡ΙΙv°2ΧIΏΘΜ€{N·v‰¬€žΕ›u x§CάcΒΌœVβ|–‚˜η§I+˜έ?<z«έ?θyττAωψF0Ψz—¬uMΐΝ}³Δ#)9—"θϋ ΜIynNŸξϋhχβ΅yά-t½ŽΔEΘ΄xω£»—…f¦>•[`ΝNύπΝFξO"γy9•χ^·ίΖk―ιa1=Ξ`HTκσΊŸP;’…-ΐYpΆ0Ώ―FV™h$+›’σ…ή–]Œτ$‰lλ! e΄Υ³θ|τ-£Η₯¦)ˆΰkXΦ"Ÿ™-Οl:<£’―΅–"nƒ±b‰Ν±2Ž/ά‰hΑKO΅β¬),Ίff²±€ΠdΟMš|]f:ϋ> ˆ›š‰,‘c²Lτ4TC#εɜ4Ίυ‹EKΗ’²άΘδf{i t`O‰Σ‘Ι"i1μ²–‹ζ>\ŒhΔΏΆdJCΦυ|’ΰeՍ8Y‘&Wa™Α9²†''a>½ε±Έϊλ—@VxέhMΟ`ΙΘ­‘Η׍Οf΅fŽψκO9ž±Κ&— ²*ύ=lξ-Ό³βύ _‚φΥ!zžΖΉPH— σςΡΤ'½w££“ΦcSqκ˜ΕhζfΠΦ€3όι¨—=OΜ(ƒUΥ±ά{Ύ4ηΑύώŽΰœWμ"<Νδβ/Ρ|f7η›ΓΜ92Yyv:D(‡Kfϊί¦η¨y …2QT@ίΞd Sις³ΕχDjίξ*K4†ƒΡΎοzρ, l“sK˜Yeθθ2Ο“›ξ,mˆ#χΚxΦαΛΦΰ§RΦ'ΔoγYπ2ˆgͺ SEͺ֘J­₯gΫΙp„ΉUΜiμjΒ_Σχί2= ΛeΏ1άΉ{ΗΞΌˆ£{ξ‚/² ΊθtγK § ΛΙΧ=Έ69$/lHΙC©8WΈ>KνΕ7;}ϊ&VΦΰ'=~“~*χe ²“δω0Ά lšΒ―-賝βD±K›€#krΣΝβ’Ωtͺξξ“§_’ι}9†ΦbQ—ŸΒ'>C‡κ½qk β‹­/…hGEπφθKнΊpB―ΎdΟΜ¦ ¬LπyH}Ι"œ.q—†ΨxΆ­7&Ά²­…K…eŸΖφΑʜ·z/D·½ŸΡŽώŸ#r³–zχσ*q4Ÿ‘vS‘BΫ±:#ˁ Qa£ώ‹2ΉYΘhΔGΘΑY<0λΛ―μ?,Yν[ςέΒŸΏΗmLπ¨6κΚ]±Ό¨ψ0ŠŠ•1x?SοFh  PC2“cdrΛ#5ˆΓ‡΄9Ϊr洉ځΩ}λίαάњΐΰΰsi>₯œρ0jdδڍ[8Πό 7 ΠVK­gι'·0Ž{Wρα;Ψ“ΒΉpψΰQιΪ£/.I~«<²΅ xG΅οΉ)γa4~Βdfπ’‘ηΪπϋnP–°Ρ ΰ§a9£ΐ%«π%lέΕ‹I τYmΠ%ΔΘ–^ &eρ6.YK)ˆ5ZΨ3~œ[ΊcVΰ’ŸΆ1Τξ±ωb“3uέιΔΔιn˜έU]‘…YϊŠζZͺΔ» "Ak£€ΑΤA'Ξ·ašΖτύ\œΛλV₯₯Œθ,Έ"ΚiΜl²΄HZ05F pΘ"³3—ι$’ΛFA‘θuΙg‘‡ ·ζ=2zΒI€χšΎώ! ‰bσ,Ν#»ϊj™κGξQϋܘ&OA>7IΓΞNa|žσYπϏ»»Šœšχύ'χΊΈ’‚”Αy˜;3/§u8OΔΌ‘ 5ŽEΞξΤ ωDκ­v Ύ‰Zg:ϋ‡ΐ€³σvΎΘ†³ΘTνκIΪΐl"›Υη£>’ΎNΧwͺyŒTwνλ&ΛΛ;M»΅πY.t,^΁΄uu SaTξš”S»‘CmΌV·‘Χͺφˆ4Ξ`TυyU!φΙΆ΅ΐΙΊξΆωΔTε,K΄pΆ>…Άf&τ wΚ ―ΔdδQύf/{…³U"a€·ƒslT:ιYX[šΔˆ"Ψ©)Ex.OώˆυΜNΘDpSεQΞfΣ‰B Η΄dͺcΊ8ΙMσ4vΗΚS―wS”!£Εg*ΛΥ(d`‚7O¬)ά‹κλΓY\WWΚ‘ Ή3Ό¦a#εΙ"$ …H>κΑξ"΄Τ—ΙQΒωΘbξ’h17ǁ"Κˁ8Ν}Θ­Ε2‘W΅>ή£x>κΉωxM²B–ΏΤ!tf]y,λΘυc±p8ߍϊ…εήΑYάυ΄γn0Η‰EΦtO%žq5υ lυYό8\cc-z{οP›JdβόΗd‘›Ζ²βύΣlθH‹ύCa)αRNΈC2dβh`ˆ-Š”Ε‚Βrϊγǚ¬.)‹c΅₯ΌΑ' ινιH ž›τc”β²qVgOdžœτœT<†–kΰJΞ”ΖΣΌΣς¬ετ4BΏvŸ:BXKtδ£ΑωνΒ}Uy3‘ŠΊ*£L²²«xό¬¬­Du›GΖOG%jlU¦±Κowι-ΦέEΎ³ΊκΓ³,¬ξqζ¦d‘m•Όμφ: Q&޳’Y’Ω•œ€¨ϊρe'πSΛξχΩxξΕ3u^y¨)Bϋν19˜±WŠΌLόΎ{―«|‘qIŽn\ΟΚ!kΝl‘†WΞDςygYgΟγ«ΰэ/«+˜[§ω+ξ^ΓCZ(5(ε•…ηΕd?šwK>°™+-§_–q}ςΎVr K ’–›\^Α}ο]ά^’ΖΑ8- ³“Ϊ‹Ϊσp–ΎΡD9—W—4εԏKjΝ¦Sη²Ϟ~|9xκ8Ώ€½2ψθ_/γ~„oρNΕ[_[.τqKυ%‹p‚IΏ₯xFω›ΒΑhΎ7-ΒωΠwv7\±ρl§ξΒVŽ₯鬓Ο“S\Λ:3zWΩάSμVΈ­’*H£T@ΥjuχD U+Vϊ‚ Ί&”WΎ‰Wk›ΔŠ_Α»·/j““—οαΛΐ™ΪC¨ΟiY”tu†»“Σ ·ƒFi€qrΊ]ΚσIφx§Ζ4bUujώΆŠάΌ8Φ‰žψθΕΠθ]JNŸ:ΐ'QξΡ'e’Νv"3ζ:ƒτΝαΣ'h…©ΌεΛ%­uΗό όΝώ₯zάW(ΕqπY²(*œŒ]ΑΝ›aΏ‚„ˆfλX£-·)=ΔZW †E} –·EΡ5ίwΛΚ²?5εŒ—Ά_ΘzψΛ#Mœπ‹ΨΎ±Ψ\΄I1ΥVE°q‰Z–¬ 'σγΑ&›Ω<.m¬…„hμ&Y·|ει4[Xκ`¨=Uξj!κ<ξ[ΏΘD?Ξ`bbžϊ’/7n".±m%WŠβ:άΩβΘΩ4<Ì λV("dδδςΏ`l‰›Ο•R*=Μ²³o`η6ΓχOY‰­τg₯ρ ΧΨγ•RŽZΆZŒάΨΰoραΐη―uH<“³γšƒ‡\D ώέ}p…ΉίG“#%dk˜ΝD#§U8Ÿ¬ ζ‘Ζκ›υ[Pc! »xςυV»ˆψ>θοΤYω——4Ώ‹’’}†bξDZηY4ϊ|”ίG:%Œu’ˆhw”4q;^s9Ε$Α}ΰ»h ηφ€Κ; %ΊqΰΰwΡψx7n ΪΑIˆMVεtΰI9₯2ŒzlΌΆρšφ0;Ξ`Xτy£©ί’ˆ•X«eψ”g“XˆΊL™LΠγΥΖφ'­ˆ :EίJn=qŽεW#ffC±¨Ξ,AsΊ\ηίΈ@zHFYN%-2.ΖΨΌγdαqŽvΫυ‹ω4 POδgΙ‘%Έ{6ΧjͺΌ(I‚ ΚΚ!Τΐβ@œExJiΎu*ΖόΨ$³~±d>Δ?2ˆ!a’}g]-ΥpΣ’‹πκλGρΡ­‡ΈOŸe- ϋπά>Y7|40¬=Η` <Ωz ‘ηž9υ[xΤ·G… φοjΡη|d=uΣ刑‰3ηNΐΡ3I΄7ͺcμcxΊΡψiiΰ>¦ΉPM;:²$ΏάC»;Κυ²”B<1{φPί5λ³μγ:Šη3R…5η’+ΟxύpΈ ‰,€ Βμς νψRŽ©’RΚ_#Ϋ‡π,Ž’c9€€ψ΄β™Π$νƒh€χ…›eΛ*ΓίLΒυϋ=θ‘η#%₯ΕE¨9PΜΑ{ΑΩ’χ/σβzχΠŽ2‚³MM‘oB τηγψ3₯DsLψς%βΣe# yZ<Ÿ΅AoØetέkGΏHζΙ­{―PΞςڈΡ-ΞΐKCŽΕζdΑs‚O7ζ]€K’{…vε“©xCν=xθ.#’9•ξΒίMΒ­»½θςb-% Y™”QΆͺ™d}žΞόΕwδ’Ξ)šPΩΔFbνZΛ;'­&­£ϋ‡D~ςacuέ£skASΚΩ{Aε½ϊf=„?ƁύΝD oΙΑξ*Π…ƒΌοΚ2•~M<[ƒŸ³ΘΜλˆED?υεY»τc#&•ϊ…"4)τΟά”Ό€IΜΫΎl7~ŠB>9GΟ,Δ³€Ϋ^ή|―ΰ>½=GνΨpͺFšο•I°t&pΙΌžεΔ‘ηN£6}]Ζ0<1―oŽvΛHC%‘°7‰ϊΰ,iW,v°υ₯­yl·R_²'BΥΪJ< U ‡ƒQ}ίnΞ‡«Λ\³ρŒπ쳇γΫΪϊF_Λ…+,;‹&i{ξ!άλΌby»+Cœ)βHΫ>6˜ΘΜΆΑΏ•²§+ΆŽW†‹ώΖϊοαΉς*ρ#ƒογΧ€sMΟό=|tƒ~4‘Γ= +πΞΣθ_Φiό°*•O2ۏγ0­ΐ(χL³žb &!YΌΘΥΥHCΧ~ŽŸόϊ’tΞyœΟ£ŽΞ’:/^”Ι½ΓΠ2¦‘BΧy Ώ‘1PΡP†ΌR\n:ˆ²<ώyI­:‚c/αBy9‡ΦΌ(υύ›W5Ι ’œ‘ŽΩ€€.WŠά"ΒΡ$t ‹U J€Ί‘Κ3{‚ ’I,ΙVP¬- ΠρΎSΙω Οΐ吾€hβΕ‡7οF”Ι:όΤ!§\Ϊ6|ιΒ§ο?Πt—,Η%ί$hl’7/”bΒ"7¬Α%}„έ8TΞΊd£¬ξ²n™DƒγBί>ΥNzυε€?–œ§Uφ“τa\E}YM œΪ‡\FχuβV,Z[«M²—&Ζ΄Kΐ8'ο V8+D¬Γώμ=\ΣiI[=”1-~”YτGκ fΗGˆˆ³!Ίδύ>Έ-dG“^ΞrΑΏHVΛ»Ώϊ`ΆPηΒΞθƒRc‘­γ&ΦΝΚiΞΣ€ 4₯ΆΰnjλOΑυ ±ϋ<ιz«έ?>ΤηFϊuRY‘wQ4‘+\^œe»JιGVρΘ2^4.j}ήτχ‘©£ΕA‘(έxmͺ<ri2^r΄pƝ"yŠΘ²V»ΠtEΠƒ»¦δ U žp―mΌή~}^Ο“iΗ±ΎφΨgš€d±P€-/ΰΞ‚₯Κ²Y¬ŽΊ€ŽΩ1ΈE‹Λ‰Ή8R@Ώ€b¦ηpqv–ML €$‘ˆΘNEβπz@¬M㳩ξ+j&Κγς5›.P¨m>'λ¬=}nVπίύΕ4>@;KχΖ†$’‘_άιFΙ©jž`“γΒ™ι'Εζ=K£ΈΡbΐ@yw:QOVM9ή"έΗγΟ±_@a:O―·χ’nο~ή’kVZQp½›~"8‡ ΰˆ‘Βsh—‘ŠTΕX­2nr.άΡwy‰,2‚sTΟ§2sώ(Λ3\ΏxrEr³ brJ>jCˆGΔo5ΑωiΖ3‘qι²―Y{σ pψ8ύΪH@4!ΤδϋGδ/iΎ# ρ4uoη$ϊW@™bιϊΗΖB/ΎΟu ¦ΆBΣ~§³ΈL²¨ ’ΓΝtΛη²/Ϊ΄κΆj- ¬:Ξ±ŽˆΛy‚qšl™ΰ#ŒNIη9x&•ύ’ο~Y_kαΙΕΙyh=Ζ~ͺΜ5OZšαΉ itJ'― /½¨Q"GςηΧΘυ.}с·ž«γΫ…pθθq‡”™πΤh!Δ‚ϋΈ«”C—?κχ]W)ͺH=ώqTdd€o=²°œUE?UξdyiΧ§'« βΛvγgp5vˆgΒ=²Ο‚ήwZ°ή|„ϋ©„ωάΊ&Ϋ1fΧΜΰRτzV&ά΅μW§O ηYWRΖ…ΞI(!}΅$da+xδιAΫJ`ƒΈ$%7›NΚ`χ{žb|IM”eQg.,Γώ«fγg‰ΰ,ί.[_βΫβI—’Η ωώGν ƒgaσ—.*}i—ΰ|ΨΚ[pΡΖ3Ώbg7Z«€§g€ο:Ϊ”ί£•§Η“Q|BAθ^ΔYG r€DSM]¨*?’=~α‹žKμΐ‘ζ·p΄ΈXΘj½‹{»‚²°<‘Όpΰ„ΒͺvΟX»βš:ΗΑoγ[ηZΗ‘cIS_lΗ{υAεκTFΞ†ΰ™¦IφR6Ι^€ z^ϊ=>…(ΎF²Χˆ+s ‡ρθjΉ™β»š«ƒΘΝ@&¦&ΠTΔhΟ₯dΩ“θcjΊ@‘8 £Q¦:ΘCUdΏΈφ»Ÿατ―8YΟςM'ώ ψzhx’y‹©›Έ}Y}_]•i׎<֎‘Σ*ΉΑΞςg@\Z͍͘NS6 Әξ£c€3RžΉϋP ;υ/Π°³εA?š8a΅œ€_8gΥs­λ}'AͺΎN[N‹SV°pΣDpΦhB…ΨΦα§.9 γ’BT“ψ’Θa—ym\ΪJ\BZjŽΈΠυ…C΅+pI+ίHa}·;1ϊΞ*K±«‡Ξ&HύΒPw‡…}  ‰Aœf+ΩbRΤŒηπoΡΧƒ›χS8‚sAU+βΦXΏBέφΔ0rΎ!LO/R6¬CVži+GθOΈ, ύΫώχH)ž‘ώH™Nw@3IͺΙ€₯όώ‹dkW-(8ζX’­Liq™†3Χ?hdTP —8O³J$xšεœEr" œ/%’]† ΞΜόΤn‘nϋŸksϊ“©·Ϊύƒπ’(ϋeR8Θ¦™ζ!O…ˆ΄…μ»‹ΉEψ=‘ϋb>φsΟ§V^Ώ(‹]‹Χ¦p7 +K˜yL‹RH'WΉ/γλ&ώΩ…%/<’γ-1@IDATγπx~Σͺˆς‰.ά5%§\ΖξχΩxmλσ»1}J%άGc‡ΆΣΧρΩ(N –Kθœ4ˆ‘/³έkfqη§6p8›τΥL&“u }3#Έμ'‚›θ6Φ°°F}|‚pά\ΐΐ³ά<ρsGΓpyBb³ι”e―‘ε(•Σ\}ͺŠυΙΝO>§f¬GΝ^ZP—qΎeΌ Px{ξΰηdΨΰ…ϋα ”υ?ΌƒKΧΊεοY ιt—ηιΖo?ŠΑ ‡©,‰U"dΈ<…[χ'‘ΫΤ6“ςΞMtβ§ΊWZͺΰ.?°ωud‘ϊοC2’-­…cšΆ$η\”Ο§*ϋΐjk=/Q•g’~ΨCΆyυΊ%xVζΤ‘Ÿr<+λνΉ‡ΏΓ‹ά¨/V?“\œeΪΚxB=ώcκύ[ΪΰŒry>/B 8병υόpq†1ΨSƒrfis^ φ…™5!cO»F­„τβaλβδ&Yβ­—ςŸΐΓ›lΌRŸ›fϝ3>ι!*1§1uΘΕ/’˜šΕ$ eͺάD7~ρΛ9ιΔ3d-ΥMΦΆƒυρ=΄0κ³Y…^ F2Š/ێŸ’ OΦΡΖ3vΏ,ΐ3ΒN‘φ2ΥΧ ob^P0Kxριε›jλΝTΊ)\2­g-czt Ύβ"ΆΩͺ†[@οΓ^\½ϊ;ZΎπYΟvγV|ZΦΩΕB§—Ζpgr `±’xUq μBα‹"‰›E oΕͺϊ׈̸ϋε*&Ϋ Εo1ΕEΞ»† ϊξθπbPμσ”QŒβ’˜Φl:1ύr|ZρeyEΤΎ"߈Uεχ‘­/=‘ϊRΤ8‘|LΆΟ”ΕϊΓα ’—Θ€Ή8(π.<·ρlϋoŠŠ{±έΕΧο;ŽrΡbάR;nv¨‰«Ϋ-Oτε9P[V‹ΥΙkθ5VE¦§πRs«29x[&t+'3³QHƒx^E΅υΟ‘VϊλAo_― ΟyM9dΡ‰λ7iυάύΏΓ‹X₯ReON@όN| -9©όιμάΚ’ΣŠΎŒ  œ b¦/EMθ#Fq£•f~’έMΫ;Τ_lΘX”iΡ94΄Š“πQ’™4©lPW=αβΒ‘£5cϋΌl ™'ŒU6(‡HžAύΎ2Νt,0_ nk !Mzg)Ÿ―V§Ιz³p·Πuϋ3ΥΐŒV|eΨδπ$UžεξΘΚS^ ςwχυγe‘­]ϋ£ώ«ς} ΨϋOπd?.‘gJέlBnFΚ“0vδt‚,-Š–a‹Šα’1»I‘#(τ=ΧQΌοEnn²4Ε{΄τ˜·¨Oyͺ?£Σ4.Ρπ£ψ’¬οnσΫΈd5.u‘Ώ»MyŒ”K«ΣŸ}_όuπ’ g3U¬“…s^_°—L=[ΎKθλ<‡βzo‹Žβε"1— θΉ*ž„=ΞΙfΙ’ύ|ΨΈFqήί7Μυ.Κ5‡[xLΠφ¬“ν)4α{ei΄kƒP’gl\*{jl„ϊ[ΎΏi8qmDpXΚΒΗ-jFKΡ:ξχAΚ@εQ0°”LtEœ{¨0Π)DΦΩ?PŠ?όνYœ…ΝEάοψz€ŒπjέaiϋΉ±ΙΐltυΙn*qb€ϋš698λ^―;&•·4λ‘Λ‹BN«pή‘ΨJzΪO‹Ϊžp·sΟ΅1}ιΙΡ[νώ!ά+a΄PηU…ϊc‡pηό 9ψΰ ΈΕ>ma 3}ς₯`_dœ—Σ{>YΊhΎXz}ϊΞΐ³ŸHA…«μ³4ŒΣ…»¦δ Sθ.Όdγ΅­ΟοΒΗς«!’mΑY}^Ηoϋεο5ύ Ÿœ˜žΕœ§A»’Τ €Η0–σ—Xί\Εψl0™{Σ‹‹£^€Ζg 'v~Ϊ‹˜=ΐγ/7iΛθŒ¬,D¬Έ‘ςΉ™M'fανΉHΏνusΈyύύτ•:7Ψ‰·ιηͺΨ‹μdδ&Y70=>ˆ!53D†ϊΛS••HeQa+Kd-{P0κΡή’ ΰ‰^œΏ@?KAϊοYežΈ MΗcΑσ)Κ{糋Έσ™xβUy&κ·>Ix€5sBΎΐ௞IUφτγύχϋρyn>ʈπΚ­ίxΌ……ytjOJ¨ή =οYούΥίφKEyό½ψΕίφάΉLΟΪεΐΠη:σT¦n¨ίΛ‘)pόα ΌΩπvήΔ€_σwγŸώΆ;(X°8‰O>‘ίέ\4δg ±σiΑΔ-䘑Ή’1 LkΏφ Ϊ―©rΡ}27ڍwι—α ²Xͺu²@MΔλϋ;*䲩\°aΡύ-;1‚σL]8νϋ.Τ™tα™Ÿ,Ώ_œΖ=Ϊς½, ΖSΟάϊζ2ιsΑz™"Τ—Ά?E9ŸΔ£g]3gώ`Όn+.ENFΧ?¬Ρ³έ.κ?RiΌΗ,.©ϊέzιW?γtŸœά\ΪE,ρρqœŒ›« £0Λ TλΒEŠ6o;ϊζ³ΰJLFΣιY_Ή>Α9F?Πk_Σω aρOϊ΅ϋ‘9"XΣ±i(ILD}§ΔοαAiύ1Y{^œU’ƒ²7ŠKbfΣ‰ιŸ€γSˆ/fίYΣψBχΫΦ—"λ»[₯/EŠχu+ρLQL7"*}‰/*Zœx·|Ερ,5§t[ο AΪ—uM{υ†wz?£ џt—‡ͺ†Qήp#£½ρa†ηοDqMΕεrΙ’ί i›r ž¦• D„α–@ӊίo!Άλϊ–“PWq‡KδΆμΊ!dxφ؏Ι"΄-‘Ε—¦όHΙ{/rC'Ry1{619vwι:sΕ―β»DΆ½…AίζΦV‘–ξBeΙaqdΛ‹λο†WZ P°TA,Ψ΄Ίt½§’’ΌπΦψτΚuψbKqπω³œMΣ™k%”ζκ³qό끡δΡvs ΞƒGpμω―£Rl]Χοcτl'OjΥYόΩ7pρ·oΓ—{/ΌςGΌόiψS7N|η/Πΰœ@Ηυθλ€{5JΓy¨m9γ΄­ο&ˆ ΦΞ‘βUΤΥ ΔΨ…ϋΈMδoCŽV“‰ΥM­y ?ϊ~"Ϊ»‡±AuβȎψtΗ§θΖέό_άFΗ™S¨cυOkΐ[φΏΖ…χΟγΝ΅}φλ8w\”ho» q"ZπͺΏxϋα=e αύZύCfŽΊia•ϋIŸ›ΔŠο#±Ž»―9ΩΜαX­ cς^8bθ·ΈF<ζpΧb9EavΡΡΖk[ŸίEγWJ”=±Άη―Τ ΧUΩ5Œ,F’LΘ-qlQΛRš%‚ΟXyrffΣΙ9< Ύ‘>"4o“ ΫYΦ6U‰žΝhŸOc’nwyΖ€ϋjǞσLβ>ύŒΈ§λ(EC­h^Α‡‡mƒFšΒšΈ~Ϊι·΅.9Žexi2lΞ?§(*ϋΚδρՍUΕ5ΫWgΡCΏ­v6~κoaΟ¬Ε³±Ρa`˝Ω>Ελ‘έ·:…Ϊ/Ξ ƒ~»Φ‘υψΖσ±έ–΅€/Φβ‹©eλK¦šMJτ”γD΄ϊΗyιFFο±ρ,ϊ6Τ“ƒMBOΊ(γ8πLΥAδ Ή,y?ΗC̎μΑΟ-:PRάΚύ4k΄Π…nJΆžΗEΒ½[¨ίίΚ'Ι¬ΓΙCτ Θΐ3ϊ1ήνμ)¦W#?€l›’Χ„}iΔΣψωv‰ΰœΒoΌZN?΄ύ_D°ώ$潡Η8^ώθ;gωφΝkΐɟ½7 ŽλΈD?b @ ϋVΨwWqΩ’DQ’eΛ’wεΆέ1ž‰x?:^Ό™˜ωρb&ϊWΗϋσ^τLGχt‡ΓγΆ»mΛ–άvΛVΣ’(RMŠΕ$‚؁¾ ϋΎsΧΊUukΛΊ(V™UχήΌy2O~™χδvςδMΊIκVh°υ׍ΈρΩ-΄₯bqϊΑΪ„³ί~>k½Ι’η§—Iρχl‹θ[Πό2ή€_π Η„ί9]’ε;Έͺj’IAŽŸ<€ZαΌ{Cί¦nl²'ρό¨ύ,Š›₯Ι[λYΨZ]έ©τ«JΣΈςΡΨΎ~FR|(:„W~@?WpρnΉχ">!«ŸΊ.„τ˜ΛA'α«Χ>Asγ—%¬¨ώΩUΊ·μ€ΰΜ @ΦχΓdΠ^!ΚΟ°ψdK”Ψ’/AοΛ%Cε’γ*.Ό]Šo’r•Ψ–Zλpκ αη=Νk£\ ’]ΤnL^λDίΗQ₯α¦―·>—.*KΠtμΈάOΠΡmυ‰”)Ёς³·] Ξlrގ©ρA ΄œb'752Δ$Ί‘!b6YροΧΞVuγwςΟΘώαW€ΝCιΥ8ώšπ“hύύρ»8ίμ‘π­”žΒ—pJyH9ϊ:ώ-š2~G”Bh\Œ‡rGm‹½΅υ "Qš₯/ž”ϊj,+½ψθ†gP}τMi†‚»eΤ,+φE*υνnΉυνΨψ GΞδ5 6_κ1{qjm εgΙwej6&œΑZ―0‚¨ίJPαΚά_Š₯~+oδ"7 }πͺ_h8ϋ§βO[―ΰx€OίΉκζΕ"η™λ§šrθγ#•4θ69tτ^ N/͊L%y'¦t έ°Ι]ƒωTxŒͺ+c?DΙƒΧχ€ΌΠΏ2\^‹€zΝ3 ώΌ~IqίέF`·ΰΌΫσψ9ŽG ‚˜²cyN²κ¨—l¬ΏΧΛSp~Γψδύm˜¨CΆEΦ?–ƒ£Š΅PE Νψζ‰rŒυcxls‹Ψ& Δ υ΅h,€«ΰθh€‡]ZεgΙ›s’X—_ψ§CžΙ@ίg¬Ώ‘§CΎπώRπ5‚‡Œ~b]>β?ΪK@8œ'ς.£ Άyέ¬m¨m•Χ;7²˜Έ&{„!ην£. G{T Lύ‘ΎØgΫΣu?ώΛΏΑ­φA7΄Ξ±^ά»ρΉΛz3½\_a§ύΒͺŠ/ΣwdHω…Πi2Tϋ ‡ξϋ5nŒθχ₯¦§ξΰ—އ:Šhšδΰ²~*ϋκ΄ Ϋ‹#₯6ίncγ7qΑGߎ…Ov9_€΄Δΰ¬φM/ψθlψΞhΤΌaͺΧ χΌίͺ αvε탇νΥ/e 8Ρ~E·½uψꝿϋkwλΝ”:“œgξΟ3Ž4΅&ε΅Β‹άUh=―9©ͺ‚σάΈΞιKμrΧH>=ωŽ–g.―Ÿφώ|΄ΤΔ§ˆ}4‹IΗϋrΗΰp8½‚@ε±-δUνθfGπυχΊ slt =Cc˜Ψ«ΏϊΉŽ“Vh‹Λ*qόΔ3xύ ηπΥŽ’±X9εn7οvΐσQύΘΈ/G zΨ ς˟ό ι§Bž… Ο`D€Λwΰž ωΒϋKξ…ΞŸbύ‹½ ί’½pφύπΟ mœ»ώΡ{ΖEΆ‹1σΏγΌ 긍ψΛΏWŒH23£ y™f€’U’xίnοl`‰ŽΪ˜ΥWrρNΣ‚ŠβJ˜“θΥ66Φζ12Ρ½ Jΰ(ΝΛFFJ’ha{k3³€lγΝpD},E6$ )ΩIiΘ?σρ_;"ςΠω―…·/1Xγυ‘ƒΚ#§‘—–Jo·°JGΎίo 2n²ό|°‘Ι΄n³M;Τ'{Γξ©D¦“f~e r­HJN…°δ³½2ϋν6]…αƒίψΏρ₯cεb,£7~†{XYΣ‰ήP/›LΒFΤi_%%ν«θί₯™ζr04Ηϊ‘…½λΗk΄oψ|†*—bSΎ°βΞε’„œ‘rΙRيš’ΉŽ1ŽX%+•M KgεΔL6Ž<χNW’’Φ’Ώyϋ†‘ση1g”#ΐΰψA βΘ³c²7S}’²«\XάΞ―ήΖ쾘~ίώ~p›Τύ@΄§_e–ΥαΉΖRZ‘ζ‘Σ©Ρ~΄έ½ναyaψ#G Ψ+ςΛ—όFΜ9O§._ž–’vΟ'ο/ΉγΑŸb>ώs/?SιάκΈε‰Ρ·ΌΌ\ηm`―ΑΑA1© Ζ-0?±Ρ cϋHy%œΈœ½NAN`xjl‚L=΄`ΉΘ/šΖ$)U9Η΄ŠβΉ8Τ\§F΅Άπj<ΚMmRΪUBΉ::pοZΚКx'ϋ;0T‚'q@Vn†ρΰUM,‘ΉeΖ†½H¦*{αΘ>|>C•K±$_Ψ0Έ\rGΞXΉδμoΓ­ δ‘‹‹h–..ƒ½3Ο`Su 7FmύvΧ=™οhwσδϋΒ\ΪB0pνNΒΣͺτcu‘σω4ΘyV4ŸL½f–1Φoε탱탽ƒ6b²VυθXλgπγ£˜ρ4t9θ#’ ½#^ly‹>½ΚƒΛkw˜Œ•/\^»£ΛŸ€}ρ\I*ΦκΑμμ—±³:―žkyΰόr8έD`ΰv‚ͺΜ,€#(9+Κ;гς‹οw»½χΒPή₯Ÿΰ2-™HOI†°θΎ΅61‡­‰ό#}(ςj/Θ/­<ΦnB‰>δ9G½—/{ΏŒ}εχ—|!Γύc>ώ{²₯ΖœŸ,ώ<υ °ω ΎOVšνo`¨·£““ΨJ-AΛρ³h©Θb™ΊϋΧ"±<$Σ»μ:.ύdι΄6΄΅:‰ξ ¬Cο*;€‘Ο†Όβυχ^ ƒΟ £Ž`ό;ŠŽrΰ\‹―Χ^x²Κ³X—ψχ*HV<ƒŒžγ<=pyνUΦFΙ—@ς/ήλ;Όα†"ΐ-8 'Œ#ΐΰp’ν"·bωTΛ^¬ΏΧζ…ίs8{τμΗΨ‹ςK‘Ώ{³Τx8±—/±QNœKŽG x”ώ… δΌϋOΑ#ِρ‡Ÿ9υF&9<Πcdt»WΩΑs¨ΜOV'πωΥۈΔΙα»–™§ β}ζde˜’e†§½—‰ήΈόΦ‹λ+O<‹Ž@΄ ΐε’1%‘(78νsΘί_ˆΗ“%ηy5ςX―f„ίθ"ΐΏ#]XΈgŒ#ΐλ΅1λς?Ζ ΔcαpΒA€ΛλpΠsΡ ς.ϋοΓ7]™πs—››+ΎuΜω>mΖ9₯A .- q©fΟΣskΖ’˜Ωd>=™ζ9εp8OΛsϋ0Υαͺηbύ½^žΈG€#°wΨΛςΛ—\ή;₯ΗsΒˆnΈ|‰ξςαάq8lΔϊψ.Α ’”¦?Ο»ΉδΙ-K0Ρx…q:₯yψ€τl·wO­ηιΡnτ%Νb{iΛnπ‡hDΐΩφΌE?ΑYŠlΘΜΘ€Py·;`½ωG€#ΐˆ(\.·Φr³’ &Δ,XTSžΛΞΚs,½η–αόΧώωΗ‡ΏMx½6¦άxϋ` Ž<ŽGΐ7\^ϋΖ&”7‚Ό\¬υίCΙ#k ϋβ=M/…#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰpφ.O­‚sχΕDχή-Χ=3η˜άnΞ.bž9Ž@Μ!ΐε{‘)ΚΛB Š2° $‘YbΕ–…X―䉑§‡’GOOY?M9ευš½΄c]ώ⟷μuƒSrv.―ΩQδ]¬φίΩsΝ)YΨŸΘBΖi8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽGΰ)F ώπ3§ώΒΘότ‹#ΐΰp8=Œ€φ8k!›ΒσγǏ‘ΏΏΠMΉY Φή{ζOΙΏr8Ž€<εg¬ΙOfOώ=ση ώ–#ΐΰD/žς-ό‹ΆχΝΝΝƒ8ζψVϋ@Xzo.ΔΎ„δ@Αφδ{3Ε|- sOζgŠ#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐxzHJ3λfvsΙ!ϊ[,έχ<Ni>)=Ϋ-θΎώωyμζζΓυή 3NΞΰp8ŽG€#ΐΰp8ŽG€#ΐΰpž,"½ύƒO–‘=zRιaμKLΩ9 = ₯‰†Q:1§ΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8Q„€)§T—›ε Ι0ryyΉξϋ@žƒƒƒbSA[Π8·'ώΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ΨŸh`l<*ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐxΰ ΞOC)σš‚Ž‹)σ49ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG †Hˆaή9λŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΕpλΝμ…cJLERδs›«A† .XΣρηpΎ1+3ύψύ»·1YX‘LΙ™(L2!5nvoc}{σks˜ήφŽ606ۘΫάπ&Τψ„’ž† ¬tΪ8ψ½– Ό~Άfz53τοέΦ d°—)9d`~cs ΛΗΕΡεΤΒk§J€Ε-— ιXΊƒ__οsω|gΔwΛΚλw2]|*JRLΘ “ φνH–-¬ΟahέΏ<ςΞW²₯ΝA;«XΦ‘ƒή4άΗpΈ\2ˆG­rήR†Χž­AZάζνp‘Νΐž–©―žmΫ·₯ρnόζΖ@ΔagO0•&κ &ΔC°·±΅Œεyφθ|R&!7%ζ„$ΗΕ!N”Χ[˜[ΒΘ¦O"―j»ΆCύNκ·rΉ©ΩΘKJσ&΄ΛΤθ_ ά‡g₯ ΔΌ}Ό(!Υk4ςsžδηοΒ‘Ÿ»)η£ΒHΙk%³‘¦Η&ηUΉ$λuυ3ΟO<8@iΓvΆW1Ά4‡9―8ΈGDΰς:’pοfb\Αy7Ρεqs8ŽG€#ΐΰp8ŽG€#ΐΰp8§RςβŽδ"ΌXTK€ƒ³Ÿγγ…… C–DΚ‚KKŽΓn/"˜RςpΠ\€κ΄tΖ6Π=ύΧ—–Τw&S9ΎžW€>λί¬αΑΔ]άΥΡ 5=%~V:…ž_ ˜s–V ?— °―skπ½/ΣΓ\?~υ[E~S>ŽΥε ;pŽ ’cB§BΐŠE„KJH"ErΒ8CMYΌΩNΪ½C_Γύnέ9 ώ‰υ» •$Γ†Z“ΆT=9̌αήδ F‚b=ΟνG΅$†Ν)Ό7‹ι hy CˆFΉdh£02S.Ž5Wa£Mάπ"pψ賋ΈΠαΩ`δ|θ±C‘H›ς¬b”Ά`2&N%–΄δδ)ν)c/.Bν‘Β²p­4Wα 5ί³iΒ‰M>₯Ύ`ΧΊ64λ}εΦ’&=©ΊQTczi7§νΊ2·p)LNƒ%Ρ„,ژ—‘R³‚[cmθπΑc©-…(JςήΊx”ͺοΟφ’WG±š•N7kάΣXxϋ`,žΑΔ‰φΑω©δe7εΌ’ΖΊFF^»2Zzμrž}Ό’„&k%φ›­ήm‹u ƒΈΉdά\ ~\^S,bμΥΖBΦ8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#π$ΰœΩΠΟM6­ά,€°΅³Γ–O*—ΉPWŸ‘Y_fVα₯μ|?δIH‰wWΊΜJ Fωuλ:°€'0ΗJη'cό•'€Ψ£Τ5Wνσ dάσΑΊ2IΉ™’΄OκZ)/*―ΐ©V›˜hίζΜ+8G*½±);ޚΉ‘œΣ­εΖλ#¦pΎ[QτfύnC§ΛBcN όm»ΘN+ΒΉ’}xol@WiN›™ΦΌJ—r3½X%kτ+Ϊό>rD‘\Š\ζ#œ’₯§φ“rPm<’ŽƒͺEκρΖc0rή »ωΦ•«D~NΨ©Po#Υ)ymΘُg22•Gχk’'²+ΰB~Ίκ<Ε[PθSΉY Ÿ›^‚3qΫψΝδ¨{ρy8’W…lw_ιi{ K>”›ΛΜ58kΝΥ£ύ2Rσπl~<6GΊ0€ ΕJ§‰‚ίξ&|g‘°ές,”œ0„dϋ`hΉξ’œg€Ρ(’ˆΙk™αΣ CΞ³WRq$ΏϋI9^Χ‘UηΖάύˆ{|7–wy³¬.ά†~ׁρ|ͺεu`xΒ ΑœΓ‚s8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž€/Έ‚³/dόϋO―;πωό†t„΅GΠ:Ϋ’eC‰βΏ6†…cΕ;κ―i6œΡ(7―Rž{§1ΎΉ‰€ψ::܊ύ™ipnΈ[;2« Ξ°/Lcα1ΌqΪYΓ §’ cz`₯‹ϊxŠ΄T‘V°-Έ <Ό=,έzώk6lλ(Μ{ϋ9RιMαΆb˜ ‡Φ‘‚s^ΨΜϋ€ω»υ­ο·¬ί- E%s2»B2lmΣ«Ψ Ϋί…¦<΄dΘo“ ѐ1ιE—EzΟ TZΠjrWο\ΪZΓ²g@ώΌχV.ν½œSެxεΕgQοaU>¬¬F;ž+Nτ>κ…`8yBΘaεΨXβH΅GΔu5Ι=—rσϊημhw:‘MGΚ?›%«Σfœ Σ(¦—7ΒΛgά>±Οθ\ΕΤϊf7HΎno">>₯ι…tšˆ$3rќ<ŠvM_”œͺQn^#>4Κl›kpο­Κl¦γˆFΉΩ)XσwNb†vtε§γ¨5O²φ™HωΛΜĐr +]xθpκhE ΪεΩβΓνC΄Λy†r‹¨Ό&ώ˜ CΞ³ŒW*ΛΝεζ‘ωܟΗVbš³ΚQ™"Yξ―7η£kys Έs’Bΰ©–Χ»_NOTΑ93£ήqθgzfqB£οΑ―ύW|ιx5–ΗnΰνοΗ°3Ζˆ,pΧ0³θτMfVJθˆ>S|<Άo`m}sŽŒλn𠝇ΩyΘ2Y‘’ψ}΄«υρ*f¦oa`Ρo2ςKκKhwlr’Έvmmν£έΑξ^λI|ύ»― —ŽγšοΏŒŸΏsiχz1kς·DωϋΩ^Λί“ΐτ‰§ιοˆ5½PιΒ“/…yP˜a–φΪ“,[\Δ£)ί²]~†Αg*a’-Λ@šXΪ^Ÿ…έށ™'^§ΠΘ.?1ά‹dEΟγ;ožψ›ξΈ€·ί»ΎkΉTΏcZˆ™Yυίί ‰Pε™’ZιXεKˆt*ζJύ\uϋΧ!¦η'ϊθxΕε`t”C΄qŠ,:o}ύ,ΕΆα|ψ~σΗ[Ρ–ω± 'CZœΩؚΐ‚ξx3άδ"(wEVyzα–§ηp8† μ °!©νHhNβ6ύτ]6Ξ FξDƒ†€‹ e™8“U’α:½8ˆχfΖ4Ω]ΐΠςnΟz֟td%)ΚΛœBΏ†Κχ-kz¬tΎ9αodL©ͺρ‚Ζ’U€¬šκKQ(³1ώp> eI£ΰ΅³£Ρrς>\οH§'ς›θn!=ά<θΣ³~·ϊ±φeύnιh{xq‹γθ_wWΎ'%ΊΝ}­8œ.Ι­Έ}ΎρΞΝ¨Β3)C &Μ5k7ΈύζΐenPˆKε4ϊ’QLψc zΠΏ–…ZΥ­\!σ¬œ9b£–'qεϊ€Q±΅»΄©Τξκ*γjb‰X{”˜AξΙwζ>‘7Μ-/β0)8§Šο’F›ί@[GΒr›“ψύ€ξBΏsIΆύ°ΙςΧs_ΣςϊξΜmacs SΛσ0™λpΞ*)`Οnκ*­Υ™²‘θν/Ψρ»Ι•ύώω^€&₯γ¨ά>¨/膕NΏ7ή> hΡECϋ SώsπDδ|@ΨDZ^³¦Η,ηΖ+ρ9¨5›ULν€Γwi~^zޞΑ•©8dΨͺ!ΪπOΆ ˆτέζvH©ςσΤήθ|―Ρ6ΟπΤ–M˜T9z³™u―<«ξjφΰξΣΫωOΈΠίηξΖSrJΊHmJIΐnYςE|οΐα\:qηΦΐυ)ο`™ΩGρLυ!ΤηxΏΔ+xΨώk|dWT³-8yθkh(,φ:ΊG$nψ&Η?ΕΥ»`\'6Α«Ύζ QEŠψΫpτ^Γ½]ΨEϋ$σI,Ÿ’΄"ύ±¦]xς₯°ψ,ŽWFIΊ0sβŽή­ΟίΑC lς3>-8΄U,«φ’‘§jŸΕƒξ‹ψ7»qm; »ψτ$ε —ŸΖ¬‘x¦$ܧ΄«— —G©9֌ fEηy}MW™DK­ά³¦ΗJ§€›Y\ƒηφ"‘e·γθ˜bRZ·wi3}n^9R‹ϊB₯S·†©Ρ1΄}>ό£“"«s¬wx*φαά‹Υ0+ΣέΈΠ<΄ε…y0KZE˜Ÿ›Β`o7.΅KJθ9Εe¨+ΝGANm’3#M‡Υ%Œ;μΓ5_sιΉexεP κ‹­2LŸ#h{΄ λ½V;^‹š<δΙσ„V˜œv`h`χ† τ~₯¨oTμΟ λ‘φ@x:bψδATf$`ƒΚ,…ŽΔV\aΝ!Ό^’jX ž–&ΊΰZΏ§šρy² e%°.σ΄qPΐΡ1nGηΓ‡Έ9€ ^za•ƒ’1†kΘυšρ»e`M$aύnYι°>…λ~*―`4 #k§rς₯`[sΫ2‘„ μV0·αΫβsΐxŸt.— Kή…ΨΤzMΆBηHkέBQŽO£««Σž;–C‘KBlωxώ…:ΪPDνΒxξ/€γX£ yφe΄·Ÿ\ι„Τ*H4η^¬Ϋ’νΥI\’wZi'„\Nu3ώ€FRh³wβR‡°ξΊ…ΥμΣγΈϋyΘNFNΓ11<۟9Ÿ[…W#…φΜΫ»pΡ«=τHΝTŠ—ž­@:Ωό]™ξΓ…»Γj€š¦h©*†Ν­ fΠGΚΩΫ]αTΊ©h:ˆE©Π응#(β°Dmσ%Ό0G„μΦŠΚp¬9Pω…Χ)ω ΅}¨ΜΘQ­"/.ͺΚΝ m…3yε€ά,τεŽί>%•έΊξ€ΰR7˜xmGΩ^ ΛZ]’€t~€E²ΪονR‘•¨|£΄fΙ[dU·}`₯σζ ͺ}˜λ5ο·ϊ+Wή>ψCGxη£}Π!ΫڊCSσ!΄Φ—ΈΖ«σxΤυˆΪνψΑEΜ"ηΓλΟ³’]^οNϋΰGΞ3ŒWΚ¨ S5ωθT­Οεf₯Jl―€εB܌)ή1wεςšχη=*­Ÿγ­7»ϋΈ[Ί½Ή.Μ*ZΉYˆlk+ˆ €€©jΈβsMIiί‡ŸmRzώβΪš‹5`iεx½‘E}φΎ1!51ΡεZƒ_ΚΝr¨όΒ8t?½uΩE'ί΅ψχ8]Rμε/z€UγΉ¦Χ0σΙ»†.pλ'¦γK§Ό(e€\uBνŠ—­υΞ=$Ζέ½ή³; ΞO0»ΪSi€Ώ#ΦτB¦ CΎTΧ|―Τ6ψ¬™Φ&Όp$—‰^M(&ωΙΜgž=ϊMΜ³h8Πά& ₯ωMΔνό=.ψΆ8­‘ˆžΫ'(_Έό4ΆŠηnΥ‹Τ£8Υϊ’΄Υ3ϋλN,Μyz†²<““Œ«|a£cο_³₯~ F †έͺοA°nθwλ+½'˜?_,Ε„HΈΕ«bιD½κž9ς²KΉ™2Ή²²`θΘ‘“»R ρτžΰψ}―~$<_Ž@Xpη°ΰσ&N³‘Q΅τΆ€Ο.Υ"οΐΡ꓉štΙβ°„Y!It‚_ Hyek{ Σ›ŠΝrVLFQqncƒŽ/€yr4‚’ [z¬t.άΣ-Ω¨*.py,nxmw½dΏΛ,nΐ/5ΓκE ςŠ+qž~Š›ί™φVpΞ5‘˜ Œ΄R$ϊF] Š]:;"©9+φ―‘—œνς™3Ο Φ#Œ05…ΕΒΟ†σgψΝMχΕLR²zγ=>«‰O…K+)™½ώΪ Tθ€™–aEύςγƒZx¬9R›œ„£wˆŽŠΧ¦—Ž|RbΠcŜC ίΪ tΏ=BΪΰZG|Ύvώͺ\Ζ(U%qk‘ §θ—{χΌΧ¦|·α€Η^Z–YξC­Χlί- g λwΛJˆO3liž5Ηƒ†¬Ώ'ΕivzŸ:¦QV(W’m²΄κGyΪ#¦¨zδrΙ(Ή€)V’1―œ=ˆϊ<ιτ%Ν¨²0y idSΘr‰bΝ΅ Ό¬@’y΄Ω₯^›xŸ‚bRTώ¦) ?Ύp_UdN#ƒ]6QN'£Ά³·ulFU–•ΒV(΅δk€ΰ,Ή|όώE·TΒΡς-ηOm²πElMVpΞ!(Ό`έ±>*σgΕ™βp©χwFŠNΝGsPœŽί~μ­ΰ]PŠŠRο²ΪfψPpλ;"Žσjγ›΅2λκE―όΒiΤˆZϋŽ’TΗ Ρ¦=Ε5ηVΚα\5Α” `ηR0VΒvM΅ΐͺͺ^₯fΏJ ι΄αN²Μ²:Ύ°©ΗΧ6)L+ Ϊ‚Rgί6%jώ)UΩ™•Ξ0$v=’°κ5ο·κ—oτqρπυέ>x€ΗΌΪ8οιMίl}λ3ΘΛJΓo?2BΞ‡ΡŸ§2g|έςz—Ϊ?ržeΌ’&ΆKR%±―ΜΊžβYυžΤ3—ΧΌ?οΏ?”(8ΟuΡdΣ"β=Οχ /s›:pΦκS(SΎRηάS-+žΡΝ2)ΚrΛ°wΐIΗJy-‰oΟ‘wΞ#/ηq^£άΌBG”tŽ|NG\-!9Ŋk-ΪrΰXΤXMˆ§ύ£dήэqη¦ΘjΑYKˆOΙEEΙa²-YΛΜkΔΡ¬ΛΈ₯I³±ρO5ΚΝΛθξύ7άικA^έ+x‘Zυ˜kQ[lΑψ¨ΫlŸγ{πQάͺ)εk[§ξΑσ,1"ιοˆ5=&:Vω’w§4ΚΝsSwp£χ6¦H©¨¨δYzΧ$-耑ε•Κ*τj¬τ3ΙOF>λ_qSnΈˆ[Χ°™v‡λŸG­E²<½ΏόΪGώ€Ζ:ςΤ‘qωil‘Ηž™ζr³Π_PϊAtK»šξA0Ι3b%’t¬ς…•Ž΅͚ž±•|ΖίνDέψ,9Gπθζ5$Σ@n©ΏΫψψ£ ΖzΛw·N½HrzK3,μFRξ όρτ„§uόΞRA9 G€#βUMΘ€·§SIΕIK‰|T7YG—ŽρŒ¨‡€ e}•ΕΥe€ί_5»ŽπψwL⁣ύωΛLLUσoI/ΗΧι§ΈΕ΅Y<š·£cΕÊkz¬t CΒΥΝL£θ‘σΠ ο>§Oj”†WgpΏs qYhj­tSzήΦ›δ&Œkq‰ΚΚΤ°【šaAIiŽbφΚά F¦ηΰœ_"λΛ€€^TB–™%e%Ϋώ839…+CJyδγ9-Ÿ‹SΈχh+ΙΩΨίRξ₯<¬2B75 εζyt?Α$™ΓJLMƒ57›Φ.„ώ¬—­Emς}>j…σytvjΦXΔΣθΏΫ…­΄xlξ9Ήωy¨" ώ›nržE.Qό›;^υηΗΡ5²ˆΤ‚b4—Z%& ΛΠZΦ-ΛωIτ L‘J΄oFYi)8Ή˜οJQZ¦lSš@Ώh½Ω#H؏~δΦ'VατΤ] 7°Έ-Ό2™‚sΖWdcr™8’§(qΣλ•΄/+ύ%V:1Ρψ ³^σ~«NσφA/?νƒNhΕKŸŸΞ"…NQ:\'z[˚ρ\³οΆO*ΑΔkθrήEj>μρQ(ύωHΛkΓΣ ,ηC―$!#A±'»FνΐΌ«0Υ»€)νœκK7\^σώ| ώ|dλ³ςΕE6U!΅Ήϋψ„~ϊξή(₯7β±ζΛΈΧ‹ e6:š]eN‘eƒ x€ŸYί*ΌTwB0MŽ\Ζ―ο_Ρ„ιCοθ-|Qή.ήΐ[οέΠ„Sn…πΣH>χ&*δcβέϊγΗΡRQ‘Ζ£Ž_γΓAi8736Š€ΰ,ν?4!&ijY ϋΔo¬Ήβ@ΓI»ΩwΛ-l+S»4½E£ήˆ:ʟ0G@ω‹"Τ#Š@Μ$ιοˆ5=V:Fω\XKφ2$·0u tλ’Z€ =οE|²Z’ΘIυέ0ΚO>S‘©B˜Ζ’ά@χ/ρ‡Yyiυ.ήΏσσ_ ΩΘ™Λ`#Γ3š "2Yμ]ΈόŒΉ2 «=)οέθ.ΜwΣ&†5¬-†¨ndΤ|_¬­±ž^ž1v1†UžE’ŽUΎ° H³τ―ΓI/ζΎ$ Γ:ί…ζ­!·a}·asΐϋ‘nκ”wΠrΠΡ†~έζέ^z(,/ γAΑ"˜<^ς7Ώθ>9˜ηHΚ]Iž^τŽί™+'δpφά‚³q₯XhΆ‘Vi³7§ρΉCRΆ1.…ΘΔT™J§ΚIe€ζ£EyΠ$oIΛΗa5¬;φk&΄-€ΰμΛe€dγ(ύΜΣp}Ι₯xʚ+/ώDΧt³ί`‘ΌΜi(C-)k‰nu Όϋ :–₯ΗΫ“Λψž—eg9¬ΟΛ n|tŸi1ΙΊμ©β8yžΪα.8Ζπi―Ηά|{μǟΓyQΑ-₯dC’UŸ’†RT)Ε·8‚?Ύ}"}Έ9½Œ?{‘Ι§’³9]!\ΒΝχί—•ƒ]ΈJV1K“εL»Ό½ξlΝ*σCvJΧ+:ΫξΛ|‘-ΰΊxRp9FαR§O‚rT+–9ηqσ£+Έ¦(w·υbρΕ³dρSPμKAuMεA²°ΚœΩΫf)OΆ yP―YΎ[VΎXΏ[V:|š«q"S™!6₯x+Μ5ηV£V6#s}ΈAΥΈΠμΪΘ1»΅“ΦΰΈ\Œ”KB=+j¨F£Ίœβΐ͏oβZΏ»Lͺh:ˆF“ζƒd”KžυzΌϋήϊ€Gςnο„σΜ9œ0S›K‹&²¬λœΔ ’Β6[IrξŽΉΝ 5Ί,θχ«²Φ3½pžύΛωiL;ζ©Ν$ι——Kέ v@I?Χ’4σ˜rΕM8X&δNpžeΠƒΆα&:₯ IάXdk©D )8Λ¨‰φΞv‘[#9SrHΑYR•“ύ<.F}GA—kϋηΑ·Ϋ£¦:ΊωΣC!)ζ+;Χ—DΕ_“Ι†γYBέ"Υ‡e;m[pT–£qϋβD#ώršπLZ*IΑ/!1Eν— qΟ. αc‡SG¦”TυD¬―aNΣWΥςΧEσke)d‰”6Ί€¦β₯ 3&V6a"ΛώJήWΧΖqeξ&λYι΄iGλ½QυΪ•Ώ§»ί*ΰΐΫWmπwηΏ}Π§t ΅γ§d©Yt΄1rzεYΌάR$>VU—’ˆœΗ4€‘Κy‘-aνΟ5>Rُ"ymDϋͺœ}Ό’‚”E{™Ϊ§Η*’κMYV.€Ϊ’zΕΤ —ΧΌ?¨?ι τΊn$;zθY”Θ΅ γ7ρΙD$S7(-š˜ΝR6‘Ξ;έpώR(­:†Z™nnSΉYKŠΚλ&νΨuΡj­HΧ—6¨Φ(=EΉ EλCgiqT˜4IΔ²aWLd›±ιΌ|Ί I€ΌŸ€xΪyψώOƒIm ο·6βqπάχqτX Y²–»ώKθΈυ~σήU―”ς›NcC#ŠΙςDnVLJ™,ΝbtbƒνWπΡ΅ ].N}γ[¨±&f[΄«I}W|δΫψN°ς/Ήxj―F?ϋg|t[RWό•λΑ—Ώ‹M°)Η-ˎaL τβσΟ>Δύ~οQσΦΖ6l­―γτŸF•0ω+ΊEΨΫΰ?ύΞοNb%]Χ\œ}σ;(KOΐNό>ώ9z퐢α…7Ώ‚b Ga†ύ—ΫŠρ₯žCUžνu€T XΔώψ.†’›qϊμygλξόφ-Όη†«ΔUγσGZ[Pξ†Ι Ίo^Ζο/^χb=τς’hΕ«vΩ©ρX[3y8}*4Φ+Θζl6Ζπρώ…~ί΄θy|ύ΅C΄0Z{gκ‰τ#Εά2ΚΑΪηΏ‹£U:YHƒY|<ϋ>Ζ{—τ•c₯ίͺɝ³w/4΅H^kYΛC‰ΩDΟ3pεC#\$εΐ/OΟψ݈2εqp8&Έg&ΨΌ‰²ΡluΝ3φ“υζο@1ΰ“„œ$‘Ο±A?eAp ƒ€ψ7²ΎΜΤ\΄d²”θ²Π@§υ«J&©Θ_ΑYFt<εκγ}0§d‘ΦδR"¬΅ΓΎΤ%γÚ+ΜΊ|Ωπ΄Œ•£eJs-j’}=ͺr³θ9Ϊ‰½6{zάΫ†:π Ώ§+υωάήΡtΞ5·J&&†‘εWόέ―Ή4G’:XBΧ#EΛΜ=”φ)=Ξ₯L§μ.Π†pέ7ΨrUmGoΏKΉY ²Š+m}¨.= †±’B žεΠP’e)Ημw‘Υk–ο–•7Φœyκ@IDATο–•Ξ7ŸY¦rœ±jTIνŽΗ¦”Κ¬ΥJ©sqsb„VΝFŽΕ ‘o€3₯BЍ$o`'˜œ^ΐBIsΉD*—2Q_Uέ@[»—r³πr γ΄E!—€)΄ίΣͺι·ϋΖΡB Ξ‚Δ6 ζ71 ϋL3š…Κ–“ Α`ώŒfΏ¬Dx!Ήα‘έXI,η§gɘ•¨€lFv΅TdΥ–*|γΕ&Π²(}χπ»›ΓΔ€ΩYr›΄8 jž)”7Σϊπƒ‡^e° ΄e½…Τζ -`J«3ΡΣ» ηΨγ’θj_<ή¨Ζ|G!”Ÿš2j{€†>δ$+›—ΘΌΪΊ χƒΣyςI%΄‘οϊΤŠ ”uF:mΒ³O₯$ς•,ž“uPαΨν ϊΉΉ₯ό~zάΝKο!+Α₯ν$Kϋ’τΦ ΉΎ@–©—PdVΣP X–ϊ2BΪ+CψΥ€x€ƒ;1+{,Α=ρφ!Ζϋ­Ό}’nΌγ‘Σ^Έ:oχ ¦¦HΪ0™•’\`L3Fr‹#9/„gνΟ‡;>Šfy~ϋͺœg―P_™δ?h“Œ0―‘—F}œ΅΅ d™ΚpΔ’Μkχζ2.U35\H7\^syΝ8Ο°[ύωκ―žK Ÿ₯‚σhQ-zŽβnΟ•πγ|1dš³Τws+Nl€ 4Ν„­Y:ΖΜ—rrKjen'πy‡w:Gšχ @λ'“tΌUd†™­cδ¬δl(ΝU&τ–Ρ7βΒϊθ‘—eEka²YriΒ€¬Oy―™ωε¨­sω9–uh—Ÿw‡ΏŒ/yΖGJ”MgωωΩψΕώΖΪq-Ξ|ύOΡ Œ΄tιΩ(~‡Pœχ3όμ·Wε·y("εi-‰₯¨Z=šFρίξϊPΉu]­'ρΥο~ M₯šA½όΦd%+τ+H] η?Έhδ»‚Γ_Ηχ{zgσ«ψΎ9 σo~‘ɟgΈ`ž§αXNΐιV©ΜΚΝ_ΓdΗ‚’N'Δpΰ΅oΰ”όKΈ'l_<‚Ί:qΜ=•l΄ΌόΘjς«~㫘θΐ­1%t-Ξπ»8^ηˆ*oLΦr€8J‹σπ‹Ÿ†[~ke U'•UE5š”„Τk`!ω©TjΎση?@•N›€Ά ρ“ηπΪ# m–ωwoΎκ!·3PP} _ͺV˜ς} MκΕcƒE=ΙΒ‰ω%χώƒEπ~¬ς,²t¬ς…•Ξ/~~ϊΧ»’ž_fžάK.Γ•ƒ›HΜ©CΉΈ>[‡¦#Β~›ϊ‰ξΐ3GΡP- š™₯{Τ7+|ύHE…!sΛιXι:οΎΌs»—rΫζ‘cα‘eάAdο·jX'λνo΄œ4ΕfΗǝŸ£ϊΈYgξά\rW$YEOz9žΟ-’,πΕg Θ”„‘e!NΦτXιDΆΥΏ™ΫψΗΙ~ZςάΒF"-Ηlm EΔοM&²2•ΙRΐυV›œ¦Ξ]° Ξ«#θξς‘ŒεΑG&Σά\SŒβ3“IKgk[Χ!₯!©τ΄ž|z%Ζ&‰O Ξ’_:Ž}α Θξ&ƒ ³˜qΜaΜΉͺMΘη½`ͺ^^c^φ²ν“0Θ&²©Έ™ΩYεΦužΖ8e‘–Ž‚²κ"τZ9ψ+Ψ·‘Υk–ο6XN<Γ±~·¬tžιKΟ‚ησdy$x­Oαβψ΄΅>7½g₯R~Ύ6£,¦€Λ9BαΈkd=)o~η+‡ύZŠRss‹ƒψΥΫ7έ¬Ί½χϋΰω½sΉδ ΰεR’ΥξΤϊ»Ό1ΥKΓΉ΄Έ‚9Oewj_₯ύX ΅ζ1Rp.’'3Jm₯ψ”½Egͺ@™hޞ¨­π₯ψ+…fϊριyΜ£Dl§²DfŠŠi½8C2₯n.Θ₯9υaΜΠχi•ΫŒyjkμΔQq²«R܊ο5#APRΥΊΧf˜ΤδpΤ0 ϊŽB*?mFΨξƒoHΦ%*ύ—L―Ζ㝠+­"/αΞLYt¦Ν}© ζ ˜&+ΟΖΈ ²Β:%–έigΠ ΦΉτ}­no •dσω­ |0§ΣŽk7'ΉΪόRZΣu©Ex•¬¨“ώ£δΆW0F֞γQ τ…ΣΚp.k ΅ι±)ι„rενβcΎίΚΫ‡`ͺ|0νƒW<‹sΡvήΔd±y|Uβ˜%Ι’,n,βΏΖƒ­?―4@lγ£θ•ΧF΄‘ΚyΆρΚΒ–Π’ϊζZΌgΒ)γ™R¬Ψ―nΪ¦φ…B₯RΫά([S1΄·\^syMυyž!€ώ`πύymΔ}8=λ]ΰ―/TŸPw?Ž άB;m€ŒEg6e«ωΘ*<‹οΡOq Ξn΄χ]Ζέ ΝΆUαe^JdΕ§ΗͺΎο•ΥΒe{‚NŸy€Ϋ‹GAαR€zRLmm8,/\“CwΡ΄±ΩU(R­Vμ’Ω©ϋŽ«Jζ Χ>Ž)ήΪqοvhͺvχsΰ6ξ΅ ΥvΗ[%ŠœΖWρςΉAΌuΡ[ι`yjφa;Σ34%D»#«[ΙZƒ4L*?υΞ<ΒmB₯έ/c33 ›d"% š*2Δ MΠdτθά ββδΞBό6¦‡§<2[‹ΧΏ4 cwΩΩΙJtίπ Rs_^‹Ϊв­cfB! «Ώš H«hΑΑΊRιMΕkύPζS8ΔΫϋΏύ)rrώNΥeΣδC8χ½/’ϋ§biύ&ΝQΦgqννΏΒ}ΪΌ,΄Λr]Dη•+Ψ,=Ž– ŠCvέΧήΓbΞa•˜Ka«%ηnρνι?sWn$‹Τ}φ˜Šλpόp“&§ωUΌφΪ(~φξ-%Jυ|ωΙΪ6•±» ΟPκ΅ί‘;»ώŸXΣc₯σΙMωBͺψσk‚ 2ΡΟ‚†ͺΧ0<υ.M ΟQ6QΠγΜ§Έ3β’‡LςSŒWοΟŸ˜S•I'Y*”κ«{,9HWδ€ϋ‹˜}βς“½θ˜δ§œ\γ³'5ΚΝθΌΡ†±©$Ρ'§΄‚”Λ)€2ˆΒiZρςλεfG/nέΌ‡₯΄ ²2‘XΫπγB‘ƒzΡh-±Σ²³#¨~‹^D:~¬ς,’t¬ς…•N'ΥΛ_z7SŽΪ.Y‹¦<@Λ9ik[EΣ2ΩsΑ#²&:jYκ›ΣŽθ€SV°φΚθG†'Η{?CΗ†`Α™zΐIYhi–ϊΗ[ϊπQέoUK‹Nl9τ%ωΤ€e|ήφ΄ΗŸΗ1εύ²“μ3ΰ"*w‰_žž[‘ΝΣ1¨άq8h@`ψ†}:ΗΒEs±ΔCJ1-)kx0?δvŒu,eΙ)HΧ νŽA—r³œ‘ρ5R‘œ=σΆLΚΝzj$ΣKƒxH:›h"“Τ‰Σβ…λ˜Σ “O-ί3Na‚u·œ Τ δUrž³υŠΠΧε53„?xό žkτ6fα•ŽjmQΛg<θ€”ά½n;Y m­B JΞU΅ τ“£XGw_?ήμρ³hœ‰ΦšJ5͞.aσ’±ΞeEmŽYύ2»|Ή°X”Ύ˜:y9*•›;·XŒωŽB-?7‚k’‘€ΐ³ΉŽ,K9ͺεξLοL?ΪΩG†γΤ’Y_ΖΤ&#C^dθ€5“Nƒ΅ Ϙ₯νYE&+ IαΨMnkΒ eοRΞ^ΓΒ¦ž ΞΖyrσμ’7¦Gԍ.•–:œ!w‚+±’na]’κ+ƒΑ?πφΑ«˜μ·ςφΑ½υž‚l!šιρ+ψγηwΥK­ͺςτάό¨¨x˜Y|R]-†Y˜Ό†φυrœ²‹ΟqΑX[qiΑͺι}3σπ=ό-Yj–ά˜\ψ?ρε3’’lν‘Γ°‘‚³„j7o]ΖΜΜ}\ώ¬Γ‹ΏAΧώ+Ύt\ΘkΚšΙΫ%1Μύ?ώJΝ³œJ"ηγ’lΧΌwΕU^ξJOΆ3gΡ’΄`„θ΅·ώέv§ŽΌ>`vσθ»Ρ;Œς‚όςwpΌωίρB« δL–7mεΔη΄>aΠΎΣψθGο’ΰ/$K’9Ν_ΖΧΟuγν‹iψΦληT άέίΒG° I,χ^ΓΫοώ•[(ϊ?Ύ,YΈŒ·~K~Eλ(«ϋŠθgΙΛ§Πέ@ΣWqLμφΔδnv~•¬ŒΎ,”Ÿ9…FRp~(ζ…­όDR͟!xϊ©Χ»ςiψχΌeM•N›~(ςE k·ίG5Ι™Ϊ„f=ˆΧ_-ΕΨΜ slͺμYqήΓŸ}ΰΆψΐ"?ΩψΜFJŠ €-8ڞ­³ο Ίa?νεί;ŽΛΟ''?%kB]’Ν#?ωo^ςΥRw©3n•΅=²9,ŸΒ@Ρ9ΰ_ώς―Υvν*m.ωs’Ή·”‚xπ#υ¨3­9κB杘Ρι³θΡγΗ*Ο"KΗ*_Xι|#ηΏm|zΎ9‰Ž7\†'ϋoR?›œmTœ9Ν΄Οzχ4λφ–Φ²…g 0L'tΡUνGμΏς+τ+UΦzy€ΰ\ <λ^c£ίͺ°~””›ε†`¨χ.₯U ΊΣ+sn}3….Τkdε.εq|»ΧιB-7ž#ΐΰŽ@0σ‰†'ΊΧ"LΒ1R|PΦɜ‹γΈkΰ+βhΡΚ‹:³ν@ίΌ·£€}ŠΖKhάmμθ ^YΣc₯ ε¨ νpΞΆ0]Φμ¦άΌ23>:›ya•@‹£YB<Υb“ς§“Ηt$‡ZĝψιΏα₯U(/ΆΊ­{ ՌΪύQ’•‚_ΎίΫ—Ν¬¬"‹’2+3½xΠΏ›Ρ68ΡΙ6y±gRŸPΟ7μrΠ‹4ς~Ίί-+¬ί-+Ÿ%ζ*œ³ λ"’s’BΫ‡€Πζ©ΜΠ”žοš›Ϋ—€Κά:Τ*{φ%Ί, Ηgc^κ VεμͺbœΠW²ώωƒ.€ι}ŽΊ‘ΔagΓζi’Ί3yrΉD°Ρζ₯#ΐ„"»\ΪήΤi[ύρΰΑθxς I[5+΄Δ<6šŠςE]x Γώb`zΌœŸΓ΄cψ"ώ,¨ Εεό\E9AHڊ‚’LT¨Λ–0;-l ¦E{ έξc’–z}}VΒFηΤS^Œ$ ΉόŒLά_\d [άπ&΄—‰Y¨¦%:ΑM!’OδSJ*iύNP ά4)8ΟI·»ςίιF~šε‰&δАq_Kω΄‰N݈BΆΜλ^¬νΑ·ξQΝolθŽ‹’“5mυ!ΓrατηΓΝw€ευ.₯’œχΗηxe{Œtအ΅i¦)‘t{ ½΄q%.΅•)ΒIk΄i1ΜVŒΛk.―i&už!δώ`ΠύωR―ew£HΑωŽΤ+[ξI-rΰΖ.μήά]0]± ;]˜-›ΑuζXtbe;YΦ*4ζKΚΒBΨΖΪSθ'gigAΎYά SŠΒ½χ04ΏKΞ~.©ΘΘU ₯κi”•%ς­4qHaψ”^_Δ[w―IχςΩ₯A=λμ#ίCx±UΆ M ζ—n_DΩ‰¬lmyo\¬ši]X»Ί΅ωΊŸ@ϋΗ€H«qχίύ ‡š$eΌr”Vφ~)ΐ­χ~‘ ι~{ο=œ g‘€’Δ„{zΚ¬ΜΘ..!Πμ Ν(ΑΡwω]/εfαeχ₯Τ~}Έ^ά}‚Ϋ»kχ:p˜œKŽkrΜ-PΘΧρσί•β?½))47Όό]|Ώ)6y󱓔Θίϊc›n¬«K+’?YJVJf^VΚ[[’C%Iα…~Ι&)²γ›ΤmΏrΑ gΫopwΞ‹JάM¨xΖ†‡ŸΩΕ4Β-?€ ΟPκ΅ί‘hp¬ι±ΉΈ MΎˆtsƒšž@I™’”ƒ"‘r“Β'7u?¦MξŽE~jc…Ο>8I>ƒ6ƒr·°π鞺6δ”Ό‚S•Šά₯ +ΣNτ ΛYi²Œ"π5/β·0ucGP›'έ } Φϋ­Ό}PρCiά£2[3č ž3ε+ΛBŸJΠ³ZΓκzp+ώξ1»žΒξΟ3\<Ό‹΄Ό6(=ο|… η݈ŒW6gq}’~ρ©ΘxۘΫ$ωž\Œ―fΙσλsXu‹”αΛk.―£°?/θ~EΠif"˜ͺNRΝŽ»¬d:nβΣAIΑQ'h xMΰΦύŸΰώ’έ}’¬2ΪΎˆ/4–, P³[00*tΚ‹a6)ŠΝB'pσΦ―πΩ”άa%ΰ›0 €.n’<°Ÿ”ΏLNv@8‘n“¬‘šΝ΅΄ΫtςhWcZα9ΌΡ°„ίv*Ά‰m°š”Ϊ6ƒΙι$όΙ©/Ι» 'pγΑ―Ιώ0)ΕXžF11η]&“Χ~ŒΏΈJΊŠkXO‘„iη‰ή”ΒaΨWΗ†ϊ=ci£έΎ¨-‘’šK\Φι,•'qψΘ”–!3…fŠHQ[Π-KH+pν’χŒ’ι™vP«γ•^tΪz,'ΌN―£γ¦Φδ˜–εβΠcφ¦hϋ.Ψ ρ5Ρϊul4Η Ί₯Έ¨ZΘφ&ƒ2Ψ€βVˆ23Kv Βy֚ΩλΤTͺ„²³ω*ώCυkHP ε J=N&\.¬ςcΔ3ψzmΜwδΚm ;ΦτXι΄ό„"_ˆ.ο Ύqτ¬¨Μ+Ζ²>ƒ²β—VH“ΡryS˜ΧxW•KBHω)¦ …ΖηόаΨei‹ΚΎ„―&δ£Ο1‡τ¬ZT7•₯ik‹˜—SaΊΗψΏΎΐ€G̎Ϋψ‡Ώό{Ω*½Η»PΉό 1ία™δ§²RAVŒ~ψ χΞ=τυτcrlv²rdœ³!;[ͺΣΒχ4Ϊ-)iγ(8/΅1»ξ³4ŠrNš6Ξ±Κ³HΣ¬ς…•Nγ`ϊΧF¦§Ηƒ›—ƒnpΈ?ΔN?²γ~'Ž“ Z󆦰‚³4b9‰ͺVeσD:5ŠΟj^#4Fͺ<‡pέύV:zΥφ^T6oΡ)΅]‘sG˜‰t…G'σήγΎ`PγdoFZ^ουτB/9NΑΰp G@c<ΐ𸟊Νh&λ‡ŠsŽΙΗW+>1~%Eο=ΐι(§£Αη Ήν`œΙT€Qίΐͺž/kz¬tΔxfe3ΎtΈ [‚φ uˆΧΖρα…{π\(&ϊa0»@‹μyft†}/κΰˆ±8Πσhΐ+Ύ’ς\ντ°όށ)²ݘc¦g+ςς‰'§0/ηrωfΙ`†ΛΗΧέ*μt΄}t χΪξγΔ /αx™/)‘DAiΘΝW£A°$*ΈΉA΄w J ΑΉ εR³YΠ€σM»M‹ρŠ3g#&°&3²]­U²Dι^L"i(鱕ƒΒ‘ζΊ²!-jΥb—(κešPn·FΥλ Ύ[JΉΌ¦§+5υc•6–“‚³ί‘ λw2]Y―Εα ͺΣ’Ϋ@―£ŸΜϋšIήΖΪζœ”Ξ6ύάάγ8d§ΈΦSEξYςΫΩXΪUΛ₯n<ςΐεnΚ%€– ͺ:½ξ2T―茐Kzρς³Σχ9~Τ†B XH§½Ά4'¨νΒθ老m ΜIˆr~tFψ>…9,+ͺkβE5΅•…i<HœσŠmΤn ν ­ ΡzQx·€ΉRdΛΪ²ςl#©B{"F_δΏ#-{‘΄GZΊ Ϋ‡8±Wδ"ݜƍI»K8-₯ʚϋζ<Ζ–υ·A1΅T]wiVΛzhΨ¦6ڏΞb!ιh(&ќ+%Ίd Κ’[‘Έ–”šk&²•7°²%h°i’ϊΫΘΧkΆώRlφ[yϋ σ„Ψ>ΈΕ‘†,ꏹ GιΫ΅ ½fΑ­cAη4"ι]plυS/ξΗGEΤΚkƒΪ/”BσZΪ`Η+Ψ^ŜΊα% G4§p ’!0aŸZl9.―y>p^˜υˆ€σT3ŒdΪ΄²ΟβP‰²ξĝΎ ΊΗˆΉ’n”›υάΈύxW…γω‚ς‘ it\›°ˆŒ, 2•Ž:ω t_t)7ˍ8hΖKVp–½<.N΄=|mίΦύ?ΐι2I)Ί€ ₯€H8,ΎΟB²’k΅²ˆμšσ¨X"χ¨γnΝMAΎ8¨=η§0Ύ(ήyύMŽu{ωνšΗόbΛ§Ω°€‡4;xόkηΧfǐ³α§|Q€˜>ι1˜ ͺ tΜ‘~Ν‘¨“S5•$˜„yψξ_αVυp΄ΘπΖۍ‡Gίwύ3pPcΎ]¬ΉBW\6 4i)ΎξW₯bα–_8xW―ϋŽά1πυĚ+–PδΛΌ‘QnžΏ†»{γrtυuίΖ‹Υ΅βSYεQ4ήG»fέ!dω©e“δiπrδέΐ]4TΨΤ 6EΕΗPTμ‘ψ L+Π‘Q§ ½iU:‚D™Pύέ$ΕΉ6 θ=—Ÿ ι}¨ςσΖ­;8ΤϊͺΈHΠΡc‡ΟΡONriχ―γΓί^•CbΕ#° $©L―%‚Ιθ•cprΠ#yρ‘ε”MTN8—…N…QŽUžEšŽ]Ύ&—‚μ_–^0EΜε ”b§ιl»ΎσgΡ"θΩ”6 ™ΊΪW»h˜ς|3ΚεΞ΄wΈ[χΜω.χ#’ƒžlϋ{Žϊ~kήY²ήPΚΒR'ώpν]΅o&œΏ’)­ΫΡΌμ¦ Ϋ‘–»<½`Ηοώκ1Ηΰpv}ρyžέˆ―ΗYm-MΩ$Ά9…φΉΨ[σ*#ν‚er*ς(…@ΠΡά₯¨Vτ=HAthA˜IBeF6V&1’.Ίb6₯αΉ<Χ€γτό„Kœ)=Š›•ΞΕ–x—žJyTΉ'―E«{„ χqr–0ͺ–&i«κ«PΣ>-+cQΜ–*ΤΥJοΒMΗ›>‰ŒU/-oΈ\6–»5wΞA;@κx–——]횷₯¨©Pζ4ήςmYk·υogζ…‰E₯CλM{’ΎT28C―ϊzBR¬›™Y„bΟΓ¬-Gοd08Aiλβͺ2Τάv•…oh(•ύDRη’‘˜Ps±Z9Έθδ;²ό·"ˆAω:Η‚"*Σ7E/ W―Γψn=’άήΩpχY# lξ>λwΛJGΦiεΧ’1f}EΩ4Άι΄iζΊ½Ω\ΕΝΙήή’OΈsυβ$ςΜ΄α σƒŽΛ%£ε’ƒ6uL 1KZKon'yvΣϋ$d)ηsiΤΉΔTύ–04ά€ΒRژS‰Tρ>A»΄J(ή%Eω?Ϊ¦Q¨r~a‰Q’–‚¬βƐ±̌&ΒΎZ[ͺY]ŸΪXΩΝΞ’°¬–Ϊ›ϊύ΅xΤιγ4jK>š¬;θΛA‘wΏjvΕhςͺ σδΎ#jBh΄<Χ>Εϊh3šE*lΰ!m R#ΚΒσΦb:―Ar+Ι]TϋOΣS01?©£ŒLΡ&ηαυΉ•τVΧW|¦'0‘©Xχ¦{纞ςΔ–띒s Σ²ΠNΦ;΅ŒίΚΥaY^“Ϊ9V:mάΡ~δκuhύ₯Ψι·ςφΑ_΅}p+5uEθΈ;ζς&γ!UJ›ΆJ†Ρ€ζΦυήν.°œw­~ tጏϊ¨”Χc,ν³œoΌ’ε1—!°/œ^q$―ϋΣδIυqάη4€·±τΟε5οΟ‡ΫŸ7ΊΎ=—ΖΐŸB>ΚήζΉΡΫΈ.Μνa·&aγ‘AšQ'dΦ{ρ¨§Ο#Mγ2,΄}~…Ήo’ZΠΞKΛEMR ‹“Uι’B΅0&L«@½πžάΨΠορ‘l=»ήZ NόMΏλNJT‘ϋwθNό₯€* ςΔ‹Whύ¦›rσςXΊ{{α\"€γhΆ)­gΟ’˜W,‡“:¦"5ΜΉβ­ ƒτpΨΣ§mιܜΉ°‰Δ;άότ汦VZύ‚-qWΕ¦ΝΜWώc+βϊ€.`ΩΩ1( ΚoΧρ̊πwĚ+n)Ή<}Ι—ϊΖCͺΒπ YδWRnvM‘_ΧeηΔ―8TŒ‚\ΪνvWΔ~ξt姟πΒ+_|Šd«χρΫ+ΐ υGј§Ρl^Ÿΐ£αnΔεF­ΕDAiΣΒl0ί…«ώ_7ξ]ΉŒteaR?”Ζ7ž6ϋ zΪzΡΌν–ΛΟΠπ :DωΩυ;όνπϊΩgΙΒF©λ3!‘τ4œϊ ld½θΗχ+χuΑΐŒψ ‘-œXy—ͺQ”£―ίAΦΫ s¬ς,tB†Yε +Θ!τ― IΟ-qί\ϊΖ&¦ϊ‘έxH}Ε–<κ3’΅›ΪζΣ€ΰ|υ Κ¦ΒE άΏν;―β›έμG «ςŠ‹Œ~λ‘’Q_AD&.΅‡Ύ&ZΔέ>“λd›δZ:ςm4οΜβΦέ4JΠrΨ`/‘–»<=Dγψ=ΨκΒΓq8{†ωΜ=ŽHπΩK.DƒYR’ˆz£μmsπ©ξ~HR™’)P‹hΗ!'ςk77ϋVMΘ6’ς³κΘΰ}υxsςeJ/ :•ωF™«ΦψœRΥ„ ζv¬c-ε¨4s2lψβ ΈρpΞ8 ΄’‚Y0‘„FΝ)wž|›wΊπ¨ –J8€ eί΅Gœ=T‡‰ό€7ΰ;Ονΰκ-:&£ §=#ροA#=ZqτΉ³¨Ο˜Gχ£1 OLaΖ±@V‡ΣQEJΗZ”΅yLOM»Η[‡Ϊ2ΩςοκΪIω;$Gœϊ΄&|γL9±MζΦβi!Β92»¬ ΌΠ;‚ξƒ5¨ςŸZ„/Ύvέyˆ4-r°i?žΫ―πIσ£ƒΓnσ₯*O!€§ƒJΆ!”ƒš–zγ +ΰK€ΰ,ΰ”ƒΞ? Kο$*IyŒίΑΜ`z<§vΤ: F’]=Γψn]ΡκίωšοŠθχž„c-d9^f‘ζ|WWΦθ„Ρ ƒN!U<Ι* ‰ΉXu\.)ί»qr©³cΝ$GΔUŒ¬rΌώυά|Π‹‘9ZοΜDiqκΥΐ§N–’DΫ!Ήϋ‰.γIyΆz<Ÿ΅ERI½«θΎίe#‹œ_žΓ -E ›χEG‚'€φalf‰NΌUψ^£Swg”@°wτβam9)š“΅·―;wΪϊΠkŸΑFZ:²Μ”‘βjuΜdi~‘œΥ•/K.¬ΚΎ­δt:YrVΪuή@ε‡diρhk}=£ ˆψw€ζ”nBi΄tA΅tΪ²Dš„ sfΆΗ°—‰f+υωε_κΧ}ξa'Ύ^ϋlΖaR`)MP?r’¬./S?r{_υ#³¨ίbU•›…σ\Ξ κο.W˜nC -dmηρ>’ΣJύ θΤΪ“‰;ˆΫ·›³Έ9Oί#6ΰ-2KΚmE΄ΩμΜc;:—ΨŠ3QzEhΡτw§ιhδ.±³ΑJηβ5ξ"^―Υ:Z)–ϊ­Ό}0°}πψˆ*ZΰU2εrυξ,Υt’Θ™:Uj|`Τm3#δ<{>Œρ‘’GυΫP<άΤz\ž‘”Χbͺ ν³œg―˜Lεψ2m²[ΓθΪ–vΆ‘–˜‰² }QΪ0jSΪ1h½Y*~.―y>τώΌFtμΒ­^7o’ρeaω9΄XMr;ξw]σxOΌ±ΐš¦Μπ Ηz+2 ΗN)γ2m–3Re-d­gΐ{jt'aΆIœHUFOΟΚΜ§ψπσ»rŒ4HΆVΘχΛdΈ'`J‘`!«6JH*ΞΣ])ύΘΪYάQUΙ‚Βίψ%ώαK’Ώϊg} €ΰ¬ˆ%ΥίΗ͎0iξΟ9&Ac:žˆ~΄#G¦ϊ#yοΞώΩ·h@νΞEΓΛίΒΩα†Λ]ξώlOkXw― u~ßό7‚΄lmtω±ρ€Κ ο(Ώι$lMYwΰΦν6οΔYΣc₯σζΐΓGOΎŒ3)[VΘκρd‡ΞdύΔγE%ٟ¨φς<βχ| B~z’ˆΟz|j.ήΗG·θG%rΔVq 3‹4kŸuί«–Ϋ§ωt ίwXWίν+†pˆΉό =oZ&ωΩu Ώ£‹Κ¦rδ•’WΛ”ηIύSυ38qδ.ά–&S½S•|΅GΫb/„†žq―]ίJC‚κί’s~­ΦHyŠZ9όd•/¬tœΉfzr²A\Έτ RŒυ#»?}€Ρ³Mβ’Zqm#*‹h"HΡb˜κ@G›9ζ·¬ύΘ,DZFΏΥ†\ZdSmp­υ3΄," dXο†ΦžžB»ηδ5«œ:₯ΰψ•#ΐΰ»Χƒ’35’βCŽ /ΌD?5΄t³2Ϊ‰[>&ΙCHΉ<ψovτ‘‘쀄՟Ú#ϋΆ€ΰμ¬N^^a}·^±ιΑϊέ2Π%Z«(7Λά₯¦ε£ή§ €ψPΑ91ͺx#λu³Šv½8£Ϋ›Λ%‘| •KΛCΈtΕ‚ΧHΉJ”H8vŠ~An9e_FΉD»¨έ˜ιšΔΐ©J(+ΝCccΎiεZPW_©kίZ\ΚrΠφ–Ή—‚3›œ_ 2€Έœ'›α€Iτ‘ ²Ρ ’Οͺ‚σ¦'΅ύ/ήτ²ΎpPΪ<”š‡Γ'„Ÿ ·ŸΛΑΦ£xR5wI–_~IΣΈrτ―~yƒN`όŽ (?„ΠΉg&Ψ§%τ,NΣΙΉ"AjJ>Ξε»o:πΙΈgΏΞ=H0O…ͺΕε”PΏEκ…θQαΡt/ΪΧάίεΠi••&Νφuj.jεΆ`u…,τ‹ ΞΒΖΔqTffBꍑ…Π¬jϊi ₯ϋΥ•Qܜu->²yΗΝ>ŒυZΙRυ[ *\™ϋK±Τoενƒ\δ΄^υ‹ …΄>#ώ΄υ ‹#ΈsΓew^xΗ"η™λ§ΚLθγ#•4θ›ΘΙk‰₯ΠΣc–σaŒW²$E;ίσR›ζΡ¦ {TδςZ(ޟ‘?ΏΛυ6Πψc—“―ΕαjΧΦHM΄kΗ »œϊ“ˆ>³ψYBχ2VVtΈ I oUZͺ \ƒ›i§<ϊΩ{ฎτLπ#ξBα(ξ«p ήΩ’HQR«[έ²Z}Έw;άv¬'ΦλΨuŒw±»Žέ‰Oxf<Žnw»Ϋ}¨%·,‰¦ŠR“"EΌAΔ}ίWαΎΑύίY―ͺ^‘κeUU`fPοερηŸ_ΎχΏ|ωΎόS§ΈSTΦ>Ψ”χ₯ΪΒMX8(κy§Ξ_lΑοn~θ "fΥ‘Pš³£;ΆΆ>"²ŸN°ϊΎ~ΎQ"ω—žψ MxοoζF@Φ)Κe΅ •f$ϋœζθƒ}Ά@nΒμγύΩα”Ή―»›)§­v―WrσʊƒfΙ^¬|$'&Τ ό¨ m7]©Ψ‚Ž‘Κ^όqͺRώL2υ ±8|€œ”ΛΒ©Χώ ώυυ΅΅[4¨““DΧΟ¦ες‘K[6αŠo’ΆPlΛ$Ÿ―λέG₯‡^‘-Γ•OV€Ϊό]LΑΉΛUKΦϊXΛΉΦοzk_R‘œ h&05­w” -Α,K#;Έ<ι*Yχά'ϋ©WRWOŒK#šΙ5 žΡμ.Π1Τ€IΣ)Qά~¬—ό·Ÿγθjώpγύ_ΰΜώŸd…ε6‰HH>Ί4ςύyΤ†‘±Τδςς‘Ud£νœοΓeβv D|Άƒ:2ς‰ΰ¬,s˜žσΙΓXΘΪΑ@ΩOVϋΒTΏρ5S}:A¨Fq;Έž™ΊŒΆζσΘΖ’Φrœ~5SWw6= Π»λ820vΠX‘?n]Εςβ¦7i‘«λς'QH·(ϋκQ«'0Ύ…ΝΉθΠv½f΅σαRΞΘ…Μσr8 !°'‚ζ y0Ž@t*rγ"Ε"Zgϊtb%¦zpalGRi^׍q»ˆι\±ρH 뫘_%―Ος.―J΄ϊ»1žyΑsσ°w$ΓυΙ‚YΛ©zΡΑ*y@t ΊήHœr0Μv5βM"D>[Ώ—ΆMV>ΠnyΓ]h@Mm‘HΊ˜œu—O:*³ΰλ›4hτΖΫρξΗxώΘΨT6¦\hi wŽ"½¦6"όΈΚkΏ{οmΒ©ƒ$Ά4?CJΝ^‘4Ά²ͺΕm “ƒC˜"ο–΄ωN˜Ggs'ίhuN#‰•₯ ½yΝ·‡œΣ}<»ύιη4NDy-θŽJ@Ό†ΤΊβ2ΐžθΈ‡_’›η6:D¦ξζ{Έ|£έρFGŸλσ£άͺiΕOu/Χ•’,[ω0$εrm£λΣuνη}λ€£λeΉΕ}Δzί/·‡|Ιϊ1Ύ¬sοΉO‰ŒQ ΞφU"ιΈ€‡Ϋ)·K·Kπγ™YΌpvΘΜuΎWΕλci }#Ξίs™μβ:ωI–ƒλύ'Fo:žοΗ~τv”£H΅ΓθνU€Ί³HψdΣ*—ΌΛXS>’ϋaη‡Δη‘42<:NTb)τυObμ°MZΔ36ƒQWd#νψΥ―gρμα*ΤkζS4Zΐ{θΎ>ڝB·Ί,΄Ξρ|Φ$Ή.¬’`)0έGι?ΐη瑦>=δόΓ3νΈƒz7cEΤδβξφΈ,ZSR5ΏΧ§Ξυωd#4FʊUΖ֚ςβα*FhΩbοE―rm©YL0Eψfν'W4€I|8Њδ5ΊŒΌ{»»vΠ‚ΏΟf4γ]!k9· B;‚ιΊVšΔΗ­ NΏόω ΐ€η]_Κσo¬«±nΟΫzΏΊzεΆ³χfͺΙΞ3ηߏ4WM(ΪkE=£Οf;οΗϋΚΖζͺx­h^ υiη–!΄Lχ Λν™’f ›n―ωxήΠx>ΘW6}–ΫΉPΉ$ŠΒ‹MΈέ΄sΚ€f φξΓΚθ t+O>ά€¬Σx±Ά^ν½λ tk?&§"›,α„FΖΎΚg±Ov ³«“Ά9+Γα<+Ϊo蓇Rγ•Šγκ6 ‹3γΣvΨiœ"zξZΐΓ–7Π‘jV…/UQΛ Ά:Κ©y€ƒ€$ ²¬bζTΌ3qΪ%Ώ§₯¨<~χ.48Dze9ςιό¦»IQ<ΜΒd’ςv*FΖΡc‡\3Ίφb„bš˜%%Γ-έ9’ έν­΄]·@¦UZ_x ­7Ν$l­Εαβ5ςΠ»ƒΧ{Υkxρ\¬ώ>όy ₯Στ ‡ο{Φƒ8χ‡_BΫί“σ°Œ ΅‚@Υ3gΡHg]ŠsN-κrΦpΟ φώcΥΪηλ:@χΡƆ𫹏7uΆτ£,¬υ±”cΆ/“˜[€Ÿxΐœ†Ό¬*4L;_λ₯εGPͺz $OφSΒ„£ύdΦ“ͺ€ζbk₯Xž9τeΤ₯Ι$μ™{hlnΨn?…Œφ3SπHΤΥ½)άΡ‰RM²“žt4ς<šš(i’Ό’jrqM;•z•ϋ =U£ΖϋlΥŽ‹fkΰI»°Γ‚χ’vPP›Ε~ΚΝe΅/¬ε”Ž―ύ­O©7<~Ή d?5>lΒ™ΚΣ$26aό8O‡ =θΌΧ°jXΗ‘°ƒŽFhΑšcGΝQ¨Ž[Gh1λίiτΤZpζδ„ύβϊ4;‘QώΧ…Ηˆ‡°λμ5«—rϊ‘Gs8mE ’œ™π^Ζ»έΓLEΓ₯ΠψΒ.,Œ!vKŒXΞO°Ά±‚αΕw2χΖ. NΐL[Ύ¦ΕΠΞy{"i+pa›π Ϊb|΄%¬·`¨>0ΦrŠˆ‰Ž»ψτ·av°οΠ_’% "|gή‘¦”φΠχϊœκ2ΨΪΕγ‘N\ΈHn ξ>]ΧΈo•šο}v χ>SΞΌ²ή·†Κ­’Φ›ισŸ§Σδ-ς'έΖξEO²B%žΫ%ηžˆ]οΖtγστL‚qΠζ:ζηηΠ>8ε\‘|ζd+|±Kt-Ύ±ΥsΑήIΟ οίLξ]‘{χŠJξ‘>ΚΤτΟ‰ΦΫψτημνψ§·»E;E,ŒβΣOιο~:ͺ2₯gθωΊJ \¦i—Ά![ίtγS4έp’βσ‰αϋ(@ύZŽcδω'4ȧ烦εMθšK-Φ„(al'\Λksθ]֐$4ω]}y> ΜQšώ™€ΌΨXΔΡΈ3zUFam“Όε/Μl± „Ζ #·Ε1ˆXΐΘ?ςά}tb“‘Mϊ£₯*iΌ»DγέYχρ"›΅œR>L~ _ΧJ»ψΈUAΒύ—?TL˜Ÿt}Ή>sσ‘–#>oWιήmRήwΤΪ€V;οτŒφy<Οφ~€U9ν΅V?#Οf;οΗϋΚπ\7~MNb²Mq0ΣΌ—π\Ω$σΤς4Ζ½}F64 ŽΉ½vξ$fϋ’³[ν΅ΆA8fžv&€œDMM­ϋqηg΄‘zΈ‡ ”V½€’ͺ£μΔ€}Σ4©‡h+rΣΛP“[δh yLnx€™ΨœξΗ0ρ›RΔ₯©Ήδiαλˆl»₯8TŸΔ‘<V½m 9ΉΗʈΈTv½Tίπμ( ±•ˆάΤ”ζ•ͺ$ez₯ΐΓOυcNγ%ڌ’W1Ίς9f’ Q_AmPΘ‡€ηέζšr.‡ZG r’N”K!NKΞ| ―#]Έ λΡoΰάλg`–E>ΊfEΌϊΰHΕΙ―ό9VM‘ρφ¬‡Žβψs_A‰βΌAΙ―χ»ΌEŒΉόE|;±hjο'Œ£‰Θ½†Ι–«θΜ<ψέMԝ,‡Ψ[‡πΝΏJΔ΅ίύZzˆΏ™‹’²jT; KσΏμ Αω0Ύωϊ‹D'•Bί΅7‰ά,M<_όε{Θό«o‰ϊ§U~ί|qΏzΎ2>Ηu]ώ"β7!βτ7ύ_βΖε«xό¨+– €¦ΫP΄· %΅ε°ηβ"8w ΰ‰ψΛά>kι’Qη"Φ‰’BΊ\ͺχΌJ€΅>†rΜφ…Λ‹ΒμtWζΏ„6γρp¨kQ΄RΩvυ{6Ϊχ@^θΑh?™υ’rΏ„oΡ’“Α;θΒμκ m(Ι;‚Ε’νΌΥςŽξGΧn ‡sn?ύν%VϋY†gΎω稲Ž εΦ#τt΅bth¦3°―ξœ€m₯0‚‘ž&}% <Ϊn=ΔΰΉ*δ’$sι9όρ¬γ»oa*ύžω{(QLιW%Ζκ=(1kΎν<*­fϊ°,L@F‚ Y»4σΚλAξMWηh·ˆNνsUΕγ•Αž‰²··«}a-§Βgp|νw}jΕαsΐν`ΰϊΚ~ϋ.šΞŸ&ΫF2Er3`omΒ §E…ώΥΗ:ŽτΛζTα@Žβ/h k΄ eœάŒ΄Τ¨:L M%’Φښ›hIXŒ[=τ…©εΕ€žLΒ"XC!Μν5ϋx~{Ÿ+μzκMž™#ΐΰ=œΰ\wΠU ,θQSυ[Έ@„έΏΌ «Ο‘k9‡„ΰ™fYΒMΛΝΪ΅žbMΨ_θxO_Y_ ¨*}]DΪe‘Έ0ަV™ m όΔ8νRιS±|TνK“%O‘Ή±Χ@-Ιʌ CυΫY—QυόΏoΦ¨δg½oYΛ)υς_ά.9°Žk—fΗGρώŒ„PΆFΪ!ε ,žΖλ§vz–Ρ_pΓΞάGΑm“³τ…•i΄Π_ΠyMxΫVfΠAFk9£υμLώΉ™m`˜[ωσ!°Ο‡‘AZˆ9ό;…υϊτύύΘ6l›½–U5\£g_‘+KΎ-Θρύ’ΐν΅3ς΅/ά^;£λνΜγηHoύK·ΰDι!€ΛB'>ΗΝ>ΑOn˜"τHί†-ΘΛ­t[4ί†οΎαβΉzξ ς€μα9Ή§ӟ‹€ρΑOπN»δ6?QρψjAΥW 0™tƒίEƒ“'>4χ΅ l_…X"ήRƒηOΤ8—^μΐΗ7\υtΞ²-gΔ(pΎPQqζ{βŸSύSρω›WΥ¨7PSŸ/ω°΄VαΜ7…?5Ω·Ϊ~ϋqγδVK“ΐΆΪ3°Υ:ŠΆ™¦ΠuIC֚ΊŠ‹ΏΙΗ7ˆt-^ ΄eχΙW…?Gαˆζ™Α­}Ž$εΘΉύJ,Λo:Ξώπ5”)δΆξ+ΈψΫλAΤή‹Ώ΅αO^=)Ζ•{ gϊρ =—}ΥA\-ξHGmxϋ_ώ©?ό=‘l‡„R{EψsΚδvΒάۊηvίG¬υ/η}iξh@Ή-yb―šQVϊEϊsλbΪύ66H ŒφΣ=SγΙΫ$ΟφZ²7l§€nΨόw»Έύdο;FϋΩ€ΰΜBΕαοœ ­wpU\α‘“lδyDy?€ _;#=Χ³ͺ_Δwθ/X!+£e™Θ­k‘Ÿ₯ΨΕ±Iί Ξn‚”γφL*Ή½εXν k9©ΖΗΧώΥ§τIˆr;θσΞxO6‘εQ+ͺ„EςΨ²»ω»·>pΟ’Δj ?μΰ±ηΏ‹σΥΚ{–’™ό›_ω4NchqήOšώ+Βcάκε4ފ$εxƎ±€ΝΗm―έΡjΨήow{9₯sω/G€#ΐΨA"}QΪAyՁ]€@NE5ΎqΌƒ½]θΗΘτ6Θc`ΕΎ2TfΣ \΄υas«–ό,EοΞύψμƒ ˜Ι­“—ηξ…έΩJή*Ž@(#ΐν’kοΦ.™Sž`aZv λZ‡{ΊN“\’‹§‹π9εχQΘtW$€πλΪΜΐΪ³p·ήτwEΟύ<°xΊΛη1§n―]ϋΪ?ϋβΝΎ…{Ί+Z>§ ΐv $VΑ–‘a&π¨γCς΅ m…7»ΥΒΏ•tt_Β/χK4ΟΉ·wbΰ=ΌωΰyRvO<0·uΌ‹_έwμε΅1‡!ϊν9,`hψ.^ωOψ€ΟݏBηΈ1ΰ/Θ»ƒχ>ω'4{ωΐ½²β’μΊ'Žž΅τšB^+Gb#Wπ°cΔ­ˆ½ϋήόoΩα½YΘΡuoόό_Π3喝ΌΜuΰΖΏ^@ά_λ[l7}ν§―έΕΘΤ$\ϊwyΥέeΘθΝ_ΰoώΛ/uυ5™οGwΟ€C)»£}οoŽdΑ%œ‚ςϊͺκN›ΑηcΛ‘q²\&lϋ3Έο½φ|x«G–™…ƒ§ž#FΆCΗ•%EΚ"wχ yΎUΒ†η€kλEόθ― =J6·_ϋPξŠΔt;@IDATέx$yoRYϋO£++žFλ@άGnznq±Φg΄œ_φeι~{εm4Ήί«bΗ“-|άφ.~tσ"ΤΝVν§?z―-¨ΆΕυ‚½ƒ<ΨNΧΌ!}ΞνηΞΫOρ™ΖXG&τžGbϊ$Ϊnό ~ώχooy9y5_ψΟxσ η5’τ<ΌrΚbc'›©έw;˜…ψhίΆœŸΣΤΰrθϊx ;¨hhΤ~ εXν k9QW†ρ΅_υ)…ϊ/·ƒ³ƒz]έά§IΞ?Dλ5w ΝΨΜΙζsIΚ²ΪΑ•cf—$|ΓdάͺΧ‡i¦D•ΰ<=?μ}׊]f―LXμ|8•ΣλwΗΰpΆ=Ύ½/l§NΌ.ŽΐD "BlVnA1Ž?Š―~ρ^;{•ΉΚξ$3Έu· άp%δaB{οΊGvΕΧ§Η›+ΘpC€Ϋ%7He—2J6Q|dΒ―^χt½6ιΕ O=Ω!Ηι HΰΧ΅˜²gαn½ιοœ‡ˆ@αιA<ζ<=p{νΦΧ¬φΕ›} χt7 ‚±η‡φoiCρΐ…λ_œ° J:φ‡σ΅ωΐΤmό䯎m5ϊ%%– #)¦ΘDΌβΖζ*ζi«½ξIώΊ2,(Κ-Frt ₯n`uy#mžIΰ&Š’S`ЉAL„δχlum cƒmή?PS I)U(NIE4-τέΨXΒμ\?:&=uυέώH[Υ d¦&@hνΚμ ξέΧxQΦQ§ψΠ)dΔ›(eK³£xΰ%ΏŽ¦(Kq-φζeˆzBΐΦ>JΫXKΈ™ξ†B΄νw]Q.b…Ξ#6τΚΚ&‡ξ£o‹Ωυκ?#poχ}ΔZŸαr~Ϋ—2δ%ZΙ6Ih.“=λτhϘν'³žYΘΟHEb\Όh?7Φη01ΩDΫ‰ιύπΚΛνηΞφWfq²ιžˆ5‰Ο†Ε1τέΎοΆΨ$`Zu’Νέ E£νΧΡη‘h°Z·Ea{&k΅}εXν k9VΨ·»>V=WŽΫΑΐaYωʟγk§«D#·~‰ώΖεΐ Χ“Δ0ŽΔ6ΫΑp·κAΜΈν³»R+x}ΑμM.›#πτ!PYY)6Ί£«ηιk| Z…ΨΒ£Φ2ςε%¦ύήfaΣ–CΟΎ€SΕDŽλΓ[ΏΉΠωσ°!ŒM*(Η³•ωΘΞΆ"ήEο±Α.άΏ{N›LΉδα§ŽG Πp»D²ΓX§ό…D η™₯˜Ÿάƒ„Τ'νˆ λτΖψbΈ­~m…O Wψu˜žγΟ‡ΐΰΘ₯p8žΰφΪ36FRvΫψ]y0§ηV',Œ΄‹±………:©ή£zzzΔL欽N™9Α9g'„ω G€#ΐΰp8ŽG€#ΐΨuœΐχώΓP(ΆkWώΕ'­»‘ΌAŽG€#π”#ΐ Ξώ]{’MˆΙ?蟐]P:\ ΞEΥu8eΖζ$Φβ“#]Π]»’ I–$$ΔΕ"ŠZ³NΞ†ΆΪrW΄˜7‚#ΐuΈ]bο‘κΦT³BŽPH»α\KήfGιι(Ιο£§£ŸŸΆVς뚽Ηωσ;^’#ΐ0Ž·ΧΖ1SJμV{½0S 4Ρι7XgaŽ‹ŽGΰ)A )Χ‚ΩAΟ3ΪO{ϊSrπfr8 μvϋΘ /Βΰ<•ΨpψΉΔE˜a«9*“› ˆŽ{ΙΝ»έ~ξtϋžΚː7š#ΐΰp=‘ά#_Ψt–Ž’ݍχΠέ¨“ΐ£BYϋ¬ΗέΣB^y G€#°+ΰv‰½[2³ΰ±Ωœ²ιζ±Y!‡{:;:OWI~=]ύύ΄΄–_Χμ=͟μΨρ’Ž€qΈ½6Ž™RBYœ(œο–ρ»πώΡuGiαφόFΦ=ωοYU·δj:2ƒ!+―ζ (Ι’-φ–†pκΜ£.“#bΤΡ1Ύtν’`―]λγηŽG€#xΣΣE‘SӞ‹ΎΦέ#qOl"vOƒ[’Œ9±δ,’%πbŽG€#ΐΰ<­,Lο5oSυδ¬Ε"άΣ΅mαΗŽG€#ΰ;αn½ιο;<'G€#ΐm${ηΠΡ›ύ —τ΅‹£Qš£΅ω)ρΜbΡOΧdΥ=΄Ϋ₯yψ˜„T§τ§–ΰ\PwΕ™ DpΑ£«·1ν ?αμNs“‘Ή?ۍΔ,/l'Š`ο›~*ΣwgoσVq8D`·ΫΟώ=„‹Λβpv!Βxqv*ϋW©Τœω•΄w}„ρL _Ί," φψz^bΌIŽG $ΰgΊ%Β”Œˆx«BvAiNpޝțΐΰp8D@ 9ŒuFΒ•‘¨ξιJ;ψ/G€#ΐΰC άνΏ7ύ‘Αss8πAΐ›ύ ‡τ˜xr*¬8ΑY’Lιy0mΜcblmcΑaΌ,G LoΙ'™Yρ䬐/ϊw£σ£Φ§2{. “ ˜«ΙΨAv»ύδvp/.^5G LΨυ:<™νΐοώαgθœyˆIK?_ϊ7ίΉTŽ…ρτNŸΓδ’αjr8]'8ϋ׍& „Ώ§=p‚σΣ~πφs8ŽG€#ΐΰp8ŽG€#ΐΰpvΫMpŽΪ=ΠkIΫ₯Ÿ‘ΝXž›#°+ΈΩ+ΆC e$εY`±₯ˆδ %^ω}š•6οŠζΰp‚†€b+v«} p\0G€#°+ΘΌ»Υώ…“}WtέoG€#ΐΰμzφDFοϊ6ςr8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@πˆ¬?zςίR|w{ ΕqYŽ@>n}zοAήrŽG`gΰœύΓ=21{bΜώ Ω₯Ήη]Π‰Ό ŽG€#ΐΰp8ŽG€#ΐΰp8Ž€ˆΐv{pήσΓ?ϋ·O‰ύυ/R—Εΰp8ŽG€#ΐΰp8ŽG€#ΐΰpΆΚΚJ±ΞŽžm―{7T]…“e74Ε―6δcP,ߏ\ΏδπΒŽG€#ΐΰp8ŽG€#ΐΰp8ŽG`§0§ελͺ°0"9F.,,ΤMχΩΣΣ#f1gνuΚαtΖO8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΰ'{"’ό”ΐ‹s8ŽG€#ΐΰp8ŽG€#ΐΰp8Žΐӌ'8?Ν½ΟΫΞΰp8ŽG€#ΐΰp8ŽG€#ΐΰp‚@dt0€r™ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#π” ΐέh<%Ν›Ιΰp8ŽG€#ΐΰp8ŽG€#ΐΰpΆ =œΰP¨ΣM©Θˆ‰…θ±δΙΦfΡ΅΄Π:΄ΒͺŽ=‹σ•XœθΒ»οάƐ61HΗζΨ$dǘaŠΨƒMjγΚΖ*f–§1Ύα^‘9Ϊ„χhMΜ¦ΧV5ηξ‡ΎΦη½.‡μι΅ΰυ‰£—#s>^>S‰4ZS03ά†·ot»dσSMϋζ©}oνΆφ…yχ°©Ÿ€b3έλQ‘’M[]_@λΒ ›(ŸJ­/ιq&$GΕ!6"{φOΦ1½4†5_*4ZŸ$Σ¨χn›ΌΫAGkb)žn.aΑΕξz―Λ!iGμ £zcGϋΒν§1θvunKΎz¦ ΙΤΘ‰ήf\ΈΫ΄ζͺχΦ&έ―4ξ ^0j—ό°ƒ‘&δΕ™‘HοQ’ύάΐμΚ4zWΌ΄/’t€rΚ³asc CσӘή?τΤΘ5ΪFν΅¦ͺΠ;δv0τϊ$42b-xε™½ˆΨΔLίc\ΌΏoŽΑI΅ «22Ξς(D'Α¨½VDπr ΞΏ¬Έ8KαgŽΐΞ#ΐ Ξ;ί\ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°{ΨC4\᏿H7η’Ξ’œw:o‘νLv Γ'1UbˆL-„ψΨϋ#‚9.uΙY(OΠQrmγq}~^M3› ρzFŽz°Œ‡#wqW‡ol¨ΎΨ<ŸS‹~%n±=“πιμ¬[|P#β㐖‘ +U9μήri‰9GΚӍMΨ‡zΠ4’ΈKΓ§;Ω>ΓΚςή(N.A5‰.―MαsΊΧ[W\ό<5V_ ¦—aoBLΊυ–b|~·Ζϋ0›«OΒbηύ΅ƒΞκ'α™œύ(•Μ>°6† Ž6†ƒtnοg;i_Έύτ½Ÿ|ΙH<££œ’“›…ΪΦ7u*uW#°1DpWϊΘΡk­Β“΄œΒ"œ¬΅‰ΙkΑ!8ο`ϋ<΅›Η³!P‘ΆG“τ G[q<΅SCέb­~NŸc ΧiAΆGr³TmzBNGlΰ­ΡA7= ΧGXνΌ?vΠUρڌbΉ™—Θϋύ’&SXΨAΎ†wΠΎpϋi¨§Όf(žΑΊ."3p(£©z­ΩXΖ|ΘΝ†ν³LAeZΆZ~–Ÿƒs9{pΑΙΞ›p(³ϋ‰d«Θ«seϊ~D<Ή‡ šETΜzR-Œύΐj―uΫJ‘ΑΊή}hc@ο[Oυν`ϋ<©ρ†p‹€²V#Ϊε½-,Ϊͺ£d ΗY:βu£ ΫkY /§ώΐŠ‹nηπHŽG $ΰηθG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΨ%Π–Τ<ψ‰€)‡4δf»ΰυΞ>Š b²f&δβ°5CςrŠ’€$τn·Χ`?›'·α΄†άΌ΄2…φΉq ―­!&2ιqVμOЇ}ΥΩk_²Jp^Eίμ8fŸΞh’ΎΉŒW’C}γ€Σ£™UwωB΄Ό%Ε†<‹ε!4iF9ފyoγ2&ζμ[ŠIJ)AmΡgŽŒΔΖ“U,―Μazͺ څŠ΄Β<5)f+β’"Ή‡ΦK=YΒΔxΊηΉ<Ω°//‡ΆŒWZ-/ q°Νsvž2O~ίx΅˜LάΕ€bΆω7ψΙ€_„¨Χ+M`M,yΎ.Υ|…zΏ=ΥIπΏ>ΦλΪX9υΤi< _¬6dόΤΚrμS!ԌœSψζλgθ™²{σ‡xλύ†ΐ)g=ΧΏϋi;ΓωOπo^œμ`J2e‘Țƒdš`ŒŸ›«˜ž~ŒŽiΟvΠ_u²3 ;1YZΥLΟφΉω<Σλx·-mΌ—TY^μΌ"шžJώ» Π³gšϋ}†ξχςη~¦] ‰ξ06ž¬Κ€%JKVΧG0 χΥ–ψ ¬7»$‰πEO*γY‚Œ@:Š«φ"55q1‚_Ž ,Ϋ‡Ρ~ϋ>˜Ÿ˜zφ%Θ­πI|0ν’Ζ~†ΟxΙίyŸPχ’‰ΥNψXŽu<ΘZΞKkyr°ΌαnΑFΚω{"vtΪΩΥC¦lΉ9‰²6s‹}x{t@Υ­k¦¦˜Np&₯©Ββ §SςΤ­ΘΗηzpabH£ω,zΖp{υ BRb”v/ g²]šRžλ[™ΔmϊΣ©8/8£]–­ZCΌΡ/°½±fυf΅¬ΑΌ†˜²Ή©a{Έ}qΤ>alj_ IaϊυρXf’3Q‘¬Pί€Ž‰ΗψL&·M/Μ‘žΞ&Qx βiqˆηW`­omοvκT-Ψ£%ΔΨφΓ&»(tP));c}μvžΥ:7-=±§…~\ΏΛνrΜ­jύ7SD8ΫA‘A,ΫOΤv΄Œ_Ο#ώΖHvaew¦Χ±Ί6±…˜“ΛqΞ*-π˜\[rw$£]«€oύsƒ™F׊³ ¦E#k{jQ/[#φΘΛ"ΣP–œ¬ΆΆΈ—gf€σ \‹@’­β^&±δΠw§ie¨Αͺ'Igιv{­6/όtξ‹@7Β―ϋΦoeψ8 BώφΩ.ŒβΚu½ρ“S at˜q–Ο f΅ΧΌœώϋ+.>wΟΘΰμ>?—`ΚiΌr⌺šΟ›όŽ–ŸγbW§·l>§ΗΖ%ˆyΝqQIy_Β¨χ’“wώΉgKJ=Œ£₯±/-Λ=/‘Ήρ |ά§P³-8qπk¨ΘΞ…2½λT¨β‹ώWο~ˆa§ΗΙΎ½―βhY8ιιˆž-λΐ§χ κ²Hmκ6[kqκx γ70Υq χZƒόAj›κ‹%REψdauΖsέ€™UrN ΘY~ξ1δ'gΐš˜ΤΔ\$ΡΛ‘&pνϊίβNŸϋ{]+5ψϊλo}¬Χ΅Ρrώκι+<_°VαΤs§Qwμ ΊυhΣΏώ?xλr›ρJ‹_Ÿώιο!M(9v?ωΏƒ·Ζ°rτό³ζη‹Ί™'E ‹πXΐ’Œτό,QvΤ¨jP“˜λΣͺβr\žyϊvn~·]8Bφ€ά½xv6’‰ΌAΫ7QπwŸ6aΒEV NΧΧ#PU}΅ϋς!/vΔ ·>ΖΕ»½nΥ€ε ^rŒ›\±ρvΎmγ%F;αM£ι¬vΒ{9Φρ k9£-ηω€W{θ Ÿry{8ΑΩΟ+`ƒˆtΚ;€!kCςLŽΉηeˆ6wθ'ao‚δ±P €ΆN ΄ΤΪ*QDn\ίXΖψšk›₯V˜)B‡΅―­`5„lš'ίͺŒ@’d­Ο#vρ6Tͺ΄gρΘ.΄Α=$XRQ’«w“Ύƒχ’L1epή΅$]+ϋj"#%ΏύΈEγν؊£§’ΜΑ―r”4%ΠβgαΟ†¬δ›xλ–BŽN@&‘§υΎ$$§eΘ^‡˜VΗ‰rdΞΗKgκ°/CΪmF‰~γ­(’ΏΜΨe΄|μ^6£¬ί(Σ–Žγ[Zo˜cπ£‹4νsΝηΛωμΛ΄8]κ3[Β:ΖsΓiρ{Ε‘Z‘Σ±4„Ζ "₯₯&΄θ_‘Θ9jJ@εαγ¨tDΠQ2œ<€‰ΡKx¨n…bΕιη£>ίq_+Eβ‰V}8 Ή© ψν§ώφIM· ° Kκ«μ μS*R½γiμΊN@Žj―VΡK‹”P^,/tˆQ’`Ž PMπω Hυ™,°ͺSΕδUόd­έΞ³ΩA €δ5υ<š,b°¦ΖQ-{Ψή θ[5Rθ†υΝ:• αn?wΘ~*Χ=ΎϊΚqι<“ΤgCδœ†ΰμίσ(‰ΛΌzΆΪΕnΗ!#·ηυrŠžς―1;θRX·ΣdΨβužo’½—2χ-N;Ο[ΊΙ0aHO_ϊέ^Π:$²r;θ―ά@tRlβ#5 “Εmκr_ΌPQV€²ά ±Ο§–h[zŒ#ι Ι;˜š•’|χ±όΜ&9'Τ%8³ΌwDΫ>nόgΊ›Yν5/§.Ž$Όο¬Έκ4ž™#ΐΨ!ŽΣΆW?<έJ/!sˆtΪΗIRcƒ&d­₯'Q heΏƒ{ͺ§b%2τSΜτmv‚ξΎ&Ψ‰»κF%ۘF‡+‘4λ<ΞkΘΝ‹΄ε`Λΐ#ΪΪe±qVdYΛPgKΓԜƣuT$­ρ’­Y¦Ϊ0lΑy:˜'/ ‘qι(Κ«'/Π’—Ξ€ŒJNω š:++Ώ§!7/ ­γwΈΣڎŒς—pΆTž-L.£–ΓƒκŒΫΞt€ΈD^ͺzCηΪ ΈRΫU_Wy²΅·’GQ"8k¦½ή,A`Rrš†ά,τ«r½!yυπΤΣΜΧ΅P)C`­υΊf-Ηͺ'$ΌH@(ΓkίcTΉ}`―%‡ξαϊ|Ή|+Όs]V0JΪπψΦ5ΔiΎ«-5ψ's»μnjΆ:y9>Ρ‚‰>Ϊ>mœ<3$ ?ϋκσŠ€v$Χ‘¦π>†{”›—q'5δζiς}£γ6ƈ$š“χ ₯UI8γΙCEq :δ]+ό/1ΩyF=QαΕŠ@Ϋ³P·K ύΔ:ž`¨J·Θ>ίΙtφ?G œ>•0Ύ?ψc—\•υIOΧBό|˜C_γCtvwbtr Q–½¨;ϊ2Jr$•lΗ^ΖَΗψψ>Md{ |Όδ ‘­Σ·kΌΔh'ΆVήX*«π©λx΅œ±¦σάAE@»eJP+zͺ…s‚³ΏέΏŠΉ ΰ+ώβ°7ΉΓKέ²σ‰$ΚPH”Ό8€ΖχηώjΤςD<Ι–ωŒsK 0Ρν―%§ ϋΫ©ΑΎ8ЇSθrq’m’·’₯ΩΜ„BΌNJ˜[žΔγ™>4-ΊΰαG}Šlη_NXςT=Ff†Ρκ’§šŸΌ;"¬;GεlfΈz&G^¦λK%…΅ ΟVOαFw―j‹ΣŸ†}fžζFˆlž“G-%2’mœΓ•^ΧqtέmΕz|$Φ6Ÿ 6%ϋ²%rΓX†ηΦΘy›μ‚7β &Η]=ΑZρΒΩγτ½ΒΡμΑvτPΎΘΨ€gf $;k^&…φ΅ΜΑ”•‹κ|yb/»΅m²žωFZn5ΐš|Gς‰JŸhΓιg§Ρύ©LΆ& OΧ(3χσΈuε3΄,P D|uτλ2ΪΆc=½•Ω θ|Ԉωdˆ$f+r³­Dp–<‘9λLnξ#Τ½„I|j&κΛ€·΅ΈΟΟΟΰ­ΫCnMς½¨θΪ¦›gRΓxΉγ’‘)ίο䦃‹’ϊ–}¨W 8š4·*gpD; x}&'e’*5Gύ‚2>3‚Vϊή'ζϊΨν<“TQLΐ‰Œ2Ωϋό*5‘u ΅Jϊ겏ζ ΨAEv˜ό χ·ŸlΕd?εͺφVΠN‹*ΉymΝ%χ½Ρ¦xXΣSι΅πΰΠϊNχηy”‰gOhΘΝscΈχΈ‹±©Ψ_£xΫχ‚;¨'J뉴ΈFφ*0Ϋ%O x±ƒžŠΙρε©ω(TˆΜ`xA˜‘ŒAb”BSY¦φΟθH‰CΌςόΠIubΠΣ§~`·Χξ:†G ·ƒ¬ύ4…–ξT¦δ‰ lτKγ\琎B™ά,,τlk#ΎΟΪήGϊgΗ†ΊρxMπΰLο:Qρ¨,–ΖΗ^Ζπ!=n%ύόg9χΆΧ3V{ΝΛ9A«Ύ?°ββ$Ÿp8‘Š€2rά~ύ¦ΰ3ϊΣπͺΐ w·_ΐ½Ξχ||‘Φ—Ά3±6€Κz)Œ‘£ρ"ϋ€H ^(?zqψo<Έ’)Ω‰ŽΑ|Φ¨!£ ©s7π« 74ω”C!8bΟ}E"ž΄σŠ’$ό&CM‘Lβ’ΣΗMoΰ#™Δ514ˆγDp–֏šO/vπH{„?Μn8¦ 7ΧƒAj»λŒs£ΑΨΩ™6"Χ-cy~ˆλmHάϋ-|©¬L¬k|aΒΓ=Ηz]³6±>Φ뚡υd……— ,ͺY™Cη­+h[ΌΘlεAλκλh›Neΰ›πτ€ΫZJS§ξγΓ7ξ±=Ρι°ߚΘˆ§ΕJ©m³»›3θΌ…ΑήΟρxΪY«ώ±X‹ό78–-=Η#"ΤΩ7EMΓΏΥΩeδ/J ³cΧπσ†KͺŒΩφ7ΙCQ&NΚυ© γ%;Ο¬§“όdΗ{f₯ϋ°ΣύξsΨ»δ³vΖ32'ŒW₯W"»πU—c²–cΐ€ ,Z{¦•\YιμWS›¦—*‡nΏ]=nq<‚ˆΨΉiηέ‚+ί βΘ½’šLΩx‘(#‹k0“<…Ό΄<Œ+£}σx·Mΰ›hwBΉDS&j”Mύ–ψLœX-}-θLh[ˆΰμ)$Ζ₯β0ύ%?Δυωy5›?υ©B4ΩDR-SΖΪkγx45©Iυr¨Ύ·yΙηGςTo#~JžšΕΠ‰ρΕgπbD’-)ΝGœ‡ΔΔ)τ·ΆbjvŸwΈΌΓ56‘οΨ³8_™A9γOή‰ΡΫ-‰Ό²t$•GΑΉX’6π—[’ηSQŠJε³ ¦pλΣ[δψΓΉŒ°εu₯Ω3PΓmχπ«Οd²Hc μ§ΟαT©0 Cz:ΉΜ‰Ψžuπž²„k5"ύ[’'QkρΌ<9Ž ΡxεD…ϊν¦σξ\t—Ά8Ψ‰ · ‘τMd}ω€΄ΐ~Έοά’8Λ:aY'Ζ%' w2 °s«PW ‘Ι…sgLΪqΏΏŠΌŒV‰el5ΕΨKg©υlύηͺq@πτά]Θ&βΊb³μ+σβB ³Ω†c)βKζϊπxΓ‚ΓIΜYΔ-ΡU[ο灨―"­ GγM˜#NTtœj―„Ϊ'η{ριΤ„ͺˆ?υ±Ϊy;¨(\^Š2Ωαβΐt'nA?;Ω±pdr}Ω§gŠ_vPQ&Ήύ\ς³WΨνgr‚ς|§Ε#|ΰf_―’·ΠόXaE‰#΄0>r*ςQ’T77€χs]~uβΦψώlb•΅y9ΪΒκ•4Η™Τ)°²ŒiΝXG/Ώ‘8μ’R;¨”ΡϋΝN.ΕqΩΎ ι#κ‘8ΔE)μe²ϋOάK€€C½Έ§)1ώκιk?°ΪkEΟpϊεvΠ?;ΨΧ>ˆΑƒn'Φβ\T5΄£IcΊ’ rdΟtUŒΡœλύ Tδ°]γHν`_K£πš&s ˆΰ,Ό5xα1nτχgœεΉύϊ)¬φš—Σ`ΕEΏwx,G€#j„δLσαƒΟ Ož œΎ…Ο„{Έš˜MQηΟΨ=Eέ•_rerΉιQWr³6Ώ3K›β~ΌF±ZϊμΎό Υ‹ο,Υ§›"Zχϋ8T[ƒB§>θAΫ­Oπξ%G>΅”=χ].±`Cσ,α5Χω)α°….ΕΟα΅—Ξ ͺȁHGΆ!‡Άγ΄ΔDbŠd\Τ‘±ΎΊ[νWqκ ήϊΟ?»«΄Σ°œnΐΗΣJiχ_u΅§{CL= Π3tΫMΖβς’[œ·―γ%Γv>8zzkΗN₯s{ζ yφL§Ψϊj$κΞ}‡ΤΠN#ςgΛω45|HφKΆƒ.εXμ’γ,z}ν,*Κφ:t$ΔgΨ`:\Ǎϋm.ZJ§Fν σxB·vƒ‘δ…ύlUThΉΛΘKΖς˜"OvΎΟο[Ιπj—”ΒΣSZΏ»ΝΎΨᅪ·<ξγΑƒ&Tœ‘ήΣRΣς¨3Q€ΛΏTT[σb]δ½YͺΗ%›|Ίκκα1*Αύ(3ƒ–‡ Ϋ@R’εv;φξΝ‘Θ\)©ΘI†δ)Ό‡w=/ΝojμΗ!"8 ³ΖQͺ—Eηv&DD¨ λ[r9HΒΎ’B5ϋ~£ΉYHμnΊ‰J­fΥŒ‘ρžLn–cow£†ΞM" k²3φγνλόΙY‰Π\vψ0Μ‘Θ• q3D"ηΎώWε%αΪ¦@ž’ΎΫΤ‚LΈ_[%_}1“Ί’l•4=ψ°Ω “Ωή&<μΘΖ³"‰;ω₯Ihο˜«π·ˆYΓ„§‘λ:-Va·™;靆S²tZ p}lΉYΚΌyΒv½gΔ–ϊώΟϊΘ“8yμl’`k΅aΎοŽkcΰW}LvžΕJ*§T¨^³νs=Έd—&G­š…#s«Β7AoΑ˜τ&Ν)έl’+DzB8ΕλžN)f1λ‹ΚΊε]#ΉύtE„νœΝ~nlj>^hfGϊ!|ΡρŒ<2Σ-ͺ˜Ξφvuю)Ψά<œ*ž*žƒ;¨'%%Κ±xΒNžΣ₯»Q/§ρ8Ώμ’X1;θIΓs!N[5”GZ˜wG]Fχ.΅΄ˆDfΔӝΏ<‘ŠJ1ΰERτΪ¦”9ŸzϊάLφZmޱn=ΰ&γΘ…^tuνChC2PXœŽ¦FyΰM-++ΘRΗ}½Ξ;.Rϊv#aՎŠvΌ¨q:α0n₯₯Ε ο›:υ1ŠΥ^σrϊο¬ΈψΨ]<G€#°Γw.₯qYηQ£z0Δέφ+,RvΌLRrŠΊ*}zюUSςγΝX_€mΪ„I½P‚ΚΌ29aš„ΆΣv}4ιHσž^ΚκΙ“γh»©tΙ 3E¬`™ή€`C~ΊM>^@η€λΓ_”‰ΦΒd³γ…©ΜNεTόMΚ,DYiΉ#njA‘C;βό:Κ@‘e-΅’,9₯ΪmbFλGΪ,4Sxίό£ Lσώ$›…Vtgθ/+λΏγ7ο7H‘΄ΆŒ½Ύ2œ~ύ{¨PΎ9Θş„Tδ– ‘›ρψΗίκ“}΄EŒϋί6XTγvΜΜ;χ³’ Ϋu­”6ώΛVλuΝZŽΆ*aΊίγ±£%θ^zν»_CUΎβoΓ‘ΩJ«έι/Λ4Kηχ †ο?*Zœ‡’Κrιή.*E•Cš|”H€Ω—ρύδxόΝίώB%2›sΛQ(ή{ ¨Ίώ6}p+ˆ2ςώRX$}€Z"‚³ϊpρΏύN™½}ŠqΚμrRωΚ ΚqχpcHΙƒl²•Β΄Yϊj CVrŠΏ6Β”ς xb鑜T†σ?ό.Ž•;&ό•2fk!κ^όςi[£_όԝΰ^X‡’rχΎ³o.HH–ͺ―βχπ²8‘¬ΤCΣϊΘ*=†/ӟRIΖEYυ―γϋυJ.εW―ό±»Š\Ίϊ<*C‘ϊ|tΤΑ~΄Œ΅ua¦]θQ"­ΉŽl(ΠΤ·μΛ‡Γγ%_μ|τd-x%Ή=σ [ΟφΜ½xVύWπeΧh"υWω23Sρ‹Β.ω1Ξ’>φŸύ%:c4υ9κ‘ΰlΜΎ°'\!4|n:ˆWkNCšϊοΓ§-PzLξ™•)LωRβρύa ­|΅KΤs uv$iΧΪ—­Ρ4Ε8¦–We2ΗE<Ϋ>^’` “ρ‹ΨβΊpJb΅¬εœ*WNXΗƒ¬ε”zCδχ)΅gΝΝΝ†:ΐΟΟ†ξΆΜ‘ιˆfL9x9«PuLE ‘wΏˆ¨dΕΘ€ΰψœKYΖ₯ιIζjv¦ IJDζqδ1ξ+€PΪYnφIžI’ˆEΡNאwζ–΅yg"Πμ Ϊ ρ\zŽδi529ζ ,cκsG¨<-ΧαMpiwζζέ3ib&Zoγg£]DέYΗj4›Φ–|v†’γϋαά4Ζ]³“Ηζα”ˆD‹HΔΖ„S‡wΊ€τ|TοΝEnZ2b‰ΡΉΎ!ρθ‰δΉ5½Λ΅oηQˆUMΓΊZυ Β[J™[Δ΄+™‘ϊYα<-*ΧΡ–B|L$σε‡Ιψ’θύ:™ζυεrKΈͺxΘΦEίrΔ@mUGΚ |aσΒ»™†³+ίӝ[S‹oηT#Κ•X嘱4ΕͺRΕjόκ?F<}Ώ­|œZΔψR$ŽΠ.gμζ<ξL΄“Gg"˚ f1N^žΩC κ[%―ηcb¬Λ9‘v6M§Ύ\ΪX…)‘ηΧWρ‘jwύ¨ΩΞ³ΨAš“&έO+dA"^›P&© βΒυeZ8β£vΠηώ΄”ΰΫΏWοΕ€‹΄Ήόϊ7·d―τ.iFOΉύ4Š˜ηόLφS1| 8ςΕ/"΅Σ MbbjCvΗ3Λs₯Ύ¦$!%I±K3‘]]ΓΠ(j/gίν «tι J•ΡυΪ5Δg΅αΫ2Ž ŒTu6pΪγV‘!lγ,h²²Ϊk^NύM—πCŽG €pž ΩqU³pΆτΈΊji¨»s;“ΙζT΅)Ωgπτ§„Y{;?ΑέΧΤ%Θ“‰³Scˆ/ωώ ΐ±₯½P~zβ!n7}Β% ϋŠ‘Ά’^/ν%―ΕΚ{`j r’ΗbzeuJΛΏc*Ι\ΡZg[k!i}Σ‘A­EΝAeΑΗ―θΨՍaΪqBλDΜιΩ(¦ΆšΏ,+C],2Ϊ/-88υ‡ΞδζςdέΩ7ά}¬ΎJ,›Vύ2^yeψŽsϋ‡;n’iUπΰL~cbRPS-ιΉξΤgjυtP…ηΏ’!7Οχΰ΍Ψ#σqΰΜ1'³g’<ού»ΘηQuυi”*sœδ+|`XΡ‡±­iαΘ²`XΝτgAEΙ+θ{ύb‘;‰Φ0j`l4ΓοΎ©ΉYnΖπ2}d‚³kΛˆά¬G§Ή‹frΠQoˆ21ˆ~‰ΰμg}NυΗεαF™P_ΖΓ™^]]œΚΠΙ„&…Ά+Μ―ˆΎ±=W—@σSΤ†Aι#Aέ±ΣxΆRš·φ\†Rότͺ+Ɏ&’Ύ\ ΝλOθuδ–JΠ7 ϋά–DΖXΝβ;/’|JnΏύξε|uiŽμw\‡³iGšΣΡψ¦i:HΩθΘ)M=I‡EρΘ"Ζ% CS—šΝιΐqωΫώΰιΫu ΪN k+H±’TΈ5)tLt‘Q˜&Η@*ί{eckb2γΏ@Τ·Š–©'Φ*M–I9f+²‰ΰ<,jΘZŸvή°4εβ$ΝI‹auά…dH6YαΟo,`Βurή΅'ν «έsZ’¨’›H―ψά~κ!ΜgΤ~ήkλ#oόΥ’‡{ %eτ'WΏ4ƒΆΞ.\½ΥCr5ͺ’@’” ΝF—ΜΑ7;¨'^KΒZΖ욷OO†§8V»€•gΔjΛIΗ‚χεη2rUGpKKCΈ2#ΫMGώ.Ϊ½£”l«2«”•˜‹,‰ΰΘDGΒ²¬!ς μ>lπOOα:s,ΒρΤώΩk§†ψrΒνΰ(…Ο8rΆ—hL—£RΰdΠVHΕο_&O¨ yB>$’όΠ—ˆΰόž(‚Ή>΄‘§αLL<ΐ'7›œΥΉτΊΎφ—ψ²HΐLDaE59M½μœ'gϋ!ɚ¦Ύh,1yŒΥW†εΊΦ—δ[,K}¬Χ5k9‘%,zϊ†@h䲝>ΡQ‰¨N?ύκ'ψψΆσ½Wφάwq Yρ•Bο?Χήωgόθ—εθ·1υ‡³΅Ι™< Ϋ ι>Σ4Άβ t ’ Λ«y‘Z0ΆΣΥΟʍMͺM θ_ρΉγ²η{Ϊn±ω:1˜›0B‹Z*Θξšƒlb8w9₯;+‘™©Έ„ΑXOρ_Γυc“k\Δ­–ΧπϋίyQ$ž>‰J"8k}u]ω΅ƒPm= "8“&Cζιc€«œ<ί„wζΓ=ω[ά΅žIό©›gg}Q>χ«Χ―VŠ5hQω%_Γ³ςsOˆκΦ, R21ό6φ=@)υ§γ­uψκΛωšXDBšM}/ΪοαΓ›z€e/ωjη©'LA/Βν™oomΟτeL4_ΐ!OΝRψ£³Ž―œ–_”¬‡ΞΪ'‡Q»?ΖY))Κ Ζ$ύΓ./js΄ΓRN‹`LŽoG[ΨΖήͺέ*ύ0‘›+…‡ …ήŽ‹ψdΘ/q,Έ_œφh[ŒΌ?H5ΈχΥ.ω£§{­‘σ΄Ϊ—βs/γ°Ό•( θΈOγ–-ΒΦφ…—€-Ζ»;8^ „Ψβ²pJb΅¬εœ*—OXΗƒ¬ετtΨΙΈ§Υžν$ζ»Άn'―»»Ά•AiX1½;*D%ς|™ΘΝZBG—½Yρ©(Y`IH7% už<:„KΨ„θXTwc 3³nšΗμac­nκ ΦV_ Ž‘\™mΆΟ γ‡9T·mcΔ ν¨‘χv«Ό‘2„‰ ͺΘΝ‹#θ"sK”!‚ώΘsνΙ›”Wρ@,eϊ!ςyœ “ΊvΦtϊ˜Q–oΕ2ava\&ZΣ‰ .ΝIn-c+^Υ₯Υ šŠΐζκ”ΊΛ£[²Αn? ζ5»Aϋ9‚Ÿώλ2^8P‚Β\«Σχm˜’QΆΏy)qψεηΈΌͺδ–!ΒΖΫh–Ί°€φ °―¬NF»δMvΠ₯`^r ΞY3ΥX;-ΤϋΘe,«&nLβÁVœ°f£,^a,PκΖ<:h_„‰œΕ ώ—iρ…oO_υuπ‘‚i―U΄άjΡp>«qδΪz‡ˆΰ,ΌΥ%£Έ°€Ξ½(΅)_f—ΡΫ=ΰά>·³`Ž#…eJΨ&;γV’-~υΖY[dί:‰Υ^σrτlΠy`Εeλ^β©Ž@!Bη8΄OYŠI†ξθ! Œ©’…Τa™ύz‡ϋΙ‹‘H±– 2S" ς*ΛN’‹ΞR;-ΘLmΒt΅ΰαQvttίCοΜ<,iϋQŸW$E£5%ρXCV–lΘ΄„#Mh^€€αKψΥέkryι'+Ya―“φNŠ<ˆηkeΪD0Ώ|ϋ Ž…Zf}έ}ιόŠΰ TΉZZ+W>NŠt\²Q[Ο†¨”ΘŽBΡ‰ϋΧδfQΦ8>όψ3μ+Š8±“–›―λQΥH}‚Ψ† Ώ₯λύ»wωŽSΈ2’b\fEυ ˆσ·R5dψιyΪςI·n–λZW‘lυ±^Χ¬ε@4Qγχ»θe£ taj@C%ΦΛ%Η /(}πΟIŒ Υu‡Τ::?yǍά,$Ά]ώQΟ!χŸ@’ΉϋBn–d_»Χ„z"8 .Kšc’­wјA?@IDAT=τ2κ„wΕ²΅εΐh«CŸ’rΕ~ρλ±ΛG6?ŽͺPwπ \~M7’ŸCδθωΞIΚYHΟ£η]!–sίώ‹΄5+ΩαoβŸ~{ ”!#S~ɝΒ`pμ;Uκ“‘οΚE·>°ί wχWαΌHώBΡQšoj©„=η}ΖHCπm»ρ©Jn₯4½»χλ©.εE\#ΫιΠ@iΚ΅»JQν  '-οK8ΏO"dŠr‰p|=P‹­¦{Π;>‚Ό·4δρcύŽ]Αh‘Œχΐ6^ςΝΞSνΣΣ{KΐνYΨΪ3χή%―υŸ:Ϋ½ο|ŠŠƒUŒBδΣ‰μ™nπΑ. εXΗY΄πO .CW!ήήzχΤ ξFμ ϋxΒ½^_cφU|Oέ}ezπΌΣ*=η5 .gζ†<ˆ3φώ /Δ7»δŸžϊ5{Œεφe{μKρK8χ’2ώ‘ρΰ₯œΗ nΔΗKnοj oοx)vB£ό‡¬v‚΅œž*¬γAΦrz:8Εq{Ά=φΜ t~(Έgv$-юyΓαΕI'r³$u s«tH“ ’"}f‚‰ωCκΥu2GΙ,H4ΟQ1HŽ’0ˆ0φUwβ4±c™λKO΄‘€ΘŸAΛτ°gUv0%™ά Σco‹ ΒΚuα{ΐ2–V€™Εš|ΗάΪ`sήΈαςEΖΌŽ½DpV–α{kΦ&νΐΈeX˜ΓΌΐOΌΩΕ1xjέRxpŸ­G™Λgˆ²ΓiηΖπ9yβσ?¬cEτάG’¦0Ԋ{Β'"B ϋΟ‡*gΩ”4h¦#—puJωaBVœpAaγΛvιΠεΏπύ&'Αρmk‹xΨ₯uo!P}.ΥΣ)ν\ϊΔ=VX, ^υ†ΪƒΰΩy=;˜€Tςd―"šoab³hwZιπ±Zΐq|;8…[·[΅3ΫΟΐβΞd?GΊρύ >{mΉ)HMOGqQlDlB|nwΰΣ%ράΣ?oΟ#Ηγj 3:6We5ΔΔ©ί{°ΊŒ/OA—΅ƒ Κ­ϋp\Γ=šιΔ‡S:ΆZSk“Έ>J‘&€ˆCΪ L―QΔζβ΅yά΅2ξ­»\#Ρƒ½ΦδP½φC0ν΅ͺ…Λ·ƒ.€8NΓlΩέ:ˆαZrxE-Θ¦1·νqς³εηρτ }Ύ¨Έ±Ž#MΨn;γV7|]#τΖYyΆΑ^3?IO^Ξ§χχε1Ž@¨  ™ΨY•ͺCž’ΒΤ-|ήじ₯δ ιί4<ψ<˜λs&Šv}‚fΫ—πΕκziε) ΞmΉt “6ΉH6+Δf‘q#ΈΥπkά“'tοΒΎωœ΅ΩΔ–ΗΔhWV‰Qτo££MvΦY­ΊN.£Uεΐ"­zΟ>‡W+ζρΫΕ² V³ΐ¬ΒFΗcπ…“_–½ƒŒΰΖΓ7Θ£3‘¬ŠNƒ™vο“Ρk?Βίu_%N5­"‹£Ši₯—W©ΚmψŸ ΩΖp|H p»"ίΠ"ΜΠϊΰQΥ₯΄ΗSKρ Τ:€όΌ$ΕΡLΓ.MT|–c•ΌΗl ώφCІcŸρ ΛuνA”OΡ,υ±^׬儆°θιξ™ˆ ϋΗσλ[zήu+4u?ωλΏsςšι–gΛς¬’~Wλ@Ϋηχ·Μ­$δώ›²cu>“Ά―\–+Y˜Χ~λC+Ίκrrj *ODXƒυ9‹ήΪιlώ!Ϊ=₯άLΗUςמZ˜ς±‡Ί­ˆ–­Τˆv 5Kxβ΅ΑΆ―6yŸJKΩl\ΗhN!ReYφ‘~Ρσr‰ŒΉl§_Γ—Ύ‚(Χ'x”b―…ε—d₯‘_RS-r‰ ΆΉχωPίm u=7ΤdˆφΧ ;Ό|@~> υΞ4α½kοΈm›f@%G֌Σψϊα3ββ1reδ-?">›>ΞΘύFy^©˜Β;κsΪQ\{Δ:^ςΙΞPO­ΞΊΗܞ™<|ν™[ŸN  ·Λ5φ>ϊ»GPV-؊hΔ™ιwά5“αsΆq–ς厼ύπBϊ{θlοΒθPϊΘ;™·ΰ»}ρg<αM ύτlΫ+xΎX^ΔC‹2>ΎEΞHΆ\\p)œΪ15γ>Ž—2yE»όψb—όΧΣ₯­NΉ}Ωϋb=oοχΤq©½ω}όκ}χ1ƒΆ«ψxI‹†|γ%ν„NΛέ’Xνk97(‚u<ΘZNO§8nϢǞ9ΞO†@½°ξΩ0qO› $uΫτEL―Μλ4? ©Ρ2Ⴡ‹λΚL‰NΦP"Β ϋΔš"¦hnΫ—`6ηhΘ«X¬sTΛ3Χ—Œκy²†„ Ω‡ΠκI¨7©Έ_ΟGΤΊP€XΛΓψθβ=7²7 !1)4Υ0δ]3VΣΜΚ^³άψ)΄?eΞ!§0έ+ΉyUγQ99Y`»Nζ9ΛTΟLy()MBw‡]Ν΄³E΅'p¬ ARbnχ£P·OxΗMΖ±SΗ0ς›@8ι™Ετ,Ξ3„Ή<+νXGύΤↁθ?V„}Ύ#Δ«ήQΝΪ8nŒφ9nΔg _™{^›‘λVŸVXΈ·§ŠεΎ€-‘S"8»½ι¨>‡ΒςQΌΉŠΩέ /ΣΡΥΆ†ΫLζ|i_‚eηυνΰ–Χζa'ϋ·ANαIRγσΞq|’β6WηuΚ§ΰΙ^λφήqA³Χ:κ„F·ƒλ‡…ntυV [K&fαΨρ$u\έMޝ‡Rλ820vΠHΒbάκ₯Aϊγ,χBA·Χ¬γ]^Ξ§χχε1Ž@¨ ΰJΪ½RΟΰ`žB”²γNηΕn/³3Mš%r³^ξ{3Jp,S ™OΫΌ €€X€LδPLwΫ%ΉY40E ™ΰ,GΉόΨqΏωMh?+ΧξNH€θΌ¬rδqͺ_,•‚X…λ±8‡Τ½η±OP‰Β㦋h˜€ƒ¬LΡ§ƒ93†α9ρΘνίθP›[\(D8Όυ`bP_Gυ])@ ϋΪ_ΰό±rο6]3y«eξ"ΐΔ+dw;μ BηλΓΧ΅ΎŸcΧΗz]³–“šb\OŸ!pΞH[1¦­ΖDΐ?CỀhΑΕ¨oσλΔύgΧ™€Φ kMŠo»ΧŠ‘3U"ΡΖΆ·6" –ΈΈΆœ–Ha„HΠϊΦ@ΞΐτcΓ‘CΗΤ’o^Všϊ0Iί%-τ.››.=σςσΥ₯=δΝΩ†"ϊ†1šŸ£’…Ζ†HD9ΊžJHEVŽrμιW1𞷊HνΚτšcΧ­Jθ₯ν?=FγXν`ZήKDn>’ξ~°8u~ώžόΌ4ͺ…kώxUCnΎ†ίέ½€§χ• Ο—–‰… Š£Ίηέηg%‘Μγ%_μ|υt…@οœΫ3'TΒΞ9iO'3s^vH…5›ΘMήΙΔ’΅η¬γ¬ wp°φeq €Άς?G²δω΄<ΈŽ~{Q‘{ ΎΩΖ+χ”qg«λ€Τω—EiPΧϊ­ŒaΜγπΞΘϋƒŽ"ΎΨ₯€θ©S·§(n_œ Ž}©Εkτ”(ίϋϊ―ανΏεT―ϋ /ΉcB3Η»z2ŒΖωfΟ΄Rύ΄ZQžŽYνk9=XΗƒ¬εtTpβφΜ “ΰΨ3§*Τ“ΚΚJυXο ΉΉY/šΗiΨιΟ;©FΠSz8/x­ ΜρȎOA#y­Σ†"|ͺ“ΧΏeΚNAϋa5Φ„ b:-4cΝG©B$$²lο¬@:ŠAqb VG1 3­jŽΟΑ³ŽΙ’ρ™™©>g@K­y°),Ζ΅14N;χ‰sn糡1Q8QΪ\΄ŸsuΞςέΟ2°·<Mwφή<8’γΌόαF£q4ξϋΎ`ξƒr8$E‰"-Q‡uXrXλ}ή?ΗoΓ±α?φzΆ_ΨΟ~^Y‡e”hI$Η#RΓj†3ηΔ ƒΑ 4n4ŽΖ}ƒϋΥ]έ]}Uθ2ͺΚΚΜοΛ_Vύ*+λΛ/Uf4)²\ώ][‚ëY,M–§’l^ŠςΠ\WβXΌ]ΜΜΜΘ‡o°‘’§]:αpŽŒΥ&iΉna\¬‘‘ύ}·Wς4f£1{—<τ:(ͺYj@"σλqώˆ4n·Ž4QφCnboΚ hζΌο‘GοsΟ“GΙΊ}?;KΧSE _NΝ‘*<νrb8mΚF}Ϊ.:pΡί~z•χψΊήXΗ"M60ρœ΅‰'dπ6, MΕsiωδ§U“«sΰFB΅ΒΞΟ­“‡N­„zδE‘αnb<&¦΄ γ²p8@smcUΡS Τۏτ*ͺοͺvUϋJ¬j/Tϋ­zϋYͺͺ‰»εkN†ώ'Ληι{‡ΨŒlΓ`„ ’ΩΪͺfΒ3da Νι›»‹[܈Ψ>λό’cv€Ρy@f£O{ϋνΠPƒŽ폯#7σλ¨ΰ&a'd"‡Vϋ‘ρ2€& ΥάLσ„RΤpη)ŒΏƒίŠή³krOΣ?΅0‘ωRΙg ω[ΨΤςΨAzοΘ ϋ‘M_Ά1n^οFO_¬Λ$$’ήκJpώάAP”4"ξΉΎaPΐΠΤ‚9ς*ͺ'h^Χz ς0¦<½Χ΅ή|θͺ©§ω4“ΧρΧ―!ΡγΛ' ;kCžϊMΡ ς.l £[ύAύ·½)ΉΒπPϊψ]ςϊrJΙ87«•υ€Ή3UάΛ#–0τΘ‰ρ±@ΧSλ3δ9ZΜ:~wο:ϋψ2„ΙΙ%ςNCϊef‘Š —σς…:BξBδΧ‘*]<›…e€NU©δΔεϊ―1ΎΚ;ΡΤ—σμ<7΄χR―ΫO³6,-Ÿ­i”Ν“ςΫd€Μ}>υG¨©;"―P±J+Tό»]ΩO»―‘Α; ςγ©ωΘΙ,B‡Yk’”ύ%xήzzˆγ3Χ@…<ŸΩͺo][Υ\Α#ή β8wγZΆE:ωΟκώώώŸρΪω3ΔΑ…ʐœ”ΔԞώ=‘·–οώΓΟlΏη;jα:&€ύ -ΑG ω•ωs‘ρ¨:ςUΤ“ρ"ŒΚΚ!qU8ϊU4μΞβΞύχε bJ‡Σχ‡”žρR τtPGŠ`ό"!‘½υ™_ͺπΉψMyε LίΗOζϋŽžΣμ€³ώ’ βaΈτ—μ΅χœ'μsjλε‰\?ρ ήώ ή|Ϊ(hΔ2>ΣEε3Ÿ©Κb»~G Bž)νχ’DVή#³`Τ‘g*ΗΉOΝθZ±b;ˆ€<4&)>–ΕiŐ7\Π!Cžiς1ρσΦ“q2»‘σ0oG‘2₯MͺϊΞMˆΖ”d”Σdφ|Œ/Νa‚<[/ͺy ~p6 \Υ‘ρ³ΘƒκΓΉωΊδ)Ω—‹Ϊσ>+-7­:νvWγ]ȟCZςK›Zρ βΖύa˜*ΘσνΉjyœbp ½R&Y72N:u[χΊρt`¦²"9|˜7)‘‹-yp–lΞ λρ₯sΡx:nΕΉi‹’u­£Γ0«ΌIwu£αPŽΰŒ ΅―½ΫϊΠ=J-’Q˜Ÿ‡κ#•H~Έ‡Ξyxυ\½lJ7φ˜3n,΅>Όή¬/ευO+>ŒW›¬x»έ·5-͝}xRUB†ί„3NΏφΥxάkοGŸy› ‰HM1‘0&6Tδ …</‘3?rδφsΡ΄.OΙ²•TΪΧ΅°Ί₯*₯)ε˜ΩΗRd2θž–&kΠ}ϋxnV)ΜݞΣ/›:δΕ₯ … ˜AΖΦ£Δ/SδMu…ψe'"–ψ%•ξƒ4ΩΈ™ΦKΕ“…1•v:δ‘η}}<οͺ4ΆΩJ’UH₯ςξξδ;šΟ<(‰ƒ-γO_I/¦αθ³ηQ“΄€ž§γ™œΖΜά"–‘ˆrš€s¬Qc\€eΪΙχ/žGƒ½τ,?’‡\ͺnB~-Ύφμ.nάι„5©gG©bμyΘM,B%­ψΛeΩύ4‚ξ;eβS ­ςx*f‘΄ϊΙζΦ,n/ΠσΠ“<‹c9΄‚†¨0}»\[]§•όJqΖ( R ηΘ7<,+cθZ&¬%ψρ΅žvΠΛמ4`θ¦a<θΏΆYΕΣ–Jβ6*“7n&_1#x ΟCS1½ύHŸxΠ”‰Ϊ4©±ƒνΈDZν]iδu₯–ϊσˆŒΆ7Π;F_\eΞτα½C"eΩJZΗ~kϊY’8ς5_¦žώ'—‘εΰσς½ƒΟΔώ1‘€€S: –rΉ%ИfΕ™ρ°ϋf°Dο‘€‘AnΉhGCfn(՘Ÿ¬g’A΄B–c<Ω‘•ΖC›³¦ζάRoƒŠZωΏ}|_,”ΣΔεI›)šYja—Δφ("³€ ιγ }ˆRέΆ―Zφ)©ίεFήΡΪj9“Ήν'ψώ/ΚΗόNΪs¨%gι5άφ€κˆϊƒ²Zπτ¬’$μό*½lΕΌ³jΚ ·Χ5eΚ?…"“Τα₯ˆ9άΉΛpzœΘΣ{]λΝηVm'zΊΝη,AnΌνx;Kν—ψΉ)Π·2Α ͘V΅ž‡ΕϋηώσL˜έέ½8ZΚM$HGIν)ςOƒ"ηNw’‡zΟJς׍{ƒQhi©@:ι^+~4#―’ΌΎλXηgρsυΑΘGο’ΝCOΪ‚\o―Γ[Ϋro%xšήοzZ޳t u_Γ³₯ςιΡαχπΛΗmς±«ΟψŒ8ΐ(MαF§:5 §'±Θ/·+τ…’cδΡ;ρ>υ—άςΌτ΄QΪεγ3—πΟ Πζ3[νM΄κGEρXU§VF訐~KX]ρΜ‰*»ΝΟύ¬ξ«ψύh† ΚκKUX‰ͺΖV”d ΟcΕqœl½ŠΛN'©Ψ¨£}ΰ§ώ„gόR„LϊΘ-š°XεβU!<©`£j4r^‡'οvι<γ₯@κi§|ΘψE†BsΗ~)ΒΕώΡ\(φ­–;ρλοΏz°:λ/i6…Ÿ"έ_VΣ3ž,Ÿω‡_τφυζΣΖΣY,γ3gΘρΎρ™cΟE‘Ζ<4+XθήΣα€A·¬}˜±Ο:²δdΠga δI*΅‚~Ž][ΓνYnΠ&άΒ2ΊΖQ%y\ŽΛΔρϊΩUcviW€₯Ν㌒ƒ”xδ‘‘wžΨ±ΛlΞβ£ι^Ε»*Ÿ@‡<ΉΰX!ΩιβρΪκ(,λ<•K Θ %ΘγΙΌšΩtœΩΘ[Ε½6ΕξƒξaΤU₯ Λe§Ÿε~69άΠςΫ}UΘ-Ζ³ςiά+_jAU˜;TΖh+ΓΈzέDΔΥ‚1-Ω}μ4ύμ$-¨κ§>)μΫΦίρΌη1œ~‘ ε’±ΦD/ήζήmΕ@υ½z3ί8-T²όHNZγγMϋ628nΏCΜ὏ υ3ΝΌ± Yh9Ιύσͺct·_Pρ\Fο’…<³gςͺβ³q./[] ²΅˜ΓG„σ¨m¬Ξ#οεεʞTγQ@χASΙλxjιCΗΊ:χςΈάΊxή'Tλ¬Ϊ‰‡L§δ pVš­ JΒ=‡Β‚mtφβΐα~`όιzvIuςη˜ϊΉš‚ͺξWkWΆpΈ:bΖmΥ#Ε&‘7Ο#J{―=Ÿmξψ¬²z|~ ΄Šn™ΡΙΧ5C&ͺΔgΞΪ*y\χΤΐΩ©²ήσ’nŒ1!Sz^Šϊ²QγD·h2ΰ– œS£ηύ:sΫUœ«[OQ=ν ‹―Τ?d£Ϊυ£ύΩRτ N’†›€!ή+fσ˜£‡6pL"Εψ« x°Ήι(ž-“­K$Υ„-y`ιEΥΛMΞϋΩOΪςύΦ@τ³l‘Ρ8ςž―…BX>νχ½Έh4 ‹b0Bϋθͺ^Z*”†ΡΫΞ—eΧU~θeJΞ?£2θ^Α*yαt4ˆΰhΊ[„Š₯3`±N:dӌȩA‘ΤΏΨ γ:iβ'΅ΌMγ―vαwŸΌ―^ε4£D΄±Γͺ™–ŽΣžJfjύ2Ύt±ΡΌρ/υΎV:ρξίύ‹ƒ‹¦n:"76Θ½‡LYά@˜scO΅m°‰χˆj—–fε§g‰…-Οbv@*YΩz#OqΚ<‚§·μŒ›©Θ’¦JχΖ͜h+ΝT₯ ηΓ5ƒϊΉZNΡΟUπ₯ ΙπM2Ώ›_šφΞ‰¨”GΧ5₯­h}•–R—> PΔς}Μ’³τͺ §ςτ^ΧzσΉΤ’–™ςδ~wSFHNlDυρ"τ|boΒζ¨₯?ξ?ΗRέΗ άοΖΨKGx/*ωE΅8z!VΎοΜ½]ώη¦ϊηΠ Ή³™Ύ‹ϋΧνxΖNεα2p7’Υ­1ό}Ύ2Χ‡»x眊Do Σ V&Gπ„ΟoΖμ,M{ፉΘΛ3-U 7rμΔzyh†e–>άrF‰9(δφl-Γσςν>Dx)ΑUroxW]Žw}Ώνwέ~jyžρY:R%ΔΜΝkέ;εΘH4Κz¬ΟͺňϋΎυ—άσΌΏτΤP=T£Ÿ9ΆŒ—|fS@š ι4aΓl3ω‚ Οr9αΒ ¬­λ_8λΙΏυ³Θx| “ϋέAΫo~ŒσψΰlΗ»I4χ„λZΤρ˜_όԟπŒ_6±Ύ:‰ω]š΄hςΣhdšΈž€Vg`ٍΖξ$΄FJ&o½?Θ ΈOy)€zΪθBϋ–_2ι~ωNTH}ω>ΌίώšΌ#z€½—όΒϊKξ1 NΙ…ρ„§οzyBo>©^zϋƒzσIrΓh»ΟωμΪ?§0jŒπS5BνQ όΤί{wfρώh7N‘7Ρ*ςήκv–ΡGΒ-Μ8œ —ˆω•!\šήΖ±tzoœ{©T_Εΐό([UυΫήΔς&y}ŽU%Sο&C˜ηζ Ε˟κΌΧς€Ό1ιΘη–\ηΓ*Ί̚ŽI€δZΫMς(i4½‘Ψ€πώ€dHζaΣ½˜‰ΛB]Ύ4Έ/·01€Χο*ή›ΉhK/ήω /;Œ"ΩΚQΏ6{¦ΩΨ€"2ΘΨή₯—'αχ”:T“#θD$¨Œ6^X€™Ύ‡ψη…EΌx„V΄²Σ“±6σ€κ{ΔͺR?Εϋ›Z™]H_ Ά}Δ7Ή¬Η ΕϋŽ0ψ€ UW"/t¦ϋ>>L7αΩξ½+‡*πρGΛrllͺΪ\|_ΫΨVβΘI%ltμΕOΆˆgΦ£ΉLυ>'$ε/ΜLΓl&oηRœήφσžή\Χ ½Έ‹•wv© ³«γx05δήΈΩώςsΡΞήΚ‹ϊt“dά›'έλ’vv“Δ/]Φa ;~Έƒ·ςψRυπΌ<(ΥF½MŠ• œ­›Λšό ?π ZfΘν3ώά{ώγ¦γ―avlsδυ“ΥΛθ[mέη”(ožG½χoαέέVœ=R&{μJZΐ“GΣHm¬δ'ΨpΊ"ŠΌ-+ΌΞG;ε% ‘‘ͺœΞwg7΄ŒΔτ!Ιƒπ¬f\VaY_”+Ώ³»)9΄•γ€ΛΚ8Ίζ‡0`ΗΉΎρ΅ΞvΠΓΧREΒeΛxΠo<¨Υδ½–%ŠΎϋbmύέΚ} §WυΝl8'ύH—7Χ9ϋΛr%œμ¬lΪB½ίκΟ~VωZBYW“2³|ΌwH ³-C€!rΨΨΈ[»ΊC§Q*LΠ£~m'ξvΩP[ίε™PSRƒ©6 J#ŠͺB“sΞα₯¦9fjψΎbΠ­6ˆHIG. Ξ¨Κ¨©{5r?‘ύύ4Σ« G 0ΪΫ¦m”šz―֞”—Ÿ[]°`P’>o…•ϊ©Ό§·<κz}9Τ㳡Ηδ|γSέJ>9°“œlBNšτ‘›βζl §νϋz852…I*„λšR9#η‘w`/·ς ŠCέ/o‰Ζ‚BžΓg#HώΘ2 ΞμΠ>x#OΙ›#ηUΕ¦ΐ£8~’UIβj<ζpΞWΈκε壈 †¦άψ&Υ޳V•7 YGkΉ agg‡λπͺ—Υ]Α“ΈM:δι½uεσAO›ϊ†ϊA{»Ρ˜ΕεΝΟΌŒξOώΡqjAZŽ–m‘GnΗύqιBfξ*Ί/"Ώš³Όx9O*e’ΐnI.·‹;ΚΐΤξφ’Λ΄ηΙ{³dšΪs#僓\ց>MΟΘ^h'‡z1Υ™@βΞ£$1‡7zζ²[Ζ'δR¦ΗG&!}ύ™ηΡAΚ¦ΈyMhΞΫΒ±δlvΔ7b.Nm‰J3>NΣ*šώ¬:vuW:ώΜ»ˆz‘[UYόΆ«wiBΗΟ£"<ϊ>ρι•g|6‹₯U2NOΰ’ δΤγΞΌm_§’ϊ*ψg1!­μ0§ϊ€'’κkΙ=ΟϋGOQέή0>sΥ8ής™mY¨;y.έQ’[Ο JβΰεiΜ(§χάσ’’Ηϋ~VΆ8Qƒ˜Ν!LΝp~ΑΔF‡³B„Ηό’«?α(Τ3~™€Ι‰θ˜™1αόιˆCόό +%όnI–ΝΎΌ?¨€yΞK:υTΙ έύΟ/§Ώώ„ΙΛΤ"›έΈό7ξΈyG‘ΪΞ[~aύ% 9ηΫ€φ—όΔœφε3*_ς°κνκΝΗ “‡Ο…I‹„­š‘δί w·¦fρ–βΞ%›1Bq[;k˜X]τΪΘΦ7e“Ϋ²2ŠK4Z@+%ErVΟbkgƒκ·ΰXΏ\›‘–.ψ₯Ζ"’h)wn™χ¬l―c”–6wΌ’'Ά5w•ρ)Ϊ›νLί}όgϊ4Xρζ?Λ#Ό¨ŽόBd$Η‚Cv“™ΞaΗɜ\ΒΕαnΌEΏ’²b€ΗqŸ‹vi2%y½–wvqΙά„Eά½έF?7ΙΤ§-ƒxο½A|œ™’ŒD^OZBΛΛK΄Œ΅]G“<ΜΩΧO]¬ύψι?χΫDι=Xx€L?wα98y`7Τθ¨#yf~ϋMΌgS˜Vœ˜`e ~HΏφLΤg'#–³#ΓςMZρsžΎŒ;ιk??ΰινuέ1Σ‰₯TΕΝέ»\[o-ax]υΜ'Ϋƒ]Αƒlγ\y#ot‘ 臨DΔΕ!žψ(&B έ­]ςjΌ² mψ«Rΐyr6oyή<(ΛwζιZψώ -wΨ§xΠ‘ΜPŠ`όόΙ8ίΎυΈΗHFf&­Z–€˜˜hώΩ°³±Œρ)‡Ι&Ϊ—‘wΟ£ήvšψΣ;ŒϊswΆ6131‚qΗ]ΧΟΟyκ6y—―›ΆΞžΕ†$nMQ?IkΔΥ}&–ρ3rƐkˆ‡‘Vαxw—ŒžηΦηaQ «Kς―}hoωZ­t8μ3τj5we¦τ˜žΠΆΉΡμ›iυ΅βD©:ϊ‘\N=<ΨΩφ!:Ϋ΄jλ:NΧ{‡&6*9ΌxΔΧ~μg’―U5‡ώ'ΐς©Qdϋ †@8!ΐXνMH=ΖbΞΔKOϋ?‚–i₯t><ΆY¨¨₯υΗ1:֏Qλ8ζi01iΘΟ¬Bc~©R ς˜|η±j`s~„f̐Α1οX!ΟΆ| Q=mX‹GmΩi+P°ξΉ##§”ΰDΥIr vΓ$obqŠ ©V±„ότrTTΘFΚd.GκΟ7K*/ΡFT”ΏŽ©±S‚–ZͺƒdlEzήςPΡΫ~O±”ΟhDΙη|ήYί€τ^c¬~ ίϊz:{G¨Ξ1dX½…ΩΗ?­ŸάGΧσηPKΒH¬ΗΗ€Λο]Β“>ρΜηqρ΄`°ΙιΤΩq—ΜΚ4‚ςdΕΘ€χτη ›†ί’γξ4ZiΙση>rNB¦gfQŸΕ—ΰε?ϊ3€’WΪ5z•ŽήΑΤ£Λxbcp‰Qd(υTdŸΐσΖD’›ΔΝ%ςκέΟβωp]σ]όΣd _δι½υδσEO˜„ੇΏϋΝtΏπ,”ΥŠ―ό/IΈω»ίαqΧΝ4ΘGiUκ/œƒιΙ―egΏά:±xς€g9gu!ƒΰnu„zΏ Ο©…ΌUμπ±i%ςΙμΊ—ρJΞΝB’?+ž\y ="Ǡ쳨­ε,?Β}2vζ†a‘‡]Q‘”rζA!ίΘΨP"λ½DΞ½R" \½†G­­dhNQiGπ•Ώό ΄]½§{±aΚBzfJ+λQήT yF_ gΩ–0―‡σ$―=[Ψ’εΠβΕ’3σpΈώ(M˜>>oΡμα'δ΅κ}τŸkE97±†δ}ρΟ 7nήΖ\T!ZŸ»ΐ{Θ–•σχŽ7Ό«–­AzŽQ&ω)!2‚ψvό:ΪιΌGA“ΟΘ`y•Λ/ `”½ŒwπˆΪv+še~¨L|’„κθ/yΟσ~ΠS7Δ·ŒΟόΘgvm]~ώ«xƒΨε·—n νψ—qασς±ΗνΚ$ .Ÿ^ίΟͺΒ™―όκΣ&Ρuϋ1†Ίιή£UK²PΣ|§iYd!LbrΘ ;’‰VΧ‹ŠΡӟΕ»Ϊhς‹‹ †b˜LωE~R£tŸήΔRtπ’,_½γJOuΊ0ΩίΟόrψυΟsŸ8»!o0Έ„¬ ίΒkŠku‘•Θ[ηΖψ}\ΎͺšμΐϊKΉ‚Ω_ςO8«΅?ωΜ™ .ή%ΏθνκΝηJΡΠ « ³Ι[ύ€zP­ΏϊυΏ!ύ;Ώ''VΰΔ«άOΘλκ‰Ύ‹ σΒ.eαi|ώΫ§•H2Žώ~η₯Zwpιέ2|σ+\ˆ‡ΞΎπ’Α½όΠ~π‚wΥzx΄ŸT‰lΙΈY̐ΥˆCN2Η,uznΰ쀌'}wP]”ώΌUŸ‘ŸcβΥ™ΫΈΡqΗξ„Ύώ’Χd|&ΆŽψΜα~OBνωoς?›K`ξ>ώΕ ›(=Όδ{?+΅ΗΈί]€ƒ•ξ{Έ!Ο ‘b½έκθOx+Β“τ iH–-X1­ϊNΰΫϋW¨>^’Τ±ΩΊΠΣ&]Έμc~IL'JqΖΝ\(mE‹jξ)ό·ΖŽα²*‚υ—0lϊ―ό©Lά΅IοxšVNςζ½X«ηqΎσ„σ²½>£—'\εΣΫΤ›ΟλJ‡@†ƒΔg"ά«δ, !!₯₯₯Αš›μƒ……Β¬Υušpΐ‚䅍†C€!°0¦~Š•yΑ›―V}ϊy-LXC€!ΐΰΨοόΘZ™!ΐ`h#ŒΦΦDnΔ!Ζd†4ωπγI!Η~ηΗ½Ÿv»°X†C€!ΐwΈE‚’κQ”%XΞΰqίϋδEmZ oΡΥοIτ ^ΑO~χ&ηf±b‡χϊ¦­ ©OώίύΡ―14­-°Ώνίπέψ™sΓGΚζ±ΌΛx““5§!kΉm~ C’ΎΫ;;‰TQέοβοιηθ{ΊͺSφuδNyή9HπΠːeQΝΗλZ₯:­QlsDž§5ει½½Ξ磞vH„όαΤ'?ΖίώύOπ¨Ορšδ•_ΑΰΠ¨M=tέΦ ¬J₯Ψ_/|ό$ΦΩήΤL@©n‘Ώά$ΛaύΪε#‡υMΗ₯Oqδ™s]<‘wœ'C>tγαΫφ†©β)yLΑpl¨WφŽ3πdς™‘qŒΫsIχe|χ―ώw:†4J’¬γ}xΠφXρήLΡ+^xFY\“ρ΅ήύ~ψ½CΟΈΝμΜ ΆαΖ΅»2fΣcŠ>~i?/xW‘μ!ΆͺS‹±ίwΝ/zϋƒzσΩkǍΟΜ4fΆΌΌL«fE£ΈΈIIINŠ;Η₯α’!τψ€Σ©΄NΛ8'""έNΥ80°:2aŽ@Vω.ʎmƒΫj…ƒ~^ Η`08φ;?²Vf0ΞΘjΚAKcN“#Ìx1Ω2ΪwπϋϋC‘~ΞΪ†Ε3 †@x#ρ?ύσOύY…[\ςgq+λΔΧ7\δŒΣζξβϋυ²™?&'•#‹Ό\’bE–T;»›X¦₯φg΅‰ešPš_†”˜X:΅ƒΝυŒNφ877‘4%†ΨXΔFFρΕmnΝaz¬ΗΖ ΑQŽ“œZ²ΤtĐ#‚5,. oΦ‰!–³BΒ Ύ¬υ,΅‹Œj9eΧΘΨεΖ£8/+d‘°΅Ε)Ί=ιοM<γ3ΐŸ|VT Ωι‰όσacq ΤΡΫΟΚ.«GN&έƒq^ǝΥi˜οΆ»œθζΝυ€NλmB7(ϋ>Ύ?EΗ0ΒψΕΏό’λr`ύ%]°Ι™OΘPτƒΒgΘΙΙAjj*ίδSSS˜΅μ™žžŽμμlώόββ,³sψτSΏ«ξ›Λ-&―‘ρΙϋ¦>ΎV€c|#šLΎ΄ό­ΟΎˆ³e΄’Γ’oύΌΝ―γηA«ΔΠ‰gœ‘]±ƒεΩ$¦Š©Ύ(Lχ+ΣζΪωŽχ˜g~—ΛΖ8pμw~

3ύNΥ[€ϋέγ°'Όδ±vή'ŒΙFmŠ4e θ›yŠΔIQσ+Kh!g_j,h#h*•?CfR9Ξqς9Χ°ͺ…–6mό7[SxgPλyΐ½§¬!ΆθŠΔό6σ υς’ή|ώ‡•₯ εε<νιΔӝ΄±’· ·{―Όρ ͺψΙb‰ΘL'πΐΐ™υ—΄š"ϋKzyB«z:β<ζ3»²=Ο§³Ώ΄ΗƍϋοcΒQSSω:ŽW5ςju’g«ϊπaϋΏ’c―GgΥJ…γ~|R²rΐMЊžJ | Κ^ƟόΙορς0έ†οŸ†όiM8{²œ&μ`ο&tx6zδΕ‘ρ­‰ϋ$9Ρή6¨ήRί$‘/œω:j€ζ^νΔ/ύΒι=θJΊψΕή--ΉˆϊάR2nΦβ£a™Ύ‡OξΌ‹AJζŸ@aJ’²ž”d2JΒ nήϊ;άgά"όm(ςRπQΔ΄zœ}ξšO‘—Ένόχ o]νρ^OxήϋRύ“ƒϊYi……ό3Θ8+NMφOΙ€)™…σT&οJσH­T°ϊYΎπ5§―^=½λ· Θ°ηƒϊ ±}φ|~ƒγωΰώ” $ΟK2φh«—υͺ«GžχόιΛx G½‚ζβ ‡±†ΣUgπ¨η ~gφίX^l>ΖΧΆιCΉβΜƒ³ΏZΗ€Τaόšϋ ?²μ8xΌFήΓΒ9δ¦δ’L΄]ΆΨ7«kfgΠ•€Ιζycέ‰‘©:Ώ°―[žcQrLCf!ςΔαΖ₯eς0lgΑ%LΞ―Δ³‡rC†Η;‘΄Ό8.όξCN2 υT3Κ’’±I2βiιu)δVΑk²%Έω“ݏpsΐΦ#67ˆzμT j‹ FΦ$ do“BΫΉ 3Ίž<Ανauzίδeδ£Ί09©δ" ‚υ ­ ΎŒ‰Ή9Œ υγfΖ¨u΅ΓΞ"yTκ^+) ,‘ΧbΝ σϊΤ,Λ“H_δι©ίΖ4nΉ°›ηΌz<ΉΌ-s/ΣΧ75£Ύ(ω‡«Ksτ}Ξ‚ξξtYμ―oξ?fΩxξωjšθ‰Υ‰~<\LΔ±Ί"”fI!ΘΣV_/>ΊήeΚH6.ΌP⠝΅)\₯sΚ•­ •QΡ€g*ƒ³ysvrί‹Ά±Ά:³eχ“Ρω+Ι¨=¦dςz―5uYbt?—iΟ,Η+GςOvρ ζn\ιœr]²±/ž)E"ωΦ\΅τγςύ9}eύa4–η£Θ¦ fΠOΖΩW:”trΪ)­oΖα<yζWΕ^Λ㽄ƒ ]2Kρrkjrό§ΗΖΡώΨ‚μJϊB2¬TΖ‡eloο"―ΈΗά΅ŸoΌ+ΥΘk ΐύ.ιβΈ LΏΗ%Ώ›?+ς1ŒΟά5‘>ΣΘΆ½‰ϊ†#hͺ)@–θ kdΩύ”ψKδA»|zxΙ·~=NT‘²0KΡ‘tβŸa–9 αΑπœ–Β‘·όR–”!―’±΄2$7SΟη²JΘΈ™λ‹ώM‘ϊ#Ι[όιŒl!φ<Ζ·Θ#ΗTSΜo.{Qξ.ˆΖeiΥ΄.—eΈδ%9υζsQ䞞Ϊoό²8ά…ΛΪ·2α<…'ύγ¨jήΣ’M|œλpΒ/¬Ώ$Β¦Υίέ£ώ’Λ†ΤΗ.‹TŸΤΛgήδΣΩ_ΪSžWc„ύƒΜgA€ΧFD l{m„hδ¦ζxlάΜείήφ~`DK§”§ ρ)gύ±—n”^h]•ΆuE9aaΩλx­ΆQ>vά1Β£ZςΡP‰gΖΝbζμά“Έxt ?ΈsΝ‘Έ¦Γ„³ωρ|DBž­3½νΓLm! v ‚΄ d­O?*7“‘§]š^Κ‹šNβόω#Ό=½7p–<σΠ]|π›!Z'’¦^JρόωΦ@Bν΄μγ­/)ΖΝ”juuΡvi§9ݟΠΓ/ϊy·Mυ'•ε65ΤΛΜjΑgΟDβφχQŒΫW‡D”±ηuF…κ‚ΏŸŒΚDΑ.­ΝƒξYΞ /–Vκ‰G4]BΫ;λ°lΩΧYΠHi$³AλΦ6i‰θ\'w•‡3–Π+Ο)6 E¨“=h/β±U1%TηI4₯£ΘHπΥ‹'Q8Ρ㍛ΉDiΉE8MΏΜϋαR»T?_δ₯αψΉγ¨Rμ„] ‰ΘΝη~EΘIωoέvj! δρbΟχvH$ΓzΙsψ:·΄ΜC N]Χ§±Kκ?yžΥΟNΌέa Š^²;©}θα}€9Δbι^zω|3j²„ΥΥΪ%$₯‘”~Ωqλθϊ@uz}Q©™&”ηχvnjΤ‚ψύxδ“‘ς—±ψξ凲!s9R*βο½8Tuuα†―›²βBε »NΞBXΔ‡ο]±‘Β™ι •­₯(3Ου ぼΐc4²‰+Ή+huΫβήΐ9ƒp τά]9·1&–˜†s/EK‘γu˜@Ζt G3Ÿžˆ_~θhΰžSˆBΗΆ[Ψ% 4Œ“9Ιω΅xύΕ;?;ρΘΚ/ΓEϊI+CΛΐ9«ͺ_’RI[­φσ…w₯rίyP)‹¦ΑxΏ«³;μ ίγ†_B‹?ΩΫΖgαοœΟ³gUΖEϋhκΛΧ4GVj~ω?xΙ‡~΅ωk―žD©FM~†E-95pφŽ_‘'ΏΗlb˜& J‘!³Lœ©΄€η,(Ξ;Α;δAίΕ$.δO{΄β‡'ΖnxΙA†‘7Ÿ”?”Άϋ–_\ƒ­˜ΐol»ΏXœσ λ/ H‡IIOΈΎ””³zωΜΛ|ϊϊK{Θσ Bίc|xŒν$왁σΔ|7u‚–₯ž +*·C²i§Q,)k½‡²§b)2τ·©Fι#ΰ iιV+ΩZ:˜ψμΜ£oή.9qQeάΌJKv>¦₯Ώ–Ÿ†œ΄*4e`nIε%):Šζ)σs=˜°Nbšf„/“Χƒ¨ψL”΄hΑ{brVަ^Γ•ΜΊΊoͺŒ›WΠΣχ;άλξEVυΛxΎB|»N©BUΎ cςhƒμ0€Θ#o»-…’Jέxψφ-mυψ©…Β©{Q;“±Α’7p‡<‘ˆz¦dΰ¬ϊŒΰC<ΟZCχΥ±l[―₯K«σώzƒ~ΡΝ»ιΉς e¦ £3fZ†Π‚ ϊœT˜{-₯0)Νh,iΗĐY*9%CeάΜρ‡Δ‹΄K³“£ΘPνOyi_"Q…/|λΏC}š+κxZGρτφMΔQΗgy ΗχSQΑz‘ΊAνgωΐΧΊυΤΣo%\ΨσΑOΧς~(&Τω, ‡ρσ!Τy^G»ιζA²Έ,zειβOγ5u/Ϋ7^ΑΑ›ΨJ8‚–šηPe¦m*iEΗθ»˜Ρ‰Λ&hΎ“6 5™χf6Β&–v$ηxT¦”bbmPt>‘ŒΦ,ιγ?Ι\E‡7K\ϋSM½eΡ‡Ύ\Ρnaim†”j|!%[MΦΥ)<šλΗ€sδƒΈd52%–ΰ ϊIai}OΜθ\΅σκƒ<©lΫ­§L²“ θΆΣSNoγ”‹%ƒuω€?v,Έίν„(lν~ŠΈTςφ•+ιM abi ‘‘βΔƒΘO1kQ{¦3ΰά™f•qσ2zžŒ`Ž&Π€Ρx_•h¨Yu€VΛΫΈΙΫϊ"O©οκό F-σ°.,Σ#·η &_0J,:t禦qέƒ₯›•έμωΪjΟUXƒUΫώžΌ΅κΈ>έ¨ξκ΄ίδyX?WΊT§’D6τYΐĊ;c$/ξ#W‚Cβ\^|ώ$}‡S”θΕέoQq΄yvΚΙΓο–ΝG=χ•Ώ΅KχŒmX˜Bχθ 9ωh( s‹ΡTά#ήGSθœF9ο99Ε…ydΰˆ§[œgϊP€Ί2AΟ›6S둉³§TΖΝk3xΨ5ŒΕΘTΤ7•ΙίSΈΞΛΚsί~ώα][χԜlύΟ#οοw‘Ξϋ»ίγž_B‰?γ²gŸy†Ί >sQwΏ?šE<­R!x³O+nΐ³ sx»ΓΦ[ΌχΌ€φΆŸUYK+ψΚΖΝ ΤΕΤΒ&b HΛL'ξ§h*’Δ=oϊYρ)Θί°΅€±U‘ŒbS ZδΙƒŠ„₯M1₯s/§²ͺΔΥW6ρtΊέEh’JΫ\χp\Λ€²δlΤ§ηΙ_Ό- “θ&; ΧΑ=/iηΧ›O»΄½=¨ό’ŒμtΕ>Β:―2ΤlόΒϊK.ϊ»‘Τ_Λš„F€^>σ>ŸώžρΌT‹b|0h]ΌgΘˆθ§γuΞ6“_u|ϊΓρCYiF°¦ΡΧqO΅+k[Ž«OΚ/ζS£ΧπζΓλͺ4ύ軃:”‡ r© ?½Τ¦J'νrι-ˆ»πu”Š«ΈΫτ―’N ±T4N€,O;ίΔoEγΔ™ρ1œ$gΑ/ qœW fŽ(!λv›–Ιwl­4ϋO ΑΊαšiYBΙkΗXΫ'pv§-ξ(Γι»Ϋ4zΰly|uβ¦Έ–@nΙλx»―Έ‘FρΎγ„.,ΩΎœκWD'Ώθεέέ έΖΨπΗx:oΛ#Σ±υ?ΰDΐw‘‘ς(6_½Ε…΄υ­c}yŒ&Hτ ©ς«ψlUΞ²2γαΛ’~€XN;Β€—μ4ή?‡2έ.‘φuτ¬p^]\­ΤΰΊκžςΌλRxvοΏΩ@ZEΣs—ϋ†CΟ][¦rL΄ηQ°ϋYzωZ·ž:ϋ­Τ$μωΰx]ξi {>μό‘π|Πh·€μ Ο»ΥJέ<¨S€ςtρ§žρΓΤ—rfBμω ήν'-­έΗ{χ£ςάghl )Ε("‡73ξΖηΕ²ΨΖ4ξΧPgπ‘v,λ~@ *XWδ~Λ}Ίi©8ž<ίΠP‹Α‹KS0ΉΊ#yH%ϋ/>¬­Oΰϊ”Ωo+†ΉΧΚ?)Κ ΄:‘XT’!ͺxSB6Ξ%υyP h›Θ€ΤYHŠOΗQϊ₯XαΦς²œΜyr!ͺά”"TIc~[<žŒλTIœοΚύ?ηIΌ=ΣΥώ’―Υδκ(2p.γ‹˜}Š«].ŒLsJP‘/y,]ΐνγ¦dTάή‡₯Ξ“'TΞΰ1•ΥdΰάΝ—«[ζ0ݍΉΕq|ά§Œ™σ…vtΒ|βY\δ 0γQXHΖ…Γƒό©€όσ²ŒρΩs86Φ1―Ί&ΥϊιΉ>Υω½έχ—½ύ¬”D©½ŒΫο½'NjSκqƒΌάΖ‰$§D;ίsΑ/Ή4ρG’OλΖ2?Σh,Β‰TξΩ,­˜ρtΗ„£bΏ"2Β…a΅s Ξ4dV JμφŽΞχ£ͺ“›’LL›έ^wϊNU›Qγ ,‘!wtLΌόΓ ™]Ζ‡sξ§ό{ΒKJS„ή|ZeνuάAε—’†:4‹Pi QΏΕEpΝ/¬ΏWύέ=μ/ωƒ'\\6§τς™ž|zϊK{Εσ6 ψ€ρπt€Qv,>$G9ƒq€pqβ6>štT<δch`6UšμΌ`΅(p₯{aω1T‰ωζ§μ›Υ9έ™ξ¨ΣnΡΜpεXmξYSX+{W]$y’q3@+GΞ“q3ΧY5 ™EGJIδ%£ώeΌtΆ±d(»C1’Θ“Θ{?x SκDώΪ/{_xω<}d•fx/a²―wnτ ―΅ ¦Ψ(ΜυˆΛWν ͺŽβsίy©QQXΉŠ·>^ωάs(/­ /‚rΦι>τίΏŠKWξπΩυgq¨ΆωωΘĹQjΛεYŒMc¨γ:>ΈΩ©]³²³ψΒE“^F„ΐιωwΪffΦΫP…³_|΅U•δ₯[κΪ+s#˜3£α-΄΅‹”m3ڝBΓ‰ 1n·n¨Ξgβτ—Ύ‚Κ΄8Ί&Άi†h½|.Ώυ«ψZ5g‘+„(ϊ~0φɿ჻f)Jά’ž_z uΘ \¬τ­€Γqfπ>:n^vuzίδωΤvZ{sθΣuuΟΧ‹F‹λƒ]ΟBA wΝ`Ž<Θψ%θδW²]ςξό|ΰΒXΑεμΩ΅~άιξ—EsKρIaaΡ"ν†ο–ρ’xΙ±ω›_ϊΧΥ£(OZVδΒΑ><ώδ·x8`νxΓKœΌ&Ός‡n ηB ά™ΙΒΩΣ-(η>žρa ζφλΈϊ£_©<…4Ρ³δ,ΩYξΖ%:§υ$Ξ>ώeΌΨ*πlΧe\ΊΚ=+Φ±Ί8‚‘‘N΄ύξ-τΠ(UφΉ?eιΩ8αω²‹xγb#¨Z˜οΊ‚wž‡v²Nα΅/’…zΉηγ Όuι–œ ξΉίGkS#JlΪ`=·―α+J:9νT=χ -7‘WU,={—θΩ|Ι•.Ίο#ZΆxsEM―αμ3ξΪΟ·η‘T#oŸΎφ³$Ήouς΅^=}κ·²ηλ·ςΆ>srΡ³ηƒ`δhΟράތBσ…oαθ±Fεέcywή§ηϊύA.\Οϋ֟Χ~κ|­—wωΦπ;jTΥBψΜFRiU­λ’q³tI¬Mažή³₯we)>άΆΊϋ!lœΑUS‡_+υηYπ?QΆ“žύ/ပΈ±HΝ–‘—"‘mr8Oά;7ΐ»:ŒŸM…!(±ΘˆεΖΚ6ιG|XΗDŽnl"ِ‰Ζ$2ΚγC*jiu°Ωhΐ€ΤX„UŒ’NλζΦ>@J|*ͺŒŠqeUZ>Μτξ>ʗዃιΙ¨)/‘sΆw87s';@m²οϋϋ¨άρ@m¦ άνŸ@#8s¦Ύ)œ;d)LŽΑ<Σ€œŒLpŽ”gTί^‹ ΈB ΔΎLϊf&M \FχSɚX’ XfΙ o€œ‚τ bςRS9ΎτB=‰ζϊΰW·G(CSEcζ₯LPqσΉ\ΩqΤΨ£'m°8ά‰G}Ήx–7ώΞCaE2zϋακ½…GΥΡκύΒL“|ΨίΥ+7σ‘c]$«ˆd‰:Κ)νwΌh?UVoyWΚκ+rεθ»ί% άlύΦορ„_Bƒ?έ BŸηŸ…+Ÿ9Ά-y­dΛ{]w{QY™'LόHMG^&0nιK*Θ^β’κνgνμͺ>κ¨v%ρ‹“#pbΑ'ρ†_2β€ 7mp_Ω2p6K\…&ޚE~Žτ­ŽΎΩχ₯%₯ΌΨ–₯ΦΚή‘­KCΈbzriͺ‰“K›Ξ:΄y#εήΏ’Έw0uXΔ;– uŒ“}OxI+«ή|ZeΩΕ1~ N)³gJύ=R—mŸΑY@–[¬ΏdJ8τ—όΑφυΦ>ΦΛgϊςιλ/ηŸνŸ)czΪΧ«Ώcύ;Jδνh™λFΡ(™Wβ~οu”τ2’SRεΩgσ«VlrP˜`$CœYZNΛ$ŠS±uU’“xάΙ՝–λ£N-{ΊΙ+fΣΪΠr™άΈ/6°Ύ.ν‘0Sz  TΑϊθ‘—DCkn°YI άΠbΏtΘo“³KPUQ­ΔΝ­HζΠJœφLυ―αχΏύ ?0₯—„œŠψύ€ΎΣ‡Λh—…mY ««ωΌ34ψύ­£(’Ύ ˆ)MYh9³ˆ.2p@Ξ½ρMΤΪ₯α“&¦#Ώ‚ϋA~ΦρΓ_ή°‘e"#«ίΊ–ž§IO›€Άddφ΅?ύ6Κ5dΣ QNΏœ¨) λ^=…±τ™φ;hW‹ΚB1H­>cΚ#ƒouνοtΦ6†τόΚ}›–'T’%#ρŒ#8OΏœœ†ŸζŽ˜ΐyϊΫAΡNߞξ뚼œ½ήxΒ'3>μzŒŠŸ”Ψ˜ƒΫGέGTFNΛψV‹€‘΄Υj?_žGRΉ€wΟίϋYŠdμ9γk½zϊ³ίʞr ³~« …Ν{>ΨΐαμΐωσΑ1GNΛη!φR•“‰9¨?Mdg§γΗμžχ‘?OmξΛϋQhσ΅^ήUšJΩσ:/H4(o‡ƒΣ=dφ±‚OύΖΧΪDρ5˜³vϊzCΝΎViΟςςπ yχ$;!μ¬bœΌΖFF'"'V4 N(Ζ…Τu\™Ÿ•R…Ιֈd©ΌΖΛhŸ|Šφ5Ρ‘VόZό΄g’Γ°Γω5<$οΜ][ΛΆ¦‹cθM,Αs™y‚jTςŒ±]αΚτEž#€ΥωΚ$ ΅1ά[ZvL€Š™ιΎ‹™ SξmlΖΠ=²΅ζ±3U1Ω5’':)ΜΜj\G &Θώƒ>uxδQU*Λέ6™–eo¨ΜG~F γΘRd{G°Ϋ'γ‘Υέ•ΰύy_Ϋ!%VΑjqΛ™ŒžλΣϋΊ(9ό'Ο³ϊ)’₯=ΞγβsYβ}ΗEnLγΚΔ ,R'[oο#'Ε8F“1μΧ~―Ε₯η]‡Ldθτ³ŸίΆρšιΖeD4βδω=ΣθφΜ8Ψ/χί*ζν/Gβ=ɍΝͺΔ«Όώ‹τ pœ œσθ(…4.ψ1¬ρΑXŠbή[;­bЙᯐZΧΞγq8weubΔΑ;(Wθ e (ΰy •7`žC^>}K\n¦δdwΎ̘R‘&–΅07Ο;¨Θ“&̐3ηΖ&|-―Ρφ†hΡʈ¬!Ξ—>K2R“₯d`=ζΨζS"OwΞ^΅Ÿ.Ψm2ωΚƒzοw%œψ±ίγΏμ=:ƒBŽg|F^oΒ—Οδv”v–ζ1κπp$Ν (/γz?QˆγϋkRέ[}ύ,‰0qμ3ŸAz9μŸΕ qμΈΥ½NžσK"Rc$ώ\…e- Ηr« |ZΖ½™^ςθLF½‰Σa!/ΟΎ„ΜΔRœ£ηhΦΝΙp‚tα'NrgΦiβ€39›δm{š¦lS;%ъη™τά_ΫΩ„ΚΎΈ½‰χέΌyΖK‚Šκzσ©ΛΠάgό~1β΅ ΝrΏt&[½έξΨgP·λ/©ΡχΓ’Ώδ;OhΤά!J/ŸιΝGL§cό%Θ<ΟψlOω̘Qθp2Β—7Έθ•ƒη+NΚ³lΗο ƒ&μ†cH1¦ΛυHΝ=? Ÿ­=θθΏ†ϋ“ͺιΡάΙ¬rˆ‹sΣH(*ώ ΈŠ<+*a~ζξ>ω%žz„KjΚZΡTΫ"\SΓδeWꇦ—#O2¨]5cXT§’ϊk8!™+²hYD‡°½k΅KC΅ώυxασ*£αε!άk»kT!Ÿ?acτΌmγ6RΤƒ Ί%2*DΟΊtj²ϋ>Ζζאš’κMΓμ•ι!˜GΜ΄Ϊύ umΙKJE͚ΊΩ%§_ΗΕΑ§xΏ]z#iΒK―©τœλÝΫ°œPJ³Η[Œ‡Υ(՝9₯2nžDW[;Ζ§WKήJ2 KQ[QBΙ₯— uNϋύ&4‘ Ξ'Ρqλ}»θΉr [ɱؒ٘ρΩΝδ;‰O3Iƒνc󫈌εDνΐ22­ΚŸ‰‹_ϊ’ΚΈy–τ|€κοgTG­hX{α«x~„<ώvrY}‘§ˆφ”|Ίχt]ΧExώΘηDοσ+xάώ=tD]Δ1I‰«ίœτλβI‡­oΌΫΠp»( %ŽNΈ0ZV{ž¦ΟPsρ˜ƒΒ!ΑxΙΌ$5i^ϋΦ·Qύ±‹ΑLήςϋGfmΘ@vIͺΘƒ– Ολα%*|}‡8έ6Xο’“>@$”6’ΉZμŒ•ΆβXΣoEžoGΧγ>TρςsP^{” œοΨ‚S(­KγΊΡΓ{oΆKβσ‘ žΔηΨ„ζ#3sQF²4l°e ͺr²δgίԈpοžύC[γζ!ςdέožgά}’₯žΟ›Ρπ ^}u ?|ΫΆώ}Ÿ s“σΰLOέΨT46Ο#Νg3_’χ‘\šιοΆύόσ<"w*©ά‹~?ϊYv|9tΚΧzυτgΏ•=”¦eύV y=d(\ξΈx>ΈΘΗρηƒŽAŠšq’©‚O™Qχ ^Ί0„Ÿ^±8κ=Ο+‚½νΟϋό~Κ|­—w8•=ŸψΣΥx )ƒ(ΗJ+Ρτ(2ε½ $Jγ r\8νψΨa|­ΡΨαΕΧ`Q~@ ‚VwcΑ€γ’ΚΈyvٌ6Λ¨l0XfͺΖ9rˆΑ…S.ͺgΡ½γΉA*#.‰ͺaNσܐbά,ͺ0±N{’³½V+dάloΟΗ₯±Π˜ρrΠΡbδ αb‘Εm7εqeΛ!>‡’€ΰ:- kκ"§wf¬τ²‚AρΦ·€ΉYmνί‚}­Fσ‰sxΆN_wY–ΌυΩ—―ΏΤiΧ±Έe?ͺ€HςϊϊT²κΪσ<Ολ§V2ΥXLΖΝω²£Ÿ΅΅q\Ÿβ—šW§sΨΧy9”£A“V­q>{U‘Ι'bΉτ}eF‹ 4Δϊγώ[°.Ή4̎‹•˜ΒtSoh“ŸŸM“5FψόE%ΩΘuœ™°ρ4­‘ΊŽ¨d4Ur#•Bθνζœ!h„1ϊf@ί/SθU$7%™OGήγε@^ δ¨&GH>xff­t:&ΙŸ8Yr.';ͺ‘“Ξ£9£vξ#½<ιmϋIς|ΩκεAέχ»GΚϊ±ίγΏμ%z γ3˜ΒŽΟl΄§ƒε 7+ $wκcŽIFφxv¬·Ÿυ ΗLήψU4€D”WΥO”ΉΆ€žώάΈέλrς»gόZ[[H5• B€ΣΎ™tp],r(3Ζ ¦·Δτz6†|œ¦oe|Ψ΄ΨMΒ’w©Σ°³‚§έ»Mt‘ΝG—J~mZ=ާΣςςŒiΘ%η Υy›]/xΙ/ωl qrΐψΕ˜ΐπK6^Ύx₯π*­&ΑxΖFΆνλ/Ωβ!…GΙGžΠͺΈ}œ^>Σ›O”ο})Θ<ΟψΜζJ >³QΛoΆo·~+V_A…εηQ'τh•Ή.άςP_A!+=‰σv¬’MU8έR…ΤŽοα³YNT“‘#E'§5’E£ˆΤŒFΌpŽ R―ώO5ϊΈM‡Ώ³™ιXάΩBt‚I.b™ΈŽί<Ύ/Λ+LΛ‘§ηΖh(ƒΖσ/β™Š >ΝβΤMtl”ΰtQ>)OC—ΛpΨ‘,‰NθΘ>w΅˝xηoΔρΦ›C³ψΟΞξd αƏώΧΪμQvΟWΕ@(ΆCwafζ!}Β[ι*^y _ό |Ž7pKBIm9₯ΌΚŸ/:Χ"z½¦ΓΉGψυ_ύHWπ 2ϋΣ―ΏδΤΘY˜Ξ3‹›ίϋO’q0_,ΟTMFs†%ΒΙ^Ω…“²Φ'χpcΐ1αΓίόXΦΛt:– œOπ‰f»/γu&φY«O£¦B0†&σpάόΡίβΙΈϋ7WΙγηD?Ή+I¨nύ,Υα]Ύές ―μΥφΛ±ΧυQ2nœ χ]Ζ΅1 °\™θ`Ywωβ獞zψΕYω?{oΙ‘ή‰ώšχΝbρΎͺyŸ}°ο»G­n΅$K£yξηρ‰΅‹φ‹…xXx€ρώyoίΎ…ύlcΟΨόF²Ζ΅{€‘ZšΎDυ}±ΩΌΙβY,²XΌoφϋ2³2+³*«*3+«XŎ Š™ίΏˆόβϊβ‹pδneν7ρ’G>pι Θ6P¨Μ±Hޘu“ΕX•@qβΕδ)њ(—Έb·=‡}’r3Yρψιρι₯Ljxωw±?W΄AB‘ Κ%ίj6zχ_πƒŸ\φxο7œoγ”œι€[Ιy'ξαγ.|…δ?χ©W5Ά’ψm8ψ7Β?ΫΩ½^ ϊ;$Y+ φmp9߁ Ϊ<ΥLν;¬e(­!g•v@d’ΈX\ ˜ΐδ ).΅~G₯EFί2ΈŒ[ί S ^γ7U=…Rp~*&FΧώ«?σ*T[/’ˆœ‰“€Ξ¬οHsωmζ€^i"Ο ΖKwΑδ΅Q>Ν跊,³φADBνϊbχ[9DXϋ V/όύ‚·ώα9Ÿ©§—πWd©YpΓ1χ§ψΪYa3KΓΑC°‘‚³Ό%Φ+ηFή¬ρ‘'s1%―Κ])/²½ςSϋ|A>Hs€w4 ’4WΧΌ‡l«Ε―3«βE€Ιλx“Χή²cwf"°KΛά‘™whZ54¦‡ΗΛd!ψ )7Λυεϊέv”d䣁_ΟAazΊY‹AHLjZ6]蛝σc2e—¨ωΰχ*¨ΗΪ–Κ Ν4z)8J εβμ¨{~χβxnK δ&m(WϊˆOŠ}ζ’§Ρλξ½ εζ₯© τΡYμsΛTH τ#‹x§φΩ„ΤŒR1?)ΛK 0dΧ½JŠσœjύ4ŽΦ(šιΘ_En-.X‹%Vά΄γΧ>²Jz©Έ‰πwDVǟ<κB†ζκ“€­5—tz›‚U­΄©"M Zγ(Βώ6ΧUdž"mŸχFΗ›QTJΪdyE¨¦₯Ώ±ΡtTUˆs„+π‰ώcNM-YŽφ€3Υ‹Gύ„η œβ‹ψ³d£š—‹ ΕEc.Ύ%9¨–6š,`ΪΙΝΞ’ ŠξGα )δ@Υ ‘šχδφ·›ΊΛΟa΄/ΖΏwmœšΧο1OΎDR~jC…B1yͺ˜—gJφgΧΦTOπHM•Ι8κ …εΒιgMtβGΆ‚WχΧ’ͺάͺΠ/Az.φ@E^~ςΡγπΦΊΙΪ>ΏΡ‘λw&η‘Ξ£z2Aλ―{NE©‘ω(Q'ΤI Ξ3a€šUμΥΝΨ•„šΒF4μς$Έ+Ω{rHb>φ5’ι9g­Τ.m, DΊΣ5ŒβŒ\Tqό'g’€Ζeγ²₯Ko<£rΙhzίGΉ™{έ Ÿφ{ΓέΎτΟήŸ»ϋWξγ)Έq%œ”Β―$π!Κδ|ή»’Tl{πξξoΓω½κ|n’BΊδ| εόέ]7q_ θ¦τΌœFΗ—’²B πTOd–u’‚ΟΒνo”ϊΈΤ¦άτ*7σΙ;ρρ§ΧΡΤψ5~ PP^©j9T=.Y#εΐ³ζ?½υΊ©ωχ$«η3£Ÿαƒ.A1ΎPΆΡav~,LΔθFδ‹Χχj\ξTΌ‰‹M‚ Ÿͺϋ>n†Ψ”’/Ϋt1³@Gω²Ξ³•&;)ΎκψΡ/]nhlG8Ζs˜\2[.Ω°χΐa©€ϊ>ϋΐOΉ™{Ω}εIUΚλ̐K@/ξ}tΩ›(έݸ߁C€ΰΜ)2[ Ό‹5 Λcoΰ·\Fmz#ŒΠεZΫ(ΆΣΐΠ3Ÿ 2ή`aά…–σŽ1²ΌΟ+)— °‚ϊUύ„XΩEόΑΌFGS{π]όψύ›ΔCŠŠ=m’k £Τ~«Τ±_½μWnjΛξνi₯6·’β·’ϊ˜ OΏ”«ΎΙ²–z1ڜοHGωΙΨΣΫ‰Qυ΄fτ³DΊα\CΙkc|šΡoυ抡^,|οXΏ•΅ΎuBύ9tϋΰN{ω\9^xψΑηh>Ψ*l˜,ͺBe υ˜dc$Eδ<ήh>άρQ,ΛkcrWΎτ O~κ™/胛ζ1@ύwn~’΄”Ζ™Σχ$Ί―γT·ίƒ%'Έ˜Γr¬?ησ q(―Γͺ°,r@dσLΓ°!°${ηΗ—¦ΚΝBδeΜΣ‘Θœ•bΞ%%Rαβ_Ηφ?š]Rα03Ι£ν ς.°W r“L„c¦ηόƒ†A―0Ϋ†ιΈμYtΌϋ§c>[t‚Ÿ6gE>YF%ΝBΏΰœ" θBΥ΄PτφUzηXFŸήΖ;ν>Š”™¨'gQΥR€λw₯κ!-lEΐ³½”4iΎk+˜Υ «"! υ“ΒsσκeYRξ€υ%R•o―W$δA=>ωk΄6α„lmilΆ»΄ρωοΘ…[wόλq Β΅8/Μ™›L3`Aš”sΝψώ΄edύ#“8PJλˆd‘³²’ζψF“PΙ)snf ½£Β­yΣΡ&ž–G‰>ν ².° Χ CΚiΞ2= eΝ%(ΰ–­ζ'πp<ϋŠ`₯5Φ²dκΫς&y~7°Κ[VηςαΒXgξΛw™—OJX—-ι™žΌŽCΙ]I© η{Χ&ΟR`VΏΗ<ω9ω© r@O&ΟBΓΏˆuy¦δ>ךΝo`Szci‘k³¨FgŽ.―j[ατIBz »Ÿ51€θGΆς<δ’¦z7l€ΨΜΉŒςj¬ιΕη7©πΑ‚Ϋςlt”υ/——FpΝ%§£$M΄ίΌη ΅ *N›|ΙB>δ"9R¨ 2Δ(‘ΣΩ±9gR„`7t²ησ`ο…wFε’Ρx‘9C0ω""‘~ GΎδΰμ«Η±·ΘSχθ„“_}¬Eου—ΤΛΒίHχ—ΤΉΤ&'"+Ο")τ—L’σκ˜ͺω2y¦†ŠΧo;δ™—ΊΩw²™³“Φ—ήήύΗ½Φ\·πΕ`…}ΙnSθ ά~ψχx8oWΤϋ?ΓSΫ›ψ­½‡„o©εΤA΄``”λœ•#7STlζ؞ΐ­Ϋ?Γ—“žŽΫθ=Έ·ώηmάΔM_§xπό“ψoGΈ“‘ΦA»ΞrhχΓ¦έm₯πvσήοm Ϋ`ΝδTt97‡3_9υUu ΄?z‡,:“ς£Uδi΄»ΘΧ9nό3ptͺW°šF„WfΦ,}ΓλΆ!?ίβ‰6Ρξ~IŒΩG­ Ξ πτ†>ό%KΝI:Ό•eΘI£/)xsΊΗI%ήέ~RD_>ύΫ†ˆΟ Ξ΄½Ο“Y©ψγ…wο£―§ޱAΨɊ…ΗY jυΜώ.’b|ΘS.΄$* “%;9Φ'{γΉ%%ΊQ«³p|όއ|žLαΫM“’¦9Rήό“ό­ –bύhΉξΰ‡ρ7 «„~azψ~οL.‚J»\"K'ϊm/ΊΏπΗT†)rΙε†ί)¬tœδЇΰβ‚|©ΥŽ.Ϊΐp ŒSξ/Αξ–“m@αυeΤπVμι‰Ϊšž@ŠΏBhC΅ΰΩ=ω©gΎ€ΊψKœR˜0/ΫύU|#©}dε5ΰ€΄ωšζ(TΖΚa3s‘'κ˜,“=•‘z^]|zžq 4JWVUZΉ™‹²΄ξΛΰj‰Υ’Λ"ΥbΈΧj.œr(₯΅Ρ4ˆ{mΙPYSύ$Ζ«κχβLM–7 Λd€œυΞ,k₯ΗžΏ²ΒΫ€CΩ9ώΦΠλκΑυY­=Aγί‘ΏK―@m]zΉΎtpgΖχœ‚ϊ[;Υ§ρ#6”λ’bμΫ›$}w££σeSyš9‹Ρœ›ΔγN9#Ό‘ώNqυ‰œι ―«OδΏσ₯9' €π ΞEε6’§Ή|ψ%Ÿτπws˜™#Ε@^™ˆ¬<ΫH:„ ΓG3όoΣs”"N ε’¬„ΖΞd SξŠσΕοDξkΞ½Ή+§¨O†ϋ½k•gi0§ίcž|‰Œό”—Dœά3yζ_P:ε™"μ δQWkLΡ­₯>½•“#œ[Ŝʩ&Β;mMλgaφQξ7†ϋβΔωWq|7'wiÝzολ4Λ—Ύ7썾ξD»ΓξέΠ™Q„Jq­p}–πβ6uϊ;mύ₯M¬¬/ΐMύMϊ)άσδ§yΧΓΈ eΣδ·΅Ά Νbt†εβpl“ϊΘͺΊιFε’ΡxŠΖφΕ/ιτ½œΐ‘r±/?‰Ο/_G§β»P4:ε λ/ΐQζώ’Œ ο­&9‘΅ΏdTžη›η€ύ%“δΌ?Ευaς,ͺγ«ΆUβ±όs8XΑ X9ηΖέΎΛαo!$΄­ηHΉY͍Ϋ?Δ£’Z/ζ 3‘AΗqyFž9b‡|Ί?ρ*7{qΡΩ£ΰμρςΉΈρΰ黐«…΅νωCœΩ-(EW”4’’œ‡ωXyH׌—ζ‘_MΒΪ%žu\Ζνi TRΜOπΑg'1>οCΞσθ#λsά"™8}Θζ\QœΣΆπzό›7†¦!Ρ'η3zŒ΄ίΎ‹ƒmoπ“±1yθύ<δ&Πωπ&~ύώe¦p6=|\zχμΛ+½Y7^+j˜U/sσϊšY_š“PS½.:GVΉi-tϊ(ω@ _Δ$χM™δtΛ5Ίε.g­νύG%+ρK»ψψ‹=rEθGʌβ¦ 7ά‹&’–BΓj.%ΑkιEgTAيΙ%sεRΔ mμqŸη–JΜ Ήδ¦c Υ[lLjΊ¬q&―ξϋ]˜8ΧΚO³Ϋκ›a#ea.~M[#mUά)A«KIOCrΎΓŽiZε³ΠψΉΌPθ[UVrŠΞWfC5Ν™9*Λ€M“c΄‡,2[ Ή>‰θςQR&ήΊŠ‰@οƒωΛΫMγν»ής Ζ‘ΦwšΪ2ΫcV?K+_Ύα΄Ιkƒ|šo9fνƒˆ„ί•υ[ Φ>ψΥ ?νƒoΌΩω'_δΓZJJ<ΚEZίdB=νΟ‡?>’ΆNΣ8Υ  •ρ€οΝ€§W~κ™/ž άCs΅Mڈ^V~ebgG–?n9hΔmo‡υηeˆm\Ξ3ğΌV‚ΞžLC€Yp6Κ…υ5²…ΐ­˜g 4#W•fςw[J…γyjdMv…ΒΗ““/x₯¦£ˆt~gd“Š5ΦJΤ‰ €p;47GΉKAMvΦ–‘…³™Q†—ŠΌƒXημ„WΩ=1eαZg­€M΄4·>‰Η3Κ2Q†V>e₯S³ΕEnz7OsΗΚ ¦>MMΝƒlPπ ‹ΉrΊ*T'h~AP¬)―ݍϊ[ΓeA!pss%―Ι?ΉηU ›θ‘ηe!…6MΣ“b²» ZͺΌA‚έ‘Εά%8ελ Κ(­©Šα”CŽh-–ΘΉWΥIΒ¨Ÿ>ωάάςωžWΘς—O˜°ΎΏ΄θ”ǐωγ"eαhqZ2h–gρΐفώ:N*―pΎ£€‰ΖΔ )M %O˜‡Ϋ»· }½·όO¨Ν$eββ-²Θ-Œ±Μψώ eqCΓΝ(­$ΉTPƒσβ”=mY΄ «‡‘]YNίΪRΥκ’’8ΡT)|"ŸΎή Τs7F),7τ°p u4ΆsLњT2μˍ°₯ηJλ–SΣ\ϋ Έιi uBψ¦= xΦΐZ’₯­Φ-txΚAŒ―ΌΚV"ey•‡qp΄λωYΫT‹ϊΗN―ό΄Τ’Ρ#[εqΜΊ7&wι+Φά…½syΥ&ΟV`FΏG»|1O^syΤ&?Ήρβ˜< VRzε™2­"Τ7–‘γή˜Χ›ŒgՊ2x™τ„ζΑϋ^qZ.yƒλοg΅fn£Ζ”7ιnj–kμω*yϊάh–/«+˜[§υ+~ii Oi£Τ”V^Ά–“ύhΑM,Ήΐ­\©9mςe·Τ’“_ Μ|Mόβς M=ΐ½OΠDR0ΞJΓΔ¬C}S[j.ΠΨ@δsyuI•OνrIΙ’ΡxΚTbρiηΛ—ΓgO ›ΈOfcŸώΫU< 1FKJ―|aύ%Ήΐ׈φ—L’χ•g”Ύ!9Ξό‹Ir>pΙΖΒ&ΟΆ«"9—¦1O|…49Ε½¬3£wp“›ΫΑn…?*Ι'ƒ4K%MT­φβYOŸOκj%κW$zπδ*J Ώ:nΥ1£%4ι7Lγ|δe ΥάάC;†@IDATF5šΈχδΖ†~‰_ ͺ^MΦiβΑ1;Ϊ©bΕΟ©Ι1Υ‰XEΪΎ£Pn^λBwo/ά TB 4{—Q…sg QδgτI‰δs'‘ιs]Ώΐ_ύνΎ~ξ4νπ―τyΗ₯’U‚ζSΏ [q~πΧ?SΞϋz¨X…,ŠzΖnΰΝ £ O@£—u¬ΡΰCΝmJ•Xν­NΏ°ΛA'=ΑVμγηΡω¨ ih8ψ=΄’ οvez-}§6ΰΰαοaοΦ4nίϋ8€₯cO †.ͺςΕ/%cr·ΊφmΌΩ΄OJmfό>Έχ‰6e†t™Β7ΕpΝ*V0€4 ݐυπϋW?C–ΈΠ2‘Dl.ϊΪ€ +R˜\"dΙΊpΊ0lfγric-ψ$ΌCcwΘΊε+(©&%χ’zΤ·φŽBΤ5Τ{‚Ξcπ‘ω›L΄ΛωALLΜS[Bό‘—ΛΈc%W‰ςfςΕ™³i8‡ΠΫYG„Œœ\ύWŒ‘IFQ€IΡ=7œegΧΰφwΨt—ŸoF"υΌΝύ,ΝςΪ(Ÿfφ[Yϋ°²φ aνCΐϊ!ΎΠή>ˆ1„«{yIu\”–.k3dk'ΚΨŸΒιΟ‡9>ΘaτΗΕFεZ†LŸη 8zΛρώUΰ|Σ΄Ι4›W'πlΈ ‡Π`Ι€€΄9mΊCCν~¬?σ q(―΅WPR»€«zb±°ΎΈy‹Μ‚†o)I}n'«Onl$d’:» ϋ²½ ΞΉI―"―oB±ϊL ’“4·πϋ‰sp’Έ 3γ°o$’>·m²όΈΖ=Jι¨*¨₯MΖε›waœ,[ΟΡi{ ωΈbšPh!εgΙ‘%Έ‡1Χδkˆž”ZŠζ\/ζ½ξQ}s{*}*3§Peœ ·dΑYΤΟ¨lΕ·Ο&α٘›dΦ/‘Μ‡ΈG†`χ,΄ΟυŽ ϋ@=Έ}όιexσ­γψτξS<’i»­{πoίπΩΰ°ϊ z^λ%€²ξαŠζ`——VθΔ—jœΞTΞ‘νC8Gѹ죨ξw$›7CΨKί ίkΞ«ΒΧΏ•†[zΡ5Bυ##•εehτΪ§°–‘…Ό\ *ΛhƒP] rΙ2ϊ<)8ΫΕΨ–B4[E*›ΨHΝ’Skg%+6ΝT~H6VgΡ3:‡±Ž μ«B5χ]½7ίNBϋΣ!Έ,ΨίF δbΪ‘Έκ‘»rϊšδ  ί»œ¦ό^Už­!μ~.ωmω) >ξ™<3QžωyuΫaΌ‡Έvo–::±αl£€‡1>0κέ$ΑΕ3 —Œχ³¬8ς94eΟ’ϋΩ†'&1嚣Σ2²PKJΨGχ‰ύΑY8'ΘqMς…Λ˜pZ6wΗ)WηΦbjs σ 9Ψk₯ΎΎ¨ Cύω'i!˜–ͺς%HΔΔlκί‰οΙzΆ\ο!5‡H€l=Bγή±HγŽΝ])4ξΘ£ώͺURnζΞ5{:;*&δ½κ’Kήha;dIΕβνN–/ΝGΟβ ·ρ‰Snζϊγ+(Ψ―&(ϋΚ ηΥι|ή!ΫμΐϊK‘©‘μ/™!'εΪLyˆηL†5Ύœ–—mxΗδNςμϊΣρ¨’―χσ0Ήͺ ΨgεΕ8gΗΓΒνŽύo5Cœ©s“’ŸΏ"3w †8ώ—Ð-;:^ξόžˆJ§’Σ¦ζ'RΕQ:%²4υ~ύδž'9šŒ±V{ξɚfOp2{»½ΊgAYQUHVΖ8ά(yΨΫ‚Ύ{Ezζo¬/£™œΕξΌψ«ά; 5#!UθΊΰτ#4Τ΄V‘¨’&—χFU‘P_2λŽαΔα+Έμ§Ό\ˆ£Ηˆlΰѝ›ͺΚ R€7[ά’€&W‰Β R„£Eh_'7ΤγΣ]σ ŠPτŒ–ƒ! H‚N²„εΚ€‡ …4)&9Ϊ(ΠΰΩ( ωΙnΚΘΒV»ρXζ'ή·ž„Ν"€(œ ·ο<_λΈj/”šΉ»·εwπRuΔΛΘΠGxI»τς†|”ι‚3:¬{„L›lε^ϋΐΏ>†Žg4“K¦Λ%—΄&+˜Κ0`‘ζΘ%m5Β‰©ζ6Ίδ£ͺω$Y·L£ΙqOΫ>ΩA'!hKI{(=ržvΩ;h`\GmY- œέƒBNyάΥ…»‰8t¨ωΔ{eŠgq–N ηω]Α o…ˆΛΗ0†―ˆv–΄΅ηCδοHž΄ΞϋPν‘Ξδ„ΰ&υ³Œ΄Ίδ΅|†ΫoeνCΰ*Ζϊ­$»XϋΈ‚poτ΄Κ”,tZΌ€]ΟλΕYΞbW%ύΘ*YΖ Η…έŸ7<>Α΅rΘi–Χ&ΡγshŠό 0_ B8Ÿή¦)ΎπƒͺLΝ“ΆPή9ό~ggvέ\?.,Ηϊσˆχy†8”ΧaUY90Œ3NμΕ}ΣλGMNHŠYΜ«£Ÿ?ΛK£Έ5ΆφO8β> θœCƒhq9΅ΗJθηCwz~ŸΜΞ Ύ©™)i(#%ο2qzέ'Φ¦q}²ΗNJšzRΊ)8H³EUΎε₯ά_0uRK’dΪ Ygννo@i0ξ/§ω:ρXr}·—`—” ψς~*ΞΦ 66œ•~Rhαfi΄·;Lθ wΏk-dΥ”Χ[€r<υχσ!¦ρρVGšwο,Ήζ•αΠα‹α’χmΊIΑ9€ކτ θΊšLΩ\­†z?Υεΐΐ©ˆ+€\Ό±±ΐFŽ -hlͺQ΅ίi-―’,*ƒΤαfzΌ ΞΘ ΌhΣΒή3θoΥZdXq#Ε:R\.ςg ΕΆ‘ !ΐθΙ!IΑyN‡\»πΡχ‘χ[εβτ":Αύ‰«>h;‚—j€Υ e˜’:ΌφͺLˆ’rτΟ~N–¨ΗpεΛN|σ₯f’CΗOyε<A5ΪγcBωA‡ά•σ‘ι>μο]E πϊ=:εK΄ε§"§qςΐδ™§ Lg~ί;Κj;Ζ΅a~wΫ½vŒΉwFδRψύ¬\44qΏf{βΓ°·Œw―<Ι, gή‰k!œžVŒ³eΕ" αΊξΒυqίώΌ2HΨOΙi†dmtZάH —J'[€‘‚ϊ«‰­ΰ™³W|θ”KRt£ρ€bfΛ—Μ OgYμ3—Va€έN³Ι³€ΰμ-.Φ_°ˆ§ώRψrΒ[ώaί‘gAΣ/¬ώRŒΘω ™7α%“g<ˆ/˜‚sΥ΅J΅g€ΛΗ£›s“S~Z¦Π½ˆ%²Žθη¨ε―jjC]‰wνt{Fτ~‘}ω–•ϋt|5¦(˜W—dΟnϊ(7S$[[½Ÿr3HΑrbrϋΚ8΅ηJ²μIκcJu2qB&aΙίIYδ~·Ρώ«ΖΉ?ϊ?p¦…K7›tΥΈι_ŸΡCλΛΨ+š·˜Όƒ{W»₯”Bέ¬zΥ-EށγΚuƒ-ΌεOŸ°΄›1ŸŸ¦d¦1έοO]=cεΰO“LoΣ΄gΛƒ~΄pΒε‘Lξ₯­^―aei3[΄Y@6παΣyž„B‹gŽσXš‚s+ [σ˜–ςάΧ~ ηχŠK%δΉpӀ଑Jl―—&ωBVZυΙ] Ž΄}ΗΛΛ=„ρμΩψuŸOω{ΩP½«$ŒΟ›™ωI}–nTSάNO&—")—΅ΗlθώR)CΥJά Ή€–n(Ώώ{]}ν o•₯ά֌#R€vΑήΣibθαD§œζvώr›u*Ρx8™—‹^άy”Α+8—ΤBΧP³=1Œ§όΣΣ‹…›Φ!+Οt”#t΄'|ΊώE;’³§§=’ΗΣΦ>P “ϊYϊΪςΪ >Γμ·²φA^Γτίλ/ΕgΏ•΅*υCgϋ HΑjA>­4Ϋz*΄―”wqnngθΆX«ώίXύTKKηψˆ’ˆYym†άυ@dŠό 4_ΰ[ Λ2e NΛNακ됽σ«ΟΡο‡ϋ˜Ό††y#΅ŒλΟ3˜g“pݜΖΗ#]8IVΓΘꀟΫ\@/)_Ÿ%°8u3‹ƒΈ4Ή£ωΤP¬drZBΜΊeωΫXΓΒ΅ρ)2L˜ .p–›Η!NΛCκ¦'FNΞGy†¨θΊ„Y»ͺa1ΈΪu,G)œͺ5Eˆ°ξ|ώΑΨ‚Ζέdp ) βz;—πͺΟDζTο}ό„6Ύrp?l*ŠτOογJ{wέ@…;Ντœ=ψε§ xε(Ρ’΄J< .Oβξ# χ텍6Άh5˜›θώmo¨CC©Έ!DπΝ#η«½‘ξki-Σt$9οΒ¬ŸŠδ}³­V_Β’g Ψπ„/οόΓœ+sJoΎ#e‚±ω4Υϋ7;‡W6 ₯\Y'yŽ—ι(γ ε:›‘οoiƒ7Θ§ι[_<žβͺΟ†ZύαΓ c¨·՜₯AήMa¨?Θͺ Ι1Ά«δΚ_Ό¬`]\ά€Z€τ'πτ7_©ΝMsuHX_w8I•XpφαiL± ›$&gα ©L…›θΑO6‡—Ž΄β@l}Fh–ΜCΫνtj€Μom…˝J{+ #έ.š#ήΝυ?Ζ»€χ‘zΤxγ»ΖϋΡνHΐΎΆ*~σΘŸO$SΚΠ,w=dΉ‹69ζχ.£η΅&λρ TΓιχθ•/Q—Ÿr@βηžΙ3¬Lg$;E΅—ΙώL₯ω΅³$/]½£΄ήLΤ Ι%Γύ¬eLŽΑU^Ζ¦§βΠχ΄7ۏ£΅Ι!ιρΩάMNΑ!Ω©-"Ρι₯1άw ϊlVίΚΎν_ ω"‹"ΏΝKL‘œέk€Μ.{™ψ|$ΫKRΕ1€μ%»† wtΊ‡0$Άyς zε’Χh<1~œ\wͺ|Y^{_‘ bU>>dύ₯Έμ/…-'δΥ$‚ςLNΖχ>˜DXύ%2`n†œχe8Ÿ™<‹~‘(t\£MΎeΟ)T§z¨.uΰN§Rq5Ϊό„OΟ‚¦ͺ&¬:Ϊ1 φXe‰ζ”œΕkm‡$ΗΠ=―B·|‘37₯4‰7%K£©ε%4Iγγ^τυχΡρ 8RaΕHO»Ί²`ήΌΥ|B:ήdiΦιέ!=㆛ΖμyΌΕΩE<κ|½g­x³ω¨oΜΡε'…nrr,(±Κ3]JΕiŸπFΗΖhb₯MXho γZ>ιπ(cQjeΡzH\„7’z°8Θδ&uΕΩ>θ;~X5’kŠS]ΖjχžnΘ§HN’eO•j<Ξ³Ψ£Έ­6…δ˜βφυ ιͺ%pެ7gz^tί»˜˜Q /χs ;ΐ©Κs©[ςŠδ―όξ{ϊπΊkΫώ£hy¦·(τώΣ‚²Ρ9©„Ν“šz^τ•ƒ7žηŽ,I-Š–aΛΚa£9;‡B‘Γ/΄Υλ Ϊπ7ώ‘y Νϊ_±ΗΒ=Έirώ/q“«άζ&7&ϋŽ–Ά λŠπaΘY:ϊδ _9φ6φPFψ~9νΞ}τχψ€q ‹μ¨Πi7mZˆsΗδ’Ωr©=]ΨWΔ)εξτ―ΌŽ.ϊΎόΤθ­m8R³NΞ…ώ‚rΙPUt]AΧE”7w[v―—‰©LΠDΟMρ!θuΞkφŸ,ΪΟ «WΞ»ϋ‡ωΆΐF©πo€ :žΥΡ‘A ΎηP•EV=cγνΙ±jo…φ¦υτy<&gΏ2ΰB—΅α@Ω:ξ{ΚAJ@q³ι}’k’{}±}ί΅:Ϊ?ΛΫŠaR?K[ϋΐqhP^εΣHΏU€μž΅20ΒΊΥΧ_ŠŸ~+k‚U ½νƒ2­:΄œ8‚ϋ—n{½ŸFƒΨ¦-Lb¦ίϋΚ.΄œχΖΡW?ΉxጏΈψΪϊσΠ¨δˆΘœfym=ŽtHωΞ|₯_ΰ3'!dΧ†Σ‡ΏŠžθμ}άζζ&βΠm_?DίχΐδuθyCՏϊσΜE] t<‘Ÿ¦j½ I’Τ›Ži<€£OKΙ²Nς.!ίλ›Λ_šΣ­d‹¨9Gp‰&ν*2sΝםηXί\₯όΝϊηos ŸŒN!39)tςΣD$&[Ο7ιΘθŒ¬,„Μ’.zbjλγψε€wά,zλΉNυήΓ§_tέξάj§Ÿ6ͺsC]x~ΆšέΘO§ΏΘΊιρ!Ψ•ϊ˜ΤNOA+•h±•%²²=δ1κΡΡ€†ŠχD.]¦ŸΚ+_/νε@V™'ξ@#tκ§ΘούλŸΰώuρ)ΐ5,zς·ξ ο@mε"Ύή&|GΎIΖμ³s}4€/ ‹QE ―|«Έ΅……yτŒͺ/J(Ύ -ίYο}ηοCΰξΓO.tύώUͺkW'£x£1MyœΦ–έ‚"2yŽ?‚Ž/S]wπίιηηά=ψρίυψy+<ψόsϊ=(DkqR¨{Ϊ0±F9fh­hLE¦u΄ŽŽvE*šζF{πύr,D‹‹΅N¨IρΊ€ΦX{RΩ”oΨ0©ό@ΫNτΘyŽMr0άοέ“gξ’Iž‰αφ{τΚ—hΛO1ρxeςL*5ΓςΜν/―—W’ '…oΦ¨Oί!φ$jQΉ€hS4χ³¨opσ:ίχ)(,€Σ‹3œœΔσΈΉΊ€1Ϊ3εßο£&ω"‹τxͺύσy°₯¦#‰λΣsmεϊ<†VdΚ1²πΎ·Ίδ‹odzž!YόΓυΆtdެι‡Δ,T€¦"Ζ)Ι»„ΑΨϊY{^œU(Dϋ%―W.‰ 'Ə§λ”/FΏYΓς…Κ›υ—Bχw#Υ_ [NΘΎΧHΚ3ΏΫ`raυ—RαΚy?†cΥγ—g™•Q-ni{\ή)μΫΝ©ήξYίu:=ή]κZ_Euλ1ŒŒφaΔ=†šœC²ε… ΨW^νΝ YLΎύD6±93L;Hα˜ί]N;~ΏΔξvτ/§‘ΉζŽVx±κΎ-(#ηVαx)6ΓΡŸs`žLBo$e£<Ώuu’’25qxΤ™—>9μέT–‰ΊΪ·αXύ³ΙU8ΤLyΘπ%>ο=}(‹ηsλc€‚{«βεIί£ύΚ=τ=ŒZNΑΫzίό³?Ε΅·ΰJ¬Δα—/π4υ₯"τ¦ψ>§Ύφ§XK5ί™„υπ1œxωk¨7΅‹Α<Χξ[0z‘•η'³ξώδχ7πΙ/ίƒ«π ^yγχώ}⏠8ύέ?E«u·ž`°Ώ ޱQšž(BӁΣ8Eǚ n‚Τ:”)ΤΌ‰ζbμΒ#ά#εo]Žv“‰ΩΝl| πύTtτ SJ&EυuLw^CΏgήΝύε=tž?‹f.Y­ψζώΈόΡ%ά¦9ώγ_ω.žω:ί!΅^§ƒžΔ)ώκ)ͺݘ$εσΦ"§*Όώοώyd­i™†fII›p<ΊŒ§ %v ¦R‰UΌόI‰>ι»a!`ΑΝρ› Δ'MWUΙ†|‰κ’»|εΔ’ΕyOδT2ό2ιFFΡ[x₯TΉ`™°‹p»Šτ^t•Ά‹h±fB70M$z―’~]ρqœΟ 8G?Γ=‚=ΕΚlQ±Κ‚έDowΉO`ιэ'‰Ϋ ²v<΅w’‘©™•aΩ‡WNξ“bπ7K½ψ΄έ—Oeθ<έΖ₯kπ{ί½ ΰ[Ԋ3o·ͺ’V­Π€a₯ꯚΠώεmμ#KΕότƒ΅ηΎΛύ–{“ />#ΕίsŽ%{_Γχι§έ• ω(χ» e±λ.IšdBγ'JV8ο΅«[ΪTMΝγI‘8εLcϊŽWΑ٘œ·cr|¨¬’ΤΙMŽ€ 1ρnh`H¦˜MVόϋε³UέψΕΏώ ςψ·…ΝCYu8ώχβϋό•ίΕΕ½bΏΔ'dε)|νOy=I9ϊ‡-šόŽL(?θhΌŒλΉ‹b?+,ym”OύύV=Φ>ˆHθŸj¨ίή^~+kR0­ιΑ¨Τ”ΈJ γττΚΟpζ ς3²yήΟks _*ζT²Σ^ϋ!bžόΎ'ρ…ϊΥπχOσ q&―ΥKŠω†…@‚°‘1¬4Xd†C€!ΐ`Δ™yΟ±8#XuTc;ήί«εI›ί0΄‰Lš`έ λŸ‹ΪbΕ[¨²ζ½ψΞ‰*ŒυcxΜ‰‰™ylΙ ΝM h)₯ηθh€§]rεgΑ›ύgΔ:ρ.ΏBρ―CžiΗƒ…d„@¨ο3ήίkGθŐ/¬Ώ€½F°±@ΌΛ§PόΗz p‡σDίe·ΒV$*ΎMαIοΗd­v8: o.ΨFΥ τ|‚Ÿόζ'x:οŸί©‘ρξΓdIΩgΉ»χ—ψιο™QI›σ#εΙΐncγ·pωκΐgvΫ Γ}ο }ΔߟKΟ9y~φc< ‘˜ΉΊκΓμ†Ί]¬ΐ½qi,ϊΤί•5₯IΗ—ˆpΨLͺ'ήΧώ/ψΑ_,°‚EΣL/ŒrπγλCόΥίώ~―|σΘ·^€gK Ξ3 γ‘­šωVK΅ο(Lωέr—ŽϊτC+Η>ΩΛd$k[ΨtΞ¨L²Τbυ–Ι%σε’γΛΖϋW?Α£^o•― ΓQT CrΙ½Š%1ίοχίτΆkͺ(ΤMτ= 3Ι’Dίύ“ίΝʚΤVω½SxeǏGrή>κΕpt°G²ΐΤt›α1ŒωΆ=]—ρƒΏψKά~<¨ΰJώΰλΕύφ'^λΝτruQΗNϋΉe _Cί‘)ε§£=’e^Oϋ`F?ΛkύΤΓ„Zϋ@vΏΛkΐ(Ÿzϋ­BXϋΐϊ­\MΠίoe퇛 퍋ΔφoβρUΥφΦMγ«wϊ*­7uCrήpήΰψˆƒΙγbS^ Μ“»ϊεg8σλ‹R]1―Η]ό:ΐƒ&^†ϊ!bζΨ<ƒˆ„β_ςZΑ:{0fΑΩY †C€!WΤέ@Qν–*ϜΌΏW͘FΟ±Ρ1τ a`bG¬ώͺη:A˜‘+ί]ƒγ'ŽαλΏuί8-εβ)w³Έu―Ύˆͺ'Ζ|±ƒΐN_Αδ―^€_y¦ž!`&_”ΐ½ς…υ—”…Ξžβ`ύ‹ ίb½pvύρϊ³ηf2yσΣKf&±΄ŽΏα"§κΊƒώΕίHŠ?fΜΙEQN.SHγΫΝ­5,ΠQ{ΣvΙ[P]^ƒάδ Ώ‰΅•YŒLtVO§#γsσž’‚”„DžΖΪΊ “£έ‘+)tN^+jςς‘LΝ77—17?ŒήiIύI#ΟΡ f)³!•#·b'₯J ψμΏΗΏλ0Ο@ηΏύ?ψωσ¬ρΦ>ƒ’ŒtJ{Λs<| 1m²ό| Ή©T›΄CέΡsv_%2žcεΏβšV”Z‘’šNκJwiφ;T†|ϋΗWVρ ŒΆ~ΰceM™²ωO<69„ ―ΣΎLJΪΧΠ‘™Γε`~Ά·=ΕπεΛΆgaG2ΐδ’P¬fΚ%KMκ+ŠxYmr;π΄#€uxO­Š¦\ŠFE6OCό–Q[V-΄eΨά Ν.L=€=B²>šί‘!< FŠ—~–q>uφ[ β―Ρ’Y― χ—β¬ίΚΪΐΜφΑΦzΕωY|{»:7ŠϋZΗ;:?J£υSΟψH'K~ΑΛAΏ€4yDžαω‚Tε#;-ƒŸgΨܘΗΤtΖCl‚Φ”ω Δδ΅P(fΚ—"―[ZZxpzϋc°ζΖK ™4·Xά[LΕ7•“ΓΒY91ΒUh6Ώτ*ΞԐ’ΦΌούΌέΤωσΠΤY†C€!ϋTή@Vώs8z1Ωηέ~Ξ-nΧmbazW\Ώό‘6#&±_R‘α0gw#^j©Di©>$&GϋρΰήtΘΟσ Γ±ˆΐN‘_δo,bΞxbΌ(0ως’”΄2Ÿ¬Ώ€Δƒ=Ε7lό§,ΏΜΉUq‹=ΌoUU•ΚΫΠ^ƒƒƒ| Μ’zEΰP'°+³mΜΝχ‘’°Ά°κ‘ά½§ώJΝwَϊus3x Γπ’Q:αΕ+Dq™RͺrΙσZˆƒ{₯€WVΓ^JGΌιΏCJ»βƒž««χohT†–₯λθο€CΑ“ΨοQn&Ϋ‹xtεš,•θάΖΖ{Ρ€e€½¨F _ΎD•έNŒΙ%e›+—άύp[“<τr±³d…ΉxzQq7Fmύ"λΆη;Šlž”©ΗG? 0Ξ§Ξ~«žϊ΄=υΪ° Œ³~+kΜmμ΄3 _’Ρϊ©}|~&ŒΛAc΄£FΟπ|Α†'cwγ³1Τ}c1y­DΔ\ωΒδ΅έαiW"S‚Ϊiε<==‰δEl-Ο΄μΏΣςΜςΓ`0τ 0p'‰·ΰΜ)3sŽSr•wD₯gρ9ίσ™b"07Τ…θΗΉK²RΑ-Ίo¬81μπ]>ϋΗˆ=Dy΅δ—\sHΛ7‘ΔςŒ#†ΐΞG€Ι—_ƁrΘϊKaώρˆmo©1ηνşQ׈€νμoγΘJ³ύi;†z»1κp`#½ϋŽŸΓΎκl!•Ιv<ΌεyLG4ΨM\ωϋudΡΪΡΖ²έ¬CG”–8CΰD€Ι%ίBO.ε”[07xζ7ήίϋ’ϊ9<¦,ΕH ”ΐ§jk9ξηο&pγγ’b}̟φφψΨ;noaF•!ΐ`rΙ―&•KΗvΓv²φ›ωrΘ/έxο—!FρԘ|lcίQl”γΒ\X½φΓΣ¨<‹wωŠ? 4zΕScς,CΰΕA€ΙkΏ²6KΎ„’±π^mάασΠ…³ΰ¬ .˜!ΐ`0vςEnΡς©<{ρώ^žvΟ`μL²ςŸc'Κ/QώξΜRcΉbΔLΎΔG91. νˆύ NΙy'φŸ΄#ݐ‰‡Žϊs3Iτ˜™\ΔΪ}ΰjг€ε <Ήv3£Δ6]Ή%ΘΛΞDZ^.R|œθmΗg?ύΏp³sΙη {d0‘C€Ι%s°•άφο)ΕσηΟΙ’σ¬”xΌΏ—2ΒnT`ί‘*,Μ3Ξ`υڜŒwωŠsPb©0α ΐδu8θyγrς.ϋοΓνƒήLΉ+,,δίΊfŸ6$ϊ υ*!« ©™/Tž΅f6σ|Π9δhΒΒ1 †@œ!°8³ “}‰ΰj.ήί«ε‰ω1;,ΏΙεSz,' ΨF€Ι—Ψ.ΖC€!` xί…β_ *)ΉͺΑΦ\ΌΏΕbQ}ΚΣνζαS²ςA_X ΞΞΡnτ₯Lcsa‹ HΨC,"ΰ~π!~J?ΞYΚlΘΙΞWy7ζ;`γ½Ω?†C€!U˜\2nΉεfQŒK™³¨&>‹–ΕηxzΟ,Γ―'μ; Ž{Ÿ°zmNΉ±φΑY* †@`˜ΌŒž7œΌζ\Όυίυδ‘…Υ†ΐΔvšY@,C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`θFΰ…yξώδΡ­.!pΩΑμζΔBI0 &—D$τ_Eεe.¦¨ Μ)IδTX`±ε!ήί‹yΜ‹ƒ}G/^™Ώ9fυΪx)Η»όΕ?kŒΧ “! ˜Ό6Ž*'οβ΅n<Χ,¦* ΙͺήΜ“!ΐ`0 †C€!ΐ`0 †C€!ΐ`0FHΨ•!ΐ`0‚#ΰ+?γMώϋ*0ϋςο›Ώΰh°· †C vπ•o‘δ_¬½…laa!Δ5ΓΆΪ‡Β*ΙRŽ]‰LΙY §\ΜσήsΘQ{Νό †C€!ΐ`0 †C€!ΐ`0 †@ά ’‘«Κλϊ‚‹χ·X,ͺοCyΊέΒ<|JVΎ"θ?ώOφ\αζΓΝO/…™‹Ξ`0 †C€!ΐ`0 †C€!ΐ`0Ά––žήώΑνe$¨§μ>F Ξ/μaAK¨£όϋa” Η^2 †C€!ΐ`0 †C€!ΐ`0 XG ³ R•ΕΕ Α0rUU•κϋPžƒƒƒ|Μ’zEΠΕ{`0 †C€!ΐ`0 †C€!ΐ`0 †€v%&κΝ‚2 †C€!ΐ`0 †C€!ΐ`0 †C 4LΑ94F,C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`¨!ΐYnή₯φ†ω1 †C€!ΐ`0 †C€!ΐ`0 †Cΐ0μά@ΓΠ±ˆ †C€!ΐ`0 †C€!ΐ`0 †CΰΕF`Wbς‹ @”r_˜ž’”TπKžobq}ύΛΛ£ήzό%\l)ΒT?~ωΑŒEŒ’7αΜΤ”¦d"=aΆ(«›k˜]™sΣFΌΛLNGŠψ zέΔΜϊšκΡS+½Π΄ΔA4#W&^*;τΞR―Ÿk@.eojθ).έŽ|F3sP@"lΎ§ΉΕΘ“‹ ρΦ© `~ΓΛRR†ξ❛}^?“οBK‘Ώ[­,…¦εMIυ»MLGEZ&²©KΪE›xH&Ν­Ξ`h5Έ\Ρx^v ρΎExdn`riΑ7‰t¬ΚyΛnΌuΊ [˜΅?Γε&φ΄2+ρΖΉΎ}[οΖ{ν&d²P“I}Α€DΎΟ»Ά±ˆΕΩh&)ΘKN₯YΫZΖ’J“gΔ9/d(8=©-А{ΥvLC<$ Xϋx1U­}ΙΟY’ŸΏG~FRΞΗ„Ρ–Χϊθ…–‘Ζ)(LKGnRRΐ60³<‰‘υΐ›Φ>„ Γ^λC€Ιk}xΕph¦ΰΓ…ΓXc0 †C€!ΐ`0 †C€!ΐ`0±Œΐ.ή‚s,sίΌf–γ€₯e)ώκΌh‘ναt/zC-΄€ …”©9—‘š€H/"d¦α@n κ2²T8]C·σn.,Hο23«π­’2ιYύf&ξដΎ±.z©ex₯¬ u"~ΎƒΣOπωܜŸ?σΠ€@rrσra₯ ‰3i"„€°ΏΥ<=Μτγgο«(ςgγhc’±χΨ :&T*T˜l(’G‰^JR )’ΖΩ κΨL‰ά‘―α~·JNC<…ρέVdΫАi-]MΣKcΈοĈ FγqΙ”RΉ—¦fΐ’œ‰<Ϊθ‘-θΧΡ›%ά{€ŽUbμ1zΔ’\Š^ξ·‡Rf!Žξ­ΕžΏα…cβΩ—Ÿΰr‡K??ZδΌώTΝ‰‘LΚ­EVΎ ʘΛ4'M1•Œ4‰ν©Α^\”Ϊ#‘eξZ“[‹Φbί¦ 'Φ]ψ‚ϊ‚]•…98]ΆuBχXŸΔ₯‘^8e †#ηeΙxnCΠ £σ§Ε|"‚k"kΠD£Ρ>˜!?ΕLDRΞ‹4Άιmy­—ž±qG 6 >+ιͺΈΦΑΉ0‚[N»’mΰ‚šΫ>¨gžα ΐδu8θΕT\ƒ½Ϊ˜Κc†!ΐ`0 †C€!ΐ`0 †C€!ΐ`0ΆD6Ε)ΨwηΦ㜡0`ςΩιE8]œˆυ‘.  eτ…ΧlΜΖ«ΡΔΖ+Ν©Ε«ωΕίsΦτ•J—yΙZ”_·°ΊεŸ¬^z…©™š•›9j[*DύΩ`>j’ΎXΧΌ΅O- 9~w ΚΝ”œ}Ψ‘j₯Ό¬ͺ§Ϊl<ΑΎυ©ˆ+8G‹ήΨ€ΧnO\}MΝΗ™Ά*s@ ’J8ίmdU_nσΠRP`Ϋ'ς3Κp‘l. Θ”ŒΖ#φ‹pΈ¨ωj9Ω\ΑBDϊԈ2?1(—όν€KNν©Αž†2dψδ+’ΦΏΟ›ΰZδ|π"ωΦ›«dŸ~NΨTM¨·ΡjΔΌ6μΑ±μρQyMΆβD~5\ Ή« ξS[QWΉ™[¦S@–‰†!ηι‘θoΗTˆ1―Θ `Βw¦‡±Ψ–gzrb l4ΫSΛ5‚rތfE‰ΆΌ6BΟΠΈ#Ρ‚€ΚΝz…Y8›°‰χ£28Νmd ³[³0υ»ΝΤ -―CΓV6ϋ|,2C€!ΐ`0 †C€!ΐ`0 †C€!ΐxqΨ•˜όβf>’9O/Ηa™r³›³κv`Š4@‹³ΚqΔZ$XJΞGuN†βΡjp† geΚΝΛ«.τΜ;1ΎΎŽ”Δ4:֊=9p―)-"ηJ Ξk°Ο91χό1ζŠβΨZΑ ―b zNβιΙμšϊDlkk–<*DΒ+cθYš½Ω5°Τ’±³ΝΉ <½3,άϊώ—)¬oFCw=ZτœcΈ#š₯$Γ‘€ΰ\δ›w“Ÿ ·ψ0όέ¦‘e½ι%’E+sp-clx—fa_Άηmj)š³pΞ{,ˍG΄2SΣeΚΝ+δ#Ϋΐ±Ύ₯τ3‹?h•Kρ“#œZρϊ+§ΡδcU^GώAcΟ%7zŸυ‚3œΏ8! dll›O΄Ϊ#Κ`΅Y¦άΌ†ώ;»έΘ§#εOηyΆΠfœκΜQ8ΧL‡€†θ·e*Υκ6V°(§†œ—'Γέk‘gΈσ%ƞw±.Ο"Šr·±.η ”[΄ε΅Qz†Ζ »ψ1Ώ{y“« ˜^£v`s‰‰ι¨Μ*₯Σ¦„v";£{SGρXœk0±}0P$,J¬!πBΛλΘΖΆ*8ηd—ύmnj~B[@‘|σΏβ«Ηλ°8֎Ÿί?€]c<½ΑBηqSσξ ΙζδΥ’‚ŽθΛLLΔζσ5¬¬ΞcΖՁqΥΣΠhgI~ς2­HKJDβ.ΪΥϊ|SΞΫ˜JFρRβ›:πSΛΑωSDŒΔƒυ$Ύυ»―£Ž…™ν ?~χJ$¨l_š²ό-Pώώa§εoϋCΚ64UΠξτΤ~?ϊΚʏvG0FιE'ž$‡"D~¦— ΪZ†\š Nζεΰffž‘wF]ž…¦εe"X{€O^{ӌΉ;™\br7ζJgϋ*{ΏσύsόΡ€ΞŽΛψω₯›γEϊ&#ή‰Ž<σe”ž7ν°‚la±kmcs>ύA ;y”χΑδ™7Jpz\ΈΠ4ƒΘk/‘ΨΊcr0ΆΚ#VΈΡ#ΛΞΰ»ί:GcΈMΈŸ~Œχ~u;Vr>BΛ‰π‰•Ÿ,ž:φFqQOω2 $lλσŽ-€ΖΜ|ιˆξω%;~α‘ςΪ?Ϋ‹τ”,ΙR*cHββ&gσ*€γ_σƒΈ45&γ|C‹“Έ3ν»‚…Ό1ί‹œBΏ,Vΰ[ƒτV§q‡~κ.9cƒΌaΙ5R„Čz@櫆@f:8ψζ½ΫhI“Φ¦J”zx:„N5ώΘoA¦ΰ΅΅%bl‚w΄ιρ,'+-€› •$Œ~·*Iiρ2ϊέϊΫπό(&ζΗΡΏͺT’'e‡υ]m8δ‘» »dΈGyY\Αέ™ ¬­/`rq™ΉΈ`ϊ¦Χ—™LΡRήf†‰Ήdfvc*-Ρ„?V0π¬ύ+y8ί&m!ΝͺV9―;a³",:pυ¦Γ¬Τ4¦Cν.mj΅»‘6OD­=J.FsΈ΅θz†λžΝ#3‹σ8D Ξι|ξRA›ί@[NΜt…Ω΅8ΛΡ玎 Ÿ_SΪoFr^Ξ―fzFΫ191vo.¬}0O=©ΕBϋ Rώ!³°-r>$WΖD[^¦gpά±ξΐ/ΤΪen^b)Ά=°yΪ ΕΎW“ΪγΓbϊ! ς½ΖΪ<ƒΟΜCΡ*GfςΞβ­“η€έΠώ”>½„Λύ}JΟ0žRΣ²ψΨ™iIˆ9oβχχ Α₯woܜτ–“Ηκ’© Δ%^ΗΣΗοΰS»¨šmΑΙƒίDsiΉίΡ=|δζί‚cό \»χ1ΖUR«,?ŽΚά"X³‹Ÿ]ŽR&άnάόKάΫΞ™YK. +KP@ %9$ΖD#{΅ΆαΜ‰ZRΔί„«χξwE`νvζ/²θ±Τu ΠT6Ž5μγ'υεΡ^jθΕη~ŒΗ&ƒFιE+žQωY]u­₯Υ€ά¬&7_…sς.ΎΌύ!δ ›Πι“Χrβ1zΏr‰Ι]s+…™x¦₯"·HlsMεs;ϊ!Ρ’g"PFι‰ρ…k-^9ύ}4‰π/uΰέΟήυφνLgΊθQ`£ςZI'Ÿ˜ŒΑB‰–τΘAoZ++ω1Lζ47’Ω©.„\2!ΫFε'‹§ΎQ\ΤScΎ †C@@€YpŽDMHG^²0Ν)r /ψO/“5‘xv₯Ή₯¨ρθ.»}•›ε9σQdIΜ@¨σΌΊ’YωΟ0=9+>χ{ +QζYδœ_ ‹Έ>Ί0\πœςzΌ΄§Ι€(»™@Η“ΒΚo>οΐ”OZ¦<VγυΓ h*+˜Γƒ'NΧӜ?)²ΊΗzπy‡οΒm.ΌR‡\βoΙٍΛ]ΐΛGPUZ„\A«³3“μνΖ•Η‚zAωn4V£€ 6αζ"ΓΛ wΉ0<Ψ‡ζ wγυƒυh*-(s|ŽΰΑ³EW!ΆβθρΤW‘Θ³ρ—Γmiή‡Σ…‘Aάri€²M-’½β)t=’ΕIΗα“P“„5*³4:[t₯υρυ IΓ‰΄°4Ρυ7ϊ}ΥΔˆΟ“Mhή]+α2KϊΫŽq;:Ÿ>Ε­!yψπθ…UbΖ \uΧkƒί­ΦBF ϊέNβfJΘYqSuFγq‰mΞ‘₯Ro¨H?&`ž¬GΗ½crΙΉδ_ ZΫ ΥVŠς±―ΰ‘…γNtuu£Σι[wτΘ%Ž^1^>ίHЍ]οΓΓΉ,m±‘ΊΘΫΎŒφφΰϊΥN­‚ηΒ+|[²Ήμΐzη­Ωή<ΤνΕWκ…Φ{'tpλX^rΑξΗ½' ;5ΝG½‘tߐσ…΅xγ`9hΒ¬½ Ÿψ΅‡>„2+ρκιjd‘MΗ%g.ί–Τ·ξΗΎΪrΨe0…>RΞώδ±7œnͺ[`Y:!σ₯ΆwΪζ+Αx1ό²[(Ϋ݌£{C•_xν‘˜#½νCMvdΕ~~qPRn¦ΞU‘r3Χτtόv‰TLΊi)§ Š…Δ6f0Ά‘‰22@E_fΦ<ϊERαΘy1 =τΔ8*Χ ν˜Jψ˜υ2\―YΏ5X™²φ!:ά»νƒJ΄΄ξ=ˆΆ¦ οΨcyΟΊžQ{ ?x#‘σαυ獏b]^n"2ξΨ5§FΩ6GΐŒφΑ[…bσŽΙk֟χ©™bώW·ZW>‘ΜŒ”noHNKσJ4+7s‰ml˜8I)Pozή)©@aωηgн`ρ7°βeE XYσ6ΎήΌOzφΏΙDz²μψΗτzTRnφD..=‹GΦρ£ΫŸ)“K?‚Sm―’Pι+<­Ί17£φ"Š~t*—XFβ5ZΤmm'pξάAž\χjOdœ·1ΡΒ‘Ρ Ž@Ϋώ‡3εκ2κπRλ[˜ΊώWM=€f_£τ’ϘόlE[λ ο± *ˆΒ›§π ΟpΫ#έςZ…―˜σΪFΉΔδΉ΅ΑT<#U/Ά‘MyΖ•¨QzΎ΅αΨαΧΌΚΝτriiNqT^ΈςL/=.Ό1yνK)Ÿ#Uί5dΥΤο6½mΜ_ –βΒ_n‰FΪd:‰g§ΊPr)ά|•Ÿ,žϊψΑ(.α–#‹Ο`Ό0 Ξ(δMZ@:ΈΕ4%_R΅©HχΞ=―RΊ‹gζ$™ƒϊ,Ο‘γX@Χ4§•B'ψ₯!‰”W66Wΰ\χΝ³@9“Βˆκ\ξυU¬Ρ‘±₯4O,§$c”^ΐόfΨΠ"YОΓ·WΕK'Λ’Ϊς―ΧόšΊoCw9εΝxϋΥ½°*b§‘¨Όι'ΊΩ-§Ώ‚sa&ΚΙΐΧEŠDίn¬@ΉWΗ’š›W„ύ{VΠK Ξv yμμ14ψ„α¦g‘΄œϋΩP’ϋ%ή»₯\όΟ!%«·Ο«ρYG|Š\ͺ\IΙμλo@΅ ͌l+ͺιWœ8―iα±ώp5lή!άWψ–…bRbPc%·€Ύ}XΫ!mpΉ#>ίΊx΅^c”’’Έ΅Τ†Sτ+Όw—ˆυ%zΖΛAΞ²‘{½υΪΨwk„³q4~·κ©δΒ–α[ΤC*}υΔΛ’ ’…ϊΜ­Ο)“г'&—Μ’K²‚'σϊΉh*Nw“½$ SWΠω©L6ι–K”j‘U»K™G›]šδ„ψϋ4”“’ςw2SπƒΛ%Eζ 2Ψeγεt*:;qGΕfTΝξJΨJ…–|…œ7‡Ο?ϊDA…S35κΛω$S›Μ}ΙKΞΠ Ξ„…ηΎJΧꨇ+ΞΎr‡*ύεA)λξ=R€ςό,ΌΉΏ‚w~I%ͺ+ύˎk›@Α9¬οˆ8.j8„ο4xX—.jεN{$% }νCΚ€ώμ†h³˜θφΦx6ΒykBf‡Ir1±iΓ•…'8‹/\Nμ.υ4ή›dα:Θf‘GοUƒœ7‹^Xν˜—γνΎ «^³~«zρ±φAίΐνƒO@z,j؏‹Ύή$³šΪŽ‘(/οj†œ£?OeΞψ(Άε΅ρφ!"γŽt ¬’jΌ’YiMCϋΰ[Ηbμ™Ιk֟ޟAœΗgΊh²i‰ς]Šžu“&d­u§°[όxέwq_²T,zΖώ5/SθΣY/°wΐMΗ›ψ-moΞ wΖ'/%qQ¦άΌDGvŽ<‘£±šfE‰΅lpΝΛ,Z'%ώQ`ΖՍqχ&ΙjΑYKHL+DuΕ!²-X Λ)jΑ‘ΌΟp[F3'·@¦άΜΝζ‰|Σ-νBβ|^XΗoΕrΏ©RW_X\XΖMC ₯εχdΚΝ‹θξύ ξvυ ¨ρuœ―σΜ:δ6 ‘ά‚ρΡπΏF£τ’ϐόΜ/•qœS™²Σq‚N²ό’…Κύ8TQ-”[ξμ«z€ρA;V{dD^›V{vhBLξš[°q€g΄ϋ!Ρ–gFιωV„&j/Ž+­ΐΞ/Ν(¦tΓ’g>΅Π7’Wh@IDATγ’’Χ>΄Ψ£qπέϊpΜΥpΰΩ­H₯ΰB·ZˆΈχΣ*'ŒfΤ¨όdρq•ρƒQ\Œ–‹Η`ΌXμβ̘2g2k˜ίœΣPŸ[ρεΟζχ.•>ˆμΣ‘©qεh°Τ£―2ΏΌˆτάF|#7Ω²LΈ—xδκCΏqœδtΟQε4‹U…oΡOtσ+Σx6kGΗ’aΠΣV^ΣqR!ρ11;Ž.>₯π 3œ/)¬K/ΝΊ)Δ™“2₯αε)<μΒ\BZΫj€ω2ŽΪ¦Ϊ$7ρ.ςd-―˜šΆcœ²Σ³-¨¨,PUΜ^š™ΒˆsξΩšƒ#%υ² ²Μ,(}ΩφμΗYΗ$‰εQŒ—δ|ΞOβώ³a,₯ζcΟΎ*?εa‰Ί©o¦Ϋ$εζYt?cv Ιι°ζΣά)7^VΨ’G—έ£Ή^T8ŸEg§l…εD½.ld$b}λ9RσΘΚ[© Œ69œFήs¨ˆχΆξή‹—φΊπΑc‡ŒΏκ—σήθzϋσaττη£-―Γ gξΈ#59ΕhΝ/“4蜳θ"½?-.tϋ %•ν Γδ5λΟ‡κΟG·~nίμσΜC\§ŸΊΫ·+ιM*χvχϋ>ΤΥ‘TO3ΪΎ6δΣNMΑM’eƒΛx¦‰…ZΌΪxB09F>Γ;―Κbφ‘wτ6?–)!soηΫρΣKν²pβ-ή‰Τ ίG5'MbŠ―<ΧΉΩn΄χ`ea”(»‘]=ΌΩΠΐΏu.NΕ.φΦBΎ!qΣΚHΉΉMqj—†`4κͺ£όqs”ΏπΥZ£Κ8#¦μγΨWνQΊ₯8Ο:ήΑ―=J·Sc£8A Ξ‚½†LdΠD?Β­ FιE;M+’Ÿ[³½…Ρ‘/πlFωΥ O>ΔzβΔρRA.'$H³Ρ΄3Δh{dP^k­±ŽΙέX,• <…ΥŽ©”w$:ŽQν‡D[ž₯ηSͺ₯Uoγ½ΰ,Gxϊs\Ωyεδ‰qy¦$¨™žQy­$_O*ί…Ωλ» ›ΦT@¨Rޚε λ>~η"Ήτ ]NΜ΅QωΙ⩏Œβb°ψX4†CΰD@>Ζ~³©,wQwY.’)ŒττRΌZ‹‰₯ud’QΛαέςΚ8:μŠ“]"ŏ™ιΦ€Σι„ž³Σ‹±O|±dγli½uΗ~Ω„Ά…œΉμ΄|‘_σn.xOΓ‘§F«4Χ†qlΆξΔ— τ€ΦΟΟ;έμχΚ¨GAσn4H•b p‹Bjw‹ψ}?ΛΞ‘(M‘ύΣ;ψbH¦ΐIVO•'xf']ξκ‚kn _τϊΜΝ?ξ€ύψKΈΘ+Έ₯‘’,CcH°κSΦ\‰Z±ψζGπ«Ÿί„`»³·œ‹ψ£σ­•œs³Δˆ ΈυΡGε`o>‘UΜΚTO¦½ή~wΆ½Υ³Cv’λzψ"Ϋߍ‰€ΰ\Γr<Γ•N&ΎQKͺPW.ZζœΕ­O―↨άύ σ―œ#‹Ÿœb_κκ)‚…UΓτΘήΆ‘rπeΫ”ηυΪΘwk _²DΒωnKsλp"'GJmB£bƒήx™iι’…z¬`F&ϋ$βqrΓδ`¦\⊽¬Ή-β²3}·>Ώ…ύJ™Tέz-™² \ς­fγέχρΣλ=‚χγNΈΟ^ΐ™:n3 ……dυΦ#λ:8AςŸΫζb«(AΑ½1ΕsYs©Χ‚~Έ$k}ι…σ\Ξ;αtΝR›I―ˆŽ6Ά«΄"ύB‹ΨΈΞbz”·βΐnaw恲 zπ`Έ•N)hε7ΩφΥ žœ=¨ρIΪ;sέΑeΦ’€œU9‘’ςjΦw€ΉόŒΆJΆ•O²κ¨|Aϊρ©YRŸΦ½ΊΐoδΛΜ΄αxW·Hυaюg›ρΘί„]Z62ωRρή[X‡Os=2Σ‡vκ>”ζz7ΠMo¬hξ[k‘σfΡ §σGaϋ|ΜͺΧήΌΨύVΦ>xkC°»ΰνƒzLΧΠcόˆ,5σŽ6F:—Nγ΅}Βf–ΪΊJ”‘‚³|+‹^9Ο΅%Fϋσf€œΗΌ§}wάΡ\Њcι˜'π€δ4iή‚ΓizaŸ»¦$Θ‚έhi‚ŏ…wL^³ώ|¨ώ|΄λ©ζυΩh2vδΰiTx&ηΖoαϊD4©›D‹&fσΔM¨³nΕ.…ΚΪ£hπΔ›qψ*7Λc*•χδoόοΧiΗΧΧϊτrnwυIΈγάD7;ddG,­―γ΅3­H!EΰM²Φ’H–D>ϊΡ{pˆ ˜|έXKā €#Gχ‘%kΟΐra·?Ζ{—ωQ+n=ƒ=Ν-('Λ…y%ΘΛda£C||ŸήθΕ+Δ©oυΦTΒlƒvb΅JοΚΏΣΘi .‘ζΧGΏό|zG}οΧ~ϋ[Za+[$u}Χ0&zρδΛ_γaΏ?Άk›°΅}gΎr΅άδ/οζapWώιAw{‡Έβάχ»³’°•ΈΟŒk~;€m8ύίF9…I 0C7~ŒΟ”γ«|yTy6ΧV‘VRri<ϊΥJέ‹3η{v.Mΰξϋ?Ε%[-//8άΆU LΡ}λ3ός“›~Όλ/?.‰6ΌρGŸžˆΕΎkΈ=U„3§τα­zέTΩ,YOŸ£ο]TnHqφΰ9RNΰ&ε3\<†A„c‹v<”Ÿ˜ΉOgccdww°φ(2ς:0Ϋυ†Ιέp‘7*wεmDΞ|σ<šκ½m±Ε·)£vτ=Ό‰φέFMhΗjΞΰΟ‘•η‚›ΗDο#άnŸς³άα ] ΙΟ0ϊ!a7Ρ–gFι)²Stη[χ ^+Y)BE.Χ6LΑE–Ι΄Ί`ςL‘†zFε΅‚`μ?09n΅RίμuδSίkcψόοώY½O[φ2ΎυΦAš0JΔΪ-œ½;Ή-ύO>·ε`ΓΛΏ‹#΅²Š'Γ,1σ}ŸγueηΈμοκ‘2(τά•Ÿ,žϊψΑ(.zʌ…e0^l˜η•κY²[@Y8‘™n'<ΧΧΰ&x—†π3o6B D*Ω€pcš5ϊqDΞ­`GVא“^ˆ}ٞ#Β‘‡f:}°_ZDLG^ ΒFΘ2’›ζ)—ŸοBnZ2½Κ‡ ΦrΨΊ0Β§=>ŸωΨkυΞχφ“υfŽO0Ο㚯e¬€˜½(Sω³χ&ΐqgšΰGά7 …ϋ$.β$@ΰ)J4)R”dΙ²Υ’|¬έn»cάΫΫΫ±Σ1½;3ΡΡ±±»±3Σξž‡―>lΩ–GΆ,5m‰eR€(ή‚Έο»P(ά7Έ;λ½ͺWΗΛ:€3…χ^ήωeΎ?χεŸΩ5ρžφ.•ά,ZŽ΄£₯»§+B–κΥγΝΓ«.δfΑηΤj–*ZξxR^΄΅α0ά„― 11ΞζjσΩΥ₯'Ά ΄‘₯·Ο”ηssK3ΘΦά*…˜‚v•_±Χ_³i­CΠΧ)˜tWθ P\™†ξ9ύ5ΦΩΏθœOΑyLԟ3i˜ν” fϊ‡¬xeσ©wZxYx&G>!ƒ6]›Fažς­œN›pS)‰šΈ–gΤͺΪ‘σύΈθ$­U³n~Ν?α珜^zμύ˜OxxαγVή?ψlγ’ίύƒ{ŽmBΩιΈ>κiέΣGX/E¦cV²%5°δi++^ό²šEΥ<νΐμB7ΟHΛ-EUe΅Σ}Q‘c:ν‚x—ΧόE|Α5Ύ”<ԟω&rs3ρ“όJ£γΆ §ήψ&j•oΪp)™(¬~‡P˜σψΗ·―Θ9( ς΄²Μ© b)¨TPμ7;>PnWλSxν_G}±fR/»&[IKύςηˆΰό3Œ|—ΧόΎΥμjJ€η—π­τ$όΝw’)Ÿ«?ž§`_ŒΑ3MR•¦ΏŽ‰ΆΏ‡B‹b8πΚ—qRvΗBξ Ϋ—Λ£ΈΊZ\Σ§’‰ΖΎ ™v%;ε‘ωΥΧ0ΩΧ†›£Šο*œΞβx΅s"ͺΈ$[Kqβ(.ΜΑO~hύQ¬εEtV΅TWe•¨WR―Ύρ O».AqΆΡ3μ”uG½ otHvζ:IXρώ>ͺž oXΣ w8ŒΒ$? ­±¬B™Š·ΖΪΫ­Χώ(DςΪ[~ΆΙΛέm’»J}SŸςυ?ϋ6* ϊ2΅O‰žΠœλΗ,΄ΙζϊΖK.ς>y•'ρ…J%Sž―ΛOsγΟ91r ·n€ΚγςHhՎiύUΐΓ­Wy¦ c2½ΠΘkM~vΘ-—ƒΚΑuΔfU£Tό\ϊΓ`π–ϋͺ߁cGP[) ΫΒ]ΣεoΓψ“f_ΘΑμR:ŽΊΪ}ΰΨμ¦ΦlDpf™―PTΫ9ή5)'Ψ^cVωΙΓ©›# ψTuώΐŠ [νρPŽΐŠ@ΤΞ[bŽψšH,ΐK€u‘Ύ—Jfs £€Ν3*&yq2)8i/Ξe¬ΰβΜ΄β+BΙHSΚ ζxχΖαή²L»£ηΧγι4ϊ°H&6Zs –qŸ΄3·―/θ‰s#θJ)Ε³Ω’†₯θT$ΗaxQˆ3τΔ,θώUgeI6Λ#Έ=Ώ <^m·πO½DεήΐZ,½+λΛ~+C1ŒΠΝ2 iΚβ?°Fά cS4yτ—ΰΌ<ŒΞd,—΄Σθ˜ζ†}…(ΜJGJ<}ήΨ”ψχτQXͺ=mΧ|ΊΟ F'(ŸΞ«_ˆ/G?ydv‘t6ϋ FΛΪ„<ή ¨jdξόؐ›hύtH&M_бMΌ—SS£"§_šC•Έ|]ΝΥƒ―Ψόs7ΧYή[ςα―/³ο­― IτΩY–«“Έ8ΦχΦ«„¬αγœmhnέ?‚>eODήόϊ4{Υλ’ˆ?ϋΕ VB7?-\ίw.—%’·h’Λ°WΤbOOΤΧτy"ώJΎ™ώϋƒgίΤ,fQ$φS"ΩŽ‚Bϊ^œ*©τMΟΛ¦΅ρ!Ψ,°Κ}Ζ,υ5ƒ”£Βxecέ76αλ ˆq%@Ε87Γ$Ζ2F{dͺώ˜`ΧςΏHAF¬2~YΒΤr4ŽζWAϊŠΌ€ΫΆ.θL€ήDσ9L‘–η@LvJNQ½Š†6«\΅)±)/β:Αe…6ΠωNΗ9ΜτXϋ1©°^ώσώΡ?nεύƒ—:ωΣ?¨ž•›ω » ϊHcσΨ,*Δ9K4βΕ±›s%Z£+Ϋx^ι€ΨζG;W^?:οX#-έ“bίΎA,ηT:a=›Ζ_Λ›kH€>δόΖήχ±ώβO`Τ|ΪqyΝε55ζuSγAΗσ>Ϋm=2²rV„θςpΆς„Ίϋq΄ο&Zi#e$šτδL΅ωgπGτS̜£­=—pg\³mUpΜ©@‘L`š³O"©βkψ£½Upκžfl-Έυπm<ς —<Τ1΅©ΆY&ΖwΠꭏΥjβ£eb»―t6Ά”bΙΧ-Zͺ ½qτέΒέΦ>$–Δρ¦J1Α¬Ί—πΒΉ~Όyѝ<°8ُΑ‘AΨ§l45!m'•M€­Aš&•ž|ηϋαύ{Β₯ /a=-λ€"!χ κΛRΕψΗi1zdf QQς`!zSC“.…­Β—ΎυmΤ««άDG"-Ρ=C6Δ$f!·΄ Uey€Ϊ@Ν„&&‘|m΄@‘TֈƒΥΕ’KΩamϊ@Ξ§Ζ³ΙΫϋoYY'«3iς!œϋ£—Ρωγw₯XšΎ‚s§Βϊ4ώβΏΰ>m^¦S¦4υ:φΛ—±^|e‡l:―Ύ‡ω¬f4‹$ζb”TVΑΉSt}ζυδζ~Hέ3hCra5Ž7Χ‹~²^Β+―ŒΰίΉ©D©^ύ―? ²²Iu¬7¦ρ G»Ξ¬@BX\Δ€,*«ΏŽγκ&g9fιX€ kzαG…d’Ÿ>ΐih8…Je­„–’†Η|‘Ε}τGA—Χ> °œΉάe―&Ή+'WχτSrσ8Ϊ―ίΓθδβH›UVq‘KΙ§2‰5α…/iΘΝφnάΌq Ie€BΡ/€αΕ*?͎CΌdΕΝ)άςŒ5=5γt’Β‘/Θ§š,βΑ½’5ϊ<Ž*ξ‹Ÿβρ!ΟΤ(Μ§ y­fgήp9ΘZ)hiiAγ9iK\YύaRυsΑ%²z:’YΣΣA_h§ΣY°ςβ6Œ?“ƒcݟ‘mMΠΰL3’Έ 46Hγκ cŒΘοš—.νί#«όδαtψͺσV\t±ρŽG€#ΰ=:ͺwΏάΥ2q^Cnž^Δυ©a•PWn©Ζ)Rˆ!˜"K>ͺη¦Ρα}©ΡŸDΓη'>)šiμ ½ίIn–s1ΆBL*™ΰ욱E"7»ς¬?S ύxH|š“‚R’’…λ`zBάͺI(ΔώTeAo-³†yQύΛ76‡°ΐ*#„²JΖu΅^±χϋΊΈ‚y?<<~ §λά•YΈU΅-jσ :θΔ”ΉΫ9HΪBD­ΠΙΉ’ͺ–~rΛ³θμιΕ•]€sΦ“ICΣΎrΥ±«CΨ„\γΤ’6 ϋ΄q\?.Y6_.πh¦]›~oΘ—[PΖχ6#y/‘› UEFΛΛ£Έ<ήO„;ο†5œΠdΏΜ­»~επžWWΪ\α€\zυιt$­K쐡ο;p»ηr‰κ%–69ΙΥCί)mF‘³φΤ»`Θ₯YΗΌW’{|œ’1)ΩΎή L6ˆ„ϊΒΒ\Ϊ4$†/)ΝEΎœ³Ι‘1¦i5Γέψ)ηGθΫ7}'OOςΣΣΔ H«ΎjH«sq2Hh󎒻έ6-(.Λ†Ε’Œί)ΘΙRCyΈ1ΩΩιb Ξ{dΆώtY`|π―ˆGœΟϊ*2,₯¨”‡3έΆ^΄ "Η©5³ΊˆΙuΖ Α q2[nkS.›UhlͺΙΝEΨ|ˆ_Ώδ|Σc?ζZΌΠΓ‘γVή?θ+ΡθΙΟώΑ5θΒͺ“/R`±RΏ0β|ε©ϋ3λx>πωυu~ΝSΓ,―iΤHΨΌc ντmΌ]SM΅ΦzK—Άο$[‘OgOσΏϊMά¦nΉΌΦΓΕε΅_σ-³γAΗσΊL„αA?λC‚ή’(8ƒ:I6Π)sνΈσπΎ7ο;Ϊ-3UΠΆjl,U8Ω\…ŒΦβΓAaΟ§dj²ςTRtš΅ΝQdd5βΉSDΈύθρΘ ―l:πm<“‰ΉΝuΔ$YΤψ„¦Ζ.γ·ξΘ©_¬Yκ‚ f°€aRΆ »Ωφπ=όij–Μϋ˜˜ϋs|ρ”D’­:Ԍ"8K¨v’ζ%Ψlχqι³6}Ά/ώ½―%ΎpΌ’μSQZΫ@JΥ>ύάνO ΄<ΛΙ8"8ν§;.ΰ½ΛΞϊG(=•œ:ƒF•άLZ ήό>Ό₯#]} ]ΩΫμΛΘνοτ‚μπ+ΨΏρŸpΆI 9“Ν’RΚη”{ S6Sψπ{ο ο―$ Y _Δη:ρ‹‹Iψκ—Ξ©Έ;/Ύ‰]`’Y쾊_ΌCψ—o ΰOΏ(iωμ»„7ί&»‚Uμ­ώΡΞ’“KΎ‰ΰ\Žͺ‹έ˜\ΐφΧH[θ b˜S'QGη‡byΨκO ͺωY ΆΌVς²―\&{oΠψœΞ%TΉY ΄Οzw5ίϋ-Md ΟδaˆNι «:¦ίψ3P9Ψ{ωgθU°υo10Ήω/ηg0e_‘|Qώ,©(#βrnΆBN’Ά"―( eꆦLO ˆθ£½ŠΞ–ϋ˜ O½ž^+a#crϋΗg¦λ }†@€ [άπ&τ—±¨”?ŽΟvβωtŒς„dιdς2Eη†d” υ)ΉΞo{bPž]ͺ=²λžXηΙΡ™ΨŸSšΗ‚ΠAuƒ‘Ώr>Xι ›φB:ώδύCδ[y Όž―ώχϊ(fΧΦ ηEρρš>ƒ¦>™@ΖσΏόΞw˜ε5©ΕYΐ2οh·!7)₯B?›Œ,Z‡3 zωΫ?ψ»«G.―ΉΌ¦•4ΦuΣγAΏΗσ1|fœΰp²εžh‘}ΧC°{3\ΐζ!3EX-³a€Ž:³Ο;°΄ kκr%²’“Ίͺ“θ%‚³4³ 7]˜ά ΛΥΙ‚3Ίϋξb`v–¬ύh.*“¬iΊΥXqάΘΚ%Θ΅Β! UiΟ©μ]ΈŒ]Δ›wj,Œo35€θ™:βΝΨ›j»*h'Ӛ€vuk#ςt?ŽΦ‰H«1χίω΅‡κ%RVN)ŠΛIkr―δαζ{?ΡψΤίήύθ.NΑY¨©˜8ρ‹€ή=₯E;_‘¨_«%h8xX£η;nδfΑ±σ£hΏL7ξόξ‚Ξνκέ64ΑYΰ8Y²œ‹j:O¦α_~UŒχ ‰Π\ϋΒβ[υ±(‘7;ˆDώζoοΖΊΌ°$Ω“¦d₯φm³rKYYΐΉ ˜Ζ'K‘?X―ΆθΑΛά0qάϋ%ξμ―Ηy‘Δ]²c%xψΩ ˜F υ°αi][E;½ύ]nŒ£’Ω–ΘKwξ`˜vτν!<Χ$k°§ έΊˆ½'ώBΔAψ·±ΘΦdΟ˜^ΈΓ šόΝΛO&·›¬’—qΎ¦ήiοΈ‹k>7Οψꏂ!―YςλΞJ‹lδΡ`Όlœ$mσπkΣ₯Ahw+.wέ1a±a“»›΄aI5ŠΠU-h€Πq w5Ο·fϊ±ΝF€Ξ;©δf1N’Υ·4αlƒwͺž9ωιš[Ϊΰ`rβƒg›pΛ3Φτ„ΤΤ~SΥζ?3r οtH;޲5θfηG=Vuρ%Ο$lιW^«YφtΓε d"dόiΏ‚Φσ(eH%*iμ~χ’s']ύώZuΌΨΩvΗν#jΈΖŸΑƒjE%ψΗ؈Œρn0ε’ŠΗVωΙΓΟXqρXA܁#ΐΰΈ °G³vζβΔ°Δ:Χ)Η–¦uδf)ΚeΜΣ©αA01ў¨5’σΞώGs^y₯Q—Οδ™ε’³υυ‡τ ιxqwβ4H/;΅uκ1ι³hŸσ•‘0Ήo`]³tp’†„d}¬ΕΞ5ꑇ7ρσλ.D΅δ μ#‚³BeSBӁ‰²±cVΛΪ—m}―Žχαwτ#5Œ()Μ@fv6ΚΛφ’„ˆΝ‚I*,Γ‘ςn|μF^ND“rJ"ω{ΨΥο󻇑˿-g\\\­Θ$  Δ suΠiφυζϊJ΅ά2E―›ϊDΥ„εζ+D~Ό·”rVa1†¨ζX_"’Ί@8τnXήΫjk NhΦGg{πΎέwZ¬αΤΔ%¨σb¬­`V}_TάΨqγ–{{ BAΉ\ Ί\ZœΗ‚ΐξΤΩ&0hδ&rn0䒏Š——Ρ;<‰ƒωΒF—ρa$Ε‘X03£θ‘nƒχߌœ_†}Ζ:wb jσ%|ώΗύ±(¨Κ•ΎεΔ ίYΘ,ΟaRΜοVEΝκB9μmοΐ]ƒΎL ”A~Θ“―ώˆ)j"ŠbN³|ΆΌ4Œ+v…™ˆΌEσ¦V¨Ξ ŒύC 2ιDΥ‘ΊάΛP3NιΖζ4©€ε|pReιΗ\²νγ‘χˆτq+ο|΄q3ύƒ>ͺtkͺΈρΨυKά’0¦x+X^υοΛ½>fηSΐγyζω‘3>οΒ*―)7AJΟ½\ώΝ;άΓmaγ±»­ΦΖώAΚμ=—Χ\^οΐρΌ@ £Ρ¬„1Uƒ€G‘boΏOϋ%‚£bYΧqάΌCܟΤ/”υ^ΒΓ’—ρω†fIΓ@|!-ΔYΠ7" Κ ‘ž¬›…ŽγΖ͟α³Iyΐ>Bϊ·Ύ³%Β„–―γ䉕ψ€ό›ΓΔD„ιΦιΈ’ττ*ΪMBΚ°iWcRώ9ΌZ»€·ΫέΔJύ5CCœqΠdΞ—™Έϊ}όCίβT―`5^™ο₯_±zq·c ΧΥύνφG•H˜ˆEBb6ypj™³”?…ζΓP\T€΄š±QTΰˆΕ$ε9wkΊFΙτL;¨ΥοέθότžωX츝^GΗM­Θ1-*δbσ1»‡Έχ3\(ΙΗλ’φλ<”ΠƒhZpQՐν Κd“ͺ[ Κ™‚΄Π77Ia4«Χ‰‰ΤeSrκ5όIε+ˆQΚ1ΞΆŸ$#©„ Rw υLj§ν:gŸώ·NΝσΞl{Ή[ΔέΫο!9Y‘φ6LLΕαs'Ώ kηΗυ–Ÿ“Fg"₯Y\F0>ˆL,•)½p‡`c‘ŸΖp ±_: Λ[ΑΛlή½ϊŽΗcC”X|χGΑΧJj~\ ΞγOώ·7|h€t‰Η~ ?ϊ됡ٻΈ™}δrΧ,bžύ3Ι]e₯΄}ηBφν»θικΕΔh?I;RπL 23-rtγιt•4†ϊ†gε§«ώjv’νν)άςŒ5=:±δ«Λψ38rPΝ³‰›=ή DN˜AυΚ*?y8γω+.j…πŽG€#ΰOœςΐ“η#MXάΝfV HCf¬Bδ]Γ†²rhΰu§[Ρ‡Bχ½Ό)(₯£_c§΅mLrr†€Ό†e#/szιh -”ŠuŒ’ΓOςaZyΎΠ\Œ˜ ! lWΖπΑ…»pύPΔmώ:‡ι9ϊȞ#`–Ž‚Pa%jM’‚™ιGk»@JπΟ¬i4—¦§ 8Οa7ιcΌbS…™‹ίδtd(\­eD©―&1¨™τΨκAΙ‘ζΊ΄&*-ZΥ’.*/Qθe_ΊΫ`΅kΏή[JΉt_ž)Χ΄eRξ@gο+#fίΫ8ς]…ζTj›’YC·½ ŸΜΞΚϞ.¬ατρεΣ7?EŎcmIσ…Kο/2žΈ\ ₯\Bb**ΣΠΧ­—‘Fm#rΙ(^_vƒτ~Ž)A>yΜ§Σ^bΤ~add"ˆ} œ“r~Δ&ΌΧΒZ”•ϋ’EšΪάZϊβD‚sNa υΫBΏBίΨν3θοζ03GDΆ‘?!-Ο%$5Mτ'b¦ώ…=fΟL€ ηw%ŽŠœAΧ§p}bΠΉ±/)ΕΚ7χυYŒ.oƒς―ΨΔΚϊ4ά€ŸΞ<ŽBf‚σ;Ά°fšμΆΦ4£ΝΚω@ΣSrhΆSΒνδkψΫ5Ϋx)2Η­Ό0hϋ&ϋ] ©IΘ !ύ¨n:Jsq«0jΜ*ζ N#’άόϋΟΦ>β69?’(v¦Ό¦Œ©pEΙίy‡k8$YQ¨,ΏlNΗi7Ϋ?ΈΕΎƒ-ΈΌζγyίγyaΥ#œΖ•fΞ΄iežΑ‘"ε£Ά·{.#ζ °σοζˆάldΖίEKNŽη $’d$ΡqmI€)u²ιλΌθ$7Λ ΫiΕK&8ΛV.ξ=| χ4ΆMϋΏgφJ€θ’ΌjΑyHγΏ₯ϊI ιΗβ΄ήΩΓΣΔh§—XΟΞϋΠ`š k>-6·I«ƒΗ_ œ?^ν;#A9. QΚEΔτ —υKί™ –@Η·)t|’¦‘ψ‘?ίω/ΈYω=)pzΌώ‹ΏΕCη£η»^μTFA…gSkΆΠΖ“‰ Υ"Ώ˜6&d•γ¬*ήgΡ?θω+΅6­Fω­-›HλMΌ7+ηη&‘…τ³Šo@ Δl°ΔbpΉ%‰ικχ9›ΠΗΚfzš„e₯ΤίΤμ―Β£v§Q[rQoέB›\JxύU³+FSV­Ÿν{¨0Ρiσμ_@!VW0G›Ρ,β·Λ5<€ %jDxΦZHη5Hf|ΙR½bhόλ–qc’Ε0Ό0Ζ<ž5βGΈ΄ΨξαŽnο ‹œ$=g6ΝυcΞp;ύnϋΪ΅ΉρRδŒ[yΰ­Ν›ντqε`_uΪξhΆ¦’r’ ₯O[žΗ¬ΤέꃩOΎεΌκ•d‘™y•.ω‘~gΚkΚSΐ8$) Ÿ0ή\Ÿƒs΄ τGΛ«Kšώˆ₯Γε5Ο:žvkφZCώ,ψ1u”=Ρ3#·pMX1ΪΕfE<ΒΖ₯€΄£.Θ¬vγQW‹bG+ E7'χ\F~φ7P)l>LΚF-R ‹UF&QCœ!ŠΉ}V·2i"μvŽε%Γ…Ώ„D… OYRΖ M_Ρ‘›G;ΠΩέ Η!E«TI₯8sκTEq %’c*\+ήXσ>I${Ζa›@}ΆΞ€ηΧAΌMggό0‹΅Ρϋt‰;6mfΎόkŒ.‰― šνύ²Bύ…ΟωQtφήΐΨΓβ[nΞ ;&uW]¨ξ€2Το'™ΡίΰY{}5O]xŸ˜3\Ό—Bωρ?#EΪ@a6½p‡σ£(†ςΣ%\YΕ«xΉ¦Q΅»Šwξ\τc㌟ύQˆδ΅šaΧ›ήNά½| )Κ‡4Ww·ηhl.χ»κˆqσε―—»ώ"ε―?“r·γWψ»οΝαKgž&ΝΕΞ£*…δRςP{ςPBZΎί~¦žθov ύe '†ί„rnyƘޑ’Fρ{’~Tͺ} υτ1^4{’'OΔWαΠα―‘ak7οΌo ™ή?yΌτδ΅ιNΜ»#s0Χ[e­ZcοsIUγןΫΡΆaτ5–’LψςšZ‚—_Αυ‡pDYp ‰fώDbƏZ&ϊ¨ϋΤΣXΏέG½ t_ 8@νΤ8²Ύ.ΒξP˜Ÿ€ΒZ|ύτά€“]Rχ♣ǀό΅βΘι3¨IEη£Q OΒfŸ#­Γ)¨ ’ΑΡFεΫΐ,¦&]XΩΥ¨ΪK;Α,£•Θί¦ ipV8υIΕυψς©<u`“Τ­EΣ‡Ηπe2π\χ0:ξC•PώΔΌόΚq|xϋ!Zθ3ΛΑϊύ8½_Ι')Ήθ2^«4‘žϊD ٚ¨χςΫI ψœœ²pφόΣ°tOΠ©’TΖθ-Ψϊ»Πεϊ©HmΞΨάΫuο­3Zγ;_λV¦ήΫ8Νk$ πrR΄»Ό΄B'…–αιdeQFr#ž˜ZAϋ²@Έf 'Ε•ŸR‚}tβ¨εΦγ=tϊ¨άNιΉ4)OΕn!jΟ¬­OγΖ¬§zR\;ρ?—KΚϋ<ΉΤή6€’#)₯ψ ΈΡŽajIi(.,@υ‘}HΈ―œƒ"—XΧΰ$Ž g­™œDοΈΦB{Ÿ‹“O“DΫ"Ήϋ±©™ͺcNI žΝΨ ©$ΘήetήoCŸ²ƒEΞ/ΞΐFŸ" …Mψ’! ΑγR0j[ o•|―Π©»6ΕΫΊρ°ͺ”ˆζdEύν—Ύ–€ΫχzΠ=hΓZR 2-(. h•yH'MσσDpTB[²QkU>Θnb#>…NG–Œ•΄ZΤRύ!^ϊ΄±:‹‘9„ύ=Rς*\ΝτGΪp~υbšΟΗq(K―€msσQih°˜O‘DΠΈξέ—¦M|υ―βmt*Ι_Ε’΄±πi“σΞx4w^ΣΣψ3ՏiΒEΐmΨΫ΅Ϊ&͍—"iάΚϋ‡ φ.οPYΣaΌD*Yά€₯’N9U­ς7ΖϊFt›Α ηΩΗσ̏”2ͺο†b‘£υ8-‰ογη‡C^³€Η8οˆOG3˜A›j†ia‚NQY€u†Ν=q΄ΞAσZ«Jn¦3πpVΨ%˜τRΔ;κ?—Χ|ςΪΎŠ3C—:τφlO+X΅ m~CŸΌ‹λ~jΆvύ±είW¨AάiwmΎΒ{κIi ¨¬^Υ’νS|πΰŽ˜©¬eςύ"iο’ο].©Ut<¦σ‹ ^Β1uCο.:٧ΩτΒΞ₯xεgCέΧqΊ¬R :<π;ΌύΰΊϊμ톩? ͺΌφ”»N\y§Σ“cΘνΉά .ΔLr·γ#όŠ~@6ΚλK‘SLΛ£4GO$WΓ‰ΓαΒ-οι|υc›’ Κ;#eTΒ‰†qHnύS(±¨+ταڎ›·ξΉg3άςŒ)½:ΐβΜ;m€©ς2τ+ ΝBXν„Vί•Ψ?yΌτ”tWίςΪιן;.=’aγΟΞO[0r¦^όWXU‡ςZxRΨ“mh»η]ŽyΔAηΐ:ώΜ@ΈεΰΞοONμ.yM ŽIΞGP8έ;Ε8Ž€wΈgοψ°Έv;ΖPž–’Ή!MD•τsiyi7¦…ΕΘH3 hŸE•’q9>ΗςθηRŒιω~\œ•lγ“e) ( ’w²ΌξkΣψd²K£UIπΐžo‘Ζl…b΅Ό4Œ» oͺηmΌΕGŸ΅γυΣ΅’γŒ?)΅ ΧLξŸ'‘™Ew;PGšŠE^ΥΗΙΣΒΟ5%ƒgθyϋ^>^n*sΚλρύό7ι¨ͺ~΅†A–†qΓeJq΄&+Λίƒ]ύξΪN cXRž»{«_.­ΑVVƒNΊVMΟΝ% ͺ€ι)|v· E§φIΔ‡¬œ}ž~ͺoιfi€7Ϋ=,’›HΉ\ς#<ήhλAνήVΤ~š5G>φl:ˆΰμ¬AnV½·n±™°0ωήΖZ­›εT“rQγ!Ε"‹gΦprΌYtšjy²fMK›^b6ͺδ<-/‘&Π$8“:.—¨Nƒ*—πΡe ^!r•(‘Rσpτ$ύ΄m‡ξεžSΆe”K~τ Ύϊ [ΗϊN–Cω%d¨otΤ³2Ÿl ͺkΚ υρ[ KUY.τλ3]N‚3›œŸ£2D\Ξ‘ΥpbψπΈΩΘ8Ιg•ΰ<‡© mΏoΗο>½‹ŒΟ”6%ζ ω„π“αφr9Ψt§ΛΥ―πzŸ9•xαyMηBδθŸύτ:½EŒοQκ&ϊ#}aό}Z@ΧόΚ­Ωb€Δ„\œ*ΘΥ^·γ“1ΧqήKΐO± P‡•€5tZΩΥ$D œ7Μ›·τΤ&ϋ15\€ά0Άk₯x~΄oΕ«pe/EΈ•χr•‘pk_€ˆ¨ι˜ψΣΆ+Μγφu§ήyΑEΞ3·O53ζηGjPΏoΒ-―cœwδ«'¨$ ˆζ΅,Υ˜<šκFλŠμŠώΑ(Ωm·γςZ¨>ž71žq›υ5qςUht.` “&ΤVν1"ω—zόΕ6Όϋέr# {JΣ΄½Υ‚LZ‘Τ­Ρ‡χ|ά,˜E"xJ„S§Rζ!<ΊζBn&Ÿ%Mϋ|’›WWt.KŽ0±ς“d˜ˆκc%θόŒό*# ¦κ…ΟΤΙΛσφάμŽΗ‘£Υ”ržyνΖΘ_½Ώ₯υ’ΫALO]ΏX˜£ŽlΒe0 FύyɘW§·k’Ό:α»ΤŽίφΎSkGήA”*Όε₯A:zΜUE†”ύβœfœ!L5¦οΡ,†zz46t˚^ΈΓιsνφδ]~Zp€ιu/,”Γ-βΡ£wπAνΞd돂)―έJΌC,Έά ZE.w§ΠΫ&όnβϊo‚3ό’Άι€"%Mψ¬θώ±Ι~¬γ“γh,β+F^m'ΥχaΚ‚―D‘Ÿ,γΚΓ―ΰlƒς©™2ΆpΣDpξuΝcΈεSz XYΗΜρζHΆθΜγd[”s―ΘeΙ†©­l͏cZηQxπWž­)=· ΐ»ΌvχΏγmΈ ^Ω?BηΓσ(Ζ Φjœz5Wχ΄΅iΑ:ώ Ž4ΦΞοONμ.yM΅Μ$η#(œ™†Μύr8(ŠάΝiΌ?܁§H‹Pit3› θ&‚π'³DΜ‰P3³Ψχ&7p4“Φuέ·KθΖe‡¦|kXX#­Ο’bkχR&ύ ‚ζζ1-›NOI!6…I q ³ƒ†ŠIοFΧ5€¨3~k#Ρ…ςω0Χۊ·ˆ˜sΊy›μl7φ±^tND‘±©T$έΪ¦ηάγ’<*«ΰ[4)υe¦Ίπ›£πάΡ(QYAr εIάn™@vcJˆ ι_םkxwλ0ž9δJb›ΕΓ–Id4ξIc«kZά–1=2 ;i·€Cl ΜzφΰΪυ½i@―«TθΝγxxkTοξηΣ­?₯yxͺχ’‚:™/IC†]u™ΐΫΊοβ§€αΉC„ΑΖ„Ύ‡wρΡυ.η:°AόN/€zpKvΌ?ώΧ Όt°UωΚΒ΄δΛ΅Œ‚­_ν:ΐχV—GΧfιν=2ύήξ!°ώš%L­(οk8!­D$Fω—κ4…©†Λ₯ΰΛ%[χ}ό`vΟͺB]‘ώ]ΫΙ²ƒγϊοILriiƒτ$ΛΖυύ­·œύ†ΗχqέΥ(Sε° ½J¬ξWκ‹„ΦnP*Ώ+XW>’ ηGΕώPZo›˜"*±d‡¦1y€DΪΔ39‹ Wdγ]xσgs8}€Λ5롚\Ξ’zθΑA:Bc·Ά"”ΞΩ?kœάoΧ@ΓΡ0½GA©?ΐοώHSΏϊΩΨlnΗΖ‘Ysz‡Υτ(ξNτ»lZS\5WΧφι±=jΒhn3’γT‚³cΘ‘7 9―‹H}πžžμΝt?¦F17LνZ)·*HθΌΰB@νKι&{»`‹Οqλogi~uες-½φfJIΞ3ηηGšV³“ε΅ιώqήύxγ4‡Ξ‹Wζό€ΔΫ5ŒΣ:C»cΚΨC΄~ΰšςNyζςšηMηCάp·uΊnI”)E—Ϊp«½-ΔΕ uτΤ”Φ`uβ:ϊ”žO“dZή)ΌΠΤ¬ΪL άqΊ΅HΣ3‘O‹d6M5u§Q£Ξ{ΊΡΣKΖΔ*)²bΈλΊ19γ^©=‘“°4;εUCEs”ί΄CЈμΫ€₯YgΥ‹μIzβ¦ο(Lϊ¨Dέ‰#ΈϋήMgΈΓO£ͺ@~\˜ΔL―ΣIΊKB²°˜¨ΜNEΛ#8vό°«G·η‰‘ TrξeΙΘcήL'ϊΊ:θΨm$L»΄>χ":>ϋw’°΅ GΚΧIΓδ6ΆχϊΧπΒΉFΉ0σΈωώ›€ω“³΄θYαάΏŒΞΌ+ϋaΏLŽM‚@ύΣgΡJgCΚiA¬γ.μυǚ됷λ΄–‘!jζ\DKϋΟΡ­fΆ/ΧUίΫΡ‰οm&mJΠ¦.δfΑkza €ό$½ξŸ;φ*³Hσ©ψ5†΄΅΄όŸ™Pbdͺ?b‘ΧϊŠŠ°'.wƒRaŒr7WΠdΤΫ£₯ί › C’―žςh¦³Ϋͺ¬_EΓ ΰͺv φ)Τν/υ”Œjˆόd‡ln ÚqΘ–ζ¨$5["Ηi³Λ?h2­½΅ΰΜΙϋEΟϊXό]\ͺΛΐψ/ΟXΣ D^d8"¬Έ f5΅Ά΄αLέ)Š2%ΒΈsnSϊΡsW3Ύ0AΦρg0δ 3뚝 ›š{§ΝέNο²Κ MΡδΫέ%―©Pa'oCzξUΘm8Ž€GφD“Βn‚i½61ϋtdj>iz‹έ#%±ΎΉŒ±₯9Σ$Ϋΰg0π§‡ρήβ$Š’Σ%°œc}s•Κ7λ^ΎM.ŽΨ›†¬8:9oO4’“­Η›t„μ †W„A₯wc*=%ͺυ1ό¦oLybΊΪΊοΰ?Σ/fn€ οΠ/Ν’FΊΏΙ¬“†J"feΡZγq9›FfGήόAŸ©,Ξ tΰ—τ+)ί‹Μxα3Σm’%mΩSR‰γΉΉΎΫΨFΩ­»αHƒν΅Opƒ\²²³ιτ£$ΔΖΖ@h5›« %ΒœΝ bΉ/@IDATT}έ^‰ Fncΰ9GuVsΈuγ:ύt–tΨ$6"ωjΣcΤσ=ΔαzΊ΄LΦƒ[βγ=xούάά-όjΧAxo•”ο~rw?Qž|\ΝΎ·λτž­ΌωJ‡1œ-΅ιρ[b›φ‘JΔ;sΉ€―Β Θ₯©>όξw}ψ4;₯΄‘Eά'΄΅……ytθ΄C©‰λd…?r‰4—ώά[Ώ@ί‘ήόΑ·(5Eιζξezw/»Xzzτ3Nmπ@π΄uάΒ¦Ÿ›qtα_~Πεf­³XœΐΗΣο^6κs₯Ύ ΤΏΡ—:mmΤ@Φ·]mΧu±ψύ`ϊ= RύΆγ˜ι„ωΥ?hJήjkCο|Jβ#Œν„ΆΌ> IBγίυΦTΰ˜žg«υy±φι(V^ΣS<™νΗ”pv5έ•ςρq«‚„ϋ•χ*&Μύ΅/Χώ―΅°Yiqb»Fsρ6eΎ£¦&έ°Κy]νχxžm~€ΝςN—Χ¦ϊΖyΗπm€‘’SPZ—ˆέ#-Ύ¬o‘VΕY—/2‚!θ΄u³ΣξΉΌΦΧ³|ΡF³[ε΅ΆŒ!ΈVžΆΗdœDγή5νG=ŸΠθ‘nrPY<Κκax€ÎQΜΠ’b­(ΜBca™³€€±υζΝΒζΜƈ§”!nM-$M _Ftηuτ.' Άό$Ž9±θΌ)‘!ΣKqΌŠHUΗ0@ιΝM`žTBoΔ€’0³•E•*I’¦hι½δLŸξŠKΣΚL ΑΒ„!šΌN’TeξqœMnF©[›'ν²=mΊ°κƒV‘‚li`₯zΖMΕ™―α $ΰƒχΐzμ+8χΖ$ˏ<Έ‡‡J"* 'ΏψηXKό­·&a=| 'žύ"*\Ή‘J8νueJ4ΙΥ/ΰ[߈G[ΧaKDξuL·_A―f½ΰώο?ΓΑ“ΥD·$“s_ύ©ΈϊϋίγA{?1€ QVΥ€ϊs§`yψλm$8ΑWίx"Gв9xυ-"7K Ο~ϊ.rΓΧΔόgΥ}_}aoώφžPfΣϋΡ%΄>LΔoŠ‚ˆΣ_ύ«ΏΔυΰΡƒ.¬Zr™]‚²}υ¨hͺ†…4oΞΑΉWHMžˆkΜυǚkƒFl`Ε;…›ΧhiOFeΕ«˜Xύ³±₯h%"ŸΙΙ‰;ο{H'™)Y.n3˜5$Ό±¦Ξp¬ςӂϝψ6iΖ—‘ M3K“$εΌ‚ηςΕ₯=£¨=›˜½Œ{δ3fϋ#y­K0ςΈά ΄ΞXεnžώ꟣ή:ŽφΠίΫAmx„–sPsπiœ€γ%3Žρ~ύ΄‰~¬σF FΞΥCΠƒž\yςGΈψ›_žύ ž{雨P7ZyΑΓ@XX‰eβš#ΫpΚ3!S¬ιΉH~Nά ‹qS 6Ι³ςΜ0²τš«Όφ”XdΨs9ΌzrάΊƒΆσ§HΆQœ"Ήpt΄αΊn3b`鱎?’ƒυ8P θZΗ:7¬μϋΟΚ,ΐϊ#τnI°υεaRΒωQ‡ά G€#ΐPΰœ$Br]\E7ύv―YΓπ’5ΥΈΔ‹DΨ]ΤiN2φηΩΦ\zžγΩ‰.‰Θ²,ΓFΛ^sŽ9M±ΏΤΉξΏΊ!jΠΈv;ΨK€]–(§ΠΦ!“‘M„·MΡ)•~+F}²vjΗΓΦ©Η+36 Ι‡3-³Ω ό½5›"χΏsΰrI_Α•KsSh‘Ÿ³“e…™rH~ƒ‹§ωτ)„ƒϊ2ϊ…ΦlΟ{Ϊ2ιc_\A;ύΈy’؞vΝ,#lάΚϋ‡ΰφ£#΄s$το'kϋτ~xΒ-―Ν¦Η<ο ‘†^7py­%Ές…Λk=ΊΎž<~Vτ00w žͺ<Œl9’%Ϋ§ψlPΠ“α†ΒχΔ‚’ΒfρgX’…N|xηη.ZYqΏ6κΘžΣkρΜϊΉD05r οtIϊo‹S…μ₯τφ Œ$CγΐƒΦίΰ¦ ρ1/§UΉ*[FZKδgΙjirΪ3ΑY*4OΔ Π7ΤTԞω¦ψΣ%hoΑ§o]Q­vΝΕ’.Jk=Ξ|Uψ©ΞώέΠ1ڏZΟ °AZ.i:ƒ’&gΠΞD;z/jHeφ+Έπ‹b|…HΧ"²tτφΙW…Ÿ3ŒpηΠ>Ί•Oλ(έλΛοξξΏM6Ξ~η5T)$΅ΎΛΈπφ5gp*ο…·Kπo_=)ΪU{ g†Fp‰6Κϊ›=₯Tˆ¦Ώϊυ@ζwώ@$Ν!₯Η_~Ξdξ˜λ/¬xεά»A<lGUM­θ9ɈηžjΤ\κΖ‡Χ]ε„ΖKb, ‡F±žuj+!;cza Η*?Sχ!W!7Λ8$ε4bΏ‚‰Λ5vΎΝ…ΰΜ™—Χ.ΩΨωnο—»μ•Ζ(wΫ΄ £y¨=*όΞfc±γ6ˆ;C œΝτcδχΣKυxύŒ$ς^ΐ7θ*ήqHε™kzΠN²"Mq"Y?i¨ΐ‚Ež)‘Ί\½₯Η*―]’Ψρ\ϊ=φ3_—mhЁza“†<&ν{xΗ=·:pχ’Ψkό‰δΰρηώη”ω™’3ωZ|_όΆ4ΎmhSߏΪώ=ήυ&'\Šoξ‘U~ςp0œ?°βbΦΈoŽGΰΙF€kp~²λŸ—~η PPΫ€―œ(ΕΘ@/†F§0>3M^[S…Ί|\ †Ž>|Ψ‘%?KΦ»σ>ωέ&’iQ{ƒ΄<χ-ξΞRςRqv2\.ΉΦNpεRrΖc,ΞHZ]Sž#έέ¨Lz»ΰ⩏{η<ρχhηΤΟIπΰνΪΛΰΚ³H—ΎςϋspρtŸΫpžΈΌv­λΐδ‹/ωιξhϋ™Ϋ“Z’…XkΓƒξχIέ.0tޜ·«γθŸώώ§x8ο^^Ϋπ»xλώUδκξ&h`ξμώ ήΌη<Λ'fs£Drρl1:v.W\tΥ£‡€Xސœš›τ˜ΔκͺKf7<ιiτ…o>©(*o½Œ–ξq·0ŽΎλxλΏύ­S{³ΰ£χ~ώΟΏFΏέΝ;i‹λΖυ}ύr}mx96ϊꏿ‡―ήΑΈ}‹.υ»²ζ2dⳟΰoώωs²0„Ύώag¦Ξς9΅Έ9Υn Κkͺš7­Ώο-‡_ΐΙj™xA\xϋŸΰΊΏ{βκπώ~9Ξ<zζYbd;σΈΊ¬δ†ΌΘΥ½Ίζ΄Ϋ”νtyνΈ€ουwq³U‰WŽ^sqŒvγξυ’φfΑž΅ώ4yeΕ3νz¨ηηΈ>μϊ^J€LMήΖ»—ώ l2h1Q(ς“x™Y˜τ@pXΣ [8fωIG’jAπzoΓ„½G?2+―υ‰Fΐ—»Ϋ/wΕf2ƒΙξ6،ϊ1Ρ}Χώή―Ό6*3ύΨΓχώo]Όίˆ#Ζ>Ž–Λ—‘lRΦυšΤύ—ŸΑ‡ΈΙy/㐰Ι3Φτ4pͺ·Y‰©*ΑyfaΜXΦ3Κ35͍Χτ˜ε΅&HΈεr0hrΠ¨ΊjF  -θΈj0&Œιt2'”γOΚ,«\]4‘ifnYΒ7‚Η»^ε„Q₯»NcvΌf•σ‘Ξ¨ΉG€#ΐ0D Ϊί-ρ†‘Ή%G€#,’€²Β½ε8~βΎτωsxνμΤ*fqγN‚xpJ°r²xFGFΡ50ŠΎρ]ρυ)d8ρˆ9!C€Λ%7hƒ%—r*ΆP~tΒΥΘDΊ»Q™Œμ‚…§Qά;ƎΏG;¦*xF‚ˆoΧn`KžEΊόχ•7ΰύ<ž)'rμό ~ω‹λA]?ίq…έJΫ[ΣuΕΘΟ·"Ι₯<“#½Έwηt‡EΉψαŽG ΨpΉD²Γd΄‰EˆQxΞ­άΔΒτ€d>ΖDwtD»·ώΞ?e\ΑA3ςbαοQδΥΟ±ox»φ‘?>xΰJάG€#\^‚ž3μnΏ+σδ,βά˜Ερ.ΡΆ΄΄ΤΐΥ·UΏθ)9oŸΞ3'8‡€ΰ¬C˜?p8ŽG€#ΐΰp8Ž€ŒΐSψζϋm”ŠOΣΈς½—:88ŽG€#ΐΨ™p‚³οz‰/=Dq-ΞސŠT‚sYΓAΘKΖΦς4}Ύkix«»HuK³€!%!Β›Ή±2…Qo‡@Fj!yΎ9ˆB€Λ%φκjx~]%1+δ…T°ž΅δmv”žŒό=z2κωI+%oΧμ5ΞϋvμxHŽGΐ<\^›ΗL ±[ευβμ^₯ˆΊk¨Ξ|υY3ΰμn -˜ρΌ’ύ€»οξΪη₯γpΆέ._·[ž6G€#°³δ_Ž<ۈ„¨d”4“ΙΝ”οξ»Έ½`‘>>υT‹‘ξ?<₯Λν9ŽG€#ΰt'7ϋUϊκk½‹ΎΦΜ8Ο2"8ηω4HŽG€#ΐΨΈ\b] 3 ›“3Άά46+δΰHwgGηΙ Ιί£'«ΎŸ”ςvΝ^ΣΌ`ǎ‡δpΜ#ΐε΅yΜ”ΚζDαy·Œί…ωGοm₯„αΉF7;ωWΑLj¨OR5Μ8CWQγηP‘GGμ-βή•Ϋ˜ E"θx"ݍ4ZGH•ςlr8;ύ_>ˆέ,_Ήόάα g#°ǟ›ΣX± αγί½ƒίόπŸ0Fqϋsv΅|ΖΫ;Iώsy½^žŽG "ΰgοΥ—ˆθΤ\+'8σ6ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰμ8Α9LU9έΫ‚Φ;Χρ€“›Γ„8Of§ r³@ΊP4: δ‹αΟΔ,>‰ξ\£έNi<έ‡€ ow³|εςsχ΅Y^"Ž@(xΗ—Ϋ5ΎVΖωι‡’^yœŽGΰI@€œ½ΧςžΈD§d{χΔ]9Α™·ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG`Χ ΐ Ξ»¦*yA8;…d’»?_Τ,§ο”?iξByΉαp8‘@ΐUΎμ6ωκZΎP`Θγδpv»MώνΤρ³’9Ϊ5»£ρRp8π#ΐ Ξή1JHETr¦wOά•œyΰp8ŽG€#ΐΰp8ŽG€#ΐΰpv α&8οωΟύϋΗΑDοΪ‡ο3:G€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐ;uuubšέ½ύaO;ŒN/DLfi$du[σXŒ1ύ!nk>xβŽG€#ΐΰp8ŽG€#ΐΰp8ŽG P’³Š £XονKKK έ}Yφχχ‹^’σφιΌFιžψG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰp| °':Ζ‡ξΜΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8v8Α™;’#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ<™Dq‚σ“YρΌΤŽG€#ΐΰp8ŽG€#ΐΰp8ŽG <πUθπΰΜSαp8ŽG€#ΐΰp8ŽG€#ΐΰp8»=Ρ±»¦,‘PμΔLδΔΕCΤXςx‹λsθ]^YΦ돟ΖωΊ,Ωzρ›wna4d)9#NŽOC~\2£φ`‹ΚΈΊΉ†Ω•Lm:ύ(wΙ±‰ˆS ―›˜Y_3tQ,Ν€§„ w=(ιz½&γ₯3uΘ’Wrv¬ΏΊήηΥ{Δ9jΚ·@εϋεn+_ΔUΘvf8εΙ$#b’EYΈΆ±ˆŽΕΩfˆ5=Άpfδ‹oθ„efέs_aFϊN34rΧY’t§‘K\ξξ zΩξ¬XΚπ₯3UH§|Ψβ½;C!Θ›|aΚH4₯•ΰ”Ή[›Λ]˜ΑŒ―ΘXΓiβUεΝΙϊ6αb6=3ςZΚ{²‘“€ψ¨(DνΩ<ήΐΜς$†Χ}—nGϊΰrpGVΛΆgʌ΄μΕ+OοCRΤfαΒ½pΜ8C*O<&ε{Όδ1¨WV9ΘΓΓʊ‹qlά–#ΐNpCG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐx²ΰœΓRίΩΙ…8hΙGAœ;χ ‘"ξOw£;Ĉ8"S &)> ‘ώˆœƒƒιy¨LJ1ΐt SpmaAuKN.Ε9κ³ρΝ ZΖοΰŽ―ΟlzBόΫUΖes±MJ@VN:¬d=κΪrI;9G«³‹-8FϋΡ6nΈKӏΫY>Σ™εB…@yzZs‘κ’ΐ‰u;>%Ρ±κβΰ#kz,αLΛ—ψΝΘΑΨ8dδXΕ9L\rxσ’Τ/±f‹E iρpƈ³βb·εp‚…@˜W»‚•mG€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰl\ƒsθ‘ί›Ύg¬ΩJMΜΑΣΉΡXξΐ€G_¬N΅Ι¬Qψ.?­Οgζzρ‡„hQo΅κ'#ΦΠV·Τ κ KzΫ[jΦ=ίΑ]©#g­yφL—‚2œl*£μY·…†ΰΌε &V<.vj³φγXjšq±VœΘ,ƒ}΄/hδ0ΦτXΒ±Θ—μψdΏΙΝhaΘ"Γ-w+{Ωn£\βr7Έν ¨x†°]°Θ6€q8·ϋ‰ΌjhH;s]φ~D=Ύ‹λ‹ΪMM¬α(•θΞ©@¦Q‚›+XπBnfΒ…1=yh ς=’›₯g§αTΤ&~91b„ΐΞ΅ a{χUθ Ύ·žΫΖςyΚRDΨ›Β- Κ^†X—ω^D”Υ “Œ— ’σˊIRΜ<œρόΏ*‹{βpB€œ‚ζp8ŽG€#ΐΰp8ŽG€#ΐΰp8O Ρ|i9€΅žXˆΓr³ciw°“57₯G¬9’&ΈΨL”₯₯aΐE;gHσ¬Θ“JpJCn^^΅£k~ cλλˆ‹N £Ό­ΨŸ–ǚ^K`ΊJp^Γΰάζz 4epkύ„–τž„z€>5ΔΙM=‡2XyXŽ€Š@₯΅VCn^CοΜ ZdθOgΘtΈx’ƒΙ#˜Z\SΓ±ή°¦ΗŽQΎL‘¬|0»ζ.χ¨Π[[›°d” H`em ψ`‘ƒWXε’w~5F€Λ]c\Xm#O&ωˆGΉ ΉYCnžνΓύΩ1lΔf‘!£ε ‰"5ιΉθXμnjœk8!xr|’†άΌB6rυϊ τ£@9AΊ°βΒ”£ΌFΤQV;–§1ΉΊ€ι΅,n#::Ε)ωtzI’X Τ€l4ď Υuμκ,.ΏΣ"ο­6»όήKt?κFMδΗ#N‡Ήa‘˜ΗK†±ωΆd•ƒ<ak0`ΕΕwMqŽ@0ΨΦUθ΄Τ<:˜Γ?c›χΟ£ŸΎΎώ—ψΒρJ,Ž^Η/ώΏοcΠΟpf½ω.γ lσ―Ρ¦eT ˆŽθKŽŽΖζγ5¬¬ΞcΖή†1νΖH5Ϊ ˜™ƒŒd+b’½‡φ==^†mκ&ϊζUO>oΤ|oPώ–½ηΟgdάƒOrO~ _y΅°kΰβ21χπψΡΟίχ>Xό­wΥŸΗ„}·kA O―5Et€fœΈpee­#)ΉZ™ x>]Σηύ€΅Ή΄³Ί2‡}•€ΰ|υ3Τ§lΒρπ}ός·7ƒ—9λSxγ_D6b»Π{ ψΦGΑ‹;”1%ζ‘ΜZ€tZH‹ϋΝ5Μ̿ЏG“Ζcί²Ε Ž―ρ’—Ÿύ»™|:sΑοvFςLσΎΟϋώ/Όο‘”K;’2̍'‚›e ²R₯k㘠όA•%~dΦ—\’’π'Ÿ~$Ζ½„l”ΧοCff:βύ›XqŒ‘λΦ=0χ˜Fς%Δ₯π+ϊPΚ%όŒœρRpΦόΒή£'V9αg8Φρ k8εδαA@Π†λϋγYll,?~,ώbbb°±‘θG O.#!•=QΫΊ΄ ”ΗκδL€Κ1Μ/ βWΓj|½³έHŒKΑ‘‰‘:DΤMNe©ΗuOΝχγ=Ϋ¨¦sXœΔ­iΧ/)ȈSΚ½ˆώιτjByΎeK/’λ!9‚ΞΫ9†EΟ±Έ,h&[[αfεPω„Σ¬©|žΘO,eβav±Ή¨MΟP3Τm{„OζΔη™Εy4Α9Q|ŠCmŠ4ίWΤP&nXΣc Η,_V§q‹~Ζ&η…_T‰ΈFDh'$"Aξ—+BlΉάŠrf3 ~Μ Ύƒ>:f”/ΞšΈ‹ΞBUzΊ`ΈΝΞJΟ›6\žŒBjI%Δ³Eβ-( ο@3BΧΟNNiqu·g6°ΆΎ€ΙΕY$§WγœUΪΐ2½Ύ¬’¨ΥŒ 7ΰΒ’³Ό^Ÿΐoϊ&tY—„qξ2βJφ£DVa»kφ‰ΌdΠ{PΚB`>ώΤAhPί~ΛΑΕ \Ύfτ~θRˆ Φy*cYε g<`Ε…±ϊx0ŽGΐ<~χ/ζ£φ"γ^yκ œKήύw·3.τφxχdΒ5>!EτœƒPVτ2ώθ@³\9pϋζΕ΅Iwoi™Gp¬ςj²ςάρ"Άώ*Τl ž:τ:jσ ‘,οκΥ~cŸβʝχ1¦sŠ £8=ΦΤd¦"&%’±ακ΅ο⎲S±ή«΅ Ϝ¨ bό&μέWq·Γχ©€²¦τβ‰Tg>YXυΉέH”g5zλ =±Τ{ νΪlζM―fί«8VΥ(.ζkΣ>]Սού Z=΄m³αΝ§6oό~›°Φγ™gOαΰρCκmϊΰ—ωC†wΙsω‹ψΣ?ύd Φ“Χρ£;ti\RφύHύŸ΅ΈXΜ[ς΄˜CίaόυaIGvqžwΜ„Ϊ‘ψZς&Ή+$VVzυωeDn6κgŸΗΤδm|vσ]τ™+Wίω…gpΌ²E)Β8½9F †7Ό…‡Ϊ IŽ—X伐+ΣωΤ…?m7αgΑxίœB)—”4Άιjv<άlVΰΉ§Ώε»ΔRήΊτ–f.ΐ8P.Ή—ΡW>έCp›0#Pπ^|φ)μkͺVΗHΪΌψςnrο]Ό©΅φ}ΟΗKΨωγ%F9α»φMϊ`•ΎΓ±ŽYΓ™,8χl4ςμoώβ;^cOL$Z4oΪ³gψ+*ΜΗΨψ$VWΓMήσšΝνu6‡ξqΣ™»½yΪU©'"#VZΏ{C ξ‹ΗΛ€ύ-’M~z>Κe4κΙΝΪ’Ή£“pžWWŒI/Ϊΰς=[zΧCZα>œήŸX"oFΡ1ΜDJόύΗm°δ1VQ¨o8„¦š"δΘ›±<‹GpαΞ€[Y…{Q]œ‹Ό¬ Ϊ™Ž$‰- ,/`ΜnΗPκΦΰιϊ§’<5kT¦KgώΎCψR‘s3ˆ δ}Ό£W{ιΗυMQ_’Β,₯­KσvϊŽ1…ŽŽN΄OΉοΠάΨΨBΑήZm(AYŽ2ΩYΑHw>Ήά-E^͘©›Dœ8ՌβΔ(ͺ―- ΅άƍΧ|€αδ©Fδ‘ŸhΑΟΓΫψt 瞫F:‰ΕMΪ“`Ν’ναvoΆb86ǚJ!εxχ―ήΑG:\₯Lξ«?€ΖŠB”θ0±‘ηQ.ΆΉ•Δ|ύ QδβΩ³Υ΄Q Kc=Έ?—‚£uζπ W».OΝR΅zΞ“œPΘΝ"Q7§”Θ ‚|Β7xL[°¦Η.pωbTΐ†μbȟ•ζFqkΙι‹MRψ°Κ]g~#εŽΛέ@kŠUξje³GWa_q޳ο£l‰}Κ”}ύΈ; h‘ B?–½/Ϊ‡šBε£ξ &G†qοΡ"|ΝΜΚO6ωΒV'{Iζͺ_JHϋϋg ΉY‰ns €<ΩΚ8LΆg §D‹Ν9Μο+Ε)ƒ`~M[Οj‡Π?˜N/4ςšt5ς†ƒΣHœΕέρw\ZEΩ46«E†@Zژŧή7Σι/+&ηQXŸΒ;ΧΆeό)––Q–Υā‚D:qBƒΝ‘F»πQ›1Ω9bΖ»Œγ% ¦nYε g<`ΕΕT₯qΟŽ@@„ŠΫλ3Sωy~“›…Θ66‚½`λŒΟΉδζ3Ϋ¦²-.J½grr2 ς099……E S(Ψ™Œ ψφΜEnBˆΐ&”oωAΈΧš%:מW"Žμœ†})’f>Ϊ1-ΠRγθD¨ΔIqcsSλe–ΚŸL~:¬c}ktΔw>­“{ #!Ω ΌR,™¨(TιBSΗXA‰ΆzΈΟ©:€σα©­Τ4CNFήώ°]£ν؊c§Ž‘ΚΙ#r†LL‘ΝΟΒ―yιŸα—7rt r‰ΑŠ―ΡhM{΅θ({'Ζγ˜$M €e!:!eEΝ€Z™–S‡#—pS“fZz–†ά,¬¨)ω¦[ξ ±Ι₯ΩΦ‹Έ•QΚΑ¦AΫ zήΒ•^οMd!ηήJE‰ΰ¬Yφz±„Y띹]3–‚5½ΊΊojΘΝ‹θμώ=nwt!§ϊEœ­”WΑΣ«h"`Α؈³•³†cΝ'#,΅"ρ“œgΜ'#*£5ωIar¨cσλ΄ADV₯υΣS .₯΄βω³'θ{…Σz€· ύδ/:>Ω$g+ςΣ±ξcρ_(_Ηπ<σ ΡP,/μεοEΣήN9ŸΞψΝή΅ίΈ kϊ-&*}j NžAίΗ2ٚ0<Υ¨¬ά/ΰΖεOΠ.μ…!‚’³^WΠΩ…μ2Τε+t| ηA+Kp@$1[Q˜o%‚³€QτθY=Ήy4R&I™?{oΗ‘ή‰ώˆhϋnβ"@$xS)qD‰’$k€͌ζπ9<λέ·^Η>‡±/vΓρ^„γύρή[―7μ΅Χ;‡Ηφš‘G#‰ζθ’4€H7HqίχΥΈoθ}YΥU]Υ]έ]]  ΑLΨUy~ωΛͺ_}•υε—Ή8R)+άeϋρμά4ήΈ9θΥ%σγGEW7Ό<Œηf\Χ iΘuρΉ)Δΐ‚άνέφ½8’ρΊ‘˜]qepGwΔΫo9ς>m-Ο'β€½HεΗαι!΄hω“›ι[¦ςnpΓΆr³ϋHπ.߈pρ«©=Υ΄C£jά<Φύ!7Γ±‰IΘΘΞ€o€μ£έu$”ηX.ž:©1nžŝ‡}XˆΟΔΎ:ΕK ‚αOn~ ƒarRb³‘%8W¦ r% Iαe5•·œZώ@λ΄θˆ©ΓžΑJ\Μ΄Ύ.KΝEmfj‘16=Œ²#‰τ xw'ΡάՏšτ"©‚έϊ%ύX²Qβ2nf D[[ΙNhuΟ蟑ρΰθ`2Ξdθ“„š2Y―^ ϋ3,Ά»ΎΛ₯/ιΩό/Šr:ŒΥχ^\t΅‰€@ ά(šjΈΫρκ.>‘?γp―0Ϋ0iwϋyάιx'l[Ά·oE¬™΄²^£hoΌ€‡¦ͺ-ΗsU«^Fϊ?Βλw/iJv }ΰ>iΤ!³ΤΩzόμ|½&ŸrΘς!ώμ·P*αI[€)Iί™ιV2²ZΒάzΆ"eΟ7πωΚJ)ul~|[a?³ξž&άXσύAΚ£‹ά§›έž$h‚—<·όώ ς;οuνOiœν₯œ@]©Λ8‘ͺΨτ:ήw'Žΰq2p–ΧڐDPΜψyˁSN]i›‡€J+³θΈ~ ­σΜ‹Œ?ϊώE;DΫt* υκ―ΑΧ“Ξ-aLlΐ{―7„±£ͺ³agߚ&Η”»Ν(“·iΌ»1ξλθω§ά‹˜}£w±ύοq"_~ŽGE©Λθ}Κ(a~%ω‹’ΓΜθόӍΤ"3mΏ$EΉ8εjOM`!θK<<Ο-§Nhq²el>Λ ϋpύn:l /™–.ψŒάϊDπM•Θ/yΟ2=ˆν‰ιYΎιY#ήχ‡xI+―i9΅…Δρ– 039„¦[ΏAγ»o UΆΏpΙΡ„WΊρκϊχ¨–lJ2‘GOaΒΐYθKFCΉ υ%^ž0κG/O˜.Η«ς–γΐ@±-ŸyΦΌkΧ.(FΜ,mddjΆ‘‘!¬¬¬HΖΟY™ˆ₯γ“Sψμ³ΟΤ<ΪΑ. ή“5Μ‚νo ιo»Θ“½’&&ζγΉ4 /¬Β–”¦/. αH―i{ΑΚόe‰΄;‘«ς”Δ\Τ)'šνIΉ8Ν¬hz›Ρ©™ΠΆ“‘―’‰cτ—6vWηζΤl‘΄gω8¨οmͺx–Lφ4βΘS³š;0Άπž―“dΛ+ŠQ@ΞƒRβ$ϊZZ093ˆOΫ=ήα›Π{β)œ«Ι‘œ (&οΔθι’«lΈ WνH­Š&η2ΉΆώ‡ΈΨμHAuj”Ο&˜Δυ―“γ}ΆuuΝ7PC­wπ³O\FΝpž>‹'+˜Bš€μlr}'bK"qώ·ˆ+ο7"ϋ²GЌ²xqb ηcρςΙjυΫMΗν[Έ2ΰέΔΒ@Ξί$„²7χyύP ήΊNqφ5Βς—–ΖLϊIΑ.¬Ε‘έ²19;Χc††ΎZςZ+•qΤ•a8Λ½η?O‰-ΑΣχpy6gϊ<Ÿ ήB,8—η€6›'₯—ΜΞχβαΊΗRε·¨]ZFΉ\0σΆΗ[ŽΙf%Ώδ“ρ|₯2°:†ϋ“n=†΅ n6ο2y#-ή] qΘψy7-YΡ hΡΙ»οzρςeςZ―ΫΣ ΝœΟ±‚κb”+ΝΝφγ7ΏΈκzvΰϊΨ<~ŸΈZasΣ€ψαΟPψΕtϋjΖ$Δ(ΦΛΔ§―9»Σ³!kj!:ΰ-§­Γ}lKHTwκΐς¦4: ’ΛJ\Μ΄ΗΪ •―«³jρXR"fΙ¨3&6AΥƒYέs=ψxrœFt<φΆ `ΰ°ΌKJFY!jo΄‘IC]©» \žι2₯ΉZΆ[c.΄Yϊg¨<ΨΫάΘ^οδ`+G8³· ί!rτ]}ΙwΏύ§πς (gόώΐ‹‹Q©€Υl³Ÿž;όŠ\/β3CΧρ‰μ,ΕO‰m˜D³ιΚβόi§i#αβςγ¨t•›ρ4nΦφSoŒ₯Mρ>^%ξX/σΩΕάhιP3°-ΰ”0=γ1±©$Έ~ν΅/ΰω'kG†ΗλδΉ%š<‰Όϋo`Δ#i6N}υλΨ“O}X#΅jU…GΏoV1Λ 9DΣ{Χΐ΅Α‡7{•(Χo%žόκsΨ_S‡,ΒΦIsΫvϊﺍΖ+ηqΉA›?΄φrkŸΔΎκΪΚ΄Ωιy°)Χΐά†{Πέx ^iς/τSqΰwΞ뚻‡œνν-V½’ΟΠ}€7΄€ΰπš„fo6Y,—CvΒ[œrΚDΦ‡ž6ΤΤΒQ l# ΜOφaΈ«χ―½»žœΜύΗ°8ˆ,2£1ίq7Ζsπδ©#(gQ€@ž.αβ?½ χ{/}ο,££±>Χ‚σ”fĐΉ} Ο-–j™hΎ€σΩ½Έ„…™>tχ5‘ώ·d΄C_wrO‘άΧ'±D…«d7š^–ΛΞαΥsu naͺωΌ}±Αν'ρΕ―ž$ƒXΒ‘ο2ή8UΝ_στοβθΑ:”θΖ ­Χ?ΒΫΈσ©θ ςιoγXΉλšg―َ ?²”=/Ώp΅₯nό‡Ϋ›pγr+ h;N{\4&©Ž u¬­¬Γqπ‹xςsΖ/4ήUϊ4Nέΐ‡SJiο_uΥ¦wGL= ηΡ=xΣ«Ž…₯―Έ@υ₯ y> „Ό>3(ΆΆCgΏ‹cΗλh§ΧηΗΉa4έxψΛΕƒεxx)4=‹žG_yΥ•{ά2’L3l w―’Ύ‘ΥCJω4X~αΦ' [2’Ό°?S['ZκBRŠ˜Ξ3ŽIςdg>xπQQ@^RΚY&§RαφϊέiόβlxoψTpχnͺΟΘοi™YE4>3»ΚΏ}Ι…‘Ύ»Eϊ’ί[‹'όV©Mδε‰`ΚρκƒΌε΄ύ‹γG…Ο’’’PTT„δδdΙ‹Πΐΐfg½Υ3ƒgfδ\H‹9RC^ΞGFΗ±ρ¨9 ΞαΏ“—gΘcι ” Ζ$δ±ϋμݞMπ.τΰη#Φ•α—,ΔβΗtΤϊ£ ]),‘›<Χυ/― 51u)d€*…tTΣͺΡG"₯mΛΠOžl+ΛXόlQi“Y±ΚŒBτQΏTG(νQ!ŽΓЧ§Ζ˜(„χ£Μ4šο)VhΎΩ†={ d£¬τLdƒ)Ό{·}/ΝojμΓQ2pf_ bT―ŽrΚΙΔ‘JˆŠR¬+•ΟίTμ-/Q#»½Œ›YbWΣΘ¦ΤjVΝΑ(︌›]±7;†PGΞΜ¨L6Φdη>μΓ›WνψΓgdƒζΚcΗ`ۍB—aΫ4‘ΏΥ`όdi‘]ΫΘS²b·69ο2Έ_]!Ÿ{0O―CεωͺΡτΐ½^˜Μτ4α^{>ž’ŒΈ P\‘ŠΆφ©‰PǏ,dΈπ £y[ωŽ—„πCeŠ<ΨgΕ+V„ΜΐΩI±Yx2Η员 x―Žφ£vXPš罦$˜όεm·œ$VˆόβξZ&φgΈηλ;Ι{³ΜJŽPxp xW;˜_["]!f―3ζΜb3μ3‘%Aπ%0‚wΧ74=4‡ŠL3Γ}`_‚|…`žcΉΩv΅šŽΆ6u±ΙΈΊ³O–ω7q†?CβUR³tO¬,юlW†8δ$Ρ΅4N·νΖQ»’ŸQτκ<&₯OτΌεΤͺuι1nγ_'Ιcτ ΗJ\Μ΄' _Σδ”ιο)L‡Χ†Ή.Ό=6€α?<θ»Ρ?η{ΠΩΉ…‡δ €,M.…zVΉ;OΥ;zϊυ;5RϊfιŸVπ :P±ξχ5Ξΰ 2τ]}Ι ³&£xyP”3~ΰΕΕδp‰l€E„w.GΘΌs¨S=ΰvΫ%žZΆΌLjZΊΊΊ|jΑ‰•Δ<'Ω°Ά2AΫ΄±Ι£PŽš’JWΒ0ξ7±ΎΣv}4ιHσžΚΥηŠΛ©DΆμ–"–±Dο'ΎƒvΥσ΄ΣsΎ³RJjn *+ͺάy&η³Qw\HG9( c‡Aφ‚ νΒ4)ΗzΛϋϊœd$ψυ?x •š₯_ΜΈ™…¬Γ8CyyΏψΝ 9’Φˆρ·W‰Σ―~ΥΚ7WOr& +Ψίaζό?ώΥemjΘΗ‘ƒΉqη»ω»ΗמΕΩΚ3Ž~7‡;όΌkϋˆ"‡”$6EΟsήrtpέο."ε‡ξ₯/ϋ+¨-VόfΈ·eΠͺuϊΛKœ!ηwά AίT΄¬ε5Uς½]ZZwm£2š}ίMKΒ_ύυOTCf[aJ€{/΅Wί€^QIή_JJε‰ήE2p–C/.όν©ΛθSŒ.³ΗIΝΛ'QβŠoΈϊA%Cς‰+ΩτWφJ;``¬δ”~„)εgWκψβ=WR%Ξ}οΫ8Q垸WΚΨ2JpθωΧPLΫύδΌ Ό³K‘ΌΚ{μœλ$‹#${νρ»―½(M +νΠτ ς*Nΰ%ϊSB&ΥqΑ ŽΌ#―β»G”\Κ―Ρψ…Β»J½V?*Qͺςˆ» ώ£%¬±s6’d ΄κ©8°[Σފ‰Ωυ υ%3<9ωA _IΑg¦°υΝgήΕσŽ|/yF“Qν™ο—ΓLόδVπRzω7θ5”θhκ3,zΔ§spzΏ>α aΠ片ρJέiȟzρqσ}TœpΜς$¦ŒΎψj$¨χW%fyΙJ9}ΙΏUρ;–_όšηžVX"ΓΏ@Α7Ώ}IΖ.Bτ%žtq(ιΌ<Α[NiWχΛ«ς–Σ5Ύυ'Ÿνέ»WΒ|mm }}}X\τνy‰>χττχΝbΨl6”•ΪΠήΩ½υcΆΞa=±/敨 ψ±Ύ€Aςb“ŒΌ8Ω(I»q6} LM„Y««·!UιƒTυ†’A1 ₯g>«Ε©²Pl43DSΒ"ξ’wζζΥ9½ΑΛΜΪ’Kπtvμ/:Ά8τΟ3έ$„φ,‡ρ–›ψΗ‘N2ZΓJ,ιM«‹¦‘(½κwv ύcž%ΘcσΠ4Κ%ƒ‰hΔΗ1ΓQ7Χ₯fcžBf₯!9ž,oΦΦe;z2Ζ‘GΑ³>ήσΔ«Γ9ŠΞcaΏ΅Ο.`ΚsΪ„ΖYqƒ² \G~+1™HFΜο₯ασ’χλ4šΧw•[μΗeΕCΆQUτ-G ΤWUSV Αηg1ΗήΝ46b ρ{š’ λβ›ϋAkhτ!Ζ=c™―Φ*ε iό8ρ4]'βdΑ!·ga}―|œ­ΰώH;’b•Z [ŒΖqΪMžΓ­ρ6ςθLF½‰ v3#/Οό!ι\νρ–#I-ΰ₯ΏUY…n―ͺ‹Έ5λ‰E€³yώ _<3y>³Ζž¦ΜΐΘK«ΔσQ6τQ-!ϋΤΕg²‘ΈΆ’Xς–“ςψ/MQδΘ2’φΦβΈ=’ dΎ^‘έ4F₯gϋY9§Δg"›t„EZΜ“˜\Šs„ε{‘κσ‚½/5&rτΟΦa!aLSI›/“³Ό€­»+­|mΓg΅››’ZΓƒͺΜAlo}—u„G_ ]V^εŒίxqΡ Š86ύLΘ&4θΏ‰<ΒνaΧΤ9ε(r^ΜLŽ"©όψ½έξ-νYω©ρ{ΈωΰWxh —<μ-;ŠƒΥGΤω²‘ςZμο}Nλ‰–¦‰'΅³Ά‘tΛυλφJΰ‘ΐyΪ„Φ>Βjj9ςδΩĊ†ž»ιωΡnτφυbrlœόΓ’w•Šƒ¨­§ίJN½‚s]ρž‰­›έ58 uLŽ;Χu@tΙ\νe–£@1`ZθEλ6«¨ϊ&N¨‹'ά­ͺΫ΅σ–£ͺΈδt‹G•ψβw_Cm[Τ^ςFήΡ7Ž˜Δ,δ–T’’<όκάσάT:έ3ϊΰμΊ‰&ϊΰ‘TZ‡CUΕrbιQ?ψΎλ>j@σύvTJž“σP^}Œ œoθ+ΑI”ΦdΊβZΠ*yoφΘςιAΤV| £ρκ{ξ;»0D;NΪΙžή–2J1°ΑVσWζ娋EFϊδ…&OώΎήΈΉ›š’>iΑΠ{ Ϊθώκς—Ρ7ϊω€`‘OU_Πιψ§ΈΥο‘Hω΄qθK¦xήj9΅2o—cΑgζFΒŸω©€έοw»θ8„+€œY5/βω³έψΩ Ί’Ασ’»x°zVΝ'5ΖΝΓ€6`ptq41ŸU\ŠκŠͺ\ωβnG= †_BΠ'ΤφΈxζπK]pζqΏα‡hŒ>‡γJ]σNςΛe&pΌ?H՚ε%«δ4Σ—ΝΞσ¨ς‹n%qj€;βqz`@IDATπ~ψEθK~τέν€/ρςD€KCMζε ήrjΓΊ^}·œρ-?yTωŒ<†vuΡbΔΥ€#ΐ  Yή={φΜ»£3ΞaήLœΣ7OΜυ’~¬cΛμU8M1X(²η£jf-λΔHψ‰O@²Fύξμv7»δZ"ƒ—³g—ζΙΈΩΘάeŒζ.#ƒ#6f˜‡€hφKΞάνY7γNšΪ¬0·,ωΖφέ\2ΝOΡδι€ό‘ΰΠ‰ΣxͺFž·φ]†RBτŽ+ΧKFϊVh^άh ύ L;gύ$Ζkί¨ΚTrΫΝOp§ΰ«8”εΞ~λUθ}H»ΣtGcσ˜’ι e£#]šz’ »β‘EŠKFަ-5›ξΐ}…:~‘ΰi꺎ME¦Ϋ6[Χ ί'kX\†]ιζκ2ν%¨`·4…φρN4² dr(€Ϊ‰/Οc4π#\*oό_^⠝΄›FEZšΊ`"/₯yς'y]₯l™Τ y4VγΌεt•J'Z#³%Μ¬z~-d™¬ΔΕL{Vπυ š'ΫuΏ«3jρaΝB-ωdΰ<$qώ'xΠp‘£ΞτЍ©*Τ0'‡ζίςξβϊ0]#΅ωͺ3ΐΙΞ!έ΅δΥρ0λŸVρ —ά~"Ά½Ύλ’=h}ΙOŸύ'ρς (gόώΐ‹‹Q©€υ(ΣIΦΧΜQcqωΤ(‹šqϋΑ]ŽZΆG‘ΜζΦ8€Ϊ+qκH%ˆ{{ΥL{³ά[K€fΤαˆAιYuxφ4½M\ό1*<πžΜΞΔΜϊ*b’μͺ‘5kdlθ~sΆΪžΡAjF–κyšf Ιs¨Q.?qʞk~²›tχ7?r%ΨOΕ‘σ ©Š‰– 8ɍŸW½U§°·ByσΖ•ϊ+|¨ζ"yBύίΙ*ϋ‚ͺ£Ÿ'ηw€*ΈΫC+Ίo|„ρρ»ψθZ“^œή@ηWώ /I˜)(©ήONS/κσXyδ8˜wžλ:”nρ΄Wœ‘‡TW£SΣ’ajα9|B6΄šΉ‚ΖεœrJΉ’’h™,ήr¬,œ¬\€Ηι3•HχαΚΟ~„oκο½Κ§ΏiŠ―ΚΘyyb2pλ_πύŸ^pEΏ‰ΙoύA²Ί’ηšπφ_ύ%ξΈΎΕ]ιžΐζεΩΩΈ*ΣγΗΛσΖΝΚ±Aς RUqωWπ”‹Xά`W€…AJΑΏ½wQAγ_D†ΣI‡πΕ‹18Ύ€δ,‡ΚY Ξ;xοΪ{'[yτ%³΄Hž8/’q³b@Β€λtφ"/)Σε5Ω‰Ιh™#‘6 y–Δ]ŸDΗτŒ—δq»ψ¬†V6 ”uΞφ"u¦iG £·›ψx彈ΰ&L€°{ΏΞΈya|ƒδ)n‘2DΡy)*•£QŠΊςΓxθe¬μ@nM8’¬yνΛ }€ŸέΎβ*οϋ'Sc=5G[ψψΞ*₯,3o Ϊ`εͺgm½γTw˜¨eΪΖ #E¨‘YκxΓU·q³”} ο}ψ φV}A2ˆΜ*,6τ¨L{¬Ϊη"Υnτߝ‹wπ8`²+#&N}C3Κt\¨γ`nάyλ »’)ΐΧ^^šb• L8;¨ΎΓxφ Λ3<-œΈxσμ~όOΤvΦΦdΧΌεh£&Žϋ]m>ψš@Ο₯RζήsΩ‹F/BsγΐώCGU9;>zΛΛΈ™%Ά^όG2=s+ξ?f$sϋ]ΕΈYϋʝ&!gfΓeΟbHΈBΛmt ΎˆC읯€ΈΆ iQΙGn•ΒŸdψυΠc‚;[G΅8tψ°«όš)F~ξ*GΙw¦d€œ‡μ"zήubηπέο>O[³υzχ—ψη_]₯•ΘΙu½¬Nb 8ρ­ZυΙΠ{ι‚Χ8ήΐν}΅8'Χ’τ1\ӚΊε@Bΰ™·RokύΗͺq³TKΣ›Έέp„ΪR^¨5uλƒ?MΉ`yW)*²z²Š>s{eƒL©^28ΎjΥb«©nτŒ £h·‚[ ؁έΜμ‘0z ί§E2ŸΎdŽη©uΛδ ά>‹X>σ]ςZ±žχξΎυ1ͺΧΚ ?rJP\FO$β3Γ`‚—X9^=kώ©ΑCueρΞ–«Έ£fπ>†_ψυ οvΝΖμ­ώŽΊKΕΤΐGx«E~Ξek\NΟϊ¨.τχΊM½Η…&§ρ}E ~Ω~){gŸWτ?xW―3xΠ—Ό FίΥή\}Ι žΠο琗'xΛ‰Β«ς–3’A'ψlsψLΊ81@΄ΛΪΜt‘Ρ,φXχΌαΠ„θYc³΄₯5σRΜBL΄i‹.)Άϊtυl1<ΧWbdL˜αsΕΫpš¬cMΆ‡H‡4rΜ¦Η<ίζΩΚu6oΊ„Εeyf±Ψ=·6πΰ^―χψ"c[Γ2pV–α •.jƒv`τζg1Η쑘WΊ«~+OβγΟA₯ΗgˆΚc‡iηΖwρ)yΤ =¬aYςP™@UMb°ΉwΨ'"Ακρ3Ρ$G–94MΝ_.6_6ΘΥLc..τγς€ςΕ*y μBbacKNωΠσΨ4TΕ»9•YχΟ,ŽcΘσRU €ƒm«œuό’β@M’Β{ΣhžςDΐϋά4zυޱ’w½k73‰λ7ΗmMΌk-ξ\Ό;ά…wι΄μΑQ˜ŽΜμl”• ›YH*,Εα²v|άΉ(ϋϊ/ΠsΜύ˜›Δ΄W3νΜ²ΐΕ/ή­³οίΙsΥάλΤΊς(³:«#τˆtIΕ\ΗΤ*υ,Ύ_NwρΝςΊ<‘δ-§m>.Aύ†•%L{r5Λk.R³Ϋ³Ž―΅έ”iGμΟΌcωcϊΔ.ΒτΟ– $GYΤ‘|ΥcPœ/s¦ΙΪσζσΩs? Όϊg"6•©‘‘οϊZJ2‘/Q>Σ|ΝΛƒ’œρϋ/.†]€ –# Ρh-―;¨ χ8"₯Δδu|ΪνΓ0KΙ³­‡qγξqwΆWo άω8>ίΩD^AJ/ŽB;ΊΨδK!lŠa3λά0ίψ9Ί&fnΓΉρžq8€žΗΕiWHIQτί FFšΐvΘYE,*iυ°@«Χ“ςΟβ•κ9όͺYρ…¬”Ρ¦k !œ³ΓϊDƒ³‘+ίΗίu]&Ϋ,Z –@ ӊM?―E5„/*Y³αΨ 3tυd\8@φ†v6CkΒ£ͺGiŸ§φ²“8rτŠ‹ š@“ρd@Λlib’ς$£LŸCHu̍;ΟuB§θώ>r ΓΖ,YΗΘX>wκ%—Χ›aΤί{<:“N†r― `xŠq o9֏œ¬G cΨσ_υλyΧ«ΦΙ›ψΡ_όΞk¦WΏδYEnGλ§ ~s+‰–ά“NLxΞKφ•KFζ紟ΐzΡB]‡ ˜qjvלΘ`M O£LςΦNgsχΠζΛπWΞΝυ?σx\λϊΪ3O S>4°‘nν€e+udζ±'^+{KαpνSi/%ΞΖUŒ” ΣU—sΈOςΌΌ;‘Θά§ΏŒSρ2b<Ÿΰ1ΚuΝvht½μ*…‚ϊu 3Σξ*1ŒVο1μν85~A h˜9Tdžή_<ΰz>³¦›πΞ•·BΫL‘4η4Ύz쌴8AŠZG?ν’•”O“‹q£”d4n^ΡxTNKc–ΐž“yϊ:Υ³Δ"”W€’«έΐ]Ν΄΅₯OβΔξdYˆΩ~άˆΑ‘½μ7 'ž<α_Xα€gS3dpžΓζς2hΗ:§fsZ1~Ό‡ύΊŽ’ξ·x«c¨ιu/ψHΚA±2g½:MΧ»±Ya>}“y<ƒνβ齓+ςτΟΫWΉT‹ψ% ϋΣ]“ΘΤ½Aη ZŒŒέ]—Lσ gAοskyΧ»ώˆ‰ΌkΩP…Ξ»‹θ`ƒΈΣp?σρxΙG†³΄γΰmhώ96‰Qη4j²X}δ€&•¦άτΟ°ά4Χ3Γ"¦ω“‹_Ό.Ω³O–iδZ$§HdΰάλU³Ύˆ)•SβpTγ-Ύ›€±υJ†·U–OΆʚ"ηΚ‚ρL²EΈ0Ω·g>θ…UR u~v!Χžye‹˜ΑƒΦ Υ|:{ͺ‘ΟtΠ”<œx`,£ϊnf‘˜'Ύς'8w’*pmλV·LήjΉΗΑόΈ}]FΒoŽΰΫKGΌbΓ΄0‹Μ=η°—έj6]ΐ vIηεJΎJ€ΘιQ Ν²#ήrR-^NΉ\ΠΣΦOA›­ΖE!4’O‚Ίλ,-Έ17Ώ+ξ?η˜I–ψD i˜­wZ0|¦V2΄qμ©&³υ«$MΩΑ*ZB"‡a2‚6fƒ GCSΐγGO¨η―]TuM½˜ ο’vz'-Μ–ŸyΕΕκςζμ@)}Γ).P…Fɐ΅δθV;Ÿ‰Ό]Ν'ʍ`0Š΅+ΣHξ]KσΘμψyη:εεΑ¬’ΘΈωΈΊϋΑΒδ-Όχι;~ž—Αˆw―hŒ›Η†ΰ··?P §χV}ΟVTJξ.;†ύέwΡθ=Ο*7Θ­/™αy ε4ΰ3JΗg:ιιdz6ΐΞ™ΘΘ§nM‰=«ΦžσκYυ7nαπΑ₯]4ΪΚϋΘYϊsΥ<7Œζ»Wρώ―.0άg0Η/‘ι>χ•sΟμ?$§Ξ5{,ΚΘ‚ΊΦoy£>ΥϊίΜπ’%rϊΑ ^π‹”ππΛA|ω^CΉς}¬ο ήόΑΊv½O„Ύδ Ν©οΥlœ9>ΣΦ"Oh«ςuΜΛΌε δΰΥyΛˆΰ%ψL‡IxψLΧ„zRSS£¦(Šue66ΔΉΊ@ƒƒ=UhΊ­1 E‘εΚ΄β,¦½^Νβh±<Υ«{)*ΐ‘š’@a||δCD2ΌHΣφΣ°δ$ ΣΆΫςΌΨώύ{ΡΡ~έ{'O[.κr7ΘΓ€— †΅†%²°g+σvKΈC e?f {ӞΕ!ζE<ηž~†ήzf‘1­y>°Š·ΗΙΧΡ΄%9ΓΣ#ΖFΪρ98K<‘—|>ΗΌΨ1‚­™‡]C8΅{U™€B¦w2*K€γ;5ϊ}ˆ ςκŸVπ [τ Ν‘ζΨ«9Ϊϊn署ޱCΣ|ΝΛƒ’œΚ»Ίχ^\<ΖOœ αG 4»7Kδ³γsda@λ₯05pWٌΨK–c€· υ…bΉΫ:<2Π4.Η‡ƒ†ϋ—Ÿύ-T0ηŸIΩΘ£]»ϊ|Νs$j !ΘΔ|’ΌKŠ#ΤΉut zzπk:γζωΑ΄Ά·Γ9GDΡΜ{R Μ>,7­ΜΡX_μ6λ7ΕΈ]ς.œHF·όώ[[ rΙςΰMςϊ,ςJΙ87gφΤ½MΩ¨¨d/,Μ’ϋžγc9Χφ£Ÿ#ΟΡ’ƒWp󦯏/έž%ο4$_v*ΙpΉ PYάΓΚ£°ΪΚLelc} _©y@—KΏΖΰъ«IΟζΩy²{λ€AŸgG6ιΌ΄ό|~oΪΪ ΏEΘŸ:Τ<Αμ­9¬ξP±@;Tό«Gέ[>"ƒχJΤHσ’…ΘΛv ±·Χ ‰τ%3BΕ·νωΜ-*;r..ξΰ‘¨αΈ@σSϊ*½ΟBΡ³ZήΔίόύ Ύxζ βΰbχV‡¬•δΣΤ%ωPWCσ₯|#ΰ”<2ΛF$φrœώ¬ΝσN¬EΩPšR€Ί·‘ΞΨ̨ېΧw•Ϋ+… VFiΚΗ.­[OΕγΉ{55„ή΅hμI+ΒAMϊ'‡\F‰(Ι*§Εμ…œΔyΆž‘]σ@zp.M\Րρ³ΘΣλέΙqυ\ν­ΐ²q0x²rJΪέQχQιΑ£xwqωvμδΉρt•::Τ5€6%«*[2ŽŸ|«·Zπ°sφ28@Χ›’ΡΟ/ypVlΞ“ŠkρΥΣ1x8θΔ:Ή[‹¦}δύ=θΥx“nnκΑώ}y²3‚τ|ρΥ\ΏΧŽ–~ϊh‘”ŠβΒTήƒ΄ž»[hΰ\€—OΧͺ&qχ™q³ΌύγKΘωΪ1IώŒέπςA'ήjmOΛή¦v<¨,!ΓoΒ™ §Ώψάjθ@{ο8V’’‘žfGq-l¨ΘCyޜ%giζȊρσ3΄~“ΤΆέΉ¬½ε]1εΪγPšVŽρυAΜF₯bqβہξχϋ“n!tG‰Hs} Pγ1³€žhxΫγ)gΏΔη£:Νύ,hwvφšήxrρΰfσ—Τ!x7Ταβεέ {κ φ¦L£υα ϊ†G1>9ƒ9$£œχ―Sζ&§16κγ»MΟ±6ΊΧ ŸΊ›TXo>΅Λ7šΰLٍ'?†RΕbΥ¦ω“‡_ό5μJσab³•ΰ ΄XlpvKs˜ΫXGRl*v§Π7 …s±€†Ι.χfήrLšόdφΠNΘ ’ΟvΡΘξa%΄ϋεΙΨ DνΪEίψ'p}šτ)πγ|{œ|”†#dΐ ZŒΣOzλy£ž'½u}Wι­ι€_e¨Fv΄7LΈϊΩ?‚­Ώ™Ξ~<<²‡Έκ”Œ›ΙΗLίξXhΊΓ«†ΔƒφlTg(άΦ±ŸL»ΔΛ!ƒΌ΅TΣ{βe#ˆ΅εi΄ Π—Z•3Cx_α΅mwήϊnϊ’»Zγ#| πς ('νυώΐ‹‹ρ°‰X€@ |ψ€Επ5©―9Ώδ,κ2lΘ^άmΉ’Ο°γΞμΘHRfΩvΡή†ΜX%EΧ ί)‰ž“1™Ό’ˆ Ύ^ΩX)Τκ«ΓœSςœaΦνΉΑ&±M…bd‘ }τ њ;@±ρΜ£œjοXu•’½υ?ŏ~yQ=—2žF58+―ΣϊDΝιuͺXaπτ¬iI>΄dάM\ΧΤZnνI8μŠβJΛ“Έq“p|΄GZ₯€X*Ϊ0U»0ώ)ήΏΫΥMžgΈΆq§»l„δτ] @J+.Ώε}(Zςδθ[™μ†…VhkFΟd½ΦάζCKKŽ•²…™(©>IήBhςίΕΉ£MδΙΫ\Mζseγψc.ο™TθήΝ«†F~r}δE`„VΧVW$Σ›ΣϋΝŒΗ'[p«+GŽT “d/ŽsMN“WΡ!Iή%,I«ΥY?ϊΠχΙ;¨7ιI[n7Ψ—¬my°-˜ΝˆwΝΦγ+ίώšoβ© 5ΉΏη]όκ~½zξοΐŸΨ”%\@H“ατ0f€νve](&V-Τ5’Ύη­“S'΄ίΑg~α!ίΫ›ΟτΫiwEyšζΟOχQl1ύΝbaή‡Χ }U>ΟBΦ³Z.βMϊ£&(«-ANρTΦEIŽόŒ°U<†Η^ΔŸ‹T|ŠζN°HŸ0Η/dΣGn5ΠΒJ?― Ή€ /·BλWF-λu`ξύΑ/…SN/Α]‚_|!#Η‡Β/œϋ·ΏCΕ.έj Ώώ_ΓΔξB_ς?&‘₯†[_2–ΞO„—Ο¬α^}·œ1žΎbŸωBFŽΟΌ5wkΒC³ GΒƒ³?tBKkw‘,5τy—y„J― ?ο:p}‚MΪDZ˜Cστ *ΛρΩx,ώ<Ί11ۍ¦§εΨx›ΛAJ ΘΘ»ΐ₯ŽxV&πΙh›‡<Žφ¨βˆšJPη“%PhδΑΗ€?F³ύΈUοφƒ{§₯5•ςΆΧ„λ©§ΨŸDΰΪF»½³ωeς|V!Ν{Ί§ZΠqc½£²ω\Όd'β*Ω€˜Άή>~Šώ]1/ƒχwˆIΌϋι€Ξ!Ιh‰98ς8ϋS5ώεΏMΕΣXφΐ±sh›#ξΩRΦΔ„\œ.ΘΥ[Δ'4>ύϊXχY4ρ†ζ;”@Ϊ9wFvΔΫ_ΉΠψ%‡Ι“¦«‹ ύΈ3θcnοκΗd›ŸyέG‚wωGŒ“w΄Χ}*χ²ΏjC1ϊzq]σ(e ζ9Fyo5δγσ‹€*rΚjρeϊ Oΰγ^YcdΒτ­g-ααX;<‰π–crfΡe6_³Qιz/.,j œωqαi‡―σUOΤ ("ύJΎZŒFFΖ΄ΡS£œΫ2Nπ …ϊ§η‘½k{Ω" Χ}ΠΫ;ΰ™‰vύΩ|ύ!πΰ‘ƒΗπT™j€οyŠώ9ΝK-κϋωOλ±νυݐτ%=ζΟxyP”ƒαϋ/.ζGLδ¬AΐΊy.y*q€Β­ψχw^χ½-;WύΫ―Pjαƒξy,N―@.ΌMw¨Θs?ΤǜΓ^Ε #ςφΒ‘θ Λd\g<{#-&(Ε kjvԊoWcφ£_ΓWΟBŒdlLZΤ|ήωλτ2p1”#ry™ά{Έ‚=‡Mhω6φΤΪΫ%¨yiυdfŽ«²Ή Lt*5»ƒiΟν”Ή―z7S•Žƒ{7³¦΄2–~˜Χ,šθg½‘?!”qΰwOYL]ΧT¨βθΛ΄•Ί2υFs·1AΞΠ{6‘;χΩ1šŽΤšρΫkοΉ σ‘Δe;Š…^ΪΡ΅Τ‘·œN*οŸrzgŒ˜δ:T=ζ@λ5O6oρ­ΈΌk Σy»Ο–Ό¨:ͺqμlœzίυΆ5[ΟM΅OcΏβΞfτ&n_ςΰ‘{ϊΘΐdΰLUGc₯ϋ|~²7ο%IΞyG³"/ƒ˜ξΓ©|/&&hΩ‹dLD^ži«JhΗ£Ω O{16AnŠ™QbŠΩ]§ή2Ό 1SxB0Ό«• 8΄γΨΑ―ΰDa‘«Šy<|ψήοπ?~ΪφΜρY&’ΔqLNέ;εΘJΆ©r,,Mh›q‡¦/ζy«δ4}»F >σ™ ωLWA†™΄`£W·ψ‚ Ος°0η˜Ρυ/§šωί2=‹ŒΗ;›Ψί Τζ'8σϋž¬aΌ›BkO˜b8ζ%Ži~±HŸ0Η/+XZΖΤ-ξ’w]ψ,Ωv¦IΊΒΒ8Ζ6b°1; #†Q²©Ώ¦ήΜςRεTήf;–_²ι~ωNT(Ί|;ήϋŸIήMΰ$Ώ})0¦›£/ω‘ΓO˜}γε ήrJΏxυAήrJ»τ»Γωμ£όηŒm(*yRC”μYiJω"­Oΰ½ώœ$―o•δ½Υ+¬Ο‘ „?™χJŠ”ˆ©ωnœ]ΓρLzoπΊ”Π9ՏKNMΦV0·B^Ÿγ|τ0ιžcž›‡ ƒn5cΡ8¬gH]0νDWΚ ΅‘˜yvΆaœΆ>―)T&Aε’ΣCΈ|ι¦Ϋ{3‹kΓΫFαΩγΰπ4_Ε­{#ΘΫV¬mΠΛ‡pσγOΙΛD ͺv“•˜d$Ή 1Xφe―`Όύ.~0=ƒηӎVrJM,N’wΨ5oΛ"άύs{q“rΊώΫ€ςΥ`-D|SΛφβx±λΎ# >$ΓcΝ•(΅7ήrgΪρΤ^φή•†Ί}ψτ“9u –W4cξz_[^sΗ‘SL)θdnΓΟ~>ƒ§ŽΥβP™ζ}NΞ*ύ?=>Šή^ςvΔρŽŸxnΖu=4έ†[±q8’ρκt}bawFΊ}7³Œτœς€'yΡτυ‰Œ·=r‘πKl& “ƒΐ΄Lχ:LR°R~ƒζΑ­ΰ]EΨHψΌ»υΌ;ΐ–ρ/bb`“δυ“6#5sθxЁ«υ-iξ¨`žcm·―❍£xςp™κι_iξ"½n΄XEχ,p7EވέΟ)ΪΟs‹‹_4mI‡žoν­o¬(Žb=kΐΨό š§ΊΡιmΌήrΜj31*Κ«-£ˆ‰e½1.œνqπuτgΛ¦5yρ W{φjΓ€·6;{Πc€©gξm{.xΠ24γΆ±YŠ–Ώc±-3ήΩ4:ŽsΒ©’Ό<Έ²Δξe—žνέ}Μό θυ}Eƒ οϋƒ)ΎQ_uΪ$_³2|<(ΚωzΰΕS7~βD ;:[ΐ°·ζΡ@ΝΎS(UVP/4αf³ή€Κ#{œΪ±·d/–GκΡ₯Μ(j€NΝ;ηQcFzn» Ί΅i™Θ§IΐqM{kžΒ^υyߎŽΞύ+q¬(ύmυΖΖΘιΗπrυγκφs ΣcθR[χ>°kΆς›p’q›‰šjG^†ς‘› L&ι LMΤL–‘Ύ S¦ΞΩΣ™ŠοΠΦΩ…ŽKŽ£ζWW]Ζ‚r™OΘFΩΨ(˜Ω‘g¦=wΩ$ؘW]…ΗπΨ‰£ξ,ώŽΘcξΌβ1· 2 `8Κ8χk~―3ΕUs½,lΘ—uωBhoΚ '5‘.y0œΗ½ζΧΡΦ]‹ΟWWο‡Α‘χύΐU.9U™"α ]m-¨ΛaFΉΐ‘Ο½€–k罴 㠎•­’Gn™Η­ΈΈΠ™ΌˆΞ–s(¬’λ¬ΰ^(Pj¦‰¬«Κ‰ίί™uχΣΖΪ¬ίΌgΘ{³bšΪzϋχ₯œ}R₯gΘ/¦ΓέmiJ’qgP’œ'=³βcƒCj-£ƒύΐA9νΟ ‘ œ Mq βPΑ*ξΈΖA­@wΰz³eqZKtMžΑAZVqPζΟΚγ§QσA“›? Ξ‘ΦΕ­š"–ςρ.`žψάc― .‹ ₯―_δ½αήq-H§Wζψl³ dœžΔ’,εΥβΖ”^Χ©¨:Ž ‰³„΄³Γ€ζž ΥPυ₯ΐ£ϊΉxP‚•Wδ-'5!=:|φQ„ŒΘvsW99!ΌΠVάWG&p7> ω± ˆ%›rVΧ1΄0cʘM.±}›οΗyš-’R$ƒωΟ¨ΛΤΏiοώ­γƒqΨh«τ¬8ΪalW4mYΞΆ3_§-Ώ—ΠO[© A΅§TfΑ8Œ·ίΖ₯Ώ°g^~ζΏ±°Y©q’η ]3M=ή‹9™L3=-xƒώe»‘Ο>mΠbJςφͺδoj6!ϊ n^―§?Y•,c]xχέ.|š‹’¬dΩuc ss³΄΅‡’Ižβ<ϋ§T#ύ:;π³tθ’xOf:οΰΏ_ p‡œάρ˜jτ–‘<3Ώυ:ήΥUfηΚ0?‚?¦Ώ†lΤζ¦"ŽΩ}‘aω νψ9Eί ½§ŒψΖΟ<7εΊ¦ξ7Ž7‘s6ŽψDΔ°{ž]#«³θY|<Σα«9YΑω.£™MCήφΈΚρςΛκήξrΟ{tΑοiP<ΈUΌλ·Ϋ(QπξΆΰ]fΰ|ύκ'`Ÿ¬μlΪν, ±±13e}yƒ#^‹TŒ―’ΰžcm ΄`¨­΅E2W――`|¨ƒτ)7ύ?C‚εO.~ΡtςΞ'ΰΞ'š‡C³]ψ99GΘOL€-:–tΟ]ΔΉ+˜\šΒ˜fκΦ³8o9iμ†oJcηY§™σΰq‘k…·½ ωΊ†ΰΠ’“Qsž,¬n,ab~Ϊηb)S€ό'xΠ24ς=ΩΚΧg`΄gΘmΣ Νl¨ΣιšFqŠ8τOV’‡›κ?FS½Ά掹ήW ±Ρ΄gβύΑ_[ /)R™εk%π<(—ευΏΌΈθkg@8`3V[O‘n73ρ’ΓÎO`Ξ€V)±sPQϋJkC@ϊƒ˜’Ι@Δf 0»u…₯n‘Ι³μϋš‰Ν©>ZiC†™’c…BT>†johf„ ©°“‚ΒΜrTU¨Ζœd.{ϊΟ7Ŏs¨Ι°ΡD0›Š&ƒa·qGEξ κs,V―b’ω2:]σŸΞk·ΡόΜiT“0’kρ•ψοpαέσΈAs?'>χœ;%l2™šo’Y™A’=U02ΰ=υ…?ΖJβϋhΌ9ŠŒ£΄εωΣ_@9“ΓThΕθψjs˜!p ^ψƒ?F:y₯]€Wς˜˜uŒά»€:γiΚΔ8?ξ!\ׁϊkΘ@‘΄7«ρ~nCEω+YώΣ±%8RMχ¦bDHχίνw5ρ” ENMΣpxχ·Χpˆξ‰…rŽβλ)W~ϋ[άo…(­άΪ³§aπkΥΐΩ’ϋ›Ϊπ$3pΦ†>2nΡFhβ™―!ߝ뿸Œ51·ζΌ˜·Œ(Ί’‰%|πZ]ƒ²Ο£ΊΖΥΞά=ά&#ΰ€a²cτ°s+9‡ΡΫ%—λψ2JTΉgΙΐΉMΙ„Ξ‹αήΡ£dhNQ‡ρυ?3Τ_ΌŒ‡χΫ°lΟAfΆ₯{jQ~° vςŒ>MΞͺ-aA-H*ΌŠUΪφKY7ž•Y€΅ΗhΑŒόqz•V?h"οζo£γτQ”³…5ΤήWώτqωΚuLFγθΣg%ΩͺpVΓ»ΪΆMρ Ÿ{ό5ΪIΑU0žœ:‘”σ2žΝΧϋt‰ΪE|;x ”n*ς,/°ςςDDQΩ xn# χhlWcΘ—γ8Žhžο#½wέ Ÿ”F9τ₯ΰyή9y·ω―ΰ3 ωΜc¬ΛΟ|―»Όώ22ϋΞΎzF]2pΏΑ½H‚•γΰ%~=«O|ύQ›1ŒζλχΡέΩBχφν½‡žΐ)ΪYΓξφΑγ¦ψ…ΥΒ£OΈšχχcΘ/~ $ξ†έ€ΟH‹Ώ”3„ψώ ΥΓΑKjϋΪrjσEΘρNζ—―ό ža Ÿ˜έΣ Ίf‘sφ»ψ’Ϋ΅ΊΒ[m²ίΞβΕ€ΟŽέΤήξBΜκ©χίΖ Εs›+>/§•Ήͺυƒš[:Θ¨&γg9jatΒ·³ΎTψΟΘ;λΓΖ3(ά/c;žγ »ΩΦΔItͺF†MΈτα%8^=-ΨΖ ―џ;»t4ίώ>!o¨†!ˆφκ―έ@y5•$Λ¨Ε™―³?ΓZF^Ύς φΧ|AφδšS‹ΟΧͺeZΧzΙΐΩ‡ŽšΛχAΠγuν[Ÿ)!΅GΨτ6£ro΅T}’½Ϟ¬Σ7΅ΠŽλ½οΏ Λ…$§^€m6y~QŒ―‘±šΔU8υ ϋΣKξԝrήdyθΑ(}δJ3:^9r<νπω©€¬΅ΗOΈψ[Sˆ³θY•₯FM`β¦ΫΐωΔΙΓjZχνzcΚjYε £Cέ@q‰1Ϊr’#…ža6y«οΤNŽ΅βΝ_ 2Ώχ%ΩΈ8Ή'^frYŸxφΫ8·_y^xδ,>…/ΌvΚIΖΡ?jϊτAλΞΏS†ο|ύ¬Œ ρΠ“―ΈyΘ]ΐcΌ,?Α»Z9L§μAbάμ*”S‡}> ΗΞ6™7pφQΗƒφ¨r’HJ·‘²βwθΟ;σΒψu\nΌα‘ΐ§/ΝσΤjhrzˆ½OŸΉFΗ>σΊίSP}ζ;Ÿξ˜Ό‡OyYΕΓK‘λYy¨>ΞώΞκdQNζ[nα²Ί2D‰ φ—W Άω“2ͺd™vbTσ]"ΤχZΩdέ{œ9ρ#κwσKrͺk‘3nf‘τ(ŽhΦξΚ‘ςΞΈ\ΠD}IC§Ώzρ§0Χ‘.Ώw2νœΜ{±QΎγBη ίuΒΛώΚρκƒΌε‚ξτ6(π(ρΩ6€;REœ#uδ„܁@°Ψ?Γό”μuѨ죞n„‰ˆV °ΣωΥ ŒDΐNB u΅ωδρ;Ε₯²Σ1Φ=Z΄ψι°ΎŸ;·Ίz΄Ε™@@ lΨ&W›RjαΘQ kΗqΏύ=ς’Άm…7γo!ής0Ϊ»>ΐOϋS<˜υξοx;ψεέ+δqΦ;y`nm?kΈ€&Ζ¬ΟbŒ|‡y ]Η…K υφzdΛCR¬Ήν$ΗfF=ΚΊO——=„]3pqηΞnΙΡ•ψ{|xε6†''0οχŠή…ΗΘ΅ΔχιΧθφΡ…ŽϊΑχφηΎ IbΣνu^ΐλ¬­IƒnΞ΅£ώ_Ο£Ϋ%οΪΊβ‡Ϊ /‹jyσχΏ@s—‡ΖJIž}dΩ͏ΗΈ‡x]3ωΤΰΩm£λ%Δφϊ:^G}Ώηυ.K06z ο|τΟx 1τQd Ί\ˆr*νFΚοΘ΅Ÿΰ―ώζ§ΈΧξ}MJ}˜λCWwΏ;\χŸs J-žΧ‹Ώ…uΦV 3P«θh 7ΙjθFǝυΜλ`iΕ{λS―L,‚*u³ω_ΏΈω'u&Μ₯¦W’(%ƒžΥrC+Kcτ|οπύ|³<Ύͺ9}ΙLΌΰ3ΐJ>sԞDnf²τ|Xžΐ0ι?ΌzVnY-ς²ιŒO”d\_EοΝΏ έ‚Ήž΄yƒΥ'΄e7εXΌ?„fΑ/Φς Χ€ }‰ 6΅ΰ ŠGύΰQΰ3fΤJhομ₯xD–NΙELvEDΚΎBc@jΆOή“i+DΰjσθSΟαΙ2ΪΙaΆoό’ήωs.D!ΐ&"ΐŒ+r+Φ17± Ι™Ÿa€=£ξeσZzγ»ζœεl≦‚γӝ̯‚?wΘ…*Ί!7φr|λKGνjgnΉχp±ήννοQΣ?7[χ‹ϊΐNCΐ–E6·a~ΈMŠ-))1H Υέέ-e²ενΡeΈσ©.·81…ΐΜ,+xh6UXΚδDΧΐmσΩ{ΡE"ψG σ&4ϋΟbYκfΆe™Π* ύΊΠ€Gr¨νΝL5‘!Η΅JσΑ– UN₯έHϊuv6ΰF7ΣΞΊ'Nβ€ΛΈ™|uβήΕΛ›?|ƒMΈCα ΩΘ-ΓM;΅Ο˜lή_₯6½΄O­ηQ8˜™jΕ^Ϊll"EN+p|f-Ÿυ6]έ£ήgΚHgF‚|~ρ^gΑκΌνp—οάΠ™-(ψΕZ~1‹».ŸΠ—tp}"x"hΘvjGΟ…ˆτtŸσJΈŠ‹?\E2}Ο][A+y4ή‰ΑqϊKψ.yiξ}PžφV ŒŒ`-±u'Ξ 4Eξςh=ξ^Ρ?οD$DŸv‘ΞOδη£GƒΟψρ%tFzz`|εx4ψEθKΎΖ_Δο"ΏΙΏΖh+ϋ°+ZL)o%ώ›ΥvWγtιwDή¬¦E;-C τθš—ΗfΕ؁YΨ7Ωτ-Ρ°@@ °£`Ζz;_wτŠΞ !# τΟν‘_+:Θ**° }δ±SneΝ}]²«i+λ G]EuŸCym±·8ˆ†Λ·0ŽFD€@`‡ PτΨnμyΎŸ}φ9{3f€§;LΣcƒΔΔ„7ΑΦ΅]σ§•ΗΑ=ωHΛ.ΒξͺΨwδκκφ#7#Ω%ς0όκΗh^Ψ]r TŽόΑ‰Λ_ŒxYν|€ƒGΟ@ ’!! ψΕ7|Ώ}Ιχψ‹”ΘF ίοΙΜθdgΛΔNNω^μL};%oTr6’βm;₯;aοG䝏fφΆD@hο_W=ηikšŸΪE§»Q΄ρH¦k±Η€@ΐJv:ΏZ‰•¨K Ψ™ύs{θΧςσhg^c’W€@ Δ%‘Ν­AX“=DΪνvƒΤΐQN§<—œ©ΛόΘ8ο>teΉd€΅8Œϋ—o"vŒΧ œ8›…ϋ8μ8Y gοrχε{ FzϊfαiνμJΛCzŠ ιiˆσ~Έ½ύμΕΥfaάμ8έ¦€¦νHώRψ·―Ύ{›"/Δμ|Ώμό1φΧC‘/ωCG€E*Š~!ήδΞΖWrtj.vΕ&'ŠX/„³$"B °mνˆ†/γ(§oΫA‚ ΐNη׈ с€@ ¬<Κϊεvη°Ό¨\ D8Βΐy“0‘}οmά½Νχοΰώνzάώνχqρ£;+ƒ6{HD{! 0Φ<²γψKΛΏ‘xpVQT  Ώ<Ϊ—Π—νρί‰½ΧκβύOaaΰl|₯G§`WLΌq’ˆυB@8{A""€@@ €@@ E`³ œc"§ΕnύΰΡr-’€@@ °s¨ωςΨι`ΖΝύΧz€Ž*ΏΜΘ9΅ΘΡιJ_vξZΧ3η`/Δ†ΜΦα)jΪ”{~'π—n ͺ’U€@€!°ψ…ΙΓxΞJύΥ)B`„Ύ#‘c{# ήΆχψl7ιvE?²SΚΫm(„<€@@ €@@ €@`G#}δ±SneϋΊΪ¬¬NΤ%[„ΐžη«uΖ1ŠΜS(σΰœ»/?’Σ…ΗSeDΕ―@ΰΡA`§π—/ώ}tFRτT °ύΨ.όβiά¬ ͺ|J=βW ΨΉˆχ?γ±œq‰Nw`WT”q’ˆυB@xpφ‚DD€@@ €@@ Šΐf{pήυ½?ϊΣΟ¬Δκκ‡η­¬NΤ%€@@ €@@ 6šš©ΝφΞξMo{ϋ6Έ ρe'·―xΫP²b HRυ‘pJ'D€@@ €@@ ζ°efž–#ς³Xq@IDAT—””¦Šμξξ–²Ψςφθ² W:8Δ‰@@ €@@ €@@ !°+:Ζ(ZΔ €@@ €@@ €@ΐr„³εŠ €@@ €@@ ΐD J8οΐQ]€@@ €@@ Ϋ1#½-‡E%€@@ €@@ Ά»’c·—@4Ω‰™Θ‰‹‡δ±δ³uΜ―Ξ sq1lԞx ηjr°0ή‰·ίΊ‰Α°΅δΨŸŠό8£vaƒϊΈΌΎ‚ι₯)Œ­»σ(GΆΨDΔ)'†Ώλ˜Z]1LQ"ƒiO)³Ωγ ΄ϋ¨fUΖΛ§Š€Ω571Ι˜λΉ…Χ―vΈγΒ|€^wt}Ρυι+¨ω|e@ΰλΣgQƒ«ΪSλ Π?I„θD%ؐBΟ…˜]»Ίgg–§Π³lŒ‹Z·όžQS«αγ6ΟΆΔω"`KE©+τ<›™ίB9<›ΆοΖΛOμARΤ¦{βBƒ…O@[1^Mχϋ›‘άοαδ₯md2Κlτ-½λ¬¬Ν£e~z“$‹Czl΄ΤΦΚΖ"ζ ή;@oΩ ‰H‹I@|T’$½g S‹£θ_5Sεγd]¬Vοα-§«Pœl!‰pfΑžš€„φ澁₯ωtwŽ`†W*#~α­ΛΚrαδ% FŽΎ βΌΝyΡGυ»νhχρa=aγȘš…€ψ(„ϋ#‚-!‡ςP‘”l ς ZΗβκܜšf³•ΰ՜υάψ` χ†o㢁d°ν±ϊ·jŒϋζ'Φ–‹γUYˆ₯ιΞΑn4 ΰ§xΠI›Τ^\L€θ%\ ο&₯ωΤΏόψ$ΨcmH'όΩώ…„XΐΑ4-λεag‘^Ÿή5ϊ ₯=žώ₯8Pi³Γ‘htΏ ƒΈ3~­ΨρxΆ vmœŸγξ‰ϋψx†Ϋ ΔOΝ")$lΩ8ΎΏϋjt?Καα΅p‘i2ψj³χΰχ^:„ Vrͺ?Υζ,€1%h,yδdH²%ΝΨL1))Y9iRέΡSœOΧMβ]Φ'ϋέ4Ζƒ~ή†ΐ/›ΝŸΖ=±[‚ΐfπ™χ»N8yIic‹~ΛΚq(#ΧSΕΓγ«“ψ”ήZ t-λDMΕϋP!Ώφ«£8ίߎ1΅8ΞĞδT$ͺqΪƒ ŒΝυγϊX―¦ ₯σςo9­Hβxk°γ©ΊR”Uδ©:’NΗ&qχώ\l rΡ”Π—°ύυ%NžΠ] Vœβ3_m.ŠΎΔZέZžχΥoοpρ™ΟΝ'pΎ=™o@䁀@@ €@@ ΘG`W”˜NήΜQܝΆg2²}6™’˜ƒ'r£±Ϊί‚ŸΉxάξΛ4>sy+σY.?΅ΟeζϊLgΣ’υF¬ι±dθ0l`yΓ;O{[;ή}πSPRŠSR–ŽΥρ°8oV{ƒ£½Έ|c‚œ Ρ ΖgβΙƒ%ώ`°&-:GsΚ‘iTΫϊζ|ά„r}5(Ž»=ώ₯£&«ώ–d&ΰlΑ.œμR}²γm¦›YΧΨ8‹°}°ΰΤΎ2μ«,@’‡TQP­ώ=RόŸͺΪ-7SΆήΎ‘MΩ%ΐΏDΪTw―b=ž?Ϊ\\Η΄ Iy¦ΊŸ²ΑΥ΄YΌ πέοΑυFŸ›ηy Ώl.κϋ*ΞΆΝδ3 ξw7Jaδ%w#›~T΅₯€·›Η3K1©Ρ'Œ3ςΗΜ)s7S5‹΄ϋΛ‚ΆΊh;ς}7Λ³“‹p:joŒ ¨%yy‰·œΪ°8Ψ2 iQ27ϋ ‰8pμ dΩαυzσoξB_ν{Γ6M_βδ Ύ^ω.Ο|5SŽ[_’6·šη}t[DϋA >;ίΎΉονbFΪΟΐ‰$€@@ €@@ €@@ p! <8oή₯Xˆ£γf'σŠκΑ8YFε&βXFŽμI,6₯©©θ‰Do§IœΦ7/.O’mv C««ˆ‹N ­ 3°/5 Ξ½'Χ4Υΐy½3c˜ω vΦΊΑΩXB·§*O{‘6ΓΠυΝψΦ΄Yν β¦βNͺV‘sŽnΐ­?±Ε'jŒ›—¨aύκ’Οm¦Ή―OΞ.πΆΗΥΏςdν’sbξΥ₯Œ­,b…|†ηΫrP—βJΟGuΚΖfeΟλctoߟ^ρΎO©uΨΣ(RϊΏ4ˆ&Ηv%ZόnxαΩ'°ΧΓ{zHΨΛQU)ωn¦j†ρΰf_HΥY^xΑ‰φ‡ν`βη‡β±Όώ 7‹w9οwξŽq>oCα—MεOn`DAλˆ`>ΫξΌΔ1HΥγζtNυ’ΡιD¦½O€»–—Ρ’ΆRΫΖζW8Zπ_€ŒΪ?hΣ/Ϋ™[[ΒΌΆXΤ.Iwq.N`ty+”ΎΎŠθθD'ηΣξ3rω”€lμ@£λέƒ——xΛiEΗ[ΐ:ϋΡ=2±™Δ$g‘Άj?J³dΉ kjqjhWzLμ²#τ₯Πs³τ%Nž­sϊ¦ψL_D:3[ŽW_Ϊjž7貈 ΐ|†φΖ j 5σ–8§¦δ‘sa|vΨ\F“Ή}εΟπ‰ ΜΦγίχΡk²\°Ωχq γ³NΏΥ¦¦—£ˆΆθ³EGcύ³,-Οbj² C†Ο=ZI–™ƒt[b’½‹VOΆˆρ±θšυی.Q•›ΉρEςι Šί<o~댴-ΕXΣόβόUίy­JΙp —ζ]——zαδΨ%Μ*16»žάSίΕΧ^©&5/Ν葉„I¦ ϊp΄Ύ<ήή&Œkκ‡[€€x>lθ7iτ|Ππη4ρη?‡ΒŸαδy‹‘ΰ«nωZ0ΨφB}οΆ=Rπ5ί₯ξR‚―Ͱ¨ί]Ρ[:l Ρ΍ͺ²eͺ[5Ο.τβΝ‘~΅³ΣνHŒKΖ±dύGy5CD€βtz‘ΊέσΨl7Ώk·μAΟό(nNx~AHFzœοytOτ ΣTωΪ‹΄q˜Σ|ΘέψΩ{σΰ8Žό\π#‚ΈΡΈοΖΙΖ%€ Αϋ’(R”4h$ΟνΉΆ7ΦαuΌ}ρ^ΔF싍έΗΖξoŸγg―c<3φx.K֌ŽαH’H /‘ ‚χ}7ϋ¦φ—uWuuwUu¨JD£²²ςΞΚ/•ωε/kή†*Κ”§­NΛάn΅FoS6αyaew§Χ±Ί6‰…Δ'—γ\*OΈ™Z[Β΄n\VίOέΘ 8ZOΟRωhNwpncs£θYQΜ½SNG‰ό³Ά«υ.EμR΄}λί‘ŸΎIΓy¦Ό‘SΌJDθ>?u«Ϊvέ‚Uc½:Ρ³œ‚³u%έtͺ+ #„mνG›ι69ΐΒ8άίδD΄ΡΗ"‰6o`aΙοζ 1Δ–αΥώ.fΤδΥςxk_Ά?MΦ‡ν}“j`;ΰY<υw*ή,υwΓζ‰ΰ’αά™χΈ; •Ιβ–) ΛύΧ„MQΣ s¨'‚s,k4βhΣ#h+U8MFb)N³τ™jXΕAs«*ύΝΐΪ8ήνΥΨwΚ’Οΐ)„Wν+΄ŠKVΓ…³rμΈ,Υΐόό u΄ΰΡ½τͺXς“θlχΰ•―> ·Y,i„ΞΆΌ€ΧΫP^²ŠzΕ³ΰfΟ4qgQ^zΒ8―)}k’Μΰ™‰hΓβυΙΝH§œΖkΗΟH»½ƒ•¦«νgΈΠΣΜ›αη{b8Ώρ1QΨ¬JHΚίΫW$O^άmψoΈ1αλ-)νŽ”@EΊήq/£΅ωΧψx@€f;pόΐWP™“ηsDsε0>ϊ)6~ˆQί€PwΙ™HMΜDZb’ˆ4Δ7ίψ!υgλDOφΥH ΔμArf6Ψ­¨ρd#!BσSς2ώβ/ώˆK7ρ“[‡ΘŸZ‡SΗJi£Α<]Χq―}“w£oQz{ˆΜε`K@’‘&Χc_)‘ΥOθPϋ»O„Μα„ΏHKρΒΙo£B|-[πζε7XΎδδΑΡ²zδ'°:΅9B›5Ύ‰V0Τ1Ψw!ΥΐvΔ₯ ΄§VγΤσ§±θιhΞ–ίύ?xλ’’«œRUBrVjA7ΕO [“Γ•G22 ΔρTXΜΕΎEγ‘2S{ίΐW-7y©tΞΥ…OšώΝa’΅Š‹Ξ£:§˜ΘΝzςγ‹˜œΈ‹[ ο‘W™ ²[ Η’±&G:pΰ™W°Ώ°ΜGv=α:‰ρ‡πΙώšβΪ·Αjΐ‚ΥPψŸoΕψόKΎ™8/¦ρ„[…ΧbρΜ₯š\Ξ4— aγ5«…mklΌήΆMσTg,bχS]ΌνSΈX€μζη―Ω‚ώΰΌοδρiΫΙ&'9%wΩ» %7+K¦!4DΖ!Yδ<―,&BZK/τvHΚΫ‹ηžΙΑn"oDΠρβD\ψΓ'αάΤ‹ƒΗχ£$1 «”F ½.šœ½πzΎΔδ۟0ΦώΧ{Τ±Ω$καγ¨,ΜG*±Ifˆo“LWΟθΪZ[q»_ι?΄τσ Q^…μτRΆŒ8ž½Bg‚ΟcΤγΑ`_7oΒ΅₯vؘ%M‚rΩσ£ΕΜs€΅XΧX|?uγ2βJzVΚ·2xσL«‘YS“Q€\aΪ~nž4ukΈEfγ{ώ«λφ£Ϊ™ƒΌtÁΕ9­ΟM’½½m“ΪwΗLc₯ΛΒσgΛi£GG»q6‡«œ(Ξ'χIΣVW']iƒΌe$ η^(G2aΠΖ8.Ρ3ωΝ–k,½¬Οξε gΣmΈΤΒΦ‹Φ±΄θΑΐδ(i‡φΝ§W–™Ά ’*SεFϋ#α˜φŒRΌr 1Δ‹ŸhΗΕ–ρΐ1ΗΰΕ“ΕH ݚ‹“έΈΠ8(ωί[½΅₯ypͺΪΐn"g_l–ύIΘR\½ϋrcI£ΈΒ•κk~€“κ!@^2ŠρςA*rδϊŸAΣΓIdν₯΅Vڐα₯8>Ρ‰c}ύ1r +qΈ&Xϋ…†»b‰Lγΰ&τw1/ΎΧΠΗ[ί8€ψ²Υψ©—ΑmξfγY°ςƒg:ΑΦΧ#P]suωΘ”Ma‰‘폿Ԅ³‚K‘ΙY4uaoA¦œGΚ7†MzΠίΫ‡{ύM.ω[³ψR’˜.’1·Π'‘›A«'§3‹ˆάΜδAΰί₯›€uG"=‹Ώ>‘υxδ’B*)¦WηMΔϋγAZ±­+`q)@H«αDωD=mψ2Ϋί† ϊ]™κy­έ#pΥρίi©IΞ-pψΑ[^ͺMOή}BςRΐ†΄†£T>΄ŠgfΒY”—ž(Ξ+λh μŸg<Ϋ‚κU%±Yά^U"z79)Ω†ΙΝ,όϊΊω‰½te79>yŠO~[ZΌψA(Άu,ΛY‘<”ΌΧ+k₯{_KŠa³Ύά%†3|LΗωŒBAωΠ >υL’0G‚7Hƒ~€M\>iΔ:*-νΡ‰FΘApΙ' ΡΑj81όvΊ>΅ψΈ’c’d όΚzπ—Ε?ΎΨς_Σ;D^²‚_%ω©U<3ΚΌτq^‘Ν·ΩxΆωu¬Iα‰œG§ΫIšC€r7¬Ή šM-;B1³ή»Έ'i*·5%^$m, —ŽΪφΧ‡β³1MG…kΚ’}ηδζE:r°mθ!ύ5=1©ΘNuaΏ3ž9…V»¨HΪ§ L{:0κΓνŸ'­‘1(Ξ―'-ΠΌφΔ€Μ*JΉŒEšIΙι r3›MσMVΪ=(Ν/h²iίnγΘ%νυBΫqϊ™εΆς6tϊ’~ \·*½žD"δ3•κ‚Ίe„ ΰ?¨εώξ?ΚΐO¬ΰ„NŒUίΕα,΅vΥΉΕiυ§’U|Ι<ƒ rσ4i ½Ωu΄Ÿ›’žUσ :q΄#Έ€]aΤ―STΫιIΧ€Q\zωά”τ]ψςχΥ©aŒ|»Χ§wn_Η|ζ{:ΒXπ0E΅Uγe·ŠpV&7/ £λΈΫή‰Μς—qΆΜΕ(ΩWž£Γ!J]i9’Κ€» Cξ:6v+΄ό_³υωΕBzϋQ[Τ„ΡΎώήj8 mEެ¨zYEnξh†ήλX‹;€ϊŠηαrπ۞):ˆζ‘χΰζsiZk`»γΩ¦ΦϋΆ;Ξ[h·-Εkʟ₯τ¬ΚεΣ³ρΪΒ‹τ4ω\γυΣά°ΚfkpΆPiV‚¬bnC$8Η`or1F—z…M‘I8˜).ώSά‹Ch6sΔ΅•μ„; -τεΌ…Ή₯Δ&—γΛΙiμ<6ΙxΗρΐӍr€έ±Β‘Υ4‹P„―O4sΛSx43€–E†TΛι…‘Tκ@YN‰°.f8,ΧIτ4Άc=.k?Þφ•Γ“τ&ϋ0:·†ˆb3ρ¦&•šιbqϊδ~Ήy­ƒπΠά]*}?Ί’¦λΐAx'ίΑuŽCJz|6ΨΕi7†&§α™§oV"·ηζ£"'%:ŸΩ‡ΣγΈbΰθf9Ζ ΆPΫA©Ή KπκσοI[«…χ3HΦ=[zΛ(/εi(’ˆ>3]FFŠΕqGΎΤŸΗfFΡιοΫ^ΟRρβΩc΄'ηjΈ§}Τί"χΠQδY™(% ΏkͺE+ύβ_{L}FmfFϋΠ>4‡Ψμ<Ԑ9…¨+μϊΡ8:{'PΚiNNFaA.œGΤ‘ …βφ‘1τpΪ›5^BΎΝBε^q₯fmmŠ5N:N§<&Σ@G§1΄0k₯›jqJ’΄YdbrŠσsψ¬šά<@š¬ϋ© β²PοΚεό€–Τΰ:Fώ­;κςOŒτβΡΣΰL eQq¨*ασΉ‘j3eV2pκΈ‚άΌδΖύΆ~ΜF€ ΊDšŸc!όΗΑΗΌύΒƒ»jυΤ,mλγ‘ωώΞ—Υ0Œ·ͺΘƒγΛvΒOU֟ψgƚ žˆ€υχ‡}Sˆ‘Σ κΛxmφ©…5xΖƒwšΗU!Νγ’ά¬œ΅·’N„”ΘΝ3$a|f»c㐚‘Fkl€“ šrJ‚ΝŒœ“Œ,α;k3^δγ(tT ^Ϊτ$§0·*x,Ϊp<Σ%œ±ŠG-hίεDΫκ²ΑuˆX”$e‘:-WbΤLΌ‘x@Mp\o5œ~lOΦυσŠ/IΘJ“ωWήiQK·Aΰ‹-/w·“Όd't_G«xf>œ%yι‰αΌNUmš“g›V΅"~bgLίΗ5ϊι›}xƒq3ΉSΗp―{'œH£ΑΌ™@WσΜΗ‡.γΧχ―(όt£kΈךεA{8wΏ|¦ΒŸheώ'±ηά·Q,œβ•―fg:ˆtΈŒεωa"Φt qο7ρͺΛΕE0Ήΰ6(Μ‰ιΩW©R38ΑΦK»D³Un?K(jνΎy ώzΪμ†<ώxf6Ωluz\qb|ΆlB)­φw«Y±ˆšδrŠήΐ ΕDvc3’>0/3sκhXΔ—šιΗαΝμΔuό¬α’pG{m;ίD\biqRzd[6³v.mfρŸhάάΞ‘ϋφt,0­.Njœ[£88–M|κiΒ‡ΏnΪΔτ’¦q—­αΠΈλΥ{¬pΫ²ρ(ρ(jΞ ζQΛ―ρ‘@*v γœyύOρˆΫΓ΄—ΛΉ“Ÿλγτ ίΖp§x4­Žkpβ>Φ"'p7BIL±޲aZŽŒ=€κbΆLΕ›ήŽ_ΰ½NΏΤˆ#‘όόθΐU2Ι…p’w°ω!.ϋB ΨγC•bΠν0>θ΄ΠR=œš+λΆ―­¦gQ.‡•τlΌΆώ>mfHώΊέζ6³ψvάΫ£l Ξ[Χν4?SCšoˆ0›ƒ‹“1ΆΈ†xJό/Ξ,-βΚψ€ϊ$­Λ’ε”JbιtB!tbljΕEŒŽΈ,œŽ#φiνQLh;ˆ@κΟ$Ζ€αύ’'ΰΖόΌδ-”τΒή’ό'e/dK[Σ}ˆΊV“Κ#‰ΰ\ΒΕιz„KmH¦ΩE(Λ5–ΞΰφΗWp]$7uaξ…3€ •cPΆ·œΞν\Ό–Σƒƒννπ̎ΰΣ.yΜ‹΄ΉGŸΓyŽ€ƒ‚"φχr6εŸΙvˆ‰•4‡ceӊwR™?+ο§2ΌY{Έ3Z>ωΛI.Γ±$q&3@τΙIvΒ%ΞI―M⑇'©ϊKc;»ηV–‘Jšζφΰφ'·I‹ΊοWοGUΌβΕ³Ψ΄υ0ΪqΏΌΦΙ;7·Α{ϊN•± ²ddΠ€ŠΠ§ΫϊΖqŒϊΫFΰΜΟFzγˆjν/·2GΦ¬ά3*aŠ6½Pξ5Ε( |¦·U00‰IΟ \‰”Cϊe‘³ͺηκ”3βH8ƒ© Wύ…¬tΜhΫ MƒΥxγl5GQ..‡kΧ­OΤ[η`γRpΙ·ΉφΏτμ«ͺ†3WTTJ§dΜ’\'’›Ϊ¨rΰ ‘›Ω€ Γ^2‚B-ώΖβι|€ μWہΥp,›&εΘ2g%ψi[ K§΄\ΙΝb‘—Ζ1M²E–({‰ξ;νjω½ΆεΦ@Mmj‡=σ3>θ[_ΔώsίΗ‘Γ΅ς·ΗόZ>€ρ@ωύ Ά‚σ‘ΙσΦΏΆ;^oΞψΰO.¬€gγ΅=Ο χ~f3Ž/ΜχNΐλ%yή6Φj`W€€žΣZv(γ5°2KΝζ‘›, ΗqΘf;$Ω7›ΰ]μΗ―Ζ9•ΊΖγά>£‘ΝΎƒVιGœYF"‡VV‘›ΪD"εq&•tϊ`DˆEJ4«„E ‘Nοκ –>Ϋ…δ˜Έβer₯+5τν>ΔΕJzAˆν°ͺΥhGΗoζ’LB„L‰ˆYΈzπύWιΜΰΘŽμ‰§«G&7s^—p₯©eϋ8?©D”ΤΣ¨j&=νƒFͺ8€–ζA$&[ˆŠ o-…Ϊ)t<ΊHύρ’†?ύOo+ο'WΩ…/=cεΣΟfJ|N§*¨ ΄ρβnP²rjRεyΏήΜχWύ4LΉΖΗ‚qΒ7lL›Ε,›ž±l’PQZ$…ξmjφ!7³‡½-χ €μ‡£±Eεζ{Jš.p§{΅DpfTίd¦Y4cΓpΧ †UNz˜"e·bν΅0Ÿ=ΰΝΰΠf¬πeК™Έα}νD6±˜*09EJx8’r2 HK!₯ψΪ ΥH HπtίΓonR€T€₯dζΉŒΡTρώΣ9’β¨α­>m0Ϋί‚]9xŽ#η’ , ]³rβJΫnG•ΞJ{A†CΊνnλ”Θ͜γp₯倴„΅ν§jwΕ ‘β ‹ΗZsδβx+Ηn_Ά~Κyφc³ρlΗβ™o‹’Φϊjάk»Σ‰½{sω)iΘΝF΄K_bDp‰y΅*gmR›ZfΠ4 hEΡ–—΄•²δ₯pΰ„ΆάϊχVρΜZ8kς–㼍gO Οδ9=ύχ5άα% Gξ²Ο£Vθ9ŒΖΞ+αˆuΛγHJN‘vŸM/z±›‚Έx"βLΡ±pz”(–ΕRTε»„ΌŽαa +;ΧGB-Ν{ +Σ»Πqlή—3+X^νzW'’ζi/fζ»υOP>U^Υ7D2ϋΦ_ώ₯:iΖ§ ”~Ω‘γ†ˆ„U―G‘»»©7G”Ie"—H ²%?sδα[Ύεlν©](ŸίψΣΠρ„²³HO/>€3τΛΞώπoΏo<„’žυvsgΝfφ½ΆΦί­ε-,8AΪΨή¨= ~©hŸ΄=DΩΡ/ςZρ θΙ(Κ¬ϋΕ—e¬­³AΆ`Ed‹5-ξ9Q˜!Ώ‰Λ~?•‰m/»KαΒ%E»Ζ|ω;_Aubς]x,aaμ,œί“™Ζ% Z’OG2–σ˜G›]ͺεΨ["‘f_Αχ“γπ7?όΉDdŽΟ+G‡Σ ¨Ύρš(χ ic)*ζh–ˆΰΜ›\ψϋCε9π£Κ«ΟœFΙ Λ3V»€@€b«“ΖςΟz©{ιs!γΒω?ϋŽ–ΛHΌ;υζΤ""«όy™ψωO} ήEt¬mΉoΫyil†vl" ©QΩυ_ΕχλΕŠW½φ e<γ̍NH8·€ξ!Y¦=tΰ%aC«}ή$Ζ±%άΐr—θΧΪΥ…b)?fb0.Έ™@GC‹¦w’ƒ–Ÿ>{mΛ­ϊ/„=>θΧ‹ΖΥψ ρH·Ωυ_‚ ύΙisZυ™ο"++ ?§pΰ|ς<΅y(ίGΫ―7i|π+—[KΟΖk{žAΐ0Ύμ Ό†MpV6±qϋ.Ϊ•±ύ¦“`ωŒΝΕ+€έ“xΌΩXΔiˆJ@v΄@ Ž+ΔΉ”e\œž}νk<’Δ2p9žGΣΨ#4- tD:Qpφ³jœLβ‰a»U€ϊ%ά'νΜmkσj‚ιμ0:Šπ|F.OBLDn|4†Xœ!€†vp·ίΑΏŒχ•{«»©¬-V†²Ω OšθDγžy&'1JόZκ0€QUŒ+Ψ5‰Že―Ω›‡Ότd$μ!¦ΘϊΟΫ'ςίκΑb0<ΤvHŽ–λjvΝΖΚϋiΎ,rˆπ₯g¬|rΚ’i\|>SθwΜqeG{1)zπs-OΟ“7?/ γξάΌŸ&‰ ϋ­?ͺ¨yΧ'F":ύκίn«΄fϊψ θ…=ޟ τ΄#‡₯Ν-bZϋ:ξ‰jlE\ες?KsS#DpΞ₯»dΠΌΰ§DXγL|1 9mνt·4„^Δ_ή·₯Lγq…°weqtΠG;(‹΄wr3Θηp …#0{›Gλq‰ΌΚΝδμ Zη„Ϋ‘‚T!Ο4§ "oΈa†”9ΧΦα[Ή5ˆΡ’δΩΨ=‘Θ3IHI]‰`=μΫζγ“žΑΞ¦ΪΟR΅«…ŠƒVϋ»*ώnΒ0ފQΓ—'Ÿb~ύ^m<#­7;Ο|ΪunC>ƒ#ilAi “~"±‡“5–|‚šu°&g‰€™€Γ_ψ:HaΟΘά„±#ήΰy2Ž/ HΩ-βη"&—"q˜NζW£ζqΧέI‰Τ+bϊ,&IΛs(&#‘§iάΰ mºnγ${²L'ύ₯³JΪΆ'Έ1eΪ)‘NβΜ qic±χωυU|δ{Μ.ρYTώ·N‡έΖ—­Α—ψΌ~nΏ$—ΞΠf«wš|eeΩς’²6ϋސ—BΗ ’ϋ8YΕ3«αι,ΜΏl1ΞΫxφDρ,>½ΐη=έL‡PΎΰ6!_Ω8[vLΪe;Ϋ€fΪ°»Mr|šTŽ”œ3ψύD3λν@sχe4Ž)ΆG³‡™₯Θ³ž Δ•~ί+t‘fEΩL»ΰNλΫxd¨^²QQru•υ‘ο'-»δP₯&Zš&φKgύ±œ9Ξφ˜¦jΓmͺρΒ—€αω>ά½Ωodφ9ͺ"=―«ΤF ωX¦9RΑš^&h¬₯ϋ±φF O/!.%Ξς"]bφΒDθ΄{7‰Ά€%₯¬ŽvMρbvΡ‰7pΎχ>lΏHκπλŠ|zΊΠpϋζγŠiχψAς°²–ͺNW›ΗΠv³ #‹ˆ&m%ιΕ¨,+"οβΗ…2€Φ^‡Ϊ"α| Ν7>ΤxhAΗΕΛXKŠΖνƌΙΪO±9?c4Ω><½ˆˆ!Θ LN(ΒgΰόΧΎ’ 7OQ>οΑMς~zωT „ΔΚsίΔΩA ΩΒ‚†’žœ΄ΉvΓYΆ™|―-υw«™ 'œ8{ΰ‹‚–ό\ΫΩ…ΧΏT³9vΑ ΆόξA7’bΣ‘Uδ‚‹4ψ―©pή .QδΛ„ιjγν½ƒZ€ˆ+ΕώrA+>ˆΓu 8ί„Ά‡]pqς³QZyˆΞ κHH³]qUšΰ֎N{³ΖKΘ·pΎ§£L± ρdγ3rPBiιp°₯Έ²3₯±o|'֞ϊ5ΉΉ4YwΈΑΘέGλ«Ή°ι5―ΰ΅Χ†ρΟο¨Λ?Ϊu -«Lƒ3ΊΡ)¨­αΗ#έ±™‹)Δ~$•„vϊmΏπŒG€.@‘*³{J‘+n\Z@ΏseείΒQi3Ÿέ ?½™¦¦ζ4ΚΔΉCZϊ5F¦6.¨ι@rl¬PL/Π‘Sδt$ˆυ¦σtϋ;…ψ^Ϋr«NΫγƒN₯θ8t|‹N ?ο5χ"ΦΉGλΚ8ητͺWπΉ>όςb“荻šΗy9ΈYy>δο£νŒΧa‚Θε–³ρ:]~}‰s΅‘Έ¬6^ϋΦ m”ΫIςΌNl'5°Λ&7¨₯pxIΓyΉyj~7'‡$Β`‰£§I!3ωŽ”ΟN‘]ͺΒ‘“M‰cO Ӝž>™ά,$8ΊLŒ=ΰ¬ΝΓ‘›΅|>ζg’ζŒ[iγh}<#ΒE#.’]WΛι…―ά^ϊXί†FΦΦ7Ο”~΅_Α‘cΡΣxŠŸ_W΄υiγ·ήΚEΪeΜig•δ”LΏŸrPKΆπ€gΌ|ΚL¦ΔΉ9ORτ³΄4‚+c}άQσJ>φ˜<<“(~ψ/γΑLΏnŸφ gā6ΘV#ΘOΘZΥwΛ{h}Ε­P:Y G›ρΞ$fο‰V/χφŒc’.—#ΪδεeΙ| ο,ΚBŽΗ‰ΑQ•¦i¬[pJBέ^6SΙ›Ξv¦ AΗ Σš$­_&ΣΤQNrη!—΄ΗK†΄:Πrƒ›6Gˆ:xάSL±J’&Ξs2•½’ˆ”Ξ†μŒΤΞΖήXΕI³ν'¦ΚΥ*Zξο†2Ύρ&πεIβ§‘j±ρLUM;ΟTΉ§›ω• ' $ΠΊΓHΪH}ο­ΚYχ:Hϋc wА€RW%ύ„ψ—fΠΡέƒ«·;*+1†/{@rσfm)Ž"” pΪεξA3±Ha „ό+ ˜Xό[ΉΔζα­•qfuR³ ‹ΎID‘acnΏβέ*ڈσΡ¦HΏ2΅G’ωmyΉρ©Θ!‚σ¨βΉΚj—ΒN‰Ÿ_T³9ψ’…—ΟC±ΈF§Ιž'Ο¨VίΨς’Ί>ψ»!/…ˆzΧΊYΕ3«α„τΝΛK[Œσ6ž©ή”νƒgͺl…νFύuΆh­ETPzUΌ,@§Μ΅‘±υΎ΅ˆΆA¨΄D¦…Oί$9\8QοBJσρρΐ€δ©"=["E'₯Φ’^'Š”τZΌpš©—ώtdάΊ}?ΐ©Œ4Μn¬!*Ξ!ΕΗ™½‚ί?l”Σ³$₯¦KR˜ρ’FG=_άD&q/fe>ŠJ±.ζ[πξίόΏΈ'Μ·^ο›Β_ψhv–Bώμ_pΉI{”œΒYΧnπΡv ―α2άξϋΈ|‹cιΚ^| =_ωΟψ"GpKDQe )₯ΌΔ=wž΄1­η~ϋΧ ρ ΎJδ°ΏόφK~IΞόntΝψΘΑ\΄ά?G9‘ζbέ²ƒ[ΙΉcRΌ­wq΅ΗΧγύί\Κ—γD4œrž¦Ϊ/ΰύ+Š:Ρ-?Š2ž Mτp\Ωίΰc‘άύϋK€ρσ!Ÿlq%ε_₯2ΌΗΕ`9=XkmΆΓrδ½Άί­ζ+Tœ8Dδζ*AyfΧ\ Jε “‹Σ~?PΝβKσΐ}”₯f#Ÿuq©ϋρϊ+q/"!έ)mάXτήΓ‡·>τ›¦ΥzΪμp6.‰6ŒΈΔΪΛyϊ j%r3iρψεOπρ5&Ήžφ%‹:H(E\ΎΓw?ϊΕΑω7π|ϋΏΰl]έΣIΞ"ΒωIξΩύζv’JΎπ:γƒΉάZz6^Ϋσ RοQ|Ωix-—ΠΆ™ͺ•&]S!mΟ&j „Ύ%ΔΟγ%lz‰ΘΝJΎ\wΩqipq ςIȈM@ϋ9ή%2|tX}¬3θ[Lο©oUMnΠ†r•ƒt£·ΟGzhΦRX£"7/ΊΗΠMg±Ο.Q#EЏ4❨uς±FD˜}σόY^"ΐn\ο η-έχΣBΝ iψ q†_Ÿ<^υH§·ib3vK›*bΔ ‘ρe½m¬ι`ž&vΥ­wΓ£•ΘΜ!6YJ&ŠiJjd8Eωβα2{{UAΒq“TRJš£…˜ά]xΠγ―Ρ§1ιY¦|Qώ‰(&βrV†ΈhΜΒ§";? ΕA~S“lv–UΡρΰ>Ζi ΩίkICŒwβɏ›¦ΫO¨Β­ΎXοοΖrΎρ6|ψ²™ψi¬VΘ—g«jΫγ™:ϋ3««Ί'xμΩ£ΐ8…B2‘ΘYcmψιο–ρβΎRε₯ͺψ%ˆM†λ™ύΘO‰Α/>hm=—΄νs™άΉ;eΒ’Θ)BΉ&œζPBλ"'t’ΞΣ!TJuB–ΜΝΨ…’ŒrΈθP"ΞμΪ-Ÿ™†g2ΛQρΣV: m,υ—t›gYqΙ(bωߏtϊ.U,]Κα¬β’ΥprΚm6Ύ¬„Œ/©8χκιδ Lΰ7ο5ά”Ζ2dΛKϊΝ²Sδ%mξγ„6€ώ½U<Λά$dΉΤ•—ΆηmyI}‘\ŸžIι‡Ω²Ξϋp°Bά FK‘½77a—p˜kΟotΩHK`_λnτΣQKž9/7"‘’ZŠͺ,žΔΒ‚VΉN ‡ΞόtYΙlMW‹Δ/Ίzο‘fŽτgPŸ_Μ‚‘)Fmι<ς!+;‘•J€$D‰„ή?ύ½ˆ_6^—nύY€θιy:zğGΑ}…iiTšw»+#γνΕ BNΗΝO$r3χ΄ε7hlͺΗωΊ@*uœή֐›Ω㞫ψΈGφΧπώΟενή₯{8F7ΦΒQΡάJη#W™ΟΖKjb[Σ[Έ»―gkτσΉA„tΙhͺ”Ή{ΫoΰžδΑŸ₯ϋN‘ε–HVπηŸή“H"’ΟΒν«βI},6wΣ ™άΜE?‰?Ύ†Šς/q ιyΊšCΝ€Η’΅\vBόgξ½Άί­f04œ¨¨ό€5tzψ2ήiη όŠ 3s#~2g_¦ϋΠ?9†όBρ½OG.λ8μ#u‰+ψm&‹I₯ΙNŠHχϋΡ'φi<€P”ηΨΈn\r’fA©₯Ί/ΏγCnf;.ύ Q₯d\ΊΠψΑ9R²]ΏΧ‚z"83"³#½Y‚!Ν½#―`?[iΞ₯1½œNFh’nςrqœϊi6ΘΘήB°ΗωρΌΟ‘”³‘‘OrUΥXξy|ϋ/Ρΐ΄ζώ›ψΧ·oP\ΘΜϊ¦gΓ4ύv΅$ \ΉΰΣ^ΛŸ©¦1·€ΒW£ψˆ­·”Τ7EΡb‚/F‡§™h?Eφ̎GbP3γCv²Έ;‹κέΫMQΐ uΒI%΄‘(<φΕ¨±Ύ$ΧΠ-ιω―β|OXδb£%7 l"΄.ΈΩ /ΙΕ y“Ι»99$·L5J…LΟ'Jδ~„ΕI°=C2φψ°ΓεV{|0φώ|γ‘Σ^>Q/άηT¨ζ7Lf‘ „$&Ε7’*8Οό[•ηCύ>ΪΞxϊψ`N.·–ΙΚ6^Ϋσ \§7Š/;―U fί­[ƒ³Ρš ͟c·<ί8Ί8₯"7σ1/aŽŽDfZŠ™‰ŠτGαβoο4'Ί¨“Γψ(ν σΜΏS4’£ψ:Ꮩžυυj8½h< νπ˜Nπ3fR‘FšQ‰YθγEμM –^m<Η2άΪ€_ίΤ)γΧ±—Ξ"ΥRLΧηJ―‡4«½ šž}‹Ž‘ζK°ΊŒ£ΥͺŠΘΐϋIώΩΌzn‚T:`m‘Θ ΚνυͺHάK‹ΐdωΚS+pL1η12Ӎ=Ζς˜‘θD•tμό Ϊ¦G”ΑΚ#nίρ}­Δd8ΜΒζΩάS7cAƒ4‘sΓьεw =C؟C눀‘³ €ζψ†£PΐΕΜL k˜·†ο,κΔΣς(ΦΞΎλŽKπLΣΌQΝYΖΖ ·2ιlΩjn χG#°Ο•‰TZcΝέ-Pί–f1Αεw+œfuVFΪΪqOΉ3(|…bZΗΪζLγ™Ξi0ά5‘&@(ύέž…oΌ Ύl~jͺ7Θ­g+h»γ™:χΙ©‰άΖ΅3ؘΕΦ–±΄bl…S…t²œ5Φ‹θG g^ 22PR\'›™‰Λ+Ɓ’.|βw“ η-πΏΗΒFG…|Ή΄8„«‘‘‹μQσ*&—iLΠ1Ζπ%it’‹dˆP]ΰ#›NgΗΖIYθdΟΟ=ηŸYΕ%«α‚ηHτaγ‹XϊΧPπ% §_<ŠšLαέ£N~‘ή›-/ι·Ex\7[^Ο₯1œΨ\<ΫLτ#/… ηυλTΟΥΖ3½Z‘έžžΙ©‡Ϋ¦˜) wΤζβ«ΩwTΦΦ湍OϋόfΜEϋ„|‘αώqn@ύ‘ήs­ΞWρ…šz~η۞<θfΒY’γEb3Λφn7ό ·&ΑmΈήΗ?ΐY'›x ιλhαž»Νb|Όμd€5Π³dν#eΨ΄»-.ηή¨œΗΫm’Na1Œϊš’ :zi ˜Ώώ#όCοUβ*.c%†^žVi³ >ψs'‚·1 w4ωŒœη υΊ±wΛQrυχ‘ ?I1$ρρˆq£β²εέ~Rn΄ωτ%Ά φR>ύœi{Ÿi©ψ³ wο‘»³γ#} -F ΣX-Μώ.1>θ)F"UψIP 99ˆZC$ΊaβΥ9X hΥ„φ{kόFcꁹχΪJ7•…gλ8‘γ| /ˆ€1"·}άtEˆ—ή]nC»υΒ3γ―˜Δ—ΜΣψΪ‘3ι˜Khō! —C“τΦ‘ŸΧ*=x'. υ!ςζŸ‡―ΤλΨs?ωλPi%τργΧAΫίm\ςWUΖq‰4Hλ·]θψΤ·Nυ .yΌπ9…•Ž“\\˜W.΅ 6μΟedΡlVh gRŸG §Εžξh¬ιτGόε}[ϊo€>;G¨'ΧrγTZv>₯ΣgE1œ4ΖŒ£˜dάΐxn„1Γ;6Θi^.Œ%‘A0ΞΣ_Ɵ—½†(­€%Λ*qά±Ώb³Χ0υ#Sνg6ΎώN€Ζ³ΜΈ1>gO|QΠΒ6†›~Mis_ͺXŸΓ£]άα6Lcτ+ϋΉ“E>Σ‚χΏγΈ4!VΓ‘#gΙ€—νr Ώˆ/Ge‘Ϋ3„φK›ωH~%_qΛs˜ςdιbOάjFή}#γƒO<ž!τχh]›H[Χ\ά7ΛnΔΔf‡I­'ΣχΦδωΠΎΆ/^‡c|0#—[OΟΖk{žuvγψ²ρΪ4œΩX Ψœ·δ=H’޽_ΔτΚΌNšIHΫ-yW±Έ.~ΑκxέξND πΥυ€":κY4šΫ6bβγsΔΙU,ι‘Ο §ƒp΅CRI ΎX_€¨uƊ%6Ης(>Ίp/¨/#eΦσ³ͺΠ蚜Μζό“=7hρQ4Ι‰μϋTγ7>)"Ηd‰4θιˆ†f“Ήψt>b΅Ιͺά@IDAT-ΚNnfAWΑz{KRɜ"‘Γλ™PΪ!‡ΦbDΥ ήΥEK²‘χ“2^΄·§Jδ",ΡΖ3"8›10šKΘxω’I ― υ‰IBώVΡειΔ΅£_ξΙ¨!­Α’ρŽ έY\Œa^cσQZ–„ή.6χΨ„£NAι½O£‡œΘ‘Η9™Y¨­‰’ϊέππxψ±)― •Lc43Σ}hnΣΰ Dϊ?μfοœ©‡—νδϊωβμ$τFsηΜ<'αi2η‘ζ“:9Ϋ,¦g‰Θ‘‰HΛ³“Π!H:\0Λf15KεΘd(”Œάlϊv&m˜J“•&φ₯kxμfpW™’9 ΅ΏΕ³p·αΓ—ΝΑOeK컍gΎ eΟT$Ζ!…D­•XK2}*ΓfV0«sͺ ΜΨ°ΙYXΒΐ0ϋΰ^Σ};ϋ"Ž2ά₯ _tr θΉΦΖ—N–ƒ―Mβζψ€Ό‘3.βZαΪ ΥΫΤιkŒΙKX^›‡—δ ϊ©ΜgH‹‘ΧΓΨ†²)r{Ό:oLct\*ςΔΟ± ’‘uΉιVqΙj8U ·χΝS‹/±Τ_Ž‘>O”ε'πΙ…khSυ{?Mc_lyΙO=*œ·F^R$¨΅Β £ς’U<³N[ί{ΏςR˜pή7ΕmκbγΩ–6Œ–Ά²₯‰K‰₯Α|φΑʌw»/„vΌΡύ?Kδf=3:πd–βh#vΔ#ŽŽ]ceFŠI’ΐF.½er³ѐ‡>‚³ΰ€ΉxΡΤϊ&”΄°Ίg~€S…<):?»D$Τ„’o‰l'’qΌπ.LɏΨΖGH;δ¦ΆH&NŠ9Wk)Ξ#ΚύΚΔω£εΑӐΞθSζs7Μ*ΉΩpκ^α&c:b²ώύ„δηΗΠv>zϋ{Sό'<*={tλ’d—EΦ’6χ°~›‡{>|;„«΄€•ΥΔ{mΊΏ[Ν¦UœΘΌ‘ 7OŽ^Η/J„ΊŠςoβ…2—ŸΒ’C¨ι»fίοaγ΅MŸΥ&Mt„¬ιΕdPφoγRΈq)’DB{ΖΟsK-\ς1†ϊ#6ŸΜžXΕΰLNχΪ1v¦š›fwξ­„“ΘΒ,|I]9mUβΝ‘ υQRπ`ιbη[0E«|ϊ~ΞΛΰe«‚FtLΕ4g6^+m ˜!idNΝ`2‰h+Ϊύ]Eς™ΏηάΓӏ̢_ }fl|HΑ±z琢χ<*˜θGζQΛ40¬ΝΞβi8Η™ ŒΞqΆ°ύcڐ_ΩwX:ΥcΡs~ϊ^9OΪj8R Ι‘zQYμ”66ζζFΨy₯gΣ‹Ctτφ¬ΒΝ΄ΥΤUΆ#εV{|P7’ޝΑρAtf.ΘΙiHΝ!ςA‹z‘VM°{«ς|θίGFεω­Ζλp€gF.·žžΧΑήnΕs{ž*cηα΅’m«‰ΨeœMΤ–u―σk«€ ­˜Η!'.Ν+κcM 9όqΘ\€Mv™όο$£\πΪ‹LβόN+&KR P&ˆpΫ?ΛΎ ’Q’˜‚ΥΕq )όŠΕŽΛΕs™ςGμδ̘Lœ΄˜^ΈΪ!!–Κ˜(.rSŽηhξXΜψ&\έξ9 ް˜¬LW'­Ύ1ϊ8uρĚΌBμ½=(yΟ•• ’»σΞι*61“žœ…hΔΙG=ٝ‹ύUE²—@6˜»(jΜMw —βr!„I’ΆX–彏χήOM97kϊσ2iώψ ©?ψΔE§<- ”€ΓY.TΕΡ,,ΧgΠ4Ω‚&sΊe©ωpŠΧ&Π<­Ζ6¬ν'‘ΐΖP•ΒΟΓΥΤT »λΆο ΅ρD&ΞzLΉωo¬pτ?K΄Π‹ώΑJδ.₯—ΰ¬Έ$H[Μϋό―*ӚWhNόX—Υ%y?VQΐ+|"—ξή κΩq/†Ι/›*JMg„:ϊΆwӚΤn ,•Γ›,Ν§Ή§δY£©)zŸΚxΟΈπ¨ΝΆDGͺS£Eh.ŸŠ•HEY•ήΖYΪe<~–V”bo󀌟ŽR” Ψͺ .»5ά₯^lx< ½Ώ³²Γ³e„cΌ5Ž/αΓkVFcψΙ|ξcγY –2‹gκΈ2±·<-#²3)₯*1x‰ψ όπ ?WΩ‚γ’μέΌœ•NښΩF ·‰dsΟ°ΑžΗWΙQc1Œ/+˘]£υ+nνd­΄Qͺ_Š+Ο§ζ‘ώhތ-zΐVτŒ1|YΒνρzΑΙ-šN<>ˆ nqyάMh\ΌFΑ8!c3γϊ›ΪφdβΙ4b>—Vuσi—ΤY΄NΛvΌ{ϊρεΰιόfΦeΦΗπροΰAo±₯Μβ‹-/‰5ηΊ©ςR˜p‚ε~SρŒβ·„ƒ‘ΜΏ„ ηύ·μvxbγΩ“j…ΝœK3X&ž%&§Έ—uzψn°Έ§Ψ,sG%i H³TDΥJuvk<¨ea‘ιαδd|eŒ%—lΈ0HίωΊ&VAt$:‰‡΄­>mΖ=1’;«*gέΧUδζ…‘vttuΑ;O-A³wqE8sϊDyFŸI;‰Μœi ώξgρϊ™“΄ΓΏ@>ςŽΕ’ΚgV~τχΏRΟϋ ©8>KE…›‘λΈs'ΰWΰΡκe «τρ‘g6€—Xο©I·ΫΑdz›δ]·Ώ[MΛ"NΘ―εNΘ㒍ˆλΐ7QM‹;œΩ/k$ίぃίDΝγ)44~(’Ÿ>ψRQu@"-’FώίΉ™¦ϋ$σ¨ύ2/iBœϋΞCv†ΝŒ"jѐφπ{W.#Aœ M$6–ϊ΄:i‚†Ϊ,6.QΝ’vαX~>Ψb5[Η₯υΥΐ“π>ΉCΪ-_@v1mΎΙά‹½Υΐ@KΚ\{―sθ{ώM&ΖqΎccs4–Pώ22α"βr.;ΦQ2Θ«tΒ•&ΜMar°‰ž¦†·]ω-FH…RpΑΒ4;{ϊžΌΐfΊύ΄Ω¬ϋ”~γ{½βŠQΑδ02#ύοβ£>ο*R³₯žρ™QέΙC>”ωΕ₯oΰՊZ)ΰ4m4yGƒΕC…Εj8. £rδ}Ό}8[qU™ fσΚ v "½.G2˜CΪhΌΕx½Iιω“ΛC*ŸΧ†_#[ž§ͺځxmΈmκv¦ͺν»πΦ€—ΣΘΜ3|s‰$uϊ³ϊδΕzD<ŠsQ›( &g'd"ox³±y±At‚Ύ•ά~β$ΛΪ‹ˆιQ ¬Gbor>κεςŒ €‡X₯—ΆΚ<ŒΜy0Jš­gι΄=оۊ΄,°Ώϊ<χŒ,>κTΝοIω5‘ž¬½„ΘsΗObνn;υΜΓQβā}ϋθύ–b bρφTΪέM²14qφόI8ΊΖι4.*cδcΈϋ:Ρ©]Ϊ0Ρ9 Nμ₯YΗŸν’Σe‚zNw|χcDμΪEsδSΈ=Γ[Bx?ƒ”TŸ ZzζˍΓΩ΅€!]Θ,ΝΑ.-.Σ‰/Ε8―ž9"έ‡˜\FΫ’†¨½'•Ι2vuy‡ƒΞ=«šντΌ­₯5Τ_ΈYŽ”"ΌώΥά~Π…φ!z?β’P—‹ς{‘ά_"8‡₯Y¬„΁ eg₯™˜@ϘAiΟΒ‰γDsLψςv'ΚJ2x>ezØ%tάoA―HζΙ(‡«PHgiΝDj¦α¦)ΗGg~†Žό;2P™*ͺPΩΐϊž:΅–7©€¦’Ϊ{ψΕ‡υ•tΟb€e½΅E(fύ‚{υ(άlν‡7}uD ΒoΚΕ ξ*3`ΓΠί•i*νΊλ¦aoMαΛVγ§²v†έΖ³0♦ɋλβάΗΥΖ~8ΚθΔ†Σεϊΐhο°ΌI‚…³€KΦε¬Tzξ *gΠρhƒcp{f鴌” ϋp­(Ξ`rΒŽΒV0ώ΄lfc$γβδRΈ7F0‘„šT’υE₯1$Ο?τLρތόΧΕ—#IΎŸ“φl%οaO2κ‰ΐ "[ΡwΗ8ή±@ί»’ι»#…δΥT‰άΜΞ‘laΫr4Ζ.)ΒZ §ˆb;[Ÿf|©<|§ΨΖ'Fnf²Αθ2χΐ‹jYtΏ25„OZ›lyis^ΫΝ”—ώJN<σ—s„ƒ!}ίnΞ*ΛxfγU:αΩ΅ΦΡ-­}³έ#μ™Λ):‡ZιxξάoΏφ4ΆW„€Ζ‰3u^"ϋ™Ω1βχΏ2ο‰Š£γ•ξν :B₯nΘ€)y/¦MμΎΧ/,ŽΛ0Λ= ˜¬.!YβPeΉδ0pσψΙ›—€{Ξ’ϊ<*‰ΰ,ŠσβC™ά;=εA)tν—πϊ# %ΥEΘ, ΙεΪƒ(Κδί—ψ²#8vπ.ψ—3pψˆ —B?ΈsC—¬ ζΣίυ1[0d ‘OD8" iM€Q4βšΦ+‚₯g΅|’)[’ζB_›δ` ΏSΚYΥΗαtH_R΄πβAΓF8 ` γ„4y'"ΪΉ’δ¦°δ’&¬t Yαζίͺ‡/TζxqΛ iίoΡYόΓ,wΌ(#°QϋμΏXύ§ψIΎγϋ>ΚS—ΒŽKžqК,―^(Ξ‚Fn„—Œ½“hoοΔ‘bΆΡ% E•ΗI»e MŽ cϋD iθ5“q_fpžvُӇqe ΄€rϊd0ςΈ§w{#Q__†4Κ{A΄°¨D§Œrω]Ζ2§…ˆ•cƒΧήΓMƒš΄—Cι3ΜύH΅I{°ρΘdtΌwqCŠΈB‹ξOρΡΓF!:ZτJ-μ €΅ΌS°«/VΖ‡šͺoαΉβ2)’‘ώπφΓ›½?‹ΥpR|fδΘΉϋψΈ~D€LηιeΈηhυ9ε ΎWƏ ˜ιEΓ…Œ=>`§Λ­φψ€˜ΤQ9H‹Ό“œ€]αρΒ ΣΨU@?ŠGšρB1!Λ󖿏Lδz«ρ:Lιω–PO.'_‘¦gγ΅oUλΉΨσ $k”/μηΙΕ±™¨?Ζ~ͺΘuoφΧΒs%κ¨ΪOf^zQ’DŽώΥ/n’&κ\ΊΥ†―ύPΥα~ͺ·anwoΚzŒΩ3+ΈΊœ• WϋUͺ²'ή,ΰΆuρJˆfs“(IΝΰξcc²p:7KL‚ΏypmT+Ο«½„|·;ηiwRΔ9Ι1Θ'y5ίobΛx4Ω…ζe­“Έ$·NŠ`ϋ[žb|‰„eQfΞ)Β>?»fvΟΑYn.[^βλb'ΙK‘γ„άώ!ΫΰYΐΈ… I^Ϊ&8°πaxhγW‰Ÿ3‚³ υeΥΫ3ΤsΝΚοQιΙΣcIΚ;© t/`‘΄#ϊ’|©¦N”eΛΡ“^α‹ή'°Ζ!»Nρ»|…HO4ίζΟ1%Ix8=GG₯ϋσ¨pwό:Ύv~?’8r,Iκ -xο‡β³Pb:€Ι)Zd/`‹μΩ((‘χ₯G1β“knžFπ5™‚Φ»Ό69ˆG74δfςμ¬ΫλCn:061†Ϊ\F{. ͞DQΣrΕ m‚>χ“TDφkΐΝίgώδΔ©*o"qΥΨτ―ζλ‘ϊyԈκ-&ξ ρJ‡OŒώVVdΪ΅#“Υ£°Jn°ƒΣό©ρK»ΣΈΩiŠf~ S=Ύ©šIΟZ;ψ¦Iͺ·iZις -œ°RŽλxS:…λ½6Τί)ᲃ―αl8ΕKσ˜"‚³NΚΩ4Œ«X^Γτcβ7(>ΠΈˆ>‹B†C˜(d‹nL>ŽΒγΉ1LΙ)ω·ιβK’DB΅žiu?ΰ#+EzBΌ/α಑Τόηc˟ظ΄™Έ„„Z”q’γ–ή»£nμpΰ’:Fcw=ν~ι§•%ΟY‰Cη’₯qa ³-Œc “8ί?Θvώ²Ν:(?Έ›ΓΏOξ<ˆγΞΩeυˆZeγ Ϋcƒhεl˜šZ  lZ‡΄<ΣQŽ01žpQ˜ϊ·υύH™=3γ‘2œαρV’T‹I‹mψΓ­ε ΩϋQΔ―5φΠQ¦DξΥ1ζΖΥ}Gσς„˜πθΡ;ψ¨[3^ϋ€c5œ:"+r$–Ζ‹gœTœκ5’x¦Nkϋήmύ{mM^Ϊ™r«=>θΌω&ΗU ©€ΡJσ€Š§BγrΨw3 πN‹yΏϊ­½Ÿzq™ό>’(Ά-^‡i|π©%]Ήœ|…+=―}ͺά¬ƒ΅ώ`γ5 Μ3˜m ζŸΙσΆ±XN—³˜η;ΨΖ>jΗqζ"­“>fc]DΎ6C°j¦ϊπώΔ:§‘ό‘ZΙdZDΟτxε[_Εό*ρΡ~ Lu7Ο47BoϊΫtz,™0΅Γ*iŽRΓΪHT‘LέάωδSͺΖ*”’B“¨ˆλν,’Ν‘»λ~AŠ^8°N"}oλ=\ΊΩ)ΟκδΔpz“xχγΌp˜’X%B„KΈϋ`΅5p1`ύ1Mf2cνψιοΦρΚώ2ΈrΔl>€ΆŒΜΥx;Δ"V«iΝO>¦θHrΞ„ψ~ͺ’Χ[ο} )= εΓ.Ώ'|©ςΞέ,bryVνΌ; yq"a|ν3Ί ~ԁvޝ»λ>ώif/ “ σΤο$Wš%:ΚxL=c©-sΚΉ8΅ο‹ΰ(ϊ¬λ½?œŸAτw•£˜iδŒύ=VMΗΨΫS*!ΌxYƚΈΈI'TIρ‘υ›―4fF¦Ψ;Δ―[ŒŽO•˜7ƒS˜8δδ7ILΜ`œ¦2Uf¬ΏόΥ,ž;Tύ%Šu…§R=0@§(άV—YιtΖ[…ΙΊ° Ž83Ϋӌ7‰χ\ύ^”¦Λα=£=θ@m]·yΔΝ•G–φ γ,»ΓΑϋ»"=Y›¬ΰθο} eΌ5‹/[ŽŸΚ Ω9vΟX[…Ο;EΪΛDO'ά{2}Ζ‡Β‹«W7Sκ–pΙ²œ΅„©αxςrΩαL:fέ­έΈqΣw΄1|ᣝιΔέέΡ¨WœΪ"&:΅8‚{γ}šΝŠβSΕU;ώωΓE₯5%2Z"8{W‰ΜxωΩ ΖΫ³χˆ²‹β!g]Ε}w΄yϋΡ/ŽyJ/fqI k5œ~‡\ŸV|YZ₯―ΰ ±’ό>΄ε₯)/…ŒΚΧdρL™ŒΦ’ΌD ΜÁσΪ oΓ{ΟΆΎQTά‹­NΎκ™(5Ϋ-ΆΰN›šΈΊΥω ==*Š*°2~½’Δͺˆ4)ϋ4^ͺ«—\ΖϋeB·rα19 94‰ηVΔQQυ*€ογ.tχtΣρ.ΚOΕPηM}2rΚ!ΌVyL:ήdqf2ΰi‡β(Ώ)/‘Š ˜€$²SΔLOœšΠc Ž`^FFhb₯Ž_hwΡρU[2…Μ=κzq>XLfŸΗ!žMꊳ'\πC8rτ nD7#iς„±šcΐuεΙqT=S€Ž9f Δm½)€q7ΫΧΟΗ«Αή,RE;―©&fτό+έΖΗΑ¨ς,vGJ¦ς‘½³§/ uνάwUoߐہ|ο;Ι“ύΈ€“κjb3“žœsν ‡l€IjAΤ ››'Νٍ«ˆ>!`콑Ώk’άΨ`hŠ~΄ψ˜)[σ5Vp‚bωΓ­π‹sqΰΜ‰Οp|d/-"ό7Ψǩe|™Βά"Ν,Ζ±·2ωΩΥh˜Vc{Yωa”Εq©Π?dοQOμŠOΆσΥΖ₯pγRz;ΫQ›ΙHΉ΄;ύΩ—ΡNο­-3΅‡JΦHΓ9N…—,½gžKθi?Όrκ·ΉGρrΛMτάo^ge΅€Ρ~. _³8ονδΖ'ŚΞmΌΖθxΦρ–8Zπ=ƒ’š+€892*₯=12Dγ-?ήTŸ<‹f"8ϋ΄σ[‡ύΉkΈ'΄ƒΚ²!ί)™θ²+ž\?’qΐΔψ§Θ²ΑρBL{α%hOα°nΪ~.)’jΌZyX’ΟFΖΫύΚg†ΗΓϊμ‘7P›N€ΞΝ£6…?Ζ­ Κά¬†“ #YŒΚ‘闏ΐ‰“Ώˆύι‚D3s LΦ݁ζΙ½Χζδ₯#·ΪγC n`v|PΗU†ͺc‡pούΩωΰIΈΔ1m~Σ=ς#_[pœ—Γ˜{?YΈPΎXxcς–ΑXΟamc…Κ7γ[Ύ 7.»Ώ; ιΡtςΣHDP<ώlƒŽŒ^ΖΠς|ΠΦ6•ž[ΪΑέՈJΏ­5³Έsϋ&ύŒ₯:Ϋߎ·θη,)DZ,υsn‘uS£ύ04mg<=UZ{¦<&ε €e»’ΟlK›±L3_cέxύ „0ή€•yμ VŸrήO±χ]Δ½k❟kHιY(ίΪ8ήνΥ[Ήπ“?­σΪ(…—ηŸ΄ŸͺϋΙ^|πA/>ΝΘB^ΉύΧ1??‡ΞaύE UŸ0H{ο―©Χ΅y»ρΛ >§rο ½kWόG£zb0Ne˜κͺBžˆLŽ£­ύ0Ρ³αnΏƒJ?γνΔΏώS§³ΚaaŸ|BΏ¦ Tg%!:‚ž†‰UΪΘ1MkE#:˜Φrσ΄άTΕbψfvΈοΠ/ΙAi±Pk€š–Giξο¨Λ†rΓF˜Ϊ΄νΔ Ξ³¬ΒΑPϋ»Pfv1„g’«γ­Y|ΩjόΛ·―6žI­fΟΌΎxݜW€τ€hn|X%™ΎE”€Τx‹U\R)†ε,’ n\γdŸτŒ :8»wGqyάX™Ηm€qkς§½5„/Š@ΝξτΜ₯ΐΉ'QL¦gcεΪϊ—δ…­ΥΎhΣύ4aρOzυΗ‘Y"XΣ‘ Θί³1τ²{1Άφ˜΄=/Μ¨Ρ>Ρ›Ε%1«αΔπ;ιϊβ‹Υ>k_¨½my)ΈΌ»YςRΘ8‘θ―›‰gŠd|¬p!ΙK|R‘βΌO†·«ΓηΟβΣ7k EΏΑŸά¬tΚ Τ2κ ou_£ΡwΊΙDYυ‹(>‚‘αn yG0M“s؝ŠΌ jσŠε’&Ώι˜rrž€ D„αΆ@ηю߯!²γ&z–bPYr‡σεΊκοhΰI2ΙE8κ""­λϊ)½ΡΩq".b=*yi₯(Λ/“Θ34ΔαAΟe9}²8Ο£*5ž&‚™ΰIW™D[–ugγλAj†VηHλ`w‹*¬t£ΓΒΤq’Ό[± \jDχιƒ(eοΤψΚϊ+\½~žΘ|ώ§AΣJΌ~ΓlˆOpβK…Υ؏Π|g©ΰΨσ_B©Έ©]τ&\;n?ΐπΉj.?ρeηπηί[ΗΕwί‚'γ^xε»|ώ5aψ[N~γ―P:†ΆΫΡΧӎρ‘ašžΘDΕώ“8AǚρfŒjšv(y•U1vώ‰όmΚΠn2±Έρε/αϋίήƒ–ΞAz‡vQ} SmWΡ#Μ»yo5’νμiT²ς'Tγ+αΔ…ήGΝM}φK8BΜ'Π|‡h«:ΖDzRƈψk¦|Sνΐ‘Ο«3Y=αε?ύ+€Ά¦%ϊ4‹ŠΪΐψƒ hU‘ΨΙ›ΞKμλBχΝ€ΪΕ2[Α uΜκ»ΨB8ˆ Η›YŽŒ'ήΑ2Ύay‘΅>Ώž_ς2^|‡#X‹"ΝCΞΓ¨WΰΩψΐ}y£‡”ψφ·ΨΈ$φχπαύ?άΒ~Βn΄Λ<ˆoό―‰Έώ‡?ΰa[νΐΘC±«ΥηNΓΡϊ[‰ΰ\²ψΊ΅Άvβ#8+Ν ‚Ϋ•J{Ξ~­žv…opΡ©EΓ¬ͺ—ρJφ iΓ‰€?/Z/Ύ…{aη=ύ˜$‘Κ)Ι”cθεΗ‡Αα/£HΚχ&©oЦηe<8xˆζδBγν7ώχŒ›—βΡΓN¬82‘–αDρήj”Φ•ΓAšζgˆΰά#Ξ­ΖΎ\QΛΦθ8Wq{zZ.φU’t™΅₯!΄ΆΦβ­ίΕΌ²«™ρHΞw0Π2(Ĝβ4Žx”•Ύρ•O1³»υ•$+rΔgςFς`cλ}e νΊγƒΟϋ"έCΡNx—ω^Θα–€8#vΡΈ7rMτœ:–Εp|tVδΘ€ΌWρMΪμ74|ύžΜ !Ρ‰όΓΘλ„dΦΫmο4• ΅Ν,[ώ^‹‚œIyi'Ι­φψΖρAΣ_JΟ|_%΄ώθύ«H=ςuœϋκiγδπΓ&ΥfFXΐyλς|ίGb·%^³ΜY,ΛεΣ£`6^Ϋσ Vζv^³bσ5°ΛΦΰlΎB ±°2ƒ.ϊ=½fC Α(rιˆ8Ά §)MφΔf.=1²§Ώψ’τ‘Y,τ&_·2­M.Š}θο§•!ΛV§g(SΆ'f'Ηρ€~fΜΣΥ' P]!ͺWπ ΅ΉίLU„Η―w-τΫ\‹tΗά4Ν6λU$‹gŠδυΦ•uNβΉmυW[5ήΪψι―|έm< /ž ‚(›n¬Ž)ξI: |³‘S(ύΒΚ4Ϊθ·m 3Δx>ΆΩ΄°ρ%Όψb©‘lyΙR΅IžrœU^Ϊφ8/5dθΟB―C#1θ$Œ ͏ΗΛ"CˆdΡύ)n 0=²;άAΨΑΑόΌzξ§[’ω|άψkΆΎάο»‹ͺ}υ|δJœ:D?M“Γ—ρN'―O± Q$V9PHιζiΗ’WΡ’ZIδgώfqbΚ?ΑYτΏ©ΧΌ^ Ύϋs|ύfVγΤΥΊ)κΎΠΔ°u׍Έy«΅€©˜›~H­Ζ™o°ŸΟJgθωιe"ώž©ε\³k^Β·ιgάd£ς0ϋΣ ²Π~W%&οεθρ’ΞΎΖ›ϊš6uc)ϏšΟ ―†Ÿlq֝³NΠλADšnΑ•―ΐωΥΣ<ρ!χ^ώύdοœm‘λ"‘ΦO]c"=Λν “πΥλΧPSυ%Ύθύ9ϊ’όώt¬ΑΩ$1œ₯RΧΙ€!'σ80ΪΈT$‰fΌ˜PlŒ _Z»PξΜC>w<\e_ Ÿ˜|]tίΖΥζΩaGΩl\bΝV\ς\Ε…+ΐΧ‰\ōL©ε8ρϋ©_ ―κΦ".‚γΧΫΠύΖQ”*ςΣέΥ ΏK%ω¨>|TΘšN2‘8εLaκŽLpΆ†σ˜ν£LE;™‰!"&Ξτχφ+ˆΩ€ΕΏG9[Ձίόφί‘φgΔoJ(ΓΡΧ؏θΡΎƒσ5’\’ρYp_ϊΑ Ω‘ΘΡ?iωο΄hj±…‘ύ`b<’3nΖFcΛ@\•\ 8G-^8ΞΛR,‹]ψψ¦V”ž·$ξE–HnBΕeΦβ?1μžkα ΞVΓ ρZ‘#ΣβΉΠώεd^f½₯‘Yύe›:[|―ΕxΏE―μjY^ΪIr«=>M†ρΑηύJDε™οr?ε{Ο|ϊζU•“œ·ό~J)›>’‚Άl!^sy2Ÿ^(r9h΄΅2Ωx­~tεBŸώ€£½³άlΌζͺgžΑ@ύλΆ›Άaμ{σ5`œΝΧ™Β»μ°kΰ©­ψ”Ο°0ΝkuΤ+δNW&cnƒΈφΑβI ['퟽ ΖBν4_Ή•5ψϊ±" χχ`pdcΣsΨ “*+\¨Κ!•:©΅]I~ζνv lχΨιψ,ΖλσgΖλΓφiΧ@θ5¬ξτηΖkθσ/ΆΌdό°}nΨιψ,Ϋ½Ψα<[o«αΜ‰΅n<μϊ΄Υ>†ŽΒ› ΄‘ke ]½ρ‹?ό­sΎεu½‡7ο_' ΎΟ˜ζŽwρΛ&ωΜ¨¨9Œ)ΡΏYΐΘθm\Έςίpy@«{!q»yMŠώΓσO&g'όzYYΡdv]GU–ίΠΖxοό όγGLjšρβ«—οHΗN “:a­!-b.Χ7$5wZ_ς}ΟόϊgΏEŸGv’lσ]Έω»χΡ'΄³6ΎΦχo^Ό©£½x \Έ)seIΜ‹y]-pλ₯Η%<…Ž›ΏΕΟώρ7R68KξyΤΦ‰κ9ΫqkDΡλ?ύG||½cž),hήίεU΅J”ρ[‚±ΊρσJtίόwόθοεŸΰG7œ^ν (Ίkχ†Άή1ŸGΪ22†ήλϋ»*#ΪΧ2@?2‹ͺt47鱉Αyz~T₯-3$|YΊ·―ό­ΎυΝe°πQΗ»ψΡ­ Π鱚\nί[—Kγ·~ŽΏω»_ΰA—Ÿwg~½}Cͺ—Β.yW°(Ζ’νœϋ†ΠΡΜrˆ 67Ζ=έ‚«αXpkrδϊΪ‚άχ49Ώ‹teVΗpkι½ΛeΛ­bM¨φψΐͺ# γ½_βψ7Φ|EwΌυχΥ›·jνΝ”Ί%œ·,Ο[ό>RΌ5Ϋ―ω šB’Λ)I³ι±\ΪxmΟ3πo«ωy†…Χ|)νζj`W€M7WcΆo»μ°kΐ§ΉJ―#³τ±n™ϋN[0ƒŽ#Γ#θμAοΨS±ϊ«_κ~F.―°GΑλ_8‡/Ÿ=„ͺ<ρ”»άnlφQύΘlW»ΆO < ψΝΦτηΟΜVŠνί‹5`γ‹Ίβ>ψbΛKκF·οvt ’/ž|ΫλΟώς?}ΞLήψψύpF·iqύφΑΟή›·q₯y‚?ρ&A x_ΰ}‹©Λ’u”dΩ²]>ΪnΧΡ5UΥUΥ±=»Ϋ±±3±³ΡΡ±μΖμNτΜttTWWuw•λΧΈνv•K–έ²%Λ:)ΙΕ›ο xίΪ/3‘‰L $2“ ½δΛw~οχ^~οϊήχ.rΒ‘[ψ»ΏόkIπnj ³³jPmEzb i~»³»‰eΊjoh^]Θ%0OͺJ«aMN!―l{06Υ\<Œ·ζ =%) ΒUδ›[.̌χ*σ‰O[‰tϋ:]/ο$! πμŸαΟ^?Κ¦ϋŸ~yY‡6ή PT=ƒ‚ŒtςέΖΪβ4ξujL›4?w4•"•ͺc‡N¨Oχ]ƒΣ_ˆL%ΟΒκεΫ‘’š&wVgΰΌΥ©*0άρ――δSΏώόΠO˚Jς¦:ρΨd6ΌLϋ iŠΑ=Z©Ρ]¦–X=1γί»zΊα]#δαTaΏdηΤ£,‹Ϊ΄Wϊns}–ψΩ@p~¦NEΜ»2Ύ$T‘™|ΙVݎΊ²žbgω›ΖΓ Ϊα½-$š|)L;\[^EΌ$f3ΥxŽV„ς‚\d₯eπγ֝ν%ΜΝwa2œ°wœ9šνZχx)ΞΖ­¬Μμ-Ο’07“οo7ΗqWλ|'ΒoRoϋŒd~!IΑ£Ν―#ΞΟπΈ<ώˆρkΆΞ`lαIαΧΝΝΝ<ΏθΰOΓ€V|κŠmFΛ½*F…»rΜH2*i=χ"ΞT“Φ’ΏώεuSΧΟ£R– C€!ΐΨcͺŽn#3χ1¦ϋ13ΰ]§<ΉΝνΒΪ,ΟˆkΏΣ¦$iaŽΩδ³+pΉΕΕvdψQ93>ˆΞ;·Π%Ώ<Ο/ {eΔ"O ΖcsFCΰiA€ρ—§₯¦•εdγ%%μ-Ύ`σ?eύYςHζVΕ¬Lυρ•••*Ύα†‡‡ω@–’:E`¦vC‡9/‹K$Ό§’‘Y{κn ίΡ|Ν‰!ϊ=Ω&…%³˜&‘*χ„Ό¬ω8άΪ }}ΓπR:’eπ νŠ/‘<]]Έ{U£0΄,έιΑ.LkΚπYς 7“N.άΏό©,•θXuc£ƒΌhζ)yΖΏχHsΓGΘ'Δh‘> ς—Ε…^<Œ@±k€δνoxΖ—”ψ›Λ—άƒΈ©‰ϊ¨ˆe^α£R«Ν\<΅ζͺ7A}ύφΦμΟw΄·eR¦ΎΈΠ…Ξ'–*Λͺνm £Α4όkK BνO»ΦΝγlάΚϊsϋgČΒW₯·}jŸ/D΄ωuΔω—GΪ1~-Ά*ΆΞ "Ω“ρλΘπЇΠ™S<Τ“™4ΞΟΟ`(y»kι3Σgi1 xG`θV’$ΜΜ•…r…wD‘gρ=ύγ½~φšώΕ‘ΌK?ΞdΫ²‘™– nΣ}›”ΌL„Ί|—Αώ±‡€Θ―žώ%ηΗςC(±‡<£ˆ!πδ#ΐψΛ“_ΗΑJΘΖKΑaξρˆ›νo­1ηύşεΗΩ?ΔχIK³σαuŒτχb|zΫιeh;qmUYB*3Χqοj4Άη5½§ΑαςΆI{KΫkΣθΥ zOΙa‰3žB_ς―tc|)»Τ†Ερΰ+ΏρξοVψwcx†O?6B°ο(6κQa.¬]ϋγiŒŸΕ;GΏ?Zαߍα>}‚!πτ ΐψ΅]›Λ_ΒρΏύφχ/={Χ€pΦ“dθΑ] =x²ΚΔJΓ`0ΜF@šγ46[rv46Η»ΏΩx=©ι-ΊŸΈ[+ŸΤΊbεRG@M#aΌσ/9ύ’]½τΜ•!ΐΨKΩKtγ+m6^Š―ϊbΤͺ# Ž)ΨόOŸ½teΞ{‰.KΫ<’ψ΄Ν'ΐύΝ~ψnT΄ζ½?.Ξ›ϋ“1Λ•!ΐ`|) %θεKeΟTΐρlœΧ†0φΕH@ΊρξP zρԘ|lcίQlΤ£Β\X»ΐS/?‹wώŽώ 4:θΕScς,CΰιA€ρλ€Ί6‹Ώ„γ±ΰ―6ο„9(8ΐ–‘€°†C€!ΐ`xor‹šOεΰΔ»ΏΌ,ΜΞ`<™dζ>Ζ“ΘΏDώϋdΦ+C >`ό%>κ‰QΙ`hG@_pBΞOβψI;Ρ ™xδ™Saf–£C}f&·giUt<κΒL`m _~z μζπ=ƒΪ”„X‹“eAZŽ)~)Nυ_ΗΗoίΈΦ½κηΓ^ †ΐή!ΐψ’9؊ nη γργΗ€ΙΩ#%οώRA˜Eφ©ΒΒγΦΝ©ΐxηαθ7%– C€!`Ζ― η‹Λρ»xΏ^φ"„-??Ÿχu-Ώm&Dτ'Κλ@Z-ΉOT™’U+–ψ¬‘­,Y> †C€!eV`f άSΝΔ»ΏZ™˜C€!πδ π$σ―`|ωΙ©=V†@l#ΐψKlΧ£Ž!ΐΠ‡@ΌΟοΒΡ―•” «j°­eοn³ΩTύΓ9ΊέΒ:|J¦rϊ©U½1;ή‹”yμ,Ob%zΜίpwΎ‡·ιΗ[‰ΩYYΰοφRœΌ3ϋc0QE€ρ%sΰ–kn…ΑΈ”9j⻨ΩY|'¦.t;aίQh|˜o|"ΐΪ΅9υΖϊspd©0Α`ό:86‘ψpόš3ρ6~€Œ,¬€ΐΔdC€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0’ŠΐS+ΰά{ιοΡU¨Yff!ΰžp‚ιΝ1 M–C€!`Œ/ιGQ^ζR…9!‰μ2lŽΔ»ΏX&ύ==1ΩwττΤυΣTRΦυΧvΌσpτ³ώAΫ`1{γΧϊQεψ]ΌŽίυ—ϊιŒy α©]F~:+œ•š!ΐ`0 †C€!ΐ`0 †C€!ΐ`Δ‰Gž9υf1:Τgfr,-†C€!ΐ`0ž`δΧYsΕδή?~ŒΒƒΕ αf‚xσχ/ŸXφd0 ΠψσΟxγώΜώτϋ—/4Μ—!ΐ`Δ.ώό-‹5pΘζηησA\ μ¨}BfR3ΓAΖόU°b‰w]DΆŠ/sb0 †C€!ΐ`0 †C€!ΐ`0ρƒ@J†U•Ψ­eοn³ΩTύΓ9ΊέΒ:|Jf"θ?ύσυ±ΒΕΰΛ΅ή7˜‹Ξ`0 †C€!ΐ`0 †C€!ΐ`0φζζfž€ώΑαύ%$rO.lD‚EΉ°dΕ εηιEi\Πˈd0 †C€!ΐ`0 †C€!ΐ`0Α°δ•«z­L Š‘+++UύΓ9σA,EuŠ  Š7φΒ`0 †C€!ΐ`0 †C€!ΐ`0 9‰Ις7fg0 †C€!ΐ`0 †C€!ΐ`0 †ΐž#ΐœχb–C€!ΐ`0 †C€!ΐ`0 †C€!ΐˆ_0ηψ­F|™}D€ρ₯}ί€¬c•ΟΫ*πϊι:d$μΒγ|„:MiYΚρΚωfΎ[žμΕ――™f4’ΡΑ―M K ί•ΒhΘoa+ψ]ΟψΨ\4υι Βϊ‡ψ―{΅ώAΖ?=Δ?c„ξ%Ÿ τ£Ν—tδ—˜Ž2Οgсύ€ZcXάXΐΘ†Άρu$ό:|~}"&ͺυI$‚ρλ'¦V™€σS•¬ †C€!ΐ`0 †C€!ΐ`0 †Cΐdh#θ@"[F6UΝΙε[JΡa+FIJ 8oΗΪ ξΝχ£Ksrš¦05g2R°Χ΅oI+@‡΅΅™*τm’wφ-/K~K%Ύ^P"½«[Φqκξ¨Θ—Dš—ώ~ΥƒzٞPΧδ$Xs¬°SρφΎωuψήk|~XΔΟίQδ·βxC’± χΔ0Ί¦T”™”F)Ώ”€$'Œ³”Δο€μέ₯―FΏ[%₯Ϊίͺ­5θ°ϊ'·\ψœxKΟ†Z)h±Wγ ΥŽt/ϋ2Ί†qcyΡίFΚWLυ^œš[²9tΠ#+QL~7':Ρ@£θϞ{Ž@,ς₯=/τ>g`ΙΗρΦlvπ^8j}q tΉ"'L Ÿ΅Ι2―z ―8»/ζυιiNKT ]ζ$k~έΕΖn`²zςΫίz,ΓλB‚ϊb[σ΅Ύ½+mGC… άLY8G§U΅”—TVαT»ƒ'b`knΟœ£•ίČŸήœvι#IΝΕ™φΚ½Ϊ›²‘οV/qMyρLVΆzτd;NζVΑ51„Y)D:Ž6α ·¨κܜ οβϊŠRΨ]wω p΄ Ήjξ¬c™ 7«!=·δKΡ+|”s²•ΰΤA:\P_‚ Ώ¬ Iύϋω„~ΥΒηC§°—ΎΎR%ϋs ηjB»V$–5r~-ΖΤρΤΑwσS-š…›9ŠΆΉώUfτŒ?ΉθQΕEF/³j@ΐ„οLC.RΨζg™{c‰f`j½ξ!Ÿί€5₯mΎy~9hΞ+C¨γΠΉ%xΎδήWΜ„βλαΧΊηšg #`κwžš§š_‡‡ΗPΆ:m>™!ΐ`0 †C€!ΐ`0 †C€!ΐ`<ΑΠužΜμι₯8*nvsZ†άӘ# ΠΒΜR³ΪE“sQ•?-qϋ@qδYf8pV&άΌΆαBί,&·Ά’˜†ό4;fgΐ½©Τ€g•œ7α\œΕβc@)M€μcΨ_0PO~OC=D^sρΓVƒ†zNW4g¦ππΦ¨`υ— (ν(e•όCšσ­όf'pK”κ%Ε‘ $ΰ\`N ‚¦’ϋ» šbhZ{“LΈyƒ Nΰ"’Οž1ˆ@¬σ³=…,Žϋ‡Xησ:κ-ΪόZW~it#Š·lσ«΄Ά°ΎˆΩΝ5l<Ε–΄ey}S‹Ρ”5‹Ω%ίMQzω΅ήy€Ž*`Qb§š_ο}εμ«€svVι_Πfζ–¦΄Τͺγk―¨ΕΚΔuόςω!œγE,|Χ1·δ™lvN ΚθŠ>Kb"vob}c .L*ˆ{Σ°‘8·9;’‘x€N΅>^ΓάμM -…ΜH/B•½VZPIζγmbaαϊBΣ&Uγήφgρυフ|ΊΡ3ψ1ώρW—§K)ΘΚ·LεϋΙ“VΎXΒ:ζiq ±ŒN§§¦πηΡΧΧ§π`Όw©6–ŸΔίΆ‰­…αι”W·l΄`³³1§³ s”.²όŒρ³ΘψPˆβ‚C(Ξ² ΊˆW/-γьΉ}Wp *γKŒοƒς‰Š]ςΎύσόΥ€³]ΰ—ο_ΫƒβγKd€/ιήu”ϝZω™Δc5€j\5? ΩμoΖχXΝ=>Xrτυσ4‡Ϋϋα‡ψυooΖj©L Λ†Ό,a~s{ ‹ͺσT£ΩθΰŸ|–,ž:ςzqQOΉ2O>˜€σΎTrƒ%’œΟͺΏ™“θττ#=%Η2ύuJAβΐ’³9e‚6Q;»4Œχη&dt/bde·ζύw2‘“"–{Γσ#”Ε nΥ—ί“_ΑΫsK:8έΊ‹2MΈΡΪ°ji,G±·€“GΠ€°Λ2―έ]‰ω ‘ 8G;?žΤδ€γJ,ͺήο6Xzaά“ ΡdE€ώΉGψΜ+Ό°°²„#$ΰœΞ'‘‚ :Ly@bκ­V)a'νΑ]φx„χ9\™I@–£ΌNύTJhΏjAjϊΛ·²±€Ϋ ΫΨάZΖ̊kž· Ψσ[k !j‰8fΩ;β€/ν]αχ9eQ…?Φ1τ¨ƒλ9ΈΠ.‰ŒFLœV>qΒfEX™Ζ•kΣf₯¦1κwιP ¨ί wx"jύ‘~­±΄Α‚ιβ»΄§y‹~κ&Ή ―h|“‘ε`τ?±Έ¨—ΉJ°ώA‚"κ–XθTκ?,ϋΒηΓR₯?@΄ω’ήόHFctiSK“ά1Š…ž\›Ηցvρ£$ΟƒtςkθŸˆt±§Ι¨|―±ΆΞ`r‰Ÿšδ’U€ζœΕλϞ—NOPΊτw>P:xKMΛδc[’°W d—½Šο:†J7nίόqm&0Xvξ1Δ€_jU•ΡR\EΒΝjωΌˆΩ™Ϋψβζ{ς‹΅W›ωεEΘ£ “¦iΥ(šΖގ3'kHώ«ΈΫ³§hχ³|ΡΔ’εΖΊ7ρL}Ώ¨/xΎŸtώ#ΘΥAΘθ΄λΙ―ΌτΚ­°g 7«Ωη8‡«Χώ wTi΄απΑWΠQQΐ›N՟ΖύήKψ§:oΧ“ŸQ~ίΐ/.=΅GP–Ι­ )Ν3΄~σΛ_αaΈ&ΚhϋΆŸ|‰ρ]ΟmΩ‹@IDATsλίL<ΣRa-ϋcί†YλαKϊςΦΟ—Œ|ο‘—O?.ρ3Ζεε§―β’‹ρΑθβ/ΉEΒiΎi//ηη0–yn&σ€šΌpϊ;h»…Υ.όκγ_Μ9”>rώ)δΖβ©£υԘ+C€!πΤ ΐœχ‘ͺΣ‘“,¬_s‚w£Λ‹Ηk;tΟf›bk1ͺ½²Λn„ͺn–LΉ)‰Δ XE™ηuΝΒϊς3^Ω₯u8w°Ι$(»“@Χ“pΜΏ|Ω‘9!νωUxωh=‹ΕΑΩ:fΖ'Πωε, λh-Yέ}ψ€Λ_ Šθ}‘V’ouΆτΟ«Geq¬‚(< 3ξοΕε‚z^iΚ Q”—C‡έ¬Θπ†ΓΪ2&].Œΰj°΅τό Ό|Έ₯voq8:ΗΠωh’Ό¨jAν8~’uε(π°γ‚­.Ή0=λΒΘΠ0Tc*ΛΡΨ,κ+žCΟ£™w:Ž>ہκ¬$lR₯Ρ•Ψ’);Œ7Κ$ $ΖTΟ}\τ#:ŸmDSEμ„‹‡r8Ί&θ~ψ7Fδαεg¨Δ‚ιxFάu~·:Hγ£TgεIZ‘—ˆΏˆΒΝ΄Z‚³•$άΜρ/#9 δRAq€2Ύω…(ά,±³ Rή‰|‘ˆξάΣHωvI³΄―M”₯ˆ°DΪζβή0Ύd_ l-νhq£4O+xyαδ,zzzΡ=λίv"αK\~…xξB(’~arχ3qΌΩͺ_2ήί‡ΟtCθ„8ΟΏΠΐχ%;kΣΈL~Ύ–ν+C^m+ΎR'@Xpvγr·οΊ΅Uœ³“Έσe†HŸN^Σq_€ˆmAψ|~ ^9\Š4’gς8{p) ?τΛΘRŽOW‘θΧ?ΰƒ;>mu-‡ΠVS ‡’ζ0@ΒΩ—ψΒΙS¬jιΐ‘’tψ+s₯Ύw™ϊζΛ‘hΡύ²Ϋ»(©hΒρΦpυg¬?Ki ‡_‹yι~šΜw[σΛQΒ 7ί^¦V}”ι‚Ζ!‘χcΎ\γΔ¦»]³qk¨fύC(t8Ώ ύƒJ΄νν΄΄F{c™oξ±ζΑ£žGΤΘηΎΘzψΌ±ρΌώωQ¬σkέ|pcΧBL*W‚¬£θεΧ†ζΎ¦Ϋ6Ζ―Ωxή―…Šγωίތι^Ιφϊ/π΅8§H³p3{{Ϋμ[_zΎ%©@:ΈδZΔ‰^¨TΆ±ξ#E X^ύ&ήhj“ή-€'Λ‡L―CY0αfoδΒβ“Έxl ?Ύω±,Ή΄·œτ]›"σ­ωGπκιόκ³wMέ¨Σϋ\η¦Ά‚Ÿaγ˜ΐΡ~ηΟζSλέθΫη},ŸI0±d "Π~θΏΓ™²RυT2jqεuΜ™ψύιΚ/ύN΅Ώ(h¨π§tÍΕGξ½§}65O ΅m­ίAΒξ_γγ1?MΗΊς3ΖΟ"ζ»TͺΪΊoΰεϊ&υς‘kΆ½Ž&cσ㟑?h¨τΨGΎΔψΉνΑT<χ°]θβKΊ Ο—Œ|ο‘—O?,‘ς3£γςHσΣUuю΄‡ν=\QLύnƒeΆε FR\ΈG„[’t6™nβyRΝ3G_ς 7S!WW±bba#ηŸBζ,žϊόA/.&V)KŠ!ΐˆS$ΘΦ γ΄ ρGφΆwEΌ]―]^ŠL”₯ϋΦžΧƒlΙcΔ–=u™‚†R`=σœxT έΰ—†$6άήYΗμWώ@c‘0’8—{k›‰ι(¦uςPq8‘F}ω―‡L[.jJ‹|YΪ PΰσΤoΛ.mΒ›/ΆΒH" ₯ΥΈH?Ρxvgœσ-(%#\\ ~~£‘ ₯>K>ͺ5§‡£Ÿœς™³Ο ή/ 0=Ε₯άρ"λψυ εζ6 Y½yAΞZ’S€RεIBfoΌ~U*yfdΩQEΏΒΔ%MuG«ΰπfακΑ]ΕΕt™($!5R¬y$πνGΪΞIƒΛ ΡωϊΕ“¨ρ)–„ΔνΕœ’_ώΟπ~§(h$?ύυ 'Y=v­ο»ΥC'%άΔ ›‰¦5ΏΪ{°"Et‚%‰Σ༈ ώ)8;W"šΧ˜WΎL:ΐ!j¨_Ηβ–šx¨DzΜ[_2‹/ΙͺšxΜΛη;ΠX ά’$σΔ SΧΡύ‘Œ7EΜ—(Υ|*+ŠžG‡]ερφ4”’ ς7-)ψαχ$Aζ RΨεΰωt*κ»»qKEgTuE9ΕBOΎNΞ‚YΔ'Ώ»€ΘΕχ•*œ5½ησI(€>™γε«Ϋ³αœσ Ο}•qoήvœ}αŽ”ϋχ :ΘCλ±<”ζfβOΌs‹ΚQUXw\ߌ Ξ†Ύ#’Έ ώΎYο%]z¨ΥŸ‘ώHJ‘υϊψ΅/73lωn†͍*‹ψνλsτ?c3° ž†‘vΝΖ­κΐ²ώA?Χΰύƒ_@z-¨?„‹ώΞ4Ζll9xη#3ψΌρ<ΥΉ‘ωQlσλ½βƒV82ϋoύό0oΰίΨbγρk6ž=žJœ'zh±i ‰ςSŠήot‡dν΅§P!~³ξΫΈ+i*c™c…ϊV0δμ‚{Η{;‰œττ/ΘΘ^teΒΝ«tε`χΨ—€J©ivΩλΡαΘƒkI¦υ4)‘Ώ•X^LΊ§0CZ –I[BbZ>ͺʎhAkXvA3Žε|Œ›bžΉΕ’ημ\7Ζ最–4%d’ΌψŽ”U ΔY;ΠVΩ‰ΙaQc΄ΝOκ+l͎Ο*:±'Cΐ0ΝΝ,n^AoΏΰvO ^Ζ…Zοͺƒ΅υ₯6LŽ+VΫuε­7ΏlkžLΈ™£Cδod₯ӊj”56Ώ¬nΊ„›CW±•qGŸC½MΠx|°ς(Œ½‡9Y‰τδ#όLί-8S2αζv½fHψ©€μ4ω΅V€Y¦Ίύ&ήB ƒκΙ³2ΎknΖžzω’ tσ%ί»žς馓E?34.Χ‘ŸžΊ{ͺβΔΑwϋTΥ‡ήΒΊΗπθΖU€’lσς`―ήTb:^#c*΅S/‘ €Y[πzψ'‹G ¨ΜτβӍΗ`D LƒsΤ°φe΄‰₯Qΐ9 uΦ*L y•Odγh(€G1VΗπ€+“nCqŠ@ρΪ ­ x˚‹,Y!ά«ΣΈοΐ ŸrμδtΎ*[f%ΎN?Ρ,­Ογ‘Η‰U??Ύ‘Τπς­¨(/!η ±Ό­εβ1₯) ςΪ›ύ‚~ ΑηIΫ4έΆi₯GέήΖv ΅λ]•“%υ}3³σ α/|ύ™Σ)ΥSsy‡χθβΧ²B™a5ΔwΣρ¬­L—Ny&Ρ#·κΖ.f`4 ƒνš[Ueύƒ (*N!ϊ•Π’Η?ΏžGik?R[ΐ;Ϋ+ZqΥ…wL‹Αψgδ|ή=ρΌαωQ$γωhσ₯=Κ―!·•ω}&WΌ;zω5UŸiσ_Sˆ!γΧl<n<έζ*ΞΨ£›+—ΫΒ=|F?uso–“O*η»‚»JΑ7υ8±ζκ@.ΤΜ i6ψ4‘XƒNJ¦ι±ρ‹{Wd1Π?~Ÿ= rΎKΧρφϋΧeαD+~©ΟU<ž΄ˆ)zqΟ]†Ηo`|δseΝD•–Ω^"umUήC”Ο£_ΰχήCsγ8IΞ‚Ύ 2h‘F[‚ό=½$Ό»Žυεq΄ξEVέ·πj}=ΞμʜB8™wL?Œ–*nyH0C½?Γ{}^ឡ;ψݝDXŸϋ*]tFΖZi5™^SΔωqιθζgϊψnkq=ιΜβΜUόΓΝKή7’ΏοWtZΏ΄²ˆύ€δίΖwγώ υc*υmϊΐΡ_ŠΈ2 π%έί»žς ΠΗΟτΛuζqεΕP•οΒlκ }·†‰aγO„*υ­™Ί:ρα/:Ι=I/Ε•oβnΛ]χζgrεσ,)uu—Yδ2cρΤηzqΡ],"C€!πΔ!ΐœχ₯J{¨_­H#ΝE΄—ž^Œ«¬˜Zέ‚…4‘\oΦΦ'qeΪ‘¦Ρ})Œ_¦Υιt;‘Χ-+½mβ‹,œ-£g9iBξ8([ΠΆ‘€s0“•–‹cτ³ΞήΗ΅εe)˜‘όL―ίr³DŸQK^Sκ₯F1ίύ ]ήk5nM―ΰ{šΓε8‡λέΒη#²£kω8Ušΰ]ta΄§Ε |ήο·6  Ξηp‘pKC9i†Ζˆ Υ§€©5bυ-α·ΏΌ†nž”ܘ]ΑŸ\h *δlΝ#.γΖο~ηφ•γSŠYžώ.Gk•DƒgΔIωϊmݝχΌtΡ†uC" 8Wσ^±GΈά-ΓDŒ >‹*Q[*jζτΰΖGWpUξξμΗ ηIγ''Ψ—F·Β5P «Ίσ#}ΫzκA$ΧΤg˜v­η»ΥK_1 zŠŸƒ{c™?b±8p"‡Ϋl‘­΄'νΨp,[XΩM8ΐ Ζ§!-‰ψ oθύ±Χ*{TδδC]”9z­f•Ο’–.i¨ΗΖ:dΌ/0ΧΨva| 0“/q΅]T‹fi»Α…ŸάΐΥA%Oͺjι@³EφAκδKώ­k²χ.ήώ¬Op~Π χΩηq¦–ϋ¦ŸO›;^^Χ=<“ΔΉc.޲"δέ™Pμ•4ϋ4θNJΌΦ??#ο‘ωό,f]κ3‰BϊδΣ0C₯σΟ·‰άΔƒωPΪ‚Ž tœρ―ƒ>tŽΆΠ--όΑ"G[5κHΐΩ‹ΓΩύ€ΦΖRƒ<pDεΌn~³Ύ#Νυ§·σ£[ρ*kŽ wzΡΗ―ύS1φn„ο[¨ΧΔΆfρ₯k^AŒήρg,ΰ’(ˆΙ/f΅kYOχΈ•ÁυΎΦΚΊPιy€“¦fήΠΑΘΩΥΣx©MΦΤ–£„œεGY"εσ\_’wƒ·.žG MΞ³„©ώϋΈy}.@s‡?:‘ςOC|Ι?σ0οϊω’ώο]OωτΣ θγg‘ 5.ί‹όBS³?ΎŒΕ½…Ζf/#—Ϋ+ޜΐ'ϋSυ1mΙsψϊλ‡IΠ%›s΄qφ«™}ς₯ΥΙλŸϋ.ŽΥΨH+ž ³ΔD, |‚χ/« ;Ηεx—΄Ϊ_hi Ή>„±υ”YΉ1λ\€1Ρ £‡rω²xκσ½Έ˜Q—, †CΰΙ@€ipή§zάX$Ν£Λ(±Š‹'(βNΒsc nwu?Ÿ―Kί'ue›‚Όnμ°I?nΘ™u ΣγΨΖ&²ΣσΡ–EΒRΌΙAέ*6θšσΎ§#'…ac€ΡMλ”kΐš–ƒz‹x ¨·—ΒΉάƒ1>–‘ό(ƒυ°ι―+)foΚ”ηΫΌψέ}’p3ο8ލϋύœ«²€ A-―ϊ 7s!gGpUΆTqN0ε5@ΧƒQ%7nυ0IŠKλ€r:ϋϊ”‚m#]Έ?X†3ΥκtξμΚΩ2«XˆΕ©QΘWωEwε3ŸΦ:D… Λθy$J™)CΙί28αWΑ$$ˆRL’‹ςΩδΘ—΄]ύƒ>αf>Ψt ΆόΖNjšC#ɏKVO=(©ΦχY»Φσέ꣋‹•—* Γ“Ί n-g Ό6IνΪΜJ‹Δu]^Ξ£ΛXά\’9υdιΊΘw€KŽΪDΎDAΆVΰ’ΆŠΜ+_NRštψΓMτ„ΨΊ#""4–tBBΰΌαcrͺν±ΘM/tΖ—ASωR6k*₯Ϊκ| άΜyuέ…ό’h3ψ0ƒwεbΊΐ­I΄‘€3Η±­œ:dΡLΓ9׊V±εεƒS˜?'Ϋγ―(γ<3:Ά;Ιαωόμ<)³β…”­ΘΝ£žŠ΄:ΓVƒoΌΠΪ…kΰ.~sc”ˆ΄#7ΗΫ'-y0E}`ΗΩbο‘bΪΎ0 ΉΎ¬Ώ˜ϊ\,Aym6ϊϊ½%φ{$ϋϊ?ι՜ο(‚ϊ“r"νΔ¨‘τϊψ΅˜“9Oύ|7­vίώ ioƝ"]ϊǟQΗ…υq>neύƒψΥ…~†ογΣm/χ•σ…ξ[}¨«+Lζδ’$˜Ν‘ihΰσ\x½γy£σ£XζΧfσΑK%ΞΪeGŠθ ψmιPŠ~~MGΡu¬O(ZId/Œ_3~­sa―Ζσ‘5`γ‘Ν^K3N]sέ&iΌǝΎ+ΖΣά‡²­9)ρ…U76Σ‹PžaΑφζ<]cL8ΉΝeυ^j§πeWvΊ:GZχ 7D! κ‘/¨₯@X§um¦Uωβ‚ŸzŒμΒJΤΧ6ψ<]+’8¦ΟΝD[Ρ‘?ΐkώ鑐aΛω?Faa.~ϊ·Ώ‘ιΈ­ΗΩ―1šΔ=yΌΜ\”ΦrΏΓ(-ψ ~ςŽ(]€žV+΅­€Φ+ΐλKh§ηχΎΡfo}χkh)—Mκ½~;i© _Qϊ" 8Ώ'ƐžEGΎŽο‘^½–,z~ί·fΰϋ«ŸΚΚηNΛϋ,\+I8Σ.ΤY₯υk˜ξϊΟΕβΈ½ώ œςϊcΉ wΉγΛΥGQήΠΐ/€)sΙEΫK?€WΌΑλU„#oΎ…™‘.ܜCΧγβŸ~'| ‡’Ε^‰J£Ό΄?ύ±Ρϊ£T«Λθ ¬‘ͺjΡ"f$=Γγvν@Ήτ}­``ΜΗλŽ~Ι{ΠΑβ£:ƒ[ή#·˜™Ÿ6IC½žε@Ί2ι*Ρ ΝτΌͺ<|~b^ΑŸΑψ™^Ύ»Ž­mQ€„‘lωσu*€ϊ₯υπM«ΑΑ Ζwχ‰οŠ΅K}Κ·ό¨QιΛ€>%qZ&ΰl¬³Ρ!›υWόψ}ŠjOα΅Z‘¨ΰΟΘψ§™|)8M’~Ύ€χ{ΧW>ύtκεg"B*ϐγς=ΘO…„Xpb|Π(άBr^*ωυ£΄ύ=œ·Wύ=s M΅£™[ΎKcΊβ}μΛΜ―€λ¨ηξ~jʝ*ΝYΟ|…’ΩΟρ.i™³ν,„­}'>ιώ΅'Ό3΄ LفΧΗ?I?”Ξρ5‹'ͺ€ζ•exή‘Τ™C€!Rf’Œ@z ^!­‹΄_*˜UL6Ο„€L₯x…‚3*π|Ξ:.-Μ‹‘βδiAΆXžβetN=Bη'πL†n [|ά‚ΣΩ‚PQ²Bƒψξ‘vζξ­e₯ΰίβ8ϊ2+ρ\~‰ ˜˜…K ΖVΈ4 δgB=ΜυάΒίO’Θδ66“ι[ΪZΣ¬ …Η#μ_6r²ΕΕΐ›ž₯AšVη΅1τφΖς£%›in­+Eiž™©$uΏ½#ΘίΣ•ΒBνΙ#ψΣ8'˜˜&:ƒ8 Rύ\z™8ώΥ―"·w”ΜcΞ΅€ χš<£ vNU£WFuur4@ tЈ=,>ΑΪΉy•οrv“TDΪ:€9TcΆˆ¬΄¦:\dνZΟw:ΰΎ™ΘIΏ‡UΜ%β8έΒ'μJ,γφ\it&‘΄tρpΕ"fIΛ3g·9‰eAw‘΅/%X0B›i–4;J‡.΅₯ooΚΦ»Ν+Ÿ5ΕΧ†IˆΪ4CΒ›ίώΓ#!5Εδ΅4ŒŸς†B+a@˜ ώί;γKΑ Ξ—’*]©>ƒΑž@LΥς0…/-­bΑΏ9R*Κψ―Šύ7Oΐ"νuM€s ½YQξ(Ηη$θΝK*x-φτF}ΝP0Α_!΄-xΝzΰAίOεπΜ.””~q–πύ[‹ςim|st¨Αξν3<ΤΧ8‰’T‘w½­ί.iEu “δ; “žjd mwQύ)J’λE{ Ÿ_λ",H$½|·!―Τ§δim·—„ΎΔ—ήρg”qaύγ~άΚϊίwά¦₯ˆ½΄€±€) ilžτ †Ÿ³$"•»i›‹€/sΠ7ž; }σ£ΨεΧζςAξ&—η Όλζ3Έ49_ΥκεΧ\bζΝΈΤBΖ―Ώ¦’{!’ρ φρ|Θ6»žFFΦ{@N.Ԟ”N?N έΔ:HΖjΙ•Κ‘S|ί£Ÿhέ½x0π1ξLɎ­rž5(σ 0-ΊfQσ-|―’>έΐΒά}άzψiΒ₯$˜ΪήtΔ» LάΑ}lkλYԊkA4u› b€γνb±ΌΟ]Zͺέ{γΊ…»†ξθΐ‰φZ>ΓΌζWπσΓxϋR πΐΚΜ0œ£NΈfηHi;©m'm Β²Vε©7qqθ>μδΊ±.τ^ϊ[Ω)Ψ"­i…h©Κβӟ’Εθρ…U$$x ‰;˜ρ+l=ήψώΠΒΝέ½ΖIZ’F琔ž‡ΒΚzΤW‘vh5bzrελ’ŠŒͺ6t4” >UGqΌύχ^:e#΄ή{ηΗΘΛϋ78ՐKγωjή{…­ΫΏ‰ηϊλσΈϊΛ€{tx™[ΧσΥλΊ―\ΑVω ΄UQ^Σ{υ},εΑ^ˆΉŽΪzpξε}Οό‰RΈy˜4R8η`)mΐ‰#-|˜ΌΦWπϊλγψΙ»7Ε$₯§φϊ£(λ;TΗJ1žΡhΧΉ5(Wρ²ƒΪ†oγ„tΘΓWΓΧ}›™Ÿ\C=m'Ήψ‘ Φtq1ΦMšό„vΰ+ gΛC¦X~₯Gΰ[Ψό£ψ»εgΊω. v―s·ΠΟ†¦šΧ1:σ.-{q¦§ŠBκτ:χ9nωρ{>\|ύ1Ύ«ΏΎtρ]ovΝ§Ÿ• 7O‘ϋz'&fV‘B+yεU$ XI!ΕI,ΙH?֎—ސ 7»ϊqσΖ],gT‘v QK?—G 4“/… Iπ2Β—t~οΊΚg€Nέό,xaΖε¦ηŒŽΨqg|Po]τβώύϋh{^8WΥr”Tύ|ΰ—X ]Ρ,ŒιytΣν,XyƟΖψΰdθΪδ48ΣΘ9%m­ΒΈz;Μ؟#>Ζ»tΣΛαΧΌ·-­ΰΛΞαAβEksΕMzL0Ίψ'εΛβ)ΐ—ζzqQ€Ζ^ § ’DΝΣE”ΚŸ‹‹2αζωe'ώIpΥΆœ%…œ)³£aq^ΊZ5JΛ&5 ™²i¬Σ5μnφ¦<ΉN’T^gΜVHΈΩ_Ί 3»<Œ‡tPηˆ…2Iœ8#‘{nΊσ3―ζάάλ^N¨+«`όWλEwΝΟ•u,υ©Dξ8qηš•Y•4XΛιL]t‘ΉΫλ$m‘­ΌVhNΘΉ¦Ύ‰~ή$Φ<θΔ§7ϊdB§ώΙg£½Zrμλα!šk|ZΤ?N{Z΄On₯ΉΨšΝ§_BZυ%CZΛiΫgŽηζ97ω°Ωδ›Z™(Θ“b±ˆ )ˆwHgsΎ£Hλ/$I=΅υϊω΅F24ΣΙwΣJιΰ‹ΨΦqί3’θψŒu?£Œ λ”ν$.Η­¬PV’Ϊ›ΖώΑ?κς琿³ο=6;ρ‚qΒWΎˆ ›ήρΌρωυušζ©QζK4jΥ;žWK/ά-,Ο”JŠIΧΦ&pej˜<ʌn~-€aΞ<@FO0+γΧJdΏVΰnΎιxPλx^AD^”³Ž(d*‹ςšσhφ―vγΞΓ{‘‚Η΄_n§mUέdΫκqκH=rό9Ή3Ÿ‚iΜ+’„’³νm8’’DN^^8K«*—‚G*}eϋ‘ΰL~.wΆ”a“γr˜Ό‚ί~yΗ›[θGyΝΧpΞQ*š(ν“‚•βšm™{ψ>ώijΜ‡˜^όŸρg!ΩϊΓGΰ gΥ^ ίόssχπρ]J2.ύƒ_ϋwxνD-Ήg‘²©•”ͺ]ζΓάϋνO!Ά<Ϋ©p>Α»Οχ|€χ―ψκK™ πζ8{m%’ixϋοπΡ-eξκκCVρl³ΦχΏύ_ρ߉BΏλ;.΄sBΞ€AΣQItΞϊλ²Νβ£ΏyE!hΝkύ|ύω^όςRώθη% ά½—ήΖG~°qΩ­τ_Ε/ί%ό«·Qς?ό εsθcΌύΉ•l ’αy7[A!…&ΑΦ–·p\ZμφΗδάθ~‹΄…ΎΔΗ©<{ Ν$ΰό/—Ύϊγ£ΚώLΑsΪuΉ½H:Ό°ΰηc³K/β+΅\›$ΣWρ`£§Όίa‚ΑΝD3σΛΆηIAxܘ ΰEΉHKγ9C› *ςό΅M錼6>ΏΠι„βgFψξη=ΤR=–ΡA {ήx₯s«ΘΜsHu»κΎ‹Ώψ0ΔζJhΪcΕ—ρέύγ»‚ %Π‘“ύϋΎlkxUιsЦ’·sœ=βΥOΙΉξγΏύε”ϊΓOιPʟ―Ά)rπ‚šΙ—ΒSbŒ/ιωήυ•O?Fψ™~αΖεfη§FC,Ή1>hŒή ρ9 8;¨RσZιŸύά•νχΫΪy5ώI΄θ_³xζΞ;T›:sd0β…έψ/N¬— šϊ4q(΄Fα.“p³\ŽiΠνDQF.κyi΅lδ§g’gΩ_k\ —’v^€₯’<Ϊ‚SθΪάU™„κΜο‰―‡ MΔεφ„Χ0]Ρͺn^›ΒέΝΌΈF`'Π/5§ΪB *9e"5*žκƏy/ͺAe©]±οt+κv ,' ?ϋέΥ1ivu iυ’2׏ϋƒ š*tκuΪ!'κq5œ}T¨ζjΈΤΎ›κw«— Κ ΰπOΞA­χ|Ξ)ΰψΜ«]³šΦ­EΥ³$ΰLJ΅³3Ηzπ¬½υ‚Π#ο±³Œ~:H’^Œκ4N{λ:ζΦ₯XήΘΑšΛG‡22%)δ Έ76ƒ'©iς~2Τ>GΥ΄°»ι2x›¨jΒΊ_"ΨθπNšŠΐ½v@υσ₯-•Ύ5TΖξ1ŒO6‘ ˜Nδ ŠΆš'ΖΣQY&Š ―cth(T Ίό΄σωΜΊΦ‰.’Ο–…*\.Μ…Έ¬ν(*ΛF•$ΐΊŒωΩiή]v½χοašΆzƒ}VάAχΜώΟ"?]θλˆd„_λΘN5Š.Ύ›‚γtΐPόέK“Έ£6€Π9ώ$u°ϊϋ1ΥB†qdύCό[Y¦‘ΣΉYσΟζ¦κΌ(5UΦgΠ·nΘΟœi¦;Ϊ|Ι€όΚ¬5xήΞΙ+ ΖMΗο·ΆΒϋθεΧbΒ!žšη!ΌΏfόšVτ3D<Τ<ž/—šh4,1$ΰ|GΕ#χ$9t}NoFR."δfr«es‘«Ξ\Kn¬ξ$"ΗNWyϊ„†›λOaœ…iœ …VnrΗ-W‹‚nτέňgΆΌƒ8RVE~œ©B[Νa< Vv ΠN ‡΄"[~’L^ΒΫw φ0ye―βbc‹/ θ] "lΎΑi'“C§Ίε ³OαΑ'$H+3χήύM‡[‘¬‚J”WΞA!ΐΝχ* ©΄ή½|'Iΐ™«©€iεH([vgB’8]Q‘½8ΠΪqTzψψέαfΞ³χςίsbΏAL?ξόξ…ίΥ»]8BΜ,-ΟΧ +Eόr ψ›rό›οΝM/}ίoI†Γ{ΰΤMBδoΆS5Υ΅εUΑ4%‹΅?ηρ Χ­/c™|9LS-Bb':Z€νΌςA&ξΞ_γΞΑ\δ…Έ[PυŒΏpςy­?@ž‘΅kςhETλr#·:·ζF‘Υw‚aή=@‡ρB»Wƒ=πΈ|λ*Nώ[ξo{Ϋ«JBr‰Μbf~Ή²Γ Λtd)pί…γψYqρa’ΝτΘ+{§ͺE~FAVgΑέ”Μ„Ο/XLj‹!ω™AΎ»0Œ‘Ω)”Uˆ’Ky(α?w~c)3WπC:daбΣ"%όh„<n‰ή M‡.εΡ‚Ϊί MDϊψξX’ŒΘt%Z$νΉ†»²wk$ύX‰μ`SοΛ’p3Ÿ&ρκΫ‡Ϊq‘Ulοώ9 ο‘πO3ω’:5rWƒ|IΗχ―|τνκβŸω™*ήn\nv~:0>ˆ ο'γOΧ§θ{pž‡Τ’–Ζξw/ωN΅l’Ζ‹½]w6Q£5ώ4ƒJ•¦Mb#>Ζ»@cΣK·Œ,ŒŒw{„ϊΛ—μυ,MHΕ7bΡΗ?is|Νβ™;ο0Rχ,.C€!£8€Lΐ9ͺ•cKφ­SNΞ+„›BΦ°΄Γ­Dq«L΄™L΄†χŽν?šσzWtZ’ΌR‰ Χp/)°& ˜pˆξΝ@ΑihΞ/ρSΫΨ’-„C)¬Ώͺ@²2V[ΉozόαMό⺟ šeu$ΰ,≱ιΒD―qΑ#—ΪχΊ†]_ΒοθOu”ζ 7?ΥUp`3g2J«pΈΊŸ/§£]Ό%‘Β=μVYΟδ“ω·λ+@Θpœp\.i% Ί€prΝΥαΎάpωι­‡’θs“6 %MX‘φΘAΓwK9η•–Σmˆ•ΐΦ* ©s‡~FPMΗΦVΗπ©K\ΑNGQš¨©u³λ΄†-7[σΈ6MΏΔtδ𴃅-j™©₯x+ΗΛ_60΄&Κ­|| )iΌ›λπHίK¨τ΅ϊΉpγV`{Τ;ςpŒ/™Ξ—V–°Μν‘pΝ7M‡Fn“ψ’ΆΆ°†Α±tΣ~5iά//'Α‡ρ$”sŜY˜@Έ`5ο?>ΏΧ}ϋ₯΄Ξž†’¦"δqΫΏKSΈ7™€Cυ°Σ^~I2·ΟBfm3<½ΫΨΰ5«sεpa’»wUϊ2>Ž)&Gh ΧιJΪ(ΏφfͺΉP#RίΝΟr 9]ozΠ½0©–²Mσψ“’™„‹’€Po¬@Ό[Yͺ“_$ύƒ2)«=‹?x<‘tΖκ 7¦βδ<Φ±Ά‘mηή/ ιΥπx^χόH"!ΌΕ$Ύ€™_›_ƒ½'e{ž|θR™;ψ—>~ν7ΰ=‚y@@\5Ζ―Ώ6gA­uΊiΟs²QQ4²(ζͺ’Uλ‘>mžψ|XpT NSΈyοGΈ·δT.” ~Œ‡ŽWρΥΦ#‚†Zq”Ϊ04Ξ-’”Βj›Ή"NαΖ͟γ‹οΛ8mτοώΎό))ή‰&ώ-bzΊ ܍t[€5Υj­G!i]₯SθΕΟγΝ¦eΌΣ-κ&γ(ŸœΩWyιγΌ<]xοκ»J5ύ²(ΣWˆΏϊ”dωΦ±‘FΣΙu ]ƒ,…­1Œ ϊΗι€ΣΎS¨η&’‘–žO|ZζlΥΟβΘΡC(/+Av­Φ‘ ('#–”QΉ&J¬οt‚ZΪθGοη _M/.7n―£λ¦Φ½‘WDαbM‰… Τωs|ΰ(ΖΧxνΧEpΠo–ογ’€![% qqͺ[b βΚ, Ή{©e«ΧιιΤ½Ζqφ-όλΪΧ‘$Eτz$ωΪ~€ƒ„ΊΤŸN<΅·λ"\8ύg>Νσ>²CΨVpχφϋ°XDn?‡ιΩ|εΤk^νjΖ³Κm"Ωx―’ŠΧπVR!\ ΘΜ©G‡tXƒψ…ΘX_‚G-―›–όΤ’‡ηgψnΑY|γΨy^θ˜Ο{cc€Ν:!£˜Ϋ½υFa^orαέ0|Wv…[ΙEόλελa4@*bΠϊΪ-όέ_ώ΅W›½Ÿ_€―ŒοFŠXππΊψ.υ[Ό!νGϊ!φ] τ bzbNŽdžq 7WψfΉ1Θx― Έ&Oth #ଝšΛ—δt³λζKΊΎwύεΣG§~¦XψqΉΉω© tb|P‰‡β-~Ɵ]χΊq‚xΧK6΅‚œ…™Ξ³¨iOτ [&ψ,5*γOsψ Ds–Ψο•­ŽΧρ‚x8Ώ~ΤyΕ[:Œ?ΨΛ½Ίας―Š€ιεŸ,žϊόA/.b}°'C€!ΐΌQŠa9Ωάβ.oV±°±¬’@6r“EΑŠM¬n‹+‡*Acέι1-ΥИ‰J ·a,­mk1K‰LΰdkjBΏšσKƒYυ]݊׎”#i›“V€νϊ$~Α]ψo”k)£z˜EΜ/&{‡™%E΄6Nڝδ¦07[ώjΨξ“©w‘ο‘Ÿp3₯^R™/_φζηΒ i‡nΞγ4žΩQPH4ΉΉυCŸ)΄ 3|.ΑlkpUΠΞρ άνΌ‡“^Δ‰ .]%ζ$¦ŒXZ‹&N“(g†ρ ›JΠf6ešK­VN.xάڌ5‹›ωψ…΅X‘#ΚΦ‘ζ`e5ρQ#ΙO_=ˆʞ«›ΌΩmV^y‰(, ₯°šΥ5}·”se]+ΞTΛΪΗ'η€H•ωhݚΕυi§ο HFΚΕ=œ-&V‚ˆΥο¬aA0NΑQ™ΆΞaRψΑΙ™j1ZΛΗ₯UL{~’Šχζͺl‡KKN±†ρ₯½δKH/CMm6†ϊ•‰ˆώ’ΙΙ‹€?’ΗΣά?˜Δ―5χr"½φΘω­€•\4ξ τH}…θͺςΤ<ώ€Έ&α’BEŒ8EΏ]λ/ΕηΈ•υ*Ν<ΒώA‘BVrhH?‘˜Ž\ά΍š9³E•Ϋˆ?mϊΪ§ZΪΏ(‰˜εΧ†ψ` έΪS#Y4ΧδΝ&ϊ]}ψΜJΕ”{DΒ―eΡΤ¬‘ΜΤβοΏγΧl<~<Ο­zDΣψ‹F3o_^ΉηqΈLάΤvγφΐͺ׈ω"ΔΎm‘„›ΥΜ€σ=ά/¨Α‰BNˆΘ‚ ΊΫ FŽ ΩβΒ Ή υ^ς 7{sъ—WΐΩλδχp£σα―Π)sm?ψœ©„’ˊPN‚v£2Ή•ΣͺϊΚ‘γ’φηUΧm|ψω{AΓ‹q§'zEλή?=Ka4˜ζΒ^L“‹.auπΔΧώ-.žhO—)wΓe Aό’H0}Ϊoύ2<Τθš#υ–#ΔNM—5- † σπέ€›΅ƒc%Ύ€ΧωρΠχά68•‘SFά΄ΐžΟ΅qΡδ’H–—θͺ|ŠΒ|€Ρϊ3‚§¦vU ΕΝUΚ‚y[£“})°‹Ε\]BnέE4r,Μ£psž,E…ό’ οθ™ΑδoΣω—ƒTΣς#A– Q8Ϋ χ Gl y4tMUιΰJIιq””†γΔίΗθjΥΰKqΪςσOY?ΣΝwαM™pσμδUό˝KAΖ†oα…Ϊzž€ŠκchΎ‡~ϋ*ώτ†|§«ŭ͐αδž) Ύrw=vΖwυ 4N€|χϊΝΫ8άώ ΏΉΠΔGž§Ÿ7ωε)tί»†ίΏσA€ΆΣ υΰ„$Εm”dθR–εM[$u#ζρ₯ …RxθγKzΏwύεΣE§n~¦€HxΡ2.73?œ €Δη?γOwη- \<6n Ό ­4D΄‡¦7Ο΅’[ Ή]JνρΎ‚ Ά=šΕύΙυσγέ‚σ€½ΏC(Βr·ίαΧmΈ έ­2šτžΟKA#œWqρŒΜΈψ1Λ―uσΑL/¬GsIUπktΞv‘3œŒ†.~mξ<€«X4Œ_³ρΌΡρΌΩνΪμ΅4τΩπ’ΤΟP,ŒίΒ5nΕθ 6λό6~$U’ΆŠ~<κπ @Λ%:ƒμός ŠσΏƒZNŠ0#E΄H5ͺ2ήͺy―6ΆIy.ΐή»$°η›ΆI^ϋjq―­ͺ.ό₯₯‹ςDž8Vh¦BΈye’½ύύp/ Τ«eTβόΩΓByD ΔFJGΧT€\+ήή =I7BžzάvdϊINZ‹[H@ΌK=ΈΒΥƒu©Ρ*κω₯ω4€ζΧΉJQ”οΐ§SFa„ΦΑ^ά½ς12Ε…“°Ρ±³6μ―#&l¬`ί †Œ^χωnΟoπŸώfoœ?Mš9Κ}WUrΩg‘ιΤΒAZ~ψ_~άOΤK/—»ιpo™|I+₯:ψ’ξοέHωtΠΙ13=ό,:γrΣς €@Υ…ρAUXxΗΈφβ!1Ϋ h¬IZrκ[ϐ€σ§hl#.aθή­ΰeε}φrόΙνζ‹& |Λ*Ζ»‡ΛΪx9™„4ΤώZhя7,ΎqRλqψθ·ΠΊ;›w>”~yCjθεŸ,TηzqΡ^c,$C€!π p Q’4} JEtσ™άKH8υμc'ΊWάΨN° *«mY‚` Gν,]₯¦Is\lM ‚χfhΚΖλqΘΖΙΒ:$ΠυήΞνDΤYΛΠ.+ߘk+œ˜ŽΚΌ8HibΙ…Il½H·τΖ'…΄ ΫLΒΟ’!­χ\21X]ωmΒ΄zΧͺ%eσ7™›λDΧ†Ϊ*QΕInΥι―Ύ™„λGΰN°αP; ˜I\-T&ΪD~φ4ΆnχΰΡΰ2έΔηΐαC‡¨ͺE"₯.}γ˜<\ΒΣ“QΪ„oŸΫΕ§7ιf—¬ œ9ώŒ@ΏjT;Ž;Ζ,zM`tjsE:œ‰28ή&ξ x0;3«L!Ώυ$`Η™΅1< αοˆ ipeκ3Κ[π³Ix4αΖ©[K€χΨœ^aΰΕώ1τvΤ‘ž+z ^}ύ>Ίύχiω΄£ε Ξι$%Γ£κ{/δ'탑ΤC`ω]€|™œ9œςpαβiΨϊ§ιψ•1qsΓ}θσ_–Ϊ€/5i]Br2πέJi±]·nοb₯ ΚZƒΉ ,%d£ΥNΒοΆδT⍯§αΖύ~τŒQϋΘΘFyi ΧΑ:rOp6…/ιlT}ΞœΰœεffƒSrΉ½§ž-'ŽΆK|χ1’³r%ΟG#žΛΩ&Δρή5τήλxCŸ_YΐmE–r‡πyCέ§„ώabn™nΌι^§[wηΔ@pvυγa}% š“υ·o|+ ·;ΠοœΓfF&r¬6”—ΠA΄Ϊ"XIΣό 8K;CΆ|4ΩΕ Ωl§fνΘ‚±Σιρ&ͺ?€ ›@Ϋτ/"κί‘TR²DΙγiκΈϊψ΅<+U{Πώ΄‰α»©Εh²ϊΖΰύnΣ¨ΰuΤ5ώδβξ.‘h²_ΤΫ΅Τ&#/ΕΣΈ•υ&φ~ίCUϋQΌB*Y>½3[-έ(rΆA’ί˜Wf„>―ΔcΫΖψ5ΟG>žίΫ6”mμmΆΎΤ‹+ŸG›έβupβ^ΟUŸηi³Αž!πqΧψ 2ckΥwe– ƒ¬t―€Μ-Ό•:•ΞI―΅ωΫ8WU+9όο|y]z%‹΄Ϊ:ˆ iBθ%nΕ3JΆrϊ‘Ά8ΐ™c’°…Ώώ3όέ―.σξŸύ94‘€³Θ–$χ –]nΡ<”qMƒφθz"ϊΡ‰~qš*Κ~ϋ“?’ ΅’Ц—ώηG=>ξQΊλ{[Η: h¦OΏQŒ~φkΤlmvύι£?\,'ξtϋ·ΖpqΘ?λ” ˆ&^Σκάηψύ—wΌ‘i‘Κ^ε΅―6π>―έο‘UOΧ!ω&Τάq4χμŒϊŸDьζΗeŸe§&―YvcΑ?/я{.έΓG7ιGςψήfsK΄žsί«υς}ΟzΉο&˜‰$?JC7?ΣΜw‰‡[Δ#9€}zΊKe3b ‹όυ©B“’₯Uπ`₯ γή‹Oίν fοΌί5[]|·η2~C? Υ-•((§Ν²Ά£¨,Ζ–Ϊgpςθe|pKX„ FqΈ~lGΪ‰…šςξŒ„iΖ$ΎTΨς,6Y»αΒΝ[ΑɌˆ/ψލ–/":ύŠ«™ŸωΕ£W]γrωRΜ…ρΑ`Θ ΞƟ½ŸίΗψω~3΄ΎΥ%΄$J?Μt‘«34 ŠƒΒCοψ3QεƒDsμwt[‰Ν‡.Μ«1%-! ΨθΕ_ Ι¦™_λεŸ,žϊόA/.RΝ1 C€!ΐ t(\`ΈC ί=‰κμl˜  ”SKΏΐ4ΧVΗqc>Τ’J`œΨpYF·gυ’ΖεΤ|”­ςΈπ"ύ€Π‚euΌ7»ƒ,’GŸξzπ£‡{½Ρ5€¦ŠCVΤ~ŽΘ|Ψq“€³I*(±@IDAT°*i8ϊnRΣ谌Ύ₯YŸΟ‡OO+ΔΩ’Beά->›Tς‰œ$aα<8YΗ£Ω~tΛ’2XΎ<Ί%±Ϊ"[Σ’%τ|Τ{4ΦVΧβRΐ™ΤΉ0ΎDuj*_ZΑε+6ΌNΒUΐ―θ:ίsGκθΪd_»qM’w:mν•ΌΠνάόb`’D£Έ Ύ½KƒΏpfΆτQ^8~aσ΅άΎ?όΆV8h“Ω?½Ύ;ΧπήξQœ9μ/ΔζΑΓϋ3Θi«γ…Ζ66εΈ­a~|.nI—Ψ¨˜e <ΐ΅λ=J?€ή\+Š7Oαα­ ₯ΏΖ·[Ÿ|Nγέf4TβΊ™/CΆyΎα7PžλΏ‹ŸΡAΰ6*†ήΕελ}Ύu`4ηg ²κΑy―tΤ’ΎX\˜Bω—‘sΥΤ ~· ύ›eˆοhΣ‡ΫΙ)8"Σ/¦5Ώ:»ΣΓ~‡ θsίέ$°€x[ ({ΞL {aƒώ›v†Κ—Žτ„Y.Α­σj›ˆΑΓΗ’γKζσ₯Ήώ{ψ[Ο"^<‡‘ΑιΰM”ϊ"΅«”Κ/Ξ:ΆΔοџŸΰϋCa]crz–D‰γΗΜ1‡pˆgΖƒiQS΄HΕTήώω"ΞkAG΅l]Dτ§§‡ΤC;t;…Μms+―–yZW6AΓήθϊŽL©?@s$+¦ώΑ^Ώ–e%XύΫgΠφh€ο&η’4#Ν›υ*zΆχ–·πσmήΒ,αζ‡o“ζOzΝίpŒΣ’g?ŒηδUτών{ή0ϊ3ctύ6‡ Πrϊ€³ͺˆsI;:JΆp7ύυ§—κ=oΧ nΈi-#‡Χ€·‚ϋέΏ@ΏDl ^m:.}·Σ=²οV Δ[rIΨXiܘuoπ7&εΗ%k“]ω9οζ4§«› ρ;$=VΦ04?©b‹4ΊΪ±Ή~Ό?7ŠBΪ)+5F`9?ΖΚΪ΅oΚ»}kγΈ80k|2hηΌ±ˆ!LΦ―anuύ‹Β 0UŸRTϊaΌύώύmF˜x„wι/͞FΎΏ)¬‡JšΖΚ€ΉΖc²kFfW~ώ]¦TœξiΕΫτW\^‚ŒDzI€­~ηΙ[aϘTNS³Ος5!ΰQκ IOϊ½Ά²Œρ‘> ’ΈuΧ@Ž<Ψ^ϋ 7(%3+‹vIF||„«fmiƒD˜7ͺ«-‘j”6τ°Ύ52ΦEMγ֍λτ§‹τy’ΓΖB؈δ«UL υ 7¨iΒΰλΣΥe²Ό0܁χ/ПW‚wDPΧuξ[₯滟]ΔέΟ”³ΐΏγMθœIGq’q‚­X_ΕμΚ z5έ4Ε Νtα΄X3Ο’+-μ‰ί±ƒd–α\œΔ˜―ΧΉΪGΧτπ-ρšΦ¨±-Ή]wkXμX>ψ  Ÿgε ”΄ˆλ„„k|vœϊ ε3­Ζ.‘η7ύ=θ;ΤΟΑ·‘κ»—ιή½l¨’wdejCΑsΌυώύyΧ#όΛ?<ςŠΦE̍ΰΣOι―! u9³ŒŒ-ώ˜Η$νΆ6h`λ›ЦλΊR‚>1}…©@ΛqΜ<„υ|Π΄ά¬½ΦˆŠ‡Α?B°»+Cx―kΘ³κ Ξ™ΖŸTr¨Έ₯άg2}]+ϊςq«‚„χ/>¨˜0?θϊς|ώ5!3-A|ή.Σ»x“ςΎ£Φ&°Ϊyέ3:θρ<Ϋϋ‘VεΘ΅Χ’–¦μΰΚΩi£/ιΪϋ?6e―Czπ―G$¦r{­οfϋ’-f»Ϊkm7ΰX˜yښ~{JŠΥΊ[:>ƒoͺœš-Β²QYχΚꎒ ύAL€β(Θͺž‚2·ώδ±υζΝΔζd­Θ#Β£Έ4΅€<-|±mΧΡΉ„šς“8RθΖͺ§ν¦D†΄•βXͺŽ’‡κš!"Ξμ5ϋσΝξςϊδ^σϋήaͺgyfŽG`;"ΐ=8oi―Ξ-M‘ώΆoXFœ5ΥΈΕsD؝SΌ6g k>₯°θθ 2ν §i«iΧ΄’:ύZ°»Τ=Ÿ·΄*z;Ρ€‡vΨΫI€]–"ζΖΠΤ*“‘MȏΡ.•A‰‘n—2wκΔΓΖ΅„'+36 Υof]fΥ ύΎ5[£”niΝτ| $ ΖhelUϋόι9iά.ιϋ"ΌvizlχιΟLˆd[a¦RήπβiΎ~’pΡ³Œώ66lΝ}΄±m—nή^λε#Œuόiφ9ωHΈ5ܚλšΩFΩΈ•?Βϋ| …˜ξ«w£ŽX―ΟΰߏBΧ|³νυfΧG~Έ7y~"τ>ΩψΈ½Φc^ϋΒν΅έ@g>?+ -ݎ•‡%2?ώ9ΎθόδFy βŸτΧŽΒ‚ƒβŸa‹fΫπρ7=Ό²φβ^χmΤξ•=<Ϋjpκ0ύy06p ο>’όί₯* ν(‘ϊJF’apαAγ{Έ©Sw"Ηƒά›œ½» e‰Ÿ=Σδ›ΰμC&¬ΡΔ Π_¨©¨9σ=ρOWσ>>λŠuύ‹›Ψs°HςEι¨Γ™o jrp΄vKγΤK“ΐΕϋΞ xŸ[΄ΝβDηE ©Μy~Y„oιZΌhλν“―nαˆζ™έΑ«}ξ$εHί~%–ε7 gπ*ͺ’ZΧe\ψΥ5wAΤή Ώ*Ζ½rRŒ«:χ*Ξτ ΰΝ뫃ž"/Σ†wών_‘ρƒίIsH©Δ±—„?w΅FGΜύ·©xiL\/φ6£jW˜9ΩΎϞأœoΗΗΧ=ν„&‹%v…C£DOΉΌΓR{}ΉΩ5¨Κ‘,›Rϊλ¨!ς³t6?:‘œ3’Ι#ίvP²I_(6I*Bόίt}!Ω3σvWPςaϋMT PΤ؊ͺΚ/ӟx’ϋo~ό4ήΤΕEΝ‰Χ}Δν.{ί1Ϊέ&νΔh.jŽη ՘k½+βΚƒd3Ο1Κϋω₯:|ύŒdrλŸΗwθoc»]bΡ‡Υ.±ίοlνcΥτ9Ωμ8#ΛΈ<”ϊά5Gτ·ƒAύΜχcš΄’NX€!I»ήρ.Ζ«Ό³(1α";xμΩοβ|½ς~¦h&ΔΧސΖΧb -κϋQΣ@Tw“HSšIcΠQσ<EΪγ—Ν~ vm|Νεθ½Γ£‡ψ)G€#πδ!ΐ=8?y}Ξ[δΧΤγ›ΗK1ΠΣ‰ΎΑ1 OΞ`<€ΧμͺBm …@[>lΥ’Ÿ₯θνω>ϋ` VšΤ^%/Ο]sΫ³•ΌUHF€Ϋ%Οή ―]²¦?Ζά$Ή(χ’=έG³4ΡαΕSSpDςϋ(’Ίƒ+&ψuν dxνY΄Ϋ@ϊ{’η}^<½Λη1'n―=ϋ:4ϋΘΎE{Ί'Zα>§ ΐΆ €Φ‘8[!̍γAϋ‡δσiΪ oZπBζ+, £½λ"~φ۟ααŒw¦ρώ_γ­{WΙ“«wšΰΉ­ύ=όΌΑ½—OάΪ ιc²ο0‡Α‘Έpω/q©WλGΆπσ-δ‘2Žg‡GœϋtiΙCΩUc?n †#ς>©8nΌŒϋνΓ^…ΈΊγ­ΏύοnοΝBŽΞ xσ'†n§Wvς׎λώ>ΊεώZυ³mτΥ=>ΎzΓΞ Μyτοⲷː‘/~ŠΏϊ›Ÿκ)j2Ϋ‡ξ~·R.wϋά^άάΙ‚k7εΥeΥΝ›6CΠΗφCΟγd΅LΌ .όκŸαΉΎ{δκπαnΉΜ\8υ 1²έ:.-(ΪPΉ»—ΘC―Φδ8­πΓϊΧΈΩΨ­dσϊu Άγξυ’χf!•΅4Ί²βΉΧu_Η›Έή―½/ݐŒήΖ―/ύ ϊ#ŠΔI[‘Έ₯θΕ쨂3ΐV_.’γ%OƒΪzŒŽΗ¦GΥθΥ•9υžU#僑‘ΫψΘΛ&)ΉXκ ͞™΅»’¦ χπ«Λοΰα¨·-ΣΙΦ·΄½‡~ql›V)xlα/·»[owΕξŸΔh{ƍžcbϊΪ~ςχοψ½XΜ<ΗΎίρΦΕλϊ…8bιΓΈω2”EΚΊg¦v3φ“Ν.i*=‹>Ζ!Μv)„ϋ₯}ΜzLφLΐq\Ξ\ŸPg4nΓfΊϋa―f:{­W ΖDš1Ξζlδψ“”e΅ƒKs&<ƒM/HψFρx7Σ’ͺœ'g‡|ŽAΥώ^ ωYμ'—σύώΐЧΪwό€#ΐΰpΞόΰD1ŒAI9Ž?Š—Ώ|―ž=ŒΪΕCΒnάiB7N‰x\ρ¨g]ΓΫβλSΔγΝδx!ΐν’$α²KΩλ(?² αΧ(D{ΊQ›ŒβΒ…§QΩΗι HΰΧ΅˜α²gΡnιοœˆpαι£xΝxrΰφΪ«―YνK ϋνι^@m@ĎόΙzΞr―}ό~8‹Ϋ°²Ž}η?γόΎ"ΐy ?ϊ―ΗΆšνR+fƒ%–ˆ4―ΈΆΎŒYΪj―kΒΰΓ½av””ΓŸ@©kX^œBp›oΈ₯eΆtX#ω/[^qbt -π‡fΓϊ#?²Έξr2R ΄vizw4^” Τ/?t ΩΙJYΕΒτξΘoPS”½|vf‹zbmΆ‘ν¨%άLn!ΪΎ{Y…Ξ#6τ’ƒ θυ3»ΎUύ·p§₯Χ‘<=ρ΄Π~MΈFfϊΠ>αƒ8…6―Ύ\eg 5)Y΄Kk«3Ÿh’mώΒЈ )Β€έ•uHK―BaͺƒΪ(E,/Ž‘½ξπm―7DχΝ)”ΫέΝΑΩW-9εuΘΝ’k-Ρ">SΦζGΡ{«Αk‘Š/yΣρ΄σΑώΙV―‘§£‘GΧΠλ“hmΊt@΄Ψ%Φϋέ|ϋB΅ŸlφLΧ)¦N6»>SΚ…53·ƒαƒ³φ₯?ΕΧOΧ‰ίψώη›Ÿ„―p£’ƟΨD;(¨ΌΗ»F]Lœyϋ)•ΚεŒΡeΕΕΈ4Λxr¨­­ΫήΩύδ4Ϊ£₯ Ε‡°#.Ρ#–ŸšA H^*Ϊ'νmfFtKσzϊ9œ*'rμL/ήώευ°ΞŸoiΓΆiεi%ΥxΊΆyy${΄qt  wnA·Y”G~Κΰp·KαAT ;ŒvΘ ¨Hα<§r ³;’ρ#ν±QήψApNvΒƒfτ•Βο£θλ3q`ψu£`rπηC0(ρ<Ž@(p{ znΩν6~Wή?¬™ΔΉ5sÏΔΨRƒΤΐQέέέb&kξN]fNpή‚³a~Βΰp8ŽG€#ΐΰp82'π½η ”ŠgΈςχ.΅rp8ŽG€#™p‚3XvΨα&ΥDfOEΆVΡJp.«ί½ΉV¬/LΰΪgΝΫΦ‘Fd_=lΪ₯ΩӐ’”ˆ8_₯Εψƒώ6d«‚Kq8Sp»d .]ζϊηVT³BŽPHΫα\KήΦ5œŸx!ΐο#/HxΔ6@€_ΧμΘŸμΨqIŽGΐ<ά^›ΗL‘ΨφznͺDi’ξw£ΞΒŽΐ‚@ZΣΎg΄Ÿττ'δ2ΰΝδpΆνn_·R^%G€#%Hφ/ ‡ŸΩƒ€+Šχ•ΙΝΤ€φ»Έ=k§>>υ՝ύόπU/ηp8Ž€ˆ€°S'7?±CWγ]t5>±Νκ†O»¦·εξbQέ)\yŽΐŽ·Kμ€@f<6[ΣΧ½<6+δΰhOgGηΙ’δχΡ“ΥίOJkωuΝήΣόωΐŽ—δpΜ#ΐν΅yΜ eq’pΎ]ΖοΒϋGηm₯…›σ{πθΙΞͺϊΊ$WΣα,s#Κ*άσ%Tδ{ ƒhΈrSQ /“#aόƒcxόψ1‘œ½―ψΒ£%Ψω|Ν›a]ΕΥαpΆΫέΎn£βMαp6qό™^‹σΟ½€šΚr8R•-ξ'pηΑ;H=υδŽ?·ϊω°έΝ‹δp8ہ¬¬,±MΞIί‹qΆ]£5 Ϊ—ˆX[Ύ&†² `Ì(64q.Γΰp8ŽΐŒΐάδjύ8 ΧUOΞZ8’=]Ϋ~Μΰp8Α#νφ?ώΑ#Αsr8ΘF@²wnΩΏhI_YXy‡•Y§i·§{Kθc\.i>!%C—πΔœKφŸCyN œ‡ρΰΚ-Lκ`α'ν‰@j 9»σΌHΜΉ’ψD\½“Odϊφμmή*ŽG Ψξφ50ζ:p8‘€8ώ¬.CfJ¬²ͺγ}MhiώΞμ'vόΉΩΟ‡Ύλέ‘}‘pν8Ž@„"π€œc,ˆMΝ‰Πή‰΅8Α9zϊŠkΚΰp8HD@ 9ŒvΔΒ“‘θνιJ;ψ/G€#ΐΰ˜C Ϊν ύΝ‘Αss8θA ύ‹†τ„dr*l8ΑΩ”P’,Y…°¬Νb|΄mZ0Ja\–#%Œ5ˆδfΜ¬xrVΘ½ΧΊΠρQλ™nδΡ:JΊ”«ΙΰD8»Ώ±ΫΩΎrϋα W#ˆγΟ΅ ,Ϊϋπιοβ½όg ΡΏ„έΩΫΪ> γνH²ά^GΐΝΐUΰp’'ΰΌ#1±)™QΩw‘€4'8GRop]8ŽG€#ΐΰp8ŽG€#ΐΰp8PΰηPΠ3!;Ρywγ'7›@gέδά,.Ξω’‹±yOb:χh·lήŽ@d" ΨΫνl_ΉύŒΜλŽkΕˆ4žΔρεV―•qΎgύ‘vMp}8Ž@΄ π€œc,6Δ$;’₯»"VONpŽΨαŠq8ŽG€#ΐΰp8ŽG€#ΐΰp8&ΰg“€ρμŽ€y’IΞξ<Ρ³œBΎSJz…φςΐΰp6Oϋ²έμ«gϋ6C^&G€#°=Ψnφ/RΗϊηhOύΆΗUΔ[Αΰp6'žΰœœδΜChp‚shψqiŽG€#ΐΰp8ŽG€#ΐΰp8ŽG rΨl‚σŽόΙzΞζ_ϋψύpΗΛβp8ŽG€#ΐΰp8ŽG€#ΐΰp8›Ž@mm­Xg{gχ¦Χ ΖeV 6-7T‰jŠ0 κί‡‚¨nWž#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰX3‹ A˜~$Ζ—––¦Šμξξ³Xswκ²ΖθΞψ G€#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰ<ρ숍β1ΰp8ŽG€#ΐΰp8ŽG€#ΐΰp8ŽΐΦ!ΐ Ξ[‡=―™#ΐΰp8ŽG€#ΐΰp8ŽG€#ΐΰD&œΰ™ύΒ΅βp8ŽG€#ΐΰp8ŽG€#ΐΰp8OqOH;y39ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG HvΔ&™“gΫ ²,ΘNH„θ±δρζV¦ΡΉ°°aUΧ{ηk³1?ή‰χή½…Α «Ι]°51 y VXbv`ΪΈ΄ΆŒ©ΕIŒ­Ήσ(GΦx ό_‘k˜\YV²ώš©O, 6εI€_\¬Ψλk œΔ€aι›i-Β‹gj‘INΧ§†ΪπΞυM¬|ͺ΄o–Ϊχφvkί&@Έ}ͺ {ΠκΎ—WηΠ:7΅Νc­UNΫ”€ΗNJΛλ ˜3°ƒbbv‰υΉΒ*§΄N΅ίλd§ΙΞGeΠΨ%nw£²7Fi{^>S•>ήσοίιΫ€zΒa_‚T‹ΥΎ°Κ‰j™m_²’,°Ε%!1&1;vW1Ή0ŠώίνTνΟ,ήγΘΐ2ξΒ&WάctV9wizΔν`„vΜ«eΖΪKπS;‘³Ž©ή\h،7Ξ­Β'Θq]Hκ™΅ŸJe\NABˊ‹Ύ~Ζΰ„Np–Ό$ŽG€#ΐΰp8ŽG€#ΐΰp8ŽG€#°-ΨGlIΆ,kφΫσŸΰMηέOδ{νhχCΰ`m@‘©…œƒώˆ`MΚΖ~[.*“S Τ]FΫX ΝΞͺiVk)^ΛΞWύqψξΈω%j6³υ¨ΤuŽrμΆ9`QK‘³xθμƍΩiΟ”Ν;ONBfΆ ͺ1vr£{Λ£YΦ©ΞD<ΦαμFΣ°ΰ"¦O·²}¦•ε…@Ή­ϋ9Hυ¨ΰψŠŸ“h]ςHρ”΅>V9½Ίix*7*%3 ¬ŒβύώvŒι2±Ϋ%Φη «\Ω‰ΌΔdΨγ­H§…,©o›Z3›ƒ h sίι`Ϊ¨“­΄Kάξ†·WΓ‰g|lιΚσ8)ΌzRiα±/Α¨Εj_Xε$Μ΅/²ͺ°3%Ν{l&W‰±Ω~άλυ°Σ821Οζ—Β |”§{β>¦±!«\υli6n·ώˆ­άŒŒ'oΆC|‡IžΆFl“BW,˜q]h΅˜³ŸξΊΈœ ν+.Ϊ2ψ1G€#~6yΆ+ό ΰ%r8ŽG€#ΐΰp8ŽG€#ΐΰp8Ž@ˆ!φΡ•Ζ‚yQf(±νΔG–O‘TK6žΚ‰ΕJ+z|ζbMp» ]e-"ΉΌ΄ <—‘γ'g’bEΏΥjžτψ`HCλXZWEΤσυYp(§»‰ΔaΘKamΦnΔ<Ύ‹λs@ξ5¬Τ#’ξJΉ{Ν#ϝ旖αδΎb±τŽ•ρ!8oaϋ66^¬Ij2wγhjš±TΌΗ3Κΰμς"± Že­UΞS£}Ωεnr3%.7ϊy]&v»Δϊ\a•Cl6eW C§Ώ|²ΆˆΩh$7 κo‘]βvΧθbb +žx]„ΛΎFŠΥΎ°ΚI™n_¬y>ΙΝR™Y)…8³†·GtΝfGf%Zƒ&7 •­KƒPV9Β‘z²Χ{ &‡υΎυUΩΆΟ—JQo ·(3ρο{QΡΦ • < ² ΩLΫOΉ.gόώΐŠ‹ξαΡŽ@ΰη0‚Ι‹βp8ŽG€#ΐΰp8ŽG€#ΐΰp8юΐŽXooΑΡή¦¨ΣίR€Cr³k~w]#'&kNJ;²%uρ(KKCΰ%.ΪBr1NkΘΝ KN<šΓΠΚ b“hΛqv§%Γ΅¬o›M%8/£wz ӏ=š€X_D·'qŽ‘ΎrΑs³†άά?Υ…{SCXΟD}z)Κ“€{e—-­sݘŒΆ>U_™ΐ#³f@(΅x.Ο¨tΤhΘΝΛθœμE£Λ… Ϊύ©t™6›HvΠ:€±Ήεc­UΞSαrjο>k².zvusšf»Δϊ\a•#­‰ Ήy‘b4‹EV‘·ξšFςCίp»λ–”(ΐ3\φ%xXν «œ Sϋbvˆc?ΧΒF—f1±Lvrm±±₯δΡ ’MMΞB}β5cB–qδQL-{7Iυυ5ΨΣ‹Q¨Ό8ˆ&yηV9₯(ώλ(Έo}hΞ£΅Μ»Πގz‘›ΦοS‘ΝΝΗΑŒλBi“ύ€ Ή`πώΐŠK(}Θe9ΰΨR‚sZj.mξ\Ÿ.cΉφύΟρΥc•˜ΌŽ_ώΏ?Dorf³nγ"Ζg\~‹MK―@!mΡgΕΪγe,.Ν`Ω„!C‡΄b1#ιV’βb+xZyΌ€ρ±›θšρ[ `ΙE™#6špˆε–19Ω‚φIϊ(•'@ΞΙογ›―μœš Έ„ L?ό%~τζ‡A”ž,κυJfγ Ύϋ]Νη³ΪΐΧ΅OQƒ„Πλ+ΖΒ|ΪR3A\ ΈΈ8ŒΖ6ƒš<£ΜΙ…§gύό<ͺp#‡ζk—{αrFPKςOα[―‘gΚ\?ΔΫΏΉ>ε'πΪw_@mŸ8Ϋy τΦ'α+{#KΪ‚η_^φ^δ₯Ϊ€ΥΙτlŸ™νFΛ¨ρX'°mqƒhΌ€–ΐΞ+%šΡS‘αΏΫ#{¦Ήί§θ~—Pξχ΄KΡζΖαUَΜTιγαςκ0¦Γτώ Ϊ’ ” d—€"‚Ρ3ˆΚx– F εu;‘‘aCR‚ΰ_c ‹!<ΊΥίoT2²/D6%y#ν’Ζ~FΟx)„y†°u«RŽu<Θ*6\xAlήp·ηΗ36<Œ₯vΔΖ'πΨMC ΪšTΉΆ™ω^Ό3―Φέ9ΥKB §θIpj†¨8HΓιτBu[ρ±™nΌ?>¨Ρ|=s£Έ5αω!ι J»ηh πtj€|2Τ›‰*›M-²—ζδ?™š’ΞΧΖqy4©Ε•}l'Ϊ‘Oσ!“*ΈUV Ÿ·ΣθYzVC0Y_ίμΖSϋ„έ¬©}œ$ΉUΩΧŸƒ[ΊZIϋx >›™Ο'ηfpΞρ,Ι΄(Π|_Q₯L°ΦΗ*η‘ZVjN ν\±+. ιpfYγΏ9»Δϊ\a•š7·4‰Ϋ“«X^™Εθά¬ΆjœsHΔτ‰•…ν·(„Ϋ]‘Ϋ£*„τ3θο°/Βd_‚κVϋΒ*'(ΕΪΎ•ΌΧ5bΠ,aόΈ€„βέ(–ν¨~ύγ8ri·θΟ8dΰΌ0ΰλ[&"΄fΑ«œqEΡkp_„[ρξې•αγO„ύ΄œΑεkFχ±†¨= j\JλXν'—3~`Ε%”>δ²Ž€)‚~Ύ˜*5˜Μι§ρ‰3pOMψjoώ .tvψΟd"51)EΜmMŠΓFVψόήήƒ΄rαφΝΏΔ΅Qοli‡q΄ςveζz'βœ:^AΔψ58Ϋ―βnλΪ€ϊ‰Tn>Y8τ¨Z4³Xϊ€°œC‘-ŽΤld€ &α₯0Ž«Χώw \Ž„z]+5ϋj}»vΎ‚£U{ΔΙ|mOW΅γΣ†A£A…|fεBΥS«?ή"u8υΜiμ?v@έjͺιίoΌύI0dxΛ_ΐρο Sˆ½Žύ_·Ζ£ζΐ§τόs‰ΊY'D Λ›ΓnCVQXv܈jP‚•–ςm’έ*ۊη_^Α«<ˆΒα œ>₯₯7Ό…‡ΪI!Ž—XμΌ •i=υMαg[ΐfΨ³pάο Ni—”:ΆθΧμx"ΌjVΰΩ§Ύƒ] cΎ o]zKσ.ΐψώ’]ςnc =½%xΜ&#/ζγ%Dώx‰ΡNξ}“9XνD`9Φρ «œΙ†σμαF@cΟώκΟ~ξ·_yάƒσχ©ιρό΅@Ψλ›υž<^ /uΡςly(—ΉΛ.ς|¬'7k[ζAXŒM†MαΌ ·ήΗΥNcϊqέΎύ¨+ΞCA¦r­σ3NϊŽ1†ΦΦ64y―Π\]]G~I ŽΤ£,[yΩYΔ@ϋ#|vΉƒJεΜΏ?}E–κ―uτέΏžz€αδι=Θ₯<±Bž‡·ρyOΞ=[ y [[]E’#“Ά „ΫY<ΌΩˆώψ<έW Iγ)ά»zŸθp•ήY·{* P¬Γd-p±±Ο«UζϋO("Ϝ­¦…1˜κΐ½ι©5‡ηf]ΧεtJTX"ω’PΘΝ ΩώΣΩ₯DNμƒ|ξπ‚Ηtk}¬r:ΙKςΙΜ)juƒ«VZ4!΄m“Λ©[Hd·K¬ΟV9©)X›&ΫnP˜ ΈνyoΙ2QφΓνn¨Ζjw΅ΧGŽUagQΆϋΩGj‰Ο”1'zΊΊq·GρB†ηXV ^8°» rγ1:Џ†–9ZκcΦ~†ΕΎΩE¬φ…UNPkcΪ·.¨ EθΡμŒγHwήGυYEΘ—?ηΟΜβ–fMŠwnw «œ»„Θ9βv0ΤΎΘ’±Y κ>ψžρ˜–v―xρhν…ƒ•©>Ό{}vKƟbkν`Yέ~μΝ·ηs fτŽ4;ψŸ4“£rΌδΈNƒ‚ιCVϋΙεŒίXq1έq\€#ΐ`F`£Έ½ΚKΟ šά,ΆΊξ [wyξ)·€j›ΚaU&Ψό‰­bΡ­Šš±¨όΌ\³G=χ>°Β―ρ€bΩ‰B_δfY8'ο8Ξ^Αo^W‡}uΗέΫ¦hR”Γ¬μƒψΚS1xλ³w5„%us‹χΗ™3ΔJΫ–m8Αy³κλνΎ…ΣMϋΨΠ|KΞ9΄ρΐZγδΎη$#ž΅-Ή0=ι)‡r]—θ?6”ϊφνύœ*,0 ΉOΧ½„qƒλšE.=δ±›†@ώaœύIμ;XOΚi 4vΦ„Bǎ–ΘΝ$ΣέΌa»˜PI“5V]ΨO;„5,σZ.Pω5[ώfΩ]`σŸ•;Ώͺj|B’F€Τ³‡β±|ιgh—s…4^b΄σ,zϊlOΨ\6Ӟ…α~wƒ³vΙ]Ι¦±Œ'Β©δΡCΟ»ΙΝTπόό΄nK[0Ύ?„d— PO΅ΉοΪ‹ΓDnφRŠpπω?D–= ?zλŠΟlž |Όδ7ybθ|ΣΖKŒv"ώfΣYνD`9Φρ «œΩ–σόαF  = w…Q^ގ8Άχα(ov©ΏFΔ εΓ›@Ž΅!…χάσbΤ‘Σ°3E‘-Ξ’uB ₯&ЎPIˆ#’βκΪ"ΖV<Ϋ,΅ίJy:¬ke Λ΄yΝ“ϋ“Ȑ,υ%ΗI»‘5χΞOκΗΣ’:O±g ’@₯I Œ>c%K .CvΥ^œχΜJΧΚ}G‘žŒ_}ά¬ρvμΐΡΣGQεζΊ%-)΄ψYψ+Fν Ό}C!G§ ‡ΘΣF3ΆΜl™ΐλ.f­ΏΥ}’Y‹πΒ™ύΨ•νΖWIJNu ŒώrΡό±·lvΥA|³JΙ­ό&‘ ²ί΄&ΰ‡ξiΪ§€›ω]€k1†§K}Vœ²Š±_^Χ9©9΄Gδt, ’qœHvY„ -ϊW¨nξSP{ψ8jέtdΓή“{1>rχΥ­P8ύμa,rί׊H2‘|λg’ #Ώϊ4Τώ£R³μ(-Ι•ϊ*/»”ŠΤίΐxnΞu‚|ΥΞ-£‡HcJ¨Ο*—H$(Q°Šχ«›H«&}ΐZ«œF1ς~zžˆBv1ŠˆMΞ1”δΙξ‘ΦΘCΉ†1Ιn—XŸ+¬ršφ©‡)΄@EqΡ΄ˆι•PϊK-tΛΈέέ"»«τ<=S^~ι8Κ žeκ3%vFCpν9–F‹l^9[οa]P‰σFGEOωלύ ƒ}ρ¨ίί)«}a•θ6ΔΞ[μp¨―2δA^σ±Šmι΅δbΤͺ;ͺLγΛύ¬ς#°Κω-tλΉ Υ!>-Εβ£?εmμΤ.βϊΆ¦ͺUΩβ‰sΎe₯mΑψ“ή¬B°ƒΉE(+ς~˜Z'§††g–χ‚h+Η»&Ζuμw-«ύδrκβHίύώΐŠ {rIŽGΐ<[Fpšl₯—‰ΔjWηΘϊ―Ρ„¬£ς$J”φΈnγκ©X‰Œόίt«4A›0‘«· .βzQΙΦ&ΡξI$Ν=σrσEiuΞdς4Q^vy׊PΖKLvžQΟΠ:K‡(Άg‘n—:ˆu<ΑP•‘Θ.ΙΡ{ιŸ!B†ξΣ!γϋC(vΙSΩ ττβη[ˆΐ zο££«#NΔΩwbΡQ‘/©T|μEœmoΑΗ 4!(πρR „ό§oΦx‰ΡNψWή\*«JŽu<Θ*gι<χ†" έ2eC+ŠκΒwpΞ[ά˘YΎy/ ;meZ蒝O€αPΆBξ£δω~4VάQˆx’'4ΒΜΒ,ΆjΌjΛφ·Sƒk~χθτp’o‘·”₯ΩΜ”RΌFJ˜Yœ@ΛT/šζ=π`ͺ/©qΚη“EΈ–§”j4ΏIH–Ϋ‘‰Τκά“ IDXΧηؐ³©‘n<θž@y•ΙΦ„αι=ΚΜύ,n\ώ ΝsT©άύΊˆΆϋ°šU†Ϊ<…ŽtV9U»œΘ’½.£e΄ ­;бOI_^Τx|Ε.±>WXε”h~΅žSA‹ „Ηά6 Β}Δν.[‡2Ω]Ήͺ5΄C±JnžBΫΓ~ŒΠφ ρ–d8²2θ πΐΡϊπ ε9–ƒ§OhΘΝ3£ΈΫ‡ωΔ μή£x送ϋ²}  ‹.™ΥΎ°ΚQεaoŸεi9¨ΛΘWΏxM £•ψJ`G*Β^Ώœ°ͺγα©!΄zŒ[½DΔV9γ")–ΫAΦήp’Ή«΅ι…b%ΕτKγc}ΘB©Lnvik#žΠΚΞ-†fG»Π²"xp&’O\2jΛ₯qυZ€±Ώ€EtŒw͌λτ=lκŒΥ~r9Μκϋ+.Ίψ G€#°Ρ(3t]wω“χπύ‡½xEΰ†‰»ΫΟαnΗ―5/πΖ‘[Œ ZY/…Q΄7^@KPJVΰΉκγͺ‡‘ώKxσήedΪnβ³F UHΉŽŸΏ]“O9ς!ράwP&βI[€)IΒοϊΊn` ηs΄LΊIžBRίθ=¬ΔώΛ“Ϊ£.w’·$L―Ή§ ΧW7ώƒΤfΧ'‚šδEƒί¬§§Ϊˆ\·ˆΕΩ"ψΆ!uηλψJU•XΧΨάΈ{ŽυΊfmc}©Η°§L&ηSΥ-Moβ#™œ?>8€γDp–όX‘LPθά¬r`Τ“.^T³2ƒŽ—Ρ6'x‘ρηAίυϋi›Ne‘ώΐυ/ΰλIηΏ” Lu6ΰΓ76°£’³`Ύ5‘χύ“Ζ;ο¦ΩέM~ώΥηU‘Ώ()L^ΕOn^T?ύθ-$§ζΰ€όΌU„ƒΖK,vžYOόdΛˆ{ζ ϋpΡύtΨ»΄vζ32'ΜWe$‘Wϊ žΖA‚‡'yό/δ›šρ 1°Ύ?„`—΄ϊ­§Vˆo ΣΞ!4έώ ?xmBΦ£ ―vγ΅Ώψ¨9%Θ- QPg>^2κΚ/±Ϊ £ζ1Δ±Ϊ‰ εXΗƒ¬r p‘π" ΅gα-y›–Ζ Ξ[ή±­4~+I"OB4%k±δαΉ2†ηW`MΆ©Dΰ…Ε!\ιeς,Ό• ,·Πξ„²©–μQN4JΩ“spZ`χ6£S3‘m'‚³―š”Γτg»k³³j6Άϊ’§°+‰υX-N=(IΟ‚ΌΦK x Ύ·ΜɜΑΩӈ“§f14w`lώ)<ΏG΄’’ΆQ'‚σ ˜θD_k+œΣƒψΌέγ± ½ΗžΖωΪlΚ™„"ςNŒž.©Θ†{KGZu,œΛ₯ϊ[πI³nY₯―ύ/Ώ¦΅Κg8qγΣδψC/#l]]kυ ΤPΫ]όό3™τΡΨ Χιs8U) H“•EοD"ΆΆV³Η ΈϊQ#²^—<‚:ΚχβΕ‰1Όί—NΤ¨ίn:ξάΖΥο²η:πώ-B(kΉ_έ+9˜jΕ»7(ΞΎJXξγl6Oμ‚:μ/‘ΘδΒΉ“Ghθ«#o‘u’Lρžrμ$‚³ΤzΆώσΤ8,xϊξ.Οκ‚>Ο#Β»²θΑ΅4+.π°Z‹q,]|ωΐΜ\/ZΦμ8œ&ΝΈΕμ ϋ4„ΐZ«œ’j}V%ͺdG†ύ“ΈN„ω<›{!ΗΔκ’ΖΖ‡f—XŸ+¬rJ•_k’Eυΐ₯ELjl»’'ZΉέ]±λΨν-EΠ’“>π²ΛWΘ[hQ’°ΕšŸcω5E¨Pͺ›ιΗo~yM~vΰΖΨ~Ÿl΅bΝέ΅8ςc?C΅/jφHf΅/¬rdλΒ`ηk2λp4Ω‚"KΖΕ'©γK‘q³=ψΤ9k'Λ8RW€ζ$-U)s―+cxΰœΠ€ϊ>d•σ]bd€p;šμ}4€.)ŽςΤέ|„&ιJ+Ι—=Όψϋηa‰Ε\ΗάΟΖ©“Q!|DylΈŒO~ςάwξ>|υ琋΅ΩVΌOiF2ηθ7ρά‘"±”‰ζ xα^\ΔόtΊϋšpύ·DΪ‘―;9§HͺŠι¨?V)Kv£ιΪιΈό<^;ΏΤ,L6_Δ{Ÿ4ψ/έq/γb ‡Ύ+xϋύkjώΪg~‡φνA©ΊΡvγή»θΞ§ ΠAΥ3ίΕα ;Φ4Ο^3Ÿ~t)―Ύpuenό‡Ϋ›pσJςi;N{B,œTΖƒ2V—ΧPΌοeœϊR ώ Νξ*ν4mC|ώ)υχ›KΟΓ9tής›_œχŠ pΌdΪΞoŒžΪ±UιܞBή‡=3[]ŽΕώsίΗα#{h§ωσγμ0šn~HφKΆƒr,v)΄q=Ύ~5U;έ:’Nβ3l χαzC›‡–©YϋΒ<ž0¬έd$ya?[·GZμBb6 m˜gNςd|πσώ৐€vI‘ ›žJ‘υ»έμ‹«αΌνsΈΠ€{χšPs¦Nμ„ŒΜBϊυ™Yξ(φ…—d|ŒΖ»[4^’52ώa³ΖeΔ²Ϊ 3r¬γAV9ƒfFzΤ“eΟ"½76_Ώ*±$2m@IDATsσλζ5Κ,M“ΗYδΫ” Ζdδ +φ…w{a‚wΎΏ1`WΚβ‘ϋ“€ΜaŒΊL4‘+†Et“‡½ώ₯e€Y²°'•HͺbHG νBΧ©’S,HO@˜G?y²u-/aαρΨ’Qe•HŽ‚X•£½4GΤ/–ΑZί4¦Ιs*ˆ,#虝L¬άΕq±DαΏtk Ω=)beNχT΅šoΩΣSc\ 6φ£Μšο+¬Iζ[°sgΎDΚJΟ@~0(OαέΏγ{i~ScΑY˜5ŽS½Y«MRbbԈ˜…ε£Fy€aWE©ΧΥΠθEn»šξB’R«Y5£hΌ+“›εΨ[CΨCgT&‘†5Ω™ϋπΞ5;ώθ¬Dh:|Φ’XΘΔΆ)"‘ΏΫ`όdqAΈΆ)§d…·ζœ“ χ+Λδs"¦‰IυΏΏ"O%Mάθ…ΙtOξ·ηαi‘ĝ’Κ43Qa7%ΕfβTΆμ)“ˆdΧFϋQ«Μ·‘mΟ{-@=žΙ¬υ±Κ υ—§Χ¨ή¨]3έΈθ’>Φ94 9f–…oJΡ.±>WXε΅είτ87ωΠEφΥΟ§IΙ N­ΊB‚½ΞgN„₯Ϊ ͺπ…Ϋ]ίؘIa³»k뚏šC₯ζια>_‚|3Ο±œ,»ZLΗ£Gκb1R°Υ…8U.<|3φ3ϋβ[_)¬φ…UެzΘvžv~ ―›ΒΈ8UkΓlήΖΠ1Λ8£υ4υχwNςή,;Υ >Xε|§ζvP‹†ζ8JƟs=θμά…Ρ†d£΄< Mς€ZSU’«Ž;zϊυ;5Rϊf?ΓaΥΞ‰wΏG¨qΡ1ήeΧ46Θ(VϋΙεŒίXq ²»x6ŽG Llμ\‹’Ήη±Gυ`8€;.³”²ε2iΆtuuωδΌ Λ–\%[±ΊJ%μ‹ψΎ-υΧ?U‰ΜΦ‚j”Šχ^ κ½CΌQEή_JΛ€ ‡"8K‘ώφΠeτ)F—Ωγ€φ₯(•γΖnβϊ ’!yd+…ι―¬εvΐ€¬δ‹ SΚ/\©γ χε€*œΑwq¬Ϊ=q―ΘX₯Ψό(’ν‰~ϊco‚wVι~TT{χktρAB²Χ½Œί}γEqbX©‡¦‰[y _₯?%dP ΚΘ=ψΎPΙ₯όυ_(vW)—ξΓ°>?ά5s΄ˆ•UaΖ\θQ"­xŽŠQ’Ϊ-šˆΠ}ΈπQΎιρR0v~ττ‘ώ–Fs{όΎν™·xξΑ―᫞ΡDκ―;σ=δδdΰ§»Β8‹ϊόΫς* Ζhκ3,vΔ'Αٜ}aOxBhϊάr―μ9 ‰bΡ‹O› ς˜ά3KNLšωrΘςώ¬] §ž¦AΪ`mk_όγfIpO+,.Λd?"Ύν /I°EΙx‰ΕNψΉ.tI¬v‚UNWΉrΒ:d•Sꍐί'ԞEϊ£ΖŽXόΓΓ–!`ΙΗ‹Ή₯κ~¬ΝcΌ]ΖΔ₯ 7A"E"ΉηqqrbΛΤd«ΨŠ4₯ b³hnAƒB ₯ε¦Χα©4‰ ―»pΌ37―Μκ‰qΣx”RŠg²ς%Ο}±©Θ·& N›°Χ7½*0–%ΧͺΉΆ*<cEM[“Ψ­’°Α_›euΩ‹h 4oΌυώy€“(«XާqΣΚBΠΞPyΣafύcžRδ±yh "a"‰ qTΠZ iYE¨ίY€‚LR‰!΄Ί&ρθ‰4䟦₯”μoUΣ2ŠΞVc‚°ίfζ1ιIJ€~VΈεσΚu䷐ ‰ΔόΙ}Ύ"zΏΆΡΌΎ,·Π+Їl£’θ[ލ­κHY!‚ΟΝ`Vx7Σpγ“ε{š’ φμΓ·σληIԊsΟXZΥRΕjBκ?F<ƒΏ-8‘ΏίναRΤ8ΠΛx0Žδxε£Φ<Ζbq„vG“fEgq{όyt&’˜EΑncδε™=€ ©>V9š#N)Γie‘yγΏ:L$S™βB‘5‹΄Cί.f»Δϊ\a•3θ ›h{€„iZΆ`―ΐ·η`΅ΝtγΏΌ!{³χH3{ΚνYΔ|ηg²»ŠΑLΑ‘/mδΠfpγΞI ΊάΟ:ί•›’†τ4Ε.Maxΐλa‹Α2πΞΑΫOvϋl‹<σ±Ϊ6Ήp΄o™v©Ÿ™«ΔrNMΜ@={h‘Œ…lμy›}¨'³Œ#=Q’Ξ«3 ά»x, ΰφŒήVK¬rΎΚSγΉT‘π>ˆžρg[Χ0’ ,MylΎBgiI[J*•Qω0iˆΟj{7eό;¨κlβ ²Η»μγ:h²²ΪO.gόώΐŠ‹¦Kψ!G€#°)θgB6₯J•δβlεquυΡ`ΧM4ΞψΛΉi6k†ΪŽτΌ3ψ=ϊSΒ΄« —pgΨΓ5uv eβΕ΄sΙ―γχJά[Ϊ ς“γχqλα―Π.ΉΨU~ϋjͺσe#=δ΅8ΘχΉϊϊΣ¨TήΥΘWjιuu]i–όλφJΰ‘ΐxΪ„Ά‹—°’–@֐”³Ÿ<‰¦Še Σδπΐδςd-.α ₯>wΥs£έθνλ…slœ¦ Θ»Jε>ΤUJΣo₯'_Αω|ΔΦΝξ…ΪZΔτyΐιγϊbΊ¨ξ/™©ΎŒ δ+¦ω^τΘ·Yeυ·qL]<αUݝUŽŠbΣ­BUαε￁Ί|·ͺ½δΌ£oq–Lδ”V‘Š<όθά³άTώβέ3ϊΰκΊ…&ϊΰ‘\Άϋ«‹€Δ²C8²ο#ω>j@σƒvT‰ž“sQQs˜Ξ7υ…ΰΚj3δΈV΄‰ή›=²„|Ί{( >†ΡxνCw‰]’'νΔ§·f呜R 8Ψjώͺάlu±ΘHŸd{OύΎžάάMž¬;zΗ!»¬e3λ_ΔK/ ΰŸήΥ·¨ύ 4- œΙoLB:φΤKzκϊL­žκπμΧ4δζΩnάΎ~Ψ"μ=sLGzφ]†T^ΰώ έ%7-ΪΠ1ϋσ(¨ηŸGmώOiαΘ’`X­τgGMΕKθ}}’Pž:€,Ύ ˆρΟq»ίc| ζΣώΗ0^ ΚΞ‡[O­Ξ‘rΜνYp=αǞω)@Έίο6vΑRΌΗφUŠ93k_ΔσηΊρσ‹ :IσvΙ-nvœUϋΤ Ήy˜Ζƒ G2‹ΚPSYJ…+Cάυ¨GfμKγ ΅>¦ƒbœ=πUyœ9WXεd,u?ZςΘ"¦W<¦Λkς„(-Noϊάξ {0ΝΪέ»m½δΕΏ^τŒ€ ’ͺ†ώδš¦ΠΦΡ‰+7.B Fw$)"šG€ 2™CPφ“j6»Δ¬Ψμ }λb/…£}ΛhvΆλ&:Ρzο_vγηUSυIμͺTfœ‡qυ'…Rρo>!O¨+yB>€’ϊΠWˆΰόk±ζϊΠ†ξ›—0>~—Ύh«sρmt~ύΟρU‘€™Ššzršϊ‰>O8ΟLφCš#Sυ8Ž)yŒ5V†εΊ6.)ΈX–ϊŠΉH“‹Ÿœ „iηρ₯J‰h5=rK₯8)_ί11’ΫV9‘*=ƒC 2rŸ>ΡQ‰¨NώόGψψ–ώή«zζ»ΨkS|₯PFΖϋΟ³Ε·?όΩ9ϊ8ΏσŸqvŸ@r&OΒΕ₯tIŸχξ5ΆβKt ’K«λσώMh}ΐŸw{VnlRmŠ\pX~ΚΟ—=„ΣΆ‰o㊎Αά„aZΤRCΧ'ωΘ#†s§.]―BNŽβf£έmΔ7~GԏMž}p7š_Εο~ηy‘x\zϊ$j‰ΰόPSdηε_Έ ՎσΘ&‚3iβ3δœ>FΊΚΙ³Mxο―ώ?ά•ΏΕ]νžΐ{yv6.*θώc΅σΖΥJ±&ν RσσO)ΐΗocο=TRΒ‘dΗ~ΌόbΗη‘’Y¬Ϊ¬yΧ]|ψΕ‡'[YΖKΑΪωpκιŠ-ζφ,8ψύΫ3γ2ΖΎΏ!OΝRψ#ΣŠ―O«D1œ΅O³v !Œ³Σ•Œ \ύΗ]^Τζn‡½šΑXΖ݁ŽόΨ—PƁͺυ—~˜ΘΝ΅ΒCBOϋ\Š*ά .Ηζ'}Ϊ–pΌ?k—BΡSj]δώ€Ϊ—ςs/β°Ό•¨ho q‹ŸΰίΎπρΰgΌ»…γ₯pΨ ?—….‰ΥN°Κι*—OXΗƒ¬rF:leά“jΟΆσˆ¬{ΗpΞ[Χ3ετξ¨,Z pŸΉYΛνtυ"79Cφˆš†,K ZgΙ£C΄ZŸ¬ς±Χœθ˜šφhτ97P%― )6<ΨΠΐh_B‰ΑΎˆυ±ΘmPϋš}ΘIΆ‘TxnΔ[‘IΟπ!Ν§KψŽ#½p„*ΓΧΜξψψ¦e•Σ—βσŒΫAŸΠΠΦ+Q4ώt’­gΞΒΫ  ε₯%DpξAe±ςEw=]ύΎΫ*¦lδψSXΦ©„M°ƒBUQ0ή i\§ΐiζ—Υ~r9zw7x`ΕΕLŸρΌŽ@Xˆ ‚σ^Ϊ₯,©$ CΧut…₯‰[QH.2R„eφγθκ#oΈ.Μ―Ε"έQΪ7iΈΆκ$:‰ΰ,΅ΣŽ›@h¦«­².΄wέEΟΤ,μ™»q°°LŽ/ފhρ"+#ΗAŽ4XΧL·J2Cρσ;Wey?™…_Αω]!EΜI„«k>ΘζK‚7PmηͺgmΉςqZ¬ϋ’‰S^ 2RΤήZ‰μ(€Ž7\s“›ΕμcψπγΟ°«ϊkβDRfA‘‘GU3υ Εή|§bιFέύδ.ŽSΈ2β ?Π²‡β‚tdde‘Ό¬ΕDlBrA”·γΣNλ@Ο1χcΞ‰)[-ŒΞΒ˜μ‹wνΒχοόχ·u¬Μγ~§Φ=‡Œ)ϋ’‘5+¦φi4igΟΗή±c‚GR!Y©Ε¨΅(γΝ)4O.:Ή  3q;θ«(v΅`h9Κ’εΡX½Έ%EyςΈarΠών˜Ot ¬γO 6Υ’Ξ‘?ή ΓΈNξ› ν5«ύδrΖο¬Έθξ)~ΒΰlšνfT绎ϊ½ΗP¨$;oΰσnΔ,%ODγζ½Δ½™^=Q΄σ_?(­ ₯IΠβ;Ί„Ι—Ψ¬ ±Yhά0nάόΎ•'fξΐ΅ώΞ‹-OHА£θΏiŒŒ4AΨ!g…ΆΫ°Ωͺh•"0O«Χ“σΞα•šYόͺYρ…¬ΘθO·/ξ•υ’¦šπλ«οκΆoΡJŒ\ύ!ώλ q³h5XULž*όΌiE7ό8E³αΨ @tυD. Ύ‘]˜‘ Β£ͺ‡΄ΟS{ω <΄E…ωHK’™)"Π \šΈδ\χͺ|Ÿl ‘φCΊ†γšφ‘Λuν£¨ ’Yκ+†Γ*0…0Ž‘±|ιδWe―7ΓΈ~MςθL$‡r― `xR°5¬rB=,z r Θ°ψΏΌζΧσW©Ξ[ψΡύ;ΧL―<~#he«:܎ΆΟόζVΓr9]˜πœ—€ν+εJζf΅ŸΐzΡJ„ύωΒβŒ\”Τžˆ°&Η3(½΅ΣΩμ}<ςEό•r3ύ/x<“ΏφΜΡΒ” 8Τm}ƒδbh2r…'^Šw•‘Xή§^F6Χ0’_Š Ή,ΧpŸθyΉΔBΖ\Ε§_ΕVΎ„8Ο'xœr] ;4Κ/»Š©ίbddΨe‰a ΄yχω`o?ˆΰlͺL)h˜9T;hφωg¨„―ΘμΣψΖα3ββ1Λ8ϊΙ[~LrM.ΚύFy^ͺqβέΟiΦρRPv>Œzϊ‚BηφŒΘδΡkΟΤ~TœύθιTN”ίτu £ͺ^ υΗ#Ι’EΏcJ"σ/Ϋ8KωRHήΗ~π"λφ]t<κΔΘ`7zΙ;Y Ό} e<H γτΌβ—πlΉΌˆ‡%~άpYΞHΆ\\p)œΊΰœςυnϊϋC0v)t=ΫoΛνΛζΨΗ |ϋ{Ώ£ŽK]ƒŸΖ{Μ ν#>^’!GΕx)t;aΠr―(V;Α*η₯E°ŽYεŒtΠΕq{Ά9φL:?Qΰg‰­ωMS·?ŸΗδ’10 ρ ±bσ«ΚLΙΦθR­D@ρ^ƒ˜‚RΪR\ NšΫ&X­ωΒΙ24λUωPκ[[ΐ€JΘKΐ!χΎnrαΛ{lZy=Ύz°q«‚0±'‡πΡ…»^dUΗPR“‘NS ƒ:Ψθšq(˜.aZφšνζΖ;ρ¨E †ιC~iV@rσ²Ζ£²Ν&0='στeͺg–BTT¦‘«έ€ˆfΪΪƒ²}'p¬$ERb¦wβ°—πŽkΓ±SΗ0όΛp8ι™Ζδ4Ξ³…Ή<νXGύΤ†αθ?V„7όΊŽο·z+cΈ>λ^π‘œ"eΞzeŠwcZa}“9ξvρt‡^η2†<=Η³ΦΗ$‹Ε•YΈΘ­ΡŸ.<ŽAF’{X "NPάϊς¬± Κ.%νΉΒ*§k‘z’Gί4•΅εω0Μ©Eoύ·»aλƒΠνξz„ΏAάmΈ‡γgŸ#;n#ύˆ`O;^ήΔΐΰŸcNŒΊ¦P›)”η '5i4妆εΨδg†D‚ΆŸLφΕ»βυ8UΡkœ"ΑΉΧ;«>&(ϋ’Ο‚• SϋΌ4Hv @&―‘wiM—W6ψ Ζ‘τό―O—?ήQƒA΄ͺcCΟ΅η¬rΪ2"ό˜ΫΑπuΠ\:{j'ŒASsqμxš:ο"οΞƒa©‰uό;h¦ ‘?ή] ΫΈ.h{Νj?Ήœρϋ+.f.dž—#ΐ žτ¨°jΊŒ38P(L Α…ΫΒΈMŒTκf?Mδf£0ΤϋkάΟΐ±όόΧ>σ+r#ƒmΚaDύΊ½υ c|ΐXΗ ή;L΄κΨΧ ηU–X wΝδ­–Ήˆ“¬‚]pΝMψΤίτuν³€ΰΜΧ—ŽD…Γ4?ƒŒη±KΈΥ(΄4]ΐM‘iΉ9’―1rjC3Β«œX Μλ)Ι™ώŸΆΌ4M[MˆAh†>1J΄ΰb$Έωu„γώsωŸdI΄hŒ&Ωv·ΓgκD’MρΞ’­_'iΚχUΣ)  ΪΨ˜ξ @1Ž:¦ž·|ρ‰z¬;hκΕ}—΄Σ;iA–τΜ+*R—φ7ηb”Ρ7Œ‘’|•,4:HDbΤ‘£[νD|rσu%œ(7‚ARΐ(ΤL7»w- (ζ‘Αlyˆ3²ΪAΦη_pJξΕ+rσΨΠUόφΞEuαΠκΧρle•XTIωaΤwίC£χ<«Tσx);F=ƒ†Ϋ3JQgΟtΪΣΙΤL€2ΰΘ£Ιί¦ΐdbΟ’΅η¬γ¬λ7oγΐΎΕ]4ΪΚϋΰ9ϊ“KžFσ½kψθW„ΉΟœ} m<α³r_ ΩgpΆ~Ώ”:Ϋμ±(1κZΏ₯QŒϊή…φώ€`μRXττ‚A<·/:P6ΖΎμΓ«π*”οc}WρΞ?Ό­«Χϋ„—Ό1‘™“γ]£2ΜΖgΟ΄₯†h'΄Eω:f΅¬rz°ŽYε TπŽβφL‡ΙΖΨ3]όD‹€κWɏ7 YΑ;°H`NF^r:Ι;°6”±Vάv[Œ$/˜‹”?š‚φb’ΩΔωu‡rG*b ‘e{¦ςPΚSΣ±žΞvO–ŒM » 'LυI€¦{θ&Ε¦ΰPv%v'ΛJ. ឨ£q'€X¨©Κΐ‰ςΜΔ‡8Wg\;6;«σΡtGC E‘ΚτοΒ ¦Ό^Νh±<• {)ΚΗώΪRw±>ŽΖΗg@>DDβ…MΫNΓόN" ΣΆΫΌX}ύ.t΄ίπήΙӚƒ=9λδaKQΓR7$² g(σv‹ΈK e?φڞΕ~Α‹yp<}–ƒρvYΕ+ψΚ=j“Dΐz—XS=jžθ9XΑ²‘Ηjΐš zZ³ο›:rσά`+ΪΪΫαš₯Jbhζ=ΉgN*ŠUή€ΒPo¨EX4κq'ye †Χ5KAAΚΦ—ž"-Vδ&—a—μμ`°η=|${…ίεΘ•<¨S–‘©!iƒU.] υ BΞ0 yΏ{ωR‚Ύ|b±ΆΠ¬ίΓ*Aή…-γ€ΰbΩοΏΥε —V+Š ή"o‘Ο"·ŒΘΉΩ;±³θmΚBe•π(„tίχA>–20ύo?τ%ς-‹^Ε­[Ύ>Ύtcxx†ΌΣ~YΩ¨"βr~τAG’.BAM1ͺ2”I° Œυ5PR•ζAN\.ηΙ¬ψΠVπμμμήϊ©ιώσўŽήθηίΪκσ΄CΕΏ{<[[Z/α½ ΅βΌhr³ŠΡΨk΄H*„ρRv>|zΩcܞω*βν™^}ΧΒΌαI 4?₯/ϋ,”qVλ;ψ›ΏŸΖΛgž"\δήU¨%%5'Εδuε‡ϋ ύχ|o-όΗlΰxΒ¨β…{ĝΕ΄˜$TxuΚΓa‡Υ½sHbzυλΈyηCu…Q™B\°οτ©9¨χΈΣ—ώΰφΕ'4bBΘφ₯ _ύίSwΐθόό/Πσ/wK΄Œ—<΅ήNxJŸ³Ϊ‰Ό0ΩAΦρ «œ1 ±άž€’‰ ٞiΚβ‡^pΞ^lj„KτΘ,‘gσν8ύΈΝs.¬ΖXQ–š=©±FPjlzΤMδέT-C¨Œˆm£4εcΧ­§αxΞNΔΠφή½«±Ψi+Δ>MϋϊC2©Ρ‚Μ ZΜ^€Α'†Θ³υ4νšηΠΔU-‘ŸΥ@ž^ο9ΗΥS0ΥGI¬₯ψ‘¦g1°8‹Yڏ99> %©τξNΣΟ£ΑΩeμYUΡΐΰ](œSJ5Ϊί²}‡π"ξαʝΨ+Ιsγιju>t¨k”Μͺn)8rβ)¬άnEKη,μεΕ8°w/]oJF?ΏδΑYαœ'Υα§γΠ2θΒΉ[‹Ε:\ύ=θΥx“nnκAύξ\ΙAz)^~- 7ξ·£΅Ÿ>Z$§‘¨ ΥvΒΦso ΞωxιtJ‰x ›₯ΥθŸ^nDφ7‹ϊ;Jφβ₯}.ΌΫڞ–½MνxXUJΔoΒ™ˆΣ/Ώž„Ϋ hοΗrr mvεΣΒ†Κ\ΨΘσζ œΕ™£pτŸŸυ›€ΦνΞήλZΪS*=eΆ Œ― b&& υ²Κ=Hχϋη„[ έ‘ι ς5~Σ„a)‰΅>V9U!ύAl*ν ͺD‘·uοZlvilΟV9IΌ”bμ€N…Keύρj—{‘G)νjw"~1;vΠ·» ܘ2ψh©ΐ%Ώάξ†ΪQ¬vׁΓOŸΑΤ)΄΅ ’oxγΞiΜ"΄ΈηΘenr c£>ΎΫ˜xŽu=ΐЁ|δQs“ jπν§Χqεf\©%8uδ(Κ<ΧTΑ΄ύ ³}QtρΑ a³/‘Œ—Ϊ—hΓA"ƒΉτΣxp„ΌΑΟΡxpmGΣiάβPΙk΄Ώ5N Θ­a©ΰ–˜‡›{ ήξ’kAIσχΛ*η―ΜMγv0|3έΩ³χήΑq]ι½ΰFh4rj" ζ$Q’(i4£y’=š±ΖεYοσVy]»―μͺέz―\»UώcΓ{~~e?ϋyΗ=A3²4’hŽ4©a‚A9ΗFhδ νwcίΫ};έθΞA5ξ½'}ίω{ΏσέsΏσyη‹κˆC`}7'»ΌΉκ G§Η Œι­β©΅-šΖ’Nœ7‚¦δωdž-€¬?ΞT„†ρi“έξƒŽTW˜…m― ΧΣΟr?U Ο΄vwoςJ…ω¬šχ*°j@Ο½e Ά*ŒΚ–pυΊ‰ ˆ+bΪzϋΨiϊ9P{^ˆujŸCfΊT·ί9έϋNΏP2ΙHm¬ WοrοΆb φ^½•ŽoYvΈ'­ΧρΙΊχ<8‡˜ΑŸ<@ϊηx£9²Ρx’ϋID΅Ίϋ/€xjσξ9v] VςθžΕg5$ζΰ\~ŽΊΨΖ nR «cνW1$7ί ψςΠ¦mJ«—žήrv6Ugq‰Ερ:-­3ι•KzΗ½ε8v3iΧΠR£‹― †,TˆΟΨΚ2y>ŒDg§ηˆΙ]Υ½μΣ…NΉ;’ό˜™†Šά―J“ςςΠ ξ*†"U&_Ζ1ΚϋiK>__ΘW‘]Zƒ/Σ/8!ΐςΕ“zε‹ήr 3t_ε|žμ >…€·½ Υ0AGk•t4ΏτHώx¦T2DR+ΛΓx°¨Ό΄x𧜫ϊΒ,žΙΑ꟎}kEwί8p‹4ΔρrppΔ1νϊzύ~ΘΑ†ϊ£xΆTΆJQ·‡vΘyιEΕK-κϋΕϚΡϊ½N €/WΎΛO‘vVšοzqρ₯ΟX^†C nήG7h,·+ώΓ½w]oΛ«ώπ+”ZpFaΠ½„eςΒιhΒΩtΧ‚ς\ϋ n΅;ӌΘ=‹€'¬‘qjφΖ„£υ_Α‰‚±θž>}Ώνρή€tδλψΪΕΔςΖΖ€E-΅αύΏϋ±“‹&o:"ΧΦΘ½‡LΩά„–k^•ΆΑ&ή#ͺC^Zε™A»₯σaqΣ½βΉβΰ =»Sζ!<½ν`άLuZκχ{6nζhΫΘ#8™4ΡΟ΅r‚~ξ‚?ύPD†o’ωέμΒ€w+N˜ρκΎ¦2εG^₯­Τ₯W@ŠXlΖ48k@ο@A}ι’I4•P[nΗοξ|h7(Μm@±h;ŠεAΪQ\κ¨·œš-§+—|:匐ˆδ:T· σŽ£ ›3xώœkυΣΫ܁‘—σ^T ,U8z!^~ξ»Ϊ/›jžC­δΞfς>š―;Θ–†ΘΐdΰL•Gβψη|i¦χ%ρι午]–A,α _~ΣΣ΄μ…7&"/Ο΄U%<Πq λγε ¬Στᦈ3JΜE7AΧ«Ά Ο/ΰ$Sp‚/rWɁorΠρΟ;y–΄dΙq 3³ZΟN2“bSH/XV6K<χO_ς,ηΕ§λαΕδ™sΟψ(ΟT˜MΘ ƒͺΕdx–ΗΙ.,ΑfΥΊ…ToώLΟ"γρή6ξwMΏω)ΞΡ‰³ΥœάM‘΅'œbhubΗkω }Β;ω²ŽΥεqΜnΣβ.‡žψ,Y&N“Γς¬Ϋ±Ψ^‡–„‘²ΙG·οR.oεRω”X ·γ•/YτΌ|'Κ%]ΎώχΏ!οˆ^t€ς…ιKž1 Ύδ†―δ„·οzε„ήrR»τκƒzΛIt#θΈΛεΩ΅ώΤ;ΐjLόe$eΆ¦ραpN‘wΊ ςήκΆΡMΒ7禜’"%bv©—&7q,ƒή'] Φ—Ρ;;Œλ6Eϋ6Χ±ΈN^Ÿ]ݚ„I"ηΉyLΣxΡgzΔ ·₯;gΊ"Ϊ(ψ£·†₯Q΄Οφ£Χy_•»X'ϐͺΰΙ‰*³—Dƒγ• “½]˜’-Ϊ« €IP!~n¬7ί·{oζ’­]xο£hΌpμ,²U₯+“ψτΡ²κja!6·ιεΓEΈρ'δe’•ϋΘ‘Fl2’ ­9½°SέρΟsσxρ0νhεΐ'ObeƒγβΌ-±loŸέ‹›’™mH_ 6ύΔ7΅τމΟaπ+ξDžθTG3>Ξ0αΩά{Wκ–γ“›‹r¬­+ϊ\|_[Ϋ΄Η‘3p>¨xοΒΟ1gΦ ‘Tρ>'dεΟMMbpΌKqzϋ/x†βΎ›λΒ§qρhTxu—š>½<Šύ›ΉŒΡ1δE\lδνSυ‰L‘¬—žήr ςi:Ώ£h[_tβU·\;θ-G’Σ-·ΛέΙτšΦGRw%Β$Ιݝ—»#ά2ώLŒb†Ό~f€a=Ozp»©C#ΝεΛ8ΦΥ|οoΑΩΓ₯²§‘¦9x% κε6άoWPΩsFΚ™ Š`m’ }Œ’‚υΤάsx©ΎQŽ™hΆt+ "2G“€SŠ:T?‹ςxߍžήš]­ΐΡB3†»š΄RӏβΥͺ“ςφsΛsVτΙΤ-xζψk¨Λ$Γ+~φV―>ϊ>ξψθτ#5Υ„\³τ‘›*ŸIR˜Κτs214qͺŠSηLιœŠλΠΥΫ‡—‹ψ –CΗPύφmΡXP(sθŒ`Ι_Y'Α™:_θΩΛ&ΑΘyUQUxΗO±gqwFs—Έ~ΰš—_  Mx0π§LŠ-§m o2~άΧrΒΙΦ§Έ*ξ—εmΑγ²*Ÿτfm°‰tήƒα΅Ώ‰nΉξ|Ύκ˜ό<ŒNt؟]εόΰSζ)N:ΡΧՁΊlΞ(hxζetάωGη₯ζz-έ ά‚Δσ§ ™«θνΈˆ‚JΊΟςOΰε|©–qšΘΊ-]Έ=Ξo)>8l.ΈΝ{žΌ7K¦©Ν7ν\”²υρy,”ž™/Ό˜Žχwa’-‰>ĝGqr.oτΜ·ŽŽΙ΅LŽυBώš3Ο£• œ5M©σλѐΏb?Θ¨NΔ7[.Ni‰Θ3::AτωYqμͺ―΄ΩεgώEԈ²UQ$`§ϊδ.ΰ½ Μψη<›ΖΒ2§'qwI& skpoV­λ”WC9/³8ig‡Ε<Uυ%Οr>0|Šμ†ρΙ3wγ«αLΤ;ω2N‹ΈώΡΉ0cΒωΣ3ςλ+ld”πwΈ-Y6ϋυώ`'η½\Ι§T„œν~ωrϊυ',X€.YοΐεψpΟΓ;ŠΤyΎΚ¦/IΘΉ>U_ œΰΈͺ<£ϊuΙAV½ϊ ήr<Ρω·wδΩ΅鑝b“ypή)δt7¦q{bGžŸβ’„΄­Œ-Ο{gT‘¨.O­KΓΈD“ …΄σQ "ŸackΪ7ηάΎ­)\™‚1.™ρ΄ΓXT ’ “νΟΆhkςU ―rJŠϋΰ=ͺjl‘Ώ E‚y†Dcβ¨’°MFΟ3«³°*^aάSεŒy›ρŸιΤ`λΓ›lŸωηh΅!35ž7π\§{¦mΐy1'—o~ oΡΟRΊ άη’mZLI^―₯όmν\6aχο6ΡΟC6e²΅|Π‡O²rPœ™,’nobqqΆ£vP4ΙSœcϋ”UΑΦƒŸs*JοΕ|οόgϊy ΘΑΙ‡©FgΙ3σ»oβUeZqb†₯ |ό1ύZ²P““ŠxΞ>” ΛΧiΗΟYϊf0κυ³¬Μγ—\;θ*G^™ΗοΓ‘ lgDœ3Ήr—3pΎ{ϋ&―efeΡngIˆ‹‹εΗ”­΅EŒφN8-RΡΎΏ|ΗΊZhΑPΧj Y½΅±Ž©±!Œ§άw?†ψ*?ύ•/n^Αƒ›Ϊ­VΖκ•/zΛI΄}iίπ<¦Ρ1Ι(LH@"鏜~Ζ…mςzΏ4η΄0„OτWάΓ{}φοu|ήόΣ[Ξ›ΊΓ!“ƒ“ƒZέΉ?KϊϊL Ζμ6 Κ̚:–©'V€CδJꑃmM£­IΩοΞu½―hb£ ηΕϋƒ―ςZQ;κI―sΜο­Ό–Κω"?₯2ά‘•S’a?Χ‹‹½vΖ`nΖjgBϊiΤνγLΌ„π΄η&΄L+₯τΘ8f£ΌζE”ΤΗπH†m£˜₯Ι@Δ™QUΊ‚{3Θ³μ½ΗЉΝΩ!ZiC†™Όc…<Ϋψ5Δt6‘w%U₯§q¬ΠŽΥ@η=Αh3­'*NΗ1@τΖζ'Ȑj›±)(Θ(CyaΉlΜIS©xΤ+}Ύ1α™“ί!O";ddΎB3{ 3°`g)’rŽc°O(74ςeΛ|/s—” ½W―αΡ‘#dhNQζΓψΖ_ύ%šήΐΣΗ]X3e##Λ‚’ύ5(«―„‰<£Ο‘³lK˜_ƒCωόΰB…7°AΫJkΝ33ςq¨ζ(-˜!ό\*­~FήΝ―6£ηά”q kˆήWώβΟqγΦ]ΜΔαΘsxΩ|`όσEξ*ιk=税JΪάΉ¦<#ƒεent&" K_Ζ‹ΫIxD}»KžΈ,ΗΠ¨ί'Ϊ>IυλΠ—|—σΰSβ7̏LžPž9τuΩωίΗWIΊόφ ˜Ύz^^2ςΈΕΎH‚+§C.ιΧ³*pζŽσ8Ϊο>FoιΆ#΄»C64œΑiΪYγοw!ǝ…‰–κEΥθΡ'DςξšςΕMΓ>˜LRϊ<ΏψKΊ‚ξχΉza Π{œ;>δ"εt7Λ—C―ύ{<Ο-|βμ†8έ oΩήΐ—μΥ…nЉΕΪh3._U,v`ϊRpnα`κKZHyζŠοVΎθΥυ–sΗhx¦νyžπ‡ WQΜƒsΨτΕΪΊι·{Γ:†—¦Όnήw+=ςy]RΚθ=ΞpjlΕ CJ©ϊ0:ŽŽ‘•ΖNΦXμπΈpίUYβη­xD?Ψ¬h£Ÿ/a§ϊΟυζ]Z›E;ύBτΣ[Ξχvω'—τŽ+zΛωήΎΘ-ΑδξΞφέ”•v1φMtϊΗπΙκŽΠ ωβ―\ςQΞΣΞÜύ…Α=G‚{0;“ƒκτ"ΤΥΙήcΠKNύ‚tθŸ‘δΪΏ›υ]½ύ«w|`ε΄Χ‹‹vm,–!ΐ4Ύ~^ }N•A–XΫςΤ'Έ3Θωεπ@†’‚- …όO³E‹ψ¨ωM‡•VƒxΨ)ͺ5 Eͺpφ(ύ*°Ž\Γ»]‚ίΞ’Ι€Ο„}Do_Cfω†Η­οαžδΉ-e?rŒm“²λpPΞ―>‰[hsmΰ¬Ξό+ςΞϊ΄υ< j£\KύyXκνd; 3蕍 Ϋpύ£λ°|υœ``“/‡~φμόΩRχά$o¨šΑzMwΌšςœ™kpώάO³V‘7nέDmυOΩ58ρR\¦ss œ]ΰΘΉ\ŸδfW‘"GΆzQg4W‘ρ³΅<9-8ϋu_««χκΚ/z„Ν`;*Tρ€’LuxαTšμr7>jr~ώ|.ηŸj–Βώjζ.²_'c5ώΞ1WβτkάOΝΉMu©σω#Λ[O“§τ‰[νθyνΚότt·Βε§’BΤ;!ΚoE!:Ν€±*SŽšΖτ}»σ‰S‡ε΄ώζ&mΚrYιd“cύ@Q±19 r’Γ‡Ύ…a6y«οUNŽuβ_+2Ύϋ{‚qqr9NΌΚύ„²ξώŸxα[ΈX+9‹Nγ‹ί9m$γθ΄ύ7ϊ u—ή/Ε·ΏqAΐ…δΠΩΧμrΘ^ΐ‘ΏΠπAξ*ωπκ|ΖΏ'έχPi)@!Ο 埣Ÿ3·ΛSwq£υžC‚>}Ιg9OTύγӁνpΎdςLμΘ3§η=UηΏΝT·ΐΜ#|ς«ͺ(=rΙ=+UΗΈί/ΕRΗ§Έ!― ‘b}=κΥC|₯γ!’©R–9&φΊί€ϊhTΨ{œ>er‘t²‹εKrͺΈPŠ3nζBΙ4*Φξ ‘Β[ό.+"˜Ύ$€‘_δ§0ρT•ί9™vNςε½X«ΧqώΛ Χuϋœ’WNΈ+§WΤ[ΞηF‡A½$ΟΒξpeypמa|1‘Fΐ˜ώ–fοZ΄χzΊ&,Ž!ΐ`έ._«ƒ!ΐΨM€’&<“Η£¨ΌDp:Ζ5-~2nηn—;έ>5ΪμŠ!ΐ`0Βn“«Π‡”X²%Λ)<ξώΌ¨ν‚@[αΝ»[0Έ6ŽξΎ+ψΩο~†' Ξν~ω€@IDATΏzx‹<Ξ:§q˜;»ίΓΟ[Λ‰±[ %£Χa £cwqωϊΑ΅ΑAE6ΪΒOqεώt 3=.³¬­90»©αβΞei} ·~ψOψθV3Ζg¦±δ€χκΊΪ…Ηĝγ{?ω5ϊ'΅iυ4ύ+ΎχΏpmψHΕΌ¦Χ{or΄f4h-v£ιί.‘_δwskK#“"ͺγ}όύ?ύν}+eql#WΚϋ~ΘERœΰ©UAMσΤ:/‚ζη}­ͺά±ΩZχ‹Ÿτ†zήDΣ°ς~·s`όο_ϋ—σ“O‰n€'ξόϋχ?Γ£nη{’oΓβϊϊ‡UΝΡυόΩΦ°,ΥβxΏπρ[€ΞζΊfΚu=-δ&YύθyΠ"_9¬;o}ꔉ‹ Ϝ«bBώEΤqž ωЁ‡ο:¦ŠI‡Α;†#ύ]²wœή'ύS†F1κ(K:.γ{ύwΈΧΪ―Q«eνΖƒ¦ΗvοΝ½Άδƒ‡“ω_Ϋύ_ΰGίWtŽJ«cS}MΈqνΎŒΩδΉΕ—B@ϊΟΉ+Ρ₯£wr0pγŸέ›¬Θ„–<γ’VβνλοΰΙ€ά»bρ@ΊΑΣΞχπ½;—‘@RHΤ₯/ισ5ψ›)&ΟΈž €<#ο‘’Όo½9>ΨH^όκώ«Ϊ{3QΧ%—tλY³˜μnΓ”£L•oΨit6ύ?ω§wδΗοδ‹PΚg}Β‘wν8ΌΉ’/Ze).Ӑ"8Ο.Ž©ΆβΤώ Σ%—΄uΗ§v‰πέ­ςeΩρ₯ΛMW¬―ΫS™Ύ‘ϊ’ίrΒ~Už)Ι8ž»—/zυA½εΉ‹Œk&Ο"£Ÿ‚ΖeT νq©EΠΘ³Š †@Έ ]Άc›ΰŽZa―§kaΒβ †@ Ψνς5±: ]†@VŽ?„ΣδΡ’ž(6nM[U ένςq§Ϋ§›]0 †@X!υέ?ϋ‹ΟΙΡν.²Ί Υuβυˆ‹œqΪΜ}όΰ―Q60 ΑΤ”2d“—+mηC–Δ[ΫλX€­φϊ¦΅.išPRPŠ΄ΈxJΪΒϊκ†Η;],(IK‡!>ρΡτ‚ΒϊΖ &G:U |ΒώWzδ,υ‹žβ+dμr½£Α„§•D΄ˆΨΚόΆθχΈ}―ΥϋΪ7šώKM―AizβΘΑΖΦΦ ζ†Π=νΒΐPΑš―εόεSA:bNM₯υΨ_˜ ^ΪpΨΪ&π€Ν…t±U‘|ώBdΓΧώw|αX1Oj€ιGψžƒw σ_ƒ†’$p°΅IΖ½3˜mΑ`dš)ί‚Q«ƒ΄θΘ9χ'ψ“WπΝl·ΏΑ/―FΎŒγδ©ι(L1ΣX-Z_΅ψήγz|2?ͺ>]ροK<“g@ ε™₯ζr2’ωρam~‚€θΥ³rJk›EΟ`‚ηqkyƒχ[ά.tσε~RζυUŸP– Ι9{:ΜLΎVΎθκ0¦/ι‚M.Δδ„ Ε^?Ωλς¬ΊΊšΏΊ{ϋχΜ­g@|Ρα=ΣήP4΄#<™!aO¦P #ΟΎˆ³₯΄“ΓΒ ήϊeS@ηΟΒ «„!D8㊜ς-,NG!9γ3LtΗ`²GœΠ!Ί{-½υ±KXΥ †ΐ.E€“§»YΎ2ωΉKo\Φ,†@ 0•αυίkD–XοβΪ0zzαj“έΫί^Σ?C­ΊKY} †C`·#`Μ”Bͺ[Ί4ήΕG«ΌΌκοοηssχ«J0w*8s1Ώ@ΖJš½―έ†Ύ‘fο³― ’~,ΈG χ>4»Ο°ΤP Σ*ςΎφ@ΐ!Ω_zσ³mhρΑq­DήΧrώς)э€£­·χ||˜vΧ3q ‡Dγf`ή}χΆαύ‚²“oΕMΫF•cLΧVΚ€WΧόπδzφΒΙόl'žθK‘Ζ&Rψ .LžVž Άέ‰Ρƒή1e’· >Ž_zο3_υ ½tt—cοΊ‘σΆ “/•/ήβΚΗτ%>_09α3d»΅“g»΅g]·+*–sΈΐC˜žžD_άΆWζδέ[. ½€€d<"UHΧ\Ϋ9#<ιz/₯ο…~gmd0vn1 v«|έTU†C ΘΞθΒΓ‘§ς’:IίΜ.ΩIΧ{I υψ \liχγ—!ΐ`μ˜σ^θeΦF†C€!R L˜±Ή¬)Σ]6Μ)α6~ΙδΈdseδΡx7ΛΉίΓδ₯yπIΊ;121MC!κNœG]IŠΠδΙ&<Ό₯4~ލH°6ν"]>yβ_ν y¦V’!ΰOΟg€§{FΐU޽!_˜ΎδͺYόn@ ε—'ώwC« Q1όώ=ΑͺžΥAτ΅>@ŸzGδ➱ΚΠ‡@Ι‘M'Ν’±gdaLίή³ιϊe₯ †€{8c½έ._έ#ΐR ½ŽΣ?ΓCΏ–tώ½~?²φ3 pE ¦ρψιΏ $sC}‚«ι@ΦŒΊ λžAY.m±·2Š–Ÿb.DX †C`— Px|φΏT…Ο>ϋŒŒœ%f€§ϋΪMsΦQXΗGΙ›‘3ΎΦωΣʎ‘~² ±―ς6žF]]-rΜΙ"ΛγΈυφΠ2ΎM`|1dψΔ•_œόΥ’Λrγ=œμyζ–Μπ &_\Γ·δ Σ—\χ?K‰l"ύύΞΎτNV–°AμΜ¬λΕΎΎΤ y£“m0E«Γc„ζ‘1<3F{’Ϊ-Ωsžƒ₯Ω(ΊŒ‚Ήp{O¦+±`η †C μvωH¬X] †ΐξD€ιŸα‘_ γΡξΌΗX« †@0ˆO"›[°±(xˆ4™τΝ/ΫlΒ<||r†ͺφ=kΰΌ―αJsΘHkeoάGμ―κ8vΑ`0B…χqΨrͺΆΑYδΜs2ŒττPαit’r‘žbDbz7(οnΒ΅ŸΏΈέΌ›#­_χ*Ώ)i»R~Iςw¨©―v-k7C`Η`ςeΗ»`G`ϊŽΒψ IΏ`οΐ{Ρΐ9&9 Ρ ΒΦ έh{¬ZfΰΌΗ:œ57’˜μ‰+γ.~/§GtΗ2ζ °F`·ΛΧ°Ÿ1Η`μ8{YΏ wωΏγ7c€!ΐ`„1Μΐ9Dc ”†­ELM£σρS,…ˆ.#Γ`0" ιγφΰν>τόΆƒ7n挝%OΞ‘žI}j^WΗ;ρψήοπΙ‡οααγ‡hό››Πό»οακ΅g+ƒBέ%ŒžXΫ'vόRΚ_<8ϋ++Κ`LΎμνΫ€ιK{»wcλ•ϊ{zxO8§ζ"*Ξ°oρk3pή1θa†C€!ΐ`0 †C€!ΐ`0 †C ΐ„Ϊΐ96ΐόGLuW~ŒΞˆα–1Κ`0B@υ—ΑdIgά<|g€g@:rFΞ©…¦ˆN—Ϊzd#’mt{gCζΘλΖ±wHΟόn_ZςΧ;X.†C „“|αΪΗΙΉ@κoΑΐl7ΦΙτ₯έΨ«{«Mμύooυ·»ΦFΕ&ΈKfi †C€!ΐ`0 †C€!ΐ`0 †C€!ΐ1ΗOU © υu²:VC€!ΐ`μϋ_ͺRΗHlpžB9Ξ9σ":y<•z”{έ"Ώ\Ιί½Σ“¬₯ πC \δ‹£q³„”ΏόIυ°#C€!°{`οΪ}»'=8§οCTt΄6 ,VΜƒ³.ΨX!†C€!ΐ`0 †C€!ΐ`0 †C ΅η¨οώΩ_|Hnt)Υ±Ί †C€!ΐ`0 †C€!ΐ`0 †@Θ¨ζivχφ‡œφŽŒŠABΙ‰!½›‰a„oή vs3YΫ †C€!ΐ`0 †C€!ΐ`0 =€€1³H³•Kγ‚cδββbΝtO‘ύύύ|cξ~UVζŽC»`0 †C€!ΐ`0 †C€!ΐ`0{¨Ψψ½ΧhΦb†C€!ΐ`0 †C€!ΐ`0 †C€!ΐ[˜sΨv cŒ!ΐ`0 †C€!ΐ`0 †C€!ΐ`„¨Ψ„ΠbT †C€!ΐ`0 †C€!ΐ`0 †C€!ΰ±^δaY †C€!ΐ`0 †C€!ΐ`0 †C`#—Έ‹[ωMΛ2d ;>ΌΗ’ΟΆ°΄1ή•• 5¬ζΔ³ΈXε©^Όχξ}Œ’½bcB*ςβ0DGa›ΪΈΆ΅ŽΉΥYX·μy€3cœξ}Žoavc]Κyτ…_AL2J‰ΏΨΎΆ·V0Ί8‹YΝΪYd Θ¬<ŒWO ›φjc“±8π)ήΌέc ς™|ίmΣύEχ§« ηs•žοO—E5EOΗCϋxb (€η!%&±QQ=³σk³XΣΖE[ƒǨٍΰΙ6GZμz0¦"3X§ρl~iωp$mΪ‡WΟμGRτ6ζŸβrKG@c^9_Ν·{q¬o5υ9RΟkŸχ@4Β½ΗωβΉ¬wςZΗω€Xα…€–Ξ2 Α”‡όxgsήϊ¨ώpΊέ.>¬ϋΣ’x2¦ζBRB4‚ύΑ˜˜†΄\”'%k°ΌŽNλSά^\”ΣŒΖb|5;_ΎΦ>YΕ£ρf4kΨIϊJ3j¨1—β`šGbζE<™ιΗέEݟ¬kτοژƒc•™ˆ£ιΆΡ~΄kΰuιΡ‹GhFŠšόV|p7)Ν£φε%$ΑgD:ΰ§φ/ΔΔ2 mMΝwεούι\£ϋθιi_aŠF,­η˜^Εƒ‰~ +ΩNΘΗ ωΕ0)γܜχO?ΖΗσaςLΉαsΟ%³p¬Ά «-τ< αι+Έά6γ;Yϋρ‡_h€™+9Ϋ‹_Όš…4^1GFΩfž·€y£WEΌΞ””ˆΜμ4Ύξ˜Y£kˆδ.Χ&]Ο»Χ`hgτYορCΎ„Z~j·˜Εgxή%p‚)—$;t,M+Cƒ9ΗQΕΓɍ|BοΊVΰXMΕ™όƒ(—62ژΔ₯αnXeρ8œUύΙ©Ξο|žrX‡qΧ:¨(C zε’ήr2ΏμdΗ0αΩΊ”–ηΚ:’Š—γ3xψψ ΆϊΈhŠιK}I§œPέ Έπ$Ο\Ρπ\Ξ}‰£Ί³rήU»YΌK‚%Ο\τ>AηΫ“χXN†C€!ΐ`0 †C€!ΐ`0 †C€!ΐo˜sψυΟΎ΄ύ8oΞrΙXŠ!grb°1܁—Ήτ&Ψέ—)|ζκ­ΜeΉΌΤ2Ό˜‘γ23.NŒQ±¦{εm|kΫΞΥϊNΟ€#9U8HF*šΌ:WgDτgΠ΄dcbMΤ‘ωΕ%8]oα#{6¦‚nΰ*z£“ƒΈqošœ Q§&dΰl}±ΊαΑΈŠΙΖ‘μ2dhΥ½΅ŠE7ώܟZ€<Ε馧«}ι¨Ξ,„»εIωΈ…K£}²±OV‚Ρkγf½›\?³>˜ςqϊ -ς¨ΘG’Wѐ­ώRά_6TξŒ›)ΫΰΠDHv pΟ‘2Υήͺ8‡ρG™KΧ9-H’ΖTϋ(λ[M‘’»€Ύηέ·Φ¨sλΡ{ό‘/‘•ŸκΆ²«B ”ς,Ο»₯ Κ%;‘ŸUeΔρ”TmΊqfœΜ(ΑŒBŸΠΞ¨?Ά>»ΤnάLΥ¬Πξ/ΛΚκbLΘsiά,dΜJ.ΔΉθ-Ό51"—Τ+—τ–“ ³“C Ώ€%“q³Λ`0γΠΡ3Θ4ήΑ›MήΏΉ3} ΄οΎ2}I§œΠΧ*Χ₯<Κ3E½)§[_"š;-η]4›E»Aΐyv©;΄ονΜΐΩMΗ±$†C€!ΐ`0 †C€!ΐ`0 †C€!°' -wY# 8’0nΆq^Qm˜"Λ¨œδ5g žΔβ2P’šŠHτvšdΑ9…qσΚΪ Ί¬ΫΨ@|L"mmΖΑΤ$ΨΦ՞\Σdηu Ξ[1 6¦~ά^EΏ£ͺz₯œηf…qσπ\΍a3.΅ιΕ(Mψƒ^x”ΥςsŽδηΏψ#?ƒ)ηΓΑPΛkθΙςԍœΧ‚Υ›rr­ β4Η‡<μ2ΐ0y`@YuQqήΌ ‹p@ ˜!oΥΌ°<ˆw&†eΆzηΊaˆOΖΡdυGy9CDœ€β\z‘Όέ³u‘—¦”[φΞc`iχ§Ώ $#=^jχϊ§ΠλU{uΠ‹ΙDEZš\ϋ ΝΙ_›·¦p}2)–rπ>ΆLΘ§GhΦΡ¨Z.š“EΕ‡άννΰ3jz<ŠqNζμAwimŸΞnb}c“Ks0¦Uβ‚Y0Έ™ήXqaΜχώΤΫύτt΅ΎO -Œ`|a ½kŠΉwbŒŒ6’κΡ(Κ₯θ(E?ΡΑ}ϊi‡ \δœ7ςŽ€ΧΙ:  h3Ίwc%—ΓXEίΣ.τ¦γωzΩ$έg\j!O,5φdν>ΧδKΈ~{"ΘD«7 •o€vP/ιqΜGσ‘‘’σzŸwg–½ŠΡ­χθ–/!–Ÿ^‘ΐ2pgFzή©‘σΎμό±#r)ˆ½—ƒͺ4iΙΠ=υ7ΕEQ³K h$gO>I΄θ΄”*!+₯ η8ϊœkXΕF λ*ΝΐΖήλΣΈχ”Δ[Β"–W­+Τ+—τ– $8¬.],.Ξαigž>hCŸΚJފŽΌςΥgPΑ/KFVI/ œ™Ύ€Υa¨/ι•ZΝΣη΅ ΰ‹<σ‘Ϊ€dέ9ητsxυΤyy΅·§Φt·—{{Αζ1ζ@ͺ€ψ"jςJΘΈY‹Ξ‹°N~Š;χήGŸC9vι#‰ HΛΞ·@+vΒ>1ξc-ήg/}ϊ§ΏΗΣΓd~πiς›λqφd-4ΨΒLχ-<θςjτΡK #}χ Hr ’ΆiPΌ₯x€9υ?^TξC–2Όpζun―ε6όκΪ―ΟΌ^>υ–ό•ƒ>4žeΥƒ@8Κ%=툀2ζœ}ξN–·ζlϋ·o]Υaδꍜί)lHΟ2ρcqZ\š(^LiΘ*’ΖS!”M>°5―¨γ'/•ρΟVtγγ–Akέ|œ@QZ6Μ)ΩΘH)@ͺ Σnέώ;4;ςK/7απΑWΠ°―άI=]q:―ΰwƒΞ:<”wAž³ρ!τŠρ!ςSB&˜r^’±CΗPΚk‰zθω,ηE,}.ηΧψ°CΈΧΘ2y½Χz<Έν%C΄¨GCΰ’d΅»Cΐ€τ8aώšϋ ?΄θ„Œw<Β­^Gσ93Ž:€ͺ}…0“5Ι9LH£γΜΨ ΪŸ<Αέe~θeμCeQr3ΣΙIC’λΪ|c33κοΑ­ ΜQλκ‡­yς$ho{aΌΔ,°@^‹5ƒΞϋS³.o"ύ‘§§}k“ΈνΖnžσjθk¨Ν*BΎ8mΏ°HžΊl‹|­o§σΧΤ7 Ζ’‡‚LI†Λ 3τ}ΊŽŽN΄[ο_ž?u9xξωJZθε±<œOΖ±j J²₯δi«» 7―·cT#^¨DΙ ­• \₯4ϋ-gBfy-žΩ/œΝΆγjχ½h+Λ3΄Ž‘ω1νΠΊωΜͺcφB>Ÿα@uΆXj OΕmΪ³ΚπΚα$’]όά`΄MΈ―ΩX„Ο” ™|k.[{pΉyHΞΏΏζκΚ `QυΑzΘ8ϋJ«=Ÿ\€NJjp(ί@Ε±„Χβhαΰ†—¬Ό|€ςμψOŽŒ’ε±9ϋiNŽdΨ¨Ž5κΨάάFώΎ*«υΤώΙ]©E>ΛΑ <ο/ΞΗΰθ=nεK¨ε§s£Γ>†Ι3O]δBžiΫ܌FMνaΤ(DΆθ€ +dΩρ”δ—(Κι‘KώιY4¨ΐώ’l;Δ?†Yg0Π׏3\ —ΎΚ—R±…%c€S-υΛΖΝτU粋ɸ™ΣE;J“€ώHς:3G(Ώ9‹ΡM#-Rδh-cv}Ρ‡z·Ab\6V,λr[‡[Ήδ¦€ήrnͺάΡ€έ&_ζΪqYϋQ&œ'π€gυΒ{š9ΥΔΗΉος…ιK"lZϊξιKn;RŸœp[₯2Q―<σ₯œN}iGεΌ£œοeyxU$‚eΫ«"’u‘—žλ΅q3W~sΣχ‰-Ίφ8{}φ)>{j Ξ2Œ ­»Ϊ6±jgEΞXTϊΎTU'_;Ÿaˆ‹³Gφ£Π•q³˜+'ο$.έΐο]³—C κkNΪ·R€H§Yٍψό™hόκζ» CI)•½F`•› ‚tτΊ¬ŽŒ'ŽŒ›©lΣvM/ε–ϊ“8ώ0_{ηZWΠ œCEo°>>ϊM?νoGK/ %xώόϊPDχση /²?ς’έΈ™ς//Ο«·ΡΛ§ήrΔƒ?rΠ‹&³,ώ"†rΙί&…mωό£xώ™Σ¨o¬ηŒC’iO=Α9―§ήΐ”‰‘ΕΡ ΈoC5Iν?τΗ8[X ]ͺIεxΆζULJΟ2ΕιϊbjJ΄₯ƒ σŽΖΝ”GΏ^ž‹3GΏŽ†lnBF#$δ’φuDo# «wcaγƒ^α€ηΜ—ζ„·<σ₯%:ς†r|hΏQΞλ€1PEB*―‰i]τtΘyετκVGϊ\{€†=-―=Γρ9’bεUqί–έΡ€-ϊ`.}Ψη>ŠqηʐŒBƒ}ξyU‡Q‘²ΆΠŸ§b²dΦ°ˆŽiΞ /žvκID,1ln­ΒΊαΨfK#ε‘ΜmkX§-’σhžά]ΞXB½€Xa—4Žςΰς¬zžM`ΗγdSΚ rνω֝‡Ϊυœ%#‡Œe΄ή8Σ2³ωέ•΅n w(/2|υβI”ٝθρΖΝ\&sž§ι—Υ|—Z$SIθ™qόάqTΨν„νΌ’‘Wΐύ,ΘM»ƒ·ξΊ΄°—ραΜ~H&ΓzΙsψ*ζ7΄ΜC N]χ§ qΘ8zޡρΌΓe,IvΉδ¨}™dA΅μ‰~m}¦=¬cιYzω|dΫε†ΔoRŠ%τΛIXEϋGŠgΠηηjΜ2‘x_πlηeγ€DD>&’€ •ΏnŒΗχ.?” ™“Θ‘’…φPΡގϋΎnJχΑ’'HΨU2pΒ<>ώΰŠ\;wΒ™ι ϋ”ΐ"žιΐy£±X䐬δξ εM«gηLςsOεΜڈX£η^8ŠΖ"ηϋ0‰Œιjf’ #oμlΰ‘[„’"ηΎ›Ϋ& 4Œ“9‚©UxνΕZ?;‰Θ.(ΕEϊI«CΛΐ9»’_―rIG­ώσGξJυώΛA{]΄ Ζχη]Yάι<zω^ςΣ `ςΜ+ό]Λ3ηβΩ‡pΡ1štωυΗ‘ž„·? „\ςCΟ’>«'Q’‘£ΙcXΜ‚KgίδK2ςεχ˜u Πβ&)Τf•Š ν#‘ΧΗ΅υ.©œΧGڝεbΦ>ΡωΠ>™±b_ž¨o‘}7‹ΈœhL0˟φhΗoŒ?<Θ%'R„ήrRωp:ξZωβδΔX» όΪ¦η›Ε΅|aϊ’€t„θKzδ„ϋ[ɞͺWžωXNŸΎ΄ƒrގPπϘ< >ΖvΜΐylΆƒ” Δ(WÊΜmΡ„¬Ήό4φIΜΪ>ΕΩS±ώΗt£d채>Ϊ’ΫFΆ–N&>[³θžuhKξE\T7/Σ–ƒνÏiλ―E$$š‘k@ƒ%3 ox±1΄N™Άΐ›ιĘm“΄"|‘ΌΔ$f‘€°‘Ό@ ήS³«q4ύξI43ςδ—oλT;†§i{1+ΦhšΈ(ο KζPWά‚±ώAfΩeX"O^Ή‹DΦ:ππέΫΪlςK …€-gQ»±‘’Χ{<‘ˆ|š 2pV|Fπ£.Šκ}ώ\T§'ϊ@υ·q,Gν%u>Ό¨^ωτς©·5D·Τ+ήx+—Β»:Ή«ΐ—ίψPcΦY\«XΈγiΖΣ»·@ŠΟbo§V v6.Tγ΅²šδ³έΈy έΏΓ§]Θ|Ο—W8€U ’ΐ„±ω«Žn|RΣ2ΖΝ\}’>J§δB‹‚^½ό@υΛ*γ恾+ΈΧw I‡Ρxΰ9T˜sώƒΕGΠ:ό>¦­bγƒŒ½~ξς,¨ύΑγCΈΛyύjy­—ž9ΟΑ‘§œήρAό¬H$ °§εu$tώ…εa΄ϊ²Ε΅~¦W’>τε‰v +K0€UβΛiά~lr°-OΰΡLzœƒ€ΖΔ-«ιm'Ή_₯ŸV§ρtnmΛRuΡ‹GJ¬τωdΆυ9‰Œβ˜ˆ$»ύ…"^qͺrΚΕ“ΑΊ"ΩS+z›;°™ƒνϐNήΎς„ηyr¨c ˆŽ&«q.D†i«3ηΞ4(Œ›Ρωd3΄€ΖLί*DC͊ΓG`³Ύ‹[Ό ‘?τ6ΈΛ³SΆΞΒ6·Hί"ΘΈ=Ώ £DΛΑC871‰λ^lέl―ΡΓ™Ώύ τ\…Ί΄ιιΊ?΅«ς*6`τΌlŸ;¦*3ŠP,ϊΜalI53­QΤ€S¦BωyŸC‡ΓσQ(L£Μxρω“τΞΞήHoϊιy‹I ­Θs²QF~7Taτ<TΖ6=3κ07֏Žαr P[$N@ζνCύΎNρ9š@Wί$ΚxΟΙiΨW”OΞ£κJP„’}ς‘qτςή›²ψ}™ƒͺύ—š9΄·+Ύq’wΠ‰2›₯ ‰v⌠έ},IO‘‹LZ§yΎ=―6n$OΦΤI9h¬Θησ˜Kkρm#Φ}uϋ'GϋπtƒσΰLΚb“P]*πΉ₯κ3%Y8{JaάΌ2…‡ν˜NGM}©όέ•+αΊ‘>ΟύΉ«vOΝΡΦ?ωώΌ muύ?ΠzgωNςΣ5.;‘Βδ™w¨»‘gn*ΰžχΗύΣH€έ Λoφζ}΅xΆvοΆͺ½Εϋ.—μ„}Υ³φWΡNί²qσιƒΓ˜ mJβ I0geΠ· n€³hΪ)‰gΎθY‰iΘ‘τη9Œ, uμ3@£ΌθΙNaa]Μ`y–ŒSΩβλx:Ω†Ž( κ₯ΪΦWUί/€hη£₯©9¨ΙΘ—ΏΌXηΖΡAv@ξƒgΉ€]^o9νΪv6v―Κ—TδdΨΏΣΩf%C-W½αFΎ0}ɍΎNϊ’^9ακžpŒΧ+Ο|/§K_Ϊ19οˆS0―™< &Ίκ–fθ\₯/~φ!nO;Βkœm&ο8d zΤΪeΒ-ΦB[‚K³“θn½Œ§^±X†+OΚ/ζΓΧπζΓλŠ’=θΉ‡›­φAO\hΒΟ/5)ςI§\~+.ΌŽΡ‹JΏΪžCΘ]Œ |‚§³j“—‘Ι‡ΨˆωŸp"OhGt΄<;%UΎξ0gρŠ­VI!T\mK(yνiΊWOΪό–}:}{“f‚BMoN’Σ²‚ΐ·Rοσ NςŠ_Γ %΄›ΩT8\š[PΏ C/ŸzΛΡ4€>9 `X5ΞD€\rfz—ΔΘβv=w―£s‰σκβn§χνφVΞ»―%ˆ©3-ψπΝ– ΠͺšΖ]jΖ9oΘΖ£”¨γδ³žΆ½‰ίŠ‹Ε¦FGp’ œOF$%pήΛ>_QΑ°.MiOιΡΛ ‡QSΒ}nB_ηΟπ~—hΜΎŒšcφάηhγT iϋ`!GSςΌ DΨΒηΐΖ‡λ‹p4ϊί# ;"η=r₯?C¨ε΅τtΙyBFW9=γƒώ^`%½A@γy ·yošΑς„'Q O΅αΙαήγͺƒζuφ%’ηš’5ςπbIΖ—7`$©dΕ‡•Υ1\ŸΤεYx'-5Πξ„")†ΤI ¦LI98ΗY“Ρ^Ε„Ά‰ œ]…”Δ ₯_šυn/.ΚΩτΡKDb¬d}AŸΙΥΙ'ϋ³ ˜ΜΙQžOdύΟsVos΄·<„δk5΅2† œKω’3ΓOq΅έ‘in1Κ €Ε sΈϋΡuά’ŒŠ[Ί±πΒyς„Κ<&’|%8wπυꦇ ut`f~ŸtΫηΜωJ[Ϋ0xβY\δ 0QTDΖ…}|RPώωΨΖDƒμ9k«˜Uά“JώτܟΚςΎžŠž·νsΕ_^Z9N¦¦ΚΙγ^ϊδ₯YP!ΝeoXρxF0R•+‰ “όͺrTKŸι>Ώϋρ]rΐ’~φJjPmTάx:Ÿ?GXΖ:ΰη7»„θΦvΨΞ]ΐΩrn‚,YY4#>Σνύ8IΟ·ŒΐR˜‹ΜζQΥQ~Užέ³rο˜,Sιωsm©-A™(ΒηqW%¬°ΞΜ‘"…8€_v‰UΊšr–I η0=9Τ aΧ:.8φAZ†jπΪσ5Όα±₯ϋΙΐYD/1ΨήΚ 7B0–!“ œΣC1ΞαY΅x#WFρα»7ΡΆ$\ߟXΒ:yvv¨@ΌτΊτΚym²B¬βvt—Ν1MΟσξX‡Φu υoδKΈΘO-,v2ŽΙ3οΠw/Ο΄λ˜hΕΙS3h‡uω ^ͺ4Ι²ς"䓁󨒨―r‰“}zυ¬΄dIΏ^Δέ>΅Ω™ΉA^ξ‹D!gv}ζFΎδΡΒI|ΪΦωœF£'Ή± XXΔΣ-ŽŠzEt”ΓjΧ8₯Τf•£BT{‡g{ΠDΝΙK³/œœή\uωNU•YƒγI,!w,- –ΠβˆL/ΰγ₯k'|„7rI«€ήrZuνtά^•/–Ϊj4ˆ PIτχ“ήβ&Έ—/L_‚;}wυ₯@Θ 7·…*I―<ΣSNΎ΄Sr^R/˜<㞠2ΚΞΥ‡κ;ˆ3e71GŸA‘8±1?v7ΗέdΧ$š˜M—;ΟΩTξX.*;† ±άμ„£q³²€/0΄2ά^Veξ9{ΙΖ&φ<™§Uq¦š—ρΩΔ“‘μVL,bΘ“Θ?| R<–>‡/Ώ|žŒi€ή οnΓ½Θ?RS| fz>Ζ嫎UGρ…ο>ƒτ˜, ]Ε[Ÿ―|α9”•”“—AΫd7zš―β•{|DNΝY¬ͺFAA!²sa”ϊrq#γθo½Žn΅i·τ,Ύ|‘ψ€—!p|>Β½¦)§•υκ *pφ+Ο£ͺb?yι–T{`ifγ#ƒθyxM-’ᐺ ΓΥ)Ԟ(γϊΡvϋ†"= §Ώφ μ7'Π=±I+Dkδ΄‚#ΏoVr²Bˆ‘ωϋ‘;ŠξJQβ‘ψόΪ‹¨­C&αb£oŽS}Νh½u 7Z”ωύ£ηW?8pνΛe`οk7ϟ/LΉΚ›}Ο׈F’«}^ΝFaš‘rOa†<Φxτς馜N9θ=Οa“Ι₯Θ%η~lxι[8T]KΎ΄]­( ϋΊρψΞoρ°ΧqvΫΉΔΡ«Η+tznΰήT6ΞnDχρŒ lΉŽ«?yGα)€žΖ’ όX²΅ΨK”¦5η:^<"ΘιφΛΈt•+V±¨ρpΎςΟΝυ4\xGΥΩί=ΗΡvοC”οv*zδΌϊΌώχ£p—Χ~zεΌήrφ[@uζj|PeŠ„ έz›gpΧ½‘ ―…τyΤ0Ξj<Ββjmž<š-"?MRͺ“Λ­δήΉΈ ήεόb‚w©μzΟD<2γΉχ uϊΡ$VΡO‘ΓkλH5d‘.…ŒςψŽ*Ϊ₯¦W60 =žaΓδΣΆΎ†•Ο’–˜Ž £έΈ²Β\€AzwζλΠKoσδΙ Όwσxd'‘υβκ”ΐύO7ξΓ“Δ'El,aΖ>΅*η[wτhGΫσ£Lr΄έ$:ZόΘ"s£>©²dρƎ\μLw―έΈ™ΟΆ‚λ-=(/:Δη1“‘€–GU_θqΥ>j~ΘΧυ―­uGΘ“{‹•½gkετ=Ξί~H§E ’1‹ξ νO*zξOίΫb/8zή΅ΟNYy–n,Ζ9³Β”^|κΡX9΅fϋΌ_/yožWeΝ:ύpΆΖœ„ρ8§>τ¬sΣ3ΊC*”Λ₯ϋZZŒ›ΉΔΎΆPšμβωγ>*·>Pšιχ{ΖPGΜ©oηY γ#œͺE-Nf8GΚSŠo―ϋ Ή! γ _}3“Κ/’γ©dM,Q¬Σ䄇7RNCF&IςRSΎφB ’IpΞτ<ΐ;w‡¨€ι’1σΒΖiΊ«α\žμ8jδΡ§>˜hΓ£ξ<<Λ磨<]έσvβΚ³8»UF+Ο‹²LςeO{—lάΜGŽ΄- Ρy”s:žψΠŠ’ΎΚ]©¨Ώr«Gίσ.qΰα0½ΗωςΣ"4mΜδY€Κ3ηΎ%―υΤr―ύ~φοΟ~€g ? u5}ο…\βhκΥ³ΆΆu§R;ζΗ‡ΐ}ιr|‘/™ ’FE6kάWΆLœΝwt O·'‡Q+}«£o@ŽΊ΄+&άΔ—¦WΙή‘m ύΈb49³bαδΒΊ+e€vb o€άϋW χ¦ ‹}xΟ:¦Œqqξ\*ͺ·œV]qLΎ„F_Κڏ³G%ύdΤΦΊτE‘ιKŽ D‚Ύ9αΨnνk½ςL_9}ϊRΘε<“g;&ΟμszΪχk cƒ9—¦Χά‹¨=“y%š»λ«g‡K₯¦₯Λ«Οf—mX7δ’(ΙH†8Σ΄-œ–IΗpͺ +DΞΗρΈk;mΧGJ-Ν{z(+Σ:ΠvYάΌ/Φ°Jσ²ή… ”dΩ\­2©9Ε¨(―΄'Ν,If:φΈœ™jΎ„?ψΞ+όΔ”½Ίδ–Ÿΐθ'…Œ­n\F‹t)K3QTYΙ—’Ιο7ŽΦΑ"}sš²ΛΡxfνdΰά‹ œϋκ·Qε‡Οšœ‚rξwΩ?޾‘’e"#«?x]‹ΟΣΔ§*«ϊ‚ŒΜΎωgίA™M£Ήeτˍ™πʐ°ϊΥS(kŸjΉ‡¦Q%©l䓃V―šςΙΰ[™•Ξ·:~«Ž!>ΏρΗί‘ν νΡ’‘xfΙaœ§_nξΗ/sOΜΰ=ύύ`ηNίY@οkέϟΌ“χΜΧκΞAψ”2ˆΫ£όΔ„‚k3πΈΓ‰’„^>έ”Σ'•L…χ9“K’KŠ~&σεo}5EŠΙw1Y–…†y2p~ί^ΘgΉDEK iKΖJAζΡb—{mβY ΝΎ‚7’π·χSِΩXP‰b^N'£ζφ;4QξTδ₯ΈDψ@³BΞBΔεψ?T™έbTeuΊp-ηγ‘Gc2'Λ³Φ»wFΕ\­_(Ώ‘N§Vq1*pρ»ίΒ‰Jϋ’Oσ©ζb4Ότdγ§?t6πΞ*¦mm+ϋΞFc3Ηf±RΏž#ͺ#·ρ«x£QβP:jυŸ?γ‘T/ΰΫψ`A‘¬G-‘gΨΣ=ό’Έ C_)Iά'\»a²οίΡ“Ό£ˆ s‹>ΦοF/O¦-ž₯Π7ΩIŸ½l|°bz+ΰZž9άOl|pDϋk<©xnγ!jφΚ’sQsώΫΘΙΙΐO9rή}žϊܟχ£π–ׁτΚy½εΔΫΕΝψ`Ώ‘ΒΜ/=„Ν3hwpΙk0g§>dΞNμl„!―wO²sΒΦ2FΙkltl2rγE£ΰ€}ΈΎŠ+³ΣR9‘*΅ηx-γOΡ²"š#Ξ3σŸΥΰLͺ`£άUpΙ;sϋΖ’Ϊΐt~]ΙΕx.+_0BIAΎ1ΓK\ϊιΝorΛ‚«·ά΄ ΌmΔMΝ8(a+”Λ°Ήω^4Υq?žθ%SξM¬ΗΡ瘍―‘ππρŸ‘<ΡIajZγ>²Z1Fφτ©Γ+ͺR]žŽ©΄-{νώd¦!9,E6·»}2zέS Ύ§ϋΫiρv¬ζɘ];θΉ?΅kς.6pτΌkŸ3WœΗΕη²ΕηŽK^›Δ•±>X³ͺb*3 싦WFπιΒ’*]χΓ~σχέzήuͺ› ~ρΛ»*―™NyάFΔ"AS“θνπΞ88 ΟίΒ2foG’{Z‹eIςόΟΣάΤ(8ηΣUŠh^π2Xヱϋxoνt΅2Œ>W†ΏBn]9ΗΔ5!ΛcCNήAΉJϋ¬s˜C!/yζδΠχΈA§εfΡwΎ!LΡβ³XΧάΜ,ο ’ AZ0CΜλκρΝόZΔ:’ΕΪgd ώ|OEzͺτΡ• ¬Gœϋ|ΒJΒΣ“³Oύ§ vU!ε ήη]Ε„«‹κ=ήΙ——Ÿ γ™<#―7‘+Οδ~”Nf1μ48’Ηζ±9”•rΪO x]ƒΣ*ύ ϊτ,I`&γΨη>‡ŒNrΨ3:)’±£6ΟsJaά<Žφ¦ŒN.#ž&Κ3‹JPU^LΩ₯— eIΗσzΤ– ΞΗΡzϋC‡ mθΌr ©ρؠ՘‰9 δ;…Ο3N“ν#³ΛˆŽιΔlΑ:4©(Ÿ…‹_ϋŠΒΈyšψ|€)χ3+£J4H¬Ίπϋx~ˆ<ƒ·qEύ‘g'ν[?ΨΛι> Θ}νίση™w ž?όΡΫύ·|­1qL*ΈdσrS½|z.§KJό‡ύ‘Ι₯ΐΙ%©³+π₯7ΎƒnŽ] ƒδ-Ώgh ±†LδW ‚<ψo¨δΌΉD•―n‘LW[ί}΄Ρˆ€’:4TŠΚXΙ«­(η[ΠώΈΌ‡ό\”U%η{κJp %Υb\:yοΝYόΎt#η{ϋ0Ζ96!;YcVJ‰–† ΆΜAEnΆ<φM cόΩ?R7χ“'λžΑ)pΖέ'kψ²™΅―ΰΥWGπ£wΥνλΎƒΆuΞƒ3Ίρ騫Ζ#Ν±™―ΙΟηHn ­τχ؁Θ]€‚*wκFοΙ(CΎ΄piy’ΪW^ωMœσΩ«›£ν§”ž’ισŒWϊ£Δ…;½ά„4ƒAΜh£:₯BŠc&’₯φ+bΉS6>€h>LouΈ[ΈK6>h€’εf|ΠΘ-EqςσAk –œ¨VdfVΏ‚—.τγηWΤ G}—σšcρ齊Œίύ}? gyΘρA―œΧ[ŽοRwヽΟΓΜO=„Ιk.Ž,y­Ρ€=₯π^΅ηΑΨq2pQaά<½8ˆ&λ°l0XjͺΔ9rˆΑ…BS*η§Ρ±΅γL{Ο@B"’Ӝƒ3ύvγf±–±U²Ψ œ+^"γfG{>.•ζŒŸΠΒΡF#g€ξΈψA―—ΌJ—§₯Ι†˜Ή)Θ¦R9’rΰގFΙσ€_\¦)½¬‡a°{λ›ΓΜ΄6ŽoΑώ6£αΔ9<[-Μ―»­+ήϊλΧίʏ΄«˜ίpœU²Sςωώ΄Υuzή·OΙ$ηΕόΉμΩΡΟΚΚ(χσ[Ν+σ9'ΠiΒ`ζ\>;Ne=EΠ"» «§ΜbΊί^Υγhρ‰X}_™r%Ψ Δσ7g[pk˜/1&ολΐd}>ohSPC²mˆ/o)ΞAžΘίδИΚΣ΄Ϋ:/SQΏŸ›©BWη A#ŒΠά}ΏL#‘š—–ΚgΘ'ορr ―ΞEF’©΄8BςΑ35m£δ,˜$O<|ζddgΚ₯\œ("9\GsFνά#½rΧώ“θωsΤ+u?ο^1@½Ηω²“ςΣ+X˜}-§GzΣφpΘΓδΡP.q}j9wu²q3yρψωπΡ}΅Lͺxξ[8”&ω ‘B:ε’γ=4ςιΏβ{?»,FΏƒ™Χ#ž―猜i§K1Ιy+Ÿφ°΅ϐόη½βΚδ\Ί‡ >Eψg9Wkχ ίΪ&ΛZEΏOέΛω6ŒΣβ©*s.νԘΌR2pΦ$&rr€Oγ˜μ@;Q†@IDAT'՚/γ˜ό‘Ρ±.γnϋ—i—‚—ψ…EΕηN£š œŸH•Ρ±χϊ/μΥζ‹Θ&gβΔeΤsδuι\Ά€܌EΤΒ§`vn„>Ρχω‚‹x¦\0 œŸΈ…Φ΅bœυ­θhΩݏ;Š>₯₯š3ε˜³‘§nο‹»ΧΛ3˜H_”ψ@|kS”W$Ÿ;ځΪΈhΗξm½•Γ„Ϊw†c¬ϋρΑ1·p=υδώž<5 αCLΜ9Ύx†Ώ¬8ά 8+Gb_ε<όΠηυ~$6.¬δu Η½r^o9OχγƒŒx؟J±7”ΙλH“ΧφΎcg<QQˆŠ΅κ0TvRz—^WΘ³ιU2nVΪΛυΪ‘›” ώƒ|*² ΙθXtεqlgΫ’I,ΑδWˆ­τΜ9ο%Y>hΦΰ2r}[γ%Νz[ΣψpΈ§Μy¨H’ήπˆόΦ"ΊΙ°<Ϊ@‹‹9s«d1λ’―πOΨ’εΪ\ͺΦ™kgρ>v_­ΚΈyyj=΄ϋό uR4ύΘ#ήι:‹P_t΄χυ;'ΛΛ0δΧΆF†σ:‚ζύ©£o‹xMOGϋ ΣΚpΑœ#³b£…ΏuUr’κ$Ηha†τ•ΑΆ0†fζ*TUi]ΧρǏ:δυννυyχ6­*=ΖΡ’ŠD©A3keΠόmmhΘ<-Rœm#cUΘΞ£1?=%τ ptΔ€βBiŽpC}}Rξ€SKΛΘs΄XέT7υΊκτYXgV‰/βΟ”‚2\ΞΙ’>sεΝΘ-LE‰l Ώˆi+7;KPt>zˆ šBvuΔΠc›άωqΣηώ! υAσΣ{'_‚)?½C…r1yζͺ°—gjφηΦΧ5wπHHPΘ8R…ό ώθYγνψαΏ­βΕCe(.0«μK`HCΕΑ¦'βg΄ΊόφμοδmŸ_θΘιqι(?‰Œ“•›βn₯τέA² ΅’³?vMrŽέ6#*₯Y•¨ˆ9Š³ο“ƒΩ•8πη­tP^XκͺMν3CΘIJC1Ηœ™τ^6¦ψti/§W.ι-g§μφŒΙ·πΐoωbΖ…Ο—wΐμ ήyΏΩν’4Ž!¦/iwK€θKŽά{/'Kj_λ•gΩA’ƒ—šϊRˆε<Σ—΄ο9v‡δ™L?ΐ'adΰ|GHKΑθSh_SV =—Υε"#™{[ŸΒm΅4³`ΓςV Νe¨Ξ± WWœF/8 Σ&δ€q“άt΅d0bCwί Μ-Β”y…%"ΕΤ•ΖS'ce rΜ4HJ”bΊU(3v?oΎ%–wΘ,ό<.>lσ9mpΫ…±ωη₯Qό^ν¬L8/QZw6},7σ©mο Ή₯λέ™P©λ|τΆƒq3—ά{υΪσέ»τSϋ…ΓΩƒ«p’ άΈŽηΏ$π9ς•|6_UΆ΅Ό…OΥγωZm>·Θ ]rρΆŽΫx gpuRƒ†Γ‡ΕΔi΄έ‘Œ\ε§ϋ$Ζ.’cέΟΒͺŒϊΈΪ¦Znۍ›ωκ­ψπ£›8PωEώE!³ HΣs¨/τΈjυτώŸτέׁyώΌaύ@Υ·e#Χπn‡`ˆŸ₯XX1·0κ’*½|ϊZNtΑ²7Ρfšμ€|šοNεΉWγAψγ<‡Ι₯@Λ% jŽΘ=Υsν]'γf.±σκΙTΚ!—€n4pΩ^)έzΠ†F2pζ ™M™ά%ςόί7ϊ Έ/Νω4¦WΞR"PV)ΣΐΐS‡2φl~œy–σ£δyŸ7RΞEV!ιU½„XώEΌρΖK΄0-£yψ+όΛΫ·‰‡ dηˆcΜ(Fh <ρz¬ ^ΏμΤ6˚ΦИ[DεkPrά‚'w”¦oЦ%zώ˜ηΘ‡ώS°ηλx$υe|ΘM“VgξΆͺβ0^¨w*‘…|Wο_ΑΎ“^ͺ›› ]@Žυο$C±Ψmv‘Ά”σΊ:Ozyl€ί‚κητּρςΪ·;tΧηŽβΆl'#gΒSœ}ΎqlyZeά,pΈ‚Ϊ™σRΜ…ΨW&\|rx£9Ρe ±’΅ƒFšλ¨x€Ε ˜ΫLΟ;gΥCoc·'θc@:υf7„|9]€·6‹Ύgr;³M;ψyΜΘ Ο¨dYψ³χζΑq\ιΰΈΒQΈοΒA$ή—(‘b‹%u»»Υέnχ΅φΪcΗΨσΟ¬cbΓ±±αˆpμ?³»φΪαhγ™ιΫέV·Z–ZR«)’’HЧ@χ]8 (TαΎΉ_fV^UYU™Y‰" ψ’/ίύ~οεχ^Ύό½οEˆ€²‰ΧΣβεw¬^]c{|?ΌF€tmΰœeͺ₯œoΔ•Ί‡²ͺ½ šž#ςΛΚQΦK°Ά‚ YXu ™θŸ^XW―ΙWj¬/T»½^—hŒsω‰ X¬ίΑ’Cx^³ζα φα]ΏΉ2–xpX9v>ˆΞΩρu°γεΗ­;‘ύΨNJ¦γ,ΞcAXσΤMζΨΠ Mδ\'ž?sε]FθNVΣwDΠY_Ok|c¨Ε‚™υ’wL²:χ?'δΣς(ΡΗ=ƒ1Φ§–αŸ₯υ¦ZZ³ΜΝAM[Κ„ΟVσx0ž†γ­(‘o¬5ς©Λs˜Λ»UQ³ΊP?Ό]Έ§έδ\eB)m`έωe<[₯Œ'wm%ͺ‰”ΘσnNžeΑ©ysςeϋδ§ZV–g±AΪιςL_ϊ’’q£WοŒ₯EaΜΎ#¬`yΥάΞ°$”Ϋ„ηYx‡~$€α©-Fiy9š›ΰ!b³`ςj›pͺΉFέ€"‹ύo+΄ΡQ3Ώ\^ΕG~ωΛE.ͺrdύΝkπ­Π˜``ΜΙ—|”I.Š!BusŒWŒ*:΄Ήρ‰!–…Nφ|Λ_ς³+—μΖ‹_"9Λ γk"ς₯—^?£‘ΎG'œόλ»fxo<_2n g\·{Ύd\Jsrb{εΩvΚΑ(σ%‡δΌ1¦F,όPQݞ…"Nυ Vs(cTan)KΝ3ΆΝƒRw(ΘΖΊοGχf Ξ ρψΊΉΎεn~§ΟG}] shΖKΔ#{œ‘W₯ξφSJ^ΞHbΫΘ•3 Α™Άχ…R"-ό’όΣ{θλιΗ€wΓ€ΕŒ4P΅‡V‰χ” 3‰jΒδkŽ…τy’V˜!έρκάBLh ‹υΦZ;DMΖ’‡½~ψσg¦Υž7πͺL£ΝοίΏŠF}PάX!άΰFληvΛi5ž9hƒ0Dήό“ψ˜šb#bωοΰώβotZ #ΒDuήY.EƒΚΌ\"M'ΚχΫ^t‰©QŽΘ%§°q’+‘ ΄ŸZ‡ΡE NΦ›€ͺΠpψ€6 ˆ¦δe4‹ZμιŽΖšžhΔ_)΄­fπμρ’8&ŽS₯Uu”O7<‡šΰ‘4ΑΈ›hn€˜¬iDihΜLŒˆš—ri2žK_ǟ΄ΌŒπ™b†:Wɏύ•cX½:τYj?«eŒ o~|π Δ%l…Μ4&}Yψά…/‡΄°MΰζΓ’Fg"‰•ΘxŽa‚vq;mŠ5_τ1Θ¬13/. diŽVΣπe|=£}ώYδ·β€²)ζ‘*oeA%sxή ˜‘gR—αρAytbXΜγ©IΔ?Š‘~Ν½h½OΪΊ&Π*Ύ³d"'·œ\Ν½‹„§€½·7ŸOμύhηΚkgΗ»rήn<3γƒΆνMΫy>Ώ ΦRQ^›ξ‘{"ΰ>™(΄'j»σ+Y¨{Ώ„ΩΥƒ’43D¬₯Γ—6δ7Xƒ ;έ‰ˆ‘ΊςΡHG=ΛΖOkΫfŒΛU£!Naو|–H~›Λ˜Uˆ­Y8£ΡB;HJ•=a…-l>Š/ŸGΖ†™Ψ+γψΥΫχβjπ KΖτνšF£kQ‘°μΉIeST ΌŸ†…u‘Xζ˜,“=ƒ©‘•όT.Ύ=OήΤ4–Η'7 Q–Φ <B/)q‰ŠHdZŒΰmdi‡jϊ#« ¬-ٚ!›κŸTπΖGρbsΎZ…eR@g«+fσ22_Ώ,ΒۊΣ…‘ς­‘ΧίƒkAυ_-Έ‘­GIk°lΌ/Ί”gJvMρknφ·b WX3‰mœxώbη`μ;Lύiό¬Υδ]]Q‰cG3”ηnllyΩTΫ‚6Ac΄`fρ¨3LΞH>Κ±i‘?Α™žπ–ιβsΎ4ηΓÁ,‘ΰ\Qλ!yZ$†_’u¨Ρ6‡Ω9"Šd"ςμ!ι'1šνs˜™£zTR¨5UτξLΪ0΅¦²T~N΄ΞΨ­Θ]mŽΦδ`’Ο»Yy–gζ=ΞΙ—ν‘ŸΪ–H;Λ³Θ†²(Οt 䑘¦Z^έ΄–ζτ%‚Μ*ζ N5‘όΜύwlž…e  ?/ξέ€η_yηΉKΎθ䐸1-_ΔΩ°}έ‡›“Γκ†ΞΌ ΤΛί Χƒ„—°©3˜›/mbe}šoOgž¦‘4Gύ&l(›!·­΅…¨sz]όΌΤΚ―c›4G6δ¦Ϋ•KvγιJΈ³ov­|Ι₯ηεyœ•ηςSψπνkθΤ=χQšΖ’|αωR5ΞΙ™/i2 ·š’fηKvε™έxᕉΌ:_rHΞGζΈC]Xž%΅aΒi+IΝ\Ι¬τ2NΥ /¬‚ ΰΣΎ·;ήBJθ™ώŸ#r³‘ώVμΗωJβB»&ΤΕnΚ6rθ~O%7‡υΣ rˆΰr »pρ‘₯…8ς‡x±A"EΧUD=œGΒbΙ·‚Ά½/?§h^ςŠw?ώEΤπrΌIo·lέ†«π‘L^>4kφςšΣl’'qώwώgΌvώ`τ²rFŸΆœ™°ͺdδζνOqκΔΕΕX€Ž˜<}…~‘L&Πωΰ~υΣ·…žΕxpξΜyΕοΙ'(v§,ͺ΅ L·ΉΣλ‘ΦΫΑ©Ϊ’VVΛύ:±ηΟTΙ+.“π“RΠ…Ξ°ΝeP8θ«S˜š‰–’έrZgYF+roΆfΓ‰πLΗ Ε€vεj6ΎΠŒΞŒΎAΝΒΒΌ|ω~zxεΠYΠ0›W'πd€ie§ΡκvQ΄ia¦CΝ"ŽΗ  ΤΕf~|Π'X^2|/ΚΙՌšo'ϊΨ&ο™Ο'ψ~d²„DŠI²Όv2?[rž±ΟΒψ`|M@žΟ§ώ:C ΚkMd+!°Οπ€8†ζY!52KδΩ"I]z:LZŸΨHs‘© Η T‚onJ%ς>«[Ν—’SτδχβωΚH›ΗπF:Υᄦ~£ώρι!eϋi›N-Όσ~Œ“fλ9:m΄>VI ‡‰ό¬χ@9ζš\mεGͺI\ψ ‘¦½σ^Œ­,`aky™…h(¨E•²LΏ„ϋώΨšή ζTN.‘*υ–-€ΑYζ€ηΥ·γ›—2πΔΐ&©υK'υ!Ρ! ‡>΄ΟυŽ’ϋδ΄rkπ₯7ΞγύOγ!½>žl?‚—ލsΓ'ƒ#Ζί ,δ§j/!ςά ±ώižτ/ΐέμΑ©γΗ©Λ•ˆwυ“φΤq.G MΌςΪEΈ{'ι4.ͺcϊ¦{Πώ l‘ͺσ=8@': QΆžξ£ΣU‚zc^5^ΘάBΪΎ}΄F>ƒ[AαcKύ3^U Ώ3$–Ÿυϊeα\Υ1*,­Α./­Π‰/MΈθ―‘ξCψΗΠΉFΤΞF[‘*»zcqΧ¬γA³“ό;;†p”žqu€Έ_ύFn=μEΧ(υΌBΤΧΦΰΰ©(z œyώl‚Π3<…σΑYk¦¦Π?‘uΠΪ+qα…z’Ήo‘|yŠΜUIB…η^.ή §O1Λθ~Ё™ΜS~­ ‘|–GρˆHΐqΝβ,¦iΙ±VQφM<'€xήιx”r―Π©|*oΈ£[‰hN9xπΥοδΰΣϋ}θžΖZ^>Š‹ά¨―‘ B-U("ΝθσDp–Vθ(Ό»m%² •MldηΣ©΅’)!­2mΤ~Θ–>>l¬Ρ36oΗ(Ž5’Ix.(Ώ/}-7!ζΖρD Εί–‹Ή«-€)9θΐσΝSk7”gkHxήcIΎ$[~jH ;Λ3εYX“78ƒ/β>Ί;w Ψpι ς}`|`Lέ$!Δ³!—μΟ³Jpφ₯Λ8TDχ/F&¦0ퟣΣ2ς±ŸHΨηŽΙσΑ |SQδΈ)ω"TL:-[° $γ¦’ύ˜ήτb>­GKh/Ο±i>™F fζΏ‘|‰1½€ζw²?iΟΦς²‹pšΜ ²υ(½wLι‹τή±Ή/‹ή;ŠiΎZ’›…σ+Ηδ„Τ«%Ή€Fƒέxš$v²u7Λ—Άs—π’°ρI 7 sƒρ”?…ΧΣτseΠύκΜ(>μΠlvΰωφtΫνœ/9!'’ΥΪIy-Α=–Lθύv›δ|¬Ί<?–g:Ι³kΗ“ŠΎΥΗΓρΒU7^Α1εxξa<θΊξx;+A7Jςδ•Ί‘M"‰ΜΒ1ςϋΏΆμš£γ΅ξ±ν$@ &•Ϊ8G.^jjQœF‡ήΑO?»©ά?[Λ ¬rΟb–א¬qΆν β0|σ{ψ‡ ά‹–’—ΡFgy:/{ͺδή)ˆK‘λϊ?£1ΠάވŠzZ\>vRq΅<‡ηΟ|€·#ΘΛε8χάIΉxxη†!YA Ε²%|0eκQ^GD8ϊn5%lΊρς³ΫΡ ŠR,EVD¨mrˆό WΆΏ[y“’/~άΎs?¬L”Σ"œbˆ0Χ"Μ)nK iΤΐj7iά’[Ν•32Ύέx&δ`df1\ΊρΡ›‘ύ1F„½X.9.—ό“ o²’z!€€yLΆ•3rΙ\f>tuυΰl“°Ρ₯m/vΛZνSxbžΛi.KΜΛyΪe?I/Ζ-4–εΣ”KGP.Ηύ]ψt §O· ”Κ^Ÿϊ¨D§Œ‹ε]ΑЍ…H¨ΗFύ7Mj6Y‰°`?Ga©[Ή7YIK K_«ΕΦςΧςXšώΏϊμn(}τ*i ΩIkyUk17>hchμ΄Π¦|ͺZ`Φ„V%Λσςωx6ύˆY&Ά+˜ž§―ΘΕ—ρ-Ή™LpέΒσmΚπψ ƒ‰η­$»x|Πυ‰ˆ+γƒ>²›΄Θ{ΘIω ς^ »κιGZρH3^"&αωΌνχ# ₯NΆΌv(?±†6δΌέx–Η M εωΉΧƒΊK$‚M™―ΌN?%΄dYλΔνΞ(‹ς»Χ5„Γ€ΥTδ-R;^xIψ…efςφVGΪŽKš\‹kpϊ¬τΔΡϋ6DpŽBΐ1‘~†Τ슲:•[ŽΦΡwy‰4 η„ϊ§‰…I0?ΛυΛt£\&7‡Κ’›W‰Cαε έgρ[OpΞΒ)ΈκΖDVŸΌ‚*œ»@Ώ°Β†$ZΘΥζσGδ/ε{GXϊςm<ιI \h†Ό2%Δπz£oΎ/wγΰ‘fCύ%΅ŠFenΆG%8Ÿ$-π²N‹αžΑH­ΦruΧ9"ΦqΉ"€œ>ΆNHΖ&H)η9ψ&΅ύȏw>Ύ‡βί:)‘‹s+pϊyα§Kάπζ䉳x©YYEΣ‡!ύŸ]#D‰ύƒοέ$MΤ^|πI'~η₯6 ’Cη/¨rH›ˆDΉ8Π~° w΅ε0eOψy7•‹.Pbσ‹ς%ΩςSWΣΉayj(δYΔσNŠ«N<'ώt½a~ŸήTυ ~vδRβσ¬"΄~mΊβΙ7K#ΓΈezJf=σ>:±₯\ΌΟΝ©Δ₯šJ9 ιΊξΗ΅ρπωΌ>HΒw™9P^'HΫ茼;VNΆΘAΝWλ’f&½ <Šx°(—”τνΖSΨω–],_\y‘Ι²"r˜CΥ!xδχςU"=Ρz›jά8{βwpΎΆ6䴈'OήΔ―ϊΊΥ qlξ3ίΒ7_;‰ ‘K3υΕόβ/)βCyœdbxΓ7CΩ녏μU¨o¦ώ―ρΙ΅¦6lβ#53^*—dOn„‘›)Ο‰δf S8V#ОλI³'ΡΌzΊ@Ό ·>ͺ’𻍛ϊίqωώΌxXH·€ΈjΒςoΨΫCϋΛ8*«·˜Ίƒ»WΝ·ίκͺJ»vW8F«ε»E͟aai7c©Έ:MΙ,Μ`¦ŸaΖJ~φΪ!,Cα6@Vθ",‡•Ρ‡‘–“τ‹eλΧ1Ÿ?΅-gήΐ+Gε%^r_Έ‹"8λ!\ΓΚf·ˆ4§yΡSyšrwhΑOpXš†o+[σ˜Δωg²œ©ΨŒgJFdΆ“X.m§\Bώ1|ΞƒξOτ2Τ¨8!—ŒηΦ· cŸ?%je©υ΄αμ•,e\ξιtp •Δ’œvώ ›uκqπL¦(ύ½Έσ0O$8W΅œFƚ0Π°=1‚Η’m33‹EXΦ!-Οt”#,Œ'b–ώ%9ΟΚx€gz| /IΊIKψΝ'οͺΪͺN’QϊΦL2{˜Ž2%R°17>D$§z"Ύ†Όfη§LhFJ`^Ύ<‘ωζΖEΝι,½ήŸqYeWd$Μ_νΝ—RsήΚγƒAΏ°8>θR(q£”Ύ4λx*΄‘ZxοΜ"Ύψc±ΦψΏ½ώi”–Εχ#JbΗΚk‡Ζ%λr^ΒΦzΌΖ)Λψ?ωσ{ΟΛk˜Xg°ΣΑ„ω<=iY1vPλƒς]2؜Α»£]x΄†΅’ΦΙ³Ή€^"_ ,EΝμβ ޚΪΐΉRšθΎd ZBμ(4υΫXÍρYQ*L˜ .š›Η ΅)[Ώ²ŽŠ>UΘί¨΅9ϋ½θœDδ"Ύ6˜h_#ΝQ:O‰.°½›;~L0ΖΑΪψš‘ω{»ΪjΨΒβtο=|Όzκ8<DϊΗχπΑΝυ}Φ H¦σσυΰηο§αΥs”—Β* %Έ<…ON’όΨQxτ-Ze&ΊπΏάΐOΆ ΅Z~Α–"„ΧQp5ίΉΘ Χ΄₯3t$Ήh쟺δΓ«mΤ_ΚΟFύ°/κ _Ί²‹7Kπ­Μι3KQ›—r[BWpΨPΑ>RκέMχ>ΐίηπϊ©VΥχI±6Λt”ρ„~ύΗΦσ·΄!Κ&1Νπώr”Ώϊlυ1Μ†z’IΠ4(ši υΗψjBrLθν΅ Ε—/+X—ε"@pXIολ•ζŒwFθCχŽρIQ‰%3<2ƒ©³i“ΔT“΄”©3=ψώζπΩvœlΦ|/Ρ ’zθαa:5@γΆΆ"ΤΞ`ΌΥ„Q¬‹k αH4sύπc"Ζ½tϊφ—©ρύγύθžLΓ±βζ‘i±>‘HŽ΄`Z.ζδ`‚Ο»&?U›lΘ1ZLdήcUΎ$]~jI;Λ3‘­g$;…Ή€`¦ϊ{0]1>I^|tυŽ^{3…·%—lΟ³–13ζ…ΏΆF8LΟΐ, οqn܌ώmNΎHI{πifNkNm‘3Yςβήδ`ΨfEΩWs ’ΙM­΅8=K!8ֈΜρLΊŠ ’νUΩςάEγ)ZΧ0A! Ιcž6ˆUΉ$Η΅OŽŸ"Χέ*_–WδΩWό†XΥΎς|)%ηK Λ m7ΩFy¦Ν&άK"‘ω)0wBΞ‡xή³hOp¬ ·–&§…}ύRΊF \&ν͐GχέkΊ…£πZ·Ι‘ILƒΊ»ΈBλaοιΐBX{ŽŸΓαŸήPہBΏ(‘ύĈΎ)=l‘Τ¬δ§ΐZ;¨ρB6$΅(τk‘z5΅πК݀ŽΘ¦ϊuBϟ>ΟΝMaMσ-mIš?uΑ&ˆχ7:υƍΛώ'‘Η™έτ1ΰ/qCθŽ‚±[N»ρ€”JœY.9-—Ί1ΠΣ…c)—v§ξ θ’ώΆ‚Ž„:³Νλ€α\š/8!—lu8θοz ΅ιΉ­9/ΤΘ©LΠBΟ ω&ζuNUϋOνηc†΅*ηύ#βXΰ‘TΛč7ΐΟ:Ω‘G|/£1Ÿ΄ν†rτyΗ•Ό§Ό£4ήJγMϋΕWπˆΞm „9“5λΈj%eS½Σ2ΡUW<»ηˆΖ 㟦ΘζΖ!ΒlνΕ"Od;ˆ^%‘v|©νœ2?σNviζgJ Ρbn|ΠΗ‘οܚ#šg΄Y,ޱ:// ›«JΙ{pρΜ—q²,43 ήΓmaΞ*xή X•gΒζ;BΑΕ:žΪDZpψω³ΈχΦmΥρΜE΄ΚcΪΒfϋU―H[|9―Ζ±>ŸOδύHΘΧΤ|^˜lyνP~BΡ­Κy!Ž`¬Ζ³:>HΉμόΟnbνyHu†Τ“Χ;Ώ—&―„ϋ-΅i Σδ€s2F€4 ή˜œΑ:ϊ΄š4λdξ“‚­o.c|inW}‹£x‹νκ\…(ϋΰS¬oRύ‚‘υۜΖ{cΣpe’,‹N~Ϊ—Ž4Βdλι&½‚Ρ•c5–ς£xγσψ)¨Ξ́+=“Ϊ`Άˆτμ_™…O3dahξ½‹DΏδš9άΉu“~ζrκΒOθηin@i.}¨?²n`f|Γz>f”Νη§Λ+[ψ<΅EJHΛφPH©GGg”< œ'ϊπΦΫτ3π w2ί€•yβLB'eγ@”Λ{οΪ{ΈwMΎ‹rM(?υ[ŸΔΟŒΎ\D)_Έσϊ8ΕWן½wΥ½oοΌ3€Λ+ΡH„WqtέΪΐΒΒκ²³‘Cο)Β{€`Φ·HΫσbPGˆ=΄¬Κ%9έxrόTΊξBωbχ™΅-_¨½yΎΎ»]σ₯„ε„ζyέNy¦Ι&ΒK"‘ω’”U’r>’ΐ;ΥaΛ3WY}R[FXAz6¦ψŽ5ΤΙ<ι»F’§Ί©@Kϋλhj£c} x1K‹sΘ,Amy+ŽΥ6©$M~·•cΚΙyv„v2Fά]K;~Ώ‰τξ›θ_ΞA[σœ«S±κΎ-‘dŠqΎ•ˆ΄­ΟaˆςŸ›Δ<©„ήΘ(@mι~΄Τ΅(δβπ°Χ‘όέψάσHš€C·τci*€ΌŠ7πj΅ώƒFΪΎMLz―β>ωš0B'Γ¨f‡?Έ‹ΎKg°_ x—œΒοόٟβ£λ·ΰO―Η™—―ˆ4Ν¦e*œ²@]Š _ωS¬εώ ξL‘δΜsxώε―`ΏŒ[Xbέ·bμJ»XWΛόΙlཟώςρκ_*XιΆΏύ§h/™@η­Ο0ΨίE˜ΡςDΌˆ t¬™d&ˆ Φ‘O‘ωKh;"Ζ.<Δ]"[2΄›Lλΰηρo~/=#Τ‡2‰¨ΎŽ™ΞΠZw |r―\B›PόvόΞόχxϋ·p›Φ&Οξ+xν‚\N γΡ’Ω ω)#β―•vˆΜ΅SD>o―pjΔώퟒ˜΄5-Σ«YFυο‡o㱎ΔNΑ :q„“νη/²„.V%snάn9•9‘T'ίΑn9νΖ£~k[*…ήω–Kςσξœ\zπ›Op’δˆ8ΪUœΑ·Χ\ΝoπYη 1qjΡΤzνW.Αύψ_‚³#rΙfw{όΈ/ g­!Bp—ΦAk?WΎyšv…oŠY%Šgεα/ΰ‹U«€ 'ώxόήOΠ’½°#ηύCπΡ€Κ£Μ)'0< #c_G£RξyψΌκGώ~‡gΞќŠFγν·όΑΝ>Β“Οz°κ@iΉMΪ±ΔAΈIΣ|Ξύr-jΪqΌFΦ㲎u:ΞUήί^VZƒγνgiÝτ@f}y;Hkq²ΗwΉ¬ΒΥΚx€1c^s‡ -ϋΏ†ΙՏΜlΔι6š+ŠΔg FσΑ»hsˆm1>Τ{^Γα}ΰΣiγ’Ί9ͺ₯ς<^q&ήJ:ΦζI›t_Ψ|ΑβΌΌ°φKψmΪϋC~/ζΦV‘_ΰΑώΊs¨‘λFsΟ[oj?y|ΰy«½y+Žafεοΰ$­υΦG(yξ[ΈςΛΚΖΙ±Οξλ63Β†œ·?ŸOΰύHγŽ•ΧφΗ»rήn<J‹γƒ *\“>‘_Ό-Ύί¦:CͺΙλTθ§Ι*γ>:z’ΝΞE`q5ˆ^ϊν^³†ΡΕx” ΅φ‹D[4”¦‰c³–hq|ΩΡ"NΖ)α=άO„ζ$•4™y%©JΤ7νŸΦJšμό¬•no‡žσMβ!ύ¬˜έυLΤ£ύ¬^ΑΗ†¬@αLΨ€τΫ^“‹2χ2¦ιcΨ\`N“U.Ž4ͺλr««?ΆΖB Yσ–Ÿ±ZAοΗςΜYyζQΆέΨS¦}tψv‹ΞPνWgΡIΏkθ„˜QηΓfΫ`ωβ¬|±ΥP<_²›i—Λ‰DηK;^Ξ+ ™Έ…εYβšI!MΒLt»aάx‘ε ΚCΡ—¦?Ζ'Γ‚Ω7D$‘8†nΤ՞†5ZθΖϋw¦­o?Εαγ§₯(Emxρ,ύΒπύoφHϊλ db• ”_CmX`ε6€Ού·ePFΝ«8†#Jx½%sΎ#:ΑYt›ξnγ­_4γχΏ}EΒ·’/~­έ0/ΓM +CwΓ€›ŸάΖ1T,.?”΄γς·…_”ΐZgθωρ―‰ψ{ω˜θZuτσψ=ϊ™7Uh;'όFYμϊ)L2)ΘωN)Z8οή4Φ΄i˜ZΘ‘ΚόδΡeΤ•[<'.ΓsBΠλGΏBšξΐΥχ―ΒσKρ‘ζΎπ‡τSƒ‹ΆΕήχp΄~ ωΩnƒŒ?Ί~ GEŠϊΟωΟ«ύ§{c˜ΞaD/ƒ4l?α 9qŸW‚B9`Sšο.vΛi7’ƒr%RαΚrIh%Gε’#Όύ£z|‹ΘUβXZrΎ&ότύΦ‹5Ζ¦\21.Δ7&―w’οkη±_SšΎήGˆϊι’ΉνηΞ‡ζ šHd-£9‘ΌδΜ`ζŽJpΆ'η‡15>HgΧ7Rκd¦FAŠ˜D340€!f“~νjU7~φ/Œ?ώmiσP~ ΞΏ!ό€Έ±ώŸυΔkGεyIXΘϊ ψΚ^P‰ύ}4΅ω9Π~°0©·b£±eΈ­‡ΪΔHyξcxυi~ €²Τ‹χo†Ο_Λ–ͺŠ6΄VJ3шΘ%mD~–\—¦fΒΞΦηε₯ybbΡη»άσyξ)„ζρAjΝC9c’k’ΨσVBMξΐψΡΏ ΠvωχşΆ_Αψ#“9Ÿψ|ήϊϋ‘Π¦n’-―νηgWΞۍG;Μv纍/lΞCδψΟ“μa|΅ύ<€:CŠΙkγ–Ϊ›ϋ²\{³β\kF€`F A\ΕO±8+iu4J*ΥύκdΞmΧήΩ„‹>6Hϋηΐ’ΉX©ͺ¦ν(Ύυ|#Ζ†ϊ1βυabv›tςBΫ‘V¦ΑΠΡH»΄δgΙ™3;T—_ρΚo½!ΟΜγΑ!Δˆχ|¦ΊΏy„φ†|αω’ωΑ!w>©.Ÿβ•§·€p8OςMA;<2cŸυΎKΪjw‘£πζbmδZ@οΐ{ψήoΎ‡Ησ‘υύ~όΰ:iψ‹τ40wχώίΏ―ž•±9/‘£›ExΗoαν«~=¬Υ½@GψEζ3I_˜›z»ΊVΨ UYjpΫΆΐΰΏόύ?£Ϋ«eΚ*7ρΡ―ο(ΗN‘:αpCZεRnl*j“ΒC©χύoγ‡υ_0θWΫB/nώς- †Ϊ9<½Ηoύgόψ½›Ϊ‹'ππκUΘ›2W—ε )Οbͺ·ΣFω‰Ο ϋζΏΰΏώνΟ”bˆ–šΧpμD}Θ­ ήΌ­χ7ywύο_Ώ‹ Γϊοʚ^%Κδ'„ο ΨL'ήwσŸρέΏώAt‚E3_νQΊ_ΰ―ώφGθ˜ˆπ ―£ΐLΏΆόEͺv»ŸΕη¨,·@!8Ο.Œk΄eΉί¦œ° ΚAtv¬Λ%ηεδ'ο_}{#ŸU±#,Œ``pTΧ'lΙ₯ΐ*–δT ‡…MuάX3 @±o ο>©IVΜ ϊξέWξ",+kΚXα§s ͎+!‡δόπ˜ŠαΨ`’©ρ Ÿ/ΌαcOΧΫψξ_ό%n?Τ•J{πφβήΝΟTνΝδΉΊha§ύά²‚―­ηΘ‘φ³0i*of|ƒτύ7G΅σ/ΩπM}Š_όϊΏα±fCŠκ«±…wΏ¨γCς2% ΩšΨ†Vί\Ψ nc^Ύ±Ύ¨>CaΉLN~Š_EΜ=)Π{‘<ώM<Ίj8ήθύκΗύŸυΪ›)w[rήφ|ήζϋ‘SΘμ\y ΨμΚy»ρHγƒŒͺ\mΝCδΚρ:ƒŒ„ξšZςZWτ=}“–-m^ΫΣ pεF€`4ŸΫ@Εώ-؂{ͺϋVΜ€£wΜ‹ž!/&vΕΧ_γZ§I_ZkšqώωηπΥίΊ‚―Ώr‡kεSξ‚Έu·αˆ'ƌΐΞA`7Θ―XςΧ*{BžY…Γ36`ω’nOΘž/ιοRXσ‹έ ίvzγμϋγπgt΅sζΖϋo9—Ψ6¦tώχώwΌ&|dχίΑ?όΕί(Δ'²,,؏ŠΒ"δ¦g!ήo7·Φ°@Gν Μ“\"σt£©ΆE™Y䡉΅• F'Ί£“ΐsιΘψ’bδfe!+-]Lnmݏ©±nΡ12ŸΤtqΧx-}e˜ΘΧ@ε₯‡χΖ±2ΏόΏρ£¬k㍆Dσ™Q‘—KήXž›Δƒϋ&Σ&ΝΟ'Ϋj‘MΝ±I;Τ'{n`8œDfies;ͺΚK• ‘%7—¦0|ηΎ!aψδ77|ω\£˜ΚΨΝ‚ο†iY3HήQ'›BΒFδ΄/Iϋ#τoΣJνvp΄ΖQK•ηΟn9mΖK\FΑ{‡:³\’ΖIΉδn>u’,Δζ2σ7‰ΗQ΄Γ‡ϊE2εR2Ί’“xΪ*o eMX†Ν Ϊόαnjχ>†·IΦ'σ9²…‡ΝH…Ενh..E&)τΩϊςόzgšΉΝTwB΄*ΤW”’ 'OœnnΜcz¦ƒŽoŽ]6xήšθΌ•ΗΐΙρΑΣώ*KσΕρvun χΜΎοΔ~Τ#|νΞη­ΌEdjΡ!Ως:ΩωY„cΟOζ<Δξσ€[gΨ-ςϊπαΓβσΠΫ?ΈkŸ‹¬†sΨ—nn³άa›+VRy0"•³ΝΉ9—ό™—^Η‹ΝDšΖO~tΣΡυsηJΙ)1Œ#πμh:³ό§˜μMΗTŸDvJ#|άlΩΔΒΜΎ”φτΟbυΒ†ƒxιp=ͺ«Kpj¬χοήA‡φπΌ°0|ΛμDv‹όŠ&w"ζ\&F`― ΐςe―΄΄Ύž<_γΑw©ΏιΫΟUFœ[³8Ρ#Ί666ψΖwΉͺθžŒ¬ Α7–˜›ο#ςŠεhš ŒέΥάΗ±.c€~»Ϋ”£²Ζ‡I"UΌΪΊ–γΤΡƒJΥWV^IGΆτί!|cεκοΐ½λ&ΙКt'ϋ;0i*Γpn›’‡j)v΄¬P‹iζ,ž&3ΥσXFΏν5Οζ9Ϊή:ιSŸ›νΐ} υ±wςέF¦¬΅y|ΰyk’σVœ†;h#fDέ1ΪόϋQβ•HΆΌNv~‰#΄Sx6σ»ΟRlεuj<3ϋ2s˜άœMυLJ933…ΜEl-•S žIA8SF€`v(w22³PDδ,“wd³|ŸŠώ;φS¬Ή‘.ΌI?ΑΊ ‘Ÿ“ α£ϋƊήX‡οŠ1ψ#°σεΥn_Zy, ­έ„²ση1»–/»Ώ£ΥηKѐaχTD€ίžm«1ΑωΩβΟΉ›Dΐsι·ρoHKσπγ›κνΖΨδ$6rλpμόek ₯9u'γσΌΙBok°ψΰοΧ‘Oθ7–'ΡmB;τΆ‡gφ ,—Β=1ΉTXλΖάXτ•ίTχG+ώ}bxΖOg„ΰηhg΄—ΒYΈ_‡γ™˜X.9ƒ­Ln Ο’ςH5ž>}JšœƒJβ©ξ―T„-†πsd ;¦8ά―iΐT—ρΚο Jœ #ΐ$‚ΛλDΠSγ ς.ηο#7ΥJΔ°•——‹ΎώΩθ§ΝĈΎ³½φνCFY φ₯IJvvaS»tE˜+0‡ΒΤ—ž`F *‹³ϋ0Υ—αjdRέί¨NμΖ0»έ,Ώ’ΙεέΣz\F`g#ΐςeg·—Ž`μ!κοwρΚo•¬ͺ‚ΌKΥω»ύZι…U»£"\ F€`F€`F€`F€`F€`]‹@ϊιη.όΉ“΅θq29N‹`F€`v1Ϊγ¬…j χOŸ>Eε‘jΉY† ΥόΓλ'Χƒ―Œ#ΐ0±—Ÿ©&Γ Μαε―_l4Ψ—`‹@Έ|‹'všΝUŠŒbOΌκ³ΏCa^Li…₯ΘΙ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#πlΘΚ+2Μx}Α/Ί»έnCxށ€΄Ÿ•_ͺ ΊοΓŸ=ΥΉ$xsγύ·b¦Ppψ՘ώμΙ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œΐ³F cbFPϋ¬‹Βω§0܏RΈρΈθŒ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ# CΐUV―»—o'$Εȍ²“₯λΰΰΝz ’@IDAT ήUu@/MwΗ7Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ€ζžs«³Z3>؍§©…₯ρΘ±qESΆ&Ž‰cψ¬S04ς3Hςσg‰ΘΟν”σΟ;1$Κk[ωe‘<'E9ΘNKCš(η70»<…Ρυ8& ηm½?Δ){'ˆΛλά9Ρ™ΰΌsΪ‚KΒ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ(”»jq]š¬H:οIϊ8χ`¦½ρ>Π)©™·d™Z0yΩiΨξœ œ,ͺBK^ΎAΧΠν{‚ ŠŸΛՈoTΤ(χΖ–<œΈ‹»p«ω¨Τν%Ν8RT‚άπΜJπΨ?ˆ[ sα>|oΜ ‘„β₯ΟζXm=|ωόΑ—OŠωaΆ?ψ©‘ίU‰sː‰-Όƒθ˜0θPΦsŽ#Iωeed‘œ0.Πe3+Ω‡ΎβbΝ΄HβXŸΒ[£½πι‹eϋšπ¬ΞΞƒ;Σ…bΪ@Q ρ¨)½%άφήGΗͺqφδ“rb{q15»"°ε’aAw‘£«ηŽξΗ‘ΓqΓ‹P³'ŸΌ‡·;όΦ+iFΞ[OΥ™™΄‰‘’Dƒςζ\Ξ€)§’—ƒ² y<΅9‹Kx$YΈ6νΗΙ’Κπ‘ Ο―ϋρ1Ν»’Θlmfμu΄ΊάπδΝ;™%/ξMb4,1»ρ„dμGNŽ+a•αΫΔΰρ!q ­¦ŒρΑ ω)Χk;弜Η3Ί&K^ΛΥ³–_N•·β@~aδ»»˜` | £ΈεŽxηHDΞΫ{kΘΧmE€ευΆΒ›ΜΔmΞj“YDΞ‹`F€`F€`F€`F€`F€Ψ[4ΐε’ς¨•.Θ­ΐΕΚt¬va(j(»ͺUŽW»‰EW]Έ―—VFυΘΕ9ιzeq¦ςλV·"“΅ž_.ΞTΆα}μ64€Uοpω€=½‡›‹ΫL~5,ΐ.r$’ΎάΧΤή·}υ;y°A"7SΓ#“†ZΚk›pα„G,DίϊτΆœ“•ŸwjݞΆθ!Ι.Ε‹'·θ)Ÿ¨hVΙΝn™΄/ΕoΙ+½g*φ£Τ(ζ ’εμΙ]gεΔΆβb„»EG`Κ₯θ…Mqw .‘ΝD­5Θ «J”έ a>±oΝΘωΨ)l§―Z«Μ°yNΒΉ:Πo“5Ιum+;‚η ε[ύ5³Ο—6Αοˆ £ιšΉ+Ζα²:ΔΪ&WšWƒ+5ϋπ–.?»ρ¨LΆΖ#gΗ3Θp‹8πœYΙqgΛ3+5±6™γƒ£νΊrήŒNEIžΌ–Jl9Ώt7ͺ£’›₯4Λσλp)m?™Σΐb_ΞΫ{ΠdΝΦνEΐΡη:~Qχ΄ΌŽOB!˜ΰœ|™`F€`F€`F€`F€`θdiαυηαϊ£ζ κΛQαΞΓDO‰}φΉ΅8£!7mrIL΄2ΏgK*$D™₯h*,ΔΠ\ jΞσΰ’†άΌΌκGΟΌγλλΘJΟ‘#eKp€05}݊‚σ†η|˜{ θ)ΠΤSΆV0N`΄‘_³ ΉYCn ΰAp™e8Z܈ζI³φ‘’J:B}³{ͺ“¦peέϋq°UΠ-˜ <Ύ3"YΓ ΰΩT­²“σΧdεησ⎬&™‡$‚s…󡉙bsINΈτ4Ζ…,ƌeήΣ•«!7―PDΝ&…υθ₯J(]›rΧI9±έΈ˜GC&³r)ιKF†%ψΒ«q(L«|B9οt<—θ} Aqώβ„,ͺ±³‘“5Q©[hΏšN’ή? ςΚq4{ δ5»rήζϋƒ ψ9J* °§ευφ7œ·c΁`F€`F€`F€`F€`φ(Σ1ΫΝΥπTγ{οݍ 9»r³πΖΕ#ˆΠϋφνΓ΅‡ύ{)ΆƒRεˆξω₯aόlR=(»?Ψ‹ά¬|œΝΧ“΅ρwΎ½—Šλ”cc}σƒxkΪ«)φ†§pgF"«ω(Ξ’λ½ˆΑ™!˜{blδ—^†Φ’"%λa>₯ϋΝi\JC§’Žνl7j²Yω©‹-QpεBΠΥ8§Ρ|¬Vν‡κQ*Ψψγ!tF)䂆ࡡ΅ύ›μόΔjgFlˆ‚†sΞεϋq©ˆHd‚ͺnbΦω5Ητ7cquŸΞn`m}S‹AΈŠβJ‰D”›Y_6܌`Kξ:('’‹s­ΈKSJΉ΄K‘WUψcOzΠΏRŒWNΤΩY9o;ƒD#.NβκΙDS±ŸΖ]ΪΤw 7yhRKΪx”Y‰6a<™ήι'Έ"Ο.Ξγ4œsEΏ,δΡζ79!σt #σc˜˜Gͺ>­q"Γ­ο;Σ‘ωuΪ>Νψh7ΦςxδΰΈ’VYz<’y'ρς,Ηƒφ Α3‘σqKe?@²ε΅έόΦ'ρσ£ρUX_XF–η<‘χέώU›rήΦϋƒύVΰ˜f0x^wΪ:ƒ™jp˜H’ΥŽ‘9³ #ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0»λDX-+D]…ίΉr*‚δΌΈΌ†_ήxŒ/_lΗ…cM"Lrήε"nυrQœ™ EDŒ…©ˆΛ€…(•MuQ5šCάεi>Φ“›΅5Σ“Ož‡"™σΌΊbHRΤΖ–νvςk((C•œΐŠŸΘδfΩms A*^Ή\Ω]s-¬=€—ŽT#“ˆ²›itLρκ ~σa¦5a³–7α gZq¨Z&e―`jΜ‹ϋŸωPy …Dd x{πaGψ_:ŠύΥQω–|έx» xωl+«+P$±ŠœΒ`o7>xδ‹[VΫ€ƒυ•¨*+FYAςBα°Ό€qΏ#ƒ}ΈήE#eyΎpκΥΚ”…rŽβώ“EΔ¦—ΰάωV¨―@EͺwiޏIŸCƒΈ7δ7g=–υO£λɐ& ΒI4d`Ϊ,‡ŽΔ–MυSψjΒ°@:}]›θzˆλύα41*η ‡ΠΦP‡Β%HŠϋύγΓθ|ό·†΄αΛ/‘v+fγšPΏ&-gΚ*₯\7fαέpΡζα!ZΒμZHS¦2EDٜ#  *ΦuYr'ζI[g€±'wbY’…KdΕ·Χ…ε’r)²‰ΪOœD»§šζ—ς\ž AŽϋΠΥՍN_x·"—„ό*ρς+iC γ}x0—s‡=hͺPΗ—±ή\»Ϊ iTβ\yυ 8–l.OβςSŸ@΅e-GρΉ‘uvΈtcΕ–—όφγξgemηΤH–mQδ|ω~|ρT-rˆ·ξΒ{γaXFzΌ~± ω€ rΙΧ‡·οͺΪώ΄Η±ύ΅πθΪ`}DΞ~ο‘N›bSϋI―Ι…fο A‘†›?ˆUΫΟ!»±…š†6œ;―ύδzZšiьωΕA…ά Ϊu©’‘ΘΝΒ<04ΡΪ'η’ΐuu 7bL6-Ÿ†Ζn―·Β|Άχ– ΞΫ‹/§Ξ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0{υMόπƒϋψζΛ'’’œ;‡&E„˜δΌ‡;Šκ›ταM&tα»Φδ£.W&+ΡΘΪ(;Κ^ˆω2e]3=* εΩ9Θ ςΚΖζ |λαu–*ΰ’02+°ΎŠ5:jΆ:33f$c'ΏΌ •D;Ό4‹Eζ»K±ΏV‘I ΜJΘϊ§m$5JamΎφϊQ”θBδ ’Ά―ΡO6Α-_$ΑΉά…Ϊϊ*1ŸˆDίΘaiθ¨Υ”2τa±:ΔW™_^DnΡA|½¨šJ–&ρΠί‡ώ0Ez…™Ή‘£Κw~#ΎA?ΩΜ―ΜΰIpKaxΨΚ/ ²~˜Φ‚r6škςTލΖ]cΥ©iά‰°ρvΖZŽ_А†—§ρ ssiΕh?Ρ¬#=onκβ•²'Œε2•ΤΦ)EšΖ8²s ά¨«/3$f/ΝNcΤ7‹@p΄/I½¦Ž43Kδ Ο‘γΈ49…«Cr{Tβ%m9η§pοΙ–²KqδXcyX)Y΄5iΘΝAt?Ε$©ΟΞΜΝCIy)ZkΛ(”N—6ΊΖ^‰Ά2α<ˆΞΞ>Ÿ`υ‘n6ς±ΎυΩΕ€ε­Z"£M λ€l3€B2ν)f|ZΓΉΈtρ€†άΌ@ε(©kBkˆΨzκ Ύ7q]δΚ%’ŸZtkν Ζ³m³Υ―σρBE+jΔ#‘Χπdͺ]ϋ<8!bme{4› ιk5Ώc™žg9SνՎάuBNΚ++°Ÿ4ψ―λδΌΉD‰―oEhΤŽ’ktΉU΅8ZΪNSέ€ έ!9?‰ž)μ5δ‘‘Ύ†Ξ^Ή¨‘k=κδmJθ΅7‡Iψ6†œ'm“σ€UŸ&yn"+Q^Γ1ςk*.PΖΎ)ߌςά+zrσ0i²’6Θ+­ΔιΦ1LIσQΌΊΔOξθλ?εΐ“uAƒ3Εy8ά,G†c³˜R‚Ο‘¦nρΫΟ™ρH―žZ(@ŒyON*εyΤzcKRά‡p:_ή”’Vb~-@urΤv°΄ ρ-ˆρEsdjKρβŽGNŒ+ŽΒ² ‰%Ψ―yήjΠ&<>€bΰc|0-; ςσ³Αδ”ΧγtK…θ\p/υγΝG“r0ρj]Ξ«Ρ­Ξη~?²2ŸOΆΌv<Ώ\4V’½΄&΄Ρ’ήϊ‚θΪTρe‹.ηνΌ?ΔΚi§ω±Όζω|Όω|rϋ¬ΌB—ά\97F€`F€`F€`F€`F€`φLrήCν@U»ζ'ѐCš‹ˆh‘›[Χ›Š0±΄i–#^Žh–WΖqurΨ–faŠh;‰ζ\—BR.Θ­Δ1­ΌξΌJ\ΨΓ€έ±_σαΡMηh¦ §gιWδ{ˆ *ρΤ^~9ΘɐY7Dœ}™kCq9$*S€_T™I5€u²Ά΄*Β‹wίΌ†ŽΊι;“‹ψƒΝΞρς˜ΖΝχοΰγ! ±‡΄ξ^¨Mƒ€μ؏‘.ψηΌψΈ7L=η£ Ÿ ―‰·Τ“fh IZ}jΪκ±_nΎωQόλn@έΩ‡[ΎEόΡ+νQIΞEωrΔάzη9X­ΗG€³>;ΎŽmΟΡ&₯ Α‘aΚWMCΆuή*ιώ>˜NgIΆτ >θΤ`"G―Uh©•5sqλύ«Έ.“»οχbώΥΛ€ρS φε εΐAͺƒ€aΥv~°Χrq½šθΧGΛ[Π‚gtΆ7©Ήͺ‹Τ 3+Ϋ&Λ\9ΉŠζw¬`V#S΄8X—»‰Λ‰g‰‹ΆξNΫY.NΚ%‘}jΪZpX!7ϋqλΓ[Έή―—IMν'qΨ₯y mΚ₯πώ0ή}ίΏΦ#9?κDΰΌΨRBχ9(/'-μ!YΧ98‰ηIώ Ϋ\¦5’qνGœ%ͺœœ£ώκΤsdΊύμŽϊbλο4έQοAcσe„« βF>—ΛƒσΕBί’C/‡ρdӍ³……β}Ϊ>3™Δ –U΅ΰωP>Bδ “Δ7«ρβG‰+–+ŸδNυk΅Ψ{{ή*ΰΐγƒΪbΩbΖ1ύCπ€©Y4΄1·tŸ?&½ξo©G œ΅[Y¬Κya,±σ^%”Η©χ#©rτΙk'Ζ‡Ά²v<——‹y"rgdζ(λB}g†π‘Z©z,K<9oύύ!Vn;ˏε5ΟηγΝη“έc·o&˜μšp~Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐμ`d’σθT…|ηΚ)Έ dβžTπΞ‘IόόZž>}Š ǚp‘lφ «s€ΙN%ι’AT δf™˜·4„ŒΛZS Ÿ,”eΉ¨ΐkšB―`08ˆkSέx8?«q/F[‘Βζ"χ\g ύ–0Ί0ŽΟόƒΈ=3„ξ0 {­%΅¨SR±›ίζH£¬d²P‘§-Pμjΐ7‘Ίd³ΎHΗΧΛ7κu-\3VFœΦ:S_ξV2μλμQΘΝ’γX'φiŸV’DX_#7 !|CΈ~2•ξαέ‘δζPJHkqȞ‘hΑ*΅εμιΡΫ†:π°?z97·δŽO k¬‘l071‚Ž!9WΩ5όZŽφA_§`ΠυDf™I.FσΣΤOhiiΩFA·6OΉBΠφχφ«δf1Δ2ήοƒ\Γ"Κ%Q ‹•ό„xvΪA›Ÿ]»Υ~έ\ά¦hγ Μβ½€τœ—h6,Μ―Ε'¨Ϋ-oq†JjΠs­•2Ί4-ΛέΔδDRqq和~…¦~…N‡Œε–KpX.βΠώF₯ξ?Š 7 žχπΦ-υ¨h'δ0…Gχ΄4]ΰNίΈ"ϊuΘ²™Γ°Μ*+‡’0?δίP§Ž₯#£“r,―ρεΌo†T8‹¦₯e‘ξύψζ7ήΐ}η |υ\}ΘΏ₯Ε!2σ|D„>ΉΏZΡθ<φπqDΜ cY―<Υ ΎE"ζ†Τ_2ΥρEο‘ή9σYh?5kΛγ‘ΥΚψP–­ΎV…-Tex±’N"‘­ϋpcjΉDJ“ΝFψœJφHπZμjΔ₯ ՜6~κŸ‰›ͺxρΗ£ΔΖ•Έ…6 ΐγCŠΟ[y|0κΦ‘nρΗ‡Θ8tΪΛCύϋBητ-‡B—’†6ΚD5&δΌΧξ|>Ρχ£,―θd tŠFnΖΒ~ξ3΅±”œ·όώ΅ΗΔχ`yΝςΪζ:ΓvΝηγwZgC8½–ζlι85F€`F€`F€`F€`F€`v2Ιω›/Ÿ@]…[$9ο½»ΜΛ_ʁδ,˜/_lIΞ‚ύΪΓ~αΒf/ [ƒ/’ΦEε{ιζΌ€u4-#UY!­Βy ΈRΌ‚χfγ0vd.Κu Ά€ϋOp9Dx^œΖάΣv\,”HE™ιΚYαzH;sηϊ‚ž 87†žόFΌ\^#‘b PγΚΒ蒐¦ύόζ6Ζ²D¬©*jΕηΣ\ZY+§G Tr³πδζn¬)δ_ΊUΜtΧόΣd?²H%ΦZ&}ŽY_Φi³TΪΆ’ΈP>ƝXc‘„±IΡ9[B$­xω,’»K¦1Η\HΗ4=P‹Ϊ²"δg§“Φ―M‘{œN“#s /g€ΚLο$•³92¦T J_4ω8χ[Ώ…ξ zg0νŸ…7 ΚΞP Γ‹ κP¨Ω–ΖG"΄@F²ΰθ" a²™ž1x.}>ŒS‹„2˜Π*§οj­β₯fΞίJΏ.ΟoΒ%y3‘ΖOΛzξςC„Yΐ§Σ=€ΡΉGseΜηΰ#-ΟNAcτΛ‘ω£ψκή£ „‘³}Ξv㙏μŽ+ϊšΌγρ©?oερΑLo73>D€CoG#„ilbΏψΞ’ŽlqŽiξ]$"}ƒ½ωΌ<Ω{?ΪΉςΪ‰ρa΄mO‰cτQ]ŠršG-o!—ήM^£wχw㬣˜’σ6ί4MoήΚςšε5υΫλ –ζƒζησζ;°3!™Y;SN…`F€`F€`F€`F€`=„@ΙωΥΣψωυΟ0:)h/“L8Ι9/' οήz"{σuΧ"PŠΧ4δζ™…aάτ*D‹fχA\"mQ‚©sWγΰά Ί 4ΪξXx²s/‹₯BϋUrs¨Πγ+Δ€ œΓλ±Hδζpž•Ζ·0ˆΗy%8MšΡAtβΌtαJηςλ§γΙ[ŠŠ Π΄SUPK?Ιύ/P'½€ΉΙ¨\BΈι€¬ΝQΛ)»@jHYBŠ[‰&»ΈY·e¬€NžΏ„—K4€Xα h[Τ–3ιš>3~Θσ^χ0Ž΅…€k3ϋ[Ϋθς\’»―έκ1$™K‘ qβ@³’UOW―bwΚ’jQ Β?cάζ ·OXa­·CX ܚκΧΉ΅ΈP^-ε²ζ #‘,y€›‹˜–¦'P&γ¨Z’Δ ζ֍2²/wmΙ‰dγB›+d¨12pMHΫΌφygΉΖkE.e&§P;Ν.a:Ϊ€Φ”NΘ₯``>&Ρ=;K.˜”ω@$¦NԈ„ϊΪΪJCGΔψžΖJ„€¦FΖ‘κ™+΄ν[“xŽΝΒO\΄"Ό«‹$ Λ5€U_1€ΥΉήEc7mή‘uϊNΟσσrΈέωJ0Ή U!΅Ζ]k΅8Ψi£yNŒοVΫOW›7¦Ζ’JY2<λ«(v7’%4ιξΗ#ATηΉ ΄Μκ"¦Φm(J4α4Ž—+j!Oν–—½Έ:1HΔκΨΖn<‘Ο¨€ξhγ`k\‰]δθΎ<>θ±IΙy+ϊF4Ί39>„G]X՝9ξ-<ΣξΖ#8۝Ο'ώ~dφ=5ΩςΪ‰όΦΠιο՝ΤVŽηθέ^05TΑ9šΌ7'ηνΏ?Dφ%.,―υ ±ΌΦαoΑκ|Πμ|^Wˆ$άθί:’!gΑ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œΐ^G@&9ϋ•“t΄iώ‡+§π½χοad‚T|†ŒBr~±'[kQZ”‡ούκμΝΧ]ˆ@sI•B¨]^ΓDnΦς˜ϊΓ¨Κ+E«ΘV+Dyn>ΊœΧh·mΠ—…½ιG_0’ϊ•΅OfΌX+ΕΪΦFd„DςۜΑ»£]x‘€­y JΜ`s½D,OΛ­F3m<΄ΟN―¨Οmd!RΗΕΖΧ0έpTGn^šž@ŸΧ‡Ήe;~€!λΒ1Tι΄4ƒΚηCPψlΙLtβΉ‚׏οGcm dbΉEh=ruΕ9ψή; IΞ…ΝϋI£h(Ηι^<μOŒˆ»μ›XW:Ή>δfw}(“w ·ƒΙ|֞_ ·_šΛ’u_Θa_¦ͺι;½G*βΠSAKϋ°²‘CŽšΠ•6;(Dj9X4»λMBrΧ†œH:.€=ό³‡]Θ3zυP„ξ°΅ζ‡ΊεΚ0PY.Τ΄y'GfaΪBήΎ\Ϊ\7[c•!0бρ6TT[΅ΈM΅΄ h,u2]x#Ϋ@o6-ηgασ―PΉ¨|ξ4qΉ’ζαͺ)AU]!š d2σf|‚ΖlΪb£’ϋαL’λh•°‘'0υμηg–ΫOb{m€ [άπ&Œ‹™Εh i(ŸvγΪΌ„[sŽK:™ƒ‚ψˆΰμδL«h?”T*u Π†Β_…ΝΉOΕn<1 γ‘ΞΖΈ’)’5+©?oερ!nŸ·ϋ\[3|/ΚΞ֌τꓐId>Ÿΰϋ‘ιr'[^oS~ώTζ‘Qo2](£υ”qΗÍY9ŸΠϋCx¦fξY^³Ό¦•4»λ –烦ησυfz―ca˜ΰμ”œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0ΦxЧ1#Hώ#,mŸΜ ‹…=Sw¦Θ\k0Ύ4£#7KΥZΖ<­*h)LFz4jθ½³mcΙ „ŒΛΕΐ/ΊSŠ2δcΜWX‹$NΓN~λ3Έ1IΏτ\‹Pobv]Π ]‹―‡ς[Εΐvςe£Wš|6°ξ€FCCB²ΎΗκUBΠΨγΫψαΝ0’škˆΰ,SΩδΨ[ ΉΧ –΅ I;•c†x‡~ Ί“§Ά₯εεhnj€‡ˆΝ‚Ι«mΒ©ζ^|A^ΞΕ‰ƒκ‡·Η=ƒ†d1‘ΆΤ Δ%x• ”4€ƒ."œVsuΌ'7^~vΫ!’PτΈ) MX‘l8δ£”4¨+†lΝ1ν*i¦'RΧ%‚j)«­GMΎRJ`}‰HκαΠ„ΙΚ)c•ΜΪ ‚J?”³°ά΅$'œΓEAό«·ξDφΗψρμ†`ΉδΈ\ZœΗ‚ΐξΤΩζΨΠΘν\2Χ#–Ρ?:…“ΥΒF—|ΤΧ“όΛ@½@(Μ¬½c’ΥΉVδό2ό³Dί―­’α$5mU(Θγσx0ž†γ­(©¬EM¦p>™ε9L‰εέΐͺ¨^¨‡ήΞ.ά3ΛΔ8Žόsψ9J LρΖ#[I)Pǚ OΛK£ψΘ?J.U9²ώζ5ψVŒ·\Ψ–ΒσE4N‡Œ7Ψ‡wύρΗ»ρδ|w/o"7—hΒ‘4+ §Ε 0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ0Œ#ΐ˜@ 3#ίxωjΛݘ_ZΕ›Χ?Γθ€ώγύ‘† ΌqρZσύž1Όσ‰υΛDf$e(Μ” K˜]5όWˆL™Θ»†₯ α ο5τQ£ 1T‰|4‘±²ρ“Ζ>3ΖεͺΑα\—e#o"ωm.cV!FfጻZ9|pa&ͺVΑΒζ£ψςιzdl‘‰Ε³2Ž_½}αΚΝΤΡ8Μfζθ#{…€YjͺΚ‰XλΣ­,-Τέ'z£rκύθy"Žυ¦¦±<‚ά,Α¦H;τ៽7}nγJΣ=ξ@$Έο;%Q’,YΆlY.]UΩεκnWΧ­žšκŽŽŽq#ϊkμΟύΜθ˜˜©©θΊεvΥT—νλφ"»dk₯%Š"ΕMάA‚ ‚$ΈΝ›H H$6ς9 2OžυwNΎy’xςΝ:Εγ™ ¦υˆŒvΥ[fD΄ΞΞ6fδUΠ3sσxππnΌσ#ΌΩ©”+BVρh.j΄Θ<­}Έ xUΒΪ†GQBbΑ§ρ\j·+ ΈψyδΗx5Ψ+ImTZ›5ͺVk[ΐΞλrήΘ'"’Ά\γ‡[Λ«wθσθžK]ύCψ^f~lΟ`]Ξ3…κο4—ZBηκΊΟ«γΊ¦Ωέ„μ„y\τ{œ ±΄Kι΄K°΄‘·― “γ‘6ToδΝ°Kzεž7#ηηΒλh–„Ν ΈŒζ‹,σδλQdz^Bם|9•ωyml½”ŸλV^t&~’Χ‡ˆ*­¨‘%ύ|Δν¨ά‹;”U³v±‘σ6’ΐ±Δώ›Ÿze'y$E䬽6ιϊCΙκ@«ϊο‚Ή‹Π¦'kηMΌˆihDΠ^s=ςz^ω―G&ΓI‰g²-¬‹H€H€H€H€H€H€H€H€H€N=UάάήP 7?Ό_ά,^›ο ‹ηRŠ›OύΌP:θQΌϋƒΝVU Œ’―NΦϊ_«κo€;jϊpšœήώ`YfAC„Ίθq΄£OύαQ’ΣŠ€«=•h‹J«φΣfmΑν†uNχ"FU1²‘ϊEΥθΦWΧqΙlδξωΫͺ>b£Β"}”Χά;jμς‘οŠ’°·άˆ”Ζw–VΓ"·ήσ½θΧUέ‹sκπΪfl—Βσ‹V vιΎΎVtuuF₯iGw|χ?uβ­9ήΡw” 9ͺδηΫ‘Ji_ŒO&%¬[YΩΔr°<»Œγqajq5tΈ΅·3rδΘ… ν~±Ÿ?Ρϊ&τ|E&S_¨29?’‡pΎΰ–xώσ*ža•PW–˜1 ώMl^oγξcόfξ1>˜ϊ,<Ε³Π³;xΌςΜέΗ‡ΞΉ°ΈMSαΑa”ΫlšγΗmV©^X%Ρϊξ¦N”μnςvΒ<.:Ι™(Ϊ%³ν’KκX οΠΠyt‡φ46χΘƒ.Α`†]RΛJκ{kΣ/•G'$Τυΰ;‚S3/ƒΫΗy4ε#TH1“΅σς@‘κDΪαπXZZΑʜ3ΚΠY䚭<Σ"aEs]]U%pώ€ώ(™ͺqQ3JTlΠ<£ι«6]φΞ#ιwΧ?m›»>HŽέl„Fσᩍ§CΥΰŽVy_C ,z]˜ ‹άHόϊPλ—βfexΰΖΓΕo7ΝΩNeοδλQ OςΧ•ΨΊr9&{σ:ΉυRώ¬[y}8nΎ'{}ˆ,«ύηΒχ˜ώc=έθUoJΆ7αvFζˆά;ΩΞ‡Σ'7?•|©ά)ωsΦ^Ή>Ω1doDx€τPΚπ£-t]Ωήυj+Fμ|jχš–ετ&ν5Χσ©η͞ΰτΰl6Q–G$@$@$@$@$@$@$@$@$@qD‹›!βζυΝΘœ‡<7Ε͟?šˆS£OuΏGζ€xΆEΔ©·Žf0²΅ŽύBΊ+[pΉ2ΰQPι·sc9,δΝ"0\R΅ί+_n4φ£pm3ϋE跷ኦ³… ΨΕ‚Ί^t σ›.,ˆgλ}QΕ–£Ρβΐ`₯F.…^o.P ΥΨl]ψ―"šžίœΗ܎žΓXKͺΠYي¦Ά]“ΊgΥς&ܘ¨03&cœˆω'³˜Όά…nE TفU1Ύ~:υΒjΌrεBXT'Ρ‘>ɏΑo½½{£x6αAuO^}ε™§ϊ%NŠϊ…W[όν±Ά^ΐίέ>Δηί<Αze'Ύwύ@ϋu³:πϊνογ|₯ϟΝγεβ2V\βuΈ½"2Έ~YρΒ©7œΛQ*ƒϊsθ “·g1<u<1ώ_ρΰ¬jε­νρΧ·Šρl~βn­Hw}v3AέφΖψ,ž_νΗ€K ~ό“7ρρ½§x,Žω―^Ό„Ϋ—ΤvΟ¦^",KΧTŸD}αΉ•ά8hj nΊΔ ΈE€/R ΌσήΫ¨_’—nK‹±25†±Θ— (oxŽ IΝλ’JTjϋ½ί…Dn1ΕκGσΛfsEϊΛKόM<<*zΒΒτ.k3ή*9D‘\[}{«ΈλVĊ>΅»¦Ω ΅—©rQΛɁoΪ%υ|7Ο.<™ΖΨ‘Ve|kΊπӟ—γξγqŒΞΚ<ΆV‘½΅η^ν‡}ϊOl)vΙΰ|›YΖ›νασΟ_Μς2&Β:ν¨’qσ­v±μ‡bwPRY:ήΠq?¨Ω«€Ψήm<τ“κ33FμόΦVδι•Φ΅ ρΌ`6ΏβAG¨έ;XΥ¬)fžŒγι@•e‡\oϊ·εΈχπΖgVΰ³V Ζ^φy­― vρ4Ώ)γ0£VQ] Υπ`Ώ¬ͺƒbG•dόPx²j׍±Ή dό―Cs2ΉυR>­[y}0ρϊušt_y ογ>Ώ?κ>y£Θ­s‘'&η‚ώƒ™ Ψωπš:Ήω©ΌIΐπύ‘ΪΗΠΉ‘Fθ½]I9–I{m°Ύ2;‰€ςpΜ¬όΏ`IήΪ²%/8((•ΤΘύ©#$nΌxκVs2jηί?„iηών5ΧσΙ―ηΣ;―u—yι­’₯“         ΐΩ#@qσΩσd{<ΎΎ€žͺ*|E‰ηβš>ωΔ–²νΓέUΥ·lμρ܍ρ`Δ=ΥγrY=ήh’OTƒW7§π‘ϊΚπ2//G‹ˆΌ[βhα[ΕΛcoLJ‘κ“\5ΕΩQόϊvπΜ9އ;Q ΟΚξ<>ωΣώχΫΰ—ΏΧ΄ΰΝ›QήΖ‚νuJ-"’d~(z0:Aρ νΧ…ΙxάΌ­|θΈxτΌχ°?Ύ"?>Kh蹈ŸΙ'ρ`ΗΐyεsA7‹χε ξFι—―ŠΧdΥυΜΨ&us)mŸ@sŸ,ZϋΞΙ'œώΕ7^Μ„DΣNόιΑΪnυ„uxηGς 'χoyηFπ͈+*6Έ›D}†ΗA§ζ»O^ΰBη+V2½ž?/ΦEΰV§Œ€’JΚ:ΕKΫͺͺ"OͺύΔuΦ:τΨTaTK=‚·m―xRφ œ£vΧt;‘F.Q$2°K»€@6Υ.mMγ“ΟͺρWω-Reί”OΤhΊ#φ Ϊ₯ ']7VF—0y³'ΒΛρδό‡Ξp.iBtα_=@Ν_\ <‡ά„λCΜό*Ηΐ•7όνΌΒζ,ξ}φ;―3bη ΟΟPc’Ώ? eMx#ƒφΪί¦δλk½±₯mrΈΫΤλ`ΰ~X½‡OΑΞ½ΠkUξΖΡ^+cΓυ|λω4OζΘΗ\‹'         ³H€βζ³8κϊ|°Š˜Εs―xTΥ Œ»žγ—KΣ0Yr¨W[ZβΦΆ¦πας œΊ’F/&Φžγƒ•ωpέϋ>x|αݘ-a2εžΔœΕΈŽ'Ψ€λ“ ”Wžk%MΪ:[σψlφ>ΎφΔ#MbŸx@Œϋ:²"Ϋ٘Ζϋ‡x!ž'΅Α΅0―N‰Ÿͺ@XYΥρ,m§Ϊώ°˜@ϋœcψΰγG˜Ω f~m/γޟ†1„]ήΨύ;ψχϋβk9:Έρτρ‚Ρ»>-·m¬ΞΝΓ₯WŸ?½/ž>Β―8Y¨x@μSεΝ‹xϊ­fNE¦ΎΔτΈφaŽLO,ş­r-œ•ρΣ‰ω=υZŸ‚ŸΧ\–œ"%„™—«=>ΆμΖ’κ)ZmΡβώε—‰q₯Ϊp‹{θαy;…šGΎ};‰υΟeΛ'ΎεΑΠydΚψ%q= ΆUωJζϊ°ΰΓ½MύΉΌκΗG³Ο0y™ΥΤ܌žŸΊσ±@|'Όpξ¨k%£ω”ΊŒ]ΜΎ$ΪλL§34―ΥFrέͺ’ˆψζυAΑaΒυAζ—Ίά_žΣ½ήΊεώκίw'{³ΤnΘΞ^ΟΌ?ׁܴ̚&{}(:ΪΕ’<4?ψ°θ™ΓŠΉ‡OΑΞΌˆίΖά<žMŒΝiΕ±£œI»[»ω1fς4ΤΊjΉ–5e²Hq―k%Μ§ΙΦgς<2ΔΓ`&[Y :Κ,(VΦvΚ\ήΫΔτŽ*14Xh^g;[Χ•LΞkΓλ₯<[·ςϊ˜y}himG]U©zλ“{ρ'‰ήο$i‡ŒΞΟdlRLςLΫλ€λ+ͺ@[YΚε Κύ»φεm1[ŒιmβΙί?$^v.₯€½Œ†™φ%ίν΅­]wŠnɁJθκκς'ϋgjjʟΕΦΤ‘υ€7ΘD$ζ          @β(nNœSFΨΪuc\>§7ψ0»₯'MΥορ–v·T―ϊINˆM>ˆ…ν|ΨXPW½Um¬«ž\κj qΩέW}5‡’Rژ™Ρ‘Άœx2š ZSώŠΣ‰•„²΅γbPά ΈπtxZSJf6 ³1ΠΌLΦe yy•%y»›Ov"ΣCA»Iά\»΄α\Βcω$N—­0—g2CiΧεZ&Ÿτ†μœGινSdι[»k‘ƒJΰ,\W²3― Ϋΐ<[·ςϊ`ξυa~NΔ <ϋž€iω6:?Ώ?J½Ω™ΆΧIΧ'ovšχ&¬Τ»·„δο╃h―#Ε\ϋB{Iχ€= œO"Δγ$@$@$@$@$@$@$@$@$@$`ΐΝΛ=ho¨Ζ†wΏψγ=¬oF &m–RΌΦEˆ‡™;Γ“ψόΡ„Αš˜Hΰ¬hΉ0„Ώ/ΝsΣx9οΔβΪ&Δψ…σl.`Y›ΐΣQ­ψω4Σz‰/ώp›όΆ/^ž'π}ši°o$ ΄KΡΤΝ΅KΆš#l­ΌFΧ€μηϋq½>EΖ™Λ3²μάΩγy”;cΑ–˜G€σ:š₯Ήφ,ίνI폦»o.ΟΨςCg‡νuτX§f_N²oω~<š–Ωϋ8›M”ε‘         @ΐ—'Pa)Α'cΔΝJ’­m>ψβ;ρΎZα8  $M °ΠŸ₯΅³Κ'6ΈqχώΜΗ8΅1σsg©·§vΩ±|&@»3zfΩ₯†ήC4φ`iΌΛ/φ_[YΎΧφεΈm³xWG֏ρ<Κϊ°i ΐyΥ,{–οφ€φΗ€‹aΟ8Ε3šΞΪ똱6j_N²oω~<T"нqσŸΜ,χεδΨ±Ε•Υχ{œI€H€H€H€H€H€H€H€H€H ΫμΨτ7aU)5εππΟ_:±γۏ[Ξκ†/—Χγηό%`Φ<Κ4Άξ~tֈη_ίFŸΞι°Ύ€Xm°‹7ψςJ J’r.ΟMΰΛόχζγΫ ¨,ά% ” Π.₯ŒΠ_€"vΠzjVΕžΥ8Ϊ%MA^_~Qd¨SZ Ο£S:°gΌ[œΧζL^ΜαΘRH€β ½ŽΟ&™#§mύή”ZνΊφ<.|uu΅ξρ“"ΧΧ/­¨HJΞ8ΈC$@$@$@$@$@$@$@$@$@$@g›ΐκκ2&KΆpΈν†χl£Θ‹ήoLβ·ςQBUu*ΚΛ όψ³ΏγΔ<Ÿπsα Μ ]2‡·β©Y ЧfU‘znVχσωΈΏsό—Ο£Έhx  p^›3xΌ>˜Γ‘₯ Δ'@{ŸM2G΄o^9 λwυϊ³•aO8'3λ˜–H€H€H€H€H€H€H€H€H€H€N9Ια˜>ε<₯έΫXίΐΖ)ν»E$Ÿh—Œ›"fVDΆšCTΤA7+%*’g%δϋq'ψηD<NDΔyH€σΪψ ρϊ`œs’ $O€φ:yfjŽΣΈ~Wξ?&ξ©=ΜΜwΡ΅7nώ“™U½œ;ΆΈ²ϊήcσ          d›€›ώ&l *ΫMaύyL€σ(M'  ,ΨZ+ΐΡv!nV›•οΗΥ~π›H€H 9ωnOjr4˜šH€r—@ΐή…Ϋw’ύΛ—γ{»ΥαNiΆφ<.^u΅ώqMRέΝυυΐkΘJ+j#Žόύ?όγQDLŠ;w>ώπΨ*xμq$         lhǜΏ /Ρšν¦°ώ<&ΐy”ΗƒΗ¦“         D°Υ΅Gμ«;[‹ΗΘ]]]jTRίSSSώτΆ¦ώˆ|wΧDDq‡H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€²C€ημpg­$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@:(pցΒ(                     μ(Ξt΅›O˜ι*Y          $G`pП~wβΛδςεxκβ†~U4δx+Ω<          ³N€œΟϊ `I€H€H€H€H€H€H€H€H€Ξ ΓMη™ι+;J$@$@$@$@$@$@$@$@$@$Ώ(pΞί±cΛI€H€H€H€H€H€H€H€H€H )‡»ž€31     ΙV7@IDAT      dƒ@q6*e$@$@$@$@$@$@$@$@$@$@Y pΈ£ύ—g‘rVi”@½₯ ₯eπ{,9:ΐΦή&Ά·wbΎ‹oήΖ{ƒ πLΰƒί~‹ωs€žΐVV…ζR,…8”>ξψΰήYƒσ Άl[‰₯±Ρš˜¬νω4ϋΐΙyΒΙΧφβ±­@MΪX\δ ίώF·άαŒΩΨ²΅γύο’p/<ΗoΎžΜF+W§¦ιί―O[Gξ–œισΟh}Ιζ+E}ΉvΉ.—’° r‘ΖΪφ2fχNΖ" ΪΚm¨,*A±?ί6vΧ0½iΤR²aO3Φ^«νΝΩo]’έΝΩQΚ|Γͺ»ρΣοΐ.5―L?Ε‡χ_¦‘ ΙΪ—šP$u‰}QΧ<‡ۘχ¬aν€"ζ“r“_ο΅Ÿ™Ξ§BΛΰψ©U¦λ›v0]dσ»άdμ`u'~ςv?¬…‡pΟ<ΓοfβŽ3[xKQSRδ―άwΈ-ϋΫΤ[fΤΎ0Ÿ>{£\τKc, @κ(pN!K          Ό!pδΫ¦ΐ9OF«ή֊«ΥΝh)•σ^ρΫ£ΥqŒŸ$€3ΠΧRS+ΑZVˆtˆ`+oΐU{ϊ¬:-υαΉσξxžΗmΆ.όΌ‘E'­6jογΎͺS.kΑ[ΊP­MrΜφΤκwψtc#"E½W¨ŒˆnμΉπ•΄qt7κ@¦v­ε¨k°Γ!υ­₯{΄’:ekΔυsu(Α!Φη§πdQ•.•έlφ/•v3―©2}ώ­/Ή|₯x΅~ύU°θκƒΣ3‹»Ξ8£Ž·Uv`ΐV‹žέV½σx°4…YmΎ,ΨACφZΫζ\έΞ¦]’έ5wV˜Ι³€φυzlώƒ„ΙΩ—T0•β’£—μŽXΫδπΰ©k w=‘k€@mFσ‰°9ιυQϋ™ι|αqΘάψ…λLλν`ZρζmαΙΨΑύ68όχ0Φ [ήvωδ†Wαν–Kθ ά^{ΛψpvcηϋI1υΌWYϋ―IyŸ·B|%Qχ{yΡΧy₯‘',n–<Ϋς–!o‚yIfΤΎ0_δ:Yem”‹šŸί$@ι#αΗωΣΧ–L$@$@$@$@$@$@$@$@$@$p2£} œO¦”ε–VΌζKfΧoœλKX%kcE+^w4Όκ•Τ’»ͺ ΣQή†³άϊΔͺ·vΰVmc(νφ c›N,μν‘΄¨υε\ͺ²bέι%Π8ϋ0³αΔΖ)–"w0₯ρ¨μ”²ΏsϋbΣ)IP]Ӂ6΅%;σx’ρέηΈ€7*«‚G}˜X›Απϊ:jεΜoΧΤβΛdlspnωΤRΞΖ·F~© ?ύg/ΣN ΣηŸΡϊ ε+,πΫ€υνU,οz°κΫ‘W–ȂφŠfyπΓκη[i­ΗPΩ†U›VnCMόͺWlζΞœςfŸψRoΆ5ΰreπhY3.T:αά xΐΟ†4b―Σ>©ς½Ϊ]sG0x²/)υ(ž›Ε3―fέ“xδ^ΐ~I†jΊΠSx£Θy{#F·¦°Lh4ŒwΪΟLη>™?uάNύwœ·§~ Μθ wγΟΖQ*7r[‹Ροͺ0£‚μ—Ρ#χ‘WlυœΪό/fKέIρΫ¨}a>―sn”KŠΓΘμ$@  ΐ9APLF$@$@$@$@$@$@$@$@$@§ΐΡΎͺ’: ½9}8g«Ee°k›ήόfi6ΤΡ χ8,₯x½"ςΗP‚ΌΨ¨Β­šΆΠ«Ο›Sψpe^Σς Lo-γΫΥ€&| 5₯jΏ·0΅:‰πΑψ[»«ψV>ϊ‘ο)ϊeΏ 1Ÿ‘Γ‚”4β‚]•γ+ΟπEP,ΈΆ΅‰k"pψ0,…UDΩ‰aΞρ¨tkck;mMςh&‡‡™Ά+?εmΦΏH |ΪΊΛ‚3M ΣηŸΡϊŒζΫ[Β“K:Tϋ·ŽKθΊ6Œx~ΰΘ‡—›sXά\ΐΔn€ΝY±τ^Α\ ^ 4dά΄Χ:Dς&Šv7o†JmhJΧ1ρ6]xaΤΎ¨L滨v{(njλ >q»ϋ+ψlΉ•}7V”U£₯ XS.ύFσIVΓλ]£φ3Σω29~‘‘Λς†Ξyav‹R:oSn ןuΖ;a;Έ΅„Οξθ­ƒ"jΘ۝ϊΚ^άRξ#•Wμ¨ͺesΣg’f£φ…ωτοߍrΙΫΚ†“@ώHψϊ’]c‹I€H€H€H€H€H€H€H€H€H€’ PΰM$Χφ-¨)©6J„lžε˜n‹—Ο|Νφfτ΅Λλβ0Rά¬νY€xEVΨUΝσξNΘs 6G²ΫCυνh ώθΌι™Η·šίœ{*λτьMi§*n†H‡o5tɏ£Jϋ‚ *ˆ­Ήͺ΅·/5£D„ΐ…ςfώη§O°›Τ”˜ύύB\zWΞ·‘‘2θqۍg£ΟπϋϋΣ1uΤ΅vβ\{#šκjPWi‡U}γόΆ .^N½ΐ—£Zjς ϊ·’§²>ιSyuK¨ΜζώWρΣ6q1 EςλΣβθc|9‘/?Ύxε*.v4£΅Nλ€wΣ…₯'FGŸcΔ+Μήί?DKη\κ@wƒ*ΒΪΑάψΎψlσjε†Ώ-ΈqλΪ-…2^‡xωψξΞE·£ 7o]F“€)R<½‡―¦«πξΟΑ.Zƒύ}”;κΠμηοΑΣo†1[Œ7t!Πb7}yŸDp 4Έβ+ΈάۊŽ&+xρl  ΏŒιUςγ§шΌsN(„wαmTΰϊ`r<35―S=b€a΄>£ωŽoΞ!dΊ‡1™2°»Œ;Ηy’/vΞΛυx§ΏYΧθδώζχmςPˆb<½Xσή¬‘!`hΣ¨}a>ύϋw£\ 3‘ "@³!lΜD$@$@$@$@$@$@$@$@$@yJΰ@ωQ‡!w ˆ°MύαM[DWΪ,ͺΈΨ1 fΛnί«Π_‘Κ†=]Ud©₯¨/+G±ˆ„χvΰά‹ξs Ε6I£ΚaΧχvα+² Ή€δΨ<ΗφΥځΑ'μ |·•ΘV %ΔΩ‡i?«a¨Ύ'(ΠV~¨[±"(ŽσVTΧ’·5$R\vAυ?­ζ3σ»aΰΌ] ταό•7ΠPcΕΏ}<’i‘oάzͺ¨Y›ΟRζVεӁ&ϋŸπλ»ͺ8Ί"žnΥ¦ nΫλ‚ήπΑƒΩΡπŽΊekǟ*Ξ7ΨjΌ|[+θ–OcΩF>ŽΝΫ0p 3 Ιΰί,GkίώΖVŠσχ4ύ‹N—Θώ6Φw ρf_`Μ:*φαόΥטΤd½πΪ\Ηφ<†WDdW/LΪ› JέΒΙ+0ψϊ †#dˎWnΎ‚•₯πx]=ΰΐ­ΎŽkνασZ=bΑΩΠλuh­­ΐΏ}šκψI©υΥθκl ŒUsΞ«…ΎOζ™™yϊωκRBFλ3šο„FYͺα(QΣμΓ~v@ŒσmG‡5vΕIˆN“4έ^Ϋ‰μ€έΝ’έU‡\)?ύΙ tλ\ΛBΧ”’Mΐ9΅λX•Ε­iZΦ»Fν§ιω2;~' SZΣ¦jPRΥ„Kcš°ΪσσΪ‡8Γwa ­ ώΧΆ<ψV_•…υ§<ζ™‚¬mjGw{μ=€ϋP¨Τ8Ή_DΩ\οŠWϋχD^ν)¬»œθlφ˜=yσΜIOΒ†ϋ„ΏFν σ…NΒαϋw£\N&&0•Ξ¦βda$@$@$@$@$@$@$@$@$@$ΫŽςN›Ϋ<Νo›~Ί"ž-GΏ½ Ϋ“XπWT…ΧTq­Dxg1ΌϋΈωm2±D4uΑ›Ϋ[°ΨΟαgφZTjͺXχ.α±λ&’‘V•X‚―”ͺ+Ίπsω¨asgΟά3xβM”‡oU·…Κ[t/`T[_ΉΑvŠ›4Μ=;wVŸΗ΅(Z­=Ξλ†#ά“)iE°Ξ’Ά-χΒΎ›ZEΉx§ΎΦB8:‡p{Θ…ίΗzGσ­`ΦΉ†u·GΌOŠΨΌ₯M;h½ŽmyΕΠξCv7X]…nΈΩηOg±$n†K,V8κkE ¨\p΄>ΠSΉŽ5βφ[qσζ2<{ oY-.]V½τŸΐ!ϋiΊ}9m₯¨,Ve#;XχΉu—Γͺ‹BGζS 0{½kΤ~¦)_FΗ/4 Yέ 4Šί…‘ΙY Φ΄ω θμoYG†ztΕΝ€ϟΏ5]֟©ΩΑεωI<ΫS<8ΛZΏΨŠΑžΐΊϊΰ„΅ΏΒ"?Φ»x«a ψv ž-?ΑhA¨ƒιΫ1ηM>Fν σ©#αήτyϋFΉD”Ζ tPWͺι‡ε“          䁣#("η‚’ *ZΕ6hŒn.‘³\< ΙY,ΝψQ·‹ή=ΨΔ3§*ήήYΐgK3 {ΨΣŸΥΝ‹-$*΄4ⲎΧΕjk#n)*š™Lh„}Υ"pŽ*ΛkρΊ|μΞΗΈγ‰ΦΖζj±ι@Y0~Ο‰ο\«‰šEp«²^ίυψζ6[ή¬ j7·fπμ ―WUωσhTE…wΒ*ΨpœΙ[ιaό³xjφ‡‘pzίƟ]ˆd{ϋΪΡ"η€DΦ…—££pmΜγ«qρš¦ ΓO0σζmΌ7Ψ ±εhοĘψ1yψΑQuHΞ=ώœΩgψdδx1eΛ…> †ΔΝ.άύτ.ΎœˆΜ£ΌΊzΠΤΒσψ—/‚’α¬ίzίλSΖ€υυβΝ/ΔΦv&Ωνm|ωΗaΤmΐ#¨£ηΌΏκΔ‡Γ%ψΙ[BΈ_άΏ‡/ηbΛφΞ½ΐ‡ί ‘ϊC4ύε+/Ÿ £ψν]‰«ή–Wύqv»2»DΰάzW;U»ΡLΖππεEρzџ§γrϊEΰθ½±ρ‹n±)<γWtu ο§εό;¦v£υΝ§mΚ…Ί‹xΓjΑ¦ˆ}ŠKΚCφQI³κ™Ζ§mςΈΫΝφ>άΪ#%ΡbΒθtΪA3νuάNηΘΪένGΒΈέ΅W¨λyθδˆ±ΛŸ‹·Πφ²H_ΔF―c-ΪΡ«V·9‹οWw‚ΧΓΈλάΒ[­Zσ„c?Ν°/ ·C‘εΕͺzYΦ3G±9;kκXMhΝ(#ΥυQϋ™‰|™?ν˜dg›v05;836‡ΉWoIqτ΄ββ7cx’1]U-AΟ2ΎΛ x²(ίΑώΟΤϊ3U;832¬άή‚­u"pVξ6β‡όZοΥχa θ zvνΎ–1lΆ‡Π]έί1εήέ¨}a>ύϋw£\βΟ[!Hώγ–ŽjY&          @Φψ=g­vV|έ ρ¬ιZΡ€ˆ›U±―wΏ\P½:ŸTX./E]©MδΣ4jSξ)|±ό7Χ4ρ5Έ`©a%ή‚šR«|{1λYAςΎYΖσ(₯ŽV΄iJΡ߬Ő£6thBΌ7Ο†φueͺŠ Xί]—Θ:|―!θρYΡw–ga1’φcΌ2J/£γŠ ‘^―3nŒy€οΔΤ‘Δ‘e ?ˆτhχ틨~&’αPβ6^β7wFd¦Βΐλ―γ―|-$ls‹ˆό·—tΛίΩΞmρ”¬κΦ\[ΑsyΟ'>χ‘¬< $»ΪΫMΟ=~Γdcϊ «#Ρ‚φΎ€ ^)%Υρ…Œ!žΙΝλRΤ•Β–ΰGI«3Ξ?A ώ1ZŸΡ|αf‰ηrριwe”ΈžI|ΰœKHScλΒ-‡F"$ΐά‹zh#\§Ί•N;h¦½VΫ{Μ·Ν‚:ωT%τ©’tΗ”•τ!Ϊέ€‘ιf0fwΥ…‘ͺΩT«ΨX|‰'Σͺ UcΓίΙ\ΗλΓjΒcc‘‡}ό₯)ΆzB½…ˏήJΖ~¦n_’k?nβY4JΡ`ΥΏ€['^«–‡ˆΤ°·Χ²c4_° ”Φ»Fνgfςevό„'ν`pREεΙϊsk!€Ν‚]Ί4ΠΩZ/Ύ˜ž•3/2djύi† ΅Ό$|ŠΣΩȏυ.ΠSs!τ–ŸυΝ)|΄Έ―uhΠέτiTλ:}M4Κ¨}a>ύϋw£\/¦#0‡@z—fNY          €‰όœM,E™Hΐ‚χ›ΊϊYϋΐ‹ωέW ©4θ]ΟΪ‰wkvπΡZ€Χa[‘¦’l¨Rϋΰ―Αƒ‡‹ΟπP…n­`γθ"ή ψ@,‰π2ΎGβydΟ­ s«θΒκ[žO‹*Ρb+Εμ–VDٝsu­a/„ΫsΈ·©ΚNΥt¨)QΔΤJπΒΉ]„λΝΌDΩƒ{+cβΡYāΥΫαœβε9:¬Œ~‹ki₯"uυ•ΘΟ1{ΫζΌ–8Ί"u_β³QΘρΨΌΰFoΒ΄e₯Šp[U<UυνκoEkeEΐώ_#V$’Λΐ(¨…§ϊ]Œ²ΣψeLŒκ „­eΣ‹΅h]€Œ³_c%½κ<:ΆŠˆω“ΗvόΨούڎΠ[Α·gρΉκ![―(U«!} ύ§ Α·6αQ&―F#V^¦Ξ!qζ|ω ώeΕ2 ‘8,·”…Jυ'Iiό ςL|^[πVΛΥ°§τˆNΕΫρα»₯qXM8βΥoτ|7šOΫŸxY_φωΎœŸ•e΅¨—Ή³-!Y*ΊρήΎq‚W<Λ !h”’w—ρ‘<c ΄ΥΚvzν yφ:ͺΩ±»Υ½ψ»νΪ  £²‰πθ—ΏΊτfu,Ω]Ϊέd‰ΕOoΘξͺ³Χβ/Pϋό%¦ζW±βZΓόzψZΏDT‘¦J]Έ±8{†Ν/‰χ_kγ—™Έύ4ΓΎΔo‡ή‘}εjxp«Ι>€?+΄azgΆr.U†/\ U‹Ψ&U`i4R^ο΅Ÿ™Θ—αρ£Τ›ΑΈόY>Ÿ\Δ5±!Š₯ΝŸ;ƒηY;:ϋΤUω"Ζ$>&ddύiŽŒi{Ή½ή•·Θšν–ϊˆ[œŠ›>”5vΠ{jπ1ςπHΣΜLoϊ΄»Η Nς‡’΅»žΟΰrίώͺ*Π;pA>Αz·έxώbŸί ‰q“o‘šCIς0B‘j£ΤΓI|'d?eV›΅I΄iξEτ‰νi fhͺlE“j\4…(IΝ‹ηeυ2n,Ÿλ]£φ3ω2<~΄ƒš½™?λύiy@cν•η špΎιξ.-›Ρμ–kb!bΝέ[€yύi–Œiχ19Ώή΅΄βf}s >gΤCfrο«.RΆ°’:Κ?¦Ώ'2j_˜Oώέ(—“GŠ)H€Μ%`ξ{ΜmK#         HΕƒ3Cξθq4…„%ΫβYψ7«₯΅λ3h²Φ=’V‘ήRQž 2ΔβPσω^ΈUαϊK Œ©†|‡ϋαBβn•βΊΓU½Ξϊζξλ9x―Ί~!Ά"/©A_Πσπ’ϋ9Ύz{ξ)· qy0Άη˜[Ω&›Ό‰I y¦3: Ϋk£φ…ωτοߍrΡCF‘ €—€fE›ήŠX:          @Ž ηˆΘfT…^ξΕڞ0° ΅%ͺ@ΧοΎ)﹍lD¦φDΐ§q^¬΅]Ά°hΟ%ž‘ 6[‹FΈμΓΆƒr;†jΒrέωυyŒF ΥΚDΤ£Ρ6{N|½4œ[Πκ&χά˜ί—5Uυ α/―΅£x_©HJάYΐ F€¬V›ςw₯56;F`“9γP™ξb#θ5;¬waμY”ΈYU’ΈΩ§ρ¨l·+JΰE†–6τφUar|#ε.§«€ξ+oαΝΊ@ρ›³x0WŒ«ηzvΌω½7±ψ«―K-ΩΦl`mCη Š0¦§‘Δš1~ΙΆVMŸφymωΧlmΒ ‡I4aΖεΓB΄ηx£υΝ§iξ¦ΥVΥΜΛλΜΧ"Ό7—b¨nΧ*«‚Y}wα ·[·¨ΨΘΜΫΑθ6$f―£sεπ>νiƒ“ΊέέΖ̜ς™Ηƒ‡p㝉Wή`P›Όρˆ&~sayݍΑ:₯<ε\Ό†5ΪƒΧŒcˆ$l?M²/]ύCψ^¦]Ϋ3XσΜ1mτ:ΨΖZhTŠΧ4oΏ˜ς¬ΖkEBωΚ‘Άυξ±φσ˜N›Ο€ρ;¦ΕΉuˆvΠΌρؚΔΔτ4+kΠΚ&Όy£*΄ŸοΞΡ1«ΨθϊΣ;˜L›s½{€=ΦεΎφ@>ᨡεΦp”<`²*q‡> MΨ^΅/Μ§n”KxdΉE$!rΊ2          œ%G‡±³Τ\ν«Gρ’ηV4[UΑαΦvŠΐ€+δjξ5}8MNoi@,³ !BE τ8ΪΡ§ ϋD,;½‘ˆ‡JΡSوΆ¨΄j?mΦάnhQwαt/κ —ϋmθPΛΨ[Ζπšζυκ‘άΑέl„D><αt(M ~ΰh?‘°θu!ήΛ’+,ΗΚ 8jμς‘οŠ€ΧλLϊΟ…Yψ[ΨӍ޺`c·7αv·C_₯°Š(:2΄ΰκ`Wd”ΞήΚΚ&–ƒρvιηρΑ%’³ΕP’‘‘σθνi6lΈάS―‰ΘΒfλE|ΥΆ`Ε;xpο>½σ ,(Oΰ·ή9gJΓVWΓσπό₯}&JMՍΈ¨ΛΕψψν@Ϊη΅Iη_u‰z–ͺ=݁k7Rθ?b΄>#ωŠD`loDά^Φ€wΕV©-ίήυjμK7^ ˆ›αၿMBά €ίšc―ΥˏoΪ]SΖΙ έ­oΝκ%.Ί+ξXAsLš$cλᧇΊΊ:£ŠjGwΌ–„“&l?Ψ—p5‘­ƒΓ¨uβŽx*ά¨QΧHΡx­a—¬ΑΕΩξωΧfαDΙηہ‘υQϋ™ι| “Ζ/L9Χ·hΝ‘g“κfΚΡΪ,ΏωMΩ ¦'Μ‘7+m5Ίώ4Γ†Y‰λ\5jΆΥΈˆο\]οnγξcόfξ1>˜ϊ,<Ε³Π³Θ;xΌςΜέΗ‡ΞΉπC³š>&l―Ϊζ ­―#ξߍrь7I€2C ½KΛLX          @2θΑ9ZK»ξχΘ‘΄TχβΦΡ FΆΦ±_hCwe .W*žΑΉ±¬+δUηδχbΕi΅ίϋqn4φ£pm3ϋE跷ኦ³… ¨Ψ‚Ί^t σ›.,ˆgλ}Q–£Ρβΐ`₯F.ž–ΉVb»^֌ φ0»ρuyύsl*M̞FTŠn{/Vζ±YX…!‡΄E™K}ίΉV5ω’6u~«',ŠΚix·ϋΚkxπωύiTχ‰ηΖ[η ϊ[˜œΓ˜Zr¨m"š|λmμέΕ³ ͺ{:πκ+―Θ|Sσ-œUΦφ‹ψλ[Εx6ΏŽq·V„C¬ΟNc&¬ΓΘ“i ]j’‘”PΣ…ŸώΌwctVDΎΦ*΄·Άΰά«ύ°O?Βγ‰%φ1 1σP ~rλ’ψi„ΉοDά<Ι}ϊΩ0ώζuϋ―ΰ'WΦρΫ‡K)U>σdOΊ0¨LcNτoΛqοα ŒΟ¬ΐg­@½ν-ς`C_μβysSΈΜ(5š1~F[ͺ;\€ΉσڌσΟ‚šRuζ«νάΖFHh’Ζ)ίFλ3―̎k"`†<$1+φlΙηΕ–Ψ³ƒ‚R±g5rή9Bβ ΐ‹§ξΉ`CKq½ι²xͺξŠqΫ»ƒrK7ήΆEϊ²ί€pnΝad;Jؘ;h‚½v1ŸΎhwS-£vׁΧoη+έxώl/—±βΪ€蕇{_VΌξ+Α ηrœkJΧ±Ι1Y;ΌΪ‚f)ΡΪzwϋŸσ땝ψήυ7Π­žŸώ:γόIΨ~°/qͺŒˆŽ£ ±ΩΊπ_εa±ωΝyΜνxΰ9<€΅€ •­hRΧω¬ZΔηbyυφυ›ς gρoG>ΣΏ¨Δ²ΩΨγ‰ΗXpσ‡WΠ«ŠΤd|?Ήϋ2œ]ϊϋΙ—5ψo7μ}υ n8?ΓW’#M΄ ‘RT₯hώπΥΤόΕUΏh–\»‘|ΒΥκmΏŒςΤky"q&œEb7TՌZ₯xh)½N0Z_ςωšC^₯ΛΡ&ηHγ„\žSχG^/&֞γƒΝ+˜χ}πD9"θ0™rOβ΍b\Ο3VI-Z­ͺϋ,/Fέ3Ί―Ž(SvάcΈ·!΅ %YυΞγ£ΩgΧνC(|β2"μλΈ‹H``GκPe^Λcx:ΫfχΒώύwwΒή›•jœcψΰγG˜ΩΤ©s{χώ4Œ™`ΑϋΗΌ6ϊΫOΏΒηίΝ`yΣ―ڐ`‘»ϋ±€VΖα|πn;ύΩΆ]˜YΤΈ¨σ†ϋφβ¦mσ‘ψD „ύωVυœΗυφ πB|,Βγhΰ+£χρι35ΦŽΛ—DŒ‘iγO3ζΑξοξ‡γΔ)¦?D΄uq ςΛΔƒ ΅ά`‡4_ξ•e ˆ·s5ΞθψiΪj”g&ζuΚη_a‘x λβ-Y_ΰlό|OΆEG»X‘KόΰΓ’gkφ>Ύφh―Hό]/œ;βυP2eS΅ΧΪ6ης6νnφν~lcun.½λ˜Έ/ž>Β―8rμlJζ:6vώύώ„ψ„Žn<}<z;DΔ΅@“4ϋ™¬}ΡTތ^vΔΉNϊBk‰pζΐ–skŸΕΨ€ΐ1£ω``½kΤ~f:ŸΚΟ”ρS ΛΕoΪAΣμ ήπŽ95†m{/F£λJ&͚.Βζ€sύ)Υ΅ƒΎ―^WυγΆ|πίώερz·¦¨4$p^χyβAC΄ΧJz£φ…ωτοߍr 7H€2B ΰοαΜ¬ιΞΗšYΛ"         ŒτΧ9>1•ρΊ3RaA!ΚΊOpš‘†œξJΪπΆυ­IwΤ&―ΖnΟO%¬{ΫXπn$$ΞMΊ²¨ Wo½‹Ϋ}@<)ςWw‘‘G₯Le·mΆ*TŠ8ΒήΑτΟ·6yUz]i)Κ ŠP(L°΅ΏƒYy•z:ƒ­¬e+uξΓ³·‰ι(%o:` μ–ΦvΤU•ϊž>™3O¦—Γwτt’ΆLρA|ˆ׏œή@“t³TΥ7’«" DUΨz6εuΤ.έ΄g&R^ί}±± ₯ŠšU„εΎ=εΊ–0―Ρ|G³ΘΦψE·#ϋ™>ŒΦ—tΎ’ ΄••‘\μ_IAΐΘοŠwΏ-χΙ˜t€>‘Μdϋ—-{}B7z˜v7­xO,ΌΎυv+JJŠύΧ”ƒ]ζ'–bR9± DΨΔV·lυΑž+ /1Ώ•hζδ%{ώ%WΊ6΅Ν–r؊JόvιPDϝ΅8€™‘/PFλ]£φ3Σω‚ˆ27~Ϊ1ΙΞ6ν yάϋ_{?Ύx§Ος³oπί™4―p½’ ¬?‘A;¨4ω4―wυ†$‘8£φ…ωτιε’_cIΰτ°Υ΅λvrKΰVBWW—;Ω?SSSώ,Ά¦ώˆ¬8Gΰΰ          §^ΰ,ƒμ8‹Π™!}R8§―U'—œσΙν`      8;Ϊρ³~ώ{πυο~‡―ΟNοΩS  ό i3{σ‚­$         S μ›Z # ΣDΐVsό PΟϊρΣ4Φμ @n8νφ5·h³5$@Ω'P…ΛΟαϊΠ~φWWƒβfiΥάΛqσi·Ωξ_φη[@$@$ G θΪ7Iο€ΡΈ—“WΣFσ3          d›@½ΌκZ ΅υl7%mυU6’@^C͐>vlϊ ί@Uϊ*ICΙ͝=θrXί:ž< φ" ±HΘQ ½‡h:Φ`k­ ¦•gύx F €IN»}5 ‹!8Mκ»πώ^Ak=μ–β`ΟΔ{σW_b6p;ι;νφ1Ϋύ;MSŠ}! t(΅Ϊu«ΨσΈόρΥΥΥΊΗOŠ\_όΎ΄’6")=8Gΰΰ          œ G‡τΰ|6F:ω^3Bύ‰=ωR˜ƒς“€"hμ;€g΅ΐ­μkΓY;ν;·I€HΐL§έΎšΙŠe‘ œb{ϋπiΊηٝţ§Ÿα«ΉpδY[fϊϊ&Ν-  \$@ΞΉ8*l         @V œ ΞΦZ”Š—^†΄ΘWΞe•U(;άζk˜˜Y7m„X0 δU<²4^„Ή'ŠΠ? rV=9ŸΕγz¬skΤΨ |%Πs]yΨ.ΰ)4ΪWΪΟ|™l7 d–@Cλ*<%πΥƒ§ψψ“§˜υN£ EΉ;½φQy˜0—ϊG{Ω9ΟΪH€ςŸ@¦=8ΣωBώΟφ€H€H€H€H€H€H€H€H€H€’&@ΞI#;3&‡`rψΜt—%?ξΧφQQ{EάΌό"πTυ[aΨjΟμqN HΕޞvϋšn,“Hΰτΰϊ37ΦΧκšτΜ,φ„H€Nzp>]γΙސ         ˜@ΰ,xp.΄T£°ΌZ,"|υΰ―?Œ'ΣL }θ Bά¬φ5ΰΡ­ŽΆΓ3y\εΐo 0›ΐi·―fσby$@§ΧŸΉ±Ύ¦ηΣwn±G$@ι%iΞxdf—ξ|ό‘™Ε±,         Θ8ΑΑAγS―;SΧt ¨¦=S՝ΙzΪ1ηοχK΄žΙώ³Σ$@$@$@$@$@$@$@$@$@§‡€­NΙ[‹cώNvuuκμΤΤ”?Ÿ­©?"ΰ[Qά!         8νŽχO{Ω?          <%@sž›M$@$@$@$@$@$@$@$@$@)8Ke_I€H€H€H€H€H€H€H€H€H€‚(pΞ›©Po©ECiόKް΅·‰νν΄΅β›·ρή`Ό+ψΰ·ίb>m5… Ά•U‘ΉΤKa₯»>ΈwΦΰ<§Q·l%”ͺ;ΊίXΫσE99O8ωΪ^<Άθ±I‹‹όcαΫίΒθ–;œ‘[i!PwξUόδf°Ή.ΏΈžι{ψΧ;/Βqiή Ν!±k2?γ…PΊx ;?γ&Mΰ€Yυ…Κ9‘ώ&YΠVnCeQ Š 9g7vΧ0½«Ο%Tvύ‰ώ%™Iς‡€­ u%€Og[9ΤμκNόδν~X αžy†ί?4ρ hkΗϋίτχΫ³πΏώz2‡:~LS’<ߏ))αCΙ¬{R±/'ηMΜ^‡ΚIΔ~&L σ†€ž=Ӝοn9ί“ΚωžN»”³ΉΎ.EMI‘Ÿ‚οp[:χ»Žϊr μΕε(+,D‘έ³΅νeΜξι ΩύΓ±ΪuΡ|r'‹,θh­CuU9Κ‹•;χCμlm`jb F[₯g_Œ–efΎtΪ%ύ̟υRςvΒΜα”•ˆ=Σ«υδ|'Ϋ¦“ΦKΩ΄σz}fάΙ`ΟNτΨ8‹‡I€H€H€H€H€H€H€H€H€Hΰt8’ΐ9ηΆή֊«ΥΝh)•σ^•Υ­Žc<Ξλ©tTΔΤJ°–"έ?"ΨΚpΥή„>k…N“}xξ|†;Oθ˜ΝΦ…Ÿ7΄„φυ7vπxρ>ξ«:ε²ό°₯ Υϊ‰cb§VΏΓ§‘?CχΨ{qΥшʨΤ7φ\ψJΪ8Ίu »ΆF\?W‡ω1}}~ OUijL†κ+-.…εˆ†Pšή—”6KšΛ¬¨.±‘Fψ•ύ‹ΐτβ›ω‡x’3ζ†ζg Γ“J}FϊΧVف[5:,zη+°κΗƒ₯)ΜjϋdΒω§-ŽΫY"`«Ηυ‘^\μσ1žύι#όώ‰+ωΥχγψΛ«p(9Χ&πΛΛΜƒ4 5΄DD Ϋ¬Ά„²$œΘZŽΊ»Ώμ’5ƒWΧ Ω]₯O†Ξχ„aθ'Lzέ“‚}Ι΄ύΤο1c³B φ̌σ]…“N»€Φ‘₯ομ―«πvΛ%τn{€½e|8;gˆE)^­@E,‘8νFœžYάuΞhςΘq£vΙh>m“ΈΥνΈ}Ή=}M‘5RDCήpαΡwOρΙp’Mq½„ά_/΄ȝ“μYΌ:NΞ—ΚzI©5»v>^Ώ—@ΊμYά ?`πξ)ρ ˜’H€H€H€H€H€H€H€H€H€H  ˆΗMŠ*†œ#ΠiοΗχυqΫUiiΐۍEΨ›ΕtάTF„έ—i|ζ-,nΎζͺ^ό¨Ά1ξqΕcZyQ€ˆ΅¦D„'†Cμ†Υ—Ω7+Ήφ5™eBέ%ΌQY.P»UβΐΪnΈζ'#Ε Ϊ4ΪnικΖΝ+ώΪ^μ­€]ΰœ©ϊζ—gπω7«βMΖ₯¬ί»•~’E x­‘΅z5μΐ£#nV’™ŸzU$gΈ>Cύ«Α`]Ž{Ό ΦΪ‚w[ π‘ζ|HυόK”Σ₯‰@u n^κΑ₯X£ͺ(DHυuδψέ«η:βfI6σr)#o 8ΎEΪ£α^•D]΄© mΛIκ55|•M€LΩ]±f†Ξχδz™ΪΘΊ'ϋ’YϋΩWξe‰@&ν™ η{˜RνRΈ’Œoe{}}₯‘',n–ήoΛΫ_ΌZ EΥhŽ+n$¬―hΓ­Βόzi.”Σ¨]2š/T17²F ₯UJqsά`qΰ•ΧίFνOψΧ―Ώsηz ςήc!cλ%ƒvΒX―βη:ўΕɚH>Γλ%©3Ϋv>N·} dμΩ‡γ‘7;¦XSQΰl FB$@$@$@$@$@$@$@$@$@yH@9πίΔ97r–VΌ¦7―+^QΧ—°"ʨƊVΌξhx+©EwU¦£Ό η\τdνΐ-Έy{Χ…±M'φφPZT.―‚vΰR•λΎHOΚφΐΩ‡™ '6D£)–Κw0₯ :₯μοάΎΨtJRρd^]Ӂ6΅;σx’ρέηΈ 7ϋ0±6ƒαυuΤVwγ횠όUD·έΆ98·|j)ΩωΦ³2ρ[S¦κsΞγ[՝ž8T='η†4Ά•Y4βζ©M#¬ίΫ‰ϋši#σ3•­ΟPΚΕ“u°±«^9Ww6ΰτmΓ'>Γ›m Έ\£λ₯lΫy.3*)'Ϋ3Œ'Ubͺ‰ωŸλT 2?          δ)#wςίΔΉ6|ηl΅Pυd›ήόfi6ΤΔ χ8,₯x½"ςGωP‚ΌΨ¨Β­šΆΠ랝›SψpEϋΚή Lo-γΫΥ¨ήT ¦Tνχ¦V§1•BwwwίΚG?Τβ=Ε9³ί©O„ΠSXS–4β‚]•tγ+ΟπEP΄ΉΆ΅‰k"pΌ²ΊVeC€žΩ ΝΉ‡‡…wš•ιϊόέ(‰‘³§₯w[»kΈ·ΆߞΛ[nΨμηπ# h_έΫΟ‘ˆΪ Ξψ2’Ω1^Ÿ‘ώωπrs‹› ˜Ψœλ "ώΩ+Έ‚kA»TX '£η_2(˜6}T—ΓΨΑδ³1LμΤΰ+‘GB’χβωv4s-<ΖH%€9ΓΦ>»³”ζJ’‹· JήΐΦvά‡'Τ³»FΟw΅‘I~^χΆ/ΆŸIς`ς4Θ{f“σ]Ί·!η{Β!+v)αΦ%Ÿ0ΛλλϊΚ^άRΦχŠkXΝ‹6}ώ›½%|0©w=PξSΆQΪq ΑόΟ΅KFσ%?Μa2ΗgϟΰΩƒ'˜ŒPΙ;16κΒϋ?/πίάW ΎV,@g—τ)ΧKFν„^χ Δ%lΟ’ΚNguήW@IDAT<ŸΑυR–ν|TwΉ›dμYΌb δGG‡βLΰ……š ΔΛ ‰Wς(A)#:π?ΧΡDΈO$@$@$@$@$@$@$@$@$@g…€œr€5%ΑF‰ Π³Σΐmρ–Ο‘Ωތž vy}+Zά¬νY€ˆEVΨUΝσξN‘©6ΙΫCυνh Š6=β)X£m詬 yρέ”vͺβfˆ4εVC—ˆ›•φT[WUk?n_jF‰όHs ?μ‰pα??}‚•Ψ€c,xν­«θ©,†Oκ(—W―«‘ΉUό΄-€δA‘ό΄8ϊ_NDzΔΈώΦy\θlƒCΤΪnΡΫΨεΫ΅0ƒ‘§OqwZ›>΅ϊκZ;q½Mu5¨«΄Γ*υψΓΆ .^N½ΐ—£ζ{L54β©;άχΆR΅±ΐ¦x-Φ i˜ŸΊυ¨‘©Τg€»ΛΈsŒn^ρj˜l8ξόKΆ¬\HρΚU\μhFkjΓο¦ K NŒŽ>Lj3zξ$sώ)=lΔή9'zΒ»π6*p}°έ φ`χΕΣΦψΎψlσ! xχ‡η`t°½„OδXxf‡‘o₯?π@ΗΪΜ>y’œ‹ϋΨφΊ0γ\ΐύοD΄³Τ]ΈΞ”τV;Ξ6s­`τYπ5νυ½xΥV”ΛοΨξ™Q|τdιψ’mνψΡΫέ¨ߚ^η όώώΛPϊώ‹―ΰro+:"Ζ`/DœύΡp8](ƒlt_ΌŠWZ,ς#Ό&VxyζΗ„Γ1m©οƟΏ6€σΝaώΛsσxψύ­¨’2Φ₯ŒOuΚΨί?DKη\:iόR³»j’Άƒi8ίΥΆΔ~§gέs¬}Ι΄ύŒνtΞΗО4Dqμ™NΆύύB\zWΞ·‘‘2ψFˆmDŽ>ϋ΄ƒQωŒΨ₯ΤΦYr=zsύν α6J›όΧ0§ Σ“Sx0νŠje`7Yϋ’κϊZ·‰FŠ·ψ›uΤϋk˜ί·‘₯LYΛ{±ζ Όy"±’!f<$Ž•aι—r¬]Οβ5šο˜"³zθ΄Ω—ιό^TΞKxϊbWχiŽͺjάρΗΎp½Δ¦·ήΝzι؁4f'Ž-R{Π¨=K&ŸΑυRVνΌ–QΆΟ²=‹‡Wq’qtΰΓήή>ΚόΧΨx)cγ•Φ•’΄zΊΣ¦^κA§349‹»$˜–BZΙV wPμ ˜[ΰάD(ΎπT†φε<ΌΈυ“—q=~:i±ΚθΛMπ7ΦβŸ?Kx7ΆΠHο»Θ2' Ίύ#ψε{£΄DDjΠβοΕ»τQ‚‡‘ΐΉeπ:ώrP‰₯lϊ―»«δK#š­γ‘…η=Yƒ½˜χδ°/₯e? <ΟSlΟLΡΟlΟ“· Ύ€wSOΣsψκ+hipβŸ?±Γ.0Ο’>Εϋ7Ρc0GSΗ°ςhFs~φ₯πωu*JΣΗεMx·Ή ‚Ό”–Σΰ‘ ΊΪεIπ!yΠΟ²ˆ+­ G=Ό•ΚYzγGrM‘r2}›Γ.₯'ΟXM—1ΓηxαΜΪ—μLk*’ψ½ƒά7KfϋΒσ%‰τ)™/Y±Ωo₯δU«φ,ΟtΦζKΟΡΞ' όΫ³ŒŒΛͺjpO ‹ε-pAΘ#5°ΐ9•3&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐΞ cφΰ\z]@”ΌHžk0ΰιΑr|ΛbEέx©EΧ‰ΨζσŠλRh,ύΠΧ.+δ’ρ8JˆξnΰIdb©R•©[^«οPσ[‰,c\[^­Š’o?‚EΩ³sWύ0«’θdži―΅.ι܁Š'Θͺ!ˆ©οΗqΰ,ΗώΡ1ͺΘΫW»τCΠΪό –£ϋτJPR ‘μA­g:n½qM#nήΖΣΗσν’ΈΉ£ƒ²PsπΕ—ώ_‰ΒBΚ“ͺ!όmc!Έ‰pd{‚ΈέׁaΏ$JμΌόn­αs―nNζ˜c―Π~ΠzBacύ=yk΅σώΜΡ&Ίl[y&Ϋ—­FCt«BŸ–wŒEΰΙ8/ι3A.eωΘ ¦DοΝ)Q >lΕΘ€²ΰ#‚±±gΙΙ;θj”ΌΗΣ@ΰ¬'ρ,]™K^MΫλi¨S‹¬7Δλ7ήΦ‹›ηΘ“υ,υ³±Χ}boο(~B―‘Ν}ϋΧ–¦ρd_πΰL}TαΔΕ^©ž‡Ί>ΣV£oΎ¦7ΗΧql[e Έt΅W'zΜ‡”_ξώ³ΗξΪ9εΌkΩνΫ=οΙm_JΙ~y~η؞™cŸΕžeΙ@xή˜Ω@ ½=δz‹ΣΫ5Š·FCψνΓU]ΚόνR2yΎσ¬‘Έ9BσΑ¬F¨t8αmnΔ _ΰ’ΝdIς^>σ,;ζΧi0s’―΅ ΚomIΰΙΪ#Œ_θΔU%ibΧδVθu·βR£OJΑΘ Ζs~₯Ξm—”ͺθ·VΣιs)£σj_άhm”dυB?„77stGϋΒσ₯,σέRš/Y΅9n υ²U{–:Kσ₯ηfηU@EΨa{– r…£ρ-D£Qx΄πŸŽe™Άu£ί―xΕ‰ΰφ'Ÿγ+ET|oџόˆ<‘ ‚Ητ ‘ΐYςŽΠΦώ0™β>φα#Μ½ϊή˜5H\8;-ΆγDώδΩ‡κ9{»ΨΤά“ΪϊΩyjσΝ΄oWyfΫ—©νž~ά”Ÿ!Ί ‘Oη/SY₯xή7‹ͺΈ9„ΫŸέΖWSϊg―η5\tin<‹Ο_jϋ—ŸήΕ?|9!~8†π­wπfΏ`£jΠάL^)εgzlf7ιω–tv΄‘ιϋ%Λ7žτ¬<΅¬Ϊ”Τς 9ξνAŸlΒ#³sΈ­3AC ΦQ ιΣLζ_w]_rs½b#ΨX ώKΈΦ%-’ ŸΞ)}0{σ—πΛ·/‰ΒγΞ+½ ³LMΜxnμ‘0άHΑΥ‡&8KC}ΉΚQΣHΥU>Š/αχΏύδΑψΞκώ&Ν³³’RΏ5έVνΌΎ8ύ‘ζvΤ_Θ~dεyϞ£tΥΞyϋR*φΣ ›bΖa{fŽvv{fœGhφ!ώŽ<5‹xcoΰOH‹/ϊϊπ‘ΐY»τ"_»$Ψ>«σ,O­2ΏήΖν>’΅%ΫρyΉTηρ#‹}9‘ωu²ͺχF›ϋ1(O{6ŸαjN»'Ή0mγ`7γwͺ‘¦KxΕι@”„W•5κχ‘°νY|ZΟXrΑŒ]Rβj·VΣiσ(•ύσj_:G/⚼XΓΜ Ν[²„μφ…ηKΘ6ί}Žσ%;μD–ΫBwΙͺ=³’ΞΚ|ιyΩy€>`{&^ΛHΉœή~U^εΐa"Ž`p­΄ΰΧLβΡ¨…΄B©ΑΔάR“π1`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ œΗ,p.ΝnάΫ"ΑZ‘m‚ΈYVΖfρλeΕ«si6ΑΈVUhͺrΡ%­ ά]ΜDfπεΪS<ˆj=Z5`Δ£ͺ) β1,l/“ yίnΜβiЧΨA―Ζ…kΞ6bΤΫ¨O‘χζυHΪiͺVΔδik/L'›πf‹μρ™Ρ_―-ΐA"%€y―£V¦ž£ΧŸ€Χ™Zgœ²2E½­ΤPΏιlŎΒΩΠδTRά,F‹γσ{ΟθεέRπ’PRπ¨šς)OHϋΰϋϋιβf9ΣGΙ{΄Ό_Qa/₯Bϋ‘‘")f “‡?ν]*W™6vޟΙ\3οΩWžΉφΧ€ΑՍ[^Ν–΄πβ»”Ει)s?ιiLžq9ΠD·©›β™Μ7c47†ϋΊΥ«Σχ¦‰›…‹ΣξβΓΫIΡΎϟπ£ςΓ»Z™.pηΩ²ϊάzwΘJXYĜ’Ώjj†κHYΎήΥ‘΄΅σ «J*·ΝΈΤ―X‘mŒ?QΤΔΙ"‚’·.ςγŒΖ&i! κϋπΏzϋWογ7rd/d1s4‚B_λkW=:/>xœΦ[³π`R±0>ϊέΙ‚Sχ*sthNzb|66‘Š›Ε¬Η¨,Εz¦f=Ξ£4Ις΅»JBν ΅η]©AŽ­mσ3φ₯4μg"Ϋ³SkΟϋ–ΌΦ?ΠΫ½±;x—c64ΒG ;2vIHkužu¨ύ>¨|ΧΠTfkefͺΉ οζc_μ˜_§Χ ϋ™ή†υν+αθ >K39―fαd4‘IΐMob o€€΄B]ŠΈΫΣψ Έ˜Q¬•»”Œά³š.™CΖ=Ά/Ε±/Νxσeeώ<ϋ~L?gHλ ž/₯!ΙgΎ«I\άω’vBSω,»Vν™΅tΦζKE·σlϞ›=Λr«’ŠήvpœΔγ1¬ΊΔ7εdH \βq…4BZ£`ο‰ŒJΰsL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&Pš΄?h—f Ο_­>όŒΌ{ͺ:‡Γ–ΘklYE-ΪͺΘ«±œ]x§aonHΗ§ζ― n₯ b·qoε ξΕeΑσΞ:ΆŽ/α ·$^«,'Φjˆγ>ygΫίΦ L·1Qۍ7ϋ$jεuπΉͺ°°£Q«™ˆ;CM~H>σθ0Ύˆο’Z1Ή₯ •ŠΗ˜‚ρrάhω¦°οΦ'Θ£3‰r` AςςœΦΗοΰ―N‘ HTΟ1ϋqΧΤΤψΕ#όuBO[3-3™Ηz}Όr^‘Π&ζ(­ΏZ±Ε΄ε*ώΪ7Š 2/ΊP‘\τα¨.δηq7άΚψ@λΕτ>_ ’ρμΟaΡςκ?]K,j­>ο¦*kγΌΗœ}yώφ3'Άgΐ)ΆgiύK ψGςΨΌA_―`+ΚQ-Ξ5ΕsZ¦OX›g)³7ώτOΡψt3KX'»Ξ]'σφŞω΅i±ΉΆ·hά-Βϊj]ρ“MuQ½Cξ"œHŸΗK‰δm{MS¨ŸκͺΡLγ~ό0εύξAΏΟρ}̜]’JΣώ΅šN›‡α>Ϋ—βΨWΏxηš:/Πb«ίήKŸ3hϋˆηKZςώ©˜/n' ZžvΚͺ=³šŽ,…ΏΩΞ³={φΜΥ€,@M»]ι—•¨nπaosI./,,’N§•ΒΖ(μο ‹!Šž›q³FHk ωg”ŸcL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ΣBΰΨΐMΧi©ϋ™¬g#ήՈ›7ΆηπMpA φΦαyyBG};†Ά60~šΊ°Ί΅Š†‚Ϊ0šIŠ›ΕVΛ»€Ψ“Ξς)u³CβζT=Ÿp1Έ=ƒΗN/»!\œεΒ6ƒΐΉΖΛu΅B2 »x™5Θ³UJ=χχΠPߍ~ΩYσδϊξRR§ ²\‚„;XΫ3Lϋ³Ξμρ.-rO$½υEΪ0γ‘ΝυΉφκ-ΌuQ’‰gΝ:ΥσuΦΘζ.Zο폴»ΨΪ:ί8Ψrgmx֞ςΜ·O[‰W‰›ύP|ΗγKψ|e†„9‚©η/G™.Σ₯I k¦H)η φͺ^I?ΐΚynΖ°nd RŠνxώ"αhVavu•R1©ΣS«X»κ…6~+-ς˜Σwv·’]γΪό2’~¦ε“oάΈ:Π«ζ21>©ξλv7"Η΄{$Λ>ς―ςκ Ϋλ΄8BρΎΎ!xΧoF}½bΣ…Ψ΅hiRSeΨQ |†ΛYO ’vy@ xVνdΎύ—΅J&/Z΅ƒ–ŸwSυ²qή“‡}yžφΣΆg:L§ΞžιjOΫ{™f₯rΜZΤ{Ɏ-ζ§f­=Ά:ΟΊϋtWϊG!ωΞ―Eίΰ}δœγ<}6…/nOΠrΎΜΑœ}±o~Ή&š+?^o–GΈD0e}'Q& ‡;XΟ8½K`,4‰1MΆ#ήKxΕ#-bρΉΌh'sΖωOvIS`5.“ l_t`NΖΎ΄β§οήDΝiΔ°6‰ϋδ‘άτž/₯3NΗ|©@;aΤπΤsVν™ΥtrωωΟ—Šlηٞιξ”±gR΅ΚiρVMc'[«8LΔ‰„ŏςWπܜIά,DΣ»5Κ…Ο1&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜ΐ™$pΜœKͺ_{½mͺgα8yώ”ΔΝZ½άTxmΞF Š?Θ»Ρμ¨Εψv&c%Υ4©2€SυΨ‡!<‹€K%ͺ.Xž%ŽL4Έ 7Hˆ2ΓΡe|o€%!o ’[¨leϊe2+‘§ψRφφά[γ’GUΜݟ92Ιγ²ις,΄―ΓΣ‡wΌ­jmΒ΄γίSl•zQ·cςωΣ₯Ιγ€ΌŽπ`NΣ·OŽ!YˁUΤ(ΕR&֟ΏCςx•W/`qy-ν$ΞmhAXZt »C‘ οb~ϊδΝ½}δ9Zιϊ$L]αϊ&‚‘]ͺΥ―Ύ=$\nm–dRj/Ϊ:άθQ¨lc#(xB$IžΕΣχ±Jn¬3έε4Δ„ΧžΈ™wIŠώΧϊσnͺφΝ{μ³/'i?ΝQ‘XlΟ²£*y{¦―~$‘0|ƒGu΅ΖΖΡT¨ PΘtϋ½P|Τ‹υqx0xω:jπχ=Μ*rΞY"Ο―/ΥΆ’^©Τ… τ6aπ‚|βBeςΝ!卸ά2„αcΑ[霺°TIšΊ Ν£ΥιA·πύ …&ϊ^ΆLγNz°j—¬¦K―αΆ/†XΤ“Ϋ/ήωω+κ›+°9‡ω?ίg]”&”νζω’ΪڝΣ2_ΦYΨ7o'RS[΅g-'d…ZΞ—ŠlηyΎd|Ώ¨gŸ“=SΛ§A°\γν s qςΤLBηcωwh₯p ›+u(Wίͺ M­ίg³ž1&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐΞ8—T_ΧW*Δθ‡ςΨ†Nά,U4Ž(½YπR,„ŠςL.ρri9άGΜ † ―£4ˆͺ9UO…ΔDπΚN€ §…ΘΝuΈθPβE0Ά™Αί‰LDm―Fk-ΰ‹ΠΊ\¦m5ŠgQz%νnAIM;μΫ=2ύl{ΡHžQIY˜VΈ TB;-WyWIAμβγoρί€)] ³"΅TΚMΫ’˜Dύaλ<=§•WUr+…Δ."–DίζξΟ&ΎZ΅uτΞΦ‰AgΎΑ\ybyΆoΘ;Œ›Ί_δ°y†ί‡ΜΥΡτσ§džχ6„ΫwογΌ³Ι'ΑNΫΒκΑΤXπ Mβ\;ž?sUŽcja ΧΪ……΅δ-΄AP,z}πδ’΄kί_Q9rx<1c(ς“.ΗΪ$[κ'/οŽψFΪΠ$ˆΗ£+ΈΏ\†[ΰmυΓW)»CŒoaM¬οφDΟκB;BXΗ]νΚ Ήlϋ6τ:eϋr+$§\v·Ό…΄…<οζμYμšχΨg_NΞ~ζΧlΟ²σ*u{¦―½Η['.`\ŸFlG³„1uρ=C…lJŠΜ‡Ο³V¦ρ}Θ£Σί€Ζζfτφt‘“„ΝBpϊ{πbο$>ΛΈHEŒ–ύMσksφ₯τζ5Π‚Ε^Aœ!΄Ήθ 9‡x’αΊώτŽυgŒŽ¬Ϊ%«ιŒκ`|Žν‹1εl!φō[jΡωή£7œόΫοΏ1ρv ž/)τOb{σ%γ:›³'kΟNf˜/Ωd獙e{fD%yξyΨ³dιΪ=AΐlFΔ¬M“Ί―ωOIκ%>fL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 03MΰΨ’ZοL#yžs«―½asΟΘΓ€•Š@7ΨAΖχ)?Οf˜+›„§›ršZtΣ«ž•"ΟΘf‚ΛεΣ—ˆŠΟ<%―₯JX /a<ΣνOj^Ά—„¦A|³:—œ;[P΄θϋ,ν{υuχŽβΟPq D9ξ.γίw7§/₯Žωn  Μ,φ<€•ΰ©$Ό)q]4(ξ8y¨*±“Ϋ|ΚKjρC˜x’"n¦,}έΝΉΕΝBΡ±„'CΈKΌυŽaΩ9ν†Bϊ‘< )zΓδuΘƒa™Ϊ“ζξO {`oφ+κ•ŸC˜ΞsΚ±Ι­Ως„μΜ·―ŠΌπβz[E“‘ |‰˜¬UϟΙK.š£}ύnLOn嬚Ο_ΞB "ΜΡύ΄όr'ΪιZ{K+ŒV¨ΟέββͺύΆΙߏΑc΄6gπp,ΕΞHWΤΏ‹λΒύDgzΒϋΚΕη<ΆΔƒι*Qΰάβο${*y<…61!¦άΒζ E1yyξ$됣΅@K;[ΨΨ’v΄VΘ_[³θmW›Uk£ςœhΟΪ³ŸέΥ–˜Ÿ,τy7kΟj`ΟΌΗ>ϋr2φSΫ§dŸνYzGεiΟtΤ9Ρ@S­%έ΄–ζτ^ΑŽa[o5‘™ϋkΫ< qΜ- Ÿ%ά½w7ί~―v v—|Ρ›c@ΧSƒiϋbΣόΪά|ι»ϋΫΣχΓT1ςqk4~ͺiAٝ;Jl›{#‹Σ ΏςuμζΘ†Ϊt«vΙjΊΤ^)αγ3k_τΌάΔuΏ2—_ΓgΏϋcΊη>CΏδi_xΎ”£ζtqζKšSwMΩ ³σ%«φΜjΊΤΖ€gœ/ΩdηΣK,Ρ3lϊΪ1t{q`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0σHΰΨ΄—ΧσH§ψmήήW„²N΄;ui²]υνλΕSδMvW‰ŸŒS{ΪΌͺhΡ©ˆ^oύŠ`€·³[‚P° ½u­θH‰«΄Σετα­Ÿrˆ`dΕPΈάO―ΕμTςΨ_ΓΓMΑνj†°·‹-U$ΐcrΞͺQπc―ŸόΫIa%Β‚zMΏSλ 6ΦΥΒΫΰ‘mk+“ή‡υQm9Z_bMΞΙCεf 3+κe_Τ#igd$ Š Ε£pF>zσ)/™}œ‚žZ|Έv±[w&γy̍)]ΧT_Z^ι) ι·β-–² οEΣ3·ιώ2>HacC1 ΐπεAγ>’Φ·β’¦δδ)ΝκM[΅‘V5eχ χινg}†Ρ’6•=ϋΦμ.=ŦǣŸw‘₯ζμΩ.μ˜χ˜·/ΟΓ~ΪΣοΕΙ…νY6ΞωΪ3}^-JΞUΕk½=θVi ^Ω J»ΖsΫ₯dΊόηYMδ­Y©J2io=’.hNcΪΎΨ4Ώ6g_βΈ½ϊ²ψ,₯|–γ‰ΊFtΦοαƒΕορap;ε$0φ΄"9b§΄ΆΊοΠw ε{@|/fψ=ΐΌ]ηo5>—R<:ϋφε₯[―K‹„G†ή>ρΙ―?Γ]“/ωΙΧΎπ|)χ=~’σ%›μ„ΠŠ΅g΄ Ε’,δϋ­Mv>w?ΟlϞ}φΰόΌΘsΉL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ηM€ΞΟ»tε‡EΜ’ΒΧG"©[Ηsδυ)Œƒ2zκ|ΈR' Ύ„DΑ­5C!―.ΓR; θιακEοΗnάl@Ωζ2ζΚ1ΰιΐUMϋBΛ²¨Ψξ¦>t₯hΛδΩzλ€ΤΗe5huxq±N#'OΛχCλι­nLj'Ιn2ΌˆετXš3ϋaiz<}X?\B΄ΜQ/ΥEyΕ5•χC()Φd νjτ(Κ΅tΑͺrΕ†-ypVœR;—π·*πd)ŒCrλWŽ#„f1'{ۚ\ΐΣkΔ‚~ώώ«ψδ»Ηx@?Δ_»to]Ό¨JαΙΜ<’RBε,mσ(Š—‰η^{ϋߍγΙΤ6κ{;ρβ /Πύ­\Ο΅ ‘χTh’`$Ηyϋέ7P?ΉJ/w§6–a}f©b΅μdή™ϊ‘½Ά5•buŽ/ΐ]“Šw;ΫρZεΚ.\@b·#‚¨†ϋ3Y-ύžα/x…•—ϋͺp£ν yH—«F‹β±]Τ8zπ†KοC‰|"Έ³ˆ±xŠP;οηO‘ԏΖΝb”žΏPΡ†nόβW5Έύ`γ t8έψ}zqžΩϋx0%)Ψlyώ,‚™˜[Γ«δ}-f³Ά†©€N;%ηVΌώZ€dξGd_ŽQYΧ¨^oιƏθιlLOο?Β΄β©°yƒ]r9ρ<|˜U½'εΉ³‰uZ₯αWν“‡ό)έϊ6:ΥzοbCcληMβρ`7. ΓA]'~ρW5ψξή3LΞ­#α¬Eƒ§-κoƒ‡<£G©ζ”VΤ7cΔ+{™¦TΧBqΠοu{0Bύ‡jiuΜΑ^‹[Xz΄€ι+έθž *οηΏ¬ΐ7g.«Η WG’‹C”2μάζcw΅εš²ƒ6<οΪ2΅ϋ†φ,‚η=yΩ—bΫO-€Σ±ΟφΜF{–ε=W_ΒΟp_|?‹ϊ~zcΓ­!uΘςτ’μ‘^NdΑ.YŸgyρς[?Βp]OŸ,a~e λ‘-z[F-ϊH„}γŠ2Œ Έ–ΑŽ›²/BΫlš_§°Ν{υ`yΝο”LΘ{ΆΊ¨‘ΞU{p̠Ō τ½c•ήή±Cί;/TΡχŽš―zUq3½V#Κ²%?!|ΏwΘi­¦Σ]Κ»gΩΎŒάΈ…7ϋiq“Έ‹zayM/ΌˆχΚτseΠρήΖ>{΄”μ*ž/%YΨΉw’σ%;μD¦ΆΞ—2E¦σΩμY–dΩΣ2_:!;Ÿ­-ΟαΫ3‚NφμΛΗΩ«fwΧδϋxΨ]>ηΗ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`Ο‹ΐ±"‡|^ΰr΅&ΓΛθu»!ωx#Oƒ ύτΡƐφγ±EάήP|υ¦_/έ3Ϋ‹,aPρΈ\݌WΪθ“Rαθ >ŽD€³Υ.ΈΕ½ψHδνΛ$„MlΰΛ΅ /jUx‘<_+’Όxlw·sy£ΫΖD4H₯%mŽšVάς΅κkΉΒ—ΛFει£υˆΌ³NN ’½Wsϋϋ‡@o΄Έ"Χ»Ή――bϊυ^—γι₯%¬§ΤW=lΗΠp―Τ6υ€΄γυwKΟ‘xΈΝ‰€ΐωyWόΟMΜ`:%­ρα λ¨&-²/Qς΄Ώ°"Ε\\!;€ œ·\ΥΪρ>ϊΓ]4όι5I\μhΑυ›ΒΗΈνΩkW_Ζ[½)‚o%BK?ώδ=%qτ―ώςD½„O8†ςΦˆΔ…μΠ«―'퐒\ΨJhωŒ ύ‡<μΆ¦φ ~ήM•’‹TΨΌ'OϋRlϋ©kι)9`{&w” φ,νy―ΑΰΥWďξnˆ.ΰ»o’ο Y±K…Ο³<>#Ίκ)±ω9άΆ>½’³)‘ωue Τ―δmtCσuΈ]}sG :hΎJRη aO‚“x¨z‚V’εi—”dδ15ο+jβΣ±s†ν‹Λ)O–•9s{7^h7ξ–He„ΞΙk<_’Xœ¦ωRαv"Ωοe±gYσΞ– ωR‰Ψω¬·α"Ϋ3b±Ξ)KFlθHΞ‚ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐNγ ―_?•?‹•<άΐοΖρ4FjΒα6&COρλΥY¬10ΚΏη6wfπαΪ‚1A²Ψ¦6ŸβƒuW«ƒΆΙi{Δd&2oq“ZlJΔΚFψŠ`5†ρΘ£J£νrdίEυ’D%ήFl /<Α€a”X /Ώ)~‚ \ά%£Ϋ²wη³?ΰ‹ζ°έipuaο@_αυΙ»ψϋOξcŽtΊFaϊ1]θafα#%2]^peE JŠ―α»?>Ĝ\ίƒ\vieχ―ίαιrz€ΆQ(Ν|?8ΰHυ΄fP]αΤ½’\ …ήŸR.ίΤΫΓθ~)¨< νΓςΝk6ΔάέGΆψόι3)ύ£υΙϋψ>ψΣοI±φqz•ρŠή΅Έ₯η/v :σL½_δ“δ$_ Fχxe³“ΪE 똝Z•SlȎΙw»ΑEν©]μ+6˜ή@pQπd(†<Ύ£±ιΪ$ϋKΙ{hy5HRb)ΜΝo@]Φ³Αjͺ!_™ΐ?όϊ?pw*£TrύpŒή )7±kub’”αhkκ!ώߏξβy–Φ†ΠςΎΉ7£2[Χ΄Άτ_vWS1sv°ΐη]S^›¬|2ΣύXΘΌ'_ϋRtϋ©rzφٞ }eƒ=#Ϋ©LΓΦ¦& Η‡Ω‹σ―_λ½7Sι–μ’εyV‹KΝΟΔΫvΟίΗoώ}L<2ϊcΞΎH)ν˜_›Ά/F•₯s εUͺΐ9œ 1»&^ωρVHτœ9$°²½ˆ»π=ΎΩΦΫ1MΎvI)Θj:%ύ)ٞUϋίUf_Ή;bOϋύηK§rΎT°Πή&©σωLσ%mΝ~6{¦‰–Ά›5]Aσ%r`nΓQ*\‚'؞ΏS.ό·ώ?Žν,φλO>΄3;Ξ‹ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&Pt/^˜œš)zΩΕ,πyn© \/f‘ηͺ¬€ΧΟßw»]τκΣvκŸΚ RύΓ8–c[¦ΔΉy–’ΰΪ­wπ– N‹ΞΰΧt[˜₯D+π° .7κΚMΗΨ?ά£φE2ΆΟUιFSUj.”£Œ˜‘χρƒ],μˆ ¬™6Ή«ΊΥTe`{?ŠΩ]E²’yΊχ;{»Πθ ߯⏬ΨXžΕœ^i[Ε²ͺ?³GΨ%1Ψμi•λ'‘ϋώ,vyΙ–ς^.ξζVt7ΥJž{›±ΕΔ’VPœžC1ŸΏτν?sι΅γέα&1γεΗΔ?€x'΅ΏΔ”λ›q©Υ*AO &ϋ1l†V±tB6Ν]Oe UΨ'Τ$ΌnΉz³[8ƒ§όΏψπΡι·qbcNψO±ζ=l?Νw$Ϋ3ΐN{ζσΠδΗ‡ΝιΠόΗκ<«©ΉΝ'*++Δ:ξmc‰ΐd^6bώ^JYςσλςZtTW£†Ύ§T^ΎŒν‘·ηˆNΪ.>6O€ν‹½φΕΧ›ŠN€PΞ” 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐJ€ΐ‘ή£k Ԉ« ΨΩ‹`’>g7$°°c^2±CΒ±Ε;h‘μμmbŒ>g=ΜM‘ ΉH,fYEjέ›Ε½?‹]^±8ž…rΆ‚«x@Ÿ|ΒΩz&Έ$‹›?œΝ…=qΓA<’ΟΙšκγX'ΡτV8ιupΰrw›Zτށy―Žj’sΊS¬yΫOσ7Ϋ3{νΩβ<–€΅ζ;ΑBL«cΚz0ˆυ“6r{J~~MoˆYΘτF }ΒI °}±ΧΎ€6q†ηK& e‰rΖνD‘σ₯’·σYΊ6ίKlΟς%f-> œ­qγTL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0SOΰ˜<r`L€ 0&ΐς#ΰj8ΖΞ¦δΥΡ(εiΏnΤ&sηζρεG‡pΡ/Πδύsš<ŸΕΰΕ_’—ζΕΩ)Μ/±²Ε!½yadxΫk€&oNαρΈVό|Ip›Ξ"ΣnΏrΥί|Ÿ{fžΗd…Θυ|žφλζ ϋΒσ%σwΗ,}§έ>εͺ©χ@ωυW^ŸvVr~zΒΞμ8/&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜@Ρ 4Σ+z…Ϊ<‘χ™½E™ aΐœ=`L€ 0&ΐ˜`L€ 0&ΐ˜`§ΐω8?i°ΚN_'‚ŸVsGΟΊH€•ΨΒψγ’iq`L€ 0-Α–·Cx ‚^Δ,ˆwZϋ±½qαT__{Vm.ο§ΈΰtΑγ¨BM•)ΧΦ§πΥ|ο–Xܜ‚†KœΐY±_™μo‰γηκ13M€νΛ™ξތγωRF4|αΰοϊNc³ž1&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐŠNΰ< œΛ=ν€of!ΣIάd§Uΰ\]ηFυΡy0ίΔΤά:b'‡σdL€ œbα%aaΠQΜ¬ˆœρΞκd9 γκι½^ˆηSά­¦«ΎΩΐψδΎ»ϋ§η1AŸρ‰<|ψ-Ύ~΄„ œ¦YrΔ p–μ—‘ύ- Κ\ &p> °}9Ÿύ.΄šηKη·οΟbΛωϋŸΎW‹-pΠΟGL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&p‘JΦ7Ÿ«.ΟΥΨι‡w1ύ0W,ΎΞ˜8ί֞Io?<6»ŽPΫx Aά¬œWΆ§υϊωξ]σ­ί oaΛ|tŽΙJŽ@ΟKgΞ~iν―²_rΰΉBLΰ`ϋr:ΩdyΎdG+iʜβ΄~ΏΛUR†_~ύ•Χ§œŸž°3;Ξ‹ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&PtηΚƒ³»Κ«ŠΞψ<xZ=8Ÿ‡Ύα62&ΐμ y:ΎoΗ‘Nά¬δ}Ϊ―+νΰ-`g—@`τπLΪ/Εώ²Gϊ³{οrΛJŸΫ—ο#!`ωPζηύϋ_±=8_ψoύηΧUΩcύΙ‡Ω#πU&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜@‰Έxρ’XΓΙ©™―iαΥ«τ]AYM]αqiXΟΝßvO0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐNWS ¨Υ•ޝTΤ"Ή0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜(Η‡%S`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0 œω>`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ œgG,p>ΟέΟmgL€ 0&ΐ˜`L€ 0&ΐ˜`L€ ”"8—b―p˜`L€ 0&ΐ˜`L€ 0&ΐ˜`E"p||T€’Έ&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`ζ°ΐΩ'ŽΕ˜`L€ 0&ΐ˜`L€ 0&ΐ˜8›ΨƒσΩμWn`L€ 0&ΐ˜`L€ 0&ΐ˜`Lΰ`σ)ξ<:`L€ 0&ΐ˜`L€ 0&ΐ˜`L `μΑΉ`„œ`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ ΨK€Ξφςδܘ`L€ 0&ΐ˜`L€ 0&ΐ˜`§‹{p>]ύΕ΅eL€ 0&ΐ˜`L€ 0&ΐ˜`L€ œ砍άD&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜Θ@ΰ˜=8g S:§›h©ͺ†θ±δψ;ϋ[˜ŠΗO¬‚—^} ο^lAl} όφ–N¬€dΖj7Ϊ«\p”]ΐ΅qο0Θξ&‚‡Ι8ʞ«*εΐp{ˆΝύ„ξJξ4Ιθ›ϋ™ΨΦ’ΧEu¬(ϋ"q°ƒρH2!οY'Pίƒ_όhΚa}φ1>ό~ήz^fSΊάhͺτ㠏™‰—ΔJ’ ͺ„Ρψ ±Ÿ²ŸRˆύX/OW->89l―OŽm‘sΆ8«-r-Ή8&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜8μΑωdΈ˜k—g?ς6gΜ₯ΞΡ‚7ZΛ±Ώ0ŽΩŒ±¬^HΊQΥψx΅šYΖtνξ>ΌΧؚρ:ΘOsMΉ^tΩPiFόz„½£dΆΝΥ.Σβf!ΥΑ‘&14]Ζ+uξd†Ϊ½J/n6φ ΄4φ#©6οη @B}ε^Kή}9pωΪP—$n¦<ζζW ½”ϋΊ{πϊΥN±”gϋλ'.p.VyKksψβΫ @ΈΟ«ρζΥξHZOz΅₯7)n¦lβδu=f=;]J«φΣj:”·ΰ₯–>4κj!ξb;UάL— ΅KFEρ9› ” ]²Ή…₯“]½―_ξΕεAœ)΅*ƒΊZ εJφC3v>{'y5ΩͺΚ”yNΑ₯Ϊpίk­+m{–OK,Δ-ζψ`kΏž ·€Ρ$Ε³ΧRσ.―ΌνΕΝRžΝ΅ΈUvˆί¬.j°X,—§)šwO–€­Οuξͺžk{OA1Xΰ\>NΜ˜`L€ 0&ΐ˜`L€ 0&ΐ˜8έŽι•ΜJŒ€Γ—4βζ°ΰM.ΌŠuR€ΆΦϊρ²·EςHTو·³)ή†K¬5ΖΥqvβ–Fάί a"Δςώ>ͺΚkθ•²^\v;Nθ=){Tss[Alz 4w΄‹ 0HyI€Η’’σϊ†Nt(΅ά]Β#Ηθ~οˆFܜΐΤζ†Γh€WΎΡ ΛI$ΪγZDp'ίך+…ςΆ¨κϋ04(ψŠΒ ί™—vSj„ξ‡zΝ{jL{Ž‹U^p w7Ιδ8tˆΞ-φ΄ΐt.½τ\]uιeŒΫ»Ψ1C–ˆVν§ΥtTW΅C#nή₯3š…ϋ»Π[1©ξ…Ψ₯,­ηK§•€Y»tZΫ—΅ή^ότ'o`8Ε«|Φ$Ή.–:ΟX“O&!8ΞίYQ rFρz±Ζ#jRQηY5δa_ΖΈ£9η8τ†vW ΤΙW«Ϋ1RD0š|ƒH*}Sγ˜Εq…Η‡TΪηόΈΤνΩ‰vΟ)JέΞ[θ·’ΪkͺŸ₯ςΚ.ˆίωΓρ ¬νmc#Aί/χQ^ξ@ Άή%}¨s6c΄z•X¬–g?'9Ξ΅½>ωώaσΙ3ζ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`₯K@#b(έJž―š Ή‘θ|’±9όΛjςEΩS‘I8ͺjρr­^xΊΉq«‘C}ml0:ƒΧ—4MΨΒμΞξlTiΞ »΅h¨RΪ½ƒ™YL₯Δ0<άΫΐϊ‡FΌ+8gD&H=ƒM%be+F<Š˜\‚/e±ΛζNΧIΰ,½ϊΆ Neƒ$2Lp9 `ίΪ‰« ŠυƒΥ₯αΪεR—ΟbL­~g[cŽ”_Ώυqμ<*vybέ+Σ–ΨΩ$ΓΌšλϊpKx„΅5Η¬Ρ„=ώ›­ΪO«ι„Fξμmβ»Ν$φ·±ΆΛ3„wΌˆύx¦h‰X΅KΪπ"~Ρ‘*,PNΏ­Œ?ΐWS©21ͺηkΓικ€—ΈDHΏ-p -ΟaμρcܞΥΖ/¬Ό‚ϊAi˜…mAχ5y³|½©U*υ`K.ψͺ…g(†ΝDfO™ζ«iΥ~ZM'Χμp‹<»'ϋΆ£Jy(€(yΝ7d³Kωζυ\γ³]²Α.₯χΰ₯«Χp©³ώ&e@O` —ƒб`κ=—]Κkŏί’E4.,?Γύ­ZάΈΨ‰ž–δψ²89/?ƒ4*Hiήωɐ8–ΖIf@IDATWρ)]K>Ι64υβ? H ‡6ηΖπι#a¬8@<Β\pίπΣa iδF2Qή{μ|s~φ’5€[Μγγ΄ρ0₯ Wο½ΡCK«„ρρ~χύΌaΰ ΈηG§ΦρŒΔΩ?LΖSΠNΟ₯kxΑη 7GhΞΨ»Mcσ§Ωκbω9"²GπuΰΖhώ+lsΣγXγJ†ŠπψΐσΦ ·†xšΗ‡lt„kΖƒdeΈ4ϊ"w$Ώ{Δ#x2ώ„Ζνχ‡db+vΎ°ωΌυοG₯n―Of|8 ‹κKέ2;Ζ‡δ­ οe)/-n Ÿ°<a{­WΟ‚½ώ·o§³5Ρφk,pΆ)gΘ˜`L€ 0&ΐ˜`L€ 0&ΐ˜8EtJ‹STο3[ΥCϊαMΞ ?Š₯ˆ|IjΣαPDFΐ1FI±rc Vςl lc|CGU‘ΉΊ$>8άEp?΅ΝR\G‘s…χχ WΝΆWVfM“΅ιΞN\T=aoα‡pRͺ%x‹φ©œ˜%ρ³F›{ev•r At«—sΥΦ7’Οί¦Ζ!₯#ΣΙ“…οΉύ#ψε{£πκ²ͺA‹ΏοG ‘£`ΊΐΉΩ ML"Αφ_ uΐŸΤfŠI= -xας.&IΰΝί‰ο)χR!εYοm•­μ[Ύ―Λ›π. άλΕB#ψC(ˆvΦ!yΝ":3_O«φΣj:£šΥB εIίΕΦΎή.₯НΛj—t1Kϊ€ν’]vIΣΝdc~ϊ£knI.ςPͺΆ°zcŸhlSήv‰rlGwW›dσh±Λ°RˆΊ­Ÿ„ΚιͺΒϊέ}uδs6΅‘S΄ΣΥΓƒu.½]tΆK#ω. œ₯°…Ο>ϊXΝ]ΨIŽΊΣ¦2Ϋω ΄˜,ΨςΨA0·ΐΉ‰8P|αiν-Κe{qλ'/γz uDœ΄(jτε&ψkρϟ₯ ΌΫθ €χ06#ƒΐΉ ηˆjά2x9(W]έυ_!γ‘š1ς Ÿg%KΆcΟƒNgzΏκrΞk³s\‘kΑγΩ'ž·κξIε€Η…DΦmζρ!=YΛΰ x7υ4}7Ύϊ ZœψηOμ°σΜη©Ο ω~TΪφϊ„ΖG=Ό•J§›W’kW•“Ά&Ζ£”–Λ3Κμωœ+hΒφΪΈΣΞ”½f³q'σY&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜°ΐ1{pΆia&=TΞ5πτ`9>e1S7^jQΔ΅t"Ά€‡τͺΥSθ‡ΎvYΉοΐαŸ{Q§iD8ΆŠ‘g˜Jq€ηtΧd)ΤΧvγWτQBtwO"sx3ΛÁΧκ;ΤόV"ΛΧ–WγA«’°Ϊ`QφμάU?¬ΎΎ\)[ΨFΧΟΚ…΄Ε$XWΩΆmΖ›―iDΓρuά›ΕVY.]νΥ‰ž΅n#ε P›•:yύj­Φζη°L‚lG]=:M†ΒμΨζ:‚›GΆΙϋ2‰Τ}δ™Yu^~·VΧπω¬­xK[Οθξ>™G¬Ί—―t§‰‡ΥŠΠΞΐHFάΑΣΗ X$PιpΒΫ܈AΕωΰ&Χμ·bd@œG06φLsMΨ bκϋq8Λ±tŒκςςΦ.‰ΡΦζgˆΗ>ΚΚH…/„²cl΅‡ΈυΖ5Έy›κ9Π.ΰνθΑ ,H|ρ%„ƒΏΕW’Vς€jσλ‡d:Λ{–ξλZΌΦ2({KOΰΙΪ#Œ_θΔU₯‰]›<›[΅ŸVΣ) Πl΅žζGΨx½†&v7‡]F-ι}ΆKφΩ%₯£½xον›̝§&0Cv¨ΌΊΝ­-θ#ώϋ:;oΕ.QζϋGiυ#Λ3_ˆΒΡζΗh@^NΣή…«]Oe;ΏŠ‰ι5τ‰ς=θ ψHΰΌ€TUήθR–)­`Jτޜ₯ΰΓ,vžΌύ―FΙ«>M8œυ$V’²ζ²”ΧΣP§Ž}kΑ 1捷υβζ9ςd=K}ΰllΕυAŸΗΫ;ŠŸlGπ›;ϊφ―-MγΙΎΰΑ™Ζβ '.φJγ‘αΨ,ζTΰs€i[ξώ³g<»§*eήcΗ™<ίω|Αߏς™ΟΫ^Ϋ^ž½ξV\jτΙ -ι[_dγ‡IώΩφr©© +/5·ηw\ΰ<„ν΅Aם5{mΠΔ<ΕœO.gΝ˜`L€ 0&ΐ˜`L€ 0&ΐ˜(yΗ’Η’―τΩΰxt]5么„G;ήλρ`%Άy–#]Žβ»Λψ|u;§ E―Γ₯ŠŠλ­Έ’(–5ν¨wΆβ–“ΤΕδέqJσΓc= œ3…ΊšFΌLOπΎήΦ OS΄{:1X-_Ϋ⇐$^Rb·“`LaήΫζ.W'^m„]ѝ9<9¬ΗΛn·˜€μ‚ ­’$V ±aΫ4…A₯’ρ%όώ·_β‘|SάYέΑί€yvΞUθ:Ύωδώ0«φΧέΧύeœ‡0?>ŽΠΦώ0™βžσα#Μ½ϊήn5ghΜJ^}|#τ)έ]ΐΏύΣא|w>ΓνΰώφνKEΞZ%α6nτ‘,NΆγ ςЍΞύ$tŽφ¨uˆΜΞQΉΙ<”½±{χεzξ‘r8K°C Oπι˜†‰’@ΩΆu£ί―xζŒΰφ'Ÿγ+Eά}oџόˆ<~ ΒΎτ Q$«–Λƒ΅~PͺkλΦΔ}=Ϊ܏AΟΒζ3|CέΥξI.XΨ8Ψ΅Ν–Y΅ŸVΣ₯²tΥ8TOσΨΫΕ¦Ζ†₯ΖM=Ξe—Rγ—κ1Ϋ%ΐN»$τ³o€Uqs·?»―¦τ6©η5\tiH‹v)υΎZ~zπε„tϊαΒ·ήΑ›ύΒXXƒζfςΒ.ΫΊ±™Uά$ϋ/,sιμhCΣχKΊ… Ύ‘φ€ύ©eΥΦ¦–WΘqv;D0‘1“jHŸ–fšfŒJωΝυΚΰΑΖZπ_Β΅.iωtNιƒ ά›ΏDo)Έ$.,κΌ‹8ΛΤΔ,ηΖ Σ)ΈϊΠDgI*§”¨ίΪυ™ξ?«γŸΎΪϊ#Νν¨Ώ@cΐIΜ³R 1yάξιΗMy>'$Y1ΎYΗμW„:ρψ P0 η{ή*αρΑθΎH?—}|H/œ Ν>Δί‘§f1ΠΒΘ`μ όΙi1K_>8k—²δkη…±ΔΚχ*‘>v}?’GKΘ^Ϋ1>Œ4]Β+N’$䨬Q ΄wc{Ÿ…ΦΥ¦gΫ13>ιν*/[]Š}ΝyH²ήl―Ϛ½NφmqφLόΗ­8αR˜`L€ 0&ΐ˜`L€ 0&ΐ˜`Lΰ9HσήσκΐEκ μm‘Η`­HΧ‰6Aά¬εb³ψυ²βΥYŸ΄΄ͺΠTε’*j]šξb&2ƒ/מβAtSSύŒxT5w ‘JxQ| ΫΛ$HžΑ·³xšβaoΠλG‡&γέFŒzΥKSδ½yA=’všͺQ-ή€½Mx³EφψL‚θ―Χΰ K•p`π%RΟU”Αn―3ζz₯ x66‘Š›Ε“‹cx0Q―›ΩyόUŠΈYHœΕWχ¦‘Hι|?]ά,gώθ!y-–χ+*’­mΥΦsbB/l›}„S™λyx€άψ”±fW.[+σx4«”ͺœMέ6γRΏΰ―SΫ’¨Μ€3FkΛ’?‘••)jx£˜τ£vg³*ΠMN%ΕΝbτ8>Ώχ J ½$Tj’Ν-Ÿς„tVϊA[žΥύ|ολή†Υλy8:ƒΓsξΥ,Xˆ&r ΤMΧΧͺύ΄š.₯b IE˜όΕ―ήΗίώΥϋψō€tŽdʍ ²˜9Α ‘―υ΅«Ψ1ΟRΚ-dΫΰκΖ-―FjN ΏKYτfy³i\x|ΘΤΗ>Π›-Θ 4Κ«P—"nΖφ4>.šZXif|ϊߞς2ήKΚžΟŸς3œ={­άšΕΪ&»T¬Ή&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜(ΗΗŠΑ’©έ9¬ˆΓ‡Ÿ‘ΧEυχΓ–Θ hYE-ΪͺΘ«±œ]x§aonHΗ§ζ― n₯ b·qoε ξΕeΑσΞ:ΆŽ/α ·$*ͺ,WίN±γΈOή™Ηφ·υ‚Α­ELΤvγΗΝ>Ι3Sy|*,μhEΤz@CM~HΎ·„lρ]T+&βΦ’‘RS !†`Ό7Ϊ!½L~ί­OGg›8δώ ιoΌ<§†υρ;ψί«S¨"—X‰Jϊ9f?σf™?c7άJ=I€΅˜.[ ’Ό²_iε* Ύ€§γŠŒ9{d7½¦ytΐ“΅ΥεδυλPΤ—ӏΙι₯₯Φ3έeζ*Υ³7=₯T Κ_ ΅Έρ§ŠΖ§σ˜YΪΐzhKaEe GΙ°

#όu‚%O[3-gšΗ:Ω-―lΊ"4ΦΜQόΥʘOϋWβ―}£¨P†'₯ŠΙΕ0ŽκBd6=GyυŸλ[σγƒ=σ,λ5•R oζψq‹<Nν­αcZ@¨₯XΗlWx|ΘΠΣdΈ;t§ΝŒΊΒ-Ό]Π1yl^Ž OόΞRŽjqΞgξ»HZώšΦζσΚdνϋQιΪk;Ζ‡yΫ^Η蔣ΊΝ4Š&ΰ ο&ο$πϋG13>$»°πς’yeΨγωhβ w(€<]V™x>―'s*Οpφμ΅ΎSNώH­γδΛγ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L ”‚ΘωBξΧe—R΅Οb]z½mͺgα8yώ”ΔΝZΣTxmΞF Šj57š΅ίΆΙσi1€m¦κ±CxI—~U]°&J˜hAn0\³„£Λψήθ7iς( ±…ΚV6 _φœΉyŠ/eoΟ½5.Ιc4E ’ΐ™œσžϊ Gr{˜ξΥ‰›cλ+xΆΔVœ:·Œ>δ!λυ+‹2#›R Ααs^ae χ―»xο…>tϋ½P|V‹y8<Ό|  5ψϋŠœέ½}δQT.q}¦Œ:=―e‰|ˆ}υ&ΧG;Μp^ΛδQΑύ`²œ’]ͺmE½’ώBz›‡0xA>q‘2ιι»Ό—[†0|,xiŸSt(IΝn­ΪO«ι λE‹+Tα6ωΈ οeXh‘Kl.ιδq@ήΓx0§Ργh˜MŽ!’ΞRl—¨hρN2pYκλvιpίΜΨͺ©Tx‹Λ#hi§Ε7 -θρK‹tw(rα]ΜOŸ€ΌΩ΄ίD0΄Kυ’ϊΥΧ‘‡„Λ­Ν’ΰIj…mnτ¨ ‘Ά± Yy§ΏΝΝθνιB' ›…ΰτχΰΕήI|–&^vΰκPς‡·Η3†b1“,Ž’ ΘKΈδE#y%]Z<­ηκ\Onς¬φCZ₯θqS(T=a₯Ε²p’δ±] ΄P 7Λ£έζ"Οτ‡x’&Hξ4ωπΥͺ΅φc$R‡ΪPkφΣj:mٚύͺσW)$vQο{εdϊΦ΄]JOjςL·ο€ί&[ˆΖvΙv»΄ΕΆ°ŠFvj,xδΆΙ.™»β˜ZXΓ΅va‘K-²Ώ‹‚b!l.arQΪ΅οo>v>ŽΠ&Ω~z £Ύ‘64 βρθ ξ/—α…Αx[ύπU’‹g!Δ·°&Φχ{’Gv‘!,γΑX&¦±εΝΟQuΚ5YΚΪ¦y–ΉρA_Γ!ο0nzhœ–ΓRδ~JS„‹VΗ1ϋΖ”^Κ°εy+ΐγC†›C9Οψ €‘ΆoΈπxI±aN%ؐ]Δχ ²)ρ³<Ÿ·όύ([­RΫ^ΫT^J+θπ΄?[0?>dΛEΉ–»<%¦Ή-ΟηqΪΟpν΅²ˆάάM\p,Ν Ξ‹3`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0SHΰ˜„mμΐωωwœ»RΖ°ΉgδωύΖJE ›@μ`χωWΪj θF3D9—ZtΣ+c•"ΟΘf‚ΛεΣ—ˆŠ~=%o’JX /a<“ψΤ§m3 *ƒψfu.)8wΆ  hΡχ#XΪ1–ηΊ{GρgΧ¨8 ’w—ροΏ»‹ΤΚ•:εΏέΒΖύΘή"0σΐΧΦLΒΪ .›ΦF·ξΈΠƒ€¦>„‰')βfΚάΧݜ&nΔ`kδϊb“ΰρΜ‹–VͺSxKW•V½βΩTˆcŽ^=·Έ„»χξγζΫοαΥ.!_–’GsR£ιsρχcDπ$*„Ν<D ζBBγΉΤγp™ΣρJπΤ Χ”Έ.M|œ<~λ»ILšOyΦϊA©‘fK@°4Βδ­χ@ψR‘ρkbιvΝέΧ‡ΨέίF˜žσΓT1Αqk4~ΈI°ΌAηŽΫ†žΠ»Fρf―ζώˆΟ!Lη9]­j`Ν~ZM§+\=h―r$=Δ'b&ΌQηa—ΤRJ}‡νIΪ%8:ΠΧοΖτ€ή†έvΨ%£|s›£ηsωεN΄SΔφ–V\­PΗ…ΕΕUΗ@Ή&yΪωΕυ%$3YΎώrΡώΕΆ‚x0]% œ[ό4nK:c‘MLˆΕlas‹„l-ΒxB^ž;Ιjζ1žˆYδυ§ψΟ‘ΆzωŒGΪtζΖJaΣ<Λάψ Τ°Šήζ0ˆλu4C“‘ |ξ£`u«‘7Ψ1ŸηρΑ¨Wς=gmΎt:η­<>άyŽΊκœh )ύ’ξλ(}χ ³f!μaΛΰmD5s­έŸFyηωύˆ²(Y{mΣψFΙι…_ω7Κ!}ΣiΣσrO?‘΅Ότθ₯w¦ψσkΟΫk˜ψ?ƒ•ϋΛΜ|^ψ―G1™L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&p gRzžk*EoόφΎ"”u’έ©¨!“Υθͺo—^«*ž"ο »Jόdœ’ήΣώ`Yν@‹NE τzθW~x$θμ– ΰͺBo]+:Rβ*νt9}x«Ε§"Y1.χ{;Π©δ±Ώ†‡›‚;Μ ao[ͺH:Η$€™U£6ΰΗ^?ω–ΒJ,„υš~§ΦAm€Χά{<τ‘mme[>ͺε£Υ€Θ­oΈڜκϋ04¨ό―½`Η~œiΏhωpνb·aζα­€: »»+%N=™έ4‘·ζLWΧ#)‚ζ”œo HiŸMNη%¬[_bMΞΟCύ˜-Μ¬l¨—ύ}]ϊ~ +##Qμ'F Gaδ+2ŸςΤΒθωΘ§’ιδ=ς$S…¦zψϊ4-ΜέΧqά^}€Y|€–R>ˏρD]›±‹λχπΑβχψ0Έ˜\D )φπ(ΕΞν’G4ΝuiwΦμ§ΥtiOΈ――tή‹GœΝΛ.i•ϊ.Ϋ%»νRˆu¬¨έ>::ŒυH³γ"1q/-t‘ƒvIΙ+―νΞ4fη…₯šzρ6‰₯ΑΜάΌΌŸ}³­ρ(t€S!₯%ΜΧΞo­†‘8‘φŠ o€ΥΥu¬/1'tƒΖlaM …uΝ»±‘K`ψς q‰κ[qIΣΒ©τ Y£i«6ήσ{ލέyŒΪ:›(…Mσ,sγƒPΓZάh½,‰›…―<‡ά[Ή“Eά,€±:ŽΩ3πψ τ!Ώωι™·ςψν.Ιw|ΠηΥ‚‘δwLρZoϊ”/%ρ("A} ύQn;ŸŒŸίύ)€+δϋ‘Ύdν΅•ρ‘œ„xZ‘œ -Τ„κΌC PΎΏΗχbšοοΖ‡‚ΚΣΤ«ΔwŸί<$Ώηνuξ3XΊΥl˜Ο[*7K"φΰœ_bL€ 0&ΐ˜`L€ 0&ΐ˜`L€ œ ǚΰΞEƒK³‘aΡ#³€πυ‘8υΦρΖvΒ8(s‘§Ξ‡+u’GA‘φΑ­5C!oiΆL ώΦH§T/z?vγfλΚ6—1wPŽOjΪ·Z–EΕt7υ‘~,ECX&ΟΦ[€>.«A«Γ‹‹u!8yZΎ2π?[ݎO’έdxΛYAνk”Uθρτaύp Ρ27F½T—J91•χC()lMΛΰ±Jf¦₯ΚλΔ£L_ιFπ‹m]'~ώΛ |σxα²zΌpu$)ͺΝ+Χ,‘Υ6яΑ―½ύοΖρdjυ½xρ…θ>5N;=AΜ_τ‰υqϊGπΧoα‹o!\Χ…7oΌ"Υί0©/Ώυ# ΧEπτΙζWΦ°Ϊ"―Γ΅θ#‘Α+‚N!D\KQ4a°K&ΗππaΚu)aζΏδΑYYϊα \Β_άͺΐ“₯0Ι½T9½ζ8Ό0‹9Y·½5Ή€§Χ0(΄ίαΓΟίŸ|χΒΐ΅K—ρΦe₯žΐ“™y$eιšβσ(Š—C~ύ €JnCδœ„ˆ$ΐ'©ή~χ ΤOK·©εGXŸ™ΐ΅AΤ²“gσΊ―ΛλΰVœ[ ήοΤΕΙό²ξώ²™€5ϋi5TΓφΪN ΤTŠέqt|Ϊ•Βw;ΫρZεΚ.\@b·#Iq€˜:o»”•JI]d»€<οφΩ₯±G³%;βzΊ‘ΏψU n?˜ΔψέWN7~†^€gφ>LIΆΞ»dρʘ[Γ«δσ f³Ά†©€N;%ηVΌώZ€,ϋΩέcTΦ5ͺΧ[:‡ρㆲJ‚νγιύG˜VΦΜX±σ;›X§Υ+~υ₯τ&†‰Ωϊ6:ΥzοbC3§˜{4‰ΗƒέΈ(L;hΌύΕ_Υΰ»{Ο09·Ž„³ žz|΄­Ώ ς4₯~˜SZQߌ―bψqP] εE^·#Τ¨–VaμE0±Έ…’?GJ]…m>γ‘6ιρΑ¦y–Άlaίp|¨ΒΆ+τ¦92aŽΗvQγθΑ.½/@z—‚;‹‹§,¬I-'λ8VΨΈ"ΕγC*qλΗκ=™ί|ι4Ν[y|°q|HΉΣzΎ„Ÿα>Ύψ~υύτF‘[CκΒΙειEΩΓΏœΘ‚·>Ÿ/ΰϋ‘FυΩPN½]IΈVL{m±Όj“€΄yώ_°JoQΩ‘^¨’4ΠχS―*nbxQ–9Y,——d}φŠ>QοIΆΧ§w>²wΆα4οd‹δά™`L€ 0&ΐ˜`L€ 0&ΐ˜`L ”“χΈ ₯T‘sZ—Ιπ2zέnHΎ’ΘsqC?}aΔc‹Έ½‘ψ–MΏ^ΊgΆ1YΒ βqΉΊ―΄Ρ'₯ΒΡ|¬Ό2ΌΪιeβ5π‘ΘΫ—A@‹ΔΎ\›ΠxcR2­Β‹δωZ‘JΕc Έ»έ»&H>; ’GiΙ”£¦·|­J†v?„/—ΚΣG;ω£%|ϊΗ1ό—·F JΈ|xυυocr%ΦΊ:‘X;ŸŠξŽΟβ"y…uaΤ―Ώ%|t9 οξ΅γηWιΗg -½—πητ1<>#†IbσsΈ’_ΎF^“Υs?{oϊάΖ•ί{Ήc!$Έο€(‰eΙ²dΛφθzΖ;‰ίΙ35™J₯nέͺTεm^ζuώ‘{«RO=•ψΞ3•Ήv<σ8±}/²GΦNK$ŝβ$HΑν9 t  ±5ων*έ§Ος;ŸsϊΧβ·=>ƒiΝ’ …ΝShι E[yρ ηŸόas!Ρ΄ |8ŽφΫη‚Β‡†NΌύžψ„³φvFπÈ;*U>L£=έγ Ρςέ§“ΈΨυR•˜?Χo„ηΟδΡ¦8GΥ¨#­€ B—±ˆΆ¨ΘΣͺ$6³^©·œdAƒ₯½VE΄e“Ω‰YP··+"Fœυψ₯¨ϊ ϊ~ICύΞ,ΎψͺqUΐ#Υ4γζβ5<Η:ύR χ…dχ΅±LΏΡεxzqkφ©œ΅8‘7Ψ7U²΄λhλωrιώΌ18λσσ[βAaI£†SΌΡa^^/, 8oΑ΅’^/ΈριwQχgΧ‚™qύ–τ‰2XγπΪΥx«7Jπ­δkμǟΌ§ΊΉqτ‡ό½xγ€ΞλΘ€ρCχ#₯ι}ηpUQ §"n–4[šp!ŽΑε⁔€η$χ±Lξ+›K_·ΖιLA&λœΧJ_R˜ίJVι[χz©˜Φ­Ό?ΘCnΐύ!f~™0pυΥΐG=―°=ϋί‡ίο#ΣγηuΟϐ1ι> My'‡ώ:`Sϊν΅„ή bB»ψ}ό΅©ΥAF]Vή$£σώ »=-“ :ώZηΣXΟgy>G>––εΖX=          @81HaV€]+*“ŽΦροσcxΎ+"ͺjmG^LΈŸγΓ•Y,9Τj-+i;3ψdu.Ν)·‹©ηψxm1άφ‘^ψ0fO0™ρLγ/ŒaB+lE=Ϊ,Šqcž9(cκR%,yΖq;R*¦œ^ί]Δgσ£˜Πμƒ’ "jλaψ@Ϊ; …%ŠLΟπhkjο§1)"Oͺ7χΎ4#βT·΅uΈΑΒFT;°Š’nq|όωcΜmkδά[Εύ?cNΦƒEΧ7ώΰώνΑ”ˆ΅½yπμΙx(ͺφΎ_Νmλ ‹pk΅¨Ζ‹ΙgρΫ‰¬TD@μWδΝΛxvO5§"s&<ΊχεwψϊΗ9¬n{!4ͺΫώaδX›xˆ–Ψˆ€ͺZΫτ3qώΣαψ?Q(εφ2‡Ϋ–ΗπOΏΏηK±#έG©l¦σΊ¬2$pήτ 1JŒAQ ΡΣ2ήu€Χκ-'bΑ™KSϋ3λΊxvΔ¦Σ/EΤQΰτKΖϋ₯΅‰ΗψŸ€g ±Χj`:μΉ1·r]—_Ϊ=q’ε-ϊϊ $‡ορGΌΐμ„ϊaŽ5ΜN­(΅Ζ~‹{QΤU›'βÁr―ΟΐΟ/ͺξ‡K+.!%ns/Φz|lΥƒ•θΓς8ώεΓΔΓ©ΈRmxDxθαρv UόΎΤz(²γ‡²μΡu2~i܏ΤύLcέcΔ:+ύT6Bs>–ˆΨί©n»pω4ΦJQΕ“ήΗtίWDCΌ?„|Χ­Q/Α!οξΒ‡)χΏΥ©qΝϋ­GόΎϊ·ίί‰Œή,ZΧεηu―ηuώ>RΝ‘tΦσΉσΧAΣm―μdΛβ‘Ιψ›ΛήόŸωψή«ώ½¬οώ Ώ½ψκ]λ₯3ό…DΔχ©φΧ=5ώ δοώώNŒ¬φΞηŸYλ"         œ ΄915“σΆσΡ`EσE”Z1`>,8mv`!Π±Α—Κ§ΥI«xυi‹ˆW!‡Φ>8ΪΓξVJβά΄Θ|νφ;xK‡nΟΰΓίά 4²fT‰v« 5₯R\αν‹ώyβφΟZaCCe%L%e(LŽ…(ηΠ‡yŸϊ”˜§¨΅ͺUf”KmΒ{°YŸς§ο8…ς˜l«΅‰Ψb;*…0«αβMό·[έ‹žρΰ“§ΖIγ;{»P_%Ερ<†OˆςGfS¬ΫκΔ₯va§Pψ±Άτ‹Ρ"²€Ε‘48pΪ-¨¨(‡4kŽφ½X‚9-™Ω₯Χ†w/4*XzφGόKT”΅Θš? °1 6qΰ!Φ—f1©;4¬Qέγ`˜…W‘^©·\α(,‹θ—‚γa€_²9›ΠέPπ…ξMήmŒ/¨Ε±s —~)ΆuγSŒδ©ΛΊZq/k ήΛΔA<ό±‹ χ ³δλsyιβ‘³P±­³ν&ο+‰‰εr^λ^/ΩΊ•χΐΘϋCk[l•ϋ­_όšκοΔS?ζ¬ήω™ΞFΣLΘ΅ΏN»½²j΄WUΑ$ώ‘’$ψŸ(Ηβm1;žδT¦Ι"=Χνι±Ρΐ2τΧA˜Fϊ—bχΧΦ†gXςͺ’½A&y ΜA$@$@$@$@$@$@$@$@$@$PάR‰άZά=,:λwφ=˜ŸΣ»ω1Ώ£%MΥξρŽμξ(Q΅³d%ug#βSΨ› ΅{X’ͺ­MuδA3.w7‡Lί?Tb5‡’2Ϊ™›’]=5μΈπt,E1΄ͺώ5— k)λΐ%Yά ΈρlxVUKnvu³Ρa^.Ϋa^^ŠθυŸzΛε₯“ί(ύRδλ—Ά\+x">ιl§ΛWΛ3Ž‘Ό›β^&>Ωέςse·O‘΅Η:+ζtŽx_Ρ’•Ÿy­ΫΩΊ•χcο‹ βAΜΰ3ΛZ“Ω°4½σ3υίG™›škv{βΝNσρή„•yχckΘu{±δ …ώ:²±ώ…ώ:’n²# œ“βy         8εNN4ίA~Κ{Νξ‘ΐι ΠzqΏQšf§πbΡ…εm‰ΰ/ `°ΕμδΖž©ΕΟ§£οΪ½xo>=‚UόμPDyžN!:΄v=L%ΠK€~)šœ±~ΙZw‚`tΒθ–€γb?―Υ§Θ4cyFΦ]8GΌŽ g,h‰q8―£Yλϊέ'³?š^μ±±4 8―c εϊέ'³?\œ£xΖ©žΙ$pvΠ_nj΅^’ΜΏϋωPYH(»ώκhd½/¦Η¬Žu‘         @Ξ 8Ξ@›ξΝœ·KΝv”šlωhϊT·iΗv [(.Άν=ηΠU'"ϊ·0φlžS=JΕίΉ‹vs%L5fTDugua ίώηΧΈΏxu†‡$@$=τKΖ°•ΔκH͊ψΑ»^G»τφ’’>Ώ:Yf ¨SZ ―£S:°gΌ[œΧΖLήŒαΘZH€β ΏŽΟ&3§mύόώ¨΄ΨΣΑq^FpΞ!+          "'p,‰dΈ‘@ΐϊϊ*¦+vpΌηΑ.‘<­Ω1|$>f«΅‘ΪTι?‡>ΟΖ3Ύσ Β!@ΏdΜXH‘š₯MŠΤ¬ˆ#”ΘΝΚq1ŸtŽΔ%ΐλ(.ž(bœΧΖ οΖpd-$@ρ Π_Ηg“Ξυ›WNΓϊ]Ήμδ8ΞιΜ:ζ%         SHΰδ„ηS8¬Ί»4=όΣΓΊ‹³` lmna+ν³i ˆ&@ΏM$υcIΜ,‰¬uΗ¨?"n–jDΟVμηΰ?I π:JŠˆАη΅ώAγύA?;–$HŸύuϊΜ”§qύ.ύώ˜Ί―τ07ίeΧ_}γlκΕτΈ‘Υ±.         Θ9§ΣhΣ½q6Ÿ–VYQj©Λ9ηΣή ہ.nΑvΪ»Κώ‘   L`g£DΤXGϋq„ΈYi¦ΨΟ+ύΰ7  @zŠέ'³?=ΜM$@…K θοΒφ%σΕrώ`Ώ6ά©μ•όέίΓ‰‘νάωό#«c]$@$@$@$@$@$@$@$@$@$sƒƒƒ6'¦frήv>,«iBΉ³?MŸκ6;°θί ΄κ~²s$@$@$@$@$@$@$@$@$@§Ÿ€΅‘#§ Ύ»&§M²1          B"prr\HζΠ          3N€η3>Ψ}         Μ$@$@$@$@$@$@$@$@$@$@D€η šB$@$@$@$@$@$@$@$@$@y!@s^°³Q          m8ksa*          œΗΗg§―μ)          @Α ΐΉΰ‡ˆ’         @v œœe·ΦN$@$@$@$@$@$@$@$@$@$@i ΐ9 XΜJ$@$@$@$@$@$@$@$@$@§’ΐ #8ŸΚqe§H€H€H€H€H€H€H€H€H€H H ”©έ4›H€H€H€H€H€H€H€H€H€Hΐ(8E2+υ8Νυh¬¬B b‰ˆΆ½s°…©½½¬΄%Uzι΅·πξ`#vΧ¦πρGχ°˜…–¬fT¦XοΖAd_“—=ΒƁ?AνΥθ΅Za./ 0υξ`lΗ“ ΏΦ©JΤU”Nψχ°“― θΦΌΣA4Tž₯ηψέχΣZΖošͺ^ѿߞΆώοΘδΑr#ΫtΜΦ۞Žre’Œ)μ“Žφ°θέΐFs“ϋΐpΑh>X«lh©ν––ΰXά[φόπψ6ΰŠςgF΄—λϋ˜ΊŸ†ο«όύαt‹·ΒΪόβ§°‹¬Ν>Γ'^d‘/:ό‹^+τK‘fτ– T ΏοΟΚΜh~Ύ¦¬ε%%€πΉ[ϋ˜έO΄^ Q-ΌϊΑΒ“B°(?XΫ…ή<Kι1Ξ€½όήΗ€ΎdiΛ£_’ί5vL ε™Εy‘ΎΡΛIŸ_‚xDC?S¬ΤΫΏΒχgulh+n–ϊ_oiΕ;­©­?^ρΕωž¬†^·ρΛcβ™Tιiq+Eπ]8@…jέQύLΓΘlnΤλ?YNΫοκε’Ζ”`V rό8ΏN+YŒH€H€H€H€H€H€H€H€H€H {(pΞ[=5›ΫπŠ#,΅έ”’»m`M(Y›ͺΫpΓΡŒφYQ› ³rtc=M壌kߍ=~„%ta+ŽP[Χ‰v%Ι·ˆ§J$Q‘f œύ˜Ϋraλ±υϋ0‰Ήίq―ΦΨδZύ˜Ϊ˜Γπζ&κΕ«”ί¬«¦W žΦΈvβΏ.ΌWΤsΥjQ¬ |{}Ψ‰H9#*αω‘† όŒP`7³Hΐ¨λ6UυΆ§§\―ΉYDΐTΆyΟ4{–pXΡ€‘Ίnτš‚‘ϋ/Ψ›0Ά3ƒ 9c&ώ–NάoRšΔžπΕγΫ., ²Μ§ΙΛ6 6ύα¨ΡΊΫ;εχ±Δ\οΠοKΌxκρ/z!ιυKzΛIvκξ_1ψ3“uς`¬ο _λΫ‚ΛΏΏxχE‹΅Wjδ³U-ΈXγ‚k[Žœ―wΟJΉ"ΈnΟΚPdΤΟέMLŒN Rό άYΞΛ{p22?•ΒΩώέ¨Χ²œ=ίύzΉ€2˜‡H s8gΐ5         @q ΐΉ ΖοΌ΅5²EΫ»sψέJψΕΥSž ˜+«q£:Rd[PHfΜώ:φVw%r €—_‘ΓΒ> u•JΏw0³>‹)νJ"S+špΡHL€‰΅Q|#‹H6vΆq]œƒ1R+a"?ι‰Φζ¬ιΓm©)T²rLμnϋσΏYΛΜ`šˆϊ*aάΪΩ‹Ÿ'Γ3^•ΐδψ8JQžaέΙ‹‹ώIo³ύ K1“—bŽ""`Πu›rυΆ§§\Yμφisξ§ψΒγ ­α«ΥRΤtφ#ΚWΥ’΅ ΨP.1έώΣ†Ϋuν²―ƒΝΰ“΅Ε Β[`vgχΦƒΒκΠ νϊϋXj‡~W£8v3ΊiŒ·αΒ =ώE/z½~Io9ΙNέύ+vβΗ‹ν,o/aj?rmΉ΄·Žƒ’«Έ.―ηKK΄ϋΣ;˜y,§q]mMFΧmΖΖpύPcΌSφƒ;+ψκΞJDu§ι λΏυϊO–Σώέ―—Λiš΄μ 8”ο/ήšG$@$@$@$@$@$@$@$@$@$ ‘Ϊ,Q©63©‹e3 `F]E΅\^#Ό«1uν‰χžmΘفVyn{qO­.³ΐhοφ}‘ˆ¦ΙPτΦ4@ŽΡŒm U7CH€o7v‹?rJ’Ήβ’8΅‰h€o4Θ‘O7°xh’C©Μ.6όΪχlmηπΦεT!πQ©x ³ ώη—O±§‰L“Kqiθe\½ΠŽΖ92μž£c£ψΓƒΩ˜κΪΊpΎ£ Ν uh¨±ΓTy{^,Ήέx13‰oΗΤΥΔ+θ_Ώ†ήšrψEŸL΅­‘:[Ξ½Œ_΄‹γςV&ώϊ΄<φίNiˏ/]½†K-hkPζΊ ΉνΖΚ’ ccΟ1βŠf£΅λ"nu’§Q‡ϊ°01ŽoΎΑ’Έξo3nέΎŽs©―cΌxrw’ν°αΫWΠ,ς”IyžέΗw³6Όσσσ° mΡα!LŽ΄ψ{ρμ‡aΜW΄ΰΥ«έZμΑγoΰ‹AƒΟ]z WϊΪΠΑd “£γψlψEL―?©Š&όμνσβARμ.MβρV5n¦Η3Wσڐλ6†Zό½νι)Χ%|R³bŠˆRGEά¬€νBΉ‡SρwJz’οDώ³Εή‚^ΉΎMα#ΕΝκŠ#Exκ3ΡϋρΫ;;χ1ϊέθY‘ξ±^Ώ«φΝά|mη:Γχ>aFΰžβrcvzgέ²aάǜ]ψΣ—ΟαB›CΣ‡Υ…y<݁ςB< ιϊO=ώ%^ΫΙυϊ%½ε${τφ―hόΩώ*ξ$˜;§d=O?˜μκJvή)ΦfQ')·=ψξσΗΪkZρΦ™χ_ν€IΌ»ζΐσ}οΝΛϊ3Н~°η5ΌΤj†κIρ*žRxΗρΕSm±sQwuόnL6K’ΟλυŸ,§ύ»_/—θqα1 @φPΰœ=Ά¬™H€H€H€H€H€H€H€H€H€Іΐ‰ψKcIΞω°#+x;–χΥVU£έ¬ˆ;ί)Gz(^7>ŠL½…7#%«Φ*“ˆαά6φα/3£₯’‡G>Έβ‰ςͺΡβεΗ¬M+ې³Wό…U„ΦrI%ΚΡ ίΘ― Β· ]-rDθ#A8Žx₯ΊΆ}m!£κJόiΕ#Ώ^Β»ΡŠΎ_Έϊ*λ,ψΧΟGT=sΰΥΫ―b@5«Λ™«Ρ&}:Ρl#~{WGW£Iˆ§ΫΤyε}{C£,ΰ Ÿ<š ({ΦόιO―αB£,ΐVΕ·₯ƁρiͺςaδσΨ²ΧρλUΐ mύCψ΅΅γUύ‹Ξ—Κρ6}₯x­?8fΥ‡pύζ{L«Š^|ε*nΚη±·ˆα5!²s &ΝP€nαμΥΌq ƒα±gΗKoΌ„΅•ΟπdS9αΐνŸίΐυŽπu­œ±!μЍ΄ΥWγ_ΏΜtόD­ΞZtw5Ηͺ₯”†BίΙyζf^pέ†ϊ”ΚŽήφτ•³όLΠΉέ μ€bb²< ύ§ ηͺ•Η<Ό[—ό`%œΒ§–‹‡:ϋΠ8 'lομάΗθwσδw•i)ξ)Ώψΰz4ξe‘{JΩΆJΰœΩ}Μ&²ωΛ·‡’ό½ mύxWλζ¨Ψ)§η?υω—¨&S>Τλ—τ–“ήΚ‘o}vZό™–Ψϋ~ΚV@ι3υƒG¨°5£3πΣ’λ½Ο±8₯~ˆ#8ΨΊ0ΠΦ8pο‰ߜΆ<¬?Εγ‘ψΑϊζτtΔώπ‹*5Ξz~―Dω\οκόݘή%­Χ²\θ‘f<ό»_/—τFΉI€2#@sfόXšH€H€H€H€H€H€H€H€H€N“γΣя’ο…ΫGŠΐΩ„sφ,νMc)Π/^iTDΉ"awΓ;±/NfΌ^Ϋ.Ώ2VDυ,a,*P΅­Β:_[ݍ_‰²mϋΦ1κ™ΓΣέ(&;šύς rDθΪ ‘Χ‚+uHίΫ~uΘh)₯―7ΘQ₯ύ]}б’N\•NI›ί?"sDx2)³¬K_YήΈobλή]˜Δ'χ!η1šβ₯`”Ο₯1|tW€Υ –Χiv»4+…ΐΉνu)£™ŒγΡ‹K"Zθ₯@™Ξ+½8'ΞΑήλΏh‹ αΈ’›Kω8Σλ6ε†δŒzΫΣWΞSΉ’^ώζ$ΦΪ:'‚Wmμ9­”dώ³Χl =RcnΒ WZkiΒmIU=7‚©#­VΒiΙΪ“rž₯ϋύξ^xrθΪΣοwνΥΚd|ϊiŒ_ώZD ν¨ŠŒ‘χ>Φz±}JsΫσψ~sGΎNβk+|΅βΝSƐΐκσ/)·•Q―_[N¬₯tΟNƒ?k±χγ–Όξ”bΩ³Œ±$~7jΐ ξ~03?87Ύ€…—ƒoIqτΆαγxͺr]ΆV9Β³ϊΥ%<]ίΑWΛζB֟™ϊΑΉ‘ai™ά¬}hgιΧFό­ΈΦ»†ώnŒE·ΤλwY.ρ$*ž"0@δΤX1«"         ("8Ξ`νo‰HΓa‘.„¬²Y7+β‡έY|Έ€Du.³υ[R!G}¨ψ”ˆή<:RvΜ¨«΄ˆƒ]Μ{—„z?¬ΟβyTΔ»GΪ•"β»‘JQ#›ϋ›R ~(GŠBκ;«σ0W„_•|¨ŠΨ[w1εys{Ÿmnjv¨„ΦΫ~•ϊ@Υ΄λWΥ8U^ŠμFρ`δ‰’3ro“Šζ’­Ξ`ΊτcΕΝςι§Γ/$ωm`+E›•δ―κπŸ˜JKuzdžπ‘ ϊΊC‡Σ†cΔΝΙι§ρΙέ ˜:”9΄³Šα‡‘νξM.A‰ ‡2g°σΏ»3"fZpΈqυηΧCΒ6‘τhE³~ߞ?˜."%+Ί5χŽ|-ψEΜ½ΰVe \―υ΅„DΣ OžΕ0ٚ}Š'ΚH΄’£?(Δ—jΙtό„BFΟτζu%κΚ*aMρ#ε•ΆLΫ@iώ£·=}εΆ°%"Ώ·J4Z"¬­³vα•Ϊΐ{κƒι;pοGd‰:Hζ?+ΡPieδΉ(νÌgί¬>Η“ν _ VZ‡‹φH{’‡ΙΪ“Kδς>f5£A|l)}l"_l―τ§Ποκg§.©Οο+ #Q—jW©ykωžΞ*>TI §skr†Υ„“γ㑇}΅IΎzJΉ…λήKΗκσ/Ρ-¦z¬Χ/ι-§ΧΟΏ?«³vγΆC%ι,ήΧx¨/Υ‘ ε£ ‘ˆά)’υηΞ,¦B>€έ½ͺ»θΠ@Wsh½89;Θǁ\­?πƒ‘ρ©Ž₯iμΗzΘτw£FΧγ&ι½?°œφο~½\βO d…@v/-+&³R          £ œ1f‰Ρ•²Ύτ ˜[ρ~s7BΦ>ΪΕβΎ₯εΥh”£~ZΊπNŸmΔF9NΏΑό—8ίΠŽVΊ·€ϋۊ TmΫ‹θΜ#^¨εxΨZΐxu7~ζl F(-«A«΅σ;’˜―u’(ZΪvαΪ+ΓΝ–_†μΕύ΅qΡYˆυΜ2W!p‰(Οζ¬ξΑmEd(Δ'ί-u„Φ‘›~-[ƒYΧΖξα^™B₯Ίϊ+ğcφ°&Χ’•/!Tœ Ζ ˆˆΝKτυJq%ΛPU) ΎΕ3`sv`θ\Ϊμ¨*±2ρͺ^©„q[9ͺB―b_ΕԘΆ@8a{Ϋ»ΨˆΦ“‹qV΄Ÿ»ŠΈ8a%)ž"ζ/žΨρηθΧv„ή Ύ7―•ΩZU)Z ΡΧΠΰ!ψΞ6ΌδUiWMUΚάΑœ―\Εί΄‘\ CΔV›«B΅²d4~:y¦>―Νx½υZ82{D§βψργΚ,:―Ϋx΅&NΧλ'τ–Ά₯Y|°’Ω>€?)΅bΦηƒΥδΐεšπ‘Tσ‘?FΘ€ξOri…MΉw zρhy”λeg ['—π¦-xΕW”….Tu3‘ύδ퉬ΉΌΥφαoώ―λI"@†ΜξlΟΰΓίά•£ΩGKχ~7]bρσλς»ŠΓ¬ΖΝ?ϋ3Τ?™Εu¬Ή7°ΈΎΧΕo4Υ36ΤΩ”υ„Λ 17[,ΈΧΖ―3u©ίΏΔo=ρ½~I_9½ύ«+j&½AδgςzUŽύU|&XŒM‰Η*ζ,ύ` ’pBρ¬?ŸO/γΊπ!’§›ΏvΙχtυ+«ςeŒ‹τ˜-'λOcό`Œν)$φzטߍ)`³θυŸ,§ύ»_/—ΤGŒ9I€Œ!ω?!ΖΤΙZH€H€H€H€H€H€H€H€H€H€Š#8ΐˆΥγ]•Έyέ;‡ο]σ!αCoνyάQx₯­½Άη·Φ‹ώ•Φ0΅ A_΅Μή‡'žYDkXε“Ψβf­s.ο žYΈn•ƒ•°”Iί’ΐΉ •Šφι`u΅έθ—ƒ5O¬MaX ’j±†υ¦ϋ;X=iζ6Όαl;bσ»’Δ'&!žΒΡΦ”@¬rRτΧΪfόΘ‘Ρy3>φξGΔh­―΅Αz!(ϊΊφΪmΌ5”{ΗζU₯DG’VJ}·Bˆτεά»XΣΘ$•y6· «*•’T”βιρ{ίΰaλ_αZCΈΐύ―ξ 2†tψ\ĞkΫ€£&"5κΐ‰ΪZeξK§ͺΡ¨j+*³|¨Lh ΣρΛ„gJσΊΒ†zεZΡξŒFκ!φΚP«t3λV£ΆΤ’tϊ ½ώE5εYFΏέz°£Ή¦ ΝsEzaQDBŽ{Ή€β?«„ΟRxŠϊζά3aq³ hΙ'ZΞr’φW*퉇Frz€=͌Œ¦OΏ«=Wt¦¦λw>ŸΓ•ώ!8νU£oΰ’ψȍοyπ|r _ίOψ@j¦J"Iy!*S]S©•ηJΙfΰ_Β-₯·§Χ/ι+§Σο±?“’σ¬± Š«ίΫ[ΔWΛ3βA;6ϊΑ‹gύΉ5+ΠΨ8Aι9§Ζf\h~Œ»Λ@λ₯tΚ=tO-EFξy–ΧŸFωΑh³όzΧΐߍ‰8„ΟιτŸΊο+lOσ ΒΒ= 0φ{rd4›!         0˜ΞMΏΊ^GsHπΆ'"!ΔΝjaΫΤζš-υrDTœζjŒyγGNί‚\—¨ΔM!ΤVΔ›ΫKx 3ΰ’ψ0Φx7 μ“^[_Q‡~90ι²η9Ύ‘£Dχš¬ΑΘΟ"‹KœEόE\ͺnBθEτ%εθužΗ€ήΌ€"ΩΈ¬—ΟγΒ‰]z.$D5$7)Ώ_3BtU•υMΨq,Ϋ5!nή][Ζ䒈·'2”ŠOU=ήΈ"Λ)”Δ™tCˆΟMΚ@λ¬ηθ@cŒuΦ•Z±&X£”“5§ˆkDΞ‹©Π‡ύ€ζЉ©ΚσόΙc¬ˆΐΎJΎθ*%Aέζͺ|½0~Yηy°ƒ©Ν¬(ΧNt‡΄Ž}˜)­Δ9I<˜ζu«U]Ji:ύ„‡ΛΏl:ZǿϏαuG ,Ά°™G^LˆWJΝ-θ5IΡ½}β! Ι+im)ϊOq9K(Ϋ‘“žθΫ‹ΗBJRQk¦Φ^Ξοc.~|2KΌ Gι{θ»Η~76CΗ™νΠοfΖ/Άtš~wyτ{ή{©έmŽ@δΣPf;._C{ όι°"g₯ζjH/<Θκ–‰Ρk˜^Ώ€§œήώ©?k·χαGShd6ΕŒ΅ΖΤ³C?ŸZQ­?έx>»(Ξ­’?vτvw σ,ϊ;•‡}˜žίΧΐ™l?₯Η”-~PjͺΦ»9έ¨Χ²œX[ΗώξΟh=―\ό&Θ  œs‚™         @ ΐ9οT[VS.νGˆ›ƒΖνaϋHŠL, ί€ς²”]ό…φ³¦ƒζ`_F6τΖ±«„½\©Η‡MΏ,ΰS„0*!ήξ<Ύv―Ι(Μh6Ia€Ν—O’ΌU‹¨³J”Fq(„Ρ½²0ZΚ½5[EDm!ξ>‘‡c»,I"£Ϊήέ‘’HKρ-}ΨΫ Z±]ι mžύ€υύt =τυη„ΐΉ1”xηψ8$‘ΤΞΈ³ ―€Σ”p›tD\Υ5«©·ήΎŽ(Qφΐ—αv}ŠοDD½Μ·CμH!ΐ₯ωζΖβΘͺŸhHΠ€Ργ— © NyρtCΗ-AAnZΧ­†™vœ― ϋTIέΏ΅·†₯θ©ͺΛOˆφτ–SL=Xǝρ)3£.ΰʏ°q ό{U~Y'ϋ³ύ LΗyθC—<:ΐΎκΫZžΐΙΙωRk―ΉΏΉqχ^#ε«ΈI»τ»Q@2<Τεw—§ρ©ψˆΧ/ ³­υN'z{ΊΠ)„ΝfiλΑΛ½ψr*ΞΕΘ%.ι$χ±πi7<ΎZZΆeκ_dCΪ:ΠZ­’ƒμβΙΤJ|3υϊ₯tΛΡΏ"ρgηpΛŒ1._τLβίέ Ζ ώθ$8C?N‘­?§Η°t΅{dZΔZ½s΄-ςE!€NμΗβrˆ8‘wύiFNύ °ΉπΧ»ΖύnLΩ_λυŸ,§ρ»_L2½\") δ‚€jE›‹ζΨ          @!8‘ΐ9οΓb ½ώ|ϋZΒ@κ+!―»‡’8²X7;†κΒςΩΕΝEŒE SμšΥΪͺJϋ±w ’A•F8pαϋ•Ή°p܈ExΰΑβŽ$O*ƒοΐ‹Ν‘[Ÿˆν€υ&K8I…ΦEΪ±ίˆό>ά³υα/w όP꘰ķ„ψΓΓrt9έΗ5ΤY…x&Bx%ζŒCΦμcKŽήΦΖ»1>%n΄v;“Š›ύͺˆΚv»€NQdhnG_Ώ Σ²]w‡³W°ηκλx­«:Ψΐφ<.”γΪ)‚ž―ύδ5,ζ{ΔRKמ-ll Αy£$\q ΉSŒΣHj Ώt­Uςg}^λΊnλΒί-–fάrˆTۜۏ₯θΖzΫΣ[NeO`χh!ίW‰WTQνgΌλšΎEš‡Ίό§πiͺ α²%ΥθΆ*>B\Ε"’}μ–j{&œ­ϋ˜ EΏ;]t¦dξwχ0· }ρπΡcάzϋ=αΗ₯7˜`oΌb…©ίΗάXέτ`°AͺρΖ&›©yk²ΛχŒύOΩδ_ΊΟ α'½*»φζ°)Ξs l œε—DΙTΛΡΏ‚χg•jΐυ1W›ξq|γρΘΗ§θ‹~ΠΈΑά™ΖΤμE΄HkКfΌvΛZO‹θΞΡ1κkXοϊΣ?˜ŽΝ…Ώή=2μwcΚώZ―d9ίύb6κε’ΞDf^ CˆΛ•          ΐ™'@sή§€WŠήΨ,h±(‘…Γfu α[w(Π¦Ÿ’?œ§XφϊνθTΤΗ«ސΒϋjm•θ­iB»’7*‹ΥŠ·[C©.ΟrX(½οΓ–"všŸ aΙl(g~ζhρƒΫςΑ—>οαξΚόnα >^Œϊ,=ΓhHSξΓ“΅Gψxα>q-„EΣ‘ϊE,h³5ΥpΤΩΕG|WW »Qgqξ|˜Eΐ”ήτ5ΘFνmΓγRΨ­„Eˆ’#·V\μŽL8Z[ΫΖͺœnύLΌΉ…θl9”ehθzBGͺkτ:U yΨm»„ŸΎά.7μΓΓϋρεπpI|yόφΫη 1l}=<ο/\Πf"΅TΫ„Kš\τŸήd}^λΊnc{S[‘\έΚ9ŸοF gτΆ§·œh΄NӟUγ•ΖA\Ά(Ρ›—πxKΓ^Q>u)2«…UΒ'E΅έλθ@Ώς܌xHaV£ΝΤΫσα,έΗσGHΟθwƒ$2ϊW§ίmњ•[\tϋkžXAsLž4ξc›[aρwwWTU8ΧΟ’pΦ”ύgώ%ܚΠG­}Η9KθυKΊΚιν_Ρψ³jάlΊ7K°yπhωήι7¦ύ ϊΊΛttZy£ m-β€€+[Γμ”1ςfΙ>½λO#ό`˜«lΗͺ}%-β»PΧ»ΖύnLΩ_λυŸ,§ρ»_L2½\"ζ'H€rA »—–‹°           Μ $ύΓbζM°†Δ6™ƒJ³ΦΪ>ά>™ΓΘΞ&K­θ©iΕ•)r`psm­†…ΌJb±|W΅ΰ’=ά—‰Mρ:ζΈΆ›ΡέΠ‡N΄aqۍ%ΩzλP¨–KMh2;0X£‚‹͏έkͺšTBžJτΨϋ°v΄ˆνR†’NE,.Κύθ^W•‹³[V›ό–hρΧP•x:N~ΏΥΗFOSVgrΟΥWπ>γ볨ν‘oŸ‡szizγJ½!Ϋ„ηυ7qp £S^Τφvβε—^σMɘΰ[DpVΟZ:.α―n—ctqG"άZ™xίοζό,ζΒz0Œ<ΕΠεf1’b«λΖ/~eΒέ'›"_‹ m­8ς9ΨgγΙTŒ;!FžjΕ·/‰ψΈΑmαG!nž ŠδΎόjΏΎ°ίΡυ>ΈΊ‰eφšωΉ§x6ЍAi ατ/ώΪ„ϋ&11·Ώ₯uφZt΄Šϊ›a‘7·—9Ι4#Ζ/ΨΕτ ΅.jμΌ6βΊ5£R™ωŠ{Ψ =  €IίzΫΣWΞjνΖe,n/bΑη…WΌοέRaCWMšŸ„]…~ΠΈ!ښšΗθυsΒ·‰:₯%¨˜KžKxΈi\zןωΑZ'.:”RG8¬ͺF`i"Ίε°ΩqQό@Uπ)¬Γ}ΖΔC^!Ÿ™Αο½ΨBm‡+Hk½›ξοΖp3Α½8ώZ·ΜρzχτΫ=`<&Θ6Έn1Ϋ ³~          "p’H Θ¦3fΚΔζzm6cπŠΘΕuύβ aowwΧ•ΨΉ±η ;₯/‹HΤυ²‘{»σxθMe±Κ*$yfB«y·ΖήϊΧρΝκΈ…Y\ȜƷ]θu#›MMΈέΪ€œ ~ΈρΝRtΉΘ,‘£ BΝ‹hOλ…pΙAdδzLΈϊjΰ²[ΪٞΗύοΓρ«ŽΝbpΐ|ν΅ΰϊΖ['’Dςρ퉩΄τεΐmύηΡΦ.6ωΓ.ζ†U’²Y|ρU­Ÿ ˆΕ«·oΎ!>α"=ϊ8¦κ“ΑύΘώǞO=Ō7~~}Š(IΜ‹/ξΎύύβΫ:ό·7‚μ{ω*nΉΎΒwB—”ͺ ‘&©j7>ύξ!κώμZ@4s#ί’>αf΅φt_NyjYžJšΧm™πŠjFiR\³BJ―±ιmO_ΉΊς aρύ™£ <c§ι?½υbΔ³ˆ%}•―6‹O‰υν|ζ‰ΈϊDŽτΫ;χ±˜λˆ~7j:₯q¨Σο.¨Χ v \>5Ϋέ}1‡»ͺ[QD¦tξc"ούG-ψσ«Α½—πKρΙΦϿθ΅E―_[ΊΧgEΰΟ*jαTΦς€˜-MΈgpΚΦ‹SΰL?˜ςΪ/ΞΠ'Hvabz€‡4δΉ47·›?f b³()F­?‘ΌvυήκσΖ—Ζ~όΙ{ͺβ‘Ύω{υz7kΏυήXšΏϋυrQ.~“ δŠ@μ½,W-³          ‚!pr’¦¨`¬;#†­γίηΗπ|Χ«έα#/&άΟραΚ,βiu΄ PjE=Ϊ,Jτ]Œyζ  ςkθ‘ήDν“Ο4ώχΒ&D`ηθmΙ3ŽϋΫΡ’½`υέE|6?Љ…Κue•!σ¦ίG,Άΐ/"CFl‡YΈΖDŠΜkujΟbϋκYšΒΏύώN8z³d”kώsΫφVqΓ˜“+>Lέύή—ίαλη°ΊνΕbˆ\εώa,Ψ΅‰ΗψŸ ig ΨžsΛͺu»αώ…£Έ©m>±΄ƒΫa†|m½p³C^Ÿ α±:ΈΤΚΪΨ|9ͺ€Ϊqε²c¨lάχ«Ζ\ξώώa8Mλ lΆ.γ_>όO<œRκ ζQλY[ΕπˆˆΊ«$κ?•­zyζb^g|έ––‰(β‘Ϋ¦7ξ5«·==ε€WG]*!C];‹ψjώΎχΖΉ€λ?εš7vfπΙκ\±—€Θ±‹©ηψxm1dGhGO{gα>FΏ›Ώ˜€{X_X„[λ>8οΕδ³ΗψνŒ„¦΄ΦN:χ±ρwπo¦DLθθΝƒgOΖCo£ˆΈ¨²¦γ?υψUSΑέθeGœϋ€^Ώ€·œdœήώΎ?+Aκœ]Έ|"Jm1nτƒ†ωA­αw©Ϋή<&Η4ζ‰jMαs²ΉώΖκυƒ~ίVW΅Σvόόό+βυnΊΏcΦεqό΅L―d9νίύzΉhO^¦’ d‹@Ιίύύ?œYωΟ?1²:ΦE$@$@$@$@$@$@$@$@$@9'088hsbj&ηmη«Α²Ϊv”;ΊςΥό©l·Αh[/Π–v¬Uv΄ˆΘO%Α’G{XΪέJ,N»νΧnΏƒ·ϊ"κο >όΝ]hΘή΄ f1ΥZaCCe%L%e(LŽEΔρCζ}q„€QΆX«κΠYeFΉTφψήƒmΜϊβΙ £ Ωak[l•§_Μ™§³‰επ½]¨―’bΓ'Δυ#Iς…ΓζlBwCuPˆ*‰w[ΌŽΪmTυΕYx}χ₯&*%u”–ϋ„(Χ½‚E•ζ;ΊcωΏh;²qœλλVo{ι—3£Εl‚΅¬Bψψ1Τ~Έ}qΘF’­D»Υ†!Npp΄/ξ+ž¬έWςy3’Z*uΡο¦B){yœN8νTT”ξ)Gϋ^,N­Δ<€b˜Vα«ΫƒΎϊθΐ΅₯XLψ΄–ώ–Σχ/zΫλ—τ– Ϊ©ΏτgzG:[εθ#{ξ•7ρηW‚οτYύϝiγ*ΧͺIΗϊ9τƒ’Ι§y½«5$©€ιυŸ,§MW/νژJ§Ÿ€΅‘#§€ΐ9§ΈΩ         @18“g{ Κλ{‹axŠΖΖLΞωμd! œσΙƒm“     @φ tΰ—{ †ΌψώχΏΗwΛΩo•-  @:r-pNύ ιτ‚yI€H€H€H€H€H€H€H€H€H€Š‹€ˆʍH€H HΐZ—ψ¨gύ<η  d‹ΐiχ―ΩβΖzI€Š•€ W.ΗΝ‘!ός/―ΙβfΡ—…1βζΣξσέΏbA΄›H€N;²λ―ΎρFvςΕτΈ‘Υ±.         Θ9§xΥ΅΄Ή76sήvΎ,­΄’ΤZŸ―ζOe»vlϊ΅[Qυ―₯«έ3ΰίΔΣg r/Šͺ 4–2"ΠΨwŒŽ‘#QG v6Jbκ:ληc€0H€ "pΪύ«A˜X ΐi"ΰμΖϋ?{ ηڜ°›Λεž‰θΝί}‹ωΰΟΙ@ΪiχωξίišRμ  d›@₯Şν&"κgη<          ³IΰδDσq# ¬΄LΖP εOμδBg…€$hκ?‚w½$π-«·³v^έwξ“ €‘N»5’λ"8ΕαWuΟ»?ΗΟΎΒw αΔ³ΆώΜυύ!Lš{$@$@…H€œ qTh         @^ œΕΞ%&”U#Wηώ)jΌX#8WΥΨPuΌ/"˜o`jn »§hLΨHD@¬L”aα©$τŠœ•HΞgρΌVλD yŽH€R%Π{σPd FΚ?ώ•ώ3Υ™ΐ|$pΆ 4Ά­Γ[ρί=|†ΟΏx†ωέY”΄JΏΐN―”&,€ώΡ_Ÿνk½'HŸ@#83ψBϊcΔ$@$@$@$@$@$@$@$@$@$pϊœœœΎ>±GΊL?Δτ°’,DEK η•CTן@7―N_€ͺ|K" kέρ™=_΄ƒJΓI€ š€δoO»-θ q$@y'ΐυga¬―•5ή'  Π$ΐΚX˜H$@$@$@$@$@$@$@$@$p– œΙΞε(«i:ΛΓnxί‹5‚³α X! Ž‘£q³br0’[ νΗgςΌΒί$@$`4Σξ_ζΕϊH€N? c}ΝΞ§οΪbH€²K ΧœKώξοΑΠ°w>$»„X;          d™ΐΰΰ` …‰©™,·T8Υ—TU£²ν₯Β1θX…@/^ ντ†]         8Λ¬ 9ν~π[9m’‘          γ£‚3‰‘          œM8ŸΝqg―I€H€H€H€H€H€H€H€H€H ’ΐΙqδ1H€H€H€H€H€H€H€H€H€H€H O(pΞx6K$@$@$@$@$@$@$@$@$@Eΰδ€ Μ‘1$@$@$@$@$@$@$@$@$@$@g—ΞgwμΩs         899 νs‡H€H€H€H€H€H€H€H€H€H€ςI€η|gΫ$@$@$@$@$@$@$@$@$@$P(ΑΉPF‚v         ΐ™'@σ™Ÿ@$@$@$@$@$@$@$@$@$@‚ΐΙ11          @A(/+h          @ώ H"ηΖΕΘ@DZΰ4Χ£±² ‘99ΒΞΑ¦φφ"3xtι΅·πξ`#vΧ¦πρGχ°h`έJUΦ 3*•ƒ$ί‘}M^φώ΅V£Χj…ΉΌ,ΐΤΈƒ±O‚όZ§*QWQ8α?ήΓΞ‘V¦A αόΛψΰv`ϋ0\]y5Ό³χρΏξL†Σ²ΌšwΗb~ş_‘|qνI6?γԁ‰8XΟ€#•BL-m–ͺRdεU­ψyk7jS4rfύG|Ήό³°Υڍ_5Ά&)ιΓ“εx©‹”ι΅χᚣ 5Q5ά:pγ;Χ(Ζφ£NhΪπfλeτ1«ψd~.ΝΌ9L΄6αζωTˆ?¦o.Ξΰι²#ΝΙQ{•ε•°Γ„θA;ͺΜξΓ-’-UΤVXQ'„o5A=» Έ‹α©Ζ\Ιt~¦;<™΄§§%\rτβ²έs΄±/žΉgpΧ+αh―ιΔ€΅ζκθRγυέE<\™ΑΌζY&«7‡ϊpy°S\ΑmτŸαOέι›η<‡ώΧΰJnLαΓΝΞƒ4ι&JTΡE£#`›eΛͺ«ŠΈ…,&44Ϊu—mθΌ»ζΘοJ}ΘΗu›φΊ'ƒυ„2NVS#Ω›ΡoΡςO~<kƒ;^―’=𝢝₯ywΉπgF\ο ¨lϊ%₯<}³.Χk|²υ|%^vΰ\΅-vΝh².ο<ξΊζ"dδ—τ­³τ`9ƒΤvΰ­+=θνo­‘"j~ՍΗ?>ΓΓi>4Ευ ½€ΣODL#’ω³xm€^NΟz)ΆΥΤΫ‹-Λ”œΘ–?3ΐxΏž h™U          !p15Ή.ϋ9όΤαŒkIΉo6•α`~ ³qsι=W¨Š™«·²˜rΞ*kΚβf©π᱈,.ouBθšt;Ζ~ΈH(χΕ†Λx΅Ζ:ŽΨ©pΰV}ά‹Σ‘"…ˆLΑƒ«½aq³HΪΡ’w5ςε:©΅»o\ν 4;y°–usΪ[\ΓΧ?¬‹ hbP«κρ“«έΩG[ֈWϋP―Υ‘^ q³”5“ω©ΥT²4ένικŸ―4]Δe!ΪάD΄ΑAηe”ž<Δχ;jq}ڑ豄zK+ήi-Α')\šm31{j[ρΖe!jh…%ͺ•R„TQg^;ί7‹ls/V²ς–€Δ$:ξUE™ΑQˆ’”{jψ.›Θ–ΨsΉς»Β›εόΊΥ³ξΙd=!Ρm±υα½ϊ¦XΠ‘”J˜’ζ;CΥq'ΏrιΟ ΈήΓ°²θ—δ|Ο¨uΉ^Γ“ηΛjΡWάlΥYݎΫ₯GψνΚBΘ ύ~Iο:+Τ4wςD ΅M<”,ΔΝq7³/έx Φ?β}Ÿϊ/w—€‚_/ιτqηŠΞIύYœzS-§g½€Υdͺνi•eZn€γΟ>™ΠψO·,šIsα²j         (*’€PŸ^©¨ΊYπƚΫπŠJάΌ)E7έ\ΑšPF5U·α†£1I¬’=6fεθΖί/Ω@ΧΎ?zόΠ’Ž‘ΆνJg|‹xͺŠœh œύ˜Ϋraλ±υϋ0%@νw\T‰›ύ˜Ϊ˜Γπζ&κk{πf,cβΩλ\;~₯υ˜ο^QΟUk€ΜΟ{θΓNLΞ<$¨„ΰGΉψ[SΪs-βž[T=/΍YΖk­2«ΔΝ>њJΤ{ΰ‹ϋši½σSowτΆ§§½Rδf•Έyή3Ηž%V4`¨½¦`€ω φ&ŒνΜ`Cι”IDΐ–χΧw]XςmΑείƒ_Δo±6βJ|Άͺk\pmGFJUͺαw>8π§?’CήgbJmΞb7‹Z–ρμή‹Lj3Ύμξ&&F' ˆίYVρΝθ1W~7ΧΧ­ΞuO&λ X:q[%nήk“ρmα£PYf‚Σδΐe››~UTzvκo4@ϋ³BχK:FΙ¨uΉŽ¦ERZΟ—–~clξ­cuί‹uΏXο ¬ΜŒŽκυ=ψ{ ΖβΔPΥ†είzύ’ξu–^,—>,LΝcfe­]”W7ΰω!τ4›jΌ„7–Vρν¬ϊAΐ8fp½LŠΙΉZ/ιτ)φ"₯l)ω3šR.§g½”I{e™”Ιύ&†sjΞ9ΕΝΖH€H€H€H€H€H€H€H€H€H € ˆΞάςOΰΌ΅Šžl{wΏ[™5噀Ή²7ͺ#EΆ‘ Ε°³ΏŽ{β£½Υγ])Θr@hοBh•PΥ¨«Tϊ½ƒ™υYLiW™ZΡ„‹vEb L¬βYDΉ±³λBΰl”¨„Eˆš €—Z›³¦·₯z€PRͺΆύ…Ώπͺώ{|₯πΦκP†iΉn/`n…–,>ÎhίΩίΐύCψΌXέρΐj?wA!όϊΑ^XΌQVηόŒ¨#ύν₯έΏ² Ψν!γζάOρ…Η<>ZΓW«₯¨ιμG ζ|U-Z«€ e žψρb{ΛΫK˜ΪΌΆ–„hθ δ*Λώ¬΄$7γκw’PBΓ‡ιΡqLωκπφΥΠ#(ΙΛGεΈt‘-rΪ³YŒDΟϋαΞ ΎΊ³’c3Μ°‰‡7 "Ÿ«€΄š6δΜοζψΊΥ½ξΡ½ž°αv]»|ο‡x°bŸ¬-ͺ˜oavgχΦƒn('tΫ©Tΐοό(fΧ» °ρ¦ƒ$Xςβ—’Ψ”ΙiƒΦεzMHy=°‚§΅ξ’ΨCeηetΚΏ"~AλρK™¬³τ‚`9Γx½Œ>ŠΡ‡O1ρΤ« γcnΌ«‚ΐϋj8λ…HAΰΜυ’ΦπΰzI―ŸΠꞎ΄”ύYTέ©—Σ·^Šj©·]’ΗΉ&Ž?Λ΅m8ηš8Ϋ#         B%@sŒŒuΥ²Bθ]±iOD;­Ϋ³­²X`Ϋ+"χͺ΅ΓeΨ­ΡΎ/ŽΘ4–LoMC(,«ˆ›!$&·»…ΐI]Κ—Δ–€ˆ¨o4Θ―±?άΐβ‘Uˆ8₯2»ΨπkGœ΅΅Γ[—[P!„ΗG₯βυβBππŸ_>ΕZœ&O―²~ύzkΚαm˜Δ«Χ•­εάΛψE{HΙƒ2ρΧ ε±'ψv*Z>ηΐΝΧ/ΰbW;BενΕμβΫ½4‡‘gΟpwV?³φΪΊpΎ£ Ν uh¨±Γ"Ϊ l{^,Ήέx13‰onj˜ͺkŽΆD„οpίΫ+cm}XsΣ9?5λJ%1“φμ_—Έ†B/ήQΥ¨ˆ›;v!‚²Γ©\ŸJΊτ½ΏŠ;ŠΨY.οKΡOΛvικ5\κlA[ƒβΓ…‡ΨvceΙ…±±ηqEϝt?‰R~φφyρ G)v—&ρx«7;ΡΣ¨ˆΟE€­‰q|σΥCP›πΞΟΟΓ.|ΠΡή ΎηΒ3;” ύCψ/η‚‚lΜΰ‹§΅xˆ½]7ζ\Kxπ£νl o† ₯½Χ ƒr©5ŒΚ―iwφαύ—Ϋ`ϊvΟά>{Ί’Έfkή{³G<ς"8Έ&ρ‡/BωΟ]z WϊΪΠ1k˜βμΟ†ΓωBΔNΟ₯kx©Υ Υ3"βΥ₯π.Ž  lqφΰO_ΐ…–0Υ…E<ϊΡ…¦sm°‰26E_jΤqxxŒΦ‹Έ9”lό2σ»J?Σφƒ9½n³³ξI΄žh±· WφW›;Ρβf…šτ­~(#;vͺ[+€}ϊ³d£ǟi;<,Ε₯‘—qυB;kδ7Bμ AδΨ¨π_²Œ*§Η/eΆΞχ£Χp£1l£°)psΉ1;=ƒ‡³ξ(+ƒ‡ιϊCΦεš–€¨c=―]λ1„=π˜κγYρόRFλ,m :υ΄ω—­ΩόAϋRγ°‚g“‹Έόζ°ΥPΒυ’ŒMk½›§υRΤη'V©>©ΧŸ₯QNίzIm€ΨO£½¨’Eqx–ύYˆη\g{$@$@$@$@$@$@$@$@$@$P N„ΐ9žΎ³@M>…f‰?˜K‚Iy#ύQL-‘Ί[v³"¦|§H(½.~0™z ?n†%zRΟ­U&ΡϋΰΆy°ΏxEtKE|pDs’3Š­!^~Μ Ρ΄² 9{e“¬r'¬ε’π$Jώ'’ͺ½λμ‚τηh!ΏΓwnΊZδˆΠG"βfρfum=ϊΪB²PI %ώt ͺŒ©F“Λ΄iΤcohDx–3͏Eζ"Αή½…>Ή+IIά,mŽ–NΌ!>Ξίΰ“G ³LΪsΰΥΫ―b ¬6$ύkFK›τιD³ύψνέΈ p™4φ2‡j!¬WFΞ‡­ƒ¨ω!Ϋ’o~¦Ρ‘¨¬Ζ΅—Ό–ΐu4`nwΑι’μJοЎNKτLM―†‚Θ-₯?ύι5\h”…k*£,5τˆOS•#Ÿ«Α΄―?Q©³έ]ΝΑk»₯TνwMhBε_[+ρ?ώπ8δΙ, Νθ \{UΑ=ηz»:ΠΩτ°>!pn[ψςΣΟ"Z {ˈδ”Ξ½ƒN9§{b…`:Έ•£IψJi&μΊ’ œ‘_Ί*έϋ rάώω \O!ΠΊΡ€Άϊjόλ—±οϊζτtϝηX€'K ΪΪ.β/ί‚Cn=ψeBc[/ήe“κΠ87\Η―”\Κ·Φψeβw•zΕΚΑΠϋ‘ΡΧmΦ= Χ6œ«Fδο>ΐΨΊt«„S¬1ΚΕ"8ώš" v†‡¨pφθΟR‹ψώ,ΆxγΐKx7:Y¬M/\}uόληFψ₯ ΦYbΜρΑ-τh¬ΡBχ°²νΈητό‹λςh–©λ\ΟkVo…£B9#ήψ~¦PIŒύNΰ—²·ΞŠ5#―)§ΦΏ$¦j*Kΰχ“O–ψώ…λ₯ ι"Y/ιρ‰§Rψ¬^–V9½λ₯°™H«=UΉbΨ₯?Λω(QΰœsδlH€H€H€H€H€H€H€H€H€ ”#8ΐΐψ±}€œM8gοΑή4––ΩπJ£"Κ »σNηΧΠ»ψ&˜ρzmψuρ˞%ŒEv΅U˜C―“―­ξΖ―ΔGΩΆ}λυΜαιnT„T“MŠ"οΐƒ9"tWν\‰©•Z$ ²:d΄”^Χδ¨~Œ>ΕXI'*EόΎψ™#J„`])gΘ· SΖph)ΓΑρ ͺκD΄―– HoυΕ –ΆDRω‘…¬»Τ‘¦ΝΈύζ5•ΈΩ‹ηΟ^ΐνβζφ ΘB́—_Α¦λ#|Πf^ΈΓ»k˜wm`ΣγΕΎ$*kmΗ…Ά (±σςKΈ½²Š―RxusΈΖ${™Žƒ:R2φ°GK―k~&1=ΡiΓΪKΪΏJΤ”+Nτ‰ώ{4Μ2Α’\ggγ%―ο@wH δΑŽΆx<^ωΒHwΰ½·oαBCؚ…©q̈뭬JΌŠΌ©}"ΒοΑ‘ϊφz?QΑ±Έf"7Ο Ζζ·annΓP‡,·mιΒΥηςu΄‚ριUτ"'ΫΡΥΡ*Ξ’ S½u £Ky|dSθΝκσFμ7αβ9εFF&Γ•Šθ +Ϋβ ρϊvK­ϊ3sα³1{=u5‘‡EV]λσ7ߎ7Ο‰HΦ³b ,υMΈ>ΠΘγθΒΟΕkδ{/²«‹Σ="8‹1*·`°7hηQĘ©Νpβ'―«ΔΝ{kx<2‹­:\ΊΪ!zŽ_G°ΎδγgŒί O-΅­~dόukτΊ'ΙzBŽZd΅½·³ύ<~i―‡˜~‘mswOά“˜ŠX‡mg¨ΉΪ‘?Km0ψ³HΧϋ3λ0‰·•\οo δtt α­!7>^‰(™Ύ_ OwuξbJάμλΑy¬ˆΧ2T˜-p8λ1Π&έΰΒΝpKς^:묌Χε1­§˜Αz>’3zmMΈTί*?ψΈ<Λ;ŠΘ€qΘ/eo₯aH“Ξͺ±‘©>ψ˜¬sc#Ι$π/\/%XοzI―ŸH25B§υϊ³4Λι^/)†¦ΩžR¬(ΎιΟς1LΚHδ£mΆI$@$@$@$@$@$@$@$@$@y#088˜΄νώήξΈy&¦fβž+Ϊ8ΔЍm― Λ$"œ αŸΩά‚χzμXή=€UD:U8{Ύ%|΅2g`$Υόv½Εή‰*Ω†~tEkj«j…ΐ9ήVcͺΗ ρ±»žΰŽ7,δmC…ΩζΎ7 ·Z;ρZ]PΈ½3‡Ρ£Zά°ΩU—–D 8†œύ{ΞoLβ{ΊΆE„9V,Y?τ₯>Ζͺ›φŽ%Ί½LŽ;‡zΠ';NΟμξFΈ\nj„…βΣθηˆσ‘-;k―ξΑϊͺh»„k]Α‡$DLη¨1Η£—π—o_ ;―τβœ8ΛΤύ #΄ΪΪ‡!pJ#ΫUŽ.v [ε£½EόϋGίΰ©ΦόήΚώ{Ldg₯dδwΚγ§ΧΟG6y€šŽ‘'eλΊ5rέ“l=ΡkΆ†ξα5ζ&\QnθͺΧZšp[zjCLŒ)•Ο7NUs³K–ΪP$φgΪuΈg‡ρO"Rs`xΈvίğ\ ή9ϋϊ;Π*ΞκG/υK’οΣ»Ξ²W+w?ύT~¨-܏―E”ϋŽͺ4ήݐΐΏdΊ.[•ή^&λω‹ —πͺŌm!δ.―0…ό‡dΑΊw_ΊΧ’“Ψ/eg•Τ¨g8«ώ₯shΧδPUΜ̈uK‚-±αz ‰Φ»y\/α'L‹ˆSzύYΊε2Y/I§Ϋ^D' ό€ώL ΥœRΰκόβ?dΆ6έX[]Βκ|ΰ#νKi9n$@$@$@$@$@$@$@$@$@$@g€ΐ‰†rν t»ΰΊΈΏ%" ‡EΊ"¦%š%q³"²ΩΕ‡KJTη‚³^‡Aυr(―‹¦Dτζω˜ZΜ¨«΄ˆΤ]Μ{—„z?¬ΟβyTΔΧGΪUeͺΡ†ˆ˜΅Ώ)Ξ4ΰ'r€h!€Ύ³:³+(Ϋ‘* ]oέΕP”ηΝν|ΆŒΈεP ­·ύρ~U]ϊΕ뉳u¦Ί4,Ξ.-UΤβJΟ"Ώ/v:bG)Υ=17²να«G“Pβτ:„PRЍ½₯ӞTφΙƒΗ±βfΉ§Γ"z΄Ό_Š,'dψ•ι8Τ•‡Ε,›"bwpD₯o~FΧ’ϊ±qν%οίΆDΏƒ[%-!5o ©ΞΪ…Wj…˜VΩvΰήW΄Ώλ¬έΈνPIHΕχ5jΠ. ΥjFƒψΨRϊΨDΎu₯tΚ† }έ‘œΣ†cΔΝΙι§ρΙέ°h߈λOϊ£ςπC΅LΈ7ΉΊnνR8de[^ΐœ’Ώjp"HY>ίΥΣσ+J)ΏΈΤ―x/ΖF•Η2ΒMΈΦEηΐfG}CπΤφα―~υώφ―?ΐ/nvΘη¨―“ΕΜΫ, !τ΅Ύ–PDη…'ΟbΖ`kφ)žL(¦ύ6Ή.―аΥ8Hκp†#1NŽŒ‡Δ́“ #’-Ε{Ζ«AJOcόTΥ€λw•’™ϊA©ž¬]·Rε†­{’­'*ΡP)]ψ~©UyσaΖ3ƒoVŸγΙΆΪΓΧα’=|m2f§v‚oϊ³’υg±£*’Φ?‰τ{#χΖ1Ή'笫G«x°#ξ–‚_’Κκ]g+?0D%ͺ]Ş­εx:«ψP%5όŽΙd]n1½½ΜΦσβM "κ4ΚD”ε(q3ΌΣψΨ΅ΒƒŽΙό’ρ묀„θ_rγ_œηπ'‹tT@IDAT“Κϊ˜|0Ήfˆ(—bΕzΙ?Ϋs­½ώ,ύr™­—oO«·)¦ΡŸε͟₯8B†e+ίX[…ίϋ? G‡‡Ψ“>»;¨¬¬‚­Φ2ƒSΙ°^°"         ΠIΰΩ³gi•L%ςsZPζFpΞh˜[ρΎˆξ9νbQ")-―Fs₯EΥ…wκ|ψlc=φ`Αω†ΆpτΧ½άίφjΤΊ‡Η":σȁ7R`Ί΅€ρκnόΜΩŒ¨VVƒVk%ζw$ρR5κ*ώφή¬Ή‘μ<σΈIpg‘ΰ^$«XKwU/Υ{MK-uΫ’¬‘Ηc;މ‰˜ΰ+ίψΞ_δ?ŽΉΫ‡=’[rΛέ²¬n΅Ί«—ΪΊΘb‘ŝΰ$Έ$ΈύίL Ψ `='Μν¬Ώsς=Δ“o*’h%ψαTΰVΧ(Δ?°„]|홏Ξ":°iήi·α/ΟJh―ΔmM΄)βΛίy4Ώz’§*΄Vbνc+hTWεΰ™ό gmΥ8B°J€Ν‡―©‘XgσΧ.žθ΄ΰΩ0Gn7VDηεPt«xTΥςJ·m”Χ²_qΒΩζ@}Mpt¬ji*D<–,¦Λ"λλΉφƒ£:Κj[Δ»ΖΑΜψ4Ξ)³³Φ•—IϋΆ”ίC\pŒβΚν˜ίί‡½ΆΧ’βfE«e; "Φql‹κίνί―Κ₯ƒu|$l€pΨ›A²#Γώε{1₯ηέ„€;sxοΔxΝLˆ“ςD%jΔΣ~(¬cf23q°%χߎ›ρΓQμžφ‹―? pnγι’ ΧΫo‘τφυβχ"XSƒ}ύͺ·v9 ,av:Uο…’dϋWρx|9ωqΎG΅Νͺ€Ω‹ng+œ ‘qηΈΠ.§,Β#vΉ%œ—Ο»‰Iλ¬ΡlΈμ?wΩ}•b^bBeτ‘[M.š4’ΉQ›WD`½œΨηkn1žΓi,ZVύΣSΉΪΑΌέ·Jk,\χ€_OΨΡ¨­₯T’»Έ·ϊχ΄ϋeΟƒνΣ«x³1ΤU‘άz¦νDΪ3 „νYBŠp~)a’Ν+>\RΖZjΤ΅†¦xNΘ!γζΦYšΑ¬Η­ό­O1ηΪ€Gl¬k+}2·/ζΧεˆ‹˜ϋz>(ήΆΧΥ9εHϊ©‘¦νbΗAΨδ»Β»²ζωUšοcιν`ε:+Aβ!νKaμ‹½?ωήΝΘΊΤ'[ύμ^βšAίA\/ιi„χKb½”»0hyΒ)³φΜ\:σλ%sε%47³΄ggjΟμmΪ¨™uW±*qs…<Υί ―²ΥΥ‘Ί2΄PŠΈΩνmU½α^CSk›*vΞ΅P¦'         (B8Ÿq§΄β]ΈycwŸ»—"ΒΏ‘¦KΈ-^ή”ΠΣΤ…KΫ˜4π΄vƍΘψZ§$λΓiφρΐ7ŸΤڞˆ›γυ|JBχξΖλZπ’]ΒU£BΩ*βΎTkšΓ47 `8€•Γ΄g§΄uvDδ™{X?”s6'ήhο’ Awœψ²V„Ή‘K8ήƒGsl>ΏρΘ›2‹1D½υωΰέ0γ‰ΕΏωκmΌ}%$/O™uΌηλ”‘3»hΎτbyκaςΟ~|fVχd±¬)/³φΝψVE―ιˆ<ˆp‘Α‰ :ΑZ)ΈK<œέ§JΕΫσw;œΠ’.όvuN4° ΘCΪ­™qn9{U―’‡OΒ₯mϊαIΦπΈ YqωΆvR ³kͺ΅Š… ŸYΓϊnUhγtvJ_.ͺιϋ:ΆvX_\AΤΟt\₯M6βΖΘP$υΤδtd?fgy^ΡΡ9du9B–»Ε{|$ˆWη^qΌλ‘‡#4ίߞ Ε+;šš΄9D‰]ŽΆHͺ$;ΪĐδrΚӊ¨=<‘H<³v2ΫώKY₯ /š΅ƒy½oε!#ΛΦ=™¬'jdΧu‚w.*ns\Ω—9,pŽ’΅°žΡL“οўŰ)9{S{9Ψ=ˆρY±[M-bΗ–Σ‹‰ΣFϘ]gέ}²€η†―#δ;ΏGΗδΞ7ΰΓ“§3ψδΞTΚ‡—2³/&ΧεΡ&f·gΙz>ˆ ο4&t%΅\Ε+²&RB·½]"pNΊŽΙΔ.I>V­³ΤJ₯ϋCϋC(?φ₯ψξkTΖJXŸΖΏ}ό(΄Ÿτ/ΧKFhJc½”£0jxό9³φΜl:³λ%³εΕ·7ΣcΪ³RΕcΟbͺeΩAeˆšΫDΈ\^ϋʝyzQω464Β³α_ΔΞ>―-mτδl~fD$@$@$@$@$@$@$@$@$@ED€η3팑– a@<ZΔΝz½άΜΦ.Τ΅bTUρ5’έVΙέδ„Ο΄1^["ΤΦĎ[;+ψΖ€Ά#xr”X’xυT…LŠΌͺΓaGŒ«Ύ'ψ4μ%z¨Φςό,Qά"pή”νΥϊN4iΉ•Ub¨ύFΛΒ'Κͺ’ž†+Zq­γ.Ÿ*ήt"Bt-iilq˜D$œδΌ©vυ_7ϋ=«xκrc; ςΐrωˆGΌ7žλ e-NyŠ&ˆX>"hίΈ[z―Έ™Χp|fž<λ˜——iϋŽ7π«₯IΌή…ΡΊψT­Τρ.¦εA‹r[†j/Ίϋ"ϊWξ’ΔΠ㸈ο΅tF.lΙgγ"ΝμˆΧρoL’.γαSŽ“ ŠDΦt‡*j5f*σχίρ‘ΝKU‡­%,―Œ‘£KΔΉΝtŠ}Ω†M.ΌΕΩ<Θ›‡.ŠηθpΕ<Σx0“ΜΘoΒνέ—zIύš0(ΒεΞφ€,”Ίz1y fŠs.(’<Š'ξcMάX'"nέZ?ϋy3λώKΥ·yΌ–οϋΦΊuO†λ ™n"SΫ±O}‰Λ«Λt θ0[λκ™agў₯Uτφ,ΆϊΎ`Ππ 55:'c3§Λ:kuχ‹}ΌχόE 8[ ω¨Wλcs`τΪMτ4Χβ§>L)rN[“λς΄ω&‰―υό„wu (ί+ͺμh“οe+2ο$† ν’’Π‚uVbωIΞΠΎ$>³}iΑχ~τJδΝΨ\ΐΏόλ7)JSJnδzΙ°_Je½_ωΜνD|Jγc³φ¬Γμ5L—ΜΦ3α%ΖϞ%2џ9#{¦―‚•ϋ•ΪWγlα³g}}]9o‹·ζΆΤiŒsβY          ’&Ο©Eέή"«\SUΤθŠ#Fάͺj;ςJdΕK±*γ—¨'KθO{CΨBm|˜ΨLκ,M«ͺα¨ΤςΩΗV0,X~˜Σi•ώ%|"Ξ\BΑ† ΅š‡Py΅μΎ"u¬G«x,ŠF……Ρ‘sΊ vρ¨-’„ΗΊsΕ°{r‘p₯©N ZΕ3ͺ( β)B@-$ jΧΣ•χ\oTΨΊ<ώ%ώασ8!₯ύ#"pNϋλ“τEΔ/m!μUu-Δil(χαΛ«–Fέ&Ÿ1q€6g/Ίλ#­ύ"UœΩ†ΜΚSsΝ¦}‡ψlM>64«β›‡bjœψ“ζπύw°‰Yύκ₯–ΛxΝ!γ,\Ύ§ψ•ΧLΫ΄ŒΆ^άω*qΕ΄μάήv=·bFjMxqχ_fν `fi7»ϊ$z=z{{Ε[h%zA±6]˜^νZχΧ†—€œpŸš3ω….ΰέμ/οΆZt]@›"ίYΕύ•r”`τ9›ΡΪގ‘Α~τ‰°Y uΞAΌ04ί$}HE–ϊ©uyb–™Ω—|ηOptšX―ψ3YΫ₯ΦYρe§>¦}IΝ'ϋˆΫjλα΅•Ό©δί~υyoΗΰz)uŸδv5ίλ%γΪef'ςkΟ,²ƒ―—,*Οh’³΄gIΐ„OŸ…=K]£\κώS’:ΕΛσςώ‚Ay…ΖΑ>ͺυΰK”WI€H€H€H€H€H€H€H€H€H€J=8Ÿi/5F^{οΗ恑‡ΙF΄ViBή όGϋgZίά wΰΊxΥ‚kΛ…ISβQΐnοΦ ₯ƒhβ3aκ4Ί"uγσ΅…¨pΌ½š¦όΠמ"―ΐώα.ΆDΈp/^8-Gk­Ξ―P7δάIpWυό¬΅EΫ6]Η½Ψ‹Κ#₯aR“ύόϋ/ο¦υΰ₯₯ΟvΤytu8e`r±η±ˆL΄ΰhP$Όqqν4kΪο€xΆ6p«”MyQ-ΎSMlθhO/nV’ψƒPξ EΤδ€βV“«ΛaΘ₯ΊͺmQγAΏ)/έIΗg\mFγ­!yE½ ؁σ‚vœα6Σς”μL΅ο8€ΝΘ½Z—t^Ψηv7βξ…jρή;Šεm±‘Δ΄w Ÿϊ|αγs΄±υΰβp#f§·Σ6ʊϋ/m!d<­Όά‡.ΉΦΥΡ‰ηWFξ»εε5λm“scŠΗh%lΞααDœ ]‰ό]φ(γBΞr‡T¨χΉۍ³ΥͺΐΉΓΩ'φ4δρΤοέΔ”šr›Ϋ" TΕDβεΉO¬Cšr"šΪΩΖΖΆ΄£C±Bt_h—Db dg«6ήM2Q6vWŸQvv0χϋ63{V kΦ=&Χ2Ηλœ‡qΥcΐτm(xεΝςτ‚EυΤr--νYb'eiΟb2h¨C³,΅\1_ȚΎEkΨ6π&“GšΛΦY`aYωΈpχή}ΌφΞ{x΅_±»ςΐ—Ό9r=>dl_L­ΛγK2³/Η–­ηjPΧ§φuμXΦΘ†Ϊt“vI),«uVBνŠΔΉ΅/6Ή_^Γ‹Nm-ΏŽίόςSLΔάχIΊ'KϋΒυRŽΊΣ…Y/ι ŒίΝΘNδ۞Yd3^/YT^<Λb>¦=+hοd,pV<9746bkk ϋ?Ξν&F$@$@$@$@$@$@$@$@$oW\IYΔψψxΚληαβ)Ξgڍ»Š7TUΐ\‡Ίf<o¨ϊΠ/BBυuΘκIρ&»―rK3 ·τ OSγαfl[£­ͺΖPC3‚ώ5,ED•Ρ«φΊnΌέΡ9αφ­F…β¬e[ΔΞMͺζ ΖEX9‰ΩŒοΆ8ΕO](¬ϊ½XRwΈ³φ +v§―v½„Λͺ^o<χπM y½Ν†ŽνGnΙi§*κ}86cKŽ<ž¬KNŠlά‘/Χ χΉΥ `4$¬q^μΗȝŰX0yl¬WAͺG[;0ς΅›MyΡ*T£NΡS+Ξ²#‘7― DŽRξˆΗ\Ώ2Tρu[Ί%/Oα@.ύΠ¨y‹•βΆv ͺ–ΓψŒΛνψ$ξ~ήΟ_qqον¦ο‡„ΌδuΨiΫJΤ,χjTΤ¬eT—:†q­NσήΌ‚ϋΫΫΪEΩΦγVη(ΤΙ £ή»>άs?Β½Dm”.M©νzEΆŠ+͊(Έ~ύ2žNίIτΤg1qη‰xδv«ρ¬ΈΤŒ²ύ³7‹ωΕ1tυŠ]jΒ;ΚjπanaQ;HΉέΥyN?91TuEΏvΉΪ#!O§gΣ ¨·ΧΆ 8evΚ§₯MΤkkx–«°Έ„>›C=+η=Ρ±Ά±!Fa8ς΅Q<žHβ-±©W[Nπ(άJ>‰Aχτ‡­ϊxkJΩΓ!ϋyρςEŒ]―O[8*·c°‘Ο5Dξνυ¨χLkm’πš.Œ9’m™ήZΖJllh»ˆ>‘ΌΉvΌXΟΦΫG’Z.―E§­WDό β‘ωΎW/Ο8Τ D«1θΈΟ± ;卸ή"yͺΒgI-ιΎυŠΰ7]¨h@cΨ) ήφ€)ƒN’ΕK¬jW,؊gM^Χ{v»][868ΑΦ<Β?΄oO/αΙΝŒ*Žžmέψя_ΕΗ_γo^½†·―…›J­Ο-"*%ΤΥ3‹ς€ψpράλoβπλI<žΩEΣP^xώyίΪυt[―xOΞ͊pΌ οΌϋ&š¦ΧδεξƊxζ¦0#ž–h‘²£y'λ‡ϊ>ŒΤV©INNΛ€Ώ•rBa  ―W Ό¬ Ayψί¦\Θe|j9'Ωώ‚—[yΩ·Oρ>€*Έv\ς¦Χ]μž£ͺύ N\Πξ!ψqΟ;«σή\[žΟκαΆ‰ˆ0ΰίG­moΪεs]θpο-c"'πΦΕ)ζέ‰GσΈ.χ‹"ΚEσ~ς§΅Έσ`“K2>κΡλμΖ₯Fΰ˜Ώ8[r™„2΅°ŽW³>¬―cfUBΏί‰7^οΉϊ‰Ψ—ST5΄F.vτ]Ζw›δξSlLOξ?Β¬&ζiΏ„Ρώp9%<pΪ°· <₯αŒ8χΟϊ«‘t.Ο.ϊ"υήΗ†ΞΦ/<šΖψθ€Ν₯„†>όδ/jρυ½§˜^π XWfGz»ε‘α pˆgτ8/h•ijΗX‹f؏qTSΝ±K£c¨‘,αθΐ‡©εmΈ-aφΉ *γ[ΚϋΡWβσρyl•7αω" WcηιO6vW_…Œμ`ο[C{DΞ랬ΦDTY™C“Ϊɍx­sε›+X8ͺΐˆ£7tλ¬%οJψ‘( κ©ο‹"ή§=³ΠžΕυσΰ—πCάΗ'ίΜ£iXήΨpϋR䐕ΩεθCJ:v)ΊΦΙvΥ‚—ίώ.7ψπδ± ‹«λπx·εmυΈ("μ[ΟiλAάλIμxFφEi˜Ελr%K%Ϊ—Π%ΓΏ©Φσ5Ό(fΘCKς½cMήή±'ί;ŽΛͺε{G³¬W["βfy­Ζ}Κc9q!K»dnWf žgϋ2vλ6ήR|RΔΝΚΪ`emΟΏ€χΚcΧΌγƒ%όζ‘ξa—ς3zσΉ^²ΒN$k΅•φ,YΚωTvPΉnj½€$L•—$Y±ž¦=“ž{φιxςβε£ο²Ί=ͺ+Cя΅‘ε£JΜ“H€H€H€H€H€H€H€H€H€ OΰYπМ–κ©Ό’αΜLo­`Hή€ςG,žZ›‡ε“X€w6_½₯ͺρ‚x’Φ$rξξ¦pιZcG£ΪΜZt‹Θ»;™6ΈOΧ§βΌ¨νbjǍ‘ρL'ΑVΫ‰Ϋݝκ~δΟ‘ŸΔ§‹\έ©ͺE€xρB·Ql?•ˆwΦι™Qt …ΔγΞαK7GΒΣ/ύXˆˆ έψβξzn„6m}xη=ωDb‡vόΛψrΒw6|˜Eyw'ηqEΌšͺΊEιΗ7ήV>ΖΩ¦;{ηΡSŒυ?ςδΪ܍_έ1JΊ§Η["pN"ΐI—±\o«kÐ];Ζ%°΅c4,Ψ ψΕ3 "pΞi|ΖεŸΙaŽεeέ>©SseHξ™όώΫΗcχ4ξι½™W5‘]7‡Ϋe«λΔε$m¬Αx© œ±7_Ά ?±šzη5\ΐ­7δΧV_Μ±ΙϋOει~ΨMwέ3Ή†Ω7†0¨«Ο¬ΛeθΉSή„K—‡ ύwΆ8"•!rΈΝ©¨ΐω¦xω8¦ζ½Zλʏξn‹°Ξ#nθΓnMΕ³RXx½Ό*v("pή†{M?oxραοο’ω7Cβb[^|MωDsNΆwσΖΛx{(Nπ­EεπžΞˆŠ8ϊύŸ~.ž¨]ψυψοo…Έˆzυ¨’+ې4:|Ζ‚ώCvW_ŒφΟΰΎΝmέ“εzB…°‹ Ÿ £Ϊ›jΪρΚωΔΪΨ™ΓGΎθ]›[=γ2/ζCΪ³pοX`ΟξχZŒήxEύΔ %|ύyτύ"Κ53v)χu–£—•ΟXLυ΄βξ˜_^…³±x]U.ΫmŠυ|WδΝ΅θ‘υͺH“„ΠΪη‘~ν£ΖΜή.™Zg%©UQŸ>ΗφΕ^^τjkί<Ÿδi'_•OΞўβz)Δ’”ΦKΉΫ‰hηΌ—Βž₯Μ;m:sλ₯€e¦-/iΚβΌ@{¦φK‘ΞqŒ€eα'LNωOξΤ x•H€H€H€H€H€H€H€H€H€J‘=8Ÿm―oΰWK“xβ΅FαxΣή'xm9k Œς/ΔΉͺV8λ4©“Ύh? ‹? b7hx%tR˜Μωfρ–'1mΰQyΕ7…―w’"%}N~>ZzŒι …ΚΝՁσVPΔ/ϊΜ φƒβ9*&ΈΈ‹‰ϋΑWΏω=>ωvλ;» nL88Šm¨gϊ.~ϊρ},$iΘμΈ\πarα£δžqyξ)ό\)k'¦J‘ƒΐ:Ύώβ!Βυ=:IΓiuχ‹―ρd%±_γΫ¨y?Ψ`‹χ΄fP]εΤ†Ό’\ 9ŽΟP&αΏρΝ6/9•g’}R5εΥΙqC)Rmχž Ώ]ϊŸοΖΫ¬2ρι›iπΓ½oθ#<Σ Ξ<žgϊ>ώχΟΏΔψrβ˜T+W―ΖΊ7uω’}?^Τ‚NΔ·|(υ"ζ§υ-x0?³Ne°;νυ§φq¨Ω`yΑΕ“‘V1ώ•ΞS‘>‰ΑΎk#:VΦά"%……Ε DλYχa-~βXΒίΏŸΈ;#ι$Α'ξ‘Nˆ·^έυΰ~f­S“μ‘MGΫ3ρ?Ό‹§βYZΌ+3ψόή\„™GΧXYΨ]]Ε2³ƒή·ργ3ΩxΜeέ“νz"Μcso¬/ΐ;%†―ϊ1³ω?χh#/|:—zκϊ‘viΟ”^²ΐž‰νΤζΞυ™)ΓωΑ'φβ_ρY¬χf)έ”]2½Ξ `cΩ―ΡϊL°»x:~τοκ‘ΡŸΜμK(₯%λςLν‹Qeε\ͺυ|ΕιVε!Ζδ!ˆΥέeό‡αΪGR™°KζΦYΙkXΜWΞ«} μk«―τττίΉ^*ΙυRΞvB?LςhΟτΕΔο§²ƒZ\Sλ%-qά6“ςβ’ύ!νYỨμ―ώϊo²rΙ177§Φ²³»Χ°ΆŸ}όαyž$         b"pεΚ΅:ΩznΦMΟΜSs,©Ky};ͺ:F-Ι‹™ˆ³I„^[ΌgΦ8μςκΣ.ρtSUJzxΐŠ;΅8λRŒάΌύ=Ό­ˆΣΔƒαϋx'"03Ž]˜³φͺF΄UW£Ά¬εΒδδτX^½₯ύXqY²ΪΨkšΡWcC₯’φ仇;˜ίΧ€'ΙR=;ηϋ†ϊΡj߯ꏬGΨX™ΗB¬Σ2jY5ŠŸΩμ‹˜bΎdεϊ&ΉŽΟHFξΊ<ε}Ϋ]ΆZΨ+ͺΔ&•Ι=„w3‰@0ΓFœΣhνh«yξUlΝξ¦–υ‚βΔ†ςώK,έϊ3W_.ή½ά¦fΌ2ώώ>Ξ;©υ%ΖεΨԎ«¨VTφςΐDπЏMο\y²iMR–R…Cρ@-ΒλΆ±[ψ― (gπδ‹ΐJίΖ©ΙσŸΒ―{ͺΡcoDCΉβ7ς‡Η²Ξς₯]gΎžyŸ"{Ϊ3ΐJ{ΦνμE[c΅:?eM(Oλ³λ¬Άφv΄;κPUU©Φρψ`.y&ωc#)OšKEΏ.―¨GOM jΕ>(λ%žΘΫ[φ|ipLΣτ$—Ÿ½uν‹΅φ%ΙΐJ}šλ₯Τ|]-ΈHW‘|]7·^ΚWmŠ1ίg՞ΩیuΓωκ£to*ΚWΉΜ—H€H€H€H€H€H€H€H€H€Š‚@UU•xΤά¦’χ\zp.šξέ;πaZ> !{"ΫΛμ65DΆw°‰ ω0X˜A³ρ%ΛΟ²,Λ+Ÿ$Γ\Ηg’l“ž.ty?”+>΄CtΆέkx ŸlΒωΊ'zq5,nΌ8Ÿ kβnΉρH>ω 6΄5ΰΡτφVΤλ΄ς0ΐ΅ ‘’Ž2χκIτŒξ~έΔ^φΝΒΧσμν™΅φΜ΅ΌWθΩΗΌvͺΩ9ΕγvΓ“oΣnyΡ―Λε 1KΙή¨“—ή{φΦY΄/ΦΪSΓ’λ%SΨ"‰ n'"%xΗάz©ΐ•<ΣβhΟ ƒŸηΒpf)$@$@$@$@$@$@$@$@$@EFΐοχ£ƒƒƒX\\D xΛf³‘·7δ‘b?‹ΧY³SW‡ηΤ|x•H€H€„€½ω{›!―ŽF@JύΊQ›2;·ˆO?<†]~>βΡψ<†ξ±λψsρΌ©?ŸGlΣy$Pκφ+]ύ3ο³gÞeΞƒ1I wιξΟRΏž9‘gΓΎp½”ωˆ`Μβ'Pκφ)]ύ‹½*^yύ­ΏΝ¦’[[‘χχΤ78 “-ΞNžηI         (&ΫΫΫ¨­­U?‡ƒ†UlhhPΕΝπ‹zem§§§†qKωdYe *:JΉ EUwvΤϊl£±¨κ•2]ύCh±Α-<_·"]*^' g‡ΐεr$-39w\99IπδάΪڊξξn”••Iό¬Ή=ηRά¬t]Ye΅œ;K¨‹»ͺ₯*pξA³ˆ΄‚Ϋ˜_™  €ž€β«₯ηDNŊœρNηπ1v7ΚJϊϊϊΣ }sΉG ¬Ξ‡­΅ 6TΕ][_žΑοώσ|ν’Έ9 ‹œΐy±_Ιμo‘γgυHΰ\ }9Χέ›΄q\/%EΓ %H€ίb;ηX<"         ΌΨέέU…ΝυυυP>ŠΰyooO4wuu‘­­M-Γ» εsC…œ/œλ&²q₯*pihDΝΙΌ››˜Yπΐ_Hh,‹H€J€ΐ–«\jY¦Š™5‘³&ήY›ΐς#E \ΊΧsρΰ\έ—s|˜œžΑΧwa|vSς™œšΓΓ‡_β³G.Έ9qζ̘–ΐy²_Fφ·°4Y €žν‹žΖ³΅Ου³Υί罡όώΫΓ…8WΖΟ#         xφlll  Βιt’ΉΉΥΥΥ*»έzk^[wcwοP«œ*ή(žu³οbφα³Nν' Τ֟*"g¨"g{σ κ[O‘ˆ›΅σΪVρθ\ŠΧS·žW5Ϋ[ΫΨΦΈ%$0ψΡΉ³_zϋ«ν—`Χ°Κ$Pςh_JΎ -kΧK–‘dFgH@[S”κχ»tυ?C΄i‹xευ·ώ6m,]„­­-υ¨ΎΑ‘;έ]œŠpH€H€H€H€H€H€H€H€H€J„€"pV<7744 ΆΆV9cye ΐ~‰΄"·j–•W Βѝ[&L!Pͺœ# ΰ  @J!OΗehι9‰7k‰JύΊΦnI€Ξ/ήλΗη~iφ—ιΟοΨeˊŸνKρχkH$m}ρ¬+΄η²ΏϊλΏ9Ν¦«ζζζΤθέ½†Ι>ϋψΓσ c          <3(p.Ίn·΅’£ΊͺΗ’Σcμnc&Θ[=―Ύϊ6ή½Ώg?ΩWpε‘${• Υζ»yΫΦτi±yL‘{=†μvΨ*+T¦Α£=LξωRΔ7ΊTζͺ υBπ$€½c£8<—1¦Aόδ;£pHΟό8>ψf1〦#ΪΡVε~Ϊή3KΙ%l»τ~όF°s­{e=vηΏΖ?|φ4z.O{…Άg±ΝHίζj_²m_εΕΆG– ]²η™dV¬vΎ©?~suε'π-<Ζ/οYΈ²χβ‡ίΉ’Ξo»+OπOŸΟž zs…Z±>K_²΅v7σŠ"{M#ΊͺeνZ^†ω.pp„on?Σwx>bp~ΘΥΒζi4?θμ§OμηΏδb?σiη K*Ii…±ΧΡΒΝ—gΖ~f»ž·’žΡ<Έg)ΪkKqžef8Ÿ%}–M$@$@$@$@$@$@$@$@$@ΕF€η’ι‘v»7›ΊΠ](ΎXΗύiLZ_έjS+‘¦yω‘¦ίο@S†UŸΫψΏΩήVcΫνψӎξ4)χρ`υ|«‹VΣ 9.βfK'βrxνΠ‹ί»cς ξ‚αa#ήμΎ†α&ΰp,MΓm—'3"PU G³-Ήb³6£$9EjΑό£›jy؜Αϋl δ·wβΦ₯6Tα[9ςf_ΑLμ|φΉZ“’JD±-κT·m·&O-—ΊZ΄uhσ©ΙU\ζ#­ΚΚ֚υ™>Gγ}kνn~η₯φΪάt\ΐp]½Aƒ‚x"kΧΟvw ρT^ p~Θ+^ΓΜ 1?Xa?΅ΚηΣΞkeœΡΆPφZkžΩςΜΨO3λω\λ©₯η6Oh―σΆπٚ\ΥΎ’,‘H€H€H€H€H€H€H€H€H€H NO P‹HG ί1‚ο΄΄'Φ`λΐ›8\šΔ|Xf/DέΑι|ΌšΝ,!]{=cq³’ψθδ$’GsU&βΧD“DŽ΅]Γ+ ‘γ˜ͺΌΦ:―k6­PωFΗPTά,™Δ[΄?&3dM@„ϊΪX‹ŽΎ¬sΙ8ΑΝKύ!q³€XX\3τRή=0ˆ7nτ©y>=τδ]ΰ\¨ς\λ ψδΛ @Ή―jZρ֍ŒΉ™xΆφ,TλLξ[³φΕlϋΜ–gΆ˜.KEh—²lAιDoκΖΧ†pm΄uq΅.Gθm q§ΣfbηΣf’·ΡVUUXόp‰γΆPσ‘†Χͺυ™–_ͺ­•v7ŸσŠ†Ζ‹x―΅3EsͺQkυψIQ/ιXpŸιrK»[άφ,mυs‹PΘωΑ~Ν£ΟhN© i―•Šš-όύ4»žΟ₯ž9ugFΐϋ:}‘Ο΄½N'§8焏‰I€H€H€H€H€H€H€H€H€Hΰœ η³οP›/ιΔΝ[~ξn­Α# ΠΞz'^nι€M©eU+1φn|φΟ¬ξ/Ύυa$ι999FSsz΄¬φ]x€σLηˆœƒXΨvc[τψ ωœμc.Ξσp˘NάΔΜζnm‘U^Yϊfsk¨4{Ϊ—αή j₯'l‡$ŸφXωΥξΡ>φbςDΡhΊˆK£Š―h%¬bό«ΕΠnό_°ώΨ@0=ηγB•ηvα+ΝέΈ8½$玜+Ÿ"ƒ"°g™ή·¦μKν3U^ ΤΌTΒ2΅K%άΔδUoΑ~M\Žσ*Ÿ<~WŠ§ ӏ§‘8Ξί[Υ rν*T”BΝG«Φg™’±Κξζu^QSΧ‡Ϋ:qs@ΦΞS;n¬’Ί’ν΅-ΈΦX‡­`θ '™ΆŸρJ@±Ϋ³Ό"-αω‘ΨνΌ‰~+΄½6]žϋ™Γzήt=Mτ“9gΪ^ηΏo(pΞ?c–@$@$@$@$@$@$@$@$@$@%CΰTΞe%SΫσYΡKφVh:Ÿώem)Πί4lΥυxΉ>Vd‰P ;ψJ>Ζ‘ο*N–U‡ABΟa3±ΝΥZ»χ0·1™Θ΅;Us4G"L{γӝΠλΌ7χvπ’œUΑ8ͺQ'’ΐXΰάήp·•|Γ:‡’;AϊoŽΐΝtΗnƒΝΫ{HŠBύ`uυr/ΊΒ₯ŒΟc"RƒΨ]ΐλδ$N1Υ’£B—§VΊ*αρKΪ’Οδ¬νYζχ­9ϋbΎ}ζΚΣ³εΎΕJΐ.YάββΙNsα}Μ>žΒΜ~3ήΉyΤ)λzfjη³ΞΨͺ{kψνgkVε–a>2οΚC-y7$Ά`σ‘Eλ³ H4kμnΎηΘ ιvsOxm ΈwζπΗ₯kζ6ζχΦρΥF΅ξwσJ€σC^ρ¦ΜΌζƒώOYgεβ™Ψω΄΅2‘ΠφΪtyζμ§ιυΌιzšο ¦LCΐΰ~-Ά3€i/'!P¨~LRγξ°‘Ήͺ>\‡ wΧκ8–χlžΣp½½έaρπΞxšΥk‡+κΰΠ΄ϋ:αsjC mϋhΖΞή\Dά¬ H:D@’šΓ'Sχ‹W§7ΪΒ― ?Ϊ„λȎξ%›ΑX:ΎΞΌ}­ U"”=.—Χ‹¨ϋ?σžψˆV·β_Εε.G8·}¬/»pο[7:Gœh!λ–k Ώy/¨κΖχΎ? ‡ΤΟο~‚_Nί}y]p„Tίπmcnϊ ~ύΠ₯ζέζμΗ₯ήN\hkF[ƒuαxμbΕλΕβάSόn2‰GΚφ~όα #ΈμΤ<(+υ\Β½Η{H-!nΑ­WG1ہŽE„ ώ/Φά^ΜΟΞαξΌW;bΫ‹ΛW4ΕL>žΧΕ΅α₯Χob¨‘Aι³Zy%ΆΊF^ΐOz" TΘ―k«“π»™x™˜ΤσυΛλοA‹pρ‰~[αθ]YΐΔψ8ξΜλγηV^Nύ 5ΜΔ6»q}Ζφ,›ϋΦ”}Ι‘}¦Κ3Ρag™„vΙ»”؁WoάΔΥΎ.8Ϋ΄΅‚ΜDŠ-\qcrς &άbxbB6vIIΨ‰οΎsI(’yaε)ξoΧγΦ•> vDη—ει)|ϊΫ „f…Pšο}’:—ΦπkΉ¦·vZuΪ†―㿌„8Ϊ\˜ΐ―)sΕ~/ά+ψζΫG˜έΪΖniILl“Ψωφ‹ψα NΤΚsΎ…I|”0ΖeοΕ{oŠ$V™Ÿβ—ίD½ύ\}Ο]t’/¦εόŠŽr-Ιό`μθ¨W―Ώ€—{’ί=><ž|,σώϋC4±;ŸΫzήόχ£b·ΧfηsφΣόzήl=££¦φh―Ήž¦ΪzώίΎœ»’ίC œσΛ—Ή“         @i8=-­ϊž»ΪγθDܞ„χυ¬GMϋηIμ,―“½ρL½o·’)…€½¦V„F‘°ux€`… ]UU8:ή‡ϋ0™Θ£έ^AΜ‹hZ ΧΫ‡Β’°ŠD.Ψ+ρlœ,«’ οŠ0·IMθΓο½nτw…=B‹'Δ$Κάϊ¦V\t^Њv‚ΠόOGOζΎΧθΓΏw-1YΥ’Γ9„wε£ί‰;Qΰάn‡³χ‚šΦ+Bο?»Τ§&X't4wΰωkϋ˜σ‚Δ|εφ+‹£F΅Υ£Λ©|ϊpΑρώιN쏍"²ϊγwŒκ9,υΤji°‘ΩO~ό Κ¬khΑ |:+v2ϊαqδ₯Aτ…‹πNΟγι’‘"b0ͺŠ£Mίшκήρ’¨ΑυAκωγw_ΓΕ¨³πˆHΌ₯«oΘ§ύ›OρΑ=m ζRžω~ΠWΩΜ~vγϊ νY–χ­9ϋbΎ}ζΚ3Σcg“†vΙ*»€λ?±1ψ›Έά}ΘC»±…5ϋ˜ψXg›²ΆK’c{ϊ/„lž<μrY+$²­…S„Κn―ΖχΛϋ‘³νϊT;]ƒΡ‰ |eπœΛP/ϊΊB3ωΎœCaΏωπ£HξΚNtVŽ9ΡAr;_‰N™“[ξ?r§8· ‰―ΜΫήƒεpΩ-Έύύ—ρboόŒΤ‰XχϊΛmpΆΦγŸ“(πn½Π‹ΑήΔΎSζf$8ηtI;F_ğ†«Ωυ_.σQ$cd7?X°>‹Ρ^Ξv· σJ#Fκ΅Ηςv1Ή‘¬ͺΡ.kΰJy/υš7# g)§qΝu«qq~0ζw6ωόQ;FŸΗ»ρ§ε;εε― £Ήό±v>‡υΌτy.ߏŠΫ^›ΜΪO³λy³υŒXΕ{L{Νυ|κυ<ΞΕ{χ²f$@$@$@$@$@$@$@$@$@$pή Πƒσχp;ǚΐΉ#ŽA¬f±’Φͺ/uh’\9α_ΒCyΥψω6Όή}χͺo“qŽͺ«l‘Χu7ΥΰOε£…ύ <φ-ΰ‘?ŽG­šRκΠ‡ε°Gθώ¦Λx1"¦ΦrQ4Θz—ΡΚωzΌή1φ*ΔγυG˜,λΓ -Ip?ΉGζ7J¬kι,ΫΆγ­Χu’α€χ'ζ±]ތ«7†bDΟΗΗ'‰₯ c­N-ΞΘυυΕ¬ˆ ΫΦΠ„žή6CaΆΣƒ%χ&Ά|»β}YΔ7έ=β™9$ϊκ»φš<Ϋυ|Ξߏ²YΟΪ^›-Ο΄ύ4Ήž7[Οh·ων5ΧσιΦσ…Βτΰ\Xή,H€H€H€H€H€H€H€H€H€Š›Ξgή?“;k诏@U€ΝΦ…χXυΒ^ηˆϋ+ψνΪφΞΌΆΦT ΛΡ‡Ρšp^‡n|λ ‰‰τΉ7‰ΐ9Yh¨mΕΛςqΈΰ³έ¨π΄K„_š(dλ`WŠΫν}x΅9$ΠΪΩ[ΐγγ&ΌάΨ¨f]^+”½ή>ŒΡ°ΓΕ₯Ν§ψ\€w9’B덣ύΜϋ@S'k„‰σmcύΥpαW?ϋΒƒβ«΅=όΟΟΞι ρΰσΏΒοηu^¬Ε{υΞr„œ{±89 οΆ ΏŸŽsΟωπ^}οͺ·ZτŠghΜ‡Όϊtυβ’Φ};Kψ·ό !ߝOqΗ½‡υΞΥ€"gG½–pw>ό0,ŽΆγρŠΩ[“ώNθ»>©ƒo~Aʍζ‘νMά»Πx©BΞ!Ψή₯Ηψυ„މ–@Ϋ^ΐ°SσΜιݏ‹ίiβξ{ΣΨωώwΔγ§"μ«ΕπΘ%iCΘΓͺις`΄κZΊM3Οž™ΉoΝΨ…£Ωφ™-ΟΎΛSf΄K€•vIι¦ξ±a\‰ˆ›½Έσ›;ψέL¬MΌzWμΊ€]Š+Oξβο? ~8­ΫίΓ[ΓΚZ‹φvqYΆuskxMμΏς˜K_Ο΄}γŠy¨{¬+κAf%bkγΛΛε8΅wΓνυɜ)5”OG;°`0hε·7i“«λ^ΐy7ϋCρˆOηΈ>˜Β½Ε«ς–‚«κƒE}Ο aDΞajj– qZmΏˆ68‡€rZ‰±[«ξ£ŒϋΟμό[νΨ#έpŒ½ k©Χgρωerœ‹έ-ΤΌ2d³Gζk°uβ9m €k`S]'nΧ‰ ZΤΜ±ξB μZ5£M}ΆΧ­ ΞΡѐj/υό`œ;'žšΥ FΊύoβž =ΜrqΈέ"pΦ?Κ’­Wζ3ί«”ϊXυύ(Τ8ω[DφΪμό‹ύ4³ž7[Οσ"ί‘½ζz>έzΎΠC8φ?u….ε‘          S œΟΎ?ΆΕΣpT€+ΎqA7k"<ή_ΡΌ:Ÿ}us―A+·h―γfΔ{σRB¦64W+/ŠχciwEΠsψrcOφb^£-NτθΆΥD•![ŠD· ou„=E‹ϊ³υ%Ψͺ4aͺόΆ«σf5Τ<ρςΌ΅3‡Ά6՜[tBλ`ramP——š°²V{ιmoŠ΄φιΔTDά¬ž\žΐƒi_δz&;γΏ‹7+‰άσψέ½Yh€|s?QάΞόΡCρZή―¬ŒΆΆS_Ο©©XaΫό#<˜I^ΟγmΰKΖΊέp1Ψ^]Δ£y­TνlόΆW‡ϋΒ'ε•οΓb…ψhΊγϊςθOhεεšϊ^A·;ΦΧh{§g’βf5NΏ½χZ [D¨ΥD—²)OIg¦τε™έΟz\؞™»oΝΩ•‘©φεPž™Ž³ΫΠ&ŸΖŒ>ΟL!Ρ4΄K°Ψ.5βςŁΰΩ{ΔΝΚΕΩGwρΑθ«’­°Kΐ:ήΥΛt―žDμ™Cq‡¬…Υe,xΒmνˆ8ΜŸκο‰(΄±Έ΄¦₯²p›ήΞ»7Δ…³hmSDΪš.βΟώτΗψ_ρcόδVoθœΘ”[›ΓbζVE}σbWΔ£σςƒρ„>ΨVζ²im.κFοpc8/ƒMUt~1Έͺž²ζ>Κ’tΙv>’f3?δ²>ΣΚΛnkήξn^©F[΅b€•7ΉhasΎ9|ΊώvBλΠΠ•fŒ9’χ”;λ-η‡_·r~ΘlΜ§Ÿσ‘·½<ˆύΎ0ρΥžΒ1›[Ρ-Κ$ Ψy%­Ωυ|ߏŠΩ^››r΄Ÿ&Φσζκ™tΔ€Ώ@{M{mς ωZΟ§΄ΦƈώwΙΪ|™          @)8=-ΕZŸŸ:ΫΊρCρΊω½τΨΧΑ>Κ+λq‘:όΞκΊ~|―ymnœ‹v_js"δ KšXΖΧ;zq·ΦΔξ‹wζ‰Γ]θεΨ^ΖTύΎΫήςxWΡ€n{5–φqH=š«Q΄όp*p«k‘—ΒοβkΟ”xtq΅-ΜU$Όnρς¬„φϊAάnΟ”JoΩΏσhώΉ$OUh­^ΐVΠ¨j*x&ΏΒY›A΅ΈΔ VΙΟ1‡o–‘XΉόmDs£Φ>`-' ΖΦάBk8,JWT` O&5sκȍςšζλ#N8Ϋ¨―©eψ±ͺ=Wυ&–_ΟD—™5©ηPbΚP-$5ΤγΦ~€Φ'‹˜smΐγέ„kKS„£$Ω(¨.‡»ΣΏ²˜ΰ:I²ŒOΫλ’BzΟ†Α}ιvcEšθPꐁηΠL Ξ2Ν5uΌ¬Ζuν™ωϋ֌}N¦Ϋg²ΌΤ]c|UΔ›ωί^Lι)6!αΞήΗ;1^ β$=ΏΣ.%C•Ή]ͺDΌΡ!Φ13™ΘT»ͺίZb—vό،ŽGζΧƒpAώ€^ˆΉ§K.\oSftzϋzρ{yE φAτ«^μεHζšΩιΜζšPβΜώfΒsΦνqv:O5«f/Ί­p6„tr\h—Η α‘ωΏ%x7Œϋ<ηώ‰«lφύ—A‡™λΫ³οΫμνKnνΛΎ<“&Wh&+γrς6―Ώίi—’Λx³±KUςSΈχ6ύπM„k…]ςmν€ΊΧTk U`vf λ7ΊUA½ΣΩ)/-ͺιϋ:žU±ΎΈ‚¨ŸiƒŠ›:•!ΟεMxE‹ζMZ—#δaΉ[ΌκG‚xuξ΅‹€DήιŸτl(ohGS“ΆVQ.Τ££-!ι&ΛΙ.&kξ£lϋ/¦ &2›LΟLΦIK–΅έ-τΌR#kLέ°YπΞEΕΝαF¬μ‹ œ΅v™ήr~ˆEW’λVΞ±ht”αόŸtχ Ζ—zόeehj‘ya97³Ωυ|ξߏdΛθ{j‘ν΅ΙςLΫO³λy“υLH™‘½ŽεD{Γ#έ²]fΊž©DbΏu @A$@$@$@$@$@$@$@$@$@$PΔ(p>³ΞjΉρdOΖΏq³^Η4³΅€ u­UΥjh·Υcr7Ήα3kHΖWγ–΅΅άoν¬ΰ“ΏOŽKo‹ͺPDW5c8μθnΥχŸ†½DΥΪCžŸ%Š[ΞβdWλ;Ρ€εVV‰‘φK- Ÿ(«Šz(hΕ΅ŽKΈ|ͺx\Π‰ ΅Δ₯΅υnω{˜ξΏ#nφ{VρΤεΖv@~V+—OM+ήx/ΤπςrυP>gV'πwΏΨΗ{Ο_Δ€³šΟj5›£Χn’§Ή?ύπ‘‘ΘΉqθ’x —θ™Ζƒ“ƒ,£Jγ0ΙCΗIΞg”m|€œϋ!>Cλ mΟςyίΩ—|ΆΟ¨<Σ=$ήΓΏ}0‰:£ΫΡ0Σrœ½P$Εh—€δαZm’4Υ)ζνρ‘Αܚͺ[KX^CG—<|Σ܁A'ΰZΆa G“ οcq6ςζŒνό&άή}©—Τ―©ƒ"\ξlΧΏ= z1yπjnΕcΆ\±i―|χabs%«τΡΘΥpTjωμc+„h?tκ΄ >ρzΒImΈP«yn Β½―HϊκΡ* "A„ΡC)ή~Α.΅7π8’ ;G8T2•΅©υYbI™Ν‰ιΟΩέBΟ+q΅:>„?ξ”rh―L±(5ˆŸϊη”ϊΊ•σCκ!.ίΜ~p΄4¨»βJπο)k*Yλcy%‡σzήτχ£,*]h{mEyΫΟΦσVΤ3‹nPΦ\Ο—ψΞ£½Φ"Οj,›¬ϋ€ωL˜’H€H€H€H€H€H€H€H€H€Hΰœ8==' )½f4ViΒZ?6Œ<5’΅Jςα?RΔ6₯Έ.ή΅ΰΪra2"‚ΥΞfΆ΅Ϋ»uBι šθWT€:m³#έψ|m!*―λ@―¦)?τΑ΅§Θl+°Έ‹-Ή Žγo…Σr΄Φκό‹ΠrCΝwUΟΟρ΅mΊŽ?z±•GJΓ€&ϋ+ψχ_ήEόερι2?ήΖΖΆόΘή‘όΘξ@χ…vΦΊc’wΆ6ΖηzΥΤ{1υXΗ†ξφq³ςƒμΊx‡Ύ¦x^{η=ΌΪ―δ[ »x45Zl.ΞaŒ)žD•°9‡‡Š(!³Τy.u8\ς΄Ης#· φΔΈvš5-}@<…Ηv“š4›ςΜυƒVCέΦ„bi”Τδ€ς₯&ΧŊΩΝl\ΧΒ*{60ro ιΖG`["p^ˆ©Υ±eχmLΆr`l_¬k_fεΕΗ*ζcΪ₯|Ϊ%ΨzpqΈ³Σ±6ΤhDXa—ŒςMwnAξΟ•—ϋΠ%»::ράυΚΘΌ°ΌΌfαI–v~Ωγ“„"pΛ7±šYΜ'jYύ)ό}€―^6σ‘>]fσƒ€0΅>Σ—ΪΟl~HLΖΨΞz^‰«•¬AuNΓΓλ1`WfμPπΚ›GJ+~\›[/•ζΊ•σƒΑݐεό“CCšeIΝδ»x‹v`ΫΐΛzLi̍O£L³ό~$Y­½Άb~ΘΨ~氞·’žF]Y4ηh―ΉžOΏžWώλQΘ ·           „ Πƒσ™ …έC͏mΊκ45d΄:ύM]ˆ8nΫ‡o_‹S*{Γ-=θΣΤΗ‡λxΈ©Έ§4 ΥjθD7.нowtGΞΊ}«Q‘τΑ>Ά5±3‚χNa>³ίmqŠ_―PXυ{±€ξpgνώeω~ξŠϋ¬ŒγqDSΎž{ψως7ψΐ½MGςί•6:δ5χ-ΝωΘΆΎ*κ-W/—έ΅¨Θνβε‹ΡgΦt—F΅αυ¬Ψ―F]Β/ZέΈyeΐ0σ­ν¨:`` ?.N/F“»ioΝΙz|q‚ζΈœ_»ά M’ώtz6+aΗ³ƒυp~ιΗTanu#rΩy±?ΆδΚΨX―*φS#mν ή°r>›ςΤ|Τ?ΩυC4]xOήΩέGfη£,Φ=¦Φgz:‘ύΜζ³v·ΠσŠ΄I/˜«‘5dάΪw¨₯ΓΪsŽςΠΥόvt ˜H§8ϜݸΞn½T:λVΞ©FzΆσCl^ΉύŽ©^ΔEνKI`>wlŠΨ£τv>?»ρ©€Λεϋ‘’>γο©΅ΧR1³ε™²ŸfΧσ9ΤS_"φšλω\ΧσVuzpΆš(σ#         R&@σ™υή–κ‘9€\θqκνΣLμmα¨άŽΑ†n<Χς(¨TΠ½½ςžYM\Σ…1G΄-Σ[ΛXIš• mΡ'\;^¬ˆgλν#Q-—Χ’ΣΦ‚+ :!ΈxhΎοΥϋŸ=Τ !«1θΈΟ± ;卸ή"yjbqIχ­7*PMZ•Š4†Λ――:ρt’Ίί΅΅‰ήψ΄+ζΆGK˜}nƒŠR»‘?ϊγJ|>>­ς&<c,*ͺ5—}bͺH›κqλυ7qψυ$Ομ’i¨/<ΌŒΣΔ$Κ™Ω)ιγΊΥϊΤ9Ηπ—oŸΰ“/a«‘oέz%TΓ€-xωνοΰrƒO»°ΈΊw[ΌΧ㒈 n=§xαT‚ξυ8•Aϋ%Œφ‡…Ɂ%<|w=”0ω_ρΰ¬9―뽊?»]‰Η-‹»΅ œ`ki aέφφτžάΑ¨~[7~τγWρρΧγx°άΌz o_Σκ <ž[„‘$)‹ς€ψpΘ΄TΡ­WΌ€‹Qψ"•ΐ;οΎ‰¦ι5yιΆ΄±βžΉ)LIbB€μθΩΔqDήμYΆΏl¦ΌoΝΪ³ν3[^”u)μΡ.iχ»uviβΡ<‹q* y?ωΣZάy0Ι%έΦ5’ΧٍK/Œΐ1fBΆΞ»drΐM-¬γΥήΈCΦΧ1ΥiΗεά‰7^οΛ~"vχU ­‘λ}—ρέζ#±JŠν ΰΙύG˜Υž™1cηχ6α‘§Wœ‘—HΘVCΜ\ž]τE꽏 ݚbαΡ4ΖGpEYvΘ|ϋ“Ώ¨ΕΧχžbzΑƒ`]=šMθν–Ρ†/ΐ!žζw€΄V4΅c¬E[@㨦Ϊ $Z“ώCMHΝztΰΓΤς6 ~iuUΆΩΜGϊtΝjΦΟ΄:Ξy°»y™W€ς`•θω›ΤΑшΧ:GPΎΉ‚…£ Œ8zpCχ=`Ι»’{hOPόΫ‚λȘΜn½TJλVΞΞq·Πΰ—πCάΗ'ίΜ£iXή(rϋRδΑΙ•Ωε°‡p"vήόz>‡οGZ#χ†vΒΘkΌrΝβοΣZq†φ:‡ςLΩO³λωκ©΅ΏΆ΄Χ\ΟgΏžΟοΐNj6ς[,s'         (J8ŸY·Lo­`¨±!_QβqyX>‰Υ ψ—qgCσ-›x½ΈΟTγρD­I—ώ%άέMα§ΖŽF΅A΅θ‘ww-‚ψt}*μ…Y#°‹©7†ZB-m΅Έέέ©] m½ψt%>]l”ΘQU-"Ε‹w© Mύ‰p;.όϊ‹ όχ·Η JΖ›»ρκqήΖΒՊs:+"οl~(Ί;9+βZΥ…IΌρΆςΙ έβΡσλ{]ψэ5rΗΠUό‰|2Œ^V>c†Iό‹ Έ§_Ύ)^“5Υ Ss˜5L™β€Τyzf]C!1ΎsψδMΧ‘πτK?"’i7ΎΈ;…žΫ#!αC[ήyO>‘Ψ‘ςΎœπƝ fQžι~0(ωΞ£§λ>ΔJΖΟ‹/GΗΟΣγ-8ǁ5ΘΓθTΡΨ³TχmφΕTϋr(ψqρž£]RϊΖR»΄7_Ά ?q•j‘.ΰΦς‰Ύ˜c“v)ƒy!έΌα™\ΓμC1^Žg].θAŠ©j{.] ΅-ζ‚xYvDl9δρ–Ν©¨ΐٜί–e€&a7œς‰₯°πzyUμsDΰΌ χš~}βΕ‡ΏΏ‹ζά =KUx>μnžζe|Oψ\ΥήLRӎW.Θ'};sψΘ{·ΗE)βC“γZkQγ[‹ͺlM―—JiέΚω!άεΜ γ«£7^Q?ϊq…%|ύyτ½@Κ53vήτψŒT&ϋοG‘€οΠ^«u2[ž9ϋij=ŸS=3_i―•Nΰz>‹υ|žG­8jg           ΣΣS’8+ΗψΥ$žψΕ£ͺQ8ήΕ΄χ ή_›‡9Ι‘Q¦>WΥ gζΕЏIί4GŒ†59 b7hx%tR˜Μωfρ–'1-ŽγÊo _ο‹@6ό.|΄τΣ •›+ͺ#η­ όˆ_XάqP< Ζ„#WY1ΜlΟ<Δύπ.žŠηI}πΜΰσ{sπ‡Oz6 όKΕY ŽN2¨Ÿ{ ?ψ>vΒ‰τ›ΐ:Ύώβ!Βz°ψό¦Ύω ϊ͌ψZŽ>Œ?˜Šxρ>κΉ°±μ‚Χ¨<5›]<Ώϊχ‰ΨLΕϊ•aMήΌŠρ―\±Χ3<ϊκ7ΏΗ'ί.`}gώp»΄€G±Η3}?UΨ$³γrύΓ‡Ι~’qΖεεΠZύ#ΫΥIόέ/ΎΖ“•Δž‰o£’&γqm•=‹–YήG)οΫ\μ‹™φεR^€ΓJc‡vΙz»δ™Ύύσ/1Ύœx―ͺ£"ΰΕΒj¬ΛuSvΙ$~’Γ!ώώSOŸD獀χγ"ζ§υsx0?³¦εšΈ•ΉH›«/κΟμγP›λs°σ.έ|Έ²ζ)q(,,n ςψΨΊkρ ”Υ)όύϋ‰»3I₯Ϊπ‰{θ‡βuWWνΰ~f­S“μ‘-{LέG–τ_󑾝Y¬{,YŸΕO£ρ˜»›·yEXnξΝαƒυΈc—aΚ~Μl>ΑΟ=ڈΥΑ/‘]SγZkΧ­‰˜-η‡σƒŒ/mώ[Ÿ™2œo}ςύκ_ρY¬χf)έ”7½ž7ωύH7j2^ΟKš‚ΩλpύΜ–gΚ~šYΟηXO]7ύ.ν5ΧσY­ησ<’Λώκ―&«VΟΝΝ©Uκμξ5¬Ϊg`xž'I€H€H€H€H€H€H€H€H€H T\ΉrE­κτΜ\©TΩ²z–Ϋ[QΥyΩ²όžεŒz±¬61τRω¬PΨkθqUe‘d‡Η¬ψ·S‹³*!yδ›·Ώ‡·q¨xˆ{οD„?ΙS䊽ͺmΥΥ¨-«@Ή099=ΖήΡ>–φcE½Ιjb―iF_ •JΪ“#μξ`~_ϋ ;Yͺ;ίΨԈj₯Ϊ‡β‘R„Ymc·π?^Pςδ‹ΐ¬“Ζχ υ£΅Fργy‚}εOΜg˜·½W{€žβ‚ηψ0ΟΚ"\ρ"2΅Ζ±ΪΪΫΡξ¨CUU%oΤΗ»p‰`ΞHfvυυοβέΛmj+γ_ΰογΌ¬Εζlύ‘ΚΖ&lTρΥ6V汫;΄¬PΣύ`Y gt–φ,}ν€άνKvφ:Χς2iS1Ε‘] υ†•v©±½mυͺ-„2§νξ`jY/(N…΄K‰₯[ΖJž¦jΧ$sYgh.“……<όαΗ¦w <ΩϊBήG¦x˜LT¨υY‘νnξεU£Ηވ†reΕsŠΓγωΰ+Θχ“]i*Y!Η΅ιυR‰­[9?VΞέΞ^΄5V«σmPΎ‹?ΚτϋN–w„Ωρ™Νχ£,«”½PφZ+Ψ|yζμ§Ωο+ζλ©΅΄4Ά΄Χ‘~²Ύ”Ί½Ά·λ†σ5’Σ½A&_ε2_          b$pο­+yώλ΄wΰΓ΄|BφD°»§ym4eο`ς9ŸΑ†Ά¦<"ͺΪή{iΆαΪΐ…H“Ž4_Ν‘S9ν,̈hΧL{n<šΜP ­ΛίγvΓ“Q²^\ ‹›/ΖΖΎBZ—eήvM³1Q£B–e’zj’b·gΉΫ—μμuε™ν‡Β¦£]Šεm­]Ϊv―α|² ₯`+2o΅<3/WsKζ2ωδ7œΝ}”ί6Εζ^¨υY‘νnξ屴gτW,Ώ<:›qmΪ–ΨΊ•σƒ΅σƒkYΔ =³œΧΫΝμψΜόϋQξΥ/”½ΦjjΎ‰Α‡;ί<‚+ρΒΉ=γZ~–Z{n»‘ +e΄K ½g•]κΈx‚Ξαc¬MW`ύiΘώλ +υλϊΆ€Ϊ·Šgͺ2Ξόο£3οV 8 ZeΟJέώ§«Έ$'¬β™${ž&g‡νuB_›΅/ιμ[©_O•‡―ΌώΦίf“οΦ–ΌγLB}ƒΓ0Ωβμ”αyž$         R!ΠήήVΥ»ϊh©ΤΫ’zVT‘’ρ‚%Y=λ™8°£"ΨFcI‘θA³xώ ncr| Ύ’ͺύ³WΩ²:;ΆjΤ6ΨPΧόυεόξ??ΑΧ£Έ+<$ ό ]²†­"vΠ{jΦΔ»ehι9‘BΚJϊϊϊΣ k@Σ\xΣŽ}Ζ›ΕqmΝΰό` GζB$œνur6Ω\9oλwνϋGu±n86ΩΔ₯ηlh1.          œwτΰ|ή{8mϋ66Φ1[΅‡“€ώ΄±α¬ lΟOβgςQBcS#κkk όψs΄ο†λ|FCΑ?$@gJ€vΙόЧf%(žš5q„ζΉY;.ελjγψ')ήGIΡπB ΰΈΆ¦σ8?XΓ‘Ή $'@{œM6Wτo^9λwmώΩ+°' œ³uŒK$@$@$@$@$@$@$@$@$@ηΐιιyo!Ϋ—†ΐμΓ»˜}˜&/%ν­mleΝX) g•ν’ωžWΔ̊ˆΐή|‚ϊΦShβf%GEτ¬„RΏ6‚ΰ}”#” ŽkσΖωΑ<;¦$ȞνuφΜ΄ηqύ|˜ωZkaaΆ―ΌώΦίfSΤΦVθqϊcWΣ‹³SΩdΗΈ$@$@$@$@$@$@$@$@$@$PtΪΫΫΥ:y7Ÿ=χ§eε¨pt]Ÿ”b…ΨQ«½ΖR¬>λL$@$@$p†φ6Λ€τ2΄τœΔˆ›΅*•ϊu­ά’  dG ΤνΊϊgGƒ±I€H x „μ]΄~ιμ_©\?e‹H€H€H€H€H€H€H€H€H€Hΐ<Σ¬^ϊgΎ¦$          $(pN†§I€H€H€H€H€H€H€H€H€Hΰ™$@ΞΟd·³Ρ$@$@$@$@$@$@$@$@$@$PL(p.¦ή`]H€H€H€H€H€H€H€H€H€H Pδ\ ½ΐ:         ΐ3K€ηgΆλΩp         HBΰτ4Ιž&          ό ΐ9ŒY          ”Szp.©ώbeI€H€H€H€H€H€H€H€H€HΰΌ¨‚Ηφ*ͺ3Μgσ03}ΪclcΔS{”iπh“{ΎΨ(Ί£άΛΣefυ½?όΞ΄UΎ•'ψ—Οg­.αlσΣ΅oWΪχOη­}gK·ΔJΟξΎΝ½qΉ•±'bŽSΩ£PMΫm­θ¨Qνm2ϋRφZώφή΄Ή#Νχύ‹ ˆ  Ap_΅Q–,[ΆΌθΈΫn{zz¦oΟιθ™˜˜Έq"ζœWηΝywΏΘΉ'nΜτttLίξρτtνλρή²¬ΥI‘β&ξ A€ ¨ϋjPΨ ιΙUY•™Oώ²κ©„ψΟ§œMf΄44 !ε?°έΒJB΅3ί–­Ε―‰ζ’ gpLΎχό|(Ά 2G©yζ¨ετd³<=cqš,)ΕΆ ΰ§oΑΪpŒΠς4~·Ώ8O Ϊ›SΖď£8Θε'Κ2ΧθσΛιc7ΚEΏ6ΞeL |,p.Ÿ!Χΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜xΎ°ΐωŒ§ \ΓΈθtΑ’i+ŒGEά οe©ΘΎ‰DvB²Ά4 *DhιΑzΡV€΅‹;ίγΣ=±―6Ϋ ~αι)P2†ϋ·q[G8μΑWZ3jΈžΰk4fΣ”Ϋ^zmUΨ³šΡιqΒEU7ξVe΄rmλΒ΅‰N4γΑ΅E<άΠž»tqGN²ΕYΘgΥ€@©χmΉ&iΟKχƒ·ΕŠΆfΪIψΦ*κXΘ”Ύ]»‹‡ΎEΆΡmσαJ›=¦μ%WHlwogs‚»ήΦ~ŒΫΪΠo±ΛΥ€}οDΦpgs+iΉκŽ‘ώ±σΤϋOIi['ι—Ψο–6V…Ξ$Οζ&8Ϋεη±ΉPΛ%7rί–άHͺ€ω§ΡyΡrd§1bΒΛξqŒΩΩsλTίGα―ΰ¦ώπlf8»1jΥσΏq<¦ΉδWα°¦΄žš§v“ύΰ©š5¬?ΨL’_+υΖΊg;Q³«ΫΈoυ\Δ¨ψσHlαΓ•Ήœ>ƈ-FŸ\NŸΆQ.ϊ΅q.`•" |ΰΔ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`L@%πμ™ΊΝ['@ΐ‚WΊ.βU=q³` E;ネΧmYη Ωͺ†•:ͺPΪjά-Ά’ΕΝBΉ£γc₯x{s1’‘cͺE”²η:/β†ŽΈ9uB³ Χ;†ΰVΞ7Κi/£ͺκμ’πQ#uΤͺΣTf­=ƒCxσς\»<‰·žΠ'³„ύμŸkΉHΉoΛ1ΓP{ΌβΑ%§ύV­Έ™,IΖΞ!npŽα'ž]q³Π‡V‹ouM` ­Cν8ίΩ›Sά,œΪaνΑ{=ΩώL8f€ΖμE+4ξ―[Om:AΏΔ~·²WEEyVρΊ0rί#elώit^g΄œΠ7Cώ₯± ޜβf‘˜Ϋή‹]>]|^Η~αΝ!nŠ˜`nΤΚoŒρΤmό΄eVρz/ΤՊ޷Ή;Αώε2©.ςKβΦy-XsΪ}S=-ΪΘ˞aUάL₯’τ–‘HΡ₯ Ÿhτωΐε*7O.±NΎύ‡|ŠC+‘M?>N’­½½rFl 5‘πœŠ`.Žε=?φH‹ŸUΟq ‹‚ΒQΧ9ΌΦκjc~w‚AtΠ«”ίjοσ[:0d[… .·£ν)<ΟαyRGPώΌβR—T…¨ΛΑMlӊ….»―Ί8‘€©Ρ ·Ω…‹+‚qΥγε©4ΒϊκΰΎΥ7œsΣD‚˜›žƒ‰~ΘlδŠ™žV’ξv†ιχηe›θWdγΓGδwδ2Ώ>ΈΧωέo”K™ΓΘΕ™(’ œ‹Ε§1&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ^ΟHΰ|ζEιμiλgc'ƝNΕͺεΐC| ‰ϋΙm|ΆΥ€ΦώQ1pKzθu·»Z†Rςoξΰ}τSήtΘ©^qBkάv΄›δ?`qg σϊ•€η6wαœS–sΫΣψBύνμγ* œΕXΨ&XI€’ ŠΙ`{魟ΜEχ0ξD«Φ~X#09>υEHύήfMύS₯DUλ*W| ί·-£½ƒΓ]|·{„x"Œ­ƒlΞ Όη%Ο;‰¨ξ"” [Z%Sχ#ΛψΝζŠbψ|h“―Ϊe§žΕρtϋλ˜?”}•x|D{‰3—qU*ΧpF³όΓ` Ϋ‰:φŸά%m²ί- Χi8Ή¬η˜ΞxW\xaπΎ5ΔΆœω§ΡyΡrFύKbΏ[ΨΤΑ³‡%šO˜ϊ/’_ )›Ύnˁν½\΄pdn―iκΚoα֎Έ1u žššλnSηΎ¨tΚΊoΛ6†ηŸiuΖ»h?x°‰ΟΎ»ΣZ¨ΫwλnΏ?…WμΘ‘ͺis?^‘ψΝFŸ\NwΏQ.u{…²αL ώύ|©Ώ±ΕL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&`ˆΐ3 ‹ΛιD ΄v’[n™’I7ΛyΙ(ψ1ά …|θyψžtχ‘Gϊ#π~x ·΄n΄Β)χϋ0¦+Τc0LLεθͺϋρZ7ƒ$ΐ7<ƒτGNA$(U¬UφlOΆΑαΓ;½h&!p²^ΓLBžότ!Άε*ό}tΤ€ “/γςΩ^xZ₯²Ρ¦g¦ρϋΫKY­uϊ0ΡΧ…ξΞvtΆ:aUήτξδ0Φ<]|‚/g΄ΥθUλo\ΑpkβΤ's[R§wμeό¬—BΟJ©‘ώϊ΄1s_Ξλˏ/\Ύ‚ ύ^ψ:νrDφΨ\χcfζ1¦όΩΒμ££cτ œΓ΅Ι~ yδE1¬ΞΝβ‹Ο¦°¦ΤdtΓ‚λ7’Ο@γuŒ§χΏΓΝΥL;xσΖ%tΣ9Β9ΎΓΧKΌχ£ 8IKš<:‚ΩΥ oŠΎ}€•f/^»<Ρβξ}yŸ€qν»π.ψПΖdO¦gρΡƒ§Y*}ό„*ΊπΓw'h‘@"λOpoώkηKγY«λΪπ}›EͺΈŒ²ΪKξQDxυZο5Ι7“ dΙΌ†{,ho–―},‡·²ŒŒRTQέtΈ…―ς¬'’‘κ%cύ+ΓΞ2ύ§^NcϋέrGΕ¨ίΥήW.\{}c}υΩGf₯ž)ώ–qg) Zη˜{?~y g}.©ΞΆVWpwϊynΝΤΉ₯ϊOcχ­dV‰_՚ζΧε±1oΉͺψ—cΠ4C"j–‡ΐλτbXš&i™.nΦvB]tR-žΪΦNΛ6ϋΑrGΒMs³sh”[G!|ύρ=ύ9-½uζ'―υΡ;"=ΕoΏ ŸΘό3Υ[ƒ~pθΒΌΤcΡΟ§Wρ4 Ό6‹OꋝλrΎKoΏx³³KΌ0Žv±vd£EΙ‚‰`7ΎYC<ΑΨΏFŸ\NwΏQ.ΖFK1&`„ œPγ2L€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0η™Epζt2¬M’0•š_ŽμVμΆ'Σ›[₯ΧŸW"–ξαϋ`ΊdΥΦb¦˜}b &§WŠ{››q”ŒΑŸPE%ι­ΪΡc‘Ε°q,‘hZN“ξaI°"©Vθ€-Ε_*kO°·u`Δ§ΘΥ₯#tβ±ͺΚάςŒΏ„χ3λ ΎŸ½ό<νVόΛΗSšhΗ.Όvγ5Œ«:L΅€Ε―Oψτ£Ϋω'όϊ¦,ŽΆ£‹ΔΣ>υLeΛΩι‘ΌJ’+3ꎼeλÏpg=κu.²ΆΊ0DŸ–¦>Ξ.λΏŠΏ—Ο–ΏΝπNβol&ό―ίίΣτO>^ΚwΑX^Η¬ί~―ΎΑ‚¦Šs―\Ζ5ι8’kx°M";71ιλ†,uSO·γό«Χq^Ν -'^zσ%lo~„ϋAω€ 7~τ*φΙΧ©œXIœ?ωj'|vόΛ§εŽΥλnΓΰ@·8V^ΞͺMI[…yΦζΊ6~ίfu©¨ŒJΆg§…ςΓ^Bτ'ιf$IH' ,Q]¦²£Wρ[@,‡h9½NaΟ‰~kφuDήΘ 4ngΉώ3»o§3‡ύξ ω]ωr gΚΟ~zC:Ο2ε™Έ―8—χsΠ"›Ώzw2Γί›αρβ}½‡£l§τ]š4zίf4ZδnUζŸζu9M+P*ώΕW³lEδWΦl90f——Ι…1³#Μ#MpӜ΄‰ΕεšƒV…§lή)ϋf?XL’ΩэώΤΛfΊ±3όkσΪEβ€ŸΐΈΟ“Ϊ Diα›ΫqσOZZ†μθξΓP_φo€Π1-¨Τ8ω½BˆNrΎKΡΫί'x[j€H°πcΐ+½I(Iož)΄Fξ}>p9eQ3VχεR`˜ψ0`%ΐηŠβδʘ`L€ 0&ΐ˜`L€ 0&ΐ˜`Ο8ŸΠ šΠΪ$·} ΑxHΗ3¬ͺWηx½fYπF›ϊϊοΠ:f2‘:š-ΚλΑΫμƒψ}δ΄ΫΑth#‚³]2―D«RD聢³Έͺˆ©εZ_l¨=΅*€‡'Q{ΌJΫ‘υE|ΏΈ3EΓΎ:* !\“xg2€ί>ȎŽΩέƊΑP˜’O’h§§—"SŠ"Ιώ‹/αΖζ>[Έϊ1{GΦF$ŽŸ‘₯½g½’Haλι"Φχ„M έπ ;ώΜe.|πξuœνT;Ύ:?‹E:―±Εw—#^'Ιό ,„ώΝ¬μΓνΓdŸ$+φΰςΐcΙN΅ώR·¦n~ —σΈΦGRϊΦ~άxg ŸJbkbxγ’,Xγζg_`κ€Z A”:1<Ύ?‹#χΞ{e9>πδϋ;ϋρRJΔμ‚Ολ"³QτΪ»ιβζeŠH½DL¬]Έ:ή“κ‚kx? ‡πλ[‚°*=?~T.qœa΄dž½;=UαΊ.γΎM·­Θ½JΆ§, Νgj—S&Ε±Ÿ”ΞfŒ9‡°]ΐzκ˜―xδΕ”YΑƒƒ Ώ–£[}Tz!¬HβjΓύ3ngΩώ3GOk6ϋ]γ#cΘοJ͍ˆ›Cxόh›τš‹f‹.w‰…Ž6o9Ο±.Όσ†FάΌΏ…;ΣOiιΐΕKr”ώJρŸ†οΫ6θΖό³πΌNΧšιUe>¨ίεZ0μθΒ…ŽIH³Πf’R>{₯yδ~τη~ξμ@«¦Ύ`dχO0―Μ[«ΑSΣΰ)έd?ht`˜ZXΑωφήTύτMσγτδΖ $nΒxόψ ΝιΖN`ώYžάZ[ΐtBˆΰLsΙ&+Ξ‹σκdΉΏΐ’>ζ»vΌα—ήFΗτΦC̜ιΗey0γ±ΚΌΙΗθσΛΙ#‘ϊޏGΔ}£\jγ&ΐͺM@ώŸj·Γυ3&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜@½xφ¬^,}Ξμ4Γά$«qI£3 νnˆ’Ηη«λ^Ž·H}Jψρ}`'«ƒm$pΞ•ZΝx•>N}|V…΅^ΞΚ"”ΰa8% ΄Ωϊρz»(Œέ?XΖt² ―:©ͺΞ¨B(#νε²/•―ͺ`σžVΞΑΐόEjN₯©'πGήŸ]―˜‘Ρ>τΐY”Θπtf½5|=GQΣ΄ιΑC,Ώώή?ο‘\3ϊ(:1–Δ8ΖSwοAͺމF8§JV¦ρΙ”^€Z΅βžs£8―ˆ›ΈωιM|9Ÿ^Fxuυy[nPλοΰŸΎD¦ΌρήΖ ·›’£₯„Ψj›₯oEρε<€ϋoň α—π“?>|ЌŸΎqN‰ΐύδφwψr5»φΘκ|x‹ΉΡύ—/‰Q>ΧgπΫ›”ΧvD,―€ςœNαͺ$³ο Θw3™ΜβξΣ -τBͺL₯aŒ‘ΐYμ½±ρΛ΄Έ"Έœώο~£\ gL ²Τ©«l½\`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ Τ)gΑω„Fn{ΩIL&x¬Š4•Υnΐ+m+n…œΔyΝ­ΨβΙύہI—όϊo ZFΡ›W²Œ± έd₯άVΒλ$€^Δ·;Kx,G(•ΞwωΠ«)ΫΩ’*Q‚‡A:‰·=R€hR΅΅ ‰[δt€DW4֞\πWκ’r›Pέ¨3!Lέ—Ub›S·fρDΦ\΄w Η-ΩB_χoίΛ7K‡>x*ΘoS©I‰*.eH_φυOL ²:=ύuρ³#ƒΚξΒέYβfαΰΒΓ;ψπ¦(¦VNV6ΆπΰNzD»[OΦ!Η9EΓΚΙel<ΕoΎš’+MLγ―ΎŠΏώ‹«Š°-D"ςίήέΤ­?’ςR’HΙ²n-p ξqŠΉ'¦³ΈαʈWM―ή”Εdoι!ξΟΙ#ΡƒΎQQˆ/ΤRξψ‘BΖΟkΪM°ωΞ’ρϋ6UΌδ*Ω^{“*– ’?ίΝeΝαE”—―α$+Ίq³,ˆŽ,α—λrTη\•ˆωνΆAάpi$B$ŒώN³H€¬ώ²³|™ΏΗGmtΗQΤΗAηe”/k—ύnYψ”ΒΖόnςXΎa¨"Ν¦\νήΖS<\’}¨œ«~—ςλr«jΒ'³³ΚbŸTm‚―ž—ŸFjύ™[₯ψΟ²ξΫΜ† ξWzώYΜΌNΟ¨bΚ•λ_荭τΌiΝ7#Ό€ίωW5D:M‚Оν)“cX -β‹­ΗΈΏ―υπν8η”ην•ζ©Η*#ύ`y·NζŸK˜W|ˆƒΓš ;ue| [™/>YZAϊς@ VσΟJψAydΠ¬ώŽPςt6κcΎ ·ŸSήά_ΔGAΡ?Έ4 tχγΥΊN_‹Ν2ϊ|ΰrϊΏϋr)vΌψ<&ΐ*C Ί—VΉ&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨%8Χ’vZ[{G‚bYάv;Ηρg 6,Εb°™]ΈΨͺŠ›Νͺε(žυξ΄Κκdg’Σ§F₯Žβ»}­θOξDχ(:σT"œ.ά[Ε¬}?tχˆφ[Ρc3aε@£ΨΡή,ˆ’…?ڈkήqˆ/Cγ»νYŠθLb‹(ͺΡτS”g1iO**}mΟάΒޜ‡‰€ρfϊsL"Z™Χ§7£ξ‘Πf%#3@›ΧC&1Ρbί²βpΈϋ09ζƒ―Σ {K#p”LiΔIό#”¨\jB EͺΣζgτΒςΊίϋμfκhœeDλ.1“D̟άwβ/RΡ―Pή ]Αηr„l½*e­υUωœ,?ΨGXΠ:¨·1Μ-ς΅GΑœ/]ΖίυL’‰†!-5©βqK‹Rkκ”²ΖΟ Οβ―k ήθΉ’FfOλT8ΎίœƒΥπ}›«ή|ωεψ‰μz©{LΜί£E(ΊΙƒŸtB‘/%#X£hΟ Mvt›€kΒ:€χΪcψhwG· 9SˆHCδ„ΜΓ-|DΒhΥ”Ρ?Γv–ο?εώόnΑίύΧ«"@fΤBΒ£_ώκ¦Ν>γX©»μwK%–ϋ|C~Wv˜v\ϋσ?GΗγ§X\ΫΑv`kAυY—»Ρb8Πξη!l¬ͺw˜\ΓΪ&9ψΤ³VΞΙώ.ή–qίf7[TN%ηŸΕΝλ²Ν*\Ήώ%No·ΨJ=kh^ΤΪ7=³£Ι8,φ!ΌOsλ?*~Χ‡μ“Sζ†qwcwεωΖΑ6φž]ΐ[qΖΤά¨LtPIžΩ€2rΨfΡξΦΟόσρΒ’<Ν8Elώό_ϊΧ‡QyVΎYΚΟJ5™VΖfΩ^DΖιžο‹[Θwܐ!Σ"³/·Χ€^‘/O-ΠvcΖεί™Et:η)FŸ\NwΏQ.9ˆ0&P%ιR₯FΈZ&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨#ΟžΥ‘±Ο—©σ‘ Œ:Šΰ·»Υ‡ξΦμ> 2Υ5Ь™C>—]ΰ΄ζ˜}$άΆKΦΕp?΄”³O$nΦλ―?ΌˆGVΪaΈ ΦFα[8·ΐ$kŸ‡hoΔ¨¬yn{„`ΩV›ͺ7=<ΐV‚ς€Tz{rIυ{;˜;r€zV…ΆΒ‡i1³k΅£ΝE¬WEΡΧ•Χoΰσ’ά;ϋ\MNf$jΝ‘β7›IΌ)½ΑΆή@¨,άΟ+Hl1Ι ¨¨ΘΓ³·ΎΐžΏΖ•N΅ΐwŸ}…τ건-vχ—Ξ½«žηF[›|ν Ήvx4m©ηi·δ (wόΚαYΤuέμ@‡ͺΝΦv"Οφ’‰F΄Ιέ4pίζ©<Η‘ςόDz₯Z‘D { 9"Ώφ¬Ό―7ο„—ρE$·MΰE[Ro›{;˜Ρ‰L+’ϊΠγƒ|™E£kψlc‘nh“Ρώ•gg%ό§Ά9·iρHΙ—Y%£ι³ίΝ94F”κwο<^Ζ₯ΡIΈRΩ12~Ž>RΛΡ?™Ηη7g+°LIJΕ6Κ>Κ@'‹ςŸeΞ_ ˜EoΟ¨Πό³„y]š%”+ΟΏΔ1˜K‹ΐ}Ξu―Ρά[H=6Ό$pNωΡ3욱^,ͺβfΙψυMh$³”•ϊͺOm₯ΉΆΩζ"Cωυ3ά[’»8/,„σtγlχ=άά kς‚ύRσλiΧnVΗ«<¬”Μ²;OΖ©ŸοZ|xΣν{χg,2#"OR’ΨΦ›ζι»ώ!£σ:.§»ί(ύΡα\&ΐͺG ²ΫS=;Ήf&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨Žΰ\+Ων$wπΗ•ΌαςbάκP'Ø#‘[ƒΕ‹a³α3F$έUΧε– ΧHΐ'‹σ‚ϋλΈm0ΰbόψ(›EΗM Sq`s;F₯ΐz‘ΗψBŠ=lΆ‰‘Ÿι? œ‹%ͺΫ^Ά5Ν ΕγΊ’[ZDΡNʘcΙ€Ι4qsd{OΦ(R\”Nh E4|σ’$§#—ΣŸ›ε6XO2‘3Ζλ*Xl²(A*Πκr“@\'r^V…14—.LΝ9οίΓ&…£–ƒπeV)κ‚[Rδ· Œ_ΥyRτβωΰ*6Οdφ$Οώq ‹ &Œ ‚²*ά·Ί-WOΠβ EΘB±Εƒ‡ΒB‹τ4μκV°D)bύ'$nΦκύηƒΛθΆvH‘―p[μ˜ gGόλuŽΰ=W—Ry„‘QWκ ΑώUΚNΕ@ΝFEύ§ίοοΟΐšλΖΡ΄+n6ΰ8@0+ίXϋ]cάr—*ΡοnLαώ-†^Α Ο•Š|ͺΤmqbόβτΆ›ρxP‘³\³Β ͺš ή·eΩT‘ω§ΡyΡrΩ=6β_¦OΡeubP˜'6ΫΠIΟώuzƒ¦CΚϊ’dOB{Y šΞδΈ*Β3«9ύ φƒϊ\„άΊšπxiΞ=dΈΓƒ$p^ΒhΏΌ1†₯…•ά}M©ζόSX^+§ψA‘©:˜ο^°w‘MΖr¦ Γξ ŒΛsί3Νκq;pΡ3³Ο„(τΛΚΒ6ΉhΡίFŸ\ŽώEηwΏQ.EŸΘ˜@₯°ΐΉR$Ή&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜ΐσB€Ξ';’‰|΅IŸF ΪS’­$v$”kραην‚Έ™α. ŠΕ Nώ_wk?Ξ[€ώ „©έTΌ<†™ΰl’λ^+ PdaŠF{¬ΰσΐΆΤ†έf!Lšθ•ε±b%o9Ϊ+:±.XD¬eX9’H ρ-cˆ ŠΰRŸ*Œ\}τ-ώω›…TΎςνc$pφ(ΪώΉε@IDATω7Ž ώ‰ϋ κq·Ω@ΔUύZ«š{ύέ«ΟeΏϊ2ώ?ΰkЍW~:Βa*Β―4€΅©άΡ*]σ4PιρΛΣT‡ΒxΈ›-Μ-Xa³W”•{ί6;1Ρ’U¨“€λ™—j%ύ„Ι ›άΑx ‘ΜΆ(Β|[³jΣzd'Mά,b?)£EŸΦԘ­άpΕu§³V(³z‚?6Εβ™κ_eμΜ4Eά―΄ ΰζ­FΚΟθϋέ eξς» ψ}@Λ•ϊ}νθp»1<4€~6 ΙκΒΛΓsψt>€©ΠsL}ΜρΥΒ][±dθΎΝn½ΣΧ‡»F’ˆΰώ|_!/sώit^g΄\vϊ—czyM2Hvƒ°5I«ηtŽ•ΛS―Jύ<φƒϊ\(·ΞζŸ 3«XΏά!°—ζκύΣMθσŠΎ »k$€ΞοΗrrH;`tώiAMύ Ω|ϊη»vz[‰4>cZP;œΗ%tΫθ ΄ψa:m<ĝ’ύ΅Ρη—Σέo”‹Ξr`Υ% ™ΡV·! 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐκƒΐ3ϊ+}τ£ξ­LF±«δLxEνx1ΌSt΄αΣΙΑ‰ΙvU>»\ÌΧ,ΆΩz4Bι8’ ©<ι5IξψρΝζ²*(΄zΠ'k !¬'OΚΩ^†ΩŽαIόεΥ>4 #KbλψίίΙ g3ΎΫjE;©+Χ„WtΈd!δ!φ€θƒͺf2€Ωι q3YΠ3θ.(nŽk"*;‚ΈH‘‘₯#£,ΜIBtγ=ZΙ‘Λoΰυ»Xώ ξ¬6αΚY!‚ž―Ώύ:6~υ ²©•jΞvχHpξ„.tχΣ8MΗ°γWͺ΅ςωUΏ+tίz­έΈξ"!‰&-βXόΐY‘φ„fΌ&‹‘>Ρ‰Ξg†£YΒD°{¨'§{ΆY^°GδHϋ>s&;Ηq΅Υ!υ*ŽΉΐ,Ύ…4½ΜΨ4Τ?G™vfΨ Ω-ΦjŠœξMφ»ŸςύnΛ«Βg wξήΓυw? ?.ΌΑ€P$t [Xόs,€­`η;…ϊ\πtΡ=L†u9₯gF"EϋOCχmvΓƒc“x{XcWtA8/gŸšžchώit^g΄\ΊΙžabuΑ'»έ$½ΝC\ –ήύ4ΌtA:fΗ MžcΡ,ˆή’› ρΤ­ιtf²¬άΈ,`~ιΌΒ΄΅―_w(σρŠξœΉˆΡXΓFηŸ•ρƒ₯Ψ|ϊη»IΔaΙ?$ι“–ž5 ΓlU³hΙεΗΓΊΏα‹φΧFŸ\NwΏQ.κΘς`5"@·+'&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`ΑY£Ά›νiŠ\Ήm;^ρœΗE«€Ύ8\Η½½ta|f½|ΊzΡ/χ5±…»Bx_½dΒpkzεs3N±Y{πŽGˆ[,&hCJΖ°'‹)Bσ#.Ι'R(αΊ|οQL‘Δ—>—ΡžR·Έa·Xΰi΅ΓΥξ€}Ϋ›Qέ¨3ŒM¨,RV a€S2,Ί?ΓHŠkUBΞΚΗzpεό Ό“σ{{{[Q'υ3 θlC9erς,†”=Ν†­ —†έšŒΨτ]ΐ^ξ•ŽαΞwwπιWίβΞΊ$4₯Θγ7ޝ¨ˆa;;κuφβΈ>‘₯Ά.\Πεb|όŒv κΧ΅‘ϋ6»7mΝςέ-‹‘ψLΗoV¨=‘‡¦ΝΰαΎά°ζ;†°?•¬πZεςκ)΄eP‰ώGQ cςωv\λΊ(Š›…5ΙξnάΚ/nͺ5Τ?£vVΞͺDNϋϋ݊ŒAΏΫIњεG\¦Ϋ‘lAsΦ9%<Η‚{ͺxupp £ͺ>Œ ε²D=΅hiθΎUΫ‘·’Η²rb©X>˜ρ]ξό³ψy]zΓΕ—3θ_I@νμBΞ™E‹οќT~bD#|μΤ ίZhN—1vυaTFΣ"―%ΝάΌ\žι”NϋϋΑJŽΠτΒΊT>/ θSlKσ•‘7 •VΒͺ¬(tœŽ5Ϋr^ΪχiοFqsσ>~³zΏ[Λψ¬?Β΄²F-†ϋΫwρ»ΥΫψΠΏͺ.ΆΥτ±hmτωΐε?―ώξ§0ΚE3vΌΙ˜@mTχjΣn… 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ*I€Ξ•€Yt]6Ϋ ώλν―a5F˜ήlmv` Υ‡nEπΑέΐ‚nδ§’:ι[Ό8η’ Ši.H―c–w²Ύ-μA?|Δ%€uŠxΊwDͺε3Ί,.œoΥ)Bσ½ΐΆ¦†„FΘcsΫΙ5μ780ι’:e¦TξϋΐŽTœφ4M ›:«Ο%,Κ(ixwθς+ψ ξασΫKh₯ȍ7& Η[_XΕ¬\³b‰&ίx ‰οf0=FΫp?^~ι% ™ %Šΰ,έΆφ]ΐ_ίhΒτZI ·ΦH,aYΥƒaκα&/vΣHRjΔΟ~aΖΝϋs˜Y!‘―Ձ>_&^ƒsιξΟg)± YS‘γ=ψι §YL«ί“Έy^Ι}ϊΩxώζΥ”ύ—πΣΛAόφξfYν.?œΓ£ρAœ.cNμoΝψξξΜ-o#n΅£έΩ†ΎΌŽvΓI‘7χ‰Λ²Πb%ΖΟ¨εJΫj•½ά·ͺ-β–ν&ωΚ—E±§Mδ<αΫx{^{?ΖΜΝ©α8~v³*τ΄zρFσ1ΜA<±ƒ›!AΜG0‘YTΔυ΄ΰΖ³eLqΤ`£ϋ—Zε«ποmI 6LΈΦ}‰"ΥKv“Θ.‰ΑlΒ[ΆτXVώƒULEea£‘ώ΅³‚ώSκj=|±ί-w”Œϊ]^}η8ΫΒγι5<έΨΒv`aΨ1B‹{]κ– ΑΏ•γ™RΒsla–ζ*/χΐK΅Z}ηπwογσo"Ψ:€·―½†!ωώΜ‡£hiδΎΝΧ°t,‡2€μωgIσ:%•3θ_ZœΈJfΠ’ΆšGnRtύšG&ϘhΩN~Χ₯ˆή€…VUi‘ΚEsnk²Έή5††έu,5bΜΩ‹Λ½XWΡ•ΝS΅ nΆΨVn¨φζW0}uŒ|Υ)LAΙ·„žγN°rm–εΫά8η’ίb‘ΔQ‹©[‹Ίεr8qŽ~ E\EptΒμ*-JS|fΏWŒbSΪV+(iΎΫΨJσBΉ,½EGYt+ηψΞᯍΟ[>WΈ\j€ώΏ ΐΨρa&ΐͺB §[¬Jk\)`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ œ~Ο2ί±zϊM~,loΜΫC"·]i Σώ9άΥιΥ ^¦₯’ΉΡΘ ξ„σDYl±‘€DHfb’‹ Žοΰ‹­Y5κ^ͺL³ϋ~ »ΔΈ}snτt₯Ž($ψb]S¬φ”Zk·A"ντ?τ˜1~ω΅Τ'͈ύ|χΏϊΞΜΏ»ΔΧ^Χ7ί>i% οΠk΄ηζΗα™ΎΡ ψFΥbOΎ`ωFTv°„O>k#ρ„( ¦Wo_{“>j‘ΤVH»ŸΥ?νAq;½ΩΗ‹Ο±ΰΝ]ƈ,R£λβ“›OΥβΤίOΎlΗω¦ΨΙ‘—/γΊ3|M:bmH—’ Uπ‡―ο ύΟ―€Ds°xpυΊπQ›ΥΫ2<~5ε©gy1yξΫΜjΙoΘͺωEh$ΖΩΙx{ΦN ΫυJzΥ7Ζ₯k)‘)30\Η°Γ’ρP’ˆ€ν£τI/*μE#«ΈΉ#ΕHonƒ[Ύ.₯S-Φ.œΝ.–Κi"A΅*p6Φ?CvΦ›ΜΑ―`vΦ}Δ~· ³œ'τ»«Ϊyƒγg…Ο9έV"O—qSσ(J;©”ηϋέ]/ώβ2‰e)y†/ΰητ©N2vί΅₯Όωg‰σ:ΕΘΛτ/^%²Ύ½4ίGO1B³!Ξ±€Ν±Γ˜ ­a\~SH‹―uΣGSJΨάΩ_ΔG!uφRόΚOλ.ϋΑ’η~₯‘s 8+,žύΛΛ«ΩΥdAφ)rN₯ζŸ(Γ^Ήό*ήV‚ΙΆ₯Ύ=£ψ³4?"hQί/ρΤυ|·Ω εη<ΝAwδU‘i7²cτωΐεω»?…ί(#cΗe˜ΐσEΰ`[σ%5θZφ³¬rL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&pŠ pηαΥ΄ZɎΦΑ>[ΉoΒamvύm7wΐg•Μ„–u_Σ«tμ(ްˆTΙΤl$ΓX -ΰ]ΑœNd¬υΠ,ΎΫWE'š’Ψ‰¬α£•iΜiΰ\f{Ϊϊγ2-ι„K;Αΐ΅!_3[σ³x΄šέΧΠϊ<ώυίΎR£7 Νψgρ»οay_§ΝθΎϋΣ,Kεymτ­OΏΖηί/ck? p¦₯Γ#-XρΠφά=όίΏϋVΧΞΤΡ–74!κ"jΤ(nΪfŽAΑSι¨LΎŽα³ΈΦ' /ˆΑΗ$<ΦΖٞΉO§ε\'.]$1†ΖΖΓΈfΜ₯ξ©y”=Ϋ֍YόΣ/wζεzΕs΄†Ά·π`Š’FΚ™FΗOc«Qž΅ΈKΎoe.ςwC#EOOAŠΪ©/pŒ΅g₯‘Έ?³ξFTc’;ψγΚ GrψrςisΗψεζTMζΧ’ΠLώE=Τ$Cύ3bgύ§ΖόΣ·Ι~χδύnκͺˆbgu ½ηXκxOέΓ―c*ο5TΚslφφWψΧΫσΠyβΡύYεmiΟMλ₯ψOCχ­¦­Τfζ΄#Ηs²¬ωg©σ:ΩΖRΛτ/Ο±AβΒά)Žπ*ώΏsμέƒE|Έ΅ φ”†ͺŒ`~χ1~·½–V}Y<Σj:Ε;μ+ζυFyΦ―qlΡ<™I§Κhζti>§šσOjΨ¨ŒΗ4s!½NkσβτΞ Ju<ίmo4)η`<œsͺt»H-œoτωΐε2~χKπrQƎ7˜¨ 3ύόΟ’Bq,..¦ λκιΣ5π«?ΤΝηL&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜@½8ώ|ΚΤΉωΕz1Ή’v6Ψ;Ρ왨h/be}£m=…―„ξ[ࡘaklFσ™38&Ρs Ά›CXQB΅%œzεΖ{xgΤPDΊ_ώκ&e%TTΑSmΝtšL0ŸiDΓzcρ³$½b<†•X‘`FΫΆ–vτ·XΠ$”=>B8±₯X†"WS¦άφ4UΥ|³ΗΧ‡N‡)%πŒGφπpI•IκΣ?<€Ž!ρ1b$Ίœ*pΎ^Fςξ. vΪE!ͺ0&α}zuΐHUΟOz}χ….L‚š•„ερ‰r›XΣhΎ3;{Rγ—iG5φK½oΛ΅‘φν9α₯Νδ—„”HF±Nχ쁸[ρφΟΦRšυμ?BgΏk”\eΚuΊέp;­hnnJ=S’‡a¬Νof-R©LkT‹|u―θ«“‰8ΆΧŸb­J7ΡϋΆτΎžόό³› ϋ—F;z[Z`¦0ΒόZH‰cŠͺz*,l`L€ 0&ΐ˜`L€ 0&ΐ˜`L φž=«}›άβ©!°πΰœsΨ&PC―Αήρ ‚Έyλ‰ψTω[aΨڏ_Ψγ5n„ 0Ž€ΰoŸwϊΒ *w˜ 0’πόσtΜ―ε9IƒΗ'3&ΐ˜@Νpηš‘ζ†˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨/zη3 MhtzλeΈN­υΑωΤeØ@ τM&ΣΔΝrSbD·3pυΏΗeόΝ˜¨4ηέΏVšΧΗ˜ΐσG€ηŸ§c~ΝœŸΏ{‹{Δ˜ΐσEΰΜ³€P‹‹‹)]=}Ί$ΎϊψCέ|ΞdL€ 0&ΐ˜`L€ 0&ΐ˜`L€ Τ σηΟ§L›_¬“+j癦˜ϊ_©h/be}XMuϋ)|/bχΉΟL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ΓΔwl.Ξ™`L€ 0&ΐ˜`L€ 0&ΐ˜`LΰΉ#𬀸Ο]χΉCL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&p²Xΰ|²όΉu&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜ΐ©#πμΩρ©³‰ bL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0‡ œ_œ±ζž2&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐŠ#ΐηβ8ρYL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&P,p V” 0&ΐ˜`L€ 0&ΐ˜`L€ 0&PΗž=«cγΩt&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨w,pχdϋ™`L€ 0&ΐ˜`L€ 0&ΐ˜`'@g9Wœ*WΘ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`Ε`sqœψ,&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜ΐ Fΰψλ/w— 0&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐN ¦ΣbΫΑ˜`L€ 0&ΐ˜`L€ 0&ΐ˜`§ˆ€ΑωΜ)²ηE5₯юa³ –¦FKŽ“Q¬…w±[E^οŸχ ²=ίύφΦͺΠ–­ΩS‘υξ&’ig.›Δn"žV&}‡˜ΪT¦ρ£Μ„OΡμ•ίž¦2ή,™@ηΔΛψι›½ΐώ‘ZΆΙŽπwψ篞¨yUήRƒcΊΎ’Ή―/弜φΊ>sΤ=P©φ”z τ/e„QΏΤhA/ω³ΦΖf4‘Μ³$φw±t˜›§n§9³ώ Ψθlβ‰=μœ’ξ΄ ΰ§oΑΪpŒΠς4~·‚O@[~ςƒσ©~‡ΧγΧί,œ’Žη1εξ[·₯SKjή#ψ‰ΊNζ£ιsΩbΕwΙyΎ3ηΪSm-xM47h8ƒcjσό|(Ά R{Vϊv)v¦—δ½ηŠ€ž?Σάο!ΊίSΞύ^MΏt*’΄yyeM6‘½Ή1Ueό8Šέϋέ·Ωg“- hHΝ_ްέΒJBߚ²ύ’Ρy–Ύ9œ[3τϋ:Ρζ0Γά”ϊεŽΨΑη7±gΤ=b΄J–«¦_ψΟϊ™/•ξ'*9b]Εψ3½VK+gdΎ”ήjiν₯—ε½Ϊ¨‘?Σάο…ζK,pέθsKL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0Ί!πμΩ1λ›Ot΄LΈΰΖE§ –L;\a< ,βfΨπŸJ3kLΫ7‘¨HHΦ–Tε-=ψQΟ ΪZΝ½³Έσ=>έϋj³ βžžά'§ŽΔpγ6nλh‘†#ΈβκBkF Χ|νŸΖΜaϊrΫK―­Κ{Ά.\›θD3Ž\[ΔΓ •4‘Fν™šLpŒΜAKšͺϋ’R/υΟΫbE[³ ν$|kυ/D0‚oΧξβaΖ΅" ­υυRN{FϊZ–`Δ/υΆφcάΦ†~‹]χ ά‰¬αΞζ"Vtrζ© `sγΪδ.žο§ϋQLΣϊΏ(έ<χώΫ_^K(Ή;_ώKu”n•h&Ρ…Η•²ΝΊg3TEΞBV3:=ΞTݍ»Ÿ5ς»BNβΎuΫ|ΈζE){ ΤήΫ™ΓœVPXΖ|B'›Ωƒ+ΞnŒZυόSinπU8,Ÿžϊ.ΩΞ΄ΌsβjαΟ*qΏΛ ͺι—δ6Nθ»ΤyyeΝt୞‹φ‰-|Έ2Ώˆ /»Η1fwdK3 x7ύ˚2t ,Ώdlž₯˜Μ'C ­ο\Βπh·2GJ3δ΅ξ}Ÿ<(qΡΟ—pϊηKύDΪR‰Bώ,WΕ—32_Κn΅ψφ²ΛrNMΤڟ•0_2ψλ©&ΨΈ&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐ˜8)BgN'Dΐ‚WΊΞα"ύgΏn’¨^ηέΡπμΎ9¨†ˆU _¦‰™«kŠ‘Lw‹­hq³PΡρ±L{s&ΚΒΖ1Υ"Κ‘sρZ«CΩOΫhvαzΗk i"…rΪK«Ώ;=ƒCxσrͺ₯'‰νͺ œkΥήΪΦ2>v‡†•΅₯o_¬>ΝF^ρŒ C―₯d aq³pj­―ΓνκŸQΏΤŽσ½Θ·,‘ΓΪƒχzΞΰÌϋO?η՘@[ήΌH‹mΖ{`ΝhΊŠκ?γHώέ+’Έ™N[~ΊY•·δ· ίQ΅W͍^DAΒ\ω™ͺ>eσΩ’}¬V~—ΌYΝοΫη~ΰrgwZΚi΅xπVW#+3X’ςΚ™OUx#ψ £KͺMοΛsΖu`ΔN½š9οԟUΰ~W UΡ/©Τ|ΛΘΌΌ’F^φ «βfͺ8Jo‰hhlƒ7§ΈY<Ρmοō†$~½Ήͺ”4ξ—ŒΞ³”¦yγ„τψhq‰›s&‹ /½ϊ:mΒ?#?Αrž­ΰωpκηKύ„2ΘΪ(θΟr΄Sl9#σ%½&‹mO―,ηΥ†@ΝύY σ%8ΧζΰV˜`L€ 0&ΐ˜`L€ 0&ΐ˜`υE€"8s:ΓBδfΈy%΄€{‘u5wb²}Γf1²αYgf±{2fnΥΐχ‘ΈψκωŒZŽ“hkοG―œ[ΓCMδD§"pŽcyϏ=αgIЎcXΜ ŽΊΞiΔΝqΜο.γA0ˆŽΆ!ΌΥ.ΙXI<;d[… .·£ν)ΤrC#OΦβφ­U{ώ5ά’ΓιQ@Υ 8{ͺΜΥΦbш›cԚFXŸˆε|Νt­―£νιŸaΏd¦ΨxνDόXνΑ"N±Ζ½6.΅JG[Ό8Χκ‡?=Rj•‡š«ΟKΐ…θ-œΝ yŸ·Lƒm#˜OΕn¦7πθΦΣj|8Δάτ„ρ²γ©± ωš«•ί­υ}kρ፸9(Dunb›α]v^uyΔͺΝτœv8°$½Υ‘œω¬ύΈ‘7Gin2»O>*‘€©Ρ ·Ω…‹+‚qρ ©a1hgΎ!εc΅"PΗώμ΄ϋ%Cht^n )έ"Γτ»ΰ²-}ΩNψ(†νΩ gRΏ1‚Ρl†±§γΙ-θ³{)κ»XΎΥκΖdΛ*HΏ=Œϊ%Γσ,­ΝΌ}ΒbX_Αβζό{4Ω;qabC’YΎσπζϊΎ\*b2Ο—ΚΛZΝ— ϊ‰ς:—^Ί(–^$΅Wt9#σ₯rΪΣ)ΛY'Aΰτω38ŸΔuΐm2&ΐ˜`L€ 0&ΐ˜`L€ 0&ΐN;Žΰ|2#ΤΨ‰q§Si{9πŸ„Bβ~rŸm5 ΅©‡-mθ‘Χ*οfˆy•Β§uγp·θ£Ÿ:πΎd94NBh­€ΫŽv“,F8ΐβΞζυ+IΟmξΒ9§,±ζΆ§ρ…$’ά=ΨΗU8[R%L°’¨ $½“Αφ€΅ώ kώ{|\ύ‹’Φν₯x6gΙΩ«‚ωΰpίν!žcλ ›sοΉD!όN"šcQA­―γν•άΏrό³8žξ―bcσ‡ς½%Ϋ:‰†g.γͺ]Ό―ΞΤf|«rΡ<―•Κ!‡ΓΒτ,ζcνxχ²²₯δ^_8Ϋ―TjύΡ¦J‘Κ6ρΩW›Un$³z ΄xτF”6σ€Τ~ΝόnοΫ [dύ~dΏΩ\Qϊ?šƒΕdΗ«’ŸP†ηάhο•žύ …‹ψp{MSυ–ΆpkG\P&0l§\Ÿ,ΣΰΟltΏ…½Rήΐr"~©ŠCex^^›ά­#Έ!ό.BΓj^D°O‹ί $6ρ»½ηΰ’0υ_DΏT>m]‘ΏTΞ<«2XΈ–2„Γ!L?~ˆι;±¦’χcv&€ŸόβΏ`<υ³ΓέA 3Ο—τδΞ—Œϊ ½ξΘ+ڟeΤ]|9cσ₯ŒζP|{™%yΏΦN?Σ™/±ΐΉΦW·Η˜`L€ 0&ΐ˜`L€ 0&ΐ˜¨ΑωDFi ΅Κ n)zρŸdq³lM2 ~ wΊζF>Zχί“ξ>τHbύ0EξΥj ­pΚύ>Œε™f#&¦RŒfμSΔkYά ’˜άπ ’ΐI]JŸΡ”7؞\ƒΓ7†w.zΡLΒγd½^œωιClΛ'”ύM―²~γ †[›§6Μτκu9yΗ^ΖΟz%ι―A3χρε|¦|Ξ…koœΕΉ^ΈHε’€bNϊ¬/cκΡ#ά\ž_^{ΎLτu‘»³­NX©TІ±ΰιβ|9Sωˆ©†Ζ!ΉGΎΥΎχšdc}Š>¬›ΚΌ^tλΜ—YN{%φ―,ΏtΈ…―ςθν…hˆΟKΊpω .τ{αλ΄+]Šμ°ΉξΗΜΜcLω3―Rξ?‘Κ.όπέ ZθΡ€ΘϊάΫ³γΪω~ yδE1ikn_|6…5Ε‚.Όχ£ 8Ι%£›ψ„Ž©WΆr:G'ρ_ΖΔ… »ΛSψδ‘p/! `ΩΏŽΫί“h'tž»¦*y«gΟ{€Rۘ™–^ΣξΑO^φΑLϊφΠς >zΈ™Ώf[>xkvŠ­ρ?Αοo?UΞ»π.ψП6ΫxBβ쏨η)hcθΒΌΤcf½ α΅YβΗχ~όΚ8ΞzUώ[«kΈϋ½]c>8hAFκψT§Ž££cτ œΓ΅ΙBγWžί•ϋY²¬ι}kA{³|ΟΠ‚ˆπ–lΆς5ΰ'ςΝ'ΌN/†₯Η~π Sά¬4KΪEΥ±SΫΪiΪfVh4rψ3bGG Έ0ω2.Ÿν…§Uz#D”‘3ΣδΏ$?˜QΈ_*ožEΟ£ΧΗ1ΦηQm$›RΟ0K ‹Έ³Θ°Rά-ΥΏž—λΆ^b&Ea³³K,t΄‹΅#-œA»ρRή q rγŠ@ΊΨεYΉόRYσ¬œ†ΣŸ7²·4…ίλίΚ„{ž¬aό²ψ;ΝεhKεε‡ώ…ηK6½ωξ Ν—ς€1?‘·JνA£ώ¬„rΖζKZ#i»„φ2JΦΕ.ϋ³<Ώ•R#˜ΓŸιŒn‘ω œu q`L€ 0&ΐ˜`L€ 0&ΐ˜`LΰE'πŒΞZ­η‹Ξ£Vύ·6IΒjp9²›ώͺδZqRνΠλOΟ+χπ}P•θ &ΩZΜ$hS0qˆ8½"ΪΫ܌£d ώ„V„$”ϊ²£Η"‹ΟβX"Ρ΄œ&έΓ’ΐIR9Ρ[ŠΏ(3֞\;`oλΐˆO‘« ΚXΘρ§Υ³ΚΩ²£‹Δ2>*œΘ½–'WfδMρ›D‚?}:FΤΰΦ)q³pΠενΗ›τqίώή•™•Σž ―έx γͺNX΅Εb‡Χ'|ϊΡνό~}3§B@-SΒVωγ`'a½]-1L}¬ΉKΎ¨FwΊΕ{ΫλΑYΉεΫ  •ΖfΒϊύ=EΘlνμFκήkΑψΤnι¬#θCΏWτ°18‹iŸώα#₯vaCυ–iΩE팽2„~ιΜΐάξ`ZLMθ"_)\ ‘#as'q σ…»2pΈ*Υα½Š«}ΩΧ“•ΉLΎΪ _‡ςiΆΐ»£»C}Ωc:&P:βd‘A‡οώκƒIΈ€ΦΕ/3<ΎaΌO9 uθ œ=γWρ7γςYς·ήψ•γwεz+ύ<ͺτ}›$‘ π .A ”ω<·£WyޱbΔΞyηŒΩεeOaΜμΟ8ά4Ηh’‰oξ9EμT‡θτl±?+j,rϋ³μβžρ—π~f6]Σg/ΏO»ςq%όRσ,σŸύτ:†tζhΚ3¬q?§ΐΉ΄y–ρyy&Β’χ)JςϋξςRZNƒ―~ x₯Ip’"θηYŒ•Υ–₯ f9—ήψ‘)”3³Ώσψ₯κΝ³²Ν8ќηΦΏδ§jnR%π‡G…/–άώ…ηK"ι:™/ρω/%υ¨QVR9£σ%ΥL”Τž¦\=l²?Cyώ,{ Ν—XΰœΝŒs˜`L€ 0&ΐ˜`L€ 0&ΐ˜`LΰΩ3fPs&΄6ΙmC0±ΐ « zξ’o΄©―‹ί­c&#°«£Ω’ΌNΎΝ>ˆ_ΠGNϋ±L‡–ρ0’!ΥμD—Μ+Βͺz ν,*bjΉAƒ¬†Œ6ԞZι΄^XMGHΈ₯=^φΆσ·gpdmDβψZΪ):ŽWιm=]Δϊ~‚‚JΛžaΗ―LgΑ·hΔΝa<~τ‰›{‡0. 5Η_~AoρeJCXN{jg#»ΫXρο" γP•υτβ¬O%φ_| 76·πY―nVk,°Uξ8h#%#Jχ₯~{e_/ϊΥζΜ­X{ϋW=Ώ4ΡΡ‡AE ΒϊΎx<'„Sqΐ…ή½Ž³ͺ1«σ³X€ϋ­±…^EήεΑEψM$΅ώΐΘύGυ'ŽιžIO‘υEΜ¬μΓνΓdŸ$·υΰςΐcι>ΪΔμΒFR‘“θλ!³ θΤ¦>τ ΘΛG60ŸŠή¬=^‰ν.œ“|„05υD­”’ƒnξSτxz}»΅Δ³tdY=š΅5Τήͺ,Ως_{7]άΌL‘¬—h ¬]Έ:ή“:Η5<‰Ρkδ}+½[k ˜NœiŒš¬8?,Ϊ™L3­nΌύ†FάέΖ½©%μ5΄γΒεα4Ρsξ:Δϊ _eόn%ŸG•ΏoγΨOΚg3ƜCX.`=…ȁW<ςb$ʈ¬ΰΑAΖs^;4©νσ y₯yΑ~τη~ξμ]~J F6q?πσiσJΫ©4wŠ6؟7yόYž „ϋύϋΕ˜ιm%WG=©3]“xg2€ί>H€XΊ_R.už5vnH#nΡ|p›τΊ˜f‹.wΖ}ΒNhͺ-I[₯̳ʘ—g΅[R†oxΖ₯·ΔΔ1½υ3gϊqY#+ς + ;Ίp‘£GJώΠf’rEΉΎσω₯κΝ³rYs2ω/ͺq «C”Υ άƒ»»πηρ/<_Κ3ί=Mσ%£~’ΐ₯‘6κΟJ,gxΎ$Zb{r±Ίψf& SYώ,Ο8ηš/ΙSš§(bL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0ŽEpζTkf˜›d5. t4ζνnˆR­ZΫVέφΌΞ~Œ·Hm$όψ> ŠΦ΄­Ά‘ΐ9Wj5wΰUϊ8ύχρUXςzI`(‹–‚‡α”`ΚfλΗλν’p`ΣΙ6Όκp€ͺn8£ 8Œ΄—ΛΎT~eΥΝ©*§ξήƒkΥ1ΡHηαT~`eŸLε‹vbΤ'G, αζǟαKYT|wϋ?ϊEBfŒŽMΐYŒφΑC,ΏώήO 0Νθλ#qαBͺUω§Δq°™-JδpΖ°›CΔRρλ₯@η+Υ^αώUΗ/y£Έ.έwBW7Š€r‡{΍βΌ"nΰζ§7ρε|ϊ½7tα ΞΫ4žΑϋ/³{λοΰŸΎ˜³L!xγ=Ό=*ψ63άnŠJ)έΣS‹›ΈNχ—°Œ Ώ··Χ„\=ηΌjdεωuΕ§dΆWΞ~δF$ZZΖΝ47ΰ‡?Βx+YH›ΞiΗΣ[v·Ι^=„­ΰ»€+β" Šιœ1³Έϋτώκέ )αq₯aŒ‘ΐY’–ͺxyκ” ΥΆt’ΐY”¦·+οuž [₯½θώψΫ/ππ@άΏ΅y€–ΩY.™ώ]τψυσιΝ₯οi.ΗτωχͺuίΞμobΐL‘]iΑƒΕβΕCNlD°Q„wulŸm.|³E‘ωΔ°Ε¦,–j΅tα’ΞΤ’ΝΪ…Βj2Ί0ζ5>Ώ’vζ'}2GٟΗ=Ώ?Σ―#°τ@‘šS‰xψ#oαΟ.‰3ϊ‘Ρ>τΐY»τ’TΏ$ψ>£σ,§]Ύ ΒΈω‡?H‹ΪΤ~|NQξϋZ$'§fηήΚγ_Κ™—ηn°π‘Iχ(Ζ₯iοΚξ|Cέρ:Υ…“;G±œΎε\ηΌf΅`Ÿ„άMΝfΕ­ξ„—πi`» ωύRuζYͺρ /ͺιŸ<+T` ‹‹4oΙ“ςϋž/!ί|χηK•πy.‹΄CFύY©εΚ™/ —Ϊ^Z'Oωϋ3a€ΚυgϊƒœoΎ€ώO~YΞeL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0‘ œO`Τχ°GΔΔd‚Ηͺ¨ζRYνΆΌ&½JYΘI ΞS,\gv`%Ώ.˜§θΝ+Y=° έd₯άVΒλ$€^Δ·;KxœρuάεC―¦lg‹,Ϊ 3‡A:‰·=R€hR΅΅ ‰δt€D‘3֞\πWκ’rιυΔՌ:coPδΣΠ «Ε΅©Ϋηϊέ)±£˜›WΕΝ©S’ψμξzy·˜\$”"ͺf¦RΪΚήΏ}/[ά,UϊπE–Ά›”(ζRF™_εŽC{“*f ύ©w­όλ₯΄nV½Βύ«Ό_j· β†K#!%αβw:‹JcBgΫ,耏£¨ƒΞ+Ή…ŒœTςξ>Θ7 ήΑ‡7UΡ~%ξ?αΚξheΊΐ­'λΚ}λΒ!ΛicΛ²ώͺΣ %²t| W}Φ<]Ω”KUπۍ £² cfZ^–‘6αί‘Ξ©δDG§Έm#ψλ_ό·?ΕΟυIΗ]θh—ΔΜϋ!lϊʈW‰θΌzQΦμ-=Δύ9ΩΓτ oΤ!Υ₯σΥ¬ϊQ£©¬>·‰ρΙΤ¬"nN\’Άdο™«!Ώ„ρΣTSͺί•‹–λ…zͺvί •ξΡΤΕIΛέ‚ΈYG–πΛu9ͺ³P W*4Ÿ0‘Σ$άψBΔh9Ε°ZΔ[q_λαΫqΞ©ή©³+f§άvžoφguλΟ²G•’ΦίOχ{S·fρ$*ΩށZΨ‘3α—„²FηYΙcωF£J4›²={OρpIφ‘rϊ]Š1>/WΫ+ukΈύœςΦ–ΰώ"> ŠχΉK³pr?žKΐMob ¨Σh€(Λβf„π;jNa΄jg!ΏTωy–ΪvŽ-φ/΅ρ/ξ1Όύͺ<žάžJŸ3d Ο—²ΤΕ|©~"»ηz9FύYιεΚ›/•ήž^o‹ΜcV·ώ,{„σΟ—ͺωiΩΆp`L€ 0&ΐ˜`L€ 0&ΐ˜`L€ ԁg:αƒλΓςΊΆrοHP,‹‚Ϋnη8ώ¬Α†₯X 6³ [Uq³ ‰°Ε‘'΄>»>ΡιS£RGWρέΎVδ$χ)Š{y*N˜ξ­bΦ>ˆΊ{Ĉj­θ±™°r ˆ—μhoDΡBŠΐmΔ5ο8(>0₯0ΎΫž₯ˆΞ$:°ΘQ³χΰ§(Οb2žTTϊڞΉ…½9Žo¦?Η$’iQSΣΟ힍"ΡΙi{gGήTΏύ~¬“ώΓ)\rEDTU ζίrΠkΩ'Η|πu:aoiŽ’)-M#‰GH>R•Tξ88M*«=ZT ŸΚΏ^τλΝ•[ΉφŠι_%ύ’Aύ‡ι~ΊwΈ…HΈ˜'`o.ιω$†ύ»z5oδέτ΄GB§_ώκfZΤΜ¬sςf4‘…"Ίi σ3Ε‰ƒ+rνG°›y9’ί“ΧΌD’Zηž¬¬a²SˆκD_Ύ&ΑZ*Ω†0ŠΦN{Ρ,ΜUώ©"D<>+=Ύ"λO³’ƒ v,ψCτΗωή”hO ˜θρuΐΧ*>έnZžςΫ΄ΘΗ%Υ μb™ΚϊZdNΫ—.γοz&ΡDξ%-5©‹>,-εόy܁v‡ό\!υjφ˜oϊΙyŽπh%_ZO ν”λ«vί ½±τΰ'Υ\Ρw&#X£hω Mvt›€±΅ΰ½φ>ΪΥy^iˆžOΨΰλL• γξΖ4ξΚχΛΑ6φž]ΐ[qόš•Ό’vjLΦίdΤ±?ΛTΞ―d=δ(bσz#Γ¡ֈ–Τ\CVtkqΚF ’Λ5Š$˜©o“ΧΝ·ΩGΒm»dn χCK9ϋt@βf½ώϊΓ‹xduαͺMΒ™`mΎq_ L²f#qˆφΆAŒŠZ9ΜmΟγ,Ϋjƒ€•#‘εΆ”'₯Ϋ“KͺίΫΑάοΤ³jΏ₯Fλ !°£oγq…ΝΊςϊ Όs^”—η­:3ςuή“‹;h|΄bœφr„υμv+q½dך;§2νΧΏJω%! ύ=>Θ.-]Γg‹΄Π ‰¨Φ"λ+;ͺz3‰0₯Άv#ΨΦsP:¦Tβώ χσ ³[L²a’ σ›ΨΊά“Ϊψ|]τŒyš*ί?Ψ―dγΦΣu¨q¦u 7”εΐε±a₯δμ̜²Ά±Ί‹ιθœτpσ:ΕΛ==^IΥΉοnΣβ9φχφŽ•ߍΆ6ω"œm‡§S)•cC~0δ8œ7[΅K:Ο¨Ÿ,uόςšTδA£~°ͺχ--2z_#nή /γвΰaΈm7(Ί­zΫΌ˜ΨΫΑŒN„ΩΤ ΕΜ'ZΜ°k†9°¨Š›S•λ1Ί‘%³”E_΄S­4χϋ³46uηΟ¬§πaZΜπΜΓ‚ίjs‘[-,&Ξ.«ζgέyΌŒK£“cηΫ12~Ž>R½Ρ?™Ηη7gσ.ͺ,ΞΏ”7/W{Zδ–Ε‡7έ.ξΟXLEΎ@ž4$°szΗT`Sš&ΟΉ.ΰ5ϊ­&€› ^8ηœΗγ—¨žJΝ³RFϊ‡ύK‘κψ—.όψύλ~° ikώρCq;ηΏ<_CSσ₯2ύ„^Η3σŒϊ3£εŒΞ—ŒΆ—Ωίbχٟ₯‘ͺ;–f=ν˜/₯ΊΝ,ΜϋL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0&π‚ΰΞ'2πΙόqeoΈΌ·Š"―”Ι0ζHΨΣ`ρbΨ,D4ŒΡγwOΔΔΚ5jΒ5,ΙbΗΰώ:nΤvď²Ν’¨ž)!“ †jnΗ¨ˆq#τ_HQ’‡Ν61ς3β's±DuΫΛΆ r’Hδ‹%sδκΤΐdšΈ9²½'k~μEIΨ@Šˆχζ₯~±κ†CMT₯‰ε ΕΖ j£βίb­―—’Ϋ+ΆπK½ΞΌηκR IΘψ$d,R¬”ΛΉAQΗΏΏ?kΡ—OŽγYΓ‰U˜ef¨γχ_2‘γσςΩ\Ακϊ9xΌ$Ξmχ`ΘG‹dV-μ•εΒ1<]¨‚Όyx„"GK†mΟαώ|.'Ώ  Fv‘}m­"αr—[‰₯]θξu`HYƎ“‘$Oƒβρύ{Ψ<$·’ƒE#‰[ƒ[Ή"uζ(T…μ’Η― 6Se΅οΫaW·² +Jopψ$Γ'Μ—ΡmνΐxJˆθ€ΫbΗLXoόŠœOΠγFy΄%xʎXn:£Q@K*gg1ΤιφgωAz–n~(Χ}ƒGK‹ΖΗΡ΅YV*gž΅1…ψ·>xiƒ>δυ){,NŒ_Ό‚ήv3ώρςŠœ Ϊ_ΕyΉ^Ϋμ]h“œiΒ°{γg€Œ3Νκ›C;pΡ3³Ο„·c,+ ,δ’™ίS§θ²:1(όhΆ‘“όΣ:=w²S‘~I(XyVvϋ9rΨΏδ#e—ν_\xο/^Sή\έeόζ_oη]”&΄μΰω’ξΈΤΛ|)ΣψβύDfIύ}£ώΜcΤœ/΅3λ%ϊ²sٟe3Ρζœz¦5(4_bs:/ήcL€ 0&ΐ˜`L€ 0&ΐ˜`L€ 0Gp>Ήλ ±ƒ―6ιΣhA{J₯•Δn‚„•->όΌ]z]ϋα.rιΔNΞς’Zv·φγΌEκB˜ΪΝ¬@½&8›δz„ΧLK‚%ωs­R4²‚ΟΫR}t›ε‘τjΩX±RΗν°²–‡ Wf]θ Θ¨€,Μ:OΚ)—XP>^¨½K}ͺ°uυΡ·ψηo2„”Ά#Œ‘ΐY–ZΚυf}“˜DωΓV"=g΅g2ƒ‚ΖŠ)C¨X¬r™ΤwqΧK§―=v₯w@"BbPAΐYj*½T­₯τ― Ώ4α:‹λNΊΞ€΄z‚?ŒτMAο;€›·²―c½3+–w°°°*Bp#f€Iœ[‰ϋ―ΈώD1Ώ²…+ή~:ݎΎΎ>ŠΪ„>AP,€έ5Μ­Š›•ϋΧ‚ΛԎ”Ν.κŠόΔΓQvΙϋ(ʻŌžsέθΔγϋΈ·ή€—Ζ=puωΠΣ,…CŒξa+eοS‘Υ…~°65ƒ;SΝK†§}!‘‰τŸv¨Ζ;…όnΉζ”sίηΟLhkN)—S¦GvtωŽθYΰΔ$E•ΣZp-χkηε“r|Ϋl=‘tQY|F:(F—£~|³Ή¬ ¨¬τΙΪͺDkΕEηΝΩ^†}ŽαIόεΥ>4 ƒH–ΔΦρΏΏS0‚WF5EοΖ5]NA˜[μ™$‘‰œœ­‚„7γ\›ν²φ;J‘­uΒ*•žͺI `v:CάL­χ Ί ‹›ƒ#q±;9«Ν !0¬,W§MέTΞ8xM5Βx xππήxχ}Όή©θ]Ωπ%Τ!χcCΪϊΕ¦uyzϊ偃-lΘ8?Š5F>)D}ΉΞO΅l([“kΗϋ[ι=[UΤΑ­©₯#Y#Ϊ¦[ΤK \Sλ¬ΨΦΘƒσs«_2^ήΐΛnm-Ώ‚Oυ9F’Ζ}‚φ18Ǐ@IDAT©_Έ^JΐQw9;λ%ΐΨΓ΄τpΊϊΜ&=˜φzΙ&y±,sωœϊ,ΎuL골 R¬—hΰE‹'$@$@$@$@$@$@$@$@$@$@*“Ψ_ƒΙ%jΕ6bΤ¬I¬Δ+M½Έ^ϊ5}oό~νf^~χΦ΅‘C³>>XΑ“uΕ ͺQ(EOU-φw–16φŽΔsV΄βnSkψ‚Η·1”ή ΐ/ΖΞ5ͺΗΆ} ‹aεt8f-ή©s‹ŸΊ`XΪρbN=Μ@^8οΰA₯Á¦*νGnΉΆYρ>׎ΣΥΥM¬HFŠΩΈK/Χ σ©₯5 ?hXγΎά‰Ύ{³!cΑ`䁁vΥR=ΫΨ„‘―]3ς"E(E…bOε,»·»"Q’‰ΗάΝcnC Z%―Υ†™΄C΅ζ-V)ςή¦AΙμλ/GΗ1φρό'Ρ>yJΦ©λ,€5½T‰ΫΝύ¬FuμϊπΠ3„‡ρΆQq΅ΜŸ ^1[Β`­b” άΈqΟΗοΕ{κsŠ1qσ±xδφ¨ρμjFflObzv-ν’—zπ²C@ >LΝΜj'IΏ·tžΣ ­ΊΒιίΈΪΝ„μωψdJjς§ΜnωΤ5 ™——W±:_‚™έ+θpΈT£gEΐκZd\[₯ΠŒυz?žŽ$π–XӌkuΗ ΅ƒ’O|ΠνώΠΥUoY‘έԟ—―^FίODΦ\Ζ•nΥ§±λؚήŸέiΟGφŒΫττY[ΚΫ)Tζ ΄TΤβ‰ΌB:ecWWΨλͺxΡΔθI‰œώzB"λ ,ΛdŽŽYsυΤ΅£W3\”?ΣκZ«Τ–rκλ•›ΗΤgΙΪΕ¬>‹Ξ« }WZ1t!rΉ§—5Ό» _pzˆά:J­—"ΡΝ―³Δ[3<Γ c«>eκ׈Œθ£΄υ‹₯uy΄,ε,=ύ²‹{ˏγ«WJρzΛ+Έͺξ―ΰρκCάΧφN‰are9–|ΛΖ›Ϊʚπy†ΡžvχvBΟΡ’Lι%Ijm-3·ΟΞΏ~yεΞ[ΑΝʐ9\Β'Ώό S<£hmfVΏp½€‘Kό}ͺλ%›τ„RϊSΥg’Ώ%=¨Μz)yŠΜΌ Τgɚʬ>‹Ξ+ωz‰ΞΡ΄xF$@$@$@$@$@$@$@$@$@$ NθΑ9λύΐιμΒcέ…ΝΜΆ°u|„Š’jtVΉq)lೃ‡ήΙτ<Œe½i ,kΑ€+b,1Ύ1Ε„IθjΈŒ1y[ΨτbQ<<ϊΕjΉ°͎: Šρs8ˆ‡ζGήΥπ©ΈlΦˆ–’Ϋu«G Ψ,¬Ζ:ΙSc*ιΎσŠΑ―2‘§­κμQ΄;ρ«ΪΎΕƒ³f^Ρ~ q§O6p$nύŠ€0sӘ ύΠξŸΓ³[}θW=;Zρ£ΏŽOΎΖc1<Ύuν:ξ^l*₯z:5‹ˆ)‘œ&δEXˆρά›oγΰΫQ<ΨBMO^zρEt+εH+xΕ{ͺxω¬U Ηπξ{o£f|Y^ξ.u,:ΖκΤΖ’Œ§%š‰vh©μ@_y‰šδψ€ΥευŠΌYrŒΒ‚μΛkΔοωC<ϋKlύ ΑΛLžωϊΦτR)n_zA<«‡*%F„»;”;ΊρΆS~1Χρ™ΟφΫΗ†κ‘9hQά*ΖαwNfΔΫε 2/΄β…ͺΘZΑγ_‰l`κfj=!‰d£ΚŠΨεΧ¨\7šϋPΈΎˆ™Γ"τΉΪpS'oΞ»ΪeC9΅ςζψ7υ™ϊ,¦­»oΎ‚?Ε#όξώ4jzε w„7€,NΞG6I(ι,θ₯ΘZΗμ:«―ήύ>Vωπμιf—V°κυΛΫ2*qYŒ°oΏ ­}π¬$Πγiι₯bVΦεJΊΑPΏ$IST%λ;νΎxΟ–ΗŠp(sαe1`†l‚œ“ηŽey{ΗΆe[NL0©—¬­³bdζΑιyΦ/·οΰ{ΚΖ'ΕΈYY,ΠπβKxΏ0zΝ 9ί[›Γ§CΊΝ\/Nο=Νυ’z"Q­νΤg‰d(Χ“ιAεΎ₯υ’’0AH%/A²\½L}&-c—>‹iδdλ%³Γ#&kž’          œKτΰœυf­-šU΅ŠQO«‘ΑgO=γx¨yΛz νXŠ—Δ#£f"·»3‡[I\Ί–9Q­Š-&‰ΈH„ύ5|Ύ2γEm c›τΤ‰g: ŽςfάimVΓΌψ|Q—.#yα\Οζ@Ό³ŽOτ£₯'hζξ½yCh8ώΓΤώΙ­ q±£ /Ώ‘|"9':ΊuσUάν‰1ψΦ"Λ›ώψ}γθŸύέ—β‰zΏύjυξ@‹θ‘Χߊθ!-Ής4]±‘ύ`BοκΛ‘ΦρŒΫρEτTW#HO<ΤΧφΚ'Ύ΄»;σΈ·¦Ό£@L'Τ€[ρ- _{σCY#^»$}ΆrΌΆ9…ίψ"£6³rΖdžΛ§Τg‘Φ±AŸΕχrτί|MύDuΝ9|ϋeδύ"Κ=+z)σu– ύW•Ο@Tρ΄“Ωά³ΎΌ eca]ΐΞο’r„³Δ«τšΆ;Pd΄„ίάQŽ6Y―Š©s‚|&{χLf^/YZg%(UN_>ΗϊΕYZτjkί–.Ό˜`·“―Δ'Ξ‘–βz)Θ"ŸΦK™λ‰Hϋg|”DŸ%Ν;e:kλ₯„2SΚK˜27oPŸ©νb‹>3±^ŠΩ2’›}ƒ₯"         Θ2zpΞ2πΰ+Jυ&[ϊxΆπΩά}|Ή%ήkσ9”ΤΓ]‘ξ`Τ7Να§a΅χ±΅ox'xρh SΎIόίωQŒλ=°…’,ϊΖπνfΔHIŸΣΪΞ~3χγ:Γd(OŸΎxŽŠ ‡.ξ’"d~ςΝ§ΐοΎ›ΑΚζΔ7*μκ+ ¬Ž?ΐί}ς3b§k&‡εώΗO>J’΄εyΖπ‘"kΣ@ξ Ύύκ fBε=~€ηβYZΌ‹ψςαT˜Ωͺ>°₯ύLθ]]ΑΣƒ6ŽΫΨώ™¨?­αΧs£xΆΝ1\t™γΗ½Οπ³εiΔΩVš]O„2]ߞΒG+3πDO‰‘»;˜X†W΅žΊœI9Õɏκ3₯lΠg’;΅ΉsebΜp~π‰Ύψ—_~ν½Y€[K–ΧY»X›_€Χh}¦vΩ-<~„ŸΫˆzfτ'=ύLiz]n$0]ύb”VΥ•† œ7φŘ]―θdKbτœ8μcikžθ™Μ‚^²ΆΞJ\Β\Ύs^υΛn@[}₯¦Ώ§>δz)/ΧKλ }79E}¦{œLjq-­—΄Δ1ίιΘ‹I’σ§ΤgβθΫ}fb½TπόΟub¦gLMM©Ρ›[Ϋ “}ρΙG†Χy‘H€H€H€H€H€H€H€H€H€ς…ΐΰΰ ZΤρ‰©|)²νε,ͺnAqCνω^€ Ϋ1―VwnΥv ΕQgQ J p,Ζ…ήΐzCٚˆzλΞpW1N†?ϋΗ{a3YΨΥYR†R”‘°8>9’WF0H`SgY-:Κ(Vbλ`ΣΝτ$&²œf*/>ΗάΎΡΣ‰z‡ψ~Ud=ΔΪβ4f’ν1m«€*«Lρ3{Œ€΅LΗ™­Ω&+[e»Ώd[žςΎν³ΦKΩjΛLεT76£«‘2θΉWΡ5[››ΧΗKΘζψ‹—n•koΎƒχ6¨/…ΏρNjΏΔ˜kq­Ή₯Š•½l˜Ψ?ΨΑΊw §€ΣͺkD–R„ρ@-†Χ ·ρίήθRΰΩWŽ†ς_Η©•9ε?Nyε{‹xψ+‘yZ G»Xάρ'ίŒjρo)ڜը*TόFžˆΌ=‘ηK)/ϋε΄X=’QŸvκ³Vw;ͺKΥωa_ϊφΠ)­¬³Ρθͺ@II±ZΖ£½-,Θ˜ΔΫF¬w2³λrλ’,¦,ͺD[YΚE?(ΟcJ88oΟΫΎ(ƒh‹Ή$»xλ,κ{υ‹A§J}‰λ₯Ԍ’ΕΘΊžHV˜ΣΌgm½tš%Κ΅Ό©ΟμΥg‰ΦK©ήT”kύ‚ε!         ΘzpΞebΠ³›ΨπΦ Α…Έ΄-†cۚwP 5ήή[Lj| ™ΚKWNΔ›™ƒζ,&›²²T%ι›™υO³εΜΆ<ˆJκ₯τZΙοYΖcω˜ ηkL΄γZΘΈπbψΙ΄φΔέπ`H>§h¨ΩΕͺMϋ7"^§•ΝΧ».…Eο¦οΥ1œθ‚lοω0.Ÿμ…}Μm›7έΜ~9³G$Vυ™½ϊla~ Α½±¨m=·:§¬z³WŸ%Z/ΡΐωL»9…“         @Ž81υςΏ­‹E$@$@φp֞`{=δjΦ ϋ|ΏoP₯4/Νβσΰ”_ Εϋη€x4>‘uΰώRΌ4ΟOO`vΑƒ₯υM‰ύl)Vy}Γ£zγησH‚u:ς]₯*ϊmv1τYϊ<“2'j|ζϋύτ ] ύΒυRϊ=‚1sŸ@Ύλ§Tε·ήΩΡgE―½ω½Ώ1Sȍΰϋ{*«\†Ιf'Η ―σ"          δ FyE―Όλ§τ>σ<QPβ@QeπσyPܜ,’ ›jΉό¨ΞΙς%*TKgΊκΐώ††ηC΅H›ΧI€HΰβΈϊG‡RιC#η¦ΛΗhΏq”Χχ“o§jνΝΝMx}›ΨΨ:Ώή‹«šΫq½Ν…κšZ΄΅·αj_{άh¬7Γ‡{_|ƒaŸOH œύ•Lšm‰‹ ΟΜ2a|°J€ϊ%šάEΠ/\/E·9Ος›Ÿ·_6τYρΨΠΓΔ%0Έ355₯^}>ςΨΰ./‘          œΗ磬…iE…E‘4…ΰk Mγc  @`k­Ν½Š3°ςΌ0\cΕxGΉžοχυu WŽa[[λxΎX‰––:T„―Vζ'ππώ7ςΔάΰ) δ8σ’ΏιίΗΟβ‘ΐΉ&@ύr›7aεΈ^Jˆ†7ς@’υΕyΡoΉώόWΤΧΧχ7fϊζΑΉ  ρk—ΜδΗΈ$@$@$@$@$@$@$@$@$@$kθΑYόR–”‹η 'λ\kŸ|)OΎzp.«ͺFΩρžx0_ΗΔΜ*vς8ΛI$@Y"°± 5kFΞAOΞڏΫΛγE˜R6ŠδούL<8g© ΞT̞o £γψφΑ†'g1&ŸΡ±)%f“;tΎ Κ”A$@$@$@$@$@$@$@$@$@ωFΰ„œσ­Ιμ*οδ“˜|bWnΜ‡H€Ξ'ΝΛ•β±ΩY{ŒΚϊ(ΖΝΪuν;_οŸΟV³ΏVώ ?όφgΛI kΊ_91uώ*—f Κ*Qκ~1Ν،fD σκεYΈnσ          @΄RN†—I€H€H€H€H€H€H€H€H€HΰB89ΎΠΥgεI€H€H€H€H€H€H€H€H€H€Ύ œΟŽ=%“         @ξ81υςΏά­KF$@$@$@$@$@$@$@$@$@$whΰœwMΖ“         @Πƒs S          €8Qα5         ΈθθΑω’χ֟H€H€H€H€H€H€H€H€H€Ό œΟ =“         @ξ8‘ηάm–ŒH€H€H€H€H€H€H€H€H€Ξ98ŸσfυH€H€H€H€H€H€H€H€H€HΐzpΆ„‰H€H€H€H€H€H€H€H€H€H€2'PœýH€H€H€H€H€H€H€H€H€Hΰό8>UΚΗU’§ά Gq%ΗG»XΨZΗϊ)ΦεΪλwρή`vV'πα/ΎΑΒ)Θr–8PšfΎλ»Q1S§=ΒϊΑ~TšθaκŒ0έ?άΖθΆ/:Šξ,syΊΜxhL ¦?ω~?\rwuzݟ5ŽgηUg5J€ύ?όΫvfœΫy5\y ?~« Ψ<Œ΄Έ[ΣίβΎxΉfσΡٍ#sγέΈΪ₯¨-)RoνοbϋΘ8VπͺYy₯h,wΐU\޲ΒB'‡Xί]ΑάA29Όwκ¨—Nρ© ΘU=_Σ‰Ώέ‡ŠΒcψfžβWm\i9Ϋρ§ίTη·­Εgψω—“§ŽΩ>fυ§UΙφθέπΌv,λΞ£dλN­œΦλη,«FK©¬] p|r„=‘η ¬Γ“t>δςΫvœlGšυ ζώτ‰ώόηLτηiκω¬Γ2h]Ÿε–ϊšyE΄ΙQͺŠJP¬―ΰί[Ητ^2}mΟό¬™η‡ΤΓ"κk‹ΰ¬&s Γέ€šκr”«ΑD`ۏ©‰eψ­fΧ4pΆ ιH€H€H€H€H€H€H€H€H€Hΰ< η3nέR\«λΑuW±%©ΫΒ°w χΆ,D›cΤyii™z^QVˆSω‘¬?lνBM”ΤΔ'SkίαS°Ng~ΪԚ8²z'€ΗKχq?Ϊ.Z½Σ㺌[uΝ¨ŠΙα/ώΰyŠΡ½θ™Κ‹Ξg ”ΓUλBD(Z/OΝΆ}ψοι–*λψΩ?ς;›qϋJJpŒ…) -t(Ϋ $eI^iq©’ γ˜ApTzz/}=«qdvΌ7g5ήn½Žή ZVπΡά8<‘ΝΙ+ΕKύ諬ŽΧρjή½πlΝαžgΖP–x^²›@.κ%»λ˜kω9qϋΖe\μP7Ό(Ε{ϊΥoπ«!―ω’¦£ηΝηjOŠ1zjͺSη  ΏΣž<΅\*ΚΡΠ€Ν§WqYš΄"+ίζτ§>₯™γΜτn‹pi)«@M‰΅bp\άχ"ΨΑΧ 1³†Τ—ΜjύœεMΈεΊ„ήŠJ}v‘γ}<“΅λ[[χxιT p~8UΌ†™gc~°Cj…?M=―Ι8£o«ϊΜjqΝΚk«κ@Ώ³#½ ¬ν,ΰΑςζ’ ”Ωό••z’ώσC|Z^±•υ΅­8fVӎ»/t£§χRx χ5/}7Œί>1Ή©O·ž·Έͺ*OH€H€H€H€H€H€H€H€H€H€Ξ#ρβ\pzFoη™=urΰ•ζ\—Y ƒxulΌŽΒ“ψrϋ4Œ.#ξΰt>^ ‹bεbc™3mγf%Γγˆ7ρΪ’L’ rŒ½H’𝁆λx­ͺ:|uPR‡7κ»α]˜Œ2&ΜD^Tώ³*ΤΌΌZ 6΄!ΩvθϊŠVό ΅ιŸϋ3™ *—ξσƒAR^²›€­γ:uα.ͺΎnu»qKŒ›G^|υm48ΏΒ?|90Zμ =O8Ηα9          @€βΕΉ€0²M Gρά¬3nžσMβ‘o‡% ΈQΫ…žςR΅HW]ΝݞΒzΆ ˜‘<Ϟίωφads,―ω©ν@›&#°€!g:WΨΐy3~όEγς9`*ΖΠ€·n@gάΌ‰υ<ΩΨ@½Ό²τνڐΉŠ{v;ηαَΌΆΦͺ<­ψόΞA5—q₯_ρ­„% 3<Œύ«3¬?20˜žρyΆδyπζ~X‡^禌 Ÿ<ƒl#«γ=Ά=’7n:£Ν-·؎‰hI^aͺ»6vΧ°²·…΅}ΙχθEς:νφΚρΦ”[Uшeσx£ΣbŠΐΣ|'^Κχz–Ώόπm\ρ*o5έ‹ΉΞsgγOΗ‘8Ξί^rΊ•ΛBΌlΝGRKϊΣ*‚ τ³Μ‘3nH tξ _»nΉ~Έ£3nή•΅σΨ¦‹(-*GcyWW`c?ψ†«H˜.δΊ>;U„y_πόhŸ­’ͺ£Κ•²΄–λωfψΆ·†oδcκρžβdYuΨΈ/†ΠzξJΤ–jΖ†Ϋ˜Z›Ζ„q&ΡWKš1ΰ~κΖWŸβσЏ™λΫ›xY œjŠRTˆΡδ'Π`°(/”š_I8PšΩ―σ@ž­¬]mGK¨h‹ΓΣIPΜ-Χρρι²lΛS«]·= L.gyYοΡul¬ΊŒ;ŠήP\ŠλΘnξΗψoΆ*ο`N.G UΟό˜–qQΪq!ΉΩ°―7(ΘΕ»”zιά6ŠζΒL>ΓD οή ou2]νtυΌιŒνJ°½ŒΟΎ0v 0ΚGζ]ΩΤΡ/©Lb³6Y՟FΥKηZzw{oίb` +Ϋ>8]WπƒΊΰΉ΅ƒ]γΝ†–λW;΅m‘΅)Δo ­κ_ιΜ+ψf-Έα1ͺ3N†8?d0ƒδΉ0?΄Κ‰žOY*λ,λ3‹"­Κ;ΩΗμζ<–61±§=ΣΛ°(›  nβεΚΰ υo*Λ`~ΠΧ0νη}"ΫKΐ`ΌζΪμ­pnδΆ΅εΓΣgCxϊ`“Q»=υβOϊGθW73V’±^ώ”†sμz>[ν˜DY           τ ˆ3Cv tV5 όbGρ^ό•fά¬γhβόηΤ¦αFc;ZCF}›[βiVoKXT—Vο½€±1‰ΖIχέ#L΅WŠoŠΗkΝΈbb{§©K H”?Cλ=–[”§‰vχαξυ”ˆ‘μQ‘Ό¦XŒΊγΣ!¬jμόnμΖ―τγj‹fΐΚό~ηAsŸΥbΘΊ±0†O‡b ͺδ½?μ…KΚ·γy†_οΌΪ–&Έ‚Vίπ­―`jό~ϋdA-qƒ»WΪ›q©‘ U.T„βaw ‹^/f§žγχ£ Ζο'bΝΔ€œo^Ε@gκ„‹O)½‹3Ζ½i}όΜδeΤZΕ,|›ξΧŽ#³E΄<ήυ‚nΌΥΠΌrΈŽ…C§l&QtΔΦχCžήBρm‘§—­γP™~CΊ0fθqE°γυ’ z)Ύ!έΌ…k-p7T†oͺΊpΡƒΡΡgρˆβ‰ fτ’’°οΌ{E6ΙΌ°ψό•Έ=؁ξ¦Θό2?>†Ο?ApV¦ωΑ―¨sΙΡξ2~+χτΪN+NCο όQ_pΓΡϊΜ~;€Μ‡ΨέρbΖ³ˆϋί‰QΔΠ0p[Kbα;žoΌŒ?}ɍrPΎ™Qό&n>ŒεlΗϋow£R|­οxžγWχgΓϊ½ˆ.»ΡΥ«x.ΖΩΏy‰N έΧnαΕVt{gδ…Ψ’Ήω·ΙΚby YQ$­Έ}#Uϋe6iυ4;?œŽώΤJcφ;…ή=ςΛ›?"½Ί­T[ό›βΤ(X­_‹«=‘eιΖv¬q³^R΄ρžώNΞ[ξΧ\·&k[ΞΙθ(χΜΙ qνΖKΈy΅-ςμ±+|£Oe>Π??D[Ρσ™­η­?εΊΎΆͺ?±·‚/’2š°A^X°ξΐQƒΊν\<†Flλ΅‹9M½d—^5΅θ˜Ύ W›"λνnX–0ς‰N7™ΦK’cc Ί:/užlvΉͺ —Γ-†Κι,Εϋ«GaCζŠ†KθPυtϊGFπΑ>—žΞvt΄gς€8ƒŸ~ό›pξΚAdVŽΊœΦIb=_Œf™“]ΎsθImΰά $Ύ2o{χζC²λpη‡―βεφΨ¨ΝT7^m€»ΎτiΌwύ₯vt·Η·27#sFγHJάΤ2ώ²?Tτπ—Qϋe2…36Ήξ9%ύ)ŽΉ#Sz·R6άi+ΊόΓηˆP«υ«F_₯Ά-o £kʚ‘²..£υ€kވτ\>Κ¨_sέjά΄œŒΉΔ\M±CΟg°ž—6ΟδωΘάzήͺ>‹˜ξωiΙs‘£"~ώNYͺtζSΟ)%ζLκkηΣ_Ο'οΆεΕ‘-»{‡©nτ5 œ“3ζ]         ΈΈθΑ9Λm_Šͺbνίφlμϋ δ—£"Λƒsγ’oΦD^Η½δ[ΔhŒƒ₯κGψuέ5•]ψ©|΄°XΓSί †vbΌθ•»Π¬ρ:πa>δΊ³ζjψυ΄ZΚχζ~Δe΄%yϊΜ’ά4*7Δϋ“ώΎ-Ǎψή›:£αέU<™†Ώ°ΧnφD=xdΖZ™κάmα­ΜΞ`Q ²U5hko04ΜήY_ŜgΎ-ρΎ,Ζ7­mβ™9ψ£qΗυqgyŸ…_=ڌ»ϊrnΰΑΣYμ”Υγϊ ]qΖΓα‚ΘAί@·ΞΈΩ‡gΓsX7ζ%Ž Τ5Φ£ίέ ±"?˜ιΣF7c O38χadδyτmx0q‡E88>AY­x j £­ΜN qΆ)ΦEJ(<ΑšGοΙׁ;oί7oI9gα umέθ$φΏτ 6<ΏΐοU[ΉLδ‹‘ό5Χ‘t–LφλŒΗ‘™‚f0ήƒb*ρfSΘ‹ό>ž a΄ 7΅2μ’=°g,OΛXϋv §ΊΧκ[CΦ€Η·„Ρ#ν~Ύ|S/Ω§—΄6―Γϋチ«ŠΊ …ω‰1L‰**“W=77α²xπ?ˆσVτ’d~pηQί·8…ΡΉM8.Ήq£=΄¦₯7;Ÿ…τό2Ζ&WpYυοBg{«8+†™ϊЎφNm›&TοΝϊϋv'ΡσβνySΌκΛλ±+jΔΘIΔΝ$Ω][žϋV‹TΟάΡ)Ι»RߎπB·6§θ‹šξό`ςωA/"§©―Ήž·k=_ζϊΰφa₯Λo¬―§θωΖϊZϋOiŠΔΌM$@$@$@$@$@$@$@$@$@η‹ΐΰΰ`Κ υφt%Œ3>1•πήΉΉAΞYnΚr”kΦΈb°iΰ@»³ΆAš,ν”Ε΅Έ:Π_rΰΑwή 1‘^l8' UευxU>.Οc|±1ΒΜλwρžjΰVŽvρ ιIU`λ@;.kΝ·9‡ύΗ/τέωχ<Ϋψο^KhδμͺΤnαήΗ‡Œƒ#υψxΕl/KνλΌγFwΈ Ύι‘ΙC;yψ(T. ϊJ‘8χ¨·ΌsOρΫ-φ}© ½nΝ3§χ>ω ΏΧŒ»Žcσ‡ίŸŠa_9zϋH‚V-Λƒ΅vЊkλwŠ~mϋ8JRψLΖ»’νΖ^τ‡šqnύ9Ύ”nΥβŠl¬X; DyΥΟTž"s α^«p`S MŠKΚΓ›8”{k[ΣψΤ»ͺζU ^μΤKJγ·τb0lάμΕ½OοαχΡ:©ϋΪ- :u’^Šνl‹Οΰο? ^~2‚;?ΐχz•9΄βέ<€λF¦–ρ†θe›KGΫ%4ά_ˆΪΠ:Πρ ?±Φ΅±ς29Oη=πx}2gJ εΣΤ(Ξσ€&Ώ±F›\}X[ρξkΈΥ©ΤN ±m0†‡³Χδ-ΧԍE/τ O œCΤΤ3#OvZνΌŒ1pšΚ©·γώΨ5Žn?«σ_\ΙutέQwU=΄CΖζ™ξy¦zΧYξΏQ{¬lB±ZΏ‡3<T9šρ‚ΆU¦’w”έŽ‘& dλ’ζά‘]ύ:R±‹½nU8p~ˆτ†dGΙηγ”ήι'ψ[ρΤ¬ΩιΩyόBπIόro;ZΕΐYΏ•Ε¬žWζ+ΟUJyμz> VNώ搾Άͺ?Γu18hqυβΠσΎr{)ΑB+σƒΩηƒβεδ%κkηνZΟwάΔ­ΠΖq`SS²NιλΘκ’$ζ-          ‹GΰD<―1d“€~ρ ₯hͺ[3©—jx₯FŒ‰΄p°-―MΧNςω»7κ΄Χqβ½y.:Τͺ―ίΑάΦ’@Oαλ΅i<‹ρΌΤ_ηF›.mCYΔ2dcO1ΡmΐχšBž’Őϊ‹•98Δ¨P ‡aoVΦδiω(ίϋαΌBW塜v{ioŒxΒy>26nV%ΏΰρΈ‘πPy Ύ†cά¬ΔρLγχ'‘™=Ύ(ήΈ9”ΧΠρZ:.{#šυε‹6l›Βγ‰Δε<:ΦYοθCbΰ_šΕΠ΄&U»ϋ݈k½ŠΏN%Θ+ߟ†Œ‚ VF~B+,Τ¬ο £b £1l νŸˆ7«ΡwρΩΓηΠjX'ZIτΉ™‘§€³zyVΝυλΜΗ‘™rZο@Oν@Ψ«ϋΖζ~³τ,U§ΫX±ΉmHŸ‰Ό`½Δσx©C‘xο1nΖΦ$>τΜGT›aΧι@ƒ|ͺΣϊTKΌ¨Τ¦O¨—`³^ͺΖΥΛ]αv˜|ψ$ΞΈYΉ99τέ n*QΞνΠKŠΒ“z3]ΰ›η‹a}ζRά!kai3š=~C#ΒσCχ;Ϋ"kšΩΉe-•ί©υΌgM\8«Α…ϊΕH[BΝeόΕOŒρW?ΖOn·―‰™r}mȘyΣ‡%1„ΎuΉ%μΡyώρp\ψ•Ήl\›‹ZΡή[ΚΛΰ«$2ΏάU/Ω3ŽL΄Ÿ fη#-©™ω!sύ©I5ϋΉή­-ŽlFِu{pΆˆ.‡΅ϊ•’‘TQΐz—ΠLω¦πωΚ3<ήΤKͺΕ€+2¦’₯›8γόηλVΞιυφΤσC|>ςΆ—ΗΡΟ #ߌαωn(fm=Ze£L†žWZ]Οgϊ|”ΛϊښώLΨ¨uvαNnKQ`ίl¦†l]1».·ςόΈ€)ξP_S_[ό?Γ™ηϋπ½W#ύx~$ϊVqέ>±ΎΆϋiq’yH€H€H€H€H€H€H€H€H€r™ΐππ°©β₯γωΩT†Ή™œ³ή:ώCΕb9hp{ΙՏ?.tb:€³ΌΧ«"ΖΝΚo«ŽΓύ°ΡiΦ j£ΐ+ ξˆWκέy|»Ήeϋ.‰w摃­hC<Ζ*»πNckΠγ]QZ₯˜ΫVŒC*Q[RΚkžέ"άnιGπ₯π[ψvuL<:‹q΅Cσšν‡GΌ<ƒy‘€‘―ΥΡoπ-O T\bν—ΘΟ1»Qή,£c[9«Fm΅V?1ΐš7[φˆ1LoΘH+•ˆέ9<Υ̘“G–Χ4ίθsΓέΰBeY‘xύ:‚b{\$ƚρbΛο2saYΚΩŸ2X Ι_ •Έύ'‚ϊg³˜ZXΓͺw š•A(J‚/ΕΥΥΠπΩYœσ YΪ—βW «kkΪaδΫγΑ’TΡ₯”! Ο‘‘„ɏ̡CςΌ½k_g>Ž-W&γ½±²w΄Ν#bτπϋUΝŸθuc…RŠ6φ5ύ œg’_”τJΨo€+(V†ŠPUVFyuφξΡ>R¦χDΗzέ ?§χWŒ7ϊΏΌœΤSl\F›SψΩ?ή‹ςJ'α…ΨρN½”Uϊz©eαWͺ―`b4ž©‘ [τζΦ£νϊ™_΅½U;»zCL?žΟ-ΰFƒβέ…φŽvόA6 ¨ΑٍNΥ‹½œΙ\39žή\LœήίtxNz|bœέ¦ΞS΅ͺ³­ξzΈ«‚λ.Χ₯FΩ5‹UΡu‘9Γ's͌Α]¦­δψ…›ψλΦκ؍*]qd3Œ£,3 ›Ζ‘©φ‹ͺ‰₯“τη;τ§₯"J’Μυ«42ηϋe³a|°ZΏZT—Fϊ™²!λαS<ΤΖΩφ*ό'Χπvup½TRV ρEHη η‡s°nεόNWOg~ˆΛG6ΜΕ=²ˆΗζE.«Ο,E(SuAzΟ"qωλ.X[Οgφ|”»ϊΪͺώΤΥ*onz§)τεϊή ~³8‰Έ¦UӘ›¬=?θ gζϊšϊZϊ‹ε3˜ZΪΈžwΆγ'?Έ~υΙfΐ_ΜLοκοπDM ‘BY¬_™Μ9Ίn3㝊7‡r^ ˆ8[%NΗω!ŒB=ΘΛu+η‡θF4:Ks~ˆMΊ΅§>MΖ^ŽœW’¦Nζ…ωΜ œ­η3>’Ή.­ηT‹ϊ,Κδ‘}ς”·_½Σδ†φ―”έέ|Ά4•d]mb~°όό`‡ϊZ#ό¦ΎŽβ‘κ fΧƒφ¬η›ρΑ{o [ωΗ₯VΖρ―Ÿ ώM―£Ÿ:fΒ$@$@$@$@$@$@$@$@$@$@Ž œ³ίδGkψυά(ή¬kA…ξυζG[χ―‘ΠΡ‚žrΕ»[@ŒνΔ%l^‡Rάi θΈ±Ήˆϋ#ή?>Œ'!ήUCΕ΅pI-zCŽξ–|ΟπyΘKtOΉ3θωY’xΔΐ9]’†ςβKWWΌΎΤ¦;oD7ο¬.αω‚ώ]ωY­P>βφ­:‚υ.,4¨%‡Ο¦Βώφ—ΌβetΉλ ω¬VσpΈΠύΪjΛρw?14rξΉ,ECWΗρxΒb'K«ΠG8Pϊ›A8Jpέ jκK·Cjوaλ8²8ή―U6£F«lA1z― Ώ t‘ $β‘Ό¨Χ›ΰκ‰β•z‹ς4Q‰ΎGΌ³hp‘KΡW%N4ˆuς’ζ.7Q’dΧΕ{ψwGQa4 Σβxί Ε€3υ’΄‚lή)Χ¬s,5Šu½tt`0·&+ΓΖζΠΤ"›oj›Πν–ΝXσt΅iζΒΜNž‚ysΪz~o@Κ%ε«©B·.777«U‡KmΥθoΌΪšgYnΙŠgaYΖe’a₯lδΩXΡ{|Oντξ™nΏΣ+JtΞ§€?£…€fJοΚ&ΊπΖρeΎ±§χb’i΅~²Œ /ŽΌxξ‹ί"QZ`v•„η‡ό_·r~HΑƒ·¬>ψφχ Ÿ‹ΚΚts†ŒΩŒB&λω Ÿ.·U}–Ά€˜ˆ6Ιks]ΖκšΓ™olΝΰίςψ‘u«~JKα*Φς `c?d’ŠθlAvwζπ;οj¨v\*Χ<7Κ+iιšτ%—fΡ"q σ8}ΟΒ™‘Art>/΄G~(žώπeŒ‘šσ}bଙ²i©Γ;^ψ Ό˜iIƒίK“ψX>sτw-κΡΣέ‰1lVB…»/υŒγΣ8γen^iWγ(†Η¦ ΒG* †vΉυβT,θ΄ αo½ηκDFqZδTς¬Άƒ–ψ[ŒhΓ?†=a…οžςAzγ¨ΑݎΦΚp)ƒ1RW c‚₯ρ^‰zρ˜²’'΄"|MwpΙY/Φgkxͺ\³$O—YΒΓcΪ:υzqο›ψώ˜P|Ζ7¨—lΧKΫ›ΨRvί(ΣUΉάbœk‡^J―kμbbn·Z:$z%ΪΫEΞ£]1(VΒϊΖ烇φύ5£ηwα]—Ήή-o!p”£uΰγρΝ%ΫJ$’ξΒ ρξ¨……Œ†λͺ]MοΫιlΥJοcW3ϊ+Rm³FzπεςLΔsSEΪΕ;ͺ|XΨNif«FM(/”•φUέsιεv*“’ρoΏzs–>υ·k~ω‘½IωΧ…ΦKbXλ‰JΦ\_užιIQΨ2Χ‹±§1ΖΝ’ykWcœq³b Ά"ή‘guhj–2mψ£Šμ’W<§v1#―‚ž™_ΐƒ‡πΖ»ογυN%_18r(yΔXύ»{1 xUΒϊžŒ(F ι…}ηR—K±€KœφH~ŒΧ‚«J1}Љλt‘V³₯ίOαΡΝ€&5#ΟZ;h%Τ}ομCρ1ͺτ ΊGךωΏ.VΤ‘]ύ:έqΤΥwίλΡυέlˆσLT©δΔx/Bΰ` bP|kT|RˆϊrΏp1¬^“kΗϋ[AέkI^l‘ Ξ+κΰΦφkI_ΙΜvΖ@ΐi_’^:M½G.χVcr]ΪσƒMϊ3νωA_H£cz·₯ΤyσΘώ ¦s‹σQLΑdN9 έ¬D—S™±ƒΑ+oΙ―ύ~mm½”ŸλVΞ£Αδό•CUjeIΏ5ΜͺQ_§Α=ψ Ό¬Gε‘βΔZ4ΚΤδσ‘d‘³ϊ:£ω‘TήΪӏ—«δYS ϋχŽαsŸ2ο[ †σΓ‘υη‹ΕΘ~2κkη­¬ης™7π²[{v_Α§Ώϊ#Qz4AoNC_‹z`          D²ΟE$tBΞYoφΪ(‹\M|%^iΔυАΥΫή"ωS7i©sρ»· Z]Vπd]qOiJΡSՌ6-nLgE+ξ6΅†―z|KCι½όš±3φ1,?pN‡cΦβ:·ψ†₯/ζΤΓ δ…σT:h’ΧάΧΥΊδ#ί•%oΉ1q­ž.―EϊΑε«—Ρ§Ο¨ζ2τk?ΒλoΨq\Š Ŏ7*΄βΦ`WΤνdΓωU«««S»ϊnG_·bZkΔ[s’»«Ύƒζ˜,ήΈΪΝDυωψ€)ΓΊΥΥM6_u‡˜IDAT¬„ςsI;& SKkαΫξ˝Ρν wΪUc?5Ζ&Œ|ˆ™‘sνI:Ο;ΪΠk¨Ak\›Ζ₯@zύΪΎqtt³ρ žΤβ‹Xο»Έ·ό<.Δ|‡ρ4  ΰρκC|8y惛$¬Θ+’f4jΩΖ~—5Ιλ΄ΫΒziwo'€—b#ζφ9υ’έzΙ+›:–~γΖUt‡ΟtN1&ξ‰τ.;τ’.χτ·'1=«lΠΠƒwΕΨ9|˜š™ 'Ϊy”?>NnεoVΟϋ—7 9‘S7ήΛΛ«Xχ`Fi:‡ΜΩʞ «Ί9vmMS–ΐΥλύΖm $ͺiΖ5];(—βƒnWŒϊxg7Ž€ή&ζ?}™Σ›$…ύ©:Nk~°YοVkή½₯ {›₯’KVλ§7μ+“5dΜΪ·§½ΪΩH5‡ΟgΧ―Ν­—ςgέΚωΑx―š’σjBί•Θ3¦z―§—΅‡’έMψ<Ρ)’ΟRλωH|sύSI—Ισ‘’>'υ΅R0«ϊSήq»ωzΠΈYΩ[|δΓΓ₯o’7[ž2x~Pκ˜'ϊšλy³λωWξΌά| “·£|ς³Oρ Ν—€₯£―ιΑ9O”‹I$@$@$@$@$@$@$@$@$@Y'@ΞYEξtvα?‹±ξΒζζ[Ψ:>BEI5:«άΈ~#υz'σΫ{sY \0Ϋρy,†ΟbθjΈŒΈ…‹‹{[πŠΥra9šu¬άβJ:ρΠόΘ«χ?{ 3„,E·λ2V°YXu’§ΖT}ηΥ T3‘SvέοΪΪCΓLν¦…ο…‘9LΎΠ…nΕR»ͺ?ϊ³b|9<ΒΌxs bTk!oΓ$α:ɏΘoΎƒoGρtb 5=xιΕΡ2 ‹M;9&mόR«Zž χώϊξ1~χυ6ͺ:ρ½Ϋ―Λ›H=―Γ«wΏ«U><{Ί€Ω₯¬zύβuΈ—ΕΘΰφ ŠN%ψΰY‰±2hΌ‚ώΐaςξž<‰ΉL˜ψ―xp֜ŠW΄_Γ_ά)ΖΣ… ‰»΅"yόΖά4fBvΫώρ9<»Υ‡~₯ώŽVόθΗ―γ“o‡ρX~Π»uν:ξ^ΧΚ <šEΔ,]'ή„< ζΪAKωφŠp1D|1•ΐ»ο½šρeyιΆΤ±θ«Sc‹ύQ2,;’K|ΏΆqEďώ²ieΌΗf;/ͺBuΘω·X[θ6Khq,Θ+sαe1`†l˜}Ά,ή?·EŸ”Š>«•ρS6nv0μΣΜ05™ωρM½€wϋτΘΠ4nˆq+] Ά ?ωi9ξ=ΗθœέVT£έ݊+/υΑ5ύ'‚ΊΞ½d±ΛΝ¬ΰυφ˜!++˜ˆΨiΗδ܌·ήlΝ~,zχ%UυαϋMWρNν‘h%EχξβΩ£!Lj{f¬θωνu¬Κξwψ%ς‡₯ ³…Υ-t„ΛΐšnM134Žαώ. *Λ™oςWεψφαsŒΟ¬bΏ’΅΄·Ά «χ\βi~SΪaF«EM#κ4…r„Γ²Jh/¨«va@ΪeAkΦΓ=ΖζύΘϊ8Κͺ|›™τιšTΦgzA Žζ‡ υnKeϊΚKΤiχψ€@ζ…HΏξͺhΑ›%Η(,(ΐώΑξωd<ͺΑΒό €ƒι±η―Q;G5ήhξCαϊ"f‹ΠηjΓΝͺΘΪyΞ»¨Ϋ΄”š³ή―Γ}άz)ŸΦ­œlœbQχΝWπ§x„ίݟFM―ΌQδΞ•πΖΙΕΙω‡P" zήϊz>ƒη#­Žα±‘]0ς―ά³¨Ο"Ωιk5¦y₯Έ}ιy£SH”L§»;”;ΊρΆ3Ϊη«Ό‹žνyŒμΚΚ ηÊ₯|~0L•“©―Ήž7³žΈ}ίλ•ΝυκfAι‹4Όψή/Œƒσ½΅9|:΄ιχiηͺHN<"         σO`xxψόWl ιΑΩ,±ŒβΧΝ]Z«ZΡjh(ΐSΟ82sΖ‰KρRM 4Σ₯ݝ9<ΨJβ§Μ‰ΰKfΛ…I".R₯ύ5|Ύ2γνt c›τΤ=Z:Κ›q§΅9Ίώ^|Ύ¨K—‘Όθ¬³sΆ€ί~5‚zwͺΩKm+^+ΖΫX¨ 1ŽƒWΕΘΫΜEF§1(^‘U»0i·ξ*Ÿ4j*=Ώ}Ψ‚έγN M=ΧπηςI?ΈΠUω &Ω™Α½ϋε[β5Yσ_=36…IΓ”I.J™Η'ϊΡ4(rχ^Ό95ž½ƒ™°Ρ΄_=C۝Ύ αCCή}_>αΨΑƒω|=⍹:5!Οr;HΎ7τ/YIyωΥHy~΄!Ξ1` ςˆ»t&γΘΒx+ΈξBI9ΒjXΌΙ­iΦξα(ζε΅„=–£MΖOp4„3Τuύ“ΌΥυΤKJcΪͺ—Ά§ρΫΟjπc1R5RΥ%ά~K>Ί^£FΏ„έ’^Jc^H5o¬Ž.cς­ž(/Η“ X)oψ΄±WφλΎ<¨sw…u9d{ΛϊXΔΐٚžχΛF)ISΘ §ΌAb.dx=Ώ$ϊ9lΰμ‡gYΏ>ρβγ?<@νŸά nr4αε7”OL Noέ|w{"†±QQšzρΗολ&1ŽώΩί})o°8Žlh?˜˜’κ’φ‰yύ™vΦ13Υ»  θqjΖι1™;Ρ2¨Ϋݏžag«υΫˆoύΪ›IΚρΪ%ωĈ]ۜΒo|Ρ£=&JŸZμΧZθίZTεΫςz)ŸΦ­œBMnΓόΧΏΚΡσ5υ£οW؜÷_Fή €ά³’η-χΟpaΜ?…“¦}`UŸ₯- &’y%5hԌ›CΉ9*šq5&gν΄X6€(Ξ™ΞZ~Qί)Ÿ’bηψ υ΅@\Ο§·žwV„‘6[Ίπb‹qχ•ψΔΐ9r/έυ|Œ©t$‘          \t}.:’S¬Ώςͺm½)^”g{ŸΝέΗ—[βm5ŸCI=άš‘ΘF}3Π1Vλp[β`)a8ΪΒ”ow~γβΨ96,ϊΖπν¦±ΘΪΞ~3χγzΓΕ ειεο‹Δ¨px:γΙ?ρηγx.ž'υΑ»8/N‰Ψ`X]3π,egj8 ? {ρήΫΧsΫΕΪόΌFςΤRoαωπ#όόίFΤ³πŸšΛT<©a Γίθ<…#₯>ψζΣ?ΰwίΝ`es b»φυX€ΏSΨ¬GE ŸLΛύŸ$6π“˜iΛΛ Β–Fρ·ΏόΟγΗIl•$iυkΗQΔ»]¨ΐIΖ‘ιρ10ψ-* 8oμ‹ΡŒA³ςŠNφ°$Ζ‰Γ>–Άζροη@ΧS/Ω―—VΗαψ5†ηγΗͺΪ§v½˜YŠvΉnI/νFΦ"†ΣΒqdήH8g1=ίΜ±Šι‰εΔ]_ζ"mJIΉΐ6Χg ηtσαβ²GL‰ƒafv βά9V|XŽ] ,αοφx0‘ΠT>qύdDΌξjωΘχ~ ½Ϊ©IΆχ‘-{,#[ΪΟΔ|€―§‰uYύ©9ŒνŸύ13½λ€#Φσ`DzΤΡΪ^t[­ίϊφ>Z™'z‰’΅ƒ‰υgψpUλ±QEΘ›KύZ«Χ­‰¨oΞ ζι_ΪrebΜpΎυΙσΥΏός‹hοΝ"έ’ž·Όž·ψ|€λ5i­ηCρ­κ38œξzΎ@ήρn؁'|&Ξl~0–—ΞσƒqΚάΌJ}Νυ|Ίλωέ€φ_₯Τ}yOΏ^4±ž/ψΰƒNRg‰155₯ž¦Ή˜‹€δ          δΑΑA΅0f=7kιΖ'¦r§2§T’βΊNΥ$φ1yJbΟMΆν˜Wλ2|©|šυr ΕQgQ Jδ•ΧΗbτμ ¬'0tH3K“Ρnέωξ*Ζ‘β!ξgx/lψc2[£;KͺΡPZŠς‚"yΈόFzr„νΓζΡF½‰„:ΛjΡQζ@±’φψ[›˜h?aΗ§ΚT^|ŽΩΉR]SREԁx¨Γ¬†Ϋψoot©ΒŸ}υοψhΘ‚7^5uόŸŽžNΤ—)~<Ψ―ƒΣiζνlΔ΅6)§ό}t°ΥΕY,Δ‘Ε‹CCc#]())†βϊho b0gdfvνΝwπήΥ5—Εα―πχ1^Φ ²·υ’ΚΖ!lTγ«C¬-Nc&ΪξΠ6y–ΫΑΆ$Ξθ¬Ζ‘ΩρžΈιέ1-―¨mee(/,RυΌ"εΰXΌDoϋ ©Σ+EξΖ’^ Άz©Ί±] •ͺ.„2§mmbl^oPί²©—β₯ΫΕNž–JW#sYsp.“……lώΨΑΊw §€λ³9Ž,ρ°˜Θ΄ώ΄(g€w­Χ―mΞjTΙ<œΰΰh‹;Ύδ›­²9ΓtΩμΧ–ΧKyΆnεόΨ9?΄ΊΫΡP]ͺΞ·ϋ;~ ₯ϋΌcr\YνŸfžL).Ίu}—UZ²&οŒζ‡΄ δP$κλ`cΨ©_¨―ΝιλToΙ‘αΒ’         €ύJJJΔœζ.yώJά‹NNb]£]€ΪŸU]w±Έ›Ψπφ¬JuΦr·Ε`w;½ajXΤν½uŒΘ'ݐ©ΌtεΨρ†š]¬ŠQ•#θ‘*˜―Χ».…Eμ¦οU'œ(ΙΑΜ„ν&ΉŸπΦΆC£iCλ2Yυx°šV²v\ 7^ ?‰~…΄.ΛS;΄ΜΖB‰²)ΛlρΞj™οfλί΄<ρ梍Άp₯_ε܍y6ύΪ²Μ³u+η{η‡…yوά³|ͺCΚjLω(σβ[ΧgΦdgMήΝΦ¨d;υu4q{υ υ΅9ž4pŽξ<#        Έ vvvPQQξξnΜΞΞb7…Q©Γα@{{»J'`βυ{yσΔΤ σΊͺ,< δ+ΦψKραQ½ρsΎΦ6rΟβσΰ”_ΐΕΛσdή‘ΣΙ•qH€'@½ΛΚ^½δ¬=ΑφΊΌ’ AΘχϋ ͺ₯»l/O]Ζ9uΘq”SΝΑΒΨD€ύ:€½ϊ,ίυͺςΗ‹?·—g|ώΌB‡υul[g¦_Rι·|ΏK+υΉ9ž4pNM”1H€H€H€H€H€H€H€H€H€Ξ!™™΄΅΅‘²²˜ŸŸΗζζ¦aM«ͺͺΰv»QXXˆ1„^Z>mm†ΕΘώEzpΞ>sJ$³D/)ΑέΩ£~β“ϋpοώβoœΫ+ σ©ΆηΆY±|&@½Χzvι₯¦ΛΗhξ=ΒςxVžυΏ^XΎίΧΧ%Ω±]<“Ι8σ{Ggή,ΐ)`ΏŽƒj—>ΛwύŸͺόqΰ\°‹g‚μy™.κλΈΆΆͺ_Rι·|Ώ*Ν fxυυυύMšωͺΡ66δg ο U#π          δ0ρNμχϋQ\\¬zrvΉ\8>>Žσδ\__ΦΦVυ’~&–=«P^„PXV‰ΒŠΪ‹PΥS©£ Aƒy?ͺO%ΣΚ΄­»΅βωwߏΡα9ψNKσ΅…@A….G)Κ«(‰Ιqe~ΏίαΫ…Γ˜;<% Σ#@½d[ΕΨAο©Y3~ΨZ+@]Ϋ±)Θλϋ+Ο‹μuNsα8:§ {Α«Ε~mOΰό`GζB$˜υub6fυ{μσ‡™Δ₯ηLθ1-         @^P •±ΏΏζζfυSZZŠ₯₯%΅^—.]BmmΠΐwΝ»Žυ fκIΞyέΏ­~mm“%Ϋ8ήυaΗj&L—5ώιQόB>J¨©Fey”,}Φ¨χψ‡H€²E€zΙЧf%(žš5γΝs³vžΟχΥΚρOBG ΡπF`ΏΆ§ρ8?ΨΓ‘Ή $&@}˜™;ϊ7―œ‡υ{μόcτF3|[πΑ˜r5255₯ζ­ΌŠ‘H€H€H€H€H€H€H€H€H€Ξ ͺͺ*Έέn(ϋάήήV«εt:UoΝΛ+lm__6Υ:ϊQ}ξλΚ ’   ΨK`{]ω=ΎumΗqΖ͊€|Ώo/-ζF$@‡@ΎλTεΏ8-ɚ’ œwA}©e*ύ—oχcλ©©½Gτΰl/OζF$@$@$@$@$@$@$@$@$ηJJJΠΫΫ«Φbzv‡‡‡y^#λΕ/tΦ£€ωͺυ .xJzpΎΰ€Υ'        °L ΨrJ&$         sHΰΰΰΪμ.²q³Ϊ΄'Ηη°…Y%          \'P˜λdωH€H€H€H€H€H€H€H€H€H€ΈΐΙΙ ¦X          ‹L€ΞΉυYw         HF€œ“Ρα=          S"πιΗcΕΥΧ¨IENDB`‚ignite-0.5.1/examples/mnist/mnist.py000066400000000000000000000110121465426447700174660ustar00rootroot00000000000000from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from tqdm import tqdm from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.NLLLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("trainer") val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device) evaluator.logger = setup_logger("evaluator") pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=f"ITERATION - loss: {0:.2f}") @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): pbar.desc = f"ITERATION - loss: {engine.state.output:.2f}" pbar.update(log_interval) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): pbar.refresh() evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] tqdm.write( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] tqdm.write( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) pbar.n = pbar.last_print_n = 0 @trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED) def log_time(engine): tqdm.write(f"{trainer.last_event_name.name} took {trainer.state.times[trainer.last_event_name.name]} seconds") trainer.run(train_loader, max_epochs=epochs) pbar.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_interval", type=int, default=10, help="how many batches to wait before logging training status" ) args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval) ignite-0.5.1/examples/mnist/mnist_save_resume_engine.py000066400000000000000000000260001465426447700234140ustar00rootroot00000000000000from argparse import ArgumentParser from pathlib import Path import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.optim.lr_scheduler import StepLR from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from tqdm import tqdm from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import Checkpoint, DiskSaver from ignite.metrics import Accuracy, Loss, RunningAverage from ignite.utils import manual_seed try: from tensorboardX import SummaryWriter except ImportError: try: from torch.utils.tensorboard import SummaryWriter except ImportError: raise ModuleNotFoundError( "This module requires either tensorboardX or torch >= 1.2.0. " "You may install tensorboardX with command: \n pip install tensorboardX \n" "or upgrade PyTorch using your package manager of choice (pip or conda)." ) # Basic model's definition class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): """Method to setup data loaders: train_loader and val_loader""" data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True, num_workers=4, ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False, num_workers=4, ) return train_loader, val_loader def log_model_weights(engine, model=None, fp=None, **kwargs): """Helper method to log norms of model weights: print and dump into a file""" assert model and fp output = {"total": 0.0} max_counter = 5 for name, p in model.named_parameters(): name = name.replace(".", "/") n = torch.norm(p) if max_counter > 0: output[name] = n output["total"] += n max_counter -= 1 output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()]) msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}" with open(fp, "a") as h: h.write(msg) h.write("\n") def log_model_grads(engine, model=None, fp=None, **kwargs): """Helper method to log norms of model gradients: print and dump into a file""" assert model and fp output = {"grads/total": 0.0} max_counter = 5 for name, p in model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") n = torch.norm(p.grad) if max_counter > 0: output[f"grads/{name}"] = n output["grads/total"] += n max_counter -= 1 output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()]) msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}" with open(fp, "a") as h: h.write(msg) h.write("\n") def log_data_stats(engine, fp=None, **kwargs): """Helper method to log mean/std of input batch of images and median of batch of targets.""" assert fp x, y = engine.state.batch output = { "batch xmean": x.mean().item(), "batch xstd": x.std().item(), "batch ymedian": y.median().item(), } output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()]) msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}" with open(fp, "a") as h: h.write(msg) h.write("\n") def run( train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir, checkpoint_every, resume_from, crash_iteration=-1, deterministic=False, ): # Setup seed to have same model's initialization: manual_seed(75) train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() writer = SummaryWriter(log_dir=log_dir) device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer criterion = nn.NLLLoss() optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) lr_scheduler = StepLR(optimizer, step_size=1, gamma=0.5) # Setup trainer and evaluator if deterministic: tqdm.write("Setup deterministic trainer") trainer = create_supervised_trainer(model, optimizer, criterion, device=device, deterministic=deterministic) running_loss = RunningAverage(output_transform=lambda x: x) running_loss.attach(trainer, "rloss") metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics, device) # Apply learning rate scheduling @trainer.on(Events.EPOCH_COMPLETED) def lr_step(engine): lr_scheduler.step() pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=f"Epoch {0} - loss: {0:.4f} - lr: {lr:.4f}") @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): lr = optimizer.param_groups[0]["lr"] rloss = engine.state.metrics["rloss"] pbar.desc = f"Epoch {engine.state.epoch} - loss: {rloss:.4f} - lr: {lr:.4f}" pbar.update(log_interval) writer.add_scalar("training/running_loss", rloss, engine.state.iteration) writer.add_scalar("lr", lr, engine.state.iteration) if crash_iteration > 0: @trainer.on(Events.ITERATION_COMPLETED(once=crash_iteration)) def _(engine): raise Exception(f"STOP at {engine.state.iteration}") if resume_from is not None: @trainer.on(Events.STARTED) def _(engine): pbar.n = engine.state.iteration % engine.state.epoch_length @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): pbar.refresh() evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] tqdm.write( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch) # Compute and log validation metrics @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] tqdm.write( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) pbar.n = pbar.last_print_n = 0 writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch) # Setup object to checkpoint objects_to_checkpoint = { "trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler, "train_running_loss": running_loss, "metrics": metrics, } training_checkpoint = Checkpoint( to_save=objects_to_checkpoint, save_handler=DiskSaver(log_dir, require_empty=False), n_saved=None, global_step_transform=lambda *_: trainer.state.epoch, ) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=checkpoint_every), training_checkpoint) # Setup logger to print and dump into file: model weights, model grads and data stats # - first 3 iterations # - 4 iterations after checkpointing # This helps to compare resumed training with checkpointed training def log_event_filter(e, event): if event in [1, 2, 3]: return True elif 0 <= (event % (checkpoint_every * e.state.epoch_length)) < 5: return True return False fp = Path(log_dir) / ("run.log" if resume_from is None else "resume_run.log") fp = fp.as_posix() for h in [log_data_stats, log_model_weights, log_model_grads]: trainer.add_event_handler(Events.ITERATION_COMPLETED(event_filter=log_event_filter), h, model=model, fp=fp) if resume_from is not None: tqdm.write(f"Resume from the checkpoint: {resume_from}") checkpoint = torch.load(resume_from) Checkpoint.load_objects(to_load=objects_to_checkpoint, checkpoint=checkpoint) try: # Synchronize random states manual_seed(15) trainer.run(train_loader, max_epochs=epochs) except Exception as e: import traceback print(traceback.format_exc()) pbar.close() writer.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_interval", type=int, default=10, help="how many batches to wait before logging training status" ) parser.add_argument( "--log_dir", type=str, default="/tmp/mnist_save_resume", help="log directory for Tensorboard log output" ) parser.add_argument("--checkpoint_every", type=int, default=1, help="Checkpoint training every X epochs") parser.add_argument( "--resume_from", type=str, default=None, help="Path to the checkpoint .pt file to resume training from" ) parser.add_argument("--crash_iteration", type=int, default=-1, help="Iteration at which to raise an exception") parser.add_argument( "--deterministic", action="store_true", help="Deterministic training with dataflow synchronization" ) args = parser.parse_args() run( args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval, args.log_dir, args.checkpoint_every, args.resume_from, args.crash_iteration, args.deterministic, ) ignite-0.5.1/examples/mnist/mnist_with_clearml_logger.py000066400000000000000000000133001465426447700235610ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using ClearML. Requirements: ClearML: `pip install clearml` Usage: Run the example: ```bash python mnist_with_clearml_logger.py ``` """ from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import Checkpoint from ignite.handlers.clearml_logger import ( ClearMLLogger, ClearMLSaver, global_step_from_engine, GradsHistHandler, GradsScalarHandler, WeightsHistHandler, WeightsScalarHandler, ) from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("Trainer") metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator.logger = setup_logger("Val Evaluator") @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): train_evaluator.run(train_loader) validation_evaluator.run(val_loader) clearml_logger = ClearMLLogger(project_name="examples", task_name="ignite") clearml_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), tag="training", output_transform=lambda loss: {"batchloss": loss}, ) for tag, evaluator in [("training metrics", train_evaluator), ("validation metrics", validation_evaluator)]: clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names=["loss", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer ) clearml_logger.attach( trainer, log_handler=WeightsScalarHandler(model, whitelist=["fc1"]), event_name=Events.ITERATION_COMPLETED(every=100), ) def is_conv(n, _): return "conv" in n clearml_logger.attach( trainer, log_handler=WeightsHistHandler(model, whitelist=is_conv), event_name=Events.ITERATION_COMPLETED(every=100), ) clearml_logger.attach( trainer, log_handler=GradsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100) ) clearml_logger.attach( trainer, log_handler=GradsHistHandler(model, whitelist=["fc2.weight"]), event_name=Events.ITERATION_COMPLETED(every=100), ) handler = Checkpoint( {"model": model}, ClearMLSaver(), n_saved=1, score_function=lambda e: e.state.metrics["accuracy"], score_name="val_acc", filename_prefix="best", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.EPOCH_COMPLETED, handler) # kick everything off trainer.run(train_loader, max_epochs=epochs) clearml_logger.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum) ignite-0.5.1/examples/mnist/mnist_with_neptune_logger.py000066400000000000000000000132411465426447700236240ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using Neptune. Requirements: Neptune: `pip install neptune` Usage: Run the example: ```bash python mnist_with_neptune_logger.py ``` Go to https://neptune.ai and explore your run. Note: You can view example runs here: https://app.neptune.ai/o/common/org/pytorch-ignite-integration/ """ from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import Checkpoint from ignite.handlers.neptune_logger import ( global_step_from_engine, GradsScalarHandler, NeptuneLogger, NeptuneSaver, WeightsScalarHandler, ) from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("Trainer") metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator.logger = setup_logger("Val Evaluator") @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): train_evaluator.run(train_loader) validation_evaluator.run(val_loader) npt_logger = NeptuneLogger( api_token="ANONYMOUS", project="common/pytorch-ignite-integration", name="ignite-mnist-example", ) npt_logger.experiment["params"] = { "train_batch_size": train_batch_size, "val_batch_size": val_batch_size, "epochs": epochs, "lr": lr, "momentum": momentum, } npt_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), tag="training", output_transform=lambda loss: {"batchloss": loss}, ) for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]: npt_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names=["loss", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) npt_logger.attach_opt_params_handler(trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer) npt_logger.attach( trainer, log_handler=WeightsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100) ) npt_logger.attach(trainer, log_handler=GradsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100)) def score_function(engine): return engine.state.metrics["accuracy"] handler = Checkpoint( {"model": model}, NeptuneSaver(npt_logger), n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, handler) # kick everything off trainer.run(train_loader, max_epochs=epochs) npt_logger.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum) ignite-0.5.1/examples/mnist/mnist_with_tensorboard.py000066400000000000000000000132571465426447700231400ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using Tensorboard. Requirements: TensorboardX (https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` or PyTorch >= 1.2 which supports Tensorboard Tensorboard: `pip install tensorflow` (or just install tensorboard without the rest of tensorflow) Usage: Start tensorboard: ```bash tensorboard --logdir=/tmp/tensorboard_logs/ ``` Run the example: ```bash python mnist_with_tensorboard.py --log_dir=/tmp/tensorboard_logs ``` """ from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.metrics import Accuracy, Loss try: from tensorboardX import SummaryWriter except ImportError: try: from torch.utils.tensorboard import SummaryWriter except ImportError: raise ModuleNotFoundError( "This module requires either tensorboardX or torch >= 1.2.0. " "You may install tensorboardX with command: \n pip install tensorboardX \n" "or upgrade PyTorch using your package manager of choice (pip or conda)." ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() writer = SummaryWriter(log_dir=log_dir) device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.NLLLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device) @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): print( f"Epoch[{engine.state.epoch}] Iteration[{engine.state.iteration}/{len(train_loader)}] " f"Loss: {engine.state.output:.2f}" ) writer.add_scalar("training/loss", engine.state.output, engine.state.iteration) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch) # kick everything off trainer.run(train_loader, max_epochs=epochs) writer.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_interval", type=int, default=10, help="how many batches to wait before logging training status" ) parser.add_argument( "--log_dir", type=str, default="tensorboard_logs", help="log directory for Tensorboard log output" ) args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval, args.log_dir) ignite-0.5.1/examples/mnist/mnist_with_tensorboard_logger.py000066400000000000000000000152021465426447700244670ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using TensorboardX and Tensorboard. Requirements: Optionally TensorboardX (https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` Tensorboard: `pip install tensorflow` (or just install tensorboard without the rest of tensorflow) Usage: Start tensorboard: ```bash tensorboard --logdir=/tmp/tensorboard_logs/ ``` Run the example: ```bash python mnist_with_tensorboard_logger.py --log_dir=/tmp/tensorboard_logs ``` """ import sys from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import ModelCheckpoint from ignite.handlers.tensorboard_logger import ( global_step_from_engine, GradsHistHandler, GradsScalarHandler, TensorboardLogger, WeightsHistHandler, WeightsScalarHandler, ) from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_dir): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("Trainer") if sys.version_info > (3,): from ignite.metrics.gpu_info import GpuInfo try: GpuInfo().attach(trainer) except RuntimeError: print( "INFO: By default, in this example it is possible to log GPU information (used memory, utilization). " "As there is no pynvml python package installed, GPU information won't be logged. Otherwise, please " "install it : `pip install pynvml`" ) metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator.logger = setup_logger("Val Evaluator") @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): train_evaluator.run(train_loader) validation_evaluator.run(val_loader) tb_logger = TensorboardLogger(log_dir=log_dir) tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), tag="training", output_transform=lambda loss: {"batchloss": loss}, metric_names="all", ) for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]: tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names=["loss", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) tb_logger.attach_opt_params_handler(trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer) tb_logger.attach( trainer, log_handler=WeightsScalarHandler(model, whitelist=["fc1"]), event_name=Events.ITERATION_COMPLETED(every=100), ) def is_conv(n, _): return "conv" in n tb_logger.attach( trainer, log_handler=WeightsHistHandler(model, whitelist=is_conv), event_name=Events.ITERATION_COMPLETED(every=100), ) tb_logger.attach(trainer, log_handler=GradsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100)) tb_logger.attach( trainer, log_handler=GradsHistHandler(model, whitelist=["fc2.weight"]), event_name=Events.ITERATION_COMPLETED(every=100), ) def score_function(engine): return engine.state.metrics["accuracy"] model_checkpoint = ModelCheckpoint( log_dir, n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {"model": model}) # kick everything off trainer.run(train_loader, max_epochs=epochs) tb_logger.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_dir", type=str, default="tensorboard_logs", help="log directory for Tensorboard log output" ) args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_dir) ignite-0.5.1/examples/mnist/mnist_with_tensorboard_on_tpu.py000066400000000000000000000142051465426447700245160ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using Tensorboard on TPU Requirements: - PyTorch >= 1.5 - PyTorch XLA >= 1.5 - Tensorboard: `pip install tensorflow` (or just install tensorboard without the rest of tensorflow) Usage: Start tensorboard: ```bash tensorboard --logdir=/tmp/tensorboard_logs/ ``` Run the example: ```bash python mnist_with_tensorboard_on_tpu.py --log_dir=/tmp/tensorboard_logs ``` """ from argparse import ArgumentParser import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.metrics import Accuracy, Loss, RunningAverage try: import torch_xla.core.xla_model as xm except ImportError: raise ModuleNotFoundError( "In order to run PyTorch on TPU we need to install PyTorch XLA:" "\n\t- curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o xla-setup.py" "\n\t- python xla-setup.py --version 1.5" ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() writer = SummaryWriter(log_dir=log_dir) # Use TPU device device = xm.xla_device() model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.NLLLoss() # Create trainer and evaluator trainer = create_supervised_trainer( model, optimizer, criterion, device=device, output_transform=lambda x, y, y_pred, loss: [loss.item()] ) val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device) tracker = xm.RateTracker() # Add RateTracker as an output of the training step @trainer.on(Events.ITERATION_COMPLETED) def add_rate_tracker(engine): tracker.add(len(engine.state.batch)) engine.state.output.append(tracker.global_rate()) # Setup output values of the training step as EMA metrics RunningAverage(output_transform=lambda x: x[0]).attach(trainer, "batch_loss") RunningAverage(output_transform=lambda x: x[1]).attach(trainer, "global_rate") # Let's log the EMA metrics every `log_interval` iterations @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): writer.add_scalar("training/batch_loss", engine.state.metrics["batch_loss"], engine.state.iteration) writer.add_scalar("training/global_rate", engine.state.metrics["global_rate"], engine.state.iteration) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch) writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch) # kick everything off trainer.run(train_loader, max_epochs=epochs) writer.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_interval", type=int, default=10, help="how many batches to wait before logging training status" ) parser.add_argument( "--log_dir", type=str, default="tensorboard_logs", help="log directory for Tensorboard log output" ) args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval, args.log_dir) ignite-0.5.1/examples/mnist/mnist_with_tqdm_logger.py000066400000000000000000000102341465426447700231120ustar00rootroot00000000000000from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import ProgressBar from ignite.metrics import Accuracy, Loss, RunningAverage class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, display_gpu_info): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device) evaluator = create_supervised_evaluator( model, metrics={"accuracy": Accuracy(), "nll": Loss(F.nll_loss)}, device=device ) RunningAverage(output_transform=lambda x: x).attach(trainer, "loss") if display_gpu_info: from ignite.metrics import GpuInfo GpuInfo().attach(trainer, name="gpu") pbar = ProgressBar(persist=True) pbar.attach(trainer, metric_names="all") @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] pbar.log_message( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] pbar.log_message( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) pbar.n = pbar.last_print_n = 0 trainer.run(train_loader, max_epochs=epochs) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--display_gpu_info", action="store_true", help="Display gpu usage info. This needs python 3.X and pynvml package", ) args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.display_gpu_info) ignite-0.5.1/examples/mnist/mnist_with_visdom.py000066400000000000000000000134711465426447700221150ustar00rootroot00000000000000from argparse import ArgumentParser import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.metrics import Accuracy, Loss try: import visdom except ImportError: raise ModuleNotFoundError("No visdom package is found. Please install it with command: \n pip install visdom") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def create_plot_window(vis, xlabel, ylabel, title): return vis.line(X=np.array([1]), Y=np.array([np.nan]), opts=dict(xlabel=xlabel, ylabel=ylabel, title=title)) def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval): vis = visdom.Visdom() # if not vis.check_connection(): # raise RuntimeError("Visdom server not running. Please run python -m visdom.server") train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device) evaluator = create_supervised_evaluator( model, metrics={"accuracy": Accuracy(), "nll": Loss(F.nll_loss)}, device=device ) train_loss_window = create_plot_window(vis, "#Iterations", "Loss", "Training Loss") train_avg_loss_window = create_plot_window(vis, "#Iterations", "Loss", "Training Average Loss") train_avg_accuracy_window = create_plot_window(vis, "#Iterations", "Accuracy", "Training Average Accuracy") val_avg_loss_window = create_plot_window(vis, "#Epochs", "Loss", "Validation Average Loss") val_avg_accuracy_window = create_plot_window(vis, "#Epochs", "Accuracy", "Validation Average Accuracy") @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): print( f"Epoch[{engine.state.epoch}] Iteration[{engine.state.iteration}/{len(train_loader)}] " f"Loss: {engine.state.output:.2f}" ) vis.line( X=np.array([engine.state.iteration]), Y=np.array([engine.state.output]), update="append", win=train_loss_window, ) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) vis.line( X=np.array([engine.state.epoch]), Y=np.array([avg_accuracy]), win=train_avg_accuracy_window, update="append" ) vis.line(X=np.array([engine.state.epoch]), Y=np.array([avg_nll]), win=train_avg_loss_window, update="append") @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["nll"] print( f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}" ) vis.line( X=np.array([engine.state.epoch]), Y=np.array([avg_accuracy]), win=val_avg_accuracy_window, update="append" ) vis.line(X=np.array([engine.state.epoch]), Y=np.array([avg_nll]), win=val_avg_loss_window, update="append") # kick everything off trainer.run(train_loader, max_epochs=epochs) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument( "--log_interval", type=int, default=10, help="how many batches to wait before logging training status" ) parser.add_argument("--log_file", type=str, default=None, help="log file to log output to") args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval) ignite-0.5.1/examples/mnist/mnist_with_visdom_logger.py000066400000000000000000000127211465426447700234510ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using Visdom. Requirements: Visdom (https://github.com/facebookresearch/visdom.git): `pip install git+https://github.com/facebookresearch/visdom.git` Usage: Start visdom server: ```bash visdom -logging_level 30 ``` Run the example: ```bash python mnist_with_visdom_logger.py ``` """ from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import ModelCheckpoint from ignite.handlers.visdom_logger import ( global_step_from_engine, GradsScalarHandler, VisdomLogger, WeightsScalarHandler, ) from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_dir): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("Trainer") metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator.logger = setup_logger("Val Evaluator") @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): train_evaluator.run(train_loader) validation_evaluator.run(val_loader) vd_logger = VisdomLogger(env="mnist_training") vd_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), tag="training", output_transform=lambda loss: {"batchloss": loss}, ) for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]: vd_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names=["loss", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) vd_logger.attach_opt_params_handler(trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer) vd_logger.attach(trainer, log_handler=WeightsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100)) vd_logger.attach(trainer, log_handler=GradsScalarHandler(model), event_name=Events.ITERATION_COMPLETED(every=100)) def score_function(engine): return engine.state.metrics["accuracy"] model_checkpoint = ModelCheckpoint( log_dir, n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {"model": model}) # kick everything off trainer.run(train_loader, max_epochs=epochs) vd_logger.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") parser.add_argument("--log_dir", type=str, default="mnist_visdom_logs", help="log directory for training output") args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_dir) ignite-0.5.1/examples/mnist/mnist_with_wandb_logger.py000066400000000000000000000125511465426447700232440ustar00rootroot00000000000000""" MNIST example with training and validation monitoring using Weights & Biases Requirements: Weights & Biases: `pip install wandb` Usage: Make sure you are logged into Weights & Biases (use the `wandb` command). Run the example: ```bash python mnist_with_wandb_logger.py ``` Go to https://wandb.com and explore your experiment. """ from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events from ignite.handlers import ModelCheckpoint from ignite.handlers.wandb_logger import global_step_from_engine, WandBLogger from ignite.metrics import Accuracy, Loss from ignite.utils import setup_logger class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) def get_data_loaders(train_batch_size, val_batch_size): data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True ) val_loader = DataLoader( MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False ) return train_loader, val_loader def run(train_batch_size, val_batch_size, epochs, lr, momentum): train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size) model = Net() device = "cpu" if torch.cuda.is_available(): device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss() trainer = create_supervised_trainer(model, optimizer, criterion, device=device) trainer.logger = setup_logger("Trainer") metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_evaluator.logger = setup_logger("Train Evaluator") validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) validation_evaluator.logger = setup_logger("Val Evaluator") @trainer.on(Events.EPOCH_COMPLETED) def compute_metrics(engine): train_evaluator.run(train_loader) validation_evaluator.run(val_loader) wandb_logger = WandBLogger( project="pytorch-ignite-integration", name="ignite-mnist-example", config={ "train_batch_size": train_batch_size, "val_batch_size": val_batch_size, "epochs": epochs, "lr": lr, "momentum": momentum, }, ) wandb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), tag="training", output_transform=lambda loss: {"batchloss": loss}, ) for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]: wandb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names=["loss", "accuracy"], global_step_transform=lambda *_: trainer.state.iteration, ) wandb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer ) wandb_logger.watch(model, log="all") def score_function(engine): return engine.state.metrics["accuracy"] model_checkpoint = ModelCheckpoint( wandb_logger.run.dir, n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {"model": model}) # kick everything off trainer.run(train_loader, max_epochs=epochs) wandb_logger.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)") parser.add_argument( "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)") args = parser.parse_args() run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum) ignite-0.5.1/examples/notebooks/000077500000000000000000000000001465426447700166405ustar00rootroot00000000000000ignite-0.5.1/examples/notebooks/Cifar100_bench_amp.ipynb000066400000000000000000000133771465426447700231570ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "tSC1tFE5fDHM" }, "source": [ "# Benchmark mixed precision training on Cifar100\n", "\n", "In this notebook we will benchmark 1) native PyTorch mixed precision module [`torch.cuda.amp`](https://pytorch.org/docs/master/amp.html) and 2) NVidia/Apex package.\n", "\n", "We will train Wide-ResNet model on Cifar100 dataset using Turing enabled GPU and compare training times.\n", "\n", "**TL;DR**\n", "\n", "The ranking is the following:\n", "- 1st place: Nvidia/Apex \"O2\"\n", "- 2nd place: `torch.cuda.amp`: autocast and scaler\n", "- 3rd place: Nvidia/Apex \"O1\"\n", "- 4th place: fp32\n", "\n", "According to @mcarilli: \"Native amp is more like a faster, better integrated, locally enabled O1\"" ] }, { "cell_type": "markdown", "metadata": { "id": "VZJDqc7vfDHV" }, "source": [ "## Installations and setup\n", "\n", "1) Recently added [`torch.cuda.amp`](https://pytorch.org/docs/master/notes/amp_examples.html#working-with-multiple-models-losses-and-optimizers) module to perform automatic mixed precision training instead of using Nvidia/Apex package is available in PyTorch >=1.6.0.\n", "\n", "In this example we only need `pynvml` and `fire` packages, assuming that `torch` and `ignite` are already installed. We can install it using pip:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SkRXPuNRfDHX" }, "outputs": [], "source": [ "!pip install pytorch-ignite pynvml fire" ] }, { "cell_type": "markdown", "metadata": { "id": "9SPEV91DfDHZ" }, "source": [ "2) Let's install Nvidia/Apex package:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fGtxgbj8fDHb" }, "outputs": [], "source": [ "# Install Apex:\n", "# If torch cuda version and nvcc version match:\n", "!pip install --upgrade --no-cache-dir --global-option=\"--cpp_ext\" --global-option=\"--cuda_ext\" git+https://github.com/NVIDIA/apex/\n", "# if above command is failing, please install apex without c++/cuda extensions:\n", "# !pip install --upgrade --no-cache-dir git+https://github.com/NVIDIA/apex/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QnihHXQpfDHb" }, "outputs": [], "source": [ "import torch\n", "import torchvision\n", "import ignite\n", "torch.__version__, torchvision.__version__, ignite.__version__" ] }, { "cell_type": "markdown", "metadata": { "id": "TooCbccqfDHg" }, "source": [ "3) The scripts we will execute are located in `ignite/examples/contrib/cifar100_amp_benchmark` of github repository. Let's clone the repository and setup PYTHONPATH to execute benchmark scripts:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6xqqj0q1fDHh" }, "outputs": [], "source": [ "!git clone https://github.com/pytorch/ignite.git /tmp/ignite\n", "scriptspath=\"/tmp/ignite/examples/cifar100_amp_benchmark/\"\n", "setup=f\"cd {scriptspath} && export PYTHONPATH=$PWD:$PYTHONPATH\"" ] }, { "cell_type": "markdown", "metadata": { "id": "gX30i_abfDHi" }, "source": [ "4) Download dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ulufk4tsfDHj" }, "outputs": [], "source": [ "from torchvision.datasets.cifar import CIFAR100\n", "CIFAR100(root=\"/tmp/cifar100/\", train=True, download=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "ai6nBHZKfDHl" }, "source": [ "## Training in fp32" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mHwsVTB6fDHq" }, "outputs": [], "source": [ "!{setup} && python benchmark_fp32.py /tmp/cifar100/ --batch_size=256 --max_epochs=20" ] }, { "cell_type": "markdown", "metadata": { "id": "n2p-EMwGfDHs" }, "source": [ "## Training with `torch.cuda.amp`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xkuW1EY-fDHs" }, "outputs": [], "source": [ "!{setup} && python benchmark_torch_cuda_amp.py /tmp/cifar100/ --batch_size=256 --max_epochs=20" ] }, { "cell_type": "markdown", "metadata": { "id": "2qjtyKnOfDHt" }, "source": [ "## Training with `Nvidia/apex`\n", "\n", "\n", "- we check 2 optimization levels: \"O1\" and \"O2\"\n", " - \"O1\" optimization level: automatic casts arount Pytorch functions and tensor methods\n", " - \"O2\" optimization level: fp16 training with fp32 batchnorm and fp32 master weights" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "A6Pe4cW6fDHu" }, "outputs": [], "source": [ "!{setup} && python benchmark_nvidia_apex.py /tmp/cifar100/ --batch_size=256 --max_epochs=20 --opt=\"O1\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "1aqdlPSgfDHu" }, "outputs": [], "source": [ "!{setup} && python benchmark_nvidia_apex.py /tmp/cifar100/ --batch_size=256 --max_epochs=20 --opt=\"O2\"" ] } ], "metadata": { "colab": { "name": "Cifar100_bench_amp.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 0 } ignite-0.5.1/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb000066400000000000000000001010741465426447700253370ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" }, "colab": { "name": "Cifar10_Ax_hyperparam_tuning.ipynb", "provenance": [] } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "m4TggyOPfapy" }, "source": [ "# FastResNet Hyperparameters tuning with [Ax](https://ax.dev/) on CIFAR10\n", "\n", "In this notebook we provide an example of hyperparameter tuning with [Ax](https://ax.dev/) package. We will train a ResNet model from [awesome repository of David Page](https://github.com/davidcpage/cifar10-fast) on CIFAR10.\n", "\n", "\n", "### Why Ax ?\n", "\n", "This is a good question ... Maybe this page could better answer : https://ax.dev/docs/why-ax.html\n", "\n", "> Ax is a platform for optimizing any kind of experiment, including machine learning experiments, A/B tests, and simulations. Ax can optimize discrete configurations (e.g., variants of an A/B test) using multi-armed bandit optimization, and continuous (e.g., integer or floating point)-valued configurations using Bayesian optimization. This makes it suitable for a wide range of applications.\n", "\n", "There are also interesting packages as [ray-tune](https://ray.readthedocs.io/en/latest/tune.html), [optuna](https://github.com/pfnet/optuna) and many others. As a side note, optuna provides an example with Ignite [here](https://github.com/pfnet/optuna/blob/master/examples/ignite_simple.py).\n", "\n", "\n", "### Fast ResNet model\n", "\n", "We will reimplement a resnet model from David Page's [cifar-10 repository](https://github.com/davidcpage/cifar10-fast) which trains very fast (94% of test accuracy in 26 second on NVidia V100). For sake of simplicity, we will not apply all preprocessing used in the repository (please see [bag-of-trick notebook](https://github.com/davidcpage/cifar10-fast/blob/master/bag_of_tricks.ipynb) for details).\n" ] }, { "cell_type": "markdown", "metadata": { "id": "cRMcUAbLfap7" }, "source": [ "### Setup dependencies\n", "\n", "Please install \n", "- `torchvision`\n", "- `Ax`\n", "- `tensorboard`\n" ] }, { "cell_type": "code", "metadata": { "id": "zSAI-Dknfap-" }, "source": [ "!pip install pytorch-ignite tensorboardX ax-platform" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "S_q9Q0zIfaqK" }, "source": [ "import sys\n", "sys.path.insert(0, \"../../\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "SwOlZhS6faqM" }, "source": [ "import torch\n", "import ignite\n", "\n", "torch.__version__, ignite.__version__" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "kWGvqsNofaqP" }, "source": [ "### Setup model\n", "\n", "Cifar10-fast model is inspired of ResNet family models and in order to run fast it uses various tricks like:\n", "- `conv + batch norm + activation + pool` -> `conv + pool + batch norm + activation`\n", "- `batchnorm` -> `ghost batchnorm` -> `frozen ghost batchnorm`\n", "- `ReLU` -> `CeLU`\n", "- data whitening as convolution non-learnable operation (we will not implement it)\n", "\n", "Network architecture looks like this:\n", "\n", "![fastresnet](https://github.com/abdulelahsm/ignite/blob/update-tutorials/examples/notebooks/assets/fastresnet_v2.svg?raw=1)\n", "\n", "\n", "Please see [bag-of-trick notebook](https://github.com/davidcpage/cifar10-fast/blob/master/bag_of_tricks.ipynb) for more detail.\n" ] }, { "cell_type": "code", "metadata": { "id": "Ga6ykOK4faqR" }, "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "\n", "\n", "class GhostBatchNorm(nn.BatchNorm2d):\n", " \"\"\"\n", " From : https://github.com/davidcpage/cifar10-fast/blob/master/bag_of_tricks.ipynb\n", "\n", " Batch norm seems to work best with batch size of around 32. The reasons presumably have to do \n", " with noise in the batch statistics and specifically a balance between a beneficial regularising effect \n", " at intermediate batch sizes and an excess of noise at small batches.\n", " \n", " Our batches are of size 512 and we can't afford to reduce them without taking a serious hit on training times, \n", " but we can apply batch norm separately to subsets of a training batch. This technique, known as 'ghost' batch \n", " norm, is usually used in a distributed setting but is just as useful when using large batches on a single node. \n", " It isn't supported directly in PyTorch but we can roll our own easily enough.\n", " \"\"\"\n", " def __init__(self, num_features, num_splits, eps=1e-05, momentum=0.1, weight=True, bias=True):\n", " super(GhostBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum)\n", " self.weight.data.fill_(1.0)\n", " self.bias.data.fill_(0.0)\n", " self.weight.requires_grad = weight\n", " self.bias.requires_grad = bias \n", " self.num_splits = num_splits\n", " self.register_buffer('running_mean', torch.zeros(num_features*self.num_splits))\n", " self.register_buffer('running_var', torch.ones(num_features*self.num_splits))\n", "\n", " def train(self, mode=True):\n", " if (self.training is True) and (mode is False):\n", " self.running_mean = torch.mean(self.running_mean.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits)\n", " self.running_var = torch.mean(self.running_var.view(self.num_splits, self.num_features), dim=0).repeat(self.num_splits)\n", " return super(GhostBatchNorm, self).train(mode)\n", " \n", " def forward(self, input):\n", " N, C, H, W = input.shape\n", " if self.training or not self.track_running_stats:\n", " return F.batch_norm(\n", " input.view(-1, C*self.num_splits, H, W), self.running_mean, self.running_var, \n", " self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits),\n", " True, self.momentum, self.eps).view(N, C, H, W) \n", " else:\n", " return F.batch_norm(\n", " input, self.running_mean[:self.num_features], self.running_var[:self.num_features], \n", " self.weight, self.bias, False, self.momentum, self.eps)\n", "\n", " \n", "class IdentityResidualBlock(nn.Module):\n", "\n", " def __init__(self, num_channels, \n", " conv_ksize=3, conv_pad=1,\n", " gbn_num_splits=16):\n", " super(IdentityResidualBlock, self).__init__()\n", " self.res1 = nn.Sequential(\n", " Conv2d(num_channels, num_channels, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " GhostBatchNorm(num_channels, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3) \n", " )\n", " self.res2 = nn.Sequential(\n", " Conv2d(num_channels, num_channels, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " GhostBatchNorm(num_channels, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3) \n", " )\n", "\n", " def forward(self, x):\n", " residual = x\n", " x = self.res1(x)\n", " x = self.res2(x)\n", " return x + residual\n", " \n", "\n", "# We override conv2d to get proper padding for kernel size = 2 \n", "class Conv2d(nn.Conv2d):\n", " \n", " def __init__(self, *args, **kwargs):\n", " super(Conv2d, self).__init__(*args, **kwargs)\n", " if self.kernel_size == (2, 2):\n", " self.forward = self.ksize_2_forward\n", " self.ksize_2_padding = (0, self.padding[0], 0, self.padding[1])\n", " self.padding = (0, 0)\n", " \n", " def ksize_2_forward(self, x):\n", " x = F.pad(x, pad=self.ksize_2_padding)\n", " return super(Conv2d, self).forward(x)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "eMJPLneEfaqT" }, "source": [ "class FastResNet(nn.Module):\n", " \n", " def __init__(self, num_classes=10, \n", " fmap_factor=64, conv_ksize=3, conv_pad=1, \n", " gbn_num_splits=512 // 32, \n", " classif_scale=0.0625):\n", " super(FastResNet, self).__init__()\n", " \n", " self.prep = nn.Sequential(\n", " Conv2d(3, fmap_factor, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " GhostBatchNorm(fmap_factor, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3)\n", " )\n", "\n", " self.layer1 = nn.Sequential(\n", " Conv2d(fmap_factor, fmap_factor * 2, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " nn.MaxPool2d(kernel_size=2),\n", " GhostBatchNorm(fmap_factor * 2, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3),\n", " IdentityResidualBlock(fmap_factor * 2,\n", " conv_ksize=conv_ksize, conv_pad=conv_pad, \n", " gbn_num_splits=gbn_num_splits)\n", " )\n", " \n", " self.layer2 = nn.Sequential(\n", " Conv2d(fmap_factor * 2, fmap_factor * 4, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " nn.MaxPool2d(kernel_size=2),\n", " GhostBatchNorm(fmap_factor * 4, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3), \n", " )\n", " \n", " self.layer3 = nn.Sequential(\n", " Conv2d(fmap_factor * 4, fmap_factor * 8, kernel_size=conv_ksize, padding=conv_pad, stride=1, bias=False),\n", " nn.MaxPool2d(kernel_size=2),\n", " GhostBatchNorm(fmap_factor * 8, num_splits=gbn_num_splits, weight=False),\n", " nn.CELU(alpha=0.3),\n", " IdentityResidualBlock(fmap_factor * 8, \n", " conv_ksize=conv_ksize, conv_pad=conv_pad, \n", " gbn_num_splits=gbn_num_splits)\n", " )\n", " \n", " self.pool = nn.MaxPool2d(kernel_size=4)\n", " \n", " self.classifier = nn.Sequential(\n", " nn.Flatten(),\n", " nn.Linear(fmap_factor * 8, num_classes)\n", " )\n", " self.scale = torch.tensor(0.0625, requires_grad=False)\n", "\n", " def forward(self, x):\n", " x = self.prep(x)\n", " x = self.layer1(x)\n", " x = self.layer2(x)\n", " x = self.layer3(x)\n", " x = self.pool(x)\n", " y = self.classifier(x)\n", " return y * self.scale\n", " " ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "mSR5-EYdfaqT" }, "source": [ "model = FastResNet(10, fmap_factor=64)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "JB5VpI-KfaqU" }, "source": [ "def print_num_params(model, display_all_modules=False):\n", " total_num_params = 0\n", " for n, p in model.named_parameters():\n", " num_params = 1\n", " for s in p.shape:\n", " num_params *= s\n", " if display_all_modules: print(f\"{n}: {num_params}\")\n", " total_num_params += num_params\n", " print(\"-\" * 50)\n", " print(f\"Total number of parameters: {total_num_params:.2e}\")\n", " \n", "\n", "print_num_params(model)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "tCJ9xVa1faqW" }, "source": [ "model = FastResNet(10, fmap_factor=64, conv_ksize=2)\n", "\n", "print_num_params(model)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "tEe1st3Dfaqd" }, "source": [ "### Setup dataflow\n", "\n", "We will setup the dataflow using `torchvision` transformation and will not follow the suggestions of [bag-of-trick notebook](https://github.com/davidcpage/cifar10-fast/blob/master/bag_of_tricks.ipynb). Data augmentations used to transform the dataset are\n", "\n", "- Random Crop\n", "- Flip left-right\n", "- Cutout" ] }, { "cell_type": "code", "metadata": { "id": "LtUkVh21faqe" }, "source": [ "import torch\n", "from torchvision.transforms import Compose, Pad, RandomHorizontalFlip, RandomErasing, RandomCrop, Normalize" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "BuGB2zjWfaqe" }, "source": [ "from torch.utils.data import DataLoader\n", "from torchvision.transforms import ToTensor\n", "from torchvision.datasets.cifar import CIFAR10\n", "\n", "\n", "train_transform = Compose([\n", " Pad(4),\n", " RandomCrop(32),\n", " RandomHorizontalFlip(),\n", " ToTensor(), \n", " Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),\n", " RandomErasing(scale=(0.0625, 0.0625), ratio=(1.0, 1.0))\n", "])\n", "\n", "\n", "test_transform = Compose([\n", " ToTensor(), \n", " Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),\n", "])\n", "\n", "\n", "train_ds = CIFAR10(\"/tmp/cifar10\", train=True, download=True, transform=train_transform)\n", "test_ds = CIFAR10(\"/tmp/cifar10\", train=False, download=True, transform=train_transform)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "6r71eyznfaqf" }, "source": [ "def get_train_test_loaders():\n", " train_loader = DataLoader(train_ds, batch_size=512, num_workers=10, shuffle=True, drop_last=True, pin_memory=True)\n", " test_loader = DataLoader(test_ds, batch_size=512, num_workers=10, shuffle=False, drop_last=False, pin_memory=True)\n", " return train_loader, test_loader" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "NrCUZlGjfaqh" }, "source": [ "### Setup criterion, optimizer and lr scheduling\n", "\n", "Following cifar10-fast, we will use label smoothing trick for improving the training speed and generalization of neural nets in classification problems." ] }, { "cell_type": "code", "metadata": { "id": "8bX-LXoFfaqh" }, "source": [ "import torch.nn as nn\n", "import torch.optim as optim\n", "\n", "\n", "class CriterionWithLabelSmoothing(nn.Module):\n", " \n", " def __init__(self, criterion, alpha=0.2):\n", " super(CriterionWithLabelSmoothing, self).__init__()\n", " self.criterion = criterion\n", " if self.criterion.reduction != 'none':\n", " raise ValueError(\"Input criterion should have reduction equal none\")\n", " self.alpha = alpha\n", " \n", " def forward(self, logits, targets):\n", " loss = self.criterion(logits, targets)\n", " log_probs = torch.log_softmax(logits, dim=1)\n", " klloss = -log_probs.mean(dim=1) \n", " out = (1.0 - self.alpha) * loss + self.alpha * klloss\n", " return out.mean(dim=0)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "oI02itLjfaqh" }, "source": [ "def get_criterion(alpha):\n", " return CriterionWithLabelSmoothing(nn.CrossEntropyLoss(reduction='none'), alpha=0.2)\n", "\n", "\n", "def get_optimizer(model, momentum, weight_decay, nesterov):\n", " biases = [p for n, p in model.named_parameters() if \"bias\" in n]\n", " others = [p for n, p in model.named_parameters() if \"bias\" not in n]\n", " return optim.SGD(\n", " [{\"params\": others, \"lr\": 1.0, \"weight_decay\": weight_decay}, \n", " {\"params\": biases, \"lr\": 1.0, \"weight_decay\": weight_decay / 64}], \n", " momentum=momentum, nesterov=nesterov\n", " )\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "I8rCwiNgfaqi" }, "source": [ "There is an implementation difference of current PyTorch SGD and SGD from cifar10-fast. The latter uses Sutskever et al implementation:\n", "```\n", "new_w = w + mu * v - lr * (dw + weight_decay * w)\n", "v = mu * prev_v - lr * (dw + weight_decay * w)\n", "```\n", "and PyTorch's one is \n", "```\n", "new_w = w - lr * (mu * v + dw + weight_decay * w)\n", "v = mu * prev_v + dw + weight_decay * w\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "YexZcC92faqi" }, "source": [ "from ignite.handlers import PiecewiseLinear, ParamGroupScheduler" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "BavMV6RHfaqj" }, "source": [ "def get_lr_scheduler(optimizer, lr_max_value, lr_max_value_epoch, num_epochs, epoch_length):\n", " milestones_values = [\n", " (0, 0.0), \n", " (epoch_length * lr_max_value_epoch, lr_max_value), \n", " (epoch_length * num_epochs - 1, 0.0)\n", " ]\n", " lr_scheduler1 = PiecewiseLinear(optimizer, \"lr\", milestones_values=milestones_values, param_group_index=0)\n", "\n", " milestones_values = [\n", " (0, 0.0), \n", " (epoch_length * lr_max_value_epoch, lr_max_value * 64), \n", " (epoch_length * num_epochs - 1, 0.0)\n", " ]\n", " lr_scheduler2 = PiecewiseLinear(optimizer, \"lr\", milestones_values=milestones_values, param_group_index=1)\n", "\n", " lr_scheduler = ParamGroupScheduler(\n", " [lr_scheduler1, lr_scheduler2],\n", " [\"lr scheduler (non-biases)\", \"lr scheduler (biases)\"]\n", " )\n", " \n", " return lr_scheduler" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "bDGjGeHofaqu" }, "source": [ "%matplotlib inline\n", "\n", "num_epochs = 25\n", "lr_max_value = 0.4\n", "milestones_values = [(0, 0.0), (num_epochs // 5, lr_max_value), (num_epochs - 1, 0.0)]\n", "\n", "PiecewiseLinear.plot_values(num_epochs, param_name=\"lr\", milestones_values=milestones_values)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ydjoAss_faqv" }, "source": [], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ubg08s_yfaqv" }, "source": [ "### Setup hyperparameter tuning\n", "\n", "Now we are ready to setup hyperparameter tuning to optimize the following parameters in order to get higher accuracy on test dataset while training limited by 12 epochs:\n", "\n", "- learning rate peak value: `[0.1, 1.0]`\n", "- SGD momentum: `[0.7, 1.0]`\n", "- weight decay: `[0.0, 1e-3]`\n", "- label smoothing `alpha`: `[0.1, 0.5]`\n", "- number of features (`fmap_factor`): `[16, 24, 32, 40, 48, 56, 64, 72, 80]`\n", "- convolution kernel size: `3` or `2`\n", "- ..." ] }, { "cell_type": "code", "metadata": { "id": "Yt3W860Hfaqw" }, "source": [ "from ax.plot.contour import plot_contour\n", "from ax.plot.trace import optimization_trace_single_method\n", "from ax.service.managed_loop import optimize\n", "from ax.utils.notebook.plotting import render, init_notebook_plotting\n", "\n", "init_notebook_plotting()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "6AHf4Tqwfaq2" }, "source": [ "First, we need to create evaluation function that receives experiment parameters and returns test accuracy.\n", "\n", "Input parameters search space is defined as a list of dictionaries that have the following required keys: \n", "- \"name\" - parameter name, \n", "- \"type\" - parameter type (\"range\", \"choice\" or \"fixed\"), \n", "- \"bounds\" for range parameters, \n", "- \"values\" for choice parameters, and \n", "- \"value\" for fixed parameters.\n", "\n", "Experiment parameters object provided for a single experiment is a dictionary `parameter name: value or values`. \n", "\n", "\n", "Links: \n", "- [Ax Parameters API](https://ax.dev/api/core.html#module-ax.core.parameter)\n", "- [Ax optimize function](https://ax.dev/api/service.html#ax.service.managed_loop.optimize)\n", "- [Ax parameters search space example](https://ax.dev/tutorials/gpei_hartmann_service.html#2.-Set-up-experiment)" ] }, { "cell_type": "code", "metadata": { "id": "d0OloBgffaq3" }, "source": [ "from ignite.engine import create_supervised_trainer, create_supervised_evaluator, Events, convert_tensor\n", "from ignite.metrics import Accuracy\n", "from ignite.handlers import TensorboardLogger, ProgressBar\n", "from ignite.handlers.tensorboard_logger import OutputHandler, OptimizerParamsHandler, GradsHistHandler, \\\n", " global_step_from_engine" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "LS0hvziTfaq3" }, "source": [ "# Transfer batch to GPU and set floating-point 16\n", "def prepare_batch_fp16(batch, device=None, non_blocking=True):\n", " x, y = batch\n", " return (convert_tensor(x, device=device, non_blocking=non_blocking).half(),\n", " convert_tensor(y, device=device, non_blocking=non_blocking))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ii-gTogTfaq6" }, "source": [ "torch.backends.cudnn.benchmark = True" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "Vecp6Lu1faq6" }, "source": [ "num_epochs = 17\n", "\n", "\n", "def run_experiment(parameters):\n", " device = 'cuda'\n", " fast_mode = parameters.get(\"fast_mode\", True)\n", " \n", " # setup model\n", " model = FastResNet(\n", " num_classes=10, \n", " fmap_factor=parameters.get(\"fmap_factor\"), \n", " conv_ksize=parameters.get(\"conv_ksize\"),\n", " classif_scale=parameters.get(\"classif_scale\")\n", " ).to(device).half()\n", " \n", " # setup dataloaders \n", " train_loader, test_loader = get_train_test_loaders()\n", " \n", " # setup solver\n", " criterion = get_criterion(parameters.get(\"alpha\")).to(device)\n", " optimizer = get_optimizer(\n", " model, \n", " parameters.get(\"momentum\"), \n", " parameters.get(\"weight_decay\"),\n", " parameters.get(\"nesterov\")\n", " )\n", " lr_scheduler = get_lr_scheduler(\n", " optimizer, \n", " parameters.get(\"lr_max_value\"),\n", " parameters.get(\"lr_max_value_epoch\"), \n", " num_epochs=num_epochs,\n", " epoch_length=len(train_loader)\n", " )\n", " \n", " # setup ignite trainer\n", " trainer = create_supervised_trainer(model, optimizer, criterion, \n", " device=device, non_blocking=True,\n", " prepare_batch=prepare_batch_fp16)\n", " \n", " # setup learning rate scheduler\n", " trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)\n", " \n", " # setup tensorboard logger\n", " exp_log_name = f\"exp_{parameters.get('fmap_factor')}_{parameters.get('conv_ksize')}_\" + \\\n", " f\"{parameters.get('alpha'):.2}_{parameters.get('lr_max_value'):.4}\"\n", " tb_logger = TensorboardLogger(log_dir=f\"/tmp/tb_logs/{exp_log_name}\")\n", " \n", " if not fast_mode:\n", " # - log learning rate\n", " tb_logger.attach(trainer, OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)\n", "\n", " # - log training batch loss\n", " tb_logger.attach(trainer, OutputHandler(tag=\"training\", output_transform=lambda x: {\"batch loss\": x}), \n", " event_name=Events.ITERATION_COMPLETED)\n", "\n", " # - log model grads\n", " tb_logger.attach(trainer, GradsHistHandler(model), event_name=Events.EPOCH_COMPLETED) \n", " \n", " # setup a progress bar\n", " ProgressBar().attach(trainer, event_name=Events.EPOCH_COMPLETED, closing_event_name=Events.COMPLETED) \n", " \n", " # setup evaluator\n", " def output_transform(output):\n", " y_pred, y = output\n", " y_pred = y_pred.float()\n", " return y_pred, y\n", "\n", " metrics = {\n", " \"test accuracy\": Accuracy(output_transform=output_transform)\n", " }\n", " evaluator = create_supervised_evaluator(model, metrics=metrics, \n", " device=device, non_blocking=True, \n", " prepare_batch=prepare_batch_fp16)\n", " \n", " # evaluate trained model each 3 epochs\n", " @trainer.on(Events.EPOCH_COMPLETED)\n", " def run_evaluation(engine):\n", " c1 = (engine.state.epoch - 1) % 3 == 0\n", " c2 = engine.state.epoch == engine.state.max_epochs\n", " if (c1 and not fast_mode) or c2:\n", " evaluator.run(test_loader)\n", " \n", " if not fast_mode:\n", " # - log test accuracy\n", " tb_logger.attach(evaluator, \n", " OutputHandler(tag=\"validation\", metric_names=\"all\", \n", " global_step_transform=global_step_from_engine(trainer)), \n", " event_name=Events.EPOCH_COMPLETED)\n", "\n", " trainer.run(train_loader, max_epochs=num_epochs) \n", " test_acc = evaluator.state.metrics['test accuracy']\n", " \n", " # dump hparams/result to Tensorboard\n", " tb_logger.writer.add_hparams(parameters, {'hparam/test_accuracy': test_acc})\n", "\n", " tb_logger.close() \n", " return test_acc" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "wHDqJ59Yfaq7" }, "source": [ "Original training configurations gives us the following result:" ] }, { "cell_type": "code", "metadata": { "id": "rDitZVaxfaq7" }, "source": [ "batch_size = 512\n", "num_epochs = 20\n", "\n", "run_experiment(\n", " parameters={\n", " \"fmap_factor\": 64,\n", " \"conv_ksize\": 3,\n", " \"classif_scale\": 0.0625,\n", " \"alpha\": 0.2,\n", " \"momentum\": 0.9,\n", " \"weight_decay\": 5e-4,\n", " \"nesterov\": True,\n", " \"lr_max_value\": 1.0,\n", " \"lr_max_value_epoch\": num_epochs // 5,\n", " \"fast_mode\": False\n", " }\n", ")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "mExJHmKefaq8" }, "source": [ "#### Setup parameters search space" ] }, { "cell_type": "code", "metadata": { "id": "UovND_RDfaq8" }, "source": [ "parameters_space = [\n", " {\n", " \"name\": \"fmap_factor\",\n", " \"type\": \"range\",\n", " \"bounds\": [48, 80],\n", " },\n", " {\n", " \"name\": \"conv_ksize\",\n", " \"type\": \"choice\",\n", " \"values\": [2, 3],\n", " },\n", " {\n", " \"name\": \"classif_scale\",\n", " \"type\": \"range\",\n", " \"bounds\": [0.00625, 0.250],\n", " },\n", " {\n", " \"name\": \"alpha\",\n", " \"type\": \"range\",\n", " \"bounds\": [0.1, 0.5],\n", " },\n", " {\n", " \"name\": \"momentum\",\n", " \"type\": \"range\",\n", " \"bounds\": [0.7, 1.0],\n", " },\n", " {\n", " \"name\": \"weight_decay\",\n", " \"type\": \"range\",\n", " \"bounds\": [1e-4, 1e-3],\n", " \"value_type\": \"float\",\n", " }, \n", " {\n", " \"name\": \"nesterov\",\n", " \"type\": \"choice\",\n", " \"values\": [True, False],\n", " },\n", " {\n", " \"name\": \"lr_max_value\",\n", " \"type\": \"range\",\n", " \"bounds\": [0.1, 1.0],\n", " },\n", " {\n", " \"name\": \"lr_max_value_epoch\",\n", " \"type\": \"range\",\n", " \"bounds\": [1, 10],\n", " },\n", "]\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "qySwubl7faq8" }, "source": [], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "z2VfeJJ6faq9" }, "source": [ "### Start tuning" ] }, { "cell_type": "code", "metadata": { "id": "ZCDlqoEIfaq9" }, "source": [ "num_epochs = exp_num_epochs = 20\n", "\n", "\n", "best_parameters, values, experiment, model = optimize(\n", " parameters=parameters_space,\n", " evaluation_function=run_experiment,\n", " objective_name='test accuracy',\n", " total_trials=30\n", ")\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "SoK4IRuxfaq-" }, "source": [ "We found the best parameters that give the following outcome:" ] }, { "cell_type": "code", "metadata": { "id": "AeK3X7eofaq-" }, "source": [ "means, covariances = values\n", "print(f\"\\nBest parameters: {best_parameters}\\n\")\n", "print(f\"Test accuracy: {means} Β± {covariances}\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "5IE4nWH0faq-" }, "source": [ "Let's plot contours showing test accuracy as a function of the two hyperparameters." ] }, { "cell_type": "code", "metadata": { "id": "I4OExhm6faq_" }, "source": [ "render(plot_contour(model=model, param_x='lr_max_value', param_y='momentum', metric_name='test accuracy'))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "qC7r9vjlfarA" }, "source": [ "Let's retrain the model with best found parameters and compare with previous baseline: " ] }, { "cell_type": "code", "metadata": { "id": "rVAR5tvJfarA" }, "source": [ "batch_size = 512\n", "num_epochs = 20\n", "\n", "best_parameters_copy = dict(best_parameters)\n", "best_parameters_copy['fast_mode'] = False\n", "\n", "run_experiment(\n", " parameters=best_parameters_copy\n", ")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "P0ob7uehfarC" }, "source": [ "In Tensorboard we can observer a tab \"HPARAMS\":\n", "\n", "![hparams](https://github.com/abdulelahsm/ignite/blob/update-tutorials/examples/notebooks/assets/ax_hparams.png?raw=1)" ] } ] }ignite-0.5.1/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb000066400000000000000000001376461465426447700247130ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "name": "CycleGAN_with_nvdia_apex.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "jcIvuoy0zlFM" }, "source": [ "# CycleGAN with Ignite and Nvidia/Apex\n", "\n", "In this notebook we provide an implementation of [CycleGAN](https://arxiv.org/abs/1703.10593) and its automatic mixed precision training on \"Horse 2 Zebra\" dataset using Ignite and Nvidia/Apex.\n", "\n", "**Update (05/2020):** thanks to **@mcarilli** a bug in PyTorch (https://github.com/pytorch/pytorch/issues/37157) with `ConvTranspose2d` was fixed since v1.6.0 (or master at the moment of writing) and this enables CycleGAN automatic mixed precision training.\n", "\n", "### CycleGAN in a Nutshell\n", "\n", "CycleGAN is unpaired image-to-image translation task from $A$ to $B$ and represented by two generative networks $G$ and $F$:\n", "$$\n", "\\hat{y} = G(x) \\in B,\\text{ for } x \\in A \\\\\n", "\\hat{x} = F(y) \\in A,\\text{ for } y \\in B\n", "$$\n", "\n", "and two discriminators $D_A$ and $D_B$. Training of the networks is done by minimizing the loss is a sum of 3 components:\n", "$$\n", "\\mathcal{L}(G, F, D_A, D_B) = \\mathcal{L}_{GAN}(G, D_B) + \\mathcal{L}_{GAN}(F, D_A) + \\lambda \\mathcal{L}_{cyc}(G, F)\n", "$$\n", "with GAN loss:\n", "$$\n", "\\mathcal{L}_{GAN}(G, D_B) = \\text{mean}_{x \\in A}\\left[ (D_B(G(x)) - 1)^2 \\right]+ \\text{mean}_{y \\in B}\\left[ (D_B(y) - 1)^2 \\right] \\\\\n", "\\mathcal{L}_{GAN}(F, D_A) = \\text{mean}_{y \\in B}\\left[ (D_A(F(y)) - 1)^2 \\right]+ \\text{mean}_{x \\in A}\\left[ (D_A(x) - 1)^2 \\right]\n", "$$\n", "and forward and backward cycle consistency term:\n", "$$\n", "\\mathcal{L}_{cyc}(G, F) = \\text{mean}_{x \\in A}\\left[ |F(G(x)) - x|_1 \\right] + \\text{mean}_{y \\in B}\\left[ |G(F(y)) - y|_1 \\right]\n", "$$\n", "\n", "Optionally, one can add identity loss terms. See [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md#what-is-the-identity-loss-322-373-362)." ] }, { "cell_type": "code", "metadata": { "id": "nDtYYPqIPVYP" }, "source": [ "!nvidia-smi" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Uboc36tszlFO" }, "source": [ "## Requirements\n", "\n", "1) Let's download the dataset:" ] }, { "cell_type": "code", "metadata": { "id": "JPiG3vNazlFQ" }, "source": [ "!wget https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/horse2zebra.zip -O/tmp/horse2zebra.zip\n", "!7z x /tmp/horse2zebra.zip -o/tmp/" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "-MkAbMR2zlFb" }, "source": [ "2.a) We need install PyTorch >= 1.6.0 and torchvision" ] }, { "cell_type": "code", "metadata": { "id": "4G7O0bTNzlFc" }, "source": [ "!pip install --pre --upgrade torch torchvision -f https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ooFlZUKnzlFj" }, "source": [ "import torch\n", "torch.__version__" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "hGa3fccizlFq" }, "source": [ "2.b) Next we need to install [nvidia/apex](https://github.com/NVIDIA/apex)" ] }, { "cell_type": "code", "metadata": { "id": "4XZA8zY-zlFz" }, "source": [ "# Install Apex:\n", "# If torch cuda version and nvcc version match:\n", "!pip install --upgrade --no-cache-dir --global-option=\"--cpp_ext\" --global-option=\"--cuda_ext\" git+https://github.com/NVIDIA/apex/\n", "# if above command is failing, please install apex without c++/cuda extensions:\n", "# !pip install --upgrade --no-cache-dir git+https://github.com/NVIDIA/apex/" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "qkMTpk84z-8q" }, "source": [ "3) Install latest tensorboardX and nightly `pytorch-ignite`" ] }, { "cell_type": "code", "metadata": { "id": "ndF-Xc_C0OaY" }, "source": [ "!pip install --pre --upgrade pytorch-ignite tensorboardX" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "kJ1Y88VY0PSI" }, "source": [ "import ignite\n", "ignite.__version__" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "2X5yTc8yzlF4" }, "source": [ "import random\n", "import torch\n", "\n", "seed = 17\n", "random.seed(seed)\n", "_ = torch.manual_seed(seed)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "19UMiJOazlF9" }, "source": [ "## Dataflow\n", "\n", "Let's setup the datase" ] }, { "cell_type": "code", "metadata": { "id": "vvjeGiN5zlF-" }, "source": [ "from torch.utils.data import Dataset, DataLoader\n", "from PIL import Image\n", "\n", "class FilesDataset(Dataset):\n", " \n", " def __init__(self, path, extension=\"*.jpg\"):\n", " self.path = Path(path)\n", " assert self.path.exists(), \"Path '{}' is not found\".format(path)\n", " self.images = list(self.path.rglob(extension))\n", " assert len(self.images) > 0, \"No images with extension {} found at '{}'\".format(extension, path)\n", " \n", " def __len__(self):\n", " return len(self.images)\n", " \n", " def __getitem__(self, i):\n", " return Image.open(self.images[i]).convert('RGB')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_pnfNZIEzlGC" }, "source": [ "from pathlib import Path\n", "\n", "root = Path(\"/tmp/horse2zebra\")\n", "\n", "train_A = FilesDataset(root / \"trainA\")\n", "train_B = FilesDataset(root / \"trainB\")\n", "\n", "test_A = FilesDataset(root / \"testA\") \n", "test_B = FilesDataset(root / \"testB\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Ot_JOE3KzlGG" }, "source": [ "Some details on the datasets:" ] }, { "cell_type": "code", "metadata": { "id": "wPeNl2ufzlGH" }, "source": [ "print(\"Dataset sizes: \\ntrain A: {} | B: {}\\ntest A: {} | B: {}\\n\\t\".format(len(train_A), len(train_B), len(test_A), len(test_B)))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "b0EKmJivzlGM" }, "source": [ "print(f\"Train random image sizes (A): {train_A[0].size}, {train_A[1].size}, {train_A[10].size}, {train_A[-1].size}\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "7waPGeQOzlGQ" }, "source": [ "print(f\"Train random image sizes (B): {train_B[0].size}, {train_B[1].size}, {train_B[10].size}, {train_B[-1].size}\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "2vPHwFKBzlGV" }, "source": [ "import matplotlib.pylab as plt\n", "%matplotlib inline" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_OqBOrx2zlGb" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Train dataset 'Horses'\")\n", "plt.imshow(train_A[10])\n", "plt.subplot(122)\n", "plt.title(\"Train dataset 'Zebras'\")\n", "plt.imshow(train_B[10])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "9HtGaHU7zlGf" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Test dataset 'Horses'\")\n", "plt.imshow(test_A[0])\n", "plt.subplot(122)\n", "plt.title(\"Test dataset 'Zebras'\")\n", "plt.imshow(test_B[0])" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "73DFE_28zlGj" }, "source": [ "Let's create a dataset composed of random image pairs of datasets A and B" ] }, { "cell_type": "code", "metadata": { "id": "Q-R7-6B9zlGk" }, "source": [ "import random\n", "\n", "\n", "class Image2ImageDataset(Dataset):\n", " \n", " def __init__(self, ds_a, ds_b):\n", " self.dataset_a = ds_a\n", " self.dataset_b = ds_b\n", " \n", " def __len__(self):\n", " return max(len(self.dataset_a), len(self.dataset_b))\n", "\n", " def __getitem__(self, i):\n", " dp_a = self.dataset_a[i % len(self.dataset_a)]\n", " j = random.randint(0, len(self.dataset_b) - 1)\n", " dp_b = self.dataset_b[j]\n", " return {\n", " 'A': dp_a,\n", " 'B': dp_b\n", " }\n", "\n", "\n", "class TransformedDataset(Dataset):\n", " \n", " def __init__(self, ds, transform):\n", " self.dataset = ds\n", " self.transform = transform\n", " \n", " def __len__(self):\n", " return len(self.dataset)\n", " \n", " def __getitem__(self, i):\n", " return {k: self.transform(v) for k, v in self.dataset[i].items()}" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4FIgl0aOzlGn" }, "source": [ "train_ab_ds = Image2ImageDataset(train_A, train_B)\n", "test_ab_ds = Image2ImageDataset(test_A, test_B)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "xQRxOp_PzlGr" }, "source": [ "dp = train_ab_ds[20]\n", "\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Train dataset 'Horses'\")\n", "plt.imshow(dp['A'])\n", "plt.subplot(122)\n", "plt.title(\"Train dataset 'Zebras'\")\n", "plt.imshow(dp['B'])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "YiDAQaCqzlGu" }, "source": [ "dp = test_ab_ds[20]\n", "\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Test dataset 'Horses'\")\n", "plt.imshow(dp['A'])\n", "plt.subplot(122)\n", "plt.title(\"Test dataset 'Zebras'\")\n", "plt.imshow(dp['B'])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "yfIjl0MYzlGy" }, "source": [ "from torchvision.transforms import Compose, ColorJitter, RandomHorizontalFlip, ToTensor, Normalize, RandomCrop\n", "\n", "# To accelerate the training we reduce the image size to 200x200 pix instead of 256x256\n", "train_transform = Compose([\n", " RandomCrop(200),\n", " RandomHorizontalFlip(),\n", " ColorJitter(),\n", " ToTensor(),\n", " Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n", "])\n", "transformed_train_ab_ds = TransformedDataset(train_ab_ds, transform=train_transform)\n", "\n", "# Please select appropriate batch_size value according to your infrastructure\n", "batch_size = 10\n", "train_ab_loader = DataLoader(transformed_train_ab_ds, batch_size=batch_size, shuffle=True, drop_last=True, pin_memory=True, num_workers=4)\n", "\n", "\n", "test_transform = Compose([\n", " ToTensor(),\n", " Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n", "])\n", "transformed_test_ab_ds = TransformedDataset(test_ab_ds, transform=test_transform)\n", "batch_size = 10\n", "test_ab_loader = DataLoader(transformed_test_ab_ds, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "CBL5LfStzlG2" }, "source": [ "import torchvision.utils as vutils\n", "\n", "# Plot some training images\n", "real_batch = next(iter(train_ab_loader))\n", "\n", "plt.figure(figsize=(16, 8))\n", "plt.axis(\"off\")\n", "plt.title(\"Training Images from A\")\n", "plt.imshow( \n", " vutils.make_grid(real_batch['A'][:64], padding=2, normalize=True).cpu().numpy().transpose((1, 2, 0))\n", ")\n", "\n", "plt.figure(figsize=(16, 8))\n", "plt.axis(\"off\")\n", "plt.title(\"Training Images from B\")\n", "plt.imshow(\n", " vutils.make_grid(real_batch['B'][:64], padding=2, normalize=True).cpu().numpy().transpose((1, 2, 0))\n", ")\n", "real_batch = None\n", "torch.cuda.empty_cache()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "5EzYQJC5zlG6" }, "source": [ "## Generator and Discriminator networks\n", "\n", "- Generator network architecture contains 9 residual blocks\n", "Using paper's notations:\n", "```\n", "c7s1-64,d128,d256,R256,R256,R256,R256,R256,R256,R256,R256,R256,u128,u64,c7s1-3,tanh\n", "```\n", "where `c7s1-k` denotes a 7x7 Convolution-InstanceNorm-ReLU layer with `k` filters and stride 1. `dk` denotes a 3x3 Convolution-InstanceNorm-ReLU layer with `k` filters and stride 2. Reflection padding was used to reduce artifacts. `Rk` denotes a residual block that contains two 3x3 convolutional layers with the same number of filters on both layer. `uk` denotes a 3x3 fractional-strided-Convolution-InstanceNorm-ReLU layer with `k` filters and stride 1/2." ] }, { "cell_type": "code", "metadata": { "id": "32CwGT7FzlG7" }, "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "\n", "def get_conv_inorm_relu(in_planes, out_planes, kernel_size, stride, reflection_pad=True, with_relu=True):\n", " layers = []\n", " padding = (kernel_size - 1) // 2\n", " if reflection_pad:\n", " layers.append(nn.ReflectionPad2d(padding=padding))\n", " padding = 0\n", " layers += [\n", " nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " ]\n", " if with_relu:\n", " layers.append(nn.ReLU(inplace=True))\n", " return nn.Sequential(*layers)\n", "\n", "\n", "def get_conv_transposed_inorm_relu(in_planes, out_planes, kernel_size, stride):\n", " return nn.Sequential(\n", " nn.ConvTranspose2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=1, output_padding=1),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " nn.ReLU(inplace=True)\n", " )\n", "\n", "\n", "class ResidualBlock(nn.Module):\n", " \n", " def __init__(self, in_planes):\n", " super(ResidualBlock, self).__init__()\n", " self.conv1 = get_conv_inorm_relu(in_planes, in_planes, kernel_size=3, stride=1)\n", " self.conv2 = get_conv_inorm_relu(in_planes, in_planes, kernel_size=3, stride=1, with_relu=False) \n", "\n", " def forward(self, x):\n", " residual = x\n", " x = self.conv1(x)\n", " x = self.conv2(x) \n", " return x + residual\n", "\n", "\n", "class Generator(nn.Module):\n", " \n", " def __init__(self):\n", " super(Generator, self).__init__()\n", " \n", " self.c7s1_64 = get_conv_inorm_relu(3, 64, kernel_size=7, stride=1)\n", " self.d128 = get_conv_inorm_relu(64, 128, kernel_size=3, stride=2, reflection_pad=False)\n", " self.d256 = get_conv_inorm_relu(128, 256, kernel_size=3, stride=2, reflection_pad=False)\n", "\n", " self.resnet9 = nn.Sequential(*[ResidualBlock(256) for i in range(9)])\n", "\n", " self.u128 = get_conv_transposed_inorm_relu(256, 128, kernel_size=3, stride=2)\n", " self.u64 = get_conv_transposed_inorm_relu(128, 64, kernel_size=3, stride=2)\n", " self.c7s1_3 = get_conv_inorm_relu(64, 3, kernel_size=7, stride=1, with_relu=False)\n", " # Replace instance norm by tanh activation\n", " self.c7s1_3[-1] = nn.Tanh()\n", "\n", " def forward(self, x):\n", " # Encoding\n", " x = self.c7s1_64(x)\n", " x = self.d128(x)\n", " x = self.d256(x)\n", " \n", " # 9 residual blocks\n", " x = self.resnet9(x)\n", "\n", " # Decoding\n", " x = self.u128(x)\n", " x = self.u64(x)\n", " y = self.c7s1_3(x)\n", " return y\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "O0guWKr0zlHA" }, "source": [ "Let's check the network:" ] }, { "cell_type": "code", "metadata": { "id": "YH0MVc8AzlHC" }, "source": [ "x = torch.rand(4, 3, 256, 256)\n", "g = Generator()\n", "y = g(x)\n", "y.shape" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "8xFV-ExhzlHF" }, "source": [ "- Discriminator network is a PatchGAN (with receptive field 70x70):\n", "```\n", "C64-C128-C256-C512\n", "```\n", "where `Ck` denote a 4x4 Convolution-InstanceNorm-LeakyReLU layer with `k` filters and stride 2. After the last layer, \n", "a convolution to produce a 1-dimensional output is applied. No `InstanceNorm` for the first `C64` layer. Leaky ReLUs are with a slope of `0.2`. \n", "\n", "Good explanation is given in [this comment](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/39#issuecomment-305575964) on what is a PatchGAN:\n", "```\n", "In fact, a \"PatchGAN\" is just a convnet! Or you could say all convnets are patchnets: the power of convnets is that they process each image patch identically and independently, which makes things very cheap (# params, time, memory), and, amazingly, turns out to work.\n", "\n", "The difference between a PatchGAN and regular GAN discriminator is that rather the regular GAN maps from a 256x256 image to a single scalar output, which signifies \"real\" or \"fake\", whereas the PatchGAN maps from 256x256 to an NxN array of outputs X, where each X_ij signifies whether the patch ij in the image is real or fake. Which is patch ij in the input? Well, output X_ij is just a neuron in a convnet, and we can trace back its receptive field to see which input pixels it is sensitive to. In the CycleGAN architecture, the receptive fields of the discriminator turn out to be 70x70 patches in the input image!\n", "\n", "This is all mathematically equivalent to if we had manually chopped up the image into 70x70 overlapping patches, run a regular discriminator over each patch, and averaged the results.\n", "\n", "Maybe it would have been better if we called it a \"Fully Convolutional GAN\" like in FCNs... it's the same idea :)\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "1oj5XaM0zlHG" }, "source": [ "def get_conv_inorm_lrelu(in_planes, out_planes, stride=2, negative_slope=0.2):\n", " return nn.Sequential(\n", " nn.Conv2d(in_planes, out_planes, kernel_size=4, stride=stride, padding=1),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " nn.LeakyReLU(negative_slope=negative_slope, inplace=True)\n", " )\n", "\n", "\n", "class Discriminator(nn.Module):\n", "\n", " def __init__(self):\n", " super(Discriminator, self).__init__()\n", " self.c64 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)\n", " self.relu = nn.LeakyReLU(0.2, inplace=True)\n", " self.c128 = get_conv_inorm_lrelu(64, 128)\n", " self.c256 = get_conv_inorm_lrelu(128, 256)\n", " self.c512 = get_conv_inorm_lrelu(256, 512, stride=1)\n", " self.last_conv = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)\n", "\n", " def forward(self, x):\n", " x = self.c64(x)\n", " x = self.relu(x)\n", "\n", " x = self.c128(x)\n", " x = self.c256(x)\n", " x = self.c512(x)\n", " y = self.last_conv(x)\n", " return y\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "qc05lzCMzlHK" }, "source": [ "Let's check the network:" ] }, { "cell_type": "code", "metadata": { "id": "YxBiH0lezlHL" }, "source": [ "x = torch.rand(4, 3, 256, 256)\n", "d = Discriminator()\n", "y = d(x)\n", "y.shape" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ZIidCoiHzlHQ" }, "source": [ "According to the paper, the weights are initialized from a Gaussian distribution $\\mathcal{N}(0,0.02)$" ] }, { "cell_type": "code", "metadata": { "id": "e3XCVI4szlHQ" }, "source": [ "def init_weights(module):\n", " assert isinstance(module, nn.Module)\n", " if hasattr(module, \"weight\") and module.weight is not None:\n", " torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)\n", " if hasattr(module, \"bias\") and module.bias is not None:\n", " torch.nn.init.constant_(module.bias, 0.0)\n", " for c in module.children():\n", " init_weights(c)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "C88zzv4ozlHS" }, "source": [ "g = None; d = None" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "uORvKFM3zlHW" }, "source": [ "## Networks' automatic mixed precision training" ] }, { "cell_type": "code", "metadata": { "id": "98Mn0IY8zlHX" }, "source": [ "assert torch.backends.cudnn.enabled, \"NVIDIA/Apex:Amp requires cudnn backend to be enabled.\"\n", "torch.backends.cudnn.benchmark = True" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "fdX_qVVdzlHa" }, "source": [ "device = \"cuda\"\n", "\n", "generator_A2B = Generator().to(device)\n", "init_weights(generator_A2B)\n", "\n", "discriminator_B = Discriminator().to(device)\n", "init_weights(discriminator_B)\n", "\n", "generator_B2A = Generator().to(device)\n", "init_weights(generator_B2A)\n", "discriminator_A = Discriminator().to(device)\n", "init_weights(discriminator_A)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "LpUwBW4PzlHd" }, "source": [ "Similarly, we train the networks from scratch, with a learning rate of `0.0002`." ] }, { "cell_type": "code", "metadata": { "id": "pd_n1OIYzlHe" }, "source": [ "from itertools import chain\n", "import torch.optim as optim\n", "\n", "lr = 0.0002\n", "beta1 = 0.5\n", "\n", "optimizer_G = optim.Adam(chain(generator_A2B.parameters(), generator_B2A.parameters()), lr=lr, betas=(beta1, 0.999))\n", "optimizer_D = optim.Adam(chain(discriminator_A.parameters(), discriminator_B.parameters()), lr=lr, betas=(beta1, 0.999))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "FvVz2Hl9zlHg" }, "source": [ "Let's define some helper functions:\n", "- to turn on/off gradients" ] }, { "cell_type": "code", "metadata": { "id": "5URhsn2JzlHh" }, "source": [ "def toggle_grad(model, on_or_off):\n", " # https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py#L674\n", " for param in model.parameters():\n", " param.requires_grad = on_or_off\n", "\n", "\n", "try:\n", " from apex import amp\n", "except ImportError:\n", " raise ImportError(\"Please install apex from https://www.github.com/nvidia/apex to run this example.\")\n", "\n", "\n", "# Initialize Amp\n", "models, optimizers = amp.initialize([generator_A2B, generator_B2A, discriminator_A, discriminator_B], \n", " [optimizer_G, optimizer_D],\n", " opt_level=\"O2\", num_losses=2)\n", "\n", "generator_A2B, generator_B2A, discriminator_A, discriminator_B = models\n", "optimizer_G, optimizer_D = optimizers" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "7h6GXCU_zlHk" }, "source": [ "### Fake images buffer trick\n", "\n", "According to the paper, to reduce model oscillation and the discriminators are updated using a history of generated images rather than the ones produced by the latest generators. There is an image buffer that stores the X previously created images." ] }, { "cell_type": "code", "metadata": { "id": "msRrTIZXzlHl" }, "source": [ "buffer_size = 50\n", "fake_a_buffer = []\n", "fake_b_buffer = []\n", "\n", "\n", "def buffer_insert_and_get(buffer, batch):\n", " output_batch = []\n", " for b in batch:\n", " b = b.unsqueeze(0)\n", " # if buffer is not fully filled:\n", " if len(buffer) < buffer_size:\n", " output_batch.append(b)\n", " buffer.append(b.cpu())\n", " elif random.uniform(0, 1) > 0.5:\n", " # Add newly created image into the buffer and put ont from the buffer into the output\n", " random_index = random.randint(0, buffer_size - 1) \n", " output_batch.append(buffer[random_index].clone().to(device))\n", " buffer[random_index] = b.cpu()\n", " else:\n", " output_batch.append(b)\n", " return torch.cat(output_batch, dim=0)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "yd33Z6QmzlHn" }, "source": [ "Next, let's define a single iteration via `update_fn` function. This function is then used by `ignite.engine.Engine` to update models while running over the input data.\n", "\n", "As suggested, we divide the objective by 2 while optimizing D, which slows down the rate at which D learns, relative to the rate of G. \n", "\n", "According to the paper:\n", "- generator A is trained minimize $\\text{mean}_{x \\in A}[(D_B(G(x)) βˆ’ 1)^2]$ and cycle loss $\\text{mean}_{x \\in A}\\left[ |F(G(x)) - x|_1 \\right]$\n", "- generator B is trained minimize $\\text{mean}_{y \\in B}[(D_A(F(y)) βˆ’ 1)^2]$ and cycle loss $\\text{mean}_{y \\in B}\\left[ |G(F(y)) - y|_1 \\right]$\n", "- discriminators A is trained to minimize $\\text{mean}_{x \\in A}[(D_A(x) βˆ’ 1)^2] + \\text{mean}_{y \\in B}[D_A(F(y))^2]$.\n", "- discriminator B is trained to minimize $\\text{mean}_{y \\in B}[(D_B(y) βˆ’ 1)^2] + \\text{mean}_{x \\in A}[D_B(G(x))^2]$." ] }, { "cell_type": "code", "metadata": { "id": "C2tu38mmzlHp" }, "source": [ "from ignite.utils import convert_tensor\n", "import torch.nn.functional as F\n", "\n", "\n", "lambda_value = 10.0\n", "\n", "\n", "def discriminator_forward_pass(discriminator, batch_real, batch_fake, fake_buffer):\n", " decision_real = discriminator(batch_real)\n", " batch_fake = buffer_insert_and_get(fake_buffer, batch_fake) \n", " decision_fake = discriminator(batch_fake)\n", " return decision_real, decision_fake\n", "\n", "\n", "def compute_loss_generator(batch_decision, batch_real, batch_rec, lambda_value):\n", " # loss gan\n", " target = torch.ones_like(batch_decision)\n", " loss_gan = F.mse_loss(batch_decision, target)\n", " # loss cycle\n", " loss_cycle = F.l1_loss(batch_rec, batch_real) * lambda_value \n", " return loss_gan + loss_cycle\n", "\n", "\n", "def compute_loss_discriminator(decision_real, decision_fake):\n", " # loss = mean (D_b(y) βˆ’ 1)^2 + mean D_b(G(x))^2 \n", " loss = F.mse_loss(decision_fake, torch.zeros_like(decision_fake))\n", " loss += F.mse_loss(decision_real, torch.ones_like(decision_real))\n", " return loss\n", "\n", "\n", "def update_fn(engine, batch):\n", " generator_A2B.train()\n", " generator_B2A.train()\n", " discriminator_A.train()\n", " discriminator_B.train()\n", "\n", " real_a = convert_tensor(batch['A'], device=device, non_blocking=True)\n", " real_b = convert_tensor(batch['B'], device=device, non_blocking=True)\n", " \n", " # Update generators:\n", "\n", " # Disable grads computation for the discriminators:\n", " toggle_grad(discriminator_A, False)\n", " toggle_grad(discriminator_B, False) \n", " \n", " fake_b = generator_A2B(real_a)\n", " rec_a = generator_B2A(fake_b)\n", " fake_a = generator_B2A(real_b)\n", " rec_b = generator_A2B(fake_a)\n", " decision_fake_a = discriminator_A(fake_a)\n", " decision_fake_b = discriminator_B(fake_b)\n", "\n", " # Compute loss for generators and update generators\n", " # loss_a2b = GAN loss: mean (D_B(G(x)) βˆ’ 1)^2 + Forward cycle loss: || F(G(x)) - x ||_1 \n", " loss_a2b = compute_loss_generator(decision_fake_b, real_a, rec_a, lambda_value) \n", "\n", " # loss_b2a = GAN loss: mean (D_A(F(x)) βˆ’ 1)^2 + Backward cycle loss: || G(F(y)) - y ||_1\n", " loss_b2a = compute_loss_generator(decision_fake_a, real_b, rec_b, lambda_value)\n", "\n", " # total generators loss:\n", " loss_generators = loss_a2b + loss_b2a\n", "\n", " optimizer_G.zero_grad() \n", " with amp.scale_loss(loss_generators, optimizer_G, loss_id=0) as scaled_loss:\n", " scaled_loss.backward()\n", " optimizer_G.step()\n", "\n", " decision_fake_a = rec_a = decision_fake_b = rec_b = None\n", " \n", " # Update discriminators:\n", "\n", " # Enable grads computation for the discriminators:\n", " toggle_grad(discriminator_A, True)\n", " toggle_grad(discriminator_B, True)\n", "\n", " decision_real_a, decision_fake_a = discriminator_forward_pass(discriminator_A, real_a, fake_a.detach(), fake_a_buffer) \n", " decision_real_b, decision_fake_b = discriminator_forward_pass(discriminator_B, real_b, fake_b.detach(), fake_b_buffer) \n", " # Compute loss for discriminators and update discriminators\n", " # loss_a = mean (D_a(y) βˆ’ 1)^2 + mean D_a(F(x))^2\n", " loss_a = compute_loss_discriminator(decision_real_a, decision_fake_a)\n", "\n", " # loss_b = mean (D_b(y) βˆ’ 1)^2 + mean D_b(G(x))^2\n", " loss_b = compute_loss_discriminator(decision_real_b, decision_fake_b)\n", " \n", " # total discriminators loss:\n", " loss_discriminators = 0.5 * (loss_a + loss_b)\n", " \n", " optimizer_D.zero_grad()\n", " with amp.scale_loss(loss_discriminators, optimizer_D, loss_id=1) as scaled_loss:\n", " scaled_loss.backward()\n", " optimizer_D.step()\n", " \n", " return {\n", " \"loss_generators\": loss_generators.item(),\n", " \"loss_generator_a2b\": loss_a2b.item(),\n", " \"loss_generator_b2a\": loss_b2a.item(),\n", " \"loss_discriminators\": loss_discriminators.item(),\n", " \"loss_discriminator_a\": loss_a.item(),\n", " \"loss_discriminator_b\": loss_b.item(),\n", " }\n", " " ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "kYUpOC9KzlHy" }, "source": [ "Let's check `update_fn`" ] }, { "cell_type": "code", "metadata": { "id": "-l85TCzFzlHy" }, "source": [ "real_batch = next(iter(train_ab_loader))\n", "\n", "res = update_fn(engine=None, batch=real_batch)\n", "\n", "real_batch = None\n", "torch.cuda.empty_cache()\n", "\n", "res" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "VbePH1sDzlH3" }, "source": [ "Now let's define a trainer and add some practical handlers:\n", "- log to tensorboard: losses, lr, generated images\n", "- progress bar\n", "- models/optimizers checkpointing\n", "\n", "\n", "Optionally, we also log to online platform [W&B](https://app.wandb.ai). Current logs can be seen at https://app.wandb.ai/vfdev-5/ignite-cyclegan-apex\n", "\n", "```\n", "pip install --upgrade wandb\n", "wandb login your-token\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "lTVeh3TVR1k3" }, "source": [ "!pip install --upgrade wandb\n", "# !wandb login your-token" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "3CmksFkIzlH5" }, "source": [ "from ignite.engine import Engine, Events\n", "from ignite.metrics import RunningAverage\n", "\n", "from ignite.handlers import TensorboardLogger, WandBLogger\n", "from ignite.handlers.tensorboard_logger import OutputHandler, OptimizerParamsHandler" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "Hkq6KF3PzlH6" }, "source": [ "from functools import partial\n", "\n", "\n", "trainer = Engine(update_fn)\n", "\n", "metric_names = [\n", " 'loss_discriminators', \n", " 'loss_generators', \n", " 'loss_discriminator_a',\n", " 'loss_discriminator_b',\n", " 'loss_generator_a2b',\n", " 'loss_generator_b2a' \n", "]\n", "\n", "def output_transform(out, name):\n", " return out[name]\n", "\n", "for name in metric_names:\n", " # here we cannot use lambdas as they do not store argument `name`\n", " RunningAverage(output_transform=partial(output_transform, name=name)).attach(trainer, name)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "WnkfedNdzlH9" }, "source": [ "from datetime import datetime\n", "\n", "exp_name = datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", "tb_logger = TensorboardLogger(log_dir=\"/tmp/cycle_gan_horse2zebra_tb_logs/{}\".format(exp_name))\n", "\n", "tb_logger.attach(trainer, \n", " log_handler=OutputHandler('training', metric_names), \n", " event_name=Events.ITERATION_COMPLETED)\n", "\n", "print(\"Experiment name: \", exp_name)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "PYJbyPYCzlH_" }, "source": [ "from pathlib import Path\n", "\n", "try:\n", "\n", " wb_run_name = \"cycle_gan_horse2zebra\"\n", " wb_dir = Path(\"/tmp/cycle_gan_horse2zebra_wandb\")\n", " if not wb_dir.exists():\n", " wb_dir.mkdir()\n", " wb_logger = WandBLogger(\n", " project=\"ignite-cyclegan-apex\",\n", " name=wb_run_name,\n", " sync_tensorboard=True,\n", " dir=wb_dir.as_posix(),\n", " reinit=True\n", " )\n", "except RuntimeError:\n", " wb_logger = None" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ol8pi8H0zlIB" }, "source": [ "Let's create an evaluator to inference on train/test images and log the generated images to Tensorboard:" ] }, { "cell_type": "code", "metadata": { "id": "lQHD_FjRzlIB" }, "source": [ "from ignite.engine import Engine\n", "\n", "\n", "def evaluate_fn(engine, batch):\n", " generator_A2B.eval()\n", " generator_B2A.eval() \n", " with torch.no_grad():\n", " real_a = convert_tensor(batch['A'], device=device, non_blocking=True)\n", " real_b = convert_tensor(batch['B'], device=device, non_blocking=True)\n", " \n", " fake_b = generator_A2B(real_a)\n", " rec_a = generator_B2A(fake_b)\n", "\n", " fake_a = generator_B2A(real_b)\n", " rec_b = generator_A2B(fake_a)\n", " \n", " return {\n", " 'real_a': real_a,\n", " 'real_b': real_b,\n", " 'fake_a': fake_a,\n", " 'fake_b': fake_b,\n", " 'rec_a': rec_a,\n", " 'rec_b': rec_b, \n", " }\n", "\n", "\n", "evaluator = Engine(evaluate_fn)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "dqOfxVF6zlIE" }, "source": [ "from torch.utils.data import Subset\n", "\n", "eval_batch_size = 5\n", "\n", "train_random_indices = [random.randint(0, len(train_ab_ds) - 1) for _ in range(eval_batch_size)]\n", "small_train_ds = Subset(train_ab_ds, train_random_indices)\n", "small_train_ds = TransformedDataset(small_train_ds, transform=test_transform)\n", "\n", "test_random_indices = [random.randint(0, len(test_ab_ds) - 1) for _ in range(eval_batch_size)]\n", "small_test_ds = Subset(test_ab_ds, test_random_indices)\n", "small_test_ds = TransformedDataset(small_test_ds, transform=test_transform)\n", "\n", "eval_train_loader = DataLoader(small_train_ds, batch_size=eval_batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)\n", "eval_test_loader = DataLoader(small_test_ds, batch_size=eval_batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "LKChxbQkzlIG" }, "source": [ "@trainer.on(Events.EPOCH_STARTED)\n", "def run_evaluation(engine):\n", " evaluator.run(eval_train_loader)\n", " evaluator.run(eval_test_loader)\n", "\n", "\n", "def log_generated_images(engine, logger, event_name):\n", "\n", " tag = \"Train\" if engine.state.dataloader == eval_train_loader else \"Test\"\n", " output = engine.state.output\n", " state = trainer.state\n", " global_step = state.get_event_attrib_value(event_name)\n", "\n", " # create a grid:\n", " # [real a1, real a2, ...]\n", " # [fake a1, fake a2, ...]\n", " # [rec a1, rec a2, ...]\n", " \n", " s = output['real_a'].shape[0]\n", " res_a = vutils.make_grid(torch.cat([\n", " output['real_a'],\n", " output['fake_b'],\n", " output['rec_a'],\n", " ]), padding=2, normalize=True, nrow=s).cpu()\n", "\n", " logger.writer.add_image(tag=\"{} Horses2Zebras (real, fake, rec)\".format(tag), \n", " img_tensor=res_a, global_step=global_step, dataformats='CHW')\n", "\n", " s = output['real_b'].shape[0]\n", " res_b = vutils.make_grid(torch.cat([\n", " output['real_b'],\n", " output['fake_a'],\n", " output['rec_b'],\n", " ]), padding=2, normalize=True, nrow=s).cpu()\n", " logger.writer.add_image(tag=\"{} Zebras2Horses (real, fake, rec)\".format(tag), \n", " img_tensor=res_b, global_step=global_step, dataformats='CHW')\n", "\n", " \n", "tb_logger.attach(evaluator,\n", " log_handler=log_generated_images, \n", " event_name=Events.COMPLETED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "BMM_OzwozlII" }, "source": [ "We also follow suggested lr scheduling: the same learning rate for the first 100 epochs and linearly decay the rate to zero over the next 100 epochs." ] }, { "cell_type": "code", "metadata": { "id": "iUm5u9RdzlII" }, "source": [ "from ignite.handlers import PiecewiseLinear, ParamGroupScheduler\n", "\n", "lr = 0.0002\n", "\n", "milestones_values = [\n", " (0, lr),\n", " (100, lr),\n", " (200, 0.0)\n", "]\n", "gen_lr_scheduler = PiecewiseLinear(optimizer_D, param_name='lr', milestones_values=milestones_values)\n", "desc_lr_scheduler = PiecewiseLinear(optimizer_G, param_name='lr', milestones_values=milestones_values)\n", "\n", "lr_scheduler = ParamGroupScheduler([gen_lr_scheduler, desc_lr_scheduler], \n", " names=['gen_lr_scheduler', 'desc_lr_scheduler'])\n", "\n", "trainer.add_event_handler(Events.EPOCH_STARTED, lr_scheduler)\n", "\n", "\n", "tb_logger.attach(trainer,\n", " log_handler=OptimizerParamsHandler(optimizer_G, \"lr\"), \n", " event_name=Events.EPOCH_STARTED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "8c6wzCMyzlIL" }, "source": [ "Let's setup models/optimizers checkpointing:" ] }, { "cell_type": "code", "metadata": { "id": "GAkSTvqZzlIM" }, "source": [ "from ignite.handlers import ModelCheckpoint, TerminateOnNan" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1PbOwr3fzlIO" }, "source": [ "!rm -rf \"/tmp/cycle_gan_checkpoints\" \n", "!mkdir \"/tmp/cycle_gan_checkpoints\"\n", "\n", "from ignite.handlers import ModelCheckpoint, TerminateOnNan\n", "\n", "\n", "checkpoint_handler = ModelCheckpoint(dirname=\"/tmp/cycle_gan_checkpoints\", filename_prefix=\"\")\n", "\n", "to_save = {\n", " \"generator_A2B\": generator_A2B,\n", " \"discriminator_B\": discriminator_B,\n", " \"generator_B2A\": generator_B2A,\n", " \"discriminator_A\": discriminator_A,\n", " \n", " \"optimizer_G\": optimizer_G,\n", " \"optimizer_D\": optimizer_D,\n", "}\n", "\n", "trainer.add_event_handler(Events.ITERATION_COMPLETED(every=500), checkpoint_handler, to_save)\n", "trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "HmY0vbZ3zlIQ" }, "source": [ "from ignite.handlers import ProgressBar\n", "\n", "# Iteration-wise progress bar\n", "ProgressBar(bar_format=\"\").attach(trainer)\n", "# Epoch-wise progress bar with display of training losses\n", "ProgressBar(persist=True, bar_format=\"\").attach(trainer, metric_names=['loss_discriminators', 'loss_generators'], \n", " event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ON5YXeyG5-ZM" }, "source": [ "# Display in Firefox may not work properly. Use Chrome.\n", "%load_ext tensorboard\n", "\n", "%tensorboard --logdir=/tmp/cycle_gan_horse2zebra_tb_logs" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "KsUWFlljzlIT" }, "source": [ "trainer.run(train_ab_loader, max_epochs=200)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "J9iJ2qgFzlIa" }, "source": [ "tb_logger.close()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "SqM3CDjGzlIc" }, "source": [ "### Inference with trained generator\n", "\n", "Let's display saved checkpoint, load weights for \"Horses to Zebras\" generator and run an inference on a test image" ] }, { "cell_type": "code", "metadata": { "id": "63fPaeBszlId" }, "source": [ "!ls /tmp/cycle_gan_checkpoints/" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "plx8tVwizlIf" }, "source": [ "checkpoint_path = \"/tmp/cycle_gan_checkpoints/checkpoint_26500.pt\"\n", "\n", "# let's save this checkpoint to W&B\n", "if wb_logger is not None:\n", " wb_logger.save(checkpoint_path)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "B7XfWZ_OzlIh" }, "source": [ "checkpoint_state_dict = torch.load(checkpoint_path)\n", "generator_A2B.load_state_dict(checkpoint_state_dict[\"generator_A2B\"])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "pQ9qevDdzlIk" }, "source": [ "def normalize(x):\n", " vmin = x.min()\n", " vmax = x.max()\n", " x.clamp_(min=vmin, max=vmax)\n", " x.add_(-vmin).div_(vmax - vmin + 1e-5)\n", " return x" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "o2Y5LezkzlIn" }, "source": [ "i = random.randint(0, len(test_ab_ds) - 1)\n", "img = test_ab_ds[i]['A']\n", "x = test_transform(img)\n", "x = x.unsqueeze(0).to(device)\n", "\n", "\n", "with torch.no_grad():\n", " y_pred = generator_A2B(x)\n", " \n", "\n", "img_pred = (255 * normalize(y_pred[0, ...])).cpu().numpy().transpose((1, 2, 0)).astype('uint8')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "GuTQLGu-zlIp" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Horse\")\n", "plt.imshow(img)\n", "plt.subplot(122)\n", "plt.title(\"Generated zebra\")\n", "plt.imshow(img_pred)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "FgUb_vT7zlIr" }, "source": [ "Let's apply for fun our zebra-filter on an image with deep learning gurus:" ] }, { "cell_type": "code", "metadata": { "id": "NlJhc0nQzlIs" }, "source": [ "!wget https://www.kdnuggets.com/wp-content/uploads/photo.jpg -O/tmp/dl_durus.jpg" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "bX8tSIxMzlIt" }, "source": [ "from PIL import Image\n", "\n", "img = Image.open(\"/tmp/dl_durus.jpg\")\n", "x = test_transform(img)\n", "x = x.unsqueeze(0).to(device)\n", "\n", "\n", "with torch.no_grad():\n", " y_pred = generator_A2B(x)\n", "\n", "\n", "img_pred = (255 * normalize(y_pred[0, ...])).cpu().numpy().transpose((1, 2, 0)).astype('uint8')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "BYVxaD_SzlIv" }, "source": [ "plt.figure(figsize=(15, 8))\n", "plt.subplot(121)\n", "plt.title(\"4 Deep-learning gurus\")\n", "plt.imshow(img)\n", "plt.subplot(122)\n", "plt.title(\"Zebras\")\n", "plt.imshow(img_pred)" ], "execution_count": null, "outputs": [] } ] } ignite-0.5.1/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb000066400000000000000000001365651465426447700253730ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "name": "CycleGAN_with_torch_cuda_amp.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "XwaQH08zFRZW" }, "source": [ "# CycleGAN with Ignite and `torch.cuda.amp`\n", "\n", "In this notebook we provide an implementation of [CycleGAN](https://arxiv.org/abs/1703.10593) and its training on \"Horse 2 Zebra\" dataset using Ignite. This notebook is almost similar to another our [notebook on CycleGAN with Nvidia/Apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_ignite_and_nvdia_apex.ipynb).\n", "\n", "In contrast, we will use recently added [`torch.cuda.amp`](https://pytorch.org/docs/master/notes/amp_examples.html#working-with-multiple-models-losses-and-optimizers) module to perform automatic mixed precision training instead of using Nvidia/Apex package. This module is available in pytorch (>=1.6.0) release.\n", "\n", "\n", "### CycleGAN in a Nutshell\n", "\n", "CycleGAN is unpaired image-to-image translation task from $A$ to $B$ and represented by two generative networks $G$ and $F$:\n", "$$\n", "\\hat{y} = G(x) \\in B,\\text{ for } x \\in A \\\\\n", "\\hat{x} = F(y) \\in A,\\text{ for } y \\in B\n", "$$\n", "\n", "and two discriminators $D_A$ and $D_B$. Training of the networks is done by minimizing the loss is a sum of 3 components:\n", "$$\n", "\\mathcal{L}(G, F, D_A, D_B) = \\mathcal{L}_{GAN}(G, D_B) + \\mathcal{L}_{GAN}(F, D_A) + \\lambda \\mathcal{L}_{cyc}(G, F)\n", "$$\n", "with GAN loss:\n", "$$\n", "\\mathcal{L}_{GAN}(G, D_B) = \\text{mean}_{x \\in A}\\left[ (D_B(G(x)) - 1)^2 \\right]+ \\text{mean}_{y \\in B}\\left[ (D_B(y) - 1)^2 \\right] \\\\\n", "\\mathcal{L}_{GAN}(F, D_A) = \\text{mean}_{y \\in B}\\left[ (D_A(F(y)) - 1)^2 \\right]+ \\text{mean}_{x \\in A}\\left[ (D_A(x) - 1)^2 \\right]\n", "$$\n", "and forward and backward cycle consistency term:\n", "$$\n", "\\mathcal{L}_{cyc}(G, F) = \\text{mean}_{x \\in A}\\left[ |F(G(x)) - x|_1 \\right] + \\text{mean}_{y \\in B}\\left[ |G(F(y)) - y|_1 \\right]\n", "$$\n", "\n", "Optionally, one can add identity loss terms. See [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md#what-is-the-identity-loss-322-373-362)." ] }, { "cell_type": "code", "metadata": { "id": "eqe1kXPcXj1U" }, "source": [ "!nvidia-smi" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "6Y60e3m2FRZY" }, "source": [ "## Requirements\n", "\n", "1) Let's download the dataset:" ] }, { "cell_type": "code", "metadata": { "id": "l3LdmHAuFRZa" }, "source": [ "!wget https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/horse2zebra.zip -O/tmp/horse2zebra.zip\n", "!7z x /tmp/horse2zebra.zip -o/tmp/" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "quI5HJekFRZm" }, "source": [ "2) Next we need to install `torchvision` and PyTorch Nightly Release (>=1.6.0)\n", "\n", "```python\n", "# Torchvision:\n", "pip install --pre torch torchvision -f https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "3c6PHUZeFRZu" }, "source": [ "!pip install --upgrade --pre torch torchvision -f https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "DU14wTLeZBh3" }, "source": [ "3) We install nightly version of pytorch-ignite" ] }, { "cell_type": "code", "metadata": { "id": "dWN63EToZA-G" }, "source": [ "!pip install --pre pytorch-ignite" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "p8M6GlpmQ5jZ" }, "source": [ "import torch\n", "import ignite\n", "torch.__version__, ignite.__version__" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "d3LCqCufFRZ6" }, "source": [ "import random\n", "import torch\n", "\n", "seed = 17\n", "random.seed(seed)\n", "_ = torch.manual_seed(seed)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "20G39vEqFRaA" }, "source": [ "## Dataflow\n", "\n", "Let's setup the datase" ] }, { "cell_type": "code", "metadata": { "id": "nOr3nd4qFRaB" }, "source": [ "from torch.utils.data import Dataset, DataLoader\n", "from PIL import Image\n", "\n", "class FilesDataset(Dataset):\n", " \n", " def __init__(self, path, extension=\"*.jpg\"):\n", " self.path = Path(path)\n", " assert self.path.exists(), \"Path '{}' is not found\".format(path)\n", " self.images = list(self.path.rglob(extension))\n", " assert len(self.images) > 0, \"No images with extension {} found at '{}'\".format(extension, path)\n", " \n", " def __len__(self):\n", " return len(self.images)\n", " \n", " def __getitem__(self, i):\n", " return Image.open(self.images[i]).convert('RGB')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "byG73rBHFRaG" }, "source": [ "from pathlib import Path\n", "\n", "root = Path(\"/tmp/horse2zebra\")\n", "\n", "train_A = FilesDataset(root / \"trainA\")\n", "train_B = FilesDataset(root / \"trainB\")\n", "\n", "test_A = FilesDataset(root / \"testA\") \n", "test_B = FilesDataset(root / \"testB\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Kv1oXmSJFRaK" }, "source": [ "Some details on the datasets:" ] }, { "cell_type": "code", "metadata": { "id": "UZ4rY5S9FRaL" }, "source": [ "print(\"Dataset sizes: \\ntrain A: {} | B: {}\\ntest A: {} | B: {}\\n\\t\".format(len(train_A), len(train_B), len(test_A), len(test_B)))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "R4lyZ6GSFRaR" }, "source": [ "print(\"Train random image sizes (A): {}, {}, {}, {}\".format(train_A[0].size, train_A[1].size, train_A[10].size, train_A[-1].size))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "e-61gbfVFRaX" }, "source": [ "print(\"Train random image sizes (B): {}, {}, {}, {}\".format(train_B[0].size, train_B[1].size, train_B[10].size, train_B[-1].size))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "fAxkND8jFRac" }, "source": [ "import matplotlib.pylab as plt\n", "%matplotlib inline" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "Xx7cAEI0FRah" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Train dataset 'Horses'\")\n", "plt.imshow(train_A[10])\n", "plt.subplot(122)\n", "plt.title(\"Train dataset 'Zebras'\")\n", "plt.imshow(train_B[10])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "S_v_FuvZFRao" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Test dataset 'Horses'\")\n", "plt.imshow(test_A[0])\n", "plt.subplot(122)\n", "plt.title(\"Test dataset 'Zebras'\")\n", "plt.imshow(test_B[0])" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "gc6ZuUWwFRas" }, "source": [ "Let's create a dataset composed of random image pairs of datasets A and B" ] }, { "cell_type": "code", "metadata": { "id": "B699THXXFRat" }, "source": [ "import random\n", "\n", "\n", "class Image2ImageDataset(Dataset):\n", " \n", " def __init__(self, ds_a, ds_b):\n", " self.dataset_a = ds_a\n", " self.dataset_b = ds_b\n", " \n", " def __len__(self):\n", " return max(len(self.dataset_a), len(self.dataset_b))\n", "\n", " def __getitem__(self, i):\n", " dp_a = self.dataset_a[i % len(self.dataset_a)]\n", " j = random.randint(0, len(self.dataset_b) - 1)\n", " dp_b = self.dataset_b[j]\n", " return {\n", " 'A': dp_a,\n", " 'B': dp_b\n", " }\n", "\n", "\n", "class TransformedDataset(Dataset):\n", " \n", " def __init__(self, ds, transform):\n", " self.dataset = ds\n", " self.transform = transform\n", " \n", " def __len__(self):\n", " return len(self.dataset)\n", " \n", " def __getitem__(self, i):\n", " return {k: self.transform(v) for k, v in self.dataset[i].items()}" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "RF6OQwxoFRax" }, "source": [ "train_ab_ds = Image2ImageDataset(train_A, train_B)\n", "test_ab_ds = Image2ImageDataset(test_A, test_B)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "eIcsATwrFRa1" }, "source": [ "dp = train_ab_ds[20]\n", "\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Train dataset 'Horses'\")\n", "plt.imshow(dp['A'])\n", "plt.subplot(122)\n", "plt.title(\"Train dataset 'Zebras'\")\n", "plt.imshow(dp['B'])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "X3zfGZoOFRa6" }, "source": [ "dp = test_ab_ds[20]\n", "\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Test dataset 'Horses'\")\n", "plt.imshow(dp['A'])\n", "plt.subplot(122)\n", "plt.title(\"Test dataset 'Zebras'\")\n", "plt.imshow(dp['B'])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "q2Hda4tjFRa-" }, "source": [ "from torchvision.transforms import Compose, ColorJitter, RandomHorizontalFlip, ToTensor, Normalize, RandomCrop\n", "\n", "# To accelerate the training we reduce the image size to 200x200 pix instead of 256x256\n", "train_transform = Compose([\n", " RandomCrop(200),\n", " RandomHorizontalFlip(),\n", " ColorJitter(),\n", " ToTensor(),\n", " Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n", "])\n", "transformed_train_ab_ds = TransformedDataset(train_ab_ds, transform=train_transform)\n", "\n", "# Please select appropriate batch_size value according to your infrastructure\n", "batch_size = 10\n", "train_ab_loader = DataLoader(transformed_train_ab_ds, batch_size=batch_size, shuffle=True, drop_last=True, pin_memory=True, num_workers=4)\n", "\n", "\n", "test_transform = Compose([\n", " ToTensor(),\n", " Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))\n", "])\n", "transformed_test_ab_ds = TransformedDataset(test_ab_ds, transform=test_transform)\n", "batch_size = 10\n", "test_ab_loader = DataLoader(transformed_test_ab_ds, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "HtfXU9uaFRbB" }, "source": [ "import torchvision.utils as vutils\n", "\n", "# Plot some training images\n", "real_batch = next(iter(train_ab_loader))\n", "\n", "plt.figure(figsize=(16, 8))\n", "plt.axis(\"off\")\n", "plt.title(\"Training Images from A\")\n", "plt.imshow( \n", " vutils.make_grid(real_batch['A'][:64], padding=2, normalize=True).cpu().numpy().transpose((1, 2, 0))\n", ")\n", "\n", "plt.figure(figsize=(16, 8))\n", "plt.axis(\"off\")\n", "plt.title(\"Training Images from B\")\n", "plt.imshow(\n", " vutils.make_grid(real_batch['B'][:64], padding=2, normalize=True).cpu().numpy().transpose((1, 2, 0))\n", ")\n", "real_batch = None\n", "torch.cuda.empty_cache()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "RlZ39Id-FRbF" }, "source": [ "## Generator and Discriminator networks\n", "\n", "- Generator network architecture contains 9 residual blocks\n", "Using paper's notations:\n", "```\n", "c7s1-64,d128,d256,R256,R256,R256,R256,R256,R256,R256,R256,R256,u128,u64,c7s1-3,tanh\n", "```\n", "where `c7s1-k` denotes a 7x7 Convolution-InstanceNorm-ReLU layer with `k` filters and stride 1. `dk` denotes a 3x3 Convolution-InstanceNorm-ReLU layer with `k` filters and stride 2. Reflection padding was used to reduce artifacts. `Rk` denotes a residual block that contains two 3x3 convolutional layers with the same number of filters on both layer. `uk` denotes a 3x3 fractional-strided-Convolution-InstanceNorm-ReLU layer with `k` filters and stride 1/2." ] }, { "cell_type": "code", "metadata": { "id": "Ri6_NvWfFRbG" }, "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "\n", "def get_conv_inorm_relu(in_planes, out_planes, kernel_size, stride, reflection_pad=True, with_relu=True):\n", " layers = []\n", " padding = (kernel_size - 1) // 2\n", " if reflection_pad:\n", " layers.append(nn.ReflectionPad2d(padding=padding))\n", " padding = 0\n", " layers += [\n", " nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " ]\n", " if with_relu:\n", " layers.append(nn.ReLU(inplace=True))\n", " return nn.Sequential(*layers)\n", "\n", "\n", "def get_conv_transposed_inorm_relu(in_planes, out_planes, kernel_size, stride):\n", " return nn.Sequential(\n", " nn.ConvTranspose2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=1, output_padding=1),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " nn.ReLU(inplace=True)\n", " )\n", "\n", "\n", "class ResidualBlock(nn.Module):\n", " \n", " def __init__(self, in_planes):\n", " super(ResidualBlock, self).__init__()\n", " self.conv1 = get_conv_inorm_relu(in_planes, in_planes, kernel_size=3, stride=1)\n", " self.conv2 = get_conv_inorm_relu(in_planes, in_planes, kernel_size=3, stride=1, with_relu=False) \n", "\n", " def forward(self, x):\n", " residual = x\n", " x = self.conv1(x)\n", " x = self.conv2(x) \n", " return x + residual\n", "\n", "\n", "class Generator(nn.Module):\n", " \n", " def __init__(self):\n", " super(Generator, self).__init__()\n", " \n", " self.c7s1_64 = get_conv_inorm_relu(3, 64, kernel_size=7, stride=1)\n", " self.d128 = get_conv_inorm_relu(64, 128, kernel_size=3, stride=2, reflection_pad=False)\n", " self.d256 = get_conv_inorm_relu(128, 256, kernel_size=3, stride=2, reflection_pad=False)\n", "\n", " self.resnet9 = nn.Sequential(*[ResidualBlock(256) for i in range(9)])\n", "\n", " self.u128 = get_conv_transposed_inorm_relu(256, 128, kernel_size=3, stride=2)\n", " self.u64 = get_conv_transposed_inorm_relu(128, 64, kernel_size=3, stride=2)\n", " self.c7s1_3 = get_conv_inorm_relu(64, 3, kernel_size=7, stride=1, with_relu=False)\n", " # Replace instance norm by tanh activation\n", " self.c7s1_3[-1] = nn.Tanh()\n", "\n", " def forward(self, x):\n", " # Encoding\n", " x = self.c7s1_64(x)\n", " x = self.d128(x)\n", " x = self.d256(x)\n", " \n", " # 9 residual blocks\n", " x = self.resnet9(x)\n", "\n", " # Decoding\n", " x = self.u128(x)\n", " x = self.u64(x)\n", " y = self.c7s1_3(x)\n", " return y\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "snM1h6BnFRbK" }, "source": [ "Let's check the network:" ] }, { "cell_type": "code", "metadata": { "id": "rfOTRPt4FRbL" }, "source": [ "x = torch.rand(4, 3, 256, 256)\n", "g = Generator()\n", "y = g(x)\n", "y.shape" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Mb_6xzMvFRbP" }, "source": [ "- Discriminator network is a PatchGAN (with receptive field 70x70):\n", "```\n", "C64-C128-C256-C512\n", "```\n", "where `Ck` denote a 4x4 Convolution-InstanceNorm-LeakyReLU layer with `k` filters and stride 2. After the last layer, \n", "a convolution to produce a 1-dimensional output is applied. No `InstanceNorm` for the first `C64` layer. Leaky ReLUs are with a slope of `0.2`. \n", "\n", "Good explanation is given in [this comment](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/39#issuecomment-305575964) on what is a PatchGAN:\n", "```\n", "In fact, a \"PatchGAN\" is just a convnet! Or you could say all convnets are patchnets: the power of convnets is that they process each image patch identically and independently, which makes things very cheap (# params, time, memory), and, amazingly, turns out to work.\n", "\n", "The difference between a PatchGAN and regular GAN discriminator is that rather the regular GAN maps from a 256x256 image to a single scalar output, which signifies \"real\" or \"fake\", whereas the PatchGAN maps from 256x256 to an NxN array of outputs X, where each X_ij signifies whether the patch ij in the image is real or fake. Which is patch ij in the input? Well, output X_ij is just a neuron in a convnet, and we can trace back its receptive field to see which input pixels it is sensitive to. In the CycleGAN architecture, the receptive fields of the discriminator turn out to be 70x70 patches in the input image!\n", "\n", "This is all mathematically equivalent to if we had manually chopped up the image into 70x70 overlapping patches, run a regular discriminator over each patch, and averaged the results.\n", "\n", "Maybe it would have been better if we called it a \"Fully Convolutional GAN\" like in FCNs... it's the same idea :)\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "rdb5-RAYFRbR" }, "source": [ "def get_conv_inorm_lrelu(in_planes, out_planes, stride=2, negative_slope=0.2):\n", " return nn.Sequential(\n", " nn.Conv2d(in_planes, out_planes, kernel_size=4, stride=stride, padding=1),\n", " nn.InstanceNorm2d(out_planes, affine=False, track_running_stats=False),\n", " nn.LeakyReLU(negative_slope=negative_slope, inplace=True)\n", " )\n", "\n", "\n", "class Discriminator(nn.Module):\n", "\n", " def __init__(self):\n", " super(Discriminator, self).__init__()\n", " self.c64 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)\n", " self.relu = nn.LeakyReLU(0.2, inplace=True)\n", " self.c128 = get_conv_inorm_lrelu(64, 128)\n", " self.c256 = get_conv_inorm_lrelu(128, 256)\n", " self.c512 = get_conv_inorm_lrelu(256, 512, stride=1)\n", " self.last_conv = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)\n", "\n", " def forward(self, x):\n", " x = self.c64(x)\n", " x = self.relu(x)\n", "\n", " x = self.c128(x)\n", " x = self.c256(x)\n", " x = self.c512(x)\n", " y = self.last_conv(x)\n", " return y\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Xu2K1U7JFRbU" }, "source": [ "Let's check the network:" ] }, { "cell_type": "code", "metadata": { "id": "On4vpLc_FRbV" }, "source": [ "x = torch.rand(4, 3, 256, 256)\n", "d = Discriminator()\n", "y = d(x)\n", "y.shape" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "orcYUiDfFRbZ" }, "source": [ "According to the paper, the weights are initialized from a Gaussian distribution $\\mathcal{N}(0,0.02)$" ] }, { "cell_type": "code", "metadata": { "id": "2vId72FGFRba" }, "source": [ "def init_weights(module):\n", " assert isinstance(module, nn.Module)\n", " if hasattr(module, \"weight\") and module.weight is not None:\n", " torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)\n", " if hasattr(module, \"bias\") and module.bias is not None:\n", " torch.nn.init.constant_(module.bias, 0.0)\n", " for c in module.children():\n", " init_weights(c)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "IMoUXZ5yFRbd" }, "source": [ "g = None; d = None" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "lUG71td9FRbg" }, "source": [ "## Networks training" ] }, { "cell_type": "code", "metadata": { "id": "ozU5CQ9JFRbh" }, "source": [ "assert torch.backends.cudnn.enabled\n", "torch.backends.cudnn.benchmark = True" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "-zZ5ZuXGFRbl" }, "source": [ "device = \"cuda\"\n", "\n", "generator_A2B = Generator().to(device)\n", "init_weights(generator_A2B)\n", "\n", "discriminator_B = Discriminator().to(device)\n", "init_weights(discriminator_B)\n", "\n", "generator_B2A = Generator().to(device)\n", "init_weights(generator_B2A)\n", "discriminator_A = Discriminator().to(device)\n", "init_weights(discriminator_A)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "f90Ew1kaFRbo" }, "source": [ "Similarly, we train the networks from scratch, with a learning rate of `0.0002`." ] }, { "cell_type": "code", "metadata": { "id": "YbgTEAMCFRbo" }, "source": [ "from itertools import chain\n", "import torch.optim as optim\n", "\n", "lr = 0.0002\n", "beta1 = 0.5\n", "\n", "optimizer_G = optim.Adam(chain(generator_A2B.parameters(), generator_B2A.parameters()), lr=lr, betas=(beta1, 0.999))\n", "optimizer_D = optim.Adam(chain(discriminator_A.parameters(), discriminator_B.parameters()), lr=lr, betas=(beta1, 0.999))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Gs9la9yqFRbr" }, "source": [ "Let's define some helper functions:\n", "- to turn on/off gradients" ] }, { "cell_type": "code", "metadata": { "id": "p82seQ9JFRbs" }, "source": [ "def toggle_grad(model, on_or_off):\n", " # https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py#L674\n", " for param in model.parameters():\n", " param.requires_grad = on_or_off" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "wTF4p83kFRbv" }, "source": [ "### Fake images buffer trick\n", "\n", "According to the paper, to reduce model oscillation and the discriminators are updated using a history of generated images rather than the ones produced by the latest generators. There is an image buffer that stores the X previously created images." ] }, { "cell_type": "code", "metadata": { "id": "jyghMWUPFRbw" }, "source": [ "buffer_size = 50\n", "fake_a_buffer = []\n", "fake_b_buffer = []\n", "\n", "\n", "def buffer_insert_and_get(buffer, batch):\n", " output_batch = []\n", " for b in batch:\n", " b = b.unsqueeze(0)\n", " # if buffer is not fully filled:\n", " if len(buffer) < buffer_size:\n", " output_batch.append(b)\n", " buffer.append(b.cpu())\n", " elif random.uniform(0, 1) > 0.5:\n", " # Add newly created image into the buffer and put ont from the buffer into the output\n", " random_index = random.randint(0, buffer_size - 1) \n", " output_batch.append(buffer[random_index].clone().to(device))\n", " buffer[random_index] = b.cpu()\n", " else:\n", " output_batch.append(b)\n", " return torch.cat(output_batch, dim=0)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "K4k46BvuFRb_" }, "source": [ "Next, let's define a single iteration via `update_fn` function. This function is then used by `ignite.engine.Engine` to update models while running over the input data.\n", "\n", "As suggested, we divide the objective by 2 while optimizing D, which slows down the rate at which D learns, relative to the rate of G. \n", "\n", "According to the paper:\n", "- generator A is trained minimize $\\text{mean}_{x \\in A}[(D_B(G(x)) βˆ’ 1)^2]$ and cycle loss $\\text{mean}_{x \\in A}\\left[ |F(G(x)) - x|_1 \\right]$\n", "- generator B is trained minimize $\\text{mean}_{y \\in B}[(D_A(F(y)) βˆ’ 1)^2]$ and cycle loss $\\text{mean}_{y \\in B}\\left[ |G(F(y)) - y|_1 \\right]$\n", "- discriminators A is trained to minimize $\\text{mean}_{x \\in A}[(D_A(x) βˆ’ 1)^2] + \\text{mean}_{y \\in B}[D_A(F(y))^2]$.\n", "- discriminator B is trained to minimize $\\text{mean}_{y \\in B}[(D_B(y) βˆ’ 1)^2] + \\text{mean}_{x \\in A}[D_B(G(x))^2]$." ] }, { "cell_type": "markdown", "metadata": { "id": "JE8dLeEfIl_Z" }, "source": [ "We will use [`torch.cuda.amp.autocast`](https://pytorch.org/docs/master/amp.html#torch.cuda.amp.autocast) and [`torch.cuda.amp.GradScaler`](https://pytorch.org/docs/master/amp.html#torch.cuda.amp.GradScaler) to perform automatic mixed precision training. Our code follows a [typical mixed precision training example](https://pytorch.org/docs/master/notes/amp_examples.html#typical-mixed-precision-training)." ] }, { "cell_type": "code", "metadata": { "id": "vrJls4p-FRcA" }, "source": [ "from torch.cuda.amp import autocast, GradScaler\n", "\n", "from ignite.utils import convert_tensor\n", "import torch.nn.functional as F\n", "\n", "amp_enabled = True\n", "lambda_value = 10.0\n", "amp_scaler = GradScaler(enabled=amp_enabled)\n", "\n", "\n", "def discriminator_forward_pass(discriminator, batch_real, batch_fake, fake_buffer):\n", " decision_real = discriminator(batch_real)\n", " batch_fake = buffer_insert_and_get(fake_buffer, batch_fake) \n", " decision_fake = discriminator(batch_fake)\n", " return decision_real, decision_fake\n", "\n", "\n", "def compute_loss_generator(batch_decision, batch_real, batch_rec, lambda_value):\n", " # loss gan\n", " target = torch.ones_like(batch_decision)\n", " loss_gan = F.mse_loss(batch_decision, target)\n", " # loss cycle\n", " loss_cycle = F.l1_loss(batch_rec, batch_real) * lambda_value \n", " return loss_gan + loss_cycle\n", "\n", "\n", "def compute_loss_discriminator(decision_real, decision_fake):\n", " # loss = mean (D_b(y) βˆ’ 1)^2 + mean D_b(G(x))^2 \n", " loss = F.mse_loss(decision_fake, torch.zeros_like(decision_fake))\n", " loss += F.mse_loss(decision_real, torch.ones_like(decision_real))\n", " return loss\n", "\n", "\n", "def update_fn(engine, batch):\n", " generator_A2B.train()\n", " generator_B2A.train()\n", " discriminator_A.train()\n", " discriminator_B.train() \n", "\n", " real_a = convert_tensor(batch['A'], device=device, non_blocking=True)\n", " real_b = convert_tensor(batch['B'], device=device, non_blocking=True)\n", "\n", " # Update generators\n", "\n", " # Disable grads computation for the discriminators:\n", " toggle_grad(discriminator_A, False)\n", " toggle_grad(discriminator_B, False) \n", "\n", " with autocast(enabled=amp_enabled):\n", " fake_b = generator_A2B(real_a)\n", " rec_a = generator_B2A(fake_b)\n", " fake_a = generator_B2A(real_b)\n", " rec_b = generator_A2B(fake_a)\n", " decision_fake_a = discriminator_A(fake_a)\n", " decision_fake_b = discriminator_B(fake_b)\n", "\n", " # Compute loss for generators and update generators\n", " # loss_a2b = GAN loss: mean (D_b(G(x)) βˆ’ 1)^2 + Forward cycle loss: || F(G(x)) - x ||_1 \n", " loss_a2b = compute_loss_generator(decision_fake_b, real_a, rec_a, lambda_value) \n", "\n", " # loss_b2a = GAN loss: mean (D_a(F(x)) βˆ’ 1)^2 + Backward cycle loss: || G(F(y)) - y ||_1\n", " loss_b2a = compute_loss_generator(decision_fake_a, real_b, rec_b, lambda_value)\n", "\n", " # total generators loss:\n", " loss_generators = loss_a2b + loss_b2a\n", "\n", " optimizer_G.zero_grad()\n", " amp_scaler.scale(loss_generators).backward()\n", " amp_scaler.step(optimizer_G)\n", "\n", " decision_fake_a = rec_a = decision_fake_b = rec_b = None\n", " \n", " # Enable grads computation for the discriminators:\n", " toggle_grad(discriminator_A, True)\n", " toggle_grad(discriminator_B, True) \n", "\n", " with autocast(enabled=amp_enabled):\n", " decision_real_a, decision_fake_a = discriminator_forward_pass(discriminator_A, real_a, fake_a.detach(), fake_a_buffer) \n", " decision_real_b, decision_fake_b = discriminator_forward_pass(discriminator_B, real_b, fake_b.detach(), fake_b_buffer) \n", " # Compute loss for discriminators and update discriminators\n", " # loss_a = mean (D_a(y) βˆ’ 1)^2 + mean D_a(F(x))^2\n", " loss_a = compute_loss_discriminator(decision_real_a, decision_fake_a)\n", "\n", " # loss_b = mean (D_b(y) βˆ’ 1)^2 + mean D_b(G(x))^2\n", " loss_b = compute_loss_discriminator(decision_real_b, decision_fake_b)\n", " \n", " # total discriminators loss:\n", " loss_discriminators = 0.5 * (loss_a + loss_b)\n", " \n", " optimizer_D.zero_grad()\n", " amp_scaler.scale(loss_discriminators).backward()\n", " amp_scaler.step(optimizer_D)\n", " amp_scaler.update()\n", " \n", " return {\n", " \"loss_generators\": loss_generators.item(),\n", " \"loss_generator_a2b\": loss_a2b.item(),\n", " \"loss_generator_b2a\": loss_b2a.item(),\n", " \"loss_discriminators\": loss_discriminators.item(),\n", " \"loss_discriminator_a\": loss_a.item(),\n", " \"loss_discriminator_b\": loss_b.item(),\n", " }\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "3DF1hNTrFRcD" }, "source": [ "Let's check `update_fn`" ] }, { "cell_type": "code", "metadata": { "id": "rLZextmDzzw_" }, "source": [ "real_batch = next(iter(train_ab_loader))\n", "\n", "res = update_fn(engine=None, batch=real_batch)\n", "\n", "real_batch = None\n", "torch.cuda.empty_cache()\n", "\n", "res" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "SxVF6kGYFRcK" }, "source": [ "Now let's define a trainer and add some practical handlers:\n", "- log to tensorboard: losses, lr, generated images\n", "- progress bar\n", "- models/optimizers checkpointing\n", "\n", "Optionally, we also log to online platform [W&B](https://app.wandb.ai). Current logs can be seen at https://app.wandb.ai/vfdev-5/ignite-cyclegan-torch-amp\n", "```\n", "pip install --upgrade wandb\n", "wandb login your-token\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "camPNT4TcCFu" }, "source": [ "!pip install --upgrade wandb\n", "# !wandb login your-token" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "TO58FENsFRcM" }, "source": [ "from ignite.engine import Engine, Events\n", "from ignite.metrics import RunningAverage\n", "\n", "from ignite.handlers import TensorboardLogger, WandBLogger\n", "from ignite.handlers.tensorboard_logger import OutputHandler, OptimizerParamsHandler" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "jbeZjaBtFRcO" }, "source": [ "from functools import partial\n", "\n", "\n", "trainer = Engine(update_fn)\n", "\n", "metric_names = [\n", " 'loss_discriminators', \n", " 'loss_generators', \n", " 'loss_discriminator_a',\n", " 'loss_discriminator_b',\n", " 'loss_generator_a2b',\n", " 'loss_generator_b2a' \n", "]\n", "\n", "def output_transform(out, name):\n", " return out[name]\n", "\n", "for name in metric_names:\n", " # here we cannot use lambdas as they do not store argument `name`\n", " RunningAverage(output_transform=partial(output_transform, name=name)).attach(trainer, name)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "qODNF0imFRcQ" }, "source": [ "from datetime import datetime\n", "\n", "exp_name = datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", "tb_logger = TensorboardLogger(log_dir=\"/tmp/cycle_gan_horse2zebra_tb_logs/{}\".format(exp_name))\n", "\n", "tb_logger.attach(trainer, \n", " log_handler=OutputHandler('training', metric_names), \n", " event_name=Events.ITERATION_COMPLETED)\n", "\n", "print(\"Experiment name: \", exp_name)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ljTkKgMYFRcT" }, "source": [ "from pathlib import Path\n", "\n", "try:\n", " wb_run_name = \"cycle_gan_horse2zebra\"\n", " wb_dir = Path(\"/tmp/cycle_gan_horse2zebra_wandb\")\n", " if not wb_dir.exists():\n", " wb_dir.mkdir()\n", " wb_logger = WandBLogger(\n", " project=\"ignite-cyclegan-torch-amp\",\n", " name=wb_run_name,\n", " sync_tensorboard=True,\n", " dir=wb_dir.as_posix(),\n", " reinit=True\n", " )\n", "except RuntimeError:\n", " wb_logger = None" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "DbjedQjLFRcV" }, "source": [ "Let's create an evaluator to inference on train/test images and log the generated images to Tensorboard:" ] }, { "cell_type": "code", "metadata": { "id": "rCcdC6q9FRcV" }, "source": [ "from ignite.engine import Engine\n", "\n", "\n", "def evaluate_fn(engine, batch):\n", " generator_A2B.eval()\n", " generator_B2A.eval() \n", " with torch.no_grad():\n", " real_a = convert_tensor(batch['A'], device=device, non_blocking=True)\n", " real_b = convert_tensor(batch['B'], device=device, non_blocking=True)\n", " \n", " fake_b = generator_A2B(real_a)\n", " rec_a = generator_B2A(fake_b)\n", "\n", " fake_a = generator_B2A(real_b)\n", " rec_b = generator_A2B(fake_a)\n", " \n", " return {\n", " 'real_a': real_a,\n", " 'real_b': real_b,\n", " 'fake_a': fake_a,\n", " 'fake_b': fake_b,\n", " 'rec_a': rec_a,\n", " 'rec_b': rec_b, \n", " }\n", "\n", "\n", "evaluator = Engine(evaluate_fn)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "UIecBsPKFRcX" }, "source": [ "from torch.utils.data import Subset\n", "\n", "eval_batch_size = 5\n", "\n", "train_random_indices = [random.randint(0, len(train_ab_ds) - 1) for _ in range(eval_batch_size)]\n", "small_train_ds = Subset(train_ab_ds, train_random_indices)\n", "small_train_ds = TransformedDataset(small_train_ds, transform=test_transform)\n", "\n", "test_random_indices = [random.randint(0, len(test_ab_ds) - 1) for _ in range(eval_batch_size)]\n", "small_test_ds = Subset(test_ab_ds, test_random_indices)\n", "small_test_ds = TransformedDataset(small_test_ds, transform=test_transform)\n", "\n", "eval_train_loader = DataLoader(small_train_ds, batch_size=eval_batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)\n", "eval_test_loader = DataLoader(small_test_ds, batch_size=eval_batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=4)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "H6XkEchHFRca" }, "source": [ "@trainer.on(Events.EPOCH_STARTED)\n", "def run_evaluation(engine):\n", " evaluator.run(eval_train_loader)\n", " evaluator.run(eval_test_loader)\n", "\n", "\n", "def log_generated_images(engine, logger, event_name):\n", "\n", " tag = \"Train\" if engine.state.dataloader == eval_train_loader else \"Test\"\n", " output = engine.state.output\n", " state = trainer.state\n", " global_step = state.get_event_attrib_value(event_name)\n", "\n", " # create a grid:\n", " # [real a1, real a2, ...]\n", " # [fake a1, fake a2, ...]\n", " # [rec a1, rec a2, ...]\n", " \n", " s = output['real_a'].shape[0]\n", " res_a = vutils.make_grid(torch.cat([\n", " output['real_a'],\n", " output['fake_b'],\n", " output['rec_a'],\n", " ]), padding=2, normalize=True, nrow=s).cpu()\n", "\n", " logger.writer.add_image(tag=\"{} Horses2Zebras (real, fake, rec)\".format(tag), \n", " img_tensor=res_a, global_step=global_step, dataformats='CHW')\n", "\n", " s = output['real_b'].shape[0]\n", " res_b = vutils.make_grid(torch.cat([\n", " output['real_b'],\n", " output['fake_a'],\n", " output['rec_b'],\n", " ]), padding=2, normalize=True, nrow=s).cpu()\n", " logger.writer.add_image(tag=\"{} Zebras2Horses (real, fake, rec)\".format(tag), \n", " img_tensor=res_b, global_step=global_step, dataformats='CHW')\n", "\n", " \n", "tb_logger.attach(evaluator,\n", " log_handler=log_generated_images, \n", " event_name=Events.COMPLETED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "zrGYmv7RFRcc" }, "source": [ "We also follow suggested lr scheduling: the same learning rate for the first 100 epochs and linearly decay the rate to zero over the next 100 epochs." ] }, { "cell_type": "code", "metadata": { "id": "SSIcXzReFRcc" }, "source": [ "from ignite.handlers import PiecewiseLinear, ParamGroupScheduler\n", "\n", "lr = 0.0002\n", "\n", "milestones_values = [\n", " (0, lr),\n", " (100, lr),\n", " (200, 0.0)\n", "]\n", "gen_lr_scheduler = PiecewiseLinear(optimizer_D, param_name='lr', milestones_values=milestones_values)\n", "desc_lr_scheduler = PiecewiseLinear(optimizer_G, param_name='lr', milestones_values=milestones_values)\n", "\n", "lr_scheduler = ParamGroupScheduler([gen_lr_scheduler, desc_lr_scheduler], \n", " names=['gen_lr_scheduler', 'desc_lr_scheduler'])\n", "\n", "trainer.add_event_handler(Events.EPOCH_STARTED, lr_scheduler)\n", "\n", "\n", "tb_logger.attach(trainer,\n", " log_handler=OptimizerParamsHandler(optimizer_G, \"lr\"), \n", " event_name=Events.EPOCH_STARTED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "xWJcV2veFRcf" }, "source": [ "Let's setup models/optimizers checkpointing:" ] }, { "cell_type": "code", "metadata": { "id": "7ZONS845FRcg" }, "source": [ "from ignite.handlers import ModelCheckpoint, TerminateOnNan" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "F-emWk-YFRci" }, "source": [ "!rm -rf \"/tmp/cycle_gan_checkpoints\" \n", "!mkdir \"/tmp/cycle_gan_checkpoints\"\n", "\n", "from ignite.handlers import ModelCheckpoint, TerminateOnNan\n", "\n", "\n", "checkpoint_handler = ModelCheckpoint(dirname=\"/tmp/cycle_gan_checkpoints\", filename_prefix=\"\")\n", "\n", "to_save = {\n", " \"generator_A2B\": generator_A2B,\n", " \"discriminator_B\": discriminator_B,\n", " \"generator_B2A\": generator_B2A,\n", " \"discriminator_A\": discriminator_A,\n", " \n", " \"optimizer_G\": optimizer_G,\n", " \"optimizer_D\": optimizer_D,\n", "}\n", "\n", "trainer.add_event_handler(Events.ITERATION_COMPLETED(every=500), checkpoint_handler, to_save)\n", "trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "RtQKr6yxFRck" }, "source": [ "from ignite.handlers import ProgressBar\n", "\n", "# Iteration-wise progress bar\n", "ProgressBar(bar_format=\"\").attach(trainer)\n", "# Epoch-wise progress bar with display of training losses\n", "ProgressBar(persist=True, bar_format=\"\").attach(trainer, metric_names=['loss_discriminators', 'loss_generators'], \n", " event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "bM-6vr8pcmOW" }, "source": [ "# Display in Firefox may not work properly. Use Chrome.\n", "%load_ext tensorboard\n", "\n", "%tensorboard --logdir=/tmp/cycle_gan_horse2zebra_tb_logs" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "CcxhA9rHFRcn" }, "source": [ "trainer.run(train_ab_loader, max_epochs=200)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "XtXSfbHqFRct" }, "source": [ "tb_logger.close()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "7CbI9ngDFRcx" }, "source": [ "### Inference with trained generator\n", "\n", "Let's display saved checkpoint, load weights for \"Horses to Zebras\" generator and run an inference on a test image" ] }, { "cell_type": "code", "metadata": { "id": "2xNAdA-WFRcx" }, "source": [ "!ls /tmp/cycle_gan_checkpoints/" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "TOhSsWRzFRcz" }, "source": [ "checkpoint_path = \"/tmp/cycle_gan_checkpoints/checkpoint_26500.pt\"\n", "\n", "# let's save this checkpoint to W&B\n", "if wb_logger is not None:\n", " wb_logger.save(checkpoint_path)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "j5BFfZceFRc2" }, "source": [ "checkpoint_state_dict = torch.load(checkpoint_path)\n", "generator_A2B.load_state_dict(checkpoint_state_dict[\"generator_A2B\"])" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "VGLb14xyFRc4" }, "source": [ "def normalize(x):\n", " vmin = x.min()\n", " vmax = x.max()\n", " x.clamp_(min=vmin, max=vmax)\n", " x.add_(-vmin).div_(vmax - vmin + 1e-5)\n", " return x" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "BO_DBOhSFRc7" }, "source": [ "i = random.randint(0, len(test_ab_ds) - 1)\n", "img = test_ab_ds[i]['A']\n", "x = test_transform(img)\n", "x = x.unsqueeze(0).to(device)\n", "\n", "\n", "with torch.no_grad():\n", " y_pred = generator_A2B(x)\n", " \n", "\n", "img_pred = (255 * normalize(y_pred[0, ...])).cpu().numpy().transpose((1, 2, 0)).astype('uint8')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "vseNrx2YFRc-" }, "source": [ "plt.figure(figsize=(10, 5))\n", "plt.subplot(121)\n", "plt.title(\"Horse\")\n", "plt.imshow(img)\n", "plt.subplot(122)\n", "plt.title(\"Generated zebra\")\n", "plt.imshow(img_pred)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "VqFJ0FrPFRdA" }, "source": [ "Let's apply for fun our zebra-filter on an image with deep learning gurus:" ] }, { "cell_type": "code", "metadata": { "id": "6BlVkvybFRdA" }, "source": [ "!wget https://www.kdnuggets.com/wp-content/uploads/photo.jpg -O/tmp/dl_durus.jpg" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "eB7aAeO1FRdC" }, "source": [ "from PIL import Image\n", "\n", "img = Image.open(\"/tmp/dl_durus.jpg\")\n", "x = test_transform(img)\n", "x = x.unsqueeze(0).to(device)\n", "\n", "\n", "with torch.no_grad():\n", " y_pred = generator_A2B(x)\n", "\n", "\n", "img_pred = (255 * normalize(y_pred[0, ...])).cpu().numpy().transpose((1, 2, 0)).astype('uint8')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "8Mcypu0lFRdD" }, "source": [ "plt.figure(figsize=(15, 8))\n", "plt.subplot(121)\n", "plt.title(\"4 Deep-learning gurus\")\n", "plt.imshow(img)\n", "plt.subplot(122)\n", "plt.title(\"Zebras\")\n", "plt.imshow(img_pred)" ], "execution_count": null, "outputs": [] } ] }ignite-0.5.1/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb000066400000000000000000001305101465426447700260210ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" }, "colab": { "name": "EfficientNet_Cifar100_finetuning.ipynb", "provenance": [] }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "JZE22y3LsXpd" }, "source": [ "# Finetuning of ImageNet pretrained EfficientNet-B0 on CIFAR-100\n", "\n", "In 2019, new ConvNets architectures have been proposed in [\"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks\"](https://arxiv.org/pdf/1905.11946.pdf) paper. According to the paper, model's compound scaling starting from a 'good' baseline provides an network that achieves state-of-the-art on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet.\n", "\n", "![efficientnets](https://github.com/abdulelahsm/ignite/blob/update-tutorials/examples/notebooks/assets/efficientnets.png?raw=1)\n", "\n", "Following the paper, EfficientNet-B0 model pretrained on ImageNet and finetuned on CIFAR100 dataset gives 88% test accuracy. Let's reproduce this result with Ignite. [Official implementation](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) of EfficientNet uses Tensorflow, \n", "for our case we will borrow the code from [katsura-jp/efficientnet-pytorch](https://github.com/katsura-jp/efficientnet-pytorch), \n", "[rwightman/pytorch-image-models](https://github.com/rwightman/pytorch-image-models) and [lukemelas/EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch/) repositories (kudos to authors!). We will download pretrained weights from [lukemelas/EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch/) repository.\n", "\n", "## Network architecture review\n", "The architecture of EfficientNet-B0 is the following:\n", "```\n", "1 - Stem - Conv3x3|BN|Swish\n", "\n", "2 - Blocks - MBConv1, k3x3 \n", " - MBConv6, k3x3 repeated 2 times\n", " - MBConv6, k5x5 repeated 2 times\n", " - MBConv6, k3x3 repeated 3 times\n", " - MBConv6, k5x5 repeated 3 times\n", " - MBConv6, k5x5 repeated 4 times\n", " - MBConv6, k3x3\n", " totally 16 blocks\n", "\n", "3 - Head - Conv1x1|BN|Swish \n", " - Pooling\n", " - Dropout\n", " - FC\n", "```\n", "\n", "where \n", "```\n", "Swish(x) = x * sigmoid(x)\n", "```\n", "and `MBConvX` stands for mobile inverted bottleneck convolution, X - denotes expansion ratio:\n", "``` \n", "MBConv1 : \n", " -> DepthwiseConv|BN|Swish -> SqueezeExcitation -> Conv|BN\n", "\n", "MBConv6 : \n", " -> Conv|BN|Swish -> DepthwiseConv|BN|Swish -> SqueezeExcitation -> Conv|BN\n", "\n", "MBConv6+IdentitySkip : \n", " -.-> Conv|BN|Swish -> DepthwiseConv|BN|Swish -> SqueezeExcitation -> Conv|BN-(+)->\n", " \\___________________________________________________________________________/\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "hP_tseP1sXpl" }, "source": [ "## Installations\n", "\n", "1) Torchvision\n", "\n", "Please install torchvision in order to get CIFAR100 dataset: \n", "```\n", "conda install -y torchvision -c pytorch\n", "```\n", "\n", "2) Let's install Nvidia/Apex package:\n", "\n", "We will train with automatic mixed precision using [nvidia/apex](https://github.com/NVIDIA/apex) pacakge" ] }, { "cell_type": "code", "metadata": { "pycharm": { "name": "#%%\n" }, "id": "br990PJfgCHz" }, "source": [ "# Install Apex:\n", "# If torch cuda version and nvcc version match:\n", "!pip install --upgrade --no-cache-dir --global-option=\"--cpp_ext\" --global-option=\"--cuda_ext\" git+https://github.com/NVIDIA/apex/\n", "# if above command is failing, please install apex without c++/cuda extensions:\n", "# !pip install --upgrade --no-cache-dir git+https://github.com/NVIDIA/apex/" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "id": "naLdioPTgCH2" }, "source": [ "3) Install tensorboardX and `pytorch-ignite`" ] }, { "cell_type": "code", "metadata": { "id": "watnTwx-sXpm" }, "source": [ "!pip install pytorch-ignite tensorboardX" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "FudN7dJBsXpp" }, "source": [ "import random\n", "import torch\n", "import ignite\n", "\n", "seed = 17\n", "random.seed(seed)\n", "_ = torch.manual_seed(seed)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "EnytGeC5sXpq" }, "source": [ "torch.__version__, ignite.__version__" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "IZEFHfBwsXpr" }, "source": [ "## Model\n", "\n", "\n", "Let's define some helpful modules:\n", "- Flatten \n", "- Swish \n", "\n", "The reason why Swish is not implemented in `torch.nn` can be found [here](https://github.com/pytorch/pytorch/pull/3182).\n" ] }, { "cell_type": "code", "metadata": { "id": "rREuFNq1sXps" }, "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "\n", "class Swish(nn.Module):\n", " \n", " def forward(self, x):\n", " return x * torch.sigmoid(x)\n", "\n", "\n", "class Flatten(nn.Module):\n", " \n", " def forward(self, x):\n", " return x.reshape(x.shape[0], -1)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "tlOJJKnVsXpt" }, "source": [ "Let's visualize Swish transform vs ReLU:" ] }, { "cell_type": "code", "metadata": { "id": "SiQ5NmqasXpu" }, "source": [ "import matplotlib.pylab as plt\n", "%matplotlib inline\n", "\n", "d = torch.linspace(-10.0, 10.0)\n", "s = Swish()\n", "res = s(d)\n", "res2 = torch.relu(d)\n", "\n", "plt.title(\"Swish transformation\")\n", "plt.plot(d.numpy(), res.numpy(), label='Swish')\n", "plt.plot(d.numpy(), res2.numpy(), label='ReLU')\n", "plt.legend()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "i6Sp-82PsXpv" }, "source": [ "Now let's define `SqueezeExcitation` module" ] }, { "cell_type": "code", "metadata": { "id": "rmvJRZQosXpw" }, "source": [ "class SqueezeExcitation(nn.Module):\n", " \n", " def __init__(self, inplanes, se_planes):\n", " super(SqueezeExcitation, self).__init__()\n", " self.reduce_expand = nn.Sequential(\n", " nn.Conv2d(inplanes, se_planes, \n", " kernel_size=1, stride=1, padding=0, bias=True),\n", " Swish(),\n", " nn.Conv2d(se_planes, inplanes, \n", " kernel_size=1, stride=1, padding=0, bias=True),\n", " nn.Sigmoid()\n", " )\n", "\n", " def forward(self, x):\n", " x_se = torch.mean(x, dim=(-2, -1), keepdim=True)\n", " x_se = self.reduce_expand(x_se)\n", " return x_se * x\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "-CAxubs8sXpw" }, "source": [ "Next, we can define `MBConv`.\n", "\n", "**Note on implementation**: in Tensorflow (and PyTorch ports) convolutions use `SAME` padding option which in PyTorch requires\n", "a specific padding computation and additional operation to apply. We will use built-in padding argument of the convolution." ] }, { "cell_type": "code", "metadata": { "id": "6-AL5AYysXpw" }, "source": [ "from torch.nn import functional as F\n", "\n", "\n", "class MBConv(nn.Module):\n", "\n", " def __init__(self, inplanes, planes, kernel_size, stride, \n", " expand_rate=1.0, se_rate=0.25, \n", " drop_connect_rate=0.2):\n", " super(MBConv, self).__init__()\n", "\n", " expand_planes = int(inplanes * expand_rate)\n", " se_planes = max(1, int(inplanes * se_rate))\n", "\n", " self.expansion_conv = None \n", " if expand_rate > 1.0:\n", " self.expansion_conv = nn.Sequential(\n", " nn.Conv2d(inplanes, expand_planes, \n", " kernel_size=1, stride=1, padding=0, bias=False),\n", " nn.BatchNorm2d(expand_planes, momentum=0.01, eps=1e-3),\n", " Swish()\n", " )\n", " inplanes = expand_planes\n", "\n", " self.depthwise_conv = nn.Sequential(\n", " nn.Conv2d(inplanes, expand_planes,\n", " kernel_size=kernel_size, stride=stride, \n", " padding=kernel_size // 2, groups=expand_planes,\n", " bias=False),\n", " nn.BatchNorm2d(expand_planes, momentum=0.01, eps=1e-3),\n", " Swish()\n", " )\n", "\n", " self.squeeze_excitation = SqueezeExcitation(expand_planes, se_planes)\n", " \n", " self.project_conv = nn.Sequential(\n", " nn.Conv2d(expand_planes, planes, \n", " kernel_size=1, stride=1, padding=0, bias=False),\n", " nn.BatchNorm2d(planes, momentum=0.01, eps=1e-3),\n", " )\n", "\n", " self.with_skip = stride == 1\n", " self.drop_connect_rate = drop_connect_rate\n", " \n", " def _drop_connect(self, x): \n", " keep_prob = 1.0 - self.drop_connect_rate\n", " drop_mask = torch.rand(x.shape[0], 1, 1, 1) + keep_prob\n", " drop_mask = drop_mask.type_as(x)\n", " drop_mask.floor_()\n", " return drop_mask * x / keep_prob\n", " \n", " def forward(self, x):\n", " z = x\n", " if self.expansion_conv is not None:\n", " x = self.expansion_conv(x)\n", "\n", " x = self.depthwise_conv(x)\n", " x = self.squeeze_excitation(x)\n", " x = self.project_conv(x)\n", " \n", " # Add identity skip\n", " if x.shape == z.shape and self.with_skip: \n", " if self.training and self.drop_connect_rate is not None:\n", " x = self._drop_connect(x)\n", " x += z\n", " return x" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "OlPTQlFRsXpx" }, "source": [ "And finally, we can implement generic `EfficientNet`:" ] }, { "cell_type": "code", "metadata": { "id": "CV2NfxZIsXpx" }, "source": [ "from collections import OrderedDict\n", "import math\n", "\n", "\n", "def init_weights(module): \n", " if isinstance(module, nn.Conv2d): \n", " nn.init.kaiming_normal_(module.weight, a=0, mode='fan_out')\n", " elif isinstance(module, nn.Linear):\n", " init_range = 1.0 / math.sqrt(module.weight.shape[1])\n", " nn.init.uniform_(module.weight, a=-init_range, b=init_range)\n", " \n", " \n", "class EfficientNet(nn.Module):\n", " \n", " def _setup_repeats(self, num_repeats):\n", " return int(math.ceil(self.depth_coefficient * num_repeats))\n", " \n", " def _setup_channels(self, num_channels):\n", " num_channels *= self.width_coefficient\n", " new_num_channels = math.floor(num_channels / self.divisor + 0.5) * self.divisor\n", " new_num_channels = max(self.divisor, new_num_channels)\n", " if new_num_channels < 0.9 * num_channels:\n", " new_num_channels += self.divisor\n", " return new_num_channels\n", "\n", " def __init__(self, num_classes=100, \n", " width_coefficient=1.0,\n", " depth_coefficient=1.0,\n", " se_rate=0.25,\n", " dropout_rate=0.2,\n", " drop_connect_rate=0.2):\n", " super(EfficientNet, self).__init__()\n", " \n", " self.width_coefficient = width_coefficient\n", " self.depth_coefficient = depth_coefficient\n", " self.divisor = 8\n", " \n", " list_channels = [32, 16, 24, 40, 80, 112, 192, 320, 1280]\n", " list_channels = [self._setup_channels(c) for c in list_channels]\n", " \n", " list_num_repeats = [1, 2, 2, 3, 3, 4, 1]\n", " list_num_repeats = [self._setup_repeats(r) for r in list_num_repeats] \n", " \n", " expand_rates = [1, 6, 6, 6, 6, 6, 6]\n", " strides = [1, 2, 2, 2, 1, 2, 1]\n", " kernel_sizes = [3, 3, 5, 3, 5, 5, 3]\n", "\n", " # Define stem:\n", " self.stem = nn.Sequential(\n", " nn.Conv2d(3, list_channels[0], kernel_size=3, stride=2, padding=1, bias=False),\n", " nn.BatchNorm2d(list_channels[0], momentum=0.01, eps=1e-3),\n", " Swish()\n", " )\n", " \n", " # Define MBConv blocks\n", " blocks = []\n", " counter = 0\n", " num_blocks = sum(list_num_repeats)\n", " for idx in range(7):\n", " \n", " num_channels = list_channels[idx]\n", " next_num_channels = list_channels[idx + 1]\n", " num_repeats = list_num_repeats[idx]\n", " expand_rate = expand_rates[idx]\n", " kernel_size = kernel_sizes[idx]\n", " stride = strides[idx]\n", " drop_rate = drop_connect_rate * counter / num_blocks\n", " \n", " name = \"MBConv{}_{}\".format(expand_rate, counter)\n", " blocks.append((\n", " name,\n", " MBConv(num_channels, next_num_channels, \n", " kernel_size=kernel_size, stride=stride, expand_rate=expand_rate, \n", " se_rate=se_rate, drop_connect_rate=drop_rate)\n", " ))\n", " counter += 1\n", " for i in range(1, num_repeats): \n", " name = \"MBConv{}_{}\".format(expand_rate, counter)\n", " drop_rate = drop_connect_rate * counter / num_blocks \n", " blocks.append((\n", " name,\n", " MBConv(next_num_channels, next_num_channels, \n", " kernel_size=kernel_size, stride=1, expand_rate=expand_rate, \n", " se_rate=se_rate, drop_connect_rate=drop_rate) \n", " ))\n", " counter += 1\n", " \n", " self.blocks = nn.Sequential(OrderedDict(blocks))\n", " \n", " # Define head\n", " self.head = nn.Sequential(\n", " nn.Conv2d(list_channels[-2], list_channels[-1], \n", " kernel_size=1, bias=False),\n", " nn.BatchNorm2d(list_channels[-1], momentum=0.01, eps=1e-3),\n", " Swish(),\n", " nn.AdaptiveAvgPool2d(1),\n", " Flatten(),\n", " nn.Dropout(p=dropout_rate),\n", " nn.Linear(list_channels[-1], num_classes)\n", " )\n", "\n", " self.apply(init_weights)\n", " \n", " def forward(self, x):\n", " f = self.stem(x)\n", " f = self.blocks(f)\n", " y = self.head(f)\n", " return y" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "9tEhbJWnsXpy" }, "source": [ "All EfficientNet models can be defined using the following parametrization:\n", "```\n", "# (width_coefficient, depth_coefficient, resolution, dropout_rate)\n", "'efficientnet-b0': (1.0, 1.0, 224, 0.2),\n", "'efficientnet-b1': (1.0, 1.1, 240, 0.2),\n", "'efficientnet-b2': (1.1, 1.2, 260, 0.3),\n", "'efficientnet-b3': (1.2, 1.4, 300, 0.3),\n", "'efficientnet-b4': (1.4, 1.8, 380, 0.4),\n", "'efficientnet-b5': (1.6, 2.2, 456, 0.4),\n", "'efficientnet-b6': (1.8, 2.6, 528, 0.5),\n", "'efficientnet-b7': (2.0, 3.1, 600, 0.5),\n", "``` \n", "Let's define and train the third one: `EfficientNet-B0`" ] }, { "cell_type": "code", "metadata": { "id": "YCuCoTHBsXpy" }, "source": [ "model = EfficientNet(num_classes=1000, \n", " width_coefficient=1.0, depth_coefficient=1.0, \n", " dropout_rate=0.2)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "HjUCNwu3sXpz" }, "source": [ "Number of parameters:" ] }, { "cell_type": "code", "metadata": { "id": "WfBynpOEsXpz" }, "source": [ "def print_num_params(model, display_all_modules=False):\n", " total_num_params = 0\n", " for n, p in model.named_parameters():\n", " num_params = 1\n", " for s in p.shape:\n", " num_params *= s\n", " if display_all_modules: print(\"{}: {}\".format(n, num_params))\n", " total_num_params += num_params\n", " print(\"-\" * 50)\n", " print(\"Total number of parameters: {:.2e}\".format(total_num_params))\n", " \n", "\n", "print_num_params(model)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "DxiAjmuMsXp0" }, "source": [ "Let's compare the number of parameters with some of ResNets:" ] }, { "cell_type": "code", "metadata": { "id": "rAUg5NwnsXp0" }, "source": [ "from torchvision.models.resnet import resnet18, resnet34, resnet50" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "9ZMMOAjpsXp0" }, "source": [ "print_num_params(resnet18(pretrained=False, num_classes=100))\n", "print_num_params(resnet34(pretrained=False, num_classes=100))\n", "print_num_params(resnet50(pretrained=False, num_classes=100))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "0CcItj-CsXp0" }, "source": [], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "0NhRnYnAsXp1" }, "source": [ "### Model's graph with Tensorboard\n", "\n", "We can optionally inspect model's graph with the code below. For that we need to install\n", "`tensorboardX` package.\n", "Otherwise go directly to the next section." ] }, { "cell_type": "code", "metadata": { "id": "F2y5WvBisXp1" }, "source": [ "from tensorboardX.pytorch_graph import graph\n", "\n", "import random\n", "from IPython.display import clear_output, Image, display, HTML\n", "\n", "\n", "def show_graph(graph_def):\n", " \"\"\"Visualize TensorFlow graph.\"\"\"\n", " if hasattr(graph_def, 'as_graph_def'):\n", " graph_def = graph_def.as_graph_def()\n", " strip_def = graph_def\n", " code = \"\"\"\n", " \n", " \n", " \n", "

\n", " \"\"\".format(data=repr(str(strip_def)), id='graph'+str(random.randint(0, 1000)))\n", "\n", " iframe = \"\"\"\n", " \n", " \"\"\".format(code.replace('\"', '"'))\n", " display(HTML(iframe))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "scrolled": true, "id": "_oOEmRUJsXp1" }, "source": [ "x = torch.rand(4, 3, 224, 224)\n", "\n", "# Error : module 'torch.onnx' has no attribute 'set_training'\n", "# uncomment when it will be fixed \n", "\n", "# graph_def = graph(model, x, operator_export_type='RAW')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "vW1y3eTMsXp1" }, "source": [ "# Display in Firefox may not work properly. Use Chrome.\n", "# show_graph(graph_def[0])" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "irrGiMKWsXp4" }, "source": [ "### Load pretrained weights\n", "\n", "Let's load pretrained weights and check the model on a single image." ] }, { "cell_type": "code", "metadata": { "id": "gd3CHmnhsXp4" }, "source": [ "!mkdir /tmp/efficientnet_weights\n", "!wget http://storage.googleapis.com/public-models/efficientnet-b0-08094119.pth -O/tmp/efficientnet_weights/efficientnet-b0-08094119.pth" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "0f1BnJ4TsXp4" }, "source": [ "from collections import OrderedDict\n", "\n", "model_state = torch.load(\"/tmp/efficientnet_weights/efficientnet-b0-08094119.pth\")\n", "\n", "# A basic remapping is required\n", "mapping = {\n", " k: v for k, v in zip(model_state.keys(), model.state_dict().keys())\n", "}\n", "mapped_model_state = OrderedDict([\n", " (mapping[k], v) for k, v in model_state.items()\n", "])\n", "\n", "model.load_state_dict(mapped_model_state, strict=False)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "-9mxclp2sXp5" }, "source": [ "!wget https://raw.githubusercontent.com/lukemelas/EfficientNet-PyTorch/master/examples/simple/img.jpg -O/tmp/giant_panda.jpg\n", "!wget https://raw.githubusercontent.com/lukemelas/EfficientNet-PyTorch/master/examples/simple/labels_map.txt -O/tmp/labels_map.txt" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "3QUPjDRBsXp5" }, "source": [ "import json\n", "\n", "with open(\"/tmp/labels_map.txt\", \"r\") as h:\n", " labels = json.load(h)\n", "\n", "from PIL import Image\n", "import torchvision.transforms as transforms\n", "\n", "\n", "img = Image.open(\"/tmp/giant_panda.jpg\")\n", "# Preprocess image\n", "image_size = 224\n", "tfms = transforms.Compose([transforms.Resize(image_size), \n", " transforms.CenterCrop(image_size), \n", " transforms.ToTensor(),\n", " transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])\n", "x = tfms(img).unsqueeze(0)\n", "\n", "plt.imshow(img)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "l5xn0U7bsXp6" }, "source": [ "# Classify\n", "model.eval()\n", "with torch.no_grad():\n", " y_pred = model(x)\n", "\n", "# Print predictions\n", "print('-----')\n", "for idx in torch.topk(y_pred, k=5).indices.squeeze(0).tolist():\n", " prob = torch.softmax(y_pred, dim=1)[0, idx].item()\n", " print('{label:<75} ({p:.2f}%)'.format(label=labels[str(idx)], p=prob*100))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "6p_g9Z4KsXp6" }, "source": [ "## Dataflow\n", "\n", "Let's setup the dataflow:\n", "- load CIFAR100 train and test datasets\n", "- setup train/test image transforms\n", "- setup train/test data loaders\n", "\n", "According to the paper authors borrowed training settings from other publications and the dataflow for CIFAR100 is the following:\n", "\n", "- input images to the network during training are resized to 224x224\n", "- horizontally flipped randomly and augmented using cutout.\n", "- each mini-batch contained 256 examples\n" ] }, { "cell_type": "code", "metadata": { "id": "Xm1nwsuVsXp7" }, "source": [ "from torchvision.datasets.cifar import CIFAR100 \n", "from torchvision.transforms import Compose, RandomCrop, Pad, RandomHorizontalFlip, Resize\n", "from torchvision.transforms import ToTensor, Normalize\n", "\n", "from torch.utils.data import Subset" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "t4dcDFtxsXp7" }, "source": [ "path = \"/tmp/cifar100\"\n", "\n", "from PIL.Image import BICUBIC\n", "\n", "\n", "train_transform = Compose([\n", " Resize(256, BICUBIC),\n", " RandomCrop(224),\n", " RandomHorizontalFlip(),\n", " ToTensor(),\n", " Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n", "])\n", "\n", "test_transform = Compose([\n", " Resize(224, BICUBIC), \n", " ToTensor(),\n", " Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n", "])\n", "\n", "\n", "train_dataset = CIFAR100(root=path, train=True, transform=train_transform, download=True)\n", "test_dataset = CIFAR100(root=path, train=False, transform=test_transform, download=False)\n", "\n", "train_eval_indices = [random.randint(0, len(train_dataset) - 1) for i in range(len(test_dataset))]\n", "train_eval_dataset = Subset(train_dataset, train_eval_indices)\n", "\n", "\n", "len(train_dataset), len(test_dataset), len(train_eval_dataset)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "pwOEeRFOsXp7" }, "source": [ "from torch.utils.data import DataLoader\n", "\n", "\n", "batch_size = 172\n", "\n", "train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=20, \n", " shuffle=True, drop_last=True, pin_memory=True)\n", "\n", "test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=20, \n", " shuffle=False, drop_last=False, pin_memory=True)\n", "\n", "eval_train_loader = DataLoader(train_eval_dataset, batch_size=batch_size, num_workers=20, \n", " shuffle=False, drop_last=False, pin_memory=True)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "UXCG-s1JsXp7" }, "source": [ "import torchvision.utils as vutils\n", "\n", "# Plot some training images\n", "batch = next(iter(train_loader))\n", "\n", "plt.figure(figsize=(16, 8))\n", "plt.axis(\"off\")\n", "plt.title(\"Training Images\")\n", "plt.imshow( \n", " vutils.make_grid(batch[0][:16], padding=2, normalize=True).cpu().numpy().transpose((1, 2, 0))\n", ")\n", "\n", "batch = None\n", "torch.cuda.empty_cache()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "0ty_zhLUsXp8" }, "source": [ "## Finetunning model" ] }, { "cell_type": "markdown", "metadata": { "id": "dvVxC-_TsXp9" }, "source": [ "As we are interested to finetune the model to CIFAR-100, we will replace the classification fully-connected layer (ImageNet-1000 vs CIFAR-100)." ] }, { "cell_type": "code", "metadata": { "id": "O7D5BIlxsXp9" }, "source": [ "model.head[6].in_features, model.head[6].out_features" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "mwLQro9csXp-" }, "source": [ "model.head[6] = nn.Linear(1280, 100)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1tcFlIpGsXp-" }, "source": [ "model.head[6].in_features, model.head[6].out_features" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "3uS2NMt8sXp_" }, "source": [ "We will finetune the model on GPU with AMP fp32/fp16 using nvidia/apex package." ] }, { "cell_type": "code", "metadata": { "id": "Fv8lR4HlsXp_" }, "source": [ "assert torch.cuda.is_available()\n", "assert torch.backends.cudnn.enabled, \"NVIDIA/Apex:Amp requires cudnn backend to be enabled.\"\n", "torch.backends.cudnn.benchmark = True\n", "\n", "device = \"cuda\"" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "TUhjJfLTsXp_" }, "source": [ "model = model.to(device)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "2YB8-FGXsXqB" }, "source": [ "Let's setup cross-entropy as criterion and SGD as optimizer.\n", "\n", "We will split model parameters into 2 groups: \n", "\n", " 1) feature extractor (pretrained weights)\n", " 2) classifier (random weights)\n", "\n", "and define different learning rates for these groups (via learning rate scheduler)." ] }, { "cell_type": "code", "metadata": { "id": "TGxSb_MOsXqB" }, "source": [ "from itertools import chain\n", "\n", "import torch.optim as optim\n", "import torch.nn.functional as F\n", "\n", "\n", "criterion = nn.CrossEntropyLoss()\n", "\n", "lr = 0.01\n", "\n", "optimizer = optim.SGD([\n", " {\n", " \"params\": chain(model.stem.parameters(), model.blocks.parameters()),\n", " \"lr\": lr * 0.1,\n", " },\n", " {\n", " \"params\": model.head[:6].parameters(),\n", " \"lr\": lr * 0.2,\n", " }, \n", " {\n", " \"params\": model.head[6].parameters(), \n", " \"lr\": lr\n", " }], \n", " momentum=0.9, weight_decay=0.001, nesterov=True)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "V6stcy6ksXqB" }, "source": [ "from torch.optim.lr_scheduler import ExponentialLR\n", "\n", "lr_scheduler = ExponentialLR(optimizer, gamma=0.975)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "yPuwNYeZsXqB" }, "source": [ "try:\n", " from apex import amp\n", "except ImportError:\n", " raise ImportError(\"Please install apex from https://www.github.com/nvidia/apex to run this example.\")\n", "\n", "\n", "# Initialize Amp\n", "model, optimizer = amp.initialize(model, optimizer, opt_level=\"O2\", num_losses=1)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "5UtGQtQFsXqC" }, "source": [ "Next, let's define a single iteration function `update_fn`. This function is then used by `ignite.engine.Engine` to update model while running over the input data." ] }, { "cell_type": "code", "metadata": { "id": "MjMUQITRsXqC" }, "source": [ "from ignite.utils import convert_tensor\n", "\n", "\n", "def update_fn(engine, batch):\n", " model.train()\n", "\n", " x = convert_tensor(batch[0], device=device, non_blocking=True)\n", " y = convert_tensor(batch[1], device=device, non_blocking=True)\n", " \n", " y_pred = model(x)\n", " \n", " # Compute loss \n", " loss = criterion(y_pred, y) \n", "\n", " with amp.scale_loss(loss, optimizer) as scaled_loss:\n", " scaled_loss.backward()\n", "\n", " optimizer.step()\n", " \n", " return {\n", " \"batchloss\": loss.item(),\n", " } " ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "E772HMiasXqC" }, "source": [ "Let's check `update_fn`" ] }, { "cell_type": "code", "metadata": { "id": "MLFVuQaDsXqD" }, "source": [ "batch = next(iter(train_loader))\n", "\n", "res = update_fn(engine=None, batch=batch)\n", "\n", "batch = None\n", "torch.cuda.empty_cache()\n", "\n", "res" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ibK059y1sXqD" }, "source": [ "Now let's define a trainer and add some practical handlers:\n", "- log to tensorboard: losses, metrics, lr\n", "- progress bar\n", "- models/optimizers checkpointing" ] }, { "cell_type": "code", "metadata": { "id": "rqrmwVuTsXqD" }, "source": [ "from ignite.engine import Engine, Events, create_supervised_evaluator\n", "from ignite.metrics import RunningAverage, Accuracy, Precision, Recall, Loss, TopKCategoricalAccuracy\n", "\n", "from ignite.handlers import TensorboardLogger\n", "from ignite.handlers.tensorboard_logger import OutputHandler, OptimizerParamsHandler" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "B2JI5oXosXqD" }, "source": [ "trainer = Engine(update_fn)\n", "\n", "\n", "def output_transform(out):\n", " return out['batchloss']\n", "\n", "\n", "RunningAverage(output_transform=output_transform).attach(trainer, \"batchloss\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "2_WWUKuHsXqD" }, "source": [ "from datetime import datetime\n", "\n", "exp_name = datetime.now().strftime(\"%Y%m%d-%H%M%S\")\n", "log_path = \"/tmp/finetune_efficientnet_cifar100/{}\".format(exp_name)\n", "tb_logger = TensorboardLogger(log_dir=log_path)\n", "\n", "\n", "tb_logger.attach(trainer, \n", " log_handler=OutputHandler('training', ['batchloss', ]), \n", " event_name=Events.ITERATION_COMPLETED)\n", "\n", "print(\"Experiment name: \", exp_name)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "R6BPVSZqsXqE" }, "source": [ "Let's setup learning rate scheduling:" ] }, { "cell_type": "code", "metadata": { "id": "ZVHrbB5esXqE" }, "source": [ "trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda engine: lr_scheduler.step())\n", "\n", "# Log optimizer parameters\n", "tb_logger.attach(trainer,\n", " log_handler=OptimizerParamsHandler(optimizer, \"lr\"), \n", " event_name=Events.EPOCH_STARTED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "Bp_hy7Y0sXqE" }, "source": [ "from ignite.handlers import ProgressBar\n", "\n", "# Iteration-wise progress bar\n", "# ProgressBar(bar_format=\"\").attach(trainer, metric_names=['batchloss',])\n", "\n", "# Epoch-wise progress bar with display of training losses\n", "ProgressBar(persist=True, bar_format=\"\").attach(trainer, \n", " event_name=Events.EPOCH_STARTED, \n", " closing_event_name=Events.COMPLETED)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "EM6NNDh8sXqE" }, "source": [ "Let's create two evaluators to compute metrics on train/test images and log them to Tensorboard:" ] }, { "cell_type": "code", "metadata": { "id": "yApMSd47sXqF" }, "source": [ "metrics = {\n", " 'Loss': Loss(criterion),\n", " 'Accuracy': Accuracy(),\n", " 'Precision': Precision(average=True),\n", " 'Recall': Recall(average=True),\n", " 'Top-5 Accuracy': TopKCategoricalAccuracy(k=5)\n", "}\n", "\n", "\n", "evaluator = create_supervised_evaluator(model, metrics=metrics, \n", " device=device, non_blocking=True)\n", "\n", "train_evaluator = create_supervised_evaluator(model, metrics=metrics, \n", " device=device, non_blocking=True)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_Xn8INiCsXqF" }, "source": [ "from ignite.handlers import global_step_from_engine\n", "\n", "\n", "def run_evaluation(engine):\n", " train_evaluator.run(eval_train_loader)\n", " evaluator.run(test_loader)\n", "\n", "\n", "trainer.add_event_handler(Events.EPOCH_STARTED(every=3), run_evaluation)\n", "trainer.add_event_handler(Events.COMPLETED, run_evaluation)\n", "\n", "\n", "# Log train eval metrics:\n", "tb_logger.attach_output_handler(\n", " train_evaluator,\n", " event_name=Events.EPOCH_COMPLETED,\n", " tag=\"training\",\n", " metric_names=list(metrics.keys()),\n", " global_step_transform=global_step_from_engine(trainer)\n", ")\n", "\n", "# Log val metrics:\n", "tb_logger.attach_output_handler(\n", " evaluator,\n", " event_name=Events.EPOCH_COMPLETED,\n", " tag=\"test\",\n", " metric_names=list(metrics.keys()),\n", " global_step_transform=global_step_from_engine(trainer)\n", ")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Sx_J-SHisXqG" }, "source": [ "Now let's setup the best model checkpointing, early stopping:" ] }, { "cell_type": "code", "metadata": { "id": "tC5UBpXfsXqG" }, "source": [ "import logging\n", "\n", "# Setup engine & logger\n", "def setup_logger(logger):\n", " handler = logging.StreamHandler()\n", " formatter = logging.Formatter(\"%(asctime)s %(name)-12s %(levelname)-8s %(message)s\")\n", " handler.setFormatter(formatter)\n", " logger.addHandler(handler)\n", " logger.setLevel(logging.INFO)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "LKXnwpxBsXqG" }, "source": [ "from ignite.handlers import Checkpoint, DiskSaver, EarlyStopping, TerminateOnNan\n", "\n", "\n", "trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())\n", "\n", "\n", "# Store the best model\n", "def default_score_fn(engine):\n", " score = engine.state.metrics['Accuracy']\n", " return score\n", "\n", "# Force filename to model.pt to ease the rerun of the notebook\n", "disk_saver = DiskSaver(dirname=log_path)\n", "best_model_handler = Checkpoint(to_save={'model': model}, \n", " save_handler=disk_saver, \n", " filename_pattern=\"{name}.{ext}\", \n", " n_saved=1)\n", "evaluator.add_event_handler(Events.COMPLETED, best_model_handler)\n", "\n", "# Add early stopping\n", "es_patience = 10\n", "es_handler = EarlyStopping(patience=es_patience, score_function=default_score_fn, trainer=trainer)\n", "evaluator.add_event_handler(Events.COMPLETED, es_handler)\n", "setup_logger(es_handler.logger)\n", "\n", "\n", "# Clear cuda cache between training/testing\n", "def empty_cuda_cache(engine):\n", " torch.cuda.empty_cache()\n", " import gc\n", " gc.collect()\n", "\n", "\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache)\n", "evaluator.add_event_handler(Events.COMPLETED, empty_cuda_cache)\n", "train_evaluator.add_event_handler(Events.COMPLETED, empty_cuda_cache)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "LBP3QVQXsXqG" }, "source": [ "num_epochs = 100\n", "\n", "\n", "trainer.run(train_loader, max_epochs=num_epochs)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "gsXB45JhsXqH" }, "source": [ "Finetunning results:\n", "\n", "- Test dataset:" ] }, { "cell_type": "code", "metadata": { "id": "mX-t-Sq6sXqH" }, "source": [ "evaluator.state.metrics" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Ax_YKq4isXqH" }, "source": [ "- Training subset:" ] }, { "cell_type": "code", "metadata": { "id": "i4CA6YcRsXqI" }, "source": [ "train_evaluator.state.metrics" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ghxtoGLVsXqI" }, "source": [ "Obviously, our training settings is not the optimal one and the delta between our result and the paper's one is about 5%." ] }, { "cell_type": "markdown", "metadata": { "id": "C-7ccZ0QsXqJ" }, "source": [ "## Inference\n", "\n", "Let's load the best model and recompute evaluation metrics on test dataset with a very basic Test-Time-Augmentation to boost the performances.\n" ] }, { "cell_type": "code", "metadata": { "id": "x4BU5IOIsXqK" }, "source": [ "best_model = EfficientNet()\n", "best_model.load_state_dict(torch.load(log_path + \"/model.pt\"))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "co3E6dcesXqK" }, "source": [ "metrics = {\n", " 'Accuracy': Accuracy(),\n", " 'Precision': Precision(average=True),\n", " 'Recall': Recall(average=True),\n", "}\n", "\n", "\n", "def inference_update_with_tta(engine, batch):\n", " best_model.eval()\n", " with torch.no_grad():\n", " x, y = batch \n", " # Let's compute final prediction as a mean of predictions on x and flipped x\n", " y_pred1 = best_model(x)\n", " y_pred2 = best_model(x.flip(dims=(-1, )))\n", " y_pred = 0.5 * (y_pred1 + y_pred2)\n", "\n", " return y_pred, y\n", "\n", "\n", "inferencer = Engine(inference_update_with_tta)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "u68ntSHDsXqK" }, "source": [ "for name, metric in metrics.items():\n", " metric.attach(inferencer, name)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "W3YDadJ5sXqK" }, "source": [ "ProgressBar(desc=\"Inference\").attach(inferencer)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4fQTu7DOsXqK" }, "source": [ "result_state = inferencer.run(test_loader, max_epochs=1)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "1vlgsopvsXqL" }, "source": [ "Finally, we obtain similar scores:" ] }, { "cell_type": "code", "metadata": { "id": "F6vCp6lpsXqL" }, "source": [ "result_state.metrics" ], "execution_count": null, "outputs": [] } ] } ignite-0.5.1/examples/notebooks/FashionMNIST.ipynb000066400000000000000000000602011465426447700221040ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "lMov-LUSabxx" }, "source": [ "# Convolutional Neural Networks for Classifying Fashion-MNIST Dataset using Ignite\n", "This is a tutorial on using Ignite to train neural network models, setup experiments and validate models.\n", "\n", "In this notebook, we will be doing classification of images using Convolutional Neural Networks \n", "\n", "We will be using the [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist) Fashion-MNIST is a set of 28x28 grayscale images of clothes.\n", "\n", "![Fashion MNIST dataset](https://github.com/abdulelahsm/ignite/blob/update-tutorials/examples/notebooks/assets/fashion-mnist.png?raw=1)\n", "\n", "Lets get started!" ] }, { "cell_type": "markdown", "metadata": { "id": "kXZxwFvCGqz0" }, "source": [ "## Required Dependencies\n", "\n", "We assume that `torch` and `ignite` are already installed. We can install it using `pip`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "A7LJdJfU6pra" }, "outputs": [], "source": [ "!pip install pytorch-ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "7PiU02-fabxz" }, "source": [ "### Importing libraries\n", "\n", "General Data-Science Libraries like numpy, matplotlib and seaborn" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-FlbGAEe6prv" }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import seaborn as sns" ] }, { "cell_type": "markdown", "metadata": { "id": "xp_4isvHabx5" }, "source": [ "We import `torch`, `nn` and `functional` modules to create our models.\n", "\n", "We also import `datasets` and `transforms` from torchvision for loading the dataset and applying transforms to the images in the dataset.\n", "\n", "We import `Dataloader` for making train and validation loader for loading data into our model." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "E-OllAGT6pr-" }, "outputs": [], "source": [ "import torch\n", "from torch import nn, optim\n", "import torch.nn.functional as F\n", "from torch.utils.data import DataLoader\n", "from torchvision import datasets, transforms" ] }, { "cell_type": "markdown", "metadata": { "id": "Pj7oLY36abx8" }, "source": [ "`Ignite` is a High-level library to help with training neural networks in PyTorch. It comes with an `Engine` to setup a training loop, various metrics, handlers and a helpful contrib section! \n", "\n", "Below we import the following:\n", "* **Engine**: Runs a given process_function over each batch of a dataset, emitting events as it goes.\n", "* **Events**: Allows users to attach functions to an `Engine` to fire functions at a specific event. Eg: `EPOCH_COMPLETED`, `ITERATION_STARTED`, etc.\n", "* **Accuracy**: Metric to calculate accuracy over a dataset, for binary, multiclass, multilabel cases. \n", "* **Loss**: General metric that takes a loss function as a parameter, calculate loss over a dataset.\n", "* **RunningAverage**: General metric to attach to Engine during training. \n", "* **ModelCheckpoint**: Handler to checkpoint models. \n", "* **EarlyStopping**: Handler to stop training based on a score function. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "YodbjXPi6psK" }, "outputs": [], "source": [ "from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n", "from ignite.metrics import Accuracy, Loss, RunningAverage, ConfusionMatrix\n", "from ignite.handlers import ModelCheckpoint, EarlyStopping" ] }, { "cell_type": "markdown", "metadata": { "id": "vO53-X98abx-" }, "source": [ "The code below first sets up transform using `torhvision transfroms` for converting images to pytorch tensors and normalizing the images.\n", "\n", "Next, We use `torchvision datasets` for dowloading the fashion mnist dataset and applying transforms which we defined above.\n", "\n", "* `trainset` contains the training data.\n", "* `validationset` contains the validation data\n", "\n", "Next, We use `pytorch dataloader` for making dataloader from the train and validation sets." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Y2dqyxnr6psU" }, "outputs": [], "source": [ "# transform to normalize the data\n", "transform = transforms.Compose([transforms.ToTensor(),\n", " transforms.Normalize((0.5,), (0.5,))])\n", "\n", "# Download and load the training data\n", "trainset = datasets.FashionMNIST('./data', download=True, train=True, transform=transform)\n", "train_loader = DataLoader(trainset, batch_size=64, shuffle=True)\n", "\n", "# Download and load the test data\n", "validationset = datasets.FashionMNIST('./data', download=True, train=False, transform=transform)\n", "val_loader = DataLoader(validationset, batch_size=64, shuffle=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "Cvzm-Oe1abyB" }, "source": [ "### CNN Model" ] }, { "cell_type": "markdown", "metadata": { "id": "uf4AVJ44abyC" }, "source": [ "Explanation of Model Architecture\n", "\n", "* [Convolutional layers](https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html), the Convolutional layer is used to create a convolution kernel that is convolved with the layer input to produce a tensor of outputs.\n", "* [Maxpooling layers](https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html), the Maxpooling layer is used to downsample an input representation keeping the most active pixels from the previous layer.\n", "* The usual [Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) + [Dropout](https://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html) layers to avoid overfitting and produce a 10-dim output.\n", "* We had used [Relu](https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html) Non Linearity for the model and [logsoftmax](https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html) at the last layer because we are going to use the [NLLL loss](https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html).\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "AST_DtTC6psh" }, "outputs": [], "source": [ "class CNN(nn.Module):\n", " \n", " def __init__(self):\n", " super(CNN, self).__init__()\n", " \n", " self.convlayer1 = nn.Sequential(\n", " nn.Conv2d(1, 32, 3,padding=1),\n", " nn.BatchNorm2d(32),\n", " nn.ReLU(),\n", " nn.MaxPool2d(kernel_size=2, stride=2)\n", " )\n", " \n", " self.convlayer2 = nn.Sequential(\n", " nn.Conv2d(32,64,3),\n", " nn.BatchNorm2d(64),\n", " nn.ReLU(),\n", " nn.MaxPool2d(2)\n", " )\n", " \n", " self.fc1 = nn.Linear(64*6*6,600)\n", " self.drop = nn.Dropout2d(0.25)\n", " self.fc2 = nn.Linear(600, 120)\n", " self.fc3 = nn.Linear(120, 10)\n", " \n", " def forward(self, x):\n", " x = self.convlayer1(x)\n", " x = self.convlayer2(x)\n", " x = x.view(-1,64*6*6)\n", " x = self.fc1(x)\n", " x = self.drop(x)\n", " x = self.fc2(x)\n", " x = self.fc3(x)\n", " \n", " return F.log_softmax(x,dim=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "oqvY1QLBabyE" }, "source": [ "### Creating Model, Optimizer and Loss" ] }, { "cell_type": "markdown", "metadata": { "id": "8z2zUS5zabyF" }, "source": [ "Below we create an instance of the CNN model. The model is placed on a device and then a loss function of `negative log likelihood loss` and `Adam optimizer` with learning rate of 0.001 are setup. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "JXyVBBYw6pst" }, "outputs": [], "source": [ "# creating model,and defining optimizer and loss\n", "model = CNN()\n", "# moving model to gpu if available\n", "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", "model.to(device)\n", "optimizer = optim.Adam(model.parameters(), lr=0.001)\n", "criterion = nn.NLLLoss()" ] }, { "cell_type": "markdown", "metadata": { "id": "o69S4bEvabyI" }, "source": [ "### Training and Evaluating using Ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "PALFpjYoabyJ" }, "source": [ "### Instantiating Training and Evaluating Engines\n", "\n", "Below we create 3 engines, a trainer, an evaluator for the training set and an evaluator for the validation set, by using the `create_supervised_trainer` and `create_supervised_evaluator` and passing the required arguments.\n", "\n", "We import the metrics from `ignite.metrics` which we want to calculate for the model. Like `Accuracy`, `ConfusionMatrix`, and `Loss` and we pass them to `evaluator` engines which will calculate these metrics for each iteration.\n", "\n", "* `training_history`: it stores the training loss and accuracy\n", "* `validation_history`:it stores the validation loss and accuracy\n", "* `last_epoch`: it stores the last epoch untill the model is trained\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "a7EaSDMW6ps5" }, "outputs": [], "source": [ "# defining the number of epochs\n", "epochs = 12\n", "# creating trainer,evaluator\n", "trainer = create_supervised_trainer(model, optimizer, criterion, device=device)\n", "metrics = {\n", " 'accuracy':Accuracy(),\n", " 'nll':Loss(criterion),\n", " 'cm':ConfusionMatrix(num_classes=10)\n", "}\n", "train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device)\n", "val_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device)\n", "training_history = {'accuracy':[],'loss':[]}\n", "validation_history = {'accuracy':[],'loss':[]}\n", "last_epoch = []" ] }, { "cell_type": "markdown", "metadata": { "id": "aonym06RabyL" }, "source": [ "### Metrics - RunningAverage\n", "\n", "To start, we will attach a metric of `RunningAverage` to track a running average of the scalar loss output for each batch. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4LXaAfga6ptD" }, "outputs": [], "source": [ "RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')" ] }, { "cell_type": "markdown", "metadata": { "id": "2vDAID6BabyP" }, "source": [ "### EarlyStopping - Tracking Validation Loss\n", "\n", "Now we will setup a `EarlyStopping` handler for this training process. EarlyStopping requires a score_function that allows the user to define whatever criteria to stop trainig. In this case, if the loss of the validation set does not decrease in 10 epochs, the training process will stop early. Since the `EarlyStopping` handler relies on the validation loss, it's attached to the `val_evaluator`. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0mcIq0lc6ptN" }, "outputs": [], "source": [ "def score_function(engine):\n", " val_loss = engine.state.metrics['nll']\n", " return -val_loss\n", "\n", "handler = EarlyStopping(patience=10, score_function=score_function, trainer=trainer)\n", "val_evaluator.add_event_handler(Events.COMPLETED, handler)" ] }, { "cell_type": "markdown", "metadata": { "id": "GZzf0wtLabyR" }, "source": [ "### Attaching Custom Functions to Engine at specific Events\n", "\n", "Below you will see ways to define your own custom functions and attaching them to various `Events` of the training process.\n", "\n", "The functions below both achieve similar tasks, they print the results of the evaluator run on a dataset. One function does that on the training evaluator and dataset, while the other on the validation. Another difference is how these functions are attached in the trainer engine.\n", "\n", "The first method involves using a decorator, the syntax is simple - `@` `trainer.on(Events.EPOCH_COMPLETED)`, means that the decorated function will be attached to the trainer and called at the end of each epoch. \n", "\n", "The second method involves using the add_event_handler method of trainer - `trainer.add_event_handler(Events.EPOCH_COMPLETED, custom_function)`. This achieves the same result as the above. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UFQNaZDx6ptV" }, "outputs": [], "source": [ "@trainer.on(Events.EPOCH_COMPLETED)\n", "def log_training_results(trainer):\n", " train_evaluator.run(train_loader)\n", " metrics = train_evaluator.state.metrics\n", " accuracy = metrics['accuracy']*100\n", " loss = metrics['nll']\n", " last_epoch.append(0)\n", " training_history['accuracy'].append(accuracy)\n", " training_history['loss'].append(loss)\n", " print(\"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}\"\n", " .format(trainer.state.epoch, accuracy, loss))\n", "\n", "def log_validation_results(trainer):\n", " val_evaluator.run(val_loader)\n", " metrics = val_evaluator.state.metrics\n", " accuracy = metrics['accuracy']*100\n", " loss = metrics['nll']\n", " validation_history['accuracy'].append(accuracy)\n", " validation_history['loss'].append(loss)\n", " print(\"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}\"\n", " .format(trainer.state.epoch, accuracy, loss))\n", " \n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, log_validation_results) " ] }, { "cell_type": "markdown", "metadata": { "id": "z4ZHDOs1abyT" }, "source": [ "### Confusion Matrix" ] }, { "cell_type": "markdown", "metadata": { "id": "j5NOsTQxabyU" }, "source": [ "Confusion matrix gives us a better idea of what our classification model is getting right and what types of errors it is making.\n", "\n", "We visualize the `confusion matrix` using the `seaborn.heatmap` from `seaborn` library." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kVrVyE8X6pth" }, "outputs": [], "source": [ "@trainer.on(Events.COMPLETED)\n", "def log_confusion_matrix(trainer):\n", " val_evaluator.run(val_loader)\n", " metrics = val_evaluator.state.metrics\n", " cm = metrics['cm']\n", " cm = cm.numpy()\n", " cm = cm.astype(int)\n", " classes = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle Boot']\n", " fig, ax = plt.subplots(figsize=(10,10)) \n", " ax= plt.subplot()\n", " sns.heatmap(cm, annot=True, ax = ax,fmt=\"d\")\n", " # labels, title and ticks\n", " ax.set_xlabel('Predicted labels')\n", " ax.set_ylabel('True labels') \n", " ax.set_title('Confusion Matrix') \n", " ax.xaxis.set_ticklabels(classes,rotation=90)\n", " ax.yaxis.set_ticklabels(classes,rotation=0)" ] }, { "cell_type": "markdown", "metadata": { "id": "HX-NImoSabyW" }, "source": [ "### ModelCheckpoint\n", "\n", "Lastly, we want to checkpoint this model. It's important to do so, as training processes can be time consuming and if for some reason something goes wrong during training, a model checkpoint can be helpful to restart training from the point of failure.\n", "\n", "Below we will use Ignite's `ModelCheckpoint` handler to checkpoint models at the end of each epoch." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qGVhrmoZ6ptp" }, "outputs": [], "source": [ "checkpointer = ModelCheckpoint('./saved_models', 'fashionMNIST', n_saved=2, create_dir=True, save_as_state_dict=True, require_empty=False)\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpointer, {'fashionMNIST': model})" ] }, { "cell_type": "markdown", "metadata": { "id": "4YK6lGPHabyY" }, "source": [ "### Run Engine\n", "\n", "Next, we will run the trainer for 12 epochs and monitor results. Below we can see that custom functions defined above helps prints the `loss` and `accuracy` per epoch. \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lW6m6Stp6pty" }, "outputs": [], "source": [ "trainer.run(train_loader, max_epochs=epochs)" ] }, { "cell_type": "markdown", "metadata": { "id": "hTwbdtI_abyg" }, "source": [ "### Plotting the loss and accuracy\n", "Next, we will plot the loss and accuracy which we have stored in the `training_history` and `validation_history` dictionary to see how loss and accuracy are changing with each epoch." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SptDgBR66pt4" }, "outputs": [], "source": [ "plt.plot(training_history['accuracy'],label=\"Training Accuracy\")\n", "plt.plot(validation_history['accuracy'],label=\"Validation Accuracy\")\n", "plt.xlabel('No. of Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.legend(frameon=False)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "g4iomcl36pt-" }, "outputs": [], "source": [ "plt.plot(training_history['loss'],label=\"Training Loss\")\n", "plt.plot(validation_history['loss'],label=\"Validation Loss\")\n", "plt.xlabel('No. of Epochs')\n", "plt.ylabel('Loss')\n", "plt.legend(frameon=False)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "NW9ze2HCabyp" }, "source": [ "### Loading the saved model from the disk\n", "Loading the saved pytorch model from the disk for inferencing." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SU4y96CI6puH" }, "outputs": [], "source": [ "# loading the saved model\n", "def fetch_last_checkpoint_model_filename(model_save_path):\n", " import os\n", " from pathlib import Path\n", " checkpoint_files = os.listdir(model_save_path)\n", " checkpoint_files = [f for f in checkpoint_files if '.pt' in f]\n", " checkpoint_iter = [\n", " int(x.split('_')[2].split('.')[0])\n", " for x in checkpoint_files]\n", " last_idx = np.array(checkpoint_iter).argmax()\n", " return Path(model_save_path) / checkpoint_files[last_idx]\n", "\n", "model.load_state_dict(torch.load(fetch_last_checkpoint_model_filename('./saved_models')))\n", "print(\"Model Loaded\")" ] }, { "cell_type": "markdown", "metadata": { "id": "QNRWgV0Kabys" }, "source": [ "### Inferencing the model \n", "Below code will be used for inferencing from the model and visualizing the results.\n", "\n", "Here we do iteration from the `val_loader` and then select the class with highest probability and then compare it with actul class." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uWojxHNy6puN" }, "outputs": [], "source": [ "# classes of fashion mnist dataset\n", "classes = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle Boot']\n", "# creating iterator for iterating the dataset\n", "dataiter = iter(val_loader)\n", "images, labels = dataiter.next()\n", "images_arr = []\n", "labels_arr = []\n", "pred_arr = []\n", "# moving model to cpu for inference \n", "model.to(\"cpu\")\n", "# iterating on the dataset to predict the output\n", "for i in range(0,10):\n", " images_arr.append(images[i].unsqueeze(0))\n", " labels_arr.append(labels[i].item())\n", " ps = torch.exp(model(images_arr[i]))\n", " ps = ps.data.numpy().squeeze()\n", " pred_arr.append(np.argmax(ps))\n", "# plotting the results\n", "fig = plt.figure(figsize=(25,4))\n", "for i in range(10):\n", " ax = fig.add_subplot(2, 20/2, i+1, xticks=[], yticks=[])\n", " ax.imshow(images_arr[i].resize_(1, 28, 28).numpy().squeeze())\n", " ax.set_title(\"{} ({})\".format(classes[pred_arr[i]], classes[labels_arr[i]]),\n", " color=(\"green\" if pred_arr[i]==labels_arr[i] else \"red\"))" ] }, { "cell_type": "markdown", "metadata": { "id": "cWXOEpQ4abyv" }, "source": [ "### Refrences \n", "* [Pytorch Ignite Text CNN example notebook](https://github.com/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb)\n", "* [Pytorch Ignite MNIST example](https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist.py)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "FashionMNIST.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9-final" } }, "nbformat": 4, "nbformat_minor": 0 } ignite-0.5.1/examples/notebooks/FastaiLRFinder_MNIST.ipynb000066400000000000000000000211131465426447700234500ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "5w-QlZE9mvdY" }, "source": [ "# MNIST example with 3-conv. layer network\n", "\n", "This example demonstrates the usage of `FastaiLRFinder` with a 3-conv. layer network on the MNIST dataset.\n", "\n", "## Required Dependencies\n", "\n", "We assume that `torch` and `ignite` are already installed. We can install it using pip:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "wdmoIYIvmvdp" }, "outputs": [], "source": [ "!pip install pytorch-ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "lP73mDV_nHV9" }, "source": [ "## Import libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lMphyBmmmvdw", "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torchvision.transforms as transforms\n", "from torch.utils.data import DataLoader\n", "from torchvision.datasets import MNIST" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "z0epEdj4mvds" }, "outputs": [], "source": [ "import ignite\n", "ignite.__version__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "NEl3QFzZmvd1" }, "outputs": [], "source": [ "from ignite.engine import create_supervised_trainer, create_supervised_evaluator\n", "from ignite.metrics import Loss, Accuracy\n", "from ignite.handlers import ProgressBar\n", "from ignite.handlers import FastaiLRFinder" ] }, { "cell_type": "markdown", "metadata": { "id": "L_wmAdFgmvdx" }, "source": [ "## Loading MNIST" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eZeKOgKymvdx" }, "outputs": [], "source": [ "mnist_pwd = \"data\"\n", "batch_size= 256" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Hgq0uZHAmvdy" }, "outputs": [], "source": [ "transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])\n", "\n", "trainset = MNIST(mnist_pwd, train=True, download=True, transform=transform)\n", "trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=4)\n", "\n", "testset = MNIST(mnist_pwd, train=False, download=True, transform=transform)\n", "testloader = DataLoader(testset, batch_size=batch_size * 2, shuffle=False, num_workers=0)" ] }, { "cell_type": "markdown", "metadata": { "id": "JTLEOUqtmvdy" }, "source": [ "## Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6KqS5A4Umvd0", "scrolled": true }, "outputs": [], "source": [ "class Net(nn.Module):\n", " def __init__(self):\n", " super(Net, self).__init__()\n", " self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", " self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", " self.conv2_drop = nn.Dropout2d()\n", " self.fc1 = nn.Linear(320, 50)\n", " self.fc2 = nn.Linear(50, 10)\n", "\n", " def forward(self, x):\n", " x = F.relu(F.max_pool2d(self.conv1(x), 2))\n", " x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n", " x = x.view(-1, 320)\n", " x = F.relu(self.fc1(x))\n", " x = F.dropout(x, training=self.training)\n", " x = self.fc2(x)\n", " return F.log_softmax(x, dim=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "U_EHmN2bmvd2" }, "source": [ "## Training loss (fastai)\n", "\n", "This learning rate test range follows the same procedure used by fastai. The model is trained for `num_iter` iterations while the learning rate is increased from its initial value specified by the optimizer algorithm to `end_lr`. The increase can be linear (`step_mode=\"linear\"`) or exponential (`step_mode=\"exp\"`); linear provides good results for small ranges while exponential is recommended for larger ranges." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WxaXjwDhmvd2" }, "outputs": [], "source": [ "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", "criterion = nn.NLLLoss()\n", "model = Net()\n", "model.to(device) # Move model before creating optimizer\n", "optimizer = optim.SGD(model.parameters(), lr=3e-4, momentum=0.9)\n", "\n", "# save the initial state for the model and the optimizer\n", "# to reset them later\n", "init_model_state = model.state_dict()\n", "init_opt_state = optimizer.state_dict()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CTGJPVI6mvd2" }, "outputs": [], "source": [ "trainer = create_supervised_trainer(model, optimizer, criterion, device=device)\n", "ProgressBar(persist=True).attach(trainer, output_transform=lambda x: {\"batch loss\": x})\n", "\n", "lr_finder = FastaiLRFinder()\n", "to_save={'model': model, 'optimizer': optimizer}\n", "with lr_finder.attach(trainer, to_save, diverge_th=1.5) as trainer_with_lr_finder:\n", " trainer_with_lr_finder.run(trainloader)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot the found optimal learning rate." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "oN0VkPapmvd5" }, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "ax = lr_finder.plot()\n", "plt.show()\n", "\n", "print(\"Suggested LR\", lr_finder.lr_suggestion())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Note, that model and optimizer were restored to their initial states when `FastaiLRFinder` finished.*" ] }, { "cell_type": "markdown", "metadata": { "id": "EHHNoOi8mvd6" }, "source": [ "Let's compare training results: \n", "- a) using a fixed learning rate (`lr=3e-4`)\n", "- b) with applying optimal learning rate." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# with lr=3e-4\n", "trainer.run(trainloader, max_epochs=5)\n", "\n", "evaluator = create_supervised_evaluator(model, metrics={\"acc\": Accuracy(), \"loss\": Loss(nn.NLLLoss())}, device=device)\n", "evaluator.run(testloader)\n", "\n", "print(evaluator.state.metrics)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After training we need to get the model and the optimizer back to their initial state, to do that, we will load the initial state again." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Reinit model / optimizer\n", "model.load_state_dict(init_model_state)\n", "optimizer.load_state_dict(init_opt_state)" ] }, { "cell_type": "markdown", "metadata": { "id": "NcT19wqkmvd6" }, "source": [ "Let's now apply suggested learning rate to the optimizer, and train the model again with optimal learning rate." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "lr_finder.apply_suggested_lr(optimizer)\n", "print(optimizer.param_groups[0]['lr'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "DJqgyaFnmvd7" }, "outputs": [], "source": [ "trainer.run(trainloader, max_epochs=5)\n", "\n", "evaluator.run(testloader)\n", "print(evaluator.state.metrics)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "name": "FastaiLRFinder_MNIST.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 1 } ignite-0.5.1/examples/notebooks/HandlersTimeProfiler_MNIST.ipynb000066400000000000000000000215711465426447700247450ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" }, "colab": { "name": "HandlersTimeProfiler_MNIST.ipynb", "provenance": [] }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "_1FzCFk3a1S3" }, "source": [ "# Profiling MNIST example with 3-conv. layer network\n", "\n", "This example demonstrates the usage of `HandlersTimeProfiler`. The example uses MNIST dataset." ] }, { "cell_type": "markdown", "metadata": { "id": "BniLCaIAa1S9" }, "source": [ "## Install requirements\n", "\n", "We assume that `torch` and `ignite` (nightly) are already installed. We can install it using `pip`:" ] }, { "cell_type": "code", "metadata": { "scrolled": true, "id": "52PH_jwua1S_" }, "source": [ "!pip install --upgrade --pre pytorch-ignite" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "AgTadgBza1TA" }, "source": [ "## Import libraries" ] }, { "cell_type": "code", "metadata": { "pycharm": { "is_executing": false }, "id": "Y0sJP9iFa1TB" }, "source": [ "%matplotlib inline\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "import torchvision.transforms as transforms\n", "from torch.utils.data import DataLoader\n", "from torchvision.datasets import MNIST\n", "\n", "# A hack to fix the horizontal spill in large output\n", "# ref: https://stackoverflow.com/a/59058418/6574605\n", "from IPython.core.display import HTML\n", "display(HTML(\"\"))" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "iK_9cOP6a1TI" }, "source": [ "from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n", "from ignite.metrics import Loss, Accuracy\n", "from ignite.handlers import ProgressBar, HandlersTimeProfiler" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "5gzxqMMTa1TE" }, "source": [ "## Loading MNIST" ] }, { "cell_type": "code", "metadata": { "id": "ChcbbEo_a1TF" }, "source": [ "mnist_pwd = \"data\"\n", "batch_size= 256" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "YcV6pX-7a1TG" }, "source": [ "transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])\n", "\n", "trainset = MNIST(mnist_pwd, train=True, download=True, transform=transform)\n", "trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=4)\n", "\n", "testset = MNIST(mnist_pwd, train=False, download=True, transform=transform)\n", "testloader = DataLoader(testset, batch_size=batch_size * 2, shuffle=False, num_workers=0)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "eN7ewRAza1TG" }, "source": [ "## Model" ] }, { "cell_type": "code", "metadata": { "scrolled": true, "id": "RuawaUVva1TH" }, "source": [ "class Net(nn.Module):\n", " def __init__(self):\n", " super(Net, self).__init__()\n", " self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", " self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", " self.conv2_drop = nn.Dropout2d()\n", " self.fc1 = nn.Linear(320, 50)\n", " self.fc2 = nn.Linear(50, 10)\n", "\n", " def forward(self, x):\n", " x = F.relu(F.max_pool2d(self.conv1(x), 2))\n", " x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n", " x = x.view(-1, 320)\n", " x = F.relu(self.fc1(x))\n", " x = F.dropout(x, training=self.training)\n", " x = self.fc2(x)\n", " return F.log_softmax(x, dim=1)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "0BFfdk5ka1TJ" }, "source": [ "## Training Loss" ] }, { "cell_type": "code", "metadata": { "id": "nXkNMyJua1TK" }, "source": [ "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", "criterion = nn.NLLLoss()\n", "model = Net()\n", "model.to(device) # Move model before creating optimizer\n", "optimizer = optim.SGD(model.parameters(), lr=3e-4, momentum=0.9)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "dU37erdra1TK" }, "source": [ "trainer = create_supervised_trainer(model, optimizer, criterion, device=device)\n", "evaluator = create_supervised_evaluator(model, metrics={\"acc\": Accuracy(), \"loss\": Loss(nn.NLLLoss())}, device=device)\n", "\n", "# Attach handlers profiler\n", "profiler = HandlersTimeProfiler()\n", "profiler.attach(trainer)\n", "\n", "# Init and attach progressbar\n", "pbar = ProgressBar(persist=True)\n", "pbar.attach(trainer, metric_names=\"all\")\n", "\n", "# Evaluate on each epoch using event handler\n", "@trainer.on(Events.EPOCH_COMPLETED)\n", "def log_validation_results(engine):\n", " evaluator.run(testloader)\n", " metrics = evaluator.state.metrics\n", " avg_accuracy = metrics[\"acc\"]\n", " avg_nll = metrics[\"loss\"]\n", " pbar.log_message(\n", " \"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}\".format(\n", " engine.state.epoch, avg_accuracy, avg_nll\n", " )\n", " )\n", "\n", " pbar.n = pbar.last_print_n = 0\n", "\n", "trainer.run(trainloader, max_epochs=10)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "T_AIlhvqa1TK" }, "source": [ "We can see the summary of the profiling results from our run using the `get_results()` method of the profiler as shown below. The output shows total, average and other details of execution time for each handler attached." ] }, { "cell_type": "code", "metadata": { "id": "S8J8iWyUa1TL" }, "source": [ "profiler.print_results(profiler.get_results())" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "F0yJpyC7a1TM" }, "source": [ "Profiling results can be exported to a CSV file by using the `write_results()` method of profiler." ] }, { "cell_type": "code", "metadata": { "id": "_6a0t-Xha1TM" }, "source": [ "profiler.write_results(\"./results.csv\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "-hG8hYQba1TM" }, "source": [ "Following code shows the preview of few rows of the CSV. Each handler has its separate column and the numbers of rows for each column will be equal to the number of times the handler invoked." ] }, { "cell_type": "code", "metadata": { "id": "9SraFwsDa1TM" }, "source": [ "import pandas as pd" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "f4ZiVInXa1TO" }, "source": [ "results = pd.read_csv(\"./results.csv\")\n", "results.head()" ], "execution_count": null, "outputs": [] } ] }ignite-0.5.1/examples/notebooks/MNIST_on_TPU.ipynb000066400000000000000000000324231465426447700220250ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "MNIST_on_TPU.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "accelerator": "TPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "ECija61OXJT4" }, "source": [ "## Getting Started with PyTorch-Ignite on Cloud TPUs\n", "\n", "This notebook is based on [\"Getting Started with PyTorch on Cloud TPUs\"](https://colab.research.google.com/github/pytorch/xla/blob/master/contrib/colab/getting-started.ipynb#scrollTo=RKLajLqUni6H) and will show you how to:\n", "\n", "- Install PyTorch/XLA on Colab, which lets you use PyTorch with TPUs.\n", "- Train a basic model on MNIST with PyTorch-Ignite.\n", "\n", "PyTorch/XLA is a package that lets PyTorch connect to Cloud TPUs and use TPU cores as devices. Colab provides a free Cloud TPU system (a remote CPU host + four TPU chips with two cores each) and installing PyTorch/XLA only takes a couple minutes.\n", "\n", "\n", "

  Use Colab Cloud TPU  

\n", "\n", "* On the main menu, click Runtime and select **Change runtime type**. Set \"TPU\" as the hardware accelerator.\n", "* The cell below makes sure you have access to a TPU on Colab.\n" ] }, { "cell_type": "code", "metadata": { "id": "0nIBhUekU593" }, "source": [ "import os\n", "assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator'" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "v-_pVHuPW_zn" }, "source": [ "## Installing PyTorch/XLA\n", "\n", "Run the following cell (or copy it into your own notebook!) to install PyTorch, Torchvision, and PyTorch/XLA. It will take a couple minutes to run.\n", "\n", "The PyTorch/XLA package lets PyTorch connect to Cloud TPUs. (It's named PyTorch/XLA, not PyTorch/TPU, because XLA is the name of the TPU compiler.) In particular, PyTorch/XLA makes TPU cores available as PyTorch devices. This lets PyTorch create and manipulate tensors on TPUs." ] }, { "cell_type": "code", "metadata": { "id": "4mnaxX3eXNGd" }, "source": [ "VERSION = !curl -s https://api.github.com/repos/pytorch/xla/releases/latest | grep -Po '\"tag_name\": \"v\\K.*?(?=\")'\n", "VERSION = VERSION[0].rstrip('0').rstrip('.') # remove trailing zero\n", "!pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-{VERSION}-cp37-cp37m-linux_x86_64.whl" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "iKFb5vdtgODx" }, "source": [ "## Required Dependencies\n", "\n", "We assume that `torch` and `ignite` are already installed. We can install it using `pip`:" ] }, { "cell_type": "code", "metadata": { "id": "6bsFP_2vcTlP" }, "source": [ "!pip install pytorch-ignite" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "CHYlKKHUaoOm" }, "source": [ "## Train a basic model on MNIST with PyTorch-Ignite." ] }, { "cell_type": "markdown", "metadata": { "id": "0ki0DNMKaN9S" }, "source": [ "PyTorch XLA API is so simple as PyTorch uses Cloud TPUs just like it uses CPU or CUDA devices. With only minor changes we can train models with PyTorch and Ignite. We will use the code of this example : https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_tensorboard_on_tpu.py\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Gn4XhksofbPd" }, "source": [ "### Import librairies" ] }, { "cell_type": "code", "metadata": { "id": "EFAJ65OmZPjK" }, "source": [ "import torch\n", "print(\"PyTorch version:\", torch.__version__)\n", "\n", "# imports the torch_xla package\n", "import torch_xla\n", "import torch_xla.core.xla_model as xm\n", "print(\"PyTorch xla version:\", torch_xla.__version__)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "KW4s6SiOVEwF" }, "source": [ "# Import PyTorch, Torchvision and Tensorboard\n", "from torch.utils.data import DataLoader\n", "from torch import nn\n", "import torch.nn.functional as F\n", "from torch.optim import SGD\n", "from torchvision.datasets import MNIST\n", "from torchvision.transforms import Compose, ToTensor, Normalize\n", "\n", "from torch.utils.tensorboard import SummaryWriter\n", "\n", "# Import PyTorch-Ignite\n", "from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator\n", "from ignite.metrics import Accuracy, Loss, RunningAverage\n", "from ignite.handlers import ProgressBar" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ksx7UGGZhHGD" }, "source": [ "### Data processing" ] }, { "cell_type": "code", "metadata": { "id": "QnT6QuTkhC2d" }, "source": [ "# Dataloaders\n", "def get_data_loaders(train_batch_size, val_batch_size):\n", " data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])\n", "\n", " train_loader = DataLoader(\n", " MNIST(download=True, root=\".\", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True\n", " )\n", "\n", " val_loader = DataLoader(\n", " MNIST(download=False, root=\".\", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False\n", " )\n", " return train_loader, val_loader" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "EG9C4-yShJ5o" }, "source": [ "train_batch_size = 64\n", "val_batch_size = train_batch_size * 2\n", "\n", "train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "hUSL88A5giaO" }, "source": [ "### Create a model" ] }, { "cell_type": "code", "metadata": { "id": "Biefe9RaZb7_" }, "source": [ "# Setup a basic CNN\n", "class Net(nn.Module):\n", " def __init__(self):\n", " super(Net, self).__init__()\n", " self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", " self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", " self.conv2_drop = nn.Dropout2d()\n", " self.fc1 = nn.Linear(320, 50)\n", " self.fc2 = nn.Linear(50, 10)\n", "\n", " def forward(self, x):\n", " x = F.relu(F.max_pool2d(self.conv1(x), 2))\n", " x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n", " x = x.view(-1, 320)\n", " x = F.relu(self.fc1(x))\n", " x = F.dropout(x, training=self.training)\n", " x = self.fc2(x)\n", " return F.log_softmax(x, dim=-1)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "2eN7bb8yhQbK" }, "source": [ "model = Net()\n", "device = xm.xla_device()\n", "model = model.to(device) # Move model before creating optimizer" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "egKdsX-mhZ1h" }, "source": [ "### Optimizer and trainers" ] }, { "cell_type": "code", "metadata": { "id": "JvCwVzkDeWVG" }, "source": [ "optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)\n", "\n", "# Create trainer and evaluator\n", "trainer = create_supervised_trainer(\n", " model, \n", " optimizer, \n", " F.nll_loss, \n", " device=device, \n", " output_transform=lambda x, y, y_pred, loss: [loss.item(), ]\n", ")\n", "\n", "evaluator = create_supervised_evaluator(\n", " model, metrics={\"accuracy\": Accuracy(), \"nll\": Loss(F.nll_loss)}, device=device\n", ")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "clTM9TrThd7L" }, "source": [ "### Handlers" ] }, { "cell_type": "code", "metadata": { "id": "X8hiRkm2cr8m" }, "source": [ "# Setup event's handlers\n", "log_interval = 10\n", "\n", "log_dir = \"/tmp/tb_logs\"\n", "\n", "# writer\n", "writer = SummaryWriter(log_dir=log_dir)\n", "\n", "tracker = xm.RateTracker()\n", "\n", "# Add RateTracker as an output of the training step\n", "@trainer.on(Events.ITERATION_COMPLETED)\n", "def add_rate_tracker(engine):\n", " tracker.add(len(engine.state.batch))\n", " engine.state.output.append(tracker.global_rate())\n", "\n", "# Setup output values of the training step as EMA metrics\n", "RunningAverage(output_transform=lambda x: x[0]).attach(trainer, \"batch_loss\")\n", "RunningAverage(output_transform=lambda x: x[1]).attach(trainer, \"global_rate\")\n", "\n", "# Let's log the EMA metrics every `log_interval` iterations\n", "@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))\n", "def log_training_loss(engine):\n", " writer.add_scalar(\"training/batch_loss\", engine.state.metrics[\"batch_loss\"], engine.state.iteration)\n", " writer.add_scalar(\"training/global_rate\", engine.state.metrics[\"global_rate\"], engine.state.iteration)\n", "\n", "# Setup a progress bar (tqdm) and display batch loss metric in the bar\n", "pbar = ProgressBar()\n", "pbar.attach(trainer, [\"batch_loss\", \"global_rate\"])\n", "\n", "# Let's compute training metrics: average accuracy and loss\n", "@trainer.on(Events.EPOCH_COMPLETED)\n", "def log_training_results(engine):\n", " evaluator.run(train_loader)\n", " metrics = evaluator.state.metrics\n", " avg_accuracy = metrics[\"accuracy\"]\n", " avg_nll = metrics[\"nll\"]\n", " pbar.log_message(\n", " f\"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}\"\n", " )\n", " writer.add_scalar(\"training/avg_loss\", avg_nll, engine.state.epoch)\n", " writer.add_scalar(\"training/avg_accuracy\", avg_accuracy, engine.state.epoch)\n", "\n", "# Let's compute training metrics: average accuracy and loss\n", "@trainer.on(Events.EPOCH_COMPLETED)\n", "def log_validation_results(engine):\n", " evaluator.run(val_loader)\n", " metrics = evaluator.state.metrics\n", " avg_accuracy = metrics[\"accuracy\"]\n", " avg_nll = metrics[\"nll\"]\n", " print(\n", " f\"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}\"\n", " )\n", " writer.add_scalar(\"valdation/avg_loss\", avg_nll, engine.state.epoch)\n", " writer.add_scalar(\"valdation/avg_accuracy\", avg_accuracy, engine.state.epoch)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "IxFocNa7hnhy" }, "source": [ "# Display in Firefox may not work properly. Use Chrome.\n", "%load_ext tensorboard\n", "\n", "%tensorboard --logdir=\"/tmp/tb_logs\"" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "qbC-Th_JcsS1" }, "source": [ "# kick everything off\n", "!rm -rf /tmp/tb_logs/*\n", "\n", "trainer.run(train_loader, max_epochs=10)" ], "execution_count": null, "outputs": [] } ] } ignite-0.5.1/examples/notebooks/TextCNN.ipynb000066400000000000000000001022241465426447700211670ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "RfRKTxQO51bK" }, "source": [ "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "id": "HCS-d1T3znj2" }, "source": [ "# Convolutional Neural Networks for Sentence Classification using Ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "rjZMYxFoznj9" }, "source": [ "This is a tutorial on using Ignite to train neural network models, set up experiments and validate models.\n", "\n", "In this experiment, we'll be replicating [\n", "Convolutional Neural Networks for Sentence Classification by Yoon Kim](https://arxiv.org/abs/1408.5882)! This paper uses CNN for text classification, a task typically reserved for RNNs, Logistic Regression, Naive Bayes.\n", "\n", "We want to be able to classify IMDB movie reviews and predict whether the review is positive or negative. IMDB Movie Review dataset comprises of 25000 positive and 25000 negative examples. The dataset comprises of text and label pairs. This is binary classification problem. We'll be using PyTorch to create the model, torchtext to import data and Ignite to train and monitor the models!\n", "\n", "Lets get started! " ] }, { "cell_type": "markdown", "metadata": { "id": "sovYyC0Zznj-" }, "source": [ "## Required Dependencies \n", "\n", "In this example we only need `torchtext` and `spacy` package, assuming that `torch` and `ignite` are already installed. We can install it using `pip`:\n", "\n", "`pip install torchtext==0.9.1 spacy`\n", "\n", "`python -m spacy download en_core_web_sm`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7XHAD9x7znj_" }, "outputs": [], "source": [ "!pip install pytorch-ignite torchtext==0.9.1 spacy\n", "!python -m spacy download en_core_web_sm" ] }, { "cell_type": "markdown", "metadata": { "id": "lZty7-RWznkA" }, "source": [ "## Import Libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "VKTazeAkznkB" }, "outputs": [], "source": [ "import random" ] }, { "cell_type": "markdown", "metadata": { "id": "wxThg0YTznkD" }, "source": [ "`torchtext` is a library that provides multiple datasets for NLP tasks, similar to `torchvision`. Below we import the following:\n", "* **datasets**: A module to download NLP datasets.\n", "* **GloVe**: A module to download and use pretrained GloVe embedings." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XrXE-f7jznkD" }, "outputs": [], "source": [ "from torchtext import datasets\n", "from torchtext.vocab import GloVe" ] }, { "cell_type": "markdown", "metadata": { "id": "ivAnTyEfznkE" }, "source": [ "We import torch, nn and functional modules to create our models! " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gbEFAWr0znkE" }, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F" ] }, { "cell_type": "markdown", "metadata": { "id": "Q22BGKi8znkF" }, "source": [ "`Ignite` is a High-level library to help with training neural networks in PyTorch. It comes with an `Engine` to set up a training loop, various metrics, handlers and a helpful contrib section! \n", "\n", "Below we import the following:\n", "* **Engine**: Runs a given process_function over each batch of a dataset, emitting events as it goes.\n", "* **Events**: Allows users to attach functions to an `Engine` to fire functions at a specific event. Eg: `EPOCH_COMPLETED`, `ITERATION_STARTED`, etc.\n", "* **Accuracy**: Metric to calculate accuracy over a dataset, for binary, multiclass, multilabel cases. \n", "* **Loss**: General metric that takes a loss function as a parameter, calculate loss over a dataset.\n", "* **RunningAverage**: General metric to attach to Engine during training. \n", "* **ModelCheckpoint**: Handler to checkpoint models. \n", "* **EarlyStopping**: Handler to stop training based on a score function. \n", "* **ProgressBar**: Handler to create a tqdm progress bar." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "enczLgLTznkH" }, "outputs": [], "source": [ "from ignite.engine import Engine, Events\n", "from ignite.metrics import Accuracy, Loss, RunningAverage\n", "from ignite.handlers import ModelCheckpoint, EarlyStopping\n", "from ignite.handlers import ProgressBar\n", "from ignite.utils import manual_seed\n", "\n", "SEED = 1234\n", "manual_seed(SEED)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-39hgxiUMCq9" }, "outputs": [], "source": [ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')" ] }, { "cell_type": "markdown", "metadata": { "id": "WZYyXYB5znkH" }, "source": [ "## Processing Data" ] }, { "cell_type": "markdown", "metadata": { "id": "irv_ebeDb8yV" }, "source": [ "We first set up a tokenizer using `torchtext.data.utils`.\n", "The job of a tokenizer to split a sentence into \"tokens\". You can read more about it at [wikipedia](https://en.wikipedia.org/wiki/Lexical_analysis).\n", "We will use the tokenizer from the \"spacy\" library which is a popular choice. Feel free to switch to \"basic_english\" if you want to use the default one or any other that you want.\n", "\n", "docs: https://pytorch.org/text/stable/data_utils.html" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "YNRd5Z_KMANB" }, "outputs": [], "source": [ "from torchtext.data.utils import get_tokenizer\n", "tokenizer = get_tokenizer(\"spacy\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZknfGdqedSjN" }, "outputs": [], "source": [ "tokenizer(\"Ignite is a high-level library for training and evaluating neural networks.\")" ] }, { "cell_type": "markdown", "metadata": { "id": "ZvAmyqHygcZg" }, "source": [ "Next, the IMDB training and test datasets are downloaded. The `torchtext.datasets` API returns the train/test dataset split directly without the preprocessing information. Each split is an iterator which yields the raw texts and labels line-by-line." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "E_jNgWXHhMBQ" }, "outputs": [], "source": [ "train_iter, test_iter = datasets.IMDB(split=('train','test'))" ] }, { "cell_type": "markdown", "metadata": { "id": "xNKvG9b7jadd" }, "source": [ "Now we set up the train, validation and test splits. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "VzJG7Uh_L9q-" }, "outputs": [], "source": [ "# We are using only 1000 samples for faster training\n", "# set to -1 to use full data\n", "N = 1000 \n", "\n", "# We will use 80% of the `train split` for training and the rest for validation\n", "train_frac = 0.8\n", "_temp = list(train_iter)\n", "\n", "\n", "random.shuffle(_temp)\n", "_temp = _temp[:(N if N > 0 else len(_temp) )]\n", "n_train = int(len(_temp)*train_frac)\n", "\n", "train_list = _temp[:n_train]\n", "validation_list = _temp[n_train:]\n", "test_list = list(test_iter)\n", "test_list = test_list[:(N if N > 0 else len(test_list))]" ] }, { "cell_type": "markdown", "metadata": { "id": "X-qYvdeplMIs" }, "source": [ "Let's explore a data sample to see what it looks like.\n", "Each data sample is a tuple of the format `(label, text)`.\n", "\n", "The value of label is either 'pos' or 'neg'.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qrlLB7PxkIW_" }, "outputs": [], "source": [ "random_sample = random.sample(train_list,1)[0]\n", "print(' text:', random_sample[1])\n", "print('label:', random_sample[0])" ] }, { "cell_type": "markdown", "metadata": { "id": "mN5cHrazmMDG" }, "source": [ "Now that we have the datasets splits, let's build our vocabulary. For this, we will use the `Vocab` class from `torchtext.vocab`. It is important that we build our vocabulary based on the train dataset as validation and test are **unseen** in our experimenting. \n", "\n", "`Vocab` allows us to use pretrained **GloVE** 100 dimensional word vectors. This means each word is described by 100 floats! If you want to read more about this, here are a few resources.\n", "* [StanfordNLP - GloVe](https://github.com/stanfordnlp/GloVe)\n", "* [DeepLearning.ai Lecture](https://www.coursera.org/lecture/nlp-sequence-models/glove-word-vectors-IxDTG)\n", "* [Stanford CS224N Lecture by Richard Socher](https://www.youtube.com/watch?v=ASn7ExxLZws)\n", "\n", "Note than the GloVE download size is around 900MB, so it might take some time to download. \n", "\n", "An instance of the `Vocab` class has the following attributes:\n", "* `extend` is used to extend the vocabulary\n", "* `freqs` is a dictionary of the frequency of each word\n", "* `itos` is a list of all the words in the vocabulary.\n", "* `stoi` is a dictionary mapping every word to an index.\n", "* `vectors` is a torch.Tensor of the downloaded embeddings\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "T_ukillQMKsh" }, "outputs": [], "source": [ "from collections import Counter\n", "from torchtext.vocab import Vocab\n", "\n", "counter = Counter()\n", "\n", "for (label, line) in train_list:\n", " counter.update(tokenizer(line))\n", "\n", "vocab = Vocab(\n", " counter,\n", " min_freq=10,\n", " vectors=GloVe(name='6B', dim=100, cache='/tmp/glove/')\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "VYYGwfYsM2Pr" }, "outputs": [], "source": [ "print(\"The length of the new vocab is\", len(vocab))\n", "new_stoi = vocab.stoi\n", "print(\"The index of '' is\", new_stoi[''])\n", "new_itos = vocab.itos\n", "print(\"The token at index 2 is\", new_itos[2])" ] }, { "cell_type": "markdown", "metadata": { "id": "4Y72cqB6Qhqt" }, "source": [ "We now create `text_transform` and `label_transform`, which are callable objects, such as a `lambda` func here, to process the raw text and label data from the dataset iterators (or iterables like a `list`). You can add the special symbols such as `` and `` to the sentence in `text_transform`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "z_9hw21lP1nG" }, "outputs": [], "source": [ "text_transform = lambda x: [vocab[token] for token in tokenizer(x)]\n", "label_transform = lambda x: 1 if x == 'pos' else 0\n", "\n", "# Print out the output of text_transform\n", "print(\"input to the text_transform:\", \"here is an example\")\n", "print(\"output of the text_transform:\", text_transform(\"here is an example\"))" ] }, { "cell_type": "markdown", "metadata": { "id": "xtZSEqjJQPxM" }, "source": [ "For generating the data batches we will use `torch.utils.data.DataLoader`. You could customize the data batch by defining a function with the `collate_fn` argument in the DataLoader. Here, in the `collate_batch` func, we process the raw text data and add padding to dynamically match the longest sentence in a batch." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "NHHIEfpRP4TV" }, "outputs": [], "source": [ "from torch.utils.data import DataLoader\n", "from torch.nn.utils.rnn import pad_sequence\n", "\n", "def collate_batch(batch):\n", " label_list, text_list = [], []\n", " for (_label, _text) in batch:\n", " label_list.append(label_transform(_label))\n", " processed_text = torch.tensor(text_transform(_text))\n", " text_list.append(processed_text)\n", " return torch.tensor(label_list), pad_sequence(text_list, padding_value=3.0)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3IQd3EVbQvTo" }, "outputs": [], "source": [ "batch_size = 8 # A batch size of 8\n", "\n", "def create_iterators(batch_size=8):\n", " \"\"\"Heler function to create the iterators\"\"\"\n", " dataloaders = []\n", " for split in [train_list, validation_list, test_list]:\n", " dataloader = DataLoader(\n", " split, batch_size=batch_size,\n", " collate_fn=collate_batch\n", " )\n", " dataloaders.append(dataloader)\n", " return dataloaders\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CudYIZitUNgx" }, "outputs": [], "source": [ "train_iterator, valid_iterator, test_iterator = create_iterators()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "787zNPm6RtKE" }, "outputs": [], "source": [ "next(iter(train_iterator))" ] }, { "cell_type": "markdown", "metadata": { "id": "d2azJGL6znkM" }, "source": [ "Let's actually explore what the output of the iterator is, this way we'll know what the input of the model is, how to compare the label to the output and how to set up our process_functions for Ignite's `Engine`.\n", "* `batch[0][0]` is the label of a single example. We can see that `vocab.stoi` was used to map the label that originally text into a float.\n", "* `batch[1][0]` is the text of a single example. Similar to label, `vocab.stoi` was used to convert each token of the example's text into indices.\n", "\n", "Now let's print the lengths of the sentences of the first 10 batches of `train_iterator`. We see here that all the batches are of different lengths, this means that the iterator is working as expected." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Ga2xDXfyznkN" }, "outputs": [], "source": [ "batch = next(iter(train_iterator))\n", "print('batch[0][0] : ', batch[0][0])\n", "print('batch[1][0] : ', batch[1][[0] != 1])\n", "\n", "lengths = []\n", "for i, batch in enumerate(train_iterator):\n", " x = batch[1]\n", " lengths.append(x.shape[0])\n", " if i == 10:\n", " break\n", "\n", "print ('Lengths of first 10 batches : ', lengths)" ] }, { "cell_type": "markdown", "metadata": { "id": "KsUrKRr3znkO" }, "source": [ "## TextCNN Model" ] }, { "cell_type": "markdown", "metadata": { "id": "pldMpTv-znkO" }, "source": [ "Here is the replication of the model, here are the operations of the model:\n", "* **Embedding**: Embeds a batch of text of shape (N, L) to (N, L, D), where N is batch size, L is maximum length of the batch, D is the embedding dimension. \n", "\n", "* **Convolutions**: Runs parallel convolutions across the embedded words with kernel sizes of 3, 4, 5 to mimic trigrams, four-grams, five-grams. This results in outputs of (N, L - k + 1, D) per convolution, where k is the kernel_size. \n", "\n", "* **Activation**: ReLu activation is applied to each convolution operation.\n", "\n", "* **Pooling**: Runs parallel maxpooling operations on the activated convolutions with window sizes of L - k + 1, resulting in 1 value per channel i.e. a shape of (N, 1, D) per pooling. \n", "\n", "* **Concat**: The pooling outputs are concatenated and squeezed to result in a shape of (N, 3D). This is a single embedding for a sentence.\n", "\n", "* **Dropout**: Dropout is applied to the embedded sentence. \n", "\n", "* **Fully Connected**: The dropout output is passed through a fully connected layer of shape (3D, 1) to give a single output for each example in the batch. sigmoid is applied to the output of this layer.\n", "\n", "* **load_embeddings**: This is a method defined for TextCNN to load embeddings based on user input. There are 3 modes - rand which results in randomly initialized weights, static which results in frozen pretrained weights, nonstatic which results in trainable pretrained weights. \n", "\n", "\n", "Let's note that this model works for variable text lengths! The idea to embed the words of a sentence, use convolutions, maxpooling and concantenation to embed the sentence as a single vector! This single vector is passed through a fully connected layer with sigmoid to output a single value. This value can be interpreted as the probability a sentence is positive (closer to 1) or negative (closer to 0).\n", "\n", "The minimum length of text expected by the model is the size of the smallest kernel size of the model." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "63z1tffDznkO" }, "outputs": [], "source": [ "class TextCNN(nn.Module):\n", " def __init__(\n", " self,\n", " vocab_size,\n", " embedding_dim, \n", " kernel_sizes, \n", " num_filters, \n", " num_classes, d_prob, mode):\n", " super(TextCNN, self).__init__()\n", " self.vocab_size = vocab_size\n", " self.embedding_dim = embedding_dim\n", " self.kernel_sizes = kernel_sizes\n", " self.num_filters = num_filters\n", " self.num_classes = num_classes\n", " self.d_prob = d_prob\n", " self.mode = mode\n", " self.embedding = nn.Embedding(\n", " vocab_size, embedding_dim, padding_idx=0)\n", " self.load_embeddings()\n", " self.conv = nn.ModuleList([nn.Conv1d(in_channels=embedding_dim,\n", " out_channels=num_filters,\n", " kernel_size=k, stride=1) for k in kernel_sizes])\n", " self.dropout = nn.Dropout(d_prob)\n", " self.fc = nn.Linear(len(kernel_sizes) * num_filters, num_classes)\n", "\n", " def forward(self, x):\n", " batch_size, sequence_length = x.shape\n", " x = self.embedding(x.T).transpose(1, 2)\n", " x = [F.relu(conv(x)) for conv in self.conv]\n", " x = [F.max_pool1d(c, c.size(-1)).squeeze(dim=-1) for c in x]\n", " x = torch.cat(x, dim=1)\n", " x = self.fc(self.dropout(x))\n", " return torch.sigmoid(x).squeeze()\n", "\n", " def load_embeddings(self):\n", " if 'static' in self.mode:\n", " self.embedding.weight.data.copy_(vocab.vectors)\n", " if 'non' not in self.mode:\n", " self.embedding.weight.data.requires_grad = False\n", " print('Loaded pretrained embeddings, weights are not trainable.')\n", " else:\n", " self.embedding.weight.data.requires_grad = True\n", " print('Loaded pretrained embeddings, weights are trainable.')\n", " elif self.mode == 'rand':\n", " print('Randomly initialized embeddings are used.')\n", " else:\n", " raise ValueError('Unexpected value of mode. Please choose from static, nonstatic, rand.')" ] }, { "cell_type": "markdown", "metadata": { "id": "6G3TW4c-znkO" }, "source": [ "## Creating Model, Optimizer and Loss" ] }, { "cell_type": "markdown", "metadata": { "id": "D7nH55oXznkP" }, "source": [ "Below we create an instance of the TextCNN model and load embeddings in **static** mode. The model is placed on a device and then a loss function of Binary Cross Entropy and Adam optimizer are set up. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HM_7LQE3znkP" }, "outputs": [], "source": [ "vocab_size, embedding_dim = vocab.vectors.shape\n", "\n", "model = TextCNN(vocab_size=vocab_size,\n", " embedding_dim=embedding_dim,\n", " kernel_sizes=[3, 4, 5],\n", " num_filters=100,\n", " num_classes=1, \n", " d_prob=0.5,\n", " mode='static')\n", "model.to(device)\n", "optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-3)\n", "criterion = nn.BCELoss()" ] }, { "cell_type": "markdown", "metadata": { "id": "xjxbAwvIznkP" }, "source": [ "## Training and Evaluating using Ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "L8Rl7spqznkQ" }, "source": [ "### Trainer Engine - process_function\n", "\n", "Ignite's Engine allows user to define a process_function to process a given batch, this is applied to all the batches of the dataset. This is a general class that can be applied to train and validate models! A process_function has two parameters engine and batch. \n", "\n", "\n", "Let's walk through what the function of the trainer does:\n", "\n", "* Sets model in train mode. \n", "* Sets the gradients of the optimizer to zero.\n", "* Generate x and y from batch.\n", "* Performs a forward pass to calculate y_pred using model and x.\n", "* Calculates loss using y_pred and y.\n", "* Performs a backward pass using loss to calculate gradients for the model parameters.\n", "* model parameters are optimized using gradients and optimizer.\n", "* Returns scalar loss. \n", "\n", "Below is a single operation during the trainig process. This process_function will be attached to the training engine." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Q4ncIcYcznkQ" }, "outputs": [], "source": [ "def process_function(engine, batch):\n", " model.train()\n", " optimizer.zero_grad()\n", " y, x = batch\n", " x = x.to(device)\n", " y = y.to(device)\n", " y_pred = model(x)\n", " loss = criterion(y_pred, y.float())\n", " loss.backward()\n", " optimizer.step()\n", " return loss.item()" ] }, { "cell_type": "markdown", "metadata": { "id": "HiiQr_GYznkQ" }, "source": [ "### Evaluator Engine - process_function\n", "\n", "Similar to the training process function, we set up a function to evaluate a single batch. Here is what the eval_function does:\n", "\n", "* Sets model in eval mode.\n", "* With torch.no_grad(), no gradients are calculated for any succeding steps.\n", "* Generates x and y from batch.\n", "* Performs a forward pass on the model to calculate y_pred based on model and x.\n", "* Returns y_pred and y.\n", "\n", "Ignite suggests attaching metrics to evaluators and not trainers because during the training the model parameters are constantly changing and it is best to evaluate model on a stationary model. This information is important as there is a difference in the functions for training and evaluating. Training returns a single scalar loss. Evaluating returns y_pred and y as that output is used to calculate metrics per batch for the entire dataset.\n", "\n", "All metrics in Ignite require y_pred and y as outputs of the function attached to the Engine. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "b9-G-9iVznkR" }, "outputs": [], "source": [ "def eval_function(engine, batch):\n", " model.eval()\n", " with torch.no_grad():\n", " y, x = batch\n", " y = y.to(device)\n", " x = x.to(device)\n", " y = y.float()\n", " y_pred = model(x)\n", " return y_pred, y" ] }, { "cell_type": "markdown", "metadata": { "id": "dcmIEZuNznkS" }, "source": [ "### Instantiating Training and Evaluating Engines\n", "\n", "Below we create 3 engines, a trainer, a training evaluator and a validation evaluator. You'll notice that train_evaluator and validation_evaluator use the same function, we'll see later why this was done! " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "k1CxFQs_znkS" }, "outputs": [], "source": [ "trainer = Engine(process_function)\n", "train_evaluator = Engine(eval_function)\n", "validation_evaluator = Engine(eval_function)" ] }, { "cell_type": "markdown", "metadata": { "id": "ZVu91uVtznkS" }, "source": [ "### Metrics - RunningAverage, Accuracy and Loss\n", "\n", "To start, we'll attach a metric of Running Average to track a running average of the scalar loss output for each batch. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "P-98lPU9znkS" }, "outputs": [], "source": [ "RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')" ] }, { "cell_type": "markdown", "metadata": { "id": "Mufkp6mnznkS" }, "source": [ "Now there are two metrics that we want to use for evaluation - accuracy and loss. This is a binary problem, so for Loss we can simply pass the Binary Cross Entropy function as the loss_function. \n", "\n", "For Accuracy, Ignite requires y_pred and y to be comprised of 0's and 1's only. Since our model outputs from a sigmoid layer, values are between 0 and 1. We'll need to write a function that transforms `engine.state.output` which is comprised of y_pred and y. \n", "\n", "Below `thresholded_output_transform` does just that, it rounds y_pred to convert y_pred to 0's and 1's, and then returns rounded y_pred and y. This function is the output_transform function used to transform the `engine.state.output` to achieve `Accuracy`'s desired purpose.\n", "\n", "Now, we attach `Loss` and `Accuracy` (with `thresholded_output_transform`) to train_evaluator and validation_evaluator. \n", "\n", "To attach a metric to engine, the following format is used:\n", "* `Metric(output_transform=output_transform, ...).attach(engine, 'metric_name')`\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "KAK6nXEbznkS" }, "outputs": [], "source": [ "def thresholded_output_transform(output):\n", " y_pred, y = output\n", " y_pred = torch.round(y_pred)\n", " return y_pred, y" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QkcC2R4qznkT" }, "outputs": [], "source": [ "Accuracy(output_transform=thresholded_output_transform).attach(train_evaluator, 'accuracy')\n", "Loss(criterion).attach(train_evaluator, 'bce')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tLtT5f11znkT" }, "outputs": [], "source": [ "Accuracy(output_transform=thresholded_output_transform).attach(validation_evaluator, 'accuracy')\n", "Loss(criterion).attach(validation_evaluator, 'bce')" ] }, { "cell_type": "markdown", "metadata": { "id": "FbS2h_2eznkU" }, "source": [ "### Progress Bar\n", "\n", "Next we create an instance of Ignite's progess bar and attach it to the trainer and pass it a key of `engine.state.metrics` to track. In this case, the progress bar will be tracking `engine.state.metrics['loss']`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qteztuB3znkU" }, "outputs": [], "source": [ "pbar = ProgressBar(persist=True, bar_format=\"\")\n", "pbar.attach(trainer, ['loss'])" ] }, { "cell_type": "markdown", "metadata": { "id": "x4DxUwXfznkU" }, "source": [ "### EarlyStopping - Tracking Validation Loss\n", "\n", "Now we'll set up a Early Stopping handler for this training process. EarlyStopping requires a score_function that allows the user to define whatever criteria to stop training. In this case, if the loss of the validation set does not decrease in 5 epochs, the training process will stop early. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "wPM6-USgznkU" }, "outputs": [], "source": [ "def score_function(engine):\n", " val_loss = engine.state.metrics['bce']\n", " return -val_loss\n", "\n", "handler = EarlyStopping(patience=5, score_function=score_function, trainer=trainer)\n", "validation_evaluator.add_event_handler(Events.COMPLETED, handler)" ] }, { "cell_type": "markdown", "metadata": { "id": "LfeL6EkhznkU" }, "source": [ "### Attaching Custom Functions to Engine at specific Events\n", "\n", "Below you'll see ways to define your own custom functions and attaching them to various `Events` of the training process.\n", "\n", "The functions below both achieve similar tasks, they print the results of the evaluator run on a dataset. One function does that on the training evaluator and dataset, while the other on the validation. Another difference is how these functions are attached in the trainer engine.\n", "\n", "The first method involves using a decorator, the syntax is simple - `@` `trainer.on(Events.EPOCH_COMPLETED)`, means that the decorated function will be attached to the trainer and called at the end of each epoch. \n", "\n", "The second method involves using the add_event_handler method of trainer - `trainer.add_event_handler(Events.EPOCH_COMPLETED, custom_function)`. This achieves the same result as the above. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3XsmcAA2znkV" }, "outputs": [], "source": [ "@trainer.on(Events.EPOCH_COMPLETED)\n", "def log_training_results(engine):\n", " train_evaluator.run(train_iterator)\n", " metrics = train_evaluator.state.metrics\n", " avg_accuracy = metrics['accuracy']\n", " avg_bce = metrics['bce']\n", " pbar.log_message(\n", " \"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}\"\n", " .format(engine.state.epoch, avg_accuracy, avg_bce))\n", " \n", "def log_validation_results(engine):\n", " validation_evaluator.run(valid_iterator)\n", " metrics = validation_evaluator.state.metrics\n", " avg_accuracy = metrics['accuracy']\n", " avg_bce = metrics['bce']\n", " pbar.log_message(\n", " \"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}\"\n", " .format(engine.state.epoch, avg_accuracy, avg_bce))\n", " pbar.n = pbar.last_print_n = 0\n", "\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, log_validation_results)" ] }, { "cell_type": "markdown", "metadata": { "id": "IAQEr88cznkW" }, "source": [ "### ModelCheckpoint\n", "\n", "Lastly, we want to checkpoint this model. It's important to do so, as training processes can be time consuming and if for some reason something goes wrong during training, a model checkpoint can be helpful to restart training from the point of failure.\n", "\n", "Below we'll use Ignite's `ModelCheckpoint` handler to checkpoint models at the end of each epoch. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9Gl6WT0YznkW" }, "outputs": [], "source": [ "checkpointer = ModelCheckpoint('/tmp/models', 'textcnn', n_saved=2, create_dir=True, save_as_state_dict=True)\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpointer, {'textcnn': model})" ] }, { "cell_type": "markdown", "metadata": { "id": "LxCIriIEznkW" }, "source": [ "### Run Engine\n", "\n", "Next, we'll run the trainer for 20 epochs and monitor results. Below we can see that progess bar prints the loss per iteration, and prints the results of training and validation as we specified in our custom function. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "sPe46cQOznkX" }, "outputs": [], "source": [ "trainer.run(train_iterator, max_epochs=20)" ] }, { "cell_type": "markdown", "metadata": { "id": "OpqXiZUsznkY" }, "source": [ "That's it! We have successfully trained and evaluated a Convolutational Neural Network for Text Classification. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }ignite-0.5.1/examples/notebooks/VAE.ipynb000066400000000000000000000652271465426447700203320ustar00rootroot00000000000000{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1-final" }, "colab": { "name": "VAE.ipynb", "provenance": [], "toc_visible": true }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "2wrkQRklOAeB" }, "source": [ "# Variational Auto Encoders using Ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "0Kvs_LwjOAeL" }, "source": [ "This is a tutorial on using Ignite to train neural network models, setup experiments and validate models.\n", "\n", "In this experiment, we'll be replicating [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114) by Kingma and Welling. This paper uses an encoder-decoder architecture to encode images to a vector and then reconstruct the images.\n", "\n", "We want to be able to encode and reconstruct MNIST images. MNIST is the classic machine learning dataset, it contains black and white images of digits 0 to 9. There are 50000 training images and 10000 test images. The dataset comprises of image and label pairs. \n", "\n", "We'll be using PyTorch to create the model, torchvision to import data and Ignite to train and monitor the models!\n", "\n", "Please note that a lot of this code has been borrowed from [official PyTorch example](https://github.com/pytorch/examples/tree/master/vae). Similar to that it uses ReLUs and the adam optimizer, instead of sigmoids and adagrad.\n", "\n", "Let's get started!" ] }, { "cell_type": "markdown", "metadata": { "id": "QFH5UZFhOAeM" }, "source": [ "## Required Dependencies\n", "\n", "In this example we only need `torchvision` package, assuming that `torch` and `ignite` are already installed. We can install it using `pip`:" ] }, { "cell_type": "markdown", "metadata": { "id": "HVhQpUjYOAeO" }, "source": [ "```\n", "pip install torchvision\n", "```" ] }, { "cell_type": "code", "metadata": { "id": "1s2up1PkOAeP" }, "source": [ "!pip install pytorch-ignite torchvision" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "gnx9qzjIOAeQ" }, "source": [ "## Import Libraries" ] }, { "cell_type": "code", "metadata": { "id": "9hKV-yeYOAeS" }, "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "IMn3CAHqOAeS" }, "source": [ "We import `torch`, `nn` and `functional` modules to create our models! `DataLoader` to create iterators for the downloaded datasets.\n", "\n", "The code below also checks whether there are GPUs available on the machine and assigns the device to GPU if there are." ] }, { "cell_type": "code", "metadata": { "id": "_dLPBDj-OAeT" }, "source": [ "import torch\n", "from torch.utils.data import DataLoader\n", "from torch import nn, optim\n", "from torch.nn import functional as F\n", "SEED = 1234\n", "\n", "torch.manual_seed(SEED)\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "DaX-nwZAOAeU" }, "source": [ "`torchvision` is a library that provides multiple datasets for computer vision tasks. Below we import the following:\n", "\n", "* **MNIST**: A module to download the MNIST datasets.\n", "* **save_image**: Saves tensors as images.\n", "* **make_grid**: Takes a concatenation of tensors and makes a grid of images.\n", "* **ToTensor**: Converts images to Tensors.\n", "* **Compose**: Collects transformations. " ] }, { "cell_type": "code", "metadata": { "id": "0oKaBceaOAeU" }, "source": [ "from torchvision.datasets import MNIST\n", "from torchvision.utils import save_image, make_grid\n", "from torchvision.transforms import Compose, ToTensor" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "8q_cNs_xOAeW" }, "source": [ "`Ignite` is a High-level library to help with training neural networks in PyTorch. It comes with an `Engine` to setup a training loop, various metrics, handlers and a helpful contrib section! \n", "\n", "Below we import the following:\n", "* **Engine**: Runs a given process_function over each batch of a dataset, emitting events as it goes.\n", "* **Events**: Allows users to attach functions to an `Engine` to fire functions at a specific event. Eg: `EPOCH_COMPLETED`, `ITERATION_STARTED`, etc.\n", "* **MeanSquaredError**: Metric to calculate mean squared error. \n", "* **Loss**: General metric that takes a loss function as a parameter, calculate loss over a dataset.\n", "* **RunningAverage**: General metric to attach to Engine during training. \n", "* **ModelCheckpoint**: Handler to checkpoint models." ] }, { "cell_type": "code", "metadata": { "id": "EzibOregOAeW" }, "source": [ "from ignite.engine import Engine, Events\n", "from ignite.metrics import MeanSquaredError, Loss, RunningAverage" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "mqtxETPkOAeW" }, "source": [ "## Processing Data" ] }, { "cell_type": "markdown", "metadata": { "id": "IzrrCIkaOAeX" }, "source": [ "Below the only transformation we use is to convert convert the images to Tensor, MNIST downloads the dataset on to your machine.\n", "\n", "* `train_data` is a list of tuples of image tensors and labels. `val_data` is the same, just a different number of images. \n", "* `image` is a 28 x 28 tensor with 1 channel, meaning a 28 x 28 grayscale image.\n", "* `label` is a single integer value, denoting what the image is showing." ] }, { "cell_type": "code", "metadata": { "id": "Np63e2xCOAeX" }, "source": [ "data_transform = Compose([ToTensor()])\n", "\n", "train_data = MNIST(download=True, root=\"/tmp/mnist/\", transform=data_transform, train=True)\n", "val_data = MNIST(download=True, root=\"/tmp/mnist/\", transform=data_transform, train=False)\n", "\n", "image = train_data[0][0]\n", "label = train_data[0][1]\n", "\n", "print ('len(train_data) : ', len(train_data))\n", "print ('len(val_data) : ', len(val_data))\n", "print ('image.shape : ', image.shape)\n", "print ('label : ', label)\n", "\n", "img = plt.imshow(image.squeeze().numpy(), cmap='gray')" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "euf13Tx6OAeX" }, "source": [ "Now let's setup iterators of the training and validation datasets. We can take advantage of PyTorch's `DataLoader` that allows us to specify the dataset, batch size, number of workers, device, and other helpful parameters. \n", "\n", "Let's see what the output of the iterators are:\n", "* We see that each batch consists of 32 images and their corresponding labels.\n", "* Examples are shuffled.\n", "* Data is placed on GPU if available, otherwise it uses CPU." ] }, { "cell_type": "code", "metadata": { "id": "0_HaWmxTOAeY" }, "source": [ "kwargs = {'num_workers': 1, 'pin_memory': True} if device == 'cuda' else {}\n", "\n", "train_loader = DataLoader(train_data, batch_size=32, shuffle=True, **kwargs)\n", "val_loader = DataLoader(val_data, batch_size=32, shuffle=True, **kwargs)\n", "\n", "for batch in train_loader:\n", " x, y = batch\n", " break\n", "\n", "print ('x.shape : ', x.shape)\n", "print ('y.shape : ', y.shape)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "GFBK6G7HOAeY" }, "source": [ "To visualize how well our model reconstruct images, let's save the above value of x as a set of images we can use to compare against the generation reconstructions from our model." ] }, { "cell_type": "code", "metadata": { "id": "_hhtM6UhOAeY" }, "source": [ "fixed_images = x.to(device)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "m2yFi8vhOAeZ" }, "source": [ "## VAE Model" ] }, { "cell_type": "markdown", "metadata": { "id": "hauIEN0XOAeZ" }, "source": [ "VAE is a model comprised of fully connected layers that take a flattened image, pass them through fully connected layers reducing the image to a low dimensional vector. The vector is then passed through a mirrored set of fully connected weights from the encoding steps, to generate a vector of the same size as the input." ] }, { "cell_type": "code", "metadata": { "id": "oQ5uwtzaOAea" }, "source": [ "class VAE(nn.Module):\n", " def __init__(self):\n", " super(VAE, self).__init__()\n", " self.fc1 = nn.Linear(784, 400)\n", " self.fc21 = nn.Linear(400, 20)\n", " self.fc22 = nn.Linear(400, 20)\n", " self.fc3 = nn.Linear(20, 400)\n", " self.fc4 = nn.Linear(400, 784)\n", "\n", " def encode(self, x):\n", " h1 = F.relu(self.fc1(x))\n", " return self.fc21(h1), self.fc22(h1)\n", "\n", " def reparameterize(self, mu, logvar):\n", " std = torch.exp(0.5*logvar)\n", " eps = torch.randn_like(std)\n", " return eps.mul(std).add_(mu)\n", "\n", " def decode(self, z):\n", " h3 = F.relu(self.fc3(z))\n", " return torch.sigmoid(self.fc4(h3))\n", "\n", " def forward(self, x):\n", " mu, logvar = self.encode(x)\n", " z = self.reparameterize(mu, logvar)\n", " return self.decode(z), mu, logvar" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "mV27j9EDOAea" }, "source": [ "## Creating Model, Optimizer and Loss" ] }, { "cell_type": "markdown", "metadata": { "id": "kJ6yD5fBOAeb" }, "source": [ "Below we create an instance of the VAE model. The model is placed on a device and then loss functions of Binary Cross Entropy + KL Divergence is used and Adam optimizer are setup. " ] }, { "cell_type": "code", "metadata": { "id": "0rAgYpT3OAeb" }, "source": [ "model = VAE().to(device)\n", "optimizer = optim.Adam(model.parameters(), lr=1e-3)\n", "\n", "def kld_loss(x_pred, x, mu, logvar):\n", " # see Appendix B from VAE paper:\n", " # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014\n", " # https://arxiv.org/abs/1312.6114\n", " # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)\n", " return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())\n", "\n", "bce_loss = nn.BCELoss(reduction='sum')" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "1ye6HrDeOAeb" }, "source": [ "## Training and Evaluating using Ignite" ] }, { "cell_type": "markdown", "metadata": { "id": "v-QR-oALOAeb" }, "source": [ "### Trainer Engine - process_function\n", "\n", "Ignite's `Engine` allows user to define a `process_function` to process a given batch, this is applied to all the batches of the dataset. This is a general class that can be applied to train and validate models! A `process_function` has two parameters engine and batch. \n", "\n", "\n", "Let's walk through what the function of the trainer does:\n", "\n", "* Sets model in train mode. \n", "* Sets the gradients of the optimizer to zero.\n", "* Generate `x` from batch.\n", "* Flattens `x` into shape `(-1, 784)`.\n", "* Performs a forward pass to reconstuct `x` as `x_pred` using model and x. Model also return `mu`, `logvar`.\n", "* Calculates loss using `x_pred`, `x`, `logvar` and `mu`.\n", "* Performs a backward pass using loss to calculate gradients for the model parameters.\n", "* model parameters are optimized using gradients and optimizer.\n", "* Returns scalar loss. \n", "\n", "Below is a single operation during the trainig process. This process_function will be attached to the training engine." ] }, { "cell_type": "code", "metadata": { "id": "VwuW-CbeOAec" }, "source": [ "def process_function(engine, batch):\n", " model.train()\n", " optimizer.zero_grad()\n", " x, _ = batch\n", " x = x.to(device)\n", " x = x.view(-1, 784)\n", " x_pred, mu, logvar = model(x)\n", " BCE = bce_loss(x_pred, x)\n", " KLD = kld_loss(x_pred, x, mu, logvar)\n", " loss = BCE + KLD\n", " loss.backward()\n", " optimizer.step()\n", " return loss.item(), BCE.item(), KLD.item()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "p8KEf_jHOAec" }, "source": [ "### Evaluator Engine - process_function\n", "\n", "Similar to the training process function, we setup a function to evaluate a single batch. Here is what the `eval_function` does:\n", "\n", "* Sets model in eval mode.\n", "* Generates `x` from batch.\n", "* With `torch.no_grad()`, no gradients are calculated for any succeding steps.\n", "* Flattens `x` into shape `(-1, 784)`.\n", "* Performs a forward pass to reconstuct `x` as `x_pred` using model and x. Model also return `mu`, `logvar`.\n", "* Returns `x_pred`, `x`, `mu` and `logvar`.\n", "\n", "Ignite suggests attaching metrics to evaluators and not trainers because during the training the model parameters are constantly changing and it is best to evaluate model on a stationary model. This information is important as there is a difference in the functions for training and evaluating. Training returns a single scalar loss. Evaluating returns `y_pred` and `y` as that output is used to calculate metrics per batch for the entire dataset.\n", "\n", "All metrics in `Ignite` require `y_pred` and `y` as outputs of the function attached to the `Engine`. " ] }, { "cell_type": "code", "metadata": { "id": "PceHJQJ4OAec" }, "source": [ "def evaluate_function(engine, batch):\n", " model.eval()\n", " with torch.no_grad():\n", " x, _ = batch\n", " x = x.to(device)\n", " x = x.view(-1, 784)\n", " x_pred, mu, logvar = model(x)\n", " kwargs = {'mu': mu, 'logvar': logvar}\n", " return x_pred, x, kwargs" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "GdfA_leJOAec" }, "source": [ "### Instantiating Training and Evaluating Engines\n", "\n", "Below we create 2 engines, a `trainer` and `evaluator` using the functions defined above. We also define dictionaries to keep track of the history of the metrics on the training and validation sets. " ] }, { "cell_type": "code", "metadata": { "id": "EH494wHUOAed" }, "source": [ "trainer = Engine(process_function)\n", "evaluator = Engine(evaluate_function)\n", "training_history = {'bce': [], 'kld': [], 'mse': []}\n", "validation_history = {'bce': [], 'kld': [], 'mse': []}" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "B_nxE8WdOAed" }, "source": [ "### Metrics - RunningAverage, MeanSquareError and Loss\n", "\n", "To start, we'll attach a metric of `RunningAverage` to track a running average of the scalar `loss`, `binary cross entropy` and `KL Divergence` output for each batch. " ] }, { "cell_type": "code", "metadata": { "id": "22b2EySTOAee" }, "source": [ "RunningAverage(output_transform=lambda x: x[0]).attach(trainer, 'loss')\n", "RunningAverage(output_transform=lambda x: x[1]).attach(trainer, 'bce')\n", "RunningAverage(output_transform=lambda x: x[2]).attach(trainer, 'kld')" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "fxmDDcc7OAee" }, "source": [ "Now there are two metrics that we want to use for evaluation - `mean squared error`, `binary cross entropy` and `KL Divergence`. If you noticed earlier, out `eval_function` returns `x_pred`, `x` and a few other values, `MeanSquaredError` only expects two values per batch. \n", "\n", "For each batch, the `engine.state.output` will be `x_pred`, `x` and `kwargs`, this is why we use `output_transform` to only extract values from `engine.state.output` based on the the metric need.\n", "\n", "As for `Loss`, we pass our defined `loss_function` and simply attach it to the `evaluator` as `engine.state.output` outputs all the parameters needed for `loss_function`." ] }, { "cell_type": "code", "metadata": { "id": "TxlHHgCjOAee" }, "source": [ "MeanSquaredError(output_transform=lambda x: [x[0], x[1]]).attach(evaluator, 'mse')\n", "Loss(bce_loss, output_transform=lambda x: [x[0], x[1]]).attach(evaluator, 'bce')\n", "Loss(kld_loss).attach(evaluator, 'kld')" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "AS5MFiXLOAee" }, "source": [ "### Attaching Custom Functions to Engine at specific Events\n", "\n", "Below you'll see ways to define your own custom functions and attaching them to various `Events` of the training process.\n", "\n", "The first method involves using a decorator, the syntax is simple - `@` `trainer.on(Events.EPOCH_COMPLETED)`, means that the decorated function will be attached to the `trainer` and called at the end of each epoch. \n", "\n", "The second method involves using the `add_event_handler` method of `trainer` - `trainer.add_event_handler(Events.EPOCH_COMPLETED, custom_function)`. This achieves the same result as the above.\n", "\n", "\n", "The function below print the loss during training at the end of each epoch. " ] }, { "cell_type": "code", "metadata": { "id": "uwPNFSwtOAee" }, "source": [ "@trainer.on(Events.EPOCH_COMPLETED)\n", "def print_trainer_logs(engine):\n", " avg_loss = engine.state.metrics['loss']\n", " avg_bce = engine.state.metrics['bce']\n", " avg_kld = engine.state.metrics['kld']\n", " print(\"Trainer Results - Epoch {} - Avg loss: {:.2f} Avg bce: {:.2f} Avg kld: {:.2f}\"\n", " .format(engine.state.epoch, avg_loss, avg_bce, avg_kld))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "s0tpWvp0OAef" }, "source": [ "The function below prints the logs of the `evaluator` and updates the history of metrics for training and validation datasets, we see that it takes parameters `DataLoader` and `mode`. Using this way we are repurposing a function and attaching it twice to the `trainer`, once to evaluate of the training dataset and other on the validation dataset." ] }, { "cell_type": "code", "metadata": { "id": "DuSfcPc3OAeg" }, "source": [ "def print_logs(engine, dataloader, mode, history_dict):\n", " evaluator.run(dataloader, max_epochs=1)\n", " metrics = evaluator.state.metrics\n", " avg_mse = metrics['mse']\n", " avg_bce = metrics['bce']\n", " avg_kld = metrics['kld']\n", " avg_loss = avg_bce + avg_kld\n", " print(\n", " mode + \" Results - Epoch {} - Avg mse: {:.2f} Avg loss: {:.2f} Avg bce: {:.2f} Avg kld: {:.2f}\"\n", " .format(engine.state.epoch, avg_mse, avg_loss, avg_bce, avg_kld))\n", " for key in evaluator.state.metrics.keys():\n", " history_dict[key].append(evaluator.state.metrics[key])\n", "\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, print_logs, train_loader, 'Training', training_history)\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED, print_logs, val_loader, 'Validation', validation_history)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "13po7FGPOAeg" }, "source": [ "The function below uses the set of images (`fixed_images`) and the VAE model to generate reconstructed images, the images are then formed into a grid, saved to your local machine and displayed in the notebook below. We attach this function to the start of the training process and at the end of each epoch, this way we'll be able to visualize how much better the model gets at reconstructing images. " ] }, { "cell_type": "code", "metadata": { "id": "2l8hhfITOAeg" }, "source": [ "def compare_images(engine, save_img=False):\n", " epoch = engine.state.epoch\n", " reconstructed_images = model(fixed_images.view(-1, 784))[0].view(-1, 1, 28, 28)\n", " comparison = torch.cat([fixed_images, reconstructed_images])\n", " if save_img:\n", " save_image(comparison.detach().cpu(), 'reconstructed_epoch_' + str(epoch) + '.png', nrow=8)\n", " comparison_image = make_grid(comparison.detach().cpu(), nrow=8)\n", " fig = plt.figure(figsize=(5, 5));\n", " output = plt.imshow(comparison_image.permute(1, 2, 0));\n", " plt.title('Epoch ' + str(epoch));\n", " plt.show();\n", "\n", "trainer.add_event_handler(Events.STARTED, compare_images, save_img=False)\n", "trainer.add_event_handler(Events.EPOCH_COMPLETED(every=5), compare_images, save_img=False)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "v1RsmwNROAeh" }, "source": [ "### Run Engine\n", "\n", "Next, we'll run the `trainer` for 20 epochs and monitor results." ] }, { "cell_type": "code", "metadata": { "id": "OgaJSdpVOAeh" }, "source": [ "e = trainer.run(train_loader, max_epochs=20)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "4dJ_jY4_OAei" }, "source": [ "### Plotting Results\n", "\n", "Below we see plot the metrics collected on the training and validation sets. We plot the history of `Binary Cross Entropy`, `Mean Squared Error` and `KL Divergence`." ] }, { "cell_type": "code", "metadata": { "id": "pu9ab4LUOAei" }, "source": [ "plt.plot(range(20), training_history['bce'], 'dodgerblue', label='training')\n", "plt.plot(range(20), validation_history['bce'], 'orange', label='validation')\n", "plt.xlim(0, 20);\n", "plt.xlabel('Epoch')\n", "plt.ylabel('BCE')\n", "plt.title('Binary Cross Entropy on Training/Validation Set')\n", "plt.legend();" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "XIuOnrwgOAei" }, "source": [ "plt.plot(range(20), training_history['kld'], 'dodgerblue', label='training')\n", "plt.plot(range(20), validation_history['kld'], 'orange', label='validation')\n", "plt.xlim(0, 20);\n", "plt.xlabel('Epoch')\n", "plt.ylabel('KLD')\n", "plt.title('KL Divergence on Training/Validation Set')\n", "plt.legend();" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1gN0gWiKOAei" }, "source": [ "plt.plot(range(20), training_history['mse'], 'dodgerblue', label='training')\n", "plt.plot(range(20), validation_history['mse'], 'orange', label='validation')\n", "plt.xlim(0, 20);\n", "plt.xlabel('Epoch')\n", "plt.ylabel('MSE')\n", "plt.title('Mean Squared Error on Training/Validation Set')\n", "plt.legend();" ], "execution_count": null, "outputs": [] } ] }ignite-0.5.1/examples/notebooks/assets/000077500000000000000000000000001465426447700201425ustar00rootroot00000000000000ignite-0.5.1/examples/notebooks/assets/ax_hparams.png000066400000000000000000041234001465426447700227770ustar00rootroot00000000000000‰PNG  IHDR <φ]αGχ 'iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήD)₯ΧΑFH %†„ bGX *"XΡUΧΘbΓ,‚½?QQΦΕ‚ •7I]ύή{ί;ωζή?gΜ9ηάΉσέ@5Š-e‘jd sΕΡΑ~ΜΔ€d&© π‡"ΝζHDΎQQαΚπύŸςξ΄…rΥVζληώ*κ\ž„9•+αdC>ξΜ‰s τB½ΙΜ\d"ŒhŠa€Meœ`W§*8\nν9%*›-N@E3“ύ¨”BΆrBΘ͐½8|6ςgΘc²³g@V΅„l™ϊŸτψLρΙf§°"Ή($’,φμ³[²³€Γs˜ΐFε‹C’e9Λκ–9#LΖTΘη…©‘5 _pεφ2~Β—†Δ ΩΰHόaΝ”Κe„AΦƒl,̊{₯ ‚XaνΡXA.+V1εŠgDωGgρ$1ΓΜΛη’ΩK3γ|‡|nβσXΓ>›ςω± Š8Ρφ'—¨Θ +ΰ γ†βΗΚDΉ~ΡCφΫEYQCφX3/+X¦7†ά&Ι‹Ϋ— ›"_ˆr£b±αšμΠ(E Έ5ώ 0ΆT0dA[oC/ό§θ l ι€l‡4Γ#δ=Bxωΰ/H< η'οε<¨2’U\mAšΌ7O>"<œ Β@ό/•ŽΜCΰ§Ω90Φ,Ψd}?ι˜ͺΓ:b 1€B "ZαΊΈëlΈ+ξ6Χ7{ΒBαα:‘“p{Ί @όCδL0tΒƒ†²Kύ>;άzuΒύpOθϊΖΈ.°ΕΗΓ™|qo8·Τ~«t$γo΅ςEΆ#£δQd²ε¨X«8x‘UκϋZ(βJ©–HϏyψW?.Ό‡ύh‰-Εbη°“Ψ¬kLμ8ֈ΅bGe<²6ΛΧΖπlΡςx2‘ΑOσ±‡ζ”UMbWkΧcχy¨δςfεΚ^’ΩbA:?—ι wk“%δŒΓt°³w@Άχ+Ά–7 ωžŽ0.~Σεœΐ­*ΣΏιΨp:ςϊ»o:“ΧpΩ―ΰh;G*ΞSθpΩ…(@Ύ):ΐξ]–0#ΰ <€‘ Δ‚$0 Φ™Χ©ΜsΑ"PJΐJ°T‚Ν`Ψφ‚ 4ƒ“ΰ,ΈΪΑup•nπτw`ABCθˆbˆ˜!6ˆβŠx!H8$!)H:"D€Θ\d1R‚”!•ΘV€ω9‚œD. Θmδ!ƒΌF>‘JE5Q}Τ‡Ί’Ύh‹NEΣΡ4-D—£h5Ί­GO’—Πλh'ϊνΗ¦Œ10#ΜsΕό±H,KΓΔΨ|¬+Ηͺ±}X|W±N¬ϋˆq:ΞΔmαz ΑγpžƒΟΗKρJ|^ŸΖ―βρ>ό+FΠ#Ψά ,B"!0“PD('μ &œοN7α‘Hd-ˆ.πέK"fηK‰‰uΔΔb±ŸD"ιlHž€H›”K*"­'ν!']!u“>()+*9()%+ • ”Κ•v+SΊ’τTi€¬F6#»“#Ι\ςlς ςvrω2Ή›<@Q§XP<)±” Κ"Jeε ε卲²²±²›ς$eςBε εύΚη•*€jP­©ώΤ)T)u9u'υυ6υ F3§ωΠ’iΉ΄ε΄Ϊ)ΪΪΊΚX– WeJ•J½Κ•—ͺdU3U_ΥiͺωͺεͺU/«φͺ‘ΥΜΥόΥΨjσΥͺԎ¨έTλW§«Ϋ«Gͺg«—ͺοVΏ ώLƒ€a¨ΑΥ(ΤΨ¦qJ£‹ŽΡMθώt}1};ύ ½[“¨i‘ΙΜΠ,Ρά«Ω¦Ω§₯‘5^+^k–V•ΦQ­NΖ0g°YŒŒŒŒO£τGωŽβZ6jί¨+£ήkΦφΡζikΧi_Χώ€ΓΤ ΤΙΤY₯Σ s_ס֝€;Sw“ξέήњ£=FsF>0ϊŽͺg­­7Go›^«^ΏΎ~°ΎH½ώ)ύ^†A†Αƒc=†tC/CαΓγ†Ο™ZL_f³‚yšΩg€gb$5ΪjΤf4`lag\`\g|ί„bβj’f²Ζ€Ε€ΟΤΠt’ι\ΣZΣ;fd3W3ΎΩ:³sfοΝ-ΜΜ—˜7˜?³ΠΆ`Yδ[ΤZά³€Yz[ζXV[^³"ZΉZeZm΄j·F­¬ωΦUΦ—mPgΝF›Ž1„1nc„cͺΗά΄₯ΪϊΪζΩΦΪ>Λ>Ά`lΓΨ—γLΗ%[5ξάΈ―vNvYvΫνξΪkΨ‡ΪΨ7ΩΏv°vΰ8T9\s€99.plt|5ήf&>\Ÿ>O}­|3|χψΎτ³σϋφ{οοξ?ΟDPΠ¨Xψ Θ8(=¨6¨/Ψ)xNπ‰BHXΘͺ›,}‡UΓκ u z:ŒVφ(ά:\ή4:qυΔ{fˆ†HɊ\y?Κ"*'κIΔIQ“ͺ&=‰Άž}.†3=fwΜ»XΏΨ±wγ,γ€q-ρͺρSβkβί'$”%t&ŽKœ—x)I7IΤ˜LJŽOή‘ά?9pςΪΙέSœ¦MΉ1Υbꬩ¦ιN˚vtΊκtφτƒ)„”„”έ)ŸΩ‘μjv*+uCjǟ³Žσ‚λΓ]ΓναyςΚxOΣ<Σʞ₯{¦―Nοα{σΛω½A₯ΰUFHΖζŒχ™‘™;3³²κ²•²S²5„™ΒΣ3 f̚Ρ!²‰:sάsΦζτ‰ΓΔ;$ˆdͺ€1W~d·J-₯ΏHζyεUε}˜?σΰ,υYΒY­³­g/›ύ4?(·9ψΜ–ΉFsΝ}8ΟwήΦωΘόΤω- L.θ^ΌpΧ"Κ’ΜEΨ”Ό]œ°Έ©PΏpaaΧ/ΑΏΤ©‰‹n.ρX²y)ΎT°΄m™γ²υΛΎs‹/–Ψ•”—|.ε”^όΥώ׊_—§-o[αΌbΣJβJαΚ«ΌWν*S/Λ/λZ=quύζšβ5oΧN_{‘||ωζu”uuαλMΧ―\Ή’_y½Κ―ͺnƒή†eήoδnΌ²ΙgΣΎΝϊ›K6Ϊ"ΨrkkπΦϊjσκςmΔmy۞lί~ξ7Χίjvθξ(Ωρe§pgηθ]§k\jjvλν^Q‹ΦJk{φLΩΣΎ7`oγ>Ϋ}[λu%ϋΑ~ιώηΏ§ό~γ@؁–ƒχ2;΄α0ύpq=R?»Ύ―ίΠ٘ΤΨq$τHK“GΣα?Ζώ±³Ω¨Ήκ¨ΦΡΗ(Η  Ο?ήBt’χdϊΙ–ι-wO%žΊvzιΆ3agΟ :{κœοΉγη=Ο7_pΏpδ’λΕ†KΞ—κ[Zιτηα6ηΆϊΛ.—ΫέΪ›:&t»β}εδΥ€«g―±]Ίq½γF܍[7§άμΌΕ½υμvΦνWwςξ ά]xp―ψΎΪύςzͺeυ―ΊNηΞ£Ά>Šyt·‹Συβ±δρηξΒ'΄'εO ŸΦμϊθϊρά§„OOf~&}ψbυ₯ιkΨΧ{ƒΩƒƒ"Ά˜-ΐ`CΣx½Zόvh€2Yq6“ ’8OΚ ό'Vœίδβ ΐNβΏQ6Αf™ ο²OπX€::Ž΄!‘€9:(|Qα‰…πapπ>€&Ύˆ6~Ωƒ½ ΐ‰Ε™P&²3θ΅ήčΐςoLΗplw x pHYs%%IR$πŸiTXtXML:com.adobe.xmp 2876 1270 ΥεάiDOT{({{`%v‘ϊ¦@IDATxμέœ+UωΖρ“žέK•*`DA”’H‘ͺ€€€HG)V±ΰ_QEi‚ .Ez—^₯I“&‚τήv“MύΏΟIfξ$›μnvχ^’½ΏΓ‡›d2™Μ|g’L6ΟyO읯: € € € € € € € € € € Π…1Ο]ΈWX%@@@@@@@@@@πž9@@@@@@@@@@@ kͺΙΥΒ «Ός€+ώczCp/ΉβW\jΉΝF]ft­ƒΦe˜AΉΰ²[ύΑΕ¦Νηgζ‹>6Έ›c›χχώfuπ —?οΫΞOϋΚΑ,#^]φςκFœ‡;˜ˆ€¬ΩΝ=,;Ϊ2ŒΝ_t@ψ: *+WΩ­ηΔGVΆ°οt§pnρήσΓΠΆBΐ {§VΫ%|/i·ύ τo?Εο85 χ*,ž΄΅όάΙ–-΅εwkλίηςπ=YλXyρ—·κΜ£›·Η7[ό¦aYΪnm―5Ο½ΆΗfΡϊvxΦjU«U—?s =ί8‹Φς½}Οο­LφTŸ‹%’φaχNgOe'υϊ`Υ‰―«V:{μTžΫ,c™9k.Sy;gΒΆΕϊζvΥb>ό":ž‚EŽ$‹»X<ώ‹ΆΣ~˜•ΧΝΔ΄Ηϋ>>žgθq’ώΜ4?‚†Pg zχ1³r?υkή©€Ž«dΊφšκτ±Μ € € € € €@ dΎτ3—ψΰŠ~ Oά:ό9ύ…οZΠx?½:4ΰςη|Σ~Ώ}Ψ–f698,P9xά¦Γξ&$–XΝeΦ? Έιςhδžε²[XHsžEΓΗ4_)ήσWΌσL?9΅v.υ™mšgρvΞ2KΥw^v­ |8rωΝύγ ·δJΊ΄ε²’ŸΪΔ₯?gAqkΕϋ/± δΙ.6ΧΒoϋ?΅œΏybώ‚ο»Κˏ7Oζ6“"  nz£‡…|«o>ηΚ/–+•7Ÿuε‡―uΙ·lπλζΠoJΆOU‡όeά¦λ2Ή΄™Τ;«θ8(=r]τn]yΆΜF? χ½&ο½ΐΓfξβ ]xN~jγ°gM³Ÿ/Η>οΒΙ…[޳:―†·£WJ]νͺoΏΔυ14ž‡ϊ•…7ΛυGΖ¬ϊσάV~1—\ζ‹.f½΅‚VΝ½νέΘUίz!˜4e/ πšο±YzδΪΆ_d’ζ’ϊΜWύc ΧξΚΟήί°œψΒχΗb|‘Χήc-<_yύv,>n=[Ορ½RύμXλΫωŒ†ΗŽv£όΔ-pλ εϊλΑΦΓ·b_«o=οJ\1¬χi|%νψωΉš—»β?ΟρΧ£Η¦ŸόS1“wΝΔ^KεG―wεgξ ξφΈ`έf¨ίθΫωt U^zΜNΰ~α|»ϊVσ·š–ΛwύωΒhώz¬ώ΄ΓρE>a‡n/NΫQzδsΉάU‡ήφαλΕφΧΠ₯Ϊ>{fΨ<šΠ·‹φYΜχΌΊκΖyf£ΧMαΆ­“Τ͍Ϋ_Ώ•΄}«}¬6τΧCνύχ!}΄}ΧΙϋxfΓν„γ~ΉcωGηš:†’m<ΗIπx?₯VΩΡzήΪ1f_4cρ„«– ϊϊΣφ₯βB{ŸΌ=˜5ΌL―ρ λyΏFx;Έ’γQΌ©Όϊ€ά©Ž<τΧx?ΌΑωΦ;„Ο΄ΔbΛ»τzίVΝή³ΞΆΟΠ+ΒΫΊΙ~jx`άθΫγ<Ÿ ΏΆ…ώ`˜ώ>ί]ί7. ·hπΈMόyƒΞ?ϊΏ{}8=zEt¬<χ€}φήοʏ\οτ₯ΌUΣώνΫύΌπάi;΅=‡I―—ϊt‹?–ν³ΰΝη]υΥŽΗ6η%α“Ψg|·²οo΅s†ΒMGϋ^αύ‘+­ΆqθςŸωχΦΘl WυΎ©?Μ­όθ Φsyΰ¦ΏΤψτš{ϊ/ςρω?RϋΜ°υ―ΨΉJρ³ΊΊgvΓ†p@@@@@ ΄ ϋjqΡΐ³n—ž°ΌύVέάΖxVh.ρ‘Ο„WΈNΏ΄l–©ΠoΜ‰E–΅»«xίΕόί»¬TiΩ*¬β’φϋWL™»oθΚƒ]ωιϊLR|ξΖptς„anε*τϋm΄•Ÿ½ΟήέΚ 6ί‡]ίΦGϊΩΛφΫγΠ%?Ž>4ΌžΩμ0Υ„όωϋϊκΣΡΐsΩr#₯ϋ[‡₯υ˜ς φ»f‹ί’u ‰θχσŒUθ6Ί»ρΘΆ TΥ7cιhh8ϊx]οΦΐs«νm^χΙΊ­Έ‚ΏέΤ`Ξn7#¦°sσο£Z_UΉV†QaζhS8ΌpΓ‘-³mRη§οiY˜k£οκλ]xI­oχs>4Ž\ΟU`$²Žοk<Ώϋ³₯ό‰Ζ°ΩpύίΈΐ)΄΄όΕ?v₯»Ο nNΩKΟSkΧϊωaUS-7¬Z)Ή’uΦΖ§ιuχσ'ΰ-hΛNRG'λνZv›£μuτ!·Β―ζ€U‹ΝΉλΫαWι±›\αϊΪP*­ζm7-½ΖΧ}@[χkx˜άi;ϋ“ώVσgwψs-¬άκΞϊ΄κΐλξόiCπJ"2[ξβs-Τφ‘"G_BFriϋΰ.Έ#ωρuν€α[#Iρžσ[έ’+lα«μδ;tΕA !`=Σ6τF»VΝ½ιΏδω^‘vόυοyq»Y[N/ύϋzWΈρ(7–υW¨±ψΐeh=\ƒ_h)λy[ϋβ[ΌοB;9:Νί=6ƒy[]–Ÿϊ»X “ΡΗλΦκqύ{Z0Πuežcθ’ΊΤJΫ†‘ρVσ·šτθΙ_RŸύšKY―ΎvM!@ίkΞBαΡ}½”_ό·Ίψ‡αvFησϋ̞G_†‡.ωIxΧμφΊ)άx΄+ύ{x―B¨C€φ±šήƒN#ν»NίΗ3›R£ŠšQQh?V½“ΓŽ=Q|ΑZ(x‘ί#ŸΌέώΘd_X#αβτη­ηύΗΦq]šΦkΌ]Η=x"ŸyϋγO@o΅" ;λRA+ΨΠ@₯ϋf{;έOΑrzι²›W9½Wͺ ]}¨½‡ώyΨκΗνjΡ`σΰk»Š…sUQ~ڏξ6σ…ΪσgΩΘ*MH4ŸφAzΝ½Β‡(p=tωΟΓΫΡ+™/Μ₯Vή1:©εuOzmΩΑΙ‘ ~ίN§†ΥgΤΰΡ„·£WZm£:?δΞΨ5:[x]ί3ϊΏgΗ"Mηω³χ§(΄­mqΙL8­αŠƒι½$θ€Σp7@@@@@˜B­ΒΎΪΌζΐ³¦ ]ρKϋ­αŸΊΆ±žc–κΫΡ~CVΡ3Λ Δ¦½ΟF-ΞΥ²-FΝm¨¬ά…―Œ6ΛΙn{Œή˜υιςηο½;Όž^cOΛ:lθoηΞΩΗ ·΄.ΣΞ »ΝΡ΅|“ύώ6¨œ„ύφm΅ν:٢ˊWΩο6ͺ‚­ <7§}#Π©€~cνΫυ¬0ΤͺΡꇬ8ΠXCͺ §­“B,;η°§ξΖΐ³Β»ύϋέnο°•žδ ώn­–•“'ω©ΖΌΈiϋέVθXN&wvΓΦ―9Έάjα­*8ΛWճÊΠVhKΫί+mφ ΌΥ ΘΩIυέW:[NΌtYΨ*ς½δO:{°ΝmΓ4Ηζ^ΔaT}ΝYEΙρ6Ώ ͺX―”=ζΐ³VcΕ―ΈμζΏŸΊ`‘ŠB›PE8“U1T5Π˜ν‡ŠU2tΞW“‘υςͺθ$Ζ‚›γjpUθ€’ͺΤνzYΩΙZ¬o.«ΊψLθLΰy\Ϊέω «¨ͺαG6Τλ¨xοEό?«Bk―λΔ‡?[«P\ξ]φ3 ήέn‡BBA0R=UνX―£ψ¬:μ’«ϋP›fŽCΓΧ―Δ\e·ό݌Ιvr탙-ήSΒ‘γ <'’H:ΝΏφ‚'²ΠtΩ–ΥͺNίσΗΒ‰΅³Š€w‰ΕWσοašVyνi—Ώ`_ B•ό, %Μ@­τδmόψ-ώ΅žXτS.aa½D}…βέ6$Ν]gϊωzνŸh`X} Σ‚V '_ΕΕλ#(h¦ΰs΄΅ mͺΪlv³Ck_ ­’gΡz†VtΌY%Xί³ΥzpΕμx­ZζΌ}S`]ΗhC³y3_° ¬ΦΚ/Ψ0‘ ‘¦ι³ͺςκS ηpύν~ΨθΉβX>μ0tνο,Έ’Σ—?έ*³Πr€§³`vΛίϊw©s'oοͺώ‘‚J›:)q©¬mοšnο'ηFζͺ]m‡Ϊk­Σ Ο )gΎx€_XΠΣ²lC½«Bs«8βΞ΅x]g·=.|ζmˆ‡ΚKϊκŠ}»m9>Έ”³ ”AZΟ‘€avΗSόvV¬Aώάo΅zκŸ < nZ‡”τΪίrɏ鷣pσ±φeιšp›ΪžS+«²πWj‰„‚ƒj(ŠΤr›ω›Cφ™εC’ΑυKχϋv>έί*ιΈΌφ·MsΤnŽΈώ6KbΙ5]f½ύόΜκ0tωAώϊX*<·κ՚ψΘΚ.³ΑkΛS•g«zͺΦpLwxφnϊGaΥδ²ω©ω³χi¨:΅Ώkξp’}&LσŸι€jηΡΌ^5­πχӜ† Zπz nW Ύ©*±F[Λΐ³B°³ϋλ&‚Τi…ηρΎGž_ zu+ š;ΥώHΣ’Mτ8Ρk\―u΅ζcHΣτšΘnw\ν=Τ†αŠV½žsVmzΨρiη¦ΙeΎ¨ΕΈβίOo9μΞx?|Η:υ‘wΎž[ηΗΑΌZhΰy²φ“–ΫΝm2ΟƒΗmj΅g|7ΠΠpYnMXSkΊHη΅};Ÿ6ŒGί_ZuΐˆžKήΰςͺβ\oκX™έόP¬Iκd3pπr΅ύΜd—κΐ8νϋςlη0ΡVΌστπ³#:½eΰΩfΠηŒΣάϊΏύΧZ˜?rG4π턨?Μ±φŒ?ΜΪ1«0tπHž£•υ#‹δ* € € € € €SB`,gύ½\ΏΗ©­€–ΟΥ·~,ημW΅`‹ωbAa1Όέ4Β­_€«ϋw?Η*k%}ΐXAγVM…΅L΅ς³²μΠΫΓf›hΰY•€ϋΎv’-ΧFγύί½ΓFΘΜΨ¨ΰ Λbُ!φέ> ­• π,…ήm vΖ2sŽkͺCο šŽkAxPsψ΅Uxu΄ΕT ΈΫΟqΛVͺΊs§­τΘuςb­ΈS|αeZ†»G[¦ͺW¬Ϊρ{έ’χζίƒƒuk·Ξ$ΑΊΛ0kEΨF«ΰ=.TKΑκ^h³MΰYΡDJΤΏ­vNΥͺ€ ]uˆ+ύczΓέ Κͺ°š―ZωΠ_­ΚΨχ,ˆχӚ)?χ€Λ°₯%©Λ w)`•Ωδ‚!έ0=z£jaΙβν'»ΒΥΏŠN]·[v›c¬‚ίjΓο‹L)?}·Λ_τ 72Υ‚Ϋ–ΚOΨ›Έšͺ«βjκ3Ϋ4ΜσB ξ$πœόΤ&N½±‚¦ ζΠeMαI €ΧK―>#DΜ½Τz ]ό£ΦΓ°[UΐΜΖ9½‘Τβ̝²½/›1›,ηψΙ}αν’…κTa:±θ'ΓiεηrΉγ6ρ·csΏί^ψ'šΧαύΡ+ ¦*Ψ©ΠIΠ<½w™΄ŠΓ ‘©΅κΕ§aXtόΖ,Θ£κΈ…›Žυσ¦VΫΥΒ§›ΪΉμjΈ”7ŸσΣ£$?ωεπΈΧϋ‹ͺ@74;ΉΧπ )L­‘^T]·ςφ‹N') j{`C8tηΜFgΗν§­Ϊς36΄Ε5.ύΉέkλΦ7|΅ω†u³A€³]ΰ9΅βVάΫΑ?,°«}Iψ³ŸΦ.p›Zi»0|€@:}τZ-0¬ŽY…gmίVZ΄ͺ’>hΪ.p›^ΗBVR-wφήÎ)…ΟΈU+?ύλδ2£’₯ŸhLVΰY£ψjΰΆώ}Υͺˆͺ7π¬Β}φE6f_dΛφώ©ήaj Ητ{xNZgœ #Kρg;}ΡonڟΩOΆΟςŒ―Zž?χΫα,αλΕzDk;UiWUF ΧΞ£+­ϝΎn†.yΓ2{εΖh―›`;: <χ}lτίўeΌ•”G[n§χ7„_-Τ›Ÿήψ[ΨhΛ‹†Z[ΝΫmgΣΣώkΣϊ]`›‚Κ ύfΆ΄ί―­8λX[«JΚc}μdΝΧψn΅NΡίPυΌ“6O—ΎG³œ=ΟύσΊώo^ιβpΆΚ›φ£ΉέKχE'»œ… Λφ΄hΰ9˜\Vso[heΰfx™Ώθ‡Vmψ/ανΈUˆνΫ匰ͺ±ξ¨XΕԊUVM|π3Γ–‘Ώτ@ ^Ÿ>ήΕ¬΄Π1΅΄ ŒB’Ρ¦jΗƒGY…ΏH§hΰ9:oτzǁgU€ΤzΥƒΤZVξ€νΒιΑ²ΣV7"˜V΅@˜B”q G[΅b'SήΪU,τΆ„οΎqAΓσθΎ²…šUE6Ύΐα¬ΊRyε 7xόζ3N$šΟ 3Χo(Θ“³*zͺΚΫνk{0oUv…ΨšͺΧχη¬"^ΉEψ'ΈŸΛξˆY…σ ΜSyγYλΕχ3lŽΆΖΑ‰°ήKςgοΥrφڐπv²lMš?`U‰1³ώώώ~½ohΨυπΆ@WμD:ΪΒ‘žυ~ΧgAM ο<Σ)ήnξ œm*<7„―ό₯…pιW7»ύŸ\άͺOϊŽ$6=Z2Ί=½|},ΑΝ”uςHYθ]Mϋ·ςβ#ώz»ΐ³‚eλP£VzςΆΪpmF π3΅ψgΟΦΙ€o'«Δm—ύ o‘K΅ρž£Ue‹wŸητeV­α˜~ΟιυΎο’6‚ƒZ«κΉώϋ'ύΕΊδβ«ϊ›ΉΣw΅@ψkώzτυ’ΑBDmθŠ_ψΡό ϋ§UΰYχρΊ „,@i=ΚS+mλ'¨WxωΩϋύυv―ρΎΟxΖΪ΅±ž'rœ(0ί·kνΨoΧ!€y’·G Θ<·.ϋv?7μ¨?°€VΫΝώpπY?K«Κ gϋRΆχ~…’ՏX; ψλΆήoƒ“ͺ.‘ZugMn`ω—οΦBΑvΒ› ί#*Z±ΈyΘζVg£+P,[YrΏ 7cοd…až΅ΐ^ΥΏυλ›ΧΕό¨vinύ“+\SλΙΜ«j΅Ω]Ξ΄B—1?©Z2 t«2©ωπL―·ΏυψΪ*xˆ2ϋπ±­‹ZͺΑf7ωexΏ*f]jϋπgό΄ΈυΎ Β§ΑLy«]²PomΟ F«"vευ§-‘“σΓh'—ίΒe·œQ³:4ΰ«N—»ΡlJ.ΎΨ§\fέύΒ Gπ|ž‰ήΌTΥφ€…MΥΖWx½db•μoΩμxξΫνlUOΌρ΄ΰΛFεW¬"αώύΐW΄p’ͺ1ͺŠf΄5„C; 7χ›έCWdaΨ{όtUΈΜlv˜½―~ΘίΎn‘kμXΌΩ>ožΫdžυΉ€/«jϊGT΅μCNΩ‡zφ αwυ›θ‹šψ'Η?“xvV@¦§S}6#Ί ™/ΩhΩό΄Ο3Aξ`Ο–‰P8²UΛ«ΈžΩ£u§ΐXCΟέv–βXΒ―ν΄ΗvΦcΗnχ3sΊφ—ͺΙk”γvmp ‰›CγΝΛRαΒΌ}ΫζÚ0“okTς #ͺ‚PCVdrΌmŽ_>>΄]ΰ9³ΡOΓ’SΚ55ηΤΒtΡ•)xŽΝΏΈ›φι{ ;;ήfŠΆΤj»ϊΠr0-oab_Μ&DΟUϋ@Vš½d!•†f•ާ}VήΥt½ω©ΪZΠ¦ύπaζΚ+OΊΑ£­ϊrS°0³υ‘a%P=nΰˆuj^«(<ν€»Β@Ά*¦ώa] +ZΨ:Ϊ, ΩΏχ₯.nΫ¬¦uUθ:»4žU}2wŠΈΤXΡEMϋρ½ΓͺNGοoΎ^΅!ςΰΚ_έ|—Λξ|†K.Q bθΞάΩ{Ϋ|Vm©eμδ'U―’‘ υΪH~ςKα#†V0=Ϊ’Vέ-©ξ¦κ‘a΅EΰΉ`!£Β•Ώˆ.Βΰϋνx‰Οχαpzξ”―9 ΟέΠly}»Y5»…?N&πRτζλό^sO—\Ζ^›‘VyγτΰU>¬λŠΉπ…jϊΎV •ΏΩ;"Όo¬WT™έW–VΕεHπ-ƒι΅ž;mg{FžwΞ…\ί'ψ§P »pύοΗϊtz:ΦΕη]¬‘Z―XmALk­Βqa€Σ^γ…ΏΥž7fλ_x²~e{Ÿ˜Ϋ?VA^}πE›ΎΈ€Μ4f:‚¦‘λΥ#JOͺοΎLξΙΛ†/f7ν+f7oˆ*\ͺCŒZρΞ3\ρžσύυhθ0x֝κ]•Ωθ|°ΨΟ\GΑϊƒWΨΙ¦…Ζ›>Γ’σ'π¬Puω…ύbΤ‘%±ψ*.aC©SPՎ?}ξ)<¦6–ΐ³Ÿ±Ε?Ύ‚ϊΕ?lψΨMη°Β²Νs§νb j“T‰4½κΞώΖΠUΏς_t#|½Τ+’',°›ωΒΎ~Ύβύ»βν§ψλνΟΊsvzέxŒ1ό3Φΐ³ŽΧNήΗ[=υXΟ9NV[}­z'Ι’(3d#¨υν~ŽUZu˜TnνŸδ²9Χj•—­uκτ·jDΟͺtEώuΦHXΟιψΌη.\{Έ+άr|x[WtΞT;ΠρœΛχ|πxΪμάَ‹V•₯ΟΆŒwZΖMΫχ&λ³`m”RcMΓK©Η΅Zα†?ΨρώΆ|ΤνhΰY·}ε«zW§•h³NVϊŒΣ9Š::@@@@@˜κž]<ι²[ύήΕίχA»pώμ}όίώƒb‹*Μm‰ι jڐύnPΆb…AKZΑ¨΄ŽRΛ[ΑΈJ}W&™΅"”jϋΝΌTΝάOθπŸI <Ϋsκχ:ύΆ¦‚ƒ'[nΚϊw9έ_–s‡ϊλa k 𜲠_Ζz)-7}/W~δšΰζŒK ­2ήυj€ gκ ω†ΐsξm7π«f<.rMUŒƒ!ξ5ωέC?cέ₯ήπsτλjί“I7ͺΦΫgπΘυœΚŽG›†ωV2h †9 ΈDƒ Ί―xΧt_3˜/z™\ρ+.k*ƒ6dΥ–‹VuY-xVlHκ_―lλχz0kΓe§gU]σC:ά‰Jα² νίί†@[ΰΑš‚ƒGo0,μ­ϋbͺχλΒy"͟Ύ«ξ[³`Ζ?Ύ;œW‘ΐάI_­έn <«’΅― έΤ:L«W©Σύ|ά8\fτŠzSθE΄ά»‡C]ΣΈμ={O,΅Ά―ήl―τmω ’kCHsœηΤ [ΊΤ*;ϊ§P' ΤΤkP½Υ MAΪ†ην π·πͺz>ωeZuΗ C‡ͺοfw:Ν‡’[˜NΐVΨkH•ΈjξΔ‘Ω˜I”ͺKͺtΨμq…ΏΩzX€·WۘΟ< †‘(ήyfΝΙ6x€ΐ³χ°Ο’Δ’ΛՎΕΩg‰Bcυ¦χ[ΰͺΉ7ƒI —γ <7, rC!g}™‹~^%π¬N0κΉ΄Ψ<‹„AΞγ·Έ’…ηuB₯ΦpL·ΞΛθίΣBxζPΆΞ άά\¦Χψ†ΜΤm}―ΌiŸ£-Z;μφ'Έψ\ Y5ΠΟΦk9φ#x½Tλg=uΖͺœ&>`η vΜηΟίΧΏΞG <λ1³ΛλFazœΠ²Yπ7f=ΔΥΖx/h¬ογυΩ.Ζxq’Xbu—Yœ…ΫOΆp©7Υ[τOΑ4]κ5¨?¬¨EΟ~B‹J6oѝAH:˜e’Ÿκh–ΏΰϋNUλU½>:2€Žqλj:׎eϊΓJΦΓΟ~.ϋ{Ρ?oλ³χΤΕdžGΪp½Gημ@1tεΑvΞR Pϋiόƒ € € € € €ΐˆώζ4Z…gmΎ‚„ΩΝ΅k1ϋέσοφƒΤ4ϋ­ϊ“^¦9πœωςAφΫg­ψ£­/ZθΡrA±dΦ?!{`Ώο·ί 4²cιΑ+FŽoΥ4Z°λŸΫίU}λ Gε‡Ν6YgTŸΩΰG~ωCΧXΖ*‘ ³e*Ξθ"ΟNΰ9‚1Ά =w[ΨYΤ½X}w²‘h8ΊμNΒΐΡPotέπn―ŠŽ'ŒήΌ½#-'ZEΌ=’ϋ+Έ>εΟΡ²*ώfΥ–iuψΚΎυμU­4Φ׽ӘΟV=5ω‰ [7`eΣ«υ°Uzέύ\z­½Γϋ*―?νŠ?έ†ΏΩUλUΫΒ;›€­gz՝©žZΓT·lܞγΐϋΓ»J]εςηX…?k g  όόcα|ΝWšΟ Ο4T΅ΠY|ξχ»˜…+bρDψπΏ­7ΙΉV-ΆTπΣK―i Eϋ]8σ•Ύ½.u‰E>α'W^χΓb7ΟγoΫ‰†―ΦI…ΒrΞBQͺ:›έζ¨pv_Αϊ„―Τn7žKOήζς§Φ‚¦αμJb‰Οِڧ‡“6UEΉVΐs+•©3M‘™Δβ«YuΓu­’wmx_ιφŸΦͺ‹[ΥβΎέΞφAakC—ΌγΟnϋG_SU€ƒΧ©_ˆ½¦|Mλ©€ΠύΠΕ΅mέΧν π¬χ_½ΪB—ΉΣw­… κkœΩΰΗ>”€Ξz‰V”œvŠVdŽΫkOΝWό΄*’£6{}&>Έ’’'νuxυeF_jz±%π¬+ αͺEΓλν·­Τq$i=eV}\a\5_)ω’|Θ­ω1γ <«ςΆBj SεVύ―–ΏδΗ Α8MKΰΉα ¬dA»δ’Ÿ³@›}>X+=y»+θ‹£΅†cϊ½<Χ‡YηέΰŸΆlόάσk[ϋG'|©ε6σ7ςVYU½ώΤΒΧK$π³}–έζήυQ;!톍aŸc£Ύ~fΣ׍,SŸωͺK­΄­vxφ²F}fŒ\Ž)π<γ$Ύθ§¬{mΘ™hΥo­Bz½ύΓ?9ϋŒ ͺ=· l‡z+ά|¬…šπ·R+οθ+Ηχi؊]g7‡]f·;ΞͺΑZ0‘ή~»†«šOΠbσ}Δ₯-h–\~s ¦·Ί,ο>—;‘ώcΰ9i«μ¦‡„‹Λ_z +YυΪVΐs+•©9-ΌSg}hͺeλ‘· Φrλν‹@|ξZ8Έ:πFX•WCΥΨ«zΝΧBΑ2ό ;ͺε¬b’οΑhΧΒ‘έδ ΧΧBg~ΖvX‡²n=1U…ΉZlœ3aκa ΒMG[uΖλΒϋ[8ugfßΨλώ³~ΎV‘Ψp-DƒpΎBh½sI‹Y»zXΟ)²'eCχ¨ιύ€ςάώz'gύ“Hšϋ΅jΑv³pΓ‘φΉqCxwpe<ηh;Ύΐ’.ϋ•ZΗ”ςsrCςΆqžλ Θnυ™μC™§μΰ«ϋ6ΣΆ=ΪaΝΎ4χγ"εΉόΒCΦ ΰΗΓfΡ„‰VxNΫΠEΑH Ή3v ƒ„ΝO¦ £ wͺεΞόΊU³~Ι_oχz‰Vs/X/ύΉέkΫbAΡ‘±t°₯ΟN―aFίw;­πμwFΣ?ΡεEίΗ›f³pϊΡ΅!»¬‚Ίο<ƒέžΘq›{‘°#X4ψίό4Ύ’νκ{ψΙνΟ9{ο¬Ύ];φ’ΛmjηG»ϊω5Hρξs9 Ÿ•·_΄Ξ€΅ΑkYοA τ#ο%κΰ’?¦©xŽθXχSτ1έx=xV5·ψ|vϊŽ΄vgjw ΤΩtΞQ}Νώ·λaΣ{δχnœQΥΨώWT=πΥνujΥΑ7έΐoV±χίΪꒁgυΨΥj©OoγΏάκΊ:Εhύš‡8ΚnqΈ±@σθ{BCUqλΌ₯0{Π’•₯›Οω¦bίε7ΧC—ŸΣΠRjϊReζθtΟυσ%?³uX‰6UΎξΫγ<;ZΠO.?qkν•Ρ™ΈŽ € € € € €ΐOΰYUϋ¬`›ώ†mΡ Ο©Ooν žθώ‚XΡοΝMΏi¦VΨΒOφ£Δ?όW=,Μc·†²tν7‰†f#Gϋη·ͺ5Β₯/΄Ψ0CνΖ€žmqΑ:ω€· =ZnBΏ?h½›ηf‘©q;=kkr'oηG νΆ-‹=R–'?½φ{m·­ηΜZxϋv=Λi_5·N<τ»c ^67:›;yϋaΏƒ6Ο7+oGޝ„Ί΅Ž ΏίΪνΡΒΞzLτ£Β³DfRλ$π<ν'χYz}ΎΧ$Z]x2Ο~RY ώΒbmz.³ξΎΑ"\ξ,[ί·^_Ο!SΟ_Ρ ¬^¦`έ°f‘εΎOφΗxε- |ΥO k|½V1QU“ΟΨέU^φPuVPoH΅‘kknυΧΣv¬ωͺƒώΦΘοώ‹+ήu¦Ÿ©!:ΖΐsΒͺg¬ΚόXZΩ*ΥYΕΪ ΅ pͺ#Iφ+ΆΆχ²ςKϊΙΰ1ͺκ˜ψP­„†±―ΎσrpWx™Ωδΰpœ‘‚₯αΊπΚ¨g7;œΰ{PUž<έˆυŽ#­ΟͺΠͺ0—šͺYο<}ΨVGC―ͺ¨―pas›hΰYΛ‹:U½\UΜƒ6‘ΐsϊσίuɏ­γ₯J± ξ9U4·ŽL έ—Ÿ½@²±@IDATίWσ ž+Έ”^ƒj XΆ EΫ} <« ΊΎΨͺ΅ iΪgyίΧμύ@_Άί|ήz Χ^ίzL»Χ‹ΆQ―—ψ|ςxƒΡΡ ΟΎn’\ΠsχJυuSߐhπu,ηρΎ7»%π<‘γΔή3Υσ]=ΰυΗ“Ό‚υV·Ήuxφ½ΠνKZlŽωjΛ΅`²BͺA›ŒΟh•δ'Ώδ«[ΰΪΞυŠ<Η₯WέΩ?oP]Zƒχ³θki²φS°]έzw΅~ <λ΅*Ϊ#5υhΦί±6UNΠμΤ’g½ΏζΟ¬νυΗƒώύnφŸaš―pΛq`η1AS˜Ή_˜#‘ζΰΎV—ΡΚΓΟάΨIηUιυπΧ3γοϋ fόzίa,cυή ždžΆνώ|DΣs'mΧπ=JΣtΞ•Ÿί«"φΐ―‡χΧ|4@@@@@¦‚ΐΈΟΆα «œ±*ΛΡύM2»έρ~$x_ χ΄ν·οRtΦΪυ̜ηSν7ΰ€’ϋo—·Q‹}³ιΩ-~νGΐvVύΉpΫΙώ7qk‹ΟΏΈK―²£Sa.΅!…έ‹τ·™Μΐsόύ6bιfΏjx‚ΌΎ­ds‹žύoωm 'κqͺbTΆn^·»O ΆΪοέ°ΆΡκ»+’4ψ»΅Ίa΅fΙ:hί¨d°Z=©<δ2RΣΘ»ϊέ³]ΣΎΧ{U·Ρr»‘x[mKσv]u°+ή~J«Y¦E‹Nu°nXΠ,Ό{ηΐΕ«³πω&ε©: <χο{SXν¬Z*ΈJ$΄5ΚT‡ή «Ψ5ˆso»_YΰΈEΛ~΅}…ηθμϊ Tγ„ ±¬P`ΜͺvF›ΦsθβΊύ—ψΙ« -5­}\p=ςΌaovGΤήμfVΰYΟΫ·ϋyΆ-ŸVΑ ³‘ΣπΥI+‘ ΠAΛ_ΈΏ+έ{apsΨev{λQρρuΓιΑΆ&–\ΣeΏf!υͺ²V|Γ‡ΡʏίlaΚWjεμΎ9~τΟπ±γ <'mθλ κ”·πyιώ‹ΓeF―xŽjτφυΜ—VΝ C˜‘MRΨ2«ΰͺNΚ- ©yΤVα5c•^ՊΊΤ*8žδ―‡X°-³Ω‘.±πvΠΪ0κv―ΰ«σ•6O«¨_ϋ―^>|LδŠ:>ΌφξkVEvw[Fe\ž5€|b±ε\Υͺ99Όε…λT‘S-7}―°²zΫ§Ν­r«@Wω©ΏϋΗkωΤΚ_σΧ ·žΰJ^α―‡˜Kvλ£jA&›˜;εk]Υ[*\ΟQŒά΄χυτš{ΫϋΩόR ?­α½―UΰΩwnΓe]ΕήΧςη~Σ¬|ΓZD9ΉΚ·ΉMFΰY1³Ϋe²ΈUέ|Κή Ώηa=ΧΈΟ €οtJmψ#;–l[μσNΝυ0pή:Ζ¨i΄%?±‘yξι'n?9ό|ŒΞ£λ <Λ.»Γ‰~Θ’ͺ½ξςμ;l]R+neΗ·U§Ά¦ g1ςev€Χ‹―κΎΩaa(OoyJu,η‰'©Οξ`Υs·ςΟW΄sŒV_2:<Ϋ’lŠ\ξŠVMΤ2›fΫY{νgMοίλR__ΧKΊΜες]] [vλ#^Sjϊ~’ο)4@@@@@¦ͺΐxΟςΘ|ι,7ΙώΨίπΥ|πΠ²jνͺ ϋ;ν?jq}”ψά9ϋΈͺε–Ττ;€ς8ΝU€ύυJ]eEXŽNjΈ>™gwλΫή~žs*δ¦V•νhnΡΐsσ}Ν·σ—dΩ΄{š'sq 4‡Xλ…„Ζ΅°ϊƒτzΦλ4h>£1BαΥ`ΎYy™\z=§Ό€Š4ΤΚOέι«s4O΄br»ω4­ͺ!λ·ΙχΊ7δ JW­γ…2—ciΣφ»ΕΕζYΤΟ:–ŠΠcYζ̞gΚž> ͺIV+7p¨ϊ¬q'm²Ο Οm‘ΔGV±aΆsɏւɺίWI>ΤN"¬hΚBs™υφ ¦Xει†·Ψςζ8πώpRω™»]ξΔ­ύν™xΞnwœqO¬rο ?Ζ-@ΩΏΗ_‚ΙnθΊ#\ρζcΓΫΝWϊφΌ8¬ϊZ΅“ˆƒ–±DXΑ‡j’.US°&χ§-†χ¬Pΰω ΗΒEͺ"iξ„ZψΓY•ο9¬ΪwΠJOήζς§ξά /΅/T ?hC-ήΪϊdŠΐs Τϋ— ϊκ€_­b'±ͺB׎ͺ·&lΘ•δ²_ Γΐ !S;N[εδΰΨ,ZΘ¦lUw ‹Οm–ίΒ^Χ΅}(n:Ζ?Gb©΅¬ςy­’xΑB% K·j©Uwv) ©Uv£žk=g― Λ(—\ΕΒΤ±9πU†*χ.搆قΡpZρžσ­Ίπώ‘œ±Ή±aeμυ¬P¬}IρΓΚ(”­Π¨υξTΥGuΰ(=|΅½gένT=Z•‘K¬ξRŸΪΨ/? Φ₯W.£ΑΝβέη™―*]Ns±χ}Θξ¨'ͺZ«@cΛΐ³Ν›ZyG smιWΆ―κΤQ6;WrρΕ–·δ6ΦλuΠ_sεάα―G™Œΐ³–§[r©΅ύ’‡?Β•«υxKΰΉαΨ΄Žq ύ'­GpΠ+·l_π†μ‹^ΠTν\΅Κˏ;…š+―ώΗ‚ΗY—°/Γ©Υv­OV±V|ǁΰΑ‘Λ‰ž΅¨δr›Ήτj»ψ₯ꡬͺ€•—σUΰ8έ‘τ‘^/Z BΫ o-xž_7ͺPl«ΦiΰyάογMO>–ΐ³2‘γΔY‡υ’LΨkZMαΣCWϊαΉτ…M―—”z±[εZ΅θk=Z%]pQΈ5lͺ$nCΕνE:Wʟm@zη₯Iϋˆžυœiλα―ΧuΠς6:@ΕήηΥ’Ÿ)Ρ Ο“΅Ÿ‚ημΦΛYxn΄CVq‰Ϊwˆzˆ:Zi:˜ŸK@@@@@¦’ΐDΟY1ϋΥ£ύο΄2 Š0)ϋΚ_r Nω@[²h―’D,Zq° ι·ττJΫZNΚFc  XΖ@Ω†βgYN£MͺΎ€I <Ϋ2UΘ-(*SΌΗFήΎσΜ`U. <7ppc τοsΉ YO-4ήΥΘΪΘΑΙ₯ΧυΧﻃΗΦ wy“ύ8½?τY±ΐ±6…žΤmτ¬°ΈBΣώύfŒ ˝l£ΙΪςήΛ6ސ»Šι&ƒΌ‘mC»‘Σ£Ϋ¦π{ή—…“ΖR1;œω=Ό2εΟι/ΰ4δvΠrgνiΔΞψ <«ͺ£ͺͺ­όψ--‡/ΘX•΄ ά¨y΄₯«<{ŸU‚ή *¬/@‘ΙΒυΏΧp©!ΖU)3h…;Ns…+αoΞΜΐsΤHO¦‘’5d΄λŸ·±κςaCMΧ†’Φ1ΈŒΝυ~ UάVΌVΨ/wμ—όέΣ~twΆ(?ϋ/ <ΧB Αcύε$žcVωnš­CΠJOάκςV•·U#πάJ₯w§ιNA²‘†fΧπκyϋT•Γ°YUΛΜΖΉ„ wU^yΒiθ“ šmPiS›sgμf£Χ[>TΩμV΅ΧΊŽE % <·|P}bεν}•ϊΤ§·ΆΫϋ©Cφψ²-§e³ΧOίNVuΪ:¨²mPQzΤη:ί «²¬3CιαkόβUE2½ΑjC΄|BλΌ`ŽC ΘΩ——^lΡΐs»υoΘGfjxΦ—ΊΤgΆρΑfυ(mΧJήh''hyχdžcs-dαΙγl•>ğ?go ^—ΖTαΉεŠΥ'Φ*'οη+υGηKρ‡.YΟE§ΧkΚγƒϋΑ΄ζΛΙ”N΄+£½^τώ’΅Nͺzͺ <λφμφΊ™Μΐ³όΖύ>ΧΫXΟ9NόSY%χμ&»ψ‚ žzψ₯}FοΉΐΒ«g[O€²ΏΔΐ³Ν‘°N ™zEή’u˜(XG³Ιϊh<'>°‚ΛXΕf5 Ν₯`jΠΪžudμ§ΰyΊυrVž*-+Θ¬sp eX³cnΪžη¨TΡ:—ŒxΦ2τΎš^ίΞ}Τμ3`πΘu­°AΕΞ—oΆ?DΦ>§Τλ»]oηΎ]Ξ°`τjώακΰ?λώœ^ηφAΣK+Ο?θoꏊͺX­V΅N.ΏYeΖωS› Ϛׯ§Fέώ8ͺ‰MM°QGΠja°ιn"€ € € € € €ΐ,°Q±UΌMΝψ©”fιΣσdτ’€‚¬ ξm€ίζ‚yΪ]κ·Ϊh˜Έ+ϊ6~ΫmKσtύ^Yyαa?YA^U‰ξ΄uKΰ·!δnGςΞ(ώΤι64v‹ΓςKjέ~o·ξS>πœ°ͺΙ};žnΏ‚uΎgB4°άkAΏΜϊψ*¬U -ζ­ζήvΏZ!Έ«α2ϋΥc*7ͺ4ΈJ„§>·»ΛXπ/hΉι{YΩZ(0˜¦ΛΤͺ»XΕΏ%γsV™―l•Q£¦}οDΤ|~Hθ#¬τΠ»Ί9£Ωό}VM9ρZΕ@έ1xβVςLm¨„™xNZ 2[ΊBΟY± σ …-‚Φ·ΗyC^XΠ bΥs››ΒnιΥχ']ϋ;WΌεcŸ>h™ŠZ¨Βoo?g‘Σ|8―$>φ…Z%ΫϊΤρTxVH’ΫΧψ*΄ZŒͺL+t­α―ZͺΟ$ϋT89wΖξVυΖπ6WzO@‹SΦ›P4UΘ ‚< ά”Ό•ΈΜU‡†mXΜ*«'?σUί£1˜XΨύYεN{ΧΓjκΩ·ύ ~ΩΝaΗa Ά ͺΖŸw±Z΅ΞΣv²DΟ Ηy«ΗhZxVΟ,U›Ϊλ%§ͺζ₯‘vqι5χ²χ° όύCWd½'ο=ΐ©žVQ4fΑo·ύ/VYΤ7{€VήΑΒΰΛXΥγΪΛ+ι'+ΈͺŽͺ$]}λωΪΌ=ψo«ΐ³*Z«³GεΥ'­sΝυlVZ yΣ6π\wΠ0AΙe7²cqI«˜=O¨£JΪ₯ϋ.t₯Ηn ©πΞϊ•Ι A§‘+TέΉΪόύ)x0— € € € € € €t©@4[ΝΏνr'o†{ΗΊΚ χνz–ύN=—ˆF1ϝ΄έX>KηKώ;N…Hge+άxԘͺ"ϊujΉώqγQχ·―πlαx΅½VXΝώ©υBψ½έϊOωΐ³6<»έρ ©}aσΰͺHσΝBxqϋa<»Ε―}°©ςΖ\ξ”―Ήͺ]ͺM4π_h)Χ·Ο•a`W‘λά™{ΨσΗ/ίcUϋΏuuC5ԁΓW·žL΅pWj΅έ\fΓ‡σ—­G‚zl(Pν›…|κ~™υgΜc‘βܟ·ρMœHΰyπθ ¬m%\v,™² Αb>§aέcρxx_αo'ΊΒ_ oΗύ€λϋΖEαφ+°œ?ΗΒάOύ½6UMYξτΊϋ͘Η¦ƒG}Ρ‚ƒ―ψy|y%Βeϊ*Χφ<>τmvΙOlθ2V)1f½ΐ‚V~ΑͺΈύ±^vίΒμsόΔ‚‡υV²@H^αΟMADYΝ|ΞήΛͺmίο'iˆ EŸόΨ:Α,ώRϋTA8ΪΤΠ0ξ±iσϋαήΗޱπ—†o₯ϋ,άως°PώԐηVX Z!Φjώ«ΨψfψΎ4Ξ₯ΝV«Sύ>0T Ÿς:^¬Σͺ€W,Άΰζ{ΥΤ‰A½‹ύΊhδ«l:Λ―› Qλ}|œΟ8‘γDŸύσψ/–:ηhE`œλΣK›•ϋ©—\XΧ‰ Δl”™Ψœφήύζσ„œ'FΙ£@@@@@@ήcZXyϊŒb©zVuζv£°6―Β­ΚOagewr'o7jˆΆy9³κΆΦ³Ώ[ΒνΩΟ«ό₯ θ*Lή-mšΆžEύκ¨r΅Bξ#­_4$>Zx[Ύ ΏλΈRΣφ«°o―΄Ω"π³Π”ΒΔ1 ½M•{΅³Tρ+Ύπ> ήg•Ώ&.η?i’g-$ύ埻τΚ_ žΒ_*ψ¬Πo|ώΕ]|±ε,¬› οWυΞό»…·…žϊχ±Κš‘Π―ί[††eŽ/τ1«°Z«žͺ© ₯!ZΆ M$π,c΄Λςsψ‘’]ΉΠ0kf³ΓlHυ­¦©ϊmυΝgkλn²h˟ΏŸUΖ½8œ”Zso—YoΏπΆψͺŸ/?ᫍͺΊlsS…ΫΑΓ­΄Zggψώο\[«ŽX{΄·ς…ξl»|εΡΘτΰ*η@‚K@@@@@@@@@Ιhϊ«e*π¬p«±­š­ͺ”œ\z½†»–­pΓήƒ­Άwf­F7zhŸ)€4ν/­g»ΦIΰΩΥ΅‚°ASNv¬αωΰ1οεεlxpόύŸp™-~γ |DοΚ[/Έό™»»Š σ΄ΙΌrx·*S—,ψ«0pPύ8Όs”+*Œ«Po £EsΛ½ΣεN²œfΆζ`²BΟ…+nYιYϋ;ρ‘UόV¨oω©;‡m‘*;§7:Πι8 Zιή ]ώΒύƒ›=q9Ϋžύή°*ΐ©5φt©ε7s±y?hΑγxΈ“ͺVΥΉτπ5pέο,°ϋb8]W&+π¬e%–\Γ₯VήΑΕYΦΕ­ςt΄©βsαΦ\ιΎ ­’p1z׌λN­²“K~z_Ί‘ͺσΰ›xΟ_\ρφS¬r΅ ‰ήΤ&³Βs΅TpΥ·žw•7žuΥןvE (W^|€ι‡ίLX`9ύ…οYUζ7VΥΆν-=t΅+ήφgWyώΑαΤ«Όœ²*Ωκyλ›+œGϋψΟsmίύΦe6ό©K}vΖ›PώΌo»Wtxφ ο›Ϋe7=Δ%–X=|£«V*~;‡.ώ‘Ÿ₯οKΓυ πRp@@@@@@@@@`T΅9kSγ /έΡR•λΛ[…ΰvΥ ;ZΨ,šY!ήΎ]§;…’Kχ\V₯Vp7΅Ϊ..΅κ.a¦―έ*)$]Όγ”ZžRES­)π›\qK¦VQΪVαΰvΛ›ΥΣϋχΉΌa_kε/: γύ菛ΝmEƒ— 7‘›ΓήαJΆΈ“ηΫΡω€TΦΕX‚³σψppευg¬ΞϋPηΛ™ΐ#T±9ΎΠRjAεΚ«U"ξdyΙ΄‹/Έ”½p粞ΟωrΫ t'˝σZΕfUQŽΟ³hΝί‚Σ08ΆgΦcη^ΔΕηϋmχσ>pνͺ•±=vψ=βL=r§ή™~κbσ,:5ΎωœΊς—='π<έΟƒ@@@@@@@@@@ή 9~ωδˆOϋξO—ρώ^Ό3΅Β–.΅Ϊ..ΎπcZύΚ‹Έβν§Έβ½ŒiώnŸ‰ΐs·ο!Φ@@@@@@@@@@ ΘnqΈ‹ΝΫΊβqυη\ώΒύΓy§Ϊ•ψ<‹9UΉŽΝ[»Œn_ω©;]υg}uλΚ›ΟFοκωλž{~² € € € € € € € € € €L]ΟSwί²e € € € € € € € € € €τΌηžί…l € € € € € € € € € €SW€ΐσΤέ·l € € € € € € € €LqΤJΫNρ-dσθ~β?Ξξώ•d θqΟ=ΎY}@@@@@@@@˜}ϊχΊdφέxΆ.™™ΫζήίΜςΜά9χ\            Xuκ$x~α…€W―^^«n½υV9χάs½cN0ο!Cdΐ€ώ,ά' ̝;Χ„υΘTVV&[o½΅4oήΌΖ2L$  ? žύ4ΈO$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@ ‹ΐJ<Χ$b¦ΰΉaέυ±΅½{χ–ηž{ΞkΪ”)S€S§Nή1wH€H€H 6<ΧFˆι$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$P Pπ\― [VEΰβ‹/–xΐγρή{οI‡Όcξ  @m(xΣI€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H ώX-‚ηΣN;MŠ‹‹%33ΣΘ”••I~~~5J………‡ι999–?JEE…dddX<Κ!ίΟ?lρYYY¦MΑΆ¦°tιR™?ΎΥQYY)-Z΄uΦY§Zœ»€€ΔΞνΪ‰6|ύχ …¬\“&MΌώψΫϊΫoΏΙ’%K¬ΞυΦ[O6άpΓjυϋ#P/Ϊ6₯₯₯΄iSiΩ²₯Ηɟ}ΖωΑνD"ςϋοΏΛβΕ‹­ά&›lbi β,X`ύEΉ 6Ψ@š7oξ’½m’ώ"ρΟ?”ώωΗΈ½φΪq}A»ψα)//·s&cιDwPνE?ρ―Y³fͺU+ΛƒώAπ}Ί\tΡE2fΜ/ώ–[n‘!C†˜˜ΧEΏώϊςτΣOΛξ»οξ’Όν_ύ%wάqGœc°K<σΜ3εͺ«Š?ϋμ³―_?—ΕΞυΘ#Θœ9s,η?ψΰƒeηwφςμΏώ²ωζ›Λˆ#Ό8μ\xα…2hΠ oϋ–-[&Γ† “oΌΡmϋθ ;μ0Oΐ\PP ϋξ»―Μ›7Ος€Ϋ1Η#—_~ΉWfφμΩ&"ώΰƒδšk‘?ό°Zέ½{χΆ΄6ΪΘK φwτθΡςΡGΙύχίοεΑΞ‡ώ}σΝ7‚λ 1΅?άvΫmrΦYg™(Ϋρ8ψAΔ ΰ†kΣ];KBy΅ζΗu0`€k‚zα C‡•SO=ΥτHK‡!„ΞhG’6CH χιξέ»Wλk° <& X}(x^}μyf                XQ+Eπ<|ψpιΫ·oΒΆLœ8QŽ?ώx/ "ΥΣO?]Ξ>ϋμ81λuΧ]'—\r‰—Β`δuα‚ .›oΎΩD§˜¦^~ωeιΦ­›—Μ;μ°ƒwœhγ©S§Κf›mfΙ/Όπ‚τκΥ+QV‹CqŽwά1iΒ{μ!―ΌςŠ92#nΔt'^φηυο_qΕrυΥW[ ;wξμ‰ύω°>@πŒώCΔ]S€`wƌ)χ·¦Ί‚iAA2„Γ‡Οš5+˜5ξΨ]7ŒkΊΦώϊ'Mš$Η{l\=Αœϋ‰'ž0φ©2„SxΧ]“²vη€xΏΈg3  Τ?<ΧΏkΒ‘                @ͺVŠΰΞΕ'žx’”••ŝ7‰˜ƒ0Ύ.8‘j"η™3g ¦Aχ]”uΠ΅‰`έy°mΥͺ•|ςΙ'Q/œ…8ΰ€ZΕΆ(w葇šCt8–•-xFύ£F2^ΨOԟν·ί>‘ΐ"f8]§"֝0aBB‡kΈAΓ±Ωΰ`}ί}χ™ƒtmύυ—«mΏM›6‚kš››kY!X}dΑ‚ˆΆΧc“ €(OνΏώ²Λ.»TsxΎα†Μ]yzφμηΰŒΎΑ‘ρ½φΪ+.ν₯—^²:—-[fBΫΙ“'»&™ƒ0œ΄“ žΡ–Ž;ΚάΉsεΘ#4'mWξΖcǎ•όό|;·ί Βpˆ ›5k–°ΏΟ=χœ9JΏώϋrΤQGΉ*½νk―½&RΏώϊλrI'yρšCΈΌρΖ'%ƒάΎΑθόσΟ—χή{Ο+;rδHιή½»9&sΜ1ςΞ;οxi`²λ»JEE…Ή5έΐΡ΄ΉuλΦΆ=ηœsΌ²NŸ™™™Π%ΫΟpĈgmΏθηΖ5«¬¬”›nΊI Ίvα–[n‘σΞ;ΟrK$@$PPπ\.›B$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@iXm‚g΄3(^>|Έ@Π‹ν₯—^κu’Σ«―ΎΪŽƒeœσ³ΛL‡ ‚WΈϊ>ώψγ.›<υΤS& vϋΕΊN˜ϋlkςΈ°ύφΫKǎε«―ΎJΩα9(ΦMδ|Œϊαl™™)Ο>ϋ¬;ΤGΑ3ά“_{ν5 ‡ΓRΣ5^o―S5μL™2EvΨaιάΉ³'‚χ3…(ύώϋοά«ΙΚΓ‰’}  ϊG€‚ηϊwMΨ"                H•ΐj<Ϛ5Λ\ž“5ι[o½΅—ΏBdΊΣN;yι|πΑή1œ‚!V…ΈuήΌy^όν·ί.]»v•h4κΕA Wκ’’"iΦ¬™΄nέZκ"xφ»£ςŠŠ πmsνnήΌΉl»νΆ.Jš4i"―ΌςŠμΊλ7qβD9ώψγ½t',OΕαyΠ A‚ό.œyζ™'ξΌΌ<χή{οPμ[[ƒόΡ§:ΈΣ$'ί4Γ}ρ8y#BηνΆΫΞ’j:g"a7Έ­³Ξ:RYYιUλŠλ»tιRΩb‹-$‰€,xv•3ˆΛο½χ^ωρΗ]’mέυ‰‹δ  @½ @Αs½Έ l                 Τ‰ΐj<Ε»ώ^΄mΫV>ώψcͺΊψ ψυΥW_5α*!p½ΰ‚ dΤ¨Q.»‰~O?ύt9γŒ3δρΗχβ!ώ8p wŒώωGž|ςI8‚[„ΪΐΘtήc=d€I^»ΏόςKOČόΞMxαΒ…²γŽ;"ΚB=δΡG•ŒŒ ;† sΏ~ύͺRΕϊ2`ΐΧζNƒγ6Ϋlcu˜Θά ΐ]{ ς­ΏAώ© žΑmw’tΈ`C„μDΠ½zυ2Α²‹žsϊτιΎ}{KF_vΫm·8ρ±žpu|φΩgςυΧ_{ςΰ}ηgΰΚ|ύχrΘ!‡xΒλ}φΩG.Ίθ"—,cǎ΅{ΕEτιΣG†ξ]?Ο-  ΐκ'@ΑσκΏl                 Τ•ΐj<£αC‡•«―ΎΊZ9ζΕ―pE?~ΌlΏύφ2bΔs1φWτφΫo› φωηŸ—SN9ş$½{χ–σΟ?_Φ]w]™1c†τμΩΣΟ;ο<Ήωζ›% Υ*F ΰqX_qΕςλ―ΏΪyύnΐp{~κ©§δ‡~wήΩ-@t‹Ύ΄kΧN>ύτS€vΑ‚.ΩΔ΄}ϋφ­“ΰmŽΦΰ ΧkZ΅j%}τ‘ΉZ―*Α3ΔΖ~'hœ»cǎ§mτ|Ξ:λ,sPnΣ¦ΐ{ν΅ΧΆ&―ω­·ήjBdΈ6oΊι¦&BΖ΅χδ9ϊθ£νΎτKζ<tڏ:ꨔ.^ΌΨœ°έ΅Γυ{΄sž žΑ8Ρ}μoχI€H€V žWwž•H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€Vz!x: »ŽΑ•wΛ-·t‡Ά Š_γpˆž9s¦@[ZZj"Ω?ό0+ρα”)S€S§Nu<'5;nά8θyώόω²Ε[Τ”5. ξΒ7ήxcJbέ[nΉEnΊι¦ΈςΙ ‡ΰ{³Ν6«΅ΏAώ©:<γά‘<8Y3ββΡ~Ο‚nΥ.£Λu*}…ψ:‰˜3ψœ9s¬X"‡g8NΓmϊΕ_Œ«βϊΏώϊ+NŒŽ ΘwΐΔεε  @ύ @ΑsύΈl                 Τ…@½ψΰΉζšk$袍ΎΓΑΊgϞ’WfΒ„ rΒ 'ΔΕωΟHXΊt©έ7UCΏ~ύδμ³ΟφΪtόNΖυ”””ΘOέβ’ςoή‰KψσΣβŽΛJ€θ±Sγ’άAΈ]gΙή«Ώ&κ·Λ‡mφ>§kΏφ΅¨–²―§HfϋΓ%k—,.ϊΖRώΫgΆŸnΫ²χξ/ᢝ­lρ³ηWΓdνΡG2·>@*K‹₯ψ e€’Θ9ό: ­Ώ₯}(~r€¦Wϊ“ΉO$@$@$Πΐδq½dnxυVW”JΕΏΏIΕΒ€μ£'υΩcvυ‰gmΏ…H―‘ή€CΒσ$Ь\ς‡ύ¦’rKPΘέg.)ΌΙΞ’έυ< ιy3ršΨ5©Xπ”ώΉDίΎWΉα²&άζqƒώq˜₯•Όr­”}ρJΒ|ˆΜ;k‚d¬έ‹:Z*ώωE"=υ‡ΝρƒHΑΊΥχ ?‹HφG(ΈsoϋC²ί|nqZos)α)~ζάψΪ²r%ΰ»vβ]¬xά…ρι<"  h˜τω3Όεή’…ηΰζ›H†Ύ'T–EνΆβ9RϊρΣ*d.MΨ7Œofξ|Œ„[ο*™Ω–§²π_{FΒ³lεΏ–s‘΅ŽaΧq¬Όμ»i’sπ•ξ4)m£ο=$εί½§Ο¬‰ΗΚƒ•”ϊ©Ύ'άeΡ‘wKF“υY*uδΏRωίίΖ£lξkI9ϊ &§Φϊ–-gχ?€όΗιΦV˜2ήg"Η ±ͺΚΏŸ&ΡwτW›|_ίG2·9@ŸU•^ο}dΡΟφ>S6ο-ol;΄ΡΆu暨AΦΕγ/ͺρžΙΘΙ—Θ ΓDBY±~κϋuτ;Umq™νΣo'ΪΎ»ΎώΜ+Ÿ`Ϋ]½•ϊˆϋΎbαχφήœ›πϋ„ώζ"ΗάαέC%―ί*ψνCΦξ½υZhΡeίL‘χf±γμ}ΟΠ±…½m?QΏύ…"=†κyΧ·¨βη.ΦϋuΎdp‰„7ήΡβŠϋ?ύ!YŸ-ΡχΗύ6p?βΎ\Ϋ`Θ9ϊ6 黉½SMΎ=>93Grυ½χcω―ŸΨ;y|‘ @ϊ(xNŸK   40<7° Ζζ’@c! ƒΈygΌ˜Vo0θro\ˆ}έuΈjι«S%qyάAvΧ $s«ύάaΒ-ΉK& 2α…ːΉυώ’½_μ#xtΚ}R6οM—”pλϟ0CU$DΒE£z&ΜqA€ΟθΨΐ»:ξγ ΈΖЁ°άΎcΥ‘B<*ό(ΦώC°‚ψμέ΅Œ†’‰Χ«ΠβΫO·m™Ϋ(ٝώΥ3i°2Ο°}χ'σ> ­³©?7P*ώώΞ%ι€lXrO{Ζϊ€ΑΏ’W[žΖ=   I rμ&”­±ρ:Α©τ“qRς’~xLvΒΗρόK>°ηΤ}kˆD§OX]V‡γk 8Χ‡£₯δ΅›’fΛTqnδ„εηΐσWωΟ'Μο?gΙ —[?f¬ŠL7?>¬η]4΅¦*½΄Β»KΕο_HΊηπ*H°»άΣΗ›Π3A²EEίžπ#kζΆΕ„Y‘„Eρ,^’δΚT  φl{βpοct0Η(‡ς~§ΌTyAT\4Ί·'Žυ3Kt.ΔEί} ‘h·³ΌΤŠα£·›μ¬³hl?)φέjΥγ½οEœTνωΩH巐{κSή¬“+RλΆbρoRxWgp€{Ÿ‘rˆ΅sΊ<ιy*—-΄IŽn2e’Œαv]$χ”˜ Bτβ'cβο`ήP‹m$ομW,ΊβΉήD„άޏκ„Λ}-~Ω Ϋ₯uMQχOΑν‚ˆ€ wˆ›Τ ηκόΛ>RQA†@¨tΏ³_xӎ’ΫY+ a ξ   N@ΗPsΎ’Ζg«ςΏΎ–θkƒcΏΎξb²^ΞQƒUθœγ‹]Ύ‹ρ䨊ΛžΉ<2°WλvΗΚ!™ό](Π ;ŒΎ}={§2VŽxw*yυF+ι5JBMc’Q‹Hπ§²ΰ)yYΗΧυΩ΄¦κ8uΕ_ίΨω͍[+ΜhΊ‘ DGXΥeίLΥwΚ‘5Ζ0Y3ϋ ΛTάΊSΌε?Ν”»u]¨•>OΦ‘k’Y—Ξ|*&°O”Yγπξ•έω,/΅όηYΚΰο8ΈƒIƒ‘uZ[4žΥK&\—eEϊl{\ΕUφΠο6»μϋDxσ=ΌwŽŠE?Ε&ϊLT0iύΙeκ³z?uV΅ί€;žΫs‹υβψ’I·Έ€Έmh½6ϊ~p·ΕU,ψή%c‚uxΣΨΣΒ‘=– žSψŽ„Κάo#{‹$³Κ4¦θ‘“νΓ5ΐήΑϋŒ‰½{ΰϋ•¦ϋMcπ^9ϊVΛ^:γ1ƒΠ‰ΐ $@$°‚(x^A€,N$@$@$P Pπ\―[H•@΅χ:π˜Σ-ζžUN}e³_ˆλΊΉ0/όqyœ.=—«ƒEζ“‚g–‚Λ©?ΡίV qu…6ά*ζL­ΟίΘoξYp>Φ npΤΚή[ŸUD‚‰‡…ΓS—/ί3»V'cΈŽ!@ĝ>Fπ‘9ΌA[ΙΪ£―ΐq wK^ΈΜφρΗ/xŽγ₯χD±phΓd8ςαžDπ3σξ½GCΆ3ρϊ‰YS<Γ]ΊπΎCLa•UύIUπœΚo𝠷;GΞαΧ©+ςFvo”ΖβΚζj?+Έ`UΌΗ%+«Κ*‹ DΗNπŒχŒ“Η‚Ž―o΄΅q ­ΥΒ’*Τ5ΉψΉ‹τ₯¦¬*OυMqjc¬ο{ξYίΔΘU“\λ"xΞ>ΰβΨϋ£6ΧΏTΗμ+U ‘pfϋ#tBhk ŒNΠ/<Χ•kυžͺcp@@[‘ξΒ6100AΨ•ΝΡ{.¬ο`.Τ$x† ?rĺΫςkEχ·-]ω鏿νΛΏ©θkƒΎ;fκύoοV˜H¨ο"ΕγΤΉΊjE˜dί'Π¦œC―Q·τŽΦ<8t›+xUcύ"δ`ZU–εθ„Iά']cυ·BΜςLϊ~Ψιd]mθx‹Šͺ[4V BπŸ+™ΰΩίg+δϋγ~xΏΐ{$BΙ„kγVΌΒ9Uj‘4ΙάαΙήKί§‘¦“Ζ1”H€V”Ο+JεI€H€H€κ= žλύ%bI`!`³έΥ­‘LέjZ¦ y0£Ξ )γ£:–ƒƒD’ΰœ+ε₯+ϋ+.fω»ΑMˆfœPΓ?ψšΰ9•όqπψέΚζLTaIΜΉΒ—E°l[ζv*΄ΠP'·δv Ο)΅M+sϋ=n’r,M; nΙ9pΉΘ.p“v”μ.ηΨ!\%’ Ώ]nI€H€H€κ=ΏΰΉpHθΣ°Tsήy“- nL7λς°ΎΈyηN’Š\+—ώeΞ\ΘX4κ„„nh~Ρj"ρ1> :—¦ςοήΥ•>ϊω›bϋX²6’˜0םν*Ό}χ„"ΜΪΞ—5cν–zν^7ΑDΙp˜vΑο4\¬ΟΡΆά³KΤ-žGέ$9ΈΓύΨ…p›έ%χž°CΈήΩuα.@ ιχ˜ηΆV4β8]ΚχSKW† *ς/V1ˆ­΅Ξe7ξ χ[EœΰΉΪ½£ΒηHχ[Υύχ;DΆ|yUƒR<#;žΟ£“o«*Ϋ€*xNη·ΰ?AήΉ―λohK©ά¦βυ‘6n ŠθrΞλ»Ε™–TςΚυ*扽—ΉΌpDΜrβŸ9W—ύ~Υ%UΫζ~­dν?}Ά &UΛƒ{ΝΔ* /Έc/O‘ŠΰΉΪ5­V»κ}X‚B0a’p ύοZX’:sΗ£L ³ ‡©p›H€H€H aΐΚ1α*apρ3η &^ϊCδΈ»bΟ&‹Žιλ9ΚβύΗή_τ™₯dά…ΥΚωΗoKυω«ΟCΊcΨ|Ίcεœ_`‰•*=‹!omcε>Φ<«`Ίθ±SύIΆ9ρ 5kiϋΕΟ_ͺBι―«εq΅ŽΉCΜzςΑΚ(N(šΰΩοn\ώη\]…PΗ―ύ+DfεJDŸ19Ξ“€έ©r΅J<Φp2Ζ»‹†dβV‰sO¬zv­Κ_“ΰΩΉ‡cΥGΡw θZϊΡ“R:λ™@+βSνΧv-žθ› œ¨αH€‰‰₯Ÿ>gϋ5 ž3ΦΪΠVaB[ΡnˆΏ1i άzWC_mε!LΗ=δwCΆ„ΐΧDcuωr¨P„a6)uα]΅²p±εIEπœ¨ΟΑĿ耬xε‚ϋ ₦1˜šΩ³6­L0ΩRTΈΝ@$@+J€‚η%Θς$@$@$@υžΟυώ±$°ΖHwΧ9Tόσ‹”}596ƒO 0M\mƒsY»ž$Y»τ΄b%―\η -j| œ(έόβΛαΒgΦω*X€Ξ :ˆμ ap4·χ#U#κ`ΠG?Κ—ZωdŠuiάΝΒ­w±AG[r­ͺ…D`‰x'6‡‹CΡΓ'yƒή`§$"ή'lYήIξ‘   4$΅ žΡΈΔβΩ‘πξn‚ejΰ•wΖ ΆΙeψΈχΪ «―eΠ?΅ }υcnώe3lbΔΜ·οιŠzΫμ½ϋλΕ—«WΉ~?MŸ­΅4ύ+SΈ΅žΣe¬Ϊ¦›Ώ.BΤtΟh’w˜wζΛjΉ9n¨XL‚…Lu{Ζ‡ΰ‚ΑΝEάσΎkY±L°yΠ_>wΐs1Ρ2Κή¦‚ς‚E– w28κ!$sΛ…[3„ښAχSα•«&ρ±Αέo΅1Γ 1yΪ'sSw΅‚;χYώ «Ξ\ΩU\EύŸΊΏcuϋ봏ЙΩΖ°π#ΥεožεΑŸTΟιώΌΚugU ž!B ο9@'ώ`ϋξOhέΝ$Gέ₯ΚΎ~ΫΔ vΰ– Ηύ€ηuόήύBgž°μ5DE.¬,Α3ή•ς―ϊΤώ(S'ssΠ«: &e`r†›kŒkνBήωoθDΨΝΝ™­θ‘Ψ½λΈ%  h˜"*œ ©Θ²²πίΈgΧ—=Ρ¦Šᲊ‰yΉ§“Υ’μΫw$ϊζ—}ωΦgLŠΗ««q €;†νЧ;VξΚ­,!««ΟΏ­MπœΥ‘‡N|λeE0α¬μΛΨ3ŸΏ·ŸΚ8uœ3ο;Γ΅ΎΙ6q6·Χ«¦LWφˆκŠ5…μύΞ“Μ­»Y–d"c¬v‚χS„dΖ#©r΅Jάw 8kΓ‰’pL"NΉ7Sίƒuβ`V‡cMt_YΈΔ\Θ“ žνϋΑθΨ3―NH„! &œΦζ “¦ΪΧv”I$ώΕDΓΘΡ·"9ξw’μϋ„eΤ?Y{κ$Dύf Α˜λ 3‘γο‹ ζυ²XW³©Xπ₯ΧτBυΘ1wX–2|‹ΙŽώ€wJorN¬ΕwV–ΰΩΎΣθ$_όŸwζ’I·ΈS˜°;Τ|cοJΠ4&’βφΎsΓE½ψωεζ2^ά! : ΰΉΠX„H€H€H a ΰΉa]/Ά–3tq!ށΨƒIXJΛΝyΗ3ŸŠsisΜjœ‹τΌΧ–±«TΡpΡ£:0[εδ•Κΰ«;Άιζχ— ξc™g,tΕΐί‘ξ±Α3·άž+Ÿl@±.mƒπ!k7]NCά–όiϋn0Λ‘gνήΗά# ‚ϋ‚sFI6Ψo™ψ‡H€H€H AHEπ ΧeηžkbΠͺ%Y«ͺ9?ίΦIrΎ\V±4t‘:Υbλ~i"GW|LΜ»tΊ~άΝ— #±«ΗΉΘbŒ’Ρ½Md ±eω3TΈϋΈκςb[Ϋ9ύyλ’?#XގυCx“A_θWmuϋϊψi«q’e“ΝuWΛxߜ―0)0ηΘ-{’λΰκΑαN$P<~ ”}φ’%™(]]Ωπ Ypηή.{όV…"ω—¬ψfκšχ‹έΟSαJΈ:Γ)ψˆ΄—¦t!<ΙΪC' j(yΌ·Τw*ΟXZ9{Ο~ϊΰŸŎθ±\0½ίΉζ–gυκ=†{-ύ-ψΛ―*ΑsζNGλRΨwΪ©ΰήlnj+0a1οΒ·cοVκΤVp‹N€¨š˜‰ΰNfΑΙ+Mπ¬uηφ-a] +ϋά±§Λη_s}+yωj½·o‰κF?xg»‡ †ΟΏjΆ ›JuΉλ’Iƒ­   4l˜”†qQ„θκ€¬—τω­²ΖN…Zn/‘£nΆ<%oά₯΅b“ƒ…0™-#²–ΦW^Ν]Ά.cΨώtΖΚ]lW–Υ_§Ϋ―UπΌΛ ’΅«ΊΤj(yυF]ΙηcW΄Ϊ6•qjˆΠaͺUAlΩg/₯-xΞν;F':6³RΉR[εχ}L―cS©X2_'Λ °hŸTΉϊΛΈ}χ]’²ψ?λΖΪΝ<ό«‰ΐΰ€Χ(u΅^WΰΗcˆe“ žύ+0ΏpΉ žΧυVdL&ξvmJ΅?ν(—Pπ¬“j#GŞ™ύ.ηΙΎOΈσγέ4rΌ~#Έ œ1©ύFρ>}ο!/km;‘“”ΠΪ٘BΡhύŽQ^ζΙκxΌ·ΊK‰ŠγΛΏ™κ₯­4Α³ΦˆΙ‘αMvŽΧTM¦΄ίΏΎ“ `ξe»ξœ{χπMͺ(Υ{»Tοq X(x^Y   @½&@Αs½Ύœτ²»žoy!,ρ Όk­‚κ‚[;ΕMvHEπŒw’ςο§Uk&Β1Ϊ΅(Έ}λ&c`R† ποξ*MόTd)zθ―fŽxΉκΞ†PόΤY5ΊΊσpK$@$@$P `uLβΛΘΞ·Ζβω+–7ΝV5IΤƒΜ»‹MrΣDˆI+ζǞkεMη£Mu ΫΥ•ΞXΉ+ƒm]„¬Ρ©Γl²£ΏμΓΫο²[£ΰ9–ά“GšXΧ E κΔ»`’ΰ§Ζϋ =‚«Ε„«žOK&\cΟkM7TQπΛZ«Γ³ŽQη>ής–1'ιΔOdΐ3bh½6ͺ[W3”±•O¬`՟TΉϊΛΈ}χ]’Ry`ε‘άSτ=PΕΝΡ·ο1‘―ΛΑ¬{G)~ϊΙVΧιPΣυ“ ž`·bι)~’Ώ^|“Χp2²r­^ԟ,€ΪΧvΤ“HπŒχΕLdˆΰFαΏχύί',cΥΌ³ηq½?ʜ­ρŽI‰©†,ΏΠ~β ήdV”χ«²·2}“:?δ+©“Xυ]ΑίηTώ6`όvΒ[ξ+9 Œ‰νqέu²n†Ύ#;Ә~O‰θL|―*!61Σ"ψ‡H€V€Ο+EI€H€H€ žΖub+I`M Ξ nδ„αζn7a !@dα-‚pΝ"τ ΚΕ·p€ƒ€?€2ψš,Ώ?ήΏ_©NgΙ–χηƒ ;ζκ°^5w‰εΜ‹€θρΣtΊΒ+šl@Ρί/s`§ZΫt.χΤ§LΌμœ°μxΞώcβr<»ε έ’l‘ ΆT‡ΈΨςqN$8 I€H€H€ ΏΰΟ2•KώˆυB‰π‘3sϋΓνΜ%φ™Ψ³YfϋΓΜ½ ρEκvTώΝ;6ρ,ΰ{’‘NL‰Δ°~Ρ*\‰‘!£ΙϊΊάτζž„ΔψZ4ς8[Φ2Tύ ’h|΄,€ƒ΄Ίi…Φi-pžEH$’φŸΣ‰€«ͺKΈI7Ώ_ΐ›°ΒͺΘΒa‡jΎΆ£tΟ‘¨^Ώ{/ܝΑ3Ր£ΛγY‘πžύ%™ψΞvygΌ`ωJΥ5―δ΅›μΪζ_¦–}>AŠΗ]`ι‰ώΰ£Έ]K*Έy'sjφσ‚;\ιΜ'-π‘Χ>¬«Xξ|%/\ζ‰ζSa†ηβΘɁΆΦžͺΰΉτ³T€=Qπά‹ηηΒ{TAν_βΩΒE<θπ\—ί‚uΊκOΊ‚gΩΰΎ>CΆ#Έ*<π‡ς>ιccb ΘJπΦ0‘΄δΕ+¬XhMυ78ΕφΛ>Yο‰ γͺKEπWΐwPY΄Xš;z1Xš>·ίγv\¬ο,X6a™}\Ÿ]TΠ…ΩΕ״ŘBΊ<#”}υ†@€Œ±V αΗήωΚΎ}Η&ZB՟TΟώόώύΰoοΓ·2k7ΫψEvg]½SΗ.άκœΞ°'ϊαh›Žχτμ=ϊZ΅cγ}†H€V΄ΟEε2β‰―εΓY € pΉMώΚhŒ«#?/SφθΈΎœ~ςV’ŸvΡά’   @Pπ\'l,D$° €:ˆ Χ±ˆΊ; Dί₯clΛ™GϊθuκdΘέΑ?8gn~ni3θ„ΦΪΠκΐ –¨φΟ¦χΎ&s›°ΒUόω!~rμ<Ρe:¨ƒ΄),ž΅σ±–"ˆLό‚bΈ!bPΨ’ (Φ΅mΞM£όΟΉ*VΈ–‘ΞάF뾜lξšΈ%ِ–½οΦ€’±§nΪ‹όΝγ>   @%ΰ<ΧΤ…Š…?¨c걞[ZnŸGΝέ.GΒύΒB !X-T·ΥŠ~ρͺυ‹V½ΘΐŽM~Sχ'œ/.ψ]tυƒ'\΄\€(#+.C:ΫΉ]šœ«\π¬ž+‹b‹έωέΆhtouRϋήΣm“«ΓΏ«#]Α³>w»gњΟνUπό’ΆT?ΰb λ ύψ?π]‹«Mπ ρDζVϋYή‚›u)`Τ›o"yM΅Έdΐ°D'@b dβϊ«n|₯ŸŒsIή6s«ι[…Β,1Œ²ΰYλ oΪ1ζR“ΛζN’β§ΟUπ\—ί‚ΧhέI[πœβ}ζCϋή|/ΙΪύ½]U%ς’*ζΟSΡ„~ˆOQœ;ΰ9Oϋχ~AqΡΨ~RΒHEπlΏ›ʒ€pΨ!^uϊž—Υlu„θ!ͺKXcΒΔΨZCpw–μ.±v =‘žχΪΔ ό_x   FF@Ǎ3ΥΘ!sϋCh0A$qέ»JΧ ΌηΣΊžέx)Α΢kSͺcε.ΏΫΦEȊη5©Xn¦ακ*eVάκ0Nπμ«mՐ£tζS±ηo}Η«)ψΗ©kΚ‡ρζ’—© ύ[Λ––ΰYWeΙ­zζ―]π ς.vL\ : §Κ5Q_όί%ΰ$ŒχˆL²SFζό­'ύί6°"Ζέsϋ?«Žΐ9 ΟxGΓwχΝϋVχaΧ`Χ&ω&rΞFZͺύρ·εˆKUΰ^-τ’“}Ÿπ2Tνδr•‰Ϋ]<ήΛΚΎ|έ¦Όs‡VΣΞή#ΝΙYοEΏ 8‘Λt*‚ηTX5&OMcπώ„•r0Y7’"쐊±Kτ}ο=ξš9ΣΌ‡dnΉw5£›”;͌$@$„@Ϊ‚η!#Ώ”·¦ύ™€Ί•έmοδ’ώΊΔ    ¬ žW‹’ ¬T©βfw>KgΖ€‚bbZ ΘV…œƒ―4η,\’Μ?8\~-΄ξf’₯b›°.χ€%γάηώΑΧtΟ©δ―jz \Π"=ο³tΈρaΠ8N­Ξ‰~q2&PL·/QY{φ“,]Ζќ!Τα"rβ:XΧBJ&ί[NKͺ{DΕΟλ@^œΛ–Σƒϋ4   @£ P“ΰΉ²x©Tώϋ«ΊμŽ—Τ‰W—FΘΠ‰eζς‹=!XŠΨ…:w坛Ό:\‰C\’Ί '9GίfΗ•θΗΣΨ’ΆpΈrΞaE«ƒξO3Ό2n's‡#lιZc’Yٜ‰.Iπ\“sΘΥv\τθ):ΡνƒεiΎsjΑsΩμΌ•JΌ$ΨρsH₯M ͺΠηγέuωά',)ϊƝ:ΑοDΩΖex™Š€O·΄dΌ‘/ F¨s“kζXY8C8,δω’„π,“—]Ώ΅}όχ žρράM’Γ2ΐ: `™ζ {\*Μ²:υς–OφsMGπŒσ;Η`μΓEχ4ή;‚Οuύ-XeU<§zŸωΟαφ3Φn©οGJ¦:"γZ @ˆ_4ςψ”άΗ²vλ­Kr_kεΰ_ώγtρDΠ*š.ΈcOOPd™τO*‚gυrε’mέ}A±ΊLη_stξΝαwΤ6=o‚–‚Α;KήoY_W„[²Ά0žH€H€H ~€ΰ9ά³abL‘L]†£“cFY»žh+C ΎXWΑδ―tB]Η°έ9R+wωέΆ.BΦΰXΉ«+Έu‚ηJ…W.[ΰ%‡ΤI!θXμeH°γ§&Γy»ςΏΏ€όΧO€LWζπOMGπ,*ΞSΡ0Bmm‹w—‰ΰ++Κ€hΔqqcQ>UΘ qί%ν₯cμEφά‹w[ˆλ˜?ΖΣqΟΰ»Fρ˜Ύ&Ά ₯:!±όηY:‘τ†Έj#'ήoξΚψ†o^ΐ8}ŸΡ1gθ?ΏτVZρ«vR폿νλ—ΚΨδεŒόuΝxΖ PΖτ«ζ$μϋ„Ώpρ†ΰΩ` S¬“šύΧܟžl«MΉχV·ϊ§'‚V“›"΄Ρ·B&κIEπœκoυΉ{‚fLΈΜνύ’ν;ŒvB΄ΥU1ο΄λχ#»†ϊΫ)ϋzŠΎΧήmyω‡H€V΄Ο=Θ*…κςόΏpz~φu `     @Ασ ΐcQ •J ₯A\7Ψ€]vΎPUκΰΠrΧkLXΕκԁzŸ.aφ¦νγp.Ρ@Ux³έt€νJΛ_:γ1[ζώΑΧTΜιζ·Φς'γn ­ΧF…Ν?›hΗΉΐν9ΡΰΙλΪ6ˆdrŽ-C]2ρ T‘(Τ}ξ{…7ΫU’ΣΗ¨SJ ­ΫΊΦ₯kι6“I€H€H€κΏΰΉπΑ£Υ%ω·X ρAZΟ‰BφΎgͺƒκΕ±$]V―ύ!#Τ+—ό!wΑqΉΒŽ“‰V!Š…ˆ«rιγ`ΐσbxΛ},ڜΉό6υ°'hψμE)?Π+žμœ^†ΐNΊωύήT•ιž#ΠD;„[˜9έBt>c¬”Όr}’l’Ρd}ύ·ž₯Uκs'DƘh‡ΑΕpRV‘v’΅λI’γ–πΥε—± Bώ•³lΩp|ˆ/ΕβύΙΏl†Ϋœ·οΪΧ²$ε₯Bκό‹¦Ζςλ‡γΒ!ϋyΟ€(˜ 3<»BόŽΰΔΈΨOWπ ‘BήωoΔΪ’χpιcεV― ςUθνB] <ΆKΑ³w^}Ώ‚3žϋMa‚cΩ§Ο{ΙΙv°Μvώ₯ΣΝaχ]τ½κψύžΞ‚Ȑc.ΰΑ²+[πŒ₯Ι³φPWj$[’KKγ° ]"ΌpΨ‘±SλωWθ=ͺ=vͺ·δyIšNθΑ~π˜H€H€H αΘΘm¦fχΨ3+Z]τx©\ϊwœSnΙλ·Ζ­θο]† 3²sm¬΄bΡO±€Γvu§4Vξ2ϋΆu²&+χUινz‚gΌ†g'ό.½Ε/])ΜuII·qγΤΊŠ£·ς‡Ύ»Ωͺ‰I’Σ<λΩ1ρ3#§‰Tό7_'(HڞܾΊr€ή zν‹υ†TΉΛα8ξ»„rÊ)Y{*Y;©νϊKW$`“}ΓΊ²₯'~Υ{(―l₯š ΰ9Τbk‰ΈΙΑ*ΠIϋC†Ύ/Ή•ZŠt΅£Κ%ΥM;SνO\Ϋu‚'„θ™;%Ω{ώŸνcΒsι¬glίύIφ}Β₯‹:"Gz“PΣυu \Κη½₯’ο-«χ`bk:Ώ—HοG΅Ϋa›π\ͺο+ΉΊŠ½{θ ‘₯zΓΚ<ΓP'«ύαφnZϊΑ#vέ+ιχœg«VϊΤχράƒiLΎxίX΄Quu΅φ‡Η$@$ΰ€-x>¬Ο[μd;qL·Ιyx   ΖK€‚ηΖ{mΩ3hhRΔ λ’ƒ9ϋ/₯ΤΤΗςω_ άΏ\H68ηγKU<Ձl„ΈΑΧ)*’žχ¦+’p›nώ„•"γ–_{ύ6]ςξ2ΛU‘@"ΡI²ΕΊΆ ƒ½τE€œ°±t<–‚v!Sh³u ΦΥΩƒͺ5ψ]^nI€H€H€&8Α³ŠW݊5υ&οό7mβVMy\&S•««BM’U8!يšNMεί½keπ‚ƒό‹!ͺ yqIwT€mN―κ"…PΣ9Υ‘nώ€ήD•WΕ₯{ŽdUε;Ι₯ΰΠ[xoμCr0oδψ{%³ύa]pΫξζΪZosτ"²ό›©qΒy<+†·ΨΫ„wξ­Βη[rδψ{΄ΞΓm"ωŠί?χ³ύπ¦tΉζΨΗ||(/y16 ±&^~!vτέ%ϊΖ^½΅1ƒ<ο’w$#―ΉΉFάΎ‡η4œΰ'3°C€8‚ „ Γs] VY՟U!x†σtξ)ΫΚΎy'Ž₯;7άΧr±D³†OΖΕ½gΉ<‰Ά¨7ά‹ #’οτάΥ μχΒՊ¬lΑ3œή"=cΧβσp›έβˆŸ]ˆœτdn³Ώ9Pc’'Bα}{Λ¦»|ά’   4L0Ή€[3ž51i2²tE —§δ­‘φά‹‰mΉύ³¬e_Ύn’Δ`9{BΩS§έ³-ˊŒa»s€2Vξςϊ·+*dυΧάO&x†QGδΈ‘&.-ΧΙe%:²ΆPηqj]ι%·Χ«ΎLίO’z½j ˜|›Y5ΆψΉϊŒχ]΅μ~qΩW“ΥHex΅<©r­VP#βΎKT κCλ΄φžSρ>“½οVΤŒ« 8ﴘˆ8(xΞξ|Ά'Nt>\ι¬qΊγώ(ΫO΅?qmχ ž“"υ9:£ΙΊζX 1Ήί•9Ωχ ΧLJΜΪι;,ύόe›‰U.CΝZYœΗΑHa‹ΙŽαΦυ=v‘”κδf|«@HvέWΆΰοΓ9^bηtίP¬oοΗή΅ΰV(-Χw‘p«φ–ΧΏΪ¨Eπ  ¬ 5FπFεσΟ?—όQrrr€S§N’ElΩ‰dΨ(Šωε—ςύχίKqq±lΏύφ²Ν6Ϋ4Š~±$@$@$<σ> ¨/RΔΝ9βΑ²ΓpŒNVQ ‚ ˆ&Šž/ή&ε}cϋώ?oB؊ΰwr­ιœώςn?έό5 x]ΑmΊη–wΗ9Gήδ‰8ΰ ζ_ yπΌ™wΑ›ΆτqΕίߚΰΣ•ΕRΚ!|ŒΕ Ÿ¨K*ΟtIΆ ·ήErέΗψŸ>²<.CζVϋ „ε*¦-zςtέρ=ΓcΙeM‡(ΑοΆ\#/ύΐžαΫ’±vKU¨pύξžΫXΜ΄\ΞQ7KΦΞΗΪω°dyτ½‡lκ"xFΉάS±%Ρ±ο‚_πΌ"ΏWΆ«Bπ,p9ΎjΆ9Ÿγέ©πήƒΜέΫ^Ώ¨»&—pμgξp„`΅8ΩΑA' ο9ΐβ‚VΆΰbξόK>ˆ; ά!ήwΑ/žG„·t΄ϋέεα–H€H€H αˆ³ϊL.ό=ΒJ™ΫlQ~7gL΄„³RŸ7‹Ÿ:«Ϊ8lx“%ηπλ¬L`ώ€°"cΨVώIe¬άευoWXΘκ―,°ŸLπŒl~aqΙ€[l2Y xάa]Η©γLKτ™6Α3ήUrdη.εψv“7ΩΡ"υYΨV.¬ϊžPόςΥ 'ζ₯Κ5“Uqί%ͺΟHΒϋuhƒΆφ­«VV,Qκ§Tψ wλd‚gsW7κμ<£xιτ±‰N)x/61²Š‹?M댭€δ2§ΪŸΈΆϋΟZ~3ψν ”~ρŠ”Niϋψ“μϋπž—sόέ:G9SŸ½«Γ΅~ΓΡΥ…όΏ§Š~‰­l©ξΟ©†π–j–sΐ@ΛξΎ‘T,ώέ~»‰κXΩ‚gϋ†Σϋ‘ΈSΑΙΉό—Y^ή«²χΦwβͺ€ ³ΆjUGs—[ H‡ΐ!xž3gŽ\~ωεςΣO?yl,G©ƒΔkxX΄h‘\uΥU2mΪ4Dχξέ妛τ!ˆH€H€  žΙ…d7H ¨mKl›{ƒΊυ•«ΒοΚεοΎΣ/\φΞaΠ΅²`‘ΛΘ[ǜΎ0ΘgΛ½ιΰ_ρ‹WHΕόy–ξ|-υ¬ž{†tή~eΡR]ξπ―8tMωQ{6€ιΥ’|K„‡[νΰe(ν3)™pwμίI6 ˜j_PW°mΩ]Ο—Μ­Ίz§)yε:)υSοΛΓεφΑk[)!X ¦./ΐ=   †F ]ΑsNχΑ’Υ±§u³πώ#βδDΑΤBΈz»: /­Υm9’"ιΜ»[uΕγ/’²Ο^²ύ<Αb"Veαb­k·xqmΥΙρΌ’™>ΣιGe<ύ8ΞRόBYΈz%]Ω£π_s·N7Ώ_ΐ ρoΙΫ1!hU³β6•‹~¬Ζ!•6ΕUβ;°gmuQ­Ώ…-yŒgi΄XCΊ:G΁—ΖDΝZ¦ψΉ‹γVΑ„ΓάΣΗ›ΐββuS.>6fή|O-««θyяΡζάΈΞ‘^#½ηH8xGυC8DΥ‘υ·Τ½§IΈΚq Ξy’Έΰη…UMΠ.ΘκxΌδtΏΕ’όΞΠ‰KF€©„6lg.bθ/–5Ζ{?ΤUπjΆ±δ7I9δzΥωΟ+ς[π*ԝtΟ©ήgΩ\’bWhΐo’lφ‹& Τε±ρž”έεϩ΅es΅―©ε‘ωG&ΘpΩ£o Iθš‡τTΟ5ώ΄ŽŠ?Ύˆ{ΗΚψdT9ΕAl_0xη8A7D&p@wˈCΒ@$@$@$Πhδ}›„[lmύ)ϋξ=γΐ }ζΑδΛΠ&;IΦ}‚S˜lCΤYπεΕD˜#oΦ1γˆT,] ‚Ξ±1cΝ‹ Ω{φ³: ˆ.―ξΑ‹S‘ιŠa;衍•»|Αm]„¬ώ±ς`}RZβ­μS“ΰsOTgd»―€Ϋυ3ηΦ8.μ§Ž¦°ͺ’k—_π sιΜ'\RόVŸϋ F0Aσf»Ϊ>ΖΤρnA-ή72wκnB[$–%Δ#-UΘ ώοE>Αsζv‡xΟΰ(S:γq[MΕΚ'<‡Ϋu–œnU|Υ9“†άΣY;mIΥΖρ56ΥώΔ΅= xΖΔI› «,Ωoη©³νϋNšμϋΎ!`jx£ν¬mΑkŸsΘU‚ ΚΡιc€μΣηm?₯?™91Ηuί;YιGO¨³ϋ³ ‹§"xNυ·αN€wίPΣ μ°RΝzμϋˆώΰξΉΘ Γά‘N&ώXJ^½Ρ;ζ  ¬ υNπΌεfkΙόE²¬ Τϊ7qL·κ'‹!l†Π) Ι{μ!mΫΆ•Γ;Œ.ΖJvΰΐςϊλ―γ­ΆΪΚψΐαωΰƒ^!ξ,L$@$@υ‰Ουιj°-$°f¨m‚†¬N* ΥPςƝΊtω{‰Α%Β[5`ω2η`ΰœK\0[ϊΡ“:φŒ—Ε?ψκE&؁ t©ζG…Χθ@z*!XotΚ½*Βy+aΡdŠΑ:Š Ά-sΫΞΐ„€CΚ’UΉcΏ“„Le   h<ͺοšΡwfα1   @&7άμnzBΚd] Š/‘β˜ƒ―ˆMώKTPΝ3Jή*είΎk©+:†νNQΫXΉΛάΦEΘ¬Γ\ώΧΧRςό₯U“ΰ²χ;Χ{NJΎ£HΏœμ―*nί?Nˆ{\f߁_πμ‹Ά[ρŸΊ%?[Υ'#²–dCH[%z―–Y#ΚΥό$ͺξϘ|›(€Κ5QYw ΏΰοΚ|ΗP}΅Υ“ž{x,©ž8?xήΠz›λJ+C-"<γϊCͺύ‰k{Pπ¬†ΫuQφ…±σ|ϋŽDίbϋ©|Ÿΐ$Ψβη/ΡΎ«£uUΘPρ4Α6A'_?}ŽŠ¨vΙ΅nύνE½Ezΐ€&QHE𜨜‹σ6\V›ΚlΫΩ˘c+JΉ4·Νν3ZπŽŒ€UFaΪΓ@$@+“@½―Lˆ ΅?όS8 Ά¬ΪΉηž+Δ†VW&Mš$>ϊ¨¬»ξΊrύχ―fπΌ$@$@ύπ’²K$Π@ Τ6ˆ9ι! ­­n:#Ύhtoύˆ]’΄§XJΝ[†pβυΊlΨ'7Ψε+‰ϊ0h‘LΩμηΥmξ;_ͺΊl½Ώ ΦΖE&8XΥ‚g ΜGϊŽ­μ‹Ζ”%hIr…Tϋ‚Jƒ‚gNœϋ@ω€hP΅sϋEΡ•~όt΅<Œ   hΈόΒΕΒ!]’ŠΡΓLu“B~„θΫχθΔ°{m?џ u@ΚΏδ}”6[Š:6N΄ q1DΖΑsδM’΅kLΌX’Ο|pξΝκΠΓ²=|R•9KΙFŽ΅)ϊήC|{ά9ƒης7TΑ3ϊ7[{.ήFΗΎU0lA™±ΊI‰:ο–λ²ΠΙεYΟŠΉ5«@Φ‚ <ΚΎ~[JίΉ_ΰ––4¨Ϋπ²vλ-kmθe«όο/ύΘ;V’ZgS.ΏP'˜Πα9#§‰DNz@j֊εU±3DΟΑ€ηχ¬Ž±χϊšVϊ –Γqx“%ηπλ,©|ώW6QΩόY‚ηΜνΌS"u\ό’θβ—ΤjζΊ$nI€H`₯¨7‚g'vn’―3{4|χγ=?sΎ+ΤΡ{ξΉGFŽ)-[Ά”Ι““ΟZ‘“4ΠΒ~ψ‘τοίίZ—ηV­Z­Φž<ωδ“2xπ`iΡ’…Όωζ›«΅-<9  @γ"+\BJ@IDAT@ΑsγΊžμ       ΤJ@Θ‘f--&ώ‰:4§¬llΌΌbροΥ„Κ΅Υ‡i,υI‡•‹jΛΞτΥDΒτŒœ¦Ά4»ψ–a^MΝαiI€H€H€H`εP‘fΖΪΩ3peΑΒ”'tΑΒžcK–ιΚ$Δ9ΣΌΖ±¦UM #·™dδ7Χw‘₯²hρͺ>λ'  )z!xŠAwΜ”+ΞήΞΦi{ν΅ΧΚsΟ=']Ίt‘aΓͺΟj―S₯€Π+―Ό"—_~ΉδηηˌΊμάj<―ζ ΐΣ“ @#&@Αs#ΎΈμ                @£'°ΪΟΙΔΞ· Ÿ-“¦ώ*Ηt«ΣE€Θω·ί~“wί}WΎώϊkiέΊ΅xΰV׎;ξhhŒ?^~ύwιάΉ³΄oί^&Nœ(sζΜ‘ŸώYΪΆm+:t]»zmψ裏dΦ¬YςωηŸΛZk­%[m΅•œpΒ ’——ηε ξ|ςΙ'2{φl™;wΛ&›l"έΊu“]wέ5˜Υ„ΗΣ§O—mΆΩΖΪ;uκTωψγεΫoΏ5f΄ύπΓ—pΈj)Ύj5Τq3΁:QvvΆτιΣΗ ³Ξ:rΚ)§ΔU²xρbyο½χ¬ύί½¬·ήz];ιΡ£‡4i$.― Κ€I“μ\ύ·¬ΏώϊΖλΈγŽ‹+χΘ#Θ₯K;\§!ΐ>逓¬*°ΗuρΤυόσΟΫu-,,΄ΆlΏύφrΐH(T΅Μ ―€λοΖo,G}΄ΌπΒ ‚λˆ²C‡•ΜΜL_nξ’  4F<7Ζ«Κ>‘                ¬)V«ΰΉ6±3.B]Ούϊυ“™3g&ΌŽ(_}υΥ–‘/ΜΨΞ›7O N†Ύ}ϋΚ…^(Χ]w‰eƒι-[Ά”Ρ£G ΆώΑοΝ7ίlΣώx·Θ!‡Θν·ί..Jxΰ>|ΈμΉηž&~ι₯—Ό4·‘τέwί-k―½Ά‹JkλΞ‘¨Πζ›o./Ώό²—6_|±,X°ΐ‹s;Ν›77Απ.»μβ’Όνύ''Ÿ|²όψγ^œΫ¨ϊ†nπDηϋ￿̟?ί%Ηm $={φτβ Ό>οΌσ€΄΄Τ‹s;hΗm·έ&nΈ‘‹²­λ/„Σ›Ώϊκ«^:ϊ—““γs‡H€H q ΰΉq^WφŠH€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H`Ν °RΟ—Ÿ½“Μž»Θœ™kΓ—ŠΨuΤUπόΥW_ D·"C$ gdeZ΄haŽΟΨw‚gμC `δ…Λ3ܞΏωζ$ „ΐ?ύτ“μΆΫnrδ‘GZˎ5Κ\›:θ Ήλ»,―ϋsξΉηΚ”)SLΈ 7dΈH/\ΈΠ\QwEE… 8P ΞvΑ‰sqœ••eξΡ8'κ‚s5Βή{ο->ψ ν§ϋŽΦpΏ†›2Ϊ‰DLdzrsse‡v°*Ώψβ s{.++3GjτΞΞpΝ†Γ2xl°ΑQvΣ¦M½f@θ}ϊι§›3υ¦›n*gžy¦l½υΦΦwΈ9γΌpΔ~φΩge³Ν6“O?ύTPζ­·ή’'Ÿ|R ˆΎγŽ;¬Ύ6mΪΨ9p‡l°‚33ܜq­ nF;‡ fυγxΒ„ qŽΫ~¦¨}S8IŸqΖtx hδ(xnδ˜έ#               hΤVšΰbηƒΊlb°n>»FΡsͺbgTVWΑ³»jΧ^{­‰„»tιb’XοΆNπ ·δ§Ÿ~ΪDΟ. "ά}φΩG ,κΈγŽ3—g—Žν7ή(Ο<σŒdgg›S΄skώϋοΏΞΕ5CΨ»νΆΫϊ‹IώύMψΫΆmΫ8Χh'Ξ …B&ϊ…ΘΨ ΰΎσΞ;- ηέn»νόΙiνΏςΚ+rωε—›πwƌΥΚΒ…mOΔnφμΩ«W/+3tθP » ΰZ=vμXΩxγeάΈqqbhπ€³5DΧA‘8ΔΞƒ61ω›oΎιͺ³ν²eΛδ°Γ“E‹™ά9t»Lpˆ†K7ΈƒνωηŸο’<ΧlD@0 ‘9  ΐšE€‚η5λz³·$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@‹ΐJ<ϋΕΞO2Ρs:bgΤυΏϊθ#ςbί‰s·ήzk?~<’ͺΈ Cά»Χ^{ΙC=T-=ՈΪΟΑzΰxύηŸzŽΧΧ\sΜ›7Oόμ e·έv“ΚΚJoΊι¦Αj¬pbFhΩ²₯—ξΛ‰ΟΓ† “|PΊuλ&χάsWΖΏ³dΙc‚8°C„T˜ZFώ! h΄(xn΄—–#               X¬Α38Υ&z‹ΨυΦwΑσ_ύe"\΄5‘ΰωΓ?”G}Tΰβ Αp’ΰυέuΧ]¦MSt]C*‚ηΕ‹ΛSO=ebτ5Qπ žΡOΓΩzΦ¬Y·εTCM‚ηώύϋ XžrΚ)rΩe—%­rχέw—e˖ɝwή)|°ε£ΰ9).& ΐC€‚η5ζR³£$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@ΐJ<ƒM2Ρσ£Ο|-=ί\šδgΕ! :@Η%V4dΑ3ά—ο»ο>λIϋφν₯C‡ΌysΙΙΙ‘_~ωΕ„ΔHLWπμ„Αλ―ΏΎL™2₯ŠTϊ›ΪΟp£>ρΔΝΥΉI“&₯KΣυZk­%‘PΘ\¦ύυW8;wμ7ί|S.Έΰ:ςΙ'i5Κυ+‘Γσ1Η#ί|σœsΞ9rΖg$­·sηΞ²hΡ"ΉφΪk₯G–‚η€Έ˜@$@k  žΧ˜K͎’                4B+Uπ >ΙDΟAv©ˆQ¦‘ ž?όs9ωδ“M}ϊ˜‹3ΰωλ―Ώ–c=Φς‘l³fΝβΚΤtP“ΰωΒ /”7ήxΓκΎώϊλVνŽ;Jee₯‰Ι!2G ΰ9!.F’ ΐE€‚η5κr³³$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@ŒΐJ<ƒOm’ηTΕΞ¨«‘ žGŽ)χάsμΈγŽςΔO +qaEΟgŸ}ΆΌσΞ;rΘ!‡ΘwάWo:5 žΛΛΛeχέw—’’"1b„μΉηžΥͺN$x.,,”N:YήΗ\vΪi§jεP'α^^dͺIπ|χέwΛ¨Q£dϋν·—§Ÿ~ΊZˆψμ³ΟLdž-ΰ›•s§ΰ9!.F’ ΐE€‚η5κr³³$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@Œΐ*<ƒΡQm&œsΨυ3{π±ΉςΜΛ?ψ£jάo¨‚η[nΉΕ„Ξλ―ΏΎ9gffΖυσφΫo—±cΗZ\"‡η6ΪH&L˜ ‘H$άoΏύ&‡z¨TTTΘ5Χ\#Η|\z:5 ž—,Y"{ν΅—UwΥUWΙ‰'žWυ/ΏόbββύWόΟΘΤ«W/™={Ά~ψαrλ­·Ζ•ΓΑK/½$¨bhˆ’]xφΩgε†nυΦ[O¦Nκ’mϋΕ_ΘI'dξΝp·v’j¦‹.ΊH&Ož\Νωš‚g?%ξ“ ΐšI€‚η5σΊ³Χ$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@ƒΐ*<Ο%gμ(‡vΫΤ#υκ[ΏΘ~ζ§²ΣPΟNΤ‹>žwήy&ΞΛΛ“ Ș1cdτθΡ^χ!<ήl³ΝμΨ‰sqΑ1\’θyαΒ…wηΉsη „Τ―ΏώΊΐΝΈ‘&Α3κ<πΐ1΄mθΠ‘Άm[σσ§Ÿ~*W^y₯₯!_ΠibgˆžΓα°\rΙ%Ά|iψα‡rΩe—ΙβΕ‹eΠ A³gO$Yψξ»ο€{χξΆ?qβDiέΊuUJlsΕW˜|ƒ 6ϋξ»OΆΫn;/}Ψ°aςΰƒ«‡~؜΅]’cΊυΦ[Λψργ]4·$@$@k žΧ ‹Ν’                4:«Tπ ZNτ\±3Κ7TΑsii©œrΚ)2gΞtCrrrΝ?ύτ“CDμφ!jξΦ­›Ε;q.ΔΡeee·Γ;HFF†ΥUTTd"g8'CΌ"‘6Ασ›oΎ)\pwŠM6ΩDώωη)((0aq³fΝdώόω];yώωη½|ΨAŸFŽiq­Z΅2±4\š-Zdq'œp‚@ΐ Q΄?8‘5„άΫn»­  ;ξ8Λ‚²|ƒ)ΚA€έ’E €CH …δξ»ο–]»ϊ«Η”‚η8,<  5ŠΟkΤεfgI€H€H€H€H€H€H€H€H€H€H€H€H€H€H€H€U.x―φΫ4—/Ύϊ·NθͺΰύχίΝωΩ»θͺͺ΄γ/‘¦ΠAz•Ž”PΊ€‘* "H@Ί RE€‹€4i JιMκ„T:‹B' wϜ;777$χ¦'½Ή§μ³Ο>Ώ'gΦzξ{V­ZeͺλΆ 2HǎMΥc­ΰ¬Αh wξάYw‡ ηŽ5J>ύτS9~όΈm_Υp΄˜5πμ¬ι˜z}wοή5»νmtƒ†ΐΏψβ Y³fhΕk«ιΈ=zτΊuλZ›lŸžm, €ΙV€ΐs²½υ\8 € € € € € € € €@ˆ“ΐstœ’xŽΞΉcκΨ{χξΙΩ³gE«6ηΝ›χ™Γ: ηjUg­;wnɘ1cΈγ{υκ%;vμ·έΩ†_|QζϟοlΧ3·š€q‘B…ΔΣΣσ™}wjxYη―ΧξγγγΈ;άzHHˆιŸ>}zs͎U ­΄βσ₯K—Lεμ¬Y³Z›ωD@ œηp$l@@@@@@@@@ ΡΈxnΡm‡„„>Š“ τςL)Λg֎“s%”“8 keωςε’A­rεΚIνΪ΅­ΝQώ|VΰωΑƒ2oή<Ή{χdΙ’EΪ·ofά3gΞΘ?ό gϞ•ΠΠPɟ?ΏT\Ωι\΅οκΥ«Νρ}ϊτ±³tιR °­G΄P½zu©T©RΈέΫ·o—Ÿ~ϊI.]Ί$yσζ•%JHΣ¦MΕΛΛ+\_6 € ΰL€ΐ³3Ά!€ € € € € € € € 8β5πYΨY £xΎuλ–΄mΫVNŸ>ξŽhΐwδΘ‘NCΔ»wο–χί_4μΨ4”;vμXΙ‘#G˜]οΎϋμίΏ_ΊvνjΒΉkΦ¬ ³_WͺU«&@N‘"…Ω§aγI“&™ ρ† ΒυΧ ΅¨οέ»'Σ¦Ms:Χp9lˆ(πόψρcιΧ―ŸlέΊΥΏ,X`ΒΔΦαz܌3δαΓ‡Φ&ΫgΩ²eΝΎŒ3ΪΆνάΉSzφμiΦ>l …·nέZŽ9bλΡΒ‡~(jh5=―ŽχσΟ?[›lŸ ‰'†™―m'  €8xva@@@@@@@@D$£ηΑ=ΛΛ‘cWMeζΘ ’vΦ1’xΦΚΞο½χž©²¬•‰»wοn²AAA¦ͺ±ŸŸŸ©ΌlΩ2)X° mΚǎ3Α[ k5g­Κ¬αf νjθXΧυ΅kΧ†©2lžS§N-ϊο΅Χ^“Z΅jΙ•+Wdύϊυfz’Ο>ϋL7nlΞwωςes k%η’%KΪζ‘ Z™Ίώ’)S&S1:UͺTaφGe%’ΐσ!CΜ5€K—Ξ„°΅΅Υ6oή,@ΦφΦ[oI:uL(zΛ–-¦Šspp°T­ZUζΜ™c"ž΅υ΅kΧlύμΤώθΡ£’&MωφΫoΓ˜‡ fͺKηΝ[΄b΄VεΦ ΪΒΦ{”5kVγγιιi?$Λ €„ πŽ„  € € € € € € € €$ ΊQ+2_½zU>ύτSiΡ’…ιΐσξέ»₯{χξ&HΌnέ:J~ωε—εΦ­[’λΞΖNΞa‡xΆ6ϋψψ˜°v±bΕdΙ’%Ο ƒοΫ·OΆlΩ"ΫΆm“   kSαzόψρ’!CΫΆ¨žυ:΅2σ“'OdψπαΌysΫρΦ‚uοt={φμΦζ?/^l«Πa'v €$kΟΙϊφsρ € € € € € € € €‰\ FΟjQθΩΡ)*ag=Ζέΐ³}•`W*πΑςγ?š Γ#FŒpœΆYΏΎT¬XΡ„vΏϋξ;)S¦ŒΩΐσ£Gδ•W^1!j­ͺ¬aj­6]ΊtiYΊt©ΣyDu£}ΰY«^7mΪTZ·nmͺ=ΏύφΫςΙ'ŸD:””=*Ϋ·o7U™΅Ί΅†°΅΅‡‡‡9>²ΐs@@€ 8ίΈqC^{ν5;v¬ΣσώώϋοΆΉ+χΞι`lD@ੁg~ @@@@@@@@HΌ1xVŠΘBΟQ ;λXξžCBBδ₯—^!dΡ’ERΎ|y³l#44T>,)R€°υύόσΟε«―Ύ’^xΑT?Άοo-φΫoΆm[SY+ §NύŸΚΥΡ <λ؟}φ™™«V–ΦΐσςεΛeΠ AΎ}{λΤn}Zg (k΅hm+V¬0–uyΒ„ °aC]4M]4œ¬­P‘BζΣώ‡V{ξΣ§Ω€Υ•Λ•+g–ŸxΦ@·†­­ΐsΡ’Eε‡~°‘aκυλΧ‹··· Wηϟίμ ___c FΟ?Όν]Π@rυκΥE+]3Fš4ibφ?+π¬‘κ HΊtιD«bλ\žΥ4PΑr­€½pαB§]8`φk`† €ΐ³}ZM¨XΓΚΡmž΅ φΫoΏ-gΜ‘’%KŠVkN“&9]λΦ­Mψ»R₯J¦΄V‡Φ¦vΣ§Ok^˜.P €ΩQΰyǎ»wo 9r€4kΦΜτ֏γǏK«V­Μω΄G}dΜυ Zωε—¦wΣ¦MeτθΡΟŠ} €g~ @@’#@ΰ9:z‹ € €ρ%@ΰ9Ύδ9/ € €Δ†@¬žuΒVθٝ°³ΐ³?eΚ™3gŽ.JžsζŒh`ΧΗΗΗΪι§΅q\Ή$kΦ¬‘φΝ•+W–ΰΰΰ(B«Twοή=J}#뀕­E«*gΜ9²ξ1Ύ_ΓΞ§OŸ–Œ3JŽ9b||DHΪžώϋο0gϋ/ψΨ/'m5@@@@@@@@Έ°‚ΞzF«²³~ΊxnΡm‡„„>Š“Ω{y¦”ε3kΗΙΉΛIš4i"‘‘‘Qšξ;οΌ#ϊ† €@rp5π|αΒxv¬ς¬Žž“ϋo׏ € € € € € € € ΞΟvv+πž­°³}ΰ™°sςω}αJ@@@@@@@@βO@ΓΞΡ'έί @@@@@@@@ ώμ«;[‘g­ξόπαCIόΔ•©΅θΆCBžVyŽ‹¦•ž—Ν¨§β € „\ <ηΝ; kpi € € € € € € € €$.—Ο―uΨ§WΈ~‘oœž“!€ €@ πœτξ)W„ € € € € € € € |<;άk-ύϋοΏ›­ ///‡‰υψργςχίΛέ»wε…^’%K&ώ‹rΈ‚;wξΘΉsηΜΦR₯J9μe@ Ή xNnwœλE@@@@@@@HJžξfHHˆΌτKfλάΉs₯rεΚ=ξͺΞ}ǎRΎ|yɝ;wΈ‰^½zU†*{φμ±ν{γ7dΤ¨QΆυ€²°sηNιΩ³§ΉœΓ‡‹‡‡GRΉ4@ΐ Οn q € € € € € € € € D Αž‹Μ WBεNπC΄~‘oœR%ζΐσ?ωOYΊt©heκuλΦ…sϋπΓeσζΝf{ρβΕ₯jΥͺ¦ΒsΓ† ΓυMμ<'φ;Θό@˜ π³žŒ† € € € € € € € €@\ $¨ΐ³†'―&!ςΑ?z&πυ_‡9sζΘ”)S€J•*ςΥW_…9π₯KR―^=³­wοή΅kΧ0ϋ“Ϊ η€vGΉ@ zž£ηΗΡ € € € € € € € €Δ§@‚ <[agοΤΖγ―Σ7Mθyι—/Η©Obπ¬PW\‘μΩ³‡3σσσ“.]Ί˜νZε9Ož<αϊ$₯ ž“έδZ@θ xŽΎ!# € € € € € € € € _ "πμvΆ0†ί/Cz–ΆVγδ3±ž#BZ·n ΎgΟρχχ7σΡkΣ¦αfγΟ?”;v˜1:tθ`φιΪ·oo–έύαΚό¬s\Ώ~]~ψα9~όΈάΈqΓ\SΉrε€I“&ϊ=|ψPvνΪeΜυ8///sά›oΎi>­±­Ο¨ž΅φ²eΛδ?ώ0‡ιοD΅jΥDο% @ i xNZχ“«A@@@@@@@H^ρxŽ,μ¬·"Ίη[·nIΫΆmετιΣαξ¬~GŽ)΅kΧΆν‹,πΌdΙ7nœhˆΪ±-ZTΎϊκ+ɚ5k˜]²zο½χδΜ™3aΆλЧ§§ 4ΘŸνw>xπ@>ψΰRΆίΛ)R€f͚Ɉ#Βμš0a‚,X°@*V¬( .4ϋf̘!Σ§OΣΟZ)\Έ°¬Y³ΖZuιӝωι 4$ώξ»οŠ:;6 Oš4I (fΧεΛ—₯_Ώ~ςΫoΏ…Ω+©S§6ϋƒΫ‘ž5°ή³gΟpχQmu~}ϊτ‘”)S†;@§ηΔyߘ5 € € € € € € € €*£ηΑ=ΛΛ‘cWMeζΘx£vΦ1’xΦP²8`ͺwοή]J”(!AAA2oή~όΈΌυΦ[a*6W­ZUnίΎ-]»v•ή½{ΫŽΡ…1cΖΘβΕ‹Mˆ{Γ† Ά}ΞΟΦΞuλΦΙΰΑƒM€zίΎ}Φf·?έ™Ÿ†ΔΥ£^½z¦’³VSΆš†›4i"z_†j\tίƍwΆlΩΜ²†΄­¦aθZ΅j™ΰr›6m䣏>²vIDg½Ώ―ΏώΊ\ΊtIΊuλ&½zυ²£ ³fΝ’©S§JζΜ™Eƒμˆ§!€$~Ο‰r € € € € € € € €ΙW FΟφag‹2’Π³+ag+:η¦M›Κ©S§dΨ°a²eKkjΆΟoΏύVF-¦έ±c‡ΩQΰYΓΙZ•Y[Ρ’EΓa€nέΊfΏVkΦ*ΔΪ΄Ί΄U)xΥͺU¦‚±ΩρίΊΨ±cςάsΟ™ΆnΦΚΤŒΦO ρj˜ΧΎ;wNΆoίn6½σΞ;b‡γ*πμΞό΄ͺ³†“uκπόσΟΫ_’YξΧ―Ÿhυj ’?ήlΣ€Ϊ•+WLX½pαΒαŽωδ“OLuνŠ+ŠVyΆZDg {wκΤΙš·mΫ&Z­ΫΎ?ήv&OžlΒΩφϋYFHœžη}cΦ € € € € € € € €¨@Œž>­μ<θi…gΗζzv5μ¬γΉxΦಆŽŸ}Ί χκΚƒ€F,eΚ”‘?όP*T¨ ¦oD?΄²³VŠΞš5« 4HκΤ©#φՍWg=·«σΫ΅k—τθΡCrδΘ!4vΦΤώƍ&„¬!tgMƒη€Ύ~ύΊΉ·K—.•οΏ^J—.-Ίl΅ˆΟV%ξϊυλ›*ΣVϋO½nοίΏΏ-¬nΏŸe@Δ'@ΰ9ρέ3fŒ € € € € € € € €€%#g,²Π³;agΧέΐ³UYY+ ϋϋϋ‡«δ«c;k‘žOŸ>- ,Ν›7›ΐ³³1μΟΊΠ‘C§OΡ*ΗΪ|||δε—_6Υƒυ3mΪ΄f»ύ υΎώϋrδΘ³Y+kγzυκ™JY²d±οn–γ2πμκόΎόςKΡεΛ——E‹…›ϋ³6hh|έΊuςΝ7ίΘί-zvlQ <«ιO?ύδxΈΣu­¬­Άi €‰_€ΐsβΏ‡\ € € € € € € € €@ςˆ±ΐ³FzžΏτ„΄h\X|ΌS‡‘v¬fηWά ψ L₯θΈ <λD\™ί˜1cdρβΕR΅jUΡ*ΛQmnΦΚΠZν:uκΤζψ"EŠˆΎS¦Li\ώύοGΉΒs³fΝδδΙ“ΖέΛΛλ™ΣΠ*ΠC† yfv"€$Ο‰γ>1K@@@@@@@@œ ΔhΰYOQθΩρδQ ;λ1ξžOœ8!o½υ–9νž={$S¦LŽSpΊQΰYΓ½΅jΥ’Ϋ·oKǎ₯ώaŽΧsΩ²eΝ6ggϋΞ7nά ι._Ύ\φοίovi ΈI“&φέΒ,ί»wΟ₯Χ―_oͺkXΓ»#GŽ΄υ‹λΐ³νΔO"›ŸVg;v¬hXyΥͺUφ‡>syήΌy2i$,Ÿ?Ύ,X0L©S§Κ¬Y³’xξΥ«—μΨ±C¨ή†‘@ Ι xNς·˜ D@@@@@@@HΒ1xV«ΘBΟQ ;λXξžνƒΛ‹-’ςεΛλpašVL>|ψ°€H‘B^zι%³ΟώΈΉsηJεΚ•ΝφC‡I»vν$UͺTβηη'žžžaƊ(π¬+ kΰ:sζΜaŽΡ ek8»Z΅j2{φl³_«AίΌyS¦Mk*I;τΩgŸ‰^“V‡Φ0·V>ΦWgwζ·kΧ.S©ΩqΞφΧvωςe9sζŒdȐAJ–,ivuιΕxwξάΩTμΆο―Λž5<­!jύ}PC €@ς πœ<ξ3W‰ € € € € € € € 4b%π¬T―7((};— §6σ›c²tΝ©pΫ#ΪΰnΰYΗΣ€²•7n,vl«W―–‘C‡† ΏFxήΊu«-p«Š΅R±}ΫΎ}»τξέΫlš6mšΤ]Ϋ,>\V¬X!υλΧ7•ŠνΡe+°›/_>ΩΈq£Ω½aΓ8p d͚ΥT#Φ@Ά}Ϋ·oŸtκΤΙlyεΜ™Σ,ΗUΰٝωiUλ Hpp°Œ1ΒV}ΫώΊτ^θ=ѐsŸ>}Μ.­b}ςδIsμΔ‰ν»› Ή:θ=.Uͺ”,[ΆΜΆηΝ³gO³‘v³¬•΅ί{ο=³όΥW_I•*UlΗX AAArηΝpΥ€­ύ|"€$>Ο‰οž1c@@@@@@@@,X <λ t+'―ϊζ·Ξ%Ά“ρ3³­Ge!:g«*sΚ”)eΐ€&­ηΤjΜZ₯yΠ A’AάaΓ†IΛ–-Νt" <_ΌxΡ„n΅S½zυ䣏>’μΩ³‹φΧΠ±›οίΏoΖψδ“Oδν·ί6ΛZΉ[·n&p;rδHiΤ¨‘©ά¬;΅’qσζΝεϊυλςκ«―ΚΈqγΜ1Ά­Y³¦@―ηΔ{ο˜9 € € € € € € € €±xV^+τμNΨYNΰYΧ€­m΅εΙ“ΗX9"W―^5ΫZ΅j%C†  Ek‹(π¬ϋ΄J΄†`΅iΥe εž?ή“sεΚeΖΤΠ³V–mͺ;kXΈX±b¦Ί²žνΫ³Ο>”… ΚμΩ³%88Ψ–6mZSρωγ?–ž={ŠΏΏΏT«VΝτ±W+/^ΌXώϊλ/XΦ}²ΦŠΟZΑΉ@φέΝ²³'Mš$Ǐ·OwT¬Xќλ₯—^ sL\žυΔΞOΡ ΞσηΟ7VhY Λ–-kΙͺϊ¬}­vςδI=z΄8pΐΪ$yσζ5‘rOOOιΤ©“ΩΎεΚ•3ΛΟ .ž[tΫ!!‘βDΘΛ3₯,ŸY;NΞ•\O²bΕ ™9sf”/λΦ­QξKG@Ёη„r'˜ € € € € € € € € Έxž4ηΈlΫsΙυ3Ήq„o\―K)7Žδ@@ΰžgΑ € € € € € € € €‰MΐεΐsπΣκΞ³?ΐX«τ¬•«V|NΊΆ+.ήO—i € €@t’Ω‹OˆŸ y+τφJ%U+f—χΪoΟ”±rE@δ#@ΰ9ωάk@@@@@@@@ ι Έxž4ηΈlΫs)N$|kδ’~]JΕΙΉ8  €$]ΟIχήre € € € € € € € €I_ΐεΐs‹n;$δi•ηΈhZιyٌZqq*΁ €IX ©žŸ}Z2gΞ,Ω³g— .ˆ>θsFϋφνMψΩΥ‹#πμͺύ@@@@@@@@³g'woΒ„ ²`Α©X±’,\ΈΠIΧ68p@:vμhΪ»w―ψψψΈ6½@@ ZρxώώϋοεΘ‘#°aC©R₯ŠΉ†Η›jΟK—.• 2H=$uκΤ.]g—ΈθŒ € € € € € € € Θ\ΰΉHΑ p%Tξ?0΄λϊΖ91η8'η„ €Δͺ@|žO:eΎ@UΎ|yiΦ¬YΈλϋρΗeχξέΆm[)^Όx˜ύOž<³†£sδΘ!i€ ³?²ΐ³VΎtι’dΙ’ΕT–sπΣ•;wξΘύϋχΝ~]όωσ‡;ηηη'7n”vνΪI‘"E$00PBCCMeκ΄iΣΪ†Ύuλ–θΌ2eΚξmΧ]“”)SJƌmύY@@@@@@@@@ ͺ *π¬aηΙΓ«I@`ˆ|0ΒΟ„ž +π•κΣVΰYC؎σš?Ύœ;wN>ύτS3U‘ΊuλΦζyιΪ΅kςωηŸ›jΥZuš† € € € € € € € €€;ρxŽ,μ¬έΐ³ΏΏΏτοίίΌrέ(sζΜ¦’’V<΄ožg̘!Σ§O—jΥͺIφμΩeυκΥφ‡™ε_|Ρ{2fΜhΫgxΦ0παΓM•F[‡§ ^^^’ϋͺV­jΏΩ,/Y²DƍgKŽ;υυσ_}υ•d͚Υqλ € π_ψ<Ϟ=[τΌN‘"E€χbΓ† ζ‹UZΕ9[ΆlaϊŸ9sFζΝ›'V•ε‡Š}…η»wοΚθΡ£₯L™2ζ ]a~Ί’ΑdcΨ°a¦ςrLžψα9xπ  0ΐͺυKfZ₯ZηΡΌysωχΏ-›6m’Ν;Kώόω§Ε: € € € € € € € €QˆΡΐσΰžεεΠ±«¦2sdgJΨYLjNΰωΘ‘#Ύ}{SΡΧΧW4h`*jυA}ν»ž{ξ9\Φͺ‡V‹,π¬ύR§N-­Z΅2 u}ϋφνςύχίλ’Τ¨QCfΜi–υ‡}ΰY«1—*UJ5jdζ’ΗiΐIB 4s±―ύυΧ_›°sš4iLp¨N:¦*΅VˆΦkΠΧΙΧ¬YS4ŒMC@ηρxΦjΝZ΅ωΓ?ϋ/BY3 •S§N™/-εΜ™S6nάhήζΠ₯Kq|λΓωσηeΜ9’Ο3΅jΥ Wαωή½{ς―ύKžώyιΠ‘ƒu Ϋ§>OθsVtΦg‘˜ <[Χ8hΠ ρφφ6ηΣ`Άz_}υU9wξœtνΪUzχξmΫYΰΉxρβΆjΞΆƒž.οθΡ£¦›† ½ΌΌ¬CΜg@@€Τ­[Χ,ϝ;ΧVm:L'V@@ΐTv…!wξάtwΪχΑƒςωηŸKŠ)€sηΞ’)S&[? ,λΫ_Ώ.}ϋφ• 2˜JΘ_|ρ…©ψά£Gsœ Ο³fΝ}^8p €K—ΞiΰYΓΣšnΩ²₯νKWzΌ>KθΐτΦΌά <ίύŸΌωζ›:€iϊςε—_Š>΅mΫΦΪlBΧΎN•*•ά½{WτZτYŒ† € € € € € € € €€»1xnψ΄²σ §ž›cθΩΥ°³Žΐ³γ|ξίΏ/—.]’ΰΰ`³λ“O>‘?ώψC:vμ(ύϋχ·u,π\’D ΡWΈ;k£G–oΏύΦT3Τp’6ϋΐσή½{ΕΗΗ'ά‘5jΤ0A'­Jέ¬Y³pϋ­ wξά‘Λ—/›0ΡγǏM°ZχMŸ>έΌβήκΗ' €όO >*<λΩύwΡ79xzzΚ‹/Ύ(Y²d‘³gΟΚ‰'δΦ­[€I³έšιΝ;eΫΆm’Uœ+UͺdΎ ₯!f=FƒΜ₯J•2]Ux 1_œ ΅ΎέBCΖ/^SΏlυξ»οš²ΰNΰ9eΚ”&ά¬ΟAzέ»w›/–iΥθ—,Y"Ǐ—μΩ³‡ωRY˜N¬ € € € € € € € € E <λΉ" =»vΦq£xΎqγ† υh@YƒΒΞZLžηϟ/'N”B… ΙΪ΅kΝι’x>}ϊ΄,X°@6oή,xvΦ<;Sa €ˆ―ΐ³ž]+!λ3ΞA«5kΕg k΅e­ŽμΨ<([·n•Ϋ·o‹‡‡‡ W\YΚ–-kλκ,π¬;υ˜Υ«WΛίmΞ₯_²π΄ΎΥBCΧVs'πά¦MωωηŸΝΫ1τ­ιΣ§7Ÿ‹)b kϋΤ ·žΓΧΧ—/dΩTX@@@@@@@@pW ΖΟ:ˆBΟσ—ž ‹wκ0σt¬fηW’xΦWΏ·nέΪTuΦΐV;Τ „ϊΪx i%ζσηΟKLžuL­ς¬A¦νΫ·›«ˆNΰY«:vνΪU΄ZcξάΉΝλθuloooSυqάΈqζžύφ° @ΔgΰΩΊvΦ/bιsHκΤaŸ‰¬>φŸϊ%'ν—6mZϋΝQZΦsiψ9S¦LQκοJ'}cΖέ»wΝuDtœ>ϋ¬Y³Fϊτι#Y³f¨Ϋ@@@@@@@@ˆ’@ŒžυŒ…žg•°³ΐs·nέdϞ=ζUρ_~ωe˜Κ†:v‡Δίί?FΟ“&M’yσζ™*Œ~ΦζnΰYE΅jΥ2%ΗPΆŽϋψρc[΅GΟ*BC@ΐΉ@B<;ŸYΫͺΟ/Σ¦M“Œ3J§N’ήrE € € € € € € € €q.γg½‚ΘBΟQ ;λXξž΅²a•*U$44TfϞ-ΥͺUΣαΒ΄Ψ<χμΩSvξά)5’ργΗ›σΉx>t萴kΧNR₯J%~~~αΫžΓάNV@ˆP€ΐs„41ΆC+Rλ3Ο‰'ΜΫ5Ίwο.9r䈱ρ@@@@@@@@ ω ΔJΰY9_oPPϊv.Nvζ7ΗdιšSαΆG΄ΑέΐσΝ›7₯zυκfΨ‘C‡Jλ֭ÜβάΉsΆm[Ή~ύΊΛžsεΚ%kΧ•tι…σΒ… ςκ«―šΚ˟|ς‰ΌύφΫfΏ»η­[·JίΎ}Ν«V­’"EŠ„9ίφνΫ₯wοήf›VR¬]»v˜ύ¬ € €ΐ<Ηώo‚Ϝ9S²gΟ.5kΦ”ςεΛΗώI9 € € € € € € € €@²ˆ΅ΐ³κ θVN^υΝoƒά°νœŒŸω›m=* ξžuμϊυ닆o ,(“'O–’E‹ŠV~>xπ |τΡGfŸφ³―Ζ¬λ&L HŊeαΒ…ΊΙ΄3fΘτιΣΝ²†©§L™b =‰Vw>vμ˜ ϊlήΌY€IcϊΊxΎxρ’4hΠΐŒQ―^=3g …„„ˆ†‘‡.ϊΪxmφk³ € ` πl£ˆΥ}.±žbυD Ž € € € € € € € ¬b5π¬’Vθٝ°³ΐ³}…d+_Ύ|rνΪ5 6AεL™2I@@€+VLV\©]L‹,πμεε%>4}Λ–-+)R€£GJhh¨ ω|φΩg&lύίαΜλέ;vμhVχξέ+>>>Φ.Ϋg5δƍ2rδHiΦ¬™m»Ž΅hΡ"³η)T¨œ?^όρΗ¦ͺ΄Ξ½Z΅j¦ξ§!€ €@XΟa=XC@@@@@@@@ 1 ΔIΰ9: Ρ <[η ”   S!ΩΣΣΣΪμηŒ3dϊτ钁η+V˜c΅ͺσ™3g$wξά’1cF—Ζs₯σγǏMeg}U|αΒ…%eΚ”N_@’΅ηd}ϋΉx@@@@@@@@D.ΰrΰΉE·ϊ(N.ΫΛ3₯,ŸY;NΞ•“8 ή© Ω_§ošΠσ/_Nΰ„Ιwzύϊυ}]|“&Md̘1Ι‚+GHπ %π|όψqΩΉs§;vL¦M+%J”Άmۊ——WΓ‹/ʊ+$C† ςξ»οΚοΏ.Ϋ·o7ŸΪχ…^Χ^{M²dΙζ8ϋ ώϊωω™sHžkeϊτιςπαCcV¬X1³Ωϊo@WτΈŸώΩŸ?^ϊχο/z¬›Χ~ϋφmΫοSέΊuΕώžZηη@@@@@@@b_ AžΓΞΦeΏ_†τό_PΔΪΞgΒ πœ0ξ³@ˆ\ ΎΟΥΰ°ΎAƒφMC½‹-’ηž{ΞΆωΐ±cGνέ»·L˜0A Š~υΥW’5kΦ0»4D­­gϞ²pαBΉsηŽYΗ?ώ!ϊ7_›«γ>~όΨ„šυX ©~σΝ7rωςe]΅5 Aώωη’!Ϋ=zΘΡ£Gmϋ¬…Κ•+˜9sœ΅­>Γ† 3ΑέΟ>ϋΜ„Ίuϋ!CdνΪ΅V—0Ÿ 64ΦF½/zν¬ul 0χNΓΟφMοΙ| ;vμ°ίl–S€H!͚5“#F˜uWζn°H6Έz_¬α4x―ϊk“νSg'Mš$zνφνΦ­[&€ϊτiϋΝfYψ#GŽ”Ϊ΅kΫφiΐ_]΅>|Ψι=ΤP»†έυwΦ ‘[ θq ργΗλ’i3gΞ”5j˜εΈΈvύ’€·υSΏ’ΣτwFCζΡi™3g–Τ©σ%ΡθŒΓ± € € € € € € €$&xZεπ•W^±Λ/ΏˆΏΏΏ chEE z΄jΥκ™ύ΄ͺέΚ•+εΔ‰&,’Uι40T―^=§ŽΈ˜Σ•+WdΩ²e¦’‘^œ^‡VOΤλulZνπΒ… R³fM³_;0ΡͺŠΌͺX±’Όωζ›ΆΓ4δ2ώ|³ώγ?šπ‡ZZΑ–wήyG4„‘‘wͺωιΐV…ΙΨi»(@’Ό@|ž΅R†}}}Ν?­¬r΅’°VΛΥͺΚV0Vo†}ΨSΧυΉBŸYrδΘaͺkψW’ϊ7WίΆΰιι©έLϋϊλ―MpT+ kΕέ:uκ˜ΰ΄VΦgύ[χg̘ab>­ΐ³h•^­”\²dIX^½ΊΈ3}ΰYΗΥ`kƒ €P‘B²{χnΩΈq£©¬Υ³eΛf‚ j€‘W 뜡ϊ°Ά?ώΨ<—™‡ΨΥλΤc4`«γi;uκ”θs‘>λ|ϊι§f›Ύ•BŸq4π]€H³MXi ’kEa}~γΤIƒΑΪ_ο™½υ¨Q£LάΫΫ[τΉEŸ·΄š΄φΣϋςδΙ3V—.]\š‹mRQXpηΎθ°ϊίDλΦ­εκΥ«’χWŸyσεΛgž΅β²>/«Ο₯Kmžϊ»ϊή{ο™ίO­bέ½{wS₯<((ΘTA֊βϊ»­Ο‘ 4³‰ΐ³”+W.σ;©sԊγĎ«kΧ€υ΄iΣΜ»vν2UΌΝΕΉωCœΖ£2œώ·S΅jΥ¨t₯ € € € € € € €IJ ^Ο‘…U::η:˜s›6mLψχΧ_ wσ΄z’Vζ>|Έ-PcίIC/ ,0Uν·λ²uήύpuŸzƎk‚IΊn΅Ψž“(΄ŠžR움΄‚Ÿx΄’’ΥtΫώύϋ₯kΧζΥνkΦ¬±vΩ>5Ό3kΦ,"׈ۿΦήΦιΏ ZEQƒξ†[μƒQ±] qξ¬#€$]ψ<«¬}₯dKzΰΐ²aΓɘ1c˜ΚΒφg}Žω裏¬CΜηoΏύ&ϊ%£G™κ·ϊ|a5«­VΕ΅ίϋ5(m}±H+λy­fž5D­!W}²oξŒkw½lΩ²ζ™JƒΨV;xπ ΄oίήZ SαΧΪΨ€IՐ§ΞίYΣP΄–[Άli>ϋόυΧ_¦ΒΆnא΅†fνΫβΕ‹EƒΠ™2e}JΕVΣ`Ή~y.88Xϊφν+;wΆv™ΰινΫ·Νs”VβΆo:žŽ«Α`½ΗV‹l.VΏ¨~Ίs_tl ΓρΗ&L―•œυYΡjvVw½C‡5Αhέ§˜5dœ7o^YΎ|Ή€OŸή:ΔτΥgDύ²‘†Ϊ΅šΉ6wŸ νΠ/ν͝;7\UγΈΊvϋη_ >[_τΣλ»tι’ cλ²+͝Π3agW„ι‹ € € € € € € Τb4π<Έgy9tμͺ©ΜTTΒΞ:FLžu Άh₯b}]ΊVyΦjΟZΕX[αΒ…MEb}]zΣ¦M%gΜ&(­―{א‹}hΓπτ‡ύ+ΐ΅κ’Ž­U9b*ΐi₯;]Χ°VΊ³šxΦυ˜žΣŸώiBCϊ ϊ-Z˜Χn§K—N΄έμΩ³M0[CΔςΆšxΦΧbλΏΧ^{Ν„z΄’iΨD›υzψ{χξΙ‘C‡Μ6­x¨ϋ5€d…ΤWΟιnΈΕ>₯'‰­Jζψ lβ;π¬ΥhΧ­[&TͺψΎΥ`²Ά½{χš ²Ίlφ΄ίϋ¬6hΠ σ·ZŸc¬/,iZŸs΄ιμŸAt[@@€Τ­[WM€TŸ}¬fžυ―Ιλ―Ώnm6ŸξŽkwέ1(j@+3λs‡ƒΥH«aΫ7 γΞ›7Ο„JυνΚ†¦5<½dΙσ¦ Η>‘…Œ­η3g!qkȐ!ζ™NM­ŠΣϊε²*Uͺ˜/™i ]ƒιφνάΉs²}ϋv³IΓιV 8²ΉΨΩ²»χE«:kˆ[η΄jΥ*yώωηÝͺ_Ώ~¦J΅†˜Ηoφλs²VΝΆΒεŽ}ϋν·2zτhS­[ί’ΝέgBϋ΄ZΆc?―έϊΣ Έ†Ω­¦Χμxο­}‘}Ίz&μ™&ϋ@@@@@@@’Ί@Œž5μά φͺ卝~虑稆?&ΟZ½P0φΥό4€’―sΧj}ڴʝVyΆoόη?M…C­Dθοοo ͺh XƒΑΡΧλ+Φ훆‰4ψ(ϊ s­ͺl5+PΣsWΉk8I«ΜuλΦMzυκe|j…ζ©S§ŠVmΤΧΓ[(+π¬α"έ―αϋf…4Τ=yςdϋ]baƒΪΙέp‹}0*6+A†ΉV@’Ό@|žK”(!+V¬ηQψΥ>μQΰYC ϊ·8mΪ΄ζ9%άΰέ Ο-—/_ύ’ώΥgmΣ§Oσwί <λσ€ώύ¬Ee\ϋΏλŽη³ΖΧg ΗκsŒ†­›† ,ήήή²oί>ΗέζKkZι·X±b²rεΚpϋuCDΞΊOƒ³\ 5αί"EŠθζ0MΏ<Φ£GpsΠ7dh₯μ¬Y³ŠΠΥΝΣΣ3Μ±Ž+Ϛ‹c_wΦ£r_¬λΡ/ηmΫΆΝιiτΩςƍ’ΟΑΩ²e]Χ€ό“'OLΕj ¨;Ά‡šη_έn”έ}&ŒΚŽη­kΧσhΥsύ>>>ζΛ„V₯rύŸ~IέvϊτiΡΰσ³š~ΉPΟ4@@@@@@@’³@ŒžνΓΞfD‘gWΒΞ:VLž5dlUO΄ζ§ŸΊM++¦L™T΄Dλώ={φ˜π°.oΪ΄ΙΌΎ[—wοή-έ»w7‘a­4h:xέ―Νͺp§a ΒXα+πΣsP§NL Yƒ+Vγ?³±·—5ΐ¬Ν ­μ<θi…gΗζzv5μ¬γΕDΰΉcǎΏΗιΙΒ… Ν+ΊσδΙcAŽμ_ϋ‘ίR₯J™.r˜9s¦ψϊϊΚ”)S3λЍ^½ΊY֊ŽΦfžczNsζΜ1s©_ΏΎθ«ί5­θ¨―ΉW =Ώ6+π¬! 96+Έ3gNΩΊuk˜έ±xv bY'n%Hk>@’@R <ω矒_X¦‘ΰ‚ šε_~ωE΄ςπƒL•]}£EφμΩMub­Ξ;nά8ΣΟροldgwƍνΐ³Vg~ε•WδφνΫςΣO?Ω‚Θζν~<+d¬Ο7}ϋφ5½Υ)²Άxρb[υbν«o Ρ1τŸ~)N+EkΣ·gθsί|`–ΝΖ§?ž5«+Ÿξά—1cƈ^‡†iυ2*Νr σ―Ώώ•CLŸΨ <ΗΥ΅[«αvύ=³ήn²~ύzSΩ[Ÿ―£Ϋœ…ž ;GW•γ@@@@@@@’’@Œž$²Π³;ag7>Οϊϊw 5k³ϋLϋ8Η>Ηηz½ξ³Χx­k½ΧΊλ~=ίυ[ύϊυsΛΣrΰ9J±@X€ ξcΰΩ% UάΝ–-› ίΦ­[Χ€Γ½\_9Ύΐ³B½‘τίρΌ›Ξ{‘)’Χ?όsλΦ­›ΕχΒ—Ž_Θψ‡~°-ZΈαψ«7{γKΚοαΓ‡]υcaBW »Y³f¦/fx-Ύ±xΫ$φ7λςζ›oڈ#¬lΩ²φΑ$κpώJΨIqJ©ΐsjž»4wξ\Σ ΉsηΆ/ΎψΒϊφνλ^š<gΓz&μμ©σ‹ € € € € € € €ΐN[ΰYέΕzž4γGkΡ€ŒεΞ•%Θ=΄tΠΚS3ΡxVpeγƍ¦€N§NΒ Ϋ-S0hχξέφδ“O‚4)xφΖ”+W.Λ™3gœc …‚ΠP#πμψƒ ΞcΰyςδΙξ₯ͺ ˜B₯j«W―ΆΦ­[[ζΜ™έΛY9rδΊ²ργ |Έ½υΦ[²ΆΒY²όο98Ύ±Δκ$‘^…u;wξklώΓι%»-[ΆΨ9ηœc_|±]ÌΥšQx&kΦ¬¦ΐ‹WΥ/₯Ο£F²‰'Lb *Μ‚” <ϋC>I©ζ—’Α¨0§Ο"@³D -žU=x€IVΌxqw΅Ž;ζΎ‘p©Β· _–+WΞ­ΫΎ}» ²jζϊλ―·~ύϊY‘B…\u^Dhz)KMΥi[Άlι¦υ'Ύΐs€ύ¦δΏλ2Q•έ:XχξέηnBq}yCU™Γ|Ώώ{»σΞ;MγΥW3δ–={vΧ•ΌΖŽλžύnΉε:t¨[Ύ~WUϊθΡ£¦Ξ|πAΛ—/Ÿ[§JΗzMΟC 4’½–ΠXΌνσιuQίͺfύβ‹/ΪΉηžkzΆU•e5UrVX~Ψ°aξΕ½>ϊ(PmΨ«ͺœ)S&{τΡG]5qν#·₯K—Ϊc=f S?ρΔvΗwh• 2_{ν΅ΞώŠ+°Αƒ[‰%άΊ 68·]»vΉω€žSϋάέcώψƒΨZφΘ#*Q{Ϋπ‹ € € € € € € €§_ EΟfΣFη[ΟώWΥΨ?μWί\o3>όΕΏ(ήιh <―[·Ξ[XQΘXŸAm½zυ²ΉsηZ•*UlκΤ©Υ)xώκ«―\ΰGR»f͚czώω§ϋχωηŸο-²δžtωψγ]%>Tό-j~)Œςi@³K -žΟ9ηΫ·oŸ]tΡEJπwί}ηΒ£Ί‚zΠΏΗώ¦*Ί^u]’/ΈΰW ZΑάbŊ™*#+Δ«j½}ϊτ μ_ΰYEoJώ»JΑͺ–¬JΛ₯J• œG\^Εb™\|ρΕV©R%χΆŸύτΣΠΥΆsηNχωv­xηw¬bŊmTέpΑ‚’£#ͺ’η5}.Ό[·nκžBP §¨%'πμ…W4V}>sζΜήα"ζ—’Α¨ΐΰ˜@8λrΰYΖ*dͺ*Α^uζ XϋφνvύTαQ=O(œ{ΰΐ·*[Άlβσγ?n]Ίt1=‹Τ]Ϋmγν›Pΰ9’~SκίυoΏύΦξΉηW•XAεΔ΄όΡU]ώύχίέζ‘η―… ξ*˜«ΚΓ ,«-ZΤ}A£wοήξΉΟ-τύΡ>ϊ†ͺD{ήZ]­Z5gξŸČΕwˆx'#Ή.^‡zyO•²ί~ϋmχŒ©εΊWτžξ―κ³·½χ»xρb{φΩgmσζΝΊ³‚έͺ2~ϋν·»ΐ³·χΝ7ίtΟΜͺ ­¦@τe—]fƒ r/νιeΉ€žΟΔΉkμή—Utυί5 € € € € € € €€Ό@Šž5|/τIΨYϋGkΰYUμQ?6Όͺ‹λΧ―7}–[Α}όΊλΣiZJUxΦvμΨa;v΄ŸώΩUœ»πΒ ­dΙ’¦PτR8ͺGρ$'π¬>UαNMŸC/]Ί΄ϋ„y… ά2/­™ΔVσK©`”@ΞZοίΑΔ¨šο™l+V¬p/Gi ͺΐ›;wnWwλΦ­–#GKΜψτoκ―ΏώκBeΚ” ͺΈ›œsK©~“2¦Ψ¬Y³\8ω–[nIτ Θͺ*΄šž‘ξ ΧvV˜7oήΌκqΈmΒ-ΣυQ₯β%JXΜ9ΓmX:=Ώ΅lΩ2°>‘ ½ύδδ^—½{χΊgI=?fΙ’%‘Γ»υͺ-O―ξΡ„š7F©RvΦ¬YΪ%Qλ½~υB@$χzRΟ]•ΡUέ[/¨’5 @@@@@@@R^ ΕΟ:…Κη³u?μ‰θl’5π¬“QPEŸ)πΓνΟ? œŸ*άια 4,σ&R2π¬c(葊Σ“χiq…Iτιv}’<4H“œΐ³Ž§*ˆ 6{Mύ­“ZΝOUT{ωε—­nέΊ^ׁί]»Ί*—·ήz«=ύτӁεή„( ’θιΛ—/χσ‹ p €‡ΐσY|ωbΊžu:dϊΊEφμΩc­O‹ 6mΪd>ψ`’‡*Γή3S’wbΓd θ–(d―πωηŸ[Ύ|ω’έ' € € € € € € € €@Β©xNxqo‘œΐsά½žώ5 λιŊ3}f>šΖ€jΣͺtwΊ*θ…;―={φ˜>COΎ*T(Φ&^Υ½Σ]Ν/ցX€ €@žγ€a1$I@_xY΄h‘5nά؞yζ™$νΛΖ € € € € € € € Ή@’Ο-:-΄ƒ‡ŽG~Δ$μ™3G&{χΥzIΨƒM@@Ψžc›°'°lΩ2{ύχέ—CτU—lΩ²Ω»οΎλ^*L\l… € € € € € € €ΙHrΰyΤψοmώ’ί“{άDν_ΏN1λΥΎb’Άe#@@ .ΟqΙ°˜2eJ šs\ΉlȐ!Φ Aƒ„vc= € € € € € € €œF$žΔTw~ν­mιΚ?R¬³*;ΧͺVΨ:Ά.oΉb¦i € €@rZΰωΰΑƒΆeΛwΚ*T°Œ3&ητΩ’!πλ―ΏΪ’%K,oήΌV³fM˟?2zcW@@@@@@@ˆD ɁηHΒ> € €ΐ™Hkη3iΕ±@@@@@@@@ˆ6ΟΡvE €œvΟ§”@@@@@@@@H5$žχοίoΓ‡·ωσηΫΎ}ϋRd yςδ±ϊυλ[Ÿ>},wξά)r :E@³G€ΐσΩs­9S@@@@@@@@τ'δΐsώύmφμΩ©"Ρ΄iS2dHͺ‹ƒ € €@ϊ πœ~―-g† € € € € € € € ώ’xY³¦©Κsj4Uz^ΊtijŠc € €@: πœŽ/.§† € € € € € € € ξ’xΎδ’KRε»οΎKΥγq0@HžΣί5εŒ@@@@@@@@΁džOw 94P}ΊϋOλ—φΰΑƒΆeΛw*T°Œ3Fν)mΫΆΝUΟ—/Ÿ+V,jΗΙΐ@Ώ@jž ώQ9CHƒ Jγd € € € € € € €Δ'@ΰ9>Σ°ξχί·oΏύΦκΦ­kΉrεJv+V¬°ΆmΫΊ~–-[fΉsηNvŸ)ΥΑƒ>h‹/Ά-ZΨ“O>™R‡‘_@ πœ  €@: πœN/,§… € € € € € €œežSψ‚ί|σΝΆyσf»ύφΫmΰΐΙ>ηd €ΐY(Ϊη³˜SF@@@@@@@@ Ε<§ν:nίΎ½-]ΊΤΊuλf;vLφΡ’xώδ“Ol€IV @;vl²Η’PTxNHˆυ €©%@ΰ9΅€9 € € € € € € € €§_€ΐσι7Υγ]»¬P‘B±–G² 9η©S§ΪΠ‘C­hΡ’6oήΌHŸ€}<'‰‹@RP€ΐs β5 € € € € € € € €),@ΰ9…OwχžO·(ύ!€œ žΟ†«Μ9"€ € € € € € € €€Wtxž4i’ύσΟ?vέuΧYεΚ•c]ΏΧ^{Νώύχ_kίΎ½εΜ™3h½BQοΎϋ[¦*ΕY³f ZΏaΓ{ύχmσζΝ–/_>«P‘‚5hΠΐJ–,΄f¦M›fόρ‡Υ¨QΓjΦ¬k½ͺ?όρΗΆnέ:;zτ¨]|ρΕΦ¨Q#;όσνΕ_tΫίύ–;wn7x>pΰ€}ϊι§φέwί™¦Λ”)c-[Ά ΛΔ‰mίΎ}n›₯K—Z\Ή¬U«VΏ1ψr>@IDATΈ|b 4ž‹/ΆεΛ—Ϋƍ­T©RV΅jUk€‰uξάΩ΄E‹φδ“O†νασΟ?· ΨοΏn%J”p–·άrK¬kβίYξ³fΝ²-[Ά8³ /ΌΠΎϊκ°Ύή~[·n5ϋϊυλmǎVΌxq»όςΛέ83fΜθmfsηΞ΅~ψΑςδΙcχέw_`Ήβ½χή³ί~ϋΝ.ΈΰΣXi €Ρ/@ΰ9ϊ―#D@@@@@@@@ .tx~ψα‡]ΈyσζφΤSOΟ?lM›6uΛFe 6 ZφΫoΫ°aΓ\xψΓ? Zχꫯژ1c‚–iF!b…zoΌρΖ uwάq‡ ΩvμΨΡΊuλ΄N!ηξέ»›BΟώ¦φ#hͺžν<+„¬°χ‘C‡‚*13ρΕ_XηΝMaκεΛ—»UΟ>ϋ¬Mž<ΩUy>|Έσΐτž={\Ώyςδ1ύ'\ΣuΪΉs§>|ΨNœ8αBρΪNχŠwM΄\‘x…§{φμiͺή­ΆjΥ*kΣ¦©’φ’E‹\un·‚? €Q/@ΰ9κ/D@@@@@@@@ Ntx^·nέuΧ]–?~’•B‡μ«―Ύr•ƒ΅\U5X‘b΅ξέ»Ϋ‚ \(ϊΆΫnsΛτ§V­ZΆoίΎΐ|| J«Ϊ°ZΈΐσΪ΅k‘ιpUš΅_΄ž½ΈΞο‰'žΠc΅pg―‚v¬γX  Ρηž{΅kΧΞΎωζWyΉGql~ρζΝ›]XZU’xΧόg­χΦͺ`·Y|!o·!@’N€ΐsΤ]„ € € € € € € € €@’uΰωδΙ“jο_ύe³fΝ²σΞ;ΟUaVΐωγ?vHmΫΆ΅+VΨΜ™3­|ωςvΥUWΉ`σΒ… ]hmτΟ?XνΪ΅έφ ίͺΒo|νΡG΅oΌΡm.π¬γιΈj_ύ΅εΜ™ΣMϋD{ΰYU±Χ¬Yγͺ« rΈ.πϊθ#SΉpαΒξWaγGyΔΉ½ωζ›6bΔS8·~ύϊvϋν·[Ŋνwή r­Y³¦«μ―ή΄A3αΟΫ·o·FΉ=ώϋίZι₯cννηή½{ۜ9s¬iΣ¦6dȐXγΧ‚pη~ψΑZ΄hαΆχͺ7‡έ9d‘Wy»U«VΦ―_Ώ΅αg9βοͺΜνΏζήΦ'Nœ°*UͺΈΩΠΐ³ήzλ­φΣO?ΩC=dͺκ¬sΝ‘#‡«_ €@ΪHνΐσώσŸ΄ƒΓH@@@@@@@@H¦@“&M’ΩCό»§ϋΐ³ͺσ*μ|Ν5ΧΈͺΎšŸ}Ί=ύτΣnvξάΉvήyηΉι+VΈjŚYΆlYΠ±ά1tΎ{χξ΅AƒY³fΝΌΕj΅–,XΠVD0αΗΫoΏmU«V κεΐZφ―Ώώκ*:?ω䓁υwί}·­Y³ΖͺU«fS¦L ,χO¨­Χ5SS`Ή}ϋφξΊ}ψα‡vώωη»εޟ“'OΊ0ςoΏύζΡ FΟ›7Οzφμι6ωΰƒ¬lΩ²ήζξχσΟ?\“1cΖΈ*Ξώ vμΨa :«oω+,7zτh»φΪkύ›1 ΞTΰ9₯δ=CD@@@@@@@HΗή—ΠS:'“ξ+<λΉχή{mεΚ•ξvΉνΆΫlπΰΑA·Ž*«z―š‚Μ_|ρE hλmxπΰA»ωζ›mηΝ. ­ŠΓ^YX…’ϋυλη–Νœ9Σ²eΛζv+π¬ρh\jmΫΆ΅‡~ΨSU‡Τνέ»·;vΜ­?]ηŸ~ϊΙn½υVΧ§BΫ₯K—vΣ‘ώΉοΎϋμλ―ΏvηόΚ+―Ψ…^θΊR•eUΥ^Ύ|Ή›oΡ’…ωΟͺ^}ηwšΞUlΉ)vδΘ;v¬ —ίrΛ-6tθP·\xVπωβ‹/vΑγ’E‹Ίu»vνrσ³fΝ²B… Ωόωσ]0zϋφνΦ¨Q#·‚Λ:ŽΦλZΚxΰΐξxΪ`ΐ€Φ²eK·­O»vνμ›oΎq‹ςδΙγξ,Y²ψ7a@ xN‰!"€ € € € € € € €€9Ο§.ΩwΙ¬π¬nT™YšΥΒUςέ²e‹yΙr…š‡ ζΆ ύ£ŠΚ½zυ²ώωΗšU:oήΌΆzυjS%i…œ„φWŽ+𬾟zκ){χέwέaTϊ’‹.²M›6Ωώύϋ-ώό¦ΰ°Ϊι <«―† ΊJΕͺt]±bE€ΎύφΫ΅*Ιmγƍ.„Ό{χnΦΎΰ‚ ,sζΜξ2eΚd… vΗ <λ@“'OΆηŸގ?ξͺfWͺTɎ=jkΧu!d…ΙǍTΙYΧ©S§N¦*Ξ H+ψ¬γ¬Z΅Κ…§fΦυU_^>|Έ½υΦ[nVΥ’5FUΦ±Š+f»BΦ­[·Ά>}ϊx»~’VZ­yσζξšV2 f<§™KΕ@@@@@@@@@ηSλtžΜU%α9rΨ’%KΥ—ύχƒͺ ςΛ/φΜ3ΟXγƍύ«‚¦UMxȐ!πά:…•«T©b:t°κΥ«m_ΰY*ψ;i$ΌΥΌ‚ΌΛM7έ¨­jΔ^5γ+VΈŠΠΪVl;΄Υ©SΗφξέkƒ rην_―K•ύχ_·ΈgϞφΐψ7I΄dͺœ¬Π·*R{‘b…ΉΤ~σΝ7-\ΰYY·n«ΰΌaΓ@Φ2η₯—^κ*\+0Ϊd@Ίͺ8+d¦Πω•W^i=φXΐΙΫOcš2eŠ O{ΧKΑtU|~όρΗ­K—.ϊwνΪ΅έ6ή~ή―ΒηΧ\s EΏώϊλV£F oΏ €iH€ΐsΊX @@@@@@@@ Ν€™ΐsJ‹žŽΐsJQ•‚¨UΥΰδ6U-V_₯J•²Œ3ΪΒ… ­kΧ¦JΜ 9kΩιj4UKΞ“'©’²* +θΨξš(@½yσf+Y²dΨv|}«Ϊ²φUpΉH‘"ρm΄Nα5·L™2AΛΓ͜8qΒUvV5gm―ΚΠ‰i[·nuασ‚ Ϊ‚ NλuHΜρΩ@ΰτx>=Žτ‚ € € € € € € € €€_ jΟ5kΦ4U½M¦κΕͺbœ^›BΎq…₯GŽioΌρ†•+WΞf͚•’3gΞ΄W_}5ΡΗPΕι³₯ <Ψf̘a­[·Ά>}ϊœ-§Νy"€ιN€ΐsΊ»€œ € € € € € € € €@DmΰΉώ6{φμT!jΪ΄© 2$UŽ•ΪY³fέwί}Φ°aC{κ©§\%go ‹-²ž={š*χλΧΟZ΅jε­β7Φ­[gwί}·L‘ƒΠ) €œ5žΟšKφDOžώψcͺPŸΡ«ΑΑ@@@@@@@@ 1QxY³¦©Κsj4Uz^ΊtijŠc € €@: πœŽ/n"Nνε—_Άή½{Ϋ\`Λ–- |AδίuαηοΎϋΞFe;vLDo)·Ι#~όΈ)€«–+W.χ»cΗΫ½{·›Ξž=»Ϋ/C† n>?zyν?ώ°Γ‡ΫΙ“'­hΡ’–?ώ°›u <§υ[™ρ#€ pζ’9𜐎BΝeΛ–u›ύτΣOV΅jΥ„vqλΔ¬P‘B`Ϋ-[ΆX½zυlΧ]e‘‘a_uδΠm½ͺ*ίsΟ=φΙ'Ÿ„n4Ώ|ωrσΏΨφΠCΩΈqγ‚Ά‰dFοU«V™B΅‘MU‰»tιβB³ͺš¬p²ͺμΘ1ΓeC·ΧΌϊωρΗ][σ?ό³U©RE“qΆΙ“'[‹-λuΝjΧ˜7qο½χژ1cLΧΤ ±‡ΫnΩ²eVΉrεp«β]¦κΓ‘\yοΈγŽx―§ύ’%K¬D‰1(δ|Γ 7ζΓMxΆ΅Ξo5oήάd˜1cΖ έTρZαpο^SΕp~AΗΜxΫEzO&υάύΑωQ£FYθK +V¬°ΊuλΊaφμΩΣ…χCΗΜ< € € € € € € €i]€ΐσ©+Hΰ9­ίʌ@3/νg5'Mšδ‚― $χκΥ+PΈoίΎφψγ;ΔΠΐ³Κ ]–.]Ϊ…tU}wσζΝn[U͝3gŽ ψ*ψΫ©S§@…b…5_΄hQ·½ͺ {Ο\―½φš«>¬NΒ…Kϋτιγͺ>+zν΅ΧΪΤ©SAOUR~ϊι§]Πzοή½6rδH;v¬Α:Η 2Έy/Μκfbώ¨πυΧ_o'NœpγτΞΩ[λ­·:œΧ]λΖοkhΰΨΫgηΝV¦L7ϋφΫo›ϊPΫ·oŸϋΞOγΪ°aƒ)€|Έ΅jΥΚν£jΝͺZμ…ΞV\γTH·ώ.”­λ:wξ\7%’¦jΤ^7)ΧE•ΊΞUΣy͜9Ӎqǎ:ΈWεZrU WUf]λK/½4p^ΊgU1<{φμΆpαBkΩ²eΰ4ΕWέ[κK!τHΟ§λžLκΉλΊ©r³š~pV ήkΟ=χœ 0ΐΝ~ώωηvε•Wz«ψE@@@@@@@ έx>u)½πMΊΉ²aNδώϋο·ύϋχ»ΰŽ‚C4@8½ΡxV¨τΛ/Ώ4y½Ά{χn«V­š ϊƒ₯ώΐ³Β“}τQPecνΧ°aCΰU_ `^|ρΕvΰΐ«T©’λ/\0sϋφνV\9wx€'NœθΒ§‘η?ώΨ…½q*ά« π{ο½η©2²ΏκοΡ£G­~ύϊ.0¬σSp8Ožu9Ο†ΐs:u\e<@š5k–ndN@hˆζΐshθU^ͺž¬ο₯KƒB³ώΐsΈ€φ}ύχšύ}«ͺ°«ͺΊ{Ξ9ηhΣ@SUe]υάεXϋC›q…RUέχΘ‘#.Œœ?ώ@ŸήΔ£>κͺ<ϋC«Zη…YCƒΠή~ sίyηn6\gMU¬,φŸ§·ΏίP‹‡ β­ όϊΟ/΄YyU±5vVυλoώ14oήά4ΞC‡Ή ΆΖ₯ λ‚ LΑX―ι%·oΏύΦΝͺ*²ΧΟ$.k―ΔόFr]–-[ž«2u·nέbΚΨVΥβκΥ«»*ٟ|ς‰σQθ·@AϋωuΝRVΎnέΊ{.’ Οq9₯ΦΉλ₯ƒO?ύ4πόξΏ‡Ύώ{WΙZ4ύχ€† € € € € € € €@z π|κͺxN·7η„ €@κ €΅ΐ³tΒ…_ύgΈ―™Π6;wξ΄… ΊŠΗ :«ιwμΨ±nΪ"υU½@oƌέv‘wUWΈZΑu½P௞>~όxSΠ^-άύλVπ@@@@@@@t @ΰωΤELNΰYŸWν·ίμκ«―v!…{τiχ7ΊJ{ϊTόm·έον’κ| ά(¨“/_>χ™κ XΙ’%γάO‘UΌΫΊu«e͚ΥJ•*e7vŸ’χvRgήΌynφΝ7ίt‘…jΚ—/o9sζtŸΗφΆυ~“2–_|Ρν¦ ˆ‚! ©ά­·ήκΖβυ©ί~ψΑτ)yoΌϊ·ͺυι?ώ¦°Ψ»οΎλισπΉsηφ―vΣΫΆms^šιΨ±£«"k# € ΚgSΰyίΎ}Z³ž]όA`…?υ5‰Ρ£GΗ«οŸϊΓ₯ώεώT Yα^/ψλ_ηŸφ‡V΅<\˜ΥΏ½?π.|λ›<½>TΡyθΠ‘.„ͺκΜ +‡Άψϊπ― έ/άΌίGΧ M›66wξάX›*Ϋ―_?χ<hφLό}Εκ ‘ "Ή. ™‡;΄ί))γNΜ~ž‡ήIΜ~©uξžGώύν…^p³«W―Ά /ΌΠ6lθ*΄+ΧύηνΟ/ € € € € € € €iY€ΐσ©«—œΐs»vν\ΐ@ΑΫίέ…zCoŠΪ΅kΫk―½ζͺτ…{υΥWm̘1‘‹]UΊ'Ÿ|}ςέΏRUλTΑOΑκΠ¦j͚5³§žzΚ­š5k– 0 t37―Ο€/Z΄(h]RΗrΙ%—Έύ½ ƒϊ|ΊΪ}χέg½zυrΣϊ£Π“Ξ?\»λ»άη·ΪVSe>}z\!žaΓ†ΩΝ7ίk7―Ώ‹/Ύ8ŽŽ΅ @He³)π¬κΚz©KgύAΰ'žxΒΝ{τ ?λε&UΫΥ>zNQσ‡V.ΥKU-[ΆτΊ΅N:Y£F,ώό¦ΰi½zυά:hU Β…Yέ†§ώ$ΎυΝžΪ]UwλΤ©γ^X{ωε—­mΫΆ§z ώ‰―:ν₯k|­xρβφK/™?ΔΌjΥ*Σ3ίσΟ?kW9λ₯·μΩ³Φy&ώkX™Δ‰HKBζα†ΰwJ¨β²~q―ηαΏw³_j»w>zΩ±~ύϊnVχ›ξ²eΛΊyUοΦ­›·)Ώ € € € € € € €€;Ο§.ιι<«’ŸώsΣM7Ήΐ@ B¨Ϊ³š‚Mš49uΔύ¨β±ͺο)„’Πp­Z΅άgΛgΜiήΕ™>}ΊyΑbνυτΣO›–)8ΤΊukS˜ϊ―Ώώ²O>ωΔUψSθ§Gz³ΖπΛ/ΏΈƒi™Ι 㨡>­ ’Χ"‹\ͺΔ¬OΊ+„\₯J»κͺ«\Χ3fΜ°Αƒ»`ŽΒαͺ0)S&WnάΈqξ³γΧ^{mP%ȁš ^ WZ%}τQ»χή{½Sΰ@3*p6žυ%‹Λ.»Μy{A`Ώ*Νͺι™ΰƒ>°ΌyσΊyύΡK[ λΉΛ>M(\zμΨ1»α†ά³ƒB©Ÿ~ϊ©ϋZE γ˜ /hν­j}Έ0«Ώ„Β·ώ±yηιν―q(ΐ­g •+WZ‰%ΌUAΏρυqΰΐχl€/lψM‚:HŒžύτL¨@ΈΧτ™ž½ζ™$χx‘^…³οΉη7œpU΅½qϊ#uςΫΗuΎž‡ήIhΏΤS°ωΌσΞσΊtΏ _¨ΪσργΗνΩgŸua%:ΏφνۻʌγǏwo­Χ~ 2«κ³‚0 w{MAgžε½`Α+X° ·Š_@Ξ¨@z <ΗUΉψwή1=©yΫ„ Aϋ/ˆB€z!*4ά›PΈΤτŒ+΄ͺ―_θyΙZΥ±Γ…YύcŠ4π¬ΜξΌσNχ‚Z‹-lβΔ‰AU—ύΗπŸŸgε­W? 'ΏυΦ[.8½|ωr;όσ½ΥqώnέΊΥτeŽC‡YηΝ­\ΉrAΫ]»6π\ΤφL’R)9¨σS3‘^=w*―¦η‡~ψTχ³tιR9r€ Μ?χάs’·η€k¬ CŸBV_ΫΆm3}ADΑύcŒλ|=½γΏfαξ9ΏαΦλLΒέ“‘œ»ΎΚβ5Y„~½EΫ@!w½ΜHC@@@@@@@ ½ x>ue“¨φΟ·έv›«dz³(Θ‘Pͺ©j±ΧŽVΕ½Έͺ+€£j…j_~ω₯ |9rΔjΦ¬iϊUeθV­ZyέΉ_<>όs7έ¦Mː!C`}|ηHΖ’Ž½ΐσ!C¬iΣ¦cy eLš4ΙͺV­κ‚Ψήro―^½\ejU›ž2eJ`•>Σ½}ϋv1b„«šν­™Ζ«p‡B4@’E =ž/Έΰ[²d‰{ξΉζ;wΊκ²z IMΟQΪΞxVΨS_₯π7ύ;―pš?|š”p©ŽσΝ7ίXŽ9]k^ΟSjώΠͺζΓ…Y΅άk‘žυΚ•+»nτEοψ^Ώώ_ωυνΫΧόqjχεŽϋοΏί-SxvΪ΄i±Β«ϊβΕ{ο½ηž)uŽzήσήXΤ—1τΥ σ_‹ΈΟͺΖ­ΰp€AYθ7)ΧΕΏŸΞeώόωvα…†―Έ^ˆ“ƒΏzΆ?dί§OηθΦ]³f{QPyΞ AΛI/ΠιX ”)R$p,ύwΆaΓ†ξΛ!ώ{ΗΝΒšύηηξ ψϋοΏ·+ΈΒ›uΏ‘!ϊ •Μ € € € € € € € N<ŸΊ§#π¬€qοή½cέS§N΅‘C‡ZΡ’EmήΌyυ r¨z]Έΰ²6ΪΏΏ]}υΥξσοͺž\©R%·―*;+­jo=φ˜©‚΄?τ8@ΘD|ηHΗβž@Φ8B[ΫΆm]F‘§ΤύΫ}φΩgž-ͺψμ5/„}έuΧΩK/½δ-6UQόα‡œι-·άXΞ €gZ =žeZΌxq{χέw]¨yέΊuξ+^ΨΩ_έxǎAΑ՞={Ί—–:ΥKJ³fΝ \"…H§OŸn™2e²„Β₯Ϊ†npΟMκ Aƒ¦¦²dΙβ‚ΏzΞςš?΄ͺe)xVΘTΟ} »κωEΟ1q58VγΣ³‘ΎŽ‘—αΨυ―Wz μω矷2eΚΨoΏύf ;«΄šͺ«šτόαΦ»…1δ‘―cδΝ›ΧTEXas=gͺιΪΙ[Maβ.]Ί^2›ΡNτΒ›wο©βsΧ]έ:«Ύ*β5…τ/»μ27«/ xα{Ωκ3Ož<ξUΧP_bQσί;)yOFrξn€1BΝ΅ά{αΐΫ†_@@@@@@@£ηSWυLžΨPp#1M•ωT}NM‘Œξέ»›Gj ¨(ΌqύυΧ»PώόωέςΠ?ρž#K|ηγǏ[5\ˆIe—Γ5}ΦώφΫow«-Zδ‚άšΩ²e‹«Θ—-[6W•/gΜβ³*?gϞݾψβ Σ2 €Ρ"^Οqω* ͺ—°ˆφš‚Ν :'Τ’.U_ͺD\·nέ„ΊuλUΝχςΛ/wΣ žύUƒύϋyς‡‘½JΙώ0lΈκΚήΎή―BΖ ηz‘eoΉBΊUͺTq³?ύτ“{ŽσΒ·ή6ώ_…«½―~hω‚ μζ›oφokZUœU[αp―ω·ή2…‚υ|™Τιu‘‰^ϊσΏΤzμΠσΥz…Ή―ΌςΚΠMƒζβVίk[·n΅Š+z³qώ¦Φ=ιΉ{χ_ΏΈ*‚{Ϋς‹ € € € € € € €@z π|κJ¦vΰωŸώ |r[Ÿˆχ‡PΒέ\ϊLΉW™Oλ9βͺE«b΄Β9‡r»e̘ΡUχΣgδ5νoqž“3–ψΟώ~<©^½Ί8i/Ψ¬ϊ$|ι₯λξΊλ.μ9r€;υσμ³ΟΊi-£!€ MΡxVEb}y!΄y`UΥΏ³z~PψΆjΥͺnS…`K”(λ+͚5³^x!𒒿ߏ?ώΨ|πΑ@ε\­S˜T•†UΉW!WΝ« ―ϊφˆύγπχ©i…]~ψaχμγ_7mΪ4χl€ ΗjsζΜ „£½σSxVΑίΠ―b¬\ΉΉζ·ŸΏ*°[σηθΡ£ΦΈqcW-yμΨ±ξ9KλΧ―ο6ΡώͺԜPSυλ¦M›ΊjΌήΆ‘k}έC՜μmβ~Uyΐ€Φ]»X/{ιΕ1±ί~ϋνXϋθ™ιŽ;ξp/ΗωWͺJπγ?ξ*λ:(d=|ψp\Χ k‰i… Gr]Όc„»W΄NΟyαΞWλώόσO7ήW^yE³¦ΚίO>ωd μX3ρσΟ?»ΚΦ2χ7Ω)€¬ϋΚ_­;%οIοψ‘œ»φ]³fMΰGL˜0ΑτΌLC@@@@@@@ ½ x>u…S;π¬ΓΦ¬YΣlρWoŽδ†;|ψ°)l£°°.¨‚* ! 4(¨»ΈΟΙK|gυ{ΥUWΩίm#FŒpŸ΄Π©U7lίΎ½εΚ•Λ}^ŸvχšΒ;ͺ8¨‹BU­[·ΆΥ«W›B[‰­ςθυΕ/ €)-mηHΟΧxφ‚ͺt¬ΣΥτ₯…ΈΎ(αSΟ#ύυ— θ-5Οέ«J±λθ₯ € € € € € € €ι]€ΐσ©+|&Ο^υb…}{τ葨{M!…²eΛfηw^¬}TOŸΉVxXU ύ•£γ ΏpαΒX•ϋ–/_nχίΏλfήΌyV΄hΡ@—ͺˆ¬κ}ϊΤw‹-Λ5ΙX΄_Bg˜Ÿ{ξ97ώΟ>ϋΜUΣ~^Sh£Q£FͺŸΖύΠCy«Ώ]Ίt±E‹YυκΥmŊΦͺU+λΧ―_`= €D‹@4ž/½τRΫ΄iS’hTΕYΝ_αΩxΦ U4Hᅬ:Ϊ?όγͺ~=ΪƎλ *γΧ_½›φwσ—_~±"EŠΈεόA@@@@@@@ ½x>u%ΟDΰYŸΏωζ›mηΝV₯J{φΩgU›υYξΉsηΊ`―*9«Ί±ͺ:λSεW_}΅«*¨ΰοƒ>Jλ“ή]»v5…žυs’ύ­W―^Ο&Mš˜*Aϋ[$cΡώ žhnΪ΄©mΫΆΝ.Ώόr{ρΕγΥ1Uυω‹/Ύ°₯K»ΚΤαBίͺ’ψ裏†;uκTηXΐ €Q"@ΰ9J.Γ@ xgύΦ¨QΓ6oή8«‹.ΊΘ½˜9sf·Œΐs€† @@@@@@@t*@ΰωΤ…=gzΩ²e¦ ²ͺΆ)Π\Ύ|yΛ›7―­^½ΪφνΫη–)}ν΅ΧnA]4UiΦ'ΥυρΚ•+»_ƒΖZφK/Y½zυϋhbφμΩΦΏ·¬T©Rξ8Σ¦M lΙX <«sK=\uι9rX₯J•LαŒuλΦ™ωση··ί~ΫU² Ζ7‘σΌζškάΆ·ͺ\Σ@ˆFh <'ΗgγƍvΩe—Ή.† fέ»wONwμ‹Ι <_pΑξ%F½IC@@@@@@@ΰl π|κJŸ©ΐ³ΏkΧ.2dˆ-]ΊΤ…z΅,wξ܊q‡¬zυκZΤΦ'ζΏώϋΐ>Ϊ Z΅jΦ₯K»ςΚ+ƒΆΧŒͺC«τŠ+άΊ¬Y³ΪͺU«‚ΆKκXxΦvοήνΞρΛ/Ώ Œ7C† V§N{葇¬\ΉrAγyβ‰'μύχίw­u~4@’Q ½ž?ξ^Ζ’q–,YάsI4z3&Ξύo•ΏώϊΛ½(X±bEχ‚γΩrξœ' € € € € € € €H3η”Ύ\Ι <ŸΞ±ύϊλ―vμΨ1SεΆΔΆ­[·ΊjΟ%J”°œ9s&ΈΫφνΫνοΏv•σδΙηφ‘Œ%ΞΞ|+ΆmΫf4WΑn €ιE ½žΣΛυΰ<@@@@@@@@‡@ΤžkΦ¬ι*§³B·Λ–-KCq @HΗžΣρΕεΤ@@@@@@@@Θ@Τžϋχοo³gΟN˜¦M›Ϊ!CRεX@―ητ{m93@@@@@@@@3'΅ηύϋχΫ°aΓlώόω)VιY•λΧ―o}ϋφ5MΣ@@δxNŽϋ"€ € € € € € € € ^ jΟα‡ΛR@@ z|ΈΝŸ?ίφνΫ—"Ψyςδ±ϊυλ[Ÿ>},wξά)r :E@³G ­žΧmΨkΛVν²Ÿ·ώcμ>l;wr­H‘VΈ@6»°τ9Vσς‚VΉBΎ³ηbr¦ € € € € € € € €Q#΅ηώύϋΫμΩ³SͺiΣ¦6dȐT9A@τ+ΦΟKcBΞγ§n œΊ2 @·ou‘ΥΊΌPB›²@@@@@@@@Σ&΅ηš5kšͺ<§FS₯η₯K—¦Ζ‘8 €€c΄x>pθΈ=?~½-]Ή+’«Q«Z!{¨}%Λ•#SDϋ³ € € € € € € € €IˆΪΐσ%—\’”σHφΆί}χ]²ϋ @8»BΰYaη>CWΨ/Ϋ’χbY™RΉmxΏκ)zή΄i“=zΤ *δώ“˜»κΔ‰φΕ_XΑ‚-΅Ÿ#3>ΆA@@@@@@@ˆ\ ΝžOw 94“œώwξάi»wοΆ\ΉrYι₯#ΏμyΖTM|ΫΆmξψ+Vϋ̊)n3–!€ € € € € € € €€AΟ§.ZrΟΟ>ϋ¬Mž<ΩͺU«fS¦LIƒ·C^΄h‘uιΕA¬]»Φ…₯PA@ ©ΡxόβZ[ΆjWΠi.˜έz΅―d•+œ΄SςH_Ρx^t~:&πμoͺκά±uyΛ•#“[Ό{ΟaˆήφX–Μν‚’Ήνͺ+ [φl[― Ρ£Ζ­š~ΌG«uy!ΧɚŽ$π¬ώύχί–#G˚5k²ŽΟΞ € € € € € € € €Ρ%@ΰωΤυ π]7fj†ΐsj‹s<@ } DsΰΉέΓ_UgVeη1OΧtaη#GOΨ°1λlΕΪέvβΔΙ ‹“%KF»‘ήyΦ‘UΉ˜/ d0…ž»>Ύ,¨―"…rΨΔgkν—œ™HΟΙ9&ϋ"€ € € € € € € €D―ηSΧ†ΐsτή€©12Ο©‘Μ1@τ/­ηuφZŸa+ƒ.ΐπΎΥ¬r…sMaηξO,·_?΄>t¦ζe…¬χΚ.τ_‘ϋE2IΰyΛ–-6{φlwΈ=z»}ϋv›9s¦«ϊόΰƒΪΝ;mξάΉΆnέ:;pΰ€•)SΖZΆli%K– μ:±kΧ.{ηwlΓ† nUωςε­vνΪvωε—‡n˜ί»w―-^ΌΨΦ―_o?ό³,XΠΚ•+g-Z΄°άΉsΆσ&ή{ο=ϋν·ί¬FV‘B›5k–­Z΅Κ.Ίθ"󟏷=Ώ € € € € € € € €ΐΩ$@ΰωΤΥ&π|6έφ±Ο•ΐsl– €$] ZΟγ¦n²ΩŸn œPύ:Ε¬WϋŠnώ©ηΧΨΧ« ¬‹o’Σ=ενζ%ά&£Ζoσ—όΨΌi£R1U / Μ'g"’ΐs\–―X±ΒΪΆmk™3gΆ &X―^½μ―Ώώ ^Μ9νΕ_΄Z΅j-ΧΜ₯K­K—.vδΘ‘ u2d°vνΪΉ0r¦L™‚Φ­\ΉyδSP:΄εΛ—Οžώy«^½zΠ*υυΝ7ίXσζΝm͚5φΣO?Ήυ•+WΆiΣ¦mΛ  € € € € € € € pΆ x>uΕS"πΌ|ωr[Άl™•(QΒn»ν6{ύχνλ―ΏΆƒΊ ‹‚7IiΏώϊ««φ—={vλΨ±£ Β̟?ίUTΠζ²Λ.³zυκYρβΕ]·ώω§-Y²ΔUT5Γ₯K[Γ† clόcHJ5ΒργΗ»s)Uͺ”;??šώμ³Ομϋᅬ©™ΡΪ·oowbΫΙ“'νε—_ΆγΗΫ 7ά`ͺ€Ϊ΄nμΨ±vβΔ »ι¦›¬lΩ²MŽ;f_|ρ…«ͺ¨1(ΘδSΏ‘-T\Υ"ύ¦žπΝ@IDATϋkœ:^γƍ]εF:MGR2΄ζ@†@΄žϋ [eλ6μ Ά &ίPή½η°΅νυeΜΏ₯'λβ›Θ’%£Ν|­žeΞ”Α>ˆ P R{­r…|6Όo܏½νσ›g7K–,ξ™Βϋ7ϋσΟ?·9s昞Ξ?|ϋπΓέs‹7ΖM›6Ω=χάcϋχοw•™›4iβžgτŒ1nά8;zτ¨ 6+Pν5UŽΦ>z6¨_ΏΎ5jΤΘ=hUmΦ³EαΒ…]5κ}&]―©ς_ΆlΩΌΩDύ*@}ύχ»ύ{μ1>|x¬jƒ °·ήzΛw:wξl{φό_ΈIQ5B…₯»vνλ˜I­F8uκT:t¨ MŸ>έ*Vό_₯Hu¬ΐΧ-·άbώϋ―΅iΣΖzχξλx -θΤ©“ l7kΦΜ ks…Ιxΰ^ZΈp‘εΝ›Χm£p·ͺ7ͺ:bhSΠIλDς·ΈΟq-χο« :Ο‘#Gڍ7ήθ_QUΘ ˜AHSΡxnΡi‘μͺXοή½Ϋ°o½υVgσ›={ΆϋTΌϊ™2eŠ]zι₯ή‘,`s\Λ;ΖLΔxŽ€*€Ώ_¦@ž@΄žoΊw~ζ§Τwσ/OΩ`slZ—ΠΜδη―²Bω³Ϋ˜u˘ ΅Ώyύϊ—E2Rg}}’X±bAC1½φZΣΧ%4Φ΄šχά₯@³Ύ¨‘ͺΛώ¦/o¨R΄š?ΌΌqγF;t萩2s‘"Eό»Έi=›mΫΆΝ½€¦η%―yg…¬‡ β-ζ@@@@@@@@ F€ΐσ©Ϋ ₯Ο ±<όπΓΙΊιΌΰ:Q…bUyφ7}Zύ₯—^r‹TΉπΏύ―)όμ5 §{χξΦ‘CoUΔΥφQf{TΡPΣ^HXΥ€'MšδΑ%aBU“Uέπΐ6~όx«U«V`o…’H9=χάsξsρZωρΗΫ£>j tΣ ƒ{Mahυ§Ο·jΥΚϊυλη­ ŒY Φ]ψœ½w.‘Λ;ΖL„ ιjΞ coίΎ=V¨8p°$LτοίίUfnήΌyΰsσΪ}ΥͺU¦@BK %gΛ–Νυͺ Ω]»LΥ­Λ”)λH ͚5ΛτI{UyφZ\ΑζΈ–{ϋι7\ΰΩ»VI­ ιο—i@΄'­η1•˜ΖTdφΪπΎΥ¬r…smώ—;lΤΈυήβDύNωΛ“;‹­Ϋ°Χϊ [Ψ§pΑμ6ιΉ«σΙ™H© ΟI <λε0}=#1-τEͺ½{χΪ΄iΣά5vξάΆ € <‡₯a! € € € € € € € K€ΐσ)’” ω€)”\―^=3fL¬υή‚ΔV#ΤφͺΆ|ο½χΊrαΒ…ν?ώ°%JΨϋοΏoώ Λ^ίIωU0ιpaκ… Z¦L™άξΟ<σŒ ,ίzλ­φτΣOΗΩεργΗ]zϞ=nœ3fΜpη_©R%Σ΄Χβ 6Η΅άΫOΏαΟ§«*€8L#€DΏ@΄žϋ [Pήlίκ"»΅Q)ϋχπq»£σ";vμd`]|9cͺBΏσJ½˜—ΈΜ>ψt›ŸΊ)°yε ωlxίΛσΙ™ˆ†ΐ³ΎZ‘Βτ‚YΈg.ω5lΨΠϊφνλιλzΑμχίw/fι™«xρβvΞ9ηΈ/HL:Υτ… Ο~A¦@@@@@@@@ψ<Ÿς!πlξSξI­Fθέ^ͺ.}ϋν·ΫΏώλ*YOœ8ΡΈβ ouΔΏ SΧ―_ί…¨'L˜`5kΦt})X€PΩλ―Ώn yϋΫΡ£GM7φ›oΎi?ό³)τΪR:πœœͺ‘ce@ νDkΰy\L0yvL@Ωkυλ³^ν+ΊΩWίΪh}φ«·*ήί§ΎΤͺW)ΰΆ5ώ{›ΏδχΐφMcΤb‚Τ§£ECΰΉkΧ¦—­B«7't~:u²%K–Έη ±cΗΖzωK/‰­\Ή’ΐsB¬G@@@@@@@|žOaœνηH«zχ’‚Ξͺ(­ —*!κΖ*T¨·:YΏΟ=χœMš4ΙZ΄haͺP½~ύz»γŽ;LΥ€ηϟοΦήnξάΉ³}ωε—–%K«U«–•-[ΦςηΟοͺC/^ΌΨΎϊκ+Kιΐs€U!½σΰ@ m Dkΰyέ†½ΦgΨΚ Τα}«Yε ηΪ‰'νι—ΦΪςo Z:sߝY³JΉκΞρυΊ_$σΡx5j”ιK/½Τήzλ­D†žCτrΦ‘C‡lάΈqV»vνXϋxŽEΒ@@@@@@@@ AΟ§ˆΞφΐs€Υ½;lψπαAa ΊuλΪΛ/Ώμ­NΦ―>'―±BΛͺ΄8zτh?~|¬Κˆ:ˆ‚I ()l­τωηŸtlνϋΪk―₯xΰ9ͺAƒe@ Ν DkΰYνώώψσί€i‘B9lτΰ–+G&zώο‚ν6aΪF;vμd`MδŒYXηΚV­rv>pθΈu{bΉνάu(°]α‚ΩmsWζ“; g½ Υ‘Cw*ώ―LψΟM/ŒνίΏ?πΌρχίΫUWύΟ‘ώvΧ]wω7·mΫΆΩέwίm{φμ‰υΣ];ϋζ›o¬M›6Φ»wο ύ˜A@@@@@@@ΞvΟ§ξ€³9πœœj„β[±b…)€£6bΔ8p »ΙόγULV yΠ AΆeΛ{ο½χ¬|ωςA=·oίή–.]j<π€υμΩ3hf’x^Ύ|ΉέύŸE‹YbυY½zuS…λ‘#Gڍ7ήθΦGR2VΗ,@HsΡx^Ίj—=ύβΪ ΣW³w—w‘g­8vό€8x̎=nbζ³eΝdΉseqAg­WΨyπ «MžύΝ«ν_–œιhλ»β{~»νΆ+]Vܐuδ‘G¦·ήz+ίτ΅ρΖηm;οΌs~βEάtuήyη₯XΏ΅ώϊΧΏ¦Ρ£Gηm±γn»ν–Ξ:λ¬RΟ%  @€ @€ @€ @€zϟtηΐs[ͺFΠ7ΒΘQ±pί}χM?ώρΣψργΣΩgŸVZi₯tσΝ7ηP½O^ W}FΈ8Φm΄QΊι¦›κυR£wΩe—tΞ9ηΤΩώώϋοηπςΓ?œ6ί|σtέuΧ•ΆG˜yĈωύ£>šzτθ‘—_zι₯΄λ»ζε¨b½Η{”މ…;νΏώ9ΘTxnMUΘ:{C€5)Ṕη=uaΰωΎ…Αης•ž=tσ΄Υ€UΛWΧ[ސσyW|xξβΎϋξK={φ¬Χέη?ω\Ž›ͺβ·DΡ^}υΥtψᇧgŸ}vaθ{‰τ©O}*­Ώώϊι©§ž*—γf«£>Ί8$M™2₯ΞMW±?ωΟ4gΜ΄άrΛ₯UW]5EΏ›l²IбM๐πJ€ @€ @€ @€¨/ πό‰Iw<Ak«FψWΏϊUZm΅Υ-·ά’V^yεώέoΏύίώχ΄γŽ;¦‹.Ί¨ώ'―…k^{ν΅α§ωσηη#=φΨRεεςβρρ'NΜα¨8οΰΑƒsx9‚J1Φ¨ώ-*5G0ͺh…€’"γ—Ύτ₯TŠͺާžzjZo½υςa3fΜHGqDzύυΗΚΟ±CkͺBγρJ€΅)Pνη¨ΠaρΨφƒ:(o7n\Ϊk―½ŠM­~ ŠXŽ ‹·έv[ZwέuλυυςΛ/ηJΣοΎϋο Χκ«―ž–^zι4kΦ¬Όo’^xα…Ό}Eκh…€bΫ΅Χ^›β’ΕΉ·άrΛ\Ρ:*c―ΈβŠι£>JQ=Ί2πܚͺω$ώ @€@Ν T{ΰ9`› =·Ύ£ΒΞ-CgοηΈΡ©ώ)BΟ‹jqΓΦoΌ‘ϊυλ—–_~ωEνn; @€ @€ @€ @€@#ϟΐtχΐs0΄€α{ο½—ω>sζΜ4hΠ 4~όψO$οε‡?όaΊα†r¨8ͺ.χκΥλ6Άbi€IiΤ¨Qž―θς駟Ξεd-ͺ2ŸtI9ltΘ!‡δΥΧ\sMΆoš <Ηφ«―Ύ:Wwœ;wnΌMK.ΉdϊΜg>“+5vΨa)*8VžcΏΦT…Œγ4¨MZ<‡l„žΟ½μρtίC~JAK΅wΨf­tάa[΄{eη–ŽΓώ @€ @€ @€ @€έC fΟ=m <·fl&Lȏ:o9ΎŽͺFΈύφΫ§9sζ4λ’GŒ‘Ž8βˆfνΫΨNοΌσNΔά»wο΄Ϊj«5Ά[³Χϟ??½ψβ‹ΉšsTŠnNeΗςΞ[Z²όXΛ P΅x.4ο]xΎμš§ΣkoΌW¬jς΅ΧšΛ₯Γά$ ^xΦ @€ @€ @€ @€t–@ΥžwΨa‡τξ»οvŠCϞ=Σ}χέΧ)η*NrύυΧ§K.Ή€x»ΘΧ)S¦,rŸjίaΟ=χLσζΝkΦ0:θ 4 PK΅x.l›ρVŠπσsx'Νzc^)η΅Χ\>υί`₯rήjΐͺΕ!^  @€ @€ @€ @€tš@ΥžΗŒ“&NœΨ)Γ† Kcǎν”s9  Πuj5πάugΔ• @€ @€ @€ @€tͺ ήν/0wξάτΒ /δŽ zτθΡώ'Ρ#ΪY@๝AuG€ @€ @€ @€ @`‘€ΐσ'ƒΆžΟ>ϋμ4~όψ΄νΆΫ¦ &ψ`Υ ΐŸώτ§4bĈ<ςG}TΈΆ ζpϊτιiψπαy$χέw_κΩ³gŒΚ Π΄€ΐsΣ>Ά @€ @€ @€ @€h€ΐσ'jΟ­ωψtcž«o.ž«oNŒˆE Τjΰ9ώŸ;mΪ΄τδ“O¦Έ†—_~9_lŸ>}Rοή½Σf›m–† ’ ΄h{ @€ @€ @€ @€hgηO@žΫω“Ucέ -/ΎψbΊρΖΣrΛ-—?όπτΜ3ΟδʌXZrΙ%Σg>σ™΄ΣN;₯xά|΄¨πwχέw§‡z(͚5+m°ΑiηwNƒ jτΌo½υVΊλ»γ?žž}φΩ΄ζšk¦M6Ω$νΏώυM—_~yΎ–Ύ}ϋζλ«μτφΫoOO<ρDκΡ£GϊΞwΎ“Η]ΉOcο,XΓ:όqΪuΧ]Σ¦›nZoΧΨvρΕ§ωση§έwί=m΄ΡF₯}>ϊθ£tηwζλˆ1¬°Β ©gΌVΆΖΟ/ΌπBš8qbήύ裏<,ΏPQœo·έvΛV•;½ώϊλιΊλ+ΛβZ>χΉΟ₯mΆΩ¦rΧVΏο½χM7έ”|πΑτφΫo§7ή8m΅ΥVΩ²ΣβsΉΩf›εΟΓwά‘"\α²ψμ 80ν±Ηω3Uylρ>*GΖgρ©§žΚŸψŒlΉε–ι+_ωJžοbΏ†^γΏ‰Ϋn»-½τK9ΐΥΏ΄Χ^{εΟgωώ•η9sζ€Ι“'§ψo5–γΈ8 ­Ώώϊε‡Y&@€ΐb¨φΐsSaηaΓ†εl|?DX6ZόΖxςΙ'σkρ}XάQ‘η/ωΛιΥW_ΝΏϋώ-GW\ήsΟ=ΣσΟ?ŸφΫoΏτ£ύ¨Ω—XηΦ^K³/ڎ @€ @€ @€ @€@—xώdŠ;"π\N"x‘Μίώχ₯TS—]vΩϋζ,DPυCΙǍ92~ϊιιƒ>¨sθk¬‘~υ«_₯.ο{ίKoΎωfνK,±DKϋί―³>ήʎ?ώψέΚΆΪj«εvyXϊΪk―MγƍΛΧίόζ7iσΝ7/―±Fχ ƒJ'žxbi[sΎϋέοζΐφ>ϋμ“~ς“ŸΤ;,‚³‡zhZzι₯S„vWYe•ΌO„»;ξΈτΘ#Τ;&φmίϊΦ·κlk,πάΨϊςƒΓ$σΜ3ΟL_ύκWΛ7₯{ο½71’ή<Ε<|ϋΫίN⊰z[Z„ΏωΝo¦†BvŸόηΣi§–bώŠV|.#t•3 °m·έvιg?ϋYΙ΄86^#ΤQGεΚ›ελc9,Ξ8㌴φΪkWnΚογsPώίA±Σ2Λ,“;μ°s^΄ςΐσω矟Γ^•Ÿη²ΗΆΑƒ‡y%@€ΐbhθΕM ¨wοήMm^δΆ–ώ‹O›6­NΏ1†ψ>/Ž―³Γ'oβΛ£Gχ}3tθΠόβ†Žiν:η”Γήρ;βΘ#ΜΏέΚ-γχ`„Χγ{σK_ϊRω¦T|ΟWS…ηΈρ­±k©3xo @€ @€ @€ @€΄4'ΣH7‹\½ΔЬ ΉWΩQ-ΆΌ΅%\ήO±άžύŸ}φΩω‘ξΫn»mš0aBqŠRΰ€XUp·ί~ϋ\Υ6*-­π\ž‹ώ’ZήΎπ…΄όςΛηΚ·`ŠκΡ\Š`θJ+­”ΈQυ9ής—ΏΜF€m<β<ͺν±ΗΛ!ΰ¨TΑ₯]vΩ%W+Ž*ΙQΙ7*χκΥ+‡c£ί’ >B΄t-Ϊ‹/Ύ˜ƒ6σζΝ+…nАpT1Ύκͺ«Y1²θ«ς5ͺ&GXwaX>]~ωεuͺψΖ5Δ΅Δ5sΞ99 Ηίzλ­ι„NHkΉf^Ž0xΡ" ύEXλΏώλΏr`«ΨVŒ9ή?ϊθ£Ήju,7Ά>Ά­‘ΐs‚#DφΚ+―δκ‹•΅/½τtα…ζΚΛ“'O.ϊ^Τλ1Η“¦L™’’"s„‰ΓΌh=τPο―Ήζš4pΰΐΌ©BEˆψ¬³Ξ*ΩǍ?>Εg:ZΚ·Ψb‹Όn»οΎ{QGHϊ?ψA^_όyυΥW³kTœŽJŽQ½ΊhPŽ|œ³²xμa»I―Ύϊκ9λΚΟŽΎβŠ+ςη:ΆEϋίύίτγ8/ξwΏ«ΰΟ+ύ!@€ΐb¨ζΐσΞ;ο\§:sά 75υμΩ³ERρ}!ΫςkνΣ§OΎωͺE5±³ΐs8 7ΥbΰΉι+²• @€ @€ @€ Π΄€ΐσ'>x^ύυs5Ϊς0jΣΣπΦςΐs,―ΈβŠuvŒ*ΜQE8Z„mǎ[g{ΌωΟόΟ\7ͺθF5έ’=ύτΣ)BΛ묳NΠ[¬/^ΏϊΥ―¦™3gζGͺGp΅ΌύκWΏJ§Ÿ~zοFuΰcΏόςΛυBΕεΗ4wy̘1ΉzοΎϋξ[ ·Ζ±E˜7BZJ^vΩes—ΎŠ ‚Q…ΊώυNsΚ)§δpWe5ξƂ͍­/οΈ‘ΐs1W«­ΆZš:ujZf™eΚIjΕΡ*CδuvlβΝ|+3ψα‡9ό»Ωf›ΥΫ»·•Ό‹ΐσ¦›nZͺζ\~ΰΗœΗ–εΑζ»ξΊ+qΔ9œ}ϋν·ηΚΫεΗΕrTω7n\Ύή{ξΉ'Wυ?ύιOsΠyΧ]w-…©c}Ρ’vT‹ŽSŠͺΝεη8ίΊλ[μž_ΛόΌF€Ε-PnΞX"tά–ΦάrεO-Ξ7ΈΔwXkZ{χW9†ΆžŸ|ςΙtσΝ7§όγω;)ͺΗ΅.κzg̘‘ŸvΏ W^yε|ΣOό¦zϋν·σwf_a…ςΝF±­ψž/*<ΗxβχLŒ-~/Εϊ<°ήΝVρΫ$ΖO£8όπΓΣ3Ο<“Γ„IΗ|ωΉbτΑœ/½zυΚA•υΦ[/EΥές Λujζ›Ύzθ‘9L}ΗwδΐM•‰'L˜φή{ο¦m¬»οFϊΝ7ίΜ㌊Ε2ŠͺΕ±\΄Ζ‚͍­/Ž‹ΧφDθθΜ3ΟL ©Ο?όΑŸsΟ=7―«όaβψ\‡gΈΆ΄•·#Taδ†ZρٌΚΦ]tQή₯2ΥΠqρω‰πςόΗ€¨F->/—\rI:thΎΆ†Ž‹@Xνϊλ―Ο‘ͺX.5*2Gx½‘’ηϟŸΦXcΘ*ΣΕη ‘ €MUΈlθΦ @ £ͺ5π|ΖgδlqύέUloΞkqSR±oCOŸ(Ά΅τ΅-ηΈ ¦ψξͺήΔ7b[Ψ”·xςΗ<ΏγΈGΫj«­R„ƒ£}ύλ_Ο!εΗΝfFŽίc ΅ψξŒί,ъοω Ηο€xF²Λ[\Gά°ΏΫŠVόΌPtΩ’ςZʏωΧΏώ•ΨΟ?|ωκΌO~ˆ§ΔοV @€ @€ @€θήϟΜ[ΥE¨΄²jp8©•ΐs„W"dAΥο4Τ <Η~/,¬.Uψ"ψa—_όβi»νΆk¨‹­[°`AΨF…Γ+Έ"W8ŒŠΚΕW^yey—wA₯ψ`GυΓgŸ}6EθΉ²utΰω¨£ŽJΣ¦M«"|=pΰΐ\A9ž΄qΐδύ*CΒqΧsΟ=—·Eθψίe_ψΒRK-•βwh΄β{> βF’ΈQ)ώEθ¨’ΏOβ;ΉςιEΰ9w²πO< $ϊŽ›Χ&Ožœ›;wn6ˆΙβiq£W„‘γύ/ωΛμΧΏ%£ZuΡ*―₯Xγ8μ°ΓςS’vωdΎA'–/Ήδ’&ŽεςρQWžcΎ£ςrT;ξίΏω!yω”SNI7ήxcσΕ†"π:WΧlθΰψΕg1ΒθnxnHΙ:ͺ] VΟεAΧ֚V[ΰ9n„ŠοŽ“N:)WdnθΊβƝΈ'ΎgΒ Ϊώπ‡ότŠe–Y&=τΠC –ίΕχα’ͺXΗχX ί|σΝ|σO<]!~―TήhUž:θ —j…„cίζžϋύωΜ3Ο€½χή;Ÿ2ΒΟλ―Ώ~^.ΝӞΏ3£σ†%~+ΖοΦΈI**NχνΫ7£όΟG}”+kΗΊ›k @€ @€ @€ @€@χxώdξ»sΰων·ίNρ‘%ƌ“’:_y›9sf±Fx§²ͺς{ο½—«/Η>ϋξ»oϊρœΓߏj‡7ί|sΆ\ή_k–#P}FΈ8ΒLm΄Qj¨ͺqŒnθΡηρhωC9$=όπΓiσΝ7OΧ]w]i(o΄G}4Ε#ζ£½τKiΧ]wΝΛQΕΊ¨l˜W,όΥ§χίΤ-<ωΟ.=ΚύŠ+¨W3ŽGΏGX¬² uΡχ’^ίzλ­όˆχΈ~ψαιΘ#¬wH…βzΆΩf›Ά"πΌξΊλ¦I“&₯ε–[΄-βš#Έ’Κ”p@ήώΨcεŠΥLŠΰωg?ϋΩ:ΗΕ›’rfyeθXώω秨ΚA±5-Ήδ’±ΊΤŠΗΥ/»μ²ιΞ;οΜU%žK<¨!j <•φ Κψ^οΤΆ΄ςOG?•ՏΫwK+BΐQΑx΅ΥVK·άrKZyε•σq&ϊϋߞvάqΗtΡEΕmj―½φZ~Ό}„p£EuΖ/WΆlOœ81W=Žσ<8‡—#€cJΘΡ’RsŠΦXΰ9T_ϊ—?ωΟ΄έvΫ₯SO=5’βΈMqΔΉ’cΌ/<Ηϋ£Ž:*M›6-Ύc[_΄JG@9BΛαή­iŠͺΪQIω„Nȁ䒟θ;ΦEΛ¨Šύ΅―}-o*Ορ&‚ξF.BΟŽΰw„’ΦZk­4yςδ:€Q£Fεt―^½r΅μp-*†_rΙ%Ή― 8°Ψ”ƒέρΩ‰Π|<ζ>‚ρE°),’ςxͺ#\ΑφhE*–«DΪT…Λ8N#@€@g TkΰΉ¨(\xŒ92}λ[ί*ήΆκ΅ψ*ŽοΉ«ΊͺxΫ¦Χ–žυ―₯β M…Ήγ ΕΝKρ»eƒ 6H_|qώWy3Tω4xŽί ίϋήχ=χά“Ώ‹γwGά”΅ϊκ«η›{ξΊλ7A <Χ•ΤSO•δqMG}ttέͺπ¨ͺσ-L6έtΣάΞΓ?ΒWj^a…ς>Eΰ9ήΗΨ£EEζcόw0oήΌFŽ€xαΛΫμΩ³s :φ‹*ΝΤ^gur@ϊυΧ_ΟαςŸύμg V֌πχI'”βφρyŠ`Y=χάsωŸωΜgrUΞΟGxΞ ώ PcΥxŽ›c" \΄ψΎοξΆ΄β&£’PGΊ=ZKΟqΞΈ‰'Ύ›γZwί}χ‡ίύρέίίq3M|χΕ#~πƒ€5Χ\3έqΗ ΧXΰ9žxpξΉηζ›„"μ½αΒίενΒ /L—^z©ΐσΧλžγχPόf‹vχέwηίεv–  @€ @€ @€ @€εϟhtχΐs0L:5uΦYι₯—^Κ*=zτΘUz£:p|P"°³μ²ΛζǎΗ#γχΩgŸό4hPŠjŠ•-ͺφήpΓ 9TU—£*p[Ϊ€I“RTnμ|EίQ18BΦ˜-Z<¦>ΒΆΛ/Ώ|©2τ5Χ\SͺBάTΰ9ϊˆX„–"¬-ΒΎΠ ›Γ;,›UžcΏ>ψ wσΝ7§ G‹J†›mΆYˆpΐy][„oTWŽΉ‹sΈϊχς1Η“CίΕ9Šΐσ€OϊΣ\]ω‰'žΘΗΕ>Φϊя~”‹cΚ_#$}Α€Έ¦¨]΄ΓG•Λ©5Φ"lf?όpΆ‰ύϊτι“Q΅»¨ϊλžCA#@ Φͺ5π\ώΤΒ΄©JΘΕ>½Άw•ηiMΰωΐL<ςH>|x:ώψγ+»Μο―ΈβŠ7ζ”W£~ΰς \ρέ™γ¦œΚΦXΰΉΈλΠCΝί·•Η <[δλ žγ7Υg?ϋΩΌC<νbλ­·δΛ7a=ϊθ£ωwM±o½¬ @€ @€ @€ @€Ί…@Νž;z6ΪxnΝ؊ΰLsνΜρ½φΪk9ΘΪ―_Ώnξ΅ίφΫoŸ+F/jΏΨ>bĈtΔG4gΧFχyηwr »wοή©¨άθΞΝΨΥ”_|ρΕ\Ν9BΑεαάfžΟQ9‚Θ•ΗΆΧη!ΒC*ξΫ·oκΩ³gƒΓ*<_ύυyŸ¨κΗ…Υ*«¬ΰq ­Œχ+―Ό’+K―±Ζ νຏ?ώ8Ÿ/ΖΈφΪk7Έ•¨Ej <‡eTν/_άp7&5φ}јξΈγrΐΌ‘ π’Ύη«)πaπ=Η“3N8α„ΌFq“Y؍92½υΦ[ιδ“ONšΦ @€ @€ @€ @€ξ+Π’œL[”–˜3gΞ‚–tPHZrLkχpΜΨ±c[{ΈγΤ”ΐ’‚P5u1K€*¨ζΐsPEΰ9‚Οε-*=Ηο Aƒ•―·<}ϊτ\m·Ό²sμ4dȐtΑΤΫΏ-+Šΐs‰γ_SνΖoΜO6ˆ}"@{τΡGηκΗΛ/Ώ|Ϊb‹-ςρ=φX~ΚΔκ«―žΉζšRUγ’ί…ΏSΣ‘‡šbΏh½zυJ묳Nš1cFϊΰƒRχΟώ3? ‘Ό’uXD΅λβ&½Ψoι₯—N³fΝΚύΔ!β Ρ"ΐ»J+εεΆž‹ΚΗΡY<Υ!žΞπλ_:χ½¨οωj <Η€#˜~ωε—η±Ηgqγ7ΞσO‘ˆφo|#5*‡’σ  @€ @€ @€ @€n)P΅ηŽœvΪiiκΤ©₯I{ΟPT3:thQ4·²a{A:[`QA¨Ξσ @ + T{ΰ9~_|πΑι©§žͺΗ՞ Pϊ;Dΰ·ψwΣM7Υ;fΣM7M&Lhv…θz4²’<7²ΉΞκψ1Αβ’EP6άχάsO9Ηϊ%–X"}ώσŸOΗ{lΪd“MŠ]λΌΎώϋιΗ?ώqЧjDEθh«Ίj1bDŠmgŸ}vJίzλ­uŽ{ϊι§sUθ„m½υΦΛ•³#t}Θ!‡δΥ΄8p`^nkΰ9ζρϋί~*Ξ•©zθ‘άχ’Ύη«-πƒΎλ»²οσΟ?Ÿ«;G•μ˜§ύφΫ/žσ…ωC€ @€ @€ @€tkͺ ύτΣSsΗΥ‹O:送ηΤΎϊκtφΩg§O<1‡š‹k‹jΟ]tQΊτKΣRK-•~σ›ί€›½ @€ @€ @€ @€t’€ΐs'A;  Πυš.$"@ά–Φ^?δ¦OŸž¦Nšf̘‘^~ωεR:ΖΧ§OŸς:th4hP[†[΅Ηή}χέι„NHοΌσNZsΝ5Σ6Ϋl“–^zιτψ㏧^x!ϋˆ#ŽH#FŒ¨Ϊk00 @€ @€ @€ @€@Wh―œΜ’Œ–˜3gΞ‚Eνd; @ –j5π\Λζν5φ™3g¦SO=5=ςΘ#iξάΉ₯nΧ]wέ4rδΘτε/Ή΄Ξ @€ @€ @€ @€@η Ïθ4ηN£v" @€ @€ @€ @€n$ π܍&Ϋ₯ @€+ πά±Ύz'@€ @€ @€ @€θžΟέsή]5 ΠΟ€ͺK @€ @€ @€ @€n/ πάν? @€φxn/Iύ @€ @€ @€ @€ψ?η³°D€h“€ΐs›ψL€•«ϊ½@IDAT @€ @€ @€ @ AηY¬$@€΄\ VΟΣ§OOΣ¦MKO>ωdŠkxωε—σΕχιΣ'υξέ;mΆΩfiȐ!iΠ A-Gq @€ @€ @€ @€6 <·Πα @€B ΦΟr>γŒ3Jηβ:{τΘ‘#sψΉ±}¬'@€ @€ @€ @€ ΠήΟν-ͺ? @ Ϋ ΤJΰωέwίMcƌIS§NmΥ\ :4;6υμΩ³UΗ;¨}^xα…4wξά΄ΦZkενΣ«^ @€ @€ @€ @€Υ' π\}sbD @€@ ΤBΰ9ΒΞΓ‡O3fΜh“ς€ψργ;%τώψγ:ηοΧ―_ϊξ±ΗuΦw΅7―ΏώzŠŠΪσηΟOgžyfϊκWΏZΊDη… @€ @€ @€ @ ‹ ==:U^c„q#”άήνΡGM#FŒHoΎωfξzύυΧΟaμW_}5°?ψΰƒΌ>ͺUόρν}ϊNνοœsΞIχίϊΒΎΎύοΧ9χάΉsΣΞ;οœζΜ™“.»μ²΄έvΫ•Ά <—(, @€ @€ @€ @€]\@ΰΉ‹O°Λ#@€:O 2 Ό¨3GΨΈ-­%?δ"θηςUG•zφμYΎΊΡ娑ηΚΠτ\† θq-έπΞ;ά<{φμ΄ΦZk₯θ«­Ά*uσώϋο§“O>9ύώχΏΟλ~ς“Ÿ€}φΩ§΄½ΦŽ;ξΈtΫm·₯=χά3vΪiυ†αξyσζ₯UVY₯Ξ6η:ή @€ @€ @€ @€]X %9™Ά0,±°*έ‚ΆtΰX @€@΅ Tsΰ9ͺ—/ΒΦ7ήxc³ΓΞ…}„ž#\\ήWŸ>}δΙ“‹]Ϊόϊӟώ4ύζ7ΏI+¬°Bš8qbZwέuμsδΘ‘ι–[nΙAΰ8sƒΫ vΆW.*πάΨΠž“±ž @€ @€ @€θjΟ]mF] °ΨΚCΐΝDgUxž>}z>|x!?> 4¨ΞΊζΎiοώΚΟՌΏπ…/€…7Λε1όρε›λ,γΘ• ,XΖ—φΪk―φ_ϊΧι΅Χ^KΫoΏ}Ϊa‡Jλ‹…Έ†{ξΉ'­Ίκͺιΰƒ.V—^?ϊθ£tηw¦Η<=ρΔ9|έ·oίτ΅―}-Εke»α†K/½”ΗΎΝ6Ϋ€;ξΈ#Ε9ž~ϊιΤ«W―΄νΆΫζc‹γώυ―₯«Ί*Ώ½ύφΫΣ /Ό6ήxγ΄ΣN;εutPZm΅Υ‡~˜.ΎψβΌ.‚ζλ―Ώ~^Ž?Ν <ρΜΉ_yε•΄ήzλ₯d§“k @€ @€ @€ @€Zx•™2N @ κͺ5π|Ζg€«―ΎΊδ7lΨ°4vμΨϋΦ,Œ3&W_.ŽύΦ·Ύ•’βr[Ϋ]wέ•Ž8βˆάΝώπ‡mͺΟC9$ύε/I_ώς—ΣΟ~φ³‹ GΨψœsΞInΈa*~Ϛ5+EΥεGy€XUz]zι₯σΆΈήςφνo;=πΐιπΓO.Ύωζ›Λ7ηεΟ}ξsιK/MK,±DzρΕΣn»νVoŸbΕ€I“RΏ~ύάΉsΣg?ϋΩΌϊΚ+―ΜξbŸ¦1Ϋ#FŒΘ‘ξbβuƒ 6ΘΧαg @€ @€ @€ P EΎc=φθΠα.±°Jί‚=ƒΞ  @€‹Y ZΟE·ΰ‰`re`·ΨΦάΧPGΊhΫm·]©bq±5―ΏψΕ/Ήηž›–Yf™τΠC-²‹SO=5ύφ·Ώ­\n* 6x~ύχΣΞ;οœfϞ6ί|σ΄χή{ηρc=–ήj^rΙ%Σ„ Φ[o]_aθψ·ϋξ»§wά1½ώϊλι–[nΙ՞cηΣO?=W₯Žσ<όπΓωψωŸΙΫœ=τΠΌnΰΐiΉε–kuΰωδ“ONΏϋέοRT?ϊθ£Σ¦›nš+PΗΉ’jυk¬‘"PΎόςΛησωC€ @€ @€ @€¨fηjžc#@€jJ ZΟ;μ°CzχέwK–γǏOƒ *½oΝΒτιΣΣπαΓK‡φιΣ'Mž<ΉτΎ΅ gžyfϊε/Y/ΐάX—_~y:όσSϞ=Σ}χέWΪ­΅η[o½5pΒ iΝ5ΧL±\ސr„˜ΓςΏώλΏθΡ£Kη+Ο=zτH^xaή―΄qαΒ—Ύτ₯~ώΚWΎ’Ξ;οΌςMΉbτm·έ–φάsΟtΪi§ΥΩ֚ ΟΧ\sMξgΥUWΝ•¦W_}υRŸο½χ^ΫΒ›Σ1ΗS X—v°@€ @€ @€ @€¨Bη*œC"@€jS ZΟ[nΉeΠΏύνouή·ζM„~#H]ήΪ£ίί|σΝiΫm·ΝU”Λϋohω†nH?όασ¦¨ΒΌΔKδεΦžc£*σJ+­”ϊχο_ο”§œrJΊρΖ덯<νk_KQuΊ²ύδ'?IΧ]w]0`@Ίώϊλλl>ξΈγR{ž>ψΰτΰƒζΰv,WΆQ£F₯I“&₯7ή8Wάξ= @€ @€ @€ @ Ϊž«mFŒ‡¨YZ = >Όtlοή½s•βŠV.œ}φΩ)ΖΧάώ.½τtα…¦UVY%έsΟ=₯³Ά%πόᇦψ‘|υΥW§gŸ}6EˆΈ²Ukΰω©§žJϋξ»oεp}χέw§UW]΅Ρν6 @€ @€ @€ @€ͺA@ΰΉfΑ @€.!P­η’ϊpψΰτΰƒ¦8 EθΚaζ8&ΝΕβΨη;ίωNΊχή{Σ‘‡Zͺ”\~l΅žηΝ›—>ϋΩΟ¦pΌόςΛs…κςρ[&@€ @€ @€ @€Τ’@‘οΨc=:tψKΜ™3gA‡žAη @€Ε,P­η`ΩyηSωψϊτι“nΈα†Τ³gΟ©½ϋξ»iί}χM/ΏόrιΈή½{§Ϋn»­τΎ­ QA9‚ΕK-΅TΊβŠ+ fπΑι»ίύnΊώϋΣϊ믟«M/³Μ2₯S5*Mš4)υνΫ7ύώχΏ/­/ώϋΏ;Mž<Ή^ΰyŸ}φIO?ύtOG ΊΌ½ώϋιCI?όp<¨‹φνo;=πΐι ƒJ'žxb±Ίτzν΅Χ¦qγΖ₯uΦY'M™2₯΄>N8α„tλ­·¦―~υ«ιΜ3Ο¬³mξάΉ9ΐ+―ΌςΚ΄ύφΫ—Ά7VΕ:BΰίvΫmΣ„ Jϋ—/Dh=Ά/±Δε«- @€ @€ @€ @€ͺR@ΰΉ*§Ε  @€Z(7gόnKkΙΉiΣ¦₯£Ž:ͺΞιφή{οtI'5;τaη#<2{Λ;jK΅θς~Šε>ϊ(νΏώιο{Šσ˜1c»ξšV\qΕΌΛ3Ο<“N>ωδτΨcεΐξE]”ΎψΕ/‡ηΧ_ύκWιτΣOΟΛ§vZΪm·έr€zαMxι’K.IQα9Ze…η8ΧΔ‰σΎΡοΰΑƒS=³Ο>›ϋ‹κΟΡΦXcτ§?ύ)/ǟΆž‹0t„ΠoΉε–|ξ’γΦžŸxβ‰τo|#͟??E€{τθΡiΉε–Λ]FPόβ‹/ΞAς½φΪ+‡°‹sy%@€ @€ @€ @€T«@Kr2mΉžΫ’ηX @ &ͺ9π€xŽΰsy‹νΨ±c¬’\Ύ_TŽ0pyeηΨ>dȐtΑ”οΪ.Λ―Ώώz:βˆ#Œ3r:ŽjΝoΌρFŠΰu΄%—\2zκ©)‚»•-ͺ1οΎϋξιΥW_Ν›Φ\sΝ΄ϊκ«§KG8–ωΟΦ <ΗυEλβ±ίK/f͚•ϋ‰€τ /Ό—#όΌJ+εεΆžγsΈ£­Ίκͺiƒ 6ȁξ€Φž£Ÿ‘Ÿwήyιγ?N+―ΌrΪb‹-‡~˜}τΡ‘ηΫ_vΩeωϊc @€ @€ @€ PΝΟΥ<;ΖF€Τ”@΅ž#Δ{πΑ§§žzͺžkT{Ž€mρ/vˆ°qρ鍊nͺwΜ¦›nš&L˜Πμ Ρυ:XĊyσζ₯_ϊΧ)* ΑεςC"π|μ±Η¦αΓ‡—―.-Ϝ93rΚ))ΒΪE[e•Ua‡–V[m΅\ωΈ²ΒsμχτΣOηΚΗεΗ­·ήzΉφςΛ/Ÿ9δάέ5Χ\“˜—ΫxŽƍ—―3wΆπOΡwkΟΡOTΐŽ~c#μmuΦI[o½u:ρΔS―^½ς: @€ @€ @€ @€Υ. π\ν3d| @€@ΝT{ΰ9 › =·Ί£ΓΞ•c™={v ί¨VΌάrΛ₯όΰ)*,GΫe—]r₯ηVX‘ς°ό>ωψGZ{ν΅STznn{ηwR„¦£r€;Ί½ωζ›ι₯—^Κ‘δ΅ΦZ«έNaηηŸ>EΨ; 4 @€ @€ @€ @€@­ <Χڌ/ P΅΅xΌ=:M›6­U–C† Ι•ƒ{φμΩͺγΫγ ωση§σΟ??]yε•Ή»m·έ6W›nΎυA€ @€ @€ @€ P]ΟΥ5FC€Τ°@­ž β<Ÿ~ϊιΉrr±©Χ¨t|I'₯=M:5͘1#½όςΛ₯tœϋτι“ †š Tβ• @€ @€ @€ @€@§ Οέg]) ΠΑΟ ¬{ @€ @€ @€ @€n) πά-§έE @€! πάͺϊ$@€ @€ @€ @€θξΟέύΰϊ  @€vxn7J @€ @€ @€ @€( <—(, @€Ϊ& πά6?G @€ @€ @€ @€hH@ΰΉ!λ @€­xnšC @€ @€ @€ @€,B@ΰy@6 @€š+°ΈΟΝŸύ @€ @€ @€ @€Τ²ΐ{μΡ‘Γ_bΜ9 :τ :'@€,fηΕ<NO€ @€ @€ @€ Π₯ž»ττΊ8 @ 3:;πάΧδ @€ @€ @€ @€Ί‹€ Οέe¦]'θΖΟέxς]: @€ @€ @€ @€@Ν <ΧόΊ @`QΟ‹² @€ @€ @€ @€@υ ώψγ? @€ @€Τxob  ΠΕž»Ψ„Ί @€ @€ @€ @€n% πά­¦ΫΕ @€ξ) πά=ηέU @€ @€ @€ @€t η1‚hB@ΰΉ › @€ @€ @€ @€TΉ€ΐs•Oα @€mxn»‘ @€ @€ @€ @€,.ηΕ%οΌ @€@§ ΄4πά»wοN› @€ @€ @€ @€ Π΄€ΐsΣ>Ά @€]@@ΰΉ L’K @€ @€ @€ @€θΆΟέvκ]8θ>Οέg]) @€ @€ @€ @€@ΧxξzsκŠ @€ η o  @€ @€ @€ @€Ԑ€ΐs M–‘ @€­xn›£ @€ @€ @€ @€Tƒ€ΐs5Μ‚1 @€* πά‘Ό:'@€ @€ @€ @€ Π‘ΟΚ«s @ ž«aŒ @€ @€ @€ @€@λž[ηζ( @ †žkh² • @€ @€ @€ @€@…€ΐsˆ· @€@ΧxξzsκŠ @€ @€ @€ @€Ί€ΐsχ™kWJ€Ί­€ΐs·zN€ @€ @€ @€ Πž»ΐ$Ί @ iη¦}l%@€ @€ @€ @€ PΝΟΥ<;ΖF€΄‹€ΐs»0κ„ @€ @€ @€ @€ΐbx^,μNJ€t¦€ΐsgj; @€ @€ @€ @€φxn_O½ @€U( π\…“bH @€ @€ @€ @€š) πάL(» @€΅+ π\»sgδ @€ @€ @€ @€ž} @€./ πάε§Ψ @€ @€ @€ @€taη.<Ή.ψ·€ΐ³O @€ @€ @€ @€ΪxέΉ3r @ ™ΟΝ„² @€ @€ @€ @€*xΒI1$ @ }žΫΧSo @€ @€ @€ @€:S@ΰΉ3΅‹X,Ο‹…έI  @€ @€ @€ @€΄‹€ΐs»0ꄨfηjžc#@€ @€ @€ @€ Π΄€ΐsΣ>Ά @€]@@ΰΉ L’K @€ @€ @€ @€θΆΟέvκ]8θ>Οέg]) @€ @€ @€ @€@ΧxξzsκŠ @€ η o  @€ @€ @€ @€Ԑ€ΐs M–‘ @€­xn›£ @€ @€ @€ @€Tƒ€ΐs5Μ‚1 @€* πά‘Ό:'@€ @€ @€ @€ Π‘ΟΚ«s @ ž«aŒ @€ @€ @€ @€@λž[ηζ( @ †žkh² • @€ @€ @€ @€@…€ΐsˆ· @€@ΧxξzsκŠ @€ @€ @€ @€Ί€ΐsχ™kWJ€Ί­€ΐs·zN€ @€ @€ @€ Πž»ΐ$Ί @ iη¦}l%@€ @€ @€ @€ PΝΟΥ<;ΖF€΄‹€ΐs»0κ„ @€ @€ @€ @€ΐbx^,μNJ€t¦€ΐsgj; @€ @€ @€ @€φxn_O½ @€U( π\…“bH @€ @€ @€ @€š) πάL(» @€΅+ π\»sgδ @€ @€ @€ @€ž} @€./ πάε§Ψ @€ @€ @€ @€taη.<Ή.ψ·€ΐ³O @€ @€ @€ @€ΪxέΉ3r @ ™ΟΝ„² @€ @€ @€ @€*xΒI1$ @ }žΫΧSo @€ @€ @€ @€:S@ΰΉ3΅‹X,Ο‹…έI  @€ @€ @€ @€΄‹€ΐs»0ꄨfηjžc#@€ @€ @€ @€ Π΄€ΐsΣ>Ά @€]@@ΰΉ L’K @€ @€ @€ @€θΆΟέvκ]8θ>Οέg]) @€ @€ @€ @€@ΧxξzsκŠ @€ η o  @€ @€ @€ @€Ԑ€ΐs M–‘ @€­xn›£ @€ @€ @€ @€Tƒ€ΐs5Μ‚1 @€* πά‘Ό:'@€ @€ @€ @€ Π‘ΟΚ«s @ ž«aŒ @€ @€ @€ @€@λž[ηζ( @ †žkh² • @€ @€ @€ @€@…€ΐsˆ· @€@ΧxξzsκŠ @€ @€ @€ @€Ί€ΐsχ™kWJ€Ί­€ΐs·zN€ @€ @€ @€ Πž»ΐ$Ί @ iη¦}l%@€ @€ @€ @€ PΝΟΥ<;ΖF€΄‹€ΐs»0κ„ @€ @€ @€ @€ΐbx^,μNJ€t¦€ΐsgj; @€ @€ @€ @€φxn_O½ @€U( π\…“bHmXf™eR=r}τQŠ]½ΕυΖuφΞގ’ώβ“Π $!΄„^B‰*!H‘& Ez("ˆ4)A@zUz " z1Aiς5šωίο„s·Ω{οξΝ{/|ω|ξ»χνΞN9³{fζ7g~K˜4iRψόσΟ»z•]?#`Œ@—@ [·na¦™fŠuωβ‹/"‡·VΕH—τΏόςΛψi­tŽ0F (3Ξ8c—υΥWnL^»|‚yνΐ~ΖΑ#ΠY¨ΗΫeκΗ“Ά"ΖΙFΐ#`Œ€0Φ vόšΆ~ m#n}L’θθXπάΡ[Θε3Fΐ#`¦ ž§B'Ё˜mΆΩΒƒ>xΰΈ€΅νΆΫ†~ύϊD]5 `ψψγΓuΧ]&L˜ζ›oΎ°ύφΫ·© γωX μΚψvΥϋΖυ2F c Ÿ>ρΔα?ωOψφ·Ώέj‚g„Ο=χ\7n\8p`˜sΞ9[-펁œKaŒ@GG‘ν{ο½^zι₯°ΰ‚ †ώύϋwaάΛηρΗŸ‚σζ”Ώ3n’€Žτ/τ3=zτƒ jΣ9BGΏ']>#`:73Μ0Cδ³Ο>ϋ¬ιq3bΗ{,Όώϋa•UV ={φτΉsί.½0F 0ŒmΟ. —#…Ο/ᑇŠkQk¬±F‡*_G. ΌχΒ /Dϋ 6βή½{G{›’ΫΛΞaώνΘwˆΛΦU°ΰΉ«Ά¬λeŒ€0FΐT°ΰΉ …trfuΦpΚ)§„_ύκW՚Œ5*|γίθ0βŠjΑZ醂ργΗGQ·’\nΉεΒ“O>Ω¦bς}ε•W’AΘμ³ΟμύmŒ€0@ 8f̘°μ²ΛΖΝ*Ο?|˜e–Y ^];ι²eΕWŒ\M_ˆΘΝ›Sjcζ3Fΐ΄>π›πFŒΗθΏψΕ/’ψΆυs*Ÿ"‚·Ρ£GOΑΏl9ν΄Σ¦˜O ŠC8άΩυwά1¬Ήζšα»ξjΣ9BgΓΗε5F σ ΠZγfΖΓ+­΄’Ηȝ§ι]R#`Œ@«!`{v«Aι„Œ@»#Pkίξι„b›Yk­΅’XœΝΠ}ϋφβg0]l±ΕΪEτlών„7Ž‹άι°ΰΉΣ7‘+`Œ€0Fΐ4Bΐ‚ηFω|g@€ 3 `,δ?ϊθ£Q8vΰ†½φΪ+ο uh¦ŒμΞΎσΞ;ΓΖo/ί}χέΓ{μ=΅εξl/6ΣZΎΖ#Πϊϋίa©₯–jSΑ3ύβςΛ/oΑsKψύŸ0mŒ‹jΏόε/Γο~χ»πϋί>μΉηžFl[k±”ωΔΰΑƒ§˜O0ζξŒ›F(χŸόη°υΦ[‡όΰαΖoμ”Βν6ΎUΌ0Φ7“ΞwΎσπτΣOGχΉ4Ύ‹hŒ€h%lΟn% Œ˜0·}ν΅ΧZέ†: ͺY2φE°ΔKDqσ³Ο>νν½)ΪόΫΝξ̌@Dΐ‚gίFΐ#`Œ@—Gΐ‚η.ίΔΣE'V^yεπΟώ3.\ρϋσΟ?―'ebΟ+šψ—W‘˜hγSΓ q ―%lPŠKΌ<±Ξ“/τUVOσŽJώɊnΊι¦XζΤe ΎΚW―ͺR™ς²T9‰ΓυΤMXΗΣEBΌˆfλOž|”F-ŒT.₯…@zυʘWn3F λ!ε’zά™[”wRξηš”›ΕQπQ'Α‘|j―Χ"\WOπ¬΄ICΙoާe&ο/Ύψ‚SΥ—Ύϊκ«‘ϋ nizՈ™i>ι©l~YΞOγϊ·0ӍΈ¨‘ΰ™λαν”g덈G|#ΤβxΞ5ŠΛyxσΝ7ί ³Ν6[|[ŠΈoΞΩωD-n$―FAγjΕ£Ž΅k„©ΰ»~δέHπ,¬θKH³^€ωϋ·0F 5PΑGπ€x™|8^kά¬kˆ'NΣ±μ™γ©-Α3ΧπΙΛ—4ΈVεδρΝ™BΗίFΐLkΔcΣiŸ3§<–εΪl°+ΐ}„ZœΗy>œη#ζšlϊ*ηΰxΞΧ i\坍K^₯“Φ-{πIϋ€ΤžM+ΝKηTGΞι˜ςNΛ›φ Δ£\„l™βA1F Ο>ϋμΡΰ0~όψhAΌΐ „\0N(y…υ+―Ό8Οq@E Ζ5\›†Yg5|φΩgQH6qβΔxjžyζ ‹/Ύxœ0*>KMIγιΏυΦ[ρ7ρηž{ξ˜Vš~Ρί€ƒΕN;νw·γ₯ˆΐΔ” ;u’ƒή}χέxgϞ±n\K=@šΤοΕ_Œ;Ώ{τθ )ŒX€iόρΗ_°Ύϋξ»Γ·Ώύνˆ™Œ4›ή{ο½πάsΟ…9ζ˜#Ά »ΘZh‘ˆ§&Ξ`^δ+אΟ2Λ,됖Ͽ€˜Ύ€ΰΜ^x!ΐ]}τQXvΩe£7dψ žS€»ήύΒΌΓ΅π<„0ψΓ?ŒIΡ/Μ7ί|αΣO?ά_at„3 β―ψOεΧS–Zη/ο~%ά ]ΞSύε€Χ `B™αΛ^½z…AƒEΎ–^₯οQ ΗΤGιxφ{Ξ9ηlΡ7†ϊGΈŸ4Θ>'/ε—MΗ#Π΅ψqγaψ ώ`ΜΘ"ά/Φςπ\vŒ ΗΓAΟ?|δ=Έ±ώaΙ%—ŒΌFž EγŠOΉŽλα·Zσ 8΄lΗ0ηpCX‘7Η(‚©ΚP?ΚPOπ V΄sΖύΤ“WΪζΝ”·Ώ€0­‰€Έžd <G.²Θ"Ρ^ΒΨ•ρw­q3άΙyx‘ρ=œ†=ƒλ°·`W€e« ‰-ž|ςΙ°J+Εq5σ"_Νzεέτ6Fΐ΄²K0ΆƒWΫΎτK‘±Yc“…_αΉ±cΗ†·ί~;-΅€e7?υΤSaάΈqqlΘ±VX!ςmjWξ¦SkwWތOλΩ ΰsψ~gΒΨ’ιKθζšk0 bΫ—νˆΈ΅μΩΔ—;”ϊ 0‘NΤ—8ΰ Ά:FέeΟol4Δ‘οΡ΅Β#-sώw0F 8pC*xfžΝsΟΈρΧ₯smžUίΔ7ς¬g^ΜΞχˌϋāδAšŒ)njϊφνζŸώΘ'πC™)+‘Φzb–ΧRΞ†Σ°ΓŒoαIΚQw]3ψϊyo±ΕαOϊSψϋίΗΎΧ_}Ψyηγ[ ΌςΚΨo€ιε`εAϊυl5”©¦|«4‹|ΕTiΡΞΤ±ž «L\βC@ΫƒυTΰXΆ_I±&AΫaίηZήώeλΕύΗ5΅ΦsΉOΤg“?χvsμ?ά—΅Ξ«Nώξ|XπάωΪΜ%6Fΐ#`J"`ΑsIΐ½Γ!ΐ„μΊλ ;μ°Γe{τΡG】W4ύμg? «­ΆZ§O=υ԰馛†Ν6Ϋ,zsKΟέ~ϋνauΦ©=˜<^|ρΕρ•άi<~c\½ζškΒl'‘”λ'?ωIŒΗ?ώ1\pΑαΆΫnkq―χ¦\΄΅8Ωΰ&Ѝ§ΧU³K› κ½χήΆΫn»πΞ;ο€QβοΣN;-μ»οΎΥ /“c&Ω”ωΪk―"ώW\1ώρλ”F`A ψπ9ηœsΒΟώσ4Jό½ϋξ»ς%&κΐ#blŒ.΄Ε­·ήI Œ€˜>ΐX _xΰSπ«_ύ*{μ±Un&nYήΑ( ίwί}Co9δjϊDΐ­xΡ—±’ψpή1Ž:κ¨h˜δ΅€ ‹.\aΝ<Γ߈ξθ΄‘Γε’‹.~ψαh”¦όi€‡α| €3αΨo}λ[U/₯’ι+ιλΈϋΜ3όυΔŠΰξf#QV]uΥpΩe—E±ava ηίFΐt=ΰτ7Ωd“Έΐ–Φ.Ίε–[β& Ζ–y‚gΈξ-:FeάΘ?δ²aλ­·ηw^\Xd\Y$. KποθΡ£«›hw2N―5Ÿ`Ό · ΤΑE’ΖΝ7ί6Ϊh£jŸ&π|#L)CόX8«%x¦οΌόςΛΓ»ξ:E΅θφή{οκ`Œ€hσΎρΖγΨlύ€~‡7Γηβς½φΪ+¬ΎϊκSΨ{ΨΔqΗwD!3 k|Ο\€ρ,v£40Ά?ςΘ#[pt™~+MΛΏ€0mγΞ1q›Γα<Έρ]j fΜ|ςΙ'GϋΕ…^Ψ’HΏύνo6Ω:kΎώϊλaσΝ7―Ϊ#tlߌc±e# 1bD΄3΄†έ½Œ ‚rΚξNXγ‚ΏΣί3Ƨ܊›ž—=Έ6ΧgνΡ²]cƒ5jTψΖ7ΎηΜ8ΖXϋάsΟmaσ—}摇Š}\šηΖomPEνFι΅ώm¦g˜Ϋ¦‚ηγ?>z+NΉ|°Gh}Nλgπ܈Ν3΅§Β ¬I­΅ΦZ-8°θΈ/ε@žmlΫl³Ml¦SN9%ΪCψ§™υDx Γ† ‹ιιΟ_ϊΧ(pΜ³cδف±) ˜g«ιέ»w\Kƒ4ˆας²»OQLI»¨ ‹ΉBΡΈτ½¬‘bg_sΝ5Γ]wέU΅q_hŽ’z‚Υ˜―ϋjŽ]zι₯aŸ}φ‰χ£gnΤ¨^nΈaυ^ε™ΰήn΄ž{Ψa‡…N8!Ή²vΑJ}iάy睁ϋ—ηAxŸ>}ͺηΛΆγw,,xξXνα#`Œ€0m€€Οmͺ“lW˜#(Ζx› ,\1‘ΜžΓ³šDdΩkΣIΞΏόε/α‡?όaŒΒ9^…‘È»r^xα89–ΘCηΈf5ΦhaΥ«€ΚŠžΣ…:₯Ο7―’Ίϊκ«γŽqΌή)μ±ΗQπZφ–[n'γˆτ˜\ —υΦ[/Šλψ{nΈα†π»ίύNIΔo&ιϊΧΏ „‚Ρ ΗΰΝβ%Ζ•Η{,βS«24cπˆ™ψ0Œ€‘1ΰ„ν·ί>œqΖΥzΑ,ΚxίΤςœ—ŠzαQŒΤ}Ι‡2ΰέ/Aˆ‰ %*n†Λαΐ¬po x²2dHuCΛ<7μ`ΔΗp­FκM*ξ1dSF6Εΐιτ…EΟτχάsO4ŽΛ8«όΎχ½οE£:SΨtƒ[Ζtχ·0]uπJ΄άrΛU+Θb^Œ4_Ξ;οΌSžo²hWtŒ ·ΐp4AγoΖ’Œ-Ÿyζ™8Ξ-—u˜#°IDγN¨²s‡CΛ žYΰϊξwΏ[Ρ1ήΔΩ ˆ#ΎύοΗEΘ—_~Ή¦Œ΅ι7ŠβG?•'xf0³S&Ϊρ’K.QρΒN:ι€κbZυ„#`Z ¬=Δ–Β8\βΔΠΙΨ`—7³X/.O‹·²1G‚xž~Oz žΣk€Τ±{°α‘1u™~«Μζ˜46Fΐ4‹@jWHΣ(jϋζψω>±s:ΦdŒˆ—R„Ρ lΑFΓX]cMγ»hީݝρyγν¬έΌΏωΝo†ΗœŸ1Џ0ίoΏύrνΩœ±«€σ‚ԝφUΜ –_~ωh Κφ%Τ[–ϊ/εŸχΝ¦>ςΊ™Ηnj€h‰!Αsz†q+°>Η[;˜gŸUψ©_Ώ~-βc `ΝμΈ/o+o}cOήύ£djΦI/ΛkΚ#ϋ a‘_0GcΫf}8Ω€Ρ,v 6(Τ³“6λ}l5Ψ_Θ»Φz"Ά‰2|Λ¬ΡΒαEmXΨό™?΅wiMšυX6ιΛ!Hz―ΚήDΐFΟ<ό±Εσ]ΔϊEξ•OίτΏδWd=[”κ$;”ξϊ»‘C‡†αΓ‡GkžΟ”Ή#;v\ ž;vϋΈtFΐ#`Œ@+ `Αs+€θ$¦9LŒyνΖ &₯Όž ‘F M<)$‚Όϋ,ΎψβqΟB˜Α˜x³Ϋ•ΧB‡s31€jςΗ$AΒ4&Ν”ΦE]w5#I ―ˆα:θ θύβƒ>ˆž‡aED·ΰ‚ V1γΘ—‰2“Q„Χ,ΖQWςΕΨ‚Η6Ž3©&ΒΌ†jΧοΆΫnπάL`Χ8βdΒΩgŸ“‹{Τ Qρ™ΌηaΝ$ƒ ;”1μ€eew2ψπΪΚy&Ο©Ρ‰EFD‹XŒ€ύŒ€˜Ύ€3x½4Bb| Ÿαa!,RΑWˆzα%ψwjx x±€Oα0 ί-@!–±οωΌ €E)Έ–ψ*'X,c„SαύuΔ³ˆΌχγ/π‘ŒΤτeτMp%2Ÿ\ΟΒ#ή%0z¦‚g^=+chΌ¨ς‡<ˆ«ι;΅(wύχGq5υΓΓ4Ζkϊ@…3"CκGdԍύǁ.‹cn½•J"0FΨ Ÿ₯άO³˜Ώ²°Εڞ{ξqa,YtŒJΊO3v<ύτΣ#r<―³ˆWKΘΠ(.―…3Sas^ŚOΐλΝr;γό|0φ-Œ«‡#a ώ„‹YΤ’`Ό¦NʌρS s…oΌ1φ'h7s ΌαΡΆi?Λ9ϊγ₯—^Ϊ›ZΓΑVE€±&cX½š ͺ€+ zΣ c~8žΕx‰$Θ ž9ΞΨUcwDp[ žΝΗ§6ξ5QΈ@IDATϊ'ΔpςζΖ—q±ζπh™~Λcβ·#Ў€v²eόΙΈrν΅ΧŽcOΖΰΪ$ ±‘tjΛΦX‘±}άΌΚ*«ΔΪπφ§uΧ]7Ϊ*ΰ[Έ™Νxδ₯MƒΝΪέ±W` *cƒHη 2PΚ†έ[6vΖϋΨέιG‹gΗϊτ ˆΌΣyAYΑ3›υΑ™ΎMύe’,Ψq°Ν`{‘=^γrχ δ`Š!ŠHΉŽ‚«$ΈeŽΝ“Ϊā-5χ16Δ“-η=C*Ξ&χρόcγ…WʌϋωvL΄ς‡ωϊϊλ―7YΓ‘S³žΘ•΅²^½z΅°kzΪxΒšxC"œ“z©‡Λ°½Wφ^pžYO€ήŒΑαψ’v`μ²χ4²Ώ ΆΝγ_Όƒa™@Κ`J9‹Ϊ°°·‹½‹ϋΎ'Λιι½ͺ6Ι<|πΑΡα ub-΄h½hSΒωηŸ_h=—΅ζYΨμ(7ΧiΓΝ'Ÿ|Ÿβρ&Ά2φ―2mηΈν€Ο폹s4Fΐ#`Ϊ žΫpgΧ&0)η“Š»πΈ€‘Q12Ni,κKA#l>Y1θβS»^I Oh§žzj4˜β-Cω2‰ε΅Ο8e$&Ύ 0 &}&Ϊcǎ^1)Χπ V½>cEωͺ~ιNb&ΙLΈρNͺ΄Ι›2‘w:η7υ`aC0β ^E₯I/ Œx•!8Ιψ#c‘αδ‰—ΥO<1ΖΓπMΠ‚%βp‰“—ΗΈ†:‘ΕΞEξΗ1] €βπ0| —ΐΝ„α Β‹/Ύ7SΤββ\-ήΑ‰(Ύ#}ς‘GgŒ•π#Ό)ƒ―6}ΐΥpή―ύ똾<1`ηiϊ ž©›VvΪi§ͺ§}6«ΠQΎ”ο‰Λ‚Ό WΒλδΥύτ§? ,ΒωΩ>‘²‘§u`£‹<ŽbΨ$}β‰'βυΔ₯ˆ9N X<`‘Γ-eΑψ^¦ξ1!1F S!πzSΌΊΨδΗB‹Ζ―pΌπ@Ο’›ΖΪs\WtŒ ο»οΎqŒΝ7žώ5^η‚4DΊlZdH‘Έτ ΔΕΛOVΨ@Σ1nYΟΞΤ/εvaαPΔwΫΒ―τ=,‚"tFΐW Sxž:!Sκ_vŒ―Ή‚α(^T§0ΐ“*˜¦}„ΌS³)ˆ…S‹1hY#`Z8\‚gq<ΙqxjLΕ K,Qn€" ²‚gΖ§ˆ^dΛ€C±α0Π5ŒχΕσ,ψσF«t.€g{ϊ Ν¨s™~ˁּKœ–0EHǞΔΧΫͺ£kξΞΖmΖ₯lfΓΞΒά>΅‹#ΊbάΗ:žφ £±‹S±3`#4AήˆΠ Ž”ΰΉY»ϋFm=ρcΓ ±A€o“Ρ†xΚH_‚ύ„4ΨLžς?i«=›1°μ2Š‹­D|σΡ1υ%ΰMάtΎΔfΓM7έ4b˜ΆsζFΐG€η:υπŒ°x‡v¨Ϊ#ΰ4mšύΣ³:lΨ°ͺύ€\yΞρ -4œΐzΟmQ{ό‘ω6iΒ‹\«ω3φΪfΧ΅V―0_‡C΄^ΙF>Ζ·ΨBRށηΩά 'R66t³F 7b_§Ξ|ΔΫZO'ΞΧβ`°ΏύφΫ[؁ϋφν[};cΦVC½8βˆͺ­¦GΐSm ρ/υ*¨KQLΩdΏΧ²·dmXxδ֚C{χJ³‚gμ;guVΣVΩ{…Ν9ΰCϋ‚ΊφΜ:2}μ6Ωυ\ž…›oΎΉΊžΛš+χ&ύύΣ&€ΛΖ&ϊ`ξϊπ>}ϊΨΎ_φ¦μΐρ-xξΐγ’#`Œ€0­ƒ€Ο­ƒ£S™Ά0ργ“w±X&£ΐτ•LΆ… ΔuΔΡ$[œU‘ΡeΔ (eZm΅Υ’w£¬‘=ΐκ«…΅ltmς&ΝΉ”οωCδ1Η_]‡1n&ΠWa¨&νlŸ˜’ιΟΞaΜ%°ΐΙ¦ŒεπυuΧ]λΜ9Ν€Κ‚4ϋ&„4ύΡŒ€θRδq*|‘οΐ!Œ1X`Έ€’Ž…ρzG•£’¦ΖΛδΓζ DΥ-X΄b, 71~€|Eγ’KΥ?P.ާcά©< <(γQq―'h¬§˜2ΎΖγŽ0e‘“~°θ^ΞΞcΠ?π&8 šΣ~ySΐ½•ΝšόYΐ§–τ·0­‰œΖ‡€½ϋ B1μlτ€‡ΔэΟΔC@ ‡)φθΡ£γ¦₯“Ϊ δύ±3k³sϊ—2ύ–νBίίFΐ΄Œ_eW€λ ΙπšΖ‚Ψ pb‘·i¬.ϋΗΘ‘#«v[ ’Ÿ|HOΆ_μΈlΈ–pnjμξlΔFŒ…x‘PΔΑ|@›+³φ ΚʚWΊq&o¬ΉDŠ_κ•²dηΊFsΔbԝ±}Ϊ\‹έ„9 y€m‘>)χίΑΪπ iŸ'ΞLΕ«πφ‡Tπœ'²εΩδΝ}̍užρc3σmE™―§φΡfΧy[,oc\=ε"ψ’MΜΜΣ³Ό£z`KΈσΞ;£HY›§I ήo‹ϋΑAΆoZ ―ΌςΚρ-)¬mκΩjďβM•1Ε)&RπOQLι£κΩ[ΐN6,ή|€#‘tν2εθ4μ]Y5HοUρ}:—‘šy­}&oε­΅žKYωh=— τ‰~kΔ}.š6 κ~+ΨŽΦΑ°ΰΉƒ7‹gŒ€0FΐL=;j7άpΓͺ‚kΣόΉ&+ˆ•~z<5–Κ@Aύ(?ωS/^)U+θyΈ#^ήd›τ˜cόΘ3PπZ ,2αEƒρr.eΥΔZύt±1/_s0F`ϊAή‚7Δ%βΣ¬Π >!4βΈKήuŠπN§’Η‡~Ε{δIŸ‚χxŽE-ΕŒρ0ε<β6 ”O kΩΈπ3’η΄ξp0žB𺟠τ1ˆ—Τaœ$νlŸ(C2ύOκΕ„ϊάtΣM1/ς༌ΆΩ|ςώG8η+ύΌ8>fŒ@ηG εHq*|‘x\‹ƒ,j,œς9η‹ŽQY dΓγrDΏΩΐ¦2—Yf™ΘaEββm™t΅XšΦξΤ€±i3‚gΚΘ—Ν”xGΞΖ͈3t€…ψ6-GzMŠ)<[?βk.€q?ύŠκ˜ζ“χ;―/Κ‹ηcFΐf`QŸq-ήΖς8ž4ō©H@ΗRΟπάΣρ(ύV–λSπxΕΆIϋ9q&φ•2Ό+{S3xψ#`Œ@3€vρ£Ζθ)―Υ³‹ΓyŒI5.M90-\¬7Ί0ΎOΟυodwGΌ…ύCž’Σ<σ~cƒΐn$Αs:Χ ~-L²c}‰—e—Ιβ§΄4v–ν»‰Ž₯}Iš/V<Σ„΄-ςς‰‘όǁšπ i\Ησ%ΕΊ ΛO©ΰ™΅/l·l>ζωUΘrN}EνΩω6š FC6»žX7ρΦΏτKΗ1lΚ;”]<…={ o€•ΐ;HjσΧ§υ FFπ wΒ…yγψΤV#;΅xSeΤΌQ~ιω2˜¦}T-ή•½…§Vl¨'δαΙ}Ašάο”—9Π[lλΘάλόσϏNΫ»ŽMΈGΊ“Ξ¬`"›k ž™ΐ2q>|x΅¬LXράL½0"_qΕUύΟLω0AΞ3P` βœπO½*»Ϋyδ‘ͺ@ιbcήΔ\Χϊہι,—‹OSΡ/qd„ΔΥyΌƒaγ&7βx.―Ο Ώ‘C‡FNέ~ϋνΓ•W^_uΝλαZ^…ΗΜ²Ίhak1‚ŸHЌηhς“±œςΑ₯ΌUΰ–[n ηž{ξFe0£?‘Ο'§όJ/ΎψbτΜOžZ$ΰ•ίlS_m‰ƒΧŽ₯FOϊ8<ͺΰ γδ“O½zυj±hΐuFΐt-RŽΤ’ψX5…£ΰΰ8…ΕηœŸκšzcTΈL’ξΎϋξΘΡp_6h³ΌOލβς*XΖτ,₯u‘ΜκWςΖοΩ|kύO=Αf̘1Ρ[(ύeLCVX’–#—Ε΄ ~ιΒ₯3SΑ3<ΞλOǏŸf9Χί²!†ωŽζO-"ω#`ŒΐT €H€7Šμ΄ΣNΥT°· 2$zρΗ»=‹ωβΖ<‘@*x†«ΎϊκκΈ™Dι·^ύυ°δ’KVΣ©gƒHϋ9q&ύBή5_V›Σ?Œ€h'R»‚8Scτ<^OGcυμΈ4+^VURΑγϋTL&ήΜK_sΩv17粂η"6ˆy睷ZώΌτekI1Iσ•{v^\ΥΉΦ5霁΅Νj₯•ΆEZ&εγo#`κ#ΐ3$Αsή3TOπΜΫC²ήΫΙ-ϋ|γ9ΎΜšZ:ίΞ‹Β/Ν'ζρZ#ή‘Nβ6μ΅Ψ=&NœRύpΏlΎβν΄€Q„ƒ±3žηΪFφ9ΙΘ+?ω• e0Mϋ¨Ό{†|eoαχ7ήXWπ¬Έβϋ,ŽκςξΥΌΉŒϊjς.S―"‚gΚΐ‡tYWΰ·ήdΌ‡΅ΪυΦ[/Ξ“Ψ ΓΪ€CΧBΐ‚η՞0Fΐ#ƒ€Ο9 ψP§CγŸ¬Έ ±Ažx ¦†έzΞ19F€°ΖkDl #B#O&|ψΗ?ΌΒIi‘· ΗμΘή}χέ[β²FβΦ<#Xcη8ΖVvWσκ«Γ;,τμΩ³*FΣkeΤHΟŒHψFέήύpΩe—…Ε_<ξζ\j Θ ž³;Π…·Œ20Τ[lŒ@ϋ0Σπ q9ήτα_ u/κiαΡ―yΌCυEx'/~$ot<π@4"ζux[m΅Uάδrί}χ…ΥW_½ZΖ2 F}΄†θ q6< Ώb N_ΡH\ŒΥ,φιΣ'βΔ1xώoϋ[άtƒxqχ½•Χ#NŽ2vΣ_aθ&}β*ΟE+―XΖ”?5~#Δ06i o^=6m΅p™Ζρo#`Ί)GŠSΣΞΓ7xΨ„›αšΤλ―Κ„7jQα¨k―½6z>sL\ƒ'}Έ‡Ε%lxͺgόL8ςΘ#ΓQGή{ο½ΘKβ6¬κ'­ ι§cάμ†Ε"-ͺ2Β·ŒΏΑˆy’bϊ+|πκ)‡©˜LΌ™—Ύl岐ŽΖܜKΟEm©έ=/ύg|Œΰ™1t™1*ž˜^xαˆ'œ'7xJάwΜ1ΗD‘3γ|6Ι0ζ%—ΧΥΒέyqYΰƒΟιgΔ›”ŸzhŒ«…Β”#cβ ώ0&>φΨcΓΡGέb\Νά~eQ< ,LΝ=χάΥW‘6Β”ΉHό…KΝ…8Ζ’+υγXθM”‘ςƒηO9ε”Ψ†βUχi#`Œ@aΰrmΎ^y3Վ;ξΉ‚Ytίύ«'HΟdŒ¨œŸ3f•bΝ5׌v—z6ˆΌΉ@Ω~Λ|YψpD#`Z tŒžŽkI>ΧΔSp­μββρQcΝΫn»-Ξω5N$>’AΩ*d'@ΰΗζ=5σ—­\γκtΜΝ961ή~ϋν₯llΜSωσ—­%Ε$ΝWφlϊ£1•·²Pom:gΞΑ˜™:³α9:³ωk9Lj_΄-2Ε„ύǁ†ΐgS#xΎθ’‹Βn»νV$3NΤ†kžΙ§žz*|ψα‡U,²¦–o§‚gΚΛ†ΎfΧσx­ο"<Oγ‰5>ΦΰΨδΜ˜―Iπ,›3υΈσΞ;kr0Χ°±=΅σF¨ZΆl ΨƒΨ”Nߐ]j}5¬ΐŸ²˜bƒJ=5²·μΌσΞ…m3ԏφC­_ΠΗΡ0oΑ4¬²Ρ^|Ÿ7—WB^½hϊšΌ΅g½ΩQ›qЬηR6ςΫwί}γ:J 7λΜΛΚΆGš†wL,xξ˜νβR#`Œ€0­ˆ€Ο­¦“šf0‘δ“Š»06²X–7cxMwSIΔ δEΐσ†]ŒΎŒ{ο½wœ ΚπΚρSO=5μ³Ο>q’ΚDC’6&½Ό2£jΩI%“αlύ˜ ΛψCΎxΖ»4aάΈqQ€g9‚ Ϊό¦|xƒ&`μΩf›mβo »λΗw\8ψΰƒ[μΘFx‡±όeψ .mΔ8˜œόραΧΏώ5§FsvBSίE–χeηΫYΑ³ψ‘<Κ'ͺŒ- )‰‹ΰ―΄ ηΨΐΑ8›7`αΩ[/e%€™ΟΨ)n½υΦΈ~GZ›α`lΘyφ•'΅Υ`ŸIΗΰβ_ΰS4€}ΧΕ΄¨ <ΚΔΕ) }&αμ³ΟŽ6)κ‰ηηνΆΫ.Χ½ΪHπ\φ^‘=O>ωδΒλΉτΝ83•™Κ™‹ξXhι2Xπάeš1Fΐ#`j!`Αs-d|Ό3!€‘“Ι±&εšτgΟμ&–‘€Ι}-Γ(|„bzE cοΎϋnU\6DXŒc’˜ ,Ψ]pΑΥτ³ηΣ―ΉζšhLΥλs~§“|f¨;™ΈΚ‹'k .²;ΨIk΅ΥV‹u&Ί+πͺ‡±—@³{τθ—ψDηΨυŽρρ78X”ΔώΒ /T½’¦β8&Ω6{#`¦o0ΚHΐ%RΎε7^‡α;x₯(ο€όΎBΌ“εΤ΄Ο ?η΄ΨGΉΰΆo’ς’Α±2AFΰ¬ΰŽ4Χ*ΒΏπτoΌ9SyΠΧ Gθ¬@™7ί|σ(ZKωu™e–©φkŠ›χMŸ@ίΗβή<Φ^{νj4ψq£ϊΪ…r!ΐ†ΥΘώaŒ@—D.D(,―ρT’q,*hL Ηi£…λˆ―ˆGQ3³WvΰΌ21>εΈY¨aό]4nΦΓ3›Mΰ²”;>hξ ΌŠ|ΓαπΖΡlΜ36ˆθzΨ8Cžτ'E0eμ\?ή$“υΊGίΙB/"kνΐΒήΥW_ηΒg<253G©&βFΐ`9逓’χ9’Θvg³ΰ<žΰˆ“Ž›³‚gβεϊΖ¬τapl=Eζ€W†wΙ‡ώΔΑ#Π^ΐmΨ R~”°žƒ8«3~Η–ΐψύρǏ<©ς3Φ'”ŸGm#Δ—HKihμ\ΖξΎηž{Ζ<ΚΨ Οͺόšk(ο<[‹Έ9ϞM’r½κžύ¦ί`ΜN>y}I^Ύi[ΘΫ+coμK:—ΝΗ#0%πΩΤ ž§LuςΦΌ/"MΉ ˆ½"o§‚gψΡrVANEΦλρš6l€cXψyΜΧ^κΙƒsˆ[οΚ6£(œ‡w$xζŠΓ§2Œ=šΝ…Eμ/x‚Ζ–‘ΗΏex°L)#|[Δή‚}Ώ¨½‹΅hήή…MΌ^ίΧ<7S/l_xΩ.²ž‹_:²Ά‘7Xb“Β6₯·9(žΏ»}ϊDaψg§vŠΙjβŽρ˜vΐϋήG‘,«ίΏύνo£‡hʈ‘ƒφαΥηbΨmΎτK[4WEΛ?Œΐτ†@ƒ2pžώ‘žŒΖτπY3²ΌύφΫaΡE†hϊ+•.ε½:•~#2^0πφœ»ξΊ(jCœFΪβW„K.ΉdΥ“Qή΅:&>p…›ΚΙͺx΄ΒΈώύϋWϋNσ·0]ΈoŒ•K¦.Ζ{2\F<ήφ1¬ςΟ /Ό0μ²Λ.qƒ"‹BŒC‹ŽQ{υκϋή2’ pΦ-·άl_2₯ο¨—ώƒΕ)ζΑπ/ ›O<ρDδxΈW œΜ'Ψ¨ωA6οzΣ_Œ=:ςu–?Ή!ρ‘‡ZυfΔΌΡv#Lαφ²ψ!HΑ»R:W ΖαΜ (K6ΠΟ²αSύlφΌ7Fΐ΄ˆJ9δpΖg΄HŽM}ΌνδπΓΓ‡ηyδ‘0οΌσFήΦ¦ml1c*D~ςŸΛ£³dΛ8ΊgϞ±o‚ΚΜ”εέ2Β •ΣίFΐf€ΧdWHΗ΅€—Ϊ8ΆέvΫpΕWTνβŒΥαGlγltγΓ؏ρ4Ά6RgΗ±Œ½±S,·άr1.ι·–έΎ%ο’6Έ–7 2žΕ.Ώε–[VΗν`"Οι¦κœgΟΖώ1aΒ„°Γ;DΫ=ύ 󍭛 vnΩ±ευ%iΎκ«¨>Ν;ˆω€φŸΑŒ€¨‹|“7‡ΧE<Ηςπ,N€WXΛΓ©\Α[ϊ΄™λΰ46oσ¦Xμ Μ‘ΛŽϋω6vt}‘μz"γίZΌ&Α³ΈH6d„―œ›8qbt‚έšu;αΪ4¨#k€C*Ξ’d“‘/ΠΖψ¨ΜO9ε”ΊφΔ΅`[‹ˎ›ΛbŠ n.bΓ‚Ϋ)gΡΈ”φΕNΟ}…ύLαϊή–Λ[½h/°R_νΈΛΦ‹71bΧΒ!W‘υ\ς PfΧaΘz/Σ9 #LΚ Lx‰Λ€—c>TΌ{’ιc e’‰0±^γΝ€qxoγ<ΖN#=A8†Α‘L Μ{ψdλG©{š'»©)“aπΑ€C=ρdA=ɟk0?>…EΕΉηž;Φ—λ(/ωσ‘LΚ9œΓ#6»ξΑ‹γ,BςΚξ΄ j΅™ςπ·0Σ7πή00ΰά\°ΗsΌ5y§^Ÿ‘rωΒg2ͺ | \ Γ‘„4=ώWYψ­~ŠcτΌfC6ά ―γI4νS²’ρΐ³H€Χɏ·Σ7ΰα‚~Y θIΧΑιΈ€"Έ€±θόσΟωŽ7j<-©zcT8…OvŒJ:ΌŽυΝ7ߌHΖ§l–ΣΈV­P/.εΠΈž2‹Ε{Yξ„?›£SOρηG}TΕiρŏcbςN”½(¦eρ#>ςʎéΈŽ©ΑμX|£_‘|FΐΆD@γgΈϋ<ˆ—4Ωΰ.ΔπΗΰπ”·αXyϊCΘ‡Θ„ΉΗΰφβ{ϊΚΠθώm¦^΄Έw©=k­ηR7ξ/ ž³ofΰΌCΧBΐ‚η՞0Fΐ#ƒ€Ο9 ψ¨ƒXMV™d3yε›ΐ“σόΟΔX€ρ`Œΰ™γšΔcDΠuLJΩI}Ι%—TΣS„xŠ…?„Τ\[/PVεIY™\TV~s< =8OωψdΟ+ ŽΥ9₯‘ζ]+]γo#`Œ@x>!ΐ3υxdZς\;tθΠ)Όfλ“ώ?hΠ pξΉηΆ0¬§ηkύ&βW88νSj]Χμqς[εΧ¨šΝΗΧ#ΠωΠ8ScΑμx°^t-qΰv]«ρ₯Ž+,Η“gΊ0©x|—‰›^—ύΝ‚ގ/½τBctΚ„hOcτ”?Ε‘Τ΅^_&\aͺx”Ή~ΩΊιa₯Σ΄tΜίFΐΆD ε³tœ o'ςx“λ$xΦ‚=ρΰ5<*ρF<0•r¦\Y«ίšΚμ|Ή0F`š"§ΌWoμέΪMΗΠ€φ ­‘—x[γν4Mυ!Κ—8FΐtNΰ žyΓ)λhπ‘Ρ81εΏ©χ‰O•/ι‰[κρQ,hώΡ8›²¨ΫBθήqkΰ’5‹€ΟΝ"ηλŒ€0FΐNƒ€ϝ¦©\ΠN†”Ÿόδ'αβ‹/£F ΫWτe«Cό’bg]ΛλέΧ:ξo#`Œ€h_0’Γγ| x~°‘Ά(ZŽgŒ€˜6xŒ>mpwFΐF°)eτθΡaΩe— kΉfΈλ»jz“k”–Ο#`Œ€0Fΐt-°»βxβΔ‰ΟΜν:Ά£·_;h#Ž;ξXΝοΞ묳ŽηNUDΊζ ž»f»ΊVFΐ#`Œ@‚€Ο ώiZ&’wάqG;vlΨj«­β+³κ½"©³vRFΐ#`Œ€0Fΐ#`Œ€θ²πZζργΗ‡λ―Ώ>,³Μ2aπΰΑ^΄ο²­νŠ#`Œ€0F Œ―Ύϊκ0Ϋl³…-ΆΨΒoJ-Ÿcwxžzκ©ψ†a„ζ[nΉeτ|Ž3-‡€Ο]»}];#`Œ€0F ‚€ΟΎ Œ@Ϋ! oŸxvΆΨΉνpvΚFΐ#`Œ€0Fΐ#`Œΐτ… ψl6ΗήRοZΣ*­0Fΐ#`Œ€Όσ†TΏaΟχΓτŒσ₯gœ1Bπε—_zή4ά ­]~§gΪ =ά©L”.Χΐ5ϊ”4~ΡΎξ#-»βS–"Ό—–©(oΐ|ŠζAΩι·EκM™θKψ.šGLΌΙ?Β¬^ΩRœ(ŸΦͺχŒ3ΞX¨ΏEοΦ.―Σ3m‰€žΛΆδžΆ₯ΌQ_RΫΊLi^E~‹—ψ.Κ5Δ+3Wi§"eΟ‹£ϊp5Ηyy5:¦²pσ»HŸέ(MŸ7Fΐ#`Œ€h],xn]<š0Fΐ#Π°ΰΉ6Š‹Τ©ΐΈ«€qάΑ#`Œ€˜Ύ`ϊž{ξ ΏωΝoΒΣO?E}ϋφ Ώόε/Γ6ΫlSXΌŠΐΰε—_ΏύοΓ9ηœSuΞ9η ΗsLψρ\=–χƒ1ΚϋοΏ^xαxϊΡG Λ/Ώ|ΜΓ? ‡zh˜{ξΉσ.­ϋμ³ΟBΏ~ύΒ!‡©€ωΙ'ŸΔ2 6¬_|qΨy睫ΒaŽQ‡ηŸ>œ{ξΉρΓ1Β7ΏωΝ˜ζ¦›nZ“M>3Y|χϊλ―‡ίώφ·α²Λ.Σα0ί|σ…#F„ΥV[- ͺt‚EφΡ£G‡“N:)Ζ'mp;πΐÞ{ξzφμYsZχίXo½υb”7+LfAΏL™¨χ<Ξ:λ¬π§?ύIEι_zι₯1/ |u’<»ξΊpπΑ‡wήyG‡γ΄χUΚάg`4jΤ¨pΥUWπρΗ‡“O>9€kž{ξΉx§uψΕ/~φΪk―0`ΐ€mΗ½A9 Τ%Hƒ 6΄ωηŸ^5SησΟ??όύο―^B?ύιOΓ’‹.Ϊ"΅5ΟΓΩgŸ]_τ™¨^ΰF •ΈώϊλΓ―~υ«ΧΓϋnΈaΨύΓZk­Uσ—Ν’gό”SN‰ΟΥ~πƒπ‡?ό!¦ΕqϊΈjφΩg―›μ{ο½―ηYbΚ3tυΥWΗ²¦α»ίύn‹>…ψ„2ΌAξΎϋξΨ₯\FΤλΫίώv‹>…<&L˜γ§ύ}Πi§ΆΪj«ΌDyjρ7Έξ½χήaŽ9ζˆΧ4ΫvΣ@σϊχ4^½2ε΅ušώ,³ΜnΉε–°ω曇 /Ό0μ²Λ.Ήχ1ύΕC=Ž8βˆψ­4ΎύοΗ{t‘…šb“c…}χέWQγxΰ€ˆm.qyυ€6F ΛYeǐ*^#.ΣΨUρ;μ°0Χ\sιςάoΑ‰ΛΈIem4"ήƒ>½φښc>eΘ،ώjγ7Ž<ψΡG…σΞ;/Ξ;ΤGΐωΜivάqΗ)8~mv¬I,±ΔαG?ϊQ£jσ‘ΚΗ7yά{ο½>}ζ™gͺσ*ϊXΛΪa‰ΟόΘ#lΑK{μ±GS¨Œ_%J'}π?~|.ηŸzκ©aλ­·nΑω”»,Nδ£Ώ2^fΜύΨc…e—]vŠ:(Ύ‹ΜUΪz^@Yjυ+Μ]ςζ**ΏΏ€0Fΐ#`Ϊ žΫsηhŒ€0Fΐ΄3<·3ΰΞC!€a£p‘€Œθ|Xx `€Ζψ‹x%5ž+ΎΏ€0FΐBYδωδ7ήxcΓ±cŒ'žx" ±ςαΨb‹-γH šΗqDGˆ<σ{̘1qί‚„vŒo¬΄J-Ήιυ?ωΟΓ™gžΗLŒ±~ψα°Ζk€QZόFΜ6rδΘκB?c3„―C† i/ύη†n”‰ςPΗϋξ»/¬Ώώϊi”κoj?ώxvgDB΄Φ‰ψYΑsΩ2Ρv]tQV ’ωNη$z¦[l±EΈυΦ[31'K[?ωδ“Q”Α‘²χm˜qH­ Ί#Δ 7έtS’ΤŠ€ϊίψFU‚hA½2yΧ!ήDψΟψ™<¦Δμ5-ΉhkΪα©§žšͺg"›Ύ7S‹σΏuΧ]·…¨*M!/›/ςD\iΌμο,ο€b0žΡŸόδ'q“IφΊΌαΤAƒΕS묳NΝ²ΒψΗ?BŸ>}"'ΓνeεβσLφκΥ+ΖoΔΗ€‘βv―ΎϊjXnΉες’Ηv³Α‚y8|]–7¨Γ\EΗ΅29φΨc£\ž™ί~ϋνΈΩ’VόlΏΥθˆαiΧ²mGŸ› ™)W­ώ]ρŠ–Im­λ¬³ΞΈWh6©ΏR\°eSbεZα…^‹,²H,?Χ<8nΘ‹OΏNn[J:>Φ4β,žέzcH•©(—ρμs—ƒρŒΧ1FdΞ;μ "Φύζ§l|πAέqœΈLΌOΝ\a,Μf!žζGΩΎ’8ptΡyU£ψΑΨς{ίϋ^Μ‹{€u6Υ )ηΣMœ8±NΩtΩ8:pΰΐ8^ΦάLܝΛEζ*m=/ `UfΒ5Fΐ#`Œ€0Σ ž§φΞΩ#`Œ€h',xn' M‡C£1ύ’žUX`ͺwCŒΙφρr’Š4πT„·$<”Hέα*ξ#`Œ€0m‚ Ο>ϋlτVHˆT'0n@{Β 'Δ|žβ½6»¨―B!œΐΛα·Ύυ­πΟώ3ΎόςΛΓFmήz뭸菐pάqΗEoeΩ΄XπΟ \΅¨ŽπϐxPξέ»wL'ύƒΠ O’x)%tΠA1.Ώρ*=|ψp~Ζ:α!“ρ,o»νΆxA6DxΞT:xšR―β)OŸ ΤmΫm·b*QxΧΓ“(εΐoΥUWΈnΆΩfQ€ΗH<ƒ7ρέ*>b)D€½Ϋn»Ετ%ΨΊ΅8 N©θ1GVπ\¦L€— YHήΫΈ7(“Ό€ήuΧ]Ρ{)퍷vΪ)–14γSBB;πv½έvΫΕίeο3’Ή'―.Ήδ’1ύαώPρxΖόN=‡R‡K.Ή$ &Cβρ“Š°WϋίK-΅TτbχWŽ₯tiηyζ™'Š&πΰ5€wΑΣO?=zΔ«(γi‚Ϊ‘χνΤ<1A1­ˆtΕWΌFvέuΧ0¬βωΕπ¦8N‚γ2ήk³R1άΰU3ϋœQΌ>γqWxˆΉxώχΫoΏxoŒτCˆ¬ώ‰Ίΰέ“γpύα;ίωNτψΙ[ΰe<#Ÿη;-3ΌGy6AΐΧfΕ}όΐ}lˆ‘o"࡝zΎρΖ±―QG|8‹ψexƒφ/‘Ύψ˜Ήϊ#<†Zέ ‘2q ύšζψx#DΠτ·κ{Υo‘.ήV‹ΰŠπ\ΛΆvˆtΓν_«'}κP΄L΄5mG_l―½φZΌ'Θƒ'x&.χΥ +¬γОl؁³αpυUp>Οχ)ύώ‰'žγΣΟΡQ^υΰLΐϋ8}r^#ψhE§NΝREaŒR”Λ_|ρπξ»ο–ƒ3ψτΣO γα™ρg=TΜκ7cβ(όωΟŽžα1=χxGfΜ―Γ'ln ˆσΑ™Ή \ΐσΝζ88Cά™φq*<σ―ύ«πΌŠς€’p6}Β9΄Σy|E<Ϊ >EΔ[”σ)“ΖΣ”³NβW8‘3γwμΘχf6£Β…΅e¬7WσΫr^ MŠeζ*ζπZ­ιγFΐ#`Œ€h?,xn?¬“0Fΐ#0°ΰyοl§9ͺSAJ£I,ƒW&D@xΩͺπx‡X‡E#`Œ€0F`ϊ@‘0B€αA0Β*Σw²ΘΝb4D©P4β¦ΣnΎωζ(D`ќρ c-Ξ#.b‘›kˆΓ+Ÿ‡¦A‚gΥIƒτZΑ)B(ΌšέsΟ=QԐŽ›¨γΞ;οΕQδ‡χM‰Fπβ‹'a<3" Όΰuή,€“7c$<=R&yό§Τ#―yΖ³%ΧP?κDΖZ«¬²J|]·„ΒχίX}υΥcΪΤνšk©z·“˜-&B^D ΄[*x&N™2!ΞF†€ƒ΄zθ‘0 "$F„A½SF„‚!$wχέw^xaUμE=3φ\sΝ5£‘tΚήgˆ:πfGyΐb™e–Q•«ίΰOYΘSήτsγ‘“6#—^z©κ1 ^Λ wί}w.oΏύφQθ˜b­LhK°ΰYa,­15ΒHΕsΔ7«υρΪχTΔRφ™Pώώ6­‰χ3Ο3Β\‰΅ΈtΑΧz%“π©QΨ °Ν6ΫΔηCq•ΎΰΚ;Ÿg\BTy²„§#,…{xζ4Wε™Η{氊X›>…ggν΅ΧŽœΨ™~ξQΖζΝ‡G\pΑθ­™Νψ±³xcμΨ±aα…Žηΰ86ζz뭏ι™SΚ -fφΩgŸψζς.ΓτΏβxκEƒπ ‚Λπ.­Ντ΄ω³Q‡6E'«ο₯ Β„r€!>€Τ… Pΰ]¦νΤζδU€'ύ’e’­Ή—ΈηR19y)δ žΙΡ»Ζ4l†™cŽ9"Ά€uι₯—Ζ~J}*B?Ϊ€€@ϋMυ‚σρ‚ΞΖGτυF ­ΰΎKœeǐ*Όψΐζ26wΑ‹ΤηφΫo―ωL€ωϋ·h R!=ΔhK/½t•ΣαDD°< ^Υ{ξT¦”ƒΉn׊Χhiβ ‰D?ϋΝsΗΖ ž-„₯Γ*"fŽ1χ•Η}xc—]v©r2Ο|ΆO‘ώβιο₯zFΙ3?!~fƒ"Όώπ‡±Ύ/ΌπB‹’QwΚ…ΐ1έ^{νUέπΐƚ{+ή.αgυ)δ/α}ύ εŒ3ΞhΑKΩ2Αέx7Ζ4!Ϋ¦ΰ$Ϟκ·ΐA8υW„`βΎ<^Rίœ―Ιk»΄$5κίiλ΄Li[畉zρA― ,iωςΟτ―lœΑK+cŒM6Ω€z?q-ηΉ§άˆΓΣΗ2ώιΥ«W΅­y–ΖŒSέHΓ½λ^ˆ‰ψheΈη΅±€μ2- ΟށΩ‘M‚k/Λeυύ)k ή·oίΘίβΓΌyA­η:-§~SoΖζŒυΕ½π@Ώ²cΡΌτ{φμYzρ¦ή8 y}\:ŽΟŽw+2·ΡΖJx…7Ό0–ΗkΌ6φˆαE<υ+oήΌΐΈξ©Εω”—x½ηγΩΎ NβΧΤΓ}Zχzs³tœQkBZΝΜ?ΛΜ (}\ΡΉ cϊτHλλίFΐ#Π΅θφξ{‘ϋ_F†ξŒ _ξ΅{ψjεA]»ΒθΰXπάΑΘΕ3Fΐ#`¦ ž§C§ΠyΐH^Ζ³ †~ΌρΙzΌcqβΕ_¬.ΤΙγ]Ί0άy‘rɍ€0Fΐz0F@(%―eY‘‹Ει‚tV€›¦Ν؏Θx’”ΙTδ†hφςΛ/‚ tYP'p­Ό.²8—cyΙ¬·¨Ξ΅Y1ήw7έtΣθ…‘tεe /Œˆv ! eΡοžxΚδ7’4­Τ—ρήy)‹ΏΑ‚ϊΰ%Nβ7„fˆ$°Γƒ3Β6ς?~|θ‚­ΔΐŒ―Θ±‚ŒΓ―ͺx[EΔ£kHΗΑ΄pΎDώ“Ή—yώxfSOϋυ6Ή€Χ ¦’wf8ρFmTε‹΄/Πuϊζž—¨J"a=WpŽ›s?όpτ|Ι³KYΩ؁@ž₯άπD³ΩώŒόΈNηαP8Αœϊ@ϊ„kΑ οςlT!άvΫmaέuΧ 7έtSά$‘'6LρΥ3HφΎϋξ+ΜxφDψχy8ˆxŽ:g±wπbΓν‰H>§Ώ‘Ύυ¨3"_Δδ|Ϊδ<ςHΥΣ1Χ° DΈŸ‘–Ϊ$^όυŸzm§xEϋwJΛ€Ά&l™hkΩ+ΈŽ²ηγ?Žoe‡¬ΰ9ΕNmΓ} ž\‡q3ίύυΧ㽑'ώ'ΏϋίΥ{§ΡX%&κ?F`*ΰΎkv ™fr\Ζ(ειτΌžž΅l <© —18γ#ΖΖτhz‘ž@IDAT-Œ‹kΝ ŠŽ(‹6‡‘?φK606# ςœ8qbά(’–ξaγϋ8ίΜ\…2ΐ!κ₯·ί(]a—ε…Ό~(D3―b£¨<ΥΓ?”.’’guV8ΰ€"7αύ19uΟγ|Κωζ›oNΑωΔ/ƒ“κCLCΊŒ%šΗwEζ*`ΩΦσξ ξΥNυζ*΄‹ƒ0FΐL_t{itEθ|GθώψΣ‘ΉNό⋆/†2}αځ†€Ο¬A\#`Œ€0F υ°ΰΉυ1uŠ 0˜σZ@%δݐγ2ΘηyΌK’ερNξ,*x.b±΄™€`YFΐ#0mΰΥΕΝD‡x¦uθZ0FwΔDPz•1―ΉΎ·β“4Σ€ ‘Ϋ ,N”zp-βSN„MxTζΚ‰—5·D‘ζQGπ(+1ΎΒk2uM…!yu£>α¦υ‘LϋοΏτΨ&o|,άσlͺνΣWo7*“ΔŽŒΣ$“g9’̈|Χ[o=ώβή’±%ΡΘ±L8†(z΅ΥV‹β²χΒ7_Έψ‰'žl>! TFNΊΰ„ΐ—Ύƒ@ωwΪi§θY19μπΜΟF‘lEpέpΓ «όϊϊiΤk;’•ιί©oΡ2e=qrίς!Τ―P΅ύ6ϊ²lΈθ’‹‘ΰxυ₯›°™GmMύyσ›œyΕΣ΄§f ήΏΈΉ)MΟΏ§?ΈΗ›CfΡJŸ)5v&n—₯χΏ£OIΗΰlόJ9±5Ζ@©@Nfƒ€Ζ©`’<Θ— ljδ­"ΌρΑ+7Π࡝8ŠΟ3\tBβOΗιΤY}ΈήyηΡλΌΖζ`”ΙnΌ‘Μ+­΄Ruώ€P›τ;ŒC τWpug̎Ί(ηs½κ]'!¨ήE6xG‘Ή χW{Ξ ŠΜU±Βδšο/}Α˜1cώw δ/6Λ:#`Œΐ΄A€ω₯6Ζ°Qςω—BχG έήΫ’PκΟ»έ)„…Œ6Bl~Fΐ΄/<·/ήΞΝ#`Œ€˜”]μEΐΰ`Ί2‘ΣΕ™εݐa½0Ογ]zΎΡ’τ»ξZ]4(‹'‹²,Φ:#`Œ@ϋ#€€I ›ΙΧββmΦ‘k!ΐ"ΌΌŠε-Μ#`q@’α¬ΗΔ"h°ψ‡·ΑƒW£KˆFΪ©ΈNγΔ E<<#BxωδΈq… ΑΙ<[³±&?¦yΐ―πbvΎJΏn΅ΖW€A>΅ζ*ΩλΘ_cΰlGݍlάΛ–—1½ΖžšWΑ]z{f7gRFΦAx³ˆΪ ,η“‘œ(_:·Θ»χ¨{ΡΉ e(;lf^ vš\σΙkΝU˜λ Ϋ4>ΏO:ι€8ΏΘ/ϊ?³χAΡkΟ#`¦w°ͺ™°Χ^{Ε7η4s­―1F y,xn;_iŒ€0Fΐt,xξ$ εbΆ»y…6‹έωΦB ‡ςΒ‡Χ-<ύΙ# δ<ž¬πΜ—ηέ%­ΔΤž]p‘πψŸ+ž±zΝΊυœ5tο1Kš΄#`Œ@"`Αs‚Ϋ‰“fρ΅μ‚s=Ο),|#"cμ1|ψπκ©Λ/Ώ<ΎΎ™±’ DŸ,œ3V9σΜ3γ……uy?Λ[TWbEWJ‡kLΰ₯(‹ΪδwΰΖδδ™4υφFϊxeDό„VήDΉ‘^ˆ%:މTώΰ-š1u`aeο½χŽ Ξ#@XUVπŒΘ`ΡEY(}Δ· ζ@TΑ˜–ŽΗ *tM­2e½ vlRΓΛ₯D`†8Α ι€"0FŒηP"CΌ©¨+brDueΟΧ^{mΨqΗ£—»{+‚H°£~΄^^οΈ§KΒsΒ‰γgŸ}vΐ#!^C:*Hθ†xΤ£]iO΄¨ΙΤ‹€—=p@ P…ΐ½ΛοC=4ΰ}Y’7ΞΡΔ§=ΐ5ˆ‹Χz&ǟ„nγ+ s|>ό(|ŸŸ†υœN—ϊξUi»³ΰΉf]5r=‘uζSPπ OΘ“%Χ❟g”ηG‚/Έπͺ«Κζ‰ε–^zικ3FšΜqΟ;οΌΘ£;Γγ\‹Χ|žx~HΛΔ5π<‚56PΘS&Χα)ώχέw£ψlxn`―»ξΊΡΫtΊρ8p`Μ›93}oςπ"}Αρ‡ΌρΐŒΠU"ͺfxƒr›6RQ.y°αgΠ As<S^ϊς†ΟΰΌΰ+Θ{1mtΑΒAV0Y€ν¨k™ώώΆh™hkΩ:T7qwQΑ3qŸŸΐFϊ-ϊmξ‘OcΜpβ‰'Ζ8lΊΩa‡’w~ξΏtL@ϋ–Ϊ:^πυŸ©<Έτšaί%ΎφίoξπΥBσ„ή+-fXΌ_θΎΈ;€Xwείάγιψ.o|Μs”έ4—}~…cš,—Α'τy\Φ«W―›²cpΈ>΅3*}—随>ϊ(τλΧ/ώ‹σμ‘΅κCϊl:‘μŸ|ςI‹ΝŠτEˆ‘³ΌQd’²θ»^?Jzκΰ˜"‚gΪ .g³0πďh{ΐ€q¬(ža,Šΰ›M@ΤΞG$]„σΣz7ƒS£{σιΖ!Ν;jΝUš<—™ΐΥϋν·_|3mΧhΒΌ'+nW›Oœ4žήνΜΠoγo…Y/m;Έ@υ·0F `Αx’™`Αs3¨ω#0υXπ<υ:#`Œ€0F ƒ#`Αso ―]Θ[pL½"ΆΐΫ]κρN‚9rδοzτθ‘[^Œΰ§LxχΉWΒ97\ι1OΈγ{ο™fέζœ5ŠŸCε;ΜY@W>›gΐ‘{ο‘{E=Γά•²ΜXΫ[Υτ/#`Œ€hmo V΄‡ηΦFΆc€Η’½ΟZHη˜B#‘β₯ί\CΰžA˜¦°κͺ«FΗx.CP‚8ΌϊXΒ0DFΦXpF„ψ ‘-",+π›ΕiήP³Ώ¬ΫlˎP—Χ[ƒbDΰ nx8νέ»w¬Wκ°H™$b“ργΗGo*ΘExw3Δ.΄CZFp@Ψ·oίͺP\¦ βN΄#‚η’χbrξπ£δ)Α†ξ‰ιδa6B Ž€»^P|ξΪ›ΒθTμN~zέ6iq!ŽV8F9ˆnˆkΣPn‚Όφ₯ρ9–χL,=oίπΑY‡ξγ'†ξ>έ>šΊ}ρߘŽώϊΟGΓy―ώSϊ^©OίπΤ{o‡ž3ΝΖ>υlύ' ]μH]ξWyxΞ#s/7ΤŒΈ‚gnΓ'oϊψγ#―Β[ˆ΄αΞ‚GαwΚ‚€‘žΙTΘF|–‡]ΈΟόxΈ$πΌβ]ϊŒ3ΈKό g³"μΕ™?Ϊδ@'œpB<‹(Žg3ΟwΊρ2²©ή@T‡(ZB΄Lρ_qsqm”ΰDYήΰ8ΜIa­ΌMS&ϊ-6™Θλ4œ›y>²ς¦„r” a:νQΧ•W^Ή…Θ°QΫ•νίαΙ>ψ T™f ΰΓ§¨ΰ~Gυω”ω‰'žΘSΐλπ{½'>MγΧ²―€q²ΏWθ5xfό[‘…ΰ9©ς€…ϊ„I‹φ ½—_"t_tώ0CΕ΄CΧCξHΗwEƐ©#„,"€W†ΛxξΈ6;η™L9\qυ]k €yβι›±oJIΗ’i/ύ¦ίΰ:Έ€Ν,π;γQBϊŒržΠh#eώPmϊΛφ]δ/Αsήx—€Θ[s0α-*z3Ν¦ζ3κ‡Ψΰƒ εe#εν·ί^ŠσI§‘(NΊ†2אFξ­Μ³ŠΜUΰΫ²σΟ²σW;k‘ΉJ­ϋ‹M“Γ† …ΎsΎπκ„wbά§7>6Μά}ς\²ϋ*‹„ω~π­0Σ“…ό…s$#`Œ€(@eΎΣύώQ‘ϋ­ έΖ}ΠβzΣƒi°Λ? ΧΌώjά@zΚ)§€Ρόہv@ΐ‚ηvΩY#`Œ€0Σ ž§-ώΞ½c!ΐ„œWŒΛy―ΖψΜ3SΖγ]*ΞHk»Ϋn»…#F€‡ώώφ •ΓΓO>™«oΉγq!Lψ,Lϊθ³ΎψίeΓDf™±*Žž4GEXRBσ™kαωCχ^³…*βhώŸ‘Ϝ “r#`Œ€(Ž€ΟΕ±κŒ1# ΨZvΩe£ho”ΌςQ’4 Š#ςΕΣ#―p―5N >bΖ% ,2_zι₯Qp…€UΧ2~‘πvˆ$Μ%~z=bζ{ξΉ§šΆC,ΐ=LΩ< άEθ₯€(—?ϋΩΟ’ΰOiμI ͺ›gžyZΥȁή< Τp#3˜!:‘x žl$CzKλ…χ6Δ|ͺƒΚ]ο»™2+νΏζ¦πωu7“En˜4SE$ΪsΞ0ςƒ·Γ#Ύf©ˆΫ»Ν6k˜4σLdE|4ΛΜ“Ώ+Ώ'%œΤηAθιοΆž_έκΗaΆ““ζκ™›Nΐy##Έb…ψΈοS`Γe³Ο_6^#τΔ<·Κ'ξαύώ{• )RVςΗγ%M*/A/|Ξyϊ±΄ΰΉ‡w»ξΊ8FlЍnȐ!QˆΝσŒˆ Q6Ζ3Λ[Ξ:λ¬ς6oPϊN0 Ο`3ψΠ_ –¦^Ήα‰€ψ)x£R' =6ƒˆ7]γ­Odp—0ΈŠ³J˜Ÿ# $O0#¨]³8Rw°Kqε: )"€WΌ›©οδ|£Ά£ŒeϋχΥW_½E™ΆΞ+S: Ύ`Γ§ˆΰ™ϋ.§Σ@½WYe•x?ΣςΛ/OΣ†l¦‘7Υ9ζ˜# ©άKˆΖِĸ‘Φ³’τ9ζύ¬ωύΥλο„Ο}!žŸ4οπθΗ…Q£F…#?"ψ£ΓW―ΎΎ¬|&V6”w{λΓPΉ©ςΣ’ίXpž0©ΌaA’‹UYύ| §υοίΏΕXŽcΔgμ–φŒχŠΞU²eβκ.!m:ώδ\5ζλ±4›³σ*βΠh\ΟΌjγ7ςoK‘ίώΩ΅2w .ω!δeξR‹σ)\ΔρΰΞζJΛep|2ΐ­υΟiˆί(P&x΄-ηΰ€~¨θ\μςΒƒ>η™yηtμΏ/Ώ>yϊ΅ΙΞVτΠmώžaξ Ώf]c){}’βFΐ©G ΫψBχΫο έοΉ?„Κ[³Gp.Λύ“–^2μόΨίΒuwόΥ‚η<6νˆ€ΟνΆ³2Fΐ#`¦ —WΊ“N™ΐk|1ά³JY&}ϊŸπUEψόΥψOΒ—~ήσQ &|ώ?Q4Ώ'~&ύ·Έ8ΊΫμ3‡IsΜ\@ΟVIW Φ•o|x΅ «γι hΧρ!Ϊ ‘γvΫmίZ‚荱*ιΆf„8ζυΧ«p“Έ=zԈ)g=Ά"dxλέΠν?_TT.έBΟKO ϋ}TδKξ§λO9#tŸτUΨϊWΆx&πj{6LΌς†0©βuοΛ9{„ž /&υͺlάλέ3t›«W•ίρΩ+γΨ&ψ!τžsζYΒλλmΎμΫ'Μva!TΣΣ'pž!7Ϋl³ͺχυt‘—σx\F„ΨށΏ³gλ΅Χ^«>ΩσΩΕΚ‹ηώΓγ9ωΰu˜ΌΣ@\ˈ’σΚ",Ο;~…keαiz‘E ©W]8€ώNžΙ“8ž!"Ζ‹fΚeτηž{nμ{Tπ@`GωTΨβΚ@‡vXδFΈž4_~ωεΈ)ήΰ-πρgΣ·ΡGΑΧ\sMάhAίΛ3Œ˜0ݐ‘mCήΎD? ζm~'β€β7Κ‘βJ=Σ~ R\SΑsΡΆ“ Pυ¬χMΞλ¦Σ2eο»l™š<γ9q‘ΪRχ£Κ–Šφΰ|ϊσ1ρ"ύΠ’K.ΩβY  ρgνΌϋSiύώβ‘Β„Σ“*γ――–Y(Μ;lΧ°I…ΏΩΜΕX$};iNͺτ;“^{'όwτΨ0ώ©Cχ7ή αέρά„ωYΞV±‘Tϊ΄"ώ΄"Ž~s²—θΚqšzμ²u8σ©‡cΊ” χͺD)ωΛ_Βΰ'G‡/ϊG,Rχωϊ„™ΞΦZη{±]π{ζ‘G‡»ŸzΌŠS|&*βΈΟ*m9©Ζs€ϊ΅Ζ·Ο=+BΛW7Ψ>tδ³πί%ϊ‡Ω=ˆ¨5²p ωδ“OΦa8 σ”‰2¦’jpzμ±Η"r=|Mώ)l_‡ώ&ΕΌΪ§HΫ‡P¦S§e’ίN€•-ΣV[mUm[Ξ Km(’ΈQνΟyl!τI6₯bPpJϋ58―έΘΣίβρYmM;€9χTδϋŠ7ύ<ΑgΜ¬ΑŸ/Ÿ><ξΚΐ-6˜ϋ˜έC·Š—ζM6Ω€¦ΰ9/ΙI•7 D/Π―TDΠOΏΊ½ώ^εής’Ζc“ζ¨Ό-`‘yCο— έ?Μ°Δ‚•βΝo²©™‘O΄ιΈΆΘ2›₯…Hοwqcb…,—₯c°Ό18eIΉ“t<ψΏΡΌ€8 ΤSλ¨Cκ8Aqΰt½± nD«Ό€~FsžyΦGG³‘α°Ζ―eΚ€|)[-Α3q²s‹t^Ep*WΑ)ςBƒ‰ύφΫ―—ŸDγτ_Μ%ΰ―ZœO<ςH Ξ‡ΟΨPR'Έ'mO°¬'x†σΉgŠΞUπξLϋ΅εΌ€±φq΅u‘Ή χl™0ι³/ΒύφΖπΥ‹οΔΛΊ/5_Xΰ°-B·YgŠ"{ϊVBŸ·ον½sgζž{ηΜά;ίωM>eŽ3H°δΉηž“’’’ 4βη όg€  ΆαXΚϊΜ3Ο8…XŽC%₯)>χΧΪ m @ATϊΨDΞ5Β„―rιΦ‘ƒΌ κvν°έNe IM)³vλ-{ΰϊΒΐ"·.₯χ?)ομΊ­ Πνw­Ο³άp·ΤύΩΞςLy‰ƒαΨΜv“ͺYΣsάMα”]™zξ»EI7¨/σS«Κ*u‚@yΡ ng[uu‚k€ύβκ ΗK0ΰ™²Ξ~σ])½μ§vTΊλψάΣΦ%ΙpΜΐψ Vΰ/ΏnqοΧβΓ[C-ΥaS ΔηRί£m/Όπ‚«‹ΆŒύ ϊNτ9Qͺ7_F_‡{>Ξ—qΟ[ˆφΑρ½ηΧGβΟ&ς>} ΞΣκ2κζτ“£ΰυs@}@]E!ίVψ N3©_lm}Ψ|ŸU¬νr™θΞ«:ΰ{3q2ϊ\… ™T}ΒoX—<˜ΐ‚ΟΖ¦δ}ΣM7ΉΆ™}΄—ψϊwςϊ>Ÿ<Έ?’>ͺX’βόkuΐ3eγšqM’!Ϋ³ vܐΟ¬ΰο³Jτ‹ž‹J9fΣ•Zf©²Ύ†’ύ΅oύ»ŸIBν@ΰY!πμ"TώYυιT™χΌ>Ο|1;¨>ϋ† Ώƒ‚‚ͺ³€>G%Η} ω―ͺLͺ3Ξ—Σζψ!­+j₯φλ/©ώΏ‰YQ+ΟΎ΅Βο`Ϊ·@žkίζ!Η``````ZΆ@žkΩΰ!»MqΚ*qκ†,“λ+ή‘ra<π£–β+ή1Π¬ψ>¨Uΰ9‚²„`jΡ²J@Ί’^4U_2£­ŠΐΡ¨G»ίeε9§œ¨£ƒAλU€Ρͺ  (έΌ³κ:ˆ˜lΦΠ©J'iΌ‚‚‚6a ΰyΎ8λ©h P3 ΎΗ{ΈΑΩΈd$€ά x`pž{ˆΐ "φ“ŽP₯̚€ʝс;ΞO0ΓWU$e6EΜ .Έΐ-‘m}KΓΎϋ†κ  Ϋύ6uF εƒΔ&ώςΓϋοΏοΚe DΏ~ύ2Ο~a HΙΰ;eς6‹γΧPaƒiΣ¦9ΘΚμIŸΟr-γL•Τ/Cάo[N›ΎβΛ/ΏμTQγⱍϋ†σ ¬ωήgάOΛ}f`0ΫΏ@gƒu¨”\p₯€ξΉFvΡψ€} ±Α„Ο}άκΪJjφ\irrψοŽw»εxωΡG9θmΨuTΎ)“―Η~€<ΐ!@ €q瀦kϋ²}Ϋ5ΜV'²Wέφ*ΐσμΩ"ο&₯ΧέᔏVόroi¦*Φ!όψ,@]@2ψ)Ξ(ΡΝβ‰?yςδŒJ1>uυldρ‘@YL01ί³ΐώQ£FΙ!‡β 4κ9€Zάσ'Ύ’ Ή6‘Ĉ~Ϋ„ΚδΓ€Δ£]’½AŸ˜Jžζ+Κlς†‹σ‡ϊΙ1ψκ¨γDΕΠfά¬ ΏP Ε`?βηγ78ΰ_S&Ν8ίΗ3;ΎŠ <δ‘Kϋ ĎOΕ—‘:š‹]ϋ qΧΞή?Δ]?wPδOΆφsΘ΅L6ωΚOΛ‡σ4³Ύ‰Ÿr/Ϛ5Λ΅Mώ±Ρί¦Κωra[Χ›ή[;cΠωΊ¨;—OŸ'Εέ#²RλG«¦βΪΣuςτ…ευIί{θ§X• “Σζ‹,ΣχYBΊu3§έL• λ(μΪNεΟλd‰6oh δΫ‡€nΪβ·όΎιδβΛθEλ‘ίg"ˆωάΙw]ϊ@Τγ耘V)ƒεΓ9ψΛΨνΗ± °–ΊKΪΉψJŽρmΕ8/xfςoβαs}Βϋ!-Ÿθ71˜άB^œ7νtMΟ\ζσρeωΨ)ϊL…έjž£εε|nΆgφεσό™ΟsΧŸΜδέ|žUβΞ!n[ΩΤ2{ψΣξ}±ήTς„ŸK£ϊT‰š+πlΥg³Dψ¨ΖϊL™|}l…’σόU"FΫ.vfW ·ςφ•Τ>UΩεCŸ ’πΎ)„``Ϊ΅@žkΧή!·```````£]Eέ’KG'+αθ‚ζt„9ϋ‹˜\³ ρ‚‚‚ς΅ΰΚ]ϋίέΐjΎΗ‡ψ›‡gΥ”φΰύ€4ƒ{ψFνπΝ–…gjccƌρύ ¨Ε@° @p,Ώό&0XΑΐ>ιχκΥ+§±`ŠeIƒ~ œœε‹θF1 ₯·hΈυΦ[ Η(PgΉι[nΉ%݁¨­‘ŠgΗpΐW^ye•c€Mϊχο_e‰jΰ† ²V| β£TηŸ ύγ‡)S¦H·nݜ*&Ά ―|ΛDΕΕΕ‚Ί'ύΑš‚ΑΌns}°«Α_v<ύJ D«…5έg¨o7ι )χcI.)‘ΒσΐΟκ₯Ί)0ˆ8W@΄ƒϋν-KŽμvΥύΕn2χ7ϋ»%Λ±‡Έη^TEζm»v“Ϊwk¬}+ ΨPΑh&AœR fα^βG‘/Ξ^άO§Ÿ~Ί»€Mύ!~M!Z'jŠŸΛώ΅€gzα§nΝΟzηž*²λOωΜψκPnτ>F‘ύU4ΗςΑ·ωπΰοO~ς“LˆšŽzώ_U[ε/ι`:ΰσKΔ%oTΰ’™AxΛ<ΣϊuŽv •γhY9ζΑt>Θ€S|W\₯N£œΜ$σKΤΣεΛ—ΛPησ±ΚΎmΫΆ­β“γΪσKΐάb?όΠs\™8σ΄%ψdΚ\v葇ΊλD? HOym΅φaΧϋξ»ON;ν4?ͺϋM»ΒϋV°v…2εcWβΪΜΞ΅cβ4Ϋ(7e&m³+ρ9χθ΅ε^πΫw`s»vλR&ςαά)67EfV¨ΰύ‡₯M<Κα΄Qώδφ±ŠΐΓ?,]»vΝά³”ή{οuͺΧΔρυ…n³©Ώ―¦ίιy‹eα_ξΦw ͺΆ¬Οό->M-šT9lCΟU2©ό'5·XR @§T z1JΠΣ"Ď z½ΣνŠ]Τg+ ΫJ²K[qΏγβ‡mλέάσΉφ!ρ‰¨ξγ—¨·L” ΎX¨Ξ—|πΑkΥ!ζ₯~δ‘GΊΆΒc?υŽ<Φ₯„?1H–4™°B_—sŽληWWGρ}΄¬ζA™¨λγY…v’gc›0ιϋ|!eeβJuΟU(›­ˆΟŠ4(v‰ι3r­ΉNΔΗΗβ[9—||~.vΒ6΄‡~ ε„ ά„!Ϊ9ϊώ\k§ύψvώ”‘0Y'LωΟ*ψyk'H7ŸηOξeϊ τ²=ψν/ωsήω<«pLu‘tόt™sνs"₯*Š‘οsۜϋK©ΏC—΅‘•‹ΒσZκ† ϊg•°-X XΰΗlΔIΎτ?IΎςΊŽΏ•T1E\?œφΒιV-%5p€€φοοoŽύXΆ\ύί™xŽ΅NΨ,P;ΐsνΨ9δ,,,,,,°-€ηhόυ&c^ lTΊ! ώνΌσΞ%NρŽΗ(4ΩΛηυu’?ΰ9[€UΊ|q…btJΏLž)‰’J₯h€hH«‚2@Τ‹\C’A]§mP44°4p4ί¨F;υθ"x’k/%™k>!^°@°@°€o<ϋΦψa6Œ~6 ˆ ͺ ˜Κ$ΫτA°&|ΰos;jψ`ƒφτUP@:¬^΄h‘Lœ8Ρ ζ“Œ?ψN\> ¨σA)”~ Ε€G€~Y­ z02i€Μ~ΰ‹ŠŠ2`šΕ%}Θ±ρ^)S‡ά‡Αy”>m ίΚDϊœKl³4Άήzkwl7ϋ‘ƒό|"ˆΟ±€Ω£GpœΨvαΒ…NΊU«VVL§d @‡Yξi@lς&ν₯K—Ίoμ-“%Xˆ£ƒBΆ?ϊΝ9ΘΗ>@Ξ‚λDήΨi ύΜςy)v²ƒ— 07κ3)έwOiάΈ±ΜVΕa>ψε|χ>!e£_ΛdΫθΑR·οώΓVfWΞsήΌy.ŸU_~+馍k*uτΎωζ›o€€D‘iU?Ε>LΒ>`Ώυw±-ηŽΚ5K~c+;‡¦M›:Π³«Βol³@]αzαpc?C1—9­k°|Ύοw,𬉖άp—ΤS¨\o©7δl‘­»ί¬Βρ›™Έ7©Τg|-“¨ΛXάΏόφλ9ώ„ψκ‚_’§NΫ@݊¦RΏ,Ύω2κ.“,¨7¨ƒςΏ`T&υRοΨOύ’<ό¦¬ψΚM>ΤkκxΤΏZgr/ΏΙ?ŽoΒηQO-P&꿟υ›Π±cGχaΐœ•‰Έ” œ6‚t±!~›oΪNς€œ€’?€«Δω ŽA‘˜οk―½Φωmμ†o‚Γ&”Ÿ°H»Ε>k#(+ω`ό0P/^ΜfiΡ’…³Ηb+»μ#>Άˆ³+φlσος ]γ›γΈΖ”ΐϋ›Ωžm”‘sΗό&PvβqOs€½V.ό+Χ(Lqךs=z΄ά~ϋν„Γχs}ά(;«ψηΐ>ξKk‡°-ωQ.Ϊ_Ξ͏O™9gް|η$.m6χ η—OH/*‘ΎS:‘:]X_Z\uͺ$Ϋ΅X+‰ΪžΧΚ\7€f. θr… —~6Q3‚.[{‚½;V'g§;ΆttσΆ–d·v’ΤΥ qI‡mίΣά“ΤA|F΄iύ:Ύ-ΰOπYκυ›@}εžg2IΤ—α[ΆlY₯>‰'žpV¨ΓψXV°@ΪψCV˜£?EύΜ5XΉ(+Ύ•tgŸ}Ά›˜F?ςλ_:ӏgΏω%|κμΤmβ›Ύ"Ϋ©ίl#n>eβ°#ΗαΓxV<ζέ)~žΎ99“ρΔγš‡ΙL¬ΰ\όώ.ν 2˜˜Γ9rNψ?Κ…/α9ŒkjωΞq.\syˆλΙυ ί8ŸΟ~?>qy–ΑΎqvϊπÝ/΅ς`[ββS™άAί€IA”ŸΛυΐϊχώ•σΏνΆΫd¨NΚ!“Z˜4Δq|Έ(#v働|;ρόΙvβsœςΰ}.°Υ ­=α ηa}Y…ϋ›ν”Γκ„εχ½ς΅―dώ“4υ§q}iwΙaR·kλΈ¨n²ΊΟ–`P}6K„ο``­ζΜ•‚FKςM]MKΫJ φ¬fΫ7ώήιn]TΡy€€wέ™ΧZΏΣ:)ΎΞ /ΛͺΏ(§•-”Η^žΧ²RΨ,P;ΐsνΨ9δ,,,,,,°-€ηhόυ&c^Θϊκ†(ω/›ύ‚ςB˜—ζ¨]dSΌΫf›m2ώ±ίχχ xΞΥ^Ό$~./^ξ’+ΰθJΡKu]Αiφ»οk^κδ’~’‘ Mκ;εh`hƒ€[vE9Ί‘ƒ£“ΝU¨KΧπΒ'—όBœ``πόΓ½Άώ™1Θ>lΨ0χAŒΑiˆ{FŒα€b9ψ―.0˜Ξ€9χMΆ¬υρΗgΐ ™χΩgyλ­·bAaΚΘιλ νΟΨΑtΔ-/M>ΐ Žg0ΰ 4΄δŒ“φΈρΖeμΨ±Β²έ ͺ3πΰ€=θƒ}ύυΧδ·_&–έfk8#/μα— Ϋ²―OŸ> > Ο8€ΟΎ―GΩ?ψΰΧο³σŒϋ~ϋν·έ7Ξ8 Έˆ%L@ H@_qŒͺΚν·ί~qI;°ƒ2Τyύ]‘™sb^&‰%K₯nγB©ΏS©ΠyψΡGΨ±ύφΫΛ^KWΛΚϋΟ€Ugηή²όΗ ϋ(Sά}FY(S]I£\Λ“hQ$‹›4tχ#ͺsΕfWϋ&«jœo'2γδΊrŸ¦‘ΧHƒϋ—ν\G ?π?vζˆΒύΨ‚Κ8ΧΙξςG‰ϊςΛ/wJΞ؍}‡Š8°eBœ{ΌΉίσ©~ΉΎΟοlΐ³ήΐ²|θR竉’nΨ@κ_{‘HΫ5 ύχΙ3»yX€ϋΏ‹ΘΒΏαc_{ν52EύngE}ΐoφλΧΟβ+Β³|sυeΡκ->²R‡©―L<‘ŽvU0Ϊχ―ξ ύC^” eκζΰΑƒ_τΑ&ΏLψ{”©ρΗψE@6Τ} ψWΚΔvSΌfuŽΑ§Pββ—xFg‚Ύžφ‘oίΎ=nC>Ξo@4~†I!΄O¨9σΝ„ &šρ‘~cσMΐpψΪ&Ώ0‘™ΐJœ?mžίnΩ΅’͌³+φŠͺ$γ_QF-6.Dύ+ΐ€΅CqρΩΖ2Ρ\3ηΐJ ϋΫίbːοχE° σ™gž™-y竁ΉΏΉΦ€Ϋn»­‹„€}ΫΙ›ε«­ΟAD#Ύœ€χΏύowŸΠφ: Vd-HεŽt‰NˆΎπ.IΜU ½A=i~ωI’μά&φ° ΰjRHΖ/‘ho0R>~ƒ:FΏ‹‰ Ω‚ωWσγΤAΚΟϋΞγŽ;Ξυ‘sια“ιSΣ?3PšςŒ7.§>΅MΜΑVΉ<«ΰΗh˜ b!Ώke·gΪ4|7 ΟΔGŸσ"ήΘ‘#Οχϋ»ψ$Ž‘LLڈσω—^zi•η'»v<d³׎Ά…vΕΏΟμ\όoΪ+Ϊs»Ο(“΅~<7i#ΪΑ½Aω­}§/g'ΪγΈφ4Ν'σμ„οζΉ€Ά6nU Ϊ-sΪ:ž5hk(;}ˆh»ε—Χ=γŽQ’S1Α'Ρ¦‰tz„$[ϊQͺό朾/πμ'XϊΩ4™ϋά8‘/f―YUP¦“;l!mκ+u·jηGΏƒ‚‚6k $Ώ(I~RE,ΘϊΡ“‹φΗΣ}Ά“ςχ•τΆΫD£ΖώŸxεM)}θII.-Ρw\%2hΡTyjό'xŽ΅VΨ,°α-€η oγC°@°@°@°@°@°ΐFΆ@ž7ςΩoΰ1/j ¨»d{θ·ΒςB˜—άQΕ;@gbm°Τβ――ο<K2ˆ˜ZTF›zτB…€ˆ€Q–v€tY–ΗΈbθ „ͺͺBΡ(F t% έ’s{UŒV΅hέΩB°@°ΐΞxώα_r΄Ηοΐ[Ξ–ίgŸ}ΦW(r‘ΎI`ιζ3Ξ8Γ N» ‘?τKθΨΕξxΐΑΆ@Υ¨ΒP#FΝƒ8 @ δ–θ>όσεε—_vΫίyηšQVTγP#0ψΟ²δ 4uΟ=χΈν,IΟΰΏυmθΗž>\ΖT.…Y9˜<€Βs ΨγΕ_t*l@^G}΄Ϋ޲ςΏώυ/7`Ÿo™θΏqΞ#–"`g&‘ŠΖ9‘zI’CΩ Ϋ>χάsNQ¨£_%Lθ"Uώ48逓ά ψ ˆΗ5#\vΩerΚ)§8Sΰ0ΰ_eΈγΊ€τΝχ€μη;ˎ Xƒ‘κΙ΅ϊIΫφςΏ>Θ€λΐŒή#ΛN:ί_xΕRΪ³‹SwΖφ–€Μ‰=·“’½α”—›vι, Žγ駟δΤ!ί—ν½χήkyψ;Ϊ@+uΨχωΐ΄Χ]wέ:ω|\ƒΝΘ#ί2\G;IΐχQ§iηhΫ¬Ncγc=֝;uϋDΫPΕ/hoρEΐβ€^|*°jͺψMόώ•N‘±*ϋΡv θ™φ+Ϊn™ρόΟδ&σωœyΰ78”χρm΄‹ωϊWŸ>}Ίσ”υ’K.YΛ”ƒUP‘Ζδ"(Αϊ"ΨGϋ"\C`nό/Αό1ΗΡΆΣζqμΔv E`IφΑŠ)'vε\ Ÿ<°- B&fѐ.ω§G —@–?ι«dΑΕχHbϊ|νlΤ‘ζΓI²g…Šmά!›πWFήS€§Μutρ'ίHrκPOY9Ž:ƒo¦αCΥLh¦C{“OΏŒφ†gO›ΤΘ±€G~τ΅νΉJ?œΐ$ό%_Lεa k Zεδ=(Ϋ)}·#Ž85΅Cω΄™ψT _& ‘Κ ψ όΊΟ:τMρί~ί’v“Ιq}K&Ωΰ“x†Θυω »Ϊ΅c'ΆD5Ϊvνzχξ힫ς½Οςi·ΈΨu]Ϊw+3ηSSŸ#ίϋ/ϊ\@^i}Ώ:γκKϊs}ͺ!Ρ½•tΈδpIͺΘDua}Ο–WFυωI’^°Μ6K’]SiqΐŽ`O}nΤ•BΨ-xο#_’δΔIUŠχŽd­>Έ>g¦vΫYRΏ¨«ŽTLό¬’HΜ?‰>“•χ>,u¦Ν‚…K$©“‚υκΚImΘ£€η›…MΑ΅a<Χ†•CΑΑΑΑΑΑΥxή¨ζ™oζ`°’—Γ LπχRw}žbžΧ§5kN+΅ΌTR‹—λg…ϋ,œ2sR΄@Ρ‰UΦOΊ<Λ@d\6Ι„$W@Ρ@Π`t}iήI—«m†j΄Άλ7t"Ό`³`Ψ,°YZ Ο›εeΛ«Π P| ΐd @?}ΐe©ΐBqΚΈ–ΰj˜¦dϋόσΟ;΅`Μ >$DPD@ύŠ}ΰ   ‹OώŠR> X MŽ%Μς±Α΅¨Qg€¬@cςEQΣ`h·±ςOπ=gⰍΐ·;‘š™O™€&{κo€aύ100εKϊk€Ϊ@γ@Δ·σ<χ•(ΡΙQΕ‹eU«ζ²σ.»8ΝΑΗ»μ!ΛQ8oρRizΖρrΩӏ:€%·—}\R―Œ•§dyFεu§Χ?–²w>”ϊ *»`•χΘ8Ύύ˜qRg›ž2zΡŒψeΰ7yžvΪi™sβœQY’c?Χ؍ΰC¦.œ‘―°‰έ3ΐίά3–χ` ‰εa6§ τΉΏ9ήώ=Βυκ&ηϊΏ±49χ* ΐ:jݜ£ρΎβy΄NpΟζZ λ+T <“‰ή«.ΈB‹–ΘκNν₯ΡUͺDvέυ•}Hg΅>&ΏηkβNϊαCΊΔ‰BwΤCί—QOόzθ§K2Νζ_ΙX,_Ÿžσ)εσΫ&&«š0υ·ώΞ7` &ίTg?|qPΫΔ§8…{ύFEΨΰeΏv_†/υΑfƒώΨΞδk«ύv‹Ά™Ι9΄£ΦnΊfdPΊ$?iςξlε€|ύ+vzε•W€H›EY«³ΧH™6‘rϊ}|%*Πv~μτΎϋξ»έD,ξΞΩϊ.\›Y€€²'χόμ„:-!ꏁ›?Τ°7Π$ε₯ύ₯ν2Ϊ¬Μ–”;—.[- /U΅ποtςIARŠ.>N ΆλZν‘›π{₯«€ž%)U^ό‰*’AΟ[ΥmΤχ©N­ΊxaEΏ+ϋA?Ξ=ΤgԊmbχ6ύϊLμσλ΅ξG­…}γ7ςͺψ Τ’Y€:@L g ΎΏ¬©_†Ώ οn“ή|σMWχ87Ύ Ψ—ΊP|ήyηΉϊΙD@ϊQΤ_Το-pŽψTS‹Ζ_όξwΏsύ΅š³Π@IDAT=[ΥΖ|hΆvˆ΄Φg›I»…"=+…P^Ξ™σbς…ί·DΝޞ‡–.]Z₯o‰’1κωqν8ia/λ ΫσSτΪ1±³Ίο}Ζ*Ρv ŸMΫH™’νmΟ¬Y³ςnίύ2ηηΘηώ£Ο½ϊΞtΖ°'$=m‘Λ:ΉSgιpΞA’P^SΨPΐ³Ÿ―S}~^'π(Œy·TŸ}…ίΑΑ›ƒτΩ4ωΪ[’όŽ3§b²’;ξΩa­Ύw£†’κχs)ΈHσ";΄ϊο)Σeε­χH½?—δ’Ε’\γeΊς•6’’ΠίΗ–ΚS_€ηκ­φ l0 ΰyƒ™6$,,,,,,°©X Ο›Κ•ε¨ΩxΩF+ͺΠεΕG/—…SU΅Δ”’Q^²’–^^Ve ±šΚ›¨S XOš6TεhV@υθζͺν θJ8šί‰†Υ+£Τ”WΨ,,°a-€η kߍ:ƒΠ>ˆj0€ ψ2ΰν«?‘¦θ«cΪ90π„Α 6q€l°ž8μG!ωCΙ€B“ό5°υeΤΜ,mςf)jT₯+€X΄( Eϊœ ι™Bƒω@€R_|qF!”Έ|˜•mfVΏ@Α…5€= €O¨O£˜I`‰dTης)06Π Ώ9/ς%mί Ίw“noU#­“P˜νάsάq”Ήw—nΊ²ƒ.·©ΚŠεΣgʊ‡ž‘δ‚b¨ Ivξ(ΣΟπ"Χ(Ϊ@ΟΗ玊hά@=Η6ωpίK/½$ύT½Ÿ<όΆ6˜s΅€­mς†M¬ˆΛΦnq+X»E ,l p/Κφψ@σ—|Nr^¨ŸΆmΫ6oJΎ¦ζ ΜG[n>Ÿoς³φžΈΨΙ&ΕDϋ"Ρϋ–ΎΧεj|¬(“εηώ!= 3Ϊ$ςΗ―’’ώj׍c°±Α’ώ€)ς6Θ’xςž¦ž7t„$Ώš. M―Ι9GHέΎ[[RYΏ7[ΰ9ζŒΛWIκ»YN zρ§ίJBU‘ΕkΤIΧ:€eSIun%Νzo)@ΠΙnν$Ρ Ό7ˆ«Ύίτλ‘υΧόϋάμLύΞ§>P―θσΗΗΏ‘¬lušt©Σ'σ?u‡ϊg!kκ— 8P€y™DB€­"M œ»υηɟ lœ/ιΣ_cu”ώ:αΔ?†2οΆΫn?@ŽsG©>fMνPΤχ|Ÿ6Σo'ρΐΨ­Z΅rΎd}K`nžΝ,pܟώτ§Lί’v»f{~’ς'ƒ`όΚΞvνHΓΡk—ο}Ζ€?O`{Ϊ8σρΡτzθ!ΜηΫΎΫύζΫ2[Ÿ#ίϋ/ϊ\P>{±Μφ€ˆ΄GhqΤRxθNΎΩͺύ]ΐ³ ¨>›%Βw°@°ΐfeeΛ%9Z'ώόwŒ$–,­RτΈη'|ΏΊJUj}$΅χ^ϊ"&Η‰r Ɋλn•†oΎ+ΕK݊$ιϊΪΏL₯%©°3²@ ν{ΧHη―πμΫ;ό¨M ΰΉ6­ς Ψ(ΐσF1{Θ4X`,€ηu2Ϋ&uK’ ]G«z€ͺG/œ2«Ž£Ε}―Y©pt>AH*Τ’U5Ϊΰθ¦ €E%QŽnΛ¬R‡,,P«ΐs­š»Φ3cΠί_>:Ο`±DWO0°pƒΩ>„Α•(υa+ρ«ΨIaξίN¨wb ΚοΓj€A^(|r§uλΦ§O_ψχ%ם{`ψ…cyδw.ΐ ώ=BΌk―½Φ-ΑςH‡ϋϋŒ1"zVW'°+Κ«~ˆδ‘ξΊ†\€g—φΧίI鐿ι@_JVύl'i’χO?L ΰc BσYq~ŸkΠRœU¨ΏΎ²#ufήΌyrΰfκΥ9κ;πY6_Ά‹*ΣγKτόφ)¬ώ~Κυω€ƒ_ˆϊ|kμ\ς)Ηίό₯Άlγ3Y'έp~ψ)V :thpΝΟ“ψί‘(Œπ`ΠlφγxΞ ?ύ‡?όΑA΄ΫψΉ\Ϋ- ­1Pœi—πw¨Τ“>π43°Χ~]ό+ηa~»3©ƒ@ϋΚ΅Ό&la %ϋ£}ΆΟ€hϊ"L’½3fŒ0α…}€Cΰή ½0•lξ βh爳«_7¬ύ7Œ °m€AΡΡ8.γΈ?zάΌ«”δΗKs7ύγaRχηΫΗΕ\kΫ x^λδΨ°t…¬ž8SP‚^ςΩI¨΄,©€ ׊―Χ6έFWιάZŠϊl%=‚ξφGχ~€{άόO>ύ΅¨=ύϋ=Χϊ@ί—‰‡v˜SΧ§οΒ„ |-ϋ(W»vν2>/_ΏΑΉ±j υ”‰iάh›P5f…|•υ3©—ϋοΏΏσq~ƒύ½{χvνΗ°Ί}Fό4mŠΠψWΏOm‡ΦG›ΙΉΝ™3Gθ³€΅9?{6aE—Ώόε/¦i«ΏΓd’•}Kϊ·|²=?awlα??3ι4Χk—ο}vΧ]wUi·Χ}X2EΫ-&vf{¦«}ϡϑού‡­-¬ώvŽΜΎJ~]=1‡V·Ώ4Ψ­‡νΞι»6gΏ@AυΩ·Fψ,,°)Z 1oΎ$_|Y’―m„3EτۍΜFύaύρΜΆΞ[HωϋJjχΎΜΚlφGΙ2Iή6BδΡgx¨¨ˆͺώ=­ν³Τ­'ιΖΊj© €~.oΣJNœω<υεgAαΉZ£†ΑΞxήpΆ )      l"°—‘Ή§C‡ΉF ρ‚‚Φ³𼞠Ί‰'—V΅Ι”ͺ  mκΡ §ΜΤM}‘δ>ΊL˜ΒΣμ—Υ̝Ο=$¨Ί™AΡϊ@AΪƒ£ω]PT(Ι"…£ψ !X Xΰϋ[ Οίί†›r  *‰JoΌΓ€7ξ0ˆS‹³σ Lπω°tρN;νδ@0Έ$†ξ>q€4ω’θlK,±\=Η’ώ Μ„20pΐdΐ°'ΛXX Mͺ"M X;Κiφ:Έϊκ«νπΜ7ƒφ€@¦˜fej]GLζ/REεΕRG—ΧόJ›.ς  ˆά·Ο²Ϋ/φr`0ΐ°°1~ψaiϋŸΧ₯τ₯ΧEξΎZ~ΆwΏ΅βΩ1”•΄·νΡSV),"š―π!T>zΆ(r?`gƒ0|hΠΐ.l6³8Ψ–rηrŸ2~TW&ΌL΅―:;'σ¬Ηυ7Hψ›Ωωm¨r_Ψ€ηfͺŸv ύΉ.Ρ{„τΈΗΙΟξ=Ά;sΟν»οΎόλ ―Έβ —O\ΎφπλDTέ%δY}§•Ί‡.³šTϋπΝ(žoφ‰~/UΨ2±²TΖ¨*ΡQOŽpυ…Όͺ ‰7ί“U·άη’,;l?i~τ‘ΥEϋ6S pΏ6,/Ώ„£§N=`²uΘwȐ!Ncα/¨_μβwί}χ}pυΖ&δXέτ}>uΠ|}~τ|ς)ηAΎ€sψDpάρΗ/¨,£>J Ό~ψ‘tξάΉJδvκ6ΰ5 6όνaγƍOΑg7±Β9ˆΨ&ρ>νεαšέqΗmΆςρ „Mϋ‡―ΛΧΏr―Ω€?]7ννΑμld+Ψ9qΌͺkcΨΗŠ}°=yPŠώΓζ(Ϊr_’πΣUΧΎηΪηΐ7―Λύ·ς‰2/ ο5κI»Ώ*uΆΤΙy†^t»rσyξ¨…  με™^ΎΡƒκsΎ ρƒ‚6ΈΎ›,/Ό$Ιχ?v­-?{/cΫw΄ΪvIύr?IχξeQjόNŒJVάύ *:sοLάΪG@Υ9ΥΈPΚ›IRΥ₯“ΊΪUyKνS6’zΏώ₯œ8κyTϋ<Ώύο…II!  Τπ\»φΉ      l ΰy#=d,°Žΐσ:ξGpXj™Β: ?§/—rUNλχ’©³έ6YZFK‰ΖΡί,/–O`p"ν h”£ui³J@ΊE—φ”.h¦ƒΔΝtΏ~λy>I‡ΈΑ?* ΰω‡}ΉDπ_ΐ)``ε6S‚4E΅(μšΝJ p3hύΖo8€Λβ°t°―ͺλCqΔ#οΙͺ– ψFμΆ@™PΑ ?€@jh ό£`F@-˜τ} ‰xΉΟ.‘Κ?,έ£G (ΜζnΈAΞ<ό·2WΎμά΅‹‹I™Ίό )π3mkΛͺΞδΘ#¬R¦3’ήm―½X™Όϋ9rd:―πVγ₯ΛeJΩʌˆLyXϊ›> uΎ»tιR’TCiτύ@ϊ$ΨΟ mφΗ4\C[n; 0ZšΨ6Wΰπ…Ξleβž#Xz–ί‚Ο?|U;),ˆ AΩ~|€nΤVίzλ­ΜζΧ_έέΣ@ά…’rΘ!†ΰŒž3 ιμΛ}ΞR䧞zͺΫ΅œY’:Λ“―X%ΊάjύNδ -P£κΔn+²κύO¬œ^Φψ ›“ /š:Aή]8Η’ητ]–NΙνί}.MUEu–ο5…Εχ>* G)`―u―ώ_Ξ”tŸŠΊWΣqaζcŠ«Λq~7 ϋg ŒLvΝ5Χ8p飏>ͺωyDΣ&κ|YΧ]ά·Ύ}Ύ>ω–‰²ΰ7°# pΆduσΝ7;΅hŽ[΄h‘΄oίήνŠBΝψd›μΧζϊͺ•Žπμη•­έ:[W˜8q’»^~|όm(ΎΜjͺ―ΌςŠkcσρ―”ŸΆΧΞƒτ(+ώ›‰$€Η=τΠjϋ"Δ­Ξ.\GΪ ΰfό½hP°e?vByœ€Ώ§}°>p=mŽoΚΧΦqL΄ηχ™ˆγ‡UύOJž­h{\ω…4μέΣߝυwj^‰,{g‚|Έp’~&ΛΰmΚ[ξ?Q_WΖh¬pΈ~|Φ“’Nm%Ιϊ ν>ϊΫŏMiΣݘš³HΚΏ›%©οfΛR θισU/ΛͺRuλHΊcKIwi-Νw¨„ ;΄άtO.’qŸ―ώYr/η[x°~»›•Pψ΅ΐd όΎ2ΏAϊ~}£n1!“‰™~ ήRY&.pJΡ@Α7έt“‹ΒdI&DΠWΕΩ³;«k‡θϋΫ9ϋν™εmCβϊΠψ|ν~ ┨έοOu}KV<ΐΖΆ*Iτω‰cύs€Lœ£‡eC;Ε³Sά΅σۈΈsŠ><€«ϊΰ?m•1_₯:έB±;ίφ[ζΪηΰ>Θχώ[ςΔ»²πρ·+L€+Μuς)hΧL^{ν5yωε—Νt5~—Ό?QΚg-–{'Όζ⎿τιx`_©Χ»βΆΖΦs„ρΣeξsγD>Ÿ%ιςJΡ ]i/ΉΓζ ΎRw«vλ9ǐ\°@°@°ΐ $?ϊT’/Œ–ΔΧίΩ¨Ώβ@η΅ϊΥΪχIοΊ³”4P:V9>Ϋ?‰ %ρΪ;RϊΤH©ϋφ™4!‘ώ―ΌU I5)ΤOcαΡ‰-ΪκC€υMJηϊηι;]œΈεπœΝΚa{°ΐ†΅@ž7¬}CκΑΑΑΑΑΑ›€πΌ \„P„`-€η ’UkJΚ‹—©J4€τ Y0eζ₯θJυh§½\?up-η ƒ^ £–ΕΗ λw³-Ϊ‰AΡεhφ‡,π#³@žΨœ… <΅“ŒP%K <π€ƒ€l :WˆΥ]4λ‡~ΈsΜ1‚rΦUW]UώepšϋΧ‡'β€ηΊv—―&ˆ,Ve—^[ΙΘχίu € υ쿟‘νίψX͚Ȍώ}eΰΈ|€ΓPεl7cž\φμ9—©―.ω½«*œΣώόη?Λ…^θΐpςάΞ;―B ΫρωφΫo3pπš)’ύ»ίύΞ₯LΈΰCΨ™g§σΟ?ί-ξƒ#¦ 7i€ ό– Ψ…+Θ<ΰΠUiΞΰ!L@υ>π\“†*ƒ–ΏύοΞ‹’5аΨ`Œͺy’όL0π[rΞθΨΐ›εΝΎΊυι³΄’ύ‘Σ:hV§•ˆνΊ£|πρGrΒ 'dkΉ/P*έζυ₯μ­χ%QV‘0žΠ΄¦Wž/3SekΥ ΰο#·‘χ>ξΚχη’/Ζɝ“>Ϋ•u[ŸVνδ“ω³₯‰.Σϊυ°€ΩΰͺΠ{܁%Wί&υ>/i…Ζκ_qHΧ-β’…m›©|(WΏλΒώi<=ΪilGuΰ”ϊφάsΟ9?j>†ϊŒ˜ωδ·ͺ6΄π\:ςYϊΐhwhjΧ­€λe'[29χ*κ(ŸΟ¨xΞ91‹¨›ΑΡH'tbpΡmœjtH@Ίa=;rΣωΦkR>cΎ€&Νv h™Ύ@ Δ†:Ί“’κΟ‚ξήN’­‹b£nΚΉ£“φ|FΩ£ j\ΝΞ‘ϋ9ŸϊΠΊuk9ύτΣέ€|;ύM“X±γWΏϊU¦o‹_*f‚E>ύ2|„ΚΗd5&0β#ό ~ψ&βYŸcπΓs ώΜνι°J ϋ}Ψo‡8ΐέhŸΪΞa]ΫL0`€λ‡2ω%yόc\ΰ9€kˆJ}΄o‰ŸΗqζγΚ„όsΔί<ŸvΪi™kGϋJ>΄q׎}ΦFp|Mχο|QΝΆU^rž‹ŠŠ2π2Ά¨©}§Ώ@;O¨©ΟΑ9Ψs&ρkz.ψψνq2υ€;ΠB’Ssι8䈊I$z,mφP}ΞΘ'tkάZ&•TL6ότ—WH½€NNaΚΝ₯Νώ;Jέ­ςIn½Δεκ¬gί–τ;“$½@Ÿi*C’]SiqΐŽ`Ο­$YXί6‡ο```u·€Άηo½+‰tžYu₯)ΏνΆ ¬?akΗ^Rύ~&©TΡΉE}6Ν/ρήΗ²όΕJ½ΟΏ–‚Ωσ$ΉxIErΪn–λ»ΌrmwDϋ„„ςΦ-₯`Α"0ά+χμ+ΟΠwjΣgˊ;3g~#=ύTžuŸ`Ϊ·@žkίζ!Η``````ZΆ@žkΩΰ!»`οa<γ…CσΆ@Z_V₯ˆ./^ξΐh θ…S€”*£Q”ζ·($^©pt>!©Λ%76΅hΎ+~7οά^’ C:hΊ ¨‘$Β@A>– q7a ΰyΎ8λ‘h ,π tΔ@΅?Ψ\Α‡ϋΐ±0―Nα™Αzκn@ͺvΩeΉοΎϋ€gϞB&[jΨ 8ˆ;Άί~{—7ιcYϊΡo7@/ ΉL.‹§LΧ₯*K€ŽBσίOΆήfέΕ™2WVήWšω“<;εΫ π€@<ΐσδύŽ•²νΆ”&‰΄cl|·QUP—_z½Τ™0E—ym$ »XDaν~XΏ°υ™z Њ".@>Β€Vΰεc=Φω $“OψδγΛ€ƒ9°-'ŸΏέvUόc\;w>ω” xΦT‚™‚?εΌΙkΑ‚nν%~…s2Ά‰7ψ`TI·Ρ6»ΕωJ|€­ͺUƎψQΚΙ8ΨžΒϊ©’¨ω~ςDΩ”4 QŸΟ9 UΛWKDπΛΠm€yΎώϋn2‰Αΐvχή{oΖΏR&ZH«eΛ–P΁‰!Q¦Ι <ΗυE8ϋFΫςg;φ₯}΄xœ3€γ>ϋT¨"ˆMf͚εΰCžtzΜΤ?ΔΩ>‡ψeo|&Kώώowhj‡nϊ/ΗΙqΗο'»LλǧӜβœΤ)βΦuδέήs“dόΆƒ•RϊŒ[·Z‚υ³pΪlIh»—Φ’ά*I¬”Δο ‘ͺ­Φ)ΤΡφFΥ’Σ:A…hVMb²pσ-Ϊ:@xΊΐΤ£υχFƒετϊ§¦ΞsJΠş~+ ύ˜΅PO₯šiδδΣ<Σ+έ¬χ–’μ¦tϊί(kΣϊ—ϋΪWx^ΧώšιεS˜T@}ζΣΈqγL?“τ¨‡LϊθΦ­›KίΆ.~Γϊ―Τgσ›$H_vԝŸ£u”²aγ΅ž±ίmεπΣb_6Ÿί2dˆ ><“>5ε\ŸUό6&Ξϊϋ­œ|γGiC˜δν[2ΡΣΪΚh ΟqeΒOa+λΧγ_y~ΒΗΫ΅γzYˆ»v¬ΒcΗηrŸΡ>•Δ)˜·@ Σ1‘”Ÿn¬jΞϊN#]Ω§/Ϋͺ»ϋ]oόWoœUΩκŸχIuι$%wK=ρ‚Τ™<]Žož–§&~€ημ–{‚6¨πΌAΝΨ,€ηMα*„2 δf<ηf§k#X@U ΚU€Ρ)UF9zΡΤΩ:p¬R‰W";@zuό`iΦRλ u’±*θ0Γ¨eρέ’K{Lm¨p΄Βh 7kΈi*ge=±°γΗf<°―8Π@?¨°1Ž’a»vν”Κ™3X $`πͺdGyd@Χ·ρμ@ɌvƒΜ ά€Εvςf){ 8 &TΦ žb?i@Ω²Σ¨ΕυhP(IέW KPŽύbΌ<σόσNaπβͺΤΫ©K9@˜Ι>Sΰ¬ΛέO(ό2•δ\HΆm%³/8umΰω±η₯ΌI‘49χ4yξ‹O3*“ί~ύ΅?EB:ψ’Πo€U₯»qŽ€ ”cμΨ±ΥOW¦_όΒ-Χ@π€2(€†AZž$?.Ϋ‰?Bν ˆξ S§NuϋX.Ϊ·;Ηπ?jٜPΚ Aƒ2Χψy΅) ƒ ‰-…Šτwά±–:ε‹ΒhVVφqm³•Ιξ›*eRΥδΎ•Λc;θoןKΩΈeρœΉ’\Y*ϋLψς£5vzψόη 2PΚΓ”eη]ΑιΊPGΥ»Ώ:ΌΏ³=vxΎTA? –\‚ώJΚ§Ξ”Ιν›gξKŽζΏσΆΫ₯Λ‚₯RΩJI46_m&|λς¨«»tΘ©NδRŽ|βA|πΑ:?«‘Lήη(wθκpΘ`ν{hΩ²…ΊWœwΉ.Tυ£πΪ‹p«}#[ρΒφu·ΐ:ωέ=20©ευΟΆ=Ϋ·ω&Ϊ™|}eζƒ}ζ™g2>ΏŸB½PΎν)+y咈šO™Xή@ ΥP|:ΑΪ.μςε—_:5MΆΣFh™/Ž΅IFΨ z;žcP₯.Ζ7™ΚΏΰσ± eFσΥ‘Y{ωγύv+:ΙeΫm·Ν”‘γ('m=n \¬°γΌ ͺΆkν‘ώd&'>εμέ»7:;?[_„8ΨΘο‹}τΡΦ,..vν,vρνmΧΚΚ(Hή qϊ΄«-Z΄p %0)ް+*ΤQ;ς6ΟeγΎ–₯{B˜„›Ϊf i=t'μς¬ξOzE©LΏπ1IΟY*‰ϊu€ύεΏ‘C‚›Ε}Px.‘˜}nB°‚Ο<λ¦t/°4€τ’ι ΰUΒΡ(­Ϋάω˜δε™Πg`·z’ΒΟGLulγž‡­ΟΐlγwBαι τY?5eŽ”Oœ%ş|γ θδΌ%ξΪΔζΩΌ±€T Ί »NhΦO’‘žΗ&Έ_­Ήύ5;όžMRΜ₯>p―[ Nϋ~‹4ωŸΊc“9θΗζλ7θ{r<“$Pζ|-Pw™LA_‘`}p|&ε†Ά@Ύ€ΓΝ›7_«œΔΟζσρχάsO•>5*χy=«xνίŽ›δhεΕφ―#†$‚63 ΰnjγ&Νγι·mΫΦMηω"ΪΎg;=ό2Ο2ύλ_έ;0‹ΗsΜο=Nz(ˆΌςƒm³0R(%ηύQξ=Κ‰#Πή[`βμŸυΈ¦Ϊ'OWΆW΄Χ΄/<λπά Ό—kί½ό倓₯τ„“‚i:C'Чx£mKZOiž„²]₯Ρ€_ΘΚFK+wi(έ©·4όΏ“%ωΜuυί₯NψNθ*8jT6_[±0ΟΞRαO°@ν[ Ο΅oσc°@°@°@°@°@°@-[ Ο΅lπέΌδ·λΛ ‹ŸΟwžσ±Vˆ»©Z ΅L²$ΦbS^4U_’‘ν«F—θΛ1UέΚ+¨zLB’M1ΪΑΡϊ?p4P΄SŒζ»ΉΒF "‡,P‹ΐs-{#dΕ 3ύjSd{ϋν·H`JhqƒζQ Μ/6ƒ%(aΌςJ§ΧΟ m”9δ ŒΤΰυχd±ͺ»$TΉpΗήςd`Π¨mό»οIύ?—[wu0n7υ½Λ‡έ˜ΙΎξή{ΘλΫvrκšΏό’k*”]TF½₯ι6=eϊφ[fTΛŒ¦ΐrY%PΜaΛ%Ϋ`Ή318ξΰx1yςdW&lγƒ]œ#Π)j ”‰!nφΪk/j°Μ70– P¨ˆWπόΖoΘ’E‹œ:6ƒύΟqς~|+3v=ζ˜cάy:ψρ9†rR˜j7Jl+£†άμ—‰λg Ωύχί/€f.Mέ.Λ΅έӁ‘„.5Ί›μ[š§p”~4^ͺ\Ώίξςψ―fΚτιΫοΘ?_ν”—«J%©ŠΖ…ΌZvQ܎?ρθc€ίΐύ3v:΅ΧN²μ† UjΞ‘ΑΡΛ3‰ε;=υΐƒrιΥW *xΨνΙή#%'©ΒΈžkͺ~])θΡEfG°ΐσΠaΓ2K­“fuαϊλ―wƒ€¨ο‘>mtΐ‹¨”Fmli»όϊΧΏΞ©NΨ1λλ;<λαμ‡ž–•w>μ’Nul+†œ-R΄φΐa&o]βuεωWH²dΉ¬ξΊ…4ΊJmY9ψ˜‰~lvˆσ»ΎΓŸLk>‹c’ηH$󅏰6_ΆυΦ[WQ݌σe n“\ΤΏRξΡ£GWρ―Ρ²RΞκ€gς|σΝ7s.0σΉηž+#t’ΙQG%(YϋΚΘ΄ΥΟψ&ŒQΘ€γ™DδϋZμΜy]|ρΕ_†z½ΗθπέwέuW΅νiϊ>œv ΘΪΪ}«wΪi§*yP†ΣO?݁<š–‰σž¬ν χƒ΅C3f̐oΎωΖ‡{ξΉgιΗ§|Ρ2Eϋ"Ρψ΄kάψb A|0‘υ]H“sxα…ͺτ1hΉ°a{UΠχ'φψvΟ6±‡ϋ«:ΰΉ|όd)ΎβΑ Uαξν€Επ“T%tνϊCωόψ6CAΉΤU%V[Ά½ψ`©Χ«ƒόκWΏZ/ΐ³ŸWNΏ΅m70Ί|ρrB£ ν€hVOΠνk`ι²μq & oT―b‚0΄N†nΦ‘u­“†Q–ζγi&Φ S©Ι A7K+œ6_d~ε’ηqιΆn&i” ϋTBΠ]Ϋ鬄š―i\Rλcug3ϊJyυΧb2Η/δZŽθΰ/)ΓώϋοοRτϋχόfƒM¦xΞΧoœώωΞο\zι₯nΒ‡οϋπ羊΄λΓλ„&'`ώυxΤ‰}ΰvκ|€ί§ŽΆCψƒ‰Ν—ίV!Ž…šΪLVUΑΧ˜Μx‚Nζ‹λ/’8ν[—υ'»XžqΎΝ/ΏρΡφόΔ³jΛώ΅σ―ιF―]ΎΟΗwœ\tΡE™6‚Ύ±_φh»Θ ΜžOϋΞσjΎ}Ϊ¬lνVjF±L[½8σ\πΥ—_I}εΦ%”ΟY,3ς˜>©ΒιEρJ]θ«/œκ5ι<ϋΧίΉςν ?,ιi‹Φd©ο“ΫwVϋ+όΌ}',³ζύšHξWP}ήpΆ ) l* ΌόςΛμW&ήkΠ†ψ}δΈx~ϋ·ŸmLfΩαoJω;*„P―,ΏωΩ½ί/\?!Ϋ1΄YLž’ ¬ϋξ»―ŒΡη¦lαη*zπΚ¨—€τΐ£+@mmOθάΌΘRΦ½‹4:ώY¬ΰu£ΌΚ’CN9ΊξοΉ κ₯C¦ ό_λ;+}ŸΕ> )ν着«¬<φΕ'xv ‚jίx}›‡ƒ‚‚‚‚‚jΩxeƒ‡μ6) 0ƒš‡ώ\/ύ₯$ΰE+ƒΌ€ζ~“&ϋ *Ή€ŸKœ<ηb₯η‡d§ž…rƒΓ δ•«z4ΚΡΐΡ¨E³ -”΄ςͺψ’`)aμ5Hšoƒ£ω,*ttmδ}.α€ΝΒxή,.Σ:’~ ΰΛΠ‡`f `Α”$ι3pƒΧ|Σw ―AίdŒF0(A@yξ€=χ’tρb0)]ΊD₯«%±JΑ˜9σ€τ₯1²tθΩΉ[W’;³AύHΙ9Γ$‘οΎF(PAšΐG·ι™]X?άΈq²₯++§Ν’žέ₯ώAδw'žθ2”έnΊι¦*ƒνδAy£π›―ΎΙΉΝŸ?ίΑΙΔξeίϊRœ3АvŽΐ{¨Π‘’Lΐ†, da6BΑ¨ΝΚ„]mΙlŠνμ˜θυΰXθ! i;‘Η±ΠΉ- €Σΐ‚_«J5e΄A+βτμΩΣ•ΟC Γ―½Ζ |δXoμGR>eΊ$χκ+γζΞ”~ύϊΉψγU¨γC#₯όλIz=+—fΦωw_%»ο·oX>©]wYqίξ˜&ΓΟ•'Ύό$S&ϊš>χŠ”Ž|Ενo¬ŠΓΣZ4R¦ƒ·©\ώΠύLΨ  ₯όΙΘ*UξI¨κpσ“Ž”=+Αqwί*ΰόκΫc3Χ†Α²­τK”$p/Sΐ™ηhKž£0`η‡’’Σ± e?”Q±5J– Μ[o½%]»vυΝό6ΠPΖξW'Tœk l‹ƒ`’ρςωΏ π<[A΅w?‘U7ί‡Δ·”5•Βα爨κyΦ ΛΉΊψZI”­–·“Ζώ!kΤ°cσ°~ hΝ|Π‘-=Ο>ž͟ψΠ'~ ίAΰ>εΓ=W¨O¨ΐ?1h~ο½χ:Cρ}Ω-·άβ|k6_Ζύ άfeΝΕΏϊ€eσω¨ςΫ3/η”o™zθ!9QΫΞ‡Uπ―VwIΆ‰6•€BY“ύΨП`8 4hΎΩ h‡hg˜(Cψΰƒ\»Bμ§έbΕ<ΰΪm~γΧΡv‹kϊκ«―fόνŠ‘{ο½·σa\gξΪ9yΜ›7/cwφ‡λaΎΜωW FŒσ―(T_xα…οŽΝΝξΔΏξΊλœj±Ω•eΐθ\ϋ"ψd›ˆUeνυ\ΰς‘ AΑπ‚s O¦ΉWνώγ\l•VŸ6Œ^a6ΰ95a¦,2B+ΘjIoΡJZ^q²*ιηΟMΏφ9I}8έ]ΏΦgμ# ϋmν~o4ΰΩεžίFλσ/ΟΈε•ίN9Zα>iχ{‰~+˜Q7Ν/„K‘ΆΩΐΡͺ ν+H;8Z' $ΤgcuΥζ’Φ•R“fΛκ‰3eΙg* θE%±Η€§ΪV@ΠE}Ά’d·v’μVœ²uμλw#υyψπα™Ύ uΏCέbPkΏΚώϋΈχΩGξ_uίhύ“\κΐ―οΫθ[2ιΐ|n4οΧ^{ΝωAίχδβ7PxDa:FϋΤAΚoνύ¨C=ԝ*ΊjΜ|ν ύ_Ξ5¨η΄Yμ³6Ž>uΎνPm&ωcoΰkΚE˜8q’ƒŸ)‹όkΚ΅ oΙ„”h<ޱΎeΤGW׎«Ώϋξ»™v‰k‡έΜΏΕ];|1ŠΦgι>£γ\ύv‹vŠϋ#έβ…φ0Ÿφ(<Ÿ>{^ύυΨvkΥϋ“€q―ΞrΕίo¨rŽVGόλSΣo|ߌ –τΒe:ω³P:^{ŒσILJΨ}χέέαQΰΩO³|φb™=ς=I}0UDWŸ³ΐ;ΏΔŽ₯Νΐ₯n·ΦΆΉVΎƒκs­˜9d,Pλ μOΜ€€Pύr&ε\}υΥLq“ςύΒ&ϋΟ“΄]<ον°ΓςώϋοgΪiψΝ·€ΑΩ‘δƒε¬{οΞ¬Eύμ³ΟvΟHL$2dˆΛ‚χYΌ‡až+Y Ζτg~‘+ͺυ™:GV_ρ7IΧ©+ε­ZΈ•UVwλ, t–φmdωu·Iέο¦ΈCΛΆξ‘ύμ=₯τžG€ž›œ―c3Ϊw―θ)κ»Mν»―nΧFNk[ ϊOž}ƒ‡ίΑ΅h<Χ’±CVΑΑΑΑΑΑΗxή8vΉn| π°Ο 'ϊ@Υό;tθΰνEƒz€L,‰jΚt€Α‹”€l°€Ίtσέ€η|-βh, JΠN-Zh h@ι…ͺν€h(€QΦί«*€­ΌlcjY:ЛЁ_³šwVΥθfΊ|0Αϊz4*5 η•oˆόƒ²@žP—3φd€‚ΐGi˜ΐ`.ƒΎ¨œ“nΈα9λ”S₯tβ©£J)Ώ;γ4‘'ώQ·”½·•α·Γ ΥHU pb›…¦M›JΧqγ₯NߟΚΡ—^(@·ΐΉΐ₯@ Σ/!OΦ}·ήFRMg”ˆQ.c`₯Q£FΜfιbκnΡΌιGUόπΓΜvΞyτ½χΛς³‡mMxV…ζέχžOμΎ­”ŒόŸ΄Ύ4P…ηΉ?ικΐ?²2uιάΩ΅?ΨΥ/κ,« Μ’«ίθϋξΈγŽN5ψυWSƒC5›λCˆSEt;τχΑ)πΠ`uΒ&0€ψΊtι"­[·Ξ€IΔ©N4kΦΜΑCτΩΧWˆΟ.έ―&ʊΛα`υTaCi¨°yBœ³…Δ'_Κͺ«nU©£”¬Ψοη씣³E Ϋ7 7yδ‘Ήω]­WψQ΅PFΉΣ€ΩΈ{•ϊC=AY΅κ€00)Ο™ψ*ΠΞψ2Θυe‡~Έσ―¦fš‹ΝΕηGη|Κτ›ίόFΖ(„gΰο:φ³cGυ―πeœ7v’ Β—α;Χ°»)γ{i§PώŒ–™th ΆΩfΧΦΰk ρ)³uβΒΑμ `ΰΐw`[Ϊ…\Ϋ-“ΫδG[ όG:€tzψ>ςΰh ςρ―gu–³Σ€Hή­@»F:ΏoAΎ7ήx£³mzN}MˆŽw€Σϊ"€θτ;ΈŸQ‹%πM›6yςδΜΔΪ@ Bqq±›CΔ&ύpGΫβ€ηΤΤΉ²θ’{•$U·M3iyυi ΌισU‘δُdα#o»˜ΝέYšΥ7sΤζίΤϊ­ΌœG4ΰWl²Ά«©oΙ{`mb.ΟO΄‘΄αΉ^;μΚ9σœΐ΅#δrŸεΣnρΜCΫχ}ΪwΚU]ŸƒύτSr½’«Ϋp|M!­yg\τ¨€§λ—Ίώκ£€@'Držύ<ΚΎš%sG}(ιO¦Kz…χ<ΠΆ‰$wξ,ν~ΩW ͺΝPφω ™ϋά8IŸΉf’ JΤ;l!mκ+u·jW›Ε y  | Π8υΤSe„ΖφΑΔMžShWhGι?ΣρΌG[P%θ{―δΫοIέΝeψΘgέ{?{¦ι4o‘¬σ¦ΤΩ―ΏLP‘{ƒZτAΊ’FρϋJ―κΪmΪΰ‘C‡Ί>~œΌoΎωfaΌ·Ρζrn«"ι¬ύ ϊζLΦ©?w–5Ε²’ _¨νgκυ±RvΛ?eu’ύ±Υέ:IΓc#i}7™ϋž”ήω€So¦OVO·­Τw!uΗ#‹—HZ'ο'΄-Jλ³ΔsΊ°‘€ͺΥΆϊ„ΒςτgΰΉΚ ώ ¨= ΰΉφlr ΨHΐσF2|Θv£[€κμΕAMB™ˆ—ΰΌXηj( ΄Ζ^h0hJλ3ΰy}Z3€υ£΅€ΎΜ+WΥ h i θ…Sf9Εh7Œj4`t‰η; ¬/ώ CWQVE™f[΄ΛΡG'Ύη2Β?Ϊλ·Ÿxž7γ‹—KΡυbΉNΈPπ°–ΑΩΈ@αΓ7ή”τUy•Ι;―–έτwƒα,wrϋξRwŸ=ε”³Ο’:€RS`€…₯ƒ.Y*ΣW—f@ΨΈγP-C `ŽΎ ŠΗ¨M`4hλۘ lbΰέ πΡ²„5胁p@. Δᜫ ¦œΗ@PNeφWY5c–Ξ€€αVέ岑Ct‘-œnRmΙ•·ΙκS+ΫUY|ΐΰ j~δQ)9ύ"itς‘rΥ/gΰsβ $ŠJ²?α PοΨfνeΕOKγKΟ’Kž|(YΊώ7ύΔ-U1­χ@ZAζ„ ΥQ՜Ί-Š”σ*Ν@ΒάΐΨΥκ|PK3[™ξ€EP—NΙ° ρΉvΎš^ά1qx\Cξ-ϊΐά7άkΟΐ<°ψ  qiϋΫ胳€χ)§œ’{PεkΞy}…Xΰ™Δ§ΜCo’Δ2Uγ¬_OώY';l·Uφl_}[Jo—Ϋ_¬%½η.Ωγ†=›ΌΈΟ™ψ"cΆΰϋέθσ§Υ ž¨ζΎ%u„οgžyΖMζ 0ΠΝv j―^½ͺψ‘8_ΖρψκζmSjςωLxAωήΤi|Β„ ΗΎhΩΩ–k™lygΞ5—zΝ„Τνάρ¬–@YίΜΗV΄MΨα(χ‹/Ύ˜(g4Œ3Q„cIgΦ¬Y9·[€fΨ›d nNΚΑ/ζλ_±Π:Κq’>ŸΎ $πε‘\L*©/B;FYψψ°#yΠ'τΫF lύ)“‹ΔgBMΏ~ύœΚ+Pe’“=ΈΉNάλ¨?3QΙυcΤg7,MΙά³nQͺm£²ΣςšΣu•Šͺ t)―ύwε»ίΙάGΉΙήd‹‹*”k-ζxΆsΜυ;…}£+€QŒ._Ό\ŠgΜuΫΣ•ptBAiIk_k]C‚IΓ•ΚΡJ7λΨFI˜Υ’\ΊLUX—Θ2mGσr,SΰF!™΅‚.‡žzξΪAΠέΫK’mυ‚k₯‘eχ1ΎΔ`ΈhτΧπ3Τ)βγΏdνΎe[ΎυŸΚΔϊw¨CΐΣLθ²ΐ &ΘαϋςυΔοίΏΏS9Άτ’mΫQdEϊτ|ηθ›D# ‘K;d>šO›ieΑ_0Q‹ΐΎŸ`«΄X<|©ΛΫΆlί΄©΄3uκԜΫρ|>˜τσ½ΟΈvΉ΄[¨;Σ¦0Α4—φΙ*qΟtψeλ‡ΨD”hŸ#Χϋoήƒk›5cψΣ’ϊBŸν²k{ιaRwλ5ποΊΟvέΣκWV}8EŒώH_ΝYλ=•μ‘+μ·ƒΤΫ₯›$ͺ―ͺ₯ΰTŸŸ{Go'ικ+C’]SiqΐŽ`OUΌΧ•˜BΨt-€/E1™χfΌb’ ωW|ͺ?ΡΕοGȊ•’|ε5IŽ~E ‹₯ΰ’sεχV¨53aυ‚C-+/Έ,sβξΊEN»μ·bƒ{§uζYς­φ‘~’+ΜΠWgRΓν=ν%«ϊtΣΥ ¬(Ρλ•wdϊ‘ϋΙΦ:Τ΅}O<) UΕΉώ'ŸλΓΫ )PψYςΆšŽΎΟXέ₯£4<ξIχι₯ νJY~γRοc«ύ YU*)U‡3u¦̜γήg&tsZσMΧ«XνE5΄φgRM›HΊY9y§ςΤ·Ÿΰ9sUÏ`Ϊ΅@žkΧή!·```````A―τΜ °*aI‹ΒΡ¦]ΠL£QΦOπΘΗ°›nά§NcΫμ›e8Qˆ£ίγΓJ€N,«MŸδœsΞqΗlBdέV_€ή,ƒ.@m>8Εώ]vΩΕυ©:-X*ε¦HZρδ^»Θƒ―Ώ"§vš%‘ω¦Lη¨ZMΙρR΅•R†Kδ’ά$,N¨rFPŠΕ€%Χ\x‘€―Ό]–>A.Ήα:DγΫy―ΌοIY5iͺSUnvoε_/Š-ΐ +~μ½ηΟe•žw’‘ }LΊŒ­_hωŸώ%PΌ‡c'`“[o½Υζ(οΡEM™A, aƒΨH«Ίkge>3€2ΡWE΅4›€Wl Ž<Έ§ΈΔ7žν I”L?,pΞ,‘­oΊι&ΧΟf©ΧγŽ;Ξ₯TˆB™X’š₯Z}hά‰~ΒSς­Ρ΄Φυ¬ΐ3 κ αςΛn”€Zκ…—ϊƒIb·ŸfΝjΙνHƒWhΊUOαxι΅UΦΈaΗ¦o|όntίΝδ[κϋμ9σ»ξrΠυ UL&aPx₯ŽR—i/€€υ’g\Ϊκ)@ίψ{ξΉ'«Ο§Ž©^xα…ίaΎ‰γπγ”Χ|>κρzΦFp‹/vωe+Σy睗—)3φ#ξ駟=RσϊܜξήVR]ΪH U‚.θΡA-šδ›«‹O?f¨ͺ#Fλ.})κ.Οo6Ωί`κςLϊ²I$Dχ‚qυM݊ϊ&10™!¨―ΐΔΎί 1ι_Χ/»φΪkOΆΎ~Ά2‘ώžΎmК~c.Έ‹ uδτLƒΪ‘sΟ=7Ӟ°{£|œνY?ŠΟφ}ωΨž?¦L™βVn‘μC^ψΌ|ϊ–Φ¦ΦT&ΞΓτ₯³];φ± ϋν<πωψΠΈϋ,ξΉ€2qΩκ@~ώ(ψγΫ±‹ω|ξΝκžιhηZ΅jUε~²g:ξYξEΪPΏΟΑD»hγxΎγY…Όγξ?ž y`»ύrgϋ=γφQ’zm‚ΫέϊOJƒ]»W‰ϊ}€g?!|ΤΚ·'(όό±€§-Z³ •εν:Hλύͺͺ₯΄©–ͺΟsTυY‚κs-Yϊž…πά{ΦωOj₯›όΙs ΟιgR.i‹V_vlΣNZŒύ@VN›! TΡY~Ί;61a’¬ΊξVI껎‚‹$Uϊ*±`Φά ΠY]₯κCKšό”ζ=Hy[ ¦οΛΫ΄vο:Κzo#gMψHΥφϊχΏ½\ύυ.νπ'X X φ,€ηΪ³uΘ)X X X X X X`#Y ΟΙπ!ΫMΒΌŒεAΆ€βΚ:ΘΛuΰ^&σœaΆ6ƒ‹Όπ_b3hΗ k”X€#l_Ά<ςΩ€η|¬β Τ’t€Σ ώͺb΄[JΈR=8ΊB5ZlQΛR8Z–W(σεU:UΊUŽNθ2Α@ѐVPΊE—φ EW€Ρ|³½6Υiς:‡Ω ˜£θΠ~„°- uH9]ΌDΧ_WˆYΥ‘ω½dκt˜u @‘ζ Μ¬*&9 mϊΠίε―7\οΊ<π@·μ<ƒ,Μΐ<}gT­Άtξ|U<zŒ τOPk΄Θ’ »€½Ο>ϋΈ@ 0ςž6mšSv\EΑkjXͺzΐ€b”jίΎ½ž€θΨRm•Π%ΖθΏE{Ήλ_TQ€‹–Ν)Ο\w½,<{˜4μΫGζχίΥΑLψ"ΰΈ₯K—ΚθΡ£έ€ωΛ#_'œγI ξ½F~£`ΐo\™PŸ{ς_:θΉξ]WΙnϋμνϊd@e€tμgŸsD± ₯ Zΐ•―΄οΦΰ«INΉ&QΤTŠΥ΅ΞWψjΥκ2wή¨z·mΆ‹Ϊ©]»vΒΨΨ†>ޘ1cœJ%ƒI€€@ τΏRΕΚ3Ο<Σ ό2R¦Χ^{ΝΑ^δƒ"(iΐ’Ο΅¦|τA9Ό±)ƒk,· (aŽ• ΅ΐlv*Ά2qΡχEΘ‘kΗAγ^ΖFάίv?q,[ΆΜΩQΒΏG”C —σζθgϋ ‡~\~»ϋI^΄8\ΰΉ>}ϊ¬ΉΖλYΩΩςͺxΦH Uͺ,Ήδzœ§$€Α)G‰μϋ3;Όκ·ή#Λώz“Τύό[w/6ΈVA|Uχaσ΄@>~·Ί3΄:κ«ψFγΏτKŽβO„u»¨£ΐ₯ޚο»ρΖeςδΙ. @6β‘υgYβ%‘Ϊ „‡Ο'Ύ Kό1κγπqΏ ΄kK8›ίΐ/d+ε6Ώνπψ>όfHƒσΓG0α‚22Ζ@Aόp/ŸlΑμDV&ΐ3ςΐ_/ϋ˜Α„eΆ[™π©δ‹ΊρΐŠ1mΎ6‘2£€o`ƒέψFμΫ‘C7a„kA;T7jΤ(§ύΓw™ϊZ6:TLε΄ΐq€ ˜ΜφΩ³g;5jό1η±έvΫUi·ψ Xή΁φςΠΏpν{e»…ΨΰHΟ΅oΦ¬™Μ›7ΟωY`k|ρΛπΜ΅ΗGSΎΈφ{ŠσαϊŸΙUΉφΑΉΗiοΉW³΅[\›·ί~Ϋυ7Μv.ΩΎg<=VRθv·8ζgRxπΪΧπμ—‘|φb™=ς=I}0U•ζΧLΤE‘Ύ`ΗNzΰŽR·{νυΝƒκ³uΒο`MΫ΄}Ά–΅'ψT?ΰΏ™°Ž’ύϋNέ₯όώ‡3Q¬]i0δB4Σ\vΩe2dΐ@)ΏιΆLΌδυΓεΔ!—ΉvΕΖ&ρ―δGŸ‘Lίύ€?ώ\–½ψ²Τϋβ©sέPωνΰsmοΗxάAΫώGu"Ž 7eχ~0‡η!ΧΎkΊKο}Xό―Μ™'Ιβ)Χsv+sθ>m”υH:i Iικdε-΅ο₯ΐ3η\gΞ)λΤΡΠυŽ:DJ΄lœό‰›t€gΟΰαg°@-Z Ο΅hμU°@°@°@°@°@°ΐΖ±@ž7ŽέC›Άxqΐ l.xyΑ` ƒ„ΌδEΕΕ€”‰'ΊΑeκ Ό gΰ”Α &πάΦΗΰy}X1€,°‘- ƒ΄)£Λ‹+£ ω]Μ ° ;0ΪΑΡ: ›mΈΊSP…_1šίEΪ9΅h θT£uΰ7Ω\i@κjΝ΄xήΐζ.U0¨x±–Qc€™Kdι΄ιͺΠ¬³BΞ &'κw~…ΡΆ>UΨPM»εSM ݍMy‘ίΌ©$Ššιΐhgωlw0"q€dΰ5€Q½E=˜ΐ@<Κ‘> δvTώ‘?αO°b3j‰¦N€^ΐΣ ±ˆCί…0hΠ ͺΐpJ.¦πDΡGψκnΣSώtω0Wβ3ΐrκ©§:HS¨#½ΫŸ'+nPfώρX€Ÿώ@-jŸάΧ(‡u€C–h(uwέA~}ΜΡΞlzΰ½(·ε>¬•ΒzΫφ”ΛnGf©j`WT<ΤΖγx°Φo>DVλ JpqΎͺs·ί~»ΫΝ΅’ˆ ΤΜ 2΄A+ƒΨ,Β5#Tg§;οΌΣ]7[šψ(Ψ|tŒ92…˜"ΧΞ&ΣqLMΧ{`s@6BMχρσ-@ЁiΨ䑇rSfΰC»ΦόOώ@(\+ξπ v£lθ€ηtλ-όtΊm@ ό>ΗYRΏ9ψο WφtΛδ@w|²O ΩΉƒžoy™ήτ€νΝΗJfλ‚dQ Ζdux2•μ€ΖͺΜm«)•θͺJϊ.Μu­ΦΙΓΕsυέυθι°ΆοQv!…’΅Q‘΄¬žϊθHžB­€­όiuθPl…₯ΦW.»¨OLΥΗ%ΝD7ς,€κΛπOΤ©Ά-ίΰό‘–h#―o₯9όw:Ύ LzψTΒzΫΰGeν;ΪΚNπcκσe΄ΟRm+:ρ"ϋ~φΩgVψDΖ$ΐ3y\¬«ΑΠn'/WwP>ο^:u2Εmό1!_F|ό>ʝΤUυΥ₯Τ)ΤG9•z‹<όΉΎwlΔyωλkήkXI‡χVΒΑfΌ{P―rΎ3u‚S:mpϊ―ήσ]oκ+κΕΔ€]¨λ¨R ίΝ‘Ε·Ό!žΖοΦIΪ]rxΓ6πμΟ¨rκYOΦwυP‘ξή^Z±›4ΪΊΝF/CA`ΐu[ΐήζϊŽϋ"Zχ „ψ\κΖsΪw–ͺǟ©5&{ΰrΣGο[οZίh{ΎσΏŸHΣ" όW=uJ|β)yαΣ™`Z²LBŸŽ“΅oΏ―@²Ά‹Ίt’Eg/Gžp||’Τƒ.—κ_fΚEάο§α̘θE[›6† ΤϋΓy§”ώεo’ωύ4 ιD3*Ξ!= ΪVˆδ(lέΊ…DZ6—κf:±ŒUΪζ/–Œ₯ΕRΥys‰΄j.9‡ξ/•>)™?Ο–S²VΙ‹3§ ΟQ hp ΐsƒ›<Θ0°@`ΐ hh ΐsC[<ΘoS·΄Nq‰²2‰ Θt`°ξ 'œ`ƒ±¨j0ψ‰Šϋ’Q" :yS¨KΗ𜎡‚Έώϋ-ΰ­­Τΰ2S†Ž©G/Ÿ΅ΐΐhS‹fX‡½RUΘrƒ!霢ͺ\9΅h>ω+lίZ2ŠP‹V(Z‡‹ςνwC.ν™Ξ)όΪΈψkƒ‘;ΐσ―°°‚ΚΐΛ@Λh^‰σΚuJΜΗ ‡4³a F f―°±T14‘&@ΜͺŒ pD‡šκ²κΊ_g>­7u€θ‘€' p;εK—DυΓX5ΪX£‘‚Υ~œγ7δ°ήϋIΕWυ™,°. Ι`3ƒΩ ^OϊF•±τ^ή³χΎ6¨b l D—ίχ€d¨rlυα},-\(ίύƒΛ*=Ÿž{ξa‡©Ξ 8UΚ4~XαΛά“Ž”+UIθ@υ½gž“ΘWίΛC³¦ ΑΉ‘"άQ2eυϋŸJvϝ€€}+ƒ=€F€ΐž|μqYSQΟπλo aW”– …OxβP^ό¨₯ύΕω μ¦}Eΐ~¨Ξ ‡ύ€—y~±y²ΐ>dΩeΚλ&―ωα9•dΰ4ˆ‹"§žiΛΉεHm°JUμάd6ΰ“+Έ"n'ΰ  ƒc=ΦڏξΌ\žœP#˚»ϋ΅h?aΧϊ°ΓμΌI ΕA’RLη>γ\)JΞ~΅8@:ΰψPΒFM–€ύXΦ₯e@H€ ΰζ! Ϋc;η œ€B =€J z€lΑ}ΠIΰ9ςlΩsΟ=νώδ~B-Οέ €±Ύk—8ΰHό_Rž-΅Ρͺ[ξ—FίM³Ÿ•=Ά—&ΟdVd­"„T5}Νe7Jxy±T·k-Ή·\]ΆVΜ`Γ¦jž Τpρ­ςδyηΎη~ux^™QΧ»!χl:Ο(Κ»C>Ι ,jχԎQ₯\<Ÿ<»ψ–₯Oφ¬π βγxnyοupέ'Ÿ|bΟ$ηŒοC ˜wbω‘t‰2¦¨κσΣ¨x ₯α|yγϋ°>Π‰Ay|ηΰήŝ?tΎš2qL2!0ΏE”j™hEέβ&“PΟq}]™°Ν>ϋμc€φΝ7ίluΧΐ©m㫨w°2Qα)/η€€νέυ‘NΓrΏΰϋ˜<νφ9¨ΪΥ9€Iκ ξ-πΟιΦ[€γΙέ΅ LΙκ!` ξ`Ώ­·ήΪ_ ϋξžΏΟNZ&$²ϊν/₯ππ½dπuΧΤ¨Kύη\+έΰUTΙάΑΟ‹7·X’!› ύ?iΤ₯U²¨Ά-PxΣ4u;<]RέŽΦIΓ‘ε«₯ςηω²zς/^°\dρ }?Π‰ΌWι*L?ΤeFτΉτt"Aαί“·sΕ}+pτhΪYŠG}+-OήG^όΰ­Έ3ΐθRΑ„I…₯‹Ϊ΅2εθ°ΒΣΩZΘη?MLΩ—1 €€€FΫΥ_χΌ$Ά-™$Ζσ€suJ}+ΝqLΊΎ,έ68uΔ΄iΣβώΚοΛΨG½˜θΛm+vνΪΥήΡi‡“ž?Έφzb=†€Ξ£]Iέ„O|Οη·«‰OnͺΎ ŸJv:u)<©/λ-μΔj7ώz‹•ΈΦ.¬―½λκ?lΰκFŽ£ώ£_šϋ†ϋ‰Ίš€3 4ο4ΙΪΰΌwp~ώ6ψγ>,k&Ξ’~πœΥiΤMΌ_%Ϊ•τ±k²νμσ‡ͺYKeΑΥ:y·²ZΥΨ[JΫ돖P’Ά2ΗllΰΩ•ΛΣ²”Ÿ%Λޝ ήΤEλ|‡^σΠΝ₯Eߝ%«§ͺΗηeΉC6κ'“?ζΏ:VΌ/tu’₯Ϊ ‘6μ]$gο­“hΰβŸ l PoΈ‰ͺ5κ"υέα/Ώ–ŒQHΕ  d7Bέ…Ώ=£M{©xτ©²ϊKΑζyW_j+’ΉL€d2'ύWLϊwΑVωΆ”\υiτσΜθfυΩήΰσεΑ?ͺ1‘w§aΪ—·φΘ’wέ 9λ?χ›xύSτί4ΞQ!”F™6iρ0ν{ΒΟhοlύΚϋͺ2ύo‘ŸThC…΄-₯q=}‡ι³hŠ”zΡ:ΚSπY+νƒΥώ:κ­¬FβικΟ‘ΥΊ:‡΅Ώ]±8žΝΒΑ?ήπάπ6r ,X °@`ΐΨπάΐ²Ϋδ-@‡²S\2`Θ·d#ΚVB™ƒŽ `ΫσΟ?oΛΰΊNtώ_σύ™G—ΣΟϋ»lΡ‘£|;ςC e(<‘¨΄zͺrŽ~»?ϋ₯A,Xΰoo΅ͺaE«"4ŸΕs,…£UΑHMDαhTt:°cptl†ύlWŽŽͺFJ‡ΩW€“vžιςόcΐωi:›\d` ec„xN°ͺ*œΚΚ’¨σrUe6¨y₯”Μ™gJΜό―Ώ’ PcΦ¬"yΊ΄u‘Λ 1£θΤ\Πqsƒ˜½Β&Q5U…‡%ΏΆzbBIλΙ2Ϋ:xΎFλcΗ2pκa–΅Ÿc v£νΊΚ$om€λπΪh©ϊq†d` `ηΨ³Ωδ†Kε…)mpœψοΏώFJ» ^ŽΖWŸ'£Ο5Ε.ΪSt`b¦‚G(w—:?χŽT«2 !οάSδ±ΩS μ΅ΑvИ«KMo§0υΟόΡ〉ͺT‡΄­“ΡΉ½ΌσΣ”xϊSΐ*PΘφ,…}QYFΨ‹₯›] ύδΤκh?1)l¦ͺ‡mΉε–…σ\pƒψ΄©.ΌπBS`sν-§ψΛ9tυΉAs +sΰ°ΫοΚΑ'Ο8ƒKZsΐŸƒIˆΓ@ qPΣA‘νΚ+―΄Άž‰ΐ|@ |,Qξς$Q£F­³“‚ΐ @@v „Ρ^tπ›’ =5T_i7Bp­dςƒ^ΙςΰΨχ™‚ƒΞ—‘?iΈsǎβι– ΅N–Mη~ΑΦώ@δΟΐxΐ~άC\·tj›6mjœ·2!ηΝ½Š‚«»ŸXFΥ)ν‘W²ϋΓΩ₯Ύk—ΏψΛΎ‘ίSžc”άω°d`Ώ*»m!M>ίkεΏh©¬½όVe€ͺn]$oˆBαu΅Ž 6όΐ'§Ίg-ΡΗΡΞΰώfBΟ> ί”,ΰΣyF’o²΄πΞ?0qdˆΒΆψjžu9ν??εoπ9Ϋ&±<ωdάΟpœ?VFΒ‡Κ¦κ7X֘‰ΕΌw£Œ:zτhσ}ΞΏβg$†Γ―QΟP0ψοΰbη78?ϊΆ:wξl§Εjψ™t|eδΖ&OκηwH”όͺ«·°›SQ₯ήDteβή~ϋνu>_PQvό}Ι&{ŸSρΌϊκ«m₯ξ-<“NΊυVAAA–KVq/ΌυΦ[5Ξ͊Ξήό|bV€pu.ΟJ²2-Ύφ O™#yϋν,Ÿm™[#ύυϊqmoΝ½α‰ό°Πή9Z_v¨dχθθ/B­οπ\Λ$θ žNŒΜX¨ͺ† dεwΣ%4}‘„–κΔI hpΌͺˆ΄zd œxΝ%ζ‡xΦ»ϋ™υΧaβe¨*΄Ύ΄ϊχ)³Χn֞ΓΗš³΅,}ςΣZvkΪoWω€`Iά—}πφ»2kBMω E*έβΠ]dΤτ―ΝGΪ„½‰ίΙ¬9³k΄-©#\[ΨΆd’uŒS N\iŽBΡVs+ΝΠO™Ž/K· NϋŸηκΈD_†pκΟΞ—%ΆŒp>Ÿ6rb[`šύn’‰ίψΌ+ΰ£}ιP2qŽU° ξ]ίύζ3±ξποKτeμ#ύΉsηZ›=ΥΊ”χ‹dυVβ9Ϋ*<ϊαή•([}ο*ΔΕΦΤ½L„u„ΈŸHŸ€ζ]ƒϊ œ6Ί›¨CšΨO|§{fΨ"e•2θ‘Ϋlβ.υ¨IŸkδό=Ώλ ‘e₯2οςg’}S­›Hϋ[ŽΣχΟΊ!β†žύε6^;vΊΒΟߊ7gΕΊ]™ΪΎέfς …Ÿwκν“_·w£}«˜4WΏρ•Ξ0 TŸ7š‘ƒ„ €h|³ž©ΏρQΉ.α‘οJh™NΌRŸ[}ί0ιuΐώρώ?πœXoe\r|\±ΖόσϊŠ`ο.k.ΊΪ’e~’Œ¬.“Ώθͺ .πžΑ€ΤCϋμ'k:VBsΥglΥY"Oί/ε:nHŸ^΅ϊμj&¦k_aεŠbYΆέ–φήCτνό}Ο}”>M—DΠ>J=W ζΚ.ΪΞΞK§χ^••QA—g}Ÿ{tΫVΖNύ!žλ3T°?°ΐF²@#;‘>ͺ œ3KHsPi½ψβ‹Ε8PγσΟ?_kΤAύΠbZqΗq`'B"dI^ΐxA… εΒTΛD{Χ―άΙ ° φΰ:&ξ§ΐ˜οK–,1π“ς&{ΊkΓύ„’)ͺΞ<£ Βύ„J΄,€ €ƒ#FŒ0x0ν―οΪ%"Z¦ΏςŸtg²+~μEΙyk΄ε\έ©ͺ+](‘d,¦λJ1ΧS«J*zu—Ζ—¦ΩΖ·‚Ϊ‰ƒέ<_~ ™g1ΡοςάΊηΒ_^ΐΨtόF]χΈΘu°ƒΙ8ΖΙ΄ϊƒg•wUό>ΚMdαYgη…B?ν#χ Rvs@4Ο* Φ@­Ξ7Υη78ΰyυΥW­ήΒΏ<™Tϋνλ|“`πΗ@t΄Ϋ°™β°7 £—^z©ν£Α¦λΛ¨™°ƒϊ>u™ €Ώzυj[υΐ?Ω;9p ›7Nš5kfφb5`aμ‚½ΉG¨iƒ:ΠοσΉ°χ9:ΑˆτhK` ΧΧKΩ°±SΑφΧ‰ΔO§ήβ°%«.ΠζH¬‡ΘׁΰξZpύΙ»8/71œ²‘ΏΌΛT6ς Ɋ„τ] _ςμ)— Œΰΐ±~o‰'ό3οξ·₯ϊσΆ΅ωI{Iώa;%Δ¨ύ3žkΫδnΛjX€JΠ… KT ΊΕ%ΗJΟ}φŠϋΈ£šl!%Ώ5K(,­ξΏXNΈ(:17|θ-2©1QHs΅Ύ'σή¬PdΣύΆ—1M—Η}Ω†“9—=7oΣΓw–1ΝVΨ~žŸΎΣ6ςrykβ§Φ?ζΐ#dΝ?KfσΖ’Ω4_šμΤI^>Θό™=KΪώ©ΦU^υΊAΣl«o₯9ž=|y:ΎΜωοTΫΰ΄οέ3ŸΜ—α7¨όΎŒώO& ΡFLlηγCۊLξ‘#>Ÿψ‘§Ÿ~ΪμΰχEΞΨψ²yσζΙV[meο>ϊ¨½[ ¨―’Ύ`rvόύ΄ιϊ²‘#G`œJ]JΪŒK₯ήBΥΣΥΫυ΅wi+8§ώ‚302υTqq±MΔ䝏ϊφυΆφΏΣ%ΆΑΉvώwΊgξx@Ό¦Ή²Χ½­žG•š{̍'1ρΥhΚαo'ΈλβτΦTΘΌAO‹·D‹΅―¨ένΗλκEλŸ|ό{Οώ2W/\) ίόJ"ίθ;ύвu»tRCxηΝ₯Υ!=Φ»ΒΐΊ~ύ7|Ξ‚ΧΖJdl ϊόλ­€X`Γ,@}236Ώ>QΫκνo—Θ’₯ΡuΪ»o‘έυ]‡χ(ϊrŽΞπλ#kdθ΅h.‘ƒHŸ½%KAd|6}EγǏ·‰,ΤΗτQρŽtγ7FWj»πRYωδσR4π<|Ϋ­5 Q†0`€d}ώ•T5HAεL©Ϊ¬΅TmΡQςΞ(]*, Ι}4εϋIΉ ₯8­²UQΌm+i|ή)²ϋž{Ζ•^Ξ:θ0©ˆf9H΅ΕSejᐬζEZDa" ‘'m&Mp;ˆκ†nώ’ΑJ~€4£τgž} N“Π*P ʚ–Hfbqgžcό1ν#€Π<Ўq ΠΔ½ϋξ»εβ‹U΅Vƒα't’MψΊκͺ«lƒD κ Φ<{φl;ΆBψŸΓD‚όφή{οZν,μδ{šΒΧ\³Ζ:€δΰ2ε<œ5Κ’}τ‘)ŸH8€‚sr€/ E:v">a΄ΛΚΚ ΰ _ΰΰ!C†πU.Έΰ6l˜.}Žρ_kΆ£ ™x­ί{ο½ψ}–¨nG9ωΓί8(οΜ3Ο΄mι” θ¨΅80π#@ P!v0Λ¦c[Άw°ƒƒ:ΉΗΨο ?-ΧπΒνKε~ΊiθυR“(rš7•‹τ~Ίηž{LΆΦ΅›2Ur,1΅t_€υ˜^Θθr¬ΎOΫΗ½Μ6βΔβƏα7Λ΅Ζφ}0q‚τ»uˆ”\“”Γ'γdν}OZͺ[·ό‘‰4+ͺ}ψ—€bΨΏmϋš?ο/…'ώ₯vœ`Λ&eξχ‘C‡¦εwק̜ίH4Ο ƒκNqš‰ψχ.JydρΑuT d~)Qi3±μ€‡oηYt*ι¦κ7(―ƒΐ’)<“Ύ²m3φ™πΆkΗQίΰ‹€ϋœηΤ–/ΓOr-π[ψ3<ΐ.ΐiԝ±1~ŒIΙψ/ΚF}D`ΚΛΤ!wέu—Αvl6Gu•ΊΤMΘa²Η€,}βπ‹Ξ.>ΒόSΗ»:²uλΦΆQ&?πL™\½’jύξβ'ΦCδ›ΨζπχqγύχC"πμ/Σηί—²mΫΙςͺςυΆ9,α„Κޝ,KωΨΆfμΦQΪ]rXBŒΪ?«f,’~'+£'~%WŸu‘ <"ΙΠI—‘fkGΆόOX€ϋ1ΡΗ΅rΆT|2Q—aΧw -†ž*—?voάΗ=7L'Κήϋ’xZJӝ»JΖ›IΈeQgΦ|Ω‡ΙΚwΎ“ˆΡ+ζ.’ΝŽΨM^ϊςύψ$Ε―Ύ'•xOΪόύ ε4’ε/~)•ύΆ•UeIŸ‡C·κ©’<Ή|Δ0kŸΧ·ά^»μ&«η-“¬–M$»i“”|Y—.]nƒsϊӟΜχ$σeψ|2u‚σeLΑW€ΪVLT€φΧ.Mςq…Š4ο8uΚσΐԚΰμ|οώh}u οF©Τ₯ΤA€Λdλtκ-Κžκ» ημVoΰ8&r~Žd8ύ–[n±χκ·tήιw–Hηζρ‰’ΡkώΛυxύχ (χOvρΗςT]}ώu/HdΊΆΣ³3e³‘ΜΝ›ω£ΤϊE•Χ|)χίΉŸν[Ύ|ΉΥ‡΅"6Π†Κ© dρ¨ρβMœ«“’΅O"B­šH¨Ηζ²Ωα»IX'/4DTŸΒΚAj[ €`σ’H΅tΦχMzκ*¬kΖkΏΓΪΛ¬σN—m·ΫΞ~ΣχΡuΔ³βύ2Σ~{;Jυ!ˆΧkW’š~Έ"ΨΉYQS«·υ%F'ViίkΣ"Ωσΐ¬eςα_ϋŸυΊΙ‘$H½¨άby‰TžsΉDζΞϊ*Άξ"ΉΗτ“•ΊzΫ§ϊΦρ¨ΎνυέεΊaΊtΩ, W©pƒΦQΥ_”φΪΣήYπΌζ” $|\Yϋν$¬ ^vCvώ“TœyΉdNϋΕD"-šJ€UKΙX΄LΒΊr+iT΅(’ŠΆ‘όΛΟ‘UyV.˜9Qž{γ΅@αΩ~πO`†·@<7ΌΝƒ ,X °@`Ά@<7°Αƒμ6Y ΠQμWαr0ρ.ψg:tάd Ρ $³‘‡²e“uΐ»tψάΰ°„ΑU$&~ω•BžΠiΜ²œΐ^l‰NϋΫξ9ΈCχΕγΖ [ΞSΏ‡4kιιωΊ4}Ÿ+Wθ2~μΧtΒ ωίΚ’ϋψŒOο΄₯Q3͐n'ξ¦3$~ΔBM θ}ιΰι8$­TΐΣβV¬((­Ϋ]Ό(|=ή―œ­TRΎΛ©5'ΦΔΕ—ž}φΩζέωγ―ι_Β§ΦπΤYΤL\9τΠC-*ͺΎGy€mΰr«˜€IΤ'ΔepΫm·591/Κ€Κ2yPG₯Z¦Δv6eΣ;οΌS# &QΟ2‘…——g~‰ "ψ‘DΠ 0zΪ4]6Zλ{ΚD{H9Y;€z† G'œpB$}κb&ε8ί(o2…g‹ϋ'έzΛ»Ύ6Η~ͺκŸxb«υΟ.έΕχ½,E FΌR=?ν6GΕwseΡ-oΚΛ³ΖIh³iΦ―‡ωK—v²OoY©¬|e¬ΌψΛΧςΥ²™rqΧύεά­ΦΥ«’­νQ]™ΖΛΧw }ŸpŸE:I-ΤDί/τνφO„~ ΰgύκο~YR¬«³,ά­;Κ9Χ]χqΟ»W–\|o“η~ΙλΏ·|UTUΓ—α#\ϋ5™/λήm;©Xͺ«ΰ(έ¨(_ž=2ισΐDΐΉ=)­ΦG?q—ΑΧώ$[iŽ=ΊŒ+‘UŸL΅¨!]M©ύΠ£δ/ώ-Ή/S²jϊ|Y™λ₯Υηf}ο4ψΐ`Ώ/ctΛu`ΫL}G‘]^£­xέu5&Wr~)Ω„φ؏ζ}Α&άuμΨ1>YνψdΪ–Καώ>_W·ωί5(―«ϋέquΥ₯Όίΰ§ιƒ ΞH΅ήJη]ϊgW&ήΗȏ6΅ κΤ»Ιή=λz§ΓNΤk\#Τ±]`rπ=טz\`’“XέΔG·Οy·½&SF“V-U>ΟlΧΤΏ;ιχwF—ΛԟΚδ‡――°ύΏ7πμ ιUVKωψY²μέ βMΥ>/}q!΄E i~ΰN’έ«Kƒ¬f¨>;ΛŸ6BS”Œ‘οIθ»Ι"χSφ:δ`λWC0ιρk†Hω k¬Ωη)ΓΎύΪV²’Ύ™¨}Ωg_"ήvέ$rθΩΆ[Ό ψϋkΉΖϊ½ΜG? ΌΦνq(\Αlβ/_ƒ―u Γεϋ΄c5έ¨ΊiFΛεrρ)AΰZ6Ez£ιωΐoK‡cƒPΓ!œ‰8pΪC;ΨΪAάά’ΆψQhpΪ©fΗAlφΕ*Τ₯¨`…΄Ε]|ϋK/šΟ:άΫδλqaυΣm‹CΫz€αΞ#žžβ‘n πŒ>GVSŽ^6S—ΓS(š?ΐθθw…ΰ|Κ9u§X{ƒ»`΄ͺG‡T5Ί°CkiΤo'ΩUύ3ƒr@&ψSη‡ιhΎβŠ+δΦ[o5΅ͺΊkη”ϊ–ž‚\Ub`hζ³dΞ<λˆ•¬’πΚR kΈ ώˆωΎ¨ͺ^;ž …‚%KΑΖFjg…?ςtPuuΉ^S]:ΔΦd ©ςrHz™ρε+(˜¬ΧΡ€V089ϊG³€p³6 Y+Μ¬ϋCZŸ JΚ1€Eeϋ­Οτ†κϋD%3€i@§υΑΙς  2wξ\ƒEGŒ†Κ ƒυλΘΫ?Pν;HŒύ¨Φ^rΙ%pωα.Ϊ;‰ΛΫœρΜ Μ|ςΙ'ǁ3Χyvvιή]*T‘¦‘ΒξLπ>`kΪF‘šχ_¦BΔ«χι!΄£¨uΰA²β©ΧdΕA{¬ƒf§L‘ΠKΊ\σO3¬­`χΦυ™ ρ{\¦Š’€n‰vzβΎ€δΒλcΉt‚˜ζΡθŽ+δκ;n3xΠΑΪδ-&)œqήυQ₯rέςόγ2™©Hz­λ­Kž.\"―Οϊ1<'ΎΪJΖ-—I―=φˆukΣEΦ<ϊ"ΩZΩθ_ΧΙΥΓn―³L™ƒο”5ן/Rؚ{0υn`JTcκ3Ιq/mύΪΗR5a ?-ύΖWŸ'UΫoe~–kανμa·ί.₯§ Τeΰ£  ϋν±³4Ύμ ?ιϋZχjq;Μ+–Š?—ε—œRγΪΉΥvRvΣ²xΰ€uΧn’‚Υ—έ"’“5¬ύζ2χ}ώα yp†T¦Ί΅o‹—JυySo»OŠΞ<.£υΪͺŠRΩΠ»Υj§Ύ'χš DΊt¨•Fι°‡$λKU‡Rh'λϊKEΆμX+N°aΣ°ώύΧψέυ>5a γDΏϊ=¬?ΰ“™Ϋ»woΫΜϋhΧ]Υu­«wye’TπλLΑgζΝ›g`―ƒΝœπριΟ¨“‘t\Ÿί`²A¨{xοƏπουυΥ₯—κύ ψΛ‰' jŸœ'y[Q1Q§S§NBέθ +Ÿ9ΚΑςΠ锉zΪΰΉΟ>ϋΜΤψ§h½ΰg?νH€o“δΞ=χ\σλΤoψ= *Σ.ΈΥ£ηΉ)_:ΐ³SRu@ΊλƒpiΉz{Ηπ₯[Ώ§ζπ―πΰΞ―Ύηx―}.«žz_2Ϋ·”5—φΣΊtPΊ4±ΝΑ±U³–Ιό«΅SΘl›7²)­°]Q[™\<Ώ6πœV*ϊžΟΚ4΅ύ¨Ό_xωΪώδ»ώ5Υϊ7lο1PX:Wχa“³χ9νκ΄|ά“ΟΘΌ‡^•Π,mSΞ]ͺ+ΕΔ|…φ=΄zκjωΣώ}Rφe…ͺβθžΣϊžQϊ½ͺˆ\2π8πΜsΟJs›΅Τ ˜™ayOΫJώ•ζ&|‘.ΰ™‚ύψ1ό`b[‘I~ΘΨέ@υΟτΗ²Šή‰'žhΚ£G6±lM+κϋwήy§%Η;οΞ—Ίv“Άd%B]Ηη=ςDޝ"NHξœ2Κβ¦ϊOγ‚­€΄D'nj˜ήΧάϊ/ ¬^ΉEUj>OBο|"½ ™³ζjn₯­ΚWΥΎ­44tf««Ζul'εϋο!M;@Κ/ΉQ2@ΡwΡ³ΪeΘ³c> €g»Α?ήπάπ6r ,X °@`ΐΨπάΐ²Ϋd-ΰW΄ŽxόφœΞη+―Ό’©}ΠΑΞΐ4ΑšŽόί*Π)B'Ηxώ­μ΄I¦£dΐΡ5T²΅σ'aΗφnΕΥγΫX°γuŸ¦6ψ[Ak`,—6ϋ‹—-_ΨAuΰΆ©ν²Mγω!ξ8Έ­ωσέ@mM;¬E*rGΟΑ₯? B sϋ­ ¦FΕVcM'‚Ϋ`+8‡Έω•[ΣiΫΗg.iG| ιo?‹έζb<_φǎ!>ιΖΣΤν|'-Ρcβί]όXώρτˆί€ϋ,²BUˆ‚6εhύ\>K;UQŠVU¬( ­`4ίέΐs’ςeuh!kΞξ%ΫνUZE]ΥςΆTkz’°BΑ;ΘWΝK₯_Ώ~ζΏ§LϊABίΟ7€h:CΥ·€6$„tbEψε7€η ΧΚχK—Ψ`u’’n*ι†V«BφŠbS]F‘ΩΣΏώΘ¬*ΜQEf…™2Ά€/‰?ΎIφόGύBt?ΉώV°Η³ϋFο½ξž’ώά³ΐώžξ'ΩΏIΠt Hv°²Φ—ͺΚ ${ )ρ= *λ`>@²mWXee—C Fτؐ*Φnτΰl¦~Σ)ρ†ŠΜΖQϋe©ZΎSx6ΨJᬜEΛΥκΰ%<³:`ΰ‡Ξψσ‘RωΛlσαψρ(TιιwόpfΛf";m#Γο^θΩ³§)vmΫΆ½,zμEiΪ――\:μVSe€ϋρ;‡ΛŠG^PίOύΰI†*l―8|ƒB±ο[¨|“Ζ¦„»φΣ―%§ΧN’Y9—* vΥUW?κ ©šϊ³δy°”μΥέΪCf.pO3a Ι”²ZΥlσž!–-Ζ μ h^’υ“‚Π KŠεC1θΛΰ_΅WΖE7Iφƒ7ΙΩη­˜wι'~r]_ψ@ͺ~˜έΕ½ωŸe]:ΰ €β΄n;KٝΔΝ»η:9δo' πφ ΤBQΎ‘Lo~(ε#?–¬έvO―ΚG},ΩξmJΓψΛ₯ΊDu’ΊΎψ‘dtιhΟΠΪ·?ΦεΞ›IΑM—κύš'kΌj%”ρoνΆ’5y^2Άξ$Ωοξ{ξIz­»εLέψΊ βΐ3χΩΔ―ΏOν†βŽΥΊ|iξΝew]–Τu§n±½N0)±ΊcΝ§_I†.=ZxΑ©ΦηhMuU­2uΜ_εšήaJC”UΊώͺ&Z΅ΌX2‹ eάψo Ψcναη~T"£>1wτ!ςςλ―¬Ξ~6Ύ8L―wJAͺb°€Κ~Ϋl%K₯*ιύtΫm·I‘bγ y7₯Xϋͺjͺ׎g³"6ψ-ΕΊx€<ι„ΝΫ΅“w(xžΩχ$©άnKirΉ^G&M€ΌΉ eνΠ»tŠ.O«pΞegJhηmk­Ο~ِ;%SŸ΅ˆϊΈœ[‹θ5 Β¦gήρœΚc²‰!©uώ³Β˜ˆGϊ€Αδ ³ύ~ƒο~ °ud&#${G%]dΈ«  ΐςq@4p3 Uη`…oB…ΩΑ€ΙjΚ—|;…2ςΓo8•SςώςΛ/kψ TŠ)Ο‚ l2…&ζxpοՍUaέlcBΰ40yψ‘«{Τ—y޳Z!•2aβ“ςawmPV㜘βΚ΄zυκΈ**β›oΎiκδ`GΚ'X›ςΊ‰Oΐ@bώ>‡d@u-’ΘӁ߀ΗΨ(P'έπ^±Rί/ViΫZί!"%: §t­¬P?m“.Wk^ϊΫώΚtή†ή­PΦ? h”’$έ\iQh:\ +Τθvβ…σ7μ]cC‹χΏzΟΈ_α9‡ΟrΟͺMήUθ92c‘,všδd6’²Ώμn“ΓRρeΉ™YΊš‡Ύη€ψŒφθΡC.ΌπB{‡Δ$4G€?a†ω&]ύ#§Rύ’ώW΅b΅¬±Xς»Ά•¬φΝ­ΣτŸjψ²)“&Λ’σŸ–φžͺmπsβpl]χmπmΊvΣΙu»›!οώ-»Λ²χ&κ}Ξ½ž-μ/―ρa|‚ήTmggΦΎ%œWΨΔ&‰2±ΡΧVβΒΟ`›ΔΜ?β{όk‹οΕη±Ο]3ΆX9ΏG]ωκ«―ΦςiυΟψQόe²Ί”ςωW .E ;z‹ϊϊwtŠο*œχœ«―yί2dˆΩ€}”‰zͺ[·nρχ#·Β6buϊΈG$ΌΣY\Α|ηΗ©Έ.œ;m?(ŽΝP½α†βu£Ί¬ύμ'YrΟ;GήlΆX7Ύ―οŸެ^νshΩ’…ό2}ŒE?ώμ…rǐ&’·Π&ͺ”… GΎΡχ{νÊνo2θψ]₯Ρ–­β›7Φ—@υycY6HχΖ:A1όρηt^²΄Ζi›£Ÿόρ‡d―}χ±>—b?»ϋvΒΙP?LΐϊWy9½M)Χžͺώ§τΤΥ_\ϋ>2&F1H ~€ύί&OWΝϋv’Ό°`–‰ ΨΞzώ‘ΎξžW ωδC9ηœsβ±wάqG›@Λ»‰ τν•ΣDΚnΞ‹£dΧ_Bϋξ!e·ά+™“¦I£gθd―*©j^€ΈσmU@ΪΩτλT©sVο=€TθœΡ_J¨B!hVα‹S—ΚK:aαƒ;ξΈΓe|,Π@€η2tM`ΐ ,πϋY ž?Ϋ9o: ˜S–¬%-³zb';žt<£rG@a‹ŽeΧ ŒΒΖν\:t¨)аŸ΄«ΟΏ•%ƒt6†<νȊCΣ@Ψ:HU'ΜΝ~:ΖτΣ”ΉuP:κw‡;8›t‰[’°§tΘ± „ΕβΠKΧΑέqΨSγΐ­@-`›}ώtHOγƒ°~ ˜ΒƒψΪΉ DνmRǁoφη(d‘q,žΕΕΧγό]¨°(iXKΟΰλXξ{ ˆ[ή\Ίv\eD" %T«ΚΚО +ηkηt™~ΧίmΞ9Hή?Ζ‘£φξ+e£Ύ—μvΝ$£0O ϊl'―Έά”―}φžΘœσGΤ4‚vj›ͺ›Τ(BΆo₯ ‚*Ήζ…£Um‰₯±_z]Ÿ}©χ]΅τψΰ-ω~ε ΉχΰΓεΤαwЧŠJ’ΐμ©³+˜‘@aHΠ’™³%C·…RD9T²Z;—υΎΤη†?žϋnχφΊοΡ}ΡηΒT¨υ°2€@³VLϊ§ΆηS·iΌnΧk·«φ<πEΘ³m³Ϊ©­*Ξ¨:λH²Β~YRM JV4τt_c©νΣxΊ|B¨BΤPŽη™Τ4γΟ§>ΫρηQΟs₯ΪΠφk!πv~'~ξlw6‰mχCΓζ °—ΐΑ±ζo8Eς·θ›Ρu ‘kΟ΅6‡SΏbxτΡGεΰΎΙΪg^—΅Ο½eiη(¨όjn₯©=\}πΒΛ²φœkνœ\ήσΟ?Ξ€^~³JDΗΖ2om™^Š iσϊΗRˆ tΚΘ…'›‚&/ζͺJ0η2»χ.ρtˆθ°£‚«nΈGͺ&N΅T ξΈRώψ}ƒ/l’–”Ÿ1XΑ’θΰoώ•—ςΒρ%: `~y΄dξ°΅δs˜|:v¬(“ΉυξέΫ ²ƒ>Ψμ9‡v/Ό/Us˜οΘ=θO2JΚ ¬ΐώ¨Σδ>τΌXέ€·nHοχœ‹Θϋυ1ϋΗNu½Ψ½[—.2wΡ"'ΪλςγU³u">JŸƒ ]ςΎΌ[gΩY•Fώ>ΰT™>o΅!;4νψ6=X?g›-εθcΐ|ΝKϝhtΚφ.>ν[€MW& @ΤHωšθέwί'8¦X3uͺA%lG)vUqvαή{ο΅9ςπΓμgεrŠql‹ίO:Gϋšs!Π&wηdκω;2°ψ[`Β?+τέ$'WfξΌ%Y­Χ,_tQ€<ε°|₯”]3Μΐ꼜σNΩ{ך‡+\Ώζ²%c‘ΒT͊$χŽ«–k€‰5KόͺΗ€B/ΌπBάο2HμwδYœ9s"">©‹ϊ“dχ$Ο>„γSyFύΰωψΑ½DυFwΐJΌ—kρlωΛαόΎΪM0`@ό™{γ7 ΐςϋžw·:i:!•cT(Σρ@RΨ‘σ<γ9£\Ν›77σˆ3`@U«ΙΧ]w5[‘nΪΏ~…τˆρ{όNΧ—‘6hΦ¬™4ΥΥbόv’¬Όί£xIΐΟ`WΤ¦ L–‘¬o»βχΨ―#t°ίΩ 0?Ώo$lOvη_½οΎϋ,ϊώ‘Ύfe…Ω³g›m7WE7u£ΌδΗ9Έ2Ώαk)7JώIλ!΅‹“•a}ΐsΥΊ@‡–2Ώ*ΪζθΠA—ΪŽωvͺ«Lδη­©Ήƒžo‰Ά…³3₯ν-ΗJΖf…ΙŠίV­Κx‹―z&F†ς²₯ευΗKΏΏŸ"}τQxφ­<?h=_¬©-«cP4Ÿ”.ž³PBϊΎαΕΰh ³€΄ήΣμ}†w}Ο@98Ϊ)JmήΖή92f 4οAΨ0 πl;π(UηVύΉβWyv υω²o>+αΥkγΟCϋŠL©ϋ%€ΟΧ?Ω󀴾•ζπ5΄‹i'π¬ν²t}ΩΆν:k³$CrZɘOΗΤΫοΪa Ήθʁζ›πc—|’Μ»ω΅ΈYΪ_{€Ό=γ›Έ/ϋϊΣ/dρΉOJ—ΗΞ–Α7\—΄­˜±|¬š9ΏογxβΊzjCgO]u)yPŸωλRΪΰλ«·¨Kh}λκ-&8ν[₯…τκ ψkΐ8<'ƒχ©±υ³ƒ°)'u@6ψ;Ψ€AΧ§ Ψ•ϋŒηΖΥqlάϋ#FŒ0ΈΫέξΊTN[( ‡Ύ}ίή±΄όξ°:?ο{΄T>«χ€†·+—ΓzOΧΙ={Ψ["ν7Λ”[j€σŸ£@΄νΨ©œΊ@/ήD}/τ­ZjΩDB=6—6‡υ” ύΎ±C ϊΌ±-€G²@¨T…$ήω@Β|¬νH]1ΚΫαmΊJΩεZ_Λ{ͺšμ¬Ίΐ»Qν§‰h―ŒωB"ϋξ.}΄ΏύΨcΙ±šHΙχ“₯pΐq2?+ΓΔ7άj;.-&Έ9RΆΠΆeθ‚Α’uΡΩrΗ¬i6QΕΕYί'}l;i»8sϞςκθkLJwΗΉ<ΆΙm,₯]+ΥE’;θ\λ«.ΏύΙΠΥMΣχT= ͺi„ιD>m―„Ut#’ν†HΎϊk­g<…œ3ζ/±~kmΥHXϋoωό[Υr7Y^].(ό’ΰΓ ψΪ–Κς{ߍBΆ:hͺ[g-`·6π•O‚ύŽ}Wυ°*)eT¬QN›k¦Ώ5Ύ«>–ͺVΙΏ·“Σ²’ΡS/7-eΡοΡLcΫ>΄>2¨œO/ Bζ0…*=+“nΠ&%’΅τSγ[ΠxφψlγΟΎ+ˆΜ9ΖφGaφθ~‹ηŽ‹¦όλ³@vί½eɟ{¬ΖζΟ?\Ά9Vͺ&ό`±ό@4hk΄ρ†΄σΜώ!gsŸ‚αΝξΏQŽ<ϊ(Sμ$ώ?ώρSxτ&O—’§^^S½V\—œ^έεγF•λΚ¨|H!ό„ΖΙΫ£‡Ό³t΅Qh»Lϊξ{9κmœ‘έ3ι›o€R•Œνžϋ ψFο#»φΪ-|Φύ₯XΑ‘νb Κ”ι•W^1ΰ¬rήBURΤΙάsz,χnv·.rΪgΨ8ΐΩSΊάρZ,α<Ήg©κτ$U˜s ?΄―iƒm΅ΥVš wp400Ξ;ο˜b4η4tΰm9@­Ρ:1όδIθ€cS cΊž1cΖ:;)°˜|=ι:5e§Š t¨Ωrς€œ~UTΰΞΓ©³‡k}ι₯—Ζ‘ΆΉ@~~υ8ʈέ”ΐ~?ΐd €ΐuN΅L~Ψ"™)`Γύχίojƒl@ν푇Š+VU΄lΩ2©Rη ̞τ~RΘ-ΡΞrνΊwο^Vt6ܐΟ8π¬Χuα+oΛΪ;΅dAΥ“ϊPσx£Λέdbͺ:΅“ΌΫͺΉ?ψυ»[€gmΤ¨QqΏ;5ώ»‚ωΑΥd>ΛΕγήvΛΤ§ϊŒϊg| ͺε(ς’O² ·-Y?ό€“>΄_ΈU iόΰ0 ©(DdΙ2)Wα―qΤίΡ罈χ VpΙΟΟ·χ‰nκo+ξLΌ‡€¬D’υΙ+ή:΅Ύ‡²ΟΗIΥu·K†’˜sύβνΏ·‰<±‚νt&x2!·όΩΧ€όι—₯rϋ’ΩίEήT*žzEζE’1gxL<ΊΔΣ•ΪΌ*]F…xίa%ɈN7[θ$}€Φ*$[}‘UϋNi’WΎψ,žΝJΑ?ήπάπ6r ,X °@`ΐΨπάΐ²Ϋ$-@ΗυΎϋξk³¬ d|λλΤΈqjΠΙNEχxψ-C<–Φ ,Xΐ,PQ…°c`΄ά1ˆ›Z§ωԎ[Ϋ§ί£q’ ΅‹o0΅Β•mσ©+uPΜ~―ΥA.θΐ΄Ώu`ΈΫ^Ξ&Ž―Lγ/‹• V‡ςθ9€šΣG^©ž/ ΐϊΣ¨β-9ρ&S•c_€J3N]Ρl<ύΎVŒ—ύ’pηßn›©0SvμeλRΏ{νwςcu±ό+·­ό­πKΝΑΔ(¨Ϋ¦υ’¦0)€Κoδ†Cͺj­ί rL¦žα·ϋŸ°t<³Ο©o{Ϊρl 3ρ4=މG9l{t›ν‹Εσt“‹Λν±Όυ[€’4Π+e²sЁΌ–/鲏γυ3Z&Κͺ΄ŒλΞΓm‹~lmηΙοuϋβρhυ<βΠ°₯§Ξ1ΆswεqŸ±Έ.W.wΩΗHͺ+―OΩγϋά9θ'ͺl™:ˆα–-ΊΆͺP•lΒ:«όν'ΡvυžgΉ`;FϋV”@yX'Ωd,UΨΞ’Δ@)ξm"]dp'M` ΐTΪ@Zv@d(jΊτΙΦ¬Y6¨Mzΐu(i^ύυΆŠΟ ί ŽψΤ‰K`ƒί+δŒ$ρi1 βςΰœ”Η^ = Yw€d;¨Βi99εNTξ†nηΗ±μχCh¨ΏτΉΌˆC ]@Εεsνδpΰ΍² ,R_:vΪvΫmγ`J«¬ βΪ”@‡\/·œ6ηqΧ]w„εVIεZ3 Vλ>Σ+NvŸα8H0Υ29 „φ.6ΐ–6¨»_±?ΰΆS e`Ȏΐ²ΦC† ±kG™όί\ΚɊ(ό9›―ο~rΗ₯zν$δΎψ­B ΰY4½ŸgΛΪ[”PqΘ9σ―"μ™zvͺβ\zΣΏ$sκ/vLωΎ=₯πάSj―jβWί•Κ₯’ϋ6xπω5χΏ~W p₯γwQωΒΈm Ο³€›ΥΨ–Κ3zηwΖA\ΚαήcάnΎωζΈΟ!=>…/ηoρω:uŠϋHό10tοή½-ώΗ,{ο½wάη;štπΤ)_.>ώ*ΏA@€οΓότΣOVNΗ'3ο&£ζ Œ‹ŸqΫ€ΌρAkPΏΧΐ1”ΛA»ΤuΨ<έ2…a«ΡZgϊ}ι㣩 @ Τ³ΐm„O>ωĎck hξ ²§Ÿ~ΪΤEέδβ|£ލλΈ¨#V¬X!;ν΄“©LS‡YRΰ4½Ε±ΕΕΕVσϋHŽ8”1z‹σΆK΅’¬‰Ϋψ'σ<―ωξg)ΎώqirĞ22weZe’Ν3σ/KDaFB«σϋJΞ^[&f[γwdE©,Ίβq5LYvΎξ―’±Ek‹Σ ΐsR₯φΓ[]&… γ ΄BΫ%σΫoG‹Α ”ςŽ΄χ§ν(­νOI=ύkΊωf10:w(ϊ˜?bΰž½α†j¬ΞΆ>G{Džm‚kgγ?ύΎŒηvK2_ΦOAΫηΥ§Ήg”Ι2MΖΟ”β^·4‹Ξ8\mΧΖ&ώ±6ψa{ξ+c&Mˆ?£ψ\&²ΉΙώ6•›`Γσ˜Ž/#tΪΰœβ‡z¨•ΫοΛ8κGΏ/ϋλΡΗΘΛk΄i/ώyT.-UeH]υHί뽊j‰θ}ΎμιΟ£ύ–zτŸ¦ <iΆ"<πέ$YzήS ‹λ± c ?VΪ΄ΆE©7ŽθέWfήρΊΡYzŸ€lλ’x™¨+/Ώl ”ι{ΗΊ€κžρќg]u)χ”Ώn€.>N·ή’­›N{—|{kύΝ»uοά›\#οHξΪΊwΔΔwΊŽΝΤWζͺ:6pΉ/ΠFαΌΉΏ©έΚ/.}ξqž χžω§?ύΙVk(ΧΙ'σ/F<όq³|i{ϋρυ´ϼ\,/Š*o»U…\w©NΤΠWw&^‘zMψfb± ύgXλE€θk.Ž‚vΎ"o_ŽΧŽπσ·βΝρώڏΪ¦΅΄'[ͺΪ΅‘3–M•—'~Οv•‚ 4ΌΰΉαmδX °@`ΐ 4°แ d·IZ€ :­ιHb 4’ρœAα―ΏώΪ QΑς:˜€₯„tΛΟΏ₯5ƒ΄ ψ#ZΐӎV:` L 7ͺΩ ζ˜β­~λ β¬ˆ©¨2 |βJύO>ϊ˜”}ό­’›κΗcǐƏ3~‘έ―:ΛEOω³sFΜ¨.‘[ςv” i‡°i΄žΒΜ!%iuhά:› .ˆΈΐΐl7(˜άŒ;ΰRΰXύ—Ξfβ맍 jtο £²‘p―ƒ#™Ί3C‘dύ ƒ-M”Ε%aύG?t«ώ&WϋΒ>6hπ²³’`°‚½δkω1Ψ―vζwˆομΣί”Ρӎ|ϋΫ(K‘‚ΒΦ‰ΞοLQυε‹£Ώω.δΑ±ϊΗώθŸξ‹§₯Η©2ςοh0|φΩͺψͺα?ωι2pράsΟ™ς0Ϋi'0˜Ξ@ ƒΘ °φρO>ωd‹ο`Pβ…1 œ¬]‚0 (ιpοF1?ΡΆ!V± O@Kxφ£’L@αŽ6Fǎν7ν! +Τ*I •`ΤΓΰƒ>€ŠΟ’`σT‡rˆΩ¦]»¨:#yΠή’εVΧ`Pέ©νq.<ςˆδι ہůΎϊjΛPŽcœ=°―SZ₯Όμ§Ό.0ΰοvLΒ£Zζΐ;%ι³=;‘hμΞΑȟχ.”›±5kdν Ά₯z­ΣΉΟb~M™P9₯ά@ഏΉφ¨Ή,oΉε–Έϊ6Ϋύό’ Eb[ξΟTο'§šΚ΅smpu§\Ώ&$Ο––ΒΞ₯7έWj.ίkg)ΌπΤ΄²)ΉύAΙϊκ{;¦²Ηφδς¨οp‰„&M“ςλUΡIΓΪύφ‚³Or»‚ΟMΐψ‰Tύ.0*χ=€2Ύ•b&Iπ\₯σŒξ·ί~v ΟCβdƒ>Ψφωοκ”έ€|8χt§NΜŠγǏ|τβΕ‹ΝΏγσρ•ΤN……Q1όρ{τθaΗ:Έ‰²άx㍲#Ώ‚>~—€Š4°1ιΰ=|ηΡ»wκ"υκQGee₯-G(3πSLΨπϋΧTΚΔqΤMT­9'ηϋ(ϟU“ΰκ­%K–XΩFύρζ›ošκ?ΏρωΧη―KWλ* έΊu‹Ϋ›Ί’zs‘N¦ }ό"iQ—QΗΈ‰ϋΙέ7ƒoεΊΟ™3'­z .έ6G"τŒίυΟ/=ϋœ,ΤΙƒLJ oίQ֜~`ZeΚ·@–>>ΖNΉΩΡ½€ρ_’χ[’ άooe™,Ίςqρ–i»DαΕVC;gSžέy€ϊι­.Οi(‚τˆgjŠ*§κγΈηρC­}ϊτ1_ΙsG;uήΌy)ϋ2Τ€mKTξΥή‰mpV„iόΚ8ΙΐdξWκ(κBW―PΏj=Ύ·‚ΙlK坎w››nΊΙ&4’>«:όρφΎJέΛ>V  P}dΏώ2λ’Η%2―ΨόGΫ›•ŒΦΡΊΜ"%ωηƒOΓςΐγΡΙ4ΐΞ€Μj: <x¦-3ωΗΉυ^&bŠμΣkœZγ$)nϊ›ͺ”…o~%‘of‹¬([W`υΉ€Η­ι!™[E'ν¬ΫωΫ~ΐžΪXρΥηίΦ°Aj›ΌΒ_+‘·ή‘πτ_j”5Y>ΆFΠφƒΧkW©>β`ρ6o§Bk%γΛρRφφϋ’9cΞΊ¨Z§WnΩIς=@Όžέ™Ίn_β7…W~ψ©δŒ+9_ŒΧU@Τ'ΔΊ°"M˚φ’ά³΄@‘K_xC²ΎΡώf~hˆh_jNƒqˆΦ'[ςπSX›ΓΊͺHHWxτ4ίH³")λίW_νΗ.½γ>Ιϊnͺ_ΥͺΉδΊΘŒΉRyχ#Ϊ·1WΒ₯e*κ‘mGΪtΦa¬MϊΕυλο-Θ—5G Mϊμ%«ŸSΒΛVHΖ‚%¦½Ή¦\" _G4ݐ¦sښYςς€ρπlΦώ ,Ππ€η†·yc`ΐ ,Πΐ€η6xέ&i;θ,&Πaœ¬ƒ#±ΰtΣ =}ϊtSί`„Ad@ާ“ϊ·πό[[4H/°@`% ΰ³t.β;ƒΞlg0(ˆΐΰφΫoΏΞ—/_)ςΛl ͜+ΏŒ'=~Ÿuψj₯‘=ΎΪνλ*“ΪTyμPŽό\΅JnΜλ%²ZISοe‹λ dL'Ί‚=¨σΙ_uαDl°/ηPΜh Ρ¨Lk΄©m»2‘>Ϋυ·©tΗ·G·‘mjoϊiiŽ)I7Gah@δAλΚ€;“žζ&±») t­8X³- `MΫ~μ†ύμ·Ζ3[κ>έ^ΨBl;^γpŽ¦‰½C `Ηamέ° h ”RU°κ&ωΒΰ:ƒ³ΙΛ@n€[ξG·t±[f˜}§ιͺ#FXœυύ…:Šd~€"Ω1¨>£ξL;…v#>ƒμ&L0ΛΟ3J3€–S(sϋκϊ@˜{ˆ<λ;aΣcΐžs'+ 0@ήzλ-<Ψζ[§ Ι6‘x~’Π°/ηη”οh“ωα?ŽρςγXΏ=9.];юδ|œR&ω‘Δ3»$ωΤSO™œ©ΫWΧ§Ώlδ“κ}†ŸCe.•2‘@J›Φ―ΊΎςδ‘ΞΉpŸ€π―Ψ:ϋ ΅Pw=ύy$»v΅%ύlΰχ€ΐ3iι$›Uwό[M˜b)Wo±Ήδ_sžH~κŠs%χŒ¬1_ΫρU[w–ΖΧ¨’sφΊΡΠ§_IωݏΪώ¬Ώλ@gŸ¨Κmώω]-ΐύ—Žί%ώΜ™3γŠλ< (`βŸρξYHœμοc²ο©δ…―wΎ:βΐe’ω&ΰΫή½{›:$Η°ϊΡν·«x€B1y₯γ7yyV0Nς”‡ΌοΎϋξxn¨kΦαΛ€΅ ”πΕAΨψ2Ϊ{υω?\œ§‘408Π²?0ω™v"ρŸxβ‰zύšS€ζϊF;°ΪŸϋPτ] Τ§ΏΒΕ4sνξ%μBݘn½EΪιΆ9ό~–σΑ\pA|Y'_•<τ¦”Ž$Νοψ»δΆj–r›γδ~ΗΘ/§=d§ή₯½΄…Μέy'~B.Ός1‘%«΄­–!­PvήJa\_ψ£ΟΎSKιkd΅ͺŽ+Ψ†Š4 …£ωs€΄($Ν_¨TΑΎo( MiΦ 5ΦΎ5ύ3PZ!RT₯‹Ϊ·‘ ΰhύc_Έ@ZΏΣήώΟΚW\Q―£ΝB›ϋžφ~ˡɚ6mj~φ裏ΆI‡œJ]ΎŒv6~)gτoΗ/s‡>"{ξ(Ÿη”ΦΏœΦ‘5’Υ΄ hKΉΦηΛxχH· ΞyψΑjςH Ξ—aΏtۊξ]…ν©ΧPnΖΦΞώnbdd­ͺδ+ŒυύŒŸlb§+οLΨτϋπ;ξΈC.8υ,ωyΐ.š4?fwAA:£0―†Βσ‹O>#3ΟψDΦDaάvWυ—'ΗΏ—R]ΊGχžκ“¬iZZυvεœ}Οώw&RΗρN€}©?© κ ΐΘGΡ_V•’]χά=ώnUW|ΆσNΗ=ΟD$·Z‹Ÿx?ΉUaŠίωV–=ψ‘½[·ϊiΤ₯•;$ιη'_„εžG’φέz‹ zΩ:Ψ™gξ…Wή*–§_‹ͺAŸ|t¦q ύ ½‘rκY—°‚Ι‘…‹jδλΪΫώώΆmWίΩwO‰ͺ*Ν ‡¦ώ$₯oΎ'YίN’PΕΊη6RT(9υoŸέΕkΩܟdο‘ιΊΊΓϋŸHΦχΣ$sΞ½Λ=8κLBτ5kG³ΑΊͺ\η)„δi‡³ΑΞ@·ϊ»ZΥ>"t.λ *€Ί(6‡τΌBΪq-ͺA‡sځBιypžV@…¨=MWt‰Βˆ–%€εU ΞΞ”όΒΛΫ`ƒ„ΓR’°¬Υ€ΣZΚΒώZgΪw΅­§@(φ›οa΄ζ7@‘^, ρ©εΨΤCΦ!}dυ1G¨τή{οΥ(. ΐYσwuιΘρί›κuξUJŸ?aΤ@Ω’«dνΊ“τUΐjτθΡ5ŽOφ•·οRΞ™=_²»m%ίNWκτΗDζ^σp,w}Ζgψ£Ϊw@ΤΧ8ΰ¨θfYf@λ € ͺuπl=ϊθ£rζ™gΦ:Œ<€Ωzφμi0δGΩ9Y™(?JΓ@uξ8†Α(§,ι–Z&ξ•W^iυ¨^S–Ί°ŠΧ(e›=VΟΟϏϋˆυ•ΙΩ ˜ψŒ@|γΏώυ―Iνuο½χΚYgeη}Έ/RΎΦZ6Ξ—Ώ+V˜ΒZ²ϋμΑ΄Ix؊v**°¨©―Loΐ,ρNϊœΟ!Cjΐ‡Ξ†@(’·ΠΙœ@$φN%c0A0ϋ HΖAžώ<―π%¦ώπΗίΠοuΟ±½7?’ς'_3i^$yΧ*΄ΌYΛ”³σή-ε#^2[ΥΎ΅4r±HΑ:ΕΊ’?-9ο}j~4ϋΚsΕΫi›”Σ"n\ pγπL$ϊΗDΏλžΕΝ;[‘Έ_·Ωf›8—ŠίπΘγk‘€Ώ˜Lƒςh§Nμωε9f΅žςE₯bV΄p ν~ΛΰϋFŽiΰ*>σ’K.1U}”oT•c§ήθŽΑχ‘7iβΣn»νΆ΄ό†Ώ †οπCΞδ€|ΐυΡG™ς1ηŽoϊρΗ 6Kζ7―»ξ:σEΌ—sξψ§T}eΒV—¬L” }Χ]w™š«σIψόπI'TλΰκRΤ0Ά]ΰ˜ηŸ>ΎςƒΫΞ'u «C>ηAτΜ€l|§œLκΧ―Ÿ΅π«œ'*˜¨¬«.uυ–«ίiS‡%³§eξϋ‡ϋ„ϋ–{ΐypΧ…ΎŠ{ξΉΗ”E±“a:΄l#•™ΪŽΕ­―Ν±Ύ}δΗc†Ϋd½P§fώ&…<ΦΔ’tl°σ’2Z\u΄4ΪΆ½εηηxφΫ"•οž³FΗΰhOαhχH:΄:ΊΨ<€Χ€εΛ78θθΠ@HΔ>υw³mu*Q8:¬0*ΰΝoπαψΊ|*κΞοrŸ3 ηŸΛ½Κ]\«L€ε|­+ΧϊΚTWΰΨΏŠ i»€ ρ}Ψ™ς₯ΣVxΖηα£π£?ύτ“½«Sηα‹˜HˆjάΈqΌΝΞ5ΒGαƒX₯ΐ\½ΏY½’Δ ξἎ­dΚΜιφŽΖJV.qΎŒςΆjΡRf;B*­΄δΊ`dϊ™χKξ5‡Λ.=wMZ_Ήόά'οtL†|ύχ δη~1b„ΫΔf¬ΐϋΨΉgž-ω#&Hα_zJvNρ8ΙΎ;λΡJ½Ξ"]:VΚ ƒr¬ Γ7πΜώGž^%oŽΪθ²ΏgJ―]GŠθοžϊςρ³dΩ»Δ›Ί(Ί:YμšK³w’œέ»HHUχ7VTŸ7–eƒt7 ¨Zrψέ%όώh ϋ‚«ί}›¬Mλνif€ο~9 w΄OςγΟeν;I†Ζρ €oωέ€ρα}ΕΫΎ›φΓFΫΎρύ|‘oSΑεU}&Y“¦Y3 tζΜ9’±b₯­ΨI‘ SŸ{šx9TdμxYσΚHΙXΈ$š”ΎΧ”wίVšΫO€ΣζρδCΟΏ!ή°z^nύ«žφΥVvι Yg,‘ν₯ψΫΙ’3ζK…³'Gαl}—¨lΧV"Z?dΞ™+™‹—Z?­δLΡ΅sšiλWV]₯ύ‘Ά­%ϋτγDTmZTΡΉμͺa’ρσlSvΦH ―>_-Ÿ§ŠΠΦΧ«6ˆδεΘ™–Ιs?~Ορ«| ,Π°€η†΅w[`ΐ ,π;X ž£YΨ@ ΐσ.8,°@`y  <ΐpΒΐ. @*bΩAUo+¨ΊΫή{Ω 5ΐσi­;IΕΏFHh•‚Β :‡Κ,ΧψΪ)νUλ€Z¬Ϋ•‘­S::Ψ–‘‘Κœ|ΙάΉ«„:Ά—―>+ίΟ›+·ν*GΙΦzMB =/“"o¦cΐtXE‘ΩΦBΪα \¬JΒιoUY†Œ&/@¬šq=?O‘cO/Wgνΰζx‘"ν Χe«Z6“‚-:KFΣ"…£up8«ΧH¨Lah(VEΐθ°ύΦν±ο‘2Ύ+ΜπΑΖ^ΆΒΡΉ Κδ+”¨ΰΡΏ\i¦΅B y:€§Ϋυ/€Λ Ί8φ›;Yν―/Ϊ‘4 ΘΚ5©T 2ς[Ώσ[ͺbρτ»Σϊ›ν@Φ+—κE5ΗG[§<°S ΘN `λώθρΡx΅l’Χ¦ΰ©ϋδ©W_1υ7”Γ,X`ƒυF(o<Ÿ{Ζ™²ϊΈ³νZ‡υΪ4yπvSˆόξY=ψf]Ό±Œ0ygΌήT_zΕMwφρGΘk―½fΤΟ?lj\@t™l&dΊΏλξRzνmΡλρ―›dξόω6`ςδΙ =0xΞςΛ{ξΪSV ·\pšδθv «ϊΒΚ•+mΰ=oy±duμ K–/³43ΨG`ikžEΐ1ΤΓ(#ƒυgLL`R BλΦ­eΩ²e#“\{ν΅=$ΜT3fŒμ»οΎ–υuΑ²DΰΚ¬χΟώΣΚ€š5vsπί± ΠE2;z?0‹+`Η³\:ΆΊγχV[meŠςœŸƒ‘96Υΐ1”£€€Δ 2€ΐdχΩε—_.—]v™Ιδί«W/ƒΕQ E<±L„Ψ ΈΒ)†TΦq.άOn@X™{₯Ή]»ZΡ±0F*aόψρ¬€r/ΉτLξ~σYΧ΅ΓΦΏu¨xΆό&N•΅Γ6΅$όkΞ₯§‰μ€ž)οΛ‰R~§―χI€ySΙ»αb‘ΝβG—ήt·dižN$ΙΎEαςΝ7‹ο Ύό~ΰ~\@KζwŒ˜ΰΰ€2Ϊ#Ό©zλͺŸ^hυ++μΒ;Ζ»zŒόχŠΙ†ώΪρ™@ί؞λ¦ΞθΦ­››ΈDώΊ©gh§pΏŒvΆš_Ψv—lY9?˜.eƒv §¨_)εεεξ›SoΡaΕή©¨£ϋΤZΞή=‚Ρlφ}Ζ[QϋνοS°s.υ6ώΉΊ›ζκDΪ#ςΐ3θïגּ7ήΟ…±³k.Ξ²Ύ½Υ_ς= €Η5―«Mρό{–\€z!D4ι#²S©΅Ί»εξΡu«Oριπͺ>­~Y ²j΅EφœT_7UΒιμ7ύŽ oa[r»RKjρ}χ²Θϋκ§{ζΛ™7“~ΡxηŽΦβ°!Α€ύ•>B>ΙΠΉ•ΣgXφœORBl—ΝZ΄Μ²τŽ‚ΈύΉ‰Β–q²%N>ΦΦrΞ}υ n€&Τ£šΌa`ku‚|w›"bp!Ήh©Υ_|ε̚'Aυik’¨ΐκτ^—h£~ϊr%$‘₯φATοϊbλvΠD­Ύ’ϋΪ[[΅&ΥΏ­ώeϊj-·h½VP<τmΧiςYBiζύβΧίywŽΥή5Ωb¨:«ο(:’z–> ξΤ Y™0!5θDaΎΫj½=όδ!πμ¬ώ -°ν-ΟΫήζaŠ‘B „-Z ΄ΐ6Ά@d΅ipJƒ0z@]yˆπ]~!·c‰wόρ'nΐtόr― μ£ώxϊι§;U<ΤΥ€Ί;μ0w<ΏΉ¦ l‹]ΈχΨ°8Ί{χξNiΝ#Γ’ΰ(Φ‘Ό:xπ`—nπq!Ё<,΅ως€oC©t€ΪQ€γ8ŽGι™tP{% Ζ ΠΑ1|\}υΥnΏ»w³g;(ƒςŠ/(ΉυΦ[˜h€š+JΨ H‡8;QΖn‘°}ΰZΟ3± δŸ8VPJ₯œΘJ}δ³q^9ξΈγ6»w+Ÿχu~7 x&βe+¬κ—cQ β—sO=Ζ"GΤό$?όΔͺoΈΣMΠHjβC‹k+y°Yε°κJ-»p±%Ψχλ1–Τ’υaψφ,(Ε€ž5ό.Ο j–ΐT@¨€$́†2… \ΓσL°Οσ0[Ο%~†gŽν΄Gx–ρ;ς1lΨ0!.γ(4γ;ŸnΌρF71g@ ΐ–φ°-  /ε`?» ϊΈΛΔΉ’’Β¦M›ζ@dφ{ΏAG@•Ί Ώ 4κ)6!p œΓ5sΎˆθŸΒu‘ώ ˜œxπƒ@~€έ¬Ι7JΒ@mΤ·¬”@ΰ™₯ŽαϊšλΛπ_Ψ–σπOψc&ΩpέάSΤ4QΞΔwϊkΰ»δϋ΄α™˜ψ(FκgŽα½RκFξχθόuώΐ΅pνΤAήNψ]™΄‚;Q—g³Ι6ΐ’Το@ι(γρΥ€‹½¨C°!ρS6›[žπηΤ7”MΪ ξ'Κ·”Q€DςM O“'OvΧ†2(~ώ_΅9†τΆάέ»X΄νF•{Yΰ€mΉ`g[΄ΪM l{ωpΛΩ£GΰˆMΏ†ΐσ¦φψΦ¬­’Β.ͺΝ‘Ζυιdο(ΡΆd&3~έ ΅D§-ψ9­$-`PΊκ׈ԣc­ZZ–”u³EXIGΎ‰ηΒ½χΕwN’Ί->Ÿ0rδH;v¬›Tί€ύ‚ίΐχy7S<ψΪRΌ'π<ΠΖbB Οnπ%‰':Xšg–Iž7 ]~γ_ρSψΆΣf²E+-·΄Ψ.3Ϊω-ςΔ€ίΞG5ψπαΞ—1ραοO?cu³>³OςλΣ~γάsΟuN¨'€eρο7π}eeeiŸ?pΰ@Χ>ηΊ―9žI<ο/±'ŠΩ(φπƒƒΥζe•ό·_±„ϊ ߁=Ό8pšxI_ιλXίήbγρ›8˜δΗuSgΰΓYΉ€ϋGΐNΌcph‹67OψJο_™δΓδBήoΈ§LΈDρμμ4κL[Ώ άς·οhgwΆK›ΙΧΤΙΤ{Τ ψκiπ|Ου-μα9p“’ϋyŽα~ψ6;ΏρΓ­ί_eYCvtχŽ:’Άρ„ Oωΰ]…:όήΟ²ΦΧΩ’υ«Σu)υ uvβ=‘6ρ¨K™I}\NžΘ;“©/ωΝύcU8ŽύŸΏŸΟ7ή‹Ψ„{κu/ΥΜέΞnΗ\ΑŒ‘)…gζόqͺmΞ'9–›“4=ΝίwqcΌ|­•?ύ¦%ήώάμΛΙuDZ 4μΧΙ:ήί²{«?δ ‘κσ7dΨ0ΪoΖ ?·¬§§ZδΝwSN’!•ζ‚Ξ‰ή‚RsI«ψί©–ϋ¦ϊ"*S°0Q±ͺ^ν^»YᑇZ2 ²œΎ˜u•yχ9g}΄@}{'yΗτ~“]φyͺΟO½ΚIΘ‘:Κ’RmxβYΛ~sVϊœ„&?·8φpKΦ€`Ÿ¦ΪJΥ7ίa-¦Ύ”¬P?ZRύ\ρβΦVί΅‹ fυ‡*DΤΧ–₯>«HTύΗΚwμΰύ₯ΠόC«zΰ1Λ{N“£θΛT`•ΐxΧR­d¨ οτίκ7ύΝqMΒNj%ΏΪήΫ[t…φ©8K‚!ΔΩ λBt£^i7τG$ށ°B’S·* ττΊύuώ‡!πμ,ώ -°ν-ΟΫήζaŠ‘B „-Z ΄ΐ6Ά@ύL7Oj―(Λ―` qͺ  ΰhA:ΐ  `ΚPŠ/ €@e@,€ ΐ”ΝLψ|πΑτ½γϊPDρΩƒl” ΰ@Ώ/₯aο`Z@‹δ…ς7~όx·Ό:° π70Ї8ΉΩΞ5nθ€0RΨηΧΔοΆsο€ΥΏUΰ™ŒΘU^§eΝ” P·ΗNVxιYΞ'» βOrΑ"«ΉξvηρΣ-Ύΐl‡ξ©³4ΘX}ω ZBw΅ΕKΪY‹›―4“O Γ·cž-Ti;ΈΙ†(§œzŸΙ&ή‡s|ΠN¨o»:Β'ΠπινDy:σΜ3m€ζ΅E°+Κϋ_₯<‘&  ξλχθSoXΝ;[‡›Ο±INNΧοά&7Q.Ν!(ŸςJΘV»φΛ.έXΏ Θs3 έήΝ;qνK.”²œξKρϏΆœ½6?0°%žΖψ~M vΚΡ‚£¨Hλ 4ŸkύD”£“‚£#λ5AUκί_;¨ύζT£ τ%(ΪP’ΦgnkuΘ}ΎχώΉnŽΟg"“ρUψ>|.6NƎλžΪNLaβΫyOΕ3ƒsπ―¦~"ΰ*o˜pDΝ οΗͺΏώ­yV-EΖβ‘{Ϋνοq00i’βΏS›R;{μθ΄ίΎ-V[מӾΝfο0€·ΎΦΨηSΧΰ‡ƒ>Ÿwoήƒ™ˆA`²υ§χ―ψx&ΨQw09˜:’ΉvΒ&δiαΒ…i[ΰO;ν4η§ΉGΖL`$o¬ΝufΚυ(φΝ”§―β_Ή?_%Oη8Λb‚ξ£ΌΧλ'NΉp}κ"Θ‰ΩάΟζΫn»νζlH[ω‡έw΅„ή›ŸόpΖ&ο*;&ZۊɯZΙYΩΗρUξΊ9‰w•Εvί[SΣu)χ’€^οΗ++UΞ;ΨΪμϊΝκRμΗύΘΪ}=Kž˜ΐγλ΄LΗΏ3;bΏΊ3;w* vΞas“aKΐ3'ρ:|εlαβ,ΝwNΨΝcr¬C»ο‡MFόέQ7o™-ŸϊŽ%ί_lΙꍓA"mσ-²g+=r€ΕJ6*ΐnνΛ¬›³Τ–«ΎOΞ^*ΠQύ<υ7D―ήη―S‰…C dΆ@δέY{ζο™χρ&4n«³s³ώωΈδ^šœ:d°EΚ5ωΩ-«lρΖx΄ΏwOk9μ`ΧΟMΊίΈSίVjžΐθυ/Ώnٚœ¬šτξdQ‘mΠΉΩΛΚ­Ε ©6«?ΤΜUώΐςN<Φ©GgΟϋ4}NΌg7kqόf«mΉVŽqύΪs-Άx™eΏ?Ηr?šŸRl&ςώ€Ί.]₯ΖάΙβK-Ώoo«ϋiφ‡²ύΒ‚kwΩΙb —Y-ͺ~BBRηΦοΌƒεsˆΕοΦEϊmΥ—œΠjτSΕεœγ];λ8υ§Φ©ΝρY™EΥ7&•΄Υ§`gMΐŽV|ψ՝ρŽν]3ΚΟΜd9―j‘=όμίBΰ9}wΓ/‘Ά­"zQψώΆŠΆ­-ΓΤB „-Z ΄@hο‰P ChΠߎBΰωΫ±{˜jhΠα “WΛFΤ±Όξ½,φωR©X8l8φΉ/˜pŸrΏ,φΫPPd7ΈD8ƒ·#»φΆΊSΞMζ:«5ΐ§"”—=` ά p’cpΧwν΄ΊΌ[Υχk=ρ ‹ulν“qŸAΰΐ%ΉΆΚ–y½EΨPδφ…F–X4žκŠžl‰ΚI¨=KυΧ‘Ν©Ni§φΥ@¨QΕF+h―8θ`FUΓΑΡκΤN)>k»”;PIJ˜YHξψ(#„κ°&ϋ ο«Υρξ`θ ‚ˆΏuˆ³œ! 4ŠvlP…–šΘΦIΑΠQύ’"DM uι΅‚₯S`4΄ΰhmσ 4υΦ  ,ͺ4£±ΐ@Σΐ¦ο€ΡlͺcΏZΛBzΠ‰r„B–`aπ?8ΠΟΐ< Y™ΰ.ςΞ ƒΖ@ Ccΰ™Ατ'Ÿ|©XzX-8ΠLΪ^α0  5.ΰΠ‘Rζ*΅€–€GEΞοζ ΨΟΓδωΰƒv `.Ky{΅Λ£=Μ*s ˜SΦ*βuφτ3ΟΈθŽ:Τ–H=x“Άό;o΄.<ίΩXόΦ+ΗXέkoZTΟARƒ>±έϋΪ£/MsϋƒwίӊξΌί‹—ΊkΚΏρJ›όζλ™σ€°σ―mMΌΣcoΌρ†υΣRDeŽ—o«ωΛ“–ΐŸι>ζyˆ•υΫ1m§μ6ω1‹³\ͺ V?:ޞŸ?Ο©«roη̚muOLΥ½Σ`”φ·nίή"Ї―θv%6§Άz“{wΠ^{ΛΣ$ν^μ\dΘ–―C‘ˆηS=TθΑ5w@ΰΗr/Pψ€lNŸ>έΩŠν¨„’lηa―~JyfRn=\L¨γ’VξŸφ“'Κ\γ{χ<“kΥλξ~ΐr^~Λ]C}η+\n"³6«ΖL°θ-ŸλΝ»ψt‹ H.ΆκK«Ήμz7 Yί«›΅ΌξRηϋ]BαŸmfό€Wy$Q )Τz}9ZfσΟ~™)pe Έ™Ά‰‡ίπ—AeO`0Τ’QάdΒυuKΠησŒL:5νΆτ\Bίwί}i8•Iνε'όu4Ξo&ŸΠA9Ώ0LΎάΔ©9ϋgš8¨‡¨—|FβΥνQρ φι²ψίāί`²vΕ ΆL#¨~οτΰ=ΐo`ϋ2@b`Aό[sλRŸΔw†”E' ²CE™€ο Ο”lΰαβO?ύΤΥ―AŒ:—‰¨ZSΫ‰2ελγLv B׍Ϋ"οmVE Ÿ‘©ςD{υfT»©W(O„`ύ>΄ύφ–XSiyϋτ΅H›§ΞΝ9`}ͺ7©ί}›CχyωΔiV}X―t½Ά₯6‡ΥΦΫ²k4£ν,[μHΛΩ―·KgKBΰyKΦωξ“OŽλ] (:)i@iΣΏ/—λSm&)H£(νώ ͺ,n)Ÿz -μ]n3ρώΨώαχ­fξ"AΑΉΦωΖQ6ι™Ώ¦}ώj%gΞΧ;DŽSŽ’$­w0Δ<ο^ι˜g”χBοΛπ•Ο>ϋμ&Οmtό* ΌjΏ?ž<σŒz0˜Ι•¨ι{švu~έϋ GωΧ·³h{φμΦέφήo_W‘§Sz°Υ7Oq&ΙνίΫ³»k3³Αϋ & gςωď― ϊ|όώw#ήEπ#Αz ιUΰρίLϊ Ϊ‰φ€oof²׊PΙ' κhςΒ?ώ—‰€Λ€vΙD:V:@ΉΈ©Z“Js•ϊ²²$ή]Wαϊͺγ…­-ΊΆBΫΚt}:Wy _3zΚ±V%Π:3εC΄]m‘dΎϊ?ΫH-zϋV'_ŸT?gΞΛ3-kαRΧ?ο€ώί†ϊεg—υ/ΡGŒ(‡λOVΏG‹kΞ·ΣΗ\αΪ Όη1Ω( ‘B l[ „ΐσΆ΅w˜ZhΠ‘B „-π°@<nR˜Εο­Bΰω{{kΓ -Zΰ«X`©”Ό€p±VpsVΩRΧΉx˜)$ΤA]/Μ-SΎ^ΖΕΏΎΚξ›ςuΦY›Δμ2dΗΎΆ‘ί!N)Γ 2x$εeKΥ³«s–…’³4˜ ,σWYΤΝVυ?ΨJΖΘ²Ί»νΑ?gφ±œσSn·θ¬…@γΦΚ–Y«ΘbνPΌ ct|ŽζIμN`r’y₯O6Τ‘œΘ\–β3yΣΐ²SrV'5*Σι%eφ'P,bΦ`oDΛFHΊ₯ ?ΗπFΤα 4ν:ψAλ0){h€LΫά¨€:ΥιΈn*·S…VηΎS…–"t²€½Y§R§μΡΤyίΘv@ΠΙΚMAi§*½TpΌ iφ»©ͺΩT <ϋuBξQClιA|Ζω€έώόœΥ \4 Δϊξ`v6 aPΨ-Uƒ¬N 2¨OM£.Νΐ ;ΰξίϊυλΣͺrσ P‡Ζ2¨ΑύVB P8Έ1FzΐIμ'ΨDΑ3·C€ΌϊΕν·ίξˆ€–Έχi2€r0°ju(Ο‘IΌ@ @Ψ_'O€^]ŒόX±Β† –V]u€„A™ψΏNεή+³bΟ£>Ϊ©εωΌΆΠVRΚ7‰ώ» I)Έ²Μ8Κp Ό―Y³Ζ|_%νΪ[}ωVυΚ?mƒ–/₯ εξΗΚμ’Va&Αζ>OiΥi©―ηLΌΕφ;τ§€ϊόσΟ;˜Γ―ΒΣCΠ/`Eν”Ηmߟt€}žΤ±ηkΎ§ :ΐμ™-Φy;‹΄.²μ!ƒμ²un …GώηN«>οJ»6~*έάξ°§c/Θ\#pbΤE–ύ°οr€ειOΏΌ~£BΆlwΖ)vί’NY δ―[ύυ·Yϋβ{4Ψ•P™Μ6Δ^\³ΒA;$Μ½/]ΎΪ*e£6G ΅§ίœιΜTP—Ϋ΅ΟN–D‘VΎ %ΦK.ΉΔΝ”Οφς{(αχκυŒlιήm6ΉρͺΏφ7Κy-/ίt@s‹‘Ύς–Υάυ σ‘ΙV–7ϊl‹lίu‹§ψ JV^u‹Επ!z&σΞ9Υlπ>©έšΰ³αͺ›ε―λέ gΑηϊΣΒΟmd _ŏ6šρL.Aρ“°₯I.ψKžβ*Lγ|ι<ϊθ£Βυώ)_mTQQτŠΠγž–ωs2=Δœ\`F9ΖE|ΑΠΨηίvΫmΤc;*Ξ(3ŒΊ„ΰ!° ¦NαΊ/ΎψbU‘_Άy˜–|S_’Ψ遀Έ›oΎΩhy#FŒΨ˜Nœ4iRΪχΎ›eͺIψCΪ—­3i…εLΗοyc»b_―ZΟ>Γ &8P.<“¦Ÿ€„f%κΎ²²2gwξ=π»k·Ι§rνΔέ\;5Ώƒψάβτΐm‘SO=Υ©n7Už°;jώ@ώΊ—,Y’߁ ©ΗΏNύΎδφg-:•Ε/;ΐvT}JhͺΝΑ$£ςkδO;γΫ^xT³`g⠁g¬†¦,ΰΪ/λj,ΎNΚ†‚ ω”ζϋ—Ÿ—K5zƒ•œr =;χMηπωΌ7ΛVύχ=–ܐ£ΪŽ:Ψ>钝φω<{ΕχΞ΄ΪΪ ς•Ϋέπ»ΰΦλpJ;jζΜ™Φ*G@΄ήύκσ²μψγw“ ό„ό«χ™|_ΠGΰW˜ΈЌ/fςMγv>>™ηΥ+σΜUϋv?yo­~ζ<‹¬Ρ»”&ΜεOΌΘ4Ρψv}«±—4‘mΟ=δσ{τΆH»VΞΔψJ ϊ|Ύσ.ƒΟc•ςιΧΗ>Ώ>€ζAnμD[šs ΌνD}ΛuyυeΪ‘ΨŒ|0ρ’χ)&o’:Ώβ„¨Ο•Ϊz*ΞU–S¦‰[J—•ήκ%b‘,Μ·ΨπΓ\ίeDjΡ¦ώΚκ+~e9ΜW%Wkυ=:[BB±υ§Πͺκr6K΄/vŸτΗ;u°ό«Ι μΜ籇ϋk¨πœΎ‘α—ΠΫΦ!πΌmν¦Z ΄@hΠ‘B |,Ο߁›fρ{kxώήήΪπΒB „hΚΛΥ9Μς}δœr³TΉu3…DλVκdξh…;KaQ’ΕŸKύBͺ±₯ Šœ€ΠBAΟU₯νά(°% Y|φκ%œΗŸ³Ϊ ’J²:|₯Šμ‚γu Œ₯%ΠYz)π™_1u4η΄²Šv½¬rηώVςΛ“2ΒΞΔ“ xf{|E…-;γ‹J‰)―΅Βδ2kcŸk°PΩq©-λ²—ΪsRͺΞ±δΑΟZfΠmΥuŒ'Τ) RΝNmZΐ!Πl2.Έ“h‚ AΩΡ„`^ vΊγς[ ‚h«0?k9\·„Έ§x νΡ€j²PP.೎γwPΨΫΚΫθ3!ΠΟΑΠRό†Ž ]* šxώ“jΨŸ,Ν΅±¬c<R•NΐΡ)PZ*VR—.Ό`€½X±Β)2͝­θsqƒ\^Tΰ}ξmWΫΎRΉeΰ–ΑόΣK{Zυ}nvυL@,.²ˆΚkώ™'ΫΎ¦ΟύιQΗ:XκAεON{ΑA^E7¬Bα7<)χ Ψp΄kΧΞΑd¦1μ9hΠ ΄β¨Ο0ρ=0ο/@fήΩ@8Ζ> ΄›nΊΙŸšώ6’"Ώ‹-ϊZybΨ`§.6v¬S†#m~ν4pΡE9ΘΞ«x›Ax˜ pŽΰσΔwβΎηž{6Q„g;°0Χ°αΥσš›'&ΤιyΫOωvΜΘΣ /Ό`;΅–RΠ‡σœΙΫsW=§Q‹/\dεz&W―pΛ—φΣh7ΡΊΔjž{ɁήV―² Π―猰?x7}οEr/'ΐ§ΒrξΊΡK)°ζΤΆ¬ζA‡œ#ΆgΪη§ον\©FΟΏΚ$ιΆ1ϋς΅‰{'ΨΑž¨Φy\ψ“Άnδ…ξ˜μύφ²u§Ÿθ”j½Β>Š­@D“”Β傷Ǐ:ΣΦ_ϊKχ»πώΫνβ±Χ¦οέ4βeΐωRΦΕNsu‰knqv(Z3`Q^’ς‰ό¦p“CψŽŸ”ίtΫφγGΫt@»a»ό&ί_xχm;ϊΌ³¨2ΰW σΛ¬κϊ»΄μ¬ό‰όrξ…#,²OΏζE!΄~άmϋl±;>οdBΗκΎGޟknΈΓ  V~€:©yq†Gm ΰγƍgΧ]w]Fθ (ΏBh βτ™JΓ‡0ω €ηXω4ΒΟ~φ3ΡβΟ8ž485}Ψ”pΜ³…Ÿηω&ήΖ?‡ŸtΖWςΩlΕΉ™|>ν'οχ€y©?ό$|{ηw„F@QΐtG|Nc_¦€/χ׈&==¨pΚ΅PWrΘ!.ό χ€Ξϋ²‘#7ͺƒrP&€™8°IsλRκNξ ΖξΚΜΤ ψδ πΜ5sΩΞ1ψ-κη``ͺ©Τ»xnŽ€ΥΉΟΤ¬A<™Τ½±WM%o¨f³-Sy"ΏψΌΖεΙO²"―[ΏW>#`τO―XαΐήΆϊˆiψ2S›#©z«|܁&)x΄ψΌ#,w”½ƒΆΛτ=Q]λ@ώ—fΌβκqΚFB |U ΰc•zmΪηί?ΩͺΛΎp`t\jyν[Ϋ’ΌΊ΄ΟΞν4ύs«~χS½WΤ¦&…5$š?p'›ΓŽΞ?±‰Άψ˜1cŒ4Pg¦έDxκ©§μΐφͺCΤΉόΏq~ƒΆθθ³/΄₯½l­"‘]4hgyζΞ—ψv-~˜η—69~ίό>ΤΓΒ€ <ΛΏŒ~Cΰwύό%–³[OΫgΠΖw˜Ÿ”j"δΪυΦbΠV«ύρXΔ>nqYšςωψJκ('_ΤsΎύΊ3ν`ςΓΚΤψ$ήYπ…„-Ω ŠΏδ}›xΞ=χ\›>}ϊfmk|ί”)S\{“΄ƒyΒFLΦl*OΤηϋί3ΫΙεP―؍ό+υއ‘UžoΙTWS_rM~5&<1!ˆ|r?y‡ρvsίUΎR]zΙ•VωΦ§RLηύxƒVYZn-JΪ؊½ΫΉΊKν΅Χ¬ϋ[λlέ )»Αιͺj­΄X"՟›΄ž]΅J„?AJ£ΐΡΡBMτΝWΫΖΓϊέV};–fϋξ]­Υ€(ΧM…ΕΛ"6ϊ†:«Ω±ή=kνΊΛ₯`ϊΦΥΠTή·ΦφxωZ«yυ[ύβ,³/ՏΡ"-eΫέ:YϋΓ4’OGΏy«~†ͺΟ[՜ad,Y½FjΞΟ[Lr2πώÑ͝Mοω ©9WJ‘9{ώΒMγϊn¬εα[bίώNŒΐ%Οϋ“œ+§ΏfY³9Σ7θƒœK}―ξ–ΏΎ)θ˜οΤWͺUΘ~wΏΕ«Ο€~eυ;Τ•t°Ϊ’ŽΪVnΡ Ε‘> ϊ!m[ H.Ϊ€O4YT`υͺί wκm•Ξ±άYZ}μλR’Zω¬β€£¬ΰ’³7Š\(­šq·Zξ›ο©oV+ϋ‘·6ΕΥχθ*Ω¬–>tυ/+Νϊn­ΎC;ΛZ΄Τ²ΏP_Ήϊ‹q”$Π@ίcήεŠwηΠ[κΣ5·¬Ή ΤW·ΪΆ—Ÿn)Pz΅ϊη΅βžbM¨^·m₯-Τ· Œ­Ύbϊζ#kg+œW΅ΐώς !πμ¬ώ -°ν-πΧ\'@IDAT읠UΩώίΩέ[’ά–ή …„5t"Eΐ j>₯¨E)" T>ψ*M)*R‚tB z $”ήI»%ΉmwηόΞΝΩΜέμMξ…€ s`sw§œ9σΞΜ{ΞΌηwž|ψᇑΕ)Ά@lΨ±b Δˆ-[ g~ύϊεΎΗ_b Δψ|-pηwΪψCΫl³ΝlΚ”)ŸοΑγ£Εˆ-[ΰ³Άΐςj³s¬z;–š³ΐRsX°ͺΎΰQ³e–ΠΟ›φ΅ΚνFXP^f‘φ­{ιuK}8Λ‚¦ζVϋeΛ:›₯³V΄p‘‹>ΆΤˆα–:β@ ?^fAY —°τ?Ά`αbν›ΆP%,0 } ,CKZ½ϋξ–%R–M•ZCi7[Υk¨­Ϊ|+λsΑΡ–Ψ£Υq£?vΩe{ηwμώομ?ψAt•e¬΄?ϊ³%&Ο²dΊΙΚΓVΞ±D΅l²0“pΫSͺŒ~S†T²QεϊP%Υοli©…EŌaq‘ΆΧ>­οάΙ¬(iA&cACƒ…K-«sΆ„φ«o° Yη$,μ΄fyQΚ- •—Βb%%²@VeȘu*QΎ²K4)ŸLΧJ uMΊtοf΅υ«έώ‰Υ–\ΆΒ,›nέϊ{2i™ξ]-Σ«»e{υ°Κ-†ZΨ§§}{[XYήzΫ/ψ―ΩιΎϋξ³―ύλΦ«W/{oΪ{VϊΞΦΤيy ¬Hφν|ΤAΆΛ»ΪΤ©SνψƒύΟΐ-­ώζ»ΧΉ_σO5Ρ»‡•\{ΎνΊΗ6yςd·οϊlfυ·άγ6-ήg{~Δ¦vΘ!‡Έίόη?νΘΏbΝ³η[Rv[Wm»κΈK–,qλ_zι%Ϋd“MlΣM7uΏΟ:λ,»όςΛu©²ξ^jΠ}ςo|Γyδ·ώκ«―ΆSO=՚ššάoOMMυνΫΧύΌι¦›ά}ΝΎ€¨=ά‚5μ°Γ6dΘ7n\nρUW]e?ϋΩΟlΑ‚.SRχΠ9ηœcW\q… 6Μ&Mšd,{πΑέ΅8μ°Γμή{οΝ•½ΈΈΨΧ‘GiεεεφΖoΨΰΑƒmζΜ™nwνή{Ο:uκd‘žϋyσζΉεΉΒκ ϋqoΎωζάβ½φΪ˞zκ)knnvϋΆ·L =?³fΝ²-·ά2—6ϊΚWΎbwέu—Ν˜1#·όƒ>pφα:ωTͺηώΆΫn[Η§psηΞ΅t:ν7mυ7ڍ;ΦΩ(”OΐDοΣΏυmkžΏHώD>Dώ"₯ηuά‹νΨcmΉΧ§N³’‰―YΠ(Ÿ‘σ+³·]yϋ_ν—Ώό₯»Χή~ϋm Ζ=dιι³άzΣ6]/=Ϋξ{όqgΛ­ΆΪΚ=­ ©σηΟ·ς›ξ°Μk“¬Σ/~lUlώΪ½ώϊλΦοΎρΆΰΘlψ[Έ²L›<Ε?9ΧLei+Ν­_e‹ Χ-mν3MΟΠioΏdς±³Ύ6Φ2=»υPΆ[•e»VYΥΠ!f=ΊιΣΥ šŸ–―΄UΏωƒ%΄<ƒ cv³ͺΏΏUαίΊ†΅ΑЦNwλwίή*ͺ:D~ΏϊΞϋ­Σ½γέςβ3N0ΫeϋΒyΔK7Ίπq§všύιO²|?ΓΑςŸνΧ^{ΝFŒαόμϊ Γ~}τ‘Ϋ6»ιΣ§;PθΉN₯RVTTd'N΄½χή;·λΏώυ/ΫoΏύΦρψΒ^xΑFνΆΕwn‘η(C]ίFjΛoΪΙ;«―wό6ϋίνΫίώΆQW°Ν¨Q£rΟ>~‹φΡ΄iΣμπ»Ψ=χάc_ϋΪΧά>Ή…kΎpΜϋ_ώς;α=Jψθwί}ΧΊvνj΄½|{β‰':½fWg/꒜/“οωε—[Υ₯Χ׍³gΟ^§.έ~ϋνέy`sρ™gžiΏϋέοœO?ύtΧζ£ΎρμΚΟ}γ—ϋrπ—γ`+‰OΟ=χœ+?υJ{ν„lΥΡ9qΜhβ|ΦgΆΕ¦ά#Ο?ό:χӐ;F4ίΥο—]nu―Ο°d…Ϊ›VΩ7ΏωΝΆΫ*ο’ίήeαΤωξp3FobΕ;ΙηΆ#₯η-³•wL΄+_yΐ^^:ΓNρ;yΓ-¬κlAwωꝭϋΠϊ^f©T¨Ν§Ψ,@»π”SNiΣηγ‹πέΎ=·ŽΟ―k°LυjΛΦκ}RŸͺ½·±#υάγλπ}ωΎωžžίω'όΑΊΟvΥ3χΨE]”k»(ͺ°ΜZ+ήϞ~ω;πΐ]©Ιkς[“lΥΕχκ½PοέτŽ\œ°βM{XŸΓχ°yΛ–Έvο€_ϊΧvα…οΉw˜vψγ;ΖV?υ¦ΥΎ3݊τΞY~Ρχ]ϋ><πωGο±Ώ-Ύχi«ΪaKKκm‰^UΞ/zθ‘φΈΪΡ„/€έΎzυj·ΈsηΞΌλ³Σϋ￟σνΌοψsσωR―<όπΓ9c#ήΙ+*dΓHΗ5>ψΰƒΫ,οAώύ‚<Έ>ς―Δoρ·ν-SY™—κΖhβcƌ± &Ψ·Ύυ-»ύφΫsυ!ΎšΊ‰w hΪΠ»Jt[Ύ――.νΡ£Η:e*Κvΰa‡δΚτχΏύέVΟYbΩΊFΛΦΤλ£ϋ]Cύž9u©½ρR`Εͺχ³™EΊ‡ηκ]­υ9ζ—'ϊ{aύJ;ύυΏΉEοό「ɘ¬h³žΡMZ}`FΒ~ύϋf^[l‡vΞiŠύ—¦ζχΪ’Ηή΄πνyΦGβcͺϋ; °>‡ξlΙ>•Ÿ‰uš§.°%½jΩ) ‡[ΣΆ”OJŒμo½ίŊ†υωLŽgϊŸi`ξ|K<τ˜%^}ΓΕ$όY6ΆρΞŸο›­O«I¦,΅x©bΜ-υ ydΛ»Xι~{[vτnfύϋΆd»Ίή‚·§Zν„υώύ‘bkc`‘b₯Ν[nneϋμnΑ#,μ²ΖΏ¨~HŒ֚oό«͜«Xϋ–)VŒ΅¨ΤL1fŸ\άU1ƒlEΉe«Κ-£˜v™βΣΑ MΜψtU{τωW¬αoχXκƒ–RLONΨ‚k>ΔRΧ\d6XmΧΊΥΆόα'­δι¬τ₯7[b»r|aͺΘ]—V’΅5–HλΩW7T·κ«ϋY—FZγCγ­δ­w[l‘ΨYγΦΓ,«˜c§ O7Σ_—.±ϊS.΄’ΏΡρwήVη[j©YŠ1Θ§P„βΝ₯Ε–ξΤϋκδσ»t²L^ώT-ΤΉœ8σU»…ηά»Π•W^™[‰-[ΰσ±@ϟ‘γ£Δψ2Z€΄ΚΚΟζeΰΣΪ£ΊΊΊΥΛϊ§Ν/ή?Ά@lΨQ ΔΐsΤρχΨŸ―bΰωσ΅w|΄Ψ±>C (8|4Ϋ€εV ¦ΜΆdsƒ ηEV™znΆPTV%1Ο-έƒ K'Š΅— n>‡£pN$U6š% ͺ«c)Τω…κ$ BEΈ• Έ‚lTG2‹Cω τ› ρΔjHIPoYA6ΜbgAu.iŸ@ΰAύlqΚ ¦8Ά•²έ»κΊυ±ςώύWyΥΜSG…:RK—[ x}‰Ž@θLΟξV>L`K_ΞϋθΣ―7½²λΫυί²ŽN•υAF@ltͺ{h *_Ιΐύ!€Ώ:`Bžu΄˜ώœΏΠŠ –{€νΊϋξkηΓ­ώΟw·tψΘΆ]nΏΖφΪ?\a€σΟ?ίΆΫn;›%˜φŒ3ΞΘΩ„ϊIoΎe=Τ}ώ-78P˜•G}΄}η;ί±εΛ—Ϋe—]Φ ΄}φΩgmTI… ]3]@Ї °«th.Žς0nΤδΟqxH€{@½½NλίΏΏ{ξΉν.Σΐ%&H”˜šHά cω’E‹ΰΜφwάq‡ƒ¬ο<Ψμ ΞΕ/g{ϋ'yΥΦΦΪΙ'Ÿlΐ$ΐB@°Ž–‰kδ™§Ÿ~Ϊφέw_pŒΏώυ―φύοίε4qΓ 7ˆε]ϋά:sC’ΰˆ?χ|Pkd½vδγΗυΐH«ϋtΝ@ω`~§b> lβax²α^yε•WlΟ=χ4 Ή7ί|ӁŽƒ ²[o½5wζ‰tΦ€•…«j[]»―r¨5Ϝcs;―…Υ5˜ τυΙ-Ο~kl¨-βΣBuFž~Η_νΖ—Ÿχ§ΫΏΫUu·I+—9ΰyφίXο>a‰žΠn υ©2Ψ¬ͺκώ~ΏεΜqϋ7o½Ή•ς$ωΗΦ0bΑΜUΥόώ+~ύ–}G ΅ςsO†J΄Ϊkb%/¨σWί‹/ψ™ΩπΝ f/άΈΰžχΰκΖž)%°ΎxΞ|ŒύdθθΆwŒeέΊ8ΪAΡϊήmσM4x¬‚’Uj/ΗιΏΐ°?ύιOέ †B>Ÿg~½ΐsΔjψ.Ϊs΄!y~€„i“αΧ.½τά–ΐ­ϋΫίlυ›Ως^%Ή6όρ4@TύώχΏΟνΓΌΗοΊΟœψΗ–ezGθsή7-±‰0Ιq|b0γ•—]a5γ&Ϊ„²κœί˜*Έfά‹–YW½Λ%+Τφί²ΏνΊΫΪA›QΏA~₯:§λΪπω ΄2ώ}kxuš;tΨ₯ΔΊ|}_›ά=tνQΉDψα3τ£Ήm;b§¨ΟggΞ•Ί”zrν΅ΧΪ/~ρ —―½λλυΎ΅&ωA΄‘ •‰+ΐΨρ―ωΐσ†ΚDΉ’u1χuζθΡ£])œΔ AΞ•TxήΠ»Jtωsή΄ΓΫͺKσί#ͺŸyΗ>(«oU¦αΓ‡ηκgW°5̚ΨωΏK›ΖQ[ΧΚ¬mRq­]qωΡM6ψ}pY/›Y·Δmχφ‘—Y±ž[Y‰%Άξk=χΩڊ·ξίΟ‰δτΚ[]u½Ϊύ œ°W½ψέ²ΘΪΎ―asΖߜmΛΖΏeα{‹5}νΰΩ`ΣΦύ€‘VΊϋP½γ·γ€ƒζ W5ΪΒ^ΆμK3$6°6ώτ©°nο`₯{³„|Bœb ²@0ω]K<:ήοΎΧjuΤOFWPΏζΣͺΆZνο zν½‡πCσVC­σΑc,άq[Ε)T,:T aΥ³‚œ§ΟvqŸΝ‚ΛχUϋs[ RWlΞ%Εμ£9άχ/Λ<<ήRΦ@xΓ‰I:Ξ”(.«ΈͺΧnσŒ@β¦ν·°.{οfΐ́βΪΔb[₯gXύuUόzŽ}8ΣΐΩ:­ƒ“ΗZxάΡ–}μykx@Η{o¦%W¬΄d]5Αj rθ¬6E¨γ&%μ‘lΠΎZ*vW?z”uΊό\KHT€αR €~{š% KЬY±Φ¦­qŸwjKœ½ζ-²Ζ'x[ԎhΨo gtΆ’)ο[jΊΪδO±gL¬ ά6™ή±ȝιΥΝ#‡YΥώ{θ7±ωŸ±»οΎ;ž­βb |ώˆηΟίζρc |i,@ΓΙ«!}Ρ ŠO[ Ύ/ZYγςΔˆ-πε³@ <ωY\βΟΞt8§γ‰`qΎΗΖΉz'οΞΟΑΟ:Oh ixμ@Νχhβx »κΐ@ yBJέΑšNΨθ¦|'PŸή€―eτAΝΩuhΫκχ>΄δε˜O,‘κ Ηn+q~*wΨ»§ϊέ­rx‹*΄’ύ½ΦΎŸαrbxφf΄ΓΕC\άœ…@ΆŠ·Ύ}QδŽNfC[mv `Qh ?OΐŠi¨μΤ‹¬δΖΛμG§¬vσ·υΏ_}υU>ξIK―Q˜¬΄?_b[n½΅ƒ48—“Ž8ΪV\όΤ’{N*β•cΏnOz=D`νΏΛnֈR°ξΛ©xΏωφ$€sΰ²mΆΩΖ΅«N:ι€Dμː—ν±3 *Τ@d(ŸωόÁ~c‚$Ϊh(ΰM˜0ΑB€‹IlΨ@Rvb{―όΜvωpm?@ TQ)vοH™hG’iO’6ηΨ\pΑφΫίώΦ• 59–ω6§?_@?ώΨΞ;ο›p­:’vάqGVVκώXpί#f΄ΑgΥμΉςy+]UZ_ή‰eά³\ς³Ωξ•ΦπΥ½­r€κ»έTΏt5γ#J+oΎΛJΥΙIJ«“΄Λ?ujO«~s½ϋ‘σΡ₯—Ÿm!Dβτ™Zξž .ΰ>˜(τ,F Θ3Aβ™ζ ς` ƒ*xHΞίyfَm€Έ’ΫΞ;ομθρi…`gόΠpHQλψgC~ƒ]8ΚγߏͺωΝ³ψ `Mς° Ϋ‘/ΐ½(xΖωSoψ-”ߊ/ΒΗ,]ΊΤ©ϋίΌXΊ2%<ŸΔ—“3ΫjšͺKρ}ψIn^|ρEΫm·έά5ΔG{5ΨK.ΉΔAw\[μαg|°"Π4λHΨ ΏυŸ”ΙΫ©{χξ­i!;͚5ΛΥ½…Ϊ"ƒ2Α)3i}χSν£‚–ζ/΅§Ί7΅ίum)#‰λσΦ[oΌΏΪ[Ώ{5τ…—3{kΆΛ·ς[{[篍².]ςΰ·vύlΣmS›²|ύbλ―Ψi[ŒqϋςΟΌ΅)ωζ-@4κЁ€θCDχ¬°DrKh œ·Sόσ?Α΄cό3]Θηγ’J»mω|žΏeΛ–εϊyQξΦM³D(αiΗ]sΝ5ξ7°+mŠλϋν·ŸϋήΦ?ψΧή~§Υ=χΤv¬ΫQ»Ω}=θΪ§~ΪΊ@±ο;ΖfΰA\#mBχΊœί˜τϊ›V}ςŸ-δ=$Ψ©χM'ΫR^σsμΰQΦΈx₯₯ϊu΅z)ϋ6.^aύ?ΨJzTj­γσΗέx‹Υάϊ˜υλaιΉR|I*ό§mχΪV°j‘}¨¨;γS]ΫQνςUͺ|k{μ΄νΆΫζ|mΜ jοSΟπΑξψWށZ4vβ½ΝΧΉΤl‡ςυ13«΄*“|>jžΫλ_£ΐ³/Ηδx…Κ„v΄ΝM™:κ¨VeŽϊόϋΞ½«θ½‘^ο$Φ―Z΅ͺU»ίΓκ΄Έ™•f}u©ΛhΝ?υή³²6³oώhlLΡ™t’ۊ«³_]‘ΆΥυU–gν²σŠμΆ›―tο5Ρν6τw9iΚ―ώ¦ƒΛΜVGbςΛ‰Ν{Z·=·΄’ZR~™4ξΑj»ϋαΠω€ο٘½ΦBΎnƒPέnxiΊΰηIΞ]+0θ}xoλ~ΰvV²γ ΄‘S“TŸ?ŽUŸ7²U³“LΌτͺ%}ΒlΞΌV'υ~mα\’ V―{\ΐq¨ΣΡ6YF3Ÿu:h? χΪΥΝ&,ώΨΒΧήΆz©)'‰5+αSΆͺš·έΒ*φΫΛΒ-†θM1ΝBhR7QL;©ο%Sίo™AP>6`½Ž]3`Vρ0Ԑ‰“6ŽΪΖΊ¬ϋϋμΧύ+ΊώjΕ“”·”•Sσʁ«Ν©Ω₯›φ³ΔώϋZγ«“,`½&VšhΠqUo£Ξ*>Ϊ΄ύΆŠ§.Χg©%V*ή.ρ‹ŒΔ"R§Ž5;d? Ζ?oΉS>T τΚ:ΛtRފ·7ξ»«•μψ\ό!ΤΉ5=Λ©a“X}τjά—HIϊebјŠ²)6^RμΪMšΑ‘iΜ‚œ₯|έΏw«σ‹ηVζˆΔψά-ϟ»ΙγΖψςX€F”αώ’•:žΏhW$.Ol, ΔΐσΦυόo>‚Λ+WtΑ]ίΉΠ–=θ(fΚφ³Ο>;ΧΙJ ϋΊλsA^Ώ ͺ/@"ΎΣ―ΫcΰycX1Ξ#Ά@lΟΤ@`3ζ€sΚΝR†P/WΑCΊΐ¬‚·M‚›«7‡€ϋG¦ΆDεV€sΝD©8Ώ?cEΰPͺ˜ιaƒ­l·5u™­ΊλA+~ω-©\D`j‚ΞRΧ΄΄¦σ«©iQu¦4«Τ ˆβ§bΪ ΥΊΰ6J`ΔΙθ¬_AJt±>Rκ€€10bJ°sο-,]Ue}/όz»`gΡΰ™νšήoKΞΉSr΅s-%θΉ,»ΘΚ½­‘` Εg3κ„€fuΟ*ΈžTL\η)4›ͺs:ΫY0rͺX ]%Re–²³¦5Dέ9£~˜9)8oϊ  ΠωZ§e©@π΄‚ηΪΟ±ΙOΫa‘œκ³: ₯l₯°{t·²>=­vU›j±hΑβ6οC1Ex¦r¬άv+έR;αΈκ€μ―ώ`Ί%₯ ν@y•±­δT©Ύ£ž‚2tΥ–Γœ2t(Έ–γ|–‰eΰ(”z Py죩3ύ@(ΐ4:½Β3ŠmLανΤn«|΄Yψ¬–f=τοώϋοwςt¦GΡYOœ€v ”€H)•§ˆŽη'Ntϋ XŒΊεθΡ£]Όγ ƒr / “ύ5uφύτμΤ[ιWχ·U%]‡?ηΚ΄Πέƍ·¦g^ʝB™@ΜgΰΆ\ψ`Ϊ{–9α\ΡΆ-Jλ)©δ€Ο:Αv΅³³PυΧδ3˜"tο]l’ΐ1Ξ£­2qLΰ,―Œœ;p_(J ¨JS΄'«Ξωi’σ̈ qϊ:R&€9lΘύΑυΚ‡t€€’ν9ζœ9RύΡ:βRΡ6'χ!νVΤMΉ)“8gΦ{X™γƒηOUMώδœΘW›γΈ\€Ÿάύ€|}βτχy>$Ξ6œ+@ΟN;νδʈΊι‘G™ƒεΨ°Кη(ΰ°#ΧΞsδχiνώΓ?ά]+TΒ %¦• 5hΓΓΠΑςV;sΆ’“+TD¦Ο΅Z R˜χ±ΉœΈƒμφΧtΦr/0Εm·J§MV9d°όEΏχ‘5\9e)ϋ«C±3ͺΞκT]}ξ–R%Ϋ—^qމ.)TΜxΩF²ΟW:Δb…χχ‚ϋ|Φ¬΅κνψ,θyΞσΎ›η•ύάκ™&ΦσΌαgΜΆˆβΩΜΕW‘π·άr‹|πΑ.Άκ—(Έ€υΜ3Ο¬·.jί`~π~=`ΐ€0FΉ¨Ÿπ+ω /υΌ‘0pޚ}ΥΨHx&/fˆϊYoςf[|(u-ι“ψ2lΝ΅mO]JπΨcΉk㸁<`ηύ+Χ”Α9ΡsηΌ©sρ‘ήηwΤNlίV[„"rϊA-Ύ-‚Ν°έϊξ§ΥΟ½m5ΧόΣΚΎΊ[x¦Œ\'4qNήΗ{π3!W$ϋN|iΓυ;ΟΚό+Ζ™½>Σe[uΔΦι;-`yτ8ωίήσΌ…Lj™:\°V·οοk₯lc_ύκWέ}Nΰχͺd—ΦωΡΐ”κσ-\6±>Af@)πμϊύύ_€1«C`h)BEw²i - :©πhœΎ|ΐŸάuΧ]n0]!ŸΟ3ΰί8»Ά|>Ο8ƒμ˜έ‚Δ ;ΪRΎύΗzžΦϋvΚΒ¬Η?1 ν&yρε€·΄Oh']|ρΕ`‹Ί>ΫΛÌ*@£ |TœLYύ‚₯š½EƒυŽ7Ώ4σ“ήT5ξ5Ν>΄ΤBΦΧ7YΟλd»ν³—k‡α7Ύ6l”-οΣΙͺkͺ­ws‘Υ^roQ ΈρTϋΛ]Ο ή˜:ω½Ž7ٚ•VUͺηγϊ'¬yκ,=[zΎτlUv”MV•³ οΤφΖNƒϊ«Ν«Ί€Bv;vlύI?»ΎύΟώ³ύδ'?qu)mYμΉxρbœwνΪ΅UΝ5ΗΣ¦&αΛ:κ_yσmbΚ”?ˆ0ΏLQx˜sδύΝΏ‡ψ™d|6₯₯F:Νͺ·κ–Ϋ¦Π» χ ΆWα½€:.zΏr~mΥ₯¬#5Mžk+oњNέΓ½±Œ2ν'?ϊ.Βr`ησΧ,h=aε];Ÿ[d«ό‰=ο$W±cσ‹mΙ³οXφ]AK"Κ­Ϊ&θ'Eώ­ϊX―}FΨΝ/v²'_Π Ήέ³OIΩΫ΄ά?.³ψΛ,ͺΆ†‰Ϊς§&›­@ Ά%šΝ,ΨΆΏυ:hG½›χυ‹7Ϊ_§ϊό P½«>o4£ώ'd€ό‰gž³ΔγOY ΕΡδύ^t>Ϊ§PοDΝ^h‰} 4^3ˆ™”k.?μ+–Ί™…še°ζ™¬xς4KJ‘9š2Š_6m³…U ˆ΄8sžΰfm§˜vrΡRΠzΞZJ~(₯AζΔRΕ”™!/”ΰDFογYAՈ<π>ή°Ο(«ϊΪ‘λC"^Pσ·qV:αeKΤΦ9Uη AŠΤ_u@ΊΌ«ό΅bͺ?sI-θΈ£ φΪ4j€ŽΧՊ_R,\ t’v•e»VΈXyιΉ§Z(5ιΊ+o΄β7ί‘:σl§fν€ςjyρi?0;p―\ΦΔς›Ύ{†€θΕ(oώφαΦ¨`ρkοXB*ΩY•I5°ƒ3:FΨ»›•\xͺ;o³6Όo1πœgψglΟΩ1πό9<>\l/“xα¦γλ‹˜ͺ««sΑέ/bωβ2Εˆ-πεΆ@ <Ή―_\ϊ΅ x<+ ½vMαoΎs™6L?ΩV’£Ž4ίiΡΦv]Ο΅XΌ}lΨŸ₯\α L₯†܌ΚEBΐW‘ˆšΩD v‚Z+Άa6xΣΈ™ή'Ÿ 8Λͺ₯°Q$ +9WXκŒΛ%m›ήDκΟRΨ¨άk9‡·ίo͏O°”ΐΨhΚ¨G­hPKϞ£©#λV XΊ1aZԜIω ³Φ8ΥδlVS¦4mΌ:V3]€\ͺž•;ؐΈ/ΚΞC[«WΈ Ϋψ§½ΐ3»3εθ’‹ξ±`ͺԝW[g)=—‡‹ΕΕI9J0rBκΚiΧ³ΠΨQqΑΩ”?•TgAT₯sT½•ΪV‘€gΰf`g{’Vpž: Žͺ5S²‡:Η»Υ“,ε`Aη3‚"ε/UEθ\RY“Ατ='΅Ώ›―6·Αš/Ϊ'­`z—!-!θx… ΐδΒΕV$₯_¦Ž,”(W¦_/§]Ύ¦mγ]o%€Ποh B/‘Γ‘0XοσΟj*Η°W‹*tΉ¦m΄>½ mκΨpΑ|Ώα'ό θ€*δ`Αj$¦o¦ƒάƒWν! ΐ‹Οϊ€g)j’ΐ @°lM¨w]qΕ„`zhΆG‰Žκ‘C5…md{Φ‘¬yΘ!‡8Θ”φOt.EM˜0Α˜nϋvΟ¨Σ²F€Π|u²¨γ¦J*2OϝαΤ9’¦½+Θψδ 0M>I]ΟδgΩ.Ι°aΫζ„Νλ]εΚ4€ͺ»ƒϋ)Ηhe5α‰ιοεΚτŽ`ŒKΫVR™nO’ @”»½Π,Χhέ_STφΆΫn»ά5εΈΨΕJ?)π Oώζ›oξϐͺτπ€έwΎσ7ΤD‘F#χ ™Wα‹ΟωΧh%Ώ½Κ6¨ rΏΠώΒ”‰{ŒiΠτ§?9˜δΖoΜ{ά'λ›z۟StΪχΆΰ )e@‰Π#䱑ġγZ‚K7΄o‘υνž νΧj•K–Y §Pƒƒu86ήύ˜σ½χxΟJ «Ί΄Ϊ₯Νωp)$Kg*+¬ΣΏ.UηήΦxύ_ͺUFΟW§+ΞmQΡo3“xΕ§±ΟΟβG‘Syv|βΩυςύ¨ίŽgΦ+A3CβΝψaŸΘΧ«GίI½κ#Ϋ]zι₯vΖκ Φ3X πy±~Ŋn0/Λ€Ώ˜Ζ>κGόΆώo{όηΑ *ž@κ¨/+d―ωση»σ2Cu?κ‹ςίΥΝ¨S)ϋΦkf |(t2`‚ςηŸΓ'ρe io]ŠοΓ7wάqήTλύΛ9—―ΟΏFΟΫϋό¨P“Žžgt{ŽΔβλ­όΆHώφΚΔV^ω”|ςο§τ[Σ­ϊ ΖS[½σqcμ•Š¦\ύž―ςΟώάΏήg»k'–’―σκ‘…Ϊ_χ¨…ΟΏOV‚Ev³NίΪΓ}o런¦ή]yΏ…ο· H ϊw΅^Ώ8Β’RŸ%mxn+_ΏΨ9»L GŠ΅•3η‹ΎS[ ΊΊ^mςΠήοSθ/ƒ­’ΤL €Šv Ρ›:Ϊ)DχΤΜ+Rδ‹ΣΟ<#<ςH›>Ÿυ΄—Θ°>ŸmΧωνXm―πŒWi`-‰Ά%ΐ3ƒIT‚ΏμΩ³gέξλ lž5fΘ mΞ³Žξ%Ό’ώ:ΒοΗ:ό7ΠoGύΎŸΟ,[//²Uo|hV«Ί«­Χ΅§—ΌŸ³οgύKΧ^>όσνΜύΏnKΌOΧR’N–$-{νχόM™x/`0Ε±Ηλμωξδ)VsΘωzχΤL2ύΊYوΝ-uό«’=Hœ€σ>ϋμγμΐμ œ{t–ƒ¨ν©K©?|ž21 "ZQoEίν>‰f– υώθ1ςΛUx枺κͺ«\l™{…AŠ@οά+YωœŠTl=ΐΫ2wν ½«Πnη]ΐΏ«πώγφΦ₯Ψ7=wΉ-<χ.λ{ΪΑvύ+·*vЦ…‹;粦μ|ΙΩΕΦ·χΪ6MtΫφ|Οž±K4e>΅EO½mαΤ…ΞXήΪ+†σFΣ {Ή~-κήίΞϋeΆΩΊΟ’ωύ·~o~o‘-yμM ߞga}Λzg‹*Ν,΄Σ@λύ՝-ΩgγσNυωαW-;Y”Ό―G5`)1Rΐυα»XΡ°ˆ ΒλΕωO?ο+-ωΨS–˜πό:" …ήi’> \YkiΎ‘3]Uoͺ>#5o6Π:2ƝFΊxuΝ3­θνiR>Θλ“ΆeζΉNΓ‡X w―κΩσ] :ω±”Ο‰M·JΖP3U«™˜a }U¬ϊ[uxΊ_‰Mtvρξ.Ηfα.(C›―­€vrπτ ΦxΣν-1M‰=$unPœηLRΎΎT‚ δ‘r":‘>H±ΫrΕQ'η؊³–컇5Όπ†%4θ:₯ς³mF’₯N]vŽ`gΩυ_λ ν"Ε€H!A •WΚΞΕ—ύL">“ί·ζΟU›Vq]MΥΠ΄ω@wžEσ;QŒP³†ΩΘVH,cP?Λ*Άίε’Σ4(»›Ο’ΰίx.h–xalΟΝ1πόΉ™:>PlΨ±b Δˆ-πe±@ <YT\Ξ Y€ >ΣχΡ™η;’ϋ&ΨLp•tζ™gΪe—]ζϊ^aƒNH:5TΘόρ‚ν F܎v\°όΣ€xώ4Φ‹χ-[ΰSYYj6cŽ­zη=K F’ΑβHζ€₯ΐVi}*›ؚͺ“T8l»VϋβkR³˜-)Ž# uŒτπΝ¬bΟQJm#’FxΗƒΦτΠVΔ΄ƒ‘@tF*©έ5εoyˎΖ’‚ΚrIΚTLΛ›ΤώŽκՊθ,ŒY½ΎnΣt U?Τ’“EΚ[ qY±ΙΕΦάKAγt«ν1Tηλ}Ξ‘VΌ•ά€ŽΟdΫπΚ ϋψ’ϋ,xOχϊ:λbK…[/‘‚³Ξ₯$e©Œ”?>›ΐ7T?²kΐηΠR–6©7§2‚£>ϋ8» ζζξRQύ–Ȝ-/“’¨`e][”ŸC›:Χ™"1Vη%ͺΡ\"κL—( .ν£ύ›[ٞς†Ε‚ΪwΦΤμu_L§XθQ2Χ›7ΫΤͺΆ&ˆZ6Φ΄‹uοΎ―©Y‚λ½ΘΫ%φ“rsZε#t/šG Ϊ€l⒔āԑԀ«ίϋPS9.kQ…0LΨfRΎ@ίι^έ-«ό+‡΅Pt x0μΪώN=ΪtψyΡ!l€ΪΪ@¨kΣ>rF`?Ϊό₯Νν˜χefŸΆ€g6¦Ή>ΰ€x @:Ηε”Α+ώ’ ‡`ƒŸ΅Šςn³Ν6NσερκΊLίΝτφΎ\¬B¨FηwFQ¦₯K—:HσΈνΆΫΦ(΅žP*β₯²ρΣR–¦Μ$T§» Z0hϋM»jΈ«ζη_u@}՟/·±'žΰ)ΣΥ'b«ί›n {νδΞΥν΄ζŽ Œ{ξΉη: ΕSl[ώβ$Kο·«›ζϋψ„°ΑθμχΒ /X… 2=WE‚Iχ³Ώ±μ‡RΝC [`[Žσ±Τ}ΌYψD͟γ*y0Λ6ηΌώίϋΉό)`ͺΡ¬–Ύϋβ*ή^YΐY³fΉΆ)Η₯- θΕϊBΧΕkΏ/Ϋ“ΈΉ$”±Ή?p8€Γ‘#GΊ6―k<€Ηρ=ΜΗ}LGβ\}ΚΏ'9€9Q}&±ž|<|‡έτWΛoρ‰ΪΆ­kΧ₯ jnτnœ΄Q€ηBE‘]uρ-)5%Rσ6C­όkz&˜©@PtνΜ9k’«[ξ#Ύ,ОΔl©ηSjΚΫΜ@)°i€JΡGͺ•}{Zγž;Z(V‘Nί°{W €Ύo¨DΗκΟΞFŸζξ/ή%£ΟΏW“dχ°vύ=ŒŸδωβΉ&ράΟ3λ‹σyζx~φή{oη§πΧ\sg½|葇rΟyώ9±―>YGΉΠr葇ΊM|ΐLFΡg4šG{ύ>–: °;_Ωέ?Σ FiΤϋόκ£όFρ”2xHš:“mΩ‡wnκΜήj_\tΡEξΓ2ό2Jΐ~ŸhΉYFΩ;βΛHά‘Ί”ϊ ί/qlΞž2oXtυόφ³Ο>›«ϋˆ[πηνΟΡÐΤgQ;‘R!;Q―F··-B„:¦­ϋ)»¬Ζ_Φ %)4§ΥŽ.έ[^W³NύξΫ άcގ”‘A-έ*«lΐΰAόtεZ_›γwgžo NΎήm[yΘNΦωϋ£έχΆώiž4Λ>ώh@•f1‘έ+ΪΕ:5JκxΎόιηΆŽ]ž]. ZPtζγχ©ž΅ΐ©C{•hcjυv€ B€‹”‘’ύ§»T’“=+,Ρ«Β΅·γτω[ P›ο“ϊό¨zύsΟ=ηήόσCQ£Y‰<ŒŠ <ο΄i/ΏόrΧδωςνnκΪZ^…˜A3ΤK΄Υ|όώ‚ .° /ΌΠωΚ|_ολŽΫΏυƒ ω|όΚYg΅ΦηK)ωΤΣNsΠ­›Y@νΩΕ7=fhΐ΄ήeϋρ5{lς+n W—φ-6‘½IΒoξΤΠΕ–ύψZη‹:±»…ηγΪ‚c§£vέΧ.»νzηC©Wx·HL]`M υNͺAeG ³=φ\ϋžvϋν·η@`Κ„€MŒεό8ήsTCΒΆ쐝πΡΏύνoseΒrΝ|…έ£οŽΡˆ”ΑΓΔ£y€­œžΏΒύφ^ WΆ€ΐ³A·όΘFο»oΑwΪΜΡw>―|ύ›ίό¦έui³οηŸωωΨFλΣρΆί‘_q~άΗΘύ½ˆΔμΩ9—6‹©KX—ΞRv>ηΣΑΞδΉ!ΰ™m| σiœ<Ο–NœjΩ©£z4kžTΘλSΆ¬ͺ§>~°υ3@χD<Š·[τo؜qƒο—K³Κ(Ά’σ>›TY·Ά³N{h°tYkπάoσIζTŸ_šiα’΅ƒβƒ>Φνΰ¬tΟa–θ²qωIΛο·q,0Pώa ώ}ωu½ΈΧE}JτH΄/IfškΒΩθ^Ν TΞ*^C w.ήo wίYΞh©ΥNxΑŠήω@±Ο–3ۑȜ©*·°‹b‘ͺ{P-Φ ˆΫΏΥ?jOfziζΈώ½¬R«›δ»SΔ—jΦ9b§Š­f;7χξεΤ•›G 3@gΫbσVΩ΄ϊΐΔϋ3­φ_ΟXη§'*/Ε=WM0‰zG‘^Χ•HDFον‘ώ2£a§£²„ζΊ?όΕ ƒ'qΡPυKJmΝ@qƒΤ"ΝΨΠ]³C)¦YςΝΓ-<κ >œiυ—ύΡ C€ˆεΣΧ Ίτ°Ν¬ψϊKΝ”‡KœΈYϊ‚s§‰ύ¦‡Φ*ΝΜ2{ž‹ £˜νΔ2ϊυl™MOq‡² jΦEmΦ €xή€βΥ±>c Δΐσglΰ8ϋΨ±b Δˆ-[ΰΛg0ύς•<.qlu-@§…οp^w­9EԜ]@^ lO€U: ιDD!…`5dΤMPI$ΡqAλ6VЁηeΙ8ŸΨ±Φk cΝΑΜΉV;yͺ”"Τ |U()ΫŒκ²‡›‡ rΧB[Ά,LkΣ¦[Ν ―Zjκt€ΆΪX~ιΑRήMΦˆαHX€Ž%ξ{άκοyĊ4^ΰ•_΄cΆ¬‹5ξ0Β:ν³«5Ό9ΙJG&Ϋζ’¦z₯γ+υΕ§ ήF@ηP s:TΐΆeƒŒ@ΉξR_SFM›H9)SfuƒδMYοs;;SžŽΟμΣπμϋφρU[‚Ξ` ηp©Τž ΙFmYŠΝ)AΆΝ \«ƒ€€}*-5€Φ9e₯ψœL RLiY¬ΰ|Rω>-ΰ2*ΟB€Ε™N˜i…ΩΠΑΠ²- ΄54)˜_LΌΫΎCεηL%P‘: dσ|¨%ιτ€ώΦE ΉuΥRm™'…κ…κ˜Xιp~>eΰ5λΊW ΐ2°Ώ…(‘ h―•rxJJΠIuX¨Bυ›·ϊ›Υύ†rxΩΦά/k h ϋhRη„I:2tΝάwK’ŠSx)ΤΑ±fί°DR,ΙJ1œΞƒJΪNΊŸ‚Κ©tŒϋvY œ 8Lg6Σ`,<ϊӟ:XΆΕΨ±c:Ύ-₯M:Όω΄<³2`‘ΎϊjϋΩΟ~ζΎ£‡:‡§8&ϋ G'2jt7ί|³uO»…υ_ύκWn 3`,Wq.^Υΰ–υύϋKM=IεvΤ?tςsΞΊ$ ; bΗRδJ#v—IO0ͺΟ έ›uRqOpΟ¨σΛtΟ–Θ=Q·Μ³œΫί―ΊΖngΝoΎkɁύ,ARƒΆ]“)ζ,ώƁ6Tη DАΊλk~εm+ώΚήvχκέτίlΞ΅8€ύμ 4H{ύNΚ?”ο”WŠθΟ©ςOΘn?όpL€œ/Χ…t‡θ.Ήδ·žu(‰’Π7sζΜ\{{qο`°λ·Ώύmr}(J€-… Φωπ ωΠΡΈΕ[Έλ4hΝ1-Zδ€yΞ\¨mτΎTd° ™Ι—Δ6΄›Gνΰ –ρ|sΜ1δΌΉ‡QΫ#›f{Ε-\σy1έ7χ>׈ˆΞPΆ-t^Ρ};ςύ3ž)„ΚZsΝ-VόςΫHιΝXΩy'ξ@Τ=H]*Δ§©“΄V†:Ρ©.‘OΆΏ΅|}‘:?ρΥa·JΟk:3#'Μ¬ €ΠY­Οθ~-¬ϋ§g mάΓͺγ΄~ ΰσρ1 ,ΰyΓΟςήΘσψΏ ρ^ˆζΎ’^ζ½πi«­Άjεϋ’ω°/ΎεfžsΗΐzX‰e(:Ψz?Ν2Ÿx>‚=τŒ_φŠψφ)‚Π ωoΏ!Ώαιθ3ΖsGΎ@Κ$κ3:Έ)Ο4Π.p‰Ώ€{@{(Ή“PΏX³$1Ψ„­3ρΉ Ό‘~ς`~ ίPW'P‘@Β_1¨Σ^_Ζφ¨)w€.εόπCΡΔoμF=ŒΚ¨Whυ€;φφƒ¨—ǏŸήǍηξ)ςΓV舝€αΉ.(y³ m¨-Β9xȚνΫs?±uU{κχρ=ji΅Ηχ³ΟΫŽΎεUkϊH+wΫάϊό¬4€\ω)lhΆE(AΏ<£e•α^gn©ΝΥFΛKŸVα9/»Oτ3”"kf©`hT’EGE+ZT’5²²}ω|DwUœw}ο1l %Ί•9(:ˆ°φΩρl…€ΦŸΟΰ? UοσρGс΄]hξΌ³-%|>B ψzߎ#οېlC›l_<λ(¬V{Šφ΄\ƒ―Œφ`&u!ˆŒφ,Hυ~ ϋΆΗηγ³ΜFŠϊ||"ηΛ€L’«›ήžl/[;prCv’.λόλ»lαε iρ\pξΤ1|HΤΛ»ΫΖyiΒΊe*Σ€kΥΧλ”IΗΐχuΔNψύ(ΰΎ‘2ω2υH‘¦u“fΪβ+Τ{Œb*Χzύμ`«άsK§μMKΪΠ» ν··§.­ΏαYkzcΆ₯υ°δΟχ³Αƒ»γp=:θ Χ†ΰ^ΤXg;η’f«MXηN‘]όΛ”mΪΟmϊ©ώιπάκ@*SστmΙ΅sήYh½R―°†ήA$’ΏΩΐf+κΧΕ’#ϊZ―½·±Τ°^nΐL«ύγ€άh /M·eγ'Y8wΕZ‹(”ήΫΊΈ•μ8h£Δ‰UŸΧšϊ?ρ[bκ{–xdΌ“ίmuz…κ(6p ³έΛH/Y&5g -θ}5«Ξjp[£TŠΛφΫ[1ьΥ>ϋ’)ή(Φνώ rKJ%j!A‰>¬σŽ+Ώžι£Ύ=Ε΅+ΆέΕ%C©$εhχ ₯ζΜw³:Qωf„š_IK ‘iΧ¬όͺ»/l•δΒ9 5ƒαl«ysŠ₯4+HBρΘΤ’…– &ή۝؇Pΐ;·b°–HKԁOηφ2Σΐ~χ~>νCkΈκz7+Η(έ|3«Ÿ£φ£β^IΤ—CΥ™χϊ’_¨νjσΏ&XΣmχΈ8qjΦ| ώXεΞ;½ΥP+ΎU流γ‡οΝΤt S¬A°sΡ”]μ@Α)KoΉ™Δ0Juή ZⰊŸc紎‘ιΩ՚·bηύD‡T«SnλG <·e™xylΟΗ1πόωΨ9>JlΨ±b Δˆ-π%²@ <‰.V\ΤOl ”5θ0 °ώϊλ―;X„Ξ :φΠΣ‘θ•X|Ηf[SˆβΒDvŒηˆ1β―±b l ΄ lζS7yͺ% j[U 9ψSAΰfυ\Un?Β©6‡^’ΐφΉEσθςΎΥ½τ†₯4ή:`¬€ζ-4έcTKpV  KOθfuΕ½Œΰoο_fΕΫlκ‹‘ΏŸx櫝lΛoxR  ,%θΉsFΠs°ΤŠCMŸ­ŽΞŒ‚φΙL“₯tώκTΥ<ƒŠŸKZΤ›PdR±ϋž,ΙHZ0»φcΩT‰₯₯ψv―0«VΠ]ΑφPΌΩς.²₯¦ηœξ¦,D @Π\ Yu ¦Β±}β:„=ͺ„\”DqEφΝ%/Ν½3dUmίV,Z,5u̞οTVrΫ­ωJ)„@—Ά±@ ί& 9$˜―Ξ†Ϊ)‚πυ=‘ϋ …–B υfAΙLQY©{Ε”—λ,ΘίXμ&Eh]ύώ‡-ΣI’ά’Ž”ΐ+Αδο³ζ7 2‚(CW hά·—%€8ΡςέwίέA=…v₯c Π•D±WHŠbša¦ωύicπi xf»(xΗοm·έΦ(hϊ„ (ΰ(ωΣ¦A—Ά ¨bμΨ±nΊn  ’‡|[‡et8y_€€WŽMžωεψγœΧ—ό¬lIΚDή΄έΨ;‘P²*`Κκ{υ °VjζΊ)Θ)AΡLριξSνσΡόy6|ψpΧξCi΄“:κπWu I©υΆ+mί―θΐf—y€‘μΎ‰­Ύφ––΅Ϊ―Λ©c­xτΦ”•ΪΊχύχߟ+ΣΈ?έ`+Τ UΡ――­>ltNΙΟg}πΑ;ΠΒ¬fκml p…ΣΨ†λŠ’ΐ‹Oΐχt0ωΞΓόkΗ}H^@’δ€Ηύ…k|žΡΏΐΩΐτ>lŸg`0‹W0ε7Χ {‡vΰg›ΙΓπΡ{Λ_kΏlΦ¬YΉkψγ:EΫΜρ“­ψLg_€Η'ZΓ-κ˜ΤυΘv―ΈsͺόJ^η©ί6ϊWͺψ«Ο»Κ)A30₯δΨΓ\}Ψ|λ=ΞG6dΩͺ2·>²S{’:~³ς£¨ίσq@4 ΄>‘Κζό©ž·ΤΔσΚ3ΰύ η‰―ζ>φχ˟ζΝ›—€ΐ²ό„(Ο’ΖfϞν gΆcΰκ•δ |εvY‡g π©OΐΥ·K‘’rΔέzλ­~U›y—υΟϋρρjΡ¨o2ΰ‚σ-δΘ΄ίΰΌ½ΏυυωF―Ω—z¨ hΜ'_|*μδ}ΤQGΩ<ΰW―γΛ(?*σ¨;/{P8·C_œοΧLL€Žψ²ŽΦ₯ΡΓcόךοΔ ½=πμmΕ6O<ρDNe;š‡N½IύŠ­)S{ν„β?χŸφ΄E('ׁΆ@Gξ'κŽ… Ά«~οrΫ$+ίkK»Ι[ls\|Κ™6χδλΜvl}Ο<Ϊ›cΏιι‹lΙU:eV£[Ÿ“Υ £5οy{|€ηΌ"­σ°Μ©C ŠΧ(EΧΜ^$ΕA*Λ5ωκ΅οBλμ] ΌΗD;•θΞΦms)Dχ(ΧG Ρ(HΗ©•|»?ζS!ŸΘσ2gΜ ϊόoΌΡΥδG›Ϊ+ψγσGŒ‘kƒ{@Υ3/ΰκΟώsηϋπΔ}v"ΰͺ ƒΏΕg0 ŸN]±‘όύρ|ΉhΆΗo?Ά |»@IDATΝιg9 ― ω|φΤFωή§όφ.Λ‰ΏβλρcΔe7tΨιΗ‡cβzλsΝ)v±TžQUn+1ˆζ―ψ½Ν?υzλϋ§Ϋ~šIeCeΒF›<«™ήži½ώοΫsο½Ϊύ‡ΏπΒ 7X&βΛΎMMδΡGu3ψk;hp5-qŒD‰κšΊzΝΔ€Yh³©ν8zτθ Ύ«0Έp•ΐ7Ϊίώ^jΛN,§.½σͺlξΩ°όυω\™x`ΰ$e%φpζoκlϊ,)c—˜ύφ¬” Ϊ4 XίA6°ξΟyω˜Uk9w¦U-œoΪΠMτ¬΄lt.ΆΔ–xχάʊ·έ$VΞ³?3‹ͺ­aβ‡Άό©Ιͺ—"οͺsΫφ·^ν`E[jΆ™ˆ-M‡ΕͺΟ2Χ{cίW^·δ£OX0kN«²zΏ]θήηΉ——L/Zκf₯Λͺž#ώF\:­Ψ[§½vS<ΈΨκ_xΝRο~ 8Oƒg}―ϊƒνCφ)- Ψ%=τnήΈy+sp³b VwIυ`βΩ—¬ώΞϋ䜚'α gVlU~7«ɚ†nf«GοfUGU”5$ѐ §Ο±Ϊ·ήQœS1π5μQo.Zς±%—+ΖΘΛΊbπΔV+X’|ӊ«ΧΎΏUyFύ nΙSϋUί|‡uzr’‹„ςυ ήHqYη¨w `ηl₯β·¨œ$‘‰sN•rug«»ςz+ž4ΝΕ’‚¬Γ‰S(Η΄T’‹~%Q„Χί΅ΥΟΏζΔ.’ TΉ ”ΦŠ³7{ˆ•ν±“5)V4ω}·\Ύ5μο€κ¦½v°ΚSΎΧ‘ηœ:œ~Tf»ΉςΚ+[Ξ-ώ7Ά@lΟΝ1πόΉ™:>PlΨ±b Δˆ-πe±@ <YT\ΞOj:%’°κ-(iΠ2}ϊt§¨B€˜‡CXΗ΄‹^ΕwxήX)ž7–%γ|b ό—Z@AΡ@@sψ‘‚°oΏk©Ή [– ψ)”Œ³TQΞ­Ψn„…(-£j۞ Ηή›aΥΟΏbΕοΟ°„`VI½`ΝCYΩ.έΆŒͺ u.½.Θπζ;­ψ )(Υ©ƒί'•§iψ+ύϊW-άcG³§&Zӏ[Ρ\)exΠΉ“:ͺι\₯©qηIL7H„7%@Έ%)š+ΠΉ)!p7-`+©`Έε AΌ™>(λo—rKχιkuϋ+N­ r2a½Ξ>όΓΞχ“Ομ»κŸ―ΫςΏ='θYŠ «ž—X'[aŁΞI§G ?+H8΅ZΣV―t`2h7 w§¬σΝH:‘],ψ2£i– ψiΚDu˜‡šκΧ) .₯~’ι*Z A’Νρ‘’Άϊτ]G«s“iιˆB:—ˆO«‘LχΟͺš•N%¨Ν­ζ‹λ€:ΨΊμΊ“ΐ M')΅–Ί7'[rΖ\]χHZd―΄ϋ΄ ΥΚ·5‚ξ€λ'XΊšϋY$t[ 2jδύ€JΒ= -8Ωτ[F‰%ςUSN@²:FΝϋ‚‘₯ tr™μ (έF*>tŒ­:ζ‚4EPκ 7άΰ:‡}ϋv‡Ÿ€”UQ ŽύΩ†žQ€D!­Pη ›QΘ™ύι($fJf”6}’eηN8Α/ΚύEεUQΚ δηO§Ÿ~ΊS­@α—^zΙ΅’e§Μt‚{ΥΉ(τF~¨Ω‘tLG=ΐϋΆ§LωηM™Pe¦ΜΨεΣwάΡΑd‚ΓοC™€ς°³tPυ<ξΈγœͺ'0ψ¨†φ4’FQί)?EΎΐΡ„mοT7zΔH[ρ«+₯ΔήΙVuΛοmΒ―Σ|Q“¬.;hρΟ±šoΤeU΄Ο.VwάanΊςBΐJ¨/«»έštΏ‡κ΄λyξ)vσm·Όv‚¨ωOF―7πδišNΕQέΡGνΪΈ¨yO ϊϋ’‚΄Ρ9ε•Ι£ηΝ}ƒz9νcίΦ€„'Ρ.φγΪPώύ”D՞ύuϋΙO~b&LpϋDAυšλDώ@/$ΏΏΦά7(2Γ Χ(‚m6vϊ\€g ύξ‡V»›ZŸTW–žρC³‘[lπtuΧ]πΏς‹\=]zό·¬Zƒ :=:Αύ.>σG·iΓ ¦₯-Ÿκf::‰ZΊό°›!!κΟΧsδ¬|·’»VYΩ ‚‘»Zΰ€θ-3=ψΰυδρE\Ε;Κψά»JΌο½ωζ›ξYCmuNοO(?>Žϋh+:ΰ€uϋ¬{ήςσ!―?ώρvI'ΉgŽgϊ€ΠsΓΆΡΔsα¦PVΚξ6ή-ͺQ«ΔΏ}ο{ί³2”-#>Ÿμ•нίX#±ίΨ±cs€±8η‹Mς06ϊΞυf”Bσ°8φCί΄|ωrΫn»νΦ±sώ~όφp8> ίUŒŽn/γ’Ύ‰υλ«K8βwΞή/±=~xŒ:‘zˆγ1˜»Όγc£ώJΌ€:?:£Ύΰ#Ο¨]Ÿ¨›`D,‚ϋ‰z•z ζBmTOΉ(ΉnΤν½ŸΌŸεή nByΫͺί{Ξk²…W?j‰Ν{ΪζW~w½mξ³pΑ ›χ—Η¬οΩΗ8ί…m[% Ό[x‹ΪVONsΣ› ΅'lΕ;©]ΈžτežΧS|·*»Zmχ₯u–Y&…hT’υY9SŠ`hE ˜nWb€§‘D Šζ»’{D—[Pτί“ςΫψ|yτ‡J:PqΤ'²=>΅-ŸΟ³ˆί₯)δσ\G;ψ—φζwΏϋέ‚>vνΖύίuώˆϊ3ώ'ίΏrΌGyΔ=ψ2|=P~¬=ΙΗ.ρΗΥΥΥmϊ ήa˜ΥΕ`γ8Μ²ΡŸO9^}υUW§ž{ξΉλΌ«°žz θ·Fκ—ψ3ž[μ„[Ÿπ£~@‰ι9ι€Α§wέ3ΞωWς&W—‚-ϊΦo,«A©]Ά΄Κ_~£ Οg?_¦Α»ΩΌ“―wY•l΅©T4ΏΪζ»ώ΅τξ7lΥ‹ΣΓ©MZ^j›ύι»λξ»Ϊ,χZ£ό1­]ήU¨«i/0x“0\sκf—!‘Ž™‘ŸΟ΅#­ο]…v8vβήμH]zσEW[σΚ:«5Τ½σψ2Mœ8Ρ δκ*σΥFωΥεiϋΝ€ Ψnw…ϊ”pξ»νΆ›Λ…vΟΰ'MK–vΦΕMΦT—±JζΨ1ƒ>΄ΰƒEρŸ΄ ξn‰­ϋXο}€ώά_νΪ8΅²@σ{ mΙcoZψφ<Ν¦¦ΨߚTiV£7΅ή‡ξlΙ~U~ρFωΫεWπ|#Ρ΄P3²­¬qqΗ¬ή5Σέ»™i0nS !h֐’YσΟ^δβ—Φά« ՞ΝVJ”@‚‘Ϊώͺ@ΣνnΩύ¬b›-Ν›fϋbω:IulBρλ†;οs1?:λݘψw(šΐ#GXιqG[¨Ω™i)ό`–Υ(n”zsRP6±ΣuRVƒ 5[AB3qk lD)‚5Ωήέ,ω?_7ϋΑ7[—K3:­Ύό–š5ΧΕv]ފι2?Pœ2±j΅›‰ΞΣ->lŒΩ±_S[°Ϊκs­fΥ[βb @gήο«ΘΘnMƒZ ΨOΙΩ;Y";)qŠ>έ¬ψŽk&OZΓ)Yρ›S[ΞGqαζΝ6u°sΓϋZΧοαwoχίxn·©β c |&4­€wϊLŽg[ Ά@lΨ±b Δψ·X€€iGR ς €ζ,Ι «»οQ_₯˜!… Ζ‘ςΆ )+ΰ~¬€nΈΌE#ΰ›DΥΨ§@ŠΠRtνK©υGΫ‹yΝ ν§γΧX³`Α¬ςjΚZSV(¨άλΜΓ¬dϋ>—OτχΣΟpώ΅Xv‚”K€žQzN/³N gSΰ\fΘ Ξτκ‘σ‘zοR) tqΠ³κ"ž†θ₯φœ ₯ό–ΜZ²TŸfάU§…‚V²Ε]ά΄Ωe Ά+N0\ wΆTP³‚όD ςV Οt,( FΚΠ(ͺDRf γήVΡ£›­ϊπ£5χΗΪz•MQ%iήrs+ίmg3ƒ Ζ―}]*Θ  Β―“tΒΩ>=­YΣMV…¨ xpOŠεΥ“  λ,Y'έͺΏ3ύzιώM'4χΎ–·™θΘό –"ΊVηD“R†€”]qϋŸμφϋοs°( E‘’‚E'ψΙκN ΨϋHz@+Υ}NfΘοψZ’έαΫtόϚ5ΛΡφ λΝpΙgζΜ™F»Nmΰ :́QQV‘³›Ξt`(―ΐώ˜œe|μ±Η΄ησΑΰ›ΌΟΗψPυWΎί`94Ο9Ηΰΰγœ)/ώ²«”Πjkkέϋ1ηΒ2|”ΦωΝz/PGa l‹Ÿβ\/ΎψbηO½ζνMΖψ =މί/δΛPΧFνΪΫ   ϋ΄U—2ΰ‚:•σ!±ν‹/Ύh£GvΏω‡ϋA—u؎JώάgΔ€β±eυηη^ŠΦ©ψMκgΤ[σνΔφΐ€ίΧ₯”‰Ω π₯Ψ8Ώ-B[˜έ\‹ŽάOΎήΐ_}υΥNI–zŠγ—―ί\σ£œ`sΟΊΓ6ΉμV¬φ:ηϡ̯߁ό©so½υV§(J>ω)»ΈΪύξ>³y-ο Απ>ΦηŒ#-¨άπ³πŸ<ηΫ#w( %»€Z τZ(ΊZ@t( :JtX£χ!Ω~ƒI°KΠ΅³’;[Π]οΨΊΰΎ; Z€t ϋϋ?!ρœL(Π†τη†OΔ/{εtΏœύ ω||ο{mω|ξk>΄γμΤL[υ£>rΟ7ΟΟ"Ο-ν/Dάϊ>h‡ρ|α3ψΞΰόΫΣVb0Š―ŸΘޞ„ο‘\δ‰OgΠF!ΏAξΏψEŽΐΏE™s`ŸΆ|>eaΐ&`,οήΏ²ύŠ+œΟ§žaό Κψ ςΑ7>όσΞ…μ„-όΐ!‹6;ώŸΟςmκŠβR[ψγ«υ\΄ Ζ-έyΈ%N9άΥ·ψYΆ/T&κξΦŚη/·ς]†Ϋ?ψ§ƒ‘ Ω‰w½Ÿœp’ΝύŽ”,³‘υ»τ{vΫ Ήϊ€Gωeβ7Šά—ύς|›{Ϊ Φi—a6sT/מ` $Άβρ£‰Α¦ΡwΞ›kB™’ο*ΎOœškMΫϋ΄'q­|μm+³΅«ίρυm•‰όίR ₯ό7fژΐ3ε‚όΥi½NΆΥΠ&»ΰ犑ΜόΨO˜bαTΑΟ ZΪ=ώ‚š%EπsΟ½Άv Ζ „S‹¨wߜmΛΖΏeα{‹5ΠΎ₯]ΔΪ •u;`€•ξ>Τz·άH‰Αφ xΩΒ—gZΈdν ϊ O…u;h{+έKΟ4 βτo΅@ Xmβ±'-ρΤ³RoX ΩR¨hάΔ²„φ}u₯υœX₯™μŠ$ΐ Ψ‹EΚ―q―+€lMY­cnFucfσŠλυn™αw^‰0ΈΨet‡όοςq@ηFΞ)nžΰ=X0κΡΔEVi&Β.±¬™λ&iVΔσœβt~VN4D@uσΰώΦMΖ=θf΄K¬”Β²bXYΕ’ƒ΄žΕ—Γή]­yΤΆVzžϋω8¦Οp»ΦtΝMfrd {ε½YMΈ@οrb±ΜΚ‡ˆDΙ©?05lκ‡Φψ»λψƒ€-QwšΥw)Ϋ4K•Z;Ί#„ε˜ s-ž1Η-K”R —Z cΤθ<+yυ&[bε鑃4»SW+ωιχ-Ψe[_Βύη™+ή8ΆΐF·@ &2i—Ÿ[Θ?ͺGΣ‘Γ±+j,‘O4eψo±ΉU ΪΤͺgΟ±’χ n•ΈVš2Eοͺ½vUg@O³fZ΅θ"ε“³ζ·Ϊά@υθ²Άut EhŸP? Υ»̞g΅S¦9: ]όΰψ:‡΄ΝΛGla{FΤa²ζά}ž…ώiίw‘Gψ€γθ ΐŒΆΗ@@'l½ΥkŠ`—ΤωτΡ=ΝσY1ls³Ύ½­t»­­^Χπ π“ύH@'žxb«vπ0@ΚΒ(ΎIομh»Q>ς€³UhΪ<”Nw )ϋ‹ωŽ)φš£΄0A ©πΜy}bΠ>" ½ΰΜŒ€‚0ˁh_ρ²€ς»U T~=€ ΐ°χ=χάc[o½΅;_?6ΨPax L>ψ ƒ°Σθ5m>wkώΰΌ)O΄Lΐœ+vβΨ@cΨή'Ξ p˜η¨@Θ5πeβ°ηΚ1Fε0 sΤ±׎k φΐ7Ÿ|ςΙ9U_žQό ΰ26@Y”Αΐœ3ΛΩ~όψρώρΎς“~HšόΙΐνŽ;ξΘ ž`†o3ΐ?Τ%Iή\‹‡~ΨP‹'9ί§k„of@ώƒhΖ ό1ͺ€(jή‘Όί`_&ώ2p…όπKψblE’LΤ]ŒΦCœ3PǑƊΟ" _ς§υχχΐ£>κΞ ™ϋ€άoδΝ=‚OΦ₯ΡΊ‘kΘυ&δΌχάsO7°Ζ—‰|ΈήΆœχθυԍψVΚD]ˆFΌΓγ§©oQυ§LΨιGe €σeβ~§.δ\¨ )?ί£v’LΡ΄πξη,όηΉEέNc₯cΆΙύήΠ—ΰyC6`}fαJΛ.―³¬‰fWΤiPΛ<§ m+[IλΝO΄ t Ρέ₯½Ω&–μYa‰ήzψ’$OΆ· =­¨ΟΗηEΊΡfΗ‡3°Ά  /Ιϋ Ά1 x™gv8Ύ’<‰1’rμλ!ΪPΜτAΒoπœ’–Ο Γp .0PΖϋ @hΪ»ώ½€}Q6¦=ŒΐχγHήχEί XN™i[βγόq7 ΟΎ―#('Οl{}>ωγ'𔏢ϊ`  £½Ο€FώςœϊΆmu~S—ΠŽΖWήrΛ-nΆΪΝδE»‘ΊΏ~Μ1Ηδή‹ό» υ+~a[³ΤΙ9e—θY˜΅Ψ:Ϊ~zζΞ·γϋˆ‰R>Ϋ3Ȏ*” όΙ=fιyΫϋ«—·λ]ο€oΧ¦/΄ωz$–I\Ϊ―\+κFΫ0H‘Δ@š­ίΤμH•]lB·Ί Ύ«Œ=ϊ[Άτ’;-έΠdA™ήνyε%6ΰ„―ΪΒΖ—/v½ρΖ]p⏷ζlKl›ϋΞΟΨΓΐξ₯hΒ3¨υΠ‘{ZΆ_y«wΆγ^ζη^¦žτχ8χ;`ΌoŒζωIΏolΰ™rLύ °‹NλΪΒ 6Ϊ™'―mΣeδx—OœfΩιRΤPτ©Tƒ†χ²ξ{m₯χt )‹ΑZošP³ 4Ό4]πσ$ ηπ‹]<-ΦΫz~e{+ήQ ³ŠΑm¬δTŸΦ{ωΫσuΦτΫΔͺΟΛΌŸ,Ÿ…xdΌ%^|΅ef‘5Ή΄εJΦ¦—,k‰·LHŒ‘X6θ;3Ι…ΡgPωeΚ4+•β~#·² βΝ(7oΪWΫkŸφ&ε›xα5kΈγ^K,ώΨθ¬χΪ0©ΨLQ‰ώYγζƒPχΧβZ•‘ΐ@<Ν&ά\Αλ&Ψ:Πχ@ΰqΓe°’wίWΜTϋ4+^JόYρΤηΧK1?©-λHΛyPλ2λ΅Χέf%ΟΛvΊŸmΘvξb¦Aā„sebΤΔ+;Ÿwšb₯Όxψ)kTl˜gεiA βŸ£Σ•RΗή|{Χn9ΜͺF)yέί¬ψ5 𐭚‡ ²k­wπ*k8ώ+yα-Ε}εσPv>X"=¬τμ“,Ψb³φZvνbΰy“Δ b |ˆηΟΥάρΑb Δˆ-[ Ά@l‡bΰωίaυψ˜_T χΣΉa˜ΣVP†s %;:J}€ΧŸ@·…`iΆaϊp:Ϊ›ΈχnLΩΣΣίΆ]{Ω΄YΣ[€΄φfo[ ΆΐŽD7;εζΩ‚›₯άJQٟ©όFV*ŠΝ ώ’ήάu§‘‚›nJ­·Γ‰ §`Σ•Ο½lΕοKρQΗuPŸ‘Ž•ξίΫΊpήv‹uUœ΅]€ σέYΣύO\έjLOAcφ6ϋΞΧ,Π”yΆPΚΉγR V°ž½NΡΉNρRΨH)θš]°Δ² W¬£θlκ@I5Χ98—’… Τ’jœI―9gbΰZζ’»„ΓA½-["5‘•u²ΣM (eηΚΑ–™-Μ{ž~°m Ψ™²l ΰYQn›wι}Ύ!νZ”žK=—΅VHE%‘λ€rgͺ€†W pQ`Εs /^’€·: τ_6T'‚”>²Τ MΚΝ*[’Db…β₯‹ͺs¦[wΟ³WD΅¦γΐ¬ΌλxΠth%§₯J— r‚W@ί'ΰθ΄Τ‹Λzυ΄:©~'uΝ’)”Kӈ‘V9j{έΏ VσςVόΑ ¨o΅ςi:ΘΚvΫΩ‚νGPWΠ_ω™ξΓΊ·¦X΄ŽŸP<ΙHΩ₯Λb΄Ώ)Πoμ| &ζκ>F}ΚΤ5h¦’,Π™Α>Y)“γgτ©©N AΫaeΉΟΞύΒatduyUΈ"§P–π™$hΆωμKΥΑ’c ΘO].8Γ˜==vEΧ;ΰω?΄ζ5 ?`κg΄aH=τSί’CƒΆ  Ζ@U@Λ@δ(Ζφ$ΪC@tπⱎΞqΤΦ9ςS!ΰ™|θΌJV£]€ŸΘΫ·—hοP.bψm±'0eπ ΰ H胄J'η ΐΒ±ζŽ=φX·ΞμLHη<υΗw\Α2a3_֎–‰6!ΗυΠ !°ΗψΓ$TΔ€Η= ν― ׎k  @G~€¨yrήώάΘΗ) Θ+’Ρ”©ο:œc„μ0bΫο ―8@ν駟Άμsšxž@#΄{Ÿ~ΒA4l8Ωύw7[κ’ŸΫ.ϋμνPςΊΞV_ύg λV[Ω―O΅oθό€qΈ?žΈεοΦPήΙvίw΄Ϋήϐpοc–θ!}—νάωqMenΤ3‘?ψ¨‘.€άzλ­φ½ο}Οέ«œ3*{ DmP“²y`›a;5P 7Р馛n²οϋΉϋΩ-ό”π άw|.IΟΚΚώa₯OΏβ‡bUΩω§šu­ΨΰαkώοV+~ώυ–ύ†΄”κΡ„Tθ3jtϊέΉςιkΑŽ fΦΑ \]2–:uΊV4SΨ‚‘΅,!•hT»Ϊ“παΡŠ@ …θμ€ΊΪT‡lΜΔσΖ=θDBa’A!<‹άc¨εϊuZσ>3Ώψ)Ν7όs_γSπ<—@§$Ώ’Μ $Ν3 dݞ€n$] ςΛz?xΓ­ˆόγκˆΘ ΍gͺ#>Ÿ£€Sψγ9‘ώCεΪ?£@­ώωxC!Ϋβϋπ ΐΞψοϋ8¦· ηΠΖqρ=,σpvΕGy€Ι8>`3υ`3ώ“zŠeœΧUMyQ0π„kΪή2q|©χω”L €σ LΐxΨ‰ΔuηP—ω{©=χΗΐo··.εΈωeςjΡ…ΚDω¨3©}έψνC€,Ο 7 f‰&κFκDž?ΈkβΔ‰ΆΫn»9Ϋ%T' Ψ{u’[ΘNΫl:ΔύζN«:f›^ќΛ;aCmX]o‹ΊίΒχ[όnΠΏ«υώεΧ: ΥΖΐsτ*ώΚήΩe‚‘— †Φ'£O΅¦i·z[¦•Ί‘Κ gΡ²TχGPΡΙLJΠ-ŸΞΦm@tΉΪε–μ₯:Œ•ζΔ³ΠΡ6€χ7ωEgyGό>ˆg­D›œΤΤδm―ί ΝΝ~Ÿε{>ΤϋŒ|Ÿmσ}>>œΊ«Pb°mJήU.–²ΉηžkτWΰ»I ΪΰxψVΗΐ·ΰCy―ς‚yW‘,ψxϋ‚ .° Ομ|UΪΖίΉ-½„zBο‚€‘"Š+φ‚•ΛZΦ΅b_°—΅]χSΦΆκb/ ˆbE*½‡z ½έ2ίσœ›s3Ήά4*λœδ&wfΜygζ=ηΌηžσwΩύρ·€ΕJ%εάQςΤsΟ(0˜η\΄h‘tm’!™|›LA»UχυRθ›ΰ™w£ξ§BΆξλ±bߐ°9Ϋܟυ|ff¦ͺ‡x~Ntaί…ύ1Ζ _{ώe ””Ιƒ/=ςΗηv–x·a’™ ύo< *ށzaηƒίLB³€θžm%榓Հ=›Ω.8/£·δΎ9Ρ£₯ωΓγeτY§¨ς°ΤΉe&ϊφΘ`‘ο>ΟεΓͺMŽΜT„N\ͺN·φUƌ9Iž|©‹wΈεόΣ]Ξƒ“—t_…χ§±‘žYΆ~vΘ“/ϋΎ'+–KΞΫΏ}m–ϋ€bYŽμώvΉ˜+w•ς+/L)έ·I†ϊssi6¬§ΈZ£j'eŽ|)ϋ~­μ…IQ¨Ct2ŒKζ’~B_ρtoQO;ΰ§­ϊ|€†kΔÌΥkΕAΠyρR8’ͺxO€15NŽuο-@ΫΒŒ?ζ%θμB|u£Ψ™°Κ‡jȘΨθԍΥΝθ?ΔeΜσ€|¨cΞ|)}λύ`όoVƒΫH±RŠDpA?& yΗDg‘κπΧώVιœ[Ib_LŠAZΠOU }ΫΌ¦KΜ{Ÿ‰gνΖ`Ή©v3°žΓ‹Ά3}*V– 4OΟΝW‹΄Ο¬Κ›Ώ!ώ]ϊΠ3βάΎ ύζ|q”aε ?ΰ:q1β@?ŽLε8Βυ—ͺΏKn1σ_ΔΑ•φP?`7₯ {ϊΡo.>ϋDIFΌGP^sσ6)›ψx–­Uρ\_ΧφύĝθW§Hιe·KΤΧ­YnΒΞέ ‚UπbοΎV Ζ•"ΩΐσAΟ>ΤΆ@#XΐžΑˆvΆl Ψ°-`[ΐΆΐοΫ6πόϋΎ?vι~= 0ψΞ 9:™8@Η ΰΤT°9θΗA‚Ο#FŒP»ZΥ#«;ό‘ΆΥτ]ίΆeΑ¦Υ&.Uf]ϊ 4Ÿ|N£ͺ#Τt^ϋ{ΫΆ~C μ ΠΨΨΈUŠ Lλ‚’sMκ‰,5ηkΣ\|œ“©r eZ£ͺ΄5^—_²R όYάk²ΥςxΦ} ¬RΕ9αψΝ^]χSqΦϋ€ήΚ:»W­S ϊ{bΤ'Ψ ηg`|ΑR)ώpΞπ@*AgOAιȍ@k`=ή•’³_gƒ82Τ‘hδ(€\ ŽtφEciCM>€Νΐ3άψΑIΐ,ε†pVP™JΗή Ψ­ms)Œn+ώ΅{‚°σ_GKΤ ‘σμ/$$¬HuEB=œθΞΉgͺ–nͺQn(9G—ο•hGx *=ϋ‹lh«@Ϊ¬μ,-Ο:(CC5QΜΗΙ& ΌPΊ&ΐg¨ˆD“wφr5{‘θ‹KV ΪJAšξΑ|ΈRΞΣ Α]‚–ά_'^ΏV˜&XyʐceaφοpB i›wŠΰmCxe}¬[.^$MP–QΙ²"ή₯”›Ή?aδNks€tΚ{όSb―ΖRή›W… C‚±˜dςά‡SΘΜgrΕ/KΕαβ€β—ƒuC‘ύ«₯‹\ά Š―½Σ2δΣ₯‹Τu¦X `Pπž(pƒ€n Žς^ŠΰϋA0?½T:€Ώ π¬Λ9g‘”=ύΊς…¬w£οΌZ *YΥ•>ύJΚ^{_νΕΑUTώ˜βΓDΨ&VΔ­+―ΖάNX‰χ@΄Rˆ^Ÿ‘E;D˜΄T€– &ΆλžΔv™b°'mΐ/†OH©+KϊΙW^y₯ΪsΚχO'φωθc΅ΏyύυΧk|Ζ¬πΫ΄iΣTΠϊ^σε;©ŸΧργΗ‡ήΑϊΌ£μg2qB Ααπ<σΪψΧδσιK?ϋμ³j>Ÿύ$'π%ΰJcυ3,+'0_ϊRϊ#C…GNšΡΎεγ9τ„aœxΓz¨C‡`;‹~ƒωh;Ρήz^/λζΧ«W/†n¦ϊ¨φeΗ΄Β4ΟGN—ΰύ!ΛFΥTk™h—pΏ^&*Nλz*ΌL|x/5άΞsP)›Χ`΅“ΥSe™p·†°ιλzΞx~ ·Χ§.₯­­eͺ«ŽΰΔ,£A½yσζIŸφΕ@Ϋ›‰u„ΥŸn¬ΫΨΖα³A€›ΧL`6ηž€ΥψγδžΧžQm=&άNO>ό¨L›/Ξδx΄'=ίΏ“Όϋίͺz‹e*›·Nφ<; “Ϊ ^ ;'Ÿ1P’OΓδ7΄OšlΰΉ‘‹ΌΏR‡„’}»ς%?{[•B4‘6oU,r•ίbu₯] E7iΕ¦ b€`%’ τΣuβ3ίΠ6€φOΦ²ρ]g\έκΛκς‘ςaž,Ϋ«œΖvοόωσΥ*''ϋQIš“N΄Ο·ϊ« ι[Y²^e?fφμΩΚ·gWNΊ‘-Ψo’΄n³Σ§θνΜkυκΥjβAςϊφUhφf³ΞcΌiS¬T€ϋC8Η6LrΣνvϊΖvm3ε¨AU=ΔΎήΈNύeο#aZ<Ηφ’œaBνa–™0΅ϋ¨|ΜU\¬υP€z…ͺ ›xS¨―§kLΪ Ύ,[ω>LJ(ΐϋVT&~|še P.σ―§ΚΨ}Κ”)‘ ‘΄«žχN™…Ž‚!―όUŽz΄pυš5παΞΫ&ΑD³β )™³VςήόVœm1ωmς€³Ž–/d[¨―²tρyξόοd[qΌ”{bδ†{ZΚ’-sͺ΅!ψ,7V:Tΐ3ΛχΪ»ςΙ—ΑΊξš?»εΨA€ύjIΎ »eΗΧ€xWμ”@βΦ”#NΐΌM‡φO7¨Νώ&vX‹χ[ύξ]΅]vM_(ζ¬&bˆ†U8±sΡ )ϊbΆD};_ά;11ρ\–κ£&£M±'βω\Ι-εςώ½%ξš ϋ]‹Q‘²—ήPͺΜN0PL‚«šh EcΒoωΚ΅A[‘ΊΎtœš₯‹ωΥ Όuκ"ˆ‚TΦY„΅CWeο’%žNV«Ζ©ƒ—–²Ώ?)ξ΅Ωhlx€±Χ˜GnRtΙ•—θιί)qτr€ΠΎν$~΅Xυοΰ'λρOŒΖ‰μv²-`[ΰΧ΅€ <ΊφΆΟf[ΐΆ€mΫΆl ό°ηίΐθφ)—`@V0ZIΕ:(ΐBs0r;uΉ, Uδ¬A\B0XΝε9€ Μ±^8•³ΐoH’BΗ#<ž»^$3-=Η (d'ΫΆ{ }LΐšΤ›‹—­ΗζΐIAP.όβ ϊ‘:αƒrsRοb΄‡b‚²•―\/?Μ>0«%ψ@*kΔκ+³ |P«j›Cx,«WφΞ'…%ύ@I„61x]Φ§§Δwͺ˜Η Rί+ ωλ₯μΣ™ z ³°’3=EŒ4,yΏ2[ €ΞΥ8:K"‚Θή’Ξ€Ή/9U|E€wΉ„ Ր°΄%α^V‡Ί˜―=Φ·οΜ›€`z²xθ,ή41Wν$•(ιמШ°3‹Ρhΐ3ς2δάυ˜kw •žέήb‰.έ+)h'μaΰΪΙ>BρΪΧ¦5‚χΙβτ lιή„Α&*“§’ μBN<ΪΩόu#ōΈΆA[sξ{E‹VβK€‚‘P₯ οΚz‡„™₯Έ_:™\f2φΔ3ε†Š¬Βs;—_τvλ(ρΝ€x–œ_»988 ζsΦ©­$;ΟY'1η0ΐ|„g€“±―kI>f "Ϊ¨ϋΗw)€ŒΒω‹MoΑ½Ζ³Μη2,©I ϋφ ͺ’\ή/qΘ»ε/AyQ₯ͺ¦RκΑ`LΞπ bfTλ\† VH‹fβΐuY65€ήΦ°ž? πΈ‰AiΆ1Š‹‹•‚"•05π\φκ;jw€ηΟSc”ς%!Ϋί}Ώ=τ΄ψS‘ςž*)' —W.UΫuϋ„ΛI†(**R@Ϋ8<ΣͺiVε$ΐ Υ1 ΐi€.πΜ} Λςη`;y F1±ύϋχ—X€σz@Œίσό„8 Ο2QΥ“JΖΊάαm/ΒjZ” ΑΊœΜ‹ϋj˜…“ ^|ρE΅ ͺTφ€Ϊ2α έΚΚΚReβυYσiH™Xf ¦ž ς%'ΠρzgP‰ξΖoT`A·f͚ɏ?ώ¨”L΅b©α5Πv(6 }4 L%LB}„ςςς”β]—.]„P!9^?yΝά‡P‘ΔΡ6ΧΫωlq0κν·ίVvΧ αζΝ›œΘ²‘Z(νΒΌ€h?ϊbΊzΎ#σ~Έζ/ΐΏ“,ΚΔ“š"λ»· Τ@ztκ,ό‹L‘Nyφh+Ά³;΄o/ώœβ·XΚ?Ÿ-»n™ ΚΞ2S½ϋœΣN?”Šπ)ί̟§ΰnnϋόσΟep1”twͺL° @L.‹Ώ…u₯ϊΧsRΠo <γšΨ6({πs5ϊΪ‹Εp/·φDXϊ©W• $`‰ϋβΰ Gt‘x,ƒϋ»L„χwcIaΡP₯¦B4AhηΎ1φB%:ΚƒτΛu$Σν0§`@tB»L₯ m@Ε ’„bbπٚψιΎ ύ(ί;λ»H0Š *•7 yΗσ}”ΈορΗ/³mEzηψŒkpWωsΐm€Ž΄?ί5λ;zy₯z3ΛΜΌΈ=ΌŽΠϋ°|άNΏήŸOuι₯—Κ”Κw” ΞτYΦw”κΘττ™άŸϋΠίkΥj«eYυvϊ–…Ϋ΅',Lšeεlτ“yΝ<•='Ož¬ΞE%fϊŠSN9Eω"ž—‰6'ΐG?ͺ}%λφŸ©ŽL »oίΎ*oξO{0­˜Κ:ŒΏσzκ[&–‹ΰZCό1Ÿ™†>g¬―΅νκS—ς™hH™ό|η`“P­OέΘϋΓφ !τ&PΑγύd*œ»+v»$Π5]M\@?a?ΦσΦ2QΑ™“Ν#Φ[cΆ>ŽΥLζmTωR%8ύΖ±βκόϋ~Ϊΐσν‘"·?κΠ»± ;Tbσ6δ@έ0Ξ^,­Ž’ §zd ή έρ™L ύ7₯O ΅›ψλwΎ½>mHk`=Ώ5―Ί|ύ†΅έ«σaΦIqœPAΕzϊ˜†ΦO¬GΈšρ#ΥgΦΆͺφ— ν0έƏδσ­}νσ#ُΎ›ƒθΣ™¨ Ν6 ύΨΦ­[UΏŠmΛπΙ!΄—ήΞγθΓΩΟ ―o_…υ_Φl[‡ŸƒecΏ…υ΅>‘kNPdb; γΓ…β]€xΚKΐ5ξ₯λ€%;޹Ǎ–Ηί|U82’Cž€6ΐΤ΅΄ΣΤΧ#>ώΈzωcUΚΜK·ίy_ p?φΨcjς Ϋ—}Ύ”¬A| ž»ZΔ¨XΟΎϊκ«ͺδκ?¬SYvΚj/;ο}[JΙ–ψ‘έeEΏΥΞfϋɷg½‘κ6-|αήΣeκΊy‘ΎΚŠ%K%Ύ©˜i’xWMLLOn!¬#ρ˜€ž«~§Όƒ“©+λqλ΅X?”ΐ3Οσψ‹Ε2gA΄*ΖsaέmLΘ+‘ς…›dΟw+Δ\·§ϊ„Sœ›IΚ1]%ͺwqξύ£'Ζ―h―ά‹TΜΝ€’le2Z$I“‘B8¦cp…½α >mΥηƒ0^]‡"ΰψφGqLϋRŒ]–˜1|—·"hΗ©ψ[)£½opBόs¨‡:Δ‹•ιφ’JDδEœ9aΨ` `ŸƒNXUΚψd–T@ΩΈ€ &3ΡχΐoϋΡ'¬θΧ’ ν$‰qAͺ7Χ€jΌn&μ}-ξ…Λ±Šήnqν@žhγΦ6!4 €εq©ψ£_Ε>y}ž«/ΐs΅ϋ=ρ’x.'ϊΎFa1„Ztφˆ«ΒΞ<‘G2έQXy°”@™*Πξ-[«Δ>p Δ8?›©‰βo–&Qχά i\>ΔεcίψX\Q βνΡAbοΏ Χ˜.ΕWM’˜ΟΎQ«ω±ο\8­―_7‰ΗλZR±ϊxnϋ/ΫΏΆlΰωΧΆΈ}>ΫΆl Ψ°-`[ΰW·€ΰ―ο‰[΄hQί]νύl V`p—Λ3Eπ`@©ΠΑS‚£­ ΠˆWΗβw•Όf0<+£•Μθχ—`Ά-“₯ω=γeΠ§±Κiηc[ΐΆ@=,@u‹υ›D7ώ²K¨Κ"ΐ)fω6kΈY:d6ήRξ[·KήwsΰμBπΦΠΑίΚ‚t†ΊCβΰώ"=:+5ˆHeδwΖΧsΤ€žΕ+δΪJ œF3Vδδ‘$o‚›Άl“’©P~žΏpΑ΅’sKg€‰Υ·ΐ/λΕܝ„o+3δς†Fr,ΎC vTAs«½r}±X2pΑh„…ρ]*€Ž2Χ‘L‚}ΰηp¦‚· œ00X>|€ηFC1ƒς([Σ«FaΉD\k#§ΖžY4³Μ„ž7@‘z#@fo‘xŠ©τ\Ύ»D\vςΛψοΕrˆ~€Α@e'ΰ!ηζ­βή·3ŒδΨ”<ΜRΐΉ&˜Dƒ±§Λ=Ζ€βΐώ”{ΖΎ] lP“Ά Ξ\|ξ•‘|bοΈNήZ½44ύσΌyσΡ IΙ_·AM–"νΰΡ¬·κJπνΰ61!Θ :ι/ΛΠF«η“Pψργ«Ο‘1νΒOΕg^W|΄_δ;NΏΘw“οίIΎGτο|κσŽhpŒη‰ΟMυ χΣΎ†ο<ύgm>Ÿο°.Smο('0FD­A^ϊ₯I“&UσλΌnΪ”ΎDO.f™XŸΡO3qΜ…^(………J‘“ίqβΘΒ… ₯M›6Jρ“Χ@;²NΘ›pν6P4ΛAΘ‹6"°Ζ²ρ>πΊιCy/™'n&μΉσ―o™εq2H}ύ1σg«Τχ9KLL Αη*ƒ?t]Κkή²eK½ΛD[ζ½φ…Δž3L#Άξ‡υ©tέHίΝsπ8ڊP"οΥUωœσά·ί~»Κ‡χŽ+΄Η䕆Ψiη­oH π’1 K2:IŒJuS]ž}’\'Ÿτ'ωκ‡ο<Ο:ΩNΏΜ’ς (š@τ>Ρ‘5 5οϊ$>fτ-PtJ‡ΦP‰Ng*€θ:ΰBϊžiCj_^Ζ†ψ–-3±Ÿ–θ# “²­ͺažϋς}k¨ί`Ό’ΐ3ύνl΄±tΑΣ²ξ’/Φ“ι¨$––ͺ#x^Ά+k«#θGu[1’ΟgΘvšΥηG²λ‚ηlƒ²-Gˆš7―Yϋ2ϊΒΘ,£Άύ)ύΏ†‘y½ΦLtέXW_…ωΠτc,λ &ΦόjωŒρ² ˆωŸ++Π'†ζ±&ΰΎΐ†βίΈ]\#”£;6T_˜ΡCbŽκ*Ž˜½.Gvέρ/ ΄JΙL—ΦWœΏτŒ5J“Ύιφ“,ώN©rΜ°cλτΗΦΎ Λ«Υͺ™λΔN8AΎϊjΥ―c½¦ϋ΄-W}Π~ΤΙΓ~πΩa"j[‘TlΟ•ΨŽ-ΕΥ:Mόeωט0Xz·Ξ“׏όvΙΥϊ*‹Ώ#Ϋ.m±ύŸσ°ΣD|BMbHΝί’$ «2 `i'ΰθ₯;7ΙΠ‹NWϋξέ»WΩ<Rž,@IDATb>ψ%_Ηϋž,EˆΑƒϋnΚ½έΰλYφΚsš˜h_Ύ,Gr?–oWͺΫ‘βΐί­0qΌ{†€λ)n—όΡλ‚²9λ?/sΛΎ9Έšƒtl*iΗχ–¨~YPϋGμ§’­ϊάFDΤ„3ΎΗΜ―Υ€TΖν|θwqB΅ ‘υG›Ϋ¨@Ÿύ6π.0±coΚƒ`%'η—χμ,Ι#‡ŠΙ8χA$«²;0ΧdKΡβε‰Wˆq?ͺ «ΫtY ζΜ>~€ν†+ΞγΈΑΑ Ρ5ύΛ<zxζύ"Ž]ΉΦπ:FόqΎ€b P¦6P/θg»ΠGυcΒ-Οαν%±·όu•‡G,{δYq!&Ξ)Wησ5ΟPϋE.₯Σ`ηmˆσBΕ?‘ Sψ Όέ{Τ*ˆτπ'†ŸδŠWνPτ¬ΰκΫ― ­ ˜‰ΟΡ3TρΟφgl?φΑ‰˜œ"ΕΧί/1οΟ ΑΞεέ;JΕ±ύ$ρ¦KΥΚ*5™£‘ίΫΐsC-fοo[ q-`ύkO;7ΫΆl Ψ°-`[ΰwhxώή»HΏΊ¬·. Ύ΄; Δ 0ƒΰΞ`P»ξͺ6pΐ >ƒΤ\Ɯ§PmΜ€gζύσSoΛή—f*¨ΟHO”fχž+Žd(ΰΨΙΆ€mίŒbB+αζ’₯•p3ΐ₯H‰ •Ώusρβ?•›₯=€K,­ΧXΙ,†ϊο²ΥRψ€Q(ζ:ςY”5Ό3‘βάκΊ€~‘QkB^%/Ώ…ΰοqTεEJoW@ΞgCυν΄ΡUYpρηΕRςΑ4(οnVίPuε^β†’†`qΰ—uθμ0« %*:;0°νΔ,θh"ό쏬[™ WC#P79ˆΧQθ— aήΞ-|ΰΕ »―i:G2%κςsdۜmAΨ»5½ϊψC;³ <3Οΐ€m·Ώ-ζV¨^nά%.? ηΒ}ˆCρΩQ“rpͺ?b¬K#ϊ2[‹K3Fm‚’x~Έ!;> Pqφ59ΘT %Α ―πφw`ΰΟ‡A?φΑGu]yλ, DΗΰ¨:zœβπ(dΜ&PΜόμD ί xV™ πvΜ’ V—Ξ]$Ξ<Λ;€zΈŠ* #‡šφHαχ?‹κ%α“ό-ΕΫ«³$ ?ZŒΆ-ΔΔ3d@ ½dξBqeoέp€Β±°}βΰ£DΊuͺR)αs…Π… –ˆΏ‡ŸKεβdoV+I‚"‹ΡΉ}Jκπ&pΔb‚―Δ€ΈyΧ£βά|VPdwXJJŠj[κγτ'ΟApκΠ\t"Ό@(‚εΤ€ήFƒηγ’η: 2D=„CΠF"gΜ©`LξGΠγΑT€ζ1³oΈα₯ΤΚοt"ψNζ‡~Π_ ΥV ΣPѐ <νόα‡Vy―²³³CvΧχJ?Ο‘Μ𠟏O?ύ4pσ™!\eξQVΪ-++ΛzH΅ί©ξ|–ώΞγ―\>υ/λN¨a]Μ‰eπ[^ϊ€€φn—σώRaηνΏπΜς’ό…Ύ,ξE+Uι½έ;HΒ-Wμ·4nψ₯™ό-ΏηŸ"΄ώ; ¬x_uνŸΕ<šώ—ο-¦ ΤAf₯B΄#— ΡhSδV*DΓ§UK˜όγ|α8j„z_ιŸ'4Ο’’ΏPκΠ’›Œ!SW-«QqΎZ~•ΠOj8‹uDII‰.Ÿ|ςI΅ίcέ_lΘ;Jξ/yΪ€gkω裨–ΧΕ GΦ• X—ιχ«­.₯J*'Τ·Ž˜ωω4)}{Άμ8¦}ΘGσ΅Υ΄­†Ή―«Β”±ηž‘eω·N¬3Xr"OCμ4σγΟdΛ_^¦Χž$ξή™:»Π'ψz%άoγG,_ώΞ‡2ώ«Οδλ=;δΦa£δοΧί f—Ž"‘Vυ¨WΖφN‡Κ&ϊmώωΘ-R@΄R‰ήΈ­ Š$W―Δ•}4] E§vl£’©ρβJK Α΄ΜO·K¬Οu€6€Ά–£!~Γ:±MηAΘΙΓ† S_qۏΪΟ³\ υΜ―ZΏο#σaY9qŽώ]ϋB½ZγLτCτ‹΅Υ¬Gθο#ω|^ۚα>Ÿ*ΦD_ΛΙ)zb 'μπ;&–377WωrώΝ‰>œ,€―Ύ”€8ad&Βl‹Zοσ°ϊήηπΙ™κ`όΰΎΊΎb²Ρn₯Β6ΛΔΔψοδΙ“ϋzxV;TώΏW όΐ΅]ωj7wKΊψ‰?}¨Όςκ+rΩe—©#5Pm<6CŠ,έ ΄‘Smώ˜}ή7–_Cρ7ί|³RuζρZ…ΫZί°ŸΑ~ν§Αnζ₯'ς{Φ—lƒΣ.`Α—ΙŠ΅nœKδ‘;’€{ηΘ}•‘νzHΩΚ-’GeBΌ³ElƒCŸό½ΦΝ΄ΓΧν–³ΏYuΕεOHTλ¦’ά-Kœ­R„m$aυ–ƒLl.άωp™¬ίδ–XLψ~θv—pξてŠ »eχ7KΕΏl»HN~΅l8!ΓΡ-CR‡t“¨ˆOaE?rςοΘ—²οΧΚήYxΧφ•T™°³£WKi:ΊxΊ·δKZ΅ν£κsΙ7«dίt¨LοͺjK‰X«Š: Hn'‹Xo,8όή'βϋ~Of~aΏδg°ώˆκέάΞ|Χαs|i©βm‰ψV0σ1ή q‚€C-†ώžΉ&[ς`2γΖ€Γ˜lθ@\š«*Π™"&Κ„0§ΰ™2Σ’Δ °7jΒωb8rΏK}AΔΈ‹¦#.¬΄Δk1˜χΟπgIηΰͺQˆŸr&ŒμΘƒP7’ˆkv‹ϋ‚3Δ32”₯ώ%ο?οKμ3Δ΅m&κ‰―%VζΒδΖς½%1 @ψ»Ÿ‹δαZ°Šβρ\•ŽηwνΑ5ω1 qUΒΞ& ς½0ΠΗ>·‰Ίξ21#–(»πώgΔ3JΤ›Ά‰Ω B&ˆijΨY&ύSSήμμWΒ Œ±–œ>Jšόω,]ΜFϋ΄ηF3₯‘m²€ <Ωμƒl Ψ°-`[ΐΆ€mΓΙ6π|8έ-»¬‡Κ hίqΗ*(¬žΓHyn+ΠΜΏ©M*΅d~ώωη…Αe&~ ±*ά© ρΓ BΟT΅±“mΫΏLBUPk rs”›]›·+ΐ&R‰ΈTΏUΰζ’Τ§‡P“5λŒ#eTΫw 0ΆΞ‡Š³€³εQAg} €~(θΔ2Ψ Z₯j[ xΒÌΝx~σρΘ ΅`€Κ:!Θ[@;κΤEΞx υŒ’1ΏόVΚ>Ÿ…@pϊšΠ•³¨P’b0&U#θL`ΩΩ³°Lrnύ΄qdοTΠ³€k”Q,WPιwΆΑ@.°}m[+¨έYRe’ ( ΅g58B˜€Ι‡ϋ ¨V™nεmŽT*·ψ›HyΛV*˜Ο{ΗεjέΕΈ·|ζx”F*X3Pο†z8Θ#υ=ƒςΎΞν$'`ί­ΫΔ³d•π‚ρƒεxGSεΝϊGq²ο”»-)Υo―N ~VΟ-3–ζ‡ϊ3ŸuΗ :`θ΄*φvν IΗ „²ΚnM‘5₯pώbΐψ[”z‹u³ϊο j?žσ„~G@ΰeε;ΛΆ„x ‚sd3”e0 γλΧK0 «€ΊŒL){υj§‘ͺΊ~Ύ!ιψΪ0ͺΪ8·D­ƒΦϊ`Β O9˜ΟΔIY\2žφ7ήx£ήMRK/ωθ Ό7Ϋ•ΪΉ οCξ_ΗΛM·ήͺ 2.ƒ­Γίxφ9)Ένΰ€KΣTI(δ@ΉΆ¦ΧPU8D g*―Πe™―ΌςJuΌ–Ήsη*Ψ‚η‘ϊ1m½Υ3pˆA/e­Λ V±Ο„ΟŽ;ξ8<γœ`Θk―½¦Τθxό„ δ₯—^ͺξςϋΪΚ€·Σ„ (PE”ο{ff¦L™2%Uσš­`eπΊVpX6plŸZžΉ «ΌO<ž Υάͺ0’9r€Μ˜1C)ρ;Βr„υΨv%Œ¦U§ΉmW‚'ΰw„b₯S•‰ygβύ§_γ3Fίv ΐ³R΅ƒ*(–‹€γM7έ€ΞA[π?ΑΪ•6βσBψ›ΧF€ί ΠS©Οσ‰”&ών:yφ_Ap"φHίυNN“Εy{$2v,^΄E€}οΜOΎ’ς7?VώΦί,Uβ&]‹J ƒ‘΅%,[ϊχΗ1₯H Φhƒ˜,υά…cΉlπ)νEu €θΌuāβψΛ/”ΑÏ ©2NΘh[Ν?Gv’|€qm ’όe)θ˜G°κA T’›HB»ΆΈ)HOQŸj²ΪEτΝτ|ΟιDˆΟ.Υ{ιϋ¬“oλzGωnX‘.ζΙχ_Κ‘κ}^~²πήΠo±ΞΣ‰ 5A`^sM1υΎαΐ³u‚ͺ³΄B<θΣ-\ΌH.Ίθ"Υ–εqlϋ² Πε—½RόΩΙ»œπςΗ87Υo#υUx>gΫb ξ'Ϋ΄ŸnΟλvϋlp•– .Έ@υΑψάe΅DS L τʝwή)O<ρ„Ί$žομ³Ο•[ο/ΐΓ)ψί§«”ύ4“ΉΡƁŸPMš@6Β<S­Ύ‡•W.¬|HˆNO~J\«7ŠOο΄Ι˜ϋ[‘²σuχIΜ3UΉUzw‘¨["2¨·Κ³±Ψΐsc[ΤΞΟΆ@Γ,`Ο ³—½·mΫΆl Ψ°-pZΐžΓ›fΉΡ-ΐ€ΎVΓ°.1~"†9KU#œ&|A D'B,‹-ΖιA½ν`>ÁgζU±p£δ>φ ˜±ž#ι“ΟgK ΄ΫΙΆ€mCo.™—%σ ψPˆ€°{ ΐΫέ€# ΄Rρ8€‘AΛDͺΆDΐUE(»€{‘πŽ’9σΕ½&[):ZOΑeξ*:eIβ1G‰e ώ]W2 Š(o},ήΟΎDΠΠ΄ΎFDXύPHs3°zήXύTΛ PQαΏή’¨ωΏ„ΎVκ’Gd0’‚ηφ-Y 5Ζ@ΛAX–;#l.F¨zb UŠ/:MΛ’;=βΝl#ŽύΕ|ͺNTαώPχ1·8wΑX3>`o ,… %"¨ψΘΗaΙA|3ι―²ν?sC°sκŸ‡Iμθž*ŸCυγPΟ,―ύTz–\,3Ήy·ΈύΕβ*Μτ ΕgΎsΔ¨θea//”„ύͺϋΪ·’˜ŸayJ€ΡΫ1Έϋ#c"rŽ:ΟΔΐ…ίm¨=¦|>γΞΈ0€g€*Ϊή”4ρ¦σY„΁ƒ(§@]Ζ*‘Ž­θΪIβpΎ¨―8˜ιDu’ςΎ=%±c)š·0¨κ¬H‚{Ζ+οΣMOXX°\JΎ›Pw§ΞB}pO}= δχήNν$~p‘#Ώ ,Υl"§σa7}œό±”MοKεj_»Φ’vΝ%ςΑχί(•έš`VH[A§+Ɯ,ΉS?AήX™JΠ•:oύiΘρά‹ <8γYΠΉΫ2Ϋ±΄& + σПΑcsΓΩNQƒί˜ΐAxήΧέ 8Œπ“Aώ;]ό+ΦθlΔΡ¬©μ˜xE!δΫ;>Y*šg4iž.NG„RSS«Α„Ÿ>}zΒεραΐ2Ϋ]5Ό^½Τ5 E5ΌΞ;+A’ΰΒυΧ_q©|Mρό$hh…Nh“I“&)•R«Έ―N΅•‰ϋp»Vjex]΄3Λl¦!@Γm|>ϊZ!‹ώύϋ+Υf*ύ±άΜί ωρ._%ωλ6ͺ +q¨Η¦{‹”ηsΏͺŽkξΔDͺ²ΘfΓsχΔέ²%'Θ2_”ε5Χ ]œ4ΛοικϋކϋΟχFΚϊ½·ΎάN?ςωψΏί½{w5ŸOάκ’:ΏϊΌ£|η˜Χwί}'Γ‡£Ξ%ρ%ΞΙZ”ΎŒοΈžψΒϊμΔOTuνM€™ύnžƒ‰ώ‚ο>ύ<Ώ#”Η‰W\q…ΪNπwνSΑρwϊξΟί Θ1Bν eΪ‡ c.ζ5:cY˜X>ϊf«??~|H­Y=g_\ΝWρ…Χ{·YWEͺKyύΦO:ι$uNή;‚‹Φ2Mžσκ]½Ϙ†K­υΦφwΎΟκέ7ρO ΈΆΦ[ΦηWe\ωγ€€ηΞ]dρκUrΛ¨1rk‹v˜τώZX’κ½·}[‰λd€ΞjΆ‡ύηοέ&ϊ8&`hξDŒΦ@΄@5ZDc⦧Mš”];,τL2v—φΦ¨nU—H°4γξsδΆWž ΅!§Ύφ–”ΑFΡψoτbβ;k]e₯>ΎΜ:ƒ~‚bTqgRνiLΎ°ΒΥϋΥOυτŒχpΏ Ž:‚ν8N,€­Οg»ΝzM<–+°XΫ’τg‘}ΉžΘi;Ώ‹Τ ――/πΜ{Β2Z'&±Ξαδ ΦSlƒ³~ώ9R_εΰ9uέi­‹YίR±ϊΆΫn“)S¦pW•ΚθvΟZ)yS¦a₯+C/:^Œα½ƒuΦΊ²ηξ)Α‘LΪβ™λδξG¬ζιkΩχ`βDͺAXMˆu$Λ{ ΪlŸίύ ηχτ­,'λ'ϊς₯SηγΌn‰;υHUo1gέψΜsSεΚ[Λ₯S;”]uφUx|Mι@€gΦg¬W˜V<ωŽxv!V±±Δ=jTŠΖυ &.Hs¬ΠΡ=Sˆ‘»Z§‰# %·Υ(”:ρ^―δ8€E3?“δqO+™>©X±Mφ|»\Λ‘€ ښŒIβθž!ιΓzŠ»}ΊuΣκwNn)$ž;JΜ«vB ·ͺ/N₯Œμ%1ΗtRc kͺ>—~»ZφNhύGR}†/MΫ7ηHΑ•ˆ!n,Œ8ΪˌεΉχμG ή57£€8_νCΌ“hχœμΜ‰Ζˆwΐ©@}8QΚΪfͺΙώρΗΖ²!ˆ…@ ‘A ±8₯ތ8²«±QΈ£€\™c» ΟΊ βBμΓπΊΖψΚβΗΔ6€―ΏI’”( Ÿq55A.γ™βY°LM Φε4›$Š‹έ9ΫΤ΅ς{“ŠΞΩ0JΠΓ9ΐAc`qOĜ™Κ†ψ+.ζR κoύΓX»QΚξ}Bά«7¨Ψ«™(ώθ8ρ£GΑ βpΞjw³[{¬”x’˜}£ΜΟ—ςΗ_V*Œ΅RΈƒqq¦Ν‰φ5SΜΈΣĚTθ΅\«?ΑΥ‘CΕq!–ιγ΅…'€‘Eο&žeœͺ(ψ3%欓€ό (ocΦΉ+x¨€a)J8 Θ\Κ08κ(ε@ΰ €Ÿγ0Θεgώ `π£" κ-ɘpΓ―p3ΟH1T€Οκδθ%½Β ›ΔΥTΆΑM8jΙ±Η‹ HΙ—ί—ެφΜ₯JEΏž’DΈϋ›?/•βoζ*uύŒ13ͺΜx»Ά ΒΟ½ίΔΖ¨gΠΨΈYςΎϋI<«6ˆ¬Ηπ8‹fβνάΔ³6H‘ Έœ%)ŠqΩΜ­‘ΑuκhΩ|Lμp€| άζ…₯θMΥj lθeι_ύu9ηœsͺN₯Ω΄U –`ιIL,ΰή€DχSχΘΐΚΆ Π'΄$>ϋG, Ϊ JΠέΕΡ±Έq.Βl~ψ‘‚/ΨΎ!hΜv Ϋ.Δ§ςΑ›7oVΐ'rYΫ= 'XΥ§OO«ϋ“O•έŸΟ@I|Ÿ ηΩuνψ,’@ƒM;ͺQq½ž‹Ο&xπJ–­V΄ΰ™£’;ώ ^Sš)¨ ό²ΒVδ“O>QKg[―ƒ`Ϋeθ§b3U)5xΜc­ΰΛΐ2M„@˜PC]„Ή―Nu•‰vλΧ―Ÿ²U‘Ω^δw:±LγǏή+˜ΛrJ‘˜xώW_}Uά¦Α/žί :ξΜΛ NŒΡίΥυ©•Ί©πœ}όjREΤυ—ˆΡΏg]‡ΪνΫwKΙ=Oπaηθ«QΆ!ύj?'&OzΛΫζˆjφf"TN1i#ζw v¨‰ΟΛ΅Χ^«ό5ώ·Ύ»|θ[ωN(?Ί`Έ—¬”}kΡξHn`’©ζOΥ­Έo—ΟΦ―VώWΫ”Ο.a§fP+šxΤD`πΩŸΨdΔPqθƒy6λ₯w”  Ϊ'θΌk‚¬ΈΫψ>ΦδσιWsY}>ύ”―"½£΄•—υ;JPŒΎŠ}eͺoρ½‘?"6vμX¬έwί}!}ύΞτ ,§φ·ΜŸίQ)Ÿ‰ώ‰ΏS₯ŸΧ’%i«Ώ§Ÿα=ΤΎ~ƒe’J)ίχ6mΪ¨zOe†<χΧeΠΎŒͺ—πt™ΈΏφe‘Κd…‹ιιS­χ†ηΠΎ‹ώ˜ ΦΪΏΦλ9C}M²^f9¬Ο$ΛΖλ^»vm΅Ί4ΌLᓁ’1νμ‹/¬ͺ#.»L)‡2―Hu#ύ+ΑDkέθΗ½ή °$ Ko{5Gš^=R©β²L΄u>OLœ4•„ Fx¦:΅Μ”mMs5&“!΅zα/rΑί¨*κa«ΥN•?x½αΙ@ϋ©dκGθ―d‡6ωZ΅”˜³OQύͺœΜ€Ν9©Θ€ϊ¬ΐͺ sργη.τιΒڏX}'_o1;! Ωιπ΅αH*C›ψοθΠL ΊBˆu@n¬~τ³ΰΆxπBΉωω‡CmΘ§½SΆίρfπβα?ŒΔhτWγ$εμΑςξŠ«ω Βz‚ώ)S$ΏaΰΗχKϋ=Ή„ΟΎφ;Μ£Αυό}1ΟΝ|IΏο(ϋ5υυωTΧ·Ά»Y.]ΗDς…Όn&^s2 ―ƒ«P½zΪ쿜pΒ j‚λ‹φνΫ‡κK?_ΰ™>–~ΑΊ'ΖβυiΏkmΟͺΎ””322ͺέ+ϊP=yJχυx­œŒΪ΅kpRΛΖ ¬ztμ_ψ‘Δ κ(ΡΗvQ―'(—nέ){ŸϋJ y‘η2ράαςn馐?¦ͺ>{ΆMκ“tίΓ(ͺ ¬ˆUψέJ)ΨΎGZN<%tΈ΅ήβώ=ωžάr™LyΒ¬W_%”Q„_Ψ> ψݐD۝~ϊικΟς1φmΝ•ΐΦ½²wΩz!­ώa@΅Sψ(ψšΝ°r” “»f*šŠΠŽδΈΠžXKn}ΐ'%₯†΄oλ•ϋn‰Fϋ!΄ΉQρmΚ•³—ŠΉ|»Ά όxVt2?θš!©CΊ‰§g+qJ#&³¨\Κζ¬όΌXΜ-•κ·0'¦›Jκρ½%ͺ_β‹“ͺTŸ·"NUΩ_P}fΌx3ΰfΔ― Τα„oqξ@»‡r(™Prή+ž\@Γ¬ϊ†ψ•3οβ|εθ―d*οΩ'N¬’£VΟSΚ؈ν:ΠΟ€ŸφΆΘαC%vΜH t‘ r=“ %bcέf) @Κι°$¨σ`?qv_βμMpHΕkocβά «X€Ξ\•€vω‘=%φ² Blؚ ‡Υέσp>œ['K„€Bς/ϊς›P»„ Ώζ’톲Π6Fi‰Dίπq#†hΐ:±.`έabίό{Kβή†ΘdΖ:ξX€Ξ(#βx§X…‰m†¨Ϋθ ;B,–‰ύ3«#–Ώ?MJg~§Ξk”W¨ΆhτΠ£Δ_T$1—Œb€¬_Ω/bΑSUyLp.GΜ•P΄‚“€ψ†$yτ±β;"totίK•Υβτu4Ζ§ <7†νγΗRςΑηΑ ­ή5ΛξI Τ?€f"θ,a ³‘Υ¬#; ΦL#g@~€Ξ¦Αδ‹Ξ?Rσνi*PΜα  ζr¨RΖB!šD Pϋϋts C&Zό&ΟόϊΪ΅’ψΏ_#Ϋ^š%Ÿ6ͺr€^8DbOκ­~?Τ?5πΜςϋ·εΙφ;ί 9Άν‘(π2@,z- ‚Γ6― €€š• έ₯`Œ(ζΐ–΅\„ω=.Σθ£^Qj"τ)‡0μ© tœΟΫκˆΒΐG₯ρόTΜmή *%ΑHΎΎ6ΝΔiϊĝ½94ˆHN’r€]‰¨3‹Ώόj,UŸTk8ͺ$ ?FJΙΜoΕ¦θLp:KQƒϊ•.—ΒΩs δΌ WΥ3«Ξί° ”VŒΎ=&a>ͺ(Ζς5Rψγ<<ηλ V žρR8`γkγφΕ³ή%ς2η  Τ£ ,‘ΨΦ-%wδ a1*lυψό{ρˆγR”žsN–mΝSCƒέ‘ζyά~‰ξ‡Ω­£ LΚΙY xΞΘ΄ΐΕ†8οΉYΆAέ†ƒΐ-γΔθZ >ΓgŸ‰Δ&ό}ι₯—PΗe‘©šΕ²„ƒElλp0^Ÿ/\Q4DΠ΅Δ+e―OUJχΡP˜YΧ%KΦnΩ,ΙΙΙ28―LΚ^ω* ίSΟΈSe TΉυΰ?aΆž]ΊŠΏGpG–A+©iMrs;Λ UΤ”b*ΰζš`Šϋί Θ%0ΑΑς:¨s[―›@Eψ’ΰ„ 4€WW™¬ χ#³όΗΌp‰j p`ŠωT3fzΰ”³ΟΥ—•?hφί²ϋ1ύτΣOJ€Φv'Ϋ΄Ό_Τψ¬ή£ZjΕύρšt"„Αότκ%„ΤΗQα›Ο‹†­v΅^§Ύ/΄λ)§œ§]5(Jπ‘JtόN«ΗY•uΉh'BŸ„¨Y*ϋQ±ŽΗΦ_>όσJ™Z—Ιϊ¬θ|τ“0 ΝDΌWλΟΈ"ΈšžΏθKΟuτfΫ8Η—JΡύϊ ƒΔLCϊJβΥΦζ¦*Ίχi5IΚ³nVz€ίΕ‘˜GοYΗώL|^j{ξ­PιGkκ3Ί,^΅RAO4%ŸIͺ½woΧ^J^|]|_}_ΝΒGΚΎ‹N—b¨-ΆNK“θ (“UNΦρΚΈqΎ»L|GΫ'&‹?1ΎZ[ΣκυDνίxmykςω<–Ύ…“5΄Οη5{μ± 4ŽτŽZύ₯φeΡ¨ΠΛΎqΣ¦M•f™ιg˜θ―­+XM™2EpS^+Υs_ϊ‚\VΰYƒΌΝΨηί:oCίF°•εe™¨ΜΙI5„₯ψ&΄ϊJ^3WΠΎ‹η£ Ύ.Σ›oΎ©@pζΝ©LiΈ_Vά·oίjυmOuRν ˆλϊ8’τœ±\Ό^Ϊ•*žϊΎκ2egWM(‘}ΓΛd­#ΌσVKtΫ Ήϊώ»Be"„ύν·ί†κFΦV;ρ΄?Φώυζ›oVΗS•ϋn―'ΨΎg™ψ<νάΉ3dΟi)©C{nVυVΛ›€lΪξ¨σ“Ο,MΞRΝNαmu`€{r₯m‹¨…KCΩ|XA'*~fοξ‘#ώτ§?©Ι8xm¨όΕ€J‘`²fα<¬6UwŸ„νDψΗΧ Π »t0΄ @‡ι0ϊΣκ3­mΘΐΎb @ΪΩ©ŸΕvې'%t”}―°\gσ»Ο•kžΎ/δ7¦<ώŒlΉό‘8Τ₯Xυ&ΊW[Ω= y5_FΘ5€•Ž˜ l5oή\ύΞI$ƒ8Ś€~b„}ιSΨΖγυZ“φCΪ/`Ϋ2Κ“υυωΦ‰:lί²ύ:lΨ0U€Hνen`Μ•“όquμΨ±Ϊ5ΠχSݞκΛΊmΙ|­‰Χ\πΜzƒ06}3'Ν°₯ ΐΒ}ۜ9sΤΔν/­νcζ₯ϋzlsΥڊ‰+œrςXΙύο¬τ3GšM+ž­Τ6Φ­?όπCΘ³ŸTΑU6A©s Ψψ(™Άs­jΣ³~ΰ€Γ .Έ@_׏!C†Θtμ? ύΪu@―#%±,ϊbψΌ]zι₯κ™f=υΗ§JΫVNΤΥgΤ«―’σi¬OΆKΨ`²Ο5εΘ/?@hί–=’Ώ2[ρsG>Θ–AΨΑfT[A'vn­ θm4™τTa1iΎWΧ ΉσΊ<a5ςŸLZ―X²ErΏ[!ώΥ Ρ %ΐ¦Ži’2Έ‹Dχmš`ΪώωŏϋXφύZΩ; «Ηνƒ8ƒN'„ZHϊ GŠ»{KCλMς©UŸs‘ϊ,‡›κ3XLj ΒΝ+…0―s'bmŒqGH\qΝα-–ψ|ΔΓ›ΕͺAŒ‘1©~|­ƒ€σ.€ΞΕ°9a_•9£\\2¨ΏD]ΤΩΡ~―+™ˆ7œt»&[Šΐ†Κ΄RL?ν6ΝΰœΜΌ;ΆUύ#γΫΉβ}όq―ΟVΧE•εb—@;Π 3ήβςQWM@l>θ[U֜Lη’ι™!‚² ^nςŽ?a˜];HΑ•¨9Έχ•6σ΅j!Ξό‚Κs JμŒ'–—IόλΟΛ—sηΘ=χά£ϊP¬S8†«Œ±ίU|ιDρ NIUζ€ΓΥiτα°Z+«q’¬Γ‹ϊ«ΖΏόό’—«ςΡ1!–™“qY?e‘]Rόΰ3*Α sΣV)¦j‹?ωδ“‘ϊ…Η\wέuͺ―?ο ϊχ&ϊ”₯·<,)ί&_.˜WcYσ²Ζ½˜Wc$xn +ΪyΨ8p ΨΐσΫΞ>Ά€mΫΆl Ψ8L,`χɍ²‹ω»΄IΤΦ­ θ`χ‘(pmΐ3ΟηΫΈ[vέθΉ.¨€ί~†ΈΊ΅<E±σ΄-πΏcBk[$ρ2αRrTΌˆΥ#κ‡B‚€mB―nbth+&¨ P8PΓšΏ¬”’η—Αƒƒ5 τuΜ”ψAPvμ@“W H欀μ­$ p¦^"‡›xWτξ&QηŸ!Ζ°‘s,ZπξΗ5wΥ₯‘}Lœγ ΄bb€©2ω+Ag£θŒΑI ; :μ”ΥP}†ϊ‘ί€J0`ηΐΡύΕyΥxρ^v.*—UDΫ8{΄ψΏ˜#ͺ΄!ω[4_w bάW*B›`°ήΫ»³$ήr…δ<=-;§œ3XβNΠϊ+₯_xζ₯x³χΘΞΙο‰YZ‘=βv”ΞΛΟ\*Ρ@ΟΐΠnΚ-^ fΐφPlφβ9&D‡₯+^y6E@κ-]‘vψΗ~¦ͺH ^Πi,§H† ο…WΤ]8(€Ώ½ςW€cπή„œ8παλΨο ”KV€§Κ —d,ά䀏Ÿ? Dθδλ)q'/&ΰγ§ER:λ{,›Yυ<ζ­θœ%ρ£‡‰@…E•ƒ&E³Θ·^©lκΌX.f ‰‚Iύ1`b}Gvβϊ–’’Ÿπ~­Νφπx  &U1°ž8Ξv*GΨγεIαε·@/–δwž—‡ŸzR >(uPμ㞳HͺΡXBΗ³9π<άΖ|†4Œvωιg‰ͺξ…X‚4Άes™Ϋ.CF₯ΐΊ5«ΧˆyΕ-"”rφκ*[R ‘/₯:ŒΑλw ΎI˜”ΰΨκΥ«Υ„-­–©BΑLTΥ%,€·σ;–§6ˆ ΆψΗOΘ­·ήͺ”2W+πi ,ΐΐ Υ“ήyQώ(Šj°_ %ΠΨξ *žR}Ύ6ε€QςΡΪ• >Аαuβοχή{―ά}χέ v ȲӎάφύχίΛ°J˜BƒΌTQž={ΆR &GΐŽν8Άηxμˆ#Τv„’ –ιvΟΛ{\„Mi•ΤΗ{L viˆη`Ή¨ΈΝ,B&T1¦"2ο•ͺΓm­6ΰΛΑό CπΊD0ΐ|nΈΫši€™Ϋ.Ίθ"ΙρΉ€22Ν4¨IfΚ”)*>—\VΧHψM—‰Ά#―‘gδΡζΪ½XΟΙrρΊωœπš΅]5XΓοuLτˆΏγjWUpϋ~'Γ1Ύ„έE0τŒ}ΛG –Ψ{n¬Χ`υ~ωζ_πΉη}&<Ε΄ Ξ={φT>€ΟΎ}ϋδˆ#ŽPΚTBΧπŸ[ΛΔχΟ$ίΓγŽ;N½£|^9‘‚ο·© Ϊδ*PυΪ ΐ2iθ@:ζDUwπύΛΰ‘Pα~TνšπάCςο/Ώ½£ΏΜϋYΌΎNΥw@ &&Έω›$Kάu—Ιΰγ†UΥ€•Ό•PΟ­ΥH>ŸΫ³ΝZ}>Υι9xΟχTΏSϊε;ΗkΆΎ£œ”pηwΚC=$τŸτkΪΟπ8‚_Zρ—πn&mπ‚ΣΏ/R&'k˜—Η”ε9˜θ‡θτ$^τQϊ,ν«'RPMϋΑ )mtg¬§©:ͺλRΒmΌNύ,Ρs»K΅#•Ι·t£”ϋ‹”žst gAΈ]ϋh­ ―λΪ‰Χ­·σή~9}†\uν5 ²ΰύ™:Υκω<±.γ3ΔΔ6FVf¦7|x¨ήzρŸΟΚζΫ^“”ΛFJtΗϋΩιβ‹/= *“°” ^{υζ‡&Ίq²gΤ…g‰9ΈΨή’κU>“5Οαh?™ΛWKΡΟ ³Ρž|†:֚Tί ͺΟ±}£[' †f»ΤN‡‡ψœ6€ IΑχΞm:Δ ©ΰλ₯βs‹|ΌnAΘo°=γxw~ΉDν“~ΓXYκ)Pν0~A?“πVhΩ™' cϋΚό”2a=Α΄~ύziΥ΄“„ΰ9ψ}Cλ'BVΊmIJUtΦKΊ½Λφœn«κΥHj«#θ[λΆeoΏύφˆ>ŸΆe{κσ %λφ4·λ F΄+χ O¬g¨¬ύ'Ϋ°¬“ΩNΤν>ϊ Άι·Ψ οCqΏΪϊ*τΡh[΄h‘N?i$UOπΊ¬Ί\ό›υο'ž„ϊz¨ΗhOn§?ζdAΒδΌ.ϊc~§Ÿ3ή ΆέΫ&6EΏw ϊΟ.‰ΠAœ‰ΑΆΟΛ2±n£_εuΥΩWωr–h¬`Ο{¬“nOsBΟΙΙ”œάBu~ϊα-ƒΧΜϋΟ{©mΗλ£Mt{‡υθŸ'L”₯KΎ υ κκ«θz\—ε`? <ΧtΎΐΞ|Aο]ΆAΜm€;‘mμβ»n›…XPμ”{šHnLͺ€tK”?]θ±Τ ›'4PvͺύD;±bΕvΩυΝ2 @ύYςͺblάΩΘ,Ω-C‡υwΗtvΜχΟγό₯Ζ<}‘˜KΆ"ξU?ψNGίΦμΔΎβjΫ°˜h$“ύžUŸΥ$~ΐΝ&‘ +v2–½'}„ΚώFΨR“Λΐ„ž]Ε‘‚ghε q ώ…Ζt΅=ΩΆvμ+ηξ\Δ‹•J±ήΑD»PPϊΫ΄ηωgŠ+i ‘¨7Gό4wοͺ7ηΝ_‚UrΠ¦Bμ-B S½9©o/1Ρ—ΐΞTς%(2ϋŸyE\€}u2γb±ZQΌ(l€χ€«ΨEω<1‘G(­Z/ΣΎχb¬πX' —Δ?DŒcΠnĊGΖ³₯읏Cϋp;‚ ‘σΠWφ7o&ž›ψχμCrο«§ϊJ:Oλ'λφώσΆxΫΏ; ρ­t¬(—%1 ΄/©PΝ=ιzω${m­Jύ?BL‘ηΊmβΘ]ώβΏΕϋΨ$5„ρ½šϋN횷”βkο‘δΫ”{ί}£Φ²r‚zx쫦Ός½ <7ΔZφΎΆί6πfΣlΎΈτY"{Ψΰe‡ΑNΆl Ψ°-`[ΐΆΐαmx>ΌοŸ]ϊ?–κži Ξ^Ω5κž€L²₯ήx²xŽΜϊcΚΎZΫ΅YΛΕΩ[% Ν„›·‡ΰΛπΓ8p%Ϊ΄δ>=ΕDpΡΐ²uΏJbμyίώ€–θsnΩ±_PΨί*Cβ ³3 Ιv dGPΌδ₯·$ ’Kϊ…ΦεP“†"­όiDΰ“± KAΏ™xV¬­*ιXDJ+οΐΰLeŠ:€šT‚ΞEn€ΚA>pgyς_bΞόΐ-βVιβ;Jόχ_€ιτt">z°”`IyB)T·£cEJƒ€JΜΩ€—Ξ-9Οvώ~*Q“SϊKόΈn]θFώό΅€gΫ»~—μτL%#Η,Mι‚Ɏ}β6JΑη—ŠΫW"F%δƒ’ˆφχbΰΣLKΟUIΙ7ίIΤΟ‹•Β·(Ώ‚† ‰Υm«fΉ_|^Π”†Ζ ―α4°Τ*nŸ#8ΰΔΑr,-μKIƒχ— χΟΫ9S³ZIωOσͺΰe|_Ρ΅#ΤΆG)Eκ’ΟΏ¬¦ΗŒr¨‹'ž ¨Οjαt X,°τ_w!aτ0Tpπ™\Ύ0β^ΘΪϊŒ£(ώf«Έ\επ£Ε€šs(αέ3ε} ΕθΥλα'ΆU=ίά eυaωIo—’„₯+ 4FΏΥα„. QυŒ‰JmŒηΰ1ArLa―ιŒγy‰~ςnΉδŽ[Τ*ά’1'‹— EežάŸρ7ώ―B!Ό?%€οΏ~΅Ϋ¨ J•7 Σρ;&ξ[πlΉ?―σΜ3ΟT ΟΑ{CEL&ζÁ0 ς;*ή0Σ0ΏΣ‰j¦\›0K1©η 6€Ν Χ1O‚+xομQeˆΠΏγ9233•=>ύτS₯„Κ|΄=x ―i†Ο͌3B !αM½t6―‡ΚC΄-Ώ#Οg†ΟA8ڏP ΛΘDš*m|–V­Z₯ΤWω=mM…=–•ΗπYα&3xπΰ0Βο­Q‰•χše₯-Ο8γ n*ς9Ώwjγώ°Ο;vμ€o…Bςδ'«T•τ’Δ.UώαOΡ8‡}7_ʞ{ ώԎύϋ_Eš7­5οό—#ΡΝO6”Ά0Ι©τΜ$nβ•΅σΏΊ‘ΟL—.]ΤLX‰“θyΟ©π­ί+BL|ω.ršp)χηvΒMVH‹ώuΓί\|wχ{G‘θl πwτμτVRφΜ«Υ³BμyωQtό¨π|ifg)ycͺψ±όrΤ‰#d'χ η2QiΉ.Ÿί¬Y3₯*L…d¦ΊήQΎΧ,+Α)&ڎvΡοϊ°aΓ”]'TNτΰ{Kex=±βΔOTυgΛ–-Υρ¬‡˜ςυJΈt=hυ3<€u }―‹‰>ˆjϊ… 3iυTϊXϊγηž{Nω n£ί ¬ΝrΧ·L„τx©]_LŸΕsΧχ9£O€κ[—RευGCΚD%Syυ­OΚκ'³Ά/ έkkύΞϋJΫσ}aβ½[Š{ΐ„Ε·§}\o;ΕΗζG=žχ8§%XM†+’0βΠg9M#ŽA#42p\—ΒsψyφϋνM+ίΜ[ ΅ΕM: ΦQ«ƒ ―HZΠ¦5; ciΛν—§ύΕojϊN Π*ςu΅!Ωζ¦―ζd:«Οη³j$V—/[Έlλψ§ρό˜|ςΉrο_V¬~Wr.{^όP™ζJ;’‡±b€ΖKΚ₯#₯ Τ~©\WύΔ•Urrrͺυ ¨ψΘ”——W­_ Wέ`›Ύ!u}5ΑΧpŸΟsΠα>ίΪ&£ίΤ+΄p²ΫίΦνΜƒΙΊۘ―ΌςŠΔbu"Φ‹9Ι†‰u2νήvζρα}r ΊDπšν[=…“p¨Δ©,Όχ¬―™¨Ψ_ŸΎW`Y5 ΝϋΖφj€φσe{ƒύ-Ϊ£Ύώ˜u3―‡Χj–UH gΠη/Γ OMN(Χί~‹jS΅z|ΧA’χΪχ’rίy2κάS©.εdΆg˜8a…} mσ»ϊτU΄ΉΑ¦Ζž#–±$ί–\₯½wΩzΔK ‚04βιLϋς’³ο"RFš«@έ–Ζ ΐη&έ²νj“&F2ήΧC”Ό›se7ΰg²νbn¬σχσ,@IDATm­ΣιL†tO―Vβˆυ’Rό>³5½X₯sα&ɝ±HΜU;η"Y™ŒζI’2²—DέQɈD —KΩ·«ε7S}fά+›pσ)ΒD}Ζ‡)PPνYΠΧHC,qΩˆaˆ« s"lφfq}ϊ…n­νϊ=£ Xœ»r!2•ωΠžΣ‰ώ%€>b }¨9Ξ:UύϋDμχš8ΞΨ΄M©7.‚ g#>ΫGώΦΝΔΧΆ…$υoX’βυ)«>g„x’ ;ΠφͺLΌ>ͺ$땉―ŒwΊΈJκwA 3ογ™β™ “–Υά-{ϋv—€‡‹θΰΟK°rΪΫ°η^•;Ε’ю«XΌ1eΈ~ƝXUΔΕφβ€λG ΅!θί9‘ύ@φ7Ψ§`bόε²Φ]Δ·y!&mr.G|Ϋ¨lΓF!ζž{άΐΠδΖjXΧ16ώόΠδAζΏͺ*Ύ]n›\χτͺΓsLœ8Q©:ΣοN™2%T¨IŠ~,ήσnΥ\ŠΥVVΆ…τζέΙžÊvΆάΐ3-βί] ;οΒ`/J8>υΪ1βΰώcYΜΎΪ?Όδ” ›Ε€βEρ2…7[¬φ $'@₯’%g\{χ υf„Ν„)AP•J·ξ΅›φ+k >V|›9 *ΞXšό M&–,}ω ρ`‰>'”6t"œκ딐AΨsNRJz[΅O,‘h|7WJ>šŽ₯χ„6±,1€ΒΉ»j――ϊ~Ι:, Ω’θl@QΔΩ~ ƒ€§M(ˆ˜ _Χ“n3€%…ƒ *AΉή˜x™xί°Αυ•η­8ωqα>3™ˆΏψ ”¦q )ζ―Š}d5ΨΩ1¬“΄όΛh΅―ωγΧžy]ΛsdΧ‰‰<ηξ} z¨QιΩγΑ”m1 ζ*.‚"J‚Z¦Ρ›“F‰g ]+©xζ_β€ΚŠβ„Λioχ6ΐ~€u€ΰͺ³‚ŠWnό^iM,mιŽΑ}hΛdb€Έ΄gΫJΣUϜƒ =;Jιό…βΒ$όΝΣ%ζ4,ӈ₯ ?›%n,Snx«\ΌXB<žͺΟPt6–―•Β³ƒ@3ό:Qε₯ΌO7I:a„˜Θΰ@Ι:@Μ_~/ξ₯k‚ƒCzg|šP„©θΩIΑΟ₯]5ΘίΔυ+ΈήΛ•λͺ νΚγ©Rνλ•ιύā₯6}€Λgrp6RβΓβE‹€δ±—”š΄ϋΡ;eΰ¨ .ζ`τ„Œ,)}ύ}5@εkΧZ’ϊχ†‚ΐdψ# zqΏπεή [kΰ”η%€6lΨ0₯θ«ΛΑAφ‘冔OyW^zDξ}ι…j*/£G–E(›^r™Ηΰζ²Ζ΄¬)D@@V«œq_ΖC BX—ε ?uK₯²§‰ηLv`RΚψ ΚEwj/οaΩgζsΏ•Pvήφ’ρ V¦„‘ΫώωDhΣί[?­ ―ΓΊ¬4χ#œB@K'Γα 7ŒιvΰuS M—‰Π†/x<χ#<’gψ§†°σΥΛF‡οώ7mΐσΡ„:x5Ύ/&΄Mؚšκα6*zb κAΪIΓ"·gΜRT;…ύPo8†ΧΐVX&lWυ'ΟΙηI’ρ:t’¨)%ΐΗAX^‡†°kڟ6βuX•bkΪ·!ίο<σ`Τ_…ΰ=Ζδ &oŽ’pλ•€”ΰΛ_WrsπέΗRΐΡ7N9’Kν%šυ£T<ϊ²Έ7c =Ϊ#…WŒ“€ΛΟ―ύ˜Α­|Η­Πn€KδΔͺξς™δϊ7ϊ^ύ~4£’–£"εaύŽώœγ?„g­~£¦w”>Ζ υtδXbΪΔgώ†lIŽ „κ$띧ώ@ω'3$ρ΅gδž'―—ΟΏδ‚ πž–Ktb‚Lž<Ήήο(m―_?)σι[ †k™`ίΟζΝ›+_Γz‹4ΗjKz’ύ―V-Υϋ³£ζؚNΌgγΐΏ>ηv–π™ΥηsRλΎΈΈ8₯Δ]ί2±N¦_bͺ?fΉθϊœΡN§Ÿ~zύλJͺ>ebA ―°°°^uγ{yW6^ψΌ΄{ϋ>rD¨‘ ΒλR~Η1Εξ-³$ηΚ—€Ω+WΚπΡ£κUoιΙSΜC%”сU>Κήω Έ’ Ύ4αί<§sΜΘπRΉχ~ <‡ε¨TW­“ΒΉ Τ’κ-a“γX>ψ_fk‰λΧ[LL’3-δΒ²³ό,ΐwΛ:)"R1¬mH²οΏ~5ŸΟοβˎ:²―”o”š[$ž­eϊlΛX€TΕ†²ηΎ”₯›BEJ»ͺΏζΆ`Ϊ`ω…υΣΈ“O“rΤ±-κμh₯^ϊϊWλih_…φo¬tHη i"ώδΫ΄[Π?|˜#;~)””}’™^"Ι‰U@m΅ΓW1Z4Q trwΔΥΪ4GΛ&b ]ݘΙ,,“ςΕ›eΟw+Δ\½K­Ύ₯σWBYX%ιθΥ»Έόώ‘’Y(yΞ:ΐΟ‹ΕάX'ψGΗ¦’z|o‰κ—…{rp}΅ŠUΫeχ'σ$uiρU>.τ‡{·’τ±Δέ)CŸω€>ΉΊΑf₯ά Qαf΄ω#&\WΖςSΉ1β άŒΙƒaBΖβ₯βψl†8V­©ΚοΆ7w/btXٍ3ΔΠz©άŽI1π£ι)"˜μoθ'ώ1£Δμά±κxώ† φζꍒ?Δτ @ ±Ζ ΓγΕToNθΣ]ώŸ½σ€³ͺΈώψyo{_š4Aͺ  ’Ψ5ˆ½ΔI4v&–¨±%vώΖ¨±$v£±Kнw v±ˆ" ‘Ί…-oί»ίwήΞγξcwY`‰˜ΌσωμΎvοάΉηΜ™9ηw~ΩΈ™ZM Σ:€κΆϋ¬θΙEΊΠψ,ΉΧ^=,.ΰuΤο—“cyοg ϋ‹8ω―v.ͺzιΝ&ώE2ΐJφi6l6Ικ};Ϋ–ί>z…/9GΗm1Dϊž#_·όQη›ΤΞ!1ιΞ%Ϊi\Ι=τΗ–}τα©έ§X²»CΩk"tψb²ε^z¦ύϊΌσœνMωKTVδŸZ“=ω’+—]Bς~}’εŠ]ϊJ%y³£v˜r6TΒEν»[ΑŽΓmZ~V*ιœρaοUV}ΰ6T€h|vψR.έ…V}ΥνfŠiώς(»ω―w:ΫΝ…Xί Ν/±“x₯ΦzΛϋJHvΔοƒΟǏΎŒ]ή'δ*»–2€η΅T`ζτŒΦRkx~ψα‡S™Καλ³0ςL+αοyΟ„‘Œ@2ΓB6Ζ GΩΪN6˜`Ρ@y‡šx­†ΌτKΞ±βO!λgUk nlζ5£Œ2Θh £ŒΦ_ dΟλο³ΙΤ,£t ΄πΜy°(z<$§P§Σφ±Ό«;€_0σ9£’ŽΘ)l0^Lψ\NJ›ϋ4#8[c½Ί ΰœ7Ϋ€>ΪΒ6‰fΞmΧ―pŠΉβ,{4Η¦Ρ€|9bϊτ΄Βν·rŒ΅=ΧD"™>a bΕ…Ρ:%² ΌsεNy E:΄ ¦β‘§-o¬XC ρψF=Θίά"ΣΎΦ–ˆSRE-³:•Xd˜ΐ›Xt³Ε‘­ΠYA9;ϊ Fg‘ΓN΅ΔΨOeΜτ³κ™Έ‘εœs’5œEk€Τw±‘¬AΑ€μιzξ’DηN–¨3I]ƒ@Ά9Vx±€g›τ·ΩyΙc’ŽύθΞ¬ηϋΊγΣώΣ€gξΆ›οΞ1έd-YfΉYΪ’{ΦbΛ s^V΅εό‘’υb] žg(ψΫ ­c6²βӏ³ε½_,ޟΨr²–,΅ΈΨ–υT’ΐg1I φ¬ίm‘«—X6?I‡.ŒŠ¬[ Σ‰dΐ#! ΡςνΆ΅„Άs̚₯ηή(qz‹vnΛ?›hΉŸ 8ΨȘ—ΠujwΪΖJχ_ ˟λσμ@Χ °ΐκΆ«ͺ@ΖQ1³T½ό†Ά8 ΔΊG¨^ΰθ²οnΦ5ΙtΐΪόρD[ώΦMκB•`―i2ΠJwέQ¨aΘ₯Ÿ&2wΎE>Σ6ηbhƒε/’$€°d²―Ո@€Ρ°ΈσΞ;­[·n.XΞofv &At€ ?Ι.΅ΪΏ?>Ν’ΪN3χΦί§ΨΠ`ΨHμφαƒΩFωζ›oε‚'τΩΦΨΔ^³4X™˜#ώχΏ»`M“τ`~J€ΚΟ;ςh1©―m€ΰTŽyΤ³¦œ‘ώ€ιωz8lΐ6Σ0Έ₯ ΗΒΔ‹2ΜέˆΈ˜Χ>ψΐ:κΨewήoQδΩf5"ΦΤ’ήi£š…½9,܁‘ΔfϊέMwZI~–=t[\”ηΆ›&θ“.€M` ₯>ž]’ Ο²e˜. _§±cΗ:ΐ ψF€ 9cƌIΏ„ Lρœ$αW₯]4w\ϊ‰θ2 οœ’~ί<ξ{χέww`Κ‘N<XΖΓ€v~γ9ΐ€ h0άβ:€Υ`ϋNj>΅™gεο` @oιΧ€έT ƒYΈ&σ[‘.·έv›σ—Σž8`)¬ŠΣΫ8ηr]€8ψ°a›ν+0Mψ~Λ_ΟΝž ¨Έe΄εΎυ±ϋgΜΎ\ŒΧΞNΞΪωX±ρW_q«Ά ^ΰ8ς>H;6μΪκEΉ —^oΩ²³$ͺD¨>»ΧˆVΟωoό‘6M|Η3ς‡οΖ-Xϋ=° Ϋπβ‹/:ΫJfωW_}Υξi«mΪ,eb+[λ£Χ^{­#Τ ˜ΪׁkPη 1†1ΒυAΖXHa‘ Φ§ X¬Ž[— N·{5œ|ςΙ+UΝΫ|€aΕΉ8όϊK¨Nεχέh?ύT‹}ϋΑ΅a"¦Ώα_b¬IOϊΑ~RcόΓFyϋŠέΈοΎϋ\Oz₯¨€<uώ~ΉΧ1²«ΝΩ2ΞΗn #?a;«`¬L―ΗΓN/nξz>Y]-^ΌΈU{œΎVαYp-Φlό-\ΈΠ%6>πΐ=1Χ8bΨ6ηΚ'¬Λ/w΅’mΨ„o§Ω1ΗγΦ[αϊψφqЏχ·Y'^c9Ε~|τΟάΨ>Ήχα΅JsΏ―ΙwτζυziO0u[λsέmΛνΓ yV^ΏΜΞ?x™•,ύΚl’Ξ”Lnίɏ’gΦ¬h-©]lΠε›φ±HώŽ:KΐhΘIΦVHlMžη؟Ÿ‹ύyρς&EFΊh—!ݬˈ‘–;Έ»ΦΞsΣδ˜ΦρyΛ¬φν©Άψ΅ Ξ†¦ξS$ ΡΝ{Z—½·΄œ‘=Χκ98Φη·Ύ΄EΟkΈ 2u‰ˆΐ;ξ³₯εhEεwhM"†EJΘ·QιΐΝσWJ°O―69._vΙP17‹ ΐδ%Α΅YΡ<$ϊΞXΛzA>©Yš— ΜM**->‘H ͺD,Povp’φκΦ€Λ-Θ9’ΔΗψŽςί°όhΘΟ§χΎ†H`ΩΗΪ1Qμ͎e:yvκ?m;ή­³8—Ιg7ωSΏ·ϊFkΨͺ[ξ±β—ΖˆZρ,DcSlγ~:w°μ%+ΐΟ΅"(:αηέlœ!APΏlLDδ΄Έ@Υ…{ώΘ";ȟ^TΐWIΡΞoUχ±Πι3(ΫτeΏΆHοξλ Ψ™:~€g[ϋΞTϋξΦ—έσ‹*Έ‘UΫΠΆ¨Ρ¬ΈεG*¨ΉΨW$’ν'‚΅Ό% ΤZ½@& qώoO΅ΘœΉVχƒnλEη|'p­$,±­d+Έj5IΠ/Α’†:=Σ†€―ˆg-Ξ²]Γb TG‚ŽfξgUΎdΣ₯aΓV²ίnYΈΐκ΄]y„m;ΪΫ°!VτΣƒ,"ΠuεΣ/Šυyb qCίήVΈRς–mΧYπΞ‡ΆόΥ·,{Φ €4E5( T€ΆτπIN΄κ7Η*h3«I_ Δς°I?+Ωe{‹l5teΦwŒ"=Σ§s¦Ls@Αo³‡ž|ΒωΠπσ͝«ΰ£τp Ap‚τI`ΰΨͺŽ-7'O³e޳ΩΈœˆ˜…΄ε&`·Κ 1}ϊtλϊ™’%ήΨJΤm`?ΌzΩb= ή”σΝ7ίX=\π° <€Ό"”hξ½χήs Θνόΰΰ~?αΉώΟVsΞΉsΡKΌg7+ώΝ/-6|Υλ7 Τp―  pΰΎ  P7ƒŽzυκ%• sl˜aΆU—ω0€°/§τ§vUQ[γ@·€M^p}@#lΑL vγ?φB«ϊΥo-δ£lJŸξΦ»wowΞΌyσά+χ@`°ε³³€žu‡ΡΝƒλ4uκT @A9<ΨEρrΤ P0eπ¨Ά3fΈΰ=ίϋηο”»ŠάΟ—s“ϊ£Mp τŠώxή07Γ"νυD±θ=’ήs<ΐžezΰ²―χΑ½‚π -όμ=ϋ†9‡Ο_}υ•Σ%ŸΡ5ΒΊ3@#ΐΆDAKtA[€ΝR_,ψŒcσ~u€1ψΈ©΄iΣRm­Υι_G«ΒφΚΆεΎ]ω{ZΣΧΦΟ”<χo«» ggγ];YΡοΟu,Kkz½v9OIU•Wίa9Ÿkό–ΔΆΰη<]Υ[ٞ†_^€-{esr-λΦ+,PBʚ¦‘―Ρισ±Όϊ±Χ Η–i£°8B^sΧ]w5 ση„_i£ΎΜ–ϊ(ΰ#~‰ι Ψf>Σ_ΌΝ€/’hαϋ­gΜδx’`{Α=΅dσQMR°;zϊ%ʚͺsΒnuφ‘Ή>ŠΑ6PήΖY²1šσεμk_Κ.rX“ΉGlί¨Q£0{κϋ&v’μ Ι%jlΗ…νΏq<6 [Ζ+ϊ縁¦ΖεS?ΖΚ'‡έƒΡΐ"ηa?©ϊ‘¬ι °Kιuβ>_a_όs£NΨ=κEωa{ ρΏ…ΗEŽη9Mœ8Ρέcz;£|μ+ΰ:o_°—]»vmv,e¬fŒgάγžΠ= cEh#α:‘WXU™—ϊq‹c°›°Š’»τ±‘± τ™ή`ξ@—°σΏρΖξpθ•:2¦`/Ύψb#& ³θIϋfY½:Ή°ΧΝΥ ΫΝΨvΰΊgΡ7΅α’Ov“k5η)>α3%9ެsΐsze€ΓΘ—jΟο€DΌι{Ύ:QΣ£ΤΦHΟόŒρμσΰvΪi₯ρ »½θ?Q,m½œΏΐ±σ‡ϋhϊΊ€Ύ†ΠGΪqo+Ό‘}3cΊλΓ͍Ψ“°έπφ›2˜χ5gσY ςΆ {ΗwΈy6η1ί&™Γ ‰°]‡ν+Ο†²e‘’3xfΨužγ―tIR"uEHjπΝ1¬UΈc"ΐjΞΕζpmΖώΈγγ6?}­wκ©§ΊΉσ»νm xΣΊzί6]ƒ:bλyΦθΏ­ktJrIx­Βύ svsaMΗx‚ξJΎ΄ΌmϋΊφNΫ‡©šω9:υsŽg½H=Ά›Xυ‹X/i30Τχ‹Άθ΄-Η¬€gusϋΏjΔU VΦάΐόmΆ‰ΐ?)7(‘<1{±-š8M ±εΞ]fΑ²ε-ί^v– ΪΥΜ‘ϋ έΡ²{wΆh‡Ά%ρ΄TpΓΜΕ6Μ Ύ˜oΑŒ%²&ΧΧ)gpWλΌσ¦Žύ9R”ΫR1uίΗΔΘΌΰΕO,#sPΣθgD'₯ωΩR¬Μϋnm9}ΪΘmA;°>/λ3Χh‘υY»Ϊ™€Ν€›«΄Λ]ΦΜΉW6_’ϊ/ a˜›K7ΫΔ#2ΰζτdόζΞ^^cΡΧί°¬—΅na:·Ω2œεgŠ.“ί&g͟ΘώΩ9Z·Κ··awΓ—jŚ»ο6Ββ»μ, ·ΪΡΤιV5ξs˚.φfΌ„7}4ŸQβo‡ms ΅ΓtΪ)+Tb}Ν£­ΰίοΙ)°/"[[»ω`·cήWί€όtυ΄&Ϋ[6n’eόΉE«Vτ΅„@ΙυΫlfεμ±2ȚyΨ ΆϊGžI²5λρΎ½¬p˜I₯+·;’Ύ«Ά©σΦυυ|Δψ/)·Džt#‚ˆ¨Φϊ /8ΞiŽό4θΒλ-‘?Ίο¬ίœbu‡ο›Ϊ5ΪO³K©Aΰ%ΏωށΠηZφςZ;οή;ν–[nq~«£JΊZνΒσI§yηžbyηo” Δο¬νžΈA›»l© ίVώA•ρΩǟXβΤK-QRd…W_ΰΘAΎ¬ZκΦ)Τ ΐsΉΖʍ5χGX§nΊι¦Ξή»/τ±ΠοΦ@]ύNFώχ΅}͞ΧVƒ™σ3X; ΄+ΰ‡ “J&ΓιB¦as¬νx>οΌσά"Β_χ­·ήj²EšΎ΅W ™”B˜³PπλΦΞΛό–Ρ@F d4Ρ@Fλ·2€ηυϋωdj—Ρ@X« xζά@ ΄Ή£ώ%§š€€’?έΙ 2# όP4 gmδλo-Π_ΰζΪ^δš~ l €7ΦKΜΝ[°·cMH?ξ?ωΩmG8a’U €™3ελ€Γ4T˜ˆ6ξkΕΫ+Π-g‰νaEάΘ“/[ν#ΟZΐ—`JyqmoWΏν0+<ιH©“ΞΞ–γΆi~γ}«Ρθ0¨z ΚJ,OŒj9Ϊ£/ΏfΡΟ'ϋŸδΨ—sw‘XΆƒA@/aFgγΆ:W,Χqr¬›Ά$[lδΆ«δοc ?>Q,ΡΣγ­’‚Φ°ω@ΛϋΛ,vψ靿Ψ]+!F“μ‹O³ΊGΔΤύ²]tžΆW¬yχS4KtοbE£Ξ”±+΅9wΏbρW“uŒnίΧzž½ͺΎίΗ›ο πΜ½ΦΎ1ΕΎ»γwΫY δFD˜!vάlΕ"‚₯–]°¨‚φAqœξUή— πΆΔb=τΐ+χ˜CΝΆf΅ΧޚΠGX Ο%δηΚ‘Σ=K@vί扨5Τ*xάG±,΅…bŒŒU ΄žl#±zφGbΥ%g7ς¨ ¬5E‡ξ#fθ«yςy1Ÿ'Η/~‹υΫΘ ΫίmήϋΨͺŸ}Ή)¨Y ΅ "”j›I ΧζΜ3ΰGVσΚ› &)ΐ’ΨΰώVΌΧ.”Ρ} ξžΔό\₯φŸ5Yύ5Ό§‚N ޏΨΞlk1Υt, •–|›£xϋΔ/§€|nρόHΠ‘@§‚Υ­‚e‰?o@χάs;+9πP·ΎVsίΓ©:ί~•ύδΜΣ\€,Έ°lt@ k £>HΐL€ N>‚} PΧĐ ΆQ†Π;αΆόOwYΦ\1Ζ"u½X§vx 0A˜Ηθ¨I 6J2 `ƒn vt§l‘aύψγνψ‡σ•zπΗ 4ˆF°αξ»οNmυώΨ)Οƒύ†=ΪφΩgŸ“ βΣO?έ)‹ΰNo±πΖΤΆ6C3uΜ}βη°ΐΆζ €½dw 7ΫΤ~sΕ¨”ξ/»μ2d€|tκYσ¨μέ€ο’Ά@ ± 4ώ`@tψh_~ωeχlΈm€Δ9žD<#ž#l­¬?0eΣ†Κy=D‚=™ A-€oά_XOœΟο€ό­Qց€ωΞ:λ,’ \/ΛΌ“²[ΒΐΊΧ^{ΉϊrޏMP =’πp„g Ϋ- ΐ6\Ώ8 A,Ο†!ž @Xθh ΄Yω:#eαq-ΐε”ί§OwŽχ³σό»pωση»ρΫοκπ…ϊIύ7XŽ€#^bZ»žx”㬉όΗΟι•d–@cΩ;Eτ]ΡsnΠt©ΠΑΰ©9T“γ2ΪMτ‰p›„νΧΫ@ΐΗΨD7· Ω”ζ.Žν¦2g₯O?€d-ζ5Μα2“°…έπsπτ>ΪΪά’μuρ}*±zϊvσg?ϋ™ΑςθϋhvmάΖNgΛξ…ϋ(ύ™qƒΉΆΙ }t·^Cνξ7žvΆΰӟόgΧ·±΅τwζƒΤ»ρ—[nsu*Pς(v‘d3μ+sΧν΅« χΗXΔρΆŒ²Πe ΗΌ5ΚΝKYkxΆd’/°uŒ ήΎbW°Ϋ$Ž2oχέwέόέ{Α~‡ηΰv^AXao°e”οm>Ώ±KΟ|¦˜ιaΊφssΖooσΓν†{αω‘δΑ90v3η?`σOϋ›u½γxΫjλαΞφ1~?ϊθ£N·αq:άΞ_=xyUkp'ά7γ†·ω­΅'Ζmκοηά?kΗ(.=Ρ6hΛΣ΅fqνIcς²_΅κ=†ΊΆŽθ#Ψ€Ρ¬;#Cτ΄QN±*·Hk vξθΆύ[ΟΤ”₯ΞEWΧ ―šmE… »φ’\Ϋ ³-HB 䉙‹¬aζB[ς…ΐšs–ZD¬ΓAνŠ5ΣJ§Κ'!4‡φslΠΡ ;Y΄ ι«XιψVΎͺκ¬ξΣ™ΆπΝΟ-1EΟ't]x#}:Z‡[ή½,{Γ­”τίσSSrΉv@[τς8 & dz/°2G†χ²n?ήΦ²`ε^Cρ¬ΟKŸ|GΔ΄ΦVYVM₯e΅–]$η[yαk"²™ρξ7Λ—]Ίω¦f›Φl~WG"bGŽΎψŠeyΗ­γb [V₯ΞΥςΏΦΛ1‡oKsGe/¨l%kʟ龁Θ)δΧR”nρΩβ@„brΚ»° hήΧ_aCߞVΊΥfΩΈ™@ΩψoΧH>š`΅b[ΞϋXI;ͺ'βvr“O―A‰υy"ΰˆhύ€4tκ$R†^³Π²ζ―πΈŽm1ΨJχΫU;όiξԜŒύΔjG?œΪ-„΅zΑ{Y d$š“!ξ»S³eο~`/ȟEBuΜΊh'Α2%(4Jξ!{ΨΫέ‹\R>φp„Ο,oןΊ$³ε“³n©τΑxˆύrΎ»ύο4Ή}²”'Xݍw[ρEΏΆ³GίεζψΨξK9Α–Žϊ“ώί9²XΪ艧Ÿζό$ŒU―=ςΈΕ|Š”Δ—-―>j«©EΡΞS[ΣΞ0ς‡~ψαn7 ΖζΨeόό†u«Ÿ£S™τΊ’΄Σϊ«Q«υ’<―–Ί2g4ΠξhWΐ3΅c’N ,8&p3αN—ΦΟ8m|f6Žb —Α1*œι8KΌΰdφŽ0&Γ‡qγX&»,‚p~S>€Ν8ωΝ η5',B`la‡p>Ϋ·΄t<Ηp‹-ŸΑΟ9>Σ›ί3’Ρ@F d4Ρ@FλNΐσΊΣm¦δŒΪ[kx¦²χθyZ ]Άίp+:nD{W/S^Fk―±EDp6 ά\)Ηf6Œr6'0Œ&䆫t‹!τΩ0 p\SGksY“οŒMnΛή«@ύ4ΗΪαœΚ‘²βΪ°p»­,"€s °³Μ‘_Χ୘lkzr'|!ΠjL) mΫ«uΑ±‡‹‘qλU™-{ψiΛPΰαs‡cΟ=xmΗYfΡ'žY θΠ9ΪΠY:IΜΛνμbθM…œΓψςs-8|?‹άΈ%.»1Ι4B- σ,ς—ί[δΫΩΏκN9Έl0΄~χνεΘϊνέ½$ΚΛΘν)°μΧξs\Ξφ’KN³ˆή³ο{Ν/%ΑƒΡ­{[ΟσrΗ|ŸΎOΐ3χ]ύΜ8[όΠ;NY±ZΛ‹WŠ]f‘@γQ+Œ/΄μ²lΛZVa”ΩbY†Q&k‚t , hΗΤ^ Ε2²L δβg_Ρφ—±$ΛrBlΟ΅FJΛٞ5O c}Η“NbQπΓ“`ηξ€η[-π±όaA4Λκϋυ·¬c°ͺΙb¦œπe2ΓΉ €ͺ}XY‘Υ<υ‚cPv•wΏu°±.—€ίη}ηXŸs΅­f˜q¦A6‘πΗ{šν dφ`b^φόk–7^AΉΌθ‹i Λβ½G&“t’>|:ΙͺΖ(ςΕ41GΧϊSάkΌww+όΡΆfΓ•\![„ΰΟ"π=zτhP ˜άyY΅Υ|1ŊΨΫ~}V°DyόΨ,φΫ+­~€€-Ϊ*4˜'¦,ψ΄| έxp§Ώoηγ¦ν§ο.Θu<ΰ] τΟ"όμΈg@B„δŸχοΊ9A/ήηΘz7΅wtΨ^&ΐ3ϋ|ͺΥ\u»μcƒƒ /ΈΈοφͺΖ—ŒύΤjoώ[²^J€*ΈHc%Ατ–Dσ―ψgΈD‘@m'zγεf#ΆiιθιοiΛ0(ϊφ£-`SΪΏ–ςΏy°[ΈΏ„•GPϊ;Ά0ύώHΏΰ˜ ‘O@δ —·>ˆΝ΅‰yΖP’Lξz{DŒY”Ύω`Έ‘γΠ ˜ μ¨Q£œeLΜ))Ά›ͺ…5Α¦όvΎεΛ6žrξoš΅7€£?ς’ΕΏψR‰1»ž}bŠ!ΝψρΆύΦξι@sN ƒΖ°Ψ|―π³ΑN‘`γγΩ(gΌƒΡρφ˜ηEYŒ- /ξHΗwΨ%‚ηNΦ?―KLόχ«k_‰™5ϋ t]ž3Œ₯αg@,Ο3΅1n&`cLc>B;"Ή0’·ίθ‚δώG`Ώ³¨vΜ°₯5φMΥw)[ ȍ1 }Π65Ρ³†E•zΥϊ‡‰ŸζλΛσ#nGτtε•WΪE'‰+’ΌC[Ehαρ@6‘oώΤ«Ÿ8Y€š^Vπ‹£-ΠNk#ί;ΰ9½ςGdšΦ‹ο)!φ«ιΪad¦›W79L:Žυ»οΐΎVΊνp 6θ’Νš“ω°Ζ ο`?ς"$ωΡΏi«τ’ς|{eŽαΑΝ]»Κ:ΐœy“ŸΗq< °ιϊy!Ιgα>J‚žŸ³€χQ’M°1€‡Wκ£ͺ+ύͺŸO­ΤG›©0Χ§ϋ>zΑg Wag^}©³ΫΰΈοoΆψξW]Ÿξ|βξφϋ?^m£dkƏύΘ–_χœuΈβ§ΆέφΙϋvsΕ;ο²Ϊ―ζΈ΅|A―.+Ν™Ϋν°ΓNOήV{\χοηΜqζΆΕΎϊ±ŠΫδ}ϊ{ΛΟ;}ώbum>υ][ΆIm©=;{\›ΫΜΥ0ζϋηΙΈΚ8Ε8Δ³GαοŒίθ1"ܞXΓq||~…εχθh^άt­‚ό=8`Ά’(_z#_ΐΖ:ϋɁΕ+ΝHΎbύΐ\γ™ΟiΑΪw΄&ΩqˆΝ*ΛrlΧ”K’γ¦oΝ°š&YΠ½£½»XΉ’Ψ³ϊu·¨ήkπΰ°ΥΪ)νYΌx±{Ξ«U@;\½<°σί`ί-Š*χ9n7ŒΚnΏΥΦΛΔΏ«°ψ,ωXΎ]h“g˜ΝU‚αωFΌΏ€Ή‚:Y€g+Ϋd#‹φ@/ωiz€άF}μMρ›-ψ|ž‹”ό’H§"‹ιf]F ΅œΑέ”―ρύΏ\„ΧΎχ•ΐΟγ-˜ΉdΕέΚήFϊwΆΞ{iΊmϊΆ lΔ@;…-ϋT,ΘJζΟXΨ±W+υo‰°R•ς=iš„š;Ε{m`‰-ZΩnΫ(AΌ§%z¬•O82sΆe=+ΔkΪuC„nχC|1œεKu„ς»™ž«#,_7[$nή&qiΗ‰’2‹g Œ.²;°Lp.92HώkωΧJκcΆD»=χΊ||S₯«d{ JK¬N$ "΄¨uŒEΨΕ.rC©Ϊ{m,9ίδβΜ‘δ-ΩwWηk‘ωZ󫚿όΝ²τŠpωνcZΧδΏ%Ώ2σcέcυ;XyŸ>Vη{-:ϋ;§;€Χ J΄ 4~$€³Β]Ά΅ΘΆ›YN‡{ϊύwέηΟJn)xκe ŽI& ²ΫbCDωΎ9η»;ςη“ŸšωrΕ]YώλοΉϊ\v–]ύόS©ρωq?Υƒϋ‹HO―½ύ–K:η`υΩ'γ,z͝%n’ςβ%EVrέE–«ΊΞ˜7Χω™°™κQ·ρKα»ii]žΓ8W+€g’ξρ#ŽΨ‰_ 5~Œd4ΡΐVkxΖωLζ7B6"S ™ŠaTΜΦ'lΆΎ!ϋ“LϊζΟLςΙήĜ.{챇Λχε1±%{²%ΑΙƒ³;|Χ„ωΓγ…I?€jοtΰ{²61|87Ό°(€,&δaAdΪγ°KwLΓZΐ9άwΊ°ˆ#‹GKF2Θh £Œ2Θh`έh x^7zΝ”šΡΐΊΠΐšž]]δθšσ‡GΜΎ˜λ>FΆξcέΟ;xΝ³πΧΕ fΚόί€œw6CμV_Ο΄J€Ί3f[6 ±rh$ΩΩΦ ¦‚Έ7+ψmΠ΅ΥΑΏRyνόLΆψ«zο#ΛώrzΠ%—x‡Mv§m¨0omΔ:ξ «ωλCΘΣ;ˆω:P€Ά~ˆ@ΑGl‘}GΆMGŸ|f˟|Α²ΠφsrLνβΓχwψ¬Ηž²ΘΔIώgΗθΌJ ³Žδ̜/𣞷$‘ϊΩΡ‡X0J> ηβϋ$g­μŽl$²v•Σžk­ώ'gXΞψ)ξϋD‘ΆΌξ·Άό­χ,{zQΝΦƒ Yω–ύUςslψ+9"+‰ΪςηΖΫ’ήrΧs`ηs\/lέχ xF!UkKžόΠιFPcΛ­_fζ@Ο9VΠ°ΐ²;ŠαyρKtν`9b*Œw)·¨Xa‚¨bOtμ`ω ΐ'ΰrέo»rςΩEΔ–“PpΘ”ˆψ=[‰ ΡFfζ„žI’A,ΆΥ ΕTϋ·˜€³J³’Œ3|›c5Tεžτs«όd’Ϊυη.@EσςήΛ"›τ³*­σΔΨΪύ&'έφ[YΙO²@¬+)ΦgΩ/0Ύ°u€c}ΈΚ52Ώ4Ζr& pΥXΗ'Š ­~Λ!VΆοn θγ‹Hž# c…ΆΨΜώlŠ‚HΥ+~γΌ :YdŸέs§TΐΩƒΡπγ!9 nMΒ³ςβ'μwΟ#z†ϋ{“fύΰ~Vώ£ν-w“ν%Υ₯‹ šˆ5Τƒζ’Λ*mvu₯ ΛCfίΡOZβ«ιξsΙ-WΨ9Ύή19€Αί°:%8ΐΒ,G;Ζ,€/°AΆΣΖWH ΔKψίΗΌ5Ή²~Δ–\v­ε„C?’5¨Ώ’Ξvχ³γ%—\β˜Α†8°ν†½,A€KΊςϋtύ¬βx―?Y€χ@Γjπ~Gο{Δg PpΗβŸ…p$υ€Θ1ώήCp}‚DNΗGόά¦Ξ›cCΘFΞuΎόO,UPZ’³ΫΞφΪ€ξŽ93μϊT] Η†m·­cqX±€s±FέQ―0CχNΨζP ώ\‚HώΉr ΐ °ΒΞιƒT|ί’žΈ‡0ϋ3z’\Ύ‡m[ΊΈgΠ:η7t‚Nˆ›uΝοΜφΨ±εγG ƒ†±+γθ·^Β \"“ΉΆωcx₯ίΡΖ=ΰλ…^pμΞΎoyΫFΏτ6Š˜ ¬ο’)ϋ‘‡J„9ζάΎbήE β‘y{G©+6•Ψ  Τ /Ό0eg°σΤiϊτdR Η`[`±τ€8ιΧΐ–p Κ¦¬ζμ €ηAO))mΌΆ ή ³-Ίψ λ7`€«cψγΙb™_zξΉ±9ή±άΚϊχ΅ s‹tιdω›²ϋΗͺ•Ζ!rΡ1v8ši₯?žD€θοΑtcί­”μ£ΚQž‰1ζEΠӈ#άxζΎhόηmvπΌ&φΥ'‡ψgΐ˜ €iξͺΏϊq‹s»wX£ρψζΖβ~>‘ˆDΧ¬1ϋςΗ,ρΝ"πΠιφ«3Ow€7Žθ~ƒeΛmώ…χ[πΟίiXZh}»ΐNόυ©)&Ί1cΖΈciOž°8 mΪυΧΰ/@NΜ}ιE7ών:l++Vfήޚ‹‰=°=d½<§ί”ϊ~DσΑ₯θœoΎM&†“β@Η4?-ήF‰³C9¦τπ!™χmΧmƒc}χsvJ Ο-Nα^|R[ΈΊ €ύ£>ΜΫΩU;ηϋ(χαΩ(™ƒwΈ’QΗ}­œ4gθ\lοVΞHΝEΏψTώ‡§ΫΤ–š+rOeoΟ°œξ,ͺ9FVηRϋ:¨°OƏ³εl—·°i5‹Rσψt=τƒj™σ3χ_•}εή½ sΖ ΦΜΑaœφΟ”ϋKŸƒ>ά±-·dσΡ>Xζθήζ·jΛ¨HlΩsO9[6bψvΆα€Ύφ³ŸΩdœρuβπτvΖ΅HΆiλZ…yX’p{ΒζΗΎ]ds/yΨzœ³Ώύϋ»Ι©gΗ±₯₯₯nŒφs‡ΫnΠ»}©]|–ζzY+ΟXsΔz…vxγ7¦ζcrΈΫz›mRs“cΊ ΅eχ½ΐν5‘­ΨŠAw6Θ’}»Y΄G§•Φ’MNζ<λ ΰ™Ί-Z± ~_oUQΫ°{ΜΉ8ίo•^υΆ 9>{±B/V20g‰Eζˆ ziSŸCΈ@JξZjA·2λ°i_ǝݻ³H ŠΓ‡5ϋΎaΦ›Ζ~NL—VΙK^"ω9f; ό<Δς†υΆHIΎιΏφ5.ζνΪ·§ΪβΧ μE,ΘΡ‘έ­σή[YήζςAΛ_iσΚΈY»*A4ʟΦ|Ν m²‹Έζ»ω‘[ιlυΥXΌΑ’JZŒ¨οΖ‹J­Ύ³κW΄ƒ”Yƒ’bKΆRRΖ}’lΣ”Ρ²d™-{δi+xε-ΛωvV­9tB ζu;n-2ν¬ζΕΧ-{Αwr\J§ϊ‹ηj—Ψ•uW\ p/ωέDθΑ„-Šό5•w‹92ζΐκ΄³[ΙπaVχ'”Τ«ώEyςeΔδηΘ}οSωšgλXιMΗΖ΅ΦhΏ@ Ώ€œ#ύυό57Ύu΄•jlxf`· βIΪ032m†ΥέπΛώγΕΆύn»:UΚw§ϋ_ώωPEX€Τ‹ZOΘ*O;ڍ1ξKύc§vλΑ‡φB’+=aΥ'^ΰξ)ήcλ(?_ž)Χ`Mθ[ q‘ρ°½Ομ,αΙKύ΅VυŠύf§ˆ ΰyUšΚόžΡΐΊΡΐZžΓUςζΎr0αψΑΙαΕƒόηπk:ΰ™ŒzΆgđܚ`ΌΨ^ P4@γ–ΔžWu[V1 f±ΰ…Εuw™άϊ’-qd΅&8—0Ξ,Rp²ώn­~”…ΞΨκΗKF2Θh £Œ2Θh ύ5<·ΏN3%f4°4ΰΧήΩΎΪΧ‘s ˜™tD6ΫΠΊ]x˜EδΛHFλT h3ζXD¬ •‘S8kœ˜!]κϊZ/Β,Λ–ΎŽΉpσZ2^€Κn―7€΅?*ήωΐr&M³(@ν°(8Χ ¦Ž"1Λ:ΦΦ~Ί9MΧZ¦M·εbƒΘ{|ζλ@}Έa`Λ;l_ έΚΎU^*³6ςΖ{VϋΜ+©mύ8 Φδόύχ°ˆ€|&¦ήζ€Ξ 1:jυ’Π–ˆYJ,2l +!G{0~²E–'ΑžžkνΦ›[ή½7‘ΐΜ-£Ν»[ΜΙr‚’‹>(–η n '\θk)?>X;F]‘ΥέzŸEδ΄FrχάΕͺ΄-h–ΐΤHώ‘e²§{Ώό₯ΟlΡ}cάϋθ° ­ηoןĎυπŒbfίτœ%ήϋΖι(+«Αςκδμ %‘@FAΓBΛι”γΛρn,{‘:₯ςa©EςmθΡ́κσ~}Ό"άΓ¬ςώYαKc’€`1― Ϋz ­Ws’χ€|@Ν1βGuΟ\ν&R–§ΰŽb0ΛHβωV³₯‚>'e•οlΉct’ύ@%Τν²•k«ΚΘ»Zέsj»ϊ:QϋͺCrΡαh πf3ηX₯@όΉ€£CΜΜ0Β§XŸ JΤͺ}*²ό•7•¬ „lΜΔu[ofe?ήΓ±ω&/Τψ+R^}Ϋr?ϋ2ΥσΨέζˆ₯Η“Έ@ΎΐΣπ…Βτ@UžΨi„-~πQΗ^ν˜xBQ¦@,θΩ €g{cϊ– š„ΐΪCΩpHB?θfVU8 B/ήc?«ώ£ό…ΊFL­’-Πu’ϋΨϋ,ΤΰΆΏdAΫ³}&ΔΊ=_ΜA"@œώΰ^aiV}τΡ)¦c|œ0\hγ>ρ;e«g=θ0 [ϋg{ ~G€>v30Ψ–OΞƒ-R‹Ÿ‹Ή9{‘Π*'¦v•ΏιΖvΎK\›ϋzD[|O΄wΛΦ!m@IDATσψϊΐέχ΄?kΩbΨNHΧωΫmi p °ΒαΨe6KΨψΐb °P Lώœ…JFπχiΆy€^ΰζ~ΣχΰˆtΐsΤΗ}ΑΘΓn~3fΜpuΓ_‘»0ppˆεp.:φŒ¨ `ˆγN¨~τθΡN«zv́ŒxN”P`%σc™ΨΗον%«xvל»ΐ–_~“cH–σάςΞΈxϋ-Ϋ«:k^Ž˜²ͺ~«ekN†ΤξΉ£•Ÿ|DΛεiήω™Ž),!6ίΚSްςΦςρƒΏΠ―Έ†2|t E,’ΉWί ­φ恉FXIν-"­¨d'Αχ>ΆœΉΪ Ž5€cβψΫD^P΄ίžΆό™έ‰‘%ϊM~Η„|$ t‘£P¬Τ" ©ίjS+Ϋow³Φv(’ήψǞ}Υκ>•8YFΑΟΆεO‰δcWΪνM;ΉΙN6θΙΚv$&οZ πθΡς!ο+P5 g/ο}b±›ο΅,νP“sΤ!φΜЍRγ6Šρ"ς›Vχ·GδSΤNjχ\g;ˆ€”ίX³ύςΘ£¬βΜΛRΎΪ†[ξψ/‹uα9'Ϋ»‘ϊ”Κ_2ύ•±φΡnΆͺί\aρ »ZηΫ`Oh7Ζg/ΨtΖ ΦD$Fa£½½gμ₯>αu ηaΟ}Βu˜Nͺςeσš<‡΅‘yŸΡΐCνxήk―½ά ώ–aKfBŒ°ΨΗθ(nNΟdo^uΥUΝΪδ;Ξ}ι₯—ΆΚπ|Ν5Χ8'τšžΩςηυˆέΡyΡψ³˜ 3Fs.ίcŒa[ °ά{F2Θh £Œ2Θh ύ5<·ΏN3%ώ°5ΰ·άN£UΙκΏͺςZϋ}­ύ…Ο½ρi ή›ζ>Eu³ξ—ύΤ9‘Z»v淌Ϊ¬@4Gr«?Ρ²ΎcΩ€›¬MΚ‘c-ή₯£ΐΝέ­DNሢ}6θ!7§ΙaλΓ‡·Η:€sΆΆ+LΏŸ„˜ηb›τ·Rϋl³ABc¬Ύ­Mύ#bI<πΈ5Ό8FzœΏ’(ιPuξ{™q`λμ+ΞΪužU>ϊŒε δΙy^τ±ΒƒχmθζΓXTŒΞΡ‰“όΟΦπ©Γm:‹Α©α]yB πXο -zϋ5b·–^ζˆΥδΐ“xH+‘θ»YpϋοΝ~³%ξ}Β"τ0Θ:υH1»mjυwέιv’ΌcυλYR‘­6υωΜc"ζκ™vξqΑAŽρ9uίσ›υπŒf_ϋ”€,3F² Υε*X™±ΨΡΛ–XNyΤ²—,±@@φ¨@ΊΡ ζΆqΜZ°Θbμ­ίaK+ώυ bšo΅Χή"&£%ŽEfΕAaηŽĞ/˜fC'²σ­‘JLveΐԝ -š·¬F3Α‡ε»όΘ υΌ#ΪΌζω1©φκ›wήΚ:όT@χΟ'[υcΟZLӍ¢“‡ώΨ‚ν‡γx³ΘΨqV-`Ώgw‡Αϊ,֚βφ–έQ`GαΪ ΒT~– 6ͺhΟf$1”₯1ΙθΨΰ#±λ κg―/˜ε™ Oϊl’ΩΉWY½JFξ`Y[)π₯-4Γ윧„XšνΫΩξ^«τΞ Ϊ₯"E…ιάΡrώx‰mΏΣŽ© I“sUYπ(< ۈi‹mΊΩΆf_ŸώΒ.·=dΑWΣέwα₯χίh?;εθL@ TPΑ±Μ<€ΠΫk ,ΐ9MΟ:°εζεϊ€΅`…Ω˜yπό’X©ΊΫ±%Γhνυ9σR‹λήzv³Ν7΅Θ;Ϊφbˆρ£γ?>:°6fΜWfψžήτ!8ΐ0u}κ©§άaμ`ΰp0„sκ{A·ΜχΠ`jήΐ Ϋ'‚τmw°…―Œ±ς­‡)q £Υ>―`›ΐδΣ"ΙΆΘdΤ¨Qξx@xΧύκ «όΣ_¬π—ΗXξ–›Y–~©ωbŠ]ΥNJ‹ά37ožp]ΐ_yε•”ž`j ƒ=¨'-΅3?o ΏΣΟ”ηA‚{ο½·{€8ΓΒ3‚ιmηwNž9ΰHKΟΪƒ!ϊπη#m}vαλσήƒ,<λχ»ŽΒπ,‰ιΗ―ΝηϋxΝΞψՁ σLΪ"Ψ”ͺ‹―·¬οτLς;ΤlΏ‘m9uέ£~Pρ§{•"%‰ `%ΏύeΛσ%xΕρ;ž•@‘ώX}Θ^VvΦ‰ξžΦmEΧιOΔF`ά’}Ε.…fτ‹tΐTΈΟ†ο’ςr·Ϋ+χξΪ‹Ϊ֌Σn·Θ„Ω,V&(«:ήr‚›{Œc<D `‚φ;sζΜTΰωΛ_RmΦ]H¨mœγΫβ‡ρη΅ευ€}χ΅Χ΅;-Χ3ΰ΅εάυβΦL°>Oω* €ƒ`€qpύ`‘Œ l@μ@Bαί3ο“ ―†π›³KτΥ°=jnNμυΩΦ9ψ'Ÿ|b={φt§΅unιLήnΠ†/Ώός&`$l:cOͺ ƒΰΗ_G^ΓlΒα>ΚoΨlσ:›Ξ.Ψ/}ιΧμΓΜ ΓvcUsΕmϊmb Ÿ―}δ^cWg扣―ΎΙfŸu+“Ω]Λ,vΑήΆρ έw¬Ί?3ΥjηiΧ ξειPdŒf/|υ±³ΡήΎςœΒ‚^±!Μ!‡€€ΟΑύœίΟΝΩ|ξUŸtˆ~°i~<[•-C§Μϋ6&’Ά΅Qί5]«Δ΅«Φ¬iίΨ’ϊεΝ―Udσίύ(az“Μ4,e‡W5w`ύΔύ0@·μp@ MβΏ Κ.©‹Δ!ŽK—@I2ρis-ρΝ<«ψL~₯™ςΆΪ-Κ· —΄`‚ήr°}.fπχήέɜ'ύ™§_λ?υωΛ―£vΩu1͏̢Zgž)§ΚH‹*­α[νΖ5k‘-4έL θΘ‚J ΌΆ AΉ| JN*ƒP@ϊφμhΩϊΓγ%ΣtlΚ<ϋξM%~>ΟΪ½!,ΚΨ΄«cΞέ΄‡EΑ΄αc~οcε§L27.ζf?ΜZ`±οκ-ΆLΘj%υλ/‘%)φ׎#Γ{Y‡ν† „+Ά˜œe|ό!«|Mt[ϋΦ[τΒ'b–ΚK3¬Ο‘*Ν΅δ#ͺ{θΛ™όbμκxvYΓw*'›­::œώσ^@aΐ¾†cτ°εΓ·°bόdϋ˜ ΠΡΌz‰v¬~τY˝8EΎΒ­¨XΧs@ηm‡YΑAϋΪς_³ό1€k’ˆlB Hƒς5lΆ±ο3"[ n›nεΛ«ΉODDψθ Žϋ‰-ωrš=ώ²θΩ₯ηΚZ·³XΌ«ϊ@uH4ΔΠ-Ÿt ’‡Z‘+_r¦σu¦t²h‰Uίt·εΏυar;Ν?ΪΖf_xšm²Ι&n¬$A§τ‘,λΝ±ξ΄ ΌΤrοΈΚΆ•O cσaA‘ΥύλiΗ΄]pΠ^VσΘsz~ς*φQtεω–3x€[ΣαWΓ2ώ°ž#!•hΌςJ—,~ϋ™ηΪ²[F[§;―v;²„ a†>ώψγ-ODu I_?γατι+vλ‘ΜCΒώμ:Ύ#_Χ#•,ο׌)=¬ΕΖPόF†η΅PbζԌΦBk x...vΜpψ aπ.ΫΌ„Y“―Ύϊjη΄φNυ0ΰǐgήπχtΕW€J8Βΐil|°›άzθ‘φΖoψΣ›ΐFŒΕPs€gMΩoΚpύυΧ»γΒu¨3ŸΕ!Αˆpω€Ÿ ² ,`Xxa’ΞVbmŒœΎζ3[5ϊ…ŸYl° in’ΜοΙh £Œ2Θh £5Χ@πΌζΊΛœωί₯œ΅8q ΰ ¨‹#'@8hνοšcωσNΞη<Ξ;όρνρΪ^€gκ2χŽη-3%Y­ώXχΛj‘ΌυdΪzΛ”±5€ΧWZnώTŽαsδ0Τg9ξšSzw·bΧL, ώΦ©ƒ΅ΉJ΄υ;œΚ&Yε;Zφ”―»aψT“ rο°uΰ,†­φ’ˆΑΑ?ŸΆϊ§_Ά­mzΑω›½Χ.=φ0 ΄_›„σ?ώL@a1ZLύ&u  βzΆυϋɁrΠw³ΘWί¬1Π9θΫΗ‚OΔ 3Q,>b΄@wΪOΔΈ{ΥοάgΝΑ]‹…€ρ~:—Yτq*:©?θW–ύΝμδyυύί΅ͺ—ά‚²`ž>ϊ0«Ήχq3ΆŒ`΅ΰΣ’Žzύ^σϊΆπΧάωΡΝzZ ^―ΐΞTl}<j³―~‚Οζ8w/ΆΔ¬|»Δ;Ά|«΄ά„eW+p¦ηΙΛRΰ@€θž8FγD‘Ž‹[t\t†™Ά‘¬Όλ~+|γ=Tu<‘ν'K#VsfΞΆάISέgΪ^ €ulQ‚4ΙφΐwΉ=ΛΕ*΄Τm Jΐ¦‘cg«ή]ΙρΗf6ξs«}VΟΈqΛPŽνΈ₯•)`»¨Uςη}69Υ_b‚©έy[+;LmΖ;Ω¦Š'ŸW›λs$@ΊP,΁ΆΡLΩ£yίYδν­ζ΅·›0 ΔjΨΈ―~Vί '60gπAs‚π“:²Σ.Ί ΙΐsNφΞ³νvH>π›₯ƒ–rψ§Ή„MžfΛήzίr§L³νАsΣ<'Y‘9χ„Α›Ϋ©Σ¬|ηνaξνόsΤ‘5ί` @ 0M›hmκt«s`φΧ3-oPϋxϋ!6rδHW XHϋ=ώͺΥ L΄-oΑ;Ϋ…?ΐ¦K°Ÿ 6σΐΓψϋΟΜ“<ˆŽB‹ΐΈXΐƒ¦ ώoΆρ Ξ+ΔHω^ Δ€ώ’§]”ŸnΜ²ξϊc“­AOίf€ L|)x ΟΏ,~ZτΓϊΗƒΒηωχ5ΰΫtzς_κ•ϋ!ΰDωa‘|ΐ\ισ?ζ…lU>t¨‘iKvχ§_³Ψλo'!ΨΨΘޘ³λNVxϊρφΆt3b„ΪZ£ΰ…XΓ³Ρ5φπsX&nαΛ]ΰΩƒ|ό΅ye{mtϊΞ;ο€ΎΖoΜ΅§Q&€I„g_†Ÿ5ΎeτD<(;U˜ή΄φμp΄χ=Ĝ4F@wΨXy6~^.smίΏω~ΤF]ύ’}υ·βάΉsΫ^€lMυε7Ίω'ε‹ ήŽkΤϊ /Ύi΅£5¦j<ˆwνdE—+ΐ«ρΈ9Α6\x­§K-&¦Ί‘ΫYΙΕ²ύγ–ώF;%†fόε»Φ„ώαΫ;±ώVaΏμ/`#ϊΏ{›@μˆ`uΊ`σ:jΛfΦ·€Α`ι€ϊ$˜aq§άζμ εω:qΟΤΊ‚η”αν/υ5jΤJv“1bU€g__ΚυΆ'}<ρΗΊjXQ»|φύwSγΠ£7ήbΛs™eέ‘1cΟݝN°…'uΫΘjοϋ—/ΚςΫίžΘ‹§žΝ$%δŒ•έ%ξ…`Η°{ΔΠΈ?Άx¦bτκ…ϋMQ§žύ=ϊsxmΝΎϊςΫς .:βD«<ΓrφΦϊD²ͺq‹²iC$/ρηΫD―œr‹k.R4°‡‹W2φ ΄ γΖ[Ձ²€mί7kδ6}m£+޲?έtc pO»πνœz‡ΗWώq-+τί‘<θΌ9°¦?f΅^ΕΜXqύ_νˆ{o΅7ζΟόαž›»ι³,’yuΥGγ,Gθ¨vοI—„ΐύ±}tbΣAnΎž~ΜβgμX„ί[ ‹ώ=χάγζ·ΨΩζό‚θ6N{oσ<€τΆτQκBœ=άGϋχοοΖ ξεΥW_uσCŠ₯2ηe‘°PΏnΈ‘Ω>κΓΎbΧ™ΧSŽ·uώw˜Ÿ§L™βϊ'vΓ3ΓϋίymΙ–γοςψÏZυ§ίX|a…-™6ΛrΔ²Y½kΫtˆD%πόΘŽΪ}‘eϋomotͺL­Ύ˜0Ρ–^ρ˜rZ«v,Άr1G;—XV—R ώfΑœfηΰΰ26Ϊh#χά^~ωεfm>zq.έζwκΤ)xφυjΝ–Q†H·΅1ζ¬ΙZ…υ}tA•ύσZ\«|0>°?ήZo·\Yh}π„Σe[ζώ^ye~B[HoΜΓΚ΅Δ .ƒχρYί)αz-™ “fύυΌτCάηΟ+ΨΎoέηήO9γzΛS[‰θωX~Žό9ΙW%Y—+α#R –U˜ŒΕpΪτ;ŒΗ|oϊ>"A{ΚΨq»α/-Κ-ΊϋNΛνWΗ₯%F·ηΕVU–|*ρ9ςε½ψσ― t0{‰ΩL[ˆ±Αͺ³’ Κ7ι£dνπΥ[@P%½#ρΉΛϋσβw&[βλ…Z3θF½δdYtγ ¬γΞ›XώVY΄¬ΐ²~ΏͺŸ³δ³ž1[ δ“nžgQ>‡Θ šά€όŽ1ΩΓΊ„|W •΄[)rωǜΘφGϋwΆN{³άmϋZ΄ν&ε5σΦηΟ|`‰ρςύ6²> žlωε1+ˆ/±ό© /Fς›ι9t6vWφΜ ίΛΗkrBΟEπg'ΖŽx§rΛΪs7Kz€)Ӂ«ρΧuτ’ILΐίΪ'_ωΙlΏΠΉΚωγZgΦ b…?9Θͺ~ΖςύžŽ5wQ 4FΉ]+DR΄χ."/ΆΒ7·ŠͺF4Z~Χ–ΕΞˆžYΛG²¬ώŽΏ[dξB‘ θΉλ{·cμC–’Χ³jεwΠ9_:οΜ“-P’zJΠι‹oˆ±Y»±M›.0v±σ­N`ηΒίΦζ/―Jω“HΊϊόΫ7Qs¬δ’³mϊΒMy¬Ω6’œ9DΎ’άλΕ@Ν=ΗŒ.Ψyyi‘³§ΚΛ­S]ƒEKΥΤψ†Ίu±G$kοΏ~;€TώWιηϋξu;ΤP>siΦ9+j,¦²‚βBΎvΒό$œΰΕΪ…d?Ÿρcΰm„ωcV»ΝΓUfπμT›ω—Ρΐχ¦΅ωdΗΆβΏ#xΐ±LΩRΖ Ž2:Ό€’q̈`‘•hνΩ/8?ύwΆοΑζ“Ξφ€g†a 6χα³Ϋ9m©|Φ*Ÿ=x™EL3^Ξ9η·! œΣ0Β`h1ͺ H±bϋγ3― d4Ρ@F d4Π>ȞΫG™R~Ψ`ή c »Š„“υpς“…Lΰ-μ΄eΞ ˆDΟˆΑRΗόu].ΪπL}—?ρ‘-ύηΫΌ5λΥΡΊύί-’#8# ΄ Ψ†ƒ―Ώ΅erδεΜΈΗp#˜/ύ”Dy‰ΐΝ=¬x³M p3,ͺAΡzμΗ‘ωε7ŽuΫάeϞαϋJξάvK16›«~αŸΧξ=Žα'^²ϊGŸ·l1PDBμ,qIλ·ί ρs³ΑύΫ|οΏk5ΟΌlΡ%’&i˜.ςΨΣ‚‘;*$–€Ξ?mΡΟΎπ‡΄Ρy°ΆOž½ΐ‚W ml Φς[+ίyͺ{δΛ―-~ψibˆH–/0lδ”Ÿš]z¦Eψ‹ŸwΫ*’νλwΪάςoΏ–_ωgΛ;8 ΆS°ΧnVχΧGΔZ£€R‡R+Έμ 1ԈEE’vξyα!ŽαΔύΈύ[ŸΟN- XΝΎβQKhλR€tPk˜$vΩ™K3‰*π\kyω΅–Τ+¨"‡{§RΛ°8Ρ΅£Eͺ“L’c8Θ;χ³-6±ΘΤ―­ξΊΫŽV{“s=³^Μ)°“$λ\αοZ–l ’PΠ hPςΐ’Z1A«J‚‚lΛ€&±X[ΛΙDξιΪΓͺφi₯?8œ‚ίO½’­0ƒwκ‡υΫ Υo>gG­βα§,ύOάΉ<~sy‘+Φ«‡”2λ³ dΟΌΈϊi+Ο’χ± ‘υΩύ¦$Κm9ŸLt,0©γ~ λΜή#έ½η $pΣ-Vyβyώ4+8υ{=RηHψ¦ζtSπͺȞہΫώώχΏ7  xζS˜oΊι¦Τoμκƒψ/=pšΊ;ύΝS;™>SΑΘΟέNΉ)ΐσΘ”ώN<ϊhΫ^€`Έƒμ’‹.²bΝΣj\Ÿ'?τ{@ €{κžΝ¨ ΟιπmΞυΑ ΚΐO S>LXγπγzαήzθ‘&Ησ κπ‘ξjΗ€%'‰‘εΘ†–|΄Ν‰ΥΉΊŽ=ΪnΈ~>RΑJρŸšρU μ1ω ΅3žωMΆ:`kOΐ3`ˆ+Όpl~ˆ^rŸαg}σΝ7§ζΜΟ3βY£Sήσm€rό³4ΒοΝ=»πܚφςώϋοΫΘ‘#9݁ο $Ϋ•΄#ξΛώαOΟχ[8Μ}ΝVΥΛk+*ιo‹ζΏ₯­ŒKν›ισ¬Ό4πo­~“ύ¬όΓm–σΕ4wdlψ+9_6SΟκ{—Ο§ZΝ΅uφFώΒίύJσ Νoš‘eχόÊ|Κ1VΗ6κiυš ]~V›ƒΡΝωƒŠ 2Ύ-7—`ΐ:suΟ(ΰYΖ•01 #μUii©‹ϋΠ―°iΔz`#i OŸ>†ύπŒœα-ŒΓl“°ίc»±sκμ―˜γ±‘tνχB?δ>ι³^±Α–I'ύœφΆύŽ+vF8~Ψ6Vσ/ν`[tE₯ε΄·=‘₯‰£“hS\X`;οΎ»³W\ƒTΩ‘`ϊτιvξΉης•τDΜ―¬¬¬Ι=―.ΰΉ-φ5œLΣΪ3Έώκklξ½ΟZ—“φχΥlΣΈΥΈ–8Ψ« ΓμqΨω—|Τfο:JΜ€]­ΣYϋYήC“hχξΙmΨΣ™Ξι#Ύ}ωŠΡφ7έTVUΩ駟ξβŸόξΩΛΓχνΟγΥ'Φ„Ώkξ}DγA’BsE½vΝ/΄ρKΏ³K<Φ~wχŠ9Qsηύ`ΏΣΪ<2ω+€Ξ&pNEΥJ·Bςq=ά± D/Jz›τsΡπbuΟΨkl/σΘ՝ƒ―jnιηΥaΐΟ¬΅>Ϊ\;“΄ΤG)ΫrηwΊΎˆ}cΎŒgΎήuš3Ψ*ω> x^•-D… ½ε–[š£μ¬]ρL6-Q‚Υ7 lρ4ΨW[ِ>6&1'5v€ηΣο³@¬Ζ+‰N»άr’]vΓU-ΞΑ™sr]0 \Y•Νηωz3ΗϋqΤͺλ­ZΕt[Ζεok;c'™5Y«ΜώΣ³V"ές}ΪyDΧΜZεΦΫ΄‡k°­7ύΨΝΫΫ2w m„…Ο°τC‚ηwΊρΏ37gΜτs}½eMκΩ΅ύwώ•~ ˜–β„ζψ)ϋέ3ΏΤ>^2Ϋ6uίσ,OΎ5ΎZ{Gxδ`t ?€Ρ’ω\ σ«ζΔ₯pΊρ{œvΰιά~ΐGž^f?[μͺτΛcrl­z-²Ζυ_ƒ°ζ έ0s‘-ωό ŠΆyςΥ,―oΉ4έsD θ [™uΪΟ‘£]δ“ϋσ’·Ώ°Δ€ω€QβzthwΫ`—‘–Σ―KΛe'њ2 9 nώ" n–Ÿ·%‚Σso1έ½ΚΆ»OOΑ7hRγΈtWϋφT[όšIός"?TthλΌχ––·Eο5ςGS¦Ϋ²{ž΄μχ•4ΆpΎeΧUXvLσΩˆΪ”lUDλν& s}'§Ϋa ΒΨ“YΟε–•Z|γ~όcKμ°M ν빎^ΩΩh)~Έw?v ²θ,ŸaB6‰ΉG½ζ…»ξl˟yΝruLΔΫm΄™—δύ\ Α»lk¦cΫ,Jx¬όλƒ–'?&γΞλΣΫβE₯–χϊXΛς»J7 ς•8Β±FΧΛNEk“Ο.¦€ΒσΟhΊ#†ΐπ57ή-ή4Λv;Ι œ ρΘιΗ™iν€0ίΗNcΧ]βυ_οΆϊη_·ΰΗ»Yό‚$f²+λΆqcΗZΝmχ;&ιNg’ςέΕ4O‹‰”!WώΖHA™cΏώδΣΆ|§ŸXƒΘς΅Σ—eωΆε–[Ίk’pΤ»Sg[\[c=ΕώŒ°γΓε—^fυο~bY[ 2Σ:Ζ k2ΦfιueΔzŽί‰o†λΚΪ†γΓσ!_ޚΎfΟkͺΉΜy ΄ΪπΜΒ6eΝ^` Αp92nfΟ‚‚ο™ό#a†gΞwέu—/ΒύΖBΓ;{Y°ΰ@χ‚# Ηφt@σͺΟLJ7Ϋl3_”{m πŒγ¬9ζg‹ΰ˜ψ·ΆΠa²ŠaνΫ·― <Ψ±QΓ–’.cpξ ΞΈŒd4Ρ@F d4ΡΐΊΥ@πΌnυ›)}ύΧΑ ‚ΖΜΝ[@l#Ε|–@+lOΜί[2¦q·€kιΌU}ίή€gWϋϊηΆψΞ—έ₯#έΛ¬ΫGZDξΙhΐ.ΛΚL[6~’žζά,ΤO³Šπ“S8.€sΉ XPμͺλ½,˜nΒ«zο#Λ™:]’I•h7ΘZ²ΣΦ4Κα½ξ)xqŒΥώγIΛμKφ™M]?Ήn«Ν¬πΈΓ-ΨAΰαΥΌ+yΖrΕκ PΥKLNοβCφ³`«‘ΞάΠΩ >εά„€ΘYby‰ ΫΨe‰Α:—(rηƒŽ±ΓP/ζΗμΫΆ`Έ8Vη9@ ρžbyςn H¨;φ7–σ†˜ωt-Ψ6²―:ΧΓ[έΥ7§ΐ¬yοc‹Εr‘B29#.†αβQg‰β)ΩΎΨς»Ϋ’6,ΊIwλy©˜€ΰ\_ώ½ι ±ίW}ƒXάf_ϊ°ΣΉ*tΨΊ·Ά―@Ψ2ΕXS·’„ΆH-TXV%Φ•N–#ΐgΠΉTA5#1βΔnΞ;t_ ~*’Ϊ\υνχYΎϊβΨZδΜΟΒ¦H`{f«ΚBm_[s s[t…˜j*“}@2 Κς,―WKΜ_ΰρ‰œ<«οΩΫͺχΪΕʏΏ`y|j.A€ƒ$qΥ±`Ώέ•΅―‘(ΰωT¬ο/±1I‡e$sόα·φμψδ6Λ\–  ΘθYTΖMΐW'vλ§m7΅ψ†]-¦ίΚwίΩLv4]π©ρΥύrχ½mιχ‹}¦ε¨žoν›b(ΨΛ6ΤΩ ›€ζsυΜφέw_:Mmˆρ‚ζο»$p³™X^βb·7ύUOžj 'iΓ†oεͺρS2Ο! ΐ}h@Θ{`~N€Jΰ&XΚΨm·έ\YX[Iξ,šYΔ1­yΠχ "RΨA~T>Vψχ«―Yνοώ`ρ―¦»dŽ’Ώέd‡ρ3@-τqΝί.•n(!°υyφNt0VΑ(Η4dξΗ½ςχΛά‘ΊH`W?ΐ]ˆ2„}’Ό§p<ΐƒ0‘ AΘ-rΗτ  ρ)³SήಎVyξ(+>_ φFΐ3zϊT`΄θi»ρΆ)LΓC Ώ_žτ «odή§ž\' >συφ-κλHyvήΊvνκξŸσ™ sΟ0ςϋd#ρA·υY£S€Ύ=σμΪ£_κ@ύΈΟπΟ‚Ή7ηyαwv4τΏ·ΖΌθΟρ―\p ωΟmyν΄Α0[΄`Ό@¨₯φΣ“Ώ΅;/ΗΊwmΛ™Η¨ύT\w—ε~”τωΗ*.Ήδ Χ?W£”us¨P–_q«cο'˜žϊΡf?Ό§©ΊζvΛν]‹ xλ«€rήVxΉΘ\”δφΏ(τ[Ϊ²O0 _wάqMΪ*ύ©I2ŒϊKjlhAi>Ή²˜0c3Άp1Χδ/ΐ¦/Βς £<φŠΊ‘(A}ζΨ˜zιo.¨ώϊλξ7Κ™€$Hm€P§<ΚρIΤ)|Ν±€½ ΓζΞριBΩνΑπŒ^²d‰‹CΔkΛ8DΒ2vτldkrĞφΤλ―₯ΐs“4G‹<ς¬-Ωg— γγιχΔgτ3Iγfp‘漚ӐLΧ_§έGΨΣ_LH•‰}Dwkc_}{iνμ»λξ6λΞ'¬σ/•ό%ŠήWgάΚ±¨½ωή;nχ;Ž΄΅§_ΧgΞܚPΧτ9Qk}”²({Ρ’EΦ«W/W4savJag„ώΙ|Χο2~€qΟž±‡ιsEμx†°]`mrϋν·;_*€+?Ύp κΠΪά”cΠuύIZϋΦ}ωm’ΕVΰΓ²­¨Β1[φόΗ–-ϋΤσΚ£©Cm’a₯9ψIϋf•~i•ΫnΨ&›=_Έpa ΐμžυYηΫ7ΏΉΟΊž³ΏεκΎ’-cΜυ€ηΆ΄3žΏqΟm]«T[φψ™Άτ₯O­η%‡ZΡπ~N§ιkΘψlΌ™ν­έŠ˜·eξΐ3τσsζΌgΞ3γ=ΐηέ•(„4Χώ܍H 5jTψ«UΎίΈo?ρhM*™ψΛmΠZA`Ι₯μV$0―Υj]«5ʚΊ$’ολVYφZ @΄c˜8ψ«ωΕφε\³rm«mΆaŸ¨•‰™¦Ω¨NϋWΐĞqšΧοI‹εΫ™™B/4]Ζj©,ΏJˆxa₯ͺ•ΛΠ£ά1B—•v°₯3ζ[|v…bK€D;} ιf4Δr‡φΤna+βαγΪυ½Φ‘Α·s•,=Λ*ε«Ιš9Χ²ζˆ9\ί7'ƒψ°7μfeΓδλν³‘™ΐξ«#±Ιbf~ρ >Uς±μNJŠυά·μe]χnΩ­Ώ5oŽ|%σ«oZξgSœί*Ίl™ε.˜―Δ<= ωκ“sxz-_'Lε ΅DΉ|lς³AbX[‚M[|?‘[lΡθMUj½ΑχόΟ'-O»±αOs@gn^ά‘άbkC— ,gά$ΛΑˆ ²"ςQΥm·…œy’Ω¦W―ršΏ/Sς]ΎˆπΙEDΘWΨP $–…KU‡…›ό`’ΈvEΜ=Z»ΠnnŸ‰YuΥ"JΗηXήq?³„|‹)ΑgχΨ š·Ύ¬Ά#ζοEKΊ^λφό‹ΟCvŸδ‘΄5%˜=8ξC7Ζρ%€¬Ή§Ht°³ΒY‡a‹―ΎE~œSνΔ‹λΘJ9ςQζ`ρ{ ―km6R@κ@δSΎžf#«dn|I'ٝ?«ο~ΨήιΫ)5ηΐ·4D;#x¬ +€ρcΏΗϊωy:?΅VWHZΓ„OαςΦτ}𼦚˜—Ρ@ϋh έΟ8§pδ{ 3 ^Œ΄ρ^Θ„ƒ#|\πœZφη΅τΊ6€ηt@4Χh+ΰƒΘ›Ιnk‚›‰2N±–„ϋηwΐΟΙh £Œ2Θh £u£ ΰyέθ5SκGΜKΙ–& IΠΰ`e‚Ύl»Žc@ R‚|φœΓ€P`°ΐΑΟφάdEHiOY€gκWχζd[tϋ‹ΙŒψNΕΦνΚ#-ͺ-!3ς?€ΨΕt‘sΈκ3mλ'f]Η(ڌ `Όΰ\6LNT]V‹…‘™2c_ɁiŸiο|`9“ΏN‚{ΒWŸmCΆpϋ­μΩ;8©ͺ돟™Ω^θR•’`Α‚Š X°Εήk$ΆD±%ΆΨA±kl±&"j * –¨{ο’"½(Λ²½ΜΌο{gοπvά…]ΜαΓΞΜ+χέwί}ηž{ΞοώNdsεΧWΠo%sΫπιΝώώΑηV9jŒcΏ²˜ΨoS"S£~ΉG‹ΕvίέR››υEΑ&ϋψ +ϊ₯†¬΅ΐΥlΫϊ8@‰$:  sμι±kͺ—Ί/§8ζH §z½4 tΦιψχΈ…r©»£{ΨEgXpbr1Hτ»©V{ΔP9‰ε¨GΔxbηώΞ"D§Μ΄Ϊ#Ο”3ZύNοΡΕ²Ÿ»ίμΣ―¬zδc.(ΘQœ+ηχ²7?΅μO“υŒoΨӊΔμ €q`η»_uΊ+’tšέ8\ ΏΙΰ²;` ϋ³&ži’@ΒΩ—<ζ@Ξτχv»τΆͺ7>TΰͺΤκW­s¬¨rŽEΫζ ΄ΌΘβ]Εn"φeΛ˜F•¨Η e&γ™ΕΧψνβ‘+ ΝD«ωΛ=)@|έΊ]«b„…:ΆR¬εyΒδŠmhRpZk±ΏόXš Xͺn€« Φ)°ΌΞb©q©FkΔZSd•λυ΄ͺΑ»X›γΔΪόιΧV1ζEυ'±!Ί‡ΪΝϊXΡq lθލ_U<5Φ²Lς’ΓKΕ;X›ƒχU›ΧψK+zψΈΖ-<(“KΠ»—?]OΑT-(({Yΰg7zηΟάy+ΗL†=ΠΉ³ΐέυ0l‚00v΄CsΪXΥΓO//WίkΧ~ήsgΡφtχƒ Ϊ €€OΆτΘΘηŸu~6lρΊvν©η[P*&n΅uΞ©ΗΩΔ.ν¬ώξZιW‚Φ>Ν΄‹Έ .₯ξ3f,g]kPαF~8 ˜μ(φš#άΑr˜έk?Κ ¨ξΑk΄‘0Ππθ­·³Š'ž³l˜›4εt΄=8o¦ΛΎαπΚ„w΄K€gaœΎSΰβ ιCλ*έ¨{€ΌΨ~³fΝrl«Ψ؍^³\ςv$χ€Ο*Ο½—HΒΗӎžX4GΒŽƒišgƒΠ†>ψ Ι°Ο?@μΣfj§/”q€νύJΥ 8]ΗE»+χ —:6plWΪι°xŽU½ς†‚bN'«χt™ΎxFzΰžΙZβA)ΪΓA4ξΓδ©'bρm³’OΪiȐ! ž]:H”g1™SΑ\? TZhz]εΓΈέ”πˆΗ€ŒŒ=νΫ·wΟέC܍gωΩ;οZpϊΕI’Ύ9μe/ΆΟOžρ)D~ͺ—,u w>ΔΞ~e‹τ+}ˆgΩΨ3ΰωΪgSmΑΈl q΅ ξΤ“ϋhΞΈuΪοN±9·ΎdNάΕJσΧ—` §/βaα7}g„Ψρ‰iήuΩ΅zοeχΧ/0δz~,N΅σ„IVωχ8›ŠqιΗsNNž›ύuΤQnll`γ€?XύπΨ€hWυμ8ΝQz’$Φiky‡οcw=4ʁE<ŸΧ{K«λ‘,D—kN±³6Y·οsη[T>K>—₯ΙyXΈZ˜k7Π|kΫ­’ ΠZΘϊί*a›r¬2•L Ϋlaέξ€F²IΣuΌgψ‰u£<ΐλiφ³ #‚^eqIKmKΐΑθ§Ε‹―τ…}7 &nτ -΄ΖBWω:²θ₯gϞ©φ`?χΞ~τ0ο(LΖόoΚVδΎyΧΡ ήVΔ^c$€j@]Ύh1#4Χ Ν`Gζ9yahxN[@DϋP?Κ]έξV9mΕη—Ψβ)?X–p―ϋΫ=ν¨γ]nƒ~άζ\ό¨΅;fΛέf}7φHηρΙg6wαό”ύLΦΏΆΟM²vΗοb11α"θλ°. Ϋ»Ννgώ|7WΡb%Lz‘_¦ΟUr’YφύœΩ–‹YΡ7‹¬Υ^[ψݽx-΅2ω~N–•”j«μ΅^ΦL/ο»Mλ|bš`ŒΪ3N{j¨n+–a’΅cš[ΓDνX¨S― ΡϋV'θΈ‘—|£9ΑK t †υ&Ϋ ¦{iJΘΧQ¦6,U;γΧ‘pσqοu¬έΞ›XξΦ=,ΦNφΓ/Αjœ”)©5ΰζΉςO1‰kD ²ΐ‡XOΰζ~›κ­+ΖΙvωσ6A"PύΩL[τΚηŠύΊlKi‘ŽαŠT σoΆ΅¨β-Ž_O΄7ήΘω;‹Ξ_μ2νΔ–,Ά¬ω³4Χ’ηGŒϊœοw|—‹ge«mΤf!0}€mεtB΅w°ύ6?@™ΚΦλφσn’₯g}ρ•?ωΌ|aΣτΎT»lU|Βζ;Q¨ω…š/Š©Z‹Θά¦›€8ίjwέΦς/>Λ-Ίj©DήύΨ*F=ndd$“EDδ΅ν΅HS€η,”#ςΣρ>έtfqΫξ;ZdΡb«ΌιnΛβ/ΆζΌ?λϊaGsΫͺ»VŒ`‘_~°ˆžC\ο]΅ΘG Ο?}9 ‚φW^{§ΕtOYίf; ˜Κ6–~/Ψψjjώ8άΕ²ξ½ΞvΌ‡›‡₯lέ’e& ΫV 4ΏI‘A† β}cmoyΘς5χέ.κζ`nηJώψΉ~Hπ‡>3Zϊi³»Γγnϊq?ηwπόsZ-sN¦V] ¬ΐ3«ΝY=Ο*zœ‰6³ όιΣ§»Γόφ6 ΅πL€‚ ΞχτsΣΝ+ΫOeš xfE /&(+&(lΪgEΒꖁ42’iL dZ Σ™Θ΄ΐͺo ΰyΥ·i¦Δ΅§˜Θ³π§;ς駟Ίΰ“{μY>u¬Ν€l†ξώ{‡ƒ3₯aq Γvšό–Y]€gκUύΡ[|Ϋ IΗ\λλ|υΡνΤrηΣ/½ΗΜωΏB ”)`2UŽ>±‚–Λ9œ%ηpcŒO&r’’―{Wk%psDΞ΅ …¬ΏΒ­ψq/}ϋ˚0Υ²gΜώ‰<ΡVΜV›ˆΕyΐΆb_έH V‡LžnbCΞύπ —βΟ_"@·nΓ ,χp1/²w|ιw6γΣ±YΌφΆUΏψšψωSΆεν?ΨlЎ.΅‘Ϋ>m†e=υάJΞAD ―vΕΫͺ/.ΙθΌχnάϊ E'M4|œ ­ί-W¦Ž΅3.±`μ›ς$Λ1/‰χκbY/Ž˜΅΅Eξmu7άoQ" ŽΨοΔdqΙP+½υ~Λΰm,οΒ3¬lΤΣ›4Γm«Ωns±±δ°l¨~ŠΝΏγί.ΰΐΞ— μ¬tŽk²¬©€gΪ,(―ΆΩ—>nΑάeΐnχ¬κΥχΝ‰ω§€ΦЬU‰Et,tŒ)‰Nν΄¨°X\AΆ­Δ@S¦ΰ‹Ψeށρ=Πsε₯βΦ{,η« ξΡΈΰ‡ϊf–X sχdρϋ±¬*_AΰΏά"₯]%ΰ“μg¦Ύ’ΥCηg‹‰θGΗδRΫͺΥτ\_ΐ睬ΝΡϋ›}ω•?6VΑ‡lώΤm(ΠΖ±‰5¦·Ψ~€σž«”—γSz€U;τ·VGd˜(ˆQςΤ –§†½π(ΨoO vΩnyΐƒΊwSZΞΈ‚Ρ‹vξο@l~OΩ#ϊ~τe‹-:"ζ˜‚?a°–δ“gΨqοˆ5z’^ Τ…Δ±η ΌέzŸAΩ΄Oγ€gO€ΤSO΅Q£F96™Gώ€-ΌώΞdJL;1ι˜)'”2ΐξ΅Ή)Έ*Χ§Ήφl3`KufXk)ΠlΨ°aΞΊ₯&Ώή|σΝDΦ«W/w v6Α€1 ό…rπ»6ρž]–όŽcή|έΩy€ύyθ! Ώ«gϋ²ΛnVvήpΘΦΧsΚ;φωΙϋŽ±Ξƒ3ώύοΐΐΑ<³p»P/μ?X˜=λ΄grΓNœ4i’ V…ιΣρέzΆbΚ$£iΏ= šm^Έ󷟴^υέl=«©•ε©g0ΉΗύYΌ>ΐG9Q18Ξ½πχ)π™c{ϋLA>ηΫl²‘ε θo—^wKoš6vη‡@)ΎH§Κ3hŽπ¬ΙμΊk’].ύΩQν;6:u3<³Ά$˜°γ`¦]V…”WDμ²ͺ쁐­7«Ά ‡ΨoΌζ@ΕΕ­mχΓf©D μ’³rl³λυTs+πΪϋV₯± vBΑφ‚«¨1·^4·ŒΥqœκSrο?-χυ]ιu½»[Ρ₯CΝh XWž?ΒeˆΞY蘻#ωWžcΨΡώΗP(`d7φΎ°  0²;ΐxΩhŽfC—4Ε^@xΏ’3,BΚϊA‰Θfp Π=½ΑόΤ7G @x½u­Ε‹-Bx‹ύζΩσ½ Ι=’ΫΌΎ|Hφγ1Η“κχα6ψ‰ .ζβ0;"Ί: &ζ=τιίQlή§°.ε=Ϋ–,¦l ωBΫΆmώυΊΙŸΗ½4χMg³ϋE=ΩοvX¨#ϊαEy}ΨΨΨΦΩ^—K€TΒζ½χΒρ~JSu ]š<Σž!ΪΫΰ΄UΊž ΫΰOΛg[΅€Τ~X<ίٝ]ςΫX Π©ΐ…,ŽΙ/zΙπ+œΎFηίyρ›kεΆ~oΝ+%Œ‘λΎ1ΫͺΕ(j€8ΫZΫΞ=3₯Λ[ZΟXPγϋ bΞχ'Ϊιž{ξiφ\eςτ¨m΄ATvΕςΉŠ_`Κ=4ΧvΨb‹-ά<@8Ψ“p»ς\˜/5υlΉΞ/ήQOŠΧRΐσ/Ήnψά Νg{΄ΐΡΛAΤl«Άe?yϋ-e£˜·‚H΅ θ»Μг’Η 6€Συ>΄pΩ«δ;ΆJΖ6ΐΣ|Φƒ§έo€mDέZ@OΟ.C0ΰiŽη“ίpš²0xό‡ΕςΟ,΄₯ίΏZΐh«P[€ ΰ\eνβ jυ=&6bW‡$ ;²n[‹φνΤύΠ#@IDATlnfΩ½;6z½Ejq·Νœ7gύ φcό=M΄%γΩ³Š6ΫΨks/ρςΓόZ”U[•|•‹^QΦ4όYˆκ-+Χ<½Κς*ζZ^|©ΕδKœ«©²hBΰ{Ω%ά§ψΏxςα+Zkα:",§NΆΝ<•ΉLΰa΅sBm[Ω‘»UμΆ«΅?re‹e~΅ μΜοpό―δ\δ€Ξ1ΩQέ_\‹φ Π»|ΙAL}Pc_L‹ ’ΛDf η~¬‘!ŒίY ~ΨR &N±ͺξvdΡeπE€έ±“Ε₯ηcσT‡rm+–/R™ +ΪΓZw˜#YˆΌχ±Υ(+š\«]+ °βSwϋ\δΛ+»λ!ˁ‘Z Α²ζΞ“}¨6οΦΕrN9ƌ l^ΎόΦͺoΉί=76εŸz¬•ξΤߍ篾ϊͺ?Κ}BpΚό©έΓΟX΅AώΘ[lΰž{Έ±ΪΩZθ·μμΛ¬@™Όζž~΄[ΈšHf<#Χ绬φ’-οͺsν–&Έρ·Α›ψ]@φ„,kΨMΥ΅k׍Ϊ9MέμΝΐs³›*s`¦VK ¬Rΐ3Nn–H―-œ½ιΗ„Οβ8ΔΌ`Tβ»μΓ‰Ζ6&$ΠΨ#+4―l?e4πLκLδΌΜQΪ?ρΒACʞtΑ…qMj4ε„₯±2Γϋ3ί3-iL dZ Σ™ψω-<όΆΛœΉφ·vΚ°hΑlxλ­·Ί•Μ>xΐ'lY8χ)ˆΧ­[·Tΐϊšk1Rb‡ƒ"FO;ν4ηά&°MyαύΏ΄ΕV'ΰ™ΊΥ|9ΣήψŒ€`r°ζX§«±X·UΗzπKο?sώΟhX`nΈΉτ«o-k¦˜›asnD<ΰ+ήCΰf±^½ΦK²^6βπnδτ5f ·@ΰΚR1?d‹ρ2 X€’άg] wάΖl 9Αb\]‘#>xδ)«}ωM9Nη/ΏŒζΛ΅ η9φ`8\Ύ³™ίfŠΝDL¦Ξ1λ™Lτ¬j7ήΐ ΩΟlΛ€?ΐ•6M@η‰ΡωΛ―S…7Ζθά$Πω°,xβy‹<ό”EκSΝωϋonΑύ7YΠ‘>€πρxKΪ\ ΎHˆΥYθ«9δ–ύυ4νP±Έΐ’#―ƒm/«Έφvœβ”Ί z8'xΕΝ$Ί§Όγ΄Θ»³Ϋ `ηwΎ¬4JgΊ~λ6όΘ5μLΕΧdΐ3υ J«lφŸG[°¨άΡΫν·™U>χ¦RWX|I•Ε;΅΅VKˆθ\θ‚ A»Vψ«t;ΩaL’$ π•δœp¨ςΪξιΎGίD†‡tŒϊ†žiΝΖ½-&VΡοͺzΥ/Šž|A€!₯ŽΤ6˜Ž£5b]Ÿ£4©> ₯€\vŸN tΣωzjΫw²ͺ=¬fΟ> @D+\ΐgι;/u0©£~΄U_υ’EY$0φeΘφΗΤl΅™Ύήgύδ&€ΆŸ|iϏ³,1ΧΘ±εΆ“ώ²ViO‹ƒΞ†υΗj6_όuύγo·²Σ.T@΄Z=~έ(»p@]Ÿ ‚σ°ψL$|ζ+λC-F™λ«&€ͺ€α·_a;μ”deIό~T ‚ €(›4Τ,ΊŠh ΜΟΜs$  pw½{΅„Ζ†˜είVžEZ€².]Ί€όxncύŸRΗϊή† ί%—\βΚ€•`Αb[;φ²Έ¨UΏ°Ϊ€΅ ¬ΐ>Η`—A‘j?1JbGQώN@kαφcΫΥW_ν’yV€'α}b9=₯Ξύ>ύ―§­J@³ψ— p)lΡνW۝=κΙΎ<ΨΨέž€ρ–OΏ˜kδλ]|dkŸδqoƒ–ϊSSB[q/θ‹­HzπΧΕ¨ΝqΧ˜ε―α6Φα\Ά€Ÿ­€bj`Άϊ“Ζ‘’ο&[–‚ξKφΤπΌρ˜§yΩw΄χ·Ϊ0U'ϊK:Ε-ζcΜΜ€~ψUWΉvχ ž_‰Rπ6χYγφ‹}[ϋg‡O™Ά ΏK0Τz›šgλξ\p]'pΆoγp{΅τϋΒ%»βΖαΖ5ΎIί?ێ:P6±€,§τƒχ>škΓo©³ŠΚˆκivΞ)YΆc€~p7γO fϊκ[p‹/@wΓΟ]­φH3ͺ΄όχ?·ͺ;quC\q–κΆΞςύ|SŠίͺ ±Ψ’₯ŽΉΏV$e”ΘΏθf›mΨπΨς_θ­W^y%•Z˜΄€fώΘϋ3aΏ~ύP- ₯Ώσ.#ΔrxΏ9ž9η»οΎλτ) s)?i‹cΡsΌž΅‘Eď*•Fα=β\˜’™λΦ"πS$Γο*Η’wG3†p}b8……Ι1ΐ6 6Μ]›:„…ίάsΊp«πΜ{Ο5Z2v0Nl ?tΜ’%K<@^Σ€i'K…Ϋ Ώt]Νύ¦ςς5Φ.ώτ Ω7Κ<°^WϋΈcλϊuƒΙί[ΥίΥC‹X«‘·ΩU½#₯_Ώωμs+«©Άn< ξθ9TΌχ΅˜Kzi]dy;iQ*ΐ˜ϊgβt7wά:hΟ}ν²λ²λ―ΏήvΩeΧε_M·ω7=k]ΟΪί&εW¦βšΔ/ΡϋώZτ±K/½ΤΟθςρ~du'γμ³:-Ιν‘l»₯kΗέvΫΝυ-ϊ"@>ίοy ,HeΡb_:λΏ»ωόYϊ§-ο…·Y  Xύ΄`ΜK π,φ‹:Β*ΏΧ’²[™ζιΨHмɟτΏφ)Aτ[±NzhΡiBFŸZΝՊΆΩΚl“>nα\Ϊ!kΝOϊ·!ιӏΡΛθ[φ½σΞ;6Hϊaύ›}ιΊ›ώΫ” ΞΉΟΒ2l„²ˆƒ‡mKpήΖαψtΫ=Ž~G½έΓρΨi{°wT αύ†ΎԊΌυΦ[Ž _½ΖβHπ€Ιό 1‹iΌύΚ}±8ΠίGAA Σx­ηmEμDŸ-/ ζEΏΣζqίxγΤxε―ολۘ~ε<„{˜1cFΐ™yNθ­° ~Ηw8ϋŽ{ψ‰Ξ—OT<΅©1ΏΛ|->t;ΫSΎΖI7ήq—Ν:ύ^‹/.³’]ϋZνΡΫ8dκΔ=žπ›CνΊϋB:]ν›[ͺEΒY–ί΅ΓOϊ`τSN9ΕFεμ@ΰŒ3τ=Ϊ‰9γνΚPΓxονη¦ζ*“¦iYΫ’Y ζ*d”i‰νΐ\? FaρηΉϊv₯έy,BΌι¦›\XlΉ*eM<7χ~ͺ…ύσ5,œΜV„έxyްΆΛν₯ΰ³Σ8οDΏ=pšOX§—Ν[θՎmΊώxŽ3νh£mP—\άάz΅θΈzΆι$pZοWμ ¦h ΅~·ξΌŽNΓd”Tj|Ή•Μ»ξβ Ν*δ’QΥ?'E@;4uΧΈλΚR™‰ΦbήΌ›uΨoΛέ’Efj«Έω»$s³υ4z Μ‘βλv7wKœε—Z$"ŸSν˜W­μ©χ­vz‰5Ί7jšΌœJΛO,΄άΔ2†υρ¬εΎσ‘€ΕΊžζΩbMFβ² "ίλ478;ˆAΛodςωΚZ'β”ΌΣtφ~ΆfVΖωίϋάͺϊ ε°pΠ‘!DΘΉΆ“HdϋF—i.š£Ή»ϊS­|sηžj¦μC&ΏZΕ­χZΞίΈ«%Z[ξωΚHΈQοεWΟ{V#·ιžb?(V"{»NΩμj{t³1@›_δΕs{όy«Q6E„9oξY'™mΧΟω,r50{Άy,γIΟυΊ[ωZΝΈ·“ 쐟\sόWH\z}ΙΩ—[ξΈΤvq‹ž=Δ ΟωMX 0™9zγ7ΆͺΏ=nuΧί—d―–Ύ-xy€ zΉrVφ‡Ή™ŸŸ1—XΤ ={Ί±;}N³²²›»?xnnKeŽΛ΄ΐκiU xF1α4bΥ_ΊΰHΑΉŸ*žIfBήgŸ}°#ί ; θγ?ή6όφt@3«¨qΌyIߟΞΝqιuσ d”’OΘqΤωΓ?΄N:ρ³K Ώ9•+Lˆ|έ™”1)τΏ™πω ητκΥΛ­όn (ΝώŒdZ Σ™Θ΄@¦2-πσ[ xώωm—9sνoμgϞα™q¦Δ!Έ‰c»G;φ<މsΞ9ΗΩ܍βΒϋc9ω₯-ΆΊΟΤ―n›?βI9^…l)Θ±ŽWiY½@ΏτF2篞ΐ».6cΞe7Ηfύ(Gc ω“ jY'πJΌ{άΌ^"E?9tί ΐΆMšn%ohΩί‰] d}ΐίΧ=.§eαφb¦ƒ³ ¬Ι§ί΅Κ?qlΫcΟYΝΨWΔX;»A]κΚΪgEύYLΩάλG_X…­Yb«υ‚S9wΟ]ΜφΩM“ςφ~³ϊΒ ‹ θ γŽη-{ˆΚͺ—Ζ€ΞΑΖZόΠύΝ&Ο²ΰλ-¦T{^ΈΨmWYBιύΌ$ŽΈα­O€˜YΑΈDΟΞΛYίωΔβ§]j‘29Η΅―ΆίF–σδ_-’ώZyέI§Ή Κ=xK ΨΞ*Gά₯τ„έκ9εώqˆEΆ]ξΏ¨ώxš-PΪνΨyΨ!(³Țx¦ γJW:ηβΗ\ΰΚĘέα-­βρq +΅¨ιV‹§XLL€θ€λΓ²JΕςΣJΑή=δ θa[˜•‹.<=Ɉ, EΥΝwYφdυAΥ^€\¨rΎϊΞ½'€ΡΞr΄U>υΌεΏωžEY°‘€X΄«Νί«Ο–ˆ)Hœ+½ϋΖY ΔYX ~MΗ. Nτγσk{Ψ>«{Ωθ±–5efς)ΆŸΒ£Τ―œyο«zZ kΐ υR§G}_:#₯ξ[&&›±³ΐfν%. r>¬Ο»nﳑ±`F`K΄ƒΏ r@Πΐ΄³O8ΡjΤv1† β2 5`W0Κ>oeo~`9₯–{Ϋe<ο”bWυ{s΄f+$Ύ<: &υ`‘‚mX†i|x_}ς©•sΉΕζ/΄‚αηΫcF;°’Ϋ'°Rό΅wΔxΏρς Κ ΘNP;]ΨφΒ /Ές<ςHΗ JPŁŽe;E ΐρ¨bT-όˏ|€±‘Ώ΅κSjιϋρ·V#“=x =ϊιϋΝj?μ1hΐzIoΐήΨn#FŒp©³oxp ΫΪΓ€ ° 5Β!i―Ώδ2›:m(πCΆXχjW1.Π‡ρΐ2'ψE=“Ϋ={'σ.Gϋπ_Uf>[Ϊ»3]Hm Pœ`Usϋν”αYz<α˜dB,ύΰ±Œ/ˆu‰e]©m½έΆΟTΠιά€ιxΦ¬ˆgu¬ΥκΌ¨μˆ@AΟ°pΎ=Έ žχω…Χ¬μΩa―{ ϋΌyσR Χ<3-Ώ4@7SζΣπ[j­΄<Κ0eΏ?![„N˟AπLZο925ΌYΐρ’δρ§—mƒw]~|Έ šό.›Εwb. ”’:6ε>=›<όΧάLeUΧέλR“29οΌ“ΝϊI'„Ecxυ₯7ΊΕ.ŒοqeΜΠƒ΅άs4nο 0܈πΎόaή  °ZˆC_(Oί'ψΝbήcϊ{Κ”γΩOάƒσ=ŒŒ%½Σ…w˜Ψc‹‘r γΜα‡ξt fήΟΛ/ΏάξίήIΞOt‹7<θ‹€8ΗΡχ=`˜ψ€·tBYΔwxŸΣχQΗUxζΤ§±qˆy;χΗ8‡nŒ‡N@gPŸζ>ΨKg °ΰ±Π~瞫ΕόΡΫΌΗsLξ—Ί ΣhKτ>‚°N§nlΆ2ύzζ~ΨΈi“›ύ 6[―‡Ν\ΊΨϊτιγͺζΗ-ϊ#‚=·ΗΪ/ŒΫΈο“vΗΠξ¬y…2΅Lœ>Ε δϊ¦χέw_ƒgLOΪaΗ]Ήή>β+Ώυ>Λ³^°Λφ);ŠgδA‘\;ˆ>NΏμΜ"$ž0–ς>xP5Η7%dΊ)x9k wHέϊλYΡΕ²Αl Kΐ³κ +wωπ;ά>Ž«ΪggksRr\ ŸχΏόέΝi@ψ©eOќRγ|Ί$”)₯wO+άfΛ$ˆ¨ηzΌ¨ι‡­‘ΏΡ%aζe‹Y@…MΣ~ώύ]½Y€Δv‘Ώ„NΧέؘ͡Αyηf͚Υμw”χE'„‘γήQκΐ;‚ŽYα;ͺηαν0ήQˆυ4Ίζ\τ‚ξβz°L#Ψ―€pΡήήυ~ζκ²³Ο>Ϋιpt4 Γ62υaαz‘=½έη6ΤiLΏ†€ά‡ΏΧpωœή” NΆνζθό―ΏoσN)ΥmlωD·Θ”rW€ΛΖλœΪ{cσΨ0՟VΤΟ^ϋ’ό%Υvέίξt@qΚ_Ω\εΊ+―ΆιsΎo΄?Ρ?›«°°΅%Άϊ™μεšζ«Ψx‡°5XψΚΌ Y• ]ϊ³6ž©sYyΔΞVm‹KbrΝ%μ¦Λ³¬°`ΥκΕ Vώϊzΰ΄ϋ: œN2R‹uzή p΅bβ­uΗ˜nπ›rV‡8PΆμMٜA uώKψmb~4‰0u8šQύˆeλœό˜e΅λt±ό@y)Ψ΄€5Χ,άT +•Q&A‡ΟkŒ0ŸϋθK‹ D[%S֏σ,‚‘nͺŽZ•΅±Ϊ*ω.λtΟj$ ,/«L‹”ͺ­n+Ӟεd»}aύΖ† KgKμ7Ψ;οςiΧNškσΗ~d‰/4™U='YoΉu<@‹Κ λ³|d₯=cΉŸŽWυό4f/+Uέγ·˜ζ‰ΈΛWΦ6όQωs’ΥUς‹ /ΆeΨ—sO<ΚΘFš)δόΝ+yω-+xυm΅γœT[%Ω΄―ϊm-žρ²α4!—΅1οδc-ΨnKχ;2eΊUίtWŠμ₯F~­ό?ξόuξ=›ŠΫOύ‡$KυsΎ/RV»ΆV#wΡ™3ΛnE°…*ϋ«Εκ3ΤΕφ/Έτμεώ|-j¬Ύξ.ΛιΧΧb"σΘΪl#«Ε|\Σbυ]­πrΝ%Δ<–Š‹΅Όίv~νZ-ΞϋλpQξO°@ ’0Lλζκ~*;Σ’ς»FοIΘ_Ρs žεΗνomN;6\d³Ώ3–2^"ŒΏΤ²² gΟ+k‘ΜώL ¬ήX₯€gͺκ αjχ˜—Ι<ŽtPqπ ‹ΘΦ[/&R“oΌΡ+0Μ1–™Q&+ q !ι€fV‚όΐΡ€³#}KΟ(EΦ¬4τB½pΌS>μ+8ΓΌ聉ζ„NhpŽ(€”—x&] )QPΒΙ΄@¦2-iL dZ`ΥΆ@πΌjΫ3SΪΪΣ8gΏώϋΤβ=Ι€d4‡…@φ3Ηdβ7]އa)œq›{:ΐ-,l$0²ͺΔΟ'ŒγΈ^]R7}ΝΏκ‰dzΊά,λxΩα–΅‘€eYsZ@ύ*"€Ηά Έyώ’”#°AEΥwγ;XΨŠϋmj†cXN·Υ ϊmpύΥρց$ΛΔ›5y†sώ…/(ύ:μ­vVn‹M”p5;ΒΕΜgzΩjžY)­#Žy"Y£xϋΆV½ύVVˆ3RП%X–<5ΦςήϋΤ9\}uΫ[ΑAϋ˜ν*‡·X&RΠ9" ³5θΙΆΊί_`ΩV;« '¨œχ{³SK]ΚΖ½c‰ί_¦ ž 9r|ΓTyβaξgpΖ•Όψ¦ v˜€Ι±ΛΟ°Δ‰‡[δ•·¬ϊAώ4ΧΟ=G`ͺV­­βš{Δ"-½ιΐ_ΚφιιΚα`ηω·ΎθΗўν­λUbv^KΐΞΤmX¦ΰJ΄­ΐώ βhHδδZu§u­v½u­πΈƒ,Ψyk‹LϋήΚΔό—υνTW>βzwπYΑ πcLω“bLf^wυάy;k ψΩΈ΅™ΐΤ'_Yωσ―8y,}ΈΆί&Φꨃ,ήc]NJFpΆ1a \  ‰“/p}?vηUΆγnƒh6ΉΩŸ…ΡIοΔφυ©·9ξ€Ξλ[εƒOͺAΕr#λφ7^l'ŸqΊ5ʟΦθ' ϊ"Œ½¨άk°σM’Ήβͺߝjε·Ν’³•­M,=5m`ΕbΰŽl.]κΫ!Tr|ΐb/όƒaΫ(t¨ϋΥ³ΉκPΐσFc^»πd=‹ˆe?|«ν4p  n§ŸΛoΪΏ‘ša› 6Μ±τ5v<Ϋ°έ`'Pš5uΌ&Ά J”Ξvν}w§€œΐφσΟ?o`3β=~ΑS`λMΔ<π…γΒt˜Ω €ΐ_ψA=“›ίΧΤg<o@=hΌ±γΣΫ)|LΊ Œ_šT§a@^Άϊτ«bFυΜίασύwwO?³ψΙηIA«J`@Oθύ ΔY©ΰg»CcΫνΈƒ{Φ\¦[oc7cKBoJΒώcθo>m6`€°nγƒn8±λ|31bΧήQk5΅°΄vώ²­υ‹+κOH<³Ή€4b—\Weσ&ύΥ‡ύ&ێ>(Όnμ:n‹YεUwΊl€-Ξ»ΰ΄$}£Κ—,³²«ο4RG£'+χhmO‚­|M"_NpA^ΰA f2=tRήΉ οψΏzFyΐ­o›τO—ΊX $`(¦ο’+Ρώ½ΰIό'LR“^Fψ7γ€hƚτ˜Qψ8Ύ‡{~ο z„O~^μλΓ6ή«0H՟ΫΤgϊ;ŽNαυes^cϊΖ—Η5a­„Π‡ρ„L θ‹°nςΗς‰ώ„Mύ ‹5 γτEΗΓ@Απωώ;Ο03cΟς؏ώ$ΐ/L ^`ΣdπΊΜoη3<&ϊΆL<Σ€“^™~EΏε œτθσΟ₯ΐuαk5φ1uλN]νκ‘kΦΈutΏέlΙΤΩV΄χζΆΝ6ΫΈE.”KμΨ’_ γυ-@9χ<τ\’Κ¦3g£^ΆΎ€ςΟ`ίu{:`u·-ύmIhJFν@ϋž%Ά©γΨΡ°ό†ϋ΄­άι¨Ό#χ3;d°ΣAιηύπΜJ%_ͺσ³¬Aj·ΨЊ/Τ<§hδ6fώ€Z RͺΕ²—“ ΠΣ-6§‘ߌY„KΆž€ξcΞο ρcMήχ0³±zς² ~ŽϊΧΏώΥ@w³rX0ͺ™68z"ΌΨλ6e[R.‹jΠO-zGU&:²Ή‹ΔΈό˜“V$|ύb:Ξyωε—›₯Λ°=ωΟβΏ £±λœtI.Σ5χ›.θN―λ½~₯^hΧ0ψœνMΩΰΰΠ3<;Ζ@ΨώxτTXη3ΎοXήΞ=φu§LlΨΫΏΩΛ‚­ϋ…Joψ5Q^mUοL²Ε/}fΑ\ωθΌόΦη/Ώ΅ ‘diql>ιδ¨ΞAHΚ•!Cν—.WΟ(¦ΕvQΦςμδ7Ξ9ς Kμ5Γ8YΖ ώ¦@Ξγή΅μρS4χœmΩσ5Τu‘ •˜«•Ε0"Rƒ₯― -PΉ™ό1«άe;kuŠόΣΨnšΧ,{ΰQν7ι·Σ’ݜSO° πynœU?)Ÿ²Ύγ—Š–‹@A¬‚βBΛ:$Izΰ֟ο¦8­ΐbΈFͺ•α°ψ§θZυΎw’.ŸΆΚrδ §Φ*yRυŸλŽ―έjS+Ί@veZ”]r½ε?ϋ†ŽQve Λ»οZ ήόΠͺGΙ·'‰kρ^Θ@κΞΉΪ‘ƒΰ‡ν›Μ$‰φςQ°›΅’Ο`m‘ ΰymyR™zώ·Άΐ*<³B<Μ†LΓ1±έYΰ™ύ¬ΎΌφΪkωΊRa5*«&EχίOΞρΗόΐ3“‘ ¦9‚3§<ͺŸ?Η©qΜ„…t•—]vYxSζ{¦2-iL dZ Σ«¨2€ηUԐ™bΦΊΐωf·σ7€γ– 'φͺ$ƁξΣosv0L{8sήΈ„©ΑΝbDœ½ v1i["K&Ξ΄{žzΤΦsΣψοΎmΙ©->6>{±Νφ„Λδ°ΣΚς¬λ=Z\Nζ„UΠrΪ‘Φ6άe_~cYίΟQ€qsζύ€tυλψ:bMssρ}-²Aw Ύ[λ· HΫ7“mΩ»YΆX[qL6ΝKγbωΘ°8"€³^’Fƒέ Ξω₯?τ ^zΓͺ{VςIrΛi_/€ϋ­‘3΄`ˆ8Γ$ϋ3%2u†•>ωΌεPδΊ”£{­ιΫNJ" ΔΡ@¦Ν°¬§Ÿ·ΘΛDΐθά sΠ³»E‡^jφϊ{)F’ΦύΔ$rΫ•Ξ©μ―Y³Χo-λΌˆͺοEϊυΆΰ_J΅§ΐadζVwΨb M²Œ':Ά³¬§ξΆ [G+»Y©?KΦ1ΡFl—cφύ<«Όση˜&}cαpmPίKυη3•Z{¬φY·­uq”³Šƒώb«ιsmτ‚TΚx0·Μͺ΄€’υΒi–έ^A(ώa―!₯(ƒhLŒ=˜΄M<=Ο8Pϋ©Η˜νΆc²u.²κλο°¬Y³έo@Τ5έυό₯λλ0Δδώξh++pργΟ*υ―@κg‰uڊω§ΐj¦JΦ31–;[ήϊκ/σYbώ"«+(²š=Δ έΕ Ž?Hl£bž›1ΫΚώωŒe91TΣ•5!€Μΐm“,.bA*£t~žZH(xR΅ν–V¬ ‰έ<%‹—XΙΏ^΄<±G–.*eΎΏUνΏ‡{μ±Ξ.H―/Ÿο;bλqο τŠΆ–sχ΅6θΠƒ]ΠΠ,Μ€©πβ―;ν΄ΣR„τ!‚Ύ€U\ΨΑjG>ႇξ²CŠ»έF‰t€s»„r!)ƒ°aXQ?#{ ŒΥ”P’‹{ξΉΗŒalƞ°A™;wvHοŸΧ£]ι—a9Y@/ ΅P°ν«οZβ+e–Π’…ά½Ω½:Ωςws}˜y–\ƒg½YA±ή›Œ;m6ήΘ €lξ³γϊ€±‘§Έ†i±gϞ6P yΨ!͘Ρ\yέώw•Ρvωs¬wΟεf_Nc€gφUΘLΎβΖj™iYξΠmΆ¨Ά ΞΓUԟٌOΩ4—ήbQXέubή™'˜νά|&¬f\αη"=[z³HM>—"©έJ}ζ½YΙϋeΫβ§^°’Η5> £΅HΒJͺφίΝΪόφ0χ}mϊCί”Μ{‚žΫ'zυ¬³Ξr@-€ΒιΒ;ωΔO€˜όΓϋΡ€οή½»ΫL:zϊνAδϊ1!τ6θΖζ‹, ÍO"œΖτ‹ ˆ­„AΓθ87βZ08 ζ λή·›oΎΩίœ:ρžΣ^θnΪ`mΖbbθτν/ΰš<³Ψα’K.qχ`Νλ1Ž₯^θ2Ψ«i3teϋqv0»²gΓ‚e?FψΊΠfιcΧxψα‡iOϊρώΌ0ΰ™ΆdΜζΩ¦χκD{­HΏ”Χ’g@\­Ο۟Z«³NΆ‘²)V4nΑޚχε$eΓxrφέΟmΡΓ>ψΰŸ,8β>Θδΐ3 Τχ³΄νy³νm±”£ίaΠFμ„±Ω γ;γ*ΟΖ?sβ‘ι1NΪ ιξ»οώ“gαΛJ}JΧ,}pŒε½"[JΚ;ΡͺΠ /ϊ½R₯χL’ώ₯Qΐ³?θ‰—¬κΙ—ά/—θŠ3Ν”9##+nˆ²ŒίL΄²?K2@‹1‘q lTΣ«»c€ΆΎκ?ϊή²²Ai«εϊ=™ή'±οθ“€qŸ΄6@ώKmΡΨ-§“­ΓωΰŠη*°fΣVτ'κC–œζΨ΄sό獍Τ‰q~˜l&ϊwϊxΗώ_"τμ{„ω_δώKΚ]έ璐ν²κ¬Ί&b}ϋΤΨ•ηi±xKζ«»‚«Έό@ X„^°ΤdؚN†§iύq|%eb²•o€)–²G$τOΐΞ‰˜€ΛϊŸ¨–•…νΥς+ΑTΌ\Hκ<Ε%άω~ R0‘³ώ@€ΜόΟΣow`7Fγλx€ `:ω[ hmo-φ^7* ΄L»O‘:Ψ‚%fb.›0Αω“²Δ~[ΆΜ-ΞχW$Σ]|φV+mώ>ƒ”­ΔjΗhαύT‘H„ζ‰άΈ‹­ΈU—ηXυRe`¬jΨ9² V°ΓμŠ(rΣ>ώΝϊόY¬Ο—"ο|lš§Η”•ΛI]\YΧ*εΧ}€Η. £sb b&ώzΌeω ο")>Q>ωσV$δΌL~±¬―& D]©k”[Ž#Η僃Ι8‹ΕΆΗ*‚‚ΙVuχ¨T, 9§šΙˆDδΗ«’Ρgn#k[ώ…gY ηαφ«/Vήρ όΣ"YΠ}dΝ›ο“"G!~Rπη³Μ:΄sΗΊ?ςΥՌ~ΦΛ‚ξΌSΕ =h‡δ~΅U魷܏“c1u)<ι(«ψΛύ]ZκϊaΞq[δΐΑΛΛ«Vqώ5–ϋ[ξWΝ6›ZώΘ›,xων†`η=w΅ψ7$ϋ–ή…Δ:mTξ2K΄kmΥ»ooEWϋ·)“ ΰω'έ ³!ΣΏj ¬rΐ3†a:2 οπ»ΏΛ0Γ3ۘαΘiΜΘυηπΙā•Œ€pDVμ±Ηξ{ψiΉ0ξΣΡΝexΖ™δUψ޳{EβΦC[ΰ΄ZΩ½~9lΙ΄@¦2-iL dZ`Υ·@πΌκΫ4SβΪΡ8¨ΣΟ€t=τPη ΕN Υg+Ή‚@5η`o{΄‘CΌυ)ώΨHzœ˜ρš]ψ Ώ/§9Ÿύ»υΆOgO±…νμ‹1/[ΞΐΎΝ9νg_°Μζ]:Zv‘S±έΉΏ±άνzμς2'6£δx3±8pσ_ ά,ζζΩσ—ƒ]ӊHˆ=η\ _17ϊ³ƒJWςΞ‡ΰœ5cφOήqΌυν-ζΡm-Ψ|£_νΎ#ο~f•±=({IΰY'yώq‡Xbϝύζ–βhΨ²β™—,& »X2ςφdΑήΕjΦoN~N›Ρ(ΠΩΔθi&£s°ΙFU*>λ2V$ƒιžκξΛ}ΧNΙkιoτ‰η-ώηΠ¨•)8Ή{˜’o»%ωΫh‹ί †X_$Υ{°ΌΏ]―ΥR«q›Ε(@Ψ₯ηΨΡc-χΥχέΆΈΡΕWΡ‚’εrΐΞ n~^ 1Γμ ³sT ά΅MΦ&ΐ3m[;c‘Ν½bŒXhΔβRœkΫΡΚξΦ@Οbz^·›-™iΉΕΏ ς/€8ͺρ3T+h€g€ΐN ΦeΠQΥύ7+Š `Θ1dΛώρ„ΎτΊΣqrχlε!V”d©½@i0+mωo`1υ‘@˜‚ ΅ Κ->[ ΕκΜ8Ω½Ϊ[V±ΜΜ]hq±ξΤ΅mo5»&υδo5XΟΔH·μΟt―…Cυ'ΐ2ω‡μm‘=wJΦ[χyγ]«zφe‹-Ρ5Ω ΅›τ±‚Γφ—ΞQ9^ΠΫbυq¬Ο¦$([mn…WόΡf+Νζœ9bJΦ½œθΩ³§ °c8ύρξ'jΉ@Lν{»ΰ9™!vΨ',œΨΏA|„@²-sνo§Ψ2-PΘ?Ιb']υ'1\wvΥ’(%ψ7Ϊh#w^4Fΰ- Ω— ’{αΪψ‘΅ΊσA!™¦ϊΝΙOX"bžωb½ulξάΉΘ°‰:z@5>Γe Β5ΠM°,\Ά8ΆΒeρ@Ή… 6h?Ή§Ÿžd±†Εσ‰Ώή£ΈgΤ.½σ6Gp› xΔ€½†έΖ}’œη€pίΛ—.]jS§NMΥ$μ•<κξΑY|χe²X Βΐ|’ ‘½ ₯›ΕPΎΓ Žά €_ž—/° ώ_@,€ŸoΠΆ”G;$1b„—…ϋ™o'ξ-œ†cYΈ‡Lΐ'K›ΰ€ Kί AƒRχΟŸ,ΟΕι?€VηήχΩgŽίrΛ-][ρ<)Σ{pτg½ήYυ γ¬ψώ›μ’ΏάμYIμΩ’ΔΒ³‰Ύ„έb@₯θ3lΐΟΌ_؏ΌηˆΧ•|§ϊ2ο56SΨηb1!Ί:l§p}Ζ»Ιyιο(οY:ԟCΏπi¦3᳑lτ!ΊύΑΒ:ήEΪ‡{`A€S@Χ”Λ‚ ˆ"°ύΘ8Π”­0Œ@kΚeα‹ώψŽnEG²‹-Κb>?F`³Sgκ…°θΡ/ €„ ±Πλ ξ1nΣM7mΤG§3'Α_ƒvc>“σ³γ›vΖί¬σε‡ZV·€†k‰ΰπΓoT—ω6€Ώ ΄Υ{Z BŸςΊ/άΟπ93χaά ½ιK΄ χΞ΅h'ŽGό\…ϋ^of΅-Έχί.γUG¨Εwί;p~cύ‰Ή :άΨ—¬rβʜΤΚr»)CŠΚg”n;0ο€{]Μ=0O£𜱠ڢmλˆ±Xб‚ρ‘Ε―Ύ]]…WΑŸ΅πΜ­;)bΓ’qE&ΐvύ΄(rθrΧ*hš"”‰Ξ4"η(ϋϊ;‹Ξ8΄ΌAΥ―°Ζε§(Ϊ|c‹yPYͺ΄β΄Αa°MΗg/±ͺ|cΛήϊΖ‚™ δgR—mqώE-Tψ9ΘΥΒϋ,Tλtωƒά»£EΗΐΙ€’΅ί‘ε;j±HΑbΡ’οˆΖ6—mKφJDοt€Nϋ@jGT*ΧΦυQλztqώι@ΟZΧBΡ/Ύ²˜τ΄;τvL'ˆ™ΪΪ h+P5ΏυΎ{]'`|εβ˜•.‰Z]ak‹λdΜt,Χ};Ϋ:{o%ωϋΕέ\iλs,QgKΗψΒ΅7Ο”λΐ˜ŒύQ΅ΫkuΪρΙc©ŒžwΕυw₯Ψ­‰Ήδ]’yοz]Ωk¦ώ]1β†ϊΉ)οΨίͺnιΟ3ΛƒZ( DχQρ§–ϋΝ—%΅;τ³ΌnT6D‘¨Τ3;Χυιi…ύ6΅8Y™gͺ_Η»γ@ڐKΤμΈ₯^s^’¨‘AαkφďΗ"ΌdZ ΣΏn ¬ΐ3ˆ!C†€jŽΑξYL^|ρEgπrFβ AƒœQΝoŒW&ιŽoŒcRhγt i2Β ,.G}tx“yΐ3«Waφ;“°°J“’^˜ΐ ˜0Ύ½`HΓςŸόΗorŸ»Λ‰υ§?ύΙ9φμΠŒ`‚ιχ‚γœς™40‘ΚH¦2-iL dZ Σ«§2€ηΥΣ™RΧόΐŽ ž±―Y\vΞβTfq"qu0{q ±qW$Mό9JοδΠ (雀לϊ7e’c'eώP|ά/`€·ΨlώΒ6Η{ @oΪ–U€€”ρEz€€,ΉΤ‘TΫΆΓΘτΛρόΖ/ hί,Θ65CY|βsΕήD|υήϋ"l‡=vwι₯Ωƒ(Œ«/φ£…|·<'κC;’Ϊ|Φ¬YnqžO3 …ϊΈ$3Μ¨€R’ƒκ`pHΈŸQΪ Οπ,zw`Σ&μγy΄ ΄­Ώ7€›ož ξQ,ˆ΄ m σΒ³~dδƒV7}¦½>sZ³žέ]η]h%cΖZpΚ±ΆΕV[Ίλӟ`'LO»S?ž!ΒoΎpώ0<ύ}tΤ^yCAQI—ŽuvυEyΦΊX;šž9…2oΊ»ά>ώ2Ο•@ϊκaηηˆάjΉίΌ‰’S›`Λ―ΎΣ²¦ΜrΫΠE­†ώ6΅ύΛ—ίYΥ-α₯E/ Ίζ_r†E* j€ς«nSΖ‹Ιξݯ鹞[°ΖZι›β‹5Ά«ο¬ιθ=βSΫ3ƒ%=άΗθ{όφΐάτ{β=GPΔ°‹χ†KΐAτ%ΐ\:]Εφ–Ύ£ΌΧθ#θ ˜™ΏώβεέΤ…ήΰέ…Α’waa/`[ή_ΐ¬>»Ρ?ωO‘|κŠ.BvΨa7f ¬²Hρϊ½ž[ΣNYB|‹Ε5~¬hκυ 2βH^`Aφ€gΪ=έ]ΰΨ/ΊaQ ™£_벨ρuβΎΉWV<{Ζ$)‡E&~14ν>γΎ€z‰qΡΆά+m>ž 7Γν„">F\°=Ο‚LuκΥ±‹μ§mΑ‘ΫΨ‘κΧGqγͺ#(—2yΞ΄/ W&L˜ΰΐtŒέίωΡJŸύΠ’²/"1Q4ksτnΦϊμƒνΑGvυΜΘΈ^»“Ύžlbœ'₯7ϊ$χ8±ŠIΎ9²2ΐ3e €ςΪ»“μ|*?οŒγ΄Š} aΫoΞMiǐDιΰK?όΤ²§jΞͺ…άκˆ jΙbG˜ ΆΩ2 €Φ―)θlή ΘΉΠ؝θ=ΐžD½=Lί%&ήhί¬―0z=ΜήS2σ> “сιv zΘp1,Άθΐ§θAl4°0‹ΛΠ3ΌΫόGχPcŒ·Ρ7<Ηyώ8ή-l2ήA€1_%vΊΐ*c±yl@Κ£~ΨqγǏO[θ7LbϋqŽΓ.el€,lzƒΰš‡­ΊσΞ;;v{6ύŽξ„-€9βυ1νΣ’Ή νγΗRžγ7ήθΐΨ―ά‹HΈž ΗQOt#υG"Gσ¬{φμιζ0w\v%r³,Ϊ:ίΥΝχζs5ϊϊ•±Ξ³c‡ϋKxG›P/?>°Π”gοζzšCρ\ΓΆ nμ…`γƒ7aη|Ϊ©`Y­ΥΞ]b9[φ΄mΔΪΏ"=Πύ9VϊŸρξY½;[tΏΝmY§|ϋφ» τO{ΈyŽH6-xφΰJ?–ς\±%Χ³0ΐΟΟ[μ(gUΙΪ x¦ ήύ8j·ύ-i+μ;¨ΒN:ΆxU5Ν―ZNdΙ2 δ»6•₯Ίfαg ωFTFοT\™ΉΘU,rŽˆ|0w9GP-–μ―Ύ·…okΑ·ZHΎ°Τω’"Υς5U -πqπ³€ΖV¨‘ϊšΘž0‘ΚΪΚ―ΣΎΠZ <Ρ»k₯ίAΒJζ.°@eDη/±ΨΌΕ™/ˆΕb3H֝«k“U,"ΙMφ4^K€ςy‘-,Q,;HΫ’ςdΙΏ•_—²S’}ψ²9GΚ&΅Ω}QΥ">|ŠmΊNΎ’ڍ׷x•Ϊoό]ς·9β€˜+ίkDχέ΄³΅ί£ŸΨ滨=uΏOGT―•I:λs¬Ίά Ο²Ό„W΄V9ΊΎ³―b.Ρuλ%ώ¬ή~ Λ?Q€}Ί[ιΓZθ-Ÿ΅Ο©sή†X°AOJΓOι‚Ζ@ΞΛsVUΉΕΚε;<Π‚ϊΪήύž1ΔωϋKΖ ^zΓΝ=i»jet,œ¬ŒŠNΚΚ­ςζ»-ϋΫIξgBΩ9r.jζλςώgVύΐc˜/쬊kšk‰’Λ“Μ…³& Έ_uέ_uIΏx|†… ]ήoΕ\^­ύρ#Gστ`αb«ωη³Έωρg•e.,ψ#+Ξ.Πυ—nsΝΞ[ZΎ²Ό-}θIΛ«g{v`ηu»YόΈ. ωHb]œοό«5ύ”놋’>ΚpαkΑχ ΰy-xH™*ώW·ΐΟ<š-‚1‰ŒΑŽΡŒslEΒd,Ό*seΗ―¨¬νσυΒ Ε€Κ„TqL(p*±Κ‘Ί1ΡΘH¦2-iL dZ Σ«·2€ηΥΫΎ™ΧάΐQNοΐ'rΨ1v4{ΐ3NtγΨΌΓ Ίb³XρΐtAΠbΠ[a°ξg6‹ΟͺcΞφΪφ§»R"ύΊ[§ K9’fΡ+<-XV)–ΟΡΜI:}Ϊύ~/ΛΫ}Σž“ΩΩH ζM¬ΕΛΎψΖb³~L:ˆiL9M7‹]Χ17oΠ£“^cη¬uΫ4‡4·τm±8 P›=ο'·¨°@N͈ΞΑΖόΊPψxΪj^yCιξτμΌH1χ#u@IDATwš7Gιι’Ηh0Lό\ͺtπ9_M-‘,Škˆ΅ΊθΠίΈΰοOʟ1Λ²ώ5φ'@η@Nϊ(Žύz "rͺ·+ΆΨV}ό&΅γ†?T ΅btލ?ΖO»P,\ΣR`Ρ„τY䏧Yβr$‡$zχ#bmΎ? |Υv˜K’b~Άέ’:+u​εόUp@cnμ!₯αΫiδί―‹΅β η$ž{ΞɎ!·|ψ›.₯€fΐ–Φϊœ! ‚€ηέ0VˆPgv†Ω'Ϊ*k#ΰ™ΆωfΆΝΏVΜΞŒ(κτ»]¬δΦΗ] )1§Τͺ»*ΘQ±Π ² R*Ρh©|;ΌŠ»Dγ B© jU†ϊ(ΑŒάsO6Ϋz³δγTί/ωO+; Αφηq •¨4ΩzG‚)ωgžd%z' ΗΎ*:;ΙΔΧ‘e­ΣAι40ϋ4’p%ΈΙλΫMεΕπΩ”†³¦s7«kέήκz‰Z`όΘϊλ‰₯E–^·ͺΏi.pFΊ~Υ€­¬ήq‘ Ω"ύ=ΣΚΕ~“«…rΒΉM έg•@Ο­;@΄Φn[r‡‚\:όωWTΖ}Υk”ϊ³ψ@ώ\ΑoγΑq„…P;mέί–ύη+ήΎΏ=>ξeΗ ΘΎ―Ηm]Δ“ΗΈ°΅Ζ`•|haUxAτ'oΉέΚώ8Βm†y¦P“3oΈΖάmΕ·ˆ΄h;lΨ0Τ€―.%Ί…Φμ¨!'¦€μγ:O~ΜJ‡œcuΦ±Β³OΆ7§Mv¬ΡόŠαχK|›ΨWψΉvSBΪeΐΧHΌ.²…ΈŠ{rc} βž{ΥbρΞWκΣ§^Ν7(πa±”†―Nϋ9Xό5=Ϋ›cΓ֌ΐίœπ€€Άψήδ=¨ΌŠ…1ΧΘΧαΕ7lόV9€ εCX±οVΫXω£²θVJsΊΫNv˜Θ ‘šόϊλ―έ xΰΫLb³¦ mJΫ†ογ#„οο•W^I1{s^pΐmϊΐ4κάΨ³\Ιvξ$ΐ€$€{³Π§¨ lcίΎμ4hPκΩΑnSΈ|κ k΅ΛφΤΨηRΟnŠ€›~Ϊ~8ϊ7ΦW‹μοΎ–e•Ÿ·-„Z¨ )μ€€™O<Ρέ»Ϋϊ£ζhΐΖά»g]ρ§<ΛΟ[±ze€g‰1ΟΗμ‰ηjάΟNκlψΉ?IΚΰmτ]x·,’ΤnΉ±_τHoτψ_{γœV~ε펽ΰ}ήΩ'Z„…OˆX΅*.½Α²fώ¨”»m,oΧ­κ™—έ:1₯^~Φς€±ΫΊfύanν³xpρζ~β< ?μš~'τyΐ²Ό·θ+@kθ7ήή-t /„ώJ ˜±=Ӝw/sWόEo(₯άΧTευο<±ΚFXθΛ»ΝρŒάΜ£ά3ο/zzΪƒ©ύκήΡΠ=°8`‚~εύ4 λ8ύ¦E~ξ Ψ †{„±°6ϋΌPoΛφ°„Ο΄kSν„‚hΘg)@—ΡNa‚Gh3Ά‘—Έg­ψΕ"<‡!C†Έ:x  T ’G©υ|FΒ¬«΄!@?>χυχϊΞλ[ΆΣ~άiN;m<~‘{njη?p{ύ YυiLΏ2^ 9YΩV;{±³ΓL ™h~ΆUΌ?эϊEȌΡIeο!=8Ηxϊ±ŸŒΎόΚ²4o¨]§½žpΈεlΎ‰cήs'ω?j‹2±)ξ*ύH ΏΘŸO?Γ–ͺ―m·Σχ<π«œpTφbD̎<;H”ρ5š%KcηϋG‹Eώ#(!ΛOα…§™υNκ|ι}6πμΞ(¦lΨν²1“σšΫX«Σg…ΤŠŠΟμkN ΰχ˜(fG s¦Μ0€ιŠ`žˆ½_(t°qo 6\Ÿ—¦9₯μcθ05ΚΩ(ΨΌ°Ϋz}ΝoΫψEa] 1cƌfλμ ²Fwx2Ά':ύμ΅„}‹+Σ7θ„γV4/`A Χπq‹ϊ3ΦpΖ„qǏ™θf2P3ŽGόΈευ+φ$mή`1 _žc cKsζ*Ψ–ήfχc)lt%Ί7έή₯~\Γ/ΞLΏχLδσ­Αx¬—–φτqϊ\ϋd’,² ϊ9m 4 –|Ϋ1.“ |,)·ιUn1#ΥΑa~΅€€Ξͺ*4ΠωhξΤρΏΞβ΅uV1ωG[ττQ9OΫΗΞΉηΊΤb'|άξ2ζ[«ϊNsνVy–έw]+?x³” Ξ{°i."›F “ΣΗ¦lππ5Zς}mXαVύ,Ρ­‹όAz†σ[Ε«oYΞΗ_j±Τ2ω|t]ωHπΓ’εŒE=β£–;J[© 5ΒGga|Ϋ6 |‘nŸΞI”Κ—URc‰rΩΜ‘2"Zάm­Μg­T.Π8™/_[>\¦ή©ίΪήZ~~G΄=2kŽUŽ}M‹ωg%ΙVβZH-€v4Π½«M 1Π-X ΐzΦϋ› 9Bχ!]―μLuOΏ«r Ω‚9ΏΣςφΙΕΤ7%jγ¦@Ξ“θΨΞ :Ά±:-‘2t§ΕEΈQpς1l%ΰΤ™ΚΊρw"Μwϋκ:Ά·‚sO΅ w/χ›?‘―Ύ΅š;ώ–κ—€‘ ‡ΚΏ(?ž©–ίώ€β ΣRΗγtAcVl‹‚ ΞXξη£ΌqοXυΘΗ“υΡΨ–sΒ‘fϋνΎόόWί‹τn ;4οΒ?Xι˜,[™ή2 ^.°³€π D ϊΚ󯳜/εοW»Φ θgωw^mKxάςκٞΨ9+ΗOώ۝š―.χ‰EAažΥφέ@`η?ΛίΈr¬]ƒk―!?2€η5δAdͺρ?Ϋk<ΰωφΙdn<Σ™Θ΄@¦2-iUΦΐσ*kΚLAkY ΰ˜§,³¦ψ[ΑI svs8ΫIΝΞy,ΠƒΡ" Ζ™M@˜ θΚαώ-ωτ€g$ωΫSΆψφηε)’³η:ΦιJ·΄²u ©Πζ^ω˜Ωχ‹έ%Ϊ½³"fˌ4Ϊ0‡SgYΙ_[φχJΝ6kv’-‘‘£zaΎ¨“SΈ•—™˜M[†Ži€Π5u“œ}φ•BίCθδΙ”s‘ΊΒίh+€0OAt4 ³:ΏbrˆŽ~ΞjRt)κσ“lφΎrxˆœΏνόζŸχIΠμ½O­βΩΛ‰9'U)”σφΡ5ο" r# šgΜ²˜€ΞΡ4F疝ݴȗΉΤŽ­D5H(ΐlƒYpηπ†LσXέώ§ˆΆP^οzVη½˜Ό)Uo»κv³Ÿv€XE=E(σ#·8@fΙ½[ώο»c(δ_zŽ( ‹¬όŠΫΕ€"}’γσN<Δ"ϋ \^žΎΥ|ϋ£Ν»φyŽε˜ξTlλ^{ΜZ vζζΦVΐ3u―ώl¦-ΈωΗΒιάΚ:Ÿ<ΠJnm¦TŸqžk:wU°¨ΜZ™"… Ί”W&™lˆsΑ$RΨW ϊx`qξΑ{[p΄ΐΒυ@’ΘΤV#––θ’δXS+°CΑN;XΥh? :©ŸVθύh΅ΟVωΧ,ο£Ο-6_}Sq™˜β΅b<# \• œΐv¬ShyvΡ6₯Gε}S—ͺξΓβωV·y+:ι‹tλ$&ΥωίoYΥΨqJe ϋ‹ΊΌκ_£t“­;Dοd= =1ξ-«~q\’ύ‡U―ͺ~}­H m#=wH`o^W€κΧ-ͺ±Α ι1 oΈΜŽ;σ & ˜€ΏοΥ€¨lΑœudV±UύSο…ƍιΘ’½iQDoχ₯Ϋ5ώ:|Ί€ύΓ°ΕzW³¦~―`ωξ«mΐoφqΐτ4Ψj` R  ¬Η°/zΐ–PP GΔ" @ ±59ΐσc[ι g©‘«­πΚσμΩ™SCŒdΏίG€<p!["αλQΐ΄0˜ΰ½( u—ΒΆΆtτ3›©½œΩΕΆ―’ΞΫgY•3QΚΝ-&°ύ„ͺ2Ηά @f?Λόύz€ZγφΫowμΙΎώμ\`cχέww ™°mθ`ιp|BύγΙ—_r`˜°Ηϊ™U}Ί?Νr4ξŒ[―]κYLΰ96qͺΝW`™γ=@& ZI\…:ro°|¦χ³τ~ƒ=  ›6‡ύv- ΑΖξΛ_‹~λ³’’‘οΐŽθ…ύ° "‡’χIβ<<;ΐŸχΪ‘φΔs]Πέ’ΠΆέ ?c³Ÿ΄αfVϊϊ;Fπ΄Ν&Z fωςVνΚ{cJω­ρN²υfΥvαΠvάΟώi.ΰ™B^{'jχ=RːimZvΥΩΦ₯Σr{b…ͺίΉμΦ,ηύ/ά―Ί •έB`a¨d±T•ΈΛbJaT `mN=Ϊ}‡ΑͺςόNΧψ-Ψw«ΊοŸΞ~ˆwYNJFœ/―$ΰݰύ‘Ο‡¨Π…^˜ηπeΑ+ο:°©χŽwΕλ&Ψ;z‘#ΌΠΗΩˆΗ?΅˜FάζΎ£ύϋχ·'žx"₯7X.Ώ1Ξόΰ/:@σX€^χhΩƒ'NœθXNύ=€Ώ£œΓΉαw”χPκ…$›QXP§mΕ>ιοVφpωŽ~dΌ#zέ<£—›j'ΚΗ·Υ«W .£`Ή¦nθ ξ+,ιu"Υ2sxσΜ·aK Χ]zι₯—:`.Ί—Ύΐ~τ(Μ™Τ5,ιγ ϋ(€ZsΫι„.›[퀍¬oΏ-2νx7\―°~…]’:ϊzN;ο1kad•ΐΫͺˆ€pHd€2^Ho'Ϋ¦έΕ‡ΩŒόšΖΗΖ bHβE}€ΜΑ‚EJ]»ΨJ¦L³vϋ ΆS/ΏΔ½nq’Ψ«+Ο»Κ~[ς¦GtΈς/(kίέμυΞ­Sγάwzξy°.ώΡ»T~ν=Z,,ϋMR·™μΆσOqvΫΠΜ?ΝͺE%|bΩSfXφ¬ΩΙ1=\ΌήλΊξέ¬ Ώ$Z~‘DΓGόβοΌ?ήΦφ PΨ†π.‘‡Όν†ξΔφjΜBŸΐXά\}ƒo}θΛD&` ^DβΗ€•ιt ’nίΉυ³[:n₯λp_>γYF|›²ΐfΨ°aNgyi§~λ1Ζ!Vφ oΈό«΄Ο& €₯½Ση*―…νέG΅˜ΣCιναΗξ;‚ˆΥwΩνΩ@%§ί—Iጟ•Ί‚J!VCΐ8Πƒ˜,…ˆ‚½(ώG@Φ„Ο§'IΛW‡‘α ͺWΟ±PŠθ}ς–ϋχ³΅#O >š,.,hDπcΙ»΄σ ψΪΛ&cπn«t,½ΘΐΌ6x.@™ιωšιM坹Ρ|ζu±½φΨτUŸYήPš5_xΑvΤG«=ρŠ˜/bp- E˜Yιβx€ΐ΅‚PΎφ]x+‚±›Τg*Q؁‚γU"—H飄+qoΐόP)OμlnΝ“²‘/ ‘(žkrΏ^b΄o£φΡ/ vώ©ΤS°σ0LθΘHΦ_΄ο‡%q‰[.έ}°™{ΖrΩϊβWjπΑ¨WEjίp’δ?φ._<|)7VH ϊ$#ΈʁPQƒ DA½0’ @γ œαΎχb±o/PEΰΟ­+iοΨ9ΑD 1 ώN£Š²λΊžRτγ,qΝ]m δΤ„Bτb²ρΌρξέUHΚ… °ηΦ‘ΰζ"ρ­€C`ž†GnuqΤ―&‚εΪ@8±7FτΌΎVM D^θx=sb‹―USI=³«ΈŸ- ƒΚΟ©CϊαΉΎψ3ϊ[ ωΗšωάH?M₯yϊLͺŒσފeά·[·n2uκT₯*l…ΨΈ?οMN, άΛϊM°ι“O>‰ϋ­U«–Μœ9³œί°ΒΧ<>} ˜υ=ΙeθyπωTƒs:ο<«Β%ύ:!- šEί£όΥκ{”ͺ”TΪ'ΐΗΪZ}Λτ­“(致B<ΫήίZι“ϋjU}^£ŠΚ‰@:!k«/γΔλŠNL—ΚΫτOO‘6U“€o—Jζ9νeϋŒίĜΊXύ6ω¬#%ύ₯3TΙ yΖjy *2ž»Ήγ!υ³«bΥ…Mb―WW>ώς Υ&\Φ­»Έ‡=ˆΟ1Θoκ#wΙύοΏ«ΖYζ^|YΚnΕͺ1Εeb[Ύœ J‰θ'ψŠx;΄–l(,šΥ«`‚pU<χdW”rΫ+<‡iNF¬η]ψ`ά―Αjπ]χA{Ά"aϋ§ΠFμ W‰ύ Άε }&ΖQ|x.ΟμtŒ˜Ν›„ڝr;Ł~LOΰ―bωΊh •;¬~A-:­=ω›]»ͺ>σΕ_¬ό2ο9φ ΅ρ>Άͺήkؚ~fwώΖzςžd:4¦σΉ |ΐΚΆ[Οτw„Ž©ΨΞΆ’ΟΎΪ7κΎh¬6–yΥίk_Η‰9<Αo¦υΣO? ›i,o–'ΣιgnΧiθώ.ϋŸΌ^±ϊ»lKΩw·£M¨šΖŸοΆœ’―q<υ…}{NΎαυηYουΧ_/Χχξ8Yqb2ΫKΔ¨‘.^Dάzμ›‘ΎΘΌyσρȐ"«–O‰<°νg;Οsγj\}Ζϊ\ N/ΌVl§Yφœ”Ι^hΊΈ½Ψ\ VPΪ”TΟόžm\wgμΐ ™έŽ”ί[₯”냡؋I‡‘gva §JšZ%JͺΰΪUK—jψlΥ± bΨVΨ“*ΐ3n]΅ΚΜ―‹(sό}―£Ο{*«=~>Ί‰Έ΅±zƒΎDμ\Υ. L€Lrͺ)q7#f#˜ΜˆYr‘]€?L―_Ό ΧJώ€!±R;ΆKR V Γύ― ρ(Ζ©ZnϊM ΰΏY‚ ͺY‚v‡γΠθη3Σ%‘““Αi¨§Ά4»$Ή %eυ I*Ψͺ&ϋ#š•ΙœbƒΪ±JΌŒ9E›Υ'ΓqIπΘ6<³Ϊ―¦Ρ»ΖχΙΏj«ΈX*ωΈΟΜ<ΔUΡOαdo*@Ϋꀋ­^`oΐυˆΉ&-Aœ “T HΚΒƒvΥ€(ΒΘͺΕi›h8Νο°m’r2¬Τζπ—"Λψ€²Cc•k(Qσ.ά0ÌλΪ 0&‚›Žc+Κ±:ŸΙ:T±ό΄m;βF„Γτσ9ρ¬bfgˆmρRρNωZl ¬F6Ϋ6—ŒΎ7ΐ`β„ΆuΔϋΔ Ξ€ΰΜΕηΤ{ϋ„βˆ˜π^φT‘Γ+GςΪ8‘C(V­Δ7ά†ΥArΥoΥ V—r?ΖτΠΧ„ω°"QϊύH/#ΤȎ)†•pŸΠά'uΜ³OΓΆ‘ΘΊγ<\Wœ'rξiκ{λΛ¬H—ϊΦ§jB—@!ΫΧΆ©$xXς?˜΄vΖρKΧD”¨ƒθΫ†ΫΧl@\Β.άsΙCράLQœƒΨΐσA|ρY?$J <@—1<@#‘•D $J Q‰8€J <R—3q2•,λ`0ϊτΣO«AΓ οpi`{pg ΎjΥͺjιE­LǁJ*4ˆ»tι’”—Ν%Χ­Οj§Ώω <3Ή Άω I.₯»€Ζƒ—Š£α~œω xlΓ£DmTgΓwϊυ‘2ψ›§wpόJ%BE;,VόΫ"₯ήlδΖΜ»RF€*pAa*7› λ‰Τ©₯‚b1p(lDπΥDωpv,ZΕƒυεΐ<žb*ΏΎ–%³s{@ΞΝ+­Π΅OŠ a™ό­Έlt-Z9ao$YΆ=Η΄UΛιI»Π OδΛ½ύcρr)ώxŠ8[ͺ‚Ρ*•½mY^t–˜MΖN ³γ“ΙbΜ[ω>°x•˜‘ΠΖs[< ³ ;Bΰ'tξGΐΪρΜ#8ε8”z7V¬…·ˆm+ΈhXΦΠvΩ™b>yθ3^mXnΟˆˆRo v5IϊίΛbή–΅λ2@Α9ΏΗ@‰λ¬Σ β{Ž˜ —Š{Δ(D’ύbB $υ‘ΫΌΕ}a1ςΝ²qΘ°TF0¨W—ΚΞ‡μΜS<؁gžƒ{ΪRΩϊΚΧόSlMjHΞ΅'Jώ· ˆ θJϞκPJΆ%;U{—‘€c §`‰j¦Γ7μP ίoTޱQQˆΛνbPΑΥf‘UΪ|1–,‡ΪσKbΓ€šϋθΆ’vβqβ3^ .Ёχ‰%γκK₯pάG’ςΝtq¬‡"QQ–Ψ¬*¨6WnίΤCΡ°ΜgRΣZb―†A €λί°Eό)Yβ©™#—{οΨF2{]Z.’ΐφχ³₯τ_„–(εοqL€ŒžΨp‘ΝtYςΡ$q.Y’Π±φ•ΤI²Ξ;#Κ³Žm›³P6Άl$Σ65βG)©ž-Ω睑n8@ΖeŒ Ι"μ맚βΜ9Rφνt±SΙb(Ώ€|6;).@αΦίF/]MπJΙTΦ₯  r%Ώ γΔ£8½C'ρ…~κQ™ƒΟTm*Pυι?ϊUU<—οΎύ°ίji˜}>φιR°ͺ Χx­»4Ω>ςΘ#ςΚ+―¨ΎžΞί <φΨcε@λχμojElέ§$€@„Ζ~'! B)TΕΣΖmT2γ9lΩ²%t̝+&ε&̜.W]u•ήu—wζ§οCJs΅€π ͺd(hιΠξ»ο>Ψδ%@H0`€:Β=,;½ΜΊϊ2κ…ηρ ”; ™0Ÿ0αv^σαΓ‡GύBθΡ«W/•6 ­}νXμCЈ\;δεΕzF…@•ώ¨Λ}Έδ7€&ϋηζς?Ε€JVώβeRΊ:O–Ξ(’΄ΒνβΐΕ95XHPΌΥpΜ T9ˆΐΔ‡ΜfΈ/©€Δh++ <3ιΕ+ φ¬K‘`Ly SZ·ΨΩv[_αί³ζ‹ϋω±ͺο €;zb2ցb&&‡xFγΉΧ3Υρ΄Gξ@ώͺˆό±LΌCGͺ|»O†μv’”)&Β™PIM!Ό ’±ήιI œθΚΊj}–‹c•ƒ,'Γ{BƒDτSΪgqήο#FŒP@?λϊΟ{`oΌχh₯ό&­h ™Ύ^OlΠ>ˆ>ŠjƜΠAc}ηύΙ~ !-ΗέϊΧπ=ΚΆEŸ3a=–απn΄#΄FpOCxό^«~κΌBγύΟc[g¦——·K9Υ­[Wέχ±|Ο-nΏΓ|±lY6τSlxήλΧ―W׌yb>©ΚsαΉjγug­ώεΚΊ`ݏyЧœζτ‹8‘^8yΑlu{ς―zΣΰƒφΨFάvιΥ²΅οhuŸ:³ ©3²τ<(6~_ΊfνZiΪ΄iœ―¨Ξ³ ¬`(}2!vέ`Ωθ:ΛϋaΣ¦MBΏ}Ά—°’•]iŒwœ™]SόOΌΰρ–/@£`ύš€ž“Τ>ε^Pθ»Ωη b%Žή³š4Β3€ψJ“  ޽7ΐ³:ΞΒ%β~eΔIΌ˜Π‘|χυ"α‰Ÿες‘ψ°οKχW~)˜υ‹†„τ4Έ¦†ϋ•‡έρh1[6έ΅Ο­χρNΓΎ γ~ΌΏxΏFΧqΦ]=ωƒ“*}™|eό οφ‘‡™πfmsx\ϊή4 ‘j_R‘Ώ‰•ώžΗΫέsΣ«l»emx ž?γ¦μ·fbba_ξgmC+Rxg™¨ΓgΆ9ΑE?«Lš4IΊwοŽΓ ‰ΦΆ”«p’ϋ†Φ6‚ύTϊ'ίb¬*υΔD<£θƒ―iόΖΝrη=wEž½¬ΟO{S_X·6 Εz’―!ˈΧΛz]θ» Μ}ΩΉςδ³dmΏ·3sJέ§g­μrm Ϋ¨ό’L™9ύύ=ϊ|NŠΎfΌξ4+ψ+ŸρΦνoΎόJ6 B|z `ΐB<Σ„ŸuΤAb½€9Υ„}pn†–ͺ©R½i}₯K…hΡ‡ πΜΣΗ­ >α–•k’Τ„ΘΗp`˜X³Άα9H0I–“€άΌκΑœΨΛΰ ύ΅«+Έ9 1J}tƒp3ΆΠ†˜ŠΉt•ΜEsΥz±―˜ΚB¦ξ5‹Πvγ}&ΞΕ†Ιωœ„μX ŒŸp ΕΘLQ*Ί©:ˆ―Fm ”$oΡ*‘ ωΈ1wΕs·+|a―šΠΟ~ ο€g€„6ā€l.τ!“™Ε{2'€Z Ύ1ΨΉƒΞ>“ηχνxoΙFΩςΕ<ΔZ1Yš@3Œ“NνE’μΟ“dΙg)βa˜ΐΜΚP‚ΆB¬@†Bƒ΄πΧ?L’Ο…ψFKˆ`@Y:0{’'ތ}ϋŒUΐ²ΕΣΈ‘ΨκW‡’3Ξ{γv±αΏ± @ΉΠ7 im;`Ί& qΒΰŒυΩ!R V: ϋ‚Œ[q2σκXπ>\7Υ8 ΖM‚ιπ hγM—CυΐΎυEoC|š@΄γ ΩθλΩb₯›9Ώβ;dΨfH1f£ΈHhέDsI»ϋ–ςc?/Οσ£Π―@}Αυt]rΆ˜ΰϊ„}"'`• G,b¬;ΎΧ’˜,ξ§^UυΐΔy&χΓ³ΝΡmτ™GήσίxO’ΏόQ’06b’ΌΝκ‰kψRψρβœφ‹ΪΟuτ€ωKqξ›ΓŸλβ+OqEœc ~mIp#–€jIχ`ύ#<¬W.‘οC₯* <*'ž8D $J Q‰H”@’ώ;%ž;Χ:q¦±K€ƒ™„–Τ­Θ΄: =­Λ3r=z¨%˜¦q”ƒΈ999E}±^bΟL6XP*›Ώ‡εΩ2bζx΅»Οg»†ϋΰˆ$plγc‰ωΫ_j£]}©=ΰXͺΰεfͺ|XSΚΝPεt@Τ­P¬Ο 0?Ÿυ7CΉΩΔ2g †C€ξ7ˆ I1<ϋ’•ε”‹yξ Xϊ‘\Φιh1ΪΆώo™9u6‚·Ÿ`ΉΊίΛ)™˜€}G΄”δžˆyrη}“=B?ώ"eΏ;‚ΕΪψMΖου„ŠΆϊKύώw@ηζM%p!‚΅XӌΏ€B%ΝΔ52t€99EΜ.s‚ΎQf .Αχ&#Β†6kf‹ρΙkb#°6χwˆsΖ―H *κΈν‚"Ο<ϊφ§y‡”Mΐνϋ?α·&Ύž1ƒ’T ΄‘6 Π T«)Ψy(`gΝ ©u‡vΖΔ‘b‡πΜkQ2qΎμ?C][‹Z’sΝ ’7ψ-άSΩ ¬μRπ°!ΩΎΏB?š1πΐΐ=ΝΘ€ Z fu¨FAΑΚB¨KΞΛΟ-§bb’Iι‹£$y.0`TΫIΊύ)ž:C’‘”ΞAΤ ‚]ύn‚2L¦”½0 ΰ―‘&Θe+νHb€Ι‹ΑlΙη_¨^.qΆ¬ƒA* Β@ΕΏe‡x3ͺŠΏj 5xε9ξHΙΎκόš*‘ιs€tΒη!@[ε'\Vύ δώ-b7KΡ‡ŸIςΟ vBπ*λΨN2/ΑrœpΒF¨ΚͺφϋοwήyͺΟ6qέΏΆΚ_uͺIs€Ν<2ŽΗ©¦–'›τVΫ™†6φυxΎoΎω¦ή€'4 p‡ΒΒB₯ΝΏc”άm<7*ΩΐΤ¦‘CBZ₯OΧ§O›QNχyϊͺλ₯tΘ3’rk/™TΊCε› n„φ’Ο…ΩΩπω¨?«W―VͺΜzΒ+„IΡiΐ„ίQΑ377W]O–‰Υψ›ΖG@6~ΗΙ…wήy§Ί†^b];‚ςTδͺ*4}νXΆ›7oŽ€#κΛ¨ͺšžzκ©‘λ@θψ±η}`Υ01ϋH»κ‘‡’βΆ<±mή₯) Ψb {wφ΅α‘K&OŒ”TΩ<ϋg€θηα:μΙΦ «<ψi„εm¨›"}opΘ±G[…χ”Ύ7 ά=ΑUL:d"…P±eΒEIμί]09 τρW•r2Σƒ·)Ώhΐ7yFŽQΗ.ΎτL©ΝύΘ³JŒƒΔ)b“e’ΛώΝδžS'D¦ίXPο;B™W^ye…`\τQx/i¨˜ίτ4h΅ψ™~”p·ΣgqΒο£=έ£Φ4™ŽΆŠό•D ˜Φ«κΛqr'£―ζΉS…’J™4ΒͺŸ©¬΅‚έΜ#ېθvεέwίUΗβΎ,+ΠΗI=τΝ|ގ₯πΜΌΡ?°-Œ·œxŒΚϊ ‡F°Ϊ—_~Ϊ~e»ΙΌZ'¨θx φ<λ}ωΎ»rΊ¨c1κ׈€gύ]Eώ•*ε €Gκ MEπ–>ήƒΥͺΘΣ¦Θ΄5ΚΓ·ά&χŽxςm"/₯C Θ₯ΰqΏ”u’TαŠ ϋgKύqγΟ5’ “V­LΌdΧΗPΚΧ ΠΒ4’Š,Φύ]oχΤ6XӌΏaUί§±ϊψτΝΌ¨PL‹‘Ζ“Ώh°v—gŠπŽ<k³»vK§­ίιŸΩ›:uͺPΕ™χΉ^ye?œ+ΒΠθC9};žλƍU_^·\ύ„_θ[φτ¬²t)”AΓjγmK)fQ:}‰lyώc3’%gΰy’Ω²Ύš¬‘'›ZΛ)žςŽ/\ν>”λ2Ώ\ε*Φ¬„ΎωLΓ~:ϋ"Χu»@Φή;«ω](Ik*¨άΪα3Kffδωvy“G΄UδσŸ}φΩHYι}yΝχ”TNΔΆηΓ‘Ι5λΕά\ς; JLκVub$Ζ‰θL ΤΛ‘¬Ά‡‹¨Ψ5b΄αgθ?906αS%7Ψ ΆdΰΉ©δ―υXun-b%ω €6K§E`Κ›VUά™5Δ›…±›άšbk•#5»΄‘€ˆΧόΊHJ>F\ CΨ+PXχ{ΡΎ$₯Šίet1€ Œ!/Γ‰?X53ŞΪρnbk\_„bόφοl6!αωψG)‡‰Ώ+Ά‰‰˜*d¬qLΔkSlβrΊ%χ’=; q3(X£­t]~Ύ˜Η£ϊ6‚gα’7ΗIς/ ΰ#μMΞ’‚΄†β+4%©ΰtΑvqz Ε–ŽgΰlΔi9QΐdΧ4ΔmL(6«Κ ΈΪ„ς³9{xΏϊ}5€ηH/€•¨|X]‰ρ;)vCέψOqRgΌ‡Δ$c₯ m)'ΙΔ΄Rψ ˜ Ÿι―W ± 1ΕτQΧ -Σ0φΜH ‰πX°Š'Ε αλdœ;&Q$ύ΅ΏΫŒD€Ύc›ηψc$γά ˆ P†6~[$~δoo'χΏQlP§φL˜¨Ϊ‹ ©SΎS„bVC{Vτδk™KΒ*κujˆkH)όbͺhΨ™0s/‘Xδ d£ΐsΎmΣV`σήLΎν*(J –ž…«˜8‡ƒΉΐσΑ|υyO”@’%(D $J HΟqSb§CΌΌ6l˜R΅³ž*ͺ€΄ΠA[Ήyߜ{ξΉJiΒΊ?•C£P……ΟΎΆŠ€gu,ίΆiθϋb.C°ηSυζΣΕΥe?ΞG°qγˆOŜ³:tš‡Χ–:/}φυΉοχτ δi€J1W¬‘"7λ6B…`G‘w=4d9Υ‘„PG2Ϊ’Œ ‚ κ»žΙήm‘b“Σ'ήmaEkbA¨5x›7’¬ ΦΩ’Q\PυχϋτoόKί/N(8Ψ1X Ά―EI¦’Γ9]δ¨Ώϋ[οδ '@9zφ<ew*uϊ‘’’z^ΘόΆ«ψX?"Ζ\™Γ·’3Aη Ξσπ‘_rPψŽG ψΨ^ς %·˜ΫJΔ“Q ƒ I’ε]ΕΤE$s)L f|6qmP³€™PUbπΓΆ)΄4₯\κ}·–S`10¨ε}α L¨ tΈα[O9AΛJ+Ήρ;*Ήυοί_ΑT 6δ&α„6ζ™ωΥύLCΟώ“U’gώ†ηJ…§bŸW•š’uŸ‘ΫXΞVŒεΖ|Wd,7^ ͺI;6²ΫΫoΏ­@KͺΡTοέ»·ͺΜ?!jφYi„ θ6£Qa΅έζεΦ–NκκΎ šΓ6ΑκΥΤs²±½PΕνT½¨Υd@η°ρ>±CΘΖ@<…Fα“αiŒ „6TΗψ†QPϊ˜ υoΐΗL|cΉ8ΉΧxc”]*žΙ“HΝwNΦUNΚΓ³‡€α»ΜTq^w©±T’£ΦfN5q.\,Ά‚ˆB`ΥΗNmρw‘Χ1πœOΨΩ}ζI’}ΝEκx‡ΒKx>bβζHΟσΥKδ=Q‰H”@’%(ΈJ <ΗUL‰ώ%ΐPPY„ͺHn€I…gΞ`7=K0°–P‹‚ά€Ξ:»ž±•S7=ϋ©ΘΟͺŸ]ZJΞ-‘AjΖΎ~ίψΒd1\JŠ#΅] 5Kz_p_€‡Pb*7!HΜ€— Δ1xm$Cp37.Fγϊ!U?USFΥ„_—Hρ,Ž…«₯ό, ‚~œ3 Θi πKεύ›fΰš–Όώ8g@uz ΰmΈΟ½Έ†ΞσΊ‹q Λuν3X]ςΙη’„eά1ΒJ–q”Gζ…‘+‘Ԏ«χ!θΜ<6ž†*sΈ6Q9°οx}„­j΄‘\‚ΎΊKΜo*3xΝ:_§Ί8&Βr‹5τb{z”ψ_L1ΔΦ™˜οTΰ΄e’Ηž‡rΚ΅Ώη„’qΫ΅ n-ώŠ$ύΎBmχ΅m&X–ΟˆΊ;oυg7ΐ 4Φ~Ω!;³%ΰ™η³ώω)œ΅ŠŠqL}©sερ²γ‘715¨){°τeK™ώ β΄sPυ έzΰ)X=K’ςqb0“ΎFΉ’„)—'O§‡ΤƒWeO½ˆ}Bυ)ˆη7Jα΄™’ςέ uίQΡΕyCO‘vm€h @»©³oΓΐCώ²%©NM nΤΌ>€ Μ€2MM¨΄4ΓΰGK ΰη-φˆ·Zm ςzΐ †ηδ’uιYXΒŸis—b€ΟΆ%a δΦ•΄ΛΞ.Ώμ$}TΟέOΖΎλυBH2εͺ‹eΤ‡΄κW90`ρr)†:|•sΊΛέoŽ Ίψ+Δδ9z Tς˜πGv(δτρΉΘo?zϊ9)Ήq₯fŸqΦi²½FvD퓐a<ͺΡ¨Z9pΰΐˆ )α΄υλΛΤγΰ½£Χu²γց’zv7ωLŠ8Ηs!ΜJ(—ΰ4ϋVδjΥͺE–Άη1ΨΟ²―jp*vAψΠ‚’TœΗRηšU ΨS~7Τ’}€β³L‹‰Ϊ¨Vf%˜~΄ €Bπ`*j‚³y™WμΣQU•@.•β”1€ωu~Oδ=όπΓςHί~RΠ{€bνΝ‹ΰmJ}ε’Έ«―eςϝͺΤ‘οcrΦΌ2 ‚ηΪΪ·o―”€™7ζ•Ζre“i–$€¨Α'„†‘n¦GB+΅"!$ήͺQc11ΪnΓͺ ο$Χ3.>άKΑ6-TΊ™.ά–₯jYζ²Ή »†ΰ¨Ϊ§gΒk‘u~™§ωσηK‡Tώ5ΐΘΎtΌΧް<λδγ? `MΕ?ž7ΛΓ ΠS!oΜ[Λ5w` ZάYAtORD„‰κΆ/½τ’J'ή—v-—ω‹IΚbυ₯½Υ d¬ί0ΉΙ‡ΑΥ¬6„ λaBάaj·’BΟnΩΈ%ΤG>»›SΎ#·•1τΕΚ «‰I(;WΏλΔhί¦2)μί}!=U«?B>ΪΧͺ‰dΜ.ΫΊύx@IDAT~κ μ.QƒΙGˆQ£š?τ΄€f†Κ.ι!U.ΪΏΟ+ρœ8λύ azN"ΰ=ΑgBmρ€Nz_ύN?Θτzφμ©ήυvϊPͺ/ς>ζ¦}ΆncPYΏ­“ xR Ηλ7xŽ„tυ$ Ÿθw ;ό‹χΟ”βq >Sω“Ζ{”“8ίuΧ]ʏnΛΚΚRεAŸF(ŽeGίB(šώ„ωΡ°œφe»+§[o½΅R~ƒ“-¬Χœy₯βυ‘Qў~‡ωΎ/ŽŒUOθ3Y™*'€ΉAΐ±Κ‰eeυ―,GϊZ,ΪΌΟ7-rΔ‡l§'%KُK$ι€jcήrΩT7SχάΐΊs#ڈnPπŸjiΩ`Ύ8aΕΪ6²d½ΆΒŽlCΉβλeEε’nya9ρw¬[·D†η}Gc{ί¦N=΅"Œε'‘?{©¬ΥΌ…Μ[ΊDhΧIϊΧi²ΛΟύ˜΄βkš+Yν11΅eSlŒg}\Γ‚—ίΧsΤού‡Υ’τA}΄€ο’^bΓΏPlπ©ϊΌt…”ΜY Ix.΅N>Φ9 δ„θG‰“%?CŸ…χ—šτC™œutw“atΊτ>ψ`άύφcΦR•— 8(ϋZύ:»;•Ǎεo’}’5ύϊυ‹<πψΦγιύβm·τώϊώβ‚ .PΠb)Vs?ΆgŒ·²h@’ΣΠοڏ0ΦͺW&ˆηY…yt[Ϊ¦M›H_1Ί-½‘ϋ…²ξ΅/€Ξΰ/tΟΣ_Η<Η[_¬ΐsΉg½πΙςzY― ΫgΟ‘ΎΘω—Š/%$*ΑΠΞ7Σqέύ‘‰¦ΊœθΩvΕϋ\έ^ο©UΆnΗjKυ΅εκ;ƒ γzoΦ°±,[΅RνϋǐwΔUμ“ ΡόOXzOΖIτX=Œ@4ί«ΰ™ Ρ„’ν΅³χτλύφ=fεΎΗόRZf`Ξ€O†έ 1΄ΫCP¨~ ₯Ψ‚_‘‹ΏνPnnΨQn¦Z-•›ϋΐIς€ώp¬Ήl΅r΅―Z/vN†§_² Vυ 4:L2Žj-‚‰ηO iΙ³%ιΟ΅;c±ψWΖα„σŒ.Eπ^Ύ€±&Ί'Mχ„Cœ{΅Z­Πξ){ΐ+G’]˜τž…z“ζΔΚsˆYžρ™­h8¬žψΫ΅‡jtMΙ[‚Ψθ¬D±©@Ε9ΉL£J9λ!ώWmΥHμυͺ)zγ*˜ [Θ9uΚwb¬ίˆύBφΉqΌ“ @j{AΎμxŽ/°£"Ύ¬jPWΞTΩ0KJυKϊŽ?%Ω†y!DΰθΤQ JU —Υˆ§ΉrκΛφυ₯β/΄τkkα^:Ά‘ΤξΨXJί~?ηΡ_tŸΠ^2{]†˜ΚrΫ)ŊlI‹CϊΌ>k/σΈφΦΓ(°½δΕΡβϊyΎΪΞύœwέqf"ίΟΟ[EΪwΦωT(I€τ΄²2Ε|βA1Ξ8YoΪωώύObφΎJ!hB’ ώvυͺΘ>Œˆηό›™"`£ϊ…£ί΅Pb žα#ΕΘ‡’Fhœ·υAΐΪΐ†Eƒ φΘe'aΙηvγJΐ Qζ_³M6=ςQv=μ5΅Ϋ!ρρPžyQΦ?ω™η­SΧ'»ϋ’~V[Ωρΰh¨%cωq@ΟN@ΟPGNχo–dAαΰP¨Βυ^70`‰Ο.Lš(L¬lXŸ ˆ"]+wύmΣfŠwτΈΠ>πEIP6s„x^%φυ›ΤΎTIγ usPe9–Aί‚ 9ΦQκnή•[$Έ~#¬ώg’ώ'5μΑ&N 2 ΞRζΑ`H•š°p(UrO·Ξσzμ,ϋ}™,’ψΗƒ1θ’rΙ™bt:²œ_4° f –Αt.\ˆΓ1ϊYιt‰jP{€I Ζ΅ͺ»°Ο€ΑC\%έ—ϋή#₯χ?ͺͺ²dυ*ωΰƒΤ*ψ' Υ₯Kb3mB1έ"ˆΗψ;xε tΤ‰όοΔ€κ:±Aν'ύΕ!rω]w*Ub–Συ9 1ωε0XU_²/>K&.ϋC4Z٘juVPLηƒ ‹yLΛp̘1£Gu]’!<^#–+Λ˚·³¬5j¬―Έβ 9ζ˜cΤ΅ό裏δΌσΞ ΑrπΫ\έ"χΟ5¨_Ÿ ©Lρ¬” |Κθu1IΑ!τ&) κϋQΏ«a΅‚±ί}­r}­5πΜΟΛ—/WžΎ–<Φ'ž£Vlea=ΨΣ΅£- BV%X¦M#hCXNw ],·L’ŒtΏ ,U³w˜tŸ;wnθ‡qΎˈ#Ώiό |‰`P½`>”œ0κ@_ΣΖv0Κ8°Ι>•Η\-[Ιs_Χ”ΉΫς‰!Η΄υH[S+Η!ΐ/•>τLH!Χ?ω–+EΊώ?€,χ%ωλ™*Gτ‡©χί$₯#^.νΔκ)O?,&Ϊ…βAΟ©ItάΡέ΅³dίxΕΏzVŸΓΙ ό―‘RfŒ`•ΑYyβ碊Œ>nΚ”) Υϋ°ξRe9''G₯­ο]λύQξ υ»W―^‘{TΓD{γ7˜ΦτιΣ•jpQQ‘€§§+_I¨μτΣOW~Γͺο=zωε—+…y*ύ³B τUόl½GyίdϋΡΏVθΛΒ 0―Υ΅/#ΠΗU βυΜ―\NβD«γ5ε€Bu4ϊ2ΧΦ}bˆΜ—ή‡0!}ˆ΅œ|ί-ΒW'*¨‘ΖΘ;dμď"ΎŒyŠφ―ΡυΞZ η<3SۊΔΡ ΊdήU-눁~Pα££Ε»`‡dΟ~Nš΄ά9‡u«²m£υΌYυοcέ;,+φmΈΟΏAƒ;ϋhG}“ΏιuAΉ>G4Η4΄˜«¬q"Ξ¬Y³Τ}}ίΝ·Šωϋ)ϊyžςAφ0 Iν¨Ώ^mρ5Mhτ)!½ωZ¦ΟχΛγ°’–5ΰV1Π%μ,τq N"œ3_Πz₯S[ύΓd]Ÿ^¨Ÿ/蟡oζ~Όwυdϊ–K/€j™ £Σ’γw•ρ7\„ύΒΌμ›XΛώάκΥ«#}o«_Φnjεo¬ΎWοΗwn·‚΅±€ηΚ΄[Φ΄™­Ον±V<Ρϋs_ž•λιΫXΎτ΅œL²nέ:΅ϊΫXΒΑœpΑgZ<Ο*ΡmΣΤ“ο˜Ζ.mιΔGIV΄QΪθ―+ž­Χ„ύϊxκ σ ύcΜg=\ύΌΓg½Χ^~Eξθw§jιOζ²Œ`βά1G€J–sR€/Βrβu£Εϋ\ν_ω»έΑυ{S·+ͺ‡œDΛ>HeŒ`Ύ^}hVˆ²¦mBι•ν'4o[Ž y˜xM:ω^βέ㑌L¨άb=•’ (ES-ΊZ“zPˆΔ (ΪHlΈŸlεCz7V’:>g­άΪe›ώΆpσF¨ΚV·¦Z1aΚ@½Z’uD+L°DDΈΩR—χS–χM²C‘Ϊl.[%Ε s _ψa΄QQΩ_·†ψ&YG·£YC\'»λ pύνtIΒσž*ΏV V―*ή6Ν%«λ‰b6ɍY&&ΔMώR\XEŒΐ©­ΈDμΫΆcU¨%CΉ DŒΕKXΝX§o$£ίŸαgUσ–zaΆ…ͺωέ$Ψͺ…ή΅ά{`k‘ώΪ.ώ΅ΈΎŒ«nΜs žΓq¨r;γƒiΞW tl©ΦΊ±‚ νPˆΖRRςό›βš‘Œœ,Ά!–-ΎΦM‘Zμ熍Xιω‡qŒΓuΤ•±BšoΩfΩς~7m‘ΨΦBχ ΊΓb―ΰ> ρ0O~ηssτΣO9V€}k1 >¬Ν·+a}†xςΒΏΔ†I‰©[VB!p0ΐpχ’ϋ§ί|΅˜Ρ@°@rΚ—ΣBP0ΞΟέωhΙθέ³|Љ―\-ή§^Βͺ‚ωκP>@Ξ)χά uιb)}n΄zžδŒK'_~δJκ€oBc<Έ/T<š}7mŒλ}τΉxώχΉ:/*>»ϊ\'὇ȒεβyςUQ›¨s\Hπό^:δyLr°ŽβH:σ4±ΨQΣAΖ2‘Dmβ½uΠωνl|FΉ±β„ED|υκB°‘ «ΨνmΓ9S(‚mv¬ uo~†ψagͺM›ig©½3_ρό…kOš©4mΊkE0ß³YώapZ½c»A Pό-Ώηϋ~²𼟠6‘l’β,πgA%vK”@’%(D $Jΰΰ-π|π^»DΞ{%/πΜ’ρΞY);žˆν(Τt9/5φ“•}ΉPςήΔ`% K΄ΥrΉϋρx‘E½2 ؍K›,ψ]ΫΒrdΐΝ&₯> f¦C…p³4ͺεΊ‹Ζ²Ό•?}Ά8‘°j”’q–²PεUΝτΞLjΥG₯Π`ωώ_ωΛ Λ‡Ÿ‹ΐq”§­yΤ¨"φΣNΉό<1xmχ₯a`Όΰ’λ§!E†pΪ.ΕυhZΥ,*2cέz±}I1dA0νIίΜKΪ Εh„9¨rLΫΰyρβΕ²vΡωsΣ©‚tŽ?ι€r€ηW\9’Α1Β`΅k‡|F%W_}΅ψ ₯ΩσρJ €­G.%€Τ¨!i (˜έυ%eΎ*rZސZC¨Ίx&Eπ…Ώ£qž Χ€Nηζ{ξ–Ρ£G«r"π\6ζC΅?aθnΧ^£T3 έ½ϋκλβt¦_-j<ΌV^x‘‚)ωCκS±š`˜ΈδwάΖIΈl8Α *ΗYΫ<$«W€.ΗtΫ(U>,7ύΤXσ €aυšlΖρ£Ύjs΄Χυ‡€σb”νl@vgžyfDέΣ ψρwV`ˆΧšΐ α ͺχΥ‡zx΄b'Α8λ΅γ>8Š₯ΎΛϊτΚ+―(H…yϊ°ΐS/r_Χ>ιΚ9ηœsvΟΊ0¬ο\κu΄`ώoJ Š ΄­r|£›Y΅5M–κΛ†΄zβl^[zήέDœυkZφΪύŸ$,l_³Aν˜Leω ΚΧƒέ§°Ώ5?ϋF<γ')ΏΚI/iw]'₯―ΎΕύ¨U]Rž|@ωτ’'‘=‘ʐχ˜Φ’yύεόΨώΟιΞ#π>€ΚμO<‘ξ λ=ψ½†’»ξ:yύυΧwΉ?υΎΌO B±ΞX'©¬NH”ΰŽuˆ βΎρά£Μ―ί`ΊH£oη$ζΡjTά?γŒ3¬LIε`‚Ή±ξQΆMŒ#YοQϊIžύοNT±ž'Οcœ{ξΉ?A₯x*VΗcœp@£'ήΔ*'ϊ*‡j_Ά‹Rf”jw΄ί \άΏεΟzθ!ΗZP …mήΌ9&D·[<žηΔ‰ΥD^w¦iυ‡LΓZNj4νŒ έ+­HΞΰλ„p΅œΨYύ+λ’Υ¬ώUΟ>—ό΄f±$‘tΤ±KGΌ$ΖΜ%RΆύ/,͞5ύiΧΉc€Έ'@U¦m<+>πΈ¬Gl»tι’²λΊ°LXg #²ξάTΐθԟ₯ $₯yR:œEυ‡Ψηˆς¬η»7ŸuΦYςύχί«kj]EA₯EߍεΖ‹~š 1Aœα^σ$σ7m(YŽύ.A΅τΡ—•WΠΝ׈ΡΡΟ”K ρα€)@rVŠ!νTeÐmφ•FqMa3gΞ”Φ¨—ξT/;…˜GKY …LνwbAΗϊά¬χa<ύϊ‚ŸΦ{έzoσΎΡ“lΨWηύν·cωk:o|ηφέΟ•i·¬ιςo‚ΔτΡΌ·Τsϊ…Μ[΄ι‰ΜKnntυ>lWxΰΥΣ'±eό“@xEηΏ»gϊ"N~TΎ @eΥaΨδ¬ˆ΄TϏξgοxŽnθ›΅/δyD·η¬/„·΅BΈ^έΑΪD?λ]Ϊε yδε‘ΎσX\앁»‘αΰΑύSdΜλ!epφEXΧ8I§2ΟΡώuOΐσήΤνŠκ‘Ύή•yΚλT½¦EΟ{JΗτ$Έ₯@AΡ;VΫ© 0Zј ΝxΖnκί†¦J4ώ š0΄’³±­2F(’’«ΧK!”› ~ί"›ζC Ψ H•¬ Τ­Ψj€9α4€Ψu&”›Υ›Ϊρ?7X“ϊΧώF\κΝσ~Τ›mΑXEΤy"s|fB½9½]+1šζ†bτZΌeω*)δμ„0‡VςΥηCψΫ Ρ’¬SŽα„έfjΟτ…$3Žΐ αsμ…bCΜA‰: ¨«ΐQόVω>΄!–eyDπŸu©œ9±šVrbΥ.ϋΙG’= M<(·Οξ>v¬Ηs@θ >°!OŒ €kσΑΖ0ΫvΔ|7oGY‘8Δ;Ίƒfƒ’|qw)ΪΎUR0’fGΰχΑͺΩ’ Π9ЍG(ELrΏ2+σ­Ο– xΑβz½Ι„š5ct4[’IΟi’unqt……r%byε½3ω{qΏφ”¬‘˜Ϋ/ώδ4)ΣBΌˆSυΉN‹šβyγνΘ5γDΰδΎ½ΕΊ’›JiŽ}_RΏšΖΐZΞyέbžΨIŒ‰x΄LpšζψžΪϋr)=Β‘ψYRολ#ΰ]γG!ΒAεoX §†€Ό6΅6(d{ίωXS•Ω·cΒDΈŸ{UυρξB~άG›9{ΎxFΎЇ»b/Γ΅C9Ί°šZ>&)»fΞW?1PLƊ΅bσαš#ήξ8χ4qΟΐδk·Oμω˜°Q5KόPε¦ΆΑzΕiΥ{[¬6<πάΆ? ΚΡ&κ5h3•‹πtœVŠΣψ^«NΆεTUίŒ_βό©FΛΐs¬RIlK”ΐ?W ΰωŸ+λΔ‘%(D $J Q‰ψ—J ¨κΛ€T,γLyΒΝmW@¦ΩP–#ϋ/›Qqαb)΄š΄μO(ŸFA9,ϋΧW€³‰ε (;Ζ η€oΕσα$¨O/G@pg <˜™!(5€^™UΊχ΅A™΅ψ“ΟΕΙ%ψ‡QΒ‹ΰgΖ%η`rAέ1:Ο]ωύߝy0γΑ‚΅x< Χ}³UPϋ•ΗΚΑΛ:cφ‰_‹Ξ‘*­Ά10ϋΔ ^r–ήE½›}‹9ι;1D›4Nλ(Ζ¨'Bϋ ]τqMY}φγ~J{ ―R€ $•}κ€€©ΊqΟ b΄ΫυZψΧν€²σ„μ •”ΪΓ;ΧΚ*—‡CνΓ‘<σqbΝ†aKp @bXΥ«O”T nμ8 ΛVb @»Η–θ9ph‰dΊΧcΠ 0AgΘUρ6sk‰sYxΐ°p°nIZ°X₯œθS~pίΎ1]ΎΐΈ“Έ@L e#^†ϊΛ:υ[n=I mΒ?Ώ9N’QomEXͺtΛV Rf‰A‘ <‹Ap@ 7ώ™Y)βΔ’πjπ 0ŽYμQΰs 0ξ`υ*’zε9bt†#&e˜hSˆ'&p †ΖeCS© }2›Β \κ @oΙΈςΚK2xπ`5˜ϋœ9βφ5I=«»Ψ0qΒ Ψε yy·ύψ‹”~5{Φ…ΝΜΚ·R}>CAΛ»μ…E²lλ–ˆΊς4ΐ­GO_ ΎYs‘ TOΊw‘(T·jΥJ©}Ž?^)―€Υ*bϊΈ$¨ΠIH@U‰90^-Ι%OΏρšάwί}*ίΜώYv Ο>₯3–ŸΝ-G #H5eό’ Θτh£ ?󻈑όœ;ώ”“•ΚζΘ‘#₯wν†βϋΪΕuυΕς^ρ6₯ŒΝr#tΐ}‚₯˜,c= Χύ2/„233„Kθοδ“OVΫ`Όϊκ« XδA˜ήφνΫ#П\Ξ>WΌ¨ce€ρ‹.μ.š4Qω!wΚ†Bρ’Ύb„R©rω0§κι§ΘτMλ”Ί3w€ϊΟ›ŠtεΞW₯Fω!ΠF˜FΕ;B‡z_~Οόw ΓgΌΆ„1D|ϊι§΄i…-XW48Ιs|ν΅Χ48uκT₯¦όܳϊν­`”ͺcU―ΊHΊ_u₯πϋN8AΎ†BήV,ΕZP2pώe'v‘mίύ(ΩνڈΨtqT°¦i…ηΐrη΅£2³†RΌ;Άά΅γyέpΓ j;Λ‡Κ„V5tΓζ”Χ^}QΑ<Όή?a \'Ϊ ΌΚCe_βžc%JεPΤ…‚ωΏK@+;a+ψ½υ›K…„₯&›RΏ s‘ ΑΪΜ#Z‡&βΥ¨+ΕΠ6Τγb΄΅LR£yΰ‡²¨F₯}Qh―χuαq?=Zωy΄'χζ=Κσ£)ύ…φ―„›υ€ͺRŽφ3T·¦:/σΫoΏ)8,V»ΒIΓ"•B©ŽΙcΟνœxTς'$¨}Ωξόύ αZB€ΜΫ‘;οΌSΟτO,cλ5ca~¨’O[Άl™j»΅ε6ξ³;ΰΩ Ž±œœrΎμxκ}1›Φ‘jƒ―•dLΎ.§ΌΌ}ŸˆΙ,CN>|ψ. 1Ϋ!ή<'φ΅Ήσ―>M―,Γ•‚sς€^ ζ‡~Pmu" }–υY…ν­΅ ?§oσC‰tΣπO₯ή°Λες{nŽ΄„ͺ­ ΠΜΛξ€g~Ο<λΆ‘υ…m‘nλxΝ~Σ‡λϊΒτ†ΊσYΟ#,kΛΔϊ¬Ηg•s·Ιά₯εϊ"ۊZΚσoψ•Πό CKΠ―ίΩιΩ³§R―Χ>?žηΆΥΦrδυΫ“Βseλ6Οm_Ωίžχ˜ΔΊ¨­T’‘½cε_Jš*ΡJ-š`4EDvc&ΪJvŠR†& ΝΨ{ΥΖ! ΪHwн΄HΞ…P‚΅CΨΞΓ}K,Ÿ ψlΰv€Jζα5€Αρ5π<ΠR ¬8(V8Sΰ~Wωš "Λρ,<ΐ¦X‰BΡ†zΜ©ŽΨC]₯ήlβΩΐ¨ 5Zmθ,“ΒοgHV²qr’6ψa?&Ι§ζ50χΖ4–3bΈ%Ÿ-.€₯€Yl³η0ΗΔ–€ ΐκΩ‘ŸFϋX~‘}j1­`a™x/*I+ΕΥI0),*ƒ:`kR]ͺvn!ΙG7€:xz$ΝΚώΑρ›ΐΊν „Ξ›ύ›$ύ€Ύ*ΔΩ<ώIΑ1 ?P*ΑP€wζ‹έ ΚΠ)wϋω§Β‘…Ϋˆ”ΎρŽ8˜#’:]„8ƒ =&sΙβ+4ΕπΩo‡ΪyV:Ύsͺcυ±ΪΙiGHrη&»*/ψCJGΗ<λΒ«;N>E6#< «>glX"Ι…›0φ‚tsͺHςM˜O;a—ηUΟΛ₯ߗ$Τσaμ!+x Ζ,ΚFŽ›>Fzͺ$#ΦoΰΌέO½Zeυ¨μδΞ’ucOcQ ΰΕX±ZάO`€Aσ0fίοSΤgφ݊GΌ*ΞpΌΡGˆϊώΫĘ:[<€FέH~ ¨ϋ0τ«Θkώ(¬hτΥ υ9X»Δpžπ'^ˆPšώωW3΄•@A€?'χ?tήt™Έ?ύšκPΟ„]]υ'S‡χ0O‘£μϊU₯ J«wΒΠΤK(έˆβXΌ£ Mc?Ύxηχfx»‘Wxά5ω}²Ε€ϊ9'χ˜ζώ+Ώ“Ώœ"·άr‹j#χΙA‰$J Qq—@xŽ»¨;&J Q‰H”@’%p°–@x>X―\"ίΕ¨,πΜ2 lΚ—-ƒή -ι—κ”š*lTkΏŸηη²γΉ)bri6Y_&φ}Y+`d­"¨¦”›•qιΉX¦–]0’ΦΊ…˜œV•ΐ‘Ίc¨δO *PqΆ€rϊ” ϊ[6–Μγ:ˆΰύίNt^’ίΝogˆ{ό'β€m½φ&OΚcΤ6닉Α>_^βΐq 0ƒ&Γφcpόο5ŽάEv508α»δ6ԏPΰšp„}Δ}bžƒ€9Œ@ΙΠg#0©ϋ€ŽX.»— .›Ώό&ξgΗͺΑ蔇0Ζς“ΡFΨyγ  J1Ε μ<δ 6W0Hύγƒψσ‘ <σ’PρfύCŠΉ:TojάršΈŽ²j­Μš°TΆύ²Yj–m4»Grλaΰέ±κηΐq©όυλo+&WP°θγZ=±S!™Λgμί²^QέυΡG΄ε:-¦KΥώ¦M›ͺMΌΆγG‘ͺ―O &ƒ­k˜£ n*Ψκ>G ¬Ϊ ‘Σω;ο•žw9Ÿ΅ Ν>Dϋ¦­ΚW©ύXvλΆb5TDяτ΅j‚Ιw‘cUm—dΜΰύΝU:θ§iτ]—΄i'IΈΞŸ•εGϊͺμυiίYJ (Χίs·R Φ«°žWΤOαwΡώ†})n§?&δΟΊΟ}Ϊ£οOF_ΖcbΑΎάΛίπeΦ>s¬η‚ΚΆ[l hΜΗ6l¨>Σuοή}—~;Ο•ϋι‰ T;fϋΘφ‘ ΐΑ]žΏVsfΊΡΟ*“'OV4}σΫ»woυν7Ψ^G·₯ηž]ώΊwΌdήt²ΌφΥGεΪNpŠχ<Ηͺ/œΜΑςΰdύγ―ώ7QΦ/5žΉΌ\_δ›oΎ•ogζΘι]ςδ‚σΛχEͺU«Vιη‚hίΚk³;ΰ™η\ΩΊ]κ$χςeΏΟqδ)Ε]s{1V„*”+Φ!Ά`4Ϋ4M¨†ΆΡŒΘ‰‘χ„Θ―l ·A9Χώs4Εΐ»d&CΐiΣΊR0ζ{σ³δγΉ‘gσ;{'Ιqνc= 2΅ΜJΚΔ\υζ9ΏŠκΝ\&¦ Z?ϊψTo–&υρ<ΐνf9cŒŸ"Sgbε,ˆ[ ,΅™θ—ϊš7”τ“K9ΟEˆ7VhX9¬h"ԜΑŠ|αgΑ${Γλ‚‘Ag‚κa‹U_£}©Y%K‚έO•ΰ)'aΒ?8ωkeϋτEP†Z΅FFšFN¦ΨΟ‘š]ΪHRӚΨPΎ₯σ½B$Σ°ΐΨ ’΄τO€±8,h@Q:§ΨΡ‡Κw&‹cΑr±ύ Θ6 δ³|œΘ|ͺγρ˜YΙβά°^œλΧŠέ 0ZΌ€ KΧͺ!Ατ4œ§u4Žœ†‰\PΒwΈ\v| X—υ ‰ΈŸΛΌξR)zv”8ηό¦RρC5Ι`L’όPoΞ<²uHο SΐˆœΛώψPόΊDŠgΝQKτZՐy8ΒαΎfΉ p6ΫΆ€~€)μX,}ΞΉΏ–Sτ ¬―% ™KΞγœ*0Ί―‹Ο@ΌΰΓ‰’CQΓhχ5Ι•΄σzˆΣvΗ­tή† gˆrΘ0Tˆ KbΥ,rfσ¦ΈΑήΓq],fΜύ]ό·έΐ5‚Ϋa ξ“G %Ÿ¦7•‡ϊ„9μ%(…ΑK,Qg{m˜HΧγΛνg{λ# }ϋ…‚κώά:βόμ5ap_ξKΟπ‘jΠ€©«ου"R_™S¦ŠϋνO¬YU†τ-f…ؘ/ό@ΑΞ’ζ”:TvώΐΞ<ύCxζω™ˆ―u Kqr₯Ɲ=$ΉUΩzίk!θΩΐ͞P8EμΞ€d› \&XΡΔ€‹ '4_Λ†βZ0* τΰ’₯Xς‘Λx<'uŒ[.a0£pμ{’φ5? ŽvφΊ\Μ£‘―+U ώ6SS\P{–˜ ƒΑΡΆΒ"±cRΝ܊ŒX ‘|ίΪ­Cχ ‘lG(·4¨8ΑA™Ψ%ΰΗrvŽ`"νϊ΅%νκσΕh»sΐΕΨ‘/ωP5vBΕP§₯&iœpŒTΉμL–HQ U©zY‘–mQ»ŽPN|»γŽ;”ͺ2B^œƒ jύ₯S ϊ  ›–6ΈΏάύΦ(”κύ΄"$Ώg:T%Σ /·Ε2xœΦCς>ώ\ ·‚ŸΒuΡf…-xœO?ύ4’–Fh€ΰΥ6΅‚ %URiιζ@ΩΊϊ: r²ΪuTZ)nΐ€ 5Ιύ¬Σ»Š£\&œ*Η4Bi ΎηΚΫpνΒ0)κ§κ;΄h"™ΗwϋαΝd-€gξΛόπχΜ;‘.m]ΊtQ0£ώύNπ—ΐ­†ΚYΎVh›Χ€RŽΔδ#YΆJJώ.™7_%7=ύ„Œ;6:Ι]>λΌegg+₯iςΪ¨€Gx‚ΰ£ΆοΎϋN©|ςΈΙ4X―Ώ~·‚υVΥ<½ΑΟ?Η ]ΨFσzkhqγƍ ϊΤίΗz§RyC hC7­W.O±αK}ΕhεΎXisΛHΓ¨Ρ@GEΏ‰gϋ>ž-œ9Η&/ŒςHυβυΔόK.nΉD²wό%ΐΒ—E[ƒΠμχfΩFŒ& %½‰˜$1Sνκ‡jxΪ#wμτG§σ~†//A„ o433 t>όΉN?Q² ΑAζO Εσμhεc©X–6ƒΜXβχŸ4B=ͺ4πλΨ„π 7Ρ'ΡΡΏXΣχ'}NJ+€Mΐq† Ϊθ‰χ₯οΣj‹{:„ΞΑgϊήg4bτ<_ͺΏΣ4τKΕΛxύ«ΎG LY9¦ΗcP “›6Βll°€sEχ(οyφ™θ·ΖχŒΚiβ5\¬«;wV~8V‘pβΐόΉσΠΙ쇨%Ύφ”tκΪUω(ϊπk8Z=ϋNμT©~ ο!‚¦z2@¬csr#•ˆcέ±όυ΅¦ΗνzKτsύ}eΫ­oΌQωe¦Λ‰œDŸΟ6!'''¦§Π€7σΖΎ+ύ-WΠΖ θθΏ™vΌΟ*„‹ιΛβνﲏΜcXύσ <σ9‹ϋY-žϊΒ~Ώ†Βyήρ<λUωx‰TΑJI) jΔΥ!$Ξφšyζ 4{λσu=δsν.ϋ0Ϊ—s[eΫθre{k6π3ί„RW―Η¬~3o‘+³ή’/A&­²Ίΰΐ‹•ΠΌς?γπA<γšTάE}້•h΄'1‘½pcUY’—-₯tΉΰͺ*τ¨t±WΛ+O0†ΙŒζ²ΥR4+uόωVΝΪ‘b€Ρω ’€ψA&8€›MΔJ ψš]ŒΚ͈χ–L›…•W)p4²β՞–hKO>NδˆΓΡΎ:#_νς'Ρύ4_J¦|-IX]'bθSΔ”°‘UA7–Oεo’}¨Y―Οθ&ΑcΫ«8Q$έπ\νΜ‹•ΒΆώπ‡ίε(1O`ακ'΄gΫΓΔ†k½‹!ζ|(QςXEq/(2λΈ…™Ž˜}'€ΖP'60ΦQψΑ'’:uVQγqΣ@]qtξAם7ˆ Ž• ~F€υi>ΔσοEΪxξ(g€ϋKJμG'Y\—Ÿ)ή ˜Οgσ@ΝZ’DΑ@κ6œ‡­Jρ(ŠΚΈz]ˆxωΗBt{^@gτΆSŸΈŒjεsΠ|(m„V04βΊGΐίANϊΐΨƒ (:ŠΣχNyW>œψIx>h.l"£‡Z $€ηCνŠ&Ξ'Q‰H”@’%(]J <οR$‰ ‰8`K`―gœ‘‰€Λ¦G?YŒ]rv;©}ε)ϋν\ύ‹ΦΛ–Ηώ h!ΐWsΠ₯⨏ Z”)πj’²Λ€;Φn(ΆZwg0*P7G)Ώn¦z³ΰsΒ,%ΐ ηω‹Ψδӊz‘=`¦r^*!UΞXΠ Eφϋ0Δ”½ρ8gΝ„ˆΰyΨLδέί4Wœηž.rι™j @·/ί ,;_όΙηPΑ^I–uΟΫώΙΈψœΈκœ‘¦fό2?ό):ο :mρ€ΞŠ7"J•ΐ΄ —‰λy˜ƒξ‰δΥϊ‡er}έ{Ay Kθa —p‘ύ„£$ψή Φέ˜τŠχβΫ%iΑP~©ΰqνωΠμ»sΏοgŠχqj"˜%Ιβ;@W%”,Yοό*°–€L{€Οj-ό°σΖ‡‘Œe ;Χt1μUΥοώ /‡:πΜkh–xdύΐΔά„ΑΤ·Zχa‚M£gο:ΐ€(–pΝ†ΫΛwδ#ηœ%‚$#*TEΜα‘bB@1€ `Έ`ŽˆΓ³ ‚$9r†Λwηύοφ2·μw$y²υ}›fgzzjΊ«{Ίώϊ« ˜ž_c 7ή€Έ zFκL{Ό!iΆ-`)ΟN2%;6ΑΊdqψ)w=­›«&β\fPˆ―ΪΩ]7Β1˜ͺ~λ7cύ&qOx\˜ΉΝΫΈΔD{όkΪοΜ γΆ€°gWIΉL/σ^|U~\π5œd`ρt‚uΪ¨œΦtτ±Ώ·‹wSφ^G@,ΞΖΥΰx+|;˜€έpήql…ψQ·δα%E#Rω†ΎβSQYM‘ιpςœΠ^.>Gβΰ "›fΝΥΗ,EΆ°Ξv—>τ˜ΈΖW‹¦Κi>aΒ\£ƒ[ƒlyœŽ(;Yφ ιŠYŒ ΊŠALrΨ7³]Λ°³Žς/ΏόR±pj²>7?_}υUxf?Ι½τΖπf.=Η΅”ΤΣz‹4¬«‘¬—ΏΔπϊλ―‡At DA ™#… ^s[Ÿ‰η‹yΚqδmŠ ’;‘n½{)ΰ η>]t‘:” pV:Λη5|σΝ7ŠQ-ςX>δ*TPΆkΧλ˜—|ϋ“J½j€™?iΤ-bG6κΟD΄ŒGΗ:ΛΥ@[^ΟE°Vδ="Έƒχ¨OŸ> tΐύlΰ'ιZdεŽ&>€(N°cξάΉΡώ.Άu[ΐM"ΖΙx€ούΰƒΒμ€ΦΉΙdŽΥΞ\9™>œ`ˆhηbϋ#λ(―™:&ˆ†Μzά6}ϊtkρκ;™PΙ2Α",ŸΗl虀J+ΐ‘±m£A½zβc0ӘI’όΨύ2oέί₯ή»D€eι¬d"p„@μ±cΗ*–σΘJ‘ΩšL‹•+#=r_δώεω}ΈΟ¬Γβe†Œ’ΐLCL=Β) k)§ρž‹17ήΫΈYυν°ΣΪRyŽΙ¦ pβꍀΒί)žΗέZ,E³eχζ+ΪUΞΤ—Uπ+`”ˆ NΉu"‚Ϊλυη*ΨΊ§c=S*'τ χ‘φ}2ιj–FλΉ§M›&—_~y8¨ƒm^3ΉΣ~ΰD›πν·ίJ―^½¬‡–ψO–I›QΦ>ΚΎ@@X΄Ύy"mΣh—βΰ53R8¦°Ok›ΑΉ?™E©‹μ+‘ν ™ΰ½sΟ=7*pP1ύ£μlRρΪy.ΪZ ΛcAW§gάoεΚ•eΆe塬 m m_4»M½“Ÿ,₯Φ±WUoV"uOπ_jjjΨV2»‹οηΏ$«{“2λ©Μφ΅Vmρ/Z*>-)/?!³ΎψΌΤ1‚€6ΪT«πςΕ{ΐϋAfζϊ`nΥνˆϊΧΒ7lΨ ΡάΆbΕ ΅/υΗu―tD ž*ΊA^~γυ¨νσΞ9Nˆ”cύ‘–C xή§n@ΛςΥ’χξ'υ/ DΓ@Ή@ͺ.κ‹γ˜―Q= Ϋ#Έ«‘ζ}19z4ΐ>–…@2©s^lφy2―ΔλίΉ[lΛVˆΏ}+ι 0Ϊ(Σ½§œ«@²ό>ΕΎΝ~θy Ϋ;ϋ…6gαΒ…aζu΅1τΖy$m³΅O±V! χΒ / χQfΡφ’ϋρ<μΣμ―‘σRφOΪbξΓ€Ή^ε·xΛ}χέwU82π‚γM€p^¦λΝΎrμœ1c†N[m@YžU —©Ÿ²Œ₯Τ©žηk=iέ<­ηο|†!¨X ―™ϋ1ΐ§΄φR§Nuίτ±<¦΄g½Άqh_CœM3ΤT―°Θ…μ%ο–i.ΒΊQOεy.ΠΧΓOΆAΝπΜϋΐvM»ΟΆA=QX>ϋΘώζΰΜ@Γϋ¬ο΅:ψ ίώiΐ3Ι7L¬Ws^ž °€`N¨νΜτX›‚gLΑΊ€QΩZ0­μΜ\Ω³RΝΝΟ€1‡²n£Sr π ₯…ϊ΅½’{€΅£"˜f+b ΐhIO”Šj‹½2ΐΠ•’Ε†WT0±.τ?ΙkΰΉ“ηχŠς_ͺVo5€±V©Φ·t00‘.α¾➎u(όΆνΙ‘l3)Ζ##ˆρo2ςٚY&MšτoΏάΨυΕ4pΤi x>κnI¬B1 Δ4Σ@L1 Δ4p¨5<jΖΚ‹iΰπiΰ`ΟͺVX™Ϊςψ‡"?£έ₯s©>β<΅8v8jν[³MvŒ{W₯Ε2ΐ([εΆ³B ΞDδάΜT0Ξ_@IDATwϋruEΈ` π›―N 0Ψ…ΐ͈˜‡GEοϋ€ΈΪΈf½dΟYœΛΧ@§›Š-«]τ6m )έ:©ToymbΨl‚Υ‡Ε^ϋΖ-{«‡GΞ3Oσ’sΕΠLΓ{χ84ߘ:qξR4ϋ‹0‹, ¦s:‘ί)8²,z;@gΦΓΈ{ΌΘ;‰ €L ΑίfΧΘ{= ΕŸjξ3ω%‘©Σ “ΫΜ”±M›(ν8ώά+`Aρ]y·ΨsςΥ6?™_™ Dͺ pNζNy^\dΊ†ψpLΌ`g0Ν  Ή>-ŽεAf@o»¦’2rΈbξT;[ήόΫ²e ˜ v&ƒMΖ}ΗΨ™ͺ8ΟΌN3·H6έωRΏ’MΝ¨Ϊ]g‹³^%ΩuοKblά…F#©ΫnrΩ$Ν΅cQt0΄k.žEΛPœΠ••CΟΉ|‹­κβnΩTΘdJ,Ψ‘]·]dV{„ήΰdΝ}a†$ΨΚrΘdοΌϊr1Ϋ΄όg¦‹λ—ίՎtrΈnGZc12h‘Ψhΐ: {`ΟΙGε4ά€©Δ³b³˜{ΰ΄ Ν…).‰k^” ΓΘ΄Ω|@6¬&pHVx}ͺ|5žΘjπ,dV»ΐ±ΌΖ Ε'}:ς"₯{΅†ΘNL .’#ŽlœT`Μzp²€^1P>έΊIϊχο―ΞtHΣ mh•@‡§Ÿ~Z›@$:žΙΐHΐζ"ςo½O 0”vώ™ pCPώkΦ¬QΞ{–I§ΆfωJΈ©θ³o€π«y`h]―κ¬ί`£IXηέγŸΫ/ m@;ΖώΤΗΗ([ΐ½nάqR»vm¨°‚² cΑxdώ%33,Ÿ g_ ξ#kυτΘ#¨σ aqpL½ϊΪk ˆM ί•ι,Λς σαzγ`_[7SιYι%hρρΌΆ¦M›J~~ΎΊ_ό_Χ‰Χqί}χ©ν9hOK[~όŸu" ›χ²,b‚‘:χΞ‡ΔΰΌ Pϋg* ολEW¬XQ6l¨ξAψK0/όάP2―ρ7ο5ΫχΧΐ Φ‡χ†ϊά±c‡lέΊUνΟφQ Kπ–1ώ|!Λu·nέTZrξΏsηN΅© ‚ašs‘ ψ9yή\HύJ]Fή;¦θ&˜$cWΆδq)€ώο«YMlU>©‡dεζͺ6«ΫZ͚5ƒ`$΄ΦηPΛα<³«3m2nŠd]ΌO¦ά~­SΪ· Ϊ›π΅``¬]/{½n³Bkζ{ξcδ ΐiΎΑ~‚1ΚsJWIκŠ1Ώ>@7xsψ† =²_LΨoχKο(ξ³Ύ™ΰ„Σ7UβΖά"‚Ή*…oEγM ΐΕ5ŒΥ`>’ΒΆΝΆ΅vνZeΧΘΠΛvΟOkaΈ/ϋmΗ)§œ’Ϊ=ƒL’Š£]Σe~²q&²$ΜΩΧΩΖω½¬ΒςyG»•‹ώCΜjpΞ³ŸΡf°\9΄lΩ2\^·ΡDφQm_—,Y²ΧΆ’B,Ÿη!ΰŒ6€Ά˜η£ π—vΘ:nq_ΪMΪΖp¬ά³gκίά—ΒΊY…Ϋω"@+ROΌNž“vE ―ƒχI—k΅΄ΪςX Λζ1;ΩXεΈΕ±ˆufΌWΡΔΪ&˜­€`<:ω 7οέ#ŸA_M:―»TΌς,ގΤuΛς5qφ•m“LγsζΜ‘Ύ§Ÿ.gt8AάkΆΚϊiͺΎΡΖ2² Ο1TλŠmŠμΫ―tf=6ςZ©­;}έzœΰo–CQGΕZ±ͺ䌞|ζǘ’όμ8)˜lf²mς“ ·Z―κΰCόvXΟ–Ίš`ό,χ„86mΗ [Š˜;ϊχy>g Š·ΨΑm6k(‚ $1ωg4ΐώΚ φ ΪnφGΞ“Ψζ9O­‡@-Ξ―τ|Š΅d[Υ6ΨΔπ+dy `ΞηΨ ξαώμ{ΊΟΠΦπΕ~Η‚~i[( μΥ«—ΪŸ RΪ f9ǚ>}Ί\ύυͺ΄Η쳴Z8Φ0ΐύσΑTΐcΦ™ΏiΗ8εό–μ (;ΖλcfQΡφ’ηb.‹P7|±LfZ!@Xׁqœ7Z…:eΦΦ‹BsžHϋJ»Κkζ|š”Υ«WWμωΪs=Χδ|žcΟMύsώΚc9–i;&E>q‚Υ`!―3rŒˆ6ίeω΄ρ%=?1π’m€ΒσρήuιE=;ΠζYΫ ο1ΰ β΅iKέςΕϊ³Nl¬ Η_^WSΨΐ"œƒΓΠƒΚEη¦IγzX7A[‹œ‹πϊi7­c)λF½ςΏH›Ορ—ΑC̎Φ°ˆΆε<žΟ«Μό Ω­©2™SΛJjΫ lδ=ΤχΪz-§*χΧ# x&!GσP‚›σ–ώpσVDg—XgΞaύu2$kF}Œ}œ―"8ΈΫ<ψŒ؍6†ΜŸΎ ;%ky¦)d[NxΝXhycpf퇉@Uΰ†ΤD1Ϊw=ΐe›q,Δ–li[·γφcm¬Ο@'έ>\ΜΜϋΖΕάηgJόgߊμoζϋ%§zS΅”Ό}­ΙXW ίίΌž$όg˜­Ÿ›!ρs±ρ£Ώ%ŒΌ~ί6ς_<_Ύψ2ͺAχβχGz–>{OgθΌ `~9 Ε‹6›xΐΠh“ξ Ο( …$x>ξrμf ΔΟGσέ‰Υ-¦˜bˆi ¦˜‰b€ηC’ΖX!1  4ΰ9TΛ­oΞω©ΙΈšΐVυ»ΐ‹P†ΕΟς\%SXaρΘϋΛrΩσς|‘μB,>y%©6ϊ’"œΓXςΨFpsJ›– °{ξwΑ΄<υωνk`AΡ 0ο‡ίΔΎb Xφ2Ξπ2M,žωΰ@M& Ά5:E₯~ϋ#ρΜ ₯d{ I ›6šlƒΟCκC΄…Γ%[ΆIξΫ³%`^΅(:¬ΔsϋŠ ύ"ΌLϋ=;Ξ60:Ϋ€Ρ9Π€‘˜X°€A$RŒw?3 £XQ†˜X%υα~ڞ} έΈ·Q$φ™@kΔΆ ©•ω?œ}Ά~=Δ|ϊ‘}χF:>yω1ύΠ=―σψ6bΌϊ(½ŠΑ}‘±ΰ)UmVΏ {u•΄k.S‹·’'yc‘ΏNHό§‹1:‹"tάlΉ`ηΨ‚Ηœ/¦Q<ΖδX<σΆϊαΐΨrΧ›bΒφ‹Σ.cqΟk€ΙΡΣΔX§”NMΠIι-ρ?׊¬‡“ω±ηαΌ :iά]Ž“€k†(`]φ{IβΗ_)‡’-'Wlp>9ΑφLΗ Ω«έΜ’tx›˜–γ%ΎXYr¦˜I)βxz’ά?i’»ͺo5̚5K<ο.…°:]'Ο!θC)gτ :Y9¬5‹€ΎN:ι$™;wr:_•QG ΑF_Ψ½3ΐΛύΰ J*–Z>β΄κ'Α¨_Πα|#Όep–Ώυ¬\pΙ%Β΄ΞWπK‡8gG|F Ϋ[o½₯@ΦΚΡGš€ΉGŸ·ν”x0Μ”‘¦QσŠα bw@ωΟ?,έ»w—vνΪΙ`Γ#`€8‚.4@–ΞqNΜ ‚­Ψ_ :e` m!ϋ4EΫ2φWžƒ,—dγ*©j;Ζϊλ:ΡN’Ν™@.φ‚˜icψЬSYτG t$°‹u%@‹ΆkZdΪ§-£ν{ 㐢7άOΫ2―9<Ξ{Jp/ƒbhσiΛxΟyΏ `«_ΏΎbG&`™ΑCρrŸιΣ§KΧ]¨+Z{ΰω¨gκLg6P6oψΥ²iζο;,ΰ·Βψa˜UVυ§˜­Α3ώ2(DΫa^_yνλ%u:‰«M]9cΘ@uΡΖκ‡,Ϊ΄m<λLpΗρ’δΗT€9+πΣΊ/υLΠ\ΜS(Ώός‹4}ορ`^βmΓΔhέDέ7ή»uλΦ)` νdžερ‡KŽΰYΥ@¬ΌqO†S£{: +ΖΙ]%Yzœk2;(ŒI±K5˜ρ6¬'ɝډ:–Εͺ˜~Χφ/ΆW«₯ύemƒ*Θ|Ο ,ڌh­r?ڎhφ†φ ²‚ l‚₯9§­αxΑL΄™ύϊυSΜ½μwœ;s._š°ŸrΞMϋD›B`.ηΔ% ΗΪjŽq‘}8Ϊ1Ϊn°lύK/EΫmŸmdnΫΆmx₯έγ‹v—σu²gbΛ@‰V­Z…χΣρ~pκ›Ά›|ŽΰΨ4|ψpeΗxώtwΡeΑ9{Ic)ε3ΗR^ΗΪό’„:η³ …ud§k{ασΘtŒzlΰ½£]ε½γ3―Ÿ c>GpβyΉ?AΠίΙ&=zΒnιΨ>U’μίͺvI ψωηŸ―Ϊ ΑΦ|†δσΗhc£Φο%u9sζL5ŸΗR•0[@Ψ½M€έν:Η!°:£ΆvΕΊNΏžΘθ•!ΉŸ|†¬σΕ:›Ηυ?ΟsΥ$,Ξ9πpΫΎm»b6βQVj‚x;΄ΔW#θ*c—½ϊ6ο?ˆ ΜM»%kY¦kΠ–― ƒ¬Υs$τB`ΊzHEΐΎΈ`ΓW!»Πn¬χ°–μBFΞ`‘&II“ͺRωΤvβκX_ ¬RŒΝ[₯hό Νί><‹ΊϊŸ‹¬$/©,E V‘.ς3J!ΦƝ-+Kκ?ΠΎ»‹·USIΊ ky† ζ²ΉS^ϊΞ₯βοΈNΜFυΤoυ6ρ¬{;πlI)σtΪUƒD>Vά―ΌΛ%θ,Y\£`Λ,’bώτ»ΈŸ‘@Ω δ?ςΙkδ·*–foν:⠚ΐoΫft€OΖ.…gυ’”“»ΑΜ?° Πο†1Ο5βJ1Žoq¦οΟΰωί{ocWφ‘ΰωγ>ΕjΣ@L1 Δ4Σ@L‘ΰω ”;τ_©.k)Ι©‘?Ÿ‡ πΜz{~_+»…U#?+H΅1ƒΔ–v€‹΅Œ^_·Q˜κ.χeb8ΞΕ€S(€ΏσΦβ§‹\Po\°fΆ­ps €έ–ΊXTϊ'GϊθωΘPpHφΌŸ%nΕίXD .ψY‹σ μmήPΊu²ΐaqT œ=ζ,€‘{ηc\Λ΄?4АιΚέΉ$^‰ΕG,f6Α‚¦,DΊηYŸ‰ πaAJ9w§Ά’rΑYHεW-ΌΉ΄/Ζ&,Ώ?{ ³Ήq' ΐ2:‰λΰT³ΚqMΒΕ•t–?ώπΊ;Ρ—6‘Œ s5€qΟ-Έψœp‘_lχN+οc1Χ ΰœΞwŸ–™Γ,b€έΤsΞpqdnQ[θΞ{>»ό‚½{­ΞχΓ`X«Aτ›― ϊΈΰ`¦-σXΠ!‚Ϋ„οΛ*)°'_6ψ ‡ YF2ξ»ΰ˜;SΗΰ™Χλ[Μζ»ίTaήϋjχγήWM‘έc§ ·;€ιΩ FΐΐΌ”j…β¨H – 2¦žhκOΟμΟBiΒΑΪΆγΌΉ?"ζ:΅Ώm<‰Ξ °>8²σŸš&ρ?-P›ΩβF\+fγϊ’ϋβ«’πέΟΚΙ‘˜r† 2ιδεKώ 3ΕυΣBυŸ ¬Ερρq`άΑ‰q-€T΄0τ„ν‚ Χί$Cμ—^$‹‘–’Ξl AT³ΰθŽwΖΙ΄Wg YΟ(]sΝ5βAΎωY ήύl―ƒ₯§-Ψ/>Wp]y‘ω‹NfG!Xβͺš ΐdτ2mhΒσ“dΐ°«Β¬ŒάŸ )‚qΙψFΐ…ι’ϋWSξφέςqŠ= nβΎS§L‘T°DG>… 2ί‘…Μ:/2Ξ7―bͺ%πΚxγMΩύΠ’ά··Ϋ¨vOG5…σ˜ž={*ΙέwίNΞ:‘₯™ +ψ"„°|xώΞ¬λΖ( Ό:JΏb€Œ›ψˆ₯¨Xή8Ÿ#ή3Ο€΅Β{A€¬Ή–O¦6nŸ‚λ葇Τv¦(t|7ρ}λ>zztό8ˆ“δ›_Žͺ§qγΖΎ:)ΤΗξΝ·άn£G–+/ ωpš>ϋRΕAΰΜSwŽRΑ³ΧP€gnη½ζ΅ M #–2ψBπGyτDΰ$H 8$γ\€°νhΰ#Σ3Αg: ;·•V§eKQ§…Kκ]"kΎΫ)…+wHΌ/_Žύ Ήπ’Aα6―Ϊξ±οΩWΕW­’€·m@؍(q°r$Ο¬γξ,CFMπ(€_v‘SϊΣω»Lζ4χ˜©Α”ΎθS•Τό{ŸcΡΟ8d& ˜“›uj ΠDϋμzΘ7μά#ωχ=§χNΈdΒIŽΤΘ-Šk½H’NΗ –Ό{&Ÿ)PΧψ›―ι Ά³£HΨOhΏΨΧ(C† Q -›nΏύφ°#ψ‡΄H–w})΄yVΫ2SΣ“½’*:Š5`m‘A$<AaΪ>’Y‘ ,²mό₯χgŸ¦ύ#˜‰}TZuŸ#@˜A/Ρl>―L{ΘΰI0u hΆ^½zΚφΣ~\Wž:ΡΦDκoμΨ±κΪn»νΆbϊcΠ…ΔLέόΖ}Nnγ8ΔλΤϋ–Η–‘‰™χ‚ΰ2Νp\ΪXͺΗ-žW υL™”¨Ζμ3ϊΛφh°Cϊ}C$±E}jŒ6ΎkπΛ46gΙOk—Λ¬g+€œ>ώ€}%ƒ¨ΪΧ.ν’xQ7ι|β ¬Νρ66PΙρΈM;bΌd;ΜΜl‚³Ν2p†/+0\ŸO0M°ήˆ#τ¦ ΰω―qnIΎΑ˜‹•4Ύ`]™# xζIρΜ›3yšΔύΆTUΑΦΟ€QΧΑqΠ‡ηΰμŸδ“)Μ§Βΐ­P…9ny‘U'Ή#lŸγh›crΘ5@ *ΑΝ΄—œο’™—@d‚[iw)‘6%²΄C΄ρ΄Ω±FJ΄9PΫfΝeόδG%=ΔπΜcτ:$Α₯œιΉ3Η>?°μί ^£b€šΥ³ φ/ŽC–Γ@²SxC;Ξr¦OŸΖ*nΧfΪpΦ‘cǎe²΄u,‡6Lםεiασή{1¦‡„ϋ18ΡZηhv£$ΐ3‹)ΙΎf¬Ϊ,E 2e^Ž2Νw9Ά²<κιΌσΞ+³Ν'35Αƚ[_?£έ;>WπΎpž@}QΘΈέ·uWΙO0δζ;nUΩOΈΑ–/ΏΧHF^›/νΫ΅ο3ϋλ9Ύs\ζ½³ λΑ€ΣΘqΘ:ΆXχηύc–ž’ΖRŽ£|."sτήkλωΚϋύžΑLp³±nsˆΉΰ^π—$ΚΈ9…™~‚${σ>λ %|ˆΆοΪcΘΘqΙΙ³Ij~yδή8N—£ ³I2@ί]«Φ+΄bΠ Ϊΐ:‰8Ξ(€,A²|!πPg―R…Ϊ €SaGΚ¬–.:•% ΑŽ6 ΕV „J£D=x#Ϋβ’’ϋΝ|q.]°.Ξ«Ά‹g€ž'YtΛ ,&IΕl°9#hΘ†€"-~dFHθΡE ¬έΨ~šN¬/ ΠΩD6§ΐ)½Υ«Vr0Ÿτ‡όΉJr)Λ‰υ]ΦUΙΒ¬@υXϋ2‘yΡŸ(ι΅€ΐ¨*~;؍‘"qχ:IΪ™)vŽGV13£‚ΈΊwίD‘Ψ—ύ­ξ«eΰ~οb+Δzφ3Q^έβΊf2G4> šy’ƒυ%@Ύ$Επƒ[Ε]£Άx`ώŸγΐhA[³cΞŽg9tΥ&ΌΙiβCΆ3³ΠCφπ³ ΈψΪΦ©T©ˆέΎ™B΄3\Β°]»g©ΦΫXY7²δVl ώε;Ε΅k³€nψkαΘκV„W^$ŽΛΟ.vMΖ6¬I?ΘgΙj;³f$ίucρη~΄Eχ€ηT[7Ρy\dpnΫ\r±-ξ· HΪW+C’iΕΚ珬ioKόησ‚ε·k&)άΛΏŠ8ιGΐux1¦Ω(u5;‚ςq•―;₯`ΐι’Ϊσx)š:=¨#ι‡t?ώŽ“ΡŽ!‰ž‘›»Τ£R1ΐσQy[b•Ši ¦˜bˆi ¦C©ΰωPj3VΦ³θpε‚·ΫΠ!Ν…b:΄Γ”ΧΗEωh‹ΌΡΗF.>GΫ―¬Ϋ%ΰ™ητ­έ.;ξ­)²Σ“€Κθ‹Δ^+Q₯ ΙΔ"±‘ pσbPΰ ³oΑA€Q$P©‚bnN{ΨΦ—Iΐ VθΊMgH\Χ[„‹ršέ&s#ΰ±@LgǚυŠι΄ΨE‚ΥΐΫ€ž$ŸΠI-ΨE[œ+Ά?ύγ«yRψΪ,0{,[˜ B8Ρ ¦ΑΔΑηƒ `νΓ(ŠQΜ‘E}…ΞεγaBΏSΕμ‰Ες„ψ2Υ€@gϋ`˜ύ€H.\BΜ•λΑŠAF‡:mΘ΅χˆρύ/('Z†ƒΙΈπ, <|W‰u³-ώKΌƒnΖβynp, Ϋ/ο/q{Aϊ`cφΧβΏmΌpΆSόΥ+‰σ½§Ε΄2γ~y¦Α6 ΏΰˆˆΏϋ¦½Žv°W>!œ$\ΜMΌηZ0ΕΓEθXΩtΧHΟ‰Ex0{T ΐkΓͺQφ<66k€gήUοϊ]²mμ{bbœ‘€8©1n€Ψ*'Ιϋ^Ži² {SΕλS’άΰζ©οdP²°LkρύϊHΡ―`Ά}uο$„DIψκ{ΥΝ ©β ΰ&i"Δΐxεyό…0[zQW€—Ό@†M[Ε=υy8J‚€]2Η$ή4\L€Λ”5λ€θΙ‘–|«r(‰Ηyϊ#ΨHαΉοίΫΔΏ ŽP€`{ςς92τΖ”C›€‘Ε`bs<'Λ¦’>νaΉiτ(<Ψ4„9‡Μ_ o 7’<ζf™½neΨio½$‚§z₯x?θΓΟTͺxcΪι69:ΓιHΏμ²ΛΒsΞqϊ€MŽbΝΨeƒξϋ2ώ!ώωΜΧΕwσ(°7Υ‘Τ‘ƒδΧΌ,ͺγy_xαΉόςΛΓεqηC,‹  -πœ{ΩΝ? Ÿ,oR; ώ& – Ξ―8β‹ a68@pη[άΞύxVΡ`VΉv 0F¦‚^πIη…s8Ξ›.½τR–ΦlΗd]λάΉ³*θΠ‘ŠQU;Dy ΣVσš!π›Žΰώ`!&ψΝͺ'Ά]‚@υξ€φε9£ι‰Ϋ΅”΅NV6δΘ:˜H–RκˆΥ† /ΐSEşΤMξ™0^&L˜ κυε›oΓκ‘AwŒPΧΕ{6ύΡ©Ί ,’vΜΣ>ϋμ3hSm ¦ηDκ©΄:i†P}‘ŸœSŸ,<πΐ `ΞϋLΠuΝ:‘ŽϋQxΝdj%ΘNΧ)ŽΤ Oζ#^Ι₯φyzœS>β8 6ΰM΅€βmΧέ]Ό0έ4œ™>0f¦ιL"Ρμκ‚’|)ΐ3O_` ΉC‘¬ΫlΛ=»ν9)J­JΩxΑ¨Ι!§:‚–.;)‚S_d‚ζ<34(V ΐ~°,“ :€qΕ]§FΈ_Ϋχ`ΰόΉžηβχχZu72M$LFBtlk7ͺ³‘-«Βe–ଃ­ΓAΟ6KΆ_Ϊ+Ϊ?‚εt;&¨K۝؇΄­‰<-ΑDO=υ”ά‚@ΆcΪκš5k†aμσd„dŸ'Θ–ύ…ΰ1Ν2IY ΩoΩ·Θ©Α«Ϊ.qΠ .Ϊ22‡jαω5?·ιcx zμ pΊ~ύϊα:ιcυ']™™{™/ΛR'τXυG 2ŸyήHύ‘ύ:’%›€:mGt="Α‰ΦrhσχgΛ8ιϋV–±ΤΊNΐ:πkϋ¬λ€Ο§œ-ΫG>+ι£/W«ϊaΰ’ήGr_‚< m}φ31Ώ˜urfν‘δ„έβH]ζnqΙ’Ϋ ­Tyυζbφυ¦ngΛχζ‹γŽ~ͺ 0eŊΊψ¨ŸΤγ}χέ§^}’Ιš¬άΤΫ ΫnkΌGd­ΥνœrC½Y… Ο­ΑόθήAΝγJίu€η"ΜOηŠ{Ζ,΅VΒTμI£o@tQγ"ƒΗZ-9 ½λ+˜‡ΖC­ΟžύU§ν€n€xθμϊοΨηh€kd΄Χpί}χjܧς?+³ΊΡΜ½ε9ϋŠutΗπkd׌7ΑΉŒͺΫφYGK~σ9Ή g²ΎΣVs.Κ2h§PΗΎj ,©.dN'H–Α dO&ψXA,‹Ά†-Ϊλf͚Ɏ;Κl7J:/·³|φιΦ­[«έΘ¨ά«W―2ٍΟ%ΩΧ+Ο(λnzYκLΌTΌ!<·$s4u§mYδ|·bŊjΜ‰fσi―hΫ,·>?EΪ|«ψltύυΧ‡οημl3Φ±qϊτιrVr3ΩωΚ·b j΅ΡύΓ {fhόMR½ο›«’yoΒηΨm|ηΈf ΐ罏6•x.ι™Ξ΅€ίAŒ%KΕώγ―ϋŒ—ΪΞιcψΙgK«˜Υ3$pΖ)˜Ÿt9τΟ8ΰfΘ·`©"ˆ0π,c'ΠŸ”D ΰy,€g­ψsN^ΨΦΜ=`ο~εCρψ9@Ρηc€^'Φ€όΘσgGν jNΖu$:±>,dyΩȞηTλ¬$q]6ΧsΌυ2ΛώsŽΟ1_ykάΒSψ<˜pνεΑ9G¨$cΙ_RψΨΛ>gΑ·"Δ4ρΤ¬-\ο8Kγf.€ΡΩn1σ°^ƒλ0`Η5r»sΚΚNI>«“ψ—-‡;O8‹αΊ›λΊΛDΪ΅@^Ι}`δ―R }―'9uΫŠί…€κj)bοΪ@2ϊ/Ά?άϋΔ΄`[CvaέΙμΊšk†ͺ*ΖsΔύζlœm}< Ξ’š,γ’Fv$ŠY“Aš€A_ό„>r}Qœ ώTΏ‹Nν&ιWpαα'$Ομ„Ύͺ @ΰύ Αnƒ"ςμ/ι­›KΡc―Ηw'ξ=qŸ„Œ‰W_\ό\Ηΐ―ΰωΈΙ±K<ͺ5<Υ·'VΉ˜bˆi ¦˜b8ˆž…ceόΏk€‹_tδ‘‘ΜZθp~ϋν·•ƒ‚‹Θ\&ÝΪLΙ^𐙐lJt ˆc$ZΩ‡πΜsvδŒφλζ 8«Œ φΖΥƒ§'ΰ€f#s£d/"@b³8nζbX!ΨΜ €D2w˜*[ΐdd]Π$ψqλh€·d«…¨Jם.Ν’”t nΒ˜‰ΕCp^Ύf/Σ§VΗόuͺKR—b"νŸ€ρ©Μ+έΊŒ#ύωϋ2)|ρu0'ό!6°nh1ασ΄l,‹ΞγΜ>‡:ΰ4Ξ{χ#q‚ΑA1J°"Xυ6o$Ιη!f[,¬–QΠ™§7ξŸ,ƌχ¨ΏML;Άκδ‘`Z@nŒ&Γξσs>Αΐυe°S#hαέgΔšH)Ίι’ηrμ‹6e;η$‘Ηξέ»v§<φ”Εj›·IIK†rL˜?-B:Ώ™`k‡γ05IFγ?΄ΛhΘ)’Ν£ΐμΌ μ8€ο=_«EΫυ˜Ωv,žys½™;aϋ߁@W8jͺ?4PμpνΌ ηΏΰ|ƒBžέΥ[₯HΕpτ€U,­ǁTY훉ΝοViQωΫW―Ά$ {ž{-θH€ΣΥ5δB1O=Qνo}cΠCΑ”gpμr΅ΩOΗΠνΧ‹‰ρ*gζΫ’ψΕwΑρ N§8€τ:AΥ-λΩ’όιΧͺ|¦ 5_£Mp( †Iοͺ­β›΅£K[)šώ°tΰ‡s Ζ†¦U¬OΔίΈ‰ΐϊΌ’vΕ0˜μ&΅λΒ©φ±VΠϋYΑ[Kκ₯ηΙΧy;°ΘzόQ*¨ ΗΨώ\!αΝ>£AΗ,—€9²δ’ΝŸv’ύŸm;šΖύΘ&L6τ`UΡζj¦e θePΜΡ­<7ΑN΄w΄ίLEO›―A]΄ω}£ϋ-ν _μσϊ£ψ?Λαs-νŽ•½”φTA‘ "θιΣO?-sx½<—UΤΕ"£ιΫτs5ǐ—_~9κ8€AZΌG‘6Ώ4[F;΄~ύzi„@]Jδ=₯=#(έ:–Zuΐ9.NŸ>= ’€νγ=ΈκΤsč.GϋF DGY‡#…ϋ8X6ά@Ι–,qμӝ?[ͺϋβΕctŽ£–ΈS«Jγwn–+Ά―_Ύω²ͺΌ"‡Θζά=Š!œν…Μ³Vα}₯ ΦB]2Ϋ™`ΉB&Xkϋγu±=°}r?f°ώΟς4Kξ¨Q£Γ6Ϋ{$pqγ{$ IΧοP|q†gk₯ΑπX4αybM‹Ζg¨ZZχ(ώwYΉV²ϊ ™L2Υ :c±}LσaŽ‘„gELŽ&νς‘²ΙΕΞτούΑφ¦ƒάt ‰΅][Α΅*λΰ­ύ½,š‰œΌ\¬ 2¬†ΐξΞ5™’‚珙K~Wv„sφ‘Κ|.…λ7Jϊν7ΘMγξSύ”ΫΩη΄ph­;ϋZff0…σ€₯K—J•*UΒsEΪϋmΫΆ©΅J–ΑςX₯ύcf²Ψ }ξΘOž›Α,pΛ,$[[λΗc¬vƒσΩ$šέΠε—f_Uο(;f~'՟ΏJΪw rnyΖg¨±eπš­Α@Z‡ΤSI6ŸΆ‘¬Ψ%Ω|]7~ZŸxοt %Η-ΪV–Γη‘%?ώ&ωsq¦^IμΤ@lN‡|Pη[₯fνζ QYΊθ£bc)uͺΗΎΘρύΪk―-xf ‚Ž6E<[λωL§ΗRλuF~·φ“’ξuδ1εύΝqœΑQfο)6V ΐΟdPΦ¬σ\)v_#`(ͺ@ώΚι`nfPΦl6λΦD0s|Τݏ–+ΆΙθ‰^4Λq­άrΧMϋϊ"L„±^bΜ”ΌE˜ofπ ‚‚}„sz€»}Θ¦•Φ‘΅Mλ+(Χ]Ldf ΐ/@¦θ=k6ͺߚ%Zφ`²wήΐLWΆά<υRϊ=kX'±ƒ!Ϊ_»²˜|φ΅¬'•šΦC†‡d±WIΕΊ’kŸ*Y7+ΧHξGsΔ΅μΎ8ΎΛŒIgž’2nΩΎψFlˆjyΎc;Œ&ΕΪ v4n(3AvΑΰ‘C(ԁ97Ιϋβ[-mU%Ϋrr^ΞΒ"~¦䜊 m](ί7„Ϊ_@RΆ­‘Ος&ŠYλy·]#2Έ¦ΔΈš?ώ)qΒ―Ba&Μ€;―]sŽήXψ:]Ο!H:Rp/σ±ŸA˜°Kόυ—"›aΙ}ršΈ˜β«XIΣωόlδBM°Ρn;ΖέPz’!ΓŒΆ ΰβιΤZRoΎko1ΐσ±vΗcΧ{΄i ά€η|Πυ?Ϊ ωqΑ°1=T—”θͺΘπKšΒηΓ‘2&1 Δ4Σ@L1 Δ4Σΐk x>pέŎόwh€ Ζ?όπƒτκΥ«Δ "[ΧΩgŸ­œ“Γΐ’Gg_Y„©-ΫΆm^œ.Λ1₯νs8Ο<Σίm»ο 8Φ6‹ Rm*Š+>DašUίΈ™ιύΐΕΒΨώ$€sm½χu°K`αRahI8  ΞcM°ψ%`Θϊξ'‰##ΚΈ f•E½MJj·Ž97 ƒN­ϋuία¨+xώ5q°g³Š_“ϊwn_‘ °¨Ηωaκ έό>EͺτυαSΡ9μ>Ύ€^ˆΕM0;—U‚@ηΑθΌ&*3Wcρv=ZX° D£bŠΨŽΫ»ΰhHΜσϋI E³¨§3ΐώaή3^μΩ9αύ52Δxό~1;οud†Τ_ΎΗΒο·b5΄Έοΐϊΐ-CΔq₯ή#όiΒΡΈd„ؐʓs‹γι±bφ .P«»³€ΰ‘Η‚Nul(:©»€Ηβnh‘;πΑ—β~γc΅k zI{:pͺϊωfb‘~#ΐΞ²-‹Δ;‰©#‰θp¦Σ”ŽΘcIΌ+ΆΚΦqάΐΑ!ι RsΖ'ΗΛΞg‚Ν 7ˆ7!YΌξ Έ/eš€ώ΅Α2灯s.\φσ!˜Ζί¨†$~5_ΩM2ΪΔίp…δOG`X‘xΪ·δp(h–P΅5ψFuο 8oˆi₯ gWI6XŒν;₯pΚsβX§)ΔΫ°ž$ŽΈŽ”J`…Κ“Όηfˆλ—ίΥdύu!HΘ0`π=P τρ]dΓΕg* w"θΈε΄·0ήΛ3ΐD”{Υe±S'ς$xβ‚ψΚ’΅μΟƒϊ‰D8[M°ΞώJΜm`Ž©_Sμ· •ΊwW`€H2ΟGG>Α άxγ2ωΡGΑl…s#½φϊ’|ι₯‹by£3š/‚ξš;wξ^PDrf}*.¬8Ÿ/mCiΎ`ξΜ³ΕƒqΙG:ošΙ‹€‚S * @bΦ¬YΚρnΗ½Λƒ]ϋΰ³OΰγK›Y%€Bϋ ˜žμΣ jTUΐf+ΈNƒ@θΤ'xƒΰΝ°§ΟΕ—pr ‚YςΏψŽ]eŸΦNxuŠτ<ω$ΰPଉ“Δ[Ν9Ÿ.Oƒ9ξX·nb ’ηm˜Aί>z Χd@  ΅Α\ΐ]κιʌΊpβΎC#cΣ’΅“}Ί…άVΐXyλΔϋLΰlL?=–Αν|PIΆμΙ“'‡δ¬ΛόyσTΫ8ϋδS%υ›ŸΔU½šWlύ{s>S,ΛΤρςΕHάU2{ϋzΉδ’KΒ —ύι‰ηˆΦ‹ΐJ‚―)d€«[·Ήΰ9/T'ώOέσΊ(Z'd~f#Hα†{œBΒ©/’λ.w…Ya©sΞΡ \ΪF@»fλά₯ΛΪ6¦HπΟKG¬A‡Ψ +΄3!ζΊtviΐ3λΓf6αΙ‚0«u“^=">šYγξQΕ„ ΖξeHvŸr‚€ u_uΒυθGΤΥbΖU γvxΨƒŽvλAΤ•Ώfu•:9zRLΠ₯Ζ­ΗFϋnώΌXά?#ΥkΥί…}{JβΔ»χξ {3ušΔύ΄ΑdδJΉλ:Fμέη£m  Š Γ ‘”Ϋ΄°=/Y²$ΜzK\Ι4hIοΗOφ2;Έ―Ω•΅=δV mai±<ΚoΌ‘˜ŸY6νΐ\Ψuš)άΜϊœ‚ΰ ώ δεΦ eσ’ζ97n¬Ζ‚‹iηr„ϋs λ/A&<–ηέΈqc™λtςΙ'«ρBλcϋΎΦO4ύρ|ΤK${hδ8€AZΪ–”Η–ρ:¬c)Α½άΖυ9–j Η&²Ες\΄Eœο=Šq˜A=JŸƒ‡ˆ@ -,€?~Rdπ¦ΈοΕν%kΒΫΘސ%‰Uύ— Ψψs*Τ—‚΅œwˆΤ}τωrω―aϋΊAηΎ•J·œ-qΓΰσΫΑK λΓσ΄Ξλ#ƒ3A‰+¨/Zϋ³ώΟφ§υΛcΩ69η  ½>Α-={( 9οK«V­Βχ”ϋ—y|ηΞ‡PώQΐ3―Aγχ??αžΩC/CτNYmήpΦO Δ‰O;XK΄€υ fRo£z’Ž,&*ψό΄eΉ¬zφ=έΧ#ΩάY7φi ˆζs›•Ύ,u6βX‘Τ"Λ`}¬ dΪω~΅κ υ(€q`~qŠ D\»v­bθη‹ž°·i;ΐΝ+0§G ^4P/O†yJΣ>ΜιSΈ–J2€›Λ5‰>˜JβcώݐGŸ%[ΉΘIέ εκ3 μΝYΏ-ς&±oή|pˆ8/I |v§ΧJŒΖuE ΝηšsΕ: |»δΟ[ˆg«`‡Ζtq’~ΌL@71IeΝRXœI²Bfh£bΦ„άΖg₯ŒJRπΗο’€,_φ¬έ(  αOQηv’†ΰm#sΨ?ύkθ™κ?ύ¦η`ϊ7?ΩηŠ Ϊ‚Ω±ψΞ< cc½bΤτo ΐysζ\ϋwπy σpΐΑ6昼V¬ž™Ό­šHύφ²%γXΫΏΠωC₯K9ŒԎkφcΎΗφK Τ¨"ρΘNδ'cςGΘκ…u#†/¨TGr«5Α3XU©Π­™ΈΪΥgέΚeΏ€υ›€ΰιι8]―Ž1Ρ.ά½»J*˜’ΓύΧ“ύΦ,Iόl ΪβŽn€΅“―ŒtdΈ‡ΡcSήΣ/K<²UŠiˆΗfκκ%οϋ5ΪCp?Ϋ Β*θkΕΆ$'†8Ÿ8rw+b#Ο$ν›ˆΏ]#©ΨͺΨka-ΐΠίa‹ΜlŽ»ΤY½I©’ΣλΩ=[YŸ ¦G&Έ’fLƒŽ O;Q†A0„{Β3κψ ΣP,ΞF½#PΊ`ΜTψ2φ€I;^ξ9Bγz’υΪ»’ψ!Ϊ$ΰJ@:&·8TPΦβaGύΥ*‹σ‘bΰΎi°s -9bG{f@~ςh¬Ÿ‡ξ«*θz‹ž‘›»Τ£Rεύ6`αS/—ά~ηΚΜ ΨΞr]\`τC·‰]Ž‹ςζ‘QmιΥΔ ηƒcΛΆ½UFρ’έΔυΨŒ i{;LߌΌ1ΏCΨX κ;$\€L<ηt1O<~οβ­ώ³”ΟΓ tώλoρ]}»837`a7΄¨ΟEc€Τ3Α–QšΨ.ΌN|?.Ψ ΖΠs vUqΞ™.fΪΎ:Ά=9S|S^kc(x‘M±½υνν] 6Vώ-…ca˜Μ$Xvέ2\€S[U²uδNά›ΞΟί€ž$ΊŒπXPŽ"  Ψxχ μlΨmRυN/ZΓΑ“cπΜΫοωcƒlŸπ^Θͺš"5Όq²γαΧΔΆx­j!ήτ β a-*HκΪ₯A–&:ΰ°(ϊπ+xό©\A’τχΛo¨΄›΄Ÿρ7^!Ω`ώu]‡¨ZIβοΎ!ΘΪͺΆXή`Š&ωeœS_ΥΚ?ςFΕςͺœ:©X…L€ ϊφ–΄‹JƒΒ―θ‰Α˜  …,;.|^±Έ^># pt!Ίv°0γiӚbΛ¨"ΎIγδψCŸ ¦‘ ₯ΰεχϋ‹»Ορ’>°Ÿ ½/])sΎ“$0vC_έο\ρTΒXšΠΐ2uzjΞe˜¦;77WξΉηUη9 .”š5Αh₯ντI‡·ώMY<…γαΌ&`BΦΞΛΧ‹—NΥη&H7―Y§ΗŽ«ΐw­μ€Οκ@ύ†€ gv,χσξ— 6(9ηV¬ΔTEjYάg«X…QΑ¬–ΙfHά†qη 0K_ –M³dΑBqή6^|U*HE΄‡›²γΔΜΙΎin³fχΠ€΅žΰθ?~|XO XX­¦dƒ)› $²9RοΌQ^]Ή4\§₯$»ΐΚD{ ]ίtΣM ,ΆΏ:u‡ή#»Τ2ˆHΠAέ‚ο\±'9eΊPXgήC λρΘΰ‘bÐtΛτηΈNͺ0Όρ<$I6Ων¬i·υ~lsά^R(c&Ίεβώt+Μ°JΖh¦ '› Μύ΅}>υ &8δ `―b7ƒ{4ρΧ̐―вeΰŒηU{έΊ5XmίΓ±νΝmςή'ΑΊΥͺξU鬓“‚σ†2Nυ Cς΅»ηψ6’ϊG•Ριj¬Ι”=μϋpŒ+Φlm"N@ΠukŸNθζ<€*Κ!&ǞΫ”Έε«ΥQ§υ€Ι£Š—πώ)zσ#΅Ν‡9s½Θ4,Rό€Γχ‹}χΎϋξ“qγΖ)Υk―½VŒΑ’}mΣ¦Mͺm²Ρ@\‘΅‹΄3όŸΰ1ξ V¦š,ΌΆΈΕgWΚε—_ϊΑpμo‚sy¬Φ‰Η•Ε–tIBvyά’Λ°~ξ?ϋμ³ 4ΖΊΣ•΅N‘ϊ{ύυͺψ].@IDATΧ‹Ω·hϊc@ λΟ—ΗE‡4Hλ@μ끌₯Τ'υN@6…vυδN”›ο©μ(ΗζHN«y­ΌWz|W_r§Ύ)I΅ύ*u|όEηIABuΩώζ@{χRyXοbφυŠζ'нi ±WKWΐFΪΞJ’‡zH19ΣN³i†gκs̘1Εl5gϋLύš₯–ϊ₯yΟ‹,@ύUͺJϋγ;«΅“Ϊ|yΖχ’‘LΫΧφΥχ2θ±ρςέΊΥrGο3δ–“ϊJΑWi• βΟ4 Ζb–(ΏγΔΐwΫΤσχΑKύΖΆgGk«lίVf}­σ©ύ]jδˆ˜νX‚GΩ—Π9XΰΝG–¬k$AΧρΟC0AOΥ·’Ο9™γ›7m*ΆˆΆωœgiaίγœόσΟfQ}kŸΜR»‘Λ³~TΝuTΝάOb ~§ΝΦi7,D`2«ω\y/’ΩΧS1ήš;ΣΎjΥ`ΏΊb8χAρΪK›οrœδΤϋγ?^ξη'}=όŒΌwVs™Β±QgŠΉξΊλd.‚ŽxV‘ύηΘη3WΦ±”s` ο'uΟ¬/ΦqˆΟΪΆSO‘€ggKiϋiΣυ3K­uΥίy_x₯έk½οΑ|šΏό!?O{UNšω”*fsίΛΕΕtβG ­Ώv†€bΝZe$Έω`μuDωδOfW3Φm–ο_[&™s·IΝΌu8=K*¦ονW¬Α–ΎκΘ.Ps*Ω› pΖzΘAɚu’σίωβDπ©>«ψ«W²¦υ9:―#·bˆ6wη…Y’3τξό [42ΐY…ŒΖφ¬l–ΓΞ)oπUΣ2­)Ό;Α|žΆa8ŠlGFΰ8 a_φέH‘m)&·ΘΈ€«”\¬(?0ξζ|ϊ_q"@\ξΉΦj¨±ΨL ms‚ƒSž»—lƒχςλωβ~ ŒΚ› OEΰͺΘY rNμuΌΨΊΆΓ:±_ ž{EβπW‚u4wΥZ’S΅‰x7T]ΰ)VA r£E5©£₯Δ΅¨ΉM”qzΟ}$%`vζΊΕΣΎ₯$ǜ‘`k-ΈχEο]χς‘-%ή2LΜFυυϋ~bmΫσΘ“aςf2ύ6ςƒ~κΔή£·lہΰφ…λΕΜ*²w |Dδ0βqwλT ‘&‘ΞΑLmqXο°;νΔζo₯*’οͺ |…ί krρ6IύΩ \ΘωœkζWΈ.σ³Ήβyε]u­fj²ΈFέ$F”gTχ5s4‚(π]$ήw³`R+€Ϋξ©/¨z˜&€Ϊ`άf λ¦έ "  qMΌJτJΡ#ΟΟCbΌ|΅οGΐAƒ·η—ϋjμ˜Ψ<·9v‘G±Κ xΎπšΉR–η#!dz~ϋ™žGβT±sΔ4Σ@L1 Δ4ΣΐΏX1ΐσΏψζΖ.mΏΰ’°fϊγΞLaNG*ό¬\:Uδ?ώ¨Ύs;Ο£ λ΅S˜©Κϋ€Y«4§F΄2JΫvΐ€ηX@Bz»l€›Hρ§ό…j;»:Ιπ)ŽΏvu€Κ,†…€C,¦Η'[xGL°~RΞθ I—χ8Δgω‡‹£γι·³Α&Κtj‘ Δ¬‹†ΎΐβάY€y£›Ey.J›oΞΟμ/Ψέ^(ε5°πν8₯§˜—`aŒ*GDZΚ}η#‰[pdΘΉD ©ν’Ξ;C€UΣrUƒ@gΫ‹-‚ΡΩ̏¬*ν@A§&Άλοωζ1BΞΏν فɣK―'@εζuc"CΫ’ΔΩΕu½ΘUƒΏ­ο8―΅bs-Ά Η·γ?WHΰ,d[Ę󭸧Ώ₯IdˆuK0U=X/§ΕΎ2SαEϊε”Ϋ―RΞKα―,ΈoΉχ-€1ΜBšB›TΉν,q΅‡£%&JΗ2Γ³nξ…λdΗ€OTΪK##Uj<4Ž ‡μ΄€žύU*a, :_zήΎR1ε˜`€I<οT)ϊθλ ΰΨψk‰{ζ;`q 2½Δ‘Ώ› κŠϋρiΚΑ ₯7ΨΧ9ΰΧυПΆ/Ώ…δ-1ΐDCvΗ€E_4ς²`ς3Nω[νJΐ£kΔ΅D©‘μ]ιζΏb„­dpI½υ:yοUΚILΠΑrœ€­Ž,ΤέΥ«=˜₯'Hg8΅ι VŽηξ}$ϋΑ§ΓΞ2²0% 8SΰgΓLαΌƒ/Ά! ˆšΡ@ς‘‹Δ aγz€AϋΣΡGtIB@λ”ϋΗIΦ½γ%‘™`;‚^, _PP €ΜS§NUŐAtΡό€πΖ»%νΙ‡εžI(&/΅}Ρ"q ^~όqΨ9πŒ’˜κΫ·―p~drߝωͺδ Ί^ΌΘ|Z/€™m­Hˆ"θ—  ™*/I«!…―Ό§~'ΉYn›ω’bYWBo¬άΎώϋπζοΎϋN±G›Η•€'Ξ5ΐA9 HB“το«ΰX8λtiR%)zk6ΐH΅%&#}€ΜuκάΉs1ΰAd dg$°<\ŸΠ•τB@Y7#…z΅˜²8%InjκΧ‰εRGd7%8“ƒl·l~D ηΦ;G«™ηޟSCŽkm“^' ν7ΐ9ηž{θpήNfg‚½¬€gDΙ.½Œ&`sχ`ήlƒ“R;*Ήͺδ…΅IJ|‚lέΊεˆ;-Ώžo“ggΗώ*•ό=ΗσIοs-‘j 2$ΓΉ ρ6σψ¨lή »gΐ‘΅p±ΚPB ΄mמΘ3bήΆ7ΨNέfΖοRNxχΠ;z^₯v+μΩE'cΞd ²ϊξ)zj&nŠ)~dœH~ΰ6€ΈN*΅ΨΓρ'ΫΈVˆd½εωΨΧ233Γΰ£HΧώκΔ~AΘΜBΜ0D!0Ο›•Τ€­ηZNύϊυK,ŠΑ*§žzjT`’ύΘ Ž W«Ν§-γ˜C{NžδκΥ«§ϊΆήFVGάœb}ΛZ'oΥ_δΨM|N§^ξΌσΞπ8Δl Όd½iq»,κϊς³$›OϋJΕγφ7–R_š!™uνΡ£‡κ‘υ‘{F‹wεFΉcζΣʎξπHB³"sί!©`Βπ}qaN8γdρ¬ή)[°ŽΆπς(ΐzΪΎώώσ―_ PFΊΊLkΫΤΧM]3°δωηΖ pΌ֟ΰ}ΎΨΖh[6l¨ξ)υπε—_ͺvΔΓhgyΏSSSΓΆ—Ϋ πλΧ₯»x’„Α(΄ω₯΅ωίy ³”*˜ΓΉΉζ±vɍωdqφNωeΟ6Ή«iGΉ΅Q»RίG&@D΄qο4ΝοϊSoKE?5ρΑΣLR3λQώ'_‹sΡ ΄κ« vMΑDͺΐyά·ΌΒg_“²ό`jΓΦWs`k1*°Εέ₯ΐd°¬σ1*lσœ#i–όhm•ΑΧ\s²ΑΡl|iͺc΄ΞΘπO{[’°Ÿ1ψ―W―^j²π·hΡ" °Ž΄‡ά‰@SZ Rf`™ͺT}χ‰―Q]ΜfΘ4…ΫΛ`½21.qΕ>J‘ύη‹’m²ϊϊ]’έˆ8δ52Xf.@½TAΦy4λΐL R£άM&dξS’έΰ1Εμλ}γ€hυVΉϋ…GΓφ5ΘΛ²y\iσ]fαy9Φ•Χζ³|-Ρξ]S€Ξυ|—ελ€} ?9oΟO|ώ hۚœœ\ζρχŸχ‡ηΰΛͺ§‡~Xι€Α†Μ. xζœ\3q³p,΅Ϊεύ΅yκŒ™JΊΧκ’’Ό1‹AAϋΨpV˜ή…ΧφόΪ?Υ!<;άκ9Djλζ" ζ™*{Ζ΅Φx†όν°Θ" #3 fΙ‚lΫa—{°ˆο5κ9$₯M5I¨Σh\Yk| ŸΣx˜σίyβBΠ΅•D7B|’{Ϊ6— 'χ³ZU§²Ύ™Έ†ΐ5’‹ΜqŒ’ƒ !x΄1½ό:Ε—˜"ώΤumΆ]»ΕŽ€i½^j=‡Ν‰Ή}ŸF2B!؎OΓnŠέ…LH˜‡Nξ%SϋˆY ±΅ΐ²|ΗsNΦG_Iά―K‚μΑ‘cldbέΣ^β$Ψx€vMd'su ¨Έ»#ΣVbpO΄M¬GxίώTlΫ³°φ =ΓξδΜW`ύНΘ™σfΛ}ιUIψi‘Z{b!ΎZΥ%ώΪ+0~7–‰9‘ώ”νί.σΟ­bξΘ nΧο±5©*»7—ψγκŠ ˜2PΫσή'α l?ΚLΈφ2]&Ž5.Ξ~¦Έ~ϊ?°ŽŒyNAΫgτ)Άn€O£>±Ÿ1{Žxߜ₯Φ•9ηp5m"EhΗXŒP»0γcβΝCχ‚Ώα#Ι½χYρn*o>X+B1oΓώΘj`Tˆΰ‰U0Άs­Κ…]η³eΐeργ7γ&φwfν’ψ8 Δ` /ΈΌΏT½δΙ{~†Δ!ϋ$…lοIχތ@Β4υΫϊfβZݏΟPuυΧ©.ΙcoAΫΑ½ΠίσΠγΑ{ΰφΌΝϊlΒƒ4ΎΗΕ!¨¬ŽΔ?2υ(’‰/―AφΤ‘NW©( άρ‘­ΣͺCό=x>Δ Σ@95Pnΐσ™—Γιrε“WN:‚g‹*¦˜bˆi ¦˜ώˆžw5vMeΥiιΈ%πŒ+=φ˜†pA•ΒEr²όέΰεJ•*…­ηΰ~txj;: Ǝv‚Zχ=˜οe<“Υ©¨³_":ϊ°8jλm4QLlX,JT)ώκ(φfΑο-οΟγ_ MT‘Œ1ƒ”ƒ.Z³,Ÿ[³ε’ͺ£c=©~Bϊ?˜²±c7³d…δΈ@μp8†Α·ΊB`Λφ€i#…©fΫ΅D Ώ}ΫτGέ'ΜAΪ½O\^tg=XΤuw=N―ΊX€YΓ#Su‚…ΑJQπΑgXtά>g€:Kvκ…ύŠ3T„χ(ω‹btžυ‰:‡@Yζκ  t€ °pFuh.,ΠΕσϋI XeJΫΓO‰Όό&@’@B˜ΚΟ8΅xŸzPlL_’`‘ΨΣχ2q.[\t†‰2Z`‘ϋ£Ρ7χužύA|7ŒEίž'€vf{m²-ƒΞEu”™7ιY€Δ—¨Ÿή& $ρ.0%κEω=9’?¬ΟHΑLq :KlηaαΎ!Ψyσθ·ΕάΈΖӐͺ·χ‹#t<Rτύ*ΩρDτjΤ ˜žΙΚ²k"ϊΖ‚Υj'?˜mάΫΡΗ ξ©_AАΖιk9>$²m‡Έ'>©ΨKωI;nψŒ.XqƒΗ§R½OΤ‘°s(‡ŒΒyΟNΧ‚ ` αΎ‘ςαΪ½€ηΏJ8w˜xα”§SΛ€‘ωΙsŠαYž―­έ@<6"5fš|ςM Βτ§ —œ#FΟNͺΊΪ‘]πάP _~Gύo’§>ϋ  ½zΈšΣΥ™Žs2‰‘Αξ™gžQϋρi»7nš'αJ—ΒΗKε‹/XR γΌH l§=ή‰λΜqd°¦tΧ`Ρ_ψρΣT§šG†2~³ #™’QΧogΠ ?¬MG)˜π΄:„σ/ζ&ιCΘμ…Ώ†AδL?ΝΉ[IΒ¬‚²β0G ό±Brηώ(ᨻνεηΒ@^ήP$yρ IlΫBζώυ§°|:y<ΓϊZ4±4=ι}u#λ΄ ہ;B@»£$ΉUn9­x0χ¬\₯Šš‡H@@…u*ͺΖ6‚Θ"K‹V@9οΗk¬³,‡ ²~B±ΆήΧ * ROoΏόŠ€=χ†8š6”yυͺΘι}OW‡±N‹η}/ΩOL“”φ­ˆΚ³XN^^1ΰ9eDΞ£Y'¦Ε&θ:Z!³²w2ύ9Ϋ*οΑ3¬λΟ6BΐMδ}°žwδΘ‘ςΤSΛ!mjΥ‘?6—Tgœό=ψzIΈυ€,j•£„ƒί•ι¬'?ηSΣ“τTSFp¨Œr•όΑRτΖGκ2N%ŽΛ•χΛUPΔΞ΄‘ά-ΒσΗϊM`‚ϋ+b‡ΰO:Ν}uj¨τqm‚:ŒLΰžΊέ"qΛV*›_ˆΐŒΔIw‰€Ω_‹ 6χ’G1ΒΎ΄c‰dΞ`ΰH ϋΆΣF±]gf–πLπν%Ωψ/»μ2e/y]’(Τ¦MΥ_²²²„¬οlο΄©d€&ψθ0jjΦgχΫoΏ©`+ΓfYlm Ÿƒ/½τR΄@[DφIφUΎψΌ;eΚžBf̘‘ΐm;wξ,sT|Λ-·(ΫGύ•πά‘C”*6aœβυhΐ³Ά{|~§υ=b=•Ν>γΌ?Ό¦HϋΚρ–φŠ:άίX:dΘUŽ sΜ$P±`ά«’: ·ά1£8ΰ™A«m21Oί9ςE©τΠ­οΙဦ!ΊŠ lιfJ²ψ6μ–-£ήU€[Ν4©5~ 2Ÿη³―—7@| {η7l›W_}΅jRΟ=χœ―™Ω0Τ`GŽs΄ŸG΄}₯h#©'ΆŸ‰'r“’OlΜ[=η@L'ώhš`>²R Φhך=2­j΅ “£ +5χ… 1vξ’\0BΪ7…2œC^JΠΏύ°Εž†u‚ ΠΫΰϊ0_χΡR<ϋΉž;°NΊ­Άi‘ύ8PΐsdπKc‡fΫ·‚G_}υΥb*‘γ ™} φa^ε,tΛs>S,μ¬ϋ•W^)Οήq·όηήΰ₯ }ŏ»S| λ)Π+%΄p t€Ij.U^»Α ˆH}ρ™‘W―^ͺxΪB+π—9ΎΡ†PίΚn` Ρz‰f78Ύ³― —mwΎ!Wž,wΟx¬Χ:_WΐλWΪ|—γ*λD0VYm~$Π;ςή‘ ŸΟAZEhιέ#ls©«†ί*#Œ—‡:dαOO‡ƒ84ψœ 貎ο β5ΣtOKύEž©'Ž™_ΐŽGŽ₯lg³gΟ?Σρ‚χ'~σ|‘ύΘ{­―?ς“γΙΨ±c#7—ϊ»QZEY,J”έ»w—ϊ,XjAGγŸ7lkΗ9 –ˆΜ±;±žEL€'½υjȜMδΫ] eOJ†ŒϊSZ4)ώΜεΠ7aό“ΕΛ$oξβό g+9 Ϊ‘™’{ ‘ 2Κ₯”^V”M€Φm?-ΒΟΏF@NΔΊmΗ6’rΦiπEΤΩΊM ¬5ΎϋM…)ΚΗz‚`h2ΪΝΈ'J>cψ+U2$›•’±^‹Ή_ΐVlXKμURΕ^ €κ4°—AXoγηΕ’χω\q€@&,?†5<Έ"Μπ›Bπpβω(ΗZ4:eόϊϋrdσz [0‡ε ε9{[7–Δ“NΫ νφ2qΓvΨ>ωJ<גּ©rv]~‘˜τ!”"Ύ-Ωβώ}½μώa9|B»UV5½»+g«€dg@μ#A[Υ‘ mπΑ ˆz'|ίώ$EΣΑ>šyAΚ’xσUΠaΙΟXΐι…Ÿ†ŽΦ©’27 Μc¦ «„+ŠΩ-T΄ωl$`=FZύοΊλ9XόbϊC°ύμn_ΏEώq$’ήURΔuJ/Ι"3φ–,vFΈ86’dμyr͈/χήn§;KN―8*`ώΤ©‰€ŽE oJ€j|˚ώŽΔϊϊαmΧ Γ՜‹Ο΅ξΡΥΌP²9/4@„sa]/Ϋκmή@ΘμŒuσ’‡ŸUχۏμk¬7ηx$=rηAeG΅Tσϊk πό}ϋb•hΰ_ xΞΔ‚Y[Ϊ`ʘ˜Δ4Σ@L1 Δ4Σΐ±©ΰωؼﱫj€ ·dr’“X38ΣωG2›5k&ˆΗ" z­Žb«­μV–+λ>‡β{$ΰ™Ξ8su¦bnvΨL€3Y)£ *}`Aσ #­]+,(€V xi£ξξ]²^v>ς>rΑρW=]ͺθ9½όΞΕ¨…[7βl™4KΜί2ΥV£u-ΙΈλ|΅@eένhύΞΘ}c)€TίƒQι―5XΨΚ-^UθΧΆ†d0)I›f`έ¨[’Ξ‹xτό2±ΐ[τΖ,‰_ΰ υZLdŠΪ·’ΔΛ.ι†λ;Rφ?ωzžΈ?ύZυiΙτpφi¨ Rι.‡”tφƒΡKλxε@Ξζ§2ήυ Ψ/γ9{@Š—*`1Η>dΊΰŽ`ΓuL½Wόg—>2ίJ Ψ-ͺν'/ζKŠŸl)…L¦¦§r’€^uIx±ήά΄M Η<&FπΑvΈn,F,Δ— &y›F½₯ΐΞL₯Yε?}ΕΥ©A {»›c€η½χΎπ«?eη‹ί¨ ΆFU€ΖΨ ΠΦΐX4 –_`k LMλΩA&τΌz%͎4–«‚Žw`—ί€œ ά·θd€ƒ Ώ$|9?Ξuη ’χΖ‡‡t£Εκ‚–&ΐqϋ/3|…½ƒΧ_1υ9στήb€ι5©i6*WXyΝ±wpRιϋg6GrT ’‚YΑΟ0‡3œ9gPz*†3+b<σyŒ§θ‘¨‡PP”,asžω?ߚ­Ωήav †o^>μΜtWWWWwΏUυΎΟϋΌοͺ }?έ*ξ~Δ Ξ8Ρώ=k†s;FΫΟ'‰½χ g*­bκ/r.΅±΄qOΨΆ;ƘωžΉnO«}όŸrΎδ[ݞ»[]I΅UΌρA< $±­ε{ Ψ~Ά/­1ΓσiΗg‹οzΤ2'~k™t·_7Ϋwί}]›p˜eή‚σzρβΕns€Eίθ3σΒα‘ΕbO½ΞΎ.-²γŽ;.¬£€Ι¦©ƒsΉ,8αΩˆ §9u@ΞΗsŒM˜Eόœ‰σ3ςΏΩΗ1Ψ%aΩdζΐNS§Z͝κη―δ€S½Hζ_φ°±ν²› x„ΐ܍6&2™Q ~γœ.Ϊ>ΆUΏ?έ–sΪQφψΌΰβXž•Πΰυ“«$αO“m"΅«Xƒ6Ωΐ.ΉοnΪpmΓ_««n±Z±5bεkwΤ!6ϊΥ——k`ζ±ά/lγ> :Τ1I³έƒxΈH°<χ•ί€‡Η!ξΉΤ}χ Ϊΰ ΰ[ψ?Y¦žΧG>oΣΤ―Ε{φՎ…:r.8Ε›ώm|? dߏμχΒs€Ϋ4irš΅)¬ΆώΫΈM°χΑT;NEΐ2>7uLΥ³"ΐΗl¨6Σ7Aΐ‰?'ŸΜ§a,m‰pnjc…š_ΜΪγHb«Ψw°΅:ζΠψΨΩ’ϊV΅μ·ί‡μΖ»j”57$γ¨ ΠaΓ^-:|ψΏ†d±ˆεΈΘLAkT ˆeΤ~œm%_kι³ΰ́‚ηb>Y«5 @θΦ[L!ζs ’ϊψ Ε‚:Υ1’V*"wΨ9 ͺk˜[„δˆ.Ώφ. €α9ηjͺˆyξ·τ‰gΓτ Ϋΰ3Χ@]b[Y’―a]δyσχζ›o6€ž<ۜ›χ|δΘ‘iη±²^E «!‰`lήE˜›£ΛΠΫυςžqηφΒυ 4ΘιΞΰΈ%m’|°G‚@²dύΗΨ Έ«ΉγzΟƒͺι²ϊλ ΏGέHWβjξXΚx‡Ξ˜†|,°ωvΫmηtχ@ί½χήk7άpƒ“ΡuΦΠfιΏ,ι§ Πwτ% α·ΎΥ³gO·Ι•l'(iWy―HάστΨvχ˜Ρvα…ΊρφΪ AJμ²ύφΫ»±€>υqΝό Ο”Φωρ–ηΊ9 Σ‰Φ„5σJ·Θώ‘tςD,ΜilW DDA~ϊι'ϋτΣOP?ψltLΒ2έ„ͺφ)$PtTίΙΥw’&λNTύΌlα"WΦ¦e?ΡδԜ0uμ{Γ'Άΐ<ŽΑRύ_·NG‹¬˜,‘ΩI`γ?|a]— v»4/Ν=―₯`― NύV«ŒM¦ b¨D­±6,Φ|‡­:Κƒ5ίέ~1]« kΑ?Ί ‚ ΟΙΐΉΑ9#Ο=lΔ‰Οq²λ( 3?`ιζ<Ϋ΄…`6μ’σ6Ÿu.±~όωΜ©aXηΣ mπ:bΔwΞ© dˆŒzΐ2¦Ο΄ΒGοRΜϊ›™/=-0λ^›υ·ΑάλUΡΑώ`Œ`^p8YΡ/0 7Wo /yg[ͺ_Ρ½HpnΙ΅ρ;Ω|χΝ7ίLͺσ©‡ρ˜μ4~ύ„ΞΟΝmΜ%»wd+ρχ¦bœ5τ΄φμκ€ώΊμBGŸYιΪ8pσJvaΫ8 ‡Σ―Ο‡ Φh|?ΰ€œ>O6Ύ3–2n΅€ŸNjΙXΚ\ ΈŽcN|Θ!‡4y―έΕ5ρ‡ Fζ,AAΏšΦE΅se{S°³—ˆΐ‰²[guξŸύΩΟD;γg[ϊ?nN›)φf„υO2[Ed»Ο›²‰0#΄‘ΖlΝu^ύa·TΨ?fJ GmδUΆn—†~s…Vς'D ’²γ•~π±₯‹i—±+.?«tu gH:κƒqβϋ›ω%τέ4+yυmΛϊκ[υυKίΉΰte―p™¦4O“ύυ·-€Μ1šhΖkΞ ύΖH]HΩ₯²,’Gvθͺ2Ν«ςZ[M­#šCTΓ”ψ©@{€Π!‘C›ζWm{w³΄φn“ka Ώ5Ξ2`ΈΜ-"³’+MοOX ΜN€[jϊl`ω"ۈφΩЁ^£_`El·ΣγϊΎεΪa>š vΩ¬•ν1.Ίξπ‡¬ϊ©β>¨τr¦²Eφμ֝ρ²ΝψEΥW"ΒymΌε`{Y,` *°uEϋυ¬ΌW mΊŽ΅ί©―eφ[GARΏZŝ‰HδW»ΛόwΪ±9NJr€j±A‡΄ξƒ¨ RP¨μfςΤίΗͺ›Y‘€[2Ι_U6ςnΛΠϊ©…tγ’3έΊΟmПΊωnΏ8ΑJŸxΗ"e±ϋi₯ωΙΊτtΆφ{m!½ΪΓ’zΚGάgΡ…Εš‡iΪΥe]«N}ޘo¬Ύίλ²r­Nν ιήF{ˆ=»»ϊ]>v}zZΕX=ŸΣ¦λ¬QgOl}ΪΡ±fΜ[`UWάδζM‘Ε%"4iή―²Kκω »f³ Εά|©(Χ[εΘp4(\σ©4m‹κΚΉρβUΞxɘε%ΈφςΫώlŸ)ΐσŸνŽ₯Ϊϋ[ό xFΑ°x‚)f‹”¬ύ Ε"FŸ=z4Z­ύ3§ΞκT€z Υ©hΊR€η¦ϋ&΅ηοHtrΊώϋγ)ύΥγ¨Δ™Lωd†₯0#‘RΑΡ ϋTΠΐξλZέΟgξ{ΐώzρ…Φ£M;ϋ|ΏcšpžΊu:9–ΚΒΝϋΖ€bοi©ΤΞώΥ]ϋOy.e=*Μ±ÎTϊΐφ-­¦YεηέύšEΗOse1buΉϊυbΊfUπ[ΒΊ,€Eg±Tΰ€tηΐωIaW³Q/Λί~€…7ΫD©νšΗ ¨βχͺ”n=oψ₯X"rbΦφΫHlΏšν³ΛoΫΞι3­δΕΧd0oΓΨ―Όΰ1i΅₯2oΎ₯KŒΞŸNŒίG: ’―­I σ!btξ»qΌ\◐ Ήu§]jιΣ~΄P½Ρ7`δβΣΝN=&±xγί­Υξ{²…gΚHΞ±2z†φ3{YΥ$xΉζΠ3eˆ]μφbdM»UŒμΦ¨tθ‡­β&170‘ϋ™uξ)f7o(#‡GΕM:Žr:CN– ϋΎvž;όy‹Μ\μάΞΩΛ²Ά[…{‘Pο?S€ηΖw΅τεΟmι3άΖpŸ.ΆΞΠCœ“`ΡΟYψγοάφˆΐ‹xS+h†˜ [–8ζ!vVoΩΗΒub©;/RΣo+Ψc«ώΗ#Ξ9ΕσyαιΆLΟ|ξΏίuŽϊ™—θύλ+‡T2ωeUΌΛŠ9FRΣk=ΛΎTl0b΅ }σUίυPΜ ₯χ±R:>ο΄γc©c56ΤjάΦωΆΙ&›8ΰε—”u;tτ‡ΨΨfν;ŠIϊΫF`(@Ύ0€ΎPΜ@Ό―ρ.‰vξduϋνmΛΎψΞ2?ϋΖ9Ν\C6ίΨς†žiΫΐ†Σέ”„ΐPχσ<{κλ‰\AΰΥΧM°’η_·6Cpcs@‘~‚=pΣ 6΄tr^ύhΌ(ΈσθσžΛbj§€/?οαψ™3˜J}Ω¦>xpΎ:9ŠM²…Φ­[ΗΗό ΰ,ŸˆζFp ~*†Μw>΄\9ƒ€η©„T‹ω©P@tSΠHP‚ΰ)€Τν@ΊυΊ—²Bμž|JY ή°r±?‡θ‘ηβ»Cw1ήU 9ΩgΙΩχΚλ―-ΧO€aCφύlίW₯Mίt‹Uœ'VΎϊv§υέΘ¦ΊgΌMί©_·ac€»uλΦhΞΙ½tIΏΒ’Ν³rΖg8ζdΪ Θ-qŽJΏyδ‘ΜγΑžκ%rrΞq`΅ °zΪχ?*}k…eŒΉέΆΩiGχœ;ΆΊΣΟ΄₯׍»`w+[―ΊΌΓt°M/Ό–fΟΎR ξʞΉ/O6λ#βm‚ν !οNs$ώ<AΝ9©2χœ2ϊαΒ«-λrΚKκzu·œK4NŠ©λ·’YΏ˜]sk••‡υŒEν33l‹~š'΄@’bΡΌ5οΪσδόνΨ‚V‘hi™™ζr& tΩdύg M[Aΐ]–Ρ`ΣrσΟ zkΞrΌΩNβGD$¨Όf”R?+ύ·˜έr†J_F™FxΏ_xαμΈ~P$κMΦ‹‰Œ˜ρ Ρκγe ρ2pΰ@Ό@ Gl|gΡΩwάqG#°p2 /ΗHŒ(Ν Η'Σe8Ϋ¨!θŒΰωΩlzΠ•Χ#Νmiν –‘ή}ΧΎ“υ`―`Ў¦Δ a7[—)8Vk€ŠŒ₯θΉ Π¦Δ± -z²9βϊI Ι…G]m5“ζΈCΒ™akσί[mϋέwk4ΎW—VΨ/—ώΣ’ J4ΟΘ°7aα||Tžΐ)t!ϊ`\hO₯τΟΒ>ί§nƒώπ›λ q9fι₯NοŠηyΥέ‡Ύώϊλ{췍²s―Όάυ«―sEŸΑ9‹/ΗΉZ xŽ’Ο§Μ°β|$y‘τή₯ŽŽΑΫj½$€Nχ.Α]. €gŒ>k.ΰΉQkγ‡`QΆΛG>(Άη…n-Z= ŸΈ»nœζΎά»zp΅T³ ΆΔϊΦΒ©™ ς›ν|wΗͺξŒ€“Ό±hΟΰrYKθ*(VŒ‰ΝέΫ¨˜¨c€hΎΗ@lγ{ΉΊ΅€ς±ύ§u>ͺC;8­ο°Y‡4ŸwuQϋλŸνf΅e…₯2ίγ]zυΥW]PUp~¨dτΗ_aM–­0ρ]KV=ο—'Uhκ <€Ψq§1ΏO|oΡΗθeΪS:̘1F°„Χ}θhκΎόςΛ±΄σ>·Ήl—Κτ$εξl އφΨΩ wΩΙέσj#ρόΙτ†oοσ¬Y³\ΰ#νA·οͺ`‡`?§ΜΚ„vr--Ρ―iGiks滌[dΎiJηΣ―A[oβά2ρή‘c|ŸTύ³-Όε5λtΟροƒέsφΠCYn»γμ©5Oο[eWœ›«q6Γ΅ Σdcι]wέΥ(s`²ρύ]eΰiI?έtΣM.σΓΚξϋƒΟΏƒΑΙξ5εš#‘i3­ψΩW-cς΄ψΊ‡E,«ωGώΕBΚD‚°φe €όΩΟΡΏZhϊl[6ρksΑΪ€&“θζh+et蹎²ετ³Π†=,Ί^Χκ:††Λo¨΄_ζeXa~Δn–©₯ȊΧΨ Lλ—²?±tΩ΄ƒzŸΐΑjΩy ο`ΆιFLJ]·τOHΑE―Ύiٟ~aαE1»$uD΄Nͺάf +<`ο8[pθ³Iΰ4<γ§F§It¦:$.θΒώ›ZdΏ=-ΊΡρΝQu Š,ςk‰E–”ΪΏθ‘Ρ\aiΉώk­P,`τC’„Δ”Vφ.ώ‡”ΑΒ΄Ύ g†dΥΈΥ££₯ι{Ζ’ލScgΥσy E;@«gΈθݏ,σ›ιΦxž¦kχ@ηh~Ά2nnyηŸlFPg‚„―zτiΝΔφ¨οΛwh'₯TP  ‡­ψ§€Ε%=iYzξάυŠ-»²έ:VœΣΝ"EΊΎz Ι›Ώh†εVxŸ§ ΌRφ΄BeKΣΐβ‹-©9Dω(e όςΫΨ>υY4S–κMθdŸs’™€σ^ Š©Έυ>g+ΰ=Ο<κ ³φτ»>ΗΎgΥO((‚±*ΓJΧΫΔjŠΕͺ³‡Œ™[<Χ²ςΔΰά!Λ2Ο?Ōΰ1”W\ΏE–UZ]YΔ*rε[¬Ή‘lΦ˜ΖΘ·*ΜΆtΌCεš €\ΫOο\ήbΎneνΧλl5£ΗXzy±…蝩ѳ°Έ(φήjΝ\½e_Λ½ι"1’j•Χί«vΦYξεgˆπc3=71–«y–Η† ]ώϊώ`lEη2ΗΣεδ•Mwλ6ΞG°j2aΜ ‚©ΛplSΉΛΆδw πά’ήJ•Mυΐšο?ΰΉwB›Ώ¨ΒJλ£Z^¬±γ²%]<·€·VΏ,‹<’p?ψΰ]Ώϊ΅¦jHυ@ͺR=κT¬~€Ο«ί‡©ώœ=ΐ"?˜Ζ_ ™Γ?ά±=ωm.u«€ήxν·σ‰Α`·έvsމ!C†8g 7NΛ%~ηά€Ίl‰|ψΰ£vΡCχZΟΌ›4Xΐ0DΧQ Ow₯†άάK΄υΦ•nΖ©Ψ‘Νϊ•‘pώ5O›)j£^ϋK±ŒM»7λΨ–šwίX‹Ž‹ΧlύŽΦεš#δΰZ3ΧΡΆ4*Ώ€(–βoΒDΛψa¦ ŒG2,Υ¨ί8Ge$ι^ό)eΪOVώ€Œ’š…1†ΧKTΞΝZ1™fΆ―E‘ZΞΆίLδ„ ΙX^ώς–6kNό΄ΘsφΩΝ’rΜY›VρνΝώΠy–€ΞήJ«Κ’7Xί’‡`+:Λj‘3‡ZHLΤ!2‘ΖO₯«ŽŽΊz₯}½ύ³;•²ήbœ›e‘‡Fšν²«+ρOτ‰—-rνέrzː+©νΡΕ2ύ Eϋζ dΗx‘a>{(§N Υ}4IL΅OΈύQ±|ε€κάΎaΒ7 s―~΁ΡEΟέ;vNθ£ΰΟΰ9Ψ±ο₯O~lK_›δ~„6νjλ^)–ž₯EχΌ$ π7n{]χNV)¦ηP•ώwΘ·Ό ”šyόη±}χt>Y™P_Ά‹εύυp«υ χ₯»UWζ9’6λkU·άk!X΅-λpIΊϋξ ώ‘ή)ύ΄εΌ7>φ.ˆΥ(σ”c-²ΣΆr΄TZΩCOXΆXύqšΰ’yζΙrτuNζΥ=λY?VTΏχ?±ŒZ1nNsΡƒlšRœz°Φd9o{ž{³E¦LwΧ•΅Q8'"=Swΐ~b¨g ‹ι9ϋΞ‘Ά­€‰€gšβΤSO΅1cΖs‘'nΉΝŠΟζ@$Υ;lamO8ά¦ό<«ΰf/M<—νwPθύΪ{VϋΩV+πCξ!ϋ‹…~+ ΙρΑ·έ°‚?Τ( ‚Xξd]3t˜U©/Όΰ” φW"ˆ€rιi―ΌϋNœα&απ™W9PŒέΉBŒ½Gβ ¦OL)M}”!΅5L©TŸ³ύΊΔBίΟ΄™λΆslΑώHq:yƒ.qΆTΆ,ΨpΓ —rŽ ¬J›kT/Yͺΐͺο¬X¬IٚsΜ=αΠ†6 ˜σ–P}τΡ ίW`₯^˜ί· ˆ?+0#Σ^ζΈ?όπƒ΅jΥͺ‘σvzζkϊ…6τύδΪ€qΝKˆHΐΰLHΊ@­¦N±Αƒ»ί°&n8e¦U>υ/χ›?YΩέζμΊMC›ΎήΖ<Ÿaύ,VG·΅vοΘΦbf=Ο±&Xω<€(^Ρ ΎΉ₯ώ΄‚bΝήεΟταόωσ` κž1((,‹ ¦Άnv}«[pα―!zs΅-- ϋegŸœ‘ΣΧΟšYyhΖμ†dœ`P^…Ιfž.y1=λ¦vΐ]φ h9άσl@ι?Μ“ZΉc»ΠXMv‘3ޱΘϊ=Ν6[ΌΤΚ―%`ΕΌ½–uΡ)ΪJbkYxΟ`†<πΐ—qjΦ/Ώό²!ΑLLΗ4%ψ ϊφνΎˆEΊωdλΟ PΥ 'œΠ¨ηΎοΎϋS»Gyv'MšΤHη―H—‘K؏ƒΖ^ΐώA§=οό)§œbc4ξπŽƒšΫ&…ƒύΐΦ3c&φ Δ9sζ΄hB7‘ǚ«Λ·.Ίθ"wMΙΦυΙΟ0<{μ±MέΦFΫ;ύ›oΩΌmΞ³¨²?€u+΄Φ7dα-ϊΈ1&>ΎkP{ tΖιΗ܎Ϊw»πΪkœ~fΚδΦ[ouΟb,Κ»Π,ΐ3ΐKe*yοcKΘΩ§Yχη¬S«ΌΑΫΔ@Κ4%0 αΟΎ±šλ”ά"6^]R+&ϋό+ώΆΚ¬šΎZΗzΝΪP€˜¨D+=€ϋtμΥbδ“ Χβ©Σ”~ž₯Ν_$vBύUj-Λ:ϋΑtΩZ8'6N–[-+±₯γ'8φη ω5ζ†Ϊ΅΅²+Ο΅ΏΥ<[“Šέϋτ³²—ΗZΑΐ-$Ί‘c΄LΤž‰žΊΡΌη0ή¦MA Ξ5ƒΫ›ϊN}dΫk‰~εzY«ψω.ϊ,ΨOΑ6ψωnpύΔ8_¨a\ΓŠΟ‰χr9Lϋy‰Ν»ςYEΕE¬λ}'Ωnξλτ'ύίw‹ΣννqΕvΥy9nώΌwΙΖR2<ŸΚ'ŽοcǎmQ?qŸ·έvΫ ου λE―|φ΅•Ώ$ϋž޽0—ΞήKλΊ} ΫΚovŸΐ3뱟~Q°³ˆΎΠœoζ#cΪr’w,UΩpn΅•2›ΐΰ,›~K₯΄,d ―²%EiΦ‘@ΟC3E>›ζ•^/’M2CY…Θ@ΘU7·ή}g΅‘'ˆΰξζWΐTHDεcί΅Œο¦;ϋ Gυ¬VoήΗςχ(φcD}ώΰ# Ώρΐ€ τ Hπέσ›ύsη3Ομ°Υ θl]šσγ徐9,*0t€θ™ ¬dάgž2ΛLΏ££·F5ΈEΕβΙΙrBΕ% ΅hNϋ1ΒE§iΎ•Ύl©Θ2t]Ue–QΌΜΒ5Κ‘£ΕY»«ά{G+<ύxΛ—C ΄/ΏWΩΊ¦―ΏŠ5Ξ©Η™΅ˆzUD8€’§^΄μwΗΗY΅Ις™wΖ‰±l“ͺ³nQ‰U~>ΛΚώυ|φ‰lΘ1FM^+Z·―Ezt΅pŸΞΦqP?ΛθέqΉη"€φVύύGΐvTk5X”]vYο-ΏΑ^nMζ.AΟG±X ³λ3jh›sιYf½{4ΊBμlε·1ϊΞmηωΜΎR¬έΊκΎΤYΥ€YΆψ-δΗ‰1œ5Ÿ„€©Ί~½,ΌCoλT Ηλί―Δμw…ω–₯Μn!1ΔG*ΔvύαχΆδΕO,"RŸpY™e/˜«ωή•τ «ν΅ŽψwBπŸHK`$'θ,-Tki5Κt£Ok£ΉΟΆ},oδΕfZ―Vά Ϋ’Κ·~κ{wΒGvέuʚ&ϋkΖ.l+Ψkƒ‚λ§Ψ‰–Λ8Šέ„zNυB 1ŒύΙήΚ1χΗF™dΑκ”Α^ψΐ8ϋcd’0ΞtνΪΥe€iκ<‰Η4χw πάܞJ•KυΐΪι?ΰ°σ¨αΫΫό…εvΑ΅’σθ9x^;7~mΤϊΆœ€λΑP‰‘Ν †ΡG}Τ±έ-ό{ ‘™_¬ΑZBδh§NΗχοΩ°ΤΉS=κT€z`­φ@ πΌV»7UωΈ0$žS`πŽΒ³Ξ:Λ9oΉŒdΜ >ϊθ£94|—ψΏέœΟm7οoŸ|υ₯cxžςΰc1ζfd^›UJ²ω#žQZj₯j•qΆνΩϋYζr|¬©xu’-}ςƒXΝέΪZηk‡X8oν^ίr—#pκt4J-mαβεŠΤ)ύ\ν&λ[α·(…sœ-Wꏿ!4o‘EŸxΡjίϊPΞ Φ}£JΖώ{X†PΙ~K ‰YcΩ ―Zφ„Οε$(Ÿ€[ήΑ^ €‡±»Ε" sšΓŸNŒβ#?Ξ±ΘOσΧ ΠY Šή. ₯€γ°N Q₯ ‰m"rοM]·Πθv&ό ‰a΄φ uζˆ„}b›ˆξ2ΠΒOά‘P²ώ§Œ°UCΞ±ΜΟe–σ(σΦIŒ^- rPTTl™_Nq[kΔ΄‘wω9ιΛ~Φ²ήώΨνΗ€Ÿ?\uˆi¦)Αθ<ηšη,ϊγ―H‡³φ΄μΦŽ^hͺ Άν)ΐsς;φΛ­―Xtβl·34 »­{ρξϋΒϋ_Ά΄χΎvίλzvΆκErP•K?·Ξ±{υ²κgδΠΠsOzΛΌ½Y՘ °~φω'ZΕγΟŽ|Ζ’ό³jewΕ僝 PK=τ°•Ÿv‘ΥΚιζξ‘6Rb˜4aVόjόGέFs1ηε}ϊ‚…€g#_M±ΊλnŠ5BzΈN½ΘΞ;Y™έωgf8ΆΔ#ΌHΑωύ”RS3·ΐ1Mzω\9±j_ίνΟ»ψT›˜QOw πnƒ 6°]vΩΕΝc°UΑj™)GSυχ3ΔJ€χΪ§–#©X‹μ½v±bιΞ~Γzwε•W:›6šΉσ­Σ½ντsΟq€gϊδ}Ž?ω‚εl½₯…δΰΒ©Ψι ƒrΥΔ$t-ˆΰΝ.»ΡBbΤ‰‹ϊ)²υζV|μAq°9υςJdΒˆΐn=φp‡Σ€FΌS)ΑωοŠί|kΩϋμϊ—ύγύτμθ1.ΛClx°LηΗ˜΄›σωφ3—<Φ³ί’6Nφΐ°εΪ$€σk6ΐŠŠ³ @_α‡ŸY©ΖπΒ·±¬ώύl¦ΐι8ΌR°χιΣ'd>Λυϋk¦OhσΞ;ομž[ΟΜ 0,ΨO+lSΘ‰cΪƒΚyΞА#’μ e_N je°‡Νή‘ΌM5ζχ°Χ.zΣ’J)<δ¦,Τ©M£65ΚςpΖA£΄' nž}ζε€ΟΟΟoTΞuΖjόY𬺘«”ilM³5R#Π@XεCIœΪΐώST²a7WΪΌ…±ωΠ1‡¦ΫA{%VrΞCς1†δŒtΛΉβ ³~υ „•»Άv‡hnJͺcύ/›–pžΟ>ϋ̍στ cH—œB[όΡ—–©ώf₯[φ€5|F\ίΠI7ήx£6δ[φΠX˟΅Τ*ΏώΙZΎ§ežΌ/ΥΈλPμΟGm±›-ωšΫΧρ*νψ‚‘OZ§“χ²/vΎ%ξk"5 ?όσxdσ,ωρg ΰ$Ο1@lϊެV|Gϋ1"K@ΩΙ³~Šgc`¬ξή½»£ϋ%ή ²›ΒdŽ0ސωŠ6ρόωρ‘}ˍοΐ™( 1±%rNΨΎ °NΙ$σvύΝ:΅ξjςϋπμ[ύΫVωLμΎG~Λ½ϊμf_Ÿ―b|J˜Ϊ‡ΎŸn₯ϋ1Qό9jΥχu=ΊY‚ C=Χ³ˆΖ+5ŒΣb§Φœζiͺ–}₯hα"”žΫπ:(βSχ›²lxΚ1U³η`-Jώ%§ΪMΟωΎ™όEo3€Ζ›<Ξ?©.ŽΏ'—uys‚Ukή_¨ πά›:0ψbeΙњΨ©¦Ξή¦Ώ]uϋίήQΝΗ£²·ΐ^νΦA»ο%θq„ΜΜ?ύϋκ/έÜlάΈq. Ύ[τ1οeφϋρΖ“5ό*φJΐKΘ5Χ\γΨΝƒ Ύn+*Άˆ²αLŒVΗυsΛξš[ΦόϋMW,kψ₯6‘t©[7°½ΑΊ–±}Ν?Όδ’Kܘΰuˆ?νdΌkήH— ₯xΒχVΎp™e·ΞΣi¦εn¦ηLFτNPΏž~ϊιΟ—|p&ϊ‡΅€gΊL6ί₯³7₯σK°³ŽAΠωθ^ϊ1Ω½Έ^'Ω9—Λ:γ$3e[U }<Ρ*Ζ< ϊW%_dΈΩW©q¬όξG,C>μ=‘HΨJΊυ±ςRΩ4ΔέH€wΓ›tΆφ;υ±μ~]­ψ©η,χ½\»Σd§―MS€Q^μ~Π9ηώUε€Ν[YΣ*FώΓΌGxφς/T@Wύs?ΧΟs­ςΖ¨oKΉ>²W_vV,°΅ΎPTΟXωMχXΪΤ™b|[yz[«.ΠPkΓ4ΩΡΓb΅N—i,­g΅ϊϋΩ^―sύ‘ 5οaΥ#tžEΕV—žeΕέϋY](ΓΒ] ,Τ:[δ/_™ neUzY4’žΦ,έe@Wρ‡34ζκKˈZ»ηn°Ζ<θτ{ΓYΎyξν: {CWθΊ"¦~‚ΉΙΦœ ΫΠέϋί] ŠζIηŽFΔ•wβ!V~ΣJ“)€@Ί92”|4Α²Η}⎯νΨN¬ε—Ψ²WήΆœ·ώλ5Žψς³šf5•σͺτΎG-Fg )½3Ο9Υ’[κ½Τ8Qόθ?cN½G9n ΌΝ~φ—™ς0΅ΑΌ‰3ϋΩgŸu hΆΓŒuAΏώVσΐc½εZ;qθφΜ3ΟΈςΗ*eghμ›ΊΖzGŸ~‘#²θή»;{’Dάy}+Všό“·t1χΌϋ쳏ί‘Šαζ+€yΈ:ωΛ―lαβ_γv@0<TJζK}»u·Ίs²*oδ©-0νxΑΑςϊλ―»ϊq`ηΒq‰£’αœ!-ψυΧ_orςΧ‰ »ΣΔΐνM“8CΏ%e€”ƒδΝχ-K Z².dξ5Θή]―½sκΖωίΉ½œ’?…yΞ"ϊP ;žw4Αφwήyη9Άo[Y?Ωh»gυmαΑv΅¨Mbωωρ§Ÿ`:˜ςμtο’{"°8Xξq^Η€ώ<˜Žmτ½o°„Ρ”:φνͺ ú›ΫOά[οTγyρη‚ι €›Έh’SΠϋ6υ?ί¦ν·ΨAΌZσ_M;μ(§jΨUόΓω<£ΰΜiΣΔR©Ύ_Σ’ πμΟ±τΩ[ξ+b*Σ³…NΙΎΰ41™mΰw―ΥΟ 9ή‡ίZ-lp욷PaœΦB €ζ εWίcHΦ;“}Φ±f; €πG!1•Υόύσ¨toTχ΄ΑuλuqNhΧT•K{]HೈΦh•Ϋmiy;ΦBλI…g‚s’ηŽ<ςH’υΟ1ο:ΰ?Ίt S(ο? iΐBθ €Θ$ZΫqǝ―†uz/™>¦υΦ[Ο½Σ Ν6Φ±Ό30z’G9ώΠCe—HΘΚ{]†nχA1Αk£Nκl†o T Θ΅%mB7 Νν?Ω{=γ ό Ž7θp€|Ω–θWXΤ‚Α+KΏψ―Ήw₯ήύ.m¬ν§*PWh I–žΉ D,£'AJ§μ΄Ν?όeœθaνoSΉφ…ρ+κMΚι<Π=φ‘΅²εξέΧζ μls–Z§‡ΟΆvμΖtτλ 7ά&ϋΚ¨kΩ²eq #Οϊ«‡@Ο"\φ oSφeή{ο=wο':XΰhΚH ηϋ–²‰ΌžΖΕdγ^²ρ=gϊΟΆl¬@HJ o ΐ J­‚Ϋςok!₯…7ΝηZ* ΐ³.*ϊω·V©L?Ž5Qφ‡œKOΓξo3ž¬°OgύβΒK'~‘`BΩJΰ6\€c{#˜°pλ-+πκL;vi§;΅ζγΡJ’±Ε¦Φw=ˆnŸW/S°  ι8˜Ze\ϋίξ“ίΪNV€tgΉ»εs 0(’—Π£Ό'€υ@o~άΚΞΏΑςΞ9ή>ΙͺsοοΟgŽ7;χzΧ&@W9ίhΫν±[ό½φ/‡[ιMχ»zβτŽF5_ψ\pεvΝΣc@ΪΝ…5__6j΄ΥqY’IΓP΅γVvγγ£p™zιΒ™1»\σ5t$‡v˜½σΞ;ΆοΎϋΊm0“A °ŒοΌγ νυΖzλvλe_h^Τ_<ΑΚΖe6_€Θœ λ2rˆύXήVkΖο•uDΊKΣ6z1χγz­ψ0W £BKΖRΘΥΝ³]M˜}bΑO¬eό8dε/Φθ#qMK)H‰Αœ{ο½·›wZ‚• jέ]ώΪάέοsΛd[ΪNΆ+ΩήW$ΐ3ϊΘfkŽ9}ΆΙ—.vκ0™“+°7n΅©…dC6‘6¬M™5³ΞΉjŠυXτ­ ¨ύΚ6n{oά9Υ·΅"IΙ΄El&ݞΗΥα•ω°βΝχςώ%^SDŒΘU7·‚φ6[§πRuxμ;²•~ΣΩρ#€6υό' οUP’bŸΘΩu'ιΜΜΰ–}‡ΠDσ‹Μ―ΎsY όΑΨ†wΫΑBΫln!~T(³ h§LυF½,Oϊ±xζœϊΉI•3;&h7„υΞG’ ΎNΟT0†2?ΆΠΉP™”’Ψ 4RPωK#˜^σώp†ή©V9V»εΖVΣ·§΅ν΅n -PtZ‡·Ξρν\ΡgHώeχ±tω4Ζ—μCχ·θώ»7ΆιjNWττK²ƒ}ΰζΨ†+·ίΚςO9&¬«6ΥL_d ΗMΆΘ·σ,*=ζ%½ΊάΪός…˜ŽΘ‘©μBb΄λ [‹’]¦£γ΄ζΨcG_<φωι$«Ί{΄—Λ²Nb&@y’„>ψΔ*|:6Ύ«ί2;Δlί]Σ΅9@4™(υL—ο7ΨZw˜Υύ8ί–]ρ€ΥM[lΣaj&6€zBv°φ{na™[υPζPe}ψίdeνlxuλt²΄]χ±Εγ¦XdQk=KΑ‹UΛΔθ,[’"k"zζι'άΪ‹‹@bgkjξŒ^ ΠbΟ Ψ„LU'NŒcΆ¨ΎJ}M` Ωo^{ν5eΖ:ίmoΚ7ΙyΘ†ΖΘ ή&ˆŠυ)η ϊ=]₯«ωΗϋ?S€ηΥμΘΤα©XΕψCžΑΞώZ†ύύvΕYr΄―’€Ο«Ψq«p‹M,qv%xφFκ{ͺR=κTό=€³ͺ%β  -9&U6ΥΔΐH@† ŒΣηΔt“ΫΌ6hH§ §…˜ΨεΙ:αPŠsΊ€ϊφ{«%Fg1Ω •ϋ[C£Œ4£ξwϊ+ SΘ‘Άƒΐ8g“ cψbˆΜΎi”…fύlΥwίb[οΆ«¨2Χ85R`ΥΧήcž³6‹Œ3$°Cν­#l9Αƒ€ηςG_tοkΝ–}¬Γε³SΞ<Γƌ“μ΄ρm°²m5cύ(JΝΪuJ§ξbΡ–ή‘Dχd…§―4βςΤI`€ΑƒVO&8U˜+yΐœ+¨?€ ˜3gΞ[lge`އY”Ίqώΐ8ΫZά9£ρΓ&}kYb_uσΘ8`δKU²ΔΘ†UOυΰTtEA6½`;όwοPΒ‘€vΣMpo†ΠO'l΅sDemΩΟ:4ή&έh7¬j8§‚NήζΆ‰ΉͺgΚτLΤΎY€68€/0Ξ£ϋV­σύ/?#θ`?χ&dιΌƒ“«₯m’Žd@ΐ6΄9ρš£Ρ,›0‘Ešγ›jΣγΧ\gε—ήd.»Ζϊέ­Υ€Ν-Ίa/Η|œΟϋg$ΡYNέ«++¦mςι«χ₯D…Φvδi TΚu`ΚΠΫXϊF½νόξ12zΊ1tƒ¬τ‹Ÿ,g»Τή Π~(BYΟ‹'+(ηό}mώ°§¬ΓΑš Ψΐ~^²°¨o’pΝό'ΰ §—dϊ`3ΰ:Ζ&žA€ώd¬ζω`ξ½ &iεο?,ά€ϋ Ίαω4J{‚χ²Œ1Α€¦©S§Zξ’b+»πF$‘  y€œD²φmΨ΄ΚςgΡΧτξa[λ™ίΈ·Y‡v~Χζ3SΟα•š«ΑŒΨ”πάoΈ°Δ7έΪν·«½:ρ‡~:ω«½m΄²—eυέΠf-ZΰluΤ…νn]w³( νz„U+ι*gyggUZχRΆήHΙF ΄ Ψ₯BΚX«ε²‹n²Θm—YΏ­Άh4ΟKœSΓ&ωχZδΣ/νΉκ%ŽΉΨŸ{EŸœ‹.έμΑW^Z©ή`>΄νηS­φΏΊ†QΧ[ΈΫ:φκ›o4 :μΡ£Ηr§ΓNκATθYAλJ5ώY\j•ŸΟ²Šg^΅‚‰ŸΚ‡Pci:gDγRmfΎŒ5iFζΐμσNΆτ뻀WƒvJΕ ωιξ§# »`bΆCΝΣKF=lYυνwAΓ—)›šζ DυTέω¨#₯Α–—uιίbY6u+†Š±BλΪΓ;²…uy"ιωΕ’ ς’vfeΧXΞά–‘Έ|+ £‘ξR3c‘Ue™“§XZI‘…P…bvζΎΦ‰y»zŸ¬@D 6mΆ•^)’’« gYΫG²3njc4v0ψⳉVuΩΣ;tηk±KΉέι^gϋ›ψΉ-zνkίw}KλΦ.ΙωΡΣΧ+θΫNβ\;q݈Nfœg 8QΏN ¬―<¨MΆ$nSσ―₯Οΰy-ulͺΪT4³~wΐsS`η›οωήχ³½ώΨnΝΌ”ε‹%žΗη’EPt(gŒž…%xτ§Ÿ~κŒα°Ÿ.Π‡ζŒt‚F§ΰρ|'B–Ι0)`p‚ΐ.@ʝR+¨,Ρ)¬Œg€_!pΚŊ’[R/Η38ΰ(!• μΖ,ΦpžΠvŒŒƒvΧΔΉIDΊ/Ξ€6CΠΚ£ιq< ε‰Π!5L+€"ΐαAT.²«˜T’ Ήn QσζΝs ΨaΓΑA‘Lτ`ΣΑαA?5ΪS©4‰π…έΕΛ[o½ε›”?€mCφΝLϊH`_Ύ₯Ÿ-Ή/ΑΊc χh¦ Α,ς`Š ’`SΒ Ξ’ ‡ NΰΧL:Λ p?1άςά²?QΈΟή¨G!ίΟkλ™ žΏ9ΧΞσΓs„μΎϋξ.J;Xί™τψ{ ΓοvJR=κT$φ@ πœΨ#©ίWz€‚ω‘Μή€M?`tcH–œήΞ>ζ‘8xaWΒ`ΐάπΪζ&γOΐ3ΧWύΡχΆψ―;Γe¨GλtυΚ ”k #ͺ'ύd‹o{ΥXZ«\λ<ϊθ£ξ{0πλTƒν&Y›γΑ|§μU‰Β9H‰=(·΅ΘήνvηœσWϋ(#βκ‚’ύ±Μs±Γ6λη³ΜuΉ‡Ψ+“΅‰y0e<Έ6‘Ž;λ+ ΨΗ/Ώόrγ9ΑΎ7}fΔ»½ΖN=6ΗjΗ―°M'οΎ—U^|ƒ{Η|[ύ'Nεμ N΅ων œΝg„>δώϊηΓ—]έΟ•ž]ύz.‹F?c9ω(6φŠ…4ϋb9T5―YΫ"d£,³ ŸΗτΧ†½jμκ •š·S‘xΫpPΏCΰ΅ΩnSυ 9οΟ:>Ύϋπ₯θήΗ-G¬ύ!=κ2u­rΊ£ϋ²=Πl―Νfώl!ιώΚ'^dΊΐίθAcP@€ΘΊ]­FΫ[υίΤ’bΏk4GjΑΕςΎ`ίηύN|·dΑΎθί‘Δυ'Ο+>ό¬COΦ Ο`Μ»„Aχ%Σ―΄Π+`(τ1>•–θ2²ΠnΦΈΗwœ°ΫƒSž1 :αϊVΦ&τd{1πϋ5wsϊχΩΏΣ°ιœA2˜β/AΟ?0βπΊ¬9:Ÿ>ςΒq\kDAΏΤέ4άΚ_;ΖLYΨYŸ‘ρŸYΥ“ςc--±‚—΅λaΧ]wΛΈpŠΖ˜X“ ύζόοϋlΊ½ϋη_χOΛλάή&oΩΚώϋΡx7fαBγ7Y΄(6gb Aξ»B3ζ{¦oφ{AW²ΟƒνΩΞ5c<πΐ— ΨςεβΛcΌB―c›πχ€:Έόužύ›ρ_ώ%ΪΔ3 Λ‰ΕΈVυΌ]±$>Ύγχ‚‘φψήZW•Δ@Ξνv8Ηͺʟ πμQv₯J»ξ@vΪP= Ÿ^xςͺ―W΅γš{œ€C—όθYRϋ₯Nσζ:Wl­€ΖΧ·h§dbΩίς7οώpΝg=C²?7ο:ολ7bžCVήb’ί•y`Xώ3―\Ω;Ί―ήQ2\\yε•$Λ\@'οοXpώΚϋFvΛO;Êο~άͺώzˆ q3Ζ73ώ ΰφΒSO³’“.·‚λΞ·Ϋί|Ε±8Ζ ¬ΰ σλ~ tΟΔ¬>6\žΤWŠΰΪ{½ρ±Υ‰­7aΝνΗΎβό’Μχ˜«Σ'Μ›χΌŽη΄ŒqWjΨSY)’bΒχινΦ ΨR!U! Ξ±ΗλζœθŽ/~o?Μ³ŽηνcΩ{Ή1 OyΖIΚ36yύ ց΅:ύΜΓά5٘zΟ=χ8=yΗw8χPΩΚt>8€ X“1‰€οπρίyηnžάsΟΩΦΫμdCώVFB q ΤΨ#ΪΊkφ€ΰν MŒ7ώ9γ:WΉΎοŒsN―ͺ2=ξϋ‰>ηΎ°Hμ'nΚ3npήΦ@‰k:žA/τ@~―Ρο€Πn@ί0^gΞYhE>'2€ζξ:OυV}¬pΘb Ψ£|Ε+ωόMΟσ4– ΰ\4i²₯ϜkαΉ €ΑζE[XmV €shΓMg‰ ΄¦ΎK―†ΤΎ’q9π“€Ζ«tF«νŸsΈΤzΝχjν”c γ»WιΛ’₯VόΚ›–%ΐiš²ΑxΝ?k―]Μvkt1Eh’h_ΫΒ?LχΕέgπέ ξmΩΩTYOφΫΛ"}cs`Ωf}Ηόρ$+%πlΦά†Cτ~Ԋm;οΑf4Ϙ·ΐJ•‘'σΛ)²ΕΚT\οj]λΆBeλKMƒΝ˜J`$Ο_·£U όϊ[΅Γ+8ϊ0‹j|K&!±W=ϊ΄₯-όΥνŽκ]ΘΨoO«Uπ`Tΰg@ΡKfΘf΅Tσθ%bCא²™9H² Ω&έStϊ%"ŸQœ ύοΤΖͺmi­”#MAxa±D‡–†a½δήG@Ε Ο:ϊ‹*;Vp]”τT₯eVqλ½ZOΙ— zΒσ~΅κΜBΗ|\Ξ°.alεfZx“NΦ~£yύ_–Άt™«²JΩv V«―Ι’ΕV1βNK››Γ’"ŠsCsΌœΦ ΕΎcΉε–[–—O<Ρ%[0Ϊ–Τ/° ¬J½86˜ΐ3‘b‘„ƒ%8ˆpBœ(,H†³dι†Iϋι0 2+Γ &‹Y "TηΟ―ά6l˜ϋΝ 6gu–3Lϊmώΰ5ŽΏφΫ1P±Hš9s¦ίΔΘΗ5{/ι ’έ % ŒU‘UΉ/ώ<,ZIέ“L`Λf1!(ΕΕΕΞ¨X8Q{³°P£ͺ];j•Z³v–crΨ„Ε•~ΔΎ–qΞqŽ,ϋλόΏm΅΅Uwξ(ύ6ΧʟxΩ₯΅^vε©ΐΰΠσζ4Μ]°IΚƒέ82a’•?󚡾βL»~ΜΓ0ηNœππŒΝή^Ζά§¨¨Θ#ˆ€Γ±‘απηΌΨ7Έ…["φ0κ$λ™Ο„Ζ5ύuυ-]δλm~›ptΎπΒ ZίπΠΚΤΙ“-|Φ0Λ½α2{ψέ7 OμŠ#°½aW‚Ή”΄ίQ< ™}ΰγpO&8Ž^Τ½­~α +οgΦZ Ρ‡ΗΏίˆ%/ρ8ϊ ΫipξX8Ξ°#B mA° υp(‡­ϋ,$ ”#0žϊB€₯Γ―EΆLΟV«-6³&ξ@'°Ζq/¨@€l‹<›A`+Ε~„sŽsΣO3`[βΎρ,cOƒ€2Gy@*τgS²Γ;Έηοά‘5†σΩςμΆ[otmιή]ΜΝ²#σpθƒΗά‘^΄Κ«·›!9χKΏKΧ¬9bSv½―#/EΉΟStr3Α’b¬ŠΚyΪTCSmlj{³Ου‡¦‹™πΦϋ•κZΞ^υKΕή;[«csΐά¦κ_SΫ_ΆΎ¬ΉΉdέ.5vν%9V˜/'~sEN’[΄Œ/ΤlΥW¬VUzVώ(Rvν(ςMS›BV[ΠZNμΧ΄š-6±‚‹O•.·}ާΰ1ώΖΝΟ΅ZX΅ζj>Θ}I"QΝ“κΊu΅Z­ 7Ά_ωšƒη"€ώΧ Μΰ9†lΏ ΰ&œΧAΠP’Σ»χ [•7±\Po ϋ‰žsΞ9ξ˜=zΈw‡5Ίƒw”unπάψHσ?™$κ|tmδŠw ύƒžΰ? ώ―ΛΌή€Μu$k€3^oΠ†`Ρ^ΖLG>zŒmψ1Ό>Fw1Ζ¬Lη{]FyμγθΛ¦tχ ˆΏGτΎΖdc)χ•ρ΄ύ ŸYήq{ˆΩ]σje@H_°ΘjKC–ΰH»γε§]»ΉΖ78ϋϊΩ† ƒΉ~ί~|?ν€ΏΪμ+5ϋq‘΅>d{{+k‘KcG­ψ/ηΒ_Ε}”ΖΨΐσIΏ2 ΉŸ€ΰ£Ή―θυlέλ5ϊψγΑ@fΪΕx͘Βσ ρƒΊ™Ο0Ύ7GhΣil‹οΪ§H—K#­ξn·?ϋT£~βyςΎζΤέά2:ΐ3ΖΌδφΡbHύΖ]f­Φ|ωΓδ‡,Μoξe~ε€kmκ4+ύί—@Ο€+¦§ƒ  V£±Ί`ΰ μ½ΒΉwπΈ5ωy2οz―•χ’w•Œ(θ ζ6ψ‰ƒΰ `¨£₯οο$Α.Ν昰ξς^π>d‚.ΓNΙ8@[gϞν@P’vκ+FΧͺj{aόΈ½£'mΤί27ξe7<ς ›ί%Σf±†)>ζkσΨ­vΪE8VsύΡχΙ±–qγ%ΆϋΎϋ$υuSvΥ‹=Ϊ–^q«EΫXανWΪξ{οΥdyΖ%ό΅νgΞ·Z±Άn»ύvn.‹N‡TŒ1™± ?kΖ4όΎΗ8Α~ϊ‡ύ—±œ±Μ₯<θ|ζΚΜUίΉηθΚΑ_sb8·μύνύρεvΧ ­\ΰck4ΪΕxμου3Οd|Ξx™ΫΟ”—²\γΨ†«―ΎΪΥA{όΊ€{FpS2‰χ“ΖΞΑ1Ν]Σqn„λζωc I&ήΏ“iΝI—9ύΙΝΆά}w±Π^;-ŒMv|SΫΦ8ΰYcPtΖlp.ωβKƒs€!ήυmW${­k…"‹mΠCΆo-Kωu‰ΩΎ²ς&ˆύKάΖIWυSρZ{υΩ€ •=ρ|±½ςNžkαΩ'eΨ νκν­-iσ„‰Vώζ{–)ξpo΅ϊ Ώ=,Ί‘τuP4V₯}$ΰ±o[hncΜKpλα}l$zί`rŽόeo‹ΓΟ4ΪΏ²–•ρ©τ­Ναž=H‚ΖrχΨΙB;S²X‘Ε&\φΒ«–ΐ@Ξ‘ω"a‹¦gZDΊ@/†?ΤjpΞίe;KΛN³J±U³†@-; 3ŒΞMνΗYVυΐǓ¨ή*ٞrO=NμΛ+†"KΛ,"0΄c‰ΦηRΩ΄CΛΚ-όέ,KϋαgιψΨ<Š5O‚‡Θh“(°Z§/ωΥΒ΅&|²ŽΦ΅άΓφΆ°2¦₯Ι‡βΏμΠΙ$τυ«Ύλ! Ι§’.ΆφHXΎ“Ί7zΖ*·ίΒ²wέΣͺ§.°₯Ύ·θ\ω]$9‹g[ΑόοΥAzζ ΕH=δPK;t7K_'αz'}cUw<³k«_²Žψ‹EΩ»Qί›μΤε7ά₯ϋ€χTRέΛΏψoBκBήoU<γή‚Ÿ³8ΫBΚ΅œˆ±»dΨ]Κμ9Χͺ‹BVέΆ“ΐΚ ύκ"ς‚Ό+œς™eN›©€ΩαdσŽfεXΝzλXyχ „.°τβ"kυγΧŠJotlc™ηou pZtώqΆQ}"λΖτ±ž}Ÿ9όΡ_ΪldKyG7’‘ e;_}”]ρΔέΞ…ίρήm™ξsΫ~½,½[{ΛHϋ‚ .pϋΑΜ€Μxa(ζ‰e8cΪΨ±cώΖ ™u ΗcG’•ΑΕ―΅8fMJ πΌ&{3UWͺZήkπ|ωYύεk_μ˜™W֔思©cMž™4cψΑ E &υLXY$ €(1xρ€g~3Α2dH<΅F6fΖΐΝ>(,)ƒsƒ η#ηηd0Έθ’‹₯Ϊ ‚K© ΐ0ιmXАfΊ*υzΐ³oƒΞ œ@D'bτ'Β 3FUƒ΅ˆα7Fw˜“1ό°x 2Mϋ:ωτνίN‘> V^8c <r=˜»§X˜Y€xΝ’–Ά0h1pβψΰ^ΙΚ‚›>€νύ˜Άξ2vΧ X `DΈΒA»Yϋ—ϋNΧ\s«ƒ…%m ξή½&°ΔΚ¬Κ}‘V‘0`0Ψb8c‘Ζbθ`ζŒq˜½Π—Δθožσ|Α‚Μ‚šΕ+Ρ΅τ ²&ΟΤ³¦žIκjι΅{@3μΥD‘³8 χΖX§$Υ©Hυ@²Hž“υJjΫ•`>ϋΤSOΕηŸ€=p$3¦2?bŽμF4/b.؋qcοσ6„9ŽR1kSώH€g³nΞ[8όŸfΕmζgY‡‘GZzΟ†yμšκ‹Ϊ lш”–L(1tΌϊ' #ŒQb2.ΰƒ­Υ‰C±Ι? φ€PL2Ψβ„ΒqΎ~·Ζe~E΅Ζœ{ΣΛq°s›!Ϋ[ώA[%”Jύ\Y€Ο+λ‘Ψ~iζ\ωLΜy’ηΈΓωbχΪ¦—ΫY;ξ++Ίο9R䌐 *»΅EfHΧ«\ϋSYν»bvg'­ά{Gk-vσͺ'νΚGΔœwΥVςΨs–%Η!R·nΛΎZ@Y)«ξ~Tl ΥbλKΜΩ'š‰‘¦Ip£ςΆ{,Clv)I³.>Λ7\ίΝ!8~! ΐ^Σ¦T {Κv;Yυ5·ΈrŽ-ϊ°ΏXΪt]ŸόΟ΅—ιW]fε<Γ†Γqΰ‘3Χνi΅O?o±ΚΧΈŸeεδΪ‘Η'& gά+@8ܚΣOΨXχΩΈ―ΩβeQJ\t,ΫΟ Ο`ΐ’ώyβΩβ>Ϟ‘”ςΜY±‘ρ ζN„z6Ϋς(eŽΨ‰g•γXœtΨGyg°"Αkpψ£ώ ΙιŸ%€Τ!²{y2ϊzκΧ“-tζP±siή[]׎.Έ­`«Ν-$FIӘ½*ΐ³«Ώ²ΚJξ£–Κ#΅λ­cΉ—kΌH{mΛ‡Ÿ„νΦ &uΊˆΈ,Γ:΄mΩY‹οc™ύάT#TΑUg)υMc›cΛj\ƒ₯5ί/Ώb€₯<Ο±7ΧΚ^žώΓLw‚ZΨ†γ@ lˆ~ϊ•U;ͺw£Nk€ό.–bM³θt•‘tςTΛψynR0ΗΗΨ‘Χz1AχSΊr­ύ`C֌<Σ<§Θ‰'žhΓ‡w $ΚώΉO–IΘPLKτ~€JθYtΟ>kZ~£»Π^Οπ]Š.C5Wη³mi›δα·iή`]έάώƒ°=γϊθΐι|X)ΏJΔλγ¦t>ύ„}€zΡGϊ]Λ΅1φyί ~€wί|ΛJ/»ΦZ’QΝ»(ƒΔ1ΫΤ­;6 ώHx^‘Ξ?ΊΟΆδφW\W§Ž΅‰‹gΉ±ͺΉc)Ίš± ‚ F8ΨΎΡežaώ#­DlAm, +ει'ό)°Žγk!` ‘ίyξρ΅΄d|ίev‘U½ρ«‡?™§a“;δΉ1ΠotΐθΰΩwGΓη›Zε˜—œ¬“{΅tάΊφΎ‰MFΖΟ&9 YX@¬D‰δYMο–? Ώ εμΦ5±Θž#Σ/ϊ’χ?/AoθnζkH2πP°!θVt|KήΞ £4sαDaއέΩ1–ψυο΄χΏσΎ0κ|ή]~ΰΠwβ«fCDv υc/h“kmΦλlUΒ™diI/ΨYΜή΅ΒF ς­sΛ9_띂Θ/ΏZΩ5wXζ7?—ΧXmv-λήί"1ΌR¨}Ύ…ϋvΆ;lb•}7N4ΝΛ‘ύμo1ΏL°a³ηZευwΕ²·ι!8@ψ £vs ₯3?ω•fŸ{ΝΙΧφbΐ.»φ.1kΛN¨η6ϋŠ3d·oo•γ§Ω’|ν΅ΓΕ%Κό)φη’rK–[VΈΔ²Τ ΅ι~)cœ ήΪ’ίΟ²Κ eš/ΫH]ΘJΊml³§XΞ‘»Ϋ‡Ϋ―ο|†Œ»>Θ2xŒ9ή6ŸίκžΰG«ϋe±ϋΏlκLλrΤvΙC·Ήuž+Ž;έζ\πpΌͺξ_h=οL¨ˆέθύwc5₯zήεσ΄σ$›³°Ά!ΘΡλo\π“9 kΦNΑΐ›`™Uύž<―jΟ₯ŽKυΐšι5xμΌΧΰnU7ίσε AΟΝ;SٚBρcИL<{2}Β’1Qpˆ0=ΛN’`¬|Μβη†/8BΈoDubxΓ1ƒ0Έzφf* ͺ^p’Γ# β £NoΐΒIεΩ ύ±-ω\ΥϋΒqμ›sO`ž ΏP†eΘƒ±aΗ@ΚB§  /ψΤ’Jλ™uΪqvN=ˆΚƒ†ΎšbU>naιJ€F`Ίœχ²Œ7ή±τ#±šξ‚ΨέΞΐΦgtμfuΟ<Ϋ*g]υ¨mk±ύbοΑtβ_²ς‡ž΅4½€°«cθ…υ °Ά&œ0Ψ‘°ψΆΆώ`’EvΝωλvΞE:Η‹o+Žξ ψγ`ρ¬[dšœ€εr‚a#Αω½εΌ!Gπ‡pΧδ Λχ‹± vzΐΝΓ₯K9o¨VΗ(+Γ]ήο‚lh;„6½ΗΌ`ΥίΜAKk«ιΠI¬§g9ΰχΚ‹³ Ϝ?D%‰BΩ£;χ·%½gνΞϋ‹en·‘WΈΙ€©±Ώΰ8Ζΐ›ου+>8ΟΖΟσqς‘GΩu·ύݍήΆ‘ ΟΣcο;ΐ€¨š«g6G–œ%'QΰE$ˆΈ’"bBΔΧό (‚˜1Š‚1‘ ˆ‚f¨€δœ”Œ HŽ›wvBηάΩ;τΞΞlrQόΏ©ηٝΤ}ϋφνξΊu«Nβ½AP΄ΎΧκδ| η‚}‚`²IzžCι|‚Τ8Ώ½{ œΌσ q7ͺ+±ΙΔ8qD†ϋˆxtvΚޝ>CX(Ζ#Υ3FΓ¦€ŽVφξŠ•ψΎ+‰Hl€έςΦb«˜ 3qΌΫn»MΩηœ*Ξ[!ΡΧw“žζ›ψ}δ7σΕΉrƒ$<χ˜€|ς±š;• ;?ς‡₯ς•=ΛwoΏΠ,-\') ƒΊΛΆ€pŸ=ΌdΙiΣΈ™\ΪσjŸ½K’5XΫέ°Ώγ/<_>~N{·ϊα4ε«1dfβ‰n\Oήz/₯½λx.ΝΊ€`τ€k:ΜuΌΔθD΅¦C"ηAmΣτλΧO¦Ύ9E²_ešΔ! γΏ .#Ÿk;ΪΜεΙΤ_*ΐ3ξ 3lΈ|¦ΰlΐ9P‚oVLsΥ―-‰`.61?T" υΚΆ]’ώΛb‰ ήΏ mNηΉΝ%‘LΞHΦ.Nxϋ™#6G@?ΰύ0ix–߁FL›ΣfΟ•ΘeΠΓω@ZΆMΆ`ό΄ρΧΒ_[­J‘Γ°™ms~Ϋ‚%πδψχ‰Ώ0~b‚…=—_"ž¨Bgέ&θ{ϋδ·?IψŠ ^0«ή'κlΩHβ.O‰P~΅¦I:؜Γ―ϋ‘“b€¨ΕΘΜ7±ι 5σά9Ηwν(F‡VŠΑΫX½Ar>ψTΒτ˜ νάπ έ^Πc™1ύc‰ωuΉ/&αͺZY’ϊbέΧφ\έΛΏΒG”9Δ&XO*Ύu΄k%ρwέ  rBΑφ`dΌƒΚe‹VŠι6A$ 6ζ6­%vω‰έD `vΎπΝϋΞ"τ„1 ―,-%Ρvq5?Kά$ +tΕ†΅C΄­R<όΤπ£Ό€5“˜Π·œ ;Hδω]δθβ-bn>(&ŽC±;’°r3ĈEŒ¦1*m2 ΅Žίz $)ŽΧ§Γζ&9яcOφrœ[ζθ‰Κ^`{Ξ³K˜&$€:{τkXΗαΑκύ4ό|~δ"y³—JΦsπŸμΝΒXyη0’Ε˜ ¨ wq ©Ψ―»D$ΪΔ1b"bPh'>VΒΑθνxξ-±8*}―“šUPv<η†-›Q!+~b(œSuςxQφ-ŸV»§†6ψκΥ«₯nl%q:!‘jΘΟΛK·nέT›<Φ†΅λ%λ‘œ;ϊ[#QŒšIRχφn2xΤπ€,Πά‘Η°&sς;VςyεϊJ Χ‚¬’£YύυχΦWφ³¨ί­Ϋκχœ―~όρGETΙ9%$‘ΐί;εxΆ‚uχƒžKvf[εxf *S!{.Ι ¨ς+ωhΐ3Y†u6©u_:Œΐ$xŠ «αΓ‡«ŸYސN$.€X Μ_θ#8˜‹0.Έΰ€XΟTˆVΠ1/k»Vΐ3ίϋgΘΣΰΧΜΦ²±Δ_fω:δθ°χ2ΣyΟΙ„Žϋ@‹ΨβΟ,›Ξ Ž™Ό|ο/PmŠ[ΗΜ Φϋςw.899j°,+OΐsY― Ώdω&`ˆ¬Υ\°[… %Nξγ3Π€ƒΧ\srϊ }γ7ZwQου8Σ©9ώ|υ]yžΛσž,λΉN«}¨Ο9˜ΎΠ …Ύ@hώώ@πόφ‡N<θΠ₯Jϋ—‰hV‘³A=i¬ zΪwLΔbR\¬ϋχg"ΰ™ηjζζΙ‘±Ÿ€5γ b’ͺΠ§«D]ŽΐT9‹b”ώ‘ŽΑy•-ΡΥŒ8쬂kιx%ΆC[1Οi*‚ΐΏˆ §­νΓ―%ο[€αφ¦7;_\5«IΨ’ε–kΕψγ•ίΆJΦ(YΊi=}ͺ+Ί bό WuΖ¦@@g”15wΒA[Ž@gvάόŒΘWpθc-B1ι<ΰΨ3 kΔό*;κ‡`ΰ¬u]έOlPΒ™Χ χ¨«^u Ÿσ.j9'ΫKl“fˆσ•wq\/pΫv½ŸΌ fŽΨBϋ€MD’ηό’ΖΪΦ—2ΦΒΑn•“(#ω3πwέχΜƒBv‘‚ώξ΅xVνQ›%]ΫNβn>•P[δΎ‘ @π\hHŠόΒ“–-ϋŸψXΜcΚ€‘³ϊSΧIxS/xΦΉl³€OψLέσfm°8W«)ž΅ͺφl—4“XΧa‰όe…ϊμnVͺλ$kάbHŽ ΞQυ[b¬δŽ{ ΰ{ˆ ±σω’9~ ‚JΏ{χEp$ζ©‹N–9~BΟΏ*‘1hοq˜"Π‰ "²™8~]&yo͐ω ω½q]_œ@2fyhHη3όΣ"άa_r.κ •oΎ^~X³J‹όŠA“ώ€œ'½+QΝj!ΨQEφ ΎGΔ !ψ­Ι‘LΙΰ™ŒG ―=-Ός’/B}VΊκ—――¨’9σ+‰2μ²γ†K|LΛμk ψ'|Aζ]Ϊ>WΠ~@ΪS phΧΌaC9χΰqqLϋH s1 ½X«ΏΘHFA{sΠOCΠƒ.Φ>ݚ|‰δŒ™€`Ϊq±ŸΣ\ΆίΠ½@Ÿ8~pq bυο1Πd ΈΣ~#³%ύ ςΌςάσ’~ΫύbψK`}τΜIr>ϊΓΐ:ǘΥΓ4Π‹>4Žƒ΅ά4Ο9ώC cΉλ†8χ(pωi[ϊlH#νaςπSOϊΕ¬—&ˆ μ U z­­0=ζΤ'μ'―]Ÿ>}ΤψρΪσuRž ΐ!ΐD@ ₯ΘqΚ#Το¬’±BβκΦ‘―ά^0Ηx#ΚSgέ9XœΗul'α΄“ο.P‰ϊΦρ~η½Α CΌ6œφNœ “IΈΙ’MίmhމNπΎ!ψŽϋP8τ/λίι—ζ~ϊwϊ ιΧ$ΐžΆ:ζθΥ}α(Ό¬ƒΫS%kέF­©uλ?S`s‹mΣRŒ¦ Qρ J^°nΒχe<«v΄Ο~q²„mέ₯>:aŸΖ><ഃ‡w€Ϊδ™ρyΘΗ0@neΚS‡K“§μFΥ™βώ-]+ΉS”υ A*f4˜΄Ξ”δΑCG%wΘ³* ν _τu=T_ΥσŒ{$ςΑ;ΔhπΔDRdξθW½ p  #ψmψ^€ €,ΠφΝΪ΄Ω |ΐ3¬Ε~vSΩ~cŸN’oΆΞΎCCp~½:‘―τ€Ϋΰ |Ƙ·cC!½ς&Έ€5|Έ>%σ$γ:zQχX…q>οZ—±mϊκ­ϊUΝOΠΉnoeφ€#θ7¨.Γ>ϊDέJ€ υΫ³κ_>·τυ3Ξ’ŸUκO>ΗΞ[$ΘΡϋpL8ΦργwΤ+d{.‹ΞŸ0aΒ)}ŒcϊΟWΙ©[x¬TκΑqό©w%μd¦δ>s«sμ3“f|ΊTN>ŒdΓh©7s°τ`€€€ψH\8ΟιωDΟ ί8μ/ά–€g‰Eςb—ζώ?ψΜk@ύο?—ZA$΅aυL=l€:VΟ!<ή ~wΚ}>’Œ :΄ΐ8qΞ&Y―Α$G✭6† π^ζΟK$μ­‰ο½ }οΏΧΧ'2ΡεΝ[,ΆσΟυUσaΏ5ψ^“έθq²Ξwήό΅Ά°η–―’«'My۷ʈ[n“‘ξΨ©’U0PνΏF σ²GMCεq΅žΜ½ό©ΠᅳξΩΡ#ΗΔΨΌ]W¬Ε}τ‡Ψΰσ($œ―‘4w–š6©Ž{Ή¬B[qDΪČcΏώϋΚΥνYmR²Φ2l}ŽτvE½{FƒνΓ>ρX|>¨'Η­V­š²΅­Ι΄¬qSG³?σ\ψ<ωžQΏƒλ“υ|}λ‚ό9‚sη0­―}k˜|?υΤ/9H†Τσ cΈ#GzG¬•e8g֟ς₯˜0Γ4‰z ΰβ£{|:·υ$muΈ¨K@{—ϊ›ϊΝ:§pό|‚$'&φᒊΫώΎO_‡½τό’‡ͺp9Νκ) “\8·^ή ΰW0ΪΠapΩΥ+ɜysΥάsu‹Φ[₯’ά=O»—k‰ρ>%YσΦHxDΙ8ι–ΔŽMε«EσΤ½’άΊ­ͺ6Τα’jό¨χΫoή/ΨύJ0‘ο=/ν/π&¬ήν~Μ)Ή_€~ŽθΪAΆ'·QsžΏ½«Φa“f*ΰtμΘϋ₯ΐϊz]pK{Tψφg¦Γ€βυWȏ֞'\Ηψ<Lžυα©5Ύc•#γ$v›Ψ0Gι5ηεV­Z©ψ3η ηΙ¨>f«^U $`xγdW„!«‘τDΒ6’Ž•φYQ ωΗσbrεψργj­γΫ”sΠΆT9Ήj=ͺ-μSμΝΚτmΰ}ΓυΏη¬šKφfϊˆ›ΰ―8_˜_εϊk ΞιΏ,‚Οt«ςQψΪΗ}οjTObΊΐοv°4e°»Ή€ώ|μά.1Ρ¦<χD˜ ―@‰± „!:‡#ρšΐR%ΈζKγμ&f«ukκ ›ύ£+V«uwG>b§lcύ_ <ψlΦ†Ώ¦G7ρt:χ|ͺ%Ϊή+ΦKζχ P!~I..σΕ ΐzl·."ڜΊžνfΜό\"]ƒ€βLoEJ<Μ°H{PiΗ„_Ι]a.FV>Θ™Νk7IΞϋ³θW51Ι=ΐοθ\1)ˆ~/X―Ϊζ.ΗG_ψ%Ι†qs/Tt<Ž~MόΘδ1ψ‡"Yκ»FnΜyΡοπΞ}~; AΙΨΩ†5'ΕΩ€ΔU½ς†κ½?sεFTφŸχ5}ή±¬ϊ“_p3$·:†Ž•°5[1P¦δyβ$7•γ"“Δ…X’‰δ^1°?χIdjFœ}ŸdOœ†j•‡Εr‘θǐοvoτžί°IŽΒ=ΠΆTΏΊ½ΨκΆΪβ΄΅ƒΩ·τν0ΑΎ~~Yv– §Δ2Ρ ρ¨&”|?}–ΈŠώJ½Vϊf6γ5ί:ρ£ΙοΘΑo–H₯sŠΎhΛυšŽΆAΞϊω$֊X8κY Χ>\ΗΣαΔθ±ΚPi„ϊ›Ι–τ­…Ο₯ΉΠΆ‘(Ÿ(ΐsw0;Γ³ΏψƒžK vf{εx& iκύ%XRžύΠΦύιΜηώ Z½ ˜Π8₯sŠk*Q‚L(t1ːbο²4ˈ'%iΧ xΆΟΪ6 x²'σ|¨υfωsAœœœ¬WώΏ“i˜Ω. ¦ΠωH‚3·₯sŸ,'\ .sf3γ—ž…μ;³h ζb”‹Ν’€<ρŽS’λ’AȜ`u©&ΆXzˆcΒEΘΝkE‡ηœ9s„ ώΒ{Œ‹VŠΝλcΡIJG‚ΏΜNGe>‚o40(§λžΤύ)ΝΉ³?ΜDgŸ ήXOV$>3}ΰψ$γPHB#Πΰ9ΨΘ„ΎΏ4t0ΠρOΫ”U!hOρ3m^ώ(X@η€ZΣ6‘-rΊεL<σΌΙpθ₯/Δ\ύ‡w:5’φόλCΒ ΚφTε ΞZΗκ’σœsˆ]ΰHTmψJkΕ‰ –‰T™(οw¦°Ούυ“Οo¬³ΎΗ—ί!ˆ±ΐ:A‹ΑΪ°KΰH½υZ€tκι―™W8eŒ9_ΰcHeGά`žˆΉζr‘‹;ύυ r@gP3¨ ˆΡΩlάPά½ΐxέ²hπχ§ο}"ςόdΆ„˜ΈαœdΞ~{ΌxXή²bϋδ[qyQ—wk°“#4Ύγϊΰ{CŸ8―$aΏοΒ6‹!86θρD"|ۚX e<ϋ);Τwd>I@I?A»ΕΙΎ—Ύ ‹€RόΞu+},‘)$ŏ€ 4ΘτœPr@Ο#—π†UՎUΫ$m<žS7˜œj$΄XO\ΛSΥoΆσλIΝV([9ε#υΩ]A­‡ϋJφK`Z=pDM ‘·^#ΆΞm%η™ρb?ΰυ1'ξ0Ι Έδx`aυnάBφW© ŽΛσ›6mšκ/}τΡ'F02±τ±ρ;’1]~2–Ÿ°Η™ϋˆVž-'ŽωΨθΘπΦ¬D{jU‘¦°5“±`Βλbν3χ!#Sΰ0B`·5`DϋςΞό.~ςΖTΙ|μYIΈοΒP>7ΐ΅Ύώ§eξ·‚Ο0¦_3)Ιˆε±ΘμIΠ³+Γ·Εs§}ΛλS’q’}Λ YT›1zœdα½7π?fθ}2sΗfpVΐE€ίq—+ 3ϋA*―'»Ό#Υ#ujδϊΨ>yο2ΨEۚ:‘Α5υ¬Xξ?ŽτοώABϊψ¬ΟG_ QꞯΓ|CΠˎT€"ώ¬5$Œμoπͺo[·έuͺƒρ­Ž$œ~³†ΚόK€ηόΖO’βEτ—?(¦a3!N"ˆcΫι’“=ύ‚S2²Θ†nΚγƒΒ₯MK^­RˆbHžμνw…x‰fπα3Bΐ šχτxΨΞkίZβnΌF²΄“i ’{iG©p·Χ·+‡QfšμίψM%Ύ<>@Œ’τΊ βž0‡“šlΠn€&Ύ7*Ψ­τΓΊυβΉ1?xwn'[/n―ξc6U@ŒΎ\ϊ…Kͺ7HMMυιK2‘δFύΛg‡~μHΨ₯Ζͺ›Τ}Τ gΞ FOLVT,iŸ#»»Φ€yήΊ†ζsIΦϊYεsΕbŽΑt°ιyˆ}’ož‰ ΒΦ¬Μ%Ρeώ:Ÿ1ŽEψ4)υ7ίΣΐωΧD ‘>1UΒm”θueοc½ψ‹mPχΦψ|‹δnΪ#5žΏ]ΎZ·HΎy~΄χXe’‰Zοiΐ3χυμ;)QυCόηχ;»χXۊ+؏ΫιΉ”γΗίHΓϋΐZs[ΫΟ€σ»κΐΜ!v@ϋ4ΠΌΕ9‡ΙN>ΐ=@yŽIΦόebΘY){΄έηz™‘Wh~ΧΧ”Ηζ}ΐXρΖ) „ϋ–H8ΧoBB֊Υb[ πF†όΣcρΟ2οΠ~Ω’•<@£O`γIεJAUDΥ›Jbς1 ‚’ ‰ g”εpά›ΆΕk+:Οm"ρΠeYΟ¨Ž—²3Ht3Άμτε’bξΦ•P ΄»Ν‰Ή:s΅ΡΌ‘˜ Ξ*ΈŒΟAΉΤ=¬ŒΒ8ΉΥ^γ½ͺΡ\·1ΞmΥiϊΰCQΟh€Ν•.°‚ž¨ηY—zƒ}Ρ쌁Ν<ρqbΪ…[νU}Ό`}*ΟίΩ ˆ.΄†Ρΐ+υη κ>φ…Ίν³?šΩž:Ν‡LΓ:!["Z&H|λZ²£aߜIέΥ":NξyaœJΆΠφnΕψ$ ΫΔ [ΠίήΥ‰q–ξ¨·œ t₯&m°²3}Έ& Qχλy‰63υ)CTςγΤcΌ?ψ»NΘ[BgΨύœ«Nž<©Ϊ£Ή:@κdpvύρ§xΘμpagŸ½[kέvqνq»”•'βΏK:Αή¦=L}ά·n3ΙIωχζ©·ΗJ'`,xς7Ξ:λ,ΥWžν`umΩ)IοΏ,w~Θ7NΔ T`e<τΩU½²ͺV¨ΧληŠ„‚tπβXIΙ_Σ1‘ŠΗ°ι!Σ*ryλ60š!_z2”ήVIWΈ7χbΝΆ{7l0ΨσL "(š@cOZ†8¨ŸΆ¦OŠλ?£?ΧYJOΡOΕΏRˆπ|lγf‰Ϊ{HΐΒKφfϋa/Ώ92»ΊΠ*$Α0κΧ*•~πo―\>cMldœ&ηp&eš/΄KΠcρΙˆΙ>—C2NN)CΗ:e!»Τ<*5ϋY’6¬;*Oiq£βITwΨ‹`ζ5σ“υoϊΥX¦μ9s‘»E₯^K tnΡLά=.Ίeύ‹ό@››€ποζKψ†-κYΡΫ{Ήτ‘‹`bήφ @ο9S?’°ίvzAΞΈyΟΡ^§?Ε]·z!3χ5Φ‘wιm vŸ:ίqcp 3χ[ΎZ)‰=ΏRουH$_Ίΰο1Š-“།…π©Ο˜ε/σ|£ϊή(ώ?…›€hΒ[†y’bΒχyηΝbΪVmQπ«LeΏψΊDn@R&’6B–Ό:΅Υ˜Eό·§˜πΈŽ€+PτΙ?φ#‹ŒΘ‘λΦmΓg«Ζ˜8ζͺu!€δώ†Ήά~„5PF$“5”Ό°X‘#hz™zΒζqIb*؟`Ž’ΌvηHό³!؝ύ–; °}0‰ ™΅Ζλσrbϊg={~Ή–%^ωΌύ€Ϊ/ΗƒOIΔJψ.@,bβ|=Υ*‹ ρ€ΘΑύΕq Ž_ΒΆ]ό»ΧΆΕ½@=žD ɐπͺa3n°„#`ΟΦ­Z#Ηξ›!¦Γ‰~"i€M©υπΥΎ9­Ϋ‹²o9?²r^»8=υ•ΦΏ9»ŠϋΟcκ/mΛn©vc² {w‚ΟNhόr`π;Ύfμπ•J»ϊβ‚ϐΎ¨x$1‡MΆmΪBVΫ#КΕΧήЏCLVi„Ψ0ϊίB€ηŒZhΫΠ”ί” ΰ™έ)τ\°3Ϋ=SΟ 0Π‘S)dnΆ ζό Ρ` D+Ή€ΰΆϋwž5433ΉΠ $EžΉΨβ’­€B§b… Τζ\Ε’w.ΚΈ¨»μ²ΛΤ+Ιώr:Ο₯½.tzΑHΦφΏ$’οNΜdΓΦ€ίβφΥγΣxώ;ΝηΘlͺδδd΅ΰ¦1Βχ\kv²k07$‘@h‚@πldBί_>ι ΧB‡9σgŠœΙ€g=FίϋɜυޏgΧ–κΓzƒ)ή­RKδ™(Ω–Ήt•„mK-HρH˜d‰—-R•«4€—Dtl\Š#ό 6₯svφΟ’ϋΡΧωϋvDN9ΓΙ‘‡²‹Ρ`#•6g€w䘀ΟB?—―σ:"σ‡ΧΥΈΎΔτΌB}Εƒυם@η/g‹ Μ“ άP<ωŒΞεt^½I\χ“ˆύ}}v'&ˆ1v¨˜Χ\ζϋ¨7p&Hή}ΐ@§0uΦ*F›&"_Ύ₯΅Αφ5­ΧέOd ‡.ΔS1QlΌ,Jφ8k³G½,aπp|sz\,‰`) `ΌΙυšΨΑvC‰ΊφR1n½Ίΐ&Α>μ›π­x–ύ‘~Άun$΅ξΓ΅ Ι_ΰΉlΓη>”¦ηΐ6橨p©6ͺ·„Χυ·\λvJϊ D΄κ©š(1( |ό‹Uκ@60ΕΤLn ŽΧ¦γwΜηpμΗ<1P2¦~ˆ #±'ʁΗ?π?ΙzeͺD¬C`β3gΜSƒYϊ„ °(–9<Γ‘½“l2Aτύ,d #c#ƒζ›7nγω‰Μ P`ϊ,ψgqφmuž`్•λ$χ­χΨKσφηά{'Ψ§kV—φυκ Ι€ψͺ’σψΛ °Λ #ί)“χmS@d~&˜—Μ‰,wδ“Oς+_™ΜšK7Θ‚ΚΡΎΎ’‘ΧίOΔΎP¦wΗM7Kϋ.ͺ€8R18nnOΰ Κη‡ΉΛX°L_}'6θ,2’:”ΑΎhEΰ4}?s0Π£/5θ PŸp°`ˆΡ}κί¬•lΕuTINχ‹`:–'±‚‚Ρήγ{Ϊy)πΨkΐJΖΔq AλΦbN{mšμο}Ή<3αžΰ·Κaήη3±‚"τρ ή£/†νΡ~δZnpϊζ(dr%›¦ oO•4” ψm‡D#1¦γe—ψΞ³_­Ζμo”x2Q 9‰~M‹ΒΎ±ΒΫ'ƒ)Η–BŸ,YΦΞ ΟOϋԏ~όΗ‰Ύ5φŸvqƒZ;w£Λ$©]9 FqϊŒ €rΓ―‹$η£―$μ dpGE¨qα=°wο^EΑ{…ύdb>χα9kΐˆ?)Ι}u9mŽΙ:ψƒtšιV—z'ΰ‚`ξ`χί©žϊ˜Šΐ6Ζ=C±Βν6γΤo–wžͺ•d;[nžώ¦Ώ‹yYΕ8tD²ž¬Q^ΓΡω<‰'[W欲ΓΏ£' €žσδΘ1`aŽέσΏpIξδ΅₯ό· φ™ ɎQ―"ye}€Ž~ ΙUλΫόού~ωZΙϋ ’sUWIμΥC²ΖΌ €Ιηِ°Δ=ϊmˆ“ωτΛHrAβ #κΑΎ"Ϋ¨νJϋϊ‰D'$‘`bΐτ‰―JζΘό‚.«U‘CCJ“|ζ}Ζ;š,\Ζm‡ΔŸ 0 ΑyukϊζήΫ₯ΡΤa|nΙ2IarΑ{S·R¨“`ζσlŸόu>ŸuώYη'ζ©γJΣ'½­“iαρΰυΩΖ Ε3ς+©άοΩWΥξcϋ§N£ξ%°nςδΙ…Ο9σ·Κ‘7R pφ H΅›. .ΎΘ§σ‹Eθ1εXiUλ\Κί9vœx€Ηοy]"Peΰ…ρ^p=Ώσο+“’Hςγ?wY«2ό4λsΙ0 ¬qς…ΰ’HχΞ 0Ώλm8ΆΌ?uUc3Q’sΧνω^1—“ΙΩrF•UhGφXΏH~Ι<.#귐'šŸ£μIλ6Aίγή5‘`,Uΐ 04ί›Hψ¬@`ŒόΫφEΪ›€ωλbˆ»fU‰}:Ή , {ίΛz@2>£ EζŠ5vνΣ£7ζimŽ ”n$'Η΄=W€9ΦΞ ‘ca>#V€υKΛ–-Υσ’·§`rŸϊ€lDλν‚½υŒΪ‡s€fiV &$‘πxΤ«|v5`ΧΏ²Ϋ’έ©ΑWEΩBΑϊT"cf]zV©o©Ϋ©«)K¦½H{ΫΜ6n’όωθϋRωΎΛ%ͺCC₯·¬:ŸsζΩϋΚšJρBVKJqφn λΓγ ΝdCŽ ϋG 3υ#Σ•ϋψνHΈ&gάZΫ΅:yˆϊ’k ΪΓV‘ξg;ΌnΤΑΑμ]ξΓ±)«½…„σπ1‰8»‰,ίΏ»Ψuο‘9Xun#.»΄Ψ5ηεjο}#α]Ξ—‡>›‘ζ3Ξm+&0Y…ί1έ)©š€?1ήϊSΰχπσ™%H”LԊA@h½@ιόWόΆ Ι*—ΏψŒjgί}%’Μ°~’’Τ–D0"$'¨τθfΏ>©Τ]k6IΦTA€ξΒχmεAΧ.ώβ Ό ε½ΐ±²“…γKυ#ہ;χHƒΊN±ΕE‰γ?•^uΉ˜Τ“„v,|―Άοtήλυ%κΝ¬ΆšώŽΟRΑ½ožgŒΡR―nŸŠό°`φ―ηJĚίΔ°¬ΛΈφpΆn. πyͺdΤόFLQg|%ΞΟΑ< }Nύbbl™ΈD²‡Ψd0ξv‚­ίͺU €|£3ΧƒΨ(LΎ½ύΏΤή_}©’ϋfΚ)€4Ξ5·Ψίϋέ*`u™I>9oΌηKΔηΊ%’χU"=ΊžΛpmΣR>–TΧPχϋ€η4ΎbΨ―$BŸSήD$ταό™ႍγ^ €γVΟ|U9¬mHBΟy UΣήχˆ]Β»wwλV }|ηŸ`ΤF55IΫ·ξ#Ÿ<ΚV\Xσψ˜’1―™™1ŽgJσ 0ΪΨ 8’ͺˆ3©*²«Γ%*Ρ)qϋ·‰-,ς±5όA1X‰Ι_p―¦ƒΥ9bΕυ‹Ι¦‰χάζΏ€4HΖ ŸιFε?#IŠ}rB_ČzΘ›Μ‹υaΞπ—αΜGn„dU«Δ>$Ig€Εΐn?K«ΊR­W'9PΙTφ,η%&e&νʐó–ŠΉ$ nCjΌέ_:^ΤYιYκK&Pš£ΨQΞ΄‘™8C[ƒIK΄γkΥͺ₯ΙYb̘1jγœΓΉΘ*|ώ¬φΚ§oΏ'{ΗΒzϊΙ/ΡmJβη!6!rtΚwβ:šξέ=I΅“€*βv¬ΗΉ¬8ΐ³υΈ%}Οω“σCπ\ mςr<³[Α@ΟΣ>ή*7\ΥUΓ τޟΊΐωΞTΐ³ρ2³ο—_~ρuY°\ Rθ˜βΒ‡ΜTΖ{φμQAώVZΐsYΪ=έ€g ¦‡LΟΑDUυκΥU`ΗΊ=tβS8–Ε ™4{1·eΦ Gl‡@`.(dƒ¦CΆ{χξκ³ώ§ϋΜΟ܏ ;EΚr]zυκ₯‚" xτ\ΡγDη)T%•Σ xώ»Ξ]Ÿ+3Όιΐ¦3dάΈqŠΙ‡³zυꩇz»ΠkhB#@#<•Πw‘83GΰίxζΘ9–m“―ΝV4©SIjŒ³œͺA…¬{Ώ‘Œϊβ‘ντ•*³nΟ2ΪΞζ %α‚σEΰ6σάrΰιΑ΄g‚/οΎL’Ί<π/LYŽ™_x/ΐͺZΜθHΙθ-κ֞"dt>dΓfΙό|ΆD€‘8Υ#:0•ƒ΄7@΅΅ͺυ^:{$6Κ›ΡΑγξ!@Tδζq{Ο‡ŽϋΫz‹g„w]V’²Mž!ξη§aγmC1ΪL)rœσEΙ#cΕσ X·‘iΒΈ@Θ”—ο±q‹8ΰh&Σ… φΘGοΑ"»YΑm—¬―Šνθ uΤ3Οa2žŸH°s‡ϊRλ!8ΪCς—G x.ϋ:χ“C#?“lU±RσΩ›Δ†Š{Sͺœxφ°1γ™« Fω]δθώ@/M«IΝήm$χΕ·TςŒ  ή½’–ΥΘ%λΤώu$ུ/fKΜ·?©@Ωq"†γΉ°%ϋΉΙ`Ϋι=JiΗ Ό&Ϋρ ωf‘Β !O»„χ½EŒK»¨ΰΊz3˜pWυΊ’σ Fϊί&f'° kA#㽏%ϊoΛΨ9μ•QΎrΕάwPm°΄€ΜΧΞ#`ΰB0AΌθίζ(ΠƒnΖ•Ύƒ‰/½,Y)ŸΚwIv–c€zΛfžύ‚cτ!ρž%ΈŒΗλ 滎Ψll‚Ύύφ[_°ŸνYΑΎmQ&6²EΦTτ%(z=fy?ό‚ΰε₯@rq` >υΏβjωjυrΡΗ!qΩΟ4ΰί[ζτv|%ˆ„ΏωTΊl©ŽYίΚ‘Ž­₯.|+‚nǍ+Ξ­;$ ΧΔ`/Α)dM£π˜dΧφBB0Ι;οΌγσu18¦Τ`’d?¬Bfn]ššcί―zΙ™φ©w΄γjZOͺ>?L1μΘ1χ?ž‰Ψ›Ϋ±―ZJ3Nά‡mπQχrπΎ΅|O‚ή£ώb$ΰHΎX6Χ†ΐ¨–cN‡ŒΫΊVPήwη€Η$Ο«yNS1 J-xΆ¦}$Ρs)}ぞ‰z|΅KέTIwΘΚ6Tiλ?@ιΡ5KϊήδΥ‘%mC–μ½ Ι`ρŠzμn$s΅(ρξ§sΓ4”χώΦƒˆxώdλΣ'L“ˆeλΥaέΥ*Iμˆ ΣQΚΆSφΘ HσrΎX’nΏΎΤέ£Ξ׌›œ¦ž}Τ ήC°ΏvU―(-ΞφOοh6λ{q΄§ΕΔsΐ²ΝξΊ`!lu6ωυP± ͺZΫ§7ψœΠ—S„3Α„Ο'™~)VP—?ΰ™v‚Ώ¬σS00[itY0½ΑΈϋE}I@0ǏΥ-­ [φ)55ΥŽ₯ pŽΔ2eΥeEι|ΧψŽ “u²ž›ΰH©πξ“²Χ“«tž tϊΏ{ΐ2κ”ˆ³ͺψΐˆ=φ˜bΖζxjπυ8ƒόl?oßrθΉoΛ²­ζφD»TνΧM.θΦ΅Δ€gή{$’οŸs)ϋΔοό…:SΟ/‘:gη9T•&ΖP¨7™τΓ{±"ώiέΪμž¬ΡΓ>›‹˜ƒΎ¨g7Y+φGž~-‰λΪIŒ΄HT₯(OΌ¦΄Ιq",ηuλ8ΊοόΟ‹€OŠm@({°Ω½L}π'XΔ“ž#nV!Ϋ¦ΨOσŽΛ’ΌtS[!Ζ†,|ΰ\ώ"1ΗΕEƒνΙ>˜Ϋθ‚±ZKΣ…ήšU«(4mFΎ€†Τ{£ Ž>m²t­δΎŠ{χšeηcžΔυΫCˆY3†ΞΚ/V‘ήd»οΎλϋZΫΤΑLPό«φ.ηz]©AΫ»Δρή 0±³ΈqβΊ@ίSΌξλ0ήZΣqŽHΪ΅_™ωΫ‘χ‘]Ου™I΅,X°@Z―O•Ό_–)Ζgύ½~]Ÿ~L֜8¬?–θ5Σν”g6―PΫπ&bΝήl4έ€Qή`αυ,πFLn”•λ%ΥομΣZΦyψœH^MΈΈ³W/A•»ό±G2ΎύA’,ΛJKŽώbΐœ;9ΕWωΐ…ͺ;Ρb탡D‰$Χ!Y“ήΑ:ta~eFT2„-ιͺS‰ ύ CnvFΪ” ۘχ3«8F?~/lŽz…·E’΄γ…Ι(e 2§)ކΐ"~©œΨ}Π †ΞEΫχ―·z> q%&‰Ϋƒ-Ά§#Kμy^kN'ux½Κb4"ΆϊU$©am±WŽ[ Θp^O‘p&Ήbά’ήŸwϋB}βΪ/Ux"pί¨κ^™›Αdϋ+zτΓ"`y–C`ΛF²ΑΝ&lͺh€ Σ?#ΆŸΦK^:ΐ+ΦO°ͺ bΦM€±šBίWhϋ»v‘K6Kφ…gωˆ™ ™°τOIlΧXΒ›zη#΅#ώΡ‘o„IXΔΛ%&&ϊτ:·α<ΕΚVœC¦OŸζV­ΗuάFΫώφ +εešNYΌl‰:VΧ6νεĘOΕuπ„wwTL¨šrΏ΄nϋ_ε—;―μ-ϋήώNŒšIR±e «S‰Όeσ‡ΟϊJ…^C#πό@Ήžy Α@Οώ§W°3χ9SΟtπΣΈ'Γ ½:^Έΰ’ς~e5»vνͺΎΧ‚5{/·γ’LΕV)k»ΑŽgm›–{φΩgUυ7ΎgΆ;³m’““UπΗϊ;KΎqς‘sώ–[0Ι‘’Ο,KΓ…ΕΚή€©"Ώff3jΉHγΔHaπ€“Ÿ–ς<—υΊhΰ.ΗL6t‚½Z™°K3N§ πόwž»“όQ¬ž… ͺ²Qdξ 3υή{ax†$4‘@#<18‘ŸB#p†ΐΏπΜaso? Gžύΰ4Xb₯*@Οφκ|#jΒρKv€¬₯«%Œ€8-­BW“ϊΧ‘-‚¨g£”ά©}υvfNžω±Hͺ7ΐUαζ Α(Œ¬υ›`²ίš)‘+7\“ŸiΟs@€ΩΩ¬‘„χΎRŒž+δθώΙΣ££Πφλ Ιωϊ‡E²gD]2…uD 8ζ―w‘@η―ΰ\\ΌάΗAFηΣtfgaγ VlΊ¬$‚ŽžΞη‹Ό9ΞΞΨ’ξkξ‚Σχ#œΆ&XΒ:‚νbœ½Eˆzσy½ο“°ύGΤV&˜mΒΖ=*žήέ²‰ΡίΝWΗpU­$1O© ­Uvξ•μΡ“ΰ€“χQτΠD7±nτύΎIί‰g@μ[μtœΚςCπ\–Q;΅ΊώΰΣ³Yr‹‘-5ΖόWμUβΥξ-{εΔ¨ι τlVŒ—ψ^&GήYxgU”šw_$ΉΟ!I -S1ΛΔ (&Κv:ήE{{‚‹y¬1ŸJ&€Ξ|πNUTιζ,PΫ’έ7jΘ=bϊx¬AsˆˆΨ6εA¨>z’;IΨ=} ΚξlΨ\ςp’8ĈŒv­σ݁C’σΪ;²ΘaΗHDιs xj`³³Ε3Ω»/“€δέΧδN”3& €¬Ξμ} DΏρΖκόG–²>·έ._|σ΅πLpΆkά‰»>’|]αΈΜhΌ‡y| VτΫāeΛ ½ΕςЏ>ϊ¨ϊ@°‘#Gͺΰϊζ8qβDΠΑΞj,Ή`b)Tγž>ςγΡΎ>kψχ‰@ΪF·έv›}`ΡL8&UΉT‘υ˜>HJ ―Yrœ·‚Έ=}ΧяΙσ$0‹B 0}V$ _M³)σ7ΆΓ1b°‹ΒsΦΙω,•± Œ €—1p4χ#HMx­tλ!Η_Ÿ!aŠ±Φ”Δ)ΟΚ”/>Uώ^g^c^>L-Ίμ9ΑdΥ±ŽόžΆ’Ζ‰}!ΨδO”ζuMIIΡΝ«1₯―7wμ8_3—η9Ϋ^ ©ΥQpϊ6­c€<Άfœeƒ<‚π8vŸƒΥ-g‚γN"ΰƒB&qϊL9~μ›πΜώ²ύ`Bΰϊλ―Ώμη€ί·ͺZCΦ> Ο©έnφmγ‰Cί–M$s{1€–R”06~,Y¨l‚‹'9—wA₯ψqϝΑPɈ—rdGj„jΎΣy9ςπέύμΕW1$?ω’·„8ϊuίν"`©>$s<˜ϊQm„φrΥPžX~X$ΉL ž‰’˜‘Α ‡ο±ξΘ3IΒχΪ;yž' χχ)Υi\fCΤ©©»ηdδJΪΟ‹%lΟ>PΑ a]:HΜwΙΪί6I0½Α@7}ύQρ~§n!sό₯—^ͺόœ΄0ΆB]ΓηŠΟŒšŸόΨW>{ΑΟ₯Υe%Ρ|F­Αω’žK)‹.γx§σ[·n-ž…KΕρώ§βήzDbΗΒοxΆšs©c΅¨=ώ…— η 3Ρ„,oθ­ΟOλ½μ]‡δΟ!©€H£v ―#ζςRmκ Ržύ|}ϊτ 8—°Ώ8Oj­$ΚΎ2VD¦S^_π;Βǘύω'ŸJžη”0МIΰ1νtΖ7‹³wYe!§ζ~ˆ»Wxτ>?s†/9„‰†μ§ξΗέ xζ1ό¦-OaΌœŒΖ΄ci»3Y.v³π¬νQ λ™™ͺ―zS˜άΓλΚΨ-+QΚbο’”χƒΏ½K3ηnκWυJ2Nd₯ ‘Χμ“^ΣΕGΐ π[‘5ΦS>ςˆπΜ}™|DφQ ϏγDΡ‰4ΤγJHnA^M-ΗOž$#&Όμύ­„U¬";ŽQ[+oT0VβΆw:6£MŸώσ"‰ΐzΘ~ΠΫW}wυ* ― Θω1NSί™΄yβ€œ‘ΓφDš/n$#9Ϊ·‘ηυaSγqν 9·yž  >ΘϋρΙ‰“b•'~Yˆr)^ ©ώ­$@gΥ‡<—]¬ώμΚΕ ξA•υ2Ώ_ α[vω|ΎάOU-θΦΕ»ΎΠ€_άOζϊm’ρ9’Φ­ρΪΠz­‡{ΦΠ{όΖ₯Ux γΏxΖ,¬§w{Ζόœ‹Šq¬’W ΙJA„,Ε)Jτβ•*Αˆ›ΉjT“(°)›­Ξ²Wρ_Σ·žώή'½>οόηΕΕδϊA}ƒ—@Οz#ΕW•Œ,Φ‘X7š]/(ώ`z‹©βϋŠ„Άμ˚C―9κΦ‘Θλ{ 3Οp Δ£Η%ηΩWF? ZΙ;·™Δ Ζz*ΠuΖυΜ›Žu―κQύ1FΙτΡ½―ψ-γυχ$b1H‘ά+KΨυ׊ǁ„ΰ{%|.Ζcί 1ρΩ#H\ŠŠGήΪ©›Υ‡]B#Ϊ.aG"±Ε’0ΏΔ8‘“*ΖJΨή  h{R΄δφ‚ϋf5ϊrψxΏΈμŽ9ƒΎ7‚ΑμL_‘`½τɟIΤ<¨»oF¬£½8Φμ–c?sΫa©5αvΉψϊ«ފ>—ιο¦ iϊ°„‘u2}GΓ† SΙυ«Q%λπ½ο©Κ.υ§ ‚μH·Σ…œΌ<5'=υΤSͺ*eH"ͺŸ9ΞWœwΈŽ£°²ύύE­Iik3Iœ‰ζβ©θΚ‰ŒϋΟcΫ°¦,ωγwΉψβ‹Υοτg΅ΚŠ•£“g«ΟΎ°…«'ŠQ ΙΓx­rnc؝`¦Ι‘σ)JB€η’F'τ[hN”;ΰ™].τ\R°3Ϋ:SΟ4¬©―Έβ ŸC„Ω“'N”V­Z lώ €\ΰΉ¬ν;ž΅_\Ψ”πΜέάw>‚-t“’Ο :ΠΡΘΙ‹ηΙ,ž’Tœ+T¨ 2‚όχ‘s‹“Z§NdκΤ©ΎŸΛπ\Φλ’AΘΚιΊ'ΛrξͺCψΗ233›ƒPΌΘ²Δσ IhB#’F x.jtBΏ…Fΰ́ΰ™#η>xRŽŒψPΜ“(iηH•žηJφmΎu—ιp$YΕ@F?Ξp&cž4©_"ΐ‡™ης‚žwV­UΈφ|‰ΉΕλΘ±6¦½7φμ;Δϋpς­hδΨ©ξΑικ‚<gㆫμԏά;²”€ΟϊF"W¬γ‚ΓΧΨ’bz^!‚’ˆε"A€ΞζN8WM0yδ„εη€··mζ;¬ΩΈ‘Έ{]-fΛζΎοŠ{c€±AFΌ(6€ )t€ΊΟͺ-ΖλγPVχaIεω7Ĝ„u.ΐ•3.RlΣΖ‹\πŸ"[0g|)žg^AwέκώΩd1Ι0α/pˆg=χXΠσΑ9­[Hά#χ _0ΰnέ 6Ϋ·½Nf±ΘfkΤ―νίZΐΟϋήόA<σ·©ίlηΥ•Z^p»Π—eϊθ°ζZ” J!)ύ8·”ƒ£„$›s”y|ώf±%z“,θy4@ΟdWOŠ“ψΫ―”CoΞS [­ RσΑΛ%λ…7|@½θο@°$F±?S―  v<31NrF½,aωΊ9ςΊβΉιDvœψ¦·€%tuΔν½Dμκ; kΠ\3.F!ΐ1u:Ψp–А‹}βΨ ε»οΊKŽM›)ΡίΟXΫ…h J—ήvƒxΊΙΘ"ΆυΏanl};ωΟZv-Z*ΆΟΎΫΉgΛ\0Ττθ`„>‚Xm{ŠQ!^ζf+ύ" ΄†ϋp>όvΏ±―λW­sΠ3* νF©ΞΈ»o£ρYΎ`8ΑZwZΟ ˜ΠO’ωμdρ¬XP΄$‚‘ΎΧΝ7)ΐ5“λ ΠΑφ‰ <ϊyRfh&³PξWί)&݈«»Ι·•b}}b_9¦Vρ| 0@£θσ!Ψ#Œ'ίώ@ΒΧύŽ$«*ώΣr‚7LόΧl79°ψžύβgΎ§/“ΜtnOρ~9K¬}²Ύ'ƒλΉ `'ͺ]CΒ#"δΨ±c*Πe σΩ'IΩ{Ωžyj` “6”Z=‚ςήΊ*AτύTΐm/g‘uϊΙ'ŸTΰaΆEΰ6ύd<=NWΝ D€ E³nκqbίψϋBμΧ];EtΡ샐Γ`ΪΡγ6ωΰΣ<ΩυΣN mΛ΅`…ΛvFΘGP&―=AΠTυ¨Τγ2ym?EQΒϋc@†Qήw ²Κ… ΆΗΎŒB'Ασ 6Ύr^aE=²K'‚ˆcΛ£ΟHΔ–^]`mcΰΔ|wA;”»…-‚ϋ XξΙ@ωβΘ₯kΤ¦d£Œ!Ϋ3ΐp§CpΫΛ ―g£ΊΆχΩjέΒ!Cο)ή.;$ΐΌ{ΏκbξUΙRαןŽξ–M<ΓΩ#_QŒόͺϊΕ Ox»€ΘέMQԝ•_Ϊ Ζš h”@K*Ε »/~ΖΫ”DψiΆJ23ήa½ηψμhpΫ£"[₯ZœB€Œx‘΅q³„νέ/QW^&iw¨78Aη‘`~>j” ޳m‚™ωŒ±m>·Œ{P7P΄>Τ"φ,@IDATΦ .=?Yυ+ϋΚ?Ϊ)Τ½ϊ™£ž n-.+©ήπ?ΖH¬sF ρ£.#ˆ*.£βsο―Λ8&l«$:³7¦HΞ€GΕu” ί½-_ΞύΎH˜:†ΰΆέ―\€yŒxN!€˜1 φ‘ύΉοΎϋƒυΨ±cUβLtψžϋί7ϊήlΐK`s³μuΚ1ΉK‘±Wϊύ#ψΥ¬s©υZZ7ηόFΠαν·ίξKΈαοΊΗ„‚€‹ˆΘ(ωuΣϊB$EΦφψή:GθߊλΗ’4γΔργ½Η뉛BŒuΕΎr ^7©ΟωNZΩxψpσs!WP0ΆœΑδΜΉbΕ±#ςΜΩ­eXΝFβFΕV qη„—‡ΰ Ϊp£€a 7T°Yο'¬JC4Νί‘α°D °LΈ΅Ϊ«ΠwΈ7YUΔ¬_λ?£+γή šοa;’σ…v+π_Φ¨IbίX}w8XΞ=~/°ν•¨ ΐm+ΦJ؎T±£BUl`Β<ψ`_pUsλ7μ(-|4Ÿχ=‰―΄ν€· τZάσΰΏυγ:fΙΉ‚ΊΞ:ŸPQ?ӎ’-}ΗwθKq€εβϊdέ?ΠΑ>Sj¬uŽΠηC€η!&άXυ„‰ΎοeΆΤθ~ž IyYιΔ’Ξ™¬ŠμoοV¬ˆΔη«½K†Νk6};Ο1žgάί/ΝQe‰μσ ¬r·ξI¦@™©u†žΩ&ρΈΠsοVΦΧ†v~"bύπΜυΦCƒGHF¦$ΰ‘Β΅dΏšZ“φ+Η— ˜§ΓήeΏ8PβqβΊ€DuϊZrMχ ’0³‡½(ξm\ΣΡΖ Ω}΄±©Ο«U«¦ζ:?Π/ΨΌΔT+&ϋ'ŒΛ³ … §ΑΪ.rύΆΦι?*α`桝L?Υ”ΈΏBBο„~uΆ>[’ΈS€N5+τy―§¨γΐΩ} PqRUΟ?E= <΄:Ÿ'ξC»5 φΟIφ˜W‘ψι]Cζύ§₯Δ=z·χή!°zΔΛΎŠŸ‘ ~q'_(Ή+vΚΙ…Ώ‹Ήε˜iΩΚΧgΛΙ–°΄γ8μ6$₯ΉX]²RΪ95‡λΣnG½ θj» jρ4¨)1χ£[mψη4Οœΐ3»~νευδ‘» „ίœρ›|όυŸέ? xf˜oΎωF³ΦΣ‘Η a4ψu‰1²qΠρW₯JeœRι[E3"σ;.˜H)\ZΦvO'ΰ™Ζ7ΓVΐ·:™θ`%φωσηΪ‚L)d «Μ{ο½Wθw~Α1β(#GŽT– XKxͺρO}ΉXd–©–ΤΤTΉκͺ«ΤG:ρY΄¬RΦλΒ…iώύΥβΩ΄zΥύΰ$Οqε}ΖΕ½“ΩŽ φΉηžΣ›ϋ^ΉΠζ˜Ξ βb–™SNπ\€YEƒΡω―MIΟχΉλ>kΖq./raΝLې„F 4‘(nB€ηβF(τ{hΜψWž±8ΜέΛ6Θ‰”_EŽ"θs5Ί6²πγ½cJ§¦³i‰'0Œž•I|Ϋ?vʚP»J‡N;ΓΔ8–‚™_‹ eί;l[-{‡_q‰·φ³Š7ˆ£ϋ'_΅`έψbŽ©’€Ό\8X{Mω9οΫߊݏΡωteΓV€ϋ†Š}J!ηGΗ=`%‘ˆΩ»G‰‡ά@Υ}ύ=bIσξC†ƒΛ/ΟΫΟέΐŽο—ˆ•Ώ)ΐύ€οu@)ΒΉHΐςš;eδQξΑ뜫.‘ΔΫzΪόΰΑ”ΟU›žͺ%vΪ³²ΕΪγΤ™.“_΅bkδ!=ΛξΔ?ΥlθeB€gΛ`ό…·yφ’όΧ*ΐaT—Zγ΍υ‚χ<;φ+¦g ‘P4Fϊχ”CoΜC€¬€Uβ€ϊ«$χ΅±³²ΔqΥERα’ p~ e[¨„―*κήΫP6΅₯d?;Ρ—`@φεθaχ‹ σMΦXiRχ©ύσZ4’Ψ!ƒΐ0₯‚dkήΌΉ^—Γ@=ύΖφ]βš‰ ΦπΑ 4Θ°EΖ.‚'˜T’3ώ ΄»W΅λBβEτΓΔ¬‰ΰ „ώώYΑhwΥ¨''φΔ―•p0I½³δWpQ ΫΩ7tAπ‡ϋΚζ„Li‚)XAΝΪΧΈ<^²VύNVDΚsΐRέW‚πΧ` wsΣΕD2η‹$A©”C»dΠ A^°0|.Ή*Q ¨JοO!T ΑL‚iΉKWɁτWΧ­]+5Ο9°°?Ε ψΠγΗΆ96Hρb"jCi\{λ–rΛc+Š«ΌυŽDyΤ΄΄4 `pˆmRΨ?ϋƒ²ιŸδ1ϊϋυΧ_š ΪΏd θ[λή½» °rΦԏΕΦφΩsώ9Ύ2¦lŸ aΆMP dΖϋ’ώ φƒ(}-«&€<0*QΒΑΆλx³ςς~δώΆ0Œ“>4Ο›χ"ΑQnKpD―^½|χYœ¨cXΐ₯Εm_άοτ^sΝ5κΩ>xπ ΪάάΉGŒ (Y»l΅ό›/ιΆ©π΅SΟRψά’QKλœόΝ|/Œ•θ9DιӍ›`ξ™ υΏ«ŸbΑψσGΤ3KPν«γ_–³eή)ΐG,•lΥωz~βφμ«UGkύΚσ Ϊ§ Ί¬€zΓόΘhΖγι1 4~dŽδχώ:Ÿη@αy3₯u}‚1Π_·n]5O{· ¬σ7―ί ςΏ!’8k’ ;ΚGδΓ}Θxά§O‰°‡£Π„S5ΓkƘƒŽιΆƒ½ͺyθΓOdο«_zΑΞΨΠΈ°©ΤΈš :ίΏ-ŽOΐΉΤoΓ¨°pωzΞl€‚?σ^!Ϋ―}. M€ύ³ζ/Ηz耄©>Œν'Α’Ηx0όHέΗxʘ1cTς“?ΰ’Έ>•eœ>ŸρΎx^KŒΥλ ž¦ׁH¬N`ΧΑ’wa)‰‰ώ‡WA©ρš^D…ϋφν±ψg™whΏŒlΡJžhV8.λΫoΜ,$ΑeyΡ¦Γ pt.Ρ¨Ί‘8)Πx‹{ό·§ή"kόδΙ“#γ>ΐώΖ΄Σt‚M:wκS&ιQq°64Ÿ;-ΕυΙͺo™Ψa]Γθ6ΩΰΞcνή½Ϋǘ͘sW‚93sd³Ÿ‹l˜I=ΫΙΌ¨ƒ₯š3i/k{— mυκΥσΩϊμ3―ΧφJ9–±ύq‚ωΗƒͺDJΝΞ\eΦ·βόe1žK0|ˆ—8δωbω_υmYΗΗ €ωΌσΞSΗπ7¨nb ι„νA³"›ΐ}DΠΆ9‡oP>;όθŠ%G00‡:Υ‘˜»n³qΡ cό/YοΜ”p £s^›–CFg04%6$ζ:ήÚ>|Ή6‹θuΞωRοœ[ΤΞEόfόΎM²§Μπ%α°²e$όκ`ΚT~¨B»"12λC΄£*ό=Τ•ΖκΪ4ΨΖ?χΙqΉz£X“{ΰ·r6j$ύnιvaΰέp―g ΚX$ξ1Š:ξΠϋ'σˆž;Ύj^'ˆΧ? §€ "…cͺ’­DτΕuΈ¬³w$δ<χ:ž)Ψ[ψ-κώ>bvτϊ­¬m°β›σσ…"Αηj’ΘxI«‰u–χŽ)H83‘Μ[χRψrάsYcqflΒΚL$7pπ/ξ7ϋ¨ Z·ΨΑΧω\1Β ‰^„ώ0S<η6D2,πJ [ $œ™4BH8―YΉJΒplΪ€\kqΝH»ƒσΓΝΥΟ“#ο/”Joά!ν/θ¨ζΆC “γ€›—ՏψΗ糨-Ξ?XΣO§…>)ϊΉ˜£…kY&–k°΄ώήs"S\{°Άήw\Nώž*rΰ€˜zύŒz›€―¬Ζ€ω°΅ŸΛ¬οΏUΥηHό’Π„FΰοΣxζi<6°•τΈ€οŒζό΄G^|s½οsIήό“€gφŠœ,\”QŽ’|ٝY†ΐffD2{”’§|Oγ˜U*Σ#GŽ( oJJ Rbe₯-π\ΦvO'ΰ™%C±rυΉωΏZY•Œ9ρ±'N:χYFS7'.„9QΡρ€ΛV.Z΄HΉΈΠ ˜š“£6Hιάμέ»·*#J`:ζZΈπΊθ’‹T–$KŒY˜ιmJϊZΦλΒφ x&π™NX‚³ι„£π^αgf'ρώb°ηH!Ψ™χp,sΙχŽΫ" ›83ˆCaωŽ)…ΫΣιΗ€³σζΝ“‘C‡ͺχόŽ†’žξsg(Φg…ŸYJ–‹Χ„F 4‘(nB€ηβF(τ{hΜ8γΟΘΖ­(iΎJΒHμb’³Χ-.ψ΅L0hΪ’›HΕ{sCy 12ϋΌπΉ˜kχ¨ΦŒ6u₯Ζγ°υΪϊGωdŽδ}υ=Κ«ξ.”uWIϋ₯]DnΉNŒuώΡn88˜6ŒK%ηλΕvτ”Λ†©h0pzΊ l»Ώσ²@₯ψ ΞKV€UΛ­vτ€"Ώk?ΖΚMŒΌ’rctN8oΰυ­#?@nrΝzsOρŒ~,h%{1'žΏυ²aXTΓ?œ(žV͊lΐ\½AΜ>ΓC74γ¦{wœJM€Ξ/O UΆΜ-šάkΉ΄‰)±Δ p‘„_άΣχΑα[² wφ«εΨΗKT›;Χ|όZŽ+xΠ§Ώ:!ΐσ_ΑSϋη.ί%G'~/d 3j©9ζF±!Fq£<γΙQΣAύ•zΎ§—š]»\hvζ‡rβ₯©ƒ$’HT(ͺΜ5ϋΐσ£Οͺ~}oo ˜2ϝƒ²¨η’„hRοk%υΰίψι>ΡC?«˜±Β}[Zθ » ,Ϊφi&[­pMŒ O©KK€ Β±)9|ύχrν΅Χ*p/φl355U£qγΖͺŸΊ}‹ΎOϊΧ Ϋΰƒ9πIqN--Ο9G Ή-=―ν‰8œSXτώΑ^‹<σœ– Θ’Η€ίΠΞ†~ί!i?/–2UΎSU}γΧ ¦υ½¦§ό΄nwœΐ>š€ZQγD° ύkτ™ΡΗE‘Ο‘Μtόή?žž)ß XGιw{ϊιg(;πΏΆΌ‡ΞφαΘ0ɐ€H ’ς0ηΓFδεδQfeϊΨκθgζ}Aΐ Ο·$Β{š€τ –‡<[Ϋ5²pΎA€-\†Μ;pΩϊ;ΩΦν‚σEP‘AUrHΟ”,ΜχαΏoW»:[4–ΨGο){B ΅ή3אι³\κ—ZΥέ2κρHIˆ;υόΨ₯ΰWΈXι/N•ˆU›ΤχΞΦΝ$~Θ@$*Έαίϋ‰Ι+9ΖΣΖ²˜qCNW%Ί3ΑτΖgŠΆwμp ˆ^ΈΒΛδ…sr³βΜ3˚H_h;Ϋ·Π|Ο*žŸ`Β †gη3Qr₯7zBo ±ΔΉU wν•̍ΏK8˜Jν―<#.»D=Œ?άVΦ”Ε ¦X² F,?mΡ|y`= >b’‡Φ―>Ÿo{σ\¬ΐf Ξf%Α€}‚ΞΧ@7λω0fQR½hό°ΥΟl ργ>Eι|ŸΐD­σΙΖΜ€ΎΦωŒeι9ΩΨP\~—_Β<>ΏyΓF‰ΖΌ™²vΐJΤ£•’γ%ΉUw²$³ΡqλXzOΑOsηΙήΫ_6ŠΡ±‘T¨§šW‚%ΉXΫ‘ώ%0!99Y}­Xi›6υ™ή–LΏλŽR  ~Η{€γΦΙ$yΛΧKΪτΟΕώη!½Ή„…5θ&9½›„Š‘U°=υ6EŸ/ϋGέΝΪϊϊ—€Oe§χf Έ1άΫ0/δμ9œ.žLŒ' Ÿ ŸΡab¨Β^3Il˜WIiρφΧί©#γΪ)  μJ&Τ)Άh2D;a“’%Ϊ,αΌc·AQπza΄Gp.κ•€hόT"!°­JeΨƒQώ°δ­Ω"žπqWEYu$Σšα…€ΰ*βωνΠεBT"iΤ½ι Ω/NφnRΨ΄ ΏΣξ ΥΝ¨šλΜ. ΆvκSIž‡S[{ί₯Γ?Ar1 γΌdBτΩΧήMTl—dNdϊ·&¦ε¬βΕ4Ν„D2θj[­$}ς·ΣόηΖ`i Kΰ‘ξ%ˆ‰1XΞw΄ΫlxVχ?σ©˜T7+άίM–ημυι[Pl OΒ΅φίJ=Δ*Η .ΦΊ‰σ1“φΧ₯ʁ΅@ڈη%ŒΥζ°%ϊρϋdnζ ΉςΚ+½sεζΝOγϊΚίΕσΆ&π\±beiΤ¨Ϊ_WQΡσ ΏδqY†LόμΩψ™xΓω”‰7œη΄PΏ2&£Y¬ΛjοrŽ 6N<ή Φqκ{Λ­’|y7ߚξ6č$ƒRψx-tB—ΎίX9(Ψύg½?΄Νa΅‡τω–υυŸ<«jk@±`‰J„&@R A°΄Υγ“;‰Ω Ά} }ozR½ b¬\'ΩsζΑ―œΚΙYνξΑ1σ@Fπ±Τ+Ζ§Œ5™œ·N˜-9[¨ύλΧ1?‚Φώ}*pq/™m[‰λͺξ ‰­ηΏiΑΟΤ±ΛΦIΦ |‰ζzμοΈΛ/³Ck―_9䜎$κ°ίΈ†Bβς±“bCυε#¦ ²LŒ»γϋ”οD·i}U@g€•Γ·yν}σ`2ŽνsS±@gcΛvqΌ™’Ψ€U›8ηά‘ΨΎ·Šό;“Ϋ3tŽΨ΄ΥΫU>—ΪH|Ώ[‹/kχΥ{&ogM!‘Λ8Ζ΅6±Ž‰D’»yε% ¨[h‡ _π-yΖ½*6Η)nΰjrΊvB‚[?c$ήλΟ`ϊ^βυϋρΗ}Ξύ{θ54‘@ žJθ»Πœ™#pΖžΐ8μ ίΌ«8V lΕΞf $‘S;9ψΣ1Wοφώt~©ώ0Όp,•§˜π5ΨͺΌ6―΄¨!5†(Ζ`βί)\'}ϋ³8>ώγ’ο@Λ?Ύ'!^`όˆι³—ΥϊομWqΗ‹pϊ'_KδJ°½„»2―y#‰»Κ³Γ‰_^ ³ύΛΩb#£s>ΨΒ½ηxvμC©Ή‚@g²)mOˆM°‰Έ{]ςŒΝKΥcΤΛbLΓ*ΦPχž cγ­ΐ›PςΆVnOŸΑ`ƒ‚Ÿφ.ϋ½˜²1΄ρL(nΒ1ΆF»–"3_NόB°eτά_•ΓΥ]£*‚Φ8ΐA— 5Γπ Rœ­›J%eΟ^'Ηfΰ:ak+ηR5ϊ§ΐͺτ‰,Κ`tHώΪδ.ή.G^ϋA5bΤI’Zcoƒžθβή}HNŒ@πΜ/f\”$>ΠLΟ`ίLCπ-6BjŒΌA²ΎόF"~]£φwΆh( ί-/½%α›Ά{Ώ#xο±»1Οm‘Ό—ήPΑΕξ3Ο؁ΑOΗ„w8™ EΡχυ;B¨bƒ>ϊeθ·a@›>Šι—PμkΛ—‹qΧ`ΙMξ(•¨ό0τy8Βʚ0E"ΆμPύpƒ½y©[«ΰyΰΥΧJΖ0€ϊ2$β¦λδ#W¦I0ΠLfΆΚŸ}#ζΟ ΕFB[Ώ;dEεXιάΉ³js|%kΤ”ΞWtχυυ]μ+tc”=L^xεeK_WHψ‘“ςόΗ3„ ςμ?VτνΡ7HhΦsŸ1ε-Iο‹Dψ―§Ώ,O>χ¬:ξK_M aμ£oόήz[²ο,ff–Δ½ϋͺΌπφT_ŸxŽτAς|)d€$ ΅‰°-²€΅jΥJYλ~€ΞΟ/ N†Ό‘O<)Η ‘<02'υΎF"«TR`_|Q#ŸWϊ”4ύ:@fϊηxΞτY±t)ΩP\’_Κƒο˜—^TγΔΎθ]?‘‚8―Rl_α,Σ«½,?Wl;ψΑ*‚Dθ‹₯,\ΈP½u šΏΨ¨AŠda»$ωb©V³†ΪžγtuΫφβΪ‘ ΰms ƒ]β?N$ Ϋκe—]¦φapŒΥ΄X}™oε:ŒC€)―O¨ΐΌθCγyιqβ}Β6θο€ΠοV>L}ΏΌϊκ«rwΧn’3t¬šο>˜,)ŸΝRΐEή/Φ¬{z†8ζ$(”η¨… ^ϊΓτxΣwJ¦hŽcyIq€ηΗ!μΟ@g# μ©˜ ·Sφ1؟»t LpΠrς³o%ϊ ψ”a‹±J$K ³Κi%«l2ρm'cΜ0/<2zHΈΐt/|ϊ½δ~2[νγjRObΑ*Zn‰q₯λΙ©­χΗΟ«d1²lΗ>ύ²»hΰ£ΩβψβG΅-Β±Ο<ΨRWo’άρo‹Fv蘱ΆΉNAέ_Vύ@Ÿ΄bΎ“"ο=ήχŒoπyΈΣΒJέ€ bθCζ·=zt½A6θ@ϊί…!)εAχH bj}¦ιάaγΔ½ƒεθc$nβhyν£™*ψνoVHXb;pλΣ―EΜOΤ―œ³JΣ' `J’78'RŸψΗ‰z=Πψ1φΑνƒι|κώ^@ηƒ5U³X*?r€δμΫ/™(λsΰˆΔΎ8B†<3R19sœΦ/]!ι¨P«τ4„1‘OŸE²υZDŸΟΓ_/ρQ71y†sFHγF;yoΜ•μU˜ίΟ«/5CvHQ:ίrHuŸhΠcΐΉςΙ©JεΫ{IΧλΌΗζύAΰš@X7“ Jgμή'•οΊQžΔ80žGP6υΏžSxorΞf…ϊ›ΐž?…ΏΩ'lΓσ+Ν8y`‹$Ύό†δύ²R\‡xΚΒΊ4x<¦Iέ€H@ΞμδΫ~ό 3’O[ЧέΔlsŽoΕ9ŒηΕϋ€ ΜBŠ$Ωΐœ)ωAμNбΠΔΊΥΐT"Αu'C΄ΙJ#D{˜|[Τ Žι„ν@–hΛΉΩ¦χAΡ€άΆθH±!Π€«X’ ”$i™βωsK½£?ΆfΌ g2C«ΏŠκΥ@²‘Yο΅ςύwV½«AΊy¨Δ% –ͺdΓ₯lINNVγ@{°Ξ›3kp €_ΡLQhsκ$ ~.Ισΐν΄p>`2ŸS c·μ‹Ώ½Ενh‡0Α޲zυjerώ`¬σΔ‰>έηŸ”P>ρlπbζκ8 ŸoώuιEΝ/΄!Ǎ-;ξ~S„ '€Η« ΈT’“›ωΕΝ™›³wΩ_‚Ε­φ.cκφǚDIoŽk΄αw¦JΪ²U ¬AϊŝԘσ\@»΅sΙό΄8{Χ&E±­OΟΞξl^rX ’QPT‚‚ Ε€WQ@EAΕ„δŒαͺTΰ*`Ί"*‰" ’“δ°9ΝLΏ―™zggvga ο½9ί·;3έΥέΥΥΥ§NϊΟ`«—;X!`Pkdt^£tΊεZ₯Ϋ9fqμg? Nδ³ i—ž7p_·nέ|νJ{—£ZΏrΑqœηΡ:νΚ{πW‚Ω»ΔK°ίk§@σ‚»ZΆ’±3ίΙ7§£]’νvΆ­ΆΡυ|Φ:/ 0›4 Žφη‡όΣοΟQRrΦΟΪ«~— 1Ϊ9_’‘μ2Δ:ΓGΠφ*1,d΅ίu™ύΓoΪόo%z ΨyAL‘}$χ’šΧρ:1,ͺ­Ρ?m?.Ϋ·?xΖ6œdΫN—œHΓΨ‚ο5ͺ:‘ δδ=Rgδτ w«–FgΧΆΣΊΝ’ϊ͏φΒ΁}€Ε]΄Δ^ΧJ€usm}drΦ g2“ΰΑvΪτγ/‰±β@)ŽIμrk‘69―Γμ{™τϊP <@g2:WυΜƒu}ό?—9ν=‰Ϊτ·oW.H&bιζΛΈεΫQœ/π €|½τ7_{δΥΖ\©OΐlΙ8·ρΣ/’=σC_πlόρ±OτΘΦΟ\H=˜Ξ4Nb–ΐί± 9·a]‰κίVsτ™ B€tφτΥ\ˆŒοQ}{€˜γ‚₯ρό&ΟNJ5jΝ£‘υΜΔ½ε–›πΦ~W›Υ«HμΠΗ`OTΆPκ›ο‰™F(*$–σ5ΜΑ ϊVκψw%j₯η<9Χ΄€Gο?Y ΐΫ\dό<τπgλvI™• %ϊ²9ψl`nN,/ΩυκKTοέ,Γ’K2Ύ,؟έμɞ]•Ν–ωζGhΛgtœδՁ픒‰ηvςέ8yΑόίb/«%i—W“cQ˜/ ί•ŠŠ•Κœrψk΄ΟΎT1‘νChΣQΠqi5)γ₯Y³‚²sVl•£ VK\rE9zIYΙ§Δ"kOξ»mZΏ9ˆηD§ώŸ8ί’'*999ΰœσT―`žΘηΎ£βΪuXŽoΪ!CV&}ρYπ|ͺ >.ά§ΩgπΜϊ5_Z6l>~JU=—€ηzυκ©4Vtόp⑝TŒ#α<"λ†ΏpβEΰ.Σλθ‰ Π=zτP‘π4’iΜχοί_1°πψ’Ο,s*η=S€g:ί8q‘‹lΧ‘­ΩfzQΖzϊx:–θγ’ۈBP5ΩJ ΰsφιςόd;Ϟ=[Θ"­α€‹ŒΟ¬_5¬ΕΥw¦β"Ν~DRȐΓ{:9•η’―“‘‘!\ŒβDž©B)Lα@'%RšυY—ΧŸt¬2šxΗDβΒΰD“/Nv99σNΉΰHΦ έ'9Ρd±_1I‘s:Tΐ3˟‹{ηu>}ϊt•Ί”τ°„[ άα₯Β€ηPZ)\&άηG œ€η{Αβό§d ’ίΎsŸΟiηk!8Εςκ$K|KΜšΐ\!ΏCtμE"_UΞ-γ’JRil4λ"₯οD§ώe›_‰ΉΨ³ kΤΕ5†ήεΑϊY‹>όαgɞσ™D­ί,6νŒΖaL—Ϋ΄Δή{»˜Χ΄,ϊDg³\‘Ϊ.)νšƒΧSHv °žήΥ ŒQeKF…ΑŠεMLFη:ρ½˜C^”:Ξ½’[΅ŠΨ_‡€‹#ݟσ8d±€¬–ω+Β;wͺΨΐμZ˜p‘άy[o±mέγ)†>1¬Έ»ίψ0τŸŒ'+Θd[IayΣΊΎyϊ4ΈΘƒάy Αΐd£δχŸqŸ~'ΰ: ­Ν[IΦgίΛξ7+@—LkΟ€z.܏Eͺ{ώQΒmYϋ"9>r’Db‘Ν1y„―ξτιŒ7Ξ·Ψ―πώγb;ΡO)¬ύžxΰA€%“kΉF˜κ“μ7τ-R8Η!ΐ–ΰ> ύ] rg6/š)Π9°ΝXΉN\ΗJΔAΨ,Xπ3‘q+7ζήΉ³Ϊaύ`vό#½ Τ ˜<°μΨώ‚9jΦσ“HwPνΙSsό ~3γK‘L”³οώG•ΛΠ:αɞ€>ύέ/€΄Y‘( N'λs y.κ–ώόX―Ψ cω½οEΏΈ\ηΟD0cvίβ`€2oΠNΚM(/™εkHzΥΊ0ŒpŠ<0ήΨ(vή£x‰}ι)άgiΙπ"²eƒ’c_B`3AH˜ΰ:š&ΓGM—Ϋχ‰y ώ9€zŸΜΨR¨Έ`Χ₯ΐ‰ΰ=3ύ‚Αjή?£b‚$Άi ΡνITΝς’·ύϊb₯ΈΧξ΅ΆΣsZ€™…±Β--$²nεB/uΎξdζ Ž±Δ₯Ώ–p „[ΰμΆΐY<ŸΞ-ΰωT―ϋζ›oΚ”)SΤ䊬 F‚μάΉS1 s2U”(c $\ Π–’Ž e™:o(ΧΦe)Κ‰'Fd^UΌerΖγθπ $\τ"˜—ν\±bΕ@E lγ–N€8±³2‘(Œ œψ±.F£X£ƒΤΖ"ώq"g•Σ}.œ0s‰ωP…εyμ_ώ¬ΰΞΑ6byΆοY9ΰ,ζΆ³}ο\ΈγD™ nz!΅˜U·@ΈώΆυlq€8γ[qΞ.np έηπL† FΪΟ`qfϊGόΞ'p&:lˆ» Bp ™AlY}\ξͺmrtΒ0<α`ͺZZ*ŽΈGlIg’.sΊŸ™σVΙ‰–zN“\lž`ώŒρsΰžξEx<Ϊ&σνΔ±j½J­O©ΐ+υλHTv:΅WŽ9½ο|ψ$ヱxΉdω½ΐη­”«Ry‰ιtƒH+8%Ψ^:ώ•Ψ–ύ+ž;„ŒΞFg:–‹:»ΑθμnTί[ΛΠ> €,wυzc,φΨ qΓio ι/ξ{=‘ ₯~όUΜ‡ͺτΕκ˜,0?ΦUδΉG‹<…ϋ«Ε|r@πG(χφOί³Fω"[|)᠍κ@D‡v―sΰˆdŒ˜$6€n§γ7¦ίύ"W]Z°\-ωΐΞυ+KΥawΰ<π@γΒ›O½Β€ηSo»ΒŽΜ˜·FŽ}Έ\±ΩΏΚΠΞΎμξύΗδΨ°ι`ζΓ‚Ζ€€§ξ–ƒο-χΎXl±I%0šΫӏJΞ€ˆΙE8.pŒ~Bϊ#{Κ,ΟΒ\ιD°«c§T‚dτ @%·Q]‰{ 3Σ&Ό-°ƒΪΐZcϋχ`Ίεβl ‘oƒ 7ϊ}l?―”ΌFυδŠφ홀·¬šηΥ“\œΜ˜2]’χόΐσXΉ@:žΧ+ϋφ‹£ByιΩ ΕθΊzwΝ>@cΦbό €π5m €ΞΤe}u]ΉA2ήϋLJƒ uττi h§Λψj¦cΤyψ˜μ3> ³Šέά=@:vί’τŸPT ·°φ[ f;yθ)±]ίF65­―€„Ίτ«€G­.¬lΐkXEΉ?Pyϊ’vIΐΚ^Ί”έθ₯ΛχθΡC,X |mάF@!3­ρ>΄Oπ ύpE A½EͺΣγ–JΌρ‰sxΪΕ ²ζ³ζβnOž“Ύ+2ψqρ¨0!ƒ bϊωφ θΎU;=π˜`‘μ ΰΟΜ™3uρ ŸolάΈ~Κψ\&πήϊΈΔd`εs¦PΈL¦ΜH!ψgνκ5’1fΌΨ·€Ή쨑mZJ l[R„κCΫχνSeYEΠ¨‰Τ‰Jΰίιžσ]žφΘΑqΛW‰‹Ε^E—cF‡Ό΅% ΆXʊߐιa™²•Fs<έKŒZ5tΡϋάΎ[dΤ«`ͺΝς0v~ΏFΐΌΖΉ l‚u?!ΰŽ /P?tέm²οιwΕh\M*F0.ϊΧhXΞ_ηxΙm<…χM›}ηB ¨ ^%^1…“"[Ξ.Ω \τ«P„uλΥ«—»H`€Η.κo?Ρ@α˜Αq$@=ύπžύYTu° ΛhP%Α[ΖokΔΆr΅D`ό²υΈWŒΚ•Τ˜μίN»‘ iΤλκšdΙ3b#%²b’Ψ*—φ€{Υό“ΉδάTL°ί‘!υž€Ÿ§ xxVΛFΪm@Ϋ„ζ'ΑΠ>¦h‚€ΓξD? EάιΨ2Bƒ=€hŝ€<€fπ¬ ή†"ͺύL ϊ§ —Ž{%΄c|Œ’qŽΠκ„Ά5a ˜= όγ§CcL"c4Αœ‹ώoΪSΦ@Έ@χΐ~_7ωBq!γ‹£ZU™ϋΛΟ άIύΊ6Ήν±‘ΫΑΝ/–]GψΦ0 όυ½£–[m^ΎCmΪ΄QcI­Θ²Ξχ†ΊΔϊρpκϋιΐΛ)}_CqΧ>›:Π;Κw›u ~‘^Ρο)OΒmEΩΰz£/ΚΊ&&qυχWG@Ÿ`Y흑'ύ ,Λ΅νPΖL­˜E%T{WΟ%xΝ€ƒU}& @ηΨο–zΟc“œΖ %jΤ3"%ΜK³ώ=E"π<θΧΚλ}#χn•α ΩpΌΖ²¬w˜·ί¨Ύ[Οo€L% €f[F–²Ο=%ζ΅θOΨIY#Ζ‹ >"JτΔΌΫkΟͺ-'ζK>Q"!ΐ mΓL†dV$˜Χε<2΅x2³Ag9λΧ’ΜNΧIt£frx ω›φI¦•bC6‚‘Sk^,NΒKοί vͺ”–ΈW+ΠΛΝ¬Bν>’&ΗˆV@h/(ΪLEhAp›ϋ²~m ΘM ­:#Άώ₯Ε¬UVleβΔ<ž)ξ]ΗΕLΝF?€K4-‘-υ–Λ=™>τ ΞσΟ0ΰω<@ακύŸobžοκ½ŽΑ“JκLΆPlL„|ςVΫ3y‰€ηxXπαF.𐉆‘€EMΒώ75νdν U˜†),gΏX$c'ΡL1ΔTa ·@ΈΒ-J „Ο‘΄RΈΜ§ΰXJΗ??Ή¨ νΑΪ€‹ΪMΗ.-κ˜`η*jϋYώ\’’Ρΐ‚©Τ;―ΡEΧΉƒά•¨œΠΩ]»¦˜wt*6ΠΉbλ; εεbxAƒ&ίεΞ7Šως°bߞνΆ^βϊνՏΈpμΎ ‚ΨΏ˜gcω"Ο•έύ‰Zό›\›Ϋ:^#2edπγ~Xhβ4υlάq1ύl[”[ΰ”χ&ή8?ΑL3Ž_8sC•¬E›δΘ΄Tqγ’ RuψIVάPΟ.Wόž‹ίf‘‘>kΉŸfˆ )"«>ΫΙ·πbN‘cCίE*¦tΌ/=ΈGΌΏ Μw`ηCπBω';HTΌ 0σ Pi‚Υ3fψcXΙΕ{φ†ο=‹~φaθΘΪ’ϊΦ$f1€ N°εŎzlxότ+Ng‹£ύΥ’Ρ₯£tΰ€ ΓVΉα†;"³VψFa@F0)8E Β]IΠ-u‘B³zUί‘Ά-ΫΕ«­f#“Vη[:I*­B»eƌςΘ#X7«οfΑ±yB)q‡ “#βXM2ήSx]^paQœ pζβ• =φZξΉηžΧ A™$Ή˜J[ˆ6Θ n ΰ€Βz²‘’ŒΒ __B{ŠΆ™(Ιr¨ύθŸͺšTJ²0ΆZΜΠ§dC”!χίΏ«“zxA`0™ž €°>Ψq[ P5Ω‰™Ν.ξΧu’σίω’>μq‰ƒ…Ύ±‡Fπ²<σ²«r‘ŸΟΩΨΘW” ν}€ύΞ0NgNοW¦ϊ³γΡΏΓϊρYΤΘs“pB ‚lήw k‘™”ΟH₯ ώ ‘°vΊ΅γΝrόŽήήxΉ‘σ­²xρb}Ή Ÿ‡3Ε7ۚ}zΠ A*σμϋMδ’Ϋ Άψ駟TΐΎ= ByΩ²e=ΟΟΪΖ«Cj 1ά—…­)ο»ο>ΕxΗΊ0£Sœ'”ηρ―Sq~—ΰΩ’`#ΐ! ΐ\ba!_ L\Jε$ ˆd“:‹½Y7΄–€ξ]/Dη;Ίx?φρJžOΠλͺOυ²Kσ‹σΟŠ<#€΅Yc§(]κΣeάθώHQX΄½TδyO£@*τrτŸU{9υ8²ώΙ³°‘>†LΪΈyH(Κ y iΎSP•` ‘ ²εϋΟ2lκ>Μc¨wωRωχc^ΙJ}Γχ•lœτ›k°ίI2$’΅½8zcΜ9*³#Yx™BžΩ&ύ…υ!К€,ΌυΏB@IDATdGΎ@ΩH[„OM)TΏV\—δ~4™FKΣζΝ ά“uψ[ι2€ψž‡ͺ7xοΤ‘΄ίςεΛU@۝ΗPW¨.π. c‹· °νΑ–—©σmο‚±qmysύwJΊOmπΜνο˜%“ΟœΒ¬7n”Ρ£G«ηp_›ςΟ;_#»ΡݞΎόχί+b!ΝXu>Χ–8ήλq”-¬Δρ…ύβ?–rΗΣ“v Νά^˜°0 ‡}œL€ΖFκVΉφΕ,ƒVύ‰χΌ{χξ|γ;Οdάκ©§€]«Φ’7ξ°9ΌE0Wλ«δψ½w¨w‹@pΎ/ώνΤ=Ήdχ|Ξ r.;ν$XRœΑ€λn~©˜MΉΩ3xr]ίfή±γ04’吇)Ϊ’ζ6Œs! 0‘ξ΄,qgp”E`t–b‡&xF±Ίςƒ&…Ώ΅?ΟL§U7‚fϋš‘ψΔΨpΉ Α™ȌΒ@AKλ―μ6@1~V`hZύ.ηEsP9O…:ˆv³λZ…v3ƒK¨?­Ά”χ.[Ϋέόβ;ω€ό₯Φ ε΅ΪΌ|Η5ΐ˜Ύ>p?―M6Dfπ·ύΈ=ΡίMf•!€YΫ?΄©IΞ₯mp•‘ΑΊrεΚκV΅³–/Μ'Γ»uΓ“ΤŒ62Y‚Ω&Λ–-“dΨ`Τ3„Θ{ Ÿ”ΊŒŸϊ>™|+Ξχ–€δ’μ]Ξ¬νD›W³*3“™e¨WW¬X‘Xν΅–υ§c`]¨ ύυ˜A…c.Λ%ύΎS"dŽιίKά—6V`a~C{˜ύ†c:ο“Χb}¨Γωάόο™φ.ΙΖ؎ϊ9°^<†cηœ’€‹¬ή΄¨“iwp. αρd]u^ΐkπφ»Pζt,Ορ—‹,―ƒcΈΒΆc %Λθ9gΟιη½κ,ǎSmsJg₯μ©?ώ,€Š Ψΰ>‘O4ω‰kΣR`όfΆυ.Ή/€Φ)σΎ’θίΦ)°>³u‰Ή±Έ‘91(+―.μύ΄ύ‰Μ Ύc½Ηw©w[mV½Ÿμcl’Ν[LΙΙF³Lui1ΌƒΔΆΨύ½€δδ"RοwIf±Ψ·ξVγΊ.γBΨλZ‰­Us1αo rfa\ΠnΣ–Mg(@Ϋηpχm`‚ΎPŸ2ψ'-²ήϋΘΗFΜ‚Ή:Ηήw—Hr΅ΰΗqΖbΫ’_$gφ'bσ>ώΤΘ;ά½©…_Θ^lάoΜD±mžRΈ―l؟IuCv΅ϊߞgŸ’ŽqΦ¬"‹A S©+άeΓ\Υo(‚<ΐ}7‚mOτψ–ΰΆƟ”χ?‘t°]ά¨cΜS½ΕDPΑ~5ŸZ΄\ν2γbΔρLoψΖ<ώkyγΫ%’3σο~5™›5ΰz+όΨc_σd;‚nξΧCL΄Q@Ω±W21G#kΈ ‚θ!}ΕΉ@ 1ύ]²Ανψ}£μŒsηΥΏHH·m‘1˜eΰΛ±λɜ’R₯!Μ.ψ·ƒI=3ΤvI©ΣL\υ«I™«κ‹γ’κb―œθrΕΪf‚θΗ}`h€’ ˆ&0:eΗ?βή~DΜmψ;=„μ>aΌHΌCl₯`‡αΣΘ34ΐΟΰ3Χ™<˜­Nj•—Χ4”Θ&5ύ$Ala˝ŸΆVπμ{Ία/α8'-Plΐσψ·7!KΑώ³RΩvWW–§npVe½Hπlmπχp œ?-Π·o_΅PD§HqΉΟŸ;Χ$άα8W-<Ÿ«–_χ|j.p±ŽΞj:“΅θ…:W €ΦBg7υt|3u«ΥiMf‚=θ4/i9c€ηƒ`dΐ9}˜ζ€4θΘ΄ œEΞδͺΧς2DΣc‘ΞΧ’7R‚6 48;α°)7π±Χ/™sλϊεΨ"G&-P‹|@Ηό Ž£8½;δOΐfsφ<Ιϋϊ_zqu0ϊ‚σ‚ΚΩl•χvR ·OzΆ Β9)p€fΞϋZμ^fR^ΪΝƒH‰˜Dκ2%, ³ ŒΞ§ΐθ|Κ@gά“ ,2γC0N αB4“δΤ—°[Ό{Œψβ{qφƒT‹ήwŒ Ζ°Ύ"`§(Jl`WΛλΐδγΪ-ΖψAbλpMΰCιlˆ>fα2΅ί…>3 ‘)„Νί6HΞ„™6ΪD3ΑΈjX_ΰδΦμ₯Ια)ί© μ< `g²E„εŒ·@π|f›xο+_ˆΉ ‹o£YuΉΰ™NΎ šGSεΨΰwθΩD/5°«όδWq P*τxωήνΕ‘œ(Y£_W™ ƒΜΠ>ΘILl³HΆ‚'…f 1”;ι]N1ΙΪ3 '8)p£±@5ϋ³Ή FPοώύϋh‰6Aμrρ]3ͺΡ¦ΰ‚5ΕΉa³d ‚ήΑΈ‰E?w§Δ{ƒ6Έ¨Ν…;wJε ‰ ‡&3,@x}=¦¨ηBtJŠGΔD°Aˆx O<ΧψηeΦ’Ε €@ΐ] ΊφxΪ=χKquΌ^IE02σ>ΨΈ`:¦Υ~ηw”O‚ΰΦ™ΰS] 6 τοί_&Mš€Ύλd~Όσ]’W”D’-Θ„Ζϊͺَ €ΈυΖ›ΔωΩW’…έ˜Ξ7Kԝ7Λ^0΄EpάYΟM›6)UέήΌ&ېvΌΖΙΜL mB‚’]Σf‰ cζΎΗΊ)¦L‚$X'žΧxZ΅j)¬˜ˆάA–Sήw(ΒvΛP&’Ayηϋo„~Jrr²ͺλ‘Σ];VΩ—tΓr\¨¦lέΊUΥ‡ηc_b= b°–εΉΘMf@ΞόΫ‰ LΆΙΥΗs$ͺ/DΓcŠφIοΨΦΥhΰ3ϋΫυψργ*“Α5I°ίhP λΚΊ“ ηΰυωμxΟsϋν·KΓ† Uαb=ΫuυκՊ‘ΦZ/‚,ΨοX‚ƒθkΈh₯d¦$\‰EN.άβ==9c€gk₯PΕώΌΩC`“λTΑͺžmXw €f a^=ξ9‘ ε¬g8νο)i† ~!X<»Β:τι‰l¨WqdΧ>Ι1Q‹pA  ν'Ρ ν ( „ΠλBp4’Cτ+3)Ρ ,WN£M‘Ιν&;4ƒˆC°7BΉTqΛPw3«ν9Ύkdϊ₯½A *·1xμΊλSΑWΤsκ mηQ'ρ{qίΡ^Kςφ­κ]b=ΎωζvΆήΔ΄Ϋx­7hΫ_…Œ/΄³ψžή£ NύΓρeεΚ•Ύϊρ\ΪζεwΎονΪ΅“Ε‹σ§ ΆΤ,υόΝ6˜={v‘σλ†:Ÿ:€Α?ΞU8ώρ^¨Ÿ8NP―3¨.99YlcΈ©σΆΉ·{7αόEχž“ί9¦sάeΜχ~,ζΖ?Εέ D‘Ÿ³.¬φ.³hςΎ­ώfξ'‘ΥυΧ_οiDοm?π<79.d₯€%χΟν`*­ͺέ|Ϊ‰Bl‡r|Ρ~μΗ…ΝιΨΏΨ|hΜZν“ςΎy΄ΫΩήμo%-§x&-wΣ/πν­ ‰Ί:λΦ”x€œMΨ%1Ύ€«ψ|θCτ%d‚a8rΫN_7ΐ‘9Ν.‘Μ₯ͺ'(Α·3ΨΫ-Ύ^Έ‚·Œ\L#ƒ '✬Πq@§hXΒ-np „Ϊaΐs¨-.χ΅θΰζ˜ΪΆmΫ ·Θ…‚X脦—N^²‘έ%θJ½¨Μ©l+1ΐ3tZώΌΆmb; —Ÿ0mv^ύš’xesPΞΘ3"ιΩ²δ"{°˜‡Μ2Oά,Ž+΄)AΙYΉUŽM\f<8Vαψ!θ9’ΌΗιVΨeθΈ4?ώRrη}Gΰ.Σε]pθF^ίF€kg°pVΡ›Ο«OƒL?, Œe^ΖVιcoΫρUΝJ|q‘ΜU€qgθl‚•Β4N"°P¬%―JE‰xmŒ˜-šκM!}šXPtήΤC"ώή ζUΈρΞ»jW•¨―fˆ‰…’Ęφ8_š†τŒtPΒOY·†8ζ½τXύ,σ…Ι‰΄”\,ΆΔ“-#ΐb‘ωΕ"ɞύ*eŠ»ry8~GŸ.Ί/«γŸ;Ώρ½:ή¨YNͺŽκ;λΖ9 ŸaΐσndΌϋ^ώBάkφ¨ •ΎωR‰ΏοJίE z>:ιδ₯‰iθyΘ}rπ‹5β^ΏW•‰θΨHͺth*™Γ' ƒ\ ΌƒŽ'Ί‹Ρ¨@_;Ψύ)9mšIRŸϋEΐ6›‹…"ƒι?1~Ev»S"‘[™ς˜Œ ‚ΘRΖΕ_‚δΘ‚ΙEκΙ“'+&d+Wpπ°δΌŒkνή§~FO+ΉΠeΡ1££Π³Ru,Ϊ}(ΉυjKάSͺ…τ;ξΈCZΉΨΞEj2A\JΑq\˜&Πν_ν€σΡ\ΩΠφʐκΪ§ISq-\,ΫΐΜH …` ^ƒ@9ηπE¦F ο•ΐSή+A K±άΠ‘C•₯ y± ξξ|;˜`§`Αί)‘―¦—]¦Ϋ\Ψ>|Έ@LK–8‚ͺΙlFΰ±²³h›ύό›d“ `(7 ΌFπ6*“i­@[γϊ|.΄ιXž 2£@!&²"6±π;ώUz ˆ ―ƒ*π ΑdcΦ 7‚7β`;“•™ shG€G†:Žv%λE Al# Ϋ‰Ϋ ’#ˆ£gϞ>pΑ‘΄1Ω‰ρυf}&ζΒ6mU^Γ 8ΰw¦V'ϋ![\=ΰ‚χzχέwΛΝ;U»ς±ΉN™9oLΠξυ‚k† ζΫ¬AΛμ“°ςΉΘώG&OΆ λΝσ“Ž` ΆϋdεqΌ‚ ΨΠμqμO<7λ’οƒeΫ°έY恛;InΏ!°Ϋ0ˆSpΟΞκU‘bΉ–$q!ΉV²Ϊ¦φ…ψu +Ÿ'ϋΰYθc=؟a―ΫΪ‘@Άτ Ο™ Δ@χ`6#ΈΈ$„$ΣÝ#»φy@+7΅Ν”οΝΏ\δuΐr–5|Ψσΐ˜qΜ`,,7¬Sδag¬Ϊ+sπΏΕ½­@/£€™ί*ζ?ˆ£νς―ΗU,τάG]ΛΎΖ~Kζ|φIφQυžΰ=° ϋuί1~'ˆŽ •’SPWΜΟΎD6J ϋ/£O—:oζΜ™jAόΌ6^kΦI2#SŸPoTΖk%''+}O}F‘˜ύU ίQκ‚΅τ8B1™©ƒΘM¦tΎ£¬ΓTΌ³9+׊±c€@±{ŸΨπ:εΎ>VιT X₯ϋο„Χ$™œΥͺHRΣ&bΤ¬ξAόΕΐ[PΨvΤ9lΓΊkύΗϊρήγΑJGπ‡ΤϋΤέd“$؍zƒΏ©_©³XW‚Τx^ΆΫ‹ΫY―Oί~W²~JμޒΉmTΰo† δρl+Ξ­ΙIa{ς:Ό6Ϋ‹c…υ✟γP4&™:ί«5Ÿ7©W)’ε™mΙΰ Žέ‚Σ¨k \δ}΄hΡΒ—•€γr‡”n!c7Ÿ …B”₯qΟ…Ÿd! m …:’ΟUμ 심Ÿ›3ΰq|NΜΑϋζύ0؛ρ`tώζΈΘ{ΤΒrμsl3> Η”‘#G*ΐ:ΗBŽwϊYΏρ_‰κΫMžšυΆ―qŒ ȚΧΰ‘ά<ί΄gŸ“Όοw‹ΛΔP•Pη:ΟEݟ‘ ϋU‘a£bμ7Θ }ψ(|9ό<ΆgOΐoΠσπγFΚwŠΒE!ƒΰξ0lΆDΦ #Ύ§χ ›’ΗM–h° QΠqΡb(Ϊ†?Ό)ϊ$žΆ Ψ‘ „6ρσ»›:šΫŠF€ί™ΪLΪ^£"ΈSΏ#ΤΫ΄±΄½Ȏd΄?‘Ά[¨οh»½Η}‹\Ϊ’ΉΟV€ž$›0η·‚₯žο«Άw©―¨›΄ή ˜†iη3`υ&».…zƒ:ΑμΘχœ‡΄·΄XžωŒκ†:FΫψ<Ϋ­0ϋ•ΆΩϊu;q`@ Η?>ή/u€­Λ¨3ωŒ8ΧθΣ§eΌπΛL!Ί΄•€a‚˜©»ΖŒ#‹/V§ x¦¬οƒηε܁c5ΟΕΆεσ`¨σΉϊ›cλΞ1Šc5ΑΠ<ۜφΗν6­ΫHßW‹ώ8‚δbf½!ιx† κα|ƒk1΄)8.[Aη¬(υ"·iΝω[m–γολ·J ‚κϋ’τ+ν ΞΗt`η dΪ°aƒg|K7Η}Ž•‘Ξιhƒ³iαύ³?q~C›Αˆ΄m¬γ».[ŸΕ<Σ*«ΑD ³ΩS τ/-̜’‡@Σx́UΆB°ϋž-1Άν”΄/Ώǚ hπ‚ρήε’>qσ€Cο` Ω,ΆoΒoύowŸ»΄έε+†ώκΎκrΠ,•+Ιήύ† z>8eCjΥΘ“ηH“΄ωίKΤκ?Δ@6-΄ισšΤ“D90J&η΄E+‚œέV•ΨZΥ$kϋ6‰ά±ο…@Ωθ[σΪ«B HέσdώηC‰ϊ}³Ϊ Α½έΊΐH«αΫμ‹±ΗΏ1C’ΆξπQŒΠ=ο³RίΆb”ο–Hφ‡σΐXŒΙΔ…@ΤΨ‡ξ³i£ΐ§C_L™3WbΎύIy‘L$ Ηqί'F1Η9Ϋκ β|f”Dς<“Ηθ+rgΗΐΧφn5ΐnž5ώ-Ŝ E'Qχά&ιϊΐΗ p0ηε·! Dέ^­°ΛŽ₯€Ήy’DμυΜ‘³―ΊLϋ=ΰ±ίπάSή|_’½\ΡF£0 χΰ5NΜ™'џ/Rύ…kR ΘΌΓ GΔόΟg’3χ;qlΨ„I ‚πvvΦ―-Q―ΐf…B°sϊΰW$β ֜Πο£φiRW^xΑ8ο\τ€GM­Άd―Ϋ-G—nς­ bžΐc£^E)wuΕώlΔΑΞ)a1Σs${ΩΏ['ζΛ:Μθ‰Ρ’Π¨ΊD^PZNό…ΜOφ‰Ήφ λIۍ¦rBŒ? m°@B’‘ €’50Ίt­ ΔV6A±Ds»ͺ tώ ΫΒ€η ήn³ΤΕ<Ÿ₯zΣΛ„Οη΄ωΓ·@Ύ cQ³9Σ‘B‡Fϋφ0:Γnp „[ -<£±ΒEOΆ½tκΣΩLηp°…:“ιΔ¦£‹ LHαβ!ιT?~Ό/¦^4εωKJNπl2L™Ώ¬ϋΞ}*ͺήZ/²+8λ$K[Œš8N½φr+°σΘ»ΞΫ”wΰΘ†0ΰωΜ?HΎ+ŒύLά›φ«‹•ωΧ•wΫ₯Ύ ›ΗΣεؐw€KU ηƒ»Κο6ˆ{εNU&’u©½€Δ‚Ν.œƒ Ίχί*ΖM­ΑϊτκFUN-Ύ zT-TeŽzεΤ;Α›³oΪβ’9ΪKτ›ΈϊŒν~—<°=P΄FpA.K{QΩfMeήΞ­ €κ_† Όξ-―χθρžq \Σ^‘ΛΑžK 0ί β"8#‹„ξjUδZ0ΊτDΠυlψΘvI0νLΜXWΦ§”ζ@‡9ΐΘΪο™§}u]χλJ‰ϋmLώ{“q³<ΟΕϋΘMKϋΑcr‹0\§=EPΐlΈ0ς=˜ƒ !ΐ ς pRη/χ{XάΊυ:™ηΘU–αΊfb#Ψƒ‹υ=PΘΈLπ1Zb`‹έ…kϊι§z“ͺ|όΞ»β† '~:“‹υd7λέ»·―<οMžynhγ‘©Κ ³Υ.0ΐFΥv 1yοdc£h νD²’Υ˜`ž‡6$Ϊ–:Η:°A0FΉH‡Z€Ε"ξ.€2Υ`h‚:.ήyP΅“Es€α|ήVΡυ·.lσ;A$lυόœΠνΖv%¨„|Ίhπ% ΄Ρœίΐ„TΐLξΫ!Mš4Q—%P²}σ²hυ*łȍ_~ω₯,ΣfηΒ»NΩNΐ!7μ^2(@χ§δδd¨ ½MΡύ‰ΐBΦ‡ΐ $@³@Βυsΐxh‚1+uΩ―‰΄ΒTuυύƒ['YZ"¨ο’†W•ςν φ圞­•!ΠdΛN‘u›$sι―βX/=C• +™³ZeqΥͺ!y'΅ΎLgX.φwN_ΖNΜ’M[< ¦W6Λ’ώΗS%†.XόΞ6ήΓ¦…~ΰxςA1.Ώ8τγKΊdF¦d x^"Πβ*_Fb^* °σ]…}Υ tεΌ_°ρ£ί›ώnqfϋϊ½  6Ογ;Gπ-η•Τ R—°Ώς£ώb…:¨ΐ’ΌΆQ/wλΦM½;¬—|ρ} £$RάΞw"P·hΐ.ίQ2zόE€ΟΑ1„ΐ1]κ&k Ϊ%HŠύ]οΣηΖ=uρκ½Mž_(™OŽΠ›Τ§ 6·ψηΙτ―Τ―Z?ρ]_΄h‘oŒ ¨Kλ&λ Y‚­xœuυ«λŸb(ςΓyŸωτ+Aj΅’J‹ ΐ δΈ8 ϊϊΨ³Σ=.εή}RΊάΧUιF}ίlW–υXM°˜aσϊ?PΦ΅ p‘ξ¦Δ;rψ9τφB`@έRζvς적ΚGΐρ’ub? m Ω΅ΎδxΝksΏ‰σΌ¬^#ŽυKδ₯ <γx sθ΄ΦΘ’€Ω₯Η‚™~ š°oπy‡2F°ξCξOW·’Œœli‰>Μσ+@(€oΖ΄™b”+/Y2ι6g[½ΥχII­TVš_ν±Ψϊ>π 8§Ν@&Rqο]2pψ°“ύvCžw>ΙΊ•„ό_<ΩΠqfh€zŽxAъ!ίω {MΐΞιΪ²ΰfΚ]΄Ψύ‚·••6h33G\Ι$θ‚ `"JςΠ\(až΄½ ­Wμ\0D A6ψ³30'Ζξω„}£:…žΐ»γΆ FhΕ νe‡Fδ™0Hί(P4ΣΕκββΨk|‡ι'^–:”οn !hΦϊŽμΣWrIj^džO_ΡήmRͺ¬d xΔΡυωΣΜΛgοΝ2!λ θޟκZΪω|/­b|2j'“:ώ]ψΌW?sΪ4χ  _ψ'R_š @ώ&τ€ςaӘΠ]yxΏ“†‰`žO1P§τφ€±?z|>;ŸxkΆD/ϊE•‰ξ{ΏYΚ-B²œΌΝϋεΠ’?ΐ@Μ£ž9·.BP°‘\FJ_UOW;@Θ%-)’½l‹ϋνq<3ίιιΟ/{έΕ^אœu»δθ+1WEvψΥΤZμ,[EŒ)eƒdH`αοƒΛwFο2X“šΐg/(Ί4²Dm+‡?JvΘ0ΰ9Pc‡·…[ΰμ΅@π ­ιpfd!™N.DδbXΒ-nsΧŒ"^Άl™Š„ΎβŠ+ΫΕΉ«MψΚα·ΐΦž·>Ήp½K’θ /Žΐh:šυMιdζ6 εdΟ# D/šκ}%QίβžΕnΒ1˜ΦC²ZΨΘra:#‘,φr8 pΎΆ=@ηRφΏ1_δ§?UŒΛ.”JOwFBp„†XiηίpX°:Ž[8~*ŒΌ |^`χΒ₯’5{˜6ƒAΟΛΆσ’-/—ΞΓ{;‹Φ·σV„YΉN2η}#v²gx…,v9-/“$8–Ε?εœ.tŸ€ΞΖΎC’ϋΧή3 t&{ƒΡL‘`Μ1\^G<ήg7™B^…ƒ³˜}Ω@ΤΌλ{ˆmο!œ&HΟΦοΕόwCjι ]½PŸ4Ο{ζ.“$jw *Αδ·υ’3qšL2₯_ †›pΌΓy›>)ή©Ξ”Ϋ’±$>ΠP(‹ήkηόΆ]OψkΣ`M.+UFƒΩL\a9»-<Ÿφ6αθgδpqX]°\Οk$¦}CίΕM€υ>Π³νR‡Ϋ#$qΐΏδΠς-βZ²E•±΅H–ͺέ(©ΟƒυeΣ6΅-·Υ₯’Τ―»˜Ÿ/”œ9_ͺΛϊYΔJϊ„i vΌάϊœiύžϊάκυ?,ά¦‚MΊL»Φ2kέ*π Š ϋHδeMδn/θšΐo‚Ό­ ΠόA‡¬/A»d ε}ρž'Nœ¨ΐκrΠΩ‘xvΝtαb?ŸϋC•’%wΑ"‰œ4JΪ΄»V€uΥψ©AxVΐοƒΐq!4c۞bnπ·όΒί_h“bψ¦:Žύ2βεrͺ><Α}Γϋτ“œ/I6¦&ΈsρβΕκιgm΅·5θυc& …ύ‰ Πujaϋk6Zυ a[[ˆ¬§Ώσ^Λ ΖΠηQŸΏΣ&FfdS l7€λΉ`NΌ‹BψγYφœž­Ζw²­₯N™!1ίL@eeΧW¦Γ¦<‘WΏ–$\}ΉHγΊω€½ͺ@ψΜ_~#C~[­J7ͺ›+CžˆαZvΘ’šGNDΙ?μl’Υι)μ(ηLΥ&ϋι1`bC6Ϊ5$vΜ3>›‘ύtϊτ“ΰ­?~ί žƒ%ϋͺ¦RͺΧ½ μL—Ί«yžbχθ>Χ;τΏΎsσ %33ΗΦ9!ϋ2χλχϊΡGUο7ϋ<ί²lςέδ…εΩ tjΠ ?YΩ­Χ·κΐ…ζϋN@5₯0έ}εΚ•}ϊ˜ο#YŒΙ*H‡¦_ηΚ @Δg’‰ΐZ[˜N:¬}΅m‘ΖύΊ@Ό0ΐΉ«W•H€©“8ζΑvΠz·ΐzdΕ  Ξ΅•~Ε386κeq¬ uΓΊ’σάcŠ!•ϊ‰ϊ•6kΦ¬ρΩ₯Ώό]’*•#>ϊΊŽl9v@θΘ MfδtL5•λ_d"%SΆΦel;‚u–'А‘š@uΆΗ^χΤe’΅μwΕ DΖmM|@φΏώϊKjΥͺ₯@– |‘ @4ϋmtωs»δ=!KrNψžΕfτCσ±Ρx ‹ο‘Δ8$χς&R¬wλ’u―Φƒμ3Μ΄@]i•@ΟΧΊίϊη xZYͺ?=Ρ_\ސ ·wπΩ3Κζx}–8Ώ^.&ΐ±ŽWʌμΓ> δF΄ΛΎ€A£FκτμΥǍWzΛέμ±έt|½~οžΟKθ ΐ³υαϊΞω3ΑYϋpϋζ,0nξ0~€XqΤΌ x.Π)Τ6τ 3#Ο h|Ί³ΠŽvη"8Ž 2 r Eθλ}GP΄α@}Ϋ‚«$€]₯Cθ0²CM`΄bŠΖ'ΑΠξ2"•.ΨD½¦ƒΑB±Χh«Yυx(Υ’Ξ τŽ:`Ϋέqη>{wšs˜• ώšE\@ώϋγ"u½ΆΝZHεΈxωxΩO mΥΊ΄i™Ν%˜η ™¬™m…Ίγ“Υ泎jƒl!Ϊ~%–ε5ϋ3η0 j_$]1&²_9v±NΤzœ£Ν¬ύ‚Άž‘sΌλΨθ?/ΰXΞμ:šu_·?yΏ:Rog?`]=ui}§μqΙΐ―jU Iˆx™ϊΩ+ΌΆΞL@ϋ”ΗZ…υσŸν—!£G¬³Ή4ψδ+q"p'―V2όvdΑΆΏT6Ξg8nP»‘‘/ν“RzΨγόΚ–Ύvν}wω{ߞbο—9' fƒσy0 QΟι8ζκgWΤό‰νYπΌkŸ€,Z*QΏ{μλu]΄νa–jίZΜ`€Nλ%ωύΕ€]’ρ’7ών₯r~‘ζίψ›α³,.ΰφΰ!‰ΐωΑtΉUτ{jέζ8χuίΠNܘΏbαβdQτWέιί.FφG™SLΩύ]ΡUDW/- j)FΛKΔάu pσ΅-1‡ͺ%©‹–ˆcιJ±aξ₯οK.ζVρwΑ °rH‚1*㽏•m§Η’<vΔv»;€gi"ΫAΔ—λ~ώ΅²IyM7ξ?ͺΫ]b2Ψυt ™SίΗ‹ΗGDΏsΐ½‰Θ0₯–œ›σΞ40L;@H’ύ λ ζυm‚‚£œFm2–­ηΘρbί@ύ6΄6†φσΦ‚βΩϋ1λωΧ$υ§(2”§zdΨf¦ΛŒ—ήπ”]•ΚKμψͺ‘β Σbξ{Ÿz@ΡP;υΉ°šοš™£0<»βθ|£Θ=<ϋό>ΐhϊΌ‘ο’{ί+sΨ@B3Ι ΆνA@ΰF€ρ>ΰ˜0₯GO{^€ΤWGqš1·ϋψŒηύμΓΗ’&n@ίΆώd=ΏB‚¨ †.P4’’«HD™xυg€άΖV~k aΐs¨.n3Σaΐσ™iΧπYΓ-np „[ άα8Z x>FΈ*g½θτw sQO χMηξ΅ΦT¬X1ί’©b1λdψ σˆ^4Վa}ΞΣω,πLΗί;Δ„³7σΧ5Xpφc³Γ…M€ rlNΊ€¦Ύφ‚"N§N%}μώΉKE>^ιY$«Y^* ϋ—±%η4wξ8,‡F,–"ψβS$ζ―Mb#γ‘8€sΑ<ΰΈΞΈŽΧΫ ©OsV>ιHθ7μRŸk!Σ_μm7‰μ\,dŠ>AŸ θϋ‚€£ˆkš‹9σ•`₯•3X1k,ϊY•qe$Nκ€)ύbRΞ\΄-%Ίk'1nm§Ύ‡ϊ`ηCΎΒu‘~ΜUΗή fθΘP—+ΑžK°1‹8Yθφ ωΘ— ²|Ώ$ϊ*Λ"˜NŽ y[ŒύΗU`MΣ]$χ`¦}cΔhXYͺκ,i“#‘+Φ«my`HD LsνfΙ™0Cι>wb€Έ°sΌvΙN°Βk6^ :6vΞ7Y’@–7 7ўτΥ‘d‚pΐ ^αβ:Σ3Ν<π¬l €JR>š'I;€=ΡΓΆ¨ΐΒ&¨γxμΝ;…Ap°4΄γm²—ΊV€tε*b{#1V` Ζ’Pϊλ/K³+.W YΦ΅λΕ-δε―η)P°H·j#ΞaγΐΥJά·w€%ΙqζΜ™ΆΗ9ˆ-'OϊΜ Θb:f™(]‘±.69S*ΣAeΛ‘φšΰ ²:3ύ3m,‚Π*U¨γ ο] ΔΨ²e‹Ρ”€¦ΊξΠ‘ƒͺΛ'N–μΗ«kpA,μΘQXδ³Ά'AmΥ«Wχύ‚žqΆιΑƒ}Dt,]A²|š1Qš·n₯ž™ΆΙj΅i[j€ η¦NͺκN–SIΘΪΜσS4ΐD3΅ςΎj―ά(ςΝb±a숝0B=+‚ζΜ™£€0ΐll;Λ³ο SΎ|yžΰ5x,SRDθμ̏#dΑBΟ’z…rNyϋΥR2tΘ ΨPΐe<›΄%Α:_—Ά+°ˆ‚N{[Ž }EβΐΰE&0;Ψ†5¨Q_£X= F!Ȝύ©{χξωΪ‰νΟφΡύ‰mL ϋρŽ;T:pϋτ\φBr°?±OXΫ›χX@ΐό–‚Œ‘`›²3 Ξλτ₯ΌUΕ‰EΣ$€z–šΥΐπ|<ϋκ –°Μ—¦HΤζm«!ΨlΟn°·‘ωŠπ}vΦ¬ζc6ΠwŠ#ŸΜΏπτ¦Ήρ΄l‡–σu2Ό«ιcΘξ΅]•ΜmΕ4Η=Š:κΜνίΊKr‡#( Ο=χROφQΧβ»©™}ُgΎτͺdτφ9‘Ά»Μ˜§δν™332ϋšε+$ οΣ£ϋ ίΉλ―Ώ^/^\ …e©λΘ’Ω τΥϊ“ΜO>ω€ Θ ΞfY²9’)“Ί―°>Nƒ7ψnιΰOB}B½σέηv½ο™gžQLΔ:ΐ@ΏGEιWžSƒlQA1¦Θk]KoΖŽW&6€¦>ȁAήχΖ5k‘λoΗόΪ΄b»κRΩ8δAΠ|=Ου’dξΚ_T;ήΧρf‰ ήEΐTQύ/@΅NiSπμΧlθ)oΝǏΏͺŠe%nt‘ιCδ0˜‚1 )σΠaΟχ)jλw¦€?έΎ™°ΣHnΐΜ#Γ ΡαN0”{ϋiΐƒ-ΰkΪ1ήDψ숐H‘ΝHd`βgl€G[Š lψ $o ΄€Yυ2o`J¨φšOΧΏ’oΗΌzGω^j{—ŒΤ uZν݊dKΖά"gήΧjL_ΩΌςIͺLoΌ)yȚΒFAqό’­υ†5h€γηdg¦$KΎΞΊADۜυΡ ^ή€žΓh}ΒmV@4ηw4i%»μ™ςγO‹ Ψ―Τ9ΦLϊ:Φσρœ”Σm§@σڐΤέ¬ˆt°λαxfφ‚ώs ξ eΒs~υΥW όμ³Οͺ6gΰ ―Η Όy³NVΏ2ο3X4ΰΩ΅ιo£byُ VRψΌξ8ή΅„ώ΄j₯κάΗώuέuΧ©kg|§ήeΆˆ`68ϋŒΆIόmŽ{…ΝŸΨKZςžY%ΩΜt²@pκ*‹Πš?wR»V"Ε΄u-§9υ―K@ΆŽίΦ‰ σ-y`#ŽλxΈ/ošl¬ ςilΩ&Άί‰m όxO΅θΉ³ώ­? ΄ruquΰ΅›εχkoΩ)©_!€vν&θκ“§ξXdς)ΫTζόΣBΞ,Ή£ά©—Ή;©>A!“sά5WˆνŠ‹‘Ϋs$νΓy`ζ]§μ–£žΞΕύ&υ}:$ΩP2f~˜θ\·&\τ)0Ψθ`._<N‚£Ίά*ξλ۞–_܁LκtŒ™ΛWϋΖA'κΧ§‡˜°yƒ‰b•άYƒ•™’Ϋ΄‘Δυξ^|2τυ¬1%φ§Κ~†ρ€€δQS^D€ΖΆΒλCΉSfͺghb\r<ψ/‘vA|ݘ#ηΌ0YΦς”9—5–„'{μ·$εxε-‰Z·Y]™6xά0KΩΊS²ΖΎ¦L9~¬Ϊ-/υμσϋΟ ή ΗΪφΪΈ1Ουςλϊ•S?˜9|’쌾KΖΐ<ΜΫ£fΎ|2S)Ϊ;sˆμŒύΡQ`gσWŽ€EšοR.€ό‰O>θ*…n3‘ω"gέn9²l“˜Μ@Ζ‘ ή’‹Κό βœKͺ‹ώ’•嬣σwk=ΧΖ„ODΆ]r”ΏφqΨαΘόUp;αΫ-$’eM©tΛεb‹+¨§έΗ<`hΡΓ©’²σŸ“`h2L[@Τ'Oψ›‹ωΨR*™\beΠΟΘ'_}‘[9φ„%άα8»-<Ÿέφ_-άα·@ΈΒ-nsΠz‘8ΤKW©R%Τ’αrα8ο[€wΝΎΕ….<ΣYΆW:² ZμWtμrΣ^’‘I-šb— ¦ΜΊ MΉ`@J0'δ©6LΐσώC"pτ¦―X%v8,ujRίω pH*±½λ‰/ήWΰόό’»v‡}užΗ‘R!Q*ι '‰ΧqvΊUήΆLœ`d[ΈK9¦ Γ”„θc……Έ:Ιβ Hψ.όΑΙ>‹Ε―ΤOηΓΌι$Pύ3χβϊ’pGG8„/<#ΥW@ηΟΏΫ’εΎλ:ΣΉΡ¬Ύ―ξΪ5ΕΌ£“ΈάζΫΒΫ’_Ευψ0±;Ή°‘ηΉύ΅±ββ<-μ΄n°ZΉoο-ΆƒΗΠ†Ο,>Ί™ΨζL*μ0ί>LΉ·φϋ?‡Υ6¦ω³ΏπŒΈοΌΡW¦ΐ8ή3ΗM;ž… »ψgztΎ›ZΘ³3ΐž­γρϋΕΈβ’§,lCΞΪ]rθe°ΡzΑΞdvΆΑω–sΣaΐσΩmw7[ώ Πσ?`rΖΈ\ξ‰%ϊςšΎJ˜ΩrtΨ»gU %‰ύοΐ‚q„~ύ;΅b»¨‚Tz‡€|ψ…8怎sΨ7β1₯ΰ]ž’²'pA/Ί πΡ·ί~«™HiX,ΑδcΆΉB-Œ₯<_Ίά,W€7Ά3]Q.J{±ΰPΉ޽wl―pλιbΒe‹Ιw(G!ψσώϋοWl”d:£Ρ‹l—5’όϋ[OΦυƒ ²Β»φˆ}ζq=χ„\@–λΓ&˜λ―Ώ iW@p•{πh°AŸΐֈ˜τ’,ΪΈA-Ίσ:dμ}a,ΐΠHήσ±>2 θ`Bf4‚iGў€q³ίzλ-ΆΛ”Ϊ/Ύψ’²΅Π πSƒ74£)²ci{-wι/’=wΚ‚χήλςδΘ ά@VΜόQΩsj[a€g4Λ¨0|δ΅w$ΰΩγO?,5kΧVυ"ˆ‘±-Jά³(\ˆζ3²²¦q;A…΄KioδM›“ΟŠιΕ)›€ΒrΒ`',Έfαžμ’ΨgzΙη»ΆͺϋU}ΐζh€_₯=^!πφ)ϟ™™©ΐqάE°ΔΘ‘#U)‚=_}υU€4rείS2eΝžΕ°šΥ2v`¬lίv’ݏ€tyΎH<†ΟΏώJ]_΅'ΐΫι=ž“υ„č~R>ψ}•ˆ³jΥ*DΘ{δ³cχgw&ΐ˜  ϋΣΈqγςώΥΏΌw¦%'ΫjΘ $,ΨΚζ-’J4#h[[ εΉXΠ^ €ο-CŸSοΠ0•žW‚~“ςή'σνΕ"ηNLh€νN‡ΝkΗ=ωΟά`dJαΔVtƒuM°Έ\”ό°Μ&Sίχ0}W­δ’Ρ’Ru<°©―Ό-Q«ώPEσš6.>{ί‹"/ι«6H./sΑ;λ†V’τΠ=κύЌΈαχΘψw$j)ΐ ¨έ,ίD;OΎgξΊG½†ώ~JwZ«Θ>­ΑM|―5x˜ο υuFΎƒW#XEΟIϋτι£€ P° Αώ>ΡΓχΞ_¨¬ œΦw”eY'κ~ςxm00$55UαδKα\·sηΞΎ:‡€_‘Ώ΅πώ43d ύΊϊΝΦcc_.½ώύ|‘cƒlCϊ.DpEƒΔςΐXu]ςl¦Ϊܟžu!ЏμΝΤ΄Y…ΫΘΚg@ΐš58ƒ i>+!8’ΐBλΈΕρ•~Ηά΅’ρηn©8φ>±#Θτ1P¨ΧZ·‹Ά}ΩRb€!χx·gΰ4π΄_<2ΈΎ¨š­»s<\ΏβΙμ1@ΩςΚε= Τ eσ ’η}[υ¨3Ÿ7ϋ†υΎ¬`H]N`‘4Vό&‘#^:ΑΗθΚώΤό—υ’υΞΗύΒ³κ'3fŒ΄=tŒd·ο&˜ϋΩ0w·5ͺ)»ŸzTκ ώ2<–*dΡGŸ%ο/”ώ§λuͺŸ*λό$·<ώ¨,Z»Z}qL ‹·V¬•μΙx' t‹ˆy)< tAΠrδ¨Ψ„ζ§ `΄ώN?^’€‡ΨHΰLΡ°Εέxά°;L£%γ ƒ­ žŸάΐ @±#ψ Ρ60 Ϊ„6|hΜcDCίΤƒzϋ‹ ½½Ο=.‚qΒ>zɏΛΕEP7™’Λ—“HϋϋΟ^ΣΊά|~[ΒΦw”γ@qμέάw?@΄ϋΘύboίJl¦t{œΞF8lΘr€uΪdZoЎ€ž§ΝI ,mVκ(‚Iβ@€5Η Dfh?uμΨΡgϋ'©K8ιyΑ=΅―’ψ–uΔοɈΒλiΏh¨’j'ήƒžπ2¬/Ε δφ<›Θόΰ#ύB›«PΗ Νq’s¬`Β¬% (ΰV§FΥͺ‹ΉξI[ΉFΠΖ½8TΊτ†mωηκ $šμK> Kj)ξψΞ±Ί868ŸSQγ{aV’@IDATc‹η©|τsΉ²Ϋ½κΠ7už΅'ζXq΄g›_Œ †RzσΩϋΔϋh¬\+Y_-Dε.ίuM°έf5»Xo…o9Tΐ―οhΈ&V<Όΰ[±mέnΩ|Α}u7n fΗΔέ°ήΙγš=ρεB‰ϊ vΨaθp-˜9Τ’xΕ©SS*‡ά-Η"peͺUv"ΰΛ˜\γΐΊ«@Ξ₯EΟψδKdΔΪ’μižŽΎΗ͘ΏAW 0CΙθΌs―ΎΞγsν~·ΈCdΒ62g\lB%Έ§ΘŽνΕ}[‡Πλ¨ΣΎ],ΉΓ§κ-»ΐtΫ³«˜7t„g€ΓY“ί;2UQάeK‹£ίƒ" lΪσuθŠhΨΦ’ ϊλVΙF.νg“ΊOο8π‚!l$ιIή_%wύn9±ό/qNΟΞoT+%₯‘ρΕqI5‰¬Q.ώΣψe¦ηHφŠ­?―σ‘<θΣε€t»ΖΒ“£?oχšέPήΉ#m¦‹/P¬Ο‘uC‚6S³Δy$UL°D}bϋ>ψ€π Ndͺ?“ŸAdpζΟςΙ’―Γ€η νήn3έaΐσ™nαπωΓ-np „[ άα8η-<ŸσGΐ9j…†#FΘ›oΎXC‡5 ΉpM M(‹¦d½΄}:·ϋαϋ³δ!8Ύ“Λ–“UΊŠν˜%ZΫ{b:˜Β:ρ*,(Βρ(-χιΤαlλ܁EΠ±‰ΐ‰#H½U~Ψέb―~jΞ!SΝYŸIή7?ΒIxPέ‚Λ΄KZVyq:bΕ,_F’°(νhΣθlέή©]‹HςλZΙˏ}œK^q'ΖKL‡φŠ₯ζ3!Α€ΞN0:Σ)met.i 3™βœ=ŸFŠΕ­bΠα qγ]4ž|Dά½ο;₯Ϋ΅ /Μ…3Χ³j&ĈmΦD,”4ι|ζϋσΔ$Ω PpV)/QŸO œζOŸqχ>Ι;Il\H…>‰"³Ζu­υήόŸ`jΜzaͺ‡I‹Ο1C©“œΏLΏv>όΚ|ΕύF•׍Ω?$ΐ΅₯%φ5eΞg3ο{u>˜Η\W^ζηcΡ_ 6Α)³$ϊΦφ2/ΖιcR§ή0@»Απ; χ@—S/kυ3ƒ ”A=L‘ @ŒϊCΙΤο?κΛωσηϋτυA΅ρρρΎσκς<°wT—ΡŸ-‘‘“η· ΟO žžΓRGΏp΅`ΑŸ~eΦ#2ηkd­_£1~˜Ήρώ\ξΝLΐzp°1βΆV­e{Κ‰|ϊυβSœφΤz„χυΘ#(’‚Qζ|(O¨‹Φϋ$ ›:φηŸφm^²d‰b­œ7ož₯ΎψB]S ΐH η>‡<ήσQΩό°TO‘ŠΰφΒσ/ΐ~‹-LS_hΘ6‘¨Φ―σ]’ςΨ(Π}:ϊΖ<bΏ­½$υΈC–B7t―…,’­w•œ‹%ΜθIvEaAβYσϊξ’a™v·κU=&κg`-Ο *ΫokΪZ­¬˜ξ>βύ©A'‹/Εά?~’d5ΎY]"f֟ΰcŒύμ• β2ZΩH,``œΫΪ»‡O_kP₯fw₯η˜VT v?dΘ$œ—™° Le’Ωσύ°w`R[χφΜΞζeΙYr$ A‚ ‚ΑτDDL$Ι ΔG– ˆˆ`AQP ‚ ‚JΙK›ΓΜτNΝφlομΜ@πύΞύΎέ™ιP]}»ΊκVέsΟu0ΖϊMΆ\:#C»υ7¦NτvϊΏv›~δ„$Ž™%ƒ”0&wCΑƒ rΨ/Ϊ•«.P4€Π‚ @Ρ €?a€f―\'Γ:=.ο‰ΐθ!³‘bDΠ^φΡφXΡ­!ΈΗ Vhfsͺ\FŽ |ΕΝ’Λ6Zσ‹uβΔΨoˆεν7₯Η΄ΙξώδσiΗΜω ­ΣώNeŠVߐζ»iHfο(Η3Χ8Η—½KPk ΑΝ˜fΠ{,˜"A‘/u‘ΝΏόœ‘ίx0aqΐ~>…*1˜Bی†A‚Ζ»IΫ0³>Bݎ±\LΤ¦[wIvΊT<ŸγXŽμWΤιfκ‰v¨' έSΧfΐ3YΖ/Ξή ωΊ7•{κΧSpκ)³qˆϊγ½Ω x<… ΪΤλœ9s\πŸλΖλΉέ,ήκD›\υ†‘―Dΐ(2΅ΌΟΰc>ίψΞρα‘Ίu%εϋm’W,'R φ(ΪVvΗw£γ33[‚u³ΔΟΦΚy°Ώ°ΛΥοπlΑΈήδ^‘Uψ3[eέδƒ,‡ŽJΜ—_K @ΊΖš ϋ€$ΨΣa`T‚aΡVr$0°I,aY» ΆηκَΈ3ƒq}29;Α^―+’ΞΧ Υΐj»nϊ“ιΚt”€zΤΑL@Z۟GŠLvs2Κ&ϋτ’r(Ui3¨¦άY'—‹jΠΖΊF¬X§5ΔQ¬°„`ž›£ ƒ˜ΓΖ}°L‚vž6€ΞdΓξφdΆΞ‚±>iφB4§έ[RΝͺΪύ―δ3ͺw}ŸΏμ‘Δξš;hΤωQŒh{Ύž-τ3ο# ήό³λžπLp|g1β{Žkώ ˜Χ…Π6# 7™R©œΨ¦ΒΊsΜ‹Β³‰; v«ξIX ˆx6?ήγ ‚g;q6Ϊς^΅‹>₯ΰ/ιξx p{xΨ sΤλY‘†΅]EΒˆžύ‘}·MύVΐπαύ€ΘΦq½DΓjX›q+$α;λ{}χ~ΜqηͺL"A§5ΪXΫ³Γχe[1S$<Τuζν±ƒήO°³~ kρππ]eΦ£π‘¨WNŸ‡—zyn²ŸΉ πσIΉ΄yŸθAχ 1 َ΅Κ…ϋs`ε’°KrΨ&Μ…™Ύ;Ξ’―ά|H.»A•.»ΧΨm)OςΐΧΕωθε »sΔϊl”‘έO²DλW⌎~Ώz € ¨Οΐί>“εkVϊΟΩU€8Ώn²ό€η›¬Pq~ ψ5ΰΧ€_~ ψ5πΟΣ€/g――šϊž}iΖΏύMž ΝFύ}9ΘxΒE^ƒ5Κ8žŸΎœ¦ωpαfΙό½ε•ηIι°ω΅q{U,YeνεKIx½ZXT…Γl_DΗΙΩ!Kΰ‹"@ςΏΡ^lΥJdλφ›X9“W­ Ζ*Ov|c{¨‘8ΪΆ³έ ‚u²ζλ Xjώi’1"Rα%ύΦεˆL­  P0RλukΈύ7»ξ7 tnίFΘ.r]pšΦΞs,ψ[Θτq< ΅h*ΞΙCΡ&\`¬œ”mΑBiJη>C§8@΅6DfŒvύΞκ?ήη€N―ˆmǟ |­[Α&ΥΉ΅ΘθΧ3?i“¦€IN ¦ω ΠΫ'Λ…ώΣo’8Ω¬tbΑ7lx€|ΞΩ{όϋI9?v•l2u]ρѝ] W™ΧΏχoΦ€πό7+ΨGρΞkρrϊΝ₯`c}Hα!Š­baχΡ:˜ε.[(r,0pGφl‹@˜όrvμJ°οP±Δr 4„ΐα―G"Πdθ+’!…hμΘι`Q=&αC{ΛͺγΣ@§₯Y_Η!pB‡ {M8`‚Ί.-Ρ`τ οί#SΠmώ™Οέ@NZ°TοΉ€‡VW‚‡$މ‰Qϋž={*PΊ 1˜)ΙψF 1ϋdά θω–«`y₯›8ΐ¨Δλ‘Žu}©xi±/Z*Ξ+ β,[^‚' –φΛ³Ο>λ Π†"ΰ vά’ ›Ιg™- Fe/Ύζΐ‹WΔ;U?Φ‹€-^‡ΜΉX˜ΫΙfJ°οχΤ«W/’β>:ϊ›)!ΞWŒtάFζ:‚xΌάΰωK–,Q nη5J—.ΝΓUωίί©QΗIΤλ/¦<‡‚…› Gη²/P!Λ7ƒXxΈf“8α05$δέ·₯Χ»γά>31Λ'³υχίŸ\Ησ ΄QiJ=lKžC¦lχσ“€g·ΣšŠ`Κj†ρφ]Špΰΐ ψlρX>Ϋžߐ^ƒIΎ*­ ”.ΐ?ey3ΥΆ^γΉ΄‘ΙζJ0 eȐ!ͺǎ“ώύϋ«mόΗk$>χύΫ^Ε(–ϋρΦT΅’ι­=‘‰L–Eφf @€ά`§[΄h‘­[7™={v‰Ϊ‰%NŸ>έψ™­Οκ…ŠΘξsQ π|ΌYΗtηΠΞTΎAGΦ¬τRn€yΊoΕτO1³IЏη`/^XΒήμ•ζ§Σι‡c·μpe‡“Ω,N°%W.'Ήο―'ϊe38ƒχΦdδ€INΡ@άζ”aύm cc.#Λοίn“ΔΩ©ΓΕαΰΡ`‹,Oϋ;ˆm΄εW56}8Ε7ώ£’yHVZά€gF8ϋΌ#Ϊεk`­ ‘ ²’Α‰ξ)ˆˆοh‡ά» Ϋ Φά\Ή\Ξ}3ΰ™@VΎ£μSωΎO™2E^{ν5u.Σό3ƒ_²σŽΊ/Œ/ΐž>}Z½›a3;!FŸΙίλΧ―Ώ±ώc ϋ7£_δϋO½Εw—}HυκΥέcΗ,AȜ° χΤ …cϋw²RcϋΧ2‡OJHA€>xPΈ *7ΰy ΟƒΟ,6ŊSεςώ4A1ΐηΖΨΑm¬/s,€0(„ΗsLγ³!ψΌ@B€ _0Uέπ>γ'Ÿ|R._Ύ,cƌIŒΑ~½nœ.qΠ;‹”°–$δαδΖ%>Σ… ²%μΣ:7~P’ϋ’ΰWΠ·ΥͺbμR¬άΜBEQlδ]Ί€Gά¦~ρx!uϋ/ψ& φI,Ο?'›C­Έqc΅uΧ]R~Πtq4%˜ϋ„-Ÿ*―ψΠΝ|ϋωδ©β|}ϊ™‚˜—ΦΉ―Ύό•’δξ― P₯1f0Θ±Έ_Ώ~*ΐ[ϋ3‹¦ͺ©―agεTξŠΜ/{]”kIŸ–m%όΕ§H[™Σbώ eμ€£NΉ@vΙυΐLŠμ%>A]Χ© νZ΄ } cΠΪΕΛ νF_FŒμJ Ψ‘‘Ν…v0EλΙ4HƘζΠSƒšριCΘ yfι8eχρΕ?aX`­b~€cΫ”w€ΗŒ©n{Νhη>ЉΜ%? ώ.?ΩAeŠγ±κ…­œΜh!ˆ§­Θm™Ω»Μ@»Σx'x>ϋPφ«ήϊ'7‘˜^$xΙ ΉΏie—|;AI ˜ a ΕoŒw“cη†ifκu"x4jΤgRpΐ# ΙύξyϋZ3ΐ˜uβ|#'φ+3 ψκΛGOMš4qμxΣ΅π|zβj ˆŠ‘c:Jυš5CΠ1―Ώ}ϋφtγη*œτθΡC΅ Ž—|Ύ(WΙ’Ν  ΗΞKŒΎΫ<οK=ƒΒΕδκΌe‚΅φPΒψΧε>ΏP§Ό&3ž° Πf0Œ2h³κ‰s’4o‰θΎJ)SB";>"§ΐΞί6ƒ―ρέhK¬Ÿ=ƒ•˜U&3<Γό)‹ρe{“ &Θ°aΓΌνςΉ­|x€Š…­Ή‚,α9|žƒ ΉΊj­πλfΖωvΌ…΄l*rο=’_OέHlYX6lΒzoLΊ™m=cG 3ž½³ρ}βhω Hžά΅ο=$zνF±ύqPJs`ž} 0ΫK ζž g4P£!K$˜œ₯Ξ]2dM ”Hkœ ςΩσ“hWяSp,Έa΅Α<.ΫB σβετ l Π9τَ’g—γGό\€kwύξΎ¬½dq κ‰q  ι’§%nΦ"±>ζ*οHβ}u$W—NΚήχUΆΆνWIΨΩ‚vB±—+%!―v‡1™³΅\5_±VμΠ‘ Τ πΡ#Β%™ΒΒϋ <Τ'Sο iΑ2<χE€Ψ«‹Φ‹Ό ‚ΔG#€<Ζdη€œ7jhSμΰΙKΎPόν(x0Φ΄1–*ν7ϊΏ°ˆϊiΗ2Œ ιΰ  ΕpΓ•₯+%dεwͺ¬”Je$bŽEP’7Ρ1oLšϋ ²@$‹m!±ΖΖΑ6~+”–€Uο§Υ•u:Y¬VΆKpΨΞυkŠΰήβί'€€°½CΗΌžvŽ· ή€m;“χœψ ΛϋŒ[%Ψ¬ΒŒryο­$Αw—KδΝ™ §μ’σλvŠΎϋ”ΚjκΎ&})• Iž»JΛ•Γ§‘Uΰ$֊RΧ“υΩ]v_˜‡Ωt8Ο{χέw³8ΪΏΫ―ΏnΆό€η›­Qy~ ψ5ΰΧ€_~ ψ5πΣ€πό{$ώ έ" x.4σ²Y9θΰ4ž³γ45²ΰM?©#μXά:s[ι ^~{ τŒΒ"_j'z‰"rφΟΎ@:Χ|a`Iο(–˜h€π»{Lœθpΰ„ |Q΄ ₯δΪΤ…’ŒνΰΩ`\ Ω NtζiεKKΰ˜ι@Λ<'"u(qB‘ξSχ΄D›…fΐsΧjŽ―Ίu+XώΏ/]ΔΝ°K§‚ρw66ZZΆl©πp8ΆiΣ&l0ꚸz½„}ω+]+s¬ §JJ Fιή'ΞΡΕΪ̘pθŽ1ƒ³Ά?~Όδ9pXο‘^¨―tyJξ«Ώ]²δΛ—ΟΕNόηa‰ύΰSΙϋVOYΏg§LG‡dd€ΜΖ{ CνΫ·W _uΰ½GEE)@†™mY`ϊΗφG]Œ-v€– }΅«\­ZΦg{b›0€e1•z!HΤ  -³΅Œ1B=;3XΗtyυuΠ AιXψ<χ{ϋMφ=’rΤrvΕ*¨`…Cάzκ¬―η9΄;σν%ŠIdj’•-ykYθ`;&M§εt€Gγi.y Α,_Δ½y;QNŸήΗ© J8“ΓΦ liλΦρS"Γί°:Ξ"AΊ κc“Jε]v‘ΉψΜΎλN&MY[Ε.NdZ kώmaΚFŸ?t’z7­³FK½‡Tΰ"˜ 7ƒΉlI)²ςΫoά€°}2…d7ψ=!Ε/τ2°—+ΓNκΝσέa?πΜ3Ο¨r (¦_0Bςηίw€ΖΐφϜC²­sΛa€-NŠΉLζΊeηe9μλΨ²l~'›Ϋ/\Έ |/xίφmFώ»ϊWΦƒχΞχ˜d4ϊ{Φ!ΐ†―·mυ9F„[φ£/Ł”κJx1k‚τ:ΨέΏψp©Ό6x€ϊΝΎ‡ΰ°B… ©ϋη9Το™Α8άΟ~ƒA;ύQΔekτ5…ρΊΖΐ>‘Θ¬’gβ³ςβΛ/ΉrΤΙ^ώQ―5ΒςHr0Xf’ξ f'ΐݐ:uꨌw†δ’+οΝ`€g:v<ց,ψζ:g?…₯~ςY@nuŸΓ{Ώ₯‚œŒCWγ%ωτe°ι:$μΐziί©SZ{›1GR«fα\bΝ.ϋΛΛση*†gώ>š1S’Ο_½δͺ8ή—rηή7ƒŸΈ=»νΟΝxΚΠ^υγύ C̞½Rvψk؈>Η[·ΣRsG AAψΞΏŠ₯JΛΞ?P€ηώεͺ+0LRύκ’»[§Ο΅X₯—{1fά,±aΞKq €#l0ϊ΄ΞEoD7Ld‡& hΝOυF²)ιqD'Š@#}ΈFvhόY0&Ÿž7L*¦Qρ½PΏƒ ώT Y:Iϊ}Ή,­?1V{‹οo@(X’ρ'^ζΨ½^9‡φ¦½£¬†χΑϋ†φ¨ƒqT/SJN4kœΞή>|Έ§ςήμ]‚„hp_fύF•;JΘE°zF4j 3χύ¦‚ ψΞοή½[˜)ƒ«ž €eΧ$$l°Ϋσφ+jώ4|…θ—γ€ΨάξπΑΖξyΟ|ŸYŸλ±_³κΛ<ϋ‘μΜ •±cΗς§00’γ?ν>3[ΩδΘr’ψζH £0)λΎΉCc0΅cέΒ‹Wdߍώ•6ΐ%ΌgΎζt† ΞϋβZψ&Ψ&Ω™?±]Ά»Ί Σ?²^5Κ΄%ύWvαœ—£qΉv }•…>?δκ—L”Υ˜—ΎΔόE;lΧ·f½‚έΒU έ`G<܁Ž%―λ"Ϊ₯ΛbYύ΅X~ά–n–ΠΝ;”mΐMΞω$π?Λλf².Λ³θ,ΑAΫs׏pΒ_|6-pΤ[η/JΒδΉpψ˜ΪΛ¬‹];»Ψ½ŸΙ6ν(kžοΕόB˜[€ }ΩFp1Ήgr€u9ξέ™ΉPG©΅η·^Σu^οg τί….@<Ζ§ΐgΪ‹΄j’ρX΄•Ψq3$ΰyнl ¬[υN³ y”s)+2kR‚m!z'Μ9Ρ2ž;ΧΝ‚ΆξR»’Τ”Θ>Οy?GθΛΦJ"3Α>±aΙŠρ Ξ€K‰mΝτq‡)θ3βΐΰ¬ΐΞΈnπ«]\`gΗΔΏ°3όω‡Ž‡½ύ7eΕTυπυLΟ)œςΫ Ή²u?²Οα>;‚Ξ}7˜ΆK—PΣ!7χklΌΔMš Π{ͺγA’‘―ΓΆΘξύ:tTΆWb·ώ φηγ€άdΕ²W./Ήΐώ|±@4"W­ψˆτλ uͺ§‚SΌ—žq+Xΐΐ―Xσ#Β$xψ«’‘ϊ– ή‘„·ΖHDŸnwϊυnr^Θ?3ΰ„mŒm›OΆγ›·J2+‡υ|Rβ&ΜΖs‡νŠφLΗ=Ε¦%Θ”νί²lXΔ±eσ}‘˜ϋ ΎοΐΦΈ6Ωω_zι₯ ΩyGω~ςZ'Nθ‚²ΨΧΈϋ%\Ÿ`&‚ιΘ¦n0ςߊώ•Œυ¬?λfθZΫHΐ,½ /ΑiφΗμο, μ_Ε;ΕΎόK€tšΎ I―¦Iο·€υ―γί“>Cͺί ˜‹ΰŽ$2ή₯ ―m±ύ†xζοC‡)έΗσ“υ¬]»ΆΗ­’ο‘°Ze$ς‰ϋe3Ψ7ΩF˜‘€clγƍ•[΄h‘€γ›„C°:υOΖNή…Χ[°`΄hΦσZά_O΄TmJϊΊ2tଢ଼šεwνΘ1±ΕΕΙ§Ž»ΑϊϋQπ>ΔuERΞ\F0X"ήwWp­­{G9Ω΅ŒΙ>!°ε97lrm}Ά³|wUq}‚ΑCF[ζAΤλ±cΗά};ο»4kΎΪƒY¨WsϋλΡΊ\\ΆJ¬'’ĊΉ¨1/uW‚_pž£H~Υ―Fμ¦ocο)?ό°pΜΪυy9 φ‰ΑP &ί 'ڈΦό^―ηy–σoψ­±A’ΨΡΦή {ϋeΠ¬ί†ΎΩ›²ΡNΑh…,εψt£ΡŽ”φdGυV·ιh;)3ί“Ί`Ρ₯½ΖΎϊ‘Ÿ`―/ϊ\’u°D‡œ!}–Μsχ'3Ÿ{QΫa υ¬-ˆΨ!˜aΛ ”{Ÿ*—οθΠΕ1|¬ϋ,νŽbςW―nξwŒ6Q΅ƒ‰k0D ώzu—ŽέŸwΫ»=aσ'fo0¨‘}ŠCϋ‡λ–΄W³#f›Ϊ˜ΓδOΆΙ™‘˜‘•20@Š/θ!uλΉμ[Ξa:wξ¬έ^½*%J”HΧWrΜα˜ΩΪhV}™ηΨ–yAVΰbeΧ,)'^^ Qηd§VFςχk‰Œ&6Δ£§C†Ξ8^¦fΐ…ησ;ϋ,ή#mQŽίfα}ΡF0‚33Τ ΗŸB€ 9[Ο)`Z iϋ =Ϊ6ygυμi3pν™Α‰†x Τ B=O€ρ;υ*όγq~ΎV½Ώ<ΗΦΆΉ$˜zχέw»Ηχu'@GMύ45lpή#ο@vŠωY© Yό£ž Pu‡Ίw3˜8zζ`ύέγΪ»$°]s‘φ-d%λΧ――Άί2ΐsΤ9‰YΉN‚ω- <Œgž‚ζPλ΅a›`Kχ]dσΛΡcπΥzΡ~ήEΠ}’aΉ7€~ρœΟθΕ‹Š³U3°ΦΕgΌθΘT·ώ±žΑXiΖALE€E ΦVmϋy9‡=PO΄Ί˜«›@Ξ,BۏeΨWΟ:0=r<@iΉδP™ϊaJ‰(f\)ΛOf Œύ`™ν8΅M1ϋU«ΊζύY‚ώM[ΏIR>Y)€½'έ‚:!ΰΑϋ•=eΎ`ΩλΰSψd•+ΛŽs =΄η2gœΖyΧ.“ΠοΆΊlθœLΠ]ŸΜωό`λΨιh[ΫΙS‡R0oŒ”Τ‡τGφάk¦°uΒx¬7ΡΆA;M‹wδ O{·kPο˜ι3Γ „νΰ7_½\)υ;έ?€ΉγίΑš6X’)‰h/Ήz˜ΚεuG!:ΟύOpοηD―οΓχζΨ‘`>xLΥ+¨KdoΔ³σ&\ΗΛFΦ{θ"ΰΠ_bΕ:,ΊΐΞ«η§­+Α^Ž}{²=©ξ=Έκw΅?`‚z/œ`Ξχ&ŒmŒ±qœ½&‰»RΑΟG/₯#£~\Γ·T),ωο«"U‹‰„Ιφ ˆ_HβΆΓ?&ϊΙ+ιJ"±Cdυ2r fPΆž˜:OΊ‰¬Ο†ΣΟπœNυώ~ ά2 ψΟ·LΥώ ω5ΰΧ€_~ ψ5ΰΧΐν€π|»4οΏξνΦΐυ, πΜ?:”ΣμζEI.ˆs!žNHΓiκΉ8iάχV8Dw!mY}2.™>Έ€ώo<z9;w­θ\€Π€Af’ΐ{ΔΚΕ΅Tq’½, !O>"zσFήψŒƒMŸdό‰ώ Vr]‹ΔΉ;6”ΠuMGόΝ_Α8½βK Δ§Z,L½ΣR†= gwΩΎ—λ©ιν:k―ˆυ…ΧΕ p“¦;Υ-8ΐRbyαqφαznI£?ΦSτŸφ¬ ΠΆ8‹δΫͺy’+”­2ι4΅·ο)–ƒ'\ΗΓΩgy£»θ/tΞόόΏNJβ,ό^½¦Ξέp|Σ{½ž£cΑ>Œ±GA™InP,]Τb­ΪΝφCη$κOΣΐΞ£:‰–+$›gϋ»πžo…–3ΏFΚ‰Krξm0•q!?,PŠŽξ$ΦBΉNΰηβ;=οw½]Zˆ΅VE—Γj‚ (=@ιΌ!;tŠX™ϊ›N}QΨΪ4IΗκΕqώξ‚7C œEϊO;εd;Σ€TšγSQ’8b*ΐ.ηC"RΘζzρ™t}>κόσ<+`€£"χ;ZπΩ ¬ŒKπ™˜κPδΝΡζ!«.έ‚΄ςˆZi–)ΫΆmS@#Γ±m=uFŽ:Rγ1χΣζ(„{3N•*U”ŸΫ ²}€];q|ς…Δž,ϊU€¦ΰθ‡RΔ6ΰy9άΈ–<~LςδΙ#χ';‹γF •Ξh39rΔ­U§Όy₯LΉr,Zx gΤ‰ΫhSi€Νΰ ξΛJh—ΡF#ΐ,»€g₯—sWFυCrIΒ„!R΄X1u)‚™ϊΩ—Χηs2˜Z W38Χ ψΰƒδ1θ―Z*aΓ† rwL’Uσ·˜ \D "ΩεΪα8_Ά%υβ πΜϊL›±{΅ ¬‘ΦΤ”³Ρ±dθ/C—Οq³PnάΛ~iΠΙ@JΦ?²e³NžΒϋβuΔ πΕSς7nœδM Λ'(Π³=΅kΣηΥ’°d₯»Ζμά/?+[.Κ‘Tήά6؞–/_xΎτδ.π:Ύψ<{+ χ¦8 ›ς„Δμώ€=0AΣQ¬ή Σ x6°n‘ :όΚΜ€6ΩtЍΥ~Ψ.Iο/uΐ!ϋyΡ‘-$S!ΨςΟƒ©μΟGάύ“ϋ0ΫΕb>²μXuΩ!Υ$ή.΅Š•Žν"έ‡dλΛρΣ’0lŠh°εɚ:΄·θ`»εΒ~ττYy{ΕRΥN½1™³md΄ŸωΖ ‰ν?Ϊ|σ‰›σ˜Ε\c‡;ξHd°κ³y/l“|Ώ 2ƒˆŒϋδ{Ϊ& άΔΰYsΏanߞ ΟΩyGy S ?ωδ“ dEͺρ޳Ό>ίky Vœž―§eŸDF}5FΤͺ-WFN”ΐTΖfK‰βrς•.ξqΘPγ ΡΏ&;' \Υ’gzwwPϋΧΞχά/CΜr?ΣOηΞ“˜ώÐ-‚Ώb’·α=rΜ¦©qΘθ7Ψο·nέΪkKv4'@λ5h ΖŽ[UjU&–Ν[€&€ x‡ό 3ίΧxξ­Z΅Rύ'Η>Ko¬ωΤθΡ£«μΨ#13—€ω ωͺεΉ+dΗΰηƍ«νή€άa9ς—hΫ˜j§bΕ΅υ9‚ΆΘ\Νϋά·{ΨκwΠ΄«rάΨ iΉLXφQZŸΰ­—ί@֘β¨] Š΅Δ &ηΜΖ%ή£ΐqƒχ½zυjο폁xolυjJνϊυάν―kα2’°`…»jT¬£ «ΏΜp³†~B/YTΝ³ςύΝ<€ϊfί~"«7JΒ§kUΐΟbΩaΟC'5*ω.δ_΄GGnβ€ω€°Δ†Όή]€z6i·SOΑζ–TFhLΡψΐΠdŒ&Œc1μbΗΤqrO‹ζͺΝ±?ιS»ž8&§„Ρ&l lΏμO:]J–€I D'K4‚ ]φnϊ› xψΩρ\+χ;JζθςoL'²)MΠ’mχά‡JιTœοtKΧΔ1o±»0ΛΔΡcΔpΕζN{·gσ–’, >ϋŒb^ημ7ϊχο/€aSzDP•!μσ™υ„γIv„)ζ™5ΕmάΝ›7«Ήƒ(iš…Ώ 6‚‡άušώ2 ΐβ‹OΈ<9ŽTsˆ³2ζ?θγ= ho0 ΙΦiζΜ™*σ 1n±?N7ΎƒVΫ‡ ;~UDα#ή’:Ζ4Ζχη‹”’θ{λHU°U˜MQsΊGQχoΆΈΟ‚φANζO|Vž`p–εM΄οΆHβ’n «k !}ž{pAu8λ}+Ο ΎΆvƒcΞp ΰΙTqδΙ­²FΆsmΎΌΖζZvν ˜’΅θLbφ)˜6«y―ω·^©’8[θŒOωυ‰›³ΰQhΪQ(Ÿ„–-#ΡΜΆ!XΙ“ΙΩQΊ˜„δ\―:’ΓΝΕ«r4ά{ά§«%ΰd”{ŸΟ!©Ikyν»κr-!PŠI‘ρƒƒaΟΈρϊ…@η˜EŸH0Ξθ›)φRΕ%δi’pή“MΡΆύŒ`”ε@œ££D ²ΟƒΜΦ7$ΫwI"@ΛΖ: ƒƒŸl/B² ŒΎDC₯Δ έηΩο(‚6‹qΆeNEC6ΐΔ…ŸΰyλEŒ_τi €Λφ*֝‘)+SAsmρr ωj£z~¬HΏ$Gρ"ؘγFΐœJ’R€„@–±/vΜ&!λ’†χ‚:b@§)»‘†Ύ,qκbw"x,dpo‘r₯Ό\}Θ•h‰6Y,ΥaSχ^΄šήΫ€Z9ŒΩ'`ƒ$cόΈXΩ§‘δδ²Ε%p5‰y¨0?Η™δ;cCπΛXCΨ™ν-v02ψMR`h₯rώl\ω{;T”Όη”\όρOqξ;‹ £”τπΨR€bΊ»€XσzyVιΟΘτ—[o>$—Ώέ#r%>έ±–;ςHXΡόs υY„[9ZΏŒnsXΒ‚ά›³ϋΕxΞ¦όΗω5πχhΐxώ{τκ/Υ―Ώόπkΐ―ΏώAπžAΓ_•[ͺo θd2/ΚI‡3ΣΖΡ@V-°αιlfεΝ βΖβ3ϊo–|όρΗ (ςo< ’ϊ£ί™'φŸ&#ΐj—πΔ¬HVΎ¬uh ζXεΊΞEOέΌZ.²7J=2νήςR䕇oΦγσZ™3b>[#{φ»ͺu¬§Τ&ᏡΉŽάΏQΠyΥWbΩ΄Ω½-§/Šγ ψLœΊΊ.Xμ[§΅všΨyYΈΦoΈΘJ€r@ˆ’[απipπΜQrέ¬)XόΧ_†ώΤΕΒ€^ν‚kuSΧΘΞ?'υΎ£Δ’V#ˆŽπ€OgΈœλ™° ς`Μΰ"+Žƒψ^ψ.όbΦrώ2=I 4©΅Ό?³½ξ³½ΰb‘MΖ3CC±1`vφƒ½κκvnτžo§φӝ‚ΐ–³Γΐχ…¬Νcz6;hΊ8j±hW'Etn*MjΚ™Α˘@ϊI€ ΐΉd^°Τ€Ig_κ8{σ†’l”tψΣ!NΰρβΉοKς.κΤͺ ΏLˆŒΰ“vΗρ];ΐ’ '{€£]bΐ0φΝΡp“0:ŸRΩ–ΈΠ‹6‰ΫŽ«ΣώX²d‰JIϋƒ ¨όΗNKJ΅;•³Žφ κ¬…@…r…ŠΘ}­ZΈλϊ!˜/ °££ž+NuΧuϋv ήwDF»V˜v›ΧΨ²e‹”½£„8Ώί,χ(Ψ/ňγ‡_%pPOywεryλ­·ΤύξPΦ2l,R‹Η‹£Λ“\³ΊL˜0AͺXήnΤ9O`°4mΧF•έ ΐΨΩΣgHΣ›ƒšΰˆ `Z&3)…,¨O?ύ΄bFζύ›…Η28mΰΐ ΈFΦLήAu )Ν|α|f͚5sίΣT‡αΉόπ“$|όΉέSK6–-κNkMD‘"E2hχ1BιΙS΄/Ή ‰Ζ©`5‚‡Kΰ~ ΦoΕΨ·ΏDwλ'v8—#:?" κ(QWΎμ?–λ πΜ{;v,iS±u>τ$8%Ξ ϊ¨2όi„:Qd“›Πύ%qΒζ’†΅ρŽDΈ˜―ΏώΊŒ3&]°υN}ψγςΚε³$+ͺqΟΌ>Ϋ•ΑάΉbΕ y€ ng[Jמžq”KΦΖ$0%“E]π>ς½zͺ4οϊ¬lΪ΄IΥq*Rb'’έΡJaYΌšάΟtΫίx6Μm$§ίsxφV8ο Žμk;XŸτi·“<έαΈΨ§μ°rU― τ°;Šσ%OwXŽ  "~,‚«0¦$έSC"zΑq qΆ„¬Υ»χJάΦ_α€Fߘ \ Ζβψi›΅”#Ή+Iα¦%ερΎp`£ΏΚΆ 6l!UέΛ3‰|΅IΒηO&νΫ©ΎŒΰY‚ρωžšη™<ύY9Ω~~ƒο9ϋpn#xŒ}?ΑΘιΖ°k€hξ7ΐΎήQ^{ή?υΤSŠ₯œ c²―,Οά ύƒ ( z H—ΜσζΎ’ϋnVJ°σΤ©SέcTφQ“Δ±σw€ο.%yί.&ML#Ό-T¨»ί`Κ±,fά*Iόύ„ŸςΌl?Ή_§φ―άW|χIωΉ`€κ›Xw;„ Δχ— γΠ$2Όσί©ξώz/‚{’Α†Μ²)9rœQ`3>ώΊ ۞t—G0cΎΘάR’Liu<ϋΠκwV– _Γ)ΩΊΙ†ΚΎ•χΛηfτ—<‰LΥ­|H7ώPΐΠukΰ½`ΒφaξΗψœ €ΖgΟρΐrθˆh·i;rΘΘ-θS4°Ψ~Q$xF&†Ίͺ@R U¬ω"$ pn‘²ΕΔ1q”άς^؞Ζφ{M’ΤΨήΫ%€GΝγ±Κγ>ΦΣθ9–3Θ…λζφŽ€Τδ₯«pK”ΠξδT•RΎ|yu ΆΏfρ‰;pΐτΒ’ŒψRΟ$»ύ•QQΣg:ΐ3x” Ο‰A ‚mη^χ‘φŠ₯%6vΗ½‡ \ƒ12±υύ’ϋΩΫja0 Π‘άgΖtχϋ'ϊŒ°χ¦œΌO^ο-?$Ε»ϋΪkη$ΞΏΌκΩM,6Vk7)―ΑΪ`ΊJ‰K”ΰ£eΘ†/ΣήΡ­?‰£ΦtL€D‚θ‚~[)M:vpΫ»s`oάσŒ FΫσm™ί―n­ZΛ·{tχ=μ7†Νεόa+‚™RΑ°(W‡έͺcΜrδέ•\υ°wωπΘΘL°2…6!Ι¬Χb$}rΊyΑ¬9ΣΌ›8*‘<Έ―ρζž0‹ ίu3Ϋό°aΓ$!ΑED@»Œs›7ήxCΩϊžύUf}™ͺXκ?Ž?<π€[O΄ύΩ³oδXδ9/π̎ΐ:zž pΚ·γU•ΫΚϋ3"eξœ‰ξqˆΑ‘§±šσ‘tsά7ΜΖ|Šci©R₯₯f;ϋοΏ—{ͺTΗη_KβΊTΰ™}Λω7ΊΊΟμkΝlΘΤΝσΟ?/ .Tsp¬fx?Τλ”)S zε³ CΉΉΝj|o[ύnΉxa:Όtά’όΗ~±.ˆωg€hΠCΗ΄CŒ±(Ϋσ§°0UWσ³τϊύΔi‰ŸςΎΰZΦ|@žuΣώwž΅`3ώr½ώφ‡ ςΰΕ πLΎ«’„?ά,ϋ,ΔιjϊΟΞ²e»XΦ~ƒΜyufγ0o@g>tΒχFvλ’ΡX£ ܍΅cΞ+R…LΗN΄+§n‘€3rrfγ_Út0ΨΑΉ>lˆύΞ² Αz8‚Œ(Δ€g†Z“Κε“ehvg„eD/Z&!£ρͺύvΜeBž~LτκU2οkƒvθ¨$Ξ\pnͺήΠώ“ξ› VdΌ!aΫ`9ΰθ W1xށȨ(ΆHΣz»ξ-nζB΄—έ xτtΡtΝΌβk›†€―Έχζˆ χiΓΌœλ)Ξy% s }²ףߎ3Ul©χ`―šΙsw―‚y\ς€χΥσΖ *AۈŽρ†ί3ϊ¬δWΡ•m’`fθrmφ‡ό-ΖˆbΓϊͺ;#“qŒρ©cNŸπ‚ϋ£γΔ™+LBήξlieΗ©OΨedkΆb}\KIF ιI €Ξι—H)ψςY`#tB°σπ©.Ζhl ξΡ$#υUcGM—€=Τ:XπΫ―ˆ0 δ@tτσφCη%ι·“reλ~ΡΟΕd¨΅V4RςΤ―(A5 r½?Ώ gyߐ²?JΞ―Ϋ‰lͺ§ΐˆ΄Φθ?Αu”œΗό<ΡυΛu²>ϋΟήυοίκΧΐ­€π|«4νΏŽ_~ ψ5ΰΧ€_~ ά6 ψΟ·Mυώ 4ΰΉ€>kΦ¬tΞcoŽ<¦l% ƒBΗ™Ν βxΓ`3βBόΝ’#ΰY#ΐβOΕώ5Rτ=§T™β’ΈΔ<⛃³DAΙ?γΡBΊ)&ΰ¨ρŸ‰Žτb­v))ςΪ#7΄ˆ”‘^dώΫς‹Δ#E’lr†8±pά¦™hH?§g•²Ξ8ι:?@η>7C,³At.΄Vͺ :j:X]Gt8ΐRΪtΫήγj‘“e²ΨΦ-DͺΎΤ»l¬½4T_mr1CamΥυžω™XœŒΑ’y˜)L[:Έ/€βΉΌž§#EsΒ;Ӑ"χφΰΧΙr‘(χz’—;Ÿ³3k5€‹ΌiΙsc¬^.γίt4ΰ<ί%ή€"Rœ•³#>Η‹κ (:ϊ ±D†¦•Žχω˜%bΩν3‡?zŸΤα½…@IDATΆi¦ηOΔyϊ*ήY‹|νa Όλ‰~χ} όεOunΔ¬²`ΝJ,Ε d¦σ`5‚Ν‚¦1χε: % «°cδ?plsŒηρO…Δ1‰5θ΅κ1ε4¦“Ϋΰ™Ά†@ΕΤΦKe#¦£ψQ0·ΡIΟΚ{ΰwnή.‹ŽμΟV]_jΦΞ₯άr£νŠΆλ±±€{‘’ΕŠKώηδϋ„+ŠQ™‡uδΘ‘’ Žz ωιƒ@°Ι°:ΰύhιRάζ9JOΨGΰA @P-kααα μΚcΝb0mυ¦κž™‘γΓχ&Kό²5PΎ”X›€ΥΚf3ΎA°ŸΨ% ΐpςΓΠ“`Z ?NX”·nSΡ nί:]‚<ΜlΪ –#H˜κ;wJ­Z΅Τυ P.'°œ€ Ϋ@—.]Δ‚Ά™€ΒntFΙ Μθ πΜσΨv Φi‚ p©_Ώ!㺜?₯Ωώ(_}υ•ά`ωo~KαriP/eλrŸ9Ωμ $·QX>η”X’L‰―Ύ Η'„ΐ‚0xMΓ6ζσδ}Ξ¬ΪS €σF]–q_}.C‡UεˆH6;+ξ!vΥ¨Q£Ϋ!w.EκΠ‘C:  :ιώέ0ΰΩΛ΅΅8029@Πpœ<γbŸτ<Ί"»š‹ ΊŠθ`ΦJSΆƒη‘™ώF;Ύφα !θοš`–ΧΐVT¦§eΨ™„@0€ΈŽήϊ³Ψ~?¨X»NFΩΒ)aΘΒRτΞPΙu_m[*ΛΗ=d&Le;ψ=±Βξ§γ=Έΐ dθΊΕBπɝwή©@Νl—œχ•,YRΞ=+mΫΆuχ?EΒΤΐΚΉνΠ>i€‰zO~ωi»€|ΌZ’Ϊ> %J•R΅gΖZoύ%ί‚ͺωΙ@²BRΘΔΛyi^°ή³Nμ;ωGωα‡ΘΜC›0ωŽΆhΡB½£(Β1θΔ‰n@)ϋΎσΌ7 LjΝ;+φFφμ_Ω²^žΒw—¬SŒŒGμXξσ<‡ΏOž<™% GC;ϊρηƈτλΚ1™Τ!^Όλfd+Θ¬]ω*qZ‘MΟΈ`΄~ύz7K)θΌ ϋ­^uˆμ|O½ή_1bsϋΧ_­‚aψzβ:AομΓΏω|₯8‘ύ₯XAΉe͟?_BCCU]84xπ`žͺ@i•*UR:2ΐνάNΦRκΝXOΰ6CΨΖL4@ΟΤ₯Ρ—“u4ΐΟφ•kΔ²g/ΐؘϋΰWΒς.\“”3WDNΫsdu­R&ΐσ y¦/°l`Γ51΅Δy²eS7£ͺ―>ŸΧΰΙϋ%8ΩWΨ§³½”Νρ›ΒφzΧ₯89_Ή¬T¨XAm3Ϊ_‰"˜ΏΫT ΟφW @²S'ά„^ΟFΉ‡Žΐτ‘¨¬ά›*L½ς(f‹ qμΏνΜΑq ξcͺxH ζͺ―uWΟν]|ο²m―­πkΠ±>ΦN~°8—cΔ/?ό(α―Ώ €!ΐ‡(ΟVθ{|Εώ@½£ν;Irο!βΔ<έ™€ ­$€†ψΖ ²4RΟ–½Λ,+yœ’‘_―RUκ=«~£ό―{Δ‰€v­L)wP"ΧEτˆpqt{VξΉ>UG€Q  81FXπNΟ_±<[σ‚>mU}ε›θίΜφ+AMΤ+±™Ω―ž}m8#ˆΗŸΧρ<‡ξ wΦ’ڍ¬ςjΌBP2³ΏPάsΨμΟqˆsφE‹ΊΦΩh–JοiηsΖcΈoΟΞ]’τ,θ’zvя^zI'ΘXg©TXςίWY‚ξ*.ZHϊ>:έ±™όΠSκ:—Φο}?Ϊ#Ξ af Ι*zl’H,lczY0v@)Ψφ±UΘΨWησΣx6kΓέ―[―?ΰωΦλάEΏόπkΐ―ΏόΈΕπžo±Βύ—ϋGiΐΫzϞ=U™f›Ž13°†‹Μ\œτtšr‘˜ŽδΟ>ϋ,Σ΄wοή^3―W ΐ3Ÿu° €€e#ΰΨiχB$υζ(\Hšί/ ΞΟώ«Y`‘ ”ow’€ˆnΏI5αsΡ9¦JΣͺ—"Γ’£vc₯c±ξΪ'_JΠO;Ε‚pCΓ#“ݍE`8ˆώNρtv‚ΡYˆΰ–0:#ύ’½Χ ,gF ―9zQ²ςχn!ΑυΚΚΥω`ο\·Y¬tΊr9λMh3½ΣΡύ5•ΊΧ2{ΌΤ{°©š‘ΉΉΗ%¦ΟP8{bԘψDΡΐΎC§²πL\FΗ2.\θν²ξm±;œοtH7„Γ;«ΊΖIΑρ5οΎ[¦έ…ωψΒ,_|ς‰h8οΡΗs§ίζαΜ’“` AudR%ΆΖ]μ’κ/h}β‰'άLr<„Ώ `χ ².+&N•ΨWG¨’τ\αόΘC`j§P°ΪΖλG 3λ³~Εrm ρ˜ϋΑ’I»ŒucίΗO*ΰχIπp κ£LΑΘlm€@ΤE<ώ0ΙλρΉ™μxΑcL«M°!κν„žΒƒΓ‹  HΛ6Aΰ λFζdή―QpΗσωόψ܍€=n#°’Η4cΑkK>X$—ΖLƒ£σ΄ž’―“£U:rΦ‰νΆ4X½‘bΓ8E/¨s3ψ;Y~cΑφρsNΘwkεΚ•jώΗwΰΉ<©ώ‰O™³#c?ϋ―aΓ†)¦g_ηΑ!X†Χg*ϋvνΪ©~ƒο(ϋ φ ,Ηύ™*ΐ\£|Οώ˜Ϋ,CΗ4ίQΎΧή„ W£%ϋ$ϋ"σ΅Μ}Λ9vμ˜T¬XΡέ?… K§_JψΌΙ‘Λ²5FPΏ{…5t@ζύ+υPαŽRΨCυ7ί|γfηχv?j\ΖΈ”όϊH±a*vρυέ ¨ήŽη6ψ\Ί΄GΖοn`2¦°―μ₯‹…3Ȉb€Θ~jfοT;3ωgτη {‚Ϋ[Gζ{½:j±}ΏE’GWμ§ˆˆ(ΑV°uο˜πŒφA㍷ΨL/WZœuξ[λζ²Ί2·§%J¨ΆΔ±Ω$²Κlc ;o·A›dΦΨρσάρή ΅t‘ΔΗγ3kFχVξυlΛπlψύ‰_ό™b!δ&gXˆ„<υˆh”b_ω―‚₯&/(n·R½x! ς αΌυώ/ι)'φϋRΎ‹ΖšŸz?ΑLŠΎΜvOm€œ/#Η.œO0ΠΰgΠ‘¦©νΘyπ°8ΖO‘”ΉS₯q³‡”]™v@ϊo΄w―RΩQε…Y“³΄ρyΆͺΧξ=Ϊ,šlΆ\Ο0ŠΕυ“gM”Ί°gΙͺO›Άζͺ―Εωϋ>I F›Υ+–Νόζrϊ%lȊd½rΥuεΐd<{LZA°3±φQs3;γΧΥ…άυƒΪΤ₯ό Υχt0Ό'ν9%ά+Ξ}gEβLΆn¬ΜZ™Ό’§A% UR¬2}ιD¨9qΫaΉ΄ώ7ΡO"ΨΕ$Zp€θτΤ~Φ±†jˆ†,2ωZΥ’ †εΕœ§ψϞρφkΰΦjΐxΎ΅ϊφ_Ν―Ώόπkΐ―Ώnƒό€ηΫ t%qΘΙ:$ΙτD@…/‘Σ”‹ΟtήLω xf*ΞΟΎ†σ{-RΊ!%―ΙIK:¦ήεb[ωn•κWγδμ%"η±Xn³JΎώHύ^3mΏϋΐλό5m΅θ›]ΜRΉˆτx:OΆ‹ύσ€Δ}ώ•ΨΘ’`,ͺ¨”\§ΊDtl›ΖRνs~ θ g8P@N_„Γ-#ΠYΛ&–ΪwΊ/β,[ZτmΕY­²{Ϋυ|a΄ΰπωi_l¦]€­tΐ"νυ Pφ–`:~N48Ιtxτ,ΥΚ‹ώΕlΡ|5Ό]J›³Tœγη0νZ€w‚E"ΰ³™’ηΚb‘iφ’JP£ΣN΅ΐ^]DfΒJΈe§$N[ŒB€K͟GΒ†χAκœŠ;π2>Y΄\!R ΅~°sN΅xkχžo­Ύ³s΅ΔνGεΒδ΅Κ™ΒτΕFτ €”Y.Όϋ±Xv †8ά)^ξ §z>pN9x¬ο–’6α/’8c‰>Τ@:΅R€8‚¬ΜB:δ… ΗρS’4jŠzK·D9α €#Λ‘%ŞsψΈ:έΩ –„φλξ<άΚ²Θt6 9²]-~ψ‘ΌπΒ ζΛͺοtŒpJ†aΓαJ;…Œ^dΚΝ¬!©—y3Ψ4ΓER78ϋΡG‰Lš!φW^P̜dΊσ‚‘Θ~œοΛubG εK5ο‚ΘfFΜΡ£G§;…@ Mz%2AΕΆ¬°qγF%`ΐ³φνΫ+[u!βΒ»³ΕΆυ7ΕͺΔBu›„΄}HτζχJΨ«Ι~J&M‚©K38 4ΑϋošΚΪG{ŒΫ"¦0½v‘"EδΝ–mδκw?`l‡=rG1ΕFμy|Ό2°ρxŽ=ςΘ#^A&dœ#³qπͺυ’ςιWŠΚή’±διI=o2y_ΓXH"λO3uBlγκ!‹YΖ½=ΓιΣ§K=xARR² ΣΐpΛriΫ(Βϋ!πrρβE8p χ J²U›AΞ<ŽΟ€@Ξta._Ύœ£φD†?^ƒηρ .dΡιdμΨ±―_?I=SΈG¬†΄ΐY9ξΣβγΗ­<{½<™ηŽ—θ]ˆυΔi±1΅³)•΅qŽŽv䛣dQΙUχ &hΕΝgΌ71³ΑžFv=Ο ƒW¦μf ΙΈaυ»l[ΈWͺ]ά!IωΒ±xW’κZ %s^υJ’{\ΠΆbΖΜΫWŸ›\Ώ†δz΅«OgzΖάψΎ;Ÿ `Γ`δ7—Hφ^²φ󝧘Η|G6mΪ$|—Θ²όΐ˜Oυωc–ΙΎŒAμ_8x Λe  ϋ Ύ£φμσŒwtσζΝRͺT)υ30ƒL»μ«Œχ“χ6oή<ιή½»gρ $ΗρƒL—ζς]ε»Ζk™η΄΄eΜΉ0ϋWφαγǏWΤΟc½Xϋ}ΝɔM`,ϋ'Ξ‘'LΐnΏ‹e|ξΔ,Lj}T ϋVνψ°ΣŸDΐΘ~G‚›ΡT’ϊίμ“cnάΚά+7ΊGζ/XΰUOΩf˜CvΨ›-Ω<σ’§^[ΈB‚ΎΈ2ΥpΚ'ad“αΏYτυ[$iΑ DSΑc^­l‰y•°€ε«?!³¬Ρη³?#Γ=ƒψŽΘKϋŠφ  Γ,Ο18„J !Π΄%Ζ‡6Y*V”UεwήΙpmΓήev%Zh—Ν^θšύ~cλObkˆq@i  ¬°.‰h­R)Ρ>Ÿ£Ζ'ΪtΏός‹TεwI˜όμ »X1߈›<Θ熙ξ°JβγΟαύpŠmθkrΊj…LνWΞShSΆ#ϋc#ȐzρμΛX―ͺU«ΊΗ-κœvcfzβό„ŒψF°›1/ΰxJ»μϊΤ)Λf=*WμξgŒ1‚Y|ΝUΨ6,& ϊΚ•+ξy‡Α΄l<_~²ίfΆއΜ"0ΰω’(!˜k°ο9s¦šγ˜λΔϊ–ηψΞφΘq6A̞65―A€8mŽk₯xΓ +Ό^vΖwΆεœΞι£ίN|ζeΡ‚l<ͺ,ωx©Χρσ'ή‹as°nΑά6nΚϋb#Π’JP§vΈ™² (Ήaΐσι(‰Y΅N‚Ά6²Λ1ˆ%€ΥΠVŠ” ύ݈hΗOŠσYm;ΐΊbΜχΜ›ΩΝ’B&—ŠwΚ΅s—%@ΞΤρ‡lͺ:"tθUKL†Mf: φ AΞα¦Z2crζ)°AlΦ Ÿ­λρΣξB‡<  7‚ΡψάΫ³ϊ²xω5Ωψ•SD}#m¬?JΎ0—]lΗ|BkWΟͺˆ΄ύ°΅―ΎΕχKά#d!clΪ‹ήδή,ΫGZA>Ύq:qα27C6/ƒž)2+Βhυqκ€€ΣΈ9˜+›ŠΧ‘‘"λχ­Θ’ΣφΒ“˜9K$hΫ.±ΐ޲>£‚ͺΘzœˆ΅γ°—ϊΟJ/KόX’‘ˆ’Lfκ~/Βx ρzΪαc’°3Ι9(mΠ֟zΤ»>wύ)Iη*08ο3θΥηaπβ½HΪ|‰#§ˆ%Ά5‚R‚_zFtΆo]]›²@‚RνΡ€5%²Ζ _ΊsΒ”Tu’μΐ‡Εzΐh³Ξ wHΐ»CI]Ιu%l‹E–DμΤυqΡ «Ak‰Σ«―IχΧ–Θ—γΪώρ?tœrψΌ$!3ι•mDr€»Υ‚α’·αT~ ΘΪƒ>/§βˆΊ&‰›ΚεoχMξšW©2vσ³ςE°XkZΩ–Ί₯€P»{$ lAχεό€g·*ό_όΈ-πžo‹Ϊύυkΐ―Ώόπkΐ―[©?ΰωVjΫ­’ΈΰΞEξΜΠ›€MΨprπθΤ sΐ—Σ”$.`z]θ½%όΏό—ΨσεG:‹ζ,!λ1α»V‘”DN¦G0IžBg?ƒ²Θ,JPA°”Όyσ*6aǚoTΪj'Η T!“mnΣΥ΅dIIγέN)„ΗΡ O›)+αuiEξ?,Gtβ9…>™ b‚H`:hr·lΩ"-Λ”ημrΈΗ€@w }2·Σή:}ϊ΄:žίΙJ β3Ο<£˜›?]ΌD¬α‘2{ΜtLk¬m&²@Σ©Oπ4yI`.Šې 8 €^%p4&½ΣG±1Oœ8QΥ›€φ ;ŽχM€ΰ\‡ΫΙ¨J°YξSφ†‹$±Ο εΠ³Γy™§/ΉxυŠΊ:»ω|J ><ί†γ›i© $&ΐΩF¨a=ϊφν+³f̐”ΎΓĊφ4s¬&RO²€ΘcΙD}θΠ!e« Aΐb€-XŽ> Κ#‡€>SO "ΩζR'8uγ>²ΩΨΑry<Α,Χ,[·n•   h'ι†i/σωυΧ_κS|nΞ5kΦL[JœΑλχl.ΟΧwΗsΨώωwφμY‚αύ±L‚Šΐόqγ&Ia q‚ k;ΐaΪi΅«‰Κολ™nΏ­€go5;}V4d•ˆώνwεψΆ °†χΚS(!ψΐ^’˜DΦΔύΣFAp!ΪήC’8 'ΐFw<직?ΆuEn&'ΟF©λ±ίχ#¬ώρΗ₯e³ζςWΧi’_—’σ^–Χ|¦@εΌΗ£eΠ uH¦νΙ“'§λΛΆmΫ&αςٟ˜Η!Τ'Mš$•Wn;ή‰°ί“γΖʐ!CTΏΒ>™€»άΉsK©R₯h­IΕΚ‹Œ5˜“06Ÿ‰:£tG}qΌ#s?λΓ>” rœδώς{±#5}ξEο)&6C?™}¦€ VRT–VΝΔΪνuΈmΰAΤ{Σ¦Mκ·<›+Žίώ[‘\b)Œ±7Δζ.ΪΆd.1Τ3ΰΑu G™‚β•ΔΨο«Ο9r€ΌΩω‰ξ=€MB?œ$ΛW~‘ΚβΨΕώžm’¬Πl ξa ρΞ°³ΣςΦώ–-[¦μ ,™™Zέ7q_² x6pzμμ$`Οc ΐE$W§+PΥ]Θϊ—ύxΖΞBΆ*€ΫπώΏ‚φXίχZΝ?ύvΩ^iGρ]5lNsb€π™…„}1Εθσωm›ύ?­;3@Ν¨Ύϊκ«*˜ƒΗ™Eesιό$Φ”‚δΙΟ©€ γΪ|ωvΩσyμΖυλΕΩw€Ψ¦Žg§o.ΚλwΦ3‘ΓΛβ@ &FΣtΗΫ(Owλ*‹/VονώΘCΔΎ}7Φ…°,sdƒŒœ2I²ί3Ο ¬Ιlx΄+TL¦JΐΌiςύΎ½BΨ—ύΊυοΤΈ©€lί):Ak°IΨwΣΆ¦p\`@‘Ρ—yžyuΛΐozβΌ€c.ν4κΟ‡Ώ_zι%UΎρL¨Ϊ63[?ηΗ1‘œ/yŽCί8ο }lŒ“ Όd6‘V­Z©ϋζ˜Β>‹ηs %P™sŎ Π;ΫΧ›Ήβ­NœΏδΜυiφ›`žχOέ²]R8ζ2ΠεΩgŸUs"92˜•}.δΎϊW‚¨9¦s^ΐk°άμΞ騻 ΨœΦ ε€}ΗΗ3ίηc Άξ†έP `NΖ˜υ;I\ϊ…{ξ•R©œ„υΑZ[j°Ί±Lώ]ΰΣk`rϊιW 0|Ή›Xοn‰lΣBtd™»QΡφό)–5λΕ²Χ΅N`”gWοŸ .x₯+žMu―Gk Iϊd΅Zo"ΩLπ`¬Qƒ‘Ϋ-Ϋ“€)σΥΌΪŠ€ρΑXσ.WΚ½;έ—dԎϊ―ΨφUΐκΔGšJξN‰ϋηηίHR\›Β΅|ψ…¬ΧήEζ¬P\lΓϊ‹Ž Y%θKbGΟ€]vPύLvήω'Φΰζ¨ϋM©Yl=]ηόKώ;/ΕJΞriσ>qΉˆgεHwηX—-• IΎ{+Kΰ]Θ–ΎJw°)ϋ£δό:ŒγXΤLk–›†μ•Θ€@KΥ!  ­hnΙΧϊn nXAΊφ|AW΄!8–ϋΕ―Ώn­ό€η[«oΥόπkΐ―Ώόπkΰ6hΐxΎ Jχ_ς§.τrρœ‹ϊf` ΩYΈΟ›ΓΝX >|©·LNSƒ™ƒ χ7[ώΏž50ά&,Z.pΘj±ρn59ΚHVQ‚;?‚(ύΖξνY~τΩχ>ύΧΏ\‡6('Ez¬gw3$αλέreώw’ξΘ+…‡wς½@Ύh€ Ζ’ ¨Ε\η LεŽ…Ϋl-fή„JkX0Ά¬ΚΠ™€\£3oC[ρ•ΘΠ `±ˆUw₯Cv0ZgOύΞ2Χ}§ΪιsboχΌhg.©υ4 Nw­ξ]’ƒ‘9G–gW€b\ν,–%“ΐ Q!σbzˆ™Φ €m€πžΒ†τυ¦ΗcΦφ›ΛižR΅œD μ °s(ލ«rfπ2•ΒN‹’"#Αμμ;ηP‹·ηp?ΰωφθ=;WMΨπ§\|£:ΤR€φX0RΠσkδτ”5βά‡ΔRΏŒλΣZτ£p˜œ–ΝξŘΦF$w„θHϋΖXΌ»‚ƒ$ΜxR©¬r.EΟό@9"YŽΞ―·ϋ!'u~ώγ'yΒlט‚>#ΧGΣ€γ³Ο(Φ8ξ&‚ cΌD0Αrdo€­BΡ/]‘Έ·ΗŠ W”€n ΧG/ή΄θ$'ΐ•@R‚Ÿ‡Ό5@,CΖIΠK]D―PVΩCtή{ΪJu,E‘³?ώP€†† *F5²―q?YΥδ%Νpxπ؊pƞνΨNFtFP₯B… 8E@ŠΑξΆ)άυϊλ―ˈ'Ÿ“£πΧ°L όX˜Λ2Ι&C}P„`] Σ‘ώΦ|§€gžμμNeΝ2203”ρώd€ŽΘhLπƒY˜hάΈ±ά™Wbf.€λ‘‹¦K4²8AG=uΜyΧΣO?­ΨΜv"Ÿm<²ΌA° SM󾹝LΨƒά gβ΄χη Α42Ή’ω•eTHVM A†d:‡1θΪQ₯'ΝΙvG08< σ\ƒΕΤΠοyΥͺUŠ”ν‹χη)<ζΉΦm%Ήχ±–+-Ǟk/LλΝγ ς ΐ™Χ ˆ£m[—³“`Gˆh[Σφζ½-\ΈPΝΊσ\Ά₯^½zΉλDΐ&Ϋ2ԁ'άΜ¨Q#$!Τ`6§ž:++IΣ)η¬Ήήd #•~wΡΚό›MωΗž=λΝyΗ‰Σ"pκΗμ&τ `κe΄χ &0;Ωφ©LΠ… H<μrΫο.Ε›5졞7ČuNdΘψΉcA;ΦePo›T)pEδ·½‹TΥŽΊSJ»λgˆur³?h˜΄d₯Ϊν(]\B‡υΙ ΰ.λ&|±ΰγ@ĊΜN΄WΛ½uΔιŽα»KφrΎk”.]ΊΘ°aΓπ“}”ΑœO°mεu?I ˆο+XΝΒ~ψΨ±cͺοβvφUlΣμψŽς'”bΌ£Pο·ΐΕώ‰ubπ†ΑVjτ°•Ηςzέ°O#XŒ¬οd―&ΛΑςύΞIŸϋοΏ«kη€N¬KvΖŽoF£ΒΤξbέ"n=±?!œ.σπΐqŒbθΙά—±εύ±§ώxί βP}ΩΓν$YςΎό¬,ώf­ϋ™8Ηr ^"¨‘ύ'ϋ/‚Μj†EJ@ΑςκΘα2mΪ45NμΘ5φΗ|†dF¦¨ώxΒ{ένM \8AκΦ―η“³ 8Η >^‡2jΤ(yλ‘b;IhΫΟ^¦šϋζ™ϊέZUu ώ$X}Ω—vyj;ž³5Λ“ΙΟΧ(]ΗΣv0ž5ϋΦγǏ«~–ϋ±”ΰ>©ŸώywfŽ­Εη~*·’₯φ¨ϋ"s*Η₯iCp|7Ζ!κ‰γ?ΫœΤ%ΗΣΑƒ«ϊ0ˆ€7…$Ξ²ψ›BΐΤ¨σ|ζπl\μΨ;0'ͺ·‹Ÿd{‘ƒ4Aͺ’TQP°! *6μ AΕ‚Š‹TTlˆ Š P”^D);Ϋ7Ω$σs³²a—-’βΛ}žέΝfڝ;wήΫ~οyϋiT ŒΨwΘ Λ*φ†+€v­ ηψϋXφoώdŸ’Κέv™ΈZ2¬}ΧΫNΪάΛ?YŽκ[ͺΏ₯Ύ’@{Ω»¨~†κ€ϊ3κ[ζ6'¨ΌΚ–¨žk)‡&υiƒ•ƒΥ·R”υGνΎ₯ϊ?Υ«W7ύΩΩ<υ…ΤΗ97.ήί"κβ 1aΛ&Σ5Ndσο,V ž'‘Θ&4™ΖΠσιYˆϊΰŒώvz»a%ϊΏο’Υˆκq¦Υ­`ήQ_€―ή}υΥdί5Ά]3ο(ζΛ|5ΫZ73vCο·"¨_¦ν²­jΤΎ(ΙnΤξ5Φo›8_R n:^ΕΤ= ΡΟ<WΗ˜#O‘ΐ³μs~εΤB}pφ?•ΏΰΆΤΆey δό‘Ό«ο=†N…²UŠZ vIφgξάΉ¦_ͺ{Τ­vEvZϋθΉͺlˎ©Ο.hZΆΝn‡ΤΠΎϊ_σJzφ*[΅[κ#h¬’d;(ιœj·5Ο¬{―V­šiSt~%'μ>΅ώΧ~:VmΖ*+9πΚΦρκ¨ί¬Ίl T—Ξφύ–Ψpbυ±ΏιΨwΡέΨ%όlIόα;©¨\_Y/p* πμΨ° ©Σf#šΠ΅νhv5¬‹b‚]λΤ.πuσά‘οsρ/ˆ˜9‡}ο9v+θlω,ψŠ—ζ”€£ΒΞSrv€fΐŠŽΕωmKβ|~J9 η œΏΝ7qμŸόΩWˆ•:qΆj2 \ƒJ₯XQ` ™©iHώψsΔώ°4PΆkROΗΧρΧ`Sωs1θΙ(œYƒ»ΙA[ΰzk"v³o§Δχ0³I#$t¦SQH_ΫΏC!~SM<ε]ͺ)/_kζYt€›QeΈ‹dv™Ÿˆ₯£ήAδ6sυ•,˜ϋ™'Fg,tόΛ¨χEG!νzτΞ]π%ΖΠ9«v Δ?ύHώc-:q€Όώ>•‘W˜Λkž(žŽς9€δΰŒq "uΔDΊΩ|λε/Ύο£Œΰ“=―Ό/aψ΄ή œό‡ω6λL:v2ς’CŽ Ω)ι ˆσ£ωΟΛsΔδάίγά’ƒΡR‡°oΐΉz9ΡΖφΌΒΗΉ%E;L5Q‹Wϋ7‹Gδ Ž_΅nΐSΎ3Ο@䣝¨¦ΝΎ–χ†cοnO§ΙΛΝ&Η¦mΘ8ʌω=gVCβΗM}2ώς±έw―έ‰C?ό ί†½°R\9KAk'ΥΛd«?SA»r©œΫσωΟΚςގCίr-e½nΡΒ6©n:ΓQV‡ΟΛaCՌΖϊΤξ˜Άδ{γ4eΟεs™πζp „Kΰ$–@x>‰…>UΈΒ%.p „K \§f „ηSσΉ„sυ+4αm'-€œh‘MΘ:F•4Α…‹Ώ+iY“ΤšΠΦ’Γ*q±0!ά’©Lq4%u+2Y©b:ΆΪ_IυŠ’/ξύ`6¬YΩεrv%TθK5fN΄ŒδZψ™e&LK ΒΫ Η;υš Hϋr’¨ ΖJcΎ·΄Ή›2χMΧύεαΗ.tβOtž6Ξο9)ΙΙQ“¨ΌθωύO88qPtf=Ο tφέΘΌ6¨{β‹d+!λ‘ή&τΊ}Mo‰βp<ΫVaΤ—sΉ–³ΛπŽ›Β‰ΠμΙτψ8ή!ά%ΕΤΒ€!œύ€ Όψ;/= €ΐ—ϊΔg9šŒτa―B fœ*ήύήΌ'U 7*μ^ΔV‚HL– d·ΫO|<Ά vΨ3`’2!•;Wτƒyώϊ*0π| =Œ\²’ώε ϊμ'³ΕyNETκΧή,0οzΰ)p.XgΎ²Ξ«…2O݊έοί\Ώͺ“σΌͺ¨ά“‹ˆTLΐ°Ÿ‡ '±‹{² ηΡΆRρ?}ΘλpΡΒ^¬lA‹¦ζ|Ά..Š9Τχΰ"gτΣέIςžιί¦0ΐΓF#†‹ΰΫΊt0‹ϊΪ ¨M‹ΫZΈ°$UK©;+   €άΨ&€Ψ…KL;%Υ­¨w_ΑωƒΜό%@`ϋ‘φζ ‘™TΦIμΦ q\τΛ5±ο30ž`2+Xαt*Νcθf…§Wš6m½ Ό©βΤ¨Οkhΰ -b 4xΉγ],Ηˆ~β~XΌ¦Iκ#\œέ7H‘pΪζBπΞY„±[Φ™2Πu₯W­Z5ΣSL‹ϋ4²¨,€h ¬ΔFEγχί3ΐ―‚ΩχΞrŒΟpΈQ}<Gκ£ S-+TKΗͺg—u ²»φxΜ„–ΆΟk 9τ½ϊšM›65π›`)”ΪηΌxΣM7ΐέ†-toΥΊΪΔγΖΑ5φc.0±έ†<; ƒ 2ω]½z #([χV‘ΚIχ-Bπκ’žmhŸΨβzΦΧ³‘>mŠ |=FΏl€υSuŸΕιL”EG’XΆ0Άϊ°zNΚΔ„’4Žχ ΅:Ί?As6„€…1AƒΪV˜rΚ’BΤͺ H&΄*₯)‡+»^™+ς™12Cό%MψnΦδ„4Θή%πη”ž9 ϊ@[βΨN&†!ωη.Dμ?θ§νiΒ*#"―‚ΗςχRα+ζρϋ‹ΆΐŸ}βΓGθ7܍‡œ¦hŸθ‰ Ξυχ‘ωΒθω€/‘ϊ3˜Πδc8k_b’6n7ωσR_‹ΨrNϋΗa€ŒžΓA›nTΟFφcdŽc €ΖŠΝš53ο Εi<θ pΰβϋ¨v_ŠΏͺϋczχCj_Δ$|PσŒΐmθ=γ7 υŽϊ}°ΗΌͺή19μ Œ²B”™`V6@ΰUnIΫσΪ6_‘Κ•+gμ`π;:–™λε·L4ƒΈ=q3KΎ Ϊ₯lΩΌyσ0ώόm„€YΩ>Ηu²ί6βΩαpΖFα΅1ΗΚIΚρ•v€ mώ*”ιu¦%gσ₯ζ/΅fΫ–έ~υ΅°Ž$ωo‹χaΕRυ¬Xά|nF=δ™~1i2ŽΌ9 %οΈ Y Q€g*Θ7999PŽ*ΏξT/s/X 7OΪΆFŸ άfμ7?\/½…υmšγBΆ½JjΫ^p!Όc?€³Ϊpάr#nμΨΡ8α¨ΝYχσ/t¨Ί•ί93κξ°ζΦ+πœFόΐσΉ_Ν‚oγ&ψκœ λ‚σ`5εί!•eΟϊΊv8@ηΤr7^χgO7m‘)²ΤšMΘϊy5CΣί€m>·‰ k-\ΈM7†‹οpuŸeͺvΦv9ιX9΄HeTmΈ@?ΥC΅+ωε]|ρΕΪΝ΄r²ΫAσε_όUdΰYΧeέΐΌ%Θψ„ ₯Ωj>gρww.mςsφ=œνκso"’ —’‡mh’ωιύG’κIƒ*©nΛζΘΛ&Oœ8Ρ( k›dυmdίsKΪ_υ9·$'?½²eRI,GΉΒφ-λ+ΓΓΆ!ͺε₯Έ‰ύά€}7ΦSύΩq΄Ύ+εBοep2ΐσˆ±e"&AΗ'{ήΡoi―œΓ©ΜΏy;£XuΕ’δƒ9ήΡΞm―Γ;ΣΎΚa7Κ,XΖ(gΏ ς‘{°%Β Ψ )ά7cT7ίμyΛ;o½+Ϋ_•«-kΈn#|lQ₯20‚HAϋΰ‘m©ΪˆΈΤ’ψvC4ξΎ9αΈqΪ±Γ‡8XφΐMY6SνœΞ')C+)’BύΙH8ŸŽφvŸRνq†•ΐ@ίφXε{Žƒ”lpΩWΥ%Ϋ©RuP ΨvԁΡrβΤuuύά’Ž·Ηzr(”³ˆRπΈ@χ₯z¬€s©ύ;6. ]§ΣΟ_mίO4V™Λϊ—Υ‘ U{ΩWβ½ψΑΘMΘ]BŚ6κցΕ~^AR~ΐ³”‹“¦Ξ€š3ηš ™ΪΙΓ¨&qW΅‚οΒσNŽΓλ€σϋ…pΞώŽΝƒ“κLhΚ1^δΨΠJs!έMΆ™mŸζ©Ωώω…θœd±©ΙΎ£’œkœŽD*9;.hP0ΘYnΪ‚ΤΙΣ½ζ7ΫΕ―,‚η1W·Ϊ\V$˜Ψ€ΞŸdƒΞtΊUςi!φŽŒΚؘ}ύLό±=ŠώάFτ‹DΕςf—\9vοεΊΐxΉΏΆ»k΄}θ^X§W |W€Μ[’ςωέ"ͺΝfη“žq‚μιμ}ΒΔύSޟˆX*;›1 ίεΜΛ.D±Ξtζ RΨ>α9μZ˜΅.Ϊ<ε#‚N μ+z+žΖqM<’οΎ ΦU|ω₯{Qα5DjμΖδjΦΕξ všr?’vζσœgΚξγΊθXPμρϋr_c‘Sl&η–œί(e^q1ŠίΗ{΅νσΚsE­ηϊ“’ρ$<σ°qΪ7_„ό²θh›AΨΩ™œF˜Ÿύ£Ύά—ΞͺΉ&{Ψˆψm«Ωμ;cΞWPM›ύ\ž³«#†ͺΠΦέύ‡³έMΞΘ0+7˜co½Έ±#e<σμ“xNη8ρω^Ρό%’σ7λ’gΛAΈVύ‰#?ύίμρOΠ^޲‰(ΩμLΔ4¬‚¨³+Βα Ϊzβ>Ϊ4Χ-8ίΎŽWεžΝΫΰz~΄Q•BJtχN”¦;ΑB· Ε~―ΈQ‹±έX³αΖό/–sοΎ$μ‘²³Qh μ\qΠMˆ€βx8ύwJ <ŸϊΟ*υγŸpδ›&£ΞΖUPΉΧ Ηez[_!bήσ½―au”λs2ζm B΄ίQ·"NοΣή„M₯ΪLΔN©R{ΰ8Z53 ΟiRΏ± .oŠέξπ/0ύΉ ξa―Β‘bڌh.τXm[ωσΐ…kίΊίρΙΪεΈ@‹ήν€Εk©' xΘ πΥ~RTrΏό&€RρΖ΄θΠήΐ©φ9τΧ@©„~=\Œ!Έ d~¨3¬FuΝφ/ϊ€Rβ{Λ*ΥΈΘαΒW›3ωά€Eώˆ`\Ηͺ΅ˆxn>]ώ‹IŒ#ΧΒαmBem±DUΞ’ΩP!Ϋηˆ!ψpΞμ0kΓu‘tXιφΨ£ό•zήΠ.έpdΤ8*8«UΥ,ζ —ς¦VΪ¨Tn*?ε[π­©ΣιήŽGΡ(~οΝΨιu;C!¬ƒ“€‚Pg7-pχνΫΧ@nΑϋκ³ΰ’Zk7!†‹οRΧΨ§…|[ωMa«vƒ7n4κp •m«j'ΰ S§Np―XKE³oQ²έ՘΅knΈαs/λΓάƒ‘―=(')Ώ Ά±“κMh9)_>ϊ¨˜/ >Ά“ ›`p\0˜‹€[ΒΛF€rxέΉηΓ»–‹νΕ‹Α 7U£Ύ™9Ӝ’]»vF Op @f=•ΉξΩΎo]_±T[4lΨ+W,T9ΩΟΪ\T°ηΪί‘όύOˆ\·)’8pO qΘͺWΕ[πmpΦq‹ΙIΰΩΎΉΰΏ|/ΫvΰθŠΥˆΨNhΪgBBQ;φf+ΚΣ)±v5ΔP Ξͺ] …ν³§₯;θ#ΫwEΚ βξ›’pmλ\€1εa₯ԟ JύΎ5*(λŠ‘<ΕΕΐSΎ’‡<‘§bX𭞴ΟΜ[ζSΟΒΙ|x8~‰Ž‹ι΄ͺ£ͺ·ΆνuΦYg€Έhn*RP7•Κέ½FΐΉw?a¨|φ$#•Άg€ύδΔ [–ί;ͺwlŊE~;Ωκκ6μ'‡`ΰ9―ςΛΥζ·liΰͺ`[&‡†Jl?gŸΙtΈΫ2^Ί΅Yj#ζ~Φ;+ϋ²gΒχ(MυΛ™ιΪ)„ΚΆΪP—Κip—‡±©7Qrΐ݈¨C°‰χ%›bΫόI£Η˜⏏}έΨ2Ωίϊ:+ΌŠ,SΐEn*ρΫ)τ™Κζ”ϋd%Šίy)"jW4ΟIΟΘ~¦jϋΑŽ2 ϋ­gm@3ΒόΎ•λ1―JΙ€=V}I υΕΡύζΎ€\Ώ–φΥΫ0»'θ$pv“:ǎYEεΥ o₯Bk₯`ύς%Ξe»%P]J’*CεCvΊΎ›!ΐkΧτCSΩ7%ϋ.θxJBŸuη 5uιK”ψψά~_g£Ζ*€—ž|f}RλΓQ³*"ιx$`ZΟWu€kΧΖω:ΟΊΟϊZN²νΆ€" ΄jΥ*Π¬²·Ϋ΅‚ΤCϋ™το_žν‹π$}0Ω€9ˆβχ^6 έοXNο’ Οf sΚlsλΎr₯?ΰa |ΩDQȞ(Ϊ…έgVτ‰`h1ΨQ 7₯ό‚ά€ή?υΡd_m;§ώ“ήΩΩυ-₯~.Ϋg§ΠΎ₯ޏ`ϋšo_‘€΅gσΞAf;|kΪœΘ‚ν†lβΉ_Μ€΅e+ά£‡£i«–Ζžθm½Ό“¦ςwΓ›A‡±™αΒ—μΐƒ]ξΓmχά°/ίu2&\Ηδ([ Ρ«§’ kΫnά‡p?††7pDs>pΩt4¦:r¨-SžΌN{ϋŸ|―ͺc+UPΟdΫjΚiά‡pμ帊εͺςPmΩΛ~ 咍rkTΉ²9ΪA}cΨ¨£θύ£xρΊ‘ύ]υι₯ς/η;ΤΞΘyΗ~+hΝ€zυκζΎ”·³Ύ˜Ηcγ―mΗTƒζ|¦κ“κ‰μ­ΖφXEP³Ζ/Ύψ’› FΆϋΰͺϋφν œ_JακοζΦΧΙ`Π Aζ\Ά}UYΖΩΞ£ΚΧτιΣmŠœυ]n© ν{~υ―%bυΚ;p± Tχ4ŽjAυΫΎΆ—j»Y΅ͺΪ:‡}ο<”}u_r°Q nς/ {ω€Ο˜‹hFΟΠXDIuζωPμΞ흈Ό5{πΧ‘£ˆ˜υœσ8Ε/ϋΠ`›aŸ-PΎκψ¦d γ# EFΓ§Θ¬ˆ‚œ}– !g‹ύ[₯"CΞΊχ_V!cΚ Ξ/μ°³ΛWΩ»@IDAT7Vε ±Ma‘]ε‡jς„/Œ³΄ν4κα\wAgKγXέSF¦…ήΟfaχΎ”,ξÈώQΗ?Κ$:§½ #!rž%ϋYy+•GΜ½·Γ’ϊφ_N‹~‹ΡjΏ+Ιi2ξ.‚Ε„–σMΏ¬†λOθϋU_?ξ1:}Vο‘Ην°}ιΐΙ΅9±GνΩK₯s>{φ; $Nuf«RΞϋݏp½©_I›Ž’1̏u"etBήχΈ?―iΡζΔήΟrm‘Η½²ΡοG`Ν…Η<Ϊ™ Žέ Λ0}π+TίήoΎΛlqJ<Θ~Nφσ>Άcφ'FΚ ,Έ[‘”υ€Uͺψq»™/’R‘ͺšcςT©€ΈΉΤ9/αΘμ\ nFΤIμσˆΩNcŒ”ή:;wΌΈ™?Lr:Hcτ4Y«1όiύdΟω)ίΡtΈ–SYκΟ›πψνf`7:–:Ο: e.9±ͺΒ‘˜{[Ψ?θƒ—Ξ@E›©όΌ 8BΫo§δL<•ϊ¦-_žν2 —ΐ?\aΰω.ππεΒ%.p „K \αψηK <σeΎbΈŠZΰYŠYމ_#λ›Ή~ά ‰m'œ£ΎŽ;ΫηR­¨rœgΓN|α γQ. ŸFθ9’ΒΙQΑu―ζδΠ°Ipξ;Œˆ΄$Tυ ‚‘Ί5ω—uNm$΄oKPζμύ}@ηω‹Œ §ΉAgAg)z~i&Φ©΄ΰ<ΏN 3Αoϋ“€θΜ³:†Ό Ηψ/8ΡιWPΤ5­‹šo>Λ…‡<&<ΉΙηΓCΟΐšΆ€«Κώ…@‹Ο5rΒkπ5 ž>T€ΘVδρT"8συΫ«œtvΏ7‘“‚œD&ψΣηQ€ͺ1y%kλNd }Γ€: £τ@ύ3σΪύ„ί{¦`Ο3„“ ;pΒΌΒΰ0μ|Β;E7 δΠBͺ@Fαtj–ΐΞ—¦ΒZΖEv¦’W6D±{/9.£ξ/!eβwζ{«ή(Ϋχ.d.ٌ―KƒK΅¦eQyΰMlΈH3h4"7ϋΟηju!J*μ7νHΚH†8]Ύήœ#λlͺ]υνn#)iHJyB‰Jn†žMθΕm\tΧͺ ‘ hώpθσπPύMš}΅¨°ΨRBD*X+ˆ6;ρ—E…ͺτΧίEΥ_cί|Ρ(’iΏ &ΛVαΥυΨ5j,MŽšΓέηΦ#άΣ% Κ%C!‘[)ΌφθQ£tHθvΎήώ‡Q'…―ΏωU’§lXoΆȘ‹Ω‘M™Α¨'r΅x4’λT†“κ@»žz8LQ(g#‚₯ώ+@ ό·'”§γT“OΟ95QξٞθςΐύGΠ+xLb«S 9«V­z x~αmx6ζΪ–˜S!νΫ·‡BS+τ΄ήcAΞ ].¬B… F‘Ψ._ύx§}T‚άl N°Δ9“gΐKe«,ΆΓ%οŠI‹~0εnΥώω'ΆoίnξQΰ…ΰΑ  ΄°sίύ(ΣsΦ9K•*e./`P*š‚,Ÿ»ιKΗϋ›Κ)T93ˆ³ΛIε#­[·υ9•·=n¬Nπ£I“&ζώt=ΥΑRœ³λŽξ]jΨ ο]œ}…ΦNˆŒ‚‡b>. GSiΛ†π€T.υ<θ¦šϊ]»ΆΉg(·ς ZNΑΟ#Ηg-΄ͺMšχ’Vo (aΩϋ¨Νφθ ΐχ„‘g€gϋ&ƒJQk˟HZΙwπΟ]¦ωΗvφu©Τ€~|Λƒ VΪΩS΅"λ³\jœΑŸͺ9ƒOkk>δ•LόΆ9Κ|uMλhtΊΩko>ώ/λ^yυ―Θ Σ€ΤΗ΄Y‘Ϋw³ΘgGε)wύ³ΰnRΕ/αb~=φ­Έ`·&ͺ¦ΉϊŽΰbΌ‡a±λ ‘α‘υnO:ΥΨ0A‚Nƒ>υ^("­¨) Ίκ$*ΣοΪνWωη;Ϋύ.*Δ6=Ξ–εχŽ r4iR‘μ†]>zί5¦ΌγŽ;όN΄g#GŽ4MCmώ(ΪόΜέ{ΰϋ} ¦ξέΘΣΪκϊς²ez―νς3Jυ„ 39ΎΪϋ"ΑΏΝϋQβΪσ± LJ €U²dI“OΫζί”XŽ*eyn-ͺœAα”Ξχέ°ω“_z^:]4»²ulYθ3]·j U!²Ž_u0τ™&Δ^§NΛΦ©L#ψ\ݝ#“iηZ6ΓS½Ÿ6ΡŒέšLgόD,€#Αε—_n`ΟUTΠgέ‚ΗBτΈ‘ψψθΣ֘ΆqεjΔ΄Ή Q%¨v>c~¦·u>)ΠΪ*ΨjƒλΥ«_jίη°ψΑPβS–/ w¨>Ήΐa9 )©O€Ύϊrz―f̘QΰΎ₯ΞUΤ>lΎƌcϊΒκλ ΎDͺχΉΑΡTXT†wάΤWήrsΰ­ϋ ηΣώΘγΌΎϋQhΐw_€²ήΡ[΄ΒFΛƒyTonά°Ο£ƒKεŠfŒΥ ~=z( D¬~jέ‘οΒϋΣJSρΏΝΖ£ϋεš'ν[oΨ›tξΰ¦Λ­˜qήY',§ŠΞHd=ωŒq4uvοŠώ1ΠίmwιυHψ“u§•!pX±+ϊžv_r/‘iΩ=)r8’ή‹f€ž iIΘ:Κ[νο–!Ί.ϋ—œ€HU—‚Αεΰ±Jp»"¨ZͺΣκ/Λζ©M‘M~ςΙ' p­λ—%ΌmΧ¦°²ι9Κ9Sφ[}E”΄oaΖjŒSNφyƒδΪΎD,hύ³RR³c:#ψb]vΊpͺΎδVφ3—.C’ΨΗtЁ$4 υΠη1RΫu»JΑΐσ‘5λα"|»Œν³ϊ―Jpk.Άν°8N5t»Λ_ϊνΨ΅Ξi³ΰdΎ5vN'­L7²φ₯ Έ^>s/ϋΞ‚Οφ ,zφϊJ3Ρμσyι€›H¨Τ(9—H΄ΏΞ/ϋƎ‹‘Αθφ8]yΨ7οx@%ς’$•kΔ)ˆWT(90IΤ#φφa5c½ΟξŸ›<3zΞΒΡd'N+λ‘s4’°ΑqkΔτΉpM™~lžXNΤwt„οR޳r9Wπyσϋμ`]J{sœν;‡ΒvWΑΊαΚόΗtIσ16›Λψ8ή‹νD³‚@‘Σόςη3αfΤ#yΏcy*U β 6—Ztβw›ωœΠCsόΟχ"•‘QŒB77xͺVBχ%¬΅»Ν₯mŒΔ;›w΄{ΖΟH7Λ|oΥ9eάcΒExu&,ΫΑΚ%QyΘΝ¦HρN@™&λά³Q\0g­/ηΐ5‘ =LήΚ§!qΐ£~E.”₯Ž|+`wΌ ΗΪ―ΣJΰbΎw–9™TσΙδ’{q*οDr1άΘlπTΐF^Ι±z=άoƒ“‹™Q-/Α7erΐecΩΞ€Όϋ1β.5 Z>…Ζνr;’[_–CΝL‹ο‚[½\άΤΒλ7Λ~6η3 Οί΁;m²Βυ2iq^Jhˆ•Χe„*φŠŒ₯Ήˆε2ϋX\MX?·<ΤΝ(π N˜2a"²Φύ «A]³-φ 6Θ€’pκΨO±s?JŽŒο7¬ΕWpqŒIj Ο>ϋ¬†uŒ­hlςFυiAylνr‹ύ}Rߞ€„–Ν1ieLs²_RcνΥ«—9wπ&³Uό΄MpI-‚ξN.ώjA4n`Oτχ>€ή¬λK 08ι;Α_|±Ή† Œ₯K—B‹  bŸΚT‘·£(©.TΩ[•¦ŒE™±ΟT”²6oΕ‘‰_’8΄€Ϊ«cσ†–SŸ• „ηΕώ¬<͝;Χ@l‚w‚λΐ ^` $ (ΊχφΫ‘ϊτsp{ P­M ‘ύω„ΰτ98 ΈΠ§ρ§@Rφ/h9Ÿλ„Ÿ·ν–­EΑΏ.Ζ†&ΟYΥ±€X$nάΗ)‚cώη“—¬€{Μ‡&ЉB Ψπ•χΓ'Αχ―ΕuυϋεπW½*,ώ„F8aΑπΧΣ±bί5ηB―ξρ2ƒω§―ΉŸ6gbη.&0A‚šο»η ‚U²'ΗАy bάί‘«7xΓΌ·™­š£ά£]L˜ψ‘C‡pUͺΑ0œή]»v»’ό”:λ‹ο‘Ε±’U<ή,λϋΜ«.AΙΞ·εΙ€- R`Ον}ώω獃‰ΆΒΌ‚–€Μ(ψTI0ήUW]…ξέ»”hͺ6!XΑW“ΎFΜΜο mΛ‚g£|ϊύ|μxπ-(’‰Ω«Όv&Μ›~¬XΆ εΛσΩrlQ¦8ΥKw#“jνn: ύπ Κ>ΧσΨζΫ²wvFΫΦf_tœ}1ΐ_9lٞ$ #Τx¦οƒ›ŽKv }¦²ηΧ΄i[α™½φγ+ΙΙΙ¦L)*}φΩgθxζΩπˆntb›λ€ƒOJύk ψε`;σΖ μ»¨‘Žεό!§•5σζ j‡hŽ«¦$4uΝV"­XΆ5ρ›Δ›σ3|?­0Χ‹$4²λŽΆgΑ•W4Ή μŸλ³Vݐ•= '(Nχ%%ρϋ‘+ ²Έ_¨Ίo—“κž»aƒ₯μΤ&«ΝΘ€zΩ2[5ά|ρW~Iν‘ήu;aή⟠UTυNF²h—2ή£#τ~Ϊ(&+*q½<BžŒλόΞ!H*σω·όŸiL§pΠΆͺIοk0 ͺ:jΤXe'ΥW9cيρ‚Xνzkοs’ΏΑjΌ‚Z₯>o+ϋκ}“M°UΧs;έ·΄όŠ=ΨJϊΆέ(W¬$ΞΏΨί Ύo•‰Ϊ½£VF<Tqπ œt4Šjq1†g;*―Fz'ΔJ‡³ωt²ΨŸϋj:fδf7VSΉ8ς†ΰ‘cJΜkƒρUςώΆ¬|\·ΈΤΨiΩ²ΊΨ,^…θ§ξΓδ3Šε_N|NΎ»»cΗ •¦CTΝςp­ίЍΑƒύEKΫ5j8ζΟ9.x_ήη6DΧ―pβ³HnZίώh":\‰Ž;'Β@ω)@ΫΟM6̎°£±Jp]QΉ&%%ηEΩu%Ω 9‹Μ›7/9Fγ=σά@ΪPεεŸ~ϊΙ8Ϊ}Ž‚Ž ¦M›fϊ ΉΥγάΪχΔΔD3ΖΆ‚ΦΏζ₯ΚαπΧ³P¬λέ'V[΅θM|N„ εΨš€+ηΠ-lσ/μΡέlήυ­ˆa]S„›Ωμ<”ΌφJΏŠ΄ωφ―rώϊΗiίΒAΈ:8εφl΄]ε#‡<ί‘dQεTP³·,!{0’!gψ,Ξ&Rα™03σ>NVΚ(Ζ1¦£i}:ω&_&ό<’τΩ׈e?]ύs“XΗέ ΟA"£²gΔόΟrάAη”OΏδxIΰyH…;Ž ³O svΉw`φ{φ½Ÿσ =Á§»ρ|³επ~φ9αίT³‡Τ„£oΌΎkZ³ŒΞλ4ϋžσ ©c?F4#ΩΙ}n]BΕw—œ0±“4a βf/0ŽŒSΈ.<‰χίΙ:[ΘgΑ 9ΦQαxτδάIrDlgύ•βxτΒ:ηΜfΙlδ{1β D(σ”qys”x€yΚ£άΉ0ύYͺ%ο=`wŸS Ow?n ¦zΆιΓDΡαW)λμšHθΝwŠNJ΄tάίη„7ΥΗγιΌ$ΊV΅ΐζxŸI£>@LΆ‹»i’KžyϋAz&δXΧ |Ι΅Œ,?μ|N5xjψηϋ@υδcs‡ιI›JΨ9’*Ρακ8φqz…Ω SψΘΪrξU;pdΡoπνς δ8 ##κUDΉKλ!ϊœŠdΟqξΟ[πΰ›CΝ\Φƒ>hΔ rœ7όOΈΒ%π·—@xώΫ‹8|p „K \α—@ΈώνΟφ_?\/S xΦbΠτyp}6Ρλ7ƒny;>NΊ©&wίν•₯ώ­δKJΗώ`ν9 'cJ?~=’Ο―YΈμΨͺSΏυ‡Ν>ڝXiϋΉ Ο Ρ„œ6ΰfDV/WΈsaοΌ@η,*:k1κUtώm Ό]Ÿ2*€Z€Wςq"ƒŸ‚Υ±mξ.η!NΚήΈhΟ%«\ D|A΅ŸΌ&]s~μΏ5ΏΓ{χ“„οΈΰΝd#`σφ0Xs>ΏΔΙζτaTZύs·Ω3“a‹S΅4―Ig³ΣόŸ‘ρζ^Θ‚ο΄T¨xŒj_ES›π1όεξ>Ÿƒt@dΏΏžεW,ανE+0π\΄rϋWŽ’έΩ5l |Ώξ1—/}[s$άΠψΈ¬dΝYδwΎ1ί[΅+‘Μΐ{ΰωγφ>χW’Ό λ]Μ=—ˆΗQ‚Έ1„υ”:m6 Χ"βOΒ½L±χ܌θΧΰύχίΟQNR—“ͺ΄ž Ej©ί ¬ cΥϊ^Š…ΥͺU3ωΪgp15kΦ4ͺ„φχR’νqΟ½pQωνΒl…A{›ώͺ}σΝ7ζήυΏž‡ Κ₯Kΐ#}o§όΚΙή/ψ―”X3σδšγ€`kΪOΛ±ƒ`svfι‘}ΈgΩw(ƒ½ω~KUύƒ’'•“ζ9vΑRΓτρ G0Όw€ΤεmΠ"€0³Έ-ΊD#‚t£Μ›Ωγνρ)˜ϋ£s­jn ξW8ζaοAd<9 ‘;¨’̐ΰΎς₯ P|y£H…w£ώLΕΏ’„ρ>_πgΗμ…&d΄Ύ+φώKxtπ@cŒ3U—mψHΫrΏGΛjMύΎλ Θ E2gΆ³ ϋόz(ώTWσ½ŽUΚΛ–ι•€ βωχφ>Ρϋ ΘTφΘVδ—b½”"•β κΛxΔ[±"Ή™dσο>«2‡ΏfώΪO~0ΆΐΆLsζΜΙΩF΄½Ώξ@\έͺΨΎ{ηqmΔ9ŽbHξχœž,D$:ie ώήˆiίζ€Ψ²JINτϊΰεB=S’΄–†cΧ>|–uδΈ(²c;vμ 2έΓp-Ϋ@π„jvt₯Θ›Ϋ"φΕ^ψqΕrσ|Μ—ό%¨°ΝoΫ‘Αˆ»»ίcΪ(mϋόσΟq}T1dς]Όψϊkϊ₯ Αsޚ„¬[ΰc(ρΈO_ΗeT‘V½³Ÿ΅κ€]oςzΦͺ·jcΤ†„Ά+S…ϋΆΫn3œ Ώ΄ξΫε€:h«—ͺŸžžn d΅ŸJj‡σT eΎ@ρΐ6ͺƒ—š¨#5 R6^ͺ”ϊήiώςs@χΐΚE˜pϊ4Ή΅οˆβ΄MΓΦDήs‘σ$82σΣoΧσQ½2ώގ@³s‹|ΪδG’‘:τ5!)Ζ=Ρ9EΛαfUΟυNͺΎ)ƒΏvv‘vλΦΝτ's«ηφ~ΉύUέVΗ[₯Pk ΘμυΩ~‡μγσκ[JE_οŒύξΪϋλο‰lΎŽQSΞ|J²­Λԁ£a%\Β~΅­πlΏ›f'ώ*Θ;ΊŽžMtHrξspœβΉζΚΌνFΣ αν=Nφέ·ή{[ OflP’ ί]tυΥ[VχΉχ¨½ qΔc_M(P|δ#½°γΒ§ ¨SΦ…r%ΩΟ‹eΏŸΆΣΩα:Ό—K·W3ΰ›O%£ΦΦπΡ‘$ϊΓΧ°=-Υτ³UNJr–8p``œcΎδ/ΑΘKt·«Hω_vΤN’ž«Ÿ¬ˆ/‘~ΪOk3κλg―ϊΊukγ¨ˆr°²Η[φ>lάΈ1G?Ε>VCΫχN:φΥυ [r»]G•²ϋΗ₯]{α$π™Βh#QΫ„“ vΪH₯άkΟ5ξo7¬σι:BΞ„‘Ofr.ZβwψΗJφΉCΗvφχ1΄ŠΐζήΟωζ” 3ꍍ‡εf‹γG͍Zlε cCΞ‰Œόΰ$ZhΘYe4–T‚Ξь€"§Y%E_‰½ͺ%¬+/+ςœ#ΨV&JEηK€ϊΗG.‰Ή‘±―mδΫίg%.Ϋ: Υ#v£j₯,s|慍‘pοt’(fς]δ_TNϊh2bΏ§€BΘ0Ηp:~£v|OλΨψ2G³)gJKuγΨGιΤ₯±JaAξΤ1γ ]―3G:θ¬αβΨDΠt‘vBΞq=*D}tό$ΔΟœΟ Ρ)Œs>qOtƒUο¬ΌsτσjΈ^{ίΉ6(ϊΆ-sߟγ΅Μa―ωUΐΩΛhs1JtΉ-ΗΎIοNDμ·?˜ο|T~ŽόΔ T₯³ςμλTΖήbΖ-™7΄DΙΫΫε8_π?Φ5Θ5ŽνϋKΕK°Ωšπ΅™ί‚ΧοΩgΐGηώΨα}e•όΚϋˆ¦Σ‹’ϋ’σPόΞΑ+±ή§aτ΄_ΩώpΎ'n0…HjW3›ΒΏN^ x§Α΅ςO^΄σ‘Ή8zGE ’Ny”½†ΡΞ©Gtδ /.9ηSxcΈώΆΟ[Ρ†O.p „K \α—ΐ©RaΰωTyα|„K 8€gkώΈ&|‰θUλΝ‚’kά ΞAάœθj}‰ύυΏώWαχ=Kuάί9IΓΙ=΄mˆŠw·Ξ?_”§H™< ΡTυupRΥ$NτΊ6»ΨΧ…ϟ±Πgœ΅ηφ˜HœΦΚ»gϊ!€ό/PΈ= θ<}6œσ8 €θμΩΐ_NŠώ“ 3)!8»s2ςϋŸjή>ͺuΰ¦λ`=Χ»p7–Ϋήs„―k?.g—;'‹ά τ§ΒD!“sδ»πΌρ1'W΅ ΰ@Δωuαϋ” κPq04wζp†σKαB:'Scλ\p<πœ₯£ o3σ•§ΖιTk}Ψ4οTΐΟZ<ΩΥg"¬CiΜo*Ί) ;°μNΥέΒΐσ©ϊdrΟ—TšwϊΎΝΜeο»q­λ·³gώj$½9ΥFΦ¨€Cξ…gημ2…0 ⨆RiΨ-ˆ(Λπ΅ί-FζXΆ„ΌΛ!qH.όΡQδTθyΓ,ξjQ4Άη}pd; 96oCζ³―ΒΙΕΘ¨χF’Ό΅ψnΓJϋ?™‚„―ζ˜E£˜[Γ—BΟφ Emί‰―Χ― (;~όxάsα±K—.όΆA][y’β³lžζΝ›Ν=”Φσ0PuΩ²Έ€χjƒ$ΚΏBu'FD2 v4ψτdΉ( 24hPΚΤwv9U\YζZNy…μ–ŠήoΌaŽ+θ―F%ΛaΥΡ(mmξ4‡y«UF‘6ϊŸ£λψu2νΒ!εCΦΏτk[’Aμή‡TϊVQ vϋnDX±„ಡU ½gTΒΟΙΥρα²:p9cpzE†=Kšο|AaŒ΄―"‚ΧΣ΅άuͺΓA»Ή™}bBWΑIφΤΓ…πΔζMόN˜tΆψ«)eΤ{ˆY΄ Η“ωrƒαržλŸQ Ι}_FΔξύ&V\ ϋ»~Έ$‹ΚlΕ :‚6'/[fΏ£²+ΑπQAήٍΑT»Τ`ΦΥ«W›!+xΦ»cC©vyΙ|λΨ9ξ{>:•Ζάr’―Ώ ?ρΔqΆμDο¨Δ“/Ίδβ΅rx‰}ξSΈΎY„ˆΣvόϊfHd[Ήβ$Ϊ²·FŽΖύ{›{(π3­Q©½ŸCά’eˆ$€ΏσυηΠ“JΕΊfϞmŸ_όƒqΘ8ϋj:[NF­©I2ιuμ„ΧΨΉqγΖφ—½σšλ°χ­ρ(E5ρK[ϊαε‡~―Šτλ:Στ-4»ςŠ$xΞϋ_ΐ³kίŽ‘cίΚω¬©>]₯r ήΨ}ˆάž΅κ„Ϊ˜ δpXQζφ5i$%‘ ε UΪ0—_~‰:ξYυς'*—:fΞdKΌiffΑΝΩ₯¦8¦ –(ƒΥI‡Πχ¬FθY«^ΰ0Ω3ΑRFβ-•ϊ’¨Δ+―Gί₯cΫ’ΥΝ[Ο·Ϋ‹l'ΆΐE—?0ΊQΚKΗ’šxhσr O€λTJωυΝ”ΧΏ<ŸΥΉsλ[ͺ€€Θ‘}KυΗμΘ$Ϊ§ 6_6ό’K.1φUvγε‘/ ύχ]T3bŽž΅o°ΝΟοU4—ΰύ•§όμFc:„ψjm`kυ…•§ΡŒΌβyψ)x_yΠΖΩy:χ«YπΡ±!²Wά?ϊ•œ}pΞ©Νί•žš£œδ(Qꑏ½v)b‘ŠΘλZ"vΜ@¬Ψψ[ύέƜjςτތ9|‡¨dMg‰¨Ζ ³Q=3ΖRΏΤN‚Ρ_¦ ½ΥωaŽλJΐ’z/P”+‹¨7 υΥWaώόωPΏ[Ž!Α€¬ΖBΊ_Ei‘# Ζ)rξ«FgAΩ|Ϋ‰PŠΟΊՍΰ”P-h:X₯Yγ΅’Ž t­Πφ]ύtεΫNڞ[Ÿ£Rφ©hCηpό:VΙ«ώβ‹/š>½}ξ‚ό­]Ό$6qΜ₯tdί>DSyϊ€%Ξ­jŽΥ9k.‡η8mπs΄7Δ°}΄2αήGIΞΧ98$τhΌμˆβ<-NΪ:_IŽωιΤ$ΘΩSσt$\~aΡ!g‰9'ώΕtDJu=;ω(¨{ΓUU€A•Ϋ"%ΞŸQΡy>ααlΠΩKuδΨΫn€8Dα@gs}Ξ%dΎω\kw`ϋHFώ\gŸ… Fή«_Wΰuό°™}E)”,:ΕάEη’KόγMσeΏΤ—HCEβεkύ{°Μ’okGPΌE‘€nϋτ‹dŽ›(7§ΫΕΊe‡₯dΣεΞQπΩδ—8Jq "9χ¬δ9³βŸ"$Ξώyς›γΛΘ&Jχ‹}ϊ‘ΌEA~YCgυw’΅ΙΧχs<4ŸE…εΤc΅f£9Ÿ§•ŸϋtΟ©όlΆdb~ӍβxκΚ΄Γ±=οΜYοfΆf,@ζ‡_;kF»Ψ™ ΈŽΐΗςΒ[§|eJ nDΐX:OΨ™'M~‘ͺΟΏπς݊νυ=²ƒξΕΎhψοI-Λν{ύn@'-έ+Ι?n \„π³σΜΣPζ’ssnUΞΙΕ6ΩΒΐ³]αΏαψwJ <;εΎjΈΒ%.p „K \` „η°°Γ— —ΐ_, xfˆΆt*LΖόΌ& Dfn…\ξ³j"ϊ¦kαhΧζ”TοQ>-ΒW{_ωб€ύ“ˆhZog& s<N&;¨Ξϊε †zΛήWΗS•ΞEEŠβΌO”.•γΓ.ον)Υ¦yN”νŐà ΟΘ±Ο_ωΗ‘œη΄™}T.ŽjrvΰrR<ρΆ'„άΰδM:ΚϋƒOΉΰμ9)ΞjJψm.•*Έv‘>RΉ±+Υ=ƒQŒ&Μα«\Σή₯JjΉB’ƒyΈΪuCΤΖνζ8'α"Ÿ~Φ9•,ς<ι· αζ}… .jΕφ{  Raž‰‹»ΙΟΏ‰¨u›Ν.YηΥEρž€ Ÿ%ΨΉο§°€ϊaηώTv]Ύ(§ s •@x>…F³’ ώ]}?ƒ΅ƒ‹šLεΉ±Υ>ξhΟ’υHMΐY‹’‚žu‚—οοή‘_Pω)Žβ±¨8ψ&DT, kωzdŒ|Ο¨άΐΑΒAψΩ‘Π¬ρνηb«qξ&LΨφ2s-mΛxv’ϊυΐ…mZ˜Wΰ­ S³ΰΝ0‘..VΕpqrF™Ψ΄\…gϋf΄°-HUκcV7¬Y ǐ‘tφΰΒΨι•μέ΅,3ΑΆ§ΊΆο€,^Α š:§ΐ ©’Ω ϊ}°!c-¨;Άο@ΔΈOΰŒΓΚk[EcνjB\οχK©ΛΕ²sh“Ήh¦δΌσ`¨έ>„ΜΨI@Αˆ#P<Ν…£ύ^F1ͺ]έωn%Θ«€|nΨ°Α¨ 8‘šς$˜Cε+€Yχ+ΐΓ³y’ίύ ‘Œrs}kμΏβΒ@mdΑB~PM0D k Š(χυld͞oς?φeΌ7ν+£2h—“ΤΡͺT©bΆ z‘"²ΓYJΡ”‘—‰Ύ}ϋΒVΛœ&Θ\πΆ–C‡εZNRz-ΆxRΏš‰x†v΄iU—tοΊοΰERΉ:t¨)'Υ3˜ΆΒ³ ?=s[}NΠΠΚ•+Ο†ΎewŠ~ξwΘ$4θeω:ώ·ΨG£q#A8)XΫ@έΩ0₯ΚaΩ²e(_ΎΌ³UmτNHΡ.'•mn©(ΐsc–α —Εbb±υͺ»Μϋ|n/a9ΑΟ ό A0ƒIαΣF½K§Η_ΝέyjU3‘“΅Ψž#mΫ ,ϊιk₯JΆ dφοBRrŠ+“ͺ`o\e€W<7υ¨Ž Y§YG ”ψ^¦}έΌ‡Ϊί¨u½ƒ^\°_σ2/‡σHq§ςq±]!ŸK^z!,.κΛq‘Π‰v!mΘ«(ΩρZτ7Φ(OΚBŠ‹ΑΞyΎϋ„6SFΌMΈΰw₯©–/gB©ΑΕ<|7RΥΙυ•-+Q’„ΉF¨έ(Θϋ 'WJ‚J₯°, I0•ΐ³1cΖΰYΒgr<Πχ²cΑ@›‹}:„ξl›έF8Όf=ŠέΡΡ„Ο.lž~]»―́ϋή qΕWδΫFΘF[]ιτ²eŠ|Gλœ‘o9ι^u²E±e֊ώκ™6ψlœ₯ΨΆς̘ƒ¨N·!²σ°xέƒ)ΙΖΛ6)ΙφΥ_ΆΦΥβ}Φ*'ΥY΅*+ΩTύ―ΟŸ[΅j₯Σ{όΥW_A κLpέW(j„ƒΗ;#¬€zΪngύF‰χbναΈλ»ŽI:οΛ/Ώlκ‘‹Ξ¦ž%+τUž©(ΐs£:gcΥo0°γmx¨zDΙ6€Κ- ςrάη9£2Š7δ8ΊΗφu–`T T:ΐFnΩα?5ΛΠέ΄>ŠίΟ1(ΫΆ/ɚϊ\ŸL5ύb/‘΄:ŸJ!ηCžεPqΦYg™ϊn?£`›¦~ˆΤˆƒϋwφ~‘ΥηQ”‘υGμwΛξ[κ½Σ’ϊ€š§―^έ―^«ΎεC=pL)hHύα‚Ϊ έ—}ozχUΉ½£zοCσZP»!‡Ρ΄wΝ“gσX/½†¬‘}‘Ιφ±ΈΖΓ^‚οw|‹³mμhuIŽrΊΗS:Ρ½Βα;―Ν΅P·Δ«Ω₯8nΣ؍QG·ΝΗ—3gδpΒИ@Ξ‘ΧΠώe=ΐω φƒ‚“£ή99Ζ*²ρΨρν?H(š}ΑΣ8Ύ»α\œν°’g''L9€¨}U= v"T€Υ›ΰΎ„žΗ7ή諃ϋδͺ/j—CΗR‹VRD“ΌΖφ½θ|9Ζttτ ΞCπ» {Π}–ύšνχμΘ:»Κ<Χο°έ:Q·―U$ΰ™*ε›6m2§8LEqεη―&#l8gΟγ<λ‚γžkpωΪΧ‰vRόP*²&ΑA°ΩTΘXΪ :ˆvΞW,Ά₯6δqaC@Ϋη(Τ_9ψDΞόzœ‡όσ:ή[½ β(ΐ& Ν|A‘ΞiοΜs'Oϊ ±Œ¬δ̝ @}k{ψσ •AΪ»#vωϋΔƒwEUΒhίνΨ^¬6ߟ4tΊ₯x‘N™cηM[Ao<"Y†IŽJ±ν―†uέ|wύs9φωΗ1χΈ?ώ" ^νntμaώΪ±ο FŽe”CŽu”ψ;¬,φ—ψ™Ώ²θ@ί‡ͺΓθ388fΙxω-Ώš9Λ\6ηΊJIσAiΓF1ŠΕ\˜²¨”œΨη£š|ά!μ»%ΏΝgςύ³IͺΝ±ύ¨hH'₯~%ΰ„ιjqŠK)ΫάL`―ΐ‹ύ›L:θ;ΝA*ΤρύΑ‰Ί,‚Ξ™Ση›γεΖΑ…Q‘6°3ΛΛ{f}1†φƒ°fΏ°s³F(ώxηΐυ“ήζšΕ”b»ί\Φ4°ννƒΪU;ΕμοώΝΏY[ΐ½j՟sξ/ݝ3;•™³~%œvY=DeGA Ο9‹(ό_ΈώιΟt‰‡―.p „K \α—ΐ?^aΰω/ςπΓ%Pδψ'g'³Ζ~ŒθEΛ_:–gNΚgqΡ/ΊέpάL˜6;Dυ±NέO{ΖΟfPuI“’gV@ωΎ7ΓAejŽω?!sΪ˜·μ[πV€ψvœHm~ή  ίaBmύ&œwp1¦tkΣ΄Φ_*:ΓΙνοζPtφ2¬1¨:¬θόO€Ξ֌οαθσ,C˜ƒG@'ρw?C„½ΙΖQ¦\OΪψΖΗΫ“¬%όΚ禍±Ξ(‡2C:ΓΗ»ϋ}₯αάςύΪ#ͺš(g ₯‰μTχ&U~Ά™Β2Μ]ό š΄O‘΄ΑxΑ@FR½ΠηΈ|^³―ΒΈ{ ¬Ξt5’”™j!Ό Iϋ…ΟQ=ΝΥ(/"o₯CΫ `Αϋ ²qΉΙί ‹ΚKι­.Fρ{n1 ‘k~h‘F€”€,ΑSe¨¦0ά '.uΗάςKzχ‘ήO›{;›ιΘh|₯}ΈLΝ(‹ηv–Še¨ΨΞΨtι5bέ«€1f 40 φ"ΔΕ2Ό€ΐŸ­ώœ_ΉhA_ŠΗJΊ-ώ+Ja¦΄O§!ώΙϋP³ΞY°k›ΆpsQ‚™tά žΉho‡586aΒΈ6nFκ䩈]Ήt,[ία*£–,Θ@pρΆmیJœΞ/8{ώΟ§γλYώzΠλ‘X4ͺ›nΆ 2·!l=ύo«6λX»œΦ―#Ÿp!xΚ ?œJεΡΈ]Y'«"‚€–+D9Lΰτ8‚4<π@.ΆgεQP‚ž»]VΊ–ΰσΟ?ίδAεͺ|4mΪ4οw"όζ&$’ϊνD&Oώ ή™χ­| πόιgx쩞ΐΞ”Οi'A#RχΣ9νrΚ ˆ8zτ¨ έm[ΏΚ³”ΓUίχRu+E A…Τ z½§—GόeT~nΖΊCΐφ.ρ9Ήί™`μ•μbΊwςƒΉέ(λ(8Άώc(ξτuŒ*˜½ΣFNΠE‚Q­*‘όj娴ZΙΐ†%ζΰη<Α -ζSI4zΩ:sε,ͺβ{Ί«ί^κ*ΔZ«7 ύ'*ο >δ5ƒ“ FΟ™Υ‘xQ€π¨–WΰDE4#’Lu'E}9ȁ"xQ:Tα9Tήϊr\Ÿ~γo3X±Χ\†?[61Žv>μw4‡-γFΥνγμF>οƒ +٘‚€pίκυ,Λ=˜·qj°m~ΩθΨgaστλšu7ΎB©.­W―jώmΔςΘτ.Κ<Σ ›ΜζfΛBΛIχ*[€g!{ pi[Νωψ‰Ÿδ°e3gΞΜυ™:8^tn؈­΄οgS]Si-ƒͺ3|ύ―QlC+Oœ‰¬Χψnd·ΛW^Œ¬7’ρyν3ΰb›«ΰιΡ韼…+Ϊ΄1ΰ˜Ξ%»υΑΰͺ6W"sβTd~φ UοJ’XίξxbΤHcϋ΄_~IΧΠΉ σ¬?ΰCμ£ZjRRͺP5?ŠυΛ$P©iˆε˜/fΫ@υΟYŒ>pΗw₯ΨΉ_| χ#}Q‘œ„…w1όΈTH•d›Οϋ)bοΏΣΨhΪ³ΏΫΛY©<›°€‘/ΓΗ±΄U,>Ξ1X•¨RΩόdtΠw;’ŽEϋω+OΰΆϊNΆr«ΰ!k3˜V―C$η>ŒƒF6όzN_Bœ±K‰t$ΆͺU!]υ„°”΅t52>˜ΜΉ…μ±3Ϋј›ΪΒqυ₯Es΄ΝΠαΥΏ!“~ \g±OKpΙA§ΰS%Ι&hl¦>α΄iΣΠ†οc°*­@SμοΒhoΏύvΠ4―ϋP;`χoL_u. ”ƒϊ‘}Kϋœ:‡ϊΖΆƒ‰€gΫ1%ΠW<‘Νί°ύUEN Iv_QωX@}t;Ωοh… Μ}Ψνœς―ό©OU΅jΥγ έ—ΚoμΨ±9 Ψ~ύϊ*Oέn½σ^μKσYyf| λWV1ΪD²ιΈή~5GΌ[ΉΚpμڍW]°?Ί@[ZϋLΈξθOvD.ΛβΩy ;’χ€ώŒk'EιΤ©’ζ.FΖύύ™ Ξ!F³³εDdΫΏ8:_~4 zΩά“«LŸAθξφ)ΜΉS_Žσι`€>Έ"Έ΄?λld}2Ω¨Cγ΄²ˆΎ΅¦"²δh{y΅]+)Β‹’Ϊ'9Χ'υΙΥΏz΄’ΖΥͺU ΤeΫιGΫƒΗ6ΰ:¦“ΊsYFa±Ÿ³ΞΪΎός«H~ϊYΔ=p'p~“Ο‚φΑ₯~:S˜€H1*₯Ώ <οΩ‹ˆιίΒΉˆ΄!ύΒΰr5cί,*= žύΜoϋ}^vXΩoπκΕl‹|₯¨tN5g9λyjUA’”œ/hPtΘΩάΰQ$MšΚ¨tό±Ϋ#Φwƒ:(vσυTς­n²V€_΄ΕI“ΏF<Η/κΣ(yι°Λ(ΦeΝςξoηu1:9EL ΧΤY e™½|‹ˆΉϋfψ.ΎοOLΖΜοΜχ=ξΒEMXx…I½Sίp΄Τ‘ξΖυ‘¨zW>;‘δŒΧήEδŽ=ζͺrΎ‰{€ ¬ϊu “ Ύ¬+Žitδ™<=Po,Ϊ€ˆŒ4v>£θŽΧΑwcΫc㐼’ρΛ;Ÿΰ\k&_½h7jUΛλ`ύοpΏψ–ΏNΠΎΖh-ζΖ«4Ρpό1œŸNv4"9ί€€(•‰OuΛ‘Ϊl±l\ΓFΓ‘Μ9gζ=Άϋέ°.izόΉμoΦΞώ6aΎtΤO`δ+―g 1ξk;vfΥ―E˜ŠYψ m9ί‘h'ΌΥ8Ύc”›˜Α=aΥφΧιδΧ>DτΛΝέ!°3ζr½fμD³-σͺKP²sΑΖ3vφξΏkΘ–'υ1dS‚miπφά>˞λΗΆE:§ΪΩλΰώInΗj_{ήMŽ.y₯“•WϋόY›φcό΅°~Ϋ #ͺ'‰>8κ”GΏ%Ÿ`ςτ―ρΰƒβ₯—^ ή%ό9\αψJ <…ΎDΈΒ%.p „K \n „η·όΓW—@aJΰοžœP΄&LEΦτΉT ΰ€  …μ€P―‘\8pάٞjyώ£Ι½μ~e*,BΓΞ1ˆ­ΨuλΑ*\δΡdr’T34I‘wοBͺ{8ΑΓIΗ²]ƒθf΅ zx`ΏS tvNρ>Π ‘TΥ0ͺΛΜ©“ϋŽ~Γwϋ |ωΦ³½Ÿ Κ.}cΩykTFδ7ο0Œ_‰BŸΦρΘ`x§Ν3©‚αœ uΌ=¬`η‘‚κ0ͺ«f+‡d΄h†έξ>ρ„υΓHλχ UΉθΖ‰ΘΈGξblnbSΑ.šs/ΑΞ;ϋ} μK1τOωg¨~'ƒΓι’Βΐσχ1G)=οO1Ž-§=}’x Iz~•ΰ(8¬ΣΛ ΜP.ͺy|zΆ*π½Ž:»Ϋ‹H8N…eUHΠ^ ڐ p<6iτ8Δό΄Κœέsf5$>σ Αh‚…„€%u2³(>ξCdQEΜV †3€nόζ3ύαT]³jHN7xΑΫ£„%0δ%DRς`ŠιMe †qV>€ΰ;Ύ?|σ' ί|€ο³TΉίhφυq?ξιGΰaίA°―ς%ε1vR››J’Ί$cϊ €G‹₯«”‚ÁΏϋξ»θ\<N bΆ ; Π^$@“ΉκKΤ#°+θBIΚgνnΈžƒ‡ΰqΚυέx^Όx±N~όρG³Ψ€pΝ‘‹Vϊ_ tPιŸΟD¬"_΄n'Ÿ[~ΐsπ32eJΚs$1ΚΓ/«°₯vUnθΉl ˜3kφlš)όυΪ΅λqO©pέ;EAΡs΅HV²€ή΄!luλΦΝYNνΪ™4z:§“0«ΪΟ%ρ8ΚcjžQ 5­@d₯ςTRjfέ΄7yςd“SWa«¬‚έώ_*ΠΑΐ³ΚΙ€KέξK/5°_¨’α£N|φν,s SΧΗŒώ/<¨ϋS&M†;*Τs†Kν<¨žž¬$ ϋϊλ―χΟ{χ;­Λ ¬ϊΙί-B”ΰg.'o₯Σ?_GSΒ»•Y†#Ι!U°αo ‚ύD%—bP…+.6;”Šεvφϋš{珿bγw‡P2y/₯ψpFeM+sv²ΈxλeΉΙώ”`˜y«:ms,πOšLΎsJž:5Ψοα€ΓAφi p‡uΏ#ωΗ₯|N›ύv7°ΡΑGΥ3χΩ5QBΠAθΉ½3fΜΐw)@2 ψ³f#©χPDmَψFαŠ›o Ψ|Y‘πpΎy’]ΩΊm[ΐ– xŽ%lΆ3ιi#*ΗΔΓ™ύΞZz―Ψ\τ}ε₯@ρΦ¨Χΰp …ͺΖωΩ2ϋυ -Zd©Z΅jW[EΥ"‘>i)ζ$ΘaΛ~ψα‡Ο4n1 ώ8ϋΞλΫbJ¬3πLΧSu:ΑίΫoΏέiλφfΦΉΚ―ΙH‘εK ςΫ 8ŸŽ6R³—=~π’μTB‡ΞχΕNευΉηž3ͺ§ΦΖ­8ΌxJ6$(L§KJφ›φφρΗ‡μdA’@‰…yΦͺ 64ν˜ΐψζSηΓ³`‰QNτH‰{Ά7fΪ(— „λ~€Ν·λΎΪ%g·ήΒΨί`Šιp-ΎI/Ω&σΜβνI@ʚ>ίΨ'ϋ‚Ψγκ8šΤ?Άίς'φuΣŽB„ϊΊ΄™W^tΚ€Jκͺ>κέ”ΒΈΰζ`»άoωπΓqΫm·Tσzd²ρŠ¬Ρ’E ³KnΚΡΊnJJ ‚ϋ–Ϊ9ΈΪ·π,Η»ŸŸΝΧ;9hπΰBٍ=z`ωςεW~ο(ϋk*Ϋvj›ξA?²Εκͺ$ΰ7x΅ Σ§OΨ 9μ):Hal™T¦ƒΛ)PF|·vΟό§]Qη69ςvkΠGκΤB]ζ9x\pϋoήΡcα{φ•sœρ£~œ·gΟ0vΊ7E+‘­.CΘ5£Λ3°²‘AmΛ‘θĐΊτSTbϋ€±ΚYq„©ώJϋΨ(8λΦΔ–ž]qσ£€ϊPχγΟicΆ™υΛ9bڟ,Θ"yΔΌ@IDATYg»#gΧhŽ)δllλXt›Λ€«[eJωΏ+ΚoΎΏI“ΎFœιΔ€dΐdt5σ½ΞΉ αš8ΞlpΪb^£όZW·2Έ}ŽίHΗΟ«c4UŠΎE’ΑΩΗΦμ}Bj<šςΡdΔΜ_ˆ:¦¦ωΫΪ;ΑR;›_ροM@쏿˜y95€·lŽχ’eΏ°°Ιρ;¦GgΆŒ—ŠπΞΈ(Άk~ΈΣG₯蘧Ί F?xι/Όfœ¬”³φπD73Ο“kΎ8~Nzo"βζόhκ­₯~aOξ_Χοqά1Ra&Θlζ—h£3Ύ %:…ΐΑK©p?šcφƒ}tΌλMΨZQoςH‡§0ϊΣ€Y¦,ΝΌ”ΖY|ήΉ&:ΰ§b›Ώ}ΩμΊ€1’ΧΣϊΗ\Oΰ{”ίιei;’έλ!€»RΨωόz(ήλσ½~ɁΜυς{ζώύ t—ΐΆSαƒζ<ζΜ™ƒ!C†˜ώ„ώW?\}wΤ.ΪdXσej#tEΈ²“\ΥΠ8&W{ΕΥk}_ϋhάωIHΤ!ϋ\ωεUmKpϋbWΠΏήÌ΄ΉςOͺ?o€oΣʐϋmYδyψ|ΑΜ0π\Π‚ ο.“\aΰω$hψtα—@ΈΒ%.p œz%žO½gΞΡΏ[š(°SA&%μ}‰Ώ πΜπσ (ΰf¨ΌΘΝΫΉΰ~ 2πlŽj} ΑΦφ0Κ“ΔMώέΧΰύyΏZ€##§q;ΞHβ9gκ(›€Μfη‘h‹ΪNΩφ₯Ή°·ͺ Q„υ¨τW Άeέέ‘§QΡyήΒ€’³u Ύυ[9ΙN5 ͺY*Yœ)ΞUΡΉέ΅°ϊR tΑόvβ€Έγ‘~p|χ i―€!0t οΕώω] νΞ1ΑϋΒΫfΑ‰ˆα½ΰ»™Ο Ι±}7<β$τas€jŽWϊΒΩφςΙLb?Ο‰aNΠ ‰yŒ“¨δ.±ι §ξLΘ ίΈ>]‚2EMλΟN*;`g•υ«υtαγNΑΟ§ΰC)D–|IιΨυ4ίQͺ5KŽ΄Bͺ5ŸUαΈ3x–ύŽ€‘“ΈXΙEŠ₯PφΩϋiΑ u δwl<Φ¨D7bγΓv(u-„8hίcΊΈτ|9g-DζΈ)fqΙK₯z)ιDΘTΠΆm[³Ο²eΛPwΣNXεΛΐΩΌ Ž9b %-ς+DrGΔΓυΕL$Ύ2‘ «”™™™λBΖqΐ3Α„.F%ψ)¨Ί«ΆΘβ1 GΏ‡ŠωΥ«W7η“œς£Η’Ÿαzχ³ψΛΕ»…>—Q"4!Υ_Αgκ[ιZΚ‡Τ“mΕ³kŽdΐ=ν[d0”n©;a.•Π*ύρΗ8}Ιr8Ύ’ͺRφ"°—eι|ζ1<·βG &Τ‘kl«U²|K~1‹bVΕ °κΤ¦ζ’tφb“ψΣΩχQ^μ€…zAΈRχ³ΟSΌxq$&&š…'AJ‘ͺiZΜˆΡ"l™?>/ή€,-°*q1«νeHΎθά€:› ϋΪ‹I‚cΨI±MI0ƒ”άlθF SΊ?ύΨaυj²’» d­ύ₯XS¬UΗΙEυΈΠCύO΅7kυ―~υη­t ΘΆ+φ7 <}QS αΩΑΖΠ€1γ‘C‡aδ₯*ίωή{)fJ[Θmͺχ­Z΅2ο‘œ:luPΥKΥu%Ω£¬­;Œ μ ³Ύ6uΨΆAΥKͺ‘Ϊ:¨jœτŽ(ΖnΨN‘ΆΟ~ίΚ~ Ό•ϊ–—u9fΔλπύΖzL–ƒύz FΝζΊ²ωrώU;‘-σJAl±D {υΕ€-ϋ•κΘK—/3ο΄ξωχί‡5d <{φm[ ϊϊ–9Ϊ9²8iμχά.§ΒΨ²Ρ£G›ΆGνΠώ'Ζ£Κ«Ρϊκ+Ν3²mΩΎ}ϋr<Σ.-[Γστ@Φ†h3­ΨNΜ§mΤ3}kΰPLϊα{šIωZ@_y*ΨΉ‡ΏLυΔ Dφ~ ہ vmΆCL_|ρ―.ζo#`Λ€,+7΄<΅Ώςi?oΩυΰvKΫ₯’©ϋW’ς§œJ’βϋϋd2ŠQπώy?k7λj,.hήΜ@ωR€ψhΆΕν ΐμ ς^άτπ4­€~*{½fιΟ8œ‘nT]umΥύ{©ΔκΪΎN*ώE³ΞΨm„]χΥζ]~ω妞©m—ΣŒή»-Τy”tΟ* ύ=™© ΐσqΧT>=ΛA#y• wP šαδm+t‘49h΄Ξ¨XF :ΣM5Η‰~5ϊμϋςΤͺŠF2rœ~|?2τœω©6™6L2;Μ­d58Εzqά¬Ή…1©ώ :4`“‚aRm ξίi›κΎκ«μ·έΏνSλ8Ϋ‰MϋKυ64ΙV ,ξ[κ=ΆA¦Πk«Ÿ§}ƒϋQωυΧ`ŸŠύΑWF; Όδj7Έ―`«‚Ύ£*½§Ά#›μΖ Aƒύ>υγtΎ^½zμ†ΚBίΨ–1O:&ΈœͺU«f»gm2b’Σ°9j‡Ι³ξKεt1K‹χwk”―Ο7sψΞ²νd›kζΆΨ΄Z?― c“τD₯J•t dμ?Ύ?Βqࠁ# ΄ WΪτŒWή£C η~άDέrζ΅j«H…Έό-T+ݢ˜Λόβ˜Ο»κ+œwQs3ή9r$zάr2ΫίΗ 0‚ΞΩ5υξ+hO‡"nΖ^>Ύ!ΓεΉο›#q)ΗXκ ?υΤSρL_Έ{φ£²j)ΆΝε`•)ˆζM±Α,\ΈΝ›7Τ§άΖ;v4ύυUΤζιr΄οt‚t½)’7ΐβskΪ­ό꟢ΫοΘ±Β(ϊ§"Ο΄·>ηˆ™ίΒρΗΆ°ί7ϋK‹ ΞAΞIη»(r†‡…ψΎϊJ—€—νšΕ¨7rnΩ Ξ¦υš’³}αekφω4:—ύic`δΈvt²½œγΟ‚8Ž ω ΠωsͺEGΗέ”lΠ™}υΨ›n€Oγ‘"Œ“?―„‹s¦Λ±|’j ‹σθR½M4<2ΏnRŸΔΒΠ^Qτ Κ£}Χσ’sT&Œς0OfilqχM•hzκ\w,^ŽLΒΞN)3yjUcΤ’ϋιΑAΘΆ°‰ Ϋ)c?AΜβ•κœ˜£½gPζΰΑ€BΆλό†Hx„οsž“cωZΈF½cœ0-Ωά.·Αjωμ]|ΥΧ½»Ιnzθ]ι" E€Š€(‚ 4Q”’’  UEŠ4ED₯ˆ‚D€Z@δ₯€χ^vη;ηmή2Yv“Mˆ~{ΏdΫΜ›7ofξ»οήsΟuωΌuΝ‚k?ζ]±!NCI/[J"=«ΖΔΫφ²ΧfβLeŸ‚d ©~c¦Mcρ<‡ΒΗDq"ή6|’Ω fΪΖό!vΪ Yύ›ϊ*΅^ ‰Φ•ΗΜιχgΞKβЉНπΙsτx[I^΄LμΆ©x†‘/\œΕΝuP類H]_ν;ν“‹Η ΨωE\/μ―IͺΙπΉs–^γF‰DΥχoϊΈWπ•σœžsΌuƒφ.“_΅_ΗΫ6όŽv“φ³ͺΞΒδr2υ›Χ Τα΄)¨ηi£³‚‰Jœ1%ΠλcϊΫWMσΒ70O¦ξ:*§~Ϊ%C6|& }<λ‹x ŒΐΏ<WπL'>KNRQΡΩ”•axŒ\xQθ”§3žΒjtΈ11 ŒΐΏ7yρόώ{½ )0Œ€k€ηΐΧΠ€‹{:βd°ΞOη :PνkόΈΫΚKΙ3ΐ3ϊ&'€.ψ₯ΈΌΘnŒΞ:αΔM©]CΒ{tΠ/δeχ―h[d 4ΰθMώvΨbΘG χ ‚ΘΑ‘b/$_R‚«—½μ>I©rlΨ|‘H ωΉCΒΫf€ΧΌ΄~՝ΡGλ;`ΏyoΚσ!˜1ΐ²(΅αΠ-1 _³ˆj ΐœεhέM¬‡1Fp³’¨υ–Κ ε|?WNwλμ…β9UžxˆτŠΧ‰}ρ{HdˆθΓ_ςϊέjI½@ ‡~ΞΝ–zΙΆ_Αΰ6~†€<^Β†φΛe07:qί ™pC"πVτεΦ°³―ΑΏ†Ώž―α‹—ΡuΗ©896xžq)ˆLτ<βA±•½4€–ΎeŸ\‹ν<*š gΒ ;2όs1φ#H;£po$Εά^IΘb?r ’Ž\Ξ”{n“όέVG4~ί₯ʁ«ς‘Ο†yVR+*•+WVS‚)θ,S¦ŒΠGHZΕ Ϋ `¬mά E@ό·:7JΣ¦MXƒ i‚h=AF΄ƒd£/‘ϋΈE;ˆb9tD’Η‚θδi±5ΏS–—)¦|–xρ8˜j›Η樄)ID±’r΄y#Ε4Γ6ȞGφ8 Α>ϊ¨hqί]Œ§ŽζΥ?Υοa£ːΉs“ΑΏ<(ΠΛ£ ΄…μ\C™4VnosΏ:gŽϋφOoΒ1¬ΗτΉjαψ[ΐ²ϊwι’rC₯ΤΉx~τ΄€#¨I–c „ΰ1|-[Ά¬Ϊ}σζΝrο½χΊ―AΈ‚}±sΏϋ:ψvΑœd-VXNμ"7βšQ<ΟόŽ6£s<–ƒ1΄J— FP˜~q ϋφθ!Η0~܎Βkυν·ίͺrέόΜ΅]·nέΤΨςϊ°Od"„ΗφgœŠ)"£GVΐΆI3Š‚p?'U™ΏI™;w<πΐΚvζ6 `>…|jϊͺ)*μLP΄bŽΕ=Λ@ο1Ÿ)Όο¦OŸ. T Q£F (oTCp‚ΏγD6$O0ƒj,—ό<›Ϋf°pΛ65ΫN€FΑ`jGΡB?#ΠKπ3€»Χ΄˜τΦ4U˜ΟeΞK±¨ωόΧηg‘!o&Λ±“Α*Žέη)›άQ3Q¬’m5~ΐ3 ’†‹MMοη~“ΊΣΉ½‡+m:@„αc_FΙλ|ξM|Ύ‘½‹RΝqHΨ°νKχy0‘zˆνE4€=s»υ„Αc>Ÿ²ςy#θ”ΰ,ή{½άDα=L€z—1²›3Ωƒ@ͺ`Έ5°ξl˜ΑxξΟ3J]ΖυiNžκh³ξcΏψ™λίΎ}ϋ*ΦM²Zv―z³€ύ°FΫvA^'‘ϋΘ²­Ώgω%J”Έda{9Ρe½ή%‡ς‡AοVβYΟ`+εΪ›ktŽοεκ2+Κ';.Ρeζ/"V$>ψlοl―)ΑuυΎY/wo'•ntJΘΛυziŒVΝ]d…%ΰ\λγRŊΙΘ1c ηM6Xž—ηœΜίς‘ΪMET38Η{ΐw²ώ“EΩ‚?+X‡­zJƒ;›(ϋΫoΏΙMvHϊžΏ ϋbρ’ TΓv”\ϊ`kπήdχ΅ξVλVIήΌM"&4j€Kp[2•vξάY¬ΤωH¦™:uͺΫρ7‚ξF΅X¬Χ—”Ž}ŸΝvœτ½OύΟJ&τκΥΛλ|Ν{²:ͺ6δΨB,γ_ΟζFτ{&€E‘ θΈ­ACβΪIΘΡ›Έ_q>Τχ‚ 1'"!ΚrΧίS_¦4¨)ω»vΜΰœϋ WαθΎ fŠύΧ­ͺs¬~υ³`ν}₯„ΟέnT3!€ˆBΕ1x6c§}W»vmυ½N† ₯b<žΐ`κjκ"ΞZxjΦhh/yΪ"ά†vpNlKίνώ‡%ΈT₯[tίτ+Ÿ-ΞG΄ΝΨΪaΤ?§βΛΙ3Κσζ9dE‘ήx I?W&Χxκ Ž-ρΏ{ ―ΗΝά'&rz''Θ[ΆmΉΔ§ŸΦo{·ti)Šλω=t§N$ύkΘZνyΝΨ_^ϋšT9Vu?ψΥeΠόΟάk•ΏnΤΞΔ±ύ/TϋΚΜ–8ΊμΏ}.Mλ¨’=Έ#٘ 8ΦγDΫ~Ȑ!ͺM‚ž›ύ²KdιJ±’κΩ± ―I9άgqZA²Χ[“ΤgύΟΪ°¨MŽΦ΄σypν·lΩ²Kηχγ'% >A]ΕȎ ioH-<+΄]²[«δ΅ žcΐ3ﳡλΔΊl…XNžC₯^3][άG9ηEa·g€œΙ5Α€9ΦpΤίι•ΚHT^‚œ™ Ήf½$ƒtΔΚδΎ aΕ€ppάZΛ΅ΞΥ?δτηϋε·Ύδΐ_V$°whνΨβΊηXPν#ε½YŒ$=-)ˆDτxRŒlΐΔ ‹ “"1‡ƒQΕŐ·†Ψ€?φ=#Α.iΪlΧ\Š6TΏ"ˆϊΎ»ρπΩτ!}ΏΒG‘4a†»2γ‘];‰R“\Ι―›%ωƒynΰ4YœΕ ˆύT>l¬qμ}PΙ«ξΝΩ7ˆ›2Υ»6©mΣqO…Ώό¬*aωΛήI~sͺΛξΓFφϋ1Άσ~_p~φ±„ύνbϋCϋfy£ρhΟΆmΪ& Ιλ‘C°―΅ξΡΈ7¦‘zlJΜ?Iχ7‘΅χΥ]1Π”4zš€m Ρ#Όg'IF’W0Iήβ(VF-ζJά{φGΪ*"6f;§Υͺ"Q/χrΩGψΙ#ΙC@{7½όυ9j€Ϊίg'ώε|γ7T<+Yyv“σ»9–Ύ>ϊHnΎωf‘ί-ͺύPΨ>ύnzεϊώ±#H„§/HϋΩΌžsWΪBLζΚK‘m@“jY‰& ŒΐΏ;WπLη•…c–“ς%,]CΗ…%wh¨R˜U}κΤ)•AI£5 ŒΐΏ3yρόώ;= %0ŒΐΕž/ŽEΰέί  ‡Ž[$κΠBGε rθ?θ΄΅YR²pαKANά—ΑΉΛγ-x©ΫΟιλεž 0Ξ%ΆHμ[w‹•Αύ aφ ΨΛBΙδ|ΧνϊλΖ+@ρ ΎΨάLLX#₯β|#οm&Ηfύ Φ¦sΚqX¨O+±ίž™!7ƒΐLφγ£jΫs\ힿM= ο”y\ΠωΫοΕΊrm&FgΗφύ`ΩFpδίftFO­?nΗsC$ψ,Ζ#CKλ»#Ε¨§{^ΘΘIN …@<Ε³uςk(ΣxgΞ[‡#?΅C±m…Σ–ΐι`0BvGΐxœ€ώφG ΗΎy»Ϊ:­Ry c†%"<Λ½Ui⏫c:K‘ˆύ།ΜrŸ¬~$ΨωθΠb>§ΐΞE^ΈOBj•Ιj—ΐoΧθΟΧθ…σθΆγθy9:z,Lψαv)6챕.δ±S`Š B€˜lΠ3œJΔΌώ…€m< Ύ z –”|°‘Ι\;ClΏοVί§ΦΉI’_覀Ρ@5I#ήEΐ-A"_ν-φϊ΅SL»vzωΪ2O<ρ„ f}ρΝΧ ”§ΜQiΰ†Ή ‚φΜ€g fP<%!AβfΜ‘ κʐ―Ύpψι—d…@ΆIΐΕ²€ιš7ΙC6³] AMš4²lj!»%ΩΔ,Ξ)3Α‚ψζiΆbŽΰZφ6ΑΝ»%θγy’<ψy©Υ Ύ²αt{Ύ^όYΦλΨA±Ώf!3ΑΥ#`ΒΦm•ψ/—IΑ·^–χΜs—Ίζ><ππpTΣmxN žϋόπ³α/ΑΜΏ”3qτΥ†―79cœΈ?V,…ͺ­u›ζWδZΊ:Xάb“•?ΜQΐσ6žο“@ζ,N@mέμDΙΖ!θƒ 5-wΠ©…ύ]ΐσΉ7'KΎŽνδ(ΚΤ²ŸY YίΘvΚλΝ€ Λ›“aΡ—7aΒ>αφ<~vγΔ{2μRi…ς+Π‘―Άsς}ŽΟζΖ™΅•ΰηu*pL°’YΓV£z?אkΉ’ΚBW―W§¦ΩrΘφœ”lΘ°·SQΥΫΛx€­MΪ·tΩ‹ξρBB…eίAΦJόφέ( t˜ƒΫ°κ†υΰ $±HπuqT½AςΥtΕrbDA'g#FΜaΕ\\₯’”`ΰϊY 7œB§|΅\—¬ϋsE‰Ύ£žXPŠωπΉ3n_oMwιEΕjxΟ30}πΰArζΆv1φCpXNŸQκDυ†Žσ˜:q—s?Τ…|ΞN#ΰΉ[ρ’€s }β!Ψ\'kΖRκH_:Ÿmϋ«ΛΆlΪ,)/Ό!ωΖΎ$τθ–νAέΓρ3ώxΌ¬$ηΊlžHη§ΕZ΄θυTΆΧτ½‘£ΕqΗ}bϋb–ŒXΌΠ `fŸ8§‘ΠΘ¬?―λ π³3>IΊ½ό’̚5+«ξ«ίΤ|„€k―A`œs8Ψƒ#^xZ‚ͺUVvC"ΎΣ «œ[*­όUT³,Υφ^ιζΒΌΙ$+•`Škέ»woχ΅ζ{ϊ*8o™Ι<8Ϊšu>An‚Ϊϊ ŠN‘Βr’οSξκήN†χώϋοΏ―ηX™ύή‡={φTΧ۟νύΩ&OΟήˆϋ“Ιa²LΠAγ}ΠΙ3j½θΉ9ν9 ώTε&Μkdk΅?ΩA,-ξπfςlΰώl¬X')~ξ_'…α―<#ΰΥ•‚v_~ωe7hΧ[?0’ξγ³B}Ș<]΄MΝο¨G©[©ίΛ™* πΎσνδ³A`‘_Ά%d¨«ύΥ―f@ΫfΏΈ/ηΆC=Jp118U«VMu!§Ο(“Ž;ζI³_zƒϊ0""BΩςκ`ψΗ1#v}’~η:Ωά'Ž―«#ψ3N\_Δ]ΈΰεκγψzεAζMVΔ!Λ‘ž­ P₯sηb|;O·oλ^«hp{ν…―ΏΗΌ/”GΟZΉ²lοΠ ¬χu¬_τ•$WΉ@ΥΩb›λ·kVΉΑȜ{ΛώƒI/Έ–p"Α ,ω Ώλ=wΚμΛ³=΅.hyŸ8>ϊD`‡~¨½Ό2}ͺ{MΗλDΫ‚kœ΄Ÿ6HβΫΣ$₯N ‰κυ€Ψψ̍Ναλ|sς½Ώ€g&έZ—―λŠ5"q™`yŸ)y(p>Ÿ΄eŠ δŒπ¬8 NC–t2Ρη%Θ™Gή…ΟΏVΐW Ψƒ•ΰZ¦V«$‘HHΚi…W¦˜ΛΟ£ύπU`tŽS?8‘,B σ]π7ΰήΜ±œ>#‰X‡όΎΓ½k:ΦΆ‘O?%Ζ Y―ωά;ΰMB’!G₯’ͺK0r2v¨έUΐ€οψχ>ϋΆ?\›Σ6ΩFT·GύKˆΑ9Ηʏs^§Θ( θ$ωφ:ύ}yΝσ|ΚA ?Ϋkf΄‚DΞ”»PMΠžOGυ†°—²`Z6·yψ˜$ΎΑ€qؐ”·H*%A)›·Κτή²t•€ΜωRΝ“¬jς,Ά―η'F€qΒλhΆEέK/a^Α~nΑ}—0r’£:%₯q=‰~ϊ ίφa%θΘ πΌ_±0AΧ‡p› ?– Ρ›‰a½9ΘGb߁Dv\ΟtTή±†) ΄:ώ=UK±3ζIΘΈnv~ ίS·Q0^‰/½©*02A*|Μ‹bΙΝυt΅φόηάΟ$σY°ηipξ-TλFθPΞΉzm₯}8桘ΉCœ G!Ι›• 8‡²HΘ‘mΞ9’Ut"<νϊAΈž<|ψ°W\―8ΧkρΦWΖ39Οzλ+«mέΖεΌΟ—3z}#pω#pΕΟTjT˜ή„ΪΨ±cΥb€Ώ›ΟTDT†T” Œ@`ώ½0žsϋόώ{½ )0Œ€k€ηΐπ}ΈΈ_·n4iΔηP,\ΈP±&O›sΎ.­θk'–›bFv^: rxήΆΚΉς?d‚›dLH«rƒ„7―.%Ί4wο“Ϋ7 0ƒ ΗφΓͺ Kƒ R’_k7γΔJ σͺUΰš?§ΐ8}Ξ8aΣ»=V;0Β9Gq‚)ΟxΗξp4灐‘"½}/±žΎΰjŽΜφ|>5w­£\_zΧΑ„`1…ΧΦϊιx Π*ωΧΩI#ήq3ˆ$#έγ1ευΩΖ&vά‡`ιq€•ΚJīψ¬­Ή#9MŽΌ:_eΛ‹ΎxμœΫΑΌφ ž―‹δgӝ‘C Ÿa‰°KΙΧ;JP±hχήf2(Μ— ς3Yvϋχﯘržψ€΄WmomVEJu½[½?? eS3Κ†:*—Sg²YΞ]ΤYYvπ/ΕςB0*Ή:vμθ>¦~CF2ΑπΨήw \³Š.+ρ‚< ( Άc 6 Ο5ю!Π4@g²«q[ΪAα8—η2Ψ@ΘyυΥWUPζρΗW̏³κ$1ΕL {cπΰΑ™@Ξ< : ΒΐΫ¦X,Kr±xrμhϋ“}a ˆΗŒŒDIauΑόv3€ΌfP™jΔΛ?‚S>1JœŸ-”]•AHLΣ‰kv?φΨcŠšηNPΑ΄]τΗ-’όεχRΰ³ρ²@Sx ·_Ίt©λσζ6Όζ,?Ξώ0@7Ο™ΰ’³gΟΚ­·Τ–δ#ΗDŠ»Θ+xh_’ Τ˜ά΅kWΕϋεR‡,\Π @‹gE‚mϊαΈ{;²Τρ>`€‹‰z΄I½mηy>§O?ύTέ μ'όΘσ²ρΌ;χ##¨ωήX9…ιύ5ƒδΈoέΊuε³Ο>S@ :`ΰ`ŽΟΫS¦L™’X@9΄Ώω™A>φΛΧ8‘5ˆχΚCmΫΙuŸ|-Ιω"%²y‘›` θš[Ή,ΐ³ω °Q °k)ζην¨²€Yœi‡5ΊU,(,J›Ί6ήοΩ')H&³d01'7½M’{!¨ξ§ΰ±–‘γ]₯―ΉKƒΪΙΏGDΦ—Ž‰z`³€m5aϋ. Ϊs@‚€ύvZΝe‹«;Άη̟OKΘΆΥ·Τ£<Ζ6―YΈ6€Ž%xΨ°a €DΩ½{wΕ„\)Ε)ρCΗΉvΑ=Ε’ΡDΩέL“ζΆΘrHVK>‹œΘ4ΏbΕ 7˜–Amκb&Λζτe ›z†:ΕΧσ@p·Ρ‰ζsγωρΈ{φμ‘9sζ¨9ƒ ά.mΪI2ΐβt@έΔσ Cυ/υ ΩMωœ“ν·bŊ °Ζσ6P²vΣξ>ϋΔg4μ\Ψή.& QϘaΨ–yŽ 8›ηΐg?§γΔy-;]φόσΟ‹<ΩGR·Φ*α뿐­gŽϋΌ¦ΤΦvΕψs―αςλwςΡΌΉκaίΝBυρ]υΘ…GŸ‘πί•ζνΪʚ5kΜ›y}Οω…4λ—Οα<’;?,s‘/ΙͺΚy™‰Ω¬–ΐ{€,pLRα|JVTΞ»z~׍3Š?ΪΌΦdsεΌΓωϊψΠ‘Cκ^εάλ)Œ=2A%))I ……‹όΉ_l`‘ήvξt–γ”άγE nΩT6•(¨ξΟv½}Vχ!ΐζ9ΥΫv9ωξ<{λ ˜ύ-1`Γ„?"nλ.W‚Φ Jphם>‡ « ε“Τ†u%ΌEο₯Tρ˚·Όuιͺψ@²Δ7¦‹•σ†‘ΟΐίpG+Φ5ΪΌ·uε έ>»5hΠΐ}/¦Z²d‰Ϋ¦ζσI;†LζόγσΘ*,V±`Βm0-΄©™ΐΑϋ‘ϊ˜νge[’ΰŒ΄›¨ωœrήπ₯σ©_9qΝAέG°σ€€Ι6Iۈ:ŸύzƒΊƒ:•ΰ)ΪΪMš4Ρ]Νς•Οθ“O>©ϊτχίg©78nΧσζΌDHfc7<ϋΔκœγ¨Λ΄=Υ8œEΉGQi„,ΔώΪ»¬RBŒη „ϊ²ςηΛΔ`{π‡”OΨs­B;•ΰηκ‘Ρβ8T5τ\OΩƒ*·yޞΒϋ}Hkφ˜Ψϋu•)w +)πΌΈ.γϊΗ™8qb¦ϋ‰ΧsΠσ/H…―~ϋΰ^ςΓκUΩ― vνγ ψΝ ΆΉΚs/ΌpΙόΞ{ζΜ™ςξf’ςύJ!»­QΈ„Uͺ(1ΧψΊhsπΙK8ϋΙsηsHα|Ξc˜Εrκ΄ΛΗϊσ―n2 ύ»ZsΠώ‡Ύ!Θω,ΐΞ`ΰ6αχ„ξU&ΐ‘dέM½£ΆD4k(Φ[aƒΈ™g‚y nώW²e—±²]λϋfE0?J‘‹φPŽ ϋ(φ 0:―£sF•2‡tΈŒΞ:Ϋν9o6!QβfΟ•pT%ΐΓ«φw*(vT„0όœαΰ…αir!ή*e 'Θ ‹$jύoξφεG₯ΙΗ]•Tό8€e;€ΆSg‰5c^u`Ξ νΫ]€μu~μν± ξΛχk%ωΣŊQ˜Ώ²ZLD­›$υ;0…s π<Ϊ;΅g+ψmxOe#TωIώp.*>ΑΗŸqϊfΜνKXu*αΝ)bί΅Wm‏ ό•ηΔΣΈWΫvʘ)kŽΉΑή©Hλf™6egΚ¨I.¦olΪ ρHΨτ)9'ΐφπ=9#ΓUu1)η{<•λ%eΘ;0ί8QU'‚`ηQ“`œI]Žr₯ΔŒϋ=Θ"i5*KΔ+ ΑΨ‹~”Ήί¨n0Ή rπ3ξu‡ΐ―8`gά0ΞόQώτ3όύW›P·Τ©SGωm8'Τ«}œ{™ΐ£+HpήΦ‰SžηA}ΖuΧeœ;h“›ν_ώΞ$ΐ?όP­ΓƏ―όf'Nœp'X™Ϋτxφμ+υ1Όυ•kSν›3·ΫχΐsnG.°_`ςf(ΰ™N θH’ι)\€Π‘^ͺT)EYoF 0ώ½\\_Ξσ«Dƒ‚%iι  cƒŽ-ϊ™ζ’—Ο±Yψ¬σw26ΡX H`#μF xΞn„ΏΧG€s­.Μΐ*KPΡ)Av?‚ƒθ,g°‘Ξ Ξ­΄§-Z€Ο:ΰΛΐ’YˆθάΉ³ω«“ΘΌΛΐ1βœϋ-œϋηĈDΙρ™Šά~Kξš1Qdζ"ΕZfΐYjiXK,£=ϋ»λOI‹ς€`Uαω†τλ$VΝ¬ϋΒ’~£§Jπn\/Hj½κ=Lx¦r+d'³³3ζŒj§H{%€nωά6ΨοΰωΈH9θbΪΎ“r|Ψ’ΕωΒ€Δ€ž F¨ΐ<Ήόσ& „ptΰνEβ\η)Φε₯TίVjsŽ’ί›§ή;ΐˆ…ςΑςΠΉλ»T œΐϏ<*©!69pΰ€* OPZ9°Κ1(L0š™Υ…€‹φνΫ+_3$WhΪ΄©›eTχ“ώ φj2ΚύςΛ/κ'NΨϋ@6^θχ8f·²eΛf:Φχί―ϊΙΐ ·'ΈƒvARμ+χ#ƒŒΗώ΅nέZΘϊ[‘BΥ?ξΣ@:Ϊ !°›ΰ-τcΨE°2Ϋ₯]ζ—`NN{Ό§XΑΪΊαΞΫ.I\γ1 ΡηNΠHu§ εdί—ˆOΖΙΆnQŒxϋφνSl¬ί‚ *·νϋD›}23χΡgK0#蝀ϊ{ΗyMΞLόHŠ ˜9}ΦGjŒπ"ΰ™Œ―τ qΌθ’νΩ¨ιςά+‰R₯b*˜± ΘΪ΅kUφ‰₯PΩ>! ¨Ρ?Ε ΩY#α-Nl7Ή8ώŒM` ύΗΌ΄•΅ŠΗΰ}FΏ»­z 9ύώ‰B―yƒ0Gΐ4'ƒϋPΞϋ„<μΨ…m`Mΰ4moήW} ~&Ψ…χ"―΅φqΌ}S‹-dΓ† @sΣβUβΨ±G‹₯œ“o*ωξ°υœJžžΝΖsfτ¬ΐΟA[2Ψή2Ά!ΐ$ ΜΟ–[a£\ALs—ύz€}βΠ·$ψΰ΅9φa/>-r}IΏvην1ώύYΏ)Tm_υ†T?,gΔt(9[=ΈLπrZ—ΘηΞoRΉšœ]ΠΦΏ$m<IΔ“MeŸ‡.γZ›Ί…}ΧΒc0θNΆηρσΟ?Λ=χά£ϊΗkBݐ‚ŽS(Ξο{$ŸΡΤ—.ϋϊλ―₯=χIrγ‡%ψ‘Φ²±Ss5t{^S^+2#Ο™ρ€uθ.N0ΞEM~]ŽΫ¬ €ΝkJΝsβ+Η•qΌϊH>ŠτΊD> `™λΤ=’ΗΐΧ+η#9?Rhθy™Ÿ X&++Η„ AΪ™Τ‘111n68n§Ε|­™πΝn=ΏσΊπ>- ]Νs¦ώfl‘σΑvμΛΓ?¬όΌ§ω™χAΧΏy'‚9»·Ό_Qΐ1ϊ%w¬RχΗΧ+ύ0·Ό[\ΐ³·ˆ 4φ ΰΏbΔφgLζΔtνΘh茊˜4™ ] ,ΌAs%Iykϊšϊξ4X4‡OR:šύNi\Gς=ύΨEΐΣΏt2ΤΥ|¦ψŒQ±4<νWΖΥψ“š5kζfmd·¨«yοSψœσύηŸ@ΔΪήγo,/O{ΟS4ƒ9Ώ§­F–v>?ΤWfΫ’Œœo˜<§mκM›6©g=+ˆΐfύŒ§ξ3'™υ“7h‡σ\yfέμΩoσg>€£XΒύRω8Λ*žι7YœΏΕˆχUp”S εOηΆ½πš"Θ‘±Ÿ*i.ΆΊUά-Λ‰£-œΥ5]eFέ?δΕ›ŸŠενχΔ …¬RRσ&IŸ>F¬%‹εΕΐ²½]œOψ δ–pμΟxΣυ9‡Ι˜Ϊ¦‡ΗS{mΪG,p¬ϊ+–₯+%εγ…* β„σ6τΥ~"x>²”Ψx‰W%ύ€Βσϊ(˜Ί[7Νr—μ~$ΨωΘ°ΟΕΨΪv~Ά9a³Ϋ-πϋ5>ΐσ5~½t?uη91ζk›ΈR(BΚMξ*;ώάνfs!Hˆ‰T‘LK`… –‚>?½œ™ΏN}g­y”z ϊ τ½Ζ†m’2q6ΐΞύ%Μ84‘Υ…ϋQθμRΌ‚$νϊK’t+Xƒ8`p 1O!ΰ”ŒZ {η 0qρ7O!g˜)}‘₯”vοcJσζΝU dγθΓ` ƒΒs&‹ ύŒ΄™θ―dπ…Ib ζΈΐΐ ?}ΑMQeœκΰχτ_$B8p 'Ϊeζρ#ˆ%i؀]C`EPΐŽ;TŸ4ΘƒΰκΫ[Υ2²ΈD>wβZ“&MΤ±ΜΨƒΰΊΰ€™:gΆκ0dBe)vθΠATrΫ§ϊ{OΘ‘;λ¨ Ϋδψ±―L|§?χ­·ήRηΚίxNk7””' ΕψZ€vνΪ \Ι±Τ„ΛA0EγFε¦_6‰Ά―-+3ΫΙξΪΡζ=@02οΞΙ>ΗkG™‡x―ρ˜τ1“`ƒBΆΎgh7XI°― AΝμmg‚Γ):οιΓpƒzμ?οŽ/“y ϊΉ/γυαv "ς{ήkμ2ZψΜ”D’RβWΛέΥτo0e…1(&MρΣ.ώGΟΊC|Ε=.`τΊ°βg ψΩPœIŒΡ F.Εό\©œι—«τ-ΟcŸΊμ]κΠ.y Χ‡Lv~ΚGs/Θw«]χVωι2μ»„…jΛ9ϋFXζ9ώΥqΈώ§ˆ.”ΙžE ο6LD9ϊ ”vVŒm¦¦"?'ϋ<£ξ{~M]KέΕ{χ(υ‰ϋΎ“±J:q(ϋόΗ>±’ΊKΘ=$zΟzC9Y—ž ΐMl‡Ο“ ε½€Ÿ€όσOγ=M=B€2…:Η&θŸ[͚‚κ`w@?ΡWΜ€\Ά³jΥ*΅Ž%€‹IZ2ρϊŸΟ5užG†ͺ’W΄’ŽΦ ΛZ—ŒE]ξΞί²α7IzόI9*ΞT°Υr j––λη’…Π!dζόΑsηϊšηJaŸψ¬V―^]+ƒτ8ΣΟΝδρ(\oxH1λ =Τ†‘=“’’•ΙΌ:όm9€Rΰ!P6ΰ\Ζφ™°σ˜-9R¨_Λ?3Ldαt©wS₯Λ8L,! s+ΗNΟγΤGν£ KκίGδ’8©©“x­Ψ/ž#υ YψγΎμη3³.S7ύ㹐υT Η§lΩ²jΞδ΅‘tξάY† ¦τ?ηgΞΑ|ƒΏ‚sΟΣίωΜΆΤ«[‚šyορ|¨ΏΩ^?Ϊznδ9p~ηy°O'ΞΙL˜brΑŒzœTŸR 9^ΌΌ1aΌ}6\ώ’Ξ+/ώ]5€go'Γ€νΥλ$eΦB >vB,C τ&ΩdώΔZ «09žŠ¨^U  Λ|UπυοTχζ{bΫ Ώ$½bi‰|€¬ΌκΑσςJ=§ΙhCν—:žzŠΟ1Ÿ]Oπg3ρ>§­£ν!σ6ήlpΪa±Rg0…I~܎mρΉ£>’.o•ρΪO΄u¨―ΘψKP)η$/Έ±Ϊ>β3Ιg”:ˆΐTκw mjΞ ΄9ΟΠ£hœνώΝ7]ΎΖΉ?Ϋ’-Κu…Υ:hϋ²όγ<Δρ’½Ο΅ ΑΛΤΤ Ÿ η![λ|ΆE›—ŒΩΤΩΤαΤΡκ|ΪΫΤΣZ—Ρ.₯^’N’7>>^΅ΟΉ…B]ψϊkΓ$ΡqρšR7±ZνWσZ…Χ”ϊΞ ‹cJF»U “hΣr,xl&F¦θyΘΫόΎγνΞF΅έ68u#Ω5yκU^“εΛ—«±Ψ‚„Ξp$lΝΪΉUφ΄Lλ)ήζˆ2k7HzΗΆRΥT˜tε{]ΠHͺΝ^*Ξ-»εΠΓά‰―Όη}­Ÿ8o7Ϊρ§œλΠFͺΥrU‹αu£MB 4ŸΪ7άO{©°ΐZέTΙ Œ]μΙχ‘.»ΞσΌ²ϊμ xΫ±[¬K–‹ε―}™vSΧ$ τ?§βDL gl ]JΒ£,όγ·Β_q^λ<«ςγI^ΌL¬'O»ϋGŸ|ψ­Δ¨ ϊαJ˜p˜Σ7Π[–΅`Φk΄υΌkέοΔΈ* s³FΎA²ΩΗ²ώ’2{Ύ=ηΪ:‡qg[ΨΟ— ΞF‹O$N›-)1g%ζp°€XBδD½;€υ»hΟUΆ‚η/vώb nεr{ ~ζ)1τΞ±€€δ‹ο$εkΨPh›’VΉΌDήu‡€Ξ„ΏΐeJrΓzHVλμ_ΑΊœ4ΙΌ“X F渝­ίΐΙ½r-Ό°)rώ°C’ΐfa{ŸΝH|r@0ϋΑΉηόΞV°~§χ}UlΗOΉΟΙΆ λ;ΓΔ‰κy%ΞΗϋ‰eυFά“@5KΡΩΎœ*Ξ¬%²8Έuα2IΟΊ˜W(L0V<“Vμ”ΣV)ˍΕδΊ!(Vœ€¨-^<ο;x–+0&¨tπ€η%aκΗήεa1`γXσE#8š9ΠH`ͺu`…}ΠIbfͺ€ +tσŠΝ›TПΫ|P³fMΤ#Θ€@ o† •rτΈ€-_-:ΘΔ©STp†ϋΔG0fρ%؁ =‚Q`ˆI°Ν.#ΗΌΪΰρ·όo“δ˟O¦  pΌΙWHQΨF_Š΅ZΈ@Dx^τ+ ²‹#_$¦Π`9όχ~ΆcŸHxAŸ.νSŽ)A%ά‡€IφΣS°Ο~τ©D£ρ"kš"ΌΰφD εΚ <Z°Aα΅γu`›!RΘ`Η1Φ€²oκί8†¨lίΎέ τ§ŸϊΦκ5$iϊΗb«XV °*“ΥŽv3+τsσΪ! š ^kxcŸκiΫΆ­ϋ9"؜η¨mtΥ1Σ?,tŸ”l s·MŽrΎΨ?I«0h“€ƒν9‚ΰ€·ˆ‘…MπžM}Rφόϋ%φ‡ΕΎο Γ™Δΐ½ °Άb~Ύ±Όϋž5mrΥΌ5”˜2 v§Οͺ>₯γ~ˆΫ3νuδΗ_­2y&+0'KM—‘/…’ͺ±ΛΆτgUz$ΩΖ©Ν“[6’όtνŠg’ϊ@’Έ­;$ΙίίTjΤ¨‘~η}ίχ©’4ωC±έέXφDΨάΏρΎο`hυ…D€^€NψιW)πΒΣα…~jIΊχ€,^.)ΠΕωοk&λΆό. 6T»—Λ@6ύΎLΦ p‘o9뉔~γ.—˜zƒ η}ξi%[“.ΈΑΘί|σ Ίσž'ˆ˜Ί†ΰ=qωΜοΔ3O]ZϊƒmpyΊk7I™ŽJΚ™Θ@ ›Ώ±ž:?, ς ΏK;+vlqλ ²ξ—ΏR:6Έ|R W Ι]ε§&N u’πΜgZς8/RGDJ°8Γν‚>ΝΔ8Ό§χΛπΪƒΠεZo|‚ΰΦΒξ―°Θ7«VΊυΖ–M›₯π’Uς‘$f―…—,Ξek%ψ©‡dΉnύΚ8\ƒ;eϋ·*PϋL]Φ lyIί#ΦΚ•$€ i]Fΐ4½ž‘ @IDATu«&𚱟œθ3Πΐ8ν7Pσ>~cŒγ]Fΰcƒ Έ]΄Ο‚Χ\ί9VςZσΎΔs~§―ƒΰsR7•œ=Eύ4°‰ϊ’LΖ|NΥto[qΰž°—(ΙΠΟ(υΖ%68l[κž;ͺHQhƒSoqΎ tΕγh;ŠΫSίq^δ8Πζγ9oήΌΩοyˆΆ'YοΝ:ŸsΏ£Μσ#πΫ¬σƒƒρΌ;,* ̊η#8ˆΔΠ @|f½AΕσšrεy°ΏžΧ”X =Ύά—ΫόŽdκT³Pηkΐ3ϋ©}Θœί €ζ΅Wk=μ΄ηdžίŸ¬]_>ί½-“ nƒ3~ηόo“οΧ¬vΟ₯΄ΑIΐΑ~X¨h§ΠŸΖWόYpvμs% ±΄w›•―(Žo—Ιρ­/ήOZ‡?ι:ξΟ?τΡρτΛθΙς32-ρ„{ύΔΉΜζ?%}ξ ξΠ\Ξή}«ZΉΧ*ƒ‡Ιή ‡TŚŽΒ1ͺfή%+$¨y#9Š*$Ό—)΄iΊ,&ŽO¨Οž,Ϊό\λcΌxΕΝ§ΐΡ–’E γ/υ½šΟq½ϊKΘΙS™šU@ηX€SOδ‡υ[€|zώΒύŽEΈHp jx‹HχGΐ’])ΣώyρΑ'ηΑŠΊn*Ά$ΊšΔ±Σͺή $αΘ‹cςψΰΨy‹%θάyu 'Φ.‘`tvήΣ8χ@ηΏφKς΄™ N9ζŠTοώΈΊNξ/sωΖrβ”ΔΏ7GlUw „$¦Μ-ςΖι%.8Zݚ$Οv½τΊg:ΦΙ“>p'±²:KθsHNΎ±B¦Νόύ`A_’&Νt― TΣ νάAβ~Ϋ$‘λ7©f8Ά!ύQ™¨FUΏšύd‘„Αξδ³κD,"l@/1ͺΉξΌ6½7ώ 3… ‘ƒϋψ¬ˆΓDΞ„‘%λZJκΝU$ςΨΨfμΉψ7§Š Ι³VψŒ@4ΐΖΎ$vΪ'²zƒϊ9΅^ ‰ξίEι oΫd―5Υ½JkPS’±†NΕwA1*ƒ”$­Ϊ π2ΐΏΆfV+ ;D°x»μόjoγ3„η5~τ•τKpxθΰ§EjTφΦ…«β;Ϊς:I―Q87˜…φύΏLLΝπ¬ηv&ιp Q)ηι¬f2(…ΗR~œŒds}<;+ΐ³g_=Ϟ} žυΘ^#π߁+ x¦³˜†88tP1“S ³νhδ1ːΞ|f‹ϋx¦ΡΙ•$E3?ӈ¦γ? Œΐ區<_ΞσKγƒB¦v~B'DεΚ•έ, ά†:dΙΎ@G Ω,oΗ@R@#ΐψ;ΐ³Ώ#ΨξΏ8t θ‘fp¦­Ksξ-V¬˜½θ "ηg&&ΡωK€mvύ•C"R]°jΠaovœηΥΨiΐs…b%δυš‹ μ jq¨“Z―&“D²r¬ιΑW:’eεΟ’ Φ3$½πΆλΤ­©@H—sjŽύ'δδΘω¨ ldˆyν .]Ψ―&Πω[”U\±FΉ“εL¬€oΛ 3 !wWRZ%E DŸ“ :ν$£³σθ qv{Qμ;Q2έ@βD°ΑΏ‡8{=¦>ηΙ?0½ΰΠLLq5`GΠ“νΕ9r@›O}΄―ΌUυΫVιgί[ƒύoοΜ9IρŽΫ9žΤμΙΧ , ~d%Ε 4 η’ v ”Σ{NΧΚf΅GΆΏ)°σΘ…bόι @ι}³p‚gΫb`ƒki€ηkιjε¬―ΙφKόςν:έγ”1ΰK6„Es 0@ΑΔf Α7(†@b΄$Šςρ“–‰Α€«ς…₯$@ΟaHa ›Μ1ž’‚&<$qΟ wλ¨Π—zŠTΙϊΑΎ‰C`1tΥ/ωιy @kΝ ³f ΚΤΒv΅’$™β* }ς@K1:€•s™Α4ΰ€`² ³ƒ R,oτ!’፠ΪΪFτ1’(FΗRΧΙώψ8ΰcπ†ηΞv€ ύKέΌUΞ__½ύ)h& T}E›<>ΩΔΪ΄i£‚=»‹<}^ž™πΆb#ƒ)Y*5#Že–eKKίργ³&}, GE`3^ϊΟ©ο`¨] °λQœ§NK:‚βŽz΅ΥgώΣvνCΥ§ΆΘY0:†ssYYΘξξ|ΡοK`Ω‚ ”owάΣΟIά‹cδB‘’ςQb ψa€κ)?°–q Yϊš¬£lƒ,uf!X‡Ά¨–^»W^q_»O¦L•„'Ÿ•Tα#;Ά—γ’άׁ׎ zμ?ΟC%τ1q˜ΩŸy/y•χοwa8μΑτpd0@jCߟ¦ΐ”μο—σζK2ψjΒΧM{š~0²r #¬h¦Αf ‰>'σ+Ÿ1’°-‚t†X―οMσv ¦ZvƒEyΩj±oέ MΜοZpΜ4rίχ;θJ{ωu >r\β#?/Ÿι₯žYήχ³‡ΛΪ‡–”θšΥ\l«¬’}θΔ½|k@•čΖJΚ"0§Qΐβ:g’ΤoδJBQΰcWπ• Μ|†˜T@έΓ?ŠγΔiY»s›"Ώ¨RΎ‚ΤH6δ‹“‡€Šz€ϊΥΌφδσΊlΩ2·nڍίO€1 Λέ—(QΒ₯ρ™r²ljύΚg˜Ιf?gκt‰}ό΅ΏεΗcGφQ}ε\G_χΥ_’r.NнΤNμ₯ )€ η;κD²†²- Ψ ΦN\‹ q’\Ώ–TFŸ˜ΐΑxΧύ΅o•τέͺͺ~Oΐ³Έ fκΌ6υˆ΅D1© †I­7ξώϋŒ8fΞ+ΐ‘Α-šΚI”λΦzƒsΚΝ!ωδ±ΡCάϊuόc°7ο¬’Š‚ςGHποK₯Ξν·ΉυλΣ·ά*οqUΠΊΜ<Τ}šUλo²Œjύ£€^`ξΤσuzή'š vs›j@3ώyΣeόŽχƒnC1|›ΚfgΦΧ<ž/ΰ%―³·ω~‚48›:7«€nΖσ¬Oθl$h›ƒΗΞΖ4qrzΜγΓχά{޲ΧIduάΛ(‘.ψfδΡϋ_€ηŒΞ2QγΒμ/$δGθ̌yΡQ²¨Dvh *±Ώolλα£b~υ&₯—)%Q5PΔ8)6θ,OήΪψ7Ώ36l˜m6’υ`θϊοžKiƒίŒ΅#cξW™ώ™ϋ―@ι΄wΧό$ΑςK ˜ŠυΊ`ρ¬ΩHζ:(ΜAbΖΖΟΏŠsύoXθ€½υΠ±#=?ώΠ½VΣ₯»$?Ž>%#%!YBL•³ή»ΈV™<]–lώMΪ΅k§ΦμΪ-Ξ›q ύƒσ ΩΏRκšζξE%}‡Δjya¨ψj:‹lήbN0fu‘ρŠχΫ·l•z―W;Ζ΅ν$!8&…6‡œˆC%ŒS3ƒœΰ ±D#‘« ֞χέ)F;°+#4Οεο£rΘο;έϊš,½τΛG=ΤΙ° /Wpέ¬¨&’< ½°w(L΄·ΓΪύž&Jgͺ/sψΟP|⌏‘\ω‡{ΟtTG yϊ)Χάκώ6—o޽0kž„ώ΄Q€ΩЉ¦a½žΑ늟¬ςήΧΦωa›΄ΊΛε§6Νx<αύ9ςλοΚηΨΪΌOδΎ»/‚eΝ;dχI€ρHϊΆoήαΪΟZΚm·HtσΖ’2i†;A3 @κπϋ :2»E£H| ΰ?χ«mΣ+\γΕgΘΧΧΞΨυ‰£ΑAD’Z΅’DΌΤ[± {έg/HΗN{9|Έν·iΥ4σ¦8·„a`HFJjύ›%ͺ_7΅}ζ 3>a7f€θ©΅K}M€Ϋυ%gc%~θ :yVm‘|_c)Pϊ:IE₯† <FXˆa[-ψ[bΕ ϊζ«@ι"–²r½$Ώ7Wν§˜Ν`g|{aό‡b_ΏEύΪχΙΥ,y xφœyήLžgη6VXΠ’“RΝsγ|ϋožIjΰ­’œξ£·WΞMΔ2HΝΔέ€F 0ξ\Qΐ3Y.Έΐ 2£bλή½»:{΅,­ΓYΜΰ§Ανΰ™‡t ›…Μ.\ĐN? Œΐ區<_ΞσkξΩtœrα?mΪ΄KžU°ψ=ζt„ΠΝ€Φ Œ@`#ΰοh ¦ΏΫ³dY@#π_Ξ—¬œΒ…7…c² ΡωnώXvΫΣΑωY³™·Σοi[3›ΆΌ9θ ΏœΧ™;KŸo>—ςΆPΩVΚ•I§Rr­κA&g_eΟ.η WΛΎ`ˆb)ΐ»MŽδ`I­SC’:€1 ©Όη© rbr§αD·KανΕVAUβ:“ΡΆ…@η4-υX2φK *(ρΦ"Ραζ;₯p%άW7–G[0R,ρOˆeΐp”›ΐ# @ΞfMΔxί# WbmΫSα8†νJгX±~9]¬pfηFŒ‰σΡpκΗͺݝ‘‘όώλb4¬γs(›˜2vͺ*GHΆ‰=EΐV’Ώ‚ug”ΐDΠeδ#†ƒ£8΅—!Ψ̎ŒΈv.άγ. kŠ`}@ώߌ@πόίΎΤΚ³΅%Ήν OPν‚050Šΰ‰6aΧ‹΅ZY *ƒδͺ-εΤΫK w$*•_JHB E+폄„·ύ‘―i.%Ύ6ΙZFϋ‘½:‰4ΉΘJfGΒΗί7)GŸ¬½ƒ1X―ΘxΟμ»φͺF½›%φ‰Άnπ+A #О1v`#uι―ΰΉ‘υνωηŸWΰ6‚οŠoϋCNή\Ug Θ";ž4Kp!AušM•ώ”ZEKH―‘ΓTž`3~ΗΡvΘ¨F m·­kλΆ]ςΞζ_Ž@3VΏ2€BόιšΑΌ©€ΆοL΄¨©Ο=ͺ❯Δ5Α\žZΌ˜8+”U$Νπlξ°iG³¬·ξΣ–uλΕ@άΫοNςέ'όN`Χ,°ͺ>LΑ2δ«V­’[jέ"7„*±gR q5‰qΔΊ™‹5ΰ‚cG0,αM 1ǜ>"–Sη=VΌxq7θΧΫ΅«v=P§ΟbŽ.-γ'Mr_;^§R₯J)?3Λ D0³Ω¦ερ?ψΰ!K(Η„LoτIxΝλe°πήཫ٠yοφlήJœ'OΙΟΙq 4ΧζΎϋ€ϊΛm)lŸΜ²d~VIά' δy3‘}α8˜Α3ήφQίDΆi‡Δ°Φuσ³€­Rͺί(Q-ξΉ λτλŠžuŸτλ‚ŸΫΦ?L†j²‰₯ΧΈQ’οΊύΎΑw€Ϋ΄ΟΏϊ6| 0:a1ϊ!’o·μ«m “{c¬2|\ͺ$§XPUΫ)CΨΦ1'ύ7f))KV«]RkT’θWŸΝ΄;ο1Ν΄€΅ΜΦΑ+—»οϋΝ?ƒyΉωˆΥΈ…Œ΄X“D ξ+-κ kΦ¬QΟGΩ%`λΖχ ` ΘΑ6k€»΅pW=;IχΘ,θκR­ω,r]Κϋ™z›L”ι1€8βόm«lh}»b2Χ ιζg”OΛ$QP7πΪ½u›„£ΕkΧ(?s§N”>ζάΒ?d5{§KŸΝ•Δ΅dyYΕΔuώMΧ—'€6€Όί™0Α­7vlsημΥZ.BβNœ”Πnδ6Δ‘4«Ϋ,S¦Œ«/ΫΆ‹υ”Ά.VDaΞͺQ³†λ{€z97qž’/œ>n²“F! ,ά sIX 9w₯7ξl*Eΐt+A8‡Η:ΘΒ%ίΊυΖn'½χT9ύZYύγZ©ζξ:+6JP΅Š2o±άRSv&ΔΉυ+η›Κ‹‘τΜ£²xΩwJ—±ίZΌκ²ž=Υ\’ύ œχ *7ΟCf€η}‚ω§ψefύΝO@3ϋEΆUΝHJP5ϋγžη3Δλl8šηw}ψ›Τύχ s†εΰa σΑΎΎm§Xρ>ψ6Έ‡½‰€8ξΙ¨šχ‚αΈ,֞fΖCμt-žέη]χήg.0RΖ—Jwυ|TμΆJ°ρoΉ€q ζ8‘΅ή‡θqŠ„ΟΑB4€γyι πqXΏΏ6bŽHς¨)9χuθνDZ6φ{œnΘϋžφŸ)Ϊ4dΥ7?»œ4xΆ ȞnֳُΆŒNΤγΆfœΟ“aό΅γ‘ ‚r{³;³΄_5ρΟνμΩ³*QΒ› NΟώhœφ%ΞΤήέ؞hσ\Έ=Α¬JΛ*Τήζ!κ42Qλyˆ6‘#G”ΞΥΆϋλ©σγsͺCΎξχ”ώϊ{±;$2ڐ|;;o@²ΓcνδDΡ|^Χ*žΧ”ΗΦ€fφΫσšΎώϋn}lNϊ ξ'4Ώ \Φφ7υ*―+Ω69Ώ{υx ΞΩW&ζp~g¬–φ1γΕξΉ΄<Ψ;Ož– 0Ψ›mpΞ₯ω†Ž“΄θHΕ̚ΏA]1*•SΟ©·9Bη•έΊ ˜~γ:‹l»Ά/Ι[ϋώp―UΊδ+,Žy_°9%ΑN–.ύϋΙ,½V™πHO‘JHΆ‘plnΣVœ{ˆ‰kΆlRφγ}έδλ_%ύσοψρ’Αοi³Ša ‚‘$ΆΘ0€‘mb±I&8/ϋ’mΞcώώVύΧκaTη8#ΖYΜ)`ΐ7Ν 9 ΐΥφ’ΥΪځD(ηέM€χΥtξΏ}‡$~±Δ reCdΫm n³FyΓ²ϋΝςσo θ„5½:“ tnŽ5 lΞ܈%.^βf~&ad2Ζ3HαόςdG1κΥΚM“—ξσέjIž•Xαk 0 '¬3*Ky$;Ύ?'N~ψ)\%2<ί+Xn­uqž·¬›5Σ¬’HQUϊϊuG²xΖό§ΎυŸe Ϋϋ\ω†Ή—³(Y’» v€΄Ξ±  :δ©Gpίάα_Γ»’d€­ρέC―Ϊ;aήΊΏYΦϋl2~ξίTΧ>·lκ{ŸUλ$υƒy*bπϊμΖπ2mo0‘ύυw]kCτ#€kG‘»±τ%°εP‡ ܌„€Υ9«J†ΦIΓίU‰·¬|ϊμγb¬φώ\Υ†ΟsZ­ͺxΖqJΠ1Κχ>r ν13ΨΉRY‰φ\&°ϊωΩ %tΙZΥӐ₯XZαήΎΚΕΣζ7:‘ι°'S’EMg*Χ3k!ΫR‹-» ΣbhθοΜ― 2”‘‰u“Lύq₯”·‡ΙΖ–$τaaο»λκ4δδ€²Ϊv‘NΨ„EKέ,άάY0Ώ„Β‰h4ΉΝ/DV‡Θκ7#!ENŒ˜'FΜ)8ΰ­R gs i‚@ͺIΠyΙrQŒΞ& 3Εt6°Ώ% ηΊU$εΌUΞpŠ,KΞKK‘ΙHXΛX^‹eφ”³³Ζ'¨¦ 8άΘόmΌ;Z 2bε‘}ύƒ€χ©aT“dSι ΠέK`DΞ₯X'Ο‘τρ3],O„‹ΧΊQ,σ&"(‚ΐˆΏς5Ψ?λ%ͺδα«-ϋΑ°ržŒZ¦P₯KH²@D—%(#zdδβά ‡2$vΎ¬ΡΌfwž―ΩKηWΗhΠŒΜ `Άc§bσ%…vΜ¬_―&±σVJώO©ΐlΪξ£rό― ΓόW$RJŽzXΘB) ˆ\[?#πnšX`‹gΐκΐuœ”;o•|O 1­’{φξ{%ν?Ε`0Φ$ηη,”π%k$ Ό‡{tWlw ¨ΠVΡΰφΑ ²Ίθδ02ΣOA°f8p Œ1BβŸθ-ΆΪ5%μH€ΰεΜ8&ΑόN˜i{°Udρχ²ΉvUŽε¦όž k ΚLΈNΫY κίƒ€Πy°«zAΒ’ΕΕΨ#ι6‹³υ=DΜͺ}RmΦΜtTlΛm;H|…² Icp1 ϋ-―ΧnB9δτGv}\6€‘ΛSϋκYŠ›žM“δ―VHτŒΡ˜Χ£Υυ6-xž}’_–cAπ _pΘ±#[ ‚₯Β»°M!˜wλζί±XΠΑΊ »»σ¦7d»ζ΅ΰ=“k7’°YEI£&MΐΓ“i›‡0ω4h%<<\υ™Ά²°0ΗδB2’PΔ±£_»"μΨ Sg)@qΧi°υ,ήηp 6l˜:PǍwI`?rΜΨf>]·nΨΣ―–#aιι [$ρ‡%x‘L :‚RoΉI6F‡HλžέΤ9?ξbΞΚΡ1ώ‰Šκh›$Ω€χ…LG0ΐͺ•V ή»ΒφCPcuUτUΒΫ`Ϋυ—κKH‡°3˜Τ²VΪ:ld Vάk†ΌςœMnΊρ"0"»ύω»η3εSθXˆ£άu>¬―›MΐΡFωίƒα,ϊρ›·dx €‹t ξ›θY“Δ‰ηΥρΑ\Iχ…Wώ&iŸ}-=‘ Z(ΐD2*Ή`Ι2g9sVΞ B™Ϊ©« `Ϋέα°ZT@ϊ€ΟΑ―dRΏ†{&70Ι€BΖΞϋαŽ&X)αƒΡrsν[²Υω#Ÿμ&‰G¨ύ£>ž$ύ‡½¦˜!IΎ³ ‘’Ι@)57ˆlΌ8Bl΅κΛςλCŒίPΘ$cO!±σ£I|‡bί#φΧ^KzΏ_%q¨μσ$!žzγN½δt‹A’Ώούρp#Α" —­ŠR‡yκΧ-Ώn ΅Ε &HόΡeŒΝύπΓͺƒΦ…Ήd₯Λh[ >\XξΪ¨Χ“ Bφ…bζ©/2ώ,Ηύ9―{ΞοΌχ©―ύMκζ1ι>™ϋή'c~π]φ”x$;ΨkΝ€]²-ΞΗQ >€ σΜ}}{ΛͺΥ«U’;νkJ”–€’σA'Ξ¨nΤΪ¦™XΪΒΎ ±g>Ξ=c¬βΆΔΈ cH€‚}q‰pœŠK½kœ·ΌHπΣ“s”M|: ’Z§šDθ’η}β=lNπφάxˆΜ6±?γγiƒ“Α_Ϋ„΄ƒηϟο—Ώ5FŽΏω•ό„4τΓ~ΥΔ Τ+< ‚¦I‘ώ£~3ΫΰτK²Ώœ/h«1α†$l܎¢ΜiΪ²΄‹©;8–|5WΦΰq;–y‚O[™ΐίμtώγ햝7½ Aπ‘„G―zY‰ξ \ωλΥΪΚ›.σvMΉfΡλž‡η5εΪ…ηMύΘλΛvυω3ΖΚͺۜ‹ΝχC=Οqε˜κφ9l‡σ+P8/ΐFπΉ?λ§QOu“„\s©j€hΏέu‡μoXK'Ώ’½ΛΚ‚τΖσςg]πbΏώr‘λσΪ©­„"©ώA lΰΤk`;@Ώ@§Ϊ±ξYΉuKζυSTl+_V:τμ‘* ³L2eΒΐT’Ώ£²ςΫ%⨀ρ H`7γβοY ΧΛB+P4'lBGΨΕj“νi RχΗejχS…κΰΡ›ΒΈQ!¨,²$X+)Ž{οη ς\o`ΐ@ή( _θ|₯Ωͺ{„·ωΆ:ysLάW–u%‰^ΦSz@W{›bΔνOUƒ‹dz‡ώ[Ώ[%©_|#Ξ©'ΐΰ!Ϋΰ ;)Φ –­»$ρƒO1_v l{‡ϋ\€^s˘I‰²yGˆ:όΠώΑR5β˜$Mœ!Αρͺ>,Ϊ΅ΐΨ.WΓώ'›rΒΈχένθGΘƒ­Δr[-IzΜ̏¨Ζ₯ŠKθΛπύ"!/[Α5Ί€σ ]ω‹Z7²ϊDΨΐή"Λϊή•ϋLXB±n£p ϊ3bψΪσyάψ$k=Š£DQ  Ÿv‘κ³ϋί¦ν’όΤi¨„C(ͺHε,ΦUGN β$±`Ύe²lψ+ΨΎBiws—ΌΩΉWί|_έ3gΨΰ^¨–΄FΒΎΩvΞ‡΅r­*bAβB0ν4άGφ!ύΚ$ςγFI†oŸ’^ `ηΧv†OΛ-kθŸβϊ=₯QΙΧηIχOWσκϋ˜˜‹U˜lΘ9CΟ™μ;ηϊύ8‡0yœ TzΎπ<7ΆΗ΅ηŠ… ͺ5 ηϊ٘HΞjZ£@^ΪIσ$jΊ_·γ9·±:ήΖ[_™άnφ—xφ•d«œ½ ύdΎΞΓΫφόŽΙOœ€g_#ψ>0μ\Qΐ3³;™%y†ζΔ‰(sc±eΛ–*+Κ„εi\Sq1“0xώgo†@λπg4ΰωrž_:;θTΰ3Ο€ %;γǏWε_=ΟΜΘ’Dᒜ%`ΐF '#<ηd΄Ϋώ—F€Ά΄™₯„ηF'1—θΌ¦s€I‡t,Pθ¬Ύϋξ»eοή½nΐ3> δQ@Γ§(™HΗ/…Ž&%ωrm„εΛs" κΥ“υ`Ÿ’@`ΠVΞΕJμΒo$Ε”q’dtˆ$›Ε-°wpύώ !ΣζρΧΨιrΆZΐΘ[ΌgKΙθμ€ ή2uŠε$ΉJ]9υΥNΕδ)"€ΨȎT$ZorY―0½IΠΡ‹€œτ‚$ψΧΔΡ4 –‡ fIkΥE¬V LœΧΫςYpήζΛakΝΩfJϋ§ΕΆ;F}αDΠ#ψ₯bτxΔφ Œs²ΨwμQϋ€UAyΐ—ŸΝ60`ΐ!χΦbΫ„r”τ*ε%Š₯φΜYυK쬲ρΪ«CδάΠ1RpψΛξ‘U@γ¨ΑΥ܎Bˆ₯΄u‡Μ«I(uΌχ€ϊݎ2Ή!­š©Δ5]-OƒŠZƒδΐ…X©‚Ύk!X–Υπθ‹Ρ€jώF`GΉ_~ :Ϋ§3€-μΓ―Ύΰ$‹>Ε>=TδΨ)WΣ<¦άZ]ςuj#vA 0a2gŸΜ€’₯«¬rηmιR΅J…KΞ›φθCuκKμ¨ΙRhΖηω €¨Οƒ~aڜd«ΣB;–@q ζΘξΪ4—οƒΟΔΩν1©ίμ.χ}J?”9°E Α‘d*εx΅χΏΎoΥͺ•JΠίρ•Ύ2φ!1c ‚ψ±`GΛ_ͺ„μλͺ7νn²Ϋšƒr]ΐΪζkυVŽ^o—“W JE3$­D— ± Yuϊ¨<°a…Dαάφυ( ψ‘βcx>τߐ8Χdή²ΰUΐ| M7φOΌ’Τ±όπσ?gTΖΠ‡1I«Fπ3l@€ ΝΟ½ήζί~%k[Κ‡s‘,‡`*μΗ€ΖHΤθρXΆ};}ΞΠs*n+‰·e@ΟΜlp~Ηϊί%yβ,t”("‘#ϊ«kgφš“Jt›Ωέχ‚{ΗB}‡`<ΩV>&Ψ––£'Œ9+!ΣΗHJœSίρΉ€\Ά₯ΪxvomάΘ­υ1 ώφΫoέϊ€Ο›J˜σžoS±ή:1~ιεJHtΧ‡$ΈiCωωp[·Α5μ]εn΄Θ…Γf#²@§δΣ5+ΘXoΗWΆθΠ!I―υϊφυLY΄εYκ|κΘOIڟϋ%ϊχϋΓ„ϊzwΣ¦MR&͐ƒ6‹:W­/β¦|%Q―,”ͺΪ6χ:ΉB… n6cC‡‘Τ†­T’―ΣkΟ§dο}wxΥdΝ/0a©€}±B"JΜV`p0Rߟ εΌφœW¨_;B?y†φ³Σeœ‡Μ>κBOΐ³η}ε5Ηρ₯Λψ›fχΖμf2p¬Μΐ<~¦¬Θd_σ;η'oIέΎζF^Ξ9ΚS}rυ<λκ{cΤ3—°}χ%‰ζ½Ϋm\%kN•Χ(ψΦ›Ω Νϋ^ορ<ʊu’ψ3$„…‘²Qέ¬»ˆϋYnΖl‚Εƒ’σDΔ½ΰ(UL1ΥGί\M €ΕεΊšοE@[qoΟΫο»ΥΗτ2%%rH0·b^Ν#αscφζνΉa<ŽμΌ΄έΌέηYu…Ο-υ–ΆΑ=ΩΝΟ΅nΗ§χΖ[rhπg’ά³ΎTλ½–¬μWs5ϊ= Ββ9σΈ1i]bƒΏφš²ίΉ… sξRq΅wdEŠJ’„ΠΆΈϊ¨K8ndͺd‘ΞCL@Τλ$ύ=_}ιόξu[Κα~3₯ΔΈGΔ^Ά $+]ζνšzž=―ιβΕ‹Υ:ηΰΑƒξ€ŸΫ΄i£ΞΩΓ³κώιqεgŽ+m[Οω>[Ϊ―ώŸ €…ΩΉy»ΔύΆλšƒηνG~:Eš΅msΡޝ5[Ncν]§¦H +_ω©“΅ψΊŸ&"ƜLΰ!΄q|­UŠ!IΝ `μα늻™΅=vW™ΐΥ’$lφΠ±b€’bZ|ͺ Π[xΆΣ „ƒ·‘†ŠFι¨ Gέ–ls$JΓσ.Οv¬η,CΫJΐΗY Ր`7Tg«{ΔY;w Ψ¬Ίΐ„ΆσŸ-!Ώ )*ΑΕ6ΜνΣ*x°5lλΚYνξo|ήΦΟt8…Φ€Ζ $καΆΉ'ϋΰσσIωδsWU(ΆΛg΅u qDk΅κ‘λŸk¦$³οΩηϊϊ&ε¨nf«»y ›$φYδcKεAΫJ#yΆKυ$šmxTm0Ϊχ[<{–oVJΚηΠ[xOI°7’_7”ŽΩ›pŽXPΕE­Cΰ'Βϊ—ΗΜVNŸ•Δ7ήU‰Wά– ‘z‰` θK,ˆq$ŒΑ>¨d@I«XF"= °~„χ]Θš8jΕc 9 ϋ%γ`,ΙΗ\$rβ;aW‡ Π _>eχ>I3M­ΏE a ΤO Κψ”υ[>Ÿ­ΦLΚζ[βη~#φΥΏJπίΗΑά%©΅1/ŒΫΞ?ΤXΪYUρΦZ.°σΔΣΠ·t$«DŽμŸΩ·Ύy§$ΓΕ„,²CG zΪg7Ά¨ΝISd/&žOϋΝ±-˜,N8ƒύGΌγb\Α3žΤΌ±δλ‚σΟF nFM• ?cΤ–©·έ,ωϊvVΫlvΝςgpŽŽY;g9J~ žΫךσ½δΣ ΰωLŸOΔrSq)5°xž{<ΡYŽυž –³` ΅K€ž­ΑLuμΌ{νs1. ‡€n©ΡHpΙό™Ψ‘»― ±`₯~ε™‹Α£/—KςΌoU0,eς) φŠbιEBΦ™qΣ$`NŠ–°W/ΉΨ3ΰjΞ„Irvά{ζ! ‚­ ‚3ΠBF7‚ȎI0ύ³fΝrƒ…3•ΚĜiY‚*σIΨk%υ†rʞ2³+‡Aΰν+φΙb½{χVvν/nK€‹΅0ΠC¦¨αχΑ()k«z£lή΅S•%Χ`l‚ξΘDΗ A1zθJL\»“oŒΒ…dΞ's2%͘0l’12νη΅~χ)ελ•’΄`)@…‰boPK"ΐLψ{}η0kA,Y‘*―τ •ΝήS•Ώ4γͺ>oΣͺΨ(‘Οv–ΟχW Px}yž‚ 6&Έ†ΒƒVτWωsνŒu8₯A³»UΚώmέNR Β>ΑΌJΙψΙ{…6.Α>»wοvίά—νyώ¬ β˜ƒ†Ό*ϋφνsjΈ=Ÿ%’AΪ,ή@/7ΘhΆΛΝΫ›ί6Lω;oο+ߌΤ4Ή1"Z֟=!Ρ6»ΌΗ?[Η@pž h³`\Vο ’›VΧ)P΄A`t4|x|Εs–bμ;$–Ϋ% bλ™σ™š$p"ν¦Š.πsM4p­˜ΰΉKkbVΣhΨ‹°W―/™e—-ςκ›ΙrψX°Ί%Ÿ|(XZέεJ4ΜrGӏΖΦ?dO±‘9‘>j€X`@™ΟΞ±wπQ_χΎέ$›J•.AΊT ˆ  ¨¨X@QŠ  ‚…"‚€("QAό+ŠŠ‚’"*]€{MO6Ω}ί9³™υeΩ$όχώ~ΙΆχζΝ»oζΝ™sΟ=/ΐ³₯|ο[ψ₯‘θ7v0~Š€ 2jjα|Žύ$rΔkςbirK+oΏ₯έ#3z΄iˆ €uΞϋυλ§NUsΦ’Έαγ%τ―ƒξόπή”Ca6Ά’=֍ρŽΝ[HBΟAž―ΠΟl ‰Φ²™~θNι7p€šΧ2;Ϊ”χ¦N—΄/–ΛFαp*P›OφσJ•*©’HΜΰΪ8=ηVcγ0‰>5U"―«!ΛΛ^ΐ3#xΈ!X+”έG«`quΠΚe―Ο•Œχ \Α}\+ζ§Sdθ˜Ρ~νΖοxŽŽ;{ˆ£q5°Φwƒzβ¨\I1£­Z΅*  š& ˜lž¬ΐο±e:„υ?ΐsnΆŒγbv ΦΡ¨ΰΈι;Ύΰm Κ¦M§νΝ26ήφOΨf™°YƒΊXC2¦Ι“'ϋ‚DxoΩ‰eϊϋ]R ΤBΐ©I€Χp"’ecά)Z΅Žτ«VGœͺΕ @ΐ¬W3G’Ώkό~glwvφο6xΧK\——’¨'Ι™‘Ρ§&ϊ˜‘³ ±ŒΩ`Έ΄!hßp,£Ο˜Q‘¬[ θς"₯Dp‘eΙ I}@.[nΧη]™2eΤaώ2e°Orm‘`κ@όΈ²G]r¬\Xΐ}Τ—xΧcŸηΨ–NP.ǝqΘ@@αxΥ±cGΕ89vμΨ,Ύm(η΅Ϊ^RŸ<ŸΆžc”ο8Δ9ϊΰ:@„εg±ωXί}θ`›;ƊBαKΧ­ΐΓ•δdΛό=Σ@Οuqœc`  Ιητsց¦Ί}Π&j+€AœωŽο?…™λΕ΄ρϋ‡Ξœ>g^`ή±~lλœΧ=ςΘ#ή`Vλό‰::{φ¬Ί>gΞ±ˆQαΌ‘χΙ€P-ΜZ\ Ω/δgΟ|S―_'νΪ./οψ]τΌΒ…σθoh»ω­Χ­3₯’Ν!2’Τ±qΒG€ΝYl°φ šΘ&”Ρ έ+bΥοϊοΠQIψπSq€AWf NoPK’οΏKŒΐ"hWΆŸΧIΚόΕΏ‘ΒΐJtϋ²°ωωбύOI›6GμG{Š@_MΕΈΥ½@ͺΠc>…Gq³?πσŽIΘ&Ω«³²*ιk6ΛζA Ε†lR!°_~C)):ΰ±σΦ± Ό”IsΔ–ΙΔν†/Ρεψƒ΅%ωυΆq«ͺš[ešΛrΥ*UΥ@[Hϋ46MψNαέ:ˆ™©Θ֝’6~ΨΤ±ύ;ξΏCΜ{Πfρή― Ψ!mμ1ΠζΡƝۃٻyΦCΡ'Η#Ψ}ƒη>€ϊωΎ9Ξ%OΎL"ηccͺ *GΗύΙ2€οq€·„ΰ’7uX&ΣYΦ¬YSm†Π§²’‚κΥ«—7uw$Ζ‘ω€Έ‘N@³ΩιίΜr§L’Ω΄¨‹;ή¦€(:tθP/3ͺœFΐΟε¦’dA@φ+―Ό"…q-g&³7φy=nβӘkΠ1ββΥ&[θΜI2|Βkήΐ5‚u“€Bl,Υ’ΐ¬S1¬ΟbwJ­Ρϊ«S6Μ”SΕc²―2!pSŒΥϊς;dICΌR†Ψm©2ώ…’Hx6Β*Ήωζ›ΥυΙ0ΈhΦI†¨α½Εi·I ΨΰΞ.ωV’oj’€΅ά#ΰ„λJέΘ‘„rϊΩ‘M™λHώž]€γB4¨Σ)ΊΈ$υ­€ήΨX ·»MBΞΥ έΎHfYΤ+0¬7Λ(\·"»3ΛΣΗs#ΗS‚α{φ!ϊΨ ,$ k]ήC—šυB‡ƒ°†YY²Θ+σ"™ §NͺΚτ_έκ5p½|#oΎ«6‘Σ[²·«Μ¦δWΎ5ˆv( €ƒ;&R₯ _Π@ Rug²G+ 4ŽΛUφΐA*δδU`~>q:λαSό}SS1Šȝ¬ΏŸΠ^δ³eβ\π™²I`;ΎGΜ67 CΆ5 »ϋΒψΩ΅7Ls{Λ0ι|Ώ+Ϋγύύ`ώu@Yΐ–J;fŽ‘F–vO€§uΗφμΫξs›ηqnΘ9f§NΌ "ΦE³c¦L™-ξ/Ύ•Πχ&{Ομ«+˜.ψΡ>βήΌSΝƒ"ψDξιΨΑΫލzYV{u°^.ž%“`s­ 6¦ΊŸ={ΆTΘ3αι0?@CJπΠu0&9ΕΉx™„ήu«Dτν¬'d’-c§ΠVΤͺUλ›_ύŠ+Ε–Ζ°’EΞ±ωμ―·άr‹¬\ΉRmΨ3 „B½Ρ–r½švŸ ύ΄;δ³=xΟ]·¬|₯€έύˆ„€ΙΥώά“²@N=.©:ύΌMάdΡΠ)ύΓΟ%τšΚβ˜5τ—Q’»γk7ztxH=[ΪΪ%7άfo‚‰|ν+χΩx\^ljμΞμΓv)ΌΆHοπΑ6’“-cΣ ΟFr/@ƒρx –―εόL=ΡΎk οΕ:ΎσwŽέ¨Θs(YΖF€τ4Ψ‚ΏΡΎΔh κ6l˜bxΎuβ΅ύ‰ήυχ[vίΥ­v΅lΨΎM†Τm"ύΛVΞrXzυ+%ͺYS°QJ>€eY ½Πΐ¦™8ω°ΐξχ^),‹1έ;ΔVΨϋ]^ήhΖ츍[«dΘ~0ΒƒΩΤ―€Ι2 訚;Θ]Ή"Gςž;ηZ NyννLpYˆ„χyTŒF΅Ο9,―_°_²hqMΠ:&dwMϊ?\δžφy|Η φ[φQφ3‚bΩuŸ΄69|τˆZσγ5θυDYιπ•Όώ«OΝ‰xΏωr}}p+xŠΆœΆ4'±ΪΪ ΒώΖ!Ϊ~ΦΫ:†ςψ₯K—ΚMΕΛJβˆ‰πG1w~LŽT΄«Ή·^ƒŸs³eώž)―m}f|ΦgJ½0 θΩgŸUϊ 4²kRH4E†gϊ΄σ-Z΄Peιςrίυ3ε}ϋΟrςΑΩn¬6ήwŒψ„ΐϋΉ %yν:o&²ηΨGφ“4Ξ BB%½{qνή'sFΝxY†ΪΞ™π>r?eΞU¨7Ϊ|ς(+ιΧ³ SοkΧUγ£Oϊ |yΰ]γδ)–βυΤυϊκ—ŸΙσ«<ώDtΈ# s5HB»ŽβΐΈιΎΎ±ΈΫή*f‰Ό―ζzΝMHςΗK$dϋnο‘ VŒh{‹H«³gευψ#θr Ύ ΎI2η[ΰ ηc<2ν/yΖ\ ©ˆ–τ+*JxΟ."/Χ_+l–|σ½€-X,F²‡D­tAP(Η@ε$Ψ’'Ώ »` ΩzΈˆ,-}‡ΎΊ‘ŒχŽλyΤ%α­ωΘΉAmy¦³>Ψ‘{>"³OM˜αeΉvΦ©?ΈG`€rτ—„©sΔρ“Ψ›vδHfΔ8˜­ΐ°ΕΝY ί¬V cλ.Ž~ΐvΤ€οž,ϋAœs* 0Χi"?)&Φi²ζ›I#@ςqΠ³βl &m²V£/f'qoΎ/ŽoΧ¨Ÿ•―Π―{ΆlΦ*σαs%tΝ&u|F• ƒ¬‹‰cg ›€ΐμμ*[B«W–Œ:WIΔW+ΥqŽφmΕ˜[3Y‘]•ΚIΤ¨gΥ\CΔ¨wʐρb4ž??zμ vΓΌ?[ήXΗzΦyΦ¬Y*86ŸDEASή·o_5ήsΌμάΉ³poΗ3Θ„γ/ΩρiS)* ?3萁”Ν›7W$Lά τ fR'ΰŸοΨζ •—Ί2 Q―Νιςσϋ<ηWƒΑσƒȟ.ΐ3ΗργΗ+'›Ξ0΄ΟZΑΧ ώ5ΰπœ—ώK熃>3966V-Zr²Ν .PpΒο8yδ’)7)άxch#h+‚Τ@PA ’ ΰ9-Ή5ΐMk *+pFί/ ΈΰΟ ΅ΡΠ³§Ϊ=sζŒT©RE€υΖΟαρ\ΨΘ.Ε·.χ|_/)ΐσι3€.™l™ €6€W½B’ξ†oPυ|™‡σΈρgϋβ±/_ PrŠ8 9»-EΜ„T±›ιRXΦD? €Rl °ι—)fεXqί}‡—ΡYοϋš±€±@$Ι Ν0)ρ|{ ©\Κχ0ΏŸE_ρρͺbkγ g`Γ1δ­ρycFφ[ΊΟ—㦋9υ},Ύbq›"!Ÿם­<ŸΟγΏqπˆ€ίΫ ›5؁ΈqΖλCΕv€.y‘OΎ燋Ւ6ΑςαΓϊΔn:¦˜%Œψ$}°‰Ϊο1θ'/Χφw,όϊC―}&ξίφ«_‹έΫι.=@B‡Ώϋoh xΎ΄Ÿ377tJx 8g7m”τΥͺ/ΡιqάVK·ΈyN†bUqΓٌK’“=ێΗ!Ε,@ΟCϋ5Cΐπ|θω%ΉzΛLμ$―kκeνήΆ$φ}I1š`Ψ‰ »WΌˆΊ7ͺ‚yΧ!Hiψ3ΟIZ˜|ΚŒ]{Α4ΙΓ„zzg’τ2H—ΨΜ2ιk7HΪΔ·ΥfYaεΝ1r-@tΌΗE‹©Mλf7乁Γϋβf7Aά°ηχ@ΌϊκθυQ@IDAT«ͺnόG°)u`Γ.-3E97Μ Š#“(… ΈXd)Hφ²b΄7cΜ`©_ΏΎͺƒςrEλ]ˆϋΈWλΚ+%yτDI?xX½Ίˆ `7|x-Υ(@ΐ&φΟ—Šν«εb»λ6™pΪΈΖϊμέ»W]SΧιŠ₯+Δ\υƒΈ«a³ςρ.’ 0λΜ:R§šWU'<ξkXO³ΙW+ά¬!|’ψ8±‡–•ςεφlξW₯oΙ{±gΰmYίθ?%O›'.€ZMŒaΞλκI‘GΪ‹;*\et†2τ1u©~vLen³ω>;5scŽ©±Ω~†έ~—€Œ|M©— A[ο²τΔ΅φΔ Ό ΠV G^Θψgυ ¨ K³f'"ˆ…:Ϋ΅k—Ϊδ#8›k^Zψ|xίrέ‹νι£W'HΚs/Љφβj}“œ{6™«)L•N Š΅ ]–ΏWΆ­ύϋ=γ³Ώίύ}GφΣηž{N6Ιb›­ΐo2rEΧΐ3’Δ$0΅γ‰‡xΑΡdνbZlύΌΕnΗ³ΦΜΡGA6i‚2<ιh€£`Z ň½σ·ί%iε0Θe?“Α3ƒΰη?ΧΘΊ1}ήΜΓ‰{J*‚Φ4›‹μp±ΙnvB¬Ε+S“eύοuH½kd`oο³;ΓΟχ ¦  ΎD‰~u°<3εuo»gΫ·φΆγO?ύ4K»§έW’ž;ž³zξžη†TσŸτƒw›Η‘=’λΊ₯“’0p”ΌkŸ1NƒU6›ύύ7˜Έ‘ϊZKθ>ςvFΌ $Qžομ [²TZdΜ>E!ΈŽ™[ίz«ΈΆώ)§η|$!ΉμΥ!ΊΙ‘Œ4 A»)±€Ζ΄† (ZHΡhΟΩG΅-σ΅­+Υ‘΄ƒ'%ΌeMu-_»A€\“&M²»ΥΩόγϊυΎ}ϋT?g½όσO0m—ŒŸ6Iϊ‘3@¨˜’ώΫΗ iU'ήcέb%ewκ°ϋ•ΑHkΞ|GH9?‹¨(₯½ χ` νmϋ+™)Λ„Eˆ1v €o7ΖΚ¨‘OŠYd|ν+툢eL-Ν±B‹?[F‚"2#λqΏ2+XmΟ§§Ηύ:xΫmtιΟ–ρšdϋηϊχ„ΰύka{1Nivf―XΩ;ωœ˜Iφά;Ύϋ±;猍ϊxeΎAέ¬λ…“₯ Yή.[Ά,Λη@>p²zυj5¦ μπ°Δ-^ΒΤe?vςοΣΡ7―Œ•¨›ƒΑ°₯»˜λ~—”ΩyZθ DάΫF€-ζ°λωf’ΏφΛΩ `tš¬Ž\ρ'Λ—•˜ZCΘ]₯RΑδoγXΛαϋ Η»ύΡΖ5oή\$ΆnέZΥIΫžΓϊ“ιΧwjΣ¦²… ‚`ΜΟ–~ε΅ω;·mWχ!’^‘¬ΌŸΦR•oΗJ£&Ό6ίΌa}ΩΩ2ίgΚ:XοΡZŸ)ν?ΗeΪΗ@Dϋω|~ €5žλίK—VΧΤvšΧΟ‹ΐΒ™6ΪίAfe}O*Hμ±vΜŒreĎρ+νωWΔx”ώ‘ Δ6dΧ±½WνΛ³-i"ή'Aβ)XΥB½ϊŽ₯<ǟμΩ³Gω(\lρ β>§^…Α§ψl€έΐ«ΠΞdŽuΗR₯Ϋ―?ͺββfΟ“ΠΫtF S tg R22ڏžπν‚qΟν"74,Ψ¬(kΧKΪϋ`t†J!aK uΌ7_@gAJΫοIψ/”Δ²3J•π.= ψE~eύIύ!|vΟψΙΉ‘ƒ[7\GΠwάϋ“ˆ―W©l+ά HkTW’οyXL Γγ·Kœ./  ‹΅‹Τ™ =Α‡Έ‹‘ˆήŠyuIx{ΎDyv”υ λΡIΜλ©γrύwδΦήπdΔΑiMλKΜ“]h0³=•}3qτ$ [3%Ω ’?•ύΌϊ csΨϊίΥρΛK#Φv|˜°~ž2r’ΨΞ’ΐstΓXΨκzuŽί°% c§KθοX‚ŽSoo†΅‚{ύͺΎDV£Δ—¦Š}ϋΟΗkkHαΗ;Hβ‹Έ—­»$$5r₯<³m[HΪ ψαgƒΪέΏ’ζ7Kκ„ΩJΟ μόβΣ Δ―β?$χƒg”$n_ˆ Ε‹ίΧςΦίη ν(ctf-ŸŸΥz _u`Υ?Πγ ΗHλ8Α28vFΐ χ)zŽABDν/¨2ΡήZƒy¬γˆ>.ΠΊπw ]ΞωΌΟ磡ΰ9A œ.ΐ3o‰Μ)ί½b}εB°– ΰYk"ψΤΐΏόžY«Ότ_²±_sΑ“ΒE:8?!=S“r‘‚'–t>Έ Ε #FSσw.fžγ*(ψ/¨ ώSžS;x³>ΰXz"§™NX/xs³— \8qβ„—i Έd $ΛήΚ•+Υ‚6Ηc}<£9&λί™ŠŠ>€uΣΔηςyώx)ž?vJ‘Γ~c| κH‘φHν†ΕΨ‹A|ΞͺN§γ,ψK W¨Δ₯‘@ڎ5CS GŸ•°†Wx«(ΠΩ{ήΈΕΙ±aƒ0|–r―„T/g=$λϋΝ;Δμ5HμϋΑΌ”™οΡPˆ9v¨y g-ωœOξ=πKοyBδΨ\ ‚…RΫ΅ΥΕ\<σœcσς…νE’> ΰ,ͺR2*—“02E”¨΄8n ΪΣu†σšͺž…Φ@ΒoΫ-)cίτ0F1Εα O‰Q©ΨNP“Cγ{ΑΞEοj ΡzGΑγ.a Ο—πΓΕ­Έ@ΏZ―Ω­Y³FκΦ©#ϋ‡/χφcB[pϊΊ2Ω‚’$1UN zSž ¦'π „Τ©,ξ$IίψJΚ Ί+ ΰ™›ΥΞ-;$ε₯ibΐŽhΦߐ+Κ ƒΈN ŒZιέ/$`X£M3υϊw6^RGNP©s“'’²`₯¦hΆP8qJRΖLΑ°„”ΘOv”ꙁΥάΈρǚFvO‚±4ΰ™ΎΡŒ3HeΐΚ͝β)i’2ϊu1Α>•^­ŠDτG½‘VWƒΊΘ”I ˆΪΒ†{RεF¬^+ξ™―IΡ—±(/Έ8™jΤ¨‘όž@kzΣq^ΖοΔωή"/σ”ύιΗεΧ·JΟΝΐ5Δ4CΜΗ_ϋdΑ=YΧ4¨‹uΪΊy36t{ˆ­ΰψ‘ΙΣ_“"ψRτΖ•ί:έu—$/όRRζ}ͺŽM)TLή3[K·Ι€q£š t@9‚84ΐ€²]‘ο.œ―™Yη~ψA_n½Ά‘$?7Ϊ“&ΗΫ΅yNΡkΰ"}S †Λ.£‰υΩqMŠLnLΕͺΐ•d5όbΉ€.ώJμh‘―Ώ$}'ŽWϊΖτ‘Ω ˆcJΦ_|1 Β7Ȑ nβ°Μ <2@σ3ύo- ψηzIX‡oΞ””ώ#±ΑφKήX»ZιΥs˜Ϊ <Υπ+ŸΝwή™;ΰ9―Χ»A²D(M¦h“€Όƒ4?Ϋ±in$IΏσψσψoLιLˆAΧ΄„oΖ^(ΑH ŽΎNΏœ¬]1dYΰ>#ΒMωοŠcυ―žΛAΤΡ ½M―Νρς“f%Ικ_<}²Z•tyώιpΜΙr<%λπOΒΠ _όΡίνΞ­π/‘ξMΘSΟυΆϋιΓ†K°qψ  ’―-r]CΩΪ’‘—ρ}—σΒ±•Δ9τUq!­΄™WFZblτ‡½1JnΊλNc›οΦβ1Ώ[­ ؈j~|š‘ lϋΓǣƊ¬rχtλκM%?fΜΕRir₯8{”ΰ¼ʍ>σΪY΄}“ΔΜ~G°šΧφ‘ήμ£μCeqӞΆ¬ΕM-€zκκ8ŽT-‰Ίω”ΰ@ω·X­mώϋvi”Ι†iQEΆo9Fž>}ZnΏύveΫ`ήυώaηŒƒΖ_J£WγΑ9vcΗN)>ύmI-ZNŽ/Ϋ#ζ8‰]1Rž9Μk7˜E€LΥ΄…Τß·KRR’"³Ϊ΅?ϋΪΏ―-#θ]Ζdή…?[vΩe—eχ©C}Ηΐ½>`dκ_λžq”-σWG+ŒλˆŸeμΜ¬s<ΐcHP²Œο™Ώσ…kSψ< κ& :.t,Υ+·mΫΆUiΒωL­,΄πPά²•HoŸ#x¦.ˆg—Q%V"›“ωΉHfpVT¦  ύ1—~/© ΎπŽΜΩ₯½‚ƒ \ΰό₯8Ζ:Μnlr),‰„ h°‹ |mΟ³ @(qτT/£5³Δ |<_γϋ³f_Χ¬ϋΊο²~V`;οΌ# VΠ}7»ϊΣo΅ϊΰώ|.^—@b―;JΙ8rVΏΈcsͺ”ΣCκΤ;˜ŽYSΘHŸ]₯Π>΄φΙΝl°<—’}pΪ,ξ!Z}.ώN;ΐ _^‰€AΦS % ?I—¬v†ΎAΏΜΆAα8Δΰ0κAƒr…A_ΒΪ™)ίWΊμo›?߁μ6/-*$gΦ“[χ|'-W{‚;9 Ν·ž±eΎΟ”~€58Σχ™’]“ ϊw’‘ύrέΊu^&j=Ύ³V0Λσό΅ΪN«nͺω#ψœ¬`4;‚ΩΞΐόiΫοκz­ΈJ dΝH>uZBΫεeΕ6n¨ΤS[…ί»^u$Φ©τK4Ε;‚/ζΫΞy=ΈCŸί7ΫίτιΣ•ί۟uLP8Ÿ`δ΅αώ6a^ΫΈΟ“ͺφ);³>τ·Ο~τ™„#ίkI«nk,ΐ)€Θ©:γΩPΠω†F s~@άθΣφ%Λ$ν“/±.ΰτ”q+¬Γ½βΎιΊΩΥΑόƒ­Oš6 ή½ž£1N¦5+1];ζiŒ4vμ–ΤIo#Pc D±%?έ]LΙPφbωyΨ8€χ†\u…SF `0°ϊΙ?°‡'½–θνy~ΗΑr˜νoσϋΤ—'y³IfT,'ƒϊˆYά3wχ_ εΫ?IΪ¬ωP6όFG_Τ³~MΛ~ή‚]=ν¬ΟάK »£₯ΘCwg 0Iyι ±kΖζz`€ξΧγ\πψ:Ν_ŸεYχΑzw8؟₯Ze?π|Εω τνϋ¨²ΟtE0WuGϋO|υπ΄Ν΄[\&}Mμn3#§ γyF5τwˆσ΅jOGeΙώ¬ ͺΥ`ηŒς₯%zτsYΖhσΩδγTΠ­»P”D½2HL€ΝBΟlœ_ωγ݊±ŒΜ₯£Χv8F5kΦLoVΏ‚Ύ>ΧιWϋ‚§9ζ’ΊZ΅jηΨf­;ΪD xfPΚ믿θc©kΩ²e³½†.η|^ƒ€ησΡZπœ  N/€η‚«~°€ ‚ψ7k€)<9Ήδ¦OP‚j ¨ © ΰωBj7XφΕ.ΜΞGZXNΎ)άpδβ‘ vζ,ΪΉhˍan0•λ /Ό Žη6Έ8Α±{τθΡj‘Ÿ?rƒ•ιiƒ€g(ƒ «‘”ΟΎΞ²‘¨6οl-&Ψ2Œ@ͺJλφŸ: Fgl|’ΡY  ]›v‹ΝΕmΗewHœ½ΌΈbz{AE+Ϋ%¬Nl@ŒΞΩ݁λDΌ“§œ ›όş»CΒκy}υ9d<1Ÿ"ΆŸ° Ÿ waqKΉOδy0@°ƊϋΓ/° ν§K€CŒ£DZζΐ"‘[Πœ<%‘λ·s'θ,›Ψz<(ζ`€ͺσ"V¦ ,¦΄i.…;?X ?—”ΙσΤ­ϋ²’υb0L„šΈDά?οQEΑΞ‘ΡK§Œ ΰωy–ώξ„τX₯οΐ4–dΌLHγ •_κ(―Ό1A±{’— ΠάxΰydΖβ«;=Cφz )WΟ(ΫXψΉϋ%δZl\gΠV˜Ρ΄‰ŒF€)Χ Μ}‡Ατ3Em@WlΞ82v΄νρ:›ύM:€½3ΑHTG χιόχ†@ ο~’ΥanεσπΎΘdKp”c°ΉζθΩIκ7i¬6Λι/qSE³{ρ>ΈΡ’AέΐšF3ipγ„BίiĈjΓΗD™ΞΝ©bγŒΓͺcMΝ†KΣx/ΰZΥ ¬έ#GŽτ_§T§€2@ηΠI˜Ωδτ―»₯쐻ε†[š{™©#_½j†l>Oϊ£²QΘV\ aΞΕΛ%εΣo€Θ˜ςγΑ=<πΞ:Χπ^3·ςμΈ9χΝ7ίx³‰ΨQ³fMΥήB–SΨ€d™IΌϋξ»αΦΦςĐΑ $ΘzQΏ|όc»fΫ {"θœω›aTne¬c?"ΈβΖoT}Ι»q‡ DΩ°U€ϊ•ΌMkυΑ‰£ι*'ΏY)…ο½cyqu‚ώwΑΟy­(τ&`#V,xGδ’²Tΰ5ώΠaΎ%`Γ ”N†Ξθkε ϊΩ¨m(—ο³žEό$R»b/‚θΠ-\Ύ‚,’A9…?2IΗ(φmΑ,§ŸΧ‡ΝΫ$ @ՍœεDυEŽR{Ώ·(^>[₯nυς2ςΐp‰ŠΜΌoή?ξOΛ‘'₯;‚Zπ>`b60 F)*«š^γmχΏύφ›ΤΨ±ΐ”O$`”x0’YΫ}{‰P©Ό#žκ&Ž[›‹‰yBβΰΡ’€FΤτ—₯Μ΄IœO.\ΈPτ0ΆκK2dΰ§ ½MκI(ΖΞ1iΛΨΟ Š’=b?±iΠVΆ”\ŸΩ8ΆΌϋΚxY΅c›κ7Τ1ϋΧν-n–τtA»PΣΜO€:iΏ©©|΄}³L3Θ€v£xρβήy*ϋθή½{Ψ•εpΥ’Ys©ίΠΓκ―μˆ5’—( `φ sfH‘!OΚ=ά―€n΄ωΣϊ–Τ—I ϊ)ηΨZh[9&Π₯ν4xQ<<ƒTΧε+VT‡r^ύpλΫ%©ζb„Ϋ$|φΛ²Lυή#uΒzf±Χ5“½NsχI‰iί@ζΆ^ νΖΜΝg²Nθ:bθPIΑψCΡγ–―}%ƒ7΄-γ\žφ(;[VυΏώϊλ½γ>Χ4˜`@ސΥ[ϋΪΎ±,ShΛƎλσψ;…ǐ₯|ωςκ³Β&ˆOΧI[|ΦtΧΌήlƒ”sΖwυ-π(hΊ κ-· nΪCŽο²N™U+°—lΟ–+ΗNΘΩ―Ύ•°MΫΌΰ(υ3ΪpYηx`€’ύφ’ΨΉψ·HΨΪΝΚΎ°ŽŠaρ‰‡ŽΒ…­2Α{{φKόF°Η\e‡m5ΰΣϊfcΚ(_V’k# ‚ θX΄m°›ζ*θ‡qSη!(f:ΤUͺΈD½€9<Ζ¨σΪmwuΐ“ς7’΅/Ε,μΓ΄<†}‹Β~Θο΄πΌ‘°3μχ<~Λ–-ϊ'ο+Αΐτ«²ψq%Κʞž3ΕϋΩΑwΛzηο΅ιΗρX²(ΣΏ ΄2ƒ¬_άΗ' L;g΅3΄Ωτϋ΄GA+³Έπϊšp‰υ‘Fα8Δ~¦Χ?ΝSgΕΉs˜ΉΟί§}ϋ£$λ'ε+TPΗΣζ·Ί₯ƒ |κ°άρΗηrστVΈοής¬ΰΰ@m™ΏgΚΊ³Nώž)έΌG*ZΗ-V™8§ ΠO%k7ayš4ƒΆ•@s–mm<‡zeΩAηΕg ¨ήϋŽlWzŽ €‹Ÿσ‘­ZEΦ‹Κžbcc=Ο!%U"PίοϋΥ۞ψ̚^VFFτ~–ΉJl‰’*πN@΄°Γσ¨Η{LζΝ«ΖΩXΗFκ„m‚sCνΓ¨ U*’„@f ΰsΠΔ…‹%τΧ͘ggΪ*άgΐ¦1ά%UbόΆIRζ/ςΜ}Q0ημ©`.τpϋό±UΓώΨVώ$ΞχΰK_—e£:51γφV²ΞNΰl<’kΦ{Η–τ*Θ†Π«³€†Y]3œŸ$L›#w){;:΄σi_Dσ; ω:Φ)0νiX;Mϊ?ωwΐχZθc’Sηꝿd€9²o7› drp’¨l:°»‘`‘6οj}Ξ΅ΌεYί€5=q ی5kHF…²9θ)Œ7Ή¬… ΓwΈ‚Š«ϋ{ͺ+oΐZr–χΖΞΏ@Β1Ueύ‘ΟΦε~‘[nΘr ?˜‹ΏΑ3^Œ7&²”•ˆψ€}<[A&C•Yμω<κ^Ωc{ύc2“Β‹Θ€€½ΓΌΧC"Uc%ιω‰²οθ»*μ|U%‰~μIγ5υšΉaδθA"[ώ”ΤWήRνCG‘~Φΰ&›Dΰτ^dgpΟωR_πδ ς­ ΰ9ί* Τ@PA 5Τ@P»‚€η‹ύ λw‘5ΐΕ.XsQ?;!xω^€jΈΨ@6+“ Οa6.‚kαΒ7Ωρ¬ ϊ·όΌώλž±Ή·`±Dό²Q †J°x¦°+5«εGz:Ϋ–­μΤ{Κφt6Qΰ[ƒjbΊ 9ύg:2.#]dΙRΈχή¦nΎκε>›€@Οζq€rΔ΅Š=s»8VQe`β”w?#r& k¬‰Έ§Ύ„΄‡œ Ψ6m—τ}=©ςP‰tΫΆf׊Μ#_W1ΧmΧ£Ŏvτ˜;VŒϊ΅ςV.€"iήT Ϋ&ΐςŽ~=nOgg-Η7?©λq8z8‘ς³ Δ vΆ]_EΚυnSΕΛΈD4<_"2‡Ϋΰ†/ΑHO<α ΰ ›"άΐX°`Aσt‚ΗΘ:ΖMnk2κ4ό­E‹ͺ,nδhW©R%UY[ξ?)Ξ₯πί jώŽ[DZO}W.ΐσy܌—ΰa³–‰χ(―ΑΎΘΜ`ΓοŠρΐg¦7ΠΟ"άDΨ™¬\n‚νη­ΐ‘ӌ“uήŠŸ •+ @4˜₯ M†iΎβ³zο/θυIzύM ‹=…ώbψ3HΑ°;&d3κ¨Ω±yOλ<&~ΐˆτ$)’ ΧV:%αNάK ouτ9χ¬ρruΝkrmχ›Ύ-Όn«Ψ`'ל8’ζ’μoμάpΆΗγ˜ΰΟ6±=W­$!Πǟώι 'AOΕΐO›ΙώΔ? ƒAš\]C^š2I•ψEi3|Wόύ°ΚΑ“²―RΕΪΙοΘjΚώΕ>MαΈBφR²jzν«#ZZΆΜn°ΆŽ½  °π₯§‰±m‡;w‹λLŠ$ΗΫδΤ³χΚ•_h3vώΎUBŒ7ζαΌ. €α¬D Œ¦°NΡ1sw°s~μFΣΖAa>δψ±,vƒlh­jΤ–!S&ζΙΎraπ%7[Ζqˆz'@:qŸΜ šmΤΧ–ρΊ΄½ώΦθ[άύ ˆn΅—lΏιSPΨ6Κ£}₯ψŽο¬―ΏςΩfσΤΝuϊ.²Nκ π_ €η,—;~Rβ%"l#˜ŸΑjιτYW₯ Aζg€Ÿ–.:ΩX’¦Ύ+φ=‡δpΛUσςZΥΕΪX-Ϋ1|υo’:mΎ”) Χ ψά`œΜ«°ο’YΎ^½zκT2!3θ€6“ΎTύϊυΥχ΄?τ6’ΏJ 4Χ΅ΝgΤΒ~­Y£•Ž  _Ώ—ΗL«ΑΘڏ«XήFΫ°ic?ŽΎ%―Kr…@‰8†XΧrσΑuP›;ϋφμΩ³%22RΩm™ωƒΒ€Mϊr΄/ α%·q¨²Ϋ.φͺWHΗ‡ Θζk³μ@mY^ž)ύZ γyΎΒubν§rlgΆŽ±’λ`άΖwκ•s@ ζ5r›?ιqΐίΑ9•jOX_M{ϋ0Θ¨,ρ]ξ;§=Εf3/ψ}3Ζ-dΊαΦVΝUθ'”(QΒΐ{`ύtνηsόβΈ@Ι.xGύxž πΌ™ΐθΊ}··6&κΒo»@ΣfΠb`ύS3Η‚‘S―k σ}ž@Ao-ςώΖΨΖίΩοKΘ1ΨV Ϊqjƒ:Υ`Υ‚›θK`~•Άπs12ΧΘ°Ρ΅Cξ,ǞyΎψמΉˆŒTz‘[±ΐˆEЉ πΤ†`–$[ .Q@η―–‰ν›ο|€Ξ)€ftΆuέM,˜Ίοj+‡ΏΪ&ζ¦ύž―›V‘2}p™ ]ϊΨΌΌš‰©rdψ`€<«Κ)^·„8ή›-φ8,ΈB°μ₯˜μoσ<6χr­KΧώβ Ψ¨Ί^ ΐ οMx¨f§ζxΐΘ7Ĝσ B± ύ`•χβFŸΚ‹ΔΝώ@"bΫR,αLŸW2‡…d]8μγΗa±x£<“^§ͺΔ θ6ν‚Dšς•ΈΨ₯fk\IΚ=έV_9ψΤ€@π|ι7n˜sό'317gύ  Φ­χΆ£V»ΌΪd @‰@3¦&s³ M§†Οc60Qf‘Α%΄nοΖ;λPϊZ9 0KΩ^­=—I°l;’Πω.Ή’Jυ]I§Ύ ŒM'WΙb=ςi•F”>f˜0`€Œκό˜Δ͜ΆΜΆβsχ谎βύΑ獦D@]ύWgΡπ9윏Ώός‹Τ ’χΦύ’λ9wυn{—$tYϊ¦Šuϊœ}ΎΈγŽ;δ`-= ΣND§Ε_ΰΩΛΑώPεΌeίT§§oi-‰€ͺ›Ι„­ΛΟξ•uϊhϊ[rܝ.2AΥ<–ώ'C τΥBφA2;“ν‡ΰ‚!ušrC )œh!X€Ρ_Ψ€γμ{ZxΑ;ϊwίW_Pηψη{,?“ο!€bασΩΪΆ ΎTΝί}υΚοȚ[»vm΅·bΕ /“σwݐ1U³έqƒŽ@z¦|₯žΌ)•’.‰_˜φσ€v)nmΣ°ι―XŸK•PίεηίΏπœΧϋ¦olΒ™ϋ‰ρσ&I]»Aμ`6|ΐΖ»‘WΨc˜`e“Ac~ΐρ^ΧΔ3U@ι0ψc‚°¬H€’“,i;z\BΪ¦ ΆΔβ…³Yv~vR² 0„Γ… …{[>Δ‘VΥvIΆ ΨΪ­ώΐX”οdͺ­[S–ΐεΪξΨ"θˆν‘`_ΆS‚y·oίΟ»vνR영θ€φόΡFΧKd½š2bΔ*Κξ<‚«& {l™gδρWΗψ‹ϊžΛzmΫ°QŠ„GΘΘI½ΰ4G`νŠΥ2hη‘«ηΧίΚξ{o Θn ί5m–Ψ6bάΛμƒd·ΔοH‚N―FΠMg©Š U—M[$΄a{Μ»ΔV·ͺΣΓjν[oλg²«’‰“γJ vγ½ιoJbŸ‘’8φ™<ΩW>S+8υΘΞ–q,α˜O°@nγ>ΩJΙͺAιώlΣ^³,_α}“9Ž:ΘNΊvνͺ2+XΑ•Ύγ;Χ:¬Ώλ²8ΎΤΝ΅‚/.ttέ κ5Ο€gλ…Ožφ0?oDfŠ>ΰg°F4k"Fγϊ]jvcbΚK©¬ŠŽϋn£ΝΩƒ‰­χ]Πο vHΝtΒ¦­B΄ύΨIΟxβ{-τΓ 0Ζ»*^.…j_#&ƒπΘΈŠΎ dΧ>I~ ¬˜ hAϋut»OŒ–M}KΙυ3ύ©Aƒyƒ"ό Ύμ»ή’Ψΐjσω…ύ͐•Εχ)˜η0Jn~AΉΜvΑ~Λ Έ@ˆΨG)τυΑ θ% 1ύΊn`ЧΠΗκάΉ³|ρΕ^?[ή1pƒΊγ±sύ¬‰ͺ,¬γ#09ΚI¬ŒΪ<ΞΧ–όM;δΟ^ϊL™- ; νm»žŸQ?΄χ”ΌŽο †αœ0ω“δνoŒ([Έ¨ΔˆΊΝ³ζΔ5VG'δ›hΫ2 yΫηlK¬Ο_ύ₯ξ)§œ«,š4ERα£‚r:‡Ο™ύ…‹ύ=›œ“Σoω<Σwύι7Iώψ‹,έXC o‡yτ}›SςώRίϋcΖauθ|-€Ξχηθ,ϋJκτ9ϊΧ>o½œU*Id―.bŸ-ωώ?Ψ‘m” ­…έΗζΚζ| ½€Lžε;]hǦbH~2ο£8dp‰V—λέ%TšΥCv‹Ώ’΄Ο–yǎt¬‰G=έ] ]c󒆀IqRšΤ—(«|Ύgί[$‘_|ηο"Θ3βΩ'ΔΌ¦ͺ*+ΫxΖ©c¦(6{uΝϊ5%ζ™Η²Ώ&'Μ”°υΏ«"{τ°>"ΠMΑ\,i–=mΘΩΈŽΔ<rυ8˜ε`Ο‡ΣŸ/“ΘωK”n2(ο!χΐ³ΛNLd„HycšΫt1Ό· X!ڎ %ϋ‰“Ψ{ΨωJ­Ÿ}LR_x€(ρ*γO8ΐΞrΰ(ΐΥ3Ό`η¨—žυΜ -Œυ- ϋχ¨w8Φί₯^ Λ―Α· Ο…§ΌΗ‹YAΐσΕόt‚u j ¨ ‚j ¨Ρ@π\ j r h€‹ΪdZα<ΎΉP^%0δοφΈ1ΘγΉ©A04t V‰ŽŽ.ΠΕ]λ΅/fΐ3 ŒΥΏHΚg_‹ύ862ΕU¦€D"mœy}ƒμότΑΰkN@gμnRœ φE»ΠŒΞΊz θ|χβΖζ›–#³JZζa]«ΛJ™!HEGΰΖyŠ™β”c}gJθŠυŠ=!Κ~B"ε¬Έ c)γΜ;[gΙ9œΆb­Έ–Ώ4ΟAv°:ίΡBΜi£r8)χŸΘ<γlχ„„d²LΉΑa{α)1:΅ΛύdλhcI/Oφnπ8±π=°7(rߜ0šI9EBώ:¨JLkΩDŠτxΠZzΎήšρ΅ΈWξTeΑΞωRε%}rπ|I?^οΝqƒ:>>^:vμ(Λ–a3Ξ"—¨jŸχ›€¬ί+%‡ά%Žk.χŽ 4 Λ¦ΪΔ»κιsEώ:*φΕ€Ψ”>^ΐ3Σ'·©R__(Ά†±R‘;Ε8GvG^—ΜΌ‚οΜ8q"“ω ί‘e΄54oM μJn0έ“Y—›Ιτ3˜8q’¦-ΐg‚ΈΘͺI!ΓYH ΠXΉr₯ϊΞϊΜsƒV~}ε•WΤgλ1Ω½'˜ ΪgΛΥfνςΝ›€S§NY@xϊ<²Τρ Ά8‹΄:Ψ°·‚υτqΎ―8Kΐ ΧXO =ϋμ³²~εΧρYD˜² ΰαœκτΰ-mΔωpo9;kœΤΉφΪΌΥιδ9”’(νΪ΅σ ”'Λθˆ#ΨYΤ‘‘“ Ν¨f½_‚£ΙnZ½zuIϋξ'IZ°D uΈSώ*[,ΧgGύΠ§%Έ„༏πΑsΗK2tL?˜ώςΪ΅kx‚z4i’΅:κ=Ϋ>ΫΛ%pžŒΟτ½ΩŽXΎΏg8uκTyόρΗ³τΨΏ""{!3dZŒ‹ΡμxΌ§c’@Y-•+JXŸM°ΰ―ό—Οώtdœ†Ίfƒ$­όΩ»ρξ=ΟΤU‘΄DΧ…_ πŸΈ2č =γΔiIY2uŠi^ƒΖεΛ—{mƒAHΦ6ž,’¬―Γ±kdΣ$ψΪΧ^φιΣG1Σ’ν™LΜ6Ε±‹φά:ΎDH€>Η8މV@υKfςœΖF2z*$”ΝqžΎCvu"+¬ΎΧM0N]ŽΪη`αύia_(S¦Œj3ΌVAIΎΟ–JΠžωjΉ86‚ωΰ]«(ΠRσλ@‘^/χ΄χΦ/δ{θΠ\²BR?^ “GŸξβEΐΠyΏω f.ˆz³N@Λξ½’Έι°IΫ‰SΩ–œ[^― >›4k!@Ӟ㝍kK‘§»δσW0Ϋ1ύW_ςΪDϊΠd=ցl―ΣΡ6Ÿλ†«W―Vνψ!ΓT­κΗνΨ±CωPVœΩ3Ψ_nS―]lςι’Ώ™q­uΣ~άe—]¦όq^ŸγMnώ«ξ£μΟγǏWύΩZnvο5 —Ί ηoŒ`fω¬‹φΙΒΏΟ|ΐχ:j–Ίϊeƒ[ͺ^‘£ΝΧ~Λα΅h› ΤΥvƒc,ΗΜ‘#GΚΓ?¬ώ¬ΧΜν™rn£ν±υ<ύžΊ¦ύ$؜Ί‘}&[3νY^Ηwϊ Ό‡@ζOΪg=|ύ]2τΧ©SGωΊ―k&§>όT υ꬘ay| σŽ[΄Η,Λw,a9ΎΒ±bή £Δ9o‘8ϋ?‘‚¦όωωlΧΜRΓ6«ΙB|Λ:ίΟ|ξMš4Q§³°$Θ`·θs αW1Υ’Q%V"οm+`jA‹`Ž€fCJ¦0¨/υ:£³/ 5―?}F’”ΎΰΡΜqΨUΆ”8Ίt³vHχƒ9yΪ\¬›Β.Sΰί€5­/…Ίβ,X»Mxϋ}₯{$ =8ξn#ξv·z‚.HdςΫ‰ςύΪ©’°CϊΈηKqσŒ:Ϋ](ZΒ™Ή€Ω0Φ%̘+Ψ“ 0 ¬/2Γpnˆ Nς«Σ$d§' LΛ‘ύ{‰ ΓL޲f€M&`{B°»αέ‘§ζ³?εΤIˆΩ΄ i jyΐΡΠOΑX˜2r’'γ"ž£λ` Ώ!Λ!ΎΞΎ}/_£ΎN―_CbϊΑΧ‡ο˜˜_}/©s§Ϊ’ θΘ‘}ErN3 @η3˜Ώς0;WΑ>Χΰ^`|~EBŽŸRΊuŒ,r⬀Ύό¦ †u•*.Ρ/8μχΦβXώ“ͺBψ“‘²avΥ ~ k xΎ„nπΦώž)XΙ ‚j ¨ ‚ȏ‚€ηόh/xnP¬.Fΐ³τfρXD[»`„4B° ηΌζ*‰Ύηv‘κWύ³JΚεjٝ7ca ‹ά€Ξ.lΚ›uό/Œ;ά!§¦|αaš(WTʌ|H$:<—ωωŒ’Ά'‡Š PIBz)qΊΑȝ†ίXl #όœP_έΫKάk7yYέΕ IθGSΕ]­rΎ 7>ϋV\ύ^φΆ W™βϊρ40”Ι[ΉGŽIκKox6@‘‹”Ϋn’Tˆ`c:i8Ξ=~Z κρ‰"Ν n‘5 ΨωΪ Rί]Τ*xΜPAΐσγ‘sΓ™ 1nδΐ@*n8AΠΟέοyHφ™‹M(›”yŸΔΤ¨ ”C “Uπ @S/Ύ#Ά}Η₯ΜΟ+p7ΐχξX:%D œ―Ξ+Φ«•,;½]΄ 8VoD3γΔoΌ‘ޱώ#£h·rWI:ωnΏΉΎΪτ&8‚@;nX[eΡ’ErGλΦ’Νz^›ΰ3‚ρxo‡ςĘޚuί½{·IsCΊΰ& B`S6r“_›&…nk)ΖυUY`Q,‹Χΰ&}©R₯芰€7½Q 2šρœ={φ¨2Έ!τθQuΌF₯J•TωdΉ£.p™χΑΊXKοΟ·Nd;«κ²‹³U Ή»₯DΜΘ-«cX'κ•ŒqΌ?–E [Ρ’Eγ&5@Η6₯v<™χΞz³N,‡Ώ+VLδxoV°XHZΊΌΏψ“lŸA8ϋφνSΐžK=­[·Nψ=sΤ}d‘¦ž> κͺU«”ž5j”ϊΜvΜγygΜQiΆ `#μάl={˜ŒΆΑTνΌo‚σy―Λϋ%8rηΝκ|k¦κŠμqBςx2τD’…ϊ"“ͺύ?%ρ³₯φ;‚‘pōΝogC’ξΎM€L)}J@―Yΐ3ž…$Bΐ2^0?ƒΙΜΨ²C6πGί ώ3:‘Ϊμ'¨ŒΟ.lœ+ζημ΄‹vλ9ηψŒμ ¨xC΄ΣF»?‡?ΏΫ“Ε†:˜‚αΟΉΐΜΗΤΪώΔ™nΘή‘βD‘pώδς«Β$¦4Ψ¨Φ°²:$Mfg£0V ’.`@Ρ€²hΟ|Ϋ=ΫΏ;λλ²²έRψΫ/ΑVl«ΐμcgΏώϊkeCymφim›bΞ$Θ©wώ'174£^u‰(XΖΦ‡γΐ“΅IZׁρέ|IΎ¬ˆόJ/λΜWk,X ;T?Z±JŒΦHHΟ‡ΕΡ»‹²χΎ6ŸφύσΐͺΌΚŸ/i―½+_Ξ–YΏπ²—€L λBُ?ώ(d«~½kwqΊDμέEŸ,-\›’ύ£ *R€ˆΔΖΖ EY5kΦHJWΙ!„–κy›„6ΞήnτK{Eΐ_ίΎ}½Ο„6ΕΧΎRο|†Y? ŸΏγψΰkΛX'>ΦΡ*l<‡LΜΦqŸΆχΫxέv΄}₯}$8ٟ-cΩΌgŽC΄―ί Θ€>hσ9²Ξ Έζωτ1iΓi_(ByσΝ7UΦγ;―K0§υ>X/Ά]κΘwlδσ`ύΩ΅PO ΐ’Oΰ―N,ŸΐI^c/όΪkβhΆk>Λ&£(ƒm¬c˜ΎζωΎΰΩz}~^ϊ­86mϋž֟$sέΘfMDΐ.P&’,g_€§γ$~ζΆ.3@—Θˆ)ͺW'1./}.˜"”2—p—Έγ Bν`”τ'Μ`;ρ ²pΛΐΪEδθ~"‡ΪiΪΰΚ•++0.mm?jωύω[$HίJ·}_›Ο~Γ~Όcfβ(_\6Ϋ£X„}ύ8Ϊ`f £οΑ@Φ‰}“”`³OωφQϊε £οOEp1ϋh ΒΎ¦hΓΚ—/―‚ΣθoΣη₯.Ž>|ΈΜ›7O2ΰ Δ/ωVJ]ΨPγuξW‘ύ˜ψV‚¬ώ%\―°]ڎ¨+‡ŽΙbσ9±Ϊ.ΡO€-gpuαΟ–q~E@2Ά|F<‡Œυ,‡:σ}¦Μ>CΔqEΫdkνy>―ΓηΙ{eΤ5m`^ΗwΦ‡ΐj–Α±½eΛ–~ηO¬!«Άng¬“nkόξ‘GQν‘6ώ‰Ξ]$ .’>g>sϊζlώΪΧ’,HέκρJŸŸΣ«‰ρ%uΡIZ»^bž{B’‘έƒΒk°]RΚ•+§ζΈ <vkΠQ'π/Ο€g¬&,X VΩΝb (A?uΦ©.ΡΜ8ˆΐ‰‚2 §ΡφŠB 3Β1dtΞ/Π6ΡΆx©81―QΎ2ΛG™a΅χgΠfσ-π―ߞ―ΦυΡΠUqUaOο$’Η΅[ ΰT€ι³S2¨(}»εyξ₯Nζ?”σ]…Rdϋf‘Ή©X>CBZ€νΈΦΫaχση8»?©NI'Ϋυΐ§ΔΜ ¬¬/°νOIΨ™σ t λx7‘VϊW―θG‰“ηHؚυκw7²X†ινΙDΰ ΜMΣ^™‘M0I°n1ίμρ³œŸ"υU‡u ™tΒP@.ή»>–Χ! jξάΉκ\‚κŒ μΙ'ŸΝͺS’S§š!˜`’›oΎΩ Ld½87"Ψ‘[Χ {ΙςYWή/u4gΞuο`4¦B'λΰwο:-₯ίΛώ·†KυkQυΡ zQ―άπΡι Ω&tδ½1U6AfdΧ$X`ήYΙόM±¦ψf r#¨ƒ,Λ+WTm‹ΐ> ‚$΄°ύι{ζw9=;^ƒΗ[Ο!ˆž€6‚g¨`ύy₯'©Sκ‚ΰΆ¨¨(•r½@Ρqqqκ>ψJ°™².mΫά&Ώ_§ΪGΩ²e8 Ά`H6mκΥ `Ζ4ϋ—dς>˜$c(ŸΡ„ ΌμŒV¦tn’Ÿ]ό•„cCΪvς4OSββζϋν7{XΑp~nΒgE¦XΆ_ώΝ’|"20Ό F3ΎROρΑ_" sؘ=cΟ2ύ|Ώχœž‘ 5Ι8Φ*!vaκj7²½d”+©Ψ— *ζ_!€ά6ΐΜF°±gΎψy~…ΰ Φuϋ_’:m˜ΗΠώέβFϊκ΄zθkψέ@½Y;|~ΦX‡pπ3‘ eKeHΡΒ‡ίkθ/Ρ·άτL8jU;|z~€sέ iή•π°E+€4ξuGΘ‹°-HE 0₯sηΞ2bΔb% •β{ξΉG†‹Β³‚žέHMν›Υ„}OIYNNφ†AMίX¦zYQ«‚ (`?&8˜vŸ ($h–Sφ£O§«LOόΎͺٟ ¦ͺ]»Ά †`m…ΐηoΏZ °ΔB9xOcnεχ9Υ‰ύЬk°cΏηψΙΎF€!YSωžB[°ώΗ΅r²Η4<<£©ε½ωσ•!σ#uΑΰή…ΆŠγ /h―i―ψΗϋ€ #ωSŒ™Ύ1ΰ‚ΆGΫ(Η1†€nΪΧωΈλGa†–πΩxΘρŠcα\ŒM Bb‡ΧYν+Η«ζ}%;ϋJΫN4Ηή uχΐƒHh_[#HΙκ‹Pwίy#™Ι€B_δ‰'žπήuH4Ywκ†υ`Φ‚υΈΛs­m˜v‘ΰj‚¨ ξ#›ΏΎΩPDΔz²mΡρŽ-8k_}€Ηζ€gί2rϋ|!ΟY‰Ϋ³_―00?‡μ=Εn’3’@i λX:Λiψ‡έϋ%iϊ{bΗY Ÿy“Ϊ"=˜7φΞΊβ°ν²k―Δm„ήυGφŒ;ZlΗO)FJ~¦ύNkΦH’Χ³Rό-¬ΝςΚ>JΕ‹}@IDATΔφI›@›ΛΜ$΄Y΄ €=Ι €Oπ(ΫΉφ²\όωΰ 9$ϊz¨e3ε·δq,‹~ϋ/ΩhΘΔΛΎG 2Δ(τΙΘ–^Όxq`AΏ}ŸbυΥ™θ+±Ο“α]‹fv¦ν£mΡώ.m uΑΪ+Ϊ ϊ»ϊ»wΊ2ΔX{ΈEo΄­'hω—_~Qsφ{ λτΫ–²ΰσPΉΡΉUξl;}]i9xJ1(σΪd°ο ίΫΪοωύ3Ο<γpMŸŸΆyΪ΄iήOŽ₯xu^@[H[Bœηp^@?’ΒyΏ·Ϊ5~O{D0tvzβ1΄‹ΤΗjϊ‘ ² m=Ÿ]­Z΅ΤΧλn«7…χΐzΠ³έ$Μω“υxύ˜ψuεp”Cζ SŸE κρ„ί±,Ξθίsl ϋ5ƒ)ZΣΗ nψμΪ·oΞ=σ8κ‡sύΜΨξΩ¦υσ°ϊΰ \zώωηλ2Η Ξ΅tΖϊν •”„­Ϋ€P#|Τ¨8π”ρ#ž·ξΔ@Ζ±mΧί6€XGkd­»΅YΆvΐΟ%ώΚψ}»€ΜΠ™Lυτ—T°όΗtΠ9»γ90€˜ηΩ–#μΓOΔ†ώF1avζT··ΔBξσ—\―(_~'N€Ϊ%“ΐ„…‘έ:Ύ¬/rό€€Lœ)!°Υώ±£ Ζ–λ¨ΟησΟ Hκ܏Π@SdοΑP9h–”εΥξ“'ΗVΎέΛ%}ώΗ xKyX'0i·iΨ₯`χβfΝ—ˆoTν…s–ˆOŠT‰Νω|ΜARMΘ~θ˜:.½V5‰|ξq1²›Γπ¨/ γyS󓁕ƒ{γ:Ο½IxόV‚¨#F<#Rκά5"}"ηt‰#&zΖtάΏ£Ο#b4†―‘`>?ξM έμΙN˜^λ*)4θq‘ΦKκτωb;uVl˜·gTΨυ‹ρ΄'Λ"ΐΪœλ„ ιƒ6*)£§yζ&pzΉ9`gd*iήVχαD6‰Bύ{dW£ΰχ ρ‡ΌΕ‹ZAΐσEύx‚• j ¨ ‚j ¨‚Π@π\Z –Τΐ?£wΐ3A+ΧHκ’eYRΊΐψqWk0X`χσŸQF WΑΒπ?tΆV'cI91 )ρ)bD:€ΔφbΏ²Œυsή›_cπh±Ÿ‰SΏaιV\ε™>NlΩG^ωŸ˜<‹θΖ΅±R¦_ώ€΅&6alχ<.ξMžΝBΦΝrΕ%δΣYx-uNύςς…ΉυOqwzΐ"Ο½ΈΑrςΦ1―Ώ6/Ε¨ΕQ΅½l΅:ΟΐLΔP€ΩΓ|@²e§${ΛÌQ(J"†?%F…œŸC@εf”όΕF95ΟS7‚ΛΈ GΆΌ<φ?¦ ΰωΰά$η†5Nάψηf:Α[q£˜MnΠ+η† r΄Χ;βVcE˜”yι~±—ύΔMώO>ωΔ 0ΆjOžΉIŸϊσn99i©”μy‹D5ͺ"!…"Ό&6.MBͺΎ±ys&"Θ—›σ5}„l2˜QȎV Άtl|²›B!ϋέ΅εΚK‡gŸV $· γ}™"²ƒαuΙίK»vνΌχ]’D u= ώ&C2Ai¬3™θTΡm¬‘7ΥΥEΑφœ ΐd‚ Πb½w_°υώp»»Α8τΊΨΐήε|ψ^žγωšι“ 2Ώψβ‹B 5Saσ>ΘμΒF­AQψœWBπΑ,¨φχΜ³βΪΉ[ώ±Y΅?ͺFYšmœLΣέΰέ°aCuΟΕP¨ΒsΘ\Η{TΐK€Kτoή:ύ ΔηίHΨ–νjc\} DΪ΅H'LΦη€h5ΰ™me\Žˆ9>>h‚Δ:¬ΐΛΫS`f²—<|>]Ήά¨@Λ1`JΖ{ώqγΎh‚A+ώλ€$nΨ*ΆƒGπΖ―5F—-½nu)t@δK`CβgΌ+αhΏΕ~–·,€ŠLtΚ‰D™1υ΄œ9*ι‰τͺΣR·Β₯ ₯(¨7ΑΪΩθ… #ΫΎ£žίCCήΎ$XE­BfQ²GS7.υ)…Κ•U`nφUμVi0Hγsξ‘ ϊϋ―Σ-όHάC_ƒv«K{ΐί|Pκš§μ;¬tm–,.³~YΕήT8pB–(aό­}• ͺΠφζΟKj±"δΆVυ£οζΞ“3‘vΉζΪϊ Epσ C‡‰σ±`Υ‹”°±䍹³ uSφ«ty™ςαΟ|[\`t΄qŽ`av₯  έ h€Zv6SΫgͺ“3ωΐ¬Ώιχ΄‰ΒωŽ[Vΐ3m²Ύη,γ.$συΌμ+Ζwή³ΚՁͧνΤηΠU€n9–ι6ΜgCΠ$υΗ1RΫjέ†Y'Ϊιμ„@rDFΫsμwv'ψύ<[λω<ΑΟ‘%σ3}ŒLq•.!‘Ν―γŽT(§Ώώη_a?SήύŸ3(΄Ραά!XσΐρΟWήsE2l›`Žί°Y C6o—PΊ•Ύ1'w•/ FHu0Η©ŒŠ—KTν’Ψ]«ΔJh‘ΒY‚¨Ύώ{Υ¦i{ΨV΄ }δμ@Δϊήy| >Π€OΙώώσΔ1κN)[GˆμσVΏM—Λ~ΓΎ@Ώ|φμΩ*@Η¨LFcώN;Ι@1fΖ π>Ψψ›ϊΛτλω½U4ΰ™~²υwq}ϊιΪίέόΓOŸ$³W.σ['Φ—6PΧ‰Ω@Ύ_ί@7핇Ϊ€κΥηϊώμ«Υž§ΠΆ:'› _ϊ} κ‘ Ϊ»ΧΓ&Οϋœ‹y™‘Yu@°Έs^@0΅8ΜzsΛNOΪΖΟ ˜@ŸΑΗ 0DϋΖΆBσzΜ€CߜBΦdf cόgπ‘ιΧϊŠ/ΰ™e1`ί³£=fϋ°>;Ά_±ΞτoΎΟƒυΥvέλƒΓΦΛ‘£ίεΎΜy†zπ’ϋ ΣE‰ϋ²b’¦Ψ˜†υΔdΐ<s<Σ'£pΚΎΎZ¦(°h»6b6k ϋίs"ύ{~_?°ΦψξB %=zNmTWby @ggό²Aœο|ψχΊ;Ϊo Τέ0oΙ °WΧ?Ÿ`νN³,ωgΥΩτedΐ&8Χ Xπ βζ.Θο~ςΜ―ΨΧΘnέύa ρΓ.Ζz qμ€$Mœ%!΄ιθΧhw› ά|£8ξr‘gdDΔL‰ήοY#p•.)αƒΐκ\Ά΄ηψάώ3«Τ˜Ijμΰ‘NΜM’Ÿ}ΒÝӹλAƁz©μ–θ{aξΉ­Eφg€₯9qό CmSΗdT(+‘Γφeύ†_s(Š sύH’`ž•­`.Ÿό2Βη` OδσO‰TF€Ov‚9Oβˆ7ΔΎοˆ:ΒyC=)όΤ£b~²L>ψν s’qU(#.”5ςYI|c&˜7©γOw)q™$“Pΐi7ΑΞdvζ<Η*μ’ΤQSΤΪJFυΚ`Ζ}δ₯=YΛ ΎΏ$4<_1xb Ο⇬zPA 5Τ@PA ¦ ΰ90= jΰbΠΐΰ™)Ι”….²μ*Α➳ΦΥsονb^uΕΕ ž¬u ΠωλoΕ†?Νθμ>/‘6Ϋ₯c«ςΙθœυ’2Ο‚lΔb9+[EŸΊ]H½μ+6ι\=HȟyλδΖΆ1τiqwΔb³EŽLόLΜ5»Υ7FΝΛ₯ €Τ*§Ÿε˜€ήΎσ±˜/LΔͺnζ&X³Ÿξ"Ζ³έ:=§ƒlSβτυ9j”ΐ[0Ί,xƒ΄39vΞo&ž_ςΨΙΊΣ³€­O’Ω9‡ς,…¬όERg@Ψτr—ΔBμ¨g°±R(Λ!ωωόυ95g₯*ΒV³œ”ά.vΏB#ηΟ—φƒζF:™ 5Π‰`L.ξs“ΒMm+γ"A]•cJΚ‘°U©`ьqτό€ΨKyl7Ÿ ϊ$c’―p³»ΫM·‹;Ά€ϊ)mγ>9>~ 6έb+WDΚΌpŸΨ y6.SΊ<ΩSk $Z‰v'ΐ,Ÿl\d}$ƒολ‡Κι—§I7₯γοLΡM`ΑM›H‘’E€6ؚ ` ‹™Κτ½Ψ?  Aj(κΧ#οΜOι€``²εi±²‘)ΐ€ͺΦίy}2HΟX¬Ÿ‚ƒΰμn˜=}ϊtιΫ·―oΫΆMδΘΆ•6i–DtΈ[V…šŠ‘—€Ωš5kͺ>}ϊ(ΰ9λI¦Rλu»$eςΫBπ3ΐHzw–κ5jxάdNγ¦?Εp½χXΩmΘγ―½’ΨΥΘͺύJβ-]ΔQ‘˜„\QBBF?/}§LRLmL°dΙΉϋξ»Xaǎͺlύ@²―r³Ÿχή΅άU’ϊεJ }ˆ4€‚χ`€g4xŸϊΩέzλ­JO<Ο8xLNF„xŸYωϊϊg‰FΪΩ>/½θΥAΨ,'―ΒηΘ~ΐg§Ϋ_ό‹γ₯HŸξ2hό+ςκ«―*ΰχό™³ ιΥ†(ο™sΤJ•*©Λi†P‚PhG)b}όŽΰh2Γς­ΟU”ωlXg Φη ήτΗόΙU©ΌDάΖ΄&ΰσ΄ώ£€g‚7ΐflΒo%PΩ `FΚfΞ…€^πJ 3Ο«ΐ^qs\3.¦ΐΛες»".χ0TΑ?¦…ΞΛf5솉ΤΚ‰ίύ(‘[wyYγXM^7Ω6 ΅ΌA}haNq>b€m,•@ΤA‘―Υχ11|ΐTΟ¨ΧSIΪΆlR?Už}<*λ%Ρ§σ5€β €\|;p¬zκ€;μd-Α{Έ·β._ ™CB²–‘Λ'#€«Sg$ ©£·λ%υŠ₯l@πK•ι Δ ›zτ˜8υ–9GχxAd€ι3dνf9»n“bp 9r ؏ωŒτš6ΡkoFυ|JN~π©s˜±ε$s4f 3$νΝ‚ΙoΙζ£ϋθŠΧf°ΦιwΫ6 ό£Ηegέkdέϊυͺ΅)TTώ αjΨO‚‘ ”*=n–dΌΏ˜§#°¬[<]Ω_~¦=ͺwu ιΡχ)o^zμq9½ΰS‰©_[±­F\UYΩl]'eiΓ 4zτh`³ΠΒCΓ€GΟ'Ty Σ©€lΪ/ί=£ΐ`S§N•ΞUjŠTΓ|τ²’¬†_!π‹lΦΩΩL+ΰ™¬ΞΪώX Σ6[½XγϋœΖ-_ΐ³u*0ϋΊr₯‚ΎΎΑq)λ`$ϊ"d₯’“ΟaΝ¬ΐ±γ­.ƒΆΉjΥͺή1‚@D2Œ’=š <9ΐW_όΜλjΆsŽ_ ΎbΐΤωŒ7ώΚΧίύ£€g}QΌ°ε§—~'ŽM`~ΖΌ7ζύ•,š΄[…[ή( „λύεzΓuΕΛ%εΣo0ŽxΦ\œ7wο R»Ϊ?T‰‚½ŒωΫqΒ—΅?-ΆΤ£ΕΕρˏD½>R: ξ―₯€Ζΰ νΧςpk?Κ’9ΒOYΩ}ελ­Xώ­μι2]ΚΏWŽ„€ͺΎG»BΆy«έσ-ε0ΈcαΒ…Κg'‹Ίυx__ΡΪ_Yύ!φWϊΓ† SΜ½΄΄‡΄?”½™@a$‘όέ €1χ q€»δπ“ͺΰ3K_•LΞdšφW' ΄εœHϋ―W”ι %|"ΕΗά$WT©Μb²ˆ―}₯!›ώ;ΕΧογ=/]ΊTe€ΡΎ/Η)Ž%ΦyίΪW€m"ΰψΘ‘#ͺ\λ€Χ£mΧ€hz€gγ[η,7”ωηΠw₯ΎuV‚κ΅XΔ?ίj:Δv™[ͺ”ΙvhO¨>Weyv™sΪXκNρΩ¬­ub΅Α΄Χ;wVΑ‰Φ{£nψυΑ[W­.gΐœK›g4ΓGFN―Bt]‘«α“ψ<Γo‰ϋx ‚ί~QvVŸ―2Έάƒ Ζ΅a€=Awϊ·‚x5Άύι:οήλ)ϊOmX@g0:@–Cε¦Ξ˜+!ϋz«λH<²Η#ƒy½gfσ€ϊ”ο(`½:~ƒ¬Θχή&Μژ1Dš:mςoyž Α£α}»cLΓ<β|„}γσoΕ »ƒΙͺ*!eE=ΧCL0cH•7{&Ν~P Ω’εŠŠβlΡXb ‚’[0Χη>‰ώN6λΧε|*ϊq܌yΖiЉq%|`/1ю³ψυ)£§ˆA”΄λςΡsλ‰yi‹πΜ«γœΡžž~,Ηy—ρηήcοLΰl*ί8ώœ;ϋfίe'k–R‘BHT"%kYΪdOφ%ϋ^J(KQJ%IΙ%KHΩ²οf½3s—οχήy―3wξŒF©Ξσaξ½g}ΟsΞyΧοϋ{pμΈ;&δ–πα/FΞΰ=‚rsόibœ9―ϊ­CΪ7£ι=riκ;²ρguψ:o*¨&'Dν!—ζ/–°ρ‘v‰”/+ρΓ_S‚"ΌΉ μά/ μμ>tLμƒ'«q#'Ϊ!―φfEO]—υηΏλ xώοή{λΚo Xΐσq¬TX°<`yΐς€εΛΧΡπ|kΪς@6{ΰ/žΩAυ‚ψ₯+$π·?ΌWBu;@\=|Ν‘ ½ΝΞ/θψΎZΠYΚ”G3άΥ1hž ζΆ'Ι©W?χο'ΥΡr=QJΨ·{ŽŒΑγΩAb|»Ά§#Χ…γ1„'3 έ³ŸxsΉΈΧ€ΐP• K‘θxP3š.ΉiG¨ΤRp΅%pΕ\€,93sˆτ·δ—Ψ¬;ΒGΔ6Ώ5Έ žΔυόSιο“ήš£' Ξ9Υ£4‚Α•ψ‡JΆ-ΣΫ:Νς‹3IΘκΥrGι› (ρ<”Ά³\§9¨i/μ\tΐ£θŒΞώΑΣ)­―XΐσΏδF¦sp>|ψ°7΄³/ΔΑb3­α‰ψ½Ηδ䰏A#`2NΞ0)<ζq Θγρ8p@šΰC S!™ζ_Ÿ*TEœc%€Ν½*EΙϋNΙΙQŸ`4Ν!Fή)<²•„Θε…ΈΉσΟY*Αc@σζ’ήψM›6I₯˜$ωΥi—KŽ$ rεoV*c<ΏyΌcΛNωΑeWΣ#M…0 –β –Φ BΫ B…,Y!IΝ›Θ'Ÿ-•άΉs+ΨN¨*ΠͺΏΌž]»^VNΖρ[SYΗ#(>i$₯βΖm;—―,.@sΑE {U,©:Gΐ`Υ™3gΤ„—ΒaαrsNp.\B »±ΊλΧQ°! †&άΐφ}\’D „8†\ZΈDΒ·"'1ΰXΎBΏΠχΡΠ]Ap€ΊΙΔoV¨ΠΝΪ^΄IςΨ™OA6ό«ΩςτΤ‰2oή<ε“O ΨwπΒοsCEA‚θτŸ)*Β5h€AhCFίuΰ¬$-_ »°DM¨`QnΗ0ΥΪ_„Λωμh#ΰ±~ύzυμP…›@°tHuο~Ω-ςόP :Tj7ΉOΑ&Ύ~*Y²€ ±nVΤη22]Fαr*r_^[ˆΣ%ŸόJ‹TΦ―[/eΎZ+±@-Πρ ™:}Ίτξέ[A–Ό§… ς>ΒΰϋΖpβΌ‡T:$ΠΞg‹f†–Τ‚τώ\ˆ]ΆR‚vμρ‚ΓT NΊνκs±"jΟkž ΈΚ%L‹OΒΚ¬L Ω†n₯ΐœ’Δ¬CJ§—dΏΛαk* {U— .§¨0η,v“ZFhiΒΛFŽ(΅νυAό¦ΐ޽Ρ„ŸSΑ/€Ÿ“*—“ T-Ÿπ{@ΣBBS ˆΆΛS7VBO@•Κ™6ς~Nx#N~Ϊα™R΅b’ x!<³l„ηX€•γNR hnΤ½C‘Šf`0ŸχΡMχ€΄Ί―€Ρ~άvό΄ yΨΑsIlxφžyR–ήv³zφ ΰΤEΕd¨₯qί`DΨΥ―“,ϊ™@τΰΧΔυκΨ8―`Šy‰+ON ƒšΫΤMkΌωMϋΗZIό­Γj3ΠGψή|4g|όΝr•WπχΗoΏ#‡6ύ(Η ηϏ(·δΙ+6((»Ož•ψ—'Κ₯O^—ΫξΈ])žώΰ9° ŠύΔ €ω&Ω?Ό§T«^]ωHΟ₯ΛΚψY3½ijžWμ‹P6ѐφ¨Σει—zxσΐxυ†r(hζ™νΫ·χNVp]ΐϋ•ξοLυBΫLΜxα¬τ]τŽZFXΆ2€ΈίΏΠXfμcΎg6ζΧ\ΖΌΟ_ž©gξΓυ:/! ¬£3θΌΗπΜr0£rΛ ¨1-TϊτW1¬^Mώͺ!6sΉδ[αυ₯rfTη0”τ'>Q}”Ο0λ%τ“6ϊΞ¬&«‘j_ˆ™~0ΓεTθψᇽu}Όμψό»€ηTig9°y»Δχ=T+§‚Ÿ©€Jψ9ͺa]1Κ”H΅ΫuΌ-fζB”ƒ)} 8‘£|)‰|³œΑΟ±P—Tπ˜k)SL’ί-ΡΏμ‘@L²ύyB ΗgM”Ϋή«žί9sζΘ“˜„·r5Τ-‹JT΅*€Ύ΄B>—T΄}λ­·²τlϊցX^ΈMςΆ―'!7ε•εΛ—«Ιn})„Ηη;Γχ>Q6έjgϊŸοσ‹Υ«W«όyœΞ#ΈŽ“WX’iˆYΏoΜχτ€ζa¬gR©ή–ω’Ξ7TΉ„΄$Ύ2QM²α1mxN£\b}˜¦κ»Θ§¨ΐο/MΜy½:MœLΌπˆ„ψCr΅ͺ%y―£Žs₯ό•Η‘cccπ­vJωΓλβΔBΦuήΜUZݞΛ9α‡m* σ‹-ͺT§ωώΡνξΗ(=œJ`:=?qήWσ½#ΘΕz*!f}οέGϋ_ηχτ·ΏόΨΌ^΅q –ϋ‚%:q0&J–πΫ4—'Lnͺ{‡΄p™6σz.Σχœισχμ° ΕI­Ϊ§,οΜε›^ž©:8ό,‡ξξέ'q[v¨|Οdκk.(>'—+%9@» @ηΟ›j“Tΐσžί$ρΣ²ωη‘lŠw ©Z%‰€:1”q―‡Ω Pχφ’ˊΞ(σ:G΄E¬Oz―ζόΰΨΈ9P~GdmΞ"%€[qWH]§Υλ³ό‰‰”1ΡC¨ΨΛ{s”/#Οβˆ¦—%ƒͺpά›σ \ό«Ϊm§'[ˆϋΎ{4ίXμPOΆ>η9&ϊpC;<†Ά;TΊiφD‰}mŽίοG‚$& J6Χi+ΟM¬’9¦uπ˜7ζIΘχ[ΤαςJ8T‘+32N\Š{ušζ₯%—-!‘ &±‘t ν’Δ‰˜”Iΰοcπs(Oοͺ™vsτ}Ǐ€κ2ξ ŸγŽ­ °]7νvζ%ίoϋŒχpσ˜¬ ¨xH5YέΌ‰ω»Ρw^}νO΄WЎλέYŒ%fΒl ڊ¨<¨˜ ο,Rΐ;ž6Φl’ΔY8,δ‘ϋEηNI€hŠΕjΒΞα™ΡIeΈoρύΗ©‰’œ<>šI¨©Ά·~όg<`Ο™[m]θ κ xΎAoŒ•,Λ–,X°<`y ϋ<`ΟΩηKλH–·ώ ΰY)|­έ$ Ÿ―ςͺ4πΊœ%ŠJ8C"L;μn8Σ σΧ«EπζQt†r2€bͺO*σ£θœέ ³ηDžΏT>5ρSqo=θYpGi)"±Πy’vβFšά5«!VύψL…?Lψl‹\X΄ήsΌ2 δΩJŒ σiΣ|wO†‚ΕΤyθuzΦl0¨ΡΎEšm³ΊΐΨ°E]^¬γQoqεΛ)AΎ..tgΩΠωž8u–ΌP!ϋ=+Β°—™07:|cFΏ)AΏμW['ίVYrτι|ΥʁώN™°ϊW9;λ[΅ΚV±° Y°³?WYΛόxΐžύ8ε_΄ˆ VG$pε r@›ωpΰ–ƒΪ JΪ}LNώLά€@ +ΫŠΟ0OοGW™χ%π|iξ q6¨*Ί5SžL>|VN ‡Š<&՚Ξ?ω © u`*qΰΉ&KLί±%ΫΣ/ΆρBΆC‡*%Ÿ>νQ ·E©iŽν™XŽB*8$ΐνj‰­TVF‹ 0ώ‡ ¦v£jεΔ£$So ΄%£ ΨΊ°–PB―ΌςŠϊMΨ• ΎTΦƒο‡RTζx@BΎTλΥΐύφL‘βbΰ±Νš,wή}·:Γ\―Ί%Οa6Be‹ή™+ω_›+c'ΔΐεΐΕΌώΞ{Η°Ψu8βχΟ‹ηΰΑtώ²c§Ψ½O\υk«AI‚„=ͺV­ͺv'{τ·ς¬I°D@ΡΩυϋ!q&Ž?N‰σψ% |΄±lhYW7n¬Ά'¨1ϊ‘β*WZZ>έY©ms?ͺ:λϋΖeΌB%ηΧWλ%αγ―TέΖ@"ϋw•eφ(ψΜί³Ηύ †0½τ?αy¦›Ο–ο½›„Πΰg φ†ϊΑ]€ρ'EΣ~’2¨†nyς$ΐΤx@Ρ ^&μzρȟj YΛ€VmT¦B° ΫΩXίΣυP}ΰ+|* *kLΧ*ΜΞ”ίΉ‹C™@³Α˜]όŽuΓσ'»~χΐΟΏό.”Ι΄Ήr<ΉrYΐΟw‹TT•…φ†…?ϋμ…žΣxνuο]Ϊ¦Q›σ^΄¬\ηJwΘ°>ΑˆΆ ".“FX vΠ$¨΅Qy@θ³8GέΫSs+~Ϊ%ρkT βA§NJΰΕ‹žΆxόΐΩ“dδΪ―eδΘ‘j’Θ‚q“$α™—ΡξΊ(Bh(΄˜3Rn†b. Xεi‹Δεz ξ φ„g²Qšχy¬{!‰ν=Bνγ†ο‚Χ•M劀ΚoFυ{Ez  €Œή£Εο ΅>ϋ^’.“ΐζ%τ­‘βΔ½sυ.Ζ‰?= &ςΧ„‘βωgεΛ/Ώτ*@ηϋd•„Ά|ΐ“¦ίuξ+n¦"Γάϋ /\Έ0•OΈ±cΗXΘνΝ€kγqZ·n­€FBt}ο—ήφZ?oΰΩt,C?Η~ή‡~τhsεΙψνX*?—-©_Ο½`[θΙίx6Ό'‘έ+‚Ί‹dγδαλ!8ς«θΙοHπ–_ΤιP­ŒΔρ Ύ60 εTΝ«δΞ|ΆΒG_‰σWΟΔ ξ1¬τ^πΆχέxώI¦R'”ν ¦]Ι|λ@]j Α€01"C@ΊxρboΗbέ§&ƒθw‚Π)σ.Φ•ΉŒ€4ίwF ΰΔλœ`ΐ<‰ΖυŒδΒ ‰¬ΗΜ-X° ͺ™θw“ΫrλtΊΎ5p "LĊ£lqΙΡ©•μ3©κ»w£ώ­σS¦‰υ.ζ)Lη6D 0§iλ[δtχy˜°cHΡ OH@Ύ(žςŠω+Ο<˜ŸΌfΦΏ/ΗΔΔ¨2ƒ“Lhτ%#₯0oΎγŽ;Ψ. τΝθΊΘΌˆy»ΩOœhΗΙ'f?ρ:y}™Ήwœ΄Ηγsζ₯<Ϋ4 0‰QŸ—iw Ν5n»MΥωε Wύϋ0‘)ž3L¨JΙ‹Ή9Ο6—'f YίcΒς„ΊiL/Ϋ€ζΆ οN£―πΎ±ό†ΆσaNfΡ`3}Jd[ΚΕςš˜ŸΆ)šQ4|Ν™+‡8@Gήq+’7”‘§N¨Ί=·;Ωτ IyΎYo ΉyTSό§Οƒ¨[ΕΟ{ίyŽοΎκΡ‘νZg θΜΎλΨωHΨ†Ν*ίβ%Έr唐φ­ΕuΧΩsExwδ‹o$ρ“εJy—ubCψΣOŠ x– Οσ%Dν_±Ζ½%ιΦ[$²{ϋ«D3 6"οθφR­U$ςΩvžh3Lΰ‡$iΒ (~ž.QIGw”hw”T*—„ϊ<ςVOΥ…[§5D­Œ'΄|ΪS'Φ‘ΪrΗ4ν„4;ξέ/‰fͺ6OκβΖ„ξ Oφ&TΏΏL•λn<Λ!žAίKΓd[;Ά½πY†•oN³™yΑΕΩοKθͺjϋ»£z#οG>ŸžΉ1αΤ>~ΆšTιF―pD˜‘E$f’)ξ=θσΑDFEt”+)‘#€v"θπ^$!κKd«fb>]έo'|lί΄°3ΪΒρύ;„wεŠμόrΆFXLοϊ¬ε Xΐσ?γ>Y©όχzΐž½χΦΊ2Λ–,X°<`y Επl= –ώ9Έΐσ±“σΡ2 pj@αK:Ξ«U”¨ύ΅ƒmYΉ%Yθΰ Ί³βε£—Ι^EηΛNϋνΔ<δ‹Φ‘£ό T c$ΚXΖνg‘BbL!n†sΜ‚ΩWο–σ³Vy:„‹ε‘BΓ[Δe5G}(γΨ)I~Έ³ΨN t’“ΦV­¬Έ>ΪTlΩzΒ±ΎJ’Kά†MŒF΅Εx{LΦ‹ΞΤh@ΰ‘ίnPϋ:‘06€—Β]fΚ0P‹NΫ€ƒΗΤζ‘mγQL‘©ύ3±‘}ύorfΖΧjKγζRtHK1 a™εΜz€ƒT™’Š!•Ό,ϋwy€ƒΑ¬8Hμ2"|@0TΔ›gz"qΫa9=ρ ŽAΡΉP)2ωz8!1œΔAo3|ΤΆϊ==f‘ZοͺWEς?Χ\}wžΈ('†-‘mλΙ¬+•ϊΏ8˜’δΨ‘Σ$εό™~½JmjGόα@9ΣT‡΅Q…™π”wpυΗΗ_Κ‘.{•ΫτΆό€Κ\1@«¦Μ†‚V΅ΚY΄ δysŒ4…b‘p³PΰΰΊaι§Ίuλ*ƒͺwγΰΠΐ™R?+]^’ίœ+³§Jνƍԡ™Ιχλ‹/Ύπ‚΄Ό»€„Ož%vh)•*WφnN•<‚„kΣjΔTŸ€j&πνΘ­%nφ»Pw}Z\eJ*X‹°Po©ŠΟΙόΕvΫx·”Zχ‘§FŒΞνdήρΓJyŽΏP‚ό Πΰ±(ƒεΨ€—Όΰ ΧϋΑδ† ^Ύ€hέ_ϋ²o%ͺYvψwο³G…m*Υω3ϊ—‘­usσ6Όw@ψ¬:tΘώšΫdδ'>_¬ΠΗ# BhΤϟ/PΘ40α3ǐεώΰ?BsyN“ ͺ•ΌΟ€>?ωό˜¦ΆΆuλΦ©χ,=[o—ξ'"›Δ|φ•„@Υ\Ϋ·ΞHˍ+%GP°nάJ/Ξό'²•ϊ2Υ•Qεw7—ωέ«ΐ xYRT˜9πύ―7δ‡ςΛ>ΐΟ Π ψΩ ½ΰϊ“+•‘(†˜ŽΊ;ΤΩ―hP(K˜π¦ „:ΝU /ΒM2(8Νdλ~°Ιλs“SQΈ€CFφ•œQ0Θ΄YΊ_έxχβFΎ&›iφλI:5=σšΝb£J-θΜi <°P²;2 pI~I¨QUr΅o%½^ŸβU‘\2išΔφε=Ÿ­ΚΝr’έΌωAΌ[Bρ¬ Δ½;:*Η%νͺAš$\oͺ2¨›b‘Oή;q M~SτπqιωΡ"UΡΫςΣί{΄vνZΉύΟΔ†|Κ–;“p‚Θ¨ϋΪͺT’?ϋ4kυ˜7Υ°TΰΩΉGβρώxV ' ½Θ1ύeώΖuiTθθiύυ  eΎΈΧ[hϊ»riύ1 oΡPΆΦ)¨ςh¦Sεε?,‘F€Τnxyβ —3ίgήGΈOΫ¨GΪς–_)+ˆ] xΦΗ`ΩΛ3¦ΧσΣ·ά?~Ό*ου~,·4 Ζm―GώΚtό]›^§6ΐ3€η[α6,|λΎΐ³†ίόωΔχ5TΙσj#ΈΙΙNυλΧW‹”ςiι2βΖs jQάPrTž9ILRΛΤ'–s½Z—ς=ϊΜY₯žξٞλΈ}²»¨ͺΞο~΅|wζ„ ¬z»τ©q§'β&p1œ½Šώ€2‹ωLTώ|€0Υ2•㻁όHm‡ν ξ“²Lπ$ g[ξ•Ζ 7Ÿ—ΨΥλ%hί!•θC|KB˜γΎz"˜uݍδw?Hό{KΥ„žΟEHͺν£" j©Ύ„λž†μ<"bΨ`ϋ*PΎ†θνβκΥ€/O§žΡάωΔ΅k―Δμ„Bξ‘c †{vΖ4yϋν·U>²dT‰ο9y` 8o*”’ϊd©β"E ₯ςMp@ Lž6Υ[Ϊρσ EύAmκκψNκwH_.Υ… IϚ5K/R“ύ¦M›¦&3xβ λ\„›υ„1½ξ½χήSΠ.α`ΎΓ扬kSAηH₯π\Ό„\ϊπKIϊ_)^²„:λ»Γ;v'όΖH<''˜λ»L―žόΑwžuτΤ$¨”œύ`ϊ¬ZH&μkΛLώͺ·%ΈΛλσmC3η½d>ΟkΦ`°ήŸώΪl“ηΘ‘CνsδΘο ϊι‘GQ>Oε§*UTή™•{7eΚ΅c>cL£¦0€ΆΣgeΚW_¨I L'Ϋ\œ<©!w.£™―Λ\žpσ|>ζΆ Αiήήζ»Ή}ο9pΰ@ΥΞ"θΞ<Ψ<Ȝ·›οΟ©Ν_έ!ΛupΌkƞύ³e;&ΰW_Ϋ}Aκχ΄΅<n{τN@…²πυ0:/X (u|™‘Šˆ§ƒς}~Ο²kω‹ηΥΆς;IBΌV½¦JrϊήέM^ΔΝμΉ7m•„Ήx„±폐6ΘΟέ­)³‡QΫ!2}ϊLŠ9­~Ί lς\‡L Tψ=׏ΫΕˆΧ–R‡%PφbGqW)οΩΟoτάχ%|Υ:O>Žr7διΆβͺWUMC^ΖI"΅o³K―~OA΅bϋμχ<γ(ΟCz<#nDςΉ’]š·XΒΎJ9/ΚΑ>έ2’QW‰χ†cB'ΝQς&‰άΓΏτ—«%ρ]D?Aβ]θσ£JsF*Ϋx^bΖ#’ΝϘό³7ΉGra"J†Άn‹ΨίX¨’^1*LΔœ#g”κ „κ³νΜyU&ΉrηG…ˆŒψ’Θο$iδTUIΎΉ΄DtzBμΓ¦_†GCΩ9_κ>zΆ‹βLD΅qcbfؘΎ_K†‰ΆVώ=`ΟΖ»j]Σ?ΙπόOΊ[VZ-X°<`yΐς€ε«ς€<_•Ϋ¬,ό-Θvΰ™=ƒŒŽ_Ίƒφ‡ΌΧΔpΠv„[ΛΩ 3Α‹Ρ:CΝΩΆςΫ4ŠΞ6(:+Ёι†zςί :3 ΒΤ9žξ-='%Ξ‘ϊfL vKŽ—›‰t}‚›\•%mΪ'η¦/W˜FαœRhD„)σΛ6x²8η‘Š‘Κ mΌ1Μ£€βέκκΎπš’[<‹ΞnBΥU&Ύ,ξ‡Ρ9ŸE£ͺxό(L s•ΖpΎ‘} n‘فctΤΖ .Ά³Ε‡ŸŸ£Vυ,¦"γΝμό†0W°σ`ΐΞA윱׬΅Ύ°€g_ό»~s0ψZ€gzΓώγ¨λPe˜Q,· PδέιΐGΗ',ΫFΟΐ—«NΙ’gΰΛy>Vb$YŠ»I9yφμΩ‘C˜π'ώχδ|‹F©€gͺq@œ“cb:ϊΉηžS`F‘ ƒΣNԍ«ΰY=ˆΞm PAŽΰšsΓO’ψϊ<5ΐΦλΩh$Ι€I“”f†‹9xί΅kWuT=₯r€Y₯Ξ<Πΰ,(ٝ}ŽD!ŒpνΖχy;Β΅TŽVηxAH„κx4ΒxCϊυ—ίς‚„TLΎχή{ΘA/X°@©+sϋΝ;{‘“ΰ5­E‹ζρΗε<Τ‰ΗŽ› ’^³flΩSSh`H ΊiFη.‡<Υ©£θeϊ‘WΫ²_’§Ο“θ/gJέϋ+5BΏT?mΤ¨‘lάΈ1Ό·eΛ© XΫ x Ζλ§?nΌ τ‘ί{G%O³Ÿ¨€—ˆAyχ*Τ—}΅ξQ2lςΔΛ~Ϊ³WBΰsmύΜΟο­φ#·αy ερž"aš €Sušuh¦Ο ŸSΏ{ΛVsτ(Ψq{Βί Λ‘fήkCϊ™η9ΝοŸN?ωό̘ά,XΚUdϋn Λ£πnʞ?δ7λ%xΧΎTΚΕLwhεη•ThΏ)(hŸψ¦g@(λ‹ΙtPQΣΆgΏ!£§%‹=Ρgΰ’α}‚<τ>Ÿn¦ `‘μ ΏtŽ—@δoJ! @Ž€ωΐ»Ο:?ςF*!'η+ ΞΌ¬ηCεX!ΙΣσiι1ξU•Ÿ™"}:Ύ̟5ˆΗ|₯Βο$ υ­·3rŸ‹˜„ρ Τύε7Ή7άπU萗dc¨[4ΘΈ ΐ›ΣΔϊ­/ΘλλcΫπΈΪθζqΌξ3gΞ(…bΦύhL'jΰ™uLN¨ΠΎε>Ύν‚τόΔmYΧ&L?Qu™ω<ΣΟ|ί|οXεošΏ{Η:5—Sν™°vF¦Ϊ[~Ϊ†LΎ.ΟƒVrΞL[…~bΩP­Z5ΥΖc4Ά±X>Ρ?θ Ί³B؞eU8&.ιrπZλΰœΔ4lΨ°Œάf]ω›ŠΙoG=ΰ.|o™—fΛkX@ΠyΑ‡όλοžƒ ŸM¬QE"Ϊa2qα‚ΧpΰΛ»ϋˆŠS^I¬ZQ"Ί΄7σρμ0τ«Ζ@Ν8dϊπΎΣ’+ί,‘έΪ‰ϋ*”©΅?(8Ϋ–……ͺΏα/=sEh8έKAšŒ•Pή_ΈTΥ9ΈαΪπEJυξf[»Iη@•ωϋ‰γέ#9 6ΜοΎ6χƒYΎΪ ΏτLάu;ήG€ήφρ3η_@!oˆmύgPnωΩ?Υρ&ŽωΊ§/έ^οɁ¨)ξ·}·$N}€Ύ]υq?ΧN2i ΰrάpΐΑ‡«UI5o‘¨>θ;Ι(M'Qv!:— εŒ κΙŸwFύέ(K’Η$ίΎGƒΡrrΌ‚φ εψ“T›… Ή„‘μ Ώ ;ΓOφώ£„χ™Κέ‘Οvϋδ­vΥ ΐΏΟ3Š{ šUy ‘―xƌύ˜—I0:?υ`Cr&#œ[dK¨9+9ΒμHιu8:m(:!6B)Ήι*:?ς€ΈkT½ Kηx7&Ύ%6 .Σάlπsλ―"©ArfΔbq_„j ”;σ½άB+z€9Z†‹“v–³γ—’§Ψ%Α\§‘‡gΰά"Ά·ΖŠά{g†ΗΘΤJψ9©Υσ5;εo¨ΦΩΊ<.n„†½*ϋq›$NCΗ0‰ ŽΪ°r%ΚRfŽηF'}Β\·°5By^ ϊf§%ώ΅Υ)+<*Ϊ„‡=†Ad-–YΈ XΐσU8ν΄ λTΠ"$L¨€pA‘B…]zuέ‚0Ο©’ΛπΠΎπ*/9nωN9Ώ`Ίz[…‚rΣPδ=ΘsΣƒ₯OΟ\*«wͺνέ5ΛIήΎ‹>aζ~v”cΓ?’|/4‘ΠZeT=ΗΚ{ϋφνRόλΝ©…)Π λ5L?}OC9˜  Υ—U=ό13ζJψΑ£1y¨΄jΧNm―a ΒόŸ'g. l8=ΧD₯€ά‡Θ½{€F*έ€?xπ RΊS π‡η Q»vmεOOε.$φ%¨ητκ.nU„"ζΜ™#ΟB‘Ο ͺρ^PͺŒ;έ]ΐ΅§ΘqCdξ²₯B8ϊΤeR¬_Ώ^–.]*111)υλΧW!€›4i’ ‚TH£:tΘ«nΙί·C”i¬†ηΓ9f²Έ2ƒƒΆ!€υπAΚoJYnΘ0InΣ]l9&ΑΗ —YίΊ Ξψyy―4lΟtοA:δΩά0π jΡXŽW-‡0³!  Ρ`ΧΡT[&xΙ{M?)¨'₯>ΜmΜΫƒ0” γgdήχίyύDΐ:yΖ{ΩκA1JSΟΌωω#Ψ@@]ΟΙίΪωΞP©ΉY³f όΡΫϊ£Š4ίυ<}ψ‘ΌP„κΜJΙoςTΉ8ϋ]‰hυ”q‹©λ ͺ3Ο«ούβΟx 7eΕ―S%οφΙ“'³²«΅ν΅x€ω' c?c@έΈλ=bGΕ2εη[‘ΨκΦΟpΜ,@λ6«z+γΠ.mΕ}χνήc>*2lb²ΔΖθEτ•—Ÿ–*<ΰ7Rσ―Hτ7$hΧοMοΫ <ˆ—mͺD±ΕHdVOUηΘ`q, Υπγ}ΘQi+UL€Hu^ζK("ΐD…_]NpΎζόƒΟu‰YJςΙΣ:ξ•Tΐ°%`ί~9‘"@/m:Ώ©Z¦Tsϋ‹kυjUΨ"€MŸ½ο}ήŸ4ΰp?Οnœ™CΆ|A•5κ=¨‚ΌyUαΝj˜4Π‘C•_ό`)TΉγΰ‡x€™q†0σGn―β7¬Zξf‰{uΊ8ΨΕ i₯T?ώ‰†"σ*Ύ3 ”υ0&€0―5j”R”£w„Ξ- ( 'Œόε£6ςƒChŸζ’)0ω ΐ‹6–ΧZΕRη<_ͺΌ.ecζ#τ2—#\ΝγpB σ€Μ˜ΚΛύ8%Tς΅aΒͺσ<`·ιΪA!~ξ†5—σWδηNΆ+Q3 ιΥMj5l Κ=–οƒZ΄–ψ!γT{Ši°AUφΟ:H₯J•T~υ3|™τkβ†ϊ 2ΐˆΖ[€V£FήΊHKg$}΄Μ³ ,NεP€κ&ΰ9ψΡεπ±„βψ »ψ#I0 … €d€·ΆβEεψ£MΌΡψ ΩΊK’†b}KοqcΤs¨&+Ίt !\₯vŒmT€~b™―qLVχ›©θ3ͺΎ^“α~)R‚κ„±πίHΖ§09–”6“ε&!+ˆχχWΥ)ί½@5~+ϋΰ;«vΆo‘τl ŸQπ3ή3?§lΓΌQΉ\ˆ(ΰF›ϊͺ Ο³ `4}O°άόέΈXο!Ό³Pz€β4Ά Ί³ͺwέ&FT„Ϊή{Ο8 ΗPvΚ±x_ k­KΑYϋ¨΄Ν+΅ξΉ[½ŸώΉ4nάΨ;‰Šιδ»β‹/ͺη΄3’YΌυΦ[©κ)ήk!ώΗ!Ήπε±}½E">™(΅šήwωmφ˜Δ §6wα>9ρ~D`b† υTφΏ±l2—ܐΏYΧΦ“Y=rδˆ0zσEsύ†0,ϋNϊ4hJ»7|Ρ -λφ™­οˆεxλGŊ“=ϋCeμλ΄DZεΪ!OΎz«ΌύΑ»W¬Ώ¦—Ώ2Ήμ‹₯β5!γ%JxΪ)ΧΑeΖَ`]’ΧΠe’ΎΡE|Ϋ¬Σ3Bλ–™1³Ÿθw–WΊwlS””}'ΛβΕ‹•ίM…ωt}΄%˜—²¬βd?*ήϋΆ ―<3ν¬;dφήΡwZJΧ­ΛHύ<±Ό[΄hQͺwηΞlœ“„¨ψc›ΡhΩ<ϊS,– _~σ$ Χ’ˆz›RtΞ.Πυ·ψY $8eOδ€ZqhχŽ€WK{Ξ{­Qv\zo‰„~»ε‘CΝ‰Ίa8`]wϊX½Ι8vR¦Ν–@F€1Β@Hη'Dξτ΄Ϋ½ΫeεΛαcώίΐ£žvλ !O4iROAΙ<Υ€&Ώ‰ ž R<Ή$€Ο³β.[*Γ3M~+N6mΕ„ 3ƒΚ~.7o]₯ϊ‰]€zU?sΕrξΟ•ΖΧλ%qή‡žώe¦ν…NƒρΤ%ΣΫΩψδ+I\όΉ*·ι£ΠaίΧNΰ:Ω#8ƒg,Έ}K1šΦχέ*Υoc&f§(,» ¬>ό₯ 'Ή™!v”©YΖΑ’ι)ΗKENŸC4UΫΰ€Ÿ0ΤΥΠίγ¨RN">/h‰½ίHT2*¬GI`TΒΞ(ίΓFc’†/μŒγGOy[‚7yΪΣ‘<"'XfyΐŸ,ΰٟW¬e–ώ:Xΐσ_ηkλL–,X°<`yΐςΐίδ xώ›oφ†ςΨINΥΐωση{ΣΖΞέX0Δ‘9d wƒ”/ά»οΎS!Θu‡°yΒwϋ«ύ}Uΐ3:αeσvIXΊR Z‘Ν…bϋέ5%ws†Νσ¨!θu7Τ§Π™ƒβΙ[ξϊm›Ά‰£Η ‚ƒΆδBžAcWνΛ€KρrjψϋˆYŠAntxζ}ώA Ύ ƒ^WiŽΕίΚ₯~σΠ«‰Αsͺ•ΖI Όs'^εSοζήΊSά4‰Q+œ9"$`>Χo» ˆΟdτ[ $τ;Ο@ΓΏ† Bη-:³3kξ―Φ‹}ξΗͺcΩY΄€Dλ!‚0{Ωi„OOYŽή}¨MBe΅Θ(;[°svΊψ?w, xώwίr‚OfE6ζ2€΄¨Έ^Ρτ„†cυz_οΔ-Ω"η—ό Υ-'Ežoš.π̍μσ&«]Yvί]\κcF°3χw‡%aυ5˜˜Ώ[#ΐhεΤ©S^υ8¦΅βR ςˆŠΑό8'X•`)0ά6ψο»ο>)υ;ŸTgΝ;·<0ΎI£"₯χ’ωήχpuΈξΑƒ+ΘθΤό%βσΥj 1θ εΜύχxΣΐώί~ϋMΪΆm«}₯?¬›­X±Bξ½χ^ €z¦tIzγ΅«½NMΙΥλYωpA ͺv₯²#A‚ŽΥΈξ·‰ ƒ„ΑΝq…z .]Ÿ#Ψ|θΠ!]”+WNA<Α₯7`n—μ}•<πΐ @Ω½ύgI|g‘Ϊ(•9‚*4ϊ‚@/ώ7φώ.σ°ΐ_/w6ΈW1 ΪF΅ iά,‘(@†•ŠHΤ¬^?vH©―ι4ωΦ1ωΫ <+ucDyˆ~ϋC 9uNΞτ먔6Υ½ϋνwΙ‰: ΠΰώΎΐΙΊuλ”ŸpW¨PΑ{―y=f`“i"π,ΟΥΟKHυόΡΟfxƒϋρΗ^ΨŸ²"αΓFςƒκ{GΨ‚Κ°ό½ ¦½η`&G’K—(„š>’Ž™žŸΤΖWω‡κ~/-ΰω*˜]»A©–πqΰŽ½b»θ©“ͺC#M._?ίV%UΈnγΧ}bŸ2Λ[‡MΎ₯Ό„χκ*F„§ύsφ‚!Η$Κω‹P¬·‰τzΖ&wμ•XLΪΊ= 8t„FΥT7€ 2$ΰ€c;ΤΠ  PθΜ₯”τΒ_ŠπΟQ~―šeΑW_}%<ςˆ_8ί Ρl㙀^#$ ₯?Β^yNŒ_ŸΆ‰PηδΡRωΦκ Œγ ™<‚w$iς\O^’St‡Ύύͺ ^·ϋ} A*N ‘¦oθψ W­Q€³ ν9BΈφ•εŒ-Hr@&»Τ δΔ‹ πΎwΞ/uš4φΒ`­ —=˜|³άΙ*wŸKδאοEΫΠ¨PFιλ…m•zπ»Λ$ιδ)q”(*α˜\ΏŽ|Άq½Ί_„μv‘π‚¬)Pk0€Δžƒ].ΫΌ+Ι_―QkΰΝedρώ=Y*·Vξ]»β+Ή€«tήΌR°ˆmumΑ>˜ΨPε–Ξ_Ÿ€ηΛ.΅kΚOwίκΝ_9Y©μΌ%βΪPο.T"Οκ!₯S&ίς½eΕZqΘ$τΠCͺΏ&[€ημL˜Ώc₯ΐΟ Υsζ泈χŸ„«mΒά»—₯2 …aΦ+Π^E…χΠ2”—Έ‡n΄Χ Ύ)…L3PΝνΦΞňqζ"ή΅”c κ‘»Ξ•y’O^ζ|π|€ΦΟ?΅΅ώž#_^l—’6ϊ2'ΤΦV‘+XψϋοΏχ¨fφθ+1&‹”p@ΟηCΌπqy]Wi £κkγ2–ΝυN›ΧN₯βιΣ¦Ι3P5#0­11LΥ£ώ8’BΕF<Ϋ^Vœ>ͺ@`ξOˆšC*³n¦@ύD8i=z΄tοήγ₯.Ι™3§Œ9R©~ρZ %Ox–Pό„½5Qκ>Ϊ,Υύ Έ½fΝOξ›ͺa 7γmΙΩωIiά±½ZO š°-Υ|5ˆΐk+U¦ŠΌ2:AŽž”±Ce˜Ξκ>σš'wC˜YLx½ώ[•&Φ ™ζRKNΊT†ς,`έF ͺT^:*σζΝ“|P>7Y’κ=…MQΟΑ32ΉΏΌqξˆ2x;6o–€=Ώ‹p’6Bi€ηΠΐvς¬΄ΗzαΆεΛ—KνΣρ(”jΜ4>»υκΥσή;†έ6ϋiκΤ©©O^―§ŸΎ]ΎB.υ„2€Μˆ~]eθςOΌΟΑ~š°ζύδ³£Uω&Mš€TΝΟί—ζΝ›+υT,TVΤ“ yœ\8ΰg€M@€Šqρ€‚vύ¦6!ŒΪ³ TοΚ©ί±œ‘ε―¬•’ϋwJρθύ’7 ZBΥj#δLeNξηΚ—C‚0vb‹‹…BΐΤχ10όΞΫŎϊ2C&„θ)Rΰžρ}γΨ‹ΞW˜ΏRΝ\·3Νο—~φ“~Ω#Ι=†d8+Π”” Š%Δε@5υι.2nkκό¦δ±s’πΐB%œ¨— “'Šζ[ŽP±έSGΎδΐχ—Άο'4ΕIΠο%Ο= JΚTRδ{΄{λv‰ML’ΕαΑΠ …Bξ™y+ θ^Οo[’“Έ?g˜ͺ#2‰A2xθ;v¬šdΌ “VβμΪSΖ#χΘΑŽΛ­·έ¦Άζ€˜’»Θ”ίwΘΛ/Ώ¬Κέίo’€6PΤ€'§„υν.SφοR*ΎaηψΩ‹―;ΛΪΝbŸρJ_bݚ’σωφ^΅ς€<[π偿Χ7$πΜΩw±±±jV#+ΊΩeϋφν†ξaƒΗl ­ΒΚ-8Ωa¬°sƒ )„.-³<`yΐγ6ζ©ΒSΘlΌg—±αυ:”κlˆ2|(C―f—]―ό)»gΗς€ε°€g~±–ώw<ΐIΈ`G:ΛMͺ„°³™p •©2'Μ@½φ·Ο‡Jμ‡ηΎ}·gΰiβ }νΥ$걇1UθΖΎΉW~ €εΐ 4­θlέ†M¨\ρwƒΞ*}½†‹|ΆRl)ΰ™ ώ–& Ε=Λ―ΤяφΡ‰ΙŸB…ϋ€ηZ«—Bύ[b? ^ΙV|'η‡Cqƒ’4„Ρvc όTb>qGCA($P j)7φ¬Οβ_#:F’ξ"Ž©=©Ζdϊ‚O5Λβ‘R6?r ΓΣ<θπKpϋVπSύΜ IΜ¨ΈΗγ«€;n‘œ½;+ ,σΉς–I»ώ”Σc—)@°3•mαtx_ωΦ–”,ΰωί °N@xƒΩ4*R]˜ʜV\εʈ«S[ql£OΣžΉŸ”ΰ½[ώε—R}λ~±»œ’τΨύ»_ΏΤχŠu£πܘύΔk'0ΒΎ~jΡ’…‚7ά?μΉΉ€Rcεs’žΏώ$ρgΤI8₯›ια=%HD œΖίUx|ή BΧzhταύχί―ΰ]ggέόλ―Ώ–PΛKΒ€Š?JλΦ­ΥφTjμφΐC€£ζO œͺ²ψΗž³θ°Ώzσύ‡?ψ£ς3TΞΌ†όΥQ„DΤ―%6>ƒxίX Ζ…KbΔ'Š+,*mP&‡"ΊΟ]‚έFfVY`ΐ‘ωΕqK9 ―{‡Ψ΅Ζ}·Φf›%A‘-’3ίCO]Ϋ}ΰOI1έ u#@UΨΧXVπ" ₯σSΆ?ωμσΉg~LcΎU “D“#N κ#υξk€8·β-2όS‰œΠEκ?Ω\εΥΜo>}μ8ζ>α}ΓlžφΑ·›.ΙΏ*€½Ÿ“€η¨κ}°/'",]ΊT₯‹ηVЧυο—U'+eH.#V±L9ItνkμgΎ₯& ’€'ώ¨<mλXΐdL7DލLC …†Kξƒ—δ»ˆxoYΑw­ΦW? °q9Ϊφ!ΉΧΜφ8°™‡Šcό›ς}Λ†j Σ@UΦαmΪIpW% σ'!.₯ΔΚuσ¦tA’jΈ§P4&< ΰωΆr©€ηˆ§^Bωψ³ς™;~Γ³C…̝,=—.Ύ <(φύδπn”+-ξ± ωšRΞΓ}/XΚ‚•ε₯aCΌεΦ³O?-Ι§ΞH”=_E•Υό•ΧΓ{€!d•Ώ":•‰Ή^ο'ωΦEXίψQόΥEτΎόdΝϊ\,w}λYy† EςΩ¦±Ό8p ‚ΆUΩxυˆλmZΰΩμ8Τd;αη EIͺ•kγ³Ιό*GΓΊβ†χPΤ΅!«Έ7ΫνG•bΙ·U–¨N­<οΞo ώ©ͺψG@›0 ΦqωEDαw₯RΝOΣz•~lkSΗΑ΅€|W“τ ―α3οξή§U01C5ΰQ]»KΘ7λeΟ=·KΝ;nWGηΔo>ώDμ^’ΠΟΘΖ@·‚‘™ΏmF™ΰjΩ_\‰H{‘\±ͺэο»\οΩK’~ά†} θπόsΞEL†)R€ˆ:>ΓIωΎί*6ΐw{ο½SxθA•οqΫ τ£ |gΆ‚‡ΉΫ O!"Šu&Ύ?œΖ:"Ÿ#[e‚/wOZA"ŸA}΄`ώ¬Mδμy‰νm¨οWϋRΈ#}΅ξ{λdύXzL2‹E};xΫ/ž%τw­κΥ΅m*Ϋ8~Rμc_“N9 €ΦΚΓΉszφ»_δ]шΤŠθ/ΘΔ$)*‡L}Zv%—•\9\2qhPϊΟPήN|}Κ‡Š:ϊΜβF{!CΓ8KβδΩͺ¬rγή†τθ(rg΄» ]1‘½Ε3ιΕ υώπΑ/fό /Ι™?οUΗ³ί·δκμiΫ¦=AΚ’έϋ1in–‚š©ΠφJ71 ž-Ώμ“„Ρo¨‰/Œ¦βadL­€zΐ³¬θIά«S%h'Ξ…χ>“Ύ>ψRŒlΛφΛθ>~•eΫn±Ÿ₯ξδ•p¬ξι&ΝZay@{ΐž΅'¬Oˏn8ΰ™³ξΨΈ`…”ψ·ά‚FJ6U_9s•VvVΈd%YΓ‹TΠ³>―υtlx0,8ί»woΙ‘#Η΅ΪίςΐΏΒœpΐΖs^„³γΐgvίiΎΫ|ΗΩ`-Q’„„‡‡+…"H2ΔU™²ΓWώ”i³Žayΐς@Ζ°€ηŒύc­ύw{€°…V α•nέΊU)5³Σ›λ8Έ@°‚ζšžΛ¨`5kΦ,ο`"—ύ-ΐ3Κ|΄qKWHΰ‘£L†2*$b°&:WuΨf½ξ†ϋΤ 3`gA‡ν†6PΖ½‘Β13½„°mΥ+‰sΖh/ψΐε™±οαΊΏΐ ;Ϊz w€ΠΰΗΕΗ€˜?Γύ–G»ˆkΫ^¨Ÿy6pεΟ)Ώ)ξ²%Εy&ZN ώa αΗ@›δλΧL‚«•πw€t—Λ HwŒΨR`jgαΌτρYΎ.ο 0Π—8νmtΈ_`κ„DΘκΜŸ…˜aΣ%ΰΘ Υ9ϊΤ#›wofwΟτv„Oϋ\)Δيζ’Β#[[°s¦½gmx%p ’}"„6;uκt₯Ν­υ@°έΝAa‚΅œυg„¨8Ɓn!>°χΉ±ώΤΜURΈ[γ+Ομk;x€…iœΔuWb”„έ_εη|ΗίψJœλφapː’ ΊKƒFUf΅ƒŸ?„ ά2„΄Ί7%Pΐ>ήkγωB¨•ΕwYBί#  ϊ¬‘VnC€@΄ΩΨRα‡]b£"+Τ€ΜΖk"A¨ύΎ>b?ζ°aΓ”³y?σw₯’9tΈ8ϝ—ΨΌΉTntΪ|ΣDα‡O"Ϊ;Ύˆ°Γ­eαρC Άγφ„*:P'@`¦@d¨“R1uΘ[o½Υ»NmΞ­fο|—Ξ¦ͺ~Ιη&όj H ωΌέu§vλ$KΏψΒ οq2=}¦ΐC¦οέΒ… Ά`šͺάμ'†Γ¦B΄6ϊ‰€€†3|Ÿ?**!±Γ§‰pODk@ΘwAΡ ιf=›ω!}•‘)iΊnΎjΥ*―2¨ΏύΤϋΤέ©§*©nΡςβΰfόν“™eπœ/έΫΈE|ϊyΤΧ.l†Š;ΫȊ+|1¨ΊΗz7žGW(T βΩ™'·μ ­ ίΦ‘_ςί&«H'“%ώέ$τ@kΘiŽRΕ$μi€%ζ”ί†LQJkTR υα eRmΖ²βθΡ£^+ΥΚ”¬'Μψμ>K Ωίε)©˜’²ΏJο%F~!A3ΊIΝϊwg>ΏΑΔͺ΄~½nνί£,§>])‹]±ή‰1ώi^ΖΌΌ\ΩrPdΞ|ψα¨)_8§ά^λNοu0O¦‚?'јο2ΛΨٍɽ‹ή”;¨2NŸŸ“"¨ς―σ,ΆΙ·lΩ"α‹—‰“JΆtν’<·V—Ο.œςζ™JαωΕ‘βފˆΈΗ£Ϊ`BΉξΉ“€Χ§xη&L4>BŸΦ療‰/αPι­Χ/—[͚˹EŸHΞβΕ$aμΙ_qΝμϋχg?ΜJ]Δ| ζεό―:ίr—Ϋfφf_‰rδ~ΰ³“m΅ΑΌήœŽμόώŸžΝΓ{Ξ ±ίRωπ3Abm€’’*έ,‘ ξ©QY)‹λUWσΙΙN ο|(ΆsΥξ„ͺΒZξc[e}Άσmδί šζ»ς@4Υ¨ρ@©|ŽΛ/±G`Λ U+Ek|’ζχ\/χS&z‘]ieήSfΡgβB$―°‘}eι‘} e³gΗN h„6.ΣV£¬œ}εE)]¬: λΰχ9#Ι_­NsΨ°Α½dΞΆΝ ²Φ+ύΥ©iδξdC’ΖΌ&ηLUγφz{ζ‹T+6Χ© ’n#dΫωeq"Ο {°P₯ͺͺϋNΘΝάξΰ{¨•œ9QbΑ‚©κ»„”Ύ@ύ_}χbt" \VfΊKσfBΗΜ—Μζ Χe¦ž™Fι?½εΧ<t^π‘#?Tu>œ$  sx{LBΞ.ΠΗ4vώ*‰sIΐ±“ήΛH¬QEŸyJͺςΩbΘ³.αZBΧόΰΙΟpP'Τ‚ΓΊ·G=Σ“οdι<¨?\B½$lεZύrίD<―‘]‘ζȈ,ΚΌ±< s‹-ή»Π {±cšώ_Qz’p=μ#ζ$œ 'š‹› Υxή3eη/Hόθι^…λ$Bί½ΊΙ…δ0ι3<=lR€ ™P5η‹y}„lD½Ζq“ΠWžΟψy@ήe,Y!‰}αΩ'W €Ήxυ;՟8D•‰Ύk*'Γ’m&ͺOWΥήH΅ωG\‚č˜&ˆ>@_„ΌΨNŒZ~@jσ>›~–„iσUΫ„ΊΒ(NrS!qπ3ϊή±yΫ@ξ@5‰Ο ;#‹™ς–„lς\?ύn|ΝeΨ‘Ύ€Xaσ™<ίΡΎ²ž’„u7—”HF²Α±,³;,£όιόωσj’ΟΓ™ΚΦD‡μπΈu ΛΩη xΞ>_ZGϊηy€ΥT₯c§.AvzsАΚ4vts²;έ4h &&ιNhΦcY‡&¨ΑŽ}†ύcΙΏx6.ň|»A–#6¦ΧsεΛHx3 2έZ%σ…ž]ϊΏΎ^νQt6ƒΞ[SjFΚ ˆ_Eη%ΕΡμAqΧ¨ϊ—¦ΫΨΌ]ά/‘¨QhsδΟ+S†‹«ξzQ–?“Άό!η¦,S°­Θ!…†?!FžΘTΗ±}ψ…8ϋGOtΚΰv€MŒηŸιί=Υv‹qrς•E"ηbUXζ VΒ2Υ’9mX/!D½~₯˜Μύ8˜^¦βpŽ€œ—.“ŽŸ—CέηHpρΌRxb[ :2λ6T‚lxgmI@Τ˜κ*3ο3cΖ ₯Ύ¬Η…ΐωΓV1†φRu$†qφ5ϊcκΤ©R.A‰iA3ψ.ΈSk1ξ»[»¬‡±”Χ5rδH=j`Ÿ¨ΩGμΗ€B0}ηk*M;I|[”“¨γ…τ{AΞCρŽu6ΒΎ6ΰ2ϋ+Ώ£ΧΕΥ«πω―ΛΌO?–gžyΖws₯RΙν™NήKFΞ«^½Ί_ψξ¬ΰpΖ|6Lόω‰π―;ΟΔωβxw)Κ¦` XDŒ‚y$ _±Uͺ K‰P μB0€‘υΜ>ΚΜ½λB³ĝ+Jυ³/ηJ~β94ΐΒϋυηŸzŸ?ͺﱏ+žΌύW‰?`i¨„„ͺ‡„ ŒHhd͚5ΎξQ ¨hg_ }Εε<ιν³λσ?<›G€τg”Α«?Sω °6NΚH†ς³‚Ÿ«£οHM Πk³π‰ηΒ½b`0LŠJ9Ύ @XxΗ–"΅―meα4ΧcS>ΗT\χ­³_υΰZΥͺKβΑ#J­:¨d1Yώύ Žυ›mίo’„±oKΞ.ΝUή΄u ςεΛ«dς-Wuπ”ϊ>ΛΌdβD’„Q“%uΛ₯kΏSο€οuι|― ŽσxWL ‰– τ{DΞhΎω$χg&―#ωŒkσ6qζΞ₯ς(uOynοwπμΙR―iΥξ`ž]nΓ6I>z P\°δ>oριΧw{A±*βgbCdόCZv**%JŸΛ0MΓP·Υ Λ*ψc.3Yήq2°Κ_ύ@Θ¬χ½σΞ;~ΣΔ{ΔΘtJHHΠ‡W|CFνͺί3ΣuK¦‡η1σTNΊ£XοdΉ¦iΆ;Y…ω—―ι{WΉ`±Gΰ˜)υŽύϊk?±Ό’J6ΛyέΧμ{L¦OΟ̏ω 0ύfΛΘOΜ‹ΩVαqτ5θ}YV°ώ’ΟMΥiNhΤm]Άπψά–2ͺƒsάΧ\Nθσ\Λ'ŸwͺqΣΨ6az―h'NIC:£|‘qd8ρg—GCM}ο?θ=$'Ε…tν!‹ήeΧϊΕXχƒΨί]‚Όc0wT„„<‰η*ΜΈ―Y5γ7΄s§Ώ‰ηԎy%ό₯g  Q*«‡ςnoœBΏνΤ9ΘΘ$4”ν!-χÍR΅½x ρgH@sΘ‡(/d «-/10A-ͺΤB 0~("|Έ9q:Ŏž0dΐh‡*ŽΚ•J–Ρ<ο·qώ"`δ©ΣO©-©Œήy,’ €gnΜcήί=χ؁~„π€q2q#ΐeTΈρΒHH{”Mλ§Ω,Υ‚3PΨ:}Ψm’°ΟaBeΙT›ψώp/ύFμ‹>W‹…σK$`gΙ“SdΝf±ΏΉΠχ#£ Σ‘|[‰κΫE}Ώ„6rΨςοΤΎΑMJΒƟΥ$Mž;t$ϊcόΑΞΌPΫΡ¦.(‘cϊ]}}Αχb¬ίzXΐσΏώ[xƒ{ΰ†žι/]Y4CΙΧκGv¦Sφ6„3cΨξλml|pF /Dύγ?*…VŠ Σ2Λ°ΙΖ3;OΨq˜‘Q%™ƒŠΩeZ5:Ož<*όkv7½γ€—?±“›j4†‘ez,³<`yΰΖρ€<ί8χΒJΙ_ο–ΡZ΅ƒ ΞμΔfg*aΦW+T¨  $ί8vτ²γ—Z‘ρα‡VŠ+π\Y6vxαψφ(x‡žγEνΥ$κ±!τXΑΏή™Y=γ?tfψλ.ύE~B‡ UΏ`n(ΒI/¨-w˞ ›Ξ§δΜΘō0Ϋ"ω΅–ΐRD0Ušuχοθ<ζ€:΅EςIΰsD ζχλ}wt‚œςΎΈO`_lŸ―Ηƒ\»œίmΉπμ] œΥϋή;ϋŒ±ο[Ά΄)”TH^΄*€²kAHΩ&K€"’-E$JE •φHΙ!²ΝŒΩούΏη:Χ;םM£ςέησ™™;ο=οyΟϋΌοyΞsžσ}ΎΗΝνΐ3o½V–§xŠE#|RΗ ’‡h;Ό”žψ»9;γΌ³θž#؝o΅›‘:jŠokp`c‡y£vΡ-PΨλ°σh‚3ω\vI†νψάƒήφΌΠߐ £ΰΉ0Ϊ:ΉΛΪEkωΩ;wξ41ωΥͺωμ—|η"»ρ θΈ€m5—Ϋe›·mΫ†r™QπVςΕk€Ψ˜ΕΒkIZŒΧ»SRRR ΐu½Ζψ}ΐ\TMΈ‘gV5ΎvzΰH‹ΪlhΫζ2©™Ψ³ΰ-” `O’Άͺύr¨½ΊΆό$m9mΑvqά­]'*—G6}*ΐ·°WͺT)S―@qUͺT1 ΑŠ^αB&A–ΥΈΉΟb.οEΰp±GΛοxΆN:PϋΥη‚½ώW[u}]Γκ·f͚¦l$Ϋ}°ο w˜{ˆ|΄7".lν|΅kΧ.kΥσPyKϊ`κ'€gνc“ίύΎ|‡‘eό>m™­s΅žήυŒΕ€©st/0f.–Η/ΕG₯ocςA7oήμ€£τϋ<γžΓαΒ³?Ν$$iμ^΅Ψ―'mW-€‚žΕΐqηwš­žrP»· φμL6&βΠΠ§‘Ρ΄Jr›χp&'ιœ={φ£'Υ#ΐΎ· ύ/†q»Υ·β?$*9PmjC€FςƒΓαΩφΩγΣ¦5βnρ΅Y}EοŸκU[Εv§g‘g+0Έ=c΅Gq%žυt¨kj‹p‰Ώ‘Υ-yα›ˆϊvŸ M,‡i7F‰›ΘϊLaA%x.¨¦ώ‘r|OΈϋ nΦξa|§Βώάη΅άβ¦κ:Δ.Ξ{ωžzΕrΟγ42}ςs6ίADG ‚ο,~Φ»‘yΦˆΨοΦ`λ”w°o‡Pδ)IfψG―CτΕη@@fcͺώvΈN―ƒWήψV -šO Θά—ΰ°ΛœδVU·mvžKvQڍΘ]»Վ »Ϊ™>oηŸΪySύQ‰[·n5 Υψ‘±HJžš Œχν7"βΩ¦Ο˜/ςψεebi½"~Φ³XώΩ§Ζ†‰½?°UζΞƒIοdnގΜοw’μΌˆ¨]5š~•E}Η…ΘςΑη&GKϊ>yψ|φήπ 2yvΧ-¨p_klbŽ€Ίκ²-šΛ.XΫ ["{­±D 5•Σ˜(»omvO@Γm·cΖKsŒΝ $όPK=2fλŠY Τ6hΠ Τ¨QΓ“νYΙD Μ•‘­οΪ΅«IΤ©²v#ΈΊΔ% ΠΤ±˜;ožywŽ[jW:wcJ}{ΉaΠs“Ι―ΔhήGΩfμ 6Ϋΐ9Ρ§(ώŽjί™W·π“ˆXϋ*ΐ€ŽŸΣ{¦ΜF‰ͺUH³Z n²όΉΟ©gή Υ―ΆKoΦQϋ4>X_DcΉl«’LΚ–-kl¬Ίuό§Ÿ~ΒτιΣΝϊ‘SGŠ—ΘήΚ.kάrΎΓZίΣχN’ήk=[ΛUο»οΎkϊ‰ΦB οΨ±£IΦΡ³.jωŸ<;•)έ2†”τΑ'ˆψ™1+eΦ­ψ–—2‘œΰg1V˜„θ…Wω͏Ύ˜ΟΟYqŠ•Τ,˜)μ%ny½ΏςgυώΚΡ;­wT>žήE½«φΜΪ΄›Ά? ρO…—LπΙkY―J‘}πk9>h§ν»w™D5υω3²cςotm17kΊχݏύσρY₯’μ}] Sσ¦M›L”Τz’ΐΧκsα|žiη΅ζXǘ†Άί£gßΣjγΠ“ƒM—&»P|βtd―ϋΩWš‰!ρ g"ιpΚ1ώlFtD$’:υΕo?τΖKΔDyQγφζdΚξˆM›=¦MeΨ¦Cs “‰h‚­Έv—)ψv7a>Υ²7b–]’?-&θ˚5GZ"Η>οιWΊbcI0°l‡l‘ϊd»τWσΩ§-“©ΆΚO/Ι±;p^ ±@ΆΙιλ;Άθ\‰Ξ•½Sύz*/;bύv•QΩ`ΟNοσ½ τΑ₯{Υ£η§ρJmΥγχ_UΉCΤ^Υ§λiΌ¨ΪΆίΣ{¬ΉΚ*F휫θZτλZΊOύ/Ρ½i^%|HBB‚9¦ρξΆΫn3m±zR{5Nj7ΆΕ,θ;¨nΝΫτΞ:Η SιίόU(ΐ³€Ξd ŽZ½Ξοf0©Γ0:!ΠŒ §Μœ‹hΖ†ε[J²I‚Eζhoγσާoϊ ©Sζ lϋNίA>³Θλ€χΖΦy‚t5δψ¨­|Ό(†%& ‚Ύ$ΎΜ€as.θ?Wήϊ —ϊΧ'²ΈcSάC]α­P6G-.>—Œ‰Σθ›§šγi—\€bέcΰ{[ α΅’ž›¨ΟΎ5Ε P{ ΑΎLl ”ΏΉ1μ©LΪoξJU7C.cŒ`Βt’f‡BdϊΰΊοΌ„zOω,ύφ¦TΪeMPΌλΑuΕ15ύ Ζ•τC›%RΎ{y‰kS"RFM6l؞R%ϋΨƒ@Εά}hνB’4q6"Ύ\cͺΝͺSΕ†τ2ο‚χυεHε-ϋG6ϋ8νš~ ΨωaΖα%…ŒΙ³ΜΗ ϊˆa‰Σ& ut―]ƒ>d xδπΓcΰ>v0y‚k"Αΐށη…ώiΰˆB€ηΠ«ΐΏ«$ΰωD¨DMΪ 9ηœsNΔ% Tgπ\ 5… d5j”™ jΑQΑκR^β6² €hqI™Ώ–„Ο–ζCΧ i `ž ¦§P©P°ΨΙB7tθPL:υ6*1ˆaKεν‚ @΅3Š˜HΔPτΡG™i}¬€@¬…Tλό1OαήΓP3.«šϋ= ͺFίp%pIc8œM.Έί#£σ{I ¬Q\Ι«|Ο7ΞIœŒΞ.ΡάΤ=ͺ₯Z5ώFgΣΖGFάΎΞΝE(‰‡fYΟ<“†ƒhs¬¨~eο:€?^φ§0π†r΅’6›, YGΆΈδ±°‡ ²ξΩ!ίKzR±kΨ|ΰw‚@μ,έ΅’/«Μyi― λ‰ip π ‚©λΧDψbkω—a/}τ3p8dΞ‘wί΄Ί΄PUi{άτ ³αε{α)Uq#ϋ °΅hαrηπEμμ*W UΔμτ₯’VD¨Ύΰω„«ψ?qω=φ˜ω³’’©΄Π­ΕηΩ³gpΟoΌa@ i°ό-rλ§eΛ–XΉr₯YtnW©P*ΡΤ2‹ΫΪ½M Χ‚ˆ­»uλ†Œm.Υν@IDATα›mΠ’E \yε•΄«φk·7mΧ¬ΉΌ˜ΔF1$CV&¬$Γs§NΜωZΧ’ΉΪ&&5]΅Π-_Θ‚DtΦvΩbIΣ6φς½όΐAϊΨLl’°υΧΣ/ LχŽΈΉc³ϋFnχ’k)Ζ"`ˆψΧ”ΞŒΣq€s©>ύτSˆ­¬EσζΘ~})²ΘpΈ‡ £‡(ςΥα,/p«X·_y#―Όž‰Ž­RQα”υθίΏΏΡ±Y,]ΊΤΤ―vJOJ~XA}]Ο;? τυ¬>>΅ϋΘφνΫ ―Aηž™/ϋͺ;œ΄Ν{»ξ]άDvT•ΛMœz³›©@}zφΟN»–H_yi –1‘+Εη<…Ά·ήbžQ0=I‡vλj΅[u ‘›Θgh3ύ~kJΜ‹i‹^5 Οκ+Ί†όg½ΪBύύχί7Œb—^Έˆ_¬sΘ‰ΡYΐ<=?½wό+Q10 N2m!ΠΣυΑ§H_Ίœ‹΅τK(^Ά7£αΩ\ӟVΩΛλWπœ—vNπw’όN Ξ‡h‡ά[w |Χ_~P…κ¬Ή’S™”HP3A_ήpΈJΎ4²Ι”\¦8’κՁϋΤκ Β‡W„π-ΫΖwBμ™‘ΊπςzZ‰½7έ‰m2ΠG–@tX6I3N”š&‘DΎ<—_}•kzϋ•ύ;zτhτo{+R/owLΒA D†HmΚgβJΫήΉVοΪaXυξΝK'<:Ω­Ϊΐ›L ή Mϋ;Œ- VήτQ²A‡‰νœ@³θ3λβ1²εΛ^Jϋ‘ϊ^2 §SΏϋNp.R<₯Gd·–Ί' έW΅Κ›1Cη2@κ˜SdW5žh½Iγ‰lήϊ5?βp«AπrŽU…€Ψθ²Θ>₯6βšΧE…;šβCΞ«Ε Y\9ΣΗ-MφQ D›¬l―£X»}dχΆΐΪWΩν3fΨβyώU‚Ϊ*[#»#FΜάDσύ ‹ίΎ^…θ—&αr2¦~ώωηA‹«-b­@{•EΠ±Σ–ε6}ρΕ8“;υ€Ώ "ͺWƎ«›‘~ύcηpφ‚f\oΡ ΙFqώΘyκΜ§p)Η=Ε‚ω"Jymή+Θ^D{Ο­λ#/8—ώ@’‰mΨ:ƒύ••ΞυlxhάΎGΫυΌ΄„ήa΅©Gζ˜Κ °(@οB0±z’]·q—`εŽηXπœ‹Φ˜4’΄‚ΰηuΏδ`~Vi%€ky‰ό\Ψ8mkΚΤ—Άe‡οΒ|ώΟBρ.νhS žl”K«‹μ°|!ωΥW\q…ίV…βδςQεΙΏ˜3υKz'½ΗΨγ%±‘¨4Έ-Βk•;n\7ΡͺU+ςHο½|πΔΔD•+ίY±Fω@Ρ.7¦Ξši”δ P΄ΐ―J²QΣΟΘ‘#1 [wxr2Β9Vš²4†j\€ν‰ykΈφsΟΊΎόΆ:«Φ#]‰ύάΝ₯4ΩoG>7ٌ)šSϊ»²‹ζΏŠοήGπ³•βΌHΫŽˆΣ« \Β­ˆhXΟΜ’Ul΄u¦ 鳋²RΠ1³]{€τ"¨ŽΆΜ;σicΛd7΅+΄ΐΑwˎ(±E ‡―1Ωδΰψ©†’d―{qkϋ;œΧΌ %u›Αϋv3AδPZjžΆIΝ7sΖ€5ο±ΆLΟ%Ψ³XZ6ίΪ²@\ηλYΛ†Š‘Zbζ*œY0²Žε6΄vUe¬hόΣΫzœ-λΆμ±ζv,΅6?Π·ηΪ±T>EQHΟ»χψ€Ξί―υ3띆˜Ž·)Σ²—ώeη―/;šL‹¨ΫΫΐΓ!h4Šβ–2/'Ώπ2"8:ŸΜ8§.Šue ˜kΗ#Ÿ"γeΖ=€3λΦAμƒΙ \κxͺσCŒ4²:»€_Nρ2AΑ°·hβϋήώ¦=Kž<Ρ_~oŽx€³>έΰ=»ž-‘ο_Y†yaό+Iηρ=;ΡND˜ƒύZυ£ c'e ΩΆeΈ:u*•ηn%βύpO²YΧvΚΡcίεŽΣωœymQToκͺ‘/ρπh!ί'ο;+‘ρβkζέΛΦξυ%Mωΐb9ώχ~΅ιΟΜ1σ%ςύ±ΨerόΓ„Ιδ‘“ιΣo1‡3ΤEρ]Μ;wπι™ˆ"S3;6ΏγAω~Χ"ΆQ-Γ„,0¨€"¦:1ZyσΝ7ΡΊuk3Η [ρ4ω4bŸnlΨψ‹ΩNρ@±ˆύDprfχ„??η5<ί_^ ίzd‚^Ξ9»Άd–\wέu”ͺΈ£β ŠsXHŒ_ςΏ$φ―t &1Ε.U^mˆN" Ψ„qγP‚ hЇ ΄%Q[7nάh˜ΡΈUί’θž΄m³€)Š“jqEβζFyλν°h|)eΫ6m±αη f»lιBΎœžγ33γ°f}6f?νA£†ηωο[ml‡Ÿ½YΈ‘k«'œu#(΄χg.rδ—Ž‰ΑnΚ”)ζˆΪ΅–~€‹qωŠΉ{ΦέξΎΩsζΑM°6ƒ/Τ‹6oΜ‘§q£ΘάΖ{ϋ`ά¦ X=IzείJŒ^'L0ο₯@Ϋ={φ4Ηυ¬Χ3Ž”Φλ1»νZ,:΄:ψόΔΔ§žk·~ρΕΝΦ֊ ι9(Ž,Cœ@γς΅Ε* ³dΜ9Έσ–[‘όωwψ£J‹Φqι|ί§Ί§ŸŸψ,τμτ,$g(,=[–t•—―.ΰ@%6Ιίω¬ΝΙΞ_l£ϋ›Υ8Όx)@ΫύίdžV ±b|£e.<璘ΒζΆΠ..Ψ{iΔ€ζΛ “ωγ’-πŠ`ψdnsνή½a»φΒ΅@,‚ ,`KαΡb>ύΦH;ωΧ•Ζ:3 Bs³AόΚ/1.°‹τνθγ―νή½—‹ω{αV[t>Ν”‡φ<»Lirγ‘˜\ .²AΗ"ΠsT€ο"ΡtΑΛΫ3ΐ\Υέ©S' %ΐφοσαAGί{}n><+>β"Y΅4²α}?υq˜ ŸάB|یU=zΏ³?ΤʎΑFOξι9GΈ$œIœΜχχQΥ[Πριξσšaίγs κ‹BΙ‘χ ¬j9cΣ,ΘK}Q"{Ώxξ+Θ P.˜h SŠMΜΠ}ΐsΛG^-Ι₯NAΙk.DόΝ MάY‰b.–¨nΩZΩE‰μ§~”ΰRPϋͺϋG œβκφ'V ι!C†˜ϊυkΗ•jlςf†|“MYΆl™‰[λo»vνtΨ°\ŠhΩLž:Είξ λ]œK±έ3.πϋJΠx~ΒΣ8ΘέoRξοdv†R=±eς-”0"p’dςδΙΈυ•Μψ]B³ 6ΊίΚΛ>A±6WaΘτ©fcΟσ95Χ―9F$M›‹(Ϊxωγ’ŒυQ¬Χ]Η&΅$ώN ν$ξ$HŠ€θ±}{Π?ΟωŽš/sωε’>ΧŒ#vχ|ŽGωˆλ`6>0Ik|󾨳«γΜΙά91ώΨx‰Ώ*έΟό·jΧ2ϊ|PiΝI’ŠŽόΚ‡yΚζAμ`ΖΏσ.³ΦάΥ*š6N’yξˆΠ-ο11)ΙΓ&"lϋnsNZ«&(Υεv£ϋ€±Σρ=ρSτ‘½αnί܊₯2ŸβύΊšςM[>μ)σNeV©ΘΡ,Έ©ι2zΫlEΞΡR# τ&BG!ζρ~ΤAES_θWH…Ρ@π\m…Κ†4PτψΟž΅0’Yšˆš³‚9Ξ‚—δτ^vΩeώ`…@ŒΚJΜMϊυλg2%_}υU H.8θ•κΠ€K™ϊΔμ¬Ol' ŒΫ€’ΎΣ‚„ΝZ›€ΎS;Ԟ`’ΰ–ΆΡΗ9Θ7άpƒε,?kΦ,³=vΔω}θsH– x“Ž€ΚJ ΠdΣΚJf™ π«¬mυ• ̎HZΑDF$b‘Π"Z0Ρv…šΨ* )°–C ŸκΧκίΚ V ^Œ@,;EAJxΥ&+Αμ“5)&Φ¦h‘U‹SZ€ ƜaΫ£:΄'°vHBi h5θ3δW»‚V! iΰƒδ‡žΕ 'ŸWίikHΔ­οͺ€―φtŽυΓU^ώ·ΖN@’Š@Ξ+ΐk'ό…ΡεE’|ρυΧ¨]£Φ2~Rjάο„0.tXFg€p Μο6ΐEΐ‚—?/k‚1:gίΘ­ΞœύΟίκΪ_ΰν9[dο ζΑΐΝζsaCφeMO|{F<·OΞ*ƒ,0α“Ύ™χΪ(3΅ρ];+ŒZ¬χΉ]ΝOGε³ΘΐΩυQΈ –xΚ–€ϋ₯ρpΥ?υψ‘`ο$2KΨν«Wf°·χ-^ΰϊ΄Eί‘ρ3aΆΑεY™gΦAρGzδ R)pΕA μΌ‹ΜΞ^‚d\eβPe4™C`η š ** „ΟE₯Ιn=ΞΕc4Φ\Wώ€Ύ#Ϋs\ Ο”yδφ΄Π-π„] wή΅<Χl‚=S "s£ό£7 ²~g‘ŸθPς–ŒWμέςFDœU―-yΓΟ ­yyΉW7 νΟΖnΪυ»ŸΘΐ€υeα΅?ύΰΊO>ωMš41 νŽ1 ί~Λ_—μ•°,Jΐcl«›9φ)€uΨ,Ξiρ0j0mŽ-huΟZ `!pΧ»/ΝCփÐ~I#”μΥ ίq«kΛ όΒ /˜Ψ¨bb2xA`/Γ$ $­kK” ¦8„β’gε[ ?~<Έ‘ RŽΘήέπk‰8wζžΫ°ΆnΟΐ‘=Gυ€zκ¬όψπ32ΕΦΒ¦ŽmύwΛ|³1 ΰ/ݟ€ΐb¨Σϋρ-2₯†Œ…› εοΈ2s}Φ]»vυ±±νڍ°―#’O/΄Ήύ6Ώžή›9ž‹ ηυδ|{Z₯zΊ‡ΊΏ΅cGς–Ÿ+že@°B>Γφ-E–οUc>_Φfο@dύό\\`bI uΕ|τ^)f₯„{‘sHDl!{gύŠ/)Ρ^q(±έ (πM8]χ3ΎO垜…μΏφΓΥώd^|ΎaνθYΫgː\±dΕΎΤ·RίRύ‰Œe‰ΘC²˜ ±Ϊ{4~Ή6ύ†”ΧήB€ΆΌ>"Ϊ5επ₯’€ χrΚΰYl^n ”!°”¬cμ终Lίg>§ͺΜηΘ΅L9χ‘sΕΈTh›\d-Gͺ~p”OΖyUP‰Œ€‡f±/»xVY²{Μ%ό琙Ω+€³€ΞB(SΌ’πŽ7τΫθ›D6j€O>qΤ–Ρ?8œ†;Έο¨ΏϋΒt€IΫwQ|gί'Xέϊ»Ί‡3η#’ic|–δŸ«Ό8ΰQτΈmrŽΏςe2ηMA£‹šψmY—j΅‘6ν%S.fPo Y²ΘoΛVΜΥμ8Ρξa&*gΦϊβΘΡH9ήψ"Q­šaE”λh›8Ο υMD}&ήί·+W½φΈϋ€ύΞ8%Aˆςgάoξ!ρ}Ÿ~ωε—νό'ΠoΦ3Χ<Ν²Kλ™ΨDΛlm}ϊΐΊτn9ηVbͺnήΌΉŒ ,<< θό«ˆϊ–kΟGόΖΜΣk#φΫ‹θ̻ȝ6kΒ™g„}.Ιq]:ό=vd§2δKτη-φͺ=ΗtΈήf:Kό³ΐΣ3ζ!ZρYΩ>«ΘZΓΫφ*94―'°δΧ«‘φΒ+p~{οξΩ‘d,υr–δ5]oΎ‡ΜKΜ3’y7Ÿ˜° *L„L~κ9Dύٜ‘U1fξΤ„²τwσξn’ώδTΈή½7K’―Δ§U[£o\ΠΰΨΉ‹©Ž»O¦Œ™Œˆ[ΜΏ™Lφ‰}€\ΑΖ:Ξ—3nΖ€IFΓ³ί―›™O˜Α~±o%›ξ(σϋ΄+š’dηΫƒ•τσξ܃Ï= ·@9wˆξy'piC^Nz| "ΦmςγcόοNTΛ¦puσ%θaϋN€?:Ϊμβ DNoΆ›IHIfσc1ΑΐΞ|vΙßAψϊΝ潉yμAx9φ‡$€γΡ€]T²N^ΈΔγ©;tNH! 䯁“π¬ΰ•²χΔ+ †šΜˆYYί=πΐ†E7±ΚIΔΖ‘ΰˆ‚ΟΐX½zuS>?ΐ³κԏ”c "Tf‰Wšψ+ΰYνP{6lΨ`²aΐ”σ/ΡΆ( d[@³@Τ€wв•aͺ{ΠB]Έp– }iΰί@QžΥΟΤO΄€£ŽlQΏΡqeπ*!@’L^ML5ΑQΚ ~JΔΠ,‘ΰYeuM- ©OU¨PΑ0Ή«‹=Z}STU$ΑΟ{φ•…Ϋ( |mΩ<΄x©`°ϊΉ‚Γ²–AS mΛΦc*ε/ ΧυdΏB@HE―ΰΉθuͺρδΠ€Ζ0'ΰY‹ \Œ“’DA`}VBΨRΜΒ”΄Ψ¨EG πPYy5&Ϋ-]`Φ8§ }na;αΧωνκ φ-N XςŸ–“θμb"¦·;Aΐ_|kΆΔ–޳Ή`οΎ·<άφξD‹λΧDd΅νNφ _B¨ΧΝν+Ÿ†” Λοͺ_Ή\XκςlξvŽ] οκmί”ˆΨΏΆ#{‰΅pΐt\ӟΘστΌΎT9…Œeαds4ΎOWΝλΌίq14yψ$„mL4‡Σ›ΰΦ“L&'@²ΆξΕa―ωΐΞ%cQyτνp—Κƒεγ΄!TεžB€ηίΟάϊ bk(M@―»ξΊΛΏx,`…ζπͺXζκyc5§p3Pδ“tιx7ΆτšAŠ ϊ-υULΈ ΅Λ5@λN:–β+ζ/ƞξγQαω‡pk―.fΉύ„1Oβΰ?"¬”Έ OΕ’7ί0νΧΒu₯R₯qΫ]>Π¬u p'@δψΞ޻⌷_zYA+βu2t*V'FJίΌIΙπlΩοž}H‡ Ό›xG˜u₯ υΒ½(…ΐΓY Ν²ͺUBάSƒq!·V\B:PR΄€#O>ω€ΕΝ;7¨v‘SlT"Iq±Τ©P˜ν7ήο}¬L‘Ο>;ϋχ1 έγΜY/!2Βεa=‘έXνtsλδμ_~%Ν^9,Zυ 2ισ]Ζ­€Λ2ζμ™*Ύ’ϋ²Ο_Οφ‚,ŽΏΟΏ„²&~T§JΟΪžuzΟ² ι©ΥΖm8Ό₯ΐMΦ¦°OζβΒ‹}8ι©Sϋ8ϋ<“·eχΆωΓt£ϊ+RŒW@= Ι―›6‘βΗ«ΝσcU›9ψV­Ze˜Ή―ΌςJH–o+U @Υo;N0›ΐ{ςλΊΊ/==Γ‘έzαΠΓcΈΝ2±τ}JΞ~ ½†P΄ΞˆωΑ4`ΕΩšvϊ؊‘ιΉͺ>1Σ‰…Ϊω½Ή‘ Ώ\νΓ!‚KbΎ^είβYΫ1§]x>Š“YΠnΫϋŸ<σΖ|@d~Đμε_LΆίσύ|χL6?,cΡΜ_HYηΩοΩɏ~ζ»uΒ„LΈ8LVgξ\"p³K g‚ŠΛχZ>/Wς P@eoιx‚βJeΉ$?—φδ6ΦΑυη~_yŽή“]­b›4Ξ―WΕr\Δ?hˆ}ο!ΓχαsI0„Ύ―ΔήMp@ω²w+IŸ4 a»":ΩΌ.S‰ΏδΜ&ο-V uοk‚΄eύ}Z}¦ή[ο«Χš*ΓξΈ/μέyΤή¬ώξ7Mu‡‘a.αεγωΒXt›4Ρί†4Ή{ΞDXΓj(ύπmˆ"[aŸ>}rτυ?g­τρwpΜސ‰’ΌΝG• !φ|υQ­ΩXίψ€{©Cζ_Χ)Ύ1E}Xv] 4ΩN)#™<£ΎΉhΤ“Hξ3MΞ%Π£ Η#΄97–}•½ΣΊŽΨKΕ8©ωρkςΘώώwDTd2ι£­όvΪωœT·“αΩω]ΰgυgEAWΞ1Kq€!]Ίcί”9ο}κ29Fσٝ«Ββ|€ωΚΑmίE†aνDqxέ«ζθ—€WΟ-+΅Ζ}Ωh•³ι’|ξ6ΨoΛjΤ©§ϋo)vψτ|Ξχ.Θ–==ζ ,^ΆΤ¬•i W"₯ι$]cαΒ…˜icZkΣځ)_Γ#U>θ¦χDλ€zΖΊž’²44¨sΡ—μ³ώο;€Ώ8^»φb’l b.<ːζoΣσζ#΅η Uo$ͺΝ•x=ΖλoΣΪ―ΏΑΦέ»PŸz•hL)›0‘‰‡ΝφνL&ώ¨lμQ=ύ΄Ρ«Φ½»JΔs»‚bπpμ 825ζ+xΞ_GAKΠίΑϊMHZρ±όΜgζΪΰΜ:?_ 4n`ž₯»`ΦJš6«ΦϋΏΝͺSq=I˜υ/°Fꝷ‰!ςω”Μΰτœ6Bφο&`wι9p•/γo~”ψ!{©ΊύΧ‹΄ΆΞψLƒ3vμBζ› kωgώκγΖFΗ!‘΅zλ‹ͺ}Vd‡΄«ͺυ~£Κ8¬bβψV>©ϊΊ’½ΌfZ©βhΘ:μ¦}\€Ν]Lΰžrυ‘ϊ`+œίπ|sI₯žώ₯zΆΖ§{~-°ͺ˜©υƒU‡πΦg–-Σ‘υΡΥ>Ή cΛͺT©b|Xέƒόέ«ΙΚlυΜί=χTΪ9ΎΗoΌηc`Φ\₯ΫwΒ%ί„οΎ‡IQΩ\΅Ρ_¬B8S‡χΞaΛJOž pN#Ώ*²I#¬¨UΡoΛ6ΠώF†…αŽΆM—oΫƒLΪS‰«Dqύͺ“K"z½EοΒ]Ήbžσ‚ξ­DJί‘ζύŠ$sΆe©6>σŒ™πξόΣψ?Ά+cΝOHϋe“IϊRςWάΝ1γ‹O_­qc=“q4―qσώδ3ΉXfIυvq¬Wχ œΝ˜x–Ή|Fβμ'f,εϋεμGεη½ΧΚKφΊσί@τ7œ»ρY΅SKά]·ΑΓDΤ"ϊŠiSΈλήo[ύΥfΦ:Ρ=ξN©κ?φ·?ΠMς"}\>3Š˜££oΌ^‚“υΌŽG\_2™‰`g JΞb»cΌ¨TαxͺσCžςτ ˆ`¬φ¨λ[Α{ΤνΤό*u ³[w˜’ٜŸFδ}ΚωΞ-Θο-Ώ#mμdΈ™ +Ώ6ΎBρ.wš>›ίιΘ’»l₯ιΗήΈDυλŽ'WVΕ7k’Μ΄`hŸpΤ;-τΌν&#<γί‘ υς¦(Ρεsνc·{/R&ψΪF=DvΌ «[S,ǁ”T€ 'KσκDΟΈW{ ©Ο¦ζ(ηόgσ6€Ž˜lζΗJԌιίs˜$ΘΉžŸΓϋέθΓCϋν¦Ξ%N°³‹ώ[κ€ζ=π’νf‚Δ‘vŽv ζCONCδ·\s’ή£ξœWίΩͺΠη ₯»ώ<Jm‘Β! ™NJΐ³@„Κ*γ«'Nœhώ•“― ŒSĎ‘`y 8Yeς~W­ *>v} β(€Έ˜=Π²²Ž`E"#ΣQbb7xoYȚΕ Ng Ϊuΰ άFuΎήΒ²`L’Μ…ο° ςsŽΣƒεζ)ΊYΏο#Ψy!Όdtμ\iδ­+ΛΕτ„4p‚5<Ÿ`ΛΥ l`w{PSύ ωJ€²€3'΄s’Έx ŠΉ € 9ΉώZV4ω$3€ύ±;%Π5‰ΰΑθTθΉΑzGΔ Ά!Εδ*«²oψ”šΦ^z±<ˆ™XL^Š-hnσ”πUΎl9dde0‚Ϊ’Ά € m;6mξk{νκζjNŸI€―ηΗqΗϋ d@z{T!0¬D±3’7όJζΰ_α½ωkέΊ5V\ιΧίΎo"φυχ96pˆyq<Ξa;а,ΨΥ‰YX ۍHߊ5h')}'π€ŠΠe@Ϋd Ξ`’vςΤΩϋˆ ε[οΔβτ­H-_KΟPυXί/W=Ε ωΘ(dJBԝα=“ ‘’z,Λq@H{vΒ 4Θ"3-Θζ–0‘9YΊΆΟΪΎ'zz>6Om¬?—»lήOj¦ΩΒϋκ$C„aυΤ£Y |Ό-λ7oΖ Νš£B8㦧Φ6-Τ{«Έ’ˆ', OIς@'ΰ„t,ήoΕ~”H/P΄‡ŒS™₯β Ϋ”γN,Uͺ”‰?Y°³ξ[»†Y†qݏ»$cǎ5q, ΎΜ ώ\|ΓK–£τΜ'qoχn˜={ΆU.~mϊφ{ΘΌKΆΌΥ‰κϋ-ΰ"}θΣ―‘ώΖ2ΈΙg%ƒ`όΈ›―Êm[Μ}ι]Ϊ΅k—ύϊθίΓ©4μ•) ²@Θ™xY/•Ζο|ΗυYίά³Χ€c,θؐA²ΚˆaΩ‚•uLί“βp?Ύkϊ«ΕΜ¦Εv‰Νwόl˜’ί•ͺTΡΑS^‚#“ qοέO’•Œ@I‹,HٜεkȘ]½βΟfr_ΝͺpΥ9Ε·Υ4™γΌίόˆδΎDψζί}μtV μΩ,׌ {ΰ+@tAδΟ½8<λDβ"Ύΐ;” n{/ΰΧώƒ8όΔdΓάζΚ$€Ÿe—„ίΧ¦ Ι 5ξl‚oκŚ„“@A¦ή˜ήŒΛ„–½λ ²«VΗOuτƒ’ΥWλτ~ Ζi]»œυF‘νξτ*°;Ζ~ϋ…Ώ?΄? aGpλm‰@sšϊϋΈZ³ΡšLn}Td8šƒͺδ7>…QŸ)μ͎0π:Η'?›P΅3šίŠΰBkLΊφkcΖ!ύΊΘβ3Μ<½&Š%<ˆ¬ΨθγΥuΧ^‹SjΤ06fύΊŸ°·ηΛκg‘όύW Ίi³.₯ϋTlΫ&6¨ξ‚žeυΤΎͺ "} €-FaηΌZφJqtέ«μ‘ΐy‘ΖNzhΝͺ~ύϊˆ";t֚ QΥ«ψžU—kŠ{ΛΚF‰ψCλ]Š9(ιIΧ°ΆΚΨ²Λ[#“ΜΘ‡ΧύŒπί@ά€žxhΞL?Έ}Ρτ™XςΙJσžiܚ5ŽI7JΆ!x εʘg«8½‹¬ ρ‘g{τό­HWΞ€o=O;njΝPγΖϋοΏoή+TŒ_γ΅ΦuOͺΟ^ΣEgΞB¦a¦ OJA“ήόν›6𾣐z3‘zδxpϋΉ™\ό“h*ΐŸΟύ>lΖl=χ…ON@κCΓm“ώεu½΄‚—ΌζyΜO ŠW©Μ±Sΐθ8ΦηH{ ’vn)<Uγqb_pΡ_;ΈόcDύψ³ŸIΤΗχ:³ΑΛ-šΒ%π³žCn²))S^†˜‹πά¨Φ—ΐ}ΛΥωƒ¦s«σ8Ž«/δπkI²eύ Ο>&₯g£γΓ>Ά`ω΅Ου€€‘“;¨'ΐq*? 惫OΚ6¨-[Ά mΪ΄AώύΝZšμƒϊ˜ΦχΥςαQΨ;ωEΔ·i χι΅Lί”|ξΉηšοΥ~‰M¨sΪhωΫ6){g}_υ/νR§58ωό6^©69ν‚™Γ/‰”6cΙσ‰(΅o;.y£+.Έ€©i‡Ζˆλ“Jΐ»Œ±³b1H―Αϋjή1dKœ«X:νF0Ϋ$Ϋ¨Δωά­ωkL(Œ-“nΔp­Ή†ΦBEΰdEΧτwc™Μ$LΖν:’Ϋ\Eφλπcγ8!ω[ΒCXφΛOfLύΣsֳЏž…p š˜ρqώppΕgk~ΐ†_~Ζ άu¦<Ώά²OšίU«Βέv–ψ}π ΌΟ΄—ΑΚ9VΠ?bR—Kε8·hJβ ;/<Η κƒ₯»·ηύ>ώψ2α, 1c‡’λ“cŒO‘Άj½Vuk Wο‚©κΤ¬…΄Ι3Ιώξ>#f‚vjω„ΕΗ Α ‰όcιΪ―ΎFΚ /™]bδ–`R¨όGW$wή Ώ#ΡEέψ•ζ³ΟŸΜ‘€vδ½φ_“œ€η?―k(ΕD)Ηέ{GѝχνΗaήG”ΓWΜ"P7ϊnΖ9™WTββά/ι…—ύμΕͺWσŽbυ–ΝΉ~^ΰkΟM%(9όΧDsŠ—γb”X•/ώ±UΎχ>fΔΎω kΞR>ogϊΞUŽišλσoAΦs³» ί™TŽρρς³Ω? *η-BΜΫš~’yBtΪ]&ε+œ%%#τzϊI”¬Uχ½ά­Q―͐±©Ψψ[$_A/F>ŽՎΤHΦκτ‰³Lσ2q/Jχֈσ‹`ςΣF±Ι­έk˜XυPWΰœΊΑJ=Ζ€ˆΓÞ6s"ΠGŽΤ+W°±=ΙϋυZ&ΔΝ6 zŽ1Cοc""ύ&%%وΖPΪ΅lξΤΆk9-κΚfpέs‹― Ξ»eζ΅κcΩQΕএ¦ϋ‹M ψόΤφR9ώ`bRτŠ/Ν±θνΈqQŽοC„4PX „Ο…ΥX¨|HE«“𬠊ZςΜ3Ο–η`€ΒΏxΦ‚ˆ&f’ν΅4a;¬W¬/ΰYΑ9±8kGΫΞΨLPΥ+ΰ‡rΫΪIH†Dy H₯οΔP¬€…S΄ΰ­„Δ2 d¬ Ά•• dh{Π2eΚ†cΜ°ί+ …(‰ΆΣ"•Ώ xΦΒ X œ’―4ωΥVGZ•¨ŽΟ’M0ύ‘ΈX£P΅xwμFͺΪE`ŒXα’ϋ‘΅’A>γB]αhaw&ΠwN!ψ¨x *=~[μ|T=‘O'X!ΐσ VπΏ\½|ΛΘlAGΞωΉ] Χ{ …Ϋ@ k^ΝΟλάμ?`ηΰW}I±‘Ύ$ŽΚ>'λ–΄xΠάέ›Έ;Β2pϊ‘ωΌΉ¦NjΊν0W±8-ΰ δ)Π“DρΎϊ‰{ςςΔ %c(Ί¦β’0&λD’νμ‰ γύ‰ήbΝTb΄v”RTρ‰ˆ€PEuKΔ¬dtΕ-(ΞΙΔIL&f]{Οά‚ugΈό -&,pLυδ₯§Ρ?Oχ}‰΄σΟF|―{ KηI7‡ΘΤ»!P‹@ΕφώTΖΝΕα41ŞώΒx4Ή’Užο‰ή ω¬aΌ'χ›οΐΝD3wυͺ{|(Ζ0fcβ¨iΎμ[2Φ~‰°še Cζαώβ—Τd]Φ°&$$˜ΟΪUKی t’Ο† €6 βΰς ՐΕΕuWC_lKe*k¨@.Љ X(ίY`a1mkΫu €QΌΜω¬uΎ.bT¨[’g:ͺΓx`¨UΟaΨ°a~U•ɍEQίV΄uυαΧ—r;γίό§.OOΖΝ+ήDq‚6ΆΆλbΐ̐¬ΕξIτΓ:„mΫ‰°ίwΒ%¦ξ βε΅²«UD±³κΒΛd (ηu0_―AAΞd@3‰~GκΡ6Ξ™5« ΎEΰ}” `¨ r0 Isζ#ζΛUΖgΥiY8Η(γ=γΤάk‘ Zφ!2ζ–t”–Š0Ϊ’ίΏύΥΖτĘο?ƈ# Xι僐q5ϋ=·ŠΦi%μœ?§‘ΑR"»Ω`Ιϋπ¬'P–€§τp7ξW˜Yτ³ΔŽ\· *τΌΚψ©:/X=z΄Ÿ7Ώ>*ς Iγ»oκ”ιv.lz”Aί2„ΚNYpœν{b>ΐΦ€SŸ™ŒΤ;zl± ο ˆ_ς<ϊ bΐcb4]ώςBlΟH2zέXΏvφή7ξ‹k£J—–¦mφWΰ8Rΐ³ϊώμΩ³σ΄―Ά~ύ•½‘=²kK_|ρ…ω,{κδ©­9j %ύtΊωVΊσ~„·n†5 N5I*';7xπ`σάDβ!±DkeWμ&±φΥκΣ2Bλ»hφΏNΌe„ύπν₯xsΕr£oΓϋξ»HΉ½‡ŠΒΛ-Φc‡τΑ+ί}e“j³ˆJTŸ@‚6ΩGkvΌΡύk}NλhΩZ%€(!ΛΝΏT·βχb[•έΆ€g΅i%Χ.δ[XΡsTϋp°mς·6SΙΕ{2±‡$M‡Έ»’Ζ»Ά‘xΗ΅Q%Ύh™I’P²ΑίΝOŒΎiΕλψ8q3†φGό;U†Ξ•dδ~>΄βD­έm¬_L,₯Š΅ΈήΖηš•OΎeΚBΈΙz)ρ}Ϋup]uiΠβEy00hΏz·3ιίξω:ͺτ½Ξ™θO>X8ώ€τζ»Γ>έ“ΰ½KζΩ€ά|p$μ‚ Π‘C‡\λxœ~₯έΝΒφ_[XύXs Ω,±ύwξάΩ|e“υτ½D}QφZImΦ¬5}ΩA{ίςϋΤΏ΅«Œϊ¬Ω©#;LΓξ½α(]ƒηŸˆD“‹|lφšΓά]³2¦Ξφ'#Ή ˜8œγΘΡF:6γn/ΚX¬^Q\ΑŽ™sΉ+‹Σnθ™ˆΡY>’DmΣZaal™Ζ;ωϊΥ§g {'ΡΌΑιοj^€λKGςΟ5Žδ&šO\{aSd ‚»­HoJO -ΣσnΒϊ»:'Ώ6Ιw–·ΧΡyv'“8Θ„Οt΅…q=/ο1ΊbΜ{}qΎοSΎ}±ΙɈκΪMZ47ο€°²α1n]oήΌy¨ψwXφmŠoΨ9υρΛMWšψΈ~NFθsί Yί­ρ—9ήΖΏ₯_jνΦڏ―Μ4ΥύyΥνpΧ©‰ΨŽ·Β[ο΄γ½Dπσ4>½ρ2ήzΟ_UΘΛDΤΘv7ΑΓdN‚ŸWΨ£εœ½1Ÿq~vδ}ΝfPLŽLH­UΨΪ|εYκŒύπ _|g.:Ε:“±œΎΒqΛΦ8<‘‰ΉΫ}ɞšSDέq#@`ν1ϊ ώO˜ŠΘ~2—σΠφGυνοιu |y—ΐΌc'‘Ez³9'‹μέ±;η•DckO$#χθIp3aQ’Φ¬1ŠχΈ+G;Ωe0pTΆοŒ@\¬ㆄ#bΑD―όڜγαœ$ϊ‘^ŸGPyS€Ο\`μ^vΙβˆ}¬/Y³Λ-κ?H–ζΓ#ž…›s#ι$φ±&†ε%ήw>AΪμΕf¬υ²M±ΓywΌΑ$4Ž ζ}dgRD₯rœwύaͺΚvζ*Ϋ<7ŽΩ‘Lγξ:;Η(i§^.ΟdΕH›φŠ©/튦(ΩωφΌšϊ.€i x.šB…B8aψΗϚ€(s1z Υzrh@ -Z΄0ΑYΉ~Ρ‘΄H ΐ΅Ψ-$ϊS§Nf1Pγ Ξ΅’@·ςΪ‰A  φŠJΙN N•ό'Ο:―X‰°eˏatΦV.―ΗάΎ—,.23Έ/¨{T΅j ϋΖkΰiΰ[p=ϊΕ?σΙE¦–μnύžψ;ΫΙE;Jv‰βp/·ζϋ'ΔΥ‘7<1ΠMΐƒΔ[, ξYdiz^ΠΛgmω{F2ΐšœΨV~»΅*-λ?H?5ύφϋρΝOΎϋ$°Ωuw€žuφΟΜs^ίBφ•piy~ΰ<,iΒ4D}λ[ΠΘ"5Fμ£ ϊJ6lFκθηfπ•οG̐^p‘±οDHφΞψc0ugΑΞ#nAX…'βR‘:Cͺΰ9¨ZώίΤ‚Ήĝ,‹:fEΎ‚β–-Έ¨Οͺ?3q/v'ε7L°ρQLζΈ±UΛbάΈq~°˜ “Θ7q2Ή™ƒό%0„@3fΜ°‡ κΓ`ΛΦDΜM>Oέ½‡‘6ι%U†θ·!κͺffήs‚{ƒ ωKp b»ˆ.Iώ–ώ_BF3+b\»ΡHYΊœμE\8,_Φ~e€ͺGqOΗ$Š“Yω‰Ως7²tIΏή΅Λœ½–Ώ~Π|GŒ›¨ͺŒ iψϋ5ιxόnχœιΒνΧΠσΎmXSΥVΕh΅kžη”άτ΄bι2€΅λfŠ `έ₯=(Ω°(Η°ΏX ²¦ά‘ΏΠωίπλVXύ#ΒίeΞ.21-ͺ{ͺVDμYgψ|»ZœSp‹l±˜₯|ό5·yήnχm}δ\»šδܘ¬zžFΌμSaKW }Ι;~VΊ,Ϊ—he@|…ΰ7χOd2}Cx_]βc©ζI^Ϊ¬η'γα3 XS6oΡπ1HkήΑT)λ>³Ά>Ÿ€zd–Θn6xγ]x6όΤIΐυ)88ο+dμ${4}σ¬S«‘T―kέ’ž)Ÿ[ΠϊŽβ€ν£"˜(Υ‚”Υ?f³γӞqσI9~LgΏ½Άγ“ϊ£’'Δ„,;¨8uΜ‚]Mr ϋΣώ‡F"ό§_ΧϋΌγM1ρbυΣοxΟρΣ?CRη‹M‚-ΐσΎ©’JλΜ}:©MφΎΜ8BΦx'ΨYVŸ5_ίΏ? d_œ¬k\~ωεΖvbsΣ–8ονHqσGΰhΩ ΚΥA―χ_v%YφžD‰y“ΡΆύf\Σ=Ϊ[‡@ˆ6 Dl’όi ‘ ΆL f1jK΄Λι-[!ϋηMps‹ψm™ιg―)wUξfPο—D€IΕρδΤ{)}jœλ΄D ?‘ŒhΝN`f+Ίg­[(ώ`AΫϊNεjΤ¨aΐ‘Ξ6ΙΎΫkh7εl›μξς$z·_ζ ”;EΊS’Œ,šοΔ’ŸD#;CfB}Ύ©'A¦h mќ—|ύOφτ`²!i?ΎΩΏƒNo€Ύ ›2ιχ Δ“υ9ΎΛΞ†δοiΰ—ΝHZρ1"Φl€[»>Yα;§δ’Ψ\Ί€ρ ϊlN‘v-ωio8 ό+_q]Ϊ‘1σ gΡ"ύ,ΏΑΉΫ›μ³H‰RWmΑŸγΨ7˜`^eΔmθύμHγ“[χκBθ1ΔΝԘτζP’;ΟA@²3Ήωΰ:7*#  zČϊ_’€Dt§M›ζ;ΐίJ<ΤΞ́vPρJΩΫΗμ κW²kͺGχ(_ίˆe;Δt.{§1AX{ί*kνΊϊα† ?cθS.lΩFœ‘£1i*:5σν cLjLφCΧΦ8πύˆ&¨/šLͺNΐσ½Oa2γ/”Ψ1’Ο”Iώ1Sc’΅½ϊ^mHLLτΫ!΅Mλ‘6[[f;m}›Ή³‰%›1+ςwE:%[γœ›ι{έΏl“ζs±F;Ι…²e¬[χ˜W›δƒ[;iΫͺΏ²έ9ϜΏ8ί %Fι]Qςˆ%Φ¨Lΰϋ€Ή”τnλ³ευWs4%ηΨχJΊ?ˆ¬°ιςDΞ%Q5ΖεWΆφ₯³žƒ/Ώjv'1»”pΞev<±μV’S–ώΎΕyΩ|?έ]…Τ@IDAT‡3–<}λFSnη_#ςά£I–ωž\›\οŒŒWί`ύ\Š|χΘ6W#ϋšVpΙ/*YN λάΕΏRŸC!Ÿ΄Ω…Η}χӞ› χ_ΑS²ιDίΗρ΅ΆΟ8ŠυΌ½Cω}RCζ΅χΰ½ή–:¦JwžH?Υ6Ξ8·>bϋtgΦ^!t·aΖ±χτο"οh\Χκ˜k=°β3dˆΜ>­9UΤύΌΖη-šœβΒ€‘HޝŠŽΫg‘iόF^Ž»rΤ­Έ;k3}¨€§§#ς«LYLjŒƘcΨy‰χ+2G?3Η΄K»ΩKθοNή_GΪ•¦ZνfSŒΜΞΰΞΜ>Aʐ§Ζ1V €žς%Ν똾 IH†hΠΆu’Mž•l I«S4±ΦΔ]ςΏ xΦύ‹MJ‹Φή99α:’B(Z „ΟE«ΟPm'— –©Ι·D‹ k!R`g5h·^±ρ)Ψ¬§ΘΥVίJΜSYmϋ«E-ϊ²±8Ο+μηΰ™s7έ:»΄)II#£Aq 3Qλ@GαώψK.Šϊ^½|^h3<ΓzϋξεDf@ΦΫ}ˆax3—"ΠΑ} Y¦ŽΙχΚή}ΙΨ5d.³ΖΘ€DV‡2}GdΓΪΑΟ[»ž;ϋψY—²‹Η!μΕ'ΘΖι™§Ύ·ϋg~θ;·FYTJΈ}kςXδzΫώ0₯š6Dρϋψ.δ\ΜΛ`qΪΣ/šΊG ›b­XΝ«…ωN`ηCΙ€šΔ-λI xμ\†ΚB€η"PβΈ ϋΰYjΙάό'vτ,†«\1Υ6W˜ό˜@ΐ³XΌΪ^u-{o9· α—7Ευj@Œng‰εN …c͞=ΫRύvπmψ՞φ{ }―ϊk\G$ΛΣ3#cραŠ…9Ο{ιZ&l΅U[·mΫΦ§uκIμq-Ο¨ΟEΖ1p“υVυΔPL\ΊΔ<p@ώg^’$¬ l7vή[½‘"1<xžκΚMO_,_ cΉv+4B@0ΥοMǐΩΣρλζ_ύ 7Υ+V`ΚR₯JωA‡:. θ'†NωΌ+W4ΜΟϊΞ€Ο?ώ )]™δ­l2φ–$ ϊσM Nΰr'XNχΣ#¨!Π’ϊή \XΠΊΐ€b=ϋ¬³ύΝμR΅ψZ™·a+Χ!ΌzۍB«Φ|X"Ϋ ϋ+`qΞj.I[ŸBFΈ€Ά­L•—­Ός`q//;Γ΄C6F€ηφ9χ Ω{_0š£ubϋ=&ƒΰS|±)―-CΙ^ΡcxS·ήωΈ.¦€@~ŠC ˜,ΏU"»&_Λ ΄UYυC%΄ˆ$Μ)²q²YωCΊ7ωͺ&LπΧa}a}'@°μ•sŒψ‘c`χ|†μόh²—,GΉΫ.ΖE—]κO΄»ΨkΫ8©s'›{jΧEϊsΎxOά°‡πΠK3Ž™γ'βΰ3Σ‘Νw’ψΉg!μŒ:Ψ’tΠo‡Τ6‘ΐ‰II7’όl™ν ΛΆλ|Œm’‡κ±ώH*€Wη\垺ητ7 ѝοΐšJ₯rΜUδŸJWVŽΗ–εΧ¦ΨΨc”­}fΑόh…JTΒ ή'½zG4¦iL8ξ|Ÿ4–Ϋϊt/³hΞΡύιύϊυ3·©DJύDoEeςKmΉ`5f'$$ϋ*Χc§U‚μ0ίkΣΈTTβϊϊ{€ΏΈa{χωͺδψ”Φθ\ΔέsgξμτΗqqΧϊ8<εE“D©Σ¨ŽnsΌτ {\B&γ”)³ikΧ›Σ‚Ί£-Όάy‚‹ΗU₯Nr­c"λ€ύsY±\Gέ{;ΠδΌcλ€Οœ4c.b>όά—\K°°Δ=J(*¨°Ÿœω b#Χ€\ΜΙ1hWλΤΘΏ2'ηϋΎΪ§ƒlŽα±ƒ€7Ÿqγΐšνψ©ϋ ˆI=h6Ί©xΟ(ݍ‰6Α„ ψδQΟ"‚ Ÿ’Œ†g!Ύo9ΑJϋ˜½ΡΛ>1gžΛ$+ˆσŠdfαΠΟ#‚1|IζΩ§‘ψΐnΎλpχœΓCŸ6;"hΞε­PaΏύnΚE_Χθ@pψIύ,υ±ΞΜΛ=΄'š³­ΡͺK;<“υΏ"mΔ$–Ν†{‡’Μ„}!$! …B€η’Πb¨ŽŽ_8ΰY‘€$.Zˆ€ ό―ž5;vlfYMΔoΨ°!”a’ώkΠΆ©šjAΜ‚΅ρπ,Ά-ΚΦ)X+{¨mœ4‘Χ @„$€NŒB€η£ΧP­'—΄θ©€zn’Ϋ›oΎΩψγΑΚ(,&#-D(xξdΝ Vώxύ'ΟΉ=ί ―@VaFgιέ=š—YσΙpΐ' ƒυž‹Œ:šΫΗωŽΰίΊΐσ²\8—xJΗ#β΅ηΰαbkAΕ›’ŽέΓηΓK „‚Ω₯:Ά@τΥ9Π..ΖeΏΐ{Νb€Sο Ξ†λεqΗ€p?ω=χ―=UJ’πvdγΞ…‰γΧD€~† w‚?ψήGφκD6κFmΆΏάώ™ ώΎΛ€6%›Ϋ“Η ».N€dο>ˆdvΨq‘¨,°s₯’'ΰJ‘*CΘ[!ΐsήϊ9ΩΏΥβ«<[€­sA6 ,› znΖO;πηγKP‘gkΜν ΓΈΜ/Q}Nΐ³²΄ΈM{ ₯Gάw₯&ŽqΖg˜…r-|·ΊΌΏΎE2ΔΔ¦œΙ±τΠΨ±zβiΗϋ½4έd."HΩ‡ήY‰2›ΘΪψγ/H»Ό Jvmg«r²`:ωa§qQΠϋΝjč k“˜­™-ψUΊ₯Ά^Ξώi#ΗNAμ3ΓqΙ΅Wϋ“Σr•/&°ƒϊβΆ ­gŸ}Φ$ΈY†m1-7mv7ϊ=v˜»­{0ςaŽΓό@>ιMμnNΐ³τ$ ™ˆ₯xSOζ™ΐe?YӞD]2Ό p =δ™λωX ‚Ξι\±:ι»dr η˜^wU*™WE1jKτ@=υjw0|,\»4 –a­[!sΟ!n?N`Œa/£_P΅4άOΒ܍λΡ­A)Ίžt,ΖOιLz X`g VΘzζΜ™Gί/2bρϋ\―D6d3Ύ\ν[,½χ„sλo%j‡0΅ΡΎj»βΌzNΪυK,²³gΟ6mΠ/Χp°Ν^WώΆΨ₯/»μ2Ή` cs ³\Ažηά1}ϊtrά΅k—σ«ŸΕδF–F“Φ¬‡Ψ›΅]²υU7)@EvΥ Θͺ^%Τ‡«Vu€Ϋ-η+{χδόAΞdrήΆ3gqκ7“ ηβ-› Ιά'&³γϊΦΟΎFΪΛ‹FΫ#ΡΦθQ·\ο€πέ *H―ύ ξoVΑύΓΪ#}δHIΊΡ™μƒηΟCπ$Θ¬]Yhcb<ߜo `mΘγΨzΗPœV›IŒΦ‡ίϊϋ&x>}Ρ‡HYΝ-·E²]!ΔΗ’δuη#ϋΫ•άvz7’;܈CΝεΫ4ΆX`π1}”mΓ·kρ¦uGϋ(•< ΐ³Ÿ-ϊ˜[·enuMc”½ϋjΓ€/P”μ€€e"ον’νΥυ€U?”m½σΞ;½θW’EϋU·έ‚•+Wϊv hV’ς²₯3‘Ϊ¬~ν΄₯*λΌ―όΟš)©ζϋ+6Ι\DI/ŠΟk=Iυ‹ρΤ "T[-˜[UhŒRœΐ&Oθš?’q^γˆDγ–“Tvϋ-Φ1λ5x>ξα!αΕώέ ;ΏBeζωbυͺΫ2]ηΝ†™Ϊ V6pό2φ•v6cκKˆΉύFτJβO\rΛρQχpVιrΘ.[Κμ »¬ΌώZ‘½6l˜a¦vΪπ·‰οŸκΥs·ϊTύ©ΦlvΤ1΅I Lgt܊ΐ›…?Ϊ‘vh―ϋ1°ρ₯Hωβ[„οΨ}ŒΛ¦-Λ¬*Š_r!P·Ž™οφZ‘ςG5ΰڜˆο­DΗ7ΑyNΙΝiσ/d Γξμρσf€L~‰ ΐΏ|EωΞD_Ϋhs…Iόržw>λ½s2<Λ―-5οG€nΨWε’¨<μfΔ”/ι·³9μ…b8σήBΪ²RSG&qf“-ΧΓ€­θϋοFTƒ³Μ8ΰœ«œΕ$<ϋΌœΧΠ±άlYaΪ€φŽjΏs^˜8¨ϊΕζ¬9‰%ι°κΡΈ¦uŸš5kšCzvJ\±ΟIΙ-}τQޱPc±|€άΖΚόΖR{ν`5ŠEΊ0’{ΠΌMRT€gΩ¦΄©³Ύu»Ώ)œgΕφΌήͺ•ύΗώξΧξ=H"Π9rύ&ULκ-Φ•ΙΗKφΐρωΰ‚7Λω΅vΚ“d48Εzv‚·DΌωΈ~‘Y9yΚD~O°μΙh€m½S™Αφ―ξ-mΜ3Ϋα›)‘%f ΑΖe 0'°΅μۏΓc&C».J2ΈϋB±Ύέ fο؍΄ΗŸ…› 3’τσ DξΣω˜x·ωω‹σσŒΙsšœM }1Ό^«=\ηΥΑˆ1Ηb|Ιͺœš0ΑǞΝ~Υ‘-pMήσPΝ’žb|δ{Ÿμ‹}p^ž—€€"9a’I.U±ŒKΞC‰ϋος±)©#&s ƒ»"–Œ§ΏV’ η[Νw`η€I3υΙΧδμ '0šΓ•Φ<’‘Ns;{w mΘx³Ž—γF=”ϋ|ΙΧ’Πο¬Ω|+Φ7°ŸŒC€η“ρ©…ΪόI8ΰ9?εΙΡ9r€)&aTPΠ]’lmzeΑ‚&λ\*9«NΡZš( Δ‘lF§(CTY€ 2(xgEνΔΔΔl¬φ;ύUAY“ Ψl@·ŒΜϊ¬λ: wn稬Υ©rb–Q@_š€Y[.τ7€ŠB€gψφτLzχξmΆ’ |>κΗ8+`£`ˆ&βoΏύ6jΤ¨aϊw`ωΠ! „4Ptž‹N—‘šNN (8,Ÿtψπα9X˜t7Z”“‹œ[ή©3ˆ¬EdηΆρeΞ*ΰY@ηεΑΝ­Ρ-£³;-YίόθΜ@αυό·κ­y nσ‘J]«V{q>ΒwώiŽˆ=/•[„οΐυ 2Ξ#|gέ?¬ƒϋΫUp­^ˆΡΪ “³vDΦn‚¦S2s‚"ΕLLŸ2²σΝXΔέQόU}ΥΕXΧj ”« z5FlΛ ψΧ^?[εμεF,FΪw‰ζ*ξHb2κΕ“―>J°Og%nǎϊ5 0Ψ6#·ώ »£νκsλ£aœ#¬ωyƒ3l€Ξ9>ExΩξ‡ηό:¨πHϋcΖ'‘ΛXΖ_۞άώκJŒΠ}Ξδ‹άΚλΈ§9{Ί/ δ–-’=Ξm²6ΙHύRΐkgbFΰ΅Η=‘nX Ÿ-«qάžuOΪ΅Iǜ"@™t£qGχ ›€$sΧ`Ϋ€ΰās靏†51ε5–v»βj€Ξ˜w“σq¨~m,Y±άŒ-Φ–ΙΞΨ§5@kΛΚΦu$jŸ˜₯·₯K›1@γΉΦϋ4niœR›υF+‚‘7xŽ€xΒ5»ψT«qŠΓe³υ^ž2γUD^s9η€e‘A[χn—^³:\/±"³;‚œίμϋ€φJ§…i“’_”0S­Z΅`DΥ!‰ΝUzΝΛΗ1<Ž_bΜ¨OcΏΨLLb’Γ$1I"ς—-άy‰σE‡ˆ­?σ΄š†ύLξ8npš£ΞεΝ[q`ωΗ>π3}=§dW©ˆΪAϋ…·\€ΰΰΤΉoΐυμ Ό•ΣχΧsξ<4ΟEƒP2e₯αϋυ5O‰©$„&2–ΉP‘J(Df2$ ‰J¨RšηΊσpξ9υήηξΣsOηNuK~gυκά3<Ο~φ³ž½Χ^{―Οϊl!ΤdIΎζb‘3ˆνΊ"„>„_Ν’_΅Z'io”}/'>Τξ{τθφkwσ+fό*9ΓΗ›˜ Ž1Iχ)γ§‚ερ΅¬―O{λΫα’©¬F΄ΟδΫ\ͺiβ_lύ:ζ+|λΫΪϋβ3ύΩ&Λ‘ˆΆvνZγΠ"w Ω-M“ H"`Œ(‹ΠηLΫ1bξάίt}¦ΎT_ΏJ6 ώT‚ϊ―ήk·HλΆ‘ΉE΄9LislΎΊ3§θnΧΞηS$C“btη°ΨΚ•d­όHŽA¬mςs„Δžr’Μ\ΏF>ύb’!Œ3ΆμτӍ-aάAO`πasF`'ά€dΚtϋμΖίΥ΅ή¬_ζJ"ΎΉΪΎμ—Ωώ©₯£±}θ2 ‹™ΐζSΏςΨ2ΐΙψΊe­Sd"υŽœDžΠ/ٞ°ΣψΣξφΤ₯K—pHLr¨;ω‡ϋ&ɏv‡ž »ΉΆS€,c©9°_HΔjέΊ΅)qoΟΞ¦-’9κMIψ-F₯Πν‹ ΚθΤ]J*JœΜ,Ω9φIόώWc#(—DΑ”Ϋ”¬I{,jGs”=¦ΠΧœŸΠγF‘‘Ήκž–λ¨ŸžύΪρe…|α@ν’t§‚Ώ?$j‘μ’’‘IfΪώβ:^$Α Ο₯D=>Ϊ—Ξμω’ϋβh3φΖλ›:IπΜS£ΊϋwΊσOξΠQz}]›ΦφšxΛΥΤΎ[’¨ΝO6VΥv#MpZ}MOπfuν#:9*Wϊά™Ό«ση(aŠ£σόΔή f'ˆ’DύˆŒG^”XΨ—U‰=S‚J:Cdλeo*‰¦:Ύ%ήp™8i:η?%ϋ‰αfMκ¬’,1…»kE‚wŒŸ(ΙΚΖoζsωJμsΈ>›Δή:6_LΫή΄U²ξ0GΤ.ΙOή/Np{Ι7ΰύjυݚΐΗ`Ξ9Ύ»‰|νε?η!Ψul.φ9r<γwΖΖ5λσΒ±ΡΦAHVαœβ„Ί7ο*|οžΛ’%οOϋNΰYu{ ža !h‚οΤ©“YtgQ PuI†zί5―dO%kΐ<— πŒίxγ ³@f1$(˜T³ΐOϋNΰyίιΦ+ωί£όH&ώ0ΜH`1Ο,˜σ[΄…‚Θ»c!‚E„wπ6ςΨ=ύόž-ΠydqMΥ:η*ΠΩ·£³>0 ³£Ϋpϋoι­ΫΟύ₯μΣΠθϊ_•Κ"Ί₯fπςσΜη}ύ’K ^ΤU‹Vš:˜ZΤUΠνϋ#ΔW^ΐp”Κn9I‚Sš_b’Rcζ7α…κ‚z5$ξύαΚRR/Κ™EΏΚ›·JΆ<υ‘Ž) ͺZŠΤ}βjρUOe΅LŸ) Ώ(DΕίψ`IΠK‚•RŠPΚ§ 2Rd |AC@μά³•εσ–«J9kΟ6`ηώοJpG–²μΕKέ‡=°σžkΣ;³"4ΰž+B‹nψn-@F€w,h“ί- š» 0ί΄iΣ2ω ψ"ό/ ΰ™ ·{›aΐO͚*#fWpƒ²άμqΜA‡Θζή#t¬Ο2 ηϊcϋΘ­wt7,u!ΊtΎVڜΦΞ0»Αφ °; ΤH!ΰc€#―ΏώΊ\« ΐΚ ρ@εΆmΫJ>ŒxοM21ώ†ΛeΝ‘Γ€: ‚₯Ύά'°κλ/Ύ”#5`‘uΑ•JΔ`yœΧδ£)ΧωR‘B  sΞ9Η€ΓlΐΜΑ|~oβ’™™gΆ²εzψ~ά± @ M YΡx¦Η|:Er5Xž  V’lu\66ΐ`‘ -~λΠ‘ƒL:UΊκ*y½ίC’Σ_νt«αʝ―0AH)<7ΰ™Ο’ύβ(‰]½Nn»^ζΥͺZDOnvkwy”eΩΌY?]Ίd©ΤΈ! ¬Ω,y‹Χ+2’@' •{>~{;·‚νϊ=ρDXOn e»uoΑo½{χ6:€{`ί~²΅ΗΓβD«βT©$;λaΐ|ζYΣ7Άoί.G²_σ=ΰEXτά  ΎGΈ&l΄[Ϊ»ƒ_[2Ζ}(Υϋί)m:œiΚfm©γρ'‹_Ί5 °—―Zΐ3Ύοš " tOSp/ΜΚ1k7ίn7•¨ν(¨W3n>Ά…§‘ϊͺϋr‰²E?Ÿ*YΣf‰o^+BόG&•Ξδά":9βψ>:τQγ$φ/ z9ΚšΪ₯“h&Cθ;ϋΚΌ¦δμ›χ‡΅MY ϊƒR°n«ψ7₯K0K™4ƒκ[Q³―’”λV•˜:•5mRΥ‘½|ή –\tΡEΖV-Z°P>ντ‘|PϋR©\Ν'CM‘)ί„(Hˆ?kΆlιφͺnž&q•ƒ’»CΩ’ Aύ:>Œ|TŽRζH€[ύf΄ώ€mιΧ―_™ϋθ"ot>bml M'-”μό<©ΩZ‰Σ9lδψΔXbν«©P /ΨlπΩgŸ]fΐ3φ”έsf€gμ5=k_ΰ•4g§μgŸ}Φ€]yŒΑ€ άΒ8-ΕYΫΖyn `ΑŒΨ2Ζ8|”ΙψG™ξ{βωU­ZΥΑΡνΒKd§/(›u—ΧͺJ”€@–œψ›"©m[IΒYm₯u›6a[ΖΨΑ}aΗΉηzυκ=ΈΫΒM…Ι\Œέ§<ΰgΈυ«ίMQ¦όσ4AΘθaΦ/’¨Μ“?8ωLΩTΗ»¦Ÿ}'ώŸηΐŸ_*έw‡Όγ sŸV/¬{”΅NΔς c‚¨‰"tΩΡ=λ–aܝ<δ֞Ύ xv¦ΐωσ/‘ί΄_̜­v²h‚‡Τ­%ω-”ύω4UισΒΦx²‡Π5š΄o¦IΌκΫ·EA^.)¨W[’OΧ1B;Ύš. ίΟ  κΥRΐΰ5"εΨΛUt‘·n_ Ώφ¦s.Σ])l­~βξλψ΅Δ’#Ϋ­¨’υψpc¬LQΝ™yιΎ}{S†ρMΗ~":'œΣNœž&NΝκ΄ϋύχίίζάs$¨βEρ­M oγ/ρ„Ψ™_p.ύ‡έcνxHVvvκ(‹@BtΙ%—ͺ½Πv­bόέƒ“Υ=Ηj–b$th!9η’ΝaΠ'‹›«D«£ΫΎΖ*pργ―Ώ2‰vΦ6%ΜύCΦ6 —›h{ΦΓϚϊhς}μEηʏ©qa[F >"6Ζψ»…σ·žΈž{Œωΰ½χdΡΒEΪυW;έξ„%_½¬`Ο‰OΪ±›O"Lylσwπ_έΟ:²Nε<3VοάΉSάνΙ]>ώ3:p·'ζ8§+`œϋ‘ΐFξ'ΈοχT7ŒmΜ—άu’Ύ₯₯Vυ·"ώ2§kR\’ξΎΐϊ&‰Cό5—Kΰ΄Φα~ΏΧuΦ±Δ™f°ZIΈNη}{°3ž­OPΤ™#¨=SΗf΅Aνσ Wœ/Α Ξ6c΅=ΌMLΜ’σKέαΕεκ:yπΒQΛu4™7λΉ·p©9œ$ήxυD׈Λ,¬/+λuŒYζΏ‚«“θ‘;•ΎfΝ³KWκ„ϊU {_½ώΑυΝηβ^Ψ‘0σΡ‘«Ι…HώM%εξfςσ\Gžjg·Λ’Χκάaςχ’«ΙiκΠ™]9’μYzύ°œω°2^«OΗβBbŸΫt§ˆ¦ΕUΙ|T`tφγΊώ’υ ΖΖH=7‰sΒ‘‘ίtWœά‘―›ρ/Π ŽR$vιJσ[Β%ηŠΣισžηΗ_%wΘ«!°sv@M1σ·D%)μ¬I_Yχ)ΨYIaʝόδΠX‰'ε €“'O6$JΨ*>CzΐXΓXύuΫδβ ΗΗ'Ω2&Ψυ­ΰJς $ ΝoŒ·Ψwv. ‘kr}H Ψ݁9k'VπΫ_yε3_cŒŒΦυκΧ―/}ϋφ-rΘγφδ³xή­yηx¨8 x€gΥεώ<γ`ΓC†ζ}Κ$Rœ :TΆnέj&!°z΄ΡE 29=ρ4p jΐ<‹±BP΄F ]<Š"8ddzγpeeiU'o8k8‰žxπ4°ο4ΰžχn½’}`±˜+ Λ²0aίΧχ+ΰ@ΐ7SCŒΞE€Ξ”`„eΘNέθ\pρ$xό±ϋZ%Ε—―υwnο/Ξ”β„/a:v:]’ŒΚ½‹?―’υŽuϋ9EFtSξκ"Ξέ7Uθ•r§.τžΓ4`ΈCΫpΎ€Δl“Έ‹Ϊ‹ Pλψ——MMΤύUgΚQχžσ$χ•Ρ³FAQ*9νN’Κέo(?ψE™83μlΐOΪΗ’z\« ώ!6΄rU°ŒΆgΚΊ>ͺ{ΐΞ‰q vΎ\bΥ,γΩήažφ<ΐσΎΡλR*A‚ω€Xί€K#d| ζ΅ma*ΆμΑψœG€ƒΏ€€ά b{oόΖβ@φ8ώˆΆ@8Γφ8ν'Ωψό$© ²ΕνηΜ>γŒ3δ>€ά›½v³lΉοeIny˜dwj+ 64EσΑq0μΦfΑbI‰IβΧ1–kho_πtΠ¬ΑΑςΜΛΓε0χ»HΑΟά_FΌγ₯κψηε™_0s~T0b³V`λΰl˜±«iXfcO:.̈> τYΑχž―—΄;H‚²<ωN=ΡΤ d‚FάγΐGGΘόίΎ1ΰnlφμΩ†i˜rxpaph– uΆu’Œ‘/Ό(Y·ή+υ’ϋέ%˜ΫβfIγyΉAε°ž™‘/γί7ΗΤ­- wiςFζ³ϋ…s#ΟdγΜψYbOo-g(šg‡žή}g‚Δk`5RΠυλ―ΏΒ` XMΟ©S_ {ڌεΑΐ ŸΟŽv{ΗwΘΠ;{Ι·«Vπ"eς<W\ž–‡Π–iΆ-ς#¨θ›φ±@}θ‚οgKφ_K ή~ώΗ\Ήψβ‹Νω ΪΩ2xώάKγƍΝο‘/+W·τNΉAΞΪΏΒ’ύΫχΫ|qpμSFk5αŸ9η­Qκ-δ,n³ξΔ" rŽ«WM|΅*sψDζ‹'/;]V€_wZ™|ΥHωξ„δ‰a‡ΘΉη†°C{τ“ O}(υΎJ’ 3ς•©oΫ+j/<[}σΉιτ‡ο§M—†‹WIAJ’ΔŸ~rΏ›ώ€Μ˜1£hU—,EφΡjλ+U–Ά§ŸŸήύšζ;¨Ώ―`ξhγvc…[ψ Σ)qμΟ¨‘/JώΒ•»x›δUO”όF5€ςΡM$λΧ%§ ±USεχ‘δΣΧu¬HV ρΖL·DΏŠcxζχc^$h 4h·€>ΗΐΙ‡rμάΉsx\¦~°μF&°v`Ω?§OŸnl Η©'ΜΚ6±γ­·ή2ΎΊ³ΆμΫO>•τΞ €QImγ\3̍­l€ ?”Λ5Ρ`;žφkσΜ-3²Ωι@’{μΈ„]?Zτ΄ξ6OβΨϋ!C†˜ο-x܌’τ[{λ9&97eΘ£αδμοdMN™Qp/K°ύžΟ±ζ6γ½}^Ψpڌ ΰ:Κφwσε^Ύ” xŽ(ίaW¨y!φηΈ₯š8­‰»n ͺΛWΠs₯SO’`KMήPΰœ'{¨ νœ<Υ€Ÿc6o-R@Έ”–GK¦²\ϊΦm–wΜαRΉ›Ÿ•ρrOΔΏv»¬2εΉ―ή ϋ2ψ:΄Eό¦h~->5ΏqŒ΅]τυ€Ά3yIβ”%<εae ύς#γοsόΌι?ˆο‡_EΞl-’ŠoαΟΰβ/!τ¬OyνiΣ¦Ι 'œN΄€5zΰΐa v€sˆ‘±2Χeϊ<φ'†³Λ*ΧCπ ?ώD™<Ν/νΫV“K.j#ήυš¬κϊͺξJ’"‡>ίEžzκ©έζ0¦Βμ ‹›«π1}k›μάςχ`νc&ΐ¬υλΧ‡Ÿ5k–1cΆψΏύΑ0Vz}¨tΡ„@k˞λήS–ς€…ΓξqΑΎΠ;vσ΄ΣBγ ±uΟ=/O?χμξs}Ξc#:E·Ψ:ζ*0μ—Η–ΑmΣΤ [nŸu΄:=όσα±άTB_Џ{^ΰfx¦=’w{j¬ώ΄΅ŸΨ|ό…φ…s4ΪΗ>ϊ裦νΣ^Λ(ǎ΄oޱσYwBu)m,΅υ¨Ώ{xΦ€#ίWίIήΔOΕ±deΎΏTw ԝ τΖ+ͺšκ,¬Qγ%ΐ« σΧΔΛ”|>Χ)κK•η’Ξ΄™’£lΡΎΜx1πC$ωN]OΦ]φXtž&$ρΎχΉ²λ{Ώξ€˜|—–[˜8YΆσϋBΙ}ώ­G–ω)GωS»ίX>ί(Ωƒ_ 3T³ F%Φ—#|ΝΘkσΩΩΆC2SΠ2‰œ*ωΗ4—δ{Ί•>ΗΣ„Θ\˜šw€Ρ™$αͺ %¨€a·Œ›˜¦ )β“€τI'G¬ΕόμΧΉQΚCw‹θ.%ŠΖ³}яΰžό`)—$Αy‹%η©WυFTΙΊKΐ€ξ":32u–Y/Q£%ώ&κ“&(‹ϋbMΚR‰;Λο‹$ο‰B‰A;uL"ΙNΗ…Δ»υٜtŒ9'ς%¨¬ΥY}ž–ML rνA#Ρ5 OΚ§μ«]‹v&σ$ζ2v~νΎΓώ’ψΝΞZΕ ‰H¬{YΫΞψΑ˜ΙJ4ažΞΞΞIΈγΟT]§)N"ΧXŠ;Όί{€ηςjΜ;ήΣ@Εjΐ<«>χ'ΰΩnΡΓc, ‰Afba&Ά/τΔΣΐ¨πLiΠ,Šd*›™ζ,D?O¬Hφ3 ˞xπ4°o5ΰžχ­~½= T€φ ΰYΗγβΞωa–δθ¬ χ=7R―Ό)1…[S³]{ΰδγΔyυ) *“Φ~‘›ΕaWέΎ{SˆΥYVΧ–Έ―Ζκ6tU*΄ >eΚΏͺ§²ƒ)λG †|ΚΠw|3©ρr‰Q&ΊςŠ―Ν²ωαwΕΩΊSbΧ­“”ƒtεe0οήeXI‚Κ&˜­Ϋϊ9iΚZ‘ ύΙύJgΊ(oέΗ•ύgmŸ·%Έ53vV_μ!΅ά‡xο= ό#πψΪχλE zΐ‡) a;`€EŽϋ‚FηΒΦΒά—ί8†1žγ―»ξΊέδ.σΏ8)΄πΕ'@ίοΒdέΰΕΧΌŽ4xπr$s$ˆργΗ „:ό'²yσfd#ΠM€0ie?ΆhA`š!ΒχsζΜ Οσ ”Lως+)Π­f(Θ4 )އ9ω±Η3ΗσΩ­K€Ÿž,‚οΠ#ΐŒHα:κ(β°`d[ζε—_n@`$QΓΨHτΌbΓΩρΒli©ΫΡ²IŸυEe\ϋBŠΩ{Τ“0@’ςθ k ™Κ»_΄žyΏΞ—©;6šΎˆ7όωϋΖ—Œœ €ξ€Ž’ωε²υο%Α—+ΥΘζ»:ΙaΪχO–ΞCr^S²‹ξΧθ.ΐ››}³8ΐ3ΗaXcvΫWlo4ΑF& ¦l’]ˆ‰!_}υ•Ω)€χ€ `kλ`ƒfΌ΄iξο³Ο> οTΘZΫΝ7ίll υd,…=c¬½4ΆLνW@/K–/+bΛ†υΈ[²^/[{v1ϊ£Ψά»ξΊ‹·†‘ΰ6–:ΨdŒpΫ|žΡ˜1c$99Ω€ΩHΌb§„q ›Μ=~ƒθbuN™•“-Δ6žPΦ&Ή‹ƒ ²FkΦΜ|gΖυi‚Ϊ&Στdπ+`ƒ>μ°ΓΜρχπy°νz…=Γκ©V­Zf,5TΐKyΟE.I’Α’’6}¦Δ-ZjΉ)P`SrλEόT{ΔψξΙh`ΰησsŒξ¦α–`L¬H†ώ΅ΕκoΓ†™xΡΩβhbSyƘόEλdγ“ŸHbΣ:²εŠ#ΒώkI~-}†ΆL‚ώΆ›πσο’5αs‰WπZά£₯υΉg›6ώΈϊ½ΉξρGoˆώ ‰Ά‘|ŒΖ›ΟψΤ04Z?»ΑuI˜|‹0_ΐΗGΕί>|ΈΘ—Πa~Τ·} ώ?Μ9TΎž#]:ΖΛΆucχxŒ \ώ—4WΑΦ”eΜ$Ι&}ζθkmY’–ΩmΛKΡq%ζήΫ€υώkτoΗδ6­ΫθΡAY―~ΎΫίΕnv8Ή΅L›σk™η*$ˆDX^[fοΑΦΙ‚“#"λtζ™g†mўσ7ΰΠ‰:emO€αi7$ΟΨd+ΈΒ$2U―^έψΜΧψΨgaΑΠ‘c)DtτβΖ_{{σwOΟΞ³$χυ ³CX½οΈsΪKπ ΌVJ }W―ΞϊM’9|¬Δ.Y*MϋAξ GK₯›u~W½όλ±α*­έ ΩC_ΛJ #uΒM$xrh.>Όotύ8GY}…ΐl’1β―»L„έW’‰‚Ζ3^~]5ι r|ϚΔxT΄£‹NΫΉ―Ž %bκ$‘η-T=•Iζ-”ΌηG‰ZΧ6ν₯"ηYϊ©šp’7μ EskΥδΧ„{»‰ς]"O~ωε-RgόΫ(}Ή4¬ο—ΔvGHjo=^ύͺ’$ψΛ|‚1Χ(hXORή₯»e•ž ΰΓΗ?P]υGw0@‚N–ά·?5οσ›56d3Ε1;‹&Nζ>ψ΄κT _”τ£ Zu£Ÿ’ΐΞθ"£sΊσβjΚOz€Χ. ΅ΉͺχR `GYƒ°kcŒε¬7‘(ΓMb#Eί]>γ¦;ˆΉ~;»ΰόϊλ―α„qΚΗoηΊψ$η³ξtιEh| |§vq£kΏO<ρDY½z΅IZeΝΚ-£Ϋλ|„γ->ΗύϋήΌχΟ{£=ο\O{―π¬:ܟ€g $LψXœa‹.2Τ1ΒnΑgrΰ„ΫEχ1ή{OŠXψdΒΗvELκ‹a?κ–‚,φYG…c§N ό Œ±π),~0ΡEθ τ +8=Λ–-3}Θ—μo,hΐ¨ž’¬,ΐXYΉr₯q¨ψΜβ|΄:㬱˜Cƒuθp‚μD¦‰²Έ…­Y|ΐ£o3 ¬ΗΓβ€γ†¨΄oσ…χβiΐΣΐ>Ρ€xή'jυ υ4°O4°OΟ:–G:ηΟZ`œΒς tžώ³(³c¬!¬δ5¨/±/= ©ε\Œ΅μΙί'GHπ₯ρ ΄!£― žύ•­αζΠ-τeΕΌ:#ί“#•u[±*9‡6‘tƒΝμ1ξΏ€½,πfε²κι²Λ. ƒΥΡ•eΪPfΩΣh#ώ΄tI{ψi‰[ΊBƒοŽ$Ώ0HbΤ Ty6ξgν^ ’½\ƒ±³,‚žŽ»YI9΅pΒ¬&yσ‘G%ο΄k%φΊ‹δΫ- πέώω—ΆΜ}ΡξhΟ€4ά,Cv”Έ…ΐέ‘ΫsΠBŽ?ρ¨vν=Ϋi³¦”žžnΦ·Š"”ΟZώ1„φΗϊ™lέ.;ήό@βˆδψC>RPA·ymŽ“*W_€»XT2η”υεφ»½‚μnŠ|Η9ηœcξ…„&9m|ΫΨEΑ€Δν5D ?Ϊχ€}΅LΤ”‡DΪpΪΪγΖ‹ν$ΆC;ΉΊΟ}%Φ €]JUσlγO8V{r°a •.†}Υνπ½{§{\Eόέ+ΐsd4ΩDζ.ΜQ€›ΪΑ}ΐ`°?§Ά=Iœ–G*°.%²οsY4  ρ!πσ‰Ω°9t†ϊ­>ΥΏo§»’S% cy n-I¬Χh 9Ϊ%rόS6½τ•Ϊu*%Κ!/w•~>G;ϋ‚Αž`gπGπ—Βφ쎁’rkg‰kuŒ¬ΪΊ9l;>]€}V›βΚα?€(·Ν/#!;εDQύΊmΫΆEό,°oΨΘβ„kΫyΜΐο}y€&[Θ€»b₯ω‘†Ω·†7άz₯έXζjΚ$᝕₯=1G₯ ΠF` 'Ω₯81,ΨΊΫ6Ο‚s’₯ψάΤ“gkη–Ε•·§ί—πμ,ώSr_«μ΅Γ—Μ;²™$ίr­λ«_WAβ¨ožφΪΫ’‹»κ)PΏ;Ή«^§i(‘g.₯cJϊ˜·%QΒΊ°`lHΞi'I₯―ή»dE §/ ?ΝU78δηiRbjχ.šμWό·ΪαΌ'•ΉΈ0%ΏYSIΎ·»’x”c₯ ’Ϗ”ψΉ˜b™£$?ΠC€ζ.Cψz‘oT―;GΏ-Iίό`κΜuοΏ=”Xy¬ϋ³Ξ_+ ?Ξ1ί²[@ςƒ=‹gΕΦr²"kζι=Γ'ί7>OώϋάΉrψ!‘ηκ.Ϊύ~ΗοKβηΣLές:L*υΉ­TΆκΰ»_HΞΔ/M1Υ‘Tέ@ ύ„CΖh3Ώε―;π(\μ’ΏΜηΔNš<|Ι9».―lΩΉ}ι1ΩβlΪ!5kšk'φΌ^€υq»ŽsΏΣηžρψ0MT]bΪUb_­―&ΓzR~ ΰΤ8vμXγΰ+ Νgœΐ~’ŒΔ\ί°‘ΡϋiΗ»–Α.kΜM°Ή$§Ψ€sό|qΖ„ΦšΌΞϊ‘]'ΑF³^ˆ½&aˆί˜ΨρΤϊψ μ 9o’nΜSέcP΄ϊξΙwΰyO΄ζγi β4ΰžU—ϋπŒσΚdΠU²ζ™ΤE …,(²} ΄ύžxψ·kΰ:ΰΆ$€Ωa›:ˆ‘‚Η’,N!@l>O< xΨ·πΟϋVΏ^ιž*Rϋπ¬‹!c&iψΞ4S]_NΎό›€ΞliνΏωΓΈdΩeμpt«ω –ύ$έ*O.Uˆ;ΜΆΧAGt”έN>₯ αĊ­…>·άKn•ψωΛ΅ά afˆνuƒξΠΕυ™²aΐx‘Miβ(ˆ£ZIΒ)‡—νϊ°=<σ²ΔΟ™―`gG·(x₯N]X—Ϊ}•)Y™ΫΚ,?Μ‘œί ±V([EΚΐ;EͺU.σιε=0˜ž#kϋ*Δ‚h}ΣΊ{βiΰΡΑeXΊς€ςδ¦,pvDΛbψΛ/Ώl™%‚v{e€Ά°Ϊ51{^$ΰ†]Ψ! ,#\“νŠ ¨Γ¬ΨΌy(p0–ΐ‰ΨVΨy ΰΚ…εΠ…eo΄Ηp™8q’ ΝΥKΆ@IDAT|œV£‘t<‰i~°Ή[wFπƒfXΛL~ΫNΙRΆ£”ϋ»Ι‹cΗI΄ΆΧ ΰ©ϊσ|ρ/\&³Ϋ΄³φΪcŠϋkf`[#Θ?uκΤέ‡±ςΖΞwI―Α>yωΙykάKΈΒΪΊŽuX‡„Ρ’m@Y»ΰy +κyίθι}ΥS»ελ$kω IΌ§»80pi pύ€Α)τ³7u₯άΌogHL|‚ ›3S/^lΘ\η0` ΦHyΦ<_žν–-[ ΐοΫ·oYυ¨Ÿ­ž(—6ΛΈ›»O˜Βn\GΦ­' =ϊKξάεΠφ{Χ‹δκk― ƒδμ9ОybΔ§ξrΰλΫ·ož=žΆyΕ‘š_π«²Ώ6 ‘\D«‹=Ηώ5ΐ]O"π‘δ{tΰ‚w°ΑφΡ—ν_²#]vΌυ‘χ5?7Ϝ+dήΙΗHUe –‘ymΏž΅FdΕί’ώϋ"‰Y΅^|ΫCkiξ{ζ}@·!(p υ˜#B cZˆ2…U€ αΜ^ ιίώ€Aχ•a°1Χͺ_g@Ξg+Θω°Ζ|Uρ’ΟΝ™τδ}8IX₯U jՐΔλ”ΰΡGHΜl}Ά³f‹σΗ’’uΣωŒέN9«?œ£Μn.3mΐ©’Loυ«‹S½( ›ο’σeΫΉgš υ@eΛ"‘ Σ-·άbΐΈ΄1k{© 퍠2,‡‘ν™ώ~ο½χ»Ld S¨e‡$N›Ύ £Vδω”)τ‡7>.ι=/U_yB~]²Θ”o¬φxΣGŸyFb•ρmΫ#%vω©ΪοZΙl{€9ΎΈρ‰]4νΔ½±…2 ,l‚/³?6Ί`+«Η§Hb53¬ά"ΙυkΘ·Ώώ(#FŒ01ΨθνqΟτΣyΏΝηΊήT›σx•ηϊɎ€ίθ0ŒΚΦnΘΕ–RΫ§Y'ζ=z΅ΗaS‰Ya bA€ΐ.Ζ'@Ϊ¨F’A¬=v?SΦ€a±μΪ΅k0!e΅jΥJήzλ-Γ²ΟψƒP'ΚΌVme΄gˆώ°½φŒϋe²eω~ (°6νΗ_%΅λΥο±Gw³―<|Ψ)ί‚Γΐ1žΡn#"l2 iΖτΛ³ήΎ}»’ވvtΈϋξν³(ΞζΫ:At’Ω΅·6†|”‘OΛΨΟ?5z,βtΣ^Η7Ϋ#ΫΣΟ xvWBΗ%gρrΩ9Cٟό)1›ΆΊΥΕGΑύυ$₯M+ b§Ω^Ώσ€œΠυωε7ɞϊ£aΨv΄οω6nΥ±1M+b%PΉŠψ›5‘€ΊΛT™ωξ,ΩφΑΟζΒN½*R!έ€j²‰Aaλ#ύ;Ϊ$>46―ΑISΎ1ύ [2gΖβ{ηs™yΤΑ2C™ŸΛγƒΣηπ[H–‹l%Lπƒj¦o—d78Ÿέ5πy!7²}4²\ΚΐnΩdG’nf/:JŽm”cŽΚΆχfJό2;F#NΥΡ΅!wωΨWvΑΖ’ΨA}­J"zŠη’θpήyηνf/3±Oψ¬φΨcl\qΆ »δfΖξ“|WœΏ;lΨ0ιͺv1γΖ^"ψVυjKΒ ~ςβ˜Q%ΞU`·΅ωΨΙhu’έ`σΟΤ$@kσK«“Mβ΄εσά¬^Ρ9»ΰ`OΡ+s3l$ΰk·^+ΑUמΨΑ…Δ#t…~I’LΖ:欑BΝ=:<ž2Π'"ΗR pš1•qΑ>»Θ2χτ3χ Έ λEgΓ&Ιω†Δ±8όsAύ:’pk 6?,όέ^ΏaμzšδMψ$Δ8¬θά/醫hzΒήΛΦӟΉ«ΌSŽQfς4‰]ΌΒ›ΠεrqΞkoή›΅]9χ?fΖ@Ÿ&ϋk)ΨYΛIΌ«Kρ`g=1νωΡ―sb$ρDΪoή{/εΧφέ&/²ή¨ΧΪ|;7΄IωξΔ©Θ+aΟϋG3§Β/Πl…ίIςΗ³¦Δz 6Ρ–M’ΆέΪ]ζ$‹=Ζ—`ŽΚ8ʚsψvΎΐuμœΖ^·"z€ηŠΤ¦W–§ςkΰ€<—ώgΰΨ³Π‡ΝmLΔά‚!† šΰ9&žxπ4pΰk§‹Ύ0)· ΟξšΟž=ΫLΞٞ–…sO< xΨχπΟϋ^Ηή< T”*π ΠyΚ4‰ωόλ"@η\etφipΥ‡dFg8ˆsΧΓ"_NŸeοΣŝΰeηIπΙ~₯φ2•γά7Hμ t|b¬Δ ž]¦σΛu.Vnμ#Nzˆ±“-π|γŸηΘ]‹ψΑ¬\Ωπθ; – ˜«\uš$_rRΙ—QΆ€μΗ†H E•œφ§Hκ•—Ι†'(Sb†OΧΈη‰?ΎIΙεθ―;FΎ# ίόdŽ+8Ό±€τΏ]AίΡ₯V†;―ι―χ»Qπγb€ήƒΨΉ jσΩΟπΟϋYαΠεPΓϊE2/Α|€aΜ…aU±ΰU‚ ξ vIUeMŒ  IψŸͺ ^‚Π±, ˆ e΄(‹Ψΐ:ΗB4@‚2 /€i”E&^Φήh·_){Υζ{†K΅ΎΧHΜQΝ: ŒυkΧJΊ¨xl‘σ6ΨΓ؜–“mΨe ,hΪ΄©YλcΗ(ΞΐD€ƒΗMό%wk'™S)Φσ‹»‚ύKT½6n(‰GfC?ό³aΩ©V­š δΫ΅E―a©ΞhŽ4θϊŸpΐ@€9ΐ‹¬?ZΰτΨ±c k4Χ†ύ0eΰPoΦ¬m  Ω―Ώ-Ι_O7ΑΚ@J²$Ώώ’\‘ΰ6€Ε  >'>mέΊw7©βŽuo·&ε9E2Ήγύ„ δRΖηi= ~ρά©72ξ™ΆΕ³X²d‰©p‹υY€φκkΨr Φο\%‰} «όΥ¨Ž¬]·VΜΧT©6Αρ.6'KAΗK$V­gy΄£~€bhχθΰ lB€b BYΡ’•σε7^7m/²ξφ³ μΩ6EΉjΠpOτ7Ϊ`Γ±ϊμψ>‹μWΑ/¦IΞgSœPDΤϋΝSφ¬Κ/6€{ΝhχΰYYܜUk%°\ΑΝΊ]3μΝΎΝΫL[Ь ΥΥΆK|ά‘βn£ξ}!ͺ/Q`zϊ·?JμU•;Ή ‰όγšIΥ³Ϋ)›A£}qυP™zMgΚχ’χξGa6k³χE'%Qœ_”Ιy‚Z\u frή.-ιΜ‘Ξ»@ Aυ9'6PUM,ZomKcZHπ΄Seƒ²­7‰Ψ΅Ξ}0mΑ2nΊΏΟ_ΈVVn]/β—8Η'άψψ 'v¨ΊΟ1}T™%±1΄gΌ€·Š€T‹ζ!Α^Kκ-WΙ'›W›΅SΖ°EΔQ(‹~GτΫμϝ’1α;I<ν vι`Ψα;tθu|Ψν§ΣOγγβδE΅₯Υ‰„˜y«μΩcΏϋXΊ«M+NHΉΏγ5’Ρ­ΏΘ!ΛφΎ]MΏ-ξx’h‰Sώc»†*γdYκH½~¨LΡ%­1κΖ.Z 0Ϊ φŽ;šΨΧΞΘΘ@c€Λ©“pmΰρρ{Κ±VΗIτ`Ο”ƒ”Η–±~i_Ω=πu {²Φm»°ͺ΄;Eml’zH¨"vΖρΤ…1μ駟–•+Wš:Ӟ©zβωTΰ'ΰ`@Τ›Οš!υgΜ`¬ηήΡΐ7kσ£ΦIY₯s―Σ€Wέω(Ew]ΊΊχ=&Ι VPΖkΖ ?U}ΐΦ{]Žθƒ?Ν–μiš„³|• 7‹S8΅ΝnKθq£8'·4Υ]χτ'PφyΔwxm©ίχR³‹mœΆGŒ»e™ίρƒ§M›fΐ₯τ½šΊΦ°γΝχHΉ,ΜδLρδ?§Kό•χ>ϋt|pπiχΨ]ό%@¬ψzτ|pvθΐΒОΡDvE₯ξμrA’6ώjϋ¨ΉΩˆϊ9~?χŒΐπœRωXi|°_֎ϋNj_qͺœΦώt³3+6ہΝΒnθΑ56Σg|0’[J³ω€kΡ©΅e€’IzδώΩm[Š=cΑΌΙm_±ωΨκΝ–ΑLοžWaχŸA–Ζn(”Οwάώ"Ι1ΜI†<υ΄€wΎCb΅fέvm©sXύyV<#l cσ²hΆŒy Ί΅c©Q–Ύ Kζ‡ά/εpΟψΰΛ—/7 ±ŒίχL‚liz%ΙΠ‚žy$ ΡΟΠ#ν†q ί °ΥΧ§m„³σ!tE<§Ώώی+θ Ώƒ1 =m‹σŠ|π’Ϊ_qη•φ}i€g'=CG“€™sΒύ3PUw[ΎΎ£N-e ΄΄‹Gώ>{Ύd+ϋr Ά^ί<ασDΞοΐΐytΩ?oΩ&Y/Ž6$¦\#%\w… ΌW’ Θ™Cd[œΥ\.θ ΑΛ΅ΞZχhβ(˜6[YcW¨―RP·Ά$*#syΩ±wΌύ$:Ε¦©Ι’Ψ[AΗ:o/‹8ΛVJΞ“ΓCmυ7Ό@‚—ώGM—(ΊNξ —t­υκΥΛΜm’Ίc#·»ί0―ΑΆ€fΖ$+ψκμ€FΒ b“kΩεΒvx€Μϊ㢝z2–ΩρΔ–UQ=ΐsEi+ΗΣΐžiΐ<ο™ήφωYb˜§Y8/Ιιίηρ.ΰiΐΣ@…j€Ι6‹$,˜Β΄d·κ¨Π‹x…yπ4°›<ΐσn*ρΎπ4pΐj BΟΊˆ tvrς$oΦB‰! W„= Ξzeί\ΎΟS ¬V†; ›gΤA·ΚύTτkι1žύP‚³2Ώ;'4‘:χκΒ&‹ͺ‘²p©δ<=\|‚4˜–Πσ&₯p ±=Σ²τ¬ΜΙλwšs«χRΖ蓍,Α|²X 3ΕoKΜηόŽ”J½oŽ~Ν¨%”Λ`f¬QfgvŽΥν΄ϋ^,ρ-κ—Ώ ο OϋX=†η}¬δΈx€{ ΐcΕ,Sϊ[’ …j―Χ­Φ[†ƒi€Σ,Γ¬©ŒΎΠ7n,ΥA žxFœeIΜΐ>’}H£¨νοΦZI`ΒΔΠιϊœ ^y^NVΐ Ÿ•Άh’_Ώ~aΆsξ•ϊ`¨gΧ},“"ŸyΦΖ,c-χˆvNΉ°¨"<Ϊ- ΐω–±€ "gωζGΙωθλP0œ‚΄-δΫL*]}±8πΝnB`ΒC§ϋχHτžƒ«Φ‰£μΝiσˆ7+PKΨnΕΑ@\Π Ž7Wiy€άμθηRύ»•Tφ/ؚ;0λwɜ:Sbώό[†C€ΙΉeσBsCϋυ>ϋλϋιWΙ~γ]‰QΦ²όF $UΞΎ%»gόΜ)9λAerΦoψΪHP™?7Η7¨.Ύ*IφλΠ_ν·c”@«γ%xά1DœΝ’_ΡΏl-l‰H2‘MVωLίE‚;ΥO~κ . ΩA§fͺ4ψ:ωdϊ7eκ£$Z£Ϋ€wq}0ήω΅Τ&UJ–­΅ͺϋD¨lΎ°DX†1ΰ£_gˎ;^”oτ“»z…Xηω­μa§ ‡έ|α…ψΪΨK“Έ’[eΗhreο/˜1«Έ:»qώ²ͺο;βοz² ψSŽνΣ°Ωό”mΗ ϊψΑ/½£l¬έ䊞w{Ν90’‘(ΔΊ0 ^yk70žbΫK¬“ŽόGJ“M”ΐžσΜmΒJIu‚A»„h†`—¨γΐbΞG c\εY—Η–¨f|+‹}½<(9οO’„Χž•V§΅3€Ί’ΖχcŽ9& Ύ³[`S_tΞ³ΐή‘ΔeŸΟΕϊeΥSGΥ§_皾fM彏’|ŽΣO;]šιVλ9k7H₯cF|°΄w@2½ŸύxFyVt\u-—΄ο6μΟ>΄υ+ό λKr›E)vEHbρ€|Ψ΄E³ΣζHξ{ŸKάόΕ»ζ:“”ΥΎd/Χ΅4]Π‘ΑΧͺ±ΤΧ΅ »Bί‚…ΫΞψP-IZψ!ΎνΔWΗHΖM!?Ϊ€β.9Gœ3NQG7ΑΨ€ςϊΰ}ρƒ•Τπ£°λΨ2ΐ²ει£ΨK·ΰ“G&‹ζƏΟϊi™$Φ­*hΒ^Yl€kκ³jΥͺ0ΰ«$›Ο˜ΙxΔ9e΅eΨWtΔn5eWρΧ@>ψlΧ..šˆωψΟ™{=n©Ÿ’Bd+q Δ5’zΚm₯ Υ›―Ρ$ΊΚE-Χm³;ίϊ@’ΎšΆ_¦ά[―/ΙΈ€ ±ε4ΙΥ]nμ7Μ+’ξΊYDύιβΔQ&ύΌ—FΆcζΩν[K₯[ΝV(ξ”έΎg>‘ρΤK ²^n~σ~ˆ$vRi·c£}±CY₯“?ύΦ̏‚š$”pο­"G†€₯юχΝ’7FΙ:T§$€$άΫMδθfαŸ‹ΌΡώš6όuI˜ώ‹ωΪί¨Ύ€xη]Ι^»MβΦ0kwGΉΌyθ>’ράo$•;]`Άδΰ‡ΐŒsd­ΊςξΤ)a–˜"‰mNΠ€p]+΄Άvؚβ|π΄΄4γYΌούΊ]}~ˆ‰ίέŠσΑι;”§Ο!₯υQκΛύYΑήq>vΗ-Ψι#ͺΤ—υ}( ^ 5©)Ν–a“˜σΰ‡φ₯O»m>Χf¬±6έβ§»AΉψŠ%Ω2l'6d™±eœW9KWΘ¨ί…}KΡTmoΎφ5tˆ Β?΅Ύ%@1˜έs•:_Ι[ΌLw8Ϋ.q'/C‡½d’‘Π vςΘΤ*rΫΰΗM2 ~ΐ8έ­&}ζ―’άθ`ϋ$+mΰΐF'θ=Ή…ΟξΔ*~3σ§Bΐ3Ί#Ι­W˜­νΈεKΡ+:Δ—gώ‰."λeλˆΞΡKη͍NΔsnvηςΆ?[φžώέ π¬ύΝ7ύ'Ι?Q‰' }x½§89/;_‚©){z©έΟS?9}Μ[’0snΨG.Πδ”$$οm’гdΉδΌ0ZwvQ𬊿v IΎλ Ϊdχz”η›Uk%kθh‰e’Τ1?Q“:ƒΚHi»ΒΕκά3γΕQ’¨€g$ ΰδ„^·J°E€ΖαBΤUσ/e‡~I|ͺ7νt΅Ξ©.8ΫuD oaN~jΈΔ/Τώ§βΧ$Τ”>Κ,]„^9Κωڿӟ% Ώόn~,¨W[’ϊέ‘Yn5£¬_Άε‘ ^_e~ΟΧ]sR{+8Zν€[6mq€χ£ 0Ξv€ρA~yβʍ’Τ0_tn’‰ Iή)B2j Τg­`gg';&Ζ*τ΅":ώΰσϊœ6]ZΞΠρΛ‚oι€[qΊ«tΣ2yNβH [΅Y5ͺK@ΫzβZf ΜΞςϋbΙQiΖΔόγZH%@ڞμ•SYΣaνa·υ Β’ρυ­ŸmνΞV€±𲝫°ώΕnΜe°ν«Ο9ηs8Χb¨c kŠξ±Γ–Η9+WξJόalfα&!ΰX>³ξΓVX«$1Κ ΈΆΏΩΏŒ;vύΕ~WΪ_’?Y·ΊνΆΫΜ.₯ούξiΐΣ@Εjΐχͺ4Œ2Y20ƒ`„ a|‹›HξΥΕΌ“= xΨoΨΉs§L:Υd„Γ–„Έ³AΜύVοBžώ?Φ€xώψα{·ώ―Σΐž Π–θΜφΠ± `²r λ6JΰζήΏ`‰8Α#@°ΟΌώJ[εύσχ»Ÿ%Πνq2 I>G‚g΄ί›CφΙυ}Ώe[TφΔίΈžΔ<²τ…_Wmς~X"[_ϊά,r:υͺJΔIŽ“ŒgFHόo!—Ώi#Iξ§`ηbΑά|Yΰ; ή ωlΥn8F °ΥΤUήϊeͺ r |@e&θςφ»²βΦ‘πιΞ²rΗ&&hƽלχ§dœ`ΐrqΟ“mνŽ“&ΚVŒΨ`ŒU„yΎο δϋΕQ0(‚ŽΩρ ΛY L‹—Φg΄7`9‚AΩ9ΗɈ·CCk`²O|Tkί3ƒ’χξg‘μu—)ύr{S./<'ϋμzH²Ϋzr] Ψ Ÿ o’Έxž€΄S;{ΓIΧ΅Ž”[»h²QbπE9ά3Μz‘m€m|s_%Aύ€•‚S(ΛΦ‰zς\,Xξ‹/Ύ0[jΫΐ@ώcoΠVn«‰kΚrΫ'λ.€όάLΰ\ߞoο@že.²ίΩΏ”yK ’δ>ό’U7ρχέ οΤL0νPίb†ϊ/Υ€ύ!ζΪ e@΅m:˜K ΆPX…7n‘τΧ?”Ϊwί$wυοkμe¨]½#sόϋ°ύ7@!Κ±ΒΆΰ aψ†=1ςžμqEώΖgό*YοMRΐΑ.φM‘$UAω–¬Tΐ³Φ[tk㝀›W)ΈYάψv­oA­κά\I·Qwš*p―Qξ&νvNE‘Aχm_N•ψyK”Ql]6(P³šarAY•Yu‰³|•d½ϊ¦Δ/].>₯Uσi’†$ΔIŒ ›œ ~ŸνvρoU ›ϊ€ED•ͺΚ΄ΦPmEς.³9FYή-•Ő³‚σVδTϋ!d˜–~`Ε Rδ4ϊ©dέν‘ ±S9Ijφ8OβŽΡη©BŸ²AnΫGύΚD:ΏΗ(Ι[ψ·χΣ³¦}( ΕΪsl.6¨Δ>ͺ`Μ‡†H•.WH―±―˜`7Œ»€•MpZː9‹$V™Ωo€Ώι_ΔOžΏ―ό™±SZ΄%΄ͺ !Ž2Œϋ$Υ† ”Ο'M2,ϊΨ΅Esη‰τzLG<*­Ϊ΅ ΧΙ·`­ψΨ]A屇ΤεΠ“5O|$ίΧΙΑ_)7>ΦΫΨhμχ!CŠΜΡ/χgνR—vgΚϊŸV˜|˜κπ₯k%}Κ’: ‡$*`ΐ9>“΅ΆOŸpΒ α:•dΛG-kZ=>T~οΦ­Ϋ.=)?Œ₯°R#‘[TΣάu"Α]šFoŒλ0νΫ±3t€ΒFΞ™3§ΜΆ >π'Œ}Υψ˜ΥuŒ΄―Τ©@ϋΠίΫΆ„ΗχχΗΌ&’l€’σ%Ζςά9šδ•)•Ϋ)C­‚? πσšk1~ γ΅ϋθ‰­°ΩeΑŽ{€Λ£'Ϊ·e-΅Ο“ϊ[1> ―‹³r΅dόIΩ―ŸΆωhŽD°Uϊ5I·Šφk‚nPWΡV»ΖχyΰΩ]!ή –Jڌ™ ^Z&>K‘˜Σ7SNm%A+ ΐ»Θή‡b5 Iz“„/5Ω?7[|ʎ\%U ΥSΦOeφWΖΠ|Υiž]εͺ.Χ›D)\Υ~ΆqΈ&ώ0GΟtέEwi₯Ύ>XI;G[ύώ‰L&ωε»ΙίΘΞ.½%eΐ²FνσϊΓG}dΐMΆ¬Hϋ Λzq}”±κΛ/Ώ,Gι·V(Ο2YχοίίμC’ ~hνO–KΑΦ ΙιήZZh’’΅e$δΈB’Ω2ϊ?;΄β—GΪ||3κδΆωxΛkΛΨIΖϊζ‘σ*pάƒMΑ^Ÿ,·?ϋdΨ·$ΙΞϊςάG€ gξc_μ\p±½o‰{r„‚ΒΫhB$cuΊξΠ’₯kjH‚‚m'ΧHΪυΤNŒ‰v›0Ώλ3‘-έ€Ι±»ΝŸ Ο<7vB±z|ζΎ‡Θ±ρΥβτΔρeFκ”yθ™:ίB{ΣώΜΝοΕ‹πΌ}κχ" tŽΡυa+ΉΪŸSΊjβXqW{`yώβO©―œϋξ'αDΤ@υͺ’xCΗπNxε)Ξ}¬“ž)ιΓ_“„Ω!R ΪGΒU HώίYt6χ‘ε{ΟΈςώ’ϋρΧfέ—“σ›")μήW£Zρe-_)yΊK‘‡ς4α&ιξΫΔII.ώœΘ_Τοέ9ζmIϊFŸΎ‡ ?ιΎξš@Ϊ8ςΘθŸW‘œA ”Φδ,$ητ“€ςm */MʞœυΔ‹«ώ’ΧςI…ΊΈyΥ–m’ύΠs‘9ŸΪ©’\/θ`΍φ²|•#žΚ—&›Hηυγ€Iύ3‡KQ?΅TΖκΛ$λΙ‘¦ύp–ΤχVqτyΡq*«ί³¦μκ“Τ»«dNψDbt.‰μvΦο2tGΖx€Ηό½Y Τ>ͺT–Δn Š>«΅9'κΛςΏ%[AՎ§ψo,©τ*]§Q ςΎtk€±‘’ό—$OΪq†λ 6Ljj( 'μc…€T!οΎϋξπόΘξ`‰―ν›]w!ᆱ‹1 šυFμ,Βxoβž˜ _κΧ―oΖχw₯½'1租~ςΟ₯)ΚϋέΣΐ>€xήGŠέ“bΙ*dQaαšΜ[@Ϟxπ4ποΦ‹/Ώό²Ή œ;œ6X”<ρ4ΰi`iΐ<ο?]{Wς4°·(ΰ σ ς|^”ΡΩ‹‚[σ©ΑΔΏMέσi.Ιχt•€jUΓ€\7 §< ξΟ o9Μ9t‹γŽΘ”εΒ /4ΑΑ K`ωκ]ΜΝ«Χ+ρ­gέΧ (+™_AVά|HCΓnξ(wΏΛφ΄BσRέ‰cMˆ‘·°`η·l&U•ΙY”MmΏŠ2rfιΦΩI?ύͺlp tVp#,§1 λ* mΌ2ž+°@“cI^A‘ͺαΛ•Ι9‘aMq’"@Ξ 0 η“δ|Μ‘»±Ά)¨πνέ‚cΏΜ²L½Bί†ρχφΫo7ΐΣΩίΟ”­=^SŸ·ΆΤνu‘8©»ž+ΗΒΖ5uκΤέ@³‹_š!‡ίΪZŽUϋfϋh7―ΤΆ &6­Δ>ͺ‰1ΊγKο/˜`7AkΫ‚ΚŠ½υ‘Χ€VηsδώΧ‡‡ƒα‡“ φg~/Θjw†ό4Wbu¨Œ‚qΪ γLΔτ―χ^.i>“—v(±N‡z˜¬ψΎdΝ_-υ\"λRσL  dϊ#bAT–!›qƒχ$΄œxςIΖ^˜γϊ’Μ„€lώΞΞ0Ί`‡›π ί—IOjwx¦μ"hΪ­'S)}qΞ}ΰŒΨp“x£ hξƒ+•1ηcλD½x†―1Ξ1V`ƒΞ± _>[ΠszƐ²Ψ2Ϊ Ύΐ<ΐԜcϋoΰΆ―ΈΉώ$°C(Rάψ^[b$νΞ%¨ €ΊΛΟΩ; {΅ev·}@‚°šΊΆcWRR’yΖeΥγRiuŠτ9Μ}j’€¬X%Ž‚€2P0šυ:q-L:ΆŠ(όT0Ύ_AύHε–G‹ƒΝ­J˜:ΰΟu—΅:·ž·P²~ό5΄΅=`;—ΐ&™§μΟ•Ϊž,rT3EC%Έ~υήΊ53sΉlyι+‰Iί)©›—K\΅AyYϊ9]™N(―6Ο0ΤΏ6Δ$‚Ρ†±ν”ι8gμΔPQκλU=Xκv‹D“¨ϊΚ+―ά׌φ>š^kΤ‡P {Β…drνΔϋ¨»?`C Α0­bΛ,˜ΨφQΎCθΏΨ2ΛωφΫo–c|²Y³fI‰K₯ Ξ'ώλO,bΛπw­D³e-[Ά4`aΐW‘6Ÿs±‡‘6{U[›1φ‰τwω.WΗΓuh JΏΊ]{yfΒ[aί’ηζfͺD€ΗŽΆΏ6lΨmBΩΟ6χœ‡{΅ΐ1όstXEΧΘ”Φ؟Λ/Ώά$ˆPοyS§KΞmχk›Σ'Ξm/«oT€¬"σ§Bΐ3vϋΆze‡k;‰6–Z {qz*Οό“cm‚§›ιsoΪ_H“{χκpΰ@σž@Υ³Ο>υ:\Že­ϋα‡δΈ_”qsς4e΄¬+‰χά.I‡7 ϋ Ά qMΐθ 1bΩe!‘°ΐσCΔ Ο}''+PTυj…{ΆβΪέ~Pρ› ώΏ·Š_w~ˆ9ρh‰ L^ι Lχ»,-xσΥGf=vgξ‡η_|σΦJB[Fmšvlη‰%υQlWλά8Yshέ2χQ@X6؍­μίνvΙKM’-OŒί«€ή›ύδƞέM1¬’ί}'~έΪ§|Ÿκ4oκLΩrΚΡ²΅ _H|{#Β|σ–­ ΨΩ²e₯ΦiĈ’1y‘ΤΊπΓ~aC°$¬H‡Ρψζ›uΎ‘@ ΰΗa+ ¬JF°½ά€+0±Ÿ&| Ψ ΞoΨ°‘±ε±e‘zzHΗ+·­ΑuΡηŒ-±zβΩ•΅N$ΐfά’žόκΤQΦa½w„{$ΡΘ‚ε°kΗΠyYmmΣKΠ¦(“1*š}EΏ\ΖftYœ0ΎχΎ«—€wΊCQc~Iξu³ΔΆomvΪ4rœTis’›7•M€ZΏ~½73s―d~όVV›_[FbΛδΙ“ σδnώΆŽ1Ξ—S%¨6«υYg†κΊέx“Ω… ¬Ύ% ΠΨRτ„mεωZ˜ρƒχ—]v™0£?b˜ΡI^αώΎ‡5›1Ÿ _#ΜΞΪ‘+y>Vpd¬ΔΎ>TN-Lώcά~πξ{δΓΙ_‡ηOn–N]½²«Χ­ˆω':°μΣθ›{MMM ·=iF{ϊ’ Zζ{mΗ?ŽG:<7Ψ”ΰ9Άf IΈφ žzž–ύΌΏΧJΦπ±št’γ ’}-χ€–RιζkD4o―DŒ³_%±š$‰¨?–ΤυZ žpτ^+i’1β ‰ΧΉ‹•\έi―R7«”ΐΠμθŽ Yƒ†Jγ©JΎ‚Η“ϋτ”`-M)όΆ@ς†ΌjάAm·‰7u’ΰ™§–­ν{ιϏ 3]Τ­₯;ή©‰J₯―';_M—ά±κ·jΏ κΏ χ)xYw¬(Nœ³$gΨ€Πuλ€οΡ{.Q΄§=7Zβgύ.;|ς‘œ)ί6:_ώΣ>SnμTΉΨSƒ}#9o}j~/Π]ͺRμ,Υ5σΡηŸυ ξŒ¨ mvHιί]2^}{ΨωvυΫڟ:Άπ|ϊe1«7K 6^ t”„―η?š¨Zœ¨ίuΏ—θΈGbkς“κχό“sβκω/ύž±lεΚ•αΜ°ΕŒ vΜδΆ?X»c¬ežΡ±cΗb};6²{ »’1οΑΆ¦&αzάΈqf75vFŽiζj$N²6CrŒϋΊξΊQl9γ)c c6cžηψα|ζψ₯žCg”ο•„IΦh<ΐsωτζνi ’4ΰž+J“^9ž< xπ4ΰiΐΣΐ«π|ΐ>―bϋQ,¬$πΗ"― œ`ϋ%Έδ7{ Xΰύψc]ΐ.Γ±¨α>ήώΎ·K<λ’…οΫ!FgΠ9oζBέΖ³ ŒΞO[[ξm+δ|gΦ\ *γTΜΊ αςXότ }L%1T„Έ7AF9wSpο²0P$P³ŠΔ~0B·jo\qr•δ{v”ψ‡S†‹9e·8JœρΟΣπ\GνΩ[η³o${μϋ’½R·,ˆ5[εVΏχR‰?΅Yω Τ±Ν=†‹L]hΞ‹iXYͺΏΥW·―TΎrΚy4`η΅•azΕq΄ίΦκυ_IhuH9Kρχ4πΟh€±g˜aœςδ–ΓZpt·ΐΌή*ΎΑt Π%˜Pΐ3Z"8Αςž©€Z€=јgψέζμ“€€+³ΰσ=€΄O>ω€EΐͺœρO29n{8`ΟΆάΩ\[ϋΘDc«Ηjυό$žr¨ΡΧ]©’‹/ΎΨΈŽ ό+ uΕϊ΅¦\{mώ$@§cƌ  ›%~˜_‘§ŸήΦψ|ύυΧ’ΈL™ 5&ζ¨ζ2X„Ϋ"φœ0Xeή"Ι}v€Tύ΄œ}ρE2uκTΥuΌξ0ηΔ…/ZψΖΝθν9»η™/_Ύ\Ž:κ(χΧζ=@BΐrΡόEtΔΞWΆNΉς>ό\ςΖ [ζ›|6;3( WPƒWΐ=˜σΠ%Ο ±ΐ4ΪΟΐ‹|V’Ξ £jα—Ί°Qξ ™=ž2ά€η[›)α£C?”ρjι:q6gIPƒ{‰Ώ,<ΪΧ0μωό…m@GV!ΐΥύοx ίΡ£GΛ-·άb~ΆϊUͺJ―ώύŒύtŸG™η…[™>}Ίιgτ·hƒ€ΛΔΩ°Yrη,ί–ν²ΣŸ+O/ύmΰYΑΉ~eκά,€››4(y»θ.VQΏ+8dϋ—€œ)Θ9b°EΤ©!©g΄–ΰ‰κW*0{‹³e«ό?φΞ<ͺβkγg7½Bo*]ͺ‚]P±ΨQl(‚ E+*"’ΰίή μΨ@QD‘ή!½μήοόf3λfΩ$ΝοžηΙξζ–™ΉηΜ93σžwΌ_Ν―nΩμ[ψ‡ξ–’~ μf’[3lU–μmϊWϊήΤNΤΪtelW&goR\ρbWJΏξHc@Ξ­υ]h›ΫY ]˜·ΟΎΥ[$oώίςqώςΩέ_$ e°¬nl{’]SχΓΫθό9seέδςCC‰Ί25j”άuΧ]ΖFΞ›7OΔ&Kα¦ ‰ov|ώέ·†a]XΰΜύFh£πςμλ―ξΰ‹p-cbίΧs%ύaςφϋοG]&ϋœLŠ/žΫc|cΟzφμiμ,ϊA/,Β—$τSγǏ7ΊγZ ή³Χ—fΛ"ι©qγΖζ`Ÿ?ύτΣτΐ+š2agι+6mΪdl9εœHΐ u‰gγO6ι\wEœtl¨+6_Ζΐγ§IάμŸyi`MͺwφY²<°3’5²;g<ͺϋΏ΅ίQIŒv–9?IώΨ' ³³£;sX§L°³£m(ϋVέΡJϋͺ~x˜8UΣMξGΕh€ώbέΊu°‘ήT؁@";χ@?B2Βό γp 1ηΈ–ρ!ύ;Ή°kι#vlΕ 6μΆ‚έg\Ai.Š>ΟΞϋ0ΰ?_ΌΆ MΫώέ¬4†gss9?\ΐs9ζ^ξj ‚5ΰž+X‘nr\ Έp5ΰjΐΥΐΎ§πΌο½·D{V,°Β6Χ©S§3fq€E&m”ΐ€7`ΐ€―=z΄Ω€/,η‰ˆ€g-“χ³―ΔϋތbŒΞϋ%ΠY* z”x!yό°ƒ_ΑUž›ϊ‰e¨ΨΣ’L@ΈqΊ@(‹Δ(«s? έqΓn)‰@%ομ«%ξΐB[­ΖάΡ_ό—ŸΏλωιdvζΓOHόό@9ΏqCΙt”@8Ο)­₯φUΡ/l}βy4ž+y«}’W(>Ξx=Pκ Σ²*Πlwˆ£˜U#^• ΨωϊΣ$‘]“έ‘•›¦«έ’πΌ[ΤΊΟ$ΚβxE,8Gz =ψ+ΰΉ¬…kΚ{υΥW €,·“}Ί[E₯$έY}!ΐ⌰HΣ\A!–AŒc0Y°1_|Ώ―Οͺε›{yρΕ ΒQΡ•£΄]ΌΞτ ¦\+Ι1†5&”]ΐΔΓcχΘ†!½ƒΐ ς`ΫmτhZyΉΖχbΠ‘œήY27jΚΚ1}J±Ψ0…χa·›oΎ9Ξΰx¬.fΞώνΧ Ά₯>'ΜΔ%IyΟ€ΑB k€ΟτΖqΚϊ›κ’Á" χKC·π6l\c'IάεζjΆSοΧ1έ*›gψg°Ε,e«fΫRΚ «Ξ%—\bΐο©λy–­’« ˜ιyD«TXHψ†%Hύ <χS@²³/Εσϊ;A“ €Ό…«$ξœΣeV·£ Έοχί²έ‘€”ώπ‘£z±Β3Sm^vΩefaŽs€Ά³€Hώ°ΐZ eΑ?―[­:Hiωδ³Oƒ xθ]ΨPβγ?n³κϋΠ:Ί]νš•RYΑ«ΤvQ―VTχν‘‹Ό΅eΖΜ“σ? ’·_™Ε’•)ΜsΤ! B¨½GŠš‰gύρΜώAbΎŸ'Ξ?‹°Aiˆ#β‰_Žϊ‘ΪΖ­¨΅Σνš9λvάUہΙΩI«d‚4 ΘΉe3D°χξΚχuΌˆνΛ_Šϊ|I?σ(ω8qύΏ€gέζžz[–X°UImtκύ场ΙΌ:Ϋ‹·Ρ"`.‹Τ‘ΪθͺU«‚ 픁: #'`’|0X¬‚=τ 6ϋlΩCΑ³Ψάη›(ωο~.o'ζοX¦BŸδδηE,S¨έ@7Œ™ΏόςΛ {΄-cοΆmۚ…wΐΑκŒ]d‘E‹­L™2EΈΌ·ξφ` .fΛ*XOδm™z+;4υO ‚ŒKύŽeϋδΊΰ} nΛ`AFά±`„HΆŒwG€`ΚHφυšk1ι„χοΨS„χΘ0΄‚0 λ–ο ‡·–ΥΫ·pώ΄iΣΜ}|˜ώατ3€@™•γ4Ψ£x%‚RŒ©b ¬}Εζ0'ΉrεʈmΦΗ@Ϊ«ών $Eπ"ΐiΐΞΎœ|9ξΔŒ ΰΉ ΚΓWΕf—Η–1&±ΰ.τN™°Ϋ₯ΩόΠλΛ²eτψςΑ@Rυ'σŸ~IΎR€₯–VטIχI»ΗG<γ[τSf$ί’]TΠG¨ Žα«†UXa~—kž|ςI3&‘Ο’ΏβZςƒ@Γ Ύ΄έ‰»ŽέE?5ILΟφ yηΟEΑρΣsχά'9ΓοΐŠAΡgLΌ} Lωκs!˜ΟξΔ`ΟΣ—H ϋxPOaΎ 7τ^Zΐ-Ο Π§ŒΌŸHmύσ¬]`h^ΏQΆώΉTbuΧ«γΎόLFΝ€O#₯ιXΣτͺ²dλfsŠΎ•ςVˆDϊΑη’†%Α¬―BIβ)ιDΫ]ΞΒ3{žδ*ΨΩ«€j€°Q}IΊώJCμš?X8kœ²E/-š7Φw•Π½«8gŸ‚ƒWbΉ©[9cuNψ—EζΏ‚`γo ;4(ρžˆ'Φ¬“œϋ“ .BςΪ!•\aΖc―?ψύΟ’χθ3pmX‘ϋφRΆφcΓ―ΪρέΉ&gτx‰Yλδ·m!©7«ΟS’MV°y֘Η%Vύ€ΰ°V’zΛΥ₯κˆλ`ΟTf‚*DΗΙ‰C―iјS2φΙ,™=/S-ΓoŒ•C[g5¨&sτγ³h™Ήΰ°’6€οΏ»ΝόΊDr@νQΪ0.ΏV2y:vΖ¦_«λaΜΞ’Α‘ω£΄Λ׊£]Oaƒ$ρ²sEΨi²$Ρ:5όa½g•8 ρ’8jxμ"hΏ€ΌώŸΗFΒτO?нgŽŠ>‚ώ’Ζ0'4ΆΨΪOΎ?ΣWΣOέqΗ&`’1ΒΊ+ν›8Η<s!;Ό0ΏqγΖ`°%sxψγ€EΊΨΗ“N:Ifκ|ŒΠτWsζΜ1;ِΑ8ψύ6 έ©S'N›>œ ¨Š\ΟtΟF΅ξ‡«½¦πΌΧTοfμjΐΥ€«W\ μ) Έ€η=₯i7Ÿ}U,0ΩΝb$ ,Έ².“ DL3MT4“ΎLZ,_Ύ<Ζa‚›Iψ&Ί&μ(lΥΛυΧ3±)‚{guQ 𬬊cήHD+ˆ'7_φG ³)ϋΠ1"―½'^ BόΊ@ειr’ψǍ(›εΑάQqžmΫΔ9C<­€4ςΥ­*qoOg7\ό|!Ξ 1Av_jχκγβ(Ε.‹.2dί=Vb™°UΙ=ωxI뫬ϊlky[)ώ2Η=m’ZCΊ_4gB>²}ΜχλŸζ`~ϋΆ’]©ž8Έ¨e©;όDY` Ή}g::1lΨBΠφ₯ο£ζ ]\°σΞ*Σ½o―iΐ<ο5Υο‘ŒY,°€ηHŒΚ,@πWΠ²-xyοeq–\€Oψ*‹ΒΏI—4ρQXμH«”fllξΟ+ Έπ G―΅9[ƒ`:ώq΅iΣΖψ9,ϊ>PΚb g2πΧ}Ϊg¬zθ]i<τ|e ^ ‹Ο ωτ]eγϋt!|»ž―‚O`A9rdpΫξέf<«NuΓ”ƒ―E™jΥο+މ‘žo€{&γ>Έ>œQpΖyηg|?Γήχκk²mΘhIάO€„-}yވŒs!ωZϊaq‹ΊΎaοa1 ΠB™ϊ4?DόΊ.΅j˜c;”IύΜπ'Ο—³%κK’ϊΘ(ωyέ³%:μ=Vx?ΙΝ;œ£B9NΎ€<8£εΛόπ3©tΖ©ρΔΝ‚]@―JΎΦP‘όΕΟE`P­@κ‹~¬ Άˆ4¬/޲#:Ÿ~#Ξ•—Iά'‰(ςe³†}”2Ϊϊ˜ςΚ[βλxœΔ5mlνX Φ±pχ€2tWVζ_ 0±€gΤYω³9RπΊϊΑ*•'ή%O8½Τ:oŸgβΔ‰Εΐπφxiί°-1F ή²uό^υι`rŽŸΏHΌ+5¨ Dόu•ν¬γΡβU†^‰b[θ[+δ§gα"ρ,ώSbζώ$²b₯²njυίΤ8*ΰΩ珿£hu³’HΦdές½Ίτλ₯«ο_°αTNη¨ΓΕΤaβ4?ΈΒ@Ξ6wΎ±‡Ψgκ)‹Η—υθ)άω’8Ζvι=—™ρJ…¦eӞ ZΈτKƒ@~Ξ…ΆΡ ›όrΓrλey’rPͺΊΠ±β}η#ρ4m(Š€0m—{`πdQέ2r ΆςΞΚΆ[šΨλiσΨ&όυ―N—τνΩ’[γbeγΦ­2|ψpσά€ΕΈΆώ_HR³€°q-S&Q&AΙΚ“΅oύ!1ΊΫM.R»Ρ©X™Π!ΆΫΓožίφ5€ΰX€G(ύ% °ΣO?έΓζ³ΰΠΔ£6jmV†tΥώ`.mž±yšG˟š΄£-Σ›ρl»’§’ΚDΪȚ5kŠ•‰ώΞ­hΎΨuc.ŽπΑϋ;βˆ#‚€gkΛBYFΡυ/΄†MŽNΡ-}Όνg?„ΫWΰZΣΏkΠ }#άΗ`Γ"VΊΠΎΡ>'ΐΘP°s#μ²Π<©’dά8Bβ;+_΅ΏΓ»³χGΜΩ”½ΌeŠ F9εu•S uŽα{ν7†΅8\niΤά]Ψ¬±€\w…‚‚ύo9“ά7._6φgeοS`] Ώ‹ή³-œO·²/hΥT:(˜¬E“2^φΎύεΫΏ9KV³ϋΣzλ«xOj.υϊ†Τυ-·½ϊž$ΜΦώ(;7πXj£Dƒ€6φθτ9Ω±€ω²uβ€Λ΄ŸϊaΎΔ6n 7OzΜ'`³^{πΙΎm΄²i7•ΤΞΔζ#°ό—Χ―/9χ?)…‹ώ’ΔΑ}$φ 8k£–mΡ¦Jj£-[Ά4 §•«yϊd4h±Ÿ€­πcΜΜLΓπL_GP}ύƒρ υ|΄Ά  ΄-O46ŸyS+-£|yWύ¬¬ΘήώΓ]©sž‡6—TXz°Ι7ΕΧ…}Ώ$ί2==έΨ"£’μ,e  ŽU΄Ÿ²,Ϋ‘¬ώδύή{οIΥͺUM*ψΩτ₯v§Ιμ¦RžρSΦ󯛀Lo₯T)Τ@1ίς’ϊΠH‰Q¬_λ[x_ “§†ομψ»L`«_QΒΗ< }ί%ΥΏζ•«HφΠQβ!CϋΕHςͺe2mΕOiίζ¨’“Δκ|»ΩΉ†υβŸ8zΦS4Za€ηοŒ<νUρͺρΐκžpαY"]:νΊΤωלqOIμŸΛIZό©ΙDνt8ΖόΏΣΪ—ΛτΟ$ο΅χ8«ΏUΑ&μ#R·V©Ιz<›χΘ€ΰξΉG΅•Τλ―2€ήRo ;ιωzŽδ>ωœx`ΝGg7φΥ D ͺŒF΄ΜO*qώ€Š—»Nδΐ(ζΌuŠά΅όYτ£u"RL:?6n–œcΕ»Aςjσγ{-ž³Oxi±ƒ:ߐ=κQρf*y•4eV²“5ͺυΘ‡rdα’x­’ŽŒ'«fJζ€ΨρXή)ν$½οEΑdοζKήψg™Ώ¦•0Ύ<Χώωηr’ΞΛpœ9ΌN DΖ6χ)/“~>ͺ»ΠOApάqΗ™<θƒΘ!P†±-ύVέΊvΖ:%}kƒ Μ51ή"Ξ1ήBΘΏ’Δ‚3φi‘qΣT—Ύ@²±ΚvyΫΥβg{Ήέ$Nβ|0SY­•©FΩ‘=gvΟ£#*&7eοΘ{θ ρ(» ΔuT›bi―ωί§"οΟ7Η< jH­‰'9‘Ψ5όγΡIߌ‘ΊνΰŠ5f8ρςsΕszGs]ΞG?Λ–g>άΣΈ¦Τ‘Œœ ΊHQΨyυ=o‰wΝW₯Ζ€S%±C³ HΩMΒΥΐžΥ€ xή³ϊήΣΉ"Β`λJΤ­LϊE‹,γ/X†-XΏzτθ”V^cόE –&O› 2ώX \(3鲨]°r³¬Ή]Yτ•)Oε€IWJ#e±‹ίΥ좜‘ιDϊmA­€X 8Κ8 ) œ3εR dφ”Weσ‚ΰ“Pfc›G’ϊZφμiwi΅­{¦4j_Kw|Ž7 B,.1Ά€θƒ"|<ό΅pζbήGθVίf πJΥ$[™ Μ’7 geG tVΰ™g’π* ,”e˜<9o¨ΠΌώΰXΙ½m”Δ]ήC½:οX&’„¦aΛ“€€ΐw¦O.Žq?ΐΤ;τjλο˜|ω&­πττ™z(#)‹f¦LΊ­Άož²ρvU ₯žCΈ7¨„s€‘£?μF«M9π¨@~E²e‘l™Υφ¬π₯ιiςδΙΑ2Ϊ2‘·΅₯Œχ,P¦C9ΔΨ@Ξ@|[5ίNΪΑΔΦ₯KΣ—r/φŽ€/¬- ퟱ§ΜAΠ‡[=ρ¬τΕ€κ~Yπ2e _€Χ–ύ21ŸA:θ;z=χπ<<Ÿνί ΒΦrνΙ'Ÿlž‹λΘκΤ©Q¨cυ‚o~ŒoζHΪ‘mεVίέ/κοδάω°δΧ―'ιΪIl‹¦ς«–)TO;S& ΐ€,»*gœq†aΝ»σ–!2 ²ΩQΚ€©ν!·ΓQ’Φ[ΑIΚ¦Ί_ Μ° ~Χw€μΟΚhιΙΘ*φ8޲`ά0ΐώ¬L—²Ÿoq_°|ƒ¬ύ–φ1κίκJΝλN“„φΉ8Ρώrϋ‹οHόOΏλΌNΘ\HβΙΗιόE'ΣO.l ΆΊσςΝ’ϋυχ’ΨγLρœvΌ$ͺkΫ*@£‰7*#ώΠ{ƒ:5lΪ &K9ρx‘Γπ—”hΞΡΎΚγƒη)KkΆξ*ζ[yΙΩ†Α3΄Zΐ3Ά Δ6ͺηh3Σ?Ϊ"Φ’iOέhμL°ΐ₯ό°\­-#Θqέ:υKJ°ωΨcljhπFymvԎ«ζkŸ[εΡg%‘η9fΎ²†ΎC;Bv<Ζ5ˆυ-±CΨ[λ[Ξκ«ΣΎ³Μ±Š^Œ]…YίΪ6˜2(hŒηB8Oϊ–P½ξΜψ)Kw~3z­^CβX _Ν’Ψ«uΎΠ―;»ά.O2#¨WΚƒ-·zbόY§JUρ±ήR¦ΖŸ‘γΖ―τ'Υυ›9<›,Ίa“dό΅\ Ywc?pB?ƒΨ>’Λ©§IΑKoHώ+o›γ‘Nš·ρηͺV‘TݝΖ1ΥώͺφΟe OνΪ΅3—ν2ΰyΩ?’3ιY‰Ρo#ͺŸψSNΉΰL¦–U”Οk=Ψ6νIώ|Vΐξh{ΞkwΈ€(Ω„'%Ήτ{Λ:ϋηί’«¬Ξήυ›Wj•pYwq:·/ύN-SΖδI—ίίΫQ;] "l[ϊ}αg•;σ‘ΙjS`ΘΒƒκJςmΧ›χ~i€=Κξ₯lΕ±EμΜ΄<ψjρΩΝHχ)9Hώή0€^J’$  ΞΑ‚§wψ‘@σœΡ ™ύ^βM μŽ”νόπ‹κX™§u^Β§γΣ”‘7jDm₯’W3+ΓΖδΙς•±ROΦΛνω“$%[ƒυ΄.%φΧ΅₯Žόχž™ίKξ/έ6:PRoν§zxT K΅ΦΔzοvVΐ|ξ­£u7­£ΚΘ_ΠHΑΞ=ΞΉ°λΏιFψ΅ύA}?ϊ ¦ΤG<Ηθ˜Π•έͺϊؐν)α™Ρ3§eCύΫοoΣoy䑦ο" Θ}³ˆΨΉΕ:uκ˜~»Ξ.vύΡ\φAπ8}0i3γwώύƒW1ΧΒ\9V[8Κ=).ΰΉ"΅ι¦εj όpΟεΧ™{‡«W\ Έp5°Ÿiΐ<οg/Μ-n…j€A? 0Ά±˜S¬V8 š ˆΞ 8ar‘§mXœεz˜;,Σ ŠL3IΑdGθδ…Mo—Ύu’ς΅‘£€χ#Ieb\xŠFχλ1€Ξ:ΰ€f°ΏeΑbqϊί¦ΰYeQ.’w+ΤI𘠣ΔΒ1»€ͺΉΩ£‹bgυοšΝZU§ΎOOγΔ£Μ8:Σ΄3I–yηοΥRΨ½ΏNZλB‚Š_Yc'Ž,{ΊΜ”‹.PvΈό—tΡAFؐν0₯yήwΘ–GίW0Š‹j¦Iν»z)cNΘ„Ώ2cdέώˆnC© ­η‰7υlR–Ό―Ι¦‰3uρΐͺšΖEβMΩE°‘‚ΐWz#vήο$Iκά2$Wχ§«ύG.ΰyyW;SR|€PF6₯ ΩEuΞ‡.ΐ| n#_F†ψόExfA……‹N ΄B"‡I @ΫW²`rΪi§TΑς²φNψω©;΅―΄="°ΖΞ.ΨΓ 6i€ΰβ ,m€•ζS`ε$ρKοjϊ^˜sY#FΊS~dŽεζ'Ȑ›―6μΥ€Σ§m;Ωp`uΙRζdv¬° Δϋl† ο&«6ŠOAt>^ψφΝρΪΗe+hΛ»iKΰšξ§‹sΑι Μ|„,΄τΚβ ¦`ήd±Š²XαZΛTlΗMό†™Σρwί*γ?ύΘ€.-: ΏpΌhϊ€PŽO?ύTZ7h(ο},q Ύ`*vd°(—¦ŒŸαeb—’iΣ¦Ο€°_ΝκΊΕnoqZ53ΟVΰ™g‚ VqZο¨μί}ofοΫR kžcv(qXVΎliu°΄jΥΚ58`ςœsΞ1~w8Ѝ<`,b{X dœ‡8ϊ\ήΉΏΙς:ιθŽ>~_π‹δ½1C.θ¦ ƒλ…Ήa'>φΰΩωG€Ÿ|`r^»±XΙ}θbΌ9ΧTΰȞ@Ξ ‹Gν9{Š)‚‡Εyeͺτfδθ»QVY­ώ˜)τΔιIέΑ&ηš•$¦n5έU€8ˆΩΡ±€s΄œ>BόΚώ½'%ΌŽ½6υ9YyΓΣRγ¦3%Άe=Γ¦eΑo‘‹Θ‘Κˆt΄CmέΊ?τ^ΫF[·>V|Kš¬Ÿ«€rΚΜ«ΐ ΄‰c€ο€ώΑ6 π9sλ6Y·i£€k{κIΈΪU {œ0Ό²ΊΆο`„&Ψγ’K.1‹ζ½4°ϋτΛ7³dΣ”—₯ς€K_νΒΦ„Žc/οzŽ|ρۏ»qΜ±β {FΌ³oažxV•JOŽ’~£GΛc?‹ητs< LcΆγ9Iƌf%ΣF€5xπ`s?[AΔ`ΗαŽjζ=ϋ¦ό}βA`v£ezςُsK΄eμ&N+²eθ‰Ύ0@aNyVΔΪ@μi£'dμύ”ι…^ŽυΉ‡ώ2μfl™φσΛ—/7ex`Σ·y|τΡG† ›£*ΰ‚’l™Νƒτ―Ω>ζ–[n ΪWΐψΦφq=ω:l¨6e’? οίΝΙ’žέΎ+;gΑϋœΟΌrο½χšχC]>ΔΗΕI_I£gττάΨq’ΡχΦ’ΤUOΚLώΧ§{w;S¦π~ ˜ΑNόžU†½zџ’σ„‚ήΦh{Q3ι’σΕ9QΑcEud'²Ω·nYϊ·@gϞ«`Ι5fN ΄€ΎΪ5 [qΪ ΗŠ4Sπ˜ΎλύEςζ-λ~_wπ™Ijέz–Δ΅¨+ςΛbΙ|ν‰Υ>ȊS)E’Ξθ,rŠ“υ=[‘νXΏΦύώG'Yϋ¬τΤyΓΒ―ζH¦ξ²·dΉ±·6-5pRΠΌ±€)χ»­›€S§NζT΄>ΈlS†Π;‘μ·Ύ‡ψg6!>8€gΔξJΒοHmτϋωyxR‘ά=$I¦NdΨ©ΉΆ,y葇ŒoΊlΩ²¨mΐh|Έ’l>}*¬Όμš·3ΆŒͺkG£&MLρg͚%‡+`َ °ΗΦVrWΑ`­oΙ}Œ"U ΆΐφΩΎ‚kyfK˜amΊ²qΑn1ώAvfόD9ώψγƒz|΄ω >ŽUΰιŒΕ ƒz₯OΪΎ}{°@O­?ψZςuΗŸ‚R»$«ΣRLŸB™ŒžjΧgέfŽΧ–“Οθ&3gΞ4φό>,ΉΧάΜ₯Ε$ωω'€{οΛ‹υ0ˆ{›Ι-:ξHkΤ°Μ¬ώˆϊ.»εhΫΨU©ΐσΦν’ωΤσ?wρK)SA“’Ώw‰s€ε)·G‰&r'N Ž!}uj*˜υ*‘ΖυΛ“ΜŽΧfη(`ω…K}Ρx2Ώm IνΉ¨Έγυ!G<«ΧJξ} ]θη š4”δ[,\₯œσΫ+VIξe=f|¬v3·σqΊc {΅ F%Ώ)»τC“Δ;3φνσDNW›\–(‹t¦ή?ws₯ο€Ϊ’tϋ¬Srω=΄’;ρ9cŸύι•”‘Ήδ9πΠμ·<¦$MŸiκFAλ¦Rι6΅ΉEA‘ΧΩίYَ<<δO9iφs’βΙΡ9GR‡]%ž6Νν%βΌυ‰δ½4έό_ΠΌ‘€ ι°σ€ΎUΑΞτ—;d”Δώϊ—Ž­²u—•’{j{©|ν%Αt#ύΨ:ωEIόtΆ9•Ψ―§ΘΙκΛΈ²Ϋ5@?DŸΓψκ“O>)–σkO>ω€ D·γ!όŽŽ;_έψΊΎHŸΞΌύe8xšΎhXψCύbζƒΈΦ²3‡fN8s&τ_Ά£―c%t{ΝƒΎΣqΪsρνž+B‹nv^.ΰyηuηήιjΐΥ€«W\ μ'pΟϋΙ‹r‹Ή[4Κ°†…?&€·mΫf&XδΜ &3ώΤmΉ‰z†΅ƒ?;qΑδ7 °H쀩ς’Fwχώαi’š&Ώ&θΔi@gQΒsΟηπ6;›m…ίηΡΙxηšaβυƒa(!Ÿ²:x―ΎTόƒϊUx~Ρ$θ½c¬ψ¦½©QP’ Œ—°9\ή=πnψτ>ϋΊψFMQΖ;€ y}Ixk’8ΚJΉΛ’—/™χ?&ρΏ.6I(ϋEςΠλΛdρ-Y#ξ}]Ω=5š?5AjάήCbΦYϊnλχ˜xtXGAΩΙlΧ8 /kώμ%²iΒβ(ΖS§²ΤΎ»§xvhΨyŒ2;²ΚdゝáνώΏΏiΐ<οoo¬|εeƒΕ @^ψ€€`Ψd‘?‚E`ΰ…ν0~χβŸ!"ηψ‹π Ϊ#˜"Γ…Εyv΅ ¬H(CYΑβ΅βΝ-”yy«ΝvšœgϋdΨΡXPΗί ‚©rΨ°a­[7ΓΙs$mΜ’¬ͺIΑν3GŒ!#υ/cΞ)X»Mƒj’₯1MuαS·2Vύ°€CΪlαων·ίXI}Lς”±Π—(~^(νίf€\δSθ₯έ/§bτ=aΒ¬Άΐ,t:mΪ4“zXπύRxΕ@έ»…€ά|­ξB\pLΖ»lΠ.ϋαΙ·`‘yLŸ²*%Γ$UΔπΔ;.‰α9|kτ)§œ‹‘+žπuΆΧGd³ωρ§%iζ·σδXιtf7sŽ23&x―Υ9υ=uR0 zBη€/btΪΡ-؍(‹aLkέ-£^γ§ψl‚ΐp ¨ΝΦ3žΆ4Xο’η gŸ'ΓξU†+ ¨SΙWζΒδ[―—vE F gέ¨sπL4αMυ7qŠ‚_s$fδP™ώΛΟΜLzΑW­!w?:NξΊλ.S6ž₯IΥjR;πυΈ,(ΦΧ†=}"€ΑρΣ-„φEZό±hχλ\jφiκW^ηc$ύ’3K]Έ6‰–ς±'ΟΞί« “sάόESg‹ζ;¨Ž‚œQ&ηΆ &©bο±oοΟΏώΛδ ›¨u‘}+ύ.βΓ ₯υ\Wσuη’X)T°³°λŒΤΕ*(]tχ”Pq4(Ο9ϊHqŽQs“F‘§φθoΟϊ ™ωϋœJΖsηΞΥMgZ(P|FŒlΩ²%ΨNBγYp¦!΄+μ_¨-³m”v>.ΔPΏΓΫhσΦgΛΧ(gn~Ošφh+—œ#mΫΆ ΆΡ!7ή$Γο)χέwŸtθΠΑ0ΧZΫ―γ™_ώ\›ήͺ”.o|ώ‰τŒΝ―VMΫ›ŽoΚΆ\AΆMŠ€e…oΧ^jΥ­cΞc7Ί6?FώΉγ5©έλ0 t$χ°ζΕΚt]Ώ«ε˜Ηp  ά‘#GΜΨFς° šΨdΖά°ς³Ž}’O€LΦͺ£€7€_mΐr1[¦ΉE,dθœ-›CmωΡ7EΤ“Ύ7Κ`™‘ΡSC Σo‡– Ve«'ή5 <ΫwR&Hl` vχ„]ΒVΣ±½5Μ£Ψ{ϊ)ž ’΅e€- ’! ΔΪWΚC]"τ:}ϊτbφuΓ† Α2†φοθ‘λCΣ‡ το€ϋΕ_ΛDz„νs› ‹>¨³`πbzZΏEΆj mμΛ$e@o™›ΰߝ_±z‹¦Lψ;Φφe½K_;žIMŸΕσΕ,Ιyώu³}=‡©%]«@²ζMψχ?#μΤd؟Ώž#q φ6ΐ³§cg‹=W:ξhqΪΆ,Hrλ™=clώίׁω†τd©=μlt/—l rςj»_Νj’|ήiβ9A݊l΄=Η7maΤ¨QAΏφ\ψΒ»ΊσΥ’2τZω0+ΨN8‡έ’έ…Ϊό-§Šηγ―lšfςƒδΞ·^1>ey|p σ4p(CΧιέ:Λμ‚Μb>x4mtνΜο“M[όΪv³ες “ΝΌ&Ά1T`&??6ja4Τ–1―IŒdΛ,QD(“uΈΝΗώ 2Δμπbm>ACΡΪ2μDύͺΥ₯Γι]’Wα ΪwJ_oΙ³F²%φ>pέΊ –W1cν»8gm9‘ΆΏ^²d‰™7ζ8Άœ@BΫβ 0V²€kyπΉΡmψ{ˆ4~"‚b°Ψ~ϊRόΪl μDJκKΙ—:>5E².Υ9;eΥ­τΑ r„ρΑρη| Šυœ•ΐPξ©_W6ά~S0Ψ”ρΝ)«7KΑτL~€S} ͺΡ@Κ9ԈΊ°ύx ‘]ά%ΐ³‚f·½ψ†‚AΏΡέFγŸ±“―μ©;ζξw©„0?1MAΉ Ι¨-οu8§vŒ\Rζό$yœζΩ–aπλ»Hμ™6Ί ρΜ€ωU%GQ?OίuάΕΚένδ2ξΪρτΆ—ί’€w?56Žΐ Δ[ϊ‹θ.Q‰ΦηmΟΌ,Imϊ[Ζ‰·φ§Iƒ²oΧqmΞέγƒAIω‡·–Τ›u½@Ÿ%’h^Ϋ'=' Ί{ R¨ΰθ”‘ƒΚfνV›Ύ]wyŒ~Ή/οΔ£\¬Α€eˆ3ο7Ω~3²l©WΆ{+ΙWν/‘Αχ7T’@Pέ6eŠN˜—ΡJ4ΐ0σΞ±b™nΊRΗrΊcIˆ0‘;lŒΔ}―€6ΫμάΰΙ=ύ„2ΑΞςι,ɝό’I)χ”φ’ή·gHͺξΟέ­l9ώAοkt§μ8ύOƒ Μx Τ—¦?₯ŸBθglίΑΨqό Ζ#€¨Ω± Ÿ 3iD²«τ+τ ¬S·σ?†Œ§“†χc”“cK—.5ύ γΖ9ŒJΚƒ²νͺΈ€η]Υ {Ώ«]Σΐ<γΐΊβjΐΥΐξΥΐέwί½[2pΫοnQ«›¨«bΨ]ν·X&qΟ_ΊϋΘFL „neΞδφO<d™³jbqφ&1&ψΝΔLΎr ¦=Ψρ&τ-Ι¨ˆ+ε΅‹{KοgK£˜xY˜Π€κ(Sš£,Ί±ΗΆ ζβ(ΠΩwN7ΐU0Δ>$1wΏnE硌|1±βœΤAœ‰£„ΏΗKκΥ­^ ΞW†έ d]ΝΟa‹ΌύTΙ©»ZJ}φόξHυG`WAI±ύ{‰p ξμjς’Ϋίe«žc‹Ά:Μ9₯ƒTΎκbΓ MΪΎ΅[eύH,έ’₯•=Fͺ ]ο}˜ΰV`MΚ]ΚΨX£j©IεΈL6=¬ΫΩΓ]-UjίΫKΌιεr˜^=ζν عڝ$ω΄ X(΅δξIW»W.ΰyχκw_HΕ}€ΈlߌL™2Ε€Xΐ؁YψΖo4‹ψ½{χ6μ›\Ωe—ν° ΑβўΉΞ2ΦφΊηž{Š-¦?Χ°(bψρ[t6Π…ŸΖ²Ε i½ί)\({ο½gτ/ΌπByαΩΙΦG^“€γ‘―²VΑƒ€Θ„.μΨ΄XάXΑŒQq=α‡qΐAσYD@U%Ο'ƒΈΧ0Ψq fkžη£L0#0θtoΥF GΪPxDUοΘΖMk ˜5΄Φϊρω"1#Ψζ('χcC-Z$:u2v’²?1|„Όσ‰¬>γ„ΰΦΗτΨ!ž a<Λ.F¬°ΨΧZ‰ΙryηΐXYvƒ<ωcdψΤΙάFšτgτm1Ϊodkΰ1r |B¦άψKŸCY―^ ΰ2aShοΦn` O<逨ʄ-k¨fF­m*MO°°a―B+Κ,“φlŸ‹ zζ™g `γά~ϋνζ™©3°6X ŸhmΎφΡ>C™φUΛDύ‹ΊΧwοbF(,})ύ=σαB½‡Ι: ]–žΜω^6efH½’h+₯ϊZ¦pFx9ΚϋDΐ³MD4·?ϋŠ$~­ύ Ύ$Ώ2h^£ΐηj{>°Δk·}«πό΅B·Y(Y„ Ϋ€ _½Z†ύΉrΗvpšΦ‡½.ZƌiίΘ֏ 2o-enn­ώΩ@Έ΅h>G YΨθ@IΡέ9Ω8Y}Ω­Κ¬šž$5>Yηέb‚γ ϊHhλ΄Ήhm6ΰ” b‘LΨ|@Mθ€n$›_[Άΰ»9³=Sžžρ~Τγ*μ.A2ψΰƒζ–2υͺ€hίΦνςΜ»oG₯§λ>T fŽιy|€σΘ°ŠR^ϊ©Ίλ6Š£~ŒΫWE}N-{hp7–Vθ#™Gη™LwβcgϞYs%gΪ«jΆrMN’ψ ulxZ'"Ωv’$!·h›ΩφŠŽ?œkδΦJRθ7ΚΛ ’¬ωΉYAΤγžΰ”Ώg΄ΔŸq’ˆξZ# ₯Ο›ŽΞ~θq‰[ΌΤάλΧέzβ5hU €ϊΓ³*ι‚d2xLΛH§ ΐΞEΐ%έg{2²$SY‘γώόΫ*hR_R•„ƒρX™²p‰δ= ŒΠΪ7σžz_ Ξi'”|›Žυ²ξ}L™ύe-Πχ`ΐΡ:ώ-UτΎΜΡzίΛ 8=ρš^"TZ–83Ύ–ά©o˜~3+΅šŒˆλ/λ*Jζ] £‡$HΞX œV@4’ΧΎ­€χλ%™CοWπφ†@{ŠvΖχΘΊγIψϊ'ρlΝ”Βϊυ$―KI»^λS)βΜωYς°MžΤ!’v‹‚Β]Ω+ΐv[[OŠ=ί±ιι•eKΉ†ρ(} χПΣ–$φzΎω³k›%]_Η]ΐsEhΡMΓΥΐΞkΐ<οΌξά;] μ³Ψ]€IπΌΟΎr·`! μφϋRΡN=Š xή)΅Ή7ύ4ΐΐήn;ϊ8Lτ²ε:‹•VXδ`«πΠ &˜D`"ΰI¨0QΞ€uY‘χDσϋεšΝ€OΦJi䍗ί*56li1ϋΠΩσξ'β ΏOb`νSqTχl§ϋΤƒβ(sβήΟ5·‰ύo ΰΖδŸ'ž‰#EΊžΈϋŠ3η'ρ_9ΤlMG&~݊ΟϋΒXρ΄jZ1yκv’y:1ξQfG'Β]-rXι }3ΞΜ•5wΎ ޟu;ςu›%‘ŽNž΅9@RοRΦλ(·…/\ΈJΦί«“ΐΊΝ¬TI‘Z£.’˜i³Ϋα N­Ί_ΑΞσWšS.Ψy ΉφS Έ€ηύτΕ•£ΨΦ7¨Ζβl$Αo`»b&&,CZ8s½ί.H”x Ašύw1 / Ÿp± ¦Ι“'Vd{ž…|˜ΕXΘΆ(©υFeχοάRΌΙEVž“Εo›Ϋcβ;0~ϋν·eεΓ/JΝΗΙΛsΏ4ΰ›Viί€μΝ¬gΑ}‘ξyι₯—δόσΟ7~Y(X…k―ΌςJΪ…Υ ”Α>eυΜωQςΗ?-qΊο§ jψy 4.*YΟσηrΙ½‰³–>sς]ƒ$^ϋUΨNy^@ ύπ-Σ0‹T‘읔!’^ρw‡ή7cƌbe‚‘'Vσ-Τ²Ϋλ/δ³;А~iBΊζάξ2oε p±ΧRf@!€2¬Ψ-Ν-ϋ3Ηγ7lo΅ͺ’γ aH“νΥC― UΫτΑ…¦ΟqXsΛΣ-Š[6—ΓL˜±,‘^½ω曦­°],ΐχ’„φΕϋ¦Ž²Xοη3Ιύ`¦ϊ#EG§Jš$υθ&žNG›Εν’ ?Ύ;ώξ 9/m’·ΛΧ°ž€t,br.eλζb7UΤ?Ί@k@Ξί+ΘyΎΪ±³VF)XΉI|`Ÿ/1Ύ|ρ:ωf‘μXTK—Ψ–υw9ΧͺYrVΠWC=ΏHα?›dύCοˆ(λk<Γ΄U6ͺA °ξcγ­”ΤF―ο|¦lΈaΌ$½u—₯ΧΫ6D{hd*ΈΫV³ίHq–ύ#Ι?M—Qc2ΐV›Ϋ-τΣOΕΖ²€ŽY˜.όu‘ΜΟΝ4νή^_R™` Ξ_ϊ·lLŠ ½Ή'υΕΘζ2ϊ@ΩΣ¦M³YDόΖ¦•§ŒαΊ‹Ν/5R£eΒFdsδ‘G–ͺ'l»:ΡOώΆLΌ/l ŒίάƒπΜ½{χ6@6ϋnBwΰκΆ1[†Ž ˆ7θGIφ•~”zMœ~ί!šg&o[Ο©kΡάΓ»;¦RUρ(xnΚ{ο”ιsP¦Nκ°γBEJ©€η’Œ<λ6HΦcS%Ά(jή‰ν$ν2 ¦)dV‘eέΣiLsζ&™ίΜ‘ψΕΛΤΆΧ½£»q4k(©ΚώμΡ’¬UπC8ω…²κή·ΔY€»δIrάvIŠΥm!ΡvXΠ¦™€φ8S< xŽVhο·έv[\ι>γ#Ύψ‘,_)U&Œ”7Ώϊ’˜Ν§FςΑιΞθ|R`Χ“°‚^γ5ˆ>U™Z'OU{8.1]bZ4–«nΊ±L[I6Ά&ΔΕΛΚa/KrΥ4©qUgI8 š±‡ψ“› p υ½y†hlΑ*ΨVμLhy—eσΉ'[FΉ=Έ™ΖvF‰f\EΪ<»πYΫK™J;fα™ισ’ΚEϊΡάάjΣΖW¦œŒλ;ž°~.εχθΈp“ξ(aƒ¦Έ$½ΜOyτq6*Hω&ΐ²΄ρηOz}ΞΛz•$Α«ν> Fςw_7Α9Œ—¨λτiqκ3gώπ“ΔιŽkNΓ%‘ώΘ]V_MYƒυ―¨οβΨJyΟυG`]Ž]±:΅>SB—EΞΧέ5θ`—EΣϝ0%Θ> 8<αϊ+EZΌkIλ»—_Jή‹o‹Gύ„ΰ“€λ΅~F1oξΡωΰόρ“@a½7§ΓΡRιšή°ΆTΤβY²LrtΗ@―¨ƒ Ω§Ÿ(ι—^υύ’χη>8IζΫΝ= -Ξy]’»ϊ§’ΒΫ:YξΏΞ='p¬`λeγfΙΎkœΔ(P_–Δχ<[<ηœZβεφ„gσVΙΌk‚!;JB’t«ΞΪܞ.ρΫyφ-Ι}¦9O@jͺξ ωΗΊρPk^½υY9Φσ«9ŸΫ΅ƒ€_x†d { v¦ΌbfgΐΚYχŒ“ďf‰(‹οΐ:’{ζ‰Κ }Y‰ε0'ώ)ΉΊ#ΑΩ…-KκJN’yΈβj`_Σ€ xήΧވ[žoΨγ€ηo vŸΧΥ€«W\ ΈΨϋpΟ{Έ%Ψ;ˆx@…sl-<`ΐΓςA Y”μ\ΔΒgKΜ ¬Πl ³\¨bKΫ’"«aC ―<Τ瑏ώ^*cεχ³ΞήΊ―2:{”‘Βwυ-»ό3qO}ΚvαŒ.4έ+ςνβΏb°‚`Š”΅Πsμ‘βyύ‰έ[ݎO¦κ"2:―xO:Zδ™*,OΟ›Jή+ ΨΠΙRΏnјx»‚“λΤΪΉτ5mc§Š΅yβΛτ‰_Y8|½:JλμŒΡ&ZΈtlυΊ89Ίp“–$5G^(1υͺ–~»ζ½καwΕ?w…ΉΚEν%υœ»Rι7Ίg] μϋpΟϋώ;ͺˆ²ΝvΖ½zυΐ™‘Έ ΙΪ΅kύ|ŽŽL·ι`Ω ˜βώ,ΰŸΆGΛ– X VJ€EρΨϊŒϋΖovd[ެ¬,”όCY+wοήݞ~JΓOiT˜*+GΌ&ž«H½{zH\r’Ζ„ dδΘ‘πtήyηΰ>ΎεŠΙΚ“±S&–²`’₯ό°  .αY ve‡PaΑΰλIΚπiΑPMxnΨ³ΓΠ??πΐf[O»΄(π/‘v yλ‹Ο h€, ι°m ƒαφJ ζ 0T=&•{ž#WM•9sζ@€gt„H 1{ώ!Η#•‰ηyόρΗεκ«―Ύ?Ž€γ]‘.eϊζ›o€AƒDΓηρΊUuŽL€ζξΤ©·•)€/­RK<hφ«‚S/½τRr ½½ή€ι9¨'½έ²­*:δ]Γp‹¨ψΈ•=5Gί5Β;Ό+u#\¨ϋγƍ“ζ βφ=>EΦ_rI#ό…ίΗεΛΧ]t hšvh|ΐ„kŠωίΚόΈνΩ7$ώ»fQ˜4έ­"ωbυk`MΦ²—%x^ΊBΆκΦΞq?+“³2ΈEΛΰk  η•ΙωθC•ΙΉrπΤω‘ gοό_ “³η§Ÿ%‘ΜΦ)Tίrυ&)XŸ!NΆ‚‘Ε/^Δψ:ϋuq]υ—¨ κŠΤ­n|Q{³S§Ά‚œQΚ䬀™}IΦΌ8Sœχ΅N(Γ³GAU•{'Ιg.Iτρκ«―ωCΛL@lo³Zϋƒ ΅ ΄[€Ό΄Ɓεi£—_~ΉΌ-­žέν Ywπ…βWΠΔν=eK‡#LD8ΐ ΫsdSeYΜλz₯8^eύR°ϊkΛ3 .ξΫ·oθc™ί€”Ϊ=Y™άyΎ‚₯λ%^mύορy₯–)ΤnζΒr,ΌLd;1»*Ι $©yEFU36mͺϊυλ±LΣ§O7μ™9Ÿλ–έγ§J₯‡†Λ/™[J-l•‘οˆ9/Ž…—Ικ pΊ½žB`gΛ* κP›O݈€WXžaφLMίNΪτ€7oή\’-#›Πγφα@IDATΩ£GΣ'`ΣΚ²―Φl™θSΚκίGs=ο ¦ν™3gξπΒ 3κ)ιs_4zΒ'Ψ’>4Ÿƒ6π6e/PU”DxΆyy~Vζ㧞ξ˜δ(85αR{ιpŒ½δΏϋ­:'Ψ φημοζI μΟ‘’}U‘‚± Z6•Κ'θŽ Šͺ M’ΌΏύΫrdυ]―‹χ―•’Όa…$x³ΕS'Ν$Cwβ©tn©γN³qΣ&±Kα>'6Ÿσθ¦Ν$γͺ‘€—:¬ΏΜΨΈΚΨkσρ9πC£υΑ»¨?Τ5£P{+o);piν‘zυκR]γ΅|j;ΊφΉΌ\mtσŸ*(ωΪΨ;Ÿφ}ICˆ4iPζ­Α >όBςuWG@ΈŽ–nΎF€ΥΑΑΣ%ώP€wζύ%ώΧ?Μ%…Υ•δaΧ—>Ύ*gτρf+α‡κ+qϊΆGRbΑΊ«Nφ¨GΕ«±ψΖ‰ΓˆGσ+U eϋύOvjΤ =XIkΎΘOσ dΕΐ'₯^ΖrέŒΗ‘F#{ˆηΘΦ’9όΑ Ψ9ρf-ί‘;–/γ‘'%ωΝO`η:5%·['ISθΔYΎJrοPςΥ›?ή3ΈάΐφwΟΉ¨H Έ€ηŠΤ¦›–«ςkΐ<—_gξ\ Έp5ΰjΐΥΐ~¦𼟽0·Έ¦€‘ ΟμΦ0RΑv±“‰u~b»$ΦE&rI‹ELΐ-€pP–ŽH…ΆώHηJ: θM*₯ΙΒS€Ρ@A#ηt ΦΨ—F¦k‡‰χΛΩβΡ‰NΔaΒϋŠ‹Δ― {Kό=t"σ[q-ž:© βϊ°Θq‡οΆ"y”i’ΰόσχ“‡“˜ ±χκ’χω]*&O€dέ§[ώώ§I―@9RnΣ‰aebΪ)Ι/Œ{&Jμοιβ₯’ϊ₯Φ“‚Lo ©VHν‘η‹§hR7šτ Wl”υ#_Ρ„£Μ 5οΌPbΦ(ρΦUΚ²gΑΞU»£ΫΡ*0άW Έ€ηΘ‹,γ1τ؝6lΨ kΦ¬1‹ϋ':³0έuΧςρ!ΈΠ $ΰώ€fώπ5-_Ύ\κΥSϋ¬Π T Κ,ΰtΰΐ2~όxsMθ> €[ΐ,>XΊt©»r¬jΥͺΑν°·8_6NωΒά{˜n~퉦M›b ό0ŠΚhΐ–ΫlΓΜ"Ό%cΣRB³.ρχφΩ‹ΕS;MbjU–Φx€zeφm’U«V™ηΔίjΦ¬™,[ΆΜ€Ώμ³S~Oq\α\•*U #`μV­Z Ίε< 0˜¬ σ-ZΘ’%K‚e›={Άa΅` τ ΘΒφΥάΛϋ8α„Μ9Z‚Ι›λρ Ω!„2‘‡}€©)/ΰ/ξεzžzQΏ~ύΛ4zτh:h°δ*ΐ”g D#6JvίΑ’2κVYPkήγΏM›ΐZ”7ΐv2ΌρΘ#˜:HΣN=υT“Mƒ LΉy6ž?—­ίoν?@rΌj=ε9xοΫΆm3ο‰wΐsΦ­[Χ°§>ά€&§Šη£O%ΆΟeΡ<‚a.ΈρVρΦYόέN3ϊ₯]ΐ’ @›η €Ϋ΄§’tγlΨ,Σψ2ύΣ&ΐ¦$»ΑσcΡν6 ϋ/ €λ°c£)γοζKΧJ!ΐ\Xxτ!Rλ’ξ’λ+4χ`?ϊ!žƒ4ψmτ½`‘$΄i)_}7ΫΨΟHetHEΠ-e"H'==έ€'Ζ”{MΨX3Ή 4Ο^&ρρ<\GšτU<#ο©V­Zζύ5Vΐ969}Η©+τΏ5ίpΓ &P[Ζϋθ₯‹ °aμΟσP§J²―ΌOμ+ι²3εBJκί)'#0•ΪχfύscΆžσμδΑ‘τΔ»γ= ΛΥo‘/¦=ύτΣwπ9(Σ]wέe|ϊ—Χ'Ϋ'>+ω-›H•ŽνE°3» ε<›lΠαGΚ΄©Ş"ΖcX)Χφ§qύ](Ι~v«φYΐ3Ύύ^β4˜έ£ ΙP³@ƒNP0ψ‘-ΰ–zz—Ϊ"›?)IΛ–H\Φ6ρΤ~²ZŠ8•S%QνŸηd­Ιzg2Γήbχh«ψ0΄cl<υ–cψσTΣ)­ŒGŒψη τίώγGδ­Ϋ 1Υ«–ΫοS―±Δ΄m)?¬^ivy χΑiψ}ψŸό‰dτΏC'1Α9Ρ<ηΚ·fIφΛίKϊ£½ P44@ ζ`ό'l lΝψ<+Ύ*‚°iαΆ  μͺ`g™κ#ς ‘l>γόE€ΘΨ ϊό5ς£ υ±eμvΈ»b»‰­αήπqοΟϊΣφ:{_YίΨ]žŸ2Α^ςG>ΨτΞJˆΑsγS£μ¨eJΖ§―υηί²εη_%΅ν‘2« +θSΫΌμψ‰>†~2]ΑŎ²/#qκσ& ΈR–θ» Χ+ΰρ<νΧ|ͺO+ες܌ΩΤΑ‡F―ΌG;φ!]ΊNX·Mςg|!iΣΖ‹Gίw4bϋˆhζš2Ο:‡ΉνΉΧ$ρσoΕ£ΐTΔW³Ί$χι)ΞΞμx‘Pž/Ώ“άi/‹7KηΊU œ4P¬šΟ.‰–έσ†’WΌσqpžΊπΰ†’|ΣUΡq(ΉHώΚΖ¬LΗH²L'έά_$5Ίρw°μ›·Hφ}²Žε+Ϋqκ +Gi_—Ξ~@π"“d!AœC―W@qœZ糕 $v½ϊ©*yG*•xώRΖΊžΩ?*ΛφT¬φ§W’DG{”=ζp~Z(Ή=eκ >hŠ24KεJ&ί?τgŽœΣΟοpΈTΎώς/Wΰt杏HΖoδŸυ ς^γκμΊrƜ'$†gbŒ\Ψy›Φ©Τ§ί0`gΏγζœ}r™`gΡ4³o½ίΤE_M ΰ½VρTpίϋοΓΉΏ\ μΊμϊ';„1φqΕΥ€«=«πΌgυνζζjΐΥ€«W\ μ Έ€η½ t7Λ}BLj³˜Μ„4Βφ}iμ!ǘTg‚Ζ=³%Έn7Μ$;,pή “χL³}μ5z]Y[ωΑJy€ Μ3«T•_ί™ΎουaΌcW&γ—u1,°@αPvγχ@_XžΗ­Έk•eΒέ]βQ¦aΔQ`Nl—γΕ?εώŠΛ#BJήΧgHαΠ‡ώݎP·Ό‹{wrt“ΎΫαКu’;zΌxu»y]=’œΣ:Jε+{ξpYΤΆe&rW­“²ΧhZΊεϋš?y·ˆΕδΐjRg€OPνΧE’u·Ώ$Ξv]Hˆ•š·Ÿ/±ΧΩ‘X«Ζ½'ώο–™γUΞ>JR{»Γ5ξWϋ³\ΐσώόφ’+;ΐ‰_ύΥ€ˆΈΐ1 $T€`πΒΟ€I _!tQ9Rψα&Žβ>$<‹…w@Q0Ρx €^μ,aεέwίw) ώ υ€ΰfΜiŽρΝ7ίτs²΄Ψόβ·R‰«δΪΫΛ΄iΣLRS¦L1ΜtΊΨƒέ0ΨS.Ψ'N4Η‡ btX€4 Σ§žhφρ[οΙίΧ=-[/ΎPΖΌQIΨ7^Z4ή π½π±PλΧΉ‹hŸJΩ—+ˆŠΌX¬4h)>> d ς@€ b³ΫDsLv€0ΑJŠ4αxoθ¨PΩoa€&-@lS~ΤQG™w k(iΒz 8„wΖy˜š) CtMZΌG|~ωεs=€Cκ Ύ₯υG)οπαχίoΆΆμqΤ­:ΚZ–~ρς¨‚Φ©_z₯>QVή †6έ Χ—ΏΆo•–-[±ΨD}0Α{‡] bυ„Ύa$oΚτΒ /˜)3L¬V―”ιΐΧ?ψ^ηɟy9 C€5³©{ψΨ€W(¬ΧˆςΤOτ~5KΌ―+˜lλ6ρ*πζ>—σ€,€ρΖ=ˆφQβ\‹Τ¨.…=Ξ9φ(£k€ζΌk2”€y¨Έ©ψ§³fƒd<σšaYΆgΜΆΔ—'rH`\`ΫoΔϋ_»v­=\ςχβe²νS9+“³G¦­ΰ_4¬'©'ΆΟ1mt‘=՞Ϊ3ίΠΰωIAΞ?( S‹œσ %_AΞώΚ䬬~δ\T*―γS³‚cθ”§Hœρ)Θ9Ά²‡k œΣβΰ‹σΡ +/ΘbΟ<ΉΙ%oΦ²ω©O”©:0&¨άνHIξΩ^Ÿ!X¦ύb§ϋ1.ΔNzεcΛ°q΄Ϊ θ’„vύφΫo›΄Έ†Ά@0ΐ.κL•υ‰ρηšƒϊ½ΐξ? $Ϊ ε˜zο$Ήωž|rζZ©ύφΤSΗ51Ί•zκIδeJ¦ τBΫ mI1±2tĝ†]vbli2†₯LΨl‹/Ύ(§Vn.…«·ΘΧ雍-ΓΦΒJΩ»wo’#]ΖΘΨ_lϊ ΜV€ZΡ,ϋ @E½‡Υύύͺ60fΐHeΟ³,rXKeΛ»V~ύσ@D2 2Ώτ΄ν?ώΨf)ibzaΡ+e²Άp^x™`δ$πΫG›ζYμ;΅ύ'AΖ¬¨ŒFί‰έ$+>φŒ~ŽcτΟθέ0½ΓnΒЏP&ϊ0Žs/A60Μ}Τ't°@+τθ˜λy_eΩΧηž{˜oA€©G΅ΡύΒΨ±cξΠ«tΟa―·ίΌ ή ύ&ΰΓΠwG?ητH½$˜MyfΪ ΰΚΫoΏέΨq„YtΤ9=$ϋή€ΟΓ1Ώ2M΄j*iΗk0lλfj‡’ήq/Rnΐsΰ6ρ(£ηΆ)/(sζA0Zž2HVΊϊ2-Σ+ϋΗ2ΩώΥw·p‰²V/ώψZ +gϋ#E40AXό|yώSϋWψ'’ϋθ+ΊcH¦N2ιN'€‹ο` ΌλήU€½Τh{ΩU υοhw°ύb° Ψml"Ύ~>»3οWΙQΑ«Tˆ£»€ήΤG Y.ΌKσVRP­ŠΥαx³+ Lι΄ μ Άί ;Σ©S'i«φoビ%΅ίErLΗŒ­#oμΑτO `«{ξΉG?ι‰IO–[&ά•N€- -σ‡ˆέ&@Y³f™ώ(άΏβμ=ύώ'νšςΣΆρ͘oΕa°}΄w‚j`JΖ–αΣ€έa¬ΐ\'ΧΡ§ΰ‹σ;T°eψ₯03cσ§i‰Ν₯ όθ;ĘΑ¦οΒί%¨ χσΝΑ’ϊΨυSX±ΜΞ”'^υσΈΪPμ>}8vΐ5Β.±ΰησΜ“n&97΄ rΈΪy;Žΐw%$΄L¦ž½ψ’.\,~­ Ί+Fφa“l œώ { G―ε6/žΌσŠη―Ώ%¦έ‘RP·fΔqiŸΪυ%ϋ-¬_Wν@=I?μPUτAQf­#}— xώzŽδ=χΊϊΪΫΝ­Žtzœ­/Ώ£šFJ―\ΗV­•œρOIμς•τϜk»#Κ•L€‹=Ώ.–œΗžΥ_Ά֝υϋ\$ŽT”)Z=ο~$μς§οΣΡ:@ΉυΛ-σ“όqO‰hpι$ο|\τΙό³ZrοUΠυ¦-ζžάŽGKΪ΅ ΦΆR¦ό²XςzRηκuύ@mzΒ•=Δ9Ή”ΌΥŸΨώδσ’πωl“tα΅΄¬mUY­Λ’-/Ύ-Iο|†Ϋ‘‚€πλtKΣ”&›ΆJφ φΗζ«-Kμ}žxΊΪ»ΉMΗxΩΓ6}ύΑ‡m/—w5’‹N”CΣWKz½g°‚·#0;‹‚θ οT–ζΫ5ˆ'M²ΟQ°σ~₯•Fd›ζ7DΑΞ[Ά©_TIΑΞ·‰μι€ΩKθžu5°ƒ\ΐσ*qΈΨ£pΟ{Tέnf\ Έp5ΰjΐΥΐήΠ€ xήZwσά4ΐΔ; °u!–=)tR u$€Œ1iΝΔ4Υ, 0Yo™PHƒ ΆόbJΒΈngΐe`‚žIτ}IœΎΟΠ{$F'ήGυ[Πΰ@‰}ςAeyk΄wŠͺ ern?ρΈHA"8ι©ϋρ·iΎ[Λ”Ϋλ‰vζ«Ρ1:Ρ{…‚sξ ,xWHΖ?ύ*ycub8OήtΑ7aΠΥ h½σI―UV:‘»E Έ’t›¦ϊɟ«Μ5ΌkΆύ–*)RkΤΕβ­ύ"―oΓvYwΗΛ"[²t"Ϋ+Υ‡œ#ρmκΛ»κ±Ε͟ζμT‹ϋγ?¦πό{‘ύτ4]€Η`1ΉZ΅jμΓb4ΜΞ,θΫ…v@%‰œ —pΐ3ηρYXθ$€³`€‚›nΊΙd H fβYψm†|Ττ4ρXCΖέν7ε³ΰZ.δΩ―¬έXΆ-ϊSϋ’«εqΥ' Κ Πͺ2ͺmαISKΆΆij|5ξ·@[ΨΜ†Rΰύ4¨ZMržzAβNξ Kc xš|·†Γ/΄μΩXΫ*6IςžzQΟο&Ώ₯%ξ0C}τΡAΐ$ΐI€Φ·€˜Xmλ όLόM@m€*8† ψ φ;ΐ ΐΏ£ΎύIβ•ρνκA7™ϋx.ς΄ƒPxΎ‘#GšτxΖ΄΄4΄zϊζ›o€ώ?λ$kν:©Τύ Ω€`ŠφνΫ–τΜHŽX΄F” ΰœ?υΤSriZMρ*Έiΰ„G‚υ9:ζκ2`Ϊ†­[JŒ^ΜσΑ'QwΉ (ΘΠdͺπ<κ>Ι=υJ‘Z•$‘im6Ÿ03φ^yjΖFoE‡‚iGλ{³°>/Zf“0Ϋ*’& όώRΟΊx.Κ~i@Ξ ώ‘Y1 ηFH₯ΞνE”Ν6šEy{o…|«ŽapŽ™ϋSδ¬ -+ώΌBρ)°Υ·!CΑ§Τ‘"‡Ω\ ³‘―OαԟUΐώ½ΏjšΔΥ―§[e·GΞ~erhVO[ΎŠϊφgεΙΊρΣΕωωŸΐ“UN’Ο”Ψ–υ‚Y`Η¨χ€J‘΄@nΤϋί=xΞ‚]CΑ’Α„τu0ΑŒ5aŸ~b°` ΄!‚BΣ² ]€ΧVh{Y½Ϋ rΫ%9τCέ•eρ_’:f˜<=λΛΫy8ΕΖ €ΜF .›χΉ€ž~€$Τ«f‚\xfΣ?Ν™'1™ωr©²RlΩσj Ÿ}]|jSκ)ο*ψ*Τ–Φ+ώzœ‘Œψ-Y3gKμ?k%ώ4ςΣ"T³ΟMπŒ-Aw:u2ΆPςηŸ+pεΓ/%昢«,«oΌϋNdλ&;!X 0ι•υN{φμiΖΨ0#ΨJ‚5,» °2ή%0ˆώ•~”~†ώ‰ΰΜ„=ΎνΆΫ ΰŽ>˜ς’υƒώ7’τ³uπ£>2 ’\ ˆΞϊΨWX )O$ϋn~Ϋ2Ϊ<ΓύξΈ­ΟaΣα›φA_C*‘ Aκ ϊ(Iϊχοoΐ•΄v(X±J£§JΦ¬yΚͺϋ·ŽA}œΉ_σ+l| ›HzG΅«Ί|Y²³€η`Ί+ΧHΦΔiχηrsΘQTBχnŠ€>YΗΞqΑΛώ_ύPžG™³~0vˆy‰Pρ+­PwŸJ€~ˆΞ½(±LQ&Ν­―Ώ/ρo)ž%k]’Ξvl#©}Ί‹§ηp°'―ΌςЁψ…/„­‘ͺeη€pጯ$χ•χƒŒΧΙƒϊΦgO ~$Ÿ_ »ΌxρbIΨΈYœz΄žη-QVmrz:΅“Λ—νγτιΣε¨ΓN‘ΧfδIίK’΄ Ƙ@ ϊϋEϋϋ|Η'‡΄94胏TΏ[€=αΩΩΖϊΰ–ό>*ΪqzΑ—Γηδ~ρ’K.1ύηB…|c”υ«Ÿ2ŒΩœγΊ|ЍoAΛ5蟱 3vΗ‘πtJ³e<—υΩΡο π5Ά’sΜdGπ籡‘}/ορHΈ-#±ΩΜ9"?ό$Iwή,׎{8θƒ??uš<υœw&τι%w+ΐ]“Οz_β/ΏΛ›λW«gΗ©­,P]3ŠTΟΠγ…’μ1J‘€ηςŽ?±χαz²~y$=Ω€ΙΚΰ9wκ+‘―ΛόφΥ¨&ΎƒκŠOύΖτΓۈ£sΔe‚LΓR‰xΦΆ‘σΔ$Fm³νcΊvι~zΕψ€ΚΌœρΜK’¨ T­@ζύζv8J*]ΩkηwΣ³Ο΅]‰&΄μρ@a%Oύ˜JΧ\’;§”Lg―υlΪ,9χMΨΏ΅ŸTρΥ«-‰·έ N­’w³χϋV[—1ι’π•Φm•ΒšΥ$™έΨ‘œ’Ψ}‘¨~ς&Ώ¨ŒΙyi ΐ“£Ϋ„^Qςο·>’ό—uŽYΫ‚£`ο„‘ @nςορ7ζζI–«c-5§ m&©·φ/»VΏuΫ„i’0λ's_ž’zTΎVu]‚fσuώϊGrξyB<Y&Έ%ipρΡʞΡέ³ξ'1j£ΩΙ1ιŽΚψ]Mζχš »δ(λ»'FͺίΥGž₯ύ_Έόψ‹­@jέIGE³Ο;5v.₯L†E{胳z½8Ι‰’4ζ–¨όŸπ¬έ] μi Έ€η=­q7?WΕ5ΰž‹λΓύΟΥ€«W\ Έψjΐ<_ͺϋHQk€Ι\Ά° »@ΙB€]„ A£Yeς` ΕwάqGπza’Ζ<³v(y_<{ώZ!…}oΡΕΏeA&8Ÿ²xξΉMœ³NA-{EΌ―Ύ'Ύ[PζΊ’ΕQ](σ^ΤMœ†ξΦς8Ώ-Εƒ”₯£ψ])YΌΟŒ9ζ° ΛΧ£‹€y―M7Γ~]@HΌ]Τ μΪiY²άLδJvNΆ&›‰Zn±.ΎΏΦΙϊQΊˆ+^rΌΤΌ£‡Δ4Š>_Ώn!θΩY―‹v ―vσYxC ;{o"υλž΅ϋΏ«„\ΐσβ5–ψ,N"Ά ρψ Lξ³€ΰs„²o‚ΥΧ‚aΓf1°,ΕαT ?ϊ?‹ΰ½••+@’™3g}ΚlΑ[‘χXPj(h `+Ψ*ρqπ…Έί‚Άψ (0, γ€ŸššψΚ³Η Nό[”=Άu}©=ς Y­¬t6π `Τ†‰λ$[XγΌmξΉͺ__™6mZ$ΐ3XΐsφΤ7$εα‘rέƒχΠώΜpΰΌσ©ΔΦJOo˜7-Cεη9`ΐ:thψύΗ_’;f‚Tzx€\3ςN“ΰtΐ €?,pΗ YΈd™xW­Σ-Ι[Θλ_@lukk˜Zη~»ΰ$ά·δ™Ρ¬€0o’> pϋ άC½‘N±ΨΟ³χmΪR|폒cυ]rŒzΖϋ΅ώ+ο,<ψύΫ>τ4jΐυ’sν’G*+=ρ  >¬˜ž`’;χάsƒ@sqΡGx™<δpΙiΦXZzˆΦ?°ΈκΞ €Κ…’ gλ>ώ³DαyζΟχKξI—›ϋ ȊoT]βzt“Ž6@sž ?ο2R½57–υ‘~PζS―JŒ ­Άl¬ΰͺ Δs``Ρ?ΰف]νχ³.ˆEΫƒOAΣ)'+^erΖΏΪ£ƒΆ‚œ=ί(ή_κήΤќάeοέ&>eσ(ΘYaΑ’h–$ςUM~–xΥ¦YρW­,ήS•Υ¬SρΡ6:πš½y/~.\%Ζ)Ψy[ΰY<­λI­Ag‹7EΡά!B½†ρέ”’žZ !ΫΐΫξμ5φ›ΊMŸ„ϊ€“N*ͺΒ^rήΆkΛNΙύ΄a˜›†·‡Χ^{SΉ5CΦoŒ58ηζH‡Ώ§Λ3̚%΅ž›„=¦nσ=ZβκΔH₯Ηn•ΈΪ5€° r€έτ€ΊυδΠΆΪ².NŒk†ώ{η&E±΅α3³9ΐ’£  ̊9]γυWQQTL€¨"QΕDDEŠETT0€ €$ŠΙyٜ¦σΦl ½Γμξ,`ϋπ°“Ί««OUŸͺξzλ+ρ+΄V€cN·‘‰Δ2”ςέ“7*β?Ÿ‚“ GΪI3¨ύGπi.ρW­ŠΦΊηšlυΗV)œ4E c%y@w)RΦϊΝKΟ=_ΖΎϊJΤeŠ’6ν m7ν~pΓpΤ⠊‘&>) δM›‡αCΚΜΖ|ό>uκΤ“‘-TfvϋCΑφ!xΦ0@‘9ϊ|j4“‡μdΪ&kαρ•ϊeΝ ΒY°ΣΆ₯αυnwϋœoieΗdλmžά―ξϊNέζY³fΙ}€@.•ͺδ·θ7£lθN5TΰηΚ§θκ@Z7#Αt{ <Ϋ~χ£δ*g•,UΣ$ρ&$s\’·›ύλ^&ιΕκΟ±·”tALŒ6<@RNj­“ešŠ(YΒT=3]Α·ψΩ:a|΅‚Ώ›2Ν›όϊHεΗξэKlΎ7>PχμjnvRœν³“Ύϋz$&σ,ΠD‘Ε/Όnς¬Φd©θ€Ϊ’rϋυ"‹°ϊΰτνκΔV O!™R «xNω\ §Ο4iπ'α²σε$16χ?κ* ?ŸS{ΰ‰½πdΣVΉcΝ’ eΣ–Ν%ϊΰ\W6np|·ψqψ—ί£½/ _Δ3;™Σφiω#-ΣFj|HWή4?L1“RΜΔ†ΟubCaApcύKl!άHΟR£‰e”)ύAžΗR¦¬X@ ΕΒΟΑ‹–UkΘV]a&FΫ Έ*iβάv£ι[^ΊΫ!€η#'}(EKTΩόιGδ„‹΄ZάolIŸ:M*5j(q­[Θ”E?—ˆωL:¬h=ΓwΣ¦M+υΠ <ο+zΙdT·Ÿ^Υ‰“φή#’ŸΈ―α8eει–k•ΒοQ%θμKΔΏz½`σέ4’ΪΊZ‹ͺ@£_U!hi “Ο΄½,Νπ5“°­Ώ.“‚—ސψω C›κ=HΚmΔ‰bςKh§²ήhœΟΣΙ°ώνΑgΊ…z/Τ­“Ζ-ΝηžΪŒΩ χλ³W,P£š$uΏIœCŽ*e7s$oΜ+AEdΚ^•˜+έ¬34ΖVΘ6nΦgΐ#BJύyͺ*]ιφΉ£KFο+2ž+ ΊςVT§¦$χΊQώώͺζœωθsΏ`©ΩΦ¬ π@Χ²WMΠk4»£1ΰψ«/ίeη–,…€3+$½t…Φ³―o »Jζ§΄ύΌο=ό<ΰΟ€Bπ²π―φ€<«‹ί;yΟž<xπ<ποπ€<;ΚΩ;ΛΘΰ‘:wΉωΖόq³œ/ο8d`Œχ Ύκ ΈgfΆaΩFΔC5dΤ¨Qf V~c)V”Ÿάƒ&|Ώ'φžυ§οΆΔχΩWβ+ ‚<ŽΒPΞυ§_=9Ν=ΫW—ίt.ι,ςλ6CΑ΅«¨TγhροΙ²ͺQδΚψX)|u υ‡>¬τ΅>Jdβ“Θ-F±wω›8YΩ’=μ‰ΣΑD,_—σM½W-τ!ιξšσν’7ςqτj V5I€π΄₯Y₯ζΡεΞE—μ«~—BΛ­’€t2se]?έ_—LGρ0Π°†–λς€jώγIύξ)νΠήχžφyxΐσ>_„ež`ΛΈ"`V-Ν‚>αα‰°#0pΟ 7ƒΟYYYf°,Zΰ™~°+O`K—.5€šΝι2s ς€š]$p”ΌtμΨQΖ+€lU2Ι ϋ£R‡±νρŠ’(J™ψΝ7k‰lϊΣ>WΎηJYU=Nš5kfςLπώ”CδΘiοΙ…Ož,“—Ξε…>}4 3ΞύϊγO•όώ#%₯λ 2|ήΧfΠ>’Jj‚?F:ήΪΕδΩΟoΎ%=ξΉΫ€½lΣM7νΰׁT€‡{Ζ>P€μd7TYΊxg‰iό „V»Ί*2―ψÜ»O—oFίΰw Ÿαc <ΤR­Qž¬@ω_±8ε‚‘ˆI:Vν“>ιQ5xέη–ξέ \‚οͺV­jφΖΠ.¦.²"ΗGuΈ!δ§/gIώΨ βWH7εεg€γέw…ό„’λŠ+Buυ9ΐΚ”ΌMWhΈ³0'κ„δ“σB —m©o™™™FaΈERΎ'ΌbΤ  Bχ9nΪ΄Ι,ΣN™½3|€δ^q«ΦlΣΡtέ'1^?O–UΧ^ (/³$Ίυ)uuwŒΑν¬—ί‘U›5¦ηZpΜ‘RιΖ“ΟύdžWΦ}2C?ϋFbόΕ t‡Ž₯~.<δ I=ύρ·iφΧCΞ ψηύ >Uηυ/X¬ƒτ‘¬r TΙy»œ%WΑ΄³N\HŽ•ΈZ•$Άfš¬]'ώb…jθB­Σ±ͺh8WΛ|ϊœ‘ΜόEoœΒ"Y?ζcqΎT Bc”$ΖIυŽgIΒ)”Φ4OΤ«’ hζzηή%Z;T Ή¦#۞sΞ9ζZ o ؞˜IμγΪwΗsy·"1Χ6qτ‚ .0€-°λφτ|ψxž8 –Λ₯«ίΦŸυλα€ΠυΐuΣ@•ξέΧƒ»}Θύyώ’σ@‰-RΥΊJ)Ryx_Y±c{蚷ΰЧ%b°σWs$^›·>ώ¨D,γΪΨ]²1αƒΙ(䟘c•>ΙΛ‘+7Iή”ι’0’ŸNφ*€Ώ6h(}TνnεZρ+΄ψτ€ y—»ZΊμgΆLwQ:&¦’kΔQΪa»ZεΦΉsgΛ(bν'eHœδ?οQ¦Ν4ρLΣ-νΩ>°05υ‹vzΒq­rΆ-Sž;D_©Σ(ΨΪv=Ό-uϜ'ΫsLςmŸ£Ό²+ xζ8nθ’Ά‡x^ΪD[Ž*zϊ~x=σ{ΈΥŸ i¨ΛΥ7‘ͺZOE'c{ x&1­#ςΡ’Οd…©ΜW'“ΈΫ+@œIq³e›ψHΜT8/v©NŒηωˆΛœͺ•%_Λ¨Α$C•Όγ.3*ͺΞκνΘ*”Όju%·e3©ΓͺR:ΡϊΟ0κ ˆqΔvV-qΝ\T₯Ώ8zτθΘusΥZΙzF•f—οœ4U * Υον"S>Ÿ±NLž2eŠ™XΖsCžGr}rm§€€˜|ΥΡH6?1Jbη-ψΦΝeNλ#Lί‹>δ‹½H~gP‘ΌΣΪH»o‘ ―Ο€cβΔβ%’“]’ξn―ˆMΔΫ7ύKœΐυν}ώγ?jϋ΄e¨'sνΪ1†FΊ’^λΦ­%χέ©’?ξ5‰Ώθl™R=Ι¨GŠΗδΟ*ΫXG`ΡΖ2wL’?~“K7m‘xrδHΉϋξ»C1kNϊ@ ΏψΪΐ’)oΌ wκκ)Άβž0›>?mρ1YωRδ$‘υ±κƒS¦»SΟʊΗnΰ™sθύ'm‚Uτ·~²ΐ;mm–υχo<§n”•§πφDG‘UzM,Χη²@Π ‘ΨuΝuΎΛυ¬ηPX―–XΟ€ΠΥZTΦΌ`nΰyέEν%1œπ8άρZqt•™½b›·JφS/„ž·:ͺJŸp>ίΦU€φΤ| κf +±ΛV“sNΈόΗ~( 4`[UŽπ7]‘Wή» θ>ύ  Δ/ φ[Θ΅π›… ―n–Δ«O7}+ΐ\ϊR?)˜ϋ€JrwΗDωcέʐb&ύ+T’­‚\όl–δ>7Q*?Υ_|:HξS6Χ₯‡κ  gŸ}ΆΙ"Φ†άΫKΊφλc`·z¦=ΐ­vͺa‘ϋ―X΅*²«ΠtyͺκE]ϊHάι'Jό Ώž;ΰ\vvΆJ؞s0`€Ω0ˆ?Gβ+|Μ>@Κ σζΝ39;ΐψ±]Όn?[α ϊŸώC‰ŽsF!πcΉp|‡ο97 ²Ω:ΰΛΞ‘8-ϋιση•τ“ͺ_“–fytμ†n0ΐΖςεΛ Αw”7 vxέ zψα‡Ω€„ρ›UΫͺ nX°Ρ– ΠΗ6€ ρ{ϋjTlρjIž1Iξ2Θ@ι€(Ÿ+`³jνZΫ›λnΡb=W…φτΌvל9?+ψόΆΔl Ζ“Ξ§•DΪ½6V*ΕΕΛςs/‘tαፀ™ Φ΅‰nͺςυ—š–aΜάDf/ώ…K‚ ^q ηυΫ₯pΓ% JBΞτί$%Nbk₯Ilέ*FεΉ5>…°€.―\ ŠyρΐG5-Nqίy)Τ>κΖΗ΄ξO7™φ\Sjί£ͺΞΥ΅ K1κ£UΆ WNg7H)Ζ»“%¦r=RΏΉ–,DΗ1ΈΉ>˜€€˜@ΐ΅Ο5κΎϊu»GήωόγΠυX›―κέ۞{M6Ό:WŽόψaΉwpߝΧΓ§Σdε³;,<λυ :ΧθͺβXFΌ0“V‰,U‹σλRά‰”e‡Υ ΑoΔNβ ωε4±ŒmvΗ΄œŸΝ[:uŒb4m ήΫσ€@—>z§*|,xR₯κ«χ.™ί“¨ώ]CꜨψίuϋrΪΩg™4’-S&‘“) Κ(8ύΗ ™c“OΤA‰Λl H™SΞ΄LΪΨ±c‡ikP,ŏ™Œ x¦|H—I/ΨΜ™3Νδ|^οʊ―6Ύ“&ρΪͺv—Ϊ–Ί&FpμŠτ9"•]νΪ΅ΝΔ [veΟ\ ”;1ŸxΟ«½VΘKTp¬+,ν˜>Sβu™{_ΊNΚuY‘./_pDΉnΛςωœoΝ*]τφŠ©Βoζσ$~ŽΖ`žωθ΅’w\σ Ϊ¦*=zVμ­Η²HΛθ«o%~Ρ2έΆˆ‡ Κ©^;E§ŠŠβ%3­ΎδΤl€ΗI½™U‘ώ ?RΟέ°½~‰ΧΦ¨ίwέuWh\yυΣωvΎd{Sb4¦jΠΡUΎZλκpτΙΒϋΰΔb‚U]·ΗtΏ²jIϞ=%_'ήmžΎX²}©δΌCΕΙΞ“Χέ!ρ ‘ϊtJόπA²‘eS3ˆ?v²±)ΌNϊΔ~³“γˆgΐΦα Πα};&§‘ž5Ϊb#Κ»\ο‘ŒΆUΰC΄ί£κΈοιδ1ϊwα+Ξ°/i[…}φCνΠ–γμΛN?Cξ(†“Ή/Έ©i3Ι{ωuΔŒ‡ϋHs₯Ά―ΞυΞ} ύU _ Ώ>tIο3X•+IZΫδέ/>/³²± Ώ·hϋΰkΦ¬‘F c­gΤSkτΉ9_7πŒί*zΙd&S‘ά\Ÿ΄ΊΫ­ς΄ πl3φκ[ΆB‘Ή`±Δθ3Ξ θR¬θΰRΠ ž¬ΜΛ‘γϋάcΆZώ5_)UΪ]&Βͺ#{Γ4F₯O|[’>žšœ‘ΧJAά[;˜Ia{tβίδΟt…ΎΕΗ{5Τξ“»ί,R―vTIϋ~ωMςžx.΄ΊA~σ#%ω.Ÿ„¨νeζ“cT{A0ͺ°άλN‘Υ’Κ‡ΩH'`δ)ΈνΣ΄c‰§νρΡν―“`ςžx>ZkŠοΤND'‰–eΎYσ$wδ‹”(\œxΏΒΗκΏrmωjΙς΄ik•S$©_Wρ…―,!獏$χΝ©ζϋSvΣ픝[.ψUrzVΛRϋχ5«Iςƒέ΅ Σ q:ωeg °šΗΫDgZHf–OzΞW>ά/Պδ‰―o½KόΛΧ©’v¬δ\ΨVRμQ6μ¬Gήρδ ?Kϋj‰έo91ΨW4_x<μπ€η} Ό,ξΧπ€ηύΊx½“σ<ΰyΐσ€ηΟžπ€<{υΰίξ σΠvΠ Af)t·?xψΟ,ƒΠvπMŸ)…· Π’„ͺ’ϋΦ³βθƒω½f,©8|ŒyψΞ’w χάͺΚ»―θΐr©Ž•ΈΉAu‚ζ‡IeΤ.˜‹œ‚BY?τM`^ά£ΝΑR·‡:ΈeΚJjΝΨOΕ«κΰͺψ,U’€Ϊ½I%­ΚΪΕϋΝσΐ>οxήη‹°Μ`ΐΩͺeE‚αθoΠ/°jΑ!p7 6Štϊ)ό―πL~jν@?}Ύ+ΝΒ‘ͺp°γΫΑvwΐW|πAhΐœsœ@νΣφƒΨΈ‡+V”θGΊvκάGͺ¦jS΄:DυnHΟ$?+Wz?>Ψ@'nΏ…–›ΥŒr“*0ΕλjœΛ /Ό :©”š…9j―ή$C?™,4ί͝;Wš4ib€Dς”*+ΖyoίΆM;Όd›Kzγƍ3ΫςΥΟiοO–μλΊι@v}IΡe}}ͺΎ΅lΩ2’7;™@Πζ6όDgϋΫ„ ΜrκΆ? ”G_ ™Ό†oO¨.£D2`›ό”ϊΒ€R·[d͎τ€) €CόE9[Xή½π^γƍΝεφ{κ$Π3ηΠ«W/£ά  ΠM?Ϋ^Gx~ιe tS8MWΉˆι~›L޺ќ7eprΰc/Λw·7ed;­{)ΓFJΡ/§Ω‘φ°%^QΓ+Χώ&Ή_ΜŸ‚YΛ³wH―3Cΐsα₯'ͺ˜γ/†œ}κ χσΕ7gψ€œ]χNͺg―έ&›ϊΛ «[~#)ρW;M•«κ»z@!Ρ‚5λuBέqR’₯HΑŸ]V;±C;U{kV‹ώqθυ³ξΥ/ΔωHa…|ͺ\}²NΜkQnΠΝNκpΗ{Ž\3ΐ«V-7Xπ@ («PαΘΨκU (Ηw΄G(Š&ώ¦Λ{«r_\ΣΖς°ϊ•dŒ˜ι―^½ΊDΩ‘ΞΜ±έeg!A›Ά}o«Ο1β?+&Ψ~ƒω²”?Ÿ~ϊi)ΏθΧ¨Fͺ’hξ’₯ͺ>ΉYc\πyΜπe δ›-λ₯Χ©gΛ;IΥΣu’J«•~€Ώθρrž{I~0?rΏžx•ΆAηΆ­Πύu„”χ――ς Tq;Ιϋίϋ³b΅ψUέ—•£ΰWŒελΚOTψ 4V•Χ³[I₯“9ςPU Ϋλ~ ώrMk±H *ύ‘.]Ί˜ώ$ύ3α€”>U(ƒΪ§w>ψBβt%αO.΅Ξ5oρνΎΔ\Ÿ1cΖΨ―ΜdΏ#FΚυwξmι~9δ |ιΞrΙϊ+I­’Κ£7΅“―η~ou»“ΞlήR ςΓl;Δ9sάϊΰύϋχ=ο΄ιΈcι_…ΟόΜm'U°q‰‰vΐάvςίΣοjΨ°‘ιg³bFΌ'–—Θ#ύ2βΊνΟ²ͺΚ±9…RΤ¦…œvϊ馌ˆeχμ%ε+₯Η+/†ξ :Υ9Hς^όŸI7ωι‡εοη˜vσˆ#Žˆc3LΝ β6Ηv·C¬ΠB»΄XmœΆ}oΤ3όcοΑˆέαΐ³ν7G*'ʝΈ~I ¦Ns?S–ŸͺU«1.‡η)Zΰx{ i\ ›DΦm…ψc6oΥ~wfθgήlΚΛ•Ϋ~œiΎΫφμ‹Ε΄ο\b›έύΰϋe™΅/˜‰€ΠU»ή,ŽNϊΫcϋm₯δ*μί¨Ο©ΥΜ³άφ9K۟hLΛ-γ…W%ισo4c³ό-νƒb#ΡμοήfΥΙͺ*ΙΪ— Nru„ʝ-Ά %‘Ηί‘’'‰_|kΎ h,ρώ;D¬Ϊ€¬7Ύ·>’Ό7>>――RYzί.RΞ Œι£'HβgΑr/< Ž€ P88ŠΙDΞόE’ϋ˜‚ΥϊΜΊ¨ΎBΛ ;³ͺ@™¦Ύή1μy‰›ΏΨlV€“YSΠ<ΊΪ³:βˆ—‚𡦛¬ΚΞ#«χ0#LβhLL*†ν±ΆlσΙέ΅―½#[ϊό|Ώ4ΙZ¦P΄_r/8MRΊ·\oω-Iό`ΊI.αΊKΕwρ™6iοΥσΐ>γxήgŠΚΛθ~κxήO Φ;-Οž<xπ<ΰy`§<ΰy§/Όw^π°…!T.PΰΰΑ7Ÿtγ7;Ψk=ΔΓ}@xpΟ>,y›‘‘a•κΥ«›ν£¬³ιEϋϊwΟ>Uή(μx·YΪΟWδ­Uc·ΣtT‰#kπ³³t…I#οœ₯JΗ«v;½u£τ‘υt…m°¦υ€ξύWκCαΰ`eπΛ]}uΊMώΩ,¦ST >υζk{˜Τ½υoO»fΧϋΖσΐ^σΰ θSO=΅ ³Χβ%τ·yˆ`wœ£Q3€/Β²ΰ£πG]²nέΊζλHΚ–αΫ—6p|;ΨΞΎ€Τ€e)ώx $ΔΘH]&ϊž{ξ1ΙZ₯^«δΛ—ψƒz·Ί"€Η£C‡I‘f'+ ŒΜ€έt΅Œ wΌ,uΊž/χΏ<"60¨D8ζό ‘.+› K»¦τΈIζ/Zh–%·js€±¨•ΆhΦLΆ©"Sf‡KMΪ&£ϊη™gž1Ππ죏>jΏ6°άg Σ-WΒ <£`"%ώ οwϋν·8€O]’ύΘΟΎ6Š` ΊœΉsΨΑΖOΐ‚&d[ TV&ά†ŸP‘ž1cF P˜m€Γš7onϊ £F2Η&ΰ| Ό€" ΅HK†³ }XΤ£YΎέν'€οcΦm‘ό7ή“Œa}ε”SO5ύaΆA) εQ«ϊΜqπ0β»οΎk  Ύ#OΠΗ©²‘£eΎL‘8ΰΚƒσ_ΏΎL:Υΐ„μΓwΐΡΤC{αηW_}U Ά§Ǩ―dmΛζ!Ϋ¬ΎR»δήϋ¨¬}uθNΰωη’Ϊ{€ΚaeJΰP…ΩoΎNœ:΅9DΘ€=)χŠΨ1Υkˏ[6HZjͺ¬YΎ"ͺ1*’~yΫϊ2³ ΰμnžψ/- 9λΚ!ΘΩ(9οLΝ§ ‹£sL­ΚW―Ьϋ\zρκ|‘ήσT-―¨šΒ ,έ d¦υ{_³ΐ– Ω ͺΞΞο›LΦ}zΞ5{^*±VκTά1. Z[ΪAΨΟΦk5­㸞˜Β6ΐ»ΐ΅}…F>‰=ΆIh2ΧΓ+CU°BUδκΦ’mέΫ—Έš4½Bޟš%ν/*|r.ώρ')Έnδ­Ι–z³ž’lΐWŽA^ΉζΩΊu«Jž«ξ@IDAT :΄œFό‘½qίΟo‰ωc τΪ°mD΄ώ#ώ&’”O;b'uΨ΄Bΐ³Ζ|b—U²δ8Gΰqς ΈEμ°Ζ9uοή½D»yc£#υ~ε`Ό—*―L)·oΎωΖLZΌxq qŽΐ΄kΦΛΦ―_/=zτ0p;y΅FωMœ8±Δφό ό=LΊ­¬»mfϋP|ΥςΑΗΒγ+j¦ξΆτΗ4ΗΑαΐ³mKMbΕΈψ_VŸƒ|»ΛnĈ‘ss—ΐ³i«‰9.£­+ ςvmρ-Λ+jΝͺΥ’ŸtΒΜύ‡΅{š'sιuTpψΑ’vκρA°Ά’‰†o?kδΎψΊͺ¦§›_ŠœKΊΉR G‡oω―ϊμΛΘ’mͺn•Dΰ\lLJlέFΆŒϋ\6―—ψΜ­[#^$mηJ (ˆ6i ©Ίš˜sŒN>ΫK“Ω©ίϋ{x.>·π>xϋ‡ΛŽχ?‘”.Χ‰4:ΐτ‰QΩer±~:ύ#Œη‘΄V\φΰϋ…MdΖΜlyδDΡLߌόΣί?~ΌΩ?/Ώό²\sκι’q{oHL:νD‘6ΪolzH©}p&Έ„?ο$-wμ!ξ„Oς!~XΰεΆ§&ΌυyjΝ¬‚έ|σΝ2zτhΧPw&c}ϋφ5ύΪ aί}χέζ;ώpΌζΝ—Zώypτ¨χϊά~Ÿ$uΏEzΌΌxξpόI³e»Δr°ΜYϋ‡Q_Ύ¦―Λ”† ?Y›‰m<<–YΨhxbq”s‘O>Λλƒψξi= οŸμ)πLΫΕ=*ΥΡψ‰xnαyŠxζ^kΐ€αΙ•ωωΚUεΧAΡ ϊ,‘ςSf~$.e(<0χg󫣊»ρW^,r‘₯Ϊφο‘ικ+ΟO”„™σ ΰKZωΝ›Jκmz=(μωΟ}x€Δθ€D¬PΥ“ξ½MœκΥ’Ω½Δ6ΫχŽ$OžfV €&K’¦#’5ίΆtΙRX:vΕ³Kήs'ίέY|:Ή§\ΣU!³~FΗτUCέ:₯o·²•³‚Οϊ΄Δικ XŠ«€ή§y֘Sžmν}I|χ3ˆh―R…²]Πr€ύΝc¦>Kˆύm•ωΉΰ„ctβo}NνίΉωτ9’;κUSž…():Ιڟ›_vξw§Θα»‚ς«~/-Wά+ΆθD¬X7Έτ$Iy΄WΉ°³hύΙώ’ΙCή©­$νŽ`<έ™)οη}ΓπΌo”“—ΛύΧπΌ–­wfž<xπ<ΰyΐσ@±<ΰΩ« žvz€;*­E΄ΏρΚ Ϋσΰc`=0lΎά‹ώrΰYl|έŠLύLόͺ’†tΙή«.‘ΐΰž{ρΜ*ž”ο·Rxω­Ίl\p@U瘦 Eή£`GΕA+’ίΚ΅RpενΊόbP©#œ(Ύ'z‹‚Σ+’L™Ϋ:ͺή—­•γ–ώnΆΛW• Τϋτa­ϊ·M—)Ο0Rόλ6™‡«IwΆ9ιΨέNΞξ˜7}‘lύ± -υ«JνώνğVΰ²Ϋfό³lyqΊωθo~€Τοy‰¬φŽ8σƒ—}'4–Ίέu Α3Οϋ‘4υ€ηύ°`‹O‰ΑW jځtχ€,Γό·ƒη‘€°ΌSΡ}Œ’`@;€ι8ε ξm»u‘.«½ͺη]B>Ww«ό·έ•†5ΚΌ žY  Ν ϋv­žΧφLYwΣΓ’pf YzdΠΡ€€,“M_Œώ0ά³Ο>+C† 1Πί‹ψ  H6ηduT7ψδ0lΨ0IKK Β΄S HΟV•Η3tυ޲ŒsxWΟ˜ΜΟα 7}@ n&Θ$ο™t‡Ώyxxζ™A5'λΧuλΦ…”ZΛPΨ¦Π€“‘)Ή‰ §OŸ‚¬…€I8eΛ–-eϋiΙ―«υύί™d`Ι'egUψ8ηΩ³g°‘ί¬κ‘xςd3ΰ"K«ίΒ’ ϊ+ϋŽpΨ₯΄m€π(Sκ!P *Ί"€Π匚ττιΣ dXƒ±= "κtΤ)T­©σώ?“Β^1ύ@Ϋ“%π—Š%€6@A‹±cǚχΡώθ‘Nr €ΖΏΒ|;2Δ§€³ŽBΞKr¦ώZΛΞ—Β5ΫTυ6S$―Π~|εή$UokU‘Ψϊ 9»Μ§*ΒE•υzXΉΖL<ӊ&UΙKΠΎ½sΦ©{yΈŽυWΎΝf©ly^WQψ›sJ»°₯$_}’ψt"d΄ΖυF|π>ΤrOH)/FF:Χ2Κ΅νΫ·M.`;« l―ωτττ¨―sί©χeη\p~ΤΧCΦ˟κDŒι’ψ\_ιrk—Π$Hyζ»9sζΘΡGΊ/ζΪδΪ§M#6EŠetEGρρ8˜k(·f͚&K™ͺόв&i1a…xMY|ϊδ“O–€γ"ρυ†«–γN;5”§kSkKφ[KRο. ₯lβ‡U§·m%νηJ} |hO){ŒΙΞΔBςe·G™›6Šr±1ŒX‹Ÿ6mΪdβ1υ ³πΆ»^q>—_~y¨ν$ήZ؎}άυŽΟΔWΪΫΎ’Ώω:9υNŒcπ V‘ΆΤμ Θ;Kλ―pL&οU€μάηŒYAΑgκώŽΖh?*j xΔOύΌVξ¨­e― Γξ˜κhΫYphC£*μ;ζˆςΥ KΛ€‚ZιήTUΚ―ς#›4i(©wͺb¨Φ*Ϋ°YUΝ9ώ»ŸCΎΠ - mŸNΟ[—-‡€œͺρ'ΗKή:A…fϊΗE’=σ{‰]¦Οτšw[QΝjRpδ!Rω…Τ›6Ων6‹:θVή%N»'pL❝ @_Ebw=vηΛύ>ΌΎXγ…tι+’£“#τΊΚos΄€uΎVΫή$s­ΪQlύηšη9}£FL²Δ²σΣYm $­RπΪd‚{ς`λΦ­Νͺ#Mc“$χβR€Pe@WΣΰ$iŸ•w>ž±ŽΪ2}5ΣΈOBί»cwξϋ6'φ±?ρ2EΖμΑΓΕ§Χ@ή‰ΗJ­χJ?νo=ψΰƒ&^2'aδXΩΠ±™Dgαγ°Γšoρ‚…²θ—%¦ΟΗ—ΡΔ2ςAμ#’ωˆ-|O™„[›Ζ½νIEbΩ† v탫 2Ζ=Ax…d <οn=#Ϋ‰$Τ‡€ηŠάZπάϊΙNN‰δ'ξ'ένηž§hgόΊ1ΏΩgoΟΫ'½/)κ}„ήο`K’»uTΥͺζσύ™=_ςΖΎ¦χΖ&5γΫi~DΤΙϊ¦})ω/jΪοαŽ»Zοa.>Χď¨aC}¦œυˆ‚ΓK–™έ u—d`η΄ΰ䊨ZΈTς{.¨Ζ―y‰oΉΘeίC‡Uα”ά‘Ο¨zφVσUή)ͺά{soΪ&όΝΦν’=hΈΔθκ#XB»KtY =χςLϋ`ι#`Ÿ©“"ΤςNl!iέn,ίg[Σ%sΰSϊl_Ÿ‘³ί…§J•vNNδ;ηOue‚ΙΌΥIR€`³–ovŸΗw*;—;ΣΟΘ½ρ^ρΟ^(ΩΉ~ωΎΞ)2·έr_·T“^©~Z"Ή2ύ”B€οt,ΐ3Οϋ¨<ΰy-8/Ϋϋ<ΰyΏ)JοD<xπ<ΰyΐσ€η<ΰΟ₯yΖϋήσΐ?Ο)πόό«β{l΄ψυ‘=ζθΣFαΨΡλ`ΪίλœΫϊee) ‚ζ’+1χ”ΐ•ωΣσειM)zπY•θΎΦ@ή}nοBΦ<ΦΑ"Ώ>μΥ‘ΙVΊΚυWξΡΉ9kt‰Θώ#Μ²μ’ΊI½Ά₯Ÿχ–όΌJ6?ς–>ΦΛ*)R³ίUS?8πc‘σω"Ω<ζ3σΡt}©§ƒšV5cέπχΕ™|οkqΤ½O€λΐŽgžφ'xΐσώTš»ž `ƒχ€‘@‘ΐ[uκΤ A 3Ψ%…Q>»κͺ«’‚'ΚƒΒsΈ`€Λ G…ok?—6 Έa@`bIdεɚ>―Kσ[ΚλλΏ—Ϋn»Ν@°°˜ (Γ­žŒΊn‡”ύHPΕ§EΊ„μk’ϊŸεΣ΄l£tgσTΦ«…O8Wλw»=ΰ€Y3Uuf€ήB$όN9Δ+ŒΌ΅0_ή|σM£ώ°$pρΕpπΰΑFŽeΕQ―³ °TΓs$ώΊ+DŠU­€?(G@ !Iγ―ΛΦJž.k˜{έ&~naPσc{ ΠnίΎ]:θ XG^)wη\άπϊŠ+Œ"ΫψΪie’ό3EN=AZΆliόBž€*β§ΝγUW_mς 2bΠ`Ω8ρM©άώ \D™†η (‘e±'~ύυWsžψΐu‘U«V&O€(©ͺkUν6₯½’ζάΉsŠ) a4°Ω\%΅ƒ›'+θ{Ρy8ο¬έ€8?κǟ <ϋw¨’³ΞsζŠιo%€ΌΐŽ\)ZΏ]Š€œσ‹JΊ!Ζ/’š ρu«ˆΏv˜zœž»ΣβUq$9ίΞ“–Wst]NΫ₯5N₯­δŸ6Œ˜,Ώ˜όψT΄fχ‹$φˆϊΞΧZΧ]ΝĊHqˆ•ΈΖυ‹:3ρ€ΈYšqΣΘZγzκέ»·iΈ&Έ.‰I+T²©BϋΡΨξ^‡Ώύ©Δ6;B―ΌHΎVxŸsA₯žk±mΫΆΰ:οΌσΜδ `ΤΖqΙς‡/¨€ίHΑ;cŠ3hβhX,{sβδϋzFν?ΐ―^½z™ν£9o_ΙeΪθλ―Ώnΐ@™τΐy0Y‚ΨΦξτ³€ΫΠΑ‘<υ9γBΙκ?ά( &ή|₯Δ]Ψv—2₯\˜ΐ€Ζ*Nξ8Ζq™„Ρ’E “eŽΓqW­Zeςtΰ–π0 ι±=ν”=3DSΐnθς£>2p·ΫΧαm3ρ5Όή…ΗWE©§Ρ˜mKέ gy}χ΅Ν1l;dΑ΅ΑκLbΊϋβ‹/’κ Es¬ΆωΟώcŽΓ΅m@QΑδη%’ρυwσιͺn θrυ@p•Q>TΑS-« ™ήΗgŽ™ ρσ‚κ‘μŸwrk©|γΥϊά ΉBIνs+\—ρΖ‡ͺΞ©m˜Ζ8Œ βΙϊLΓwξ)β(l—υώ<Ωϊ?ν―π{Υd©Χ ‰©φŒ)O'ί/ψEv|=Ϋ(}ϊ·ο(α GU; ΄lP–G*¬Xr‚O‰#|pχk'Ožl&UΉ―=w=΅ Ε\kεYΔ>ΈΨ•σςΫ AλYά -$ΉΣΥβSζ|ν»Ήγ ι“팝LwΛ-·κ5’kβ ʈ=νΑ‹/Ύ(ηŸΎθ€·ν=–ΨΥNΤU!*%J₯WŸ’ήŠΨOL.Cω4<φs ΄―ΉYαΕM[Δ·E_λΧ“Xm œHΑ½jί8AŠκΧ~VŒ$?:@Ζ}=ΓτAΙηβŸ~–ψŸ…7εΈ–f’}+ΝUςh+‰‡LŽ4«ΌhΑJ ‰eγƍ3χ*Δ[ϊψ€iγ-ώ’LΉΰŒΨΗDUΫξσ{yF,c2ͺΘX‰>Έ~&¦SGψέΖ|ŽgοΙv·ž…ΓΕnΰ™r²χAΡή’ nϋδψιK/-qŸξ§H°xž’žγ*ψ5n&Αb{<λD—œ§ΖJμλLZ*i’ΠιZ‘ΦǘΟ{τGΑΩ¬αΟk{ς{0­ ρžaVDŒJ Yχ’Κ~b”Δ-IŽjΥ$Ύ§‚ 4Ÿ+ςΗχλrΙ}τYρ7΅/’£yIγώ΅–>ώuIšϊ₯Ή!n'ͺΚ²£x’²ο~’Όαcƒ“]΄ŽΖίΠχI­ΚάΥΡI.ΉƒG˜•PάNμΡI€εΡeξc~ΤΙ΅CŸΥg κ{υ{φ%gH5@ιrΜY½^rv6qYχKκvƒΘ ΝKμ•>|œBΤ?˜ο Z)•ξΥ<©βuΞύŠOEΘgR_ #(;³SNηϋ%ώλyfυGΆ–{B_¬œurΆtΎΎ’ω~—?κ‡œ~Oί‘&:ΈΗnέ»ξ’χ…灿Ιπό79ή;¬ηbxΐ³W<xπ<ΰyΐσ€ηύήπΌί±w‚ϋ‘ώ ΰΩ?kžv{@βΦaάWXΏψŸ~Hœ–Gύ½ήTu ΐuέΕ—Q a+δoqΈΘ/όωωR`*~1sN¬_boΏNw«Θή΄Ωσ$oδ ζᦣ€JΒέͺ@v΄žγž˜ͺνδ -’‚Κ)’4°›ψtwo[ας²iπλ"™yβKŒ“š\©ΛŠΦ5‡ ‡λχVψΓ.«^œ‘u£¦ˆ3]ύ«ζ;ϊUyR€Η3Οϋ‰<ΰy?)ΘRNƒg·"Ϋ¬Y³ δda[χ€4I φέΈqγ] ‡HΙ—Ήχ°BΥ·­‚_X$51σC؟H`P“5ςpš.U d:`³…œŒ\Ι™υ›|’ύ›Ν,DΐΐsΟ=gΆ%€X`¬άκ mHύ:A ΆhΑ )\ΈR¦Δo•λ»Ξ²ΜW–Ÿ”@υΘ#4P;/\rΡΕ’£°MϊͺΥ’v§^ωA™€€j•*R=ΰΏB8¬Pΰ Uπ5 ΛΞ²ϋa”ιQ“§KΑΪυ’Π_uΙn|d—%ηάP!:„Hξ1X•—³$ “Ε{ί. ‡5.‘ˆΚ5`6°ηόeλ Η€\>.ΉδΆœΕ‘7 m`Κܚ…-ͺθωaδιΖζ­%ϋ°ƒwρ€š…Πln°Ή}•Ϊ’7ώ5U ¬!ρ=ΊHάaMdΤ¨Q­[·Pžπ P y"wΫ4j"Λ3Σ 0Χ8UγClτ—Δΰ/­KΔΤ>‰+ ζή jπ¨ΫΛP6F)ŸλΨώ*‘~ϊΚι;τ‘¨ύGlιή½»iOlše½>φΨcF…s͚5‚4Dˆ3nγ7 c 0ωœ€τ4!”§·Ζ—œΣQ Ώ|½'J•δwGIχG2ΰ-eJž€ΆX!‘oίΎf²»Π’ξiΫbς5Χ\R€'žΊύD gΐρΨ ͺαΓΗάΈψ<³½ΫψLέqΗWφs[x|₯ν©h[κnΚλsΈΛޝήSv΄Φ—;v쐺uƒχˆ¨ν_―κΰξγ—–Ξž|Ώ π– UϊWίJόβί$fεΪ“MΰTp˜ͺ:ž¬Χσ1M+¦Žωλο’3κe‰Ρ Ν°sΒ5z|ζΙ‡¨ΓςόϊΘ'ά²ήό(θΏβΜͺW‘dΤ9UΥY΄Ekν“Jΰ»f ߁U₯~ŸNΨ)ΧώΠrωi±d}£ϊrmΟΒΑ‹κΤ”‚#TύH]ϋ<@~eυάͺζZΥ}[GΩΟ}]½τK]»rλi™}p;ςή4ΙϋjŽδuο 3]bΩσNk+(ŒΫΈ‘‘₯“έβŠtβΪ1!h–ΈY5xή?τΠC&&#Bm‘φ2SθrώbIι{‡Œ›7k—>x5}––­ͺ―νΛ’>›ί¬©TΦνŸϊt"€³q³ψjŽΣ~뻚G;™ `9ξΆϋ4~ζί'vξ _UŠ—νΪo¬ρψΠ·?–ΒŸ’5s>Iφ–IσΏ7ύUΣ7\ΈHβΥη«7o2ΰ1±š2p‚hƒΜicι#W$–Ρ7₯Εh'™βŽ-Δ.ϊι¬bοUl;ζΞGiο‰eΔϊΰμΗρά}pΪ–=­gξΊގPώ½€žΪI‡‘ξΓύ΄ΟΟ9Ή’ρΒDIΤ .zsbbC‚*&ώ{‰K₯•wTίΣ/š:Cς&Ύ+>q΅"}֚tη"Ulδϋi‘δ=©‚#LΖQΛ=±•€ή¦iθ„‚ ™žŸ•?ωœ+jοI½»Š4 φ’I‹8υΘ³[¬ ]Π€€φΎΣL+wό‘χΰωoM1›…k½-χψ³ΌγŒͺ?ύ³„ΊŠ―αεθ8k€Š…¨B3χρ‰ϊ|ήΧ"Š „:!'ϋ‘1Ί"“>#Χψ›|ί-"G6Ωy<=Œac$nn0¦εΨ\Ίί$²e[IΨyΰ]"κŸH–}χƒ’0υσSζ)qό0ωpFΌŒ½ΐ|ΧΉ}œœuŠΦG·­Ϋ(9½¦ΞΦIυjIςΠ{χΩI©ξΣςή»=ΰΟξςχΞώοχ€<ύeΰεΐσ€ηΟž<xψ“=ΰΟ²ƒ½δ=μEό™ΐs`ν tΌWβώ">'ψΠ- J„Ύξ’ΐ5ε«#μΕӌœΤ΅έ$0γ{ρ‚νNRΌψG•FˆΌύ^όΦ™ϋ“έpŸΔμΘ2©ͺ₯IΜˏ‹4;tοELοPΘΔ/fš4‹tΙΫ€~ S©κΟΩ7σTΕδσ°;P·¦€ Π‡έU+οQ’eνμlΝ”υύ'ŠlT…BUφ©zη…β8²ι™OΜnώ¦u₯~ίξ;Ϋ4³ίϋ^ΆOόΚ|τVGκ<  ρ±φgοΥσΐ>νxή§‹―άΜ3Ν ³]"ψjUȝ0a‚|€³Δg0ε2`8ΰTφ€γ@ΤBΔξς©Cš*MI‹Aj νq”:£1ςŽ©€VIΛοY–zΰΐ!ε5ΎC ΌΕΖ蹟|’…9χWυά7(X\―^=“Dώύλ/σ~.Cφ‹ςΕ!Γ?yΏ¬’εςk€₯Lϋ#π/~ψύζ›o ΰψQ€Κt>4Δδ ˜‚ίλ9gϚ/ώ[LšU%‘Ν1Ί(„cΐ` Ά‡~Ψ,‘=]U%·uξ#Ύυ›%©σ5ςˁΥBʝ~ 40ηvϊι§›΄ €1ς)ΙμrŸtŒδ‘}d£2a;`9–Ά`ςΩ'œ$;nιi–Ž;νx‰Ή³ƒœzκ©ΖO¨½:4€œςδ€Μ’ΨdžσΖΗV!›ς”GAHϋςΛ/Ϊœ…]P uCΰ'N”+?I|i\I?)lο«Mbϊ‡ο¨ ;v”ργΗΘξέ·ί–ά>I`ρ―" Θ&&OΡΐŽV…€ ` jίΎ}θ<8<Ο>ϋlσ;pE“j5$SΫwςλ6 T?οΏ~sl” ©(­rm¬»χΑG@‡,Ά°<|­χ·τΣ ₯πaŒ^g΅T™μΠ:;ΥΈ‘\΅Β w~WΖ»½ <ϋTύΣ7[ϋ΅@ΞΛ–CV…Ž؞-υ;€@ϋT>]9£„iίJ*ΗK\ͺ 9§•€ς( gG!ηΐQMΕ§ƒζΩc'„”β΄2Kή±GKΚΝ׈(ψ½―š£>Y?fͺ8_i}TΏωτž z§³%ώ€=λ—Sο)g _ Uρ£>ΪΐKΤΛmΫΆΙ1Ηc&L LœlB΅}1κ(qœ:jγ κ€I“Μ΅μžΐφυΫdλΰ—%φ¬RtΚ‘%κ6Ώο­λ ¨"ΪX…zΣ—?–άM$υ‘ž’pΠrΓ 7ΥK£κ>d¨ό²zUΒ6±L―_gΘΧ₯;–=qΧ=2ν—EQϋxφƒxεΎ¦9oο™„qlΤ1Ω†ΆΆ±#GŽ4 ŸΝm,ρ‚8mΫΎXa>ϋi~(Oί½4ύu­ {^λKKΩ~-ΌyσP™ΦuκΤΙΟgϊτι&”ν± …N&‹`΄Δΰ7;Ι₯f͚!°—Ί±rεJi€‰ΩhŒΆΜζ™4νD’{ο½Χ΄φ7³ƒώaΚΞ_Ι§ν+DŠ―ψ.K^έ~-­-εά’“u‚„ΎZγ˜ό/­ΟAάΕ*Rv\#Τ^-ΐM¬’@Θo¦•<»νΛΚ1`mϊ—ίυg?Ÿ]Vt@ΦVΡ6έiά :pyΖ·’ϋΚ$ρ+IΥ!Ι·ή Ξ{·\Ωϊ{ήj+_|+Ωο~"ώ-ΫCy(lPOR8_|Ϊ’νΑœάYϋΠΫXΊΡ|φ©Οz]&Ύ8mΧ*j 0ΚΟΏHζ7sTΥ󷠊©+ Ά…ž+άFœc~Sθ/άΈvlΏΦN8ΰšεZΰ·―ΏώZΪΆmkvc2q…ί"Ε|›6ϋ•ΧhœχλRΛ؏ eθj$•’%»Z]YΉ&F2·Ν4mΏΟ˜1ΓlλξG‡.8ϋ\)K‘kΥm\K“?“νΗ-υ‹ϋeτΑh²Ha½ΐoΏK‘ώεWΠOOH%Hs€`δ8νoδK E;η :ϊwΡΉςAυ”Π}AxΦώ욍 eζJœε,m/‰“΄#Ÿ|Rς–­G•Ά}ΪΑOgžy¦ωέNRδ\θ _c²1ŠόS€Ν­>ͺΓ¬ͺ©ίWV,#ΎΨ4˜L̜SΌbνS£ϊόή{ο… jŽ[‘XΆbŊRϋΰŸώ°ˆIœU` dϊΰ©gξ2₯Œ-4<σΗ΅mc4χŸΤγŠψ‰Ι«ξΙδ-ΪΎ¦τν¦Ο¬υ§sV­•œA#΅]Υ‰Ε{τSHϊ ΰs‡2wυƒδŒxΙΔ?'-U’ϊί)>=nΘ΄ošρ*m/Πϋ ΅άσO‘*7ώŸ*Ϋo•œΫ©μ\μ,Ž–’ρο˜ύ ueΕ„Π ¨Α{…§^Θ”/g'™¦ρξ.±r\‹βώϊ<ϋΎ‡ΕΏ=ΓL”N¦LTYΫ3ΟϋΊ<ΰy_/A/ϋΊ<ΰy_/A/ž<xπ<ΰyΐσ@Ήπ€ηr]δmΰyΰγ? xφχ$Ξ{SΕ―[1”δ²σ%πhίΏάuωO§‹ζ#[d0UφŸΪJœ‰ϊΐπ―°A#ΔyQTΔΡΎ1§·gόc{χΘ™Y’=d„ΔκΓe,Ώω’zͺψθ ўآ±―Kβ'3ME‡6””nSεεπڞ€]ΦΎŽ–Υ†―ι¦ͺΠNQ‘_œšiβ;΄–Τοw…‘ΛΪ?χσ…²uΜ§b‘†5€ξ€« ΜRΦ>ήožφxΐσΎPJ{–G`, Χ.]tpQ εB 2’_ύuΘρ=ƒπ¨6ŽuθΠAhγKS:dP™₯ΑG€iΝ= (;dȐ\e·‰τJΛž€,h Νx΅jΥLϊƒώc@ΈΗr”|6Ϋhό s±=P`aώοk%λν―ΔΩ‘κViΙRωζ Ε_9ΩψΟ*2Πίώ¨Σ%}ΪORύφs€νΕηΰ …ό£όΙ€—Y2ϋΓ?4K\³ o@‰Ž*r-ω}™΄U°υg6«² 0Ζ«―Ύ* Τ`”`yή΄i“rή€7€‘ -”¬„ΰ(HΌN•AοΎϋnSΦ€Εo€Ί½zυ -7NΰXψΈψγX{έΊu!ψγ~πΑFA”mΈ·V&mŽOžjΕ'Θ©_΅Ÿφ,Dš€Ψδ@?³δ8f!=ή£rϊΖoπV>ώψcsnΌTpΑ·@/ψPΤ―Πoή[“%¦xUT4“nΏI&9Γ”˘‹pL ΈPΏέΖg–@(4ΝβΕ’όΒ‘ίWH‘.mœ‹‚Uͺxˆ"Δ5ͺ.±uƒκΧ|8•Nμ»B²'˜ν ΰΩ·u›ψΎύNόίΝίoA€<`m9 ΏnWΘY—‘/ ƒœΆ«θͺυ5Υuΰ@©ΨPhvZ6BΞG,6o‘,U²K˜§Πw1DX P]νD”―–fΣώ'ΎjίrΣγο«₯‚jΎƒkJν{.?~Ω F|:\U©«Δκ*±cύϊυΎ²Χ:VP<&~ΟT5qβΫσ;ΰνUGΆp1ρ‚6!Rl’ώQΏ€ώ@jτΊF½&r'Ύo`NΗώ©2mΛΪ¨―‡τΩKdG½9δCΜυ°P—E3!NΞ9-VŽ:<jCΈΆP1NΞΧk«RŠ 6LxΰγAΞ •zGλαρ'h_w,c#βLx,;γΘf’©+Ό4=ꨨύGZΔΊpΖ²qŸf3€ i;Ye€λΥ 6lhΪG⠊“.ˆGZΡ–ιͺj]ω‹ΩςiŠ/ΤFάy睦]³±Έ „‡α#&± ώΖΘ3m9u#φv£Loγq:uLL£μέjΡΔΥsΟ=ΧόfvvύαΌ£―Δ*βex¬$9Ϊ3w[ΚκlΛ·±/Λκsπ{4eGŸςδ?ζB­έΗ³ΐηŠΟn_˜Šϊσ—³tςˆͺ?±.WΩ. «Dͺ2n₯SڈOΑZG―§RMϋ;ΖλύΉΒΟZΠf³]Ι)₯Λυ"5χ­I(ΐƒΫ^Ÿ, 3η%Js2Z' Ž:D*]yaPaΩε&ς¬ψ¦8λΝ·ώΣ“ϊΟqm±‡oW¬6zφΜοφΣχv’”Q\Eύ9ν΄ΔiΠ΄•ΤίΕΪg8φΨcΝΑYΉ„Ih\οσζΝS…ε–ζ{ λΪ .€Πξ˜OίίΧ…]₯υΑΩ†IvB mΧmU<Φ)<ςÏ?ΘωηŸŠ£τγθsΊϋeΔ>ςo―+{|^i›šT­&ŸΞ›}<§Pς―UΦbsγ%ζφεƒ:i;gcΎξ„ [ €Έ'dΘsΟ 05fγ.χτ_Ή@…C©™~#ρNAU›x„α&Žc‚νκ%œ#ώ ·bΫΫΙFμΓ½ΧW\κSsL&>bΔ\&8ΡN°ŸΫ8&Ύ΅1vΘΖ2Ϊw;%š>xνΪ΅ΝωT€žΉσΒ{w½ žω½’χŸœ[Eό©m ΟΣ?xήΈYr†?/±Ώ­ΐEζOμp΅8:QeM'zψήϊHςήϋ$k m$ΙέnͺX,WΥϊόGžIΊ›M– ΄-IΎχ³E…σψΓBΙΥσυgη˜ϋ&7žqR…’ρ}ό₯δ½4Ι΄OLzHΈGŸgyhtiθ*Ήƒυ\ˆjΉ§΅‘Κ·jΫvm•HLύ˜9τi‰[ψ«ωΊ Ωa’zίmfešΫEψΰΜ_$ΉŸ¦φθ.NΒΞ{ŸIξ«ο›‹jU“ΤAƒTΠ$dΪNgφΧgσΏ+4q ρΦku…‚6vΞξ=,8iIŸ©'*\]š²³ŒωŸT«5:@βίy.;Ϋγ ©_$θ}„Θ {γδΪ™ ;?"1·šΊšόˆΒΞ΅φ­~=7οΥσ@Έ<ΰ9ά#ήgΟ­<ΰω―υ·w4Οž<xπ<ΰyΰoπ€< Nχιy`7=°·gŸ.o-ΊT_[ΜριƒώVͺ 7z˜.ω]6ψ±›§P±έ.ΊYœyKBƒŠN₯$ρ{Tδ€ΰ TΕ«ΨΦΎmι’Ι-:`¦ƒšjN‚ͺ· ½GWœW±„ΚΫzΥ}0@%ΐ!τ±0 4ΚηU¦.TΏ[kΫΆ­νηπW`  Κ ΰΫͺ³ š*Φ_}ε)Πϊβ†#ω<  ψa ΈbΎy)))CaΦBΨv›πW Φg)ήBžί=|“]>?©’3°ŠUΫe£β/=πUͺγ«€…ϊ]–‘’P „‚„tpΩΡγ–‘ ψ–B(ΤCςςξ»ΊD΄ΦkΆΗ·υ–ϊΛ΅Ζw+V¬Γ;̐K^J>Jd‘φ1½& ~ί j†:_X\žͺʝxD}utqΏB!ΐΐΉgJ‘Βσ>…U#ΩξΟ>…œcΎA₯LKBΞΞVδΌ-{ΘΩQ%g_剫WMbTa±„₯U–€…œ›*ˆPάΏσedJΖK―IβΜΉ!˜Pη$…œΓƒ@f‰tφ₯Z7ΦΎςΉψ>^h@\•”—ͺνN–€ [ ao u pΘ ¨ 0‹:IlB)’λ™λe|€gTؙčٸοh].T 2S—Π¨J^-WKμιΗ‡&’Ψk3\eπ‹|p-pMΈ―‡ Kη^qšW‘‰ΕΙ[S&š δ‹8ΣA'Ϋ0 ΔΖ;©‚xOšQΗ2BΎβ·¦ΛίώΪ‘όΓqiχl»HΫ€²6ίqΐc›nΊΙ(€’πΡm»γE4eΪΪ’©πLΚ”qrΖΩgU“ ώ‘pΗcΎG-š‰YυNσA‡―η­1ŠΙ4Ά-¦M™2Ε(>SδΉ‘ΒΫnc²ηMί‚‰.ΡΔWΆ±ηξN‹χΐΖξΆ4R?ΒΦ'κ€7©£ΐ |$ΫΎωδ7^ι«Π§±νΊ;?Δs«jέ³gΟΙΉς―†ν6π–_F–8?.’Œ―TYψ—ίφΝΩΉ…ζΏθΐΊ Φ6‘*§)X{πA‘γΣ&”2ϊe‰ϋ©Έ:ŸsκqRω†+ωKΧ«2πŽΧή—ψΉ‹Bν “‰’Xuλ‚ΣDTΉ:ά t’Κϊ!οŠdδšη5:Ÿ)‰§ΎΩήϋ¬ρSό’e4[β—,_±ͺΆ=€£KŒ ώœͺκΟIg*χυή9ιΜnγ~΅“@¨Η\CokΙσωΞφKPtoΤ¨‘Ω –znφz£λΈ¬Eκ+2ι%}ϊGU}~όψρvσR_i‹kœ|_c{yύD›ˆzόU²?ϊLŸs%ώβs%QλγΫLέ‡§Μ](YΟO€WŠΜ“%###€flΣ —¬r@_Ž6‚~Ύγ~γœΫjΕ~k¨WC‰%₯Yi±ŒxDμq·‘pOΎ³1ΝΖ2Κ‡Ά”όFŠeϋνΏ—η[Ϋ·ύ]χδΖHyrΧ3ϋ{iρ˜{EΪ›χŠήVΔOτ) ʎmσrί—Ίλ²m»μΆ{ϊZ!…gmCubIςη3ƒ1Jσœw| Iνtˆ`Έ§ζΣΨ’στK!°7š,‰7_­Ο¨[EŸ4χ;N“‚‰o›<:ΪΔίp•8碍> »₯žοmOg’ ’Mξu§ΘuνεΎ:zΝg?Ϗ‹Ϋ€Β†υ%₯·*3G‘²lŸ=_ςFΎ¨*ρ…ΒΉ$t»QTΆΈμγκσφμOJΜΪ`?)χΌS%ν&υcΆMΫ €w5Vι΅ZΠT•ό{k-GΨƒ>vƈρ7λGs„Β&I*‚ ξ%§2³%³ί“ͺΨ½A ‘Ίέ Ύγ›ο;'το&>U―ŽdΞ„w$ππ³Y "ώ½Ρσ¦Ω‘ϋ‡ζΚ²•q’Ÿ/ΘSRyγfά!ρΑβΣ2πΜσΐώβxή_J;}ΥπΌ―–œ—oΟž<xπ<ΰy jxΐsΤς6τ<π·{`oΟΎ9σΕιΪO.SQ½Ϊβω *Δ•σ`2΄ΗŸχΖΖRΤk˜ΚBxΖ¨ΚΤE:€φμCήA])ϋήWe¬{Λ|ͺΦ«iT:π\»Uόνμy’§K ϊτ!5o =υAν.kλθ kζ §U‘B•Τ―½X|—œYρΌναyίύ.›žTPkύκsΔΧ°šHγZR§Ώ‚ΛͺεΟ[.[Ÿlΐ_­ΚRϋΑ«Ε_eΟ)’9Ά·η?Γ κ L γΩώι`-–3FρΣO?-q’ ΰ=ZPxd0sΓ?€t€g φ£¦ |†2(ΰ1Ϋہe–z~ ƒπFνΰ c™l`  ¬W‹4Ύη˜ΫΆm“ϋοΏ_ͺV­ΚWFy—A~@SΰΪY³fΙπαΓ%++Λ¨Π1PΟ€7ΰ.ύT+Γν™gž1ωέΌ`½$₯$Θ3“ž—ή½{‡oρ³£Όg€EhΤρΖPh”*cΠ$kΩ:ΙHtδΨΦ­J@eΧ/,^4Τ,Υ½./Ϋ@f  »σώ;ͺA#Ω’KΦ¦φΥΑ^ΘΖ―ψŒγ[΅:» πKΫ#6π2Ky°l7ΛJ»7»~4ΛΈε>IΈώ ‰ΣAςΥ«WΛ₯—^jAνvφ•Ρ š;ΫzTIύjίΎ}Δcΰ?Κ εΌζΝ›GάΞΓΎβ'κ ΗzζΈnΕnΠBYTϋ`š΄ο1λ¨Ζ²==έ¨Yυ…Á­[·6jΝ¨ά._Ύά¨κQΎ”7ώ΅vύυΧ°@†Ό Άˆϊ,ΉΆ8οO>ωDFe@STt‚PX₯ό(S`ߜyϋ†Π±!8.:°œ»x8[TAΠ@T‘KΑg_|¬9ΌSΉ’.ΏH§Ÿ‚ˆmΎ*<ϋ6nίμοΕ―yπ­Xe“0―mYR΄6]ŠTνRΒ”œ8…œΣ%Ύ^uρW- ^; ”;­ZH Ν± /λυν‚Nb¦|&yοNŸΒγXaνš’tύ•β΄Φϊ}ά[2dΓc“(Œ©βd-UuŽ=πΟQ>£Ž‘TΞυnγƍ3ͺύ€ŸurκΤ©&žšΉR˜άΠV!hŒλˆτx½λ»€ΧΩ΄MΥΣLϊΣ¦M3JςφΪtΟkι₯f² j𑇗&ωδη)›δόeΣδ’Y7ΚK―MN Ξ…Ϋ#FjχΌXβ: ¦ήwΏk;¬zΞ·s%fεڐ"«9 Ά»)―?'τΊοίqνΏ;α„BΧ 1—~β%—\b[b>Χ“CψOέgRΖ΅ΨΛj ΦθSΣ’>rύΎ]1ΓnΓ+ύ&DΤ¨QCjψc₯Paρ :]/Σ§Owoρ=ϋώ¨ Υc4&U΄Ξυ™ }“ί7¬—Ω³g›s³χτk髞pθαRΐ*Z§΄_Κωqœρ`lV%AΕό ƒ ΕΆ―τ§™Μ‡o#MpŸlY± ψœ{(άHώB‘šγ»cϋp_D;:@ϋ½΄₯€ΣgœqF¨bR¦ΟΡφΑέρ•cpμκqΡΆœ«mίΉg ³Ίq“{@€n«nσTΡϋΟhύD ’|B{JΖ}!νšm#€¨ΉΒΫ.wΉνξ{ŽΑuˆmέΊΥψ&RZΎŸ—Hξ³γΕΏe›ωΉ¨n-IμΪQŸC6ˆ΄yΕΎΣ‰™£^ΦΙ BϋεΧ\R»(H9ώ…6t½AX#GUc_iΎ-ͺ£yT@Ω©WΗ΅U”oU:GW ŒYΌΧΙ;±₯TRev-°(ΠΝΦnάU€£ΨgAeζvΉŠ˜ Φ£'HβߚŸU*Kβͺ||P½ˆ›Ϋ/]5!O•™ŒΒ„™Δ7) ΕύŠφ?GΌhV ­Ό[Hp΅ΦΗ2 %ιΑΟH̍[j-šJεžΪΦ:²ν’έηq‘Μ€Σ€ϋoΡ D}›έχ‰²sY°³Όσ‰υnژ@νjώΨ]ΫύΠ™[βΘύCςδΔ―^‘C3–θd™€Tt»Ž 4qmε½υ<°ο{ΐžχύ2τΞ`ίφ€<οΫεηεήσ€ηΟž<xˆΒπ…“ΌM<όC<°§ΐ³Q-Ύ‘›$¨rƒ/­ Ϊ:wwιtνί~–z&Žͺ*―00ŠΙP΅Κσζ3ΠΑ¿œ›{Š3mŽ? NŒ_όν.y(Έ”ό^;>†Ÿ{I§ σ >©_]¦<νφqtωΐ¬~ϊ°Z—Ασιΐ{BΧφAEŠέNpχvvήψδ}Π«@ΡΑ5€ζ9ΗΘΦΡSΝƒ_Ÿ.#_{€BΟQ‚Λ…‹ΦΘΖ!o*Ή£€RΥ©σΠ5β―–Ί{σφς<π7{ΐžζψ Ο /Υ€¨22¨8aa$7¨Μ€3Ώψβ 3ΈξΞ*ϋ͝;Χ@ πc n»3χφ Jσ<묳  TaA(Ž΅BUq›6mκήΥ(›š2Έ’œUΜΆjlΐ t£b ΈJšœPΠPξΤUeΦ›kδρGͺIΪ!ΡA‰ΐlόΗwgžyfθΨdόa± 6Pΐ8ˆμPΥιZUL~JœH„(¦n»ώ^IιήA$ω \€Kž9g@q– ?οΌσ€…Š6fŒ›$ΙύξΡ₯ΠΙeΚ@>y₯<[œoηιΰυΣΑε’{w•ψ£›ˆ ΰ…ςβΌ8`.€βΔ‰εួ$σ¦{$iΤC2kΩR—‘'ŽˆŽržUλς’ž /ψ(_-[ΆΜ@g”ηA:”―υ)yΖHΓ‚&φœ¦9†­sυλΧBϋ:a«°[I8±Ό­>τΉόςΛ 0M]ΰ<¨λϋΤ}€#F¨­C‡!Χπ|Ρί½κͺ« ¨Ν±RSSQβ~ξΉηJ¨ ³/ΰΨ±cQέ7‰ϊέΙησžφIP|T δHώ’5Zwƒ΅Ÿ’Ύtj¦Hβ‘u΅’˜ κήWWœcŽ2ϋπ§<ΰΩ§`΅ο[…œΏSΘyε‘ύ΄°`7°~‡nΙΤ‹Wϋ3nӁ~©’sύjβO ƒœUY-ΠZη6-Ε9LέΓM}뛦ΛOΏώžψνω)p­ζ];޽―[ήWΏΘ–±:q$·ΐ U.j-IW―ύ\€π'œ$Χ υGŒπ!Ζρκ˜84Ϋr}cόΖuN\>ŠΖfΜiP»­UΓδΪεz΄ισήͺ³-ι£°NίΒmξλhϋ…±/Θ·—N”τ΅y²%­–\όώ%%)Η€K΅kΧ6±£qγΖfB@ΫυΥλKϊβ₯RιΆF•ŽsαœPχ eΔΞHyJ/žόξ? %ς7g̐ΟΘ;m >€νzτΡGMŒ ζπ?πί1mΰ9β+ωγwb&ΐ1Θ(™2δχwήyΗΔ!€²HyβΨM7fH¬ήC½›ThΪ|Αω²=iΓ˜ΡώτιΣGžxβ “O€o~£] ^39‡˜E]ΰ•v p@ 9ν:ϋQή‡x €η6b<“UˆΕ΄}“ )‘β+ΐ1€eΙh―PE½œ<Ρ7‘΅ΎΕOσ’΄υ‰˜M[E M?€σ³+Tp΄3GqD‰Γ R>€Η92αΚ}Νp.Ά/C¦Ό™ό‚νsΐs‰3ΧΫw(X»X2Ώ™#±Ώ,ŸNF ™žwΡA¨?"i§―ήAΑŸ΄Ό|Ÿ#Ή―Ύ-Ύβ8^€ΚœI·^/rΘΑ‘έ–7Τ₯o¬7§(Μ½!”… ’—«3εZ)Δμo†~t½Ιωdl?#Έb“¨P§οεwPt}BW2{υ­ρρO‹eΗ—³%NσδKΟ—oλ¦ 1zΙuLά ΏΑwv²“(¨―˜ΙΌ§ns-0)€>Τ,Θ θKŸ'ά¨η].ΊΔLΐ›­)jφΔ;`WϊvΥͺU3ΧΪΰΑƒMίγσ©ΛΪsϊɁŸ=$Ύ„ύν>ωβδz‹Ζlœεz§MjΫΆ­Ωk?όΎΰφBI”œ½# χή*«R€nέΊ&ολΧ―71_ΩϋΏ‰AΔ2ΎXε86ΎWιg²R“@˜|ΓλξΖ22Nϊόη>Œ2%ξΞΠ?¦,ρ-OΪRΖEΘ―Ϋά±Œz`Wqaʜ6β ’#υΑ‰“ 401–γpl&ɐΚ%Όž1α‰6–ϊBήΒΫχ²β1η‰―hΙ'“£h#άχŸ΄[τŸY…Ηή Rίρ3NΨ>άOΐω€κ€ΖΤ#Ϊ:&φX‹”'ϋ“ΎX™‘΄2΄ΫEϋZ.π¬qΦ¨ρΓ’`’ͺφίξ br”Χ@™yQυδά_v0¦jT“Δ;;ˆ4­˜κϋξΙZ/h΄Nδœv‚TΊ₯=Ί2ιGίΧs$wτ+Α‰ŽzΎ έ:‰Σ2Ί•EBι͚+yO*3'ΔK7‰΄9&τs™oT 9{ΘH‰Ux+Τ6-ΉΒΞ₯L~ ₯5ϋύ§;¨θ‡NςIP@ΪΧ0ŠI0 -g y:8ιFΛ4χR]ρκ‹CΙ–ϊFWeΘμ―Pxq–wΦ REWP)a6KVία£mΈ£ΎLκ«Πρ! ΕΐΞ}Slq’%±ŸζΥΆέ%ΠiŸρΎa<€ΡΥ2uΒβ[£D΄ž”g›†š&ibΛ›―*NN6°³Ώau©7H—ζUεΔΒΕ«eΣC .ηκΰ^’Τμ{•Δ€°ZVΈtlIίrΔ@IDAT¬ϋζιΎiΙR₯ηΪiQμιmβyΰŸεxώg•Η_‘¬δΖπf ;άψ pX X υ^0@#7°ž†ύl­€-°πύΙ0*κΉΐ¨αΖ 8€3Μ *Šdΐ6―-[Ά4* ’„1ˆώΥW_™c½ρΖΫr}ΧΉ΅υ:©?ε}qςτΥͺ$‡<ίΕ@h=zμlہΈPMcP1›o–»GαšίZQŠΓnV`₯l ”’Ν²$£άλΧ‰1U»Κ€g••νΉη­\#9OΌ(9½n6 ƒχ(ΌuθΠΑ ψ ΐB]ϋ—’u›$i`w‰9€ρ`y&O”έ­·ͺ*¨.Η›7dΈψt Τίπ@YsΗυ^βΰ\w, 8«~ hpΒoλdυιm θaσ΄F]ΰPEm€#oΐ6δ(„ν^|ρE>SΗδP]ϋωηŸ T  ΘΒ>¨ΗΕuνΪΥ€Χ&Ρβ?œwΓ† ²~uω’NνQOQ4€~&(SπΥ·2?U‘Βχί7π8ϋRO€ιΈH`ΖB,σ~Ξ9η₯Qχqμ{κ' *ΞηόΣ·³eνφmVα;«ΌΈ<Ω±cǐ‚΅υS΄Pˆ,ζνχΕΩ—f šύͺ°\πΛzqi1νwΖ6¨΅o’e‹TI9pγ΅Fu-πμ[³N•€η!η?’Ά¦ώ*ά€*Ξk·‰X]œdhv΄_δSΘ9AϋA>UBw›S­ͺ8Η΅ ‚Ξ‡4v΄σ=πΜΧ _LxKbΆm7ί;ͺ.‰sφiSvΫ™κ?ꝓ™+λŸΤΨ± θWŸΒΰ5»_$±ͺΘύWυ¨‰ϊΘ΅œͺS»‘ g[¦dŒ™,k/i!ΔOŒΊύή{οPΙγ,Ό ψTš‘'@21”1/Έΰ8CΕ2dˆάyζ•ςυ3δω—H^L‚œqR‘άΥ9M―ηe&Φ£XJόΔ»ΉNCφT­>ιž.§«Ο0ω Žˆ_P€tϋĝ'ΰ5”‚™Βώ(/άΪ<ΉΚj·ή}χέ°,ρΔNζ°ρuTβΑͺU«LœαwŒk…bβ(ΰΖDΩŽΨL¬€~όρG)ψfό[Še΄Ε@pܐΌ’ΜjΟ™Xvή‰§Θέϋ™ΨΪͺU+σ ΌL}Α§΄W¨ σ:f̘ΜΖΎ(§’ΆΕp‘Ιdρκϋp,ή£lΫdβ<ν&~₯o@;C|₯Ή[ˆΩ¦‡i·Ύ­Ήαbκ:ωΆ>Qvδ‹τH£ν¦½e• ”m½ά%g Ό<oΆΧ^ώ…η²rG;²tΉ€Ο(VΦ~‚ΫœJ)’ϊσΙmTύωΩ;ψ(Š6ŒΏ{ιήKh‚’±‹ ~(Xι ½χͺHQ!XPΑή@± (ŠJDTP©RBKο·ίσΜeŽΝqI. άαΗέeΛμμ»»οΜΞόίgκ(ψ-~ιkόΝOξz*½αεή0žΕ³šγ|g΅ύQ'γέ‡Ξ¬^YΒο»U€Ρ©` χJλψ¦„˜oδδ'[ΤR@q…Ρν1SS¨u«sεΜΔ}―Ϋ΅ – Ÿ’?aϋ†JΜ|vU;rΕJIΟ π,8ύ!O>‹ ρLlgk¨Ÿλψμ·ή+ΞφwJ“ΝΛv·c^|9#Ϋά74ΏAjύ|\ŽC‚« ε_xZR¬Ε Β§¬+˜¬Ο³Z€Ά©ιθG˜Ί ½;fΜεΛΩΧ³Π°μ„‘ι<ίIX?q†–‡ΚΛτ§Tήιμ:XΒ†>)ονΩ₯|mαΡO3Ρ'sΌΑκΛΨ₯ΟcΎόf]ΕόXΧq*,3Φ—©ρΑs'`Lθ—>ˆνoϊ,*τΣ§[}$Aa‚°LL΄+λR*κ³ώΤu©.ΟGΏ«° Ξ ‰2±}Μ66λΪ]Ώ«° ΝΏcbbTP%ί©XO*ξΥ«—š€ϋ³"”]Μχ^7^#ΎΗ0ρ=Ё9Ό¬ AσόyΏπ=„ωσX:ΐ…οWTό§-θΓΉ?-uέΘςσό”ΓσχL 9r€{1οOΦ³lœ‰”+πŒsŠ{γ] ]΅Ρwφ―†υ豄’χaηΌΰ†zaP Ί§­˜w΅.€Œ²%=σ‚xfrFEHPΏ'Δ,Μμ~T+žΉP7’ςΚ„šr(’}kΥόΐύ’π,•’7©EYεJ+XΩη χώ#©ζΉλ‡”ΧH•Ρ–Θ+Ε½€:ξΣucV(#‘£ϋωtŒρ˜Εpžψ8μR„ΨUŒ†—εu(΅ΞΔ;|ςXΜ>>~ΈχόŸHsκXΣΎƒ’ UfGRŠ \χ”HeΑRΩΩ;‡ŒCY«z1ΎϊΐγπBœk.l11ƒf~)ξωΧ$hΝzIΟ0δΕ€ϋd}±k%ΊR¦L„Άq~{Ϋλm \8°η ηZΩ%½8-`Οηu΅ΟΚΆ€mΫΆl Ψ°Xΐž-Ζ°Ϊ€¬ΈΎvΠrώηφΎξScxv,ΗΠ€p ‰κ¦NΘϊu%sαdqψΠ W˜rhŸΓ˜φϋξ’΅Π퇝εKHΐϋ/Š EΕ³‘ΟΎ,™³—*e \Hq4Ύ\ΜΧfB>­μοΓΤ}€’9pˆΧΐΞχ‰΄muΪf^°νIžΊX t~;‹GJΨΨΎ"εμœε”ΎmŸ™’ ΆU*.'< Fπ©žΪΜ½G%ƒuŸΫϊK©ΑPyΊ’ŠO₯Μό;VŽŒ[!’ p(,Pʌρ˜φιφFΆΞ‚lΰω,ω;Ÿ7ήxC)²θœ ˜@9XOXŒŠqLΉACj%>Ψ!ΐŁrΟ€‘_ œr=‘ #·Dθ–j`š¨<ΝδYVΒdΜΣ[Y#’ ’V<]6ν‘ΨIΩ>m又dTYiž Bh1B[„2ŽΕKίJ±[Λψ©“e ` 5]7κ9Οδ„󁑯K9J‡ΞάjΤ\g=χ ΄ΖO’ B μ§ΑBΘ'€ΐDpεΦθΪ’4zΆΏ0Yš΄ΌΑ p© π‘‘–›MΙcgHψΝ-dαž?,ΐυTɎHLΈ€6'<ΓkL(ηψTέ–ΰ< πΌh‚Βܞe"LNUh&ήTZ#„Αm™F₯·ׁχχ8p R%¨@肉˩DΗςπ^RSgdByψ°j? p’%ΫLLG,₯Jͺ}τνLυ9–Q'λΉsY )Bs’–X‡γ9˜ς%ΌΣ¬Y3λˆ!ΔMΈE_?§ώζyπΪwκΤI٘6) ΅Μ˜Ώ~σΩNχhCk2ŽΔŠγ•βΨΌΥ½8λΐIΙΨ}τ” υΔ€ZeΕ―d6΄„srήp|ZΊ˜άΡα‰$ˆώάσ t&πμNΨ.λpœd<)&¦žW3SΈWβG ηβ!Tν³ΠœΟ {SΕY©9Χ¬fέλ΄ίΖΖ­’ϊξι«M¨kR!.²Ϊ”P»gχˆύ`q΄‘Œϊ•₯lίΫΕα‡_Hηj&¦Θ±‘‹₯ΜΠNcς(=ρ’ dρ½‡ΕQ+Zη0p„ΐ—†ŒψάRςLτ%VXιƒ>phP›π.ϊŠm7‹šS>Ϊ)/­Μ+.υ“Α=RΘ¦aƒΠ\χ6·JΒ ρκ½(lτι±θ™ͺŽΊ, 4¨φΟq mέL-ςV¦Ά―–”g–ˆ_ύΛ$¨};₯Ύ¬ΛD8‹Ύ“pUnυ–'πLŸA`‹0–§₯­Θcυ―T»€j?‘:νσ© Ν:ΦΝΞ“Ηrψ|fGOˆJ‡Θχ5~Μ` 0’§/Ϊ­‡Δ93₯Ι΅M•O§ύz!& "*FU72…Α)τ_|ρ…ͺoXgκr"£―σΦ‡@ œώΚŸdϋζ›oT=ΐzKƒΚ„νθ'ΔDo­λYnζCΫσZwλΦM•‡m‚z~Λο~bΒλίΊ5 /$½½.Ηλ@HŠ·³gΟVePgδW&λΆgβχYž= M`Λ –ΈώG ψc·ΞS›±ώH•Q·–«SK’>όTό‘>ΜΔ υΤ―—¨NνqOz―V+Οτ °Έ7>ΐ‘ ςH―w‰D@IΣπœ_2ά|`;bώvHmκΈ€ŒTxϊž}ωεqΆΦ{mƒΧ½B?['α-šΚŸ}κnƒΣ_Uzι]—&αujbf†š'IόŸ‹fΩ »λV ¨~Úπό&* –ΟΫ@ΓΊu—„QS%nΘ“R΅Z΄ςΡTSWαO?‘lΓ€¬ψw6Θ‰±Λ%¨fΛx¬•¬*¨ΰbλ!ψΫπL?Η6#ƒt[˜υ‰qμ€€!ΈŸΟ;Χi0Χάχ¬XΏΞ}Ξ?ύτ“ΤΏτ2ΙΔμ΄Ϋ“„Γ™tΡ0!MόqΞγΜW>–ΎμmΫ‰ύŽœEΞ?2mW{‡Ο;}―Λ BΆτWͺύˆ|[Άl©Ϊ©tΩ,¨/cΩ¬οόۚθ'©<¬gνCu°‡/e’Oφ|W‘­™θΫYߌsκ]…0πξέ§fΥ‰‰‰‘‡~XωDŸνa έϘ1CΥoTΗ/ˆ?ζl¨fέΘφV%η΅σl[ΠFZ•œmϊtΒΞΌ>ܞ°3&–…Jώ<7ž»·Δύ―ΈΒ₯.όΙ'Ÿ¨χ Οkηm?_—yž! ‘:οw{8 uuHοΗΔΌ’Ž―ΩζΎ―ηŸKΪʏΔΘΎΆYU+HHΏ"μC7vύ-i3žt{R/ε ιߏ‘Ή?·5{HκΤωβˆ=ΖΤ ΧIδγθ'ΐ}δsΒΎ)“žQπ0χIƒ*tDΏΗU›Ε§<6l†B3ϊΞaΦOA}Ι_$„φ΄η$`λοκυjKψΰž>Υi&ΰκΐΎψ$qF†Μ~R€Z₯ό‹ ει ͺP•ε  HΊΎΗ½±s·Ϊ†υ Ÿ2PsΩRbξ?$)£fΉ•σ‚eύfΙ|r ”Ά‘GxˆΌ:[̚Ρω—ο³υ’Ίψ5΅]ZλkεθΝΚΘiœΡĐΛj₯Λθ!Ί¬ωΠήΒΆΐΉ³€ <Ÿ;ΫΫGΆ-@ Ψΐ³}Ψ°-`[ΐΆ€mΫ½lΰω’ΏΔφ ϊh’²sWΤ’`G0;―½uΦr[=ΝmψŸΫ³ΣZwθϋxhŸ7+πŒΞD³ΗρΓΐPluŒŒ2PΪ›5FœΝ―φω˜κ†Sˆωμ«P1ΚΘχΗΟS]ΔθΨΏzXwζ))’yOρΫώ7ΑF€pθ5»utorΖ~|ϋ£€ΟQjΞ° Α”χζ%Υ‹žύZLeΈπ55UlVΕ2NZ3Ώi‹~ΤΣr μ|xκ 2;SΩΩατp'σd’ƒς’ΚF‰'ΫIΰu΅OΛΟΫ‚¬ΗεȘ €1B‘έ^όkœ(ή[yμeΆ j\rΐœ°xνd[€ν*LRM™π+α,Ά!t²AΛ–-“Ž;Ίιυ6ϊ›ƒΠa«yLΙΜυtπ֞Ρϋλo–‰Ηβΐ9Ν <”.]Z΅‘¬e%ˆ ΥGΨbΘε—€`pΎ‰ͺΈ?.½>sΫ1λ”Qΐ«#F( ˜ α­πΜsΠ*–l»tι’Ϊ`&Τr3ΎΫ._‡&+…9–K© £¬:JΜΛ.%;ήs_‚%ΦsηΉQy@!UΫ†<ΡS/])ΕzΈ rΧα€ΉsζΘ±“$ν’–χή₯ΚͺΗοΣʁΆ ί‘ckΚDRΡo`»T€i:Ψ#¬G?ΐ²ρΪΣVTq&6³gΙΨH™ΣΕ#±½IPƒύZk0[C TΥ°·§«·ύw₯hΝυΜ‡@ χ·ͺ:·νΤqΣ1 C†˜Ίtσ¦ζκψlλd lG`°2ΥδN;wnσ_²\BΏ\―*MμώΪ"y€{7yωε—<ΏvνZuλςͺƒX>TͺΡpΑ‰^Ž=*ξΆΣμq$ ν6<ν€A>½ήϊmόϊ›ψΏΊςƒϋέ‹Σ0›„yΑΩmR#Σa_ZAΨή`Zsδ ΄ϋζs‰ ’ΨΫ#±uν<’π|πάκφ¬Z‹`Θ`  r†j΄5Lν[κW7³qCqֈV{δυaμόKR^xEό<§’ŸŸ€6m$α1-3”β.†dfdΙ‘…«Δόf§:νΘ][KΠ΅—\Π§g¦€Ι±α˜Βό ΰΰEOΙUΧΉΰXϊΈGΫί/©~ˆp= Σ'κ{ŸΐŸc fYΰΐ}χφϊΟ˜FX˜m λv|nW―^}Κ_˜ Κωn£Cš_(έΊΉΤ&zθ!•5ŸQ ΝeξG’ΥD>xŒϊψ]μZΟί^k―όL’KFIdο.ΚWi€J—)ώ0eΐ8ψwΌCΎˆπ?U&(¨°’"unυ–7ΰ™Ο68•…J¦gX&ζΧ·o_·eΰ Φ>Ÿπ±u{*ΤwοΫGεGŸ?°Y:ϊΜݘ`₯“ ŒΑΤυIpΛ¦υŠΥ—eb† ΏόRjΛLτ½eW}#ikΎ•ŒΪΡR¬Σ=ςΙίΏŸvΞτWΊ.b¨!BζAίh­«Ή-λ[ΒαYχY―5λϊeBΥΊNρ\―A8oך۲ξc@¬τ΅³ζΑυT§Β«φύœ‘€P’вnΟ2λ{ΑxΓσcb™σ+“kΛ3χyηgΒ`œίώ”Έ―Ώ—€_w‰TD­Ι.Nΐ{ώЏΓφή™MDwy@Lψύ3ž p ωΐ-Ώ©Ί›ω3˜&ψζfb΄k!ˆ^σιΞΈωgμ›bώγϋM«K…ήmΥ;ΏOœεx_[Ϋ΅lƒ§³] Π8z\’―j(MΎΚέν˜ΰ”Œ ]₯$ψ‰ #32Tœμ{A°”;αzeEEŠv‹š8\ιρDΏ‘ oή iί6VΝξΑη–ΎΞΪ.J;|Rφυ]¦fΈς«YJΒJ'Kdx„|U£΄ nq+ϋ‡φέϊ9dŸ€5P‚Α5TέΧ4h―ΌΈόT°έv¬IJ•ϋϊτR2lΞ;WυqjΘ•y²­Κc΄BZΪPΓ΄¬κ#ζΝq΅Ν³*&τ™€δΏmJ@€ΰΜLžeςΦ>ΦηΓν}υ,Սι=“'πΜΊ’A7Ή•Ι³Na›ύΎήήUx,ϊ>Ξβbυ•l;³b]DΘλB›ZνJζƒP£&XL΅mΪΩκyL}œVΏ£N`A-l[°ΎΠο“,ΫΦΆg/`[~ϊτικύ“uŒY.λϋ$ΐ ‰λ{GΜςa}Weζ˜1c$ύ¬g2εžχŒ(žΏ™¦ͺ£οΉUΜ;oζ(ϊaw€†ͺ³ν&ΟyπCχβ½θΊ‚ε xάρΞ*I_ω>^Πί ΥήΗ0kΜ M –OφΦΖκ/%mΙλκ/՟< ‡˜—ϋ֏κ>ΰ¦_$ η¦_Ψ*ΈΫƒ(Ο5ξΥyώΐ9Δ/xI‚ΏϊΑUΜ<<’·H₯ςyξ&'β<[ό²g9HmΣL’λ˜χ>zνΆί%eκ"—°Gω6ζ)Τ…¦Ν'™·KΚL΄»3ў‹S³ž°σΛNΥΞγ6Ξ%$t<”qN v1CπΣN̜:6wegΩ΄]2Ÿ Μ5Λ’‹“Ε¬η œΞ«ˆζ†Ÿ%mΦ‹κώMor…Dκ¦6ߺЉsŒŒΫεͺϊi2¨κ;ΩΈ,`ΟΑE΄Oα‚Ά€ <_Π—Ο.ΌmΫΆl Ψ°-ΰ‹lΰΩ+ΩΫ\μ`§8Β/„ttβ€;›©Θ€;€ΉŽνH8°ΐΞkΨ™M΅&Β(μΞ­SXo_Πo_€gS7šO<-¨μ)CrbπΧθΧMœœfξΦΏ=Ή9°Ηw¨cz–•l}τΉC–­Θω“Bd@Ώ ΰeY/^μl'0`-ΛςεΛ$Εl+πΜσΥΐ1‘ΒΕ‹»@Ϊ…Σ_Ί"΅uσΑ0¦*>Ο•―Vγ~{9%΅υά™Ώ~ύ G  σu-$~ΠTΙhx©D"ΰ)*lz½P0έtβ +€xO΄‘pژε'ˆ Α/櫁]*΄$ΰ1://NͺVs)#Z ]6–ΚŸ 4Ψ΄S•ΚAΕ*\‚‘0ψ+@}^΄Aͺ>ΣZ•e‰ΏχμΩγVLε>ܟ@•’ ipκtΆ{9έ7οΏ΄NI˜ώ,d€ΏSYeΤͺ.Α{I&Š΅B Ϋ½Ό¨κνάuΑvi³@ω΅…|h*πƒλ¨`γwοƒΌΗψ_«•ςž!pΓϋΜεd™Ώ€ΪΈΛNFκΦ‘€+―ΐ">CV;iˆήšŽίh§;Ύ^/Ž7ίΓΜqj•‘iJʎύhc mh:…³’8ŠKΠ₯eΝρΓnΰωP“6’ΘΩL„ͺΆrFιΕδPаε£Δ’Ό0Λ–q)9_u₯˜ΡUr'·?Œύ%ιΕW$pϋM`Ÿ΄u% Π„ ρbI™»c%v&f 9‚YPŒκ₯₯ܐ»‘›­΄}ž¨ ΅Ογ#— Ν{Hύ$~ςΓRΟa/ΒMVŸo‡ψNJ?£‘%m‚Œ­€qΎύM~½²˜‚ΞΌ)afν=.o}™‚ž<ŸUϊ ΎSjΖƒY³f)8,4‡w˜Έ₯oHΩwa™(εϋj±ΜLxΞ°™Ψβ£ϊΚz€QTθΜQ¦έϋ%mψ4 Π]–οΪ~Z™ςͺ·ΌΟΣ¦MsϋΧΝ;η°λΦ?111nίίΏS>ίc{k@Όrξ|Ι‚ ”ΐϋh|’$ŽVόχό#!]ξ•59|YεΚ•Υ»>ΛO°: ωΪέ.ςΙ:ρƒΊ©@„ΐVΧΚ ‘C”}™;οΌγΓι‹ιΛ©€Ιz]χΛώn€‰R¨η½AŸHxŒϋ²>d>:Ρ'‘Ž ϊΌ~¬Cu;η§Afή„ήfΜyΪ΅f½EεθΣ]φxΟP½•υΎΎŸθέwί} –#Ι]h“χί_­ΧΫλzΧ2ιscΦ%lŸΣž,3ΏiνωΞ‘νΐcΣτΉVΜwΎ0y‚δΌΦ¬C4­Ϋ¬SθΓΩ‡MΟ64ΛΓνYΞ¨u,+gžΡΐ΅:HφλpΓχ6ήΓήΆ³ξS˜ίVΰω`ϋG%$Ε5›L& ϊ§Ίž™φprŠ$<ώΥυ›”οe9Σ‘ή« έσ‡l­ηE?“ΰΠa}Ε,]Ί™oΏΣ&M}V$Γ” ьΠAθχEΓη„{*nρ«‚>p&c? ₯δΚΎυ}s£€ρsΕν9¦ŒKͺα|zε«Rm²ύ73’=Εΰ± ΎψΏΊΚ#Ώγo―’Π«,žyI΄„@yη—ΜΥλ$uι[κš™ΗυEΠN±»™ίoJ5Ζ}ψΌaVΙP*;#pΕv™0P Ό“{M[vHfQ87Ζ!Θ#`ή(q^λC@ΪΜ©h[ςΨ™—ՐπQ}r(tϋ£Cζ<@'€Ά-’εΡ p½Τ^h[ΰά[ΐžΟύ5°KπίΆ€ <·―Ώ}φΆl Ψ°-`[ΰ?a=°βλΙV¨ΰ[‡ˆ―ωΩΫΩ8Χΰ@Δϊυλ₯E‹ΉεΝ7ίT€;φ9 ΈiΣ&χƒήvbg/;š­ƒ ήΆ+θ²ό€gΏq³Δω[βΐ ©JθT”6-%kξ€°=άΏ²½1x²8_=΅.[0ψoŒάωήεx^3ν?Aœo¦€pΣaˆί­-Δ|n¬ΧM‹²ΠΥ1<Γ.5Ύt@9αŸP½EΙΧΔ`]Β€πΛ.•Mϊ΅ $ͺo5ΈX”| ³―‚'v†*ag*;ΎL9@θΠΜwΔάψ·:¬QΏŠ”ŒΑ<ͺ|η“œT‰τL(†Ϋ—p»^Y-Ÿ½μΥΆΞ½lΰωά_ƒσ©d·*hYΑ_]Nj[\ΘV8NogύfΎLl―Xχ%e’¬ϋθίΈ&¨ΖγͺΗσVVͺ}Ν\pRΦύ¬vŸ2·Αqϊ}ψ‰8>^²ΑΥ~6“$ν7@ ‰iΣςsΘη!irχž-‰ιζχΏ2ηιlvAΞΕΔΰٚΜςε9_)Ξ«‰Y₯’uUήΏ“€%―IΠ¦mΚ–ά8ΰ|AηͺΘ'σ΅&ξωΓ―|)ζj@2„ΗΡ+ώ`3 Ή@DΆ/;η…,lpn±cb0“ΜρΫXΒ;έ λ(―Τ9υσCίΖη^'ϊZ­Ix΅G9‚n3~έ/G'BŠt₯G> aj*8Ιͺ¦θ8š,G©B€‹@}‘+*Dς²*ΐόρΗ’e8 · βΝ΄ΔΤaͺm«μ,$ΐζ‘΄―eβ6ΉΥ[žΐ3·Υώ•ϋX’iKO:yςdw° }ώθΡ£sμΓΌΊt9₯ΪόωΚ·$qΠ$ ‘’_ω28)¨ΦΟ‰‘ΐ^“&΅/£R§>6ΛAΏΛoΦ΄yll¬ (a`4•Ž™ίU«œ„’nπΣ=₯ιυΧ©:P­τψΰύAe*|³ή¦=y ϊBq'Ήœ,„Ν3²> 'λ ]§¨ΦjTmΣ¦ΫžΧZŸƒη΅c½IεQΟϋIΝ¬Φ]›£}Α}¬@λusΜ» eς0Kα<~RξΈ―½|ώύw2Ίά―Ώ«’*/ž‰σ*αž“Jό:¨?CAά{5xΟ† 4αgΏT¬LoR_B‡τ)[ΐΐζΏ~³$£=γ8λ>υ¬rPΎΘΧ‘~cRRΖ?OEΐJ* -$h'A ͺ ‡3΄)Ονp¬Rg¦BsόŸ‹0Ή€]~;έe'ΰa,‚Π«g« 3€£.ΰο¬_PηŸΐ1tHΈΰYw»φΝW—KV‚¬ŒŸRθώη°ΞΦυ ϋeΤ¬*ώ ­m ϊQSΛζνAςΰ]xžSWŠV]Ο™λ―IP° :]·CυF›wHΚΛoKΘΈ~΄υξ@Ί?φΈ€;³ΤV|ǎ«Δr dηαxz/Β/©ν‚dyώQ‘‘nNΙ6!ύ™51mΚ”)κY¦Ο£Π΅u;ύ[ϋ²Z{Kκ‚e†Ϋ6ͺχnΓΰΪ !!A©2s}ΫΏ+VT>νΉΒψ –iώύnΨxζzΦσζΝσΉLτcΎΌ«|πΑΚης]ˆ}τΣ={φTώ’Ώ­‰υώk―½&oa]›?ζrΊ`υΗ|―Z³fMŽΆ―ΏN΄³ |O1„€ω.§―1ίIΗ3“οpLƒή‡VΰZηΛλΒσΠΚΡλΡ§Ξr±όg:mϋμKΉζΞΫTΆ‡Ϋ>(x>{PδL)ήoΨ,i/Ό.F\‚:†‰όƒz>,ΐΰUσq|υςzEŒ4ΌSΰ^IΎω‰ΔΜ9ό]ΠD?“:ύ91NΖ« Ϋ”v­$ͺSϋeΓsJžό¬ψύ΅Wν—Q―Ž„"Ν€r΅O b%i“η»Κ€R ΩΆΟ~ΎrΝcΓI·³@AΌAÞ£F•\7w―@;'nΑ+„™ ™―ͺ'‘œϋ™ΛޑԏΦͺύ²ͺ–—π1€=w8Cβ‚WY½²„ξν²Εž’_―Œ]ŠlΰωΏr₯νσ΄-`[ΐΆ€mΫa ΨΐσψβΫ§,ΐYN#ΛLvΏχή{ͺΣ–°§"d°VEα 1©„’;©©vtΛ-·¨ν8¨ 5ΥTιθ4φΦ9\XΣη<ο―sψρ‹CG(“ΣΫ™ΟL³ΊŠ…-Pφs@A(³Ct"»šLΡqyM1ί[ŒiΎ}μl-ΐρΌmJ•ΌŒ{{ŠίA(ϋ 9‘”dΜ.Ž[[zΫΌhΛTΗ0Τ,²;§ƒ8m›ό;Aσ=(€ΔqψίίT'sp—{ΔhΫ<ίέώ 2w–ƒγ žΨYΚFH₯I}ƒ-…9ΈτS‘Υ[Υ#Ί΄”ΥΑ§·»²™d’λš7Sοžη •ε»ξΊK΅ΗJθx}^„Ή~ƒκραΗ„ΐLΊ―’a#G(ΕJΪRœi‹ΐσλ —B+D©’q&ΆΧΨζΫΈq£Τ¨PI2ω׎V0ΤΝ7ί¬Εc"ˆΒσ`’"”όΉOVχΛxVγΓd•2aŽ„tζtΛK ¬ά΅kW΅šΗχ„•Ή‚@ΟΡσΌ9ΥzǎHΐuT„c"Œ@ψ„€Bx„[¨„ΝDИ†ΞΥB|P-»jΥͺj½^ΖγςœεΟέƒduμAu-΄­¨μΌwο^uΟ>ΌV¨BηΓo.§’¨(~ώωg šςŒdTκΫMΜKkY7Wΐχ‰'€|yΧΤΘTΗξ1·ϋ lυ5r΅“†s$ϋͺRέښΨ^s|ό©?nr/6γS$}@¦ §ό”™$]v)ΰy_‰FPσ @(9ϋUˆ8η‡Uͺ Ξ&WJVγ†"œqd#!Qβ‘0ςνO Άda28‡μ0λδ΄™» θ'fν84 As{]νrΘ]J™wŠε’θYŠη8vς+β·ͺšϋ‰Ω }¨­xKxΟ|Ž5ε <+ΨyΰYΆ»/)'εF£έ @\'*zβΊoΏU*ιz9AΧV­Z)?F‘Τ©*:iςT€f¦Œυ”‚ϊ۝‘Η–›AŽ:§(ΎŒu^~ΐ3·‘_Ν+PΞ³LΎΌ«0ΠP©κ@&λ©²žψπΓέ~RΏwXύτφyΥ₯¬;θƒyΌ΅Νi?kΆφύ<_Φ܏37θώm}L~sΌ¨D‰ξχ λ:ڌuΑΪ΅k•?λ>_ϊΎΩώf;\%Ύ»Θ5ρό že>K‰{χ‹γd nΐΆ:ΌώJJ»6|¦vΩ3a–”’Κ½―ΐ΅ΠžΏΗIœη‘žό—k l¨ΨΩώV߁`gb’$Ο^(Ϋ~SK¨h8¨—Hh½…οίxΆβb^—OΎv΅­`‡ΰΉΡ³ωœκΐ΄ι Uˆ\ΊGδΦV>ο.xIŸ’z1QΏ=υ8’,υg.9Ε-y]‚W£μHYΚHθh‘a¦|Sz†$L„šυ\<—)wΆBδ]ωξ&€ͺγ§.’€­¨m9λHδξ€‰sΎŸ™ο¬‘΄Χ>pmS§šDŒκν πΩs@RFΝ#%UœPzΧ?weg(4§χ#~¬‹Π6πτΈ˜οΜΏŒG ϊ=dͺš±! ³K†N’§Bφ¬EIςέΖ`Εyιε/W^:ΦNΆ.P Ψΐσzαμb_4°η‹ζRΪ'b[ΐΆ€mΫΆl δfxΞΝ2φς‚8(I@™Sϊ2|ag/λΨ1Lƒ04κ¨@Βm8ΝDΥ’κΑZvϊ !4νmšq΅S><g³Yέ)a’L™ ρŸ5Z²Z]W„#Ω]ΝGŠΉζ;5(£rfΗΰά’uGλ3{ }Ί{9ΛM•3·Βsφ“‰ςώϊ―O;ύζ2Ε.ΛΝs’RέΓ?μ† aΣθεu ͺήW_}ε’Σ…"ή A•η°aΓδΝul{>ψΰƒrόψq‘’©˜c>TΏ&HΧ©S'Υ>%œ@;V!PBνΩ³g«Γ0`5m'ͺΞέ[§d‘}Ό/"4π¬ΥVuυ7+ΌόX‡ŽB &3₯^έPΒ{<"‚iί™~ώζ΅$ΰ‘[ςΕNTχΜƒ8―{ARƒ€pΩ’‘(QώrτΦϋΕτGδž5l&ΰl^{•˜e‘ [ΐdΒ.~«Ύτw?V°wΟ*SJ‚Ζ±r½‹0Λσzσ΄―vΘρ%¦¨Šη΅ΨM$δώkrΌηυ δSΈΨ―‰‡ί‹_,ΤEΛ…ˆQ΅ΈDN*οoXΚwΰ=ΣWΰ9kηA92m^ΒΞΥKKΉqh+gƒτw|ωΜR•3&&Ζ]:>Ο|ΟeΕ`ώgpƒ裂‚‚ε©§ϊΊη[Ϊ=!ΚΒOgΏ[κΜ<λϊξšΫ” ;Ϊ Hb―€L‚ ! g‰( ›2X‚Λ—Ν΅LΆΈQ*―ΠΩ«oΟz+/ΰΩUφ υnž›₯ΆΞ€ΐƒδεσ?‡JζΙ#²Θκ/ΑCž„θ 9|ΩCU/0ψš„ ξ*R·VŽς³€κ›ύϋχWΰ±Jf]΄όΥW%γύΟεο:•έ !λ™ΝoηΙ8q’2rηΞ€ΉƒΪ=λD+DFΏψ- v”0@Ϋκο ²±f9Ό]kΦGΊ] ‘7φcX―΅―χϋQ¨ξΜϊiδΘ‘ͺ~Ϊ½{· 0@-γ<ήkeΛ–-t™ά™e σ\”οίυ£JΚΟqΗNžσέ³ˆΰωΤΰ³ ϋσ·Ι χoΆ„©³—E•,Lθ–λ³αk<€ F”/`ξ}’όΑ Ϊπ³μθ?©RU΄dT:,ξΙΘλ―RΑο*€Αρ― ίc{*Ž2αΉOoPG"Έ] ¨L6%½υ“_ωΪέ(!Ζά‡{ΈΰΧΖ}|ΐΎΐ›κΜf9ˆƒB3f₯L °/ΙΔ3BΨ0+ϋDυh‚κPu–’%ΔxηιΟάhηθT¨68δ @Ο'+”Vj½Μ‹\χ–­#Ϋ,“,G ”lZI.›ΦMΊ ’5θΈM¨@ω,SΖSνZ‚ΜL Dc@Ÿ†gΥB|π4HΛηωΡrΥ%eι›Βΐ“Ӟ–~#žv«S«™N>FR—Ύ.ŽΔdqT©(ž|Θν‡xώQQQξ Lƒm?–Η‘3Ϋζ„Z™΄BΨuΧ]nΰ™Ύ¬eΛ–ΚŸpΦ?žΎŒύ¬}Ω_Κ<ι8“Ϋϋ ,Pyσγ…^.πƒά«…υeΜΗΫu¦ͺ±Ά%ΧΣ—Ζς©LΔcςυ]…ώœΗΧ‰ϋ²Ke~Ύ °:wξ\8p W©:œυΈφω,_^υ;Ϋυ΄)™ <³žΰ;gΤ!€Ξχ^—θθh‰ABΧ+μΣζ}ȺٚXzΙΦ];Η;¬ΪžΟSv€‚¨ηϊ„Œ_φ’Lϊl•5»|Χ ’‰qj;Ύλx–'ί <7`ϋ0qΪ«οΈύbVΕ²ο%… 1  Ÿ>kmWΠEΪνaO>ζ €ρξ₯•ςρZL›QhΟτ³f΄^χ7[Β³1τΝOj;ϊΣΰ€ƒσ ͺα–ΈΧ§>πψw΅_κ£p(;³ŽΛ7|O3Wόv΅ΏvE_· Ϋα~{ͺC€7»R’z»ΪPΦcΖΝY"Aλ·¨EκJΔ Œ ρ€C'βYδ ήaηώȈcαœRh#αCq~ω%œ[ς`ΐΞϊΕ";™η^ΌEΗΜH‘_wβ}XdΒ©Q νd[ΰ΄€ <_€Ν.ςEexΎ¨.§}2Άl Ψ°-`[ΐΆ€7 Ψΐ³7«ΨΛώ+`G©”©¨BΨC+Ρμ`~σΝ7U'u‹-Τ ‘c[§Φφb~TΤ£2΄7u ½]aΏ5π\ƒΤ[έ$œ.Sœ2™œω±ŽϊλQΨμΟό~_n³+:σ’1x…d80"¦€3Ÿ΅°*­Co ά₯ τšώρ‡šsΐγgΎ0N˜½X‚~όY坅αL•*θ .j2ή/)Ά•jUh°„ŽDΗjΚEΝΆPϋv>egB* vžUζH°T¨ ±AŽΨ +\ΰ Τ‘Jx@ό«εΡl9ˆ™–!ΗhqD--ώh+ iSί²…ύΣΆΐωcx>ΕωPIV…g*{³]‘α$BΛTπƒτωƒηΎ v@θ-±,ΫΆmS3Xp=ΑBΘυVΦνΥDgJ‡;]pˆηρ8ψΞ)’ ~iΰ©ti—κ_bb’‚p©&Fπ—κ£ž’ΕέΎCCDžΐ3οo Fρ9 –τλ92ϊ5β^r*΅ͺ8Ÿ_ξC`Š•N ₯"'ŸUΒΞ|&7lΨ ΰ&n³SΟ7mΪTωK‚K HyξΉη„3ΔJM%›‘žm'cUΚ$π\gεj¨ΆΗJΘΐ'Διπ“΄qσΔ―R9 02ο™gΌ–©vρR’Το‡π'“‹DW‡PΎΙZηyσΑܘηsτθQ―ώuΪ΄i άΣώƒΫR₯ΨŸ―κI€ΗI˜ΦάoΟ?ΪχQYφΧφΎΜ9t†rΚuΎ3έ |#ύ θgi―ΨΨXUofd’?&lGΝλΒοΠ]ϋ$iμ\΅^π\μ₯Y2fΦ ₯L­ύ'ΥDy­Ή=λ žύ1U ©ΜϊToΟί٘ς»Φ,3λ–ŸχS~χ·ay<¨ G ΗqΉg*j™άω‘ŒΖξύ"ν“Π{ΪΊϋϊ£AΛdΛoΏΚ螽eΘc²g  "/*ΌW  `ƒΏ$wο—ψ6ψŸΗη7‘a€ύκ›ΫκεXvvTΚρμω‰EΉpΈ/ϊša‘ cYx"R ΰ΄K½Ϊ‰ϋ&³v΄„5ΏZυOpΉΡψ9«υΊμ $λΉ1HωŸιο‹σg\§z)©0β^q„ž^ίZχΛ zD°2 Θx¨SYw+WηΨιτ?¨ͺM˜Ω Ÿšx9²F51K‘­X P3ΎMΤ‘ω%ήΏVœΟ§΅ τλ―;dυ½Λ₯β‘]&YŠEBΥeχ›>\‘"GW¬•„·8γšUžυρOsιΊΐsζ ^_k}ρHνϊ’:g©:υπΡ}₯_Μ"εΧ -Ώ<}¦$χ|Z­£έBv—}ΑnΐΩx&t;Ίo?‰υ’DτΧ6Δk;ώHϋ2Έ’A]ˆ~‹ωPe_ϋΆέ΅2<Χ1Pgˆ α‡βNJΫΆm`ΛνhϋϋΝͺΚό βΛΈ=“g½₯}°n³=ό駟žV&ν ιγ¬eβϋΟ· ο*υκΥs_'‰¬]»VΥτη,Ϋότα­οzωΥοu1KߍxxΦm .Σ‰ΗΰφCh5πnέΊΉVhkΞvΐ [Φ<Vu9ΫσΊNeΎ,σ=χάγ.σΫo¬ŒΟΧ)ευψΏv#P³¦?!€žΘTE}Οάυ‹ŒέžζX‘Η΅kΥRχ7)2π ΐ5yξ‹βΏ:’R.ξp‡”Y―(±wρKςΥχΎf¨Nt6›4(P6ΰώ‚β΄Šόͺ\˜έE (dbΐΟ&:φνO•mFM¨ψλνžyΓ}¬ά~ΈNžτ,DU\ώ=γŠ1uKž 0oψΉn»¦ήάL’ο˜η.z₯‰™ R'Ξ‡ΒwΌRX ΈΊΪ©Ά‘ήξ΄οcx―5W ƒΰ&—ΰΞw‹6YŽ„ϋ/aή=7nW‹Σm QO=ͺ~›ΦKE»U+;η;;wKjΏ‰βΟ`=ΌΏ§έΦLBΗ RΗΝq<?КΨ.ϋυηm’ςξ&)xk̜|B½T5#tHHΰŽ;ξPρ„ ”½Γξ©ΩΗΧΩzž₯ηI―_["ϋ?¦ΛΉ Λh-DΪ€^­K$ ŠΣ™P |ͺ›ψ7m€ _Ά=«TΑμُG@Χ‘ϋixxΗΟ[%dΧ^ρΏΊj«δ#H₯SΟJΕλςχίθZ3˜Š6cY|ΉŸx\ή΄+ύ4―ƒ—x>%K–TπaR–SMœ]«W―.X™ .›ωεw’πσvρ εw0V)UςΨGN΅=χg&ξ'Tm#κΦ³J‘ΚεOσ‘ 6bΫ†ΧΠΐόΞX" Ν¦Q30WΑœXfZ jΥ&–ΕΑ9ρϊ3˜ACΥάΧΫΐΎz™ Βωd©έeΖsξΠ3ϊ"pσΐψ cœͺ>•1QΏ8KF‰3"\Μπ0,sηοRkUj68ˆg"Κƒ{X*£l­”L‘e­@ππΐΣ€B“‘l u$%Aί8/χα₯j|›x~ ζᑨ„­af~S‘Ω4—tΥ»θΣ9ΙκoΟdά³ tΧ}#eδΤιύ°!Ν"ψuίKϊπ‚[]―”ϊγ¦Ώ"q_£μΠ°΄”|*Ι-‘κ˜‰CΡoδ<Σgdΐ‡$Cε9΄eSy7$Sώ±=χωΚ·$½ΟHIΑς¨Ξχ‹6ΦυmΙΆ"ŸgŠ:0mήΌYͺΕ| Y»φHVΩ’6ΊU,ηn+² ΞγΡX}™Ϊ9ϋƒοΏ΅/γμy+V¬PνYϊ“I·υp/ό‚ :ύΐ –± υ–g`¨·zΛͺπΜ2κ6Ά·2±Nb°.ύ+ύΊώΫ—w•.]ΊΈϋœy,ͺ^λΊ™ηONEλž={*ΰYΏ―ωZΏ[ί9tΫ’\Ήrn»ςϊΠΏλ~oΆ-Ϊ΅k'7VυλΕ»ξΊ+¬N»°άάVBΎόŠd}υΔνϊ¬§ΏmΣ\ι²όό±ά°σΙψt-Μ5±Ύ§RpBD¨$ ެVΥxeJu>*·D;󽆩Πΐ3|¬Ό΅JίϋΤ]—d^RM6)υχάžΛrγŸC’ %fΏC.α…ŒšΘkP/u.Ήμ’ϋb\ŸψE/IπZ€ΣH™eJ’ύαƒ’²gŽ€”Σ&C$ΰ0oAΖ5οέπΫ§„η=mς³b$ ?–ϋίw›˜νσ02yά ‡ω^‡χ΅ ‹ ήS}JΫ~—”©‹T}η,_ZωχD~ΙDπSΚD¨j£¬&GBϊvγκz9wC˜0imwͺε©m›I±GξSΏ ;§1Ψ u3pCΗχΟD&μœ2hŠΐ>μ§NkΩDB§ ΟΏ―m’Δ§gˆ?ΚJ€=d\?ˆ–TΙYΖ|ώJJ6eπ„t9rΤ_ΛL€Άy>;Ω«/x °ξIΧ‘ϊο ρΫž/Δ«f—ωb²€ <_LWΣ>ΫΆl Ψ°-`[ΐ«lΰΩ«Yμ… °γΧͺκΒΑ/rrPΑšλL™2EuδλŽ=HiݎαTiΤΘxS€Άn_˜ί―Υm*οή*Υ1έε―ΕjJzΝh X>^Κ— „ΔAχ‡~8Ηqvνv€GsΚ­·4U,kίΎ}sΐžee}ϊτQΣi{;¦η²3f¨2p ΒΗ„m΅Βšή–€@±bAΠBΟ€+Μ€cΙρBhŒ0™NΊΗλA lκ_%ι{φ£ΣTo¦ΐα Ο6ž­ §ΜK’%bxOI2Bε5έ¦€ςa–?γΐAI0δΛ-›'W4n€ cΞ­°A‚bzφΟaΫwΙώθr ¬«Υ3λ  Κν© g΅#σ&όR}δAr+αΗ”μŸ… ΐixVqο{Φ[žΐ3ύ ƒ;rυ―π±ΦD›2ΈΎ˜>Ÿ³ h©}`Ÿ£}•§/#Θ`hφΰCβΎ*‘‘ς~€Θƒ>¨@A‚Ηά_ηΝ²Π‡ΘΦʚ„Ϊ¨άOh‹Α(œΩ!‡ΟK”7ΏόLŠ xήώ« :DƒTCϊπ#.U^€εLžχλ/ΒaΉΦτ©,§VeΎΉ];cβ9ς~ΰ}HΠ[ΫΥ΅V”ϊ6g3`°ΦβΕ‹…υJAΚτΩ—%Ή/κVD6³Jy ―w™H΅ΚbβΏx.ΏtΫm·ύϋΐs~…(κz{£ L &ΝeP•U_IΦ;‰ŸRTΕυ+γŒΰ\"π1ήέΤρΎUA;›‘a.ψ9Βυ.OΈΪ΅.B¦ΰx{WΖ6³ΰΔμη*Ÿ=ζοKΒsΙz*™όvRMΟVX0‚ PόWλ±άTΫ ΐίύ;@’8£–»U©κΊ~»”¬ω[ύ Ώga;άΫήοΩ3έχζ7–ΎUKΪΆτ“ζΧΈμΓγQH>ͺU­rβ‰…βŸ+a2U•?ϊΞκ£_Ρ(…έTOX“΅ό@Vώ ΧοΫMςIVΒ©Ά#όHπϊM"7]§² dKJ˜X·9+‰ŸΨŽ«Έ‚δ™/ͺλκ„2iqτ₯uοΣ[ω"φΧ_«/£?γ7Nω2ΐΜ¬£bbb„m½W\g…Έi Ξ"’aβΒϊ2νΓy’΄‘g½ε <ΣGεV&Ϊ‰u±΅LTΥ/Θ» ƒ-nΈαυnαM-™ΗX‰Ω[˜§Vxζ}δkύNίΝq}ν΄‡WΈή„Ισaώ:(“)u²E½Wβή­Χ‹uο,·<ΪYΎψβ U¦•ΣgKκ€1κή ΤSζlX§Gxοό²εg‘nƒΕD0VVq(―V¨ B«¨§L4•EϋηYΨΔϊ“³R0x60³LΚ³ΛNΎy }ΆΧ5.T‘ŒUŸKΖRτ5g§ΐ‡οηm­υŸϋ>rTR¦<+~ϋͺύm$½PΟΠ^ΖgίHΪ’7Tΰ‹‰ώβ ΜΌ!u] ΎΘψb½€½€sΒ»"ύmP" λζΏλFΜt4λyΫ`?Ξά3μI1|„zΏ½JBW¬V>†οΠα#0‹aπ©vnn7ώMR§=―AΎ)dd―ΣAbԏ‰£‘8 ΨŽ@‚{όO€ΕU,.§vζL ,sH°³όΉORvώγoΤ%IΏζ ž5Ϊ§vGΒdΐΦ›UΑ,ΑOχ€πJάN)ΟεΟ–Αγ3δdΌ―²™2cT „£’·Σyc ΡΧZίψ>f}'°χφ›υλχ8ζΙΊ‘υš5 RοΛ:Žu-·±&n«ί/­ΛωϋL•Υ3ίΌώΆηΌ¬c―³-πο[ΐž}ΫG°-`[ΐΆ€mΫΆΞ±lΰω_ϋπηΜžίΊ TΕ`Η?ΥHtβ /­ηz; Ψa@…=NΣͺU«ΤΤΉή:%Έ ΥM8}|AR¦ \τσR= XΆ.Σ΅΅,ΘξκΆ&T|Œ;»‰σ—]nE!0¬# s“+ώΥc[37Π˜~¦ώϋ€ZΜΞZΙΕΩώλfgξ7¦!O_’έ1ŒΓ a}7D= "Η͍‘ΐυ[T^—Χ”t’hE?o9v>8f₯H’ v.?α~ρ+αΫΞ݊`ΜψΧΕόγkΟkkJωΎwω”ΛΑ9˜&ύ»?ΥΆFγh)?θnŸφ³7²-p6,`ΟgΓΚΦ18@Α©žΗŽ«€ΒRlSp€„λC΄hΡBΧQ}Œλq`ƒ(œΞΨ[βώΎ(<³Γ©Œ©φΕτηŸ*πXΞlάjȌ…2¬wˆ¬ώ`b޲²lηx++A\ΆΗΕΕ©k©[ΚuLl/u$¦Ιή“±B‰α\λ€Αl Ί-_Ύ\ΑYήςη@>U±Ÿ~ϊiu^T<εω—Q“Η«@6ΆνΦ~Ή‰K)’v' U2 4Tψr£€ΎΉί{‹΄Uε’½¬ΐ3λΏϊƒΜoͺΫP&Mωψe'Βjί~ϋ­:W ¨L03AΖ›ΔΉnƒ8$uΝM7ΊDΗXԐyi[ͺQNŸ>]]­7Κ (λι΄ „\qΕΚΦlΫςšP=Žͺl Ϊ›;wbΡp7•ά΅iΘ„ηCx€v'8yςd4h‚ rΠM'–‡Η»ωζ›U~<7ΒΣaP|4²•ΩXήαΓ‡ A7ojy:/ύ€iνœ m{ΛυΝ$ƒΐ’%ρΎΧjθ RΜΟNΫG$MŸ/A?Δ`ΒyήΣNœwΆ)0Dΐέω@pΎ'x6vώ%)/@˜Σ!3α>M½Ί‘„wξ «\WζξX‰ώ˜GΥ)5ΛHΉAw!p.Lύ}Q|@ρ7‘ί ‘Ÿ ΰΖΡ₯%κρ€φN‡ΧωΌ]ύυκ9ΐ— §<Ÿ›aΓ†©gg Ϋ“Γ_“tΌcU[π€8 `§}>}ί=[·n­LHuΫΰΓ3 5z$ξCΓχXΟgšΛω\3 ‚Ο3!WBlY2e~°όΆΛ)U+fΚΈΑAΰOΗ”²;κγΥβ~uβΝηήb٘<}ΩΦ ?Hβμ%ͺΟ|v™φ’•ΏW }AcBΥ2ΰ1φμΩ£ΐfnOυQښ*ΚkΧU>zήΌyΚσΈΌά‡³p=ΛόŚΟδ‰^=Uί„šΎ(yΘTu_d\UOΚuΊG>@=Κ &Φ]TχτυZΣ·FEE)Ϋ丟{λΗ`9ΉΎxvξά©κ }<­jΝ:‡Ύ“uŽ―eΚ„0}‘d!0(jΝaW\ͺΰfοΨΉ “. ΰΩσΔ8prε‡τΝ&·"§φ•_j²²“ €”BγA{YΎύAvμΗΙ„99tqYM‰Όβ21ΒCΔଇHŸ»ž'ΖΑcH>>œ•QΫ£}ΐηŠ„Υυ'Σ‹ϋΨI ώΞ ΏepF2΄OΈ\ΜΩΟOŽBό›θγ²LxΎίαέ;Ιδ7_w·kΩΜXύ•d;.eξΌEΎΩυ»΄°ΆΑhŸ³Ν[΅’ψA)›) QY^ΣΙΣolψa›|·Ρ!7^ΉύF΄εψ<3Ρo”OπGΚ1IΔΜΕZ^/ί%P³Κq=$FS5ξ«υqύUbΦμ_ ;lͺm _Άa=gλ }žeb›šπ·΅L<~=Μ&ΐδΛ» gP7nœΊΟΨ.&`Μse>,Ϋ̟ec»ΰ•W^)?¦Ÿφ–ύ°‰ˆPL™vͺm±Ηqβ؍ΰIzζΜ™·ΣΓ’Ψc(nθ4qTͺ asΗΛ=ά―‚—x/<χδS’4 χΰ向OI ¨-³Ό|_˜2vfΓΙΰ­Ν~ΖΏ ρ”ξOo£Ή7Κε‡{&Ϙ/Ώ»ϊ€ JχrΩ#οΕΖ·x\τ²R&θΤ·«˜ ΨwN°Χ&`-RftE ΦΫw₯iά? ³_ ·ͺύY@ŸvωSAΑj…—“KߐΥ_«z «B έΟηχ™Έ/KΠ—?¨\ΣΡ–Ρ³$y9LΞE_$©Οa¦<ηNψΑPΜ~h@:GBݘ8 ³/ξ?¬ξΛ ΎΕΈ¦kΐΞ©γζRvž<8χΩ;§Q‘yΗNUe4ΌD‚ηŒLq•γpήώˆ`„²2?υˆΘ΅WzΫΜηeq*ƒ'd’ߐU3d`V±v:,ΐw“5kΦ(?O_ΕΏΩg?"ιλΩ>Κ/±Ύaύΐϊβ½χήsoNK2HRΏΓp%λΎ70 }E<&ίΆm[ιίΏΏͺŸ=ϋ σ++λOkκ.DΨΐs hοn[ ˆ°η"ΠήέΆ€mΫΆl Ψ8-`Οη5²KψοXΐ³σ›GaG•4Ψ!Αbvά³Γ™Ι`ζώ쐠bΑ‹˜˜΅?”* E!Κ½ΒςCΏπ[εϋ“μpgGyAaι|3/ΚΛήsτ¨ϋd²ϋ‘γ₯#¦Ώ›6¬(Ήx_PRΦΐ)P1r©ίdV(-ο-“Š"g:©ŽαΕθv4™U*Hθtπ’Σ΅Θ κ 0UςŽΏTVi­–bO”α€y½KλΚ‘kΔΈΏΞ Dυα‡*eLξΟwͺ³=F°Œ` ·a~*Β9³ZŒΗ$ΈΡ%ς…ί φ2ˆp4nΛ©— ό2±œ-[΄Tπ―C €-„~9ΈOEΚΨ±σΔγv΅mFΓK%rpWρ‡]=gΆ›ΆKκμ%€FIσ»οPηΕφ·M μ-U\W*1U†ΏΈHΝά† Ϋl#n„Γn(`β7ο ΄Q―F›φγω-Y²DAΌn&GŒ‘Ά'ΈΑkJΈFC,΄m¨α Ϊ• ―Α­ΦιΆ­ZγXγμ(p£ν€b`¦`vξή'‰ .“H€»Ž₯Ύ±Όφ6ΨΗϋ>R ΛƁΎΟ.•€k‹σΦΥ3Ον‚όfςΕN4~ύCζ/ΐj&ͺΟwν$fcX―ϊπQΰ™Σ^'t„ΒœNi /—°G:Š”Λ(Πϋ\Hίͺχ"Ÿn“0 ·βk&!·6ΌN#²Β?$OzA2ηύίV―šD-α΅½Κη‰ΠƒjŸ€Z'οc(V’&a'&HO>π°μσͺ‚ηΜ››Γη3/,Γνω~HŸαmš0+Lθ<ŸiξΛ:…ŠύTž$4Χ½{w΅ν§_™nOEΉ©#B$ξΔ>εSΈ}†ΆPωΰύeΒμY κβίΎ”)πeϊ¨™JQ0½~)9nPŽzΛ <³μV¨+?Z _Ι’%•Ιαστ1yϊ|Φ₯ž Υ—»οP œ-™˜Y)|ΜS0\€²η„>LܞJΪ<6}4gfΰŒΊή"T=aΒ=z΄Ϊ†³7ˆΰΉΡηOœ8Qη\ΙΎ‰ϋξ»O΄λsΰLά?"0H²π\џ(fu8οΟk­νχΤSOv­yhœωψrνφξέλΉ9λσeb@•JY.₯ h1ωε·%0)EΘ{ΔΕ«νψa”*!A·ί(ύŸ™γ.Σmo—LΐJΞ’Εlχκμ£]Tΐσα£χϊϋ˜–ͺš*αώ Ίαj1nΓύ `-ξ₯όεwX)³v ¨=ΰ/@ΗΫvH2@;{Ε¨œ*—j;6φψΞ ¨œ0 Έ<DU|ͺ˜NjΖzξIyqV)+YPpεH΄u”’+§”.™ϋLΈ/AkR¦ζq eβ[-‡2±RšΖ6&–³\'‘~κΐ9¨εΩΛΑΡ܏κΦξΓs€κ4ΪyI~—Χ–χ·q·΅σjΧ~φζΫ’όθ@ ιύˆ|dͺ6}ΠkΏΏ~γ\0΅‚ζŽ•¦7΅RΟ>Ϋ@C;v“τ7ίRώΒπu€XΞ„pA… .H’ω°­ŠΟφ?%ΆGΉnΫΦm’ΩoŒ8³g…ΰFY•ΚIπ€‘rmΛκXΚwίάV†Mvυ…Α_†ΕΜ–Žέ»©@ kۏ~ށi¬g˜νͺΐCΤ!HζrU‘?”ώ!66Vο³ύΗ6x©R₯T=T_Ζ XΑs$T]±bENύ!ά\}ξQΑ5ΌGNšθφ_Φ@ΏόFRPΟ…·jeΪΛ•R,ύ^^ Ο<·΅.)H™h ϊ6&_ήUΚ–-«Q4$MŸΞ™ {σZПσ?―Ϋηζ²|ύq©βΐyΌπΪrίΪM³FUΉρώφ nη1ΨώhίΎ½ϋέƒ>ΑBL|iƒ@GTΡžΦ™*T"ΰgΎcykγ« Ξΐλ+<΅ARδ2¨ŠΙ ά»‹Θ₯5Υίύΰμ,ιs‹AE}€ΤζW#h’3|$) šΰ·g.€μ±U_ςΠήʏ(+ψ„ΤI˜]δΘ1΅[κ WId” Ο²OιdΌ$Oΐ»ξήΤζ—֐°‘½ςΑyοŸ›8υ9 Ψκz―Ι¨[K‘쬔χσήSων„)P>ώ1ξ§”Ϋ[Hqnω’Μ•«%uε*΅iV₯²>ΊΰcWπ‰{τ$Ÿ‰χΎγb’ςtO‘Λ]m4‘²3ΪqJ틐 s‡wΤa3$„r"eԍ–ΰΩc|š-ΘΔΈDΪ+θΛF ϊߝ†ΉIύ.κΗ9dτ *ύB,ϊt5 Lh§shφYύ΅gQ((ΐwo}uΦmYqF0φλδ–¨ήΟΩt0"ϋwtΔ %o‰}0ƒvχΓψZVφαiΗ?TΛYέμd[ΐΆΐΩ΅€ <Ÿ]{ΫG³-`[ΐΆ€mΫΆ΁lΰωέ>δyaΟΞoBΛμΤ΅vD°šSΧr°A«¦πεŸ LTΝγ@†Nœ–*‚A8¨œWb~μ°(HbQΥΐGΥ‘ r_·5 Ϊθl ¨)ΩλΞR‘βφB1kFϋšΝΩΞ|l˜˜ŸaPΣΘ~θΰνΠNd² :#°fΥ£δI˜/»c8­I}‰θΧMΞ„Δ§xN3OόφΥΑO†ΡSοYΛp–~gŽ“ƒ€Ν@C„Ηί'~e£ΞΡE½ςΉ˜nq©GU.)εΗΐαωtΐ£t)οό('^ΖUΞΛΚK…αχαϊΈžΫ³Vxϋ@Ά<,`Ο±T`έ>tθP7ΘιΝ,\%ΔDπ“J/aυΤΗ.ΆξΛν¬ΐ3•%½mΗφžj™ƒ" ¨E[‡ϋ―ώ2]žy1MMŸ:iX°”-δSY9M²υX„όs±όl±­₯Υz OP%4+!EœϋNΘ[[ΏVΐ―υ\<+52zΜ‡φ³¦¬ψ$Μ†ΰ'ο¬ϊHb΄šxžlΧQι¦qγΖ ¨ΰ~.²}ΕD(„φ&€Α₯Έg–IΰΊMj]fΝ*R|yΠ4‚„ζΒΓΓ]ƒύhd`΅Ρ΅Mέω«sω`Ωήyύ ωηΨQ·j7e¨K`L'Β›‘ψT^›˜˜fλν»tι’ΐ>‚"L„£§M›¦:Ά[yN΄ΉNގΑ(ή3PζΆ€γώΌnΌ~»wο–Ϊ΅k«s§Ί΅L˜)ώΏ»Žι„κΰ ΐΔΥͺUS‡!Α> B0k;›Qiˆ 3Am.ž nΰZ₯ώR„ΚžPSδυ£R΅VΆζΎήΞΑj'χ`―γς·$τΣ―\ΠφMΏ΄–„φ~ pΰ,R‘€g(c&-yΝ₯2MΠ )νγΗ;‰T―κΓQ/ΜM2ώ:,± >Ωλ0€\””x§ψ£w‘$ή«ΌχyίιΔϋ‰χ²ςmψŽ_πͺ|ϊƒdμNΫg6ΉTJΜƒ\Θ©ιΈΉ?ŸWήΣτ?ϊY ΠD€Η[β{ŸυΈYοK‰·JXΩ«W―>ίLL—ξύŸT~ΐ[ΦeτS|Vι;¬*™z–QηΟχSώζ³N?ΰRψΟDΉΣV7₯ηC‡έΐ3•84hΰ>'ž'ƒRθ›ςKΊLάG6l*|A·έεοH7|­ό#ι3h{ڐΏ΅rp~ΗΰώoΏύΆ$$$ψδσΛ—Δ™ύœςXTrΟαΛni π3[7 @Mωž–•©κ OΨ‘M›6κ²A'‚} ¦aD°YΟV Χ³.²ϊ|ϊNΒΌίxέtΠJnΫs9λΣK6ώ.‰Ψ§ΨΝΝΕ―jEχ}Μϋυ°n?Xϋ6X²lΉv¬7 f°mΑD˜―‚†₯λ€›1₯χ«οθEβυʐ':‰ΑΌžΉ•Ι½Γϊq1ΟΖΞέΖ° Vvί‹,Αm[ˆγ–ζ `Ρub*Ώ'wώ)~JΠχ›]ύ Έ'˜Μ’QBO7Η{>1Ehƒ™θ‡0¨ΰ ft¦s–#AV’^R Ά[zάCΈ―ΞΣ@ΨΔ,Mšΐ΄€β?ajό&<킨±ŽΛπ<’Ύ£΅ ™0>Ο68Ϋ%ΥήX%Ξ­π£P0}wχκήWm@ψqΗ“£%бώMκΙ΄ηθΓ™¨Πx[«]ePKπΑΊβ·]’™βeΏ}§Tυ*>CT(&ΰͺσ Šδ‘3nς:%‰Σ+% ¬ικΧΑƒ|ž»_u½€t’ΐΞΐΫoγŠ:²ΏRw@†ΞΣϊΝΐΙΕ φ ½²Ÿcϊ’ά1ξ¬VGuͺKBFz|™―Ύ†ΰ/ύu&“g]Κ:š:|βΉ?V₯–€R)7;™πurK )ΦωΩΉo―j·rΟ«Q£F9fΗa;”vΘΟι2ρ؜E…W^IΏ«ΠχςΌΗŒ£ράφ‘ΨƜ9sΤκ‚Τ₯| Ψλμώ‚₯σl[@Y<εΕεR¬ρ•ςkd;ˆ5·2YnΉ ύυκΥ«s)²έΝ:“vαΉκz4·< ³Ό ΐ³€€9/ˆŸ{]‡BΉ‚ξΎEΜ{ΪΏΟF"'ƒΏΫ¨ς3#Γ%°ϊΐλ]V˜SAΫ νΤω@L΄ΏRoΌN"ί)Ÿμk(OΪ³1.x—Α½z΅―Ιψγ/”c{v€ n‡nΙw¨f'™υδCjΫΤΦΧKTΧσߏ[@!;iΜ\ΤM‡UόΤ£bψ2$κΆψiΟKΐζκ8YuͺIψˆ^§ΦΌφ#ηˆ@nŠΩ!#±M­h΅Οi°σ$Œ@±άk"μK2λT– )O‹DWφΊyŽ…λ7Iκœ₯jQzΣΩοšg0mΪfΘΤω™xΞŒή(Uϊw;ƒΉΫYΔτ{τΏ„™Xχ³ή§Ώgp+g—ab@)]=ϋ@ΤJ|°~³φq°mΑ`vΎcύτΣOξ\˜?ϋsx\Ύ£Rh‰mw¦.]Ί¨@JΞ|Ζ> *N3±=Α|ψεkYόeν RρΓž‹h@{wΫE΄€ <Ρ€φξΆl Ψ°-`[ΐΆΐωox>―‘]ΒΗμ$ Jα &dΰ°vΠr–Sr O jP‡SΡκvH°ƒœΡΥΊSώί(5avh°£γ\+<›³^™γšΦ”'λη£’ΡGBeα,&T2ξΗ4ΟGγΤQ͈Pρ[4AΜλ+₯`ΗpΚδyβ€Jzό%θρΕluέ™9Φ!tЎž+Žθ Εcθ@ΤWΈξΟ3s€‚ε’`η‘+ŌO#"HΚO€²σY„uiΣϊSŽΝ~ίu―“2€žύΚΣ«sύNωδg9±δ Χϊe€όθϋΕ Θu{{…mΫΈ₯";½9°j'ΫΪ΄ BΪ€I“τ"υΝφ-ͺZ遢M¨ΜF@”mͺ„y@αvxΦƒθˆφLΉφΪk|ΗvF8ΰΞc―X±BjΥΎ‚Mι ‘?¦όΚΚΌ¬ΣgrΠ‡ΣR/X°@ύ'°J΅ΛV­Z©vrπL 6.Yύdν– ςΠC©€3ΧQO}r捳w&π6V__ηάy2f–ΜDš•JQͺ£R*€A•(’ŒId(Q’¨hΦ€€R”!"Sζ;Έσ9οϊξsχιΉΗΉξΰ½ΟϊpΟ½Οyžύμ½φ~ΦΪΟήΏυ[°ar6ˆΛZ0œ=‹g –lc²qώε?υαύηŠ+ΨpΘ¦=lΓ€N€YρϚ#/˜š’oh+ŸFeΐ3ηΓVΗ¦ΰζ€°[²±δΊΩrB?©νρλΖμΖΤd³‘¨£'@ ‹6 €›i]Ίt -֌ lA`€9Ζ›dθύ;ΰ0›f0=;ΫΝ=fϞmϊ <ϊπ l¦΄ΊΖjΉž?“¬Χή’ˆκUdγ}·I#Ό#°E3ŽΚ—l(3ov¦ηΐ=π°‹ŒΣ«―ΎΪϋΫlΨΥKΟ–sH­ΧK”Φ¦>κYžxŽ0:ητάK ΧTο?6ΜΔΔ΄Ώ\|—_P(C[±Οšβ>εeMσΌ@Cy`œ£«Kœ2:ϋklͺςŸό‘μŸιού »ήό:ΐͺ,Χξt‰οpζΥ\ΐ₯<Η©xξΨΘ†q“g €UceKήyο`ρΫ"Ω€Š/!^rOj Fή-žΔ«Ψ‚kμσΘΦ†ςž hP.Ο9Οͺ΅+V{”Ή9[Κ—σJο;7Ι±Η62ΑœΓ†όcΚL‰Eύ‹Z'μφΫ„MΒG`³?ύτΣ = Ν|OωΤuηΝŲ―°•b ³ω¬ΰG¬ΝΈυηŸArΖY€ΩIKK“‹΄­—΅9_rτv ‹pφΘ€AΤΪWtE[π_¬!„ ²8ΠnκEΫωδ|' Ψ^‡ήρΫuΆμ–΄Q/˜ΓQ­[Hz§+Œ^Λψ$X<ρΗΆ― 0`ΜSΏbυ‚τa['λSΈμ2Ωs₯ϊΖ:GKn­jRξ’σ$YΗ4υΩ_ΒΝUl[KϊyΔž΅ίύίύ,{g~$‘«Χ،¨+ϊN›{΄ΛΖK€ρ½»t-$Οίμ££τ ‰Ψ€ΰ{ΐ*ώΨhΙUΖη¬γJRΪΚ¦­>Z™™ύD¦¬] Θ_VJδ7κ+w₯™k$.JcU$G@Οj.’Y ‹8b~6―Ν7ΧgχΓ<ΐ'krK@·;UΎZ΅Bζ͟oμ:„ H¨έΰ˜΅­ΦiΦƒ—Θ»Ο2σΎs v›Œ$ΜeŽΚρKΪύƒ p:Z›imۘηšμ°»3š1c†»V^© ¦wχUvn/κœ1aά£²,35ΘνΌs/lMnΗϋ$WǏ―JE‰VΐcΔ•3ΐάΠwžkήIΞ;ρdIΉμVρι<;it_Ω^©\‘mχGߐDάq‡u…φFϋΪ΅k_… DB}i¨-cΘ±d™$>O’uŽ}R3ΙΌεZLΖ>ˆIύρ[»vν2ŒΦΨk_±…Υ  ΄΅M̏ρίϋ{WaJ½mΈ†zΓϊ*Ο>ϋ¬ΔmρŒ”ΉαjΉΈΣE·ΗΊŽ=ζEρžv’€΅8©ΐΉσ‚9ν;#u[΅j•έΟ 3—`>ΟΑ/’'=ρ>@Π'γΑ‚¦―(“ YήO)ΧϊΠv–τoΖx‘žίωT²¦ΏΌMΞ1š…―»kV +Φ/šΑ&KϋΔ«A$Hv“†χ`W%`(ΘΤ3{ždNyΓΨjŸ²θΗφ²4³X’v>eόT‰YπƒΉ,·j%‰δΎβe5œ=_²&Ώi‚dόΚζsΏκ耦…VΓΏξ―£τn ώR[Σ]Χ³N?±ΠλΜ rNt¬xt­›ΆΗχΏW€NΝB―υ«J’ΩΥ!Ωg(ΩHχΞ†$ίΕ6ΛήcΜ:½Oΰγ½_δθΌ~m€χ³σώΐΞZN†2DGX£ηgInύšύθ"Ϊχ…ŠΕd<ώœΎω$ηψF’ψH7&Ϊ…^VάΎϊΖ+ΟLΨΖΛΟO“NΧ–)nξω₯ ήOlp Ύ‹χ‚±—ΨA”γ*‡»-ης.E¦όεT­ZΥ”ΓΎε: 6Η‡!ψ`ή•XΔ&ςώD€ηΜ™3ƒ{‘άŸ¬ |‡oΔφ#‘uε}u₯puε=₯4νΈ x6]ΰώp5π―iΐ‡›Ψ8t¦γ³‘ΟHB}Yΐ ­/€ xζşT‹,τ"lΒΥ.›ƒιΗαxφ­έ ώn‘ΝΚD;UΎGIΔ“D©RΛΓλ}ζΙΦτρήle"Ϊδ4«/Qοθ£. 1 Τ“_, λ&RΜΓ ξ_»tn΅j€ΥΊkΚERΘΖ R†8έώ·$w{Šlξ«ΜΞ v–„h©ΨΉZα γƒUί\Ψ‡Ό)ώ½ΚΖ#•ϊ_+u«z»ΜyΏΙŽρŸδ1DWͺƒ;ˆ7αζ½B pOp5PŠpΟ₯¨ΜPQl“вž‚θMmάΈΡl¨³aΒ1 ”ͺXQΑ(yΞlš[”\ŒZ8X‹rVΐ> ° °έδΆκγΎθς;¬]°L:… vÞς©ηφνΫχ©λ|{ΐml ,Z΄Θ°;ΛP·zυj³ΑBϋH£l7Urw¦‰ύN‰?­ž¬Y£/ΚκK»i3AjIM}Έ†η*ΐΛ½˜3΄Ζωlπ£ΐ'θυ«―ΎXΛ`CNMM5@bΚ’ό!C†]τνΫ7p[ΎY*ιOO5›˜εghϊ`έ ζšsΞ9Η€nP'tO»ΡSa m£o`ŽƒΥ™:‘[6‘`&e“Œϋ<θmοτΑΪ΅k₯R₯J¦ύθ]1fΆΑb *@]κE2weΛϋηrœrΘLςωηŸ›y/,’φ8ΐKΨ^ΒΖΩ€I“L`Έμaκ΄y«d+q§ž(±€xVρι&Z œ›€<Σ§ο ’Ϊ}σζΝR»vν|γ”1ΩJ³Md|9_™ΊΏ$WŽ9ζ˜υDŸpgL£·pβYΆB2ψμέ±Λ|«`―Ψ;:‰ŸθH‘ΟΚιωθsΙzη£@Jy-+WAd±ιφ§Š?βϋΆ%ΛΦ‘οŠΟ«³§\ΌTκyΉD6ͺ~D΅ηΦω~ς<+glːδS%W‚Ήu«KΕ'ξOωΔ|§σ €ίΎ3:ΏΌPΣΓsœgq`³ό˜5eΫ”Ο%ώ’“%¦ryYΈp‘ Αςl色ς¦g5£GκM½KΌEΜ^B06Χn˜;λΒf:Α Ψξϋ4›ηΞ¬ώ%2xtΆτκš §œ Μ―Zj¨; b| Ίγ™.Šp}–‚4=jG± Ψ>Δ$;ν”Π9Χπ=z-ŠpΎυφτjσ)¨}Ϊ΄iAΦ4ΚΖw :t¨Ήοϊdvr Œψ]=Y|υ‘ΨzΗ{L(Ζί`ωD―05#ψ:Žcwv·hΡΒ`“¦¨seΘX ;rϞ=ƒ6ίΆs±ύψ€{花Aδlά"ώoΥWύ°L|½»H³γ›ε Ύqφ5zP )Nί₯>4L< τήΉρ_¬ŸP'κ‚Ο@NŸ­_Ώ^ξVV» 2>Π=NΞ€ ‚κ„.JS{ΐ3ώJƒr`g–m;$yε‰όρWe˜TΠ՞Te^Ξ ΌΟκ{°Ώb’H™ψΥγKJ”ά εΔW‘Ό$Φ9F3TΠkΚ‹υ:Ιόθ ρΈ­’[­²Δέ­ώΊqύ|eω3²eΣγo‹¬Ψ$Q©;$&>[’“r Γ°σD€vΩ €.Χκ ρ7ͺ+°iΒά¨Έspμ s=„η™ίΔB°™ Jg7Έ†uΕλ>]Ϋ4•οZb€IΨ&"xŽ+T¨`ζ~ ˜{ΜΡ@³Μ—‰W―έR₯|yžη~εΚ•f~7kΦ,c·yξΞ^ϋ·‘½ ynπ˜™@Ζ=x>is-eλζΉeŽχΚΔ4CA;ρΤ¨,{g<#]|‘ρOΨ)ήI윐绐κ¨[$φ΅§ε—„Θ  gΛ$Ό·έ5’<ψIρ+Ρ§ λ5x Ĝ—Ή0B»™‡[–γξΧt¬?ΦKΜ™§ΘΥ θτ₯N»ί"ξͺ« ϊ"Κ$ΐ[cϋ›‚ίΒ–`7V?Σ΅°M”G @σpuϊQνΜ«Ν|WλΚ<ŸΉmλΦ­ΓΎ«ρΙ³$ϋηεζΉφh–8oΛζ’£μφΨKϊΪΪ|σ’KšιχΠ¬j‰’τ²‚3uέΉ(’₯ΜίΉž€ Μβœ[`λ bzπΑΝ·φ•±ΐτG_γ‡Πύΐ{'ν΅ηRΞε½ΏΜψ‘M[) ΨgΟ+ξg‘€g%ΑHϋ’DlΩfІέ7榫E”}ΈD’φΨσώ§’ύ†ωk;!£ˆΡΐKίy%,/m―€ž QΏόnͺ“Σ°Δv.«ΆΌΒJ{L3 ζ±+gjΖ„€·3 ‹VŠφoꨉ½ψs~NεŠ? »h*§Β―W”ρ€Ϊ•leΦη8Ά_wρΤ«Uψuœ‘ΰαŒaΊΦ­5ΉzΟD#ϋΥG*;χHκΰq±9Π―—œ-ε;·ίχ²UΊ– hvόε’$nHέ›Θk`ηGυyΆϋτžρCΌ¬ώ0¬(Ψ9]AΣQ€3τΉͺSM’ϋθ{πι'…==ίAeOπ”ΡONέ£%ρ±žžοœRόγ…WSdφΌΐ<ΰώ.QrVσποΌ₯xK·¨ °ήe³†0JώΑ§8•1cWΓ­M0§°ΩWπΰ¬ΰo`ˆf_’`-³t(yvš LΑ§±N†mwΦς λΟΒΥΫnΫbλq Ÿ.ΰω@΄η^λjΰΐ5ΰž\‡n \ Έp5ΰjΐΥΐaπ|˜w[½ƒͺlzX,RΨE]6.X(”ƒπ‹0ΫΑ€„ΐ>0ΘΉlΎΠ+ΝΚύ·Ο^Mλ–;U7ΏrςΣ"5uaŸ;ΕΧυ&ΫμCσ©Μ}ΩνΊJδς?τ~ΚΖ!‘Κ†μΏ£γΑΉΏYž  ΓΛLω9šΚ.Ύ―‚5νriˆϋe’ωΤρ³[Ή‚$<ͺ‹ΞEY.›‡)Γ€ϋ)Έx·²[*ΨΉΪ k4 y…0gΪCΉΚZφχ ι¦)xTμΡV’O­Wh%2Ώ[-;Η|(ώ\έΈ¨VVͺ>ΪQ7’ŠΘ(΄pχWΕΠ€ x.†²ώΚΐT6ΨΩ¬‡…Πΰ\ζSŸΑθβάό§"ζ5l@³i ψ°RΠυΞ{Γ(˜€Ml˜Θa@(`7J,ΈΓή—ΏΉΜΐι¦L™b˜’a.e.Ε†9χlΚ Μc‚‚Μ²›RF‡‚σ¦ά­Ι²eΘΫRυΞ $εθƒε”4Ϊ’Yp1εP'| ΦP„Mx²c 6œΨάΐf h²~ΐΗ¦?h &γ|s9Mmλ[ΎZ~ͺ_%Πγ\ΗΉ₯Q'R‰θΰ5LΫu’Μ1ΉlsžGŽiΐΡ΄ΐοwτΊ†­€#ν†5΅sηΞ°Α8$ΌNΩƒθkξΑ8Bθ a<2ώξβ€!ΘΦlΜžŽ‡δΙΣ$ασωδϋΑ»°g ΡNΐ3χX²d‰|ξ©ΰ;Ζcν]ͺχτίΦS’/9_fUˆ3υtMϋ…Γ͘’Ρ sϊpЦ@ϋCŸ»δWgHάgσus:°9™₯,kρχަఊφ¬ΰη~ΟΪnΟ $λΝwΕ£©žΏΞc:΄_ke7V—%sΞ―²γ₯/E²§ϊχœΫXͺv:OΑ¬E`FΚΰσ:`_„gΠ2㻃ζyψEmZV—1ΚR'†uO₯²ωZΑψΖR‚-κ©§ H•±DπΒX|•σν*Ιόu½€|ΏRͺ ½Q"΄ΌPp(vόυ1eύύ―ЧJ’4˜ΠE½πΊRw‚*r„*Wn_ ν¦ΝΦVŽ#¨ΧιsΆο`—¨iΦμ­Σ·πμα―μ»3z*(%σReφΟθ3BΗ 0 _{ίύωtfƒiŒςτ~ίΰΡ:λΔy( ΐ·K.ΉΔά“k±9Φ‡L:Υ―ΰ­ύ£ ύϊυ3vΕή“Oτr]»«τν‰:οLω(6Χτ5`Ξ4Ž]ŒHV(τ‚Mηo@}Ψik_aϋ€_—P†½FœφΥϊw€q€ š[]γ3œ}EβaΞG `KrΓ¬l™Œ?˜ίΠ+€g|Dαc™Dέ7Pβ_!-Οocμ:Οχΐ‡pΚ΅ώέΆ~(nLεKιΗΏx@GΝΆνόΈ{υ‘ΰ5ώ|±'ΩT ο«;Rό¬υw+ώ$}w=JΧπμS@$¬ΜΉ zšΤlXšν( [fΚΤ7%vή’ #t–²5'ήΩΙ€ΐ|ϊώΏiπLρoήcnνmέ@jάu‹[" pέύΥBƒ­–Θυ›Ηl`˜έ°Ά²?Ÿ&ž›ŠΏ|鬓ΨβΦ§s\9ψš?#εοM υΉ}ΗΠ…Φ› ΨΤ ΟχyuNo½J€„ ƒ]˜σ°KΜk˜‡€fGΟwQύΣ―Ώό*2β9){ο­rΝ}έΜάϋΓ3‰­Δ·0‡ΒV!ΜΑΫgΗJΤi'HΟ‰ΟνΗy@Gί|σY eξΗσ=ώ>’3v²‚»}Ά {JΑ]f%y υ₯΄οwΟΖ<1A’ϊή+wτι-Sτ½‘­Ψ(ή xόρΗζ8΄«΄}N ™όΑ{¦]€Ίρ}¬χb VΑnQ''Aώ{=Ζwΰ+ϊ 0ο­Ξi%MΏ^,Ω:?tŠ·Aρ ιmκEΉφΡχ3Ǎ—έ/MίQε%ιζrΪ-‚τΎ Ϋ ({pο2Ό`ον{A<œΟqζΜE˜;m>Χc—ψl5λߜǜPΌs.m})Žΐ;ήQ8ώδ“O³Y_šούΙ\QςΜΒ2<λxJyώU‰ωfI°π,˜u»u)Ÿ^<‘_<;vJΊpFώΉΡœ™[£ͺΔφAΉdδžUk%cδxρμV―Οwϊ₯ηIΩΓ€v ©—ό΄\²žšdž!ΏΞ1cοΠLƒ­ZvΥ?ί+x8]Αy`iώRΠuLαsυέSυ}ι£ΉΖζηV―¬ i]_(βzυΞ·?–ψ7•€BΗU>’―ήΣ¦ϊ§vϋόζΧz¦+Ψ™€ή£βΊkpΞ'ξsž,]!ι#@μ\³–`η y}vNΦ»`ί€ κτΎ£$RΑΣή”T f¬*1:Žό矽ο=Clώ[)%/1ϊΦΛτ…žVڏ|v―|χSŒyΝΨ3RI¨ΥO»rH4€°ο ά0tΜ1' zvΐ³ΝΚ œ¦ηχΌγΰ—ψϜέέ@Μd…΅|)ΑIΎŽ9Ύ}ο Mš4Ι·ΖZWΈ8VZβžKK“n9J¦π\2½ΉWΉp5ΰjΐΥ€«WG\ΐσΤYnUK]l²YhA€ώfα–E[{I8Γllλ"= ˜ω°θΝb‚s!ΨV23–ζBοΏxφκBavϋβeγ ΜΠ°–Θ»”•’d Ɂ‚ŠΣ£©ϋrξθ+ήΤ s1α¨ΧŸ6μZΕ/­Wθ&dϊcctaX7υT2Ξ:UΚ†Ρ~/ ΩυΚ;;λ+³xœS·¦$ΈGŒ=0OΣΦnzψuvφΔG+#ςαvκZϋ}σ ι"”APΗaΉZIάε§Ώ.θ—¬Ÿώ”ν#ή €υ+&JΥΗ―oΉΐζZAΧΈΗ] ”Ά\ΐsikτΘ/y`»y Λ/ΐΜEψ²α€XΠPΈ9ί‡nΌpΜJ(ŒγάΫ2ρχ @Λυž ―ΜΘ”ήχΔɎΏ6@lΎθʘ Όΰ<ξcΟ”μ_}@IDATΐΑ²Οφ˜ΝjζE:h#μΘΜ³{ςrΆr6μ”œJρ€ ΘΠJ(Έ˜z„τΑοΖo4σ8ξS>-W¦Ν›dΌα€αμ΄ ΙQΏ²9:3ΈD_P_gΈsCΘήwu\δOI3~ή«›ΓΣfΌ¬:―V­šaμ±,<¦NΚޚ>ω ‰Ή°•¬ΣtυvƒŠ:±yE۝vc£ ›a°ωtΣU`֍―Μ Εί΄‘Δ–+k@ΒΩ= ;Žθ'ΐ7€ήfΎΛ¦σ]X„œuβw6Τ`¦ ŽΨ:ρ•(έΤ_ςΧϊ ˜Ω§m0ξ1¨/cŸρm7λ،£^Œ}ΨO-Ϋ8ΜzυΎώQβ›5‘‘s?3σpΐτ-`ŽP‘Β=Οό½}‡μχ’D―0Τ"ˆn™ψ/Ώ0h¬ ΐ³gαχ’ρΚ ‰PΐšΓ₯΅i)e―»$IΨ[ώW’dΛSο‹ω&Σ€#•ΥΩφοtoθEπΚTφrΟ–ν²2Κ `ό΅©!ήλIDΝ}A0ŒoΛξ ψ vqΙ3‡M΅¬Ζln_•Π@v}°H*vRn`υΑΎNύΌl8SŽΫIΦlΩ°O]±W<£°ŠΩvPWJμ³EYαΠ,¬ξΤwΜ9ω6Β9Ώ ›oƒqxna$u¦d0…­λWͺέ° Σ\s±/N–Χ©l(qζgJΚ³S$ZFώ‹[›ŒΨ |Œg–Œσ‘P.ΗBύ:·© ^Fίφύœ:[/¬<ηœO€3φ5YΒΩ“Δμyp¨”SΆR *΄}Mψ”₯Χ«Aίmό3__8›8qb±μ+}ηVΠN+‘νεΈΣO៺ή}·d}³dλϋlΒemδၠ؛66ν Ιύϊω£iΰ˜aμwΏε6IfŠΔtl+Ώ₯§Ώc<]y[™σΓχω‚ΐY7A―r K‹κzοygI™Ϋ΄LΥy±EΗςž©oHά'ΊΦ«Ά?W!γΘXηθβ₯Χξ™4MβΎXhž‚]bϋή#rtυ"—γYω‡€{VΌ°ϋk»’υΩ‘+/,όzυι0BG鳈d7m ‰뽕ρΊ(²gΒkσε·ζԬӎ—2=‹ΆŽξMλϋψ„c³Ϊ·x%7‘¦υχΉ%-2ΙΎ€vΚW£ŠΔΓμœ8ο—•Z†Νυ9€ΩΉP°sΏ'%Rε½κ―sλ(Ψωϊ+ΕνεϋάsŸ»’eοCΓΕ»;E| ²‘Α-e“φ9ν``JΡDΊ¬ό#Zqλ~yμ‘HQ3ηΚ!Πσ|2*`›Y?!€ά¬Ε8ξΝz ™\°_Ξ΅"Η)ζW³ Ο80ίϋφΊsηΞBf-όΰάΉsM†,ŒμΊŽs½ŠϋtcΧj°η¬9λjΧ\l]Bλz·Ύ7„ΎsΩsKςιžK’5χW₯§π\zΊtKr5ΰjΐΥ€«WS Έ€ηΓ΄cάj2 °p Λ3‹ €#6­Y\f‘›…σΒ€ EΒΫίχ ΰΉ‹¦«όδλ†b"%β‰ήβ»φ²ύUυΰ|Χk˜ψf|*]Ωσλ"Žη’³Εσόcη^Zj`axl`aX΄’uΓEsΕ•ΚύόΪ†δ'_’θο–™ς²Oi*eΤΰ’,¦—Jtύ\+ž.ώi ΊV°σΐ«%ςe‰:Μğ#[†ΎiμšͺVWͺφΈlΜξ―ͺ9+7ΛߏΝT€nώ”O*C:(ƒή‘Α>΅ΏvΉί9pΟGN_ͺš²Α».@T6¨VP°β-폆σΩ¨€Α³Žnΐ‡Šs#έ~Η½- @Rί~cδ›rδŒSδ’DlͺΓ,Μ†υyηgΨ'νΖ7ΧRζDlΆ³ ˆƒϋXΐ3›3£Ψΰ€₯— ηζ7-°’p2Ձσ{·s. g£gFΆmΜΧ.X°5μigζ–•H&v`L¦Ν0«¦kΦΔ―ΐ΄H(φ°S‘›=%“¦Ζ͝»HV{rά ½o€κΠ5u"•·Ω`ZΏQ²†>-qΟ —ΣtsΛΦ @sWΛŠξ`ω Š~—όΙ\½ΨΧΤΑΡO’”!€ΰf˜Ϋ,‚ϋ;YY™Γ8ΆNy7$pΝY'gίQΆe-‡Ap#ύAΩπLΓx;΅g؍56yG΅c™C‹R&·ϋϊχ3 ₯0M7‹K’¨uL’:7ϋ‚ϊ(β/Νβ‘ωΒ+œΖ% bΊή"ώfǚBϞ₯ΏJϊΤΧ%rγσ=ΰ΄ e"LΊι͎‘·ΩnΎωoώΘ^ΊNΆύP$-+ΠΐSŽ‘jχ^vD²:Ϋb\;Sd’2λK‰ρ‰IQ]ζ₯'€CΧ;ƒφϊε^”μ}±m¦8l₯šΑ&ΩFeΞgϋΚχφΊώθS%ͺiMρVΣq·ϋ:ύΙη%WηΑqυ«ξSWž+Ψ*6Α­oΑvτ|π,Β.нεύ•@ A¬½§ΜύΥiKo+Ύ$˜c7μagŸiʈΥvέ‘:›’ω©ϋ”WηΟΙη#Œ]‚…°Χc’€ιϋΏόbΠG`ηœώΡYοP?dAΨθ[ΰؚ5k »gεχί‚*`^Ζ6b_±“‘Ÿ}φYLζΒ'u κ†τμκ#[œw±qτ΅e5 U°Ξg· φ5~&Τ}lΎΉ Œj_ΉgQύ;m&(Εώh35ώM ά_»A²¨ύUDΆan₯ΏW,^"e·ο‘IίΞ ‚°ωYναΣ/J’²ήΊk~bnη*θ˜1 Ο³dͺlv|Φ>uΚΣ+c? ›μΑXCA΅ xΦ>@μ·θηΓΠ¬ΜΜ€šwξ/ »ΌφδueψνŸ‚‘rψ2)6^~ϊ]Ό[vhηG ³O[ρ Lχ\ΨRόI7@Χ³|₯μ}nͺD¬Ρ© »Δ-©5IΩαwIτq5Γ·!τ(ν^½Nφ|υ­fΰZ₯~qk>]ψγb%§QΓώ, ΰ.­,Y‘Υ(ξίΨ΅™ƒ/^ζ‘'žΕˆœΤ4SΎ/^ηtωk-fŽlJs4¨"pΌžhƒμάΩΪJΰ™’ύΎF<6ΛΛ›ΧŸQόSa6ŸgŽΜˆaŸL,+ΎEKdο7?JΉžwJΟ§FV`ξ?sμ³²:-Yš*Θ!ψ§Βΐg$':Rβ»t”¨SŽΫη%s`άvΚƌ ώMΏ©?'IήnΨM©ŸΣ–ΕvΩΎj=ŠλKοΎυ6yζ…‰½{wσξά»NηΣ>nλ½#Κ&ΚWΏώb˜’Χ«/'—?J–e¦ίm7Vfi7‹u]N‘Ÿ½.“ζ}ωήυϋ¨ŽχΘ†g–jtχφσ“tέp4 κ²5ΛIφ‚οΝ³ 0Τ―Ο΅&₯3’0¬ΌςύΒ°οO3Ÿ§ŒΩOIŒ>ϋο倘€@aκά3n²ψΤΧψ΅ΌΨ“›ΙΌδνωμ%ώΠΞ)—ίQ3"ΐ―ηΗhΠγ‡}”ο|Ζ>ΙΆΓ{X¨0_wžKβKsžΠς‹ϋ7~<ΘπΌz­δ(p?J­FΤ¦Ζ\rψΉ΄δ¬ΊœΊχ)Νθ§s{ΰjL―nβ―Ώο;΅9‘°ψ™6|œD)€Ι:Ύ±$φΌ«HΜΖΞ’sοφŒDδ•“­εΔ?pg±ΪιΡwΒΜ)Ίͺγ[σΰ"Ν9oώwΝX“¦‘yŒΠηŸ%eοPπwQDΗjʰ紏V±@!ι—΅–ς7]U”+5Κz©dŒ{Εd?τλσ7π^ρΤ¬Ίο΅sΏ“ŒηοΊ9u–ΞΣφΡ±‘‘`g5€†1=ah―‚™·nWfηΡ‘A ‘o“ ˜Θ:λIμΥuί{†ρ§νU°σρχNρ%ΔIό vΦχξC)γ,}†fΘ_›£τυΣ'#ϊEKε£ς Ξ‘¬Θ³{αί¬/+hήκτ_ϋ[ΏΒ^Ά£&Π»^=σ΁νX}ᅁξ‘ΐ AƒΜzˆρA:wΎγqΝΊuλ‚ΑHΨsώζ½ΖΦŸ|—ΡΎ ­kθ˜³{ρ―d'(ŽπΓZ εl䊫W‡V.ΰωΠκΫ½›«W\ Έp5π/hΐ< JwoyΨi€ €:€/t ©Ω\…‘… 6οΨΔ$’Ί0aΡί²gvnQΏ?€€gMΏθ»ερ€€WJ6(‘'7ί;υ]΄?„βQ6ͺ¬φχHδ¦mζ>M‘νyκρκΒφΑΟ'staXA΅, “–Ό$lUNlR5rΔΚuζŒΜ‹ZJΉ[ σ/Š;?’ΜΞΫRΕ₯ΜΞνK°sPEΊ±Ίyμ{" W›Cž†U₯jΊ©³±™³v›όύ¨φλ^eΏ,'•]+5Ω犫C 6"Y &ε,,ƒΈ`ώ0(μk:uΚŠs‚13€žwnh„jΝ69@Ώd­ }}ΈΝ€–υrαΒ… Κ¦:ι™™ο4ΦtΣU«V5 lZ[ΰε’Ω²‡²‰BV R's x¦l†0*―iΧωΞ ί‘φή2ή± ΒΆv[φ_6f¨lvlΚοoΓΘYΎeF›7 Yb“3eǍ-eΞWs Έ‘yσζf3‰λ,HΪΩΊ^eZm\έZ'že2ƒλΤϊBΙSΓVaŸO―φυ9­ZΠ―©Σˆ‘’αχ™ώœ£(νSN9Εa( B/W0ž­ ίγ›6•HՏ™τκΥΛ©}DjpΖTUονΡ 5Q¦ͺ«|[&ڌ3e€ν8aΜ̜9ΣΧμ&X||ΌG‡­“φ?γΥΦ)ΈΰΆw Z¦OΞm’™+ώΖ λ4cƒΝ7ζΫ°»R&γ’ΊΡί<π€ω` ΣLIθkφμΩfΌΨwYΐΡτ':(1ΘBΗyςΛo*‹ΪΓΖύ2?VψόΕ’ΕΆm[%νJ’5οQß|m˜2N?I;w,qϊμ@AGΖOFΆl™π±‚Φ˜ {tN^ρž‹%ϊΤΊGFφSKžq ΨΤ9eδ“’vWsENΥ£$φšvςΪ‹&d@œ£x~Β 6”ΝiήΓ₯9fœΓΤI6­KΗ›$'VƒJ ±―o)oΆΧŸ\L]CΝάŸRX]©Ώ3Έ€4γάΪbΪVXFyK&Oί#C*/={φ0sW7ί|sΎgύΪ”Νψƒ·ž+)ΚdϋΞηŸIΉrεδΚσ/_|¬βUGjn €…;7ίa¬$ˆΖi‡œ~ΘžΡƒήrOlΞϊυλMΐmΔL/f³@΅³žθΠχB°‘Ψl€_‡φuέ Υ9ΐD‘}}gϋλdΥΞmαmώ~μkqό;Ύγm§¦¦Κuη/ޏζJ„‚p K3/ϊIRg|¨`2η‰―R‰kχ?ρœΣΌΘ šφΪω̜ PuŠΔoU¦fQ0ξ1$§α1’pwgρ+p±EAzςΣ IQΆΤθίΧκ{w °Μ–“«ΰ΅μcλKΩVΚώ\ΏΆρ£φ»Cωy sπŸWxδρ±€’EŽ?6Kι§s—ό΅Η6ΑΌ !Έβθ55pŸε΄HωHA¨€… œΗ©½ΩhRΑ· C’ϋ'Ž>£E±ωάίΎc0/ƒiέ>sλόΔ| ΦG%Ήΰy–“w—-1ΟhΗ-ΕσζGβUfqΡq­`Η^€ζ|F±m6ψŽφ1ί»έU’£™F’Ž©!sΤΨ‡ ~ηY·~ $φ΅Q£FΖV›BυG¨}ΕOά–GPA]ΉsHΪΙΉ0NΧW ™O@rύ(ήZ5ε½?W[Ζϊν―K–Jδ9 ΜT, ε(e³]ͺk Ό/!ΨΎ¦Y~™΅qέ~ϋRL¬μσ’₯¦)ΪUםtύ/ϊψ¦²ΥΙA–nζτΫ·oΎ?Νύ΄μν1X’Ξ9]ΎkήΨθΛ°oOzQR:χΤ ©"Uβϋt“i«5s| ξrzΏ;ΊίgŠ˜Ÿ,Z΄HΚοΥu\υkΩU+IϋφνεΓ?4c~š·ΐYΙBRnPOTΑx€”Bέκlέ- α׈§h .¬#3Ξ7 μ’ϊRSΩRϊαέ€έcn»^DύnqΕ³zd(ΨΩC– }n’;]-rρΉE/†5ηQ€ΈW˜krt? »NdŠ@h‘λο鏎1¬Εj¬$φ^υgœ\΄{«ύO2NΔ›ΝΎAL[ΕΣΌY‘υΏχ…dΌφΎ97W39&>zΏH…²ϋ\λη3ɜώ9žέΈŽ$ ΈχŸ=аsό°ή3.vVfηuGͺMΘ­]E²Nj" τy 5θ‘΅ΠwΖ΄G(­dcˆS<΅ ^½Ό4NMσHοΗ²4Λ«κΚ•’Ιti6γˆ*+ά<—χ§„‚ˆ Z·F_ j$ΰ’΅‚P ·b³ °Fš2φΨΎσΨsXGΑΗΫ¬:₯ x^½ΊμΩ°—φž…}°Bv#π\˜¦άο]  Έ€ηƒ£W·TW\ Έp5ΰjΰ0€έ$.j•x±qΕΥΐQ, ςΩΌy³Y„°aQ—φ*ΐ³e3ψζg³@nΪ%žρƒŠ·ΐZJJσΏςψΣ”ΐ٦Ĝϊ5%ϊέηΕ―‰EtC"U¨£—.άOsΒ%τοQzμJ{R5₯ζΣ±ρo³ˆwοMΚ}ςAiJQ υ§dΘΖΎΚμ¬`g‰Žjƒ‘ΘΊ•ŠzωΏz^ϊ'K4Uδ1[j”—*;Š·lό~λ”»q§lν?=ΐJ¨LΦ•\+‘uŽŒφξ·aξ—‡½\ΐσaίE‡΄‚‘›‘ΐQ*γ^DΉ€0 *έ aΞ³~ύiΤ¨‘9°Γ„  ΐΘϋ0wψpMΣͺη@ψ΄Vƒΐ,ΐ'ξcϜΛuΤƒkΨτμΘlΓ† ·o_œμ ƒ/τœ@«έ€$qaλ6rοχ ‡<ίr›d‹Ϊύ0‚Ξ,ϋ4@€ΐ€z¦۞}[ΚVT@QΛf’©ΘΡMk05›V‹/–ΫoΏέ”H]–*θaG?Mk]-Ijυl»O`΅€rκtkΥz²{Ωoš­A™ν΄έN ­ξ¨Γ$C³;”½λz0§έ΄V?Ύ['Υ¬ΟεG ”ioΎ!–ωΪy/ϋ;A|½{χ–έχυ—eŒ»ηρ*Ο―¬e{32dεΚ•ζTτ;hΠ σ;`O@άτ@™"ΥIΑœ‡ΠNΛϊIΏ24’²K[†ηγΤMτw>”ΨΑΙ.eΓlρΐ @k€‰m -€ Ρ f”NθoX;NΐfΈsχwΜ³u›€Ÿ,Ρ+VO›Χ΄\>β1)£zΩpα5ζΈEά’@ηjU‚ηύ—Ιώc«l©Αf;|‘β©_Yͺφ ε.ι‘)φΚJΨ½‘b-IρM‰ΉΈ•l_»GΚΤ;ZΎ¨”mlc-\ϊb[Wμ0μYπyν7χˆU`π'††{Ξ·@0Ζw¨}ψ°2€Οz/h_ν¦vh];wξœoΜe#ž{SGl7@η‚|Lh°œom>€η2dD?Ά‡±ΣEIΙόΕϋH–‚yβ:\)’©ΐ3ψIώΈ€₯ΡU¨`“¦KτHΫΡ«Σ…ΦΙκ ›dAμΨlϊ S8ΫrΛ–-ƒ€g|Α”)Sœ§εϋϋ0kg_g½ύ©2ΏΟ”¬S“rέ-±ͺ_|(Ω ϊϊάΨς’£ΐΪΈ+._„w6ίa_ΉΎ ώΦ«Σ$ηύΩ’ςσr‰T–Β©ΕχΎ[Ωc$CA΅;―<_ΆηdIrr²ι@ΰE.£€(˜‡˜±”ŽύIo˜sψ‘¨@žχΧ¬Θ7φajc ΨτΪN›‹ήΡ3Π/€ €Μhύˆέ€^Pμ3¬Δώrωe—Ι—sζΘΐ;ξ’>—^!{Φ¬•€Μ;wIδέβQ6Λ" γOS3ϋ`h[[‘ ζ£τS³”RφΧέο~*Q_.’e΅’[§¦Δ·Ώ€Θ 0{]i|¦NϋFv½ƒ)*’Rœ$­ ς‹ ¬i_ežL’ξΠυ /‘θΨ’•keΟΌoΥ§* φg‡ψγγ”ύΉ$Άl.lFk{kΖ‘`Tœ9ψς•2&ςΠΑΞά‡y €c[ίήwΟ½’™­2Ηβω+lΧKAM©ο—¨1ƒεάΛ. >£E±ω00ˆβ]!Xƒϋ₯€€f_Ž1Wcώ[3Χ#~΅Η5VΠ»Ϙ%;Ϋͺέπi XvŸE;ΣΎχžΞ Tt‘ΝΜγi3°šyΎΫPRϋšΟ—jΉ±xβ΄―Θ[6?MZ΄:ΗΜ И« λΠ9#υ™6mšT_φ»D6?I?χ¬aΧ\όςΣγΔ7λ3I]υG`ξάς4ΩxaKiΠ@ΩξU7Q¦μw~όΠΎcώjcΈΆ0_ϊφλΠτΫjρ+Ψ:ΊN-ρT9J"Tgιοf‚φlύ[Κό―΅μ,—h‚#±‘†Zُ}ίύ$?z³γ^τ+VπρdŽa "’΄Ω™)YΪΏV<š•Δ“” [zέnX«9N;Ϙ-ΉΚ؎$ μ!χO™hόGaΎτΜJΥ5“έD})ˆŸŽX© Σ΅ΪΐgΰΗɎR‘ZU=GƒΗψ^3"x<Κq€Φ濞χσΌrΖΥ:WPΩrρM£v8ϊΖv"m/0ΗJτCη)“^•Έ9 $ pŽΎ³“ψΟl^’βˆ~H~^ƒkη~k7γ> Δ­Y­Ψενyυ-‰Σ #κœΕ_6IbκͺlΣ΅‹^Žν€?ͺkΞ|€dx¬$*3΄Ρga₯όΈL2žRΦr]‡΅8V³mxκΥ*μͺΐχjίΣ+ž]Ιb2‘ί‡ϋ›l3Ÿ}φ™ x§χ˜«C π|”μήΒΥ€«W\ Έψw5ΰž]ύ»ww5P tΐσΗsΔwΟ`ρ€6bΜfέΗ‹gΖψβT³tΞΥγΜλξ•θοew@SDz%’Kρ?¬lKΜΒ°2<δ- g*»JRΧΞ, ΰ}ύfXY:t˜ΕόΈ‡uΡωΨzXκ]ξOΛ”Ώμ,[•‰ °s«%²Α‘άΙZ²VvŒ~W4?¬έTp]‘¬ΝΎ­{dKΧEφμΥ…H©άO­3βΐ΄ο^ύM.ΰω[οΏ½€Άu±Y„[Ίλ» cW(hy₯«iΣM—‚ΟŸΜ‰”¦υΧ)‹s£|Ε°A€ι₯—^ ·L2€ΨΈ«1υ†ιŒ €όζ< Ρ_Έφβ‹/6¬Ξγ€­§ΩԘN ¬wά ƒm ΰβŽυΟ’˜ζuLFgYό0£Z΅€=Έ ω{Β»ρεΟΊAι•rS’ϊ·Ά¬W_}U½β*ωγϊ±Ίε•Z―t“VηΆ6}TP<οό–δ*ΣTb?έΰeƒ?OBλtCσ3%ύ‘$ϋΈ’ΤGη6yηˆpmAΐΆ S§ζ-d%iκ8eγμk€φ{ΨϋVLœ¨ ƒ<=FύΆ―›Γ‹G›/ΫΟ°–Ϊσμ')ΜaΏΔβ”ύΥ©cǎfΣ‹~csΝ‚BD^yε•’žž&2Ζ›mΪ.Y_6)Žγ_Aήωψ#3v`• ₯PήU+([5uX·ξΆ"Ύƒΰ ! ζΰ8`nΪΑΈ9 ωn‰dNzMi{δΛν[€έ’/ ΰω½$ξφ•QΜ—T‘ιbŸnήύ^vΝ’ϊL”Ώ©΅Δ]tΒΏT‘ƒs[Ζ ~šqh‚j4Ώ2Λm›½DΌKΧJUηΘG±» Γaa€g[C6»6;bΐJΰΐ3·}Υ ‹d#Ξ/·3h_-7΄‘›θ€Π,³qAuΕΏ°ΉήΊukSμ9Μώ€‰­μS§<eοΕ/½0i†άΪ3Kzw•9³‡+%sΒΪΏ$CM£–―•ΨI#δςA‡υoiPMϊ›Κζ§ΰ&Ψ•ϋτι“ΟΡΦY=9ύ mŸψl,ν·2oή<Σψ:›ύ€οΠ`Ώ΄ >ŽθθΩsιkί{ΦΑDωdκ;^h_€“rχElm3©εγzwΏ‚d ²ωΦΎr?#ΚιΡΤφΡ5«KαCƒμn–ԞΖ'Œƒ95ͺ*3ω₯2sυς}2‹Π.ζ Œ%ϊάΆ™±gη[$λ‹…’ͺ@°Θ5$iπύ2cΕOΑ±ΏBƒY©='³‚½·ΐiτλ«eε{λ'tRpl1>ρi‘ΩNlB}e„ώβW6I˜4eO²μϊs½xΣΕ›’*^˜U`lεšι“eΞί›₯_£γ₯wύ¦φpΨOŸFε*p9W„4UΑ°bϊΰ,•Ž {Ν~κ»ξ7>˜o–κ:‹2Η"κ3³o(IΧ^¦,Η‡ή—ψυ½yγπwΔλζ@uV–κ}―2σ*…€Ž{Q’V―3ίLΜΈΰl){ύU…ΑΜ`ΔΣrIY°H’WjωŽ>R4Όδ(ϋsŽ>e[‘@9Υ‹;R9ψ/ΏεΘ ΡYϊά{€Iƒ,ψΐΎΜΞΤ7&:FF?9:Θ †Β6Yΐ’m_AσΈ±κ/t.ετOE±ω8p”fογό€ψ#ζjV<©{%R^?'μ3 K~ꃏIάu—Kτi'Κ_:O«£Y6 €Θd<`ŽŠ?΄Ά†σχg_―8_3§¬R@ᢝβΥϊμωm₯DθσžtS{Ι¬_{ϋϊσwίKާ3.<ί̜υΑΦ̚5+8·ζΎΨc1lπbΈχ¬H-·ƒ0Ÿ”XNΊ?3¦hspΥ-ν.Š/΅~ΛYoϋ;οZΨM²‘˜e… 2r|#σnόν }ΐΟxš£ΰhΏφ·ŸgΦh½Φ«>tύqυςžλ»LrC<κ“Ίή,Ύ8Αψ{o>Γω―ΎϊJNY΄\²Ώ η—τχeΙ;εœωFίΏξλ'ε{ήaMJZΓΗ* ΕSDŽΞηγz)¨Xm‰Dƒ˜‡k?eFF2ΟΦiX7K†τοŸ kŸϋ}α`±.o]‚υ3²»δmίω(ΑιοΌξΊλ‚ο ‘w <|5$LΜ©Ι"„ί¨Q£†yΧ`Ξό˜f₯½M3°ΦΓήΰ 7ܐ/ Θ–ι¬Ηπu”M@Έ­+ε:ηΪ‘uεύΏRZB$Α₯.ΓsiiΤ-ΗΥ@ρ4ΰž‹§/χlW\ Έp5ΰjΰΤ€ x>;Ν­ς[ 4ΐ³n²{Ϋέ!9‹O`O^ό‰1β<ϊ_aφψ³ψ;?,έΠ@`΅πΎφ”Rθ@ae,_© Γγ ΓΊ‘έ­³Ά½„μα*¨ ΐιÞ7 ΐώςe$nΐ=β©Q%ά™‡μ`ηMήίΖέΊ―`ηGΨΩ*+g­²„=ϊΊ²ίhΚΠΨ(9ͺΆεؚφ밟Ύ©²₯ίt‘©ΌsTο+%ϊ„CΏαΆrξΑ€\ΐσ²[Kά(@A‘μ+Ηw\>fiž32²dΤsi²~Sœ\@[ζϟo„Ž9ͺ¬v³Ac4٘gσˆ už;T;Uv-Z)ΥΎB<°‚ε ΐŠ-S0u$*Ώ8K">],ϋή(/-ž+έ,γ₯=Φιγ+Τ’ˆ„y|βΨBλΤιΜV’=|’ψl•[³Š$ξk lΆNoΟ–ŒΧg™ΫεΦ¨, ƒτ|οΠΨΆ „«S“y?H‚²-ήρ@O„Gη»ΩΐB6nάhϊp Β&W=wύƒd>3E<Ίρμcoԁm‡ΧVH 3@N)¬N08#–!πΘΨ±cƒμ?–έΐσ‰Η6‘δαOKβΩ-δϋ„hΓFp†A)΅kΧ–)S¦Η‡“‰Θn,r/ΨΟ=χ\3Ξ³/Ώό²aδ;6ŸχŒdϊΓža&rΓΉ¦ ‘lΏ‚=š*£ίχ;·i%Ι¦-€DAΧό—Ž›±οˆό΅Λ4Λ£Ω4*?x…DT/_j¦Ξ3Δ§΄–gκ˜ 2qέΤI6==CΌjkJ#ξ’·—. ‚>χΗπμT %μ€ά«―Ύ:ψ6nαΒ… 'η̞=;Ÿ}-σΡU&NζWΨe€Ό–ΕΛlνs…ύ, ψηΨ)€αΪ΄i#sηΞ•:{οάάΖξ†Φ [Β3α΄ω―)³Ψ‚οrεΕiΩςθیνΆχ),%³i‹ΩFOΔ2εε›³šVΠ°>’m;ρ¨όdΑό|z’NVΏžzrϊκ„Ξ*³ΡΠ>‚& >ΗΑ<B·lΞΣfώ/Z΄Θ”ΑωΨ&ΐρN0aa}]ΎΌ²;+ΐjο£ΟˆWA|€‘ΚN"ή™Y Ν?17Rφ|2Η07{·λ5*°m>πΚ‹žŸ|Z’ŸzArjU—2''RηhΝ|SΥ€qπ«[ΤfυμΩΣξργV¬=0G Ž}GΪmΐ°iΎ>ϋ“ΰΨ_ρσ2IP?qv›σL ευοίί°ωc§I΅mΏ‚//[Άlp^PhΤdΟϋFφlψK<šπ2=ϊ?BλS}šΎSη­YΨϋφΩ0±Œ,έ³Sϊ{’Ÿ}ύU_ώΫ{Ÿ˜NΧHτΥ—Κ»ΪžP_JπJ€ΕΔέΨ^ύxλ ΰ™χ2Κ0G&°γ駟–T €ŠΝRθ&μp€gτΚ\Ωfa{B₯*rχΑωϊ.‘香lΪ±}ŸΎ#(τύ© _Š~œοOŒStΛX₯ΎSΤ6Zaή{γ7°:ΐ8ϊ”w7 v¦νψ'²€XΑΧΌs2ςσ]aΟγΥΎ‡q~Π—VW_ͺζ2Τ—ώόϒ;ηe P­ο„ΪΗ)Ϋ·λοΩ2~ήη2Jx>[δϋ›»©KKΠ¬1Ι{΅sηNσψ¦ψ?½ŸΟ—ΜΙΣ [$QšeΒίVη%΅ϋ‹KζΈ— #2€1έ5I™ρ‹-k7(;ρsβU$¦ΓβΏκ’β3λ Ιzυ3΄²#ΗτΎK™‡^†ΪΤ‘ΟKΤ’˜8»iITViΪSΩωΑgšΎΣκš@Nέ£%qΐ½"aΨ™χ)Kύ{κ@e’ώ+ΐόŸyώRξυ1‘’υKy\ƒγ~ 0Žg\|Ά”»εšΞ ;'¨`±sμν3R"tω§‚k%ΉU+J¬‚E}\a²ϋ…ιϋΩBsZμEΞ?³°Kιχd xτ©pίrςq™ςπ}₯η7iCσ›a3Y"Bϋπ‘λt>l}Gp=FŸ‘Pα\‚Ž(χζΛ¬―YΑώ’α ƒέΏώϊλΝϊΝW\aμ}θϋ(~ ζψΌ«°Άƒέ¬“˜D]ΙΔ`ύ@ΈΊςNdί7m=δΣ<ˆφάk] Έ\ΐσλΠ-ΑΥ€«W\ Έ8Μ5ΰžσr«ηjΐ‘ƒxžϊ–ψ=­‹Ο9;ExΕsΡY"/<αΈσ‘ϋΥ3l‚ψ&ΎΜ šΎO‘<-OΟΛ£χex(Ν*Νϊ\†ί2 ΄>MQ«,f£Έ”ξαv©dŒ™(ΏZ%IPΆ )›XJ₯—¬Ÿƒ7χ#vŽŒ*}μΫ€zΙ ;LςmK–­ƒ¦‹lO1‚ έ/“˜ϋΙϋ“ΣeΛ€ιβίΌG<:φ+>ΨV’Os˜΄Θ­ΖM.ΰωΏΦ£Φ6œ Ο°k6jΤhŸ »ΑΜF<Œ/Eέ|pnN}[ϊ M–ίVGI•Jž|€g6Ρ dx³/lŒτΈ“¦šz’hFjhXfΨaS±,‘”e$ŸY2,Ό0ƒ`sžΝ~oΩ²₯Ή ›;άƒ {Λΐ6tθP^ΘJΩ+FΏ/U{*HGύXΟYgΐ$v3ǜ ?Έ?›TΫf-άΙ³₯ς¨U«Š¦OŽ0€3€:c³ˆM‘’Φ)[οŸrg?ρoί­©ξΛͺΏο.™κο ͺσƒΜ±/KτY§ˆ·v ρ4o&~e₯ά@ΡΐggήQ°^Κ°q₯lk™κ·cγΔ§`_‹,:a7΅,…G…)?!‘\7΄·xΛ–Ρ8‘LtDWησ;χ¦τ#Ώο·N δΰ  Ξ‚Ϋ*UͺdΚKMM5 Οτν_|aR΅š1¬υ9KϋšΝ;ωόσΟ †z2fœf€(β© )T© Q'83Nu6PΗπ!CLy+~ϊY²ίώP’ό’nκbf fqδδ㏗Š"4xπƒd|ρ‹μœόe ƒ†φ‰œΫHͺήv‘™/ύ§ΪΏz½€ΓΦ6Ό—΄Έπ|c‡¨΅ozΊ€ }Ν45©c‰Ώ¦UθkmvvΒsƒmΏι¦›LΉφ\l(lžφωWϋΚsΐœ‚ηŠΊή|σΝω|vΞ‚’ΓΥ•ΝpκΣ&ΒsΨ¬Y³ έζΩ/nV―υΙ&Ε¬x²‹–’6KΪτ BŠΜυKT}‹•UΚ8οτ€ yζ °(ͺ’μϋοΏί€ΩΠ »*UͺYΝθτ‡}±z"ΰƒϋπΏbŊΑΐ τD;kθΝ*₯―i/©6,kΎΒ>ž+Ήλώ’€η†HdΥJΌ!ΤζΏ5nΌ€uS ŽCβ‡=$Ύπ\ =ϊ1€=΅~š>ηψΆmΫL:jڍΠ–u5άx’έ–A=­X¦lqΟΌ";:_iŽΞ&G5Ν―F―Ϊwρ+”u«Ξ*M£ Ώ—ΨcJΒe3οψΫχμΞW'XT›ΞψPr5 9œ”ωPίχŠ)Ϋ,]±ά€TYφ»€ΞψH"ϋ#x™D‰½μ<ρ(ΨYΘϋoIξ–=²iπL‘]šεHΗCΕό₯ ₯°ubΜ*ΰ>σχΕ#¬JNέZί΅³H­ζοRϋ±s·ˆξRΏώ^"W mαZלZΥ$[Α{εΞ9CٟkΩoJτ‰m(ξ|τ˜™r€L%žΞVζΜX‡ΏuφŸΫευyη³+‘Ύ‚g‘Ή v¦Œ“ΣŸœ(Ή Ύ3FάΦQv(Λ©s yΟh8›OΰžeagžOP‚ ΠΨΌy³ΙΊBΟ(sw|_»Α3zΚ1uε‘§FΙπαΓM½±ιWκά9 ‘²ΓΒ0aN=cβ ’ωΞΗβοx₯‚Ζ³₯‚?¦vοΟδݜ?€·|ΆyC0 …{ϋΦlΙήΌUΩb{Λ²οΧ—b_Ρ« :묳dτpά~‡Ζ―Ζ¦NΨ5Λ΄m@œο θΖzήoλ+s΄ώ™ ζMЉ•Œ#” yω>Ίν…²UŸqš’Ύ?Q_Ζ(ν€ν΄YΝ›77™xš6mjήΫ¨#>‘Μ&ν‡Νšμ(@:ύlf Ζ~”{Xα>ϋ `όΪχQΖKQ|i蘷χ9r€ ωzq€Qe§^°§%<σ΄χI2JόŠO\’{ί#R; ·βΤǜ«ΜΔ)c'IΜwK͟ΕχΡud-·Έβωr‘dLRΆΎσθσ •›ξ3ί=Tž:ϊy‰Vΰ/’[­²ltΡL…Šκ%mΘn2§f΄9SΚήyc‘—ΩφLœ.1Ÿ/4f~Ό”y ‹ύjΏŸώΝΫdοΰqβU²GΗzL Ίn£Ά=Th›‚’#Ψ`|Vμέ7ˆ΄Μ]Ν©?h`ΞθI,<fηBΑΏŒοί;$κύͺ§ςΚκ]Vb†=,R­Jθχύ[Ϋ™‘νE2θ\ΐσa(‹–xdτK<Π欽rΧΝI‡a-ό*a{Y#Β/ΨΐQό>” ²”‘ ΐ;ώ[‹β“9οs¬έΰŸρ₯Ο™£s<ΏΘw€₯Ι’‚Ψ,VΫ5€ΔΪ|ζν7Qεb{m@+Aΰs/g] VεακJ"mγšπ\ZštΛq5P2 Έ€η’ιΝ½ΚΥ€«W\ Έ8‚4 xζ₯Ζ.‚²Ζ‰S,K…σ˜ϋ»«W‡F₯ x֍uwЬ…CVΒT|ε’$jϊΣβ;‘ρ‘iγ.žδΙΉRΩWk}THΓλω¦+g•ς―Ί•ͺi”£—.7ηhΪΤψGta81‘Τn΄λ₯ϋΙS^nΓΪ’Π―«2Η”Zω%)°3ΜΞ~Ψϊ;?€ιH›•p‘Ώ$8ˆΧΐZ½U™žύλ Qε;œ-±νNίο}zΝ–―‹lΨiΫ+ήw‰DŸQ&”ύ–κ~ιj`_ Έ€η}uςύ ΄φΑ˜”ΟΞΉ7"€βƏ`­}ώωΰHaΊsnN³©?φΩ™να¨ C»hiqόϊΰ~A`kRo²fލΛRSΨ½ ΐIΜ΄…Mx6έa¬qnœPΏeΛ–7pΨ,Z»v­a£)¬|Ύ§MΣGMM/}!Υϋ΅“(έ²?@©€7HUΝFŽ ](›DήοWΛξ13ΜΧώΣJΝ~χΏΔQ‘No½6M’;υRhŽΔ\{±|ο3μ¬Υ)JΣ»oΙΝ–=ΚθW=Η/1ιΩΚd˜‡ΩM«}yͺ;2!z|”ώάT"³σΌΓ±Ή†ξι;ύV+x]Τ>Ί–$+Q?6ΕεŒ“₯μΓχΘ5ΪFϊš6ZΤ‹žjΥͺe6½lϋ ͺSΏ~ύς₯χΆη‡ϋ€N°Α.PΖΥΆΗΤ“Τη§JL―nJZέl℉ΞθUλΖ½iγΘ Hα€ω¦L™b˜n0Fvν#Ύ²Κš}β―_;XΨϊB߁ƒ_π Œ€bώ?žM0Ψ¨wΕϋ£ OΉx©Τσr‰ltdΖ…λΪ]―Ό-qΝ7@‰ΔQKqOšq 8μ‘‹‘C_•ΔKZHLη Ν³ŒY<_€Ζ¦$Ψolΰ*+n°ωMΪc»Ρ̘^·ξ0{nAŸf|+€”Νq|uεΏέη:'»WΈΊ²oƒH…±Ήξ ¦)IZٝ’ vΖ+ev›ηζvξΓXΫΆmMpΕcy)™ŸWpΙϊόDξ–Ώ%γή΅l΅D?M–ŸH`€GπςŠλ‡¬mŽœγΤνΔ$΄~Λ ϊsžK8ΥͺUrΌ@ Τ ΐ3€„‚ϊΊJD΄μξ?Zβχn!E*ΰαoc_«+ή,ςΝj΄;EόqΡβk¬ιλGφ“?ϋ$–\‘€Δά—ή”D‹2'ϊ©!1ͺ >³6Ϋi±υ€9ψ:ηΌ‚΅>ΪxΒ²XwνΪ58'ό5~šρ€ΐρ˜4#S₯£$BAY€ hΑ6gΜs₯8ρ‚―%BΞεd™φΧxΆδΜωΪ萧,ΩʊI_Ϋ:έV»‘μύθ3eiLŸώOͺ^Mͺ“δ«UΏ‹GιώψXe‘TφB]7(L–"Λ„yΆΰπΰΒΕ’φΦ'±ιο`ur«T”„«/iyŠvvΑφ"xΑAό%{Ε&Ω:ςρλZk•οΏXbN-b ―‚βR_|M’)ΈŒ> ™§Ÿ(eΊάT0“恴E珞ίΦΘneŽ‚ύYjNρ%ΖKΞ±υμΟΗk@‚Ξο‹ς{qηΰχυ|N&Ύ’*=£Ο|ψ;d,RfώγkJ‹sΞ2)αž'δ9ΤΙΩ΄E2ž|^|Κξκ+WFbμ,§Ÿdζk<;Ξyœ}Wf¨Νg^½#˜ƒrL!vNΜωsΪΧ&MšΘϊυλ‹l7ξξr‡\{}G3wğ<=`°€Ÿ§σeΨz”Ό vΡςΒ;oύcΛ–ώ$ρŸ/Θ“ŽΏ‚χ­θyŸδ*»ΊΏb9₯Ω―+[œh‚¨kQμ«Σ—r³O 0ΎCh7ŒΦ؝5V‚6 “=ΔκˆσρρΨ$λwΠYƒ ‚ΐ5μOy= zM³@’6l–Θ—ž”zϋξΌσΞt[±~ˆω>Άlτ€πέδΙ“ P›n}vh_ώώϋοR»vν έg¬„sΪΧΠ¬Μ― <;αEρ₯ψp‚o`ΞS `) ΰΩσσrΙ|κyρͺB2ΞΜ αl>Ό‡X;6τΩ€'=sQœ§Ό)έ²xO>ZκφΏΦζΝk6˜ JΩ 8 πΰ¬sΞ9G>όV’_Π4Ό*ρ·\$_G%‹3E(PΕ©εfiŠv6rΛ>3P.ΌΆ½΅N€«Oϋn₯D4REη˜:‘§O>ω$_9,X°ΐl^]P·‘δτ.>e<ŽΠCΌΚΈΰ@žŽ]xα…άΞ†ΐ]ήυvM{GβίΒ=γ•νωΑ'ΩB§OŸΌžφ°ζd‚ W§šλM₯ ω1jΤ(Γΰg$sκM)ώ•k ,υ6RυφN¦?Ωτ³€>Ϊ Π‘~ύϊ† έY'6σ₯suΉxο}D<šΖΏžΡς4IΈύFρ(slI=Ψό―ž³—“mc?Tρk–@IDATΦΐœάΣ\ηPέ.Q½€ξ*‰2ƒk< ’H>AYDΧ™Ϊδ(Γz…‘KΏΑƒ #cnζK/Λζq3₯CΧ›sœ(0iMœ81xΦΩ,F0dαχ€J<ίM+ΩΎΫ€=?ƒ€}μρ‚>- ζ0ώΫηΓi_χWWκΆkΧ.©VM€*vΓέ‚§8V: W¦L9ΙΜ­€ΩΑ=§˜'}<ΰο°υ0ΈcW»tιτƒ+XNrL©ί‡seΫ›c X‹Ή$€ηύιΙ μΆzέΈq£±“ιΐ†ζΤ‹σ|['˜ΉΏ‡φ5Ύ&kλ6IλΪί° ΜiT[βF>"ΝZœfμ3c’Ε—‹Ε7]Ÿ9՝_AœžGξ’9ρž|6?8κί#ΫώΗ>ΌBP ¬€τœm ήœK(μψχn Šμ£ ;žήzεUI<Β€”= Kzn΄άΫ§·Ψ3φ'τξ+™ΪWγ’ θβh―fNP6m½Ϊ‡ δμϋμΣ¦<Πxt¨ΜψκΛ`~^τΘϋŸˆ/!A<”βOJTd39ΥQ§P@υ>Ήμ²Λ °ΏΤΟΪήέo,1σ~0ΐu[ǜϊ΅$αΝ@qR{θ_ύΜ\ΈJώ~ζS}Ύ΄β£₯ZΏ«$²n₯βΧI~ιΟN–θ"~υ©±Χ΅Z@š9x0~lSΐσ’ε’ͺμΰ‘«Φ)“Όƒ˜C<³šΤWφgest‘jPά9xΉΚν₯₯šτ‚bΧ³5H(ν³e²κτr D%Βzτ9IΩΆ],ώΡΜγ.lLRΏ\ ‰ΧΆ Ž-uΞγθ,cŸQη3Ο}ΒΩόΫoΏ]¦L™bζΔ―)›£ΐ„-ƒ5ί x&˜#h74${ΥZΥ»g§Ιoί)ގνδ΄–gνΖΝ Τ:]mΊΝ4Π)'N²žxN<1jϋώdyζΛO₯{χξΖˆΆQ}έͺΏ6˜ Θ–ΝO“lXίσ€ΨφUοαœR }ΪͺU+γ/Θ‚ήœνvΞρ0<ψα‡Ϊ[l­ φ p‡Άβ§μόϋ_>€΄h` ½Η+ƒ²ƒŸwξΉD٘‹"Φ1OΏκͺ«L0 Χ=ώψγςΐ uh u\hΫΦ?o½rMΉr *WΑζ‡ΪWτVΰ]AγΟΩwΆ ‘~ΛΦ§$Ÿψ*²ώ Ε<λϋRκ„©;‘ΉΦ—/1χuΏ‚ξK,³ηIζ”7 3±½ΊŠΫ ΨΕyΆ*PYP#4€Ιhuš”Ή»˜λњM sΤσβIWp’φs4€γKΞ-Z]4π5cδΓ€οΣ1χˆ­λΧ.΅Μ‘S‘ˆυ›Ν{[L]ηVpQΔ―λγι£_Tύεšg%7ρh0Χ>’ μ½°1+cΌ_tβϊͺžsθ9μœπxο³'°sίQ¦¬ˆ ›”…;Ρά;Ίο}"0S¨hΠMƐgΜ;sN“z’8@―S}ξ2ξΕT™·(ŽΧ`yΰH₯QοJ©j€ ΦI°QαΔ :dA9N[ŒΆΰ”sρΕ›υφΦx―$Θ‡ω6›MNAΒ|ΰRϋ~P”Ί2gΑOrniŠ x.MmΊeΉ(Ύ\ΐsρuζ^αjΐΥ€«W\ apΟGX‡ΉΥύ­<{6nίΥw*“­.ͺκ"‰Yξͺ’iξޞ ή"n •vx4υ{ξ'󅍸ώB‘‘}Kϋ6ωΛ[φ›. λfŒ. ϋuΓ7¦ϋmΚ€SD&‹ό%…ύΛ―Œ‹©ƒΖjΪ½ΏΨu‘ŒΛZIω›ώaw {Ρ!8θΟΚ1ΜΞΎuΊq₯Ίτΰes1‡ΰΞΞ-6?‘Θ—Λ7Χ έͺύ;(˜’. ]tίό¨2_η1–»ώl‰ΏβΤ‚Ξv»(Ά\ΐs±UφŸΏ€Νΰ!C†@/6©a%†)’MΎcC½uλΦF|Η¦ ίl`£ƒ  £)wžG+ΰωΟΏrεΜSlfœ«›π_ύ΅a† Pe²QNΠ£3U&ΰ4‚!ΉΞ)œ ΛhίΎ} ˆφ1Κ ˆ‚ΩΨτ #υgc6ΐˆyε•Wšβⲉ³wοή|χΜ@[!SW6ύa,¦œ”w”Œw•e΅rρ>ςΏ 0Žr!8Y-Ή ΧπXτ„ήΉ_Ξܟ$νƒo€Κ¨gπ!έ²eΔ£ŒβΤ)^Ω&M5Eο–¬t©[―ži_Qλ4°Η²ϋΆ>’yJ)­£μ¨€²vΦ p:E‰Χόf©dΟPΦFeΙ*σΚ32Η‚γζ«―Ύ2@ ¦„θ‚ .5•aΛ7g‘DάήAZι8PKί°aΓςιiΠ AΑqF_0Άœu‚!•γαΖ,¦υςtΐ½π3†#–a’ ˆΩέ£ŸΞώ―¦—Ž{ϊqΉJΩAa0Η†LwŒ#κ8vμΨΰxεή<76}+`xΚ9[ΆΚ^οE­YgtεWφΔh€Η56ηΗπL@ά–ρŠΡΪ€ZwT·‹%ϊΤΊΕQΣqGΑriO(Σ_rš™§Η^­ ν'‘:†θηK.ΉΔ΄ƒ”νΞ‹Z0ΰV½vI_ΜwŒ=€6”ηίi_/½τRyσΝ7%&Χ£ΰΐόφ“ηΓgŠ‚σ‹j_γ–΅uύρΗ₯Y³f…Φ•:ςό~ϊι§Ζ^σ7Œη€Ÿ©C¨§N0ϋΒ¦lS20K]•ιSΟ‹—]ΫaτΗήc]½ψβ‹Ζžρlcοωo|„Ύ·Ό?χΛ|>’f₯Κ’œ™Q,=a±y~°έό‡}?`}0ΎΦ§OγŸόG8[ŒύΤψ€v[_J_x‘ ·œε«Δ›ͺcLΫαΥΏEί3²ήœ%ώ—GI‹σΫύΠ υ{?š+ΣgI„²:–ύˆϊ‘A›} •Pnΐu EΖΗɌy_π ΨαΚ,^&™ŸΟ3ζΈv—Κ††΅ƒ ΐΡW’Μ^υ[p<1φ›ώΎN²§½%Ρ7_';5`δDπΩ±]ƒce^κn£Wτ°Jϋ3fφW&C“·jeΙh\?hίaπΏΌF=™ωΗς`π[|—“7ζx†ύΜ‚P'Κ‘>ΏžΥλ$λ‹ςλιΗε›Ηa-•z9ηΨ0ζ|³gΟ>£…Ω|€Λώ2²Ά }ϋLΕθX]€ όv.‰mθhΦڍrο&Ω³>7ͺ‹νrƒlhZ?ΏέΈψΉ½λέ2eΚγOήys†dv 9:·ΜΡ`ŠΓϊΘΣΟ>cήEΠΕοΎ—ρ“^ΪΧεzOωτ+ef­¬€Ρϊ§AE±―θΗΪdΫ―Φ—bKlŸš{j›8ŸvγWπΥ΄™ω.> 8{"Ξχ@bψrΞηZ;·΄sΡE‹υΚ¦οN*SAφ*ϋlqό»Σo‘¨ {hύ6vήf€ΡσΜ3Ο Ž'ξΛόΌ©‚±α°3·oί>_ mέΰ™9 ωEυ₯Œ';/²}t Ÿ%<+°5λ‰qp΄έά:»Q=‰οu²ϊjpNIDƒFO¨_~7Wη(#y<`g Ϊ)Ά|§lΑγ^2<“Ω0ζή[EN;‘xΕΌχ™dMΟ‰XŽνu—H“E+cΦ’©Ntβ'ΉJ2?X‰O*ρ… { {‡¨^Υ’e!Ύ½β―W«ΠΛ8Α―λώ“ί μETͺ ροшΐŠϋ^«`π΄ώ ¨ή,~0- jΟσ»D2ΗL6m‡ΩyΏ`η”4ev;oR¦θςq:Ρμ?ϊ>¨Lί…‰²yχτUϊυ„‘όΕWΨΕ‡ΑχΓΖξ•ΕΏΔ@-φŠR"ύΐ|φ0¨Ϊ’ ΨΞΤΤTγ;?ϋμ³|mb-jΒ„ R₯J•ΰ;kά{ηEΡ†ρg/½:$€+‚*"ΨΐŽ( *E@Q@@zο],(*ElˆεSι½·€τNz½ϋήg.slŽ»δA);Ώ_rw»³³3ομΎ3»σŸgΨ™Ε ΈJφ|/ζOσ!ί‘n6Oς‘_ζsKΓ† •o7ŸœŠ|Ÿc9ε•οZψ<¨ϋ ζc/φ»<_¬­γ- \œ,ΰωβμgmYΐ²€eΛ–, \°€η+ ’¬,ZΘ΄ΐEΟί…cΚW’Jω‚KTŒφ’XΦ­νb_Ϋ}H{φu r’ΩΓƒα?eχδόρ’2όΝOςbxΎσΕpόξυ& jˆydiϊm‡Γ Lέ±…Οjy– v>Ψo6{δ…Ώ(ιλςΨU ;k€,ڌΣόAβ"Ύ£@˜ή}ή§Cξ#CEzγ΅Ο¨SQmΰΛy‘­ –ri xΞ₯Αθά0+¬Q‰Œƒ’Φ»F@„ͺU«*+h€SΓu„=©τεάb6YjZ0ϊτ~Λ₯Ϊϋω¬yβώS]Q8΁~@0:%HJX€°3Α-Ζ” θAeMζΧ=pΥΡΈ„=—»§:0σɁns;—β4h*R8pCΕ\h„B0p0Ζ=0―\^“jmTΓ‘ς΄γ$CΎFDT¬(ͺ hwsZ¨G ‚Κ¦,?Λ@¨™ U©ψI%3(ζ<₯‹uδ?Qθ±;ρΞϋ#ΟΟ“ΐz ,ΏVffž’D­Ϋ GΓ{Υ~ύΟSžZ΄h›¨&‰¬{ž=zzΥ„4Λ”u,±έΪυλ”*‘ξcέ1h%q慢א Ÿy-i!*Z78ππ|΅―Y„žΦ©>7―'BΞϊϊ¨#5!vͺΣΐΠuAΕs*ƒ3ηυΘλ‡J $$ΠC;³ξ¬`xξγ5ψ”ΐ<ƒ±xR?™C) Xυ„΅EΤT½χԁ¦W3πœΎλŽώVdσΞ”`TŒ”•1εUϐ˜Ι,WΦWΉΟ|2ΑΏψ'ί©ΜΪ₯•€VΞI λv#­Bn¬β„‚xPaΌL™28rδˆςWΪ't₯#›—.]ͺ€WΖη~B±'OžtTτ«―‰‚.Δέ} Aεß-Aΰ‘Ψe΅›‚MξF Τƒ»%¨DIGίT©R%5ΘνK^5Εόi₯Pν{= n3ožξioyb|χ%™οΉ·ŽδˆΩ›uIfͺ³ ζψ9Ά’ž–Τy ‚ŸyiΏώιTΪψ$€ω3 $£ŸΠνΩN,›ž\Ah€Π žB8™ν}•Hύw5Ή‚ΫΜyβoσΥ¬ΧqC‡γΠ©(-ΧCNu]ΉD)ŠjaΟιο_Ε~‰’κξσ‡φθ‰ΤΥλpF–`'@mΘ_'ΕΫ'ΈΪχΉ£Η!Y&Œ0Ŋΰπ;―γ†ŠΥoϊ_ϊχ‘Qj‰{Ά΅\-‚Ϋώ.2wRZ4QvΡmGvΧ>•B©„­eڎm4'Ήšd;£ΤF7mΐι+œyΈΆδ醬y*Q†LΤ!άaΞΫ-NšΧ¬:θ"επLψ)nΦ·\ΏMω•-²‚Ή*CΓڍ9WΛ»ΘμζΙα\υθΠΘoa_ο|΅EFTο§` Κ“τ₯‘ˆM™ϋƒR e’醡k!Φ+Ȋ]Žu[°l5όε“A§£ƒτο£K‰ϊs9¬]%hθΛ|νƒϊ«L’JwNp!ŒΜIΪη¦8p¨Ϋ,8b“PςΓV¨U―ΆΊ¦91‚}2Sυƒι\Ύ†— #z δuo“ΐtΨLjŽŽVΏΩ§Ί£Ύy?ΠΏr‚£―>ΏPH(ώXΉΒ¨2=Nl,YY~ήsτ—T!f;°aωJμ?vδ|ΏUBΰ>ε'άοΡλğφ0@MaΖ9‘ύI>ΓΠο'³/Ζΐ>υ0ρeΏΛ„2γS՘ΟG:>ŸεΩΎ»χΑ³«;k#€Ώ}7’Φn„ΓꝬΏτEϊ₯k·>™†tyOη/Ο<Ϊζ±\…‡Χͺ;δΝ}쇂c…ώ–Οmί½Rρηoφσ©φMŸΜςyς―΄[vΐ3ΣΙM[JΨN]χ<0B€gx~• ;τΚuθ{ΙΔϋƒβŸ/4μŠAʈ‰’β«”μ“©‹ό͞Ξ}j’ŸΈχgȊ+Τ±‘EΪ³CξV6H:~ψ$nΪαL£T$BψNΫ—ΆGΞ?ς¬•Ι+‰Ώξ!Π±7ΩzΛτoλn$_VrHF†€Κa};.ϋŸ~δ©¨e’ήOς, φyαŸΓHμ3Ά„$Y"‘€oqτ_2ƒ‚Η~μ„΅₯μa@φ”ŽΔ7vŽegΏ£'αwμ€Δσeη`½τ :ύNΧγ§“ΨmΈΚKF1΄‡wƒ!*αWRΗτšŒέϋ€šΪ#₯’WRˆΌ²‘ζ;φ]Ω‡e{k”})ΣΩ»w/Τ»7ϊ]φ΅³K‡ώ;&&±±±κ½ΫΆ žΪ ζΑS^y Οu©‚<_*ΛZιZπΝπ웝¬X–, X°,`Yΐ²ΐl xΎ‚+ΟΚϊ5g ž©"cR ζL°Ψ!/C yΑhϋρ#8δ%ΘŒ)³>|Šΐ<rz©•―GΠΌI”ΝΊtΩQ/†ί“Γ™ŠεΚΘΛeyɚ Ψ%§Μ9dIΏ€`P1NΤ.BzŠέ+DηtΨ%ίο;μ+ΚΕ;2XR΄γCͺvυ)φy3dΪΖύ81B<ϊFDŠφnEΌEW/ϏšΗͺΗ¨QQo9‘<οY{, δl xΞΩFΧb *SMRΓ₯žl@ΈŽ@.Θr ™P—cζ½;υ±KWِ?Β3>ξtˆςρλtJHΟ[ ;Ό»¨αe*σΩwΒι>Ÿ ΐΛαŽ‰žΚJ؞@'aϊ8ͺσή!dD•Eϊ+3pε) σ6ϊ΄η"«αψ§’ΐϋhe”lV[ωνΓΜώU)ωΚδν{υ€sšϊ»9―άFΓ?­.Φ΅kW5QΐW0‰χ΅>―φωζ<1_–d¦‚Ϋ3ϊŸΫˆΝϋΪ<μΡQH5AQ”Β ©Ξέ(Φ±•Ίο=ε‰η κ}ƒ·@ΰν,ύΫδ'Ÿ|RΥ«ŽO•6ϊ:ˆ ¬kΆ[?ό {Ÿz·άκΫ=£&μ4x‡ƒόPΊtiΌWΊF”»ƒ_ο.pQ’+.Ών…ΞSίw΅οsFŽAJη>*ΥCGτΕ ιΣ\ "wΈ—Ϋ@B`½ιU|½žŸΧ=ϋ lS؟ΰ„,8ι‰ηε΅,mβ€Μ-τώœς€γεΕηEΟk· ~φΤκόΨ δCH£`Τ­αUEXΗύ·?ν )82φ‡Ω’πλx?Κ–-«N§WφΘEηδi_Β€!υŽ*(ά£¦ΘŠ(Ύτγθ―yjί›Σ=ϊ\يHώΒ§O@ΛΞ1mΪ4u^o¨&|Ϋ‰8ΧΈC>˜μ³ίΰ}Νg=‘Δ[ϊτ—z’ϋΖΎϊΧβΫφ`GTa5)Θ[Ϊζνϊω€0WΏ~ύ4lήoώNxzόψρκy…νψώύϋ]κΥζxϊ;'˜N™2EΥΛΐοΎΤŸ/άϋ£ΚŸ―ή»ΌŸ\˜ηz~š=Qϊίγ§ όΝΦx­OΟλyΣύNBa{―'±κ|»ήζΔχ6Ÿmί?ό£ž5y ϋλ|.3sΉmKέΟ}1Ώ}ž Ήί“DΥ™«Ε0dȊΑοˆq η$²\ηAΐΕ³Ÿ~‰…‹Υ— ρ!έ;°:’!~2aΠxޏ¨l€T½ω:ΆdgΞχl‰ZuβIƒπϊ’π·[s–mΞiΘsTB1πίwHΕM‘v+’M3ՏΚω`‰ρ—¨ϊO˜μ ϊΠ}ήπΝΏKΏ1v˜@Φœ€vΪ-7 ’[5‘βΌσξŒA@ΛeΥΫׁQ Φα<ΨyπΫ2†¬wgω€Ώg„‚ΩbfΒΞ)χέ…|―Ώ’%Η|ξ쉀›ΟžŠxx‚,;ύηN΅ΛΈ½4’Ί=ιϋ€€§­mΧΌ,ΰωΪΉ%P%r€(Ÿq–—³μΨ±#š4iržj!γSΉvȐ!YŒΔl‚Thd ψF…—+V(Έ—Λ+|Υ02ϋ0„§¨‚Μ}TEζΐ>ζΗ‰ZQ‚_€η7a>έΟMΐ•η[·T’™¨rΙΑ~Β΅Μα¦I„€4—‚f™¨j|ΣM7)5Q3₯Σ"μΔ<ΕΕΕ)΅HsΎΨη‘ (ΟΑσqydζΣ hιt^ih–•Šr„θ˜··ί~[Α'Z‡φT1σ΄d(Σ£βλΒοΫˆ[»…ϊ΅€,£€n!Hι p.OM›!Εp*TS=΅uλΦYμ―!u νNυ‚ξΌ>rΚα ΒΞΊ<†`―VΟΣις“ΐ6•S+H“e{U\Αl„Z¨ž§‘=σ1'NDΙsά+2x,ƒςΟ<Œ£χUΛΦNξyb™¨ξIΕg^wΌΎ€%}1œξυ1,K‹GΔutΑW’ό«•&ΝεψγΡΌys—O$(₯•ά ΝŠMϊm#ΆHS>Θ|¬·οτiOΌ§ΆνCɎ(ηΝΏR•_ϋ{¦G?`VΕ4ŸΓ=―άΗ{’>„Λέ³m’Ÿ₯o%΄ν­}’ΟδRφταŒηξ󩦬α)Ϊƒο—7n¬7η‡~‰«”+WA *ˆΒ˜¨0ŠΟΰ½JŸ™]qƒΨφTΛw(Π©!ΛΚg\W 6ιΟ;δΧ!Jέζ}ˆ?δj‡ΜybΨFΠP‘”Цζΐς£?"άΕ%ζm‘! †£B«{ ψΖφ2Ÿ?=ΥϋΜ;―sϊΎδ©^ΝZ8.+Sε«W Έύ&ί€*s†Ό|Ώ ΰ™jwFΒά4₯“Ά—,ŽΠ§5nwΩ[ο»>3ŽΗαpyώ?―²c«#JΎϊΐ%Ϛ±{&OƒώCκ\™XτΌ¬ςQ}ο’‹’8¨¦»a—ς₯ψκ:\ξNž(8€ϊ ŒοήΦ}p* kΕqϊ ϊ1^Ϋτω«–.ΗρΧgΘ›-ΚMk‡=χ£b¦ΊϊφνΫ1gΞ΅jŠ>'}Γ‰'ΤύiVAΦqψ©ϋqτχτ‘εΆν…}έfx»ζ,ώέkϋΔ~ΈM`οΤ ¦‰2sθWS8Λ>©{`ω8)°,ŸtžΨΏΚΞopR ϋf|žΰDGͺJ²?θΙ‡3Ϋ8φαςΛκ ΪdΒaγμόk°Lf άεΕ#rε_υϊ2>;Πη»φw©xΜ‰IZ9“υJ(›ωuο#³Ξ~-WαΔB_ϊΰœ`ΙI~Œk‡u~Ψ^ώϊλ―v‹ 2Ÿ›Z>Χ žzžϊΕϊXύΙλD?g² œάσβ‹/žWΖ§Ο§=ψŒf΄―^\ύ€ώ›ν%Σ‹ŒŒt=wπ˜ά΄₯ζs\μw_€gφοSίϋF’”Oξ³€:5‘―U3ί``O5η„a°gΏΪ›zK%„w’‰r?ΘuΨΌ©#ίW“—¨8άϊy8jߝ»dD•9e\fωΔw6ΪΉͺ€/©ˆ$(ν—©Pάαe8jάαΛ‘*ΞΩ©³τΛRυ=Mϊ!ωή–~Ef_#ΫDx~{¨h©χށόo4χ|ˆτΥ“db’!ο―ν’:P”ΝΟfߝvNΩ9Ψ9‘ΧΨdbœMTž C”ΎeEΙΤΫο. vNAϊρέGœ.j½2‰,dxWy–ώW-Θ)°Ÿ½]€βΤY?-,Πs―@Ρ~± η 0₯uΘXΐž/ΐhΦ!–ςΠπœ‡Ζ΄’²,`Yΐ²€eΛ–.O XΐσεY/Vώ} π…3t5ΔΑ`Ύδ₯’•y`ΩSΏJ"|‘νώΩSό έζ3πΌR–…oφ–,αζΐ€ͺ³νΖhίLUƒ° =ύEgόΉ mzIžU:φ"ωπΥ{°—/sQιζxπΖmH5Y½ψvΘ OΠ[2ΨSνΦΛU„ΏΦˆΪ… tIύg”ŽBΎ~²,‘ ΎΧA-c;ψkΨ·Κ@Ÿ\Ε:4Ό&ag]ŽSρ8χsΰX¬‚Ώ Άψ»Ne½Ϋγ瑏~~v.ωhά\ ‘έŸ‚α—‡ ΌΗ³Z―V XΐσΥZ³YΛŁνώύϋgQH3Η ¨DX+ΰr"6ΰ2ρ„ΗΈ₯^.žύξ―W―žZ‚ωτιΣjΙhB&’―ΗΛΰϊΝj [«uqΩεΓ‡#::ZυgF₯Τ½˜&γ<όσ <`ϊ<7ϋAόN`ƒ ―Ϋ"EŠ(ΰ‚}%Β„ή́ύ‚ά„]W‹"eνΪN…R’sYf.Νσq‰Ξ‚ ‚ωgΎ8Nδ1cΖ(εfBΪ T”6Ÿƒω$8B{,]ΊTΑΑTΈc^ VsΙpΒξeΥy$V§Nes–aΧ]JŌΰmΞ<Ί&ΌΒΊ`όg#―ƒγΊ"(<ΰ‡3Ο9vμX₯Λ<ΡΎA£pξ(£lFΠ—jiήςΔ€›hEXΒΟ¬sOyb’@tεd”)‘κφ$@~χξέ Δΰ6.ΫΝr°NžΊσ.$χŠ ν KgΖ$pΜs²Ÿ«ϋ\›η%”‘nGΒ@§Y`ƒΪiί;Ε^ξvβ5ΑλTΨ¬#Φ/ws (D{ΣfΌ6¨hξ+³ο­!t^Ό/XTΕζυ]X ΎΨ֝dώ,όͺފ/<‘ΐ#Ζγ±όdΌ²’¨xόψqu}R͚υμ5ˆZjόŸ"xΩjΕ!K©6“εΤρzΘΥ<'²§>ύ@ΈςκVBδ+υ―Ύώά7g§| ί—+@‚jq‘]ZΑQ!ΪUΟφ#§pͺϋTheB\‘ρŽ%Ζ*ŠκθΌ¦γγγδΔkŒχ―{ΓϊΪΧρLτΐ' ‘"ͺΩE_ |ƒIŽΕήQί"zPŸό+UΟyέση$oyύλ―ΏΘLίΐΐφ‰Jω„ίxίΦ&ΰ₯ƒ{ϋΔ8~ψa%KΖ5ϋ|ϊxN6 ?f`ΎxΏs2mΗ‰τaΌ§9Α£E‹Φ9Ω@χ’D,ά}mΘϋΩ½`»ΕtUΪrί&τk6ΓοΘqΨEωΣOΆφ~Λ …¨γΩΡ—2=]fϊ.1M%b‚kτuט&ύsxxΈςQw@ϊΧ ΕΧΔ!uΪ(œILP>‘ΚŸLΛŸ@Ω0ΰ’§|†€‡λ#°a]Uφœώ9€NΩΆγΔ‘r³.Όω|–eΡ’EXΆlͺμ:‚υ’K΅PλήΎT«VMΑnτ‡ Μ/Ϋ ϊ`Bν,'}/?ΩnρΪΰuΜk‰uΝ6‚ΧwΥͺU=^ϋ„Γ—/_κ˜yΰ»D¦Η{uG{²ΐώA>ΪŽνΊ ž‡ύ ^žςD[”ή΄IŸΜaTͺ₯έPωκ ό\΅ŠΧe띑³Ÿ+ΰY ­3s~@Π’Υ²r“fκι•GΈL‚(_!]”†š'`άσΐ{½‚jVψw³»d9R¦Ο–•0œ‹2D‘3΄ms8nΊαίΝ‡ϋΩD5›v ξΟεΨΊ ΖιXÈGώGγD\l–>xΉrε¬ΫΎ}{₯κΎ»φω»ϋ:}Š”˜γ(ήσqδ»γz5ECΆœˆG°Χ[ΰ„Ύjo„]ήΉχγxnϊΦ~s’㍳"c‹(€Κϋ¬ΠΟ'!MξsOν'ϋq2αμΟg!ށWύmή_gϞUΩa_‘>™“91Pήίš½έ£μΧΣ1θη ϊήΧμΫ³τ! %K–Tηε$!NΜᱏ&ϊ!ώτΰ2^|¬7Κ2Ί<‡€[³φ+Uβώ1Οl4\ΜφŽΟH,?}ξ+²­aΩ0Oϊy‚ριΛXϊ1ϊD*ρsŸ…˜–VͺfZΌψι^wμƒσ9“6u_ηΙ=Ϋ<'Ϋ(žφ1bZάqB₯ΏkΈGχψ›~]§Ο<1°ίMΰšωγ9XΧ„΅ΝύoΪΚόLΗ Ÿ„Φy '@ρΪ5??ι“Σ.τ<‡Ή-%|mΞ‹ŽŸŸΩΟr_'LψA<3ΨeεŽ ™ΰ¨Xώ‚OmˆJ|’ΌCΆIC½C~υy€νPnƒΨςμG³ς˟ͺj/\Α=^+‘«”Œy·ός;ga!’2έ™°ιSXΏΙ[+aΫS€ίςΡ>* 蜂€uΫTόδ‡οCΟψvμΙ3Hμ3ΖρSκ]tpσ'`<\Ϋ㱎Ώe2κψOE¨E`gN(’²³ω}Ί vN—ηΰπΌ*;SA=±§v6d’£ r\ΓtaΚc\₯Ώίg,όwΔ¨>Hˆ™˜Ÿ\ρΐ/ΗNθ20MLd TTš@ΟΑβηΐ‚XYΎβ,`ΟW\•YΎΚ,`ΟWY…ZΕ±,`Yΐ²€eΛ–Ξ·€<ŸokΛ΅gΎζ.¨AΎœηΐ²ωε°ήΟOKΕE*4Q½„/τΥ ¬9R}χ x~αMΨ―‚!0*ϋΓ\od4ͺŸGΉΈ€dΊ ΎZ(*\vΎφopμS_@BΉ<δλ‘ϊ…@Yς’Ω.κΑ½D%’TT.Ι>ϊ‚Ώ.S‘ͺ”GDχΆj *ϋ£ώ…½RΉŒm&μ\΄]}ί{ωΞώ Q§p$¦ΰΘΐ/ V‘ξMˆj#ΧΩ„€ŸΦγτΗΏ©FΕHDφzF ό³9ΒΪeYΐ³,ΰΩ³]¦­ή΄iξΈΓ ΊqΠ›ΰ.›  c ϊνk―½–βv¨Dζΰ7œ9ΘNp`ίΎ}κxΗ —mΦύ ΔΔi)xͺαqTͺTQ΄½zΙ$#IΗ8ΰOΥRΎθ&lE ƒα£>Rƒώ<† V#ΰDε7¦€~ζη@'!9BΏ@g?H/νΜο-[Ά¨ν ˆx«\Ή²‚R [με'$=HΟ΄~ψaŸπ ϊΜ/SΒΩ T#LΗν„xo1ς>|Έ΄©rΖΑΦUΣh_Βp\¦™/•) c1?5¨(¬ϋ„±Jώ±_ώG©Β(<πU².Σ ΈKΐPΦGΣΘ;q|ζ(ύa ν¬g½_Ά<ΟδΙ“Υ&ζk£”AŠn£b3*ˆFGGgΙϋ€›Φ¬Eϊ‹ωκs*ο,+σΞΊ#δΒ@8‘…¨p²©rϊDŠ φ§°Έr΄²/4B4΄5*ά±Ž7nά¨>•bΈ@ q“§#d{ RλލδZwbχώ}ͺž ͐fέθληευDJΞ TΠ£ς‘<ΒθΌ&hWo>–Ϋyοš‘B8λˆΧϋΨΌ~RFO  ό³Έ»~}•ΟO5:BŒΟ: 8ϋσ]»v=οώR;MŒζŒy6Q΄fH/S !Ϋx\ϊϊjžg“pdτ|8ΆqZ‘PŠunς‘ΞίWΣ.>d2όφV₯J«TωΊ½–˜tHuκ)ΐ™ @ kΰ¨"κ^$KhsΪ΄iΈωζ›LΛ{σΗTώ•Χ±VzΤf;2ω8mU?£†7Η›W(˜ˆ²σeΫ·lEαΒ…ρνίϋδ_ynήoΪ—Q’ΰ*}WTTT–Ός܌O_Cί•›φ‰χcLLŒR|d:τAΌ©Ιtθ_ωόΜΐϋƒ>‘m–Μ#>ωδ}€’’膍[ΡΆ{ςηKǐξΑβ•?`y&&*Φ„t¨ΨŸε\ς7θ= |γ'Š…~ j!‘{;UGZ•“~gž¨ͺ¦”Ίΐ8°Li4yυe<³ν ϊύm·έ¦`0Άa„Ί”]½a _Bΰ„xsΞgͺ}d<*{²ll“ ρjU}ΎψeζηHκ#ώ~XoT­USΩƒη`»O™v’,σfny]c{_£F 5Q…m"αaϊLͺβλ@]"_~Τxπ—j6ί Τ©SGΑ‚œ4ΔφށͺΚlγ™.·³ ΨGМΧ1Ϋ ΦUΫΆmUωΩFp‚λΥ«WWώ•Χ>}q₯J•Τd BxTΑfΠώ•m·φω΄IŸ>}TYlStžτυ§Ϋz¦ΑόΡησ]$CΪ‡jΤ„[7~ '?ϊ›w ΄›ΜθΞ ΧoZΒΟ5aT»E&q -Ÿ‹ΰπ,`Vμί"ΰου0œ Έ\Δ’ y#"žo,gρ\œρߏš²j/ŽϋQ3™Μ€βέ!ΰΖ܁uy–kQȌώ•L8Y&ŠN[¦‰BjX›— ς’yvš‹IΘ!JΤgX†Qέ[§:zφκ©|)ϋIμ#ΡχPmίSί=aΑœšώ‡:}QYA+ΈV5Ρƒ~˜χΆ{›ΩfτξέΫ•eήΫΕ‡M†~κ{aD䃝·bΙώ½hΨ°‘«Γ>yω ;Ÿ€"Ο4B―wΗaώόωΚq"$U„9ioΠ Aͺ?Θθ{›~Ÿ>˜ώ…}_ϊ'ΆyšσΔΌΌε2ϊ{Ϊ Ύτ»ϋnέ*ΰ€όf0?Oπτyμ‡q Ϋϊn§ΆΉοΎ]ϊ‚Α1ζΌ(~‚“πΨ.πΩ"""B=gθΎ;}ωΧ§ŠΒzβ’Ώ₯=?€ήλρόωή€wΏ™‡N|Μ μ²Œτ5l{˜'ϊ%BCΗrΠχp’9O|ž NίΘΎ8ύ}!ϋΥ¬Gϊ(ͺ/3θg"–ŸϋYNύΙώ8Ϋ-ξg»’πΜ‰A¬[χη NHJ“• ŠήρΏύ‰±yJΨμηΐ aCΥDž›ε½Yl!y``θΗ©ΈMŸJ`œΟlΛiSΪD~χυ™Nχ9τ9˜&Ϋ)^ΏΌ&ψ,Aϋ^ξ}{}Ύ‹ύτ<»φŠΈΕ$W?>υζJ‘U[ Q—Ώ @ϋM™`ρ[ ιΕ #΄§Τ½¬”“Ϋ`ˆ_‰* Ρ»φ©CιB;·‘ ΄ΑΎ'%jΥ Γ&ʍέꘌR‘ι%ω)”ί·4~ψ )3dŒάjβIΉ_ΜͺΙΩ€bΔ'"Ύί8g?Z— /ΑΈϋφlŽ8·Λ!jϊIƒEtDlΰπχCΘ›-`άuΛΉζo‹V yςgκήNυχ°Ύod΅‘;μ<°³Μœ 2§pξ»ΐΞρ½VώηˆZ­Γ°Λ}"Ο—b·Π‘=eπ&π\\/ίβ†NF€¬&"ΞΑ][wd/α%™Λvσξ}zΰDB7UHEίΞ!,ͺ, \R ° βΨ*Ÿ?8YΚ –, ό»°€ηΧήΦΩ, X°,`Yΐ²€eΐπόέ:εeeΎδ§Z`4τΈe£F²ΌΐεΛrΎάζ¨ΐδ yKοB·g <ϊ'μTPNrΎ|—7ή0ξ¨|χΡ…žξ’3Žž@jγ6π?δ„Kν!0Ζφ„νa'”sΡ'π–€ΌŽ9 ’ΜΑ –+—₯λ.ψΕ·‡σ88ΰ>‚jΞs€ΦΌ ωίzΩCΜ`aη‘’μΌρ :yΡφZ°³ΉΌ?2Z–q_½Wm5n-β]EΉY^Ζ{ )lΓΙI ƒlΡEΥ―‰ΌˆΟω…Ή·τ¬νΧ¦,ΰωκ―wϊr0|šΐLθ&ŒK ϋ'dlp½Y…°'X ›γ™ϋ ‰ϊŽLFΩ22ΰ|ύbΦq ŸKσΌξƒΡη@;‘kΐ"dΖAqξ#xΤ―_?0iE3‚ $3>ΣΧeγΐ9'ιrFΦύ$χ<π7α cΔ&€Ρ£G)œ"€@€ΐΣΠη ₯VΈδ$3žD F˜ŒƒςΑ~89σOzψόΎy₯²ΟGH™ =Β „ 9HO›pπŸJΝ΄Sι7y_¬–ΧuDD‘Α­`(€Lƒ~L‡υΡτ¦ϋp|μψΙ‡²ο ν₯ „¬Y3e'Β Ώ_‚}χέͺςΑ΄¨vM°σD˜€yd ΜφlιŠ8QΎ€*/·ζ`]1>aC΅>¦ΓλlΓ²Ώα/ΰQ½¦M”’'‘ύχ,ve?WCζTͺ#4I»›ažKσυΗmŒ»dΙ“π7—Ζ&τB»²ΏL8‚@&λšΠ(C­LΞψ Όw˜^_:(p‘ΐ³”η0ΓνQ@8ͺ~J0ͺ—EdϋGη*δΥςeυfYyεS',)υΤ¬‘¨ΚΥΙR:Gl’v>+Z kE¨¦ο·œξEϊM χώψ'™m°ΡyŽ'ͺ"ΊyC£yτe~ώXΆόο,ΎŒ“τυ―ύ«Dy»ϋWbf™ΎŒώ>ά“/γ„\ή#ΉiŸ8Q‡θθΧ©­Ϊ¦EυHήΧτ…΄ΕŒ3Τ½ͺ Ν|be;£ΣΩ* σ­»ψƒ«Ξίp½ν^<ͺ&.θ8ϊ“χ?‘>vα―Ψ80γL,§Ν…ύΘχγ4<ϋr‹σόΖάΡγά+l’ΞΉ§C άrΫ­*YΦι›/Ά@Zaπ{ϊlΏNΰŽAωW™ ϋPT‘IKΖ8 ¦_―ήH]΅Fxό+UΐxρχTΏd έ9™‡ƒψRf[CPš~‹6ΰd*Ϋ3° #€LΏHνίμ  .Ϋjy±,€Ν[·Έ|>'°Τ«s?ΦoΪ¨T—™'Υ?ž&uΝt؞ίwί} ~#œMOpœ~ΑάFπ7σdn#˜?ΆωkΦ¬qM>œeΠο<Μώ•m-A=„ :Ύ7ŸO°œν€9π7mαή–*؏³Έ€\ΨΈ±ϋώςi3ΓΟRξtŸΣn«„B κψ΄²RΆΐ³iq’ž°Q kΓT FpΓ:2“κ^  Pω—yHψaNIί‡Χ’Q ‘½Ÿ„Ι‚}OžFόϋŸ"PTFUŸœ\ϋnδ{I&ηό»„%ρχ’Ιo-1-³οΞϋΊΐβ•°KήCd‚ٝ;λ»Λύ±φρ©_V)„Θj%»i›(ΜGψpyYΤyO³a3œ9—ϋnσ‘.£”sm!H˜φ₯LΜϏ ύͺTž2‘ Ά5WƒΌμ Ÿ:u*Wχ6ΣaŠώΖSཬΫ<ζ©nέΊͺ/ώΫoΏωό<Αη•άτέ_ͺU_­ώΫ₯ΝU9jTΎΙSΏDH‹§πε~vωSζOO’#<‰ [a—λfKqžθ“*,Y‹@±ΰγ ρτσM}~ž`I`—νœ―ύdΦ‡ήΪ;oΐ3ύ*ϋΑΩϊ@IœΆεΔL>«Ή–·βό_‘,iε{Έ.ŒΫoVν„ž`¨γ³έe>˜–όξώL—]Ÿƒ“+Ωξϋϊ\ Ο“WŸηΟr?Ωζ-@κΉι³€ hΩ ŽϋξΎπS;€a©RjVEΎφ/³ΡΜušΖ$ŸδTΉ»Ύτ”Μ|»?wι>†δAοΒF…d )2Ρ'_Η–œašs:|W=f*WmTqΣ+•C•₯½Βξ)Κ*‰}ΗΓvϊ,μ†φ~(WΪ=–Ηߎυېͺ”,€¨M~vfύΆ,ΰΥπμΥ4WΕχΑk δjΘ‡ƒαfuMΒ›T§ΥΜξFΰ`4α‚£ξA§‡₯£ΟˆT?iΓc H¨S!”Uu5Œη~<~ΰ >‘έW¨ 0G4*SκrζŸ*rμ/qΐ›κwΊlL‹π›†… g0·σ³Υ’E Θl^$“ΖVΡΌO8XO%UN(3§As?σLPUΊ[·nJ½’ΐ!oζΙ~6GΝ‡_ηzΈΎάυͺψT²«Z΅ͺRζςΥ„ΑΆoί`.],7U9uϊT‘IX·§N΅Η έν†υΕ4bτ’ή„ό˜—V-[aί Ω°―? Ξg«W %[ΥWίωy'Ό¬ΥΏY·χ‘pœ:‹g((PCΫΜ‡f˜eœ>j,vǝQΠ6λFΓθΌ`=ZΦP7Λ)Κu5jΧVv₯Bι}UοDZΰΉ|«•= ?4d`άμ?]7Μ/ΑN‚šΊ>ΉΟœ§Ω³g+€…6ο½Ÿe€M cΌ6Α›g–K§Αϋf£@G)Ο΅FFόκφόdιjχkΦ w¨fχoί€Œϋ~e \BFd1½ΥZδΑΛ¨ίW*π쐉‡'ώ R€1ͺ D‘φ!πNη}αάx•ό—gΊXQ‰ \²Z(C€ƒΓΊ l[ΆT–Ϊ’qͺΗT‡OΛμθί~εJ(TΊΎά‹π=2σp|·VΓxψVD6―οΥ—±y°ο<”μύjΦΎΗεkxΝΌΥώ•jυzŠ'J –*θf_f.€»/#tLΥG Wω>δΥ ύ,Υ΅Ί'ΟΕϋ–04Ÿƒy―r²‚φ fΗηkNh‘’ΎnOφoΛΐ{γO’xΎ4ΌςN(Κ•/gΞΎϊΞ4ΏώβK$6HGž»έC蠞ψtΝr~cξ αHkό*Ί΄ΑΗ~Ι.Ίiƒΐ?M_‡½p~„ά(ЬΪΰΩ—^TyΧΠ6Ÿοι?™oϊͺ’E‹Ί|λ‚0qΩ²eUvΨΦΡ§kΨΣ„ϊ!ϊ.Ϊ†0a‘"E€μ*ΟΆέHΥjƒ+!Mκκχέ«‚ΚύϊυSΧ' άΊn=ΞΘrλα=Ϊ)Εr¦―՜u=θ6ΐSΑΊ‰‰‰ΙF”/_|Ο@h›ώ•εΦuΙ|ςTj5χ Ψ>hŸΟI4ζψfΝ<ͺ6¦Χ²₯0uoK]ΐ³ω>{mΪNJ Hϊklς,ξ RžτrΧ ό|# 6¨ D„»v™Ώxž+7"qΞy¦wΆΫŒo/(ΧΖγΒΈ.ο`•9αψ»zφ—ηS{¦7J@‰ΎOΓ–?w Ψ—ΌΫv!iς§πˆΑ.υόβ3”] ˜™ζ€ΑŒτ$ι»TSχςβS—Bμ/Kjψaηγu\CιτR·ώƒΐ|„GΫa‹‡νΨIYaMS–Mΰετβ…e2΅?2€œξŒνPύžZηξmΉΏΥΔ/Ή~uΰ=DΒv€«΄Pa™ύa <3žΎw}½·Ω/Χ}-}~˜[νoΈν‡[}yžΘmߝ}k=ΑGυέ₯w²η(„έ^)sεύΜ”A¨vWue*fΣ/ιη ζ›Ο ϊύ­ΩN€+Νώ ΫχΐΈ»^έsΟ2)$Νd¦c~ž`¬ϋΑμοqr₯nƒy˜§~²ήΟ΄tήS{ΗΙCϊ9Cgν§ž€”4ϋw}¬ώt–w!2ΆΘ„bE0~ jK™y½˜ƒnw™–̏ω™.§>'T±œΎ>θσδΥ§x>½}'2du–€L09½LI„t}ΉΟ.8,_ƒ” ΓH•«D€Ϊ 7[ΑQυζ JξΜησϊέojŽ#>wkGωθά₯΅v³¬@#ύT™E8πεgϊ>ΎΫeζ„ώcΰΏο:gςύw#kοϊψ>άΨ#κΜΥ€A{‘‚ν/qΡBΎε_`αδI2!Z/»τΑCϋw€UΤγ±±§#PV¦dH«ZωΊ΄’c:—°σ€κ·‚t’>{ΐΉύζo;'τ¦a*κ@IDAT5jy?ιKٌtIKVy2’7>¨Z;€ΞRf|­R z^&J>^ί|†«ξϋ_+m7ΥιΦNΔ«/δ»κΚhθς±€<_>uaεδΪ΄€<_›υn•Ϊ²€eΛ–, \S°€ηkͺΊ­ΒΊYΐ<Η]Td€χΉ+2qp™Ϋ}Q\t;Užόtžm_}ŒwFΙςBO‚Cdl΅ο>Ÿ'η» DD)Ήi.ίδ°ύl°΅~—:¬έ$/†?P/†’θFP₯šSΡ+ΟNΝ%²{ƒν„@rŽΰ·[ŠšŠS)2ΟΞq‘ °tpΈΐΞλœƒΆ…_ƒΠφ’ώB³p₯—ϊΧvœ|O@ PŠ*gρ~Ma+κ]Ε+uΝ^œύ\*ΈX"?/ΛΟ^fΚWZ%\Cω΅€η«»² μΫ·Ο₯TI(‚ΛΒλAn›αβ7mΪ4 $δn!Ns—‰―Q£†Ό'`ϋ\ΣΦhί=q ΞΚψΰGcΒ0h€>#ˆGX°+» QPΕQ¦­a6IΛ—/WΛms?ΟGeiN .X‰ω§Š/α *9›‘-φ¨ΔI€A¬{ΰgΪ<―§ψ›KIΘ ˜Ξƒ>ˆE‹)εL³ύΧ<@OβΣ}2BTΎδ1JΑΪaΓ»LBηΝΈF•8‚k\†™eb˜5k–*'A Φ•έ€1Έ~ΰœ φCΘΨƒΗxΑ2=z4†že…ƒcΎƒ}EŒJΓV=%;=ζό.φΣ*œTϊ¦Κqςώƒπ;‡NS'*υ@ άζЁ6ωπΓάΝzZ+}Υ£²Τ8Λΰ ΚtΏ >πZΠpϋΪ΅kQξ‹ΰ\c8nΈ^†υ­χΣ8ΛξϊkΣ\€ LεB3£ΰ•Lπ\—ΑΌίύϊ`ωxj…Aζ—K©¨7ϜtHuT*πρ:ϋμƒ)HhέIT?|Ϋ=ΟΩΉUAϊΜ‚\ƒ±3g#dα"Qυζ`Ήά³χVGΎ–/β.Q«½π:;rΔ Eη*ν rϊ#8>ς8Έ:£b$";?γrαςΒ6›% ž$0έq•Zz• —>:Bέϊh©ι8ΡS ’}Ou τy ~•SΗπzιΠ‘ƒοχ’άK'ζ/…cφ uΌQΏ "[6Tί½ω²ƒc~@ΖκυA άQΓ Ψρž#Άxρb—-$“4€Ζ΄<ωWw_F…Msή|Ωή½{]ΎΟ—φ‰Jτ#FŒP ²ϋ€’φΠͺm˜Mί²]©1' L|ά«l/X>ξ/S¦ŒjΆ tΠ’cSσO 7­‡=›*»ρ>Χ+!π˜―g}Δ—Ϊ‹΄‘¨‹v„‡"CμόπƒΨ}cY—ί ψuβΔ‰s~cΰ0$ΎΡΑγϋ£γ‡“ΟΥι΄O‘šα|nζ Οσ―R§\}@·—l7hOΨξάΉΣ₯JU©R%ΧDϊ(ΎKΰ;„3gΞ¨τΩ&EFFͺϊ$ ΗφιΌ°OΪQ/ν;ο Υ¦ΠΧ³Ρν?As\9α‘°"Hš0] ν5Δ΄"TΫ’'κ°]Χuν© Ώ?pΰ€λZ`²}wωW¬Ννα<*`XΠώ•P ϋ žΪ-O>_ϋcΪ\O^Ι-=ΟFzŸΩΆμRπs²ΐΟJυUο“ϊI— JωΉa6ΣΑ<χμ…nΥk#ρλŸ\Κ™Œ“~]$ž~Ζ]ςξ@Ή‚#9 ‡†Μƒ}‡"6*E’d'`ΘDŽΛ2°?ϋϋR$͜›@y ₯’φ% ‚³?ς―δ›ν»LŽO9x_u΅ή(‘ξcž[υ‘>™ ϋξgVδώϘ:Υd‚ Adφέ Eό˜Y(tΆdQig_HV Θ ²πΛMΰΈν&8Š XXΆεZβ΅―'%˜οmη œΩ?σΝ7•―’οcT―ŒΑ{”ΐ)ύΎw}½·yœ~1Ÿ}tNBaΦ=OΜ/Uμ9™Ε—η oν>Ÿ{ߝ /' ²}`φ₯š΅Χe¨²Uš(·zσe4ντ¦šˆΒΥ¦L™βžι‹8±„«εx²S9Š@όϊBFυFΓ—^PΟͺN§‹{BkΚ»[o„½d€ ψeΕ[ηΈ !hωZ•ετ%ϊΞς^ΠGΐΧTP‡,[‘0|"₯}bH+_α²Κ #_˜)V_ι#ηόˆ”Ωί«ˆ<6¨»Lϊ’΄| 2‘$±οyΆŒUΧAp‡—α¨q‡O‡ͺH­FςΔ™ J_₯lI„υySM¬ς%Ημ…Hžύ£ŠšQͺ8Βϋvς{˜€$eT+%Κj, )j₯ΔWΤwΧΏ …%mψ π,ύ<Αυ!έicr KΧ yά'*ZjΫΡρΥΉ"Lϋ2?όΟy}Ύώrjאώ•, \ Xΐσ%0ͺ•€e\Xΐžsa,+ͺeΛ–, X°,peZΐž―Μz³r7ΰ [½ό’Vdβ@$_h3pP“KΤς%v]`Έ,=_θη€ΈΘψ—"h๜¨JmŒΌ[cΞ©:η mζ8|oΎ§φ-Ν ;`‘£sι>9‚ƒŒΖ΄‘0ͺήβΫρ˘»)_}Kω₯ͺάK”(|yΉ™‹s:Dύ)iΰD2@Ηw.ΟgΈ©Ζε"ΉΌ*ε>8ϊ[ΨWνWιZ°³οζMίz'†Ν©|XT”žύΛσš@ϊ–ƒ86dŒbΘ@KαpDHΊ‡—ω^S°v\«°€η«»ζΩ§ΠύOƒΛμ[πO¨›Αμ,£cσ±%ΚΆΔ‡Ÿ§JΏΔnνPνΆ₯κQ°ύΑo?Œ}lό₯έ4πLߚŽ5ϋ !.΄’ΒΠxl}τy”K5zΎά)Ώώ Δ·}όχ‚Ώ¨Ϊ†vC-Qμ$₯όF—n˜»pΛoΜ8)/½γ§ιΈΏΡc.šcŠο Sm}}£dύ<ύτΣjŽςΏ%sŒžDΓΌΌώϋφH_„Έ‡ ¦Ϊ]szz?ΣΥ ‘άΖΙ7w–,ƒτ’LJΰ~Φ!m–qΰ6Ι v‰œ:‰žnΣ·3?\Ι \ΉrΨΏΏ« ΄Ν JvRAΝΖ‰S€όΕοέΫι3°‰/³Ιδ{†{eΒED£ϋ°£V1Υ7Vώiγ&ψ΅HŽ“,€Ÿœ!ŠίΑ£ϋ’Fέϋ]ŠόΟ“χp_ΜDπΆR‰'ΐsF±Β2 ‘ 8ι>½B4ΒkVnΏ ΆβE³άΫK—.U°―ΉΒ{L―’Αϋ˜χ,ϋHœˆΐ{[Ο,·žθ’γωro›ΟΕ4ΨvpBϋ} ξy’―α*1Σ||žπΤή©„εΣrο»s’HY“Jώ­ε*ΰtqπίε|.вo:ΥΥΜ›=GMTαsϋ„œτ¦ΛΟΙ$₯0ΫΙΞϊί³‘•e€δ!mޏHώtΆΞB;ΆΒ˜•fiƒ©θ¬ϋΙϊωΒl7oύd–―S§NφŽΎ“_+T¨ΰΝΐ3λšm΄^……ηjΨ°!Ϊ·o― no>6fΠΐ;ΏλλB΅)j"ΘNΔ/‘Ύύ–{­9ΎΩ·K΅‰κΊ–ϊ]·φΫΔχ……ςpU7τϋΎφ9ΤAςOη…ΏΝΟ—x^ΏμoΤ| žΚΒ±‡žC€Ι]Ϊε’ΥΆ ϊ' ΡΙC'8Wϋ&Χ«…ˆ–/¨ώaΣϋη’‡Ό§ό }pP“Fp<Ρ WώΨ!ύ«Δ‘°c―:½‚―{u€ΟγSXΏ)£§ˆЬtŒ[>Ϊ§CιΜ‡_ ψηΏT|₯ΈάΉ₯šh–cWŠ1k·ͺ¨•Κ"Ό—ԍ'5fΉ7γ†LFΐ&η3r²¬’Xΰεg²žβ—Ώ κ6Κ:·gχ_& $Kž€³‡τ[*"Ό§δύJhG³+S.φω ΛVK?SϊςνύqΗΝΞΎb.’°’ZΘΡπœ£‰¬–.©,ΰω’šΧJά²€eΛ–, XΈ,`Ο—C-Xyψ―,ΐ?½t!™8¨ΐS­ΘΔ—ρ|‰‘­Θτ_)[hΰωzΏ l―δ4›ŸΏGο‡}ς ΚŒκΌΆΡ"]Τ ŒtQ„†(5`ζ5PtI3F% \ؚ©€qcy„v9σE~^Ϋ!/p“G}(#&ιΰ~aƒ¨Ξ‹Ή<ΚΰΑQίΈ`ηBMk!¬q.”<ς(Wr2OαX?y±+J‘ΔΐΫ½Ώ Oί}ΗΚ ³@.ΘŠΘΟΙ€fώ+ΩVή p •ΜTΜ’b•. °o Υ† 'ΰ·ιΐAeφ#tΏΓΫ ΆŽoώδΰ2Μΐsρ2­πΥ·IθΣ)Χ—v‚Ή:mΛ<π:#D₯8nŸ3gŽI9ΐΝAψ'žxBνg| 3Uί¨Ύk†ώΈeΩ½{·RœγosΨ΅k—Rl6ƒz?•Ω>Ž£:ϋ\fιx,«†³Έ AΏ~ύˆΝί„Λx/q;aͺŸό£κ‘χpπΰA$v›'Λ–§£Τπpܞΰ‚-άγς7C*M›—ΠΦ d—.]0€kO€8†nOPχ³§ΊLψaNΝX’”ΓΗ=‡’Χ•R§r)ΩΗԐΣy%²ΞΚοo½¬ϊSSΜj˜„™ ›S›0χ€§žG†ΐΏΆ{οT}VΒ TΡf ψH‚0αΒ ?Ν‘I>ν{*Π(hΠ;ϋγ·θΡ£‡Šο½χ*HšΆ5Φ‰lx5²¬$sψΒγπ’‘:†ͺΜ –7n¬μΗkεπαΓκX}}±ΟMȜнVdRUυ©ο#wΰٜύπΘrόλΐϊ«W―ž‚8τΆ ω4~ύ©ΣΏ‚!πΐo'Žΰ‰εΏ!ŸάΣ{_묔ΓαaΘ'υκαˆ|ˆ€ƒŠΒTh AηΥ/δόrLΖ‘Σ8&}B‡(W2% ’x·'Ξ>ŠτΙcߝ&«ΚlPe΅Λ’Ϋ!²’ŒQκά„΅CώqyνƒfΐΆiŸΊ―"ήz 5n»Η»έ‹ξπŽϋ½ΈeΓ&œm/ΟΥΚ"ςFY?΄/K^ΎΗήύ…<Ž‘β78©„ΑμΛτ19ωΧ%J(Θ΄=š£/«'JΛ~Β/|ύΓχYΰ§4™(j“Ι6ρ'ώωϊ½Ρw™VhY)ŸHί8$η-Ϋ½Œ‡φ) ŽΫžΡ$Λ‰Χ‰_ΒΤ*άΞΙ eEΕ>¦`„*«j₯M ΏζϋŸαlœήΓ“qςH:v Δ”½] žγ\FŠτ·,Œ˜:=ƎRΚ€Κoˆ*s τΗΏώύWU>ϊΉCF"΅ρ«°1w?ψ€j<ωiχ:₯Υm’;uZρc|oΖφ’ναζΎ}ϋͺΆω0–mΗμΪLίΚ‰4τ­ζφθχκΧ―E‹)Εδι&"ε;ΰΘ¨ZΕ•Ώ0œΈD€έ˜7ϊ^N :yςd–6‚Yt;Ξs7i$KΑ‰ίzΏ9Mζ‹ώšνŸτΈϊΑ/Ώό’΅Ήη₯‚2Ϋ}o>ŸοYxns[JuYΆZMΦSισϊτΉ}SωyΙ rέ™Γ“ΛΒβΡ£bUt.+‚ΌΖ#u€(ο“\ΝΗ_NίΣφŸΔ‘σ€ΈdrmnQ!f½N.§όzΛ '%Όχ ό·οVQ 'Χ»ω›=νpcLND9&@³€Μ h>.@sŒΝ§NΓOVγΚ’ϊναδd ;Η§ˆΒό+`KΉT—oάΆEό“€QPGAω?{^?­d€|8S₯œVIή=ΥΈρΆ `ΫnQΈ—w ¦6i04oζΊ·gΊ­€A?Γ>*YήKTfSOΣ`+Έ·ΩgIϋχ<ρ<Ή}ž`ήΝ>“Ώ½υέcbbT{ΐ8,›^a«6!ργ―Ρ‘ΪM‡>ϊH=―°HXΊΗΚFe±ϋ™τwξvb}ι ςtϊ, }γ–­B@“Η0ΰ£)YΪΰ +WΙΔχάχθΓ~ςΟ2Q‡}TϊΑ‘#₯έqλ'ΣNτ‡\υ†>Ÿ«–[+μλgA <3/όsχ<'ςύ@v>Ηzž™ˆRώ`»σ~ώΙu]s’‘­τσΕG§UˆFΨύχΐ¨v›qπ΅Ο‘“ΧŸΜωΉΐ½Ο€γyύΐqρrΏΖ³# Ύ#6NύŽ;xXϊ&²_ςΛ°UžEο]8W}§ΟPμΠϋ&~ωCϊ7_ͺΥ\μ"dά₯LzqήƒΉMXό7’§|ƒm»<½ύP9kŸ Η4 _ψZόCJ΅[―cKί€cπγ"€Θ3™8+d/‚ΠΎo(ά§ 6ŽρΦmSѝς³>JUλxΡ“R﬌€(νyAϊqρ}ΗΓΟ?Κ―·ΈΌNυ¬Ράag™ό@xΩcΨ9ΎL”ΘLΟQ ~§εΩGΞΨUκS&ΡδvοGRŸ±RwιHΏώ:„κδύ|9&veF`{8h\6l T¦ΤΝεΚΘF+XΘC XΐsΣJΚ²ΐXΐž/ΐhΦ!–, X°,`Yΐ²ΐ•e xΎ²κΛΚmήY€/v΅B SΝI‘‰ρωR[ύšΏΝR_τκ}ψόβζ{ρκž5Πΐ³½`8ζN†]Τυώ«`ΘKιτ'ΫΒΆcΏΚ‚]Τl}ί€ρβγ—>K‡Κ‹αρ.UŽ€ϊχ"?U9ς:,Z€ΙŸ+υh.ν.ΛƒpΛeŽϋφΏχͺάzκ.„=γφβψ2Ιηεž Η™θΩqXd§`‹znx›Χl§ο?!τ—@‚ Ί†’XΏ&π/]Δk|k‡e xΎΊ―BHΤΤƒάœbΙُΘKΰΉΜ ―’JEŠqφM8ΐOh€Κa0oΫΆ­XgeωςεjPšωΠΛ`‡Šr'—‰& «ag‚Θΰ2d£ͺΐεκΉ”½;Λ> >kΈ–0-ͺΣqπ_Oγv¦{Z"£’’ψS©·h‘UAUν0ύ#Μϊύχί«Υ8τfBΨKE!/"BT>Ε¦Z₯šJukΦ¬Qwtt΄R¦£-XζuΛWαLο―Τλ!Τ©_OAc„£ ™ήbšf0œιR%™η8p ϊχο―πυ’¬yͺν8νπ4ΊΝ˜”- ό—(`; LYχ“ ς¦mX.܁Ο‰²œ:U'#z΅C€@ιξΐs\ 0Σαj%M₯žN‰}©"ͺΛΝ}‹/V0α Br ¬£±cΗͺϊα5Λ?†Š·ί~ϋ<ψΝ=Ÿ/ίt;R©$&!­rΤTϊ$ΌΒΠ»wo5‘ΰGηΝΥ6ώγΉiC~.\ΈΠ•'Ϊ…Κ€΄ΎnS%ΤˆΗz!@MΰpΪ΄iτy­>_§.b‡ŽCP—ׁβE]ϋτ—wί}W­ΰ’gχi(«€C”̏@„€š<θ¦Fζ%‡Δ΅ Ν%© GgΘdΌˆ’%Žuο|αBŠΚŸΐΡά§Ύ–Ύˆ΄p=NΟX$€ˆέ Τ“‰›/Χ‡αη<Έˆσ\‡:Dε6qΨϋπ;vJe'υφA5:/*pΗ‡Ϋκ]*nΔkPχόώϋ5ξώLηΗxŽώŠ·,[“€m?‚΄½'±Ψ±_©λΘf_f~Ζδώμό+ύV¨ΐYgΰΐ½ϊ³ΙΞ—ρžΌ-,σ7oΘ?΄λζT1•σΩJ Έ?¬WΰΉeιςHϊVΤκεΊε5xWUμΕαζ―ΌμšXB?O…`Β¬l#Μφ¬Y³ΤωxjH‹χ=‘β`›€d’ ξΨ΅O‚ΨWŸA™wί@Ώyžm#•™λΤ©£βpβΗu‹VΏόι„‚ΪΏάwξَ>’ ΠTϊζ„&³ΏgΫί¦MΥn±}&PΜΐ6β…^P+"°}7Γ6‚ύSs{Νs°.ω~ΔέΏ2B†΄»Ο§*aFO>ΏhΡ’η΅₯τγΌ~s vBd—v1δ±ϊΐu%E₯Y|<šcφ)ΠF…f7¨ΨΫ™r;d‚zF‘όj° ω^Άήύ&›NGJxή‚₯~γςž|@š¨8Χ¬}kβΔ«‘ΡHψϊG„Όρ ps¦3Αw…»χαμβeπερλJ`u­[\χφZ™œQzΩ—”~°¨?C‘yh–JηγǏWχ—Ή=ΐ3ϋω„•/ζή&ΌKQΗδo*ŠϊΎΞνσ„ΉOK3π··Ύ{ώόω³ΌƒΝ<σ`/ƒdΥ­6=ΊežΣΔΆχ‰Κ6γk; §τ»X³˜”9xΛmΪg ό«έŠE2AΜάOζΔ$ϊEͺJ»χ“9ω‘ο’ 83hΏΟ<ι6A·wxζ'Ÿ%ΜΟ¬nΟSΰYςγώLΊU&%έeε½#ΗU~Υ?9wzωh„Φ© GέZθΡ³§Ηg:φ/˜Gχ`ΎFUΫσΚ«H=|Δ 0‹ί%Ό¬ζΈ‡ΐLΈyΦ†5ψh«sβ{šή~ Ζ―Η©έ\ΩΗό|ννΫ’NύΎ( oW»ΣoΈ‘„9Q1·Aϊ6qc?DΠκΞ΄’K"¬ϋpˆ*|ΒΚ Hχ‘‚nIœ΅|N꣦oIˆOˆυWeζAΖΒzΘ³OπΉ ΧΩ&$Ύ4aΐx§B2Οέα%wߞν!§Ξ"Ύψv^S)‹Zs ™¬β)Δ' œ<ώŽ*A” 7›Λy²φΓOυ=Bζ,TG+eημ`g”γ{Kz™°³½D!ψt^m›χϋ`?Y9$©ϋH‰Ι`3th—‹ƒθ=•ϋ ΩΖyέ‡€ ζ€?BCΦΓQΕ―Μ[ΩΌ",`ΟWD5Y™ΌŠ-`ΟWqεZE³,`Yΐ²€eΛ–œ°€gλJΈV-ΐ΄ϊe΄Ωή™8˜λϋ0 σKφμ9Μηΰw |Y››°δωΧΠσΐYW'NΜ²-§·ίTk·lF~QΒέ6llρ 0δΟ&ƒψκ»δέ—S29ξ·ΛΥ  JΫ4Ν'`” ŽΞ€ G«m₯%pΒΦ‘‘σ=ζLΏP˜@pΰ_>ωϋ*ϋj€fσ~QpˆCη6MQ7χŽΏ;Ά?·¨έω^x=ƒξχ"}‡ωُΧΰ·ί~λΊ·@.uAΘΝ[ˆOΕ–=;ΠόΥs0£fρeΌ–¨pH@HY~‹E‘‡κΓ&Ο8Ir-»ϋΧΧ{½&Ώ—Ε—=.>ΛNUΔΘβX±n­k’‹RJŸωζgͺ=²}ZΏj5gΝSJε₯JΒ(ZΈ΅² 3ϋήϋgϞU“,Μπ+W1b°ΰ₯}4h TC΅š1}b ψσ=ϋφ)~>go£ΒσΰIJ‰Ο—θ²Νh{§3zϞκžη‹¦―pHτ€_όΖ†ύŽ„;#ΰσ1Έ[&΄hϊ|ρ"«}½€”%ΤyέλΤά.θύξ»ο²LΈaώ ΆQΝ^·oζχ „ ³±Md`»BpΥ(ϊ:Ϊ•“‘τ±ŒCίL ™n\ͺφrLάΠIΨΰ„²’άƒ―>Ηθ*ZdήvμΨ‘Ϊ1–QωWΪWΰ4^—Ήi#xύ³Ψ^zς―\EAηe;,κύœ0δ‹ΟgώάΫR¦₯aΏI“&!»ΆTe,σ_˜ψαά†;n¨ˆ5;Ά+ˆΫ\Άά¦σ_ΖO^Ό '>ψŸR¬Gx"{=€θσ'υό—yτε܁©Μlœ8­`ζΨ={Υο ύwΖ¨χ;*Π`€‹?s„x†χΨΖgˆzΌCΐaΒΜvωΛ_ώzΕ θ\P𳂇„ΊϊŽJŽ=μ;Π―s nΊΑζςλžϊξ?Xˆ¨¦χ‘Vƒzώwσκ΅`»A@W9v!HξΡ§dςƒΎ·η~τ β_ξμ:$ΈS+ΌΏ~:uκ€ξ]N£α½K΅tN(ΰ}ΓχΌwθgyί1δφήΦ'e_όΙ'Ÿtε‰ύ`σ ΖΛνσD•*UT?Ϊ—Ύ;Λfΰϊs[KŸ¨'A(Ÿ(ͺΧΔwΊΫ‰ώŠΗQαΩ›rΜΣΩXΨ—­Aό•(τfKŒl†Ούd³hΡ"θφŽώŒνύ!ΛΔΊδ*9œ€Θν|ΖπδιΟψl““dyΝνξίΣw»ΪPOΤύnn3vνΕ™Ÿ#hύΨDωZ[iu‡τ€Mϊ•I©)ηυ9Ϊ4zι·ΐ!s쁃MDxϋWPγsχEΛH !οΕr£wmΖ€νλsˆ•uwΕ2ΡΨΎ/FmΌ`ΰyW RFLυXέ&=RΧ©&ŸυT>ύ2Žž@βΰwα— '׎‚Ά™χ§O‰Θ½€/ΎCκΧ Ut‡τƒΊΆΚ—ριpˆM(yΨ³_ΕOΉnDΌ&€2Ϋρ‘Ό'UiρΓvρ΅a=ΫΓQ!:ΗÁ““v6ΞJΏUΚ"3jd˜] Ιj ‰=G‹HΙ)8όύCσ*\»ωετησ2W΅-½υ"0"γ™}œ,ωƒ°swαΏ#F•5C”ί€ azξq8ž|H}ΟφίιXYωi˜¬r»΄‘#δyςB χlOreνLHt λ T;αvŒθΰή„^Y²r{YYΐž/«κ°2s Zΐž―ΑJ·ŠlYΐ²€eΛ–5 Xΐσ΅VγVy΅ά_s»Vζΰ>OŠLuλΦUƒζ4W«Š˜‡uoŸϊίΫ~OΫkΜ±L ₯rςΒwƒ@e0ΪυEΖ‚E0dΉD‡Όδ΄=%*<£{^ϊ,Ι‹acφχH™σ½:—]θƒ{½)ΛΡζ1d*/Rc‡Nυ]κ<)Τ@Φηš/}As>ƒ;ηl£ ‰ΑeϏŒ¬Ψγ<όΖˆκρ¬¨zέν§βq€Ηης¦^@'*mυx ώ7‰"•, ΈY€m…<»ε*ϊIψˆƒά7 άΚAn‚ „Š5 GH^&zƌjYyσ Ώ'sΠxz2Ϊ΅ψαπμ>ΚcyφKΜ`²ήΎsηN₯XΜί$'@UdΘG‹*2 ¦CȌϋY&φo*¬b 2©ωŒO‹ͺ–\Ž[ΓΒLƒΑ½μ„Βψ§χ«H™P1š ²Tsλή½»²§‚ί8H,ί 3sζΜQΛJ›Σ$ΨΡBT€ikMΜ™‹ηžoͺςΘ4 ui0ιy‚² Q³\ΎžƒεΧuj†ιxMπώOύ Šwy ~…DέW„:(ΠAΫ%YϊWΙSΎTjΝc‘_’ΚνN…@¦K›2ΏK–,ΑόωσUΏ5\ΰΛ:uκ(½aΓ† °γ9©œL ‚`>Ε|$dA(ƒΗP΅“Χ!qͺzλ2θrσΊržUœΝ;"κb\Ζ=ΰαΊjΥσά# ΓsΎg]p!ΤΗ2pαξΌW| Φ`y ζP•›yeΰΎO>ω=τΊ~UžDI.e€,±,+0€]_Αέdπ<~ZΆl™ͺ ΅ΣΗ\FžJί¬Η#G2'Ey:VΓ«X3—θ>«ΰB­ π#θEPZ> yΟyJ*Ηmr§€ €/— d%ων_‘ ?*ΠAAQ«Λ€r]QεHPκρŠ ’j;j*78ύPF±B Π@”wΰοψ΄°-X₯ŠήΈ‚^¨η΅ψžξE³?±‹Γw+8ο^&&&Λ½ΚΙœœA|ޏΊ-ΰύ'oœgV¬X~[©Ϊ|[εJ#°RtμάΙ<ωΥΧH•Ι­„Νm¬‡δΞΫDί°eΣfτιΧΧε_{Φ‰£ήG`³'ρWL“0"}ΌΩΏ²=£ŠκΘ‘#]ιr’ŸίΉO_τΓΎΐ{Mš4Quε<»Ohσϋ†Ψ ΣΌϋΔ=p7NŠΊvΡΚ)ŸjάΨfR!Ÿ*Ϋ ΄k•’Q0"‹δͺΰ±¬OΜΩϊWFΜ Ί-b”“Ο§’…Ά₯ϊ|ϊ“Χ_nWJ š+ΫΩ+xŽŸ΅ §Ώqϊ2#*?Jτ~ 6™άr9C| ƒΚΜΗOΒ8y ±{bΰwκ l'ΟΘD,EyΫ[0ΔηΠ/*Σ&ν•άoιΡ₯|χΏρ™œ!σ ˟ΌrδPχ„ώ£“°e'' ˆnΐ[ώ;;'ΗiηήwOώόwœσ ά5x&TλkίέΣ½}ε[pjήlΩ ΏƒGή·#ޚ6Eω'oφ0oΧοιssΫc:Ό_χΙδN&cpχ7jcζ?ζίΧη Ο|¦π΅οΞη"ύ,ΔI%μΏiŸΚΣ›ΫβW_}S>ψodφ“Νyτφ]Ϋ‰ϋ}Ν“JKΪβι“o“gŠœϊΙOJΏΆzζdEoω0o§O₯ΰΕΕψ@ΦΗΕΟΑ₯pΰΝ>¨ŸάW{Nœ@ΊL²*»s?ŸΘ3‡ΐγFzŒ2₯·{Ž{«ϋr€ŠcμŒAΰ‰β‹“a/R‘TS¦oυ!8ΆνAχaHŸœ“C»ΏT.οωHρε ½ΗΑO s‡¨N‡τnTˆΞχ<ΨΉ―ΌΫ—2y rΖχΛ„%BHΝې²tΉŠšRγδλθœxνρΨ̍œp“ΨmΈZ!Ζ.«6†ΨY&ΙXA^gKσάu`ΞΔΪd±tŒκˆΰ+ψΉΡͺΤΛΖzό““>GuΩδΛʈekΕπ|­Τ΄UNΛ–, X°,p [ΐž―αΚΏΖ‹ξώ˜ƒ_ύϊυS*L4 _ς»+2ΉΓELƒπLΠ„JƒέΈΡΉlέΏ]ΖΎCHͺ,9*ƒXμαΑπŸ2Ž{ξΌδYQ/'‡NΓN5νΖς{GTόδEy^*–ΔΙ‹TΏύ‡Υ’ΰΑoˆRF­;ςςΦΑχ‚}‘ψ(π°Όά}©ΦE§i%ΥG>ύŽλe‰Σ¨/r½{ vQW<*Jώc2ˆ$Κ%…»6Fΰ­eι(]Ί΄uYžπΊΥjίΌ.#WnDΘӏΘ:šκοzž%†!JY ΛWγˆΝ Š’Άτ/~Bε9τμ„Wh{BφΉž#""\J¨Μؐ!C”Λ――5W†Šϋψs„ώo‰W hΩL€€»]Qrσ…υΪ¨Q£œηά$ΚΈIΙ™K~'(ε<ͺEŸή‚‘mR_Ni~&*X08μ’¬~XΤ ΟfDΛν^p!ZΌyf±‡†(υh'€†°¨HCŽΆ M0ϊμ|EƟ»τ’Π;†&Eͺt”’¨€ϊ©ˆ ¨ Dš ι›tEDŠ"*T@Plˆˆ€{/ι=wίϋΜeŽΝq—\ ΰΞο—\²·;;ϋΞΜ;³»χ§‚4a2Cπ”νuΩ.sςx D$0ΗΠΌ,νΛ’IωξDΟ^₯φ·Υ½zgΈHα/²R~εΡ‚Πwαtg_|{ΤhΙ}QψŽuΦΏ₯ƒΒ§Fμxψ^§Κ²Σ—E”BβΜyHύΑh°p–Βq’og”`ϊΧώ–s‰ϊ²MΖ ₯Ύ,υΰwgUΌ&ΰ.ƒ4XακΛ\Υ¨έω2ͺ4gw|Š•k»γŽ;TπΛJΏώΨc)ί£Ζͺ<Šθν;ε^δ ΤiάHωWξ›Ur#ΉΏλ8²τΓO0`T4†φ Dx˜/φοߟ-Ώ±[ΖΆ -kϊΡ΄™Hθ>X-΅lςŒ„W°¦²¦φ―³ί}χ]tι"*„’¨Ο10ώόΚΟθ &~ΗηΙ΅]yŸ^³¦¨τ 8¬ύ/†ζΝ›w™Β3Ώ£Ϊ7\ϊk‚Λœ+S@t: ¨Ž2d†ŒdC „k<ίqθ,Ž—)‚Tρ{εΚ•»4FHΖ,?W| J΅#θC PjεWž?S*ί3@Ё+¬³ˆˆe Ηδκσ9n1°œ«6x“\ΗRoŽΙjŸ‡~λΧ―Ώι€g{JŽϋφ'Υ%Zo/ˆ’―?duέΧβ{οΨ 3‹J³ύάyΔ<μ€™ 5ΛA8oWι’*3¨ΠZ&BԚΊΛŸW)ψΗ €θ·ο#+εβοoˆπΆ-=+z8)aηΡΣπηnμ<°»/ͺVtŒ•ύ‡~©FΉς8?xΏ>ΏrE;Ή *UΎCεξΝܝ;fΩ· ”ΎΣs„Γ―{(z†Ν„„zφμ©ξ%ΨΌνΫ:φqζ‘™Ώ‘/ΘξύUχŒηΝܝe‘Νυ|R―π‘•γω=ύ‡’ί}΄—`rόσ&i;mέΊΥλ2ρž‚Ύ<Γ`*0=ŽπGšcυŸΫœ+Rμώs|» `€(,2??)JΒ—ζ#W灰H •н2~ωϞ€^kV:η+ΖOBό°‰OΓΌL€9ΈΫ‹hpO'πάι©6H–y« ΆΛαη³ώω§Ίcύg x–ΐΓΈ±ΣEψˆj:ΙU+ W/te.œν$Ž$zφBnpΜί @π Wa/”?{Y9ΔQΣE]8Z—$ΟΡswλΰύ|›¦γίο¨Μ4Xΰm™Οx›μ?mCτ…*Ψ.­”({ΐXΐ_―–?8cμβμaΉδά]—@;wι¨ΜΫ‡ΚŠ8«ΐβ7ͺ.Q$ΓžΩ†GI0λύ* {κ"iƒάγI?M‘z $ωKΙ4Ι}sœ¨Mϋ:V‰ Ω –ˆb™ς_ϋ’±ΒύF₯Jσ²ˆΠN Fυ—χ=§₯5“˜Χ›0η0’™…i«°€ <_…ρΜCM ˜0-`Zΐ΄€i›Γ&π|sΤ“Yʜ·j»*2ΉeŒŠL9 <_Ι}ψα‡ (ςoΟ–9Ka›0W‚S‚ΤJ₯αχΙ[{ω€τJ.Zsμ€<–¦ς2š5FΨ mυ·9χ)jDqƒ§ˆͺ¨PP±’Λ@‡ NΝδκr:ρξ:€}σ·ΚΔZ―Šυ(ΙLΧΔI?νΑΕkδ‘~š¨%ΚρΓΫΒ§pΈΫsΩcqrθRΰΈΌθυ±"oΟ‡P§¬Ϋ}͍M ˜ΐσ­]ο|MP‰KP(¦J.•ΰ4ψDΠ`Β„ J©˜γ8Α^ΞE<₯ ‘ ™¨–-Tΐ‚Yc|¨λ|±lœ“¬˜PΚΩA•mO)ΏŽ‹4ŠΈŒ6χ>}Ί‚ο΄My]άWΟ/όυ7€v联R%εEΎΌe6&# ’Υσtd¨4MΈ›ν‹°Œ}ϊ<ΫRάO«…k%nΦSttt»ς<Μ‹π!iΦΥ› Ώ°ίΈq£:χ£* Ώ'$Γο=%ΛΑ#Hž0S`,G ^r₯Ϋά»‹6<γnϋ5žέ,³mζSΆξΕω_:V– \[0ώ΅ ΐΗ& ‹ΐΉ„n N«Ώ TgbŸΜN₯Ύ($MTωHˆV }ŊΒšΛ΅τBπΕ"P°τ5x+~aι*―ή ΰ !ΔΨ£PΣŸy*Κ–]ˆžϊ±Ίv[υR(0P@K‚b ͺ/sYv~ŠqQ£FaĈͺ_3h₯tΎ8½π#ψ °γ+0‹Q©ΥZΎ4 ΰL‚τI£Ώ€―€οaπ ύσaπζy]ΖδxnΧ=‘Ήl=0yΓμΩς!'Ξβϋ“G2ΤιmΫ(_)ύGξσ¦Θΰ_9nŸΥΛ’EΟ°aΓ0\’Pa¬c™γύ(α^ ορϊ¨―JμA°ZOΫ4jΤHΩ§oίΎ;vμeΑ΄I§NπΜϊϋvΕ'Hσ•ΉC:°Ε1’c2At&“ω d©ώ«ς6Ž̏ΰ#8VsΌΩ 9ταLYωWWŸΟ`+#¨νκσ,ΒkζΌΒΨ6<₯,Opp°3`Lκ*݌ΐ³=6 ΗG|ϋΡ‹κκ­΅#Pτ΅‡T@φUš#σΓ„ΐΜ˜™PsτΓ…f 4 κM’’§†™mωh.‘Τ™νš ζœu6ΏnGβό₯%SΩΫ&ΗςP­ͺY+{pψ;=ΫvΘόxύΥK°³Ξ€mWΟ‘θ ‰Œ“ΐ"=Ω ³Άλυά]ηιMίζ>L F1φ n‹ŒŒT«sπoφoΐœ…FIώΔuώηok_C_ğ¬όΝ•άOp%μΜέYN˜Α±EzπΌμχτ- i€ /]μ¦―πΪN2―εψ•2Ϋ@–σδίΆ"mτt‘ χ~Όγ ,Ό>oο'lr½!{Β~δ8’dŽΒUA|δΊΞ΅j‘@eΪ†Α-•>Z‹΄]{ψo†4¬>;Όί-πl-Y G°­$ΑLL μl“ŒD₯ΓD™·νΖΈη«ρƒχ“ΫΏˆψ“‘ZΌ0‚›άˆβ:Αi »ήd(Lόs%ΐ³ε―πζl5'Ά‹‚tΐ‹OχJΩ― YDϊ6N„7|”eJͺYEΤ„_R τΩΚξg§½'JΪς<]όŽΧφ"¬QΛλ,μ’Rόώ ΘiEζ ½T€ˆ·DΞ_Žΐ/–”R]‚μϊ‰"²”Γ›dμ[$.Y₯vε +Ή0 ο6νι‘³*ΠαΉ4ς5ΐ œΏΜY–ΤΚεkP7ήΊΝN:bίϋ§ΓΞ-"ελυ*ΐ0₯΄ςŽκŸυu¨9yπ,PJςγα·cŸ(Θο΅`λ&ΚΗΧ#Ι‹€©s”•€zΙƒΩ•sώΜ²dpόΘ™°Θ~φΠ νKɌ*9μεx|,ε.u ;gΟvWΊwΪή“8;fμρ ΐλOΐ§œϋvaOHΖΙαΛ€CηX“―Ks4ͺp₯§6»Ε,`Ο·X…ΊΉΎ`'ΠD5G&ͺDRE™ AO‚L„s{τθ‘ΐ&ΎάοΠ‘8Ζs*™<’‚ας’)*Ζ*`-Π·sκΤ°)₯2wσ ζ±yσf!3ξέ»γ7ήPΚ‹|‰ΏR`8}nΑ ,GΕ_‚L„Π>όs@% Υ±cGYPq”jf \z±Νm0Ψ¦ s>}ϊ¨k`~όŽΰ!1ΧΉ•εF}ΤΕύŒ`ΛI;ΖΘrΛ‰ϋ 6 ά‡KPϊβ\Ž?„©ˆΙDΰ˜€,νBΘ‚‰«{ΌΪ‘#βVό/ήƒ/Eυ’€4α3ΪϊΤFΓ/Φ)•φ¨8Ηω_‡κ·ζ'$ν=Šπ‘νPΎ$ΎόςKEΣ^„Μ .ŒΤS‘81μ#‘YH'£π –°• GQw=sζŒ­ Χ)RD©˜ͺ&ΤΒ:ϊCτ €T₯œ³-pylΆΦ3ΥP&BŽ V#Χ€ΞxmτUVζΓ9/σg»‘'c™¨€χτ] χΪpΗΛτpQ ,Π³ΐ΄Ή'°ίρž²lYΗ‹c*φuτqϐnά<ϋ|Υ&΄š(mΗv¦auςτ_όŽuΥR– η΅Άgγ΅i@†»ςxΌqήσ Svt~'σΨΨwήGΠζ_σXxύ{v‚½ZζЬΏŸ7πΜΰ«„~FδgŽλ€ΜΗσ>/›f>'ΆˆŠœ|˜!ΰ‹θXD€FΐhE ψK˜†?ωξjƒ G§”-₯”€m΄…—,α€£ D (m“οΉŒy–).A”5₯m΅WνšVΌB^ο"pGžK‡ ΐΐ2σϊyΫ’Ώ°ιXΦξPχ –|π―”'œ²ω$ΰά%ι)σ¦ bΊ’1ƒΎY½Ή'―FRŸ–hωάΣ—ϊ’τ-Λί"ojψ1κΌ«Έ?ϋjδŠ_αχ@ENoSgρΖ—±}λώ₯ύkνΪ΅ εΞΏvυe Τ 4ΖώHlτeiΉέλρ©kW ΰHΕέχή£‰Χφ™¨;G‹τ›…ƒ’!Ω… ,„ £§ZΉ’¨ύsΒΈz7ͺRŠc8?@IDAT?ΠŽε=6α/Χ`n7πρΗŸβ™±ˆ‹· wˆ c^χG±ΒΟΟsxςτ‰Rηο¨δτ―ί¬ύE->8o±γ±g.Υ)}tήΌy3 PI›cΝe ςrNښ 1νΊdΙ³,ί΅:4ƒ:ΪjΞ±”°7ΛΕγŒΟ"θχš5k–\g~lθ™8ΎοΤAy₯„‡ͺU3QρŸ«@₯ Y_8_ 'c„UΪ7}>ΥOυΑkζ1΄;ΗE=6fζ_Y~Φ%Ǎ>ŸνœΎš+dQΕ”mPϋ|ž—ώšΧμš\ΗRΒέ΄Σ»p…ίlΐsΪ©(œ±B[Δo‹έςΆm€GξΌΒ«w9LΖ‹9Tš/"zΑŒ@³τ}―bς„03šs—ŠpΐwςΑ"0ž]ΖΪI€ΎXδV+USζ™R6!]:Εέί“sΊϊ‰oΕαΧνj.έΏ«/ξ¬rΉg_¦»ž»ΣO>ž[ήƒ°.αsώœΥά]yΫ·YFξ{Ω\ˆcš(·ΦmΠ@υaΆώΌi{ΐwhOΤoz³osώΗώε©oΣΟ2яpžV*}Oώ†ωdχ~Β„ηΝxG{30“pLτ— dύUς™¨τΞZ΄]΅μbŸ€Ή€ڟXωδ“O*›°>Υ  δiunŸ§OΦ―Η“εο½H~σmη2‰uj Έ«Ότφψ·ηΤ£ηqfg€@p*ΟƒΒύZΒZ(Μx‰9ς·Eΐg'@L₯O’£ŽŠ 2‘θ‡r4AiŸt`Zƒ>Ω9Ή+œ£€Φα²ΧyςζƒύΜ$}ΆNΤΠX·ΫK M‚”Κ‘΅©bM€ΩβνH:δ8ΖlE@DΩ† I©Ž €ΐ Q&$D@ˆηΏ|Ύmk–}‘,τqτoTgΫWνnχnDOόΡm+‘j5οζ~Ϊ—­_Ώή+JΈ–}";ΎŒAμ_τgYOΫΆώΫΛ€iCQS”α΅OΙ`D—4‘ϋͺρ+ž“Ύύˆ(XΣΗxκ›ϊWΰ™Ύ`χή ›(κ“²Όv`€ΓzϋΛκνˆΟxœ;ΏΑοι«ι50¬1~*ZΆ¬-ωκ‹,ΗE},;­žLΗ=₯₯K—ͺv’WΩvάΕθγυxΑΟ,τχτ₯„Š‰ͺδ,η\€~žΙΣ1nά8υμƒώ›ϋ.X°@νŸΩ/]‡lS>ŸΟU¨­}>η!XΤΫυ'Ϋλœ·s,u[τΎWϋy3Ο©{OγΤΨO%eΉο,Ψ³j•ςΪT#₯:3Ξ dyφ ’ΣAx |Σ@΄ήŸΩΉŸ`0$ƒX²3w§­θ£Έ*ΝΔ‰§Ξπ7η€\YΖ£ψαw€Υ©*`x}uEΈrŠVΤ¨„}ϋχg«L ΄ lmΌŸπ4OΆ‹ς² K_%"ϊΠψEΖΒW όdΌ9Ϊωi₯ΒL_Ή[ζΑΒΆλ™gpŽ#}&Dζ%ωσ9UšdΘ›#Π}Θ`§|©pI$.ώΨ 0PΆ.‹»jUQc)f»¨RΌRε™Άλ<–υ­ΗDν³ΉM'ΆQoοιτœΓrϊ,"ΏZ/Πμ.ψ ΄νΟχ_ž;5‘•|$ I‚$s:y <‹"}˜ιπ‘Υ™θrw•ϋ\±QΆ“ψ˜¨ΛτΥ&G¨ψΐΐΧ»%Šf/+™³Ζ‹"Έοώ#κΈΤˆβup΅Ϊ‡79Ιά;~€\ΣΗρIMκ"΄s{ξzs8Ԏ{c|Š:΅Τ{ΐ«νa©WΓ«C‘œ‚ΨQ³ΰσ·΄yI)5*"΄_GHv{Ό]€μ€iο+εe[±B;Ώ&+e' vnΥ I_“{Ψ$Ψ&p‚5Λ*)Y₯Θw?DΰΧ?¨έ_n άΧ «CΜοΕ·X1σ½e‹‡ο‹ΓsOέXοGΜJΊy,`Ο7O]™%½5-`Ο·f½šWeZΐ΄€iΣ¦L ,`Οc˜ώη,ΐ—‡|€«aB=Tα‹QΒΞTδƒd>$¦"—"4Ύ¨ΰΛώά²ΐ³<Ε{Ÿΐž& \yyp_}X捽>νD †Έq3α'J6LΙ•Λ#WyΐΰŸγηΏ(ΛUΪΰP)]ΉvΆΘ¬7R:ώαχ°}Ί]IΑΞ½EΙKڞ™Ÿ¨±8~Q4μιΖ~΄ΆΫ°Οœϋ1μ;δε€$KσΚ(ςόύnχ57ώw,`ύΊζKdͺ:>- `λΦ °gHήyη₯τ«AZΞ#‹#η„όB[cρŠdY­ž`—/d₯V5Χ0Ξ7¨MΐŒΐ›1 lDeΧτΒ /€*ŸωσηW€Ώ RelםŠ6GuΛΆmΫ:χ'±qγF₯v§!jγώ³fΝ‘ΒxzΎD{>|Ψω‚ώŸώQσ{*AκΔ²œ&4ζMh΄ a *ΔmΨ°α²C‡ ¦–"'ΤΑsς<ρ’~9|ψπ 0>σqΈBΌΞΉS “*«Ί,)cpnΠ\XN^D‘χ ΧΘ‘J±sK.‘!IYŽŽ]‰„ŸχΓ"€@Ήe―aω';•ϋΟ?h‰]ύ-’ηΘ*r αΛ¦α½Ε‹”·q_ώMeκή½{#I3zΚ|ƒv Χ°ξψ!φ‚ΫΊcΫ t"π§³]žΏˆψa|w=<ω0’Ίjpl„5Έg<ΐ/»VΒ5„ούί#HHΥ%qήM{j€”ͺӜƒ¦Σ ΏgqWΗ.Ω)UQΒFΈCοcE½ψsψ›cNe•5^a―PNοβφσίžΦnΓΕ%\ˆZUυp_%εœ‚ίIlJ(Ϊ"0΄₯c~ΩκPUŽŽΟEQŒ‚Uΐ2^ƒE [ͺΝρ“ pκΊDεPύM)1 ³$Ρ· $ύΫ. €,In—ΆO}ΐΖO_ͺ)UιTί $οXΫκ{A ―…<εJΓ"°R•…i;Αζ‘I’_\Ύ|ΉΗΎΘXέφΩ.5΄J nλ?#nΡOΨ[+— ͺΝδ4Ξ―΄ oςΖΏκ`o}}Ύ+|aAt|œΗρiφμΩ(ŠΨΎ£' JZ΅άŽ ΞΒ§aμ«άΔ>Νςџπ‡Οœh*ώΊφMϊpŽ-Lό›$TΞ7ϊΝΈx^κ‹˜8«ψ ;ϊΌβ‡šU₯}€'φuw~CŸUΆϋί£ˆνΠAέ_ΐ”m?©1C›Ω'ΗmΖL,;Η*•ύaπ¦M›fσΨv¨²ΚΰΪ†°―CΧσpϊcφ3άωWξGίΘ ¨ΈΜρ—‰6εΨΑΥ\“#XfΆ'Žk fʎ₯3uW&νσΉβΛΝρW·[ž“ΧIžΫΨN¨ήŸa,•16§ΣΝ<'ώ΄ηf~*ϊ#X‚§?ί.™C쉋- Μ ™ 4Η< «ΐΜ>3[ ;»Μ /œρ/BΒ„™mς₯ε GX™RJAŸ03°„(φߐIufΏ/ίQU<‚Ωmh€ hn|σ8lΩΘ!=;ϊ‘A-[\“φ'Ν[*γS4^i‡ΨΊΥΥͺ,W2w§ͺ9ΫΆN ώ}›Ο΅γχΖώ χΧŸΜƒώ“σΜF`ΣΗ0αYy€Ηω&HŠΤžϊv―ž―!YΌPζ65†2oφ9 ΐjΓΎΗν3Œe`Μκ~"<<\υο+™»σZxnΞΡ]}&Ÿ½gRΡW΅΄ŸΡΎΊ¬,;ƒi'ώ”ŸlUΚγJ%²u?ρΌŒ>ςcύΖ ηΙ\AΕΘx؏wœ^₯‚½ŸŠε,γ}7ΛHε~=ήm—`ΗΰWxήϊΈ†˜π}Xΐ`YA'Φ ν }`ϋ§ŸA*η?’θ›9V°=Π—ς~ͺ|ως Zg»(Y²dhηg~όΤmP»΄!σ`βχhΕ€2»§ΣΎšuΖ€Κ$ν#Ql―ο >ϊθ#΄lr―Μή@σn\φΪՁ{s"y<ό;’g-p¨ΐΛ³ά€a―YεŠNΟΏX”ύφVΗ§T­€ΰޝ.Λ³Μ\|TβΨYΞ@Λ€Ζu›°²ΨΟ«tϊ†OUξΙxL`Χφ°7¬γΥ‘j§³δ^n*¬/D5>hPWΨΛExwΌΜιc‡ (}μ΄Ϊ?©i=„wXΨSΪπ ί^’ώL½BδΎΣΔ7ΒΞ)Υ* χΐ.žm!ν-fΌ¨RoΫ­ΞψD $~»^qœχŽ,‘άω=•ζφo~Dβy†+)©i}„uzϊwζ_YZ`ξβ|ύ½ZηXzWνKΎ+ΛƒΝL €[ΐžΝ¦`Zΰί΅€ <»φ7ΟnZΐ΄€iΣ¦L \ ˜ΐσu0²yŠήMαrO‰ŠLO<ρ„Ϋ—|X|«Οy°šͺ+|ŽœT&± ˆ2q μ4υd’œέ./G‰J’ΐς4 -š ¬C›œ=s“ώQ²<Ÿ’$)₯ζνσb– „Ϊω:ώJψnΞΝωVΡZ½8Šυ—zb3ύ ηδ˜εΐξŽ“Χ)Β―=vΩςήκKi_''‰:Χo‡ΤΏ–»Λ‘Hχ‡Η™Ώ“0ηN΅Sυ˜/†9ΟζRΟ|ΑΜψzΥ#¬_:Σ:ξJΕΐ1 ΘfÈ>~0Ύ«_`k΅L*³ΉΉ„"##•κ25yξS΄hQ₯κL@’X±b ψ£ε oBUϋχοΗωσΟHYΉjœά‡*Ž8`ym„”¨ ΛγxN^kΉrεΤqό[ηΝύ™ψ²ž—™&Lμ Θρ; Ύςο¬Ο£Λe΄χργǝΠ―εgυΎΜ—/ύy|LLŒΊn bΡ6„hcBΡΖDϋSιtτθΡ Lη>„· ˜EEE)ψ€η°‹"mΒͺ±£TjάYBΐdΠπσ%μ=aόœύ‰ΌˆŽƒίΰDŒUΔΑƒ«l]J–§ΝWdΟΏξgXΎΪŒΐ6ΓΏυƒ*ͺƒ*THΥ_™2eT±Y ΤSπάηλ‘ΈθS„ΌϊΠ¨Άͺ; ΤPŚpηαλ.ΐΟ{φνU5AΜ={φ(Ёp mFΗ­Σ&΄Σ©S§ΐk`»c{$œ(ΠFδ ½Πσ%@–bΦIC‡uͺMψα‡hέΊ΅Σ^<—±Ÿθc3ϋd]°Ž=%‹ΟΙ3ί…5]!8‘Q=δκ$φ‘rΊKπΜU%NM”yΔΎ3Ž"ε AΎΒ―t!wEΌζΫμTx¦ͺ²όΨEωΩ"ύΗ‘ώ|\m§ϊ2Υΰ˜xΗ}ΣαKGαdε 8Θ‘ ηϋδo€€ Θ ͺηΦ Ω–Ge„¨4.Y>}œŸvΩΖ%₯%ِ|P€κ4;¬ώVψ••—σa²Ό»I„K½‡•G h„J «|ZBΛ>znν#ν-Oˆκ;}Q·qν3xnΆyϊ»κ½)V”ΩZXlχm‰Η“φelγμ—μ³ξό+ύ(A#γΉy^žβΕ‹—ω2ϊ3`ύϊ'’7nΟΡ“λΧkvnWμ§Ζρ‰ϋσž—@Υζl˜ˆ―τ&Ρίh_ΐ>ύυΧ_γν·ίVκΧ<ώEQf χcϋςoΪ”JŸόŽΧCπ‹~[ϋM~2₯YσGΠe@¬0ž„+·AݞχC£zŽ>ΞsfT₯ο€MŒΎŒ>ŸΫiCΧ:ε99:Eφ ŸCG‘{†|ήζ€Εsπ‡u§λ†cΗ!nηy阸±Lά¦Ϋf]mΨ°AΗž9yν_ι»Yοτ³¬;ϊ<žOŸƒm‰ίσcχ!dΘΥh{ž›6τ6ρxͺƒ–γΈDΫΊϊ|Ξ)8ηˆ‹‹Sυ§η,ƒ©όΕ±Δ8–r_–Γ8^{[¦¬φ»€ηψOΆβό²`Mυψ ) ˆ9xDωT‹@o>η*™ΥΛχJQ6_ؐ΅ ΠZ&B)3S₯εGκβfN–-[‘πή2Η3#^―ΐoA]žΓ΄‹aΣ/ίΥύ…K~Βy­’7uΦT›BΖΒ>«M) 3Π‚s.£oŒˆˆPσiφŒsϊpφϊOΞ§˜#WͺTIΝC¨ΆL1&Χώ 6~±S)sxφ)ϊ'φ7ώπœ.\ΐ AƒTύ€kίfί‰:E%8.UySeΎ•ϋn$«U‚Ώ΄ζΗΔω1ƒω T«Τλb°8]»Ά ’t½Ÿ @ΛqHΟi~Lηαι“Άβ΅Π―/α Bα<}&σδ5qΛrj?ΐοι/ΈbΆ―ΟslΪƒΎ=UΖΈψF­ΥΈžϋΫΕ°pί‹”Άχ’E-vΐΘ7Tg5.›'ΣWr…œΪ’΄Όςs₯Ξόή ,ωp©Σ—ιSgΰSβΡγ°I;‹ώu Šπ†_qΎΛ}Έz Fyz>ΐν΄+ηέ Pa@,Υπ@Ιρ’νΑx―’λvΜ9κό\Ω€ΑƒΜ“sΨ{ο½W΅c«Η]ΒΞϊz]οι8η ό$μMλ2qϋΪ΅kχ όβ=Q§—;!eΐh€ν?€ΚΛ`ŠdY¦(τΎF_mΝώ―Lg™wΖ̜€Ÿ~W§–,Šΰέ%xΓ»ϊΏ¬4ϋ#‰«άH°ž4Dψ·o΄Έη²έ²άπΓo`/TsZΞaz<Τ­‘εaΞvξAβ„Ω°HP‘°ς€ϋyψΓ²χβF l/ΗKϋΡCY Α3ŽγfϋΙ³ˆ1CXxoΧρ)Xφ”μŸ¬CΥκλ” ₯{¨Ψ_٘’g½Ώ:φΙ v–63nΆvNΌΏ>vξ†Ο‰Σ°ψ#`d?ιK³wϋ·ύηνHzsžzξŸ\» BϋΎμv?scζ˜8+Ώlg 0¨‡/ͺVtΜε3?ΚόΦ΄ΐ% ˜ΐσ%[˜™ψ7,`Ο†ΥΝsš0-`Zΐ΄€iΣΧΥ&π|]Νmžμ΄φςaqfŠL|8¬Έ/ΗρGϞΗ\Νί@ψΒX«²\M^žŽ΅ψ©'‰²šC*΅T1ψ―ž»ΐΧ%‰2G΄yDˆ‰,1Π§3P₯BϚΖGΏίέTή‰-ξFžηŸΜωσ\eŽ`η*ΕPt Έφ*Οcž Θψ“Σ?~ά§²ά^…ΙK*ΊI'§‚}Λ~ΗΎ΅"P€oK7{™›ώ 0ηB-;T“ §ς‡*Ο|‘ΜΉ‘„ (πηΣO?ΝD5ύέ8'œQ€`*Fφ”Z/“8OαKlώP!rƒQ|Ρl\>[[– ΑP>ψ f @ρ%=A ¦I“&‘Gκό+~όρG₯­η<AξOΕIΞmyδ(0/ΒQ„¨δΜγ .°lΛ–-Sͺf\‚š –!xN^?χαΛ|Ύ4' E…jFe9ξGpŠΧΰNmŒy£ͺUKωžeβNΫ»f͚κ…<_πσe?Α;* aYY‚)<π€v P٘y¦ "&•°YF εi;5‘9OΙh'Q˜ρφ[θΥ«—§έΥuΠ …ΪσΛΆΰpΕ`ά}χέ ŽkΥͺ•Ρ°­°˜ΆlΩ‚κΥ«#~υ7H•0.!N@ϋ™gžΑΝ;|Ν%Λ7mΪt™μΏξ@βΤχ`ΐ3ΰΡϋΠΌŽž=ƒ!C†(ψΜ@7ΪΙΣEΠNύϊυΛ0Gf^#Ύψβ UW(ί™>1νδe»@­ώ­΄l¦ΐ6έW<ΓXwΜσQΛ£/υ”8Gζ>loY%‹¨ΗO~ ώ»φ¨]Σ θ#κg₯J^vθυž“~άƒ sΧΑ[κ—AαWZΘ\Γ;ˆφ² p³ΰ2eυ#3?£w(3Λί˜Ή!g«,Ι-T€›\2ίd—Ά €cYšP1DU”Ky‡—,! xLΥε“η7ο#fˆΓ@`«ζ’Π|ΏS5šu₯ΚM%i)ηρκ“ε²œAΚο’@—(κŠ~’nXZ” 3r™’ίŠί³‰J¨½P1Dφl―ξ΅ͺΊλ‹l ₯―¦€ΫΓv>Ηϊ/b”.ŽβcdNθοƒxόgŸΙœΡC’ί|όρǝώ˜π4wώ•~ΐΨ˜%ϋ)UtΌαΞ—©ώ ώ2νωΎrδώ`&ξkΡdq7>ΡoR-“ΧH©}>"ά%ϊcϊ|BjΪS%ΊkWs<€Q£F)U`}o­Η-O>ŸΩpάzν΅ΧpώBOΔ±“Ž nϋ˜?ΪΆτΕζΝ›‘ύ³;_FeSnχT§τ­wήy'RW…mχ>‘`*ͺzJƒ;wξμτ}z|ώα‡ΠΌys4hΠ@ω7Γ>cβΈΕΐ#4©σ§ίδΎΥͺUScŸ;ΰ™v’š&η 69zτ¨ ’’ύΘά‚uΗq€° Η_Ά ͺ6sLu7FπάΖΊ¦ε³ΑRdγ)©Ά/탉ŠžΜ—‰νœebY"""Τ8zθΠ!υΡ^lΣΌΞμτ g9πΗ Ξ]βœΗΨάνcά¦ϋƒqώΛοιoιλ8drηg8ŸΏλ»Τχ΅jΥrΫ·9―ΏγσMHΫΎKν§~IίK-Yᓇβ αΐδ <h5φQΞ9]ο'8ζθqKΟωΈσOw‰γ}ο/˜΄/c!“φ™œ‹Σџ1 ’L‰’H» A ΰΎ/•YδςKω²Ήσ‘όψΎΪ+ί–‘N»λϋˆ|+Ώ@꺍π©Y q];¨95Η!ήCΡ_Ρw2ƒεd†Ί 7YΪN@Xh;σΧΗw㽊ώήυ“Πp£¨$DΛ wω:΄ΖϊέyΌkΌW‘mٞhΒΑξﻨϊΜ±γηΌ7ΥΧλzO§ο=τxΔϊρfΎνwQZ9ΎHύϊ ‘Ϋδκ•𳬾‘δx>vR”Μ₯{Ξ›ή…Π—d\JokΩ9χ½ΈT‚Ce5ΞwΉ"H`.°—Θ^6bΫhQšάτ›:Ž+Ι^@l―“ψ¨€ω2―”ΌlϋΙlάφŸD½~ϊBuiςαwΰˆ@¨t»§β\ΪΎkGΞTB©·G Χ―]VK;›efi†2!{ψ˴Ž1|½αΝ3Λόξ?fxώUΈyΉ7œLΰω†«³@¦L ˜0-`Zΐ΄@N[ΐžsΪ’f~7£ψ ž‘©ζbTdͺP‘‚z1ηϊ2ΒxUΣXV–}χξέxτΡGxE%7Ύ'AΨ‰ΰΑ«·ήzKΑΝ«V­R5·œ&ΰ₯a6Ϊ„σ#Ξ― χμ)/*%Ήžy½ό^_'UΠ¨|F8‚j‘T5cβ9¨φΖς’Πl³fΝ”Α”oΎω|ΉΒd„-Œpν΄Dΰm‚mΌFΪTΗ¨ZM0 ;v"ψF[ΞγuPε*ΠV©Κ°" £ ˜Ώ―³jυj₯tGΠ€qγΖ—Υa†:¨λa{"΄žΑNb“xi+¬W;9福!žj_©6€Ξβ„;˜©k}ΈΪιƒ>@…πΌΨ}α:IΫ5Ϊ‰φ%<‘Y]*ΐαΉ‘“ΰΏέ±4q@ίNΨδ“­Ί#lT§NUW,σΒ… UO ½8b’ 7!ηu«­žYΏί‚δ9‹œjΔρ4Fξ—Ϊe8€mŸΰ?ϋ Οw­’-. §§­†}ϋQΗ)BόQΰΥ‡ΰW="ΛSZDωΣ£e»-@ΰΰ(ƒ}Xv€Λ—š­ˆ―"ΩeΉp‚Μ—mΑPA9”³,3MΥd{…²’’, ³μ—i’vωήG\·ΕvLX’b™LΣ_ΪEϊ|w`5l{Hς ”ΉX―‚‘€4Δ.1'N*p[«T+uoΎΕOO6aΛCζOA۞]ΔΝμc-›άƒέ'O8Ϋ=ύΖ_ωΙνv‹)»ΞΓ–*ύ[ΰmΛ#ΥaΛŠΰΣmΏ)Θ–ωP‘xΚ”) fΐ:&Ά'*8gΡxfϋ³―"λ₯‹ΪNLίδ'$Φ₯ΏC»vŽΆJeώ/u‚ΏψšiΛ>P Ύ<ˆΚ­"nW0Ή₯I=0(„°μλ―ΏTΰUΖιΏθ·ιͺV­ͺ|·>Ÿώ˜~MA̎v"hL€–ύΆ†šy τμΣϊ˜¬Ζ-Ήp,‘Σ`δΤDό½Οujψ s»XΎŒγ"W.Π«+π j©vGeόφΗ6΄l)χV’ŒcύB½ϊΗΫI`Μ1ρ¨ΪΚ±‚I_Aaͺs걍A ίYV*λqίulT™€βΨG€PΓρ,'b8–0ρ“c ύ;ΟΑ1€cӁ©ŠΝd˜yν"um6YΧMXΧY³¬lklβ˜xέ,“qldΉxέ‘‘‘*‡υKΞ5€ΧΠ&Ώγs9ύ ‰δωδόι¨έΈ‘ςeΜ›«—S’(ΰ65κΚΏμ€ν‹οΆr>ξ¬]ΛyoΓΉa₯β%π­¨+λϋΦι'⏒Nœ‚―τ§Γrβνύλ!;vb¨Ϋ{ΩώΝwί9ΛΔqθ_~EZ§Hž>UjTwΐdu―Β2Ρ6Tƒfβ|€jΠl XβXΔΔΊβΚ…l{#GŽΌμ^ƒϋpμ ’8ﻘX.ΒΟΜ+;sπδ3η`eβΦΰ€U ~pJ΅ŠΘέ΄P^ζ{rΞΜ’;ΰΩςΝ&$ΞP ePΝ>°―Μ“*–Λ,ίΩ₯ ΕO~~ώ­φI){r ϋΙ7;Ι‡Έ‘Σΰ{θ˜:,΅LIΨΩ[ΨXl3υ]ψτΗ₯r ‘`Qϊ0/Sδ{ΛψΕ&ΗρΥ+ wΏN^φ­;‘0™β#ij>4€+,₯KΈ?³΄‡˜ sΰ'Η0%5¨Ž°ž/\ΆoΨΉfe’_VγΫe;¦oˆ–<°σ=uΰ{ώ¬£^€ψχ’kρF%ϋΨ)$ œ¨D\R‹B±ύd"εοι”ζv/,@=œ£p臐`& φ—W5ϊΙ†˜»ό§-`Οικ7/ώ°€ <ί•`Α΄€iΣ¦L ˜ΈΆ0ηkk_3χ›Λ|Y‘•GXr>v}‰πo^Ρ5žάƒ΄φ½Υ’uΌΎ΄ΠψΌ?–šU―Οε ˆ?Z ΛςLΙ•Λ#WnΧζ‘δ©sˆ6Ν±D‘@ACδΑxΉuήιW–}83ύKΣZ+A±!­δΑpζ/n€ςWΚ’όΫ~œŸ²JœEš,„‚=ϋ“—ΠnRόͺ­ˆ\ς½γ›JEPt@-ιK±»Ωέάt ZΐžoΑJuΉ$BK„š  β n νπ;Ύ|&°€αͺ‘“„ΑpΌ€»³rϊu eZG¦„OhΞx*wΐ3_v'/Ξ ¦# šπI°Α¨HG M/ΏΝΉa+ΒΠLTΏ$$GΈ‚ –„ (qŽΔž› –†$Έ”=Α<&ͺϋ"pMξ–—€Α^#ΦtΠνΑe«ω2_C]ΜS_ΟG؜ΧΕΔ9ΛH{0ρϊ¨ΝΌ+V¬¨ΆQ©ŒΧLθΨŒ›;w.žkΥF^R8Ο‘σΙΜNZΡϋ^Y„Άb™ςNΉΣΦϋ)ψΦΊάΌ6‚T;f½5·—Dδ‘S(φΪΓ—A¬BπF;½x[%Δ.]… aέ\”zΠvβυιΔ%šύEe­uϋvN°ίλƒη8tθP;QΥvό$’eŽ˜^/‘dΊ ¨²ΣsΟ©9³υΉτ'σ&Bΐ.rαG^»!’VφΡξ?•:‘kέδ$lδZwFeΉΥˆS₯[C<†Ϋ‘†BΩ.½N’"˜8a¦@ŽΉhj‘B ‚|2]ΰ9uΧqœ*°sT‚cώW&? =Σ>(Je{TŒ(0Λ Ίμ„w֐ΞθυεfΨQκΫ&0…˜bΆ)ˆ9aΕ‹9ΰe˜AˆY~,²β Uογ]uŠŒAμYmεΠq•Uͺ@ΉhΙό½HΆΈD\ μ|&Jΐjδυ¬% zqδ₯],·>…θΥΰ|ΗF φεoΎω&:ΧΉ ρ –ΒO ΓCΟΆTp(Ώc?}„€qσ`K†ΕGVύ)%b€£ΝΏ5OΌΪM΅Gl_.ϊiύGΐ,>Ύ~-lΏ£ŒςcΜ‹}聖Ÿ΅\Β¦τ£‹-rΆmίΔ$|±ι{₯δΜqεQO ξ;>3ή@έF ϊΒ /ΰν};q6Ro+ŠΌς΅ιάIε§ύ}5cΒΏμ#\~>³D_jτω_τ}±;ŸO΅yBU„}™?A:=ώΡΏ2θ…A$LTο$8ΕνΖq‹*šZY?³²‘›šτv<Ώ–mΪ<εΡ—Ρ/PQšΎ•p9ΗδΒ… «λπhό@l*U¬NE—ΎjΓ† J™ 6=tΙ›~†ΛΟΐVοN$ΎβxN ‰c―½M›6J T½τν<παΓ•MxΑbˆθΔΉΫν¦“+π―sX„›©Μ―Οα/υ4S€kΩ0q₯ŽqgϞu_Χ’:™ψΦ₯zhΛ.Ζέα'Κ“l\5€‰mŸΧΗρ—νΐψΫ>―Σ8¨ƒ Ώθ—Ωξx½Ό~ΒΟ¬k­Λ>ΑΥtβxMlrΐ€Η•ΜΞ‘υφ3Η€gΓ@³¨4 Ψ΅ ‚I}dl΅Κ8b?ν•/{Ψ€-€ŠEjŠόν/ν’v9δo?μR/Tj6fokXΊ2+ΏΜβ±Π)mJۏͺƒœc—Ύ―`ΉE”όύŸyΈΏ!¬1IX±nΦΥ~‰sdΰ`μ»ή–Ξ]Πs[‡qώ«·ΉΟsΕ¬ϊ‘Ξ‡ŸΎq ψγΰ~g™ώξ—_~Aωί I σŽιV27δ<Κ›>Ϊ‘u$Ισ) ΑršωΖ(D/ϋTl·w΄nχ¬sϊζύEˆ’ϊ¨\έ‘dO_6θΎH7]'π•ηπΦΎ]|YΉ_ΰ‚ψή’·έ¦|θίΫDβψ*Θ*w±’ H΅ˆΪ2η/œŸψ–(ŠeŸ―ΞP§΅£SφbΆ~Ÿϊ$8•ιY§“θ›τœΣ›ϋ'ΦCv|A/ͺ=SίuΎλξ^₯μΞƒ8^«’Ί?‘a8χ-Ώλ βΧ~‡ΤZUόxs”ρ–‰Ύ’χ|―ΓΌ™,Κ=FpŒιΫ·―ςλ^V;zψΕλγsηgŸ}ΦΉZŒΎ§Υ¦Ωƒ[ΈJH:όμ»χ`† ›(Υ§T­¨”ŸU°œ›ω₯xΎ(|)ΣηΑο/Η&υφ2'’gΊ^Ξ/»μ£'8f¦ςγΠϊΨeώ­tπ(’ΖΞ’ΌhuXΐcΝ`oσ?οηΛqρˆ=~ϋχ!I²’Ohηφή/~+f\'€œψΐ]Iξc½Lv€|¬Ζ/»¨J“ηρ ¬q—dŒσΆΤΑ^υmb‹†w³ZbΤΤyψq›Ϊ'…°sKσwΩFO™-Ψ;I`gkbΆόv xωYΨοkθξ° Ϋ,όΧo¬ΡqJ;x|οσ 9™ΈZ 6Ξ‚~£’eκcEή°4LκΕέΞ5oσ[Ϋ&π|kΧ―yu7ΎLΰωΖ―#³„¦L ˜0-`Zΐ΄ΐUZΐž―€ζᦣπlό.Rg-yρΚ‡ΊυDΡkΡd‘|}μΘq$Žšk€ΐ ςp;ώΑ{ήώ©ks0Z”Jdy>{žP νK1ΘrmNxeΉv>;γ+ΨεeΈεφ‚(6τ Q’N'ΰ,Kσ¨kh΄§qf€,9)Κ\\j>€Vπ­θxαδzΪΔοvβœuŽαe ’Θ0Yφ<ΐηΉξkώλYΐžo½:5^‘+ˆκ μž0ͺ?σφ»ΛΛβΐaZ=δ‡6^ ˜/_8υΥWxH”%]“'ΰY+ΏQm’π”†ΣψIΰΒj_Ψkp‹ίσΕ??©tGΰ¨I“&w.Lψ“Λׁ Λ6N5HΗε­ π^£T:kΌ#`Λν΄ίΑƒ/ψ M)RΔy μΈά3•§5 F•I*šQ½ŒΰΠ΄²4ΛϊτiηΉ©ΎGh›*ΣTυΤΐΟ«νΒ:"HΜλ΄ρ‹ΝZΑ§p8ž|Ά@Ό±UHioζΓ•Cφξέ Ÿƒ§aGBPΦpY‚ΎH£)2¨w>© «Œ'„­ύ# "%υ°Μ2Rρ›Π5ν6z.pZ”Τ$ Ÿ7k7nΘ`'Φ΅Nό›J{$hƒ:( ΝX΄υΪ΅k3ΨIk}δ\Ϊm–‰s 0m’̜&}8wι1ΫσεE`²”8NŽ‘>+cƒψ„‚έš! # ΛΌΝ2X`Εκ(,[-㘀{κ' ΛσςχƟόζlψ<ΰ~ͺ{Ζίwr κ©‚vNGΑΧnE»~]=Άk#„¬ŠΕΏeΒχΤŒΐ}8'[°`Τeqδ Ι…fy β@ρ‚¨$«ͺΠ—νŸ:{dΞΓωHhωΫq²NU缝ΧX΅TiΎpή£/s·\ΗιEοΜEΤσύdε…0ψHΖΜa¨}χ]j¬eκ₯νt€©7χOΩυe\‘AWz―ΒΤ΄ή#a;vRωŠΰ%3Υ5豴‹άό#χ tΡ`²6bέsβA{rnΐΐ'^·k"€Νv‘W*β}hΉ€Φ¦W;·H[Β―Ϋ+s"?y>+ g1¨ΤLψY)?ί!’βG™x­υλΧWoΫ Α³2B8α‘{φμjϋύΪ²I3(•hPΠG€\ž7»i½¬3w);xοΠγyο”ˆυyδ.aψt-ΧΨ΅=μ λθo³ώ”± άU3λγχ°Ώ ΧlP₯έVΉ†χ%O‚ά/RΏ±" ’Ξ%ν"°σ3@“ΛΛz5°srÚΜ β$kΧ«2΄zvΡ³LΦΗsn#cΈMD\B& €]Ζ_3εœΞ_θyd²,"dEΡB=ρ7Ε³sΞΌ·lN&π|ΛV­ya7‰Lΰω&©(³˜¦L ˜0-`Zΐ΄ΐ•[ΐž―άv摦·rx–›€΄|>;$l|)!Κ€–v]ΏΛϊαW$ΝJΐ,j;½εs• ΧδόvY0iϊ"Ψε!tZ±‚އΈaŽcΧδ„W˜i―pvΚ—`η!;ϋω\anζaΧΛΆ³Λ Y\”—/ς’"_·‡ΰWy·§Oή²η§―UuŒyQxDXev3έϊ0η[»Ž .i˜ŒWͺΉ¨Š+ (“+ΝνΎΉZ‹pͺMοv6ς3_ζσ4?ω²—/’έΑ@|ΙO…Η3f(ЈjΖ|IΞΔΰΝ‚E]Th|Ρ­UΩ¨ΰL‚/”###ΥΛρ * ¬ Ξύy F‰Χ¦•‘Υ δ—ρ{#€‘―ϋ…„„8U€­Ξƒ6’²\ll¬ ω’žΗσ‡6θΣ§R(㱄5x –#<±yσf₯PΙνΜ‹*•½{χV`‘2BbGu*N/]ΊTG_•=@VƒΰΫ`©\υή₯μ΄’)!8y„££EύQΚD͊ε+ )%Ω jΫψ¦κ%‘}VJ`qΦAC‚6ά—ωΞ ϊΖΔ#νη?`ΠΏi}τ¨Χν€ڐΆVρ$θB(ϋΑt(< ΄˜,νŒη0ͺ5gf'œ O\„ύE•2σšυυθΡC)š³ZαYΧu€,kώ‰¨πQΑάYwf‰_Έ«;ΆΕόQ)ΞΌ#άn„{Ψώ ρ…šΤηΛΦηΙΣHš8Ύ„K$₯–*Mu«βQQ*dYO:°A`YΑΛ1[€. JΑ˜}ψ¬^Β«,oMPΘ"uη.₯&YLYaޘ|„/ΘU< VΏK Š]ϊR_hY} ΔL9¬D1—Eq™Λ»SΩNΐe₯r(ίέ°I|IΤ;K°α‡Š\xnQζλ{Ή―‹lOMΓωaοΑ²χ„̊πAΟΒ§²χΗOd»‹Σ‘ρ(2ώ9τ5A΅YΝP'ύΡ»οΎ ΒK„]·ώψ3Nw[Œ]ξC`έΖlάΫ¬Y3Π§¨± XσSgmFΪCZ‹{•Z΄V³₯^Cl<~»ΐ£΅λ‘ΰόε°Φ½SειϋΔCXρΝ:œ²mο•βΰoΐJK’o•/xTΤΏ9±_ΠΧU­ZI;FΤ–_‘§d ψK~«Ύί¨ΐdͺ=²―ž₯o‘ofՏ΅Β²φK\Η3Μψ=}>UŽχμΩ£Ήzυκ*?ξΓ€!*ν{²qŒ’M³3n©Μδ•›9Ύιό.σe’ΦL;ΗEΧ $ζeό^ΩQΰΈOΨ€ό’nIΉΖΏ)Kέοψώ»kσ©ο΅ŸaΰVxf»`Y™s’ο₯θš5kΤΈC{s,ηwLγ:ƒ*¨”­σfωhΓ .(Χν βΣΆ΄;뛉η―|"_Ωγ2―kiKη{Ž„υπq„/œ„ξƒ^χΨφ dΎσΞ;ΞΆOiΞy\λSήόŽεb` ―—ϋgθ†ωχε>Όέ'Δ뱋ί_mΐσ°ΑƒΡ―]XΞk…ζC’Μμ€™}δS₯xs2‡ΣΔοΪ¦βOh™R°η—`¦όRχςΓOΜάζ”τΫAœ‘•’¦‚e υ~―,`Γν ώC?]‰%ŸΚψ'Ι ;?₯ϊ¬―΄m*ΉsN-"Αh26&W―„ΰgZγΔ„/Qlς3¨Σ°šίΡ··oί>C›cΣA. d`0Ξ;²2sfύAΛshυ_φ{φοΙ“'«ΥLŒsiξ―}7sE{ϊ…σ€ εΠ]ξΈΒ ύά‹γ.Y€Ύώ’’UH5ཀྵhήιEεΓΩΗ˝›ψ={p @ƒ‘°¬Yˆjr― ϋhη'žΒ‡ίΛtͺV­šZ$εΨ XΒΓp^ DΒ΄ήψ2ŽKt ’·γΗ2ή+±NΫ5m†ΨnΓ•ΉS*–Fžnνρtοžκ‚u:{Ί@’ς’σUoλΛ€ͺjη|WξθσάΝwέή«H°•]”ƒνςΜvγ/?gΈWΉ―LyHˆ”cθowJς_¬“λύ©υύ©ήŸ,ZΉƒ€ΈŠΫ<ΗήqΥ‡ƒ³ώΎCΰηΝπΫΉΗXΨ€^RδΩpξ¦V­iNΰωT‹§α+>7h ¬Β"σσ+J2ΗΜxΟ©œQ !»‹(FXφ²c>SήEΐ―ͺγ8Ύή UΌNšHeh (΅I_ Π¨PΖλΓ!>.~ΨTXΟɘΖγuυ~N-ε'σYρ‘)₯R„΅l $t›(Ž:EξN+ΰ< Ηs°Τ«~ΩFΨ9 ι]°tj{Ω>Ζ Ρ3ή‡¦­jaηΠͺε‘<λ=Η΅«!Ό³J±NPecpИ>@ρΒYe~8v‚£S”lΑν₯“1²_§ιΞδnr+ZΐžoΕZ5―ιf²€ <ίL΅e–Υ΄€iΣ¦L ˜Έ" θ—ιϊ`>\£STT”Z SΗΟ’E³ρΰΖx ω·iΣWmœž-ίύˆΤ.ΓͺjRͺ΄"ωΰχρ[°/rΥeτ*bήZ€€οV»§)(jΛ½eEŠ|c¬ω^e*/:rσ!Ό,ΈΡaη3SΦʏvXJηG±O™°σVI™•'6'‡‹²ΛΡσj―π§ξFP«znHώύ ΞO–eλΪ± Cα7ڊʒ·9˜oF ˜ΐσΝXkή—™Π‚Vd6ΒJ:‚ όa; d@α‘–/#_Έ{RΗOwΗΊΒ@\ύMuΟρ%`Uζ=ηΎ­ό"!R–‡€Ά1qΥ–οΚSρ―Fπ¨ψπ―?œ ’Ζ}υίcƌAί^½*πQjύš¨+*ΗΗX†¦M›f€]}Ύ«z2―›cνφϋοΏ«ρ‰η!L€šί{;nQΩ_ƒΨz<2ϊ²Χ ΗκU;}ΩςVΒ–ζž΅"ͺφyZ}™eΉL}uΥηψμ»oT>T'ή ΐΊφΉ–ΝΏΒ'<μΪξ ¬ψν·ίT`α°»οΎ›Yͺ ˆΑΥrΌ›:uͺ‚Ή}υκΥhΡ’…sάδΉ{φμ© ;ž‹cΞ‘#GP\Ή ΐ3eβΨΒqΨθh[ϊu U¦#0™·X>ΛΊf]X+χ+Ο’Ρ½χxlϋ¬' μ±]6η6ΧdTΔεxJ₯om?½―³OHΉ™x=΄ηT·fb{»ΧEZ}αΝ―d™S:ΛΉ €ψœθC‡»€'ΞΕΖ£1¨|uτ-[Ω›œ&ΎXςΔ–»L„γYEΑόκΣ^ ŸWyΈξΕvœ_ΈI|XΒƒQxΘγπ-vmžΈžϋVϋŸ°σŸIЏ4₯†uρj{DΟϋ’2,“₯tš ͺΞa`'Ϋύώό[φ΅ ζˆ?lβ‡μSΪ tXθuΗ0ΠNΟ§Ό±eVύ>sO­ΌΛvOΞΉ7ηΌFΰ™ͺΈ)2O¨Ÿξ“ݝŸ}“sΕςGN!ρνj— Χ{βΣγ‡ΤΌWω ˜)$ΟϋοlΨPωv<΄i»ΐ£tl€ΙΚΎ\]@@J>«°Šβmπ|°§MΝΠG›Ι}@7“XΦ¬Ζ!ϊG}ϐ_Ζ•^8ηoם»KVΫ8nιρΗΈλ”χgEy7π GŸ Χ}ηΜR~Wέ‡,ύi@/uοζΥύ“qόȎ/cΠΚ΅ΈWωV‚$-Ÿ‹c΅ξPs_=/ϊΑU*5BΨ½{·3(†+6°>8†Ϋ»^†m‰cI. ¨γ£Σ5ƒ πλ„Ÿw8vυywD_D£MkΤΏGΌ|½εyΜ“―(‰z˜π9~ZžΨ€.B_iΟΑ({Ω €?j:|H𝀔ΫK!x`WX²tΈn3’ζ}¨ό•M”ƒFΘ3qΛx›φAΌ(;s΅›ŒWΑ#z€χp^₯8Q…~c¦¬BtLνžάπN„I@€L6άƒψA“•z²έΧA―KT.wΩΎΡ“ζΐ—?ΥφlΓΞυ«#΄qm$OxKΩ$₯R9„π=AVu#ώ^Ψ{)Ώ$vΘN εeanΘ»φXπΖ άY9 _ Ξςs‡LΰωΏ[χζ•ί0η£ΜR˜0-`Zΐ΄€iΣΧΠ&π| kfmZ ‡-ΐ³₯ϋ€­ώjνςΰΠϊψ}ΐ›ƒsΈ€ž³³ˆΒNάHQ…8tTνD•\}:SͺΛσAWψ ‘ˆθ7ηΛΧŽsΥ©‚°ή/z~ˆ{…ηΙ‰Γ’ΆΖ™‰«εΑn:μ<όIXό=(kδΔ Ν<‰μ²ύ©±+€Ž–j%QΈJΠυ„©»Žγ̘•ΊςεBα1OΓβΊ›ω-dxΎ…*ΣΝ₯dνήkEΉRTi« ‚ Π²›lΥ&o€gΎ„Φ@2βΛκe‰lΒjξεφ’βKxŒΑPcβ‹rΒΐσζΝsnn(P_Žσ…7_ Όnέ:μr;‘±cΗβυΧ_WΗρ˜υ²Œ½†tfΩž©Œ·xρbPΝ˜x]„΅υ‹z£έ©:ΝλuMΌί‘β&a1bόΏ”('{J o$œ‹Δρ‹gΐ³ή?+;Ρή΄£N„Ρ"""”jŸήFθο―;΄yθΠ!'πΒο©~ΧΌyspήG%=¨–Ιe¨YΧ:# •h{ΒdγǏWυ:5ΐIπcΕδiˆ•—ΩAζS±¬Wvz@κ:ϊ•°FF©ώD…y“Λ”S]g–Ÿe"@DΰΪ›ΊΣΧ¬?Y—l'Tφ¦"NYΑr΄+Ϋ―7‰‘mΧ?ρ}α‘ύ<ϋ π,γΊ!Ωnΰ—d·εq,Ν^BTMΉM˜• ³όm‘³€sΆσ18=ι3ΨœUΉXςηBώή’πYΊ!Χ[μΟ­;‘8m@πWκ-πΩGgϋ"ώ֭ϋΤq‘έ[Β―a•lηΑμQρ8=p‘‚!Πa‘qy„;}¨;ΜΆ¦—t§Ϊ%0P(#_–:8‚˜ν;α{τ$|ΞGŠz`W$V,£'Β2Ρoίπ=’–¬E»J°‹Z‘΅DQ΅ό<]ƒ)ΠΑΆ― Œϋ0„Π?όΰάΌqγFΤάuA­EχΑƒœ¦Ώ$J?=gΞ½Ι‘κΨoR…qjτDK§Ο§ϊ|ΰ!™ίΞ/Wγ&LΘΰσΏϋ| Rφ‰ΏJoσμτs:EŸ€~κΙ?φΨcΞrQΩ™ΐ3Ϋσπ3O–ΧΜ±ƒy,g"ΤΝ*ΠΏ:p@†Ί&ψMϋΉΦυ΄iΣ/+?Υ•λβψ©Ϊ~ϋHρΉ=ρ\FZweγ>T¦ΥAGΫΕ–Ÿ2K<&>>ώ²>±CΖF=Ζ_vΌ\[G ξiAHB₯} f²θl‘m4έ₯@π«ŒηNΰYϊš5М«TIXb¦:³ϊ_νόrw‚,ΆρΉΔ‰)k`ϋυΪΣR4E‡=kΨB{YœοVϊΗί¬˜:7Eϊ2PΏf"zΥ•Τ9‹e.­.=΅l‚{J;! ΣίϋpΫ€žN„νE?υηόΞπΜ~Ju^Ξ‰›Iž>…ώΜͺ?¨U ΔWj5]ͺ2©gΞ‘ο΄7ΛΎΨ©ωCˆο5Φb…q΄[TΊγ} 5Wδ\•}Σ8W€―):υ]„žμτ¬sΟω³Q%―[ ο»Oω ^w•`Ω&Ήͺ +ϊoι:ω§Ω koΠ―d·ΎYρρ=‡UeΥϋσΣέ8τύχί«Ue87¦,}™μ¬ƒVτq™ω²ύϋχ;―WΟ„ΤνœƒL™άƒ»’Λ[SuϊΙ²εHHIFέτtxϊ_OχO u½gεΛψ½ρfΎ›{•Q4?k±©ϋ–ŸπχΨQ£‘&ΚΙρgI…σ+₯rŽ9Lž‚Q4IΐœΙ]Π—ϊΒπλJηΰ,ƒ-3KVιΨ6QαO•ΰkT %0pα‘½κΒγ΄η₯ίB’τ ‹ΜEνώθ.χ˜uͺe?«}‡‘4v¦¬Ϊ!«»IςoΩhσΏlΡΣη#`σoκψΤς₯Υ1;·ύ§m²‚αBF#­dYΑ°§άx Κœ4^άΤΐq.πΉ–°d6'?}qC¦Β‡*γTO(‘Κnό•]Ψ¬F⧎ϋ±dΓΎIΓ&©kJ(ŽΰΡdΞιg<…ΫΏcΖΎ Ώmr/s£ΐ~/ˍτ%?ιφscŽXΰηmLžΝUKδ~‘nΊΏ˜+Gς53Ήυ,`Ο·^šWtsYΐžoϊ2KkZΐ΄€iΣ¦L \Lΰω ŒfbZΰ_²ΐΥΟ–Γ'Ϊͺ ¬g䑦$[@ψΞϋ½ ίՈ²YΨι°πE”<ŒŒ_S„?“Ι©ΒPI-nΤ[πΩsH=ΔMό_cδyΆeNeŸ£ω$ο8Š3γVΑ./”¬ωPτ Qv6aη΅ρυΞμΤΫk`ί°ΫqΪD½« ,Α—Ώ˜IέgF,——φΗδ A‘‘mΰS τzΧ<ίu²€ <_'CK§1ΎΜv…•ΎέlΕλΣ0n ύšΟTΣKMwμΨQC|!MΈ•a9BMTΔ5ΟK—.Εγ? `*2RaŽ`ϋŽ πφΠC©mΌFΒ„ψβZ«)σKΒΟ|αnTBγφμΟ„ xŸB$N`,ͺgλ€—S&„F  6!aͺˆό%\Ό`Α'Βk&Fψ*22RνΟΏi*UσΪΑp*wž`Έ7v"|ςμ³Ο*[oΨ°ŊSΐΛKh„KD3-\ΈOέΥ“£ΐ3U>©φIΨ‹°Ν| T¨Ή?ŒΩ³ήFrš(X¦'ΦοργΗΡ§O·vZτΞ\Xe‰γ―μΣu·sηNΰΡΖx¦M›„Έ@…ΏΔq½p·ΐΜήΨιŽe;|όφV₯JͺUω†τr™…\g^ΫΟ?|YέέvΫm ΰΦπŽ;#ά@πε:v옲'λZ'Ϊ”0₯; EοΓΆ9kΦ,ύ―WŸw–)‡ίχοE˜¨έάΈYAΝ `&””΄ω\xχΨ’ΥQ–ePΈσƒ·ξΌOΪqτΫK —ͺN…ܐ―₯ŠgΓjŽ]Ο ΔjέμhΘέώψ?μ~¬2ΆΗ$βΤΐχ³’ ,°a‘1ν`Νͺ€VϊI­ΐοβ“†ΏZgžyΖ €J;Ά>Τ› 7ϋˆŸοΙ³²|Ξ%¨+°ύπoΥŸ ΛΰΑLζκZ„`‰ΎbΠ A |֐Ώ§ίeΝ“'³q;ΛM;ώό †₯ί!ΗD?O€”ΐ6ΗΒ{μοsfΜDΐΞ`PŒQ=ό°œεώevΐϊ_§ίΘΚηχͺV‰³ζ«sςW`Ž˜σΟ_ θ¦Υωυ—?ύτjd—\²ͺ‰οΦγV§N”"°§q+Dσ/ΏόY&νΛxm&㡍·Γ&& o„η:•!ΐ…}Ÿv’Ÿ8q’.¨συςΜ¦’α㏩±…_2Υ«WΗ!‹{χξνܟφψcλοΘ! s7o@Χ]Uύv&τΛkΰΚ:Ρ/qL₯oβψ[*=θ†c Ϋ}>}šx¦Ÿsmτ…„Ε Cς<:^Ÿ4i’Κ‡ϋΠ–Ίί1 Ύ~°Κςξ\ ΰaC]SΕ“8η¨ΊνΏP²leŽ(¦²g~YΟفεX_΄λμ²>!,ac`?-ύθόΔ8 Ÿ ‘°Κ?4ΎΖ17ΡΧξΝg §Ά؏a]Ί‘Ώ0ψδz%{b NŒΥρ=gΤ)- £Ψλ˜™χϋWTΏόာΔM’ρν§π|ΜRψνή§ς"΄ψBΨΤΊ,ογ³Ώ‚mΓ^QڏBxY;. x.g€gρίνΡ1°Δʊ±ρˆ΅W#<ϊt‰2H\± >μσϋΩ1rΞlŒΑ±ΰί·Α2z žz½Ύηž_y β…5_ž ΐ3뜍FΒφΏςΨƒXρχ_ζŠοˆO΅Z”_γ<™szΞ=υάHuόŽΑ5τ3F_“Yέ$η|cΒ'FΟÜΐ3σ\Άh1 Κπη[Ί$Ύ“ΐGΧqΘΘp%ΎμwήQscΞ_έω2Ξ-υ½xVαΨ)ψ$&£λτINΰωSρA Ί¨&>^CΟέΥΦΒα/°0ƒdx]Lϊώ‰Až:ef'=Ύsk}―Βsθ F–~υ駟α`ή“ι95Ώγό ^n ₯°ΜɘXΖ€Ž Ό6wιjηΰw‡ξ.kΫn/yφqάc\π,Ξ"ϊΕ\ΏEƒΧ<θUΨ "<ž=γ–o~@όe Κεκ, ¬¨]5γN™ύ'JΦ±#§ΑO i¦€F΅Ϊε9υ|<³ΓŒίEΎΏk6ͺM)Υ+ w_|=Τ—ρ8ώm?| ’μLŸe‘q8 Ηs°Τύ?{η&U‘΅αΣ“39 Δ„ŠΊfάUŒξ’¨,fY³ Y”(EAD‚ΤL+κbψ]Β’b@$ 9 “Sη­¦š;=έCχ8(Έχ<ΟLwίP·κTέs*|η«rς―A{9ΗI”2B—θŽ,I=$ΠŒw¦] μ|Ε…βΉ½£σtΩοN°σ™'Kڍ“όGF0zQν’8ΊXlΩϋžyIβηϋ€γ χί’Nαμ²Οr6 |π™ώ†Ξe«tΈ"[nΌΖΛ>lΚ>ŠvΟGqεΉYChΐΓωΙυχή{oΔ€g'―€.œ Κ˜ͺώ†uŒgQ†–-[ϊY§ŸQFΚ;, 8υΤσ²ΔS7M’• Τ ³άά\σGYy;A$”ρΒ /4ωη3ΗN”+–„V'PtZZšω4‰λ?Ϊμ€°”RΖ–)«¬becλT-£'Κ°oίΎRzb»ςυκΙi *ˆ³Μ°θ—ό¨ΐIΠΛͺ΅2hΖτRz P&˜žΠc2‡ξŸ8M|e²ž8κι5u’Βžm=μ¦ύu§ »½c&IυkΪΙkKΎφƒw¨;XiŸ΄ξ‡•Τ φ;묳dΪ΄iΌyσRmίκΡω °}Α‚ΞC‡όŽ^&OžlΨX+F*%Ωω²νIeu^ΰX$9Nju½RbOkb~ώ!mί%ΩΓ5ψώΈJ‘n}K!Ψ†|ϋ οKτG‹M:)W/ρ7]bΎGϊΟ«υ`ΐΞΫ4ψ25AjΏY’υ]B¨γ³Ο>ΫB²–μΛ•μϋA$l3Œδ΄Ω• φtβgψ+•m§Ε ΨHS–mΫ"·άr‹IΧ^Γ{xί}χ•j«ΌˆΣφΡΦω (Ϋ‚`_Ή·[·nζύ"/€wρZ[PιΕ_4ο ηaδΕ„‚Νb›zΆΒ³Μχ~›―<­οŸθkοq~rύ šIΙκu₯’’―—H‰U­DwΈRΎl\[.Υ›πΦ3“$Δ8Ι>Ά‰ΔΗJυ]ϋ€hεj)Φφ[z\λσUߞR~ ίJ JΈΆlΔψBΉΎC¬lΩπ_Ήψβ‹mv‚~’§·•Ρy“eχΥ—Ιε½²H,π&_X.ΩyΉH5€qοΏΎΡ/~ΰ:ΎΥ2£τ&8Vi@g€¬ rA¨ƒ•+WΆ{v€₯•gP§Φ7S‡ aeŽ€ΰ f€n©η`ΖόKΩ?Y(ήΈ8IΤU€yΩΆm›pMέuξάΉTΫΏ)₯ŽδΌρ$tuͺρCΆcΫΎΙ ώp5v:Ψy{Ÿ ZΞ% ¦ |'ΫέsΟ₯pτ3fΗ#η=ίϋψFΌΚ@ν%Κ6Y’ρU”y2A<‰ρΎO=fίξ'π ύΣίqϊŽΐ΄+ϋwΙήΩ2δMρfθ.*Qη5“ϊ]Ϋ™€μΚ~ΦBz‹—ydτDΣwλϊ˜₯]ζΓξ­Mς[!©wέ¬s\ eT‘;w•μœό©9^σφΦ’άϊxΩ°m«πLϋh΄ψIΈBν„‚¦Ζ₯¦HχGϊωϋ13§>'™Σ_WΐrΆD)h9J?=Κ0₯Fςc%‘k™ΆξGϋ°RΩΞc|T”vή\sή™²ψΒ³ΜϋΟξΞS†al=},ΐΙΟ>ϋ¬ ˜ ΟZ€}ŸΒ ›ΜŽ9 bΖͺ―ˆΝŸ>}ΊτθΡΓΌ“0Χͺ₯W•,e·jΥΚψ$€ΣΨFl‡΅ZΠ|GύV’Ύχέ4}ϊhΌχ_λϋ•¦»„x3³ŒŸO;@¦}8Ϋ―'3|€Ά,˜ίΒΞΪ2l«ν³SΨ”mΉ({|΄ξŽΠ»—ΏNߚ9SOΚήΊM2η-’«ΦKΡ² ‹mB§+%‘CωΘμIŸ€8už°νv‡τt8Ζ*”Ÿƒ ΆΑͺ”7˜0.8aΦGRόƒϊ[ ‚)8ω8IΈιš2c>§ήl:•Ρ§ΝH‰PΧΌH€€g2Dg―; ϊϊίωgœ"©έ΅/ͺν7"ΡχsSΟKόΧί›ΫJ4h&‘ƒŠ„/ ώ ™ξΆ 6Vπ0ΜΚΪOLΈVρώ%€Φρώ'ž“Xe,Gς.=OͺήucΘΗžπ.]%Ή+Γ΅ξˆ  ›ππέβ9‘Yΰe―^/ΉC'ϊ±«¦JβΠξ"A@βϋGOΦ<-7χΕ‡vžωo ρ΅;WΉ££δφ&Qj;J„Ÿ `g©Vε`>B}{3Ι{ωίsoψ›x:\κJχψaΤΐ„²dώ’Dά°τΌ'FΞ9]ηΏ]ωUpŽΡœ}ΩP‰Fz}¨tΧqπ|Έ4λ¦λj < Έ€ηπτδ^εjΐΥ€«W\ ΕpΟGqεΉYŸΣ@Δ€g])Έξ‰]ϊ£]Β@ΣύRς€2όV’‹™^„…>Φ…βτΪ’8°‡ˆ²Τρnή&Ήƒt{ΎLeΩΡIά€ˆΣπp<κW§YπΓΩ6β]?Ψf稀'ήu.ά§ Ύ['»ΖjκRZJΌΤκίIbšΦ.σΘβΝ»eϋΰ™Ί@˜«‹qR{ΰίυ:ί’d™‹έG­\ΐσQ[uaeœmΐ±'žx’E.x{Nωla¬ΉΏΥ™%ςP—?¨θ•W^1[ [P| ‹ό9ΩGΈ±νGΩt8ΎzυjζX ΰPΐρΗoπν=€™:uκ$o)Μ‚ίH›΄~ϊι'™© ŒŒ q“2·nέΪgI–]˜Ε(8€ƒιp@Yν«8eΓ† †U¬aΓ†₯€\δτΣO7z&O<γΜ3Ο4ΏΩͺ›4`AΚΐ ΊΆΟƒe“2(Ό 8ΩJ0ΰΝ;ύΰ 1U_^*ΫφJΊ(EΧI3@0§ž%ΪE'ςΑ)N½’§™O>+Ek3$κΨzΫ v)`χ‘§ι Z‘ΎJxŽQ¦ΩŒά½AυDύ S§ž³ϊGΜ3”ωšrX=SpfΎ‚)¬Σ“Ώyp{fš$υHzΎς’Tβdx&θ=dέΝJβΈτξχΧyα]A§0rΣΞς‹~.Ήδ’RuoσZYŸ4Η.Œπ\τΓfΩ1nΆx4‹xZΤ“ΊέΫ› §ΚΚί‘–ŽwΡRΙ›π²Uxc’%¦·K[U(›Ϋ_D’ίφ±ς•œsœΤκy}…ρζ(θΌ?Ε»yΞγ₯Ž‚£ŽGmbŸΥ˜ >}₯ΰ«ο$σ›οΕσφ"Imω yšaG†‘sρ‘ή§  m“%ΚYΤ¨ž€΄Ÿλ±U” 0qEm>>ύFιυ$nΓf)Ω»O’8(ϋx{Β±ςΒ7_ϊΑoΖ“>[(ΡMι»±_ςžyΎΠ5ͺQY{ΟMΰLžyηjγoΒΚ½μϋdΖΤ,ΉβͺκR£nΌ₯zÎγ‹`ήη6lΨ0ƒΎ5)ˆ±ψ£yj“›Ιϋ?-—ΟζΝ3Ύ‘@"κrγƍ†=]‘Φš5kδŒ3Ξ0Y€άΤ-…φCμ gκ7\N9(7;ΪΘΓ?\Š•Άκ[o½ΥψegZ€&ι“ …ΚŠΌΐX‰VvS―KθΥEδτ₯κ½YφΉζzΙVΰ" ͺΞƒΝN΄5[n›>ΧΠ–l°€ywκ.…‹—‰wϋNΩΏΞΗΠ­LΨ)=ξ–Φ¬*σNτωΗRuς«R²ΕL’€εb”*γ3­YcρΦΠ€P}Χ€V JεΩα A;QΖΩίπ\Έa—lϊΆΆ<ρθ;VύΦ $ιŠ#3;\=ώžΧ}Ώ##ž.’τΜυrΛξΚΙ©&;f~©λ:ηγ <ΜcΑ’_dϋπιΛP(1'Υ”τΏž€u’-…>[Ξ»πόΕV·ωz₯½ρxhW¬sU‰£ΚC“'Ÿΐ“μ.ΉŽLΎτoυwQΣΖΛ9Ίσ»ˆΠήϊuR@βwΛ4Θ&UJR“%VmΛ»_,4Ύ€τΝΑΡW$ΰ€χŒώ%`Ϋΐ±C`_›O ‰OωΰQkσ±αϊ-쨡Ψ†“¦ΘQΟHŒ‚$=…E’ψΏΛ²F΅ό~h₯:$hTΒΙ'TΘ–ϊ-rNœ~ΛΌ1{φliΫΆm©± eΨπΡ u:ε‰'%W¬‰­Ο―κΆΰΛο$η…™>@ͺ¦―}—΅ΗΦ/5~²φ8\=1 Ωίε•0VΑΏΣ6°ΛθιsοWΏ‹Οl­γ3‚…Έβ γί—ιŽ7 _Ρέε~ψ JάΥWΘ‡UcM0}άZO5“Ε«lΎς{υΑΩ}€ $"ΐσͺ5’ψdΐΰ•{/<7°X‡ώ­ώ+wΨxγGΉΈPά“ϊέ±?ρU?KήHkΰƒWƒ2τ~9αιC~ΙΙ•,eVY»Ρ–~πV‘σ}}CήΛΚ‚œχμ«βUϋ¨8iHWρ€—3ίΈ|΅δŽxVw½Πΰ­ZΥ%iθC"κ‹%b°σ;ŸHήk³M2€Σξ½Qς‘οά.ΏWb”‘ύDλ>¦μοΟKήΈiΎtΞ;MΊ«pεwΣΐΘ§sdρςx ΪΨ=FΉmώ·@Οτѝύb*_ύwŽ·UAψrΑΗΫϋπΨ^η8Ο¦ƒΟζΩφz~σǘ.Ψυψ@;OeΣp~ςΜΐڜη+ϊέ1 S0θΑΒηΤz½σΞ;eΊ‚tΙΣ¬—_•…‹Ώ6 Αc@w‚‚ωœυ@žf͚eΐδδiεŠδ£O>©' x\aυtρEI‹“ΰ†π Άπfr«§'rΚρ"URM ΑτDΉ¬xΦ¬—]hλ9νΉ €gξωηƒοB°ΊKΤ9Ψ`mέ½ύβt‰…φkΉF`hFFŒ!=τP)ύΪ/qί­43 ‰Ύw‹"`+τψΒΛ4pΗήVrZS©ΥοfQcqZ^έΖ~«‚eγnρ$iΪc7JtCMξ'ύŸ#£G6οζ[Ϊζ²;χο†=βݟ/i³'H·Iγ P Ϋ1eψHeέά,^Ξ¬ΥΨd‚^°Ωο•“ΥρΐcΝομ¦M›Œέl„‡?ΠnΐΜ“&vΐ3`6›WΓ²ξqΪ|kΛ°§ύο 8–χΫ™Ύ<ÚoΉ6ίy=΄ωΨI€`άΟϋƒ»Σ–aΏηΜ™#W]u•„½yσfΏίϊΛi§KΑ†5Υ›Ήίl΅Ύξ”γόΑ< R’uΏ+gΏTQ[œ:v²ξά-^Β"]e`/i₯`0&Pηϊ /’=ΎiΗvB«σοRτμ?₯°Q}½>IͺM{\ylˆΡ;Ά~κΤ©†]–|eψ>OΗ%7-Y’»έiΐPθ½jUHΏΕ}€±―αΘ_|aƒS¦L1ΜήάΣ±cGΣύ ηhOέJΥu~d '1k”u[λ!ώ•±R}Ύ­kΟρνiη¨IχεRVy€ΚλOKWeE$H۟:nΌ|‘,Λ P*T ΕέΙPΌωτ·₯xΝ:σΫώ‹9lY~ρΩώ]h—k{h²μ'ΙS`tjΣ&ΑΜ5«i h²½΅R>kΐsΑςM²mΜ{:’AO:ώ«έσJ‰?-8 ·R ψOδ‡Ÿ<ςψΨLΉpνl9?η i\[ˆ΄m&΄ΉPδ€γ «πΎM›%*ΫΗΌL LΜ²+Wφ­,QŸNA₯”Hj# ²‡₯χΖL-ηύ΅ι+Α^όΰ±'K჏ψ4©}šβΟί“s”…wυ₯—^’λj€Kφ—ΪξΥ~€Φ―§ {ν₯¦π½W?=ϊ;ͺjΣ§ΆοC°ώ } ‚oΎYύY<`ύωση˞={ΜN):νk`_ΐσ AƒŒγςΔO˜ώύΏpόi§΄`{¬²)ΠkKz ΣOη}_©}χ” [5πεσŠΫ2c9Ώδτ[Ψ'˜φιR§9Α[\oƒ3¨Σ›.o++26˚ukŽŸt'„½oΜ–ψJ’²Υn8Ώ₯¬―`—μ\8zrϊbς¬=Πώ΅c|ΑzηŠ;FwKqέHce©nםίOΕθΈP~ώE‹Z/)*xΌcƒRiΊ?~•˜Ξzddžš­Η8―Œz4VΙΟKΫλ_υ€#ψf|!s?=φ˜ρ=ό[·ΩQ‹y-|uΰ*Xq°ΥŒι‹γŸ¬°ƒΛ£>*\pA™@ύ]»v™ωΖ‡V½φZΨx=ΐhΖψ/Ζ›‚―¬§»‚±³D iAΰ΅‘ώvΟ‘jΜ½ήΥ@εjΐέΤ\ Έp5ΰjΐΥ€«#P.ΰω¬7KΏ«˜$f‘šO&Β™˜ψ­26ΰω±ρ"Σ”¦XwB1<;Α,Βΐ”Iι!”ρ—_~1@~ކιΧ2S~6O€ X8‚‘€,yc‘Η‚―ΌςJΓ€FϊθΙΦΓψργM:”=‘†SOS5uw?/EΫχIZ;‰΅E)=Y0y„ušηΫ:πH°,ͺ#GŽ”ή½{›rΜU :7ζqQξU£;Κ@ΉvsΠΛg $œyLOδw½‚š7oNŒž8η<ΩΎ`‘a„θ«μž’€t>YMYΨB/Ύψ’Ρ7m€K—.¦N9ώŽ>/{€‚ίt!Ϋ£Ϋ_SίN=ΩΆlxΰ_|T΄tοΣϋ @sζ,έμ Θ0θQ.ΐ‘Τέ€~dήΊΥΒ’b™ϋΫη8–ηψ―‘HΟEλwȎ±Κ ‡?GT“Ί_#Q΅|Ώˆ7dHΞθ)~fΔ3€υdΫπΨ •Άπ«e“³|lt'4Zƒ;+HMA:‘JA‘l ¬vZ'€kχΎZ’ ³DΦm”μe φΩ°EΨς5ΐΟ֌}on+Y΅{§Ÿύ@βyυIΦC™")ΓϊΚΎΤ$9IN°ω3fΜ0;'ΐ‚M[±ν†ηSΟ‹/6ΐ7žo†΅;O  #ϊE߁bΫ Ε2u­ΰΓύ#Ÿ•ͺ nϋBΫ?ν‘©η>ϊΘίφΉδΤͺ²oό4I=£₯μΉβΟ&(Š2Πφ;–ΔKώ,Ccβ€2π7L†zύ~ž‚Δο{XJ4ΐ²3—T«*ΥοΎE.V†QΚu¨wΏLY*S~KΐsήΌU²sΚΫΕ?uϋwΨ&΅*³8¬΄΄Ύ=ϋ2 Σ»μΟ2A{6l4σHΡ `ή³1GΆ.Ψ"φό(Ι’'ΙqΪ>¬Wœ^ΣψC)£€Ψ#{ΧΖ‹W»‘1 ^Ik’φBΑη/''Iςέ·ΙΘχήφΫIμhά{ŸHώŒ·$±_Wω’$ίo9Gϋζ½ fσmθƒL’ΏΟυΨΖ@‘Ώ‰-ΝΞΞφυΛ\€νΓw\}υΥζ=!¨‹ΐμ:AŠτyι ⰝΆΟ¬―HŸ…σ™™Μ£i:{(Αί€ύΑΦ„λ·xGI—ό„ςCΨ/όΎ?΄|ρw’]/υυ;‚-pϋ]R°z­aqo.ežΈX-Σg#θšΐ§ίΒ–:³Ο€ήπWδ7πzΝ¨Α™cντCΤ1ž¬‰Χž?Ξ?~Z’6Ίf­Zr‘ξœŽ-£N©kΛςΈΖ*ψtJ?α”SN1ΎΤŽmn»ν6³cŠν?X_ΞωmΫΆω;a­Ύdk¦όλc£cϋ/ζ?Λ—'7υΧυoݏπμQ›‘=ϊY‰QFe€°ε ’ΤSwίQVεˆeΞ<)xιMόυjP\|WΏ9«eψΙh;Κ|φ%‰Ÿ΅Ή§°ycIΠM£"ΘΛΟh;t‚DεhRΩ瓆θύuΓτ'Ϊώ2Η<'±‚‹Oh*)ύ\^Ώ|‚³'½Κ`JŠš5”δA–՝–‹ώDμU¦\ဝ½sHώ‹³|zμά»‹d+± (§oχˆ‚°Ω%εP’ϊΘψ”a‘')Γz”λ•œ{Ύς4›η•‡‡Κ–mΡ’¦FcΔιƞ•Ϋ—«ΌάVNJψλs‚₯HΖ};> v ΗθWΨDπK(aή¨OŸ>Ζ·γ³ Z,o/‚,ο½χ^s½}ώΏJl€•υ‘‹τΈ xŽTcξυ*W.ΰΉrυι¦ζjΐΥ€«W\ pΟG`₯ΈYϊΝ5ΐ"[¨³¨ΰŒ€f±‘jΨ™$·ΒδŒ°2‰Ο6 ”€Ψ"VC»Xk社ΟCž={φIΑUwIΜϊ σ8―nύΔΓβm―l Ώ‘xt{βόηgψΆxΦ­Y0ςΧμ°ε`ΟσoHΒǟ›τ On.iύ”E:Φ<8l­`ΒEkwHΖ`θ…ν©Nͺ4qƒ v .ΆΫΜVκC^7€ς^εκs%ι†?—)†7+O2Ύ&²y―²ΫEKž“Έ?5-s{ΰθΣ€ x>ϊκ,GΗ(πWYm( Ο?Ό°Θ ¨ι7ή0 h޳ΰέ΅kW³ψΑ9ΑΗs=ΐβ@°& ό…<Σ/aΡ0B_dΨ°a†]˜ίΞg³ΨύΤSO0Α«―Ύ*,@ δ‰s,Έvf†EsϊB˜«W―n€ΐφ9+tΜ‘―χίί°Ž’ŽaLSΆΛ` %εžIΆOϊP`;tbΩ€YμΎα† ˜PyJOOχƒ3Έ‡r^wέu†Α4''Η°» 0€Sf‹nΚδ\”4Φ³gO£'ϊy,τʃD°ΒρHτ“§ŒOΐ$xΖΈ zE:>|Έ~p ύΑD»  œ£ŠΌφΪk†Ωpd$zͺ₯ΰŒ’υ›%χ±g|Ϋ:«oIμy‡Δžsͺ|ψᇔΝvδ”“9Ϊνΐr(=±XίKœŒ΄οΌφΊμ0Z~@< (HΐR^έXowόΙ2μ΅—ύy’ύΡϊƒ½ΎGζAό.ΰ™­’sg/–}3?W•φυ”EsωI’~›Ύ›ϊύ*{ήx_υ™ιϋ{H‘xΧυ"œUαβ―Ϊ({‡Ό€ u6«+Υ‡ή@΅Θϋφ^eωάήϋέY%Ί¨@’ΗHLήΎΰωJM–β§J‹S[p*`5Ζ±A[·n•φνΫϋm"Α΄3lοηΚζΟ;ΟυΌΫΨ9·,ψ»ŠOd(Ψ=X‘ω΄¬”Αμv {ˆ`S.V°ΑD˜ GΛx+<ο4Λ%ώ°ͺΝ’WΪt΅αγΨΆmΫϊΛ HΟωΚζc›y θ!ΈΑŸα_8Ž-ƒ»Šπ ™ΕύpύAψέa³``β΄eΨQk㸏ϊό˟/ԘB―¬T΅ΦjƒΠ 1»χVFΓηd{―»δXeOE C¨κNvξ‘}qΡ†iύπή’―$κΡ²op/ix@θ ΘN6Ÿ ξ±~«DωζΤŠ‚.Κΐ>`aΧςΟu;'ΒN¨m.ηΠl§‘Τυ/Iρ’β;˜φΓ½ε΅ύ%Τ{Έx££€XY3΅όη]ΤΪchφh)(QΫηYRΆHί ΚS™ς[ž³ίX$»ίωΚdέS;Uκ $WfQŽό΄ςςΰ²dfiŸC?•q|οΖMλrT–y™Ο(”ΒΒμΡΐ…P’·ΏHςVοψΒ\΅·" ©κχ•‘TtŽΙˆΎ%j»Kτ]‚΅ sZCedO”-³VHI¦ΞαUKσkΔS·Ίγ^l‚ΨQ„ ϊ3V`#€>z}¦ΥΕκNτ·6ΐ“ΪΊ΅εΌτα‚½«φzη'χςΫΎ“¬Δqϊ‚€„‘CυaβuΞ_rι[±yΔgαƒGϊŽ’?ϊŒ6x-?d™†ΙΗ!mΩI'Λφ];#ς[ψd‚nΒ©SόBΠGΈ~hl—ϋe[Υ$it`§›pό;ύ];.ΰyευw‡Td¬B³cD| ŒΞ™“f,Î}‚£lίbw^ΐGqΎϊΒ2ΏόVbΎ^*Ρ›·IRŸϋdΔgώέϊΰaž•΅:Μ³ΒŒΈ[uLΧφ"SφˆώιΨ/뉩·xΉΉέJϊk_ ]uδζIΦΠρΛΞ *ηž&©έ‰α 7ρ~½LςŸzΡτ­!υH¬»Ϊ2-‡HΝkž?QwvΨ`(8σ$Iλ₯;O”σ|ﻟjΐΗ{ζϊBG§|°,˜ψW‚‹Z')ά'Y£'κn0>ύΖ?ΤEΌ­Ξ QΗαŒν’Ϋοqρ(ψ»Έ^mIΩ»,ΫqΉϋυ·Χ€ΖJŸΗ dχΎh©UCAΟύγtÎ?&θ9°Aί™9 ƁŒη ̝Ωΰ₯P5BΎ˜>8cζdψM`λŒ€›|…―³$ Ÿ8q’™‹ΫΈq£ ZΗ"φzΔ£}vγ‚έSRJ³Ό3Ζj­γ"v};@Ϋ$Α?π²άK]  Έ€ηΓ T7IW\ Έp5ΰjΰΘ€ x>²κΓΝΝo―& M0°%08±}0‹L σή4=° |°{X”dς‘²AΟεž£ήœ#EŒ L*EMλKά»“Ε«,Ώ™¨~φ?5Uβub)V––ΔώΊ]Ÿ. ±B™δb—όh’ΟΏθ,©zοΝ‡εQ•‘(`筏½%ήΌBρΤJ‘ϊ€S.UΖ3ά4Žl ~Ϊ6FΫΐRίΒƒœΤ@κφ» ˆΗ›[ τΜΦλQQR£k;‰;Ο<²Kθζ< Έ€ης΄sτŸ[«―υ‹―Λ eβ<ί€‚•ŠΕΆ’€?°AΫ`apƒ“ΉΩήH?»˜μ:ΐi€uYh±¦Mσ,OP`n„9p,Β[½Οω Θ–tιΣ8!\S9 ] ZeΕr›ΆM‡Ό“?†ή±πCΏκν·ί.΅  Γ ΄εώΐ2p Ζi@βΑςΔω@¬ς駟š~ X  ΌΞώFO”£Z΅jζΟ‘Ÿx(=uκΤΙ”‡{©++€`τf…νΓa»fA 0 e΅η:―Ύθ‹²fΩ[νυει‰{ GΫZ‰΄Ρ™Ϋ’•ΉξΝwί1 jκ"κ ΰακ ΰ'un…z€}Φuα‹―IήόEίΏ›ΔΣΔ€Φ-(Εήψiλ.JY\»<ψ€LŸ>=π’2Ώ©?Άs§ΝU–„x.Ω΅_ΆŽzGdƒn9­β©™"5{Ά—Ψf Ξϊ£Jvd}^b–―6%,N―%ɏާƦF…K\όσΩ;hΊ’C”Ε³AM©1ό4„Q—ϊn{~Ω¬Ϋ΄oΜ₯+$κ—-Rπν)Ξςj_Jwo-ΡΊέ€²§5'UNS°WΣ††1vλΘ+@3ΎΨΗζ0²νŽχs͚5†a1ΨύΗ°η,„ώ΅L™\pΐγT+<˜}6v ΫJπ7–Λ= >+Αž¬U«VζΧζ“6ΐ ˜γX0Ϋ(Ž<‘§HόΞ±5χ2ŽΗVQοΌsΠ–9} ηYΰ·`l+6ΛΘύ /έ~š2Δ+8­“Φ/» θϋ£ͺΓ‚Ήv›-ψ\β―k/―ενυΩk? *κvυ΅’έυ©Έλ4¨Qа-_Ώ^ŽW°΅iK ΔLXρ“Δ4o"―~4ηιΫDρS§79F¦Ξzύu]kυΡ’Ώ|₯$υο.lΫh@γ6­ΐOΪ~Η¨4—&ЧΝ_ŒΏdΕ— G»Ϋiΰϋ#}'‚υ…σΙοΓ xφΛf΅ή&[žf5₯^k%*).’l™Χ*p³‡ώƒ0gΙ^e`ΐ `f>=Π¬Ά±’βΥχΟ^N”ό΅»%{εv)Φ ¨„©rY Iύ{;QΚHn–΄Τ L©μrΆeΠ,)Y£¬ώ‰±’>βz‰N>'†qjΛχ’ο–H3e&-ΚΨ&‰O–Ω_~^Κζ“ύμ;‘ΨyBμν.Pθχc—ξα^Ϋχ²}'Dœ€g΄―Θ=ˆ}~ƒw“O;ξ°€g«Θ;Κ» ;|8~δ δ™εΙW_}%-=ρςβΧ iΛ¬ίΒG„S§τΣ Bδ €x8γ§ΤWgΛ†Ά––ŽP‡wί}·aϊ·ΏKŸ|…Ϋg¬¨zΊφ ήAπk;w–>ψΐοϋ4 PDW–‘œ1Ύ}X°›Fοή+±Ϊιγ!σŒC•Ϋφ…H»²$ΐσ άIώΧ§Ύΐ»*©’Πχ>ρͺŒXvν‘άα$zΣVskα‰ΗHςΓχ΅5!ΣήΉ[r=ιΫρDίρψ;4πRί!ο 8±χε·$αƒy†iΉπδc%ՐzΔ\βηξ}’5Dː±Γ\§mΆΪ?:†ΈΨw8sβΛ7οσ£πŒ“ spΆΪ¬aό}ώψmΔsΓίΚMWώο Ι›ςšΉΖ‚χ?;]βu<ˆΔέ¬ τφ—›οεώS{NίQ΅wΏιzL_ePΰΚ§ν;={h‘δδz€Az‘‚žœ1pG\~+š!lœέ9 »‡_±slΨdbπεŒΕ8‡Ώ &_―ύ΄ŠμlΧ322όA΄ΜvŽ ψΔγ7H‹ώγ8μ&$`ΣνqΨOτΜFγCI§²Ε}XΟ,p ΰζλ―Ώήτμ΅|’>̞ΙΙΚ°§‹%VHŸ|Ρ‡αΉ0Τ‘G`_ΔfΣη€ΣuΡΎK—.6 'ύ+ΐ~+»©-;ιΓx ˆoξάΉώkνΨπΨͺΪκ›ΌιΩ `³Χ†ƒ•‡+ξΩ³g ;€–mΩ^žŒΫ½{·aδ΄Ο’xΛ-· »½–O§ž©?ς'Ά£†m‡² …‡2[ΐ‚/ΌπBH=½όςΛ¦m΅V  fzΊ /+΄'˜ Y$£oΛsƌcώθσΒτ3xπΰrυΠ‚t­/κώ2unλštΜ–Ϋ[vJΞΨΙΧύ.‰U6/Ϊγ‘κŽτμΠ~‚Υ±}Άύ€ίΞ"_°…<{M€Ÿ‡<ηΟ_%»_ψΤτσHΫΣͺΉΤ½·­xβ| ‘>ο¨Έ^YγrΗL‚ψv­Εssϋ_Υχ/ή΄CφφW6»œ|ρΦ"5Fέ%ž” ύelΜ†-⁅PΑΝ1ϊέ;€ωi‘yΨ΅_·₯φHΒΉu€δδΖ’vκpsƒΊ¦oe2πOa΄2λ½w ¨9ΰ”yηY¦al’eG΄Α,΄»CΣ:Σ΅΄σPφ•λ-pΚ‘8Ζ{Α":l θε8π › xΙΎ£|'°Α2Ωϋτύη½μ θΙΪpμρ‚ BΪ|μ ο8>]`_X˜‡Ιžw0PXxΗ`'lžε·π0l3>·vŸ16LʍPnl ΆΥΪ²3fψ―%OάΟΈ>0O”™±)§œbΚlν+Ÿ€ΐ}„΅ίW]ΡVφvz@ςZŸ#Uομ$±Ϊΰζ~΅HnΎωζ2Ύΰ·nh•δtθ,%€χυϊ€αΘκΈ(ΓΎ‰O€Πμύδkι’₯sOoIΈγ&yrΙWΖ†κ3Ψo@‚-”έκ ω ΊΘμzxιΏΞ»rάτw€hα7RTΏΔwΉ^’Ϊ·‘7tw+|| ΰon»ιfΩΧQ_%^e«DE…ΰ˜—KRSό,Μ©υλ‰7-EηBR₯DΟρ)ϊ۫׈ξP&ΛVΙΞ1ΣeσŠCςŸήPΞ~φ‰oͺv; Ω<ζ_R²x£Ω)©Ξ€{|ωχΡίΑ.φοθsλΙ)Κμc4-lήXRϊ=¨φ$9Djεώa΅2DOVα\ΣGŒο€<Χ\QΞ AN­ϊYrGM”(e!φ&&HB?υ™'δΒ‡΄­d*«sάWΎ>Tώ%ηI•»u;Lρ*P;WΑΞ} ’ν(±Ϋm"ηϊn}φ™*±ίϊζ&σ[&U 2O₯mW[#)0Fψ™Ό<Λδ'‚s$υ Ο Θ->+§οh‰ήΎΫ\%ΦyŽ_XΌϋσ0hΰη_<2`Œon¬Ε±2¨g"Νρ%ŒIl@₯"Ϋq ύ^ηnŒΥθ+Ϋq†SΨWlKœΎ΄S°σ<;h‘°ΝΜέΰΛ?ϊ}ζ ιΠOaΧόά¦M›Ll»υ7<‹Ή";φs>»²Ύ»€ηΚ€›Ž«Šiΐ+Xψ£μ~ζρΞ©™*uλvΰ΅JE‘· ׁ2ΜqΟ•-%ύΦKJ_γώ:j4ΰžšͺŠ(£σΏŒ’‰Σ uC€jZ‰Ό Ξ,θPcΡ›{ψ»δ’K ΰ“ΕŽ`μ‡)`t鬀<πž=]΄ΧœΜΒτ]>όsΓ. θΐΗX A?ΰXϋφνύύLX Y½z΅ΙlvŒ'Θχ;ϋ=Dΐ9ΛX^@Ά}ϊτρ/ΐSN˜’Ή`8€Z€Α€ Ψp1 ˆš5kš|_Ž €e‡λy.εήΉs§]6³Œ;φω<'++ΛΈŽλ πžZp Ί_ο`άΔJOάoΐšΏ(M{κΤ©†Y Φ8%O,‚±M: DκoάΈq~P娻'zhH=lΨ°Α0σ';uK^Ξ>ϋl2G€#xΫ­„`  .Η(—έήΤκ Ψ'y₯―K»¨ؐη4iΔΤ7‹a΄³ιڞ+@θLέφ΄PΫBž(ε%,β5όοb)x[ύί=·Hή™- (&gž‰žΠ?@s€”^x‘‘  ꌾ:ε*Oθ³³k°EΕςξ+ο\(ΐ³7+OΆ>υžx—o6·ΣΏ«ω`;‰mΩ¨ΌδŽϊs{”y.ρΓ>Άp¨%tλ,’ŒpΏFΌ;φΙξ~Ο‰d户j²Τ}·xͺ)Žφ΅y«o‹υ%Λ}ΰζΝΫΕ „§ο ,ΣΉ›D χ*C΄‚₯khPYlΛ&aeΝ»7GΆηο7γΑ^½z™OΪφ6q¦Bi―N[,q9¬ϋΧnΓF`?°Ψ>l7̎ΌOΌχΨ?ή‚±Η­ŸΝ{ƒ­βέp ΐ /ο©‘ΟΑ/ρρ ή9μΆπγ?6A ΰD^±Cψl$LΗ€₯xFff¦γS¬Νΰ9δ™ lςuΧ]gΚHŒχ?DZ”0•]9ύ`_@Εδ“gΐrΟ.ψ-@YάΈ`v4˜l₯ežH[i'ΚD€ £#\C]#|ήύΖώP/ιιιf hΐ|Γ‡76«Χ ·Hζύ₯πteν{·Ωz ΌΨ1lςfγϋΣΩ’Υc°+›xΪ ž2χ»oεςΛ/Vs ίΨϋΪΏKήuwJτ§ΙZοL %θφž³Ο—‚Ώί₯@-E•θΩΫ¨ΎΘ=7Λ/Η4’}yΉ¦Μ€.Sšύή©RX"y―Ν ©’ΤΧ&Θ”™―ΐΐόυ[ψ{Ϊ>uΠ§Λ=²v_PUq³†ΐ­`UτDP7ψB'Λv¨<Σ^¨ 2 Υ· u$ΗΰΉxλ>Ω2δM‘=Ύ¦κΧ·’δ«Οˆ$kΏϊZ‚ΑΌ™ϋ ˆΩ«fΡοϋ6m6Ώ 벞ΰ ˆ9JÅl©ψ3Υή''0!@fΎ§5¨ο\VΠ2Η σ&Ώυ} [φ(+ι€—€dΡJY·1V²£’eωimεΦ‰t8ιlžώ™”Μρkuo' η4+χ6Ϊ-φŠ` ήωƍ»‹­™7ožιs ‘Άϋφ§ή|_< °DŠŽWζΧϋ:KŒΎgΞ9Εr¨'iη°ώb'μφΑξΑ–Ρ―S§Ž#a»`²|K7X_{‰mη=ǎa³π)‘„Όά{ο½~{Μ}ψ·ΐΰ{ΏΛ1ςDΏ–ΰH‘ο…ŸΐoδF06ΠΪWμ1ϊdΧ“P‚bχ‚βυ›ΔσΣZΙ:χ4γ‹y6cό> Ψ†iτdΗΨ-€αψ_ζc‘ ό ωΐG$ΐ™z¦ ‹-2˜ΔŽ9ζγ˜e ?IžlΏ2Zύι%ZζPc6OΨ:"yN¨± s½Φo‘_ϊ»“§ ψXϊΰδ‹€Ϊ_|Ρ?GMΩxγ)κ›2Ρ– *DOΨfϊΞ>G ώyΆnέڜLη \±ώχ$”0λ{ΓΝ’Υu Ή€Dwϊ+όδkί–½7>Nβ{t9=΄Ο šΖ‚―$O™’I£D™θw©S3Ψ₯Α)Π:λ1eP^»Ρτ)ΌUδόπύ‰wΥZΙ‘€ν< T]'υ»Gυή<ψ³8ͺοϋώ“$φΐ.-ym"Uƒ1Ak»Λd# ‹ΩyώΧ’χΜ+ζΩE€ϋί/ž―–Hώ8νη«œ~²¦›εύΣw=ϋΡ±½~³©—„‘=ΔΣDϋ6ρψ~₯G†/βu³OΝ—ήχW.!Πο©όŒ“| s8ΦGpŒρ•Dγ νξ@œsJ`Zψq|iqnφQφGαo™KμΨ±£Ήξ•W^1ώΝ¦‰Ÿe‡ ΞΫ1„TM?ύ|ˆ8π)œ#ŸΜ»α/‡Έ€ηΓ‘U7MWαkΐ<‡―+χJW\ Έp5ΰjΰ(Υ€ x>J+ΞΝv₯hΐΉΝ"“ήΞ>ηYΌ`B ;‰άfΫa&a_a2Α ‹§L*°PΜEΰΔƒ½’ŸNΐσŠ»ϋHΡSΣΔS¨ VLθžΣR<Ω’RE3βΌογωR0νuΡ™ΓΆΨ―«x+aΙy{€ί½2$w°‚«u±Ξ›’$‰tβ΄iƒH“ωΝμœ1x–HΆ‚«&I½‘ΧKT5]tΕΥ€j pΩe°zΫlΫ.Ίεqν$ΊYΊQ΅ ½ΖϋέsάΣϊxIΏ·]ιkά_G…\ΐσQQMeςν£ε΅w}ΐ‡Ϊ5‹dόΠTωyΝ26 !@T€Ξθΐ ГΎ Τε ‹ΛτKX°†]‘ϋ`  ηb ‹ύϋχ7‹$ΞτyύΛΚ °ΐ.€ΜBνrP–Εw„Et€h,μΐκΙ" €Α™ϊόOW0 uHηΝe°‚dA°Ψb°a•$Α3&Nœθg3fα=±ΰγΤιM™2Ε,$–@4 0fq _ΡΏδL―Nΰ:θπ G P>ϊ|B™ήΥ]6νσoKJ]όb›R–Θ“eΐD °ƒrΣΗƒe Άgt ΘΜ2ΤΩΕ2ΚLήΞ8γ ΒγΪ”†:„ςZ€ΘbuLHΠΝ€I“ΜiΛƒ`„2¬ Ž•ΐފ 2b²σ4 «ͺΡ§ όγ@ϊΛ0±²Θ‡Πώώωβ4ΙΊ­«€L/wήŸi#œ£Ž¨,κ!– ΐ¦]ΐγ:Κ(”‡φα\p Ό¦"Ώƒž ΏW>αCšω=-κIݞW)#qBEqtά£`Ί¬ΗŸ“˜ŸΦ›ό7JΧ­ΎPQ³Ϊ―ΚΏwO–μκ [΄‚ςβ’₯ϊΝΚ>΅K07Η(ΨΩΜJ=DλΊΈVu)jTOR[* KAή†υdΫοŠwΩFE­FIΝ‡―U°sγR·…ϊQ’/±-7έ{»y―Ή[K[cΜGο.οΏΛΫΙΰ‹Ρ†ΨΩRΫK[‚ Αξ²­0€Xμ/γHΔ^o™ŒΓΚXΘl6Ή†4ςόΦ‰sIΡΧK₯θ„f’2ΰΗΰ/ώΠ˜a|φ5%ϋvκxK$…'δ”?nτAΉ•|tΆ3žΟh4e†Δ{Xώ|ι%ΖΟr?‰_ΫΈq£aν΄eγϊ&“^‘β_(¨ ΜΈ'†Θ=» (ϊF€ξj–υά?%ξe_%ίΪ“.7ΘΤΣΧ8(τ-¨ŸsτchΨ+Ϋ―8p y— !`Ν²ϊb‡ 8EΠH8ύ2Η;†β=CBΩ kιsŸ ΧGΠ·δ/ϋŠŸΐnΫ~3}_ϊrχΑͺoΗ–<‚ώ1v%=Mμ?HŠuΧ‡„Ώœ-w(›ρt ευ-Σ£‡›'ϊ™‘ŒUΠ~?Ώε¬ͺΏ‹£ξk„Ϋη°ΐj£ ύG™|rπvœσΦWsOy>?ToΦρπŽ8Δ«Ά£θΨ&’rώΩβΥ@!©UΓqΆό―AΟ_|+ωΟL7σαήδD‰gwA@Υ‘JA‘d=‘;Ο,Yiξ,Ρ~eB"‘°SkdNzYβη.2i–ιGQ»x”Τ#kΰ8e1ήe˜ξϊέ+rbώδ‹%’7αρj{φVI‘Dƍλ…~Όnd οWkύ&ά{Sπ΅ύf ΡλLΔίΠ^<..g;Oό§±‘EΗiV}*{vΑˆ§ ΌPΧ ’λm@έε&€γ¬Ηž–˜~6Ά6~V‹ζεήβž<²4°πλ(χ\‘ΙT› rδΞ›΅ρl4A0μ,ƒ=tŽ·lρ°›Φί›»³Χρ‰Ώf hΗp·έv›!³3sAi¨‰_΄σ!ψψΉ:‡o΅Β؍΅HζœΘs7€™ x±sMφZη'σMΜ½‘~₯2Ε‚$„z$‹0ΉYœσΊ`‹&τ[X(˜Vγ`‹‰θγ“'#έ‘vΉμΚ=°Y`œ3O€gΛ&ΚΔ€±μΒ9}/Ξή° τŸ›>ύ,@`v,B pΪ`LϊC€‹7l)Γ΅ν³Α[bNΠ¬9αψ‡^€gN1.βΩ‘„>lq,8}φΙ§’υιryeνBΠ  ΐώΦDθœ΄¬G€“Ά/ιΤlnΧ™zZΎ^Nn*ΏιFΐ„uΠυ p ΰ Ί0I{)Ψ™)²οψVA·QΥ“₯°ΨަT4_3tŒνΝν’γ=θ£λF½Ξ`ϋΐ°ΈL™tuΫη½{š>2ν›Ε5ξ₯.ΘΫlSΟ<ƒEΑԝ{dMq?ή™[o½Υ΄ τΠί‚ρ-+9 ‡6_€anΦv^Ό1C£‡| ©ΒEΧ)ω‡a‘Ξ xΞΨΈYrf,”}~λSi|ŒΤΈύR‰oνΣ‰οΰπʟ%GΑΞ†!Tλ"αͺΛΑΐS}Ÿ+, ππ._#ϋŸ%žν{΅_ qβ%*Ύlš0)x#εΥs37+SGΑz~Ρχ"cΤ›J³υ‹ΙS>$ξτ¦ώΣε}ρκŽ;¦|&ϋ―hfΖƒ\Λ³έΙ‡vΓ³τ[0V(`&m ΧΨ@\΄kή]μ(γNΛpΙϋΞ{PΙnQŒν³ }ga›@λWΑJΌί6(Χ–ΣΎkδ…gΌ½@Χρ~³¨Ν{Eω`΄¦ΜΌΏμr„pœ _μ6Φί@‘LΨ0ςI`„ Ζ'ΐn‰ν#ν-`[ύηΩNΏε,·σ9θ}π ΐqδ‡…Άqvκ•€ ψϊωηŸMy Ξ‘…Μž=Ϋ€(χώμ(έ•!JΑέΎz²`r ζ·Θ+χ9ύΦδΗΗJζm½ €§˜Ά©ΫΐηΥ¨"gžu–?°…τπ-w_ήNrξκ-±Šή\x?iq€­™ω‚“Τ„|τ‰½ΰ<ΩΦ΄Ύ±·άGή|αEςί_ΦΙe—ιϋ¦bΛ€N¬/Ε§#€`}ΑNL)pυLΠΫά¬h+—-ΟccΕ³{Μ&κ/ΟϏΏξΨE‘Ζχ«€θ«Εγ΅²Ξ[δ―;XoΟ\π­°F2t•γO,Ϋ&πχ³žAJ–,/ ˜@{ΐŸf,σΝ[°Ύ=χk?+πœχεΟ²σ™\V, Z­Ϋοj‰9ΆNΩlκϋHfΚ|ξΫ €tlŽΦ n>ύ ̘ιdVPΌΪΎ €YλΏD}’07Pfύm@ΛZΎοΚX¬ΜάϊUπI•t›²ψζŽ^’5°₯ ΐ#ίξͺ'ο6ΊQ 7Ρύ/θ¦πΗ­²mθ;¦>’ώΤPκχΉκĞDΪ‡΄vY)¨%gβ‹&(‡%vΏKb[%eΐ˜ή-k2 Έ€Š ό³νŸvOφ‘Ο 0ΐcξΓF:ϋ?ατΛxη**\»ΑξμΜG'tθ#Θ'μΞΑμ+Ά Ϋlƒp¬}Ε.Γ@° ΆΦΪ2|Ε\`Ϊςz°1v”γ4uθΠ!hŸƒ΄>WζfgŸ0Ρ£© _ΐ”νƒ8δ·Ρ.+βί‹·οΟw+$kαW$·ΞGΤaΧΟ’Ϊ5€@Α«UΤοyOΠΉ/ν'„’R€g<šΔ/τυΑ‹”ν7Ήίƒβ­V%Τ푏οέ/ΡΫΝ5'')½οΡΪΡ· }·οLnždœ¨€`ί<]2’§>tgd}γŸ7HΞπ‰¦ν­–&‰ \?ˆ? ‘—’)ϋό«ο™³Ε:OžςΨC:/_Ž>Τοd |Jb6m3> ΎΫmβΡ|—}'K;_'žv­Λ\Vκ@ Ψy–eΓfΙψΈΆB)jPW’F>ͺΘιΠck›^ζγS%ξkνκ;ίγρœsͺ=ε~ExgŽGfΌν[[~ΰ±rαyογ)Εf\cAΗΞρ–3τμzγ‘ϊ·€Ηϊ|Σ¦‘Η­04³3 ΎDΓΨϋΟσπOμΎΖΙ™2ζd쁡L+όΖ‡Te…ΉJ»ϋ=VŸ.ΰΉ2΄θ¦αj βpΟם{§«W\ Έp5p”h π|¨l»€ηCiΘ=΄h€ oX‘,“Ρ Aƒ »°ε`ΐO€3άΓ’ή,@vξάΩΏ0Αυ,([pR¨I›nE>_π˜άρδhi/ίW=Y·l!±o=+ήιIβχ(8!w˜²OlR‰JώY§Jͺ.ς”7I]ρ‡Έsn8ω5ρκ$N±.'zPu²‡+βmϋ$CΑΞήύʜ₯Ϋ›§Pζ^μ|ΈΤ}Τ§λUFΓmƒ΅}+Hž ύͺ·^$‰ν|‹ΞΒeLR&ΙΉ?šCž3›Hz―«ΝυΞkάοG\ΐσ‘[7‘δ <ΒΠqy²jM¬Ή­Ε±2 {’.NG¦]˜§Ÿΐδ> ‹ΕUΩEu@€τAόΰ sΥΑτ)Ψ¦ζ˜@ Άhβ\xy Π™]ηΰ©σYN@žέε‚kX(Aθσ̜9Σ,ˆxΈM``³μoΞ|žΛΈΥ§ P4e°L8ύ,ƒρ&QΫΗb[λN: aV·Υ7yγ»­ˎŒ.,#3|G―€ηΐkμoτGšΔ ΐ·θ½ο₯V«ςΠΔα£}HV(·e«³ p'`0@f[ήνϋδǝ[dρ’ο ;μ—·―V‹Y΄ οi₯dϋ~Ωώς\ό(žf5₯ώ ŽβQ@n0Œ‚ήm›œ3gŽ\“*qηΰε^fQ ΦS€7Ξ2Pv φ ŸόΔmwIv£:rβ)§˜Ε5@ΠΤ“³½ZρΈ s-ϊ†α€εΚ8½G}`έΪζΪ‹yp`ΰhJϋ€e–Ε:Ϊ mδR€ ι^ηε½ς–)3[²2³y+9ΟžΣΔ½ΈγpρnWp9¨†Τνs΅DΥJσύώ#ώΧΎχΎfJό§_}—$%HR―."'Yi`!kΦ @±μe+}@±½ϋ₯`]xσ4¨ΐ’Ψ&‰•¨ΐΰ* –Χ`Κ’†ιRετSΔΣΌ‰ΐΰWžd<ώ–Θ7λ Θ€F ;«yy——:·iΔ»RύΤfςΦξ₯~Π'_ڜή] ²Α  f―±Ÿ΄}»ΘέΊδ’KJ‹hߜΔΓ{ΐ˜’ΐ[!X@oΣ¦±Ω€‡-p2{φaa΄οy$―ΌΗαΣΑδlν$ο+א6 Η8AΣΨWl dψρΗ θ{‰ ,M ƒ“½”η;S<‡`ό>Σnπ ²e†1›τ-`Ώ…ύ΅ε τ[θŒE~ 8ζΐ…ίBΟ~ΖΦh$π{‰vζ9Ώ0VΜ;θWV\₯Άu½ί&–ς[šΧ8ύ{AΑθΤ½BΑΤE–Ψ…‹•^Ά@’Ώ/wvο&Σ§Oχ³¨Α²Fί}Y[Ιξ1HbΫ^,Χ―fΐ ψΎU €yωM)>ιxeJ―.±Η65€i«'tbπ€ηy;Λ€^mπ’¬Ž>,xΠ(θΐ?g»°ΗiΫ°hΫΊ{ΧύRόο©’"Y{χIZ·»δ,KΨ<έY·‘|π©μ|΄«4Sο@Α/½5vœδvxJΌ¬ςςDΉσΑ‚κι«‘"|‚qλ– j(“Zψ* π¬ν>ηu x™Ή@’Štž%1—6—θοAΠ²œ-ˆ9*GΜΪn*$ϊξ`.V–PbNM–”zι:·j€δ02Ϋο’Η €Yλύ¨ ξW¦δψΟυέQΒ―?ΓΫN>«v©φ7½ vŽ—ΤδπτVœ‘σ.Ό.ή\­ζ΅€ήνχDZΨ¬HϋΞwΟθy‘2™Ύ4S’”ω)SSο‡Θ Ύχ‚w ϋްLŒΨ,@θΫ 68ΓΪ2μ5ύ1g{mΑJατΛ°Ώ–ρ7\»Λr(=YΏ~}){?„ ‘μ+ϊ₯ίη,A@Œ°UΏ9υ‰,Γ΄±! βb'§ž,z ΤΣκO“–¬’η~\z°o©}άβζi_Mο΅USwYPjϋ–μ”B_>Tžœ;#§™ΟLo­jΑΗ*JΚPΈό'™·;Γ_ζ•<§`δs|F;ΠoQ|υkψ-žCάΩίΕΏs½ήΩχτ}}ϊό9ϋψ_«{κɎgπI΄Χa Μ'΄!žUnΣ7™ΖO+Γoζ‚/%NΩz£vhPŽCπ EΗ+λ― Θι'•!ΡΐχŽG6ίΡC’Άξ4ίσZŸ#iχάjϊ}ζ@$–ύ(ωc•L­ϊ‰»Ύ½H‡6‘€ ²s·δzRΛ³Ϋδ!ώφN"—%’4Ό θΝκEΡΌ˜]S<¨ΎWm|8’m"sά4‰ύb©ΉΊXw>Lτ@ωσδΪοΞyt¬Ι³WΙΉ/x^σcΨ•-³s8`η/Ύ“ΌqӍΟ+jΦPR†vWν’ό~#žKjՐ„Ρ vVί~(Ωϋόλ’πρBsY|ηk ΄>T‚ξωίUONΙ–/ΎΥ`luΝ}?ž]3]ΞΓρ?vό¬_Ν­Ξ± γ§έu&}&Š1 ~_A°₯—^j‚U,λ3χ0ίΔ»ogLˆ 0ΐμΔ…ŸξΩ³§9Ζ?;ζ«U«–,σlŒ‘Ν›7›ωFμ,ΒX‰1S)nΞψώα'؍+Α~ΌfLC »+\ όΆpΟΏ­Ύέ§Ήp5ΰjΐΥ€«WΏƒ\ΐσο tχ‘G„˜TpnΛg3Ε 6Eͺ¬XF=&{νdt° &‚ν’j¨I›fE>g4=SΊl_iΟΛtK\ΧΏ"Ιόͺ{tyλXΉσΨT| ο„JIK₯τ7 °ΦpC-&ύ Έι³°Ν΅e Υιή½»Ωφ`‹!€ ϊ$g)γ$ S v.°³x”…\PΑδΙφ—ΤΠ aρŸο,τΐxj€gςnƒΐ, ™|+<Ρ―Bΰ‘gƒ` Λd΅jΥΜyτc*ΰ a` %θ“…!Ά¬†!Ψ©Oς`Α,0¨Β"mξCι5ΐ3υ±mΫ6? `΄φνΫK¬ WeΘ€Oή4€C“‚±¨’ž€8 &d`„ίθ Π m‰Ό²@uκ©§Jɞ,)XΉ^vΎ»@ꏼKf«`σιέ»·j°8…>$’“žYίmΊ“€ώc—¨δx£Gη?Ϊ€Δ\~jΰΩχΎ’ͺΜ`½¦O1m)XΠ«mkδωΝISεΗέ; `ΣφΙ ΜΣl‘ 0ύ$e3…εΞΆ'η¬,“.υHΰ!uθ6X'-κ½ˆ(τρΗύΨ±lSeD’ά―ύKςήϋDβ»ί)rκ‰Ξβώͺο§ΫΦΆWwjl‚,nΣίηw/?Iκήz±u ¬ϊU=oΦ Ηlέ]%zέ&“‹’cIŠφΓEθΚ³ΙΪ βQpσώο5˜α—-₯ŒŒN»S΄>GŠσ½ κS6½+O—ͺνώμco>TϊΞ„τϋΦqοκ.kL]TμόόIΙ§?JΓa₯Ο”1P ЌΝΒΞ„³“ΧΒΒ5wξά2Ύ€¬ΣΖ-ΐ{Žέ9—wpο=ο'‚­΅ΜΕφύβ΄HΞι°E0²;―% 런ǁ`nηyŞd@p0ο!ο,퀦333Mή88ŸΒ;J~y7a#œŒw±Α–!Ϋ‚ΆΡ“΅%‡ς[€ΕŸmϊΨΐσθ`ς‚ »& ό0HcW­ Gž Ψ }-_ΎRλα33`τ€>±pτDρ(ϋc΄£ΔψΓ΅—›<Ζeg>vΔ$)Τχ$y@w™Ήy­±ε€…ΒΆ dκψΦΞ’·y‹x”…~ӝƏ‘;tR[^€οGLZ¦Ν\¬AFΐ5οΎϋΙS°vIέ] μ,mkf̘αΟ[ΰΦΫΤΐBκξtυ7-―–θ†υ$Zg±λ›φ⬻SŽ=NŠ•:Fӏ<#Τ1~„€γžž(ΩύG꜁2«ύΆ’8Έ·Μϊι^υ˜:Ϊλφrρjήϋ+[1Ÿψ[’ ΰjŠ7UYЇι§Hλρ`π¬>Ζ³oΏŸY”…yΟ/ xΩδ]Γjo˜2―ΙΩ«9$1V<«kαΓτϊŽ”(€Ω”AΛsjύz~l@ή”Γ”Ι€šφτ/ž/Ύ•ά^“¨Μ,£Ζύ›ΙΘόΫδ—ΌšR£Z‰‚γ΄JΓC•θ[ϊjΠπ^ ¨©“* Fέ  ω8“ξ‘ώρŽT€Y&]ΊzήϋXςήω·Ώ­΄}ϊ5Ό“€Iι#Ργύ±6Œο–MΩφ ΉίΪΚpϊeτ%m<\»A` ύλ`>‚Ό9ηN±αŒΚ³―·Ψ ΑΪWμφˆ|Ρ·§lVπŒs,66“ΐ:teυD@ z ₯'ϊβ€sηwΚtνc‡κ[6?¦Ή©σh^Š”Ι7'''μ<έήΰ8‰:‘™άψΘ°Ζ*Kη.’˜(9οKΜ+ΠoQ~Κcƒ=)7γ όzyύ]ΖtΞΎ16€άά }tΒ΅Ξ>‡ήΡΦfrΪχ;vH»vνόc|fEό;uJ<Ϋ°ΌδΙϊόk‰Yσ‹½±Χ§Χ–‚•ύωB9ΧTΎΧ . xήΪφf‘'Hόƒ·‹œ}ͺ½%²O'Μψ— Άπ’V―»EN9>²44€/w˜Ξ‹ηδ i$τΉGδ€γ"Jcο?ί–„Ωs @ΈPƒSϋέK„txi¨έΙΤώG¬Θ‘ΒΣO”΄ή:φΡw$€lέ!9Ηϋ4”>αQ}žΝΛ`ηAγ$fυzs*>\°σψ—ŒN Ψ–iυy}‡™η•¨K3 Ό€ΤyJv2ρσμό Ξ”*άV&‹ξ£KjneΨΈ\ω~eœi’CzΕΚqΝBۈ#½tΞΎ7>“94η،ό³νΞy*[FξλίΏΏŒ5ΚΒηYΖflο’E‹Œ?ΰ$~_‡M'p‡1c³PbΗ‚ψcl2c6ζeΈŸ?„²0ŸΒ\ bΖ,:.u­šώA„ΖΈ‘ˆ xŽD[ξ΅*_.ΰΉςuκ¦θjΐΥ€«W\ a°‹ΔαfΛexWSξuGΊ'νΙ/ Ž,†r&:Ά–dKx„ΗΦ­[ϋYνd΄sΒ‚‰ŠpΟ,bX¦;σ€0ώ_']>ωz‘4K―'ΛΦ¬γŽJΎδί‘‚—g)uM±.Δ%K|Ώ"Ν›TςC&ηΥ‰ΦύLβκVΧHώeηIΥ.ΧΌΰόVΌsΏ2 )³sfxRγ%}˜2;»`η#°¦ŽΠ,—ΘΦ±Ίο·λ|<±ž€?ςwέΫΆτΒEήg+dχ”Ν5žγλJέώΚdpΝZΒιlΉ€η£»ϊwξρΘΐ1²c—Ψrσ΅1rU›ƒ€ ϊ–‘Ω..8>θ[πgΑZΑϊΑ4dογ\yχς,»Θ,Ž20ΐ\]Όvξr1pΰ@™yσλω~Qη΅φ;Μ½κ!λnš ή@ΟUΑЍet#}ΣΙ»2%gΠxIλu§tWΐ3ΐ5Ϊυθ\τ’ό•Ž|Zζ@Ψ‡$-ΐεvΡΞζ‡Oΐ’œ³ID€`O§P/τΝώp;ΧΩο<φξcΩ&yS^•ψλοumYq΄—Tθ³θηmςφ ς·ž’<wσh©ΥγoΫ¬N…;jnZ²R™Ϊ¦‰(˜Π]BGΥe‡ΛΚπ< φτκvά€›anŽή˜αcΜ VPX°u‘27·UDΙE₯φθ(±gG69ώΦ ο‰χΏ?™zΡνoΚP>ΰ$oαΩ>AϋSΚ.έΰ…;δβΆ—[ Œ6ξΗ:·ik Qgq±/68›dνΆ”χ‡χf„1ζΕ pε΄sX€γμωΑƒ›ο0>Ž;֟/²Œρφ]،]uζ‘Ό[ΐ3vΐs͚5ύv`,,’μΐ3˜ž-ʜψΗ;ο ˜†rΊ@ΕwΚ˜•gΓbBfτΕuαϊ-@ΰv½9™³Ρυ_ jŸ>}Μ3©(ύΛέ°I<0Kξά#ρ ^ήe€ΩZτ[ϊΝbρψhΏίzeΔhΙν6ΐ€Α?‚{·υ½GŽ;ήΧVρW'=§Μς-4­+ώμg?%om.½Lθζc€ 'tgYΫŒx `‚ύ€Œž, ™:ΖV:Ϋ%:t‚ΆasΦ-ew¦αlζAώωλŽφ·x™¬Š*6υͺξμ½Φ—z”α²Ο£M  ~ρν™³€ Δ¦πj€α(υλςsJιι³Ο•n5ώ=έY―©δΏπͺMΎBŸ% €φƒŠaGΦy‹Ž/L’ω?”~\"=O=[’Θ ³‡ΰŒp€X36μV{Xΰ»ZΗωž†Υ—y–yNŠ$Χ««μΤ©:*†Ωδ%Ε01ζpžυG½fϋNΙχΌΧ›–TUЍ‚X{ώϋ$Ω΅'JͺU)‘QΖIυͺϋ›ε©Β[P$[ϊ½.%›•<5Aκ?~£DU=ΨΟ)ο^Ϊ­3p->dΠ΄w푬©―Hάw+ˆ’Ηftμο5;ZΨΎΟΗξς‰ΐ4% „Ύ¬νs‹ϋ!–ρ7~YΈvƒΌaƒωl>Ιι#θ«cw)ŸuZΑ.Ζ"πΕΪWόΎΑbΆ"Mμc؝ιςό/Ώόψ Ζακ €~‚±ι”Χ·$$ύϋΥ’5λ}ρ΄Ή@ͺΆo#’Wΐοπ{‘ςTοΉ·%ZwYzAKγ#)oyc•ΦE±β=»₯œ{Ω₯&O~‹ϋρ•~‹>€ dβš@±ύ]‚N)3uiŸƒη’ίV­Z°튾cό“±γžyΎίG„ιίσς·weΕO²αW»b΅Dι{δo|œ,-‘‹ήxΡή¬ΔUu'Q±δHΦθg%N™Έ‘’Ϊ5$i`7 QRž Θ}VΗjΪ†KjT“ΔΑέ5?€‘:Μ|ς‰ϋΚΗ¨šρΉRεž›ΒΟƒίdιx-zΣ6sOώΕηHΥ{n,~ν›η gˆKJtΗ”$ΙΪ/#Ϊ.œ`η„.7ˆ\v~™ΛJΠrδ=©υ£ε2»1ν!^΅kΉ vŽΩΎKΌΪϏ‘}ήpv¦\ΌBςΖL5ižήΒ/υ0χΗΡͺmZoDΎ¬ί£C?―Œι#ιGιPŸ·~½oΧ|ϋ8ηΛπwΦΡO'ߎuˆΏ΄ϊΜ =ύτΣ₯ό)c=Ζ₯qΪ><φ›ΜσŠdάΖσΨ‘ _ˆO₯οΐ˜λ; ΞδŒΗπψ7u ιp-ώ:pΜβΌŽοŒ ,X:π\¨ίΜγ‘O—α9”†άγ―\ΐσαΥ―›Ί«W\ Έp5phΐ<•ΰfαwΡ}'PΗNπΪ‰z;iΓ‘τwΦ…o ΞΕ¬b™TμD Α¦ΐ+‘ ŸvςŸƒίL˜τ|b²Διβ'ΒΣIύuRW©›dηκz”Qn³V$>x‹Θω:l«Œ„ ΨΉLΓPrœΤμœ^΅2’vΣψΣ@Ζ΄DζxΗuΫλ:ƒn(P uδΟ_%»žca€IMIά)lF«1u1ΕeΒPα„  θοˆΙ˜›‘Cjΰ—M"CΖΚώli"έξŒ•Vg–^(ΐί—Χ _Αβ€νG„ x&sτYψ+πΜB…M›{θ‡.ΔfAU‡)πΐ*€ NaΑ†Eξ`»\.Πφ£,`Ω^ΗBŒς.šσLiΨΖ†PΔ‚MXΤΉϊκ«Mž)}0§°…z'hΫήο\ΐ$ΑβŒΡΑς@Ί”#ΐ3 ϊb­5ΈG_ΡΉπγ-T֝QοJρŠ sMγq%Ύi-“.]Ί˜cθΠ!`^ Κ6'όc±Š²/\ΈΠxώόωβλ-R΅s[ι: ŸΕΨ“luθaκT]$> θρΎƒδ—ϋ^Π>[’―_’@lP [ƒ#₯ΐΊ0•±SF}τ/2dˆr|ϋν·rΜ1ǘE5Ϊ1 bΨkκ»;-mΗ)°ΌrŸξp°&ε΅ »}ͺ½6ϋώϋοϋλέ¦ΎΦXX΄Χ’> qA Ο9ΪGέq/IΙ†ΝRΨΌ±€τ{ΐήμ}ΡνΜ)S(ρfεIρΦ½’³Aw\Ψ© ”Œ”]”/“ΧΜSLU’ρό‘ƒŒτέΪΗξ*σΏ1**IK–δΎw‹χΨ&"Κt* Vܜ₯ΰζ˜ ΚX{€₯3PŸήΨ)_WŠΧ“*§,ή¦ EκιΚΆΪͺ#)QKΦ™[μ ±9%πφ°~oτxη4ΧVΏJ‰ΏΐgOΒΉΉ`ΕΩ:†? R8§±€wkλ_˜fŸ±Y΄eΨ8i—εžνσ±/vρˆ‰1' Ώ6˜1φΜ οΆΖϋ@…†PΗΎ<‹½δύ MΓμL ι:σΘ"7φ„{€ΐ€±—δ A6Χ‚σ>qά ‹η7φƒr9ŽMΖΨrΪk‹ηφŸίpΓ ζ™‘ψ-l"vπφ»ύΙ'Ÿιb› 4‡ΨώxΖλΚP>Q’ˆ£€Ά½Ψ‹Ξ—Δϋ:ΛΏωΪ0ά›‹υί³wπQUY?“ήθ„Π„( ¨ (6¬ˆemkΕ† έ΅+ ( EB/*MΑŊmuEEΧΕOWW±,¬ ”’€„Π!^fΎσΏΓ^†™d‚yχχK2™χή-ηήwΞyοώοΉοΎϋtmΣAξŸ4ΦθVlΖ¬ι3dΫοHΦ‡‰4¬/Ώ«ςwμΐs»7?”ΈΑ½δŒngšzu܈‘RφύOr OŸ/ ?œΡΤlœ©z–62q“DŸ Ϋw€μΘΒΪJ»cƒΣ&Qž…¦γΒYžύl} >Ψοωλμ;ηχ|f|[[†μ^ŸόΈ”jtGF…·‰ΌνΘ‰θΧ΄Γ^WαΎΫ¬`ΊF^6@ςv$·C?λϋΡΟ£gΟQu^SrC½σΪPΎ%Ά7ω‰—€μ+?tͺJLκόύ1Ήΰ’‹ΓΧIw»Λ9M>3N.»ΚΏh…~²ϊΧ–iŸUx&Š)-“ΣΞ>+`·Ψ‘$Υ«QCΪ-τ½σωˆ<Γω»γΨd+W§ΟΑσQ³Γω<§±π =ŒΟ`"Y[ξΉ‰ϊDbί9/TβκσΟ?uȝ.F‘u€D}ψX]œD*ΦΕ3γ—}g>oΣvtǘ¨ .FL1.Χ–΄?\ά₯ΖKuz€IυΎΏ½(‰Ο\až1ί+fgΩθ{ξ1Σ%nΩ*£ “•»žςΤP_ϊr4J³.ŒΩͺvQύ·€ΫτΰY]BΊϋ»εZΗ­§¨X|ukIςΘϋBΪjWσ†«Œτ|^ΑΞΓ€Ž‘‚Αγ$n•Ύ@Q8ό~}†πG5‡ω呞 rλ€–²Γ3%m„ΦSu΅›ώ8Θ/πIQ%²qsœN'yeΒΠx]μtΰ΅]λ\4μ{γc¬rΌ·ΰ9‰w"ΞχTΆΥ|gΑθPσŒΨΎ'žxΒ,š²>ΐο <3YB„eΐO W1ωΑs+L€"Ÿ­_ΏΎπ\Υ.έ4©P§οΘΧΉp,πL4;P“ζLή8'τΉž }’…²Γ†€EوXl“έžΫ mVΐ3ύΜφ‘sηΞκ€βτm‰<˜ϋΪψ†3dα’Εrγ7Ήs8 ˆnΘΡΒ^ΤJoΦ¬ `„˜HX΄@}Λ2Ÿάή―·¨ρ9™#OQ―H,HΜ[Ϊ‹ ₯hIΆF˜L’&Γ―””Μ [πΊ‚ΏͺPλ…ϊπ7mš6M† υα‡Ά_¨ΆΨΟ ο&NΠ-·iί …7ic“zR^zzzΰηκ¨XK Ε‘Lt#vC!YŸ›m·- OδΣ3Ο<ΣLΦQΫ¦%•Δδή΄±™υΦfά§6“ά)ΎΦ™ζ8°'ν‰&΅oœ)ί―_eκΟ½σ‡M·Hώθι«@…Ξʊ―Q}IνΦEv,[!q«ΧIΜ6,B$’Ε•λ‚HE7Kƒz"™ΝCœ©pΫ£―JΜΛΜ±ΪΉ@βt\Θσͺϊr½.σνZζΉκi|ΕnΈͺͺkΛ~έ*9C^_q™nOŸ!ΝΊLbTΟXPͺxΉ+3tV΄ΐ3—rχφΑFκδ{ξ―yσζ™­…“ΞTt}”@IDATγξt€…ωž{‹ϋ'MaΖα‘»ΆF³ΰψΜκe;)Ξd8ω9α&ς’.=4ΊκΦ­[ (μ\4ΐ’>²˜ΰϊλ―7ΐ:Ο.|`0Ρχ'MšDVζώCΪ/|‡DŸ“—sΡǞ:uκdΏΖn₯ͺ,ίΣ{G’ΐγ<ƒ#c›€Ÿο;Ά‹M}Ϊ|εΡ1™:f¬σ–2sζL{ͺ©υW^₯kΚ₯οΐ»υΨτΧ%-₯T’“ό A0ΐ€έι€zy”FoD€O‰ςVϊτk’zκq{ΟΦVlίΎέμd@ί`‰ϊ]a<8(‘oί)Χ‚ήTzθΠ‘F~«¦θΧ―_ ΘƒςλΤ©Sd`όYˆΝŽ ϊ'\’^ΐ•υ¨&ς³ΆΜϏN‘ΌΖK‹–»cΖ2rΚ Ϋ΄a―³χΎFπ=α¬kjjτ ρΡΊSΦ’ 9’uiwιΥ΅jˆ˜Σ.ΰφ*ΈμΡ¨ΜΎΠZιͺM²~”Ž«<’ͺύΠπφ³$ιŒvΞ긟+“ΐ’eRτΨs¨­eQ4₯χ_egƒζςΰθ"Ω ΠS­T…ΕG°5{κ»βχ³ι“F5²ΡώΕ•UΕy,”Λ½ζ„‘›U-šsζιόΌ¨μ†–m$ο9’rχΝβkΥyͺΉΏΡη}ϋφ5/»ΕΨ„G4bt»βxU~ηD£7Π ΨXRU6‚ηZ«'zϋƒΟ¬_Y(d£[›Μυz‰E},„γ=§Σ‘ ½Υ™\ƒ¬LN/Ώό²±)֎sMΐ·Tί“ΊN™2EœΎeΦΐe“.Љ[ΊΒ,¨Hιύωol©YΤN>]`ρδ3OGό¬Β˜b‘`€v‹Ε Ρψ»,ttΚ6ŸƒsxΎ°uΒ―ΐΎΣΦV0φ¬Lƒυq$φݎ ϊΑ™x†ΘΚΚr~UεηΦι²bΣs>Keφ+df‹’βGfψΠθ8Jθq‰ΘΕη„<5μ— ηy\β~\iN)9©“ΤκσΧ¨€\vDΙΣ(Λ±κk³»IƒQΎηΦέT—ΝΞ+Ί¨0©ο-βι|TΨ*›ί/—B¬YδΥ%)#H_ρ’ΏA₯’ΠD‰ύΩ?GμΌ`I sΩ!%m΄ϊ#ϊώ>ΔD‰_²άΘ&‘ΏBεΗv¨ΌŽ]»^ =b μ²ζ’6VwθˆF―ΊχŒ"%ϋ,•ν;b4Έz™FzNΠ5έRΥJ« c§žμ;!l΅}ζΒ–Ϋgl˜΅•όΕ6 »Ρgv—6t2‘ρƒ9nΟΗvα+ΫΌxŽβΩ»½@§S.eP»k€ tΐMό ΓΡχΦΎR>‹PΊvνjŽΫg@ς©δΟΥ%I7W{'xή;ΉΉWΉp%ΰJΐ•€+W\ΰωκ,·ͺΥ*^8' xaΐ„kΈI^Ί<Ϋ•LδaΙ9±λŒfH^>Ϋ—ΥQωW_}Υ@ΌδψM€g *ž /G5 …ΞHHΒ_5ϊD7K’κhO¨<|Ώ¬•BXαΡν³}Q.ω‘{ΕΣ’I¨SkΜwΎ…’ύΰ+βΫ’Ϋβ¦$Hc…‰’‰0TcβV€ΖI lιZΩ<ξ ρi³”DIΤ]bΫTΌJΎ[-›'Ό₯P—ΎmT[ξ‘“φΙ5-n…Δΐ}ΐ‡n„ηg4Μϋ:F¦<]ͺΎr1 d λ/-C3|f²ΒΟ‘’ΉαwπSY”ζp’‰δZΐ!|~ΨΞ9ωΝD…Ψfb €–œΐδse»\άvΫm|κdΑ:ς Oό(λ9}";iξœ8a’ˆΘ”Ά\ΟV 6Ίΐ‘~λΧχGμ£nƒDFΕo㘽>άΒ5 R…ςΫ¨7ν°pΎ^em˜DΒ"’6‰:wθΠ!|˜/wύbβ‰h:ψ3`ώα„ Œό‘}cλΘ€€[FFF. hvncš΄q§”ΧO•’X€%κά=Ξ›ΰ_`g#ώX’6έzέM²κžgΔ·£HbΤ>4|μ•šˆtΏύφΫχˆ— υL'Ώέ+KΘ•qoΗ>η2ΦΊΩAvά1TΌΊExέι#dα/++Θ °Θή LΐS&χr6Jbζ!rΉ™ΐΆομΔ kΧ]ΑΗfΌ 6ΜD@΄@_ΊMR4ξqρlΫ‘ΡΖ¬»αr‘ Ξ”'5Ρ?_{CJΆkΉ|ΜS»GJŠΧˆm ’ ‘Π$9ތ5ό~€ν?$πL΄ΤύGŠg(Œ¬ΡυbTxχ6άŠ`kκr…ΦJυ§Ξ1 7ΦB$½Α" υΕ¦§ώ)1|kΥΊΊ›$\qj¨ΣͺόnύKί; ύη]ΦYš\sf•ΧΨΌΉκ·ί―~ϋN½šΥ‘fΤ“gž“¨‘"lE Rχ/Ίι†n,xΰ{"( ΘBAδOβ>@Χ ΠODΉdaχ)‰{}Lτ_ξ"³€D@ZlsΟXeR›ϋIp{‘ωU–¬nγ:t/ϊŒϊXύNύH6Z/χ(ΐ±œ§M|¦ύ΄ΟL ŸuΦYζ:{>ηY»Υ»΅βρi$f.Έιt”όG‹8νV‡Υλ%ώOgΚδ'gT}M¦AΏSΟc4Šμ/k$ΆU¦ˆŽU€8›ŽΧEμh€Ό,tΠ«W/α»5R#‘OxΣ–`»GύHΛ]Ίt1²Ζ&Ϋ…,X$€°8ΆIΘΝFlFΞJFχ½τ²”+@”““c h'h2pό²ΊΎr¦HΖ.ηP·HϋΞiΟ)ΛiΛ¨χ¬ΗŸό»†™jxnΏF–ΤOŽJNŒ5Ζ_¨tΡE…ϊΊοςςςŒΝΖίqށΚ.*ώv΅l|tŽˆξΪ ±’ΡbIhΖ ¬,£ƒπ˜ggΎμœ>SΎYμo}J²$^…ψΞ>Uς <2`”vNMQΨωA],žΊ―C‰@Ίl™ω‰9Τπ޳%Ήkτ:χšs—½υ!CΥ?ŒE¬ίΆTmJΜέCšWŸCS‰Β΅οκ)±ΊΓκfξ?τ,χΰ¦M›ŒΏ‹"YšcDNŽΔ/C― o’Ρθkꩍ°€8ΊŽT•~εΞEφΨt ²’ν$’£ ±ΑV—αΫqM€r:ꨣ>½υ-)‡δG)Γϊ–ψΦζz³ΧΛ–Ύ/υ:w”$M…-—λ κ΄d©δμρ¬R7&Nwγͺ%… ―?«°Έ‡v²@ΘΉ@Ε4:θ—΅οΘ›ΔίHό]δΔΉό%θFe>ηεζζšg6žπGxAτ€=€:ΟW€Π$+Ώ}±Ά©μrΘ"ΕhRέΊu š’žgΏ/%―ώ“•dβCυ»M€CΫhŠΧέ^ΆjTe•Ω)BΗoβΝΊσş"_dg Σχά#52³.*υΥ«­οΉ{iΐ‚Œˆλαϋζ)|τ.ϋt‘aςΠ»ΕsXε =|ϋVЧΆL=%2εt@%§­§βO?ύ΄Y|eΑ(4‰E=ΰy{Φ³gOanσY^5j”YΘωψ©Ψ t?z™E(vΑ¬ΩEFŸXτίΊukN7:ΌOŸ>ζ3 *Ρίμͺ`ƒPΎgW1σ‰,VΟΜΜ4/X°@Ξ?|³SΗx_M 烛ƒQώrη(ζžξJ š%ΰΟΥ,P7;W\ Έp%ΰJ ζIΐžk^ŸΈ5ϊν$ΐ€Ραˆ,B48’PΩΙ;^:ͺXπ†   »5$[3AΚKc^\lΫΆ-πβ˜—ΈΑ‘φ΅eΏ%πμyW‘‡^χGwΣΘG‰ύοiΉ―M¨τzίΒ₯RτΘΣ:©¨ΰN“tIΝ—ΐϊ2Έ&';~U|›ςό°σ°+$eÚ\e·n˜Κ³·Κ¦ίvκγb₯ή½ΊeϋI~HΡ6₯lYŽl₯χ«F*”ixΤ΅S?ΝvΦ RΉΐs ιŒͺρΦϋ1ςς~2½WFτO†υΒL&"Ќ(‹Όv²€ ~&Œe™ΜρΕΝ. «¬Jψ$όX@ΤNˆ;―Ε§±P*ΞDΩDa«Jπ„xz8wΉˆx~b²‡I€b€<+ κΰ”soΰƒε™¨—©1Lτhνβ8r60›NYyΎσΞ;΄ηs `PατιӍŸΗ–žΑ²A‘ΟΞό)>ώψγHy6·ολπ%;v8ZŠKKΜXΰ{δδμ œu€έ²ΆHJJŠFyφJٚ²mϊl)Ρ¨c Gίͺ“ΓIFNŒ3&¬,ΠLίεhDΫa³€Ξ©GΚguΆšh°6Ϊ2‘›}C½(—1…oKt &Γ)˜<»ψβ‹ 0Ιδώ3 ό€kˆ0KM€!έjΉ`θ$?l τψδ9Ne@ί1ώΈOlί…‚K“΄μ:ΘbCΟ=1Cb54Qxρ»­ΏN]IΤu¦‚ε΄ΥΚ ΩzςuλθΡS%φΗΥR¦¬QqjΊ”Τj ‘}`s¦Ί)β9’‰Τοr€Δ·?DbR+ƒL ξ?π¬γCVg‹ός«μόN£{λη„oΘ²Ρ›5j\YsΥ] «ϋτsy³ΖRΦ²©Τ&rσ‘ W4ΠpŠxγ«Hμ›σΝWiœ$‰=ΟuŽψsΞ«‹ΜώƜ﹠£4Ύιœˆ―%’sφ ˆ7;W#»¦H³ρW+€δ_$ζΌ™lζΗy/2ƈΊΛύUΩN>T}Α$5°”M°,‚ΐ6·½ο˜4ηήΰ+8υχ"Η)θžϋ`°[I²³½―ζhΛΝ;M΄θ]»šgήσΞ;Οθ τ1ιθ2t$υqΦ‰2‘—΅Τ p ΈŽIυ-Z˜kmέΘ#Qεχ”\ό½$.ώQΡ x]θZ5Α,ή³ΧΔ΄h.Ώάq­yΆζ;ΣžΛ~Ν‘δΫoŸVύbl ﳈψΛ39νΐζpσYœΊA™οIθˆηž{ΞLπsΜΪRϊΨFρΖ.ΌώΖδŽεRG·έ5@΅6ςΘͺU«‘ζ‘}@ίD’Ί’wτ%γaκΤ©ΕFδΑΈA'`Ιο‰ΌφŽΤΦ6«‘7ύ†>B²Έ‰ρΈ n\6j§S?Ϊ:s{Άοbγδ©ηž ΤιΗ4ύo―η/γΑ.ή±νά4ρiIότkIΊτ\™SΗ•œ‚–;ΛΪ›Ο@ΨμHη‚[$[^ψΤ@rR+I½\β[DΆ°coκχGΊΖσαηRόz_šf•tξ ΅πυΥJ5_ ["Ωλc5’£WFφT@€©dΡ―²a¬^Œ9σpivϋήΩΚ㲋\φΦ‡ UoτΈυo¬-)Y³VςfΌ(ρί€–Gβ&—΅eΕΖwα}£SΏβΛcl„Fό]γαχ` >«ςΛx―‰^γ|κƒΎDo ω‰ΔF!’D½"Ρ―ΨlΊ†‹υκΥ3}`eHΉΆ΄›„ΎF――Y³&b9’YΩΫχ·Ξ ”df}Kδ‚< „Q‘NΉ;Ε³h©Δh4ξ₯yΉ:%“ώιάΉ³©#Ο*Mη|.%™'ε $md_)IMͺπ¬‚_JP6Ί“g£ͺμ6yEκο⟣ƒΉ«ς9ΘΧiΗLC*ωemF~~~x‘e;νV(QIUbΧ|RΔΐsa‘䏛&ρKWšλΚ›4RΘΈ·σM„ΏV¬’ΒQΊϋ 9’“$©"GU|WUNΎ… ?ς”xτ=wΉ‚Η©YZδ#MΎϋLŠfͺNΥqδ#Jσ°{Τ‘©ΒΝύRŠžxΩ\S¦`tκ0 $’υί#ι3d~–ΒάDvΦq—tηυUΓΞ‹~’’±Ϋ Rξk`ηO½$I|fŠHΌϊρ]qΑΕνρ…ΰΖKŒξςθΥ€'©Š/Tκ=.tΏ8Π%°μηφH©Ϊ?‘£(‘!}’‚TB·³#ŽέY+ΈςψεΌgΓnœώσ}>€΅ωΑyΨΡΕvτ½}.δ8οψΊκ3Ο6αΧ°ΓΎησΎΫgΧπN‰ 6ρΎŽΕ¬Ξη_{l_ώΊΐσΎHΟ½Φ•ΐΎKΐžχ]†n\ Έp%ΰJΐ•@ —€ <Χπr«·_%ΐKgΆιγα›ΔΚk&HΌŒgbŒνΌX`B“ΦDΩjםyQΟΛ &Ψv8žo_DπB£Ίo<λ„Eή#OHΒ·ώ τ2°—:τ>3AU]핏ο½Ο€xζ›βΣ‰§ςΓ3%uΘ]βΡr59.{FˆvΦH€‡wwaηšάapέΌΉ²aψ+"ΩΫL+κ^{Ί$_zB…•ύ²I6ŽxM'—5Zei<ς‰Ι¨SαχŸίW.πόϋΚ?1Ϋ“žΜ—ωίψ'[6+“α$)˜QΉ=Β―Ά‘uηϟo&.€OI·@4γW 0™]Ubβ›Ÿpΐ3“(@¦DG Ϊ€ΈΘ;xr_ΘΥΦ•‰"ΩΊr #Dy#JsB†c$κια™ληΜ™#—\rIΥ΅?ΐ/&kl&f€ΥμvrΘ^C›ˆςE’N,D³°²˜κa“JΟ?Ό\{ν΅δB>΄Γζa‘'Α969·(·QyœrΆηα+e¨ƒx‰ϊˆ[^›/[fύOg]!ρ­™cΘ‰hpl{j!1gœ}g‘ΚdλQŽukέ^r=£‘xk+τόW‰­ηίΆ›I, †[Xέ«žγ`=―ϋ%2wξ\έή;Λ£RδK¨?γ©~¬Βτ:~}:–}:1£Π2cφθΡ#AάΦΡD›S€6δγ›½QžŸ 'žr²ΉŽΘ€6:,Qοϋœυ@.˜G.o<ύ¬|Άψ;ΩQι1ΫΆm[aΌβΣ[PΡΤA£άΖό΄A6ΊX|?ζHμ’Υf2έ]Ο-k­ΰn‡C€ήIGH|‡ΫdΟHΖζά]ΏXΰ…¦ΫD{V)Θπσ)ψώGΣfvYΫζ).‘Ψ59βΡθnΜ2b}Š”ΆRΩh”CΡ(Ξ: œ’Ψ«Ο₯Ÿ-–Ν6Χz;·–τ=φ*ŸβΛΦο›k=η΄—Ζ=/β|xΖΘ1[Ό?n0›Ž»Zϋ}·ŸTΥ½θ\πPΥN>θ.žΡΩ$Ζ$[Ϊ3ξηN]λΤ₯υθq€8Ÿ!©›&}ε•WPW$ΐ±θb•ΒΊLͺ·iΣΖθ>η΅ο½χžYΤλΤΏŒ{Ξg2Ÿηΰΰ:Ω-˜ΉG©“Υ;\w¬F.ϋί‰ΡΘ}±ͺ βΟθ"ΆLΨ„₯ 6:Y>ϋv»H|ύυ EˆΖΝΞV΅Ψ]φΔO˜hpŒ›₯ zΕkTΙu…œ1ɘq&» PB-μ‘]α€gςβ›…Ν οXΠγ£Œ?§=_Ίh±$ι’ηΒδΰ1Š}7:ύ³―EΦm”Ω ΕQΙ‰z„²―ΞvGσ9bΰYuζΞ™ŸΛφχΏ5Ω{TG4Φ]bt„›ͺΐšl)˜ς΄Δι’’·A=IΊWί³ι‡Υ}Ac‹δΧuρΤ§‹β’‚ΛVo–œ!³LΔν˜#›H³‡¨’B•fά[oo}ΘΰΠ+ψΤ]<"/(τθjήe?Λ?=ΕΖw²QtλNύΚ=‹Ξ’²Ύ) ¬_–žžΠφ:§_Ζ’ ξ?ότHυω°σJ(Α1ψΑi#ΠΑΆ€Ά€Κτ+:Β>W :Τ,>pϊ}τ‡s>t>Ο6ψ˜Θ‰η¦`,'lσgœaμΎ%p—Σ§wϊŠΨ-όσΚκDώΞg;€gκdŸU~Π]_ΌΧυΟϊ-βΣφΥΖ=3VκͺοL’οπoY ΚnωΆομΌƞq>mlΧ΄Ή|φέBφβο²@ΠΩng¬Ο}&G€>ύLΎ‘$Κ`σlΞF §`ΫIWWŠx֝bŠ€”’%•t:BξΏC#υΗGU%ΟόR4υ9?Ψ«ϊ,9λ>‘Œθ‚[l{yΆ$σc—Άo#΅κ|Cυπ=?[ŠζΜ5υ.oΩD€₯5ΒseΙχΦ‡Rόw]’©΄έ‘RKwMΤ{^’J9oθ£ΊπqyHκΥSδ?ΜΏηΙ»Ύv7ƒνHLΤθΤQ}…ˆΣžυ}ώ“/™“Š»+΅ξ»=lϊ ’χΰ‰[»AΨ=&yΜύ"ΊΰM,φΘψi:–Τ₯μΉHϊޞz@5žw&θvμΤ|P‘ξΐΖψδ,r΅>5vΞΪ(η»)|ή½deeU€–m†D`ζέοο°Ρ6α;!gΎηY’χ3ΜO:νφ›g£EΫ<ψ‹]χέwΝ³€ση9ϋςΩžχEzξ΅φ].πΌο2tsp%ΰJΐ•€+WjΈ\ΰΉ†w[½ίDLHπB=\b·{χξf€ ƒΰh]ΑΧρβ‚—ΰΑ“¨ΑηEϋ~ž·l“Β%V_“ŠO=^jέsK΅€aΫͺ“'ΉSt»ΣyώIΕΞGI­ώ*}qT““/ΏXΦ*μ,vκ λXi’u₯Δ–^“«μΦν@—@I™¬©ΡΔ—­7-ρt>T2ξΏ¬Β½B4θ Cu\ζ+τœš ²–ΈΡMΚθbͺΙυwηšά;ώΊ)o £&Κ’ε ζ‹#Ϋψ£Ν(Tebƒ _@!| `’p2™(ΐ$P+@XΐpL’pΎŸCM2pŒŸpΐ3@‹Άhς^ͺ°'yY˜š²~ψa³;Χ”MdHη.€W”M]™taKmη.7έtS… wκSπ*@ΚΰZ&ΒΟ:λ,™«ΰ­…΄ˆ” 0GϊτΣO dg})d plAb"!]tĈf P&jܐν& `|<’…ί¬LΜ—ϊ‹ΊXΰΕB%‘ϊ€ς/ΌπBsιΚ•+₯I“&PξΘ‘#M5»ˆΆ—ξ,όΟ_‰n«#)]Jσ3"ιsŽ?J-υμ°}7|ψπ@‘Ÿg$’Λ₯Ο_)y³>QθΉΩSύε³y ΄ϋ“O>1ㆉ6Ϊκ„IπgΟ:όX…Zύ`†ΙP!C`”qΊe*€Q1‹?ψ―MY’z•όxHύ@$nΰLΖ θ~0ΫijtΗ2‰Y³N>ί°6ΠFΐ ϊΩΆΛF?’\κΙ}ΑψqήK/θ$ίΉΊqŽՎWΞηZ;ž¨σϋ―Ό)Ωwθ„ΌMΪφ˜ΤI^»R‘οR‰©― ΦM:»ͺν ίž= Fϊlφhτζ<N·vΜάF•™Ολ“ •/-UoΣ­w/8#ψΜ}ώΏτ˟dηΔYfQ£·}Ki8δ† ΎK€ΊTΆN›cNχt=BίιΏ#½>{β)r΅>Χx€ρΰK$ᨊaEΉΗιgηN>:t0zρn'ΖΧ’“θ€$«_Ρΐψθ†`ύƒΎε;Ά&ΆπΫ£¬ξ£lΞ³ “'O6γLŽS–Mά ΨŸsΟ=Χ@Φθ@¨΄΄4OYΞ9΄Νκl:žδ?eΚsO£ΓHD½τ’?KΙOΛu‘ηVIΠρ²©E³PoμΨ±rΟm·Λ‰§j5ΥtΨ}ύdη_ϊκ₯.’hήT&†g[Δ=ΏxαByLΑ^§έςiΕςΏ,ΓΩ-«˜ΰf³rβ|’6cOLώͺ'‘SΏ²¨πΥ XΩ!cΎήαιΊλo‘ž½ς΄bδιG“5ZΪΩ2Χa·θƒΰ~°z pš>dQuΉΒ=΅Δ#·μ/3gΞ4φ„£”Λ8@GΣΘΐέψ Ώ•}ω…τ:7AΟσ阣Ώ±6*ύΔά>Ζg8ΰ™<¨―ŠJίe)paτ· ‡γΤ©ώΎ[4oΎυ+Iƒ5bδ.8‰ρν„ςΐ³ζαY•-κ IQƒ:Ζk89! ’Ξί/Ά―φζo$ΐ³OŸ΅²ΗΜΦE2ώg­˜ΓIΣA—›…Ν{SζAsBs;ž}E’>ύμXW¨ gκάxe²Σa*CΖλΖ ξ+9²œdβ‹XDή-y’=@ŸqσŠuΜΥ•fcΟ.]q&A':ύ΅h|ΘP:ίfMžv›ΥCφ˜ύ―ς™₯χ*ο “ˆ†[oΕjρ5¨/μ’@ώ©ΐ$’4¨’_¦Ί•Δω€²622:’e˖ƏƖ 7ΜΞj+Πs‘τώ ώa46‚ϋ]hύΧͺτ+εZΈ=Ξ΅Nέ‡μΘγK/5ν’Ψ*+'ό]ž]¬~ %'΅ΟΘ“|ΉύŠ.΄6„η4‚_°(Ε‘κ„ξCw:넝·Ο*ψΨ'%€IΑπIϋKΆΔŸw†μ|—Yά„mδYΈ X˜ΆΫ-ςΗX»΅θΛ―$~GΎό閍|°Η€ΫθcΫw΄Ϋιο‘“ΤUŸw°7UωΘ‚ΌπατΘ›Ι8Œ5ςΑ¦r.ϊ˜gPžABΩd<`ΐ€€ΰ9₯:STΐσΒ€x’FSV{«ƒ]oΌB|œ]u΄Ν;fΌ$‰Ν7Χ•ΦBR†φχkQ,|ΡϋcΗΔg$αΛE&β3O:wκN ‘&ν§ Η/Zf(=²•ΤΦ±%ρ~)\6;¦½ ŸθB#Mώwλ·†~ŸΏ7°σ’ ’O7°³‰h>Ώε‹…R2QŸΉTn₯G·“ΤΑ} @Žζ{•OήC“$nΩ*c'’‡χ_›ΜJ/qώ1%πΙόyό9} §ι’³ 䦫"~^$‚ήDς^ŒΕ-θLμnff¦ρΡ­Ν’Ψ!žWHψΐφ†±‘δΓβ&ή3ΩcX"/ώη›μωλΧ―7Ο‘M›65Χ  έn―·ησ—ό©ωσμΒ3»ΰoPOηβηuϋϊΩžχU‚ξυφM.πΌoςs―v%ΰJΐ•€+W ΈΐσΠInχ«xIΐK^Œ3ιLL@0YΧ­[· /(^{ν539Οησ³Ο>k&ŒCΑ2ΑηFϋ~ž5ΪLρ„ιβaλQHΈ»§Fw8>Ϊ*FwΎB0;GM“Έ₯?›λŠ.8Mκυμ]ΏΓΩΐΞλzM·Γή‡^!qm2~‡šΈEl :αϊIo‰|ιΏg<‡7–ŒΑWιD|B@ή Ή²~θ«"ΉΊme‚€ΥΘγ­άρΠοψΑžGαGPt~G†=\$«³ύ‰D™ΉοΆTυ"ΈxΧ)L\Ϋ-}ωŠH,@dL°­–Ιuprοή½ΝD“$={φl|Έ¨Αψ)ό„žΙΈ—-₯Iχή{―Œ5Κ€nόο,ΫΒr€ Α»\pŒ‰t`g&Ί™œg`Ž ›¨Oeΐ3ηα/]yε•Φΐ§δ(` 9€›iεZh–r‰„I„;Ο,D%ς’NfςύΨcύΠ*πΰ€ί‚ [Nΐ†‹I;"ž™ ² @2“ωΞI'+ϊΪ‚ ΐ€Dώ •ZΆha’ΐ95Ϊο;?J›DBΖ P “Z$Κ m-:f°.TΈƒ(@€CNΞΊΩlΘ$fΚ'Rλ¬φ’|φQ&?~Ρ’όΨm±)€7₯ά+K—ύ$]ͺ  ͺΣŸΘ‡θFψΗ$"]’bΈΖτ4―W@#ŒΆ`gόΏό§t>NF=ς° 6Μ|TMyq1©¨PFπγY¨xvq#Ιύΰ;ΫXκw9R4š³'MlΫ‘Q§'+μΪJΊ#iD Τ6W–j"πμΡΘΉΎ•~Έ9ρR‰Υ¨šΖΡoΓϊRΦ’©”΅l*uΫ΅‘<ώ·k›ooƒΊ’ς FœkΡ$Δ•ϋφUωχ«dϋθ—LϋΪ4•ΓoVΰίΏ­o49—Μ_&[¦Όc` Ο©‡Kγ{/Žζrɟ³HΆΌψΉΉ¦Ρ½ηJ)­C^ΟΨsξδΓΨc29ΤN>θήyσζ™ϋƒϋ ‰ήsB³θU"<†θΐc’ΥCN]ΙχθΎ~ύϊΑθ@žMΡα\οLόλ―Ώš‰k ΉΩΙmΞ³6Β3+zŒΕ8C† 1Y± ¦mŽFE<Ύ£œuρŸ @eλD€gΡhΰ9[6Œφ’φσΖΘΰηž2ΐίaΟ°m±Z§Δ€¨xΰ™Ώ,¨`1E€v ˜φ‘ΐh‘T333ΝχΨ `_’Υœo π=ησμ €%ͺ6‹SθS»M΄mw8»$Œ~­Π«³₯lΞG’xa7ιϋψdSWΣάuΛ_dǘi’tζΙ2φΣχΝ‚κ}rˆdL:ν+Χοkͺ xφjDςuΓ_ί:}ΎΧs|¦4½οΒ½Zœ±―u= WΠ­θ™W$fϋSν²Φ™’η―Φ~χ‚[P$+WΗk`SŸŒθ/­Zξφ'«j―—w/wνͺU?UšMθ‘φ\©ι}LŒoFγCβ#γoγYοoΊΐκrξ)|μŠ3qΡ艴Oβ|žZ4m¦ΎH¬ρ/Ω‘„ϋ„‡Ο‡Ž φΛΠ?θίA~~%ΆΓ©7ΈΟHΐT@ΔΑzΓYχͺl~0ΆΕ.\#ίͺτ+νhΆmp>« ϋ¨v–dύμ5kΦμ!'l2 ί2XN<J[ Ή*ߝθΤΡΤ)šgž—xεΗ&Ed·ΊgΆ“Ψ2΅ΙŸ°§Ώ«z}μοWτ΅…Υ#υ9Α‰οˆζ<Θ`›ΎΑ†°`—Ε³€ͺlΟbΑγ>Έ¬hώxφΌώϚc|E_J²$φΏC#ΜϋﳈΛS8ΜγχγJsIΙI€:-„ΌΒζ L’—ί4y|ukK⃽„θ2ϋ3yς dgΦT6Ϊϊb(±—F{Σ—Ι5=y J$gθ?ό°sΌFvΦ­T]ΨΉ¦χΪ―~9/~(2GA.}‘κiRW2²O]pΨ•Ό[σdύ‚₯Ρ°DΗi£A:NΤIT7ύpηίUό•Ύu»G#Ο•Θ¦-ώΙίk/‹—ΛϏ~’…  0&gC% @S&HLHΨȊ@QD Ž‚/…ΥB‡_rωε—Ά•&oΆ\¨Q4MIblyL„4;U! ­™“‚~9wΉ°‡h' γΪΆmkΎ&Ξ;’Bς%ubϋc uΨ띉ϊ $nλC„Q&E*KN`œ2ˆj'αC]ΐ<α„άˆ|ΓQΣ,œb 4…¦mdKg^ΘίnAJ€K»HŽI%ŽΩ‰(ϊx†vW•€σή|M«XΩΘ<\bάΨ¨ΰΐiΐΑή6wΰ‹œΨ¬ ¨gλFŸ9‘m<3©V\.ΫΎϋYR;f/5 ΒqΗh5@ Ύ( ‡λ›hdÚ0ލFΤ³²DλΜoWHΑ{ŸJƒηΖΛ0^ .Y@pΠΓFψΆηS/ ›αμΧߐ’5›$Άy}ϋuΕΏΪg;φ’$~ϊ•ωΎΌY†$ΊG$½AΕσύξΐ³ϊΝ²b•˜ΘΝ 7ΗiΤlΒPΙW―Ά”DΚp{μΡβΣΘt’ΰ‡I Oδύ›Δξ‚ΣJŽ>\jί―ΡίΉYΝΙ»bl6ΣDωφ5o( Η)Π°9KΎZ!['ώΣDˆφti-ϋ\UM‹ΏY-yΧψL1η΄•ζ9+μυΐlN¨,ԉΝ|˜ά– BΏžqX±"2‡ΚΓωz ψΧFΚδx¨{šrX¨β|6΅ΊŒ{]΄jΥ*£—m}ΈοUωIR|‚Μ|ω%³PόΉ‡{φμiΰ&«―lΗήΣKςξzPβN9AΎοv‚яœOβ1η=χΘ#HŸ[o—’M›eKb\Ί w>`.v)55ΥΨΐ*dhS8»Ε{(μ+πŸΉBδO"[’ΠυθJτ=mg‘ΜΜ™3Ν±Κ~YyΡ,ζ©ΚnM}l†ΖjήύŽΩSΆ ΛΨθ₯`2°0}L„ηβ–IΑh]μϋΔH9φΈΞύͺ^Τ‡v wΙ—Ύ'+‰±νvnc Hˆμœώƒ­6›θΟΐΆ,b²ηRWό ΜQF¨Ύτ]ΉOς†M’x"V?2Xbj₯i΄έxΣ^`tlΫfS.ύί–ίY ±΅ΣL„HŸΪ`>ί}χέ9aΧBΩ`κ΄/©2ΰΉ,{›ξ’σ¦ψΆ«žΥ~lpγi’r~Η})ξνζ­’?ω)‰_φ‹i«Oϋ1ι–kΔwςqΪ·‚ {€P–ύœ >—O²ϊ%Θα‡Eξ_ϋώΜςšψVmQ;– MΗ^-±u*”±/DλCr/Α©σωہ_Odfή ’XdΐΈ Nάά›6±=¬ϋψ˜ΕeάάGUωeθ v‘ ڍޠ /ΌπB•6‚EΌο$κ~EοΨέl»ƒύ8Ύϊλ―M”dμ[€rβΩQ―¬¬¬*}KΡp>ϊ/š:q~€Ο*½Nξ* αθqA`&ν«ΜnΙw?J~«ζ^CΩη7 –ώ.;`s°vρηV–°G,,±Ο‘Αηbg°θqςg¬βs8wώαšJm„Ϊwϋ\œήό_πμΛם&(@»k!_y“F’όPo‘w°©²l]HX0Lw<ά°Ω€Έ‰=―Ρ¨έΡ$#ζŸ*19›t•xIp»H‡Ά‘g±Eλπ.πέ4°GI7^*ž »V~=Ο5c΄ύί/7ηšΤ½Yλ*)μœ?ψ‰eα§ζŸxί-ϊώ˜PgΎσ,_%ϊξΨΩ›^_RΗ=ΰ‡Wύ*ΕC'˜hΪeHςψ!β‰ vξγΟλ3ΨΧ&€»o9γ„@YWO+/ΏK4k χŽ“£ˆ|aΤΑ+΅£ε.π|`τ“[Λ?\ΰωΫ·nΛ\ Έp%ΰJΐ•€+]pgw(ΈΨ-^ϊ21g“••½¨ε\α%0η1 ΛδΒώJΥ<λ$eήψΗ%αϋŸL•Λ2‘Τ‘χω_^ξ―FοϊΝ’?lŠΔh”=II’δΑUMζώ,±Zςφ•κ„Ϋ?Δ·v›‰Ύ“1θRI8²i΅δνfβJ Z ”|½RΆNRH'‚₯v²FrΎZβZ쎦εΫQ(λhX9Ή&šbƒώΊ}{GD€hΛrΟ― ΈΐsυΘ±ΊsY›#’υH©δξŒ1,wχŒ—ΣOΪ{[ΞDψŽ;LτΩˆdλHΐ 3f̐ƍŸCψ€€#Z™…μ₯œΓž‰ϊ $€ˆvˆOΒ>Qε‚“λ@ΊD•cRœ2πcΘ·²].Ψ6Ω ΡΎόό|EО#Ž8ΒLz”ΩH φ\ώ₯‘ω¨vGHQιn v!s€4@bς @Ηζ uΔ“QΫdE?πœxΙ%—μο“?ΰŽΜh*Ή·–δή7‰tιd <ϊ˜όœ@$©›Hq‡¦gθ5ύ« Hi‰T©Κ#OΪœ¦M›f@ΠUΟ½/Ύ²%υFβ»ζx³Υv(ΐ‡H©ψγόT™ΎόNŠ{ΞLΤϋψMμ§@nΗ#B^φ›Ο #6ΛΟkdη’%&[̢ܐυς¦i„^"77ΣΑDZΟB₯m/Ν–δ9Ÿš(l>έ;ωV8ίu@ή5eېgEŠJΔΧ¨Ž4PΨΩ“Ά ΊUΉ0ί•,όEΆL˜m€]9ξPiςΐaΞ ύuιʍ’3L―W_)ζΨζΌΕ‘Ot|Λ½UΩN>=Άϊ„ϋΔFMφδ~cαAWR#Imμ€ώώδ“OΜNΑΊ’|Έ€”μσ©Υeθp a€U:λrŸ~§υ‘£%v8SλοΣεΩWώ.·ήͺ{P"ΚsίΎ}%―Χ)ΧΊ”Χ―#΅oΌJ–δn5ϊ˜h£Ξμwι₯—šΕC σ]¨E?DτΜR Ψ™D€Τ.]ΊZ™έB_³ΰθŸθόprΒΞM˜0AκΥ«gt8υ!<Ά¨ͺda^€<ϊΎ g·Π5Œ,—cΪΗΙ΅—zΆτΙ'Ÿ4:–²ΨYτ }Lέ°+>…ŒΚf½+εwφ0ΡQΠ²­#εA3==½‚?@„Νΰσm?`»σ]#6sλΦ­Bwb£Ψ-lUϋφνΆŽ6M΅²ΎΓΞ2φ6l(^`ιΫ™'ƒ™`ͺΝΨd!Ž΅/ή“'O62ΔΆγsP| dK½I7ήx£κ¬œπ)Xμ™“χαW8ΰΉtι:Ω0^Ÿ§τ9ί,ν}Ύ$ͺqS ¨/”ϋλ’τώ§~ΣA'E'w–Ϊ·]―‘Β“*\Δk±αΚ’ε κΫi”η>qrδαΡLkΗΜί’lσξ₯ρπ+$ΎU£ eTΗ?ŒΛΚ|Ht”υ ΉOππ¬ΞG³?DN&h‰0ΐ£€’6α?s[χ™gž ©ρ_ΉwΟQœω€Hό²ΰΕ}\W™ή@§ΪΆq.m!ϊ8eά _Y€37Bύ Œ}Ε~…ͺε£ΗΠΨ0ϋŒSY¬œΨ)ΐΪeςΑίΕW―Μ·$κbfTU'dkeE;ͺ|VΉ’»δž³x|^I™š%έ’ΎΫ-κ§Οg[τ™jΠ A23Δ‚lυΩΡΐώ³Ο>‹ΚηΐΉ~Π»«ύ”Iβ9“έ€©yF!R36•Ϊ\•}―`#ͺρ½x₯ΐ³>ȍzLb4&•Ϋ^ϊͺ£°qTIŽΦ|4Ί2‹θ;꣏* ΡE…#5]€ΘβΓ€Αw‹GύσH“oυ:)ΤΘΝωϊώNƒ‚θσ•ηΔ£+ΏΌXίιλ»υΈŸυΉAυqΧ…χνχvώ˜xtΑ’‰μ\GŸ36n–’£ŒΌΌ4%Iag©W§ςΊκQίΏ>’βΤ/Χδ³―2Ÿέ_œ> €FFΉ„+Αš+xΉ}γΦμΰ€ <ύμΆ•€+W\ ΤpηƒΊϋέΖ`¨VΰY_PŒΠmμ6j΄MΕ§Ÿ(΅ξκέV}ζΚ(­όU G>n@^§ ο-x7€enΏΩιL‚Λš%^’ ιV£ώlΆGΝ*ΰδJ „Κ—ηΘ¦1΄ ΨDMLΤ]βŽh8“-€ΧΣhœΏnOlŒΤοs‘$žΠ:pάύπΫJΐž[yGRΪ3₯TŠŠf}2ΰξxιxdt0Fp9L)0Q δ@Τ[&”™”t6΅ΐ€א€4νΏΝΧ.†dxX΅j•4kΦl ˆΙώ-[ΆΘp‰2€†ˆŒ ΔD „Χ»wο εοrAδfv±θ°ΰuΝΝΝ•Ž; x ψŠφ1ρlMΫψΛw_ΐD₯Μ•+WΘ HψŠφr_ΟF£Ξ%$’€ςBFΐΑ02yY˜›vt#C’bΆjΥΚ€flι Ψk+@aϊ‡”™™iΆΏ&"»Ρlώόω&Šžν#Ξ£ȟD}ˆ(m= <“?ύdλoNδ—·€LV\χ˜ΤΎ¨“¬9"Υ ΙΟΐ}ΞΎ³Qτȟ~ > ,0 1rε|κ[Ώ~}ΣgΘΠ£‘/A#λD΄ΦHΚ@,ŒΖ%mwΆp³sL†€ticl`NέΊuM}ΨΝH‘1H?d)΄ΘX겡X ŸŸ-)}o‘UΊγΐ!CLZΖ>c @›<( ”θ°…Ώ¬Q `šΤŸ:LFN|D€κ‰ΨΚx£>Θ€ƒυ:­‹•ν³ζi'x€ε«ύ€ΈΌΤ€-λΧ+8Έkq"ηS&ύ D‰|"IβV8Rανς‡uΛiίUi;θϊύ<+@ΰY½V|+nώξ‰5Gb€SUΑΙ§0YΉFnnέρ(‘V-D†‰bνΈΨμͺ2ξoώ­΅υϋςFM! i’ξ8«ϊ>–―ΤΘΞ£^ϊ >έ}’ΑψΫΕS/4„]Y©₯‹VΛζqoh…•šλΤRš μn`ŽΚq+Ϋ°CΦ=ψ}ζPgΦ—ζ£―2γΪyNπgξ­ 6˜θυDGήΙθύΒ8Άz‘ϋϋ’ Ε=@‡Ž$1ήΡέδ³lΩ2sΚ‘­ήώβ‹Ζ !₯³ήΟ±䝟~θ2[ΊX–z)·š·PJώωosΤzyΊlΜχοLΔ±ŒŒ £cΡ•@ΦάΏDυ·zyϊƒχFθcΪΝθΥ?όΠ@_j΄οώz |ΌsηNΣ.ςϊχΏmΡ>ο1Ÿο€΅ƒνΰ6݌ž’%yσζہœ5u’ Zv: κ?:=ΐωθχͺη‘²ώςΛ/M;XΚn‘ψιg^”ξ)“ΞGKίΫδ΄ΣN«yS6Q7‘Σ₯K₯ώ-έ₯―βŠKeωΊ΅¦ώ”am?Ά_ΉŒ­°ϊ±E~Œτγ=΄Œ­¦ˆκ ΐL;HœΛ’=±qότΣO7Π36yΡίΤ[œ©Ίšϊ„κ»«―ΎΪp,κ!le2v¨π]°}±φί– H:εDΏwθ[{UΥo‘<}ς£lšρ‘.¨P}›–(‡\&ρ™ϋG/FZϚ|žG@’:ΫχG&Šj―Ώ¨-jΉG΅†£§Κ’₯D>Τ+ϊhΩO(ή4y7zΰ"I윹G9ϋϊΊθ@τW°i c…z;£λ|ξQtΊΚϊΕΤ«OŸ>Ζ£υwY$HyψΩ,ŽΐOGς½ΑΒ΅cŽ9Fκ~ώ΅ΔΧQW³51v…{{μ—α—²π€ϊΩT™ήΰ< πΪσρ©ΈΡΗ‘lΔC=džqΈ?±φωΕ^_Ω_Κ’>Dιgα6]†ξFθtφ‹ΘόV—Ρ/ψ¬θχPrΒηCZ»E»Xd‚ YπH³Ύ%:”2—m?νΰ3:5TX˜‰lyv±υ’A¨gςiœœ*Ήχ7»q€½ύκKSΟpv‹gŠ.iυ%NaΫΨ#ΫΘ/ͺ±ΡτI°ΏKώŒ όv’~Sk+*λŽQžxώ ^ΘΔqή9£λ){Δx€Ξ<<·lΩ2¬}ΆδW),πό•ϊd“Ÿφ/ΎΠ±•p“ϊ‰ηwΊHΟόR4υ9³ Π«Q‘MthMς-\"E\™LςΒ1™N8#9[{-“έLD£vλΦΝD/¦>L€#-_Ύά”wΝ5ΧΈ€‰gb➠u|  f"U6ΉΨ‚GΤΗ‚·\ 0P¨f£ϊΕ ŠˆcDX”@`R™Ι{κΔΔΈMlύMd7δXxΘΆΦ€`\Γd‰"δ3Χ΅’¬XMY‹/6Ρ@Ι°Hyπ?  Hvΐ[”CdKπ m  6˜ϊ‹<ˆf i“³?‚λD$?’H œέuΧ]ζ2κ΄dρ’sϋ³dΪMr§π ƒ­Gy€^~ωe3ŽΈψ ‚Ύf,0Ύ'[k{9Ρ§;θ«i_r‚,Zϋ‹89Ν•(D¨C$­πΛ―eΓΓοH«ΡΧΙUΪ?ΐα<ΐς€€τ ίχ*η˜{GJΪScδ΄³Ο2²!/ς%J' #‘Λ‡nκD?§¬\,^¨p >+€Mηi‹©ΣWίHΩGK$­[yνέ·M]+²$28c91VIα"₯›ƒ‘~mβ“’ °©\AΚƒwλ€ώnP‘Z€g…{duΆˆFonŽSΈ9V·ΌΦAΆG­ˆΐ\pSYΛ¦R§S{ρͺc6Jψ‚LΩ†:ό ‰Ω‘>‚&άs£δΘ`\sQΏΚΧn’νDvf!V­d©7ξV‰I―EώSK—¬•Ν£g™Θ̞‡HΖ +Ε£z!δΛ+–΅ύu—‹­βIO“fγ–˜ΤέXΈ|Πqθi’r’Ξœ9ΣDΔG7r γχŒcξιp =ΑVπva…Υ€]Œ₯=z˜KΉίΧκ1ξUέθ‹HΛθG ;@~μ…Υ―ΐ­]~\#[.>ΫΐWdT©.ΣhΊ±+WKάa-εϋŸWϋ„.ζώ!ϊ1ν ’5eœφΙκiΏύδ@IDAT|"9σ±°…:b—¨#ς!‘/‘ΐ26N΄LΚ θ{"URΙκWk#vΙΩ‘G­Π56‘λVιt>rX#²':Ξg’Υω΄ΊcΠ›Α‰γC‡ |­πΒ_°’ξD“¦MΨEdCdMω–'\%'+/<;ΔθTΎGw±pΫAύ°έ$`υ«ug†"ύϋ‹~6>ž>}Ί.ˆ‘‘΅Vη[š|ΠwΨktμ_|alΨͺU« €έϊ›%’xω…―Q£ΨςDί3ξ°ν;w6ϊΡ―@Θ»Bۜ>γϋ,cμΣηΰ8cΌθ{g8μͺ iŽ>ϊhcσΗφυs0πœχ/dΫμ/MΆžF΅€iΦ•S?u_‹ωc^―PέΞΏ=/‰Ί+‚ID?νq™ψΞ=}ΕAΗ€{¬@ώΰߚ~ΐέqrl‡Š>§?£πΏ‹ώ»\6=φΎ9!ζΒ£€Ω g†?yŽΰ[޲@ψŸHΆŒg|τ6># αΠS¨ .Ž{’]V—gΡ—] Η1«ΛπWΡ)άόE·γϋpŸQ6g<:Qvή|ŸŸ¨€ΰ-׊/5ΕθHt%>,ueρ!επ}hη'ϊ;F9™Ί¨Ε ,ΐtΆ }Ο}‰HΎ(ϊΐbΊ ?=†nΤ§Ζ. N:ι$£_y~`gt?.p9 =Π/θWtugΑΟUΤ‰g ϊ…6²8ί9Ρ.lύ‰>D–$|uόCϊ[Jώ,τ a‹ΡΏ΄ƒΕ)μ~CθoΚ@žμ.@„oκD}π·2£=θNδ@³Γ‹†€£ΝσΣΖ-Rηϋž‚ΘμΦWίHωƒ$αβsδjǚkFιn4, €Hθcζq(›ρAύι;;ž8‡η78bS°/vg3ž4Κ>m`d¨DΎ<Χ=ρΔζ0~8ΟTφω&R*ο½ύnΰYeξymŽΏρΙ›š,Ιψν‡W‡¨@ξŒ—$ι?Ί¨R“ρ‡φβΕ@ˆ3Γ΅ν•·%ω폌ς+=β0©5ψ FPυB«@ŽŸ~-EΣ_ŸŽ3’%§ ο%žͺ%nί)ƒ5‹$}q±’<θ.‘φmYVψμlr–C]md+zγ ’…Fˆθ *Βڈ˜LζYΡ1ΡN=‚£ŽYΕ rπ™‰w8ΐB Κ$!o  fΫιιιf‚ψώ!R2A~@q’\Άs‚fδ[•œ’­S­-₯ς}ή:€;οΌc’p# Wδ„C”N ρ‰R`Πn ΰνΛΚΚ2ηϋΕWϋΙχςo£mD³CVΘ‰θͺŒΠ`ΣyesΧζ:㻉'Έš:!'ΰΐPJχcN”_cΆ6η;ΫδJQφ€F§(^Έ~›ΌυΙΏub‘€ουIΡζ|ixηyςαΌOuϊζ›o tΓΈ΅ Q½‰ΰWΆm»Νό‡€έs‹\₯@&cqΘbA}κIΪ>λ_’2[#αͺ,}΅R% x’u¦Ή4jΰ™{oνzρ¬ϊUδghύύ›½Ρδ½G]T¦e 6Ή977o$ΫγΪp_hίnn–$}0ίΐ>υΉ“ξ½Q·ΖήΆί·)WΆ|Rdg‘F§K”Ί£n‘Ψζιαjφ{v―Ψ8όU‘rρ©Ρn‡κΒG‘&ŸϊC_±²ε―€δΓΟ$ώŒ.²­c;n‘Ÿ t5γI5ρQs―[]vˆFΖ,Χ6„eDφε{`'t·Υ‰•Ω'ΏVηΣ 3τ CXTΑ}K^,d`±‰(ΠάΛθ·hlΧb#Υω€Ότv%TΌΆύύώϋο¨ =e-ΡΐnV—Ρ9Ϊ6vμXΉδςή’š΄Eνˆ.HΠdfwπ?ϊυώϋο7:Τ@c‹K¬κΕο–ύX쁾<˜γ$ΊΪμ+Ξ“ZŽ¬ σэδc²Δv!?g"*u»YοIΩΪ©σΜDΉόΪkŒέŒ?•5>y …›DŸέtΣM¦¨;?θυλ―Ώ>€>'κατ9^|n¦x5Z=‰hτ±,ΠPΉ#;δFΨGŒ@ϊFJωΊώ¨–šgΡφ\‰i{¨Ι§:€η!CεΊ²ΦβϋΑLδ9¬‘4r…Δ€θnnΪCžΉσ₯θωΧ4bΏκuM%G·“΄»oQ¨>TΒτΊvξwGœœΠiO_4Τ΅φ»’²eΓh}_ευIΜ ™¬οEφP΅ώε^~š%‘—πUπ§π₯WYθABWp[Σ|ιψΕωΡθ2dλsγkςZ–Ό€‹?£>ZΑM½Ε—_`’©&]{™$^|<₯²]¨BU‚ύdξ9»QUσ1βζ\vΤΰή$U©Λ€Ε΄:ΓΪ!" #?dΛ=ξτ©)p6RύŠξ€^,ˆ›‘έβ9lΪ΄i[Jτnϊ =D ƒθckKyV’ |Sϋ|†ŒŸήBG=χάsΖvΛΧJUω\ ύy΅ϊ Φn½€Π΄*QρiΉΘΙω¬ς­.PJz`¬€ήΪCΖΜ}? ―λ~₯”νΨiΞ/ΣθΊ,$ά'_‘΄›»KAΣτ γ‰E3Φ?Ωc<©L!«P yπ\  ΝΘƒη'κ $©•χή~Wx^›-e>%ρΛ~1Ω•«ΏœΜ;m…q£J ς损.ρ?,7—•(\λώΫ£ς7U!HξΤ™’¨;iŠ»ž uξΌ>:χυχ₯π5?Έ]Οi#ϊhdθ*|Vݝ&θd‰έΎC|Ί%y¨ΒΓm2Mφψ΅7°σͺl)zhς°3ΟGωCΖKΌ>Χΰ—' R8όhβ‚=Κu~‘»Ψj$jO©.4?μIΥWwMŒsžα~v%PA[Ά)τ<²DvδΕHӌr78^’“Bϋς.t©‘pηΩ-n₯" ΈΐσAΤΩnS] Έp%ΰJΐ•ΐΑ*x>X{ήmχ(}ž‰^7ώqIψώ'Στ2έz4e°ΎNΫΏ‘ŒˆR±cβ³’πεbSnΙɝ€NοžΡ½ώ:Λ§ Eφ°ΧΨ™mΤ=πgvώϊΒ-Άj ψtaύθΧD–3'{:ΆŒώWˆG#Ύ˜€“Ζ9c^ίb?Œΰ9―½4Ήωœͺ3vΟ¨6 Έΐs΅‰rŸ2šϊtΎ|φ₯’·y“2Ρ?Ij₯Fc„ͺ°ΐ€ˆxΉΟD8‰‰bgτg€%’F†ƒ'˜dΐT NNΩ>bŒΙ~  <σ—Ινpe9Am ~ΕΜYζΐDzeRœν eΫi"ΒuμΨ10ΩnλhIXQ0ΦάΉs ωX ΜžΟίP ν‘ΐΪNδbΪI’^β5 59“€τ™MȜ¨l€ΔΐιS¦L lwΝ9‘Θ)Ϊ:]šˆž@5Œ‡E Ύ5mπΔϋu7ύΚ–Υ—\rI@ΘΟF 5°dϞωΡ†9sζΞ_’€]ςͺ-’υΖs&Ϊ¨€ν6ήΘ‰¨Ν‡κ̈RΨ M^]φy\τ‘6!—όFΔωŽώόXΑϋR…;Ω’™/12λ­7MύΠί"‰/φΚΰq#uzaκ²υ²~βiΣHκN(λr·U¨0=‘φh7iεΚ•&ͺ :J(^©U\ ηEχΌ³Ξ]`΍κΧͺ΅R<φqρlΫa&σ―Χ(–eΖ6‘Η£Ρωά£,ΆAŸ‘g)ΣY'δKωΆΝΞέ‚»ΣSυšΣF ΫЈώJη³ΑΣFEη³Σ@8»η„Τ€ϋ²²²Œξ}YA/l7ΊŠh©£ŽΤΛF@₯ΨΠE@}Ψ(tTbRIJτΫ!μΩͺU»£E΄eA©Ό±δ»€ΞΗ/Ψ:bͺΔοŠ0sί-ςiώ–€ŽΨŠμβ"’*£{Y D{Χ“^Υ?±+'}–ωžΘΰDuΆƒzYbν<:ή.Κ"/Κ° Β˜φ»>‡noο]-ή-Ϋ₯`Α"Iψλ5βQψ™„Άπ%²cAW iώ;ή|O|/(δͺ©τθΓ₯ΦΥYΥ‰ήΟ}NΌDξhδ_ΣΉ…4νϋg³¨9Pχƒ_Ωλ₯`ΚΣjGόύεu4ωή[D:΄«TB¦εΛWί%iλ.'·ΖΛΙΗω‘Uz‘γ`Ω―[%gˆ>Ο—IL» iϊ>Λκxέ =iΝY_Ζϊμ”ηΤQﱫΒαt @Π±$t ±υ_Cϊ}κ[δOœaΗψn§ΘO V…Ÿ„?μ'ϋw»ͺdώX;bοk§"žQX0bŸ#œΗΙ]Ζ«3BΩ!|U’ [Ÿ›€NFΏζεε…}Bη£ϋ,@M:ꨀ-eaŠΣΟ§?Ψ…ˆΠV•Ή]»v(ΝψzΆέȐγψΥ$Q" ›ΘΟ.$ χόό\Πm}Ύδ³X†ή+…tƒŸU:΄;BβΤ―νυΰ@cƒΡǝ꧋OαVRΉFΦ-˜υΔκ.!ε ‰’tΥ²ΊK‡ ㉨٢ ΑΟΑ6ΕΆ…ΏΑ2ε9΄›ξΔ8!v/ΐ/ˆΔF8σέΧΟNΰyέuχH²ϊΉ€’cΫKΪύ·EοCoU5l’ΔͺοΈ›Ψ³»Θy]Mž˜υΈΔ-[eς(Έκ<©ΉρhDy¨?³c‚‚Ϋ —šΣΛΫ*©ή°™aσΠ~/P9FAf"[§H$διψ¦yƒφGvΦϋ%©ί_«Žμ μœ5Ewj)ςG›§œΙΥN珞,ρ©™”ΨηVρ|\Θr+|™³Q |X<š_yΣF’2φͺΫX!χŸƒUks<2pt©—x€UΛRσ`·«›@ ΈΐσΨin•Ppη?TwΊq%ΰJΐ•€+WBIΐžCIΕύΞ•@Ν”ΐ^Ο9ϊR|τ‰ΫθώZΤυ$©}ΗMζΕμ~miI©δx\by ¬“E—œ)υz\²_‹¬Μ‰—=BαΠeqJίͺ₯ί§[gXueοζγJ`H@'"r¦Ύ-2o…Ιί“™.Γ6ΠH‹&qό‘·Δχυ*ρSΫH“{/ςsοw Έΐσ~q₯ΐΑŽΥ-Ά-υίνZ—ΚΠ>IΕ­Λ"> ΐΡ@«$ΐ§ΆmΫ`+&ȝ@t$π“ΛLX3αΞΆΔDšdrίJN€‰s‰ͺΜ$>@ “Ϊ$ΰ…γ?^Ψšή spŒλˆppΛyΐW>ϊ¨‰,η,‡σl”5"ŸR@ Ϋ8SG 3ΰ&φœu£›€ώυ―˜‹οˆΗ΅J£­ΐΥδ‰LΩ:ΫΦ-x’€ŽœΘ ˜dDΰΪΧ_έ@Έ©]»v@F€ΒD vyNBΌυΦ[γ‘Κ)Ϊ:₯¦¦ΚΌyσδΜ3Ο4u}vψDYχμ‡μ!|W0’r- bΫΑ6Ϋ"Κ#²'/ ΉY8ƒ±ΈXΌΩŸΚGρ; ƒΜˆjŠŒ‘ύΩ―_?ΞΠ§Mλ¦K―ύ Ττ‚FΦ+Υ>΅‰6²½9δ(Ÿ±lΟω/>ω΄lΉm”δλτ­Ν•ΪΗ΄–OκϋΛ§ ΐςΙΉ₯2η›Ο*Τι¨C2Ε§ΐhl«2IΑgkτΪY³f™±`!ΆυζžΔ οίE»ς₯Λ$O#R&ΌG€I†­vΔ‰d™―Qίβ~\i)9²΅|qΒrρ•ݍŒ6,ωQ|­ Έ9±Β… x vƒσΞ‚Όιυ Ψ\Pscn>τύ»ΓΙ·K₯`ςs£`)ιΟέDzόŠΕY­jύμΝ/’­ΐΞs΅ΐ©§‘cZhtΧ(SωΟdγ°W μ,‡7–ΖÍvžρx?^n|χŒIΒΡΝ#χš…yΜ8V=ja0FTŒcάΟϊG`ά/˜?)Χϋ5f½>+θΒ@ϋ6ιρ1rήM7˜Ε 5bcλ™oJωŠ_L$>o£†’0~°tΤΕ€»θΩ;5ςςσ@k6βS‡:‘* ͺυνΫΧθϋPηλ2ΰRʊΖ>έΡ‚\‘θ|τ>QΠ€ρΠη$ QΩhΚΐRα`dτ .:„ΘΜΜ4Ίv…5”Ξη:t /¬δόP yZp†έ³Ά;ΌΠ©ΘΪ&t%vΨξL@Ώ±@†6#W€Eς™0=VnΊ*Fš+Dϋ-δK>΄ϋθςXωoΑv‘ٝ g;›) Ÿ}c'Ό²β·ƒzΫE;ԍ΄6z>ywhy¨μ3Ujέwk`όϋ"ΤƒΆZpάΆΨς€“N2ㄨΤΙΎ+dA >„ΣΆ;ΗX8Ÿ#Au€7½ψκΤ2φψ²Λ.“xΐ΄y‘'vΎajšμΌuˆκΰ2]¨(υjSε}NώΣωςΡηŸJοvηʝmΊIƒ«O–”Λ:οsΎΈ τύMξ³―Hς'_˜θΫ؎’3»Hν›―V=ΎζNœ‘/σΏρξχή/§ŸμμΝ-”μϋ_Φ]Τ~eΤ’ζO’dΪO‰ϋ“q‡>Α§aΧ§ήeŒ[ qƌ›I•Bι2λοβ£²X I}ψ᳍ oύγ»«ηωΏ₯DΑΜ“uq™}Π%²r°Ύ Ž”cύbς΅€²΅#ηΠUθ²ΰ?‘t:ž…7;Λ`" XΒBΞγL€;‘o :`[ηΉΘ‹ϊΩ¨Υ‘dΚωΐΡδ ¬UPP` Ύ§-YYY|4#7yZ ΡFτ ŽόΦ3(ͺ(ύCώ‘Κ‰ς’©rβ|κ£lΠςSΕW¬PK‡¦rXΦΥ²^£/•–€Y·§>_|ρ…œzκ©g \"}—A°‘τΞ;ο˜ώ,ݞ'Ή%I!Dς!ωŽ~Nd\ϊχο/cƌ1 „€X.oΦYβΫ6–ΨΖuΜy4ΑύBto€gαy}—~RΎ³P}3F^'―8?π±=6Ρη6oήl εHκDΑΆο£Œ ;gβ;’Λžά C Ž_b‚$τUα˜φΞΣ"ώœϋό,Ižσ±9?…Ϋ₯ϋGoKνψY}ξ΅!σπ)˜Wv‘››H"7ΦB£\'‡<·ΪΏΤ™ΰά—ΔΉ_ω³ΦθΪI}nnΨ׊h$ζΝƒŸΟκM&k½α=%¦uτο ΚWm’MΓώ.Ύ’R•[Ί4‘ [”Ρ] ηώ$›ώ¦Ύ¦ΨK;H³k"a< Κ{j§Ιι p”qί£υ‘RτΒ,‰α˜κ„ Ο–9ι©fœ3Φ–jττΨ{‹(Έb“WϋΫ«‘πΌJ»6ΨKΌz_ϋ4Ί]‰B^’ΰgL­4%xάΈqΘβ:tU7 Θ}e‘[§NδΎζώ:ηœsL16j₯ΥΣθ²aΓ†UΠ£SΑΊ hŠBιPφ‰λO8α„ˆt>οˆΠΑ€]θmμ/V}E»,X`μ °‹$8/TrlΨ’q:υ΄Υ―@iΘ€i€P:?”’\옍 :Oœ c©/ ύJτ…ίΘηΧ_54Χ²p„hψ­Z΅^ ›ω€χχεσ/JeXΏiΫΚcκ\L’O)W?Δ« zΞ>Υ”U‘m›·Λz5Α:ŸΊaγm$}ΚHΜΘΘ0‘˜©“"χ|τ_I:·«xcc€τ­χΔ«p”\rΔh_06‚Η ©‡]Te*τ‹qσα‡yDκs\tBγΔ7klΰ@5({σ/φ§ΏΒΠΫoΈ_<;σΔ§χd/uΜή$o~±”ηl—ς-yςηk»ΛΌ Λ πόΠΤρ’tJt€Ϋή”ΐ]£Qg‹ž|Ιθ<κ^–Ω\Rξ»MU½€ΕΉ{Κ7ΖΛY§ͺCEςiDηuƒ^oφvuj’€ΩΓ=$¦ξώ›ΠyΞέ-œχ­6cά.$Ψ­ ΅Χ8λ2§ΏKωΦχΓΟΔ"B=@0tYΌA¨e›žυξ_‘λ#Υλ«Χ•Γue(έN”E’n[δUwœΔκ"·δ Š'5EJ>ž/›/<]6δ‡O,: υμΙxg1ξ_t²ΐžz#KR€uβ™Ž+sαΎώ(σσžyAΞ™8Ϊδ”sυRηΑ{ΔΧζΠθsώβ[)žς,’Φ§ ο‘~sδ[³N uW†˜ω⭝*ΙυξΨqښ+yΓσG]Φ‹ŠΞ;UκέreΥ—Ώ\ uχΎ«f1eΚHμ\ΏnΘλφv.ΤΘΡ,ϊτΥI“dΔΜ#&Νώ?)yε-σ1ρ’sΔw£.Κ­"ως vΈήκD=^aηύΈΣLΥqΐψb‘Gύ[™κ"‘ΣO,”{²ϋ½φά¬ƒͺκ.π|Pu·ΫΨ(xβVΙ•€+W\ Έ¨^ ΈΐsυΚΣΝΝ•ΐώ”@΄ΐ³ηΝ“βΌm Goέ:’4€·H‹fϋ³Š&o_φ} μίά§ΐEΚP°Χκύ^n΅ ΠΩ#ί0°³Ξ H£^ηΉ°s΅ΦΝδ·–@ΙΒ_d‹Fs‘΄DIr΅ΔΊ{Β:ηΩ‹ούL΅<Η΄&ύ/7ΡDλzLεΉΐσοΣΫ[·{dθ„"ΩΈΩ;_}q‚tΏHο‹jNLŽΪIσΰhΔΐΐS sΒΔUU… }~*ž™Άy“ŸΈ'rΩΫo«/°+1±τlA^ ΆqqόψρT³@„³ŽN¨ΐζΕ_ΰ"6[hΥN’φ:πΓΓ?€m[Έ ¬ w>ςe[p’†§+V˜( #GŽ”αΓ‡8ν›oώŸ½σ€ͺXϋπ»ιBθ%HGμ‚½‹Ψ±qνX½"*E@zoRE¬(Ψ zΥk/Ÿb;ˆ "€C ιmΏχ™e–“e7ΩB‘3όB6{Ξ™ςΜwζœyζ??H«V­L™Ή˜λΌσΞ3—;ˁmΓ΅“3νpςd!;{έΦΩ_H™Ου{ž'σΏΖ€kY0’kPλfkmκ–ΌZϋΫs ΩrάB ΊόG«iŸl£ x.¬U«–in§ tnpœl|u4u•ΔTΛ@Vm™΄—ός«|σύw±cG%PP§ .’Βo—HL‹²ͺ4ί)6_}υ•QU€>8·’<­^½ZjΧm IΫ.ωά ήωσηϋΏFΆέ―IιΫAΓHή…ν₯FΧkύΗy,ξ2ΔΟͺ΅RτΖςwζfςλ·~ΰΉLΗ·₯MΣ€D€›=-›Š·zrˆXͺψλM™’«Dτͺυ&‘R“‡¨b]bw冂#g‹η5JCEIκΠ$ϊˆfG_ϊw†l‘°s^‘°3Eδ%Ξη―ͬθΧ5²~όΕ« mτ)Ν%ν ·_ͺχ―G·/UηΗ»a“δ€―”¨Œ-­03@³”•JΤ£“ε€sΟ6χνώΦM₯`φΛώxβώu‘Όž(~Εω% %*<γUΥ:©SKUφκjΎcύησΏia!|‹2”Y˜@°‹ύΗ€‡ρO>ω€Qtη; Ίϊ2ΰ[ εΛ>ϋ쳈ϊ' 'Ϋ琢 ‘|ΎŒβ\ς‚²χ½½ώΉηž“Ν;ϋΑ1ϋ=Ώ±‹Sμ‚ ϊϊ «¨ι<ϋΰUδσƒΩ•4Ξ9η™7ožQ€'?&tΖoσ$Ξb&gΐο  gdd˜ώ…γΎE#ε‡ŸΚDY]}μ.2ʝ(ξΈοθUroκ+’˜ ρΧ\"ގg™zΆ* τ56 ˆ|φιgHYL΄QŠ$ΰ7ιΗΙ·SṜjφšυR0γ)‰ϊs…ήŸΡ’8n )ΐ¬ύΡNι?νβ'gq ΐ₯Σ_bsTjγΞ§/ ms\›"qg"½ 40'ηP«¦ ?ώΈο ύί¨ŠN»O6χ*QυžΎσF‘“ΫωΟa13xσ‹₯t³ϊ³u΅.ΎΘT`kKžϊ”"iΟό5_Ύέ΄\†έήOOλήύ P˜;ύ ‰]²Μ˜Γ›œ(ρ]UΡωΜ“Β2ΟΓ³sδΣ―Τ9jΨ)ΨYύφš1ϊώeιzu1pάΥf¬Vβ;y~ΎD xΜ½νΆΫŒΆ ΕvLUY²Α|ί άϋψ!ξgΰž"άkψSςƒ/aμG_ΐΆώηίʺӎ“6‡bξΑ₯Ώ-‘xU­eμHߎ£Λƒτe€Ώψ^Žϊ’Bμτe€ΧŒ§cjΫ1ΎVS£ζnω©ΘΏbλΐΕu6t.Ζt>³Ψ4ψ]Q_š––f|9γPgΐQ žsŒΎ hŸEϋ©ͺηΚ”žžΆ?n–_’ έ_‘Έ…ΏJτš ’τμtyζ·E!ΫS°~‘ςΫ³‘ΐ’―ΊθΙΆwΚIž¬’Ή‰,ΰΏ?ώψΓΏQΐ!σ§Ω1cεjΙϋν‰QΈΨ£φήTT(}~Z`Žoώσ/‰o°ύV°8‚}—υΔ ’πΡ—ζP©.HLv—Ύ#‹lQ…wΡoR0m–xT Ώ4Mw!PΨ™ΕŽαοͺu’―°³GΕA΄Iβν:ή=γΈJ/χ~ ¨ύ΄Qέ/Σt“Pv•wέ‘$wθTŸ²3ύηΐ•/~T₯κό!S·ΓΞγ·Κџ}-E3g›<ιjƒο¬4Ώϊ ©y˜&Ρι«Ε«‹Ζλ"¦fU?QyΖά3φW ΌϋI”Μ~©ΨdΏΣωΊ3ΒΎEΨϋky΄|»ΐσVγnyχ5 ΈΐσΎV#n~\ Έp-ΰZΐ΅€kέnxήν&u#t-PexV₯±άI3ό“V% a$ UΨΉΪφ †*Λδ’?%βc*UQ(eͺ‘…*άP5pηͺ±kE±*«(£¦κφά[£˜W”^]#ίb»’ψΗ˜„ί›ΐ3δG}΄“˜τοΩ³§PF€ͺ/°+pš€/^lܜ p°“γVEx† b  `ŒxΐlΑΝ±`κΙΐ™™™!'ΣΉ.0DŸε‡ι}τQ΄vBc”udόCΰ’˜@ΰ ?e5­έμo,―Θη;ύ+Χa[nίΎ½‰ζGυ-mT,Π±˜Π ΧϊJΞΕ7Cβ·Ι †ΤρuΧ]'›7o–‰'–»[(gάΈΔφ­x΄m₯<:QVmΪΤηwnΆl9]ͺ?2Vθ“πγΦώΦΪΪϊj l–όνIνS¦k±GΙΊ8&Tϋ£œNΰεΤ[‰‡ςΡ ΤJ ]<φΨcφwΜρλ’E’°f“άώΰTNΤΡ¦ ,l|€! ,Ϊ²ρA’=φ!‰YΊά|WxΦ‰R½s'UlΞ’Τγ|ΰ·9ζ‡Χk*ΏnXaμL[vƒZ@Ϋ½ηύyR Κ2Τ― Ol+Υ{t Σξ©²ε½yΎwLξ#œU~ pzΠ?WίχΆ”}›nήΦͺΟͺ‡W=G»f¬Εx`ο§/Ψΰ9Π—uuΐ£&AΗψ²uλΦI?γ°(ΖΉΐ‚{ε…^0>Ÿsš7χ=Η³› .@ͺ-Ύ}ΙβŸΔ;ωaIΌIŸι[·p€β[P xζDΖ~‘ϊ2Άy"ŽŠΖΤτ_NeαΚό+Ο1,,‘œΑϊ-£Ύœ τΊwοξO£²ΎΤͺόΫg7β# kβ$°`’±%Ύί.8b¬\•Ο<Ÿ₯§ož+σΗ,1ύ$Jώ‹—Hٟ+eCϋγ€ΏŽuƒ΅§ηgΟ‘bUίeaƒ τΧΞΕF<3Q?6Ο•ε‰>ΒφQ6ϋ›g­Q£FΩ?ΓϊέΊzͺό±Ui o ί+ŒDαδœ‰Iμ―۞Ž;Rͺχορ89σΕJβ›gόfρ‘-€ϊP}¦XδVQ>ΌΪ—εOxT_;»OwUΘ5 7'θ3›…ώ,EκOθ+Šn!ΙcTn7=7G°c~ϋӜ›ΐΜ£ ™Ό{ΐ΅@Έ˜ρdŽ|ώM"»rχm1rb»ΘΗα¦εž·{-ΰϻמnl"΅€ (Š€œlJΊcλdΐfβ±[T?ήΐ|O>-XΕ6ΪσζΝ3°ΐω”@υΕa”γœ“έp .˜Μ8ώc²½2u7;!O™§¬δ‡I~σzτΠIm ΨΫ~ώβ‹/€C‡Ž”vόHQ#ŽΤNؐnžVΘ;ωwΒXΗΌ<υΤSF•™:₯Ό(¦’žF NPΨF™™€βθΠ‘Cύ ²ΐ}’”zΗφ(Yή’•”nΙ‘Ψ΄Ίε`Ά3f˜m»­Z8uvy“c$£ο³y±Ž'=’Ϊϋω¬aώveΙRIŒ‰“΅Œrͺ 4™rόgλ ƒvδΜꀌ₯±…°#O·uΎ^ϊi€gβP―_ΏΎ±1Ρk_|—υΔs’ψαη&%υjλφΥdμ#3͢ݎlUϊ%p”£^€Žφz(.‘μ‡ž‘Έ―~4Y)S₯·€~V°!rpgΚ²ρή$κŸhʝ’ΨӏŒ8šυ[d°σΦρ€Υ”ϊΐΞIρ;Ζ£χ6ΚΜσ{³d/OχΑΜλUVw΄bυC‰±βiχήGAƒΆ«R•έ-Sελ2MKU™9΅΅ͺ"λg.Ξ,­[ΫNΡξ<ώ9˜.m¨φΖoτƒΛœƒ/κΆψO'τ ΚζΰΑƒΛ-xό> ΐ,˜ΟGuΨ²”‰σ(?ηςΨχμ³Ο6& TεKΚƒš΅³¦ξ©Ο·φ" ςsωε—ϋϋ)`:ηqΞΑγƒΘ3ε _6MԍιηX4d}qRnϊϊœŠώHΈX}~αS/K⭝εAυoA}~«Φ’yΣέ’|γεςΘ‹ IšvΑιδδδ€šό―Ρfm»­°ύέ‘νO•Νmϋ£άτ1”ίΩŽ΄£*nΛΝwœΓOecŽoΏύVΪ|πDuΏVŠb’LόΆ-QμΛ{I N_ίzωu’συο’²Bf?λŽE%R”XCΆ69LΞψd2—νΈυ΅ξ$Ϊ#Ρ'ΚσύμΥ6Ψ A³ˆ€r8ν½c$Θ7ͺόΰ“½vƒ)0ύcrŸnβmΥ,lΌψŸ-ςŸχ}ΠzηN±ryΗΰ *Š0οΕ’ρμζ”Ίwž/ §ξ™>Œ{ά©πlργI' Œ³χVEe ζ˜Ο\‹_€έγ;ΈψŒηϋ7šqύΑϊ Τ’ηιΨΫ.ΘγΧ±ƒ;Ÿ°³χhρ;Iφ·‹€πΊφq„ΐςσœ/cΜFYρνጩI‰Ε―<λ·Θ+φ²Ο&ΞηͺΚϊΤΤTγ»°‰ν‰g%ϊ)λ8Ξβ#ΖΔκ‚cUϊ\pC)Υ…_‘ό1ύβΘ‘#wπΗΨΥߞt§˜…b=ϊέ¦¬-εΪ“ρΗ―~,EyΉRth+I=σ)lTWQ•pž/μσR°Ύ1’<Άyc@ύ›χλHt[VX$ΖxΊΛ^`πͺŽ(V…ΰΖ͚Ι7ڏ"žU½>oτύFωšΎ!ΛβΡ]" zf=0[β,2—žNjτΎ9τX3Xδ:V/˜ρ¬x΅¬ήΥ$qX/ρ4mμΜrίyίψX _ψ―ωψζR}ĝd.w’ύcg`ηυ›TΩyΪvΨeη†uMŒž?ώ’Β‘Sy˜•’Ζ $iβP³hΤ&κwφ”Η%Να„>j§SŽ uͺϋ½kˆ-0ρΑ6­x΄ΐζ”PΚ9ώ"MޣހBψm6&ΜQd¦ΈτKM9ǍgT,)'ηG8ΑB|‘ζɎΟ9ηSΐΚμΩ³ε‚σΞ—Œ—(©+ɏ2cOΤ/­2pK3lΩ-΄ΖqςΈ€ΪθqΗgώ¦<.»LVxX<¬1κ_#7έ|³Qƒ¦ s_zYϊ θ/?ό°©§\'λΖΌ"e«8Υ6VSΗIσκn5vA₯v‘ͺwbkΪuAέ©ΞΒ‘.Κω€Eδ·\žt‹vg»₯NNΉOLέ=χ‚τ|Ι“UψͺD}©’†”w”Ψσ+ߎ;0+e›t1֐gE²ς΅±W—w](žΌ…š΅Lϊ“σΧJŸBsζρdλΦίΫόhΉxρ.Οoa‰xβ’ΕΣͺžξ.“*₯ΝϊSZKζVͺpY§–xυΗ@_ΪNBΪΛ]wέεoχ>ŠφMΫ¦ύΩv xΎΔΡώm`1 03}νΧφwφ!φ|<ΰ‡πέΐGNεΈυqαψ2 u#ιŸΘ·ν―ΘC θσΖΦ]+[Άl‘&Mš˜ςΨrΠa_βqΝώ{TOΔ6=l?jΤ(³€ΓΖΑoΞG‰8”Οη8pœΣη[@{9Ηχή{Ο@zΦw?ηlέΊΥ@_,"©Y³¦ρc#Pf”/YDB /=ςΘ#Νu@§‹:Ϊ·oo§\pΑ&N|7вωό /ΌΠψG“ο ³e«τ}b¦i—&ΡJώ³Π}A¨φW_Ο·Žž&q·^§Κ‹‡šρα”ΏΊΡ–ΡQO΅ώ•ςE2ζ8xέI8¨‘xΤN›T΅Τ³O—Ν9RΊf‹”¬Ξ”ψ‡H+΅ξ:78N6>=Οδ->kƒT[υ»x€Πγ%ϋΠc€¬i}ρΤO‘š‡h[Σ1kITjRHλ\|ρΕς駟π Ο^UvΝyβy‰j‘ρ«ζΡ5—Š\|7@Hϋxυ­,yω­jζλ³NΞ—Ϋoφ}<―’Ώ H— Sί1ωˆ>»4κvnE§οφc΄uΖՌkίzλ-(vϊΪ= S ύ{›²Ήsά*CΎ,°/α:ΞΑα7XΐζL—ϋŠtπ3vΧ΅kWΏ •σ{ ΦC^ϋPJώχ§œu²Τθr΅ΔW―Vΰ<“Ÿp}YΛ–-M’ψŽpϊ!T9{<\ŠŸ Υo‘Έ³νsΆΕn\gƒνKYp‚mm_JŸag|ΟJΞ~ŸΘBB;^έ™η'μΙsΑάiͺŽ[3E<Œe‚ψcκgΜ9εό1εXΉrεŽνI՞Ku§“² Ξ0Ο Ά=ύ»AsɟύŠ1O|§σεέΤXΣw2Ζ₯«S§NΉρ 'VΤG„Κ“΅Ώω­Ϋ.y~Z*ΉσΏ“˜ΏVΦy_TrpsI>εx‘ΆZwΊΝ σ J  QήΚ‚WΛ^¨ΚΞf ™/ρwλ»ρ£··‰Κ7ΗUyλΔ‡uηΔεΖ?ζw:[j^«ώ2‚P¦ͺΠ…Οϋ εz΅€Ϊ˜>":>­,dΟΤEŸ}oN+>φp©> [HνΙΜ–ά‘SŒ²³WΗ₯‰α(;;£μœ•cΤΎ'τχΓΞ’uU8d’Q£.ΣzHΈWaη0v‹άςδΛ’πΑ—&Ο ]―ιΨΎ²bΊΗ] Ddu‰2dbόΉ"V7mςΚΈ{b€™o xDρΈ'οY Έΐ󞡷›šk@ Έΐs EάΏ] Έp-ΰZΐ΅€kœ\ΰωW₯n"΄/nyω¬Α ήΐ¬Σ¨Q#4hJΒΰό1cΖ…({ “δ€>¨ΐ…3b― χwHΰY_κ{^}G ηΎe’b’?a˜ΎHmά0ά¨wώ<…·²§>)±?όjβ(<λIνyύΞΗ·§―TΫ­žφ_)ϋ~₯IΉφΝν%ιό#χt.άτ\ TΉΌ%₯²nΒ\‘_u‚‰pxci0ψJb̟E‹WH†ͺœsž§a έVώ:ρTK0Ηάv\ΰyχΨ±²XώοΛ(yμΩb¨©Y£LFχ•†υ+»j׏3AξT(DXΑNͺΒlfΛv…˜Μ,T<G0IΠ …ς˜…Όˆ› ϋττνΫ#3a({Γ 7T–΄9Žšp[άs-Š»Œw,ΠΜILvϝ;WΏώϊžk͟?_Ϊ+όE¦€gό‡ΝBΟΨΔnγΝψ²Χ¨Q£ά=βκ|fΓNΐ 6HPŠ£Œ( cΆΔN€…Ξ7OԟU%&L»οΎ[Ε”£δ―ΟκφΤΎΕ*u{ž+5Ξ;J^~ωecg m@·Ίf Šzψ ΅: ~ψm―[ Ν|Xώψk;ŒβΟ“γ^`¬ nστΪ3ΟΙπIόy uœmάyε€&οΗά/Q[² 0Χυjρ^ΎΚΫ><ϊδΟzΩΐΫΐiρΧ\$žNηD¦4Wr"ϋcΓ“oKτ Κi(=―Τ»υ’Κ#ΠΆ&λ7ϊafοΚυ²ι…οD² $*ΊD’ΣΚτw ]κPeφΦN•’)R²p½gK™ͺΡΦ{DœΆKv ½ ŽnΫ}`sΒoΆέ‡zήγždΡ ύ>6‰²:Š˜ΰ²5 ͺτ‡~ΈΑψ«S§NΖ—;ύ9Ηhοœ8†/«[·YΓ±`ΎŒEΐu, !„Σ?uŸyζ™~Ÿ¨μa}ώ‹/Ύhΐl€*ξT‘mGšψσχί_.Ӂχ(φBΎ½£@±ΤYn_±b…†Cω|όFοή½MeJ8Y©ίiΣ¦u_|'Pq:η n ά;|ψpΗ:ΛLΏ³~ύzΏι+θηΣ΅XlέΊ΅Ώˆ—Ί@1΄cǎfQΝ/€§‹lβvπωύϊυrS¨ΟΦΞ#}u ύn8aκΤ©§OωᇂΆΏβ%Hξ(UtΜΣΕ N;^κτν!_~΅ΐ€dΌΗhΣ¦MΉΊΓ.Άί±u·zυκˆΖM5–/Ώ^`Ϊξ9i-dKΏΗ$·ζΆΎB•<Νξ.mέΎPΗΟ―}%Q RDԐکρRφί·%ͺ€HΌΥ“$q Β_‡·Η$ζxVχ¨ aΑS/5OŒR \Ψ―‡ΒwΎρBΈΖtΒΞ§ŸP wݚξ₯ώσŠά λFΎ¦Π£>w•&‡l_β?©Š?p?[u`«ΊοΌίΉν"Œ§Ÿ~Z:wξ\Ξ'Λ^0_ΖύδλγwX”_fΎ_g}7ρrέ†±Σ±ΗkΖ|Α όθ?ˆχ³―Ν‘²ΤI>VϊŒεχ}cu|l8ΎŒ±'ηηζζ†έ1–ξΦ­[Dώπ6TΏεχQHϋ\…ς}Έ})ΎΝξ€c}ίΩ@τcΆμΜσS€Ο―Κ-_ώό£lΙΚ2ο•Ώ;ϋBgίkσLίjΫvpžO;§=mΫφtKΣCdΛΒΕ³i‹Τ~—œ{υU2oή<ΉφΪkε™ΙS%kΚc’xς1β9ϊ0‘fΝ3ΟqΐΖΑϊˆ`yJˆEΈ?/YΌD Ύ^(QͺΆJuwΔ“T˜tkEΓ<Εό1πό͏RψΐSͺ.ΥΆŸ4ΊŸΒΌΫŸω‚&π₯ˆGM—¨΅Ε«JΣ wί*žvšΟpƒϊμι³%φ«ΕζŠζ%yδΊ“IbΕ1θu['?Ύύύϊ)m₯FŸ[B^cς9x²Y$h`gT ρ-Fy‘ξ˜’?xΚvΨϋ ί܁gσΙ8V’t±aYŠͺQO.ήpϊˆΟΎ•‚™Οš$ Ο8NjάqSΘδέvΕωΊsΫψbY³>Z’“ΚdΪΘ8]ΣΖsδ$κ^»Kpη]2Ÿ{±k]Ά€ <ο² έ\ Έp-ΰZΐ΅€k}έ.πΌ―א›ΏͺΆ/κΟ=χ\σ‚7TZ€>Lάςβ˜Ιn&(*Rϋc‚e=§RK¨Έ#ω>πŒJOήΔϋϋrUρΑ-$iπβINŠ$κ:Χ«Š9£Tdω*³]bΒmEڟ°Sqν­‹VO}Σ…χ–ρέtχŠΦ=φx?ρ)3ΚA΅‡›O@IDAT₯α(½o·Ν%Ώ­– tς™­αλ₯Hύ±ͺτœω$φ^)Ψ~¨ }ΊQ$οT³όcΘ’2Ω:βέZ %™ΉR½ύa²,g½_­ϋσΟ?—SNΡν¨r&Ο,…$,μ°}ΡEω•i'}zή!ι“ζJ™ϊόΔΒ š‡&L‘OψΪ@zΔ 8‡Š)νMχ3‘Œ¬LiΫΆ­\Á,PΞ€ ΄/ΰ{μIϋ£žΈ¬R! Σ—z΄δ5ͺ#Η(ΌIžΣQΡ#p m …Ω7ί|Σ§¬ψΠLωτΛ/Lœ (dα$Ϊm“ŸP0£δδϊΖΜΊM3‘πΨ#₯Ϊ=w˜Ο•ύ·ΧgsgO}Bβ~ϊέd΅,%Y’οι!ήΦΝ*Λϊn;^όΑχ’ύδ»ΎτO;Lκήu₯/n}‘ 4gŠWg­['1«ΧI”n―½q³¬δd―n‚“›ξ•²"…οβD’›λ–εΫ`g―ΆέRU5τΦiTšSZ*œ«Ÿ₯^mςjŠWagVMΦŊ υω#&Z ΏLbΫ4°‡vϊ7ώ†zN%8Ϋ=ώ$33SP‡δ§έγγΉ'hλ\Kΐ_ΠξΉY ‚εώc1mΪϊds²ώ‡β^'λ_Ή‡ΈυL'0l―α;ςk}χŸυΑ| ’\θ£+ꟸ§lžπΫ,L nζ󁺀αšν=}Ο=χ˜Ύ(°ΐ66ηΎ˜ΰ±)κΞ‘ό+u€}>ώϋοχϋςlξΘΔ‰ύ6³Ά%xΖV󴏠~ˆ—λ9ŽD'ΠO`'μK οΗ7bWΞ§o·JυτAγΖ? ―½“'Mκ~νχeΔwΡ9Ϊw}Ί@Όρͺ”―²:Aε·mΏξμ‡85m«²J”Η9€[aϋSR¬Κχ]Rτρ’|ίH9GU¨)/ω|πΑM[&}κŽzgα Ην{Ρΐ1Gρϊ,)U΅ζ”v-dκŒιώ1ǏΊPό/…Β±)aι₯xξg’υκ|ΩΪδPi4μJω!o•Ι3Η?ϋμ39ρθc€4ΦgΎ3AU,sΖΐ˜U덍nVtώφkμiΑ~ΠΐσΪ ’ΐ,‰^Ύ˜ψ5uοΪ3U…ί½ρξyώκζœ“-~="N,Υv²fπΛ"yzŸ4«-iγ6ΎΌΒ„«ΰ χ³υqvά@[η~ηΨ—_~)νΫ·7)3ζΐ7qŒs}ΎΝΧ9}Y°ρ.χ¨] Θβ  ²hŎgˆπ°”ΐ»G|pqΰx”ϋΏƒ:΅ν;Rtc|2_ žM’rςΆΌ[ξ~φ© ΐ3ώ*##£œ/cάgύ} /c<Ν5Ct1[°~;Pvη˜_Ε³ JΒυ―M›65‹8Γ}rφ[Φυ₯˜hΣ¦MfάΘgΐvΐlϋl@ΉYxgΗθτƒΔG]8ύ1v’.‚=?Eϊ\pί€{εΌ‹/’yΫό1‹]‡ςΗδο•W^1 !m{bwϋA]€«uΆ§σ7Jα?–³N’ά+ΞυCεβΓΉ‘όƒΔ£ύ§3ηVM₯Ϊ©ϊΞXΥ–½υλ8‡ό πœ5λEIψπ Wi‹&’4μ.}ΧΩ»qοΚ5’?ζA…~sϊM–Δw‰§I£ωΫα€.τ˞πˆΔώφ§9TάξPIpkH Ϋ½Ϊk+Χύς‡ωͺΰΒΣ%υζ«ό‡?μ,μœ7dš.ΝIJ„±}ύ°3ΟIχŒ—(Λ{QŞ08<•…ΏJBΪκ ₯X‘πκμφθΧUh}Δ”cŠdsV΄ŠΑ—Ιδaq*BΎgήωUa±ώ±Q»ΐσ?Άjέ‚ν'pηύ€’άlΊp-ΰZΐ΅€kΧ;oxήyΫΉWώ3,ΐ‹zΤ.P½β…=Ϋ&:/»™e+aΞε…΅Τδ%ϊSO=e&6Ώώ{δ'“!drΖ΅«ŸwžU­`œͺN¨ !œΣ€F7UkΤ|Vy`Ϋ<…QΌUˆM€κ@G\εΙξΞVO[ΚΎφA/΅:Ÿ*Ι—©Ίˆ\ (œχ«d>φxuRBj&+Ψ|½DΥU5 %—c_oΎHζΨ΅½νΨ`š*-’ - σ|ͺ‡₯ΊJΒU~S¬’°Wgέϊ;OA‚¨ ίxΏψζ’2PaηŽŠΚWΡ1ΝEο}#9³ήΣQΕͺτ]]b­©[go1Ο žό‚Š.χ+‹‰—œ•Ί°£Tο©Τ$©σοΣ²¨/R§–oλrU’ '¬~fž”Ύλ[ΈU―ο’pb‹p. λΪL8νžη<ΰ{,X`όχ Pΐ•Γη' :π%@eΔƒ2?Χχa°σΉžϋ˜ιwήΩΑ—qœ/N_ΖNF”+ώ‰>"Ÿο€eq ώŒ nό~ζα‡@cB pμτετΐΘv„Ή@γ~l?ŽΟοΠ‘ƒΎΈΞ©ΜŒ}/Pΐ—2:~ύέwίυΫΥΩ—αΗπ\τΡ?ZŸβέ@RR’ωžE>Γ† 3ηΣf~YΦF7`Š’O>–Ο§Χ‘v”φSΉΟΎ.1+֘ψŠNn+ΙϊμoΣ¦νΠ?ΣwπΩχ•΅ΏΓΣ’qό“OΘΘ‘#Mά@,dΑΤ}6  (y_yI'ωμλω;Œ9ͺΕ'κB†ίΩριOι7L6Η–HΪAM΄q|jΣΖ™χ‹(^x‘ΏΏ‘ί²ύΌΉΐω_±aχ>*±Ϋt΄€τΉΩ‰;Ou~> gm7Ys^–ΔOΎ2J§z3JΑ'HΚ-ΊΨUaΆHΓ‚ο£dϊΎTŽ?Ί@φŠvφζΚκ/ˆwsxκV“F“:KTrδy‰4οΑΞΗ7α/* °s Ύ‡±ΦΒ… ’2ί[Θί.paΌΝΨΡϊ||« ΎŒ{'p,Β9(€£Oΰf¬Šo'w’&Νβ8Asos­3π7ο1Y“α³\ρώ{HΥά³ηΌ$΅;œ!wΟyb;πόΚ\)*Σ¨mΑ™χΚ|ώηl°8`ΗΤ|Φα+#υ―Τ€tΈΟU€I_Κ ζψ+ aŠΟŒΝ Τ°3ΟΆF°z؝ΟΞ¨.mͺ*ΟΫ@#{Nΰo ˜Χ|τΡG¦ύžgζώ gΡ‘ηΛo₯θΑ'Νee:–Mr—x[…žΨί[ΐ³χ½Ο€πΩ7}°šΆχ„.ιx¦-ξnωνQεGο†MͺΠΌYΌ›2dλς ˆVˆ‚Ÿ’ yRϊw‘xυŸ§zŒΔ5‰χ)G¦Ϋt—κΆΧ₯΅jH™ώNiΡL՚uμ °K™‚λΩAb£Jr)μ\R‰ͺΰμL¦ΰ›ε²αώχΝWΡ“΄.흇wω3ΎΠΉ("X„΄{ ~όχ;> ΓύΙΒ ž—-[f@ζ`Χ~‡ΈρΖύ0ΰρΐΏ/Ήδα9sλΦ­aω²† ψmgϊ§p}>‹hπεφΉΪζ |(lΟάτK(‘/RΨ>ŸO}πφΖ[5y_(ŸΊ=~ƒk©§χίίuΡγ㉏ώΔ*«'~Ζͺ#Ϋ4π[Ξ2π=‹8βΣ ψΝBeξΪ΅«m?ΰ όόΑ§…€q΄L™Ψ=lŸO›"ŸτΤG™*0bς.>q›ͺ6ΐ3ώ”²DΪώn=ρ4ΙnΪΘ”ΗŽˆ?°άτέ―ΏώΊd>₯Τμt‚\ΥυϊΚΗj§eύ“[5”Ηg=a Rβ&«; IΰyΫΟϋΞάρ-OΏ& ο~Ξ JJ[$ΙΓzU¨βyΐΟΏύ.3fλB™LcΌ’ƒJRο[EšlƒΫv4i…ί|ϋ£G¦=ŠΪΉH»Γ eπ]IΪ&+Όd‡ƒή’RY=θEρΕ;ϊμ™6ε:‰ͺy?°CΔ»πχ”s‘F°¨SψβKΈρΏNŸ4kCzzz9_Ζ8Ύ›…)ጩm?©₯Œταβ?Ί(&kτtI>ε8£β, λω£ΫΩ•Ο™ ςŽΎ_’Χθσ.νς³%υΊEœ\ζΛoIβλϋ”Šm‘JΕ·GΆ8dC†δŽx@ΗΠY4Iθ~xΞ>Ής|θ8£ΆΩ@KΩρcv’V€CΥ-Pu’sψ±ΐ3jΆ(ͺ™ kGΐΖ(d†[nΉΕ(42©’¨Mƒ± ωDe˜ e``4ώ΄θͺΰ–γ|ΤxΙg`˜9s¦Qa#_VΓlΝΝD:x‹1*tΨƒkš4iβϏ3N΅ΐ3 yώ°ωgμυΩgŸu6η$Ό‡ψQ©¦  ΰω‡m§‘t@5…W ~lyξΉηLύScΰk'`7«HIž¨3μ0oή<›TΘίόζ{Ωάϋi9§§όίόΟ (¬άδυš‹;Iϊ ΣEj$I½—ΙκΈB›K %ΉAχ ’ŒξΣ€,s«€t»Xj\vš)§Uκtf SΪƟχ½.₯Ÿύ‘Τ|Œ4žΣC† Zrζ@ΪΐνΨ΄₯Λuƒω3Φ[ažlκΑΆ'l hHϋ Z¨ oΞ±χ—3Ο;|ώλo)šψ xΆd‹CwΗΝβ=Υ§”xξžsσ}*¦K2Y)UκδΑ·‰μΔCͺΝ Y 42ΒE+$" *„ ₯yΊ=uzΎB…Κn€&HΤ‰Ε[§¦”ΦL•-ΧΟ^š₯-!TϋΌΉ…²nπΣ"λΥΞ5₯ώ„%ͺNjyΫ2WόΏu²nμ›4}BSIλwQ¨lοχψ8”+jχφ^ΗGYX ί l†h―ΐ8? HΪΆmΫr Q¨kνόSeΎ  Τ ΚUΦ?‘ڏ2°³oa Ο ω|»ΐ˜gλN:νΰ_)ŠΙψμW§Nsoγι#φ,@Ζ·²˜…››kΐ[”•ρϋ(_£¬Lύσ}ψ||Οιcǎ5 >H‘ ¨'Z›5kfϊή‘κ³Ξ8γ ΏΖGαoπ=Ξ&3ϊώΐ›>Ν–›ψρ‰έΊu³§ω:³Ϋy§ΞJΛbεKΞ Ϋη[?p!`&yγ3ω€¦/cόΐu ˆr~$νο–7Λ·ίgfΩρjN8@Ž(χχνΫWzuΏM’ŸS%Π1WΚƒΝ¨pΜA=ΫφΔ½Εϋ–+ΈΒoϋώ υW ?kW{,ΤoοΏJΑύO™χΖGŽΈCί‰4zϊ<{tŸχ­Ο‘ΈEΏϊμ  QβoΈBΌͺΎ³aαΟΉw¦v>κΠ"Ϊ{η€’U^οO«Ν3gƒΡWHlΛ]!wΆLΞλία—¬ŠΉ=Ζ"ό ΜΆ γί'rίαKζι؍3Ύύφ[3Φδώ` Iΐ—αOνψΕΖΛ½›™™)©©©ΒŒ`~ƒ΄Η‘6ώ†ϋ’UΕsy!^ƜτίωcΪ}ν…oμ„vE퉝nμψ…Ύ—ώPΪΆ vGα]· œ;Yϋ°˜e+$&;G2t‡‘ŠςΤ―_?)}η);¬Υn}?]πμM_%…γt,―ω䍿»»΄Ά…η·φ«YΜ–xU½&žNjτΎΩ@Λα\nΞωs₯δ{X<:~gΔ„~·ˆηΨΓ+Ώ|ΛVˆΌQκϋΈΔ! Ρ:τu:vvφdεHξ ΙΫaη‘w‰΄ΤΆ…œ‰3΄ΟψΕόΧKΛ}fεοΗ=ϊ‘;p’D©JYέZ’t―Ύ{ΨC;ΟΨ|»Ώ] `Ÿ–xdόΎ1Κ GΚ>pΓΎexή·κΓΝ́gx>πκά-±kΧ\ Έ8ΰ,ΰΟ\•»vX€—Βv[E& yg U^β£:…Z P’})ΜƒUEarϊ¦›nς7Dλ<ΜΓ‰σ₯Έ#ιϊψΣͺu{Oiž\]ΆΏLŠuKΐ€ͺœΌ‡^θΜ_¨JAϊW'JZ4–j:©θΡI΄ύ)¬~τ)›χ»Ι² ;οO5ηζ΅ͺ,ΰݜ#λFΎ ²AA$€M½ρ,IΌθ“\Η†)‘Hρ1RoΨ•sπZ\QUή‹ρΊΐσξ5ώZέ)vδΤbΙΜόιqc¬œ}Ϊv@uχ¦~lŒ€€6nά(kΧ5°πc €2@;>`ςŸkŒ?,TaSlbRš&󻀧§uJ ύΪs― °‰’ΪΚ•+MœΣ¨Q#£ŒŒŠ(c’Ψe²Ϋ`ςEe ›WΞ!Ώ€Iύυ—9ΜΡ\œ7μ˜ΙΖGΩ•;tθ`Ύ˜Κvz¦|λI“c@i@wNlςςϋοΏπ˜Z[‘wŽ*YΫbC€Ž1ΩϘψΨξ»ο>T“Νih‘δjƒΣN ,0 ΫΦ(i+Λ nύϊυΝΆιΔgλίΖ]ΡοΌu™²qΖϋ’:°£*Ο>ϋlωσΟ?M½SΔE9HγΠΦm€ΰοέXT €)HPXΑΆœκ7uΊaΚ‹υνοRwRw™ύΕ¦ ΆI]c+ΰGκψ ¨0cξW²Y?›>x‹.†K–¬¬,s>νψΐ-Β©k§]O$%˜<―_Ώή@3Ξ<:oŒ5ͺG°?*¦~ΆVSκ7ά œ7zͺΔ¬\c.)8νx©~Η-;lΗΌ'gΆ‡Ξ›ς„‚Ψͺ†¬‘DΑ‡jύoΥΕG!Ζά@3DT•ζlUh6@3P³ώxt›κpJΧe΅kuf€ζjΙ©’5χkρz’€LΥYλLμaΐφpβ²ηxσ eύ°ηΔ»ZUF«'H½ρ7HtύΘJ–(,½vΠΛβΝ/–¨Vu%mΜβΡ6°»ν‡ΆΘ‚ŒPν?‚j±υΏψ|{Ώ ·rίβ7ˆ'ά@»' ξ'ξ/ξχ@_Ζ}ƒoγu€δ•΄“ϋ'@Yό¬-χΪ<ϊ° m Ο'ŽZ΅j™ΚAά|Χ΄iS“§M›6 ꧨQb›kΉF&Nœh 4ώζ>θc11!X1uκTΪΏ°#Β°aΓ̎Αό+~EDψ*Žγθƒ°1ΐ};2QΗ6§θ±™υe”@ŸF?$ΝBΫoq>Ά$-ΰBό;}qΛ–-Νu,BzQU/­]θΧlκΆm ;‘(ν„Όρƒ΄€dκ‹ώnϋΛ_ΊZbΦ”ΫξΎK6oή,³gΟ6ΆBulϋwΖ3Ψ›τ}ψ‘§ώ»~¨1‹P°ρΠF.\(Άί’S/΄!Ϊυ|έuΧžσΓ ͺ0™;ζ!‰Φ…+^]t‘Π78dφžΥ^žΎ‚η^3j›ΨθΨ#₯ϊν]Ε[=9,S; hΒƒˆ¨"χ.ΐΞkPJ?Ρw0ΪπλυΏHβm,Ή½ςώ{ΕΨΟΞŒƒ ΄Q8Ι_ΒϋBγm`Q‡](Αu ΆΗωΝ΅ι:ŽgραW_}eΖ`,ς`ξw~“6‹π—V˜΄y†`g5k–ρ―Ο>ϋ¬YG<ψBΠ_HχοΏ6~ Υ¬Y3ζύθνw€°ΛRz„.φλΫΝΨ€ϋ1Π—α{Pf‘! ΈGΉχ‰“{œ±h°~ˆ1ΈsgςΖ΅Ψ‡>%˜₯LψOlŒ ρΟτΤQ`Ώπ|ϋν·jϋ7§}*ϊŒΒΨ†η‘#FK:€Λs v’&οΪ@$Ο\ƒ­θσxΆ |V‘―ΆΟOΔM‚?f L>ύ1cλvνΪωύ1νσρΣ€οΑΪΟ0Ό‹pΦ;LπΌJίfΫ„³½σμΊDEυ!I½n’ογΌ¦ –'&_Gόψ‡ώχ#aJΙα­%ε΄ΰm£F‹Γ ;BΟίό(κ’—bυQš^θ~±’΄ ylΔ.YnΖώTϊZU= °ψ&Ϊ“βΡyήδDίˆΊσ@₯aύ&Ι>έΧ)¬ΝΞ‰ΊYθΛŠΞ¦ŠΚͺμlTšG(Έ\‰²³U…9  ZϋΘΔΡ}ΚΑΞ[zJβ?Ζ€‡*v§ B§o¨"uή=χš8ΛR’%y².ΖΪΟDPlQάί Μ.J¦?Ql sήyν†κŒ‚ύCJαϐŠt‹±ίZΐžχΫͺs3ξZΐ΅€kΧ\ „kxΧRξyD 0)ˆBP¨€ /Ψ™ψ"± ΟΌ G ΖΎτζzŽA3Ρΐ$9/ΖνΔf¨ψ#ωώ™‹―’žŸΎk€ηω¦I[―δς]:wΛγ/IόΗ_™8ŠΫΆ‘”{zˆΞjοRœ{ϊβ5³τΕϋΗKM²©‘κ]NέΣYpΣs-°OZ iέXUs^ΎΡ—ΏZHΓ~:α‘€ήμ|Y7τU‡Τ‰•˜(©7T‘ηΓφΙrμλ™rηέWCΛ£dμύΊεo>p£Wϊί+Η&³ϋ²±CLŒ+X8ΕvΚΐ-ΐ( €I&•™μFIλΆΫn+Qμ™~€Α8@“ή\G`‚Ϊ ύςφ€fΐ«.7nœŸ˜όRξbULΰΞgέ渁ΙpΖ2€ΐS„ΐΌ2a‚5Pe$.`_ΰηΈ{δuHe<&γί~ϋmΏb(ybμδœdη|Φ`Leƒ³μ^c²e1ΰΰ]&ή±±UjΓώΔd`υB¨ΩΖ©7π;PWgΛhκŽμΑؐ8³€nΨp‹ο;vμhς„Β(Ÿ©KκˆuR~i0ΎΔ¦(¨Ϊρ(cMΤψΫͺ’~I££€ϊq­eΨ€±β&]52ΰίHΘεA['Άξ€€!°eD±Τ‚{”eσμw%οά£όŠ«€ŽΔ$Ψ‚]^ΔC½-\!+ͺΘ@ΐ™Ί@QuVuΝ‚κ› <>gΞcGςMϋel=eΚ?ιάNήD’ΡζΈώΥW_5 €9v_Ίd©nΗoO ο·Β$9χ?.ρί-6η—4;HGτU₯²νqSμ xR%AλOήψX ^~Ηl§m”ήnΉJ<Ηλύ£ 3@³W…­ΛΣ·ΝͺτθNπ¦T“R€™½΅S%₯E3‘Ί΅} Νυλ@Hϊ£)]₯ΰΚ°§Dt|ΰU²Φ„n•œΰ?ΞoA‘.šzNδoΝ{rΌΤWΨ9JγŠ4xuŠU_οf“κW—Ζ“t‹πĝg*JŸ6Ε½ώΪk―™φOΫΔQη€lψ Ϊ=@m¨©ίΐοΐαΛ€ΑΒYώΖΟ2QlΝi‹l€§°€Y(uβSΈίπΙ΄UόΑή£άλΞ@Yρψΐ6ʊtφ-@M@U€}μ±ΗhΰH ?υΕ_˜{έ.ςΕ§’ʏ¦α`gl‹ΰή%―δ‡ΟΆί’Μ€Μ|η ψ ΊP6J#€€€—~€οωΝŠαΓ‡›γψ%ό &ηŸήΨ »PVkWk'.¦Ο₯ή­/ΓοSG@{'Ÿ|²IΟφ[ΨΘφ₯@g€wψ>ʌR8ώ’@_Κ1»O‚."ήΏί|ΘΡRt,ρ* ?αρ4ižΤΏ¦VOQΑύ8:z„ι#H›ΊBΉ;α[Oπλη%΄Δ6iςΒ‚χ °ˆύρΓiiifμΒίΤο8lΐ>τγτiΨ EΥnΈΑœC½ Βoϋmk'κ‡1v&ημΗ;ϊRκΪτΣΒ¨ςνΐ¦τ·ΒWΉγfJτςΏΝ³KΑ…§KjΧ+˝ϊžUα4Y½ΪΧ7±p%αΞ›E;Έœ "ύγ·ί=2vz‰Φ‘FΥΊHFή½sΚΞωσ–Κ¦G?6ΙΧΎι IΊπ¨H³²GΞgΌL;₯Ν3ž’mςΫπ›ψJΪ)‘kΧ2jΤ(z" `wvaQχ…sΜiγ!~ό6 -π+άkœ |KόŒ ;Z•{βeLPΜ½I°}`4κμ|bCX_FήQˆ%ΰλΫ·ooξgžMl^فγJo‚ΔίVϊ=2Γά£ψ2ϊ»γ ~Σ.¦0χ¨Ž_[R>BΠίΠG’ζΊ¨ ΏΟ˜œϋœΐ‚»ϋŒUΖΏ’RŒΑ&ψv―ΑO~ϊιfLG0fΡ"ΫΣΏQ6ϊΫ—8Η»Ξ~‹1γDT¦)/})ΑBδΨ:°Nόq3ΰ;κP|“­SΪH$Οψ;ςΛ»³P’ϊ€|μˆΐσε&pγ}ό,v Ηs=vΕΏRwόfό@ύΠOc'αΨΊ£l€Υ؟sΉ–E’Ξ@™YΌtI΅Ί’Μ\ɞ4Π<+p}2οΒ-(M½“ύξ:/Ήy€hΩŽ JZ6‘δScε„H£ϊۏ…ρ)πœυΤK’πώηζκ’¦$ydΏΘ†U?wΤκ;Χ‹7VU™ϋwO»ΓΒΘΡφSΌο}!…OLj‚”ΥͺαΫ±^νν'„ϊτχZΙ1]’TΊL!ι€1 "T°€Žσ«JsΆ.rDΙzdoρ¨M+ °sΘ;ΕλͺίώXŠ΄n …'λϋρΎϊŽΏ² ‹(s41«Τf@Ϊϊ‡άY‘²¨άγv§ήψ JžΝηwξΈ9VΞ<ΉόsΟξLˍ+2 ΈΐsdφrΟv-°»-ΰΟ»Ϋ’n|\ Έp-ΰZΐ΅ΐ>gxήηͺΔΝΠ΄/yν w›,3Ι‹n˜$DQ„—Ϋ¨ ςΓΛsΰ ^.σ›—ΥΌDg‚“ΐ$Τ¨u €ΦN5˜`η~W°f<ώκ+²ρAςΣ|“؁ημξΏ½:Ρ³uςγϋγLΤη"5o½fw'Sερ­yϊ)}Ο·΅kΤIΝ%­ΟΕUž¦›€kύΚ₯e²ξήWΕ»x₯/Ϋ‡6’†Cπ‹‹oN¬‘–«U)2&Zjί}‰ΔΣ|Ώ*ήΎYxή=΅°ψ7Lz¨XA žzexί8iΥlߘΠ`œΙd&δji1N€c<ΑVΑLsŒqE¨ΐu·«Ίj‡SœΠ―=hΖΆΦ€Y€C@₯€, @όLPG’WAuΜΒRΞΈ“>ϊh?\Λ1μaΛ …rπΔ¨‹½°°ί9ςLά[ cΞ²̜9Σ@Tā:i³fΝLόŒΛ˜άΦεz ]1oωcΗ €ρ½Ν‹žΙ“UqΞb¬GάΆNŒ­zžέύ㬳Ξ2y4ΰpžxaαi`ΤΈF€€‰§H·.ωc$Άm.Χ\Χ٘ Ύς†d”ζ،όšxC‡KQNΎDWO0€Zώύ (m?Ξ«¬ξ'-la!pμΤLS·n]cWΪ°£#rΘ;ίΫ15ιͺ'$Ki”7h]3Žζ°€'νπ†Ž—HŽŽ9“½Xς[7ρƒ–¨~ZUrΚBUwK~ϊYuΜκ=ύXί‰όοωθs)R€B *e©5$~˜*₯6ρ-π©RΰY•IeωJɟρ΄Δͺ΄‡6-ΕΝI”‚'4ͺ< ΕxkTW…»ͺ¬P³‚Ν5Z670³¨Y·›vΝ‘’α{οΖ,Ω<ψ ‘μ<ρ¦&Kν©=Ε“ξ W‘*^ΌιΊJaηz£―“θƒΒ@"σj<«†Ό"ήU:ώΠφ6εZ‰J0/q†ϊlAWΞa±€&>ƒφ Τ ˜EΓ§ΨΕζKΗ‘ϊ ξ{ # Χ—9οž)Ή‡½Θ+ 3κΏλ—œyΕ'ΧUδ_ρΞ…ΑάλψSΐχ²]ύυ& Ψq  ΟΚΨ6X?„oη{ςκμ·€κ¬2oϋΟφ[ΐ_άϋΑΗΈž4±!ύ ΏρWΦΟ„c'ځӗUΦoψφ₯,‘Αϊ}ΚLΐz‘ϊχ·ό[²ξ&ΡͺώX¦ ͺΝ/Ÿ|σUωώ]γχιžβ—Ε?IρšLInΩ°ό˜D}OYφV‰…Ώ.ΣίφYΐΒ’*쉝ȋmoτγV‘•οiO,xj€ŸϋθΕW€dεjρν[ΐ9•΅GφτΩχ΅oαJρQKυ o©’%α <ηΘΦ'_ψ/ΏίΆH&F Ξ9UjtΡq£Ά³] Ώ/’QӊΤΗ)pΩ’HFχOά©(‹~]-ΖΏi`ΐ¨šIZΏύχ χ-ύ‹―ΩέΈΧ9†_³c9'X¬πΑ΄ϋPϋ5gƝŒ#Ήί{Ϋqc,ό γi|Jฌρ§s&‹AΘ7Ύ”ΌrjώΔxέΏην’UX 'θ9Œ™ΉG{vλ&%Z6½`‡{”1aΡ’EF5˜Οo½υ–QΡΗF€AY ΙbJ«:Μ1ΰcΰl€ΩQ ‹c7Κ‡Ώd \ώš2r-_FίBΞος]`ΏΕk‚υ[ΐΔτ…‘Τ)iGϊ\€=*z~rŽΑ‰Ÿ~›†2΅ΥoΊΠ„dψc”§Y₯ξh1š§z-ΟN΄•C’ΜΆγM­w>BzΧnΌaΣtαM™ψιϋώχΰ<Γ²PŽ9XόbϋY@]|φ9RόΥ’σεwσΏεβΙΛ/WeΦR՟O9\!ώm~ΊάIŽ?œΐs¦ΆΕώδ{?]tœ*Ωχλ±Οσκx»`όL£–ŒJqΠ;Dšϋښ#ι ?zŸ~] ή™gΞ)mΪPw@ΌSWΐ_.’?%¬¦] c‘Τκ’8VΫ< C…u›άAS|ΚΞ s'Ί«μμYπ½NΧ±Ύ†β£‘δ‘ \isε²€ν"gΔύσ{Ί±wβθήεβ,wϋ‡k½`ϋΛ•―~H Ϋ’{zΕΘ1Gξψ.l/dλ€Ožψ&ΰ`/[ΐžχrΈΙ»p-ΰZΐ΅€kΧUoxz»)μ»pΒΐ'(νρ"œ¨ή11fQx Μ qΆΉD΅Δ@^Δ3Šb’ LΦ}όρΗζ%°ύΞωΫ>π;Ώ«μ3(‹8–ΚΩ•γ^}1;z†D΅ΪLt$ήy£Θ©ΗμJ”{εΪ5ΟΟ“·~6i»°σ^©7ΡύΘλž|_ΌώβΛqZM©?²³DΥHmδ‹dν¨—E}PEν»:JάΙ­χ£’νύ¬ΊΐσΧΑη_GΙΜ9Ε ‰Τ¨^&cΖJΓϊ»ο±jΜvΒȌΎž‰|“πNψ ˜j­3ŒQ˜ΘΎθ’‹œ_›ΟNθΧx°c  šρ›Ii'HFΎBεH˜Γͺ?ΫΌRTᬚM›ίΐ³΅κp€ L€[U6Ξg"₯hŸ (œq Lφ[xά*£ν,;c6Κ ‚rJΘ~υLˆ8¬’$` ͺ­ϊΓ^@z”ψ9TRglΖ½‹=PwEIΩΖA^Ι3Η/’·ͺφg«ΔŠνm .μqΰηΛ.»L.\θF€k,^/±ΥTIQ'¨9e,όq‘Q•ξpμΙςwφ&W€ά―°8νήΞ_§†Q³ΰ Ϋ€Ψͺ’ΊsΒ΄= yΤIΦ§τΌ[Φ½ύ…ΤνuΉ)ν€ΆcˌJ*ۘ;λΊc»Σ$oΩZ©~jmόΡFΥΞYΧ¨Ÿb/@fΖ΅ΐ€…Ÿ~-±mΚxDλδϋΌŸpσ°Γ3°€‘’Ίx–ΫGIΑΙm%υφΜω‘όηω}ΉL|Π(y΅Δχώ·xO<Ζ( ξ΄Βsf–x2TεXοΖ £Π΅y‹ͺ4g Ώ£xŽ^΅N<ΊπˆΰXΪX›<ΠΟeΊ]w™ͺ3—ΦΤί ‹ΤhΥB€N-…šU5Y‘f₯‹")jΠs½™9’qΟcβΩ’«ΊIRk’ͺέΥ­τάP_z·διͺΉfΧORΌΤ³s°³6~Y5φu)ϋMm# Ηι)Έ]EvΪ»Κπ΄5π'Vύ9Ψ {Ώ#υ={φ4jΓαϊ2ό)*ω¨aƒqŸ;Cΰ= he!1ΞcA‡UWε_ρ(5γ7)/‹hlFΞ>5Jρ‡‚₯O@Ϊ|™3|ΨoaΫOλ·l\Ώρo¨9Ϋ>ΛBΉΔυξ»οFd'8ΎΜΩo‘.ǝΎŒώΐΩ—bWΫλKρΝ”χυο%2$ΐ8υ[%φκKδ½jbiϊχ›ΟUΤ­šνΫ7ηHΦΎ”ď?”¨b] qhKY―‹S¨Πφqίό-Q΅’%FΗυ1 Se…*6φδ)0DηJRoΗΌ G© wΎ–™ϊΔN¨{γΛ v±M“vπώϋο›ώ„q#> ’€ίş2ώε^ΰcύϊυM<Ξqb ΦΟ Ο'Œ™yaŒΕ’BηΨ•ΌZεd;>fόiοQ>ΧyŸ”ͺoMψwg‰Qυgη=J|,φ.fα οI±3 Κ‚―dœKYΈ†π=Œ»9ŸΕtΦπ\ΐqϋ•>„E’œΟυ<‹X΅dΚL“žΎ}gϊAΔ(œύΦσΊΖi§ΐ~‹ώz΄}G8uJ>#y.`ŒL^ΓƒSΆPΑ™³˜eΠ`)Ω’%nΩμ―»@ΊC=ός«”Ÿ!‰Γ{ΛρgœnΤΖΧΊIόU₯uό‰Ϊ0ω-ΡΟ›ίόPβίBRτΎs3 XQλfŠΣ€anχ²ŽΏΏη‘}YΊd}¦cό%ΛΜxΧY>ΖΪ%­šH΅SΥΧ³Θ₯A]ηaσΩ <}kI^»ΡΌŸΞ»ψ,©yΓ;œ_ι?OςοΥ±n‘ΎShXW’Gυ―Ž­Γϊ\—=ι1…7—x{θνz#n3†Œλ—?$ΒΓβ)ΡΕ•Ί1i¬‚ΖΪG… @ηΓο3ΚΞήΔIq—Tͺμ¬°sΐ©ΊhJw†Ρ<%’·ΓZmOβ§%R4αA³P¦Έ…*o»',`|λΔG$vΡoΖφ »‹sψφ8έOφ 0”7=_~Z§Ο’‹΅buΡ–οωzΘή›;Ιs ΩέΰZΐ΅ΐž΅€ <οY{»©Ήp-ΰZΐ΅€kΧ{Α.πΌŒξ&ΉΟX€—ΥΌ4ζ‡—ιόmCΰ w Ψπ=ΫυuPe£Š‚U|ρΏθ 8ω‘G1πrΐΧώΙd.Ϋ5ξΰYŒάHΤ4Ψͺn°*$ικώVΏτΉ”½±Ψd;κΈ&’Φ²ύ­n~] μq ͟d<€’NPyTέ±ξˆk$:M‘*ΗΝοtΛdυ…΅ΊŸ+ ά‰Žp+ΘžΓ΅Tπσ^};Z^ώ―OΥ«^`ΤJέΠ ~uΥ °³bΕ vӁ“ζL;h ˆ9α€ΐ\2 ΐΨ#77Χ―@fΗ$Ξk9ΧnM δΐ \@X2eΜC|«V­ ™WqNͺ;σ (gε€T-<_ ˆjAϋύχί  (Κγ/ 4ΚbA7Κb! Š˜6mš­eg\Δ€  r0S€ ‘9sζ%>'π „l݈¨ ΅2›W«πL9Ψ½cήΌyŠpΒ-Ψ‰ϊAiΝ*β‘ž Ϋηc{»Ε8ιήrω΅ςϊ§`Č.ό[λ†ΆΔεliaCΫΌbž‚ λ{<%ey ΊΥ«.Mοο"+Χ­ρΧ-υbaζŠκΞC:΄UΤQ^mwt[i³p­Δ6'ή†5₯ϊ‰‡ψΫ*έ?ε§^#©kκΞΦ JΊ΄]SΰxΚ €έjΫ.*₯ΫΪy#TTwK΄­Θm#΅«2ε­₯ϊ Ϋ*UŽσΕΊύŽσGO“h… ωN•οZ5’KΪY·Nϋ@Gΰ|ΙΘΩ€@³*­ζό΅BafU$ΞP¨YagΝ°γμς£ΧeHΧ*ε]+ΕGΆΡ|,e(4 Ή¦Qi6@³ΦKU―ͺ„g z\<4Ο *§Ž»E’οžT”―B˜λ‡<£vΘOB¬SΧJL‹[•²ϊΑχ€tΑ_Ϊ =`θewx£Š’ήεcψ λšρ³fΝ2Κ΄<‹‘l钝ˆΤo0ƒΏ²Οͺ,Τΰ³]x_|ι₯—ŒΟ©ΘΏ /Πεξ₯Λ0›Λ€|Y8ŒΗΏα?>όπCγΓμϋ& 6ϊ!|˜ν»"鷜φu~&ŸόX΅R`+TB±ψήΩΧUf'΄DoaΣ• ΫzΐηΣ'Ϊς‘ΟΐΎ8ο({¨ώύΜ&Ί¨Pί7°θΈζΒΟ₯Ϊ£#€[/πPύ{”ͺ ηυ#±5“e؞FYUUg; ΄‰³pΪ•Οττ―,r2ο8,κGAδkdYσ†ω|ϊ@}Ηn’'[w@‘V©•~pξγ³$χΦA&;΅—Τ› ΜZΕ/].y“•(Τ―ήKRΨλβ>½ŒR. €φΫ ύLͺrΖώΎQƒW‘D€TοΙΗξ–"ύΉΒ##&ΨΉωA%2ξžx]0yΤeΊπeυ€t…@D₯₯J£ ך…+‘Η΄ο\Α=kw^αή šρϋψ΅μbA;Ά­¬$άNΰ—1+‹ρeΞqpξ±Ηkξβ΄ +œγ2>σά@~kΦ¬iΖΐ6}ββ vα°*ωτί£_*ήWί’θzuΕS#EbΟ>Mθ}ΓxΝδεhv5a1p±σέ'} J€Nvlš2ωg Έ¨ˆr0–΄κΕψ&gόkΈΎŒη gΏEځ`³ίβف2£Άn`Gς\πLŸξάΦSΰo'€nίέ5V₯H΅GΖΘkοΎ³£U¨6Zίε–σ―3–ΒΡΣeύ=έδ`ν'θ³Ωq‡η’>h?”“Ύͺ,;G<ͺφ?πϋL„Νms”D·i!ήjI&›ΞΎΌ²χΰΒ&‹—HΞόoUύω/ρhώΈXα\Ÿϊ³.ΧΎΒ <―½πF‰Σ2% Πρ}$»lKdσή“€Wή7οΉJn&Ն钍/쐛/9cώy•Ή€ψδ£%₯ΟΝζέXeqxΏϋY ο{Κ·“LZ}…ϋŠl³aΠk‡N•¨έqEaηΔ1z~Σ΄ §Ϊ/=δoΠd;c»„a°σŸ+€pΔ³{Li£ϊ’0qˆx4ξΚBΦCOKόηί›Σz©Κ™‘-Fͺ,~χΈkέe»O(”τUΪώγ½2y˜.šέΉGΡέ•₯>x>ΰ›€k€½lxήΛΰ&οZΐ΅€kΧ\ T½μTΈ)5jT΅αζΓ=Ο΅ΐξ°/Υν /η™ttώζe2π…l,δ“™™i―˜μζεuZZšePΏ7nœ8Ψ†ωίχΞ|fr8ΔΎΰή™8ΒΉΖ«/oΝ{ΌXΥνύΨͺΞ£/dχ·°ζ΅ωR:w‘ΙΆοΎ4¬Ρϋ[9έόΊ¨ ”,Y%›&½&ή‚b-Υv΅D·n(^U \7QΏΩ7Ι#%Ίœ]YψΗΕιΟ;W₯:.SΙ•οϋ&γZ4)‘‘wΗKRβΞΕWUW1Ωk™νΔ>ίΩ`Α ΓΪq…Œ²η:Ϋλψ’kIλΦ[o•9 χ† €€½@ZV]2X^Ήžt`°·ΗψνΙsmyȏCH n€I\V.9ΖfΐrL΄€υΞ?|b{ψα‡ύγ1›€…ΖœPc3–Ο=χ\€ͺdLήsU~ΆΫ…·nέΪep½…-€ΐί6]€β‘La6―lM=S„φfηKib¬΄;¦ ΘΟ€ξwHŸ‘ƒMΩ('ΆhsΎCm™Έΐ3π-ΐHυ΅²a‚oΛψz½/Uυ<~`$Pešz%֝xζ8ΰuA™³Y&ˊ²Νw¨QΣΞŒG{°[–ŒTVΧ΄κ€rX₯kΆnΠΔfΞ@ϋc‘_γZ΅₯x›jZ8uα)xφuUiZ=έbZ·qŽDΉ+Uυ-wΪ£·Θ·γΑGκozυ9©νbΩΠρͺ̜%Ρ *G)|n(­YΓ(3—ρ[αŠψo~V%ε­R¦Ά.Mk ΫIχQ₯Ή½Όͺδš1τIρ¬Ϊ€€xŒ€Žξ*Ρ-#{ξχζΘΊ‘ΪvΧ)0­qΤέY’wvΞϋπWΩτΤgΖυξaŽφ{<#? dXHγ,sΈvΒη9λΈ²~+X_jϋ›ΧΐΎ΄gΫdλ―+₯tM¦d._#ήuΩ χ…rκΩνύπα9ρ'HϊΓ_(ΧT, ΉhJWιρΠSNoΰoϊΫΛΞ7C6]{‘žmΑnTΦ”Ρ φ6^Ϊ Ά΄Κ§ ,#~[Ÿ­ί–ΈKΞ•wk'†εσmŽ€ωM?ΚϋvΤ°£oŸ;wIšΕN(—gάχ„Δ}ძŠNn')}F4ίά@IDATm³ήoUΤΟ£;U©Β%αͺ΅‹ε“…ίΛ~ <λ=™υάk’παͺ ͺ4Ϊ±ΰ”c%₯»ξd¬ŽΡφΘπΙ%R “Τ¨X& V5ΡνΓΨp’0η°+ΠͺA/Ьίͺ g“€‘ξ>Uc΄‡]šν'ro9RƎπΕ‡³‚±$!˜ίάێŸπev r―Ψ{Χ9.Γχ jOšΑΖeάητiάs\Ϙ‹ϋΏ‹Ϊ:κΌΉπv9Ξ+wͺΪςΖM›Bή£δ͞OZNo_»v­³ΉΧ–Ι/ipŒόp=ύΑφW\q…Q…&_ψΖ‹\/c\Ϊ|Ϋn|Ο%€CΪΞ~ Ώ9zτθˆκΨ–!œηη‚#ό‘²1Έ9ΙρυI}9ύρρνŽ‘Νƒξ•˜e+Ε£Πl€{P#)VŸ·!'[6κO ε}ς%ΡΥ€ +[֜x€›Ι”ϋHΏΙϋlΛφμ‚0|θπo–¬ΑS$αš‹Δsώ钐œ,]uΜΔσ‹}’~Γ Ώύ!Y_|γS^γ[hh―CΈ€u3Yη‘“Η3_―ξ|»€Žμ§Nͺ‘=-ΌίΪφ²yVβη}gΞ/:α(Iι§ύŠΆέ°ƒ.dΜSQφ/ψΰ„/ͺL‡ζ}+<ΟκU)iq$Ό³bΠx'aηάaͺ½z½Ευ9ͺΝφμ­]/…ƒ'ŠGwrδY$aςpΆΜΪ~<Δ'ο۟Hα3Ύηͺ‚ N—Τ[q¦ϋ΅k}ΓΉy^8H6lgΪ”2™<-νLyγΡ΅Ÿ™.½₯‘Τ:VΣP»b…„“Σ…=ώ"Ωj#š·laξ`mν›ϊG†@•αlς^Χ u1 ο4ΠχΕjχr·€+ψωz½$<ΫbπJη[ϋnγΆIΊvΚE»³ύaηΌ%ωΥχL”R…Άjέ}³ΈV­ZεΌ,δw―’»ω³η pΐ7‹εΓν›δξ.§KίKϊ±ΔΣ¦Ήx[7y}9ρύ)šώΈΔlσΑΫε$ωφDZ6;`Yά°Idθ€2)(ΤφΨ€\aη„j-,daμ¦ΟKΕκmJ—ΖIΣ‰Ίπ%γΧAΡ·νβ;«σœΞ hΧΞ%Ατf¨ C—wνΪΥD ζ-ήymUγ²@]ΙΈθόσΟ7 3ι WΡaŒi!\eΜUώξ‡καυχϋΐ’ŒΏ± μˆ‡­±!p§kσ“·΅kךq9ž| Œ―ΛΡ݁γέpΊ¬G•μ–σΉ„tνΦΛ/ΏlΖΘ,ΊˆΆNmH7άsΥgΔ#p]ΰσSΈ18א~χξέύϊψiυ¦mκXυzξ΄9’τ–ΎΣή£ž˜•§N~β>yjΩ’°ϊ•zβΩ[`°y‹-ό ¦8ΞΨπΉϊ‡ϋŸβuaθφΧ΅όί’ΝXƒkΠγ\“ͺt°““#;vψtYΰy―zφ|·Fς—-±?nP/ΔΎ±ΡΪ‚=rΕwMτœ΅λ%QΗΦQ]ΔΈgάƒ Uλ8D…Txa7©{΅ΎŽ"xΧm’BυμμΩ“―οΕβ$±ο5βωέ±₯ΰ}ω])~ζU·΄]+©₯Ο$α^fx7n–Βα .«’Š”$IU΅ggUήκ z/μ¬ϊ$iΠM•agέq¦θ±£2f烀IC΅²TΕ_HΡΤ9&^Ι)£_|TυάŠΨdiΰ˜Ru*―Ο₯Ί;άδ‘ ’šβ[trPnθ&R.πR4ξ WΏˆ\ΰω³{W\ Έp%ΰJΰPJΐž₯τέ{J 0©δ‚ ΫΧΆlΩ?ΑΖKe`h;ιπΑ0o(xσRyύχ °ΑυΔΘ8ώψγωi<¨°-’δ6χσίAžΥλDαΜg ΜX~tKIΥνο<Υq볟εάίΛ‹>ό^ΆΝxΫ$Σ)SšΊH<:™βW’—€wWΎlQθΩ›νƒΓκ\yΊ$_|²I(ϋ’>ςAžSZKFΏ ’ΏΑoθ x޲χδ³­v‘lΜφΡΝηwO>——G—Θ/›q@8ˆψ`ΟLμ•Uέ|σΝfR‰υO?ύΤΐ·ˆΓnٌ7jλ‘7Ξ&^Uπ_° {'Xΰ”ι1HF? ΖΒ‘_ $“7&Σωc’νΐ―1Ρ<8ΗX6žξzχξνΓH–ŒΟΈXΨ‚Ο>ϋ¬ƒ,|@>‘Ν€ίœΑˆΤ3`€ δο—ιιι:^$ο)hXB = h*αZ&L˜ xžΆ°!ǁ€Ω9„πφΫo9ρέBΥδ―“&Mβ°ΙΛΥW_-@€ι Ώ"sgY‚Υ]8Ψ‚ΊΔΛi9Auξ  ΓΦκ@#΄'‚³©# ΐΊnΨP>Ν—…[clκ‹ΌN›6ΝlΑMz€/C.ΉR6©‡Hgέq?`£ΐΊΤ3mcΝ)7Γ·tBΌ$έωwρίΑ@β3fΜ ιˆCηz δ˜νRKe±zθ©ΥΊ₯Hƒzώ?5W•šΆΏάOIΒΗΛ}1uŒΤ·Θ‰«ΊςΰW½±mδ\‰ωn£—jίu₯Δί&ͺϋy‹Jv~Zdƒ,:ή?πbI8^aοj„²u;dΣΠΊπ²\bŽm*ΝG€Tγ–ώKθτ?Ϊd°…τ»hgDoD«ΛXP ΄Οβ Ϊ; ,ήμ’ΠEΞE.Λ–-ϊ7z4˜~εz«ƒlΉιƒϋ <γYϊΜ3Ο4}Ω²/ΤΌ1?ςΘ#Ζ#h4v Yb›l@Όηž{ŒΕ~ΰρΛξœΘK(]FšΑμφΥΪR@νΌg–HΡ'«Ε›[dΰ&_'§v;}_ΰ9U½7V›‘‘.Mo<[N=γώΆΧύμεΞQ…*;x€ ™>&V:wŽάΎš‘O«k#h+,Ά±οA€/ΫΆmλ—}ΌS―,ώ(¨Ξ%'§—iΖCΨβ;ξΈΓ€–ŒGlΐζσƒ€K–λ…­΄ήΛ[5“”‘ύ$­A”°›&~l½FςUΞVάφDΉ³Mg{;σYvD©ΠΏτγTλ=€₯ΟώVŠt~ΦεΞ|B—ω Pά-'^}±xΟRTex Bφ šP"ω1X‘ IC“ ΖW5ω©ψbƒζΟ#‡\$ k†,«Q”}.AίX]-»ObgZβٟUΛ:wξ\iά‡^€O³ΐ=ε'’χYΌΒΒͺκ£σ|Hrο+ΙΌV€]σΌ-a<ƘmξάΉ6)£ϋY( ΒζžάŸ1  ,c±:€4£Ρe,~q.Τq>—>ΊΝΉP}ow|©NFkίΙC΄cπ 0|³ζRϊΞ")XόΉΔ­έ¨»Žμ’ΨMΫΜ{άΨΏ^$›ϊ\$ύuA$ {0ύʘƒczυκež κΒ£rOέC‡•)S¦]Ώ#¬¬,œγŒ£ΡλŒ1°Γ6πžœηPŽ?ˆ;rδH=’Ο6uκΙκ]κUYΟ:΄ˆΓξ=’?ršΔͺΧcπνVPͺγύZ«Ώ μ<τ^‰)(2°sςΨώβiΦ$ό½vΞ6Eβ6θΒE`gξqB5ήό)TΨ9nλρ&&H☁jη"XΨψΥwR4~¦±ΏeΊθ(ht\εW‡‹Τ©Ήzzfη +ΣΕ\‰ϊ\vΈδώΧ“OxώυΤ₯[’ΓS.π|xΦ››kW\ Έp%ΰJ ΈΐsΒr£ώͺ$`'@›6υy{VαΕlK…ž 3ηž{ρ0Η9`f^¬ΎφΪkf›UβΨ‰\Ύ3qΐ€ ήψ˜Δ ρOΤᄃ <οš9OίΜδ²δδNΊ½ίu‡%$\Όd΅lώ¦yΩμœ9θb3αvΔο&αJΰ7+`¦-γžο:‰’Αsb+ir§φ­ΨɞωΊx~ο;ή₯₯dτW8ɝ1ςόηρ ύ{λvΆΥ.–œ]±¦9]syΌœ§Ÿ!§ΠWΊ3Œ,π x4眐eάΑŸ…<-XjBΨY’HeBp€ΏϊυλW ΘήΒΕλάZυ¦€,―ά›{†ƒ8oASⓦ,pΚƒσάo‘¨ΰUb·*(‘€Xα]eΒ—‹ ¨A^# σΛ—/7νP/ꐽMς'>,±ϊI(oΦXRί’ΐtέ¨“:`hϋή6ažΔ|ω“±Ϋιύ.•ψS~$"ΊOI™d›'²v»‘oύ;.„“’¦ν}*vδΙΖ»ζ‹δ©7β–υ€ΩΨΛΜξφόΑώ€νΡ&‡ιsΐΉNύLŸ°ήm_tκψ`ω«JoΠΏψ³!R]Ζ}’X„K`1ύ…2ͺ9ΉXˆ‹cΡθWλυžτWŽ‘»…{ΌπΒ ζώτ{ςΑ«ο‰ήΒc'^"­όXXBώ§­l ύ@»ε΄1”“ψνΪ΅3ΟίθSt’ΥΩ€S99g§έςκn'qͺΛΎZΏΚo·–.]*λΦ­σΫRιδMz] WfωЁχζG―—ΣΊwυΓΜ7υω‡α‰3=Ω5¨½ύhi™ά:Q€λ©1rΓ_Λ΅lΕR―ΈLφά9FξVύΡφHSΖ@9Y}^]A]9υ/νΛ)Wg_ oΎω¦œΩ(SΚΊςίΡ@…θK§}gΧ,t;v]O΄wŽαuȐ!¦ί‘ž΅΄#Ύ]%…γgoŸε ₯ΡμΙΎγQό₯ΗMrc§“%vύ&‡yςns69 ΈςΜΖRή"Cjw>F έ΄‘=ύ‹|zήϋXŠž\ •)‘δΈφ’vKέyλΐzKή’&iΠxυ~š£”+μœ(΅R« ;?ρžTΌ±Βδ·α­gKiG™οΏ–τ ;έΜΧB¦ΡNΰΦφΕp2@—ρΡΩ_h―Ξ>Ηυ€O‰d\FŸ%iӏψμKΌμΣΗ±wVS>ΖΫ‘τQt_»ηί”ς?ˆτ<_’―ΌH¦MŸ^ \>逓δρΗ7ck;47Χά‹q£sρ ήXˆxήyη™ρ#ω°!R]Ζ|VώτwΖυN;h·ΘΓm·έ&xxŽΆN£΅οΆ,ΤaΰσSΈvΒ}.ΉδxψEέi"―W_έ9FΥμ 1Ν2$Ϋ:Ζ,~s‘Δ_rŽ€έp₯—Σ―:u2υŒ E#+'Ϊ ΑξaΗΓsw·nέψ2˜ψΟ/’ς² qͺ<uΤQb=ϋG<+δ\8zΊxvͺWγ΄I¦ž•YΤMX΄LŠzΪμ:RQ']½-ί¦ •V‚Άί=“gIΌξκB0»Ήτ».μuΥ‚u'ƒΌ!χ{¦xΨY+V †N–ΈŸΦ›{'ŒΤgΣG‡Ν‡9Ήf½z™žβ³»Ί(u|°^©«NЍαJΰΠHΰ‡cdΔ½₯:φΤ¦T‰ŒμŸ¬ΆτΠδε·zWxώ­ΦΌ[ξš"x)5αζΓ•€+W\ Έ8hpηƒ&Z7αΓ@Όά={ΆMlv™Œcςu6Ĝzκ©ώ—Β]Ίtρ{EŠζΕ:02υLv6iΔΔ·iˆΟƒ<—ͺ·Ή 3%ώ›Υ&‹E=ΐΊ½/9ΩύΕΣvήφΐ[ζetLϋ Ι¦ήu’Ω \ μΏΨZ~Λ½/‰χs£G6”&#R/π RψΪ²sήζ°§S3i2θRρ( ν†ΚpηΚςυλG}©ρ4ΗΌ|ΏλγδwΗ<ικΊC}ˆiνΫ·:`ΰ ΐΰ©§ž2ή…νsΈό39ΟDƒΑŒi,¨ΰ„ΜH—{3QΜ‡L”––2―аπ_°Ό›°wΒhLž[˜‚ϋ[Π‚τΙνvLEžμœΫ+/T°€@„•» d°HyF;ΈVώ6nΈOςD™+ #pˆ @/Φ Κdγ€ΉR‘οσŒ‡ξK»τwΰ²?Θ?­‘ωση›-ΉρΈ xΡ΅kWΑΣiγρ”οx³³°Ε3ΟΠΫ³g©SgϋοsΞ9Η@€\ΫF½ΆU8ΐ‘`uη„-¨'πα΅yσζ•κkΛΌςθ3OU‚°Y4h½œRΧ€5~XM…F›tΦ5ύΔΦE0Έΐ°αΤυ<•Υ) FΣw" ΘΧ_&ΖςΤCYάkΝ₯Ή'΄“δ›J#Œ$)9S>ΖωQΟ‹>“ΒYφy†ΣΤ’.μ.rεωΖ [Δ8·έχo‰ωTa% ι7] ρέ*{=­κ–^}†0;@¬ήbIΦΫΨΩ[¨žΊώ[ΌΫm˜&™―˜Τ(<ψU•ΩΞΣ―,ψ„‡JώœΊ”ώF_CG± Σ©ΣoA₯7xN$m'Πε΄!6­PΊŒΌ^qΕ2FMWΠΜ sοΐ…οΎϋnTϊuήΌyfΡ }ŽΏgu–!ωγVw±Ψ—ώJyΠYτύ@Xω͝;WnΈα?`‡ŠΖn…²1τKΌ;;½“ΗκΘΙ©Λ~ψξ{Ω:A=ΦΧ%ΐ―p9ω”ί»τGμb»΄Υκi³€Bb›Φ•ψ#κ‰79Ύ’-½κͺ«*΅+ς‰^ ΆΐθΫο=2nz©\r^’œxl¬΄Θτθ–τΓ%n]–¦›$‰“KL†ΟΎ:ν;ΊΉFb#ΎωζγΩΣκkΪ‘Ϊ|γ7 ΰ€lqœπ+ΏουTΡ—(Τu’€«ΧΧ’ŠςJ:­_Ώήδ εLΌXX‚=6ΖρώΈAŠΖ(Έ¦€ςξZ)’¬ F<"χτŒάٝ‹~ντ&+Ϋ΄n5νέΛΏυAΠΥ dΑ«ή•Y¨RΦ\!θγΟ‘곑zω?Πa}–L›-q²MΚε Ψ%ίzH§vϊN¦θƒΖ•Κξ=κ™Ώn…ΒΞ R»VυΖΫEŸώ(Ϋ¦Όnςσηv’ωw΅sΏ²€>aLΗΈώΚ;Βp:<°o…‡S—Ϊ`<¦v\¦y Τωτ1©W―žΤ­[·˜ έ€Ξ΄»Σ1fŠΆφ9φD©xω-©ήΟμ0@ΖͺsζΜ1Ξ#ΘCΰsε½ϋξ»+yΖ[0@cG§έ%=ς©.k©Ξ+μΨ»Ε»ZgzNYc·u΄uJ>£±ο”Γ†ͺΖΰ6žnq$1?m”υ­2Œ‡}Ž}œZW &Νozš”΄k-΅Ο>C*:-λΥ»6rjΈπs){Iw»S[œΨϋ"‰Ώΐ·Ρ©_ΘΙΤ‘Ss§ν΄ΐ3q(7ΐ1;Ρ°hp…³θ‚DΖ cǎ5Ξ?κ7@JW―OχSƒŽ΅yf‰&0ιΆ΄Žxώϊ{)ΊηQ£Ο+PNq›xλΥ‰ζΆ" ή’Βη|zΕ6i£ϋ‰ΤN«: •Υ}ξˆf•‰[tξ₯Ξ΅—…ΏNνzΑˆ)>ΟΞ g'Ύ£jΟΞj«ςGθ’Οt‘•Φwΐ*yvΦN/ω£ο—ψš­λ„;n}©>œΝή*…ƒξΡ7ERή¨ž€LΊK<©)U_ηΖp%PC%πΕΧ™4Γ·ˆπ”‹δŽSkhN}ΩB7Ϋΰ ΨcŸΡΖΌώ`vηƒ-a7}Wα%ΰΟαεγžu%ΰJΐ•€+W~pη_A%ΊEΨ/ πR˜—αNο"6A^ήςR–a‚~sα…OM6.ŸΑβ;Οοοχ <{ς dΟΘι:Ή—­Έq’xΫίΔσϋθ`‡ύ-ӁΊΎψ3&Ωή0°³ηθF’9Όη/κξ@•ΓMΗ•@M—@φάwtΆν&›žŒ:x€BΟuR₯θ½o%g–žSΨΕΣΆ‰4ͺž|^€jz™~©όΉΐsΥ’ώί &#Jur\=Ό&zepίxiί¦zπEΥw;°1μψ U«V&α%K–ΐ9~p‚Ή‘‚$f'₯CΟΐB@¦xljΐ‹§0@[«L @ €a‘ς?X^ΙS ‡²@Νzt‚Ί&ϊ{8pς„geΆWŽ$Ψ-“wοή-;v4PΧY_tΡE¦όNpŽ<έF ΝR‡‡ŸώΉΦHƒ²vhΩFΆΞx]ς?ώN< tς[υ^ύ?#ɝ[Ι6έv9//ΟΐΒΐ60aΕΨ‹lΆm[γΩr€Iμ τ€ι¬ +Gΰ>€4ΰΖ¨ΞI.ΕΫ&ς—~ύΕ—²mΦIζν=8eB°ΊσΓΑƒσό¦½ΰΨvL΄uξΑX˜<­όζ[ωδ³₯ΖƒΈΝ#εΆΧPv ‘PΧΫw3ΞμjΪβ<`ΰi' ι‹€-Rμυ€WU ξπθΟƒNϊηޘ$,ύΪ\ZvtKI|³nMύsύ„K9tD<+ˆ;εqIXΎ$]‘Ϋ`§τ»V€³―†»ίΑ>·νΡW%ζ/}ωκq’4μ}nT·τ–•Λ–1σΕϋέ&ŒΤοϋI8%qAξβ-―¬κx΅ΊM‰—fχ\%1υ#J‚€΅?‡hsx™ ՝ ήγg͚U €rޝΜXt6Ακ ϊ•s†σΆžT—Ρν‚”` xΎ9s¦ρoϋδλ―Ώ•~ε˜ΏμV`=Ω;ϋ¨³O?ρΔca0R›6mŒnsκ ςτΌz¦,³yΚΚΚςΫ-tΊ3}§ξCNθ §‘>π4ΏpαBΉςΚ+Ν""ηυ\NN9ω+,˜η—S .[ων ΩώΟ' ί]ΠtΞ ςϋΣN5v$˜-ΕΖΨ|–[ŠχΡ`Ά)πΜ=·εΔΚΆ-?Θϊu«€N:‘ν©’0θn‰Qου o₯L!k·m©dίΫ°ω~‘‹ΌxU›Qΐπ»+ΎςΫμ!νΥδzο½χ(‚Bη;Ώ±ƒμaκRηŠ{gJμWί™hHβ΄Ρrς^ιΘ‰1ΚΥW_mʏe@šΨ[Ϊ[0ΰΩ$Όu‡zͺΌObvεŠ75Y’G*|Φ"Σ™΅ί{τθxv…z w©eWOΠ1 A{Tη† ΝCΉΠεG8 θΊιΡ"ϋ]’ΰρμ§%yΡRρ€YΨυχRϋΪ+ >#K#ŠX9»]ΰ9)Ήq\ < ΈΐσΑ“­›²+W\ Έp%PC$ΰΟ5€"άlΤ ΰuοXΌ”ΰEnKυ✨uf’—€ ωωω‚Χ>β1Ή*ΎσΪκ~? ΐ³z3Κͺ$τ…¦(€‘<δf‘£ZV7k‡τ:`η­xͺPΠΨy˜ΒΞρ?OάΜΉ7w%π+”@ρ'?ΘΞώk&ΆE·δn8μ ‰kή@J–¬’Σ_7 €eΙy…N %ό %P½"ΉΐsxΉ-^#Σf—Ξ£v­ έnRΑ7ίόψ kΘY&°‡2α €…·+&˜°€Γ+0ήA™,†β:#>™ „(ηψ <3qqί}χi€½rεJ“ιΈ7[γΥ8‰{γρ 0:šΌšΔφώ#?α€g&[Άoίn .ˆfΆε£ΜxΗϋσŸlRΔ3fkυDΜΈŠΙW!'`„?ώΨΐ7ί|³);lŒ3FFeΚΕy6γυΐ„`‘σ€π`Š|H‡ΙΨΝ{$΅YCι~ΑyζpPgΓN)ΪΆK’›Φ—˜΅$&%Ρ€mσjεŠΧU λ]Ž2POx_¦Ν,Z΄Θ/ΰ2€8;IEέQ>ώ,@δm‘iςΝΦΤά›:αΧ\sπό:馲aΠΏ₯n$­—zZΣ¬ξœΐ³ΔζΘ‘#ύήc‘o΄%Ϊ”iΛK–Κβ9B½A¨k λq–ψxΦtΦυ1­Ϋʘ{'šr‘υO;Ά2€ύ8ϋ^ΖI/ΊclN9ƒχ€ψ‰— Χ2Ό΅Eβρ-jΰYθ*1;v™,”ιvΠiκ‘T8Τ‘τ­e’ϋΨ^u]‘F·DΉ³‹κ•μ±σ•ΨΟ2E©χΟσ%ρτφΥ.ΦΖΙ―JΕπ‹•ŒQK|λ* jί)ό…τEκxŠΐBϊ:ƒφΈsηNάότ γ9ηœ8FΏΡΠ/gžy¦_oϊ¬NΆ9A'Y―‰Ρθ2ςja$τž§I‡τ­˜6mšά~ϋν¦ΏύΗφ·`ϊΈvτθΡ~έƒn’¬άƒ²|τΡGU=Κμβξέ»ΛB­ΧiδAΡ\ke»` OŸΦn—<‚Ω-žΟ9OωyΥjο#ψ;ύτӍM˜œ0a‚ί†YΩθ ›DπΫχΧή‘βΉσ%΅M²¨0·’œh#ΐξ,aqSύϊυύυEy—Bxα…@™rΟξ=’7δ^‰UψΩ›/Ι€lκε΄ͺπ˜˜ΆyQžσωW @gOΠ±ΩΫ}`r@\―κx θTυΘμi₯‹›Z«]T0:lP ­θΡ§ ΘMΌ²–Ν$εφͺήΒ&ϊδξ=Ήkl‰μΨ#ukWΘΔ!Υ‡Λ³wKφ`υΞ_X*ž–υ%sœ>ϋΕΖ„Ύωa|;°mΫ6ίb± ‹_θ?τ τΥqΦλ=γ?ϊΥUλψ*)μœϋθ^N;Ιχl²ΚXŸ$<3‘«ψΝN><ƒ±Π/˜ v?t9ϊ=ΟΈΪޟ° —±ΉS󬉍d‘‹Ηmΐ™φ?0>η«Κ+φ-πΕ¦»?Ÿ.πΌ?s―u%°pηύ—‘›‚+W\ Έp%PΓ%ΰΟ5Ό‚άμΉpHΰ€Οk6HΑ˜Νuκ­!uT_‘&Υ{ωμΘή!ωZΌ|l½η5μ|dΙuΉ ;’špoϊ[“@ωͺlΩ6~x tΫgυδά`ΰ%ί©Ή”|ρ“μΈο5 YG2F«θ΄ΌαόθΟ‘+ωΕ7bδΩ—|@£e2f`R΅=Ν…ΎΛΑ?Γ€:“ε7έt“ΉžΪ€O™ωδi© θ8ŸόΗxJ#1&²˜lΔ°[MhΌύφΫ~o€’x $ήvΫm¦}ΨΆΐΉΗ\RRRŒL˜$:t¨‰Ψ^ϋΓ Rτ–ΟCY½ΛO‘ΤKN4y „-œΐ3n€ωΝλqh`ς‘‡2ž97ς>›Q_zΈ-’ΊΙύδ{ΙRΠκΨc}ήΘπςχπΓŸ~AϋεŽwg ZGώ‚7$vΕs’MsΙ9γDέαE”ό3Y™˜ τŸwω )RΟmυŽf<© ω§Bi ¦… QΟo}$EOΌhΌ©ͺ°%©ηΉ"—j»WωκPϊαΧ’ϋ€ί*~w΄4ΌΣ§“"Ν—WεΊyόσ"_kίΠPοΖ³%±[§H/ί'^֜χ₯ό-υ€­rjά‹7Ÿ°+leβ‰'šγV“6“ξ@l«γ°θqγΖ™σœΓc{Ϟ=εƒ>ˆΨn9Α\ϊΈυ΄ ΰE}4J¬%₯k·KYVŽδ¬TPiK4Ύό4™ςώσΪζΎUΙiμ]C%65IΎζoι2τεŽΤ–bΗ,TF~l Pΐs(ϋžš’&1±“O;Ά°φ»bΣ«ΚF°ΐΖΒ ΤU$ 9ω¦°aΩwAΦ©eGycΜCί"0Έκͺ«ŒG\κxŽ6J‡KA‘䏚¦ž-7κB έ₯ͺο΅βωέq&­Pφ x–h©‚‰ ͺν\φ•Ω-+V=AΗnΫivΊ Œ^QΏŽ kΧAδH΅5ΊΖxU/έωΣfKόΚΥζ0‰φΨyΠψbΩΆ#VX\8aHΌ4¬W½δ½yΕ’Υiρξ*OΓ4i:Q½σ§FαE΅z·=€W‘ί―εΣVρ„PŒνHb|O°γϊφΰŒ3Ξ0ΞX|ΒΞΆΟяμΞτEΪ>:<°ν/šq`*v•ΰ|. }ςΝξΛ<œ?DΣGYTaδ‘γ]Ζ‰Άl³Š€ΝψΦ.*bQ(» »ΐΐXΪ.8ŠF—‘N€v ϋŽ]δΩ-:eμΝs‹]P‰}―T—*{Ϛυ²Aw³h«c Β₯K₯έσoKωŠUfœXΦ\LœE<]Ž“Ν‰1•φ »@y‘·£­;<Š[hΫَΙ6˜ρ *­tq6ΧΆ'dΗυ” ―Ψ]»v5rq‚ώ’‚sΊNψ\ŸA4ΊΊψτ.’~Ν₯‘yJ6wχύ‹xΦΊά£ γΏQ9ͺM-όKW©Ϋ+Κ}9»%oΤ›½ΝάΈψœ?Hλ.sδ$ΜW-oΑ݁@‹xu_2‹τΌΪŠFOžΣΣ$eΜUΖj{ς†)TiνoI UΛ)ΗWΊηέ₯xΦpνΪ΅¦,ΘX’`Ζ»"GΤ‘]]šθŸP˜/δ pΔB‚DΗ ΐž£ ΐ%zΆΌ‡xbR,T@>\C£ηΝkF`ς‹δπR€`XΦθRρέiό―³%ύŒf¬΄zυj“βRw^€ώ¨k'°Iξ $cp6ν+qΝVΙϊ])θΧΓxΨΆηƒ}RΧ@/L¦%zbeΤ„qά —cΰ#_”›~@¨Θ/mlκA-FΦlέβ―;ΐ <Σ6ΈG¨ΰU8­pτ“›οζnλΦ [Dΐ³ζ)οΎΩl‘ΑΐΤiί:T6~Ργ₯KΏ—=χ?ova¨θάJκe ˆ3‘νbσδΔϋΕZί%Ÿ(Wžρ偋>e‡–7ΝαΈ ;IΣ«ώεnca‚…z‚e/˜΄It:¨έAϋˆ£kEΠxD·‹ͺΊΖκ2 βͺqΒΩV‡Σ‡Π©θΚ€ώ† Τ―δƒ>‡f»ψ!XήΠKš%Ola6œ{ξΉ•τzξ₯—^ςƒf‘Ϊ-ΚRͺ oΕVυΌί΄ 9ΜxAγήΨTΚ[\.9Ο-‘―.σέ^wόi2ϋrB— `σψι”ςΑγ':7\pΪ­Hm)²Άzί™6χ΄PŸΣΖΩ8ΡΪwξƒrΰ3B(1αΦΫ₯hw>Gϋ|pΪ?ΏΉ†Ίm© vœΑκVδ‰œ8˜χͺ€ΌEΖL›β‡ΟI―άΞ1 ΗX4AΫ TΗοϋ Δ―πΑΒ…—Ÿ+u{†Ά‘x’9<ƒzΒήωΕΧ‚Ž[—­»iνSU―Ž=b·οPΚ%^ΌΙ‰R€ `­›ϋˆΔχ2{ςρμ생k₯*μ<8^7 š½*zKΚ$ ΟΞuƒ΄Dɜ€°sύ΄*―«©θ3θs;Ζ ŸτUΖŒλm Ž.΅ΗŸŒωhΗ6-Ζx‚'0ήb|h$βCs‰qΗοΝ±hΖeμrA^-Τjσ¨9ΎlΩ2aΡφΟ 0s.TΕs>yDΗΜΥρhUΑΪGμ%ύ;’`Ÿ+°ΉUι²Ι“'›…5€©έ’N¨ίHλtΦ¬Y&~΄φύΖήΧHιϋK$oρg’ώηΣ%ατίΛͺŸ~τ??ΖΞ΅T}L[ ίθbwDZwΧ^|©”©žAΏσ\iC°qώ½χήkq^ΡΙ]ΊtρΫRΪ ;ο¨ N›aν„9‘PoώΜyF'ςΫ[+U’{©gρzo-K$‘JΰY=ηQPY=πλ&υ»N<'E6³χχnά,… ;{vλΒY΅oΙ·όUDυrDaΛvΙ6UbwεŠ7)Q’‡ύ³Κ݁‹uαŽϋ`η ₯ΚΥ'ΐΞ£¦Kάkμ’ϊυΩv–O—KΙύΘΌ΄ΓQ’:\!j-OΨ γϋΌqκΥϊ«οMά€Α7k[τωa―sOΊ8 % ¦KFέW(+V%θ3ξ 00^Z·ˆzfμ\`Γs6}Μbqμ9₯,˜·ο ‚‰ŒΞ°ΓbuΐGyΔlsi 'μΐ€>^AMβπggΌώδAL~ΰ“­‡žaκΦ­λOθmηΝ!σŠΗέ%K–Oœ6OLβΰfζΜ™T`’0΄4hPi’€‚-ΐœ°,ω;逓δ™gž‘–:nx‰|<θΨν¦);[cwξάΉ\Xnϋ ρ©'Ÿ’Ό"M{ž.+r²LzLLα© oe€Έ@ΌL¬SNdŽΗΊκΉ,’@ήπθΝήύπΊιHƒzΜΐKͺ•)Η)#Π υo‘eސ^‰cΫ ίρμΜ€V`ΐΛ3^¦iLXyuρIξΛΛδ»#Ός΄Κ―šΘOΆΆξπΎ tOήhΓΐ?xΖΛ[0x@rδΘ‘TCžΚΏY+eί©7ι?Ά[·n]i;ΦδΔ$™όs¦άε`ςŽ BΚ@;β7yΔ›΅ ΐΝ½zυ2ž©;Ϊ!ρvΫJ=ƒ ν΅žΉ’§žΥb³|pfΡΉ”:ΧχδV%π¬[_N~D<καPvtKυ¨¦uS»–½έ!ύ€~vSooΊH°’]3i8²OΥD@޳ο}Ai­Ÿ|GΟ=N2ϊό9 Fδ?KΏί,›ΗΌbvƒˆ=Ή…dήTŒ<Υ“ΎΧZλ5Χ™*}..°[ ;$&ΊΝΥ«Ρκ ΰhtατ;cϊατιӝΩ4߁‘˜pΗSΥ5θ4ϊ6ž5±E€VΐxO=υ”_Ώ’olωHˆΎ‡ΧfΌ7;ς,"aьcΌΛŽ/ŒΡ¬ώŽt\–––fς‹^αx†f#x&aΗΖΎŒΑy`LΕΈ<\e‘ ϊυτΧ… š²…ϋΗψμΊ3ΐ,έY†όDΠ?_Θ/ϊΑςΔx—ρ(cdž}•΅sαμ ˜SΟ`χ±ί‘κΫ…όΡ…ΡΪχ^u›κΟKϊSΣeαηŸ}~βώ™™™•žλ8†'q«i#Ȟ<€QoΦ!Oβ‡’“Υ―έ»ž);/ΦqυY§Iγφ6ν˜WŒ­vΗ’žΊžq0 Œ‚=PΏx€Κgœδ΄ώt?ώ\ žxAbφŽ“Λ3JκΏzW s=e?ε”SLRτΪ„?dmΡŒκ%YΗτf‘α°[}ϊΣ‘κ/ήο~”Βρ‹Gαc―.BIt“HG_Ÿ­ςκ ΩR0|ͺΔθ’GΌτ§Œξ§ fUw‡ Υ‚pΟ逝ΩKμ“*ίe…ξP4fͺŽυΛ₯¬e3Iw·κθψΚq‚όʝς˜$,ωœIκ§ N=!H,χ+_x9PΗD³΅Ώ'{εžaρ¨Atc"τ‹°‡θXΖΦ©φ‚η“2žζŽ―]»ΦΏ0ŠqΆqΟU,.΄» ΨEΌ‹Γώ^{ν5³hϋGZŒ+¬Cμγ”)SLΌΐΌςάΓ{’`yεΎαή‘˜£ψηΟQˍκJΰ Hΐž‚Pέ$] Έp%ΰJΐ•€+š%xYυαζΖ•@8 TxΦ‰ŽέΣζJΒbίKΜ’S;KνΎ}ŒWˆpχ«©ηJVl’-γ_6°³§Y]Ι{…x’ͺ~‘[SΛγζΛ•ΐa/…š³Η?§n#6™’xŽk.^*εrzΦγ:©―}΄ρπΛ$ΆuγΓΎΈΥ-€ <,9ΐ‹χιnΰqζΰY]γεW©·ώΘ=ύœP όΖ„3Πΐ /“L„4iD€ˆ™±€/σ\C`"=bfβ˜Š?&˜€`R„‰q AX1“/x‰Αχ NΣ¦M‚ό0ab'0˜ΐ<3fŒ2ζ•m0Χ¬Yc&ΉI€ΚΉm'“(@”ΐΨpφOϊS₯rgξ…ΧξΓPι:A[ϋΙ=Ό‰O™ α:dBΊ”»ͺ°{χn)Σ‰μ„ΆΛ››Ώ5υγΌP8ΩΰΟΥȏτΙ$k-|ΐu6-Ύ“_ΐ d `Ϋ€M› 'κοq\Cέq etζΉPΗυκΥ3 Bγƍ hP €ƒ6ΐΌ§rŸψ˜8ypζ r#«;Ϊ(jiC܏<ί`So䨏‰;Κ†χn&δΘ'‘ΰωΟ₯Αν—ΙΖ-›+ΥuK…Ϊ©;ΆΡΆρΉΖ΄ΩŠ)ς”ΛO?ύdςJ{j₯°2mΔ‚δ οΩ”)08λξτΣO7ž΄RŽ;ξ8[ΌΖ»D·ΐžψ°o l=XzbG©u§zE ¨σΐ³ζΥϋκIρ³Α€Σ―κ!ž »ϋoq¨ΏT¬ή$;GΜΥΒι€#›H½1κω.>²6mσž=MΗέ‹W›Ÿžν₯ΙΝΥ”Λ³wΛ¦ΑΟ‰·P'fΫ5–Μα›]"μ½ε'νqΛ–-vˆ’MζεεȞ6 tc5ێi›θ"ύŸΎή ½ΣGI'@ίD +˜\η~θjk?°Ψ<†ήΩό‘7=*£s€žΡ―‹/6 ¬ή >YˆΑwϊ<χ@/ k˜xη:`c+«—Ρ›7o6ϊέφi@%›_SΦ ―Πh·X,ΤΦ諝²γίK›y·ΚΨϋ&ψ ύˆ^AΏ8υ)vΘ™'ʈ|Y$LNΨ^κήl(°άύχίoμ¦Σnq/μΐ2ΰZΖŽβ ›ΈN[ŠΞΓ–žsΞ9fρlkkΦ@IDAT΅ά+RϋN]K°ΐ('μ;ε¨Α ―\-ήγΪΉcs‰Μh#†.OΝ~LςκkτVϊC£eιϊŸL]ΰS.4~:‹ €σiη‘Κ©ΙηίJΜόΧ$ρ’σ€΄ηy&9ΌΞ‘oδΑ'νhώόωf π!žm¦|ή3λ)IόTίΗ ‹υΩ©¬uK©Pϋ«žE=E6¦Σ§γΎ#šH™Βs΅;ο… ŽŽ6θF2xB‰dmŽ5`ΟΨ»β䈦Ѧςsό¬ι―KΕβΝ»€Ζƒ.„c}ΒŽqψ|cά΅PέPΫΘ3.rξŒbKζ―‘WψέΌysΣoxή[·njb0Ύ$Œ9,Ba<`Μb Ζ\7_`VΈ7 αθ»|BΣ§CΛΠM« +ͺΎϊκ«fΡ"6"XΎώϊλFη[Ωξ“α *Τƒ~ξ_o“΄‡ΗΛΨΩ³όΑv‹2³ όBιcꉲ[Ϋ‡b̌nUwοΣΓ%ž*ΘUk₯pΜ (]§–$λξ‰ΈŠΕ«ΧI‘ΪxvφΦM—δ±ύ«φμ μυΦhπ₯Χ!ΣΔω­ύsg_oίι‘α“}“ ιuiœ\xvtUjjΫa‚ΈΐNnΰύlȐ!:`"ž‰ &:"ΩΪ’22ιΜδ5P 'Χ‚myoNμύgα.Όw~τΡGΦxφΩg·FU;ΩΰΕ P6( π•{wUοΖΗ{¬š™¬‘π „|Œ'k»E΅υbΓδ χA&€@”xƒIy@6&[μD½I4ΰΧβαΙœe'@fΑη€:πDM __.^*»J ”Β1`<‘o‘/Ό–Λ€<ωdϋψ㏠°n·΅€°Ή0ΰy@”οΔL8!g Š+;ΧPο ,0P  mΗyδ‡gUΪυGΓ;(`4„υψΓoΌ'OΒΠ†π@ˆg8g /-δ»πΒ Ν€y }€ ΐ κŠσΘoδΘ¨ΒιqΩΐ΅£Ÿ”Œύδσ΅«δΓ?4εΐ›,²BΆ“r”•:4!Ÿτ`SŽ\r?ΫVΙ? πηy6l˜0m  Θ&’ΰ}ϊ5)~ε΅ΌU¦€©‡8―nωmu„‡L8MΠ-΄σ&<,q?n0?½ΐκ)UΪ4·—ςϊυ[eηΠΗ¬(oF]©?ρρ$GΦR€Ν3ώ#ήEί™²xώp΄4Ή΅ϊΟ» %λ.υΤ»«@b2kKζx]΄˜wΘεd3`Ϋ=Ι,z˜«^»ΐ¨sϊ^ꃡ{{½ύ€]ΏόςΛ¦q ˆ [ΐf΄₯«―VΈGƒν£ΐύk6c‚™ΐ=θγό¦_ _­ηwΗ#(ύθδ“O6κ€ώxΐBΕC5@.ΰΩzύ·zƒγUε‰Ό:u>zΠΧΠG\ eυ%:˜@§ί’Λθ·ΐ|Lβ―T gΖ;fQ\σIiγLήΡΓμB€Ύ§ί[ώψΗ?Κ{ZξŠνyςε†UΫ‘ΐ<ρ›:,@žxτΔ£q ~EG"OΟίηwžΙ@8:}Iž¨ ‚³±‹„ܝ—5τ˜­kδj!i`ƒHμ;:Οz€FNθ_δp6gΞ³€†| #{JŠ$φ<_il46Ού:t0φΐ0›€'Χ 2”βΙ³$mD_yuέΖ›(rοͺΆ?0˜PμP4r*ϋμRξH9Awv`‘6…qp€8@8υΐo ΪOTaΡR)šρ”o'+½:\ Œ?‰C <{}ͺ€αΏP2Tzt+I½Cm…ΜΫ²]DmΙξ/Ώ•Ψuκ Zίγμ’₯¬YcυέT;wΟ‘:nSΈ-TP¦Naη"Ω°)^τRέΊ=NZκnΥ o}#;ζ,4—Χοs†€œΣ©ΊIΥˆλ‰eΡτQτUǎ+kCΩθ΄Sώγβα–ρt`@Ώ[Μ9ΐZΪcίΎ>/υcŒΡίθλ‘™ώ6kΦ,&‘Ρωτt1ή§·3VgŒΕξ«σΡSVoΠ§€†Y0ΓX”1τeτ;`ηΠΑδ—E3θβ’Λ€₯o³{ οΧ€‡NEAXΠΙ‚>t? FˆC@g]|Lg)?]/ͺϊ¬xE,>ύͺ‰Vή¨ž€@υ#¦ΏY₯^‘ξ8XΡ°ž€ŒΡvμΤιΑn°sαˆ)φ6°σψaAo“„φΡΌΡό ;ίx•ΘŸN©œϊΦνRtΧXŸ—ι:ι’€°³Τ­]9N°_μ΅›zψτ.Rϋ_Χ‹εs%π«•ΐ}/9pL‰δζΕHΣΖε2qHΌ$'νϋž!PΨvΒb& yn΄ο-8ζ„ŒCνβFΌΐ΄xg‡M&-Ξ-\ΈPΊuSέ¨ηΠξέ»›ημρΨ₯ύoΔ~0fΰ–3―<Ψχ1\˜W`iލΰΟJ’n:ͺ'xžάά«\ Έp%ΰJΐ•€+ΓH.π|U–›ΥίΌ’žwηιΆwΣ|[uλK€ΟρΎ‰τΓQ˜v£°sIΉBu$cΜ.μ|8V€›η_΅ ϋ…μzκ}HƒZdΜ_Et+Ύαϊdνz+«η_$α„VΏj9+œ <‹¬Ϋ(2κ>]ˆ“@*χρrj—Š`β:,1! œ0W!9&€Εͺ³΅%…grΨΤNΪ;β„~Ηνw&:Έ7`„3Ψν‘νŠPgβΰ”{&ό™ °ήbˆoAWΞsξν·ίφ{¦ΞH°,Ξ΄C Ξ8ΞΙ{ΌRΩu<€OΉΒœ,„’ςŸ!žΨz©ςμσΟI―^½L]4ΐlŒ5Κ@ Θ¨E‹¦|ȌI~ F&›€-€°œΑN"“›G› ΄!\Ω‰— @6Ό½ςΚ+8@ή€@y‘ΊζškΜ9&Λ€Ž(Ϋ€5―Κ,^!XO² γzΚ Ό¬@€VR˜LCNxΐΆη,(γœ4‹Ω™/_eύδ‡;L"ϊφηž)€O0―Νΐϊ›·V"4Ι^n κ"X =Ϊ<α%―[ϋNRR?‚Ι~gb uβ/ϊ>π;DžœπA$ϊΐΰ‘E-δi€z­΄v€r³“3Oθ+k`mτ1zΚ)X]YZΑdΦρ―’ΣγΤ':Χ.€b°:—se [qΖιFΏ+φ;ιtΩ~T39Bm›gaΚΠΏ£ΧΩ€s§Ν‘†½{ʘGgšΈθul'6!0 ŽG+'d ˆOݰɝbΥΓqͺΔ·jnς¬G@fΐ–ΞΊ3'ͺψηύό)ΊoΆheR:ΣFή.ή½:ωΟΩ[₯pΪl‰ύq½ΙΉWνJβίV;Ήs%ΡΣΘ^‘gωi£ γΦ+½i›ξpUΆΟ΅”±L=AAΧ9ώAΣΑΏ T,?mΠ]6β½2z`Ό΄n±oξ“`ˆ%_mΠE¬―‰Wu@Μ©GJζmη…ˆyx¦/ γ,Π Μ‹ž₯’O¬‘4Œ1θ/‘Ϊ$ρΡ»Α;cΛmβ0Œ+ΡιτωώσŸώ>JZ,J`ρ„Yμρή{Ζ8 D’σρTJo0vg‘ γ2τ:cά;T` ή}­GIβσgή`ΗsΪρ iρ ΓψΧΒΒe9»dΓiΫέ>· 66fΜΝ³ ΆχŠ+π{Ώ^F_ρG}£wYάθ|Fc˜P:Ÿ2L:΅’ΞοΠ¬Ή\φχkύφύm΅;žΏ*εΫwJbοKuνχκJφ=Z[Κ89Ϊg„iν5ί±vΌMh{NύzRλ£dώ;o΅₯Θ)π™[J:ΑυyΓΪς2¬Z+ω>)±ΩͺΫ4˜…ƒ½/ωC—J—Οx¨NzΟ76-9ωXIΏγοΛJΧ„ύ‘ν!wκ‰_ς?­ΌU3I‘ž#¦½Ÿ©ΗΤϋu1‘Ά υΊŸ‚ggΗ"Ι χ.μ¬PuάW?˜$“‚ΑΞΊψ²hΰ‰ΩΉ[ΌšΔ ƒD2ΝB₯ƒ_|+EΊΨI•š”ίAj ΊΉiχ‡+ίŠ6f{δξq₯R\βΡ1R©Œ½+IΗραKΟ8Ÿ…™xΰ|Oc―D_ΪEGc{Η~’w±—<7xwÁxC ­χt<ΐXΓ>C`*νΤ·ΨA hlycΌΝXί™WϋxQ•Όισ€GxY³CΰΦ–Ld8½?.„ΪΪ’Ό3YΌΕδD`¨jΔι±οfΐ»ΐΊΐ³υLd\ν €Θ`ω4hρp‡G7ΚK`’ΟΌ­Zω2°•ρ‰'žhΐž5μq›ŸΑΐηy'J<ϊ±³2±|Γ 7έƒ'PΌb:'šιsΐΠ@ΡVXx;‚m±:€τι―xTΖ±ΥΐJL ΜS0½άF^π¨I?σηIKlέΉΓ―ΫT3?Ψ,…KV2½kGΙξΪΤ؁@]Άβλodηœ€ώ GΙ–#Ν"βP†&Mšؐ2'§]Α~aWBε‰2;ν v}cΕHυλΪ΅>OΫ6Ox΅ΰo°<΅SpΟYΧxΨG'Ω¬Ρ‘”°ρμ§ΥΩΆ>i—ΘXΰOmφΧΠ6°θQΪΖS“’MΉAcꞱήPmȏ-#Χぴyσζ_α•Ϋτ7^NΡΏ'(pl2uκxg‘Κ »fΑpΌ©N# ž5λ€`Τtρ¨kcŸΧΝ;ΥλfmγQ—mΏ±No»‘¦U<-Γξ9σ%y‘yZΧΘ±θτ“%ύ:…q³\έ iyΧm’_|-€‚ή²ΓkI–ΧJ“w΄’e-d[νLΉvPkisΜΟv>0~UΏΛΦm—μ‘ϊ.Fϋ~L‡ Ι¦P’φΡΓ90F³p,:―ΗΞΎλ[„σΞNτOΖ~Œ_-˜Db"%&3Φβ8!˜ώ¦ŸE«σ§"Υ@ΙN½b2²χŸs,‹NžB/]α%ύG x%FOΠ,ΦΎΕλ0έ)£S―›ˆ{YΫζΤ5€Ν³ :½H†w~[§€eαin‰MΆ‹χΡe@»r%«΄ΨoλЍνZ΄”ίŸΩΥΨwv 8-­žΔλΒ o›–¦―κόpΆ4Π¦`·NR/ψΦγt€Ο*€c4q-Ο/ȚγςDϋ±ϊ[λ|¦{jΖL)ωμ+έN‘Λ>Ά7Π–šœύύ:R 9Ÿ­QƒU9‹z.œχ²xrσLœςζ’zs/}έάόvΟλϊ‘΄•?ύSΨ£«Τύ›κ’h‚zΞΟ?SβW¬1W•{΄€ί­c}CDX9σiσ P¦φSGάͺγΪ*tλwk€pΜΖ³s…ΪΌ”qj—κΧ ;mΛyΨΉΰβξR/`§Foa‘ ―‹aΆˆWΗ ‰£ΥctλαΣΥ³Ν uϋdΌcV`[ۈ\ όV%°βŒžΒ»/‘cΫ—Θ°Ϋ“ΓŠ;m‘cϋœ…­tη³`ΰΨޏοΟ0ηω½9묳Μ{ bcίΨoτ?χCηγl8š…›žΡ°£Υ6―ΐs`^ΓΟΌ3 5^07 ς<²£ιή{ο½AbΈ‡\ Έ8˜pηƒ)]7mW\ Έp%ΰJ FHΐžkD5Έ™p%‘"žy9n¦HA‘T4¨+©x¨ΣmφΧΐΫζ Δ[€ΫΊ6%ΝΖ_εΒΞ‡keΊωώΝH lUΆl―γκ^ ―Ξύ/’ψŽGΘζ±Ο‹χϋΝf’ͺώ-ηHβιν~32aB ` /XΏ₯°xYŒL›]ͺ/βΥakj…ŒΈ3^Z4ϋuI€‰ §7γΐ­-™lvΡ‘ΐLœ1yΑΆΑxu  7i\a'ʁπP‡Η:&‹ΐ3ωeβ„ Ά¦Š }Σ¦¦¦€” q;iνœΨ ΐΛ$ž-ΙeΓϋ̝wήi@] έƍ›Ιvγ<8˜m£ƒ ΆEPn멌‰ςuί}χ ‹²_έδΩπLHOOΫ ©wͺzλΤ\<κ˜ϋY@Ω .“.ž9ιƒιτC?ΐ§I9Ο“Ώ—_~ٜGώΐ‚”•ς{γ₯Nq]` ¬@Φλ0²ίΆm›™œ UvΰgΨ’9οC^ΰ€κͺGŸ`νŒ:ΔͺυΔ½vνZ9ꨣΜ؜9sΜΉάά\#+ςΨ^‘½buΙ΅”Η‚αΑ€fξ?{φlβΐxA.„ΐφ‡¬€|lϋsΟΔg{r=`Œ€ πΌΰ{)Z·MΈTβ[4 ϊ>Α ϋ‘Ϊʞ‘Σ%φΫΥ&nI—Ž’ή_w8ΩΫχI ؁¬-R0ϊAγ-M$I·φ–+Ϊi<~ΧJH”΅ξeͺΠm―Sή ’žαjRπζψ`ηνΊθQΦ›p½Δ4‰ξ9 πuݭች}¬K+Ιpι~1kϊRΎX•dŒΈXβΫ6Ω―τΖΕϋΣξσCaR:X%.ΊΔΩG™žΝ―σΏQˆΉdθ+RΎ[=žλMf]NΥ~oνU(]–““cx_ϊ.z–Iw:”ΑΟLš3ioσΞ5hΠΐȚλ#Υ―6Oδ[fuiΛ:ΝYΧθ0gέ«kμeζ\UφσΨaκ’nέΊΖv’ΆŽ±υ‹}μΤξ―ΈΩΔ6 VTqΪm = r ΉZH`7πξI{²ο [ιb& ]ξ‘ϋΦ…eͺΒN]‘άϊχ΄EƞXjν 6Ρ°{vAdΈwwθcΖΒμόƒNΕ~ρΌΦ½{wcχ­ΧgfΑΡ1Ηcl(οWΓ† fvFY«ο{xgycα#vρ@ΟΨ(vFˆ&π~‹±Ώ p²tSr%ΰJΐ•€+Wj¨μ$F€ΩγΑΖ \ ό,^NΨPέ—»φϊͺ>#ž½Ÿ|)Εӟ―Ύ-o•)iΌ„­AΫkWUΖΐσvυ‚xšτ4L“L`gΗφζρέί\ Τ TlΛ•-ΓΤΞNυ0©‘Nοn’tNgΩ,(L]ZΈp‚t&NœhΐIςa=ΉβΕΐ"T`Œ­ΚSRRL Œ_"g^CMςkM6ιμhΗ΅m/₯±?Ή™•«sΑm΅Ρ?Iαg?κDΌ”w_(ρν+?‡R΄k»e;0`K΄Ι½wΆ$,ϋΦ”₯Ό]+IϊO1†ώΜ‰0εςΖΐ؟|ΆκτΉςΩG₯V|‚¬=λoΊύs{©ΥοZ%Ά«πκζγ”·°Xv¨ggOφNνp RwμuΣΌQT·*|sΉμšσΎkŽo!w_Υυ‘σ_Zv<ω‘9άθΦ³$ι΄6QjΔoϊOuΪ}°ΜGΫG»©G[ϊzƒkϊ“ΎŽ'/&Ώ θ]Ό>ΪΈδΫ.Lα<ΠΦζΝ›M_@Wγš­Œζ"ΥθέΆ&IEχ£₯³‚`Uιό· 0}5Άi©uBkΉύίΒ’ͺt}½aAZτΑΚβK/•ώχΏΖž‘Λy…—ϊHμφΛvΡθΧhσ„~&}Κ‰>`°ϊ”ΊΆ!άΆΧΤ1υJsΐIΨ°aƒρξŒZΓ紐ݲ nλ—›ΣK5εs‚δ΄-€iڐ]pcσδό€œx₯\ζήΡΚ‰Ί -°‰ΨΫμ}X „ύ’Ό”uΏΒŽR0|ŠΔlΛII–Λ7~)·dρΑσπΌs·δ=4WώηΤΈgB/](ύϋUŒh/¦ M˜˜#»ΏΪ"™…₯Gλ5’‘·QbφΨ•ΣφWή°”·Θ”t@9vΣο3Μ\‘_,›ξ~VΌΫςΔS'EšNΊJbj‡χ|Xι5τ}Ο ς:ΗΗ6Λθ& ž2nc gΗ[6NΈO§η[ VΖΏV·sϊ4Ÿ€I_`Q ΡXψΌz;'0NG’–©ΞGEͺ7X0fυ―³Lθ6ž)({  °'v#ή›Ρ,΄qŽαYΛκcΞ[έGώœ2^pίT)Έ}„”ΣVnό›Δ5kΥ³ i“&2b‘KAAΡwg<€Βt“r%ΰJΐ•€+Wj¦\ΰΉfΦ‹›«_VΌΘ·/έƒέ™ 7;9aΟ ρ’Γ Βπ’‚ΌvΣΖ=PŸUΟ»Τ#Fβ™Ϋ•ΣFj ΎY<šΗΓ5”mΘQΟΞκ ΦΒΞγΤ›Pϊα?ΑvΈΦ‡›oWΥ’@^‘l3_Όk·™ΛΣΟ9AR―ι*Ω“_οrυH£‘ξ§Iς%'›οΏζΏEΰyϊμ|ωp©ΔΓά¨Iκen?!–ΪHύ:½§8'>˜°`rΒzΰŠx¦ΈŒQψ <“>^d Φ “ωΌuδΝN¨› τž‘‰?kΦ,{Θΐ S§N5Η/1 CρbΙDw`ΰΩO`Α &W‚Οe?m•’―7ΘΟ~ΜQWΚέΞ4p6ž§Η*Ε›rdΠμϋ (]•ά€E˜T!ΒΊ”y̘12jΤ(‚±Νv›6mΜ„ςζΒS' "»ττtSoζ ώsNpΩI$g=r²Uτ€I“ €€fΐ JΟΐ@}]t‘?_xvΖSC¨ϋΠ&,FέΰιŒϊ"XΠ‘xx«Z±€¦E‹Ζ‹›=f<$F*$C[£~ƒΙ›100ŽΣΛ5 4π³ύQ :gϋ;z³‚rZι"ΆΪφΆζΉΟ՛솁σ| •ξΠ°ω’ΨΉ…:δ<ΈpαB ΆύΞΩσ%ινΕ&~9^ΜF) Q+Υ}$_rΥΓZΒηίΚϋΫ³€η§oΰyσ‹oˆtϋ}$—’qΌ λδ {\δΗΝX«;ͺΔ΄© ‰W•‘β…ίJΞL-ŸO§#€ρΰΛ’σŽpƒβΟΧΙ–{_7[Ǟέ^2―=3 FΝωΙΔo΄ν>°ο–ΖΩG‰ |¬„μ³ζc=&Χ_―` VΌσΆHβΌxnΫδpΕ=€+6ηJι†ν’σύzΙΌΰ)o”ΊOžώ·τ YwΝ i1΅όgΩ’*u~½zυŒžά_]†FNkΥCϊ€€` OΠ―vρH8;τKδiĈώw‘Τ56…z°zΫΦΧFEωœώωf•½žOΰμσΖμ")/Ω&-[67§Ν"$…Ώyqήi` °9 bA3ΫΐB F€K'LατRK\[ξpu‡œΦ¬Yγςμ=hό'\υΦή|ύξώ+e…ΊƒChοz6~ΈOO^δœbΌ_ςΩΫςΑΦ,Ήϋ΄?Iί³bΌΧiέ· –z>Φyα’ }Nυ†ηνEκυσ%υŽJ(9±“ΤΊ₯x£΄7‘oΩ͊Œ›V(_­LΠ1‡ΘΰΫβΤαηή1wΒ)kΦΛεκρ[½@Ηπ§ςΩ'0VΝh ž ›JZ§φ²ω₯o₯|{‘xR$cό•›QΩvοsύar€φʘΕB’Ξρ±-ϊ οΌθΰΐq›κ“~ΚΞ$va`0Κ^‹ήž7oή>»0φ#<;κ DηΫ{T₯7°Mq+‹(ΊvνjN1–Ε;ω!8Ητζΐήθ"ξ?ώΨxΡ’EζωΗ^kO/'πόόCHαM}§Υ¦%ί?RξΈo²ΐν5U=«ΨxΤ1z‡…žaυκΥ’±3OŠοT<τ  ΨΤΛ°ηΘζ’6v€¬ί±};­Ξg±:?η'μυν³ ήAm[φΖ7^¦_ίxF‹&OυΖ=¨»pcp›j~»J f=+1ΩΫδλάιϊαΛ&©œVKb¦ο9/β΄UχŒ}H<ωjW NΊC½C+΄Q@ž=χΉfΟ”G$qΙζxBo]”Ψ£ϋ>qφ9 ϊΎΰIfPEzͺ€NΎ[ΌκqΪ \ T–ΐεΙ’O}σNύoŽ“ίΏο»KμΛZ}VaάΜX/ΚμRβ΄ΥΞηJ±cD°χcθR»›‹ˆ¦OŸ^i!+ΊšwZŒGμ;!μ/cξΗ;τ:χ«_ΏΎy`μΐ»»οηœyΝΜΜ4ΆΙ–<0―W]uU₯EJ6^u?ΩIŽΕO‡ηκJΠ½Ξ•ΐώIΐžχO~ξΥ\ Έp%ΰJΐ•ΐa x> *ΙΝβA•lOΙvάΌ¨ L βMκξ»οφΏœΰ…žςYπ"hž·† b&™žΆμωύύ <{υΕFξύKΒ―Ν-’ݚoσu0vΞ©žmςΥ³sύTɜ ž]Ψω`ˆΪMΣ•ΐA—€·¬\6ΧώόνFί½ΤKg“!—Λζ―‹wΙsΜσ‡£$γΦ=/‡ςΏ%ΰYηφdΒ ]ψ<t8ͺD†φγΕό‘¬ƒ{o&+%π ˜(΄ΑdΙ΄iΣό€²@“#ŒΨψ‰‰;ΚΚΚ2@•…Ν€΄˜Hg+gΌ΄B}ρΕΞhΩ²₯̝;ΧD…ςƒτpπΘΏg>&›ϊλ8J·I'4δf?kΊ’™ aς(6ΏT€ϋ ΰƒΖ¨'`8``–Σ£Ηg̘aΰAΆ½ηž{lT#Kψΐ,J΄ΐ3ΆοΜ3Ο”ςgο<ΰ«*²?~^zHHh!„Ϊͺ°(ΨΩ΅`/kw±uUD₯wPΤμ½—΅»φ²Šύ―+bC,(5τ@Λ{σΗΔ››Χχ>α½wοά)ηΜ9χΞοόf]ΎΔe΅1¬­ηŸ>YΙΠ‘CΝ»ξ••XΟμ5ΜuΜ…΄}σζΝ2lΨ0ϊδ< γώ²Zβτ“ΐ€ϊ ΄΄΄4›M̟{dΆ•― σeμ.{Κ5½φ¨Ϊ:Ώ‚Ρ˜'μ_«^:/·ΣyJΑjζ±S~Y&e·=(ρ«Χ™£ώΆ­%eΔE"»τt¦Ϊ!ίu ¨;cΆ―– {φ«©S™ ›$ @ΐ’―PxόΚ΅βSΐ§•’UΚ>\θΣy@w•ΨΏΘ;KfΎθήY|²A»Ϋ€Νξ“~ημ“Φ?τc;Ό΅€ηHΑw6ϋ p ;5rδHΓn1V#O=υT­?Ορh6Ÿ`4λΩ|b±Ξ1ΝuŒλH€V§OOzζΟηŸ^R!ψΒM ψ²όklω2œ€g‚6*ώ ew’,©3G‰tξP?oOF³n+•/ΏK6Αc―N>¨λO1;ντ§Ÿ~jžΟlpˆM†Μ7ξωΙͺΪ 6ζ}ώΆϋωσξ»ο6€φώ > σE—.]Œ_`σγΣή[Ÿ΄}ΧD]χή{οΪgΙPueΞvΦΑ™χΦ|χΟ[£5οO§πάxΊτrς4ΰiΐΣ€§Ožš¨<ΐs½1^΅v˜xQPyž‚?Β Λ„ΑΛU-`¨kXH„MΙ½Π*mCŽ…<”I¨DΩ*βZj€ )—ž)2hί†dΫδΦ¬.U㟩;wœ~ΊΔ΅nψΒf“k˜W!OγX}²Ι½·(¨….m%gς™²ϊρw%0οGsΜ·wδŒ:©Y/ GΊΕ+€gHω¦άR!Ώ.MχΩ£\½<­9γ""έΦΪsψπlAΏΞYFψ‹$­ΝΜυ%Ϊ΅ψ2·ί~»K°P˜-μΆœ„aΆ^|™C•ι“ Γφ©ΐ,ΘΫί\0‚g»0bΑlaΙ’=eΐ†ά―_ΏZvd€uE].ΏόςZ?(PY-U‹ς”-0WF޽ΞΤ՞oΉGV|X Œ—τφ–Ε½S И:Φ8p © λvΫμ3fπυ₯N  m}f9κ  Ϋ N@Wl©‰" υƒ1ΗνΛ‘ \Ά‹Nφ>sŸœ[DΘA]ΉΠ @‘B#ΤŸržϊ‘ψ›ψ˜ι³Α` Π‘@;Κ#½m`φΞ=χάZP$ΧR. Aݜ o€›δQ_»ˆΕ"#,χ–v?ρθc2π€?›n/9ε”Sδ_ϊWTζΕΐΧ?HωμϋujeVU°Γδ€"Ήσ‰GM»cύoΐ}dΑί›{0©I‰φ‰υ³žΈ―–˜g–#KβΎ»4¨Š oΥ€ε€Γ$ 4ΤqΉ΅βΟ/–•Χ©/―Α q½²”ΉύTρ)ˆ¨)K΄ηPύގύpνb!VΜXΖ(y0>σσσΝB5cΚΚ…^(³gΟ–ΜΜΜΪρΟ9_Y•Δ₯§˜'HxŸ}φ1¬Ή½R³dΩՏΨlΜgχ»/–οΦ.Z'Ϊ @Λiσ Bΐa7ά6{»-ΆΜ΄έ΄›± $¦NξyhgΤιΨc5sƒsώiθ½vήζŽH`{ζ@tNΕ¦3‘ ΖeU™γνœD]¨χζΨHΒύe.G˜ο(Ÿΐ€7Jι€9φi2iΖtΓ:jΛ°}Ÿy(ά½³z"o'ΈΤΙΨΝ9ΪΖ=vΞίC;δJωΓΟHΕ~ύ₯ε° D€eekΟύwί]ΎRΖπ‰C/‘Ών°ψς $n#…ζΟ§€°ˆ’χ(™.ώΦ™Pζιψ₯+$Q` υ+3lς'Hΰδ£™Ό#f³=Nκ­ΐ9 &›•k.M}ϋΧηΔ\²©ͺ/λŸψPͺη―ŸΎkjΡQƒδ2~“W 9Ij0WΣ5G2ϊχ ³έL„> ΑN»›τq'fyλ;Ej&γ“`B'£/φ:Ζ’szρΔ[%AΧ ˜ŸRu·›@ο\w*ο·§O θ°‘ ³Λδ§_“$9) Σ―K\Wœ„Ӣ۝¦°“Μ̏$<ΆAόvώΖ~2γo3_3^tΡEΒsΟ<Ό²οεHGzζ|ό›Aί¬c2χώ¬Άr)ƒ:Kp#AHΌΫAμ3u}RορσΓΥ•ΆQΏΖπάXšτςρ4°uπΟ[§7ο*Ož< xπ4ΰi iΐ<7£›εUu»h€D7³ΰϋGzzzrx1hΠ Ω]Ιx[ «€ixΉΐ‹~\αΕ±eLβ7/#σ%A=ΐσ¦")™|›Ωζ/”(-»D€_pΡ¦N#šΡš΅…²ZΑ΁ΝβkΥB:Ξ:Γ;7£ϋηUΥΣ@4 ΐ Ήιή7ΝΒ“h C{=―kΎψ_ n[ξλΧYrΖώUΡΝ—5,œώΟ ”UpvΉ¬Ϋ|œyr’œrLγ½,§Ϋ¦pœ…|ηv‘Ξ­-Y€(x`R€­-ένΑWα/Xš…’+―Ό²Ξ–Οξ<œΏYδ· κδΛˆΫ_ΑηΑ±ΰaΨ!ρ—μβ + ͺ oc† bΪΕΒΚ‹/Ό(›_/?ϊN•ύА܇†ΛΘ)γ~<ίϋ°TώΊVϋv–Δ)Ό ›],BNπ ϊ·@d ψaνΪ΅3Ύ›3?ξ`ΜY‚E•E)@κ'œp‚CLŸ>έ°XΤpΆ‘|œεΈ_δ½tip{Sg™αΎsύόωσ }"ψ‚ίΙ=μΛ}°(œ…5ϊ]Δβχ˜6σΙN!/»•*z}ώ©gδκλF™ώp‚?~Ϋr‹j,Ζq―θ#…Ψ ε»ξrfφ;ύοβ#O”5γξ—ΦΣ/4 gτπl2RfΆ•€ž\+I0S=βΰZ luΨένrV  €…ς©wˆ”–ΛŠͺ2)<νH‘^ݜI"~ηώβ§o55ΐσϊ[ώ!qŸύdκŸ1όdI<0^ŒΨ ΗΙΚΟ~–s^ΞΛ=²€ΓΤ³Ε§ Ύ­•@E΅¬υ”Φ‹/+]:Ο>CΑFI[›έ»ΞiGcιχΠoΓ 6›Λ%ς²sˆΝΰ2 7žCK~Μ“ŠWΛΖEK%°VZ›J%{ΞΉrΔ‘G@Χ`S~ψa9ϊΘ£$ŸΘ¦wΎΙn©lκ™f·nϊ~ς―Χ^‰©NŒy§Ν?逓κΨ·ΝXKJCmΆ ϋαdΨ‡yŸΕqΞYΫƒ}©NΨro˜_±eΫ»Nφ>EΊΧ999faN 'Ψζp€gΪ 2sq›6m–hη|=fΎά€X3ΧqΠφšRΦ-~υγό];Ju—JΑx£³’ΊΣ5•ίτuόjlΦΛ/Ώl6œ~ύ›ΰ1|Λ’hνQ€60Φ­―j.αZ0&£ŒGgΉ•)Η– 0χ²ΛŒ!μΌv X›Μ1ǘ<, {kμΎ₯΅-ΞΆdςή{οΥ{com0b(&jΪ†ˆ.œvΓ©;ζ]'¨ΌπΌ%Q|φeρ₯%RzΧ£β_²\*`Ÿώ·σD”Qέύ¬rΩΉηΙβ5«M;Ί-[+χ=)’ΐU#ΚNήrΒ•rΊςόΐA°φŽφb’ΝCΆξ€u~oθ\Jέl`K,Ο*ψ0τGοs―lΪMr?ΣE›ίŸ½σρk τ-§=Ε·zγsυκΥ&Ζy,ΪwΚ#p ‰πxτŸRώκcjΪ”ΡΊ^°gί¨Χx < xN£§iΠυΪxIkα—[&%ι΄σ›/Ο3Š nB_<π€yΑŸ~ζ™g`1Ž,W]u•™Χ™ί‡θϋ2ΦφHΟN><πξiΚ”)&=~Γ5Χ\SKHΐ\cq½φZΉα†V^½z™τΊ1Β|/((0ΑυΨeήmαίPfCκJ^ξχ_&σmψΟΔΥΝχΠοπΌr΅Θδ›«€psœY6$QΪΫ@Νιn³Έαdsomι³Y‘Dj+ώ ‘Ο0){Žν„Y8ώ裏ΜΒ5[N»ΑXόdΕρΓ;¬Ž‹œVoRB’uΜΡ†‘Ψ€‘4»όΒ;$ μΌF’%χΎΛeδψλkΟN`~Τ³Ο>+ηœ‚Ρ*˜C»opΝΉυ6€7'h‹4,—–– 1Vlϋ$½@€άΒ}΄ΐj7€ƒ{hΧϊ‰6οpŸ\/I½c ―A”¦? δγ6>)mv2πΩ²aχΖ_…νφNΫ^Ξ£;Λ,dϏ?-gM3ΜDόvή';00Οβσ²8³w,B~ΪΉ²φ²ΏK@η€ΦS†HrΟN‘Οd¬ ωΌ_’μΓΘ=Ÿ½bΐ)ψο€ύΈ/Ρ$ Μ•₯“4P° (Έ+ΚεΚΦvΠήΡ.3ηΡ€ψ¦x^wΧ‹?ο;Snj‘ΗJβQ±΅Η6ΊκΛ_eΓM/…/WΑΞΣT'IΡui―wˆ‘7υŸβa­ψZ&kΰ"ΎΌ‚dš0ƍsΏ' Βml3Y\†iΏ!cΫΤ·o_cŸΘ Φ‰Ϊη6ώσsΩπθϋ6λΪϏ]!ƒ‡œm88sζLΓ²ξS tΕ¦b‰λ)Ύδίξ%‹έxΔR'lεRGπv*ϋ)ŒΞ°c'`cΆ ΏΪJFψ‚-#ύ½χήk‚ H ‹ω† XlwΪ©PΟαξ:κžn:@ΓύvΦ‰:oΝ½ζ:§0w„<Σ/a$Th „snγZηΆΪΜ_%ΉΨόήʌYRμ—€ͺrυ»«€ΝωQ@IDATrc±|΄μ;±Τ‚!Πώ@2θΥ9$kίyFηgv(`Ύω^·ζn₯ΰkƁ ˆ½w‘τδ#Μtύϋχ―[†£τɫޘ'C|•U¬Uv؟%sθ™1ΌœϊεϋqΗg@›αΟξτυ~/])e ΐN\ΌΜθ1 cΌJ؁”TΓνΣ`šh ΄έFΡDΗe΅5;DΛΓ}ώοχ–Θ§σSΜααn»ί]υγY3EŸΡtΎΫ³‹t}’»Θ Ψ{ι*!hσΧ %~Ε‰_·ΡΜ#ξΔ~}OU£ h˜  ΊgW‘€ξ|ΆΗoηΈ³;c8ΗcέΪ΄G}TΞ<σΜ:~o¨:aθίƒ4° e;ρW΅βcΪ?𧝢…4ψzί(+9γα2<#–U—οΨ|@Q”ιž‹ΆΖn8ϐ<¬XP–Σηη8vƒ ;X,CωŠN›νφ—Ή‘žφωŝχ‡@ ϋ¬rxί~R}Β΄oT?)'%ώӎ“έ•ύΪ>«ΐx‰ύΒWcg”ο|"‰­2D$ @Ϊ]σ,σέ=χά“-£Ξ ±ω[3—7lK,Ο*ΨεεΛ—ΧξΚΚΎβ·cS™GB=ΣΉηRτδœίŸ»iŽήϊ €O.Ι² €€xC|pt·΅Β8   ‰ xΦy―θ†{%ρ›` `UŸž’1Nη©Xω 6KιΈ[$Ž}•:V―ύcοθUμ|£ιθΪAƒΐΞ·?*IΞ7ωWΈ—d ?Ώ^YΎŸ—HΕ€›ν­Vfύ³Ζιΰ‰HXxΗ£’όΎ_SI¦€ρƒχ­—·wΐΣ€§π(ΤψΡS+5ξ&^²Ϊϊeφψ$IOϋ τΜΌΝ»lT(±αΜˆΣ―¨υuuώΗ_·AN‘ςασ(Ο–μφƒ&Јωα~Ηm·έf~σ\Όγ³sw¬ueξŽεύdmA1|ρΟ1(ΙKβi`;jΐ}©ΐK˜ΊxΉΛKt+δΕΒ¬Sva‚ΕIη’‰M»΅Ÿπά³KWωlίγuίΩ ρ·o#iΣi­/ς›±ΤlΨ,«Η*³sQ™°σ΄ΑŸΩŒ[δUέΣ€§H¨^²NΦOnw°ΉνΥ'(€ΐ/ω·½d™μΩ^r&¦`νΓ†©nΫλ #@€ ώždΡbŸΜœ[₯Σ’O€rέ°DΩ£Οo‹Ώ§Ά†k‹υ`Bp΄-[[ΊΛ oώθCΦΗ0` ] AXPG aΤE §ΐτ³gOsΆΐ€a«jκŠΰΟδζζšΕ~³ˆΐ€…δύχί7ΰ$»S …ΝσΛϊΏ‘„Β ιώψcπψΑB ΫOσ‰nœ€/Ι,πŸSόƒΐτΌyσjl8Ηψ€ApέΊu«—Ύ^8ΐ³-  ‚³ g‘ –@va»RXXYxΜ°ΟέnΪL?pΐm¨œ¦l’άξ ΗΘλΉηž3Ηά‹Sδώ¨y °Z;ΩΉiΰΆK‡AtΦ¬Y2κβaςφη@Χf+sΜhΗ¦M›jΣ „*kdύυχŠoυ&EΝ$IΦάα²’€ –‘ŽΆ;Α7ΤÊΏΌJ=:Θj ΣΡ,ύT(Π;&),VΦΆ9ΚPΉή$O=γ8Eυ¦xψΧ'Rόδ;¦ξώ#HΦEϊlΠ©ϊzY0ψΕ.m€ΓτsΔ—@©ˆΌΉ―KΝ§KX/§UΊ΅”ΌIc,pŸ‚"Ρϊ=6ž1νΰZ„±Μ8dόrΘ!aΗ¨_AόΕ θ-΅Y mχέUnωχc†έˎχnY²ω“ `ΗdξSΆφΤD)]W -»΄—Ο«V™νŒ9Ησ)€N·Νγv€γΤ©!vƒgX·Ν‡aΑ>a‡°%0Νcσ.cΗbΛΥuμΨΡδ9i$™=½RJJγ€sN•ά0.₯6ή€ΉΆΈΈΨ0½ύφΫucώαو·μΊ"Άϊΰƒ6φΣHΕόΔσs¦΄l3d‚*t>λtδN_Αϋ΅ρ³­ΔRWζBζΉΖπάΨυςσ4Π0 x€η†ιΛKνiΐΣ€§Ož< 4C x€ηfxΣΌ*7šxαώΪk―™ΕZ^ΦςΨ…—J/σrΒΎ$'½s»m˜¬XμfQ„—lυx¨n©4tkΏXeΟέΣ2δΏƒN“jέ&4}βʐͺoϊ›±ψ7•Θͺ1ΊΈVPjΨΰr¦+œvnΖwΤ«Ί§Ψ4P–Ή5“žYWd’Z3Hβ;Ά‘ό›- ΐšr†Δ)3μοA~―€ηΟψdΞύΥϊς]ΜvG&J%pϋ_΄XHΎτKMσ·vkKχB‹#ό…1v[ΙΈΐΞΩ„hY΄1Ί[§ξ―ύzΠIǚλΙjL“γpœκq FGΖγΚ-0Ας»Z·‘ίZ»AžΡl> ϋ”ΟuK8[ζ˜?ρΔ†α:p `sΆ;M°κΤ½ā~άsΗμ<νd|£ξykψπαfλk`˜C°η€ΐ†,™Wl~Μ7=τ β8l¬γǏ7ι±ί\cŸ—@°ΟR6σϋŒ3L°ηxqrΗξςnΙΖΪΰ€hχŽyˆ6?ωδ“ζ} ω8ΕΨΰήv8hη|ŽτττίτDΏzιM©xφeΓ"P¦Ξδ!§‹q YΕ$[xώώ')Ώύaξj`ŽJMN{I½ϊ‘ά­°mΚRX—oΡ²a£,^"ρ›t·Ώ±P|›K’ΆƒvϋΫ΄2€θkΪΛ«ΪKark9όδ,9πΨΦΫο/,“UΧ=mήΗHvKι|Γ™ BNŠZ§ˆ |(Ώ,—‚ί)z•$(΄OΩSλ‰φš¬ΦRΣEAΠ{τ_Ο.jθ:ιn‰υ’6ζlζ’E‹dΟ=χ4ΩΒVNΠc ?x―½φ2ǝ;ŠΠ_Bγ;Z›οoΕ9–aΐeμΈmiςςςŒ]ζ:Ζ*οω°νΰNΙΨωŸρ`xκΤ©΅[ήΗbσ-QyΖb7,ˆΚ ΪΆ6Ş#/+θΟ ζ₯Žo½υVν.'€Ί±?ΟW^ye=]D<£'‚6έΟ*έ΄}κ‘ί|]χYε—ΗύfKCω»0b£kΔ’y~°NΡlσPClΎΫ§άhσΟ_―ΌςŠy^ },Ο*τAnΌΟF’ΩΧV­Z™>σ\Ίο@)Όf¦$κ˜ά4ώRιΡ³‡)_%T€©9وΕxΦ‹‰Ί’23λD+)ηž(Ύγ‰½+VλυsLpŠ?-UZL‘ώqε~ΏxώD·sΜ5”7ېγΞΏΤ€Η+³sΎ.ς₯%)œ‚sbx‰»σ«ξΥΐΣ€§FΠ@ TΩ §hΐΓυΑάφν!mΫS6ά€6ΆZ9™aͺ.ΊgΔ°pΤυٞYόΟ―½'<Γ6Μ"mZΥθΛdiίNό ,D4ΖΦ–Nβπ πμLοόλN&²¬Ή,¨8·£ηςadHa¦_u¦T|±DΦΥ½bΟ»?†p  V§DύYwža­sƒ»έωρ›Ί”€!Ω ³η-£ΰ ΆΌcρ‡€6ΆΏF΄ ˜fqΙΉ@eλψψ€ƒ6‹Y₯©_4q₯έμΦξk­ήxN£=,šΩr(P2 ŠX}ˆ†%~`…vpΐπaέ|σΝ†i 7 'ΰΒ¦q~Šƒ‘0Τ‚šMG[μ–πτ?˜€χ)ϊωΛdνM―š$ρι+Ξ=8Rς&{‘ύžώˆ=ΤeΖιχ‹€ψ•R°g{cOci(cτG{*ΈΞΪ₯HΧΩ]‰.Ίθ"yδ‘G"%5η¬ύ`ΧP»ΘΘ‚Γδ†JΓβϊςεΛCΪ2'6Τ΅ΞcΨκHw[λΔ|dwy²ϊΑŽc_Z'框θ• άΑ4ΤΗ”ιέ`;ν\@½œGθ…Ή ΐžSΎψβ 3Η£sΐoδƒ`ο‡ b‚nl#Ψ{Μec$―"Yzw7;τUfTj¬ΈΛ”lvΔRλ“χa-ΈΞ¦χιτ=)`ία@5οZ,K¬3]ΰ—eRqΛ½§€a€z—’6κ2Γ:κLκ{CΟΎΒΝ²ωξG%ιΛο‚Y)Σg™'‰₯vΝ"\B²-LjT@t@Αz0B@4@hύ‹W¦h_‘Ύ+ΑΩVY—oώψžέΆF·Yί€Q{δΧ]Ώκ0Dχκ^ΛPfe€€n TTΛ*evφη(sh²tΊωl‰k՝¬Q~ϋδψu…A'(:&θίk Q=ϋ›rpxώ9ρΔ ΑY&m†…y7e6&½miX|"H~2Ϋ@x&ύgŸ}fΐΑΕΓ υ Γξ!ΖZͺsΊΠl>€ΊοΌσNΓΔ pfVΚ,Θ?F6@ ±ϊ"8όδΘΑ)ά‡nΩ₯!τgŸ}ΦμfβLΟwC‡(€Ξξ‚βΪgΑ½OKς‚šΞΩ’>ε*E*šΓ%Mπ\½`±ή¨μ„:Ύόμ&νƟ‘™ΪΥ ©ώe¬Ÿ¬ΧWκܚ!f)(dwQ¨ϊe¬ž€σ΅Ξερϋv“N#β.ΆYύŽΦοΏΎΝ²ζ©€…²’~žYhμ ύρ‹ώOʞόT~Ϊ;ΓΨ XΞΕ.τοίΏΠ-ά΅”ψγp\(;μΎϋXˆΏ†Ψ Ζ7s6°Y¨²°ω€aE…aμ裏6lΓΦΆ1ώ_zι%!˜ΒΪ2lAaa‘a―dȜ‹p:Š₯N€τ`Είe—]κΨqΚyπΑ ΈΡi_as…ρ’Ό©kCκTRR ½žrΚ)fή³vΉ…9Φ}ξφY€ΏΨ߁;ΘΌjλjΪP’wΤί²x3_`§/Ύψb’ΤXžΉ§ά›Ύm$εY9²χ ζέe„3wÎJ½`7TO–έšŠ0—’t vŸy’yΘ w¦eJή|Χ#’όΙ|s8 ;]₯\u‘τ­“Μύ#fΐσΫJΕ/ˆOw@*χΨM/’μΙ ή™ zΓ&yγΩε2½rΙ¨(”½:¬‘=Ϊ―—ΈM Œ.Τ]Άψ]a«©~€Ώ•’E·U¦hύΜμ™+«ŸFΑΞΕHK‘œιϊ>¦[ @Ώ°…lΕ‰u θStΡ‚…Κ½Zς֊(π°žθό_Σ©½Τ‚ξ―χ;WY ;wΐΩ­—΄!π«°eξ>I0}’`ϋ^?›@™±φα‡Κ|`όμBp^Μ­`/$ΐζγ—…£” Ϋ0ΐ]XΦρ}η‘μ°ΝΫ~ZŸ‘Ή,»mΆν#|_k$`εύχί7Ά)ˆŠr°Ο°RΫ€ [ΐΪ° £7λSc§`‘dή M¦νsΑ€‰%MYo+ώυ–ΝB2›#/Ν{7β³Κ.‰©R:jŠΉ&ν–ΙςΡͺεΖwupΨ ρ±Ω)†yŠz͞={»Ϊ||pΪ̜i.Εφ’#tνY…η³>}ϊ˜6Ψ{‚]ζϊXν+ύΎ!uB ΪgύςΛ&θΣφvœ@§΄ΣΞkV׍υ πψϊ)»ιρΑ’―ΐΰΤ±—ŠoΧ±ύέΟR6σ.ρ©λΟj#-¦ Š;ϊυN°³Ϊ‘΄iΧΔΖμόμλRώ|0X)³³TTJι˜’°r Ϋ0\“‹οx±(μZ±b…Β’—άά\³;†8ΫkΏSΗ[o½ΥΌ{υκeτΩ]»ΪΆΣΖ3Ξ8Γ0?°΅ωZΐω¦€a«sς€ΞΤ΅ΈΈΨ‘Ρ m˜6mšΡcςζ8υΖΧ³[?Γ|ŒΘΉƒ:Θπϋ¨—Ψϊσ‰^aΞΌνΆΫδτΣO7iœ@a@/”ηd`ζ:€"<π€)‡6ς:αΏrM,B-c³έ’ηΏόό|£Cϊz}ηwδ’K.1Ύ­ΝŸ:LψΒN&θ `7rόcκΰ›:!n=q π}ϊ駦‘ΐlq5Κ^€˜% Ρ!Α…€(¨Ώ[lύ8Ž_nYI}υ·’ˆ“83b•ΐ>•ςϋž 2&·ΙT€ΐH ΄© vh €gβU²iβΓXθέQΪNΉ@™μbλθ’zΙ:Ω0Y Λu‘6«eμά2%V5…LW½ΆHVQέ•VI\―,ι4υΤ°CfΊ³ϊΖ&—U”‡μχSπόχβ?ž•ε{@²‡%-΄‹΄/ŸύO©P@hΧs‘”Ω1΅φu‚,"M83(Έ¦ηX…1Η8΅c5ΪuΨJkΓyΖ†‡²ω€χ`xΖ#°Γ`ΜΈuξˆδ΄eΨLl)v=b‹cΪ`νs Ψ χΜ/Ξ{ϋόσΟ›ί΄{Ν‡=nέΊ΅lΪ΄ΙΜ§ψμrΐnS„F^ΨJμ6ο,²³³έοΩ³§Φ³Ση°οO?ϊ²ό˜—*ξη3Ά»ŠΏ@?ΐcσ \jΫΆ­9O[©K¬zBχδEyygΒυά;Ξρ(Α,Μƒαζ::ώf‘”ίzŸΔ•”™Γ•ϋυ—τahΕ‚Ύi΄ϊ#*ΰyyž”ΞΥ9vΕjsiƒS‡_(oWwV;νχΣ/Θ‹oίU2°L.ΏΐΚ\©μΠ’μΠ’Œ 0DΗ);40FΗ…D—Š—ΚBΕ λΏΉ ΄μ˜&5 ξ‚’[K«žΉ:_h@:s"Ÿ[ζϋνͺνs=ϋ–¬”Β―š{·R+ Ρ-έ•‘FΑ†5έr$t.±1³nΙ›ΘΈd\Ψ>‰/ΛΞ߇Θϋ`ύ;§‚]b¨@pδ ψzȈ#dξάΉ[Jϊν;‰ί‹ΰΟγ»,\ΈΠψ?䇄_fΨΤ5 A|Ψ ϋ¬`.Œςω`[Ι4Ο‘μ~%ΆΠΆlΧθΑΖΠvκhw1'ΆόG:žkȟCΟψΌŒk|rΪB;x‘ δM=’= νύG)όz‘d°Ÿvλ%Ι-ƒΎ‘ϋY=a[(OΎψFΚzZZ\…|΄r™™›¨3uγaCwS>@hX¬­^c‡(‡΄±Ξ₯θŸk¨'}‡²CΝ[Ό“ž¨€o;7ΰ«γC£Sl'A“΄Αω¬B #Άžό ΆΕΎΘ§~Ρμ+iθ†šίιC䝑‘Q§ΨώOΫΞ;ο<3FθΣa'ΔEn“8kΧ?yF$`Ožv¬<ΐσŽΥ·Wš§Ož< xπ4°4ΰžw‚½"›Œx1ΜKc5x‘ΛKh~#Όf|°ΐ‡πFޱcΗvBޱ( Γ"ΧπςΠ d„…ΚH[΅³°`·O7Δπ"dš;ΰ9°Ή\ςΖ*ΰΒ‚'Ίγ™„bΠ·—ΔΣ€§―Κ”wΌj|­€νeΗΘ†;ί‚$|©~ςiίIά›‘όΟeε™ϊχrYΌ4ˆnήgruYλqž¨Xf·μ Ÿΐ$ h|˜Μ°¨Iπ-πQ–-[fΐ\‡Δ²° ΐ”τ#Gެ-Ά?φήUΚΎόΥήΫ΄ΨΤ ` g€*T,Z΄¨΄L @,ΐUNP.l0-“°m}λ­·ŒbΑΒ SQ.ώιa΄LΓ2πm¬f+Μυ€ΙʳνθΥ²ύrΦ<ΐэα·!€=(ƒτά#XGa"˜rμ±Ηߍ²`½πŒ<ϊθ£ΌB`]¦}Μ‘ά;ŽA~ {Oϊ ?ΐΆ6oή<“Ξάƒ?ώ±N[I»οΎϋΦκΆeκΰ Π9@dƌ¦|κ υE`΅fΗκc*  δ©§ž2 CΨ6œ{@Ϋ—‘ϊ,„ sss k!ǜu"-l£»ξΊ«lήΌΩτϋ['¬GΘπMVoΐ™Χ^{­ΌύφΫζ8ΰΎ½φΪ«VODOς9υτωηŸKŸΤΆβλΈ@w‚* ΰω›ο$άs’3ρT‰o†™‚£ό˜ΏPΚnyΠͺ-Σ$uββλΦ±φͺ xφ/_'›Ζ+(£ΌRΫI»$‘šΧV2Β—κεdΓ$υ½K+Δ§»&dΟ:O| …‡Κ:P\!+GkžKΕ—έR:ίpΊψRƒsC¨τMνεšΥ…R·QςΏ_*’ΰνΐΪΝ’œ™.ω§χ‘³Ξ>ΛΨDl`IΖ6ΆΐŽyμλeη\ E‹V(H°΅dΥοoΞqDϋ£mžMyΎd@¬MΓώΟ:λ,sάΪel7eπ«½18ώ 5Ž,° [Ø₯N<‡hΓ1ΚΓn’‚Νέ φ]ρ >bΫΙ.Ϋλνg€:Ω4|bØ'ωcށmšyqΪZμsq,6έcΉ»PΑΞς€Ί,Άl°ΨS˜My0Άhόψρ„f.ής}ˆΰξ':Δ6γ/hγžήgŸ}ΜΌƒ,ΐ8;Q.ΐ=ΪAŸdΕήr!Τ\AβώΨ<˜σΈ‡ΤΫmηϊeš!ι™rβQSoκ``:χŸϋmϋ…mωW­ί «σVΛλŸ}bζΞ1Οs9fη λΗP&mDo€ΐρ'h―{.εΪ°’ ή’Ώί+‰ίl’ψ••3uΤ₯θ•[ο’°€ης )zπ)IωPύC΅SIΩ ύ%σ‚Σ›3ζσ/Κ3/Ξξ[.W^”V―ΠΆόM†%¦hΡ5Ÿ―Κ/Χk4@΅΄h―`̌ €'R>ώ žΆm%ΒωΜθΡM|ν ά΅ψΪ·Υy)6π€2BžΣΎ/ΛŒ θ’―ΏW&θUΏzCHVλ@‹©ι’d‚ή£γt•@ΖVϊί€Μ„}_Ψ‚{±]ψFΡήλ9ν$ T·hθΆ“ψxΦΦ|€½ΐΧΕNβsdGΩΦΦc3΄ΔΑ8‘ŽμΒoό[ΐ¦–]ΩϊΤΨήMΕΏΗfεδ䘹 7ώ,~#c»dΑͺΨ‚έ°ύΓ† «-Ο=ώ±ΏΨl‚]"xŽ`΅΅kΧτή{ο5η¨Sw_’Δuh/uDƒŸ ¨ν'γ½χή3υF?£F2ΆΕ’%θ\πoυ™\γ¦ίΊΒίΔ&ς Β3Άυ‘G‰Ιe—κΫMΩ”Αsε03W‘7@ΕΤ{Œ0qœ2x.@ηΨν‹.ΊΘΌ—Ζ繎Ή α:ςΒHΣϋκμϋΨ]ϊ Α&Ξg:wί§ζΗ₯ ”†ά–gžΝN=Mͺ2κχSΡmό/$ΰωω7₯μΩΧLΞ59Y’>UŸΣΤ‹Yζ}.εw?i‚«5P"mpυa£ƒ– ΨωVυΗu|5μψ§2—?ύ²©^%`ηk/ΦH“ϊ_Ε³n—€ί™tIρ\_ˆΨΒΝRzν,‰+Ψ¬ΐο– vΎ^w%hΎ$Ϋκτ4Π4πχ{KδΣω)f_E‚Ζ$x»άEΊ-ΰ9’vΌsžΆΏ<ΐσφΧ±W‚§Ož< xπ4°“5ΰžwς πŠί©`q‚ΠΌΈeAŽώNa‘€χ,*Xΐ3/ΟYΔeΡφ'C ˜žΒΨ…χKHσ2š:5W†η@‰‚#μ, (π₯$*³σ_=°scu/OΏ T}»\6Μ~Qχ‘VζΨΙζ£eΓΓο)ΝT‰ˆ2Β·Ÿxš$tΟjv­mξ€ηΒΝ>™pcΉ¬^ٝvB’ >NžΤj¦3ζi΄ρXΈ†‚Eu|sΜγ°rᇄόXΡ,hΜ™Ξ ϊu·ία'°Xξ@€_Π­.—Ξ·^(gŒΊΜ¬Yσ)p1NA’‰ X€tΐ˜ΛΩƒ… €Β0ΨYπΐ εiΧA) xχέw ƒ'Η^Φ-aE$`άθXΔf1 2‹θNα7@ βΰœ³νθΖdό2@j€?¬/GίtI΅χp η-Έ€mcџ{ Αϊy°–ͺΰ8~ b!”Az„τ€Μ&+°pΏιΤΛξ b:ώs‚π8Lΰ:Λξlυ„_Šž8 œΥ;€Ύ#°ΑQγΟβΧ±LŸΦ_δψ‘‡j˜Už^v mEηακ”w[’œ’*mΞϊ“œϊΧΏΦΦ P7Βύ@bΑnθΪϊΨVηŒ|e@ψΝ@,@ΫYϊjΧΎ”Τcχ“„½ƒ`ηyξ/` ξΖάχž―x\Ρuρa‚Τui@€ [AO»SΨεkd‹1šwί^&ϋ xφ―Ω(Ηά/>υ‘ν3₯­‚}ι©ΆΩQ?kVm’uγŸΡλ₯•ξ–pΓyΧΊ %t~^9φY ¬,Ÿ²DwΊι ‰ΣΌ›€(+hυκ©^ΉIς-5Ο ~:ϋςK +³»Ξ¦ž&ΓηN•GΆΨqlu››*(0΅[–\‘φΚΪqΖ.cΛΪg^αΖQΈ±Ν8άfΗ;v™@ς±φ‰ΐW§]&p;«½q֏οαΖ‘Ψ†£‘[„­ΔŽOŸ>έ‚©+φΈ!v™k¬ΔR'›–Οp󝡡δ ;q(›Ιυ”η΄™άςΔΞ[»eη tΟΨΚaΞcΠ ΠΩ.ΚBΘΓΞ›––γΜ›{챇9O°έ1ζc€Π€‰u ά7c— Π‘Ά‘/lε°msΏξΉ~–\uƒOnΏ?Gώ4p―Ϊ!ξwΨv π¦ψν;P–η|nί«8υ h@:ύ Π€gνυ?ίύX*~F|Zžή»ςΓώ,žΑ[{YHΐσg €όΑ§$VdΥτθ*©W]$’ΣΎφΊ¦πε₯Χ δΙ—‚χ*—‘ΫvPaΕό₯²ξζW h/nPoιτ·#E6όˆώωW‰ΫT$q ’6LΡ €Σ›Uώ΄TρλN APt¦΄κΥέ|χ);4Η•q΄RY}—εIΰ—²΄²sΗ―WP·ΓžΨ ¨]Σ5Gͺ»tVώ(«›$*“5~­ jψΰƒŒCίcŒ*ΕηE,ˆ8”­η|Cν$ωBΖ·³ΆήΞ%Œ·ΞΨΝnσ`gκΚu0ΏΓŒΰΧ2ΔΨ€ωΡGΙΐk}plŒχΨΙY³fhύHόnh2ΤάγŸγψ»”…†}%/³ΦΎα»Γ¨ŒΌώϋ²o~©|Τ2‘ΞsΑ1$Υλ6H|·ΞRQ]eτο~.ΐΦΔZ'χsvΈϊ©Š_ϋqς…gΚ«οΏWηΉ€g4ήη’·Κ<€έ²σώ+Ψυ†ΨnΤbοΎΜΘδMψΓtσ%– ±υτMtnŸ—b±―θ΄‘}ŸΊ:ƒL͍έςe^˜ΣKόšΖw䟝§ε{ΐ³Z•ίρ„$}±Πδ]­ ι”Ω9°²­Lΰ₯w€β©›ŸU»v—–‡›`{>ά§μ\έMΜ§jPq,εΎςž”?φΟ`yv“–Χλσ…ή·lΎγ!Iώΰ3s8ωΜ“$prπΉΪΞω;PV.₯ΚμΏjμ‘:λΪ&7‡9λλ}χ4π{ΠnΖτ9eΊγ]’ΞΑ"SF%ΚzΤ]Oό=΄³±ΪΰžK“^>žΆNΰyλτζ]εiΐΣ€§Ož< 4# x€ηft³Όͺ6ͺxΙΛ"-/yy σ‡{Q’ί»οΎ»Ϊπ—…ϋΒ›—ϋ,2Ϋ…:*ΗKΑjQ`[ΠάΟ€WM|VόyΊ˜–/9“KB¬mU‹w½§OΏC ΐFΉ~Ϊ3"0;'Δ+ΣΪa²ιE]ΚΧ-™“€ύx –ψCN³jys<―^+2ιζ*ΩT¨ ™Ί>wΕ‰rΠώήK}gΔ—`Ρά.8γ'πrŸm$ >(‹W8π‹φ0+v ΎF€­ƒ-ΐ’ ΨΖ.XδXΘDšσάχR±@²n:W:ΠύυΧε°Γ«γΣΠϊ,‹Μ”[2 u0‘Yΰ/‹τ>lnvW Xαπ—žώy€ΜxΨν3αΧ& ΘEϋa4`Α(0;ێξˆΡNαρε,HŠ:Αώf 1πι‰Xΐ[c°ΧΠfŽ4` >ΪΤΩ2δΉ}?@&oΌρ†a©tϊ}ΤέΙ&κΌ„gο;ύΒ'θτ§žB•NP&ύΘ²ΌRωΡ ¬€•³kWe7TŸ–Ύ ;ήΟ?l2Ξz9Ώ‡«S ͺFς&<+»v‘Ο;—ΧiχRe{³}³]Ήm@ @ΝC_€ τδdͺvΦΑžŸϋB*X!#N•Δύw«=Ν}‚…œςˆΒΊJ>ζ,ϊA6\ϋ”ψu!°nβ)’Ψ#vπZ`υz)t[§ε€^uΎΘΐώ†]χ„N0εΑΌ½£$°q³lΌώ>‘η²λΑ_ΐΚώ΅…²vάγ"Ί»Šd¦JφΜs5¨aΫYίVN}Qόί―ŸΞΗ9Σu>n°|;)ώ Έ»ZŸ3ςΏ_b€ΝX›7h_π¨­W|Z’2Tgˆ―C†΄ιΣ]βθ){ο ΄`Μ4³Ά)ύΧφuΖcΝφugήαΖ‘Mjl3V쳦Ϋ.cΣψsΪeζΖC¬φΖ–ΝgΔq€¬’ŒΟHΒyζ8μ26~ήΌyΖ–Ό²ΟΟn»Œώ`…vΪe@{ΦnMΠ=χΓ=ίY[K–ͺ}rΪLΨR©'B™φ<Ώ±™={φ¬8æŒjίpoΪΉΒΎG°`0˜τ ζΥ/(AπHΠΟάΉsλRsžΉ<Υ`Κ·sf¨Ή‚τ―Ύϊj» Π»W―`ΠvΆ~«kΓϊC'ε'gΝ•ΟΌOϊΏ9^N:ρZΦ`mλέσΎMΗ§ί\­ι’‰φ‹βρ—„_WH 1AR§^-³k΄«Όσž< 4‚pyΖΜTΖϋ• j 2kl’tΞ‰πΌΩe6Χ,πE˜ΧπMμρΔΣ€§«πΌcυν•ζiΐΣ€§Ož< μ x€η t―Θ&‘\Y€daΡ 77·φε3/†C4Ȝ‡•Ζ!½Qπ /z_zι%“ž뼈η…8‹•,ς2›ζ”ΣXœΟώJY=α™ίΐΞ°ξυΞn,Υxωxπ4π;Τ@@^k&<)².ΘΌΦκδRπ?J@™uΟZi7ϊ$IΪ£[³i9 Χ€—0—4YΌ4N¦έZ)₯e°ΗdΤ₯‰²ΧξήΛ|χύcΪΉ΅³{Ρπ‚ x_„f|Œ’’’Z2'θ—zψΛ*₯zαJΩπρBΙ9n}Οl³Έˆα©§ž2Ύ‹Ε,ξχι c¦Mšœyδ‘€ζ«ΙΣ <ΐͺ–q)>’ϊ±XΟΧ\s„θΤ©“ZØΜb: 8'Ϋ#m³ω9ΑΒ”ν=pŽqsΛ-·φGgΫ)χΓ?4€˜œ)[@yΰ§Α\iσOOO―£Κ_Ίt©,_ΎάԍmΈκq―Θπ υ΄μ©ψvŸ}φ™Ωrœzr_h@@ 0rZμΕκθ€,Α‚π,θ ?&?˜6-K΅SO΄γIe•f‘ΘΆΠ2εzAΧ”aΕέ)―_Ώ~f‹j˜φoγΗˆ`{pΪ ΰ€ŸFͺS ΌJΚ>ϊI^ΩΈ°N`8EΤΙšm)ΓΙ8ξ‰FSη/σ€κߟ Vζ•§HŸϋšfΚ±lτ€Θ€Ί­~‹«$oά?$\¦I™žΗž$‰»u΄*ŠώYX,Εγn‘ψuMΪ”³Ž—w[ϊL9τύx•ΑΞtΜh!mf],Ύ¬Μθυί’’f}‘¬§,³…₯"ΚΒά~Ζ9Ÿέ*ζλΓ%\yΟ[⟷X>ι0ξDIκΫέ†Λ΄Ηa—ΞΫ$~emΞ_ΈTόkΤ'НcDκj·Β‰―e²H‡L7·”6»εJBΗVίQAv ·Β˜v²Φbΰ}ΉAp€’œ@5›W€qDšPc›ώπmž‚‡έv™qδ;ma€qδΫΊρmaϋΒ vΖ{πo>G“'ΧΑ”ŠpΫeΞ€γ΄ΛΞrZ'ζ@d0ncΣad΅;X[‹-·χΤΪL³φΙ}ΟΉŽ€!ΛξJΎΤ™ω}Ŋ΅szεž v°bζ»Ύ}ϋΦ‚±Mκ(Χ ε[ΐ#sss]aa‘±ιΨx ²f^‘?1+xaŽΦ/h χP5 ς’ΝΨ1ζv²b§€qG/?]q,ι°§ωβ%†™ϋŒA·y:οη­¨Ÿέŝ=ΛmR½Ρ UμL`υνœi#~ηΜΏή’Šg_VΔsΐ%εόΑ8ς ±€ηΡ'œ"ΧΗ)Σ°φUU„T컇΄όΫyŠ~έ6 mΔzmεΙΟΏςΙ-χTk_Π·BΖ\Ω‚*o“ψ5p4Oƒ‚DίΝψ:·’N3Ο_o>Δ6e,ΠΎόβ_—―ŸRψΛR(Zw¨ŠΞHNRt¦‚’·°D+(Ίuο"m[λό§>^fιΊAυ,Φ9pρ2)Xπ$¬Xc€ΠΎβIΉo†μsΨ!f|ΐ€~VΛ)yγ}Γέrχέ$υ/ƒδ΄sΞ1ύ–ηΆ{ο½·Ž­‘μ$ΑŒ}ΖƒΣwΟ3€±ΐ]l= !ό6μ‚}t‹Ν€˜ΪΥΐ5ίynΐvΰΑΈ"­ΎΓπlψΉŒ9lγ»mόΣ†Ε‹fϋ έ}ώRύΦ‡¦ˆδӏ—_μbόO`Wϋ«/ϊ’ξφξΉ€ςlЈΣή4€NΤέω\`§}ŸΞ—€2˜Ώ*εuζΡ‘ΣΕ–Y‘ΜΕ"!ψ―< 4ΤvσˆϊήΨ8ζ,|w‚Π3σ’ LαΎση|.ΐ;} κδ~.ΰω&œ}enΈφΪkλΨWξ?`~ζϊ>ŒΣΞώ·€hgίη8u枸ŸKΟίχ©œr»ΡSM.’6~X£ΩU'ΰ9ο˜ $9.^ʏϊ³΄zš)/¦΄ή›gί'‰σƒΜΠκ/™#b|Σ`ηκέ ιc/Wί9θ78λμϋδ ©Π €jχ]%mά3?9ΣΤϋν)žq§$|£AšgΚΨΛDτZO< xΨq() Θθι•²nC‚d€ϋεζI‰’ξ‹'. x€g—BΌŸžv°<ΐσVΈWœ§Ož< xπ4°γ5ΰžwΌΞ½›†xI[PP ;ιyq X#Wk‘/ΏόlIΛ" ηX€δe1Ϋ†σ‡°8Έ† yAΟΒΒKeΆ‡tΎœ6'ΆαΏζ x“7ώέφZ·UΰIΞDμΌ έΐ»ΤΣΐ”₯²fšΧ~]oΪ `Νυ%"jO|ρqfΔ_$yί {]SWLs<ΟΖ'7ίS₯sœOIΩ2ακ$ι•PΦΤοΑφ¬‹ΐ–‘ΩΉPoΛΔοΰ~`‘XšέΧρΫyνEƒΟ–•Ο½―[k%°lƒa0mu~ς^Ζ&³˜pί₯ƒ­lLs Η` ‘Ξ€?>P·8ΐ$C―°f£;Ψμ`E^Vy:υHyˆΫρέyψΠ@ρV8†ΞΚ‘s ͺΆΐzκh@ϊFBΐδxΑ·%`ΐ>€Οα°ΗέwίmΪEš†Τι;zO›>]¦M›fϊžœA;ςςςj·6Gτ#«+Ξ£gΫ.Κ'M_e«[γSβ›―ΰZM“yΩ βΘ}dδΘ‘&pΔφ+ΜνwώΒRΙΣ]EΒ²K@ֈc$yοξd“JΛ€dΚΚ Έ€;+YΞ|δΞΖπμ/)—cοίjυ[$K«ιJ|ηΨwEρo,–5c_½’%[ΑΞq9­cj{€Deσ~”υχόΗ$i?όHIωσφ›y~¨YU ΥΚΪ °9°ΨΨ€mΪίCΥΥ§fؚΕlNθάF|ͺ‡hΰΚ2ΪώΔXΗFZ‘ΏZΦw D³ Π6ύlΘ8"(@s8»ΜsθμΩ³λΩelB½hφ†4Τ+–qDΪPΒσ­e>ΐ5bĈ:Ά‹ό±g΄€+€h~‡²ΛΨΪΠ:q―`<X[ιΆυθΐύ\ΐ³m΅Χπέi_Ωqΐm_ιέ»mŸ+χŸ{ε΄η–œ:[›Οw§/dži?ψ\ΚoΧη*­CM« I›x…Hη$έ&ωζχdΰ‰Η™<ςώ2TZ]qžΘA{Ǟ§ΦgσΜ»%ρ»ŸΝ5εΗ(­.Ϋυ°³rOV0r ΜΞςŸO₯όή§M‘ΐΞ’lθ•3oS­Οβ=ΊJΪτλb²/E·>(IŸ~eςOQϋO{ΖΦ/•§Oͺ6‘=­J Šβ€}»j™=>IZŸΙ΅ fœ™xnΖ7Ο«ϊοBΰωwq½Fxπ4ΰiΐΣ€§O‘4ΰž#iΗ;χ{Χ/rο»ο>³M»m+‹-Z΄0/ών1 x)ΟK`^€³j.6σ“A^κ;·wžίΪοΝπ XaΥδηΔΏTμœ=FYϋAζ[«ο:OžώΗ4Pγ—5·όSσ—˜†ϋzΆΎD^ͺ O]ψkwΥ_$i`p!²)k¦ΉžσQœάϋx•Α•΅ΞτΛ”Q‰’γσ‡νbψΰ Δ’5€»θνξ†ΝXO°ΈΜŸπ|–²0ζ?ςnνe‰=³₯ςςƒδΊe=Ββ4Μ·.܌—ΞEmς΅`|0YΒ€yυYLη8‹ι°&V€Ξ½`Ozž-`Z$πΦ[oΙ±ΗΛaSYˆη‹ν,”[€lfψWΤΦ9ΰ »ρƍeήΓι ύΒ~λ¦[` #ΐϊΫ|œiΨ"œzΐg†R€lψ}€RHPƒ{kλlΣζPμIΨsθ7’Mo?ΡlθΒ ΰοΓ?ά` D˜Ο˜1Γ”Έ·aF,›ύγVΠλΦ­[-H†γ΄Πe8 U'Œ‡τΩ[™=Ή–e•>bA=δE½–.ύ ΔΞ½užICήnΐ³e¦]σ?$ξσŸ$ύΈςAŽΦX@:μΤ³3`ϊ©{άξ2 ηΌ3Wd]@7ȎH™±HΡ¬{$qΑ"yoCž ώμui™œ"?_:Άξ₯I‰P†Μ€φ/IΦο :ΟΜVp²χ©]θ1ν|βKΡσ ’`Ϋi` ~›kτSΥŠ2o§`ηeθ£ωΆš2Dβ{Ζξ;δΌfμc"ΚδιS°tΦΤ³$ΎKΫΪμ·φKε7+eν ―εψC .9|k³ͺs»ΐΤ(¨psώχKΨΌ9n†‘;‚ψZ΅0 f_N¦΄έ­›Δwjdln‘ϊάJ‘Ί^nΐ3c [Œύ‹xUPγΘ•`§]fό`[V…²ΛΞ2b±7”Oy°/Η2Žœωσ;Š]±/πΈud―ΐΨ,’]Ζζ7΄N΄ΣDiΎ#όό|qΪL‚’­β)Ή$ͺ

€φϊΕO;v’_€P™ γ—―‘Μ Λ°;ώ.>ψ aH~ώ@ό3 ±¦c–TwΝ‘Μώ}%ΫIΩ²Τ©yZ e'#nqΪzΞ…σΑν˜X»vm-P՝ΏρΙ;μ°zcˆ² Ά 0Σ)Ψ4μ§3ΨΞwΟ‡‹τY 0ρV‰_±Κ& ~ͺ?Ssΰή’rΡYƏtϋȌuόOl-Ax‘ž Έ«W―ω\ΐ³“wπ ₯W“g€η‚œwORNύ‹ Ÿ0Φ…νΩιΛc«ΘΓaOœ€g[―HΆ›ϊ[`°MΟ'σΓ+―ΌRϋLύγy ΆftεΪκΉ0Ό“d›Ο.Bδοk_ρaκυ}}vr>ΩΩΗφ}·^Θ—ΎkΫežΝ.*UEψi‰²?,Ύ’b θά“|Ζρ"έuŒ¨M– }― Ο₯ΒχςJ)Τ ŸϊΌœƒuŸο‘vκX΄π{9δ €WΩψΑg’ΌWύg=s2ΤHQ’ήΊuk0Ιξt@ΰγΣt%?έT―ή·oί:Vς'¨ο–[n1AN›‡½ϊΫίώV§~>™Η«οσοΎ­‹ΎωVβ.― U RΚi/•»υ”ΜƒjGνnt†ΕΰwZFaΫNX€ρ±έ y.pHΠwPR8ΐ3eGz.ΐ·II•cΗΤϊ―/>ϊ˜T€¦υDb$ šη΅Q£FqΚΨslΊ}χΜ±HΎ~½¬ŽŽ k_yT– ξz@ώ¦ο‹ϊλς%@P‚“ήO.›0ζ·ΎΧ½² s•&½|¦ΝΊFώtΔα΅Ο₯vθ)₯Ώ@–:Fj$ayžΔ•UH@|βoίFj:Pylωrί…ζ{¬΅On!hΰ!Γu€{^'O ’(V~ΒJE#κΈNΎκ|ρνίΏN’°?;ίυΈ9έ °σ•ς;‚ΧUv?ΜIΤ+G’cf©έR»Φ:SRfO}ΩR/Y½ο+‹φΑό+”ε:σŠσλ%ρxπ4°γ5πΛ2ŸŒΏ1θΏ¬6Yύ7uι=Q x€g―xΨΉπΟ;W^ιž< xπ4ΰiΐΣΐΠ€xήJφŠhςΰ…)/ΓYˆeэKΨ {υκe@Λξ7^:s ‹\c_H˜ΙΝΝ5ΏL$₯€ζx윧ΜΞL| Ψhύ ’Τ/ΘFΨXϊπςρ4ΰiΰO•(ωw(s©h|­$Π.C‹ΧE΄:γiqς>MV)Νπ ‰Φμ;KεΛο‚,d½r+eβΘIMρήΦGλXψπlAΏΞY |r²4›ν•Ρʈϊ!ΥKΦIΥ·+dΣg?ŠOΜΚnŽ$( _φœ κž/z‘Tϋƒ¬g€β`’9r€4f!ί†ΰ+ΐ€#`V;ΰ€ŒŸƒ/ƒάε‹ζ|ZΑsψπαf1Ÿ†teaΠŒ“ύϊυ3€ ς(ΛφΪuaΫfΚfΡ@†\aΛ°Ÿ¨Jω”ΰԐΐ![³ν=lΖ°³ΐOœ€?럑kό9@S€8Τ‰|¨e aϋhό>°>XΝlr³Μ Φ…γ#"ΤaάΈq΅¬«Πατ©‹δr„sžz†°Βvε°}|gA…΄!m³€8›ήύIyά'τD}oΠ/­okϋόρβfr‹T§’eλΔ§LΌΧ=p³Ή?€ΥΨ–ΫϊΖΤ'”ΒπLάkΐ耡 γι›oIEuuœΎ…~θσ0mgdd€ˆ³oδΝxQόίΑ³Š>–Gί™lc–}ϊκξ %S™χςž}EΡτ―p½©•­Ξ§¬u€D Kω„±Nϋ•²Φιω(`,BJͺ——ˆlΦΌ ’Π5MβZ&Ζ\Η€šƒ²₯°ηιόη“”άD‰sΨξ€ Yΰ΄(XΪ€§aͺΫΒ@νW6ι γ΄2T·Ο2ίa₯φ—ΧΘΪ{ίΣΆψ%Π₯δ\’ψL­IAΥxB*XmX›7ύ°ά°5ϋWi»"ƒΡ|Y-Ε—­`μ i§ΐ渜V’ ¬Ν>ꡃ„~fΑT֎»ΟτglŒ €vlFͺf€q侞q ˆφάsύh—έε…k–)΄ξqΔ.FΨζXΖυΒ9m€[?ξ:E³ΛΜƒGydν؎V'μΧΦΞw±ΪΜ½φΪ«ή\‘mζ4ΪG› „qκ μmΫΆ­Σ'¨3Μͺ0¬"Ψe'K(·Ι“'›{ΑytΖ}ΩUΑ˜ΐΠw¬Ώΐ=FΠA€Ή‚{νdS₯ ‚Ž,Ϋ3€c΅ιΗΜw€hR|Γ]’τ₯}€ΌΣ!ι7ΐ£²©¦0ξCm΄Iuζΐ_w=aόφκ^]%}ς΅-‰¦/ŸhΟϊυλΝ\Κό‹D›'Ι7Tμ²›,ψq‘:υΦΠ|ΆgzΐΞΣηj°[•Ozv«’i£S…!pΥύoKΝ~4UΟΊϊXIΩ―ΗφlΖΞΛ[ηdY«s²’ω+XΌDβ ;tΌ£L[‰οΪQΦ^un-ΰyΑ‚γ©Χ₯zΡb (CtM«LΙΌrˆ\{Η3ΦθΣ/hΰX•ŽKΙΣηΞ%+₯θλο• z΅Δ―Ν7ύΫζzΑ_ε± Λjν,ο-ΎUόέr‚ Σ6‘~Ζκƒ3ΎN»α†ΜΥψi°3γ b/œA¦ΚΪlύ<[v»€ΐΌΟυψέΦίMYš'…σ>‘DΥAόͺu’tόαςZΫ”ίΖΏ²§~‘,Ούvi£lΩ!?š1M½>Γ6X›ΐsΆ'ΦηΪνηmλνNγLmώ!°„?ž/π_Ÿ<]ŠnΊSZ\|ŽΘ}ŒΎά»4ΤvΥ ϋμΗσΨ<υcΡ:BWθŒ{hέά»όC*Ya|Gι’#w<ό`H[Ώkη²ώŽGƒώηvdγoͺί™2p€€~œψt‡½ ϊΚgk_?όsωφΞ>ͺbνΓοn:I ”Π{‘ͺbγŠQ±^μΨP±χJ“Ž€¨ˆ’r-`CE―νΪυSD `‘z‡$BΪ~ο3Λ,'‡M²‘Θ™ί/Ωέ³sζΜΌgζ9;Οό§’Ž“-μOέo4ιs)˜·(dΊδwΚ―ΌͺϋoVuσϋ†‡Ύc&χτΎΥΓϋμYΐ³ΐ~΄ΐμ9>9.ώ˜\ΉοζςWχcφχΩ₯=ΰyŸ™ΦKΨ³@Dπ€ηˆΜδEς,ΰYΐ³€gΟžf xΐσΑ|χΌΌοM πc3ΌΪιω!Ί΄ΐθφβρ£uYη”–^Yί,ΐs@ΥίV Π-SwΐΞ©œ/qG5(«xήχž< xˆΘσWΚΖU"ΙTν²FεΰΝzvΚν€B·#JηοŽt Ο°yFηΘ’΄Xcš£Ϋl—^·WΠ~ξοΆΤΑy=&αΖΨφπθΈf͚! —1 ¬έςώΥW_•K:w‘μι dσŒyΊ°ͺO©j±¬ΰΐa5€ZΗΆΧihΒά ?ŸΙ~Τ(™°$Ψσ‰‹β&ν6 –‰'yά²Π(ο)#ͺȜγ„τ˜°οή½»P.&쁿9»PvT―+ƒq>[*£NŒbι―Ώώ*Ÿ}φ™l^J{΅πΔ’E §θΔ2κ €mΧξ``»nί‚ΣG•ΝYΞ2δY"--MP΄&Σ6Τ…mv¬G|ΚΘχΨΕΪΥ ™0¦ŒxζΤϊ½\Β„ HγzΞ4ωžkcσοΎϋΞΨυNΆΑξΠ‘ƒ΄Ο>ϋlΚ±=ΆUs&/§ψLύΉμ²ΛŠΩ <<ωUψέ―>1*Σ€ ί(D ΌkλyŎvKpς„²©³LΤ7Tβ5Ι3>Τ ε“χ’Β.ΐ\Q@V=φ‘ΝZ.Ώ§―%©ERω¬Uήτ"kΧ5ͺΫ΄mήοQΊR0 `:¨”§0΄nν½ι…OΕ―ύ›N’TΝ:ΊΒ dκ–ί&^žΦη“0΅_αj@λ@Nžδ.ΜΦ~QΫ Š vήνόͺέΟΆ*x¬ΟI«*‘\,A>•:7EEZ· 5BΡEyE•—+½ο_TπΥ―‹4_(?’–œ$ uͺKT5…œ«§ˆΏ†ώ%)­π΅OΫ-*ΦΐΦΪΌbh›χϋ°SrΦUλΗYΠjΫ5γ°”;Δuh'νO99΄ψλ¦K―ΌΝ[Μξ#ZL:ΊBF_}W•ώ΅]ιψ‘°vuYrΙςΫE‘όEς†:ΖbWBDΐ³.|Θκ?F†‰f`ηAΊHΗUΓ¦1γΙ3Ρ”ΣΐΞvF-άYΩ’£°s4ΎHΗΊqC΄\ λΉbνϊΡχWšδ xRWFͺ‚μa SΎ—ΑΕ½#ž< μW |;Γ― UtΌ‘α܎Ωrέε(·οΧοϋ‹{ΐσΎ·±wΟ₯YΐžK³ŽχgΟž< xπ,π°€<#n£WˆCΔπ(PΨyπ; n©ς‚ Υ{ώΫƒ‘ϊιΣ³ΐίiΒU›eύ@ŒΚΤΙ^…―uΒZΆΩdΑΧΎ‰ΤΊ§σί™ˆu Ο[³|ςπ¨\YΉ&81ΧυάΉβΒ]–ˆ zˆFb’q5ΰ-aƌfϋf π½’ω°Άβσ?HޝmP*_#…[Τ”Τ“—θ†:©¬p€?«fα' Œ:A#›Ti―£G–{ξΉGf͚e$.ΰͺΝ@¦UnH -m'°Κ?@˜½>η“T:Qη΄ΐ3*ΛΐΎ|ΧPAaΚΰ €Υ#GŽ@ d”¦# ¨όrŽΜQ«so}ν΄‹žQΘγš6!6CΨrZβΣO?5 j―@1€YΞ€ RR‚JwξϋB<Κ\πL>Ών–δΓ‡7[Q[Μy=ήS—€ƒΉ6Π…;O€γηž{8σ l΄ XθΆπƍ7ή('N4vDΔ‘ζ‰όpΝ .ΈΐΤ#Τ γ u>1Έx‚ο)ΉΝ°mΞ2Yˆ€|§°#ΐ}€ΐ³»ύq Βͺ'?–’KΜ{‘u₯Ξƒšρͺ9PΚ?μΧΉsg³˜aη0ΧΩ0φρO *¬WΌ₯³Δθ"‡HC@aι΅ύ^Y‘*“ΡΊ«JΟ %J•˜ΝΦδϊŠζ½Σ€¨QgSRjΤ©υ»<f^υ;=WPΕΞΘŸͺΙϋRU₯J‘f9?ΘφpAŸD•%NρFύγΥ(IΗι1—wziΗ|ZŸ δ„ͺΠ hΦ ˜(DR1΅šoŠτ³ΟΤqζ8겨VΈšσœ@΅?!NB7σγΤ;«οτδ1ΌοΜ{yΫ6νΘ _O(Ν/;―cί—εoφ€αgP±οΠ‘ƒΉ\Έ~ΐϊ&Ϊ1ΐx8ΏlϋQ(Ζγχ-DmΛQΪ+m™σ# ΆΏ‚£_#oάG Q_vϊLΨώ‰<βύχ‰τθl_Αn”·rεΚf§g|w½ΑΏU«V-TΟ°+ͺχNŸˆ_FAϊΕ_ -¦αtνΪ5’ΎΒιΧ/Ώόr »ϋ;|uXΰγδ(l©πη§±!ΰΰωΆ>1ύ9ύ€βcΔpύ­m7Τ lΨ­[7cί§L•B–W­loƒιΧΨΡΐ*§[EλP„=|sώωηΛ7ί|s@Οlƒώπ¨|]»β“z΅σexοx8Α=y¬’uΓή7π¦Ώ]C©sίω{œζ?)ό‘Uλ7»š¨oή²UΨ¨@΄*DίVΪw8Ռ;^~ωeΉΨŸ¬ i2-Ι1폖Ω:~·~ήpς—R€ΠΏOϋTϊ.V’FΥZζŸ‚Ή>iY_xλΦ’§@d>Ϋ:ΎΑ.ϊšeG§Α'=ϋμ³F™ήϊ€ž={²;ΰužΤΎΕΛ$}Κ ‰[© ς­WJγ&MΜe πόΑ7’«γ…€ΫI@Υc£l- .Ζvό΅ΦόςlΓ υbη³>E•vl0ΓWς]CΧsΎΈOŸ>‘η‚ργΗﲘ_²Kžόϊμ€γ½Έ¬ά–i|Œν*oΪ*«Χ퀑UωψΈ#δήG )Ώ«~ιηΫ<Ξ}ŽDu»K’V¬qO@β^xTήΫ°24~«Ο?›U5ΌqΣ έθZΎΜ]Ί]ICξ•ΫΗ=ςέΧ)πάα¬N\¦ίΊ‘nsΙ~ar(~|—NςABΎyΦ ΏAMΩ(’KΌΏ˜―gY°D2&Ύ«‹ΗtَρN•k/’wœς―sš)yΣfšqqόIΊΠδπΓΜΪϊWž»μ3₯έΡΗϊk2Ζ½°ύ2uŸ…]ΞϊFgϋ χόCœP`ΡΛc/κΈRVL’ψή·ˆ―IύΠΧe½!ί<ΏΚžW¬‘μ‡Ηˆ_’ž\aπ=‚Rv$a‹ξΰ’πΞg&jΉaη'_fEœ4'ԁp°³QU§GHtΪJγbϋkήZVvΦT);§Οhυ!Ϋ₯ n IzD!iΧzΑ³€gΣ/Ό–)ŸO ͺ;ίq]ŒœΪΎψ˜ωΐΜυΎΛ•<ο;Ϋz){ˆΔπ‰•Ό8ž< xπ,ΰYΐ³ΐAmx>¨oŸ—ωCΜ:π μΌzΨ{R4n₯ν—Τ{Ο‘ΈγbwΙ+gΟ—ιY²N‘ηΐštsΙ@-'ΦdšχΎ£κK­^]#Ωώό2±ΕdηυΧ_w]ΆΜλ¬ίθ“ώ£Άλ.»ˆά|υ K™‰xΜΔ/ρLψ3‘ώ™½p•δΟ]!Ι§΄–ΗU)ˆ Υ±_tBz}ρ ό$Š―E-©zBk‰iUGΥM†p ΨΙiχΔ²…·Pΐzp†tέΚ…_π.ΨΔAyν΄ΣN3ЇηwžΌύφΫ8rOhΫ΄€e­ϊβc=f€i§:²μc" Υbΰ Τ-±ό2±nΣC1˜”τ€€ež >0κŒΐΐ·ήz«ΓΦ―_R]£l”Η [`·SO=Υάρƌc€'ςD@έY³f‘I|±‘C‡Κ AƒB`.΄Uεœ:uͺ±ŸσδΰƒΌα]|ρΕ‘τΈy( xώ@₯Ωζ eWξ‡Sُtl >Š}¨ιά`0χ΅{χ 6e~ςΙ'eΣ¦Mζ[T8k333 lGyδ’ ‹4O”‘kΨ₯΅‚(ώκUeΪβ?ΛՎπ}:tˆΨ/»­Q–ΏΩ“v„οΫ·―ΡΒ)“ςoA`>»ύ2ωγο”SN)ζ—iΧ‘Άm`dΚQžώΞ*’'όp±νλ(ρτΧV9Ώ²>Ύ‚2[ h›~ΒΩW ύΠC™x,Μpφτ-@e( 㧨7(Ϊ>˜>σΉηž υΨΘνS7² Θ橬Ύ‚{ρϊλ―›²Ωk:»Π—°θ‰1 Α]FŽΕh›ύΰΛ/Bΐσžoι£’Θ₯cε’σ ‰fv,Iα™Ό0Ζ@EqΑσ$~Θ8‰{ΰFρΥ­iκΏK6mͺ~Cp4€²³Ÿ2_μΑΏxN[ΑΌΠΐΞCŒ— {PΠ§¬Ψ,kϊ)T©*όώ¦©R{π%ζχ™=OωŸ“uvȐ!‘vΜ3u•@ϋp.π0ν£A)Z»ADahώ-ζ ‰Ϊ’!ΎΝιβΟΨ&‰=o–ŸΌς“s~ϊYr―λi s€\ΆήhύΝ,arϊ•—‡|ύδΙ“uπm„ΥΎΌ(΅ŠQN>²₯H£Ίwx ιqγ2qβD3F|χέw‹΅| Ο΄A|>†…,˜ ί»οKφύΕ—­}•†Ψs;Κ—u*Ι…^h>³X£žͺJ©o΅!,\¬6#ΰƒρqЍ¬vB³ψI|ή£>jς4WzNώ{γΓΜs^3ϊ·?MΠ~ΏπΔ£δ¨vΗ€š±κI©’3νηΰΨ€qƒŽ*œtœ|³=δ“”· 8yUΏΆ¬Ήγ2i₯cr‚ιβ+ΛΆΡ/˜Οˆ1Δ?3HNλzΑΞώgψY“±₯ψψ΅bmΙ}φ5‰ήΌQ*όπœ‘ ιπΣΟτκ+’Κή/μlξΗΖέϋ dŽϊO°ο―š"Ή·^.υ60Χ4pϊ…]eΨΣcM=3Ο?Ο”θ™sƒ‹³τΎΕ΄m)'Φ!4ζxν•Wε›owφ?eωzκ±U©ΖΏ² 1­:8χ‘uœώ•ϋ>xπΰΘλΎ£ ³œΐ3'­Ω YͺPŒκ²ϊ%ώΞ«EΪe“+υ5bΰω/UAΦΎ08’, €Η5t!q‘μά’±$=¬ Ν;ž[K=ύ§ί%χρ—vΒΞΦ šοt̜5ψq‰™χ—Yψ{ίΝ"*»όψ–¬^ͺψ™eόB…‘κN)vIή;ΰYΐ³ΐeGΗeΛOΏ±ϋ‹Hί»£εˆ–%­>°ς½/rγΟϋΒͺ^šž"·€Z4Σ@ΠΎ³Ϋυ²½(_bͺV4€*}ό /Ό Χ\sMΔ".ΑBb%Ο6‚;hY;@/ΰ]ŽmTS ¨y‘$ΉuλVχιζΪ¨9;i"1Ήή₯K\=;P_Ϊ]Ίtih‚Ψ‹λ—mΈŸ€¬β/p ω§¬ξ€ΈΑb€Ž›oΎΩ€γ,“ό€‡B$ǁΕxΰΑΎλΨ±£‰-hΝ΅Ώψβ‹Pί}£βF|ςΛ5yV"@㣏>26$ΰ(#“6Χ–IMM AœCyJžΐ ρl,HΒggV^§|Ά. šL½hΰoΤ¨Q‚Š5ΰΕ*@[°.œΈΤ  Χ°ΗΚΚχˆΌͺqO>ωDΪδ§H\»ΖΐæΓΠ8*mN(†γδ½4ΰ™8ξϊ±ε«Ÿ%κΧ₯’qi{ivX3sλ±)6²°ηΊCΞWΘΖΏAΖN| ͺH큗ˆ?‘d΅΄}<ηύ«d>χ‘Ι^a‡6Rύ6]¨a(Œhύ,R•ψ(ΏT{θ"‰9"Ω”–D KβVnVΥΓtΩ¬`³¬Ϋ*΅ΊνwF„βάΐ†l ¬ί&mŽQυRD*Ζ‰―²5’₯r‹ϊU;E’pζΥWŠέJΛG$ί²r‚jΣ 3τjΐiΙQhL¨ ruž€―WM‡ͺ 7ηET'τΈT^]·ΔψDςHϋκvόΙ"‹–Ι‡Ή›‹ωρ».ν&·=,•Ζτ—±οΏm”ΩSŸΉο!Δ=ςΝ'("” e«+|ΐΟ9|]rA@Η'Κ–&uŠϋεo’­Ίh% qCΎ‘χϊάΥJΫ]4Œ‚5>”ώτΟ§Liώ†K»ΫΗœe@΄0νˆσ¬ίbcqΎάά}•ΣίXŸyύχοβ—i―‘ς9,)OD!?ξ@:αϊ;mγ§€ρ9\h§ΟD΅™~ΚΉ(Ηφψ:Ξ6$}Εέwίm‰œqΖζ؝wήi`2|‘Ο"(ύ ύ%y΅@2Η°˜‡@_  ‹_ζ~Π· m!kβ”ζ—YτΑbžoΏύ6HŸsΞ9fW‘άψz|?κ¬τμ:αŒΙ»SMuώœΉ2ς™€Μ]$r;2WzήΖβ­~ZΦ’€g‡ͺ+y"p/&½8A*O|_nι&nK7 ’€β%υ₯ζΔ=ψw Ο+V‹τY Ω9>©S³P•cχ μ\”ž-«zNŠ€ GΤgΧqΕ>υΣ{p[φλ©ψ§Κωm·έ&Γ† “ *˜6wΜ1ǘό±£cIO›6Ν,VΐΠF› ~Γ§cΩγuŒ ‰ŸΤγΙ;Ah£3·(W)YΆ »Oκ7jhNΓ'άά£‡d^«mi‡_c(̟φ[-΅Ϋ« ~`ψ}κOŒioδ‡φΕ8”]9,ZφPωxκΣΖ9†OΨγfρ 'ώ—ΙԜ ι¬ ‘φŸ‘ΟΊš!@_©ύm΄ζσΓΣBpρ‚yσ%φ»ΩΪζHϊ–-RγΪ‹₯Ο h&žyhάJς>›*Q7].y“Ύ#OC―θ.Λu!\3υ7|η-­“œ'KΡΰ»δš{ο2εΐίώ‘φΛο‘cYΝ‡3Δ»£|Z5&”''π М0a„΄οxš±Ώ‹£ν+GU­³Ί+½†)֜ZΏ©Δ6m —u»"4~ύTΗ―νjΤ•‚U₯ΰA‘ρ+ώτ¨ίJB—sε΅―Ύ0‹IΘ[YΎ PnO^rΙ%F›zFίD_:T[#¨[™cψzξ1}†;π\ΐύγyΛι_Ω9‘f͚ά§Ž£Πμτ―5jΤ0Ÿ­Β$uί}mςdϋUχB\wάΠηmΩ’5tœD-Yaεvh')ͺ4n:‘P€]ίD<ΟύKr†?#>]Pΐ‚ C<’γΧΒ–IΪ½•‰Yμ<ΰnόFπϋ‘v.lTG‡άvΦ”·=ϊŒΔώό›ΉFάMWIΰ W–Τ^ΩŽ†ΝRT1QG=$ΛTVήχž< μ[ ΰ²=–#σώ…-1+Fš484gυ€η}[ΧΌΤ= ”ex.ΛBήχž< xπ,ΰYΐ³ΐAox>θo‘W€CΘ*πΠ_rV?ςΎ±ν΅ώπ]ύ³=Ψωͺ—^Q= μo ΰƒΦ~O³–š¬βόΙQ Jύ‘4©.΅^V¦zηίQ† xώmžOFŽΛΧ |UΌŠ Θ€ϋc₯iΓ]'SΫΜΧδJΑ‚Υ²qΊ*Γen—*t6“ΥLΞ† Ώκ–ΘΎ&°©LD—4aΜ€26+)^Έλ9ΣΜhΣ¦‰ΆhΡ"9όπΓݲΛ1M™μδψ.‘v A…0„‰} X“ύ:t±cΗξˆ-‚rΩYg΅ δm#Pn€Ž»ξΊKPΠt– 8ΐ*^ΪkؘXΐ˜ϋε—_ Ϋ~ο~εεVMŸψ(2QSZxzێτ₯#D ± ΊLœ8ΡqVψ·€ol ΰ@όTYŽΤAώ€±Χΐ%#FŒ0€7uςPlΰœ“N:Ιΐ%φΰ Fyσ„’ε΄ΐ…MΣω  γVw&χ Ψ4’ϋΓbΩ8φ3‘ρΧI‘Ϊƒ.U`4όΉϋxΟ1O2ΗhΫP{ύλ0I½?DF’wvUY7δ- ¨οQςSͺφκ"±G5*vjQFΆJ—υs‘ζu™ϊͺ`σΦβu΄ΨI A9-OWˆ6Z’Ο;R’.:ΖΐΝαΤ狝{}ΰΎ#«ŠΪt@}ƒQ¨ζsΛΖr‚BG₯ωρ_~ωEς_x[ —­–ͺͺθwWŸ‡Œ2[?6Φ( ήόψˆˆΫφόΉΘκukΛε—――ΡX²u{{ό hmθuiϋ駟€ι7šOέβjΤ§1ϊ§οQ ¬˜ZΝ‹Y]VΤ­bΐ)γgŠ[ΉNΪ.Q­φ%ΔΛΊνΩ¨Q°ŽΑž«ͺ—nΗ5iN…xŽαϋKσΛΔ±ŸIΰUJ`.λϋΚjΫαϊ;ŽΡ‡ΌςΚ+eϊΜ‘#G† nυωηŸGΤWNίuνΪU>ψΰ[Σ·QOPΟ'PT•QwΖΟθν‚sΐυpΈ>ί_V°φ’―ˆδϊQϊ'πŒύρΛ”‡~œ4 σΗΏ!c’”ίη}e«fyοUxWίιžιχ­Š6ωΕ>NˆcτύNϋpŒ>‚ώ,\έβϋέ πΌfOz?’gΦ¨V #ϋΕKb…=a9y²ς‘7ŒΟ—δx©σh7UΰχΤ@Kͺ7ΤK”ΩQ!.)ΨΕcψό‚]π`Ϋ™υK΄™uλΦσ“ΤρP»’ΟΩ€}«ͺ,/.ά^._Λ)gΘΆΊ5δθc σΒε—<ρŒ‘t]/‰›όŒt<χ£Dlγ²π8Ϊπ?ΝΏš%yΣ‚;MΨοβ»v’O+ϊŠ΅ΐƒƒ Ž4Rl‡γ%γς³B‹t8/άΨ€yφ¬ΩβΏs°TzΌŸ\~χν₯>ΠΏtHN•mίύ¬ύS΄^(ΦΌ¦Τ¨.1-›Κ‡σ εiΑόΏf£φkϊL+Ρ•SdκO?Dτ\ΐ,ψόάςεΛΛΏ>7b”d]§­Ž“b^{ZNΣ.‘ψnž=¨g4‹ ­}έ―v1 ΗΛ;GΡΩΉ †4Κς―ε­ϋ€ι ΤχrΟ$ ν sΜ‰ύ!ΐΈχ-":Ξ()”<~ž#ΫQYΦg†’:5vΎ7bδέ†gΟ“\Uφ¦<v€uCΗKα‚oςdϋ;™―β.:O—u­ψ1…ύ·υ%ьΕ4έ„αˆθŽ^π,ΰYΰΰ±υš++ΧΔθ‚Ά€Œθ-΅j<ωί[9υ€η½eI/Ο»gxή=»ygyπ,ΰYΐ³€gΟ‘<ΰω ΊY^Vy ˆΐ³G} EΏ4paκmgJόΙΝω{εΐ³€gΏί9ού$ιoN ^8F'H·«Β'πVΓjAθyͺPFRZ`TϊP©ό۟aκ~71Ÿ9:©”\$ˆ‘Ί΅φgŽk.ί$ysWHϊ $°XA&…žmHξΤVό—·3 Ζ€΅Ξΐδσψργ₯N:!…[&ŒO=υT3iώςΛ/.'$ΔωΔαΟΟlυŒ’κššr^‡χ^€LζŸrΚ)&ύ™3gJΫΆm | hI@ΊφΪkMPΠE lΚ”)»œ:`ΐιέ»·Ι`€―sBΜ€v*Μ…S  ‘l€"ΐ€RόΩΌX1aκκ™*sflάΈqFšψδ…ΐ9ΨΕ3 Ϋs€Γ€—x-€Β{ξεΥW_φ―½φšIΛ ςK“wΰr =ΚΜumώωžzΞ6Oφh„Iς}^zι%£0mΏ·―@{¨¨:1βνPΰzgpί‹έΙιSηΘ@ϋ^¬“/‚½Ξj=^3τ-‘?V‰OΫXJ3Ε_=E6ώ‘& 5£Ψœ]\Ρ™š΄Ό>ULiTlŽͺ₯JxͺΊfΨ‡š―€D΅k uξ;ΟyΪ!σί΅mΫ6ιΦ­›iϋΞ‚[?^»vνP;ΖGΰη¨γψόη?¦ž³#ΆύΫ/ΏΚœ?ζJ‡rψε++Χ•μ Α%δ1iπέ²<9.δohG5_|_ ζ-r‘Ψ{ŸBΗ ’kV ‹=L;σ·1κšώͺ)’ΤοvYΘ“ζΝƒΟx¨7­SO²?ψRrΎύ1Q+@„ͺc₯ϊC·Θ·?Μ(έ/ίt“δ©jv‘ŽΧ’+%IŒ‚jΰžΦοβSBmίΒ1‚νίΜΗ?ΐ2έPn|mλΦ­Ν}°~egTωέΑϊLΞ·ώ†sΈΠxi}qπiΔ'<ωδ“FΩΥ} Ζ}(y¦9ΛΘ{ϊΆαΓ‡;?XΩQw&ΐ—ΣŸ”§>ΩΎ‚σ&L˜ 7©½έ8’EG(ΩΪώΒΪΦ.6aη€gκΕ―3~¨;Hά₯ηΛcλN”³βες c₯σY Ο'ωΜ’ΖΈ€{ΨΑέ'w•Τo‘ϊRT²έcwΎwησ<―SAϊήΓσUπέ/©U vŽ“δΔ½;k=\ύπΫR΄H/  Vj ½T’λUΩsRηPηΏΊΫ u’6ΤiΫνύγ?6cWό%ΐ>γ—Ψ¨h‰R_Άhρbγ1 ~²™ŽMθO_a‘ƒφσω™2cώF%:C3ξν~΄ζaδdϋ³ ΨκS“c/βV{τE)œτ‘5¨#Ύo&IŸΎ}vƒŸΎ ΅ω†:nΘzτy™€ΟOξ‡ψΧ3ε·ν·ΩΏHΡ#γ₯HΗK’ 2» TΌθYW%Q.ΌπΒ° „Œ²΄‚ΎIyΊ8΄@Ι/ΖoΊAiΟ€…±6'S<YΟ=±y²~ΞϊmβFϊ\ΰτχ€Νψ±Τρλšυ²υΙη%fQšψλΧ–ΨΗ€Ω]oœΎΫι'°;ύ‰;π¬ΒΒRβοΞœq/η•ΤΗYJBeσUžΊoσlŸmHΓΟ<—²c€MΧΖ-ν5πΥχ²ύΕ·ƒ2ŠΜί‘ŠτΥžΒ}fwΒζΝ›CuΑ˜ς“δ>ϋΊY‚φtDΕW‘τŒ²ΌaΛ2툢i Ύηlή"ΎΌ h»‹U?τɌi¦Z.ώbΙ[°XλJΎ€―[/>Ν#ρE•}ωβW@/₯Οmͺ₯Ozα…LϋΛμσ˜ΜωSΫC²TψΟPycς[²eΛΉοΎϋLφξΉGαm§,~i”S([ϋ=Κv₯1ύδχΜMΖ7Ρ6Q]wϋεψ΅›$£χ£F)4ώί%»λF{ΰΐ‘tθ3mœΈΦ–q―Hώκυ’¬€έδυI―›φ:AίχνΫΧψ³<΅IΑR}FUΥΘ-ΪΥqœ~_δφ™ά;όΎ »rΟ233=θ£Xπƒ?*©―ΐwedd˜έkkΥͺeCρΧ€mϋό#Ά ΰχιή~ϋm[rοιS­_ζ~P·Hƒ`ύ£ωΑ?λ—IƒώˆΟ”|θ3ΨΙΧ$Ψ<=ϋμ³!₯jv8οώ"ΩzpρeeKμαΝ₯ΒSM^g‘W )ω3mηβ;₯hφζΈ―YCIxοYY—ŸkΖΰ•+W6ΎœvΚ3 ‹Σ’>›&ρΪ‡R«JT“ϊΒ9v nΫ?~‘…_,ΐp·iό } "7nά(\cλΦ­¦-γ“ωŽvnώ•|Ηύ\@™θΏi³Δγ|όXyςΔX’<ΟΧέ άύcφp‹*œΟΞρ+η£άΝxŸ4}³ζHΑό…²½λ9fŒ‹=œΎΫ. ’ΌξqcolBΉ­)ο΅chΚZžηl„έϋυλgϊ8όi8Κ3@4χžq4ηq-|2η;λ>ώ˜@ΑωlΓ³(Ο9δ›E΄ΤEΨ†³­3bοhΏ:β9ρgλ³£φΥ ½tARλfΕ’π‘$ΰ9πώW²]α~B~‹F’όπt–ζsY'Ύ-ρŸ|k’;χΣs΅•~Sryn'쌚t…ΰsό.ηώψ‹δ=>ήΐΨω­šIβΓ:†Šΰ[yVb~ΡΕ©τίχέ ΎΉKήΟž lΪ’Πσ<Ιάζ—Ϊ5 eDί}<)ώ~π”¦ό9υ€ηςΫΜ;Γ³ΐή΄€<οMkziyπ,ΰYΐ³€gΟ€<ΰω€Ό-^¦< „΅ΐ<―­ΚΞ3—›ΌV»ιtIθΨ*lΎ½ƒž< xψ;-PψΧΩ0T‘­\8ςTε9 ?&«™―zE©1δrέΪ9ροΜNθZϋxΦ9Zύl–όό[¨j\Ώ@άWβ](γ‡ΰΤ^ • Σζ¨DΫZ ¬J7“•!S Φ―*Ύ5%υδΓ%ͺqυb` ΘLŽXuΤQfBΐjβΔ‰f²œtP’dΒΉ¬@zLψ3©όέwίI‡Μφς€dL>;ŸΡJ αΤΉΐ¨Q£ŒB%ΐJjξ oβΩ‰ω7ήxC8PŠcή]&νŸxβ ωώϋοΝD8ξ 64*i 1PΑ³ pvar;\ ON–ό’(9zτh£δLΎΘyDImΜ9am…=‰D”Θύ:όπÍΊ€Μ 6O ¨·dq>@ε§<Ξ<‘‡)S¦H§NΒΑδgΦ¬Y"#|>ρΔΓΖ·g̘aΊ.ά3ςΟΠp vž¨υΜ]/P―ΎςΚ+ Ξ½~CU{δCžlζž–œu˜2«΅jΥΚ@ˆΨ θ[Eφ=ύτΣ¦^–CηiΣ¦™ϊΝ5/½τRsolύ‹ΤNΨ Ρά RρŠŽ\+ΩFY7θΏAUδΔXέΰ’bʘ{KαΉpρjI0Qϋ&…T€JΥα7ŠO‘SΨ9₯HΥ V§Λ¦yK₯H•š΅ζυ[ ν_±A|ιY&za…Ύ+Υ¨}ρ1" 6ϋ›[›£k+؜ͺ°³Φ“²B‘.βXυΰ[HϝJRgψeβΣ~Σ AΠ”φ@ mX€ΙΪ†zyϊι§ΛτιΣν‘b―¨ϊφκΥ«πU,Ž‘ϊn9-δΖ©Φ—Ω|ΰ{hk(ϊΊύ±ϋΊψ„<ψΰƒζ+ηyΤΕXm“(i~π.(!|ώωηrZ­†²ώ›ιRωΜ“δγΉΏšΆKtΐͺ›oΎΩτΦ/±5©ΐΠ{_ŠΏVͺ€χΉΡψΤ’7~ρKυΉw –’υ›€ΨώςΤ ΑΧαΞ–ž?gͺT’…Œζt:VN:ι$υΨc5> ¨ ΅VϊUόFσ9i’§DͺΖK hO# Ψ‰Oc‘Ύ \Φ4QhΘJŒ“6mΪ„”νΩIαάsΟ5‹LˆΘx€…)ΤŽ=χάsrϋν·›τωyΒ 'Π ΏΜ"ύΨώˆ~5M›§Π‰Ž7” HΣBΥΤ[;v ΟάGϊ/ϊŽ;λupΩ™'GζνΠ‘C₯Χu7HΦMIL§SδΧcš‡μκŽΛgϊ΄―Ύϊ*4ξ±qΈ6ύu5no‘όΗΝχz¬„peg™^-ތΧlˆεwrΖRΤQΤβ<­ύ°κaB|—NςABΎiWaΎήε~Άϋνšn-_Ω­TΚ8Άk»φ’ΥC}t”O*Όύœtιv……Yˆ@^ι—Pš¦ ΡΎΩ- χα΅d₯ψ7λ΅IΜiΗK΄^/κŠΛϋύO>ωδS>@Υ/$ω‹ΣŒBmΤK#ε}ƈt N;ΖVψԜy]Ύ|Ή©χρη+b |ώ’±>€lΈηΖτwί}·yώ°cπHσd Ξ½³Ο*Ο<σŒρ₯,Β\vϊ>ŸW;ζάI“&™E,”?Ež π¬Ύ‰EΦηΫzcΗΤ<ƒ¨7τάςaϋR³Ε³‘λ}φΩg¦2}ιi§™Όqœη’²ΖΰμDžΕ[ΆliKwΥUW™…,Έj§n[άΟQ”•ϋΘΈ‚wXΚωδΣ>opΟ[,¦-ιΩ†8‘Žwˆ ·HΦ ±΅Nσ§}C|χΪ!žϊš7α€ηL]ϋνL/˜Φ’άσƈΗόιΟ½&ρ_`Ξ-7μi _†>―Ύχ ΙόfΣžχΠ€ήιžφΠπΌ‡τNχ,ΰYΐ³€gΟž| xΐ󁏼z°8€ηUcTAθ‡₯&kU―λ Ξ:άfΣ{υ,ΰYΐ³ΐ~·@αͺΝ²a0πV–NŽ«bi‘O•ƒt’©r’ž£R+ώνyܟΐ3MCΖδΚ‚EΑ‰Ά#Zn—ήwV8d~dδf£œš?W•W\ ΏΦ) Ta΄ηϊͺ*XΨΌ¦TAΕΉu]ρW(ΫxΌ3kΑ€˜άFiμΖo4ΐ@pή₯ΐ ώPί¨Vfςšσέΐ3ρ€ˆν€7q–QΈf²ΑΒR€ΐ€LΔH‘ξ…šꝄpΐ3ή€ΎΏώϊ«Q#yδ‘Ε f$&bYΑ™ΩmQη}υΥWM9ϋτιcT‘‰OYΎΘπΚd „‹/ΎΨ\ H5` gΰT l | H¦,pΰ 2&υI“s ά§[o½5˜qŒ{Yή<gΊck@9`.@`ΐ/ξΑi[@ƒ?όΠΐ]t‘ΩζάYβso»wοΞ[ΚS/HŸϋ €Gšώ@…λb7@*@ε©Γ7\Έz@`{n3Τq©σΤ?už{dο…9¨.¨W αΈΣF|ŽΔNΔ»ϊΈΣ$sΨkhU_ͺυ½ZχsΈΜPΈ&]Φ x[™ͺD¨qΝΎ]$¦Y sήޞ Wnτ~/‰d«ϊv©tη₯RΈ%K6ΝOY·Uk3$°Aaf]p±KPήΦ§ηϋ3sΜiίLRΞ9V’λV‘¨Ϊ)U%>οr^ͺl½ͺΟ[R΄*C|ΙρRgτβW₯k/”mό!€m‡@0`€YHΠ³gOωςΛ/Νq 2 X ’šƒŽα|7κ €Yα|7m΄JσeeϜϋγ?[hαžν¬’ΈΙβ .ό·]Tƒ*>νPe•ψ逬(7ΰ ΑyΊΈ„ά¨s6Ύτ΄3eΣ[“7w“{ϋτ6~›ώΑ*Q§ΠcU:=/6E²'όWβ;Ÿ.ŸV‰ωW1wπi—qνΏN’ΌaΟJς¨‡δή§3>’xΐκw^yŠdηΙkΟά_Žλ}υώ‡βSHλώgŸ υ#?ό°άpεU²mλ6ΚD£VJ|γ_Η<)›_z[Άœ}‚ι—9nϋιΖ5kΙΜyH=Bΰ4vmT±²ΔV―&wέ{O±<α·ιk&NœX,Oψ*όkyϋˆeΛ–™ϊfσDύγ^αΣέyͺυώIό­WΛρN ‘,ώiΦβΙΝ^)ƒφ Υ}ξ}ΌΫηS_HΫΉΠ‡ϊw}ΝΖ’©ͺ˜ΙύξˆX©“<—φ7π μάη‘<Ω΄Ε―ŠΞEςˆͺϋ₯V)+Χ‘}ŸϋγΩπΔ'&²Ώcs©sΣ™‘a¬€Φ3kϋ2jΙΙ; cδνq€δΜ ΅!υ3²QGVY;”’ƒ`²_‘ώώ,6ŠziΈ­€¨―‘Έή’N]ωϊηŸδϊλ―7Ω2c‘IoΘφΎώ7ςS|ρΊ―q1U«ΊόΆHήΣEgŒ‡ά…dvQ ί1ξb<Ζψœg‚υ―•βδλιΣBπ4cHΖΡ_zGόΗ!έ°BΎZΗ5#χξέΫ€¨ψζακ3 /Ώό²_Σζ|Y9R΄h™dό2WR/θ$OO~£Ψb‘Ÿ~ϊIZ>₯ύOΏI…IOHΏΙ―ƒίqύ R€cκǞWl ~A…ͺ’υΣ₯Κθ~r™ΨŞwΊt‘yϊΌC„]ρqφy—q!}ΗY8Β1g`ά~Ωe—zϊ©ςŽΑI«<Ο*Ξkσž>Ž…EvGŽα«,πΜψ˜η$ϋμ€ΟΏΎΛΕ’]'Ο½ϊJqŸ―cjϊj;Ζ'-{―KκKι{Λ3§~±σ°1γzwΐ†ά Œ36‘`ημdΛkΣ³ Ί}εYŒηMžmν½&.χšΎΓ KΫ4J|Υ[GŽ—˜?™(yΗΆ‘ŠχiϋS[ŠΟ:ΞΘ{ςe‰™T1ί~B[©tO°­šΘeόKώ ‰rΊ‰•TKIξ½sαQ©§Ξ[$ΉCŸ ΑΞ‰Cο“@b cε΄²½(³0£ zUI©υ<±τη}sνO¦HξΔΰoΉN””——š%οKΟž. Μ[θ“ΑOhΏ rDΛ<ιo >δΰ*V™Ήυ€η2MδEπ,°O-ΰΟϋΤΌ^βž< xπ,ΰYΐ³ΐ`x>ξ‚—‡ύm~PvΠξΜΠ‰UW*+σ<&!έ“{ΞοΛϋώ@ž=ΨΉΌwΞ‹οYΐ³ΐώ°@QFΆ*vΎ!²jKPνYΑg©”(ΎŠ R}ΰ₯Ug/‘nΟYΩ>ι72WV NžwF¬tΏ4 Pa9ώ)ΡYΫ%oΞrΩp7pΚ€9j[ Ω‡²Ά«`—εC`²Ž9_}Ν~ :ž¦~*F΅(Vλ«ΎšΟ±ϊͺγΒ€ θϋJ©ΊγΎJ|œψψNΟ3ŸυΥ§ΗZΧyσH7F•YΛ;^+ΔΉΓhψM»sΙPUIg,ΛŽnŒΏ}‘ώ΄ΰaΊπh­Dλ(ω΅Γ1rς)'›žώyΉ^Qδ†ό%06 Τπ‰§Ώ6ΎfΗΒσ₯ώ£γ“ρ·ΞπάμΓο$°xΉdΌ_κι3ρwίSΞ’¬ΑΊ Pαξ wφyσ•ΠόχŸ~ί§SdIΫʍomήV²ŸyUβ―κ"KΪ4 }gΖΆ§t”"ν{ΎΡ]€~;r܎ωβύξŒΑ9―ΌΟ*œc}1~έm''πμτ]ΖηλsQή’₯’3n‚$wλ*πΞNŸ― ύZζςτ₯)))»ψ| Ο«žώTЦ-2Ω«zυΙRαΌΆα²κσ,ΰYΐ³ΐa΄_;δM ,T°#―P:ω_M}}b¬Tt™DΧΧ ςΏ)μΰyγŸ<<*O6lςλ„€*^#睾Ÿΐ…ΏΙΞ%]& πcα_keΓ΄9PΐYVn3Σ°γ`EέΚ HΦ”κ'΅‘θf΅t΄ΈκXIi;—’jia¦ΉsηεKΗ %Xec ,Ψ8ΞW&™Qbf²έ,$Lz60¦αΊΙ€F99ͺ»#Χͺ!η‘ΰˆςΟŒWά!pΪ·oߐϊ›3Ύx&ί\›-‘Qp#=˜ ΟΘΘ0ŠΟCύΥ7ΤΒ,@g+ΎwOΆ£xΜ 4ΕΈ HΧ©ΗψΛ½π θ₯e`;w\p*<;―ižΨΞΫ‚ αξ―”°*|\₯Rΐpμˆ:΄ ”Ο]?°‘Φ μ€aόŠϊ'ΐƒSiΦω=ΐ&χψ0: 8o• I{Κ”)ΖξΦt‚ήVWπ9η£ί$αίΑ1$0Ζ„   πή]Ur‚ΒΥΏHνTπλbΙ₯Ύ_Υ’ΝjKΥΧΚΪ΅΄Χ"Ux^ΥM£ΊμSuθΤ{Ο•iK€4ΰ9›/«·HακtΩ4/m§bσζlJΖ.^"~€³Ά7i,­‡_Š*Ύ)Τμ«YQΑζ£ qόͺΨμOάΩ׎ϋHS˜ψ•―?CβΟΪ{cοU,…?-3Ύfί $Άumsο_Ω έ’lxτΡG›ΘNˆξΎ€φΗ³dΈΰφέΤg»wϋn dΪWiΎ¬4…gΪΐάΔ‰C‹3šΐ3~E,Ρ€ΥguVxvNψ-μ`Έ 6Μ(#;Λΰ,#Κ€(h¦ιb«ΠŒύPΒ·>›E1VEΣφWφ;{Dκσ±]€~Γισω]€ώΫϊ2Κ½nέΊPIΉιsΘ7#u£b%˜XAΔ¨ͺ•ε‹eΙ\`ϊ5κK’ŽK―ΉϋN™Υ_ڝzŠΌΈ74;R–ͺ’{«Φ­ΝosΤ&χ«‹΄ΆškI§χ»IkίC`<μέ)}Ϋ•rΪE†;Μ]ΗA· Β¬Z'S^{LΊυΈ>”§G»]/[ΗN4@©―ZŠTvΏ§ $‹VΘSσ/7Ύ ξX€OŸ7γG)όώΩΈ=^žΗ/Wυ;\&Ό1܌Έw}k²δ«β΅QΗUπ”{Λ"€°υο’K%σΆώΖ…Υ«H°$PiΧίhLaΛρoΟ[³tΡαΰm’Ύ‘@RβΆKŸ[TΥ;IŸEPίBΞE9ίΌRg2ΦoΠΊ³BVe£ŒL\„lΞΩ–/ΫώΤ> H’T$0±aΐ(§—Γ,{Υ§ύ˜’υΎ[™cXΦγ)ΥS₯θx€lκρυ32π~HΦΟXΦΟ;ϊΙ=Κd)'γΚ;^³>¨”d‹}E]gLƒe|τ °©ͺ)4odιX<1Ύ’d/E w΄j&Ιw]/ǟ|R¨Ν16E)Ÿ±_ƒš>>ΙΖΕ³fΝ2Κȝ:u ωkΎp΅;τοίί,dαΪψ0ΐV•—΄­‘1ψ―³gK|ΟGuΗ m·’κΧ–Υw\nόŸYpΩLΥηŸπ½ΠXqΞΜYRtΫΓ;ύΚ€'εk―1Χb<όςΐa’νςi•X³ΐš=Ξν¬ώ•ϊTΉ,ΘΚ–@r’’*χG:Η&τ5‘>«PπτY₯ΪI#/]Ί΄˜Ο―U«V¨ˆN[)Ÿ-Z°Σηφ»Δ&ΔΛ‘Ϊ?FΪ—²+Οqv ΞΒΚDŸLpΧ[Ζΰ%ΟΞρ56€U«VΝδ—tJ³“xζΩ‰zΊ¨z7γtκš30ήαYΜφ,ŽuφΞΈe½όψ›δŽ}ΩΐΕE)Ι’Πη6™“ΉΙ,.γάΥηt—Έ(νGnΥΕ£Šό₯₯1ώu‰ϋΏ&Jή1ͺ ύ :γ‚ο―4Ι8v'μ<\ϋ$­£aCΖVΙν5Dό[tΗ]PχHo‘Z5ΒF-vπχ’;όY³Έ€ UIzXϋh}τ‚gΟL |υ_ΖΏͺ‹Μ4t>s›\}I‹"bSxΐσA|σΌ¬#,ΰψΫθΒ³€gΟž< x(Νπ\šuΌο πγ1ŠtSΞ()X•~θe[ξpΚ†αΞeϋb&ŠνΣαβ”ηΨώž‹ΑΞ— ΊSžμ{q= xπ,°_,€‚εΪ'ήW d‰Ξψ*°1G$U³€xIν―j–M"˜ˆΪ 9»ηe+E=–/[³όͺμ%rύΡς―£TJδ …ͺ¬š?w…ͺ8ΟŸͺΰ% ϊZΦ’*ν[g'dX,^9>8αͺpΐ+“Βΐ€¨m ±ΰŠρEiqΐΰ„Ufβ:œΒσθΡ£ΝΧFN6«–IϊNΘΘdL’LXεNΰ- ­ΉS°q?1yoA/  §Β3εdB•`›W Ϋ… ΚΆmΫ€bŊZ.GIΧnsΝd:όN»8Ώ'\΄W¬Xa”'Q.š%O™™™”ΰ{jΚθ|mxΕΆV‘Υ <;―iž¬ς2χωšk |δΫ *X…>ςDρΕ_Hΐ>£’wάq&nΠΖΦ α‘Rˆr΄΅5Χ±r> ‚Κ$Žσ{l@έHΐŽ€“ζηŸnβ»α ξ£U’%@ΫF~*ρGΦ—*—Ά7υΨͺIs_7lΨ`Ά{wΧ?›ΟHνT87MΆ ]|κχ₯qM©2°»Ω†ήΪ₯΄Χ"U€_υπdέ! ΙάvIrqΏΫM½]>υW›·Θ¦ωΛ$°&#7§Wˆ₯­u>~IšψŠvNNό N*j-Ρ΅+‹ΏV%ρ'(άUJX3ώ‘―ηcœ}ΈΤΊξ¬Rb—ο«U“¦Jα‡sΝIΥομ$ρ'6-_‡xlg½η€§P’·J‘¨k’€ξΉκτέnuD·οxΖΠ&πέΌβγPπb£—<“Ο”Φ_υ>φΨcNuž‡ξ»οLϋφό₯LΚΞβ”—­ΟΑ§Ϋ5αρIφ{ΫΆ)y¦ίyβ‰'LY(OšΒΠψ-Μ 6:pΰ@Sf«6©Ο/ί .ͺώΐΫάχ‚%€uϊ°#Tš`ϋ‘χίίμ €&Ά!ώˆΊ1;Ψ>—ϋ¬8E{l£όΔ%[8ύa›FMeSnΦΞ“€‘FυςU€xοŒΓ…>ΩΆTΗ0ωρΗψ$©±*­ΊψΈ;¨Ν€‰ƒοwΌ†T“UΉZU΅©Ž4Hͺ#OΥ’±ΉΪ»£¬μΣc&-””r vgύO€γ΅ς@œψP`f<ώTHΈζ₯hυZIxr°œ}ύ5Ζ0†j¬Υ(Š{ΠΈΎ‰Λ˜?Ø֎Λήxγ Σn¬/Α.[ΆΜŒρΟφwGwρωΞq=ιΠWΠ>ρaŒ[Ήž{ ³n“Q~Μ3_bΆfΛ¦+Ο“ζ;ΤηρΗ΄h)w>τ`h¬8aψ(F˜iy}‰$N‘ρoN =ο̞1CVΛ―½dD$€ΐΉ6Ο2ϊΖ»qσ—ΘΆQΟI iΩt]sMΣΗΞ™+Ρ«t7ŠjΊ8UύχΟζ™σmYθcω_[Φ³ ηΩlΗΎΨ8œH›~enžeσrŸΉnŸφ£KΡχ³δ{έ±cΑ%¦.D—ΪE:αΖΤ\ΟωIύα˜{lA_δ\ΠΚΈ?hŸχ(7yfμΐωξg:'πL<§­± y³Ά¦?먻ν ΐ―οΧ1_”γ_`Ι Ιρœψta )žv΄œpΧM&€ηJχχiΏsqhYIgŽ{YbΏ .ΞΧz™ŒzrώΛΐΞƒž ϊs”K9ΊΓAοα΅zρΉqƒ{Š4iPVΦ$ΆJrϋŽΥ λH’.0ΒίzΑ³€gΆžΈUΎώΎ‚)δ=7ΖΘ‰Η΅όKνΟΔ»κ•ι`²€<LwΛΛ«gΟž< xπ,°[°“ι‘žŒ­< ό“,ΐ·Lt̠Ȝ€“vΞ„Σ‘C3αΐΖΐ4lUΟyξp‚bŠ Δ£ΝXU({|w_χ'πΌκΉΟ₯hΚB“υΚ'IWΏ»ΕπΞσ,ΰYΐ³ΐ~±@Ξ‡3%}· P(τΌn«Ξ¬ͺ’FUzξs‘D·ͺ³ΟστwΟόι“αcσu‡jŸ+ϊά#-›ξΘbŸj.P”½}ΰš¦Jεγ[Jl›z₯jͺ{;0n•wΓA_Œ%œπ§Z.-?‘žk'δi1‘Ί/‹Όα 9N<ΆNfG ₯Ήα βΉ'Ώ œΐ3p —\r‰€{GŒΑ©Ε“φL‚p Ζb(k<[2Npƒf”…iͺ.–¨γΧggΖhn€h”ΓΒΐ@%n…ηςζ ˆ½Ρ΅l'|a³δ†ώPΒΆΠ΅η|AΙx;ά½pΫΪ]§(·UxD8ύτΣ‹AΨ@ VΡeΦϋοΏίΨ–όGZ‡ΉΨ:œΒ3ωlα>SyηwΙ]²^ͺΌ,ήX¨›–»ώ‘ΟςΪ©pΑ Ω2δ Το7H•ͺCnˆzl/UΓTIwαz™Ύα/Ήα‡%)&^fž=Πy{нχUΧΕ4 Άˆ*6WkV_2_ϋH•ή΄ΏIˆ“ΚC―ύκΕβ—φaΝ„ΟE>›c’ψ:΄”š·ξͺJ^Ϊω₯}·}Φ2Y7Zaj…œόg4—Ί=N/-Ίχ] P― $C† 1ΰολ―Ώ^¬}β[V­Zedpz8ΰN–ΆŠ―s>;†σέ΄S·’£Ϋ—…žš€mρ%όΚΝςrΟΞΌ‘6Χφ΅η 8ΠΌΜ֦ﳐmyΐ€»,ΈιξT:ύζγΉ& 4Ψνκ«―6π0Κ“ϊƒΩͺ6Š’?ω(―ΟίΏΑu€ΐ,ΰM>θΉ/]t‘|όρΗ&_nhβ³`ƒ?ή°h„EJ₯pϋΎqΏIŸrφθ‘ —ϊ@6Ύ'μnž8·Δ±ƒZΐΊ½·ήrŽͺU]ζ¬\6O³ΏWΨωΕ·%p§βI¬_GώΊβl)ΠϊkSάζήΝψώ{UΉ|_*g,“˜Ά­dΥ•g‡J‘zfσΦrχc#­¨ ŽŽ^Ί2+-œΧ žρ£”§Μ` έ j°QVPχ’½.S—/–‡Ž>Yξkyœl 2gkωχQΠMEdιŠΙέ€‚Θ λζKBΌkŠΗE σEc^‹υ•<•d 7=V1$λ6VγDΗȚ—.ΰΤέjάΧIΗ³•ƒp²ϊ%a¬«ͺ²^(Ω΄'·Z»πδΜpγ5χΒ³°W~Ÿχ—δ¨Š3Κθ€€,zΈ­qkΙy~’©zq~‹&Rρ4έm£yc³hΑϊ||€2γεή½UVƒΫOγ³K1rŽ‘I'…ό e°;pΨ±u5̘6jϋ%)Οx—1ι‰νΫΛ)ϊ;©+^™RGr&6^ΠϋδΓEσBΟ t± czάx£Lœ8‘(aΟηϋ/Ι>NΦέ}΅žΙ;ώ6Ήο lI7m$¦ΣΙ’vΒζΩƒ„ΜsΑaΊK@΄68UΚ&pŸ .yu>«˜Hϊ›3φd΅S͚5Ν’§άΟeωόs+א‚'_^Fσ’wR;‰νΡM.ξ˜Η½uχ₯τ=ΞηHžŸœ‹WΓωsΖ ξΌqŒ±4εb<Ν"₯’ δpvr·‹}€½ ,Μβwt!RΏ w‰g•j‹υ›$ϋΑ‘βΧώ” *Œ|PX,ΰΟž <26[fύ3λ/ά-­s!fπ€ηȍτŠqΠZΐžΪ[ηeά³€gΟž< xˆΤπ©₯ΌxD πΓξ¦M›Μv¨†0‰Λ€€;𣳝άΰΗpΞ €s¬"Jw¨\„SΙ±ύ<―~αK)ό*¨ΌβΑΞ‘ά)/ŽgΟͺςf.–ΝO|¨pGΎ*leˆ/΅’QzzΏ%φθFϋ4ΫπόύLΏ<ω‚–Oa‹JΙE2π©[kŸmΏ%Žzw‘*7o˜¦Pΰœ—oŽ…ύuρ΅¨%ΥNl#Ρ‡ΥΤ-²ƒπP(Ξ^~γ„KΓΑcg₯©4—–p“άαΖ-Ξ4Έη±;»Tμd>Πƒ{ς{_ΟΞό œΩ€I“Ζw¨‹ήsΟ=F‰Œν¨ ½zυ2ΐφdάΕd?ν€f&Χ³- `κ?€²† š4ν1ΐ1@ ”ΨγΌ’vIΐ³sœHάHς„zΠ6Α‚$N΅9Ά©ζ~X —r@δ‘τΡG!°8:Μ&ηž{.I˜{΅kW bCΉ.J­„ͺςΧ<7Y*ίLϊ |Ψ({b3ΤΝe±φa, T’––Ά[v*Z΄ZΆ ~EDΥ:ž?k• ŸύίW&/‘όΛY°JΆΚ{+f…€g_mυ+5’%₯Ή.œ¨•bώbκW %PUιM&ˆο―ΥͺΤ-•uΣΘ―™τ΅ΘͺpͺΑwaRσΞΞ‘΄χτMΎϊΜ5Ρ<ϊ¨-uϋ\Έ§I’ηSW-ΰ묫Φξ:ΞΨΈα^KσέΞΕ φ\·/sΟ|ϟ©zφμiΪ>ω΄‹\Β΅w' 4”;ΰΏxŽΖρΣΗ̚5Λψzό.ηΘuκΤɜ˜‡Of‘1v΄P―;m>cγ'Ÿ|R²³³M\ οΩΈψό „€+Ž[ŸOywΧoΨτΙ;y$ /ΌΠΐΙ|Τ͟`枑p ζ ”˜ίάύŸΙ―υφΊ¬ H}υοςτΘΠaR0{ψhΞ«_K.»μ²bΟ·*Tžύό›ͺ°«‹ ͺθ8MU’7w=#€LΝ}nΫBϊwΪΏΝ8Υi'ϊtμδVΒvΏΛςωoš—eΟž< xπ,ΰY |π€ηςΩΛ‹ύΟ²€σ‡]~Τq~ fΒ―¬ΐκ|(\¦0I1PU―8Ά7ΓώžWΏό΅~ϊ‡)FΚΉGKς5'ξΝ"yiyπ,ΰYΰo·@α_kdΓπw$°-WŠV€‹―j’NœVͺw+±νƒ“Βϋ"Sπόώη~yύΏω&ϋ©U‹τGσX©’ςΟR )\ŸiTœ·|?OdΡzέΦ=―ΨνςUJi^SͺžΠZb―g€φbφρΖN€Φ …›¨ŽtβΆ<Πή(F^sΝ5!Έ υ­ΆmΫ†s9M²―€g ”­Ή.6b+nTκ7Y›]1Pυdk{ [·nέ„Ιm \'όϋν·ίΥΜ«ΊΚwS¦L‘:uκ˜ } ΖcO<ρ„Iλ•W^1π˜]ΐfκ?χύrƒά›ςδ©V­Z{<ύυΧDa Κύ›4i’QQ#Ώ@!γǏί$ eΟΐ†ηTζ^Σ0Ζtޱ3π9ώ &'&&† jςʎ'άλ4…QŒΆkφΫoR]·_LΪ<±hΐŽ΄mYάQΝεžqŸHΛ‚αε΅SαβΥ’>θ=\>]^š3Νf)’ΧΆΝZΚ―©:‘ΆŸ5kuqE)E‡Ύ*ώΉΛ”(χKJί«$ͺMΓRΞ(ώUξWΏΛ–ηΏ0}ν›JΝ{φ\°.SVχ~K$[mΪ°ŠΤzΙ>_RΌtœO΄;  νMΰΉ,ί}ΔG„}>uϋ2wίƒoF揢EŸΒb^7πŒqƒΉψT|!ΰ³]xΒέ€MΣ~ρNΕTΎ7nœQκŸ9s¦<ϊθ£2…ψ$ς  ΅uλV“Φm·έfyφΩgmt±;'ž‡έ>Ÿˆψ3όŽΣη_qΕfg¦έυάcΐ-ό »"ΨpηwUkμδ ό&ΐοkΐΌYYYΕ`όώά ‚αηρλ@Ѝ³: Iπ£Ξί#Κ›'+Ο؁ψΤ μO?λΣΒε‰τ§}χ<ύν|UquφΥΨξπcn’¦ ύςŸη‚@Ό³ώQ~ێlγ¬U‘Ξψ€D©Ϊ³RŸwwI<γ$²YpTγ¦ςΛ’Eͺλδ‘kW 2FδUό3p€@2JΛ»”‘”~#·«Ίs΄&Α½b€Iƒ½7ξΊ₯ΰŸΆκœ'qΗ4ܝlςηΰ{Κ<©›ξj!ΰ™ΆΗ_²uڏ3o‘ψ7lήiS­;9O’Ϊ:%„Ϋ)cgδ ΐJbμΓΈΧΪΙχͺž’’bΪ°m'|Οsm“Ε/ψ):ώeLM’ž3gŽραψZ _Tόρv lŸS,θo₯Όεο;‡+jZ²jΔU­,o}ώi1ΰY›„΄=±½ρ΄χλ;RΆύχS‰>ηTY¨»c―ͺΡ q@jvg‰4OΨΰθιs%ϋY& ώωkT“υ½n(<·^ΆAΑμχ€¨r%]SO’Έ)΄;yt΄¨ξ½IΓ–Οi'gίX–Οg kλŒoκ’σκ;έοιάΈRϋR{°‘ϋΉ$άά <γΓΩΝ›°p5p›qoΚj|ŸžžnΖω€Ν½aΗ 3Ξ8ΓΤQ'¬N,νμ·—2c~+/OhR³Ά,^»Ϊœ)π석γN?Q|7_Ω%ΣVIξΓΊΰΨΉjŠ*;χ’@₯ bxΈΆ>1^βf(Ζ^₯ν·s§pъ3ύZοG%j΅ώŽQ!^ι)’;+xΑ³€gCΟΊYŠτ’'«ΧEIb…"ΥOw ¬Άχƍ‚E=ΰω@Έ ^e xΐσ‘|χ½²{π,ΰYΐ³€gCΔπ|ˆάh―˜a-ΐΔ*(£01ΙC8 *ό8Λ€-3[–.σ3[Nθ01Q’Š`ΨL”γΰί <―zsͺ½›Ι‘ψFRηžσΛ‘[/ͺgΟž\ M—υίΩΌMχπΥ­q“’­’$Un:Sβ;Άή'ί—ΐ3sΛOό'KfΜ naέ N κ―?šό?–)Π\0o₯lš‹oώ\«[xλ=s†˜(ρ5I5sκI‡Kt}UΪۏ‰p«xr(/xδ,J€η2ŽRc“‰'†’,c¬`\DτΎžΩω’ƒ*Y@Œ<άa+0»dc0ΉΊeiΑΖgŸqΆ!οN ϊSw¨I†IŸ8₯Δτ‹4O•*U ΟαΥܐ$Š{”U?ΓvίΌΪ@|E”S έκΝΔ#Ž…„KŠΘ2vμΨb𱽆σΈ’{χξεΓΨ~͚5~pΒnΞ΄yoστΗΆβ(’Φ ΘCέΰ>^yε•ΖŽ€”κ+{b'=«σ—iσδ§ΌRα”#%ΐΦηύΤSO™Ά³Ά ΰyΓΘI⟡H| !%ίw‰Δ΄kΑ‚QΆOωC6?ϋiπΓ±€VϝπSΔ‰”±(k»¬κω†6gλξIRgΔeβOŒ+!ΆwΈ, Πξ¬Β³…σ@QYQΈτΛςέ<Ÿ:}œ3 ·/sΟ΄όΡΐJœDΧ^Α2Ϊ€5Χ3Ο<#Γ† 3jοΗ/Yεeλ·9—λπω7ސ›oΎ™Cζ=Ύ UɎΊΛQiΑ.4ώβ‹/BΚπ,PιΧ―ŸI›kΠ‡‘ΟΒ UΣw•δσ9‡?«`ντω»γ7πin‘λσ<θeΑA‰ίβΎ8ν—™™iΚΔX€@Ώ…ί#.ηαWœώžsΈ7€jgψižˆλ ‘ŒˆγΞŸΙχԝ'ςΞwδŸχϊFΑδ'$>)QVv=S.ΊβrΕqοζΟ_ ο0;―Hλ_¨k}Ϋ:βYUΠ\hŠΥ/_aΚVε[ ¨ΝυΜ ―;ν΄§ο΅Ι¨R_,^£‹w2πώX9¬ρΞώ|OΣΟ™²@6>ܝ ΚΥ'KβyGξi’‡μωΤ]§ΒsDγ΅7ί’ό/Ώ“mΣ’˜ΏΔ—―Π³ ΪV κԐόVM%υͺ‹εΕ·ί2°΄σΠ_„ ΐ£\ϋκ«―6νΕΖa\tϋν·›ΆE;ΰ| <“&P©S韾γ₯—^*vMΖχέwŸρŸ,4KΥ…f„mΫΆ™ƒ@«,€Δ_γΟψ£=G:ήe!IiΟ;»ŒMu1DώŒ_d{~žel“Κ.“‚ͺΈδ+ΣIςmΣκ‘…p2ΔJαa ε–;nθΉ ζ©΅νMι" ‘ϋZ]Ρ¦ρ.ΐsΞ„·Ή€T;PžϊΰΏ‘Ϋiλ6)ΜΚ‘(a#υωΐΏΤ7BavŽdLxSβΏύAIχh‘[―‘Ι‹ζλKέcpžέΨεΖ†pώœΎΑφ%ឯάjΝ6-ϋŠ―/mχ’ώyĈζK’nΗ Τaž₯ξ~Λtόc!Ν³wpVgξ² +KοD±‘&b#Ά“ΏKμJŒ¦ωŠΎ‚Xι(`OŒΖΔˆΖ’¨yS,Αh"±Ζή+(]zYΚ²μ²{Οwξ>—ΩΓmΛή5 3ŸΟξ½χœ9sfžsΞ33gΎσκώΊlΝJ„\€ηzΑΞ:ΑFΚtRΌ^c§μάFΑψtαΟ—Їώβφn>όό.Hsλv­Ο6ŒΎI ?_θ&Ϋμ2αEzχΨΊ?| ψΪY@ίeδ„ Y]ΪHΪ΄¬’Η5‘f%;{\»x6K„Ο`Žπόί±{8k°@°@°@°@°@°ΐ—h<‰Ζ§Ϊα,ΐΛ`”`H¦L™β–OŒͺ1Y|pfωqxƒ ͺ5ΰiqλϋωeΟvοΥ Η  μπP…η%Χ> ρΕkDθΐhxμΨRZ_p€μςνόC <XLΊe“|8»±3ω€Ύ2ϊ²]ΆΨα―@κ  }Ύ\*ή] ₯―~"2•Δ«j#±.­Dϊw–v‡μ%…ύ:KL‘η%–‘– <XΓŸί† έπ—ΏόEδ˜$υΦ[o9X*—ό§δŽBΔ85EK=πΐΒά€άΰt¦s1hnjŸ™­S ŽrfϞ]«œ ώϋ«c8°‘ ²£=eͺŸΝš5sΰrχξέεΈγŽs,m―>}ϊ$Σ4sΠ•W8ςΐrΧ@ΕιΚB9²ΟΨ4Χ<υΤ₯·yΦI{μ1·΄³Α· ΚύbσwήιrL>€Μ~V ξ— ­/¦g’ΆNESlώ駟:QΰdΰIξ“!C†8ΐ˜k€6°±ε1Χ{˜ϋή€”ΌQ`¦­άΐ†υ±iWΝ_&kΖΐX™*·uh)ν&_(±–%©N[kPΠ 'œx^qΫ£Rπ‚ͺΟkhqΙχ₯谁΅Ιτcσ‹Λκ_ώ•2ϊ>ŸΈuυ€sΥUWΥR₯F­šΥΜΟ‘V,ΐWχθΡcN>χΫoΏ€’) Φψ?lDΖq~ΰw\ΔΦuΝ“Ÿ&χ~ω΄ΣNKY°ŸΙ'ιςΔΉΆΉVζ)Η΄mΫΦ)Π:ΨNeκ6˜$[4—9ηPλΪ͝;·NχΧ0Z»ωniόςΫh‡ R;Τ/fΖοΐyΟ>ϋlƒΟj{CbYr5§ŒΉ¬Pμž?X₯βέ…²όϊΗ„ κ%]/Ρ3^πvrΟfl―ιswΙ°aΙφΪ―.Ή\ΚFMۚrΣ]€’ίόΠƒ$Ύχ"-›»}ψ0iC‘<οO†±xx._°ΐδ|0³ί¦Εdš`ƒ_BΥ™σΪ3  J[3—`κκδ=Χφ.νΗLmEΏή±ώυyε<6jo±¬~ύ])\ΈTkύ±θ΄cά€ςόκ«―JΏG%zt‘Βƒφ•”.—Ηfώέ­_­cρύQwŸΎ»Kε§sEV‘β#Ύ!—\1’NvϊƒΣeαͺ•R¨u]ϋΧή—Ms*ΫZZυΩU€]kΩ²k7ΩOί SšBσœ9sjΧ₯+VΙΖ_ί§“8>–’ιΧΚ™cNΦ[ψ>VZ±~δΈq΅W€Žπϋ‘ΐΖls>X톍mΣ!‡βό^Τ—Fο‰Tvς!iΏΎw*ΨΊJL΄o›ͺފžg{3ρ‰IZ„lΐσΊξ’Ζ―ΎλβΦIΩyα)ssvnΥBš^…N†Ο;+΄^qϋ=ξ<ϋν%ΝΎΔ}ΟψOοϋ “o—Βwυύ†>ΕΧόLdοώ ;ƒ‚ΎXΎ2&#'ι„ κΩg@Ή\όΓ&ΊPTbυλ₯³ϋ­Ν@}-~Ίtj{žΚ²!έ`ά,€ηάμb      μΔΐσN|ρBΦλmΰΐγ₯=/o„΅κ₯νc Β_.\ε―ΕΛΗηο§όB~:ω*ιΡΌ½<υƒ Ί«.ΓΊ‹’ιyί[wVυ~λ_ASPšͺ’ŒΖqίwi,±¦zL€β‹?½(U$–ε+8 ‡tqb>²Ψρ,P±E–LΡ%Δ?ΦeR•*H YμΦZZΰŽ@IDATΩεΤoδ5Ώ ciZύϋόσΟΧΙo ²Ο{ΐd0κξlχΛΟ>'υΚYg•T€ηzωρˆΓ€#κΰ7ςG ‡_H3HΑŒήWuΙiDyHξ‰]pZnYPΨyΣ΅·HLΥ»«§ wπzΪƒί|O*¦ιd&ͺξΎ›”LΠ{@ŸΑlΑŸ΄S|ΩE'DS²φ  μΈΐ͚5Λ­ΘΕΔ#κ•Ž;Ί•˜„ιχ 2•=gΞη:ΩrͺΠζ°@Β{[™ΗΆγ·Χ―_ο|οΈqγl³kOπκΤSO­ΥΏΰοi—PEυuΗ5Χ\S«Ξ‰Ζ۞ίxή«…c‚ςg<ηΟ–!₯``````ΤxήA/LΘΦ—b^Β²ό.ƒuΌˆΰε­uόQ^b™—«„Tͺ\Ό0`‰Χl© Γ1Κu ύ»τ’gίxYz”΄“§ŽΌ².‡nWΥ0’e]Ύ–Οb]ŠpzΙ:‰ΏΏΨ½°νήNΪ)τ’V°Ί@?₯ζΣ}WpšεΊCΨ©- β’Ϋώ*ς²ͺ/}±N€\Ι…m%vD?ι|IώΤς <―^“ΡS+dΕͺ„>ϋ”B9ιΫω,ςšΖ7WΚ–ΛΚ?ψΗKD–λ:Ž~P(/Ά[;‘~€ύ‘₯°—NδΩIƒ(}ζήxγ 8p Άh”QFDMΠ‹hΪ6PΟ€CŽ ­LΠϋiΧLœ8Ρ Έ0ΰLeΞT-V>dΕρπ?ΐˆ•PΜΜPΦ•+W:8™cΈv²Ay챃8_PŠ4π@ »‘GtˆΟϋο{§\v‹ͺ‹κRNJ«¨δYϊ؊ύfλλ»NFŒ‘„²άAϊ΄Σ)<³oΥͺUuΚιΪ50Θ‘kΛυδϊΌπΒ Ιv£ΑΕG}΄Μ2&ΨέvΫm \3ΰŽ΅‰u@ˆx[ώω$έLΐ3Ά,Α¦€Θgπv1c†ƒπPΰc Žψ—“~Ά{πεL%Χ5o+3eΚ1…SΣI'δΤ½KKK·ͺ›–WΚϊΜ–Vυ•»ΊΟ ΆΡG1ŽηƒC―(‹…κ%«eυ˜ίIl]™ΔΫ4—Ά“$±Ά  € Ω€ηΚ§^—uw?ιŽ:f_ιpΡ iRΪvsε›ŸΛΚιΊ$Άή#±έ₯γ5§ε΅}½θΧOKυ³³\ΣqΔρdPΟm3ΆΤΩQ@?–žgΟ₯=»@¨Ήσ,π|ρ|Έ·ωKε»{υκεβD₯σέQ_ζΟ<‡ψƍ7n}ζ4a"/@ΫΤ¬lDίΰ i+όύοwϟω ό;>κπΓw~ίΕrσ Θ³δ=Ύ Ÿ`ρ9}iόΰΊ‰‰Β ‚γ7€¨°cή‚ ψΛφνΫ§υωψkίηεΦΕΏςœSo΄ySΥΗV―Ϊ„ή!υ’G)fX€ύνo;9ι…΄Η)€` 7Χ‰{αΚ+―tκζ“ρ•ΉζΙμηNXσ{.πΜ9Ήl"Nͺl+ΗŸšι|=YΰzcξΏ²ςΖςφ{Ί"C\Aλψ9βb9υ”“jέ”ΐ>•έ]‘^~KΚoα|ζ–>=€ΩΈΛτ†ΡχBCΟZdcvVSΚ•ΚώσΧ―^[&‹G< ²a³tm%]¦œ!1ήΩ„Po ψ~—φχuΑδ_JΥ‡³₯ιΥ#/oΩ(C† qηΑμΦΆƒT7oκ|Ο!Ϊ^'M›ΰeΟ―‹ω‡ΏϊΦ·Ύεξ{Ϊ:ψΆE~†g‹η”ΙΦf&?»οΎ{ΧΠv?~Όϋ£,¬2BX·nέ6ι21…I…|;«ΣQžΟΊ΄Α9ώψGΚώNΤΫκ!Σ§Ow ΦΨψ™gܞsΚΐ~όŸΥ ”έςD}ΠχΣ/€κΙg₯@W­hyο 2τΗ%ϋ7ž{‘¬Ώm†Tυθ,%ϋk?²‡τν₯jΜ+œ­Θ/ν`5όηˆΪ‰ν€dQ;αΣ™όΑ$Dσω%ο|"εO='«K₯Ω)ί‘EzIίΎ}9σω{(Δ>@'Ήž|ςI9ͺ}WΩ0ρ¬-:ς`iόƒοΊUlΘuιMΓ.“gζ|ZΛδ™ϊ4U?’6ΈΥ΅ά6Ω”σ}φΩg`³ϊŠm©εφι|ΰ™tm)χ+“Ή|ŸOA€wά\[ϊtδ5_!ΰy»aη%+dΣ578Ψ9ή²™μrΒΛͺԝ.ΔfΟ•Νco`™ Ω­“4½n”vΔmΊtΗ°}νο–β™Ο»(MΞ9Ib'•)zΨ,,°X€:•k¨Sό%+μΰ/3κΰϋίne°tρόwYψl&˜—JhŸ3IΤό?y΅w)ιŽ‰φίΕ«λφ<ΧΥb!~°@~-€ηόΪ3€,,,,,,°Z Ο;ΰE Yϊ,ΐK^°σ‚ε${iKxαΐσa/l™G‘—ςΐ5,Ήž JU λπ§Ϊ—nΫ7ό†όη΅WdΧ.έεΥ;,q…CdσY«/iγ›ίE·%Ώλ>χ]Υ€r : _\šˆΪ²XbͺršKˆ5oβ ικƍ€ D•<τ0Uι˜*L·κΠΦΑ ΐΊH©β΄S¦FΊ¦Ž)€B°@°@°ΐΣεOΎ)kξ{Vd©NόP)ιΩNbƒ{Kη'9P¬ΎyΛ'πΌHαq7TJιϊ'(tι…E2ψδ©wΠ φ•s—Kε{ ₯τU]Ζuή*‰λ`u­Π±…Δϊw–v‡μ%…{t‘Xγθ ]JP3Ώ€½(λ.]ΊTN8α7ΰnƒω@= ΏτK~ ώλ―«²œΆ1 0;Ρ6I-‡ύΆ’qRςƒΒ “8ο₯—^šTcΖΰ-?^ͺΑρ}χέ7 «1ΈΒψ™gž)?¬*κ„?φΨcέw―tΑFς’ƒ™ˆμΪ΄iS—Η©S§ Λsγ=°›#€€ΗΡ†¬ ’MΨ Ϋ¨(‡Σ–ž6hš8ώώ\ςΔ1Ύ*)p1T΄3ί|σM–ΗΚ ΔdXG ^ΰZ’ψ:yςd·Ÿ}=τœ|ςΙΫ š"džΩoJ¬άw¨φR˜’²=ώψγ kηζzΡΦ­Λ=άͺU+a’ A}¨ ±7aνΪ΅ αΪ„½·‰[Ή`•4RίϋΜο»φ5φ~ΰάύΗ ]}νΔ9ό_Q*«Gί-²FŸUxn3E•žΣ@Ο™€ηΚηί“uΏψ³KΊϊΠ~Ψ©ώi2~―|gΎ¬œϊ'%OΠU:9='•ΈŒ‰z;7ΝϊDVάωO·₯νy‡IΙρ½½αk}-ΐ³uϊι§;¨ΙχAΐχο|ΗM>ξΪ΅«;†:‚΄PBΖί#’'ΞN•§¨ΟVΓ‡ζκ_QC° KΩ(s=£Ÿ΄χή{ Ѝ·Q—`κWeΐ§’_Κ€Όκͺ«ΨG8y/@]€ΟΥ―~%€Ϊ>Θ©;sΝ…’uvΆΆυΎA֜7—<ΡΎ°k ό πaοSΈhλΈvο¨ juΣ­+sΜ_€0ΉΆa7–Θ˜Λ‹εΑΓ]›ΓΏάΑώΕίωXΚ§ή)1mKVuλ(Ν&—xΙΦsDmΰΨyς­›δݏtE-…‡΄PΪ7°s|S…,Ίκ!‘eλ%Φͺ©t™z¦΄L_Ζh™Γο4X»Ξ©8—/^"sν‘l—ek―ρηž‰kψ6ΪΩ΄1ρ‘|ΏΙ3…‰ϊβψ“ι€\ϊӟ¦l―π@:ϋοΏΏσ‰ψ`c›”0M›‰juΛŸ~ΙΏ­ώφ\Ϋ»LΦΘ΅ΏΣ¦Mησ©+ΎίΰχψG7 ”οΨδζ›ovνQk£gΚui―»"UŸ/δπd(θΨN–ό‘τΣ>ςξ»—ϊΘκΪ}Ÿδ5_°¦nv’A{·.>Ών.%2ψθ#]}`υΦ`­+΄β—%Z'ϊu)@τgί–M—ž/{μΏ_NύHΏ/‡/7Υm|/“³v™²fžΉο}¨‰1δΫ|>υΑ)§œβ¬G½EΏ'zίטv»>²Ολ΅.(zγ}—vρSψάD;$λΙ€Gί$±υΕΑΞ“.Ρ{&mΠ0›―ΉNbε›₯Ί}[)žͺ°s³’΄Ρ“;ώύͺ”ίώ{χsσαHΛ9?Ή+| Ψ9-@½μΏσ‘MΐΨ ~˜v4νw«ΔPΗGΫζ~©™pD]L?‰w5Όΰ7“›˜ΐJ_ˆΰ&_ιyx—‚Οε|& O‚¦έA›€ΰ‹+ΰη8ΰYΈp‘›Xή¬YνΥ­x5DϋXΌΟΛ”W—pΩψ'+©±RBΑΑ_πόεΪ;œ-X X X X X XΰΏ`<ŒNΉΓXP†@:ώtθ£ΗΌΠζ₯/’p‡b/’ μyδ‘9½P&>Π /ΛλxΉj yβεuΞAΛ/«”j4cΰ šοΥeϊhZ*ήUmζ;Έh―Λ[ν©Λ ͺΚ)ϋc›u@Zκ ͺζ‰Κ4PtΌ‰*{*0mΚΣξSαιVΪI°4ŠΤ5JΣ¦<Ν6ΰκN7Ψ  |-,Pρϊg²κζΏI\‘gYΉ1=΄«tΊZ—n€4C=BΎ€ηζΔdΚ­•RΎYUτŠβΊtv‘μΩ/€E=ŠXλΠxι&©P˜oυΛJό%΄7VΤΪ/:A&Ά{Gisπ)ΪGUΈZε0`X;…φm­ J•QΐVƒK‰Ο€ƒω r|όρΗΫΟ 6…άΣN;-ΠΒ ^΅MI7Υ9ύmLΤB‘Λΰ^NHŸ`π[¦Ι\©ΗQ‰£=Ε>ςBz΄uh·d 6xC» g€8`ΐΠ‘Cšš τ0>mΪ΄d™xΆ,p ΰ ν2 ΆT·•ΥΆ“Oώ h ­πBϊ₯ Ψ%—<ωƒϋ@(Υ₯ @Ϋ€ŽΨ Θ ¨Žφ¦ΰ?Ώ (5ϋο,n*ΰήʐγ8”hΐ ΄gFμ^βΪΥεφΑOdΠ Ei ¬lBΉ€ °» Y>QAεηώ£Μϊοηb§\””μ|ρUλdΥ¨»%ΆZU恞'©sϋ–Ά;ω™xΤ λozDβ¨κ#ν―<+yLΆ/•,”•SU•8mgοήI:=Sb΄‡σ*>ψB–MΦϊLσΦhπuΨwς”ςW?|>—ϋΤΟ>ΑΉ7„ ~²Έώ'ΟKsƒΰψwƒΤπ_(7ΥΕw§šˆB^ ‹φ[ύόη՞+|ΰ ­>PΫEIƒηšI(Lš°@½LωxΆL7ΝσŽ/20ŒολΤ©“σ5δΓT#-½TŸδƒ₯œΉo½υVN>Ÿz¬.ώ›b ζs \?›©ϊΫ1¨8“Oί§›86ςaGŽIUo4’0uP]ςd£GΫ6™ˆσs­Ι«)©fΚυΗ’6ο>¬α˜h½Ε6lΤ―³€Q_]mβΤ­>hωΚΔ*%ΓV"Ώ½γmξ?ŽΝbŸ-Mͺ”ͺ²Ρ Ÿ΅‘¦t’MΫΤΆσ <λ­(ΧέV&o} mYu—]”ί‰‡q}'σΕΨG€zΞ 7‰ΌΛυgJ£ΞΫΦMΩlφ« ΣgΟ“uΟύGŠT½ΉΡβeI³”Œ&£ώό‡¬ν5ΪHΌ+Δgα+όφ:Ϋ¨/x&x?Έkβ"(χ]4ΰǘΑδ„\~Hˆϊ‡U>h¦ ΄·yFΙ‹ίη³ °Κέy>Ν_lo{—Ά]ύlεCZδ'κ/ιρ@ί”s|αWΰyέΫJ£_H³A₯ψ€cε³₯_$ίΩRή½΅\ͺj»(A7ίgOU‚ξ.±]»Jqώ’mξΫ ΨœvuώMUΆασY™†λk]ϊ€όSvι)κήYžΪ³[V»žυοΙΚ_έ+Υm[Iλ½TΥϊϋΚα:‘Šr’ΚΟDAξξ]κθθ$WςiύΏ9sζΤ²“―„M<Ž7ΰžί©׎:žzŸrη+džσ;7/‘]¦ Ο;ΗV―•M#'JΑΊ RέB• §ΡbZe/β›Hω΄»œͺάo€4Ώϊgُ 1‚‚vx P\tΡE2cƌδͺ¬TƒοΓ―2q‡ΎUͺzΩ/ύ±yσζ%ϋ†ΤαΤΛ/ΎV₯iΕd·nK₯Gξ«WθKπώŠΆp5}Mϊ<€E0AΪ*τkπίΦχ ΑΚ+ΤΗΡ@Aά|‡<ηΫ’!½`ΊY Οu³Wˆ,,,,,,°Z Ο;αE YΞ‹xρΟ2…(΄πR€νΡ—²όf`—A[˜ iΠ άΒ `^Θ7d`°¨Ξΐs–Lm~yެψΕSˆ(ΨUΊ^­Š[ψ“‡«=€€Ÿ –N@Τ Ui·O‘θ5Ku`NaiβΉO§4ΝqΊο€Σy|žΜŸ~qΐ44πt D L-5ΫZvL(NH³Ν©L&Τ¦mΫN¬,κΫ#|¨»ͺ>_&Λ'ώ1‘xψά­Δθ%FŸV/Υα|Ο―Ό“[~£K¨ͺm^R-c‡IΟnu/cC―Pμ£Ε²κΕp^ͺJΩ₯΅NγόsOυΏύ;I»CUΕyΧHJՊσUϊΑ κ*@ΝΡ€ ΛPy H₯ύ0sζL9ρΔ“ƒ" ”ΨD, 9T'Τ Ν Κ'Λ;3°bΨ¨ι’ΚβCVΡsΫo@|πA¨Ρ¦‘sηw:URiP£a %Jΰ4Qόvν(SΦB•@e_ΏΝΔ@ϋκΥ«]ϋΕxΙǁθ€€ 8€{”@ŠςPuΟ=χΈ]+Wt*b”χάsΟuφρ!_€ε@ —˜ΝΙ?ν?φ Q0—Αt€0Ά|F±˜%ι€ΛΆδzψD”{Β„ IufΛ0ŠΧ€l F‘'ΞQZZκ iΝ’˜eμ’’’džό8δΩžΙΗ³Ο>λΰ lbyβL;γŒ3ΆΉ?$"η>σC]ξaŽγ~EΥΦ‡œΩΞu@a€™²b{ώΈ·Έ§lpŽΈηwž,Y²ΔέΨ•²“7ώΈ™μΔύΑύgΟιεβͺπΌzΤou’‹ͺϋ·h*m&^ ΫΤ:4π\υώeΰέΚ-·ά"ζ~‘7Κ}l’&Γ~(ρCtίωWΊ>&νΫ6V`|Bςώ£>²z:1Σ—%ΛeΣ΅7K¬tƒΔZ+™RΥi›#ς ϋlWGʏΏb…Ύ« ΐΖψXξρ!ΪφΜ%Ψd Žα9†’oaK, ₯­Δ„σ―ψ?|+„πή²K—.NIωœsΞqP,mw&’Y|ΚG;]{—:τΜopn|νZΪ—ΡνοΨ~ϊ δ'xώΉ(›ŸΑη§σ―΄ϋ©Ϊ΅kWΛoP€.ΞΟ€κYΪ’ψllPψΤ ²iƟάι t²D“ιWΚUꇔUFŒαΪιΓύ&ήΠΞ”'ξκ!”¬ρω€GέGρω©ϊhΨΈšόN»~ͺιϋΤΚ.άΔΓTύHϊInN˜λωͺ΅7SvωρYRuδ7έJ7ψpήΏόςΛOEύNϋΊdέF©β=l;’υV&;uμΨΡέKv­Ή—°i₯ςωτΟΈWι—Ϊύδ š‡”‡ςθS’o=‰¬Ÿ~Χφ);/[)›Ή1‘μ¬υΖ.(;wnŸ>§6Jω•“₯`…PUάDšLΡ6B·ΞιγΧμ‰Νž'›ΖήͺυέΝξ½€Ω„εΛz\ˆ,,°γ[n“<ρ}ΤEΦο²Ύ!ύύ=›8-υΊM2§―DΏΜΒΝwm”Ÿm!CŽ8Θ΅Ν©+~ς“ŸΈΙUΆ²m‚~ύϊ%ύ.ώΡVφβέ ΙργφގmΎθ«!?πάΦ i d·@ž³Ϋ(ΔΨΙ-€ηό†μo·xρΖo$—>η₯B―^½’/οyI =€f ‚ ; εe/‡~Έ{ωέΛφ₯*XCΟ›_ϋ\VάόχμΌGgι:ζ7°–κόωάfΐtΌFeځΣΐΤ CΫ>œF•š}ξ―ζ{€Ί‘ΐiUr5pPΪΤ§Q”U›ŽΧ(N7RΕiΤ¦§ 8½υӁΤ/„``ΟΥ+ΦΙ²1ˆΜ[%²ΈTβ[ˆ κ%'œ!±&κΆ#Τx~ό™Ήο`’γ”νΫVΛ„‘uΌ2κIΫQ$Ω2Odί_(k^ωXδσ• ₯R?!]1 ΦΏ³΄=dO)Πu»mη'Ή3|§ΐ’’Lšbΐ•,Ϊ ’@1vΨaI 5]Ή)\?~|Κ((½1ha0ρIΣ© 3Ο ‹- |ό„*rΊpΘ!‡8UΉt؜Σ&‘†<σ{?slωc&±7 ΈϊΦ[ou€DϞ=₯}ϋφΉsga¬Q¦yσζΉψφ₯Qΐ1μ XΐωpRδ³ ΛeŸ|ςΙξ7°π—-jιωŸO=υ”ƒΈn€ @ p'/΄ΉΖΐz[Ψ…kΓ@ωV‘= €fΆτσ42kΦ,7!λB|`p–υΆrϋy²σ6εη﨣ŽriD―q) e Oΐ2kΦ¬qνΫ^ΪΆ‰c|ΏΑ€9>  έ΅kΧZ (7οΤ§žzͺƒ{ρk<«ϊΧΏdƌΙI=<Η>|§BυίG™π§@fΐS—_~yΒ&=κ8ΐj&`O| ποΏΎγ8Ξ·i’@*ΖQΚω¨Ν–ψFς’.ΰ_’Ν§aWό4ι’_ςΔ>κ ΰl”3ΰ(q€Ϋ¨ƒ°χωΕΆ(°‘Ύ­ζD‡­ ψw_QΩΟ“CPτδΌ\3μΑDŸTpΗ‘G`G <κμ XMύXfyΒΗN“§ΣO?݁לƒkΕ 9EVς¦nη>A‘vέ€[₯ρΫ9Π«ρ˜aΊ’Τξ.λΨ-ΪvΨχΐΚΎ{rίω₯Λς}u©”ΉIa΄ΥFk:v˜Δ{'ΤπμΘ|Ο7ύz£ΌόF’>ϊιyErΤ‘y†οω§T?₯φΠώ’oKρ!}­α3τŽ}6_ΦΞzIŠ>ϊL -­υž(Š*ϋ*pxΘA"ϋξAGΚ₯Δ}>KΫ]L2Έψβ‹]Ϋ?ΐ=N{‰pζ‡ ΐf4˜dμœKΰYΒπœFՎ£Ηγρ䇀 =EΫψHDAΓσΖs7Cύ+“Μ—ZWΏ¨ $œͺ πκϋ όc LψhbBε’ >{φμ΄ύ³1Η’wΪΤδυψγO–•ό°/ηδ/Už¨wΉN'œp‚σ±vM™(˜*ΰϋh›6ϋ©xό_RάΉ£lϊΩn2N:I:ψ*[9€ί”Οͺ ΐΤ΄})χ€5Π8>Ÿϊ‰wΔcβ Ύ`OήCίxγΞδx@λδ»ΗΐCΫyξάΉξZSG4lT,•οiYΎ—˜D™ €Ν½άbR­Eš\πy©Y›PIy’ΑμDζίϋδߎݹ/iSίΠί‘‰Άm’ιnΟοm€g½'Φ_χ+)zGί?hhςύoKμΜ—[ΐΞ£oJL’)ΩE•Gd†7λJΝ€[ٍ}~ˆ¦Ε%ΪΤΤ±ŒKR ξ§^αύniΏP?ΡG#-ϊGL€₯.ΈφΪkέu‡AΥΌ»bruΫy_Γ€Hϊόnˆ€η†°jH3X w ΰ9w[…˜ΑΑΑΑΑΑ;©πΌ“^Ένz[€ΌœEჀj2Ψ½ψ Ι RΑKφ1€j/zνΕΎ †³\%*F¦~αh€ωž7Ώ5_–OLΥ1T]Oaη.£ΎŸΧ₯΄ΐΫ$ί€Š“ͺ$m΄}7κj…£Kυ₯6κμKͺLλw`λX…ΎΠaŸΎ0j JΩNiZA`iΎL'§ΫZͺΒ°4ŠΣΐΥ|ςΫΎίύn †Dƒ‚Z`CΉ,χJtιΉ ֊΄RυΣoτ–Nγϐ‚’&iK·£>ΐσmΏέ(ΟΏš€+zvέ"γ―(–’¦_>μ_·IUΚͺ—>ωt™πΫ1όXߎϊΰ=€ρ>=₯ M3χΧζ;ƒ¨Σ’¨Bn2vf˜ŠdT•ΤNTζS‡‘=¨FϊΐR(›P ύιOκ?hΛ μn¦­Β@=αGͺwΧ]wΉΪCά›¦θH[γ]™A”Q;&k‘ήΖΰ‹ @ŠΆ@y}˜όrΞ cXzυQΪa€Ξ¦ό €ƒBbδ-€ͺƌ“άL<ΪnΆΔ8;hΏŸ‘vŒ’ ˜‹Α{μlF°ψ€rκΞ€EράηœΨ»’εeqSε 8π/š'εηZhWN:Υε`Œ"χ€³Τ%O€2ΐ˜ ΚMœ8ΡA€Ιυ³%ΝωM؞{˜{2€›Η܁p€UβΊςȟκ³ hδŽ;ξΰpWζ·^ψ’ͺΦ’$ηkΰΓ? η•ͺτ\°\'Ήθ„ΆΦγ‡J£ž] >πΌψυχdνθί©bδf‰wk'm'HΫxΉΥ ΐΞ+'θ ΄I»·‘N“ΞΡΆaώΪΕ‹τ—©Ίe«¦uκιRΠ²ΆrwLς΅‹Ί=χ}:#αΏω‚RΕΧΡ―4 Ι‡‚θ[ζκ»Qf6±Ίϋ,₯KWΗqŒo§±cΗ:;.ψvŽΖ"[πΐˆΊ,~ΥΤ9I;α·ηϟοΤη(χ(«P>μΐ±ΡωεΞΉν ν‘α₯pή"4άXЧ]#…=Ί¦l;tμy‘ΌςΖzσΏ»(θAnr ±›dΓΈ[€Ρ|m³λδ“βαJlΠ^Ιƒσ<ϋνρ†€Λ_a2ϊ“.ίGχ—,CψRΫ± eηCΩπΒ«Rτ±>Ozψ‘Z•{+τ‘ζ‡j»J՜SέPΌΏτ‘]Np–Ι~»‹6 νΉtͺuρQ<3¬Δ ψR_͘φ8>¬mDΞS_†ΏŒϊΧ|ϊ κ!όmιh?I? U'S[1•£Χˆφ;ύ"ό.« ΰ›h―sNκRϊ)Ή\Se(ΤzzώΒ…ΞαϋX©$Ϊ6­PhυG+ΝξzX*΅ΝV2PΑξέΊk΅»uι˜—Y?ˆ΄hsGΣδ>a[΄½ „F9ΈO°-ΰ۝,eο’νώ’‡tΑΠΊχ·΄]θγΥςωηŸ/ešο_ύϊΞZ>W—]!Fέ fL“ύu’ έϋΤΟ{tθ,|ϋ ΓqξύGgά'«~'©jΣRΪτΥ:OŸ+ώŠ’σ'P₯jΫX^λϋY xΦ6UΕMwoμΌrlΊzϊVΨyΒeΪΟ Τ¬υυΖk§KΡ§Ÿ'&μŒΤώαώ³'Άz­ly½¨’vuλ–tΪ•"-›g=.DΨ9,€¦€π@:ί‡·•wR½+ςKJ½ˆΏ· ©η«f%4ό3B ϊϋΜΚς•1Ω­g‘{„’3Έτs˜ŒBF MΓΈ&“SΙ/¨¬/δ"DώΡ’ο}Χ‰Ά]?πΌ]f  δΝxΞ›)CBΑΑΑΑΑΑ;ͺπΌ£^™―/Γ όόΨΒ9Qc>bΠΒ` Ÿ4sœ-eΙKΐ–{Ύ„Άγσυ™OΰΨyΕ KΌͺZb»wΧžΊΣΑΞω²+ιT;Z!h€Ϊ4Ÿ ²˜β4ΫΦ.])±•i§8Ν1ϊ›οI˜Zαρ†n‰τ&ͺ„¦π³)JΫw¨[wR%Β`Ϊ)N8­Η!ΪΆ†Θ_H3Xΰ«jxεYzέ£"―~Πσj‘’b‰ΨK!΅³%Φ’nΩφΟ:/Χύ’Lήύ(Σ θ[!£/ΫEa–/ΗβρΚ*ΩςΙYωβϋ"Ÿ,•ψβ5΅OΜ€ŽžνDϊu”φ‡ ”F»uη―jΗϊZύpˆ801 Κ Κ+€Ρ}ι b3ν @£ 3˜B{Γ‡Πάh6–ψ(^Χ1(μKΫ„?:DΔ&[‘’Μ ²Υ(Θ ’ όΔ Άšκ‘ ‚D_½ΖςνκPζyσζ9΅3φS`_LρA†¨zš₯gŸ”`Ωl‹Ϊ1*7δΣTςh―ΔYAΞ¬mipωD‰Ϊxœ=ίζ€cπ₯mŸ~ymP76ζ ΠΞWΥΆePˆB!pƒ‰v ~87Χp€κ@ΆΝ5Oά¦*κρώEηθ}šΛ=Œύ|₯#/ωm€g_ͺοΨξΑ–\ηΌϊŸW€ςΪΗ₯Ε‰ƒδ9YœΥύcS]Ξίu’ΛΚQΏ‘Ψυu:ω¬Υ΅ηI£ή]ŒŠz` mχΏ=Uƒ[§ U‡–φϊK¬YnuΑ–ΉΛe₯N’‘ΝλΪZ:;³RHžmϊΕc$ΥsVΈIv]¦ό@un™§ΤΏϊΙlΟ}o~,•uπKψSd-NͺqžuίwΣχ΄~e*ߍΊgCϋ$Ϋ±I~ƒόψ“6PάGaΣ|+~₯R|’M&Α&¨ c#ƒ ±©Υ[Oζg’ΰ—ΥqΎπq>@H‡8ΖAΡ ΐΧκ1ŽA΅XΥn›5k–sΜ1ξrEΛ@ZψsκMκu€iB΄žφWPˆΦΣ\OIRΥq”—‰6Ύ€2ΝΨΚΚg3[l™m|#ΧΠ/30j(3 =׎zˆ‰S\κkk'ϋϋφνλ²όάsΟΉφuTͺΆ‘ΈoΆi;¬Y+›FN‘F¨0wRuέ飓y4[W€η{ώ°Yvλ±EΖo"Mss―‰$τήΩ0ρ—Rψ±Βiϊό_¬ϋαΊ}ωžuΟyφεD†~tf‘χ­όφϋ+΅½lβŸ%ΎEΫ`{w•nΧ|ίL>ΝŸ-η^–’gKα‚%΅Uœυ^έ§‡” ΦkΎοލdψ]βήζY’ Μ>_΅Ω@tΟn†ΣΈg•g Ώ1i$?GΫ­6iη™η1U»5a{Φ³ω2žkβ7€ί Μ¨[›άo+b?Ÿυw²΅£ΐsτ:Xϋ—λ€ŸA Έ™€Ϊ1~χ¹¦ΨM‹kŠ_γZΡΖ¦B^7—ΣUžΛΪ7ί“‚ω_Έ{­`•N~Ž{3) ¦Ωξ\Ϋ€ΤAδΧΪ»\wT6©/€Yέ‡ό/7ΡiΑbΩtϋ=hξΒΔ©τžorαΩR~Θ €?ϊ|ΪΤLςIϊόgώ)²vόρOΒo¨™οσώ<©ϊΧΛR|β1ς—FεIΕr|}·;–*;§žΉω ΧΘοώύOWgX™]Ϋζ#]½bMiŠΦΌε+ψΐσό+'K³χηΈ€λ€μ¬°sΩ57J–]šKρD3ΑΞz† ΧύBΏ₯ο@44ΎX'žρMχ=γ?ˆQvεT·β@uΙ.egΈ!X Xΰ«cΪΖφ&UΏŽ’ROρώ—>NΆ:z(Ϋ C(4Ο]φ-yώ?›eژơsΧ^HgΥaΓ†Ή~ }κ~σήΠύκϊWlΕ5ŽΙgΐs>­ ¨»π\w›…#‚‚‚‚‚‚v2 ΰy'»`!»y·/€Qχ”‰όx©Tβ^0ΧDΰeΗ0ΘΘ–œŸοίωž+TsωυKΐΞ»΅“γ ±"…iC¨·βΊ<9 KυΖ N;υhO…pΊtΩ*…€+,νφΎΤ(P;fs•θ¬wfR% /€tqΝ'5ίUšΟV^τΐiΆ(“¦5ώφ¨Ϋ¦ΚNΨ,°³X`Ι­yζC‰ΟWŽgfΏžιϊsκ€`\WΰΉL…ΚΖίΈY>_0Η3ωΐιΣ§;%νxΐAn€G\ŒIyϋ쳏;OyβΎ3ȍ4ύ`eĎ„νΉ‡Ή/ό<ϊιsο°Τu.ƒgά/΄« €j܏,χ¨΄ύ΄¨γXΝϊiD—ΝNe'&Ÿ`K‚ί>@½ΐΝ,΅ύπΓ'An{χ­Έv΄E¬ΎŒ¦OΧvπλ›Zm‡Uk€\•ž[ή}ƒ\8μ™1cFΈ³ΆΓ·Žω©\1‘Με½C»-2εκbΖ¬X¬υΨΊ~#_O@jεΗ&­.ψSιζzbW_mם(‡w?°^fώ»©‹yζIErςρ©‘υ’J₯jI©,Ήζn"u¬W[ι:IίΟ¨RυΧ= Ϊχ#§β\ψΡ)P˜ΠΥmZI垦⼻R‰ϊ>#ǐ­=ξ?¦ŸξΩMwJΪΙ΄9ΉΏ}ŸβϋtڈG}t­φ:ϝίnύΩΟ~ζ θΊψ2Ώ-ΥP~ß(νοψ+&Xϋej+Fg‘Mh΄I&ΨΞ|8Ÿψz’“C˜δb“X8ηύχί_λ=nτšγνέ.Šώψ7σ—|βƒ9§  ώωBYϋ–*0+l_ ­ο˜˜Φ— x€ΘβeΫUϋ½{θ€ιΪ³7Ϋ©Χ¬€½K8ε686:qόu7βMVζB©?K .§—½C½ΙŠ1u Τ/³tB)yDΰ „``/ΧxώrνΞ,,,,,,π_°@ž F§άα,ΐK^ 3 XVVζ^φ2θΩ§OχΒ9UGŸcxIM@=Ε^@7dας<;/›ϊ˜ΚAΐΞγN“XγLאyiΧΝœQŽN*NI£< @­(N;…i¦ œ–M*‹κtΝ6sC…˜₯4€΄¦Ω¦|œζ3¦ ‰Kσύ5κΣ±¦zΌΎΰ !X`g°ΐ¦™oIιO«Β‘ͺgθ’έ₯Σ΄s₯ cn š Rσ™εfQζΚV―Ι˜iεΊdaΒ?7\a珫’i₯Φ «^ϊ@₯Ίt€΄6LΰžοΎ₯υΑ{Hγ½Ίη\^KλφIϋΐ©m€?9ˆ¬ΖNbπΐ`κ­·ήr0QΤN ~ψŠΉQXψс{0 ’ΒcΔ'Ν(@±fΝ7XͺU«$DG\@-3L•. ”RNS$f…{ϋΖot b~\β™ϊ%κo,½‰ͺ2΄€ΟPXΓF>Gό8Α€: e؍σHƒA' eRRΩ‰88“7`ΤΜP†C΅·}ϋφΌ€GZΐΨΐΚ@ΐ~δ‘O`ΔΑƒ§Tνa?Χ™ΑͺTy20/š'.€BmΥ<ςN|l7|ψp78…ύP€c_y²ό“oςμm@\xΟ=l&°Ό)›ζ Š} *Ξσ#“Έυ’λύXΉ[w)9DUœχΩC€KoŒ­)ΉgίcPήŸeπlTQΩK&νWž;`f&^X‘„g˜:ηΚo·ϊ“=ˆKΏHŸα‘‡Ϊ._ΦP~ƒ2ΠNcRc*‰OCQ?U'][1 )Ϋ»D¦΄ ζΝλV­‘~²±›]wέΥε©JληΚG—ЧfI“K/’Ώ|πŽlΠ~ΫΩZ§ΆhžΡηΣnπν—λ½Ο±¦N=K?ͺGΫΟ‰R§_έ¬©Δ±Iλ’€’[I«Ύ»©l“PDφ&/Ό«’ΦIH€ηœ.±γ‡ΈίY;RegΊ‹›Hρ„Λ²ΒΞςψ3Rqί#.ιΝο/Νχ'YOƒŸΪpνΝRψι<–ζ‘β1#’Χ8„``―ž¨Lα™:–z‰:ΑζΗΩηχέό8|ηΈΡ£GΛυΧ_οvQ²Juυ«‚Qh·ϊ7ΚΫoώSŽ?>1 Γ&HΪψδ’%K܊œ—:Œ6|³fΝ\_ŽzŒ /ΤΑVSκκ‚υŸόΊΣν¨ωΧ₯K)-U%:κ κπ<ΧΑh!j°@-€η<3$,,,,,,°cZΐ^šεš;:6! |-ΐΛ^πΙ/x™»#…ϊΟ~!Λ¦¨J©B°ͺΤe‚*ΨyGΊΔωΟ‹^λx $ ( νΤ€Ρk–(ΌYI'•¦υΐiOσ=’πšΧŒ6ΦηNi§2]σŠV8:^£8νT¦kΐiχΕi`j”¨¨œvj^3 ΨΦoΝ•UStπrΞJ‰W+‰±G'ι0ν<)μ‘ΚθYBΐσ’%"γn¨”υϊ’[δβ‘Erψ7½Αώ,ηΙΆ›₯²·|ΊTVΎψΎΔ?Φ“-Φ@¨’šΐ³οΦZ€Ώ–νΠ½€°og§jϋΓgf 00aΐfT•™#ύ¦’$ΟΤ;ΣΕ‹€ U9€,nύzΪ5ΐΐ“'O–«Ίͺ<Μ χΒ… ` €‹ͺ0 1ν#ΪK Β£TIΰ\Η{¬S†|πuˆΟ½O:@ΐ|χƒ8€τ3R΅½8ǘ j7>LGz–7 Χΰ‚$ΘδυΘ#Lžb#@Ϋ?nά8χpp;τ_ΤφΪ~>‰Γ`ωΟ%O«W―vπ08JΡώυ―9Pm#GŽtΧ.Zvφε’'‹ηΓτQΰ9χ0χ4p;Iΐ3Χjƌς£ύΘ ΠΒ1@gΆΫpK²ζρ7)‚ κ!έFž˜„Dύ{ΞEΘΓΏxy…BΟ3$φωRynε\9畇πόΕŸJAΧμ>Ÿ,T/+•e£~/²^—†vž|ΔZ6ΝCξΆ&QώΚη²όζ™nC£cϋKΧ ŽάΊ3|ΛΩωΈοӝ,›ίχύ$>ꨣŽͺεw’Ύ?υΉX«Ύβ|¨Ž1!†€Ÿ’Ξρλ8ίNœ›ψu~ί€<ΰBκR€6?° eγC=ΤωkPc₯ΎςνŒ_σ‘νΧ_έAΩ(£Y=Νdl`!z]μB©κ8κ;κΞ9~όψ€’ y*;μY°ΛŠ+άίΊuλœ|OΦͺπλ8γΰšϋ…l&-hu“_?₯μΊΆXIλθύΙeΗ»|ω~όwcrݕZWΗ€ι.q;ΌPvλαŸ5‡οxAΚϋGρϋ>ΪΑB@IDAT/Ο͝-Χ^ηphNQβΪίώB•«i‹7k"]§*μ¬+©|­KΪΌχ±¬α5)BΕyέ†ZΕ―nΥB*lqΨ7%ΎΧξJiίΏž{άWŽΆƒH>ڎ‰r’- ΄-Jis3Α…bߟp<Οi.mDόW]|i7΄ί οLŠΔv©ϊ;ΨΟ&ς™d›’6φg|}κ Pםwήικ? μB;;RΟμZm‘/&΄ψώ-z>ςΗ½@»“φgΊ@<ΐ^σݜ+[?θόƒ•²&.ΥΥάjOr)Ήκgςΐ§οlmο*˜Φle©Δ»λΚκO©{ *N•'μIP~σ’e²α7χKγ7T]YCΡΛͺ‘•ΦK:ŸOέκΫΙ―3H#j'»χi§_vΩemOI„IDΤΣv‹cϊaι UŸτsύgσ€ t½Δ–―’‚2mηͺ›KΌC[©nΩ\>˜ϋ™υΠ]ξ¨ΥχŸ4ωώ·sHAϋE₯dγUΣΆΒΞc‡©ΪΆ*ng±—^—Ν·όΖΕ¨ά»Ώ”ŒR@Zο‘laύuwHΡ[ΪΏΥΈM.‘ΔΎ±OΆCΒώ``ΤΤOσζΝsύή“1)³S§NΙw‹:ށΡw`•_YΡρ·6ΉŠϊμΆΫns’JΆΏk«)ΰg?ϊθcDϋ°›ΐO»ό½χήw.Κή—π>>–½7³φ ιQί‘/‹kηΰ7iΡGΛ<Ӟ±ΊΠŽΟφI‰U πœΝRa°@ΓX Ο cאj°@°@°@°@°@°ΐd<ο@#d%X ‹κ-^6@ŽxΡs]tΡEΪb`ˆψ駟vͺd b08έuΧ9ˆ™cXήέ’΅ΎσοΈ βXˆb°›- ςΤ}ΕWΈtΩn€«_nVΘ *3~.xμ±Η’ΰ8QΐΥβ3Δ²žΐg©–¨Άxώ'Η°j€Δ-ͺΈFšβς!>ΚΒ  φGÜ9spl 8ώ~Ώ\~yύ8Ρο X‘|™.OδΩΰ †(NzτέPΤ¬OžΘ{&p1z_Eaξ\ξaΚbχC.ΐ3χ'jγ,GNHΟ°}Ρ “ψλ τ&ŒIΧ»,‡yΈ»·r½€ρόΓ©%ρ=k¨ͺ–²ηή‘Š•kεΞΟ^‘:¨ΉDš\BՊu²bΤύN5?¦[ΗλΞΛ;μ\ωΙRY:ρ―ΒD–‚ύ»)K|‡°]ΘΗ}ŸξΔΩό9ϋn}ߍ?&€ςέ(#GΝΒ'ωεΙζ7όΈφrα/P¬§Ξ°$“ΚGψ0ΗΌd•«€±.ΏόrΧξ²sσIΖ ώ‹/Ύ˜άόάsΟ9ΐŒzΣTΣ¨χLeς£ M}f“RP+Γ—’Rm°WxŽήW©€ηha`$ϋlΥμδd>•|x ϋίύΫ¬,B~ ύϊΠ£~1π!i ύB:ΤΑ~»ύδθ˜ΑΩΪ“O9“ΘπίίνQԏGΫΔ£†ɞύβώφΟ“ρϋβe²ε?oΙσ«–Κ+«—Κ5ύΙπ> ­ΊMKIό΅’κΆϊ½uKi³{o‘v C+hχθc₯ςΗΗπρΑƒΚεςŸδvVβDTͺ?ΦώDa#ιL‹OρŸΞΐD VΉϋξ»έΔ­θ³—)<¬zbΧ€‘hf “ͺέJۘόZ›ΚO#/ΓOX3 ±!ό~ ?aP’Ο.y€<Ύ2*Ωζ~[Ή’ωŒΦ9vp“dΈ.θΣP/ΞSΝi«3όΊ2zMQ©§ocε =|#}Ϊΰύλ_νnυ gγzδΪr ¨ΐ€|Ύ@Jίώ@ —¬”-#~$]Ίvq»hοž]Q6= η{_φ ΛN;FμΉgςά€kΗwœ[±€ή“5{φμιόxμ³ωRvϋ=ς.ίΏφrZŸΟ΅Ϋž{Ÿs>ρΔrI'Ή‰°oΌρ†SvxΖζVF―±εΥ>_œυoyφ‰'υ}αf‘ eϊΎp³lΦφΑ&ύ­0t¬2ςŽBά―–[ζ$ϊ‘LΝvΞε`ηkn‚«%jΡ»ŒWp9 μ,ο~$Sn£ƒ­Jς=€d•@·Ό§ϋ,ύε½δΉΧέξβk½vτΰtQΓφ``―€¨ŸόISτX!JˆΆΝ©Η{χξάο›ΐο'€zA;ώŽ;ξp+ΰg?ϊθ#·κ׌3\›όΖ›ο•V-ΆϊMΞMxF…ŸΎϋ) >τL˜ DύB}žͺ―βηΉίYmΙ₯x«εBό`όX Οω±cH%X X X X X X`Ά@žwΰ‹²,±ΐφΟvž¨°sE•;£μ\Π΄ώΚ8‘μ…ŸΑΩ- »q§Λ*œ‚4°t΅~w@΄‚(N'•₯4­u’ΦΑPƒVƒ…Β‚€zt5κΣ5`΄ΤΐΤ­’ΰ΄ΒΡLΠνΐξ™ͺQœvΗ(€Žo^φςG°ΤΉδΊZAΆ₯¨vΎ±0‘†Ύ΅ΓmHαξιε³)<ϋjv%M«εΪΛ‹κfW“ωꍛ“€sό£%"ΊLv­ κώ±ΎDϊ©Šσa{K£. w„ p?ΰ› Θ%#Ω9βψ$œ 0ΰπˆΐ °/P 0­ΰgTB}…@€ηŸή)Ρ1Ποͺ[ϊ ” ǟ©=’WŽ5hΑΚm •Ωƒs ,M|@>βŽ1Βe ˜?¦"κC† qqP—Œ.ύνvΤόþ䇲žrΚ)Ι]δΈ­eΛ–΅xˆ€Gεΐgσ-`?–e)λhΘvύψΉδ‰rg=2@…ͺ&K¨χκΥKΠ²k‘nΩTΞ—kžˆ— xΞ–N.χpb*ρο5ί>|œ>}zb`σl΄±hʟ%ώΑιϊλΙ!Η~«Ξΐ3χύν·ίΎM™6 μΤCή[ΊΐA(f Υ«7Θ«ο“ΎW'”tΌώ<)hη²›λώͺ%₯ͺ ϊ°k#Εz΅‘n“uε–FaVφ‹ΖΛΗ}MΣ~gσημ7EŽΙζ»ρ™ΔΪ9²είβρ™‹OςΒ9&›ί Žβχαgπιψ0 χέwŸ §.±:#Wΰί8sζ̜λ8κ›K/½4 κπ'έpRΏ’ϊV—ΆCω]J«#Ύ)Γο« <Σv°ϋ/ΊκΙ₯Ι1G$&ψωΚφ}ο=δέΕ δͺA‡ΚˆξRBu~kJ δ“5m₯΄qkiΡ«Ήμ7€Xθ[θΞΪ†gX|Ϋ“Rύ’Β‹ϊΌtρ]i2¨W=S܁n|οUq~%‘βΌv}­ΜΖQqή£·4;δ ‘ύ΄QuπvόΘşEαΨθ³—ι΄(λf›ΐeΗgςΗ¬hͺU+Χ5ΙqΩ|m(ό•­²Ν{>όΟ)}[&4Z»ί‡‹ρ]ωžY ζδ“Ovώ‡:5L&b˜HPΆ=ΐσή{˜m;ȜU‰Υoržcλ7ͺ²στ$μάtμ%οΫ+Σ)Dί|νt­*₯ͺKG)Ύξ}˜έşœ%›gθ»v ›,-/Rΰ9„``―ΌhϋZΙ€ώdEκV c₯ήAΡ_ ήM¨XI…Ύοπ¨―ρ­H‹:–6€₯υ裏 1~χ΅Χή–™³ δœS«‘Π― ξbβwYkΧMώfE–^ϊ~ΙΞν‡Πφ‰ }ξΉηΊ<Ϋ> ¬ŸόηΫ”ύφόσΫρ›όŸόδ'lrL|ί^Έχ­·ήʚ'Π [?#pMθzπΑ“€ pϋφζ‰r @£€\>ξa«Α9©`FΞk_ŒΒ^ώύ“K©FU₯-ϋT·xςŸ₯σeΗoπ|Ο=χ8•ΊZifωΡ’E ξ ,˜ xŽ+δΌτšϋDVmiΉ‹tœr΄k‘ε uΫ]]ΊI_ωGα\±φΝ€λυΪΎΚόu3b$v>ξϋH’ΙŸΎ?7_Κ3βžσ\}wͺη#U}ΰϋZ;W>ΙβΫg6Ώaρxž‰{λ­·Ί Άύΐž½>}ϊ8ΏFωMΉπηϋφTηC}ŒΊ†‰<ΉΤqψ}ž±;K*;Œhψ»ίύΞωS».ΨgΙ’%nU›hbeπ?->ͺ’ΟVOsΌ?.z]’ͺiΡ:.ZFν”SΩ xν”Σ―γΈ6€˜£Gv*ϊ”ΗόΏ]7κΛ?i°˜ω¨£ŽrΕ7Vβ±/Ϊvΰϊ „Άƒ]§Υkc2zj…¬X•€E–}zFέΪȚσ•+WΊ²ΰΒΔU/_%±Uk%Ύr΅¬ϋ|Ύ¬.uk?_/KT ­π–Νͺ₯{—­ΰ‰3Τ6ΥΝ›JΌm+©j₯©ψ¬’ωS…hQUΡt‘μοοΚͺ{Ÿs»ΫžΈ4ύΞήι’ξΌΫ•V½ϋ±l|ρ5)œ»ΘΑœΙΒθ½³₯W7©Π[Z~°ˆ~2χ―rKΫџh@^’ν˜θ³™.ΏψrΤ‡i§™Ÿˆϊ{;6S»υβ‹/vΎ’ηΐΟKΎŒη…ηTςα7˜d‘©ΏCžmΥ’tvπΛeΎΕΪΆΡ<ςμ2ΕφcCκ Ώνˆr₯Ό©&HFΟGώ¨'™ BZmΫΆ­ΥW Ύ?‘IΌΊφƒΜ—₯Κs²>p›ΏDΦΌρŽθ"OR©“π«—―––+ΦΚ–χ?΅[FJFώX&?σΈSΊ7»6Υ§ t@ηo{(ΝΦm”²σN‘1S&ΧςωLώτν”νήg’ Σ³t’jΪ@ΨΪ6(‰2•φ1 y"ώuJf^ΏπΡΟͺK mΤA Ω€g|ϋUvn΄l•Δ‹ ₯ιΈaΩaη%ΛdσΥΧI¬l“Sϊ/ž6FΜ”Οψ+οΘζλ’T8PZ\ργLΡΓΎ``―όΊžbύφ·Ώ•³Ο>ΫυS€–  Lp‘/BέAyθΠ‘N­Ÿψ睧«?i{r€In" ρ©λx‡Bϊμc2MβgςβυΧ_ο|π1ΗCt·:Ϋτ~-k7ttό0mpϊ0ψyV7[΅j•tι’XUhšΎ ΏρΥΡ¬πΖκ5μcΒΑ―·ά†zό ΐs=Œ Θƒπœ#†$‚‚‚‚‚‚vl ΰyΗΎ>!wΑΎκ GulUίΣΧ:>^±E_ύG©^\*¬‰t›ͺ°sΫόͺGΧ:αΧδG>ξϋt¦Κx&NΎ›Aτ¨ΏΙ·OŠ–%›ί°ψψ-ό4~…ό4CUΛf}ŸFyρuΤCψR&Γΰ“m€έ―I‡xξΩ0@‡zhΆ:ξ’K.I ύq@κQΗπΫl'P§vαΫ΄iγ|9$ΰΥίΌOσλι]»Φ*'ωυλι3Ο<3Ω&ΰ<>tIwδ‘GΦ:>j'ςc6"©μD½Ά`ΑW‡wοή½VzΓu ^§€ώΜĎ(ΐŸzΩΤ―Τί>ΐIιΪδ ₯Οϊ΄’υξΖ2 ηrY΄$Ρ^ϊξэeθtεŸΓχΎχ=wΡ&xN^};&7ήΉEšT–Ι7Ί-—Ÿ_¦τY7wΎ4R :Άz­ϋ”²ςtI$·W—μβ@θκ6-DΗg«>»JΕ²rY>γ%.ž ήMΊ;>yΜNύE!KωΰSYχό+ψΓ9R°Fλ(/Δ[4“Šώ½₯ωaͺβΌW?‘’DίΗ‹ς₯~εΉ¦oFϋτ±ΗsΛΌϋ>ŠϋήόJΊwήygΚφg4Σώ3Ού…t-~Ίv+« Πς'!Nς'ˆD'>πΜE}ώΔόkCψ Ϊν6Ρ1U‡<}eκοDۊΎuΤ?¦ƒ­½Ž/$3Λ5βςϋ`ΡkŠ:²MήΰΊE!]|!ΎŒI$„νιωΎΜo djο‘Ξ­V»ς£9²ζΝχœt£K€ι‘ƒες(M½pάXύΡ’ λ€PλΖξΛJ₯JΛΫ­»Δ·TJωγOK£³N–ύ”τωCU!ϊ :άϋL2²gΕξίLŸΡ~E¦ΈΉμCEœΎ$!πΫΈI6\5- ;ο2κη"ϊd>…ϊ©ς+'IΑΪu‚Ο.ž:Z.*L-¨+Wen½d‹Nάhvν0ηΣ³φ  |u,@½2>*U ―@έEΏ…ΰ·;όχG~» +ԝ΄Kθ_e Ο=χœσݜŸϊŽzΫυ«˜±r‹Ϊ ‡~x­zΣφΥη3Ου±^86X ώΐsύmRΨΑ-€ηό…μ x¨ πμ`ηρqvl.έ¦œ`gΟ–αk°@Ύ-€Β4π³SœFmΊF}ڧُ uBuZi~£4­Ϋbϊν NKAΜΑΠ@MdΠOΎ›ςt«N:°γφ©ς±ͺK»ο N»ο@ΤήΆ|ΫξΛL—Γ¦&›ξΌ4(ΚF=ΣΕgϋ_=&ΥχΎ,²Qο΅W›IgHρq*±α…(π¬γc2νφ2yσύ&.V>•2ζ²bUσπςΎV—m–ΚΙκ—>TιŽ₯G=ΤEϊ"½w{§βάώЁRΨ]ΥεBψ-ΐ=6jΤ(™:uκ6/™ρΫ/Έΰή§ΊΧθ^ΆlYrωΰ—_~ΩΑC@€‚œϊφνλ€ 6HϞ=]Ω}0ŠAb`&P)Š\,‘‰@ΐ‚Ÿζι+OΐF5ζœsΞqΏ³ύC ΰβ[ίϊ–;6•210Κa@Q[ϊΛ>“g sνό β0Δ3F`@ΘWHΆx|ϊΠ°ΠGΎ8――NμΓ –ιdžΙη›oΎ™Sž’Χ2ԁrQQ;εš'?^&…η|άΓQfžy&€!g͚εԐό%a-Ο©>£ΧΰGίϋT·/I΅ήΫržQύwΚΞKς †v.θάΊήη•€¬.šψg©ώP•όΥηw™tͺφ ΎΎ–ΆσG>ξϋt§φ!'k9Ÿ|؊+Δ|·οˆυέ  Gύ`τyHͺF֜€.>ΙςεϊΎ“ν©€&žeSδ'Ξ”)Sδ²Λ.«ε_ΩNΐ&3gΞ”O<±llε’n°ΙA¨'%’>υb*;™ ύ:ΥΚLυ±ο{νΊ`'ό#ηκάΉs-XΨΏG ˜8°lu$υ4W¬υΣ§Μm¬Nz~Ηώ(lœΚNώ½“ΚN?ώΈœuΦY'M;y &ŠΫ”eΟ=χt0ΎŽΥ¬­A|ΞχΔOΤΊV¨Μ₯k;p―ψν—νi;hΎ+΄‰=ρ–rωxNΘή―Ν2ςβ¦ ’ΛΜ!ΰωΝχb2υvνΛU‹μ½G…ŒΊψ=uΊρͺ:τŠΥ[ΉFΦ~6O)8ΗΆFkΦ ΰ]ͺP΅9&ληj’:―±¨u#)€²jΤ‘ωlΉ[/UνoγώβΝώ»@pͺόG·Ε–θ„Λ·?”²—ߐΒ9σ·UqξΡE*8lyψ7Evλ=όΏϊ›η“v#Ο+7Ϋ³KΖπΓΟή{ο½Βd…θ=-~xhˆN0$€jΟ±=]»΅βTηπ}m@ &=ίט/{ώωηk=³ωφ€SL*LΧίaςˆΡιϊ;δΙooϋεŠϊμΊοΎϋnγ›X…_„/γ<Φ6ηš2΅Ό|λδ„θ5eEϊτ˜‰r³oόλgŸ}ζ&΅`ηϊϊ2ΚΛ„ Lν]ΞωΒ /Ț5k܊L¨©•'ΝΗ#:q–~Χΰjσωο½ψ’lš˜ΤoΥ\ͺϊο&­GώDπ|ώΟΟε˜LqržρΉGί$‹—9eη\`gόψ&… —«t“ΖdβHU›Oτ“3ε'>o±”ΉIίίUHU―R2y8³„3φ  |-@έKŸϋτΣOΧ*α·ΏύmΧO@°ΐΪΤΤkGq„«Kόvm‚²²27nœ[ν§VBϊƒΙ;0Κ&fΡ_aεϊ{Ρ@έΐ€ŸAƒ%αeκd&˜›Z΄ ύ¬'Ÿ|υό:ӏSŸοxυΒ±Αυ·@žλoÐB°@°@°@°@°@°ΐn<οΰ(d/Xΐ³@ΐσ–…«UΩω;»eUe.„``ί>8ν`iΐi…¨ ¦^£ΛIpΪκŠ*‰9ΐ:N»‰ XTƒ€Q‘v ]Ήm ϊΆμΨΦ)L;₯ιHΊ°kk‰ιχδΆΜ[¦€}(„xΌ8Ύωζ›έ'`/ͺ ι H·3ΓΏΝΤεΗόAd^/΅IΛ«N”’Σ'πη3Οϊ‘LΈ©\ζΜKΠΝξS.#~VR ¬~―ϊlyBΕω?‹,X₯² ΅•Ÿcj[ιΧIΪ²—υο¬KΤG2GαKCX€  Τγ?ή%Ζo8Υp«ΩΗφ>ϋμγΐdT–M©“A $ σ›ΑwΨ‰‡Z20φ Z˜z ιΆΫns Α¦M θxkƌl">Ϋ.Ίθ" 81Ο ηf@†ύ(\žtI._νΫ·wK?σ6‚ν¦ΔiυEΤNΤ‰ ό—Ί;qMύ<Ά‘mώœcƏοώ ͺ~ε•W\ΈN³gΟvv#ΏψaŽ3edSβ§ΧΐN&>SΰΒ―ΈGŽ)Σ§OwΆ₯ύ d˜ͺνΐ΅γϊoOΫα’γΎ'eο}(NωžTkΩ£A«p™ϊΛ­“ϋτͺρ#vI;YЎΟ<ΏϋQL¦άΆEΫ&*Ϊ·BΖO;[š?+t‚법W ΊTθΨ«₯μ__H|C…UI³^΄ƒ§€WUθ*ύ³ΟΦͺ-m΅_₯PtΌeστ7ΤΚυαlYΒ+Rτͺ8―ZSλLΥ iWͺŠs‹ΓtΪή{H\SwΤΐ}jνSžRϋ€NiΗΨ‡_αΩΝδσ9Ξ&Y˜r DώEΫ­Lόc[4˜―ΔΤΕ—‘ίuλΦΥς―ωφ<ί€Ά©ϊ;”Ώ•ͺΏγ—{₯ž‰ηΫ ίN=οΓ.ψw& ωueœ0aB§cόώ/Υ5₯/0mΪ4AU›λ<Μ56Ηο‘ O€'½7ΦΊ^™ϊALͺ$=ό΅?$]{—ϋ‹zt–φΙθƒ0Ylυϋ­ndb)}Nϊ=ζσQ€nρ—€βΡ™ΞΤΝΖ“…mJjωόϋ”‰?PΛN€K>SΩ©wοήΜ؞:Μ׀ɝLΘΔ>τyP mΦ¬Y­x{?³Οe›€lTvΦKρhU1Ν¦μ¬}Τ²QΧKαΌE’7“4s™³{φ,*]vεT)PΐΊͺCi:υJΩρ'§d/Xˆ,,°=ΐβ7y·²DWKΑWγ{υκεϊ Φώ&mκκ‚½q?τŸ½οa΅&ΪX?•cH‹ίcΑϊψeVl)-M¬ͺΑŠ4Lψ$?Y†γΘ'ω#}kϊ5ΔοΣ§«'£ρν\υύ ΐs}-ލŸπ\?ϋ…£ƒ‚‚‚‚‚v ΰy'ΈH!‹Α5Θxv^2ξ§2κ`ηΙgH¬ΕŽ;Π.n°@°@ΓX€%οztY…Q£"νώ]!k–H(Jλoΐj§.­Ÿ1T¦υ“ΏΨζ*] uλKΥΌδT_ςƊu LΥ€₯ k}gŸnkΥ±4*Q`QΏ£.MΌ˜)N£D­ίλxΑkκΞ¨pπ‚š—Ύ ¨’F΄B`@υ|]ξ΅/}?{ηgUqύρσvΩeav—"½ Ψ[b‰ŠQ4Ζ¨1bŒŠ]5jL4AD *ˆb75 v£&ΖXK’ˆ cο ι HΩ [Ψ}σ·η1{y»ϋ,dζσyνήΉ3sΟΜ=3χΝw~·φύYςνοξT9Ζε:y–%Oί_ ~s€KΣ€ηIWŸ|>XY°HΟUΓQ‡ζΚ‘‡$μ\Ώ΄BHc‰ͺ8ΗΎRΥ4­??8ΎE7ιΌηΆ’³}Ÿΰί}γl@ί™@₯Η½3Ξd4ŠΛί|σzθ‘€΅‰s&Βi‡―½φšƒv‰Φ[oΉΙΆίuΧ]ξ1ςœΚ.΄K&›Q""Θς¨k&>  }ΤИ a;Š¨ΒP”abœ”HK`?~ΌtμΨΡMzS^™?iγv4Όq}Yή>Μδ И=ΰX—ΙμD~Όΐ½ΡΉηž+ŒΉμΫoΏύ7ι, |ΩNύPχa€S&κ κχˆ#Žp“_LH‘T‡ 7‘)H‚r5U&w`Γρšž‰–iƏϊΑo΄»¦€gβ™r(uL‚ͺͺΑ&~šΡοΡσ=¦ϋ.²ψώ©²Ω˜a’»m―hτ΅ϊέπ―ͺQΨω‘9K\_ΥυR…ϋw]«όRΌό_ΙβΙ/»]]~Ή·΄Ιv©’…mkaLΫ}Τw³H*π ΝΟώυ’οnJe4z=ψΐσšψ€θ9΄δ78ƒ9–ώŸκZ¦ί bπαΓtλϋbκhΎ@ίΐγμ±7Š`ιΪ‰qœ-&j|ξΉη’ ^€ :κ(—‡)Όϊ00ΫP¨& Πo'‰]ρέιφΣ€˜@ΐžΡ>πΨ`ί§bΫtνΔXsφμΩΒτ τgφΤΐ1ΪJΨx™Ύ  °ΐX8ϊ‘Ήε–[ ›ΐη•W^ιΪσΊ;œ}€TέύˆΤμΈ•Œ=Ϋε™κν¦;*eꛉk­w•2ώό<ΙoίΈςkxvžψΗ•ΪΟλXgσ@­UΫͺΕ«σ/xH‘+$VΤή©σgUλ‚4…‘Q‰.ϋzVƒ:΄ͺD/-‘¬²Κση(<_Ό †Š.ΌΉΔΊ ­ "υw«„o΅o{χ©xνΏζK·kΥP΄Χυν!5[£βΌ‡>iFUœuΫΖhίψ MXtΐˆeDP)O aό  Ν";ΖλQŸοϋa© &΄ΚΈ•²β3ρe”e]ϊnέΊ9ΙύŽοΧ°­ίχ₯RΖΏ²ˆD O`LM=;³Θ‘: ?ΐ—QwψΆtκ”{3Β”)Sœκ2ίύϋ ~ϋχZδ›j$ρ°5eJuΔ~ύ…=ΥΐΖ»(FmB:<α’K.qΗqΟΖ’lŽΗΣ¦ΨOx葇\μ–ΟPϋ€.7= ŸP²§Σφ]†ήηΜkήΌy–£Έί£œ­šžvΈθzi3ηŒ,yœ‹-ΆlΎ vW^vδθβ όUξ=ζίkώφ––ΛςQ ;«š½ͺg·Ώκ‘βŽ-b  lςΐχα ψυ¦ώ3kΙτχάοXZάG5—–Ε―]“Χίͺ“YsγςΚ΄jΉόόΡ!βjt-}Ύ·”ώj ¬Α†<―ΡΒ!Α­h<·’1CRΑΑΑΑΑΑ¦πΌaΦK(U°@* ΄<Χ-(‘ωώ%;wΞ—^UΩ9ΐΞ©LΆ  €ix­BΟ–^N;jΆ)½ΕiύξT§υ·Σ“₯ΚΣž.WΕγV1ύ#XŽŽη&Τ₯‘8­ΫDέN'ΫŒ.ξήU²ςΫΊmmvθ%»ΩΣM„:ˆqο‘’ZΆΙ’ρg±=Ϊ8 0&#₯ρeεŒE²θ΄?‰|Sζ&Ρb‡ξ$=&ηf2φCoΞ½~Εόšόξ8_+˜-K^ύXδσoz(oœŠΝ›w‘˜ͺ8wέk{i³ ΊΖ†_­a&΄{$:m“φK<Κ‰SM𱏢ΞωϊupΚ!GΙ¬s&»Ε&έ/όΉδ¨ίl­Π$𬋋\tΏΘΜΕZmd³K‘μΝ»΅VΆΙtͺߞ% ―y†TΙήs€τ:ϋ δΎπ₯υ,i»'~ΤwγxΝΟ΄gβψ¦|7ιs qpΝY`›ύ0YΰΊμΛΔ'0mΧiαkΉN ψ ΙΏwκ©§ΚδΙ“έώζήό~ŽΕj₯:; ξly0Žςύd*;αGό>X0©@?Κ1Τφ5Hψτ CUεEi τM(ZšJ§Ÿ&}lD\m" ΏυνΫ7™&q¬Ώ₯L<™ %;±Xσζ5^ΡοZ¦f¬ΐb ΆΈψώ"φδ±Π zsτ•ΨŠΕ@6Άΰ˜tΖτν~»εϋYg•;όFΝ]zτYz_Q#mϋ‰ΔF)ΓS/dΙ½κύˆrΞ];ΧΛe£r₯KqjθΉ)ΰω“/brω Ψy`ΏZΉ|TžΦSΚμΦx#‹Gη]ψˆΔg*8¬‹={\q΄dχHA‘ψ9@_+’Qˆ^Z*ΩϊΆ‹•VΈώΐ?d΅οΪΖ€ςκ|ΆW Ρ D£-‹\ν0m„"ŸN—²©oHξ'ͺβΌhI£8υνU1w«Aᇻι’*Ξςνߘ~pm11Ψ?UΩβχΈv‰·Ώύ­Ρxmζ'Y01`€ΪX>Ÿv \oψϋLό1cDόM&ΎŒ±T:ώυΆΫns*œ‡Ώh…r7ε7P[Fu˜1}`Kχ;'žxbr|ο°ΐυŸj¬Θ~μίΗ^ά§Πη4YΤΜΈ1έ:Eέ™ψψ€Γ?ܝ‡₯=oϊ, xkRe'/μL99/δ€Ί">qMύΫΖ»΄ŽŽw›·έvΫFώ:κ_ιΣXLhη`O+ /BτΨ†Ο?倓eαΝχHρή»ΛEίΣlΫΗίoQ¦ ηρ}υIRZVϊ1ϊ/ς%̜9ΣέOXΏΞyΆvhxͺ–Š±ΧŠƒΥώy£ΟPŸ”Έ·i Wί"Ή}ίEiϋλγ%Ύ›‹ξφΕWTΙςΡWKφ|]>°έD]Τc³ ‚‚‚Φ—–,‹Ι¨Λk€¬"K6λ²RΉ8WΪε­ΊW\_εˆζ€η¨EΒο`υk<―_{‡ά‚‚‚‚‚‚Ύ ΰω;0zΘ2X` -Ππ\·°T(μW°0¦°sΟρΓ%«xγ|ZC…Γ‚‚6@ ΔΛ«©L―Rœ^Q—ςΨη`ΪAΣQ«:u«(MgΕ€οO”Ÿžx”ΌτKϊ(ΊχC©ώϊΫ8­Ptο돕Ώ·“{$ β1;ο/‹_ΜΑ œV₯i§8­p5ΐ‚)N;υi«½W₯ζ'(3KaΒΛO§έ-_|ώ‘μΉΣxΩΏσ9°ϋtΩ¬B'ΝκVAΧ.nχB8w²΄ΩΊ§Δ’ aγ²p›oΎι”£₯G ςψγONϋΰ“W6‘ŒͺdEE…Ÿ‘Jξ&³QKξΩ³§Sΐdœ°ώϋKΧ]˜6q`βLNΖ1YΝΔ4fF=ΨΊ,ς@ьr|eϋψδ\―Ίκ*·ŸGGσ(iƒ¨HŸ‰| TΏPˆF₯,nΎωf9ν΄Σ\y,>ΰ1κm(B“7ΐ 2*Ο<~Σ€βU -ΰ&ϋΤ@mΰ„ςDνD:” xΟ€6μ„‚ΚjχέwŸϋŽϊ5“π¨„Z€ΐ2)jέΨ8fĈΞOΉΔΌ7ΤήP ΄sΗφ΄ lˆ}9ž2=φΨcNΫ€’!>6€°PνtΩ²eΆs°ψ¨Ϋ‘ wήy§œ|ςɍtκŽΗ‚SΎΣO?έ΅M€g`vΰ; "Ӎ݀C€s»€¨˜%Q±jq‰Ο9 Π  ƒ½ό:ΪξΧ₯»L?ι₯ ³€ϋeGJN.ΆΦ!πW•Λ…γT±σ«…ϊάυlΩμ…Ψ+Κaε¬%2μc" ΝemΣ]z_τsH›VΞ%$gΰZηšN§έG}7@)Ϋ’m<βΟhΛv-γ#Ζšσέ\?(ο'ηяΰΓΈ†8žkλΛ|ΎeδΕ‹;ίΞφL|O8γι,ό`Α ‹@Pσ4ΏΑ΅H&Mšδ 1ϊ ΖX-³ ε$‘σf±v¦˜ΕώτΣ(@§κ§ιOθΗ|κ· φαΓy}ΈŽaΞ€Œž7vΎα†\Ω ²€¬τ­Ρ@ϊχή{―ƒΆ­L”₯ΞΓ;,ε+”O/ΎψbWχ6hΚNδG[``}6ΊΓws`K $Оθ—ΎΧ½—Τœ3ΞνΟ=σ‘}χpίS½M{7&Χέ¦Λu(έ!θ9Gz§pΓΨ„ώs %|ρu–Œ»ΆFλ1&ϊ  Έš*—΅Ϋ6χŠΗ%ώΑ<‰ι"ΖnκΏ[e15WuhE/)‘’/Ώ–,`h{•)Qš ΪgΧu,p0cΌ‚›Λ%{™ͺK»XT»UPv}Άο•½ΊIν6ƒ₯pŸέEυί€ϊ ΖΫγƍKͺζšΙΈN€›/[ζΊ·§Rpέ–ρcψZ^ψ|$E&ΟXΦγmΖ–\w™ψc|>­%_†2ηc‘%ΚυPPPΰ|=γ@΅°`{Žh0ΏQ^^ξΞ ‰ocαγ{κŒcE|Χ=ρρ1ŒAνϊΗ?qccE$Οa'Ζ‚\·ψΧ9sζΈν¦llyγ]ϊͺύθGIŸŒ―‘/ˆΖ·:ε‰ΦG>/ξΜ7Xϊ|b{αΙδc<θ97ξC/ϋχA…Ÿτi;¨όΫΉΪxΝ%ΌΛxš§Χ\xα…2yςdΛ2ωIΏˆ½ΣicΤ m°9ŸOΥržτ_ΝΩι―ύ«μ\ΆRVάrΏΛ7ώ«ΓUηΛτϊjwίGΒΣPΚf1ύ.γ Ξ³΅ιRg„₯K—&ςPΨΉς’${Ζ<с„δwšΘχ·i1λΨ#OJυcOΉxm~°ΔizQM21]lPqαuζλ9Ξ/Ά»μ 5ϋd„π%X X X`Γ°ΐά1}E­TUΗ„…|<E‡ψίiΐσwjώy°€ΰ94‚``````Mήxήδ«8œ`ˆ* Ea2Οώξγ7κ2™ΐΰΝΕKul&ۚžμ|Ρ£/[‘xDκΔ£μœ‰aCά`` ήqUь*M»ί IΧ/O€Σ(M—,ΤIϊκ†ΈI€:‘FέFή}ΊΔ³cRςψ[ςν½Sέy·έ|3ιwε12ι†kΗF”Mwό\€μ?ͺΌœfˆ)WπΊ6;Gjκ²€ν«JΞβRA κ%—―jΏ•s»,'χίIςΪ+°–­0hžNL+”Wψ½ Λu“μŽν[ΞQ'BE!β:‰κΎkZ(/Εά§ξkψd–~―‡kΨ κ–MΌ¦1€Le‹‰ψ‘#Gʎ;ξθΖ L.9 ιCœ©ς>bœ> A) Ψ Žq Πκp(€τ-L”Η;Pΐ—‰p&ηϊRIΐj¨ΒΒ»€NŒ‰Θƒψδop΄Kά{ͺ°γΩLω|πΑδΉ1ΑOY€€Ν”;1fκάΉ³S°Άρ€1*ΖLn§ ¨3 o ™ΕaΖ »˜*jp¨RG 'Τ9ΝN¨…rήόFU ·}φΩ' §EΟΣςτ?}ΐ˜ψ/)τG©ΐΕΫoΏνΝ: άόFΙ›°χή{; †ΊΓ†ΤΠ"υ`*ƒ~;K•‡)Ώω*©Ύκkτ8€c€9Ϊ&ͺΜΡ6 ΔΘφΤSO9₯UƒΒT°wΖσσ,δ‘ίΤwKηΐqΟ>ϋ¬Sφ£Ύ©#ΐΐΎ¦`υΉΗ&³Ξž,ψδ㏒μžͺL·–!πόΝ₯ ;’ …ΒΞ]Η)mΆι½–Ή¬~xͺώΟ» αι-}Š₯χ„#Γ"˜ΥΝΤj[Έή.\θT}›jχ<ςˆσQQ”ͺζρ @«ψZ€# ΒGq}³ߍͺpQQ‘ƒΎΚΚΚhŒγ v< ؞NΖΪi§\TσΗ©Ž#mΤό»tιβϊόp $š VΞΗό}AS€Ÿk~ƒxf'ΤQQ$Ζ³ΐΕϊKYZZκϊ<΄=z8Hί Žπe7ήx£;Φ/ α~ ηa[|#@ΩδΙ“°ν— _4FΏHέ‘ΐ-zαXΐΆ6ZDΩθ;ρœΓ‚  FΪ€|Ρs±sβό9'Ζ λΫ”όύώψ˜НvCΉξ’ ~N]ςκή½» ΠΏΡnιŸP!₯-³h„m”ΌξΎϋnφρϋQ6Ε.ΐϊΤ ΑμtΔG8Nί‰M± ƒP°φνD]‹“Sώ»μς%χάΈ΅νθ³$ΎγΦM"“ 7ΥκyθΣ!ΪΖε’ss•Ι]&r`xž>+&Oͺ•=¦OΟZΉbtžΫdkΌcώ/Hέ ŸΉγ»ώα`ΙϋΑζkœVFf*m*Ρ%_ΝXCλφ¬rΙ*ΧλŒ—‚Ξ±†EHΙ<΄-Χ©rs}·.RΫ―·ΤwοβT’ φO(Dwι€ΞH_ί5E“,πš}‘Σϊ[°°ƒφΝ΅:eΚΣ2–d¬Κx-Uˆ^£©βψΫμεšΓΗ°Ψ₯©DΛυEyό1PSΎ ί@υ5δ5S;Ÿ0NlΖoΰ3·ΨΟ}‹(Y@Σ”ίΐοΨ“;Έ— β‰!MΐήδΕ8’…ŽŒρ ϊ‘ιΣ§'οUάΖfήΜNDΑoΰ[ΓΩbsΞFτŸψ +R~Q§€ΈψfόŠΕάCp`χGvΏ…J5χQψulΏΔV€½œ3κΪ|θο©;”£Ι—ς²€³ΉΊφΗ»v_@ω‡Σασιηθ#ΈΧ’―£?έm·έ„§ΆPw»μ²‹{bL~~ΎλΗœ©‹W^yΕω|«;l@ΎR΅}T­sΉK²Ύœ%νO9R¦κ_MέΫ`—‰'Κ¨Q£Vkμ[›°πΛ’Κ‹KΐΞz½ζϊuz°σ S₯ϊφΐ]σ½ν€`τοZ.–^χn–6θCδ5ζLU‘N,jhωΰ#X X X`ύ[€}_ΝΙxG\ψϋvΪ7―rXŽx6K„Ο`οΖxώnμr Xΐσz4vΘjƒ΄oόΩο+ ωεtϋΣ?ΥΔ6v| ωІ~­υ=π\·Έ\ŒQeg`ηŽντ©Γ%»KB1©΅ς ι   l*ˆ+ -ϊͺ«¬Q Ί]―ΞR•]οίύ…οΏύΜΎφI‰+Lν¦5ξΚJ}UΤIEi₯<=©Σ9Oζ=λ”$―Σ—Ξƒσ§2ΫύPΌb±δ­¬’ϋ«?‘―V.“Λ †Θπ7ΌF-)«­>ΪW'%G’6φΚV%ΈUίέΎuύ/5J@όήK»Ζurx:Ϋ ’žˆ+pΝδΐu£—NDΪo;ΦΑέΪΔΥύΆέ$~\Σ*T‰οώφΔw=¦!/ΫGZ@ί‰ςΎίŽseo8–cΐ­μ––₯mεvεEέ.ƒΐ„6*ΐMT·˜άμD±Μ”*Θ€Ÿ˜o*p “γLJ˜ψgrxε5ΐ+ (~wμΨΡMz£$Η$w4wωͺe@@ŒqPΕ%-`dΚΊλ»Ίs6l˜›T@}“‰q?4tω€+JZ LV˜μ¬'œ|ςΙ2nά8뙦ΑxΨ8£ @k(Ÿ1A’©Α}Lτ€ΨΈŒ± γ^!€ž}(ϋ=πΐξ|»r,ΏQ,#ΐΌtν8Α1~|`h lΞ— Ά’Ύhcκ―ΤρΠ‘C] {cGl‘i;£ό²&ηMήΐ΄WΚdͺ§#¨ˆT•X| €IΰΖΌΪ·Αo”PIϊ¨±Νœ+ͺΉ@qψΖή@*Ϊ#υhιΫΙς ύYϊΔ·s@…jΰΚL ξς'Ώ#UŸΝ—X‡Ά =λΨΈ[G·oMί’ΐσ7γuμύα—\—±ͺ$½CΏ5MΊΙγꡟš7ϊ‰/*—X§φ{1+XD^“%ψίہΟΦMΗο5hγΌX¬ΐ‚όYf΅γΉVπ]©ϋPήΌυΦ[έn Ϋ‡zΘeΡλŒH” Υ~ ΐmtρ } “ $ϊ!|Šί?αgΈ7’β>— ‡/Ζ'ϊkΊώBΑwΐΆLόiαΟP Fω“{j+_΄?±|ι~ι[”Ώ‰€ΓώωΟΊνψ& <€έLΚΔ9sΑμD™πλδ‰j(Αΐ\λ‡άF}γ|θ{l ΫιΏΟ<σΜdίhqν“vg0ώΝ x|}δΊξί)}λ 'œΰŠE{₯?¦(4₯Tΰ?ό8m;S;ΡVς€΄IeY?0vͺύΐJmΛ/ΊFΪ|5Λ)jΆ½r΄HŸ~τFίΏž-rΩu΅RΉ–ŠWί”άΟgH¬’RD”Ζ΄mK­.m—§³*>kŽΥ5άΤ΄Y(Ί“*ίς*N|ή<E+,-Ή9-€πέοZ―₯*νš\£,ζΰšΆΕ!¨σΤ \Ζφ4Ζζΐ¬Œ›XΒ‹Πˆ~ίξq‚ψ Xlœ ΜM_°Κ=C4p,ύ’-Fd Ο= $θ_ν‡ΗeκΛθυ”ϋa_Βξ»οξ|9φΓ 2₯@IDATΏžsΞ9n;ύ‹ρ9τ)ΐΞζΉΧΰx?ρTœPΕ7kξu­;`y枎`uM?MŸg ΉίbόΚ=A&χψbʚIέ—'4€c§[/Ÿ uΊ@’ΌSGΩN¬Ϊ8¦©ϋ'Ζ'έυš΄λͺΧ€ήΫΌΔ‹Χn ξΟΛ.’šρ·8΅eώƒΘρ+‘έvpΆmφmΪ»Rsέm<.Bj·Ψ\ς/;OoΘjφv–]§δΎώž‹—χ{½‡Ϋ3qίβ!B°@°@°ΐwhž€rνŸtl§ΓΉ=v’§―ώαϊ*^žΧ—₯C>Α©-€ηΤv [ƒ‚‚‚‚‚6! ΰyͺΜp*kdL”†ό MώXfrƒJYΐ5Lf!ωρΦ¨PMžλ—UΚόΡKΌDUy€/?RŽΒ&Ž›ƒ‚‚‚Μ)L&’` (c bΐ€'žΝ‘Ysγœ()Ο’2}‘G¨Z1_ώσ·Μ•}ϊεθduνRΉ¬ηδθβνRXL€N(†Ε%KΏM“‹’ΏξΟiΎ»ύόS­?tvc0P:[_ O;0šο!¬ 䨍΅’Nΰ π8\ρΎ7!§ύφL™¬P0nΫχζJ]…*Ύ§ό’’½ϋί·dρuO$κ7’fΡ·“ω³‚3'lτ»ΣΟ”oύŽ`kωjΡΌδ>&ΰάe¨*‹ηJ›nEβΪTΓΩ hΛ‘ΚΪͺ€jςxUΐ=r”Τ.*‘ΏN}>©΄†Βπφƒ·’šoK%·k‘|<ύ ν’ b;ΪJκŒIΐε1i§ίG©R΅Δσ5ΖIp<‚`Ϊ_ φΣ‘JΖ>μPocŸΐcΆQΚ& Χ,Š«Ψϋ™š%pš)ΜΉˆή›}οΜ;’Q?¨M3nΓ Ζi`‹Ψ€κ-|uMμ„ 'ΗP&ΚάLΐN@ŒΧ CU{Ο=χtΠ4cN ESβlΰ\HΨ‘σ₯>?ώψΏΰ’MΎa3όΰ 6›άΠΞϋL}΄Υ€υH›}Δη±γ@{΄K|\ώύέΉ1ŽR€Œ@Οΐ¨€[y€mH£oίΎξ°ͺ}ΐΐΤ€ <֐PΒμξv6Όa7lJ½‘\ˆ- ς:αμ„i°9 €&ρ©[ΰh’L3fΜH˜Ψ|ηΎ[ʜχ)ΔU'±B#λΣO²;­ωDŸ<Ώ{Ξ΅ρΜreλ|Α/$χ{άχΦ~›Γ‚Ζ―—4(U!mZA©Ί΅ΛΈ)₯‡άΒ'π5\3ψ ΪΚζΆΟΐ§ζξω ξΔΗωΑ‡Ym;qΉNSφq=α8–E¨πs°/Uΐ·XYΉ–φSUcΏϋT#s4•eŒΣ)\_ζ78oŽΕg&κΡ€OΒ7‘ύ ι€λ7Έ~ύ… ~Ϊ~bΫρo(„šΑžxβ‰.|κ—ΆΨΔΤδ/»μ²ŒΚΔβ{Jp36αό°5ω θC€ͺ}_G\ϊ[DBΌζ€gκώίf!ΪF°-η—* ΰiOEΐώ€ΔΤk&ύ‹΄hΛΦ'ΣχQ&kίδo ° τFυ9;Ρv >§qDmΒς•U²bδxΙώv©Τw,vW_Ψ,8·hqL.ΌͺF–•κ8M/ίώ2Gφή=}πόϋ?\,sΛΟ•ε+b­ΛJΉκΒ<ΙoΟH©uCΝΗσdα„Ώ»}ΦχϋH―QΓZ7ƒtRxύb†”½ό†δ|ς₯dΟO, Jͺ’Φ5[τ—{ιΒ£·il[ξ;–•Š,^ζT’γϊYώυ¬U*Ρ OkCK&ΥΤ—ϊφyWΊN_ξS‘θNƒJΌK±duν$ρόu@š7U˜ΘvgΖ!™ŒΧόkέO.Σk”tΈ„eq ½π·l§\Œ'Y|FΰZdΜ ›ξˆk™kΙiγΧΩξœŒα<š €Ήηχuβjώ… B,©τΤλμΌ^MΘ$X X`ƒ·€ Ii™>"\ηγKΚcRR—9sΛ€Ό2[~ul‘,Yτ‘›ΰφA$ΰ&@Α+X+oΌ³j’8z²5UίΚ[/‘ρϋ™ψΜΝeŒNδΒ'?WA<P>γ—G'u%Λ₯žWι UNJ|–Ν]€ŠύUn[¬’Ζ)LGσOόnH—χJόŽ(  έ^ΥΩT Τ©ΆΧ ½ό\)κΩUηJVΎnηΥNγθdnL)λzwΗκχΈ“Φt ―έ«>±MΣNξΣ8qφΉΈ T―wl©*-Ϊρ€Ο$0ŸΆMgτ]ZΞΘΠ}.ž‹Sίψ»–Θ7ΟςαXΚ\―e'ΝUί5O]!oΫΎξΌŸΙ :1α;|‹έeΡΥ‰ ίN'μ'3η'՟™,ξtΧ4©ωϊ›ΥJΩλκ_Ι=SžN‚ }π‘,9νV‰Wλ„…6°ώ9_†wŒ›<\»sάΥ²`δ]«₯Γ†~χŸ+Ώϊέ™ξρςRxώί2ϋθIϋ§Λπ³ν` ε}ν˜K₯ς΅O%»HΥύbΙΫq€όνΕgΠ°χN»Jμ–HνάΕ.žWœ(ύχ?ΐ@8ωδ“θζ ζ‡‘Ω§ώQŠ"3΄Kž/jΎ]ω…T}1O'©c{άq2ω™Ώ%Ορc=Ηy ζΛ6ͺ„Μ€?φ©ϊσΏ₯^UΦ‰ŸΫ³“Tόh‹δd;κ—ν_όRŠχΩAΖίsKRΪ7 Ηΰ’6R·΄ά)zη κ!ΟΟόΠ)ΉQξΟ?\VΎ;CκW$ςΘ²μ²ΫNΑŽ1έι'ύΚ]#Ώ8vxN7\s¬,Χ…fΐο²4T!ΐύφέOΊiُ>vUέάί}RΕγβq zΥ Q —J)“2@Mϊ\;}»ότše jiΠΘD²#Oψ*γΐ@i…£τR§©ps γZΐN|“ι¨ΰM£nΗ#―ύψ>dŽΟD•xΓTͺ«Q35 ƒsΐ³ίδ άLYPξ6ψςNαu€*P7ε|©yδχθyω->q8oβEΨxΌς½™²pβ?ΚRΦ9_z]© ΙRC₯€Ρ\HΟmΫΙ»?Ύ@λ2K:ϊω:ƒη^ρw©@ͺu!Kχ‹†IΞ–έ›+^ΨΧ   ‘dn@™)-Z\'-ΡfοΣkΫΏ6-ž}Kν½χήΞ·m|FaV_τ;γ{j€ΑΛΝελ·,§ΐ.Χ χΌ(ͺsΰ7πΫ–ΧτΣO?ν”š­|œ/λ εOΖ/ώΈž“`ͺΖ# SόMΧop<Κ”v­» ήRΟ”‰λΔ‚ tΞ‹›s­²x0 »ΡΏ₯λΛπ+Ά h_ \Ž#_^d?ε;₯a1ŠA”΄ʜJα_G;£œδ¬βž(“5¨«τΌτΘΔ`-ΣMλp½н©”Ώ2MrPqVhάuέ»Jν6ƒ€γή»‹lΉyβ†ΕΑw§­υ# €ΗυU>cΆΔ–”$ h…₯c΅-Ρq…Q‡φ‘θ$¦@΄(- Ί―«ΐu2Όaα>Ε^6–"Oί—ΪxΝχyι”«©k‰?ΖΏ£JγΈQήψ2σΧζ?PVΟd δ—•λΛƒπ«‘wΤ‡₯:'μΔωγΫθlэ?¦σ£μώ8Υϊ!Ά5š²>ΘΕ€γ7πΥ/Σπ?_§ώ~ ^”Y0ΗΣBΡE,ŒUιol| ΄Lz~έ!~αΫ:ZwψhώKζήО°C}8?ΊωmυΑxΔϊSΆΡGX?Δ§υέΣ\ ό¨pGλ_λΫ ΈήΚDzQ;ύ¬[yfρόFχO~ΎΡ1ψI{ν+ΛzR²fΟ—¬2U’Oκ;Iτ[ *Π€Π’ώ Uπηω,mΫδHή9'©libΑiͺc’ΫfΞ‘κ‹&ι»j€ΎkgΙ»Jaη‚4@NySͺnΎΟ%S³ΗNρ§$“ _‚‚‚6 όιž ωχ«‰ΕeΏ?-G†μΊ~#ΕNxήXZK(η¦j ι2hCπ!m‡;H»ˆ¦‘¨έ,NςS·SaQ¬νφΗ½4±yΓ«mο.2·MUςqΣLšχVAO…m‰Σ¦sG©ΫΉ―μΊλnxΰgƒv–₯―~”L_g˜u–Y€ο9?—sΞι - Œ»ΎIζŸ‚›šeιω»arχ3uAϊzϋ΅i²tΒ£―ͺmΙρŠΨK¦Φγ 6κΐ·ύ―J΅BΦ›ύι Ω}ο½ππΪk―9΅β’’’ΖΈYη.Θ.ωϋRωJB₯4―­εΫƒ·r“χ€ΙD<ͺ<ΩΑ²)π|υνό#䟳ήwγ%ΖX½χ,9ύO h[λόΛύεΛ>9I΅9μΥNα­-5_βψξ{²τŒΫ“ρQ―>ο'n?ωΎωζ›σя€κσΉχ޳%VœŸTa5²dœOηpˆSΐu Sδδ7jΛÏ8Rͺg,”œξΕςς[o85Sφ  i―“οΫφJίN˜&~υ#Ωmο!Ξ(ΕύΌΓ²μΎI…^w†ξo¬ŽΈiΔΕͺtX CΨΟAς˜Œ5ω*β7τ`Χf€νQ6ο°Σ@1nμ*䁇T|ξ%‰mΐwΫm·₯dhχνsΪʊEK,œΧ₯HώώΤ?\ϋ˜{ε•Wœ"- ²²³ΊξΉηžλ @€@AEπcηwNΒ{…š’­#ΐ85Μ‘…W6\;έ;J― Γέ‚W° ή’ΐsNžΌwΠXι4βPΙέ5ΘdLZQηέρo©{αsw³?(y?P(-„unξρ 0J4τpM£r‰ίεΪXm*pŸ‰J#ΰρ|πA§hn@1ω΅§ šf¬ΈκƒώΡγΖ€f―Ίκ*WFΖI>vΪin±.εΗ?+T¨{WY η-ΆΨΒ)ΧDΝ›7Ο)§£ 4Ε5ˆ2εβzCiψ‹ΈœΚnjqπ'tR#ΜίοόŒwψ:lCzeΞ@™8ϋߝ/ηΈ…―b‘ωα-ΕbjgΤ:μWP&Ν΄LΝψκ. ½S>”‰ΧΎ―αόL΅ž:ΖφΧ^{­« £u`fOA Ξ‘‡κT2Σi#΄Gϊ©aΓ†Ή²P.ΞΏηΓj(Ε:Œωύ{χξέ]\κž:°²cwώλNž5k–«# ožl@›v~Uλmι₯Ωi§v’§žJŒΏΟ;ο<?`#κ ž~Ž2₯„"gΞ•κ± ¬)@»R•AΫ_>’ΖβΞ;ΥΫr_zm΅|=;q}ξΊc•όϋΙcδ•©–-vΌP~πΓ‘ ;ηκ˜^\­―Οω€ŽΝu‘AΧι5ιXχŽVΞfUrŒW§Ο’’) η6sυώΐ ρά©έb€ ΩUδ{ۊtZΕΎ„Zη³ΜWˆ^ͺ@tMBuΠ+ξj_γ9ͺz¬@τͺW‘ R Ί³ϊ―b½9[Γ@{¦έώβΫQ‹χΗγš6 šρΪm·έ–6hJ‘š»FΩwΐΘKΊHρ/γV?oaƒdΝ0†Οt D9π›Άπƒλ›±/Oυΐ'ψ>ŒΈΡ€όEΏψ©ζ€[ϊξ«SυCΡτωݜπMΟ<σŒ»oOΗoP^ϊ+Ξ-•]ύύfWΞ…1%ν;±ˆxΌfΜ飏άζ…τλ.ͺςŸͺξ¦L™βΗ_γO­ΟγόLMΩό>υEΰ<€±Sέ0¦ΖwϊmΖ佑ΆΏxΠ―;ίΨ)zώ~μtϊO–―λkέ?­ͺΥ`sΔ₯ο§‹gτK|OΤKK$>}Ž”Ύχ±΄™σd+[ήx!†;PΣ©λZ,uύzIGUœ—ΝυLΏ‹ϊ€uΌ΅{ƒβωόƒ)…#>Nv^΄XͺΞ/Y•ϊ_ O ˜t‘.HΓΎσ±TMΊ]ο»λeε[JΑΨ³8QWΜπ,,,°±Y`βMΛ坏Ϊjί#rɈ6²Ν­?ώmΞ&xnΞ:a_°ΐΊ·@žΧ½CΑΑΑΑΑΑί±l2=έbτμΩ3έ¨!^°ΐoώœΝD1„bβu-{|·’όΜ£‚›ϋγُŸιwžϋvμ*ΟνsSμμ1ξHiΣG'|BΨH-ΐ#¨QdζΙΙe 4Ϛ]*e πrες,έΣWΣ`CK§έQαεŽκeΟ]ΫΘVύ>qˆΓΔβ /Ό “ΜΫIEe­Ξ§%Τ–ZJoMχ― πœv^:1^2t™ͺE7¨F£]2g‘SŒF5ZxIW΅ ¬–―ͺΩ6£;΄•βΎέ@ta;Ι—ΑΡ¨F/|`“Φl³ΐ˜ƒ—―Ψ–jΜ@&Βyl< BT‰“τHΧ_₯ΚΛςτΥι€ΓP)Έ"ύ9sζ$‘Y&πyL5ϊ~<»ςΚ+υβTΨ₯>ΐšn…²§*Ipά₯γΖΙc @°Μj{\ΚίϊR‘ΨΝeάγέ#™QE½ΟwIΕλ ΐ*° Ԛׯ›ΜΟ«upyr<ΖΨΠ¬ξΩ€LW:θ1ƒ{ΛΒΊ">Χξv₯m₯β½ιn–B=YyΉR=l‡ΖPτ«σ€zϊWv „^γŽ—£}²Sl& <€ lD2ψ·¦_2ιοRqμ.Ιτš³ΣΔ+&Κ±Hέ9?–Ν tιDk6vw¬ŒΎη¦$,όΠ΅·JmQ[2tCΈ#oζ«ϊΞZ!Ω…ωςrω,7eϋ§~$%ΏΉ£ΎΩ §ΘξC0 cΣc»ο$ω»m!Ωͺ’]ϋΥ…±Τΐ`ξsσ™ςς§ο:uA²Euyόycδœ‹G;θs}Βι2οw$KΥχή?Θ)ηœ•T}ώΡ'$ώζ¬I;11ς…6{Θ>ϋΛ¬―“ό=Ά’ψ/(@pΦξΘΨ ‡Έ„Q£FΙΈS~' .z@ έMςwίJͺΏœ/ΊD¦wJ<>eSO=ΥΕw κ΄Κ≏©RΉ*υk[/VeΠSV!¦Ύ+{H?PΔTq;/”·Qΰζvώ Φ°½cq‘ΨYς>#Ώ|θZι ΐσ¬§_•ΆCΆrω΅φ[Υ«_Ι’?>η’νtτRpXκu­]ˆΡτπ‹§ς»ΐC¦bޜߍšŸ(›ι±ψy_U8΄ @ψՏ₯ ώλXΘΔeΠο΄iΣ%G~₯Oΰ4”™ O>ω€Sπ¦βiFΆΐ팼αχι;Ϊ·oο 5Ζρ—\rΙj°ςΙ'―R#~ρΕ“χΜ؈@ PŽΟΤe2UJΐs + 5?ΰΏϊψί ›dZ&`6lo0Ώ Τ?Ά70άW6¦lτ!ΰ€/T ή6°ΞžΪLYί=}Aν` °Nϋj­ώ²S++ε&ψm¨Λ~ΘΫfb§=z8¨Ϊ”―ύ΄ν;Oΐη“~4 Z\=ρfΧ—Χ|;)Έΰ7Ρ(~+Η-Wά΄B>ϊ<Χmσ?Γdρ‚e§έΗΚ“ΥE+E©―£F‰dψ#^½RζyXκη•Έ„½:F²:·ΎBq¬\SίDUœ+m>ϋJ²"π`έfŠs‘ͺ8Η·ρˆΆέ 2”U$€θΕΛTz™”* ­*ΡΩΛΚDͺVo«‡ž[½BΟ«€θBD ΡΌ€ό‹,>ΗySΏ΄oίŒfς?_SΧ(ε |/~cιΪυΘΨh˜€?ΩύαΊ#>~EŠψ₯耕xΞ5gΖα6ΆFѝEι(<γμΙψδ–lΌL_ΥT?δ ykΞN€ΗbŒtύ>ΪϊμUΞΖn¦tmO" 87έt“«kΎ“_yyΉŒ;–MΞvΨΉW/p5dRwΐΏΤ+/ςη‰O,P!PΖqzE ―b‘ 6ρl1ŒΫyΓ'ώΓΨ&₯Ώ$:e€¦Ξ’u΅ST₯:j'ό2χnGj;zβ‰'\išΊb ίΤ8%y K|ζ<){χcɞ5?AsŸ™"Τυξ&3_φ}b²Ϋ»τ‰η€νώCRČl?—ͺF].YϊJςm―Πλ©wH€ΥΖΎœ)+.ΉQrκUž.?bΓυ‘«?l XΝάΚ\4i…|ρu΄ΝΛψσΫHΦ__!ΟλΛ!Ÿ`Τΐsj»„­ΑΑΑΑΑΑ›πΌ Uf8•Œ-ΐA&Š!–ό ΜD‚gτΊžΊϋ^9υ·gJίόΞςό!c₯»>5ΐΞV+α3X X`C±@Y*Μq©XžX.RˆyBΜ 3—•g)\œ%₯ΩξwuM"N¦eΟo―sΚΛυRΠΎNzχμPa.Dμ+ Ν %ζBUdΆΐ€ιΎϋξ+―Ύϊͺƒ}τQ7l0‹Εc’ίήβdζη:žΣ,ΡκxFuθΊe•ˆ’ŽNBΡ(FWΤΈΙΝ ’Nΐ‚ͺέAΥ©,D5PΪ©FλgΆͺπΖι¬ΌœL’ήΰγ4!3ΡνΓZM‰G^¦ΖΨE&Ξ "PfqŒ-ψς Αδψ]w5±Ίπu[` &ΟM΅ 0¨‚±“ίIΰΉA‘“ΈP1Ρpα+Βq=NŸ>= ˆ› ξˆB%Ιu€OΚ (t)8%6?Νθy₯X(――xζ‹Ό16<πΐ]žΩI!ι™ ¬aωoέΉ—ΤWVι΅€p•ͺ…·ΨCΞqŽSYuΒC‘ιsf%νΐq€"@gΤ±Aˆlθ_΄™<1εygoκώ“>–²ΏL•zUƒi9Ε€ψ¨½δ ύ³8ΰy§}d©ͺCΗΪd'd;ŠˆŸ~ϊiŽ >JvoΉ‹Μ}τ»ο\ωϋ tη‚Ίa\$> ³ςη)²B!ϊdPy³»~+ƒΆή2 KΫ>Iψ.CeώΘ;m“ϋŒ—¨ νό χύγ¬₯2»ƒϊΈ ΊŸoV”ΙUŸ>'…dώB…§ΧA¨ωxΎ|3AA­Ÿ¬οχ–ή£]Ή„$›²Ύ†~Ϊ›θ‚|γ†γŽ;.- ΥΟΏ“)πŒ’2(!€ν§Οwό;P0 Υ\ Qp0ω°ΓsΧ$Χ¨-6°΄X0€Š(~Υ|;~Χ°oΏ~ύ’‹CΨΞ1nΐΚ—_~y#Ώ1pΰ@7–’_ΞB“@ήƒ²―80τžροΌlѐΎυ`;KΏS§Nk\&ςbHΩ)ΧΜ™3νθK >ΤMƒεQ!4i’λον\’ΐ3Ά’/£.π»ΞΗφνλT•ι?(? ωΦgϋηΚwΆ·fN]³ un?όόη?w6eάlαε—_v@!γBΊvΒ–Ÿ[Zτα΄ΡΫoW%Ν†ΐΈ?ΪvΩ]ςπώoΟΚcσgHΐ]$ΎσφvX“ŸόO΅|1#Gζ|y—,Yψͺœ{ήΕrΩΈσ›ŒΏ¦;€η_φW©LΗΊH°ΗxύŸ¦_—5Mρqj;™>[J_~]r?ύJα@]ΔΕΆ†€ rνΰώR°'*ΞͺŒΪ΅³νΪΈ?+tΑ›*CΗ ˆž>ӁΠΡY€Ρ+΄o)4ΡEξ…θ¬>=dNn¬Ρx'Sψχ„\§gœqFrΌΗ6—usΧ¨œ]?lγ`X| Χ€―Œή—r=α{ΝηΉΘϊ†ί?ζ˜c’‹Γ²ˆ‚` Ώ\[ι(<σ_ηoΌ!C‡uΗ3ζηι/vν»‘7iΰΩ—šι‡όCZ²ϋ3ρ”EŒΏYόςόσΟ»9Ψ‹σ™8q’{ eΰώΖήPΧ‰ϋε³ο”:ρθΣ©; tκΞ}χ>΄΅h`‘©τΣίΨβ5w_@ŸμηA|ΞΏέTέασ£v⾍ΚNάbΓtξŸθηSωo—ΈΎΡ·Y?jΫά§.zˆ-.‘ε³ηJΦ·zλuo‘€ΆZF}τšϋΙΣhΝ…Έϊ†ͺΡWHφ|υΗzm/)ρΑš;$±OςWŒΉFbΊΨ’ηf~βyͺΠ―i„,,,°‘[ ΊF_»\Ÿ"Ά0[ψ/}’>ιd³.«Ζ’λςτπΌ.­hΩxnΩF!F°@°@°@°@°@°ΐFnώ°Κ$…ηL¬βnθΘT1$z>όΙΝΛ&^›‚—’Η­ιο[ω­œχβέ· ‹|ψζΫ­7‰Ά¦ Η  όΟX€ΗC—ͺΨV‰BΛ|:%ζ9 1Wd9ˆΉΌ2&ε 1—+Μάΐ@dl›φνTΕ5ΏNAζzχ˜ι^= τSf…˜;κc§ω^¨O.ζΤ:_˜QΐW/Y²$ ST0‰]Q‘ΰόĈ‹’!{­6ΰ9έsή@8:•j4p4ϋztm|I7mβŞ=(0ΊHU£M-šΟ¬Βφ’₯Ϋ7†ΐδkkΟιŒ-Θ«%ΰΉ9XŽ<’ /Š˜€mμCΥ쬳ΞrΰΆ7•4 (0b‡ΘΗρ>ψ ƒε€  JxfB̘1ξ1Ψδ \wμ±Η “Ϋ@ >όΛγ‘Ή¦|π"z^Qΰ™ύ%%%n’Ÿς6’ώ$ˆͺ©–‘χ[o½εΤ€Qν4€™ν-Ω ΐΟβGσηψT ƒ (£±0Cyο½χ^§BΝ±§œrŠΓ€nΜSAqΐΨΔξ’cS@Κ€Ro7Θθ ε;ΰv_ωΌoΎωfι₯‹³ΛΥW_Ν& ˆnΨqΗ]άηxb=”O(8“g»¬62ν½w\]Pο”h±ώ2yςδd]ƒχ?¬Ο8¨°»`ϋrΫ£χ νΥ:[ΧδKνά%.Y¦…ˆVχΦ\ΉbφσrοΒϊ‡΄ψ}»nύδ£…³œψΝ7­<―œ³T\¨ͺΤͺš5¨«τΊτNuΊΕ‚…­f7Ϊ) NτΊ!“υ <γγ}   ΤTຎ‚iΡGΤ3έzλ­Ξ·γ;εXΓ±(λZ–Fέ„’ορΗο[6˜ΎP‡Ύώϊλέaψ)ŽcΒ€« ’–ό†©šZޜ·AΒτ-Ο”Ÿ>…ί»ρΖeδΘ‘.9 A^<Ν`MΛDyπm΄ς²¨Λ’ΐpμΚβ^ˆοΏΎ«+Ϊ‹‹ωD’αC¬Lτ)ψs²~Ω|;ύTͺ±hkχο,°±ώšsδ:`qŠ©™>χάsnϋθί’_:v"Ξ駟ξΰQΖ @όԁvΓΣ³ ‚π€­ω𩋨oε7ή)έǜm?ΣώμΤuGYϊνϋMψu™v-DœwέSRζL·πo³ ~&Ή;$o΅pX“»c•zγυΑ§Rφς’σΩtΙβ·κ»θΆ$φϊΘΦƒtp‘cκ±―\€€B‘ ――Υώ 04@tTωΪ7OV·.²hΤ―’Oπ`œ²ωΣ₯ZΣ,Ψί©C·έ~+9ύμί­πάά5κ—ƒοψ ό;χŒ{-ΰO›―΄r=‘ίΤˆ§gμi1άχβ D΅ΎΞΖ©ψ™¨―!–ΡXYωLΩFϋ!?>ί[²S¦~δlOγΓ—*Σ?0vΆ§‡7χψφcqΐύǜy晏€Ο΄pΗwΘΙϊ”³!Ϋ[ͺ»Ž;fWμLΏψl‹8I‹|ιλy’ΓLxNηΎΐzi΅žΣήX„”θWΏύφ۴±kͺΐ=ΔΈUλTϋSmΤ΅›|υ­ΒΛZž0―Όπ*ΙωzΆ{ΚKξ(}ΐχ·O•l£m±₯%R9κJΙ*«TΥψBi?ι|ώtj'όؘ-ΐSG]V#Kυ鉝 λδΪqmυχΦύΟ;•}πœΚ*a[°ΐϊ³@žΧŸ­CNΑΑΑΑΑΑί‘πό>d»AX€?Π£Š!όζγt”†˜°δ΅&ΐ3@Π»οΎ›‘ͺζ,–»ž|Dφλ/|ςqFΗ†ΘΑΑΑ©,°h±ΜϊΗg‰BΜ 9Λ©1WTfKες,YVsˆ¦:6mΕ…υ ΣΔ₯¨C½S’\ξΣ;23‡TΤ3wν”Njk°₯G³ϋ©§‚όύkς}cž39Ηϊεͺ­`4pτJU6i§]Q£uŸ,―m€J—N±l₯Ϋ TΙIΑg h^€Εύz88ΊMƒjtv‘*S©‚νwSπμ MOQ™2₯;fˆ«@A<6ΨΓόΌ Œb› ƒ;οΌΣAύ©φS«8(ŒΙgS.£ |GΙ (Žλ •ί€^€\(Š1iΘΥS@&λ @t¦π άτΐ8 ΛνΤ7Ž›QCf‘δ@Q¨Τ5 π¨θyEγ`# =”£ ΐ(X’η#|˜˜ξ’K.q*₯V—€Ιr™Ά3ΐ ~ =Y‘b €Ζ(’&λˆ64uκTαQάΝƒΩ©7ΚΝ 0ΪΪΗrΞ>,O½Π–† βTψ8/ΐ @κΒ½Qe φ‘ŽΙ‹οόζ;Πͺ‚+“―ώνvθΫςΗί‘ργΗΛγsήR:§δt*X F±Έώg±NτZxW…ύyη=,qU֏uλ ½―ŠrΉ~φαϋz°νˆ~ ?•ίΕgΩβ»}ΏΫ\3=–λΘχΏψΔTνΩςδZ8όπΓ°•ͺύ“?ΎΫτέPDF™ΐυ:vμΨ€ͺ(π4ΐΧ#ϋπœ«υC\£S5Ά<Ω–‰ίˆžSΤ?6<γ?€°ι‡Μ7`|:ΰeBΡ±&eΒχFDεƒ>8© Κβ”2 ΐ‰{챇+“ίN˜0Αn”›OPv`Dό :B΅{ςAi›vF|ίNλ’gΰkΙ“sκΦ­[²Δό7‚ŽΆύtμΔ9˜―¦mΣΟY½ΩΉϋʑ͎Α5­mϋτ“˜β:²’X§"₯ېL³‘°°X{y{Ο•O½'KοΕείεŒύ₯έΠ­š-K“;Π+UΐΩ©8Ϛ― vτδ !νcε ~’Ώη.";©ŠsχΆ+|6e½ηXΈΨΡqUŠ.ϋz–5f+ έFU[Ώύυ‘Iΰ™ε6πŸ²ς“―’©Œ;GFή{‡».π'άό'YφΨ3q`‰u)–ΈΎb›©šv6oιMf _πYŒO8α„δ4φΫSLοπ"ΰ#α»nΊι&1b„»fYˆΡ΅k’Ν°Ψ…gϊ:Ζ“ŒσπνζίΙ ΟΒΟ·ΩέmHρ†/πύoKŠΨιΨiMόvb1ΞΉηž›’”«6αg~σ›ίΘΏώυ/ηΣΩΓ8’‹.rχ0ό^°`tΠAn1Ύ{ž”@Θ΄ξ8Ώ‡mιλ87½Ήί‘'P&ΎSη™ά`{ϊAύ5mͺ₯Ίγ˜tνΞa΅ϋ'-gL}ς›ϊ$Ζ7xψ/’ ΈίΡ7ΖW΄ΝLΒ;―Ό’π±ΝΟZ–Κ 7HΞŸΉδsΟϊ₯Θ>‰r5›ŸͺΙ/?*U–^*υων€ύU ;sm‡,,,°‰Y€G―qυχξQ+WŽΝ“Άλψo‡© mΚΡ%³U1΅ΌŒVΥhΎΛΚΤΚP–VͺΟX{ύ·^aθ˜ͺC»O…£‹ϊt—μ"UŠζ₯Ώ³€σ[_}&؁cQκV.θή½{¦dlΑΆ)ο’ 9|ψπF€“θ(HήrΛ-nς x ! Œ_ »0&Τ  ΐE–ΗF§,¨^ΆζR>€1&ΰIM…ΨςiκΣ€(”‘‘ΏuQ. Ύ½ΨfŠŽ\«LΦ¨»‘Ά†ΪΩΠ‘C¬wΰ:pΟβΫ?i0&σAξTΐ³06p°μΞ΅οC]‹/ΞΘN¨Ώ™νŸ|ςIΆ8XπλΕfΖžΨ…:α\|°c°Εd…“ύλ_'A3Τ—3mgδaνΣΚ²λ»Ίσέa‡\ΎΥ°Ÿς£ τ‰3pυ‘‡κ ΐaΞ•A§ξψτΫͺ₯υε—_ ω¨Τ;wΩeW&?μ°ΓG^€ώ\'S£Πέ·oίFνz皈ΦΫR…Šϋ_“eO½γve}Ώτ5,U΄FΫ€‚8οΦžQtž;κ!‰/ΤN[vτΎζη«e~¬ Π^l!l*ΏΙ΅ˆOjΚο6WHό]Ί°΄—φ`Ε"­T!κΟρ»lΎί‘μψLΤΤ ΐ΄ύβ·8\»ΐUμΗOteχΊΔ³ΈVμeώΤQβdβ7’ώŽ4ύ!>πΜyϊ}hͺqώŸ ΔΆ6e" .Έ@|5{ΤͺΉηόΜΗQWΐΥ΄‰tenŠ6uύ–Ž‹φc΄λcR΅Σh{hjαΥu πΜ‹1ηΒ"&;GΚGϋ1€Ξϊwκ*];‘m {Ρ¦¨wΏοf?ηΕxΖYΡηω&q’AAΦε£―”6sH\ΑΥΌ+/xΝ’»S}α_|±Υηκ·gΚ’«ŸrYfν3Hzy`ͺμSoS5aωθs)Ÿϊ¦δͺŠs¬¬ρSgκζέftόα$Ύν«΅© [Σ΅mΠΉ0^Ϋ+―Pͺ§Ό)Yz#BtΗΡΏ‘ίι&w]0ΦΉεμ‘R1fΥ.,ΙϊN…ο\$uͺ [ψλcd7χr§ΊFν8ϊ a ŒMY”Φ£Gη“Νοsνpmd2bΧt:?ΰ_s”ΝξCX\Β΅Σδυ¨P>cͺ~(ZŽ–|ρΧΔo.>λ³Ο>sOΓaΞ#??ί-&α^‚ϋό* λx‚-ζΐΠOΜξψ9”η­ο4L?ΠTέq4ˆKΏΚοϊΏ/΅±6~—ϋ-ϊ[¨ΓΎtο |ΰ™οΆΰ΄ΉΊ£Ξ΅6³2’6ΐr£…ΩmδŽΙw'οŸ>Υ'³Τέ~Ώδςh‘ΞΕΞ¦kσFΠošžΛ―ΏMΪΎžίηwΈΘ°Ÿ΄œmuTŒž$mζ.”ΈRy—X^-b   l€˜9GdΜ•+΅_Ι›ΧΘε£τΙzϊ?Ί 6Ιβ™kΉf]e hΒxnΒ0as°@°@°@°@°@°ΐ¦cpš Ψ΅σ`²ΰαͺ«JB[>ζOf£Ξ˘Βΰ$ΰG1©OH;EΗ8¦ζι―LςΫ’0Ζ@k<-6, κ’¦Ύ΄ D ΒyL <ΈΡΈ P•`”5->ηκΞ«9ΰΩ‡[€ε°3ρΟγ«Ο9ηœd™KKK“ušŽHΐ›ΙySθσλŽσ0Xνž{ξqΰvbΠ ANΪ―Κτ裏ΊxšωeJ·‘θ·νΆΫ:`›‘ώdUυc 8p RGΫ ΰΰ 9ζ˜cXςΕ_Έψ¨–ϊηLz3gΞLσΗΈΫϊTm”Άΐ£Τε@PU˜ζ>βπνΔυ‡J_SνΝή{›{Ν?$ώΦl·%k뜟z{WΊ.€ηΈφ3σ.{\κ?ΣΗtηdKΟρGH›~AQnu믟-ψ$ ›ς»>υ»-•φ™.πL9hϋ/½τ’}τΡϊχ―§h^ΔΏφΪkεόσΟwΎ@::Φ!Ξ_ώςηGRωOQϊ’"UΛΥ€Οπ{ώωη?F U^»ώ‰Cš§žzͺLΦi±@%]ΏΑΉE:l xΖρ2UiS~χmγŸηš– [Π§MPΣΗ@ηΨΘ·ώω‘GqМ‹άΒΎΠϊ€’»έψxΤΆιΏΦUΞΉ67ζΰ<§OŸξ|ΆυC΄‡tνD½Ρ6PθΔΎ?ωΙOΩ‘ΕζγSύο΅UL9WŒ―`j‰Δ‹;JΫIcυFEΣDXΐsντEςΝ%u τ²Άι!½.Rΐ‘―l’"3ηJΙΛ―Kξ'Σ₯~׊]UύDνζ}δ\΄Β}½Ί―ΪΎ΅Ίh—™ŒΧ΄­¬xvŠΔ–¨J΄>)Vͺ7ηά€{!gϝε!ΫΚΠ†18 ϋ?τ¬Τ–”:(0Ίγζύ€ΝVεύΚχ?"‡s]Ω“.πiώψ†ύ”•§`d2βι ψΙtc_σ§eeeΊζΨ;ξΈCN<ρΔΥό΅Ÿ.ύ#i4ΧωρΣυe™ϊ ,’Κ̘—ΕqŒ%-ΰcΈO³'ΠW2₯?§£Oz@ŸF½/π 1~ε %Τ+χυ„ζκŽz³ϋ01Nζi*~?νχΈ7ΒWΪ}eτϋΚTχœ§υΛ–-k±ξ°?ιΪ [Ϊβ€T‹(“τ©ήeύφB‰Χ”ΌŸ$ρCΠAÚ/6N x~όŸRσΠί]Tορ}ιπ‡ΣέχfίΤV\|½΄ωb&t½δ]τ[]dB°@°@°ΐ¦n>Ι„yJŽΘχ·«–Ρg'ž^°.Ξ;ΟλΒͺ!Ν`τ-€ητmb      l€ΐσFZq‘Ψ­bώθ΅ aώάχx&~7§4ΔΨΌΦx^“xψα‡έδsžΧΔzα˜` Ο•ΛcRRw ³Ξ›:Uζ9sW)1—W*Δ\ž%ΛQψΙΌόymγN‰Ήƒ*11£Δά»WwŒΉο %f£Z§Š™—|Σ<"Ολ¨^U Ίd…˜b4`t\!iT£ωδε£Λυ»*Lg΄Uƒv`t‡Ό€ztQŸn ͺΡͺ†RΨ^ΏλgϋΆnLˆΙ„8η,R²ρ“Ρ€t@Eτγ(@ώ0ŽΰΣ@{&ΏŸ{ξΉδ#–ίΦGσ(i&Ό™T^²d‰›p,C‘ΜΗ8Φ ½ζΖ €³οΎϋΚ«―ΎκΖL`3ΙΟΨΗ&Β `*h€Άηβ’ 7fΜωιO*wί}·K£S§N‚"―Ÿ†Ɯ+ε’κ¬C•HΑβcC{|ΆΩΘQ»ρΖA ”‰xπ›4D°+< Π£¬¨‡W³ίς ]€;«#ŽΙΔNœγe—]&—^zi>d±yƒ0ΐ[nΉen4Υ4«Ϊǚ€εo ™΄3Ϊήε—_ξΚ˜A£°jH—mΤ)τζΡΥ䉲Ÿυ”ψ˜ŸΌδp‰"*vϋτΣO]°τΙ₯T@ς§νσHpήαXlnjqœ7Ά²G£Σ>nΈα†$lbβΈqγV‹OϊδΣ\»w…ζMΫωά+—ψ‡σέ¦βΓv•‚£πJ2Žχe]Οσ{Zκޜ%1=ίn"Ή;τφr _Χ·Έ'€žYTAπύ.Χ SΤοϊ‹©ΈvΝίψεOxΖω n€C}EH?]ΎsΜ>ϋμγόέyη''NL^―ΏΪ₯©¬ΏόςΛΔlΧ5ϋροΆ(…_ kW*μ\‚q>ΐXfςδϊ£HΧo^Gο½Ήξ›ž)ΎίΚ‹λœΕΨ_ƒί ž’Ύ•ΣtΛDC=χμΩ“μ`_CϊΡ²ς›zαΕΏo΄ς°{ΕWͺf΄ {`χθ1”Ÿ>λ€pvη8 b”I©cφYύ;ύ‹K~όγ»|θ›x„Αψkμ`ύ ”ε΅ηΝυDέ’ γΡΎqΚ”)Ξί[βJυΆp±TΊBb+ͺ€W7iw՘&U[x[X*σGEDέΕzI―+Ž–Xn›ΥK©e“?—ŠWί”œOUΕ™>/Τλ£qPqξ°—φ?Ϋm!’·ja˜-|] έΩΨD»ΗŸ45^Γη°―‘ΟŸΤΟΥ§Τ,^&%_͐N?ΩGΖέύg7ή'ώΣή”κ_―`{c0ΊΰI²ία ΐx”…mTUΊvΑB©Χr΅SuoΤfcκσVΆΙr~Ζ€ΣtΗ@ψ”TγvT’lώ ΏŽ_γψšrXμ€βtΤΊϊ†βe‹Qšκ‡,>Ÿιψ2όy¦~€}―½φrΎbΖΥ6Άδ^k²‚ΝŒ)©Ζ²”ƒϋ(`,Ÿrb}.Η°ΨΡ|m„™v_€X”H:΄ ?`/ΆΝ˜1#Ήΐ{γg­οε‰gΆ£ΌΧ_½‹σ’ήρhs uJϋσο πέά²Ÿr°8΄₯Ί£Ž};±θΕΚ΅O$݌ξŸΤίΧόv¬d5ψ»ΈϊΉΆ'!’jυkZž§Ό!57ίν’έa+Ιϋ{f‹Y•OΌUrήύΔΕm;β‰ύ`Ǐ ‚‚‚6 Όϊί,ΉαΟ΅ξt~4dΉœqRΣ ΧζœπΌ6Φ Η ¬½πΌφ6 )      lΰΐσ^A‘xλΜό)Ÿ©bˆ˜G fξΰyUSH8X`£³ΐŠͺΈƒ”KU…Ω`ζY³K€|Ή*1+ΌœPbΦO…™•‘Θ8δδ(Δ¬*ΛN…Ή N•˜λU‰Ή£5+T Ή¨0¦ίγ 13a™qςα€uh<―C㦙t\‘η•Λ’WH½*DG/S0Z θ$ ]•ψγ?ΝdΡT‘΅ί΅ΗΙ½Ο>ξιΛFTΡ€t™XF]0™ΰ‰’“ΛLvŸ|ςΙΒ’&SQςar{«­ΆrpσLhχλΧΟAΔ‡z¨›Μ·Ιy_-Œ±‰)Φ M˜0!9‰ν2oxn@Ɍ ebb‰tTΏ˜,Ύ"  -&Ϊ£mO?ύ΄ƒαxά1JΌLΌsΐi¨cςxf”Ν˜θ༁ΆΘ“|‡β%`€•΄ξΊλ.Ζ’°8ΰ`+ pξΝϜΫψργ΄E:@#ηž{ƒΚ€€ ρ‹_°K6Θ“ν™Ψ @ Μ D ΘφwήyGvήyg—ΎΑΛ”°Ž€κσ±ΗλΪ @υΗ~Ά₯|΄ t”μ-΅3μg`m‰σVKhc;wNΦ)qh{ΐΐ@“CUΉθΣ@ulΘ Iΰ1θΨ™s&ψmŸ6TNέ‘PŸΕ9βˆ#\γΌQΗΊ&P^Ϊ#@5@3s¦νώˆtOm\Dζ›Τ²ΐύμtάΙYδvΌ·Φžηέ7EκžώΨεΠυŒI»‘[zΉ…―ί•πM™ψ]ΕΧ^{Ν]\[ψL`‘h  γρ©\GDΡ@΅kτβK€ϊ“/ ]6}¦d«κmΥiGJί†φΟΈˆρ\ͺqιmΫ»―δ.―’±·ί²ϊHχ/Χϋ…Tc |η ώXΞυΙ6Sγ‡macm€Wό\S_GŸ@@ ―;πΐέ1M]Η«ΩIΗΊΆΐŽ!pv&~ƒϊ±>? ¬ά_νLZτy(k³“s~IΑb[쁁ΝK@IDATb|έ«W/Π–ώƒΕyf |™-Ξl©ξθ#ζ·Sυ₯ά‡pH fΡ ύXΊχτƒΦGqίejύV^Ώn]&ϊζχ΅-Ω‰{ebΡ ‘₯ϋ'·πjY‰”M~Xς¦κ8‘ΑT—ζΙΨΟ₯“ξ[³ΐσ;JΝ€[œZ~νζ}%Ό.0Π6ΩR(ύΣφ?oΈhyΏ>Fd=[:$μΨδ,πΔ³1Ή―‰>ώ¨C*δΘCU ₯•Cž[Ω !Ή` -€η ’      l|ΐσΖWg‘Δ­c&~3U Vc"Τœσ ΐ³Y$| lšΰ²_VS%f‘’„s‰~Ÿ;―B!f]|ΈΥ}8ΧOΫΎϋΠ6ΐ)«Ϊ~  ΐ Ώf[κ™2‘ΠΪ\;Cύ”: >zΜ†–fͺOκΗi³(p—]vICyλ Κ n8ΐ8 ΞωπΓ—'žx"™,Κ΄΄uΰveμΝ'ηDc Qς Θΐp EΞί ’Q@nίN”‡ϋl γ‹όρ$°g}@ Κ¬M 4Tα)O&e’oσΈ4•Ύm§ο΄§p,ηΓ9'uΓΉ"π­?;όη7sζL§ϊŸͺ-‘·Σξθ¨'Ϊ ~žο~H§ί²ώ4|eP?ϋΞψ…6AάLν„―ηI,²h‰z4P’ό= £’ηbϋS~N{Wjύ³ΫU=dgιpNb αΗm-ΰ™ραΌ1K|n‰ͺοζH+vOωˆ}τ…”M}Cr>ω*©jjω£nZ³Υζ ην΅i—g»ΒηwlLΗk΄}ΖHQŸoΧς¬Y³šƒsΊψgΖ Ϋ’ π§τ3Y“Ύ}ϋ&£§ςnjX\—ώη"Zκ\,ΩέΊH–›ώ€ΌωΔ―Sί‡YΒψ{jΐ¨Q£ά’;ό~ ί Ψ„q:Šφ”‰~‹rΠwqΗΰί,D}}#cLβP>ޱ{κ']ΏΏγ8Ρ!yrŸΑ’[`Œ#/^τ)ΔAύΉΉΐ"ΐeΚ€ξ€ΩyRŠAΥδ‘ΚχΡ¦π«œC&χV―Ψ•—©ESwΆθ•11ρx¨φg[Sv²ΊΓ'§{Τh!ξΒo₯ςξ–6ŸO'jvή^ N;^Ϋh‘mjφ³)ΰ9φε ©Ύδ·ΰ₯g7Ι›8Fύrώυ…Χ€κφ‡\žUϋο!EΏN@έΝ"μ ΨD-pέm•ςϊΫΐΒ@€tη ’Ε½¦³Ρ1tΟ™ςΧ=™T†φCύψ€O’‹Ίι˜άΆΨrΛ° |Œ (J*όaH μΛ.»,©"ly-uμ΄ΣNt%>ιΏώϊλNΝ‘ύΪ5ꐀWLΦS.`/&Ι PΙΧΐWΛ e‚M¨7φβ’άF9’ΰq—πLωήzλ-§Š €ac ¨Kw ”υΰnέΊ9θ`Ω²eΎP3°3΅e;Ξμ°Μq€ΞΨ ψ(/ »’ψJ?ΰLhEw”D wήy§·ω Άα€‚ιCΘΜ’ž,€ /jΥ> Fžψ‹N8!₯?@©χ˜cŽIζAϊ”•ψ@d~ΰ: ζzΔ§8Ο–ό φΓ_L:Υ-’ -~Ÿ>ςό£{βŠ’ψέ²²2Χ‡πtΞH–Ε”5nΎωf§–jvΚ€Lψmn2Σ  •––Ίqc|-Κφό±λ_Q e!΅¦.PQΎυΦ[4O½ϋ<ΨΑ‚ψ8μo€\Ώο²λΪϊ!°ϋλؐx@·Œί°±σ£Ύ €˜ϋΒΜ―’γ\|%ΐps~?ΨcΉ18ιS^žͺχ2ΕwqeχΔηψ»οΎ[x’_40nςΙ'έ9ρ4ΐι‘Τύ1ΎuΚ”))ΛD~ψοΣO?=Ω_Sž–ξ ¨lj‹Cšͺ;pόLk}#υ֜&Mšδ~Z|Ξ!ϋ'ΖωΦ5²ε{ˊ;”μE‹έζxnŽ΄ύΕOEΩ_Dο΅› )ηΉ €zΜD‰U)P_\(y“.R…€ΔX’Ή΄βΣή—κλξdεΤμΊ½tƒΎ{ ”W&”˜³ΒΜ%eq™3·LΚ+T…Ή2ΛΑΜεͺΖ\±<‹yŽŒCϋv 0;xY—`ζ{ŸήU}9ž€˜U‰Ή¨0¦ϋβpS! $-€η€)6š/τρΎ’bͺ‚B’„ζCeL 3‘ œΉ`Α0aΠΠ5ΩSλΧ―Ÿ|ρΕ @!ƒ/ŽΈQύΫ0Α Πsί ΓEt’3fΈΗ]z‘ΰ‰2Χζ}ϊΙβί=¨ M½{¬zα„ar“ LjηPύ°ˆ€τΐ6€ V&©ω4 τ˜Ν9²ψ#FŒπ“tΰ κ_S LΎs―tMžΣ§Owqf1:묳@m vγ\±€ΰρ’%Kdΰΐ\@=π5aΞΑ6ηE=˜Ί/φgβέΆΈœ ΖΚdu pŠ4p.ε€,[+ ΰδΠ”Ο8WΚd fρΙΕ3Ξ¨°ΪЈO>œ+ΰ*έ|{PΧλ»νΆ›Sr\¦]D²ίogέ»ww πΘ‘#₯K—.°kΊ 2a?Ϊ'ΰZΗΨΰnœ‚Εΐˆ–”‰ν<ΐ)œ03υC»αqδΐ,΄5 uŽΗœΣΑμΪ+P νσζόˆ„Β3qt°%uG ή/^μ` κπˆ2Δ{Σφ2 υΛkd>ͺί”ILν:ς§φϋύ’I΄πΌra™Μύ‘ε΅λ]$½―8JbΉ«Γ±ΙLΓ—υnσω@€¨ΜFύ.Π νeqzΈΆΈ^€AΎΏ!=Ϊ’-œ–b?mێ±“$.Π,k˜kΊ4fqΈζριδceͺfŸβ«(»Ϊ-א••νζ Ύϊκ+η[ρ3ψk9ϊƒ›ˆΛ5‡ίγ>_Ž/&-Ά4H^xα—P6ΫΉ>QχΔ'4ε7(+jΏ”ΡGu~ΌΨ ¨Ÿ=SIζ8όλ~τ#—u„―1Ιoό*—™– ΓΉ₯λ?¨KΪώ₯g# @>μΐGš'ΐnϊ??Πgπίιήwί}4·ϊΰ˜—^zI€” ©ϊwς³E1Δ‘ Τ7Ύοί2ΩGΩ-PwoΎω¦SαG‘”ϊ£/ΐ†ΤGAAxΰN9›~ž6HƒeAεŸϊΗ‡“>uΗuΏτK£ύ»•±₯ϊ+o‘άw>r‹HrΟ;Cd—퓇¬5π\S+ߌXκ§|)YεΛ₯`³*ΙύφΞΎͺβzόηeίΩ— *ˆŠώDm΅.’Έ”bmK΅h±κO­m΅*¨ ‚"ξΦZ—VΕͺXןύk—*(.X*(*5@μaKςώσδ<&—χ’χBXbg>Ÿ—χrοάYΞΜ=gξοœΙΫ ƒ„σrŒηΎΖ‹σ‘"ΰ5;+’·±ϋJ€~ŒŽclΖ=Ζ}Β}αŽΧπΜΫ‘C«c¨IPη£ΛU—±πJΣE»GΉ^uYΌχΧp―aΉWynށ:š]IΦ=ώ€φΓ…Z_fvι*ΛG`w±7όa<‹ώ'ξǁ™yR~ΓέRkΌA§OΎXΞ6P0 6 ;0^Υ γ\ξgϊ˜x,l<τΠC£Ϊ!ξmΞΈυΥzϊ}>Ϋθ7‚Οό.**²εgaγΕXzƒ…1nΩ¨ις¬ΔoΚΛ-θ2‚«ϋh?Ζ‘ΨϊΊOm1Ί Ϋ4LΰY†@ωγ Ψ%ΖΖΘϋΐ˜œρ,φš|)#‹\Θ“>F~\C Ÿq-ŸΰsΟ[μD\NYH‡ώKωn»νΆ¨mGš΄«κWڎ@»P&WN,B"‹9uΜA\βΔz~ΒΖ©Gp·­Ή.L9C―Μ‘Mϋ»ιΤυ Ηj'€Μ³.rψ H΄ΰ πœQeδ2nŠ$•WJ]v¦dLΏΪl#Σ1xΩΆό§όсwS`Gδ@:€@‘*WΰKΌ˜ͺμl¦ζρh=R+ŠΧA#θΈWΫoy@EΘRΑ;ΪΟ}Ϊ₯ δΨƒqό Wl”εxz^]!‘δ$ι4ώG’Ά_w{εφΟαΚMR<ξq ――6‹²€ΗM§K('~=Žβϋ(­ Wη³θc†YœBί6’Ο‘#TηsO7ΈWψ₯Τ+ξ%ξΖŒ<ι—ͺ£}ΡiΡϊ³[ ξΌ '’Λ#N ―ΫoΏέκΖμήAΠϋ]Γ½Ζ}Κψΰΐ}hΚxœ4άqχγ0ξ}^„© ‹JΠQꡟq`ϋž’¬ FΛΔΏώ%²σ ϊ”qz―Θ,6$̜9S~rΘχeΛκu’qπώ2σ™§ν˜šs\3~όxkŸou—“Xγ2μ@­»RgƏθ/ƒwΠ AΦQ7ž%ΠΟ@Ϋ]¬ˆΑΎζ"'Ζ䌣icΖΌ7]9aχΨAb¨Ϊ$ΰ½+ΐΉκ|Κεφڈη€odΙΞ(θLτ32&}ς£ŸΡvŒ%hwl#v‹ηςpϋ™Žw9G»β ƒΕ΅τ΅Η{,β‰ZŸU(S"ύ L_Β.!ΌK³ CΗΫsPxŸŸšƒ‡*«₯όΗ$ύέ ήmϋΥφι)™-«~άm6όix μp xΰy‡‹ΈU3r#&ξ}PΠQψ`8sΡ“Κ@L3 ΘHD¦ή☴ŒRH‹Όέ(…ΧE Θψό I)Ω(΅%U’’™.s—}f'Ζ)Λ#̐Ν+K%Œ·θΊϊ‰ŠPJ’¬{jžTΜ]$Ιω™’>υιmΖ:LΚ/2i…V―Η:§aΤn(=Eͺ}+kg*‘ό ιyήρrά)Γ-Όˆ΅oΏώ¨g&έ‘u` …_&όχRΔ’xd⟠|`*(ΐ i&χI9ΗαY•ΐί€―δΓD½‚φdΓ…&€54––‰ςΰΗ Ψ’ΐ0—-΄©yΗ @xκ€ΌΔ'h½€΅9ζցΕq Έ‘αQš|΅ρnI_6£<Α€\‘cU€pΰ |Κ πi]yε•X‘€3\θŒFΏAζ…¦έ©eθς =ζΈ&ή2QV`<Αy°₯ϊ€I“l? δΠΒύCL'.yG \C@”(OέnΆsλνΆυΦsΡςˆu¬¬Z–_ρΈH©Yi•š,]&&©};Y9Ž1ΒΒGΐ―‰„πζ)€„‹KE²R₯Ϋ΄Q’Ω D|Ψ­$MηsΟ ³}‚:Ÿ{₯©>F?ζ>U¨L+kuwx&ο"λ’„ΖV«.’R(O½τM« Β>5WVτe‹§LܷꡁΞΗ‘O9$ˆE8"S†cqω"?€Y­`žž©w,=t…tb!yγ‘oρΑ2‘ϋXπ±½e’>,Κ l)ω£ιcڝDΉϊ8>Cκc%`―°ηΤ;ψFZΘ N½ωζ›Φ^q\”0N@'ys ㋇zΘ‚kΪ· ρφ?βΆΨ xμς /Ήΰ6ihpΑ==F9΅οMέ_šξ6ί6ϟ7H²•λr²$γζ bh Λc]ΎΡυ<œ εo½'iζ;iΝz{z‹y­\jΖ"f!LrΏŽιΣοξ+αμΜF—ϋΪ–Πcθ Rχc!tχξγ?ρ@―‹άρ€[[β'ͺΛ‚χχΉκΧΰx—1εΕqnήόf,Θ"½g( ‹?t‘ ΠΉœGο’·¨+ϊχŽλ¦ΚŠΚrιa¬ΈO&MΈZͺgχχ’½b «²$m’Yd3`ŸHΌ˜? œ_}ΕtIͺΪ ΅ΪKΦτ+$δ½πΗ—?α%ΰ%πί+³ΩΠΈ)[Μ<ΩρͺƒYπ41ΕlZxα— x<πœ ΐ|t/V–€ž[Y >9//////έOxήύΪΔ—ΘK –<πK2ώψξ"˜2^•f¬bVέG™f͚ΥHηεεYϊΙ'Ÿ¬ οΈ#"WκO?sνžLϋχοo”‹£‹Tηs p8zŸΐ ”+‘ώΗuΨd]|՜"~°pLC4ΰ™%jί]ϋ―iΗσ2ŸΖN•€ςJ©έ£½dή4^Nυ3»iΰy]‰„Τ{qNως mΩj―M%eSϋΞR±8$u™ΨSΊMώ©έ žrψ8»·ΠIμbkοŽέcy(n†Ρtz/x?&λsirΊγ]Ό²£Ws—ƒAΗΔzΟ {X<ΘsŠ.ΘΣs\‹žΡ-Ψž3pώ‹βY/ΐfεΉ„ ψŸdƌEΩi@–7½—―“sR"cjΖ¦]η.€.$”–*If‘Α"Ω,˜ρ;γ±Hf;©ϊηΫRΫήΌ·Ω«ΤwDd!žšΡmŒΡ?μ£z6XWώ§ν’ΑΉ†sM=ǟΔWοφΫψΰƒˆ\γyV‘οθ³Eπω‰rρ φ'ϊLΌcdΆ`Α‚FejΥ1ψϋΚΖ‡ώ&IFΫ`Ά_K™±sΓ[oύΨΓΓ?ܞZyβ’nž›.=_δ{υ`yύE1ώš“Υγ μl^RΦ™…YΣ―4ΫΆωE‡1€ε{ x x ȊU"WήP#ΥBf£”Ήαͺt3nhΉ`<πάrΩω+½ZCxn )ϊ4ΌΌΌΌΌΌvk xΰy·n_8/Fπΐs#qψv’Μ<˜ωb 0—xΉT=1/+3s`Ιζ\=ΐ\^’ͺκΖ^Iγ)’™‘μL.η6ΜΖ+s˜{φΘ•‚ΌρΔΆ0sA~ΘΒΞρ€ιγx μŽ`’¨/X>μή`\Οh@3°ΐήΕ€z9œ g’Ωυ‚‘B,¨ΰ0‚I^ &§€tƒΠεΕƒ.ύ H X @\`΄¬¬¬P ρβ‹/Z`lΝDύ―blε pΥΉ ƒ”Ός±¬_\,)IΙRsR?ΩΗ@Λx.Ζ£$ΛΛΛ-˜§Ρ~}χ–βλž•κ—Jj§<ιφ‡ΡrˆΙ—²άvλmR³ΌDRΪeΛ²υ«l:x@špρXC\₯Κ ' ·p[49x 80βΩX½Ωj©wL@A…Ο‚Π„ xd8x°•5rΖ‹0“ϊ΄νθΒ'V 8οΒ~ΐ2΄ ipω09­ξyT%Έp―©€£Οhΐ{΄υžΰziΐ 8ΐΪ’γzξςΛ/·^ψ^ζ8^aΥ3Ά ΎδnΟ0ήτšDΛ΄~ύz εΣιGξβΚ OΫh— pΒq­ƒ™ΐw€$@“­ΥvδO¨ύΆTΎψ€H•iΣ¬4ωβΔ.ς£1§'μαΉψžW€nΞΧ6ΛNΏ.ίΫ3žμ}œ]  ΞΝAόΓ½+ПΉΠ[Δ›9s¦υΤέ\OήΊ €ξ&Č~δzΐ"Όώ’—ΠΨΧ>Ε[V£ρ”‰2+ψΛB†ΉsηZ\K:”σ²Λ.³χee'0΅AΡτŒk£’±*GΚ°Ε’ Ί£°°Πκ?P0mG•‰vΣzΔkKUγy}§ΊŒί>¦μθVl'ޞYΘ„Ηmβˆ½TΟέθJτ&2ΰ˜φϊΗ°ΤxΜΗγ3ύέΞw"ύOΛ‹’lΝΩ![Xσ‡>B_ Pv¦£΅/νzόρΗ'lίmβ-ω³l…l?]B›6KMa΅πyΟ¬Όβ‡?–²7ηIκΒ―$e΅Yθε„Ί¬ ©ιΏ—δiμnοBY~έί τiuΞ•7ž.‘ΜΨήfdόΟ6 ϊ½zAg<W}wl„ΎQP•ηΆϋξ»ΟŽΟβ­Z4]†.ηώ ήŒ[έΌΡ³ξxΰ™±eβe―ͺͺjτ| cbΚηκoža‚6Β=―zeνΪ΅vΑ₯zΟ'ŽςsŸeΠMθ/ήO’χΈη£©νΈ―΄Bj?J*oω‹YlYΏ  ΡΫεw² dΈϋ˜ΝΨωύχί—*Œ}κi,ΰ‘έT)K¬1Έ–·©η‚ΰψΣ]€ΞGώ γΑ™H”»΄΄ΤΆ+‹S€œ]}œH?cGέΙ –\έgžθO@σ³Νβ ΰ³:›μO:ξǵ\§L±žŸ΄}b~ύeΩττ Vo§c{ΙψΥις±Q».πœwΑY>Ιθ‰0Ηί"IΛ ½gt{ϊΤΛ$Τ£‹žφί^^^^1$°xIHž^cΝφ€½7Λ΅—eš1ŒΘΝφΐs3ς§½v°<πΌƒμ“χπππππΨυΠΙτxKΒD–^^»Fxή5rζZU2Ϋ”…-Θ\j@fΌ2/+ήκ‰ΉΒlί[^aΆπ5³™—K8deβ‰ΉΦz`ZΆsχ„η=…ͺ)©3ι~¬Y³ΖΒηxWJ ΠΎlqMΩ(³B2n?¦α9V·=Η{*εrA-‡ϋ,°ςU0[οϊ?ωβ €Ρ<@kΊ”q†0Hpˆλi;Όj·ΆΠ˜οš%kešψηoWΙ9―ί“πΌaφ"Ysο?mŠΞ8B²Gδ€ξξnκό1ΖΓ0χ›†h:Ÿ~Ω\ΰ>εώPx˜ΎΝbχZξΖΐ,’Zβ·°?ώΈ‹‰οΪ§DΛJ™Π! G+qΚΚΚμβΐkϊX—k θ0lAυ+‹X½φΪF:”ϋ›r’s՞©ή΄7όqbα}~Γ† φ,r,))Ω‘e’$bKU–|SdK£©pu‘ΡαxW₯αΥ“Ό Ί Ήα©ϋJ;1ΉρΖmχΐ&@«ί9OΉšλΤ™Ύ‹«άtυ7y»vH“>ώ€ 8vά½ˆ‡½ΑFPom{ς¦ŽΤ‰E9l§zφ·Zϊη£ΟeσυwΩ«G~4GζΙψ}ΙΨ=χo”bΰΆμ»— >\Β{χ±ηΒ6Kρ•‹¬2ΘΉύζ3$© «ΡuώŸΆ+ϊ£ ΝΘQ3t΄Ϋ§έ±^<5κ2Όικύ™θύpάqΗEξ'½η(C΄gŽ»φ }‹MqοGκ†.Fgpoϟ?ί–f§±ˆ₯cǎvόEzθwαγΖc=6²Θ‘Ή1υ‘,›ζΜ“―Ώ‘φΖkοσŸ}hΗΡ:&μœ›'ωkχžϋ=υšΤ,¬_,Fώa³CFΈ}ΤοΠν―½X~~φ;φΆcπ§Ÿ–- 5q5¨œ‚ΟAΰύ£π―^όΦη'dΈlΩ2 †[wο½χZ½ο^Γβtr[ΉredηxϊΊ“ΎΒxΎ9Ήκ³J’ύ‰qr"cκ‘φ½Ή2mχάΌ˜¬ψσ£’ώ―""ύ¨v“ žUlSς—Η$ντ‘‘s1˜>Qyυm’ςŸeNM‘Μλ~/·ρ>1―υ'ΌΌΌΌδƒOB2ύnvΆ9μΐM2φ’–ƒ=πμ;“—ΐ•€žw­ό}ξ^^^^^^;Axή BφYx ΄’<πάJ‚ό'³acΨBΚeΖ ³ΒΜK––JE΅ρΔlΰε γΩzd60s”y‘f%“–Zο…ΩΜfΞΝ Kξ9ΖιNΘBΜfΞ7s;2›yΌΌ xΰΩFψιh@Θκ]M‹°€ή‹<7Ί‘^0/Ό΄1ΉόόσΟΫνι .,,”’’";Ρy*4η‚Ά€Ιyΐ(<KixΪ€@Ο@F:y­ηπΒ  w1 LΪίqΗRν±υπVοή½­§O=€¨ͺςQ—X2ά6ύfωϊΜ?IxS½η·$γA±ΞΐF’œ$έ―2^>χνd‘ΚAΘψθύ€θ—χJ(Γx+ΝI“€όLIνΥAΆ ί[ϊοjΐ‚};χ6Ԋρ€œcΆG6eQxΕFhψ €φφΫoGΏωζ›ώrNR—χή{OlγβI on@\ &ϋΙεΥW_΅ηΈvΪ΄i2~όxώ΅P5ΠΫU3kΐk@ΐ2`΄`υ¨Η5ΨΦ›Άvν”L-Π)λ< ηwž’ žιg-)Π}‘ώ…ΌIgδΘ‘Φϋ™‡Lš4)0jِ cΧ]ν!Œ1p€Κ?ΡΆΓϋžΆ‰ζ‘ί<βΙ0žP³t¬½uωb}±\΅ΰIΙI͐ωΓ'os)ύPL?O5Ύ+Μ–υ WX?©W; ΛlρnΌ%šs‘τTΙοhŽ™-ίCτMsά~7όσ’³Χԟί&S U%M+”IFΡt>ύ2žΰΒgAέΝυά7 Ήιq_ΏπΒ ˜ŠkΡ―Ψ…•άE2zm™2eŠLž<9²₯oίΎ},‹‡_‚Φƒέά@™n½υΦXΧΜ ]εΐΓU&WΆZΦ¦li°<ϊθ£1υ1: ύθώΗn*TηHητΣO·:\ΗzŽoμςΥ.Cv€rΨq74Χ8­i‰ΞΧ|\ xΦxj#ψŸkXπƒ]pν;x,ΫΕuτ‹xCΘ@s›Ÿϊ‡LX8_ήZ·B&τϋΉlCeK=ηοIψ@c{Y…λ„pm|{νSRχυ;~θ:υg’Σxšυα;#Ζ(.Έ DβΏΰ‚ μ8©©>M(ΡtΗ‚!žϋΟύΤέΪξiΖ—'t’͝ΙX;Ηu,žΔζ¨ήΑS1‹YcXΘ°«ρ΅YθΗΒ5‚zf ΟΞ2nˆ5¦f\FYΈI \#† Γ΅ς³ΠP=<ο5χc©ϋχ'*3ی9:3υ¨Cεƒοοƒ³ΣžϾ.5/’Ί‚\ DEσ)Ψ«„Ίu’βτδ L;»ΐ3ύ½¬›)φ)–Ξgηvcα9Δ ŒŸ±I>ψ`δ002mPdΖΑ?ž~†]n鳊۟°ί,^Œ¦_©s"cl|"ejj NŸo6,ϋV6oΟΙ+VΛ U2zώl{ ;ΚD»—₯gϊLευwKŠιΈ$Ν‘ΘΐϊgΓFρό?^^^^MJ`Ξ»IςΗ‡ΆΨ8Ï©–s~ΡxΜάδΕ '=π”|/'<ο8Ωϊ”½ΌΌΌΌΌv xΰy7i_ /8$ΰη8„τŒCURnΌ¬/Μ₯eυž˜ρΘ\ΌΌ@Μ!©¨20seΘΝ›·Τ{ΩJD f>Lr<1γyOΜyΩu»W~=Δl`ζόά: 2gl;O—HV>—ΐ΅<πάΆš?μLΰΐ£OŸzOƒxυd" j &ΞšcB€(I| %΄©ŸyσζΩ‰mZ h-++KΞ?| r1˜2aOXΎ|Ήœ|ςΙ¨Ψ’_Ώ~ΐ=z΄Moq ³α}σj³Mόν·ίn―λ_j·Έ¦LLpJγΥ™2#G&»ρ­Ο”ΐ­ΜΆΧαςRWZ-iνs%£WG δVk Lšτ‚lωΆTΫοΤNyR;φ˜πŒ—ΈNO->_.!γϋ5§Κψo‹ΐLφ€wοΪΝLˆ‡δ•W^± 1‰!γh “μxΪ£ώl”ζΒe@&κΡ›t¨³〃κ•sΐΟcǎ•―Ύϊ*šα9―y΄)m‡,ωΛ_έz cKυ`~΄Χe—]fΑ±—_~ΩΖενϊΨcE aŽρΰI”νΫ`€ν3π> X ‘π[’eBF”‘~ˆGX υ@2‚ApΘπζ›oŽ€ŽxD–HΣ…-"mΧ½»l»¦€9@ž»οΎ[“Žλ{Ώv=δ³’β˜ΐs£DŒGθΊoΦ›• ¦ ³'ξΒVεL_³¬UΧΤFF YS+ mŽε›­ΰλaκz°šxȈCάϊγI΄Άi\0δΏ5u> O‚0kp‘K³ΠMƒ0ιΛ ­ͺξv―uσζξFp_’χοΌσNΉόςΛmjΐKxΒeL݈Τΐ3eΞbp-:¬°°Pf̘YŒM‘Ψ"Χc*εΰ>ΓK(ήCΉΏ5(ζΚ—sεεε=ŸzDε<Ί {Ά#Λ„ξJΔ–’S5Οr]zι₯QυρΜ™3ιo£ΰ!tΜ9ΰeΞ±ΈfΠ AςάsΟΩ1Ηθ?τ%ڟΐΞ ,ΑφΣ_‚žY‰Σ\£ΏΈ oΥωδακθζΰPς£LΨΓ }ηw$//oA‚ Όoκ{`Η.ςρΪ•rν―+γ¦ί`!ΈXρ—ίτw©ϋ`™Υ‡&όHφ«·3±βϋγmOθά η_wGj΄=ΐsP—1ΖΥ\Ai5w?΄kΧ.κΧnΔ²xwF&Nœ(t™ρcF 蔏>ϊΘκμΞτιΣν)ξΝ3Ξ8CL―Ί πΠWθqX(πΟΈŒ±ΧQ&TbΫtL«BΑΔ ³homIδ“vΜχdΨΙ'EΖΰ½γ.©8gλ8Sλ€ίI;ΚκqΏŠ<v³€|Α§ˆNκΩUj »Λΐγ~~BΗ+ΐL><£1ή¦=xΦΉθ’‹μ³ηπVΟ³’ΖΧΊρ|€!ΨΟ‚ΐssr >«4ןЯ•7Ώ›sLš4)ᢎ΅h…±ι%φΚk'_—›~`B<ΐsωνHΪ»Ϊψ)rΜaφ·γ%ΰ%ΰ%ΰ%ΈžωG²όνοƁ Ώ9;UŽ9|« ‹'5<Η#%ΗK`ΗIΐΟ;NΆ>e//////έDxήMΒΓK  xΰ9!΅‘(fώΖx`6π2 ³Ω)pΉΔΐΜΛ–—[pΩΜΖs₯™«7$1Γ«δhΩΒΛ`Φο^=ς Δl<0ηΧ{bΖSsvΛv%k#’φΕτΨ}$ΰηέ§-β) “Ρ΄@(0pΌŠ=Q’OΑ0t#NZD6l˜Π >"›ρ΄ Ψ΄hΡ" (Ε πιΠ‘C#HŒόa˜ LΈpΐ  >“ίLLλ<ωπŒ ΐ5 e"p3“逩°α裏Άi;h‘§z—ΆP8lŊrβ‰'ZPΨH ›8‡ηδ3Ο<3δrXhΆvKl)©”ZFGIΧ”TIey…Τ ξ\ΰ™λ{Lό±Œδ g'rΘωd¬ΎοŸœ–>#3^zΖzτγ<²zώ#ΩXR!νzu‘΄Β=dQνZλ Žψ*Gdοϊπ· ”Έηυ·*Θ¨oΪBαβ‘Φ΅Χ^+xN₯L_|ρ…=†iwΪ„φ’MθGkΦ¬‘ &Ψ>Λυ.\AœuλΦYXr†5Π·oΊι&ΙΟϏ9€ŸH™΄OSή ΔF_‘Ρ(·θ?ΗS60Όφ7"}ž‘eηΝmύI‹>Γ}Κb•“–ΙΝ‹ί-žΑρ$Hϋό₯ρFn νΝΖγβf㱕oΌ“›οΪ΅²φ/s$΄ΑxBΚM—v#I9+ΦΆ˜>bΞ‹‰Οo‹³ηΜ1Jο!”iΌU›νΏ-\¨ ΤiΑκ8Ϊ/°@΅‰Ϋ/ΥΔΑƒuR‡lI2ίφ˜°“²wsAΟBΥq΄‹«Λ›λcΑvlξZΧ¨Ν6 *T'sŽώΧL _Yhqψα‡GμSKΚΚύΑ½Κbšhυ‘Μꭞσ,δδώεžucΌqοήzλ-2dHPώΔ}αqή½‡]›Š(“|;ͺL-±₯Θ#^} LM\κC^τ;Ϊ—ω H8tθP+/δDi;q»Κy΅Θ έ„GM‚«σνσ§ΉώGΌ¦t>ΆξΪ‘ ~uut΄φΥ²4kߍL‚6U―Υο–Ο€žŒ+¨‡»GΣΤοεΏ.u/-΄vόί‘’9dλξ Η·} pΟΊžι,μγΤμΣx#vm‚Ζ ~GΣeΑϋE―ٞϋ‘ΠͺŽ'έςQGΖΪ,saeΝ[ΏUStγ}lLS=Γb žI#8.C³cŒ«Σ{² „ψ@Φμ(B¨¬¬”#Ž8ΒΪ4ίaC¨K°>,fsuέϋν'΅«Χ5Ρf‘™£Λ³D’Φ—ΩOŠΡ«/y. άϋ-Y#z:R½Τ£‘ΊσO—Ν&Ώvu!Yχη™R›—cθΜ‘GΘK¦<ξσce˜Ρ'“&mέ΅™Η³μl ργιg,ŽDFΨU•+»Ÿθ˜˜v ŽwΥVς=ˆωόΤ _έΎϘ#Z™Z:o πάΟ,B]dvΉ!4<—ΞxJ2^|ΣΖM?c„„F³Ώύ////–Kΰζ»«εύqš/W\”"Πψ}NS){ΰΉ)ιψs^;^xήρ2φ9x x x x x x μb xΰy7€ΟήK  xΰ9aν’¨U!γ…9lζR3—–‡eYq…TxΉΌΚ|*ψ„€jγ‰ΜiIV¦‘πΐŒ'ζ―Μ½zζ[οΛfOsΌN ςC&N‚‰'VΫKΐK πΐs „Ά /N`«ζ?ύιOq'΄)π(P/^½π:Μ$6Η\X‚xL~5xΛόd‚ΏK—.*ΰ<k~δ‘G,Ψζn―\+φ_&πyΘ XAA(½‚γxΖƒψόpb›Iτ`ΉI‡zΉ*qωβρqς5j”έžΨ Ωθ„<ιΰŒ@ΊβγΟ‘ΚL(‚χJΰ> xΓ£)r£nš†žΧoΚΆΗΎ½ϋΛ‘Ggv’KΉΆ©υ~όπ#ςŸ±JέZ³evΥfΙά―‡¬:uOΫ@ΟΣ_Ά’Ι£χ­£ες;¦ΨλώωΒ,)ϊύ#ΚΛ0ΨkζSΠ³³dξΫ]²t—E_e½bσΌ ¨>xπ`λύšϊ β%šrΣF΄ Z'ϊΤ ˆΰm–2<#»₯K—ΪώΖφγn[Ά*θͺ·oEfό―^›IΠC΅mD_ _2£-Ζ•W^ΩΘ“+^™δ"½`ΏΤ:Rϊby(%Žή΄]ΠS*eUΖ•“ζ±½ί8#FŒ° bmΕ]W΅I–_ω„„ΧTJ(7CΊίόsI*HlUYΈΖ€ΟΐΣ@Ρͺ‹ό¬6P΄=g(˜sαΝ[€l| i…¨¨Ok+h­ΐυφΚ£%Χ‡’Ν ©z“6t=m ι―ΤAοΥΦCu4]ο©Ϊx Ζ ΅9Ζ5 ToυXmڎΰφ1 &>nŸ κ| "ξ·xBsΐ©kΠ›A€™Όρ„λ_ΪΟά/z?΄΄¬ξ}힑ξ‡rˆΥxΒ9rd#ypΏ1^K±Yθ|`@tχ:@Χΰ‹Ε>ά?@tS§N΅ήκρjμκ;t”Ϊ½ D†ŒΉΗɚ*y!»ν)εΠ%nϋk‚Ά½K“iΈϊ˜6Δ+ii©τκΥ«QΒΠ.j;΅]Π? ¦“°ίΉm₯ΆΤ΅ιΝυ?κΦ”Ξ§­Ρƒvˆλ4Pn]” x&–ΪwΝ§₯ί§œrŠΌρΖMΟηύGΦάώ’Ν"yΘ>νoivώΊ6 Wο>όσ˜κާθ―,²γ9ΰœsΞ‘ΰ±ͺΤeA[’Χ5u?Έ2–#­X}ΡπΜyξk`LŽ‘Ξ,ŠdŒ πgΖθjΟ°5|XΈΒ5x,ΞΙΙ‘ΑfμΚxsψπαφΉ€1=Ίρ9ς‰6.#žΠλͺΛΨ †ψρ„ ΔνΆcpξgˆŽ–&nŠΎUΰύΨίμˆVύΜ,IZW*I%ε’qΪpIύŸv|U9εN‘š­Π{Ζ¨SdρA{EžŸXH™oΎυ3 τΤ―‡NΞfe‰=†.Τη!ꀝTΫO?Χ~‡\Y0H_ΠmΌ‹ν#_EΕσόδφύDΗΡΪ:Z™(OkžYδEhxžσΎlΌϋoσαIήοΟ±Ώύ///Ά$μ·†¦Ζ‡o½&ήψξ΅ρόf=Ψδ[7ΘΒ―¬Ή›zEŠτν{Œβ¦ιgWώ·—ΐΞ—€žwΎΜ}Ž^^^^^^;YxήΙχΩy l‡<πΌΒێK«ͺf*γ€―ΜK‹Λ€ˆ€Ή2d=1W ΩΜσ'23 Όl ζόOΜόξΩ=W ςBfB%,ωd.ΐ#³œΝ\Ώ^^mTxn[ ΗD-žrΩΪxΐΜ…Ÿά‰w<δ2aμNHkm™|X΅jUΔ[ς»οΎkα'…K™$.j’Ήˆ€νρœ†wιxiͺΗgΆΎΖ+§ σ`ΒΠjξάΉ";α„Ά*˜,q·xφxυΥW- ‚Ά‚‚‚F€,ς:χάse†sv:οΌσμ@½=φX#ωBPWxΖσ%Πχ @B½ŠάhrAΦΫΟ’Vπ«©64•κ-²¬t΅…‚Ξ¨|ρcΩΈpΉ„ΗήάΛ†I·υ[ΫŽlw€¬™ρf£’dΦWδΜAfaS΅τθΨYΜξŸIYι6³D5΄“™Φ@IDATeΥ²6e“•=αΥΊo»nςξ’νώ^{νe= jί rzκ©§,$­eš5k–έf€Ίm €Ϋ€)++“ύŒ'<vύ€‘kέλ9GžoΏύvBeΒσ108ΌρήΧ΄Γ½„ΗΩΖ«-}XΡ!I/Ψvx›sγΈ}\εΔ5­šžΓ΅uR<αI ­·PnΧ©?‘”žν[+ϋVOxψY½SNλ€vΐjβ”βAΡxV―χd­ή©ΝυζX’Ζk5βααz'‡ƒd@κ˜Ίώ7@΅YΨ‘P΅υRMœ)θΤ‘ 6Ώ©sξ+oΉ>’σŸyκiΩΈ²ΔΦ!“F¦YY¨:ŸώξΪ„¦ͺΫpΚ}{Μ1ΗΨ…κ-ΩνίPύ 8¦φ)x?νS΄²rθBƒΰ=γήOΤ+–WJAv  LΟΐqθμχ>υ"θδ;pž»ΨCu`π{ο½'ƒ TG ?`:=Ο1d°xρβΘ’heϊΒ›iKΛtϊι§ΫE%_O’ρΪRδ3Ξ8ΓuθtΚ¬υ₯ά΄=‹KTcKΡΕ,@A―ξΉ:ŸψθψύθGH‡Ρ`;‘>ό¨k π Ιx,š’―<ρčμPPΏςSΐ3mΜ‚―–ΪχϊšΆόosΐσ–E+eΥ”Ζ‘έ₯Ηψ­‹Zž«Ώrw–ϊIaέAΔΥ»ξ}υπΓ ϊΑΥIΡκM—=Gs]kάnωu¬η–ς3&Ζ+«>Φr³’07ρ—,YbΗω{ο½w£ψœΣ][XΐΒσ ΄¦‘vΙ•Ÿ«³Uw±c 6.žpΛ-·XšfyyΉ‚ƒŸuΦYΝΆu>π¬‘r’Œ‹ΎX$_~Υ σ»υ–΅ΟΎρuΤa²μϋϋGμΐsΗφνeO3^' ›ϊ\ΒΉΩRΧή8"Έϊ·ςλ‰γν"Ϊε³θο{ΦΕΔΣΟF-γǏΨχΰσ§kŸUŒΑύοΗ­_‘KkŽ9’•)h#¬ΐZψ'.ΰωƒΟdγMχ³ŠXjφ“œ AΆ0G™—€—€—@ό`Νψέ Όβ9ϋoΐ&‘Žϋ,.e1–ΪB7-ΖδM^Ί`‹ψG//////,<οdϋμΪ”tR ©‡Š5―5*ξη֐b}8¦,)Γ³Ψ^——,-5πr².γ‘ΉΜγχγ&ѐšΆž˜”s<1χμ‘g ζzp9Ÿo3·3߁χb‰fεγ{ x ΄ xํ4TC1™lF:逓μ&’™$gς€Ι…’’ϋ?pžzž8ΗuL$˜¬ΰΓ1 d@$€NΌ\2iΑΈ@ ΰh/kALvpΎΊΊΪώΆ‰™?L(““ά@©Lr;α°ήuIΟΔL|(θKl!Μ6ξ\GΐV€V„E‹Iaaa£‰ΰ'…ΟζΜ™€‰ηΞψΗΦΫ&S?@)δƒ<¦M›fΛ2ΓΐΟLphžν $ “1nZ@1‹c=ΦΦ Έ Π—I­yιΗ]ΡΐΌFλυ΄^λ† fΣ!O@BN“'OΆ:h §ŽΐΧΊ­5ΰ]G3f¨YU&uεdύ’fOξΝγόa2ψ‡'Ψv’MΞ>βd)žό¬Ν―ΟέgΛc―ώέΒ%Ά­ί·$Wl–“Ξ%³ μ‹§Ό;ΏIΎΉζI© …%mΟ=€Χ'ΘqΗ³η:κ(yύŸ―Λ“O=iΑ3…άρΦ§rE^E Z#!6_wέuΆ^Ϊo€κ]ΘΞF68†œ‘–‰z(΄L€+ L™ΈOΦ]+έΊu³Ι΄Lš4Ι¦l#ώWΠ„ΘΘ•ηΡ>}ϊΨkρώ €―υ±͟hmπ­“ΑΆ£mI»΅BsΐsρMOκ>( ΫΞFHΪ~υ²h­όΫZ:uΥ†τ7 4©­·iσ»n#ΏΝ1σ­^ͺΈ.]c€jλ±ΊFB ήͺ9§Ά©ώ·^¬w€@rΩW>ΡωσηΟ—ή_n”uΏ-ΉGυ—ΠθC­'}ΥωΓsχ‘’W?–Ξg-ωίοg5,{ψuΩ΄ͺΤz²²ͺΞΪ§«ΌψΩ{/½_|ώ…$―­–Pj’„2R%Γ@RS§]oοQt0/χχ#zΎŒtmΘ+―Ό)+φι€°χV4ϋ„έqο;Δ‡ˆf':5¨KΣγŸΕ™€Ρl 6Em:B½η£#ξΌσN[οΩfμͺΊΉγ²¬¬,™dΖ‚Œ«έ15 π(‹πxΟΈ”πK/YIδL™ωŽΑŸ]ᦧΏ£=Έΐ3υBΧΖ­σmn—•-CO>Ι>«XXόwIωWKx}©€}˜”ž~Rda#‹aΗ ?Y¦ώ很μBΕߐ¬ŒLI;ςPy{α'2Έa±2δYˆη.WΝ=«0& ž γy~’kί§_Η3ζpνL°­wτΌ9ΰ9τU‘lΈοάf’={JΞΤKύKV½ ό·—€—ΐ•ϊ§ΌkAWρ?»’1&ζύ v΄9[E?π|Δ{AΖϊ°<#}τΡ‘woœΓ.bOΩ5a’±΅°ω<Λ°H‹η7οζΚΚxΖΣhšξ7ΖMέ"«Χ&Ϋ9―›&¦I‡vMCΟxv%θ{ μ| xΰyηΛάηθ%ΰ%ΰ%ΰ%ΰ%ΰ%°“%ΰη,pŸ]›/Ζy ΜD/ΏƒΠ•ΠπLφι ^PW'9[»²xnZ’ζ݌˜·Μ@Μf—JYV\nfλ‘Ω€ΜPΪΈ©ι΄’5ο“$7»ΞΎΤΑ 3Ÿ<3χκi<Ήp˜™Ožœ3Νξφ>x x x Έπΐ³+ΆρX«ΏΩΆΐ aΐ¦ή½{ΛΚ•+- 0/ή 3―YΕ 1!Αvπ\p­8žΙ8ŽΧD`4“_|±…ΔHΟ O)ΐΐΨƒx€ΌxΆ$ΰ…tκΤ©†ζ7 Υήq‡-§ͺΤ  ³Π@Ο„>ψ@N<ρΔH½™œ§¬ +Ϊ$(¬ΜσP-ς Px!/°'=&ώ»wοnγ0!,‡œ$€BΒ”yUVVΪψξκ ˆ‘γ/=Ηρ '7x&ž ρ` ξ»οΎ6 kΆj&ΰ…Άp‘2ς΄ΌL`iΠ²Π }ΡF@έ½{φ’Pr’όγ°žPΉ†‰¬Sz,Ι©)rηλO °gr,©&,λΆΘυΧ_/7άpƒ=ΗΆΦ'χ9DV† ‚μΒψ°gχ6δΘήχh'ڎI7ξikΐ·hr%=ϊ7ΐωΛDΒ– ˆΞ…/ϊρ`ͺ°#ιj`|ηp=‡Ό ήL)/0>εUyκu|'vΏϋέο"yΈi΄τwSΐsρf›ψWΩ€χΈ`¨dξΧlόuqJOΣφciγi•…OςΐΞ"[]€„‘ΡέMΟΐoρκόΣN;-*@―Ά/θν•Ά[·nέvΩw[Ωνψ xWn’ε—?&αR³‘}ΆtΏι ε€oGNώΆ"ξ9τ€ξ4Βάo,$dΜN+χΎb ƒŽ@·a#χ’75uγ%WΧ/Ρϋq,Χ¨nŽ–Wx&>cs]lΎΎδ’Kμ₯ΐΕ,`― 2ΟnΩ ?ψΰƒ΄ΜX‹]ŒΣάE(͍©—Ή€•ΪdΚ8Ρ―°WρŒΑƒιR§ΰs <ӞΨΤDt>εzΜμZƒή&πμΖ3 i­Y³ΖΗϊ|ψ‰ΡΟχόMΎqT€?5ΥΟ^}φ9)½ύΙΈό\9ΨμΤΒ3Rsr₯]—/_ž~E.@πΘ™ΠԘγΝ7ί΄:ύX5W¦Φƒcη7^² ,°₯?DBρJΩ0ώ ™Ό΅έ:IΦ΄±ς/c#βρ?ΌΌvœ°Ί¨οιX(€sΌeuη8£₯Λ±u%!7e³έυ΄SG3F˜nύΔ†ž=πK’ώΈ—ΐΞ‘€žwŽœ}.^^^^^^»Pxή…ΒχYοΆp'xƒ“šΐ<ρΌn­Šώ7ΟfŽάΌD I™—ω”ˆΉ΄,\1W%Ϋ,εb IUυΆ“'Νɞω–œ,.ηΦ™4u’Δl€eΌ1γΩzd6ž˜σsCMΎΐi.ήKΐKΐKΐΟm―0ωΰ\Ρjΰz[*brZZ&ΌΈT8βˆ#,œ-ΐ i 7θ+&+HΈ ИΦυΘΨ―ΛxΫΤ€'ΙΜ„"p ž@ρLέπΘΙΔ»&Ύ€t5­1aBή@Ί=ηTi&4°υ₯—^ja5 ͺ_ύκW2cΖ =υ›Ιt@ΖV€Μρ„ΰψŒϊ <γΰ €ό:θ F“LΘ/<κ©9Z^΄u%=$bbI·f²I!d9ΞρM ύ€ α2 n ιΡ~€Ο„=π1€°ΆΧΊr₯ΌΟ<ώ€|sζ=²ΧΓΚΤΫo²ήβˆKΆ5ΗΜ~ΰΩ3WωΑχmίδxSAA5€˜xΚ0IpᏦην’ΐ }D·Dwε⦁Œh‡DΪ.P㦙θοXΐσΖ·Ώ–Υw½b“K:voλα;Ρ΄}όέGρκό³Ξβσa‡«_νE?. ˆώH€L‰ΪRτxvˆ₯½YDγΒΏ=š-(Γ~ggg[³bΕ XͺΪθ_υB‹MBΆnΐΫΏλαΉ  ΐžFΞΐ qι|ΐ ½†h?ςβΰέ]wέeΫοΩgŸΨ^τρΧ_έbϋξΦ£₯Ώ£Ο,”XŽgηbγ•=+MΊM%ɝσ[š…Ώ J€ϋέ]€­ ψ’ΈίιΫΑξ8<–.£ίχ γΔDΖ»^xadž> KfLΜxžc€O n”“{Ÿΐ°Y0‚w Ο?Όέ)€λ¨;Φ §θ₯1cΖΨEi<ΫX„β 0βSΗ—1ΦF©η{χΩΙfbώΔ;Χψ|«œΠ= h“6Π.vAγPέ­@uΈϋό€ςE–€+°H‘EB›+*%Σθρ+žYθνž gΎ$΅Ÿ}%™gž*oδ&Ε%Χt³ΐjъε υ§ύί΅Ί{€I͎9ξ0‹d‘ΧƒΗžCΖ«vΥΈ%©ΌJκΪεKΦMW°^4ρϊc^^^­*lš»hŠχGΌ‡Γ¦°˜[I`\Μ"ώ¦#UUUΩw†Ό Βήπ^…wˆŒλΡΧjƒuœ>fρ‘ΎχΓ±»A³ΠŠEόl:ŽXΈoYu,ahβOρАLΈq‹ToI[δΖ ’ήψΡ#r΅ž#’π?Όv‰<πΌKΔξ3υπππππΨ™πΐσΞ”ΆΟ«-H€‰`ΌK‚@ /υβ]yݚuώ.ΟUΥ\.ˆ™o3Wΰ‰ΉBπΚ\fΌ0WV%™ίζΫ@Μfn)ᐠĜχŒ7fγ‰ˆΉ ?$dΞ7ž˜ωΗΜ ϋΰ%ΰ%ΰ%°Γ%ΰη.β’“xUT/Μn&x?PO”LΪ3ΆVpΛ…$˜lΕK#ΐ­˜XΏοΎϋ¬g[Χk0c@YΖ"x}BΐΓιC1Lω€0€Gl3­c7 [<Γ9)œΛ΅«L˜ιΏψβ‹v²EλΗˆ:yζ™Φp―Œ`ROΟΔP`B摇²“5n|~3‘lq葇ΪI @k‚x0/^²$¨^qξΉη;qpNy8‡Wι άΐ9γνl„|θ!Ϋ”₯ΡE X―~7ά)ε^lάξ)γǏoΆL΄1cgΚO@φΟΘ Ή^~ωεv2˜―pτu τ%dΔ½E ]šk;ϊ©ήšΞφ~Gž7φ­¬Όή,0¨3[Δμ&=Əάήlόυ»θcMι|Νυ³οχίJI•y™α=?Ρv<ΣΠvΑ@ΣΎΟωνiλ`ϊ‰όOίΖΓse΅T_1]’Φ¬—ΊμLɚnήίwκH²>—€—€—@‹%€ΐΎΜ0οn/πŽŒq/6˜1;caήiθBϊX‹~8^TTq˜ΐβ`gl Ο0,xΤΠτύv˜wΛ,žfŒΰξ  ;τπ^x;,+6 Ϋ­¬δλΪΰXBZΌ$$WO―1eΩgΟΝ2e\¦±§ΫΖφΐσΆ2ρGΌv¦<πΌ3₯νσςπππππΨ%πΐσ.»Οt7•ϊΌdηeΊba²ΌΌ<‘•ΧρΌ$ΠΌšϋή݁η ΓRV€˜yΙR)7ž˜+ ΔΜ§œo378BlʍΞg€‡­'ζ\γ‰9―ΑsξΉpΩBΜxb1Ξ=’Ύdi”˜ΗKΐKΐK`'KΐΟ;Y୐“€«lϋΛΨ@h™ _`ΐ,ΖG}tdœ &΅ LrλD7G@KL^0!ΒI—.]δή{ο΅#κύ…4ΨRΫυ¨LšΉLl0Ύ¨e2Ÿρ Ÿ₯K—Ϊό˜α7i‘?@ΰp.И;yΝd εXΌx±TWWΫkΪ·oo'g€π€©u .“9ΐͺ΄@uϋcχ—u½2₯wοήV-_Ύάκ&κ‹ώ&_tcυ5—ΪΥ’bΌγζέπc«λΠ­ΨK<#βO2ο`³¨ε ’l©-ί ―e¬°zRυ6υͺEozφœ ”Ϊ½½ΜzύU6l˜•_΄2‘K«ž/΅5΅υˆύeMϋ•]¬2 h`υδ$Σ>Ζ 6vΈΝ–²E4zœϊhτϊ=š>φUύM{’>ε¦=)cμφ0yaΏhŸ!vœ`Ρ56kΠΝ,bBo½H[Ρt§ •#Χβ…•΄ikέqoΪ,|βgα ”θwΡμX±αΤΙΈaΐ€6 ϊΑ²eΛιςΫn»MΤ3-ύ6Qϋeoο πΌό/Jέ;υ^k;=EΆF6>6&tχcPξ1ξKt? *ΗX<†Qˆ‰κΉΊΐ= p̘/^]Ζ}Α=Oΰž%ξ@(}.ΰΎgΌJΈΏΉ—Ρξn1Τ……”ŒΉΠ Œ΅Τώ Η¦g/Ύψβˆ]Cθn@ͺΝ;Ϋ±>²@&€‡Σ€,pΑX868¦Ž5.Γ† 7ΚΞxύŽ>α#j|Η;'.iΜ6 tΤA…Ά εFOβy™Œ/Ρ‘Ζαθ6ΚMη³Π“Ő½zυ²:}F{#;ν7:ΕΆ³hŠ]t;κqžUx†ΣψΑ~¦;"¨|΅]Ρ]AΉς¬@6Γ€vuγo•τ“‡HΖπ£m]šϋSkψ$$Σο1ω‹Ό&ΉκwYΫ\ζηmDβx μT xΰy§ŠΫgζ%ΰ%ΰ%ΰ%ΰ%ΰ%°+$ΰη]!uŸηξ*χ……–Ρ…XxΡΐ‹x@tW^sŽϋ)Ές:ή—š_Sί»x6σ#Rbΐε2γ…ΉΤ0JζύΈυΘ\ΌΌzc00syeΘ‚Ξ›·ΤOφ7U‡ΰΉΤT1/ΛΜΉ9΅Ζs=Μά»W—ΓΦ#3ίνς™^νχππh;πΐsΫi+-)Ί4 3ΜΔ2[P1Ž—E&Μœ\ο̚ίLΤ»ΫH2 1aΒ /0NLRθ–—Lΐ“–nοLxOf«Jςžωδ“FexΐΣ GΪ𞠼¬eΆ0Ρ-Υ™ΌΒλ7mΟ9ΰ<‰RκΗ@* P/edβ ΘR=PΚ<=σI©|kCmΦHΥ,ΨA| HΚ€P2‚ήzλ-+Χσ?η<(/I΄…?θŸ€AΘτΫEίΘς+ μlΌμ†ΪgI›N—PNz Sφ—νΰ>γYoΜ9ΆsΡχ£υitH,ύ―υCΗ²°4Ρ³<&gτ“Ο@Eΐw,Ψΰ~g¨Œriΰ7` ιΧ_mοwΚ‡ξΗsSΟ‘\‹Ž΅Π—<°E€­ΐV€Zθτ+ωaΗ^yε Ω=ϋΤΣR]΄Z² ;Λ¨_œnZt?χ56‚ϋ‡ς£Λ>5z―ξνΕ²0ƒGΎΜ‘6oΚD²Ϋxι₯—Zψ΄°₯ΏϊS©­Ψ(Ο.­Χe΄+uF§’ƒX`„d^’{ `ω7jμβ τ1εA#_β tφύΧώZ6nΪhυ1ΆyP&@Aή!ΠζΨ^ς$¨}§i_ΖΤ`°1Ψ`5τ%‹ yδkΛuG{σό8A@?γiΠ™<°ΐιxAΒΰ@lΌβώι˜ƒγxŎΠ7πt θAP}LWƒγ΄ρΠλŒΤ-m‡ wkxών'ΙΊslςνG)Ω§ԚYω΄Ϊ\Η"<ο££Έ7ΉΉwιΧθ`ξ±h}ΝΨ†8qλ²αΓεΣO?΅zƒ4›οκφςΨ Dž (/ eΈŸ›g1Dop’Uo°ΰ‚τ±?|€³Έ=ΏσΞ;φΘ΅?ΤΫu︌ρ0φϋ¨^ 4'gβ47'ŽΫ¦ŒΩž~ϊi;¦vŸ Θ 8WΗηΨWτ+:ŸEsθ;δΔΒO΅‘ͺ_‘z}Ύc*6}Izθcm><#1 PVžέ²ΛΚ‚ŽΕζΌ›$|¨>ϊ{δ·ηδ4ΊΤύΔαρΨιπΐσNΉΟΠKΐKΐKΐKΐKΐK`gKΐΟ;[β>ΏέULώρ’y†™x±L`ΒΠžyΑηΒh+―y±ΐ h^:Έ+―cMŒ΄D­ <㍹¬F>γŒ3bN 0~`2™1 άκ-ŽΙϋΰ–—ŒI\οΌ=πΜȘBa8ΐ &³νδ΅™\g;iΌΠ4>Δ§ΜQŒOtR$8‰Α:)£-厁˜|hb’ž:ΰ oςz`²ž<˜Pa’oΦx‹άeΒ`v’`Ι‡1ιb#S“/Έ‰Θ ΉͺW=•^ژ Bΐx+ΌΉ‘>°Ά[KΪ΄99Q7Ϊ/Zΰr¦@†€€$Α2!cΪ:Z?CΆg,JϋbqΠΐ*Θ0°œ [ŸΊ“Z”OA~-§ šΖΤ©S-X4An«₯­CΙςΥ7[ψό «Pυ–s”x#-€Ίu™-)νs$γδ,”Ξ€cν{oΏKŠ~7Czή=F†?Μφ%€ŒΎΉ«Yγ90Ω, KN’Pj²„jκ€ς³e’%_ΎMΩuΡ!ςΦί‘‹x€ωΧ·Hές2 e¦J7γΩ9Ή³ΩjΔ‡οœ€¦πΚKΏΥϋC'ŸΉ?<£O7h’«πΘ0 .πŒŽΰ3hΠ ›―W!<"ΠοŸΨ5 \έ<Ηθ ›4₯σΡ‘,ΆΠηb΄ γ‘ :‚ y&Δ Nxe7WΏ6§Λ¨+e‰€ρX ƒέB3ΑD†ύa2Ÿ$bξŚςjΙήΏ—<ύά³V·‘φ;ϋΓΥ²€GRκΒ6ΘdΥoHFα~ΤαrΪO~±₯ŸΜ_`V(…δƒŽ΄ϋ3ζ^{Οk’Ϊ΅ΐ貁tΩΖ^gγ_tΓx™Ρ`ί±eΩ‹ΦKυηΛe_+Ώ»τ’Θ–Φ.ψPͺ}G– *h\¦C”ΥO½#}»H»a—iΑG’”*—LΌ2’Ά#³xm­Ψ Ω{u•ώΥκVν#@—΄_¬@ Ȉύ@†Ψμν-ΠΎΪψC‡΅Χ%2ζŒΤώF€ j—θOά,XPz.ZyZrLη η_,g0ž@;+”ξ—ž’δό5ί $ͺγσΖ‚8ιΓ‰θ2 Žw›Ϊ^žτΡ-ΊΐOΗω±ž S1Ζϋ2γ`žQπVΝ81ΈΧtΑ:€ϋ»ηΥ-j8‡όuύp!17΅³Τ)Vhn ­M“f4»Ε‚ڍg#^ΠΖθWΐ_dB}±σ*t%Ο<Œ9yφ` οΚEΛΞυΘ–2±3„k·Θ“Άΰ@6crςμΪ΅«νg:ΖVg,μtœέgœΎ΄vΠ\‹½V›Μ3»ρšΙγc³0†ΕKβœ)κ3Ÿ:Π_^ž+΅ί,“Μ3FΘ«Ÿ}y~Bϋ—m’_}bηŸgΞ<³ƒDJ΅ρ<ΎOωfݚȒEΖ ”]ϋ”Νt;ΈΐsΡΥ7Kξ‚ΟmŠ—œ-rΔΑΫ™ΊΏάKΐKΐK 1 π Ζ’ήΟ©mΪμ)Ο*:?¨N’ε„-@―σn‡ΐ’l1 Px_E -lΊΪΖϊΕ-<―ρμ„SοpxŸΘΞ/Ό+rΛͺοΛlDσ'XVݝEΟΗσύΰΜ yiv½wη³~š"?ΆuΌαηx$θγx μ8 xΰyΗΙΦ§μ%ΰ%ΰ%ΰ%ΰ%ΰ%°›HΐΟ»ICψbμR πbB_󲂾lYΘ€›;aΜK ΆŽ•ΡξΚk€"^6W^σbΊ΅Bsΐ3`2˜—ω.-3«»—•JEe²=Δ¬@s’ޘ·BΜΖsΆρΔl!ζ:1ηyˆΉ΅Ψ§γ%ΰ%𝖀žΫVσ2ρπΰƒF&w~˜,WΨΑ…FP ˜ˆά ϊxΆΌΜΕζ3q͘ƒq‰ 0nωΗ?ώa=vι$ “.L˜»“–…Ί(Μd>!έ@]˜ΜŸa€-…Ϋ‚‹Ύ¨;^(φπL†χHΌQj ΰ6ΌX-ΰ9 ψ ΠLΈP<)lΑ˜ŠηΌ’€ώζˆŠGNΐΤW]u•υ,¦΅n£ΜΔ ^Η4}ΌοR~κ‘€t"mœTΑoΰ’ƒŸ˜c̈<‚ύ Ωhφ3Ϊ…ώ€ ^ŽΟ΄Po>θ›hlτΌ ΡήΘ`ŒρΔ Lθ‚&ΔΑ πFΡT”‹σ oλ“—ΦΝz껏T/Y-ue$³{yxΦ³δ^ώη9αΒ‘rˆ™ Γγΰ’/IΒU’”™fA΄κO–ΙϊηζΧΠ&Ο‚’χΊVF~ρωR|ΥίD²$”Ÿ)}.!‡|οΠHΟ=F6Π#ɜo ΐsNz¦όλψzΘ±Λ5#%­ΧΦHή§±›I€η:ΧΫ<}Ϊέ.½ακξνX°UγžašgΛ`ˆ<γ!ŸγnP]OZw²έΗoχω5xŽ™θ’jJη“Ο¨Q£,TΝΖΉvΝz™4 9ΠΫ~mN—ΕΫΠ{θ&τ6mΆρnΖ35•κ>ξI@6}Φ¦Νάσ@d#GŽŒ<γG³₯”oΦ¬Yli‘ρŒζκ²>›³eΛκ2 oͺ‘TsΏν­—"uότγO€Ζθ™ΓΎ]μCύΟ<ω4YrΕc"›k$cŸ²vδήΦφ wτ­5ž7?7bί?6uΡ/ώΘiς‡$οχΨ)ӏ?΅Η ¬χΘΟ"“‘{μ+΅₯U’œ“iVχΪ’•dτhΊρζlβ†S%)Γΐ&~κy²₯kNΔ.γ%n5ΧΚώύ…ηsπr…ϊάρ@°΄ŸΫ ZαΟ.φ=V’t•nWŸ*!Σo|ψο”@’:.–wΖ¦€M—‘χ\ύ‰ήhn{yΖ»ϊΎ2^]΄ <DΕ‚Et³ήs|£;υ™F뀍Ηώω^'β ‚±ͺ;6Χ|ωvΗ‘ξqύΟ<Ψ¦,2tΗ―άΥnαΝΊώvq&ϊ•έTNŒ§Y¬Α3›‚­Wh[Ÿw΄Œ|«­c€ΛnΗ=έΒ³»θ}Ι’C7ΰ‘¨Ή}ϋφ2άx §LΊx›u(ε'Πμΰƒόyφθ₯Kγη'ck7~`lΝΪ Um•‡μkαo΄GW=~œMƒτo½πwR1v§Mβf§ƒ™wΘaΖVλsǘύIΕΌ$·)w‡vΪ£½„ΜwΈ]Λ’. ΠߞψKIOJ–τ3ώώα{ΜρππΨ™ΰωAŸΟ΄ΨWήΗπŒΨάsιΉοΕ4 χ›]ΙπτC·cοšzφδ]οhΠϋΑ²η`Y›žΩΑ@m€[>~ίυ@΅,ψ΄ώ9υ’_₯Θ κ‘gv¦Α‘ξ:ΌΦο%ΰ%°γ$ΰη'[Ÿ²—€—€—€—€—€—ΐn"<ο& α‹±Λ$ΐ VMδGΨ]½-Ί/&x©4τ“OPΔonε5qZ+όω/“K.6ήE:ΚU“ηΜl4ޘ ΠΜo€ζDBzž—λ¬·εœ,2›ί|zχ,0ΗΒR2^šΓ©γΦ•Ω‰€ογz x x x l•€ž·Κ’-όbA‘Οh°γΆ1ΖK!1@Η‚πc§ήApŽcΡ&ΰρ…G0 f&μ]0ŒIΌJγ-E'Y€Ώ€(+˜Ώ©Iκ©iΕZτΰΗ€qΞ .ˆ ΐΚ•+-8Ζ΅γ”C²bΛpέξπ*???²¨,9„VSo κΉsηZ/”LΒ0ΉG&X8Gώέ»wxqK΄Mγ•“Φ/ψνB$Œ1€0‚ύ,ΨvΑ~Ά`Α» 6ž5ƒr" ?䊷mw˘ΧυΐŠΜΧ¬Y#l³ν‚&” Aΐλ΄5c]ͺ©—{^ΫZΫˆš‰=χ^ L@φ ?ΰΖίxΧΓcτ(/` ρρ&ΊΟž{Ι·wΎ$Uο/–Τ‚l©7ΨB§€Α’ߝzšlZΊNŒχη7ηΏYtΘ„ΰŸ‡₯|ΆρPˆ—θ<γq;ΧLΎ™O(/S zv–$IσI)Θ²ί!σJŽ=ŽŽΟ©ς―αS€Σo†IΖ‘{SΎƒpu¦φiwR9ZŸB κW4L.so’60΅ΒŸά‡,rΡkI›ϋ=Fά™3gZ8Vu=χŸ~;SUUρHνήχWΏΡΥΊ ¦)Ošκι[wΦYgm£ˆΦ»ώϋΩΜxt™k΄|ԝηq /ή3 #π–.ζκ>ΚΛGΟ#Ώ·ήz+¦-E~”3š-·έiWڞ@™šΫ&ϊ̟Ÿ!sή™)Σ#χ? •σΎΆ@uΙͺ5yπςΜάW"eZh }kl):φ’οΠWKee₯ΰu} ΄Όι?«dΥ=―ΘζβυΆ<ξŸγ‘:ιΚaˆ ο CΫυ“•·Χƒ|n\ϋΫ@l{=ϊ[™0u’υνb©>–β³ξ•όαΚ[νK#cŽΏ\»,Ώα$ŒΎ5ΰtΑΰύδ͚eφΌ-σΒΟ%«6Iž{}–-σΟGœ&²ΊB’>NΞH“ΤŽΉrωΨ±ΦfcSπͺ½Ωx%­Φ ?~’ΌώΦΉΈ ςλc,έoψy= ήZψtڜΥqxςwΗΦΝU8š.Γ+0:;ψ\Мή`g¦ž ’ι2tƒŽεΠsΨΖέξKv X…R&υς΄[ΤΟ=έS­cμ₯K—ZYΣX<ŠχfΣ2‘·BΥΚxs.--΅γ €nΚ€ρΉVΈxžŸ:™Ε~Y·Ζzτ?K5’–“-RY%iτ—/ͺΛ#»ΰύΉί3―KΝ§_jσmύ6m_W+u|kŸ/y}z‹tlWιPPmϊD0ηΠIήοΟ Fσ{ x x μ `ΗT‡ͺνΐΎΈ}πŒ>FW³ˆ“g4lοyŽ;ξ8»k—z}&mλqίΨrμΟ^œΓ«3eΐv°«Ϊ=χά)ΟoΨ(σπΎLΛΊ=ΐs·nέ„…B‰¬`›<πœˆΤ|\/Φ“€ž[O–>%//////έTxήMΖk§I€κΕ„ΦxήβΕ„N'Œ™`‚B=F+¨»ς:ΪyŽρ—‰„'Ÿ™/ά?A²sχ”cF|υR ζ<+ηp9'«Φώ‡˜σ-ĜŸ²ίνς™Dš„?θ%ΰ%ΰ%ΰ%°$ΰη Τ˜€;>ˆψF›θNP<β΅dΛK&?ψP4'=&SV¬Xa=F2Ž΄&ΥIυ†ιB\γB]L–°u6iΗ»θ‹Ό™„QΈΞ¨7@¨no― )y3$ΐψŠ 0μi§f½¦©h€w»MuςPh€ρ^†ρΜΔΏŽ©ΘP-?p γƍ“nΈΑ–AΗ|‰΄)ω&"'·Μό¦κU™‰&κ <,ƒύlŒρjκΆ]΄~F; sδͺπωηnΌρF ¦s ponxz#Ώ#Ž8ΒBΦSη€IΦ{+`.hByφ'ή΅Χ^Ϋ!ΚIŸώvέuΧΙ”)S,   Δ―ω-_Ύ<²έ5€'T2ΡxΑoΚuο½χZ §Άr£€εfΙOGύ¬Ων^_{q–Ÿσ „kjƒI6ωΘxƒη€I’ŸΕ|ηχΨ FΏφΚ«ςσ[ΗJŽžωeΙωι!M¦εOΆm pLž<9§ƒ‹N’υiZŽU{#Έ°[xΦk‰Λs§.&ΠIκhzQ―qυc΄­“Ρ½x‹tϊβς’‹.²έυΉ}αzαŒVFΚ‘ΟΛθ­Αƒ[ΟΤθΧxtY°.ΤΓ]Δ’vΐ’ί\¨+θݞσθN@/OΰέO@–œwm)²eQžΥ–’›ΡcͺΛβiwuνVp@ήn»0ُގ·L}§8 γƒ¨aŒYœRe<뇍wιΠζZϋ]·q‹ρ6mή ό ŸŒ}†Υω΄ΧS?!Kο2°³‰6η‰#[ΜΞTΖ“5Χwy˜,νžρvύφΫoKŸωeRώΪ'RpΚΑΰπϊ¬Wδ›3ώ)R·ρ§Κ3_ΌΆ5ο}©Ήαeι|α0γ=:MΦ=ύlωΡ~RR³Α.ra7v‘ Џ†Φt—uOΌIO²jS‹ρ@m‘κ σ#οΥΙ6,‘\³Ζ‡Z p%ͺγX$ΰ.ώjNxA]vρΕΫ±T΄η‚‘7€‰Ο=χ\™avo‰°/x4vΗτΔE>\―ΟΡμq°)-qΑ΅τ°kG€²ά10q(Gž—€—€—@«Kΐ}?Γ{'eŸi°sξψ?ΪsγΊ«―Ύ:2ΆΗ² ]‹Ύž7ožM‡ΈϊΎζΥW_΅ Φ9†ΞŸ8q’ΥΟόΟ{ΒO<Ρ– [Α’Ωf‘<οU΄¬ρŒ9‚γ&xΰΉ^ώ―—@[’€žΫRkω²z x x x x x ΄Hxn‘ΨόEί πΟd6^ΞβqŽ—Έξ‹wwβ—— λΧ―Ohε5³Ρ/ΜyIH8θ—Ό+:Κ€ί΅ž˜›Ν»`1O-ήs"βτq½ΌΌvͺ<πΌSΕ½έ™1ΙΰzeRr_ό3ρ  ƒ—a‚“ΡxΑ ‘`^Ρ&DH‡ρ ή*v50yŽwβ(C'J˜la"œ όVο_LΒ+Ο’/ΝSΏ‘εzΰδΌσΞ³‡Υ›rηΝν„8)ƒΒ½Τ½¨¨Θn Νδ!ί&"'Ζmκ΅y@΄ΑΐσΫ>=΄€MIo{δ„Χβ]»ΪbAΐζΪ>Z?Σώ£r%a d<Ό"KΆ/%( ˜@ί’`aΗρ2‡μfΡ 4…ΤώӞl›έ·oίHπ³₯*Άœdΰi 5yξΉηέ+ŒŸis…,' ΩΊζΰ{χξm½|κ1Ζη€O‘―Ρ–Ν-:6xˆT}΅BjKͺ€tƒΤ•m₯+EΚ7JΨ|€Β|Wl²5―¦Ύί^σ₯œϋޟ%'=KV­_ΣTTξ; ξ1…ώέ{C«­OΗ‰±Όu£{'Η4φθA{έ‡±²κ­gΊ?d!ZVΩρθ΅„ΕΥ}Εθ˜`ϋμsΡβFξςrίΟYΙ΅hΆΒ5^|±{τ‘ϋρπl€ψ„@@π\ΗΐΙ€ Ί'€ΰΉξ™“ciΠŸ<κ泂βτš%]τkŸyՐw(-œΪv}7―JΊAl‚"έπˆ>yΝ ŒΔLڟKΠλ΅8«›ς¨A€ ς!€ΰΉ|ΪJ%ŠΗ’bƒtβ­¨`Aι€6Dα"ƒ-άΫ‚ˆΚ‘… $fxj»ϋξ»½ΰZBl•Η„`ΚWž^ΆάrK'1ΦΠ‘C΅Ι-”hQF‚δ\ϊ²E%’y’DςκuψᇧDΖZDΡBΊX’‹$ͺ³Ά©~³YH@^<Ε 6aE”“z$β\Nyͺ<stκΤΙs’—Oσf#Ž‘ 0N›ΆiΣ&1'ε­z‡>yΩQŸ°νgQ±{Ί~φνWzΔI0lAsEΝmυJsΕyκ©§ΌRνW$”SήΖ\Βc ­ί…žu̍7ή轂kξ|ε•Wj“†βŒ\Ος­Χ΄«}&Ty2Q΅Ό°ΚΣΡ5Χ\γσP?—ΰNήΌsyέk¦Ε8yέS}r ›΅YΧ½7η ΟSž“•M@η˜‰©*Eπ¬ρ)Ν—],„ΰYžyu--‘rtSo©Ν–)NταΩσπ™E°@IDATA#΅Λ“O>™²eΟLP¦λrΩA ?ΟόOΚ[hœ±Tγ\ν>=Αsœ2ι„ΩiΥMuΦoΝ)>ωδ'/ ο4ΛΎλ α˜-nz0JvΦ‹—«DiΡ1Ϊ'φΛ?οΥυ oΌ±§-žΪ3—9GλΦ­Se}yΧ–¨oΡ’EΎM-]?U‰«MϋΖ{š^ρ‹Ηi}ΚυχUΒΉ.GμnΡcš Χ<*œƒΔN€ˆE@η^mžDΕ±²1QοΓ™ DmΩUoΕ°cΣ]D―’σέpΎΗnΘn* ~ed“•†ŽΥ_xίRs0=¨’Ή}•3œ*~ΎΞ jk3[j³Υ6ήhΞ±η*xŽc_%Σ\]ϋΘ^Iˆ&Ϋ« ·™ΘγΏ=Π)Ρ™„Θz8GΫj·dŸlLV|]·H”|4Ÿ—ΝWPΪΚCγP(xΎηž{|ΩΤΦσηΟχoqYΑ”Uˆ{ύΆ»Πoy‘~α…ͺ=t£}Ί.Συg¦9Έ!†U=$™KΨ°UkχΙ‚ΉώυΉhyrI‹Έ€ς% Ϋή+1gfχBA΄ς’Φ}ΛΡŽχOW½­ΕξΗ(ζΫ7ί|³4~θ‘%έΫYuOPszέΏ ―•”·β„‚g]Ψγ*«ΦmN’¬OΒ2DΛ緞o9γΒ₯nώΒͺςΌq΄›6u ‚η8ΰˆ"@π\¨$ @€@i@π\ZνAiκŽ€nΰΛ³IθY.[ξΆΨ­ *§{ςZ7δεΥ#|ς:ΣΝXyΡ‚d.A7I΄ΐ‰ΰ9jΔ… PXZ8”η\ƒ^7.OHς’(‘΄ D’Β«tB€¨`A5 γ™π6:7Π’I(Δ5Ρ«‰½φΪjm·έΦ{μ’G.[ΰΠb…„˜5™Π7a-”ΘK¨Δ Ή<τ₯E ¨΄θςέwίyoΑZh± >W\q…“@8*€jΡ’…χ" r%Π‚|ώύ}TWuεΒΙWͺ—<ΛΛͺΚ)ΚjΡHAηήaήξ΄ §M“r2.b!Oš:χ%Κ8φΨcS LŠνgΡE°XΫYQ{ϋν·ύk΅UN KHE7₯ΎΆZϋ$‘ˆNiKt,/εZΨ²y©ŽS{Θ›ΈΌf šKdhήξ4―VšaPŽ ‹$†P$nVŸRlaMy« Ν£Ÿε‘Λλ^³=t¨Ήό£>š­Z5φ­έ~-χΥ¬o<Χ S™ΤΓ>­Εd[VΣυιRφπ,q˜‰›Tώ8ϊN›6-% ’Gΰ¨ΰUŒLp¦sTb* že‹-Ψg³e*“Κ(YxnLΥ6= >Θ£γ£ΑDp²+Τf΅₯IΪ}ϊ/‚g·’eŽŽο&\Œ[¦›κ(Α·žΖ™!C†8έWΣƒ1Z+΄qE6Vρuύ’±ΛC0Ί―₯1BiλMf:FAsΧ_έΫxύΦύ 7ά°ZYu]«1,SYU7Χ”Fτ Ώέ ·§ϋ>wώJξωW–»%σsŸ~ς.‚ηtΨ: €ΰΉ “ @υKΑsύς'χϊ# 6½Jžεβy°7n\Φ…\݈ΠMmyδH·(ζ£›Κ?I@πœ„Η@( yo²EΕ$)"xNB­ξΡβƒ ή’‹Η*ζZΐSγ²ΔΪ]ΠβΖτ*ATψΙ8―ΌΤ‚²M$`ΦBŠ‚ζZ$ήsΟ=ύ’FΈˆ―-phαBε’§e•E" —$μΰΨΚϊΔOδτΠ—„J[bjΥΕ‚ΔΧ·Ι‹šNTξ0hΑGήΚB―ΐς«yΚ«c’p’<Τ¨LZψ0`@*=₯©yΩU^υτQ[€Χν¦›nς’§P ψιΪ4 'k-™ˆ;›ηΝ°Ÿ©―“te’°M銫Δhj[ haMύΛ±B/Ϋ§Ν_%RyR[ >”§Δ9zυΉΔ]t‘;ϊθ£ύΓ~ςξ*α΄„ϋΟ?Όο+κ/ Ρ2˜Η;mWΏΥ-YΩΤv:·ΤοΤv€δϊΊWΓιΒ 'œΰFbύtq2m“ΈE"?BePί3fLͺOΛ‹ΉυgΥ<]ŸΞδΉ+JJ}>ϊ@&±΄ϊ°‰±μάΜΤ―•nΊg”ΏŽ‘,—}C³Ψm·έͺ§:Gυ`…μ©μΐ­·ήZm̌kˌψΪ)ιΖ\‹'ϋ§φΡƒ;χέwŸ—I+a[Ÿ*Δ²C3Ν3Όμ±μKœ±4I»K”Žοq_·Lα8’>πρΗϋ1ΐxθSφήΖΒ¨p1l' άdŸmŒ Σ°οΚO―«ΆyΌξRυΰKΤFη2η°qλσΟ?χm·ήzλUKΟ„™[m΅UΚ­=ψeε ?“žνxυ-<<†ύ©9²<₯λ!Έ6.œŸe’΅eQ[ŽšJ¬Th»‘²ΙžιάRy’εVdKΊvνκ«΅Ϊ΅=²Ήαψ£9‘„Βš§%u‘τBr(xVώΉ:¨ˆŽ[Ί^ λΪC[Ί~QωUtφUœ$ν«˜‰«l Σ’Χ}β­k-{ΠQΆLΫβŽ[Γll՘­‡CCq™Κd±ΨΌ <§ο‡m₯ϋΥ‡zhͺNq―ŸτΐȜ9s\ǎ«Aβ vΛπ₯°―ψNφΛΏaUbμπš0άη;‚η8”ˆ›@ψp“ς’s =Έ±KΧ'A+H ¬ϋO‹4vQuoJχM_oJ“ Υ=½…GAs=ΤiΤθ^’9 8ν΄Σόgu]Ίλ»ϊψηdν-zΓ€ξιώ˜ζς/4nΨC₯:([YO>ωδjcŽΟ$ψ§ϋLr’$θ‘Ο«Ί*Ι‘δAΑsπ8€ ς €ΰΉ<Ϊ‰Rž€n*hαN―QΥΝg κθfΐ~ϋνη_εzΙ%—ψ§u#[^ uc|dΜ'―u³Y74=ν­Η$A>rυŠ‘$ށ š΄¨χa™šG;Γ[7¦ ₯M@ ΅ς8¨ρΪ—™Νε)X α‚΄ΥNσ$―ΌTώζaQii>’ΕΝ+ΒrX>ZL—ˆN‹ω)ί0H«Ί˜@U θqϋ±ϊ’€Zž‚7Ϋl3Ώˆ―΄%Δ“ΘXβ©t*-°λ•ΗςV¦ AΪυZMΥAeΆ„“X˜ψ:έΏJ€§E!<ΛKpά6ΥbΌηΚΙX(‰μ&L˜ΰ½$Ό6mVοh? ΕŠŠ3ΤΟτ&q“YB Μ»΅Eηβ*ρšqςdωgβ ε!±FΫΆmݚk™κOΦfVš¨PΒ‰Η{Μϝνx΅½‰@4ΟΆ‡$˜–ΈH‹*³ζβΫoΏ½_Τ³΄U<ΥΫζάj»PΔ’s-κ [y„―{ sΒ*«Oͺmyϋ4ϋΗ–ΩX&v“&Mr}ͺΛ ²ηQϜΪv‘]Z°`]ΙΞ„A€iόSG3‰Ξ$HΨύ½pNΫ³₯IΪ]o<Θυ5Ρͺo.e’­Τ>ιϊ’κΆETΈ8oή<οTρL\ac”ΆEƒl―ΔΛ^‹£ΈDƒςΜeΞ!ρ‡Ζ ‰/τΠK΄ ΚCP©Ώ™WΤh+Γ{μa_sώΤΨqΘ!‡δ|TΩb{H$ŽSΏΙΤ'N:[υŽŸnΎηυςΉΨ Ε• yκΤ©~'/”aΩuΏsϊ/cͺμQ»‘m:'ν‘½¨νΡρškڐn^&[R›3«™ΟgsuP·$2 ―ΝB[©qλ°Γs:&“}ΦSœ$ψ}ωε—ύ=γέwί½Ϊ΅ŒΈ)‰’%6Sύ%ΦƒrιΖ-Ε՚L8n©Ώd»ώ ΫΞΪEΧg6i,Υ[TΒk΅…„ΧΌ©LςΖlΧqŸtΝhuυ ž Σ―mμ  ςΉ—­Ή€@) ·k₯tε1G“Β1(œλκ~ˆ=τ—.m“½ΧR­[·φ™Ψ}’Lρ΅ύΕ_τχ‹”~ά²jμ΅{8ι–ψ:ιƒ'Ί–θ™Τ-•ͺ. ώχΊΝ›ά @€@IXguJ²\ Iθf±’AψzͺY^8uB―Χ ]-˜κ©λΈO^_zι₯iEIΡόψ @€@iΠβ­uϋχοο φΦ[o₯ΌkΡβ‡~πΏ%Ύ’'I y$ήqš/(H\ ?mΛε•—Z˜žP%’5Ο-ς<·χή{Wσˆθ3¨ϊ§Ε -JΌτK>ΎC$rΠ\Fϋ4Χ‘HΝQδΙKz%Θε‘/-\xα…~€<^yε'¦α‚·•ΙΆΙ;°];œώωnX•W/νSΉΒ ίI8©ήV/yΟ‘hΒ^α¬zKHa’q- ΙιSO=»MεeM :Ήp’gd•+*h‘hDΒ-8…!]?Ϋ|σΝ=tύLή‚”vŸ*a Ϊ@" y’U]£‹Sβj \ςΔ£>₯/ο¬)* tŒΌ‚K~Ωe—9‰έυ€ž Υ·%Vw‰i$ΤΠƒ &ؐπEΌΥ*«Κ&q…ϊ΄ΆK΄-‘ ϊ‘‚ϊ€ΪΙD)*§φΛkΈΞ/Ν§O?ύτ”Ze•`Yu3Φ:gΒΧ½f{θΠgΚ?d! ~«>φi=p >šOΛΆd²Ρlt|] žeecs±ezΠwψπαήζ›πUηΏΞ9Σ|Ι)HΫ₯KC8fΦfΛT&₯g/‰dcΒ±Bάd/%΄’θμΊλσӘm’ψY6L6FiΘ£™lœJ―Ά±T6%ΧvטŽο΅½&Zu}α…bο*“ΖR΅‚‰ΛΝ^*=Ωh›/„β5ρ2±΄ŽύτΣO½ψ9δͺνΔX;ξΈ£g,Orιξg„\γΜ9τ`”DnSεΡφ£>ςγŒκ¦ ~₯sτΚm=T’iΞγ#π  sΗζ΅qlœμŠμŸϊ«Ξ-‡αά+jΛd‡_L»‘σXσβ3Ο<ΣΫΓ>ψΐ—ΣΚ*{)/»z°Aη°‰¨BΫ 2f<«NšwΙގΜΓ„xe<«²ωŽ[*§Q^ΡqKβby.Ξd_ulθISφUΧ‡dΛ:uκδΣΧοh²υΥ[[GΗ-₯/~αΈ%ξ©™MΧψͺr†cέ“VΉυ‘ΪSγ± ”–=„«φԜZή†σyŽΞεϊιο{Κzτ v½eoσ±ρW<€*™€μŸfΡ}ΐ§Ÿ~ΊZUuίGΧ‡ςˆlχΖ4ν΄ΣN~Ž­ωΌ=H₯y΅ΖΊaUχΚ4NDƒœeθ‘E9 ηΞΊξΡΓ,Ρ q]Χ<έΊuKqΚͺϋvvmM“ί€@ω@π\ΎmGΙ!@(-)y’…@IЍj{½xψΤ΅n„’‘L…Ν΄h)>Ϋ!@(=Z\ώΝo~γE—ZΐΥ’χϊλ―οΗ%–θΚΖ|yΒΥ"†šZȐg/iρ:ξk$εLσ [Μyλ6*„€$D–πX―Š7±<ΥιΑ-½~X"#y0³…q-ͺ(=•7΄0žξ‘/Ε΅{±B <邉˓O>™ΛC―ΌCΫ‚}xœΔ#Ζ)δΒI-/—²GΛFνΤnλόͺkΑ³κœΙζΛώjά‰>θ«σ]"Ή­·ήΪ#“§~WzΕ²<Μk]Αή ς\l™Ζ.³‡bbžV%šR>φπŠΟδ—uYY5ΖhlμT%6ΣργƍσžόU"‰΄=΄qΖRqm™Ϊ]ργŽ[[Uη\Λ€ΆS}δνTAc«ή^  ΘΖΙ&‡m‘}Ί§aBr{­΅ %΄?4nΙώš§ΠLꈫβŝsh^‘>/QΌ‚ΪZΗ5WPP$ϊpOγοz³€υ‰(0WΉΪ8ΩK‰f5'\X󍒢μβ‹/Ξ8ο-¦έΠΉ)±­ή2’πη?Ω]tΡEή~λ·ζΛz€NAσH Z£σsΩƒl‚gΩγπZ%ΙΌL6*“ΰYeΛ4neΊVΙeάάVγ–ΪO,βΪW=ΰgλ"κz8ΆSΥ8€ ±QΒ4Ωcν“-SŸ±:Ζ·tΏYvΪΙΊvΣÚζ‘Y9jŒRΠuŽΖD=|{δ‘Gϊοšs«]•χμΩ³ύCvΝͺ2遦\Ÿτ ‘ΔσΙ+Hx§ΌΤ>ΊήΓ“z@F!Σƒ2~' T]h,ΣϋxΌαβ{mΗ+-ΞΔα€ύI e‚ΌLy„"°\Ϋ4Sš™8Y|ν…fΏgoΕ-“„λOJlBfΛ/Σgψΰ^4N(fQ›=ψΰƒ~aNρ΄¨¦W¬[{Kΐ‘>&‘š‚‰ΈΧ^{m_&-…‚6)ςOrΝλœκ,aH=R±”¦DυK[Έκͺ«ΌPD‹y‘ΔφG?u>€σTΗoΤF nŸ–Ηr/Š?}ϊτ΄φ?ΜK Τυ!xΛ~ΧΒ»„Q,Eν…„`‘Θ)<ΞΎλ|“˜VΆ)[f ωβ!ο“‘ΘV^’mΏε£O‰ά$Φ mΎμŠl’žPPYT&•GvxȐ!nd•ΝΪ‚₯βΗ–Y»+έΈγ»Κ―Ώ$e’ˆBΊlAž@ΗDφbkžδδ%’K.IΛΥ/=£WN›Οτ Nψ@€Ž―mΞ‘ψζ1άςΣ|δν·ίφβ@Ϋ¦1BBΊtνoqψ„@‘δjγtŽh€ωΆΩ mSHgΛΤΗ3=dPl»‘9Ϋώϋοο~ψαθ9§:θ 6z³GtŽΞ£uU‚σςu!v&ΦymΗρ @€@yΠ|@^ΏΜZXϊ;ξΈΓ <85OΠβAθ1‚iξη•—šwh‘['L˜f—φ»—•Κ©޳Ξ:«šΘYiQZβcy₯ŽΞi’‰j~}θK‹,šσlΉε–Υ„IΡcν·„ ZTΏβŠ+|yl{ΆO<+NNζαF»?ώΨ ρ:όσ}ΔΥΔΉ΄i¦2§γ..iΏ‰82yΟ ΣŽ[&ΥWΒΎ>U’†8!ϊΰ^xŒϊλ3Ο<γj³Ρ£G§ΟΦ—%|“χΝ0¨ΟΙ΄Γs•I‹ZDVΠβ{Έ―9ƒ‚qΆW^JΈ¦EμΈAe°Iσ₯υΧ_ϋ²jή.‘²„©Z¨EiΩVή*ƒ΄ϊYΩ³gϋ$ξ`I‹υ*Sœ²²ΌjγdιͺnΆ//mZόWωειS^λT‡¨ΰ$—6΅|’Ÿι8…qlΏρχ₯ϋ·Lκ_&°I—NΈ-lΓp»}WžβŒΦ—§Nκϋ½D JOύIŒΓΎmι©ΤζŸ|ς‰ο{ϊ-1g¦v°Ά“ΰQή㔦ϊM—.]φYλγεrε€ψj' j£lBŽBΆ©ε™οg)–ΙΪA}HύIŠlAqΤT£~˜­”–εaιΦΦgCN:Fyϊ<²²π $}Ί¨Ω9-6neWΒsTρς3Σ±T9d7,X™μw!>“΄{hˊQ&Υ«.ςΘ…_sυ Υ!μ?΅Ωό\ΚC\$!«K’G¦cŠ}N›=ΆόγΜΛ,nάOΛCvS‘ζeIΪ4—Ά°1BŸϊ«­ΞŠ£τ-Δ#Β<Œkmsj«·εS›}U™Τ~”~Ά<,ΎΩπbτ'+ Ÿ€ @Ι xNΎ#!PρωΔm±Ε©γθFŽ™ςΜœΪ‘γ ±wΪi'ο=Z‡"xΞ Ρ!@JΑs…6,Υ‚ @€ @€ @€ @h žτ§?Ή»ξΊ+H‚ε;ξΈΓ5i$΅νκ«―vηž{nκwηΝέ+―ΌβΡόπCΏM‚ηW_}Υ­±Ζ)οΡE«œJ«eΛ–ΥΠ₯Ρ¨Q£TYVZi₯q¬kίO<α˜ΪΧ‘C/‚^yε•έΒ… έΆΫn› K°όςΛ/»vνΪ9νŸ>}z"Αs³fΝ\―^½ά‡~θσUΊς,½ΦZkω<χάsOχΦ[o₯ΚτόσΟ;‰³ € ”Ο₯Ρ”€ @€ @€ @€ @I$<―X±Β]ύυΞʚ―„ΟW^y₯+[ΔO>ω€šπXζ‘#G¦<-Λ΄ΔΕ)7mΪΤ­ΏώϊnΓ 7τ‡K0έ»woοEYΜ s›6m\&ΝΪ§Ν7‡ηV­ZyΟΥχή{―OGy>τΠCnΛ-·τΏί|σM'οt+ΘΣu‹-όwώA€ P<ΧP@€ @€ @€ @€ $%Xπl~ύυΧξŽ;ξp_|±mͺρΩΉsg7i$'α°BmΒcK`Ω²eήsς‹/Ύθ½BΫφxΐΎΦ™ΰY^¦'Nœ˜ΚW_$x>ΰ€Όχη]»:y‚&@€ Pz<—^›P"@€ @€ @€ @€ Δ%·ΰΩ2Z΄h‘%3Ζέ|σΝΆ9υ9lΨ0wΪi§ωίqϏ>ϊ¨;ψΰƒSΗgϊRžε!zςδΙ^؜©Ϊ~Κ)§ΈsΞ9αs6Hμƒ ΤΟυ,!@€ @€ @€ @€ P ‰Ο_|ρ…[²d‰/BΣ¦M]ǎ«Gϋ?ώxχάsΟ₯ΆΛΛσoΌαš7o^«‡η©S§Ί­ΆΪ*u¬}Ωύ]“&MάΏύoΫ”—‡ηΊ‘#GΊFωτ~όρG·ΣN;Ή)S¦ψί‘˜Z$ΤΎΰ‚ άƒ>θχ§ϋ'OΠ£GFτœΫ @υDΑs='[@€ @€ @€ @€ €@Ξ‚ηO?ύΤuνΪ5•΅„ΜoΏύΆ“π9 οΎϋΫn»νR›BρpmžΟ=χ\wυΥW§Ž•xzψπαE‹nι₯wοήiEΙ΅ –£Bκώύϋ»{ο½Χ5nάΨηUΫρV 9sζψ:Kΐ-t4ΌτKnλ­·Žnζ7 @υDΑs='[@€ @€ @€ @€ €@Ξ‚η¨XYe?~ΌχŒ–g€IoίΎ©MΩΟx »σΞ;έJ+­δγŸrΚ)nĈ©cί|σM·Ι&›ψί .t;ξΈ£ϋπΓύο0έ¨`ΉC‡nςδΙ^(­Θ*K,=mΪ΄Τ±f―Ίκͺώχ7ί|γzτθαfϞΪ―γ_~ωewα…ΊuΦYΗ§1lΨ°T}—-[ζμzθ!ŒώΙk΄κD€ @ 4 x.v € @€ @€ @€ @HB gΑσΟ?μδY^ŒΓ Μ{ο½·kήΌΉ{λ­·œDΛ&VΌž={Ί'žxΒ5iΔEEΣ&ίsΟ=^˜Όα†ΊΣO?½šΰω¬³ΞrςςόΣO?yΟΟ7έtS*kϋϊλ―»6mΪΈ¨ΰY‘δΑyγ7vνΫ·w͚5s½zυJ‰₯΅μ³ΟvG}΄/λGQmŸ‰©g̘αΆί~{Eχa·έvσεΣ~ žO8α7jΤ(ΫνΕΟ»ξΊkκ7_ @¨_žλ—?ΉC€ @€ @€ @€ @ 9 ž•Ω{ο½ηΊwοžSΎ£Gv πΗDΟ–P«V­άG}δnΎωfwΡEΩ欟:ζ΅Χ^s:uς‚η¨ Ω~ώωηέΆΫnλ>ψ`7nά8ۜυΣϊ΄ε–[Vpk[Ώ~ύά3Ο<£―© ςHπ½ξΊλ¦Άρ€ ϊ%€ΰΉ~ω“; @€ @€ @€ @€ς!Hπ¬ 'NœθΏq2?όπΓέυΧ_ο½;+~&/Ρ‘ΐΈwοήnΪ΄iq’χή¦·ήzkWωœyζ™5Ž“GjΕyηwͺyk1Ψ`ε‘χθΈ"oyŸήΥW_νδ!ZΒb ‘ΘxΩ²eξoϋ›>|ΈνφŸ&x֏ɓ'»AƒUT+ο[nΉΕέzλ­ξ©§žςΗtθΠΑΧK‚g…oΎωΖέvΫmΎ\~CπOιtIn³Ν6 Άς€ R €ΰΉZ2@€ @€ @€ @€ @ ΌΟa–σηΟw―ΌςΚnξάΉ]»vY³fa”΄ίψα·xρbΧ΄iS·κͺ«Φ8FιΚ#τ₯Kύ>‰Ÿγ €ηΝ›η½J««­ΆZΓ$ΜVΊ νΫ·Oy 1²aωςεξϋοΏOΫΊukΧ²eΛH,~B€ P*r<—JΉ) @€ @€ @€ @€ ΰ\ΑΟΐ„ @₯JΑs©Ά ε‚ @€ @€ @€ @€@νr<γΙΈv¨ŠρΔOΈvΨ!^dbA€ PTž‹Š—Δ!@€ @€ @€ @€ PTž‹„Αs‘ΐ’, @ Ο  q @€ @€ @€ @€J„@Ξ‚η)7Ε€ @± xŽŠˆ€ @€ @€ @€ @(9žKI( @…&€ΰΉΠDI€ @€ @€ @€ @uGΑsέ±&'@€ꉂηzOΆ€ @€ @ G7v­[·Ξρ¨Ί‰>wξ\·|ωςΊΙŒ\ @€ @€ͺ@π\ ? @¨Dž+±U© @€ @•H`•UVqλ­·^IVmζΜ™nΙ’%%Y6 @€ @€*‚ηJoaκ@€€CπL'€ @€ @εAΑsy΄₯„ @€ @uMΑs]'?@€κœ‚η:GN†€ @€ @ Ζ»Φ­[':ΆΨ͝;Χ-_ΎΌΨِ> @€ @€@žΣ@a @•EΑse΅'΅ @€ @€ @€ @hX<7¬φ¦Ά€ IΑsƒlv* @€ @€ @€ @€ P!@€ς&€ΰ9o„$@€ @€ @€ @€ z#€ΰΉήΠ“1 @uE WΑσ:λ¬SWE#@€ @€ @€ @€ @ žkΔn@€ʟ‚ηςoCj@€ @€ @€ @€ Πp xnΈmOΝ!@ †‚ηΣΤT€ @€ @€ @€ @  xΐF₯J€ T'€ΰΉ:~A€ @€ @€ @€ @ œ x.§Φ’¬€ $"€ΰ96‚ @€ @€ @€ @€@I@π\Ν@! @(&ΟΕ€KΪ€ @€ @€ @€ @(.œΟ /w#Fδ&Ύ5Ϋ-\΄¬(₯kΩ’‰λΩmMwΜ6v-›7.J$ZΪθg₯έ>₯^:ϊO©·εƒ@έ@π\χΜΙ€ @€ @€ @€ @…"³ΰωκΫήwΟΎόU‘ςϚNίήk»SΈiΦ8μ¬Lτ³ΚlΧΊͺύ§H“Κ‡‚ηςi+J @€ @€ @€ @€ (œΟ7Α-ͺςς\Ažž}σNu‘y”ϊY‰5H™‡ώSf Fq!P<Χd²€ @€ @€ @€ @€@‘δ,xήkπ³E*Jϊd»«oϊl­hτ³Šnή’WŽώStΔd²#€ΰΉμšŒC€ @€ @€ @€ @ EΑs EaΏ|πΑnŊcǎU«V…MΌ€†`΅4r«HΙ l•l–B§N\‹-rK€Ψ(žΛ ‘(" @€ @€ @€ @€2¨hΑστιΣέ’E‹\›6mά:묓Αm6ςΪk―νΪΆm›5nœ[l±…[Ύ|Ή»ζškά»ξηβΚU°:oή<χΙ'ŸΈ™3gΊ•W^Ω©ΤΦχ‚jσ΅@Κ©H„9gΜX5cΛjKhΚ”)ξΫoΏu;ξΈ£kΤ¨‘.;Ω½{wύφΫow=zτ¨-φC μ x.»&£ΐ€ @€ @€ @€ @H(9Ασ†Vs_Ο^μ,\κ ωΨ]}S…ΝυΛ‘Gιήxγ 7`ΐwΡEe=άΚgŸ}Ά;τΠC³Ζ³ΣCπ‡VΝ8Ε¬Fϋ—εœO?SsηΞu·έv›ϋΧΏώε~ϊι'KΦΎϊκnο½χvC‡M L«EΰGΑ ”S9묳ܣ>‹Α>ϋμγ.½τXqΣEš={ΆλΫ·―ϋωηŸέW\αϊχοο£!xNG‹m•FΑs₯΅(υ @€ @€ @€ @hHJJπ,1κ5ΓΆw_ΟZδNΉ`’=η#DEπ\Ύ]Ή‚ΥtύΛεΣΟ.\θ>ψ`7mΪ4Ÿάͺ«κΆί~{οYό³Ο>soΎω¦[±b…Ϋi§άUW]εš7onΩςY$εΤLπά²eKΧ₯K—¬DzχξνŽ;ξΈ¬q²ν”°y·έvsκ³#FŒpΫn»­Žΰ95φU Ο•’Τ€ @€ @€ @€ @ !(Α³‰Q[΅lκΫα“is½θωΎ›vLά.ž£«χ -XΝΤΏ αIόŒ3Ξp=φ˜kΥͺ•»φΪk½ˆ΄Q£F)†S¦Lq'œp‚ϋξ»ο܎;ξθnΊι¦Τ>Ύ‡@9υNψo‹-ΆpΛ—/wΧ\sξ{σΝ7έ+―Όβ7νΉηžn£6ςί“ζeiK|ϋΒ /ΈηŸήIΨ΅ΖkΈM6ΩΔ{ξΤ©“EσŸοΏΎ{ϊι§]Λ–-ݐ!Cͺνӏɓ'ϋ΄Ίvνκvήyηϋ|πA7sζL·ΥV[ωτ!ίς‡™J°Z[²<“φ3qήm·έ|27άpƒλΣ§%YνsξάΉW―^~Ϋε—_ξφΪk/ύž{ξq³fΝr=zτpΫm·]΅cτΓϊJ›6mάΰΑƒkμ—·ή'žxΒMš4Ι§³ζškΊ7ήΨpΐήγt~Ω0mΪ4§6œ>}Ί[Ίt©ϋυ―νvΨa‡΄eΣPίzξΉηάW_}εΦ]w]χ›ίόΖν»οΎE‹a΄Τw>ϊ¨{ϋν·ύ9Σ];ΧΉsg_>•5SP}”ΧŒ3άΚ+―μ:vμθtlΆYΌ Κ₯¨ώω žσŸψσυ½χήs?ώψ£[o½υ\ίΎ}½§ρ(_΅΅yίύ}\ΕΙ$xΞ?LW n·@IDAT~υ§Ν7ίάν²Λ.©]<π€ϋβ‹/|ίV?QSY»tιβώς—Ώ€βιΛ‡~θƎλΣiΫΆ­οWύϊυK•―Zd~@ !Ί<ηš_Βjq @€ @€ @€ @€Κ‚ΐ:묓W9λUπGŒšTˆ**…<φ·Ώυ€―ΌςJ7rδH'QaVZi%wβ‰'Ίc=6άμ2 ž%ψSάΕ‹»ύφΫΟ]|ρΕ©γ’ζ₯$L<ξΈγάk―½–JΟΎ4kΦ̝qΖξΐ΄Mξ³Ο>σBUm€΅}ϋφ©}ϊ"oΕO>ω€ΫpΓ έC=TmŸ~HΌ+οίώφ7·ϋξ»ϋύω”?šA!«qϊ—ε›΄ŸύόσΟ^π.‘ια‡ξN?ύtK²Ζ§Ό@+¬²Κ*iΣ¦ώϋο{ί§Τ'ώόη?ϋmαΏ;οΌΣ3–`}άΈqα.7oή<χ‡?όΑ‹D«ν¨ϊ!aρπαΓΣ °ο»ο>wα…FρΏ%ΰΏτKϊL–-[ζN8α„”P?ά'αΏϊD­aΨο˜cŽρ’κp»Ύ7oήάχI ³Γ ~|Κ)§Έ &„›ύwkι^pΑ5φE7”KQΉ“ ž%v—ύ°8]@όŠ+pβf!“°9Χν–ž>?ώxχK/yϋrώωη§v™ύ8p {ηwά'Ÿ|βχI-‘Ώ…[nΉΕιahΠΓJ―ώΡ]ό†@"Ή σ`εš_’Jq @€ @€ @€ @€Κ„@Ύzœ‚ žΟΫ{sΆΘ&β•@U“χή{o/p•—gy•‡\νΣwyΌ΅`ι…žεUω¨£ŽrΎΚ«φ5jΤΘqIσRΪΚϋ΄ΌPK€-ΟΛί½ΙͺlG’\ *ΛS΅ϋ쳏mvRΚΫοΒ… ύ6₯+»¦Nκ…§Mš4q/ΏόrΚ“p>ε·΄ν3`΅ύΛςΛ§Ÿ©ΟΘΛ­„₯'t’χΔ,―ΔqBRΑ³ΪHbby€VΫHt*Αρ·ί~λξΈγ7qβDοuωίώ·λT%–Ά ΰ*£hΠ ·ύφΫϋ~,/ΦO=υ”“sεΗ?ώΡIϋYNύ'©ΰYyyΑ–§lρέi§|ϋ‹Υc=ζΫ@.ΘZΘU؜)Ύ₯§ΟΪϊ£σA6QvιWΏϊ•;θ ƒ΄Ωχ?ΨKPί³gOίοΏώ”ΐ_ύΑl‹?ˆHH WrΎ,ΛO †EΐςαόoXνNm!δ°›ΙΩq$ Π0 `7f»Sk@ wΨΛά™q Π° `7vϋS{@ wΨΝά™q Π0 ˜½΄Ϊη«Η)˜ΰYbΤέϋ¬ηΛuω“³ŠžγŠ•X>BΤB ž%θ”WψŒ3ά^{νελJGΟς¨,±ρœ9s\=ΌP4*Š5Q_yύγpϋί½πXή{εq7 ςž*/ͺ­Z΅r?ώΈkΫΆ­ί-ο°ͺ“ΔΞ=[·V‰%δ–ΗέΣN;Ν‹xm¨Q£άe—]ζ…ͺ#«Ό^[HZ~;>όŒ V‹ΥΏ,Ο|ϊ™„αΫΙΉΦZk9yΧέc=jj&<ΛsοέwίνEφcƌq«ΊͺUΕ ]•ΏΔμ΅Λϋ²Β¬Y³Ό`_"Vyό>μ°ΓRΗθΛΨ±c„Ν ςκm"Ρ£GϋώΡ¦M/P•χh ςl-‘­œ|ςΙnȐ!~Χ‡~θΟϊ‘ώΉέvΫΩ!^l}Θ!‡8= οΏ‘Ηf ^ηϟ⦆G=^«ͺ,xK„Ÿ-”SI"xV[φλΧΟ·΅Dν›nΊi5„Kτή₯KίΆ3“€9Χν–ž>k<둎믿ήχ“π8 ε%j—‘π]v1 κK“&Mς’χ#F„»ψDL€χΰpΌ{LΟς3[ξγ; PΩlNΘω_ΩνLν ΒΐnŽ%)A ƒv³a΄3΅„ς'€½ΜŸ!)@ ‹v³a΅7΅…ς'€έ̟!)@ ƒ€ΩK«mΎzœ‚žC1ͺ,“θ9±³ΚGˆZHΑsΤ ²ΥSŸεεYbfyYΆ ž7Ωd/.={ΆΫ|σΝ½Έ―E‹5υi‚α\σ’xτέwίυbS‰N£Aή€%€ύζ›oͺ I_|ρEχ§?ύΙI ϋμ³Ο¦6l˜“‡U‰&o»ν6Χ­[7wΧ]w₯φΛCπsΟ=ηN=υTο±Ϊv$-Ώ~†‚Υbφ/Λ3Ÿ~¦4ΔψΖoτ"d 8-tθΠΑ‹Œ%ˆ…ΒΆ?©ΰyί}χuΡK ¬4’α_ϊ—»δ’KΌWς &ψέO>ω€“Η_yΨ•`yθƒΚ½Ϋn»9υΣσΞ;/ε…wπΰΑξ­·ήͺ!|·cM°Škεyϊˆ#ŽπQBρ΄£ύΌΆoίήχMmC £υ}€@ϋ?όsοΡXίuΎΙ£v¦PNύΗψeͺ‹mΧy)―Ω σζΝsΣ¦Mσ ΊvνjQRŸςκtεE[¬υπ‚BΒζLρSU}©MπΌί~ϋ9=\ Aίzλ­OŸ>NeDC(ΐε•WΌ'ςh~C &@Ž{LΎ,ΛΑc\βΔƒ@ε° 6ΞΚiSj—v³Έ|I¨<ΨΝΚkSj‡φ²8\I¨\ΨΝΚm[j‡v³8\I¨<f/­fωκq "xή£Κ³σUž£!*zΞUμ¬τς’Rπ,qήΞ;ο­’ύ>υΤS5Ό$›ΰYήkοΌσN/Šώυ―ν±­[·‘Ž6˜`8—Ό$•gT‰U|πA·ΡF₯M[βW‰`U₯―°dΙο=UŸγƍs:uςΫ%@”ΠQ‚θώύϋ»oΏύΦ½πΒ ή3τŠ+\―^½Όΰ2*dMR~Ÿaš‘`΅˜ύΛ²Ξ§ŸYϊόα‡Όχα‡~Ψ{0Ά}͚5σd ŠΓDπ¬ΆQ›«-διX£aΩ²eή£³Ά›‘Έκͺ«œrτ"Z ½Γ€όαραχP°ͺνΕκ_–g>ύ̈~Θ1Γ=φΨc^h>gΞοmW"TyΌ΅Dπlή“εαXž—³‰d-}Ϊω ‘ι_ώς—pWΖοΦή#DvΌόςΛM›6~«ϊ¦ςωξ»οόoυΝwάΡχ-}²Κ*‘£χ.-βςX ΊΙΓΈϊcΏ~ύzΙ‘HΥ†rκ?&xŽzROW―θΆ‰'ϊ*Τ'τπCΊPͺ‚ηž={Ίωση§+rmW_}΅χ>^c  Η=$ί –ε‡ΰ1.qβA rΨηε΄)5ŠK»Y\Ύ€Tμfε΅)5‚ŠC{Y€ T.μfεΆ-5ƒŠC»Y€ T³—V³|υ8<«@™D©wήχ‘;pο \«–M­άώ3κΊΪΞ_~δ#D5η€άE]”.ωΤ6σΘυ6šTΔkι) =ε­TA’cyMN’δυΜ3ΟΈ“O>Ω{Ξύο›.YΏνίώ·χψΊΖkΈ &€βIΜ,οΟ}ϋφuΧ^{­“°πŽ;ξp—^z©χZ-±δQG•ς }χέwϋ:H¨{ξΉη¦Ρ—$ε―–@π#*XΥbτ/Λ2Ÿ~fidϊT۟rΚ)NβTyz~υΥWS"ε$‚gks‰σŸdΚΆΖφύχίίM:Υ‹%zŽ,/Ε]sΝ5k=dτθΡ)Š,―Ï?ώΈS:gόσΟ> yƒ–χσ=φΨ£Fšξ*Ύώ^zι%οqZ‘δyπΰΑžemž’Λ©$<ίzλ­)oνς’-ΪmΫΆυBςΟ?άέsΟ=žm) žηΝ›η½Λ«€Θ7mZ}lπώvΪiνf―ΘJΐΘY#;σ`Y~¨|…@!`lœ €Α©& 7μfήIh`°› ¬Α©. ˜φ21:„(μfmxͺ $&€έLŒŽ!Fΐμ₯U;_=NAΟ*T&QͺΨ>㈝7!ͺ<Ε>χάs)1―εύ\΄h‘λή½»ίlB_‹“TΔk‚g‰DοΊλ.wγ7zoΏzJ|Όώϊλ[©Ο$y}όρΗήσ²Q]Ϋ·oŸJ/ό"1σm·έζvΨawσΝ7§v}ρΕ^tΊκͺ«ΊW^yΕν»οΎNΫ^|ρE·Ϊj«yͺΌρώψγNή{%<|ώωηέ 7άΰϊτι“JG_’”ΏZΑt‚Uν.t²,“φ³χίί{πnםΫxγ-ΉŸ_~ω₯Ϋ}χέύφ‘#GΊmΆΩΖO"x½.‡•kdΩ`ηΓ‘‡κ$μ>ψΰwΰϊ¨Ήδ•.myΉ–Ψ{̘1ξ7ήπQ’η[τΈ%K–x‘΄Ϊo+EΑ³ ΆέvΫωAπή\­ιψQD&@Ž›EΎ,ΛΑc\βΔƒ@ε° 6ΞΚiSj—v³Έ|I¨<ΨΝΚkSj‡φ²8\I¨\ΨΝΚm[j‡v³8\I¨<f/­fωκq .xVΑj₯Ζ;+­€BT{ύυΧ;yAνάΉ³{τΡG΅)mhυ ƒςϋξΏ~χ›ίό&/©ˆΧΟζΡY’jε1}ϊtŸΎ<+ΛCo’δ%A¨Δ³+V¬p7έt““89]8ζ˜cΌΨτ„NpΗ|΅({ο½·/—Δ§_Jό-/ΟδΙyμΨ±^Xyήyη9yΰ•8ZފЀόαραχL‚UΕ)d²<“φ3«n΄ΡFξΑ΄δj|ͺ}ΆΪj+·lΩ2wΞ9ηΈƒ>ΨΗ‘Ηby>VίΫhΈσΞ;έίώφ7Χ©S'/ψΥώP ?jΤ(·ε–[Fσ^‘%Š]i₯•Rbώ«ΊΚIlέ³gO/~―qPΥ θε•yέuΧu:tπι¨?¨όΜλΨ8AB?υMyο•Χαh8p “p{ϋν·w#FŒπ»•οάΉs½‡βt†ν²Λ.sͺ―ψ:›Wΰrι?ͺΈυ‘nέΊω‡#’¬ύV[θ!ΩyՎ†B žΥ_ε9ZžΉ―ΌςJ·ηž{F³ςφDžΈ%Œ?όσSϋΝΓώα‡ξN?ύτΤvϋrΘ!‡Έwί}ΧΙΫψ_ώςΫΜ'ŠFΐΘq3Hg‡β«x–‚Η\¨•Aΐ.Ψ8+£=© P|ΨΝβ3&@ ²`7+«=©  P<ΨΛβ±%e@ 2 `7+³]© P<ΨΝβ±%e@ ²˜½΄Zε«Η)ŠΰY…ΫoχNξδ!›[9SŸ·όσ=wί#Ÿ₯~Χφ%©UιN˜0Αxβ‰> Ÿ{υκ•6;Κ£±Ž …ΘIEΌ&x–χΥ]wέΥη;uκT'‘Ÿ„ ΌJψ†€yIΐ,Α‘„Ο΄FCθ:ΒΚ;τ¬Y³ΌSήc-ΌπΒ NBiy0–HU•N4$-4ύΞ&XΥώBυ/₯₯΄ŸI.AΈ<νΚ“·DΝι‚ΔΗς¬¬πΟώ3Οϊ^ǎέψργk:tθPχδ“OV<+ AƒάδΙ“ΔκGΓΓ?μώϊΧΏz1΄DΒ 'NτβR•υ‘Gρi†ΗIΤ,A«<|‡βfυ…wήyΗeδΎωζ›~ΏΦ Γ† szx`·έvsςΰ φ0Βzλ­ηόqΏ[υ—0vυΥWχη‘₯eΗ†"ήgžyΖύκWΏ²]5>Λ₯¨ΰΦ²ρVP'Hθ,ςO?ύ΄k€I΅(zΠβξ»οφΫςρπ¬dΏΎϊκ+'‘ϊ\P-Ÿ x‘σΜ™3s<ύοwψΗ?Ό'yyπN'Œ—‡qυ‘V­ZUΛ—HBΐΘqΝw‚eω!xŒKœx¨vΑΖω_9mJM βΐn—/©C•G»YymJ βΐ^‡+©B•K»YΉmKΝ βΐn‡+©B•Gΐμ₯Υ,_=NΡΟ*ΰiΗmαϊχνheuγŸύά]yΛ;©ίqΎ$’ZΪG}΄“PR"Jyέe—]l—ϋρΗ½Wdσf|ρΕ»ύφΫ/΅__’ŠxΣ ž•ή<ς‚*Ο½»οΎ»6ϋ4/y0`€χ,!΅”7φijŸΔΚ3fΜpύϊυσ^š³ Iu”k―½Ά?^δΡy‡vp .τΫΞ>ϋμ”x7©κKς‡iΨχΪ«ŠWˆώeω%νgς€+!³Ό„«I°ΫΏοYΩ–0Ym"Q¨„Ν=τPJT/1² –%b•ΰXβU±Ύε–[œ<<+t <<λ·”θYν|Ϊi§ωοΪ.OΌ6ŸqΖnΜ9^Œύϋί^»|7]νίd“MΌt Ϟ=Ϋ–—j‰hŸ}φY/βΦAͺ›ϊ•ήύΪίΌ{«oΘ³Έ„«ϋξ»―»δ’K|>ςΐ|άqΗω4†ξλ΅Κ*«ψ}ί|σ;ΰ€ά?όΰYIœ« ρ¬ϊΩ₯K=S ωM»xρbπ‚Ξε5ΦXΓ ’ύAώ•KQρ“žMΠγO:ι$ίώ-Z΄pjG οΓƍ—·‡ήΑoΏύvΧ£G%QΝkxΈ]ϋδ}YύAύBp˜Gqε₯~&A΅BžU–}φΩΗ©?tνΪΥιΑ Π$Ύκ©§|_Σ6‰η­ψΜψL€χPλqγGγY~£dψ Κ'`lœ•ίΦΤ( μfa8’  Πp`7N[SS@ ?ΨΛόψq4 Ππ`7^›Sc@ ?ΨΝόψq4 Πp˜½΄η«Η)ͺΰY…4Qj±³ŽO*DΥ± Σ <Ψ{­ΥοvνΪyρŸ₯Kτ¬ Ρͺ„œΡTΔ›Iπ¬τΟ<σL'’Ό–Ž3Ζ{0Υφ€yιΨϋξ»Ο g%U7Ϋl3/xύπΓ½€Tž‡%d ½Wλ8Σ»wo/²•VeЉjΝ―>εu5ς)4­8‚U“o²|σιgςΨ-Ζ>ϊ¨ONžΒ%l–(X‚7½­Ίκͺξž{ξI‰OYΗξ΅Χ^ξλ―ΏφΗJΜ«φΣ‰.±Ύύχώυ™0\{ν΅ή³ΆuθΠΑuιΕ½ϋξ»ξ»οΎσΡ’βwm”^BdyqVωΤήMη?ρωIΤzΓ 7ψώγωεŸ΄»._Ύά{δURΏ‘ηj‰žeˆFŒ‘ͺ›Κ.!³y—V^[o½΅??ύτSŸͺκ&*»ΥQ&ˆ‹?m»ξΊλ\Ÿ>}쐴ŸεΤ’žΕώ°Γsβ’ 1°RPϋ*tͺΘΫwυ“Ύ}ϋϊνIΟςL/ΊΪTaƒ 6πvSύZO΄nέΪۚ\ΟJk€IξΤSOuσζΝσuy₯'Aόωσύ6 ‘wήygE'@ /f‹γ&’οΛςCπ—8ρ P9삍σΏrΪ”š@Ε%€έ,._R‡*v³ςΪ”AΕ!€½,WR…*—v³rΫ–šAΕ!€έ,WR…*€ΩK«YΎzœ’ žUΠΝ7iλήύΰ+sNŸωQ-# 2%Ψ”ΈR^I-H„)‘ξ±Ηλzφμi›«}&ρf<Λ[νAδ¦M›ζ…₯…6mΪ4/Α³ ύή{ο9y©–ΘYuVP%¨•¨PBΒLΑΌΈžxβ‰^χδ“OΊ‘C‡z!eTxkq“²²γΓΟΈ‚U“O²< ΡΟƎλ½c«Lt¬τ%t–τΘ#Ly,Ά|υωω矻σΞ;Ο½ωζ›©Νj«cŽ9ΖΗ—_Φtά_zι%οW}I‚T ‚7Ϊh#/P•ΰ9]Ψ_ή€ε΅W’RεΧ½{wο±ΧΌ>G•˜ZœMD―ύŠ+ΏςlέΎ}ϋθ!ή›υθΡ£½€["] ¬εΙZœΧ_ύΗ(Ÿ«―ΎΪ{–6―βŠΤ­[7ο­\ε¬-”SI"xVύε!["ty 71²ΔφGq„χψά«W//?ωδ“ݐ!C<²$‚g(―ΰ’›€SΫΤvηœsŽ?~ΌSίO"xV:²Ι²[ΚΓΪ[ƒΘλ³ΞmΆΩFΡΘ›@Ψγ$–οΛςCπ‡6q PY삍σΏ²Ϊ•Ϊ@Ε#€έ,[R†*“v³2Ϋ•ZA…'€½,K›@C¬–vK”gιθ?εΩn”Ε$`δΈyδ;Α²ό<Ζ%N<T»`γό―œ6₯&€@q `7‹Λ—Τ!Κ#€έ¬Ό6₯F€@q`/‹Γ•T!Κ%€έ¬άΆ₯f€@q`7‹Γ•T!Κ#`φj–―Α³‘δ³€ X-©ζ(»ΒΠΚΙ(0ŠNΐΘq3Κw‚eω!xŒKœx¨vΑΖω_9mJM βΐn—/©C•G»YymJ βΐ^‡+©B•K»YΉmKΝ βΐn‡+©B•Gΐμ₯Υ,_=N΂珛ΰ-^nωυ³EσΖnΜ-}Šš‰—&ϊYiΆKΉ”ŠώS.-E9!PwL€7Η|'X–‚ΗΈΔ‰Κ!`lœ•Σ¦Τ(.μfqω’: Py°›•Χ¦Τ(μeqΈ’* PΉ°›•ΫΆΤ (μfqΈ’* PyΜ^ZΝςΥγδ,xΎϊΆχέ³/eωυ³oο΅έ©ά΄¨yxi Ÿ•f»”K©θ?εR”uGΐΘqsΜw‚eω•²ΰqΜ9nαΒ…n­΅ΦrMš4‰‹&mΌ/ΎψuΦYn5Φp?ώψ£;ηœs\‡Ζe#*€]°βόΧΉuέuΧΉ+―Ό2…νŸό§4hPκwCύ›†ΪςΤ» nV"ŸΈuš0a‚5j”kΪ΄©Ϋ}χέέ€βš(žζ»Νš5sνΪ΅Kt<AΙ Τ΅έ,χλ½Ϊ}-ZδnΏύvwΡEΉY³fω†9ϊθ£έˆ#\£F’7T yΣM7Ή>ϊΘΧk‹-ΆpGqD –’"A pκΪ^ZΙm^Άκͺ«ΊζΝ›»σΞ;ΟΟ›l’OΞί$Τ8Θ•@}ΩΝ\ΛI|@₯B »ΙόTZ‘r@uAΐμ₯ε•―'gΑσΒ*οΞ·ŽϊΘM|kVΡ<=Λ³sΟnνέ±ƒ6v-«ΎϊYΓkσB֘ώSHš€Κ `δΈ΅Ιw‚eω%<†‹ΙqΛ«xK–,qψΓ\―^½j=μ•W^q½{χφρ6Ψ`7eΚΏSλ"|όρΗn£6Jν}γ7ά6Ϋl“ϊξ‹Κ{ϊι§ϋ…V‰€θϊυλ—Š^θ§6ώςEbκ=zψ<΄pD€@)° Ά$ηXGέ»w7ωο7άpƒ;α„jloH`ӐZ›Ί6…²› UΆ:ήύξΐτQvΨaχόσϻƍ OmΩ²eξ€p?ό°ΟλpϋοΏΆ’±(0ΊΆ›Iχ \εΔΙΥvν;{φl·έvΫΉΟ>ϋ¬Zϋ쳏;vlQμh΅Œκψ‡#t­­P©u¬c€dWβκΪ^Žp^ΦΎ}{χα‡ΊΆmΫΪξDŸœΏ‰°q #ϊ²›9“θ€J†@>v“ω]έ6γΌyσΌΓ₯K—Φ‰³ˆΊ­ΉA τ ˜½΄’ζ«ΗΙYπlσ @€Κ…€ γ–7ί –ε—Dπ]LŽ[fΕ‹+„|葇άο~χ»TqΚ©ΘiΎDΛ'=‰œ»uλζή}Ÿb΄μα…~š,S›δ‰K^©*ΝσVͺ‚|);vΑ–δό·ΚJLΦ§O'F4\}υΥξ”SN‰nn0ΏKΚσή{οy€ο:uΚ{!»Α4&…ΐ/ a7ι\(¬9θ ƒά=χάS”ω‘ζpzπμΏύ―Η.Αœζ–ΜΕθ…¨;um7“\οՍμ9Υvν;lΨ0wΑΤH€˜ŽΤΘ¬7œtIξϊλ―χ9bΏλΣpν«―Ύr_ύ΅[i₯•ά*«¬β6Ωd“Ί-XΆ>€Α׊#`φ*–―Α³‘δ€ Š%`δΈΜw‚eω%<ΚλK‹©«ΊΚ :΄Φj† /z½¦&˜Z€I’,€GΕ2QΑsx‘_[ΉŽ:κ(Ίαbx1¬-oφC Jΐ.Ψ’œ–Vτœ:ρΔέπαΓ]Λ–-έΟ?œχ«p-Ÿrό,56 .t]»vMyœ8q’χXŽl)3κ‹@!μf}•½”ς ηwΕ±EZ»ψβ‹έΩgŸ]J(( *ž@]ΫΝθό+Ξ₯‘mŒ^ϋFνΩΆΫnλYύυύ”4χ΄^gs¬¨4nΤ§| Τ΅½4R‘νAπlTψ„ʁ@}ΩΝr`Sίeδd}·ωC =|μ&Χgι™cλŠ+ό›ρτ¦:…O?ύΤι Θ £Gvƒ ςίλϋαgl½oώU(³—V½|υ89 ž.^ξFŒώΘM|kΆ[Έh™•£ Ÿ-[4q=»­ιŽωΓΖeσΒΏ~³ …%1@€Jž€ γ4ί –ε—DπΈhΡ"χωηŸW+j“&MΌΧ©Q£Fων{ξΉ§»ζškόw]€YXwέu]«V­μgΖO=!ϊβ‹/:½ΎwσΝ7w›nΊiΖΈqv$YΟEπ¬z=ύτΣNtάc=ζΞ<σΜjE ŸΖ­Άƒ¨cvΑ–δό·’FΟ©Ι“'»-ΆΨΒv7θΟRc΅eε$jΠ‰Κ—BΨΝ’ͺP=&Φ[ΔφΕ_ΈW_}Υ?ˆ³Λ.»ΈζΝ›ΧS­Ι “@]ΫΝθό«œζ;Ω}£σΈΫn»Ν 2€’; κέΌT. ΊΆ—V„p^V,ΑσΨ±cώq>!B¨/»Y¨ςWr:ΡΉk9ΝΙ+Ή]¨ς±›Ρλ3ζwΕλO_~ω₯ΣZ³‚¬ΓΉ{1ߚ§vΨϊ8”ˆSΜ^ZωσΥγδ,xΎϊΆχέ³/eωυ³oο΅έ©ΜO€SΤ’8 @eAΐΘq ›οΛςΛGπ-kxα›ν‚λ§Ÿ~ς`εVα•W^Ω{ΥS‘mΫΆυtZτUΠλy²-ŽΜ›7ΟιU>Š―Χ”k‘fυΥWΝ%Y^΄eσπ|πΑ»ύλ_ΎΌ–Ή&Ε»οΎ{Κ«ͺΆO:ΥuιΕ’π z!`lIΞεΛ—ϋσM}Y^ƒδ‰ξwήq:tHywΦ9ΉdΙNθάlΦ¬™ΣΉ?mΪ4Ω΄iS‡@θa ν—mΠΉ/ΟuJ;[ˆk¬<²9zCε™?ΎxΓlQηΝσςL—M΄>qλ=N„θ5f ͺΧzλ­W큕gι₯N\υΤϋοΏογκa’=zxΫλ7DώɦΝ;Χ+`§N|ϊ‘hΎ¨•·ψΚΓ ŽύφΫo½°πΧΏώu5›=žί('ωΨΝh=uΞϜ93eλΦ^{ν΄s—θqί½›5k–?7ӝσ_ηΎζ0αΉ©}ΚsΜ9>šΝ·2£W#κψh=ΡΌΜμhtmΏΓ›σιΟJ_c†μ²ζ‡Ρ2¨n3fΜπvMeXm΅Υ\ǎΣΪΩ'ΥCφ)LΗςΠ8“-˜]K'΄“-Z΄πήVjK/]:lƒ@%(”έ ηβ΅_Ζ0ξυžlƒ•Ξs₯§9lmα‡~pί|σMΚΛv·iΣ&λaqQ9’ΧΎ*«‘Γyάγ?ξϊυλWοΞΉΨΤ°’IΖ±\Έ‡χV±ΡΓ-β§1Aν¨φ$@ άΚ^Z½uψέwίy{₯ω”΍πΊΫβ…σ²Pπœn.©σLζd;e«2oαωkχΙ,XΊξΦ}]'κ3[ˆ[‡li°¨\ωΪMΩ2]sΚήΩΫ2>ϋμ3?ο’}ZsΝ5«]£+žςΤq ²™k­΅V­€ΓλΖlχΧ”P}”)Σ΅lΊq@e¬νžBœ{O4/Œή―Pϊ –·Ζšπž€§νΕΌΟό₯ΰ?*@>v3ιό.΄kvŸ1\ΟΘdƒ’τ㝘νKΆ΅ Ω­­hHφKλP‡χ­,f›τΫΖ K[ρνX‹―ΟΠfj§ͺ5–Ϊ‚ŠvΨa>šζκτγƒμή½χή›Ϊ§λdύVή²•ιB8Εe-έ€ξchŒΤΈ%ZG³ ql½ΕOς™Λ½ƒ0ύ$χ)t|ΨN™Ζjkλ[bΥ-Ψύf₯iΜ’Η©ο¨ΏMŸ>έ·]ΊυΘ€ΧA΅Υ#έω‘²†Aη¬ΪWΑΞΩpCωnφκ›―GΜΉόυ?μ±}x€Nώφ:||NeΛ₯ΔΝ­έα/ϊ}€>@(η>P΅@»"—Ώ|λjyU- ,όωΟ–+gWuΑ΅’j2Ÿ6ν£>:―καŠ“O>9υ»j1wEΥΔ{EΥλyRΫͺ.ͺVT‰οͺ₯₯ς<8ΗςΥηQG΅’j»Zό*qf΅ΈUήͺνOχcρβΕ+ͺ©γͺΟΥ’Ε©οΫoΏ:^e«z₯z΅4ψϊ ΟωΑTλΣαΉ§οιΞaη:§υωΨ;Έ;ŠͺOh‘IηQš/ˆ€P€‹€―@|•ͺƒH/!”Π«@x€ ‘‘ ½C‡ RƒTHΈω œρμάέ{wgο}ž{χώζσyžmSΏ»{ξ™3ggΒψ§žzͺCpυΥWΧ]CάsΟ=·f ,u˜ŠΚ-Sμ2`΅ .Έ Κ\Ϋ³–ΡR½Y/ωΩΖؐŒιzθ‘Τ6ƒι•W^™xΒv‡ώ‘ύζΙ'ŸDuγs»ξΊkB§w ±ύ ΌνΠ}?ά3<':ΰ½°φώΉΕ8―u~ΦQzf_δ₯lΛϊγžαyΣνo·χ¨οΒΔ Φο»ΒX   @% ȌΛyWφ‹2)/f†Χ¬:κ/}ΝΔ€γ…yΙΜΠΦωΡΨN‘»l;wζ™gžρ³5έsΟ=fΝ5Χ “&Ž‘3Ξ.ΌπΒξΌULΝ2Λ,γγδYNΝv”ά,¨Φ°ι5šα9«½Ά`¬“’ΉξΊλ\ΦPglg‡Λͺϋ;Αώ _¨ΖΌα»Φ3ΠέyηnΉ-y‡Γ8E/ΌπBυ:ΖΘ={U³ς­s>|x³huΧσ²ΑΧί1m@O<ρ„ŸY»_ž€œό³& ΉΖ—{…ϊXηF³Ο>ϋ„QΗΦ0i¬Λ½ήˆi(·ρ€Ί@Ή‰ζbfε΅Χ^ۈN‘…ΐ:7λ¨λ/Oš4Ι¬»ξΊώ8mοΌuΆυ3P5“E:ΜΌgάL}ΦιΪX§wΩΨ ΚΦ³šxΰΖ:l»λ±ϊŒ–НdiFλhh¬«ζδV€.ωcjΧΓkT7cƌq§³t8œG92γ½ΞeιϋΚ±ίύξwΖ2θ$uϋ±Ώuρ T€@Ή‰χ~ί}χuϊI#ϊ eŸξοA'Β¬ΘiοΎΞίψΈΩ”εœΤJΘd9―·v0ΜΙ+ΜΜƒ“FΛF‘=˜₯i•UVΙ¬³Δ+:£qŒLE»b~ΗbΉk{AΨΟΖlSC† I¬’„ϊι ΊpڌΆ:χI S”‘—†σΞ;Ομ΄ΣNr˜ΊEΟ€{ύ.Mφ@¦„ς45³/O’yβ‰'ϊΥ6δύ…>ΫLζ†zoLՍΧH€ͺK ŒάΔΓrΛ-Χ8θڏk½ D¦1φ΅vΧ©h_ΆΘο€Ψ° €{ ‹ 6±§ι³Ίl}]f…y=νΜEΣ3> t#2r3VΏ“tΝx‘Oύΐ$dsΜΨI#9!ςeΑώi?viX­“O>Ωμ½χή.ŽuvlΨ7o˜Qp3&CGF=Β  το t|θΙYΑ:ΝλLν.•χHda ΖεΨ‰νDn6δ<²>œύΈQήΈk;ˆ±S <λΠlώχ»™Άθ±cΗΊίxύΫ„Ϊή„γΠ-ΧΓtˆ«ƒΔ‹νif3Χ~%ڎŽ:aΥΦε—_ή­.‰γπ:ΞυJy)νΥάδ\‘-ž‹Πb\   $ Θy+_VΑ’ςb³κ¨;°αΐ€N£γισΨofόJsT9ΰ€\‡Λύΐh&‘H‡DθmΨI‰qxF~—^z©Ωzλ­]Φ±.:0­λΕ}(K@:l1ο?–>ηœsάKp~•€χΛ>ΒaΨ°a&Νΐ΄ΡF™M7έΤ9Νb©Θ0ΰύ9r€±³|:‡`Ήλbe@Z}μ f›mΆ1gŸ}vb0υΐ‡ XΒ²HΘΛ&Ά iΖ5|PgHά ΝΤΞ&oΆΫn;w―°t–)Ϋ+`XƒΖZΰ £Xψ ξ' o£GN °3c»|q2©D¦¬άV…@Ή xΧ΄Γ.ήΌ_ςˆpŽ(0D΄JώέE;³‰sΨ ίydΔ‡iΖTΌΟ|°sΔΓ{¬Γ³Ο>λ&oΌρF³Ι&›ψK°„όEε6όϋ9v΄ά]ΡΞnbΒί#8㈣7δρŠ+θs‡μΆ³΄;σGc8Ξdιp8½ο}Ο-“λ3΄;XZ~τ½°+v˜AƒιΛΞ ΛŽ7Οg;Λ¬ΰΞ_ΰ τ 2rSΛ Aggƒ2XΪN$ Kε#ΧPφΙΐβ†ύOθOΠνluΞQOςΣ:'ƒυ‡ ˆcgv‰θίι­ΆΪΚ /ŠP4 –εΦν KΞβ#,ηͺυ8δ₯pη›o>cgς’ΉΒsό‹‘©Θ6ζw,†;Κιδ·Ώoiχd½υΦs’ +‘ 5 Ω1@Η(#/Ρ8€_zι₯};‘Ψœ€ώ§ϋ‰7X!Mφd9™!vμ$MNH"OnΏύvΡα+yl6Θ?ΖN‘g€Ž°3Ο=χάucawέu—³#‡i΄½ y„Οˆ\ΣIy²E?jˆκΛ₯εέ¨°s£_&Ά,mB}ΰΠnWΌͺΥ9uϋ =°#ςRšZΦ+nYΌΫuΆœPλΛΏΌυJ‹‡eομ_χ‡eτ^yε•BνNΛΏSΞM›6­6qβĚύ:§2mκΆ¬G1ω@^δΕg€Ο@§>V9uKχδέ–m‡”c [τFΆƒZ·΄₯€γY…Ρ-οcΏ^­Ω―1koΌρ†‹¦—W±ΞΪ?ώρwυFω³CΙΦ-1³νΆΫϊk¨ƒuDqΧ›-qμ3Q;ϊΧΏjv€ΖηgžΥΥZM·£Q{³Ϊ’ΘŒ$Π‡Zρώcω-y±\d’ϊΉG<λtΰ—ΒςHφ yŸΧ­Θ/…λXώJςo… λƒeΗD> {’9ΊHόGJ V^JsBέΞ:ίΙ%χθώœuΘπΧ²dO(O±ό6–ζ–`-ο"δ*ήAύώβ}ΥϊλϋοΏ_Γ²εςk›]l€Nά’ τ2r3”qvb§χ AτGENa ύE Χ_}βΊθœeμkνͺSl_6¬O^›…Ίkh;ΘϊνΎΊl­λtΈ/­²3KΉά’@Υ ”‘›±ϊ]˜:€θ–Z/Δ{-:,κͺε°§\ΛεdH8V‘λΩφΡGI•jvυΌDΉΦΥ] mŒΘ²J‚]-.‘uŸ|ψ d=’8εέfε“χΌ”ΣJUw9λxYгξœjγκ ηht"Ρ‘±3^%š•.μX„’D&_„”°#ͺΫΡ¨½YuJ+“ηH /΄βύΧοTψŽ’ αsΑMn½υV߁†“­IT_3"ΨY;ύυΦXθfΐ /Ο~36Θ#¦ pc„]:¬φο;Qν’οI(Λ΄όΣΞΩΘΫΐȓ&Mςε"Ž€ΧLqΕ(Y—O@”‘›α»"Ž΄‚ςο¬ΌίxΗ`8Φ†mT–tt•4؊ž’eΞ‹^A&hη?y§q]λ6bΤΕωΣN;Ν—ωƒϊΕΝuƒMZtήΪ9œ J€χ†n¨ύρtbqn 垰‘tz‹ΆΨ₯υ°3©ψ(0vλ:jΗ‰€ΒΪyGsK½H Vn†2ΜΞ>Ÿΐ‡χήΞζζίKyΏΓtZΆaRι?Ϊe:ω‘žϊ—t‘nˆρtίιμ uNώˆœIƒΚhΩ¨u8\ ε™ΤΧbBŒLΥυƒΞ—ηw u‹αŽtϊ·Hχ³νΜXώ^ΑŽ οΑ1>ν^β t2Xy)mBΏeO<ρ„λgΚyΩ†ο”|ψ«ίm-{ΙSδ 9lgησο›ώΐ ,+μSλxυϋΫi#·$@½E Œάl&γB}B;θr؟–…ΛΨΧΪU§ΨΎlXΡuε) hύ΄™ξšυΫ#yλ²υoS˜•vf)›[¨22r3VΏk–ϊ«ξΏι bΖN΄œΘ«€μ€“'&/°³&'n9μƒΪ^*Ά†PΙyI =VΫν,»rΙoυΣϊcA‰€IC…liA·/΄=ΖΚϋΠi6ΰ Θ „4ωγ.δψ'²Ψ x™"ΙΆΪj+§Κ±l!³ ƒtΐ΅ΫΫeψ`G[nΉεΌ-Mβ„mlTη1cΖx»c©ΙQ©OžzκΆbŒz§vΝ¨λγ†γN°Cόρ.ΝC=d ”HέΎPΦ²qσΚ{λn–]vYί‡FZΘ^ψ/’°{ΐή†I(λΓψy‹Ψbμv$η`'huU²+ˆ™UW]5Q=;ϋ²yηwœ­,πl…|ΓφfρΣ…:….ΈH?χ ώ EہςFŽiΞ<σLW4ΖπŽΑώΏςΚ+ϋκ4ͺ§Tα‘—Δ²ώ83Γ3fvžφΑf±ωλίήs3=gyjη9―gxž6mZέΜΗfΝ D?4fΙ“o'ΖΑ—%Xž λΖ:qΖU>|ψ πθοgΐ*Ύni›ΌΫ²υ•rμ lΛB³/v₯ <ρτΧ™ΆS‘XŽ_ίκ/m­ιΏΈΤϋ:žql‡Dͺ“Ή ΏR΅άDά<ν@‚FmIdΘθ#­xυ;₯ί5iB³ηΎYz}=|gcd@³ϊ ήηŸΎ—%Φhδ—Θ–6εέκΊ§±A>EΫ~eΚ£Fu e™–z†-ΤΥsŠΆŸα@IDATκ² ΣKΩy˜ΦeΖ$Π₯bε&fΐΣ³³[Ǐ\²%œa#œQI0†Ίˆ5ŽΦ͐―ίy€ ίi}3`ΦLΡ§¬αί-ί+ΗΨ–™Ν]Λ k4χε _°AύΣ–«ΥuχO=υΤΔ2”aEn…yλՐηZk­U7{~',;<Ξ{ΓΊπ˜ͺF Vn†3ΛΜνΝψhύ ο₯–m°GcΦϊπ}M;Φι°J!τ£΄x8‡™¦u|Τ1&–‘ξΚ³°Όf\‘©±Ώc(7–{ψΫ†bΓY³²ξ‰>ί ViόxŽZM V^κz\ύυ™²JΏΊŸ›%{ΙS)S/έ­εVΪϋ+i°ΥeκΊΰZLŽH χ”‘›Νd\3έ+Ό.}Ν2φ΅vΥ)Ά/[¦>!ŸPΣΏϊχCžb]ΆΎ›.-_ό.†υ’xά’@U ”‘›±ϊ]³tθkΒ†&ΊͺΘSάƒ’c'HΣLN Κ<ρΔ}™RvΪVκΚ59ό$θΆ6»κΐ°yˆ-ΆΡͺzΊ}a±ςυ·“Š5䁢M:UšκΆ!“²2΅¨ν ΦNΪΫσΦ[6₯ύ†dρh–N νΕΆε…«Ήb¦sλ<FΟ Τ·κ[‘—²-λΣΟ‘³³άΔΡ'νyDqΚ»-{€ΡiZ±ΥΊ°Γ₯σΟOwή΄q+μ8 saΏ4­ΑΡεœsΞ©ΩΩώΌbΣενXθz†e…Υ<ν@Η+\κΣ~=¬‹α> τ9VΌϊοš4&λ–λΝλλڈΎ—ye@³ϊ ^}επΣ†v9jΉ•φώJ=Γ2u]Β2σΆAηΝ} ή!PFn†ς&”qΝt―πΊτ5΅L-j_kWbϋ²eκς ωjNϊχCž^]ΆΎ›.-_όΖ„υ’xά’@U ”‘›±ϊ]³tαΨ©ΘΣPŽΰΝ3άLNΰήκ8Θ¨'tζίόζ7‰~V}δΌ~Vt[›]Χ:0ςΐ„§R—΄΄RŽ{˜G¬Ό—ΌραΆΆK}d‹ί5ŞQœςnΛς•rZ©ΈκNIΨαε䉧;oΪΈ~©zυΥWλ¬kvΙaί9ΤιΒNCΨ!IdςεAΨI ;›yΪ:Σ  τ7VΌϊοš΄-λ–λΝλλڈ+šΥυFΘ°X‡5]χ461m €Y†‡ιΣ§»π0 ž„P–iω§#¨kš³_h±Λ²Ή¬σ0•:pKέN ŒάΌθ’‹Όn’%[πΞβο0Bψ‘μa€\ΨvΫm}ήβL­e–Ÿ’Ύ‘L@œ|Πη‰τϊ―‘C²δίh«ε†ΞWοΓ~Τ(@&Ω₯υj§vZ’nΘφ „°‘g—L8 -f³N ΈχΊ~°A‘˜_ΑFΗΜΌΞ™ieρ T‰@¬ά θή|σΝ:,"3±}-KφΩeiοπ‘‡κΣ γ°Ώ¦υ$]0Κyωε—έμG›oΎy"OΜΖτΡGιθn?o-Cέ1”gYυ«+<η‰<25ζw¬ χ¬~Ά>Y‡ w΅–}9YΟ@έ@ V^JΫ;μ0/“ C{μ1ΉδΆϊέΡΆΊ,Ω“%Ou¦Yi³Κ’΄:Kl$_nI€z‹@ΉΩLΖ5Σ½ΒλΧ,c_kWbϋ²eκς uWύ;κ½xŠuΩϊzl:y3tΎθί‡υ’xά’@U ”‘›±ϊN'6KΝςB―δ+ς4fμω6“Ÿ|ςIβ#ZLœπφΫoϋ*ae!½Τ'”krή'΄;Ί­Νk8σyώωηuΆ‰}έ>"ΕΚϋDφ}hψζaε-™uZl’;οΌ³›!iB&edj¬ν ΖNϋ‡~ζ>’†GۜΠήfΏ!Y<š₯Cή1ύ Ψv <]¦ά_Ω6³Λ‘C΅‹Ό”mYœ~uxnζμάWΟgœq†sx^vΩe½σξ[o½εΞΑϊŽ;ξπη5πνΆΫΞΕΩύΧρ£‚tΗw\νΧΏώ΅ΟηδΞΟdΣωΕ¦Γ€δ‹w$OΜR„σK/½t ϋƒφρ$ώςΛ/_»νΆΫ|I‹_šH<½EέχΨcwmΟ=χ¬K+yp[̏ΌΘ‹ΟŸ>ν{DqΚ»-{/€œVͺ₯ΊSvΈt9yβιΞ[#γ8萡ržŽ…Ξϋa'%μ¨κv€uΨ‘«θ™tΠaHλ@…ες˜ΪM οΏ~§τ;*uΟz‡εz³τϊ:ή1š„ωζ•aΊΠ! ο«6βμΈγŽ5Ήb‚{6yΫ€:‰αu…‘N‡ppEΪΚ28 JΠuEήβΜ,Χ±Υ³ ΞC=δ.7cͺσΰ> t;2rSλ&x‡Bγ5ήQ-0λ&Ξilšž„εύ ίk‘ŸrB™Πμ:κ Y†Ω5π‘z™ εΪ οGyΔΛ6”'6qD]ΡvόA·Όωζ›ΕCΞ‘nH‡?ΡΥΒ6ΚyI|Θ!‡ψ4HwςΙ'Λ₯ΊmΘσΨc­‹ƒpš„³ ΐbε¦Φgπ~N˜0‘©^AGήοπ]Ωζ§υ d^—tΠ6Ϊh#'0ΙF¨waΒ‘=’οΕ€A΄l”Όp!”gRΏ/ϋ+Sc~ΗByΉ£EΊŸ­ν ϊ<8₯}¨‡γ°¬b”›ϊž@¬Ό”š†ξβ=ΠAχ#υ;•%{ByڱξΎώυ―Χd%3ύžκ²€>ΊL}=Ά ’/·$@½E Œά e\¨[5Σ½ΒλYΊ¨τΟυΙ²―υUςφeΛΤ'δκeΝVsyςΙ'λtl0ΤΏ‘ΎŒλΊΞΝC‡ο;ς` *(#7cυ»0|¬,œC{ & EίχΌc'a:‘ςΒΙ%B9^ωΚ59/ωb«ΫΪμΊΦ_{ν5/σp>d€ΛΠνÌΌzμJΛ@ΘΈΌς“Ž1ΒΩ=Ž?ώx]œsnΦ+νιϊ…LBYŸΘ¨ΙA¬ν ΖNήγύφΫ―v:_isXΗ°ζ+Ώ1α}‘σΊΠ˜~PX^ήvHΉY“ΐŸΞή½D^Κ2¨Μ_KžoΊσεšΜΜ gεFyœϋΚαy·έvsΞ»l°‡Ω ‡g $Α‘јεyόψρN¨‰σπW\αΛΓMΔ M%^ςLsx–Ϊg9ύ󟜐e:_Ν4­Ν8ρ: t2r3tLήtΣM νΗ¬ΙxχδοΩgŸu—0“»œΓΒ‹46ήxγΔuI§e…ΖΤPΏ ―£pΖ₯lΡ­ΔΘ+υŽΩjΉ‘ΈaT—ς°Ε ¬‘Œ;=c'8HύNt΅°ry†²t­΅ΦςΏΈ.Aδ+ΆΓ† KΤ«©Ι½@|LB€ς!#Σπ$OnI —ΔΚMΌγC‡υοήq .Iΐΐ’–2³{–μ ¦°z‘Μ½α†&ς™xΟ=χ$Ξγ=Χ!Να9& ςΤ²1Τ©By&υΣuΙ»+Sc~ΗbΉ£-a?[δqΘ3rM:Υ7Ώ ˜u ΟG8xν#q‡:@¬Ό”¦θArθ"z¦Ί?όα Y¦muY²'”§ΘσυΧ_—βjz65Όoz€=λύ•ΔΊL]—Ψ6HΎά’ τ2r3”q‘nΥLχ ―K_3Τ³ σΪΧΪY§˜Ύl™ϊ„|΄ O©^ΝŒΠ·–έ<μˆΓ’ώύυe€Χunvε†χ]κΐ- T•@Ή«ίιtxοΞ;ο<~nzΌc½/½τ’»;vLN„N’Π?ΕΉvˆΡ£G'τf‘ο‘\“σΎ1vG·΅Ωu­kηZ±mθ|υΎnτs‘ˆk»<υΤS}›!;Ρχ—»g^‡ηPΦKyΆ±Άƒ;κΞn|ύυΧϋj"Oύ\ξΎϋξΞώ>;Έί✞φμΘoŒώmΚϊν‰νΕ΄C>Σ¨ώhGω‚ΘKΩ–υΗi™Γ3œ%4szΞλμάΟxΙ ΄ΰΐ )@[απόΝo~ΣΝΨ%yΚv•UVqεύβΏπεαš8<M—ΗαyΛ-·tƒ~Rlα€-ŽΛψ2D½ϊκ«ΞQΧ0&ηe Ηg̍λtxnŸsžπζ–Œω πΰ3PώΕ)οΆ,s)Gt£Vlu§NwΪΒΌσΔӝ7m€Ίϋξ»}L”πAƒΥπ'Η²Ε,3τDΘΣ±λ*ύaGU·CΚΜΪB—“oΒrxL}M οΏ~§τ;*mΙz‡εz³τϊ:ή+1ΔΚ]А'κ}ΔG$fVΕy=C•Τ·ΘVΧ=MlΒeΧPW` o±―ΰ -!4Θ d&œ)xΰDZ\ί~ϋν]?Jη‰}홦΅SΚη–ͺ@ ¬ά<πΐοδμ+xwτ{¦gRg/F< ώ…yαΌv4Ρ2ΧD~Κ}υ›π:β=ώψγ‰z!=)yέjΉ‘uΕΠΑεΙΰ°6Ύγ<˜vΪi΅ΣO?½Žί½χήλͺΆQt8=s ς’Ώπ>Θya“6σδθα‡^·šΗV[m•p†.ʈρI *ΚΘΝpφ;Ό“˜uς~b YŠχ!KφΑq"|Η‘?₯υ‘§ΜL»{˜°žώωNOυ€<Γ`WLΤ]ΛF”©.Cy&r ιbBŒLE9αoO³ί±Xξ(Kχ³υo\C§άΔίk―½ΟΞs)VΠdθeδ%Ϊ~$‡η2.”a8―?8Λ’=‘<•|0¨žφb6N Yο―\Χeκχ;Ά ’/·$@½E Œά e\¨[5Σ½ΒλΧΔˆ΅―΅³N1}Ω2υifƒLΣρϋ€ΜpŒ?­λί}^ž|]ηfΧ‘wxί%nI ͺΚΘΝXύN§“w|σΝ7―5ͺebΨ±“frNΑ묳N’lτk³lβόΩHξΛσ’Ϋͺ‹¬λΉΥlν9†ΊΓFςςΛ_ψ@ΖΘϋπ£bδ mYΙXΪΤLΦK»σlΣ~ςΨlwQ;„Žh3Vχ 'ΑωΫoΏIœCyΘCξΆαŸόΖθί&Δ‘σ.Σ/ΕφƒbΪ‘Λ 'AύΒU)uό^Ϊy)Ϋ²ώ8-qxΦΞΞr3²œž‹8;·αωκ«―]{ν΅ξοšk©a¦ˆvΪΙ;όξ²Λ.nyLΪ ‡gΜd&ωινΰΚΕ‹­Ο‹ΓsΡtyžŸ{ξΉDY(_ςˆ³7Ώ₯.˜ΞΜΛ-·œ3lΛy½Ες†tx.ο€§™rŸ<ω πΰ3ΠΎg@§ΌΫ²χBΚ½¨[έ©“N[˜/:­αršς%€Ž›Υ9Ez½„qΨ‘ΠΗθπAΏ@ΘΣ±Πεc?μ΄…Uύε₯.7άΗL²˜υ™:…@+ήύN₯’υΧιiΧ›₯Ώμc@¬ ™ΉΎ£α1ŒjeB³ΆΕΆuϊΫίώVη Φ}6™@ځώ]rZδ/Γλαρ!‡⠏ȷΩ=–²Ή%*(+7αΠ‹Ω‰ΓχJγc‹ΠΈύπΓ7Lƒτ0nCg‘%?εz¨ίˆ|•λΨ†X@vŠS‘ŽWt_d1κκŠa½ρΫ»δΩΆΫnΫ”τ-  d F„ehώiϋš μtiqτ9Ψ―τ¬ŠEω0> T‰@YΉyςΙ'7}η΄Ξ¦υ/Ό—ϊύ g#ΥοmΈ―?ξJ0 γγ+ IˆI£ec¨7‡ςL·KΚ,²‘©Θ?ζw,–{hW}υxχέwλ>4I»'z&o€c N&PV^βC¬xšφ.„η°r«¬”%{By摏ΩΙtSψλ2΅.ΫΙ—[ ή"PFn†2.Τ­šυ—Γλ‘Œ±―΅»NEϋ²aΏΉ(£f6ΘcŽ9&Χo–Φ‹›Ω 5CNތfm’xά’@U ”‘›z΄ˆ~'ύΊfz*ήYm;i&'poΓYζ΅^ξοΏώξqϋδ‘άG$Ν¨Ωuс΅άΚ³:π /Ό*;΅Œ.*οQχpεΑŽaοΤf#]3Y8yC¬ν ΖN:ΙJ}im•sα}œ4iR*‰―·rOτ=Ζu9―Ή”ιΕ΄CΚΖΚΊΞY+ Jό^ڊΌ”mYœ–8<ΓΉ9-„NΟE[ιπ ηά΄Ώe—]ΦMρ‚l…Γ3ΎΠσΕ1ΎΪ@]V_}υΔuqx.š.ΓσoΌ‘(Kκ΅ςΚ+»Ί@ΠΙ9|­ϊm½υΦώœ\“νΟώs3<Θ9nΫη¨GΆdΛg€ΟŸrΟ€(Ny·eyK9iϊQμ9ιΐBIΦ³Ζ„ωaι"Q€eI˜0Ž gGΖ ν9ηœγσ@‡ωΑΡΤ’7ΆςfΨ±ΠƒaΩrŒŽ΅v°‘/zεzZ‡NΚΖ‘cǎε‘‹ΫŽ"Њχ_ΏSp ΪΩοπ΄iΣ ΄&|Η_(Λ»χjΚ”)>}Œ Π2Ž{0δ \yg±ΕΜ©˜ΥTφα,ΑŠfθ«ΐxŽΠŒ βΔ΄ι0[xΑ°'_Δώβ?θM_Œk³ΰΙ²ξ2λβαάm·έ&ΡόΆΩ=φΉC Π Ή ½"kπσΨcυ«R„Έ`ϋΑΚUiολ<²φC6ψθ$νΓ;p>묳Ό‘0β–z™@+δζδΙ“Sψvήyga«0ίο°Ώ‡~‘Θ™Α :μ-·ά’˜QςXΌχΊŸ«εϊƒS§NΥΡέ~Ρ4Z6’Žze PžiΉ««•©ΐ˜ί±ξš7τΧP·E=.½τRίWΠ3-α·Efι–zsKN ςύq±QA/Y…G΄N‡>£|Δ–%{Byzβ‰'ΊYφ%OlQ&o &*’xpΑϋͺΓ­·ήκ―‡Ί`Ltήά'θeδf(γΒ! {Α>(²,Τ)Γώt8^€»PΤΎΦu*—-kShfƒΔoVψΖ²ΕxΚUW]εuά]²³];ΕΎ±Λ˜#ϋ¬8p ±]šΉηžΫΨ/©M(W­σ°Ωf›m\šϋδ‰κγiƒOτεϊƒv–;w4묳šωηŸ?ŒRwl' βΪ―ίΝΌσΞkfši¦Ί8Φΐβϊkθ›Zc†™gžyκβπ τVΚMλΈεdή―™gžΩι/iοbΘΨ~8b¬1ٝΞϋΞ‡y΄κ2dπΰΑΖΞ‘+Kk6Ο<σŒ“;Ή4ˆvV-'Ÿ φ‡ώ'χ6,λΘνκ νy ͺΟK$Π3Z)7‘Ώ@g‚¬Δ{7ΗsDsD^Θο1dSή :ϊ¨τ#蒍BLšFω…ΧZ‘«ΖΘԘ߱Xξa›υ1κarά½ΐύΔsQζΩΠysŸϊ’@+ε%ή;θοώ g¦·5k›Ψ5v&hΝ~D`VZi%χΎΝ>ϋμN…όΜ£ΏϊL μ΄’ ŠcT .$ΠJΉΩΞζw’} 2ϊ__τe›Ω aΧD}ΔNΉΠB ΅σv0oθiύ!7­σ°±NΎϋO~ς3λdιί{ΨӚgHŸΊcΐΊ Ϋb»tΫ΄Οϊ?:??ΨU‘WCžkΉ’֝&bΐΨVZˆ‘χ"—qoΠ—XpΑώ‹iεhYϋŸΕ2φb}_ŠΨlbμhΖΧΠnό6fρtμ?)ρΰÈίV=;eϊAEΫρβ‹/;Α¬k–ul7O>ω€Yl±Ε€™=½y)Βqc9ŸwΫ2‡g˜ετ|ώϚ?όFaggδΩ*‡gνŒ|΅3πgœaΦ^{mœφ/^―:<‹γ5œ₯χέw_ΟDοΠαYΣΰ>  @§δΌυ,«`Iyέξπ˜—γ‘ ό‡€tΨzιύΧΟ0”δqΌ³3Ζ›aΓ†ύ\“½‡η&Yς2 @‡θEΉΩ= σvζ cg‘hΝ_Λ+w}ξ t=ΚΝφίBκͺνgΜH /tšΌ ž1q&eb  N!Πir³SΈ°$@$E ?δ¦vxΆ+MškΉΖΜ8γŒYUμ©σpκ΅³5›Yf™Ε,°ΐf½υΦ«Dϋi/ξŽΫˆIXμκ@Ζδγ*Μχ3yίD^ΚΩ²ώ8-uxF₯²œž₯Β²m6³³Δk—Γ3ς—šνςΖ.εgFΖ΅^vx5j”Qw“M61'œppΤ:<Χ!α   & Θy«XVΑ’ςzΙα1/[Ζ#ͺ[/½1ΟxπQ*ΎΪΞ`œZtΡEσDe .#Π‹r³Ρ-ΒLv™^7ΛG3‰Α Μ4ΈόςΛ»ΩAεΛk$@Υ!@ΉΩ7χ’Ίjίpf)$ΠN&/ιπάΞ»ΝΌI€ZA Σδf+ΪΔ묳άZW_}΅―Ÿή‘Γ³¦Α}  N' ΘyλYVΑ’ςzΙα1/[Ζ#ͺ[/½Ώύο͏όcwk9Σh՟pΆZO εfλ)2G ^"@ΉΩKw›m%(C Σδ%žΛάM¦%θ &7ϋ’Ν,ƒH€ΚθΉ ί°3Ο<ΣUγ2—]vYbrΟ2νaZ βτ€P’z™e–1O>ω$') v+ςRN•υΗi‹Γ3*7l£%̞;­(υτΫq=e˜oYN$j§Γ3ς?θ ƒΜψG3όσ›oΌΡΜ>ϋμ8νΒ†nhώώχΏ;§θ1cΖΘi·ύΰƒœƒτ+―ΌβΆUrx~μ±ΗΜΦ[oνΪ9~όψΊ%΅0]>~8_zι%³Ωf›™£Ž:*Α†$@$@$ΠiΔ9o½Κ*XR^/9<ζeΛx$Puaλ₯χ_,γCJ:σΜ3fΉε–σMΊοΎϋΜj«­ζΉC$@ύM Σδfσ`ω$@$Ќ@ΘΝSN9Εμ½χήjk­΅–ΉσΞ; Vc θ—\r‰Ωf›m|αC‡5Χ\sωΪΧΎζΟq§‹žq³φΫu%³Ιϊ‹ωϋvΓν/›Η=ζσμ΄ΫαyκΤ©n ρO>ωΔμΊλ3Kψυ―mnΏύv³ΰ‚ όh|η;ίq—ήzλ-sΐ˜|ΠWm†g4jΗw4<π€ωκWΏκΎZzι₯][ρΈY«1c4Β°aΓΜΡGνφωH€H€:•€8 η­žσ’b< @ΈΒ:τΗρ»οΎλVΞAΩσΞ;―0`@Tƒe’ t!^•›]x«Xe !@ΉΩ!7‚Υ θx&/?ϋμ3σώϋο{nsΜ1‡8p ?ζ  τ7N“›ύΝƒε“ @3ύ%7α·…€qŒΗ0 τŒβγ֏?ώΨ,°ΐf…VΰiΚνy)—Κϊγ΄m†g© 8=Η8;#v;<£ŒγŽ;Ξ\|ρΕfΆΩf3'Nt³’αό_ώς³ε–[šΟ?‡ζίψ†{@α4…ŽΉηžΫΌχή{•›αmEΫwήygσΞ;οΈΆ.±Δnͺu,Ή…Άε+_q†:<ƒ  @§ Γs§ί!֏ͺC@:l½4Γsuξ[B$Π(7ϋƒ:Λ$θf”›έ|χXw Ύ$@yΩ—΄Y @PnVα.² $@}I€r³/i³, n& ςRΪΠρΟ¨θŠΛΝkžxϊ]©s‘m_8<ΓΫώ?ψωπΓΝ[laƌγλˆ%₯;μ0£₯_|q3zτhsΓ 7ΈiΘ«8Γ3 Ν£F2>ϊ¨ωτΣO8>~ψαfόψρf€Ifψπαζˆ#ŽπΌΈC$@$@H@Žη©_YKΚ£ΓcڌCΥ" 6ΎΥΊ―l @ϋPnΆ-s&¨&ΚΝjήWΆŠH υ(/[Ο”9’ T›εf΅ο/[G$Πz”›­gΚI€ͺI@δ₯΄¬?NΫgx–ŠΖnΛ8<Η–™–ξ­·ή2oΎω¦³σœsΞ™₯²η0νϊ /Ό`Ύώυ―»™ΡP8y?ύτΣζWΏϊ•Ωe—]*Ϋv6ŒH€H Δ9okΚ*XRσg<¨ι°ρύ―Ξ=eKH€ΪK€r³½|™; @υPnVE$@ν!@yΩΜ•H Ί(7«{oΩ2 φ άlWζJ$P="/₯eeύqθπ,$ΉM˜>}ΊyηwLΪ†σίώχ βœzκ©fƒ 6H€ε   tq@Ξ[―΄ίΏΌiOΚ£ΓcjŒKΥ 6ΎΥΈŸl @ϋ PnΆŸ1K ¨ΚΝjέOΆ†H }(/ΫΗ–9“ T“εf5ο+[E$Π>”›νc˜I€ͺE@δ₯΄ͺ¬?ž…$·ž@­V3{ν΅—™2eŠsh2dˆΏφΑ˜ύφΫΟLž<Ω9C_{ν΅fφΩgχΧΉC$@$@H@σΦ­¬‚%εΡα1/qΖ#κίκάSΆ„H ½(7ΫΛ—Ή“ Tεfυξ)[D$Π”—ναΚ\I€ͺK€r³Ίχ–-#hΚΝφpe$@Υ# ςRZVΦ§°Γσˆ]'™ώυ™”ίΦνμ³Νh~?nΆ–ΑΜΣ όφ·Ώ5§Ÿ~ΊωόσΟΝK,aΎύνo›?όΠ<όπΓζέwί53Ν4“9묳Μκ«―žžΟ’  @δΌU*«`IytxΜKœρH :€ΓΖχΏ:χ”-!h/ΚΝφςeξ$@Υ#@ΉY½{Κ‘ ΄‡εe{Έ2W κ ά¬ξ½eΛH€ΪC€r³=\™+ @υˆΌ”–•υΗ)μπ,sK$@$@$@έB@σΦ·¬‚%εΡα1/qΖ#κίκάSΆ„H ½(7ΫΛ—Ή“ Tεfυξ)[D$Π”—ναΚ\I€ͺK€r³Ίχ–-#hΚΝφpe$@Υ# ςRZVΦ‡ΟB’[   ΚδΌ ,«`IytxΜKœρH :€ΓΖχΏ:χ”-!h/ΚΝφςeξ$@Υ#@ΉY½{Κ‘ ΄‡εe{Έ2W κ ά¬ξ½eΛH€ΪC€r³=\™+ @υˆΌ”–•υΗ‘Γ³δ–H€H€H ²Δ9oΛ*XRσg<¨ι°ρύ―Ξ=eKH€ΪK€r³½|™; @υPnVE$@ν!@yΩΜ•H Ί(7«{oΩ2 φ άlWζJ$P="/₯eeύqθπ,$Ή%  ¨,q@ΞΫΐ² –”G‡ΗΌΔͺC@:l|«sOΩ φ άl/_ζN$P=”›Υ»§l @{P^Ά‡+s%¨.ΚΝκή[ΆŒH =(7ΫΓ•Ή’ T€ΘKiYY:< InI€H€H€*K@σ6°¬‚%εΡα1/qΖ#κίκάSΆ„H ½(7ΫΛ—Ή“ Tεfυξ)[D$Π”—ναΚ\I€ͺK€r³Ίχ–-#hΚΝφpe$@Υ# ςRZVΦ‡ΟB’[   ΚδΌ ,«`IytxΜKœρH :€ΓΖχΏ:χ”-!h/ΚΝφςeξ$@Υ#@ΉY½{Κ‘ ΄‡εe{Έ2W κ ά¬ξ½eΛH€ΪC€r³=\™+ @υˆΌ”–•υΗ‘Γ³δ–H€H€H ²Δ9oΛ*XEΛΛ[/Ζ#                n$PΦ‡ΟέxΧYg   BŠ: —U°Š–W¨1ŒL$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@]F ¬?Ξ€Ώώυ―΅.k3«K$@$@$@m%PVΑ‡η₯–Zͺ­υdζ$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$ΠΙž{ξ9W½²ώ8txξδ»ΜΊ‘   τ ² žϋεΆ±P                #@‡η»!¬   @uΠαΉ:χ’-!               θ?txξ?φ,™H€H€H βθπ\ρΜζ‘                τ :<χ fB½M`Ζg4sΟ=wGBxύχΝgŸ}Φ‘uc₯H€ΊŸž»²$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@$@ύO€ΟύX¨<šE]΄#ΫωΚ+―˜ιΣ§wdέX) ξ'@‡ηξΏ‡l                @ ΓsίΦ€*O€Ο•ΏΕl @:ωΔΜ0Γ rwΰΐΉQ–‘ΣΉ aD Κ¨ŠΜ¨J;*σ`±!$Pa±:Z§!‰ΥQ;­¬ @g(Σ—ξμ–±v$@$Π½£ΕΆŸΏ7νy™+ ΄ƒžΫA•y’   T’ž;οΆώλ_2“&M2?ό°yϋν·ΝG}dN:ι$σ•―|%΅²ύλ_ΝΉηžkN8ασΛ_ώ\uΥUfα…6{ν΅—Ωj«­Zζ,ψ`³Ν6ۘωζ›ON'Ά0€'ΚΖ}Yf™eΜε—_nφί³Λ.»˜o|γ‰ψ±p’EΎ{ξΉ§yσΝ7}6»οΎ»Ωwί}Νβ‹/ξΟq'I θϋŽηxΪ΄iζΤSO5‡z¨―ήΧΡ£GάΓΩgŸέŸΧ;eξ{;ή]7ξ“ T‹@;d_¬*#ϋξΎϋnsΰš{ξΉΗί θ"·ίύξwύΉp'VN‡ωπ˜H 7΄[f wο½χš3Ο<ΣυO–Zj©X b’Ώ;ς„?ώΨ¬Ίκͺζg?ϋY"z+Ϋqν΅ΧšoΌΡ}˜ΉυΦ[›5ΦX#Q–€υMWXa³Ϋn»™αΓ‡ηn“δΗ- @wˆΥΡ²Z[Μ„ Μo~σ›„ήχ“ŸόΔόκWΏj¨χ½ϋξ»ζ’‹.2G}΄Yk­΅ΜΣO?νlk°@NΞ5Χ\©Ε–ΡQοΏ~sΖg˜‹/ΎΨη=hΠ sΠA™Ν7ίάΤξ/~Ήk« σα1 @wˆνK‡­ΔψδN֘A:#ϊΞ_ϋΪΧό%θ£Ο>ϋlCm‘Eqφ™ ‰_}υU'γX`ŸWΈvΡW\1q)Vφα·α†npc'Nty’νοΠ5³δ{’p t2:ZVcί{ο=sΕWΈ1Hθq/<ε”S τΝ¬Ύx·ι¨­ϊ½ΙβΘσ$@­'@‡ηΦ3eŽ$@$@$@%@‡ηΞΊ±7ί|³ωΑ~¨:ΪΟ<σŒ™wήyηqpήy癝vکψϊΧΏnξ»ο>ƒml@'ŽΤΏύνo3³ψρl.Έΰ3묳fΖΙsαΦ[o5ίώχ3£Ζ”ΣŒ ƒQN:`luΦ1?ώΈ>ΨΓώΰξ' ΐψ‹v‰‘6-ωwάaΦ]wέ΄K=}ΘϋηF£ΥV[-α¨o ήί‡z¨ξ,sίΫρžθ:sŸH :Ϊ%ϋbεPΩwςΙ'»€²ξbπ±Wbεt˜I€zƒ@;eΖSO=eΌςJχq§Πόο™!C†Θ‘Ϋ~ψα‡ζΫίώΆωΫίώ–8ίθN}wήy§wͺke;^|ρE³δ’Kϊβ³δ-nΆέv[/܁Π§ιyζ™'ΌΔc .&«£e5ωο»ϋ¨ώΟώsV³Γ;˜³Ο>Ϋ„«baβ€Αƒg¦ƒcμ?ίϊΦ·qbuT| μFφ2|(\Zh‘D™±ΆͺD&< θ:±}鴆^zι₯’ '€N&a=φ0§Ÿ~Ί¦nΣΖ&π‘&iB½1VφANcΜ@ό¬ΛF!ί΅Ξͺ―sŸH ; ΔκhZ gΒ₯—^:3ʈ#Μ…^X7ΦΩM:*ΧΚί›LXΌ@$Πrtxn9RfH$@$@$PUtxξœ;{Μ1ΗΈ tvάqG7 |ψᇛ9ηœS_2·έv›ΩpΓ ύΉ8ΐlΆΩfζ7ή0£F228τ?σ?ζškρƒί>AΝc=Φε'Ρ1k ž|ςΙ„³uhΐ”ψy·α@:Άί~{ƒΑz$`έ1cΖΘaΓmΘy"―όγnf q"€C8›Ε©_cMf™Ζ fΌΐ gu–ωύοοΛΕ,y Ό>A°ƒ™*?ώxwΖY Ϊaζ Μ  #0Κ‡ƒΔ’‹.κŽωϘ’οK;žc™MOœβ1`€{ωωηŸ›‘#GϊwΟξŸŒ½ονxOψ<‘ T—@;d_9+ϋ0Γί°aΓόΒΚ pξΓAΪΙΏϋλ―ΏΎWFNϋLΈC$Π3Ϊ!3Π―ΐ‡‘θ«ι•\jšΓ3θ°²VΆΙZέfΰΐnισA.BDhe;PΜNzέuΧI•έκ7R–œDίPΟή‡ΎfRΕ@ φ%`–Ώ±cΗfΆKβqK$Πbu΄¬Φύϋίv3ΘC6"ΐFωΆΨb‹Ή&΄-NΖz|,²Κ*«ψ~ψΠ‘Cέ,ϟ|ς‰›5_δ%{채-VG…­NΧ v1¬:ΪΛ0Sΰ%—\βg Œ΅Ueqγy ξ P¦/ΦB8ή~ϋν™+Λ! τΒC9Δ%‡L…}RfeΖ΅ο}ο{Fd.f¦O ˜ uΚ”)ήnŽ8ZώΓnζ<ˆY aΏΕψBΩ§ε΄ΨιўύφΫΟOV’&ί]ΑόG$Π΅τ»ίб³PξA_„.χΑΈI‰δtMιw›ŽΪκίαΒ- @ϋ ΄ΚαΩΨrdΐg€ΟŸ>|ψ Tω°_γ׊ό•e!eفSEΐ:ΆΦ¬šμμΔ5ϋυ²Š‘άύμ³Οjvφaί:ό$"؎{mΣM7υΧ}τΡΔυΌφ«eŸ‡5(Τ¬σq")ŽquΗφύχίO\/r`†|Yv@+‘4,Η:,'§ΨA­š5Xψ<νlΐ‰h!#;[³ΏŽςδ~XgθΪ[o½ε―aΗ.κ―£ή±ω ?”ή:wάqΎœ‰ŽΧkϋEί—v=Ηv`Αί;KwΝΎό­Ÿ/;xΰ―•Ήο­~O|₯ΈC$P9ν’}±r(Vφ…:ΟδΙ“χκ–[nρ²Ψ~δUC| ±rZsK$Π[Ϊ!3μΐiΝ:_x9%} Ωj±(mλhηςEBχ#ZΩϋαl]έΣϊ%Φ‘ΫΗ³Γ‰¦„}Ή°o•ˆΜ !PFGΛjδ 7άΰe lZ‘:h½²UΫΝμͺY>­ύΠ’aάΞp곍ΥQ_yε_δ°ύ ήη‰-ϋ σνΐ΅»^ΖV•(€$@]G Ά/]¦‘ZVΑž­ΓΏώυ―š]UΔΙ²4ύNΗ χνd .δ_»ντO?ύ΄—·°Ÿ£MBϋλε—_.—Έ%θr±:Z£fΫΠΌ< Ηs [tίέNtδ³κ&•ξί‹;$@₯ˆMY:<Σα›ο|ψ πΰ3ΐg ςΟ€(Ny·e,)§”Ά§£>Ο<σLΝΞ°Z³3¨Τ¦M›¦~± Γ xα@‰Žˆ|p];,†ηΰΜ‹2P–Ζε©σˆέΧw;CΛ»Y^zΰάΞp˜pξ‘΄Ί;ŽvΚ`όI'$Y'Ά‡vX!g"ρ—zΐ'΄’ψηŸΎ―Λ]wέ%§3·ΪiΩΞ$–Ο.wκσΤ†έΏόε/ώ|8`Œπ,ˆρ†ν\•ZPΖI} ²Ίάgύ|fdYωΣ1οK»žcyφρŽh˜άΘ yμ,«rΊ{ίΫρžψJq‡H rΪ!ϋΚΘ‘XΩ§hwήyηΊϋdgΥ―m»νΆNή†N±rΊž θ νo³+σΤΰ<Œ>¦v"Žν§ιΎŽΩ.qZΥ8QC~λ[ίς:-t[έo’‚ωΛ_Ί8pBIϋVχεzθ!IΖ- @(££e5ΫΞBκεMZzί[lαυ>νd'ΞwSiύ?ςΘ#>omη‰ΥQ΅ƒυUW]•Ϊ€qγΖω2Eήkω]ΤV•ZO’ t2}ι2 ”0ζ~˜*φν4ύQΉv%ΔTYœ•¦ŒμΣςέΞ,]W„IΪΛZΪΟλππ t-X­Qƒν °N^@&ΎτKuQo½υV/OτxN7ι¨ύυ{S“'H€’ˆ μ‡eώzΦαωέwί­Ω%Pj7ήx£S~Λ@dΪr!ω‘Ÿ>|ψ ΄ϋΕ)οΆl}€œ(-O%B=Ž?ώxίω§Blχ»ίΥ0"a=φπρ=τP9ν·W^y₯Ώ.3b`Zv1ϋΑΕ_μγHY至ϋL μh£]Φ IZv˜ΥΩ.\Σ3ΣθxzφXΡΧσμΓYuŒΣv€Τ$ςUtή2ΡΌΣξθφδ1Βζ‰―­:Oνπœζ\­gΐΐ•~ήΪ—uξ’‹.rΟU–ωΪε³\œ2|³ΚοΖσ1οK;žcά»L·»7Λ,³L †€0θη²εΣO?uQbο»Ξ―UοIXg“ T‡@;d_9+ϋžxβ ―ƒΑN•DŽ&:O9VΟ‘ T›@;eΖΤ©Sπ΄>+2+!ΗA–Ss«Ϊ|t?+¬ ?9«ϋMRUqxΞr2ΉξΊλΌ,Osb”|Έ%θ±:Z£βƒrΘ™FφqT γˆlΕy=λ½”§ν?Ϊφ«£j;a–,Χ²οώϋοwU)c«’ΆpK$Π}Κτ₯c[«ρρ0τ;΄<‚_Hή υΔ,έ/ΜK—•¦K"Ύ–Σ:ŽΘιPξK¨ώZ #qΈ%θ>ςξ·jμ ²BΖsd8€’' γ9έ€£φΗοMΘ‘Η$@ρ怜?Ξd`;ΧΡΑΞV`μ—'榛nryΨΜ€I“Μˆ#Μ°aÌ]†άΜ<σΜΡω·#‘Εn~ς“Ÿ˜λ―ΏήgΤSO™%–XΒs‡H€H€H :^{ν΅BYd‘E Ε#KyK-΅Tx)χ±]²ιQv@!3uB5§vš™a†ΜΫoΏmV]uUcg1pρνL/f₯•VrϋΈΆόςΛ›7ί|ΣO™2Ε <ΨX'!—ΖΞКY†\Έμ²Λœώ$ΗEΆvΖ^³Ζk΄[ϋ±±Κ¬yύυΧΝ<σΜcή{ο=3tθP3οΌσΙΦΕ=α„ŒΕΑνC/4hPα<š%°F³ώϊλ;Ί.xΕΤΥΞm–[n9WœiΗμ΄ΣNuE[#­YtΡEέykτ4#Gެ‹£OΨY—νά»S4³Ξ:«Ύμφο½χ^ΗΦ°kΦ[o=wχΐ:±Ί};˜fƎλφ埾nβΝ¨Q£δR‘-Ϊ`gΔ0Ψ3ΖΨεͺ5κpŠα[¨RΉ]οKΜslϋŠf•UV1vUc ^rςFΤwέuΧ5vYρDœΨϋގχDΧ—ϋ$@½E Fφ•‘C±²Ο:―8Š»£u8}·n»ν6cgOu§ S 2“DΛi7χI€zƒ@_Κ λhηΖ@VdVΚvΕ³Β/‹qŒ6?IDAT +Έ>,μψφ£―‡ΆͺZ’ου£ύΘ,ΆΨbši}1ϋ‘±9ύτΣέυηŸήΨΩM’λθΣ<φΨcfα…N\η @χˆΥΡ΅φ>τ£ζž{ξΊ¨Ώά|σ͍u$vΆŒ·Ξ4ΣL.ž–­Ψ·3A'λλΪώ«£Ϊžύή•1ΗsψzθBa—άsΟ==φFΨ΄ΚΨͺtήά'θ.eϊ±-Υci}imί†\„}c7΅Α+Έb¦‹θvΦ!М}φΩΖN”βΖSPΧ₯—^Ϊε₯λ+ϋP—vΨΑŒ?Ύ‘mάN€cμΗz γθϊpŸH σ ΔκhY-ΛΣW†ΜΩ~ϋνuΆNŒηt“ŽΪΏ7YΜyžH 8ηž{Ξ%*λ=Γ3fm°Ξ~Φ[›Τύ\°†― ­pνΣΏ|°f ξΟ/kψΒOκπΞ;οΤ¬“O’Ύ“'OφΧ%·}{ΟΘ›Όω πΰ3ΐg ]Ο€5lՊό•­‡”e;ŽΡAΟf΅ρΖΧlfƒkϊӟό¬SΠΏτΜΌzω#=σ–] 39KΠ3ψβΊΜζβιkY³M6+Χ³f&ieΙλ¬Y,tάͺολgοE+ή—ΨηXΧ%kFάΉΗ:ŽœktOΣξ{Ό'U¦Ψ>θU±²―ŒŠ•}2[δΎu L½eΦθ³%N9ZO’ Tš@_ʌ†[€·“8θ$n_τMY3L‡γύχίΏ†xyC#Ω7nά8'KQ;iMj–2£>βp†ηTD.rνWΊΎ 1ά!.CμŠώvtηq.Έΰ‚ΔυΌ―ΌςŠ―ςiτggΝΜΦΞ ]Γ²JXžNŒ™Θ ϋ`ͺpςΙ'»₯eyc©/ξE§κώθ„cYf©‘‡Z‡ŽΝx.$ž ήΛ1Ά§žzj]Ί"'ΔxΘ+ƒˆβ)³›γΆκ}iΕs¬eD#γ—άcGΞ5Ί§iχ½?ή“n~^Xw $VΘΎ2r(Vφ‰<Δο83'[V«ιzIœ2r:̟Η$@Υ'Π—2#\Λ"—Ψ΅+Υυ‡[Ρ»JοσˆΓ –³iΟ¨ο1ΗγΣAf‡'ΪYkΠηH€ͺA ,Σ²Ct΄ΨΦλ1`ŸΡ­Kž·άrKBαcuτ»΅γ‘:Δκ¨:p?΄ωPΎ™­*,‹Η$@έA@ΛΓ,]JλqYqςΆφόσΟχ²“ί₯‘㐩‘¬Τrσζ›oN$G=ΕΩΩ(ιΛΡi°]“Šδ dŸΤy¦@ζΪ•Υ]=ΩZσΤƒqH€:‡@;t4=FŽω’εv5%?&¨ΗsQι4΅―o±α5 β怜?N”ΓσΕ_\§ΨΑ©Ω.₯Q»τKSg~>θ ƒΌΓqΩJηIΏΫn»%κ:4cθŸώτ§58FC!†σJž|§»άxΏxΏψ πΰ3ΐgΟ€(Ny·eŸ)§ΈŠχE Μ΄+Ζ3ΜΠ’€ΣŠUύE?:«YΖ»pΰE1›3 gaΠΗΌί0§Ÿ~Ϊ·uƒƒν#<βΑΪ.=—ΈΫ£σJΣAΑΙ./§£•ޝŸyύυΧ—Κ[³Μ2θκ{’'o%°Ϊ‰,Ϊa΄)SŸNOΫͺχ₯Ο±~½ru9ΧΘ/Ζ|§―ί“NX? bZ!ϋΚΘ‘XΩ'ςΏΏ‘Ύ&t½$N9-ωrK$Π;ϊRfδ‘kYδ/Ήδί?Αͺ>a(ΫΜβ'ύ={ͺ–³Y}1ύq²δ‘·GuTX]“ t1<²LΛΡΡbšŒΙτ ]Y“ΐ±NΈeφ1Σς§Ÿ~š¨B¬ŽšΘ$88ε”SΌ,έa‡όŠaA΄ΊΓΌΆͺΊ„u6ΦΩΩΜ4ΣLώάo~σsΘ!‡ψγ%—\ΨΩ̜sΞιΟaΗ.ίaμ²GΖ*’Ζ K3묳šΕ_<‘—$°tc——sΧ°?ΗsΫΉ7vΙu3Γ 3˜…^ΨΜ6Ϋlfΐ€fί}χ5ηž{$5φ«g³κͺ«ΊcΤι%θzγκ2γŒ3ΊΊΝ2Λ,<«Δ»Œ»K2pΰ@σΝo~Σ•#y„[λ@m^}υUc‡ΜΜ3Οl¬’μς±Όέν–ΌΓ΄<&  h-Χ^{­P†‹,²H‘ψad)o©₯– /ε:9r€±KψΊΈΠ© Aη‘έbΛ-·t‡Φΐežyζ3οΌσΚesΓ 7;H⏱cgχ5cƌIœϋψ㏝~dg6Άck½φZ§SιHyβθψiϋVq5vΐΕ]‚N4eΚ”D}qΑ.gN<ρDΗj›αΓ‡»}ύΟ~°fμGlΊΨ<`¬΄±³3θ]ϋ쳏±ŽΣuυΧισξ[C¨Σγ ›^}υΥΖˆ;cާ¬ΊεΙ[s°]ƒϋΝ;+N˜&νψ‰'žpu–k`>xπ`9τ[;C™9ψΰƒύ±°r:υΩgŸm¬!ΦΰωBxμ±Ηάy±ΐŽuH7§Ÿ~ΊΛ+|V%›«ΊΚŒ1’a‰[υ­~NΚΌ/­xŽυσ˜%#p?δλ8r.MFΙ=L»οΊύYο€WV)ƒ[ ή"Π ΩWFΕΚ>‘‡Έ[vΰΥ 2€ξΖιzI-΅ K½Ε Σπ˜H zϊRfδ‘ki„u‘ ?ϊθ£Ο§γκ8δZšμƒm~•UV1Φ‰Δ؏‡]OϊZΞ¦ι˜/Ύψ’Α‡uŽqι7ί|scW rc£Gφ}Σ΄΄Ίώά'θyd™–’£m‘26»οΎ»·BΆΨΙ₯ά8₯Ξ γ£λ―ΏΎ³Sα<ϊΫΗΌο„mηΝ7ίtΡ‘ή:»Έ±HœyX΄ξ2Kω{œ].έ] eiJt*―­Κ'ΰ @WΠς0Kz\Vœ<Ζ8t1ΘK;Ι]f²wί}ΧΨ =L8VuΦYΗυΑ‘ΨNΆσSh–η²eKy±ίΈΙW½’G4ΪΪΞjb†g”‰™šΧ[o=―ΨβΤYτLΦ0—: ςЍCVœfνΜσ΅­u&φυ΅ΖΞfYΊλ/Ώόr Kw Ÿ¬Ω°seΦ ς•2ΐΫ~¬Χ vφ₯<τ=ΙΛ!,1œu,mV4€ΑŠ'.|ιΞδŒΩ„δ:f·Fή°¨\Ης<§=«’ΜΆΡ(ŽΔ­ϊ6ΟsσΎΔ<ΗϊylτώΛ=Φqδ\£{švίσ΄_Χ+φ=©ϊsΔφ‘ |A Fφ•‘C±²/ΟμΦθ—1‚–‡ZΡϊό—z5ŠσŸΨά#¨*Ύ”yδZgϋρ—uΏύνoΣ’”’}?>NΨΤύ¨°lτ‹eq€·N-‰ΊΩž}SŒ10 t?<²,MG+Ϊς£>ΪΛ&Ψπ°"mZ°“#ψxφC‹ΔLΞΦ‰°Άλ»ϊλz†hΡ‹φΟΣκ`'—ςeΨI³¦Ε—sZΖBŽfΩͺ$>·$@έG L_ΊHk1ΣύΠ‘C,j$Χςδ©g^.bc„ά:K7­CΩχώϋοϋv‰ΎšΆ-Ϋζ<\‡H o΄RGΣ5Φ«ˆ¦Ι9;aΈ2ˆΞ§SuΤΎϊ½Ρ,ΈO$Π:βGSΦ'ΚαωΈγŽσZC8-Γ@VζυΧ_w!p ΑŸ\‡S°ύ.‘‡U½…s ”;I—΅ŒΉ€ρn»νΦ0_q2γΩΩSž%ο΄-œ˜C'ξΠ<-œ“ΊHϋΈ₯sŸ>|ψ πhΟ3 ŠSήmΩϋ εΔͺ~Ι…Ξ°ΡFΉ%†°ΜPΪŒ{X†H d‹Ρyΐηΰ0δπΦ»±N2y:ŸΠω0¨ƒϊ1.>ςΘ#^χ+’.dΡμxάΈqΎq2j–&Ό αΊΔΕ@9ξWQ’ήΞζγ9"»β‰\ͺΫκημ©§žͺ»Ž{ogμqu)cH΅«Γ4ΝCΚ”SΧ€.=ΡΞχ₯θsŒ~›,οhΏφOuzΗ’fbΰΧ2"φΎχΕ{₯«M$I ¨μ+#‡beŸ^nς‘‡Jm©ˆ]€ŒœN-„'I€*M /eF'Α6GΦXc ίw@ί&-ΔΆγα‡vy£Ÿ„Ώ#ΉHΊΈZΗ+ͺΏ‰m=˞#ϋ`gΕ![m΅• ²«x:=ya’>Θ^; u ρH€ΊŸ@¬1OΛνμφ5ΨD‘blγ;v6η|ψd")84g…NΦQϋκχ&‹ Ο“ ”# ~4eύq’žoΊι&ί—Ž8Ά?ϊяj'N¬ΑQ£QΕΞ:λ¬Ττ:/Ω‡s΅δ•Ηα9œΉYς‘­δΧ ‡gδ ƒ‡ΤOf(“²šmιπά§6Ήά’/Ÿ>|ψ Θ3 ŠSή­€‹έJ9±κžξδΒΈhΐΐl¨‡ S~©«Kτ@ˆ.qΔα1-7k_‘€ν`D½ΕΈψΟώ³†Aiό₯9l#έ†,‡Μ΄ςτ9θRNθ<.ρpO…i–³²ΔΝΪβ^ ΛC=45ZgΧΤ„φ$ώ΅£ϋI'”՝—ηΜ.?κ>2L‹|φΩgϋvΫε€Σ’4='«΄ΰώfέG©K–Έi!ŠϋΎ΄γ9†ΣϋΟ~φ3χ ΐω$͘ž%#bο{»ί“ =*l €%ΠΩWFΕΚ>»Δ­½½ύφΫSοmšσ`9ZO’ Tš@_ʌ4™Υ ξ=χάγeaV yΔΆCd΄τλςl₯’ϋiYύAτΗ€O[f…œfœxH οΔκhyk¨Η!?^yε•Μ€Ίο%c e•6ΨzΔΖ%ςeΔΪe΄c δηwά‘YW}‘¨­J§ε> @w(Σ—ΞΫRΘ9YΩ³ΜgΙ4Ι:μώ"εΌl΅VΖ$p mΑD+}Y‘‘Γs«e~Dwm€'gΥ•ηI€:“@+t΄’-Σ«*eΩ ;]Gν‹ί›’\ŸH ?ρ£‰υΓ‘tQΟH|ΰzΕJ,½…γ±Μš,…a‹™ž—\rΙDΪαΓ‡Χ^|ρΕΪK/½T –1{τσΟ?³žχΩg7cτyηW{λ­·άrάk―½v’ ,³„―X°T7κQΔαNCoΌρF N¨«n§8-Cq Λ”™―‘V/ .ι%­ζΓ}:ηρΰ3ΐg€ΟŸΦ?’8εέ–½RN~Υ.S:ΉΠ&L˜ΌΨδHΟx £ίj«­ζu|½«ƒvΖ` †axςΙ'}ϊX‡b]NΦ,4zp[Œ‹ώσŸ}ΩYΞ»ΠύdP³ΗΝϋΎϋξKΝBΧ/ːšP 9`ω½0hΗ€"χލ˜ρAτΜύχί?υ~κςς8C_•<ΣfΦωeνkγHZ›τ έ2Λ,γœΨ³ςκ…σαsςΡGΥ5[?ςΎ΄λ9γ=žτΛΒ ?πάIˆ½οaϋ[ωžHέΈ%¨vΘΎ2r(VφιAVΜΪ”δwϊέίώφ7%VNϋ ΈC$ΠSϊJfθ~ΜJί΄vƒήωμ³Ο6Š^‹iΗ /ΌPΫuΧ]k{ξΉg꟬nƒς δβ` aΪ΄iΞΩEϊE’‡Τ}Σ¬Y Γ4<&θlet΄f-Σ3”BΏCίΊQΐ€|DŸ5!fΚ—˜`ƒόBˆΥQ₯>ΧΫdαψGΉΤpc«j˜!/’ t42}ιΌ ƒσ²θdΠ·ŒΡHά¬±-‹΅Ž'Ί&δ3|KΒ ε-δ£v¨n΅μƒž VΪk£Ϋΐc ώ'PVG+Ϊν(¬uE–‹ͺ£φΕοfΒ} Φ?š²ώ8ΡΟθ\ΛΣ’`₯mαΐŒϋ€’αμΠp~ΖMrJγΰΑƒ½†<ρ• ‡ΟH ’Vo³š%NΦυΗ{,QφA”Θ_θ n#FŒpF=Π/ΰˆ εa;vμΨDήtxn½C›ζΝ}ςε3ΐg€ΟŸyDqΚ»•t±[)'VύΣ3Θΐ`–6Γ˝wήι`δ“ ;yΠGΰΌ c› J sŠΜ$θψΈ=HξΆΩf―Ώ`9΅Ψ0fΜŸt B# ,ελŽ™i S†αΜ3ΟτωfΝ΄¦ υ’œpκF}t‡aΓ†ωrbg:Fž‡v˜Ο'δ ύZ–’Β= Ϋ‹η1miS=Ε ις8;£.Ϊ™ωάsΟΕ©DΠZfN$J9xυΥW}›ΣŒ(W^y₯Ώ.CˆYΙΑ!Ό'(Fx„ŽϊθO€₯x–ή{ο=}ͺ£χcή—²Ο±π Αάzλ­ώώ„ΟΨΛrА9ϊӟ|ς2χ½Μ{β+ΐ ž Π.Ω+‡be~η0“>diΪ`‚ώ,\Ύ6VNχΔΒF’ Τ(#3ιζaAEžu8kζR]F™vθ|τ>’Εφ-Ρ'‘~5ϊFpnƒξ_…ιΓΈ<&θet4΄0Ν>σ?ώΈ“7°AΆ@Χk΄sdΥ”)Sκ’h-KcuT{ ­‘£’άΠ–UW‰/OΔΪͺ²ςγy ξ Ϋ—Fλ²l“rΘY‰ς(ːx²ΥŠΐ&Υ$uψψγ}?ωi›ΏΦe/Ίθ"Μνc’=€ΑŸ–·­–}XΥ ωKY±Τ5€'H€:‚@­H…Μ„,y’Φgν&΅ΜοMGά|V‚z˜€ψΡ@χ+σνπ,…b–―ƒ>Ψ Fz ΗdΜrŒ4P υ΅γŽ;zιlΔΗΰΠαωŒ3Ξ¨K+υΚrhnv=txΛ!/mΨd“Mœ‚¬gSΔ΅ΥW_έ-w"εaΦ_Ϊ₯γpΏάM~δΗg€ΟŸ>iΟ€(Ny·iy9'εΔκͺΪ0½ƒ ψθ ƒͺ˜]«Oˆ.‚ΑV™VŸΧ3J]rΙ%>ΎžF;ςΌπΒ έΰx:Τ—³σΞ;'fhΦΛΦι{‹ς>ϊhŸyβC|x‡εEΣώπ7žSiΆΰ‰#ΑΚ€>eΝ6ι2jς/4FcΦq΄Ο™ž™εθ™ά`t&‘£΄ζ±γŽ;zVϊ™Ω.τ‹yg!j€Ά_Žy_Κ<ǚgψ|!_mΓ³€wwκΤ©΅½φΪΛ?Cˆ#²€bο;ΖΎ'HΛ@$Π[Ϊ%ϋbεPΩ§mFψ ΖΗmψX+KθίδΛ/ΏόO³ίΰœvθΣφ €Εx+laθŸ‡γͺ7ήx£«£Β*ε‘<Θ>|p=5­Ύwί}w ŽΩ±Ά*_iξ t%ΨΎt#Ϋ€€ΠΊšγλi[ύAd> ώ›ΏL<ωΪόυΗnΈ.vsψ»Œ7.!ΗοΊλ._t+d&±ΉβŠ+κV+ΗψΜλ―ΏξΛ⠐@χˆΥΡςτΟ}VŒAΚ gψΫa‡κ&κ&w>φχ¦ϋŸΆ€ΊŸ€ψΡρ½I‹[ΪαY2…:Έ‘£±ΝΓ?ά9'kγ₯9ύfΕΙ:/uΠΫ°“'ON8Gg]žΓϊ…ΧαπŒe‘Βσ0ΰKA]§"υΧιΈOη=>|ψ πΰ3PξΕ)οΆ,o)§ŒΚ §Tνp,:UΈΕΗXz97ο΄σ―ž‘ιeV‚4‡η09Φ3·ΖΆ "’_ΪυF§ZpΠΖΗ΄t8wσΝ7λd…χΓΞqZ9iυ+\M€Ω”Σς—sp g Γ3%Χ΅A7θ—8Ά0šJ€ρ΄Q\\ƒƒ²,ƒ*ιŠnρ @ηˆΥΡτGWΒΏuΏ:mr3ψ!ΐ)fο½χn¨/"|„!ŽΗRnŒŽϊτΣO7-KΧYl7emURgnI€Ί“@L_Ί™m$8ΰ/“πapž‡ΏΠΡOΛ-μCv‘ό0θEΒ4r GhΘf„VΘΎ¬<0α1 T@ŒŽ–§ž₯ΗaΥάPOΥnQε)ˆω½‘΄ά’ τθ]ψ+λ3X₯¬P°3Ž™ιΣ§»43Ο<³Yl±Ειqέ:λνΟΫYžu:0vΖ9c—Fχην ΟΖvόύ1vμWΚ‰8Φ1Αμ²Λ.™η‰Ώ<Ψwί}ΝYgε/Y‡g3hΠ œuέΞΘ`VZi%OΚ–αuλπl¬£ˆ±†ΩDΊ₯—^ΪΨA3ΣL3IBυχ‰ΈC$@$@$Pš€΄P‹,²H‘ψad)o©₯– /:Άͺ¦±_ί»T[]Ί=φΨΓX#ŸA]Ο:ΐ˜ργΗ»x—]v™±K%Ψ™”ΝŠ+θΞYΗSc?ΦrzΚͺ«j¬Σ΄±N­ζΧΏώ΅ϋ³3ψ΄Φ™ΤΨYqΝwΎσwΞ:;‚Ψ,Ψ3dΘ³μ²Λϊ¨V5ΏψΕ/ŒMΑXc£Ϋβ’Œ1£F2sΟ=·+;ΘΗ~8ζΪ‹ΊΩ₯4]ξΣ]Ά3!›<Π Mv†Y3qβDc;μξΈΩ?kΠ4λ­·ž‹f°ΝΨ±cύPΟ㚰€Ξ ύvΉζrΧΚ”ƒ  'τ§?uωλφ€ƒύΪΜ1ΗωύzΡEuΟκ…ϊ 0ΐXƒͺ>|ΈΉξΊλ$jΣ­9(‘[Γ‡kσ•W^™Hkg&3Φψακ9γŒ3Ίkv†mc‹ρ²pί¬ΣΎ™ώω]λ4mFνλ4hΚ^{ν΅υicΝΊλkpέ}³Ωf›ΝΕ±³Y8έΫό™―~υ«.Oπ8φΨcΝUW]e¬Ψ=·Λ,³Œ±³U›M7έΤ₯³Žρζϋί~’œN>ˆy_Š<Ηφ¬ηKc‹~ή7Ό»x6p?μŒθƊcΎωΝoΊγπ_ΡϋΣ}OtZξ“ τvΙΎX9+ϋ ΣYc½Σ•p΅.rήyη9=`†fH½Ή±r:53ž$¨<’2£‘nž :Ή])Η]BQΫΫΓψ:.ϊž?όαΓ(™ΗEΫ‘™‘½έύ„ &ϋ‘©ΫΧ0&b? vz±>ύŸΩ~;ϊ¦ύί^β1 @—ˆΡю9ζc?€pφ‰λ―Ώή`Μαή{ο5vΒ€άD`ί³+·­Β6cW\ςΆ1ΙΜ’eN<ρΔ:ϋŠ\/ͺ£Ϊρ½γŸylˆ°1ΒΆWΦV•§<Ζ!θ\EϋΝl“ΦqΩθq ;9Kρ ‚rvw±υ 9Œ―ΰό|σΝ'§[θ‡vΦfsΑ$Ξ£―Ž<7Ψ`ΎvzέNϋ‘ ~ιΎά!θZEu΄<ύsέΏ…ŽΈυΦ[»>zΦψw7ι¨ϊFύ½ΡiΉO$Π?`ΛCΘ’GykUΨαωωηŸ7P°$ΐ‘ω‘G©S*α Η .Έ sށΐ±3ΦΘiη¬:ω$·=4ΆLG$Π›ͺ’£υ΅ŽΪiΏ7½ωτ²Υ$Ÿ@Ώ9<‡Ώ¨2{ΓΩμMfύυΧχ-‡g8GλYΰ0Έb΄3N»Yφ0 ‘„k―½ΦlΈα†…fHšQ†Μjˆ|Γλ2tΨΎΌΟψ_b+α·wο Qta€oxI-­T,ώU KAQΛ€`a§Α€E ΅±5MΐBlΕV°ΑΞhŒhJ‚ΏgdΓf³Ωμ&;»3³ΟfwζΜ™ο<ίޜ‰αξx¬τϊϋ(ΌdgΒηΚΉKΗύ$@€š+P Χ;kΦΟυΦέθΈςΐsά½*ώΞU­6ίǏΓίG¨Ν Ws~κΤ©9Oξ¨6™Ηβοb1”[P^θ1”~γƍEΧ]y}«ξSyίvŽαπΈσE /φŠwΫ.cΙΕqž @€ @€ @€(–@ΫΟq―Έ«q —Ώ.]Ί”™γ_ΗΗdΗΗ)•‡χξέFGG“έάώϋοΏπώύϋΩΛϋϋϋΓέ»w“δΜ9βγ˜J―RP:ξv·œžγcΏγ#΅γγΧ·mΫΦτΐsάYnpp0yάz©φβŽ;%ƝŸγNx•» <—€ό$@€ι έτΐsά ±rWλΚ{οΨ±cNΠ[ΰΉRΘg Ž€ΐsuΧςΐσαΓ‡ΓγǏήιΈϊ̎ @€ @€ @€ @€‘­ηΨ€W―^…ΊzqόψρpλΦ­dηxΑŸ?ΒππpΈxρbΝλγγ²ΟŸ??Όi$πΌPψΈ2 DΗ«χμΩ“ΐξΪ΅kΆψ_~>ξvύδΙ“ΩoήΌΞ=[^σgεά5;I€,Y@ΰΉ:έδδdΨΉsgψπαCΨ·o_xώόyXΉreυΑŽ @€ @€ @€ @€hP νηXοΔΔDxϊτixπΰAxσζM²„žžž066–Ό?qβDL‚4ɁŠ^Ύ|.\Έ„§7lΨ~ώό™ŒΨ½{wΈvνZΌ)ΏδΩ³g³»DΗγε»?—+½ GŽ)}L~–BΖCCC!Ύ―xο/^„Έse ωή½{αθΡ£ΙΈψOεωƒ†‡Ξžγ˜8W\{Ι!‹qgμ¬.½«Ώ4ΞO @`yΟ ϋ}ϋφ-ωc΄+V„Ν›7/<Π @€ @€ @€ @€ d"π\^σ?ΒττtX½zuψώύ{θξξkΧ-²ΰϋ/_Ύ„U«V%ΧΟΜΜ„ήήήΗ6zβχοίαλΧ―IgέΊu©y¦¦¦ΒΫ·o“°vΌoΌϊυλΓ¦M›Β‘C‡ΒθθθμJ»JΟπ†HE@ΰ9V“ @€ @€ @€ @€¨)ΉΐsΝj;θδεΛ—Γ•+W’žΟ;ΆlΩb ϋϊυλαΝ;³qWιΧ―_‡νΫ·Οσ†HG@ΰ9W³ @€ @€ @€ @€¨%ΠΆΐsά­Ψkΐδδdr ξΨΌώΉ'ψ488†‡‡C||Ό €ΐsΊΎf'@€ @€ @€ @€ PM@๚J›Ž•Ο±)all¬f%ύύύadd$Δ]ž½ @€τžΣ7v @€ @€ @€ @€•m ξΜ‰s τB½ΙΜ\d"ŒhŠa€Meœ`W§*8\nν9%*›-N@E3“ύ¨”BΆrBΘ͐½8|6ςgΘc²³g@V΅„l™ϊŸτψLρΙf§°"Ή($’,φμ³[²³€Γs˜ΐFε‹C’e9Λκ–9#LΖTΘη…©‘5 _pεφ2~Β—†Δ ΩΰHόaΝ”Κe„AΦƒl,̊{₯ ‚XaνΡXA.+V1εŠgDωGgρ$1ΓΜΛη’ΩK3γ|‡|nβσXΓ>›ςω± Š8Ρφ'—¨Θ +ΰ γ†βΗΚDΉ~ΡCφΫEYQCφX3/+X¦7†ά&Ι‹Ϋ— ›"_ˆr£b±αšμΠ(E Έ5ώ 0ΆT0dA[oC/ό§θ l ι€l‡4Γ#δ=Bxωΰ/H< η'οε<¨2’U\mAšΌ7O>"<œ Β@ό/•ŽΜCΰ§Ω90Φ,Ψd}?ι˜ͺΓ:b 1€B "ZαΊΈëlΈ+ξ6Χ7{ΒBαα:‘“p{Ί @όCδL0tΒƒ†²Kύ>;άzuΒύpOθϊΖΈ.°ΕΗΓ™|qo8·Τ~«t$γo΅ςEΆ#£δQd²ε¨X«8x‘UκϋZ(βJ©–HϏyψW?.Ό‡ύh‰-Εbη°“Ψ¬kLμ8ֈ΅bGe<²6ΛΧΖπlΡςx2‘ΑOσ±‡ζ”UMbWkΧcχy¨δςfεΚ^’ΩbA:?—ι wk“%δŒΓt°³w@Άχ+Ά–7 ωžŽ0.~Σεœΐ­*ΣΏιΨp:ςϊ»o:“ΧpΩ―ΰh;G*ΞSθpΩ…(@Ύ):ΐξ]–0#ΰ <€‘ Δ‚$0 Φ™Χ©ΜsΑ"PJΐJ°T‚Ν`Ψφ‚ 4ƒ“ΰ,ΈΪΑup•nπτw`ABCθˆbˆ˜!6ˆβŠx!H8$!)H:"D€Θ\d1R‚”!•ΘV€ω9‚œD. Θmδ!ƒΌF>‘JE5Q}Τ‡Ί’Ύh‹NEΣΡ4-D—£h5Ί­GO’—Πλh'ϊνΗ¦Œ10#ΜsΕό±H,KΓΔΨ|¬+Ηͺ±}X|W±N¬ϋˆq:ΞΔmαz ΑγpžƒΟΗKρJ|^ŸΖ―βρ>ό+FΠ#Ψά ,B"!0“PD('μ &œοN7α‘Hd-ˆ.πέK"fηK‰‰uΔΔb±ŸD"ιlHž€H›”K*"­'ν!']!u“>()+*9()%+ • ”Κ•v+SΊ’τTi€¬F6#»“#Ι\ςlς ςvrω2Ή›<@Q§XP<)±” Κ"Jeε ε卲²²±²›ς$eςBε εύΚη•*€jP­©ώΤ)T)u9u'υυ6υ F3§ωΠ’iΉ΄ε΄Ϊ)ΪΪΊΚX– WeJ•J½Κ•—ͺdU3U_ΥiͺωͺεͺU/«φͺ‘ΥΜΥόΥΨjσΥͺԎ¨έTλW§«Ϋ«Gͺg«—ͺοVΏ ώLƒ€a¨ΑΥ(ΤΨ¦qJ£‹ŽΡMθώt}1};ύ ½[“¨i‘ΙΜΠ,Ρά«Ω¦Ω§₯‘5^+^k–V•ΦQ­NΖ0g°YŒŒŒŒO£τGωŽβZ6jί¨+£ήkΦφΡζikΧi_Χώ€ΓΤ ΤΙΤY₯Σ s_ס֝€;Sw“ξέήњ£=FsF>0ϊŽͺg­­7Go›^«^ΏΎ~°ΎH½ώ)ύ^†A†Αƒc=†tC/CαΓγ†Ο™ZL_f³‚yšΩg€gb$5ΪjΤf4`lag\`\g|ί„bβj’f²Ζ€Ε€ΟΤΠt’ι\ΣZΣ;fd3W3ΎΩ:³sfοΝ-ΜΜ—˜7˜?³ΠΆ`Yδ[ΤZά³€Yz[ζXV[^³"ZΉZeZm΄j·F­¬ωΦUΦ—mPgΝF›Ž1„1nc„cͺΗά΄₯ΪϊΪζΩΦΪ>Λ>Ά`lΓΨ—γLΗ%[5ξάΈ―vNvYvΫνξΪkΨ‡ΪΨ7ΩΏv°vΰ8T9\s€99.plt|5ήf&>\Ÿ>O}­|3|χψΎτ³σϋφ{οοξ?ΟDPΠ¨Xψ Θ8(=¨6¨/Ψ)xNπ‰BHXΘͺ›,}‡UΓκ u z:ŒVφ(ά:\ή4:qυΔ{fˆ†HɊ\y?Κ"*'κIΔIQ“ͺ&=‰Άž}.†3=fwΜ»XΏΨ±wγ,γ€q-ρͺρSβkβί'$”%t&ŽKœ—x)I7IΤ˜LJŽOή‘ά?9pςΪΙέSœ¦MΉ1Υbꬩ¦ιN˚vtΊκtφτƒ)„”„”έ)ŸΩ‘μjv*+uCjǟ³Žσ‚λΓ]ΓναyςΚxOΣ<Σʞ₯{¦―Nοα{σΛω½A₯ΰUFHΖζŒχ™‘™;3³²κ²•²S²5„™ΒΣ3 f̚Ρ!²‰:sάsΦζτ‰ΓΔ;$ˆdͺ€1W~d·J-₯ΏHζyεUε}˜?σΰ,υYΒY­³­g/›ύ4?(·9ψΜ–ΉFsΝ}8ΟwήΦωΘόΤω- L.θ^ΌpΧ"Κ’ΜEΨ”Ό]œ°Έ©PΏpaaΧ/ΑΏΤ©‰‹n.ρX²y)ΎT°΄m™γ²υΛΎs‹/–Ψ•”—|.ε”^όΥώ׊_—§-o[αΌbΣJβJαΚ«ΌWν*S/Λ/λZ=quύζšβ5oΧN_{‘||ωζu”uuαλMΧ―\Ή’_y½Κ―ͺnƒή†eήoδnΌ²ΙgΣΎΝϊ›K6Ϊ"ΨrkkπΦϊjσκςmΔmy۞lί~ξ7Χίjvθξ(Ωρe§pgηθ]§k\jjvλν^Q‹ΦJk{φLΩΣΎ7`oγ>Ϋ}[λu%ϋΑ~ιώηΏ§ό~γ@؁–ƒχ2;΄α0ύpq=R?»Ύ―ίΠ٘ΤΨq$τHK“GΣα?Ζώ±³Ω¨Ήκ¨ΦΡΗ(Η  Ο?ήBt’χdϊΙ–ι-wO%žΊvzιΆ3agΟ :{κœοΉγη=Ο7_pΏpδ’λΕ†KΞ—κ[Zιτηα6ηΆϊΛ.—ΫέΪ›:&t»β}εδΥ€«g―±]Ίq½γF܍[7§άμΌΕ½υμvΦνWwςξ ά]xp―ψΎΪύςzͺeυ―ΊNηΞ£Ά>Šyt·‹Συβ±δρηξΒ'΄'εO ŸΦμϊθϊρά§„OOf~&}ψbυ₯ιkΨΧ{ƒΩƒƒ"Ά˜-ΐ`CΣx½Zόvh€2Yq6“ ’8OΚ ό'Vœίδβ ΐNβΏQ6Αf™ ο²OπX€::Ž΄!‘€9:(|Qα‰…πapπ>€&Ύˆ6~Ωƒ½ ΐ‰Ε™P&²3θ΅ήčΐςoLΗplw x pHYs%%IR$πiTXtXML:com.adobe.xmp 928 876 1 ”›0@IDATx읠EΥΗgS¨I(ΠΓ}τ& J½(%ŠˆATPͺ¨ E@Š ϊAθ  4ι5B("‘H“&‘I $@ ’ϋύgοΉ™·Ή/Ήοεέ›w“9Ι}»;;3;{vζœ9eΞdeAH00000ΠI τκdώ”=a a a a aΐ0Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@b ]B[*”0000Hκ    ]Β@Ÿ.•κΑ…Κεrn]jZΒ@Β@Β@ύΘ²¬ώΜ3 ηLΗ@z:Βgΐ7NLHHhf:‚’€†τ•TiΒ@Β@1ΐdΈ§Oˆg ΓΡ―ΎϊjΈώϋCώύν:1’&φφYθQ>¨Sš…>z_΅W―^ασΟ?όqΨ`ƒ ΒΒ /&MšHοiΠϊ $2yŒ~ot˜cŽ9ΒΪk―&NœhHχΑήΣŸΪ“000PΔ“’ή½{›εž{ξ ο½χž1bΎžrέϊ S…‰τιέ',Ίθ’aΎωζλ)ψMνHHH萡΅> e|ςΙ'ζΦH Ύυ\sΝf›mΆπΑ„9ηœΣΌν°}υιΣΗ[˜{ΉI h`“]7)΅Gb εƒ5ΑL‚Ύ%½ς:™ˆτΛ―Ό.ΉψβΠ―_?#Φ0“ο}ο{Fτ‡6έtΣπΰƒ†%–XˆτB -–Zj)cŽ•ϋίvΊϊκ«W ”$8‘wΒοωίxγ0pΰΐπΦ[o…‹υlžGύ~ψaψΗ?ώΦZk­°ΐ ΄{Μ„rxΞΐΘΌξx άrΛ-–ώφΫo‡m·έ6¬ΊκͺαΖo ϋίlΝŒi£6 K/½t΅œ·%z2zήΚ”Nb+ι;‰°ž˜½Β8Δ!‚(όδŸΪϊΦ›o†Χ΄@tηw»ξΊkΨk―½ΒόσΟnΏύv#π/ΌπB1bD˜{ξΉ-F<όσα™gž±sς³ΈxηwΒ#<ή{=cHγƍ φ'Ÿ|κƒ˜_ύυα»ξ cƌ GuTΈΰ‚ ¬,ž{ξ9“D8§ώ§žzŠSΛ{φΩggV–¨?£F «¬²JΨgŸ}ΒφΫo.Ίθ’πώϋο‡/|α Ζ4 nΈαΟn €z‘Nz8Z^ιαψMΝ+b –ΔHŒCκQβ QΒ$‘°ΰ‚‘ο쳇yζ7”EΨ™ε£ΊςΩ>nŽ/Ώό²©‰8=z΄IωΟl†3ψκWΏ-8(Μ;ίΌα₯Q/…Ώ]σ7“ξΌσΞ°Λ.»£ωλ_–_~ωπΡG™„π¦˜ΦΨ±cΓΌzξI'dΟx葇Œθ³ΖιIδξ»ο6uΦσ/<–Yz™0rδΘ€”σ₯/}ɘ―ŽŠ ‡φ‘ώZd‘EŒ™±^ @jΩoΏύLϊΰΊ( ‘– a §b εΘd…GOEρ,ά.g~Hόb¨\—₯Κ4γ—(„_ αœa‘ΟΐΒ?E˜Έδ’0IefCA₯΄Ϊj«±]q₯ν8xπΰpο½χαGJ€(#uΐL^ύu³- NΒ~±ε–[†«―ΎΪΒή nZguΒwΏϋέ0lΨ°0aΒc:¨¨x„~³Ν63)kTT„́}ε+_[0όίύ_ψΑ~vΫm7kLα΅Χ^3¦Γ£^Τa¨Ϊ–]vΩκ›χΏ΅΄ύθG–cΔf“ a U0Πς Vb"=€»Α(j1‹"Γπζʞ€BEανwBψΗ}!H¨Βǟ„ΟζωδΕξΝπΫίώ6 :ΤTXH „™ΰ¬Ώ=c;ͺ4˜ΗΓ?¨:RΫ±Υ ~;ώψ㍩}ωΛ_6UΪΏψE‹œPž4yYυύΣIΒ@Η@Λ3σZέJΠd ΐ(ψ9ΐ$όηiρqάΗ!|<.”₯Κd0¦!ΫEωΚ+«ŽGΉ$ˆR‡‰ϊ=')’?‡j ˜Lƒkˆ<ŒφŒΣΨ9Έ!‡α0ση^Q«ί}χέ*s‘€Wj&κζy¨«œIlΌρΖαχΏ½I.Ώώυ―Ρ,ΎψβflGαπ\Τ_HGΖBΝ…jη!™x½0.ΪΆοΎϋΪ³'•'…ή½’τaΘHZ-Α@˜Εu¨ŽhXΛ`½ΥκΜ‚£KΨ,όΌψ>H²!ΘZ4έ6fQ–ϊ&H ՎI|ϋ!;υΤ–[.Hί“Ϋ?MY~―b6b8R-$o¨/i–~έuΧ…ή’ `HΛ© ’3~μ0 ΤK‹-ΎX(•Jζ=EŸΩn»νμΑ +¬Ίκͺpήyη™Τg€ΤΐXPIQuΨΊλk?˜ υŸ|ςΙ¦rZl±ΕL vν΅Χš=fΓ 7΄r¨½žxβ ³•x₯m·έv[ΈτKAα€—Ζ|T`0CΐΧ΄ΨEϊ“0Π"ΘDœ{, φ¦1γspΛ΅y`‰"ΩΉςΰΓ,v5tΦτG3πηΏZΥHΠτšι{/½Β³ΟΚUIΏaη΄Ο½ϋξAζ Ψ q ”5»Οz)©’ΐ ξ@pνiΕ#RePaήGTπBΊ@ύδιqyΚQζδyΈ_|&Μ Υͺ4iˆŸ{|‘ζ}ןγuψ5y$ 8β~A4^Τ L|θ“=q’Ρc%‘ ·8πβkG~:NΜ"B,€ζ́t~~Ν±hΜ₯œfβιΰ +Ϊ·BxόρP–Α:œ{nϋοΈcΘΞ8#”Ε,2μ ’ ΄#UrΆcλή©H5<τwηυ†9!GjARŠ}Μσς,g<€yYΏΟ‘²1£ΰIΖ₯™8/ε½ΏzΩψ:Ξ›ΞZ =’ΔOtΗθ›K₯Ru ’kvbw5Θ[ιC4Ό­ιZŒ“yQ!aΰ–AXJόž~:Θ°€ 2LΞύo„μ”SBXqΕ ιRΠ‡Κ…f€κ–ΑΨ ΓΑώAm£?tώέγ#ητ ΐχ)Ž~—!―§ΗyH'Ÿη―ύ΅ξ“ "πηο§λ„VΑ@f /I%‚χKIŒγ±Η³ΧΦΦfš^xaψΪΧΎf³I€N,ZωMk'D ’…Ί‰uWDδΓ<σιkrf!#°ΈuΠΒyDύ#„Λ.³|@#yίώv?y•8”%Udb™ ӚvO)±πr<Γ<Ÿ3ŽrŽ0KοKΔ£R8τpΐB$Σ&Gr[ λεθ€yΐ8 ΐΊφΈψαhΖΖ UώO©°ϊυοvWΠCΆ}\qώφ·Ώ™—RIl$¦ΛxθsΞΑ"ώᴞӐ²β~Ύ­uceM’4f’ϊυτ}Ζ)©ΛτΥ—J7 0©[†$ΕrΙ™‡\sg<ΘX”3ς2’j0ͺ@Œg§Ύ%…°—ΕΏώυ/ ΈτRKΫ5±ΗΈ ‹E›ΐԘΈeHΊΞόH·φ폊έ]ώ5ΦνI§ΜC½Χ†ΜΘ‘ΛjΌυΞ nψη?Ϋΐ0dHΠFά!hw;9δe„y^/[8E–π0„‹†™ΰ ΝΆ­΅χ»ι.†DπΚ‰ͺ«‘h³΄δΜ[ΐbΊœ δΔ½} €9Cπ;\;ΔηžΧο1§b EΨΧP(+t¦ΙOΪΚ^{Χ³γΐ$νoΏ€²ίΚαœsNΦΦΕkΛσ0y:»rly2Σng[I,ό»λ ŒςοΜͺςvZA™_Γ8(3ζαR‹.χ±UΜΑέ ©hΥ‰Χ†τv‘Ι£œ?0ύMθbϊ_b&Ÿ“Ω―9ΔΧ }g; ΐ |w₯7έΘnΘl=ΒσΟ,: [l‘Η%Ξ'qA9€,_/mD6›Τ²Š&)jŚ6qͺΩΘ.&2–gUγωβΌ6Iσξ¨`!='«­‘—-Ο@ŠU9Q›4•ε!•a`ŽΛ/™βU•΅^##"lU¨Cκ¨ζ­œ`Hηηΰ‘4$ΐΔ8¦5 ΌŽV=ϊ»ΣώξzW―sZυσ―‹8ε~­:Iχ{΅ξλ™žk£“ΠJυ ;η΄2Α°#}f* Œη§λ"=πc›β£Š5χάSVŠ<ύƒ2IεΚ™νMφή{ε°χ>ω“`+¬IzV|P‰ω 0ίΒTH½Ÿ|2>μΆΫ›:^&SαϊrPT’ »πUo=qΎ~3/g/PωS+-Ύίˆσ–g | 7S€,ŽW_2Φs`ηΠ’@& ―ž± ΈU@RGž±ύ_πUΔ™3“ψΈείΜ Όo< ;zΧzσyy―sZε<Sv€ικ΅WT8ΦΊοΟπ{~](ZΧ%]πc~•|'ϊv¬t Oσ|”‹ΣΈf$ΩA€#Wβ<ψΚ+eΕ΅Cυ”™?ΪY-O2rΞ9Yψλ_CΨv[6ο*WM~ /L#³P*eΆϋΐœsβ]Le%mlxvΏ~™~yRώ΅Ερ7«χ?—Β₯Ό3~€_{Ζ―žΖx©U©ž…ΞεψΉλ0i”γš|8§ψ³ˆ.—#o\ΞσΕGς‘ƒΕΤhŠχΈίhhyβ½Ρˆjxύt^‚[‘:˜[τžuVΠβŒ<­Ρ§¦Κ3ΦώKGγW ¦v―VώVN£οπΎ ^ΒΊ` βΪ Μ’C|ŸtΗWq°S'i¨9’πgr„˜°.€ΊηQŽŸ«Ιη3y―{œσŒρΖ‡9fŸ£"YRnΚoμΥωΡΚ“³"ŒZ ύ©4—ΫU L14φS“Pcw`K9υΐdχΜ3eΝ‡²°ί~εpΜ1Ήtpί}小€ΨVΤ|2EΪΡΎτωγ`'žΒ©§Ω)2λκΞ$ΘΑsYβδ˜ͺŒNh+ωτίΐ±AϊΛm 6LΙna9"P ΏœΗψεˆΣό;Ζize[m\β=έΏs^Cώ— ±]t‘©‹ KΈ[†Φ^-Ίθ’Υ¬τG ΫtΣψρi'υbΓ>|Έ1R©dΡ$ΠxΫͺ5π€εH­Aή@|5¦ju ™Œz<ξΈ¨©Ί“Ϋ9|(θ₯Εh²AAή x‡υλtœ:βA† 3.ΛGy€­—ŽOϊW ^ΞοsΟuœΰŸ€ε+_©ΦΕ}/ηΗ‡dε…xόθG?²Ψn6βΏmϋ>Cυz!$γD­ λΠ€ΊX·sβ‰'k»—Cςg9τœ9B,ύηέΕ―­pρOϋΧ5Υ‘qπ ΟΥ@!<π@9Œ•g|뭲ڟΩ–\3ƒΧ_/Ά“Φ]7 k¬‘G`ΣJ‡―=c9°ΥL¦wάN:·Ίx(•<χ”GήΑίgΚ»y]€Ϋ»V2Δί 7υN8!°e \²ΗύXYβΛr•Έΐ@mŸσΆM*ίΣ†kΜψ+©Ηΰ5j”M>¨bχ"χηg#DˆτΝ^Sδ@[[›<ρ'…Γ?\*»wΒΙ'ŸlžŽD'²ΰu2©!ξί…"¬Σ—ε,γοπˆΔ·se₯Ο.¨EΐϊӟΒuZ<Όηž{Zπ~Zyυ†Zž4 3ΝͺζΑhXM~Ι%!;πΐPFŽίd“Π‹*³F˜ ¬Α(Œs»—ώԏ`Μώ˜Ιαyφ Q=Q² ’­Ό„́@< ΜπΈΌ,Ά‘e–YΖTv?ΞΔl£ήηΜ’ς0Ά"`ΈIγεΖ"qΤQGYΠ‘C‡ΪlςUά§y±Ιi#/Κ3»½U‹EΠΊˆΛέ¬zθΑpώω熍7ήΠHŸ>τ)LήS ΆSξp[7B,ΪfπόσΉA΄SΜ*3»Δˆεπ«_ebjΉ΄ΑΖ7ί\Άθ8ŠoͺpCeΖΙv‡ε—ΟΜ M—Ee5`@f (n †p~ž–?½ς·NΪ\l·ηγ]βχρτzŽοΏΎνtzγ7±~½χΓ\sΟώπ‡?XqπΞwd¦OψιO*CύΫα‚σ/°o ‘Ά‚“βώώνάI_"δ̈~ΑχεL6Φ+Βџ˜l!c ίύ-ψe·U˜Γ!C¬ŸPΟΘ‘ͺ?ήmί•g²‰¨δσ‹ΣΒ@ό{³ΰG˜+\ω@Ρ žχλzπΠyZžU ݁”¦ΤΑΘ€yTτ₯α©§LκΘA’Ί DΔJς† B«ΟΌ^½) œ5ΒZΦ»άvΫmϊOΩφΈ2Ÿ(ύ [0£,•JF` Ό^!cH?~|Ψzλ­-vDρa f›H5€Q/1Η J•RŸ™)ͺ‡ο}ο{F©)h MΥΙC”ι·ί~GΜβ“8>Ρτλ­·~ψ`μ)€r0'&οΚαbτθχuο’FZΩAƒTϋΚκ^“gχ“_z©¬Ψg™YYD.3[ΔV[•Γ»ζvφ#¨0x‰rXz$ˆŒh€ωνŒ3πœ‰ζσ5Ωη7FπΙγfΊΌTϋΏ~Ί?? Θόš£Ÿη9»ώ7&¬/½ψ’z\Ωωξ£^eL‚ύ³Ÿύ̘ ιœΓ°}τQΩj^ ίϊΦ·¬OœvΪi½ΙqKYι™H\&ϋ$ίƒo saq†΅Δΰ%lβρ‡Ω ™2©h“$²έvΫsY`ΑLͺdMΦ΅Χ^kLfnqή³€Άήj«­Β6Ϋlc{Α `N.y¨!&!„#βΗ{.αvcυ•lyΒ\Όε˜H¬²L΅¬]³m·ΝΏ˜ΒŠ”7Ψ dꌈ«μΘψ‚Τ½5’0²Ρ™Π“2+ρm~ΩHkυΥW·ςρ@©― ΜzΉΐ‘λ»™αC8Ψ&ΰν›‚€τΐŒr910ˆWZy₯°ϊj«K΅pf—‚ΈβŠ+ΜfqΨwί}«Δ}φΆΫlφέo_“pr˜½φΪ6ΠQ‘ 3ǺᆋΝ₯ϊ― λ­»Ž€ ’<ΨζΥΉΦ2<€σ{Γ |€fξσKeυ€ΔΗ",kι™/ιώ Ϊήe=clηœσΌŒͺ ŠΘεf3ΐž|²¬υ>ωχ†0oΉeYΟΟ%'ζC‡fš‡°ΔyόMζ7¨Dΰ‹/JRα€z©‹.pΝΟΑΟ‹ι~Ώ‘G'ͺΟ>χ¬}'Ύ=ͺ#&Kθ…Ω.i†L€ςΒ“ΈF%EYπm)“ ―П6‘Ά€ϊQe•J%{ €ΣΡtTŒτ9gότ!κ{OZ‡σΞ=Ο$ κCZ₯NκZm΅Υ¬ 뢘XΌωΦ›Ζ„`*Τ…ƒ΄K$dϊ τΑΥkώΎΔiΛ3“Π+3™F"ͺΫκfdιγh6V=ϋΕ/BψΑ‚dε\‰\yΨDY&ο—¨Ί¦ΔΨ/kvz“ κθ9™ ΡY˜`„cΆ’ ~ 8“eft‡ˆΌφκkα%γ9η˜ΣT LTV /΄°αυ֘1οΫμ‘Νoΐ€yL-Ε·7ξcελ'&±ŽΞ?2U­Zf™ε₯ξxΒ$ƒ7ί|GΊφ5‹\άʏύžˆΕ1—-ΕPž\x–ˆΐN*υ™& ƒLηΎΠBƒ€[Ϊl Ÿ|2@³Πή2HΏ<¨>ΡDβiρš­Κ¨`2λΣb6λ¨ν½ΤΥ ˜SπUVΙΔΜπh "d™$\ξΫ7_t§ΒRΓπ·6ˆ¦Π…αXšΉεχ9Ί`]»¦ζ§ϊ7γΝ7l’ΐ ‘GzDr  U’Ž„8£"„y@ΐ!ψχέwŸM,FjρξqYΖ c―ΏώfΟ€9\.wϋ6Ix˜χοΧήEίΧξŸΤKƒΙP/υSRΗ~ϋνgωb\ ΕFβ́Ί™$.Ώάς&έΒμ°{ΐπψ':‚Τ σh&΄>iζΑˆγ§Že BΣΛ  SA.ω’@t€:–@ΔyEΐ—κEΗd֊š„ΞHgΓ}Ουλ>HςJίZˆqτδ“OšτqτΡGΫΜΥΡ=wίcL™² pπ ή™Ύ«Ωδr‚°…2Dζƒ>²…—Ο<σWš~Zcπ‘>σDηαό . K-]’1Bίh€ύ£Φ€uΦΩRͺŒΫEtή6ιεΙ'ί‘j{ΔΆ" ϋ‹I­*’Ώ-ηU§Ή“Ή…;τ[MDfK ΌόΨc―ˆπάN;νhu™e4³^5όξwΗ‡γί\3κΑ"Š“D„΄1˜Ί^nw€Τw ΞΌ»’†ΰ?½ sή σq3΅κIfθωŽδa2Α† #Υ#ρ£.B Ρ\ͺ}u`8F°Ψ»Δ8ΌP?2FΧ—[κI€ZljτΖ+L‡ Λη?·IΑ†X’ Δ€ƒ© QζΞΏ«NcΒ½MέΕs–`x0 €6ΐΤ.ΏμςΠwΆΎΦ&–€Ϊν’Α΄ƒ©w™?©Υ{ΑȈΞέ&ΰι |t}U3eσ(ΒΟωζ#šμX"J>uλάH 'žtRxyΤ¨°’Δέ δζrάqΗYGϊ?ν2H'Ηp‹QoνωAgμ1οl/ΤσώΔψA5c`s2C'}Nιl<ΐογ?‘Α9P fΫRyΥUW1œίxγΝbs*πδ74π—Υš†*ϋΎΑrγάB3Α9Γ-·ά$Ιf¬ΚΝ:hWnΌρV# W\ρžΊΑRc Ααμ³W³6 8BΔg’€—υ₯#J₯ΗTηά"dΫ©Ξ~ͺk˜fΑ›‹`}Ι$ˆQ£^τΌ Ά[аσιsΝ°o+―΄¬τοΛͺNυ½OZβ‘^d­Ζ Y]ψΓ€€qΒΟ -}ΒϋE/ω3£η)‚όΙm ΐ`Έ$¨‡4€sςαŠΔ ΰΉ…‡Ά€TUτ1&yΌ-œ#Ήπ\€c˜’©ΒИ,o›η₯»j,“ϋ†Φg ’Ά|p>hc >J}tΎτRξΨώΗ?†²Λ.λ™#ΰ”~ώό²r± Λ Yψά$η Ήͺ †χΥδ:Θ[―ή―[δX‹8ΦJ›Ϊλπ])ΓΟΏ9ωa’I …ž‡τψάσyΊKΤεiδ§.‹ižΧώ oGOsi‰ΌH4ΠΟγΟ'=~'ΟΧθγδ5ϊIͺ?~ͺ½sυZgRƒh“%ψΐΪΉqΪΎδŠg•Ή₯’ΞΖhŸLΪ=€q₯φό1b„Ήπα"ˆΎ”•¬xφlό„Η@ΗJP|π3χ™‹‘/“—ΫύRn¨ŠΆ—ύA6)3NΧρS1•~b }E€'Jˆμ%h/©³Κ’`¬ϋΜ]\'iAš΄ΖP φyǘάaΛεΙί*nNΰ”΅"Uδeψyy'0¨«€ψόΣΗi–©Εψ;σ¨wψ‘Ϊ)ͺκyMπ\#EΒίοθœgΥSωŠυ“C\?/N#o­:Šyβ:›uήϊ €Y˜šκs Π6‚9V2ΛΥ/“·‡δͺ«έwΟ—ήrŠΥγπN„Jε;Z‚*‹™ 3We°rŸpΌ<sx YBϊ3U €gx~ό)&|*ΑPΒάΰΑ‹«,FοϋεΪϋ™ΤK½Γ…ή*•Φˆ0fμ―TξkR!φ–νΑέ?Ό?6ΊV6Ν--Ο€«XwQ Χ6χΰ==―/ͺCε½oTŸ09³'M‘§z£ΕNœzΏf% ππ8b7žMxHωύ{½™’Ή­Ο@_>†gΨ'Q#dτ2ύ…ΤL'εήUΎΆC^ΆΩ Γ)EΜ£ψ ¨¦Šκ) ή",lsHƒΘ1Q±ψ)ž{.“T9ΐηΧ\σ+ZG1Nκ'-ŒΔέwί!ζ‘%Ψ‚[oΉ,lΉΕ†FΌ&N$6‘KΤh»uΝJtZοG/RΌφτYιˆ“"9Ν™¦3KŽL xΰsΉ/ΨόXΑκo υCCΣ΄<‘γΜPΰωP1޲<€2h³k5C*k5k&W>¦ΊδνΕ¨υ~ ¨bΊΆŠ‹zΈ6š,­H.KαΚδJIŸκ«΅[θΘ/Θνv”ωΣΦΆr•©ηݏό9ΡΛ Ω“%R‰}δΞU¦wΧwτοζίΣ―yN=@9~^o=ezJΗ ν&e!Η!ΧθYΗ{‘"/jZάd‰€ϋ­«mύύ9ς‹ΑΗ GΗ­ηρλ8:οZžxιάk7 ·:nƒθΔ,=ϊθ-Žk~uJy%ωߎ:yGιqΩt>%ψ |&ΊΙ.)WΙ /Ά 8R™\mƒ|ς‰+μ Žη-ΆΨT.Έ7ΪLŸόρ!D}ϊΈτ‘ΜA³UπΉ'CcβξιžζΧώœ)[œΧEz1O=ekΥΧh;ža.ΰU-η,Κƒyΰ’Ž:—1¨pY+AŒ(—ΐΑΛΤpαx+ζρk{x号ΛΛΔχω”hyΒ ο1€o·cMΒ¨ στb°DΜ£VΗ΅ŒιOΓ0ΐ'πΟσƌ)Ϋ> 7IQxpΈE—Œ0‘—Ε\_co–`Ÿ‚ΨΈ‡L|νί™4–Ωͺe– Xρ rB—C:ρ²άχ<žζM ™:Ώ’šΣστ”#mχφΗοδν# .aaBδYpΎρ0tΐm}…ωα°RΌ³>€ι€GππVf;~]Α΅U˜ώLΦg SΌ JPG.«γ2—Κ.ΎΈέށA·,D3¨•³δc₯Z·οGκ;VαΊfRdς¨ΚΧsŠn@{DwμGDΗΥMύ‹υmYΈ γa*ƒA„ιΌσΟ ƒdkuΈ£kw Έa«ˆ8KςbȐ!φ\5b†€Ίtb7τ―#Xˆζmα…˜Ήγ‰GΩhMΆ§τ/Ϊ€oη,Ϊ$ %ΑYxΛƒuFΜϋ²3ޝt‚J^}ΝΥΆ χV$“Νδ‹E 7έ|SXrπ’ζή^*•lo#—ΥγΐΘG†ωζΟκ/βšUιϊsj·Bowά†tήR-“ϋδŒy‘Κ@)k6”)6Ν€£~ήS„ΦiΰλZδGΘ8ή!9ςKΠx Θό`ΉΠ.ΡaΙCΨ{ο|';|.3Ρ'}―Ϊνβ›ΊbΓ 74‰‚\ΔΠ‚90‹ύΏΏΏ1$@D^fΡ}aDγeζL0E‘RΒΌΓ(V7sίΦιš€š7ί|³Ν€!xΖDΔ<`H7Ht:μ°Γl]ξ!θσήο9~*χ6ή )g„ωίλ³k˜'‘8ˆZλP'^ίπΏ·Πε|°E4&Fά¨Q£Μfc bς»ξjαΤQyϊ|c‰—Žί—G½l †ηα\3Ny3οΎηξ*σHγΤΏFνco΅V*‹Ξΐ b턃w:ΏξΦ#LjΓO³œLλ5>:βˆp¦Bs?ͺU€O)΄Κp…Dυ}$h ˜)±”š5³[ί»*sώŒI‚sMNρiPς ’€&ΙWzσ*άησ¨>σ%¦ψHτ3$ \KQ‘‘ϊΊΆ&ώωψΖ?όp L7QSK₯’Ε0ΒƒbJ>T[ΨTˆ(€„ƒ@Κ!|8ρpΡ&Τ;!kΉ‚jΗgΝ’}!XXκρ z νχ5ΪZΟ~ζΩgεl ˁ:χ ½ŒUΤo”α½β²œϋ΅ΧΟ5ϋ¬<φθc&A Y¬½ΞΪaώωζ·tšF½|3$2ςΓ°‰Sηߌ6pοΒ /4ζM΄‰ν07Ύ ί π6ΨEώψσ˜T •eF|Σz^΅ƒ!SOў‘Η;Φ i TG0|τa(ΛΰφΪ+L‘§Yε;οΣT„ w`ΰ>{οcœ΄Ϊ~oΤLttfΰŸFBAψνoˊΒ'Z(Z¬{ΎΙ£ηευ;b1jΠ₯¬Αa²‚ϊ ⑁aΐ@ΪΪڌt`ο‚τ{μ±ΆΤΣO?mߜοΞvͺD€hA(¨»ξ²ϊV`.|$pφ Ιμ'1κεQV7ϋT0 )‰1Ρ%Πθ>Eύώ³κDΟ€ρžHΔ€`ŽC† ©zN!ΐRŒ„ϊ˜5/ΊΘ’aΒ§LΚΑ³!”χ< #Ο¬™4‚χQ7Ο#¨^#ΐΗX<γηΐPyη’˜y Φ0?ڊzŠχCZ¨KμFΞ&š€ | Έde‰…?VFυ‚Bω ΑTΑ±ΰ(`ζl…ϊ Ζ  M0bp½γŽ;*<Ν―¬M΄ \c·Bϊ#`!mδœ¨Μ€Ώs‘)ι2Β@f ήiΌƒω΅w΄ϊ‘XP+Ž‹½’ΨKΫΖH=q׈F\Ψφ’M„Ψκ’ΡΞ’L0zBˆΌ£Fί#vEζ!ϊ­΅!,Ύ˜Ÿ―–o―*Α@L;\ώι:ϋ(ˆ> ΫΔK-mQ‘χάsΟ°­Œ" Q q@ΠΟ9η3κ" βB/ΟΜB‡‘˜:¨ ι„θΡθ‘.ΘK'›Jύ%ю³ώΡCϊ‘ΑHθkl‡K¨Π˜ρ£zᾏ•ΞΎcGω‹cB>\Ν3BύM“Ψn—χ$τ8*>$ ΐΛΗη0‘ΞρίgŸ}¬~pN‘*`(0 ξ»gηόJbnΛΒwβ{!Α€aΤ0_ΪΝυ!α‚hσ ₯1EΞ Θ?Cl |:Gρξq'#έ? ³:Žίw7<§qlͺ €,)»:,1Κ2%e:B^³ψΎv³c–ΔJΩΏΛ‚±”φΑ8θθ[ρ2iΔ`Ÿύh†>RŸ^ύ@nœŸε1+ψΚƒš¨ώš„ŠΐζΌ^]ΞςΑχ; τ/ϊ,†™4³jT0zf0Δ ΅o‹‡6 Ύ9 η0fΘμ,Ι$‚ς‹*βοΚ+­l}‚|¨€¨ƒ>Δ3aτ%ž 0!aG;€ΪΖs!œΨUx>ΰcΓ.:ρ§£1ιuήg” ΧΌ?ΟΑQ€g3Ση½a,τρΈ Τλut’9Υ2NJbΨX—žΐΑ&›n&ŒŸ`ŒfΐΔ //μ.qδf‹-„r<ςˆiV˜θρ]XρŽΦ€φw΅½}Ώ8Ώγ¬l M ηN`ΑjχΘFΑΦ‘!l|TŒΠxM0£`–C:ε`&ˆΜθ\ΎAν3A\JΤ0IVΪ^ZάτžρaςΈͺ4Δb촏θΔIΪ θ7Γ0­Vί{ο½mΆH>0ς Σίz0P‘EΥΟ {£ΆŸ ΪΛΌvΦΎ:‡š©ΏδR݊Ο埬žϊ§•'ώf¬4g6MŸε[{υ~‰«)ΔΒξR§—χ#Οσsf|ημΫ§―©mθΧ9ˆZό Κπ£ΗηΣjρ>eh 0 TdΜΠιΣΌ &±ω曣‹σO­8_WΞ©›φqΔZ‚Ζό8pίίΗΛz^Χ8+ΐ°‘9L`6\ΗeΌΞFγηa£!cGυΎΤΘgw₯ξ¦1141ŸAAϊ\sΞζ™wž*cqdα…B>flΜΐθΐ¨˜=0£g¦!v1fƒξ΅α „Κ4–φΛ8—©εΏό%dκtŸˆ±έ!‰γνΚ.g zΒ3λq@Wξ3œ"^βf Ξ@θΤM131ŽςUWσ`όΐ0Ά•Mxwή—wΰ=ΉvΌσ¦λΪ€o }Ζ»=τK6Υ SD8䐠ΩZ>{φΌδοpβ3Έvπ=r΅ΙλΟρΌρ5εβϊΈ€yVq³ˆϋ8€|&iύΦ=¨Έφϊ8/ΎiΝ€β;πΜzΫη+ΦSΌnΖ»΄ς3Ξ@bδ@μρZ‰] Ρ £¦Β¦‚Δα€ ΧF f·άrKuo|Ά 9ΐ’-‘›^C‰;‡ΧΣ­ΗΚ`”a†˜‘|όρ!“&†x€‘^l“3”ΈL:―Π sΰΗΉζ ZSQΦΔ"Θ’I_—u©£QΜ£v {fjάNJύρ†ͺ—ρ³@]…˜oΚΔχ‹ϊψŎ+=σΝS«š‰†3οΌt>žι/cΈμ²Λμύ*Œ±Α}Β7Γ0άa`U&ιx³ΰ1Zˆ°ΞθcΦP0§Nςή0ΡΈ•ψ;ΫE?ΣΊ_£Θ,—: r”šΤqΥUe rLϊΝ7ηFrΞa€K(ωΥ¬ϋ—±Χ‡1zΣχ0ˆ²γΐ40Ζ%ηh:Κ₯~Ϋvfέτ†3PK¦σαMEG.•J†qΌ©° }όφ·Ώ5—EΤUHˆΝ0ό΅a ̚`$H"Λ‘@ΘΓvψt7˜zŒη δΒvΫ…lωεςGr/Q°ιF?h,’ς•WΚ Nδr΄#]»οži2’ΠξȎF-B1< ι°g0ώΨιIΐ³Λ]Vγ:Γpl€cGh ρ‡Cΰ/ΡώΰΨ@G€.AβFɟŸl€ ΐ;.ωθδˆΫˆΧάΗ½―& ζœΗ³&χρηuλΡ™‡*-Λ?“α\ΣΈ •^ωc`, ¦  p>μ(οί?ӊνrψυ―Ω_<« ˜œςJfβΏΞ0|œψ‘WζφDΖc†1”ΞdΛΛ±’žŸηχ#υx]~΄LιOΒ@hΊ/ϊV F»Η•Kx0ΡΙιΌ~μ έν’=οΏΌI₯!nΌN­8žrŠT*kρAΖTΨο΅kUΊθ X9ξa— if&ͺ[„Ο†½oeΊΊαΧ‰gη ƒΕ«Œ&T0 ’άβz‹‹;6€~ γ,AΟΖ€Σ2ZΩ nΌr'j.ΠΑ‘Ψχ5+FιδΨ0bp&BŽύβr ?'NΡψ~σ›Iέ–`ϊ1ΐ'vζΕΡG—ϊΌl΅¬Ζ fδU˜G±Ο±π’?_†n·`,ξC]εj)lEζαγͺX_ΊNθ ΪSνΞ”μD^˜UΤ…^h cβηΓΦ_ΫΪ+±G!ˆsρό.FΣΩύΌΦc>ŒΒUx­\‘ €F3] Σa½[‚ΞcΤΉ$YIkEq(5\v©~-hε6“‡ΙuΟμ¨v†Aχίδ·Ηό–Kπ₯RΙΤΎ¬ΗXn™εΒ€yΨ‹28“Δΰγ#Cρyœ7' tM‘|ށρ7ǐNXΩfŸΝΤXΖρYƒυΝxN㋝»xέ™μ–ΌNΑ΄hQ R‚Yte³IΠ5 ΐ8œ'Γ@g?όa&wνΎ½KfΜƒ{δρΧ33ΠΧ™lyŸGΒ @ ͺYuΤγO~ IZΕ*ΓΊR!eΪ(΄[θL¦{[1γjσ~·›’ΆKμuNΘƒ>Ψ{j!φš*2‘>.βJη³4Ξ@ΐ3‹›ψα§ΞUη0ί©ΝΏFέ³*„|’ηE»οθ D’R¦}–ΓΠ‘AοΎϊgšbΖSD3΅_u0ζqΧ]™6ZΊŽΎω=Gs~ΥڝΨσ΅ϊ0ΜI|―½φ2†AΠB˜»γ1γ°„ΚŸZuΕχΣyΒΐŒΐ@S/Ζp±œ30Ÿ…ω‹3ψψυˆTΝαY)μ1ž_qΕd ―SFΟ“Ž&m83@κΐHΞΊμμlJΈυ_…%Ο‘…ΧΚRG-fz&GŽ|0τκέ«ͺ†b4Β‰8°‘?ΐλγH=^—½L:& τ h˜7` ΕΑΐ`A•εκ¬N3ˆΞwΫ›xPAΰ–[MΘ)».Ϊ)_~7ύ0Κ` „\v\a…²άrs„βω3Οορ§Nδi¨yοΣ0Œi‘) dŸΡδƒθΡήΏρ€ΪXϋr{ΤκσŸΧWkœX…ιOΒ@Γ@Σ$o z_—οίμ«ΠHΎˆΠσ7ύ¨6ΤBGΉ„ε»ύβ!cϊμaΫ‘  Λ΄θ³Z˜υ­Ά*b[υΕΡ¦}Γ„Ϋ<·σf/ΫGλω ΠWιΛτcΥN!ηž{…θΩN6Yδχ mmLφ>ξΜ†2ρ9Χ Z M“@pΜЎ:κ(ν_}’mUK˜v€Εμ+Ξλe:7ΊO½β3P=ΏΞD{’¬Α!2…Ζ DαφLw γΰη*(mι’θΚ9oΥR† €ΘαϋϋyΥεi QŸ²Η‚χI$_·=8Α‡9ΠG]M…}γΌσΞ“€%QK€λ9;lΤ‘ΨΓpΜ€γ̈¦Ω@| ‚Dφ3Ώι¦›Μ²ύφΫΫΪfoΈ7²? }-HΣ‘ξΤN‘±ΛΪ 1CΛ؈b›mΨyǚc< Κ(€@ρϋYΒLψ‡WvΖAh¦Ϋn++Y°•δ«šΩžδ‹,’Ώ8LΤ8:{":` Ψ.0pc—#„Θ +¬`“Ϊϋ„ά~ϋνΖ$Ψ?ƒΈmtPu/ g:Εwσ>QLOΧ 3š&0¨|fΧΦΦf1±00Ύϊj¦ψH Y…Ύϋξ»Ϋκ[͝&tχμŠW‘”™ά+aγ·ή:| ½φXΝF?Σ¬Τg•1‘ˆίošmn±  ƒ¨1<ωd?όaσΘΒ/Β 'dŠ’œΏ”kϊψt=yΔηΎζβ»ξ2)bί}χ œ#y¬Ν`a+Ά €ύ6pόΐ¦α}9“Ζ'U’G/Ά§ˆ©—Θί©­n•τ„¦Mηΐ7ήh‹ΕξfG$‡fΌ>?θ±b^†#ŽΘ΄7sΧ\“3gN―ύΪ_½YΗ"Α,ΞρR7ώGb1Φ0~³c9ΫϋαJ+―TmξV[oe;fΎόΚΛαΣ ŸZ\BQ—‰†λω-³πR|6ιlψ„›/!ΨιΏΨQ؁iΖ’? Ο.ςbσ#/N#lΆFYs‘εMJ²όqΖο„ΚΧΗυσ^Œ‘κϋ«}ŸŒ€κΰΟLΗ„F` i*¬Έρƒ ,ΏύνoΫZπ#»Ν rFηŸΪyuΰL-Sέχ4ϊœΌπ‚•šX*…2š «ρŠ˜ϊ§?ύΙŽ=¬­m1ό³pμQXΰ€»h?0$ uρK‹š»ξΊΊ!b†›xΎAœΧσψWδ»Ηί΅'DάΏ[ΏώEaρ Μ¨M‘>β>«oΊ1œ~ΪιΆ½ςUΪ4쀓N2—έψ9Πυ⳩Ÿp%[m΅•ynq “@βωπνΥ[Ϊxμ±Η†§žzΚξ :cBXw<Ώ`rοδG"Xίzλ­U恱WΏϊU8ξΈγΒs²ΥΤ{Ϋν·…ϋξ»Οӟ„Fc`†0υo~σ›πη?ΩΒΊςΏ ψΓͺ'ΤΣB@gςN«.sΉͺPΕ²Φ©ΘΡ?Θg3ŒΦFX―λ‡­†5+ ώσΟ??|ταG6Ϋdm‹Ο §ωœ’!f.IŒSΦκρ=4„aη ydς˜Λmδ=ž·™―ΑwφŸ}§ΚΓύϋγ~ϊ駇*ŒŸΰLR0ˆ;Δ³wg"^ސlYDΙEΒ<ςΘ# #Ε8L`σr†„Τ|έuΧ)Ζζυ6‘€AΡ'Ξ9η#ό\#Y *ƒ™ΑnΉε;Η%x'ν’uυΥWΫδ¦σAzψα‡Ϋ‘gβ%F;YΌψγΈj#DZΉVκUΆ–‡ΰ•W^ik«`»ξΊ«SΎŠ/.$ 4½4 ή)ͺ€3ϋLŽθΰ&I$υΦ[Ος―³Ξ:5cMQY”ΰ’>u³ΐk‚V£zpπgϊυTN!1 _xaΘ0jgΈ1’4ΧΪ•'΅JnΤ¨Q¦²bοˆ „η2»ΕΆγΠ©ηz‘&+“\cœ3QžCͺΎ}s+Ρ¦°έΆω9h*Ό5Ώhπ_'μŽGŽώC `Ÿp$?ϊΟ\ς!F=5αΣ ‘΄dΙϊΔ—ώε›4ΡάZu’ξυBΘMν€r0˜¦›njηΜώK’Fo»ν6#μ¬W°­ΠηpυΕ†ιc°l*8… ^ΊώΊλCο>½ή‡l¨ΖΆΞlοόμ3Ο†wΪQaξόχH0‘υ΅ώu.@›ιW+―Ό²1*ΒΏ#νΌ―gΐ<°ι€φD_^Ρ*}Q#η1τ§%0ΰߍΎ@bΑjL?{K4ΝΏ4ͺƒByκίO™-½0"ΌϋθΗε~ξ”RνΛO{†ΎšΙ~K‹'}}›0I„«Ϊμ°Η{Ψ6½|d'T=υC{›9Β0\Š@λvΝ5eΩr‚lR™mπ$­œ@/+ /Œƒ_3Α‘?ΒΞLžΩ;’Ϋ#³ ’Νƒέ^ϋ΅Tΐ™—^—=OρˆyΏτuρ²£œP»²Ρ“V€σ<€\}™ ‘†½ϋήEΪ;ΫΜ ‰θΝ·ή Ψ[θΧΧȘ„ͺ ζΦ§o>όΌ]L|D0κΓh¨“°?<&ς_ΩδκaMR₯,L ΰ™΄‹r š¦ͺ°|PγϊŠHΞέξa‡¦πΥύA|@Υƒ€nυΒr*Y ξhΤ΄ˆ^šA:σΰ=ψAh ^0OλLΫλyΏξΏtζρόσe©ͺΚα;߁ψ0Ϋ͟ΖΡδu΄tw[Ό>ΗGˆ€»ά’ΖvΗ„Ή‰Μ°Ωŏ8j΅€οΰΏZχ‹i<)j _+ϊFmΤE¨‘ψΦδ)•JΖH@ΫΪڌΉ ή’/31r&€}p=τ ή€ρ1Y‚ΰΓ¨f±“Α—²¨½xgΖηRŽγ‡|H½½τŽ<†α.ςυτ>h/”ώΜhšwjˆ.^/.ςc€f`‘·f0XλTXέΒD ^@Y’£IΝ`Χ€Κ=ύ]h+ΏΞ*«°Ιx5~¨•)' ^–Ϊ-ί+―,‡Ν7Ο4ƒžœ/zέΌ`7ώ-βΝριΰ>Feˆ$‘n ˜μb AE"˜ϋ q~τzκ9Ζe°cΑD—(‘tX‚D‚δ€$„4pο½χ#ΠγΉΕ›€έeνΧΛΆΝΗsŒ©£\Υ‘G5ρ»ίύΞ"R3P]‘ΦE…‹΄³ΦZkUwξ΄ υ‡vΒΦOQ Άάα‘~˜•―€·„τ'a h‰*Qw΅€«¬²ŠύΊόŽΠΐΙΧ.Wc+T3s@EmdΆEνιŒƒwrήσd$™lŽ€~ς“Lϊψœ‘ΏΖk’<έ"ή ΪQfθΨΈOD’rͺM~€§yΞ€όh™κόγe8’>ŠwΙάd“Ml*%Ϊƒ ύƁڊΆ’^ƒ€3ϊιOjΔ~‡v°ξ0Ό΅=RR7}ψήχΎgφκ2dˆI#€σ~ό¨i{ ׌›έvΫ͘,Ο$έΙ¬T*ωeu²SMH' ݈L²»ΘοT›εa β5ςMEα;E» ΑHƎΪ–jΣ,xs#"δυ=ΥJΉ©Φ#ί2r3Kd&g·:S”VUΣΘ8 §Όόc° O~Οjm?|U~ΌPYδ/ύ:k‚\‘σνέ+WισσΌBc—‘ήο‘EΡe!)jΒΩ@”ΏϋέοΑdΝ}~€χΞλξdξΤϋUέ™ςΞp⺊ε§uMYςŽ›b»™ώτx Δί η€n"%Τκ'=αeš&xΗζ₯!πΈ2cv…h#qb#Ζi^‡§Ω5/;q±ΞŸW | σύΟف°’.ι|e3Ά―#ΰΗΉΜš]Ή΅†pτΡωΆξΎ;―Ώv…NwΉαώMόθω7σkŽ0yτώx m±ΕΥ5θϋ]}‰4C­zβϋέqξmχgqΝΉyη~ηση“ζe<£ηuB@οληžΗ–Aό:~Ÿ“§xNš—α½ϋ΄“(πiδ‘GL%Β —5γ'Œ½{iλΟ>7IΔ#–²Π‹Ε]E"Ρ)δK“ΙΧΏ¬φU©³SιNUΤΈΜ0g xk!s(•ΚΖ<.½΄¬Ehω³ΙƒΤtφŒ°MͺpžΌŠvY>lΨ°0φ­HπX—@\0~0'Ί^Π d­οSL«U–zŠuΛ‘§Vš—…aΔΏΨ{―XΞΫΐ‘ηRΞϋ°·ΓŸηyΉΈ?5πόΤ‰η!G€τ ­„¦I 1R°ijϋ裏ΆΈ?“c…/!$L0!+‘a,0l!Έϊζ1€4sΣ?Ÿ:β±Ά`Zƒ7n‡3h+XΊ4KΚά€φ{SlnBL[ OοŽαΈc ΧΕbΐ΄°όΕsΒE^ςLƒŽuψNΠ<Γ“Ϊ#9AώXΓπ †δα;`b΅8ίΡΏ χψS»φ<ώΝΉβrώM‘@Q‡!qR'ιq9ϊD/ιτόy^Žϊ(K0C/“cέ‰—/ΦΕ΅ηu5+aJΐ ͺVήΙ΅©?ΟλςφsόΎΧIη¬u‘³ŠάW’ϋ3Ι“ a §c iH<0kΝBB$Ύhα³ZŒ±ƒ N†σ‘C‡†!C†X(ν‰?·ιΧcανÊαNSZ 2ϊjΓ…|Rκ±°`1εξTεέ—>JόGΝ½Υ4iŽΥU&ζ‘?ΟσΦϋtΎ‹ΌŒ«ύ†Ο’"‡Vcγΐ@Y'πβ‹/š!UΫ|CŽ~^λΪΣ Μ΅ς±Vƒε@={μΉGXυ «ΪsΥ†'mžIά-Ξ ˆ$EΫYΜ$e³Ν63Œ5*\¬])‘†Α ύ‘ϋΔΚ‚9±Ž‰H 8zψ“A­=€‘Ξ`TH΄ ό‚ܚyOφ0΅<ΠςΓψβΆϋ;€cΒ@OΓ@ΣφΘ8c ‚*‚Β¬p—]v1‡#ˆό /΄°Ω9Xˆ†Ϊ5ž=cƎ1Ι…Κ vΥ’‘qpβζΧνŽR˜ƒ υ™6θΡ(·Ϋ±…ΨEIƒί(8yš ή΄JσΒ΅Χ¨ Β“Ι=6˜‘\Β›ΜZYo3Α‰ hΔ‘ΗSŸE³ c‡hRΖΏ‘—ηp„˜Βΰa'œp‚Ε†‚™@T‰@Kΐ@ bΧbΫΥ§ŸzΪV₯C|ι±­ Αΐ¬`τ˜Ω²Λ-kLζρ₯Ύσυ7\o‘j‘θ#ӷĘοj!Ϊ‡γL‰ u‘TzŽ˜Vxϊα؁DK„\&90ڏ€Ε}Ϊ„:‹w€!πN7άpƒMb`(<Ÿ~ ##ΪΞLI…* ηΝ·Ψ<|ύk_·φL”>LEΐqlιΟ,‡SLΐ~ 5>?ͺ¦΅Ύ²–ν=NΓΜπΩƒfm1@Θ`έ2ؘk6 @Λ"ΊhiΝόγxΎθ¨ΦΌ„πΫ“ƒlFεπ‹_daΟ½‚˜hž§^©εuζΔ¦ΑΟ™/Ξ{[!σNL:εΟq:χju―΄βJΆρj6_β$Ί.λ~˜…ŸqΖaΛ-·4ΖaΖmΒOπA$KΤL.y.·μrΦOTο(}©T2βŒΤBΏΐu˜ώΒD"N^$žΑ}5ύ •LŠ4&/΄Χε`<0T˜φ$Ϊƒ θB©( £xiΤKφDλ/Τ…jπ,±—6 ΕΰΒ;s sY~Ήε­μΜ ΞχΫo?C₯χZxMi = •9lγ›εDŒ'±~γ‚σ/°=§} ]rΙ%aί}φ΅ΫœXωΡ[ηu8σkΏίι#T΄`(k5|ΆϋξA+βBF¨ZyzxžόͺacΖαakλ6Κ‰wfRεZ5ξ“?Πxs.Θ 9JλIΦhΗ p™fΦ ΑDεAe_w$ ΞΗ―]T‹i~/ώœC9.(œBΡυ3ƒgΞ5€”c€Cˆϋ‹`CT™αΓΌH>Ψ]œ¨Ί½‹ςq:’…K<‡grΝ$„ΌH.jdςCA €10Γλί―ΏIk¬±†­–‡‰Ρ€R?‘<`¨RΩ4 I I \"¬'΅'οD›y&εΐyX8ΛΞ΄‹HΌΨrN9υ”°Υ–[…!’„ΐ?xλώοtLθI˜¬$nB«|pΐ@Π―ϋB³=χάΣΤμά@0ς3¨όΗuœζΧ–Ή«TΏF}Θ§Ι€νψ³ γΰǏpI‚G‰φ؏G*ς‡Tlί #Ι™y§Φ,g†1fΧ―ΌόŠ©\¨"Μ=Žΰ€Πρ-HίvΡ‰?|7Tˆ!Ό<Β ³ΐ&ΑΜ΅ε©§žjΔ;ΐ["¦ΰa&Ο(L0“ φ ηv ΤVοŽ~ΧΤbδƒc«Θ# n‚9¨ͺx?όZkeΔFζv m„©•J%Ϋ1Ύ‡t@=¨²>χ±14μ,δυΊ‘ΞΨΘ ΚΒ(Pg!EΏ§ϊ¨›χDςA’ΓώCγόZι!‘ΎΙƒέεβ‹.6ό r£ ΐ7ποb ιOΒ@Ζ@Σl ΰΐ Kfmmm6XύΌR™‘Εy)γ?»Q©ΗλŠΣȝ²δΚ« xΤW„pΠAΉ{ΔU3έFB…~WσŠ…μΕr.Θy±«ΦXƒžrΒ.:fy…’*ΔΔ>Ζ DkηΩΓΞ6΅ ʙ.ͺšηw‚εΧύΌϊ N<Gˆ6Μέ?ϋT φΐ2G΅“‚pΞή¨u`¨œ @pΧfFl³Ν6Υ>Βw₯ύΨ=8Β”(ϋo|Γκ‘,ΟEj‘<ΟBp -€!q€ˆ86l09μ@Ψ(BΈ‡„zΆέv[«w‘E±χα= Iˆmπ“bt˜ΔΖΪλζFύΰ™Ψ_΄…ϋ¨ΈV˜p ωΑνqpΌϊu:Ξ:πoMμι6¦νΒη‡Pf{<σ6 υΝz0’30=OgΊ‹—8A0Q‡ΔΟλ°. \§ήεΣOΩ±ΗζeˆΠhϊœΡ;,<}7`B…&½Ϊp(Θ6_k·_Ω &?ލηχχ­Υή’’fΗΨP§@1PcoL­MΣ|&‚pΑ€©‚Z œιΪψ€δ|ΊΪΩΙςώ|žΫm Ύ3'βώ™φ)|cPxW+b Αΐ+U„Ž3Ή‰…*¦Έτ:§ΈΡΩ¦ύšΩjjΨΩ’ΚMγ‡p’έXaHΚAόK:ϊΜφ(_e•œ³*β5‘{!½a`φΜ¬Ÿθτb|ΕDΝοwυH]qέΤγυΗιΕ4»0RfόH‘΄p)ͺX†{΅<ݟηyH/¦ω΅—‰σL-:㲡ςϊsύHΐΛΥͺƒϋΕό€%HθΙhͺέuПhΚύ†˜*ˆ~πxζCi†€W† /3tˆF <ώiNdγ(klφνΘ%WWΑ<ΘΡ™4)—ά 0E"ƒΫ,+ωQ΅`¨…_Λ]θD‹wͺUΎ;ίΥΪΖ€rtΠ΅Znοβνρχπk²’ΦA%ΐ<ΌΏx/ΓύbΧ~ŸgYΘXZiά’ŒΧεΧ=ΝλτkΟ?Οοσϊ5e€Έ =7Ο™ώ& ΄šΒ@|°αΩΓΐ`ˆΛ&ۘβΦyI'…R©4γ™\R±uδyΘΛ£ύρš˜!­αΆZΎPΑ(p/uύ9D>ΰxΟkn_G›υX#œύ₯’¦ΔiNˆ!ώΞ<Θηρ’Ε΄vΧΡ³= %jK»²•Ε΄©]Oν^υωœΪU,Χ.oΊHh 4ΦJ,ΔDμφΫo·Θθδ8β[LΘΜƒ;;¨:›Ώζ7‘χNY Κ7e²ŸlD`j–©3Ρ₯˜| Icπΰrxόρ|Š.nyžίγΰΟ TU‹υΨ;…u ͺ*άqK₯’]“ŸΩ{Œw»Ρψ–φ+RΪh{jbΒΐ¬ˆ¦H F5ϋΒmσ”ίžήxσ ύύφ;okΗΌ²ινρΰaΦΩYΒGώι…²μςδ1θ†:©‡j`ΐ㏇pςΙe1,rHf騧r β+gν§©x%έxÍaϋ‘Ϋ“ΐΛι§Ϊ£–@~΅ΐ‰p­{)-a a a ;1ΠpKΈ_Ίλ&»Ο=ϋ\xμρΗ,&–λπ;ΛDP…΅Σu׌Χ@³z;λΊσg8)„G9μΏώ¨;ο,W’{‡Α΄g¨¨pGΖ]›’Ω|σΟgξ°Τ€ΚͺΊ8―­βeΊyKί„„„ιΓ@e~<}•t¦4 CιvΫmŽUξΚ+―R ΐKΜ@N"j<_ym™¦—!VŸ”N‹¦0g „°fυ9ƒ9’Μυ λN‡ZΗσΧυκΣKpυΟk«ύΧπ$KΊ;Τ[vm)5a a a sh ρ&Α4Ψ™νόσΟ·λ`$0μRτ…žΏcg%ΔηŠFŽΜσ‹Ά3‘’Φ|l[Q{iOμ|έ!›Θ ’o`θ ŒχάI“`½-€7QcaΠΓ,?ΐοq^d€Ε<ž;η·ύρ{~],λιι˜000ΠU 4…@Μ`DƒΕ°”l?ψΑ,B,L…ϋΜĝ ‰ίT_KΔZ΅•©‚HεΥsLΖR<)QξœΙDΠzm,παΘζqqPό©\pΑώ^αz—Ό`–ε'Ψ:X-£œ}ŽztY £V]΅.Έ ,»FC‡ζ|FΩ•7?GΈqΰ!μΈ'―ΚφΧͺr•ΦΕβ@ξΊ—q\‘ΖyυW‘4ό>υ±πξUŒ‘Z¦R>Λί)ΟΞ:‹¦H 4 ‚αbcfݜ{|'ξwΙ‹‚]΅(K/U₯χΈΡκήΛΕ Λδ~[ΦFO™φθ.‡£Ž aο½3-†¬άԁκ*UNN¬œρ^Δ²β½Ώ©`g}–³οΕΎϋξkΖtΒ•'Œ 6ίbσ0[ίΩμš e6–Kͺ/φ:aΧ;BΰoΎΩζΪΆΏ$‘ΣΕΔ†šϊΠ&lŒ4bΔ[WΒNxl^4jΤ([€I9$ΐ 6Ψΐ6ψwF4E£SBΒ@Β@Β@˜!;2+‡°Ζ?ΪΪ%‚Vα”­kGB(="ƒŽQk9Χφ€ΪC5”₯ΚDθGkaα³Ο>a*§η•”Π[[š–ΓΞ;ηΜC›ΫΈΤ‘_΅λšγΪ-j€l-0ƒΉζΜw’c?φΦ¦Ν¬(¨ͺώ‘ύΧς—Ώρg!Œ€‘z ,˜ j)€Œγn('υβϊΜΰYώσΊΈΗ9ΜkΞΉς}ζΙ[ BZ‚„„„` iFt'¦4ς6Y /½τRΫLj―½χ2Cπ™gžij‘ΑΌP}e*\G» ik Y%”ϋΌσ;S«C­MΉW³ό\$‚VCη‘:¦Ε<ͺm¨HSH\H Ό#R{Ά#q iΰ@πρΗC9ν΄ΣLΪ€i M y°v„ύΜQiαώόΧ+ώyδ³{°•-LιΉ#³Žfε•W6Ό’Ύ>|Έ­r—γ?ΙC΅ψΪ›jϋIΒ@Β@Βΐt` ©ˆ·]ύO~ς“πΥ―~Υ’–Όd8ε”SL½ƒΚ₯S‘ξͺ"‰HKΏ2Ξ©¦_Aς˜ΪΠ*=ό 䦛ο-ΞCŠ‘Χ•©Cp†ΙβI"μ”αδΠC5›…† b1―4φΪk/“Ζ0z#­ΐDρBκ`έyπZ£Ž>½ϋ˜ρ•ΦΪΖο«R©d €ώ¦φΒ(O€JT\”C Ψ3rΰ9 ΊŠΒ@πΒΊφΊkθυΣΜ»ξ’αz΄C/DŽY»αΎ\Ηε*„S3ιŒ !L²0vμVτ _XȎlϊΤζ?)ακkxzξΉjΙχ€gΘ»ξ ›nΊiυϊΓ?4[ΖV[me8σHόbΐϋŠŸΖv\ϊ~γΓ«?5f 4•8α"ΪμŠN{ωε—ΘSO?e3eT:+Έ’SΦGxώ©~ˆΞJθ’*Pσ0V’φ9[)yΡbWΧΜ½’± 3uŸέC΄~δΟ«3ήΙ™cό~δη:―'ƒ-·ά²jˆ‡ω½ŽΚΥͺΛΣΌlό¬tž000ΠY 4ΔD ?φΦ6ΰšŠj©„υ0&—ιμ‹Υ•=m((k–nΜ£bδΨ`}-τ»›€ˆy-ŠJeΐHξ‘v‹ #~Ώ"qηΪΣ°“Δ’„{±Ρ¨ΈNΏ.¦yγγηyZ:& $ $ tMc 4Π *Φ5`ΤEy葇Β.»μb{¦ϋ‹x^ŽN=Ν!ξ“³xΦΊŽYΕ₯5s»@₯μιόίYΔێ‡v άqΤfUήώΌζφ‹χΪ]« “΄‡iνUΕ΄Ϋ?%]% $ $ tšΖ@œθΣτk―½ΦΌφή{oSΛΰΦzήyη™‘EEγ³μ"tβL=q\w*k2$φiΩό$’»Λ©Ι"λΒ<:ΛDΌx^„ύ>ΆaΏί³‹z¨ ½*q΅κ-’ς% $ $ 4MsγεEœΌχή{ζAΔ:ΤU“9ϊ";g ~Œ‘@¬ΰΗΉΧη™ζ9\AP–t` Α…6'άl³²˜œ§δ $ΟXί_o’Ά‹•V^©Ύ‚³P.Ύ-Žώ«χυγ²^†΄Ž £{,€Œοq¨/ΎŽσvτ¬”ž00+a iD•΅ si \U<ςΘ°Ϋn»™jη²Λ.³΅ ³2<b?±žΑCo,&[Ε’₯’Εz‚ΩώΫ‰C§ΈΦ€dІΆή:Ε•rΦ),98“QΏc‚δy;:ς΄¦Έϊκ«·ΛζΜ₯]β,x:ΒEό=O1-Nλ*ζ΅ά'έːζω<­xŸ<€ίΟ―ςrΕ4Ώ—Ž ³Ξ@βΙ*lVƒEsΡ ΓΑšΧ™η•ΉΜζ‚ ‡Uκ|ψ‘‡ΓX…yζι§wU›½ήwί}ΆZΫ׎`lΰZ¬gξVύT<°pα αεWΚZ{Υ” ,QΒ΄O!2Ψ@xbΔέi—žωs°ψ‘o~PW²ΪχνΈΏ€˜hΥGϊπƒΓ’‹-je}?ΈΔuΕεγt&"|’Aγā}Ɉ4$dΚρ˜4Φαp—·Ζ₯? ³(Ξ@bΌ2@ό€οΞΐτAo³βςΔ9ΑYΗ Όδ`-κ[3Εφ‰'žmmmΆΟΛbg Χ &Ϊ’`„?œGH»f°Ψbž"βUw₯νg¨χήs―˜ΡΛ¦…XXΌ«Ϋv:QεΜ‘UθFeδ„œοxύχΫd‚…ΰ†=bˆυƒηΣX₯O|/’ ώd%?"Ώ£}ζY‘ο@YΌόώύΤΏΓ Λ―Xh SηΠΏž{ξ9[ΥΏύφΫΫ:o2ΙΑCc'«ώ―Έβ [ŒΙڜ-ΆΨ"1Gp7SξFd6±ͺ¦2ˆ(ξ»D¦Ε†Α,ΐlBΐ€eΥ4 π=Cπ"κ,yY]½ηž{Ϊ 6l˜εgϊΨcΩjξ6Ϊ¨.τ•ΕΜ2Ν€υPŽ8„3i³MfΏuU9E¦^½{™V-"8Eζ™4ΑΏ%―‡'Yο,ί²ΒΞΎ0H£HD'~φΩgΠ?`*L2XΔbL˜ ԟτ‘§%‰ž{ξΉαΤSO΅k˜ύ‰#яι_›l²‰M*~sΒoΒθΎοΜσy>όρΖ(vάqGΓ>)Χ—χΪ_]Ϋ"%wάqζμqΒ 'Ψ€†Ι ΟλšI?]S_Λƈ{ρΔ@ϊΤΖOYίAΣM ¦€ήχ¦V>~VράΛ{z|=­vy™™ύΨTΒ ƒ ‚hπA2}ψΟ?ϋάμ΅fηάQe±D‡AN<¨ηž}NήRχš a=(οQn§υα2V ?ϊhPL•vY Υ~Θ!Yu H»›u\ĝ•6σΞVλύꨲe³ΨχΈ/ΜΓΙ ƒ™ώ(…“³ΩΨΪ%ιi“Ψ_ίώφ·ΝΝ›oŠ ζΒBΤ‹.ΊΘϊA9ιS€AπoΡ^ΓΰœγΩ·ξΊλ†RiI¬iΧRK/?όπpχέw[“vˆ$φΨk―Ύf{©°Κ¦Q*•μ^o1( ΣΒtΡ Θgj½τ݊`„[ιω”£’/γ[W X²Ÿ[u•Π˟—υρhυͺtGζ΄©pΓΛyϋςς4₯ύs¦šΌδ.ζρ:[νΨT‚ϊŠE„‡ŽΔςAœπ²’Ο.‘T` k_EYΤ³SDƒγT=\φανσW±yΗvοJίθ¨ΉΣLŸΥ˜†#ΔΏ#ΧΔλzν΅ΧL’Δ¦ε©O5$L["‘’ž„Q”J%S%ρ½Q)½ώϊ뢘’πυœγ €sΞ9ηΨZ"μ'D2&Έ$‘jŸΣ&›lj’+67$U˜ R1Ζ`d¨΅8β1Η³a&lΦuβ‰'Z;nΤ.’Χίp½9}ΐπ€Yυ»ΪΛwΣΖ8x«1ό±€ΛE-`γ„Ο Bϋ§ϊζ/Μ=§k|"ΠwψyϊlΒψπΙψΟΓάύϋ)tή0c$ԟ±]ΆΎύŒ`[Ω<”P\O>τ Tߌϋ“&~>ΥΞ€qΒ§šπ~ϊιυ‰•6Ν^νΗVw₯€·‹KOΫΛ{δν˟η―>Ό…NšΚ@XAά'€ΞS:Ȏ†ΰͺ,7:r3A i¨-κ…²:„=©ΊˆΠ>«:iΞ_ Ν¨·ΪjΗ†˜A ρcvάκ₯nT2ϊϋΒΰO>ωdsšΰό‹_ό’}wž` žxLψŸ}ώ™Υ‘ΗˎŦ|η'΅!=†wŒΫL*Έ·­φ΄?τCΓΆΫmkLΒ βτ#œ-`JH/τ-l τίg)Ψ'*0 ˜ @ϊ€QΡΧΨ£ πw³‹τ§ΛΐGγ΄!Ϊ'Ÿ†ώ½ίΠ†hO„wή~'Œ7) ^bPh[aε°κ²m6(cιΔιΔ¨§ w=ύAψξ7· sЁ8Sϋw\wu˜oΉ5ΓΪ_œΡ™OΖΌώη£a©Ώ>ώΰύπ₯υ7Kš‡lSΠ,K,€ϋs”9§;•L€ΗΟτ²­rl8©"NAuψ ΅‹Κ#Λ1γτ €ΜQW ςΰ>ήYο4^&wŠs•3ρ0–‘Ω‰-"Tη W^DΔΚa‡Π«V:ά΅ΤL ύNί¦2«γFŠΗΓ“~ˆ6€δΘ7g₯RΙ€ΤQH.|Όνε‡˜Γ¨ΥεΪλ¬mϋΛ ξ"?υ yp„ΩΰŽq›ˆχ%oŒˆ~C}H307€!'2'tRΨoΏύŒρΡ^Τ’LhΌΟy=ιΨy ψxν­Σ½² ‘ΧlύΒW‡l^|ππχηΗ…΄uσ»―Ύ`jΛΉη^`ΎπΦλ£Β[£Η† «q…0ίΒ󇱏Ύοw>^~αρπάψΉΓ—Ε@dY £ώ#υδ[ο…Ε—Y1 κΧ'<υοΗC6Χaε—sΞV‘RςjΒ§γޏώλ±πίQ£CiεεΓB φ“²~꫆;ώzVΈιŽήa³5— Ÿ—{i‚Έ@xύ…„$ \pπι‡Ÿ„~σΝ8wxν•WΓ‡γ΄₯΅ϊxYύ΅χB[iΡπΖ«―„ΟΥ*ϊγ\sh!³hGΜ +Νθρ‡¦oiK§ρŸcΗ―9:ρsΰ3Lf£Ϊ\ηq~f§Μ*γ΅!ΤΣ*Χ™tνlc›|p˜$Γ‡όrD²°ώšyΌΒΠν+ D<‘†}]•~αοΑ5D#0k[`|ΐm±Τ™χολφͺ6I ί0TTN0€&‚DΉJ+™±#9Žΰβϊ‰ΊVp¨ ˜„Ι–υ6H%1 Κ²Ε/ͺͺΕ_άϊύ„ ωέ &Γχ‘~TbΓXΟsH±„σμ½œŸU™6|ύ§χήϋ$3齇Ušt ΒΊκΊ–έ}wέ]]ueΧυ] *Ό–]EQ@T:AZ ! ι™τ)™ή{ου»σΜ™y2L’I!Ύάσ›ΣNΞsίηάUmUyΪ%Ωyχα}{ο}Ομκ]uΡkCRJ*ό}}Π\U‚κ^o,“άύ»ΰ‹Vή;”“ΗΕc.|BΒ‘Ώ{"R¦±‘ ΈsgfΓί‡ί:=6x<Ü/ΠορEρ‘ ΗO\iλšƒv²θ–V₯" –0θžxέBB$6­RηϊΧ‡οΎV]Ϋ{Ίž2¨L†’υ̝ςΤΖ²iA;‚τΔ«I$=8Sψ΅mΡΏΐή›BφM)G΄Z—ΎdXM"όBώΩ μ؈pXΊ¬Ϋ½ςΨ|6ζŠ@;»ΛΣ.e’k|λή^u D8tΉfΫ‘ϋζ_η€%6”ΧξP&>»p}z#`ΏcΪ•τuΆQ©‘w]y#ΊŠΌP΄o¦―œ…ΥdνξDkG;β˜ΪΓτΚη¬β:[θƒΙYsΠΣRƒCGr‘θ׍~ί̝Ώε‡ΆaύΦCΈλΎΟ"lΈ ”ΉF«6ηRμ %’χB|j4"ΓΈˆ₯Ίffφ\,œ•†κ²δυΕ"l€μ‰oΜ\Ά 3–^οζΤ§D£eP¦ΎHHΙΖό Q>μΟΡ*Žμ†wX4–ΟJEqI1:ηqχΓˆΪ~κΨΖ4υ}ύyΟYXκEb9μάΉ“Ϊ5ΏβJsYρiU)ήχξέ»ρ­o}kŒ‘\  e'ΥdΧ&Ρ©ώιxθ sf5^gΚ:F„λΧƒQέΗ©kϋ©vCΪyXγ³S-λ|OΟ·6Φ7‚ΧM“ϋnνΨΩγXΊΡοʝΝWˆά–§4nΦ’ϋΎςΨ2άη6ξιά•γN―g―•ηœώΨ±ΧΡ=Ύu΅ΥΘ+θΑΐ•+°`N^yζξ£°μͺ‹PW‘‡Χ_}…\(¬JJδn% PΧց g7›³sΪ‡Bqνβ%HρλΒώοzάvνε(?πk‘†έ‚Ȉ ΔχΏϋάxύGμΫ‡ά!,Y0»§?aDς©³κ‡ΤΜT χTαhq-wœUEΨΎη(B(xιικΑΰP?"’ͺ0P•‡œCΉ΄G£Π3ˆͺΊ6Ds±SU[‰ βξ Κΰ?ΔΰpAπnͺF{wb q&NDΟ}ΞsB@l·†ψQΚΑ`;­ˆE Δ k@,yγ΅«JϋΫ|'<žΞΈ QpNJ΅Τ+ή±q”lekρ‰{U2–π$'κΣo~σ³Ί•m‹ΐύœ$ϋ‡κ±9Ψ10ˆx|ˆM-rΦѝΗξdtO`Σ™‹Ρ›G— Šξ(―žΫ2'–3Y^›VΟ.ΐρG`Βλ=~ΒΡ'cγ:2„9]Μe#†C±ς«W\‚Πψ4Dψτ’πΐۈœ•\Υ‡ϊ’c(ŸΤΝ<Ee΄5ʘ½i>Ξξ?>sώρΛ̍…$͝ύHΛΘČτT¦«Blb2½ˆΘ‡¨­5ήΜΐπ¬ΌRvC΄ε"žκο ΐWΟηΙ’β|b² Χΰξ”Ή΄A&K”š7RΎ[Φ7n-b2ζό¦Ή»„ )?.$§g$3­7RΙ•ας~ζ.Ήˆ QA<Bη#œb&8|f©JJW‘^Εϋ”VŒX=v₯>Β7a‘Ζ”ΤΩΉN)ιX""x4Π„Χ",»Vξ MXcfα¬Σ! "ˆ·άrΛ KeŽ} Ίψ¨ίΆοφhΊo}’±p籏ΙkoΊŽξηξs%™x­{Η3έ…‰i'^ΫtŽ'Όή±Œ–Λ 9§“h+ŸH$;DΎ3Ι) τΆtΐ'8Σ§Ν0ΔCχB£bω―³Q  $Ž*ώ|ƒB‘‘1κλ.œΪ|φO(fΟ™e―,N˜ „μΓΒΈΐί(L ―(€R'fM6Ξ·ωOvΤ<³ “₯ύ =?'Dζ&Րn ”μA~ς“ŸC²ψ‡0ςρΗοΈγC<μΗ=₯b±SK¨ƒηŸYhΆˆΜ #W§ tΚ%Ž%΄mλCκ¦’σH£G`Ÿ%ΎpςΎŽ€}RΈZq[[;ƒœ«‡sDΪV-’Υ`εΣŠΒ—!+=\ιŠ%λΕω£¦V”FœΟΗςΔM€„”Όe8Λ΄ “,>ΏŸΏΝ; z…D_Ώ£ζ”£< Kk•5Lφ(—XΌΗ•οΰY'ς·fšeκψcΪ<‘NΉNύ*ΗΆgb^–ΚφωΡ{€ΒτaˆυΡKαΔ΄QcΑώ«MCΓN;|ωά›χΕmΠ· v{ άu¨m*Oφ]βL”ŽjW*@ωdiξαŠέΟΟ—Ηπ Ε‘]ο <$˜;/Φ1Θχ0ͺΎ―φπ]h-―w#Ε,?…ε™Ζ›M_5^ο>œHτ&Žm_μ3•£|ζ™ή'Ϋ94ЏAΦ'Β¨χ9H1±κ5Nz_₯ϊrΛΣΛΕ¬@ Q‘’ΖDΦ©Iόώ9gDc`y"oλΆD+D+Γ-©HJ+Ζύ’ή‹±αd5@:3i814§δ ψΦ[υD«΅Χ€:ι{2I–#cIΑίύίγίψ†ΩΪjbœk^Hp¦#0@D.ώωΑύϋ Rnkm‚w`¦g¦ΑCžvo?ΩόΘE4|||‰ϊQGmpTb£BΠX_‹ϊF³’7 ι'O ‘±Ÿ£ͺ<:‘„X:¨βDD쏾ξvΘُΠΔiΘJΕΑΫœ2 3Σγ‰{IΔ<ΤσCGs=jΪανλE@ώ9°]€6R4 ν’4dΨ-ϋύϋϊquO"a*η΄vψR+τ&Λ€—H ŒΚΠ "{Gξcζ3ΫμOβVBΝ£ͺŽa,_ΌΑž!z€8„–α ,™=Γ΄ΧimoƒΗΧ!ώ$Βh«―‘l ρ™ιΘJOFΏoΥ-‹qσQΩ—ΖςE„π΅ μ₯A ΤΆmϋΗ“‰p’aΐΠ ML“˜†π κr΄t :2Ž2†Pψqϋ±’C»QΡνƒUΛ#ΔΟƒšΚ2tω!)&œε7 42†r _ƒ¨mgzT?Όύΰο=Œ½[6‘?2Λζ€γΐφ­I›‡δ?ΤО$>!‰mδ0°CΓύ=h :2˜/;#ո챉gڞs™œΫ1m]E8τ/’’kMv‹ˆνΡ¦?αѐ¦xΧCΤ­Τα°EhcΒ¦P]sκΔΓ”£24Λ 2”fΟͺU«ŒŸ&ΩX/³&Α…Ÿχ}μ» ¦& 4ΆnΉ/?,zΙ¦ˆ'"ŠHΑκe A|=)δξzΟ½S„OιioD~q9 Ϊ0vμ.ΔΥ·]‡ˆ‘fόζ©MΈμϊ«±pΊΫω€„ΡΒkψπzZ€; ’lήv橞w4Χβ₯υ;qρGΦ!…ΪL" βω[ΤΦPƒ·7οDnUΉφ €’Ν³sΟt {Σώf9R"Ό°ώεΘXΊ ΣbΠΩΐηΉψΨ}_@°wš:ϊΙ&’`šγ¨ΐDUϊζυνΧΦΥ’΅₯Υ‚ͺ]Ά~›§§­›ήފ–φN ᦧ$£³Ή‘v>πŽΕM7]ƒ°@–S~‡η;žΊΣ¦ΟFjt]γlE?ΩUθι†χš\yρ"η{wν&Tηι‚m+0„Όύ{1wΡ*,Y<-5₯ΘΞΜ€_hζϞ†]oΎ„‘„ΈυΚU¬jΫ^ω#vV αžOέ‰Hq;7O·=η:ίq>‘³ί Œ% 2θRH[9ͺΣQΖZR΅΄žXOe₯nΛ<•Λ ]Ÿ—?Ξ‘ίŽψυ£ΐCq{Ξ R.,¦ Ά²Έψ⋍ŒηΫίώφ˜z©SΡ”‹›RBΥ©­[G{>±€γ=Σ}}ΘϊWYχ=wy:·i&–~^›YίΰτSe4)“VΟΣ’πηηΦS΅“=θFA~WΝœ](£ƒG!±ΈiΣP—σ ~υδΛ\A#+sWΒ‘hoͺΓΡ’R΄·6cηfzή—g"‚ΰˆ Τ@’τ4ΦΰΩΗώˆ„d"ΔxΊάΐΝwέ‹Lο--7ι…”φξήοHP³SΠ͝_@(Ή4ž₯mA4 λ†ϊΊ‘Ÿ[ŒΊζζqˆGwω%\±w’ ο^|}mΔ:ρPά…’ΒΤ6΅Σ~!!ήώdλ8lϋέY$ΦΩ9€λΦαΖΛ`ο[ΫρΞξΓHΜ^€•3“πΞΆΓdF‹„°g”ƒτςΣ/a[I R) NMΟFOM ς ΛL_&έ΄2EΫ΄uλΎ­ίζφΒβkpυ#ΜΧƒΠ°H\|ΕΥX½t>‚|ΰOβ!hi(Gw%‘Τ€θlΔΦ»0δƒτθφ·™φa †x(­­CηgΆœΚΌ=ψώC‹Έι³ACδ;φbΡΪ+‘ΨƒΒŠ:ξ’όρΣy-Z»φ·ασ_θσJ΄@IDATφψβαΤ?NΨΟ€=η:οϋ²‘›ˆώη6ΗX’5¦υ%$e_ΚTCiέHξΈyX.χΡζ±gt« ςQέ@[5-π€bΚ2p·A†o’λΘ €ŒΫd &π&qχΝ}nλ°ύ°ύŸx­t6Ÿ=ΊΣΪs›Ξ–«ϋξgφΎ-Γ~ΘΊoYmξ{J§}δ“•cΛ;zΕd( „φ@Ϋ·ΌŽˆ`άzγGŒ.ΌLWye•NΓ܌0μάvΧάy;W»ώψΒWΔk―ΌŒ'žΔΜΜ 4WΕ›Qέ8ΘUχ\ ·Χ" 0…~šz²HTT4Ω\αˆ ΰbXH.wώΥ§°aΣλ ΒΊ΄ƒκ‚oT ΐjέΝ (>Ϊ€›/…WW {:°cη$Œ4bˆD€§₯r`ONb²ζγ;.ΕHoF`σžΊΡ™π€Atφ8¬+φ΅₯ΫvμFΗHΦ.‡°p²Ω ΰΌ{‘ύ–LVž ΅j„ηΙθkk’ΐ: ‘CtΧ’Ÿλ¨θ²dθE€†w‡Kϋ°huώπΔ ΈεΆλ‘9=o*Β¬¬t³ ‘\Δmm­ϊ4ΟtΤΏΟ3jc…G!„ŸnmΙaF&c-ΓE2Š(»ΚΘΜ‚hΖτμyxόΧχααΥψΣ~‘©T£νE zš²|τε6wN6YI|λB ΆΣ8ΪoBnSvο%ηaΑ2ΤμΒ;―V²_1ˆ‹ Η@\ξΐbڜݲ€omά…₯ιH\y’Έγμg½²’wζα™΄ζ4:p²8υ,t*EHKτΪιΠP₯  7ntx₯S%ΆΒ)"y“άΎŸΚJ'wτ˜N…‚Ξ.dωr ΗlΚ”AύΠ„ΘεΌάΛ³λ–­[L_%$T}JgΣ›<ΜfοΉολά}mΣΨ£βŸΘ£­„ΎJ'A§‘†η<šΧίύ‘Ϊ2Τ^½ΙdmW‚5δ9+ξ†MgοΫx.ΚχaηSψκ„pέΘη!$:ΎCΘ‘…σu·~Χ\²”A+£©ΫΒ…A—’†%eβώΟ%›Γ³ΫsQQP%βžϋh<]YΔcfV*Šβ™η_C[—Ύΐ›ΫΙ<ΎAX|ΡeΈν#—’Ά‚Ό#ΉH  j‘@ΒW ψ!€σQ3+$"ŒŠƒYάρd"«κΊςZ¬pη§oΔ%‹RΉ_‘v:‘|~i=n½λF\Ύr.‚hؐ=3£jŒ†‚$ςβγΈ θνaΏύ ›MυΩ‚3 Q–ΣšΥ3)³i3.C†G1@yΨs?²ΗzΉϊž†[ΏΙ~½Θ+―#+0”ΌSŽ< Ξ|vΚ_ΤθΪ ŸK|"$]RRŽΘ˜XCΆγε~πΟΞ±ˆHCςΒ /€*—#r_!^9Y΄Hκ=6Ί‡ΗŠ΄Bwt°U_{»‡n`4°,™j;Τ7ω[o½eϊ&·βŠW"ΗpλiψӟώΤμJμGͺτvΒj&λάΒΨύΡφΪ¦±G!y*g ΄›“‚‚ό;ΉAιε[κmο˜4zfΫ¬Ό=τ~χ»ίι""’γόψΗ?66l0EIεϊ™gž1±6lΩΆ {}ޝΧF–B…―ϋ‘½ χί}ž}τΨ[Ψ€Μ¨@ Ψιά―Ή•Z5^ˆˆŠ k¨l‘\μ>ΈώαρψλΏύ)X‘κ^{}φΣrz„Θ΅Ώ»Άζ 2inΏωDΣEW…dƒux¬ͺ(Ÿ‹‹mhθυΒΒΕ³qdΟ&ό†+χ# 1s0ί!!Aπ λAkο0ΊZΪq$Ώ‰ΆRda…!p%F¨Αδ5Τ‡ύ‡ΛΡΪ#Ν10 σ£ύ³‹ΖudAωSΈ½cΣnΥPΐG¨ζ’`WN Z:ΪΈh(Cqy#š›κQΘ…G^nΆm~‡Ύ¦:8ιΞƒξC~υ«υΨΎΏ˜ύ*¦°?etέ±mof/Κ‚gI^9*«)ˆ'ΑL οΗΦ]dmE!#>έΤ  f’33\SάΉ1…ίΡO‹»­F4΄RΡΕqhY]YŽ!Ώ(Ϋ0 ξΛ±gίa±΄Θ‹¬πψI}Œ‚ώπΪ|$Fc€Ζ†ΡτvA…³φ;°ˆ»šάΓ{p0Ώ7ά~7V΍–Ν[ΘlABδμ₯Ό&W_s)bι' MΨWP+Ξk8ηΎ°4ZŠς&{ š33iΤC‘³ό" ΉΊ Ν”FvοκežΤ–ΑŒ!ΑΔΐ'>‰ΚATDM‡WAΗyzb―ΩfΏ3ω™κΧΚ_.Δ…„ELδθοϊλ―'­ZaΨ ’3¨―ΤR”;!uωg’Κ―ςΙi œfdd·ΦΟ>χ¬!2°ΥnγΙ'Ÿ4^b;CH]CύV€<±DTŸ *bία#‡ ‹P~uξΏ~ΓVSj―Ϊ)"wΓ 7˜Έ""Bz?W]u• ΐτ裏PΪوν(ΌάZˆμσλ¨φK—„hΊDɘž¬΄ȐlΞ¬,ŒPs*&11”q„FΖρ^6"ˆΨChB^|d\ ζNKA2Η4ž;‡²w2§MG ύh… =•GΪ9±τΣνxzr"ωαԜ’FSKkβR2‘AηzCd#ePΆŽΔ€„‡0oωύ(*―G,e%Y‰DΘTg₯ <™+οiYiΘ€φΦΰΰ° οΕ<^>HNŒ‘L1vθgi5|bCƒ ρ &a‘ϋ–ΔdΚΨζ²W’Σ“Γ݌—Ÿωα՚cR¦Χ½},#©1aˆˆ‰Γ’ω3ΰ3ΠƒZi/šŸE–wUAαdΥ„RCdžΦζ6z¬‹˜ΰAμ۟Yσ!š–ΦTšΈ@΄ίΊΌρj.J•ί‚{^ι\jΥ‘±‰ˆ#ˌr~’.βŒd„p'ՍA²fΜ‚Wε!XΚyκοK‡šm=΄$ΟDzF WMήHIΟsœθΓΦ{*Gε·}ˆ‰O€γ’ώ‘˜ΠΞ-+-­H€ΝΚtΚ^ΌΈγ αόY΄dΉΡσ¦μifv6’ΘΦτγ3m=žΎ°¨φniό© έ©§΅Υhp^|ρE#@W”8!F!BΉ»λs!AϋR¦Z‹M/‡{b‹Y―ΏφΎ)Gέdέδσ8A€ˆ(ρ‹_`„2 N²›|،έ™i§!d.Β«˜rκ'B φŸˆ°όG½όςΛFX»<ω—!«Kυ<άσΈγΞ;Ζ€X^ Φ₯ΌΪΝ¨|±ίTž<ȏ•"ώΙ± Ϊ­―bwΙ^GpΜψš;ηαΟιΌθ±nŠwν°BΖnM<α\₯²{η91Ιd׎ύTƒ}Fθ—‘EαωΙE–'κΞΙίΧUj;jβqLΦγέΣfN 1 M΅UhνχΒt"RΑdνKUγr<-,[–δ1žQω%K"xάεΜ‰ Χίγέ·υΚQeι"q<΅2Ζq»mϊή„υMΪ±:•rΟEΪsΖΒRg,eΝΰ [v Bl%%%± 1J<±ΑΡ̝ hFδ―„xDqΈϋ°ΐ&Ρ‹+ˆ\흩υrk «ϊΰ Η=Ή[ζ ΎλZ„A«-΄VύΐΘΉ‡lH΄SΡ)“&¦”tέ‰TŸ%˜ΧE‚z9€T|pΕχA’Ό ³T―ψΤμ£δ/Κ·rΥJC,…ο‘GA3Η_Δγ RΝ/~ρ‹f³|ΕrΣ>΅A ώX)V£»O&Αyώ3Υι3±›βΰ|β;΅ ±™ψ/3UδβΞkμ&X°4²ˆ@B­“&[Ω$Gω8MSi£# Υ΅ζΰX»yγΨΎ+Ÿ·γŽƒσXιceπZˆΫ‚}Ξζ–acχ˜6’;Ίqβ!™ŸΝωξ£ζ—Ε ŸͺγΔCOOy­«ΧΩI*u t§<ΝσΡ~³cΗΎίρ1š¬`½γw§xχΙς~ο|Is–Zm'―Ž6°”VΟΐBŒŽ‰&Ώ––›|ΑΗ›Lg₯)’P€―|Ε}hŠqQ‚ς§†S™cΆ½" Ϊ !λίLDkKH[μΙ'D8΄]Χͺ^_μ.λ™Xω„Ό΅γZ³\“kΗ–A‚"΄r=.φ•XΚ'¬Žςε—_n4ΐδ†\l―ΨψXSΣLη*_;=MvεW9Aμ΄•GI"™”ˆΊv#j³Ϊ’ς}i€%PΫuοΓφέυQ°ZTTŒ^Κ9htΧΥ7Hχs©ωӍ={χ#<>οΌΉΫ£ &…¬‡iŽλp„ζjYήAτψEbΩB'ƒ!ςδ‹ ςΠ=μ‡ωτΔΪίΡ„CΉ₯H›ž…x²―ά ±Vωϊκ“ϊm!ΊhΣ!A|4Y&Ι 1ά‘τ’₯YŸ²ΎβWL~Μwdϋ©²U–!dƒ1Ου8`σιJιμΡζŸμωθm§S―ƒδMφcΪαά™β―ΪΖ UgKmςK*xνƒψd²ΓP^RLέͺ Μ™™`ν̘Ύ–Fƒ%•΅ˆKJΓt²ζΘ@!εUήΤz2†„-Haxγΰͺο3½νγ[4–l,/GΙΡ|Τ4ΆΠbŸu€d ™²ΎΖϋ(₯Ώ©Σ²αέΧ‰κΊFΪόΜ@<΅Ψ(=§v].š»=Tp ¦e2ceŽΥr~œœΣˆρςe‘­Hu:‚|αωΜc3Αν¬΄NtŸ'Je&˜xdU¬#·₯ϋš€t̝y«\x;ŠIv½x΄“ώπδ Β΅™žzκ)ΌτKxπΑ ς•}ˆvΪmΙ}½άhˆe§]‚d•'δ­]·ˆ«·bU(v!"TJc‰‰ΞWξ«F.Β#"Rx΄ΠμL΄[+LZao±Ώ$ΗΠXώχΏ7»±Ε$H!\±r…‘Ρ<φΨc&mΒ¨Z©˜GیΉ??ΰέoΣιαηiMLΑpΣ~aηΫΑ£ϊΥΓΟ~ώ[TΧ7ΡX,νX ϊGέ€܎C%Uζž1(rΞΜοˆ Œvo}γTώ’§±‹ηΟΒΛ›S'Κ ₯…EθvΦrƒΤZμί‰ν»ŽŒ!9jςδν{?xδΖͺ(Γƒωο8XRCM¬£ψΚΗξGc]44%έΘΡ}4ΊίI£Ήξό;’Ύ+½ŒΒΔηΞ΅}:^ζdνOuμ™Θ˜ύŽμ];΅bΧΫ―α'?όΏψϊƒίΓλolΐ~χ( ocο¦—±qΩ„Ϊβ<όλ?PζΡ‚υϊ#κ(ϋ(Μيί=ρ,ξΫƒ'~ύ,j0ΔΓΦq¦ΗΎ&<χδορ³G~ŒΏύΧp„ ΥϋΫ'^Bk}^\jͺΚρΓϋ—γ§"œΠVW„{g-ΔϊΝθΖδμτMΑοΓΟ9’› 1:…˜Ύϊj#€ΥΚXl •@HHQHκΨmα FΖωήΜ€?‘]_Wί#΄ρ}ƒOίC6VΆ3I9Sώ ώγΑΖΣ–ϋ.ΈΠfς)>"±‹ζΞ›kvTΪI‰έ“‘‘avU’Eά|σΝ¦oΪyΘ]‹ „€έ„ξΙ•Ξ΅ΣPp$±­Δz’ Bei‡ uΫΜΜL3f" "VN"β΄pΡBLΛtς—’"j<ΕQΪn"@ς=$β"Π;!‘,EΟ΄+ΡΉˆ‘dIz7έtΣXΠ'±³΄»’e½`"’17Ο£!(Ή ρxωΠ·f5ΚJš‘5-3fΞCZlžμGžyVΣ’ψΕη·aα2Κθ|FNυΤ†²\¬Λ«θ€©‡αX’Sΰ=Ψ†Χ^ƒM:hQ‹οlΕξ=»QO«Δφ|η«7!aΩΗ°xΉυψλ½@UΫ%XΐHΝ΅ nΓζνΩ¨^όρ§ίE^Wٚ‹@Ϋ9‚7)u8rΈ†«ξxμΪ™‹KΌ Σ( =Έαm$.^‰™cVι"οο‹˜HX&kΕ b±N’«*cͺ~Ρ©Έλc·!™Φω)ΩπιΖoŸ|ώI&e]Κtw5βΟO>†Ό’d-\…εsRφwIš‡…Y΄Ηαψ-^<Ο¬ε―κLηςχΣΊ}ΪΒ‹pσu—Ӎ‰KW―EdˆΪkρβ~#m˜½tV.ž‰!o?όμΟ{q3՜۩½γP.ΉφjjoeπCΤ^6VΞ(ΩΆBtgΩ3ΩΫ}ο )ŠHΨ-ΊX6ZEkB μN© τQ"rάτ£ΔCΟ=\ pΚ's' y»Έ₯œ*ΡΝy7₯ΞNφTλ ₯ŸβϋΜ›l]%]{ν΅Ζ6BLώΔ δbeIƒHΘσ”_κTˆ‡H»ώΕ£’ ―ΙBα5ί,[#uV:kkα EžOΥB'Ήsvό_ΫV±˜΄ZΠJJ`ϋj‰€Ž6­ŽϊΨs{΄ωμ΅I4!έΔ|*[ έ‚ςΩΊt.°eΩ£ξ©ύk άmtηuη·ιm βaΖF£α@sν*ΒζΰώΟ~ ύ­ε؟³utΘ•₯‡Nς[»©-ͺίΦQζp˜r‹Τ¬EXJ$ο3ά‡6:I¬¦mG5οόˆ‰”‘€™3²Έφεb‰‹€!Ί°θ₯,£šoCή!ΈωξΟ㫍Γ[ϋ˜jΌϋwΐΜ₯λ°vΕbŒtΆ’»½›Ά%5F­ΊΎΉέ Άz'ΰJͺl£ΰAΌLFΎA4“ΥΪEفoυΓœΓRLμΫ΅ Ίt‰dπ§Χ^ވο=»ίZŒΏ¬eεeΨLφ`{`φΎ³‡žϋ!ςjΪ³c5.‘1₯Υ—«rv ²HMŽ’!‘μΏΟΜXΣήδ퍌”8‡±AΘ¦,>š‡—ž^IaλΖυΨψΒkΘΛ/EPDΦ]} ΎύΘ KH„W_agšVθ[t°™7κ—pΞXXΆ_BFZq[!±ˆ†X,’H`Ϋ£ΝwΌ£VΓ₯Ÿ”…ε<4ih|νkζάCό‘λo ΡS Ή†~ »ΐΓv8¬+α_σ^œ“ώ ‘ͺ^)Θ=½ϊ$•EΎBκznUˆ=·i졎ξ纞,­sbΎ‰y'Λo*ΰ­KΨΖ]Žϋό]iGσε΅ Ξλ#ΗY«ϊύ»ΆsχΰΗΨΪ)8²7ΊϋΈ’μA·O8E΅$ d}ΖD‡‘Ά+/Y ΏΑ&δ.£[_TRž–0NgN9’“1Θ°ͺe5 $:ή4ΤλΔΜYΩθ₯ΐΌͺ΅Ÿμ¬΄v"kϊ4Μ_~5™Ύ˜37^ƒ­¨§A댬 ͺΡvaΧ‘",»ψJ\uε₯H`|ν};Ά’ΉgˆΆ\θΔ_Š«/_Λms½ίξWt’ξψωpή8‹Šϊ«Ρ\Φ72‘…eηύ˜νrQv7s!RiX_UN%„„Ε‘έš7ΦΏBfά--K/εRΩ Vaαόyφχ‘7α<EΦ…ΟZΪ{‘–53hw#Ίδ`ŽΣ%ϋvΣΩ偂Z\zω: 7•γwΏύ=Όγ§!.Ψ›„ͺ –.€[œ~ΤPφ•‘= ΧYD»(μzη-tF“…<Χ(n¨-φΫ²Ησ…uNν@μΐμίΏίΌΙ?”©ιΎlΔΉμ²ΛƐ°M’Wl'›Nj’Μ|fΰώψμgΝιΘuΧc„²/Z¦–•Ž #“ΞνΑ}χ9I§B@œ”Ϊ½4°Œ2deg’\φω…γ{F¨ΥA 51ζhΗCίά₯v\? Bi€g$"ς₯&΅Α’Σ‘7ίάΪNΊpξ⨘αρ₯q‘έ»Σ%9ΩJ!Μ+f†ΓΞφυ o€ε©,"Ξpjγ ΄ϋ j€Ύ›κΫi4˜H39ΊJοθb$½(ξ`ΖwtΠ-§ςΛ ‘¨Ί ξιl'tFPp¨1žSςσ τύΘ^IŠ"Ηƒ>² δvΕψ’SmmόI*’F’2ΘUί{ΪΡΠΪΕρK02 •ΥΛp³ΑT±d€Γϊ†&„ӝ»?ΗνlΑΛν₯h ύ£ΡΏ=::»œ* }΄τo&[3!)ƒtΔΩΩΣGQ\Θ8ΎξUΈcτx³έ!”ΛŒ·Η;Ξ;sΚ8΅ƒ#αΤFλΏώ‹Hž{φ9 @j­R#½χή{°W,}Όg FΘF)1Ÿ΅¦,ρρ£χΜϋlω\ΈB OΒ°ύ‘ΌA,°ΧŽΜΠϋ“ν‘l.ΒFc]Ϋ–ΚΤ—Ν“™—~T|:求Εč»W ή² Υ΄‘…;ΗYdZyjη- (•"θzœuψΡΓ/ctΈ‰@(Qθ¨ς‚ΚTyύ$$!a°ΥˆM¦r4μάΆυοθ€Σ.ωx)Žw_¬X‡uͺρp@2DΦΝλρΥ½SΆύVά₯Iφ)9œϊ·mWyφ²ωD<μ«€AΌ(wJ ΅Ύ@Ž @LŒ}†E δψυΡΆJeψ1F‰Qiq £dmε!'λ _'Ηψt}WzΧ—αΉρF0jΌ8ͺmO‰I^ƍ»=t D³τqΨΙknNς£ώHύV_ΪN"v'Λ3I1nγ°οHΔ£ˆΎ©΄‚υγœpX&ΪkW@;ξ6ΖCkŽ9ˆΩ‡Qξ΄cθ£3BiqωςάΑZdͺ¨…ήδ“hεμρ¦A'W™B\ΔfriξhΎω0Ώ‚MυS&§²„XE0†DTΒ—r\ξG –˜H{bU±±ΪΡhμΟU0g )ΗΞE“ž“Ω~{Ίh Τλ2έΉvΚΦδWz΅AΘΨΦk2Ϊ>Χ !+β°vAl‹§ςiμtTΫϊΖδθ—Κg$¦l’;0ĜεΪ1TuV^ΛΘ~އdι¦κ’Κ³4ͺϊ΅kdбΰ_ΤͺΣxΛύ‰q\©Ύπ]HΣKn_”Ξφ—O4Fš3 &ŸcCάYΘydqυ‘}εE’ ‡“".ޜΎš<ΧpΖFŽ1ϊ' ΩfIΛΡΞΝΣnΤ9ΞxN ˆν›Twε`PDBj«rίQMC }ΜځX£:›ώDΗwF}/TAΥ#…έΪ2QvDΑhj*}κ„iΆ’₯Μ­%ίοh„1ΩΗgοΙ«πφνΫρΐƒ=SΘωπγΰσ‘₯ΗΆρ,΄ΫΎ;­ό§ρΓνb €œ½{ΠήΛ1?βτ¬Ω˜g𗐣V­²Βφζ Σ›Fb‡φlGQWPΡίRƒ Ί”=)fLK&£κio'φξ܊όšn:Ο»=΅EΘΙ«Ε%W=Kη‚"N&xΛ’‹φύϋ!8!K€’4 ) &mV0 `έΔΠΦ’₯ΛκGdD(9GCMj€¬d™]vΡBTδAM—ρΤΫK' ЈΡ "J†fπ\}‘TŸΜXπv\znˆŸ{Θ&:r υC‘X³x.Z Β₯²T’aeI!^ΩD·:3ζγΚ΅σθn½€r›€S z1ΥS«‹ςPZΧΗP σΠPQ„ν{Β—n{’γcΙclbΊ1Ό "{―ƒ,Ÿ3fšφ¨­Ά] g+φSUιQ”2°VdrΛΞDιΡCΘ-¨Δ<ϊ–š«|lUW{φμ܍Ξ¬X΅±#Ψ½s;:ΈG‹&K±sΐ›¦”9°ΘΙB«o§  …Φν`p«}ϋb`Δ3ηΜΓ\ͺW7W£°Ί ©dcΙIfxΪ,,\0‹;©A”ΙΑ‘ς¬Όh 5ΒθÌc.°sΣ\œΞδ ²ΣΙ}ΚyΞθ$Uk`,ΥΏε–[™™iάi|ϋίGaa‘QYΥΚCqA¬&σΙ@;©ΐ‘αWς,η~Ζzίάπ&~ψΏψcœώφΫρίύMόΫΏ}ΫΈQΉξvOV€ +ۏσ ¦6lΌ.Εvk‘ xζ‘q1h,+@pt&f₯DΰΩυ―aj b―ˆύ‘Υ₯V‡Ϊ%(tiBJ4~φƒ―cσή"ζM$Ώέ‡¬«xς²)Ή`ϊ†š•iD5-£s=sΞlψΡίαCD’tΖΘk UΏCΒƒ°ͺ »κ‘ϊnΞΑ<Μ_Ά }΅¨iλe¨X”ζ’ύΜ]e+Αd‚±œ#EΥH™>s³“ιυ΅υt3ίΨ<@‚˜i %›––ˆ@Ε'η7DωL λΤΒLώ\syΜώω±μ"£κ{ΐύ ΡroA€Ζ~Ϊ¨Πωh^εW$G?οA τ‡±ξ’Uh«©Δyφe0©%Λ—‘…ςΐζncΪ•·ΐŸ»/Κ•.YHV‰¦WβγB‘GCWAdD¨1ΰΤkΜ΅¨4mε1„ΖΧ‹±λ +‘J0Ÿ ηδΚ–¬\1Ή4Ζν£#E}GμEXϊtσζā#ωθς₯@Ϋ‡Ά‡OG˜¬ƒυΨ±8Σ£ΖBσ£¦πF‚#L‡šΥ­fΗT΄o㲑P*έ}ΰ‘Η_2»M??^~βaμ«h4ŽGސ3ώΰΞβχ1•ΆΌ/;ˆΙN’ΧX!hρδ>CNeP'˜ςVN&ͺ;EPͺέ~ό“ŸΔ2«ΌΌ½Τžz‰w2ΠΜzόα©ΫΈ;±Πώ—ωΓ_Ψχ*AΔΓmKα~6Ε&]Hφ>Ž€³`# ‚ΆY.ΓΉϊ’γž=·Ό·έωdK…•ZC7νBY]‰Lͺ"iΙ2€%Ρ ŠTR7ν‘„zΜ’C­χ X§―X5ͺœ 0±έΦvώ|†«υ@ey…Ϊ₯hλΑ•™©¨9²ωε XJ―ΐaΎTo§9=k33πTU’iόš˜θ‹·_ί„²³LT>ωƒ³ί™•–"Wζ>~!ˆρtΡ£ΓΓψΚίŽp‚²h5ϋήό Šk±˜!uΛσς)7ΚΔtzήΊλ t2αr¨Ά•Η/m(«τE w^ ‚₯Χ©Βψ‚A<*Bl²ψΔdόι'?@Π¬+pΟν7’±¦Ν]>˜–L9…λ)3—`δι_ao~²C{@Z‹Λ#9"€εΪύq!|>βŽχ…€Θ]ψΟ~φ3#(K, Y8K°.0<ΰΡ-Ήq’ŸSœzIςν”CM0ρ²sr6!#c&JMν#΄›;w)W‘²Υ^5μ4k¨7YΔ³uψΨ'ί)M–Β½χœ›aŒΈwΫ«ΨΨόέΧώ αήνψεΫ»°|υE ΫJΦ&#ΩΥΠ m!ώ0·σV]M—θ™ψ w° ―f©†*”5tα’K.β.Ε)5," ³ΦΖΠΫ¬cΌ•Šukiuξιΐ+λ· .}–ΜΛ4+t#D•/.Ι1Θαξ€ζΣdΠy&‰› ‹«kmDlrΨΨή;<&’AœFLdDsэvͺολCO #5l8ε-;R€β†\΄jݍχ!15‹g§ι‘‘=„G†!œΖΆ%5MˆΖΫ᫇D’“…ηDxΎT"””"!k!"Šχ•ύ<ΆΚ—¬Ά^~gbj—£’ —±ΝλZ0?‚nΪΣ$Dz“Έ΄#‚.α)ζC ϊF 2γ@PυŸΎΏ–.Hδ;¨Aν-‚£Y?wWώτk%)`ΥUΑό"όiK’αΞ‹—069γ•ΠΕHGϋδ„ΨΆnΊΣg„Γ γwΛ†LA'ωq#z!~O`²η.£*xrι†F² ΉΊo©­§šw !Σρ7Ÿ8ž§)ΑŒ rΓΗ?ζ6‘‚v‰§C͜άολο9Γ|vu‘ήΚkμwέI·ιW`αΒ…ΖW”υΝ€ηSa])έi‰Nqω“dΥΧ·’ !?Εs B+&&Φ¬ˆ&Φ‘~΄JzF‰rŸn„£ΌgŸ™~>ψ#`\!V•U`εΊ›qΟ «ιΆδ”Χ΄ ,©`ΖόHˆŽdμLJ‰aPTQ^WRWMλπUψψMW`w&ΓtτGQ b’Σg#GμΕΫϋ*ρΝΚίz―ΠgΣyεU4ϊk![(A±,WD«ςφζ:Τ·t:24O;Κ¨dRGφF*­Φϋθ.£ͺ²†κΏTΏ€!t8VΜGvlC^³ώߏ?Žίπq LD+β>FέbΜY/„ -•l6/§³"D}}^ˆ‘Ε{lt(šI,ΚXΎ`u-Η ±B/U†κ›ΡήΩ‹ΦΞ­‘©΅T…Β#:€ή:D•γ!ξήθr€― εΥ΅¨g”Δ”ΈΆ‘•UΝ”Ϋ˜½ }~Γ›‘|CE‰(Χ Α>e)dέ™Έ)ς˜+§θj«ΕΚVάριϋڏΪn* ΄4‘0£}$!Γ΄L§CΓΤσ°bΡ ͺ^ϋ`αΌ9H$k2)‘κΌΛ2Β>ΔΗ“Έ†ΛŽ©μ4. NΝ—·'Σ—0~:ιH3!ά₯U«§Ρ€@–sF@ά}Υΐo(ΧbΚΘΘ0žb₯.°ZJ§έˆνΏžΫϋ:Ž-Γτ`  [–pÎ΅ΟttΟqΝr£δΑ•½Ξ%π₯ΰZη&+5¦Μ –©ϋΉ”Ο ‡ΔSˆžΞΜ\ΜπΉ<,Ϋ°βnGιœ’<Ά~έ΅ύ3)F‹Ν`ΚΠΉͺZW_ΥΟ¦Ϊ΄Π~ZfŠαΫΦ Ÿ3ΩXV-¨μχ`λp΄½Μp8)‡$_Ϊ_Ψ™I¨₯ό³•vY œ$p·Σ}.XiΒIλΙΨsπ}ψ}{#θεbt˜ Adk d#“Txo³Ψs·Ψ<:ύŸΡχ¬ΩΎ!±ΥΘ"Wέ"Š"‚šCͺQγ©Ά ,›~b@,wΟCΒsF@4hξΑ‘KsΕŐπ\1Έ₯}%Ο²J#AΠd”›νAϊςΦπ¨…ώGbΙf3;Q§J@d _XXΔΌΞ€¬\ΒP―Œ“QM–Τ«f]G]гαn³iΨ$?SIγΞ¦τσLF,έy.œΏ7#0ρ=œR-|Ɏξ@m^w™ξsϋά}t£2ƒh8ονΚ۝n²sρΩύIhŽ Βm;μQyάηΞ΅EςΗ)Ρ]“8j4­ζτ(q;YYΓ4¨λ£Ν‹"qͺŒZځ΄QseζΜ™¦°ρvι;ΡBr΄ŽIJ«Η&vˆή»²¨L}’2ί•η$7\ΓbRNΌvg·ΈΚ}oΌΏΗΎ“󁀼/Bτrj›l~{³±Ε:£δ œ$KQ­^,u–)νP232ΡF!fff¦‰ι­8ŠΖ§ΌλΦ­[ρ˜Ιδ~3s7‚–άEn 7Š«Λ$²Άξεδ:v:ΪtφεΛ iǎ†g­0ΌJοž6ύρŽJ?±ŽSΙΌr/ά?΅°cήGΗ…‡c₯cΐ Τlj% hΦ‚₯₯°{Λ֝OHG­Β ŽΏJ ζΟ₯Ÿ%gυ!Ϊ‘·g+Ίβ°”ώ¬ξwλ>5rΥP[θkkυκ%€VԎ=ΉΘ’ν@J|δ1ˆPVΦΎRΉε|θιDή‘CfΰΛ•mt2έΞ§'‘•ΪO·μBtΪ ,_2ίψUŽA3XuΫoΒΆγ]χ Bu2ωXzΣ‘ ?Ά ;nΆl%Σ31tXœΤdWYΗ^Λb;Z₯{ΈŠS['•₯rϊ{ڐ$Ο¨g34B\h ζ3¦O,²Σ¬ά…57ΦP…Άi ˜Ξ8μΆ”š―WQ―­ohCφμY&•νΓdυžκ=΅Ώ³΅ %₯ˆNΝDƒεοێōXK?θ ώ£₯΄ZŒ΄„hΆ‹Αηrh0έηGV&.”:ω»_˜\—ΘQ˜β€hΫͺ•‡\Ÿ[v€= a_ύυXwΩ:γcJ6 |$έm ΰεΈpˆi,Xm{}Ό£3ρΝL7:οά\’x8«ϋ‘¨n½v—₯­τΝ;MΌŽΙž»Σο\2–§Ÿ~Ϊ”#‚©rάδρς]Έ6Gΐ™ώ΄ 8ΌχUόό±·Θƌ5HωhI9ΆΏ΅~ύ5Όςτ“ (υ;zΌνG}E)zιΟJΠ=Xͺ‘ͺ54κ Πb\μ$Δ€ƒ²>'Œτwαυž¦¦V#Τ5PΎ²~eŸx£ƒΌωŸ“›ςΑώmoaσΆfU―k_ͺΤ–δoΓ/~ϋωψΏίύ6η@{ηξP Ύώ½‡PV/-(μΌΤў»Ÿέ›πά¦Ÿμhζ'»fσΊΣŒΦjž ι Ɵ{ΝΡ0sέ!s‘™8χεΦσΦσOα΅­$žΥεψΛEΝͺŸ~χkΨ|°)˜Ώ#4tΜΩ²_ϋ»‡ΡιΘΆ½ρόεΝν¨©,ΑsόǾ׏±Lgx2ήζ؁―嫨k§ί«–: —γρψ'όαε ά₯φΰΗW_…=ωš©±₯¦w-Ώ[χ•Аω<³›0fοΛDͺ±K)tZΆlΩ„ζ8“IG/GΔE;Ή:£5YΪΈq£9Χ}X €ΰOXrb'έ» >ζ†fΈ>ςͺƒΡΌ(οεβMjλ;Ή&˜%lΪωάύF>b‹J½κ“ΙΪώ{ίϋδΞ^°uλVccΛΊp<7# waXPjΘΜFY©ωB/Zq9m=|πΘo_€ΰXž„G~ώ–0^|W?Γ“‘UΆVbΛύΘζΞ‘‹Fs1t‡SZtΫvξc(αtZ{θ™7Έ'Πν{vŒ~ώ½ΟβήᅪˍξGίώ*>ρι/γ…Η›υ-‡ο`;Ά½ύŠͺΊ1gF:žϋεO02¬ΎdΙ¨―+o$re4Ό•Q΅δ«ΣΏRdPv8m4x”.¬@S{τΤ\Ÿ₯Ÿ©Μρ©UεμH<£Vς“·Uϋ§ wύκχΎŽΜΛnΕ'οΉ— /iΖ–F;:Ž?LϞ‹ψ‘€Ι’ ό&€^„X:iνIΟ0Έ›[η%bΚlB•<0σΗ°ΚθG‘kggQ~Jdώ!1ΈυξKΪ°‘¦™*Ό—ΰξ_ώώιΡ—π·΄Η€ςΑŠk>E»Ζq1¨Hύpd#Η«λƒzœ΅Zƒm)Ά"τ}σ›ίď~τ#όλΏώ+ώόη?V–;egΙNDΔBDBQϊ€½%«ΥΧ^{Νψ·‘€€€ΔΈU·uœ|ΐυζ<ΜηΑ·Ώ=Bm0MWΑ»WlΞ}NTν© ͺOqΖe1{*`σ‹ΠYβ‘όbίY°iμυ‰ŽJ{Lz6ο˜λev={W9|v:帊ŠFjo₯0ΨΣΆ=¨ΪΪ‹eWά‹TΝεύΤWπϊΓχΰΖ«Φboq-Jΐϊ—^‘gηrδRέu$dΦ,]„Α¦JΌψάσ(¦]‡­γG†ip7ΰƒ0bžξ~§υaRm,DqeΉw‘^;›Ο‹1I#MΟF;‘š…ŒκχΛύ‚κΞΪeωΣς?ŽΆ#N%/Ι±ΙbJλΛWάψI,ΚL  O'=πRνώ₯ηιBιMΤ2ά­ΰμΜq§‘A!‘ˆ"‘GΔψAc(€ΏXά}ϋ 4`Β¬εΧα ‡β‘Ÿύ­^‘ΈζΖKŒ§`Ӑσψηœ½,»‚QXVλ»Ξ8PΌŠαm΅Ϋ°+|χx*Ζ‡drυ.΅Y₯’D±Α΄«±uΈΛ8ΡΉά6όύ-*™<΅mΏ„ϊSœqΑ©LBΫ6OJL p΅Š…r:`Λk»`οM,OiΖΉΊοΩs{Ϟ»²ΌΏ§g3ŽΦήT OΔάχWwc¨½»vμBη†lΧκ}Ύsh€zύν8\P‚¨Δ,Μa8Ϊ‘Η]·‚RωΗfαڏތŒ„ͺΕ†#5%τ막B‡ƒθμξ@{k3<Έςφ{ρΟ^‰]y%αUb9­Ψ―X»>}LGυΪn†n₯+ylνιhA‡o” Γά*Π—ΖH¬GΝu‹b§pt9—i¨LG•‚!Κ$Όω.όv΅x;φ+2ΞψG±]„TdŸ2BΥ<šΩ ν>Fh˜¬Ή 'ަn" ½Cζ…[ άύ]PγπZμJz͚5xύΧΗdbMigαFzφ\„Ε=±D4ΌIOά 6ϋή€η£3Hί7νροξ₯€£ί•]0;ΛQΧtΏμw%<Α ›Oμ9 ΣeΠ¨~½ρΖF+λ‹_ό’‘ρΓ)b.χΞJ»1ΙΎK˜―™Ψb’‰¨¨,AΈ²ψΧΈHΞ"vŸΨeΊΦΏμlžyζz‹m#Ώ? -4οα1Fj,.抏υ―ϊ―I`3MyΆ½Ρg!"Ω_ψakνgwχΨ«26”A‘’i:Œ„ΘoLšΗΎώ|7*—HL†}<ψpeiΛcΩJ/A±FzšΟ^D:RΠP9šˆώD.ƒ΄v i EΏXΌ .²¨ˆYX_Βωο§qΝ%•―>(Ό+H}XιΥ-€"¬Β¬Ν‰HΚΦjXνb~Cف)Wͺτ@}Φ‹ZsQύV]z'ξ:5b”1hΤ€iˆa-ρ5iyίτ•‚tυU ρQμω½Σ;Q α·«όDθξςM†ΣόQ9fΞΎ•!΅k‚#Ψלβί«ߙށ*Κ:šφh(?―Ο7ΰRκ½½X Œώ₯Ί[QQAa]SσγΠjXχ5qόdy;aνGl[¨k -Ψ{φϊTŽΪqPΟΙs©mΪ}Ωj₯n&πiΎoΫO}@K–,‘νΙ§ΝΚH^}εPRr!ϋ^xΑL΄«)#’šσ;οΌCη9†X\sΝ5ζžZώάsΟασŸΌΩΑ·γόeν/εƒ9Τ›_»v-d<ωΤSOb,Η•Υ£•Ÿb+€Xi›7o6χψΓšϊεοKΤfϋ.MζσψΗφCσ.77—; Y½9­ŒGW y*δ#-‘^ͺlϋpG" fbqα ©‹x †ΠΌ$2ζsMa§|νXΔep!YH3…|T RΛOnQΌXΆδoBπΆ=βLϊΒƒζ†JΥs ‹‡Ήγ1(χMέΌηΓrΜ‰UΆ΅ΙŒγ Γςφab‘’Da\ΙςΎuCƒ\=Σ½»ύe΅΄ΆΡνIΧϊ¬ύQ@(ΥητΛ4Αi£ζΎ(=·sΔ^OϊΜάdυ‰”’ŒvΞϊΆΔ=°χUG܌ΖΥ‹14ZΪ;θΧ*œ1αΠΣՎ>FχӎD»F­ώ}(lR―sNβO$­pΕΪ¬(Θ“ή›€KφQ\2Ϊη0±Η<MΒvλ}i@δθRαŒEœΜ;δXͺlEŠt,ζ~Ης“¦…άθ_{jΣiώΙΗYXX(fq‘,σ;&©ϊyλ=' ξ^kU+Ϋν6ΜΔηC‘fϊZ΅z•qmβf±ŒMH¦ΣΉώζΊξΩkσp ?*Fs€#\u•“atNh^ξzψΠaόωι?γΛ_ώ²Aήέ“q Zuhχ ]€¬π7lΨ`,ς56ΏψΕ/ŒŒH»ίόζ7ΖξEχξηŽC;±Τ6±ΕΊ±ΠŽLDގETξΌσNγμQŽXQ²Ρ«kΥ-_E2ΚΤjH„BJ ³Ž-΅σS=jϋ½L‘kηE!Ο”Τ4ίΌδθaΚ+Jι³h˜r‡εθl ,„.Ιγb‰Hύ‘”Β;‘0ο¬]8;6GIG ^w1γrϋΔ έ„Ψ£’)bYΘJΌΎΆ„IΦ3ΨΣe—¬DΕ‘=ΨWή‰›ιˆ112”yΉβ&6Άl i)ڟζאX"όΣG» ‘–‰ήGGS^ym f―^ƒ™Ι1,‡ˆtικύφ’ΟΎσνΨ°··ήvζ$c  mCτ2Ό Y1tίΎAIΣ±jv* §„AΎΘJFCΧfΟ€@―Q’u–ίͺˆΨΆBœZ˜iηh4Ϋςςσπϊk―›|Rp°πa$φ½‰}#› χΰΥ§s0cΝG‘F·wΈ#}TΤθNΖ 7]Γ¨€UτʍώΚψρΓΓoQ΅w>Ό›½‘Κ˜½έ΄PB_[φ)Ε’εKεΟΑH/-‘Ϋ°`ιJΤDgα fMKGδ`3φ›o,ƒˆΨϊœΙ‹;ςˆΡΚϋ.ΚB‚θ9Ά£©K[±|ιlX§%\‰{1FFb:# :6ŽZŠαφ•[{1wΥΕ\μT3hT *Ό{“±Λ"=Θ9Ϊ‚et?*‹ν8„3FwmS'#ό­@ iYπ­ΚCGοf€‘ˆΎ‡` ‰ζτd02Π†ΝT‰ž·˜Ϊi4šlιξΒ‚‹E*Eϋ(Γ»|νRcEŸ8 7fΞfTΗΓπ 1‹‘ΘΔld2žΚžyX~ι΅tή3Y§u/%6Ή-H¦CH1šΛbώr\uσθ©;„Kqe½Ia~hΚ}o؁ZΓ΄ύΨύΖ3θœy#fg$S·›Ηάό_Œο{ΟA#……Μ„δάΊ'–Πi ή).$΄π°‹={F@NJKB΄νŸj“έαH…XzΛB;­φ²[žΆ³²¦—*―δ ΜαΠjL‚tντ/‚‘ρ‘°\D@ξπ΅ΛΡUϊŒ zώ$aV.νX”VmT^νl€ι₯:Un(yΙbY©εΥΏV€©)©†&".d Ψ­Ζάψ°ύpΑE>· ~Ȝ–‚'}e­ŒSA ?²C*+*±ŸΑ›ς *ŒΠ:kΡ₯Έ<ӏώϊITS ():{Άoŏύ/~Ξ{;Ι&|uγ²Z¨A(eΨΚ–Δ™ϊ0,kΡ%Ηώ£\IΗ£€—ΦΏ²ι όυ·wzΉ"ڎ'žό#~ώθ ΨΜ€V›vΠ­Ί£’[U\ˆ·ήz?χ&cc΄ Œ«Χ>ξ$ߟ2²¦Δƒχ§·έ© οΝcE*F€&Ζ‘‘Πλ€*.κ;ΫZ™Ϋ ‰QΎψΟο>Ž£*‰D!&*Œ;”wΘ*βcn­΄²?[bα4Ητ―rΉΩ«ΗΤΗηŸ`$ψ ΰΫη;¨hρΑ¬ι³‘‘’ˆ€δ²Ύ‰Ž™Mώ΅³g ίhِ ΝΠΨDχσέθ§’AT\4Ί›Λ‘_Xf؈ΩlœN_Τ.Awόςh£ριhEIm7V­]ΞX,Ψτζ΄2Φξ·7Σ~#2Ah].ήΩ_‚ΖŠT†!-&άyηΫ3Ϋ™ζΌ/?甀‰θ…Φ œ.p‘ΟUΌψΕN!–°L,O„Bl«N<ρω©^[Β££ώυρDTΕ2nCΫyν0Ě‘ΠΨI&"(C!}dσΡ1ο5Œ†uϋν·›6.^ΌΨ°Tδ―K,*₯•ΨZ’yˆ I¦"b!•dχϊΑ~`΄·δ!Yu<όπΓ&V½›ΐ=sρ!ωρ-v“ξŠ+nΑﹿُq ΄Ζ„t€fS WχIDVTηΑˆo8ξωά—1= ίϊΑ’©‘»σ"kρΕΈlυG†`ΑΚHεΚTΠΓνmtŒb~Π.šlͺΠP…² 5ξ+€εελΗχJ«ι„xڌ0"‘Ώφ6aλBΜ`ψΧu«g0ώE‰ύ,ΖRw΄Š|)δW»ΊjZY~α΅+$ͺ@ςν<%΄a Rψ[ڞ5χbνe«‘A‹υQΉ‡<ΖJSHc ΠΊΏΐP\sΩL΄UΤ2”ν‚%u'ηαΩώW½ξ2Ɂ;ζZJnJ‚"cpΓ-‘΄ΌΓΎR"ιG~%cΞ_r)˜Hώ΅”Ά½Ύ5MνtϟŠ΅«.ΒόY‰”C4‘1VκΫ„ΘΌ‡,.± ₯οϋTΞYΑCyQˆœu1 䫨iν‘{›lΪΊ­ΓQ u/w’xkϋPΥϊξΔ³ΏaTΒ²\ϋ­π#ΫΝ)ΖzNv.Ο§ίχœ…ε ‹0έχΞψάΩ<œR1ΔΩz{n€ ΨϋΞ•ƒ4-²ίΔ0‘B¬§ή―Όͺ}fӟκQH]2 «M¦]‡ΈΆς™™™c»ŒE‹Τ§>υ)ÞQΪi­τ`jYLRLψωΟnš !½χήkĊ?/Y†ˆΤ<0–^„GΒτο|η;8|δ°‘·ˆ¦έΛ=χάcΤ§Ε2“pέΒ™φΧ–σA9 ™Ωv΄Τ`ΫΎR²¦–γš•Ϋq΄ΈΡC4₯`9•1ΆJσSc?zh+2wUωΨέxgλ?p§Ρ‡ ž;iΐ—†Ž†wε*ΏjΡ,:ο 36J-Ξ*»H¬Ÿ–δiΙj(Α;ϋš07‰*Σ ²hDγ 5«80>Œ βΛXγŒA„LϊΒh€€;χπQ,ž‘Ψ0”—•£΄’•Q—²°&Ίζπ’Œ₯ΦGυPˆLǐΑΡ‰ˆa\ξV.^C—?UΞIˆz‰πz9‡ )‹ Š&rσΖ~€jγ ύtXXZ‡K―Όω[ιoŠH8‹Φθ«IΒιχ$γ™l"α΄d = 8\ή‚Λ―»‰NwαΠΑCθ,=„š^²ύ"‹ΠAβ:사΄Dz ­Gh,5ΣΨfΊ{!ρBϋδK[?†Θ΅hOΘcLΉƒγ§§£υU£wΩ,\ub©ήΪ‹[£d%ηT5Yhm#k1ΈqεωΕHΛΚ@Bp'†Όƒοӊ Ε&\°Zs:-™r“ίΓ„ήί"Ό‡εΏηEkς „ά$\’«ΙΒdHO„‚ψ“f0ˆl9ˆv ‰ˆςkrKW]+!T­ς“•mœδΗ–©rDŒDT‡₯` …vcμ+)v—ˆŽ*Γ²ώμΗ§†ώ"J’H’΄*Sμ,+ΏQέWύ™$VRVύ*KidK"B$Π=₯ύ°N³_ή*rΠ¬˜Θ5&c>ΝΜdν>²±T©£JŒZl„ΨΎ /‡Ή€Η&€!31e…δΉΗcζ΄LxϊZΰ‰8††•ŸΆΚJ†R>1ΜU&w‰‰Ρ FΥNΦK0ΣΘ‚‘ό£‘ω“Ήpˆζ;πG"w-ε΄Jχ ‹’Κx[ΫIa=m Θφμ# %š^](€χ£q]Hp ΅’ΊŒ–Υ‘―‘30iŒ ήΞ0υM=Τ¨βΚ;+–Ν§p₯U e»ϊ’Ε μ άɐ…™š€p΄W"&}ζL‹G>…ύΙӐ•DΉηg ηΑΩ›v^IP;|Νk šoͺΛΜέΊ–‘ΰ[ήnΣ²ζ")Ÿύ’ί;n½9ŽA|΄DWΒ^θŠ%;6B»/jΥW7!1s2ΣγΡΚ¨iΩ³ψŒͺΪg0§ν·ΠΤΨl4ιiYEŸXΖrΖ9gα<²ΨβθqwΌ³eNvZλIΟβ±rυ₯H‹B/‰~ εjɌ₯H₯-Χ₯΅*³Λ™΄Χώύœ3CΒχ¨ύ†t[Dp’x Ά~}š˜β}ζ3b©Ώϊ•‡ˆΧωFNτhΥ."rΆ@“BΐOE?c}17u΄16ξλžϋΪήΣQν³yμ}wZχ3=·ΟŽW¦ϋΉA}΄γ"=}c˜ζꨱΰ;Χλq@sΖQϊ°w8z1γ—fE-U].P* Qέ:H+qΊκaŠΞ‘cΚqφx‘{gΌž±gφ„ͺeεT“ŒG # SœMcΪ6>lίνγAξx||όΠΥRKYM-ΥΜΡEΌ3WμΩ€šμήxŽ=›˜vβ΅M=ΩύΙξΩτ–γΨ;ξο£π³!α‘f—ΠI·“½ηGγ/Ν1©‡Fh"ύd“44Ά 8<„χQ ',,„ΘjΤh‘EyhΕ·VΘmλΣQ œ#;’9²1₯(!Δ2Š\Ip€΄1DΒ²ΣdηK£X\€[ΔΚ‚ƒ€G˜Ά›¬,ϊξ@H<χ’h"`₯ν²„Γ!d25νέeΙΠ°§_ύqΖΒέfgNŒPy ρKC΅£‘Χ>Τ|Šα‡ο>I-YcΧΧݎFʊβ¨Υ5B;oZκ;aeMΓOϊ3V@/jλ›DίRαdAu΅5‘•6 ρτΚ;J%d)Η“"$AΤ|£Ό£·«ύ|Α<οξ¦g† `Žγ8‘9iN@mΣΏ]΄65γΖx²¨F-ΖzξcΜ9ΡΡ… β_QdΒ0ΫΪΡΥΆ'@6?,η|όζΞ{ΒOGŸ ^σ±D$τ‘κc’2’]„vDF‹hμυ‘•<Ιο-ΰGj~ΰ{fn‘ .{Y£Νš6Αz4‘Jp₯] £’œCΦWZ}xsΞZ·Ϊ½ύ5ϋτ—―΄ΡζͺΚέo‹kl¬΄Ξψ™Αγ«--¬ζΖ%ΎS+Ι²‹―ΈΪ.Ήρ“vύϋζ+&}7ΛΝΙ΄ΈAreŸ,ΡϊΆΡ`μή­Qšd-eΒdλ&†W$CN\‡DK ΊJΎίŽTK‹.I ½Φ½ΧΞ)όqcGš ϋυλcώμσΆμp’}π†χYΎ\γTi5R’―QtœNM΅„š|+”κq―¨+Œ`ΙΓGΨ€‰γœύ̈zHώΨ΄°Ίό ΔaόώxγΑf¬£jπΜƒΥ7A|β^$/υ%Ά Υ’ΟOΎθ*ϋΠ sνΦ[n΄¬2ysUœ¬Ό3v΄ΕΗTjΏΓ©‰_pΡ φγο~Αώ|ί}™dK.ΤΣζ_q½έ0/Ε~ςƒ_XaI±νΨ›i—\{§}ΰϊΛεj]α—SΗZoΉ6yσ•—mλžƒR»-³τ¬|%BΧ«±Τ6οΨέ‚ΤŠZiΙf„T±Λ5έών pκΈV ’‰·9²=θ'C΄κκ[pιL»νΖK-αˆεIu–ό=ΝΎp„•Kύ˜”›“-\ένc½ΩζN"•ξ^–:RκέάԞE΄ ΗL¦|΅jΓM˜$J %Ώ<@ΦΚΫ±y‡υ,'ΙV‘UόCj―Cτ1A˜qΧK*ΠGYﱓͺχ²ΐίmε2U‰Χ §‘1d9ίάΐ1ξ;ΤݚŠΓVΨΠΛVΏ½Λ-£ RVεyRGޱ™Ζ…VΝθω™™V,^‰²©Ί`ϊL›;3U{Iε φ”.υκ~ΦX]ζάί³Ρ“Έ|^‘β`ϊA»ε‹Ώ±Ν¦Υ_Ί]χ!‰¦Κ²Τw₯ޝ¬ύ˜~vΥυΧΪ’?ύΒ6ζ”ΛΔM&*ݞ›γ~'ΡξΉT΄Λ,2›χΫd‘zRͺw%Ο@pσ³Β›nΊΙR5ƒˆ€σu’oΫ΄ΚJ,ΞζN½Τ^xδχrŒW οΗ[­ϋΐΙrsu+/°'Ώb½κŠœ[‘IγGΙ5ώ… —zX†˜ϋ,Ίί»θ¦Ω'ςJDTzؘ‘‰ΆvΝ ΩΩ,΄…Θ]%QUrvνmwj―£Ξ6­|Υz΅‹ηΟ³xBϊΥ£OΩ E7L•β@ι”η•Š0KtσθŸ^4m’XχΊR[΅|ƒΘ!`lE±-_ΉΖΊ bγΊ7ΪέiV'ΛΓ^C“w±\ρg«L‘V>‘Ν°δaΦcΩ.[³a―3\Κ ²–^gΙ:—τΝφοΪ+«ξ"·žUa™GmδAj‰ά$FΫΌ\›;R“!»νΩΌήzμm›2mŒUn“Sld ƒ†Ωΰ€xΉn/Χή‚ƒΚΛΡ­οΰQ.^vΆΔKFΨ Y}kΜ)ŸVέβΚψ-Aσ…–‘]`ƒ%H’ί¬¦Ϊr{kΩ 0rœυ–g©€i€ΦYU]“ Ε¨OZ`™9ς―4i‚Udξ±§—nΆΛΊΔFμο6i_‘HœραΓ‰Uˆ,΄ʐnLͺˆk­Μ)²α#GXœD;yΉV,ŽΕ9ί‘Άψ₯Ε£•‚κ©/±——o΄oϋ€›"„ΚΪϊ°\v ₯6HŠΖΗΪ>ψΕτŠ·±#k΅PbY‡-^ώΔ†$ΕY^f–εJ4–ͺΨςM₯yΆ|υ»δͺ+eΜΧΝωΌΒˆ6WνΡΕ»ν@`1‘PIaž,πs₯=R8or8―Ρ>KoY™χW]ecJ”u€(_"Ε~ͺ_ΜSb½άœ<뛀=)’CJμ6Tš3q"ξΎοOwDϋzδΞdΎ}V#Γά‘Γ¬Έ [N ΅ͺUOΉ˜ϊAλ'ρg’ REtνp~Ά•ΘyςH½OŸž­πψϊ€«+؁t}’1ΖFϊΙ0|‘}ιKMrb β„56L#Δ\‚\ΗΚ–‰œw= ΄―_[ ΩρήΠk ―LΈkόQbˆHςœW³-+’ϋχZζ­5ΌξkVΪκGμŸξΈ±yΦVB»IL‘΅…£οŸθΝ4‰ͺ”x*NŒMƞž]I;―r2φΛ2;Iϋ,!ΟΑψ C}ωD†„Μϊްι£ϋ2d$μELΗ.ΌsjηG·{ςuŸžwεEX'«…ε»75%J}ιsZWΔΙ Ζ†·ŽΕω *ΨΉ­OEΞΊ2θWB‘Φi6«SηR?Z.Gz)d¬,3œ]E¬\iΔF78ƒ½ϊX/Ή!1Hu²#a•@π(ŸηR•c#šϊ™qc߁SD‚ 5²²¨ͺsvΈ―ΰΑDϊφ¨_+CAΕϋ ¬­ͺ6ΧC.kFM™n#§RΥY/§ˆ.X’`rΚνχcΖ‚ԁΫςΗέΣU ¬<'y-?ήcdW« ’φΠΫ¬‹²a 4s•σΓnϊθwξ.T„Β16}ΒxkΤ&τλ/>a%έ­Ύ(ΫξΏηl€6cq@ΘήXuy‘βΜο–2†œϊIώ?¨Ώb;h5q@bšmψb‘ž“™iϋφξ‘}@‰•JύφŸ}ΟΆ(”ƒΔ1φ‹~ΓΎυΛΏΚ‘b΄Νœ1Νβ΅\’―ύ„lΣr{ι‘?ΪS‹V8½ρn=ϋZΟ>ΡΆ}gΎ2&Ϊω-KΟCΛͺɞϋΫoμ«YlM~OΗ΅ο1?ΎΉΏοοΡχ‚χΉGΎOξ:ρϋΎ`σΡΧνj <*‘o2t―υAGœέe“­[ϊ²­Ψ”.BΫέ6ΎσΆεVDΩ-οΏΓžώυΧlΓ^©0+5Υ”ΙΆβφΤϊ,[°`žυ”ΌνΉGώd™•1²Σιm[Άμ°δΡ©Ξ―—{ ώπ!r"/ΗΪΗzςώŸhη«ΡvnxΗV¬Ν΅ιS‡ΩcΟ/²zi½5Ύfί|ΰ©mΛφLώΡ>ύ΅οΛΩfΌ%φf5ΫΚ<:¬3ZE—aΉΡΨΜN„Ήζ‰”df/Ώlh¦;/OΆŠ¨Xqήu‘άυιΟ»[?QύνΉο?>ͺΰy{ž=^κBτA’nο^αxΟΌΧοAΚόΠ‰0̚ΚΩ_ώό˜έωρ* i{υ;mδœ{lΑψ$[»#O›έΕ2ΔΛqΑΚrm―Όχ&oε9{-)*NΆ»lΩΫλd+2J+ƒ^ΆcΛf‹ΡŠ :qœ-œšl{φm·YΈΣΠζσ«/=kώ§φέϋΚνσwPΰiZ-±΄Μ›:uš­]ώŽ ΏrŒUKl%†El~ύeWφΆ½³|•Mœχ!‘ΠέφξάdqCΖΪ=+ˆ”Ÿ£λΙ»ΐ{GΡ–(/τ½FΩμK/³οM^`?³Klω–‡lή΄qVwΈ—}ψξ―Zκ°AΊΌ»μoOΏfsonΛίzΗήwΡKRAIMœ5Hω uΚk¨Θ±ΥkŽΨt1μ^±ΈŽ9MΒΝ7άl-?J^~\>_ŠMΞΥLNa¦εUΆBΉ_©¬‹²λοΊΧΆύπ{kΕΉro°}ύ»ΦWb5—šιΟ»π2šυŽΊ€’Ύ‰|ς“Š—Ρv₯ΔΕψΓΰμ?>ύιO;ΧκώγτGd[ΧαgΚψr|DώCςηξž‘/γλζΨV^πΎ/C]ΘΧωΑ<Ϊσ\x=οΕk?&D ,Nb«ΉσgΚ7‘όPΙOΡ@…H0v€l8Ψ@\œOšhρR}ζ±mWfΉ}τž/Ϊ-Χ\i}’ͺμ VΛ^^bρΓ'H<:]{Rε4Ϋn½νf)ΥI6ήM‘mΨıɊj²‰³Ϊού₯ύφa―nάcΩϋχΩ;kwΫΌΛ.—ί`ΉoOUΘΩ©V_°Χ~ϊγ{m’"β«WH»τ²«l εΫγOΖξU΄ΘυΫ­BΞʲꆩŢ=Q% RŒ‡¦ZΫ»/Cr œS=DΕω{m՚5ΆC‰ϋδΨΠ sμ΅ΗοWΐ€2KX«/ΛΆςΊŠ]‘"UΥiΎa%υ}μ#όqΩ‡ΔY–¬›wζ)ξ‡dζυΥ…Φ[ΜδΚχΙ ŸTis6kσVς΅σ%Ήo”—i°}²Sι•8T{–Kψ°½ςΜ£vοO~i‹_yΥ^υϋσC²}y6{pw9\,°I n±~Ϊ°Ž>ϊτRΔΕψώΦ­BAΈ$j1&E*Ύ!%ˆŽ@•φˆχ±nρ#Άο€ K•Rzκ‚ΟΫηeΌUYdiκοΙ °/_Nv£kώ ₯N˜j=κ‹lΫή,šhƌt>½φνάc 2,l¨,΄ΫφΫθIΣlά¨!ϊv˜ύwΐѐFՁ}»lϋž Ω©ŒΡ8θk™š%ΓΠ䁖±s‹¬ζkυ͏qρΩγdO³aνZkθΥ_c`†\Ψπ2ω;LŽ:σ?Sn†»±J΅Δ6€Ά1ΰWΜt½ΞhαUJϊœΩ©ϋυΈ7ΒσΟP#χHΨψ±ΒdυYœςω·δΞC„"Š+’RjΛ―[σ٘U †jŠ}3Z ΪvΖ°'6ά=^rπ¨’izwΙVxCmωk_θΊ! }Ξƒυ2“vΈΡ{€Σc%V ¬’™`α6ˆΥνρ+€νRH“ή»5*(ΟS0Ψ”k7Ό«~@κ@ПΩ€΄B~,¨N&?T7ν8ΈG笚œ½Ž vπζασ8u{”*ΛΨ8ή›ΠΣΨ…V"Alž Δ­NuV<`άX/< ΑgΜKŒTmk΅ί•S`†TΌςX«…XXLt0ΨETΜΔ ΨΘ?F½C³ mΦI3 ΖΤMm‰]8#Pͺ†0wW}τ v%t‘3Ξ”ύτΜωέΠ„w‚KχŠ`‰Q’3ς”€"FcƒEΖGΪ‰•ί2αΧφΡκχ‰Ίκ±U"t2„ΥšTs0ό š>§nwyήƒΗ` |”‘Ύhcl» ,—ΡΝ)VS­ƒΣ'ΡPΉ°Ζ₯4χέ€FE’l7y=υ6%x€eζΑGΙ‘Δμ—gδ (ža¦ΙGFœ†qγΖΉ °μΫ·Ο~τ£Ω]wέε˜«‘΅’«~ϋίwL†ϊ€=όC$½žΖ8„Q@τθVΞοφ…ΥϊΝΦ)²aFfŽ‚k°ΑςMFͺ©¬PΫΡ²NΗS‰˜πϊ.κbzΫψI“›τ#ςaVέΨMQ {Ί€ ςΫη`§‘όϋΤΙ'Y*±q6EšsψHΛ>T`‰Ϋ©7*Vzζ!λΩΏŸ`i²~ ‰.J"MΧV–Yα‘r‹Wό\ΣS'ɏEwΡώ0yθιdζ|c¬n5ig²ηf$Η{ω:\\ˆ˜CΔ½6ZS½d8aΒ'>Z²d‰ύδ'?±ής  ΡgC0C’)fS\ύοwƈ¬,‹ΛκQWΪή4ωͺtĞ6S=ςΘ#ŽΑ€¦¦Ίη™Υρ‘Α„ϊυνηφ4 x0)κώΗ?ώαΠ± ωρμΔ¬|žzκ)ΛΛΛsƒ‘η#ιΆ=›VΪ“/Ό!bΠέφm}G}΄ΧŠν΅<ς΄T?Ψ’Ÿ·mid—!f6 θύυώ=;μΐ‘B;˜ΎΧž~q΅uΓ(ΟΙ°ϋ~Γjδ^£½ΙΧ^Ύ…gΈ]+'‡%αEά΅^ΆRA°2 KίuRZv8Χ6oΫmK_[mo½³έr³3mT‹f€Ω*αA±hmΕλoΨκ]*έ$ΫυVPRi;6ͺlnž‹_BΨZgί„6yΪTKκ’ϋόπΖa$ξϋsνnΈ{ϊfkΛlŚu.ŒπŽM«­@^‚IO?ϊW[΅υ€;ηO^ζΫΏg·B0Όaϋi_%η€-s™$ΦΩ³Ryή΄;η΄™νΈχQ¬‘Uo,±U뢘be‰yΫ’—_P °ύš j‚YVhK-ΆςΖ΁ζ›Oύήώπτ«<Τh‹ΐP±&o ΊΡεώžΣ+·Ίcrg?ƒyΣ'LΠQΖ+F„ΪΏΆάlαΒΠc01RΏ―{ζŒ™Μ!A8€” €ύΚ!Fϊΐ>`³gΟvL…€D06ΓqΗ8{”Ώζškά bϊτι.ξ±j‘>+;οΌΣ."£]’,fΛ$?kΓΨ‘ύφ?ΘϋωΟξΜ„Mx_ήγΛ=ωs.…σΚ’L{φω%vω?mS'ŒPΤΏήVVkΡ•4뎳iL³—Ήί^-©±›^,- ©τf¦+2ž\fLΈΐ&j–½gλFΆ(Ap`Όž/ΚRDΌ=vύν·ZYŽ˜ΞfΉg—8(¦»φή0pαΝΖ{O΅/Ν¬αƒϋYFΪ>kμ=ΐRχΡ σ •”Vڐ‘©6mό0ΛLίoϋδr=>)QAˆΖXœDRG€:Ί]ΪWέϋΚ’Ύα°-Z}Θξώθu6\j’εGێ]iVΣ-Aφ$£lPR…†ΕZcH"χΙh―‚xβ52΄›Ήΰ"›œ’iΛVmΆ₯‡šlΔδΩ63Ή‡ύύ±vΑΤQ6dT’ν-ΥΜKΜ¨ΈΈΠJ‹C^0Δnέκ lΉ (oΉζbηωQN?Ε„οήΌ²ν[ΐͺŽNΰ?΄η σλ€R1ς·-χ%ϊΙΧΔ¬‘©§V‚ h#ېΜέΆ+η°-˜"γ ₯‰β’†ΨŒ9‰½ΎJnεKmΝξΝΫw„(Γ‡‹-%ΉΏσ'†8ΟΙ·ή ΡΆqΕώβ(‚t-}ύλ7ι»Et‡3Φkψ’}δσ&―2BύΗίμωυ…φ… .²Ψž½εy€}γ{΅ΫnΈΚ†EΆg~Π¦|μ‡!˜’#τΗ)€Σ„g6λœe gGό„Υp"ΨrOΈςΔώDhƒI*+›€±„FΤ±»‹φ¨— qŸ’δß<–Ϋ>AδωωDΌDJ>ν߿ߩ醫³ŸLl$~ŽH¬p| _ΪG-Εωω4wξ\Ϊr€\8ξZnFNτΡ†Ζ@Ω‘BΉ#hγSCύ½_Ρsk{)Ίχ)Šά›«ήΆ!S/²ρύbδƒjƒήΉ9έΖΟo›ή|ΓΆDk3X³νM*’! €XΆ!=ϊυtqΕ+E¨K₯e΄fνf++”[ο„Α"pUΆCu̚ŸβV­r5(γΕ"Ϋ°ύ°υ˜=Δ6οΛ±αbi[χ[Blƒ˜Α‹’­ŠW>ρΉOSŒ7–Ώ-»Ιτεš}Ψ X7>Ω8wρ¦8%εVRrΨΆd²‘ωτιΧΧν[Πν@Ÿ dσDΚU€£)²ΞIΫeqUυ‘h¨_ο&«ƒ‰OP΄ΏrΝΒδκ}Κ„QφΕ―ώΕζ}πf»Q*Ξ=΄#o,W ¦z‰ε΄™šsFΩό‰aUήΦ8τyώθ)(Χόάf΄ZŒν•hΣΗ ‘‘ΰUvοβw¬8sΏ₯KT4o΄ k+5Ÿgίέϊθ—›Ÿ.ΩMЉ>έF₯€jŸ1OίkœκsΪξmVph3τμyŠ–θQΝΈλ74Υώγ}Χ=ύ¨=ύΚ*ϋψM—Ψ}ΏόŽ=χΪ*{ρ…R+―μ—ο³ΝΛ_•a†št±}“φΪβ7lώΤ!vι?‡υIPp-Αξφ‡τ­vΕΤώuτ|;OψΠΜ@e‘PVV–Œ² gp!RβΧ2ψNŸQj’HŠ#.άvΗξ4κŽΰ/<šHΑ2‘œΠί””·Ανσ|Ήπkς}ςeΒσΈOϋώ^.xνŸ₯l$;}΅7P_‘§(‚ιpl]΅¬ΊˆΠΚΗQu”M»pŽ]±π2…€MΥ "Vc'^{'“DˆζΨHyͺ]σΪ³²TŸd·ίρKςFjθυ7]U’Υ'$…‹96gjͺ6NlIΪw=DΔD%Υ§ ²JΦκ$ͺ§uΧ,_ΊY6hδp»Pξ7ϊŠΦχθέS"‘;RέdW\:ΧΨh ϋ@φ=y†έrνSΠC­–Ψ¬½oΔ―¦β½δΆF’*­LΩ@'Υλ#`3œqβEG2Rά“_mΙ2†΄¨Z+P€ΑJ99,―ŠΆ’ JtΫ$ь)ͺ➌B»χΧ_² ωΆi_Ύ6³{[wΏͺQύέz*„λ˜Tω ! ­ tΘ ώ8ƒ*SUškiEυφάΆ­fGΆΩγ‹ΦZŒί^‰³ΦlΪ’½…$Vϋ5Šδ8$uͺ}ΰΦK,m_ΊM”ΝΗeσ' Ώf9{φ[ΕγΏΣώeHv‚ζs―»υς\0Θ½ια–`RŠϋ•2Ι._0ΗJs‰Ig3ηΜ³Ω3ΔΔ22E«μ’Λ.³εψΉmΟ«²ΣΖ:Ϋ’γ4%n“+6Δ[ˆΧ^{ΝΖΑD1›g#ΥΩyσζΙoΠΤ–₯nH΅± Ό;ϊ̟(}άoΖshp‡ˆ­'%G?Ϋ&§HΉϋύΎ¬'ή䳑ΞΟη΅U&<Ο_ϋz9Vxj«\x™Θυρ1ΰό-©έ·ˆ,{Ή%τh(ͺ^&Ζ[-Ι¨{τθι**+:l%‡‹¬^}Z,‹Λ–ΙPpά»λΛn[6·Ζ’QΪ„fu Kdm€Φξ*²rΉ«¨Vπ©’2Ή[Χ¬PΘΩRvΎ³DPωΝδ5ήwY‡—Άώ„8mέ ε‘m…·’ΌΪ’†Œ² /žaγ$ŽŠξVmΥέGYTω!νΟ±!Zρεi₯›dNεΞΝ-T`±6GŠ₯Gς,6eΌυ=εˆ„bν¨`‹δ€o³νΞ½όϋfO³τmλ,+·TqSϊΩΥοΏZ±κ΅σϊjK+6­ž2vl³Ρ^hw}ώ«6`Δ0«ΝίbŊ‚UYΫ(ζί<Σ86 ΞΩ;ηΨϊY"šΟ~φ³nίF‚±iǎŽΉxρ‘'¦μ°Ιž θb——Φ[•nΥ Œ Εx1*ο7ͺύ#ήtίn°½`^8γπε‚eŽ—ηο΅Α?Znω“Άκτχ"ΗΆ1Ξ\ι8eφe6dΔ8'+O½`– <Δκ*Kμ»ε–$ΦΝ@ύn¨έru²•ηe)ˆSΎΝ|MŸ>ΡΊ5ΦΫ°α­±[Φϊ mSGΪΞ;εBόBϋT²φAV5IΞο”ͺ=΅8xΥeŠ1R©zγδ%6Fρ#*]܈h)`‹– θ„ ©"VΫ­ VVΧ)‰Άeσ6ν‘ °ϊΩ‚+.²δƒΉŠ€Ψ_Ašβ$Ύl=ϋIμ¦4ωΒιš§¨ΎhΕ2‘²«^!VnΟy_V>EY½œz/eczτ³χίy£&fu#y}ςD1Κ<;,F:rΔp-mκ΅ ›k“€…ΥΤ­—σv›q ΛϊŽ™eΤά[²mώάYnij¦ϊ=^Ϋ=&C蔣t@ΥI„Υί.“uώΑμ\=nΌ˜–Έ¬Lυ™ΜΡ-ΊΎΖΖφ3i Λ\ jC$ ˜FK(_f‰ϊΞΗ·Ό‚€I(_Ί‡ΣUΤξ?ώΛ71²‘6F{2}βiͺΏφ£Gl‰ΔCl <3R›ρRΎΐΣs’DUƒhο¦O‚3ΪiΕΛύΜέ©QΫδ„XνωΔΫ ε™,xΞZ’»[˜`ξ‘ε_…fƒ3dYvšFl³η€VΛIφh:]tΡE‡Α:ΘxώωGμΦ[™M^aύίOΫϋΦνš5%œβ`rMDώtq œ !Ι?Έ[‘YχΨϋnΈ^n(ή=c_βΧ ω|~a‰ 6ΤΩJœ*ͺΚ ³lεΖύ–€0±#5{υύŽU_{ή‰ΰT±²EˆŽ†zςtΌ•₯EVTΡhΙCjW©=m»‚ϊγρt쐢‘ϊά<"Ω0D’;5Κφƒ}”ΐƒΝ…OΖΆκoΟσ0>‘v₯`}Ασ`‰~ΌhΧΛwf!˜β*ά…Œkf[Άl±””§²κUk=܍ΠΗJδιΦχυϋ©Tk·ΪšPΩγ=¬‹rν-|.r~nb€ΎdŒΥItT¨0¨>g<`™r XS/£Ύ†©ΰ¦Ϋα’ yt­°}i{,'OρΎε₯χ†›―Τͺ‹υFΓΦ€ 6ύ¨ΣΗξ½Γ|¨Μ0ΰcύɼl2€QTt€Μ]W–—ΚMΆ•*;Ο3ςΖf"ŸξΌο€d{ί‚ι6P3٘(i$εΙΆ‘.΄ŸQz€Θ©H3ͺ<΄‘LϋΌΪOό€Ε9go‘‡φrΔγΤ‚/ΫΰΤՁg]Ήζs•Υ‘k’»ί\oο~ύ›™ίFhΒη Δζυ^κ|Μχ^Η s³δ€2SFŽμ-I{LΜγˆDŠΥΝ)yρu½Vy……EVGΨΕφ›ίόPŽgΥy”!1pIαΧ.³ω―·­rώΉ`ωπ:Γ﹏…™`„ΰνΘy§a Δ@’ͺμ…Η`O½ΆΣ&Žfoˎ ±ΟP«ΘΩf=όwΫ³;MžXwVΦ!1z’υU ¬±ιλ5‹·ΕQ6uΜwMžϋ5Γ qD„zP ¨IcpΖ7μ_ώγg6η’…6 Wƒ΄v^΅$Ιι‰H*+S~ΆεTΘ–"$ι& ¬uo>g<χΆDfeφζšΝƒυΆ₯/>j?όΡ/mιͺ6jβ4%qŠQA›ό€Ε=lΑρΊŒμ]4Γ82(]ε‘\Νυrͺ‹2\΅?Ή1―‡ QΐΆι¨ ΚΨ±ξ-y>ήe‡%:ܝ]b“€[˜±ΩΎϋΓ_ΘuϊΠ··ƒvΈτΉΏΩΣkΨes§YсφχGž΄Ό’#Ά‡”²ΚlΚδ1NΥΨ·}T{'qαqΖ#ΰΆZvKεΈ°2Z4i€•( α+―Ύaέ[tI–ύΰΏΎbΥI4F’­κHŽύδ}Ρvιm³/œ’Π»!Qu’όΊ‡+%πrΊπΊŠ;αΟ9» JsΎŠ`$6€o½υVΗ X}°ηαCΝrDώŸ¦OΏΐž~z‹³½C3t<νπαΠiœϋŽςΌ&Ο4V[ΞßσΧψFβœδŸσΧ.SΈζ0π΅„ίχε:όΨ¨ήVκƒM°YΊJˆ΄Wžύ»Uφf‰ΪΜώλ^’Έ½\U»Μ d ςϊ7-γ@†Υλωa€"^bλΦ¬Ά΄ύ™–›•i›7¬·U ±ΊGq:rEΜ~φ―ΪΪ]Y6F\•‹±Ο}ϋW2ξ«’2Θl‹—ΗέC­^·ΩŠδέχΙίΚώρβ2“βUs’›i5ee—Ω€w*@IDAT€ΎΆzΩkΆ{Ο»ΰβkν‡?ψŽMί½s·fBδŸlλθΗc[χN6/TW;ŸjyŸΦςŒωw{ΦF‘΄ΛZ[²μ­΄«³bδ₯ΦήXτ¬ύοo~λž―)/}‡=πΝ{μ°4°ό^ϊβγ #;άF “oA±M½`’φƒ|ιΣ?ϊoW›[φτŸε υΙM6sξlλYwΨξύκΏΨΦΜz»`βh=v”ΕEοΆώι9+)+ Ροϋ„Τ½ε@c Ζ׎.kΐmΰ·}žZ©s~σΐ0ƒ;*r,ΙN%‘ς0ξa鍱 ‰kœ»Α ΨOαš”­₯(žtρŠM>’˜!0l«ςψωΆ)λλγάη—H;Ψiwρω”ι΄δΏΞNk “*ξ@Έ© 2EδΛΧΨͺer—qΔζΏο*=jˆ­}υ K}ƒ]4kœf―‡mϊΔ­^χZ¦¬Λ1$¬pΐ₯²―Ω΄s―\¨·ΊΨώ곩ΚΛΆ’ΊXλ«•bœ‚:αžǞl)K$ΛΝιgΜ ³¨ έ~υ«?ΫyΒ.—ΚρΦ Ϋ-MΚ υ΄L©F”d)/΅‚•/[}ŸώΦ[«ΠΡ©Sd„9Μ¦NN…—LbC(υ}wJ+~O­ƒNξ©δΗ'Χπ‰J{$¦¦¦:ρεpΘqεkτ™³τΑhpOr³xwvμ?ˆΈp=ς‹_ό’₯ΠωΑͺ›#ωΞwΎc?ψΑ3"kσϋ~sŸT€ ΄‚yΪpnΡτΡGνg?ϋY‹ό•z6lΨΐ#G%ή{”Hΐ τοˆ:’8οφέΏΟQ•D.:­²’Τϊ$ŽΚ΅κ)³όάiΝΔΛX³ŸυKμi1½ϊJL:ΨΊGΧΪ²WVΪΞύEvν­΅[dYά³‘L›5Αxσ-‹ν?ΚΚ ΑπύD¨&Ϊe—^bQςΡT_eC†'Ϋ iOΥ)Υ€“μkίψž­xκ~{iνΈεΩκUšΑ^v΅Νš>ΕzjU3bb΄έφƒο~ίΦξ< :j­)n€έpΣmΦ#η{mΓ>‡“΅«ή²ψaΪδkvίBΰΕ:k^£ΨΔ»κ䐀@©ΑvmK³Ϋ~άώτγ›μΫ_ϊ₯=σψ"‰΄–Ϋƒ{ΠΆ(.},Υχm_gΟΏψ‚-c…=ψΜkv Ώά.Ήρ£vϋUs„’:ΛάΊήήΩrPκΐurωςnMΝwp΅ς ΦΨs¬έ|ε<+LΗ>ό‰'mόόΛβV'^–W–:ΩnΌiŽύΣ~n1†[ςΐξV,O]=³ €-ΔBp½ΈΙίχDΨ_·ηˆ(μ΄υƒσAĜ '… ^ˆ9σ€eΛ–ŒμCϊ}σ›ίt+ά€³ο£q„'φjπŒΛ¦΅|ωrϋύοο0ϋUNa. .tκΙΤΓ;F˜H8F;ώΊ…HΙ8.Oώͺ2JM°ΏνΨ°ά–―Ψ(ŽΛ‘QXή‘Γrέ‘rΉ)Θ/΅ gXeρ>{IVΕ2³δͺ\~βlς¬ 4fςՁšΤΤVΛώ"Ϋςςσ΄‘[*ρW¬6U‹eΥΎR’νΆO†ŠΔ2ί°τYλί­Ι†¦¦H΄·bWΘκ»Ώ «¨ˆ‹­ͺϋPϋΑ½?²Y£[vΪnΛΣΚΈ ¨ΐz š`c“ΘvδˆνΚ(•έΚ‡ ¦R~&Ϋρλœ%ΐzw٬ Ή|‰νΩGψjΧ|πJ»ϋ‹Ÿ΅«/ΏάζOΉB+» ϋιχ`yυΙφ_φοZ%&Ϋ\‰ϊJš@*/)²ΈώClhb?λ%5ζ8i²‘ŒΠΙ³½„ψavν‚d۝ΎΟϊ›fΟ=KŒSάYΑ_}ΓΕΦ(ΡfZF–›yΉύόλ²Α =lίξ΅–¦±αD”Ξβ4πΒάͺγœUγυοο iQψ<_†#χ‘0΄Χ€VΧίώφ7'.’<±:°+‘ΞΛ5(!ϊcƌq„ΎLλ?‰iνοWΏϊ•[υΰ— MxΣ}φ™gέ*#Η/|α N fύΚΓ?μܜ¬X±ΒωΕ‚α`ω•―|Ε­ XIΑ(`b¨%_8γB[²x‰³{Adηοί1rή± Ο75Z}Π‡U QmD[•Œ»†hrPYV$OŠ Σ£»UVUX9C¬’QΰΰαC¬F⫌ΜΉΛeΥrbΫΧ†$υV_ξ’‹ŠA–Ψ'VΪ[εZIt#ͺwͺΌe²­(“ζ_OζΙ\[ή•G[tC­ε.Υfy’εgξ±½™E6MΎšͺΫ~οMšr““7ΥUΉρU‰΅4Ώβ“Λ·Σyχ•—˜ΪΩktkήΣ ~+‹±Ž­Νq΄ίPρξ{|Ώψc΅άΓοUXΫΊnςH=~œά₯ΘK΅ϊO·΅Ώ‘₯=¦Α#ΗΩ€ψžVtθ ΧΖH‰½G£εβΑWL£±¦Τvν=hΙ£Η©ŸϊΉούτρλ ­ŸΚŠσlηž Α“j©#ˆš˜nι{Ž‘Ajƒ"^h΅‘ «ΚγdqρβΕΞVΕ»y§ +4+.“kƒ?ωΟΆgο»ό²Λ“"Z‘8Υ‘\{π)sl ψ±sμxG ¬=ΛVΗΡъKβ§ΌΗ©Υγι3Ÿνϋμ-ϊ6Α> ž{q[τηεσQUn΅ ac^Δ½ œ΅U§―γTެΪh¦έUα žw₯DXmφΘIό˜u°aG"  †ΒF8β++ nΦa/Όπ‚³†G„Εžj‡¬JC±βΈώΊλΈλwΏϋΫδ§ ―Ζ†>?οž{<θβί^¬~ΖΛΊUdV6췐"b,‡†NC_iJί¬Ο²™ ΡšŠ2+­!v¨Φz†ž{ΑyΨ‡ηŒήPυr©΅,e n‘r”oΎηž <―bŒ3ΐ Άακ¦Ϊζη8u―j¨KύE1Ζ/α€Σ?7ΰ’s˜GKža!|«+αŒrώΒYhΥήΞι\»€#Τ^sΣ~σψπppτ}©SΑI ]3uy’ξ9iΜ³Ί —°°„ŸeƒœηxΚEU˜ίW\α4―ΠμϊήχΎηVnb°Oœ4Ρ1"˜ >•¨ηΩgŸu+Δ\0)6Ϊ3f:m/V&/Ώό²ƒKy˜Qa\ŸψΔ'μΚ+―tGV5XΫ“d‘t&0ΠΊ·ZυΙϋνϊUΆβ-V­ ΡΙ‡@ΥΚ%:}λύB}zž2ƒΡ /z0JρCuΑ5‹1αφ!"βΪ†ΰΈ_(S'G‹8δ~πηͺΧξ™@S·αqΑždΈζd°)ΚΉwlΖ/χZςό=‡ ε7γΘ“dΚωŸ«£Ή\°ώŽ8Βj/ΤWξάΓKžŽhύμՁr—Nb!νg"hmύΣ?ύ“ €4mΪ4· €ΐ‘Tt}Ίϊκ«έ:UrJV |˜β«±cΗΚ Jog›By–ίhr±² < #R›1s†ρ<ΜδB9SσκΑ<ƒ+–O~ς“-D·,ς/‘Igš!23Œ‘‘ 4¨Φ.[bΩu‰φΑ/“ ι[Ί.Ν.—ϊθ „ζHxDž‘‘`4ΥwυUφζβ—lψ…Ϋδ‘!utVX…{o΅αΟΉkΥwPjΒ{΄7Ν₯κ1 DΡΧΠuW˜%+,―Tuίζ½ y—g νν6+‰;ΈYCa5L jΜ€‰Έγό‚ &B’<υϋ@Qδ]rΙ%ξΗ9 ‘‘|βφCHΎ=V#ήa€―Σ—;ž EΙ¦cΔΘλέ_Ž{*Όm»xξεΆlΣ>›₯ΐJ}zηi"+·Ωv¨ΈΖƍeΫήyΣrλϊΩ5 g[ŒδΙm† gά#ΞRε©Ά©2_.ΫC"±}»wZw9α ?Z+—―²„ΑΓ­βˆlEFN±©)C-G6G}YΩ7‘-ΓΊ-­(jtη#ΰ,΄ΰqNΣώ= `DšeΪΛ|}Ας>―­w –σχ=σΰ:xίη―>_Η{ν耒͌ΊAͺά=΄έ=4ΈυcΪχ+’„8;°w‡εΘγόy—XcYΎmίwPξΖ±„5ΦΪζm{mΔ΅Wڌ1ύ-3.Ζ’ϋΆι2ά&Uνκ^ƒν†+g[φΎVZm=b†ZmSŒBN’•ϊAvJ΅[oΎΥΆΙφ¨€ΊΞ½d‚:.iz½Χ:$ςΎη,ΊΎ!‘¦‹|ΪΒγž©iβ`±Žšbx’œy‘Χ~…χ χ`½ΤεžuͺBG‹δ‚ε‚ηΎ}ς|ςυ·UΞ—yoΑU+ΉFŸ5Ρ§[όβ3VΪc”έyυъ'~φψ%θ> H:O1ό»‚!a—_Έο»•&žυaQ† ΐ’Ζ¦ΆtιRgs‚h ΅aμDH”ρΙ?TgΜΜΜ΄ττt›?Ύ34Δo’1žG8*¦•’π|m]­\g„βwϋˆsH\₯Π6ͺΖqqqΎIg1ζ Ξ—oΉ9šρ ³Χ9Μ<΅&˜|ˆ™ϋ<ϊΏI.QfΜΌΔκ£c΅"i°ξΝ†o2nΪ •Πϊ&TKθ> [Ϋ Ÿφ")‚s­μ\θ$α8ϊƒ>Ι‡;Ή8gxοΕΪΧ%Ψ†ά{ο½Ξjb€qy$ΟL°©¬ yιΔ% nUή~ϋmWA0#˜)X­/|s‘GςυγΫ γGœ9>ςΘ#ςιͺG‘ˆΦpΑB:—ρθ<‹B,#τ7DΔ!δΝdΏ™!xΒξqLwωΎJΆαCδ½·™yxσe\9‡v4Tw3c žΠύ£Ϋh)pρi:‚p tωˆΓ_μ\Έ†`Gr…,ΪY5Μ›7Ο­XI@θa.8Y$Ϊ"~±p›‚σEξc3Β*Zύλ_]V ψε‚Ωΰ~Ρ’EnesΓ 78¦„zlKζΜ™γ^ί3"FΒΜ°¦―©q0bIΗΗ@ˆYΌ»ΜΡω|_F BβEV-> ΏΓρ¨ηiΎ`"ΎόQe}fδΑΐ9‚O=ψθB“Γs₯­` Ž‚pC¬q_‚,@rr²c0VO=υ”σ•…£F ι‘±BωΨΗ>ζV$Ο<σŒ½OΦΟxϊE΄ΕjβK/uρKxΰgkς™Ο|Ζ1,ξZ°Η²Fρ£ύΘ&NœθDXoΌρ†M:Υ­†Ό 3Μ.’: b&roΣΒO:ͺΪH= œcθς"¬s•yψ~f΅€”αΓZsΤ(7ϋ„ΐΓ˜ύsŽ 4·Ήζη`‘8π²―AΊι¦›ά~†‰D-dΥβγHS ‰|‚RυOκoΛίZnψΗ?,3+Σ=Ο=V)ψώBφλ_ڝ³Ώ²vέZΗl`v&βΠωΑ@νΔ@Χg Η™ζ…dΙ!yσ™>Β.\θܜ|δ#q«Vˆ§ δόaΑ`X-ΐDπΏEΒΑ#ε`00€ΫoΏέXaΰ1˜U ’ ΟΒ€`$”Gt2{Ξl»σΞ;­V–Ώύνoέσ8‡„iα“λž{ξ±’R[­«μ°J"iEΪ;;c3‚χsοξclώύωΉzμϊ"¬0ΙKP‹ΙoLŸiδ{˜ρ#rςrlˆ<ğMpV―Ύϊͺ#δΈzgίOΌsΔO©©©N;Κ{ζE¬υΠC9O½ˆ’ΨO!^ b.|{±ΒaEAtΓΩ³g»WNHH0ΔU~ΕAΈ°Η ‘ΤGραY«„tΆπεό‰` ‚Z* ηz:ομ@ΠFbΏΩ?3­³‘`t>ΔΝ©^={Ι °·ƒ‰ ¬4 Ϊ¨ΧζζζΊ½ Vˆ¦Pϋe5‚SEV/0ΚΒ”X ΅ΕΖμΧ0^Ξfb쁓saŒπM-ϊΑΨτctεΚ•–’’β&ˆΰŏ™³ΩOαmŸW wκ/Ύψ’͘1£…Ht&Q G&μ*Fĝψ"t>Dβμ 4’+'?gΛϊxYu°2`π2XX•40"Ğϋ0ΞύJ‚ϋΤO[wCΟ³­δξ7ŸΉ|ihŸ€₯ΌΚΊJ«ωΤ•ΥΉ/ˆ%πΌφΪkNσ ‘ Ž|wπρ–jšρtΤ;Sy­ΐOŸΥR?xΣξ=Ί;%˜b?Ο€έϋ8d„ޝηΫͺ‹wl-αͺtMs0΅ΎO¨ύ=}°~GΌQᆱ·ΰ#Ԉƒ†ΒΫσmω6¨ΫΓJ^(ιΜh}Ϊ—ρ%5F΄2f¬Βά‰άͺQω>ΟΊϊΈ |ΆŒpšό;Υomτ%O"ΦύL€`μ|3h²ηsυν·΄ΩΪLλSΡ ˜pο,η߁χQb‚A»D %tŠ,~Œλ”s‡kA¨=LΏρΒ`{ΏΑΌ³yήυW 챉 ±Ζhοl&53‘C‡žM0EdF,V,g3!ZD|±8›‰1Β‡Ι^ΤΩLŒˆ+²³™`^¬TΩ«;›‰ +Ώ:›°`ΐΛΚπl3H1€½Μp† ~ZμYDΦyΑ@ΪβΚ0’3…`Ϊgy’Δμβ¨ιΪ‰8Εϋ'‚ΗΖS¬Ύ]*9S}t’qΠ™p„·M[αc₯­ΌΞθ£ ,m΅ΩV^gΓ¬ίΓΧδωϋν€ν(¬8ψ…χMx5 ν΅υώαpp ΌΑwh«Lgηuyβ‘Θςt_Ϊ>«¨¬°qcΗ9ω₯ΏΧ™Hτm –IKKsⴝ˜i3ΫED0lψ0:$΄ρε; &_?2eδΫ¬‚Ψ“AύΡ "$’/ΧpψΊ‹yόoa!Ο‡Α5)“~©ήY‡ƒU>Δx Hˆ0δδψ|َΖυ‚Ζ³ZD‹ˆτφξέλŽΰŏ`dΞ©£abŒ2«ε}™Υ’ΐ3πΐJ•±B+£ΤΤTW¦£α`΅AŸΠομ5ψϊY »1‹ˆmχέ ‘?™‰ϋr¨ψΓxŽΰqΙ9šŒΰ 1'ύE_ppέΡpPί*?ΔfΌ+ύ@»μΓ@ΟbΊΕ8[0D}©£₯‘™rΠΪΡ°œ,ZcώGιd:ΧΚ3·mέfΰΕDΗ8BΞΰg@t&‚}έ|ΨT›pˆΡήyη7φ¦Ή#₯¦3pΘΰχ3(ά€π1B Pε…HyΏWAqEGoΔyεͺ•nCt§\΄ΔId”!‹xμPΈΗώ v,΄ί8ρp€΄Σ`0QΪ#F†(‹”ΨτΝΜό;!¦Ϊ°aƒαIΝ:Dg\CΈΈAG΄ΗXΖ}EιtϋΗΓA]Ό+¦)χFΕ/A΄ΘψΕΐ”<΄CŒaž…©ψt:°α€‚+“-uγη Eφμ…Σ…#R’(¬ΗΓu²G_cρΩgŸu}€£QκGσ fA›ˆ‘q Nθ&`œ3ΎNΐμαΰρU‡#€¨―ŒYpU^QξϊmJʝ»\2^|'‹ƒŽ*bΉKG΅Τ υxδqδ Ά9› ύΠ‘CΠbΫU2ΘψπprύυΧ;ν  &6‰ύΚ.O38€·£“Ηυ²)Κ`ƒQ0«…`bgΒ,βEς£»θ ?ΐΐϋ‘πλ…;{VWΘ ΗΐsηΝun]½wVς8f/ |0›δύ9Η₯Μ”)S,02ΟX! ˜MBœ<³€5kΦΈΆ«ŒS'x7†’}Cκˆ> ΦΑϋ{BIύ΄ΣΐšOO<ω„cπsηΞuψ ŽʟN [ΪDyΐ'ξΡO΄Η:まVφ{’οWμ©=NX…}DΜ”1ŠJ=Ύι8ΒΨωQΞaμ@[H‡‡ *φL:©Ζ=‘Ώ§ΐE_/ψ€ΑΑΤHώ]άΕYψΣ₯ˆΗ39>@―aΔ‘ε ©#;Ϊ·~dVyΛ-·Έ™#Ιo3[ u‹ιζfRαΟuτ5ƒ‰ΩKΐΧAξΜvκ[5m:_3Xf׈ψπΠnOΐˆΦ bς:+yFƌFN0»>}Ί»fφFbεΑΫΡ‰χτ³Tf’^LΖ;σξ^$Γ9 Ρ x_ψqλο ,|/$Ό@€h|%υOrc˜{ΐΗJ±#ϋˆwαΗ;²²αέIΐΓxa ζƒ@BT=qδ`ιΘδ' ΐαΗ ’3β`َhe˜pΐΌH~― +VVδωΆƒ³οŽ€:|€kκ'1˜r=dπ·2`ζ8n’ή]œΖκρυ 8ηΫ…ž1ιΉB‘ ^ύu7f l5O8“τνx―w^¬@θd6γ@|†dƒtˆ·ΑΰΌ³’ο|κg3Ž ΈŒφςΛ/»³ΔIωy‘ cΚŸαΊ#’G7Λ^Δ4$Βι"Ώυ"˜š$žϋη:κ >a₯€€ΈΩ>βδΖ_|±#δlδ² ‘€±tF ΎŒ 3k,«"φeΨDg5Ό RπΉΣ…+ΨόάΦ „>`cb !`Α†1J t0ϊφ;&p€h&;+ΫUΏaγη_|<=3Γfζ‹H Ψΐ•'βžΣ=ς>0K 0s\ρƒpσΝΐΠΐJΖ‰·νκ(|0ι$A/hƒ‰?ΰŽ ξdΜ²―ΊwΟ^/}…ˆΤp0Fό·Hί3&ψVhqϋ>όŸΐ‘—›Χ²ΉΟJ‰Ύ:WΩ)όιZX Ξ¨ ”Ν&φ X‚"λυχN/ν~ Π ϋ±žΎ/e‚Έτχ<Βο«Ξπό“#Ψ~x=ώΊ­ϊ‚°ϊrαΗΆž /σ^»>pr^0N™Ασ35¨h“t¬φlΐδί=Ψvπάί?Ρ±#ž‘’'2§RgGΐI»ό<3ι 8Ϊ‚F _YΠ>Ιγ…σφΐԞ2Τu2)–“m£#Κϋ:όψƒη'σ>ν-¬?όœ:|ίο΅·ξ“)ηληH Ά{ΌkWψ,ύ9oψ Gό™Δ©oΫ·Iησό`πχ;ϋθΫφν†_Ÿ°}Ζp@zΒσΎ.l0/όά— ƒΟ£‰Εfj0οX0λΦw¬ςΑ2Η:χΟϊϋΗ‚#XξDeŽwίίσοΒџs/Ψ0σό³VœΏw/X.ό<Ό}ξϋvύ½πk_&Ψfπ<ΌΰuK ²ζqΦ’'|Β―ƒΟwΤΉoƒϊΒίοXΧΥv°žp8Β―)λσ<\ΑηΟΦωyΕ@ΞΟ·v¨ RdΏl&^rΙ%-NΨ|F»kΚΤ)ξ΅}Y§¬ο>|·άoFr]δλ))).Η‹άœ¦‹ΌΑ’‚u„?~Ÿk/ž6 ΑΌςJ'Γζ²eTˆ½ώ>²edκμ λφηΗk;XΖΔΎmΪςΟr _αΤ gxΊEσΘΧ|†ϊΒσ[Ϊ³ Ζ'Ÿ}ŒΝΨϋcΓ›χ 籟ž †g[Άn±Τ”T'C^φ؜EζΞF5ϋQΑ=mΑΜ$η΄žΩ_#ίΓeDώœ·8/΄°ΞΫή9K/ζ H^~ž³iAΓΜ'τςΛύeλ14it„%H\‚ηΖ½<ΪH>yBλ $ω<γŸσG“'N>ŸςN,ΤΨδ4αpβ 8Ή‡ζΩ―χלΊ P’@‘‘|WGHZpT{Ύnt돿φGς=όœ“Ο/<{{χξq6BΎG’Ɵ»Μζ|čΗέΈ» ­ϋοΏίΎωΝo:Α3hS½ςΛ_ώ²UWU[}]½ΛC₯™ώΛΠώ’%KbcΦΫYψχ:LΑ{>’—ΉzΙσ0ϊϋ‘γω‹σΒδόힳϋf±έbύΔ}χέηfνhR‘­‚¦ „]4B @ΨW°*Ae™Ω/χP‹d–Kθ]Ξ §‹† eΡ&a}έuΧ95EV;5΄]°Ω@#-VhΚ κΚ³0žCešz˜ceΞ ψ±Η³/~ρ‹G0`»γwΨ‡?όa‡L4œΎπ…/8^κ]Άl™[­b,Lm$¬i8Pi₯ νc;Αϋ‘ώŠο’ϊνgٍ«fδ¨rsd5„Ν[o½e_―ΫΊυλ,E«/ŒΤx7΄υ°ΗN†Υ™_57.NHάGMΒμ™rX]ΠΐϊΘ#8ξΫΗ8Ψˆ‡°3Aˊ‰#L΅Y΄ΓXE‹ΉwΌjΞΌ;χ0ΘDEΨq^¨‡<΄†fϚνςΈŒžΡ»#Ξ[ DV ηmמϊ‹A$IΜoΎωfϋκWΏjψΓœJ*’„ξΥΧ^uΜ±Θ3ΟΚ9^y…#κO=υ”SE}πΑ §ŽΙ'Ÿ|1κ~ψα‡ΡΑφαί?ΰtί!ώ²… Ϊ<ΰΚ"^Α% „ "θĘY7L"ό—ΏόΕ-―ξ “σ XaV=ŽΟ=χœcύgŸyΦ10`zώωηρόϋίξκ†0Cΐ)wΣM79GwψjBφ?ς? LˆPν€=`ηaJΤA»W]u•ύυ―΅­[Ά:&yΟ§ξqAœXΡ₯οOo©—χRυVӏόcΗΐ`jΐCρύ‚‹ΤΥ!άΰX?ϋΩΟ:œρή0@ )±Β ~μ € ΒΞ3ΐKxNΐξƒΎ‚1£nώo|Γ1V*0@Ϊα½azτɟώτ'W7š0ΟΡΊΜȟσ‘ΘyίΕ'‚~φΡ‚ΨΰšΒ±€hbcьλrƒN ύC‰°3Έϋξ»έμ1 3wf΄<Ο,‚φ•―|Ε­( p¬n¨F0~ΒxΗ( ’ˆ[ r0;ξΈ£ε%€‰ΐ]wέεή‘ӟώΤcuB(!†ΐΒ½~V7ˆZh3ŸώŒ%Hvυγ§Μ»ατότ£9Θ^ „ϋ΄‹M?VCοϋέ* ζ “ƒ¨#6bΖΞμόž{ξqΈb₯–•e)š™ƒ‡„ΔCŒ†οG¬ΠXMόοE{0ˆ>Ξτ`ΐΰ8²ΰι ς`f¬ŽX)/"B?οΛ;Ρ‰~υΙχ1†–ΰž‰ΑΗ?ώqW'†t~― FΝJ&σεύi›vXνxΖN0hp?Ε·9žŸˆ0σ³_;δ­E`‘ΛLσwΒΎύo»Νtβ4{bρςĈF!Ψ.„"Gbφ ργ1"qρ b+ŒΫ*+*ρƒa!jbs˜ΝnŒ xh—£―ŒΡΔ‹{8’Ÿ­CŒ!ψϊ―Ϊ²7„© fb¦‘₯žrNbŁ•2„’vϋP†#οL݈ζHœσ,u!Ά9":Daή›,χΑ υ "JcΙΒΐωεο~χ»n“όρΗ·ΤΤT'^σΈ€mπ >I¬1Όƒ9>ρΔŽ ΒHΩd'QœQwπGυ;m{FƒX<ΪΑ8–δ™'VџϋάηœχλG}4δεxΜhW?Οπ~‘τήΑ@D„υήιλ“~S2 E›ΫoΏέ~χ»ίΉkΧτaίΐ»$ΗrΦ‹1 Šώœz .όq1SEŽ“ΐu6Ρ!€hΑP¨ŸD9„Γ‚‘Aό©›8 Μς!ϊΎ W°ω'j0?ΟΑ”Oa™ž!q °ΣΔβωΫίώΦ­ ˜ΝsΝ*ƒϊhάπfΈBΝβΑƒνΨΉΓΙSD°!ΐ!Ξ|ˆ3b°CHΙ‡ΨAwξΨιΰg?fΨΠamκ€#ήAά”!ζβ3uΰßu!jb“ #»δKlΠΐAn_-)Ϊ„‘~σ›ίΈΥ ~Ÿž~ζi[ϊϊR' b•Ϋ=Φwπ“l„³―πΙO~­”ΐ Βκh„ϊœΒ@Pfο¬Bn»ν6ΗΘΐ9ΈƒYΰ"œτξΥΫββG$pπ{?eώαA7@ΌΖ*άΑ°aμΌ'ψg―‘Ϋ /Όΰ PHΰύƒ±§BΏωD_EωˆΘωέΏ§υv ~AoηΜƒ0A€<±₯1ό+EE‡TY!ά6Δ–s~œσΜ‚μy•U•–<<δ•ηIžpr€fνΘα™ρΣ> "NYΪσ‰:x†½4’όσά‡ΰΓ€`ryOfΠ”‘Ž0%ˆ{B|‚CΑT ΰΐ@’~ž£,οεW8Sκ„pC„Α›gΰE€Eϋ΄ Cςx₯]κζ]X±P«ςhƒΔ9Μ…=’}μc-χ<ž=<ΐF}ΤώX§–£ΟΦΌολ;ή}_‡Α—εȏĽπΊ`j07_ήίχε9ΆUω$+V~σ;Ψf°œΟw·ρΗ·οΛa¦ΈΏ}¬|_ζXχΓρמr”αeΪ«—ή†‡ιlυŽΐsΌ{ο±Ϊ<ΩόφΓτθ;V;υΎg»ή£ή708Κ?Gcξ…:(»-xΰvP+η~5Κ@xύκͺ 9}«—;‡n …*·ΨšΙ‘’4;ξ%D±1QV›gέϊΔΫ€±Ήa u5VVQcqrUΡM‚½ΰ`πU—[N^±uος6Ÿd}ϋΘUΆ 75νͺς2+:RΒ<_ξ(¬ΐ!*s—rXh}ΫͺςRΛ/,^δxOxIJκoέT§OΦ†ΊjΛ—©šΊ&λΧWnΤ,F+ /Έk~¦΄(ίfεY“ ΝpΏΡ]Uυ–;ŽψΎqV“e•υΡ6,y¨ΕΊU‰o₯ν£Άοv|nQ~)―΄žςZΫ$wΥ5΅ΦΠKμΫϋθŽιψ¦5² M,jͺΛδ6€Π’δ₯{wΉ_4Π4l­©ΎFωrQOΩ&K0Θšat8kι?ΕΰP³ζγ§fL7ΦΛ―”<Λ·UΟؐ›”3=±:>œ{·QίbU]£υιέ먆°Β―=))«’?―DλΩ=ΪΚΛJ­²Zεṝr+ϋͺΚr+―ͺ±„ώIΦ=ζ½·#ΠIoΜκɊβ<{ζΡ‡μίϊ=ράb[υφΫΆzεrϋΫοmώύyΛΞI·―ή}³-Z½Ϋ=@§4θΗ`i_%Ž|œΔ“φ~Έζp­sdχδβUΦH!ˆ‰+ά`˞}H±&FΨ­οΈ½Έτm«w%τN!Έx?w¨r'^β΄ΊΚV.~BΑ{FΪ½=nΝΟα_ΙΏ咚κmΓ,5e”έΧΕVΫμ=ΫΥΩL ²φn²οΟχlύnEΝ+Ι·'ώτk›7bΎνΙ-ΆΖͺBϋ«FXΚ¨ mWfΘΣ-mπ| ώš™ΌΟ-Έ†ΦԊwWVε<¬τ?χΗPΏ΄>}τY+ΖΛ‹rν±?ώάΊβr»ρΞOΨs―­±ŠκηY?6†zΒ·Ι1xN›ώΊF%7žTV7[ή•1Gͺ―)·g|ŸM“λφkξό[Άv‡ΛŠj΄ƒi[νΏ>χIϋύc‹EΘj]>0’€Ν΅₯ja‡s3mzΆNξž+Ψό§±ο•EYφέϋͺmΨ“Σ|‡wh-ιίΩΏGR[ωδωwσε=\Αklλ½ΰ·ΧzN;ώ9Ž-γΉoΎ_ΖΧΗs'Jϊ€ΆfΣ ΣχίχΏAcgχoTωΌ³θΝ £άœδ€―Ώqύψ7zJ9/Α­31Κ³Puίk΄esžUυ?{-Sη${½_Žlό–vΗhQ)2Άͺ΄₯sžM|W+.ΧKU—ΞΝrϊ{ύ·―ψF8ϊA-ΏΑpUνΤH_ύ'ε»1zύ±WW‡›₯טc~u)ύ΅§ξ$`μΨ σ1fΖkθΠ:Ζ¦Τ# “&ΓΩήŽΑΝai­‹…$N~N²rdδι7g'rέ΅(€ρ8β±–ZΛ]CAQ©9::¨ο‚=A6₯E%°qr£ΈΓΩιHΛ$Fƒ'MŠ{»«›IύJ>lPΨΪ»ρ­#ξ3X‘Τɚ¬ΒάloΖ2τΌϋ ˜…^ΑW‹ηβΤ£χ#¨'‰†‹η. ¨ΫTtΫσ4_n©ΕŠ-·ΆΩiΔψ‘Α G0€Dκk5b‰Φ—[R…κ’tt₯Ÿ³ ΕκPV˜Mπ£Λ(­±A«6m)ζΣAδ³=ΓŽεͺJKh†;η―:βΠ‘³θΩ΅ά›DΰέEϋPiKσζΉEθΨ ΪX9ΒΫΝεΕωHLI£Ξ’ΆŒlΗeΗ6ρυqg;—™ξ<² ͺΑΌύ½\Ωv:7¬D*5UHKOCY…€<™Α†Ve-Qƒάœ|ΈxxΑΗέρW.!!3ž4qξηί:4­0›}uΠ₯ζf°¦ΩqqήMέaeiαφβR2`ηθ '{€'Ε!»¨ mΪ·ƒƒE%.^ˆ„f〰Ýμt̏Ό¬TΒΨΖ‘’ΦM‚›‘i€χu1Rnf*’c’ΦΒAΑ°avΞp°³FNZ<.F^…£GZ·jA1’9œέ<1ςΝi(:ŝβΌ=§>w&άmα#wmτςŠ+Ψ4bΰjΔ̌c§‰Ώ―™ω7 B +(ΚΟ‘υε"˜Ω9³oυΉFΚS^Z€„ΔTXΪ:|,@‰Œ««*ibΏœύ`†’‚BΨ9{ΐ•b$UTΑ’KWWgφ—iP³η―‹S™GrjΜ­νi5ΩΦ”·ΧTWьΣ3G αΜmΰεζ„ς’\$$ʘc&¨‰ΏJΟhη†mυWί1<²)ΚΠZme!~^Άq₯Τ#‚rύjœ=ΌG‰OΒƒΌ±yε7˜³rΊtο{Kœ;Ί»EMy~ZώΞΔ&ΑΡΕy‰ηρΖŸ’eמπu5ΓwsίΖώ¨RthΥ —ηέg#–@<«ΎY ί°«-Δ…¨T–δγΗΕ?ΐά;!h%2usv"γ6CJό%|ϊΕ6L}όψΈ8p‹)eΏqQΣΓζg₯‘ζ NJ•k― Π–eιΨuδ2Ίtj…ύίύˆ3!]πψακ@Lξσ‡ρϊKoΐΦ·²―ΑW+·‘M§nπp²Ε‘Ν+Ρ‘ΧP8ϊψ#/#KvνGχ·αφA½Q—ŠΩo½‚ΤjWhΉ±XΊρ Ίχξξέ1gΑ7 7ƒϋ΄W„,e+­ζ'νhl nυΑΜΊ–Θ-ΪΆG.jΙWNcή'―cγ™\τθΤ±Ε7λΒίΧ‰ΫρΉΈ{Cθ4p š8cω±λRΌmΛπν΅hΦΊ#Ό]‰0hšύŐήεc;1ed|w4 „Cu>|2^-Z!υςΦu?:wl…ν«ΏΑΥ2wtm¬hUM‡ΧHωκI›!3νΎόj JZγίFΑΎ*ί|ϊ6ξ}η{XΥγόΙύ˜:mŠjΜ‘“‘Š-kWbϊ£Γ―etkΧ‰ΰιί„GpŠ“Ξγφ1Ο‘CŸžςΕΥs{ρτγOΓΜ=UΉqxφ_ΰbš:΅kƒ‚δ‹·~o25ηχnΐ™”rtοΠEΩ)(±tΒΘa·#sέ2l<ΈΆώθΣ₯²’―’ΪΑžN8Ήk-f}ΎΑΨΕp…V^πs΅ΐΊΎΒα qdΪΑΏi|=HEFSκEB‹ρQgp:*.Φ58°e:…φα* ΄wqNΎψx’³«Qšv·=6w o‡J,όtN%’ͺ0Σώύ Ίτlτ˜Sθήk‚»τFDˆ6-ω ·™ˆ^£οCΛwl[ω%ϊO~š‹\!Φ~υ2žœω>Ί‰΄ ϋ0ηλ_Ιμ4ΓΎu_aήΪ#θΉ <]μqεδΌ7{μά}°σ‡yΨs5ΑώήXυ»}οChΪ¦Ϋ2 ]‰=—ςΠ½K[žȈ¦Α˜λχΉ>ήδΛήMλΡ΄λpL>½χONδΏ}§Η]Δ’ν1ρQπrΆAδ©½8q­wκΛΙ΄Αs€‹ΗφαγΩ"6-Ι±Qψ‚bκ η¦hΧ2—mΖsοφ=zΓέNΓ’9ocKd>ΛΪρηανΧή@\F ²SγρӊeˆŒK#c›‰3Ηχα³/—Β+ΈΒ}ωO~³φύžν˜5ϋx…E E°ςγ°kί1α‡ppΫzœO*Ax3œΪϋζ.ό–x*Χ°θΛ/ Ή ,3W’ VQH¬˜΅nΣ.df„±ΕC΄Τ˜sX΄x9μɌ]>ΎgβJΡͺyœ=΄s>_€ψ€,[ψ μΰηb‰“ΗO ’LςΎ-k™^‰V-ΓxΎ[―κΊΰ―?qEϊGœl;Ε•dΗkΊ'T8ρίΪΊ_6i~Z’υnΧ^[»λ<ΏVi‹?|Fk:ϊI­”o₯=tΧHmη™8ΎUj―=Τ_›το΅‚Š-ράn‘?νLœ.κZψκdνžΧΎdηxjσ"υmΓξ£Ϊ΅«ΡΪΑέΏiN£­ΪvH‹<«υeΌ3>ΤΚͺ˜ZΔQυΆβ'·/Χ:έρ°–œ#₯ΰχFDN†ˆ 5ζ¬ΆsΧ->αͺφ/ΥI™.\KΧ.Ϋ₯­ίqL‹ΏtLσ₯ξxNK+`”gkΟά!α†k™eš–sZΕyyώOZzr΄6HΒvš%εkqηχ«o3ޞ―•ΧVkΫ–ΟQοG―djyΙgΥσMΗ΄€¨sκωιw~¨a±ΜΖ–73>R{澁*Œ”Oώ΄θ'­Xκ_“§Ν!~Ϊ©¨νΔ=ΪΉΘxνZδSψa Y;`ƒz_Ώϋ‚VYœžυρΧE*<7‘¦Κσ΄™γ"ΤχC—“΅ΌΤ«Ϊ’o)š,ΜΥήz’―†ήk©ωΕZBΜ%νΐ±Λ¦ψ"ͺ2„i ³@IDAT3*ΣρΧE‘ηχθει;Q‹ΝΥ…qk>[ω}½f§–™– ½9΅·zί|μ’–rυœFπ[ΝϋΎ—΅άjmο7Υ·˜΄b­0Yo― ο,ΦJΚΚ΅ωOVί’r΅‚ΤhυόΠμeZFFΊφξΤ|Ÿͺ”Χh~ύR}»”―₯_Υ6ό²N«`Il\¬ό₯]Wί¬mΩό³v.1W«(LΡ₯υ|ςS­΄ͺFΫ0Q†kMQa‘Ά{•N£?o>v½†HAΔ½Ί+ΣΦ―\¦EΕ§i'w―UyάρΨ;Zf‘δJW[‘­[τ†^¦Δ-5Feώ²ν€ΆoνBεβJŠ–|Q=―ίwR‹9³W=Ώ0ΉJbηJ]œόΓΞΣκύψΆΤχi3?ΦvmϋMϋθγO΅έ‡jΣ„ΆΗ>«‘d΅ƒ«υ΄7μ:§U–djΆβ·I―i%$ σ_fό6Z\N‰vrΫ2•Φ‹€νŠͺrmΣͺ΄ύ§cT>5€ƒ>•G½?-qόΟ›·@+dΊUy‰wγΪ‚ŸχθρMτux£Φjΐ½Ϊε$]tΌeωGژ)³naι₯FŸΧ:27ώ¬•”—kΏ,ž­9 š’‰@4γΚ)UΦέ€Yqλ网VΛ­Τ΄όŒHM–쏿]―•WUj‡LυΪ|δ’VSMϊ™ω€6ιεΟ-_9΄]₯³σd€V”—­Νya‚†–“΅Έ”LmΓw³΅'ίϋL»Ÿ ­˜χΊ ·\¬}vŸz^΄f³sM»vεΌφΚ“c΅EΏPe9Ύ‹v-3W= m˜†„Άν§…Ϊ}ΟΝRώη‘Ν-«¨BKˆ<ͺϋdρΟZΜΥkZΤε Ϊηο½€½?g‘v-!NϋnφSκϋαΛ)zšlΛΏ"†T‘όΉ‘ΝζˆψϋœΞip[»ku,¦M‹·Γ°αwΰεWŸDΣ ²€&‘ξκΩ]‰ΆβγπέΊ³&8M+hΆξ:`œ©m‘“•‹ήc§5Ξ…][ЬB3τkΑh«.―ΑθΗίΒΐΎέڜX ͺ}:Αێ]r&ž]·oOJF@?άδ"Μ ϋέ%Ε%"¬E05°L6ωNVXώ7tΒG•–UΑ7 ·έϋΎϊΌfε2όΊο2:vh kσZ€‹/E"’ONJζnξz/Da˞ΫΙΡό|πΘ=~»ωόΘψπsw ΈŽugNО’yœ=΄Ο~ΈC{Cz΅η·RdπL‰Ξ;(ύo»Ÿ|Ώ/=<Ž•N‰ψL Xx»Ξ˜6<ο<σ ֟ˆCΛζA*̈ρ`ρόqiλZL??mέ―&ΰκκJ”W™TlŒ‚«u“€9εθΚΩZ©ν»<‹FŒΈ ΡΘ’|ۘd+ˆGQNΏͺbPΖl&›ζqr6œ‹K‡_ΣP3^qY%ΕydXyw΄³Ε/›7cλφm0Œ;z΅αdQƒΤx΄±CλvpΤ'±cΛJtkΡUT%Ά§|\Αάw?πfΏ0•³πλΡώ™ϊΪΚΖ :υΐ΄½­Λf“6=PRΔΒΡΙt©;cZΰ»©1Q—`ηκIm­VZγΥ§&3h™‡#Š>ˆ-Θv“>£8­˜rK[jνΑΣέΕ…‚]ž€<ž±Φ<Œη–¨¬(η;³0-”FΖ́ϊ‘ρΡ)U&,Κs³°cσδΧ’eλV*ŒΠ~-UΣΕ₯f³,€£›7š‡κύmΗηIo~€3«ηbμΜy°χn wΒW”Qν\'-PίΙ9€RC/ΛΓΉΛ‰\ΔϊΓ•¨fO›³‘λζΰ؝‘Rρ8&lΉšι©Θy‹΅•ΠŠΙ£^β•μ³ςςRTςLCœΠˆ Ο5d“sˆžχžŠ8‘-jc+WΝλε€ιsqeŒgΕ|«Lm)Xτr-AΟьηEVό¦ηα`ηˆv𠬲 yU€ƒžθΣ«7†‰{'އ7Οf Š©’Ξy€VΗB6G܏m?€‡'Δτ>D<5&Ε)–zΟQ“±}Λ6’z’#b€Τ…šš\ȌτŠ s‘˜_‹Nέ{.Ί†…ργ( δRΓ:ΚΌφwΉd‘IΧD―Ȍcηv„—Ξ- T§’y.Iξ\œ½”…V”ΝŠΛΝΛEσžΓΡ%"ξ~αx쉇θMΆ²Ίi1ΗαΛΙLͺžp5 ΫΗ"€rfΞ$HŠ»ŒπΠpέU'aΓΦ½(ΤϋgŽμΖώγ—Τ!“„¨OΒ΅ΤγΎvα‚BB―Due’PPΜƒ)ΥΨ2μυXζδΪ+Yιϊΐζm1fςέ*ΣΑάύˆγ>]ύ&8žώ~Χψq’"Πjσ:Š:[4oŽ\ΤΔmΏœJ½wG­VljA ΜlœΐˆtqΉ<μsEmbγΈhzMΛΉΰœmέBWU?ό€ ρΩ*‡o ά_=; [ ]+Jsψn[Β—fΗγΣGοSίί}ςAΨT€aϋζππ R~'£“αDΨX's\ΎŠJΣDΐ>6ΡΥ―FŽ™¦ΒwοΪ>N6(ΞJΐ‰‹13νyδ¦DαN_π<ε bΙαΟzαQΌςΙ7Θ–”mTWφΊΎΉ~ΐΜ0ζ,³r¦ΕF-€δ ΅κ2εmAΨWώ—Z9ςξH ΟέΦ/›…7?]ˆ=ϋ uσ@Δσ[οΘ’ Ε³ύX5AΫC`%Ί΄"–Ί›ΒΫ:—yvΑ’9»8£€‡ΕΙY…Tˆ°FQiiHe {ξΌzϊELΜwrš.O?tαλΦorhSαƒ;ΚΜδxdp™:ͺΆͺιiΙ<˜εIλ.ΐ2Vͺ p2*“œŽ‘CbΘν£0偩*³Ο^ώ—r`νβ‹–#θ·ϋV4XΙCΪXΚη[uJl=pLω—ρΞRj:ΚMύU€&p»WaΆξ…NΘ֘V29ž¦χ†/Nδ ί€~π%'+ŽβEΈzyb εοΞαcœςOOŠGRZ.°F§ž ¬K3*„£Ό o=0ž}{dL0ιovƒΜŽόΥ§ Θ3ΗPξŠqγF’;ΟC{τθŽQγ&αΥΙ]ρΡ²uΘ-ΣΗ/©ƒf MΘ~‚ ˆμ£τ’°ξ,I΅\@ΜL& U! ) κ΅θ3„!ΦΣΝΚIA*' ω&ρδΎ©„D‰#Κ9ζϊΈ“Γm’’bφjy€‘_ ξpΔe¦%’Θά½{t‘$_¬ή„"}Β™Γ;±οL4D¨ΌRΘwMTfβbΤ5 Ί{ Š2βP»ψμ:©K€cΤύ!­?}ρ"Ά$X’[ΫžΫXβΔήL5Νɜ–“A1˜g_–νΑκM;`j6œ:°‡ΞΖpΗ%₯d»›Ζ’Όύ7Ξ42›$nŒ« ¦Ύ–Ϊ(‘X³|)”ŠTnγ‚yΰleL’‹{gŽΔΊη0ΕΔ‰έ²“Ÿx Ÿρ€)ήόΞ\ŒδΑμ xΨQ‹'OΜ=›Y!ςπdδ™σ*W² °nΡVLμω¨ΘjHτω0žv/3/@Η&°ςΑ=γοβΎ>Α«m! ¨š\μ™cG0η§cψr|οTSΜd‰¬„sθήΛNP Π%L5ΆμJͺΛ qδΰ~|±t\›ΆΓθ=x4ξ«νŒ–άEU–ζbΧξ=zƒlžƒmΫGaχ^^²?Ό>-υ ³ ΉZ†ybΡϋƌWίΖ7]aQ―β]ΞΎ{F η Ρ˜Τη5<;y$’.Ώ gŠp†ά>ΥαHώG€o9Ό·δad4o5½:΅•Olθj¬ώς $•|MQ?|zχEŸ>]ΈαΛΕ›Ÿ}Ορxtκdx:ΚA‘ž–όΚ ΟKOΔrΏΚύ Η?³ξδPΩvtI‰ΧθV†+gχ©χ¨˜h*6dC Ή£Τϊ’HΜΖ]}[Ήj)š82aΊ•ίoΔS#»"zΟOψaΩ*Ψω„"ΩΗ…άb5Λ?ΓϊtΒΓΟ/Ε7[ξFίAΣπΦΣCΙμΈcά]#uz?^yγΈΆΕΰξ­ΩήζππoΧ?ڍΓC!/‘Ϊ‡4Γ{Ό§0όΎaΚ“Ocl*sx…β‘ϋΗΑΓ$’xkφ;˜Ξ…αώ‰γT™D# ZΉύ΅˜Ήt=Ά±Ο[4aΩΉ8fρވξŽaφόŘχΦSΈsςcψeΡwxbδ§~'2γ] LjIΣ0žœGMξxpηΦΉίP„…`€+0{Φb„ΪγΘ―›T’—NŸFj„7τhυΎgί~ ξΤaM<91šA±t'Vγϋoz 4ωŒ ³τ·hύόT<χνRό:ζτz|&Nʝ FŒΊS…iο?6 a}ykτ«‰x‹εκΫcL£B½zΦS§]Εg³Ÿƒηπ7τž‰ΔΚΈψy…vΒα·ήΑ―£αžα=‘@Ν°+ϋV!1ρm;x 6ς"6ξ+UΪF’ !Γ@sqiΙρX~" ]“Σx_*ŒR‹ΛΨΌv=&~ˆoέug[̝7Ή·uΑ©³gψέ qΧΰŒ ¬άΌύξΓ€!H'3yώθ\KL"-5E\\ ΦАλ(ΆnξH;²“§ΡΦΫ ›vΒψ)χ£UxͺΖ?ˆ™ύοDMvϊ΅ςD~­™ήIχαϋ½ϋ0σ[+–Ω†sΞώ­¬Sa ϊ΅τΑ€™Ο!ΞΆδJ±‹rδΦƒοΓƒR &ΗΈ*ΫΉ{ΓΗΣ••<(·–[Λ²S0ηΔΩ4˜²pgr εˆΊtžκ©Ypρ @ϋφmα`R#”‘‰O\>Υ|―q²©‘‡ΉΉόΘρϋS}΅('§.Δ’EϋNπ£:œQ§’όLžK\SΫq;ޜoΣ57GωTs­ Š¨/r³’H oPS„RΕ‘Ψ’u;nγ­q5ςρ\κΜ5τ 'uυ%A.θέ§/άl«pφόe*oGsWΡ’eKΦQW΅&₯γόι“pβbβλ’Δ5‘Ξ²―Ԏ‘GϞԢ³α%Έ,œ9}ž;stκΪΎξŽ\|uΝ’*ήtΊ£Tӝ=|¨ŠάfdF"ιWEаΰψ‘D`hKξΘ]š‹άΝIΫ†·ν„φ”ΝK»e$Εββε(δ”q1ο€φmΒΘίΧ ϊ\βnΑ»Q7žU’}vηΝiŽΕŒ΄4ͺ9σb.Ε ^T;₯Œž{ Δ\<‹K1 πmŠ@_WD2 ?τθΪvfT›>Η — U§₯ŽΎ<)byœΘo_» ΅~1œ‚rntφΜI”™» {ηά)šλ4Γ\tλ T%¦x:.)Vv ƒ· ₯μ™Μ΄$‘x(Ni<ά\ΐƒjρζ·“¨sΫZv x‰°†7Α½ڌ’ Š4ξ Ε *εvTCφ¦JynV Ή‹τπφ£Ψ4Α±uκμex³Ž>Φ(αœβει¦ζ”œΌ"ΨP­ΫΗӝ*ΐ™Θ-,…‹»'―X#7[ΖU|ƒ¨Ωθξͺ“Σ³ΤNΩ―i3„›&j‚ΕEGβ %K{wtξnΤψΊpώσͺVsN0Υ°½=3—šΟ)η5Ÿ@J(τσBβdN-ΚΝΐ™3gPkGΥι`JI¨’nfKι€τiΟ‚¨2Ν2‰Z·ˆ³b8OˆΔΒΦΥ;vT‘ΖXS‰ώ ώφD/“1όΎ„z{Τ‰?ŒkΏϊ{S]0ηΗ•(ͺΊ’„η ;aιŽΎέ"Œ`ψ{³jθίπέHΈ‘ΏρnόατίΊz6ώύΖΠ7Ό±!Tlc5»αγφr«Ό₯½,naŽ7 ۘCΏ†ο Σή0lύςΦχ·=Wΰ…icaήώό{ςΨ[™!1ζ$nρ –l\Γ3 ?Gkw²hb<ύυΖw£Μ λ¨όMmτ›NFτ~oΦ>7σΏ!ςŸyω‹ ]9Ύ/Ώ7c'O… ΟΰΫΐ{(u#DΟΌa}bvP“†ΉώAπΰsΓzή*‹›•Ά~ΫΤΎUZςνfyί̏»ΥχΏ]„₯g¦³ψR`ω/Nšώ_½)?9Έ’-<%Šp’ζΓΉ–c{ <Υ…%DG΄G·Ξϊ€nνfƒUΟΓHί$ceΎzx½{κΗ5Κc”­±ψͺ€όcΔSΏ¦ϊ¨Mυ‘ΈRE‘©κΟz}υψ,“lLρt₯˜#ΠΛ&iΚ!sQωԏ/ί€Uٌg=QυWωKLS9κ}Ί^ɏŸMοΏ/£ͺ‡Έ”_œ^ž›—Ν£ΧϋcΔSίMu‘ηϊe4žλESzκ|λΚ[―ϊΧ΄mΥHΓΘΓx7R5ό₯=jx©°+/RžJΜΔΥΨ8j-»… ΜY<]Ϊ…ͺ(ΒρZπpV_βυTŒ4$mυ_ΌωάΠ_ή₯˜FΏλΑκΒι©Υ•Ω(«:,•x¦τ%υο†fΠiβFϊΡ­άΜΏ^ΧΛ˜€ψ:mš eδmΤΙ(«Δ— υͺ£ΙSβYR»¬πΘ&|iι‰O^I-dƒ…u―Ρ¨―α%eΠΫLΟE/ƒώ΅Ξ_’Ρλ·‹Όκ™eΥγ₯¬ϋ¦Ύ7WεΛq¨7ΣWνέ ]#žiŒ4–§”Tς0ΎI:ͺ¬Œk”ϊ7U:NυCΓ9Ao±γιωH~ΊΣΫλϊ›δkκS‰wcήΖ7£}ŒXύο?΄ω³3 6VΈ–"Ωr&¦fσ²Ά3o~ΑŸ·ΗΕ]ο SηόιΤλw쟍d w=Ο0ή­‚Kšβκ†ΌίΜ_Ύ‰ϋ£οz¨ί5βΙ—†y2QE迏u£Ου4¦ΏΧk,ΙλρΠ(ƒςϋιΥOΫx–ΈF:†ίΝ~Ό%ό ΟTVHOMQFπ€GlxΉI€Ÿ:`4―^7όo–Χ ώ,£ήΣuu6ί?[ώlπ°|Ζη[ϋ› #π-λΖ¦Sι6θ³σͺENf&*)Fρ‘±Ioϋͺ±Έ·ΜϊαG)Ϋ?ΩΧΫΞ4ΉaΥDυ#)ΪϋQ§2ΣΒZ?Μ ΟIΏίω_ώ^@τςέΌo$β?¬Ν πZΰZΰζ΄Fžƒσ-ζώAW~–εςFξφVνόeύ­τ’DˆIώNεoϊ―lα-8ωώγΑΆp<όGNTg%υΖύ£ΈΖw£Œ’ίŸΙӈχΏγο΄φψs}£Σ˜™²»Ω΄¦χ]“RΧχ=Η¦θ]θΎη)ώuω蜽 k"$‘a£Ύmɝ›[Tηzψ? g€χGΏFώυΛ)q ynμ›ˆ™ΕIδϋλŒόζυŸ₯«‹‡d3ξΒH|#m#­fξ0ΈΥo]~7–γVqώOψφ/ p1έ¬1υ Γψj°Ζλ_όύ§Λό‹υ§’ύOoΖϋ¦1X&Ή[7Yγiι“‹Δό«tϋϋ4^ŽF󿱏XΟ·a ίλύƒΗΊ…΄~@•žxόQc֏ΔηΏ^=‘†ρΎ7Θξ&― ζSΫώ΅΄n’Εx7žΧŸ₯?Hό>7žχDϊ?£ H]ˆ›ΐσ”ΜͺΪ†*CrRΞΊοY©U<‰/»ώ¦Q­”—λ‚y1LTΘλ§Ϋθx€§κBΣ Ž΄΄ΈΩTWuζmZ±δk€aόώ™ώΩ°NάM'¨F }σ4L/3…— y‰²Y³ FΪ£‘½‘φ¨(£Ή˜¬Ψ:»+˞FξΆŽ7 ίXΥτς7ΞυΛ·JήdΞ‘κ€­‹…_vŽšΠκ—ELJρ6v^aΌύ¨fΛCp†kΌλO–Τηη}”Τ,Xπ‚kp³fΚ2ͺ”ζρΪ5ό­›JŠςyΖRΕ˚ΦR« ;—]‚ΥUμ―sΔ©‰W‘’ ΐZMυ‘ t!P…·Œδόƒ©FλyCFR.εLτ_@λΥ©Ω…4γ [KΩΑθσύ­Κ_›JΟ”–¨ζRΝ»V3‡£Υ₯©κ«jΕ1RX§p78iΐŒ+έy1U†Pύ΄€\υίoφ¬W α_½_Xz•niA6RsJυͺM›ϊΣψm»ώϋυ0T……ƒ;ύΌ·M­;_‰Žε…@ͺΎςΌΥO·Φ-8ΧγΧO”Ο7σWΑŒ†7…3κ!ί„ςsstλΔώ>7œ©ΈβΟ-σnΏ~Ψ:ͺlθoxΥoάό 5LB* ¨€δwbίμέG·¬ΐϋ –]ΏU*aŒ_žE­ϋ5%ίdR_έΥΰ·Υσπϊ7kA“XΚΙVZOCΒθιι_τ<˜‚ZxŒ-·˜(Ψχ돘τ―—p-K7α!&I$ #―ΊόŒ”κ~Όκ‡?ΙιΏuε‘w ' _ύrΦV₯f8 {Kg c䫇­Α΍ίαι9ΛI¬ΊQ#=γWΎΚ³δ"i€’Κ‘ ηmΕ]cοΗι˜L•ˆ!φ1ςͺŸ† `ϊ#ώεgψέΠυΚ―L·˜ϊM’RεbaΔ?ςψnLΊg"Žρž‰ϊf g΄‘ψ•δΰ§EγιΩ_!―\o7&߈“vΥλ[N«Ζ+Ύš‡y_― ‰υ\] ~\±’tRƒΣ;VaΖ+#C΅Η€ά;2ΥΑHO27žΌw£­ΥΌΥ œ΄₯”Q\Fά%|0s:ΎέΘ;P¦ΥΣPŸ%=Σkύ#―ϊyΛwΓί ΉλοFπWςΧ[΅~Šγ33ύGœa­΅–Φ;ŸlΊΆϋL"ΫΊL»t9R#gυ;NJώΞOχ0όίίΛHMΤβS―[Šύ}ϊ0ύ›η‘i‰jco€‰ΙPΡ «°υΣj,~c~υγΤn4μMλ-1‘Qiή"^VzŠv->ι–ν!ei΄<¦§_Ρƍμ―m3 ©Ι (€ιŽV-Υς—‘’ˆμό"8π–hΑN›[nBšŒΞΕ†·½n-σ³3H”ρ½½i—G 6Ή5ov²Q• ›|‚΄XΩΨξO Jk)Ϊ"•ά7αΜPSΔψDb‚>>>Κ”=M„8:»πˆF~Έj‹3§εΡμτtddηΡΖ‘―Β08@ώ0¨ο_δδ$eΞΒ›·κΕΈσ+(,V;ͺ2ŠΗ,l]xΛέCp’iή­e~puΆW†Π X_Zdη-ϊRbͺΒΛΏ©Βˆ7ΈHΙ»Ύ3vQΕ²IM#¦|f2BšϊcΖ]ƒTΛ9Q€ιoG7Պΰ–δ”Th–v€«ŠΠh`cχ/˜υυxΥNαΑΧ±RTΒLSο?υφ_ύωG₯dœJΕ+ˊqαδAl=LSŽξμG¬sΑΩ½iΏζœ2I²qΙη8•J3­Csf^|ζE\"nτO >G.ν·tνάJ‘ŽTXUΦώvζ]ρΫϊŸQEΰ_ϋ|φςt¬ΉRNΐͺNHΊpO>t?.e–VPf½<ΥξaθΤ–fhŒpΓͺ•Z„"ΪίωhΞηH₯·&AΝa]]ˆί~ΫˆΞƒοB M«Ÿ?Ό§―ΠΜIy. ΙΒ·9šΣΌ‡τ§ή©όewΗΫτσ*\J.¦ΉΧ$̜ωš΅ν€τ+xύωηq<&+Ύ₯6MθjŽΥK—‘’ΦZσΞΰ“/VΡ\JG˜§|ξΫ/cΡϊ]42[„Kηbξšcθέ«ΌΐI9vΊ©ΧΙ•(ωy~:-οΫg.Η·mDf©šxXaΑ{3±τx Α¦z =ςžœ1η’rQ˜‘ŒΉ―=…|‡0šͺg{”cσ:‚_Εf’}}&m§·CΗπ¦ΘO‹Ε7 ΎE­£'Šδταœ%Ό<Ϊ†ΠιΧΞγ›οWΒήέI—Žΰ‰Χζ`ΚγΟΠτΌΞ8ζ)β…Χ–eα³O>ƒC@K„6ρ’ ³ΛΨrς*FNTGγ,ΐΤhF+ͺF¬¦˜ο{¬?Œw^šDΦ\Όu“)ζ\ψ*h6}ξ¬qηύ“pzσR|»ε”2H™γξ|-iRΖΫ±ίΟ{sWlFBδqώnGο~h†ΓξΊ:pz\4ώπ= MŽSH’y™ΙΚv‘[HGψΡτσ…°…6¨¬ν}αζh‰TšτΨC4ΒμšδqΐιύΡ{ΰϋ{Οpš6wAμωcXΉa;-ΰ:ΣΦ؟\‹vΝ\΅z¦Ν^‚᷏„»½ŽοΩ†Λ ™¨ΘKΖ'}Eσΰ`_›Οίy_zŒ“,Α£}‚WŠΡΏW'δ²έ¦<ρ&ZvμJΤΌ&4Εo‡+QQθuΗύαŒ)S¦σyBΩφIW. @£9žΠ`€ΖbΛφ½bΠ {~^‚#׊ ΦD€£[ρξGΫy½ ‚9ΩŞ=J#‚ πp¨₯IσΥπ 'ΤΝ‰ΈHi?Uc#Εv9Υ6(O= Gc•y–Γ[–Σ δ'θ3l0|<‘pω$–ύΌ…φή,±σ§ΕX΅ε(JySžωΌ†e»Ξ*[kί~ό.ηΨ’GχφΘMŽΔsχF†cΆ€αΤcXόρ›ŽiMΣ>Ά8όΫrτ{e)Ζ1Tˆ:΅k6"" –Ο{sΡ£c μώιkόtΰ2m…ΉaΕwίΒ>¨5‚9E#ZFΝkn{o w6ΌhmMŽS8Ι?"δΐΛrΣh…ΠCYBrΧW=u"WΞSΪfrGλˆvHγuΪNDHDktνδ…Ό‚R8PΩžœΖΨ*L˜φ –Ν}“˜"ϊbo Q3™wμΤqΫ;ŠΏύŠο–―§M/ZζBΥ½o΄§ΩυN½ϊΣzkwτοΧ—sahΧΊ;† ˆ1w gw “iCσΉ„Ε]0Ν»Βΐ>}pΧ]γ(Λ§`kG4cŸŽ¦ν-r³©Qψ`Φ|Ψz(›]Ι«ΎΓ;‹ΧΓΖΝ-‚ά‘RλHΤΙ©xγχ°xΦӈΛ-FXϋ^xqόhZήν4Ζ'›˜RB§ΪXαΈ©ΟβΉ±ŽΦυ_ˆηΉ‡=w>†%ά-k~ΐαΈBΪ―jŽπΌτθxΔdU gΏ‘˜4Ί=†/Z‘ήΎϊ[“ »υΕδρw‚-Κι;Bž­δg`:;W? 5ƒ;Π²Ά5‘†ΓBq‚vέΨρ*όΞu ‘ηΠ#oΏ£FφΖ’ω›Τ a-[ΠLz%Jν0ρ‡ρξ»obρςΕ<;*‘)fhΒA₯B­i^½χΐ~mGόώŽ>8CCΒΆΠJ21οƒΟΡm ηͺήύqΧέχώT6ςΉΣŒŠΉŠŽ=ϋ±½aY|{]δ…g„EγΠφ…ςψζ›o‘ζψ\Ώ”Κω§-F>τΝχCd‚Ήθ‰"E%mΣ ӝσὝyΞ“+Šυφξ6dϋˆRΊZ^ώι0ήϊt%†pnΛS¦>ˆ§ƒCΣΠ–Ž…1(―6γ(}zP#m‡Y[Ϊ“™ιƒI#zaΰΰ!πznθŒω€‘φώ‰°XΣ–…€F,ά™<"Οΐ<’ˆ -.€ΰ,ŠΆ-U˜ζπΘεAσ΄₯θ%”Φ‘MΈϊζζΧ­}“•U}β=‹ΤΜ\{ψ‘I³>pδ–]‘πˆΏa£ ?¦S+&ՊΨ΄Η›€‘ΟnΔ½Α¨%>ςαΣΗ‘-f½ΉeοΠ> '/HͺgΠ$±Ζ£/Ν‚=5lͺς“rw‚Ψ΄€ψΛ›Π©U8G˜ w½€ςγt‡acοΓۏ-EώΣSΰOΥAώAπ if‚§ΎŸχi²Ύ „¦]¨QΔ]‡¦ΜΎΘτΔՐƒ[wEG§ΟΰΣyiΛ\bCΰΩiUWt«Κ]ϋτCλ@NΌ&'fΧs(GΞγβM₯ x–Jιk”φMy©ήώy#ηaΖ»Ζ+ψ Rώ ΚσsΉxΞ–@NMΌμΰSƒ rω΄x*ND…DΞ³΅΅!ΎC%JΜύяΈρφz߈εη Xκk/j§¦ΨΤfΖ@‘΄$_φ4‚#ΘώœœόY< 0"xPž,!’.žζοH4‘Ψ(%šώΔ‘mΞŽΠˆœeˆ« φ^m Ο–*4ΨΨH{λΦuόU ώqTg!€v;g αK)ΕyT»u!«oKάk‰§ιΟG)₯Nς.ι χztk ­Ι–ΑΧUΪB·ψ,’ύ Ž%sΑυ`Έ Z>vα‚:hΘ8™&MHͺ$ξX­­¬ΥΗV%ύj9U 2ž­4&«‡XkΆ4Sx·Γκ£ΫΡΗmXΜrν;ΓI‰VœΩ·Mݛ«ςʟ*¦›Ξ>²§=; )]«ξƒ‰…±―OŠπ­Gp~Ε\΄%fΈΜmR73cέ~ίγψ•»ηQγGΰ±wΎΔG―<ΖΏFζA`Δ Όλ!zυslΨσ’ ¬zγ~Šf˜Hm)™Z,6ΝU‹‹ΦΖB/ΐR¬’jU™l„J ΣΟ*†•χjžw½zUYϋu#𘜣ŠwcΟΑιΨ2β• Β€¨³ μ*“ΰ•“‘α„…΄3;Dί‘³^μ»λmΚεObνHwSκ‡φ}†ΰα΅Ϋ°pΑW΄ΐά ΓΎ³d›θ-§² f^"ƒ Έ9pf`ŸΈς FΚΜ`¬&i“}%Ξ†γC°LΔΙ7Yψ,d;Ι8EωΉ΄^ΙΔήd,;)”"‚λ>Ρƒ‰Δώ£8*°1ˆd²(+Θ'ΰ‹^± )•ϋ‘ΫΌ8=Κόά‹ΞΫΓΥήΕά‚™ΐYŒŽΠk¨!ϊό)XΈ…βγοwαλΖϋ«φ¨4μeλNδ2V<¬¦<»Œ/wˆ³€yηJNšr’G±pn‚n-C¨γξ™D»ϋΊYukκλWπΠ]ΔΎΑa8΄fΥ/·ρ¨Š¦η)6ωρ»₯(΅tΕΘqχ`κƒΣ0•œT‹ζmМ&ΰί{κλXq§μΔ‚WΩΡTΊyy>‰PηM]ΌΌΠλώΫ°δ—­ΔϋΣέ΅¨Λδ6΄ !de‚—Ι]Cb‡Dίξ]Έ³©Εε³§—ͺΎΘ ιFϊ<>κΑk\πΒ¬…ΨΉ|εΨ?ͺςΪ1Ο"rflŸ˜»'τT@(95 r2± Μ΄ΉZ'"EŽΊϋD˜ΐ½¬)6Ρx°'PξΎMΡδθz|³r-¨ΤJͺ¨ύq β 5 q'|πALŸ>½Ή#'vΝΜ8ي³ζΘ#a"Δ™WσPΏ žT`θ4¨ >^±…¦ω3ަζšsہŠΤŸ8QTqδ 3ζδΟshžxι]΄λΪ‹ςδpψpΒνΩ‹Ws»Kν„3‡χΐ²ιPLΩ Χ.Ε£―BlεžhΣ:œ[}·Zfe0CάΉ=XρΫQβώP%3½ΊtεΦΞ—/ΒάΝIΈ{X_”πpό΅™ο"¨ΟP΄kξ;ΧγύΎΔ}œΰμkσ0kζύˆ+ Ί_U!ΨƒΔάj™ ϊΜόϋ΅Π±ίνθК"˜pO<0y2'‹Jœ>q!z [‡ζ¦!%ΕbG³υ½x@eY‹©3f󠘚AEζ<¨rγ/ΰη?BD‡^hΖɍ²j.8g7-C…+Ξ³ˆwΣxLNχμΑ]xε­­θ3¨5Ϋƒ+₯ξxˆ‹”}e:ήΫ2ν0cΚύHΚ)ΐΕ“ΗΰΤ}Ίw’—4S[!fSΗώ»ΟE–eτλΡ†‡ο<σzε-τ2”ΑοίΌ |΄χMƒŽ:#qǏ<w†uUΆΈ€ρΌοΡΆe3%ӝ1e2l<hnύ"ζ}΅Αz‘g·ŽθΧΪ—g`χ!Ÿ]Ž?V=† "ΐΆ¬Αϋ|‚γ "„%>yi φ¦Έ`Xίvͺί„”H–,―Οη\Π­8\!ΈΤΡ¨ β<Ψςϊ(,Z3?ΐdb™ nΈh±m›υbj]‘G-œsΫ.ΒΉu[‚£ΉΰΰΆu˜»-cτ HΦΈTΗi‘Έ‘—ΠŒ’ΫNm[ (=K>| ™Ξ]TΫ%DΔ§ί/@—Ύ#ˆ^Ω ­{„±¦ –—ϝΉ€6½)qΠΑ­ρώ's0`Δ΄jΡ-(ΥΉŸ U2Ι=vέα‘=°jΑϋΨ—ε„ΫϋvAΚ•“xfή—θ3όn΄jκMΐ·HΌΈx+1Ό]QL읕ί}Iˆ.7žΗ4ΧΗ!Η_pX8|­ΛaαLH0΅ƒ°ϊ釱)*‰W."§#FV˜/ζ>‰c…ΞΔ½ρEԁ½8“˜ΗΓa[rΑŽθc‚|έΈ~θ;ΆjbΗ,žσjˆθhJψΔ₯@IDAT]S ΏfΡ³c+\ε˜|mφθΓ][ΫpΞ»7ΰžι£U‡PNκ(–9Ο&A°,ΟΑ’Ω“dΩIsWΟΖ ―ΟΒνc'ΐΕͺ+ΝΖ±‚C|`©•βΰ&ΓΉ"—u‘φ₯η^Φ$ΎHA©9n3†˜$•r§©ΟΙ&ΚόβκεΤ^ύaύ^„†ΰ$ηSΗ°!Έ›ψιΆ–λΊŽ$RΌžKp­“ˆΜ³Δ ώ½)ʫƊ·§#ΎΔ•˜.Δς ΣΦ-εΚaJθΉ‰nL(•„“LIJ&—¦³˜ξEW²Δˆ‹½Š‚΄ΨP1,œ‹Υ“β(9'eςž,ΓQoά8/!·–ΜC’Rr"6nJφ,·US²Ωθ”k3-KrΕ_‰yin£K σΥ–ΤΧ?šWQΨ~θ#»ތ€ΈX!zιXΓΙ³¨Ζ²>%dEZ0mͺζ¦&Δ"ΏTΆΞ¬ eԞnΊά7/3 I)¨!ΧδνKΝ,‚ΏP-?|π&vζΩσ€μn.nU„ΛmNŽ„θmδ$ΞrAωqΣ1<ϋβKπs’-°,Πf¨()ΰ‘Y*ΕeeT¦–]-]ΘTθΚ3*’ˆŠK‹9…ΝΗβ1aΒέ ]hgωf΄FΊˆΏΛΕ·„J hΚω‰γ!¨ZœH8ͺ‚{ω1+J[Ψ7~ά‘,ς2/mƒΜxϋΕ8FΠηϊs˜δυWέ?²€¨Β¨ΡχϋbΙYˆ¬Ό ΡX7ψ£‘ž~Ώ!π½TbΑ;O!ΛηvΌφΘ%c,ΙΟΖ-δl»ώμ}@UGΪφƒ4ιUAAŎ" XTμ½—X£©¦'&Ω”έ΄Νξfw“M―¦Mb‹±χήE, ‚Jο½ χή9χ\.WMΥοϋΏϋ'‘{ΚΜ;ν93οΜ<Ο0„tς3pγΔ_Ÿ~ά8š5ϋž(ΧϋΣ―wZf/λρωΛ‹pΕo0^γN–&ŽεurT9ϋa`Ÿn|₯₯νFq4 χ‹7ά‚ψŸgqΦ:o<9S•G5§άΫ7mA@ο(„r›ν/Ή?š³κm•>2mςπήXΖ%iw³†dސkΤ΄\nߍuςzΏΏΦίυ!ι‰yΎΜ―ΝΓύΪΊ3…·¬safΧ©œ)<ω7–pGWP[~lωΏΘu‰˜δ*̜:R™ΜΌΎΛ›€ε&_*Tƒ‚W)ΚΟEτΡht4^m²E\Y£ΠΊxMΌ©œ,b»Ωs of··G/4C Y4·μ¬τQͺ4VωxΘGDΖcϊ‡ΦX΅Šv0MΠ<™³žYΒJ‘‰SžΧͺHŒΟεZ“'΅Μx4Z\ά‰ChhΔpΌρΞό%υi$]Τ¨8bΠP«‡ϋgͺ8”±©&CΛ„^YΧw6Κ§ΘVρ«MA™ςΉ–o-ύjG™ΨQθτΖ–ΝΩΚ…”ΛHΚvΕΉK‘œϋiρKYqa΅ιIέΌ9S‘Σ•ωΊςy·^,}χ‘ž-Œ^6ΝΠ½χ`¬~ύsό%'žεΑGNR=:k­ήτr”₯V%ͺ^ή*afšΤkI•«4 §ω;–ˆz§——'ΚόΙΘτψD΄y8³¨Τsσς•0ω­ΠτEβ6wF"ΠγTχτ χ’PKVOƒ\λώ%Λr0½Sy NYD.r4=£L3ΉzZσ²ΣτGς§%]“«όI>Lω¦?£L]žψ‘ΧΛ¦,Ρ₯hτwΖάiιОXʐ0ςOχ#Χzέ™ΛPΧ’^θρθaTf¨ Ϊ(‡ι—ς‘ou@’=8Šμ‹W_z}ztζϊF3΄ ΰΒσˆΑκγΡ€)LΚΓ2ozœζνAβ0΅{UFZί€§UΒπ•>ΙΗuι—‡t&Ωfυ©ϋΥί«s/²±ƒV’蝫0λα—πή·Υ™,ρ#[weΖdξDΦ‡iνMdΚ?­Νσi  Η§§ΕRŽωύ­ΊΎ}3I‘dΦ"₯¦Μ™½ΣŸ™ @ΒH­έΔ‰Ώ&aΜkXUΥ/ΡΛιώ $½ΙδΙm.\r;f«ΦΎpwΡφHλ2U(O‹½©b‹΄›9-횲‰νΎΡ·ž^σwϊ3α~.δb‘€ΣΎΉ ΟΓψ©0zšt)–χΪs-r-ςτtˆ¬Ÿszά…y™κtΉ˜?Z΅ζ4˜ζ qz\Ί<½:τη7“­ωΏΩΫ¦Ου4θaτ{s_7‹Ο2Œ~―‡m,‹ΖΖ­Ώ»ξχΊΨďρ}Στ5–»ψmϊ±ώΝΣ‘Ιlͺ#–ο-ουt˜δ[€EΛ·ήΙιz.‘šκΉ?]¦<3Ι•Ζ{Ν―δI|j-As£ί›ΙV‘Š£ΛyΊ.YΚύ˜§‰‰Rš,ΟjinJ»z•fΏkππjΑΕ>¦58KYZΊ΅6 Λωϊ΅.Χ<œι6ρ+žΜ‘έj²τ4Λ³&ŽιU=Yœš_-‚ꐝ_Β­σD §ωuρ5ΖcόςΨ<|!―,žiΝγӞάϊΏ·χrΛΣ«D-dΤΧ΄ !2­”oθι+(rδŸ>’ΎήΗυO$/ΏΤD5E GΚVΆt‹Ό¦r0&αης¬ζΔ«ΉlS:Œ2ψςΣ{ύ­ΏΧΕe‘–ί*οΦψΧτOςm9λψ΅ς%_*o@FΣΈ΄€ι³¦w¦:4κΤ KžKZΤ¬‹5)³.“ί¦"Lwzϊυ”ιΕοΌPea Ϋ4nΛ|i―e4Ύi8Kl€•]ο,ΓύZΧKϊω'"WO§eœR; 3τ_κ ~>žŽ·c> Zε6U"Ρ‹ίRζ·KAnEΕιi»‘©)¬jτΧ―ύ‘Έυ8-e˜§Aό˜ί[ϊύ_so‘l·¦\€cϋ―ι4T]³±˜Η&ΛΑΞΟεΛςE‘όaU°”o)Πά4§ΏϋύΊ© $Όόϋ₯Έυψώθ―^fŸŠS™Μ5©Uiψ£y0k{$sΙ·πZ/XωXTWUπ ™vFξo<ΆΈqδΊ²XώήΨχ―yͺ)€Owr Ξό^ώKΏzš,ύΙΗC֍΄†ΞUάΧ-»Πt'@cμϊΣ_χ«Ηiω+Ϋ„u'οτό¨ΈτȌ @χgω+aτp–ο~Ν½Ψ‹ΕŽ­;₯™έκoϋ―)’lt*²V&ες»c—SΚr8ΐΌ;}Β$}bΓםvOh|€κAΥ1=Uσπkϊ‰Σνθe%%Τ)ν™y}+O¦?Ζ<3.)qΖ"1ωψ΅¦2emφ£…4[τή”/£.©Y#Uy1ώJHsyš$³Ώ «§·Ρ―\ɌKυWΙ4 eqiV˜o~ώΆ1œ ;hπφZ);?o•N1’―iξφ-’›JB:ӍΊ0/(©|εΑL!Δ“znόΥΤdοχργ±Έ@ ·>#¦cόΠΎ„L EXš΄τπ*Bώ‘ΊΉa:ψPώ…2O—NΥ•TW^Ζέ΄θUΖ_GΉ[*»ΤwΜΟmv'“Νeό\^5’νJβΤv¬Υ#ρμ)‹!X·xΚΑ*WnQΌVΫ ‘½{°Ž[*U>΄r3₯ΡρυeΡψQP^Μ GΒf¦^D\\<¬œάΡ?r€Χeω8u"Ž”ΚαΕ-·½BCΰb:I­₯[Βλ= £Ε­½3O‡ψ»ήIMΠ/_δ¦%#ž„?‚vΛ½§hΣ‘3Οuβ6L­Άτ°7–£Η«ϋ~ΝύJZδŸ<ӟ›§OBΘ½ΦΙjαλ*ς°δƒχΰί*Ο~τ¦ξ5¦…—7\΄ΥeJnΙNΎΟC’GΠ*$ £ϊI,|"SJͺ§EbΤΓΚ΅8ΛwJ&Ρgγβ␞#[§m¨v\?#’·~πΜNΧ^α ‰'9α!0Ξ"φτy 7—Έmsτ·ΫVγΩ³h<3&ηTM?€TΪ¬$Ÿ²²άŠ{ρδ‘•› έΚΗθeΙGš cϊ%Oω0πάP bNαΡYGτΠΞΣΠ+κx6δΤ©Σj·›—z†…q;1*ep#ρά@žV^Ί¦βαaΩ€„sά‚›-Δ“κ°f5Oχ΅λΤ ]:ΆUπ"άΟ‹γ‡ΰβ•nΛζq^Ζӌ‡ ;vο…ž]Ϋ16©'MΆ€Oβσ˜yΣψNιεž‹‹Ζώ“1zςLtςuSyr΅–βyΙxοέO1dΦƒ(όD&…uέ”ΈΤCυG/oγ*‹›₯G+-¬e:%ώώ«Ϋ:Ρ2₯)Ύ$^'_|qΡ(eΠGͺRdτΤΨ°υ―tYn2>ώl:τŒ‘ƒϊρ„n‰₯Hg‘­›NMMq2JΉ§?3)#eΘ3σΒVωGži»ˆG, °ώ₯AεηεπΐOσΔχΩία_ˎͺ‹„›².S¦ί*^S^΅|šηUKγ4Ζ+χάԎν?|ŽqΣ†•G; 9QΒQ“›„)SΗ!βτ†¬Κ‹ατ²Πε‹M~Σƞ™½>ΎΎ¨*Έˆ‰š{ΩzF9g8ΩTcω7kοaϊxHœΊύ\FSj§O£ηζζς$»Φθτ2ΤΣ I΄ό«Υ ηόΰDΩ‰'βdZΟY΄V6…«@&9JgΜZί*S‡±ριώδWΚBώιiΡΛJ{.™lΤQρ/οεQ^ž?#zλD<)rלְ5ΏL—Θ)*ΟιTΟ NθŒ7>‚siE΅­7»ΘΗJϋ λƒE“<ξjΚΚnΤ5-MJ !}lΐgξΩ˜0a<ͺμ<О!y—’yFe$6σ”ΌΈ΄ 'ρεΧί ›η8*+* t3¦MEΒUc=©ϊΐ°χΘυδRz|"³¦Κ@³IΌyΊ‹»ΆΒπ»¦>ΩpΠδ_.*ΛΛ 7'„jβΥtc" ͺ―6Ό:k€α©W—šήΙEyaI’RΥ³σ1[ F.2δ—iε_ž›bxζώ †Ν1—Maˆc₯ΚήΌ +¨OΪkςͺ.Λ€υ_i^Mύιυ©?=u`‡αγV*ͺP’qΑπΤόAJΧώσυZC•1ΒΊ²<Γς―—KΝRΐveΧΙ› ο|ω“‘ΖθMO—όκ!cΆ}m@ΠCb^΅1•†ΏέapœτŠ‘’¦Αk8}1EO’‘8σ’αΩGŸ6\Θ(VΟτ<4–MƒκwxT9*MaIΑl¨6Σ‡τslKC'⳴~ΚΤw™Bθ2;†*φ&‘ͺϊ‘΄θLΊΖrαb ‰RΥT*«jLΟυ²1=ψƒ·Ε„%_^ωβΥTαdL4aJ8Z΅ERβ9TΩΆΐΜ;¦WΏ©4Šq":ΩE2Κ+Ea”»·oψΨcˆΏRWB¬ž=sm;† &ϋJ C°nΝjτο†ΠΙMpΗΞ$γ‡\ yΕθΟπ=|‘D0Ό3 Ip ―Αε„xΈeΆσΙΥΧΗWQDhŠC"Q”~Δ mώ˜2<dΔa™ͺο΄φΥn tΗaœΏZ@ΎkΘ-©ΕŽφ|έ¬πγ²%ψΣΛˆiCΒͺύxΘW°eύ:œ§ΙΙ₯MLŸ<žψ9ލδIΰΨΨS„/δ ζB¨GG_GœŒ>†ΤμRšΌκq"ζ<¦ΜY@¬vjԈkεΨΘΩ‡ϋ¨Η1Ž&qr’Yf]‚16lβLβji—ΘsKΚWG%f‘ΣcδΨqhνΑ΄ALBό[·DξΥD$eΥ`ΞέsΰnEή‘΅›αΰ€‘£F“Ϋ ;‰Qdλ<ΩK†6άύβ:LKΨ†ω‘Ε±σ¨@*θ£ΨΜ9λΚ!ύιsyΊ7U<%D^¨©R$fD/Qxgε<1~61={£αθš”'OΕ£°ˆδm4©Ž›0- Ψ»c'‘fˆΒΰaOΫIΨϋaώμ©h(ΰLθSpΡρ.rΏ3²‘"ͺ5χE„ Ί€ωχL#Ε1ά96ά0ZKδ©Β d%γτ™σΘ#1,0‰πΦeιxχ™ρHκ°A„ ιΣ+„δ_DfωjΕΓ‚β•Œƒ¨₯ μ‘X<Ή^A„Œζ˜Ϊ­gB@{šͺΜ]κΕ3°"B;9˜Βt]³Ϋρ“g‰ЌfΒ2ΒΏ@φgb-ˆ‹>Jtκ2Τ²o³#ξή„‰C3ΐ4=°ΡDHΞ!ΐœΉ %•ό*GOœFˆ(“–Β@“δIφ‰Τ…7θ=h4ι0<°gσZ€&iΔΘ±μ#½qζψnΏPH+Δ$ΨΥδβMΛΕΕ%¨18’f |ΩηˆΙ2ρJυ‚λ¦uΞ7n8-%ΒhΩζΜsώΫo“ Kλ€…±.ε4ω¬ηΞB ;—α#†γψ›c™ΰΚΉΌ—D)1ι5†τƒ™ό4’ ΒV˜qΨΣq!‹ΜbΎ­Π†$7]»ΐ‘„έθFhŠŒKqxγŸoργΠ£Θ;ΰZ‘Š‘ žCRf?\y˜AL₯1I„#hO7Gv`η0oήl€WΩaΠΠ‘HΩϊ/L}κ?pτνΚ†ŽΏέ1ΗΞ_U₯§O#εζόΡxυΝUθN¦‘#’ΏνC6;τaZ†OCpp(±fˆoEUά΅n5¬\|0zd^Ύg&φΕ$RJ~ϊα\*³BΤΰΑ(8ρ-ϊ2 B—uώf͜Fξ‚Sν/* ς§†ψI—S·bBΟn Kž (₯B³₯xψ τGK\9s/Ύϊ9fϋ`ΤΘ‘hΘ=ŽιO9ΕUl*•ΈχΉΨs:}"ˆ·o~»0 Ύ¨»²σ_[AJΒ£ΫYγκεdς‘ορΘb«k‹v˜Π³x~ΆIp’Y²N@pF{}*³°δσo`νιA‘}ρύΣρΟ%« xIΘψαOB€#z‡… Ύ$o½φΉQBΘeΡ—h·I¨Β›8M{h#3ύ˜ξI€υβc-έvŠ`zύα]“€‹|BήK/ΑQ™’(€Ω»Ώ{3g,† λ†GυΓΓ„ˆωnλvήx"”±sƏˆΔΦ%/ao­ Ψ·ςLyΰΤΨπŒ―7‚{ ςŽYξ֍JX(εψ8c ω!ξΤή ψfγq’A―nΎ˜{i.ζλ˜Δ,κ˜izκˆtLσΉ:ΎύβKΤ;ωcuhŝ³πβ'$r"¨γπ;ž@·έD,+Ε ₯˜ŠΔΜ,Ne&ξΒΑ}»°sλzyvlΓ#‡±ί"pkΒo΅»-3iς²ΐlγθŽΞ=0`ά£9”lmΦψϋŠΡσήχ37»χοƒ]ϋHœαžWgŒκ-9Nθ†Ύƒ§cμΨIδ‘ΠxCRbs`G8γbR‰ΉπΔώΘrΖΐ°ξ\4&Ξ½_?ΩΟ<ŠΩTΨ…Qaj44*¬«*³‹G*1γώ'0œ€9~<+7pΘh\Ν!APH kΡ3οτ«Ή@―2`1Ž^ΘΨ·ς+„Ž™‡ βλ?α…ύGPmΪ EKw޲ύ₯NΉC¬ƒf<€ΡΓ#f“O“τ‡#σΒ\WlΫ΄]Ηx"ή•jνa±j¬άΡ+œ‹œcοεhj:ΈΆ()0Νξ¬m ύˆφ=ΘS(J­†X Ψ³q%|ΉΨέ»{[ΥωΟ\πςBτc 1:¨+&φ Α’u%κξτ;ş6KY:cΦCΑ£oυCzφ€τ­†gGD‘τKœτΕ4-Βή΅ž}}+ήY‚Wή^‚gζFΑΕΥEΕsυbΎϊq'ΪpτΦPb‹πGζ3uΔβaHb%[΅„gž΅*¬Mَ•ϊβOχMΗCwOsσfŒΕh/ηUΣYˆ€@Λ©ΰ©rΚξύ‰Q6ξŽaθ3t0Ι€a7eΎ\|UΒ JΞνγیpΧ~"aΠ#!08"Œi Γڏ_Ζ“_nΒ΄Aψ7g'ξό@$§€ (΅ε₯5°sφAίwβ‘wά1{1‘8;¨Μ$¦-¬ωq†ΨνΪwΖτEχB\[Vc3Ω‡Μύ;ιJyο>'OD£#νλΧ²*0–ϊL* K\Ι­œU3ΒδKύΡuι3‡»4 Ž3˜«Y(cηΫ@TΧ 2UŽŽ Ϊΐΰ.‚ΣΏtpRNͺΪ5Q¦Ώυ„ŒqZΡ‘„eONΕΙΌ¬«‘d€‹ε~ΓδxΥ6ή9©±Η¬1|*ω"Ξ%₯Œ–μ›₯Φˆ’ŒX|όΙχψ 9– ΄J<ΌΞΦU YΩήΎŸ-[‹Ξ$Υ»σαωΔ“8Œέ†ΊϊγnΣ€1a²uΝΝ‰Κ¬XaΊhεί F΄₯) •Ν<1iΜ8„₯5¬w_Μy°ΉZ L/¨&€z;ΕΉ­KͺαŒEx.jε lo@―=ΊꃡΛέ φδl"ό ΙuΡ NΣy·E†l―΅s ΉGπ›ΡdΠΐ)8AβψΊ²…€A¦ΉfαZ ΆΧ†8ϋ…±‹‚«{KΜ ΅¦’ЌŎΛ@ξ ΎqŠΐ·DΟ$ŸΈڌ€Sφ3€ς—@^έ9b‹ΐV.œEυΕύτל'P“Έ³υ4"$©\QaIGM lαŠ=ΙWPŏˆ=•\οD€Ÿœ—#³΄€L„¦4:‘)νρρν‘—ΓΩX—–hζθΙ΄kV=wqy;Ρ,ΐ${uθŽπ&»›—³δ’ }μΔτΡ›W»`œ8²•³Œ±H853gέΝ;ΰR1xΜ(N«‡ΐ•Θ }ϋ"L>?.δB/€Gn‘€,;ΞP^\²τŸη^ΐΦC;022T‹GDέiτVoΠ,dυBκ°–€]6Ζ΄Žu&4€ϊϋFI²^œ9Υ΄μΧ•Ϋ―οΜY›6ξΩΝΩ­Ν£YGZŒςRx±ΞXeR•œiΥ*ΎαΞ'ιΎ[š.*Œ—ΖQς š˜Τ;‰‹»*όܜΥιωΈFΣI3’•Ι½Θ‚¬.$‹kE Κ„=;±?›‹Κ֎h㦋"ΐ³[Ξ8•“ϊ6ζ[Ι0^«w”)t]ˆ’KΣ8‚evc‡- ‘Β»#y¨ηVjšΊ8LW\&u\Π―%§‰ΈjšΑςΕ^Eν|š[ >ŠdIήy΅"ΡY+Ήψu~ފι/ΚOC»Ή 0‚ζ,O'τ 'B,αpDOKΚIΝΊαb#£―ƒ5?^Rnβ„―CκRoS’σŠφ½Ϊαυ•Η‘Ži /ΰ.2Ž΄n@Q₯'Να@t(ΝΜ@ŸπΑ„±wb8E-§™F+Ο‚Œ«ψόC2’'ƒϋ80χΑ‡Ρ§K;¦ƒ ίΉ+:r¦ΥΗ ]{τ„Ώ»£§Gη3WάΦτ‘HJ8ζώ=‰’­ ^₯¨ε’•» Ρͺύ±mΗ^€Έ{“Υg;BΚ‘–”‰H‹gλL΄ι>κ² Ί=ΪsF­iW0H-φςšΫ•©S2[ͺ-*$O{5σ==Ϊ †hΥΣvΣlpSο|_ξή‹ξ^άβNlΌ6€=>z,=Gί…Ρ7η ΄€Αœ±‘·†»ρf?ς*NήΟ™§Ο X΅εM ‘*=TQ―[β΄½%’š ΡΣ'ϋω…)ΞڈΝ_AϋrA;a§;‘"-NΑ&;»ΊΡnιΖ/?/‰Κٌ£=ΑΊΧΆοjreΫ\Θ|”Zsδί _ΨEσ…Φšρ•™šΞJoΑ)ηY9:ƒH₯—ŽB—)|OHXρZ8„Ηΐά5³v@Ψ°+–ΆqνL·³ςέΰM]1°”R܎²ΕΩ²dkž ~#ΏkδPcΰJ4Ω ΛΏ$z,©P]\U^σΈ‘B;Ω±6΅lΏ,+₯¬”`ΝQΞΈ)χ!nέbٞ*\ϊhΠ†SOUo¬Ώ&Ž₯CΉ2ƒ—›žA,%rd§] (ίγθ>`,Ζp—ΩΘ‘•tΠB~e,*Υa\ΞY¬‘“2΄•‘"8ψpΑQlΩsL₯Wd6YΣ²©Ov¨Ξ.!―Ά>%|μ"4]£>ˆiΞIΝb€Υ$τZy2ΣΉώΦ/4P}xE€C₯*5κ;ϋjvDάγ`κΜτ’²‘ή5ggͺγwIZmw»Ά­wμ υ•$S¬[2κ\;bqrsWΫ~ΕΏθ7σiΓόΉ-vσ§Ζ™ΛιςJκϝ>IVM˜4+±qΙ–a'rκμϋ~1Š9¨s₯,7ΞLΣ.%ΠTS€¨oΉ•Λ¨wl ͺμ΄vΒΝ4δ‹!i•&]ΝΖ€tμΪφΓΗ{6αrτnόŸΕt[“Α—l ẙq‰Ήΰ2Χ²ΈCNςbo¬COΞ¨ξϋΣsxζ©§ρόsO+:m‰FΥgΓRΏΊsχπT—ΥœΙˆSmh½'9C §9ˆέˆ|ρω‡c»¬―(ΐβη@¦M[L;AZ“‹¨Žζu7ΨWοŎύΡ"JΥEzΚE€Π4eKΨ$oι½Ά ?<ͺnƒι±VύuΫΥ•kDϋ˜šΝrv'Q“kΉFvϊΜi%³ί°±pΉ΄Σ^ϊz #Η­vXωΥn”ΥZ3 žp%βujrΞ‘²ΉgΎΨT‚?.ΑLƒKVrδe›3½ψZΛω~Ι»,ƒκNŽυq‰ Έ†φΎ-λV!rό„υιO{xζξƒ6Σ6Ήkω’ΧΦێ{£³X(o#_ ­.3γ*V}ρ ²Τ“~œwΪ€λw±£2ΰτ±#¨p†¨>=PB Φ·7ξ€iFλ€$@~v&Ύ]{e)puΩ)§±υΒe―­!C\όͺIX€Ε'…²§[5ΗΔ9χcW/’«‚g0»~όΠ^-x™ ΎT’lZϊ8H˜νD€rAy]4ihin¨-%―ΗΧ\|Ο‚ƒGk,xvΖχο‚u;χc§Ίί¬ήF+. ^MΖΖ―w‘€ Δi£L–Ÿ±†Œžwr?& »χEN.?ΐ„’Ž?u_³ΩΕυδ=˜Ώdj#χχS!φΨ8 ω+9 Ϊ£$?λŽν'ό΅δ›&Ϋ”σXu8Ε„Χ™@wr«“›wψ`Rœ3― GΰwΛΤZ…4’f0fΎx¨Α\ §9ƒϋb4aΰ‹°Θ1¬ύξ+l:oO~¬―αΣ· φb2ΞƞΐςekHΘεŠ1Σ¦cΤXΪτΩ‘ζ&žΔ³Οώ ιy*^έ­ ²Σqœo.‘ο€Ώ¬§θο7’E°TωΟΛHΕ–Οφ“DJ–Ϊι€WŽ%‡ŸδΘ΅ …™IXωΣ^̚4ŽV5ψ~λ.€¦$rAψ^gbOΔ’° Y© 8z>‰υ§u(ΦΤΕ†|šsξ''vŠ’ΘLΓΑΈKdΚuΔ„>ΕβΗηΰΟΏΓώ=ΫΙΓύŸ7W[eΪiμίw‰ qΨςγ‹xkηIς_—‘\«qλsΫiVuHΉt»ΈX~ώςeμΩ·k>\ƒSg’ e?ώΈZΑ K–ςρθ=sρΣήU’UYL'³ρΣ+vΰ© ’8ˆΚ€i%#= ΫW’'gιv~M¬ΙM‘†υkίB:gΕUp{ςςCΤ'.H‹+-ΜΓΩνŸ#›’ΆνCπΘh bμγΨB}ύρϋoqˆ£t!DΚ#nΫΪ―?$?FZ“!τα!΄ϊN};)kΛΪoπγ“4Η4'wJ yzΞ¨C― Υ…ˆε;0‰kN*ƒ/6nΐ‘g™ž‰‹Ξcλ–ύΘ/Φƒ’m=Œc»x“ΜtΞΎA.PΜκ|έξ^„½Τ΅«–`γΑΈΊς#ΘγU›ΉG“R9α}HuΫRQ;“‘² Σ©4αΜV$%]’υ 1œν‘…˜σδbfΫ¨tɟ|κΐ˜L„°QχE)΅’Ω‡ΈjΞτNΉ™φΙΈΔMA;ΘοςξϊέH£ž\π!ώρΰt|πυJμΫ½…iΪΖπά Ξ΅ΜM‡χ™τV πc֜a›$;λαΐ†ν8˜ΖΡ‘+¦ήύžš3KVmδ’ϋ.|ΆδΤΩj탄W#{Α‰kΑΪ΄RιiΤSΊδ&„?αΐ‘h¬YΎ{βώ6|²+šaΨΨΙX@σ™~|BΌE¬_₯»E²LbTQSΓE½3’γρΕχΈ˜JΊ}«ά! ™£Λφ΄ wj«pgΦΣfΟE OΗ‘,‡‹ΦN<ΠγΧ֏#X*χ…τ‹ΐ)²5Ό9ϋ†MDf29;ςς8Κͺ!‡φ<Ξ@œΩaΕ"6X~ω[r_|³šRœOΊΒ…ΞxqΟ5x_Xν„žά₯δNky Q›ΞœΥ΄PΚημ$#Gm€ηΥΊ=¦rqτbΒNνΙLgpΓμYΣΰεDϊHΪ_όq‰ eN΄/¬HfδOOO·’‘­™,ΰ{£}ΗΞ<$5Θqςδ”Σ":sξ<ψr·Κ©³Ζ‹Œμ|[qOܜά³'"z"ŽΘlξΞΓu¬œυqVΘΑΡ)Žd―qAΎ[οɘΤ;­[‹έœ1Ν(άŒΠ‚f¦ξ\?jΖN+ΏΚ€ΞΑaθέ£ω]*ib­C8 ΣdΖεΗ3\šΐΩΓ;qͺ°9†το­ΜK“íŒ8w φ½ϊ’WgoδΠ–Γ²&γn ϝ`m=m‘xρ2‚ϋ’hH―p!cΰšοΊRZΒέΙ–“"t καΜθΠ©ϊ˜‰6Eˆa[tkΣ ³§O‚uubΉλ±W߁¬_WςΟtFŸ¨;ΰ‡Bœβ:¦Α₯ ζΜΎξΦ5HˆΏΜw=ΰCέ)-Θc»ο 'Ž°ΫΆ Pλc6…WΈOžvξ ΜΙΝW&&gŽ [qSˆ2·2oνirκνηΑ6܎»ΰ<ΘO>mͺ²pϊlΧL;b&ΣδιLΛΧNμJ/s0θ ψGΤαV±qVBΎ@$^ΰAΒΜJ Q|9WSˆ~”ŠsŸΖΓwM׈œŒ3»lξ°r$υudŸ`s Π0=ςkΗƒˆ’ϊβςΩ\£pCΟΎ#Π‘!mE3R’T:yY%ud<ƒΐΦn8Ί‡‘e oΈp=θjFΧx©\+Ι/Μ‡7Χ­›;’»₯=‚Ήφ ϊΔl~P‡OœJσΧbδΖ΅.n-1<Ό7Ίp·©τ―ή$ ›—ͺ U.Ž€©–Ÿ­[8““( W2σ‘Ν32AQ£ُy’i-Κ“ΊϊcΈ–gό΄ώ19MBk»˜΄'vύ€ΕΛ/ςο pw¦j°$ 2ΒΧ§άbS„ΈNoΕΨ eͺ+J λV|&ώε½ΐ‹ωBsδ'ΉŒ€”pΛz†"χa§ΗέΩ*>±³Jx1mΘ¨B7ΟُΔ!ς$έάbm’­wδΨP+ͺjα̎^έ‹\*”Lm™•&ζ2e>a¬ZJ&<γΤΉI^ΕnΛι,“₯Ωp9σ‘©ΎΉk’vŒεεL-ΣAΫ‹r\ˆf\J-8ϋ(/ηΖT" ke,π4P¦”‹ίHΎε€Γšq3 tςΙWΌώmš(ŒυaξΟ<-ζυ'ΜσEJΐu/ΆQ2·š’Ά·AXΨ4ӎ„ΣύΚ΅ΉS6m’bivcƒΪΎ,tΓR―’΅uL#;W)-Yd—Y£,LΛ―Έοήx Iξ‘xαΑ;`McΈnBU/ωG8Ζ•,^ΛΑPޘRΙ‹”Yκ§2c(ω‰^FZx=Ÿe)ϊ+elξLεΔ<•˜εL0ίτ(q(G₯”ΎSχΕr{pV;cΒΘΚ|!e'e!:.rΔIιυ€wζe©ιΏfQ&^†ηy–θ‘ΔGa{0Ωλyί¨»b«§?iGͺmκυΣ΄ώ%±Ϋ‹nΙΊ₯,M‹IN₯•Ω“xDχ%N•fM_”iKΚ]Ϊ•Τ₯¦œΌ–φ―Υ+…Pf£~Jˆ·zΖ#τΌ’k–aUϋc\šΚfΝΔ$ε%Nό‹ΖΚwŒ‹iΠόjουΏζrEητr‘υ,)έ™Ώ“v'ύ•δY•ή™Ϊ`Σ²αΡ6Sί£ΚΠ”ζΖ~.Me™η½i™θI·τ/Ο͟1ωRΝ7uζi―ΕσΟ₯ρ¦Β~ζ….Ϋ\y:υ 7σ'™Έy6,κ^fόΥeκUΜτΓ2MšΏ¦Ί¦‡ΥΝΓθΟ΄_--ζΟtΏ–ιΈ‘σgrmYFΊ ]¦₯λο―/]†ξW—u³ηβO§ϋΥΓκΟυϋ[ρ{> Ι’i%Η#œ^“ †»mGG74ϊϊWΏnm ˆή‰½XLbž‘έujΖΛhδ“ρ?ΩI§p;:‚ΙeςΣώίW·ν"#)QYΊm ෌ΜύώίI˜§IκςFιύάθ]“ϊ7ŽL-ύιαεG”f#Ο&r~ζFFΎ7P;5²Ώ‘>ήL”ž&Λ΄ήΜΕsIΣνJΟ­Ξ―.OΚε·€Yχ[Βόš²Χεj~―ŸyXΚΠύίκtXΖσkουτˆISγύ/ηεΧΖρ{όέΆˆ$F2٘Q-γ·TΘυ…u³ηzŸΏφ‰δύΧδχΧϊϋ΅ρώV7‹FΟ-ŸYήί,ξ›ωkϊόF¦ˆ›ΧKΣ°1Λsω§99cs£OJ£Λ«›Ι΅τχμύΝ‹ό†YώeοΏμC:_7LΒΟ<ΤtΚΌκΊaώΜ\ΐϊϊ7/Œ_ΈΦ·6ό‚·ίχZ*H¨τ7«°ί'ύW„j‘όŒεοgގWζJX^VΚ\Ϊw₯+°~m^.b~©γΙε*gžNσ8͟«τWjι—΄κι7ωQ;ynžf“?F »ή oŠXFSΪ?wωΤΠμyγω„V†ζεf!!šθέoωxH¦…—ίzšΏLί!yπ ΣλB²&'ΔeQό†SΈ›δ]Υm“w찍χ²λ¨Vις―«ρu;ζΔά­Λh"ϊwάhλ±”Μ΄”’’†¨•&»A$Ίͺνό»—ί‘Š[Dϊ†ZΩ5jt–ΔDϋίιnΛ9σ Ι.]IεW]K'aτ$;g̟K‹5έӏ~-)/»δ™eηaς§Βλ)Π:#ΫΘσπβΏΡ™ϋkξΟ2ΎΖ°Ϊ=~ύΉψo¨«Ζ)κΫB¬/Ύ]’{ΆηYΎ’l*§Λ%N3.Ÿ;O>ϊ6-Ϋ Ο5Θ3Ωλoς£ςf,C†ΦŸλqš~ιO:‚Ζ4‰ŒΖ²ϊ;}ŠΤƒx’z‘w"»ͺˆ¨ͺ;}2NuΘ/o@»v~ά.ΝΌΡΏΦ€]?­ΐεάztj―nΓkι‘thiM<ΉŽœG Ο…Ψrθ"qT—αΰώέ8sJΑ«™lΎX΅ϊGΨ{·%’1q¦$/L½+Χ·Vφ”ΔwZλω"ΏρήΌ<΄wš4σΏZΕ”ηγ‚Ε])F'©ναΖ21χ­λ’Δ!N―=Nυϋ3Ο%ŒξWςΐ;γ½eΪ5β_|5©[ζΡX, kΦ–Δ3]£|‘)ε₯Ε‘Η'i./ΚΓ¦•_γ@όt%ΖXsn•§Τ―yxKy’m}v§τ‡DKι—βρεηKPbλ…Nm|ΈΕZΆΧ7ξšΤεκΏ’8ΙΗΦeαΣmρΔ³.ΔχΤΆhσΙŸ1󴘿“ηζυ Χ…<σ²eΣfœ>'Nœ„•£'ΟIxПQ―$ΘΡΣwhvΔf ΄{{•Ω lrτ§ός—ω»&υ£rΥθί2­ζχΊ,]―t=o¨«ΒΉ“GπΩǟΑ‘ηZσΌΦΙΫρΡΧ«ΰαΧ~Δ4ΣεθΏz>”N0q¦ηL‹δ–ΉΫ:‘Tjη/ΈΥ‘©Φg"̍)Cϊ3ΥρΉΉ?σk}K‘μΧW~)[kΆr‘U|£,)$­ ς³3PTV₯ΒΘw=Όψ•rΤύεff ”'΅=ξώθQ*ΰ:Ηg’,ρJ>©τl€β.žΐ·?ΐδΉβYcΩ4L%y§%™› ͺJ‘"πάΗΟσgxεŸo  ”§*ιδ™Zό₯g‰ίΌ<δϊfi’Ψ›¦IΒkyUω6«‹κŠlΚUώ₯<τx$ώ]?.ǁΔ"̘·ΣΖΒ–επ΄s²ΌR‘ό^9{#§ΟCn‘–fJΗ&§θΡ„TU˜†?< ΫΟ0S"’«-ΟΗG―=…­qyθΪ 'Ε¦={±β«q,«m["›Nš”«8½QΥU—αjzŽ–nUζ–ynΜ‹–η¦3aΛ²ΣΆK2MČ?ƒ•δR#ΦβmϊΧX–³kf]Ι5+ί›ΥŸg3’ΏΖϊΥ"ΥοΝ-λVU,§Υ[Σ<κατ:—Μθz‘—§δˁ#³’ΟcΗ‘3„ΥΠΰFδόŽ zxKyVJ ŸΙš]/ˆγΕ³‡–ό©ςN"Qg»Μ>Hfy—°’Ÿβό:tET―. kMξε¬…eΌβχΊr–φL™ςOœΪΛkCu1–}ψ&ͺ=:aΑό»00΄ ώωοχ’'H |/'£Sωε΅P<<2hβκHrŽCΞγ0Φ»Δ₯a^:βO'ΙΡΣ―šδπe£?M–Jƒ1Ό:gΒΌ6³u`YγΥΧ+€9[Τάͺšhδ― ΔHR%αtYJ>ο₯HUΫ$);c‚oΑΟνϋ€˜₯R‘η}!ΒΔP RύΗ_ϋš£θ‘μ΄y/‡‰JγN’’NCΐΰδΐ–Δ’ƒnq‹ͺ¨ Tς3@DΟβ2u@KΚ¦€ΈGKΏό—2rTQi88”Cͺ\L2 '.λς9|ρΑ— —Kξ₯βδΰ`Qa‘+ZSLΛrWΚ"2x¨˜< SG;ΔΘΟa*β‘JΜ{'Wτ1#Γ{ˆxUψ2dαίΧlΣπsΌyj~αά1ΔbƒβrhPœ*/cZ˘φbΗ’=7W`£gε_L@E„‚©aΉ§žUU^hj9’ͺ'ΔΓΆW`γώ8lΗΦ€D¨?†:Δο€S€Κ@IDAT;HΤ^WΕ1βΥ6žξ5δΙΠ WδΐRΑτvξ?«pΕχ’ΦΚT₯ΎT#¨«Δήέ{Qnη….-5Xy{p+žyσypQdƒ6˜Gwž,ο„ϋξ˜ wF$>5§7:°gΣZ¬ήv”΄Ϊ^<匯υ Ί€εYK‹VF$`3ΕI™š—~žΖΦΡαƒGβή%Ž–¦c*€Ω“Y„εUB<G=G΄šnkΊXbVOς\\ ?P:τŠ<©%4Ύθ2΅B™κ¨ίζιRΚ"ο”?-έr8¬ˆxS$.3εC“Oέ.)6ρ›‹ I>ΰ¦Δ,jj?ŒCΓΤb1nk"`χ ˆΞ-]ՁΌzΆ59t*2π!Ϋ›8eBQ ŒšžΤAxωŸγψΉTυ^Κ\Χ!/ΆuΧƒDœΰl†okΦ(N•εJή«*J αS’ήλΛT=Ι1}\”š}ˆύΓ.ΐ–•δ‡'E©δ𺦲₯,ηλΫ¦φ€ͺ$Gχ|DΦ?Oυ! hίy•‘|τpϊΐ€ž|5»Άο€±£Z’BWΩΐ_­Ά¨:ͺSe*ε"eͺ•»Ό2Φ=ΤRϊŠ‹Υ‘AΎQNκBœP “ψI]˟Κς2dMέλeΓQΜϊU<υ’:‘t~ψΞ‘ ΜSξ;tξ†ΙΓQˁ|4HlF~’BΤ°•B2UϊD‚; wŽ!€όn•k<>y«$RŽ4)ŒΪκRΩ» Ιωvσ!ΉI‘μ[γžΔnςtFq^:βHUIτΤΜ"Œ"‘›U)–~΅­ΊΕΈADέAžŽlŒ8}Ίω!zίf\p!ψάv&mO $•δRρΙY$μ©$§-&Œ†γ{7α™—ώ…ΪΓΗΛž„Ψ³kRœŸ….½†""¨ φnό/Ύώ ZtA χ!Dωm IΞi…u5-“D7£Π‡SY±£Κ4\s¨Ά$‘δjργhΎ6'=-»†a̐ώ(JMΒ±c1(#ŒχΆ-›Ρ»Ot hf¬H9)/'sSΞΗaράϋαυΠˈM Τ…§ιœqδΐ~”$Η"ϊDρwμH-e§%O{ξ ώτϊ p³F&1‘Jk­PIμ(kί@„šž_q–•vΪYδιuqι>|βn،–&†A_ΘQγώ#§ κθ’p€‚#GκΏ+Rb±kίZΆ@u1ιβ―bψΤ™3΄/OsΛ©fι(;$uΨ“#<ž•fάΖΚ–δΫΕΩ©¬χCκ[”“‹ύ†’_)›ZœŽ9BPPBŠSσλμ0…p">š£½ήš@Ρ‡χΐ&Ÿΰ~4 ι“/±«R“β ˜Α)‘ Δ€š8Ž8eε4™nΖΥ*OΜ™:₯™η±iΗ>Έ§ΝΆ¦‡O\ΐ„Yσ0΄°κ/žŽFάΕ+lS5$―j@ϋŽΡ±#ΝΔ~„1&Γ‘0?CΖ>@β·7ΰΞsH?{3ŸΊΪy+Ϊ Q7ΗΦcΗ¦υpνΠΜkΐABΨ‹« ήlZ.Ω’γcςγŸ]M †IπχΦL¬Τ"υΚKΏLŽχ‹<^ΗΑι‚Ǐ†Ui:6¬ίJΈ“.°3”—ώ29d¨ΥΗμCF΅=fΟ»=Ϊϋ’ +;ˆygοδ†BκU`οHΒεtQnxε…ga ΄9‡JόθdΓ`k―}<Ψ‘+lCΎϊμM”;Άa£ΝΒΚ%f• C`Β aιΥ‹Μ ΗΦ‹ΙΛ£1‚άΘ][XaαŸί#€ΌzF γ!ΗθΛNήΧΛ?-Η.ζ!„XG₯LKί »RPIσ;3ΞN䟜g©―ΜΓ'‹ŽœzŒ?‘a]0qh6<ƒΡK°ΚΌ_Ώώdτ& 9Ϋ);'λΐπo€ ^€ΐ uιΘњ Κ Sp΅ΰΒ£†#$ϋψ{(& jΚΩ£xοΛ hLj+L5ۏΕSŠ@¦νT₯Kͺ“εJ$ΥΓ©υ˜0iκmέ~ŽΩ­‘›‡Zˆ‚kφθŒž}B9nG‘μ¨v)€φjm„9hς||»x>Ζ κƒΎ“c”p–΄Ό, ϊΠ~Ψ΅b'έ‹ΔRΔ#ΌŠζ4…Φϋ₯Μ€S8ŸΣ€q£qFΑΓ₯uTf5li?v mτ"±Š’Ο₯°ciP„`‘!]p¬KΏY†]‡Ž‘œ€Žjtfm΅ςγθφ‘‡Ρ‘eΡ·WTζ'γ―/Όˆζ­»aμΈρn〨ήΓp’K}}9|τq쿐Δΰ °ΑΔaύpςB3ͺAΨHΩ©iΏ> ζ˜X Ο―sκƒ’εoΗΪ/ρΑήDv“Πͺyž^ΌJ™Ϊ.ΕΒβΟ6£g1QΑδ>™ƒ³)ʜωιηλΠ3b(†KiΡέ3q2Ής>xϋρ…H+ͺ&>™?ySbρΞΖCd΄Aρ•<πΰB$εVaΰΰ‘°&yΠ^}₯Τσ SΖγΔͺΏbΫΑs*™›W}…Γ—‰Η5q<:ϋπρΕΈΦάΝk3°hαΔT#τ ΫOΖε‹„ώoAn{S•€εǚX)«Φre–α(,{ξ!ΌρΥ:b-y #ϊμ#˜’=„}ω±ξ‘'‘[VOΌΉ˜=) ݍΨΑ_u ͺˆ$E,[Μ;Ÿ‰ žύ0Έ ξš1»ΙΊYœŒήωdGιδ{ζLΑg«χ(ώςΤS°πϋ£h Ιˎ`₯ί>ό8–):€‚ZΦγώΏ„bNgbρ³O‘E`o2‹φΗϊ{οΒ‡?7! ˌRf«~Χ#―`’ΝJτκˆΧΦ₯bζ΄ œUsΓχ’W2wιΤadπγ:zh$μψQeyγβεnΪΰεg&|ϊ \Έ”°φΤΗƒ‘•[‰ΰuυWˆ§ωuΤΨ‰hεhΕ™H•BέύϋSΟ`ΣΡKι;˜|.˜2f(ς0iζ,”Ζ―Δw돩4ίτ)f­»B.£qπ³ΙΑ_ήύ–ιΠΠ™Mw] gdvDςE}Ύύθ}dTΩ³Ο ΖŽ… π άςy€ϋτΞ5XΈΰ-R΄C―ΰNόΐkƒ"4έ §šς­d.C'u'pθ] 7}ΖΣ9d 1πIΘτΨ T” €@_ϋφ@ԝΈD^‰f²MΉ\<}0ο±7πξύIςitμΤM‰–u‚0?;U;`θΨ~κ™ŒdΥ—Ν―₯^{σCt^ό,ίΟ ?=rI‚γ‚Φ­Z+έMΖ©ž5DάΌLϋyΪ9V §=<½½Έ¨λ‚ΆΔωo¨Ξδ(l'zO›δδT΄ξ1Ο­’T¬5μά+hƒ,V Σ²•? Ψ9Ž«ΖΚg"6Q`ί‘ψόΥψπϋ͘2(„ρϊ±α6 ―₯b6ΛΞHGεˆ)Α™ˆš­ΌΜηΑEuΟ–Šή΅ž•[TZ9“F }Ϋv°6 #w|†2‚IΖΕB>y²ˆψ[ΥΜ/<Ό’§¬ΰ>/;‹&Ξjώ'LzΣ|ίMMJ@A5Ρ@+H˜D Δΰ0tΏ 'MŸ{sCŽνZMb!βSΩ³Œ΄EX5$η]A&­<όρΑ‡οcγ‡OΰσoV’Λ_ŸDC6Qkγ30kΑρ…ό‚"x^kάe&ζGω¨U—δ`λΞC2…υ4)ζε3NoNΝiΦ#QΡ°Ρw”οΞ$¦£Ÿ0\&Βp ŸφΈzv>Ys /y{γ‰T›ΕY?›ͺ¦όΝ\<Ή»‹άΖ{δ(φfΆΑβώ‘L›ŽΗΗ<„='.β‘)=qί΄L›8;tD’ŠνXρ:bβΡΥOFy9ό\ΠfοθJ o~ά™PF£τ(°Ρ™5ΊΘqw‘Λ€€%'α2)LΫ“Ovμف‘œ-ϋ“«žέ‰œ wΞΆW,ω½GOA'rU†°$ηαξG.’β˘zίLcW΄%TIΰU‚Q’ρ±k„φŽ©Sο@6¬žZςΓ|ͺaθAD+ΛKΑζύ xςQ›‘οθΉ8ίm7bΨsφƒθωlβ/_…w'gΤΨω“ΉŽ3Z:e:3φ$΅D™½ο‰—0jD„‚Π_ΊώK xq3™AΆΕ!3/»θΒz° χθ€ΕάP²cλ>Ψ‡Ί‘Μ­ωD―ΖΏ^ω Z:4#‚²3Ί£r/©†νΥΆ#&<Α™ΣT~;v†Œΐϋλ>QDL†‚|΅σž!c©GKΜyο)$9ΓΟ[L€Τc¦B3KRοΈ)"`Δ?ρ^T)^}ώ¬žΠχΝGt‚fjφ.ΊZΖ‘Άέ±9{ _BS νλ4‘~ˆ½dΟ¨)8Όy9ŒŸ…΅ϋb1,c"&¬Š ΄IDNf»r΅q69;kjr%΅²sP‡΄σΣ.b͞£XH]IΎ’oύEΞώπdΏ+w½4„3Π ͺ’4kγS’εΡοv·εblη*Q•D5¨¦VlΥvUTͺ:ψrτ^œ_ΒΥ»ˆˆμN$žιIzXΦ”4ΰΦΊaΌw.φο?ΏfyΈwβPέΏ> °αˆΎ•»tv²h€/τQξ]„‚μ?£wPGΌωΕZ,Ίo*mΪΆ7‘gε8ξμ°OΗζέΡ‡Κκwvšς‘“ι` /j©πε5δ"¦­Ύd$ϊΙ5ˆx6ωJjΚ°χVμN€άkθΟΞέ—p "Φ’ Nδ󓉀Πώ°JN!_ΉωΈ†SC{΅pψ8ςcu*z/Žžbγ i&0b<ξΪC‚ď8©X[Ξ ΄ε‹«―fYΠΜTGΩ 5hϊ‘΅– „ΓΖO!a–5.žάυΫφ‘σ˜qxϋcώόωπ ΰΧΎ-<‰T›Σ )K%νΠuΥ6Μ‹¬4§‰EHΊΈ]VέKŒš?­σΌFψό‘γ†η%;$Νhz ΑπΑδVΛΔς«Ι£Α4–eγD\Ž$ΎΗAη5̞Fv5[M­$^ΐ―£ΛκplG=N>ŠέηΛΰOΪ½ ζ‘pΘ#ΖMf8κCF"ΣKH#κƒ·žζ½²}ztΕΕͺB(ϋ³€Ο˜BƒΨτ·4Vqνˁ”ŸΥ\Os#Ί08p ‰x δ₯.γZWƒΨνUQ€M-}°¬«ζ$voۍ:6Ύ]Β1}Ϊhκ;JQ :e6SWϊfXk}δtq!l~4²Hϊδ@τ^WXjΙΰ((Β­C˜Ί†thΟ+šh―$’{IκΉόιΠ9P]η€—3έμ ΄’Wλ4uυΆό¨Ρ%ΆtRΗ*0DρΝΩ²ϋιύ‡’Ρ6°-|Ϋ(ΠΓrB±—θS}όθ­Ή“;»idHnόH=ϊχ‡°bν` Γ:ΒΣA3-j£oΜl±ξi­¦'~ΌόΊ`\Η½άXBd`Ώθ ¬cY•Λv_i8Ϊe υS9=ڝ°δδNε…σ „EΔΕcEHΞ¨$ΑΧ@D„χC3vƒ‡³#ΤTF0P6΅”b¨­β€«Šqi³Α Ϊ)»¦ΊώmΫγ_‹ξΔoΧΰώ‰½Θ3ήΐ54m (»4€ξΔ:QSœ…·_{ ΓzΨιwπΑ°;8Kν‘‚Α!j #ΙM:} ΛΉS²Œyp0TΡt~γ£½‡g,Ω‰–ΫΆ­ΚΩω”4LάKΌΚ“ϊ«―‘ ˜8ίΎŸ‡a}ƒ±θβΕE αεH Vς]«©UαΛΉζαFdβzΥξμQ-€‡4₯ς[E>~\EWk"οzΠΒ²e’ΉΠ~΅{+~ΔEΛ rαΪ1ύ#ΰοj…PRe8r7£ η.…DBv`?+έ/±lUψŽTΚ~ϋmXρΫΓύ|ccOΝ μ@Ά>vvBογ XΔμν†€΅? ‹£7!Yr%ZdR<·‹^HW¬dwή3sΖGαhΊώφ:ω1^ψxBˆ§%‰ž¨F;χ’[<χφrœΪΏΟή? GβΙsΝi{+ˁœβV|όw¬‰.ΐ„1Γά™ΨώΧΘMΐώ†ι­·6”Ηžε^(άΊ©Y… &Zˆ“N#Ž;r"FLΕ“‹Η“O."έho΄φk…»~"L9GΦΚΙ–Α«πσλΔξ™,‰άΡβIβ>Σ9 rΨφ‰EObβήj§‰|Όœ„)‘NHzHΑ)δ>β„§œF:¦ΙΞά)³ψΨΙΦΓΣυ₯y8JσŽw‡^xψρ§hΫ|έ3n†R,~z.ς]:ahTΊϊ{£ΞΈαΐΞΥ“Δ6jΪ«b`9rΆΰhŒ_Z­IA ~όp:΄k§|vμ9+ήύν·ηψρ‹/ήϋ7τλƒ!Γ†r–Ψ ŽFŸΠ 5ΆŽ Caύ:㳟V“-m J³YWτAΣN?ΞlMl|ΕlΩΌ{…ƒ΄bΘυ‰Ρƒd6Q΄λϊω·0¦ΦψΓϊ’t;w y°±Yχq―MYYWαKx~gΞPΚΈΖfO=׌ŽΛ‰δoњ€Aƒπ(λβIώ›2q0MˆΖζ@SOsκŽ”—n˜“°² «_C9Γ_Δξ«V;‚#τ ”V°S q˜`½}Mn ~39ηΪNκ%ĝ½LXs¬ΩΈ2œ€nδp~ζάeV2Ωω‘³fœΚY 2.GχΌiNΕρεB’‰+J?Ηο™ χnύY†ƒΠ†Μzš½}[£hυΨwδ„ς'νβ w’%pM΄˜=}>’ώσž]²=€az=huΑΑ‹?βJ‹ Θu/0ω¨"‹5MJβdΝ €ήZι6³Α…ΩZvVϊ“½ν³c$a{ΚΤBZ!#5‘!θΦ?nۏͺz;’ yp&p¦‘γδž!SιέΟεްνIΌεΒ£6 RΉ–dόSu@ΣTψ°q\Χ±FNa%f/|“HW,NJX:VqeωωΈp0mZ©ϋ‘d5|q^o\ΞΞSχΒο!ΉΓ†ΰ“―ί'ί:υ“ν&Έ[WDŒ†π°ŒΣ‘œμωΤΕnM~[?YΜΩ­˜αYTύγΡΐL§ώ3ΎΔ5½ψξεΗ°zϋIκ#)\ⱄ‘zmNύΧΑ₯=zπcacu Λήϋ+eΣδΛY^pηŽlGυͺ²e™8’iTϊqΖ•}‹„ΉzzcΫwŸ"Ώ€‚ωξͺ/M ½rFn1y~H/ΐυVΥύ2œe½+aΰ±Εό 7*uG€r™)‰ψξ»ο52•Κbœ^ς=r/Α‰,zχ½tΖ†wΕW?¬Ε²―?ΕΪ½§iNΡ:ϋ>š™*˜ ηOκ՞΄£Άnί ό51ν+ͺ)‰u-–}·g’σΘ#Bήν™CΏ ΩivΆ» gc‘œv§Ξγθρh¬]ύ-~ZϋŽN€lΘ(^†οΦηB|!yγϘ?.o‘†υ§_γ‹ΥΫαIώ Gξ³υ$ŸHKrCo‡—P|½ψOxώ͏‘šSLŠΣXlέw,ΟΌΧ#ώδQζ]ΘƒΈF@ηF%ooς8²…P† ;»ΟΏ]‰γ±q8ίoGrzŽςŸzυ–χ1ωkΡoΘD¬οOΈοΩΧΘ Έyλc4ΉΐΛ͋¬n$ΠiΑQ°Œ:Έό0Ν₯Όc‡±μ³Ώβ’»ŒδK—qϊΐΗδΠδ[qΚΦΊί°Ζ ‹Κ/kͺώlέ0nςp’β¬FŸ—ε^Ε™„dτιΙ}θ-ΙƒŽώα}я° e΄οBޏφ°©+Ε’Ώ=Ž~ΨH^ O~πϋr€NΊΧ>τw‡o…‡ͺ][ϊ†„ 1ϋpΆΐ ‘ύƒΰ.ΠΊ2œ=s{6oƒG@0Ϊy;©ς}%ZKfοVΔξƒΡ°χν†Ώ=Aβ­O—ΡtW‰³GΈq£Κ—›ΘMΟΡkyI"ŽΔœF1woZ«°qΘu7a†σb]GŒ0άΙZˆΈŠβΔό 1 ©(ͺq‘8φŒΖN‰<°(I;‰ύq§ΉΡ!?.ύ Λ?^ƒ˜σ—ΡkΨLμώό%<ώςΏργκψ|ΩO€=υΗ΄ι³°ρΣΏcα3ΓZ.TΎt5¬]Υ¬Έ"q'υwbŽΔφuΔχ[Ž"%+άZ½oRΣU κΉΛζθα ˆ;‹γ·α“W>ΐ†;‘Vz ~ό*&_όΫ_,Γ²―>Γ^Ξ”½Ώ wπ†a>YτzwλΒ5E­}I9šO„υοΛο·!)5E9W°vέVά{Χ<š†Ι³B]~βέΟq,&;voCVΜZœΏ”Μݎά\»ŠŸ~Z‹£Ρ'9 XscΓ=ΊVʍ ±j[ϊωžυI1`ژ!θ‡#«ΰ?ρlΨΌoΏEβ¨Bdlp)ώ6Ό·yάf[IŒ=ο¬E~ιr²R±ωΗΟΉΫ± ΅%Ω<»²…άνT̝pιW.qm"•$_¬+cζ„‘pθΔnX΅f­ א I…mΡ―['Ξ  ρϊ_βΫ-Ηψρχε췟š…υ‹δy-GρuCD™ΈŽφεΗο"ΫΚχήζh…Q}gαlr6S%_LM+%λΡΫΏΗξc hΥ1ΟΎόϋŒfά꜍onjwy™,³ ŸpCŒ|ΔαΚωlε€·˜f³μ¬ $1V4ωΤXωΦ|°ΗΟ\B2g=ί‘4μrf.Γ°,h‘Ψ΄‹΄Ίι™pηω²ά?Iƒ»όΗ ψϊ£w°χΠόp€ž?‰χφΔ"ΏHΫω₯υ›JΔ-ωcύ*έ-‘d!DZU.R„Aδ/πφpητΈ^}ϋΡNοE.θ$ˆHϋh™ή²ΰήͺfLαTΡ‹‹εtN>rƒ;άΥ¨WμΖς—Ν8jμΪAά=u…qηT`μŒ9άΡΤ†#ΜdδTXcΒPŽΚ9œςδθԎζ9YPα©xΝh’π’βΊr€=gaBΩΫgπ`r€sM‚ζΌRNη#Ή˜ξζΪ=‚CΉ½q(ͺ rΈχ»CΗOΔ€ήέU—*[΅‘Τω‘λ>~8J“aηΡ Qc`€7yΔ)ΟΚΞ£Hͺ#£/’ ΅w ŽΜ8›ρπm‡]Ϊσƒ"Σm€έKW΄δτ;))W―¦£sa5ΈνμZ>dφ`Es’“K šΪpA˜d]άe–[·–νΨ±Z—F­v»­/ΐίώ~~όpjϋΦyΪ/^FP7΄τdgΫ’f†–Έ’’οφ\€οΪxρŠyBκΫ“εζv­ˆ\Ϋήό¨υEˆHΪ–‹X™΄‘[aϊΜ™θΘΡsyI.φμ?F²7ΞΩρΧ:bξά4ƒrTΙΊhRŸΜO=Ν&—H@ΥΌ]$zqWŒl–πΰP7]똬lšs­’\«rPc傁άzΪΏ—2!†‡s½…d•y™¨ζf…q“&‘XΊϋ΄Ζτ1ΓaU‘ΛΩI3Œδβ{H'–g:A$%ΚKc}‘(bψ˜52-\ΉήWR‰¨‘#ΥΗΦ›Ά~OΞb’Xώ©)hαΧ3ζΟψ?ν}x•Eξ IH#@J !”‘wA€VTμ»Ά΅»λŠeέ΅»kΫ΅°Α*ŠŠˆ t€χ‘…Jι½χ„”sίoζŸ“““Qaο½»gž'9?Τoϊ73οKΗρ~Ρ¨‹ΩΩυCΛΙ?(Χ]{%/aκTƒε€§#bπHτζμίtxΊ ιΆΤšV†χκĎ)“«· τεŠrόΘώ\ς°ΥYΕ(€6E6Δ―Ώρtε]λi0‰Ψd)€[/tοΪ‘%t–WVA]zΓ›ŠŒΜtΘ‰±Ι·άΚΣ€πδLϊςί]^ή•dDdΫ~)ežΛrR‘UΑ‰ ΙΰΈ//+F‡‘#”υΚ—ŒZεTe5žυ§#gεΥ<uŠ«toξ[–ΰ0Odύ΄q;:“€.˜'.Y‰₯‘֏δ^ύ‡°<’©FLDZF>.»εv ‰θLRr ЁHαrΩ‘‚Σ/ΉλΑ•8χ-Ί±†Ρ>/-*²rΎδΙEjΈχ6pXW’ό)HuΤ›΄DΈΧ™Av N³ΎΘζ{'\ΑΑz―± Ώΐ^fδͺά-„{pΡπ΄,ΝGEsŒbُ¦V,͘ΆΡ\uδ€ξΙύ¦¦{4ϋ°Φδ'κΘΓ(#Ζ^Α‰Š5³Ϋ͍7\ΕΊ–|ΦΑIΊ“%›«ΰ@¦O«χL©„τώ]p,,{BY ’uR§¦˜`Ηcdω9ΊSPvΛ¨Β1/ ~₯3—N…u†B’!a―s4R—¬ ‰£uΓgηˆκyd<0|9¦»šηΒ…θI8ΡŘe­<λ³μ’FGίςΕ2υβΡvŽώUchΒ―cLpϊΧ93Ž_YΤ6˜²p ί„g~Ε— όr*ΖΗK+’]^ς+30“4c―Y΄ύR—)3)Vf&Dξύhr¦ΖΣ\/\GY9>[ρΙ} αυ6’.Κ;{οψ{λKκΌ{Φ%­ΏςQβ’OF6R’N{Ϊ›πWpcOη‹±Ρ±I©γ³sR^Φ€+ŸΞξΤd5χ}HΥ†’Μ8Μ[Έ 7π¨hWsuͺC£|₯ ‘›9)x.Ωuτ―Ÿ%\“/Nτ©t§ͺE­Mœt|­OΔΔNœrW.Z½φΐn~Ρ·œΑΧvΗ”?\₯2!wš6¬]‚κvpΥπ>*,DυΝ€€”{TμH[}ŽϊZχO₯―ŽύΨ‰1ε_?ΊΎ˜ouΕ"wŽΞ°£ΧνEŸ©¨οΏ~Ή:ΚQEΪΔ?‘“¨GuˆVΏj5Β¦β’2g&μωh"θ_l­•‹ΏΨΫΉy0‚UUe¨ση8wΊ°κ:$㚣œΚΌz―+%λs{9fλ)#hΓ²dkuZ–7‡{Α©©λάDΰbtXuI0^ε³ρ+« G·φ₯<-ΝiγΟώkςeh ˜όʊίUψ«SD[ϊU’pςkΓXBs~”ΥO]ΪσiΚB~MX^ήrΦGc'oΖ­υ©Α{cn΄[«Μ˜™΅Ή[yq0UυΒqŒOωUω΅*•wq#FγΑΑCŒi¨Ήœύ.\΅Χ=–‰Ρ@€vΘ7)“†q[ΑͺpꕃΨΘG‰ΟΡ‘r©©΄π› Ϋ€Mς%~Œ}]ωYy©ϋβšy”ςͺ+ΖœΪε$Ι£7‰'3ώ0^yρ/ψ|=°bι§jπ0ι0!Λ―cY›z,ξt6βuτ$Ο–L=°§Αϊf:bΡΣk+Iγ£?•F‘‡%ρkTˆΚ λ„]V΄¨_άηΎΜΤ™FGnrΛ…Ώ<Μk<Ϋb|$US4jπQuqως²2ρk ύίδΓ1^cgάΥO‡–ωVηϋŸ“-3Š»ϊώuΉΪύa‹&~ε$%­ζΜ“€ΥΔ%ςtŒKο56ΰo°Ύ +ΣH˜{EqL«dX2j*žsa{ρ#Οbœέ(KώSαΘwΛΒΈSφτ+οςM½[Ο|S>δ[;YΒZ›B±‚nπ#~ OΫΥΕαθΖ<ΧΕkRέ;~WiwH£δR(φ™†a6ζJϋwtΫXxκ;½›˜šr#1˜oβΗρ]½πίΉΪ\š$ΌΖܘπεW`Eοݍ“Τ‘»σθοžτ ο,ςRηκ:/ ΟјpŒΙ—y—_εΖͺΪΎœε›C⨋ΗψΡk}{ωΦXλΈκ&*­βŽŽd…iw/ώψΏK]©S 4•γχ|εΗ1ύ¦ ΧΡ^’Τpg©Γβ^ηCΛΒ„#3} Ύ~Ž΄{Ω¨Τw-–Ί΄ΤχiΝΌ-ΛΊxœ]ΥWω‘φΘθtmίΕSaH{3eζθFΒγh§C»πν}i¦/²ή/| šŽAΪ£Ω{Ύ²ωz±ΪrΣ±ΎH₯’ΚΡ4ζΧΩΞ40G?χά”Ÿ¦μ ο|Uφ¦Βω%ii,}ΫΥίπkάΝΩmΛιB€σ\ΓIbB"ͺε΄Λ©’7€k™^Ήω,GΘŎV³š΅ΪͺœDL6θL>ωfF$f/CnηννΰžΔΕκΒ#±βΏ‘ΑPbόTŸ)CR"λK'€"/ώ΅ΰΕÎ<ζνcA£¨xΣΒc߱Ǐͺ‹Ύ=#ϊ’KH{•=‡$™μ^Π_“‰€ŠΘ©©ΙΘΞ)FxοH»nŽ„S±κh―ή½υ₯Y&πB¬~.“ε%…μ?“x|έύϋD¨«Ži9?χ½ώ΄ύη\Šο’X΅μ”J ΛO)i½μ“啨žτŸω&•OμΔ”ρΞz.άΑ¦UߘΑγLI.ζω!>š΅Ν}x©N‘Εh·TNHpͺζgsξΈυή)8U€π›Zζ9€Α€Η16•6©δLΕΞ΅Λ±-κšWζαύΟE1²Δ˜ptυ»ψ“? S~₯ΙQI9Q‰bϊΜ7³VaΩύ8ΙFβ±Β‘cΛ ‘9βbΨΘ‹pτ”\nͺK‹z©‡ŸΈ±βPω΅ΚA χMϊ_:Sι.ΝgYL}/½χo”ž& M+^žά‹ϋ.ο†/VξδUz “„κ“—οΓC/Dxόœ8°Ο6φΟJΈάέ8I`Ό‹Β†`ɚ­„ ' ‘ωODγΧ_Ε±Τε;ρΘnό°|΅Β\2η{‡±– cRŠΒΫοsίxΛx_Œ*y©#V:U]V_j±gεψzΩ.u‰M¬L^κ§_Λ]•΅ §.,έIΧrΐ­€μ98ΤV`Ωμ©θ:ξVl&―1ΒΡqjοΌόΒλΔI*ΆN-iΉ™Έ$|ΣQ ΔH5ߝ¨9+ΛXNoώχ½0 ‰YωΔX;‰w^y―τ 2ελ©„SJ8τuKηβž{Αή“ι*(©!¦Ž˜"©ΰMνχώώ8Ελ‹nR^ͺ.сʳεPμ%l1‡Ά―ελϋ1σ«o1ϋ›―1ν½ΰž§ίAzΥžθFΙ’2‘΄δ§ΕαΓ·‰k’Π†wbΪ΄Ρ§ͺdb ύˆ£ δΩ٘οζWΚ’1¨τ™z(v&½uΏ"cšΚ—υ"ίΕΘakζςRνKΘγ₯_baι—ΰwo~BήWn˜F‰ΧΔνψl›α™x”'ώ«ο^Χω¦Ϊέ«ώΣ΄]»gqWQ”‹ο§=‡WΎYGψ-w±?o† Ό`†‚i4μΖm΅Sργμoεμ7mχΎϊ•­ς(ίyZy¨.Λ³}όCΆ[ύ§-=―Όιψ觬€ΘΆsυb™+ΫΆOUnγrΐ|'f”ώT]`{~ΚέΆε»βΤ{fzΊ­R'ΕΑ«δΑαΥᱦ’ΘΆbα [~I•²­%1ΓΉ-γ#zΗ:ΫΎc§”χ²ŒΫθ°Ϋϊ±υƒyΦ·ΡoM%Πrk>“OBΩT—ηΫήΫm6 ΉΕ“˜αb΅mΥά©Ά‡5Γ¦₯_n{λΡQΆΣ–_)Ξͺl—ΜR-uΡ¦CΚ©Em•U „ζ&›‡UΎυ,ωbΚΓΩ^ΏK½ΠιM<Ό[ΕΉtύυIΫWΫvlYc‹NΜSv >{ΣφΪΗ ,―UΆΓ;–Ϋξyτ9[F©Ά*+Μ΅εδͺvRΪ²‘₯%ΆβRϋ³§―‘gS6Ηφn±ν>cw°kγ|έ»υΎΥv$>ΛnŸr"Κφή‡_Ϊ ΚtzŒ»λ!ώΘΫΦ¨ύvkή΅QΟ¦έΨl•Άχώq‡ “_΄ε”κ°b’6¨8?ž·Φξ―’¬ΔvtΧ:Ϋ₯=mσ7QφR6&ήΊόΦڊ lgt½Άΰπ nMόUl·‹ζΝ±mίC\Δ\Α mλΜ°έσΤ[ΆάRέΦΔ­IwAZ¬νΟ7΄½ϊΙ<[YΣQ8ΔζTWL…ηβ—½Τε΅‘Ώγ»—Ω‚»^g;™”―>nό~¦ν’[§Ψ’ T#hθα,6&σλμΤΘήΩ^ήŏ³Ώ- ?±έττΗΆ+)Ξί η\ν.Ψ=&@ΝA4‘ΛΉ„τ,xx·Fd$α*ZΆ@V:oη•Άι/aΆ%ΑΠ’o‹)ΜI'ό!O –œ•I•Cg™,θ© „mνyμ\½S^ω[£“ηΒM‘ΌxπkcνE.«yW§gD/\=†7FcπνĚ DχΰNT δFΝp₯iγνˆ‰Όξν©CλΩ·ρ11=S75–₯'!z°ΝτΤOΝ†•OΡλΥ“Έr’ΜΝ!ΥB%ΡΪ8°'ŽSSTJΥX QΒ™γ$a4sχΑiϊρ&΅1E\Ι_:ζbψΤέεr“vNΔή…œΡšΩ' ―γΞ>₯Šh™›ΙζDκφ έƒΐUS‘Uxa=z—ΜǞf½*«EJό)BŠdsΥιEώžθΠΖIρq(γμ\pΣβOΖ‘E› ͺ{z₯ρ![RΠ½w_τκΡE©ΩΚ‹σq’nςŠŠΡc(zφSδW-ˆκδΟΈμXΣxσξ”/ΥΪμμΥ»ψ‹![na1:aΌ7ϋˆ‚¦¦€€ς²'W„T5εUTv B²RϋΊT§œ&” ΫisO?τ¦ŠLς•›™ͺnΡϋK,ƒͺϋBςΞ <ˆ@ͺή*Ύ’ό,f|^>>H$μ‰ŸwWeΎ™zx^Γε8Θ’kΩ–Ε_q:‡EΰθΪωψrώ*"ΐVαΨξ΅DČΔτR5 Οή4_/Ϊ¨ΑΩ¦½ϋ1L Δθ^ƒUΣ? β¨ξΤ”Š„^Y’ΥKΏγ!αμΑ{―>‹ΗŸωŽ%Κ2ΪαdΌYιf΄’όbYΣ–† ²1γ‰αxόƒyμΠ1—” *Τΰ‘"νT‚hFŽΒMd0Z€οω)χ!±Ό:ΆuΗ“y±©υ£zkφŒPνν6ξ₯XπνODε½`KΦy“ΑPAPς|,^½AΑ!8΄v6ž|mR2³I†΅”ˆͺ½πΩΧs0kΖΨ|@ƒ· ³βΤ‘*Ÿh’ΤW Cc5{;[Ε …ηu‚{!?}υ:ώΖΫΧδΩAaκaάqΗƒ(v Xa>ž#ΙVZ!吝ˆ—Ϋž|“°§±eΑt<φΚ4€ fTb-₯:Έ‹6γΠ·k'υMˆ˜άωPŸ‹Br₯χ$C9Gmdi³‘όͺ ΈœεL§lόW,E‡ι†C;WρΜ~OŽΝ@5ι|όότ&Gϊβu;x:£†υΗτΦ©8DΕ±fϋQ‚)vΔζo?ΐKο~‘χdπΰDKΉiπΟ*VIŸ?=rP)ά‹‰ΖηŸΝ@4ράe#¦9Α3KӈdLfvι)HΙ*ΡlLΫ΄)πςWkyλ—u‰Τ¨ίΘ†CDΟνȎόOD ž³t;' ™ψδ•»qλc3Ή'ΔIFY.ζ}χ½ΡΪ½“'܌ ϋNΡ]¦?\χΗ§E΅}›βš)― %Ώ”P7^(I€ρθ‡Μ‚Δτκ{ΡΌσγ&μšύ^ϋθ;₯Βυδ䨄a3h¨*ΔT½eWΈΑί«?IsΔ4χDu±ξ`9‹WυT嗝qέ%4ΪS„λvεΐ~œ“‡1γ“©H»ξ!άuνDUξœΛ*9Ι^V1qĜL0”a=‰Ω½ΘΓαXΆ;NYmZς­Ryυθ„³ΎEBJŽε]«qάΈΧ!ƒ‡.Š)ζmω »ˆXΜ½K1œF³yιrΚ&ΒρΜ?Ε¨.-±‡`©/<ώGΌ6υ bΔU(πΕ}«ΎΖ€Ύ*›–ΞΑ6r—ψΞΩ$ήCl²΅θά₯+ŽνΒκ1[-ΓO³?`Ό—`Υζ(de$ΰι‡οΑΛoMSψ ΗvβΦ;ŸΦΈ΅₯xη™°ƒu¨[ΧΆxο•η±έ’xPΙΒ΅˜nε λ”L(ΥV‘οgξγΆ$iΦ=oΑ¦ύ'OΰΥχŸΎ·<ς ζ0S§}ƒμ ΤΚϋή5?ΰΡ7Ύ@'I{Vγγ―‘Υ΅ qΡΫП|,|9“ΐΌ3εχψtΞO*Λe9Iψδύw‘E*?bqmώώuΒκΨ«³X~Σ».‘ίD#žY―t;Ee•;/1%b'ΞΆ[`ΕΞέ¨€Ό_Κγ˜qWβ–ΫξΕS/<Š=§β @ ¬_τŠΰŠΡCΡξόΛ‹j£Οt¦ή–λeηΑx{Φίpσ7“|ηO¨=ω2^xo–BC•AC:AG#θ’MAK?Τ.$/Lί†ΐSΛ0γΫΕΈτΞ)$’4X5‘Vƒ¬`š3έ}EX7bυeΪΨiz“©MΟQΈhqΊΘpzι·H!ž@°o}u€S'ΪΔ8άtύ(’gΆDW`γΖG.ž3­–Xόεϋ8‘W¬0²ΪΆΗ7οό•x%qό‰9ΕψΗ‘πiϊ¬Ήψέ₯CUz¨ςRΏ‘„εvΡτ0aάΨτv·‘‰. Χ]s=n"vΧcύΎΡFΉI9 /C0±{ΎŸ5‰d[ br8°ίάr‘†Ÿ|’ό€ηLΔΡΨΘ~V*€A\ηθ’Uτΐ|ταώυξ{ψ&―‡4z/_¬ήΆ›Τ +πυΜ˜·ςi{·bβE\ŒŒΔ(†Δώƒiny3nΎω6άϋπ“Xςω+ψλ³_βHΜ!,]ό²ΨIZj@Ϋ6˜φ‡q2•7š€¨'Η:mb#P²½šB”β@%'žΖξ¨(”YΪΑέϋ£Ώ>νŽD¨νΡ‹+‚ v 鎑δi0b4Ζ^q·BΖ•F½}5Ά₯Ta€ρΔVŽΧ~ό†εηI.ŠΞΔ$šΐ™^ …Ω%{/ο~»πƒR_|PšHΰNξΓw# θEœΝΓM·άˆG{-W|ƁΌν»χƈΡ#H0}ΒB›`ΎΪAAήΌψίδ™yσWοF!β…o\HΉβlΗ+39!#΄½`>Ή₯Εάu€ξΠ¬gD Ύ™ΠΚΦ΅σ$ν€θ Ρ©œΗcοΞ­xειΑ?Έ=WAU QFVo’XΪά›΅ΐ­ WMzΞHlE΅–£‘Cα“―αŒ_Œ ”ΥΝΊpΤV½»σvξaΎ€½$€eΧxΰΆΛ‰μΊ +ΧoFې‘δαf;Α» MŒ!Οφ f`¦“±~™_Ίc·€3f$˜I<ԝeΨy9ζKP< ΨpK ’Ω—εΑlβ€›1νΣqΣ£™k–;!_‚Η\dZ0Ξ«Gχ₯ϊ@w0ƒΗ]…ߏnŽύϋφ!·Μ}"ΨP9€ »φ^Δ<―GΗIͺZήK¨oκήk©š”νηΡ£ΖbΒΈ±˜xΥ xρΉηH½J =e(?ΞδjΨ)h 2Ϋ¬O2»“ΥœιάZρ4·6Ιr½zQΕ*™ ¬/#Dϊ WhΔh7žμκΔ“hή©Έ λ?νόΌΰζγeϋΰΩϋ±!έAυ”L άyΒkΐΰΎj%*'Ϋjx²Oό#¬`H‰sΝ]˜Ιƒ$·]ω;Μ_ΆΝΈb‘κμ$OŽE¨ΤW©7ή%mμkέJβ*ςξphՍμψ£ψŠ«κ3f`Ζ—sˆ-7 ί]c,Aϋ~wχŸ±ŸξΪ%}‡‰ς›Oxz„ΕΘjOψΠνƒv˜­vΞZ¬£mC†±mιΥλ₯7 λώώ0Ί^y][ͺRŘɟz‘€zΚ*μ'u$'•ώΒ― εκ0ΠTρpA'{q0Œπ—ΰσχžΖόMRGldύμŒ{Ί Ι$κہ„M°e©΄ Vϋ•ψz …—n*BWR/ΨΈŒ ¬λΚπ„ωUZ΅Τƒ€§W"¨v”6/’ΰΎƒ‘ŸWΘAΊ•bˆΜ?yσ~X† £‘™nGŸTpšo>iξTW›-!ζ$A0ϋΑŸƒ¨»o ΎήΏΟά1‰uΒžδ“ιΫ“<-­} ΕNxv™ИpF_sΖFΆαdκGr W¨ΡR-€ Π•[Z~­Z‘;Ω[ΛΘ™r|ί~τθέƒ“=mΌ‘/š &ιΌ› 2€Hζυ,£[Vόˆλc;’kΈΝΨ`Eκτς ;¨IDATΞΚιε-„NVψξCDΡ©W‘hΎ˜ΊSmšσX‘›βΜ`y(c:soξ©΄₯ΐΣ³ -·ΤYϋRMΣ‰Ό•3s?Δt6Β­HTL½O"ή΄2«ͺ4E΅zΩϋΓ’U¨dέp£_–ŽFfή>~­ν+?ύ$>ž: ξ{ΰw·ίBZΫΡμtB/žt7ξΪ€δΕS0ιOο —Rpš·`εβ¬Π‹iގc\uWΔUΓxd΄ο0’—rεVC¨ovvΦ¨)Θ±ŽFU0o€*@ŒyZ–άήB™ώ–­(//όƒiŸ ¨χάrγυΖγ› Ÿˆάߜ1ΚI51’S/.ύΪ[σΕ }ϊ ¦ΥNRϞVŸdiΛΑ ν‚:£%δ‘–Ξ€’σ5ˆ’7υρΑD4•}%ΣωHƒτ '½ΛAL’*+’Cγg4χnΞΤJD―ΟΩy1tΘ₯7.ΛΟWώΤLVRPΏGβ»ϊΜ†θIΎ>’lρ(―1=H½:’_Υ5q\Υ(|/ΦΣ„‡#€i5Π5‚Άά‚r₯ς”v•ΨKCΥ=²ρŠ΄rrrUΠ‚ΏΥ‚ͺ%„¬εΩκͺτιƒ!€Hg3nδP±Β ކυqΗπ·‘Ν1jΐxlŠ:©ΌJn:G£†fΒ#qΉ”YεF& ϊ⩎͏{5ΉQΗΉΐΣaΚ4γ>j[ςΦ²ήλz“–•‡Ρ½»ΰ›―ΎWκηf¬ΧuuNάΨΘnΫOΌ9‡'ά>Α]Χ_Nʁ*4/‘έΤ •BΩλM|±/sχε>χj¨2œυιϋΘBnΉύVŒ5ŽιΤ2nΠPξϋYmίƒaЏ»h;ΈΧQΑ=ΑύϋrΕ?„ubZΣ[χZΩ•^χ2’Ζhο?mΨ΅~f/ήΞrΉΧ]}5ά9ϋ–*-{rRŸμa†αKό-Ω3ͺ.―ΰ‘oς§ka©4I]b“UΖΉΙXΞ~Տi;ΏΚsSžL©)ΛΑΏ_Έ ežΙNžŠ#QXΚem.7ΉJΚΚ°cg|Ίc,%νδ!R—ΊS:‘#‡β©;ίΖ‰ͺMΞ#φΠ^ͺΎP?¨+κ¨Ήia―ηςmφόε€ΊΥ=Ηρc{p%™εΊω!5φω Ά)Nm£ϋ=CΈξE[7πψ«žwΚ€`;S‚…sΏE›^—#ξπ.Όπ§[”Ί@ς'Λw“y—τ€½σQ\g‡§χmΐKo½Oˆϊ ’ž¦bΖάuTχ”"[«χ€€ΉύρŽ/£Ί‚Ό ξ¬p›VΟG\r ‹+1μφΞΈμ‘Ώ#ϊdYSρΝ3q˜›Ω\’`ωΚdΉFc–ύκ…€#*H:¨θ€‹Λ*—@μκ5ŠFTܜ©,%ƒβ^VΘ*ς‚lΐ{Σv g™©‰XΌy7ih©“ζFgI69/Š΄\…΅oΑΪ}κ8©„!qšΌχy)¦ΏφgάqωƒΨΔ£₯’VS[UΖ9‡Ά¨wn‚ώzfs ) μΌΩ£1•Ά†3²kΦ£œ³J19Ε%&R΅€gQλΧ"0œ\νγF“Ή’œγy §R2•YŸ}€μRά²°zΕ*€eS/οFιˆM«)gγLαk©Oe_‘B8$˜Ώ«aΞO»ιԍdC)δŸ/΄/<’Ήrα±ϋ €Ό 'R…³dy‰ySŸΖΧσV!/?;Φ.εώΜ!υνLIΎζ½Fή»__|ύξψŒϋ8…EEΨΏm%ζ,ΫΔ#ΜΔo*ΞAŠp ΣȊcχΖM("C§fiV Nσ!‡:pΩ€ΞŠ=AΥRšr+eΰMځ?ώυŸΈœ6§’υΐNŠ‚ESŸΑΏI‘\PTˆθ]ρ­μ1ς8ƒ­²€TΐΙjsέΝ/&\†‰'βς cΠΎ '$ΕΚΝ+fM%6­\NJίξxςŸ3π—λB±ο@¬εΤLJd’©'*1χ Δ§ΒB;*7&ΛΈ ΌfΕOHβqεΠ°ήxς½°lυ&™@wοΫ†λΖRŸcίώ q(Η ΦmA«}―βΥOΎΉβΤ dŸ ²l’·oΑαδR\s矱ώǏπβΒmΌ_Ζ¬W—#κTΊ:";fZ5€²ξ[΄•*I‚SΖΑc/Ύ‹ NΑδ#ΙΑ&redg«ϊSΙίNήƒ©²ϊ3©‹’βΥΔ Η !ψκ΅)˜΅HκD!φn]ƒΉάο­&Ÿvy^β3σ¬EΏžΜš6'ΦΌOnBJuZρnIάρƒX·ύ$€—±)ΓͺέGy@Gχceά€ίy,™ƒ] τ>|δoˆŽΛYN;Dϊ_ξοδ°½Π¨ςSOΏύŸΫΛ4Ώ=˜ϊ!ˆ€σ‘Y„Ή’gΜY7Ξ€y(U‰qπm€ς‚ Δ’Χ ‘θΤΚ ;·lΒΎΣΕdΞΣ6ά)άΜ3ψ1Tieγ$OYth%4½¨’‘ε+,Gj©€]Γ{ ΰδNœΞ%uiιU¦ΰΎϋξ%]jKlα^Κƒo-Γ]Ώ›Δπΰ™φ\μΫ»‹§›*Ή :q? %WAϋ7/ǜυΗpϋ]wPC΄’8|½φ.6€zGΖΗμΙ’Q.ΩΏ‡/)π’ξ;‚ͺ§–œΑUdŸΒŽ˜4EΪΡ—ΑΚέΘ[±ϋ7#Οζ‡ς’< Ίd£/FξοΘ¦1ΝɁ1`θΕΦΧsΏ™‹ΌRN˜―}{Ά’ xξ•»Π‹Όq£°ew,ό8„ς\§Žδαμ\κƒ\`‹ζ₯»#q§Dή†>έ8؜Β;―ώƒ<ΓyΞφΗβnδBΙωΠ©k/Δ-™ŽΥ;ςςΨItν?—„dήί>ξrάό‡?’s{ͺ@E0–‘ΥC9δ·mވ̴"xρTJA~x’eχφ ψτγοpγwΐŸΦp*΄ω WxOlUœo7I·¨φίκμΩ±iω՜5F―ˆžθέɏ‡$ώ‰$“{΄ΓυΧ\[Q&ΦZ7ͺEϋθƒž¬£‘ύpίSοp•„ΣΩUΈι†ΙhE¦Θ+–‘Κ‹d\ά€Οˆ?‚ΥΫw#|Θτ–ƒ άΨbφBψgΌͺΌκΖ 8Ι“tέ{τ@[Ίs Δΐ«.ζδ‡Z^<Œή$ιϊη3―p`Νδa”\~ύdςX΄γ*$ sηΞ…—ΊwνΒ} /vς²2η •“¨Γ¬Η»vD[žΞnΨcΡXΌx)BGގηcϋiΛΥ/MOŒ$ΉΡΑψu&EG†Ε•§žΞυI!v²Ρ±'τ|Cϊ ’'ΛRŽοΐξγιπγL»΄EιΜΗ²-ɊZ*±4`ρΛ_ξ―m_³!}G`xŸn|瀃ίσ’β&NZϊ^εŠπ^‘ΨΉn%*<όΞϋ¬!©ϊHOC>IΜ;wνJB f()ΘcΕʁUB½iγ .#“rβLLτΨrCΨqΔΘΆœFJ:Ι›όIxΔ9’ZΝq)λI•Šβ‚`₯“>ώμ€ x HΨυδD“\.*%{œ§¨Ή’΅’Λ€‡τ™/κqyΓܟazQghdl~Eξy™i\MeSυΔ™±—ΪwμDͺ\^κ"™T&O§ΥΏ;WP• Ϋ?°|•Κ„«"ήΨΝΝ+Πƒ1ϋ‘ΆΨφ―ϋ/Ν=Š·ŸŸ‚V-H Λγ±,oc σ³9sΚ‡wΛ6ι¨o——ρr`17ΦΫ©Λ&m2Œ°K’ G"Ή9­δΐΩσΚΠ4š¬_ώlLά§).rY7pU(jœJ–/―‘Pf¬ŸΤWΚl’ͺ.7ͺΣΪq"AΆ)’-₯σtM-I|B™/7δηdq•X£κ—μmuhO5ν€±ŒKIDέΎSZϋz²ŒΩΰΙ7.υWΒ½YΕI>¨w@bR)HΫs€ε€3•MΧvμX€γΥy¨ζΚ•‡Μ}ZRΕI 느@σ(t‡ NT΅hΩI»Kf‡ζέ¦:ρb- TUΜgVλλ1η!Έ—Ζ²ςΰQΤφ$–R7Ρι^€y†H6Wi’ζNX”,€MPΠFξ΅”KN6Wz"MzσζΣ‚εŸ——OMCό;tT1hχcχΛϊ–ΛYΌ'ˆ~TŸ{™ld0L?Cnm¨’Ιd|gΩΎθ¦H¦ r2©aΰA–G¦<δ΄XΫ.GJΦ!q««Γr3Ÿ«Η"ͺηSƒxጚ1±Α«³νφΞΐSψL'!™#³a€k;]Qυ·† ΓΈUž­¦ƒQaΠNΎž½Ι&•ΦΛ«πΨJη-'š$z}κ€Ξψ1a2θ”κ΄J{ ^wς]ΒΥnMϊ­°θPδ!y“°e&W—WIƒξ MΪ%ΚN"r0*^KΆ’61F^"Η4ι΄;₯‘ρ›<‰ίza0<#3ωfŒ€Cβ#Ντ :w§qO‡F–ڏδΉΜΔ­Ι«μ}q"άΧγZ–`Σ¦m;jΪpΆ.F₯Gά[²;%/•Φ)5qΠε*ߌ1yr,gσΝόJ£΄,yιΈ$7ζήC=YΠ₯“’w―„c·³Κ@Ϋι2–rWu^ΉkάNάΧΙNΚOdSΧa«oώΕ½ΙΕ’fΊ¦œΕŸω.2c*~tύQΦureM=Φ_¬οτoΒ c•FGYJΎe–ΝOΚhYι΄›4‹y–?#ΛΖ&ζ› _Υ!¨Ψ‹_±zΰΦq8¦UΕcΙZ»sθ7$<ϊ5qθ0uω9ΪIx&Ζήδ£ώ»„§Σε˜/ϋ³δWcΌͺ4ωŒ•YM:—“s=Q2²δͺƒνXϋ³d.α2L]ω#ασΟ1’oyWωΰ7νZχI&O*mηαί]œ‡τΉ‚ψ/–@ey /_•)a5;Α6ΌΟBU’½Qώηέ•5—ώ$π@Τhθ ±ΖFBg7βΌ1wΑ4ϊθΞ―ρίh ΏΑ€ηΌ§ΕΜzκ₯­nvXΟϊ_šJ«±ΧΑόΆ8$ ™Ÿ9LΆt°bΟ<‰œΤ―εN\J{:¬™•ΆmϊΏέ½““σ^ ίΔ₯Βv(› —Sv}­—žF]4niό5ώ΅,ΏΫύ4V.F}s €‘η³†Ϋˆϋ_ceβψΉr:WwΏ& Ώϊω FπFH”³›³Ή5ίϋ•pΓw~oΜΟ΅czμ½ίŠΘ1ςlήεπΛ’–0΄η0šκψIψŽi4Kq‰ΗΔ%ߍqΆkκέΈoκΧΘDΎ;ΖoΒkΚί―΅wŒοΧ†ρǟ.{#UVΗ―ž™(σΝ1}g«ζΏJRβ:[܎ιψ5Οη’ΎsqσkβώέΟ@šΌ£½γsc=[εttίT8MΩ;ϊ5ΟβV:όΖfΗΖΝΉόͺpfΞΪΟωθ~­t2Ϛ”_’οΖͺί™ΤwΣt^Ο»ρέП=M΄t&M”‰έ― ήα·aL­G£g?[yλό4ήqͺ`šJ·ΗΩΨ0EηΗΖ9Iη’†sqγœί³ωiμ[cvΞ97M΅Αsρο^SհΦ8»s~o*όϋ :€AW–Α2–'νy@±‚<Ό-> _€ ^¨ΝΩτ‘γ‚β¦’G+ΥΖ+νšψ™IR}c…α˜6q`ή΅c)ν7ξθ^D'δcΒΔKњGŽe°”rf,’œzώLή†FPƒΟ AnSK›Q°9<¦*ΧHΪ‡"8(,άf₯W0žχlΘ#2€χΊΪπ6Ό‰«š·°ΣRyY4‘όΦAŽ{ŸMςaJΦ x<~ΗΞ#(oζΙ»8}ΠMΘ¬$υtS?ΟursΆ·<(Ω7φ­²Όρ±ΌεΞ{K‰ΰKdΗπε0‚>tQƒ˜hΆcήΘ4j-@όςΏϊηΟ£$Dπ”Ό ρhΤΌϊχ‹η#…–›ΗλŸ2xΘΙ9y ζΐΦUΈλΰ»ω?ΰ‡ω?β½ηώ€»ŸΣ˜<ς]*€„g*ω•oͺΡYqΩ½?nŠFǎν°qΡχ„‚Χ·v₯!ˆ;εV…§+‘„£+‰»‚XU•g¬{κ$ƒΆ—δΚiρ/iQαH#4ρ[Ώžό•–”¨J[Q‰ΧnƒUϋNΠ…=XιΞD‡eό˜τΥύ֝œv:ΣyςžΖ‰¨„ιƒΥ{‰ΟΖΏμΫOq烏cηαSVlZvΊS‘΄ι|ΘGAΈu§Β”ρήIν™|όχΡ΅Λp·s΅αέΒ­oX8 ~΅5Φ bρ/ˆ„‘dΒΌΙ³άΚ•{ ς¬δd…"ΟbWΖ[Ό«ΝΖ}ϊβI§Δ¨–Β΄Μϊx*ήύπcΌςΒSX»Zqπ(JΓ§οΎ‹­{α«Χο"θήο±ηX’ς«Λ@=κ΄Πς†»ζˆZύϊDφΑΎcΌρΞ»;Φ„Ώ<ϊ(3—!”€IŸ’‘ΞBηAb²+χ[δζ―v'eVWwT½d¬5@Ά.œC΄_ήώ₯I9}€—DΗρvy–z―_u>ΨΥ― ’]ζrzGΧ7Ι“€AμΕΞ€Υ|WA錫Ηδ‚+ΨΖ{ϊδ‘OΗmΒaPΚ08νητ~<όΨσ8–@Κψh fݚΉt+ Y?ηγ—πνΚ­ πT&LˆφΛΌ―™σ1Ζύλ ζFΫ™€ΩΖ£·nΔ₯γΗ#—p.bœeaN¬Ι7ρ-ε™›r ~ψ#vμKΒ—όέ―ϋϋNκ›ωƝϊu’…ΤI#7υ+²“0-ΉιΤΙ4ކbΘPΊhϊ›xγΛHΈ€­ΔŸυΔ°$5@Ϊ©τ8•JG…­ύo§ .ˆ!H ·8'Ω6υυΧm[φΖΨJIΌ“—W`γΕυ͐ΛT—εΫV.^`;t"ΙV^QaγE'ΫϊΉŸΨ^ž:Λfqέ4šFVDeΟ’υ½Φφυ›΄}°p‹z―(.΄ή"Λ©ε^ϋ³<ΩΚrSm‹όΞ–š_bΉ³ϊωF`Θor“NΨΎώ;[™ςUe›ρςƒΆιK67£ρT4pVΟΒψ12L8ΈVj»mύαd[Q¦νΉΫ‚m·Χ?ŽΩ9ΪιηZΫ‚o?PaŽΉχ9[Rv‘έɁm?ΩΎ[±ΣώήΨCeIŽmώάyΆΈt-C˜4pVYQf;½Λvϋ¨αΆM«οΊJΤΪVΟύ·ν‹–Ϋ² Šlωy6^γχ*ΫOsΏ°-ή°WΉΝO=a»! Ά§ίœc³hΎμDRφΘX<Ω₯LΜΦΜΟP[\ͺ&‡²Ωjl±Ρ[m=(·‡^ώΨΖKvo=ΨΎΪΆr‡&Γjμ»±«­ͺdύΥ¬=•εΆΗΊΟΆb}΄ωάΰΧ± +£~ΖΒΤqΗp+™cί”w_¦ότΧΓ{ΧΪ–nή§^Κ‹lΓ:Γ6{ƒΞCz\΄νΗ•›ltxγΫ-~Ζ–Ϋˆ(3N±έ>αj[LJ1–s’f{Ίk+m‹η|o[±σ„r–›g»6μ!ΫσŸ­fMΠF·΅_#5‡x¬°’~Zh{τΙmy•uDVςΙτOR§?yγ]Φ‘Ώ+NωRι΅ό/\{ ¨}eq:fžxώyܟU†όΛ'R₯4ΚαΊΎ΅"ΫΨΛ―& ‹Ύ«"ΆŸ :‰=rΙΔ=κΪ…Λcb'<…Άέz’'‘ ԜEλ―%'ΘA"±SeEvwυηΜ<‚Χ’‹pπΘQδ–œ°#―ωGΒ‹ͺ‘<۞"QQ9±ˆƒ»†#«9ΓΎaΪr,nŒ±#‡«ΈN%rZoϋaΘ ΑT‡Ήαt\‘@xk™T–©Y…NθμŽ>”άTfbφηoaΖΒ EPސ%EZv φΨ‹8"Κ†υ†‘aΚ} ŒNƞ&!QΪ‘ΟΌ_οp”Sν%€5n^-y³=§“³Ήό¦ˆ†8¬7γ‘Υ’ύγNβ₯.ᣐ·>O­€BFΌ*βαœ<Dβo5χnƒΊG(r98A(“bΚ@Θ…ϊ‘_ΐ«iU=ƒ0σγπΙ”Gρ2oΧO}i όXS J­Šˆ Œ”„8EφTΞΙά€Γί«~ψ†”Α_`ώΚNπN€^ήΤυ”QKHέςξέΒ)³Φ„·Ρωα{”’Η`ρœ·1/' UΌm>nά8DΪΓΖn!—PΔ.Ÿ¦M§žΈν©—°-΅\©y™ŸFΒΡ³Ey“GκgΥƒΰ’­Ί-¬ΎQςαύG㇍?`ΰψ[p5q·&€όLgωdy΅=aήχλIΚή(<ς‡+pρg ŒΘΘέ¨ΦΛ%?Ε©ψΕχЍ,=BƒPJY&QΎ6Vˆ$ˆ€δYfυζnI%QbXo₯œ=y ΊW_~„yˆ‘²ΠǞŒ%Y©};aPΏ>hVUJ΅bakͺPI$…œζwι%¨)Μΐα#ΗPDΠ§$<κέ-˜aP OΒΨΜ΄dd‘£"ΌG8άΞβUΔnή~¨.+@\RϊΒ¨π½]tέzA·šδ©’8l­;Eš+01Aέϊ`΄wN<¨°ΧΞΤΈ©ΊΤNn:Sκ^™‹ƒ„Μ?Γϋ=lCCP·πš^Εξ^…#·ΏΕGFV>Z’švΠΐΎDΠΥj/φτ:œ0Eέ”ϋ‚ή>e(’Ψζ¬E‚UάΊΌ³Σ“K΅[qi%‚»φDί‘Όε‰“q$(#AWqφ‰C7pΨH„w¦κ•ήJXΦQ7wοΪ₯ ή•TŒ ž…§VζΔ’ΪΆ9 ώ\‰=χ ˜e$/ΠΈ±zπσ/-[Ϊ…Fbνκεˆl[‰ΙWΓέOΏLΒ~HE‘Z Kx dπΠ:jβφΗΓ‘ΣθAl1Ν όvΫ₯γπo °βw?¬U'*)GεJΠs‰2ۜpD„υρρEEAή{ώa¬ŠJSpΝίΌσρbιΊίʁ"@βD΅ΐO+— ΈΊύ"Όe+MνΡ¬;Φ-Ǟγ©θŒU_Ό‚Χ?›Oέ|6-šNφ―Λ°rνF¬ZΆ†vuhΐB°νξѝΙ4θ.H«ά„9νυ™sΘ„–ƒŒΈ½ςϋ'‘LΆΊκ,<2)§J›±"¦Ρ‹/αpBWΥ…xη‰Έξβ.iψΔΕxθο;B D]€’dΫΤαtο`+τΪψψρλΘΆ&Π)5ΨΉ~%φΔ§[g¬ϊτoψ׌ωάk:CςoqœΈx³l¨σZ₯΅Ξ?up;–­ί Ξ]‘qh-nύΛΏOw Œ–ƒ;*x»jŒjJ£κRρ_9a%€ƒr4Ν8‘Έχω―πΡC7aϊ=·£;·MΡ§ΘΤHVΌ=ΰΕ2QζLNΗ§bЈήπP…―;MΗ°κ?ې HY˜ΐNˆ ο;Wπχd2vπΛ-»n΄χ«ΕψώXuŒeθ‹πφ8θyΎ%’ŽFαΊ«Eu›0κo/N#η ©8ψύ±oΜZsP…ΝRR „Δ½Qολ—ΜΗξωθΥ=”@ŒΛq*SƒυΙώ‚΄χί{ϊ,=”A‚­ξψβυ—°ƒy/'wωgoƒ|kΦ­ΖΑ£‡M«ŸV¬η_άK“9ψχΨ«Υ;f@’IΓ*ςͺžς& υQΙξΫGβV‚&³NέJ&ΟW?!ί λ”ΔOU“Τ*_Βϋψ[ŒΌΧT‰ΚΖͺoT]ΖF­ΔcŠ{OdE/Γ§σVŠS5™K Π¨ύ‡ W”Œ‰cF`'Ε|F ‘g4λγŠ…ί#>§ ‘Zγυ{―Β—?WƒΤdά9ΑθIθvwˆˆ±U"8_ƒ#C5DΉŒΜVš ΣbpγΨ‘ΘρG¨Ώ;^|κHδd³²0 /Ώzu:σX‚¨•³π*”k ωΫ?π$b¨C€Εο#£_έΎ€’!Σ"ζ S+|qωxl„&ͺͺ1½ϊό?ο‚ zp`SΨ±KLΌ|ž|α-ήΎK>y‘ΠΞz?@:?U5YidΔ'*S'ŽΒΏ{?ε †8c…΅[—απχΣ±εpž~ι…}oφYΤ/g•έzυ§»+ΊφκΛ kbbσ(œ<Χ]9šψZmHw™€SIΩάΘ/Γu_#–¨·έϊ Η7ί`α=ϊΰbRM^ΔΡΎΆJ|ρΟΏ"‹³Αr"οΆλ„w¦"•7W1H―7 w?8ό&"8#yκΥ‘}†‘έΩ }Q˜—…‡nΊ7LΊ>π z^ΚU…`Ήα‡>Η%CPΟO8&'d‘uϋξvωqΫ€«1™ιΟH&ΠbΩλœ »Ne΅i ž~θvŒyψc¬έ}χ]?‘λYύάοf!‘Ιeδ ΰΜϊƒ…kΞ½‘”S{ ™NαδQΉW\©\ΤV’²Φ ƒΗ݈οή{~ΆμaGξmAŒΧ’τkΔ&‘ŒΆΎ\aν˜σWYεΤΒpRζ&Όx 1ΙͺˆC%ϊfωγ²ίž|ι,›’μψ΄n‡a#Gγφ{ΒζΜx<ΑϝΣΤxŒθ…lŽ#θ‘F •ώ¨^%η†X—ϊ‚š«Ί*Ο\yΥUœ5ξΔςu›akΫ‡| •TGΰΩ—>şo‡ΛξyY₯Ί’–ρft)Qf« Ž—Iε”š$½"—3λΉη$ξœ†’Ρœa₯ά£ bZqιήΒ' Ο4΅ B“Sχ ΅e(§ nδN#§ΑΒ.Β™e9y ·±Ψ»v‘Αχ!¨ΟE6$ξ„Ν.”TL-W1=¨b“Y|cuΚ—]w-nΊy2{ͺm Yλx£[Lnz Šš“‹€l„Ύ¦ΌφΎη΄ΰ]…v{υmcνSwΓ·-8B4–~8ͺŠ!Ίι§ρχ―ΕΨ»Η { κΘ•]iN$α’!ƒΘυα‹>£&!ŽPδCzvDQaOqQ½'@„ΥEX0χKΌυΦΫxύ·±aΫ!»jS &RόV#T³p>«†u’uϋψΣSοΒ;“t°μ(Εx°‚ίχͺ­‡pοw£ƒJ―ξLςΔ&η_Όί΅™'‹rY@c§!γН\ρ­ΫvΖ,’>wηUG9U#BΞ€JΙ‹2vHW¬]²{ΈΑέ„aciAώτUΎ/§D*―Β'ζ¦ϋEωΚ'Θι>œ+‘4ΦΝ=cςνΡW_wR£·bΕΚ-¨υμFζA]ή>δν%Ί³?O7I[Ι%΄ύˆQ $laύΙ―[$b” t'μCπΌ–$hjBqτd'™jΨ9χκӁ\υλ”‚h±j²dΛF@ͺ‚ζZ#Η^‰vΕX°d)βΉb χ'R0‹ZVR‘l+Ύ 3ψ’ρθƚ/`’’&w H4=!νϊ\Cr¨ψ΄ ΐοΜΗμ7Ÿ@ͺσΔΘ L‘§LŒD5™tΛv$ΰ‘ϋ&‘­―ƒΊ•\ϊwξEΖΣ‘ΨΊf1ΆοF狉,ΡΈωR>,O16N>"»3‘ε8– žψ1|1¦ιΙxU1ς]@L₯¬[ΆK¦a?ΡyqžIdεe+ΆβOΧΙ lΚNΒψ_5lэUŸπά#m܈JdYV:cT…α‹Ρζ³pc3ΛΙeΌι|ΕdPίξ;ΰΟ|z%–¬ή‘μάXΓL§ -‰Ά…ͺβλ !㿘φŠΌ;γϊǐ^!φYMψΰ1ˆ;vC!w>…4R§zQνΕj Oyτεsόφ(’Γvαr:‚#νΙ“M~ b―žžΠτ υSφ¨†°72in<ύΓγ΄jŽ©3έΩιŽDͺ½,ƒ}‰ΰYAΎ‰7ί|½†’θιZ„uζ~9αΔΪ\e©xdfdcηiTB*―Φ?!½Σ†(Άo~3ώ~.ή Ϋ$({O:KλΞg>ϊDφbCτ@jb*C"±™ τƒίud§x#Ι’R臄RDi5{*-ΘCρΔKοβnοuxρΩgΤ*Ρƒy*Ο8Νˆ°ξαθΫ§)‹)›\šQN>κ¨,ά[‘uo.»l"Όβ2τθήI·zΖ"ό,B¦cx€ρJƒ{kΚ Q‹&΅”*Ι Ϋ£1ωž?‘TΩ‘½-ρgL½ϊ`υ$ξD!J­Μ€Ε˜ϊΈ— ϋΠΓ‡Ύ“•γ!FφD/žΨκΡ΅( ΉgΡ‚³|OΎΔΔGο |ψlΞΒ5WO„/χLx2s7q~“G !ρΡ{SΎm»γ“΅I˜υή΅ΈrΜ`ς€SαΙΚ[_Q”…Ο§~€RŸΞΈρζΉΦMuzβH:gpΥTŠͺJrMœ©φ@D0DRφαέ»’(+‹'ίΔE,ďFά­³3uVzY5XXͺ•υO:o-8©[Ύ­Γλ\‰>»~Ρ·X²+Χ^&ŽΚ½χ₯XUέd|r”\Œ¬HΊγ‘΄‡‰œD{46‡hΖ=(ηH$dΞ#­@6WΘΚγ–ΙŸτ ₯άΗΨΈλ~wΧMˆδ^bΝ™2ξ½ӅΏόηΖ>ήyCt<ΧOš„ŽΎDOVυ…=Σ HΜΪ0OL‡€“‡2ΘΉ“¦ΙΑψQηN „R9σ] $τΫ™+ιK{α9S’SDζ͐–ZΜzΞU›ξ–¬ΊgU4+¦₯K η7ˈ₯QȝύT7:™ "Ȋ;@^ŒήO½Ÿ€ύ‡ekQT)…WG£χsZΡƒm•9~[’ˆoζčό¦Ώ ξΌζbDqoB5]ΪΚ-k/šS\j–©χότd<ωΪϋ„Co…bB/l‘°‹‘Α#‘‹HφΪk^{wΖG ‹ihΉ‡rpΓQœ<•BUF.“‚Ϋž{GN%γτρ}˜ώΕ·„_ζ\“μtλNf©a‰H Η*dγ¦αaζωtF> ΘΙ]XXˆ΄LΡ%Σ°‘m#ΟD +h jήτ3²ϊ +ρήώτKΒCηΡQ›ώ»BΟΌy,8Ρ„Ό—Ω Dfuš‘.&%5C,qΧγ―ΰώ1€rνχGœL+@».Ω%7ώω8J‚‘Σ$₯ω|ζ\ή―(ΖφΝ«Π¬m7oγώΡν•-aΘέ‰SΘ)Φκ2ιΰ‚{βο36J4L_7χ[γβ‰TύMΊ£bxGδ4f~6Δ8Ε =†κΆψΣ±$^Κ'wό 6ŒCΙ#ݞS­ ΉB©Dμβj_ΒmξV‹„SG±mη~³>PQυλΧaθe—!Πǝό1ιψτ­Wp8½˜<i8@^‘Y_ΝA*;žτΔ㘿`)7Œυ‘\©ͺZX2*fΩ¦/'ξV‘ŠΏ — ΏΖ„ΫžΔ¬%? w—Ž Γ†Y/γύ™σΉΉ›ν+Δ"ςV Ϋΰ™βTœHQ‡V-Ÿ‰OΦηͺηtμAΜέΊžpσ<Š\[Ar tδRί.Fδ–La1WΓb6,[…2ξέσδKxϋα‘<"­χ,taR Er§'_}Ύάƒ+ΞMΔ²wMnϊTΤ”s†γ\±ͺΩΝ—œcρΖc·bξO[‘•₯ίΝΔΦqœψθREΘrœzI†„6AL!7·‹'.F Ω—―>Δπλ&6κƒrͺ;θΚβBό΄%ΦήΉΫxgbΙ"ΧζΙΑ»ϋΘ―²ŒΪ„•“ .:6ΪΧξΫ1ψΚΙθDΎμάΎžƒqBzτ„Χήεxφ΅‘”ž…CQπε<ς€XκkQΏΙJ»”²όπƒop<³₯€"Ψ·χζΜ]Σ©ωjψ0…Ψ£ϋ0νγ„*χDι“ψ`φzΟζςF ŠrS©ζcƒUω=ƒ₯TIVΦΆ@$Y.—|ό,6gFΧŽcκ’νHJΣG₯5ΫxχdΔΨqxδ‘ΙΈχžλπΰ}H;kΓν·]Š £ϊ šδ`+ΜΓΎγρ ςRuNη]Eψλί8 n/ӜοΌΪž€š7γŸxυ›νπͺζώCΖ_}#„s&ΚBΪǍΌ7οΗυ—_ ?Ξϊy<;7oCχ$E ηr“F‘• ΎΖ‰3νpσU£=hΪ±-ˆ/υ'ύkυ°2Ο—³ϋ΅8~h6m?J~wtηD»φυ©ΑΌ₯QΛYIκq=ΌggςIG#)«”ˆ°™™8c/oλδdνΓς=§1tΙ‹ΎiΫβ»eYΉ pΩ57’[ΫΨ°z5I׊B’ž`& /ƒξ$2ΡαόŠH#iΐ—!!en<Σ ιρ'ΔΩGξ·„uη>Msζok4; 7žΨκ€Έμ,v¦5H‰O@QU τŽθ‚Έ˜hΞ|byΪFό„*Ξ™₯η₯%bγΊ ¨rχ₯ΝΑ‘!δ> Ζΰ‘Χ"λδ\Dg6ΗΐƒpΡΕ—!uΫ\,^»“ͺ¦LL˜|†το†Γ»Φ"κXC>ΌΒϊRƒ‘IVΊΕ‹r3ΩOq.΄&‘˜€Ž‘3΄/*έZ’Έ'»‘L«y6fΜ^„ΈS <%u).M\s OnΓϊ½§Ρ+ž^”ΣPzΨِޕά{vlF W+ξ€%ξΨ)ώ~-³{-F“`«mh󏖝ϋγΊΛ/a˜΅$ZŒ™³ΧpF_…­Χcφτ©hΦν"ά:i€>\υ―op/ιz©«ΦυO6ξ9Cεΰ²zΝFx΅β*—œεǏb#ύηTxαΝχ>€^} κZvΐΕύΓπΩGSse€ ½‘α΅'HqQήϊ` ΐΊ"²ί xζGa{t<Υ„δBχαα“ΉŠα©cIθΚ Α ELΤ‚§©„8++φ06“Ιэ*Ϊ2χP\1~,;$΅ς™KPΦΥ ͺ1-1qI<μP,žξŽ™Ž<-ΒˏΑ!]ΦΑΣ>ϊ Ηy²Λ―co\?ω2ϋI&™Q—δgaλ¦ΝHβž_ž=a+ΙFΤ‘C(χπGOς}Ÿ>ΌΙ9±$jꏰ.B¦οIIYΛμ?/; W­ζ›œk† .]ΘuBn—aΌkτ5ςΩ/»s?ΔΖ½ΩWλ Սά§ΛJŒAjΉξ½ϋ6΄ς¬ΑfΚ;―°š+ήξ\1υΕ%—ΐς/?β^θ!d7ΓδΙΧ£G/“rr‘±mΥΨΊj#ΎZNξNžΆo9Œ/Ύ‘ϊ”§.―ž8„ εΔ¦SVΛ•hwŽγUmΐIFsφ% ΌƒSιιΟ“fΙ†Ί± IθM5ρΑƒΠ/Τ3fΞC.WΝYδΨθ½Ή:ξΐϊ*˜uV~Ν‰@Θ9”JΒ°žTp“><}Ό#ΗcΥΩΖ(ΏζεΖ/“ώŸ4lΫjvΑβ,“Ω ΈŠk>وφ#‰‘1<ΞWΖKN­Iϊ.ϊNΩH-ᆀ§·Uz6%3₯κ έΈφ&έ­PΚVqOE[δdŒ0υ‰α©mžβμOT@|ΥWknL ±NΥ­X1¨Ο-&ϊ«_Ч° €ϋΝ8Π΄‡§5πβ• mI%ΓB9Σ_Δ4y΅lΦ-IC’›{‚*9Φ*'sδΖ΄ ϊ²ž€¦†³ uΜ›³BC$_ΔHύδ•:ΰ–3>Ι€όIˆ#Kτ2nς y)Τ J7lρΓ–:]¦γγY2n`Wπ―ά¬–c›nœ- C’ή΅P›B $7ωEΦ"ζÐSΙ>‡π”’θ(eγC™Q&\ͺ΄Υ6@F-g«rAΠ‡qH=­¦<Ίw# \ IΐŒ))ΜWεΨ6P•k]ΣμΌKΉ―!jͺφ„ «UK_5+–]TZΑUc ™ήH€Dc£ZDNmΥͺK]TθY³,YxρДq1 ΊZ·iΝ Z­©² eœ‰žα¬XxήE({PΒο'ϋW’ Qυ( ːwO(Σ ‘”+΅α’Οόξq’ΔΘƒυ&g8ΰ ρY)ikΟΤRE# h)$1’>u&”eΗ΄{°žz°S/ζŒ^–Z΄C+[―jητR)u•„gŠ Œ².d½”Ω§!Xς/υMꞬrσΉΒ«Ά1νx3\’ΑΠ­€BV¬K²²—όΙ'!MRi‘A]b{9±θΞΌŠΣVp΅!Gά[PΎζD΅*νIβΝΛ%53K HΥΒ׏ϋk\©±Ξερ”bM3¦IΪT3ͺa+Τ*@!ϋ[ή\a΅`ϊ₯Ž³ή΅β1m_{ΦρΛꭌuΐ&3I§$”©υΰ$Ιπ·;¦΅„mΆŒ§„H‰«2yΙjLϋΣΕ"Ο"Q•KΩ‹Š-7'›-Սuά[©ΧΌΘ)ξh$Θ°RδI5œ¨…eγ§@΄μ«$ο«ζ‚ +…"–VE7ίMA5υnμUΕ°Ϊ­σ·_ςξΏψmΆ€Όadυlλ½ό’œ·’†²UVθFi: ‡M>Φ“U†ΞώλΉ1!9Ι£Q7βΆ‘°UMΊ·Βwώξγ³εΌήψ#ωpGμΏΛϋy5Mδχ\βh*­φςψΉŒ7‰crŸλ9mςC=Wφ΅ΏΓΑΚΩ4HΓεΠ!ΥφLίηΰΗΙΙ/Μ‡“ο†uε7†ηώOοxΡ•³@LE7 Τ±Γ3vƍψ­oηf#ƒ=.λ›ρk·oβAΗηφYά9†ι˜NγΕρ»±ΣΏBt§Uίώ,oN^κΗηœ^«ͺi…)­R*Έ“‘p€ΣΩ­%CγΥΈWi°βplΞ:mυΣT?½&€Ί2Υ6:έΎό9ϊ1Ο&n#?Ι’|“ΏΊo ;‘Ίouq;>™πΕΞΩ­ω&φςgήύŸΛsύ4Z>œd+ΆΞρ7ΆIƒ³[cοθΗٍω朞ΖόŠ[gƟΨ7εΗΔ!ΏΖc8& GwtI·υmύΘ]ήuaΪ]KΩΨ_pŽΣωέΡ—I³£y6inκκωΩόΏ­Ώxωo›+_. Έ$ΰ’€K Χ—.™Έ$ΰ’€K. Έ$pp η $——\pIΐ%†p eβ²qIΐ%—\8 Έs’Λ‰K. Έ$ΰ’@C Έ†2qΩΈ$ΰ’€K. œƒ\Θ9ΙεΔ%—\pI ‘\HC™Έl\pIΐ%—ΞAδ„δrβ’€K. Έ$ΠP€‘L\6. Έ$ΰ’€Kη ΧrBr9qIΐ%—\h(ΧP&.—\pIΐ%s€k9!ΉœΈ$ΰ’€K. 4”€ki(—K. Έ$ΰ’ΐ9Hΐ5€œƒ\N\pIΐ%—Jΐ5€4”‰ΛΖ%—\pIΰ$ΰ@ΞAH.'. Έ$ΰ’€K %ΰ@ΚΔeγ’€K. Έ$pψ?·/H2—μIENDB`‚ignite-0.5.1/examples/notebooks/assets/fashion-mnist.png000066400000000000000000013012111465426447700234260ustar00rootroot00000000000000‰PNG  IHDRHΉ;ΤƒsBITΫαOΰ_zTXtRaw profile type APP1™γJOΝK-ΚLV((ΚOΛΜIεRc.KK£D 04006’F@Ά9T(Ρ˜˜›₯‘ΉY²™)ˆΟOΊh-، IDATxœ€}w|”UΪφ™ήϋd2©“N "$Aˆˆ  TΤUWve-? –eχΥ}υUwΡΕΎXV@V‘’‚tDH(©“>“ι½~\οsΎ‡™d2ϋ}χωMfž9sκ]―ϋ>Β’ββb±XΜγρ€Σιδσω„X,ζχϋ9!D( <Μαpx<žH$βσω‰Δb±tww“$ςϋύn·; ©x922ΒγρΠN(ΚΘȐJ₯‹-zηwΦ¬Ysϋν·766vww ‚X,‹Ε’Ρ¨Ρh|ϋν·ψΗ?²[γρxΡh΄€€dέΊu---2™,D£QΌ …b±‡ΓΑŽBŸm6›R©T«Υ<O‘PlάΈqΓ† X—„^½Ί±±Ρf³‰ΕbΊ|¦³³S*•Κεςh4Š!H₯R§Σ) ½^ο₯KGΟβββ{ξΉΗl6£3b±8ϋ|ΎΌΌΌH$rβΔ .—[VV¦V«OŸ>­V«ω|~ ‰DΑ`0gee½σΞ;v»=‘Ω]»vI₯R‡γt:₯R)ˆίο\.Οp8ŸΟ§Υj…Bαΐΐ€X,–Λε―½φΪW_}5jW·lΩ‚Ρωύ~,+&333Σνv‹ΕbL‡ΓAαpX(j4š~ψα…^uΡϊι'“ΙΤΡΡ‘Ρh$‰Ωlž5kΦ”)SΜfsGGG8Φj΅ΓΓΓ"‘Θνv{<žŒŒŒ‡ΣΣΣ“ŸŸΏoί>ŸΟ—ΠμιΣ§ΫΪΪL&Σΐΐ€ΗγA'Ή\n8ŽΕb‰$‹D"©T*°J₯rΉ\B‘πΈxρbB›>ψΰ³Ο>λρxθŠs8œp8Œρ:œϊΜΜL.—;88ˆC‘P(V―^ύΙ'ŸŒ:Ÿ”¦M›VYYi΅ZKKK5Ν[o½e΅Z !ΉΉΉ+W=ΡtBΐIΞ”V«uΉ\O>ωδωση“»ϊϋίή`0X­V@`·Ϋ#‘Ξ;!D‘PˆD"—ˍF±-y<>υω|ƒΑλυ~τΡGcM—Λ…d‰1DasΪx<ŽƒA£Ρ8888yςδ±Z«­­2eŠR©<|ψ0!»4++Λb±πx<>Ÿ?22’““™%‘Hτz½T*ΝΛΛσx<Ϋ·o«Ω7ί|σζ›oφxΏΎΎώπαΓ&LΈxρ’Ρhœ={vqqρΠАJ₯ςϋύoΏύφ† Fmπέwίέ²eΛφνΫc±ΨΪ΅k,XπΒ /άxγUUU@,Ž-Fsss‹ŠŠœN§X,^»vνwά1j³uuu&“)‰8Žp8 φ i’=sζΜ]»vY,–šššΦΦV§ΣyέuΧ-]ΊtΧ]ωΛ_h#|>BηδΙ“|>{2“Κq΄Οεrω|>ύV,Γk©TZXXHα•ΠU―ΧΫήήξσω  )BˆH$βρx^―—ώ ₯Χλy<^YYΩ¨_½zυ₯KέnχκΥ«F£έn‡Γ*•J,S΅„ΓαL:ΥιtΆ΅΅υττ˜L¦GyD"‘|ϋν·Ο=χάXKΞϟ?νΪ΅n·[(F"Μ@([‹Εχή{οΎ}ϋR+ ƒ‘°°°»»[©T‚‰αa.—‹1ŠD"»έ>qβΔΕ‹?σΜ3&“©――oΜ9Ο=χάμΩ³§L™άάόΏkΔnW&“CƒΑ@  Υju:Γαπω|`„h4ŠCB…B‘άΡ)S¦„ΓaΏίO•$ΒΘr<@_γ/4@ΐγρB‘ΠάΉsGUμτz½D"ΙΚΚϊωηŸ !Z­vppP TUUƒA‘P …Ό^οΰΰ`CCÌ36lΨΐγρJKK;pŠ 6ˆD’C‡”””„B!°!‘H‰D’Ρ(Ψ+δP4u»έ]]]‡C£Ρ,[ΆμΨ±c)Œ’™™©Ρh^ύυΟ?όΘ‘#›7o>uκΤ”)S–,YrΩe—™ΝζX,f0R΄@™:uͺΥjΕvΔΔ‚ubpΐpD"!${½^BˆΡh΄Ωl£*v7έt“έnΓυϋύP•€RiCCƒL&3™L'N|葇^~ωεk―½Φl6c½d2ΩΰΰΰM7έτή{οutt$ΜηΓ?l±X€R©L&³Ωl<0š=Έ0]}>Ÿ―Σιάnw<W*•‹/ήΌy3Έ@Mœ8Q*•z½^|7C ρωόp8Œ_αt:!¨233ǚΟ9sζΨνv,.D]$ ‡ΓR©Τd2ρω|·ΫέΧΧ7wξά;vŒŒŒlfŸΟwΣM7ύγHh6??ΏΏΏ_*• …BΨEgϞΥλυz½> BΟ|>Χ_-**R*•„H$RSS3–bg2™FFFD";3;;»₯₯εΠ‘Cj•••³fΝ²X,˜a±X ―½φΪdΕ./// φχχggg{<žααα²²²Ε‹ωε—R©τθΡ£°d΄Z­F£ρx<>Ÿ―³³ΛΑ`0$( —_~Ήέn:ΞιtZ­V>Ÿ/‰ΐ7d§ΟηΟΒyΟΘΘΘΛΛkkk‰D³fΝJVμΔb1Z€$σω|>ŸO ƒA.—«V«wοήνt:»ΊΊ Γ£> 3’ΗγΖ±–žΜ3΅Z™™©ΣιΦ­[·bŊE‹]ύυηΝ›:ujww·Υj]Έpα{ο½7nk”A$‰D0’C‘ad’\.Ηλ™3gώπΓc΅ ‘Hκλλ1Γ>ŸcοκκβrΉΉΉΉΠ‡`ΐψύ~₯R™‘‘αt:‘1p8,λ‚ ή}χ]v³ϊΧΏό~c=qNυΉH$M"Y(ƒΑ‘‘FΓεr l6ΫoϋΫd3 4uκΤ3gΞ\qΕ?ύτΗΟD;' ωύ~‘P(•J±:|>ίοχΫlΆΚΚΚ3YWW§V«GFF!ρxœΗγΑ2€‚D£Q‘P‡'L˜’5X&“iώύF£ρθΡ£rΉΌ§§+"‘H€RiOO\.—Λε2™L"‘@x …B“Ι4ͺσ‚2cΖ ˆ9‡£V«,X V«‘ςω|‡γχϋύ~8φx<`Ρ‘PhρβΕc)veeeηΝ“Λε.—λΤ©SwήyηΌyσμv;U`„c6"‘€žL&sΉ\ΩΩΩR©4Ωθ"„@ο‰D0«`oΗb±‘‘‘—_~yΪ΄i\.χκ«―ή΄iSaaaggηΩ³g!M(AΥΥΥi4ψ «α}κϊIx«†SΏ"‘hΑ‚;vμHξgMMΝΘΘτŠββb@@Wάη󍌌TTT…BBˆΝfs:###f³yΚ”)EEElaDιφΫoοοο …ƒΑιtNž<R£₯₯…Λε …BŸΟWTTtπΰA‡Γ1{φl³ΩΜεrαΈλ»R(vέέwί Gεl„ΌΗΑώπ‡}ϋφ₯VŠŠŠ€Ρhτx<΄«ΥJmZBˆH$ϊωηŸoΈα†;οΌσΣO?ΝΝΝ=pΰNh$ςν3Ή\Ξεr½^/8o,³ΫνS¦LΑΰ«ͺͺ²³³νv;α‡&„,X°ΰΊλ[·nݎ;ςςς|>τf.—›••υδ“O²ŒΗγUUUf³Y‘Pΐ‰Mμžnξp8L}x.— VΧλ‰D .Lž™Lf4γρΈJ₯"„@…*―V«%I4 .— Σ.‘H B%·–ŸŸ―•Αž?π ψη’Ρ¨N§{τΡGϊι'τ›Ν¦ΡhŠ‹‹ΩΝj4˜x<Χλ7oήόα‡j4FI FΜγρ$ΙΪ΅kϞ=+“Ι09ΩΩΩ£.}uu΅Ηγ‰ΗγB‘P©TB—””¬_Ώ~έΊu§OŸΞΜ̜9sζΐΐΐαΓ‡U*U P«ΥrΉ›άlaa‘Υj•ΛεύύύΰυEEEρxόξ»ο^Ώ~ύζΝ›ϋϋϋ#‘H hkkkmmνλλs»έ^―‹N»1‘Ωςςr™L·•4a°Δd2ΜΕP(₯†)ΆA0¬――O>¬G(šΨηb±X‘P`ͺU*՝wήωτΣOΏϊκ«W]uŒfHS¨P©iι₯ ,€ΧŠςυΧ_‡B!…Bρζ›oξΫ·Οl6Oœ8Q‘PŒ%ΡΗ" - b‘•J₯J₯’H$0 ‘‘€p,Bό~’E‹ΎώϊkΗ3}ϊtƒΑW±\.·Z­ϋφν;ώόππp[[›Σιμξξξθθ‹Ε‡£  ΐh4ξέ»wαΒ… ZNG½ο@† ]x—»‡Γ‹eŊv»ΆS•——‡Γα .ψ|ΎŠŠŠRͺΠ»\ΑΑA«ΥŠv¬Vk$Ρh4`Β„ "‘Θj΅†B‘¬¬¬±ζaήΌyTW Ϊ ![‚2X€Ό•ŒF£T*U(Z­6 ‚œœœμμl₯Ri00|‡ƒ•ςx<0žΑ’ΡθX²ƒ’——ξ!‘H΄Z­Ιd’€‡Έ\xŸN, ΦzppπθΡ£.—Λεr½ϋξ»±X¬³³³§§' .^Ό˜έOp€εΛ— …Bh-Τ/CX!ΈŸ"t¨Ψx„›nΊ‰\κέpΓ ±X ͺΕgŸ}φπΓίpΓ ·άrΛμΩ³Ÿx⠍Fαϋϋίώέwί={φ¬F£1±X¬¦¦&yΤ«V­κλλ *•Κd2Y­Φ¦¦&“Ι­VM<·Ϋν.—K‘P΄΅΅) ¨7π ½ρΖc-=¨ΌΌ>ΆίŠΟη#ΔηρxŠ‹‹u:]в³³α›ŒD"ΰo`xx8‹ύύοί΄iΣαΓ‡Ώϊκ«ΖΖFBΘ›oΎ9sζLBA|πAnnΣιΜΙΙωߟ¦νΖ@ ‹Εb±Z­ŸώωΥW_MΉοΎϋ~ώωη5kΦΜ™3ΗγρtvvF£Q½^o0FFFΐ²³³ ’tύυΧcΣH$ΈdΨ!B("T·ƒΜΓ¦GƒΓΓΓΙγ …B‘ΠεrρxΌωσηυ―5‹˜h4Š<B‘κimmm__L±δ6―ΎϊjNΧΦΦΆyσζ & κσω`Π`ΏRΗ2”TΗΣ2<<‰D222*++ ”››K£₯8ν.—‹šΘ0‘’΅.6Mž<ΚŸΟ―­­έΆmτθυαp8 β_>ŸΦ ΗΥ²eΛΎώϋ`0 …¦L™’ΰeyε•W”JεβΕ‹•J%”*Xϋϊϊn½υΦk―½φώϋογ7ζϟo·Ϋ?όσ©S§‚έh΅ΪξξξoΌqλΦ­ ]½α†œN§Οη ƒ“'Onkk£λ 75X3€;υΡ"J%-ZτΝ7ί$4‹Ÿv»έΩΩΩ½½½rΉœZπ4έάάΜγρ.»μ2σ%„TTT$›qK—.Γ¦‚ ‰D –οΰ₯RΉ~ύz­VΫ"<\.‡*& ΫΫΫi³pΰpB/^œ‘‘ …\.–κ£ρxόΆΫn›ωz°Z­F<7 ©T*…B‡l6›@ ΘΞΞφz½8£ͺΰeee@€@„Ή±ΈhΚn·ΓYQQ‡ap8œ{T2›Νΰ{ΐοχ_uΥU»vνϊ駟rrr$IiiifffSSSssσ¨…±ΘγρˆΕbx£›b£ΒYK˜švοή½{χξ3f<ϋμ³ηϟΧλυ‘HΔj΅ͺΥj«Υ νάλυJ$(IƒA­V———'Γ(q8œ}ϋφΝ›7οƒ>€Š@a`nθu‹ζζζ.^Ό˜0!ώδλκκ!ƒƒƒΨΓ‹% Βc‡Σ‰Dψ|>΄|±XL½ψǵ PUU5000jo―½φZϊ£ΰπ4Θ χ˜ Δ :―ΧλOO ©S§‚-ΐΘw8eeeΑ`€"`-Π,Τ&π"ƒΑ  ύ~VVu˜±ι‘G€RΕγρŽ9ςΟώsxxψΊλϋβ‹/x<ޜ9sφξέΫέέύπΓϞ=[₯RE£QˆͺηŸώωηŸOh°  ΰΘ‘#8€b±ΈΏΏ?BΆb˜>^Γ†k###ύ/))ιλλKhv€I@ΕB€R)z ··Λεςx<3fΜψώϋοNgSSS{{{qqρUW]΅~ύzΐ(Λ±dɏǃMύl ›¨pΗA— Π.’iξάΉΠΓζΝΛ愐‹/]»Ά₯₯%Aΰž>}:Žκ―½μ²ΛδrΉΫν‰D"‘H&“­]»–Οηk΅ΪH$1›sϊτι<ώ?•Jεv»΅Ÿ ††D5Α θώ„―‡K«ΥΦΥΥ₯ˆζ#κ‚x)&Σn·K₯7ΎόςΛǏW(‰δΟώsYYΩΪ΅k;;; ΔbρςεΛOŸ>m·ΫƒΑ 6a+vJ₯–ξΜ™3m6[oooFFΖ«―Ύ ίϋΏύοΣ§O?όπß}φ™L&CdΚ`0,X°`Λ–-8l ^z₯R©T*.„‘νv»±ϋΙ₯^Ίν Ÿΰ΅Β εryqqqΒΊΊtΰΐ{ξΉ§’’B―Χηηηϋ|ΎΑΑA—Λ₯V« 8ŽΧλ‹Εyyy'Nά΅k—Νfƒ—R₯R9Nv›j΅šΓα”——_y問ηλ―ΏV«Υ4Ί}SlSYYYNNŽX,Φιt·ήzλ³Ο>›ΌZτ[‡C―ΧΓ %„Ππ4NΒ cQ p»έ………v»½€€„ΓጌŒΰλyˆz δ!“ΙΔb1Ž1묬¬X,–¬+Ϋνφ+V<ςΘ#λΧ―_²d "­οΏώόωσο»οΎήήޚšš;v\ύυΝΝΝ‡>{φμΤ©Sω|ώΦ­[oΎωζδ~ΧΥΥ€ΕnσζΝθ$lDlz7`.π― ξ/‹ΝfσΜ™3kjjτ†R0*аρΐž “κλλ)4€‘‘‘δ~~σΝ7«V­‚Α p„$Ϊχω|ˆΒδεεΉέξ-[Ά”––ϊύ~ΘζΒΒΒήήή—N§λιιBΡXϊ’±³fΝςz½pοE"‘±WJ₯ΘΏΌΌΌώώ~lW¨n­­­|>δΙ“%%%yyy™™™P"‘ˆZ­6›ΝgϞ= |Ϋ›0<άzCMMΝ¨­ιυz¬ιΘΘHSS“ΧλElJ"‘ AΚ:Π[­VΫίߏυ ‡Γz½>;;q[6]yε•*•J©Tj4š`0xέuΧ555 Ο“T*}πΑ‡‡‡ Pͺbž={6ΉŸwάq~Ηάj΅²Α[„a’3ΠήήNυͺώώώϊϊϊ½{χ&4FΥjυΠАίοΗ4B!¨C"‘L:υύχίΟΞΞ6mZgggUUΥG}τωηŸoΩ²₯  €1B ρ=‘Pˆi§Xό±LO‘P@ήaΆ5Mr|F…H$‚Ši2™ΰι΄X,ΤoΚγρd2Y<Θ8Șό»·ήzλΣO?}έuΧΙεr`–δry ‚r[1ž?> ΒE"—ΛsssOž<ωΐ$H’’§†}β°F^―ϋ' ₯>ο}}}‘P¨²²εra&ƒΑΰΪ΅kW―^½{χn΅Zm·Ϋ{zznΎωζ™3gj4šύλ_ηϊλ――^°`ΑΒ… KKKΡΪUμŽ?n2™JJJ"‘ΘδΙ“/^ΌF?ϋμ³ΊΊΊ¦¦¦ϋίΑ`π£>zλ­·ί³gΐaUUU?όπC{{{‚17qβΔΎΎΎόό|ƒΑα$ ˜š°Τc‡“i0 τΐξ―¨¨HPμΑ™liiιιι^―ΧαpΐΥ988Ψήή.“Ιθ ‡ΓK—.΅Ωlννν'NΌόςΛ·lΩΒnσ•W^iooίΊuk~~ώάΉsΗreΣ53›ΝΉΉΉ<}ϊ4T™QŸ€+ τ|„sΘVπ“Ρ lBD8'''###++ ͺp8L–|uψŠT*%„œ9sf``ΰΰΑƒmmm£Ϊρ€‹!ΓH²Λ/ΏΆΤƍ―ΌςΚέ»w[­ΦΪΪΪ.x•ΤjυXώ†Ι“'# 100 T*Ϟ=Λ^hφΨaa܈Εbh3‹UVVͺΥꆆ†„γ4qβDΔY•Ž3 -Κ܁‚‚(  E πϋύΙACBˆΩl~σΝ7οΊλββb8‘:A³”agυδεεi΅ΪύϋχΧΦΦ †7ψ`{{;Έm<ΟΛΛ{葇> 5Φ^Βφ+(((**:qβ„T*¨ΆZ­°ό¨Ή‰Iΰρx.—Λl6S‰MˆΧD£Q‘He.»έn ΅5M4…$€bΚησωΖ%gdd,Y²$AW~ι₯—rss !΅΅΅ ψ„ˆP(|ύυΧσ›ίΈέξQaώ ίκ™3gŒFγηŸώΰƒ.Y²Δλυζζζž:u λ.‰όά)»ΏΏφN7[Α‚)BΥ«4uuuιυzΗΙ`0ƒA>Ÿΰ‘ΕbΙΞΞΞΘΘ …@₯ΥΖt!„ΐƒπXΓED£q•ξξn΄6*μU&“I₯RΔpΜfσΒ… =‹ΕΠ=ƒΗ“ Qh¨ƒƒƒc‘!«««a$`‡P0υ°·ΑZΡCΌsΕW$+v0Τj5tΆmΫvΰΐΈxZ…4εσωΗυλΧoΫΆ GR.—k΅ΪdΕnΡ’E΅΅΅όγνv»ΓαX΅jU[[œΣTσφω|H­0«W―Ύωζ›ίyη}ϋφ:j™L€©P(”Λενν탃ƒ … ΔvΧβΒησ/\Έ ΞΪΎ}ϋ¬Y³’›mkk³Ϋν&“I―Χƒ³φ‡θΦwί}ΧΦΦΦάάάήή:;;c±\Χ}}} θτιΣi΄Z­V>|ΈΈΈΓ¨Ίζr8œ–––ϊϊzx§„Ba}}}rΜ§©©©««K.—φ·Ώ}ύχΦ…‰D€ƒΕ޽ϋξ»322Βαπœ9s‰Χ™ IDATF5kΦlΫΆmοή½2™ Pi•J5i$§Σ‡ΟŸ?―Υj‘κΝ›7/77wϞ=F£ρΰΑƒc%ή±ιΠ‘C‡C©T"Cί‡>c³ΩNž<™Ί‹Εβσωςσσ9NGGǝwήyκΤ©έ»wWVVšΝf·Ϋ]VVvώόωδζζϊύ~Ή\ώζ›oBξΏώκκκ@ @uΗKόέέέέέέ»vνΚΜΜ¬¨¨°Ϋνύί­V«Ώϋξ»οΎϋξν·ίΎϊκ«³²²άnχc=¦ΥjOœ8ρέwߍΥΛ#GŽΤΦΦζδδ,^ΌψΦ[o‹Ε………‘&?Œ…G¬κΧ_έ±cǞ={ΊΊΊ’…œF£ΙΛΛ+((¨©©YΏ~=Ά2L:―Χλv»Ή\ΙdBθ Fssσ‚ –/_ΎaΓΈgΪΤj΅J₯²ΊΊšΫΫ ,φΰΰ Ν οΐ‘Έ-;;{ίΎ}uuu3gΞtΉ\£ͺl*((°X,πyP | jM$ΙΟΟΗΓ)˜r______ssσ‹/ΎHΑŽWοΞL,ƒωόσϏ y¦DΩ"!dpppΫΆm·ί~{^^ήχίOΟ©S§’ΡθK/½422rτθΡQ€Ν›7οΨ±£±±±²²ς–[nωωηŸα‡ΗC†¨£pZ(d&LΠh4π >χάsΙ τΰΑƒπΒLυWΒΘ*l­p8μrΉT*U8nnnΆX,ΙQ]LšΩl~ωε—εrΉΗγΙΞΞ~葇N:%“Ιΰ<ƒΘΞƒ"‘H νάΉ3潨¨+##ρΈΎΎΎ+V”––N˜0αϋᅬD"€>Ÿο;Ω›*..ž6mŒ@hc|>άΉsΝΝΝ*•ͺ«««ΉΉΩ`0œ={Φb±ŒΊK—.]JΑ*rΉόν·ί~υΥW•J₯Γα ψ96h›••522ςΜ3Ο>|Ηx<~Λ-·$+vƒαž{ξihh(..fΛ ¬u!aWB¦OŸ~ρβΕ;v¬[·n¬Y=yςduuυ•W^ωκ«―κtΊS§Nedd>|ψ΅Χ^ϋσŸ|ν΅Χ>|Ψοχλυz―Χ;yςδ΅kΧ"wsžb½0@šΩFέΠeαt5—%™Ž9ΨΨ8{φldυνάΉ‘ Ησ駟Ν;χλ―Ώ~葇’υ裏κtΊγǏšΝfvΔotδ&Φώή{ο]²dΙΠΠΠδΙ“γρψκΥ«W\ΉsηNŸΟΧΠΠPYY™BΌQκλλ[»vνΪ΅kο»οΎ΅kΧ™Nτ+‹ΗγXψγǏ₯tƒΆoίΎgΟ΅Z]SSσΛ/Ώάyη^―ΌC.—#ι <„κ•mjjB&|rƒσηΟοθθ8{φ¬D"!„dffφφφ"i ½χή{ΥΥΥƒaΧ]N§Σ`0466&ηœRΩ&—Λ(F„βφΐžΰκΧj΅πSŽΕ”ιI–H$‰| §!Wμ-$£r^2£‡RFΫΫΫ_|ρΕ'žx’²²rΥͺU(­#ψ»οΎ{α…–-[ΦΦΦF˜,Q[σϋύ?ώψγ?ώψΖoLžŸo±X€ƒt»έΤλI5o°x™LφΪk―΅΄΄ %@?ιαŽΜj0[Hί+‘_ZΔ|ΡΒ¨3ΐ.4πΑΤΥΥ!ηΘ‘#S¦LΎβŠ+ΊΊΊΚΛΛα—zδ‘G^xα…q«rp8$*†Γa³Ωό?σ?&LˆF£F£qŊ§NΊόςΛΫΪΪ:;;ΑJŠŠŠΊ»»Ή£•Œa·ΗiΑLJ₯"›ΞυΣP@Β¨{©ΉΉω†nΘΝΝ½ώϊλ—-[vγ7~ψα‡αpΈ――ǐ‚l€Αw:z½^$½ψβ‹ .|κ©§’ε:ύ]ΨiS¦L‹ν₯¦Ξ`j'°G—zV !§OŸnooŸ;wξ]»½φΪΝ›7ύυΧwέuΧΰΰ jЈΕbš ’αw{{{!0Τ½„Ψ‚ž©₯{Œρx|Ϟ=K–,Až R©4mmm°ƒAώό:d4@:₯Sίn*°Š+Ε†§#ΨΛXBˆF£ΙΞΞ†]έΤΤτ駟ΒΑ† τx2ΠH0”Ιd]]]Σ§OG’"bτΧ\sΝ[o½•ΠψwάQTT4aΒσ8S>,Ž0Œ‹fQ…B‡Γ1*‚~λΦ­555W\q…ΙdΚΝΝ­ͺͺ*..žYΎ|yvvvCCΓΠАT*=sζ aΛXmR+ ‰Εβ7ήxcηΝί½ΥjF£K—.-**ΚΚΚjmmmmm …8n©;‚HΈζ2e/’KΡ76υφφΎσΞ;οΌσ!D£Ρ„B!·Ϋ™δρxT]ŽF£.—+‹™L¦ϋξ»/E3’δ:бΚaKΑ *ŠTμ@ΆX,ΥΥΥΑ`0;;ϋΘ‘#F£±ΆΆφάΉseee‰δόωσ“&M·)6Ήέnΰ,QΊC@ήΜX§;:οrΉPπEyϊϊϊb±XEEΕΘΘp’Θ@§,(΅‡κTKHAμm}όρΗ_~ωeYY £œ:ujαΒ…/^„σ "™fͺΒ@š8qβW_}ΕαpvμΨΑησO:5V ͺ‘‘αμΩ³εεε‹Η;ΆΜ0‰ψ|>½^Td:~όψργΗ›››[[[£Ρhmm- ΗΤsI6?i€έ»w›Νζ?όπΰΑƒΟ<σΜXΑ}:΄ΨP4…θ1TP:Z€3ŜKΚ€Π"SτlR :EχS;κ)¦δσωD"ΐv8ΪpX΄6—Ηϊ:ό4 ΘαpΈ\.@l“¦ώ™L§aά`PϊGύ Ά%’)Αu1" Δ§‰]Ϋ%…Oογ€wvv^~ωε₯₯₯B‘pddδž{ξ9zτθε—_‡·Οη«©©5ws,ΚΟΟGΒ}‡xP3δv»'Ožύ΄€€D(SΆ16£L‘‘!H\δ’{<»έ˜mNNN,s8μ0Κ¨“ϋΝ7ί†΅|ως .¬^½Ϊησ}ύχ4NAu#€f̘±rεΚ+VH$’ ΜτηκλλqΨ`ΉςQT"LνΖΖΖt;ΚγΨ@Z‡#‰€ƒ&„ΐΡM‘4 ξΨ††‡Γρ·Ώύ-''ηή{ούςΛ//\Έ`³Ωž}φY·Ϋ}ΥUWmΪ΄)…o‰έΘohuμ’Φ0»ql‚ŒOα_d‹Cψ~,ΜI0„·€ξ₯q5Z™’Λε΄ΜV*BΠl³K>φq&άFq:±XlΒ„ Ϋ·oοοο?ώΌH$‚€$?H#Τ’HΡUŒ%΅’ΡθΉsηxΰ;οΌ“|ϊτi₯R Eω‘)†Μ&€QSD?ΉΤTckKγϊuΓΉ†' ̐•F v^ νpκΐr$pΞ₯iXi Ωνφœœœ?ύιO3fΜ@u_T=@Ό8!…+%xγ –Ψ’.MB#Έ8•·°©“ͺ­­΅X,(FΘIYΕ-™{˜¬ΠX }'uR0›“#‡²ΚθI‰DN§ζϋ4₯pfffƘœb*ΕΩιhτ#>Ÿ?uκΤΤ£† Χλ‘+Γ₯J+'γ°£Ž!ZΫf‹”J₯T*½ώϋ‘³ΉzυκX,–••υΨc©T*ƒΑ¦€c+Φ3fΜ@)( ΅8L΅Q.“‰D.»μ²tš₯D+ΧΔ™ͺΒ1†γ§J^Βwž222hL˜.Ιώm™—‹ŠŠl6Κ3ZC‡2X0^TD‚¦Ο±˜p Bl§ΈΈΣ€κAΐ]lKκ6ΛΛΛα"₯–-D3ΈšΒfK³“„δ‹ †B‘όόόoΎωΖl6/Z΄θυΧ_ΟΙΙιξξΖ}9½½½UUUμΓλDŎ~7ϊaΘλΗ€x½^ƒΑΎ»b±P| !lŽg 'i6g’Άt:ΗγAυTlz©TŠTG›ΝV^^ž:Ϋ”ΝS>ϋμ3BΗλιι©F‘@΄‰J€¨±Ή{χξx<Ξ"‘01kΦ,ΈΣΤͺ%E"‘††2ο „QAƒΛ&Že* B5Io:ΧE:wξ\BΜΝO?ύτΠ‘C7ί|³έnί΅kΧΆmΫPqLd\m LA§Σα,‘Ά­;Ecτ`1w˜šθώlooG τ‡°L`"‘Θb±€yθ@€‰ΑRBΧdw ύ€Ρy2ΆAίGFff&κγ 0Φ— 0ευι0lf @!‡niiιλλ›6mšR©„ΊLρRιͺΣΙξIΑ2±gŒ© 1nƒTΐ!§T*‘kf‡ ηrΉ\§Σ±+©¦5NPέΨ/Ψ”ζΐA^―·¬¬¬¬¬μζ›oψρΗŠŠŠŽ=ͺT*Q1qΪ΄iˆ…₯CEii)[Αe;›ι©Oθž‚t:¨P(„@044$ΐ¨C(5a§Αu 3š=δ% δ!θψ[³§Z,!Eΰo€ω»ΞγˆΒ±Mπ&Xƒ ”‘‘Aν+ϊ&έ0Xt*ž¨γj,£FUψνœN'ΖKΥ(6›žχqΟ&†/o~~>,d(ΈR©5}PύόXΔώ-ͺyΣyίKΚ©G@τF₯(SΦš=AΠK„BarΛgϞ…ΟlΑ‚σζΝC H‹€š;ΜaJ^fςΏόςΛώώώ―ΎϊκΘ‘#©ϋ‰@-u }t›Ϊœιπ:Ά]eŠ RMf₯ΰa8J±ηΣQHΨuψ!Τ³?q¬ό~ΏN§5=h,B}“όˆΙd:zτhc=φΩgŸιυϊ—^z)ηζζ²+cPέcΏ"uς™Λ1΄x#< γ¦Οj΅R«‹Ϊ¬μΝMW.Ν‘ƒ²²²<ξΙΘΘ@q¦p8l³Ωτz}NN-5–ή@y Ÿ)>9kΦ¬ξξnδΨ…ΐησe2rΧΛΛΛω|Ύ^―§έŽΕb©$&“©··—=ΐžœRΤMQܜM1&; ^@(ί0ep ώEμ8Ν)Ε$466bƒF"‘?ό°‘‘aνΪ΅ϋφν{κ©§ q£εM)„1U**°θTΡδ2ΪΒ&ƒ•L.·ŽΥIΒp"ΪΪ§'Ξ!Ά–‘NŠΝfƒ, qͺ~p™'vO’η6yK£Έ‡Γ±Ωlτ#κ˜HƒΕDΫI”ή …BΩΩΩ₯₯₯ϋχο?wξœH$κθθˆF£½½½Χ^{-’u£voT‚¦5K‘HA. v°Q’© Ο xzoo―ΣιΤh4J₯₯dΰοΓώDύ‹τ~ς“©ΥΞ&˜Ώ<O₯RυφφN:΅³³σΜ™3eee3fΜxχέwwνΪ…¬¬4D7jjjβLr©—Š’ββbΙΣip€IΘqAB\° TD"ιDϊΨΔ>2x‡.45ΐh‡Sγ,ρ‹ƒΑb±x½^…BΑN„'Μm‡ψ›¦μeddΰ!ͺ4PI1›NklΟ…T*…3žzhβρ8-*•Š–Π"ι xBG€"Ό€α„C$uƒμO1c”αp. ;ΒlHQepT‚}ˆΜ6˜˜°χ7ΏcΗ πβρx6›-ΑΦb34>Ÿ tBΘ­·ήšf?Ή\.κͺ°χs‚;™€±ΫΩ.j!`Ο@Ÿγ2Ήκ%ΐ€ΩɌŒ κ<&Œ0"„`υQWω ι+v\.χΔ‰p.x½ήŠŠŠΊΊΊM›6½τK„άξ=22,AςπGΧu i~υ‹ΠυΖύ4Μ—š)γSš™˜°φxMΉ^šη‡~Q§Σ †μμl.—{ρβE`Œςςςx<^oo/0vτp¦ξ'emΈCiddYfz½^­VG"³ΩάΦΦΆgϞύϋχγi’ƁŸ4iΊ΅lθY₯A‹Ε’NUU*hΑgcLζ9€2$ΈQŠ–I“ l΅ΎΎΎάάά'žxU‘~σ›ί@7d W—€φ±ΡΩ†§qjacGQϋΒ\RL)5‹aΣ¬+ΓZ&“!= •Οq‚233ΌV«ΥˆΊ"_O«Υ’0žΕbQ*•MMM΄'£v•œŽˆ0ε4qΕ`‘(ΔO),,€K0U!k£Ρ¨Α`˜0aΒe—]δrUU­_0Vχˆ‚h‘sΐzσ†’KΉ b=υ‹ N|– 8(|ƒ‚Az½χA§Σ2{)“‡φ¦ΨΑ,œ4iΒm---₯₯₯ …’  ΰ‹/Ύ¨«««¬¬ά»w/φRϊ„»θΞ€©bΗS_)–0šš‰DΒεrqο nΓ½jΈ’N£Ρ‰‘~'₯R)uΝ(>’ZώM‡‡€ !cεθ‡EΑŸΟ‡λn·Ϋγρ€οQ&Œ±ΗŽŠPξAGϊΗ€Χλ£Ρ(1Df¨Υ yμρxz`™ΚΛΛΉLmN.— Υ+ ·ψ|>ξOί’ψ˜ώ [GŸ…ςŸBn¨¦ΘζQψKoόγ&aΨ„Aαz'Bόρt’—9³Κ&`.7O½pΈ2}χΔΈ‘A-Ϊ‡„Α¦ΓU¦N ·œ x“6/Œ `μTΞr»έpΈˆD"N§Σι"‘ ΝΐTN>M£W„ iԜzhρ}>scΔήΈZ05€jΖ/½UŒ°Ll΅ΤaSv›θŒΟη“J₯V«U&“εηη£–ΗγΑ.\(//ίΊuλΈ¨#¨JεεεyyyYYY(zδυzQ>ή`0”——#Βαp °ΎΥjΧV˜9s&ς4ι0Ή¬"“„΅«ΰf›1cΖΈz=΄jΤv§Ύe\hΐ Ν €ΪsšΌJ₯Š1hίύξwΑ`°©© eΗαΎ‰DUUUc•[K xΡ 6‘£o&ΧΌM&|E«Υ²‘ό–.TˆF£ΕΕΕ‡‹#°₯!δρΗGm\f*‰PVwxx˜ΓαΈέ …BΡήή^__τθQD-“OTœŽ2ε—ΠφβLτœR^^Žu©Χˆm #$g2™pgqqρφνΫ @GGGii)ΜΠtΈ!ž‹ΕΠ½$:υ²CYL?²OοM‚Iƒ ΜBΰΊ(]"‘Œ˜’5SΜ‚*¬μ₯Qk'Ν‚΄Z-nDˆ³±±χ~ŠΕb•J5<<¬T*—-[VXXˆ‹>ΣlΆΌΌάj΅Β!D4‡ r!nΤB)τz½J₯²··a/ά₯†˜&άφ¨#8.B/ϊ/[Άa•c±LbΒ¨tΠR{μ@˜I•J=₯sΨΙ7ˆΠκιπ%δπqHe›$ι†Τν° ι€Τ7 W( B8νhY­V㎟ΤνcJQ›ŽŠά ¬ŠΡhL}$%«A‡cŠΏρζ“~Š+T1άi³Fi>JOΕ– ™yyy»s »Ÿΰ„€V>§)υE. ›Ι[t|¦š=—‰hB(‹AŽžwι«««1|¦δ'aφ'΅Fb±Xš0 Bδ8X=‹ΝΚΚϊΫίώf0pHQ 9eeeYYY 7ς%*vvR„Uη pg.—+—Λͺ^₯Yyη―ΉΜu"ψ—jZyNNNGG—ΛEιάΟεr»»»£Ρ¨^―ηp8x¦ΰ;qβ„έnG€v00v.—K,»\ββb΅ZΝM/vΌpαΒsGδ¨P³'νškYΏ~ύX­QIG“^Ή a½pι–@ @Q‰q‡LχŸΗγ‘.h‡ƒ]EM:W_}υŽ;RsyΜŠ °}“όq˜΄ π>ΐ†KΡOΡ2Ս(OG΄§4Ξά–‹€F+γυσ6Κ IDAT‡jkk1WΈŒž`Š τI“žυΎωζ›?ϊθ£±&–φ ƒe¦μ―Π9œŒΗ‘¨b‹ΕΌ^ogg§L&kiiA½ψH$’ΡhΪΫΫƒΑ`ii)δύΈΪR<…B~ΏΧΡω$LΌΐjΘΌτ½Ώ;*tΐG’Šj΅Z₯R₯―,›WΠT·ΓO§ΓLŠŠŠ ΓιΣ§E"Q~~ώ”)S¬Vkkk+κΑ †νΫ·ΧΤΤpΉ\ϊJS±+**ςz½τJϊΑf€ŽB‘¨ηDΟ‚F£0¨Ιβt:Ή\.\Λ\h…Iž2eJκ £tWP εTΣ£J=ι œ"‰:;;].iŠ0„P6+ ¦_πY­V+•J`Ϋ©G½0wmΣ‡©ύ5oBξ•ξ±K3 )»O±cΫW]u•ΛεΒ€Y,θ7¨λF ΞγρΊ»»«ͺͺςσσ{zzFu‘WƒΘτ±’°-ΗevxR«Υ"‹«]§M›V\\όρΗίvΫmΈf ΑԘIέ&!D$effž8q‚ΚH¬5έΤ΄MθΙXΔaUL`ΐ.†ςi(”?nχhK±#Iϊ=s§Ω²R©ΜΟΟokkλιι±Ωl3gΞ΄X,}}}Έ™wΑ‚(L'nfffš™ϊϊz©T ›Šν₯ΎyBH4χΊJF§Σ™Νfyή(•‡;μ!2q &Mš”Z±£η‘ž56Κ*ΎΉ¬hέΈΚ ύ’Α`ΐ-gt]8¬Šψ@˜OγŽέαp Ώ‡žGŸΟ§P(’Ρ¨Υjυx<΄²‡I·Ψa’'pρlΜ˜RϊΑ8:ό¬¬,|Κ;ΒT1δσωγžΝξΖHEή¨ύ§xbͺ…pX˜3ΈT9LŽ9ȜŒŒ T`Mρ0’lξCdU³Ώ’l³₯ο΄gγ1U8ψ¬»niΒ(”]θΣ$ E™jΓ΄Ÿ΄σT …BœϋΏψβ‹^x‘ΈΈxŊ„™3g.Z΄¨ΌΌ\©T8p€ΛεnίΎύ΅Χ^CΒΠ%ˆΖQ₯UΗθΐΐ‘(ΞΊ9Τ;’ή΄BqXnsφΙ§γOη¨Σ―ΰbY”̏λνν…z700€ !Z­–΄St?m³Ω~ϊι§‘‘ψ½^―ΣιΔMτ΄FqH²³°°7IC `W'氐‹x***R΄ΖΦ‰ψfϋ‡hX“"”Ng:¦ AZ%{Šβ ”vΦ-dR:λNύ!ͺΤb*¨5Οc’KR`Ή V‚oRχ>eε\VIzΆΈJ1κx<^YY©Ρh"“Ιrrr€ Cρ&π8.—‹€Šωση―[·.Εκ£τ+IΒ'ΡMHg/M—žΟΛΛ‹Εbb±eS€gZΉr₯X,ΆZ­™™™Έh.Pq\IΞae&XPdΌ’ ΔαpuΎL b±XŒ@ͺͺΥꬬ¬4Γϊά1|δqζ<ƒφΣiP,wuuνΫ·oΒ„ @ •——·ΆΆΞ›7O£Ρx<žΉsηfffΎπΒ EEEΈD$f§M›Ω€LpφΔƘ³~εεε₯Ξ·Εn©ͺͺv»έ …Υ¦t‚MŽ+ΰΓWKKKΙ(κ¨O·"{Σς/-™‚‡»Žz71κsύ!€­­νškillά΅kWjžŒ^½ςΚ+O>ω$!D"‘`»E——‡kq &ΧӍ;j@θΤjuœΑηQ…ΣHΛ’₯‰Ρ CaQ‡7ŸΟ€‡0˜ZͺŒ η`ΏΠιt`‰Ψ<ΨN αNφΩLsιΉLώ&μv€LΑΏ@woš>BHOOekl£‹0:plZ%M’‚’ΞνR2#MΏAv–ewτMΜ"6ιHΟάάάώώώΨ₯…Ί …i₯.—›ŸŸ?nƒT$;wξ½χή»γŽ;6mΪ΄ώΖΖΖγǏοάΉ³ΏΏε—_nii±ΩlΕΕō\wέu›6mb{F9ΐ…ΤŒ¦F 5‹ιΚ₯QFH˜Vε‘ Υ2ΗυΨΡ½‚]ˆz ΈšΠl·Ϋ}ςδI$ίΉέξ‘‘!­V›““sρβΕΤ₯ΒπώM7έTSSc6›ΌΠιtpΠkΚΰQΗγdΌ’²4ΘΦeI’·†*gp”Ž[’Ž οιΕÈsΑQΟpκΙL KΨ7]t.«ͺΘΈI‚t­‘Π£°*ϋSΒθvΨ΄·ιœRjΑEΟg*Ο±‡ΜM‰όαα9sζτχχ Nηp8Μf3Ÿp5q™*‚Εΰw½½½EEEH‘ΥiG.ΥB8 jžύ@‚ΒA’@Z­!N›Ν†ύ ΜVœΞ`›₯.<–Π Όh`l'%zΎQ?n?γρΈΟηΓ=θ¨#en{C#j΅ΩΠK—.=vμX:{•mΡ7ٝ‰31IZ!D‘P|υΥW'Nœ¨――_΅jΥ;οΌSRR‚ΛΩ8NKKΛ/Ώό2gΜΉsηN˜0!ύŒΆššzυ=υΤ$Γ38ΰσηΟύχΣiŽs@…κ;Œ Ηγχϋ²‰D¨X”ΑKΧ4TŠ £Σ`o€™Ρh4j΅šf\z½^ΐUXˆΗγΨfeeeuuuι7lΨπΠC‘?‰D.—Ÿ8qβψ‡R© ‡Γ'NΌώϊλc 4τDΙx',1OžΐF›Ρ»ΛR4H7aOOOvv6&6šœΗγΑ±Ηιΰγ’ƒΠ€«Η™‚ˆlΫοG£Ρτ1!ΣH™—Λ Cσ˜ΜΠqs20&Ρ¨NB}4ˆ ω¬VkŒ₯¦8γA$,™BυΉ8“Χ…_LέOκE0χ—ΐ_Cαq<υƒμv;‚rζJχ]‹ΕΘπυΣs#eš1}ό–N§ΛΚΚϊζ›oΪΫΫοΊλ5kΦμΨ±γΦ[oύώϋο333‹‹‹…Bαόωσ³³³§OŸώΑK‹TŒβ@έ)XζB_₯`&Ά―ε?"κ’Ž:Ό½$M]ί2™L¦΅΅–’Οη‹F£v»έh4ͺT*$±ηδδΙK†Ω*[PPμv;°ΐj΅:;;ΥππpFFF]]έΈMΥΥΥ±3Œθ‰±Δ‘‘D< kjjRΧAˆΗγHΧBΨMΙd2μZΒbFj΅q9HτώY.«Ά[η$eύΪ,ϋΝξξξX,Ξ5”ΪI΄ˆ],£Š7 4Όt”qPu‡°ΩίX„1šL&NΈ’Œ`lS$A'δœΝf[΄hΡ'Ÿ|2֎E4нΥρ>[Ώ3™$»#ATuƒ… OέT`X(›7nS΄?>Ÿ r.ƒ§Ž%Α+Ή¬)$„@ΐ{½^\^ ιŽΜ˜Β„ααavE‰DλθέHΉ[i†•œ~† ^―ΏβŠ+œNgyyω–-[²³³ΐΦ­[«««Qδ½€€δδΙ““&MjooίΏšΝζζζ&;<βLNϊo(7γ’H$(DΣ‚.·X,¦κ8βAv»*Lc™„¨5™™™Π±ΦPw¨ΏΑ`°°°πΚ+―<~όψΈ’I, Θd2τν`Ή=ΒΣ\.χΕ_€%ΚR4ˆ‘ž:uͺΏΏ†twwχΒ… ιΝT +V ‹D’š”“ΊŸq¦ ‰%I C/°JM”CŸcPk&βCB‘P:Q)6I$E”7ά;Oͺ‘’τ cd$ΐ¬’H$ …‚Φ2δ0‰w~ΏŸ')dΈRvP•“Ί!فΜ§T*₯|)MΕΆ:uͺE™‹£Ψμ”νi‹θΟi4”Ξα²ͺ|€Ώ!…ydd€²²rΚ”)­­­ιh#&“  [Ύ“Kc”;±/ •π•‘‘‘ΒΒΒΊΊΊ#GŽœ:uκε—_>uκԊ+}τQ‡Γ‘P(.\ΈPZZj³Ω„BαΚ•+;F.υڎ’–a—#ˆ@m.ƒŸε³ξι‹1)ΑιP<Ητ!WŽ*°μMeξ“H§5BˆF£ΑεΗQ枹\ž——ηp8l6›J₯’Λε>ŸοΤ©Sι$Σιμθθp8ϋχο‡w–`1ήςςr­V‹ŸNMΛ–-ƒθ… ΅D C8ΒFΈžΎ–eΛ–₯ΨQy–™™ΩΡс―P„2.u¦Ε`ΉL t¦”0QΉ(s)8aV'ΚΞ'²GΩύIh‡ύ‡Γ1›Ντ"2.+ΊΟηΓ<$kBlΒ:ΒK₯&=φΤ¨ε²€}c‰7|š››«Χλ{zz8ŽΗγ/Fi|—ζAC·Δ pLZΛpTͺ {žκ^`L8X;Βάbœ¦IC}ΥT#€cŒ3wXΕX‘qΙοχ£ž\ΤK"T‰ΗΦ‚ι5nƒx&'''Cψ§n'’@Άτυ00 ri.^Pqg.ωM§«S§NΥj΅ƒƒƒn·[&“υχχϜ9³’’B«Υj4•J•››ΫΪΪΊkΧΖΖΖτo“Ιd^―C޲*‡ΗX o\^‡²AγRSSΚE‘€s^^žΣιBΉ,ΝΞΘΘ¨¬¬liiΧgίήήώΐ΄΄΄ƒA·Ϋλα%„(•J‰D’••5wξά΅kΧ’4`a yyyeeeΠ] 9Q!ͺΧλu:T‡ΒΒB“Ι4Φύ°”βŒ{ΥͺU6lP*•wί}7ΥκθdήtΣMO=υTEE\γφ3¬h”ψη0εΝi}:OΚ’““c4ατB5 ͺΥα¨Β΅# εrΉΗγαŽ‡ΟFθ7ς‘¨*0a ΐνΒa*@%ΜΙXσI˜ 9ƒΑπλ―ΏB›G0 z'<τ2™¬²²ΨƒmbK…ΒγǏΓ†Λί(―ˆ1p½3gΞ΄··ZtmΤωd›θԘ‘ŒŽ06^4ι–”±ΔΧq‘6 Um‘ ‹e2™ΟηΓ}λ@‚²‹σJj΅š^οn9±g]Lίέέ=i€ΤЍ₯₯εψΓ=χά£V«Ÿ{ξΉΧ_ύ•W^Ω΄iΣζΝ›8P__θΠ!ΘΝΜΜΜ•+WΞ™3η•W^aOμ%ZήU©TΤQ(—Ή­…>I³βω|ΎR©Δυb©W ξίP(€ΧλiX°²‚qq;πγζN§Σ-]Ί΄΅΅•" υz=—ΛνοοGΈ .œp8<{φμΣ§O·΄΄$θΤl’ο744 j| #΅ζΜ™σψ㏧ξ'&M­V ¨/<&ε E€ΰQ#Œ²‚:)βhΤXε—_ςσσQ ΖqII ΄HΌBšΕ‹ΣIž Ύbΰ²ΩŽύ8 I˜z„3fΜH=pϊ‹ƒaΪ΄iρΐΝg.‘—Λεrτύ-———Λεr$δG£Q…BA-¨_0ΕRKMl‘ƒ:Ž h΅ZDΈ!YYY‘HwόB₯Όγρ {<ž_ύ5uΝTε…J‡\90Έ8\ˆD"}}}ΨHόη?S™ξOμ Ή\Žυ‚UaZ§NΊ…9˜ηϟƒFŸ©βˆ³ T* E:`8ό\qq1τH/œD6`P|₯Rijύ˜έ&)ΣyΙeŠF sΉ\™L–"ν)<H$ϊγˆt1©TΚησ§M›EE…ΡhόωηŸM&SyyΉΣιάΈqγΈmj4πΖ6Βφ/ŠD’±«qYΐΑX,πu$Η#„8N›Ν†`:J^‘FΫF•ΐΦ­[7i€Ϋn»  RΜ½+’*/Ώός·ί~ ‹.uW Eee%!₯υ`Κ €w].—ΫνFA―ΧΣ+ Rx)ύπΓ'Ožœ1cFWWΉTΐB6nάψΓ?tttόα )χ<>’ΛεƒΕ]©g‘°,j₯ i€πξλλ»ρΖηϟ_\\¬R©t:"ΤΦΩΩΩέέύέw߁ό«ί Ω•+WnΫΆ­ΌΌ< "5Οη£c¨ͺR©Ύώϊk|%Mϋpγƍ―Ώώzcc#ͺτχχfG₯’T*έ»wο™3gHΚB;†κžl’α&€"AΏ%`nψHM΄XL2Ί—:κ8‡΅χ³:Σ‡Οτή5šΡH£nΩ²δ† 6Ά±¬ RHHΨΘ²Y’%”,dM °!ΩdC( ›HL€ ƒPL `›f;ξEΆdUK£23Œ¦χϊϋγώζ\CδyŸωž?ΈμΧθθ-§<ε~ξ»„SŸ{(ξZ­VΞ“ ’8Έςή ΅Εησ9rdυκΥ555guμΎώυ―···£ƒ“‡―x“@mΑw‚†Βϊυλ+Ρ eŒe2™O?ύτ?ψΑ~τ£γǏoΨ°αG?ϊ‘Ηγ9~όΈΓαX·nέκΥ«Σιτ’E‹"‘ΘWΏϊUφχΣώsξΈ»»[«Υ"±„ς½©XεΕ΅Z}κΤ©Ή³ίΘΦ.X°`ΫΆmoανε|@ 9l6ΫΜΜΜΧΏώυ9Fϋξ[$Br«₯₯>h‘TΤG"D$E£QΘ‡Y ž1vε•W"—€Ύ„p8Œ^ž††Ή\ …†‡‡wN&“•Η‹ΕβkΉ¦©©©ΆΆΦl6 c2™'ΝΞΞz<ΐ¦§§‡‡‡_~ωε 'n»©© Nφ’%KςωΌΫ힚š„Ήr^|τΡG‘3GΉσ³ΐ|>_SSσΦ[o=φΨcg½·b±(—ΛG4εjŒ4y‘‡ί;ζώF˜“έέέwί}7 •Fΐ»E›i6›}ύυןxβ‰ ίlύϊυΨΣΕ%8³ΩœN§γρ8Š,‡Ξ—1IK" Ÿ}™Z­φΪk―λX<ΗVb6›Υj5ϊ*'s8Ιdς駟Ο)ΉΑίΟ{gΜ" |kΛεrΡhΏGμE]Φ›Ή§“ΕbΉΰ‚ €Δ ‰Dμ²<θΔέf2™©©© 'ηš5k»ξ:―Χk΅Z5 šU+"Ώ>99Fγρψ‰'ζήμXι$Πλυ/Ώό2V"RΆ…™˜±‰ΔΔΔΔUW]…ξΆ³v{ΤΦΦ.Y²D"‘΄··§R©W_}Υj΅†B‘‹/Ύ8‹Ήέn¨ΐεσω@ pϊτι …ΕξΎϋn|θςrv±„Ηl ‹ΕΎΎΎ_|±’1‘„­*”ΛE₯6#De^―wbbβθΡ£•ΛΪΒΊΊΊp†aΥ£όZ(&&&NŸ>}δΘ‘ΚSώ"‘θ?ώγ?€­”H$θΫ…·-‹1©€deŒ8pέ|Vε.»μ²©©©žžžτ#?ϋΩΟ6oή\Ι€J₯rΙ’%Ψ”Ρ%“IπςŽ6δΖΖƐS?λ³Wς•όΏ^ώ?twwwww―X±’½½]£Ρ΄κρx8°cΗΜL‘χΠΡΡ¨ΟF#Γ2==έΫΫΛkϊ„G«πAΑl"Ώ^Žg(ΏΘΣYG^Ίt)€]α{aη—€ώ ]L$Ή\. ξέ»·<ΛώΉΆzυκoΌ„σ555’RΘnρ³‰DRŠO?ύτΐΐΐYoξζΥW_½aΓ†W^yςz½όσR©h0ά½{7ΪδgggξΞύ 6mΪ„-\αΘ£677›L¦ηž{ξ¬χχΉf2™ι΄^―7VONN’jS!Νgνž{ξQ(lΚf³ρx<‘H8Ž;wb# Ψύί-Z΄§Ϊ§Ÿ~zωε—C”sωςε_ϊ—„JΈ0Ζτzύ·Ύυ­b±¨Ρh^£αY–Gydjjͺ’Σθ »νΆΫ6mΪ„9ΔJ5L½υΦ[ο½χžΠϋdŒ½πΒ π;Α΄ισωœN§ΗγΉε–[£1ΖΏώϊ‹/Ύxpp°X,’=ς"‘hήΌyW\qmΨεΛ—ƒ^Αh4.^Όxll¬ΎΎ~dddΩ²eάΎ}»ΠFγόΟ  mάΈqhhΘλυΪνv«ΥϊπΓ—k‚ ²ŸύμgΠJV©T===_όβΡ<ΈmΫΆJPAŸ΅K/½T§Σ9L‘t: …’ΡθoΌA»Ι›nΊ©΅΅Υλυ’xκσωT*ΥβΕ‹ύ~?Žΐ³ζ§?Χφξέ;;; W2™ΜΌyσ^y啇zˆv«·έvjΝCCCΘUc_ΆZ­hŸ$Ψ―~υ«={φ NOOk4(Ωwwwχχχ&’΄€ρΒ /„B‘\.7;;;==έΡсλ‰DβΗ?ώ1α>W¬XqΓ 7LMMγ‹ΕΊ»»xΰJJ<ŸkkΧ}ξΉη@μ‚Mž1Η›››!pLφ£>Z΅jΥΠАX,ΖΒG«Œΐο kll|ϋν·ƒΑ` €ΒL&3v»]«ΥΚd² .Έ ςoΊι&§ΣισωXι…τ―'0ƌFγC=Ty˜Ν ΗωυΧ_ηwξΫ·/  uuuνΩ³§B?ώ³φΓώΠεr₯R©b±¨Χλ›ššςωόμμμΒ… ύλ_W.Ϊ^nιΑSΙ`ΊPεYn˜φ …β™gžqΉ\’R{ σζΝϋρŒw.ΘΊ»»oΎωfd@>μp8°έY­Φ—^zIθ‰ ϋΕ/~œR"‘@“Z­FwλΦ­2HŸa>ψ ΡhΕ/c Þώω?όπYcΧdπmXFn}χέ7ΗOΕ±ηπP(ΤΪΪ:44„stυκΥ„ΙtΫm·έύ‰D‚3Γ\ΆlΩY%œ?k###}W«Υ‡:uκΤΌyσš››GGGη.vΜa~ΏτΘ~ϊι§ύύύνννϋΏ{ΰΐ‘ξΩ³gΥͺU3336› Ωdώ=Ρh|μ±Η~ώσŸb£-[Ά455‰ΕβxθΔIε +'r+7‘HτΨc΅΅΅XΞb±twwϋύώ±±±7vuuUήΎΚmι₯GnkkcŒ‹E€l€Χλ]Ώ~½Πα+455‘ZΚJ29X\&“©³³σŒ&€JμΝ7ίΌβŠ+Pˆ€cg·ΫoΌρΖ'Ÿ|RθP°_|ρίψΖττ΄ΕbAv•©x<ήΠΠpΑTR—ψ¬ €9η c ΕΒƒ[,–ρρρααal V«U­Vϋ|>x!2™Μλυž{ξΉ•ψΧΏώ΅©© 9’‚ŽŽŽΩΩY4ΘCp(•Jέx㍕`©?Χ:”N§{{{'&&b±XWWΧw܁ڑPs8###(Β(Šxxdα#γώΐάύB‡}φΩgW¬X1==½zυκwί}θω>τΠC{χξ: ζδδ€Γαΰ0Ύ|‰9`` BΡφrdσ Z `NžΏωΝo2ΖΖΖƊe]‡Œ±ζζζ₯K—ΎQmmν‘#GΚΤj΅h^žO‘P,[ΆŒΰΨ566Ζb± ;8 ¦R©·ήz H8‘β‰0‡Γ‘R©\.—V«ύνo =†T*5888oή<šcΧΠΠΰυzγρψφνΫ'''Ÿxβ‰έ»wONNŠΕb= cΦΤΤμΪ΅kffΥa΅ZDΛ‘#G*ΔγΦ (pqή022"‰R©Tcc£V«κΨ]uΥUŒ±ΙΙIž•”Ά…ςοs3›Νuuuϋχοοξξ¨\.—οή½{|||Σ¦MN§“ΰΨ566@ 033ƒhkrΉόŒ3―BCT ZΑx<Ύx 63™ ©XsJ IDATς—gε ϊ¬‰Εβ5kΦτυυαA“~4ύς—ΏLvμΠŒςΔIœΙdτzύš5kŽš$P坼K©Tͺ―ύλύί-hΐM›6>|8•J™L&€’δά₯R©tΙ’%gνΖ€=γ ΧΑησMLLΰ ςεΛiŽΙdR«Υ(]»vνh^clΙ’%@`ll,N«Υj“ΙΤίߏ–s8 „1C‘Π‘C‡@%d-Ξ#§ΣY!_γg wrν΅ΧbΗ‹D"Ε’vb‘P°Ϋνhmj .>~όx8…B>ŸD?θ,! X__œ¨ ‘Ι4NCͺK¨έ|σΝ2™Μοχησ O vωε—γfάnw,+‹f³Y$:uκβ‹/žΓ±›«IxΡ’EN§_1ΐDwwwsss}}=-Eοώο¬LΤ˜$s+.Μa«V­BTΛ4Mkk«F£Ω΅kW&“©„”δ³ΆnέΊ`0(‘Hκκκ šJ₯b±˜Α`hnnPTΥΦΦ"|A‰Z­†ŸJ₯#9-{±hΡ"0 ¬\Ή²£££X,:ŽP(499ΩΠΠPΉnOΉ!XmψSΐχΑ[Ίt)aΐΦΦV„Ε SŽψΠ)Ρ’™+V XΧh4’Iώ άaL«ΥŠήh4666677ϟ?Ώ»»x>Β€Œ1›Ν†.Ϊφφφ+―ΌςΓ?D‚£Žφέm6:3΄Z-€NE"Q<7™LδΪ°zP†[Œξ6€Q4 kΨ† X‰~ ~mm644LMMAΥ0›ΝŽŽŽξΫ·―»»[―ΧΏπΒ •€²?kΰ,Θ—Tၘ²¦¦¦B·rƒotΥUWaSΒRβ ΰ, g%—\‚₯€V«±‡h΅Zx{B‡β¦ΣιΠJΟ+‹:N­V„τΩJ…†0•³+ /€ε™Λεd_ϋΪΧ¬VλιΣ§ΗΗΗ=ΟΠΠЁήύB‘ΠΪΪ:99™ΛεV\Yαhθ&–J₯j΅Z«Υϊ\(Π&¨ `»΄2cμΊλΏύΘΘDΥ·nέJŠ1f΅ZQ-rzzkŸ1τ*aΜζζf©TκχϋAHΖπwVΟτYγX‹uλց\q8‘€\$|ϊωσηCΉM¨œ’ζ GŸp«pdα‹Ε@ -ρδWή^nΰΔ<Η6‚Y„νκκ"Œ©Υjέnw"‘P(‡―"—ΛΩlΆΉŽΉ»††Q‰Ώ‘χ"άL§Σ„\%clγƍαp±;ΆQ`eΐΠρέο~—0fss3˜ηX‰d2•JΝ›7oεΚ•ccc•―φrϋΚWΎ‚fC―Χ‹t91ΖΔb1ΑΏΑ—.Ώ".™¨DωKΘ΅,_Ύ<ŸΟ‡Γα£G9rdzzzvvvΡ’E8ζi Ύ­­ 1±ΈLΉ‘Ggg'aΐσΟ?«Ρ!ΟxƒO „anFWΰzΘ‚ΐ 9+³ΡηšΩlN$ Κ6™Lhg‰Ηγ\‡›`σηΟGZΕγρ Sg<-³ˆ 4^)•JΘ^ΑY4 ΄ϋ„ρ:?0ΰ„εσyB΄)ΟΝSΏΘβ0Ζ.½τRΒζσy§ΣYWW‡ό’¬333ηΖΨΉηž …8­Z1Š%φ‘tω¬”zΏτK‘―ΒE£ΡΘΉΣ²Ω,aY΄hη0γT‰DΤ$BGƒa*ζKβ˜`»€‘L&!ξ)ΤΰΨqΊΞƒˆυNΨθ‚Α`$Α&Œ<¨Α`¨««Ϋ³g: ,Kε"λHXΰ©ρ>αάpr\§eUaίώφ·}>ŸΗγ™šš:οΌσΆoίNΛΝΓ€"7΅H$ΨO ΕYΩ?ΧΰΏrύζho’ν!|λ]H‘$œŠ #‘Φ]‹œ7j2πœπ»ΈΌ΅Pρ-<{.'—ΛΑψCΓϊ#qSήΨ!*Σ[·naL‘HT__―P(Cuξ79ΧαΗxtΏ‚γ'¦Σι@ Hψ †„$ηP`Œ)•JΜQ₯R^­N§ΓΖ„d/ψίΣΣS!ΚvΑLOOƒ» ³ ΆX,699I e°]R’όβUNqI€O©TX±Bθ°K—.υω|'OžΜf³‡C«Υβr:‰DB(&Μj΅"*‚ί ΪFt ΡRΚΠDgŒ©Υj«Υ*-‰.cή‹ΞΖ$<‡Ιd²D"Ρέέ½rεΚΆΆ6€@Π…Waγ–Λετzύ‚ €ƒ\΅jΙ!Μpg˜έn‡ ’/±kr-5™LFΛͺb3B쁴7’mΰ Ι–οh<‹ƒ‹±XŒ liihy“Š1F‹ŒΑŠF‘ ΣΧΧ'‰‰D P«Υ΄€³±±1c―ΓΦ‰Σ₯%ژŒ±E‹!φΐTηD?>>ΧλΑ<ΗI€rΉH%„ή%Φ3η:a%’HΊGψκF£‘s°e³Ω`0ˆ„1ζt:N'!Νϊ™`0H³ΩάήήΧ뉄T*υω|•tΏŸaΡhΤησ‰J²°εGp{ΰ\:,ˆW\ΉlΩ2»έΞav`­œ§ ά8ϋŸjHΘ₯£…ŠΦmΚIΟe2Y[[[{{;\gΠimb˜™£££v»}λΦ­θB@7‘Ζ{šωojj‹)vrJτρ …’‘‘°wΥF‡YyΈΙJή>Ν±3εœμ Š™L†­³ΏΏτιΣ„o‡Δ—ΐ©Œ₯…‘@!#tLlΎ‰lΖαppςd›ΝFΘύΆ΄΄x<ψ―½½½ιt:‘Hh4―Χ;::šΙdhό<Β#σΣŽH>Ÿ_½z΅Π1±C»\.½^?:: ζ^ί΄=΄<₯Š"2ΐ¬bφΛ3 ©c b±X/^l2™ψ§W*•gpπThΌ˜’T*Η¦M›p“ΡhT«ΥΨι΄ΩlΙKKKK:nnnΖ&E ΗΉƒΫνnoo·ΩlHΧe2—ΛEoΟj΅Ά΄΄ΤΤΤ΄··;Np\Σv:< gGΨNT†Npλs%‰!~Ϋ’2έ€ hΧd2933£Υj_{ν5@`qHΣ2΅ ’δq< ͺx'h`'ŒΉnέ:œ…’Vfoo―^―η>.α<ζΩpγ!‡Q(Ιφn’1†xd z½ώ₯—^ΒΩ‰μ/ οώ•\IΑσΦ[oυz½Z­ΨtΞ 2EI\Έ Α`ξrεη±ΣιΔΜd₯₯ΊJIΙπΏ‹ΕΚ₯ωΚν{ίϋšaΝfσΰΰ Έ3h»1Μλυf2tΗγρΫoΏέαpψύώΩΩΩt:M›σΐ–!ΛZoTQΰίΔ2YΉre.—6 yΰ₯ηh.AcΦΤΤΔb±‘‘‘|>?::j΅Z7mΪ Ρχ •JGGG ·zΰΐιιιP(¦[Ζ.—kxxΨεrUΨ‚s†azc«L™ηDc4ŸαΠ‘Cΰ―©©9qβDoo―έnGνθΡ£sόΰ\+!k΅Ϊp8Η­V«Εb±ΫνhD~ˍΰŒΧλυV« •S‚§ΜΙ$Α+ˆe‰”²\.7 „DKsss6›F£oy<žŽŽΞ#έ-‘c2Ζ¦§§± σ ›• g³YAνϊŒ1§Σ™Ιd­U(^―χφΫoG [-{Α›˜ps Œ0 ΖT©T555V«όιΐ€c³¦έ'°Ψ&“ mΛ/Όπ²Ά2™Μj΅Ίέn˜ΨάΡuβΔ‰ΎΎΎ\I@φΡvœΥΠΓ…Σˆ7 β%k4΅ 5ψ[ΐ¬ β‚+OΞΨK ŒY‘P$ ή4ƒ žΰΦs&V’—~Y© "ΤR©τχΆ£ΧΦ£=>¦ @ΩΓΓΓ?ό°Ρh,–Tiπ΅/~ρ‹ˆ*Ρ^:==}ύχy‚Eƒ"B` ΈU9Ό˜`˜πΉΗ 7ܐ/ι(bχ#Œ‰Gƒλ‰+`5cŒιt:BŸ)‚C±X¬V«Ρ{„ώeθIJb$ŽΦΦΦ†•ΞJ•MDDœ‚ ˆV:dŒ‘' ώΝ‰'#œaΰC‘0—Λ>|ZΜΐ¦ΣΆe¬”x<ŽYŠΒ4~y―[»vνΉηž Vb±ΨΠΠΠάάάάܜΟηαG E1­X±‚kL+Š`0xξΉη^zι₯ ΑeŒΡζ'6 δ)‘‹Ε ­Jd‹‘žΗ !匯C« CTŽ ΊšT*U±Xœ;ί?—#•J₯ 8ΔΕbρ 7ܐΝfS©”N§³X,„2^֌N§λνν}ζ™gG,ƒ«DΨ”ƒΑ Φ‘Ιdͺ­­Ηγ.— ΠHH£ψύ~‘c‚* χ³pαΒύϋχΓσΦ`0J±Œ1ŸΟ_›cΧΰή!ψΞησV«΅£££ς‘‚ερx¬Vλ“O> …ΰBI8Ό¨ΟΪΤΤ”Z­F¦Η8Kh9 εrΉΗγ±ΩlwέuΧο~χ»ΆΆ6ό Τg Γβ$†»,•JoΊι&›Νδ―F£9xπ aLΜj,žααα©©)d2°§d₯’πψƒaΧ]j΅^4₯EΫΊ΄Zmwwχ―ύλ—^ziήΌy@CÞzκ©φφφΪΪZƒΑ@kω?Γ<ζ§B‘@% ]ŒŒ1₯RIΫC‚Α Φ»R©<~όψΫoΏ t΅H$’Eڌ±ξξnž˜CžΝf;uκˆΠχ hΐΪΪZΜΐP(ΤΩΩyΟ=χ:tΘl6766*•JΔK΄[΅Ϋν$™LβœN§έn§αC8yΨυŽ=ϊΦ[o1 €–ΉlsΨΨؘZ­ρd@Θ5χOΝεΨΑeŒαΰ\Έp‘V«…h¦Υj%”Ο₯Β‡7™Ln·ϋγ?–”άQ­:ζιΣ§{ ½^ …Ž;V[[‹μΙd⺊•›Ρhš1f·Ϋί|σMΖΆ'ΈδBE{`ννν|C ΌΈZ(©ΰ1±υΘd2΄ΣC€{m―οοο焃}ŸζU.—ΛAΤuΛ–-―Ύϊ*h°%gμcαpxνΪ΅Pξ2 Z­N9-’Γ „Ϋνχϋ!ΛΘρ „cΠƒgŒ%“I‹ΕςόσΟsκθ“ΖΔώ dϊO<ρόσΟΧΦΦβd"W΅b%°„Χλ…_‹Ώ’ϋXθ˜\E$©Tͺ7ήx£œΐ“ζ0…Γα|>ΪB‘ΠίߏL*•šžž¦U$=j6›β»nVζ”²ζζfδ-π‰ίxγ ό/(ΒΠΜ‘‘!.βŸhxΖΨΘΘfΈR©Δ“’΄ ›Ά‡pΆK‰D‚²μ±cΗΈGK υ—Λεέ_(ΠΓ?Z‚b±Ές\Ο£°² )’"β’π(vfL‘ΆeΛ–B‘ΠΠАΙdΞ9ητ]Uƒ±CzίL$ΑΚ"Œ€ώ”J₯ιtΪεraη”ΙdδΉ4*όEPω|Ύ}ϋφq%‘YdŽcV«υΤ©Sΰ΅>xπ Z­v86›v$Ή\.(?Αw…Bz½e%§ΣIH²ba~2Ζ~ϋίςΙ'¬ΪfŒΡ€,cGŽβ"‘H€N£Ρœ•Σ~.Η.‰@Ή%μw8Œ•J%!k…oΞt Ζ+°΄zωθθ(@k;v 83ŒΌcΗ‘bBFΙλυ~τΡGŒ±‘‘μ)ƒ–Vu:‘H„Ώ@^@ΑΞ‚/'ˆ*Μαp λΒ`0πΤοχ£»§P(ΠΞςB ί‹QŒ£ΒI| s&lšb±˜vx &‹N'œoƘ\.‡1 Ρίγ‰ήAˆΓde „ή}χ]žZ'w+•JΏί[Ηγ €Ÿ˜˜ c­0—X飁C‡±i…\.'ψ7š‰J bŽC t—γφ‚Α  ΄ξΒΗ…Θ:a@ΖΨργΗ!TΟJ?<<ŒŒT*₯e1qΐΏσΞ;Œ1P‡Jb—„p,ƒ;+“Ιfff’‡ΏH(Mΐx7ψΙ“'αH‘§=Ž78ρx{εςy‚ =ΛϊFͺIP)–iΓαp0H‚ŒΥΆ¬u€»ΒŸCΏ:Mu§#H‰Z/ρO΄ΙΙK₯RΐVbB’0ƒX,¦ν‘8Λεr9χ90 +νYC~އ˜ƒƒƒΘvƒΣ 4ϊBΗ„ο‚ݍ1†€›Gαd_ήT*…w›J₯Ώ‘y`Œ±£G"νΝΙFFFψΒ$ψ‹hΖΨ€1‘ξ{dIΨξQm„·199‰%Φ&ωeφφφ"/+•JΗΖΖc^―——Λiθ VΒoπΓΐ MΨθPΫλυ`1δ’bψd•Η±h]βΝ|H΄˜ΝfhΞς˜]ZˆΈkΧ.§ƒA₯QΉ‘/ŸΟΛd2œΌΌ{€μάpςW₯R "e pΘ2clΑ‚Θ)θυzΗ‘3Fΐ‡ έ–u:]}}ύβΕ‹sΉβLƘΗγAzžœYdŒ![FνvϋφνΫGFFjjj2™ -i…4*κΈ+|& dG™1ΦΣΣƒπΈ@€,ϚSœΛ±λνν…Ÿ˜ΛεΚησ¨¦) B‰“1†ζ5¬¨™™δo°Ρ‹D"Ϊ&rΰΐœξ¨CAmά{q!ΖpΩF£Q«ΥξΪ΅ ‘°L₯RˆΓ„ŽΙ;^ΡWο€*+ρJ¨ΥjAI`,K™LΦΠΠΐs³€Οσ ΑPhFŸRΆ<‘&&&Π*αt:‘ f%Ι&ΰLi€wlsf³ytt›H$t:Ψj²²Ž`^€@:ŸΟ“q'αppWΞrŒΟ /Ÿ&X„΄J₯βε<Δ…Bμ؍!"βΎ,`5#ΈΆxiάYd%4¦=Ά833£Ρh …B0ΤιtΨμ$ Ωωφz½HXΞΜΜ`[GΨ„a_}&BβX,U.xΖbiΞ ppτττΐ‘₯%}ΉΌ}H ΎΎΎbΙΘΠ=d”Ή{ΗJB&4€r:Φιt ΅* ‘HδύχίΧλυΰRfŒα_+Νλυ’μˆ;L₯RV«υ΅Χ^γhwndVα;v`ž™™Αχͺ¦+–1Ά,€X©Q$ΡpA¬δγˆΟεrhBB Fnž¨――GΏ”R©ά΄i.~ςΙ'θmR©TBσΚ&“Ιεr‘w€όϋ*ŠΖΖF{6,#ŠZ`xx8ŸΟOLLd2ΒγσΉ\Ύ~V baδl:c Κ…Bt<Œ±h4zΦ{Αγρ qFOOf€X,…B΄2ΆK9ΒE^’£νΛ‡Ζ*‹S©Ξ'™L¦Σιh₯™‘‘ήΝΗ‹‘HEΓΙΙIB& 1²©πηΉζš>ϊT™Œ1 :ζ΅Z-fxp}|Εb‘Œ΅‚―! H$βυzͺfŒŸŒ±Ε‹G£Qμn;wξΔE―ΧΛα•΄½ (ΧΞΞΞt:ΣbrrR―Χ“Ϋ–YΙ-`‹1†¬*4ΘN|YΤs1ηρΕ  ΓJmͺερ8όΠβG³――ο \Ύ βcΈn½Ηώ―FΓΗ°R+Ή³¬+WΓJ300€ƒ ΪKώFS#;Λ³ι< z&Β°|mβ†αqrœ ΝΠw‚ΕΗξoϋχlΘΣ~``υ\ŒŒŒ€X,¦9 αpX‘P 5‹ΛεBέͺL&Sy^δτιΣHώab#|½ε–[άn·V«εDn¨SξΏΨbΨχ³†ΰΈ‚ΘU/‚‘P†Η…B8ξΥj΅T*%?5ή*xt9‚‹ΗGd Κ0AŸΟ—J₯Κ°P(€R©@ @ `SSSΨξβρψθθ(χΰΛAΐ•Δ πg~ˆγt‰Dδ¬*c άu¬”Z‚šνY=ΕΉ;$¨Ag…νLQz½žvΐ³`ߌ^‚μ#aL·Ϋ *#dΪX za@tH‘PˆΪώ€4-†[Έp!!Δ|ν΅ΧΚΫ„±Yοέ»·ς1u:JΖ‘H„'FFF€μ!G]¬D{‘ΡhNŸ>=44€Υj«ι-οκκŠF£‰δ“dβŒ1‘HDΛZe³ΩΞΞN­V[,±#D&ƒ*•J\’Bη6›…βmΜιιi¨/pΞγd2Iޘx{5έΌ^/ζ'91pβΔ‰ς^VšκΌϝςΚ ύΛΨέΚ? Ω±‡V½¨€……Κ,9{ΑJΗ$BYVB³q€„PC|8€tΉ‘‘ˆ–XEώŒ<˜?rFƒΑ‡G‹ώΚS§N‘ωŒ<&+‘‡ …ό--Π* ~ΏΫ¦J₯‚800' Ηd2Y9T`rre(ΌI~*οίΏΕ%5ςIS«ΥΉ\Žœυ,78ί(Θ²’7/•J ˜(n//ΰΕX4:…λ»ΕV­Vϋψ㏳Rε}zzΊPšΪΐΫΪΪZSSc·Ϋ9hγ MPM<ž|Δ >Ρλυνk3‘HƒAΌ½ΎΎ>\tΉ\Όk›|Ÿ¬DΗ‘Λεΐ§[ΙΒ<˞599 1JΔmΰ}P*•΄:,c ΜΞΈ3ψLœhŒ£„1α!n ;ά9a@[Fc:ζ {vv°υυυν―ŽŽ.#—Λαq–^₯Ri2™tΤE"H£–«‰s`>ω1Ζ ΥΓΡKό ‘₯ΠΉ†ͺ+OžΑςΩh.›Ν–'ξͺάYDˆˆ?“έ`€°πΡΏ xC5(~–οΛ|~ A rηΔ0”FQ#‡ίΎ9 V~«πΡ} ψΪoΙ ΰH$‚x•ŸŒ1‰DBΛ€b= ŒΥ„‰f]ΖXcccε`‰‘‘!t¦sj4Ÿ!ϋΕ—€H$’qΥb ξΨ±(£r($Ωp¨^’;Ο`|Ξ#„γpšc‡J+n²\A‹Γy'MεΆoί>ˆ•sPΕd2™hB±0”p\β&ΡeLΖg£ο€X,ryzπ!ˆΕbr’†`t'ρΟ²s!¦ΧλQ0FVMz™K³±Rϊgjj G)9ηo³Ω°Ιεr|πclΧ]ψHA[ά$ȜΚ75₯Ri2™pΒ υθAIΐuΟ ΐΤ===ΡhSV"‘ΝNMMιtΊ3”04 ΐdLc,™L"u`~φή~ϋm»έ.‰&''ηΝ›‡‹ μ`e !‘ΖY²ϊd₯’!a(n “°ΫνΘΨ) ‹Ε‚^Ν°Θ-©Υj”'&&&“AΚπΐΔb1OςΗγq^Ϊ¦yψπaΜπ3#‘NK΄p˜<…Œ Σ<Γxz>›ΝΞΞΞ.Bν)7Ψqη͐oβ U‚ ¦θ:δX Vβ* ΄a±σπσG*•R±]= IDATVsr ‘Œ\ Ÿ@5Uƒ βτπ™FFF€9£ΝO4Κ fΚζ»P(·*•J+?§¦¦Έ"‹qΐνΫ·‰μ$…B–Ζ·ώΰƒΔb±^―'Γ^Ο0ΰ ° CŒ‘¬4C%ο™θ+$a4ξͺT*žVd%”φξέ ­v~†2ΖΖΗΗ‘!£9 0xF£οχg2™††dˆξΨ±C&“%‰kΉWΠ͊όω>y«Y2™D‡B‘Ήκ, φW…BΠ4³*•Š\Bβ:¬ m.rψ^WW‡œJ>ŸGπƒ>0™LιtΊ­­0`2™t:‰DΒn·α _ΐΕP(„tΑ` ¦† φ+D<ςcμπαΓϋ3Δτƒ‘Η#—Λ bΣ¬„©@t΄jΥ*~-θ¨ ‹ΟΝ˚8Ψΐ%D †›<ƒ~έ]Εb‘  ΣλυεΠLxΠ‚Γ`08;; ΗN‘P@.2ΧK¨<¨Γbπbepμ@ψ η•ڏyxμΨ±\.υ&VuσŠz±X¬§§‡•θξYuλ… B`’=E>‘ …8<2ΈZΰ™ φ===PΘ,η £B6›%πζpƒ“€Χλρ‰‘\ΗΎJ[›Δ.Η—'Xύͺι@bŒ©Υjψ 8Φρ±ΞzΈŸe%„B!L}œ³³³ˆfΘ»b™8,6£h4*¦|Γ <F0)>Œΰ›¦ήΠ¬Ξ₯ Π0εp8t:Π€ZaΘwj4šΗ{ŒΣππ0β‰D"rŞX,VWWΗ― ΝG‘PTm—{Z<―FΝλυ’³’cΧcSSS…’€ Νΰ4Δγq©TΊdΙƘΩl†ΌX5i!p»γΟ§OŸžœœŒΗγUfƒΈ<'€E>€ΖrΞΓξYž<Ζ¦LΖ„Αx½ƒOΕήή^ΤVhΫ=wμψ•ςΊ$ΩQ(v»έαpπΫϊϊzςΛ„¨ZžQœΕγρ˜Νf‘£ΑΕ΄?όσYι°—”€ΐhP]qOk\$USŠΕΜ)‡I0ƚ››λ‘echεΓΜgŒ'K$ΡjΠHΛ!ΉΘ³(A—¬ΕŽΖ½:QIœ Žx±XŒD"θΒΑdθξξ&άmωb1™L4ΑΩ3Μl6[,“Ι„9?<<Œ¦ΰjΚ‘ Όe₯$ >™ΰζ7ή°X,˜η—]v+₯Ύς•―`.1α<½Α`Πn·σ*.BΜ―΄[eŒ%“I΅ZΝΩ”J%GδryyCkε†&N4˜bΗ@wc5H¬T†B°Αχα³bΜΞr˜Νf›ΝΖ%Տ?n2™5–Ÿa’y +AΘΓα0N#r@ ‰D‚oVŠfT*'dccc&“I£Ρδσy―£«Q₯R ‘=---| %“Ιίόζ7¬”ΕyύυΧΑ‡LhmΓι[ξ„α5"™\MώŸ“’•7ΈG;}ϊ4zhjα"G·Δ|>Uœl6 ¦¨d2‰zM5ΌA‘H$ ‘ψΏX,F†ωΓ€ΰΤeεέ‘δ1±ρ~#>x5.8 ©TΚΫY†‡‡αD†εΡEρn$VOP°ΨίYi–’ΙS`H]”?&JH2™ŒG#‚lpp-λΦ­γΡ ‘ͺσ‘ύƘB‘@J΅šζ Q‰Ά­ό"@ͺ¦Šδv»±χbZβΏR©”–ΐΊΖΠlF=2‹ψo巊L9°1J₯…]όΣ³Ο>‹*JΉSN6lqkΧ½ώϊ뫇1¦Υjm6ͺ …BN§S―ΧΣ€k`ΘͺˆD"¬SΌΙj0< ˜Μf³_ύκWYιl‚:GI sttT.—+ ž=ε˜έj;€³y4ΩρΪΪZŽΊj===ά™Až$/b±ΈΎ=VzήX,ΗαޝυGΞ²±κt:ƒΑΐϋuΡ ‰‚jn΄ΕCC4Rt(μ"£L•n0 ²ό¬¦y‚•jξά±>†·WΜh4Y%—ΛΉ²!―"²V¬,uB/φχΧδIΕU2‹e}UΒ+Κ/Ώ‚ψΜτΙ'Ÿ@bΌ<`•δͺΘύ=ˆάψƒγ‹WγΨqUθςOƒb·H$"»Λ(λ³2}ό~ ςH±€πV₯R‘Ή4³‚2vh§εΩΣςΖ-[Ά€@9υ… f)Τ("‘ΘΥW_Νλ*4C•gΌΔb±Z­V«Υ΄b1, •sαΨUS7μιιQ«ΥρxΌ³³“•άΈ‰‰ ΎΧBξS§NΙεrΉ\ξt:ωEd°ͺqμΈͺ'Vw>ŸΕbU’nxc,ί-±N«ιΦG$#‹].Ό…|>Φ?ΛVΘ©¨α3α‰B»K—_ h—ΫΤΤT*•βQ,cΜλυ’―3’ύ†3ΘΙΙIΰUα‰ Κιt’AF.—sB ‚^}”§yΖ±B™•uZ,ΰNβρx5Q:ΰ: ŒJ"y@ ²2±dΐͺt0ΖB‘ΆN k0 κPMƐdό™³uTιΨ™Νf”ΘΉ/c 'm@$€ΛιΉH··`ΑπH‹Εbž±ΓJΗd Χ:q«HΥƒAt~€R)ςγπZŽDi†6L₯Rαρω•½{χb›¦:·mΫ†¦NΧΥΥ…‹ΌA’ΆΧΓW  `¬:ή‡h4 MΫrAQβ*Hσγαί…—Ήi^2δk±O’ˆf³Ωl6&€B‘D«λp8ΰ―c*–οl“““@@RX3™LΥ¬}D‰ΙdrΫΆmUΪ!ˆ-wn`Υ±ΘY’θΑJDβΥΰ\ ΌF<11!‰ ΞνδΙ“ΐΠsςWΣ”€C“³κβυ‚oŒδ‰ΕbxjώμXYεe ˜Xς^―·――‰Œ³χ³8v333ˆ‘žEφ"—Λ‘ΓΈιιiDό ‡ža"piΛ™ρ§§§£Ρ(g!œwY3Ζΐn_,;::„f˟χε—_ΖQ‰ ‡t6› Σ†σZ>xmm-ͺB™SΞ0”‘΄γΤYΥx`ƒƒƒΘKσ]k’ο)4Γ3ςφgΔ!ιtΊš=—ό€G  JΗηΐΐn ξΚIΥ ΐ/ώ JͺjFΣj΅HχΚT†c±Ο! 'v·`0Θ½R2τ„σΌc_‚RMꂕΏς9οL&C;κ>ώψc€τ₯R)wμπΰP&€έg6›…’5+5΄²*τΔcΙd„^ε>œΛεΒEΞΊέnd8a5rUΰzΐ 3Ξ…+.)ƒU^£Πj΅ΌΣθ³=L˜Ÿβ’κR5­X,‡Γ'Ožά²e yX$)―“b‹N$œ5`αpX$Ή\.Μpu4$μΥW_E3ŠV«ε€`—]v™R©L$ιtšp"=z‹ˆ·B‚ΛŒΓ7i–L&αΥaΪTYBΑξΩ³Ρ5α}4ΦΉq$ζm%QάYcttμP iΰYrΆ–gμΈ—ΰχϋρB«Ω›°Λ£νd2)“ΙΘΞ gKβWt:Ιd’J₯‡:Xc Ί}ϋv\ΔΞξυz'''΅Z-˜'Χ¬Y#θ&y#ΨνvΤeΐ©+τ>Ή•1ςFvΥ8vG/Έ£tH@–Ϋττ4Ξv»•@΅εΨ‚VΕ?=4‹x£ΝΐƜΝf‘’GRŒ geύkά±Γtͺ«j΅ZyοΏ1N(ΐ•‘hw+‹ΑΪ …ΰƒVΓ¦>—x­„ͺΆ|֎=*ω{ΉξΙΙI@υif2™±±1©TZή—€₯ €mX€l°Ίy™ΈάE(BφŸ―ΌόΥΔ]Χy >‹©\ΚΨ‚X)«„{ξH"Dj}bbUH¬—3Ό ^Ч:a”#ΐ+―ΌΒͺζ±Ι?%±BΣιt5ͺ@O ‰ŒjZΛ{zzΠjV(Ύρoΰbkk+Ž*ΤΠ…Ž988‡%Ι₯Kq=ε₯‚aaŠD"μνΌ“orr’€©ΕΗEΡY$q?Ή\ξχϋ«„buCpE\sαY»ΑΑA©T‹Εœδάτδ}dhh+“G‡ΌoŽμ,&“ΙΟ•/‹δ“Ή ˆqΕb±π–c‘£αt•QZcε#τ­o} ε€L&σ―ϊ―• ‘_αΰΒ–––d2™H$ͺΔs n‚>mΏίΒ°jΡ—žΝfyԏǑΫV:::ΚϋmY©O\ΖξF°d2YŽ΄(‡ά‘M©Tκt:΅ZέήήΞƒG†HΪ€8nαvγ Οή‘Q ΰAuηvοލSŸ§^„Œ±³Ω,;θ£Πn‘?\pƘΑ`8£’H°ƒβμαWϊϊϊ"ϋΚθO/§ΰŽD"pΛhw¬Ttζ°^Q’Ζ›šš‚³ˆ1qXŽŒŒ`v‘c€T*Ε;|“Ι$ςmͺΘ|ƒlR£ΡΔγqP‚M©ς6dΏ\‰D’ςƒ\₯RY,–l6‹©|7ψK—.U«ΥbUӝ Κεr2Ζ<O•,cŒ»Ϊxuύύύ…B‘šζ ΖΨ| V«‰οΒι,“ΙκκκhفΩΩY©TΚ›‹qjh4šj2vX’ΌˆΔΕi±VΝ‰'°§q:‰DR χ _$"Γϊƒc …ΚΑ+]MŠΕοχƒˆW7P–ͺ†hΉ4£ΡX.ΐ Ρh ξ„16;;«V«1@t…Β*•Κšš•Jεp8Κ{0TΏΗγ©――W«ΥW\qEεΓJέf³u¨.μΡUΦψl6τU° …Ωl^Ύ|9yΐααaψ1<^G{ΉF£!#ΖX<‡Xiμv»Εb©²$§ΧλΉ„cΜf³©T*hΊ“ν§?ύ©Ωlž™™΅ύŸώτ'/Όπmΐζζf•Jh? N§T*Ιόb±X―Χ †ςˆΥj0ŒF#­"‰ ΘΛ―€R)@ુόC ŸI©TͺTͺ*»|Π/RΎ‡€Σi‹ΕBƒˆΰΘyβ‰'°6σ?Χ.\ˆ/EKb†+•JLH©Tj0 Ε²eΛ£ΑΐςΐΟHΌ@ŸΟ‡|Ω™˜˜8ƒΟππ0m@Π°_,kkkA\€μ\.―|:555ρ―`2™Κ'v>ŸG©W&“i4£ΡΨΨΨ(τVσωΌΙdzύυΧ?ϊθ£mΫΆ ύρΟ΅ΎΎ>‹ΕΒoU.—›L¦*% ϊϊϊ¦§§9(Βιtϊύ~πδ 3η'?ω :™ψœ„ ₯ΣιΘ©΄1ρ`F«Υ Ώί_ΰΫΐΐHμΰƁlΥ`0455r7X&'Nœ€‡χ…/| \ά±©&_[ή­_‘§t–LζΨΨX$αΠ?—Λ(ω>|βΔ‰ΪΪΪηž{W:ΤΧΧηt:ίxγ ژΑ`πwήΡj΅εόp[·n]°`ΑΦ­[icώζ7ΏΉοΎϋD"Ρ«―ΎŠ+πxIpbbβ·Ώύmooοϋᅬ+^―χωηŸ_΅jΥSO=EvxxxϞ=ω|ώΡGeŒ=ψΰƒλΧ――t‚kjjβε·ί~[­V—³―μƒ>ΨΎ}ϋ›oΎ‰ΏξΫ·ο“O>9qβΞςβ‹/Ο?ΏJψή{ο-\ΈP«ΥΎϋξ»΄1_yε•Ε‹·΄΄ΌσΞ;~ψ!.φφφ~ϋίίΈq£Ϋν¦|Ϋm·ύς—ΏΩ½{7<σΜ3φoFΎO˜ίΕ!tΰΐΆΆΆ={φ°*ς"ω|ώωηŸ/ZΗΖΖόρrέΏΚ ·ρμ³Ο^qΕ‰DBŒ±Ν›7/^ΌX*• %τ‚y½ή§žzͺ±±ρwήaŒεrΉgŸ}Φb±Όχή{„Ρ`©T*—ΛΝΞΞB ηάίώφ·ααaΗS CޝwήYώןόηδ5cΜεr‘Q(vξάΉ{χξΏώυ―θX—Λεn·»ςŒΓ‡~xΧ]w­[·P(μΨ±ΈgX&“Ήωζ›oΎωf΅Z‰DΆlΩςΙ'ŸξvήΌy7ήx#ΎK5ώ1·Ώόε/ΏϊΥ―^|ρEόυwήΩ²e TRΘζrΉzzzxJιΡG5™L4Ν7VzΜ`08::*“Ιώφ·Ώαϊξέ»oΌρΖt:ύπΓΣF‡Γ€*A8 ‰6 cμψ:c εΌmΫΆU«VΩνvˆW 5¬—Λuο½χ[·ξΝ7ί<~όψ< “Ιh–ΫG}„Ή](ή{o?ώψ¬?2—ΩΠΠπ½ο}Οj΅ΖD"”C8–J₯χή{/­[SSsί}χω|Ύ‰‰ ₯R‰Œ ˜”:Δ·~‘&—ΛχοίβΔ ŒV(ŒF£Νf[΄hmΐΖΖΖ·ί~;‘Hp}hp+˜Νζ?ωΟ?ωΙOcnέΊ΅­­ ά###6lΰBŠΧ\s KώΪk―‘” V«³ΩμΨΨXΕ_μσωβρxssσύχί†y%φ裏’™<bί4™L™LζŽ;ξ:¬­­νŽ;ξψπg‰D’Υj5Ν-·άBKVcΉμ²ΛξΊλ.„J oΥh4Ιd²΅΅υΫίώ6‘ΎΏ|ωςT*U[[‹­\.Η#Γ­ξΎϋnΰ^;::fffΐ€}Χ]w‘³τZ­φ©§žšžž­ ‘SΫνφ[nΉ…VOY²dΙΒ… m¨――O§Σj΅:“Ιh4šήή^ξν ²―|ε+7nŒF£n·»ΏΏΌσΞkhh8}ϊ4Šhυ_%tΐυλΧ―[·Ξλυ"…ƒ4ΨΘ'&&ώόη?n’1φΜ3Ο¨ΥκP($—ΛC‘ίοηέW Ρ'Ψ~πN²JF£Q«Υή}χέ΄cΫ·o/ π wοή=oήΌρρρΖΖΖ½{χζζζW^yεΠ‘C@5y–Νfm6ΫΎ}ϋ ~(Τ–.]ϊΰƒ?~\₯RA ‰1Nχ駟ξΨ±ƒ0μ–-[4 q»έv»}ff&‘Hψ|ΎŸόη„c/Ώό2ζψψΈH$²Ϋν¨κήpΓ ΄Ηwά1>>Υj@iΗυzύΆmΫΘΜμκꚜœD-`†ΦΦΦηŸώΪk―% ψΰƒΆ΅΅₯Σi$kΠ)œΙdt:έ3Οώl4Α §P(l6Ϋ·Ώύm„wBνŸωŸ~ψαp8|ϊτi½^ΰυ”G}tώύ„1cηœsxŸ9δ?‰€6ΰwΏϋέ|0 j4`;€9;ρΒ… …ω#›€nδΰd©««ϋΓώ@8δή~ϋνt:"i(J$λΧ―W*•ƒϊӟŽέ?Š/ΙοsΓ† ›7of₯žS΄ζσy«Υzλ­·ζlώύηwήηώΣM7έτϋί^Πh:ξδΙ“ccc:ξΰΑƒCCC ϋq»έ?ωΙOhΜIΡh({ ϟ?₯—^"|qΨψΓG}τ B]nwέuΧ/ωKΒ°·ήzλ²eΛ4M8v:‘H$NŸ>}ί‹Ά>ωδ“6›mύϊυΓΓΓ …’££#•J½τK\pΑO/Ήδ’;οΌsbb’±±Κo …bzzΊ««λΎϋξ£₯―ΐλTI₯RαΠn’Ν™Ϊ74Δ?8“Α&;==Ιd@QžΙd€&ίj:ζθ p8,“ΙΞ9ηœrώΕ3lR,|OΤΛgggN§Σαpx͚5΄ΓxρβΕ333>ŸˆέsΟ=χύχίχz½έέέuuu4τ%—\ΒΕ;…Γd0.ΌπBZšαΊλCϊ'‘HΰψY(Z°`aΐk―½²†θZE&Νφ`εΪe‚,&“ΙρρρΞΞN΅Z]WWg0&&&δr9n˜c‚΄εψψ8βΠG …ΖΖΖ+VΠ²K—.Eg+i€€G ™Lvvvζo‚>οΌσΒα0ΆdΤ ΅ΥΠΠ@@›mήΌ9›Ν ·Ϋ½pαB‹Εμv»ΙdZ΅jU*•Ίχή{…ŽΉxρbάp,;vμ˜έnχϋύΙd’6‘`555Εbq``@­Vc1ΖD"Q:nmm₯ΞΙεr»έžH$ύp8œ ‚†Ϊ”H$ΠΣ ƒ&“) ΎhΡ’ΪΪΪΑΑA“HmmνΔΔD&“ θŒ‹Ηγ Τ%CKΧ];== Ό‘V«- n·;ΈdΙ‚cχέο~—1vςδI|#|¦x<ήέέ}γ7"ΞjίψΖ7‰Δμμ¬X,«« ƒ‘HdjjŠƒ577'“ΙH$‰DΚ›ί …BKK‹Γα δ• …‚Λ嚜œœ™™α€`y_‚Ps:f||΄αŠ­­ΓMYλ‚ .(‹SSS Η* ‘PH$΅ΆΆ666»Λ/Ώ|||<—Λ βΰΊX,’£Ž+―Ό’1‡Aο 5ΥƒΑιt u¨ΥκεΛ—»έξ‘‘!•Jεσωάn·L&‹Ηγ­­­4}d˜^―D" …" ‚΄²΅΅U£Ρœˆp“°/}ιK¬€ΩΝΩ+νvϋΥW_ύΰƒώ£ŸšΛ±Σh4\PzsΉ™ΡκΒ /τϋύπj₯Rι©S§ιt]]R©¬――'gμV―^ΝJ\œ’1vΡEΡ;^ήΒ*B ƒ^―wγƍB3«xΨ:±Ρs”@±X€υ$“I­VΫΦΦ6==-“Ι¦§§γρΈΥjΝf³~ΏŸ SˆˆΦ@ͺΜ»π:;;iŽΥj?Ό@@…ν‰Κ VΫΈq#c,›ΝB&__"‘Λ{Ξ+·υλΧ?ώψγ>ŸO­VcΚd2.—+‰ΜΞΞtV―^ΐΤΡΡαυzρQœN'β9˜ΝΝΝ…B—9xτ ς-Ϊ>rξΉηz½ήύϋχλtΊt: …–-[υnrϋΘςεΛΝfσΗ¬Ρhμv{OOš„b±X}}}WW°b‚lΙ’%n·Κ? ³B <NwwwC$Z蘿ψΕ/x@ˆxƒ1†vKςv7oή<Ζš8Η“L&K&“+W$ Θλμμδ08{#‘< ‰DήήNhMΨ°a:0—°#qςησΞ;ουΧ_:f‘P¨­­=qβ„Α`ˆΕbΐ!‰Α¨ŝ‰D" ΑQ©© Ιd ¦¬΅f͚b±ˆ#πΎ*•J„τ4ηF«Υκt:ˆͺcNv¦.4σ 5"—ʝΔν ,κΨ­^½H˜x<žJ₯, °k 3$ΟOΖΨΕ_,•J§§§Νf3ΎˆτηϟŸΟη9f]Π­²RS –θίgŒ}ρ‹_€9v :Q(2™ _ŸwF\Ή’ΰŠΰΈΑΉ)‹±‡(•ΚX,V [Φ½χή m.ν(‘H’ΡθwΎσ9»Ή°‡h€ΕΒLΒ[@*ˆp‹Χ_½V«έΏδδd8ŽΕbΰeή±cΗ9眳iΣ&Β°Œ±¦¦&Μ!~ΒΑ»Gg ΑŒF#"-Ζ˜)Κ»Ζ‚ œζί¦œ–)—ΛΡx­ζϟΏtιRΕks€žΠrBΨΡp΁ ••ϊ<ΘΨgΘu3Ζ ώ ΘΉΠj=Έ«[o½••˜½Š%AžrΉ 3›Ν ϋγγγn·Ϋνvηr9τGΣΏ©©I,;NNg6›[[[‘Jμμμ,WFV’ IDATdŒ?;œΤ θ€ή°aΓUW]ΥΤΤ$‘HΠAEλ5ΎρΖ!qˆ―ίέέ½`Α‹Ε ?όπΓD"!Td}ΥͺUpΆ8Ν€€dˆΎΌjηŸ>ͺXDZ­Φn·ΛεrŽh!ŒΉhΡ"œ|fb±G"‘ςή[A&‘HŒF#|…l6»rεΚ™™FΣΨΨψΦ[oΡ؝¬V+§€α\ΈUVΪ „ό9V’L§ΣρxιΊt:MkΘ8ηœsΐρΔ‡8Dγρ8­Ό½½•πΥqW6›₯eΧpΊK†wXΎBiDTg ‹CDT›&μσ€¬ΑK†ŒG{{»Α`λΥj%fY,·Ϋ-‘Hš››Ο;οΌϊϊϊL&311αv»iΞ7"~²γ€A­ΜΕ³Ϋν`mλV±XDˆΘK₯R¨c zε¬τΉ#‘nU£ΡX,B†ΆbΕ € Λ™­’Ι$'ϋ\›Λ±C``Pmm­Z­ΖΚ³„šT*ύψγ{zzFGG=F£ωκWΏΗ§¦¦ΖΗΗίyη²”?0γβ ‡Γυυυ„ΡΚηςLͺβΏ‹ k‹ †yΰ? ‰1Β­.X° ™L"e΅\Θj™ΝζP(d0ώώlΓ€Η}Κd2lΈO25‰ΙdB) ₯=h-ΜDSX‡]vΩe‰D―K½œ±™p§R)πΦΤΤΘd2›ΝΆfΝΝGۘ,X¦¨|>οχϋΗΗΗ'''GGG?ϊθ#²£ .rό“ΏP’Z―Dpζs {P]]]sss±XDGxπ6cγάΦΦVSS“Ιd, 6›­¦¦&N M†­_Ώώ+­DdƒψΑI fx “=-4GΩ`0p+ύ u‚544 Ϋl6—Λ•ΟηαΝ444€R©M›6βmΎς –•@p2™ ν@2™Lαp@±X Κ1ώ™h{]WWOΐιbΐT*…<=‘dθ‘B–₯ΎΎ’Œ(PΒBΖŽ[dzqu2θΛργ_ΑΝβ  žςΔ©GpΎU*hDΡj:;;;55ΕWS.—£έgMMΝfs8σζΝΛεrˆ:¬VkKK‹\.§νŸK–,‰F£|=bφ•φΡcuuuX€l΅΅΅©T*ΌΜb±H(υ0ΖΈ—‰ Ϊ7Α›£P(wjpjςΥ-*©@́Ύ8K·0f9> ΐa(|n‘1˜d2ιrΉ ƒΛεB]―‘‘Αf³‘“62B@‰D’ΧλΉ!.“’d<₯„β―|-‰I"3ΰΚΗ η;8ΚΨR aή =ŸΟƒςΫf³™L¦l6;;;ΫΫΫKϋΧΥΥa;Fwό{lσηΟ:Œob±Ψb± †κϋΥ‘κCž§ΙdBŠNα}Κd2Τ7A*‹bΒœI„ϋ”J₯ύύύ>ŸovvΆΆΆV§ΣwBγ yΗ‰ -‹B‘ΐς$KΒ' ¨K)ŠΪΪΪϊϊϊH$244433#‹ I,«T*£ΡXSS !C,—Λu:]ΏΠ[ •ό-Ηγρx πˆ…IΘ4`š6•Jy½ήh4j±XL&“R©D`#tLΖ*G˜ω|žCKQα% Θ3™L“““νννρx\&“q]ΎL&‰D€ζdΤ‚ΔXο‚ΘαΚ-‘H –J₯€Dϋ­»JΎΨΨ‘³δJ ™L†–UEm$±X,/½τττ4˜ gggi)+Έƒπαπ>1Xι<&DΪ¬L Σ)“ΙπWΑΚ”I+7‹Ε‚Σ d~νννuuu<ͺ‰D"΄ΗojjΚεr===‰DΒh4žώω]]]*• ωZšCMM ²³ΩlΦj΅rέmlw„Ή!Φλυ<ςκ©T m„ΡΠώœN§ΑˍTK.—‹Ηγ@€–cΪ°aΖδ. u0ΖΎόε/£œkΓΚεrh>2{χξΣλυ€Ύz°ƒ0Ζb±Ψš5kV―^½dΙ’`0855₯P(Θ8˜Δ±ΧoΫΆ δ·ΨXiς­ρ%ζߚ βE¨β³8Œ/!t]θ°€ΗγqŸΟ'“Ιjjj fΰ„ŽΙJ‘‘T* ‡ΓœΪ>“σσ\ΐΫ`0τχχ  θΙΚΔε„ΪE]ΔJΜϋŒ1­V{ςδI€νc…B°> …‚N§³W±X\Ήr₯^―GW,°j … “Ι4ώόsΞ9'ŠΕbr}“1ζρxπ0sΆnέ θ7φ}šΆ©B‘IŠJ₯ͺ­­Ε §ΡhrΉ\$!ttvvΗ …€RiCCΓy睧Σιπέn·Λεβ’eΊΈcιtZ―Χ;vlηΝ‹-dr„ή'šΚάΙf³σηΟ‡ζ²F£‹OC *F}"κh'‡©FP#Α#Q©Tdϊ1 Β½΅ ¬#Z7κn…B!Ηγq$ζ³Ω,NwZ/‰π>gggγρψ²eΛ_αh˜XA¨Dη;ίωνo‹’\*•’­Νrx+ΚΠxŒ1DG4–οrW˜BœDX „’P^―7;ށN7::zςδΙΣ§OΣ )Ή\Ξεr‘θ!“ΙΖΗΗΡi | MZ&“! €τΔΔ„ΥjE„@VΒ ŽΞΖΨν·ί~κΤ©ΪΪZDς΄–X₯ F“J₯ŒF#\|‚<Œ#Ux²–Χϊcs8‹sTιtg΅΅΅===Ρh•#²ψ$SσωΌJ₯xύυΧfff3‘‘Š0,ΏUόyϞ= …βΰΑƒΩl–Ά8C‘`Τ|#ΖNΗ·‘{¨\. ‡Ί#&f%‰:”bΛι*΄ΩΩΩ‰‰  χŒFγν·ίΎ~‡Γ ½^o0$!BΨτέwίύδ“O$ρ 2Νπ˜V«υΨ±c£££f³;5Yοoύϊυ¬TˆΤιt“““ -ΔaΜW‚ ƒΜ†H$B‡ΰ»οΎ‹{fŒqŽr‘¦R©:::"‘ˆL&ϋδ“O’Ρh …B2™¬\v]αhΔ³Λεςžžά6ξ&4„ ‰ΰb±όΰ?ΐϋDξ“m/[ΆΜh4Bκ|oΎω¦X,ΆZ­€«;N‘άρ^―—K|’g‚wŸΰΩ9›zε† Š;³³³‘H0‘H„/ZμασωΠ© Β π5δr9ƒΑ@C|  Xc2™Μγρ„B‘φφvL­D"]A†ΟŠΕb6›χοίτΣO›L¦\.‡ω@ktƒb±³ΤνvΓ­Η&',ζ£ΏΏτιΣv»χ)‘HhGΗ0ΐ™ގ†#‡£ΐSž‘P¨ΌˆVŽ'?ΤyΖ_‡°6‰D*•½½½}σζΝΟ=χάβΕ‹yφΐΓkmmΕفφ#<222ΤΤ}yšσΝ1:uκ4ΡθAΈK„nSSSR©tήΌyΩlΦγρΨl6€λE"ωœƒΨ6ΧaŒ}όρΗ‰„φ…ΰeΓ)V«Υρx<  ƒPφΧζζζrχΙ$¬v€λ‘h!@ͺ[[[qΆAΞωΤ©SπΐΠζ†š…Π1Α–‚©#“Ι8…²Z­&KbΪ %0>>ξυz‘ΐI5mΜsΟ=—ηSc`YB‘PΙd„x.:^ΠΑ²L$6›ΆΩυυυ PςŽ;v  ¨ΊΊΊrιA6::Κ³,Œ±™™ό_φJqξ"Ϊv»έ|πJ₯λυ(O27V«ujjj`` ™LκυϊB‘π΅―} laαp²KB_)˜~yπκrΉ ΊΚQ‘„ϋDΧ555ύύύ6lP©TΘΡ‹EZ9BΖHVN‹Εbψ)Θj4tθΓu¨««‹Ηγρx|αΒ…„Έ ΎWb=~ό8W”Β+₯-y―Χ«R©T**\P\M&“`— }}}z½^,£«··C,vΪRΒnΙ1”HδKσBx- ­<΄7’³Ηoνϋ^ΥΥUΥ[₯“•ˆμDβ8κΑQGΗΓρ83Ž‚ŠγW…AGΗρθθxGPQ”AYP@„„²‘t:ιt§»«χκͺκ}ί«~<§>Ώ2ŽmΧ­ϋGNυ ύι·ήχ³άϋάη>'1"X Έ<’ }bΥ‹;δWz½^­Vƒ­‡ ψΊΑ`0 Ό=€··wqqδ ‹Ε‚ώRυz= ΦλuR‹R —`³€„ΠŒζ0 ^P‡Oœ8!‘HpHρtγ!”HH§Σ]ΈpUwνxί«Ž \ψ!Xι«lž«mp?!œ333sκΤ)Θκ6wzmΙ|>0€P(€R©b±X<7pΕrΉ―ͺ‹ ―O°V«i4š“'OςΜd28? Fώόy VrΉΌP(΄κ/bΊˆ’΄!½‹Ο‰„QΨ…˜ *ΥS©φ‘t:έL \»ŒŒˆBϊP(„]˜ <€ϋžηψψΈΧλPό!†Y­V77ηρx€υj΅ZΘI₯|>Ώnέ:DD±X rSf³žθΝ;‘™ε‘Nˆh~~^p@‘ъ# /•2%*o #Ί²²‚άœΑ``t?+•JαΘd2½½½θwώόωt:‡qΓpΛΦnΨsQED„#‚s”X/έιtβ1–J%»έώόσΟcΗT(y@5:c"Dœ™™inEΘK›’ε΄L&C6Σh4Ί\.™L†{zz"όΌύΪk―΅‚šŒψ­ΪΕ‹αΚ‘\.@Ϊ°Yρζηππ°Ιd‚dŒT*=tθΎ8Π^Π7Kη,ΐ“ΰy`xΛπΉα4δr9ƒΑ‚5›Ετ§δQŽCDŒγωA¨±§2d…B-=Dμ˜δεrιΈUτΊW7ΔBΨκ£Ρ(Ξ vrG0τ±η/Πn¬ΐ„­¬Φυz½ ³Ιεr­VΛØΒyΠh4O<ρΆ>Έz«LΡ՞Ns₯X‘PE’N«Υς<0 vz½>‹Ζ .?~ΌΏΏG»΄!ύΒ0τsΔ»ώ‡υΓn{g±X@ΛΥh4εryddΔh4bχ/—Λ­jαΘ¬7τ©ρlkMM²f΅zŸΨ%ρ}Λεr @΄T.—“Ι$„χZ+ ΫλυbnaζnˆHe)•ΚΙΙΙ“'O’"xoL‹ΕR―ΧAdyζ™gp}τp\1ό°·ήz ¬£|>ŸΙdWc.Y,^ŸρρρΞΞΞξξξz½>99 M»•••‰‰ 4žgΨ’ C Az½Ξ‹ΰαΓΑ;Δι‰D‡J₯B¦›1`½^·Z­ ½ίwί}DαΊZ­†j’VΟcψmbΞ9rG©€!TΑΰρtvvB΄―ύ=Q,‰ayZƒh…u4>>3“·ΛƒΡ€˜ v+++6›mee…QɈƒM€ .\@ 'ŽRžζυz`ƒώV«•ΧV j Λες‰'ŒF#0Q™LΖCS©`Ρ\{~~)~ήa„έι{‹Ε²΄΄τo|*qΈOžΣ πLHΡWžνˆ yε)όΒ©©)ΠΒT*U&“ιΕ_$’ααaNg±XΐΗ`Œ‰Ά–ψΚ“““hF‡ΥΚγ ΐΐ@Σ"BΰŠεΐSηΐ$„ΓαB‘ΟAΏ]0Ατz=ΐ 2­oz5Ηu‰³*•Jεr9ΛΌh¦P(@¬ύ1’Ρθo~σ‡Γ’u^ε Ξ2ή½B‘¨Χ됳b7ζ‹ΕbxΗπkGGGEŽœq“J₯•wΒW.ΒΥ«V«Œ4Ɉ;E7F"*‹Ψΰp« x7)’·e³YH?πJ₯ˆτΘ»‹}§)ξ–Ρ$Χησιt:™L†8~aa!ŸΟγM™Νf^*vqq2}}}pοΞ³‰0Έμ˜oŽΒ+κξξΞf³8~πŽ¨ ΏiΙΠ Π¬θ^& ψ|l°Άω±#‹ΥΔ F”ΙdέέέbΞψύ~,vd7‰­Dž©±GρΠ Ή\½!G …uλΦΙd²ΕΕENW­VΫ`ρ<±C§Wx¬"ZXXπ#—Λ}>ŠτΩ.°p8ŒHβη ˜L&J+¨ΎΨ ;#"‰lx6μ8φdFσάsΟ ‘~ʈ@Τ)‹ …Bόϊγ?Φ]±Xδu―ΙεrρxΌ³³sέΊusB‹·ŽήxγZC.[”―aS­¨1±λυΊ@©ΘΒσρν00!ƒΑ ¨r`³n@W?¦ΣiH·ξ‡όΉˆ>ˆ½βμΠ βέ%BLΈ±8ΰ‘μ—ΛεlM/jΌ i“=R“μϋ ‡Γ 0A<Βησ‰ψ•Ύ£ƒ­`E.ξVΘs0Š'p’#§  )$ΤπcKmuL" ˜Lαpv6€ ¬·™‡ΗE&oLjΤd ‰+θ[/ΰΖV„ˆ4αp«"2ζ•5ZAƒπY£™™™z½ήLΊb‘ύ «•]<:Pqφ€X‰jnFΉZ­^Ώ~}₯Rο(‹™n6›αU0¬YNhΛΨ―Zνoφoc±:"<χάsΈ8<<Œιj±XΖΖΖx7IΓ8ΒUβΡ^aN§3•J‰m-™Lξή½[*•Š₯Ĉ ‘Ψ$tŒόΔOόi,ΪͺAΪ{ˆPΔd s‚Π ˆkčdˆΘλυ"†n΅?ΦnΙ²€Z±oϋΫϊ΅S­ψΦ[o©T*•J΅aΓΡ>kzz:šΝζb±Θk!˜Οη΅ZmWW(1Τ(ΙB"ο5AV³‡Εμμ,d_!―Ν3‘%ά8”0χQc~J₯RœΕΠfj'I Œ©ήΤR‹ˆ ΕκΡΡjŽφ_™L&¨E…B »EZ3‘‘6#»έΎ{χn­VΛNΙΑκώ-₯R ŽT½^g“φP‰1Ό{δO€“KυΔ&ŒΨΡk ­Ρ€Ο€5(ψωD₯Γοχ_βu©e ƒtΈ€!™M#Dψχ C€T*}κ©§¨ ΑqBDŒŽ‡xMΝυk₯R •‘y·zζΜ™Z­ …ςω<RZ­–Η^F0J₯€=H$φ”N§Νfs3ΡB„7Θμ·:ΰƍνv»R©D©©ΈνB‘ R©”J%oFΥj5$Η›³oXοΌP[θH$Ρ ω•W^A4‚Ζ°βΖπAdΨ΅R©T*•cccΑ`ε₯’ˆ„X*΅°d2 β5u―ΎϊͺθEΑŽg&&& …N§S©T‘H/]­V§ΣiΆΌθΤΤ$„ΐoΰqˆΘιtJ$’fό#‹!0ζ΅!"ŸΟ'’€a―½φδρ WΐSLlN—ΟηΑδe† >66&“ΙΜfs6›m¦j[­Φl6ΛΣ±³ΩlpίŞΙdPCΐζώΒ1h>ήzλ-΅ZH$Ψ: Τ ¨5#5ΠfHDsssΨ0)Η‰½δ‰hii©9πˆΕbψqυΝs5Ηή Ž 1(T*ΨΉνΙΙI`ςBOdvvιΞ6Ο9ΜT"ΚησΘ™’C6o4Ό œ₯RI΄Η€Ρκh–ƒ ’75οψΜXK –Bα »I<—H$Pp@ΩVΗ€† 5Ι* φΓ$’d2‰:;±’œ’T`rr²Ή•§xŒ³³³ΘΧ0ŽΊR©tϊτi8vXœρx\£Ρ ag|ΐ„Ϋ°aC.—“Λεf³Y*•Άγ(Ρςς²€I«Oπ_Ωή§ίοRΌψ‹ΐ„@5΅&“©9ι\«ΥPίγp8xύ=³Ω,c!‚ΌD7ώκWΏ²X,f³Ω`0ˆηΉ²²‚b/£ΡΘNš5ΗgD\y£‘OQ.—+•J ―ΤνΉ@;αΕ±CCCBD&mj}Ζn63==-:M‹Εt:[eΒ„c+Ζ$‡³X©T؎](BEOœ;wα"[Œ}rrbcΤH:£`H0…cЬNΉ\†³(€ :Y(³₯D4>>ŽήΑ<Ιb±8N«ΥŠrF"ςz½εrΩεrΉ\.ή̏Εbΰ• bdd„Eφ^GD ¦cε}ΤFŒ§J₯‚3Σ,ˆΛΎO8‹βΗ……ΜΟΥλVsμR©ϊ’ˆ+$`λΗD"»έξρx=σμΩ³}}}hκΜ&:ŒŒŒ­#φh8<¨‘"ο‹/ΞpjEϊ? …Uj°—π/£k"‘Πλυ‰DB”qΝΟΟ—J%‡ΓΡΩΩٜVkΙ ρAMυrΉœέΨ”ˆΠ⬙АH$ ά€¬ ΓPjW*•ξΈγj [Q*KM²έ-™L&³ΫνV«·κυzλυΊ^―Ώd-΄dwΙησΙdΙύ\.ΗfΑ ]'~Ÿ PCΣ+‹³[ΏHψΆj~Ώ'Η%it:m·ΫΥj5ο<ΖbT("½{όψq nΌΉŽ\.·΄΄ΤΎ§R)“Ι”Λεxi)"ŠD"ψ‘5ZΠ²;žA¬1•J O₯²ΌzκΤ©S‹yˆ(N ²ΏΑ`šΊνPKΡ"Y§ΣጟššBΏG6"υƒz½.‘‡p•Fœ«›p¦§§qcD;Νl6 ΡoΆ)•JΠ@———Ϋ)d4›ΝΠWM°α/..Κεr”62†΅Ϋν•Jεξ»οAυx<ά$3 ¬D"0~”ΛεŒ°;v`₯7Η-ηΝΣιtρxœΧ+VX΅Z3υΘ‘#h‘Μƒ%ΧλυKΆ_”«—J%^*φπαΓ9šωΝυz}γƍ<ν-"J&“€'Ε†‰πνΒ · !\A*ΆY\ΆUƒ§(—Λίzλ-"šžžΖhν`LH”‘/6MMMa;Z}σ\Ν±ƒ‚Ÿ^―Ξ»8ΫΨ7Šf³Yμ•ω|ήf³96™AvΈž(ζΥ«ΓDο/H@ >>#:D?1x_Β±£FB–7@ŽΑ`04§Jk΅šΕbq»έ½nuL" ƒΝα;X&“ }ކ-½•Δ˜Ψ‘Ω«θόωσxͺ—΄bвŒσ ,šν"$.i;*ηπ_ΘΚd2½^τŽ= MOOΧτΤHΑ·Γ͏D"`d tΩj΅P₯βœKKK;vμkΓ† Ԙπ‘HΕRŒ”GWWW €\ŸPΝ…B`KšGΧn'Ož΄Ϋν ζ^~ωεβz$Ό;‚oΖΛΕ—eœ‹m7!,šΛεΠδΤn·#»ΝCD n¦gοyΟ{¨QuΤf€½΄΄I`ΙXψJ₯² ΪνvƒκнξδΙΠP+έ IDAT“εrY₯RaΊ2 β·rΉ\dKπΫ¬Φ'’K|&Χj5FίH"R*•αpx<ŠΞŸ?/ ›F2 ˜Δž‰r4·ΫΝsμFGG!ώj±Xn½υV\,—Λ6›Νd2ρBYψξrΉ\pjsΉ`‘v²|PQi&%g³Y„τμΩαp`k ŒI"‘,,,π$/¨ΑˆS(?pΰΞτKΰŒKμ/τŠθw uƒέGˆj΅šΛε2›Νb›Λησv»½ΏΏΏHŽˆ‚Α h„…¨Ž§CV Η|₯RAΕ.ΈqŒΙ„‚ έμΫQ£ΚΊΖjZ_―ΧΝf³ΕbiζνΑp:N§“‡ί lY`“Ψ;¬2F£&lsΒ?²Ηœ˜˜σf!5άͺ½!q­Vk6›Ρσ”wŸD„>Z‘PH―Χ €‘Ϋ”;Θœ}£Ρ¨T*E›ή€•J₯――.ΞΦ­[‰H"‘˜ΝζM›6ρcǎutt˜Νf™L֜ΝDƒΎŽŽFΤ!ζs΅ZjάΑ•J%‰ΰ$kŽƒqŽ‚Ω꘰ζΨRμjhPݝN'’ζ™Lω88OP` ;77 C©T:88HDαpX―Χ‹²}ήέtΰp#v•ΛενTΑS£“ dLxΉ\>00ΐ-ŸΟ_œF9E;€(Q¦-r|D4==?ΔΦŸ§R© F{vvVπΤyζt:έnχ%•ͺΕbˆ›Qύ£ύM&ώωŸW°0ΩNΊ6Χ›tΒσωΌ(ΘΰI *ds>Η½B‘`K“Έ\.μiβ(V₯R5§,Z2·Ϋ/‹ΝΔοχ ’Ψ*Ώυ:O\‚| ,ζ &Αb±˜ΥjU©T"l ƒf³Ή««‹-& ›ŸŸo^62™ŒΧ &΄  E6›mfΏ1ΚΠΒ,όΣ₯Xo#)©P(ΐϋ¦&ŠΜ¦M› αiQ£ˆU,L,v-5κ©±lpETΕ²SœKKK¨έ»„ͺ…ΏED<ϊ³ΌΡ€w₯’flŒaΑ`0‹a@d!…–:ΫΒαp³hΰΤ†$ Ή\.»έ^­V‘‡‚dόΐΐoSΞεr¨ŸΙdΰΰΧrΈD$—Λ‡‡ΰυ7—pMNNβΩΞΟΟ7Ÿ¦k·ύί5Υjuχξέβ"4ΨΪΙ€x½^±y ΰV»¨ C“ ©T*Š₯ %+δ…y΅#-šή|όΤj5t}δέ-i΅ZΑΡ”H$₯R©R©°₯Iˆ`­p΅EΛ"φy„$•JΕo±Xΰ"³—'”/›ƒ.j°Y$\‘^DΪpμ„ .6%žj:Π­V{‰γ.•JΑ¬eΗ‡Ώϋέο Ώ#NŸ 6°;yP#9Ž‚K\}“ QΓ NMPΊhΙΚf³|z5ΦΉ}r‰H₯RαλγM™Νf`"«/φΏ=4³ΚΐHΠh4l”%“Ι 5#€nΏί$H›ˆ]σόΖξߎNτάρVp8ΥέΥ›ΊJ Π/Ύΐ£ΜΦΥΥΥΘ@ΡL&S&“ΫΚsZ½UX΅ZmξΥ=== ΥJv΄Λε@ψk֎ΗΧg―"‘Šw‰*2ΪΌ½ ΝΛsΉ<€B‘`·Ϋλυz;ˆΩυ†΅hΏΑ6ΏίΌ?’HΥ$μ1σω<‹]»v‘ΓαΠh4f³ωO[UΡ&&&0ωχμΩ#.’7+ΏVGQΉ\.l0›>ΡρΘ#4ΛΞΑβρ8HlŸΎωΓγΜησμ‡ :|Ž|>RrΉ¬ΣιΤju;5/ΌπΗ{‡aδz† Όx‡@/ΪaΘLMM!ΘΔ€’Ž›½/ Ά–ΘH(šΟΆ ¬RΓA>=„ΪΒu‚9,Xφͺ_^^Ζ]a Υ€Υ€ΥΎF<Ηd¨ΘuΆcΙdTόh4Η΄©cwρβΕj΅ ωΕΕΕB‘ΐŽŒ©’A R*•φφφ‚YΙΫεN'„Π„#IRR°ΝZΝ¦Σi.ω|ΎYŠ „eφ4“H$Bάψ΅Χ^kηΨ ‰°Y;7—ΛIΪλYDDN§³RƒΈ4mPώQΒFDΛΛΛ‘HΨϋ>‘Fqώόyh«&“IΤR°$’j΅*€˜©‘cY.—ΫADτz}Ή\ή·outt ΡΟ›aGŽA;²ζdή― Τ { ]bφωqφμYˆrλt:‘Ž&]acŒIho|‰d2Ɏ`‘yμθθ@8—Νf±;‰m™2Α‘=tθ\./•J¨ΩD4‹vΆCvœ …"—ΛeρΟβρ8{`AaΙd2Άχ vfsΑϋόό(Wfff Κ«Α&ω½ο}„ΒΏϋΏ§†};(50K\}kΪτΓ,Kσ8JΨED‡±>}«rΉΜΞDλE=jδ©T*Υκ*ί«=ΡLI`h €‘w—De,ρμp|ΆIΌ ’³gΟBϋΓεrI₯D"ΡNhˆ9€R©rΉœF£ιμμΝ–»F€΄X–’’ 1‡`›1κ’!D δ\|ίJ₯Ξ {o:zτ(5dΣ‰θΥW_₯¦FΤ Ck„ζ₯ΘΦ%n6T†^Rw"t&yk)›Νφφφφυυαλau»έ퐍Κε2Zηα₯Ϋνφ6™ι0ΜI|FWtοaxαΒlLAΑn‘qϋfсˆ¨^―‡Γa΄ (—Λn«–Ιd|>_₯RΡ;;ŸΟ•Džr–δωσηΗΖΖΚε2(› ³#±Λ5£ι(j'K ω6ΆΑΫa§Œ‰hii N˜ ™`Ϊ·#Π¨―T*‘3l&“,š4ώŸΆΪ&¬™ ‘εδMz·cccΝY­ωωω\.ΧΞ~!¦££γ½ο}―Λεj^"’R©€R©Κε2œ΅Z§AMš½k·ŽŽŽX,†Ι ό.<πp"B› Z­Φ*Ε4jϊγ",T~Θd26ό‹ SLq(ΑΆαΨhΖ¨2™ fW;oκΜ™3P·‡ˆN)―Χ‹²AΙςδΙ““““($’Σ§O'“ΙD"ρŸωŸμϋDƒy" ‡ΓSSS΅Z­ DΨ%5bYφ€“““εrYT΄˜=‘> ½=…B!J‘”―T*Œ3IH4ϋpβ}}ŒσΤSO!^Ώζškp=γxf‡³³³wήyηWΎς"šššzχ»ίύΜ3Οπ†""ΗFνv{4E¬pyΨR©Δ@π+§OŸ]-K΅ZΥιtBΆ·U“6mW«Υh4šΝf“Ιd›Ί0l#β7ΟΏP‚ΠΌΉςg{`/^Dsͺζ B-νp­Pΰ"¦7Ξ&βΦβ”J%Tͺ^‘Sv½^GlΟ0lT«Υ>Ÿούο h&N΄jH»_ς–!$ΤζŒ,-¦=šΆ£Γ?99‰έIhUβΈo‡¨ϊΜ3Ο€g…V…Baee%ŸΟCQεΟΩjŽZ­Φιt …BT΄‘A,φžωd6›m§xβΨ±c¨»$’gŸ}Ά³³ςρmΪg?ϋΩ»ξΊ ώβΑƒ{μ1­Vϋψ㏳¬ΧλΟ=χœΕbΉώϋΐϋίώ»ξΊ«V«΅ƒλtΊΙΙΙ'Ÿ|W:΄qγFv»ΈΈΨέέ}ϊτιζ‹^―Χj΅3Βμ9 /½τ’F£ςθΡ£―Ύϊj8ιͺV-•J‰*™sηΞέyη/Ώό2q7Ί[o½uοή½Z­Φj΅Pyΰ8πΰƒβΆ_xα…VΗ·ρώίϋΒΎp‘ˆ>ς‘τττˆ]ΊUΓς|φΩgAϏF£_ϊΧχμΩΓƁ„={V₯Ry½^"* >ŸΟn··γ„½ώϊλ‰δ‡?ό‘ΈςΜ3Ϝ?^LW†έ|σΝΝ βT*΅ΌΌl2™Ψ5Ε"©—ΛεΠIWƒU―Χggg+•Κ³Ο>‹+xecccΣΣΣΣΣΣ/½το>1£ςωόOϊΣB‘πίύίϋφν»ϊκ«ΩθοΙ“'|πΑώώώζwtί}χ}ΰψΩΟ~Ζ_φσŸό7ΏωΝ‰‰ $gΎϊΥ―~δ#ωέο~Η“ˆ°]Δb1Α€τz½.—«£“ˆ~όγ7Λ>όπΓθΉΌΚ―¬†υυυ=ςΘ#±X ι₯₯%!ϋ.“ΙζζζΔ.°v{ε•W»ξΊΙΙΙώώώsη΍»\.7έqǏ=φΨΧΎφ΅VΗ$’ϋοΏίη󉴏'‘HF«Υϊ/ς/ŒχνΫχΝo~*όΛΛΛ]]]΅Z |½^ύχσ*3Ύύνo/,,€oIΌd2‡³Ω,ƒ&ς‘}Α!#Γd2Ωνv§Σιρxvξάω/ς/ŒΌω£>j4K₯4α@6Ϊ°aΓΡ£GΏϋέοΆ:μ»ξ* π½Κε²V«-—ΛN§3ΏςΚ+Ό1/\Έ¬7‹‘#αττt>ŸΧιtτOΤκ/€4Ύσο Ψαp 9,€\.χ›ίό¦Υ›άΉsηsΟ=wδΘ‘υλΧΧλυ‰‰‰Λ.»lnnN«ΥNMMέύ­ΫΎ}ϋΏψΕΕΕEˆ§ P©T\.ΧC=ΤάΨ»%Γ G!οή½{~~>ώτ§?ε ψƒό`ff¦R©δrΉj΅j±X@ΪΎ}ϋ§?ύιV“hp‰ ΕΟ~φ³ααα|>_,}>ŸN§-‘Υι»ίύn8N$ αƒπj2™πβώ΅ZmΣ¦M^―—±™όπ‡?άΊu+Dd\.ΧwάqζΜiS3Φ–μώαnΎωζΉΉ9Œ€L&Cνφ—ΏόεVΗΌα†>π€Σi§Σ™H$Ν;wΣM7Α힝ύΑ~ΐΈO"ϊτ§?m6›k΅ΪΒΒšΘ•J%t^~ξΉηxc~ζ3ŸωΪΧΎ–L&1²Ιd ‡Γ]]]όΰŸ~ϊiޘ?ωΙOΏώϊεεε;v …P(T*•~ϋΫί~ϋίη HDǏ…Bθ~μΨ±Λ.» L›žžž~τ£ϊθŸBχή{ο―ύkžOΏώ—_~ωβΕ‹ΰΓ ΕγξξξH$rν΅Χ}¨wΎσο|η;§§§q'™L#M&ΣββbOOˆ†›7o~ρΕ[:μΎόε/‡B!©TͺΥjc±δ?ΡbΗαp|α _ψs‰γΥ»ώώώΝ›7ϋύώΞΞΞz½Ž4B„p8Όyσζ΅ίŸ0΅Z=;;»°°πΖoτχχοΪ΅k``ΰΔ‰½½½j΅š—†χx<χάsΟΠΠPww7*O;;;ΗΗΗS©ΤΦ­[<Έz6ϊ΄ήήή«Ίj||…ΦθΆDDσσ󝝝{χξε9v{χξ]·nέΕ‹·lΩβv»>¬Ρh{μ1ƒΑΗ[ώψΦ·Ύ–@½^Dk ›nΊ ’~υz]«Υ>ωδ“ ‘ζύϋχƒΖ„~ ΰ‹¨Tͺ[o½•ηΨ©Υκηž{ξH™₯μΌΌ^―w»έΠoΫ°aΓιΣ§M&Όy»έn³ΩxŽέε—_ώΕ/~qnniβααa©TΪΧΧ722b±X|>_«Σι–[n©Υj[·nΝd2===ΕbΡοχOLL οŒχχύϋχƒœ{Ι:uκΫ±ϋόη?‹Ε:;;oΌρΖΙΙI€fΆoίώσŸœqŸwί}χg?ϋY‘˜ΟηβΓOς18Ο±»ϊκ«όγŸ8qΒd2i4c4ΝΤΤ”Εba;v}}}“““‰D’««+‰H$”e\vΩe<ΗN"‘\qΕΏEkWN}f—ΛΕΓzzzΌςΚz½‹Εl6Ϋ]»¬Vλββ’ΡhμκκΪ΄iΓ±»υΦ[·nέ eΣ¦M ~Κες7ή~ϋν ϊοž={vοή=55…`Ι™½{χ>τΠC'NœΈσΞ;~ψaFΝ›7?πΐGu:²ΊΰYξάΉσΕ_=yΧn_ύκWϋϊϊ€ψ¨{``ΰK_ϊRooοη>χΉV$’λ―Ώύ™@ͺ[rΉΌUΗζ=οyΗγιοο7›Ν.—+‰ ½ο}ολνν}ρΕ―½φΪ\.†††‰Δ7ήxτθΡ5ϊ9»wοώΦ·Ύεσω<…Γa³ΩŒrγ@ ΰρxN:υσŸόόέΥ»Ν›7Χλu”T*‘Œ—ΙdƒA«ΥnΪ΄©UuD—ΛΥΩΩ‹Εz{{_xα…‘‘uΊ\νΫ··4 ‘G.—Φ=77‡b4ΠlρPZ΅εεεΧ_έl6# bγt:Νf;;;y|ξξnNχ‡?όα7ή8~όΈΗγ9zτθ;ήρΗsφμَŽŽ–2>•J%“Ι«+•J###(""€ݐ|πΑΉΉ9ΏίF@’X±Xά³gΟ—Ώόεϋ·kuL¬–X,–N§η NΌο­[·*•JτΞd2n·;NΫlΆb±h6›[₯FaΛ@μFc±˜ΛεκκκΛf³‰D‚—AΫΈq#ΦQooo΅Zκμμά±cΪ<Όϊκ«’™}KvΝ5Χ  |±X„.τ)x΄E"B›―X,–J₯ΐ[* ‹eiiiοή½ŒM=θΌ^o>ŸΧj΅(:Σh4΅ZΝγρπ Dτ™Ο|ζΔ‰…Bώχςςr6›EςŽŽŽ΅;vƒƒƒJ₯2+ŠH$]€τl Uΐn7~Ηw,..’”΅V«e2l˜<Β ΚuΙ€KŽ Ž>¨ΩlξννmuΪΖb±J₯βχϋsΉά‡?όα'NμΨ±ήΦ­[Ρκ %{ο{ίϋβ‹/‚Θ΅~ύϊ©©)Θ $‰|>o6›y[(^t8N§Σ]]]@°PΓˆώξοώ.“Ι=zeΕΩl6•J…ΓαL&³yσfžc‡…3??_*•P’βχϋΥjυόόΌΙdκννe »wο>wξάΒΒB±Xμιι xG½ϊκ«Ž]4ššΓD"‘8ŽΛ/Ώ< ώδ'?©V«n·{οή½ Η――ουΧ_ŸŸŸΏpα‚ΩlΖ’ΗγΙd’Χ3Σαpψύώ«―Ύϊ’λ_ύκWΓα0;ϋν· !—ƒzPΜ"Α_έ EΉ\6™L©T* )ŠD"‘ŠH$rϋν·»\.“ΙτΒ /:t¨T*Ήέnd·oί~ςδΙ΅ό‰.lD~ΏΗ}*•2›Νιt:Δb±UΔՊ'vξά)τŽ5 ώr …’§§§Ή―β­V«ύϊΧΏφϋύΓΓΓίύξw΅Z-šδH₯‘‘!^±­B‘P(N§Σl6λυϊ-[Άh4(Jδr9Ώr``ΐ`0\Όxq~~~ffζάΉssss@`qqέλcξή½[§Σ9rD§ΣΩνφx<^­V‡‡‡ΥjυUW]Υκ}‚ŒŽ:B€"O¨½ΕΎaͺ–lσζΝ™L¦££Γn·£Ϊ££££³³ΣγρΔγρ-[Ά΄: α6P‰^Π§Τ,‹ΊvϋΠ‡>F …‚T*Εbθo κI±Xή’αfΦ­[Ι«Υ Θb±ˆά±Α``|ύ]»vΥλυH$277W(:;;‘°Z­Vυz=O_”ˆΐλ—J₯¨žAe|&‘ΆΪͺ}κSŸZ^^N§Σ₯RΙοχϋ|Ύt: lΰΚ+―δ ΚΑ`qˆ¦<ΞϋΗ?ώρJ₯¨ΰHΎγo΅δΤnίΎΏ•J₯££₯Q&“)ŸΟ+•Jπ΅…z₯ΛεBŒ΅ΫΊuλ m ΩRNwί}χΧ±»νΆΫπ«Œrό‹γ™ˆDIοM«ΥΊέξb±θp8Βα°έnΧj΅‹‹‹Z­ΗΖ‡?όaΖ­ξέ»W.—£> Ίλv»έ`0ΰƒ¨ΚjΥϊϋϋ‘s‘Σι’Ι€Z­FSv„pύυΧ{½ή`0ˆBu(*Š;vΌσο䍉W€ZxΧj5xx@ΰΖodŒ©T*S©καΌ^οςς2„©‰―Μ-w•J₯Ρh4 ·άrΛ{ίϋ^…B1::*“ΙŽ;Άwο^Ζ°===₯R ;F­Vσϋύ€'Σιt8FΓθ–,‡B!‡ΓρρΤ(»ϋξ»{{{#‘»QΒΆmΫ ,‹˜ ›w½λ]qόŸέέέ¨½θιιq8Ή\ΧΏς•―άyηΟ>ϋμβββφνΫχοίΏ}ϋv·Ϋ Χ.|a4C‘P>ŸGb:Dθ<Α`XEυv5Ηnύϊυ΄X,f2™LΦΧΧ'‘HR©ΤΚΚJ2™lV…]£‘ο€B‘ΈγŽ;€Q[,–b±¨Υj»ΊΊxN€=’Ρh2™‚‰DαΥςJ#{zz Γ† \.Wž={ΆnέΪίߏβ­šR©|γ7 …B4}ίϋή·~—Λ599Ή°°Πjœνp8μv;˜UP!ΕͺP( ζC­VσNc’4š}ΑΉG EςŒ11U ΘΏη=ώΓϋ$’]»vamW*»έŽαz½i/FΧ ·n·ΟYΉL&#žF:fθα!—ˍF£Z­ξμμD?¨B‘€ΜT«Rγy’*P¨^γG€όcΡ»ήυ.΅Z­V«5ΙdR«Υˆςω<°·VmσζΝ©T 2Ίƒ‹Ž™™L†W\ν΅ΧΒ•[‘PπxςΘ#gϞEUμΧΎφ΅‰‰‰™™™|ηΨαΡ!\§FW$ˆTΓΥ[ϋΎ„“Λf³mίΎαεΐΐ€ΫνN$©T e …βδΙ“πp@―Ρ'Ιd2xhαpX"‘τττ`M‰ϋ_¬]Ν±Σh4@, •ίΫΫk΅ZαO€‹ΐ8;‹ΕβuΧ]ηp8΄Zν»ήυO}κSZ­Ά··wϞ=»vνβ!LR©4—ΛAϊU­VƒΕ²΄΄”L&q”2Ζ,‹ΩlvbbB„ :Ξl6#ΣΗΣk5@€σωό½χή{Λ-·8τ|T«Υ­: f³YΔ`Yα\§Fίz0δZmeƒ‡T/Ό8v0Ζ€ΨΚqΙεrΘ`‚΅Jμφ­Ρ΄Z-²'˜ϊΩlVσσσσ¨³fά' BM?βP—H$&“I§Σ1DO:;;!Α½²²βυz_zι%»έ1P($€,[2ΌVΌ#xΫZ­>=Δc’€Ιοχ#— aw•J₯Ρh’Ρ(ΔBm4Ψl6AΩδ-›7oΖ9‡t€ΙdΪΎ}»Γαΐ*h‰&αrΉJ₯ϊ #­;„ξ7f΄©Z…šzθ!"BE¦ΕΕΕ»ξΊ«₯A„‰W€ŽΥ8ζqΉ―V«­n#ˆ δry"‘xίϋήg0:;;οΉηžX,†?ΗXο‹₯T*!{γƍͺΥj&“aS£²Ω,v{€¬X§΅Z-^ˆΘ§Ζΰΰ ²i(d n@"‘@:"¦R)£Ρ7TΌ―V-—Λ!Ψ@V.—#―’ΟηΫιLΨέݝH$P {ζΜ™W^yΕf³α‹σδρ IάQ©T2™Lˆβp‘}v AΌkΧααα~πƒ‰DΒοχ³EΝΰ·aiγ Θ`ΚskJμ΄―Ώώϊ›oΎ™Λε"‘NŠ@ €:00gnqqΡεr…Γα5n#…BŠ’C4PTX―ώ»«mΦHrΥj΅•••ŽŽŽοϋ333ƒΆΌf—Z­φΝ7ߜœœ <π€ΓαˆΕb…Bα΅Χ^{ώωηyB 2™Μιt ›Νζt:?υ©O©G„wΐ£φmΣ‘Οη‹Ηγ*•Š'5―\.wδΘ‘}μc·έvΫ_ύΥ_νΫ·Ο`0d2™V»£@n^$‰0‡ΰ*!ΆƒGΒ`! £Γ₯¦kΌί|&Ιd2tcD,K¬ž—_~965p"‘ˆJ₯²Z­.—Λl6K₯R^&ά‘ξ!"ƒΑή Œ—hX­VΏρo`qœη CρRτ€¬$ƒ]f;88NŒR©4›Ν΄6lΨ€ZN‘?ξG©Tήwί}‹EœmŒ^‘Px<ž\.FΓαp Έωζ›U*U΅ZEsδ΅;΅‰D°ίDƒHαƒ€Ρo Ε ς 4Ωνvδγb±½DDηϟG‚Ot†R+Qe2™ίοoiΜz£Η.4Šσω|‘PH$’˜©Υ‰Θγρ k:^YYΩΈqcOO² ΐZ*ΏδnΑΞT©T“““ΰ˜ΆΣŠˆ€^―·Z­όΰOœ8Εx§ΣΙ ‰Α;G9•J΅mΫΆ={φ€R«ΥΔvΪͺ‚]]£ΡlΪ΄ ΨJ©Tβm HCΒ ‡jΊΫν^^^T*Ό―”›h4 |AKΌ’πt:νυzΛεςΚΚJ*•Z\\Μd2Ǐg·,Β‘#6₯R©J ¦ΣΪ7%4AN&“Ρh΄··Χεr₯R)TΠΫνv(žP£ΏrςδI­eόL&‘μD"2Ng0ŠΕb0œ››[E t5Η. ιυzΘЍΖ#GŽΜΜΜΨl6\Pσ²ΖG -#e2ΩώύϋΛεςK/½tΣM7 ^wέuW^y%[ ” ³Ωl2™‚Α R©μθθp»έ‡W(¨R©F`‘rΉ( 7Ƙˆͺ₯RiOOΩl~μ±Η€ΰ0nΥK-•°³BτSž#H’J₯˜‘ψπζ›oŠ“X­Vσ‚cΈ }K₯ο|η;&“IpƒN˜ΗγAΎC­V£yΙΎπ(³@1ŸηˆlΩ²eeeω#Œΰv»Q½―P(½ο–——A\#"N'šd~ΰΝOΑ|Κd2V«υ§?ύιώπΐuμŽΖέέέ8qΓα°Ιdϊε/ wΩλυ*•Jή6šH$°K@š¨nU*ωήΊu+ψy™L&NΟΝΝ>|X&“i΅ZΉ\Žͺ—5ΥίߏVβΘIα"RœΝώόΤX0Qœ όΫl6μ¨<%zLH΄~€Ί€½ΑΔSΦhαpx||ίγˆŒέ±ͺ££Δ$ˆΗΖΖ|πΑ«ΊΚιt:Nv΅!‹>.ǏΧλυΨ₯ΩΝ|‘‘T«Υ[ΆlYZZŠΕb;vμ˜™™ιμμδ!v Π‹Εt:­P(¦¦¦.\Έ€ξ”H|1JŒ©©_*φ7”0J₯RvυβτΙD›"j΅ηϟŽΞ/ΐO…₯R)‹Εe ‘λδέͺΩl^YY)•J Υλu ŒŒΡ¨³λΥj΅‰Dβη?9:… %΅Ζ§ŠŽ/P«ΥΞΜΜ@.§££'&Θ6h6ƒΜ€Ιd2™Lk<λ}>_ €’™D"YXX8sζL½^¨PY₯νjŽ]­ΡZΘJ0DωΊυ8^―Γ^x!C%ΡG}ι₯—.Q“_£ΝΝ́MŒ’γb±˜Λε»+ žjΌΟηuI ψ€f)―ηt΅Z… ΆΰO~ς“ϊV«΅ΥM‰3Y "ΞDD@μΧ2ήD0 Νf›žžΖBDZ­–·ΰ1Ήεr9κ ‘κΧ“ˆmt:]*•BΛ]—Λ511ρλ_dπNHmΫΆΜbƒΑΰυz?ωΙOΪνv”PF†γυz‘MΟηΛε2dΡΚd2ή\BςZ°όq΄χΕVΕ+”ΫΊu+Θ[λΧ―/‹ŸψΔ' yG^0σζ›oΒƒ&₯bμ›V«•‘σ²mΫ6Τ)k΅Z©TΊiΣ¦―ύλ`†ιt:$ΌΦ8Too―¨%ΧιtHΈ#~CΕq36†ΚV*•t: ra­VChΔsD0₯EU“^―ςΙ'α? o~zzΊΥaρΠpή`ώ1ƒj¦V«λƒΑβσω{μ1€ πΓΨκ€a ’/‹A«α’¬-P4£Ρθv»WVVωΊxρb$α-Lˆe€₯ηrΉΎώυ―ιK_’F™R£#‘ Šrΐε-Lξ " ζ}ii [P+^dΠ@δ¨Χλ'Ož3uHΌio2™J₯ϊυ끯›Νf‹Ε‚~§ŒΡˆαΎ&€Πΰ™ ΄–qP‡’Tοcέ"Bρ~*•h4Œs8ΘP―eόΕΕΕB‘€ί•ΛεΣΣΣ³³³ b§brμ`ό-,,LOO#X.ϊf¬έ>¬R©vμΨαt:wνΪuρβEFsγ7~τ£νννε­Ο3gΞΰD―ΧλbΛ@?o•JΕsύ~ggg6›U©T@•Υj΅ΫνΎα†xχ L‘PX,–X,†D:v8z½ΎU5]ΰ˜ˆ˜4§OŸFΕώ+ΘgŒ[₯Δΐ-VVVt:=’ž¦U;pΰα`[XX»XόΣl"Βw‡<© H$rǎ8ΥΚεrooούΧ=υΤSΤΐ…ƒΫ’ύώχΏG‘uσΦ†„1T㉡΄΅Z ‘αθθ(:φ€yΖλΦ΅nέΊl6+—Λ7mΪτ―ϊ―>N§γΖ―½φxEΒσˆr₯R9sζL«_Ώ>‰ F€^―§Σιιιι·ί~΅؝Φ8θΒDΰA PD_π›±ΔDΚ²₯»υΏˆΒ1ΆM&Π5Ή\Χλ_|ρE p% ―AŸψvΉ\nttT―Χ‹©Εδμv;DXPDX₯R!γ©ΡhΨ;ˆογσςς2Ύ5„ yζσy ¦2‘u,HŒαΨ™ΝfL€§Ÿ~Rα8PΝV°i{{{Ož<ωζ›oφυυΑgβAώ‰DτrΉάj΅ —Λ…Œ‡ίοοθθΰΝRθ3€Z­VQΐ+xYcΠάΣιτΜΜΜΘΘΘδδδδδd2™d;vH:)Šj΅ͺR©‰‚m,smΧ2ˆ ΩD"‘žžF‡£Ρ¨x5Ωl!=|>ΏΖ §x<ŽŒZΠ&‰ωωy³ΩŒ]ΧάοζΨαxΐ‡`nee<ˆŒ©ίθόωσ…Bahhhll Š*>ϊh,γE ρCΚl-ŸGπ&“Ι"‘$*x›Όpύ &πγΑ’^{šοCE-ˆΉ\nxxΨνvγ­±‰kδΕK˜ΧΊuλΠ!¦Z­ς9 Uj΅sί"ζœθό‡‘FWiff†νΨ Š^–θ*ΒΒ5ξu ™ΛεrΉ\ξδΙ“###ƒƒƒn·%wh‰.JάP6±vFG2™ΔΆLD(o’Ζ–R*•˜;£J₯RΌfΏίl?]ΐλυBόpzzϊΘ‘#D4===99Y.—D+aH•³₯Ζ “ΛεͺMA/E8Λ`˜βa",6™LΒpE―Χσ6&"ΊpαVŽ`gcv½ωζ›ŒΡΔιΡh^{ν5\œΕρΖL""‘}*t:ˆ(‘HΰΘ₯Φ­ΪΫoΏ­Σιb±˜ 3!#ΙΛSλΕhؘ0©Ψ wq ¨ Χƒ3€ΗY$’ιιiδaγ!Τλuμm0ΠΓj΅z½^\D ‹SsνEH8)©Α€–Ίw`aR#;S©T€C”ΛεVυό°5ŁOΓVXEQΊ€R‹5Ξ›φΠe"^ΧΐσœN†b3ybbΌ(‹ΕΒΰΣι4ΌX“Ι„w„¦;lŽέΚʊΙdO θ’ƒ<QU-‘Hθ…Τ$΄Νyx-’†.— ΫΘθθ¨Z­ΆX,‚¦άͺ{€ΌΩl…Bπk———‘άΙΓ"ιŒq€BʎXAuwwCaΝλυ†Γα`0xξάΉH$’Σι@‰nΥ0'ƒVa„ΒZξS‘PΈ\.Ρ¬νΕpΐ!Θf³ˆC€`έ΅š:ƒ‰€X,j4šR©)7ΰAΰ’όΉ_\mNΰx@= Rœρxo…λŒ3ΎZ­ž8qB*•"φ΅Z­Ϋ·o·Z­lυpjψ°ΌΖ_˜Α>8‰( π”ρΩ(ΰΕ‹ρAl—ΠκD·ΚVGƒ( 4FυŒΐκ*• Zε΄:2pY°tqcM‘J₯Z­Vœ¦­š¨;`^§ΤD"κuλΦzτ(…B!€Ρimς[(€(Σ\ αrΉ²Ω,„>l6[8†hC6›…6 5ŠΧr«‚ΗY(.^Ό(•Jᓬt­ζΨaŽ’dΔ <Ώώϊιιi(―νΨ±cΓ† n·{Λ–-z½~jj υ‚Ό[•5¬ƒ^yκΤ)‘I[γΫ2D|ξZ₯RZXX@%pϋ0Η΄Z­Ωl^£"¦Hž”Λe’\rυ/Ύšc‡+\Δa+• ο<¦†S˜ˆ–——ΪDμt:ΥjEv<Cπ†ΗL‡Uf2™ΰk—Λe” ςŒΗγ6›­™€M«Υ^qΕ­ŽΌAHm‘ι‚ίοǍίΫΫΛ@ώ———1ιe2φ) Q₯RaΧτE"΄Κž3l"9Ψ!:”™™A~–·ΡΧλuŒ@D…Bαε—_Ζu΄3 gηΝ­ŽIDƒA―ΧoάΈQ:θυz΄™gά'5x¬J΄ρ09ηζζ …„l6»…ˆ’Ι$ΆzδΚќ υIŒΧtώόωl6λρx΄Z-.F(ι ΰeά€.μ+―Ό"’£΅d·α©œ6όΧ‘‘‘W^yeddΊτ α Ρ»R©΄vΔΪΤp@ρ'ι*ΏΈΪθκκΒ”Ιdˆƒυz=ΰ_­VΛΦ™D[-“Ι’Νμμ¬ΓαΘf³μ΅DDθσ¨Υj±–R©ήνΜ{8΅Ρh»‰V«΅Ωl¨dζ ΨΡсŒ¨vήΈq#MOO£ϊ²%«7z|αG¬όΉΉ91)ρ·xη1¨Ύ‚wπΰAL#ΑeXww7\ΌwqpςFύ0šη7:²½%"ςϋύ8δL&“ώάη>‡ά‡D"9uκTK"Ίζškt:]WW2Ή/ΏόrWWWWWΧ»ίύnή}#“’Οη‘9Ξ ”χŽB‘Pggg΅Zμ~ ίω|~ϋφνlI£Ρΰ-a:yς$©ΌξςρxI›Ν&ό˜j΅Šbsj4[[£ o‰-θ:8ΖΌφΪkwξά©ΡhΠ΄°₯V©T"|κ©§Μfs$Ω±cGKƒΐΔ¦T*…S;66¦ΧλQ·Ξk%711Νy=‘εJ₯Ό=9oΨ°aύϊυέέέb.!'£Υjνv;ο0¦FώAHxŠ9Ω’<44”Νf‘/BίͺZ­ΖNυ`’ƒ―&ήϋμμl½Ρ›'oj XΪ"{†Δ^˜¨‚|]*•Κd2f³}ΖΩTjͺΧιtρxάγρ dj΅ Ÿ>‘Hτχχ£gξ*‹•Λεt:m6›wοήΝC@1P[+ǎΓ¦΅QYz{{…s&ŽE4©ΚεrΑ`pdd€\.£kh6›-—ΛΙd²§§NήΫ£ Ρ>(N|VωΕΥŽΥ 6 Y€B‘ΐa‰fMh;ΑΛHB >‹mΫΆ ·ˆτs;2­[·ŽˆΚε2Ό.Θ²Ύ*Ο|>ŸΥj΅Ωl@+³ΩlGGGGGGWWoΐp8¬ΣιB‘\”JεΚʊ €΄dβLBΆAσˆ·Οηγρ8η DDDG­7]°m``{ HΕΆzL K$v»½T*5»qpνv;›ΔσφΫo­œ™™ΫMD·ί~»N§CŠΡTŠR–F£qxx˜ˆ<θt:/»μ²Λ.»Œ}Ÿΰ•ͺT*œhζCDΨ¦cϊ|ΎΞΞΞJ₯"φΚ|>;ƒΑΐ^ž8–ΐ…ή&om&“Ix„Α`P`όphPƒΉφμΆ(T‡.$χΠ ;ζ|4…ίάΧΧΧjρΘ €Ύ8Ιd€RιUW]Υ 04\FEK3π³ΌΌάN`pj…Τ‹π€R) ;{φ,κT«U1—b±ž‘hΎΒ0d .)’«V«ντK%’}ϋφuuui4šΉΉ9™L†ηΜ6π€R)ΊlΡ’ ΅π АwΨ ~’Ιd‚ =”΄‘ζcg’‰Ήl¬ρH$‚¨ γ0ΊγŽ;<O&“Ρj΅lDγ]•J511±aΓφœσU„.h"Ϊ\ΏΏΊ]r μΖl6'‰………d2™Λ妧§Λε2š4Β ΉΪ5ž#PU¬Χλ8qη>±ƒλ†ΘC΄š¦ΖΘΫ—‘ΛͺV«Oœ81³Ω,D&Ωά5"BίrΉŒW"”™xΗ0 ])m6^F"‘p:]]]μŠΛX,Ά²²rωε— _€Z­b60'Ψ― ΣΥλu|q…DL IDATΡ|PVsRKV(€wbυϋύ===mςΎή‘ˆ<ΐƒδ½£‰‰‰uλΦAΠ\LqR‘_ΐ»ΙC‡i4@‘“ήΌy333“ΙdŠΕ"jKU*H±X,ςΆ”pΙd2AƒΒ±[‹‘ξ ΄τΈB$₯R)”YΗΗΗu Œϊ΅j΅zε•Wβ"FέͺΥ'€Υ822? ί9/‘•ζΌCΉ\~Γ 7ΰ Ί0C°š1ΰΜΜ (›Ν‘3mM.‘ΘΚ Y8Ζh‹‹‹₯R ^$Œΰ6 ¦Λ‡δ‘ι%Δ#έ‰U)P=δθ[Ίah7 —Kθ₯΅4 7H΄¨%Η8Π` Nύq= [γ¦\.OOOηrΉZ­ΦΆU«Υx<Ž΄οVρέ›²-:d!7nάh±XΆlΩNuΛττ΄Z­Ξεr[ΆlΑh‹°+X‰¨Z­"zΉ€jͺ…‰-½ωƒΡhŒΗγ’ ΟΠN- –J%–J₯P(„ώΆŒ›ŒF£Θ"Δ‚Ϊ‘N§S«Υ~ΏŸGΌ‹½Yελ}g‡πΰΥ‘LΒ·‹‹‹ΐƒΑ Τ‰ρφ©‰™·ΖΫ.—ΛˆŽΰ":’ύΕΜαjΫdr°Η‰μ8’-UŸ]b•JΕησA€ˆ¬V«xOΌ‰hee₯yΑ#o(•JΫ)ž@„F£b°6›Ναp°g:^YYΙησβb±Xooομμ,CB%™L.//c;Š\Τθ΍ΠoΥ2™ φPQ4¦m3NΠͺa )Šήή^"wΘγΗ”ΛeŸΟ§ˆŒΝfs;Bn°Σ§O£ROOψύ~ψ"Œγ/hhhΟη&§L&c΄^vφμY$hšαdRxœw€©Ν₯ψ8Nl6[;gηΒΒς››6mjΎOv> · ΊΓd2κ'֞*…ΗI Η΅bΰoόθG?]υ„3β]«³J₯R©T"jEι Υ·dπ)Μ‘³kddD¨ξ1†₯¦σΖμΐcbbB«Υ*Š­[·Š‹>Ÿ―P(τχχ³οlHαK=ίx£Α²Ω,’οkί^e•΅½ŸΣ{Ο)9ΙIi„!Τ@|‚Εl#–Q™qtFWΛeaTζΥG±2’κ¨4ι‘w ιυ$9½—οΗ}=ϋ:¦< 'οώαENŽ;OΩ{ν΅ξu―{Α‘oύxͺ1φξέ‹εMSΊv»€‘€«M KxE] ερ”4B€¨‘dΠlOOϊμ%]I‘Ιd2™ %)@ ! λ'1[? σΑΦιt€™d2šό&XR­ΣΔ ΫŒv);xrrΉ<##}ό!tΩN£ΡΰρβCPρΖςW†Q©T†Ο6dCαR©δ~ž\Ukk+Œˆ`Έφ½WΚ5‘νrƒΑ ΒAδOM&Σx°/^D’ŽΗγγι<ό\φ†Ju'1€$Ύφφv…B‘‘‘‘ΔF-†ΦΐR?ύΔhŠ6Ή€$zήσx<΄"„ 3E±Ζ$XΓ8Ψ[sνχϋ“Fj=Ьuμ œΕ€ \!GŽ‘J₯‰„’  ‹vΙΝΉwο^”¬"FŸI_ηΆmې€£²,„U―MA¦ƒ’"ΐ-c†²…’»vνΒ?¨K„db`ƒΓαP*•"‘(±Ž‡"‘Θϋ0’†’°qΆ₯!δ»οΎ#lXOΨ@‘‡“`ˆD’Ν›7γί`p‚bŸΔ<„ν0•ιΒ… ΤΉIΞg‚°y0€©Xμ£δ˜ώ„ššτΧIΔ~PFsάI  *ΉΕ°Ν=“› >} …BΫ†O.8:α‹CU€›ν>κEϊύ~X‚*’τœ]]]`ΚΟΟΗ<2™L"‘…ΒρΖ>ŸO*•j΅Zx±N§P=’ε+Νλυvtt\Ίt©££ƒžJΠικκͺ««KΘ‘Μ yNœ§c<γ@ψΙΙΙA-)Fzz:mƒ„qϊτi©Tš‘‘‘›››šš 0oμ½g‚Α V«ΕIƒ‰ΥN΅ZF£Θ0μ [7*Ρ1^ά ΡΩΩ©T*C‘<9§Σι:::Ζƒ~Ÿ;wy=š‡Ζk£šΐI —Λ…*ψŽ i<‡±Ρh΄X, E †βββσηΟ'Χ)τd0”%Ž!\LUΈ’ ιΰ Ί('§‰±oί>τœ¦Ϋ["‘Œ'~ϊτi€δh ”ύγρxrzΨ*;wξDl=aΒ€ayJl2φηίΤΤ„Μ@¦p8Œώ‰γq@:„©τφ 9“MMMR©΄»»›–ρxhΔγρ.hJ“qPΦvB‘ρ„ορ@kΝΝΝxM‡ŏ~Ώξl{-asy”X<žwDx O„ΈςJ₯r<ˆtžΑFΥh4Ο‚lo³ρω|τ©jkk‹Εb‹²ωΈBtτJbZx54Bΐΐq?FοΓ¬V+”‡{{{Λε”ΤΪ»w―F£1›Ν2™μΨ±cPsLIIγ \:A pΐρxΌδuμΰΐa%Κjΐ6΅΅΅%W΅T*}q:ψχxΏϊϊz8:X¬…Bγ‘P’΅ΒF} T‰D‚rK»έn4Α/LΒ©…οEί…Tρ°j―hΈ\.ΐτœΐΑ–t§BHss3Ϊ†βη Ι¨X,†Ζπ„ν†žtΐE~θΠ!·ΫΒCθ9]Όx‚I˜Qj8P‡œŸΟ—΄°*!δΐύύύρxœ‚"‘Phœ`Cggg<‹Ε”ψ(—Λ Εxή;νQŽOΑ©S§’›πάΉs ΓΘd²Δϊ-τήE5χη!y=Ϊ‚Ύ/΄£Y?Z4z₯r›@Βΰ‡Φ¨&ηΨ¬ …Χ‰­ΤΦΦΧAr3ƒzAΔbμK:λιιιιιQ*•‰²—v»ψδζ$¬Β ,Εpœξ]0LII‰DΰϋC)m<B<ΊŒP:G0ŒD"I§Άa‘9%„…BΤιƒ|–άœJ₯R₯Ry<½^£ΑγρςσσΗSέBΑ5γ  v$9`5’-ŒOŸ>έ’R©jkkΡof<ζ{菨δ₯­cΉΗž={|>_ss3Xt&%%εΏύ/‡Ί›>ŸοτιΣΘςAUG*•†Γα1ώœΰ±XŒŠi ryԊuƒ 4gό||Ϋ1://o,7h@ΈN©T"OΪίί/‘HΜfσ8E‘ˆY‡½NΊΟ z±Qηα&΅)ɍΞΞΞζζf(ΚB~ψαƒΑœδoww73€)b‡#"g±X,9€{‰¦Mɘϋ"s`6p=±.½^?φ]/—Λ‘‘A*:₯₯BžΌCΚgBϋ©+ΊZ™LVό‰D‚Α πhP1³‘枰RW:P3Hι7 Q•―$F86›Ν‰₯Q¨ΈLŽŠA3ζ‰'hίIΟ©V«Q,EσB‘p<™Βή)•Κ)S¦ΰT°&Ν#G&—ϊpП»Ζ£ƒM³ΩόΣO?Ή\.œ±Xl```qΠh47ί|3!D"‘ 5xvvvΖŒŒ Z\PP€²γ βƒΑ R]ψΡb±Θd²€‘οΎΎ>›Ν»A?Dn*1:–‘––VVV¦P(ΤjuAAF£Ž₯s¨Υj…Bœ ~[RRrEΒμf³Ή   ‘ΗSVVζρx’; Υj΅Α` ωMzαs9\ιhnnΦιtP`Ζ'ƒA $ αnήΌ9‹™Νfͺ‰Ίœρ¨ΔΑ&+•Jr:πρΠΧb±θ+Π­ƒ>Ÿ/i  »έ~ώόω³gΟ"β’ ΰ?Ή sssU*•Α`ΐς“H$²lrs* «Υ‰Dͺͺͺτz½Υj5 </33s<2ah€žššZPPPYY™••₯Χλm6Ϋ”)S’πΏΣ&Ožl2™²³³SSSsss£ΡhYY™ΝfΛΙΙ™?ώόωσ“ΈΘΤΤΤ‘u©h³>v#/‰ m6d‡·mΫF°ΊΔ±yσf΄/*((ΘΛΛ+,,#Ε:ŽΎϊάά\£Ρ¨R©ΈEΞΉ―ΌςΚƒ>Η=ϊόƒRWWχΣO?·oίΎwήyg,7h\ΈpaκΤ©TFυ½χή+//'„ ΙAγΥW_΅Z­`=ϋν·'NάΏx&ά·oί[o½m?ύτΣwέuW H’KοΎϋN§£‰˜σηΟ_Ύ|99|Ύ©©ιμΩ³H@λυϊ―ΏώŸ_ΊtiρβΕH"G"‘δLσ_ώς oΎω&>ωμ³Οζϟε—_&1οΎϋnQQš 6TVVβa&Ο9rΔιt~ϋν·Θλ}ύυΧούΏ€e™ ΫοεΟώs(Ϊ²e ΊŠνΫ·οΗlooO[Ει»cǎΞΞNxΖxιγι­„ρΞ;ο†a@Εxγ7¦OŸ>ήήΦ­[ίx㠏G7γ3Ο<Γησ;::Ζ#¬πα‡φφφ"l%„9r€ΏΏ,ςξÎΪΪZtpN, "ΨΨ8φHΖf³Νš5+77υ›iu»έXŸ›6mb¦©©Ιοχ;»έήάά .οΨ/΅««kΧ]‰¨@,K:·vνZτΖΨ°aΓ _­^½ϊπx<~ψαΝ‰Τπ 7άpύχ;NΨω{ο½wι₯Ϋ·oO.,ĜΨ5$‘νύ'Ÿ|b6›=šΔœ==='Ož΄Z­˜ωύχίΟΚΚΊxρβxbψΎΎΎ‹/Ζ†††ξξξρ0ΜθσLό’k“oΎωζμΩ³5Ν7ί|C©««»pαB θκκJΪ&_Ίtιΐ—/_~ςΙ'QdύύχίG"‘ΤΤΤ1& ‡›6mR©T<οΠ‘C|πA45›Νb±xλΦ­IΨω>ϊhαΒ… .t»έ^―χ­·ήκλλ[Όxqii)!€‘‘αΥW_Mβ"υ―™ΝζAlO?ύtωςεcܞN§s͚5ˆ¦–,Y’ˆC=} Vμσω6lΨ€RΩ1^η₯K—^}υΥ)S¦œϋκ«―h6•J•’’2ώό‰'nΩ²†Γl6―\Ήn·oΫΆ­ΏΏ?‰Ί‘βββ{ξΉω\Τ4utt€Mi·ΫΏψβ‹+AvqqρΝ7ίόΪk―a7κtΊεΛ—§§§?όσ€ZUͺΕ5 @ύd͚5 1ω|>‘Hτέwί%ŽπΊΕ:rssΕbqZZšΩlNMMu»έ--->Ÿ‚Υ΄Sψx†R©\΅j•Ηγ9}ϊtό­›nΊ©°°pίΎ}v»rA3gΞΜΙΙY·nέxzŒ>ϊΰτΕ‹ϋί'7 }_|ρEff&jεT<ϝwή 1Ψ$Μ¨H$Ίωζ›χμΩ“(ζtΝ5ΧόπΓΤ‹ΛBJό‚F£Ήα†>όsJ֞3gNVVΦG}t₯—GΗΓ?L9pΰ@CCˆκΥΥΥ3gΞόΓώπB¨Ώiii<πΐώ󟦦&…BqΛ-·Θd²gŸ}6ΉΩhh<·X,O>ω€L&s:ΏύνoΙΟϋ½#™Lφ裏ž={––ξβΚΧ]ϋχΏ}Œ΅bHWTT¬]»vώύύλ_Gϊ£wί}χέwί­ΡhnΏύφS§NαΛ½ƒΒησωΟ‚+•Jο½χ^hj ŽΛ₯ώŸ‘O{ƌ³gΟώμ³Ο‹4Χ^{mCCΓ?ότ_σηΟ/..¦’h4ž',σŠζ,++ ‰n\uu΅ΩlΟήτ<§NzηwΚεςνΫ·Ÿ:u*‰L˜0aΜ9Α`πwή»“D§MMM-))ΩΎ};I¨>‘Ί9>ψΰ±cΗ`νe1Ζ8Ώ@ ψξ»οœN§T*έ·oί+―ΌB’z5›6mš1cFOOΚΌ@AŠ *B ]Γ8vV«υϋοΏ/--νιι &“iΠέΦΦΚss3Mٌq<ϋμ³Ο<σ 괇 bŽ=:mΪ΄a―uθΐw CKKΛΏύoBHOOΧλMIIλ°²²h4’€yŒGέ„ ŠŠŠϊϊϊZZZV­Zυ«_ύͺΆΆΆ¨¨¨ΎΎώΰΑƒŸ|ς !D§ΣE"‘'NΰqsO[VVvί}χ-Y²Ν•333Χ―_›ίό†ςΰƒΎυΦ[555EEE½½½ηΝϋχΏ½qγΖQ―6===77Χοχ£ύKeeεwάQZZΪΫΫΫάά¬R©zθ!»έ’χωση―TΟ―  ΰγ?Fk‘Pn[[ΫSO=΅~šCu½β.¬Vλ}χέwξάΉτττb₯R) ΫΪΪξΏώ?ώρ{φμIzυB ΓκΥ«!+››ΫΨΨψώϋοεΔΝΟΟ_³fΟη+++CΛ#›Ν& λκκ$IvvφΩ³gύ~±cΗΦ­[7Ζ£(ρ BτzύΙ“'ŸΟ/,,DΗΆ+š*ρ‚.\ΈqγFŸΟ †m4’ΧλW\ΉmΫΆ+z˜ιιι?ώψ-·άαFTŠΠfσ ΌσxΌΏύνoWδ”Μ™3gΩ²eωωω Γ,[Ά Ml …έnζ›o€Rι‰'φοί?·c4_~ωe‹Ε‚€I<ΟΘΘπϋύί~ϋmVV–ΙdκννέΏΛ/ΏL$π0™LwέuΧΑƒ‡*g̘!‰4ΰ\³fΝ΅Χ^k΅ZΣΣΣ}>ŸZ­ξλλƒΐΐΐΐΙ“'7lΨ°cǎ+š žϋξ»οΕ_ΘΜΜ±xμχKΧδτιΣ322ZZZ*++W­Z%—Λ‘t―ΣιŒFγk―½φρΗΫl64ςζφππ‚Φ­[ΧΡΡρΤSOUUU={Λ{)ΛΜΜ|ρΕΣΣΣΓαπƒ>XWWΗ½VQ³LoνΉηž»νΆΫΠΏ[­Voٲ偠χ5v€Ω³gΏτK(ΜohhpΉ\‰€»»»΅΅΅¬¬lήΌyiiiΠj8~όψ£>:–9 ΓΊuλnΏύφ‘x ‘Pθ_ϊΧ£>zEU)ιιι΄n½υV‹Ε’­ΡhΊΊΊΊΊΊ”Jεωση8p₯R/Ώός#<‚#Ψιt‚ƐXxτΥW_έ|σΝWjV¬Xqύχ_Ύ|ωώη/ιυΧ_Ÿ:uκ3Ο<ƒŠ72ςG?·ΩlΟ<σΜw܁RHΉ\.Ž9 ηΜ™CΨ†‡|>Γ† σ?Γ]”ƒiu:έo~σ“ΙT^^ώπΓUzφΩg'L˜„?όα]]]cχCπο·ί~Svv6Ε+tG„Γα.4dS*•TισK$’ͺͺͺΊΊΊ‘{°cΗ0Lcc#*ŠΑ#Fί*Z}Ιγρ -Λ0LJJJmmmEEΕΨo»₯₯Εh4Ίέn₯RΙησ‘Α0 Xπ …Βοχ]εγͺ«***ŠD">ψ @ 8|ψpzzzQQΡϊυλ›››«ͺͺξ»ο>2š«„ίj4šͺͺͺΖΖFˆuww£«Ί­K₯R‹Ενμš]iΌσΞ;‹/₯= Ρͺp8 ILJάF•†Z­ήΌyσ“O>Ι1gjjκμٳϟ?Ξτ€ …B“'OV*•½½½gϞ5 Π‡T(ιιι[ΆlαΨ’τΙ¬]»φ¦›nJKK?/B]Mΰ= nή»w/x]άF nΚ”)Χ_ύΑƒC‘F£)((‰DRͺ¨¨¨――Ώ’qΈ8uκΤ«―ΎΊΎΎήιtj4š@ ššϊΕ_@Άƒ{[‚†ΈlΩ²ΗΌ··7@±υϋύΫDΥ@ pΣM7‘ΡΡ‘Ψ§F£Ω½{7aΕβ₯Ri]] ύ_Ζ5α‚Ÿ{ξΉκκκx<ž™™ “Y$}ϊι§oΌρΖXˆΥΤGόώϋοrC„Χc›Cωψ·Ϋν~β‰'ώώχΏzoΏύvvvvmm-8ψΐW°Š333 xœ/Ύψ"·Ϋ„§ΝησwμΨ!—Λ‘w£ Γ0 ΏΓ‡P*•mmmxMcρnŸ~ϊιͺͺͺΛ—/Ζ`0ΨΧΧ‡.CF₯Ri΅Z›ΝΦήήξv»Ÿ~ϊι1ΆΨϊ裏***ϊϋϋ#‘ha85!Ά‹¬R©φοίΣΔ=(PGΥΧ_ŸŸo·ΫΕbρͺU«hΆwθΪ:π<+**¦NzζΜy½ή… N˜0A«Υφφφ9rδΘ‘#θq¬T*Νfσ‰'Ξ=;ͺϋxλ­·~ςΙ'•••ƒ½θ ΏφΪkΧ­[χΧΏώ5ϊι§}}}‹?ρWwί}7 ΊDεrywwχ[o½5/™Ξ „φ τz½¨6Γs6™LζF~_©T^ΈpaρβΕd„iΛΚΚφξέ+“Ι\.L}’Ι£K"‘Θεr§ΣΉzυκD|t€‘R©ΉζFΣΡΡ±sηN·Ϋ½rεΚH$_‡Qψ²qγFnέVzϋϋχοŸ5k–έnΗ–όμ<ŸΟGνŽMAbξiΣΣΣ?ψΰN Φϋε—_ž?ώΥW_νθθP*•MMMΡhT­VίuΧ]£†IψΓž{ξ9BˆΧλΕ‹€ϋqωςe(w’>ΚH~χ»ί½ϋξ»sζζζ>σΜ3±X ΚS‹₯³³σθΡ£§OŸV(‹/¬¬lll•’tΛ—/GJ„ΓŒ$>œyσζ]uΥU:N£Ρψύώ΄΄΄C‡mΨ°αJσ{XfΉΉΉDρ/! ±¨Pη‘Υj§OŸ^WW7 X<όπΓΛ–-Γ‰ :ž8((ΜΑ鉍άάάŒ….σΤSO}όρΗZ­6‰ˆΕbΨCqXΤ3F£Ρ… ~όρΗc|ΉΉΉ<ςˆ\.?{φl}}ύ-·ά’——'“ΙκκκΎόςΛ©S§–——;Ξ1’¦L™‚FΛXβΠRΦλυ …Βl6›Νf¬0ˆ±ιt:nξ 7άπΫίώΆ½½G,”01jΥ’p²Ί\.£Ρ\p€±`Α‚ξξn·T€@,777wttψύώΤΤT”ΉαtW«Υf³™γR±{§OŸώΰƒκtΊώώ~Ϊrΐb± …B‡ϊϊϊZ[['L˜ …Ž?žΨy)ρ^π¬ψ[o½•b΅Z5D"θκκ ƒV«5-- lΛ1V ΩΩΩ·έv[vvφιΣ§#‘ˆ^―Gηi„ cY–0Σ·έv›Ιd’Œ"•JU\\œžž‹Ε:;;νv;δreLω IDATy~~ώή½{›Dq“Ιτμ³ΟnΨ°O•Ίυ&“ιή{οmii‘@Θ°Or€ .***++λοοw:'Nœhnnφϋύ‡žTΑ•c*ΌΟ?\­VwwwΓ‚S+†U"D_CgΑ‚ώσŸΉ]‡«Ίͺ΄΄t``ΐf³…B‘Ε‹›ΝfΤ•Λd²””lv—Λ% §OŸΞΝC€ι\»vν¬Y³:::¨Ύ&Εrαΐ.υχχΫl6½^ΏoίΎQ}ε_|qΚ”)΅΅΅αp½d2™ΕbIMM5™L‘HπmSS“F£Y½zυ¦M›FEΕf͚΅fΝpK€Λε ƒ~Ώίνv»έnŸΟ‡ΰσωrss·nέz₯ύXm6Ϋ?ώρκκjxu Γ¬Z΅J$ΥΦΦR{‚W6 ψΥ}χέΧάάμv»£Ρ¨V«•H$ ά½{χ±cΗΌ^/ޏΗC]pYYΩΡ£GG}€ΥΥΥsζΜ©ͺͺΪ΅kΧΠΨεΛ—ΏπΒ ‹₯»»ϋ駟F~€UJοβ™gžyτΡGo½υΦ¬¬,Θ<α Γ₯RΉdΙ’εΛ—Ο˜1£¦¦'ρ°Χ‰@e͚5wήygOO|/G=₯FNXIωήήޜœœŒŒŒmΫΆqάώαΓ‡Υju?$ΎQ-€d‡T*EΝλυŠΕβiΣ¦ ›­4ώψΗ?Β‡ΛΝΝ-..¨¨@ƒiˆάζδδ\Ύ|'ΊZ­ž5kvΰφ‹ŠŠ^~ωeΐiψD‘Pΰ”Ηž‚ŒŸΓαP«Υ@`ίΎ}ci₯ˆΑ€Π`Ιb±”——wttƒΑΖΖƁč˖-ϋϊλ―»&“ισΟ?wΉ\€{xμ@ώn7yB"‘JΒ«««ϊΧΏr°B_zι%Ή\›Η‡L&+//ΏξΊλζϟ―P({zz`¦‚Α`<ΟΞΞήΏ¨N-!dŊkΦ¬)..ŽΗγv»=//―½½ύςεΛƒaι₯σηΟ§dύ± Μω«_ύjξάΉ¨’€ ά00νέ»wθΑ1Έxbƌ„νζIƒΏ8«ύ›2 PgΩ²eάλ‰ςψ㏿πΒ N§¦G₯R½ωζ›6›νΏψ…D"Ω±c‡Z­ž1cΖΐΐŸΟ_΄hΡζΝ›ρO‡%%%Ώόε/ϊι§ςςςU«V:ujυκΥ7άpƒΧλmhhΈρΖΣΣΣΏϊ꫊ŠŠx<>¦Z­v»έx―„ΥZΓώθrˆJ ‡Γ€6GšmρβΕΐ‡©Z:’φH$ …“ +–ˆΘ)77w€Δpަ¦&θ/ΰlΨ‰·η.r,KOOχz½άβ[X+V¬Ψ΄iSss3DΌ\ §^―}H}>_[[Γ0θφKFλgœ›››——W[[ ― χξχϋQUz{{αβ_sΝ5Ǐ{uByyωτιΣ E[[N8΅Z‡±y ΕΨ[Π>όσ₯₯₯]]]ΘfJ$―Χ{δΘ—Λευz‹ŠŠΰŒƒA·Ϋ=}ϊτύί}ΰFένωωω~ψ!1ǏG“P$:ylWœ^xαα‡>qβΔSO=ŝυ ώVUUՊ+JKKΥj5 ^DEEE^―ΧλυΞ™3gΣ¦M―Ύϊ*Žaξh{ƌ'NμξξFωσPpˆa›n!^τxŸ_]]́\bγ̝;—$ΰρ„m΅LΟwJ ƒK–,yωε—G fΠBΉ€ψΊ»»•J%ώAX>…BZΒοϋ΅k׎4ΫΣO? ‘ <:jΔ¨N-ž* ~9ΰŒ^xa€i …L&ƒκ8zc€Ρήގ°P,«T*<Μx<.‹aTΉoπ‘‡ΚΘΘθννΕ‹vΉ\ΰ°‘u*Lύ7ήθv»=:ΖδLww7Ηs:P”D«ά8+šƒ0Ϋησ=φΨcO>ωδΠJήΑŽ]^^^,CA}qVĎ$HBΰoB¨π=Ηxΰ˜@όπΓ©S§J$’sηΞ!jχz½7ήxγχί?j‘\"Ϊ Ϊψ1 !Dρ ΄Γγpμ  †C ψ 1Δα~ΕΩ`±ωGrμŒFc__ŸV«u»έβρx‰τψ˜Ω`0θυϊσηΟΫlΆ””©΄΄΄›oΎωτιΣǏG₯U‡NSYYιυzΡ“·ΉΉ™Οηgeeύνo6πΒ‚Y°`AQQXb±Ψn·ΣC―――££±F£Atγ7~ψα‡c0,XΠΨΨxμΨ1©T*‰ΒαpOO!μs΄ΗUԍa‹Ε‚kƒ†Γ0πrp©΅΅΅hΰΣίίo±XϊϋϋM&SQQ‡΄2ΞμυλΧ‡Γadš„B!ςqn·›zπθ-‰/^l³ΩnΏύvŽλΔͺ{ψα‡οΉηΗγρx]τχχηδδƒΑ£GbυJ₯R³ΩόΟώσίώχK/½ΔmD Žxžϋ›ψ-Ά<Β?Ž‘™™yςδIΈ\Α`P"‘h4F· τJ%%%‹eΤJ,³Ω ‡ +qΠeΓ(AhΤ{YΊt©Ιdjii ƒˆO‚w:ΨιS¦LΩ³gΪ{ƒA§ΣΉrεΚQ»όό|LŠΕbΔoˆΆe2v% ΡhΤησM›6 δ`ξ«U*•[·nMOOχx<ΐ€οΒ“ˆF£υυυΈρG}tώόωΧ]wέH³ΑΎόςΛ΅΅΅ΠξKΨkΈ6"όΧb±Δb±ξξξ3f uμθ‘KYΏ~½Νfλι適πΓ>ό»ίύ  ΰΖo\Ύ|9ϊψύώnΈιHŽ…g2™¦M›±β©£>ŠέnΟΟΟ·Z­ΓΖ‡ΈN•JEγvzΐaΒΔ+IαGF* ΝfsCCΓΦ­[ϋϋϋ!{@±sΔ!Ǐ_Ίti~~ΎΡhδvμŠ‹‹e2YOOφ‘Z­ΖνC±Υησl !‹ΕΈΫaαJ 7ƒ%Du‰uόAΥαγιιιTΰ–ζ»Π\ °OHΗ1 3uκTŽΩ&NœˆυΚ/–₯L&‹Ηγ]]]<Ά―ΎLνR$α˜”t“BκΙqπb(3|Α#…ΰ(w[N‰Db0pJ³πϋύΠ́›€ΐb±άyηcΑΌ !Ο?<τ°€ς „.R©΄­­­··W£Ρ€¦¦ώώώΤΤΤΧ^{m t°c—™™ …€Κ|ΆDβλ'„ ÏΗG՟+))±Z­}}}xCxŽύύύTƒG$Qή Œ΅@ X½z5‡SOΙΞΞΣB½±±Q§Σ8qΎvWJJJwήωή{οqLHχΌΑ`ΐ[AJ™y<žίο—Λεtνrk†Y­Φώώ~•Jεχϋα%0lΧjΪ±G2Φ–J₯β]Τh4θΐε}0+y¬8>œŸ?oή_UUΥΊu븁ΐΒΒBš~₯θοΠ―Q<KbT)²E‹ΙεςƒŠD’΄΄4πσΠΠΒh4ϊύώ`0h·Ϋ;::b±XWWΧ€I“Έ›[P΅KαqV;°G&xε±ψΉ―R^^ΞγρΊ»»‘Yˆ«‚B˜P(ΜΜΜ¬©©qΉ\R©`βϋ)S¦?~œ#μ†ΧKν'H,τΜΐ2€_2¨γΗxξΉηŒF#:™"ΤL€>ÝEz·«« βyδ“«ΊjήΌyϋφν›9s¦Σι<{φ,Ϊ@Α¬Ρέ„D˜ηχϋ»»» ΕuΧ]—X‰IXg:Λεςλ―ΏBpmϋϊϊ¦L™²uλVXKͺCΔησ].ΧO<ǎƒ·WZZ 47Ξu¨s Ϟ°&”ϊ‹…cΧϜ9‘65•τ~1†Ιj b„ φΥ[­Φ;w’»ŒΥjΥιt@Έ·α$ŠΗγΈ°}ϋφυυυŠ2̝;ξΪΜθυz§ΣΙ0ŒN§sΉ\qΆΝƒ^―χω|™Ί΅ρό8”R…˜! %ΆϊεYYYω`ά=f ͺΐ2Βαp(‰D³M:5πω|…BqζΜ™†††ŽŽŽ¦¦¦Y³fέrΛ-PfNΌlX§@ ΐαΧNž<Ζ91\!ΥΠΐ@Θ0 Έg ΓτφφN˜0αδΙ“W›’’’Ρh`–±J …ΗγΉtιέϋρx\­V]qΪ΄iP6ΐ"7όγ$[™={v~~ΎΧλεσωgήΌyƒfμΨ 0χQ΄–Ή(Z ‘αx<>ͺ˜aNNŽ@  νΉ°ΌPœA‘u8vQΆ'Γ0rε%%%Tšεrα%Ωνv˜˜h4j·Ϋc±˜^―‰D]]]ΕΕΕά¦€€ C‰DT*τo λ‰·‹Εb*•J£ΡΤΦΦ"α˜P£Ρΰ5ΐ” z‹±Ύ€R)-›ΐ‡4fβΖ<Εbρx<­­­ΰψS\ Α+i 0 θŒ„jŽ9ΓαπŸόη‚‚‚Ω³gχχχΓΠ»έnԎH₯;vτττTTT΄΄΄θυz0Ο8333δ€φφφΥ«W_uΥU?ύτSAAN§σx‰5Η‘‰΅DS±@ύF£Γα‰D6›­₯₯…ΗY@0cΖ d! ŒE΄?Ώ†;β%tͺvΰ½θtΊ7ήyητ󦦦+V$FΤΑΜΎ2”Q½ηρxpΧJ₯Ρ5a-*ΐ9όuΈΆ“&Mβvμ¬V+β]]]˜\$9s†ς€Β)ΘΜΜ Σ.33«k``ΐλυ’7Δ„ %"§ŠλκΡώμΉΣG§u``wK—>ΓΦΖƒAΰ™θΓ}•ΠF I]DτH­VCA‘1FAΉ^―ΗT0ξΖn·ΓpD"°υ†‹{B4lΘΜΜDΧώώώΔBΊRΗ’E‹―Ž”οΰGA i΄ͺ…ςl ώoJԌt‘ƒt‘Htωςe›Νς8κ°`°†Q©T(° yn Εe(:xπ`JJ εΰ’ζεε™ΝζmΫΆρωόO>ω8až ; ΡκJ$ θυϊ .̟?ίd2½χή{eeeθcc±Xςςς:::δ@ž{,5φf³Ωεr©T*tΏb_jjͺΕbωξ»οV\ιp8Ζ’Ÿ^ŸΟ/((p:GEiHcc£ΥjEk ˜'dQ‘S0ͺcX—š68ά°&³!¬a‚Uυj322qz<ŠΣCζ q'*Έ%Ι€I“Έ»ŒŒŒp8,4Σι©tΠw(,„­FGν—ΪΨΨxψπα9sζ‚γǏ#)£ΥjΑξΒwvνΪ₯Χλ‹‹‹pO˜šš "Ιdκμμ 4Θ©₯tFHB Ί<όx<^PPΰρx 7ήΓ0Α`ρ˜Α`‡Γ8•‘ …B”»9μu‘Ψέ`εbΰQΗγq`ŠrΉόβΕ‹cYπV«Υησ †žžLKθΛγρzzz°ΑqΖΠ₯ΓΐŸ@  fggϋ|ΎŒŒ HsΓ§ν’Έ Θ!'NœˆF£C#%κ+£ ž'nN-%·Ÿ¦Žψΐΐ@aa!!„·C/Υd2%rΏΰΌβ5aΠμLŸΟ B°ͺT*±Ϊρ0)"ˆ{G WŽ ‡ΓΧ_ύΫoΏ=μ{Ÿ5k–\.G5XWWΧξέ»;;;qŒ— ω΄œœtz­¬¬δdBˆP(”––ΤC―ΧΓQΐ$IVVVkk+Γ0θnβυzηscyyyΨΕ<O§ΣQH…Η–"y²nέΊΗ{,—••ZΤYQQ§Σι€e „έqxι΄“»΅Zqq±\.GM€(¨(œ;wN―Χγφ– C*“ΙD"‘ΫνΦλυˆi‡N›––ΗF£ΙdB&3ΐ4!MLΓB0φ\.WOOΟ¨-ΛD"Qqq1JFπβλMΑ°›L¦ΆΆΆςςς±8vF£ΡλυR΅ ‡Γ±f͚-[ΆΜ;wώύ'NΔρ d eˆƒf šŽB£&ϊΘρΞ26€X,ζΆM`ΩΣπ›άλυRvΗ…Υ.ΈάQΙο‰Δαp¨‚* q‡)))ωωω ­­ ža»Ή'4™L‰c»έύ­H$ςω| j΅ΪΒΒΒ††@1t6‹Ε»ζv»σσσεr9Έ΄„=Θq£β,Β8b[r aIιλλ+((δ@γ˜!Ό ‘PFTv;::;¦·άr‹Νf³Ϋνn·πU<OKKΣιtαp¦P«Υϊ|ΎΫoΏΟΑf³υυυAΕcθ >±J₯²ΊΊZ©TώψγgΜ™6mš\./,,ΜΟΟGΐ­V›™™9MT4ϊĝςx<όˆχUSS³~ύϊΖΖΖ±4ΧF‹ZZ•J₯V«υz}0άΏ?fδΠΕbq[[΄6΄Zν¨Š<@ςAZZΪΕ‹©Υ lΰRœQΐ£Ξ™ +ζp8pΌ%ž…‰ BX’£: (K—H$?ώψcaa‘L&£Zt ‘Es£Hj΅Ϊn· …B‡Γασω$‰T*li±X§₯€€€€€œ:uͺ©©Ιh4ŽšρΑ0 σγ?–••‘Ό.1AŒ3I­V·ΆΆςx<₯Ri΅Z‘V‰Gree%Ά °4ϊzwψΠησΑΐsθλλΛΙΙAp5μuΣΥιtΰH$’³ ϊύ~\†Οη ‡Γ&L˜2eΚαΓ‡ΉoxŒF£ …Bmmm½·Δb1Ώί―P(`βPχΐέχμΪk―΅Ϋν|>_­V[,Τά$V Π :a CΓΗJ'ΗΓQ©T€λΰΓQptΜgGβ$CCin7Ξ2‚›€£p2bΧP(Δ$ЈF˜R6%ν¨Cφ#‹qPισσσ»»»³³³…Bαλ―ΏŽL‘X,¦"d~ΏΏ©©ΙιtZ΅*??ίΎ}pjGxžJ₯r9pΏb±ΌŠ’CίR<™QΣ‹…ΟηόρΗ‡ώτΣO{zz€ΞU*•JwνΪυψγ?φΨc„9sζ|σΝ7άΉ)d¬V+ZΤΰΰ#,šŽOπT‘’ΒησGΒ΄Z-­Λε€{aΣθ9O „!yˆμ"Z «ωWI£Ρƒ―««ŽC*\0‚Α`zzzGGG{{ϋX’ ~ΏΏΊΊZ$]Έp!;;=XzPό;wn}}}$KΝ!y[œ‘°ΟYYYο½χή{ο½g±XφνΫwΥUW„FQ½AύΟ;Δ:xξΓΖξτ·‰{O£ρeVV%Cΰnύ~Λ/ΏΜγρPΛ³`Α‚²²2Ό!€Ρ1΄ŽU©TˆQΤj5:γ‚·(—ΛΓαπΕ‹}ϋ|>”tAƒ£ΐG©TΆΆΆ †βββυλΧÜΑD$γ6!Ί#΅΅Φj΅ΐ~‘Η«ΣιΪΫΫΑΧ‘ξ2πy|*wFrΒD"JΣSRR .]Ίδp8hςš~a˜ΎΎΎŒŒŒP(tξά9š)yD)))|*viY4΅‘0 0ά8N$ ‡΄¬^―€΅±rεJ“Ι΄cǎ`08eΚ”Ν›7ƒγόΤSOA%+ƒISRR2ΗΈΈxοή½YYY’¦ΎWEEΕξݻϞ=‹xtΤyT*Š4;::.]Ί‹Ε~όρG`ΥǏGθSό~? ίQ™ώ:ŽžpPZ@cMψ t"υ0ͺ¦Σιb±˜F£ιννΕΡN „υZ°w€R)\Q焏"‘H^zι₯—^ziςδΙpβι¨_"‰ή}χέGydΨ€8q  bQQ‘Z­――GDd2™T*UWWWOOΑ`hmm‹Εαpψΐ£ZO‡ΡhτΏύοάΉsQγBΨeO·’^―ύχgϞm6›‹ŠŠFbϊB&Mšδv»ΑΈ@ ^*•"!K1u ΤΡη ηΖd2‘ΪfθnJMMMKK»pα¬`ZLŽ+ΔY‚- οaΤήΣ€½α·€MO8ο4YYRRβp8p_OJ₯7‚δBkά5ŸΟ°X,ΰƒΧΧΧ―\ΉrΠl°ν••• §2IΜξaεΣοΣ4‰θtΊ²²2ΤΩ {©Ψn<Άηψ¬π5Τ±X KeΨ‘Υj‘RΗΡΨγρ$ΪOϊNωlΉ1|e—ˍF‡ΙdΦop:n·;τττδζζ.Z΄Ϋ…\±X u²»vνΪ±c‡Ιdͺ©©Uι ­`%κ.γMQ%ΤΞœJ¨ƒΑΔj' ©mΊ FKKK‡uμ$Ά‡ S—™HX’+3«Tͺίώχ#)ω!–ΙdR©΄‘‘a»8$Ί1΄°—ΠΠ€D-7-Š’Ρh€R©Σιρ j;p“¨ΥjΗΧ|,G’ΥjΕc„3ΐγρΠΏΨησ͝;·±±Ρb±ΠͺŠg%¦ŒζΨ!8a$ΗΠ7+-„Ρj΅ŽDΖ!‚2θ +•JN‡Γο‰ϋώΡG< UWW_ΈpΗγ]Όx΄pι<Ε•£>eΨΩΰΚ9λννmkkΓ 9xI@‰ΚΛΛψα@ΐΡξN*YΒB²4x…sg™:~EgbŠ˜{‘¨ΓΨΎ}»R©ΔŠ‘Ώ₯―C‘P 0M.—ίqΗ;vμ€]Ζ“vζC‡mΪ΄Ιl6/Z΄š[ΰ X^xι‘P(==a˜––Έι#έΎΩlnllΔ"‘»Τοχ·΄΄ΤΧΧ ‚‹/šΝf₯R 5 V7Z™8ΆlΩb΅ZσŸ@αΙλυ’`Αλ‰' ΓXδέεr90­V{ώόy•J…ƒ.~…BQVVΆeΛΰxB‘§ΗνΓj B₯ΌZŠ`磎n7GώΓd2?šΘp§Λ ω>ΐ ‘PhTΗŠ•„τ„jΎ©E–J₯7n|δ‘GΈ'$„€#‹'NœψΕ_,_Ύœa˜ώώ~Ή\ž••…”725558•]. FΙΞΞ†εIμzžΡμAOOB/ΰ IDATe&uff¦X,¦lE0Jι¦Γφl€”%ώ"^h4-,,ϊθφνΫύ~ 7ά€EKˆYYY#:vΤF£QΤ@Α Ϊu°n 2γAs_.²]R©€γςςrPAiΕ%°ΰ.— πΖ¨χ[2 ¨ϊD&+-- ιωέ»wK$’3gΞΌχή{{φμ9qβ΅YΓδςΐNΝΙɁ^W<‘ΐ‡°lh$˜*++!ω6¨ίpόaŒjkku:Pš†£&4j‘P¨Υj)k€'ΩΪΪώτ§?9N4 „Π8†B J₯eΘb±ΈΌΌ|ΫΆm}}}πΧ‡ωΗ<{φ,B–7ήxΟ[ί‘θ ‡ΓθiԊ#]x^ +ΗΞΥ jjjJIIλƒ½Švp#ΝIΗM7έ”žž^]]½xρβΗ{,.^ΌΈ¦¦`Caa!ψ`ι₯===£z΄pμπF09eGΠοΐe†Οc•W9uΝh]Β οP3ΪΪΪ O•@#=؊ŠŠ3f½^ίΡΡ±yσζiΣ¦Ζ.,B΅Z Αwί}·pαΒyσζρωό‰'rΘaςXMŸ«ώΘgΥ—Ώw €?B['\!NJ«ΥŠršΨ°’fxΒψ<9χΎΎ>uΓbΤKKόm"!„¦V9ό0Τη!#k€a$‘!™θΧ‚Α ‡ώTaa‘X,vΉ\|>Ώ¦¦fŊ„Ε₯°ίΑfΨςI‰DrρβŁ… Ί\.—‘‘14M! ωΛ_Ά΅΅ΉέnƒΑπΝ7ί@c ϐnR‰Db6›KJJt:]IIΙδΙ“ϋίξίΏΨKέΈqγ]wέ©yΰL@CιΙ3₯ΡhπI~~~}}ύΗόύχί;! je!---³gΟΖ―±gl ž;vμΈχή{G՟ΚΙΙΝ€ͺΓΦ6g₯A―ΧπΑ7ί|3ά¬agpžΈΗ‘Aбβ>$as›NX£:œz½)Q΅ZύΕ_ƒA0}yl5v(άησi΅ΪS§N‘=L$ΙΝΝεΠ@πϋύ*•ͺ££cΧ]θnβŠΗγAσ…ΤΤΤmΫΆ“Aηζ0;TH;wβζƒ =γβΗΜΜΜ‘mΧ耍iiiτxK\Φͺ©©©φx<£Ά7…G¦Ϋν†dΞΪh4j±X E}}½L&+**κκκB†b€$œ€P(d±XΠEΠ Ω|…ηž{ξ›oΎihhP(Γ&ehέ’ΙdϊύοΞ;οΠd.aω‹8†±‚C‘ΠΝ;—.]JXA©‘£«««ΊΊϊ•W^A p<p) Η!‡Εbρ©S§ΉζšζζfΨύaoΒ„ kΧ½pα‚Λεš5kϊEB4U8CN9‹ͺͺͺp8άΫΫk³ΩΆoߎμFβΐΫ_ζx‘F£‘‹R(6!€C?ξχNΙΝΝυx<---===<ςΓ0Ώώυ――Ύϊjlrt Q©TΘ΄rL…uH˜nϋœ²τ XΙ@TφpsΑ#NIIΩ°aΓM7έ„2mόŠ.Ψٍ7^wέuρx\.—sk&=ƒfτ°LόŒ,|H•b0¨ηΗησ- žU"Fτ °Uω|ΎΙdIY= ΅Zνk―½–››k0Ž=:aΒ«Υ*•JΛΚΚjkkχξέ«Ρh/^œ™™ –!·bΥnŒ Q°#lΐΙγρϊ¦ Λ”)SPίΐg%Hΰ BΠY"ΒJΨό·¨Z, `М-5ΐβ5’Aώ5¨ο@BίŽόH$’’’έέ=R΄I …B½½½‡ΨΙεΛ—q%τ 47‡£Ρ¨J₯Ϊ³g<Εx<ξσω&OžŒκ‰cςδΙ8©I±5‰υg‰/ί„RΪ°ˆΝf5†“#WNAœΗxψγή'MšD30K–,ΈˆυLέ|BQΤ‡β„ŽΗγ•••_~ωε iΓαπΦ­[₯R©N§{ψα‡g̘ΡΥΥ>ΪyΣmθσω~ψα‡ŠŠ T-pπ‚/^Μ0ŒΓα@+€z‚πΨ2p΄;wξ\QQQ8ΞΘΘxδ‘GΠm|ΠΐRΜΛΛ£O~~ώ ίΒQπx< ‚νάΉσή{ο…–8G*655•aZθ ΛC0vX{wί}χέ}χέ¨Ωv6}γ,HMMΥj΅^―Ά₯N$2 4cKAΝ‘#%%Έ‰^―ί»wοΥW_ 0•Οηc[ ”Θ¨aρxψ ‰)r΄ hjjϊϊλ―,X€―8[Ÿ7Θάύ Α$€NY @ΞΈJη$„pG]„ ₯nίΎnΰ‘` b}}=a΅‘†κ)šV(B˜\7ΐΆ<O*•N™2eήΌyK—.ύϊλ―E"Ρ₯Ky¬ΘHO΄FcΛK©Υ μ’‡ιόμ³Οb±XffζO?ύ€R©†]τ8\ !ƒaσζΝ½½½@}αΜQ'Œ$©|ύχ•Frμ`κθθ8{φ,κz€’Q~7Œ…Ό^οιΣ§‹‹‹ίxγ ¨Ψ ;mYYYiiι²eΛξΌσΞμμμ_ύκWχάsΟκΥ«oΌρΖ₯K—.[ΆμΊλ[Ύ|ων·ί~ΗwάvΫm !Θ1#??ύ˜ T4C :4R§Υυ‰±5©cTNZΈpαŒ3p9rdωςε7n”H$‹-βρx·έv[8Ζ&ηvΏ0Ά9aΟ†₯x …B©Tzξά9¨Ζ–‡$ƒcN‰DΗ•JεΉsη`ιHVGΉj΅Ί¦¦Ÿ΄΄΄pο#N‡ΕƒΊ1™Ÿά;N8ξ5Ÿ-`{6Δ‡TcΠΑcΏ°ΰχptˆφz½‡nnn¦)3›ΝvδΘ‘ύϋχ§€€|υΥWuuuH ΅··?~u¬#­y œ TΕ~ΠIC#Z@zTβ‹–j΅zςδΙΰ<΄΅΅νή½ιcΊ=ΙΟž€ψύ~Ή·΅΅ TCÈΎ ŠΑ'zŸ‰ρ'ζΣ¦MιRM&T¬ μG†χ"μn₯…O——7ZB§ Ό={–vDMδΖ {Τΐd2A€kcΑ‚C§-))™={6ςn(§ƒ”ΰΔ‰‹‹‹‹ŠŠ²²²ΠR%D­­­h)Α‘ε46›-??ό-<:•cYj4Δ9gΜٺuλΌyσ,ΛHœ(<1Ϊ?ƒrΥUW%~aΉUUW-ΡFΊNBHFF₯QΕXAA†e†πΨb[š ΐfiNΊ»iI5νmu@Šy;vμβΕ‹—/_ξλλγNΗ₯₯₯‘…rξά9dή!Τg₯%›ΨͺTΒΰ=Η!b4₯RiOOΟ¦M› ug‹x<žL&λλλƒΓ]SS“ššͺP(F-’ƒΫŠλ‘Ξ±ίο7™L·ί~ϋo~σ›©S§b₯ΡΘ3>DNψgεΔ:‘‘)ϊ29d2™¬±±Q­VΓΧαNΕ’ZŠrόψρίώφ·dΖ@”B‘πςεΛ„­Μ΅X,#ρθ‘=Aώ{σζΝb±ϊπν`.Gnn~j4oΈα†]»vq,P†a ‰’e(E!•*νθθ8xπ F£5lZJΐκzc•tvv’/*Ÿ­·’χ(Βd2aGq„G6›-==ύΐαpψτιΣΆ²j‰§2!₯RΩΨΨΒPggηΠi].Χ™3gN:…ΪΊβββ`0ˆ;Bδ ˜ kC$νάΉ³€€€···¬¬lΨKΥλυ1VG6*†‘Ι!+αF`Z3Θ=ͺ««†Y²dIGG‡N§«¬¬¬ͺͺjooΟώΣΨΨΈ{χξ@ πλ_šŒF ¬7€λ$ iG†eŠΰρBta»sH1ιυz°Cψ|ώ™3g ŸθΛ¦KαζρxV«΅‘‘a€iχG£Q…B1τ`#μή€9)άEzzϊHφ> “c‘υ3pΞBΌ^/j‡†α`N˜0a€I&“©‘‘‘ΈΈψψργ|>?7779rˆ²\.‡r:bΠ8[²0μχ™ ~Ppˆ°/ 3€wΛγρFBnΚΛΛq °Τ‰A΄€~%b«ΤIE1Dnnξ‘C‡†N/$‹9­VK¨7Βθρ\[[ –τ¨KT―ΧΤΣ#“IθͺΔησQΦΣΦ2G Ύ€€δπαΓΐ*PΞηΛ•a5Ι λ’t:π/ !ΕΕΕ4-ΚWι'„Π”ύ˜%=€ρp8Ьu:mA‰ ‹'°Α¨k‹έDΑσlΨε„ŠE\€Α`ΐIL!:ŠR€em8οQ$7’Ίj[[[FFFggηΚ•+/^l·Ϋ5 y`pΊ\.΄DkmmΥιtS¦Lιξξζ`_ΌφΪkZ­vξάΉΈ#Ιƒ †aUlll--- G;!sβ 1T»SΌŠzή«V­BdŽbii)’#$θ©…Otλa9ΥjuYY™έn7μl nΕγqœΏN§“JήP—‹α₯KR©π3Κ#-{j @ϊB«ŽZzp‘†)))€Ι±Cu:R©Δ…Νš5 ―q΅ΫνNIIΑ{©ͺͺϊΰƒЁ)--mhŽ+q γAXύyjΫAΑΉI*Ε Ε±?sμ ‘@ιθθ %ΠƒZΛ …Bύύύ8Β9(Z­ׁΑ+δ\ӝOΑΑ†½”••5’c§V«γρ8κΪΪΪΦΦΦ;v υ Τ>”ε‘—Δ©?ΤδΕγρ]»vρxΌ²²²ΊΊΊΉsηΔ!$d•¨‘ΒXϋύώΞΞΞcǎ1 3RδqκΤ©Χ^{ Š3f³yλΦ­‡ R›››q%0χ™™™}}}H μή½{ώύΓ¦ΰεr9ή J=p6`ΐPRΘ!ʊΝΒŸ@§ΣqT₯ΠGαυzΡψψΗ Λ@ζŽœ§Ά’ਫDw;:(…ηΗZB ˆηοp8%PΟ‰ζͺϊϊϊΠΫ›#π0ΆI IhμHŸ½P·Ϋl Α`Ι±C9$&,`87ƒΐ0jλ½^/ΪΩΕFο!„€6ξυzύ~}}=Ύ¨ΆΦιt‰€§§Ηn·+•JZ 7oή<έΚΜΜL›žεψ:*•κμΩ³pφGJ¦Pο ζΥd25551l#Β#„‘>Ÿ/+++B|86€ζb•F£qρβΕοΏ~μ纚ΨQ@,pρb±­NRSSΝfσH΄ΕΚΚΚΕ‹744,Z΄hǎmmm(όĜ4,€ΎΜωσηŸ|ςΙͺͺ*>Ÿουz‡’Np0>Ÿ+•fjPB›€mO ‰/|˜žτρxRέ¨3ΰ˜‡ΞΖK›§@:}ϋ„MγhΑ_ηΘvξ‹Ε ~ -@ Rœ ©jBHWW$ŽτΝf‹³4 (™%š'z‘<Οb±8Nh‹Δ8u1›@ θνν₯$ͺ‘‡Fw H"°6i‹‘ΥjƒΑ`kkknnnkk+Π―μμμP(tδȍFc΅Z‘ͺΞΛΛS*•ί~ϋm<Odό ‹· žF±ΓΐSερxΑ`Πb±@΅U @ gΠlωωωΘΓ‚Έζt:! ?Δˆ2$2#1„¬.·Α``F@Φ±eh©&Βκ—ΐxβœ†Ϋ4j;cPDb±θσΐœ‘Κ8ˍ±Z­­§:ƒΖΗόμ³ΟβQ[GΝ>দ¦b}θqθ]&κΒPΌBA‰~.žώEΠf†uμ(  ?6Ϋφ~β©Ρh433s¨cWXXLΚ£6›­­­-ρΪ(‘%ƊŒβO„ΩV+ΘAOžŸ/''Ηησυφφ‚ώ’xΛ0[„]pΰj4šΜΜL΄[:!•ΐ[ODΡb¬0’°±X¬¨¨Α4^ΨPΑ0”φ”––:tκ$RDΨ–P°ς8]ΪΪڎ9’ššŠbΨ{_±bΕυΧ_~ξG}΄vνZΪϋ…°‘u›D"Ρλ―Ώ%±X,‹‡:vT΄9 AxΝω¬ΚΓ2ΐ0'ΆVp cƒBκN§λ„— •OXΚφ¨ˆφϊΑ`Υρ‘$Β6Y",°‡MΑq‘ή€ήŠ\. „†ItίB„Ba}}=`$Ž9Νf3U= `Xζu$ωӟώ΄nέ:x±XŒ›~ΔξβΕ‹hΈ7μ&"μޜ4iξέ»§M›fp ;„B‘Υj΅Z­ΫΆm«¨¨‹Εέέένννθ·Kinn.((θκκ:|ψ°R©€ GšQΠΐlτ:yμ „@\T­VƒΞAIOOTΓ(‘H(‡x!f#,Τ‡.Ν‚M³₯ρψ/Κ*ΣΤjυP­ μA§Σ‰yH‚βll4Δ8‰Ο“°Kqτ „I λ|cΆϊϊϊΌΌΌφφφ‘ή;zjαξhrη:½ΫΖQk4… ,ΥργΗΝ9mΪ΄Δ%geiιl4„T‰yπdb±Ψ”)SΎύφΫ‘—Κ°₯‘8ΌαΩЊϊh: c€¨Έ  €†(Ϊ4wL‘JΌQ‡Π…<***U'ŒΗγύύύ08‰>"½N<‡h4ΪέݍhŠA„‰s!===--ΝγρPR&μ˜j"‘hΫΆm*•*77·½½^"¬VΓ0P§γh4999ˆsΈλ{°w:::μv;€$?/‚fΨˆΧλ?>πH)xzτ ΓxbλπX,ΦΫΫK!@*t:έΡ£GKKK9Ό•J9¨ό`3Rw h7 $‘½^―Ιd‚!P·‘fυdΔΌΌΌ3gΞ ™(pOσςςΚΚΚΟ?Ώ`Α‚Q;Z-@AΫϊ‘ΎΙ°DΖ‘~ΪΟψ„―Ώώz͚54c8(‘„Ν#“Ιq—ς!?έγρ`=?–ƒ‡νv»ΥjΕriZD:Α'Þ4†)αΰ4”––Bd¨²²ς±ΗΓ»όΌ}y˜Sευ›=“=™$“Ωχ}(‚€"ƒV)’¨\m]ͺ­+Τ~]Ώ>X΅΅Vͺ΅ΈυTEAdd“†efeφ5“ΙL&“Ιdδώώψ<χ}.“δΞτχΗοόαƒΙ7χήχ}Ο{Ξηœσ9ˆb3„9MξΒα08–/_ώϊλ―γδž4 ₯ΕRϊΒz„„£‘±W‘1`2™/GZΐx^Τ[αœ@ΰŒa“«`‘bΞβ‚ ζϟπΰΑ€€€X|Βηϟokks»έǏ΄ΫνȘƽ!/<))©N*•Β«‹š†βA˜‘lsθhvΡJ1DθΐcGρžΔΜΕ½& ZMyp—ƒ–«qDl1uv>βΤηΙ±ƒW€yBˆZ­€“MqA:¬Ωlnhh ΐp¬1αβφ·Z­‰‰‰t·R:X΅jπNΌjžMDœ‹/"uΡݚœœόΡG­_Ώž —FJwwχόωσ=Okk+Ί‰”””,]ΊτΨ±cX ………‡#''ηλ―Ώ¬¬ΜΟΟOHHΰ™tΜ/κ-ΠX‰&Ρcƒ>ςDΝfsOOOδ~―¨¨ΐ‰ŽHΩργΗΑέƒ‰†‘bˊΆ]œγP(„JsΈΡ³f͊$@FF‚ΡbkΎ₯iπθ2ž’mZ[, Π}D-¬ly†aZZZpnΕ:?N:•šš*apΑΩ†>²΅bˆτΡ+•Jm6φΓ0‘l°υρο0[hΒ½€zJ4‡‘P¨’’"κ­’<Έ&…B,Pz@"  ©£¬(r4C…,Ÿ 8nρ&πΌ0ΫF e"Ά1<ΓRKD&Ώ όπΓ …βΒ… λΦ­CΗ?:;t}"–΅ΑΑΑΞΞΞXαX„ί}χ]]]–\Τ+³²²ΜfσκΥ«if-ΐDKLL<|ψπ† τz½L&KJJΒ¬I$’+W τ‹/ΎΘΘȐ°=UyΖτϋύ*•κΚ•+(“Β+°ε,qqqH^Η4GP,Η⊠…B‡£¬¬¬»»»§§‡b\ I35Γα°^――­­νννεαŸ‚΅ΐ0Œ\.oΏX,¦OΒΒ]xψ„a•Je0βββxκ{p|΄··γ‹ΕδΔb1Τ―Z­†ή˜1cΪϋς(yΒXl?ύτSNNϊCζΔ²όi·ΫηΜ™#dΛν―Ί1ξΐ‹"„ MžBά“~˜ΧΓ‡―Y³J*Φ]šL&8Ύ6› 9g΄.‰ΎA†Γ7˜‘‘«œ6FWΣ ΄σO¨ ž(H›†††ςσσΉs011Τ³™L¦ζζζ-[Ά,Y²δ¦›nϊπΓ#€^/NY -ΠΜ*ͺ΄ΏΉΆΆφ–[nιμμŒ z½ήμμμΤΤΤέ»w[,±XŒd>†­θF(—Λis•ΪΪZ›ΝV\\kέοέ»χΨ±cn€§Π IDAT·[£Ρtuu}ϊι§G‰D½½½B‘퐅B‘V« …¦±±1--νΒ… UUUQ§žvJΕ©@ΨYζn$‘Pˆ2aΌ“ααat™D$ΎιdE₯RΑvΔFA,Ϊ†††Ω³gΧΦΦN9LτΈΓz€ P(FGG,‡ΟβΔΓJ₯R@G0Ύ©)/f{SββΔΔΔΞΞΞ””žŽΰx₯γγγR©΄‘‘½"’~Ώškihh…BπΈx &˜Y„S§NΡΓ•Ήšλ„Ύ"BHBBΘyΆ|uuuEEERRŠ+τzύ•+WφμΩστΣOΓy¨¨¨Έxρ’P(ΌγŽ;`'‘ιH¬aΜ ‚S§N­_Ώ§—SȌΛ`{Y,–ŽŽ(άȬ犊 LqqqρΡ£GϞ=[QQpœŽ0›Z1lί*D@&&&¬Vk^^^€ag΅ZaaΠΞ„…ϊ§ƒ "‘P΄8±BΣΙ/^ΌHλf(ς͍‰›Ν暚šΔΔΔΎΎ>]—@»ΛΰԁGoulΨΉ^―Χb±\Ύ|yήΌyΐH"ˆeeeN§Sΐι“HΒς*@ΔƒpϊφƒΑX½"–‘1"$ήΠ_‘ΙR@Ε(‚‘£ΑɁ–›˜˜@ϊ# #P‡=γ±ύa”`%Dζ` €P(ΖΖΖPT„6Φ±ήOOOFF†@ ˜ΤΛx’@‹ž={–'νήήΖέΗ•ηb³ΩLΆ?ωΟC‘Pjj*ΈΝKKKΡΊC₯R‘ _Ρ QιΨΦΦvώόωXΌN„‘H”m·Ϋ‹ŠŠβr(μEΕ‘H$h4}}}θόFxγtLdf9rδΞ;οδΏψ‹/ΎΈε–[(TLε*ÎbzyyyYYY===R¦B!w₯R‰ΚY*F£6JVI X‚N[yyω?ώΈtιp8ΜΟέ„½Υ₯m|+Φ5„„·l6[bb’T*ο T­ή‚εd4NηŠ+<ψΠC½ώϋ‘£΄•Βϋ\¨Š³ίߏ- €=rL΄'―――‡χ,(!3=R€R©B‘°ΩlΑ`πΘ‘#hπλ͟??;;;??``ΰϋοΏΏώϋ•J%JPμͺa‰D‚JŸͺͺͺ_όβ=τΠΐΐ@ssσχί?i@Š Γq ³΅PΑΘ―ΒΌ`Ix<‡Γ‘‘‘RΗi6Ÿ@ς,- Ÿ€ώΆoί~θΠ!ώΆ‰ΡΥ₯ςT_`Ž„lΑaλΡxP:Ξ6v4HΐζρΐΝΐΙ‘’’rμΨ1κ,ΕΔΘ(+‘΅ξ‘x$ [ΗΣΫΫ«ΡhhΗ€¨Bα€ΰ&ύ–κP|’MsΪψ£Ζ .lkkσω|Θ`[ΊtιΎ}ϋ€r>}ϊθΡ£ƒA‘P˜L&PKŽŽŽψi€ΰ€―©©ΦΊ„c}νΊ,»έςπH’››‹ΗINNήΏ‚ 4Mww·Ωl(‚Τa¬LnP(¦₯₯ύύο_·n4CΤΊ`«ΥŠlk!›ά‚Vμβ2€Ω!ύ\£<’Ρh I°Ηƒ#¬ΩΛΟh4^Όx_Ε:ŒΑHΣΏΒl•C(BJςR CYYΩΉsηΔ,30W”J%ͺ»~hΪS˜SέB=%ZF‹*V…΅B‘@Ƙm+"ΰP6τA*^²R©Œͺ<‘ˆΈ­€Lrz-rΑΰ[„Kƒιψ­ΘπΤ±±±ΖΖFtttŒΡ›W( …u²„Λ—/σΝ7½½½( ˆ*X!AΆm‰0‚΅‘pR)‚Α ZΘH$ώŠK”6Λd²ΤΤԞžpθ„―¦S€u ƒςχx„άn7^¦Λε"ME x”L$κh©©©Ϋνv…B!`Ι)ι#N,…βχϋsrrpΔΌςΚ+λΦ­‹€Ÿxβ :Ε»vνG_(έΒ‘„g‡«Y\\ΌhΡ’¨ι.\ …hμ©R©z{{q«΄:„²ϊγˆφΖ?&να1Ν^η„D*ΈŸ_₯τ1cccˆ#PuO=c‹¬Σιi‚‘뇁όI$”8Ψ1S„?δrωO?ύDΨΚ—XΓ"_$Ρ{ΰ1쨳ΕsΘ!šn΅ZΐΝ7ίΌwο^H`TbΙZ[[W\9cƌƒξίΏΡ’Eθ»Η(©TΪΨΨH8iδκr6Βα± ƒΓΓΓBΆ Ewwχ€1έn7ˆ—Γlaˆj³²²PqςŸΟg2™κλλ½^obbbWW.ˆe7ός—ΏΜΞΞ–J₯ηΝ3999O<ρΰ 1ƒS&“eff‚”\―ΧG­!€RΥΤΤ”››Kσš…,Ω7αd€J₯R¨]ΔΎ§bΉpΧ—_~ #ƒnB|¦cΥΡ.οt’Γlz2Μ;ΒZ~πtqY8ζ1μpƒu‚γBtτ΄c¦³³3''η›oΎNαyp€₯§§οάΉΛ’Ζ §˜7& .\K%֘τc> EυιfΗ³€ΏƒΈ<¨jSSSss³ίοoii ‡Γ¨~μΨ±βββΤΤΤΪΪΪφφv—Λ•””„:-žt£ΡˆζΘ E„Yΐ΅;©Ηθρx`…˜Νf―Χ;©pD δδδtvv"ύΡf³₯¦¦b4š=J1Λ;ˆ— WΆΏΏ‡bNNN$<ΰυzqΆQβCx•@h’7¬:F8ΦƒΣ©§φδΉΩ{²Υλυ02HlG§Σ‰'Bj κί…,χ3 a#(iπŒθžb›iR)(( χΐ“« ‡R„Τ!Α`0¨Œ{@ν§L&CΥ?6ώ-`ρo\& Ρ1*€Γα@Υ°-‰ ύΚΛ―I½/!˝FΑ°T3DZNαpψή{οF;444©ηrάn7·fsι₯ .t:±ˆύ{<Zsλ€£³OΫdE½ B•t&ΡM Ώ…‰φω|Λ–-{ηwbIΧLQQь3:;;Q.χ…«ΘNKKΛΟΟ§ε/QGCsH΅Z}εΚ•τττμμlzΣΩ sϊšΨ¬0€9…ΓαX:ŸΎ½€€€ϊϊzΈp½ ӊΕbΤΎδζζ655ρ›Τ·άrˁ°PΉρ€¨¦¦¦"9•§B»bPl{’ιE_;EL"ίηUƒ  a„!O7$}³]£ΡX­V·Ϋ-‘Hx ;1KΗ”:…‘F^œ?Β)ˆ*°9¨UΑuΆσ >b]sαΒ…™3gͺΥκΤΤΤ–––šš‡Γ.ΞΈŠ5 z½^»έR©:tΝ5ΧμΩ³'jqΓφΊ¦έHhJ)υΐ&ΨώH …Βησ™Νζϊϊzœ%Q±XœwΓ 7X­V΄όš˜˜@•"­P:Ž`0˜™™ιv»SRRλ}~ρΕ₯₯₯γγγ‡fΖj΅ΦΧΧ#OοΤ>‘PΘγρ€fχξέ~Ώ`` *ͺJ("‘πΓ0H†±₯!ˆΡ@A#Όεσω ¦Sρ€…·΅ϊOΐΦΊς…G‹ΕV«±„ ±„¨Τκb έyš‰Φο‡a—””d³Ωδr9Εν¨n…IA‰3°€c©Χλež={ΝCΉ–"΅·Τ¨R©N:΅hΡ"~Βg  ¨ƒ&°:μΕμμlϊ£<;ΊΊΊ΅΅Υd2εδδ€³mbb}8233α:’X> ΅ΆΆŠD’±±1Cωε—_ΞΝΝAΜ – ΕlθI†{Φj΅­­­gΜqΉ\“¨ζΰ,αΘ„»•––κ)šUF«;ι€B6ηΏxβΔ‰uλΦB†‡‡#—––¦€€΄ΆΆVUUέxγv»‰b!Ά³ ‘ŽŒŒ(•Κ„„„’’’XNŸ »’2{φ솆ώdΨ A™LVYYIill‹Ε±6CΓ,Ν€R©D]NˆΓ‰…•7 ₯-/^lkkή0‰=sŠ?²Νԁ:P‡B_,θ3ΕqžžπBŒίο?ώό²eΛh*$ΰ!Ϋ4³ƒ–k₯₯₯8°#όΛ/Ώ|φΩgCνά9$„Ωξ#ΨDΆŸ/!D"‘€αU­V«TͺγǏOΩγρ Ώ­bζ^C1K˜5555<9vXδSZiτί6›Νf³ 9τΒ‘ςΨcιυzΰFIIIXH<#ψτz½Λ–-ϋŸωŸW_}5κΕ‘PhppP,?ψΰƒK—.mii‰‹‹Q©T‹ζ)pNχΓ?μή½Ϋf³ΕΊOͺyp–ΡH.½ͺ‡θΤ8Γ0QQ.Š"‡‚ž„ΛD8H­H$B6|gg'μ~Γb0Άoί~Ϋm·Α²δ Τζ …Έϋξ»ω±ON‘PΘu!’β΅„­Τ&„LκΗxΥΠϊυλF#MΑώΑCz<ž`0θp8ΖΖΖ@_ΔξΑ·n·|T™τʌηζζdIžfw^*ΆŸΟ1ίήή>{φμ’’’ζζζƒB"3œ;w.!!α«―ΎJNNŽΊ?±Œ+ΐύ\ΔvΏ²%ί^―])Αππ0ς’" …B›Ν†ΦΡ€΅aΤ[­V°…!‘Ν€€$Tuθt:h«XΡύ#GŽ477k΅ΪͺͺͺξξξΟ>ϋlϋφνΆ9ΊΡh„.Πλυccc­­­ †¨――κm8pΰώϋοτω|ύύύ(Σ£₯ Πn ΎA§²”””ΡΡQ…B‘”””œœΩ°(ͺ`LΒi„Μζκ>Ώ±½†E"‘έn‡Γcccak©9©{‘P¨··7;;["‘πδ1l˜ώώ~‘P˜’’‚”v!K‘žžŽ(ŒB‘())!„ ‘˜Η™ΓW‰δΘ‘#ΏύνoΉ‡ayΒΈ§έωσηρΆyr}Τj5Uyί~ϋνγ?ŽΦs §(ͺ³£££  ΰμΩ³Α`3ΕσJΑ7 Ǐν΅Χb]†Υ?ώό@ ΐBjmm₯ ‘„υYιe°Œ‘mύΐDŽsϋν·'$$ μ/ω a^ΐ«Π€Žžgή&bΛθ.]ΊΔ0L||ΌV«]ΆlΩG}Δύ‰σηΟ»έξΟ?<}'„ΰβ–Ωϊύώ„„„όγΧ_ύW_}Εσ2!ΰ"„S7RΔv©ΗZU«ΥΠ°8cΩ555~Ώ|’΅΅΅ …`W³€-ό~RRR ˜Τ73++kddDΐ¦ΐψ¦£1œμRΌ@„w;;;φ³ŸŽŽ"Œ˜ŸŸiΨ J₯ώώώŸ~ϊιΖo€τ„xd,ZύΰσωφμΩ“™™©Υj£’Ώ(V€mzν΅Χ~πΑ&“ Γ A„,7 υ΅N:U\\¬Ρhͺ««ΏώϊλΘΑ)»!n*„ Ψ ±.€›1%šΛt]γωιΏύνoΤβΔOΗ2Y(>4€ΆΆ–Ώ3 m6ΫΦ­[§ΌO¨}ͺJ|† Tͺά»ύ‘Šνv»‘Θd·ΫυŽ₯σÜtωΆΆ6$ α¬g«ΥκυzΑε„λ=6ΏUΗu°£Vvs !SVΕ"QOΜRλΕ²,ρ!‚ƒΑΰ€τd»`0ƒŠoJΉtιRrrrZZZ¬ N:΅zυj@°oίΎΞΞ΁XΚ6’a3$΄ZmSSέoUUU±† …Z­–ξκX‚‡?rδΘΓ?¬Σιx6’X,^±bΕφνΫηΝ›˜˜Hx1 ŠT#Ž^QQY ϊiBεD@ΎH‰Qβ oΑ5Z5’‚†B&“ &u||<Μ5˜tψsκ΅ΰ ‘Λε£££ƒa˜I1*‰‰‰?όpIIΙΙ“' !+V¬ΰΆX°$‰Δ]XXψδ“OvwwιOͺͺͺzχέw#μιι»ŠΝfλοο§$οp‘+ƒ©ΗΪMHHψξ»οΠΥΝοχŸ={6Φ›‡@σ-&1MNSg̘ασωV\ιp8€κSΐ•Ί_Ψ“ό1μͺH*!ΆuΑΨΨXooοt΄3(ib±ΖŸommEΎža‹οp ή*2ˆΕlOL=Έ@Ε‰'¦“Ϊˆn+aήz)BˆΣιΜΘΘΰ―ΡŽ>>>W„g#βBθ­©© abIB–«‚a˜Λ—/γ―"βgŸ}600€Φ ϊΑΓ?‰DΙΙΙhœ…Zxψξ„5ΧFˆ_­VWUUEz ΄½ΝͺU«Β,Λ°^Β‰s1 #•Jί}χέ¨Ϋg’ΨνφΤΤT<Χ$5Π\ޞžž”””X›ςα‡ώμg?S(­­­‡#*gdˆεζu:°ͺ‘ςι₯σηΟs―„ΙEŸN&“!ιΎ££CΒ!Ώ₯σ›••%΄Z-΄qNϜ93ςeβDΙΛΛKHH₯“αήb‡Ξ˜1Γεrυχχ'''Η2\ΉRVVΦRWWg6›QΎ η “B½qόZ€H$’_ώς—?ύτS\\\uuuΤ‘Αy6ΑiͺUœ YDZb] ω=½HA΄!Φ³§₯₯9N³ΩŒό¬Xgœε`£JAAO/x©TJsrΙΥ²„qqq<π<νΊ‰zt·’ΣMaNW\\,•J5Mvv6jͺBlΩ¨/¨©©ΉνΆΫΞ€R©ΖΖƐ˜Λej»vν"W'σEd\ Ν]Μ!yαώ.½σΘΪΥ¨B›Pnώλ‘'Ρ†_uδ0 pόο$ }’ΠX›Ωlζi600€5ˆ‚ΏτΊ 6Bέ±¬^΅j•Ηγ9pΰ™κhονν5™LιιιωΟb] ψΗ?ζεε₯€€|ώωηψίZΗ?ώ!“ΙjjjΦ™$£££H@nnn&„ έm||<55‡„ίοGύ3¬½””hLψ©QS£‡T*U©TΫ·o‘”MG₯™aπ’΄ZνΐΐΐΝ7ί υz},τΫ`0\ύυΤ™ΛΚΚJKKCŠ: δ!ΓΤ¬&“ ιS³gώ }k4$ #:€ 9ΠoˆσŠΩ^ΡrV,‹J₯JKKγ_'aΆ˜3Ε±Y‘¦”;vά{ο½qqq{φμyύυΧηΜ™£R©€U’nuyξάΉψψψυλΧΛεrj@DŠΙd2h0ΝΫU/x,£ΚππpII βσζΝΛΛΛs:Θ £¨@ P*•ύύύΨnΙΙΙψΰƒ%K–”••%&&–——Ϋνv―Χ[\\άΨΨθt:/]ΊTUU΅~‡v4Φu»έ4έ )κeψi…B‘V«§€7ιtj΅švŠ%ΆŒΤI­A2μ~ύλ_?όπΓτ4β"σ±δΣO?ΝΜ̌¬‹€ςΣO?ύ󟜘˜ ‚ϋ 4!δx葇 mυˆ$χΪΪΪ-[Ά|ϊι§;vμπω|oΎωf¬1_|ρΕ}ϋφιtΊ£GF~ιw2 ΣήήώK/‰ΕβH¦?~|ddR¬ΨύόΰΑƒqqq<›p’ΫΫ·o‡ η‡/ηy‡$ŠڱcΗΐΐΐž={ϊϊϊb^ …B©Tκυϊ€€$ξ5ό!’Γ‡Ÿ8qu‚“fݐ`υ’©ΌGBΘΎ}ϋ€R)6]ˆ%υϊ£?ώxαΒ…8h£ŠΣι¬ͺͺΑΉ:_ž+“H^zι%Ϊ†+εεε%%%©©©F£qώόωˆT‹ŠjεΐίΊuλπππΡ£GƒΑΰΰΰ`TGξΐ"‘€ι¬ !?ώψcggηαΓ‡£~{ί}χA»ήsΟ=f³Y₯R,>>žHͺρ†έn·ΥjΨ»wο=χάc0bεHmήΌY­V%r³BΎψβ‹ΒΒΒ¨ΚRUUE#d‹„RSS#•Ja±E‡ΓρΨcq?‰eαs·ΫΝ— ςΞ;οЊι<;?…Η[o½΅xρbB6ςώύϋ§ΌΘ£>*—Λ'ΑΙQo`tttηΝΰΥ_±bΕ7ί|λz†Ν]Ž5¦Γα@νιάαΠАίοη™ Θ‹/ΎΈfΝ΅ZύρΗ“Ψ― H}τœF@ŒTb’|Ο=χάΔΔΔ]»@W+ υzύ5Χ\sϋν·λ_ŠJή6₯€₯₯έrΛ-sζΜΙΛΛƒ^Φj΅ΓΓݝ«V­ϊRPPπ󟼽½½₯₯E&“%&&¦€€μάΉ“';5–PŠ)nŽaΣq(ZK―™Ύm‘——§Σι–-[–––F4(5΅ZύωηŸσYώ?KYYΩSO=΅wο^ξŠW*•<ςHUUUΤήη‘2ιΨΣj΅§OŸή΅kΧ›oΎιrΉΤjurrςσΟ?ŸŸŸΓ 7πΧ"p…Ύπ9sζ¬^½ϊβΕ‹Ÿ|ςΙ€kώς—ΏX­Φέ»wΓ‰ω―ζRVV†€­†F2ώ4œ>ϋ]wέe2™ͺͺͺ"½ΌΡΡΡ”””W_}•ζ΅Lη'τzύύχίΓ 79r |sζΜΙΟΟμ³ΟŽ;F-ώ¨Ω‡ŸE"‘¬\Ή²­­Λύΰƒ:t(j#©)ΝjFγ€ό‡ωσηwvvZ­Φ¨¦Οtξ³₯₯₯³³Μ―΄΄΄λ»ξao5€ZξWZ­–Ί.S.ΞI«"==ύ¨©©©ΆΩl¨άOII™3gΞΑƒΉ‘½ι$}Syμ±ΗRRRšššZˆD’ΜΜΜ²²²]»vM'έ;RV―^έΣΣsβΔ‰¨ίY³fΫΆmόχ)`‹Ήί>ϊθ£3gΞά½{7Ώ³²²zθ!§Σ9ιμψ―ΆόSO=΅zυκoΎω¦ΎΎL³₯₯₯kΧέΉsη”LoQE.—/X° ͺq ž¬)3π’ΚόωσW­Z΅wο^7rrr’’’6oތˆdš“Ξσ~,3άuoάί-..ž?Ύ^―Χh4j΅•|ύύύŸώ9h§©‘„Bα<–––žž>22kd5χάsΟ-·άΧΧwτθΡXΦ|TYΎ|ωωση#Khg͚ΥΪΪJ·η΅‰!:ξΕ_ωδͺλ¦3&MT£ŸόξwΏkllμμμLJJjkk£άςν«Fˆ4!!αλ―ΏNNNnooΗκ‘ι Γψύώ+WH₯ΈΈΈ~ψaνΪ΅Σy`ΫάΣνvŽŽj΅Z΄–8ΜvξάΉzυjώ>“D*•VVV"°hΡ"»έ>wξ\»έήίߟ——·mΫΆΞΞΞΛ—/ΧΥΥMσΤό―&r:J™ŽI N³£‚Α δκNpΣ‘¬¬¬7ί|3--ν½χή»rεJMM +..Ύωζ›ύλ_υ―έΆmΫ4c‚Λ—/ΏσΞ;‘"ξ„ιιιB‘0..~BŠtWWΧ]»xri'ɍ7ήψΚ+―δζζ …B–τ+DήϜ9³qγΖiŽΉlΩ²΅kΧ644H₯ψψψΣ§OΧΦΦΒ ΚΘΘψδ“OZ[[»ΊΊμxύυΧωm€€€|φΩgf³L§”ŠE₯R‘­ϋ_|ΑS °TψsηΞ}ξΉησςςZZZPr6iFσ›ίό¦ΉΉΉ΅΅uαΒ…+Wδ–.Άx`Ι’%:{§¬¬L­Vk΅ΪσηΟΫνv”|Ί\ƒώŸσΘΉ€‘vοΈγŽ/Ώό²³³3μΫ·οχVε‡α IDATΏύ4|’$''ΗΕΕI₯RƒΑππΓ£―t8NLLόΟώsΰΐΤεΰΝLgΐŒŒ ί–/_³eΕ‡~ξΉη6nά8<<œœœάΪΪΪήή>Νη%„<σΜ3χέw_ff&jŠ !T8===ψΓ ©[Cω™gžyλ­·ΪΫΫίzλ­ααaƒΑπΐ̝;χwήωέο~‡kx&ˆ«ί7mΪ΄dΙψ„R©4!!QΘδδδήήή‰‰‰„„„“'O~ςΙ'ΈUώΓΏψΘ#όώχΏW(*•J  «JKKKII‰Σι ³]wνΪυμ³ΟN©Cπr*++Χ―_o6›u:]__ίεΛ—.˜˜xέuΧ₯¦¦655:thΣ¦M±ήχUΟ›7οΖo7{nnD"A°uxxxtttdd€ΉΉΉ±±ρΠ‘CH<˜Ξ³<ύτΣ·άr‹Υj‹Ε999T5ΩlΆ‘‘‘@ `6›χμΩσ·ΏύmR½H,Ato||ό¦›nZ°`ΑεΛ—;nφμΩb±Έ½½½ΏΏ||Ό©©ihhhš(ΈQ€R©ΕbIKKλκκςx< Pzb±ψΜ™3GŽΑΉ9ύΒ©ίώφ·7nτϋύ§  €‚‚VΉ\^__ΏhΡ’i޲Ν!χοί4JIIΡιtxφΩg§3δ΅Χ^“J₯πω—/_. O:ΥΩΩΩάά\XX˜ššZXX¨R©.^Ό„H£ΡάyηόοsΦ¬YeeeιιιΉΉΉ‡Γη󍍍ϋ====..ξΗ”J₯v»½΅΅uΚθ ἟[o½uρβΕΘ娨¨ΛεRΎΝj΅ŽŽŽ~ρΕΣq“&½σΈΈΈ|πρΗ‡Γn·;--­ΉΉωž{ξαΒ„‘ )Š1±iΣ¦”””ΞΞN³Ω,—Λ•J%Ϊ- !Έ\ήή^ΏίΏxρβΟ?|:Н€νϊ700€ά܁@||ό… –.]:εPτ1T*ΥsΟ=ηχϋ].—Υj]²d ^!­ΎΆΆΆ₯₯%))Ι`0444 »ίt–iyyωώπ‡‚‚‚όρ½χή³Ϋν¨ …BEEE>ϊ¨Ρhε2=}ϊτŒ3ό~?Ntξϊ§ώW©TJ₯σηΟWVVΖΪ™PFσζΝ{ϊι§Οœ9bϋ΄\Ήreddδƒ>yώωηηΜ™Σέݍ–»F£Ρ<ϋ쳑iIQ₯ΆΆΦαp444ΔΗΗ§¦¦"mv&&&Μfs~~ώoΌ±yσζιΜϋͺU«*++Μ9γv»σσσN'*~ϊϊϊζΝ›7wξά—^z)''§‘‘αδΙ“­­­SήδŸώτ§kΉ­HƒΑ ΒΗΘ”ApD"‘^―?ώ|,†‚I2ΙνΫ°aΓ¦M›†††ŒFγ₯K—h½U€)Τ…Cγ©ρρq¬ΡΡΡ5kΦ̜9ΣνvπΓ‡NII‘J₯HFψΰΘ‘#wί}7v½N§S*•Σ‰z@f͚uξά9§Σισω(Rλπo³Ωœ˜˜L©F–.]Ί{χξ@ `³Ω°Όu:Υj•J₯.—Λ`0θtΊ[o½‘¦XNΧΓ7ί|S^^>22‚χ‰Βy”y–––‚7K*•*•JF³wοή'žx‚‚!»vνZΆlΩΨΨ”ΓUΊ\.”Ρ ;I›tŒa§ιυz›Νvο½χςŒyϊτιΉsηφττ€ˆŸa K‹ƒhφΚ2Ύϋξ»XcβEύύοG]=!€»»»ΌΌ\―ןgΜYYY)‹ΣΣΣ΅Z­Γαψώϋοa’αιγ?ώΡG:ujζΜ™ j΅Ιp<ϋ¨¨¨ˆjFj‡ΑΐεςθΞ‘όΘ#ΔJ¬Œ%eeeΫ·oΟΞΞ^₯Σιž|ςΙΝ›7Wƒ\wέu~Ώίn·ccΣ ` 4 ΪΣΡξ=J₯’ŸγF(–––Ίέn•J…dj§Σ L‰›©©©}}}θ9λσωΒα°F£immε§οω…^X΅jZ-!Y?F£uΈ0Jz{{ΏύφΫ—_~™Lͺλ­·~υ«_9Nt …B^―IλIII@‚Εbq||ό|°qγΖXγΰΧύλ_?χάs}}}BΆΝ]ˆν:ŠΣ4Δ²cU˜Νζ{ξΉ'VchΘc=ΆiΣ¦ξξn BΨhςLΠ0ΏŽίŠ‹‹£‘‚©όӟώtϋν·£½=ψχ‘G ₯ά5€κB”Je?’¨±–ύΗ ΒΤ€€€μμlΰθXήΠ½PΏ jonn6›Ν.—+–™3gΞW_}ΥΡΡAμ‚mΞN T@‹ΨήIIIχέw_ΤΌR,₯RΉxρb»έŽΊ+”vŽŽŽE‹ΕθšJϋ“’iΚ±ήη /Ό  έn7T=΅Œi%8σ`ΦpŒΎωζ›Σ υή~ϋν₯₯₯«W―ΖVR©TF£±΅΅U«Υj4š~ψα₯—^ͺ――ŸrœIςςΛ/§€€ƒΑ@ 044Dη W§OŸή»wοt|μΫoΏ}φμΩ(Δ'ύύύάΦs‡C,#€ΚΉ\>66φδ“OFpρβΕwέu—Νfa28έnwYY|†`0ψΝ7ίΰ}’*Q.—WUUEΆ˜$j΅zσζΝ4Γ0ŒΧλΓG₯fΔ`0L'εμυΧ__Ίt©Χλ₯=‚a)ΡͺmΚ€!‰άnχΝ7ίR©TH2…ϋ‚ΗΦj΅‰‰‰ΰ^ΏρΖ oQ\.?zτ(Γ0Θ‡C&]θJ₯2ŽŽΪlΆΗ{¬¦¦†'Mƒ˜ΰŒύφΫo1Σϋφνγφ θξξΎζškoj'^ίψΗ@ 022‚½ΏΏŸa˜ŽŽŽ††·ΫέΡΡΡΫΫ ο099ΏU—‘‘qΧ]wY­VΗγσωœNgwwχΨΨšqŽŽφφφ 1 366Φέέ½f͚X©¬\Ή“ \Αοχηεε͟?Ώ’’bŊ%%%ΉΉΉp4γββPO4wξ\τi‰%`Nv€‘€όtt1’색D­V‹b4=γŠΕb_·ΠaRXœaάκππ0mQŽ"\0¬¦€€ ·χŽ;ξ€c΄hΡ’K—.αVaЌ’©¦iΣ¦MϋΏ ¨iξάΉ7n¨««s»έ•••………B‘pΦ¬YΫ·oη ΦΥμΩ³αΨlΆ·ί~Ϋl6/_Ύ7VPP°bΕŠΝ›7οίΏίj΅ΖΗǏŒŒˆΕbDCxφQqq1ΞHΫ戰MΈ4žTγΛd²Θ~ν±dΓ† MMM Γ\Ίt©€€ύ?ϊξ»ο2 γp8ž~ϊιι …nλαp8++ 7Λ>99Ή¨¨¨  ΐl6£ζƒqk΅Zώv(‡„ώ…^V©T3gΞLJJιthg\^^ x€n·›§Zoούχίωε—Χƒ­ 322βγγ±Ή¨o“žžώβ‹/":K@ηh΅Ϊϋξ»Οf³y<쨳gΟ¦Σ^ϋοΏeΌQ‰-p“wί}·ΧλΕύΰ‘!€Žm°!&Ψξυ„P(ΔƒΨA-Z„‘ZT0ΒΠDUΜigŒ…„6‘ηDΐςξζη磚7#ΐo€™8’€ϊ[,Ϊθ9rΨ΄΄4•Jεp8 CEEJŒΠ^[ ιιιV«U§Σεεερ<;v"–ήνζ ]fΤ)οχϋoΊι¦¨£a1δζζ‚G,»έnt°Τj΅©©©ΙΙΙF£Ρh4Rπιˆb°ΠCΦ¬Y“——'`;+€*_ ΰj4Μ*—Α|†‡Z½z5Ο³B222ͺ««ŸώωG}tpp°³³sll ‘ $]]]ιιι{φμ9sζLBBh„UY kΧΝΚΚ’H$ƒ„;©©©ΓΓΓ6›M‘PδεεUVV‡#8A"%!!ζ;¦κ1£xΩγρX,‹Ε266†~ƒP <:δΊλƒ+EKμνv{0t»έ(ͺ¦ƒτz}0τω|<4TŠ‹‹Υj΅N§KHH`X΄ΔΔΔ€€$³Ω 9BˆN§“H$N§sώόωόVTT,]ΊΤn· Β»’hKmU sbhhH«ΥΎχή{“ΉͺE&!D―Χc]ΦΧן:uͺͺͺκΔ‰§N:vμώχμΩ³ΥΥΥ΅΅΅}}} ̏cρΨLνννsηΞνθθ@%“ΙΊΊΊZ[[›››=Ϊέένρx@tŽE››{Ϋm·ρ?ΌΕb‘»ZC&“9Ž­[·_WWΧέwί 1ͺΰq^|ρEΨm ―ƒψύώααaψρPΣo„B!R!yΰd˜„u ”₯η₯S ‡Γ3fΜΰŸ#‡BΆ)=k1¬ΚHf;ΆΝœ93κhX:.99 κˆΖL±%αΒ W0‰Ρ` „ΰ?’­Ζ±Όι3,&ΰyˆΜš5‹ηΩΛΚΚΒα°^―‡žΗdαΆC‘  Βj<τ‹ΕόgΌN§ƒyAΫ’ΐϋξΔΔΘ©)‰`wzzz¬‹ŠŠœN'lpEQύI n Žp ΠΈΟγρπΠά@ώσŸ˜Νζκκj*Š;v477k4ƒΑΠίίžoΏύ6h„‘ 6”••uww[­ΦΖΖFΐ¨™™™¨8ƒN§σ©§žZΏ~ύ”cŠΕbd/ΐΦDC6d+z<žp8μt:N'#t „π0°MB‘Ή€ΥeeeεηηΫl6u%''SΞ?~1›Νb±Ψh4&&&bεΠΪj@Τΐ‡B!kςΛ_ώ’"²BΓ"pE$ E‹“:ΏίίΫΫΫΪΪZ]]d ­V …T0Π˝={φδΙ“]]]’ˆNδ\IMM‰D€Ύ ‰jkkΫΪΪΐΑEΩά܌ξ΄X©^―χΎϋξ›ςmNۘ*O€ΠA“†³ΚΌΎόc–••ιt:!Ϋχ 511όΌͺC‘Ιdšr͚5 ΊƒΪ.ИJ₯ 1τŠ@d_+A0&ΒΤ‘\έAaΙΩe2Ω”Ιp)))‘P7C•,΅„€ήQγ ³–••Ε£˜€κ1lSQۘ‹ϋT•‰D’μμμ¨@ ξ$//oxxΪ6..ŽΆ7έΏ–-[>ψΰƒŽŽŒ (₯Rιυz)k‘ήtΣMβBξ…N§ƒaD'H$Α#G|φŽ;ξΰy™h‹§ΡhL&S\\œΗγΙΘΘ°Ωl‡cοή½7n!7άpΈy©γy &‘ΐ)sDδr9ͺ̐‡ INNŽR©Œ‹‹KII)...)))//‡S+ ΗΖΖψc”μ@o666ώε/)((Έpα‚ΗγΉώϋOž<‰£tρβΕHΕ£φ.Ο_Έp!χž₯R)ˆ¦’““·lΩ200ΠΠΠ€ζ`Θ“ƒQ5wξά¨£aaΓ`BcZfAOeθβ0ΫΕŠΫj΅"|υ¨»φΪka6!S'W° ‘ „B!š‰i4šXχI"‘ίroƒš‘xvψ‘Μ¬΄΄/ΑιtZ­V° ύŒ&4N§n3φfTκЌŒ †νάΚ΅ηθ½qοΛ–%Ω™™™ ‡P«ΥbZ‘θύ@D@\Ψθ<φ5!»)žHό’ψ:œFjί qφ€n\‘αZΔpa"ΰυβ<…© §+ ‚›₯~<ΟNΙΞΞFŸI“Ι”œœœ››;kΦ,·ΫέΤΤΤΪڊˆ!vΠτ!λ―ΏmBˆ0 !€Αα*‰&&&ΐTKδrΉN§ƒλŽ“B.—S§Β`0`š(wΑψψ8 ΡΦΫ“Υ„‹εGHS«Υιιι/^Dξ]ZZZrr22€15SΎLBˆΕbΑ³ †¬¬¬ΤΤT‹Ε―ΡhΜf3Ψώ΅Zm^^^rr2Γ0μΨ(όcBp'—/_nmm…ΦΰbXθ …’»».aœ››‹CEΔiTO8½hάGΔ¦!ξΓ³F Aa³Ωh7=ππή, ψβ₯R©Νf㙦œœ/]0TΦ4Εύγτ ‡ΓAcακ ‘‘ΙdiiiΘAσζΝCw d-Ζ…B!aο΅΅΅‚E©‡ύ+Ώ IDATΧλΕ €NbUiii&“I π„ρN§σx§ΎŒ `Z&“I‘PŒO'G„‚ „=wi€ΣŸ1Μ¦ΓσŸšpΚέnχΜ™3Ώώϊk‘H„˜ζp·Ή822‚Ύs@ 776_Τ1dΑΉωζ›7lΨ`±XξΊλW^yeϋφνP#§NZ·nέΛ/Ώl΅Zq(B€ΈΔΊU$λΐ\pΉ\wέu—Ρh\fŠΗ<99Ή²²rttε)θšu4,Ή… 0Ω$C-ςΐbσω|Τ?Œ΄naλγ΅ΓΠ‰+' ₯ ΆNDfY]"£ΊBNF,φΰΨDŽFοέ6U*ՁώώχΏγ|ΚHmqoρρρ>ϊ( ΅Z-i1'''C“ΫνvδVΒΦαΈ©WƒζσωΠ .Φ³ΗΗΗSύ†9ΕίβήΈ΅) „„/‡ίŠ5υΈF­Vgggƒ€210Λ(;Z»vν{ο½ΧΥΥ…j€¨ iff¦P(9JhΕb1lD¨©TͺP(¨©P(°Φh4(Ê*΄ e ¨©©AεΝf‹ΕHινν½λ»$IZZšR©Œμ)EEEƒαu€Έ\.ŸΟχΔOΜ™3'--Νλυž={Ά­­ κΕγρ`b Œ4˜B€ƒϊύώ±±1€ΑaϊFFF·Γ§ε™z t………¨Ί€Ι…H&švœΘS‚v:>>##c||œ‚@ΤcΨ*'‡Γ­5ε ₯₯₯α§OŸ> ˜—\έW ε.—λ‰'žΐ{δΩBTP¦OkΛγρ ‹)δX@ΘξβΟ<€δδδX­V­VϋΖo|ύχ‹…ΦΞΰά³Z­ΞΟΟ?~όΈZ­ΰ±νΰ! κl1œžε0fΐJ ΄-R€@ƒˆΕb»έŽΎ₯a6χ™Β4,ΥΤΤγ›ΒsŸ`±‚ΡbΌ0›Φy1ώπ ,τρ lkkƒ‡ …~ϋίƒοcbbβϊλ―5  hψΚ3 R© …B@Χ\.ϊΦvjπΆρΌ'Nœ€cŠ]kLψE˜h£ΡΘ…XΈΒ}Οh¨ΚsŸ„Μ Γ0 ΗpBoτϊ[!x6;!ΛЎ;N:.$h€ƒ`j€‚8ΞΑΑΑ€€$π?EIξ°ƒΑ`CCXΦ¬Y# ‡††œN§P(œ?ΎΟη;tθPzz:ςHl˜–‚¬ Ήd2Ωΐΐ@VV»»»«ͺͺκ1€€εFͺeδh˜ίωση£ΆŽp–z€ΠoE"ςλcΥ%"af%έ›\EξάΉ“'O"‚'£#++‹z­‘@PeΧΖWR©rΉΌ₯₯₯₯₯Ρ^@hΨ@°@²}ϋvΔβββ5G”ί!Ά•——g2™πAJ>½Czcˆ•‹Ε’’’‚ŒϊμXπ‘PH©Tώ$l”ΎŸεΪ…ϊBμ˜+α {S£Ρ”––ž;wlΜγγγ.— ˆ˜mή­Σι<ΨέݝžžŽ˜lΤ8²¬!>Ÿ–Πzz@ fO¬αΑύγId …uuu2™L―Χ———·ΆΆ^Έpaχξέ»vνBοςΊΊΊξξξΤΤTt ΘΞΞh(--…_A)((γΓ0'OžόςΛ/―\Ή‹3 ΑΔΩΔ£λ„B!ΌΑΜΜLP¨ ¨T*ŸΟηρxpŽ#" Ψ%&&"‚ ψ‡ξR*•4~{F ”ΆΟηS©TǏˆ‹‹ό>¬@΅Z ϊz•JEΣZ°+q²ΰb†a°’ω %N)ŠO>ω„k„„8‚”AΤΆbΏOς`―z "‘¨««ΛησsyζΜ™™™™ωωωH³+///((ΘΘΘ€SH±ΫνW\ιλλγ±ΎM&=€ρκλλλΕbρ™3g~h||lgάέΘSsJO·Ϋ½dΙΔq(P‰mIέ·’w8ΟΫ$„ΐWKLL|ώωηK0lΖ.UyJ₯rddδΰΑƒΈπď[d€‡Ίtι²JZ,–„„³Ω¬ΥjεrΉΑ`™ͺ€νμΛ3lii)ή՞={ήxγ ΨXψ ; !¬§mΫΆAyρ€5 l711Γˎ:ξτΕ"Φ€tFΨd<ΰ r}„B‘Ϋν<=ŠΈ°~’¦¦fxxY#ϊ¨΅΅Υ`0ΰ η^t'!! ‰ 2 ;\μυzμa¨ΑΑA»δ¬ …’···――ohhhΦ¬YΧ^{-ΆκΘΘΘΌyσ,X044€ΧλΗΖΖ~ϊ駨n W&&&†‡‡ϋϊϊhΦh4999b±βΘή‰‹‹C¨¨s(βwbq„ΕΗΗ{<$VΑ €jυω|\˜Ζαp$%%‘S_δ*‚`ή†ωξ»οχ»;ΌΠΣομμ‘θTxž]£Ρx½^½^___β3[k%‹αΗ"pDωφΫo“’’`cΔ›λ­¦¦†ζΠM*d ±Q’Χ(ςΌjŸ Υ„\.ώϋο !sηΞ-..ΞΞΞΞΞΞΞΛΛΛΛΛΛΚΚ*--3gͺ;::’““ύ~?Oν ¬cŠ%ΤΧΧ#Νξζ›oBMF]]][[[___||ΌZ­ΖΙΗ³ž ΐ]^^ŽX ΓΆp₯€ΏR©tΉ\pξt0UΌsηΞ!”‰c‰žs@μЁ”"‘HψC]4AΑοχŸ9sυπτz½ΡhďόμΩ³8]ΘTΙΏ€gρo8g ‡L€ŠBȎ;°ίxB3 @-€œN'"W‡2 CΣ8FGGQΟγΜα0Κ’Kœ B6ΝΗζμ€0\ba0ŒFFF‚lWuΤ‚ΓΝ=?ΖΗΗ•J%ͺχy°+Ό±XάΤΤD7‘ˆ­‰#lE•L&»xρ"δΑ€Ξz<Τω{½^‹ΕN< oήΌααaά*²f'­|xwpαNž<Ωb2™b©θd˜ςrp 8r„γχχχΣςΥX[ UMΩΩΩ:©© xΦ•N§ƒYƒπ~:„Z"™L5@Α%£NMMΕF6† I#“Τνv#«„'CfήΌy%%%B‘pϞ=ΉΉΉsηΞ΅X,eee`ΝP©T»vν:wξν‘7e'p)&&&@έ'f›y`k£ž^_¬Cβ!Ϋ€ρqΐJA-ΊS1Α2Ž:¦V«ΕΆΆΆŽ%„( tZŸ?r ΑΪΨ’’’’R©ψυgff&JΡ_yεκ· X¦0±XŒZC(νέ»wBΒα0§,²ύ¨H8–4'}@‰D‚χ‰s„/{ύυΧgffφυυ%%%ΎΟοχ{½^$}£,/πfJJJŠŠŠξΎϋξX7JΉ ƒΙdλυ>Ÿo`` ³³sήΌyqqq`»ŽΟΝΝνλλC’=!„§†…B0³:Dσ )n‰³M­VŒŒ˜L&˜σπ~bYQQŸDhˆ r1œΑP „δ„Ιd2ž6hxΜ‚h˜u˜ ¨β³H$, /Ογ£ή›/9ΥFβ'΅$ ϘƒΑεr©Υκζζf€ΊΨ‡PU†­άΥΥΥΤΤd2™θέF¬3hv|B‘#§B…š‘4€ΛX„—3888>>Ž­ˆH‡ˆ₯ž§„P(tΉ\J₯²»»:N.—σ0 tuu!3¬«« O₯)b΄ρ†5 ²^PπKί.))q8θ3*3…BA/luHέέέSβσ˜h\†Dr5φIXΔN 8TσMY?§ΐSγš‰TP1JWOΈ0$L1Τ3βά₯Œ?ˆpQ Α‚ΔzΤm•ΛεέέέwάqΗ²eΛͺ««W\Y__βΔ‰?ώρV«uλΦ­ €‚Η‰ΊJA$$```ΰ±Η+--Ekπ‚‚‚΅kΧ>όπΓƒƒƒ\¬T­VGn%Ό$–P †DXΐΜΥB?…BQλfΔbρΐΐ6Nmm­„ε΅ŠΌ $ό―B‘ˆ•’n4) ΘυpGζ‚4#ͺ΅„ooΊι&±rΉύ£¨›M?ό Υ ===4ڙې˜˜θrΉfϞ½eΛ–ϋοΏΏΏΏŸϋλ\£ΞϊXlΫΆ­΅΅υ½χή‹ΕΣK«LP“@'Ύ’ζ8@υΡ_,'ΦLaa‘έn¬ίΔΏ„Ν9A5€D"έξ$κ+…ωŽΌΣ§Oggg£ΚŠnp\‡αΦ*•ΚK—.τττ€D©TΪΫΫ+z{{GFFΎύφ۝;w’M*ΖΤjυ²eΛn»νΆφφφάάάk―½vJΓN*•Ž›ΝζO>ω€πδψψ8Τ-@²Λ—/766¦ε)WGκjΪ|>9P•’ššŠΜT€B‘)ϋˆ‘Ε:β±ARRRpΖI₯R@*π‚†††|>\M(τ"g†§r™*‡¦¦¦P(—†›‡bSLΣιΣ§Νf3j₯c ˜™™ΩΣΣC50ΌD.‚Λ‚Α ŒTΔΩ"Ο£« ;“Ι„Θΰΐΐ€P(¬ͺͺjnnnhhΈtι… .^Όxωςε+W΄΅΅΅··Λd²ΊΊΊψψx4₯ˆu£rΉqρcǎ΅΅΅Ν;7!!all¬½½ύ‡~¨ͺͺ‚Ϋ‘ŸŸ@X»„Η’όΨήή~Γ 7μίΏ_&“αmR?ΙΪ(&κμμ\Όx1Π2ΓΌΌ\,+ŠS§NB -Ψ¦‚"Xr.\ΐΟƒ„QJ$˜Dά―œκ3θ;Τ6γ[~ 077—aμ^.‘†rq-ŒŽŽŠΕbžœE˜‰ x…Λυπ ΪωΒ… HkzT‘πΓIށ'„€ΎfY¬΅”““γΐj΅vww£c $ήΡυC1-tΑ[ε'ˆY9HŸžϊxΐ“αpΨλυΒΚ‰΅αqTŒŒŒ`ƒˆΕbδ&Σ’jΒ²ͺΒ2‹Ε`iΒγNJΖβΧ‘ιοt:ip“&!ΠθŒ@ @\| όlDHΥιt---ΥΥΥH¦žt ’’Ξ=‹>­„Εω’ ¦/33³³³sλΦ­(Ÿ‡αθNΘI‡EΝJAAψAxB±x] θ/~λ­·ώλ_zν΅ΧJKK-Z$—Λ,XPYYyί}χύ_ήή<Ό­κjέ­y²d[Άd[žη8ƒc'$$„@“ „9 -Cω> ”ΆΟό˜ ΄…BΛZ(€e*₯@ RΒ—„ H;Žηy’l Φ,Λ–tξο=»'ŽΣϋά{χ<Δ–ΞΩgο΅ΧzΧ»ή…Ί‡™™ΊžΉΉΉ4)b+ZΖΗΗΟ;οΌ[o½υ–[nωαΈrεJœ‚4œΓS·'ά£Υ«WΣh;9ΰb`tΐυ™›› …B©ΐUqq1ςψ ‹Ε’  •™H544€ΟΒΒΒ8Ϋ֏ϊv©[«‹aau’9­λ­·>ϊ裄₯R©Υj»»»!)BΨ–Π6 Η#‘œο#GŽθυz©T *U5m6ΨZ===^―7¦ΎGn.3CCC]]]θE›φV©;εχϋa@πκι>ˆˆG’ κάΡh4­i …@ͺςσσΫΪΪ@P©Tΐ# »6π1<ΒιΣ§QzI)}IΧψ„xrZΒd€“Ύ8‘Pˆ-KΕƒΨ©Υj‹ΕdD(.^ΌΨf³}ωε—hgŒ+ }άέέ 5ςΥ$°—•JeWW—Οη3πν$ π „Ν …‚ Ώ£ίC¦ Bχ.‘H BŽφ± …B VƒU7N`Ά₯Ϊ.ξ1ΰΜ™3˜X!§Λ%’M@9θΘήގz~Ώ΄4¬ήββbZζEΑ ‰D‚φ0°ίς8΅………˜O.έ“nΤT €ad&Οz)άΜΜΜΈ\.Ηγv»Εbq__ίΔΔΔδδ€Γαp:8PGFFzzzΎωζ™LΦΣΣƒζc4;™:ΐ8V©T'ƒ¨WTTd³Ωτz½J₯Bλ!θΌ…Ο4Σ5Q!ΥΧΧ'rrr[KΜjΞΙd2ŸΟ‡~‘pi£Ρ(Ο!GΛ§x<Σι Ρ3>b' 1θ qX,vα…ΪlΆgžyfΧ]b±ψ…^ΠλυΠ£'lξžd¨Ÿ±MΨNΦC*•NOO;—Λεp8&''aύqtžSΝΓj€”)`λ.S£ξβzb±8΄³ΩlξΒάb&ΙΩΝUΚz½ή;οΌ“FGΪ”1΅™©χΙpΠ_'sα±T/„R[[‹άώ)‘Hα[6Ζμ …B¬^ΓCCCpμΌ^οππp »ͺΥjAκ y(zη„S'2“@ €άzΊ€}vJ r»έά@qV{‘~‹ωδΏ•Jennn"‘Ό … ½!‰ΰήA©ςƒaddΔn·K₯RFƒΌdιΣΑΤΐo ώaΧ6‘ΰΜΜLNN@S”e€N§στιΣ‘HD§Σ —””€»©Υj§§§;;;Ρ₯T©T~ωε—18 … €„¬²Υμμluu5ΞAJΙφY“Ϋίί?11a6›Η\PYYYWWΧΠΠΠΤΤ΄tιE‹566–——C²€ΉΉyhhΘγρΜΜΜtwwgΊQjΕ΄Z­Σι”J₯G§ΣUVVVTT455AfyΙH$‚ΚΔΙ1σσσεεεˆΟνM°•#½Q›}βΔ‰ιιi8m™ϊύ‡ιλ―Ώnnnζή9ά@=Ά‰Fσ€ΓΓΓτqRΡ5 ™L622‚ρ+³•J…CnέΊuΰoΡ+3lm£ΫνF“ˆϋg"φ0ΙLΜΦ&e(β¬–=Μ7&œ‡˜OOώ€eΉ1=?°%Δb1ŠαI†“ƒ’T*C‘Pnn. γβρ8.,H\dNΑπΘ "H …£££Π) ήRœ#„c~~ήn·cB2yŠΘΧBPΔ±:Β’τΑWQN4¦‹V€ˆϋˆD"Η3::ŠΔ7©Mγœaηζζψ3Ό&“ /τΜ™3`>₯Β6 Ά=m /’ ϏΫν6›Νθ‘ΕvΠ’IXBˆR©œ››ΐΡ•φQpW₯RMOOΆΣΤϋοΏΞ;οΤΧΧC[‘ΎΎώWΏϊΥϋ￝Εp8L‘Έ΄‰4Ό¦a͞€ IY€x|κίΰeeςιkjj°πθ;₯8ai4Ι’`)ω„έ©u¬ oΡάeMM >Δΰ.'$΅ !}}}X„™|zΠlΐW!g'τρ˜”α@AMŠd§ώqΌΑ#„X­Vˆ\ˆΩž³B–ΟGRVVΦέέ=77ΰ %9v`ρ†ΓapΉ₯uI–[‰pdΟSυZι€ςMcΣΡ¬+HΟ Γ@λ„šΈPi#ϊ:€Λε²pΣ‹T@$Ιb›RˆΕβήή^(˜Dδ:νp>(_–Kτ€p ~‚’r4ΰΚΔUΕEΪΪΪΠ¬ΌΌΌΌΈΈx~~ώͺ«2 8±X,---hE344„Ζρ™†yy$7- - ‹Ε¨'ΐλCJΑιtΐγq˜‰D €―‚&ΦŽud~C‘ 5υaCš;_©:t<wΉ\p^±2!!•JΓα°ΫνΞΟΟ†ΰ b 'aΒ›šš|>d₯gχ\ …B+W$μVβAΑ&”H$CCC„ΰΠΤΞ6β‚Onn.ˆ•YYY|'ςσσεΗγρmΫΆAS΄¬¬,??Ώ¨¨[=;Ήζ¨ŽΙd²ΒΒΒLicj2].1ρxάλυΊέnΈ·°&ΐί}χ]Τρ πcŠ‹‹σςς‚Α ΰM$^Tΐ  †©©)›Νvα…βL:pΰ@¦kbω …ΒΆΆΆΛ/Ώœpͺύι ά΄iΣ—_~Iλ_2]“:ΡcccV@˜ϋ’'"‘Hh;Wώ½„Ο£ρpiΑΩC*•:XαΎΎ>hfΊ ˆ-T‚Š2"EΒVχP(Ρ'”H…ώ\κH°%mmm\(ÊρΠθ“b±XΜ9C§"ν€r Ω8{(Jιqτ‘†Ÿ—)=AΛQ'''γlΫ7†%Ή'Xv96’\.G„Ηπς5ηζζΰ…˜L&€„B!Šΰθq$“066FAf6b‡γG*•ŽŽŽŽŽŽ’#υ‹<α0˜˜˜θθθ@ΤΛ―V@%ρΠo†°†ƒ αΠ§’Vό{3———ΐbŠD’$[F`I€ΆH2ψτ8ω8N‡# ½Υ !?ωΙOΊκͺp8ŒV‘ V{<κA¦½,pqobB©[>D&[Ÿ““CΉ™ζ‡ϋtΐ¦φ±’°3_PP²fΪk(((θκκΒιžι5 ΑΙΆΫνΨέδl"bκp8CNOO§}v­VλrΉh5ίW\.?‘T*].—ΟηΓ‘› ύ~? ΗpΊ‹ΕβΒΒΒ%K–d‚Ύ£BŸRAΒ6W¦s§Ϊ³gΟ}g™_ΌΩlnll … HΣZhΌ ΐ‰Δ`0ŒŽŽ>|X,£«q¦kR΄`~~~εΚ•Α`0-KρΣΆmš[ IDATΫo^#NS6.—+Ήh…CΒ TΛ|Κ4šΨνφΊΊ:rvόŠ%E8Τ™άάάE&aηηη#‘00κ³RΤA-ώ)fΔe’ό%,·†ΪΪΚM]ѧ枚6› ŽHΪΣe7(8₯t4€RZ£ωYψRH‘f:!D)“Ιμv; Γ)]°Εƒ€Ύυz=θ‚ΜΥ»8frrr&&&N:EqJ>n΄?‡"υ›3ΝgVVνvϋδδ$„»l‡|Ή˜ααahˆπ«d± ζ'''©Nl’‡-bυ0ιλζΏOΗƒ2)·Ϋ Πtff&‰   ‹Ξξ‡*--³νq’%τ.^Ό‘ΊΑ`ψ―ϊ―Όώϊλ;vμΌςΚ+KKKΑL$€XhIMΐΓΒ>ŽγPOλΡr#BH,Kλ0ΥΥΥΑρ6`M€‚ΰψVWW'ύΦl6DDνͺJXT•.TπQ~˜ϊ H$’. XԟγZ@Τ …r›Ψώi“ ‘P)€ΓςςrΌ<]4ENΗ³D"±Ϋν+V¬hnnFξR œ:u y:Έ₯-”žϊμ„υΆγ¬Ϊf#“;‚βY@ΰυz!‘ŠΜθt𱡱„P\ΖHi"BH,›žž 4 !•‰ΊόΆ(+++;;ϋδΙ“πuΔbq*PMmx<W(K—.]½zuSSΣyηχӟώ݌θ„Pο–ξeža0μ!‹₯V«­Vkuu΅H$:pΰΐΠΠάύρρρΩΩΩΒΒB·Ϋ½`*u ~Ώ~~eπ™λυϊύ~ΫίΞ"N#ΤΤ!fU !δVπž"lΦ<Ξ}ƒ©T@F™L†4Wee%ΐ dθ|ά;hM€q”Δ$  kn·;//χœ`K€ayθA/“Ιl6Ϋψψ8₯εdzv†aŠŠŠ(½a…¬F―€₯Ih4š.xŠI(ΰΏοψ§P(„°ώύϋχσΝ7ί|σΝ‘#G>|ψπα#GŽ:tθψργκΰΐ± … €η ƒΣι¬­­₯½§ΈQ~Ϊ#1žˆΥΖηι`8~?r7Z€ηw”••ΐŸfJ²ι‰Iφx<žšε4›Ν(hmm<Ο%™qΑZΒiΣΣΣo8횯ͺͺΒΜx½ή.ΔKψΧ’PξV«S9‘‘κ2@έ5΄'L>θν(r‚‹PΔb± @ ©Ι$ž Π,€θ¦βΎτβlχŠώ€xπ(-‡΄–ˆm’ΘΥ‘‘ntpδ§=‘($—Λm6o:Ξj΅&؎υ@=…B!ΐπ_ρh0P©V”Xp­:::ΎύφΫΦΦΦƒ>χάsPηœg±κΟRMIWN$z½Ύ§§gll¬³³Ξλδδδΐΐΐε—_ήά܌.—8@³³³l!(‘H²²²œNgaaaIIΙΤΤήW<χϋύ0nΐM&Ά'? e>”g±ύ-‘‡U(Θ(B€+ΡΨŽNڊ`₯Rισωτz=ΚAΠ>^.—ƒT έA8d8;€D=νΚ‡ž¨T*3±2ςΘκ©…ΕΊΝΚΚκοοΗͺγ§Ό3 eD,„( ©$ΐΙ"‘(ΠBlž bNOOΧΦΦvwwΣ3p$±XŒM„‚€Αά‹ˆΉ—¨¨hkkK$SSSSlE’€U₯ŠΕb555 …’――///opp0SVŽήΚΨΨ$Ρ)jcυάaΐx₯p Γtόψρͺͺͺρρρώώώ§Ÿ~Ϊb±ΔΨ x=@ώƒΑ ͺ£ !Θ&πy€ΡΩήήNAάI§…;Ex‘ χ€DΒγ0A\T @D/5 ΐ[„Ό "l€η2]“βp8k(--‰Dτ―˜³ΣψgCC;žϋ‡‹ΥΔxέΤρ’R`.— ϊ΄YJκ@kTό²eΛΈζ†ή›ˆm‘‹œ2α𠓆R©„!Πh4.—Λb±ΐIY-r4±FΒZP'F8AΪϋ Η»ΊΊPnLXo&vv«άp8œ——χξ»οβR<%œ@©Tž>}€X,6™LΘέΣύ)dS‚722R^^ξχϋ3Ω;ZΥΫΫ ₯~!;πz£|f%5vJ ΓP Wf\ΐIFγΕιυz»έNΨώ+™.HνC{{ϋάάΊtœ “Iέ/Bxά” ™zAΫfΚXtΪρΰ2™lvvͺu +Z!a… e2Y&X―ΧcƒAxT4%œ€$άG N§³ͺͺ*‰Ύ©© ύ―χξέ{πΰΑ7ήxcjjŠ«\HΣ(ψs˜;ŸΟχӟώ΄··0LΫάωΩΩYΏίŸ——Η°4Κ$œ'½J₯κιι°Pnκ}β”’H$'Nœ ―LΐιDΙuλι+—< ¦­ ΅Z­x; Λχ’nΝ£ 8Π€ΐo‘‚‘*3Ι0 π™™™ΒΒBŸΟǚk”`?αS&XIjΗß>K$π?ΐFΪ(#=μΰ&:Ž™™`li― /A§Σ‘B‚:¬αp877ž.ˆΛP@3›Ν@ΐn·cγ§^’±Xہ@ib&]Z?”ΙdΣΣΣθŽΓοΧ_Ώ~Ρ’Eγγγ4ˆΒ‘Ι0ΜάάάζΝ›QR€mx,žΐ|>τz`–‘+H°έδ¨Όbee%* x^Ιdh40ΐž1„•J%`‹P’‘P(@μν$S’O.—£ͺ uΚ•c±ΨΜΜ B;|JkΓαπΪ΅k;vΫm·) ³ΩŒΎP©B"R©4//―΄΄€Υ$› κHaa‘B‘p»έΩΩΩ<ΩHμqΐdηŸ>ΠP&Eέh±¬i²5 g±XΞ?|†ά~ϋνΕΕΕT(„9»>?‘HD"tρs8Λ—/onn>qβDZ.•ν&l«%.„Ξυo’Ρh^^ΆŠD"aΥp8,`‰Δψψψ‚ά¨"}œvΰT£žψ‹ S‚3iffPm¦kΚd2xœmmm”@_ sv»‘h4ŠΥ:Ο³@BΩh4nέΊBΥ8όR@NXooοόc¬ΧLΔφƒ—F‹<ΈΠˆU{ςx$ƒΞ z”§ΑtεzK4±€›œE]—0ƒjRqqρΰΰ !D₯RQA5¨yQ[‡s_ …°ƒζΩώ+©h%n­VϋόC§ΣsO5˜&8Ω°Ί»»/^μρx2e»  ŸŽj!ΛSΔy*++±;Έz.άŸξD«ΥφφφRrm°αυzq’’bbb‚–@&]₯ 8ΰ‘JJ°\iHX]L±X,—Λgff ͺ•ΦΚΡ!“ΙœN'υ&‘-++£8‹\.§a›ΡhD–6ΣΥ0H‰Ηγ΅΅΅‡"gψ/]₯ΘΝΞΞz<ž‚‚ΜBmΒVώΒΣU(pψΰ"Γ&‘H΄Z-ύi3‡MMMΐ;ύ~?-ŒJψOΐ‰DQQΡ·ί~«V« ΓΚ•+wοޝφV½^/ΰήΓ‡ΏπΒ p.±JΉ―…ΙΉΉΉiΜ/Bθ’’₯RyςδΙ’’$[ΕbρΘȈ€Υ.­­››λννO‰{hͺ§‹Εή{ο=†aPΛ‰Πa:ŠG’Ρ¨Λεϊμ³Ο°μπ™L™)‰D …P“8:: ’c’§Hmh0Hi¦‡'„ θ†αd$ˆ N?aFΓC8K°ΝO|πΑΙΙIB8z±1›°2„ΘmσTΝPππαΓrΉΊ‹–»F8Φ³wθΠ!Β.8žgΗ!|ƒγ%IΧr„;¨ˆ!Δj΅ΒΑG€“Œ/Ε–S*• hσL&Œ ”[ZZ`ψπ1-Xϊΰ‘c),]ڝI=έωωy›ΝΖΣι$iάuΧ]>#ΥδaΩCτnff¦§§²)τΦρEΪ—$›ΗzΒ !( tž7‘='Β`€ΚeλLσ πftte࠘p£CόT*Υj΅^―—6-]p–¨ƒ‘zήtŸŠΐιx(lΐΧόξ»ο!3+`ΔτcΈ1(@Η8-w ίEΟZœπΌ G™4†a R/—Λύ~?H“i};ΊυφμΩc0ͺͺͺΔlM%ύa`hΛφΈI!Όωζ›νv;€n`@χώΔοχƒΝƒl¬H$BηzM|r~~“ ΏΏ•a\ξ<.‰DŠŠŠp(ρI ¬BqΦΦf4© …εhrΑυD"ασωŽ9‚’υxΊŸ‰dbbΘ4…U$s!@jBKKKηζζόco’‘7¨s»έΘwtt,^ΌKaW€'gΫ‹[έΉsηΚ•+!χŸϊ섐@ ‰\.|,dΊφ“Γίbzρ8‘HΔιtfZHB‘ΩlFL>==νrΉrsscμ „Π‚wxNB‘pllΜ`0!KΊ¦έn_Ώ~=dMAGi7iˆM ta˜`0h±XP4Ν“<…D‰hB–RL8AέένννΨ™F―‰Œ š±Γ•αž’Žšν‹E­VσD\„΄§S*•CCCHΆ¦u~ύλ_K$’C‡]vΩe0ϋΑ`Αv%BDdω,‹ΟηΫ΄i =ž[ΕΎ‡Γ/½τDBB‘ςH;D"Žυ»οΎϋξ»οNϋD›8Yμv{YYYRΚτίοΜιtΊέn΅Zνv»§§§Οε. !²£RI~6zˆΑ5¦ώMOΐg*//D}¦/ΕRγJώRC¦—”g‚Ζ‹Mψ›ίόfΑ'lz™ο[ CΩΈq#˜4B“¬Μt¬~8Ÿ‰±MIq9ΧƒΛΒ,O+j°αΟΑN!ϊ‘J₯Ψ88qMH4αΫi₯Kځ­"‹Ÿzκ©{ξΉbΉ Žή,¦L&{β‰'λ§½fSSHuTWφώD$ιυϊκκκTO„Έ999j΅zžΣηžbW¨΅DΡ Ό|žt$υZΰΙdΈ>Ξf Ϋ μ1Ώίo6›»»»AόηA?~όΖo=°Ϊη;Ռ¨Υκ©©)΄š%„¬^½2ό!Λw†w‚—E‘ΙdΐNž‰@_F(.[ΆΜ`0<ςΘ#·έvɐρΐ„ΐ£(//Ηu°΅ΑξE,Π± JƒΌ  2-νζρV1NK½LΟ.€Ψρ Ψ:<ΧΤΤŠϋ[(p£Ρ(žŸ²λ¨F=9ΝΝΝ½ώϋύί­T*ϋϋϋΣήΑξέ»όqΜΪ}χέ·eΛ†aΤj΅N§z‘P(‰Dφξέ»kΧηž{.''‡'mŠAO,žΩ€s @›‚B‘ύˆ­'™o†-t@R,‹αHΰ©pZΊt)6όή½{ωΏcxxΨf³ŽŽς|Ζj΅Βd–‰ΒM„ψ<Θ"fΔΕΐbby½^„°θ«‹ώ0™ιrΉΐ>™››{ΰxΰBL/τ/Έ‰D”JeZ«TQQAΨTΞB ςσ₯R NΔJR?ςr'OžάΎ}ϋττ4β!Ї‚2 gΜ!„ ΙHKD“ΰ(~]sΝ5N§"y8ΥΰoΑΓ]=ψΰƒF£q||œdΙ xγ΅Χ^{ν΅Χ|φH$BαœLU{€y #3<<\YY‰“ 'hoooMM βc£μρxΠ’:ˆO:‰€εΓj%¬C l:NτX,‰D¨Σ`[€€xžIπΠ‘CΧ_}8)++M“Ί€a‘°= ;::ό~Ώ\.ίΏΥ¬V+^2’W\q…N§ƒ–`KdR(X“T.$©bι Γ€2ό΄1‘#Gͺͺͺ\.W(Ϊ±cǎ;P ‡΄-ΈΖ: Δ%5ήF‹*B]ccc333™Ψtΐr"ΪQ«ΥΕΕΕ\ΗnzzΠ…ΫνFeή#eΒeh΄Υησ΅ΆΆ†Γa›  ˆy-_Ύό™gž1¨ͺFΞt~~4#{μ±––d«Ω& ͺ’J㠐ηΐ“£₯ϊ¨}Ζϊ 188ˆ6K©ΎΘ‘C‡ξΉη“Ι488h·Ϋ(—Fΐα2,…I(ϊ|Ύώώ~ΤΏόςΛL?33£Χλ‘ΑΜ΄‹©šŸŸ_RRrϊτιLWΓπx<₯₯₯ϊΧΏ!₯₯₯333±³ϋ£$Ψͺ΄ ”H$΅΅΅“…²1όΏ½:Β²#x2h!ˆ³€KIϊ/αDžN§“bRtόΫwΉζškL&“Α`hll„ώV&Ώ’ϋσ5kΦ€+“ιF[[[Ώψβ‹ϊϊz±X ;²ΰΓOMM΅΅΅ρ vZ­Ι&ξς$&xΠ5)Ϋv θιΓπωPάL;zτ(’τ―2έ*}1n·Ϋεr;vŒηY&&&(I‚§XŒ°˜ΟημλλΛτ±ΩΩٜœ.™"+iΛ#ͺ««QP†c,ν8rδ}Ή¦7-\$‘ !ξ°X,‘PH.—Σ[0Ɉ`ιH©TͺT*·lΩςρΗ'}μπαΓO>ω$ϊρρρW_}•ηš333ΝΝΝθ)œ: n4νvϋΔΔ„D"1™LMMMψ­έnΗΉ ½§§Η`0 μΩ³η‰'žΛD-5™LPNαw•Έ£··Χb±€v εœ`Εx0H:Ό^―ΡhLU\£ŽΘΉνM₯R©ΣιE€ύFΉ\Žc’’‰Εœ: ζt:Σϊ7 ŠJ₯›nΊiϋφν9„B!ό![‡Aq8A₯R)Ξƒ€«­Y³Zpχ!.zξτβh4Ίzυjξ ”J₯hΞ† 9βPΘo›ϋ+BˆΗγ©――OΚβ r…Ÿ"‘O*: bσωηŸ'ύόΛ/Ώόαxν΅Χ’6V©T^~ωε»vν±Ν»ΉGΓJfJ₯R΄¬EyS{{;*ιΘΝΝ5 F§Σ8qβ–[nΤ%žΫ­˜Baa!ΔAΠh•Vp'ΑΑA΅Z­R©jjj^zι₯kΉfΑίΌy3ͺMΣ2OτΊ\ΦΦV`]ΰ…ξI,3.— ¨Ξ­V s·~ύϊO?ύ4Υ±S ϋ]«Υ.]Ίtddή3ΒX6ΐo(¬ΙΝΝΕ¬:ΔNΐ/^θο ‡†ΦV«υε—_V*•_ύ5 ©F φ―Α`ψδ“OξΏ~½^ΟSx§ΧλA’Πh4~Ώξ»οnnn^³f Ό:΅Z œυ³Ο>;|ψπ_|A)..‹Ε999i9 ”@3!D.—/]ΊΤb±™Νf›ΝΟ’Ώ8€Μζεε’βŸ":σΠ’Gnn.VzΈs‘5ξΐΞR*•©BΚvμϊϋϋωΛ_"˜#g{o<γβ‹/ž˜˜p»έwάqǟώτ§Τ|ώωη\[ΐ΄P;ΥΨΨΘ₯‡NΛΘI [XΠΣΣγrΉx ξ[o½ΗρΚ<;αϋσŸlll|ϋν·3}μΩgŸ}φΩgι?yβH:¨ΐ3ΆoίΎ}ϋvό??\‡e± ?ύ·Ώύ-CΌ#mp€³$οέ»W£Ρπ !½½½T Ζ 5 4?EΨ”%ΚHΣ^κχΏ}cc£N§ƒ¦(Ο—!b;MOOŽŽBη)υcύύύ;vμ ‚"ŽΊ,w0¬Š!!δ­·ήκοοΟ„;πJ !χίΏΡhDvΆθ©@ @˜`0θt:α <όσSSS™ŽXxόΘΔψ‘wKš™™I:/“ΖΆmΫZZZ(mGI IDATΠω\ΖM7έ΄zυκ}ϋφeϊ€Οη x(ώτD‚ΥFnooολλCœš4FFFp(ςˆP¦αpΈΏΏνͺRϋΟώEϊxSό³DΗγ?n0ή{ο½€ŸςΙ'gΩ²e0 @»ΉΕ ψ§€-M ¦9Α;wBN:•ΥμάΉ…Gτ't2ΉnI©yζ™gήύ΄8_ooοώύϋi‚…ζΛθέ’³sϊύώœœœ΄©―Ύϊκ«―Ύ"„h΅Ϊ«―ΎšZ’΄η"~277χχΏέεrνΫ·ZIγ™gžωτΣO₯Rιή½{χξέϋώϋοsρΌ€½Ι0 X\„›oΎ™’₯Žφφφ{ο½Χh4Ύϋξ»d‘υ‰ΐψΓ?D·›΄ρφΨΨΨΨΨΘυB‘π£>Wβ>ψ T`ΑΝπω|»wiKΠΊ»»ΑGϊβ‹/κκκΠZ€$d)+Ÿβp8’Ρθθθ(6ωύο?33ση?™°ύN~ †ξ•W^ ‡Γ/Ώό2Ο !SSSΓΓΓ³³³P½ε0!YΑ΄šA»wοΖΖ€!ΩΡ£G=ΚsΝααα]»v|τΡG ήF$αήmVVΦ’E‹”J₯X,^Ώ~=’ Ζ₯GŽyξΉηBKippΠγρ€]π\Rέ‚Ή8¬ήωŸyχέwΡ‚μίΏJϋrΉόŽ;šϊκ«―&''ΉGΕb©«««ͺͺjooη±ο™FnnξuΧ]WUUΥέέύάsΟBΏώϊŠŠ ΅Zύη?©tΤΦΦ>όπΓΥΥΥ˜˜˜@ΉL&»θ’‹ΪΫ۟~ϊizΩsΙ‚sGYYΩΕ_μp8Ύϋξ»[nΉeΙ’%[Άl9χ?η¦ήΟε{¬ͺΘ‚Ÿ€eΟ<σΜΛ/ΏόσŸάιt‚ ‘£ϊϊϊoΎωfffnAνξΨ²eK]]x0ΰ΅0¬ΒΛππpGG΅bη’ ΕΨΊuλ²eΛ,ˊ+Rψ 5“iή}χέƒƒƒI>«B‘ψΰƒή~ϋν={φdεε[ΆlAM`ZΗ-n§Σy.‘£€-¬δ: :ξž{ξ™œœtΉ\ΠΩ²eΛν·ίΎΐ₯R”››ϋ—ΏόΕοχ3l{"ΰ*AΕ€σtϊτιϋ￟œΓΞ7™LΏύνo/Ύψb†a€sZ,–}ϋφυυυύψΗ?žœœϋJ£Ρό M4£Š9«Tͺήήή†††€yK;p‘ŠŠŠΞΞNΫ=ι3Θά½ύφΫ7ήxγ‚χ‰‹δζζΎφΪk ‘HδΰΑƒJ₯l6£G€ΣιμξξnnnΞΞΞή³gΨ― žχ—]vΩƒ>XQQ‘H$ό~VV—r>22B °£££Χ^{νΐΐΐ9žL­­­΅΅΅¨,Kj± ι…BQ]]Ν£†˜4Ήζš†††μμlψ―Χ\sΝe—]¦Σιΐ|πΩgŸ]pΑ„P(΄kΧstm1?f³ωϊ믟˜˜€~ δ…‘'‰^~ωeΤ@π?5ύψ―6lJ₯V«U§Σ!Y€ώ?£££σσσ;vμΰ›ΉWζ†(=τΩl…E©T8p&5iƒ,xM†a–-[φζ›oξάΉ3‹­^½ϊδΙ“§OŸ^½zu}}ύίώw‡ΓρK/•––ς—υΠ±tιςςς`0θρxξΎϋn‹Εέ―Χ;??Uϊμ³Ο"?‚ζ„ ήavvφκΥ«‘’Σλυ[Άlp8‘PH―ΧΧΥΥ•––>|ψΓ? …B§««+-9αηqο½χ‚7βυzσςς$IEEΕ† ΐ€<χΠγΪk―]Ύ|ΉJ₯jllt»έv»=77ΥταpψψΓΉ€Τιϊ|λ­·ZZZL&|,n*o άΈ@ ΠΨΨΘ―οCYΎ|yAAΑΜ̌Χλ]³fΝχΏύ±±±@ @a“Ιt:έk―½ζt:u:]?ΰdˆB$]ΞΚ-_zι₯ήήލ7‚¨νΖ‹₯¦¦¦ͺͺκwΏϋέύχߏ6Έ<·j4Ÿ{ξΉάά\(bfeeΥΦΦ’0Ή½½Δ2P)Η 7άΐ_)Εεl1 σΖo¬[·.;;›+j655ΥΩΩωK/}τΡGΆ¨‘>ι@‰:œ’™™™x<…g·h|LS7™ΘpΈΓ;wnήΌyjj ° Γΐςω|UUUV«΅±±Q h4ͺV«?όπΓλ―ΏžΛΚΚΆnέ 5™σώO"‘θθθ@RΫl6/^Όψ³Ο>Ϋ±cΗβΕ‹ϋϊϊώϊΧΏ2Ό’It`¬]»vώύwέuW[[Ί«)Š;οΌσ»οΎ»ςΚ+A_ppίΡ’%KV\YSSγχϋί{ο½;ξΈc|||Σ¦MΝΝΝ―Ύϊκ%—\rέuΧe‚HΟrμpΟ?ΌF£AZΕ‰,2xίTpΙ’%ΏωΝoRYIΓ`0=zT―ΧƒAͺm‹ΕςςςD"Ρθθ(•Θ‡$J₯ϊγ—‘gμΫ·oΙ’%pc±―ό~? 9‘.‘ΥjA#H$F£±­­mνΪ΅όΧάΆmΫκΥ«Υj5τβρψΐΐ€έnΗDξ’(@_ί}Έ…Ύ€U«V]qΕuuuΠIFWΔΙΙΙΊΊ:§ΣΩΪڊ;|ε•WΆKkIι_xα…nΈ!‹y<Τ`&εw(Xh2™|>ίΝ;ο»ο>rnΑwgggqq1ZGΠwFdΖG}u¬η28 ‰Z[[[ZZ–/_ΎoίΎ.D₯₯₯ΉΉΉΛ–-;uκ”\.·Ϋν<‘"8s?ψΑ{μ1τ„ drrR Έr:ΩΩΩPIP©ToΌρF^^ή<ΠίίΟγ/bΆρ‹_όφ·Ώ‡μB‚ΣΜC €€o2™ΪΪΪ’šZfχή{ouuu?ΥWλμμœ™™AM±N§«©©AΩ R©lhhxσΝ7άJt τ£Y­Φ;vŒmάΈ" ζ’K.ωωΟN;1π\ XΏ~ύ+―Ό‚2@Ηƒ‹˜L&@ΰυz‘2R©ΙdzρΕω_}—644œwήy«W―†ϊ²Ÿb±ψΠ‘C~ψ! –ΊτK‘uλυ\pΑν·ίž——χρΗ?υΤSSSSB‘°ΉΉΩνvŸK­Rcccmm-κZB‘ΠψψΈΩl...†”z_φχχk΅ZHWδηη πσ_ !hύtθΠ!NWQQQUUe2™ςσ󑹏φPƒƒƒΰ_I₯sίM―>όσN§(h#—ΛoΎωζsYHtH₯«―ΎΪf³i΅Z‘PΨΦΦvγ7ΦΤΤ †‘‘‘½{χΖb1ͺΒ}τθΡO>ωdΑkΎψβ‹wέuU¬¦?6@kƒ΅ΜΙΙιοοG£ΟLcνΪ΅h*€Ÿœœ4λΧ―/++ΛΛΛk~hhθΫoΏ=rδ%ω™L¦ΙΙΙ3gΞ$YfΜ Άdmmν'Ÿ|‚βτνΫ·ΏσΞ;Ρh΄¦¦& Ϊνv³ΩΌuλΦ•+W’ucωǞ={L&“ΫνΖ³s“ϋ”ΏˆδlvvφδδδχΎχ=ώ R_νΌσΞƒ(ZΨlΆx<>99‰ΉmllάΌy3 ζ9ΊυUUU]]] `ΰΜ₯ςΣΣΣHqšΝ暚ͺƒCR;|ώΌσΞΫ»w―Γα :vP΄ …ύύύ³³³EEEZ­§<%ɘL¦U«V΅··gΊa…BρΠCuvvF"ŸΟ§ΥjW¬Xa΅Z±VΗΖƎ=zμΨ±ͺͺͺΩΩY›ΝvμΨqξ‹ύϊυ·έvΫΑƒ‡‡‡οΈγŽ“'OώβΏψΫίώφΠCΥΦΦςT΄€Ž‹/ΎΈΉΉΥ oΌρFNNŽΥj]ΉrevvΆΙdΪ²eΛ“O>yί}χMMMυχχΏπΒ ©9ŠdΔN(~ςΙ'”qŒްDKž€€‹Ε΄ZνΠΠΠ‚Viχξݍv’ϊCΰWΑΚS‘@†•{ΐfλμμΜtΝ»ξΊλ±ΗΤ‡¨–Βš@]U‹εΙ'Ÿ„ΘjΪ±vνΪ{ο½ψ€΄Ϋ€ϊͺV«•J%τ–Φ«Υκ™™™§žzŠρyδ‘ΪΪZτB@™:κψ€R©ΗγΙΛΛƒΈΆ\.Χj΅‘PθΡGγΩN·άr˟ώτ'Bz‡²Ό‘&…i€¨‰D"±X,/Ύψ"ςJ<»T©TŽŒŒ€?Nέzͺ~¬R©P‹π駟^yε•όOM‡έnοθθ`¦°°0 ^uΥU}}}EEE_ύuqq1LUqq1:κςŒS§NŒŒδδδθυzΙ―qΨ`0 θΜησMOOΓ;tθЏ~τ#_ž+ζζζf χŽnQQΡ‚¨@eeεν·ί>>>N+rΫοο+T―b΅Z}τQN1αψ@‰δ‰'žXΌxρσΟ?πΓίpΓ j΅Ϊh4ΪlΆX,φΖoπίwόοώ―^―‚f/ž5R©txxX§ΣΙd²ΙΙIhΑlάΈρ\.»uλΦϊϊϊΒΒBΈΆ˜–H$‡Tm_ύu¬δs±ž—^zιΔΔ Uμ£’’"FsδΘ‘††dδc±Xyyy__ξC,π‡?EJd$ζ§5Γ0εY$εεε½ωζ›ό,α––«Υ Ύ—Z­†iII „‡άn7ΊONNΖε/ΆHšƒΑ R©\.ˆσkΧmooηf!dN7lΨπΐΌύφۈŠi”——ΏυΦ[i[#d=φX$…6!DΪΦ]λρxϊϊϊΠ€add,ψκκκΡΡQ~]-•J…υ·&Α*{sIΐV‘ΣŸώtο½χ¦½ZnnξβΕ‹αΚΓƒ‚w*ΉS"‘Ψl6Μ0­j΅ϊΨ±cI―ž;Υ―½φΪχΏ}ΤϊX­Φx<ώτΣO£p%‰kםššj΅.— ύ-yΞmΫΆύτ§?΅Ϋν(εaX‘g!Ϋγ»Ž:_=ωδ“η’‰“››ϋλ_ib‘P833ƒ7ŽVIσσσƒazzϊΝ7ίδ)γŽeΛ–ύλ_š˜˜(,,ŒD"j΅Z«ΥF£Ρρρq”Ήΰτζ›oZZZ~πƒgΚ΄P?ψΰƒ7’)6Wuœ‚’ςh4Šg§‚ysssF£ρŸόηuΧ]—ι&λκκV­Z555E$()βtϊ£V«ΡPjvvΆ±±qϋφνη˜“­¬¬|πΑGGG;::„Bα+―ΌΡΡαrΉΌςΚΚΚΚςςrΠ’ΞεjO<ρ„Ρh~Ώίλυ^qΕi%ΗRGYYYOOOAAρ»»»›ššβρx__ŸΝf³Z­N§sωςεΏ"‘·Ψ-u¬Y³¦°°°₯₯{Έ½½έιt2 STTTVVf΅ZqrτχχοάΉsbb’€€$£eA"*z•yK„]±*•κ\<›%K–`Ν£.sρ`«θž‚₯§S.—/^Όψ\f•RSS‰DξΎϋξ‘‘!΅Z½hΡ"¨Ψ#οΜΏ&Ή£΄΄!5N8@PUUU^^F'''ΗΗΗQͺμρx-Zο9΅ϋw`•ήyη ¨NNNBω(wvvΚd²mΫΆ‘YVZV>w !z¨4?qβΔ‡~¨T*&&&\.W$ωϊλ―Α²εΉZUU°((υS55Tάk4hXP©[ΌΑωωωϊϊzώgO$uuu°Εsss]]]HΆήsΟ=λΧ―?yςd0DΥ‘P(T©T<ύaΠ†Q(EEEΛ–-[΅jΥωηŸ_\\l±X «ͺͺ *++Ρ³ˆp„™ψη“;Φ­[χΕ_ Γθ-Y²D«Υφχχ_tΡE<2II£ΆΆV*•’ΐ\©TŽK$’}ϋφνΩ³G*•φφφŽŒŒ NH$­­­V«•§Γ:!δΒ /DχUΒζχIΚφ€,•JgggΧ―_Ÿιjeeepe€Za †ΪΪڊŠŠΪΪΪ₯K—.]Ί΄ΆΆ–kˆ°=E"QΪΎgԜΆ΄΄€ιΗ{{{§§§οΊλ?όπΆΫn{ψα‡—/_ξρxάn·\.‡Α_ρH«\Ή’a{θA£˜°e IU)‰Dy†uλΦρL&ŒΫ† vμΨχ’KB‘Π`0@ IžX,–››{ύχoΫΆη‚]tΡΡ£GOœ8ρψγgggΗb1ˆΜ‰D"‹Ε ΩΗΌcǎ /p¦πcΓ† άήx@8sss°œ΄¨―ΞΏe.**±8q2šΝζΒΒΒ’’’šššςςrΔΰ’@v’όcύϊυoΏύφ}χέΧΡΡ1==­P(Ό^οε—_~Ηw\vΩe ­feeΩlΆΝ›7ΰ?ΰo+U[[[__οp86oή<>>ώΙ'ŸF4νθθθ6‰iGNrrrςK/M:Φ“7†  4₯4Όu‰DB};| Dψ[δΆe Ψ?X— Ϋ=Βlΐπ0§ΨόηGAAP.ΒB©μ'7€0t"‘ΐλ䄐rΒ'5J₯Βζ™ŸŸηv¨ŒΕbpw°Νf3Ο5/ΉδB‚!`›ΗαiΥ:L aΛ‘Σκ>ΰOΦ―__RR˜›‡°jvΈBœνAX Ϋ‘D'ƒM‘Pψ|>$ΔΎ(•JΐΰhβŽz<ώ·Γ½ r¦~ΏέΊuΧ_ύΙ“'Ÿy晏>ϊ¨³³sηΝ•••{χξύξ»οτzύιΣ§ω7ω矯ΡhφνΫ700°mΫΆϊϊz΄t ƒΑ`0ΟΟΟk4½^£ύ¨²²n·{½ήΒΒB™Œ%K–ΐ£ε3‚”6Α8Z.»μ²H²δ\€Aΐιϊ‡Υ' !GΨ5°lΩ2tΈ*((¨­­ύήχΎ766©-­Vk·Ϋ›šš–.]Jo›gh΅Z`Š(˜ŸŸ?yςδΘΘ4βυz}ii) ‡Γ)~ύlΨP…Bt V”Z­FΫ|R£Ρ £ŠZŠGNNšmSžX,ΦλυeeeZΕlCΛεr₯mWOڐP9Βφ2Gδ&“ɐKΒβGό‰˜“ΗΓ³ggg' ẍⲲ²8ΰχϋ?ϊθ#΄ˆΕ–ΜΚΚh4™*Α +E^UUΥάά\TTΔ0Μμμμδδ$ϊΤΑψμίΏίγρ¨TͺΌΌΌ+VΤΥΥ‘ΰ)Α*σ Ή\ώή{ονΪ΅ MΥT*z₯LOOϋ|Ύp8|γ7~όρΗΟ<σLjΓ‰Τω=ΰΤ™™™hΖ7ΰ₯Z­v8ό\pP(D…)׍Kύ$ή;Γ«λ‰cH …B¬%°npvB₯€ύ«Ϋ<9ξΐ‰¦V«<¨R©ΠΙ¬σσσΣΣΣ‡ƒa˜.ΐΜ*•ŠφQ₯*β™\p θ¨σ²­Ί©Έ&EX!qΆqHκrΓ05556lhmmEg[!`(β3n·Ϋοχ;Dέ™φ½ν'Ÿ|2  Ψl6BH0œŸŸη’·θ’Δ&A,’V«—,Y’z)μα‡zΠ&Šώϋœ/(„ISησσσό’Mηwζ<OLLμίΏίΎ}'Nœί|σΝΙ“'‡††Ό^/ZΟUVVς\ £ͺͺjρβňZ[[;::l6ΫW\QUUΥΡΡαρx6oή Š¨T*mjjB‡₯LΓh4ŠD’άά\Ηƒ~2R©”Fo€-ggg­V«ΟηsΉ\½½½θ*»iΣ&ώϋ\Ίt).(|ΓΤ Y . ˆbΟ?ό°V«₯M]…¬b'•«₯:‰@Dž?˜Γ@Ή™ΟηƒΟ‘Χλ‹ŠŠ¦¦¦|>ίππ°έnw»έΰΙ-˜’[²d ZΝfsQQt˜Ρ― έbμvϋͺU«JKK MΌΰMVVV‚ΆBg°ΊΝάΝRΨ$D4y‡οΒrP-„ΑΞP«iΠ° 5aΠfǟΓn`z±­¨WΟΠ§ χ€lNaa!Ξ!$‰ΔπππΔΔžΡhD H¬U«V‘”˜βv»†Aα3ΰFw΄"‡Γ`ˆΦΤΤX,ά0Ώoχ‡?όΑj΅ŠD"`σ Γ %G‘’ΌB‘pυκΥ<’Nt @w#ΔH„‘Hΐ`0θσω$l)œ&όΟNillΔ‡iίΒξGϊh4# εσLηΘ Γΐq ;;;‹ ‘2~ΏΛ½^€¦bΐxΖ={φ”””πŽΗ㨂§ηvz8φz½333`†’’θζdZωωωωά3ϋHΔij 3WU―ΧΗγρT…Ε€qώωη#ΟCΐ…Βα0‘.— .T<ΟQγ.Ήδ’’’ΏίŸ›› !k³Ω¬Υj»»»±•ό~ΐΐ@mmνππ°ΡhŒΕb}}}V«υΦ[o%ι»’’τΕ‘™:?ΤΉ§6ΪάܜN§γ ;—`"Z l{$ΒΚυαTEu!„ί !„477 9Ό#(™Γ7@»ωp8 …΄ZmII T»α|Έ³³³ΌΌόg?ϋΩχΏύφφφΧ^{­£££««K δηησΛψιυϊΩΩΩ%K–\sΝ5ΉΉΉ™’Ρ(jzθ*BΎ£±±qλΦ­°υ Ν λ!ΰΎΣ“ƒkRρα8.ψΰj΅:εζζχ"ζ œgπ*¬VkMMΧλ=—* D~~>•ˆ19‹D"ΏίzΑϋΔYθχϋ'&&*++½^o0¬¬¬4›ΝΡh©€—o IDATtppππαΓ`α =ΐ‚ωβΊΊ: ”b•Rς)88ΑΦλυ<Št`rp5ΰί8JƒΑ`„p€Aρ a„­V ž8l1aΟD›ΰ0α°7α/†B!ώ[Υj΅ƒ!744‘΄& Ρ M"‘ΰη`‘dJU₯Ζ\ †νΫ·Ζξξn›Ν†)Υh4€x% z^i4₯ͺΥjŸΟ%)Τσϋvf³nβ_ϊW…B±nέΊ©©)t»Ÿœœ‰D;wξμλλCφ|Αd0GII ώaσ†x)Τα …Bεεε>Ÿ5•––" Šη…arDaσ©Ÿ‹Εd2YZδ[Θ*N5€§ƒΜmV½™H$Ό^/mIŒΗI{|¨Υjτr°Νγxΰ’’’ο}ο{πtaa±αYΒ)CK±LΟn±XΐΠ M£ΑΫ; ΑΆAΣj΅#ωcBHNNψ‘PHΘΦ­cKϊύ~«ΥZPP0>>˜§g¦ϋeΫΆmxΛ………‡a˜‰‰‰5kΦ £—C{{{{{ϋψG t555“““2™lωςε$S‹&7€sssρ D)Ξ b^GMMM¦gΗϊJŽEͺγ?ϋQQQΑ0Μ‚σ©Χλ₯RiKKΛΰΰΰμμl8‡Γΐ€‘\ Σ7??ίΫΫ «εp8x°0N7<< Β4Ψ½b±˜"²tεΓBV¬X 9Ι,';vhqΔ›^”ΎN8ςZ­Ά   R5΄£²²Rΐφ†·D±n~ŠΊ>°›‰D‚Η±ƒΓ‹>uκν1t ο˜ώΣ`0?~~ 3υAۜΪΪZ%ΰ²&“I,δηηk΅Z£Ρˆ›4 Α`ύ...ΛKŸ»αδα'ΤHΡF¨™»555ΉΉΉ΄:9{cHΨςά׏ŸΓ#Q©T—^zi¦»™—NΕμμlUUΞ ΌτΖ₯ξΒΉ8vuuu>ŸO$MMM]qΕ7nœœœά±cΗ[o½εp8Φ¬Y³tιR‡ΓN©ΗηηEŸ΅Ϋνπζ {~p©6Z‚Α ΫνnΑŸ‘ „,]Ί{[Βι•Ig’:vYYY˜πϋ' ΘΧΤΤψ|>*XŠ·S•••₯Σ鐀&„ aΞ‚SͺP(Π2¬]»φ7ޘššΒqF!—ŠS 4/ώ«εεε9Ί}>ίΔΔ„R©΄Ϋν'Nœ˜žžφz½@ώ«ͺͺV­Z%‘H¦§§ŒbQag±Xΐν… Αι‹ ³'ΰ—(Š (ε’QιvN‡5ƒŽ3 €[ώgǁ‹Ε e/“ɐ8Ζ±ΏT*:~* ΎˆΣuφδŽ‚‚$LKKK- ²9"‘H«ΥΆΆΆ’Ί°°ΑΓβΕ‹ΑΔΘ”ήE‡εŸύμgR©τσΟ?οξξξμμloo?sζLWWŽΜΆΆΆΣ§OŸ‚ϋiž‘Ρh€B‘ΐ2†΅ΧλυXœˆΨ Ϋ 3??φ“ί±A[’rͺŽ^:αtΗφ …΅΅΅©—B Ž6Έ=œX98Δ?Ρτr~~~Ρ’E”·je/^ ­T*Υj΅'NœxφΩg―½φZΤ‡~φΩgf³ˆ$ΞS˜}FΓÊΓσŠD’œœœ[ΆHXΎ9ΜL^^NCώΕ)‰ ψPXXˆ=oΫλυͺΥκuλΦ‘'Œφl‚£’•4πrrr’Ρ(Ά0Δ/†G•LkΧέΊuλ­·ήΚ0LEEΕττ4Γ0軝:šššπ.ŒFcOOΓ0΄ Τ·ƒλi0ΠΊF$ρH଩©‰ K…λΰ½ΐ@•––Ββ™OBHEEEOOOcc#}φh4 ¦MN2 ——βv»ggg/Ίθ’L”Ιd@ΐησ544 Z°Βψ"V</jkuuuπΡ“ΘQi;±Xl2™’ΰnΚ.feeegg‡Γa~£l±X°:―€υ«D¬ˆŽH$BI9Κ!.υϋί>''΅BάwO?¬Σι „ŒŸgς™τz=8.—λ—Ώό%š p‡Vx"‘πω|^―Κό?eeeˆυM&ΣάܜV«₯ 8Ψ˜ Δά4Λ€β•€KΑŸΈρΖΒKΰBJά….da;ΈΈšŸŸΏι¦›H’ B(:6›­ΈΈΨd2e•ŸŸ„ν~ΘοΠΣk–——TWWΏϋξ»ΕΕΕ7έtSQQΡΐΐΐΘΘΘ•W^ΉdΙ™L+o4W\Ιs54 ’v§#06jβΉk ‹vAP™°YΒBρ„“ξ‘—ΒΔβ‹$ΓΑΒ+‰DωΫΩ0 QGgA?lΧ]………³³³ ˆmάΈςͺ°‘@`|||γƍΰyΜΟΟ/xŸΠρ‘H$ωωωΈg•JUYY‰κt›•ΙdΪ‡cA΅dχl6ΫαΓ‡σσσ}ͺΥj΅Z·œm±X ςςςPN΄`Z™ALi^^΄Ov @bπΊt:uexΐ*|LŒνϋŽΎŸτΟ‘KΒΖ)++°m²yξ377W „B!…Bqωε—{<8ǁ`bbΒησ‘‡,Φ0κQgLΊVcKKKOOOvv6*=_}υΥνΫ·ρ|ι₯—^zι₯§Ÿ~ϊWΏϊΥγ?ώΘ#<ςΘ#wάqΗUW]υόσΟ·΄΄YΌκͺ«H沑+V€yέέm4ggg!Žν "‘ΘΨؘH$’Ο3ΐί,‡œ»P(D³iZK$ΰ›6mš›› …Bό©X”ΰl£–-ι΅T,6­V›φH2‘PΘj΅βDDζNΖ˜5ΔΖ°–‘M&Σ₯K) 5Χ ˆ‹Jν΅kΧώγ8οΌσJKK»ΊΊPc εr9Xͺ4Γ ‰V―^φΑaΜœ`„Ν?Ά άHαpž5o2™ΐ‡Γ‹-:uκŠ©Χ¬YSYYΉ{χ ΄&”·?ΪΜΝΝE[­V‹ZΜήΤΤΤΜΜ :acγρψμμl,Σλυio΅Ž°ΞλώπšB²%hάdρέwίE>=‹eΚω@ΒRπϋq’Έ]ΐΆDB<€iv>ӐΙdǏGaΔΜΜL4™™²=θθ|–y Ν4“@·^―ΗςƒƒΖM₯RQ–?e―Q@‡’I―ι,7KΐV•"΅OyίI¦ΰœρh‰.—λΜ™3Ψ¨©cF₯R½{χ"κε9δL&“ΣιŒΗγ&“ιτιΣ©ιϊ|Χ™3gL&V[&Θ'œϊύϋχ#Ÿc177755…ͺBώoΎω¦Z­rΤγRΚa@0Τλυ Ϋϊ°ΐ'!D(F"x±JΕbq¦@αβ‹/ƜΆ E(q·΄$–λη‰D"θ ٟιnΛΛΛ© Ώ˜²‘>€Υ υJη"ηhPεηηοάΉsϞ=6lΈπΒ …Bα_ώς—χί_§Σ­X±B«Υ’‡'ιƒ&Œϋ‘o™z·In=}œ/΄Ύ%g›N!«N]d@널sΙr"NΉ“’ύδlγ‹3 ž @eώkώξwΏkmmEφ‘±±ρζ›oώωΟV«ΑJ$χέw_kk+ΨrmoUy† ?sf&3™d&“Μ’e²/ HΨ Q*PŝΊ U¨΄U«u©­ϊ*­ΦΦΊΤZχZ¬ΰ‚Κ"Šˆ  B€μd™μΙL2ϋLf2ΫχΗυη=Μrβχέψ‹™αΙ9Οr?χrέ׍ΰ€0‰ ‹νθθHLL¬¬¬LOOOHHΘΚΚςω|}}}΄†tή‘ ώςz½ψΗ?ŠŠŠςσσsrrT*Θj΅ZN·dΙ’;w~ϋν· »™΄ϊ wŒΓα@€ΝοχΣbΥ KiF$ ^†a’ν%$1Ν™;w.¨I`j“KΝAD5\.ΧΒ… 1Γό{ ‡Η-//† ¨πʟέ‚όγJόΎΪcωςεsηΞΥιtπΈ²³³ηΜ™3oήΌŠŠŠE‹]uΥUλΧ―πΑ«ͺͺŽ=j³Ω@\\¬±ˆ7(Œ …Β˜˜Ή\ŽΔυjΐRd0ζ“Λε< ‚ §jdh‰ΈΈ8dύ0“@ΉΑšΜΘΘP(γγγΡR(!‚ R΄/cΉι§‹Ο€7H$ ^ΖόS¬‘mo ή¬P(DjΰύπΛΊΊšκ›Ν6cƌžžž±±1―ΧΫΩΩωΒ /€<Ά2‚ΝԈt»έΛ–-‹ψFιιιˆ*Ιd2!Λd‰] 7όl •sα²τ‡…P;Ž3fάxγyyy?ό°ΥjύτΣOAΝ|¬s°"Ηm@•Jερxβγγχοί{‘>δq+ΑάΆοΠ‘CUUU‡#!!!b`΅ͺͺŠΖhαΠH-Χrΐ„»έξ„„„žž >Ÿ/š‹ ’L& ƒ£££ΈDπ‘-@ΔB?£V†ažlZ­6›Ν±±±/ΌπBUU•X,.**Bν)¬Fœ<§@ Πh4ΙΙΙN§3Zίv™LFΧW§ΣAε‚ŽƒιEβ^B3ssΙ9NS*•Ϊl6lj&s―LΜ΅@ p»έ“b/²³³Ot8υυυΐE†l,Rll¬Ωlud­εŒ(θŒc Μ"v!_°]±5aθDk²Ž:&ρRw†ΟηCŒ!66ΆΏΏ€«««©©‰F’=§\.‹Ε.— G·;΅η–ƒœD"±Ωl¨J‹hΑ ύ„Ÿ)n Σ[;'& ρΛ΄΄΄hψ™VuΞS»†ΕYσ’οΌσΐμgϞ]²dIWWΧ?ό€f 3gΞΤh4½½½###"‘¨΅΅•ΗτDΑΓ‚ˆ©Ώς5š–Ε °ΥΣ<"`ΙwΈn ΅Ϊ!l΅!„Ώ g ΧFww7f›>-5FΕbρ'Ÿ|‚dβ€u H.K₯‚‚‚ΈΈ8άΝ2‰D"•J΅}ϋvΗ3kΦ,Zΐ/………*• 1γμμl$}Ž?Žl/L½™3g!Š,‘Hψ;k …B°φγ]P…€¨4gνφξέ«P(†α§Ή!„ςλp8rrrfΜιrΉ”ΑΒ!{Π x%Α,m>Q㉂ \œΰ•ΔBX0²{8;;αgžμ!lψΩί|σ .9Ζ…υ7>>^TT„ ΖVΰ† L&SrrrnnnzzzKK -W4›Ν===F£Μ.\hiiͺ/##π,΄Ϋ‰eLOO·Z­j΅Z©T’G‚€mh >ΎΏΏΏ΄΄΄²²iŠˆ…Z­'%&tΓΠε¦6™X,—J₯'Nœ- 5F:ξΫoΏ­Φ€γΣ^ggηΜ™3ΗΗΗyκΑe2ˆ’ΊΊΊΤjυ-·ά222BβN5'Γ00Θ …ί@δr9υ±PK@gΑΟR7@Τ yN&d\h:§ΣΩΥΥ'€Ύ- „" „ΰ'HσΒc€TΣӁQu:­­­τ„œΥ‰‰‰ΈΈ8θ)ΒRWG³!eΨ–4lCΒΪWc θ; …Βhϋy(/ΫPΩησΉέnψΚ°’Δb1Θ„ίAg€Y£½»ˆε Α^‡χO­ †ε³-ΪFFFF‰h{₯¦¦"~£P("‚0E\<%Γ~ΣYeΨbΔπbbbψSœσηΟ‡5Œ΅\.Ÿ9s&β 6›mŊΛ—/?xπΰαΓ‡³²²ΚΟΟ_΄hQΔΡ(εœ 8τŠtΐΔ!lvZ@&“ρΗ•ρŽ ΓΈέnζrNόžζΠρ%‡«ntMM ”£(Œ²nƒP(lllΐkRθ0yF‘P˜L&­VΛ­Ι@w5X`)))’O: n_FΣέέ­ΥjgΜ‰ c±XL&z„tww»\.„άζΝΛS>Œ?˜ϊ Ϋρ Ή9?Ζώ±ΫνmmmH€NбC€Νγρ ›o±X¨“Š₯QnABH4ƒρQB"ˆv»³wˆaK―<³X,θΨ ΚwηάΉsσŸ|ϊι§ «τ³4L%Β`"„lάΈ±΄΄t||<ά™ΉβŠ+P›9cƌκκκ'N€³ CΔ― ¨€ΘJbb"Žygg'ΐd„ΒΒˆα+ΒVο*Š„„zRπlXb±Έ°° nžB ΪΤ€₯γ Gψ°₯₯CCCpx’ˆv}`›a‡£”!ό;tΙ κ©·ώM ˆ!YYYϋφνC‘1™GoΌ;H!ZZZFFF”J%hήΒW JΒ2aΩνvk΅Ϊ={φόη?ύψ㏿ωζX 8 άΐDΔwǟC4ρΠ‘CΘ8Q]GέΒ‰‰ ­V{πΰAδqŒγββπΧ !gϞmnnώ裏š››srr(ž4"›Β…G‘ί",ˆώπωση§§¦6Ύ#dλD"Ρψψxcc#ύexπo'°««λθΡ£a]Hˆ‹©§§ηΛ/Ώ€1݈ .΅Z 7¦©© !z}Nm"‚…555`‰6ŸΘΖ@½wuueee΅΄΄ΰ"#l"a³" Λ±_΄£„|ˆT*5›Ν'Nœ@·7Dχqˆ@εzμί}χ6mˆ»Δ°S(Θ©{½ήώώ~D/C2§°(%IWWWaa!QΡž°dΨ±cG|||gggooοC=tΫm·}υΥWYYY 1‰–›ΘΙΙαΗΠΛ’+ά‡€§ 6(BG—BŽ:u ­0όόFj΅UΉ\>66†€…ΒΠ†‘ορxИD7D¨Œ±πυΧ_ΗΕΕΡπ-ΦH>†aΝ;‡ύΐγqAγ@—Γα8wξJb=Ρhτx’š1•ŽŽτ*$œE ά―~Ώ‘yΒnu aΑfH$‡C₯RaςÁΣιœ7oή;οΌƒΣ‡Δ+v,ξώΈΈ8δ%l.μξ8ο½χήθθhYYΩ­·ήzϊτi$˜„FVBΘΔΔ„ΫνF w6χμΩσΐΌπΒ mΩ²%Ϊ”ϋe6›iѝ7κΕBμv{xφ'’€ ί‡md±X`Yυ‡}Γ4βhΤoŒ­――²†BΎ†gsΉ\τp…GYE2''ησΟ?Η›‚7i jτ6=2>>.‹GFF! …᱐‘αr U‡–Έ`Π ,ΐ”O^―···YoΔ΄’½;’*R©‘Z0Kp7 –/ *•Κ¦¦&ƒΑ3<<Μsލc Zƒ .F Τ gΡ‘—„B‘Νfcx©Η²²²ΰ?BΊ»»ays׈›5Ɵ[Ž[8YΝ#3 sόψq|™‚›CΞu βγγς—ΏBδ‹ΘΟ κ—aΆRG™qά,˜DQΚ£κ‘+OLL΄Ωl‡f1]j΅Bhxμ ˊ"ΐlΠ"œ&€q‘5\V)fϋΔ‰„mϋΖέφ—(>θΖΒέ‡}R‹„?Ωίί/—Λνv;@$Ρ^>!!Η£··Ω“ˆ_Γογββhχn†a’ωρ3fΜ€‚0›Ν@Β 9•Œt@jΨΡ΄:NuΔ1ƒΑΰΔΔ„ΥjνξξΞΞΞF¦άιtZ­VX{.—kppΧp Ϋ9W&“ρ,ΌΗγΙΘΘΐ­ΙpZnΠ;‰ξWψF¨GAύiψh+V¬ W5’―ΈΘ,Ό ‘¨9€0?ˆ›NLLDdfM(7DGBξ¬/E[ςΨl6₯R /vdd$99Ωj΅ΘεrT<Α/”ΙduuuΉΉΉΩΩΩηϟ8ZNNŽ˜m›Ζ ΘCΈΗʈκ)ΨU<6(Ά™@  ™Φ [~AΨME#8±Ά+.,B?ί5Œ}ƒσ…ΪpΛΓn€²B8M«"xχέwϋYR›––€©ƒMΝ†[λχϋgΕ_D%WΠZkϋφν\’‡λΔ999hέυρЉD¨Χnmm₯υtͺκ T«ΥθC"9 ά1i‘tCC޽˜ RG†―Χ뇇‡ΑO1‰Œ*8QΘβσω°„rσ³ττΙ»»»ρoC2Ό‘;\0ΆU΅$‚,Bφ>t4 YˆlE{yΐη«„½‚νΕ]'hΠπ@Yγι£ΥτeddΨl6 ςΓ%JMQφ††Ώ( Νfs4Γͺ!;;»――O­Vγ±zƒu"“ΙβγγΆψΠžH$Z%¦§§[,¨9IΗ\Zw‰ςɜœ—ΛŸ^TTD]ΰEprθας‰DΨRHΑ˜£ωύώˆ±+j’q7 =™TΛΣ%ßΰη¦ΧbGGGNNNNNŽΩl„K‘PΨlΆoΌ Ί7ήx#%%m4cbbpςΓ%;;δ&ΉΤϊ€“ηρxz{{‘Px„P€­5¦Ξ΅ΐ!H!ΑPζ―Γ5)‹u:]__€Ψt—r§ΡοχΓTšΒ₯γ…ΈΈΈŽŽŽααan€κӁ4˜ηΗHBΔbqWWά½{7B)n·Ϋb±>|tS6› gνόωσΓΓΓ …NN΄1ϊ …΄Ρ3T?pEΤq8ˆΗ·ΆΆbΊx@ί„ VA?’Λ*βUψοθθ¨ΕbA/f£ΡXTT„F4₯ ͺΟη+..ξοοGΉε»°±^JζσωgΜ‰s-b‡Ύ'%%₯¬¬ φ±aν!4Ϋ’™™ 3V ηΞ;ο4(X†Χš4OτŽΔ„  „‡ΣνvΝ’——g2™μv»Νf{θ‘‡ΒŸ–aΫ@γyhΌŠκg.œΏv•°qS Ϋδ6">’¦-΅€ρš˜˜@ϊhqFƒ€_ €Ρ1\‡y0ƒA,Ϋνφπj΅”NH£Ρ€=gbb©sQ¦ˆ(j  7κδςζj`t»έȌοΫ·―¦¦ζδΙ“έέέ(ΉS*•sζΜY΄hΡ²eΛRSS©‡OΙΙΙ‰ˆA€P$!lFΨB@z―a½„l΅>ρ@€'Θ‚θ΄ύ>άμsŠkB΄_πr/…HRR|ΔbΡ&…_ρhΚBΨ€pGGGΘ€4”pΰΐžΐ5 ΛΐJX£6"`h©TΪά܌h(Χ—£ŠχEΕΈšypδ΄ z²――FLS‹Ε‹e||‰ˆΙp*ΕΖΖφττ £·΄a·:a{Έ•`~ΰLqi(ΖΗtD‡ƒαΰŠ`ΜΨ.[B‘pddD₯R!ρΝ“““–P*•mmm4ΝΎκeddΐ°£Ξ_ΔaQ©ŠT,Ž (ρaŽ  ₯Ρh£.0ώΑΰ­C IDATΰ`JJ wl6 Yβr žΝ'‹[[[π£G1Θ©²$¬AΖ0ŒΡh,//?YΔΝ„›Z„Θ Πi ²¬ΡTIQί ;ΓΟ5G΄Ζp$θ0Υzά%psω+‘Ξ#„TTT¬X±βε—_Ž]²dΙωσηπ‡?ΤΥΥ™Νζ={φ<ώψγϋΓΎ‰V—PXXˆ  0ϊn(SKΥ0Αθ΄I„΅Z εuψπa4«Ζο…(=8^zι%|ΔΟεΓv Cη‰ ξ¦ίΑ£bz1™ §7"ΟΘ`ή©¬¬\Άl™Εb%Š ‰kώ¦›nHVςGμΚΚΚrrrπjmm]Έp‘ΫνKLL”H$ΕΕΕ••• όHLLόώϋο›››ͺ€E6α :_Φω °mf¨&q»έ¨ͺξννΕ+σƒ …,₯VKKKGGΨRςσσΣt:έάΉs,XPRR‚X;– ͺ ˜΄ΜΜΜψψψC‡‘˜e6 °υw^–799ω»οΎ“Λε ‚fε`[LEM άβρx¬V+π0ƒŒF#‚F!ΑΕS§Nα_ABPΛ‚‰₯N~HHH0›ΝΈ)a'!€ŠW(«ΥνΡM[EΔ2Ί‰ΩΆKˆ9όΡAP…B€œmπ…H+Oρš2™lppΠh4feeIqL Ηcbb.^ΌΨΫΫ‹€sΔL ===ΈσΈw6d.(θοοw8ˆΏβe η^ΐ‹#d€λΣαpTWWS₯ʍ‹€¦¦RUΟmεΚ•kΧ}ϊι§ί}χέ—_~ω©§žΪΌyσ 7άPVV;₯Ž„Υώ(ΌΗX\±Xl2™¨’£6·eθΕF‰D4ZΙ³Lxrό+ ‹Όlσ :>Άγ~΅ZΒΎˆcR£_"‘ΤΥΥB4 hΤ΅°ΰΞαŒΓ΄"„ jΘ3--f62Τ– _VΜ mXωŒˆΰš˜˜Ζ QX?۟ JΨΐ?FΊŒΛ>Q` 2l)‘R©D} ­θ₯πMP E„ξ!~Œ‚Σ逐z<nzΛΓ‹£ψK:Τ%Š> Ϊνvh"ŠΤCˆΪFΑ`011„–‚°R[*:Žξ‰ξξn€a±tBΞjfι,D;πA‘P466rSψAV§2+ΧΪΪ `\΄} γγγ€{c—K$’‘‘d€…–ΔΎ„έq@BˆR©μλλsΉ\999ΠΘNŸP†ƒΝGFΙ5άξαS š«γΏ΄:†;9„MFX¬fϋ;βλΆΡSψP!B+Ώ}£T*qδΰ$άvΫmΫ·oοξξž9sfWW—^―_Ίtilllrrrmm-!„a˜ΰ*Βma†Α5LŸλ!@¨ν+‰’’’°xέ@"³{χn¨r(8xKpp Ν;‡uα„BΰφΑ₯ΝKh"ƒB`/ŽŒŒ SΈ΄€?\°UΖΖΖrrr¨@]CxGwάqGAAŠώψ1Η300ΠΤΤ„ιMIIA½ .tuuW‡ Β{ΕΕΕ<άΤx―Χ‹~HO0n¨|,UϊιΣ§ρ)Ώ“ΰgk–₯RιŠ+/^¬ΣιT*•N§£dZZZFFƚ5kΦ―_o2™@KΝ°Γq›3gΞΘΘΘ±cΗΰO#Ϊ$ζT―†tΫ±cΗFGGA~Α@”Εψψ8<th Π‡c``@$)Šήή^»έŽ4W/=z4++ F βCmmm°ŠPZ‹}c±X&‰DˆΊΡEOMM‰D@ƒμΫ·/όiρŽγγγ …"77V¬€eΌ‚Ζ@ ΄<ŠŽ°±Ί˜˜ Jœ&@„ 6ΰf …R©Ώ:ŽΗ™™¨R©μκκΒy IΕ( 6?Z&ΔΖΖ†uιt:—Λ…yƟ£­2C―„=e@aΒIMM…G‹~“ςάb μv;(ϊ”Jεΰΰ ^―οιιιννEΓ\‡Γ¬=Τ ύ£w>΄7¨P«7"μ©GΒ02Οώ.2τ ° RιάB’Ζ΅YΡv{QQ, @ΠΣΣC‰‹‹CωΎ@―`z_@yž:uŠBά9άΡt†ψφFPځ@Υ΅@|ΓκCι»F‰u˜s   Un±cDV \l-˜ΉHAΆΧ!νƒ !.— ഈINχ”Ru ΖΖΖΠω.šRΦιttU,ΛΥW_$Η‘yle¬P΄΄uκκκPΣΗM"Π7τ±½Sυzύ‰'ΆJ%’ S έλυ"—Š #Σh¬„9½xρ’Χλ5›ΝΡvΆΒγΐžN­.…Ϊ #€ϋ{%„› XΔΡυϋύh $«/¦ξ a+ύ,¦k722ž— Α„Œς΅Qψ‹.5Νθθ¨ΝfCΥ³Ϋν>sζLaaαξέ»±<ΟφνΫ³²²²²²¬VλΜ™3£ι…B8 0–d‘>χΙi< Η εœΡžXBΘΎ}ϋςσσrξ‰Phš7 ---d †ŽΡόΌ…B‘θλλ£4Ε“‹ΌαG}τΖo Ώ «ϋ|>•JU]]}ώόydωωSΤj5¬ΨΊΊ:`ΊΚJJJŸ°@ [§Σ ’ormm- ½‡ θΝ›oΎ€§Zλ‹ή¦Χ]wέ… Θ₯€λˆ‚ ρ―ΧΫΤΤΤΫΫ‹―Ηγ˜©»»»ξΤ©S~Ώ*2šRϋԌ3†††ϊ‡O……†:’€N€ξ-Λΰΰ ΚΕ’Ύ Ν ͺ‹ΑΑΑααaΏίο½χώιOzβ‰'233@__ŸΓα0CCC°ΜΈζΒΉsηp?ƒA8$υυυ’Ί\(z<žΔΔD‹Ε‚ ‚έnΧj΅ …‚f9Ÿ@Ÿφ§"`0„„…pΧΦ²Α†D«λˆρΰΣ„„ή‘ς—{<ιΰ–QΛΟΆŽΆKGGG!gΜAu©†ΰΜΜΜƒ"Ό±ΌΫνF€ν«―Ύ"œ½AξΤ’%lΦ2ΐ2%νΪ΅Λb±θt:‡Γ‘Ρh¨ι V«ρ˜jΌΞΘȈΙdbΨNtΰ₯ ²0SjξΠpQΔΧΗ7q’œŽjΉ K/Š#οrΉRSSF£mPmlΈ+ƒƒƒΊGΧ&Žψ(°8DZΑΝςζ›oΞ½L·UΤB‘&?ϋμ3<Ή@ ΙΟ ’ƒž…ͺͺ*•ΐoB~TωΘΪϋ|Ύhΐ0ΨLjεSd!WΈ)xl~žΌ6a#v€`η£Ϋ'ήͺUĊ€-x’žmψ€΄΄»»›^τtέ­ΐΌΞHA+EκϊΏοΒ7ΐ’ΩΪνvδnα8έv‘v»v¨ :ΖZλm·ΫηϟOνΒzuΤMΔ; i Σ*Z”UBHkk+χ΄ΣK°•wrΉœ"~"N(aΥ^ S°2 ψ– …J₯}<˜ΓΊ»»Alq@Œ ¨5Τ„χrΑ›xqD¬ΒT‡ΤdΠ`ͺ­Œƒο’ι¨&…ΐ°Λ ώ9"ΥαιN†-W€“Ι}/ͺΣ© !ˆR}ςΜ.—K£Ρ8ΞβββΪΪZ±XΌbŊ˜˜˜ΚΚJŸΟ766VQQa2™T*B›###Ρ*f8rΩNΗaͺ‘) Ρ, ΄  @(κυϊΎΎΎ`0―1QΤΚTJϋόσΟΙdΡ Β²έvuuΑ3¦kΑ%%e||œ'mŠΏ‹kxΡ’EP ψ%^xfΘζϟOcQΡ&W”J₯ΡhΌpαΒΔΔ¨μ ©¬Vkeω©­­5πΛ£…η=œΖξξntϋΓr ΨZ94†fΖd2ιυzΏίO«#. «΅··Ο›7oέΊuχίΟώs«ΥΊsηΞ–––%K–άwί}Ο=χά΅Χ^‹….‡ϋ¨0‘'ΕsvvvbϊΠΗΗΗ †¬¬¬ΡΡQŸΟwμΨ1Ί4π‚$I4š{ϊΜN§sppPΜžΦε@ ]{{{€νIΚ3XΖd2΄‡ί3,ξOqrγγγGL;@ξΏώ₯K—2 στΣOWUU †ˆz@`΅Zg̘±}ϋv†a$Ι/ωKξͺͺͺ­€cΪHXΈοB"vt-`¦K$½^Ÿ™™YXXθσω¬V+½οsssιΉ …Hj½@Ÿ“«©BŒΒΦΠ„Ώ;‚R©΄₯₯m»‚œβ …XA;::` ς(:jVϊ|Ύώώ~όσΛοC­O<­ΫνniiA8} έǏΗΖ£³Α]) ‹}›˜˜xϊτiΌΈN§ 1j‹‰DπŸσςςΠπ†»Φτg¨wD4 !CCCxžh3€π*Εqq‡ ²|a„½%α{"ΥASΑφ ™ ―Χ‹ΤήJ‰N;!„@#¦S°2™lddDΐ«Έa5‹,δ>?tΉ΄€ ―ξΣ΄΄΄œœ”1¦§§§¦¦–––•””””” † h!+$Ή_#„€€€Pž0†₯υ‡ΠpˆTpΰ£ιMΦήή^^^QοΠ[Σησ͝;\Ο<Ί .&V1))ibb™h“Ι„˜œT*v'&&F­V(z΄‰8¦L&ƒ5­Χλ)v0$°DΨβš@ €]Ψ!YΞΩ³gƒ£K ΔΕΕ9‘eІ‚,‡! ~Ά’Χ*‰Δ―‹Γΐ°hňQΐpαOφ΅ΆΆκt:FΆ‚αααΫoΏέοχοΪ΅«ξγ?&„dgg/^ΌmΩΩΩhPq4ξS .-‘ L…–b*ΪsbγAY£DF©Tz<ΤΠ …Β€€$,‡N§«――'“΅σ³ΐφϊϊzDΏ@…Τ6ΘΓΐ>::š””ΤήήV$~ϋjΩ+œ©KΑE5ˆΛεΚΞΞ...ŽHšΓnβ‹/P8••••ššŠΊ9“Ι„φ¦b±Ψ`0 _Ž:*α‚fƒ¨=ΚΜΜDIˆε]Ý'fY‹σσ󇆆 DlΕO4Αk"ϋŒ:A:Jόΐ$—ΛjD%J4»E&“©½½$v€γ ²ΠB"©Θ1utt GΑ“ )))ο½χ^ccγsΟ=·pαBπ%απŽŒŒœ>}zώύf³ωΪk―R.DΘ8---Ψ΄΄@j%Μ‹…φ³±ΫνF£ΡΤΤΤlΩ²…rՎŽŽŠD’ΈΈΈššž‰eX65Ψ²!φ *•jR³ε“:££C("`L8˜„ *‹ΨN9ΝΝΝθv3)/7aƒg·ΡhŒHxKΙΜΜΜΘΘP©TF.—;v x€kι’–@аŽςςh—μχϋ- ZωQ\uZZRσ¨’ρq:[ιeX¨Ξ#7ŠI]ψ3Σ‚Π'N ΅ =ψΤρƟCz§ΆΆΣ8i™‹H$rΉ\ˆ›†Κψ=Εμγ ‹h*ΑΝΖI™˜˜Έα†«ϊ¨wMWΗλυΒT½ρΖAΓ0LΘΘHU …Βύϋχ62B3]Μ₯~–“ςδI¨‘ˆΫ .Δ•ΆΣ:χϊ€Ίΰn0΄‘βΩωΨΙX\$O0…F’!Œ‰o.[ϊέΡсοcΕ©Ι$`SΫάηΕ4r³R—œόK•o½υa£ά] XFA/‚ΑΰΫoΏέΠΠŒήώ ύΔ°<„΅Zm4!`Β?.—«­­mυκΥΎHύ[θsβ“ΙD[– Β’’„…* ΐ‡ΓM*#N922B~ ΩfνΨ @ΰβΕ‹°Γ»•#Ž σ”a½^/pα#nd•°‘8˜όΈΰC†JOO§xGK5Ύ?ΈΏ‘»αzμ|ΞύΑ½ρΜRψ ς|·Ώxρbrr2ΐ σζΝ“Λε}}}.\°ΫνW\qΕχίμΨ±  £ωiΈ`Γp 5ϊ:ά§₯Ύa]:όCžσω‹_όβο;J΄>όπCΉ\~αΒ…G}τ³Ο>ϋιOŠ~;:€€Δνvοή½{οή½ΡzΒ@€Ξ F£ρΠ‘C}}}Ψ?–‘ˆκ»¬¬¬9sζ„h–pAiΥμΩ³L„5ΖM WDyyωθθ(OΘ ’Υj‘SHπυυυΑ$ΟΝΝΥλυ*•Κl6#x R© ­±܈˜LΚ°Ou16$Υώ©©©>ŸοβΕ‹<πΏ8BιΝΝΝMMM<ίΔ{εηη3†ν‘\Π‹φ"0„SEDλ'ΐ©+L&όιh!œb±X pυχljΑx†ƒ yϊι§kjjBHG !/ΎψβηŸ.‘Hή „˜L&π\šΝζ”””ΦΦVFγυzF#Ϊγ–——?~œž…+―Ό2 ’@DΑ&€'α@β`ΗcΣ:Ξπ8Yˆΐπϋύ΄xŸn?Ί?‘t:°ΘΙ₯€θαΒ°•€ΓΓΓ4˜ώ$x< qiΆoߞ€B·›nΊΙΛ6e’U#ΰẁΆ8 ©©iΓ† ###ΰ·ώ‡’––h„Σι ²ιξΥF›OΔf v^DΊδmŒF# Π ‡ρ€Ύ2Π,j΅ΥχԌˆ(x*t‘ΙdπλθoήΌS§NmήΌ9pi%h]T-p&•#&'.Ϊ|@ aIι1μΨΨ%M$„ΔΕΕ 3lC ±X‘L;Ζ\S\sψ+Be)~•GooοάΉsM&·Ψτ’M@£ύ‡*ωψ㏑ŒζΓ\`…Z„DμόœΚm‹ΐ ƒtvv ΨRσˆΓrλέΠΗ#’ށ—L+"…lcΈH$0ΎBvοή}Λ-· ŠΪδΈΈ8ψά΄žŸΟ#111ZdΞS ¨――ΟΚΚbΨ*έ KνC /†aβγγλλλπCD—;Bρψ'ΤW°-€θΧ¨;H  `0Γ7μ›πƒ š«nkθ#?KoežIΦ ©ΞΙΙ …Λ—/OII9yς€@ 8tθΠν·ίξρx-Z444”——‡Δߍ7ή–ζY³fE€²σ³ŒΔANY }k¦>·νr`Ιfy΅­­ ?άuΧ]ψα©§ž:sζΜόωσ?ΒqέuΧρ EX ίο?Γ0`Ÿ¦Ÿβ‘!†ω5<< €0ΰ !δoΌΡιt’β„ΐqBZ΅κϋ_ll,[K₯RτA&„h‘R©T*ΝJ/X° ndd€¬¬ aW΄ήβBف_>33³··–’Γ•`€z½^Θۚe'‹§‚D„qΖ3ΰψψΈΫνFx0J…Ba4Rε^W`‹ΕrΉdrΑ`0Z}lVψ~άίγ RΧ‚«- ‡4΄ΆΆώπΓψ/~sώόωΚΚΚΜΜL†a’’’`R…ΒρρqΠΈNφξέ‹ο?χάsΏύοgϞ­„§Γοχk4, 4Œ—νk,`«/aροLl?t†Ε—Ή-7θδΐΰδ(—hΓbK'%%!χB±J!‚§…ŽψœV«Υj΅>φΨcO=υ!€΄΄ŠPΈα–( \Toΰ’9zτ(’ѐφφφ+―ΌA\‡*`±Θ Ϋώ‹>m…”H₯cǎ…?0\wBˆΡhΔ£ƒ. ΒVF’ƒΡ&*H"‘Ψνv䣨Λ΅Γ0B‘Πf³ρ! n ΅²² aύ,W5t° Ή˜3g]Ω`0HMdHJJ xkk+nmκΣ«Mΐ©‰€ɌŒŒ'NΰΣˆΫ l‘ΆΧ3bD ?SR½hBν0·Ϋ »Anμv†΅„J‘!ˆ.7ή(JθΒ™³4BΆα!€ΆΆvξάΉ€›ΣΏΔ°σ²θΦ±]2ΉΒ°ΫσηΟccE³j‘%₯R)œμψψxZdΛ€ »x8π………/^dΨ’’ˆΓr-ξ΅kΧβΨcΉQ@BΘΔΔDBBΒuΧ]‡»™.α‚\ އΡhT(HΘfffΎŠςcœz€Ρ(ΪP‘Οη;tθΠ΅Χ^‹Qja` …Βδδδ“'O644,Y²„a˜Ψ¦ΝfC%rπ~Οβuξ”  NZBB‚Υj &“ ―ΙΰΑύNŠhΒ)WάnwWWκњ››].ΧΧ_]UU%‰Ž92wξά‘‘‘δδδ;wήtΣMˆNLLDkS¨[Œ;Λ6O ²ΕΌAΆ Xΐ’6 ›zΰΙB‹Q ›κίE‹1 3ώ|ό/ύ‡‚ηΐ₯`©ΐΉ–₯mn'Dξ•–Ν‹D"ώβΠ‰‰‰΄΄΄†††ΦΦV·Ϋ—Bl™DBHLL̝wήyΣM7Gg4ƒΑ@[Š ³Ω tƒ^―Χ`0vuuA=Go·ΫQρQP[€ΛoώόωΤ£γ‘ΆΆ6Tς|Dθ4₯.Έ4pΰώ&*//»*Dpa;Ξ‘‘‘όόόY³fΥΧΧs4’F)//w»έυυυW]uUxiΟƍ΅Z-5 !@uK ZΉVύlψPΐ:,Y²δυΧ_ηŽΖ\ΚmMθΰ·Iρω|z½~ζΜ™ιιιpί{ο=°g₯₯₯Ή\λ―ΏΎ±±•M###ΡΖΔβϊ|>Κ†Ξ<˜Oϊʘ §Σ‰ͺa€y’\-†`οƒO±η4>)ή°BBˆJ₯:rδ…=ρΘςεΛΡ}«²²’†Γ‹˜pλ­·vvv’~‰<ϊƒΟηKKKŽVΌI‘vZ_‰ίο·Z­&“‰r}BΠlΠζˆ’››[TTtπΰABΘT¬:a4u:Ψ;vΤΦΦ Ψ~_΄Ύ₯—_~ω₯^―οννE‘9ψ]©ΤΦΦ* …BQZZ:11ΡΪΪZXXΪpNw)jm#Ώφέwί‰D’nΈahhTϋ!ΪΡΡkFόP”t IDATώΟ`ΙΚΡ’€grŒFcFFFwwχ‰'*++›šš@ϋb΅Z5Ν©S§ξ½χ^½^―T*-ΛΕ‹ΛΚΚRRR’™5°BΗ‘#GΦ―_ίίίαΒ…ššš3gΞ¨T*0ΐ-YΊtivvΆZ­–Ιd/^%Ό &-??_,ƒzЦΙ—r2ρH}}=80aE;G\A―ˆϊϊz$X£Iiiillμή½{[ZZZZZ^|ρE0«αSάΑΐΘZ,–•+W’†—G†‘졘@$°Φ"–±Σεrα―ΐχγ°³³S«ΥΒΡ³!W2:θυz£ΡΘoΪνφΜΜLΚ ΝXΑοNgbbbBBBDšϊ0τ¦Œ…Ϋ-“ΙΈd¨K€¨θΙβYMΈζΐEΆΰL&“F£1›Ν!ξ|°I}’ˆ`9δωΏ6<Ήΐ#•JΏύφΫk―½ΆcΔ—_}υˆc!:nhhˆΆ8 rψS)_4θ€)Ϊ΄iVBΧJ# AΊ‡Υ§xχh£ΕΔΔΰΦC;WD )H V‘—νσF ί₯δBϊoΧΩΩωΠC1Z†m΄ƒmF§±±±hυgPΆPΘθQΦΥΥ…hœέn·Ϋνψξ%&‡ΦΦΖMΪB.1μZ[[Σ€PžlΪ !€»»;-- -³"~all,--Ναp€Žˆ'L"~Ώ?--Νd2EόtηΝwέu^OΜ²Tσ™`8ƒzγ³Ο>‹ψΉ\R©hUΏR¦βρx€Ρ‰ψ)ͺ.ΠBΩž‘N:…―!υ.o*oΌρΖoΌAΨ²Ν?ύιO₯₯₯`7Ε^„ΰoΑΖyΐΑ|葇ͺ««Οž=q±NŸ>:€ωqχΐqK₯RžΨ!D―Χ ©ΥκgžyζΊλs:π–ΚΛΛΡΌ«« Q½ςςς³gΟͺΥκhcZ­V a~χ»ί½υΦ[0λ#ʟόgBˆZ­¨¨ˆ‹‹ϋψ㏁υZΈ\sΝ5„άά܈ΨψE$₯§§ 8έfy ;!Kτ“έΩΩΙoŠD’΄΄4»έΎgΟ­V‹L7n5zΙ!x0<< Φ.žΡt:2bψ_tp (μ‚χΟ0ŒΡh—,Ζ—ΙdˆGΕͺΟ /mΆώjxw4`ΰsqΚS‘ρρρhOΘŸΟ «…†O„lΏDΒfΑ*Η?šΕbq8XG2h“γχϋ,XpδΘ~ιiooΏώϋΫΫΫg͚UXXΨΤΤ„bpš”Άx||όδΙ“λΦ­γW_ :’’¨CHυRd$Γb»φφφ^uΥUνννΣšΦLII°ΰͺΥ›O*•ς΄ „ΠˆίπΨρρρHΈΓͺ£@u„βΰNs―aSa4/^Œ-d4ΫΪΪΠΗ‘Njάΰ’B˜Πl6ηηη···Gd9‘"“Ιΐ|Kyωε—ωί‹>ͺοyΎΌίν㠐?ήθ-Ε¨δδδ€ήφ^°6Ψξπ‘@M2cƌh+.`ΙG„CύŠ\.‡eσ%ΘΦ/#Ύ?VΘΆήΑΦ Ώ»ΆυάθθhBBBBB‚€-U†Ωδσω€‡φz½ £££.—‹R G΅po–@ ΐΣnΟΰt:sssϝ;ώ…ττt΅Z}βΔ BΘΠΠΠώχ?ΎIgE―Χ#VΒέ™—θΚΡΡΡϋίyyyjLͺΘ^}υU‡Γa·Ϋ#>%!δ½χήλλλ‰DhOšΓ’WΰαΓ‡322Ž=ρk'Ož|λ­·M˜ΊSϋΕ_X­Φhκ©»»{ppππαΓψί)x°ά±cGSS}λ<κ}’¦με—_6 αF-nA—ΛεrΉ6mΪ§ '>$ZΑ)!€ΉΉωτιΣ «V­’Ιd΄)4©ΧλΕ=¨ΗΎ}ϋl6ΫΊuλΈMάγ?ŽΰΝ–-[JJJϊϋϋ‘ε±jΘH$’oΎω†ςψγλtΊh{ιΛ/Ώ\°`Νf¦amr)@‡fŸ !£££_}υUVVΦ‘#G€Rι|ΐσ¨T°ξƒαΓ?|ύχ !@)*½½½ί}χ ͺσ_π˜η;wζδδ\Έp!š3ιμμT(kΦ¬Αo’iηδδdƒΑG6š|πΑcccΤD^²dInnn~~>ς&&&ς£MOFς΅Χ^ϋώϋοα–Lz6ρξ­­­΅΅΅όvƒ@ ΘΝΝεΡ›TΠCv*€μΙΠА^―OMM•J₯½½½Α`0>>^«ΥβΪ‘˜ίοηι Meο޽ǎ ²_žob§½ϋξ»b±-|&ό[^JHHxι₯—ήύ­B•U0,,,DoΌ ©­­7oή<@™΄l™Κλ―Ώ~ρβEάΣ288ψΜ3ΟP)ΓςSB;™,//οΓ?$SP݁@ΰμΩ³"‘I1TJ Aϊ }’œN§ίοη ύBΠW”rΫm·=υΤS±±±‰‰‰ Ό@Γj΅"Ωνt:υz}{{;7QN:%‘Hhόžζ7Ι₯$½4ΑBωόσΟ«ͺͺΐΗQŽ9Β0ŒΕbΑE+%€ΠγǏggg‹Εβh1aχΙ±cΗώφ·Ώ-]ΊΕˆ’K, ƒA‹Εςή{οΑͺ£Z‘«WΉηΕ_lhh@ R₯RΙεr™L&“Ι‘vΒd2uvv …ΒώσŸ„ΕƒF|Ξ½{χ^yε•&“Ιb±<σΜ3Έ7a»{½^€ΚΰΌy<δ.vμΨ‘——wφμΩhοήάά,•JiύΗ€ψ%Ό]ggg ˆ¨LΎϊκ+NGc:!6eψDσωηŸ/_Ύ1“ΛΓ?|ΰΐ+ΈwύυΧοάΉsϋφνSϊχ— χ)333χοίυΧ_ΏρΖύο}τѐ/σΟQΈΌψβ‹O>ω$aΡ4`ϋφΫoOγiΧ] 6νΉυΦ[φ·ΏMc@ΘΚ•+λκκž}φYϊ›’’’νΫ·£"rzsΙ’%ΫΆmϋτΣOρΛ˝ΐYΎ|ωwά2Τƒ>=˜_θ>|ψΐ[·nέΊuλΎ}ϋNž<‰ΔOt_‘ ‘htVS΅Z­V«ίzλ­ηŸ~υκΥj΅Ίͺͺκ³Ο>[Ύ|ωTκ1£‰V«]ΈpaII‰N§ΛΛΛΛΟΟGptΪB~ρ‹_lάΈXψψψ;ξΈγα‡ώ1ώγί9ύλ_ΙΎ¬˜αμœ¦.dΊ§”„δηηοίΏΛ–-›6mzψα‡π‡?μΪ΅kλΦ­ΣP«Υ^½ϊΩgŸ ƒ·άr˚5knΈα†ΊΊΊ_ύκWΛ–-›ή˜τυ© MJJzσΝ7<8νeJLL|ϊι§I€Eω«ωμ³Ο"&Νp„ϋιΚ•+ΙdhZ*ά§ιtΟ<σLYYύMZZΪ½χή 4ν΄Eΐ6€!N~œΣιt«V­zφΩgί~ϋνκκκκκκ?ώρO>ωδŠ+@²==Ω΄iάBlΫΆ-€ ζr%..ξόŸ³qγΖ«―Ύ:66φΊλ›4H.άιR«Υ .dF&“­^½ϊσΟ?―¬¬ΜΛΛ ζεJBBBiiinnξ’E‹&νΣ3©nέΊU«Υ–”””––*•Κόόό‡zhzͺ^©T^½ϊίώχš5k”Je\\œJ₯Z³f͟όηυλΧsi~/W%ωεμΩ³§=&w >ωδ“ 6<ρΔSω‡‘5΅X,ξθθHHH°Ϋν‡v8πh“’’:;;•J₯έnŸ5kΦTPαT`J—––ήvΫm7άpƒΡh4™LoΌρFSSΣ’%KδrωΕ‹Α€5it„ z(,,¬ͺͺBΤ'Δ`χz½wί}χηŸΏP—¨¦¦Ζνv{½ή·ήzλόc__Ÿ@ J₯σζΝ«ΞΜΜά±cjv¦˜±₯2ώόδδδ»ξΊλ±Η#„€OΘησ>|˜ΗΣβxήǎλλλC>>>~ŠΈυh2<<ΌmΫΆšš½^9™7oήƍ_{ν΅iŒF₯――ο'?ω‰Α`πω|₯₯₯ηΝΓsN#\ρΙ'Ÿ₯§§£“ιΩ³gNgee%ͺƒα_ϊΧΛ/Ώ<|•ΒΒΒψψψΪΪΪϋξ»ο7ΏωMllμΩ³gυ―υχχ―_Ώ —ϋ¨ΩΩΩeee – gll Ο@ 0)ΐ?’ά}χݏ=φΨΘΘΘUW]uο½χ AΩ΅΄΄άyη555>ψΰe ˆœ———œœ<<<,dΫΪBf͚ΛRτ˜y…B±xρb†až|ςI΄>DΎςŸόgZZΔ7’¬X±βΝ7ί”ΛεmmmO?ύ4’ϋρρρύύύƒ»vνWκΤeύϊυ«V­:rδˆΟη[Ήre{{ϋβΕ‹}>_GGGLLΜΪ΅k7oήΌnέΊΛ“¦~ΆnέZUU΅nέΊŸώτ§6lθμμ4›ΝΏύο<‘Φ‡_ΜfsZZ Vψ(1cF8λ8ΏΰTΦΦΦru)h•½{χΪl62εΔ=k=φΨΌyσ·mΫVZZzμΨ1 ―_ΏώΞ;ο‰D/Όπ8™O€_šΆ€›Ζ8„ΪΪZΤ΄ΆΆΖΗΗ_}υΥ^―wώόωΑ`πΎϋξ›˜˜X»v-?Έ0D6mΪ΄yσfœχ‘‘‘žžžƒ̝;W£Ράyη?ϋΩΟ^zι₯έ»wOγsrr! …bνΪ΅Λ—/裏&M‚… gžy&>>>33³««Λl6ηεεΩlΆ+Έβ§?ύιO<Αƒuα‘δδδ_ώς—‹/Ύϊκ«oΈα†Ε‹?όσf³ωΡGmhhψξ»ο.k4΅Z½jΥͺ9sζ θΩgŸ₯ΆΆV.—―X±βφΫo·ΩlǏξΉη¦8ζόωσyδ4Ί\΅jΥΪ΅kχνΫχΙ'Ÿ444μΪ΅«’’bωςεέέέ[Άl!—–ΏLEl6T%W‚£κ²^œ k͚5χάsOqq±Σιτω|λΦ­«©©ιννεΉέ"hκκκκwήyG.— ‹€5’Ηn·[­VƒΨI*•ώε/ωλ_:υ§άΌyσUW]e2™Π. ήύ7ί|σΘΘH|||QQQLLΜή½{›šš&½ιNœ8‘}ςδI‘PΈ{χn†aFFFητω| RΛΜΜt87ί|σTόΰƒrssm62ϊYYY‰‰‰‡£ΎΎ]&KKKwοήύΚ+― 0υX΅jΥ›oΎi0P ŒΘΘΘΘO~ς“©.·ί~ϋŽ;πσόωσ•Jεε‘pioo‰D―½φΪΛ/ΏόψγϊΧΏΦλυK—.ύ1cvuu1,‰6(‹/ξοοŸ”Λ DΆnέϊΘ#ŒŽŽβξ‰Dhυ›””δrΉΠ{W,k΅Z4{™ΚΰΙΙΙ™υχχ{½ή’’’œœ½^ίΤΤ΄~ύϊ§žzκΑ„‡pYφbii©H$ΚΘΘ8wξœΕb_d·Ϋ“““­Vλ4Lp₯Ryϊτiςbcc5έn}Ϊ™3gΰ .]ΊtbC*τuvνΪυ駟"₯EεΒ… Λ–-ΉΖΤ—‰Ž™ŸŸΝ5ΧΌυΦ[O?ύτwάόbRRΡ£G/χJž={v}}½Νf+**ΩΊukvvφ―~υ+p;χέw«V­ϊϊλ―·mΫvχέwOqΜ²²²Χ^{ντιΣΐ Έ\žžNWVVf±XsrrRSSNηοϋ©?*R<6lΈώϋυz½\.Gy>*6ΆoίΤ™ŠόχΏύϊλ―C&<π@IIΙύχί?ΕAΈΖ"½½½t}Α=„p —΅τ―Ός ˜άnχΩ³g_|ρΕ™3gz½ήχή{―ΎΎ»¬¬¬'Ÿ|’' Q}κ«€€€ΉΉ™rμ]ΦLΉϋξ»_}υΥΎΎ>(§Σ #Ξ6θKSSS·mΫ6Ε δα‡^³fMyyω‰'.\HΩνφ'N”——·΅΅ΥΥΥ=ςΘ#—υ΄%K–<ψΰƒθξξ^³fΝO<1i™vD½ςΧΏώPZ…Ba6›U*Ull¬ΥjU*•―ΏώϊιΣ§/7lqΣM7mέΊ,-Xex „£G–””μή½ϋž{ξ™βhJ₯ς‰D}}}‹+‚‚β΅kΧ:Ξ¬¬,@Š΅Z-eΘγ—'žx"99Ωιt"3.,KFF‰D’R©€šJ0(\Ύψβ‹W^y…bΊž~ϊιΚΚΚΥ«WOc(ΘύχίΘ#€ή…½§OŸΎνΆΫξΉηž(C„ˆέΨؘH$²X,¨Χ9;\Γ€€$ΰGllμιTΕ―^½Ϊl6¦ŠΈΤSSS»ΊΊ²³³Ίκͺ¦¦&ZwΝ?ςW\2«3fLLLόιOBvœ8ZI‚ΝξΞ;ο Ή±Έ‚Ώ΅rεΚ‚‚‚‘‘!dρϝ;χΝ7ί $^ ŒŽŽƒΑβββΑΑΑββb@vƒ©ίO€H‹066φΗΓkΈ <:::uŒ ΰΜάrΛ-3fΜX΅jL¨3য়~ͺR©hλBˆD"ΩΉsgEEΕεϊλΦ­ƒ%‡λ˜©Tj2™v8©©©?ϋΩΟΠ@eR …•••ηΝKJJ2 ©©©"‘Θh4ΜWRRΪΪΊqγΖ”””κκκC‡]–Eβp8V―^6Ph Νf3]§aΨ]ύυ ―b¦ΎΎža˜3fœ9smΩ\.—^―Ώζšk^}υΥΛY$=ςΘ#»wοφx< ,ΈνΆΫ€₯ΦΤ‡ΒΉP«Υ³fΝByzzΊΟη»ξΊλ^ύu‹Ε²eΛd§.ϋΫίΗζΝ›«««U*Υ‹/Ύψή{ο}ύυΧGŽ9ώόoϋΫ3gΞ|ύχ—ε&ιυϊˆD’όό|£Ρh±XΠWΝl6755₯€€(б±1~6–pAˆ 8­`0h΅ZGGGAQ„²‰ˆ(‚)JyyyˆaG›\MQθRΟ?­)€RiRRxοΐ-¬R©ΖΖΖvμΨ±{χР6$%%]Έp1εεε‡λυθΒRRR‚?ΓΓÏ<ςΘΤm&jωύ~₯RΉpαB“Ι4ώ|„κ œŸϊ-..F< θAΫ δ>ε ρx<4/9EωΗ?ώ‘P(Š‹‹u:έΐΐ€B‘θοοΧιtz½-_{{{§gΥB|>_QQΡ§Ÿ~κχϋΏώ{₯R9=Γ244”JeggηΘΘΘΌyσ–-[& ›››Q¨{ΉΣ<ΰρxΠ²bΫΆmwέu¬Ί[o½U.—C)]{ν΅”C›_nΎωζ‹/:(:`ΰ!2™¬ΌΌό“O>Ριthω…ƒ΅΅΅όc‚ΑJ£Ρ Œ±*³Ω¬Ρhl6φ˜ΥjΦ&”_d2™H$ΪΈqc~~~CCΓν·ίž””$ 5M4 ώ€2ώ|Š4‰‰IIIIHH8uκԜ9sx »ηϟ裏ό@φέοχcZ1G₯R}ωε—SδUΒ-ΎpαΒΤΤΤδδd‰Db6›ΗΖΖjkk-Z΄`Α‚ΖΖFxK!mR# nΦΏόε/ ς‘ΙdηάΉsuuuυυυ.\hjj:sζL[[›Νf‹‰‰±ΩlS)±ώΝo~311‘T*QΧSRR²xρβςςςΉsη.^ΌxΥͺUΙΙΙ0g΅Zν€ΒΕl6«ΥjJΘ¨ζβΕ‹/wœY½zuee%~ήΊu+‚"?F@1811‘””΄zυjΗƒϊŒi˜žž^]]m±Xbbb­DeeQQΡΒ… /w4 šΣ’f"LOJ‘DΉςΚ+ΙJv!YYY6›Νf³‘r ι΄΄΄‚‚‚΄΄΄`0(“ΙP“‹.Ι—υ΄£££θΆ “““Q#¦T*΅Zντ f+V¬P(ρρρ}}}sηΞU( ‘; μ° L}@ ‚T©T^―χΆΫn;rδΘ‰'ž|ςI(¦ςςr2-(€ΫνώΩΟ~vΰΐ4μΊρΖ,XPSSσν·ίβέ/kΜ€€$“ΙtΣM7ύζ7ΏΙΜΜ\½zυ«―ΎͺΣιξΈγŽαααΖΖΖ‚‚‚ΖΖF­V;u LΜgžy&##C&“Ή\ήήήϊϊϊ³gρ3f?~|Λ–-Σ!\{ν΅ΰ BqeLLLff&HJJJ¦1 !D h4šββbϊ›¬¬,NwΉ9ύυλΧΏςΚ+O>ωδΰΰ`}}ύ™3g8έ><<άίί’Δ›oΎωύχߟΊ­\XXˆf ¨?€Άζ›ozzzPŒβρx@–$—ΛΉδ2ό‚X…J₯*--΅X,ί~ϋνιΣ§;ζv»q_ Α2υΧΟΜΜD-v₯¨₯ήei™˜˜ ŒϊS—ššπ ‘H΄sηNt™S©T.— ¬oΣ“ .PV9@π#±kn·»ΈΈφwvvΆέnί²eˎ; Γ6ޘϊh Z­εΙ+V¬°Z­===@«ƒA‡Γ±vνΪ©ŒvΕWh4‡Γαt:iΑ8Xy ESS@b>ŸβΜ9xΊηAV­ZΥίߏͺ[Jηρx’Q*• ΫS*---ε-Ώ [zλ­·ΎπΒ F‘PLƒW+ΙΙΙ)))2™ ΄πƒƒƒR©”ΨΘ+χδ“ORR‘HΦ0ύ€‘Y,όη?'“u …ΰΌέrΛ-‰D"‘h΅ZD€έnwcc#εkHLLT©T‹vχ€A‘ŠŠ ™LZQ\Ζΰ‹‹‹‹‹Cω=Ί}ΗΕΕ‘¨vˆ(0\μv{VVVyyΉH$h4‰‰‰j΅Z‘PΔΕΕi4šŠŠ ­V;kΦ¬@ 6ΕΛ ή€χW;ώ’T*εo<:©0 ³qγFč—/_ΎtιXӐρρqΰεQ«šΈ©άΡdσζ͈υϊύ~°QΦ΄Λ ΫΆ–•°Άε7—ΨΔΔΔΤQGΉΉΉIII Ιdo€’4 w:ΩΩΩ"‘θrQΥN§sήΌyhN•”””˜˜ˆ[UUΥτάΈ’’"ύτjC”±££#555 rAλ“ ¦N‘P€ΐb±œ9s†2γˆD"\!—΅ΥqκΗ―ύkNχΟώσξ»ο7ήxγ‘C‡:τ»ίύŽ\fT@©TŠΕβααα΅kΧ>υΤS»wο>pΰ@VV–Α`Πιtϋχοο«P(‚ΑΰUW]5υaιΓ™šr»έγγγ2™lΪΆR©DLΔΡqqq"‘H©Tj4†aΒϋ5OQ†ιοοη6Ά²Ϋν6›ν²HοζΝ»iΣ&° Ϛ5 >Ϊ’ ]D"‰ΝΚΚΚΚΚj΅<πΐTP†>ϊ¨R©@—θ*@J48˜&&&ΖΖΖξ»ο>ώV+\yώωη·oίώΪk―mΨ°ακ«―NMM-++ΫΆm۞={–/_>υΧ'„ΠK˜αQ!>ŸrεLύρ¨ ΦŠŽ°}5QZ #²ΦMQΠc·ΈΈX*• ύH υ‘C‡\.oέn·L&KKK'φeΑ !₯₯₯΄p[ρ6‹ΕΦΦ?\ π_ΑTΤjuFF†\.G[aπΐV«uxx8##Θ\.G©)νMΜf³ΩlNNNF_ΈΗ±±±Μ#ΦHΝεiΔΤ=ΟͺU«JJJœN'V-]Ί”rλLCG'„ κ&W™L–’’R‘" ;­Ώύνoe2Ϊ!c\4βπϋύ2™μο;ΎuΙΘΘ@+ΫS§N}όρΗv»Ξɏp3Β Σ4€ΊT»ξ:Π?‚Λ V8\…Λ}T†a`#ΆΆΆj΅ZTΧƒ¦?&&^W{{;Γ0ΡΊ“…Krr²Νfϊ ΄I„©TŠ6 gJNN.++λθθ(**Ί¬εΚ±cǜNηΩ³g‘™:uκT]]έԟ+yyyΰ)3gNffζ₯KΗΖΖT*ΥμΩ³ς“Ÿΰδ—––N±’‘ B)0G2224 e˜†MO«%IMMΝ;οΌ“””„ΰτΩ³g=ΟεVG"΄ΰrΉvνΪ5kΦ,±XLyΤGGGFΝΟΟONNφz½4€=uB'πϋ€‚6‹Ό¬θΔb± <ΰt::,ΛΆmΫΉζšE‹]±±± .μΩ³|{φμyν΅ΧŽ9ΒC`. .uNJJ 퀇+->>>!!κ΄΄T£ΡX­V‰D2•...+!Δύρρρiiiεεερρρ4D†‡‡+*νφ7Β IDAT*Π3`RωψγW\ Ί₯ŠŠŠ+V|ωε—›6mš={6¨Θόη?_V-Ά4Ξ8 ΧΑͺ#„ΐEcκcBΎύφ[Χƒd#8₯Ri4iΧ’ιΙΨΨβ@Qq "ˆ¨ " Όΰ`ˆ,™₯ΆPΪ½Σ¬¦Ωi“Όo/BΉοππ+i{υΧ8ΗqGRRRjjͺL&£βZ̏ψ’’PΊ’e{2 dΛ+V¬HHH`Ξ4ήΥΥΥΡс–ލ¨(œ‡.@PTTtζΜΤ‡V(€EDDΤΦΦ‚Ώ½¨¨(==½N«Υ"oY° X,ˆ23ΌχPknnΖ B€όƒμ‰•i4₯R Κ6δDF#ΔΦ…Bα9Ε‘v«'N ?ˆ>2t+ VD'„iΣ¦ρω| ~T*• GyΐUBˆΙdΚΙΙ™‡Γ¬X‰τš?(VFύΪ«qμ6lΨ€3žζ?(ƒ<Ϋή@Π₯Rϊ_Π£’2Tˆ‡ΟΕ$sSZZΚησϟ?o·ΫΡN/“Ιp Μ 6™ΜΜΜ΄΄΄™3g2ΌZ…B%‹ί|σ͍7>ϊθ£ΕΕΕόρG{{{gggVV[6»δδdNΗγρvνΪ₯V«{ερxJ₯2##Γιt‚9=!!a.„„@ιϟ?£!{LLLTT”Γα@‘ŸU†€ž χή{οΐΐΐΈqγŽ9ςΫoΏύπΓ_}υUFFΖOΤU*ήWOOOUU•R©όϊλ―™`@].W{{»Λε’H$έέέ‡Γ`0 τμρx4 ”β=:₯.©ϊΕΔ"##£££Υ\e₯kΨ°a‡γάΉs@rΉ\8uww‹D’!@A—ή­pβξΪ΅+**Šζ–ΰ-ρxΌ‹dL™ΨθΡ£!K·{χn‰DjΓq8ΰ§–J₯€IRPBHrr2:˜Hˆh κJ‘‘‘R©”βQ†ήSRR°φττDGGSO€΄NLLQ΅X,fΨbjΰτηrΉ:‡GΨh›Π1α,:ΞΘΘHtn_₯‰D"Š]ƒΰΥκ‚…$ΰΠ5/Ά”˜ΝΰΓDςΥύ0o­ε “4Ζ―ΏώZQQ‘0yςδαΓ‡cσE Urlτ½½½EEE}}}7ndΎ4ΝΉsηΔbρ† > .žχή{οσΟ?7™L4Όcn™™™ΐT9N4ͺCŽΦΦ–žžήΩΩιρxL&Sεψ={φ`σEœM …±[o ―#--ν₯—^U^^ή΅Χ^{Ο=χότΣOπ;™7O πΕ^4lΨ°μμμψψψ'žxΒh4N˜0α«―Ύr:oΏύΆΡhDbŒΥ₯+A˜ν .—k΅ZŸcwž3gp”tžΖ $\ΗΞΦπαΓ»»»Υj5v!@χ$ σΠ+77·³³Σησ%%%Φ nΩΐΐ­ρρx<™Ls:55uθνΕΤ[/\Έ000Œ„ίοOLLΤh4t@(œy­sǎ‰dΨ°a\.χ…^ΘΛΛ{ςΙ'Αα7„:Β% ₯φΊΊ:δδς‡!·zςδI‹Ε0«‘ !hεσωz½žΓα@ΰΞεr…ΝΔ>|8Ρ’££1QΓ¨™R―Χ;vμΨiΣ¦‘A066V―ΧsΉά΄΄4ΪΚj–FDD455544pƒβ³8•°KBL&ŸΟg6„-²nέ: £B wΠΠ 22›Ν„Υ7ΌΌ<δ !Κ‡Z­΄―υυυƒƒƒ"‘šζƒA‘P„α7ϋ|>Ηƒζjl‘Ϋίߟ””€T*»»»Q…‹Εθοβν\ΪΡΑ‹7 ¨m…~+Όύ(33dc;wξT(@Τβ_G,Ϋl6»έΧλ™ΰαB’““ ˆΑ‘†Ε‰;—ΛΝΛΛ#—WP3νξF£Tx>τΞψ|Ύ .Πs‹νΣΐ\ …¨ρ±α"“H$QQQΡΡя'ΌVν‹€ςΖx˜αˆ°P$ N€0ΘEqwΫή'₯Θz„Ο Al­­­χέwŸίο?xπ φJIΡΐΜ J₯ςπαΓΜ©eQ&@km^^žΓል‹Εΐ3υšΥνηδδH₯κκj°ͺφυυAkΩ5‰DRWWΧέέ­ΥjΓΖ͞=ΫεrJ ό βW†½l—΄ηŸ>!!!..nϋφν{χξ­©©Ήλ»NŸ> Dσ^N‘PˆψΚαpόϋί–ΛεΘαa&&&–••½τK555\²νD ˆ6±XŒ800VXΆN-—Λ¨ˆͺŽ’M.—cs ―Ά›””τηŸΦΤΤ`b000PUU5τώv‘ιtΊœœF“˜˜m΅Z£££/J\!Ÿ+—Λ!Ÿ?bΔ&IΏFj ΚΑΑA«Υ †ͺ Š»β‚BƎ²gϞΦΦV¬D©Tκt:ρ”J₯R©¬¨¨0™L±±±H ]ρR/2\ ΌΒ½ #Ξ„i΅ZƒΑ€xηrΉΐ;ˆTύ9ΕK? ΌH™LFίhθΤ£Μ,!ΝΔb1x4Π':ŸΟ{τθQFC݈!,tͺ3†*©sƒό·ΰUFͺ žΣΠ³³   ΔΕΕAΙ­$X4€?600  υz½Χλ)«ή™ωση#7KsW‡C*•2μΊ€.uX·Ϋm0ΑΠ[π μMΨγΈAιnBHΨ „€θ°iβ x·l{» Ώ†ήoΫBpΰkγ2d+°Ϋν>ψΰš5k MWΰœ£rΕΕΕ?ύτΉ™ουGυz½ N§³¨¨¨«« DΚύύύJ₯²ΊΊš-ͺώ±ΡhDZ£Ρ 6ΜλυŠΕb$lκλλ[ZZΈ\.sΟ·3{φlšV΄Žj™υΥW‘?ΙΠπ$‡ΧλEkδΜ™3Q‘€οΉg.`ŸΟ———7oή<xlίΎ=''ηρΗΟΝΝ=rδˆL&»ξΊλΌ^―@ `/‘ίΘj΅‚IX§ΣAD"‘P§–•+d* AΆ5Ϊςέf³%$$̟?Ώ»»οb˜]ΜΫ°žx≻ξΊkήΌy+Wt8 €Ιd4q…,""’΄΄΄ΌΌ|Ρ’E3fΜΊωL©TrΉ\©TκυzΫΫΫ!Ν.‰¬Vk?h_>©©©Aƒα5Γ[ΒιŽΞ`N0'Ω"•±[ζηηS(<Dο‹e€Ilz©Νž=۝ΣιDΪ222j΅"`c@#žŽΆ02v$Έθ&MštπΰΑ .tvv¦§§O›6mξάΉiii"‘hώύ$dm29ŽQ¨­­ΝΜΜΔΖNΏεrΉ03››› !l+Tp_ΰΑsΉ\ e\.:y…B!B―+ζΤ‘ΥV«Υ^―ΨΚΎΎΎΚΚJύτӚš›ΝΦΧΧGρώ΄vθ1qdγLŸ={6­w‘`‘<φ%†α]nΐkΕΔΔ»έΉ‘Pˆ Ξd@–εζζ666’ΟιtΪνφ€€€ΜΜΜΖΖFθ&ˆD’ΆΆΆμμl‘HΔ6Γ:nάΈΘΘHf'‹AzΒjj\.χάΉsΘPrΉ\0…ωύ~·ΫέΪΪΚ+–_gyy9―4˂̍ΗγA•‡αMMM’’…KΈq111ύύύ€?ΣΤeoooJJ Ηc²/γ:AΞI›}8k„Y=;‹Ε£P(ΰ&rƒ<΄Β š΄ΜΜL—Λ… έΩ/ϊ+˜ˆθJAuΙησΕΗΗ3δŸηm§xλΜγΰKZrr2Ε½<( Θ…aΛ–-C# ™6π€xΰVCΑnllΔͺΛ(ύ.βοΗ{μΜ™3„ΆΈ@›Ν†U–€―°>Q `55·ΫΜJeeeFF0‘@ ° »g]]]AAATTTBB%Νομμ΄Ϋν·έv²ˆg˜ΫψργA% αΗό7ήΘj4ϊRd2Ω¨Q£δrω±cΗNž<ΩΫΫ{φμYͺεΐpQ(θ^Έpα±cΗ Ά¬ΥjΛΚʎ=J™’κκκmbžJ£FΒυ(•JδTμv;Π΄}}}‹-bqη„BΰαΒ½£M]™™™$,}dBHRRRuuυΦ­[›››±VTTx½ή²²2D€ ΗαΫ±—,YΒεrΑΖb·ΫΑμ/ΒW]1a©P(’’’βγγAQδŸΟηS©Tn·Ϋh4‚7R]?όπClllii)s·I$!£†α6‘PU―ΡhlooΗVO‘πtb‘d¬ΧλAοΕjδΙ“'£>ΆsΌw|=000}ϊtΆ— Μ†λzxΜŠ‘η#!dαΒ…S¦L9rd__tΉ\.ήΈΣι5jԝwήIχŠsU.—S άν·ίΧλι…a'Όώϋ!‰Π7ΐšS¦LΑΫ‘H$8ο¨P(jjjΪΫΫQλUΐkθΕΰΰΰŽ;Ž9Βφ:SSS!•ϊ‘έn»1φΕ_\΅jUzzΊέnG+RTT”ΗγΙΛΛ»ηž{†θ;j­>]«ΘTQ:‰DN†΅‰¬¬¬ˆˆ₯RΉgϞαΓ‡C%\oo/Rί …π£½{χ‚[θŠΰzΛB‚NŒΦΘ™μwh5:rδ8NIˆH‡Ε­Σι$IlllSS«³9!!ΑεrΑG$ΑL˜ΗγΉ}!Ή\ΒOtD‚Ί >a~±5s‚47δ*:·ΛΚʐ¬₯ŸΰyΪνvΆ™\OSSΣ₯KΙ‚ Ipט={6ώlσ"΄Ί9Ό | : V£Ρ }Ϟ=?ώψcMM 0™wώ‡—ΛεJNN†ά!δ2I₯ΔΔD”‘YH`QΪ—Γα ,Ζκv»!wΘυΤSΏώϊλςεΛ‹ŠŠήy睊ŠŠE‹‘—αC@VipppώόωsζΜ™={vvvφ&L˜PZZJSt•••Θ‘0χιGŽ Ν΄ θ―[jjjgg§ίοg›«F`€‚KB}jx+pOII‰DO>ω$ΗϋϋοΏU*UMMMmm-σm„ΎGN'—ΛAw‚“R"‘`ηΔu†V*‡σ›oΎY·nέ³Ο>ϋΐ 8‡w %FtΔcΥ …B±XœœœόΔO 9š‰9N4±2mk ₯kfhΕΕΕ .D9w-‰’’’!c,Y²$''gα¦KZ\\ ”ύA2> /SK½hαa£ΊίŠzα… ΪΡΡ!—Λ»ΊΊš››QJ2›ΝώωηΏώυ/ΠΒ1)PΔΖΖJ₯R΄H₯‹Π5ΘAυ°qFaV9N«Υj0φοίίΠΠ€JΘ_τ½β6ςγ?[·nŊ~ΏάΈqJ¨†’¦««λ£>:|ψπ?ώΘκR!*―ιυ8N&TAC(œP-Δ:'ΐKςžfžZ­ξιιΑDΔ„€‡η8'†»|zzΊ@ ¨¨¨°Ϋν#FŒ"[­VCj}Z­ϊž6›Οη'&&^1ΙLW‘)=ζQH " ±¨vξά ΗS§Nα2°+…HεΰθΡ£‘Ί]RRΒΚ―­k ƒ–ω ’sH,!FΉό"M^=νW‡άPxŽ?m†$ΈΕ‡.cVCΡ}αškΑ‘σώDBBβ{ΆH¦Π-/δn!•. g<ψ·’££›ššrssA)†c'P?β₯`©T*(ndΒκe!%‰σόZ‘PθρxΨ*Ώα]-_Ύόγ?ώυΧ_³³³όσΟνΫ·8p ΊΊΊŽ΄T,cE―_ΏΎ   ²²2'''>>ώ©§žB‹¨\.=ώΌΗびΒpδ±cΗ’½Z=xn~ΏμΩ³ΩΩΩθfKlώ}τ?θ.:88x5ΩτΈΈΈώώ~NwδΘ‘”””’’"ΤΚ «‘1™Ρˆ4x³㠟ΟgŁpδΘ‘΅k׍FΪK{ΡΪ€άμhd¨6N b»΄Ε˜ξNN§“Υ8$XνΫ<>‘e$V±/ΡsšΉ%%%…:pΈ_‰D‚h!/§ͺͺjϊτιΘHΑΛΔη4WG‚«Θνv?ήl69ς΅Χ^[»v-“‡Γ+GόJ‘Ή¬η?M(bο€σ!¬«$L’j]xͺ=CΙX`4 Π†sΟ Κ@'F^^^ ( KΛε’ΡX©TΪνv/˜κ5PΈ=<ΚJ·ΫέΥΥe±Xτz=Η{γ7~ϋν7BHOOO$Hԁb­§§ΗνvΛεr«ΥZWWηυzνv;6YΒ’ >²\8αΗCΆrppΠd2±Β}#γώτΣOόσΟχή{oggηθΡ£ηΜ™σπÏ5 \t ¨`xπ;­Vλ‘C‡Nž<)—Λ Ώψβ‹G}tΦ¬YoΌρΖΉsηzθ‘%K–X,³ΩΜΌ)x̘1n·»³³3""Βb±ΐχŠŽŽζrΉ:Ξh4²Υ‘ωBd˜°bM] ―UBBBmmν‹/Ύa•JTά΄iΣ$ sŒ5°#y<HŒDFF*•J$GΙ°Š=°333ΑœB‚;0/¨Lˆ/€?#!υAζW‹υxΨ&ΌΊ6!Δh4β6©ΒΐΚ8γq;l3Lx ΄Ί――  Η„a:ΏΏΏ³³'ΰL¬\ylζ3gΞ7n£Ρxί}χ₯§§6 νΖP]§N‚όŠ» 6dee=ψΰƒS§N M²Πΐαn±XV―^ύζ›o²Ίq€³»»»;::Ν;·{χξ_~ω₯··Χd2!9‚4“e…K7nœΕbAqάd2‘s©zBŸΟ‡Ά«f)ΨΥ,νΛZL'd—©NϊvYΗ.++‹¦θB ³ŸUc‹P(τω|ώω'!$T$‚Ύ„@ JΗΥΥΥ…œΩ.Λ%„$''£`Z7$Α »*έβ‡ήD¨€™DΓMn‰6šδ‘ϋ={φ,(‘™„iηρx {c"ArΔ‚¨žπω|Κ0ž!€ζό/ʐnΗl-;;e©‹p΄PΕ*sΊήΐ€ϊ]V£QCƒD"‰ŠŠj΅Z­V,+Š0ΰ&III ΅:Σνv»έnμ›rΉΌ§§;„1Υ lάΈqͺbΧΰ;Σ€BŠJ]dϊΧΏV¬XΡήήώ裏N:uι₯ϋφνkkkΫ΄iΣΨ±cYαS³ινν½γŽ;žzκ©„„„_|±©© ΎUUUS¦Lyώωη7oތD#σς°tΫ`ΕbinnΞΟΟ‡ϊ«zΠ΄XF#eά Ο8N_ύUUUuθΠ‘•+WVUU•——k΅Zh62ŠΆΆΰ"ρΊλ@Κ4(“'OΖΟ3Ή}Œ©V«ρ^•g€ ΆΌ|Βόš±ΡΡ (Mέ…-c ”3 ι€½wB‘+ˆm§š4η1€E IDATiΑ'22όY˜ agƒRSSΡJ›Ίΰœ±ͺΖβ KU^^Žpkωςε=τ$°ΠΑŠ^©TΗ0κ› qτ½ΰV*ΠσηΟ―X±‚ΆΨm˜o@€υπšk)--ΝΝΝU©T7άpRŒΥΥΥ·έv+,5J=θv )±φφvP(‡ς-0΄ʁ\%s!ωί"²§<O(}m—ψήJJJ ΕΠ€RM~ΏŸfS™Δ[Z­vΨ°a_~ω%!½<΄ΊβƒΑΑA@πΐ!7|ΓΌIKK) Ιααω τ»βu_Δ"Ο˜ΗΡΖ\*’pIΩ::.— Ε»έn³Ωhαj^ΏΡhΔ™100‡zή«1ΊίUΏπ2vXu—ά‘Kgυ1‘)nςŸ3“tJΜΩΓ1Δ”#6ΒαDBDκΨζ‘Σιϊ υΩ0žηG}΄bΕ F£R©Έ\.ε,‹ΕMMMYYY:­­­――• Ϊe°”(ί5έG!~ΏŸ­«P(,**βrΉhώƒΩΩ9f̘¦¦&Άϋζΐΐ€F£!ήΕΛ/ΏΌeΛ–¨¨¨ΦΦ֊ŠŠΑΑΑM›6a§bXσ·Εbš!BRˆ”ͺͺͺbcc1%XuGΒUBNˆςb†a.—«ΈΈΨd2ΕΗΗ/[Άlƌ999ωωω[ΆlinnfΫ.C1~Ώίn·ΣF$ώ !Ψνv;\&—5T*ΑβFOΈ#xpΓ΅Z-R‰‘y>œaS²ΣΔ!ΉUΌ#°fg\¨q«[  ±€Ηγ! ;cZš$ΑϊΓ=w‘ŸŸ_PPPUU΅`ΑH6ΏτK€κt:TδΣ&Nœˆ6‚΅kΧΟ?ŸωE¦€€Πjμ!8>π].aœ Γω^ZZŠ­ΜοχΧΥΥ‘ξ±wο^“ΙtξάΉγǏχυυ=ύτΣΜΗ”Λε­­­@.$TžκX°Εή SC ²WΓQL θ˜QZΔ‘~λŸaq² VQθXώ \4C«¬¬jR*•ςx<€=iΣ%L’K½±±ρΔ‰΄Νmh£€z…‘χLa.HYύ8θ[ljj"„ˆKE%— ZΆXr˜ΡhD’.lλY¨*ρα±₯‡V#ύ/=έΓ#ZDq‡ƒB 5VQ,Γ† #!ϟϋΏFvsη―ΪηθοΑ ’Ž]«l *‡¨ihΑMd› „|ψᇫW―†lC__ŸΩlF %—ΛQœ…―,—ΛΛΛΛ™ ‘rsΰΓΠ7εχϋ™k”Αβββžzκ©›oΎΩοχπΓ‡~α…4ΝΨ±c§L™ΒησΏωζ›λ»Žαh 07™Lϋφν ΐ”@`νΪ΅‹E$uttx<0―2Τ¬ΰTƒκ2 ~Ώ˜e—Λ…UΣChΞΎMύ²-ν…ZJJŠΗγιιιQ(ϋχοw8ΙΙΙδσωgϞ cdΐ!@8Eiuη>«1cccΡNNAG9EΰŽ&aO"!B;œ wzΨΔιtοΕVkΖΆfv³ˆˆ©TŠ%x1»°Οx°‘ AW(%Ή’αΦnΉε–ˆˆˆ›nΊiΦ¬Y===εεεΣ§O―¬¬_OOOWWW (--}ρΕχξέΛ|† |θALKη$Ψ§ΟdΣƒ3…^xBHzz:ρz½ ,hmmEO Fζ«€ϊ b£ώώ~΅Z,²L&s»έΜ;Α/2”J(ΊŽO«Iά ΨE‚rΐΒ{9»μχBW# šΤ`ΥtΉzυj(;\ΈpΑνv£δ~(šΕ Pxψπα‡z*W4$CΧ$'ΨΕƒ=Τεr8B'ΥZA?f!νΈ•T*…SΟφ`noo§Δ$8υ#""Β–₯#„ΤΤΤΠσC"‘x<žmΫΆ…= ρδθ™D —³!Δ9x!"` 6κ9 $ΔΥΣj΅J₯’ωŠΒ«μξξž9sfAA σ‘KΐοχΓ eϋ!9P!8JY E‚ˆΉ\n6›AχΩΧΧo+ˆmeŠ*φPωςΏωoΰΨBΈ~όρΗ={φ¬Z΅ ρqCCΓΪ΅k{zzNœ8Ράά|θΠ‘ƒ2gQΡj΅:nψπα|>βΔ‰j΅zΒ„ θΊMMMΕ“œ3gΞΎ}ϋϊϋϋΡΕdΨθθh.—‹N,pΌe‘Pˆo544‹ΕΒ φNquδ°“`_Ύš]ήf³uvvj4šmΫΆ‘™±©©I&“Mš4 }Νl„[@«₯ρρρv»K š€"‘ρ σ –’Pš£ΏŽΓ/jK§›sΰκΤqIpεI°:|5‰U<=_Χ€R)"„°[g”JeΏT*…ηM}\VΧ ©†ώώ~³Ωμt::΄sηΞ–––uλΦ‰D’˜˜PŸŒ3F&“­_ΏΎ――οϊλ―gήξ‡m“Ÿ*ύZ―ΧΓAd^ΣΗ>† ˆ#0½#φv»έV«5666ΔΕΕ]‘‘ΒŠ°–αΈΗΕΕ™L&Δσv» Άˆˆˆπx€)!" Rά‡„ŽI;TΙύAšΙ!~λ²;ΜNΡοβr…B!Ŏ\ρΚθΟ™ pH`ΔΔΔΨl6hΪΠΏrΕ‘q111œΌ} οφ‚Y‘B“—3ϊ> wjJΙ‡·Žτ2^<ΫΈκ7}ˆsVγ„;ΰ’t:έϊυλe2Y[[[Ψ’`ύ›&΄G]hΊτŸΟ?HΑΠ6oήόΪk―α…†ζBHO8::ϊΛ/Ώd ‰[‹ŒŒ<{φμΉsηΊ»»{{{αΣ‡&Γ0Ιc…ƒΟ‘a;ֈL&ƒίΰrΉ\.—Εbˆ;τhΞ€α˜ωωω$ˆ‚ υκ8!llIy6nά8uκΤM›6£φΊlΩ²gŸ}ΆΌΌ|ξάΉί}χ]rr2Γ !dψπα';;{γƍο½χžίο5jΤ¨Q£&Ož ^PχϋοΏ+•Κ &€₯₯1Ρ›&„h΅Z”‰Iο}„―Χ+—Λi·,sƒ‡^€lIPΈ,μ½ήγρDDD|ύυΧHyZ­V³Ωόμ³Οφχχϋ|>ΆˆRBΰ%ͺIχ( j€'"Γ19! α@ @W²MΘΣ‡αΨΑω&!j@œ €H$ ―˜€`ΌžsNƘX}ΐ]ΰBΙΈ(‰DžΣΙMZτ εlζsιή{οMNNζrΉΟ>ϋlJJJ||ΌZ­6θhδrΉ±±±O?ύtrrrqq±L&λκκΊbG<= zQιŒφΜQHύ//:)) B>Ÿ―··’„cǎqΉά’’D2hΎ,++cς •J%C:::L&ʏΘ΄ρω|ϊaFg>­ΐ^eGΚ„$Β+ώΜw‘]v­β„¦jB³w ώ!Μ;ϊ"SSS·$mΉBGEttt(κˆa^„"WώίύpΉ`/7†4ηŠcnΗざ ²Θά’TΗδς.2 _CodΒ³ξξnμB‘pόψρa3›‡*)4Ψ"!^o£ZsŽBχπ-|Αͺ!ό‘‡zώωηρBQι ί ΝΧ*•ΚGyδΙ'Ÿd8l (Œm΅Zu:έΑƒKJJΠƒRWWηv»)‘.[C( Fς¨¨(΄ξƒ9νhτξœN§Ρh³hRR>‡j0[qĈΰ‚ΠWt6¦(dY Ϋ²cǎΗ{μΖo,..^±b!δΝ7ߜ7oήάΉs?όσ°M`΄ΆΆŽ=:%%eκΤ©6l°Z­―ΌςJ\\œL&=z΄N§c+-…Nۘ˜δ,Ή\ΥjU)Ȋα”H₯RVž=MΤΡ4?ΖΗa#θ ζ‘Z­ξνν-++›:uκ‰'PTbg{“A Έ pςxÍ–;iΓ«ό-κΪ’Yέϋ„ hκ‚φι·'‹ΓΕᆐΟΣ =ζΒpμβγγqϊJ₯RNΨaY  Ζγρ‘w!„Οηƒ5‰α …bχξέΉΉΉηϟ·ΫνgΜiooηrΉϋχο―――ˆˆpΉ\Ÿ|ςΙ]»f̘@›Νf+((Έ’'Jχs@€σ—Φ‹CŸ'ss8CΖd2C3_ˆΕbΠϋύ~d½^ο;±0―½φΪϊϊz—Λe·Ϋ{{{λλλu:2ΎJ₯R―ΧΧΦΦ’1–-ΤJ­VΣj;/¨Zt•t'ζΓ&ŒDκΒ,Ε†φ‚FΏE;V¦Σ鐙G£šΜd±ΫνB‘P*•²EK„²Ρ`‹6gp8@ΠΥΥΕYqŸΟj+ΌœΗ„.—+‹)σ+_Ηj΅Β-¦—Šΐ··—Υ]_dƒ'ϊαΓ‡―fjTNzσ”¨%ΌΛƒG‹œή;m:s!σΡp=4’’WHώ™ŽCŽ­η„©xαΒ…Ώώϊ ώ¨H$ΊώϋU*U₯KšD"ιθθθλλλμμ4 z½Ύ···§§ηj^ztt4ŽαΑΑΑ.―ΧΫΣΣηžΗF 6lΨ0  CK±ά δ9π‚dl¬<(2B¦L™ό ²Λ£FJHH€Σ “Ιžs˜$“'O^ΆlΩ€I“δrωˆ#šššžώωuλΦ577/X°ΰηŸ¦ I ³Λθ&8$""B&“ΕΔΔ¨Υj0ωΛa±XŽ2ΏwΪΆ//ΛΤσ›οχ:t¨ΈΈ8%%Q.—k€IqqqγǏ£‡ g΄ A Ÿ s"22299™y †ξ< Π7Nb¨±ΊΤςςrxή$$—Œ3Ο盆ύnΊ₯°΅3fΰΧι† Μ|e,Μπ$‘WιNI$NK>Ÿΰƒκυϊcǎuttω|ΎoΌ1--M*•ͺT*“Ι”––vν΅Χ"αp8†^SSσ駟.X°`hŸŒž (=s‚jUά%=d+Yέ²B‘P«Υ@[EEEΡ΄ΘΐΐΐΑƒϋϊϊD"t­Ό^/PΧW4‹ΕΜ’N§γρx™™™­­­(LƒšO"`l«4ˆ#"""Χ²y‚‡Δl6#ΠΒςβ·.ϋχθ-Q<5ύ$μ©―T*iΆ“Ίœb±8"¨ψF‹LN&μΕpCλ°6"¨^ξHš€Ό’k2vμXΜNά±­γ ˜L¦αΓ‡#Ακ9τφφ+Δ/"Œ»J‘ˆS§N͘1mδ‘iΆ°Ύˆ P |ˆπF M‚rƒXr|Λa(ͺΑo£~|hR_£ω†νsH$.—+;;ϋ駟‰DΠ5_ΊtiOOΟιΣ§Ω^$ «ζ’L&Cq?llJo*• Lځ@Κ³π’ΩζB( „π’d†ήFϊΦrssOœ8ΑpΨeΛ–i4©Tzο½χBΎψβ ­Vλχϋ_xαBΘυΧ_ŸššκrΉζΨ0[Ί»»ζΝ›§Χλ―ΉζšM›67.++kλΦ­X°H~Σάπ-))Ιαpτχχ PȍF.—λt:‘7…¬Ζˆ#X±ˆ‡ͺ―βšQ‹ŒŒd+?JmίΎ}P±ά½{w[[Ϋ 7άΠάά\VVvϊτir±ϋ-’LX§.—K"‘€ξ'::Ϊf³±ΝΣ;NHoΓY”Ιd‘‘‘‹Εj΅’gˆΗγ…‘Ζ@oχ΅…ΰ1ιέwί±“'™M·Π0Πcǎ₯‡rηΐE‘S OrςδΙoΏύ6Ϋ‘…B‘ΝfΣιtΎ8@κL~ύΞ;ο|ε•WT*•X,^Έpa___\\\]]] ΘΟΟ·X,Ώύφ[fffee%ϊ'L&“J₯ιtZ­φΠ‘CS§Nύζ›o.78M¦΄΄΄ Š—B+ΡHa0'α’T)ΰζ’>φL‘H”œœ¬Υj±”ϊϋϋέϋύώ²²²ϊϊz‰D2ΘδδdDΆΙΙΙΘγPž Ά2.k*]w5ŽέΗ ŽΜησ£££―(΅rΩΏ"’@ `·Ϋ±ŠZDU ΣΐΔ­‘kΖj΅H>00ΰrΉΠ†ƒ29mΒbώ°K–––šL&:&„α ύύύ"‘ˆ!Ρ"!„ΟηcR©Tπo€ΓαP©T ΆΫν …"""βškωγ?XΉuuuz½žΦΉΝsΉ\ˆθ…m­­­„2ά κΥXTTθE"βoTl':lΤ¨Qϋχο―¨¨HNN6›ΝΉΉΉ”ž».''‡6ˆξΏ$8B_υD±‰ Ο‹ω°κήuΧ]―Ώώ:ψύ~nnnrrrZZΈš˜„‘†^©Tа‘Ί¬%“Ι$I Πh4V«π£Ρˆt=X€ KΗ Z­λ¨“"Η€;ί ³ΥŽσϋω矏ŽŽή΅kΨΥj΅Ηγ1#FŒJ₯ …’ΏΏίαpόŸσ8,JŸώω]»ϊθΜ™3οΏ~CCC__ŸΧλΘΘΘΘΘΘ€Κ–Νf;qβΔΝ;Yu8s8œ¨¨(@ώэX]] 0\zzϊΑƒ™F-999>>Ύ’’B$Ήέ΅Z]SSS^^>bĈ0".—«Σι ¦wbb"bΧψψx³Ω ‡O(²*ςΊ\.tΒE7vμ؞ž‡ƒ\.—³ΕRΟ™3G₯R'ŒY[qXΨνv@RYΆ&—ΛΡΉC+?Њ€hlcnήΌyΓ† oΏύφ<ΣΣϋϋϋ£££Α˜Ζ€°ΒΒΒΔΔΔΒΒΒψψx΄b€¦¦κtΊžž&Ώώζ›oΎωζ›³fΝ*++»ωζ›wοή}ύυΧΏϋξ»………P˜ΐρ1fΜƒΑžžξrΉ&NœX__ΟγρΎύφ[v—3<7>Ÿ?|ψπŽŽ:¨«ΗγρPC€p&†‡Τ;οΌσΘ#¨ΥjDώπo ι‹­ίοOLLLNNnnnfXΰώμ³ΟœNgtttcc£T*ΈθΡ£­­­---MMM©©©ΝΝΝ‰D©T²Σ#„€€€@‹θD/‘²uaΨόQUU‘³ΆΆ6‰D’’’R[[[SS3Δo]vžEFFJ$’Ήsηζεε tttTTT|τΡGƒaωςε¬t‘©;υŸό‡Ηγ™L¦ΜΜL·Ϋ­Ρh’’’6nά8eΚ”@ ΠΠΠ½ DCΏϋ‹ ŽK–,IKKΫΈq£J₯Ίωζ›9NmmνΊuλ 'OžΌmΫ6δ΄Έ‰ΠŸYΈpαΦ­[§OŸ>kΦ¬¦¦&ΏίΏaΓΔYYYuuuΜo"«©©ρz½€ο #6ζ6}ϊτεΛ—3§»’ΕΔΔΌϊꫨΛX­ΦššŸΟWRRςύχί=z”νheee .όςΛ/m6Ϋ›oΎΉpαΒO>ωδοΏ^»vνΦ­[~ψa@ކw4wξά{ξΉ§₯₯½Υ$XCΑn’ΥjΑ°F>,;;;??ξW 7nΚ]]]ΘΩ°ΝΨ•––’·«―― vΘd@μάΉsα5ί!ΔΏψ€ΌΌΌ₯₯₯‘‘€ζhqqqLLLii©ΥjEΫΏD"ΙΟΟομμδrΉhυhkkkjjΪ³gsΑuπ™™Νζ‡~ψ½χήKHHΰσω---»wο~ζ™g*++ρclŸηc=& ΏόςKψξ‘v58ΰuΣΣQKJNNnkkyJ£]ύυ‹/–H$*•ͺ§§¨β¦¦&Ή\^]]½nέ:VτΡΤ$ΙΝ7ί|δΘ‘„„„φφφάά\™LvξάΉ„„„θθθ?ώψœΜν?ω47‡ήάά\RRάάLIyδrωϋοΏΟΉ[RR2}ϊt ’¬V«Νf‰Dέέέ ¦ιξξ …f³yέΊu¬†½ύφہsΏυΦ[W―^ύα‡ήyηj΅://Οαpόύχί~ψ!« !Ÿ|ςI\\\hb Ÿ ‚ήήήεΛ—“°φΨƒ>h0’££όσΟργΗ·ΆΆώώϋοaŒ»γŽ;:”=vμΨΆΆΆ#GŽ˜L¦μμμζζζ08@dc±X²³³y<ޘ1cΊ»»ΙσωόφφφΚΚΚ0ΐb±xΒ„ Γ† ‹zβ@---ǎ £0…Ξ°¨¨(xZ„PcΙl6;ŽΦΦΦ0Zu:ΙdB+&&ΖλυΆ΅΅effΦΦΦΖΗΗ³υη¨έsΟ=χάsX,πΤΩ<o͚5«W―c@Ί‡ζδδ ΖΗΗ―Y³†fš/·Χ @DDDL:533s͚5ψ$%%eΙ’%[Άl O7–‘‘qΡˈ‹‹c+}‘Ν™3gΡ’EΝΝΝ¨θ―^½š!Ερ%mĈS§NύτΣOC‰Ηβγγ7oήόΖoόςΛ/aŒ9{φμ+VΨlΆ­[·nΫΆΝιt*•ΚΩ³g/]ΊΤ`0<ϊθ£---lΗ¨»ξΚΟΟΏώϋǎ[UUuύυΧ744?~(@Βςμ”J₯ί~ϋmOOΟ/ Ά‘vΉΛX΅jΥϋοΏΟsϊrΈ†zλ­·P—4›ΝH)±u!rΉ|Β„ uuuŒ[ψ|~YYΩΠaλ%mμΨ±`€+BΕΣb± †ώώ~”S―¦'šΎbττΠΪN#ζΎ5™LvQ›HO’Zttτ#ƒΑ`4₯RinnniiιW_}΅qγΖ0F›5kΦΪ΅kwοή \i¨νΪ΅«΅΅υΎϋξc>"΄ψψψ―Ύϊ*22ςΣO?­¬¬looOLLœ:uκν·ίn2™n»νΆξξnό$«KΝΞΎ‹‹ϋϋοΏ/JECσ°ͺͺŠΥh‘ΆfΝ“Ι„-¨žW^y%μΡ!³gΟ5jΤG}„ψk*11qΥͺUτg˜ϋί±±±wί}χ«―ΎϊΟo͜93;;ϋ½χή#l2‹0@πΥW_ύψγ?όπύπƒ>ΘΛΛ›:ujΨ•΄I“&=υΤS?ύτΣ–-[¬Vk~~ώc=vϊτιχίˆίΊ¬cχΐŒ5Κf³•——Εαp ^Χλω|ώž={ΎώϊkV—˜˜˜ψΑ€§§'$$ †}ϋφUTTδζζ.[ΆΜf³΅··ψα‡a,§Χ_ύξ»οV(z½Ν;(σŽ=ϊμΩ³l$„άuΧ]}τQTTTJJΚ¦M›€V‰DΥΥΥ‡γ$.**ΪΈqcoo―X,Ζš5kž{ξ9«ΥzςδI@O¦MΣλΈ• IDAT›Ζm†=ξξ»ο^Ύ|ωιΣ§_~ωe±Xœ““σΰƒώχΏMJJϊώϋο=Ο¨Q£ ζΖ|1β‹/Ύ@#λ―ΏΔΥν—Ός™3gώϊλ―„ττt(‡ …Β·ί~›mnΰ‡~˜;w.0γ@ —•ψ,,99\k*•Καpœ;w.Α˜˜˜pΡ)uEΛΟΟ_Ίticc#šoΌ^―ΙdΤΖd2υχχ‹ΕβΜΜ̟~ϊ)Œ–ΫŒŒŒΗΌ°°ΎΑΑΑΎΎΎΌχή{α…4εεεΛ—//,,t»έΰVLJJ‚πΐΡ£G}τQζmΌxΛiiiί|σ @ύ‡£³³σΒ… sζ́` ΗγΑlχΠM›6UWWΏυΦ[‘~πΑ˜±aΨδΙ“Ÿ{ξΉΜΜΜ .ΘεrΉ\ξv»/\Έp•‰πW_}υξ»οvΉ\΅΅΅qqqqqqX΄hΫq>όσόό|0]χχχ#Ο”ŸŸo³Ωš››±βγγm6›Νf{ωε—―P© θ•+WŽ1Βλυ¦₯₯8pM—£Fκθθ8|ψ°Z­ώωηŸY%Γ,Xπα‡φχχ[,–]»vύςΛ/πEξΌσΞkΉF$ ‚|pǎl!δγ?...V©Tf³Ή₯₯%55Ε„06¨’’’’’’όό|τ>ίxγZ­ΆΎΎ~ώύ±±±555‡bu‚(•Κ£G’m6›οΏώςςςΩ³g‹D’„„„M›6! ΘΠσš?ώ–-[€p₯,h‡‡· lι₯|ƒψ:‘‘‘*•J(^ΈpΥK‡g™ .p„Bάnw pΉ\Θ·±M–””¬Z΅J&“ω|ΎmΫΆτD―Χίzλ­xΫΆm»€‹v9“H$Ώός‹L&khhψύχίOžxπ σ0―)##γΨ±cF£,Ω€ X­V»έ.—Λ―ΏώϊΓ‡³Š½-ZTTTύχίwwwΟ™3G£ΡΤΥՍF‡“——ΧΣΣΣΨΨX^^ΞάΑ₯ΎρƏ=φXoo/H$hw°B‘(//?|ψ0Γ•Ž5jΤgŸ}†= yΏώ{SSΣΈqγςςς, ’ΗνΫ·?ώψγ ―σζ›o~ξΉηΪΪΪ€R)ΊΏAt AΙεr΅Zν΄iӘSU¬_Ώώ†nhjj’„s.’ΛεQ½N§ϋόσϟxβ †cΒΦ¬Y3aΒ4Ν`΄ΑΑA»έNζΫn»νr\ —nηξμ쬬¬δρxj΅:--Νεr>}ΊΉΉY«Υ’E*•šΝf† S8ΨΆnέͺV«»ΊΊΐsφμΩƒΜ ό$›Νf0ζΜ™ΓκΞW­Ze2™ΠΠ$ Α‹`³Ωœ••΅pαBVΒάnχΰΰ`zzzffζβΕ‹­V«ΗγΉα†ΤjuJJJ„BΒφχχοΫ·οΰΑƒΗŽ}%ΘiXυ ΏxΫΆmǎ[³fMNNΞuΧ]7qβDΗ£ΥjǏ—žžήΨΨȜWvοή½ΩΩΩ>Ÿm›UUU?όπΓ_|AΉΤ―Ζ«£ΐα'Ÿ|j΅ΞŸ?Α‚„)S¦4662χκ"""Ύώϋ‘#G ”c …T*[©Α`Έε–[BkW΄δδδιΣ§sƒί@Β‰D"•J5i€‰'κtΊ0°Vn·›rΏqΉ\κΥ!@°Z­ UM©½σΞ;999‡Γl6»\˜˜˜3f€§§CGΥf³3ζσΟ?g5fOOΟφνΫiZΏΡhΔβσωμvϋwήΙ|4œ[#GŽ$„€€Κf³‘)‘ΎΎΎ½½Εf³!cΗΆNqαΒ―ΧϋάsΟ½ώϋ―ΏώϊΚ•+Ÿ~ϊιτττ0€εaΟ?<&ΟΎ}ϋvμΨqθΠ‘mΫΆΥΦΦJ₯)S¦L˜0!Όa !f³΄^†qD±%3“ΙBM₯Ri³Ω,‹Νfkmm΅X, κD‹МB‘πφΫobL<π’’’ήή^”μ₯RιO?ύtψπα³gΟ_Ώln·»«« 5sΧαωηŸ‡~OKKΛ… zzzκκꚚš0ζϊυλΩzuοΌσNLLLSSvΡΚΚΚM›6mίΎέγρ̘1ƒˆD"YΌxqUUUgg'KE"Q||¦Η[o½"z—Λ…ΖΕ‹ΏςΚ+eee؟Ρw8eΚζŒ<#FŒΰrΉ"‘ΘεrιυzƒΑ000€ž3”MΏ`Ύδ‹‹‹g͚ΥήގŽ`.—λρx a΅ZιŸΙJ&6qβDH—b€Κ m›˜σ"Εμ•J₯P―Ώ’qBΔΪI°: ~VΪ"ΚκdffRr€N'Fγp8T&„ω°Ώώϋ;οΌ£Χλ_{ν΅[o½υπαΓhδD©wΑ‚«W―ώγ?V\Ι|Μ@ˆ€ή5•ίεξ…ΉS›‘‘A)Υ°yφφφVTT8Ξξξnμ{j΅Ϊj΅z½^ζU>΅Zή΅@P\­3πηό~? wϋδδδ 68δ’@Dΰσωpο@~Sq,—ΛυρΗ_QΣ6Τκκκ@;%τz=8ƒ"""δrω X—Ψ­"""&Mš΄dΙ€›ššΐuφμΩΖΖΖΪΪΪΝ›7̚5k€I ―oΥͺU …‘!ξ6 †ΆΆ6ά?fžΛ-·άΒ|X U__f/0q+•ʁ¦¦&‡3nάΈ0xƒςςςx<ή©S§ΚΛΛOž<ισωΜ9sΗw΄ΆΆ γ’•‘7[(*•J…B!—ΛΥj5J½‰D‘PP_†ΦΡΡqδΘ―Χ;mΪ΄ωσηOž<ω›oΎiooβ‹/GSSSCCCVVVmm-sΥ BΘ”)St:]πφφφ655ιtΊ›oΎeΩ0p p.GŒ1lΨ0—ΛΥάάάάάΜfsvvφΰΰΰ»οΎΛ|΄ &ΐQ A/Σγρ ϋMwΐˆˆ†κ°O>ω€ΎΎΘͺgžyfβΔ‰]]]θ¨Χλυ†•Pll¬ΓαΘΜ̼馛ΰΚΣIΞησΡ»ήΫΫ[^^ŽV†Γfff’NŠ\!€΅΅΅ΊΊ’MЊΩ,C*vj•••eXJΚΔΔΔ|φΩg¬†‚EGGσω|Fο0€σV£Ρ€Χησεζζ†1ςάΉs‹‹‹AN].—›——wΣM7…1Ϊ¨Q£P…©¬¬¬¨¨πz½( 655uww£G˜‘ςμ? d"<s²³³“-ώψργνvϋΰΰ`bb’F£©¬¬<|ψπΩ³g;::ΰštuuΥΦΦ;v¬­­ °§Σ™˜˜8DΰS->>ξ¦ίοολλ‹ŠŠjjjŠ‹‹νKWW’111Μ›ΦIpIX±5** D€8.BF2΄΄΄4BππαΓί}χέΑƒwμΨρΛ/Ώμέ»|έΜίQNN(jΑÌd<ŸA!D&“Ac˜§N:~όψωση[ZZŒF#ލ°«€ΡΔ.8V ‘ΰ―"„…BF“žžP(Π£]XX’Ό‘#G–––‚aΚ„Ή\~ΕόeJJ JωτΘτϋύ6› Ω;Μ…B>aζ±οͺͺ*­VK3Iƒƒƒ"‘H*•‚+ŠmT£Ρ€~ƒ@ θλλkjj‹j^ σj"‘ΘησY­VΈYƒƒƒ`ΛGZ‘C/$] d22V1|ν(Fa;‰DlkϊpΧN:ΰN·@ Α‰¨¨(£ΡˆιΔ*ΨΖών·ίx<ήή½{£££§NzύχϚ5+55522θ0²Τ˜r`-ΐ~BΒlζ%ψnΈΑεrΉέn³Ωl³ΩœN§Υju:]]]BbbbΪΫΫ!ΟόI₯-[Άœ={»X,FΙ8!!•h ˜$g͚υλ―ΏΖΔΔΰΎ°αcG‚Θ C)•Κχή{oμΨ± Ÿ!§phΆ‚”$ϊΎΔ›S*•‹E(=zLΒΈ8”TPM@ΏLEE“rΟ₯K‹ŠŠr/ρχηƒΚ?4i 8$Þ”Ω³gη?ΉνΆΫͺ««ΑaFA"].—οΨ±#''gΪ΄iα΅_=z4//oχξέƒαΩgŸ­©© …Χ\sΝ’%KΨςΨεδδΘd2Ησ駟ΖΔΔτχχuϊΣθθθ+VPPΓ1§NΚγρ ECCC||όΡ£G'OžœššΪΥΥΥΨΨΨΦΦφϊλ―ηδδ€€€°νΈDa+** ²ΉPΟΦνvΓ±c ‘Α«ikkο’"PΙπx,##υ܁ ˜`Aο„|Fœμj΅ΟjW>Ÿa·ίοφΩgَFA£U\\ŸΟW©Tqqq©Œ‹‹ƒΗΓησΓ6 „Ψνv΅Z ,9ΗcK_—••εp8 ‡2ΤΤΤΡ£G»\.θΰ˜χϋύ3fΜ@φN"‘Ύ}Εΐό;‘‘‘HTˆD’θθθcǎuvvͺT*Hθr‚’―Μ‘8r€RiKK 8ΗCΕρ°Η™ …Β€€€αΓ‡„„΅Z­V«u:]\\\DDDLLŒT*eΈήΑE ͺ[™L–U˜‹ ‡΄Οησz½¬”BΚΚΚ }ψ/ύ7δεεφ;BˆH$‚J³ι„ΠΓ—•c‡ °X,Ϋ·ow:ƒαηŸήΎ}ϋ‘C‡FύΫoΏ!]Fe Ob±˜ή#Ξ5.—Λj;*))Ρλυπηΰm;NdΕΪΪΪd2€qΗ`0ψύώΊΊΊk―½–ΙΘ Ν>qβDOOΝ„Ql±@ 8tθj΅ λ3·ήzλύχߏœ?¨˜‡iή7¨Tͺ•+W²MWcΓ·Ahδ ji½/qœˆD’”””ΌΌΌššš]»v566ž?Ύ±±±½½ΤΜ---GŽΙΜΜ,((`rσλΦ­Ϋ²eKtt΄ΫνΖ‘κp‚’©>Ÿ―««‹ΟηŸ8qbώύ ο|Λ–-»vνςECŒ„ΆmŒ‘ζσωͺ««;::šššͺͺͺ,‹Ρhσ"†η™χσ»πbrηΜσœsŸ»\χu{½^.—[PPΰp8.^Όh·ΫY%!p’Π,Fq8<  ,9^χό~š5k €cσϋύΜy4 J₯R(nΨ°!£¨Gƒ‘ͺͺjγƍJ₯2±9ΈΛ+++?ώψγΪΪΪςςςνΫ·gee͞=—ΦπΧΌ΄‚‚‰D²sηΞώώώŒŒ šW‹D">Ÿ/ΐαξμμT(Μ“ί£FJ•6)γkμ+ΐzPQΒ-ΒJ|ΎββI¬i&%%ƒd`. ˆΗB‘@ €iΖpΆΐΈ£Gž9s†Οη;©TŠ©»—.]BΧ ΫuBAzzzcc£F£‰DπGΚσω|τ3²‚~_!hjΓ bΛD“‘‘`«Α`xγ7Ν;Ί›Ν&—ΛkjjκκκΔb±ΥjTn͚5eee· ΏF#L18`ACm6›{zz233αΨ)•J‡ΣΫΫ β'†k¦§Ω $ * ±σx<―Χ ―©_=™LΦΧΧwρβΕμμl"&Aμ=χάW†R©ΜΘΘ0›Ν ‰D*•J*•ͺΥjT*δrωC=tM΅ψEwπΰAδρWh -‰8pε’’"†οή½Θσ‚Β‰ΝΟ…‰φz½ Z0:‘ ― ΏΚ#–Ιdf³™ΓαTUU”””Œ9277·°°0+++++«°°ΰΨA&λ[Ήrevvvqq±X,Fˆ«ˆξϋ@ `0V­Z%‹ΗǜJi^`«€Y‘WQΒ¨η––ΐœΓα°Νf»|ω²V«‰DΜ» ©`nχ™3gΈ\Z­Δ #kh–Xc†δ,茫――ΏρΖέnw45jΤ–-[vμΨ‘Σι4Γα˜;wn(:qβD‡α5ž!@\.Χνv»\.Œd₯ϊ5kΦ?~όΛ/Ώlkk?~ΌΛελυ¬ΰ;„t%sΉά;v WAQΊ0vΑ`pχξέ„•JΕ61@Α¬³ΜΜL™Lζ—£Gz<ž¬¬¬šš&17…NG"‘ξξn œ@ιΰό’U§OŸ–J₯ΜB#FŒΗfnβžƒBD$– ‡ΓΜηΊR‘h?(gϋλρ’ŸŸόΠΠP4E‚t*(RD"ΰQσ™hΩ= ƒΑ””½^Ÿη«αpψΗΔHJ€™Rζρxo½υ–\.D=1‘πbΰδXύ@ °Z­B‘077wγƍθΠh4:Ξγρ¦§§\WYYYΏώϊkKK‹\.Kβ0šGމ‡-h§ν™™™™™™ΜcNDq¨ΌΣο`s"οBXΆΛh4™L–’’ςΝ7ί@ ώ¨Τjuuu5F²29οhrΉJΡΕ£λχϋAΓ˜Χβα" ž‹›1'Μ>σO ΑγjnnFϋ‰%ΤρΨ*Œ™L6Δ9sζ`.pjj*E°07žXΜ²eΛ"‘Θ /Ό€yΣ€…$%%uvvήrΛ-IIIΜΙ>ξ»ο>p i4‡#—Λ{zzp]F…B‘ŸŸž6₯R)Ύϊκ+&W§ΩlV*•Θ{Α„βMᑆΓaΐΐΒα°\.g«ŠfאRwΏhθΞκJ2 b±u ‡#‰hxψ½t§'999;;›ž‡ΓC B ΐ?/]Ί”››Λ<[ΫΪΪ R` ±ϋIμ@O#Sα|φττΐ0Bό~ΏV«E€•@>’V«Ÿώω΅kΧ‚o¬ΏΏϞ= Pr[,™Lζt:αa‘‡o‹288¨P(šΑΑΑ―ΎϊΚησύςΛ/Α`°¬¬Μf³)•Κ3f|ρΕ˜W¦P(>|θΠ!V3.!€Α·sΉ\ K³Ϋνιιι~ΏŸ!$!{qώόω—/_¬¬τx<ί=Κ4@\±†L&5‘*γ„  ΓΉsη<R©L€Ε°³³4@Ε“ΙτΩgŸ;φα‡F'‘J₯Έ,ρO” ψ‘²‰DΥΥΥ Šd¨655‰.€*α,&%%!Y ΰ}¬NwE~7}θΡ£‘5MΤΰΰ !Δεri48άΰk‰DΩΩΩl•?ώψγCCCz½½ Μϊ3™Lhΐ˜mdDπΏΈ\.Ί#y<f H~~>\:$r„B!+^I>ŸοrΉ¬V«Οη»ηž{’““‡††–N€8 IDAT υIzz:ΎffνΪ΅F£qhht‘Γh1b85½^―ΣιT«Υπ_u:ϊ e2™H$A‰Ϋνfžΐΐa3f ν ±δυzaβX9vJ₯b± ξάΉsκ(œ4 ΙεςmΫΆ …BFΓf6o|άΎΌί$|zψχ‡yΫ)u€ v<¬v<(›Ν†ΟKb7ZόL |…δζζΊ\ΚΚΚH$2vμΨ‡zH lΨ°I;Ά%γ'žx’§§EΏί›έαp\wέuΡhqΓωΛ/Ώ\ΊtιζΝ›-‹Υj…ΒΎΎ> ­V+.ύύύ&Lxο½χ˜ ƒt:B‘wτθшάH,688ˆθεΒ… </''‡αΗ'„ ŸJ‘eτ3b£’€€ο°zYΘ%K$’@ €=‰D#Νa]Uޱ‰DȟίΣΣ#‘HœNgvvφΨ±cΣτz}uuu0ά·oί₯K—ώηώž ΓiρBaU:Nπέ'%%%€"ΗQΏρΖB‘PRRRwwχž={"‘ˆΧλeΥ¨O1b„D"AΡ †t‹σx<—Λ…H£ΡˆΕ⊊ VΚΣΣΣ%‰Υju8—.]jiiιξξήΆmۊ+Ύϊκ+&z€G΄Ωlˆ‚hχ;RA(χˆD"p€{<žάά\†Ιo$ΐΐkό7D « …Λεjnn‹Ε¬0qŽ&Ož “Aβ"€€€)S¦0ΤC%77₯””·Ϋ ‚+πγ#Σ†@9°Užžžž––†œL»έΧλYΝ°†F½^/‹ΫΫΫ’#fΠγρFV­‘T-Z„ΐυ„h4Κ*αέΫΫ«T*E"ΡεΛ—~ψa‘P(`οrΉPάΔ9Z²dIkk+Ψd†ηQW(ψud¦#‘h½0‚Σf³ ‚‘#Gž?Xuζ;\±wάq­lΖs@ΰH²uμŠ‹‹1qQ.—Σ”ή”@ CžΕbIIIa’Νn·σx<|’+&q‘'ώ;Ψ1oΫ·oŸL&ƒύΪ}{{ϋΌyσΛΟA£Ρ  gρŠŸa›\ΗφΦj΅Ψπwάq‡V«½xρ"ψŒF#Ϋ†zBˆB‘ …«W―ž;w.‰Ωd>ŸXZZΊhΡ’ΌΌ<ζΈ ,2c·DΑP°Υzaζ0‘ˆΑQ0Ax€N§“ΟηK₯γǏΓ83ψHΚR$‰σm`EsBFŒA=Εψ",a ŸWqμ „Bauu5!dάΈqJ₯299Ωd2₯§§[,N‡ˆ³ΆΆΦγρ0O`@ΠeF3vρެ΄Ρ‡5oή< sim0„–pEΙd2 ‚Χ^{­²²ς©§žΪΈqγK/½”œœœάϋ‘‡βp8;vμ˜;w.ψ“0ƒ ΎpαΒ}χέΧΨΨX\\όε—_2QΘεrϋϋϋ“’’δryFFF$nvvφόωσ›ššNž<Fe2YEE…R©dh•θ!‘ΐOΗC#E΄€ΰa^ΰ¦w$ΊΟ pW0Νΐ€3T1b„@ wΏL&CΛ!B‘VΨΡΡ! ΩVΎrrrΠ4™LhƒrΛb±ˆD"ζ M .£ΨΑH$άάάήގ6›Ν†:­’* &tίΨ0J₯ς£>ϊόσΟΝf3ΐΏΈήΌ^ojjκΗόK/α!°…ό?Ε2ΌτHŒ†κ–[na₯‡Δς"‘PδήΘ"#ÊL}>+b'HssσPz‘•Ηγ©­­MΐGD™Ϋ Ύ‰p8 ǎΟηΛεςΔJΖ7άpŠ}0tƒƒƒ¬ ͺ€$GšFΌqψίN§_£-—ΛAٍNΊαA˜υ‰D&Ož|κΤ)8LhΗAέΠj΅~ύχO>ωd4moog;ngΚ”)Θ² Ψn ˜4i+=„΄³ΐS*•Hώ‘ΦIΑ{ρz½ιιιL`vˆ¦x<\[ΧpΣM7!‚εΖ‘HπxΌΑΑΑ’’"ζ΄―T dκΤ©ί~ϋmqqραΓ‡?ώψγh4š­Υj?ωδ“.V–³°°πΞ;ο\΄h!$55•ϊ²τΌ£Δωβ‹/ήtΣM¬θ·D"j\‘H$%%%ΰώΕ-1kΜ΅‘`ΪΫΫ‹5DbΜPhέεσω~ΏΒ„ }}} ΖdΙc .hγ*΅$WψvΜΏΕησ½^/βdψ‹‘HΔιtcή―²t…B‘V«SRRΈ\ξΎ}ϋΪΫΫG8φz½έέέ]]]?ύτ“ΣιtΉ\}}} Η@QO.ώΈΖ$ώO³ϊΨψ]™L&‹ιγ£°M•J…€;±€]FF<›P(τπΓ―]»φΊλ ‡Γ¬†Bເ¦¦655Ρ`‹NΆD"3άLB‘pτθΡz½~Φ¬Yv»½©©©€€€²²Σlψ|ώΠΠΠΘ‘#'MšΔεr«ͺͺvςβ5-Z΄¨½½A?ψœβ―₯eΛ–φΘΕE‹) 0_Œ3F₯R!㈣uUG˜ΟΞαpjkkG_‰ΗΨΑΏΟΘΘ8wξάπ(„ίŠJ₯‚'G+Ρ€ασ"ΥΔ°<fςδζζF£Q±X ,>B0€ϋ³±±Ρησ1qμfΜ©ΡhP2›0aBGGM?ΰ~r:%%%‰½>¬J*cƌAm³E1ƒ>™λ!„`2ZؐD¦_˜L&ψίΰζ0™Lˆς™ ϊ‹1˜ΚrI+°W|ZTŽ˜; Ψχ“8――Цπογ!'„p™mC8Φ©ΡhB‘νγC\‰D\.‡ΓA–žαα<}ϊτΕ‹ο»οΎΪΪZ4y`Δ!Ά—Οη›4iREE…ΫνΆZ­ ι±//^ŒΌ… ΐΡn·›mς†Ύ#δ’““5 ¦αf;=σΔ‰hΒ’»ˆ"o"‘ΘŠ+VeŁr˜΄a7 ΠΩ\.³¦[ ϊϊϊp˜Νfd)θδΧβΛ―^―—IA$ΡλυN§sϊτιb±ζKΕΛςz½^―wαΒ…αpΔlΜ?>Θύγc0 “ ,ƒ›oΎyξάΉ‡jjjΚΜΜΫ³V«E²V‘P€₯₯)•J…B±eΛ–μμl†ΘE*v»ύΨ±ciiiΡhy,Ό8N¬‰ΉIV]]••E3@t¨‰ΫνΞΟΟonn¨…•f… ΰ H$’ξξnVζϟ‡?όαώϋοGjD€pς!ιΒάƒΑ΄΄΄7ί|sρβΕΛ—/^­J₯δ(++ Q6ΉΛεBΰγ „aΉΨΐCύV4ŠD"Ά(HK744δηηγx" ˆ£ΔεrGŒQ__|Ζ5΅α:ΜΜΜ¬ͺͺœe»έŽl"Ψ1T*•%%%Ηl6Η·Τ /ΕΕΕt:‰Ε™$F`i2™˜CςιΡC/v&½•p<ρΖΘ5 §‹žŒx@,ƒ‚ήh4ήsΟ=πσ˜k{δ‘G¨)Γ1δΔZDρM«ΥŠ/FΝͺΞ ΈθΡΨ^2Κύ ΅ΥΤΤ$%%;v¬  ‘<Ύ2D£ΡƒΑ?ωΟόρ5?­R©Βα0%ŸGκυ=hF°¬ΤR4EΌxp•蜜œμμ쎎”~ΐBδρx„BαΠАJ₯λυUUUΜ—HbξhŒŽ%l‡@U›y‚ ڐM₯ι_zΗ'RΑ%GΛαΩΰΆΣιtlα&€PμCT‡τ/ΊΑ\UZZΪκΥ«[[[1ŸD.—νoƒ»ΰσω²²² @{{»P(\Έp!Ηϋ裏*///w:4ρ Χ/ΛοχΫνvΜQ`υΩ³²²Ξœ9c4›››OŸ>Νεre2ε,eυš€Φ:uκΤβŋ驦[Ζ.;;ϋ³Ο>γΗ&―3 /A–5Sτ@D"ΐq[Dΐ5I‹Άωωωt0‰Ε-Έ†Υj΅D"6ŸΙCxο½χή{ο=BΘΝ;hiυDLλμμ\Ύ|y­¦Έζι?9qlD„}ΕόΜ™37άpΓsΟ=7}ϊτΦΦV0°ΐuΉ\ Hkll|τΡGΩ“‚aπ¨ŒE'%¨ΥjVmΰΡh©, v Ε)c€₯₯:tθwήa› „466Ž?ήn·£T*“ΙΰK"„ΜŸ?ΙEΤ^ τ`©΄‘™ΗγMŸ>ύΤ©SΧTh΅ZU*•L&kjj0 ‘yΏ··SΫνv»Οη+,,”Λεv»ωjA0“#=ΰΔ:œ”J%«σΐα&Cσ ΎO-NwκΤ)Η„p‘,±vνΪƒfggΓo['|Έ)αpψž{ξ_Λ0ai4iϋ‰Ν9E;‰H₯1cΖΰ†½¦ t0{φlŒ B‘Δ]$Ζπ·`Α‚·ήz‹–V˜(Oagg§T*BˆZ­v»έΰ%A φΛεrTc«««)Άš‰Π^}Z‡Δ'Ζ`GΑ’η芳Ɋnž»§Ÿ~Ϊj΅ͺΥj€—ΉA«΅ίοO€B’ΥjΑΑK+5.—K$!½ΚV¬- »ρG>hΒΰΪΖΖFͺ1-Ν^0l•όόόΦΦV°!F£QθΏ"€Ώ›ΨάάW Ύ•@kξŸΟΧιt4HΖš.Γα°ίοχέwW\ΙV'0Ψ©~Ώƒπ0|nsUσζΝΣj΅MMM.\ψβ‹/HŒέ%ΞΖΖFΙ­Vλ”)S>όπCζΐgΌbτΣ2‚‘€€$ψ΅ωωω˜<ΝPL&|8ΐμ’““A‡=†Ϊσα”ώΑω ₯ΐ矑ZFβ:μdΤQ~ρ—Λ5ΓoώŠŠ ‡ƒΝ“““zI8^$.τG(ŸœœάΡΡQ]]]^^>vμΨ]»v £™nrLσΔ{‘MϋαpΈ½½=;;ϋςεΛψΣ Ÿ@GG₯G’žzΊ¬ŠΪτ`a.— ₯C„Εψ+ρδpΜ3 T-βW‘PˆΦΪ,ΖΦύR©T(ρ ώHbΧ7Φ‹ TηϟO {—όοη†e³-ΕbUΐB!€Œk„lψ78_L` 999IIIζ_ϊΧ„ (sB‘p8&“i``δv ‹-jhhΐ<@†k¦ώ‰Y`nlTΫw€ΣιPq¦xάHlήr$b±Έ««λθΡ£LΖZP.βτττ-[ΆTVVhN;BΘΠΠ@‡Ηj΅6773‡Έš‚d€BI ,‰DXΡήBςςς`v"1Κ κ/β;αpX.—ίzλ­|πσsd6›σŸ|ωε—cƌٿ?—ΛΠh4ΫΆmϋςΛ/{zzŽρ B.^nό«^βŠc6›΅Š‹'Ζζ Κ<'‚‡f4ikΜQ|£±P(7n«E‚ϊ>7‰5ΧGc\ί°'ΐb±455±LAφG$!€!±\Ξ°SΕ~Χ™=z΄ΓါGa’Λεr»έ>ŸO­V³κ&ΫΑβΔ1>“X#Eb¦“:vίGβrIμFΆ,ζ •JΥΡΡAΓMZEχYΩJ£Ύ•9d\oΑ`Πησ‘ˆΐπ~ύχOž<ΙησoΎωζυλΧ+ŠΎΎ> r(((˜2eΚψργΝf³ίοΗΈζcΠ222θ J,†7ρWΫ2_ii).$ΚπŽ)Λΰ΄c[†–H$ΐ8λJFobτŸ’͍9Θ₯aτB!αŸ€¬ΒށkζΥ΄Z-ν&¨¨ΐΈCzΡ¬-κAΰnlkk“J₯ aLtβKΌΉ§ιV;Τ©Sρwp8, AιΙ\θalnnΖ[^5DΜ>Ÿ―©©)±Ž±X,•JAυ, Εb1&J)Εv© ₯xDμ%δAQ¬£Jbι\iτcr8V;ϊGΛΛΛQί§³1H qΕ‰"E₯Ζαp\³jœ““ΓησNgQQ°ΘΘVo#“ΙPΦŽ­¨¨Θj΅^1ζ{x‘[(cα‚I‰ΔxŽ˜?BΗ;vμΨΰΰ ͺνT-ή!D(ΪνvΠ__S[gggkkkoooFF†ΗγqΉ\]]]gϞ=}ϊtMMΝΩ³gΫΫΫqδΛΚΚ0A3N“jαv‡½ŠF£Μ©Θ !‰$''Ηησ‘ZBŸ‰«k!ϊΊυΦ[ ›b—F£iooε•W GΕγρ΄ZmiiιΙ“'322¦NΚΆ*Eχ²§Ψ™4Ήˆ „ωώ‘? r$A]Ξn·χφφbΞ ΰwρ³|ͺ-))AΚ£,ΜQ­R© …ίοgυš²²²x1.n”}θΗ§HPζ:!ΈγθώA’7)ςΏχ‹ΏkUρμ€ηπz½}}}F£Iit’™L&VΡgό{εΖύ81li4e[F‘{έιtβζΖ1± ] υ{ςμ³ΟfggƒέІG€οΫ·oϋφν θ„Eƒ] @Κs”LαΦ?qβΔ‰'nΊι¦ιΣ§?ώΡGύοώο€€€9sζθυϊH$2f̘ΊΊ:t=z”ω"Υj57ΦHλΕ΄ΑΎ)zχx™ζ"€ο›6ŽχΏI&φοίυΧ_―™¬ ψl:¬Ά:usqΓ±ςEΊ»»5Moo/†’˜( ˜ Ay°tZψpΉ\ΙΙΙΐ I$ΐGXω z½θ~Ή\ξp8ΣΣΑΜœ²‘ŠD")((Ιd΄©Δe˜H¬!Z"‘$†±Γ{‰ Αa(τ±τττ€~@=lςψ4-‰U±X\ZZzόψρažj0τz½n·Ϋ`0 ‚2F‘P€?…ΞkiiΑ`¦f³™afΞ>’˜hŒ“Γα°"|!„h΅Z€IΠہ=IAΐ(~›oΎωδΙ“ΧΤΆlΩ²%K–477cLν|Ώ’ζC±Z­O=υTGG‡ΥjEmd5jT|ͺ›kŠ„ύΔC`5*wφμΩJ₯#vβΕβ³Ηνv³E_x<ž9sζh4šh4zψπapΒE£Q³Ω\UU…}¬ΖK4&ψ'κT‰©B1Ηνv'''#}φ@ €‹@£Ρ$%%1$—Ε’,‹@ €K‡œΛεβrΉb±X₯R‘Œ–ŸŸO±4ΧŒ`ΕύN±1΄‡7-H²zρ©JŠC‚ix ž«;v‹Ειt_Ώ~Ρ’EΥΥΥυυυiiiπᆆ†vξά9rδΘ›nΊ‰mΟ)š;HΜUB™žφp8Ls! =ύ£ΡˆŠ;'γγρx4‘˜@ΖξΨ±cvi0ϊϊϊp¨€RιΙ“'[ZZ +Ώ¦ΠUQG>"ςFζΠoΆ‹\½zu]]`Ξ―ΏώzYYY 8yςδ7ί|ΣΨؘŸŸΏjΥ*›ΝƐτb±Xx±;4h‹GΙ„B!ΆF€°°tω8αΘ’4WΜ΅έx㍸{φ‹ΖΖσQSF)Q;s΅@χK$Z5Ιd:σ"C‘Νήo7LΜ 7Ύ–H$(ρΐAŽ#LG-??ΏΎΎώ³Ο>cΈT•J…Ί02€ΐ3b$Ά;ΏΎΎήh4ϊύ~Ž9±Yγ?ό3+=šŽ–ΓαpΜ$;VjA‰Ό/°eΰ©A֍-εoϋΫ«―ΎŠk,ώjηΔ Έ6Ύωζ›οΎϋŽ•f°‰ρa«`˜ΦρΑ’ Ÿ^,‡cτ§ρϋŸΔπv“'O>~όψ0oβΔ‰Θ"χφφ†ΓaΖv»½΅΅ΕΔ””τπω|‡ΓΝ?kΦ,&m„™L† h|YŸ>[&y΅xΩ΄iSUU/61·Ε6ΟΕ‹3iLj0 ž?ό·ΏMω`ίbD©F£·Χ55£εYydU ŽF£xΘόƒ/X°€ͺθΫΌΒΕUb4§Nzψπa†š CMMM^^žΛεš8qβ-·άςΦ[o?ώΦ[o=uκ”N§Ϋ·oσu’ί˜j{©sΓΧ°M IDATJΔoΐΒxΒΊΒόrΓάΞγΉY,–‘‘!tbh*V‘H€««K, UTTμέ»—‘ΪΤΤT@€ς^€ΉN§399™Ηγa΅‹…νΗw ΘMFb#Ά1ρχ~ρκŽ]Ώύο &Μ™3Ηh4Z,–ζζζΕ‹cF[RRR}}=σɌ¨<‚F˜ΔŠ0I@c`Ε΄ΛƒmB΄Ά‹Œ(­%ΰΨ566>ϋμ³η±Η+,,uΎίο?zτθδΙ“™ίΑρ ΐώΖe ~Z Cΰξ$АΡΡΡΑγρ\.—\.3fΜϊυλόq½^Ÿœœ|δΘ‘ƒήsΟ=l‹h x₯>έL0U„4Ψ³i6›1N εW΄ξF"Ή\Ž)Ÿ¬X9Pl%1Jέ°ψψ™DΜg#„ ΓN―ΧcKѐԷλιιω=UΤiΓ?αpη τ7Zn±ΫLg΅Tτ Π‚~$FwŒΌlΑΤxΛΌλ»hiG) %ζΨa'Œ&mΖQ:ΡR+A†ERŸΟ7rδH°ΩΓΚφ9θ€ΫžΔRιbsΎυΦ[lΧ ‰ηγ…rV ‘ΌΌ<$~h•}μlQμ[ΌΗkžλ_ΒτΒ•+WΒ½ΛΞΞv»έpγ€^ …BCCC …B«ΥnΨ°Ν  † Nκ?>b›ΈpαΒ… PΝ§ΉdWφA`|Ν„76|χξέ8€ΠI‘»pΒπWt:Οη»|ω²ΟηcςΦΜfs4ΰ$~«Sδ{$a…]›9s&ν„₯LŠά‘~F@ ά{ο½Μ;•JυυΧ_G"‘%K–œ?>--­¨¨Θαp r1bDccγώύϋ™/•Ύλžžϊφι C\ΈέnησωΰΝΖΨ±X@8ΐJηςεΛ‘λCCC½½½hΆ…]e«A±˜Ϊδ†\.w:”_“"‹ϋϊϊ2ΎBΤj5πšΈ₯I±«ΚΥ‹Σ™™™³gΟ=z΄B‘0 ωωωf³Ωb±$%%Ιd²όόόΡ£G³’&„ FδΔF§Ρ­ k …hΌΕΞRWWGq΅c‡α‰I[[Ϋΰΰ ΏΕb1p'πEX7©P4@uΘ/ςxΌ@  …Ψ,Bυ­ͺͺ*//O‘P΄···΅΅>}Ί»»»ΏΏhhH£Ρ=ztφμΩ¬^Ϊυq„¨iζp8όΙ*Š’¬ΰΟ”Υ§”ζΐ% j”¬.xϊ“ΘΖγkl' ³»pΙPθ§,--Νj΅’€‚β‰ΉkΓόψ6Έ•ρ‹ριt|‡Ή/rt ώ?6d=ƒE’Xϋ6[Ω½{7υlH¬ i³Ωζi¨PΏ ₯C―ΧΫΣΣƒϋX(xΙθ ,Ο;I΄žΕ Άz x~ΏΏΏΏ?ΕßιΔj/QΉΒψΖ—¨˜~8##ΨΈμψššΠxž .—Λd΄C{{ϋΡ£G=j6›Νf3κ°ψΰ¨!ˆD"­V+•J³³³5́>ΜΌ8EουίzπW͐ /ψ]€gH¬˜@«Tΐ3ŸθϊΰƒoΪ΄Ιh4R(!l‰f81ς—ώώώΌΌΌ;οΌσššA¬‰ΡεXν(¬ΜαpX5œρ`bξξ₯€Z²d C0Ώyyy<O,+•ΚmΫΆνέ»777χθΡ£»vνB“>σEΖ‹T*όο^@‡ΓΆƒ RSΑ` rΏίοp80έ‡Θ·±yαΒ…ΞΞΞδδδH$FŽΩΣΣc0ΠBΤΠΠpμΨ1†1 N·Ιd’E-X9Ό#€%8₯ͺHΰγr#•Jq]αηύž\ύ€5 y~—ΛΥΩΩyθΠ‘#GŽ8pΐn··΅΅={Φn·ƒ―˜αϊ°π–Ρj4=αΤ±B@bΦφμΩ³πόπΓ%%%]]]»vνbΕ›…@gΰβ³wHlX­VζYε²²2š¨CΊ&C§ΣΑZΑ3Ÿ`C1ˆ$ Ρ8"‡C‡)±ΊDqaΐ"»έnτ:Α‹–~˜Hvvv8¦ ~\pk ŠΗrξ‰5W2?ΖώJσ—¬Κœ£ΚΚJš£‚@BY©’‚Š!¦m"&„( p Db„2lΥβ’rIJBˆD"Aε—Uφ—ΔveG‹cΐ%†ŠD"ƒƒƒPޱlR^^Ž$7²S‘ΨˆPl<‰ω4΄Υzψ@‘ή»*•J*•ͺΥκΜΜL₯R™ŸŸ―T*υz½R©ΜΙΙAGΕ°2Λρ–YϊΩζo¨EκξξF‰qN!°ικκ’„ΜΥJ₯ττtϊ’γΛ…Ρr‘UuΒ`0 +‰U‘ЁΣ U__Γjlyy9ϊβΓWk8₯eœzŒχ`Ψr›’’b0ΪΫΫ•Jεˆ#8ψu1;##£ΆΆ–δd(ψa­VK ΗρΙoؐJgθΪAŒvUŒ/·ΫνΈ4θ—ϊρΗ«ͺͺ~ϊι§νΫ·Ÿ9s¦²²rχξέί~ϋm[[ΫG}τΡGUWW³²Kf³9#†‘ŒΌΨψrψy@{ƒΩŠ•Πn @ksαΔΚ²ΓΈ―ξΨ™L¦Λ—/ƒmK(^wέu“&Mš>!$c„‰FΖW ΰ―)Θ꣕96Τ[aοΐ\@Y7#‘stjj*JΟ^―³F°rΌt\™l#NΔΔΈΪ‘τBΫ¦Χλ…λŒd+Έm6¦ΘΣ^`‘PXYYΙJp‘ „„ƒ>νΞ!,O¨N§CȎCv0‹‚q—Υ"ρΑAjOb”Ώτ„cCάΜ0E±άρ (=z4Ξ VK[hk!$ Ωl6‘HT__ΏbŊα1aτŠ=xπΰωση«ͺͺ~ώωησηϟŸ_Ǐy Μ²ͺτgP-EDΝεr‘”J₯b±ž(‰E 5 ΐ9°½ι` ΔΓππ’’’οyϊι§1 'k¨'1?‰ΖEpIρ(΄Zν /ΌΐD³^―Ÿ6mΗ+((θθθθθθθνν ƒέέέz½Ύ««Λγρ(•Κκ§‹…ΞRΓRρ >…ΘεrLJΝdJJ |Ηp8¬R©@KK [ϋyΓ 7…Β³gΟΚεςΞΞΞoΎωF.—πΓG.—§§§§¦¦Nž<™ωΗ§SΞP‡ …BΰΎζΚοχƒAοΨ’έ`ϋ ‚Υ=O ‹D"Ü£«/=θυz―Χ[WW·wοήδδ䁁œœœΚΚΚK—.Ήέξμμl|†λ£PόPΏxͺ0C3U°5 ΤΥιtP‚>DκD3T/rΉ\£Ρ>|Ψb±H₯ .L˜0λO « sάΧΧΗγρ0’Q&RDrΉœζ3β[σ†—ύϋχk΅ΪY³f9s OUUU/Ώόr^^^GG‡ΣιΤj΅εεε ‡ωRΑ¨½^―P(ΰˆ‹Ε‚^$Nηρxςςς˜ΎσΞ;---………Χ_}?ŸΟ7™L kjj½Ωΰΰ s;*ιιιξ8Σ {ίφΑD•N§γp8H R@ŒΙdhA§Σρω|LΗbΞ γp8τz=ϋπδry °ΩlB‘ΠησΩνv攐ρ%NδS‘Έ%1δ™ΧλΕ\4Έ0ίό4Υ‘Σι0Δ QgΜ!WλF($‰(ŠψΕΐ-γrΉCCCΑ`Ρ«CͺΥj;;;1ν ίλυBΠΠΠΐ–2 nίο7›Νέέέ0k4ί@λϋ ,udYΡ’ΨcΏωζ›ΛΛΛΧ―_/“ΙJJJhM‡Φϋ€B‘3fΜεΛ—Ÿxβ‰kͺ₯ΞΠ΄iΣΊΊΊŠŠŠ²³³Ož<©ΥjSSSΉΑ]5ώόχή{―±±‘ωP*•pp|pή‘lH$lAΊXͺΧλ5›Νΐu`Δ:Ω].—Ιdm$“εџΙΝΝ½tιRJJ pZ‘HΧ"1@@y…jΞΜΜ„‡Ρ$~ƒ>Όp8Œ€#“OύΜ3ΟΘd²άά\½^Οεri’θ‘X?&ƒ lΫΆαl±όόό¦¦&°ρxΌϋξ»οΫoΏνμμ΄X,YYYIII;wξ„‘gNΝgkήΌy΄£ YΊΆΆ6§Σ @Ξ;==8ΈJV«U&“ΩνvΈΌB‘°ΈΈ°6ζ:<¨R©¦OŸΧλαΛ†ΓaΉ\.—Λ§OŸΎuλΦM›6ΕP‘ΩlgΪΥΕb1Fκy½^4#666"+//―――gΎT§Σ9~όψ¦¦&F ±1!Ιησ S‹»Ίc€°ΡhΜΜΜΔr»έ555GŽA΅»ΆΆ–ωβHάύΊrεΚ»ξΊ«­­ Υ(nlΰΊΣι”Λε­Ι|ΰιoέΊ΅  ή=!]xψ € !|>_©TN:Υγρ8Ž>ϊ¨   ½½]£Ρ?~œ­6,²ΆΆvΩ²e£Gž8qbvv6κξGŽωρΗ&Σ±κϊκ«―~ώωη””>Ÿ_SSCΩΈq#’ λΦ­ϋε—_>ωδ8LΖΝ(7άpΓμΩ³ΛΛˁ­ΤιtB‘°«« >ΣργΗ‘΅f~\.ΧΦ­[ !?όπC^^ήΡ£GηΝ›7nά8½^ξάΉΦΦV`K™j*?ύτΣμΩ³ƒΑ ¨yΕΐέCΑ@ ?uww·T*s=H%x<ήαΓ‡1F]$Ρ4Θ<.ςγ?F€ˆΛΈ««+‰Ψl6›Ν†–xδ2jΓΗΩ»wοψΗ’’’ΑΑAŠδ€Η€!6999ϊΧΏϋ\ !€€€δφΫo§•#‡Γ!f¬Œ2ΆqccγΨ±cǏΏsηN‘Pˆ¨½―――££Γησ™L¦uλΦΑ6±Zη/ΏόςΛ/ΏΜ;W©TΦΤԘΝf½^/‰Ξž=[UUΕ6Ν@wΘ¦M›222τz½@ @TΣΩΩισωŽ;ΖJαrδΘ‘W^y₯½½έ`0ddd°έκty§NΒΉ»ρΖ].ΧψΗ₯K—666¨š’;ξΈcΉ±ΦϋίSKίζ’%KƏ―ΧλSSSKJJκλλqšΪΫΫ{{{5Ν… Fe3·N§Nͺ――w»έ€―XΔησY­ΦΎΎ>L‹O@vνΪU\\,‰RSS£Ρh__rα—.]’5PζΪyδ‘ββbδΤ‘]ƒ?‡n'§ΣΩΧΧΗVHαrΉΣ§Oβ‰'Μf3Κgΐνv‡Γa»έώΞ;οθυϊ-[Άΐͺ\SηΝK?~ό’E‹ M&“ΗγιοοOJJΚΝΝ₯€ο£G²z€_}υΥΠΠPkkk8«««――W(uuu•••ωωωννν•••½½½¬0<°o|πΑwί}§Σιπ‘E"QSSz« ›kˆώΨύχί―T*}>ŸΫν–ΛεΨη6› ™BΘ]»ΐJΖά@­_Ώž2rδHΉ\ξσωŒFγΘ‘#/_ΎΌeΛ›ΝFa<ΜeέΊuΑ`0//οϊλ―ˆF£CCCƒΑαpΤΤΤνΠΪΪΊ~ΆS·ήzλ²eΛ/^Όwο^·Ϋ½pαΒ#GŽ θυz_{ν΅ίϋΕkΚeeeπβΕ`0°%O§’V«gΜΉcǎψoζεε₯§§³κΑΉͺh΅ΪωσηBp!}ύχ ΐγ₯°°0//ύαp8==}pp]`ΎMιOJ₯)S¦τχχΧΤΤ 9''§  ΰϋοΏgΚ-&“ιΨ±c¨φxK ΕxφμΩ .”Λε‰+“Ιf͚%‘HŽ9ΪΪκv»·ύλ_zΝ‚)žvJJʚ5kΚΛΛ1ψόΝ7ί …“&Mςω|;vμX½zυš5kμvϋΉsη\.Χ‹/ΎψΫhgxωόσΟW\I ŽοΏ~ŽݬY³V―^ΝεrΣZZZό~ΏB‘Έpα‚ΡhΜΚΚΊxρβ¦M›NŸ>ΝJ'ΖέόΆμθrΉPκEϋ+_\,Ÿ9sF­VcΆ pN§³±±Gΰ₯KΣ¦Mc΅Ξωση?φΨc@Ηh4ŠNήυλן;wΞιtz<žϋίΘ22?ψ8υλΧ―葇‡N§λξξ…Bννν7άp«RΉύφΫW\ΩβrΉ ‘Χιt=φjά¬$###??```ηΝ@t!ρΛ/Ώ‚‡zˆ9# dΫΆmDF' œ:ujτθΡYYY"‘H­V?ϊ裬؝π$-ZTTTwA(z½ήΓ‡/^ΌΨεrUVV~χέwθ―gn–“““?ϋμ34Ζ¦§§ύυΧkΦ¬q:hο+//όρΗίyηVŸ’––φΰƒ¦§§›L&­VΫ‚μogg§έnoooχέwYe1Ύψβ pv †±cΗ E"«Υ ΰΝΔ‰7n܈Œs‘ΫxαΒ…ύύύΛ—/‹Z­^Έpα’%KΪΫΫΩϊ"O<ρΔO?ύΦίήή^Lυΐ,΅ΌΌ<‘HΤΫΫΛͺhH …kΧΕό)S¦Π’Ρhπ,ΛΒ… Α&ΝJ3δ½χήϋӟώ400‘‘ρ§?ύιή{οM@ !IY.—ϋέwί™Νζ·ί~;55U«ΥN˜0αΣO?}χέwIBΎ]rrςˆ#0™ -· e‘H$‰ΡhBšššΣΣϋϋϋQŽχϋύννν\.W‘PΔΧ'{ΛnΩB"‘<τΠC§€€Δn·ƒ₯#¨=ΟβΕ‹kkkYέξγǏγh³ΩœNg(7nάφνہψΖ\—’’’>ϊ¨ΌΌœΉN<ύI“&½ϊκ«΅΅΅{χξ­­­MNNΦj΅]]]N§sΥͺU'Ožd…ίΒν»|ωrΠ;uww€I‰D(Ÿc€ΓΒž{86›Ν89===ΰS όH8%€ŒD"F£qΣ¦M7ί|3ΎσΑ¨ΥjL„c₯*//οΥW_νοοοιιAΊ[₯Reddψύ~§Σi³ΩΐϊQQQ±gΟ” ˜ˆΕbY»vνΨ±cΡ€ΦΦVUUU^^ώόσΟoήΌ™…²P(\²dI4 ‡Γ.—«­­νψργ\.m\$>ŸοŽ;©ž”ΙEχπΓ§₯₯=z4//oι₯2™ ž\$ΙΚΚϊη?9vμXζ &1²΄gžyζ΅Χ^ϋ―ϊ/“Ι”@^ φh̘1―½φœ%BΘΐΐ@AAΧλ=sζLFFΖλ―Ώώμ³Οβ™0άό±Λε’Γ‘α,:t`…ΓaNχ駟iΚP}τΡδδdΠκϊ|>ά|>_&“9Ξ`0XVVvο½χ~ψα‡ \ΉrυκΥ#χφφ’³~ι₯η»οΎ£ύƒK—.=ώόαΓ‡™[gDn#GŽτx< T~JJŠJ₯J¬Ώ~hhθβΕ‹Wš››λp8jkk0f@Π«844΄`Α‚gžy¦ΌΌό₯K;wξΜΜΜ ³ ;vlAAAmm-:{Τj5Η»ώϊλΑΚV„3f°rμ(-K46!4999 ΐΡ!±Ή[ΜΥ~σΝ7%%%===j΅Z­VοάΉ³΄΄T(šL&£ΡψΝ7ί¬_Ώώο;Γ, ΌOƒΑπφΫoG£Ρ`0ΨΦΦ†ωΛ˜CΐγρJJJ^{ν΅»οΎ›α"'Ož¬T*e2™V«΅ΫνoΌρΘ}!έέέ>ψΰξέ»1R %ΝrΫm·egg»\.§Σi2™ό~ooοK/½΄lΩ²/Ύψ’³³“Uτλ―Ώnjj*++3MMM:άΌ€Ξ™3§°°­cΟ?/—Λ[[[‘CΥj΅˜Α-“Ι4ΝO?ύDebΊα†xΰƒΑpόψρ’’"Πσ&6Y uΌsηΞ‘Οrƌϋχοp»έ·έv›ΛεΪΌys|Cιλλ“J₯~ΏΏ₯₯…ξ|πy±]!5\|>n±Υjυϋύ<Ονv#|D"Χ_ύΎ}ϋκ3όc7mΪ4tΨβ^ƒ] p»έΐώϘ1ƒ•cχΠCα ψˆ ½€ο,ϊϋϋsss322XΑ!kΧEϊ‡Οη—””ΰe'%%FδΖoވ‘ΰ¦ …& ΅ΆΆ’­šΛε’§Έ`ό0“‹“gΔ3άP~ Šozbυρ].‚˜'Ÿ|ς7ήΈυΦ[Α¬ΝpΚJΌΌύφۘθ`³ΩL&SOOέnΠ°§§'%%Εγρ Υ- ͺ_ύuBȎ;***ΐt___ίΧΧwςδΙΫoΏ}ǎ”dυšΪ&L˜ΐγρΠϊδfBΠ΄‹nAd[§L™rΝόςεΛ !αpX,ΧΦΦfggƒ9 LFώυΧ_KJJT*ΪσηΟg5‡ ­­­――οΡG=wξάέwί=44”˜ηΊλσω|999mmm\.χψργ[·n}α…$Irrr0χΝργΗzuoΎωζψργ[[[qδaΤ°9vƒ¦‘¬¬μν·ί~τΡG.Έ΄΄”²OS.Ό Ϊy=}ϊtζŽέτιΣaΧGS &tαXQB%΅² lΰ”`\P,`δΘ‘‰MT›1cΖόωσα†Ί\hl"ψJ>όσœ{p —Ώόε»ξ:vμXMMΝΌyσ–.]ͺΧλY]Ζ%%%‡0ΝΎΎ>±Xl΅ZΫΪΪ:::T*•X,ζσω………YYYΜ‡—Γ‚ …Bj@.—‹<%\J8Η±'‹srr0 ψςεΛ~Ώέwί•Λεz½Η… ΪΪΪζΝ›Η€±pαB™Lšw˜w—ΛE©ͺΓα°ΝfKII)**bˆŠ[΅jU8v8f³9%%Ειt ‚οΏ³7ύολυϊ1cΖ€¦¦²Κ|γF .Fϊ>|ΨλυςxΌΌΌ<›ΝΆdΙ’ 60ίνwέuΗ+--…=/--‹ΕrPZZͺP(œNgvvΆP(ά°aσuBŒF#&㟠6 8P0&‰eμΑφνΫόρΗτττ‹/&ˎ—]»vMœ8ΧΗςεΛλλλ?^YY‰^ΔpO<ρ:Uψα‡œœœŠŠŠΆΆΆνΫ·³=ιpμΐC²€H$‚€’q].X°`ίΎ}W]κοϊ’ΐ&ƒ˜©―ΧΛαpD"QOOX,fΛϊ±tιR4C‘T*E™\,Σ‹D&“έwί}ΜubΗ»\.ΐΰB‘έn999iiiΈ’‹ŠŠX­b0d2JοhβC?—D"A[+~Œa‚ς:Yύ IDATνφΫoί²e ξˆψ>Gp?‘γšΥΗ‡δζζβΕίy睁σ›ƒΑΰˆ#X€ιυzΗΣΩΩ™““£R©ό~?uϋχο―­­Τ,)))33]βΜKT(F|πΑ‰€Ξf³ιυϊ &μΩ³‡Γα444άvΫm„1ϊ΅¬¬ ΔπΑξΆ-πA„B‘ξξnμ²²²k*Όε–[ΰs8­VΛαpz{{=žΞœ9 …rrrΐ‚ΩšλΦ­cψΩ!pF7oތ¨.|!vϋŠ+0ߐΟηgff–——?ςΘ#rΉ|Ĉ“&Mš7ožΕbœ2e sΝ6lθνν…IB™Γα oAΩ“““:Δά«#„ΐ{Ck$¨m@)‚.Nι˜ΣΞ₯¦¦ 8P‚ ÍΡhG"‡Γ4)))Q.πr@gγχϋ­N ΊaΓ†x`͚5ώσŸί{ο½χίγƍ}τΡ»οΎϋφΫo'…DƒmGG‡ΙdΒ;zα…nΏύvΨ%ΆΠ¨’’".—›œœ¬R©ŒFγΒα°V«uΉ\Θ:ΐΣeΞΒΟ‰Ν Cο*ώΫήή^VV&‹›››5 xX…―₯₯₯6›ΓαΐA4 iii°¨ *·Ωl(€0όυΤΤTt2Fbc<0!—ΡΊr&6rώόy“Ι4i$›Νvψπa§ΣyαF3000sζΜ’’"Δ ¬ΜCψ|~VVV]]]GG‡ίο1bDFF†Ϋν.))ΩΊu+ψh>’’"άΉ:Ξh4ͺΥκ©S§N™2eΚ”)Σ§OW«ΥCCC"‘¨««+33“ν:Α}H‡ € …­B*»wοΆΫν P@wKΒƒΰ!υ_΅jΥ*FσΓ?TWW;Φ`0|ύχ χŒ9²ΈΈX&“©Tͺ|p̘1@ ++‹νeAbϋsεΚ•tθ76gœΛεF>ŸοχϋoΉε–ίΣπ»Ž]kkkCCΓΧ_©άΨ£n₯&‚Aπ žwVΩ²eγˆ^θττtΐ8&†ςΜ3Οΰΰ@ωΤ@ Πίίοt:1'€ΔΈFύ~Όyσ˜¨Υj΅|>_«ΥnήΌ9οέ»·­­­½½ύΥW_ύΰƒ8NUUUzz:aό01$//O―Χχχχƒ έι`Οκοο7™Lyyyx}ΓkKJJ-\ZZZgg§F£Q(ΘOpb#R!ΰ·ΛΛΛσx<---rΉœΥΰΏ'N`ήφΐΐKΜS WΘΕ‹1 Ό$YYY+V¬HII3f :cΰŠΣιΜΛΛc¨³₯₯%33sǎiΎΫνV([·ne‹6β‰'d2’" h!„Θd²Σ§OƒI‡‘Άμμl‡“””TXXͺ”P(Œ“@ 088ˆI"‘¨ΈΈ˜Υj !F£ΡαpH₯R»έ.—Λ1¨γη|π駟Ύώϋ—.]:gΜٳgϟ?̘1S§N3gNl₯„²²²’’"§ΣΩήή ώωηΧ_ύπαΓΩΩΩƒωŒGθ9ZZZz{{ΫΪΪ¬V+.!a”J₯F£a>ϊ j=Π}ׁ<ν–MΦΛ–-KII΅,,,„%’)))ΕΕΕlΙ' TˆΔfLO˜ο ˆ¨-$ 3 ¦¦¦Ξ;wΡ’EcǎΝΟΟΟΟϟ>}ΊΡhlhh`ΕζEbυλΝ›7ΫνφU«V½ςΚ+•••ΈΛg͚ΥΤΤΤάά YΕ00‰^―Χ`0X,‹Ε’V«kkkλκκΰ!Α₯ΰΖΝ½¦<ώψγψΗ?HΜ>cΘύυ@ œœΌoίΎ 0_§Z­‰V«…u’ƒ[°Kω|>&;#μd"p ϋϋϋαφυυΉέnΎŒ?‰Œ¬¬,ζλΔGΎγŽ;κκκFυŸόgΪ΄i&LψυΧ_Ÿ{ξ9•JΕ* 2—Λνλλ‹D"˜F Ÿ©“k΅ZP0׌ό͐Ψt|Σεr±*#όVP„ύL80†P»ΡΪΪͺΥjgΜ©ΥjΡ$ŠZ|bΛΣh4R©”Ίt€²$œ„οqώόyTα5‘πzρβΕ3gΞH₯R0ώ6Lϊ]ΗŸ ˆ†††ϊϊz4Wc"8«΄κgŸ}VSSΓγρͺ««Εb1=–0ΝG©T uuu8q΄4 Εj΅Œ ^DP<‹D’‹/Ÿ:uκΎϋξϋτΣO™+$„ΐ;Fd€bΔbqvvvMMMAAZ˜ΔψtJ₯rέΊuΰ“D&œN&Ř²;vΘεrΆτͺ555|>?99Ξΐ°j΅Z―Χ‹Εbζ3‘!ϋφν[½zυΛ/Ώ¬ΣιΘ"9‡žίοOOO?pΰΐ„ ΆoίΐV733Σf³ΥΧΧwwwœ»sηΞϊϊϊέ»wG£Q™L6rδHVΓg‘Ήxρ"FβΔ™ΐ€€€–––K—.ΑΠ ο2~ςΙ'Λ—/Η?ώΡΩΩ™ŸŸZ, @FŒ#200pζΜ™R"ibΥΣ >g œπz½b±˜y:-^²³³§M›ΦΪΪzϊτiΰsνv{0ΌξΊλτz=Hσ{{{e2™Γα@μΑDθ3¬――”¦ζI&“ΡX–9τ$%%Σ~Π΅γI…ΓαΤΥΥi4ζΉO­V JχH$‚"i46GŽΦd‘Ee–U! !ο©S§Ί»»•Je__šΑ[[[.ΕVVV~πΑ>ϊθwήΉrεΚ%K–,\ΈpνΪ΅~ψ!sXαΠΠj@@°tι δηη;Φl6'op»έZ­}ƒŸώy}}}4νξξ …ψκ«―x<+>a\™ (F %‹SRRƒQήVΥΨηŸώΦƒΏ€²5™L«V­bb6›lG$ΗΛζrΉZ­6 2=@?΄~ŒΨ±Z­©©©S§N-++›9sζ”)SŸo±XΠΦsπΰΑ―Ύϊκ…^ΈρΖηΝ›·{χξO?ύτ©§žb¨ n–N§===R©Snλκκp”JJJŒF£Υje˜±ƒ30cΖ πΣοΣδœΩl999ΤΥcυρ!}‚ αHdχ#==ένvόσΟυυυ”“XkEb244Dρfψ—ΛMŒ‹gάΈq Ν―&„Δ—ψ!αpρ|IIΙUέΠίuμ°2πqτυυΥΥΥύϊ미ˁδ`….¬¬¬5j‡ΓΉι¦›¨~κήρω|…Ba6›³³³§OŸΞ*U‹9tβ Ϊετzύ!όη?™«"1[³dΙL›hiiAί.ΚΠ\.—ΊΆ₯₯₯ ubΐ6—Λ­¬¬ ƒCCC˜Φ…!KΘΫ‡ΓανΫ·ΑΚvΈς|pζ&MšΔεrΡιΒvŠ3Ζ`By<iτ]$%%‘όΗ6+ V«;::fϞ­Pό?Ύ;ΎΙ²mϋNf'm³»Wθ -e”)[p " ϊ">"κƒϋy}݈ }EPAEAA6ˆΘF†e΄P ₯“ξ€MΪμ4;ωώ8~½ΎΌˆν}η=π5½ΈrίΧ8Ηq§Τγρ΄΄΄X,–yσζ577+ŠΦΦΦΞΞNΗC3c'•J‘™«¨¨ΐŸQ1dυ111'OžDΜ4ΰ󬫫۾}ϋ€I“ξΉηžαΓ‡Λες+WX­V™L& ύw©Tš- όρΗΤΤΤ·ήz‹iΝ ‘*ξ,$F ?bC‡ΕU΄cΗDήτω|:Œ„κκj—Λ₯Σι’““#πλλλ'I;<^ϊ½1ˆeeeνήέݍmθλUΏƒAN'‰h–ΊΤj5&³mΫ6΄Δη!Ή …φοίœ\΅Ξ?ώψκ ‰‰‰ ˜vž½Ε>ϊθ£οΎϋξ³Ο>Ϋ±cΗφνΫχξέϋΥW_-Y²„~Ώφ[¬΅΅’‡£ΆΆ6..‘lTTΣ z7+•Κͺͺ*4)š8qbWWΧ_|ŒιΙ“'oάΈB4ύaρRͺͺͺl6i c·Ϋ!ͺ ‹™rγˆ566bqβ―δΟΠζ ΟαΡ±œœ‹Εf³H dώˆό~?Z9ΣoRW]]-—Λ­V«Ϋν.))AΥ΅°°°¬¬lυκΥuuu7oή,//gΔ”δσωuuu?όπC\\܈#φοίδ“ONž~όx6›}ο½χ‚ΞΘ¨Ρegg'ͺ`qϋ  ͺ:ΘL€ΆKψ‘·•+W’h–ššκσωT*π”WTΊΊΊPa}5ϋp{κ©§Έ\ΡhΔ]ƒ ‡/τU*Υm1Q»ΌH-^BVVΠ…z½ ˆΡ."Ζι­|œςn·›Ηγ‘V_{cš&•JA„$ °R©ϊŸΡΡΡΌ€aΓ†uvv’Ї~_E…B!‚ΎΪ³gOzz:ΝL2Rθy6ˆ£ϊ )ά††΄ ` kšΑj΅Ά΅΅!&†0SV,iGh³ΩP6u8ᑇΓιξξfzζδδ gъ+JKKοΎϋξ1cΖtvvκt:‘PˆŽC4Ο ƒgϞΝΞΞ8&ΌΩŽϋΤΤΤ .  ο‚Η‹ΐ’n„!|ίήήή#F š]ƒκ[’ŒΦ?Πxݘ!°L ”OˆΥi4>Ÿ?bĈμμl—Λe±XPZ:sζ zΊDP€ΰ u:‹…‡ŒΠΦ)))B‘D«d_‡οΗ7nDEEΡ,$!ΣΟαpN:…5—°wͺ―°XUUΗo“‘i4HFx+˜RΤo±ΚΚJ‹ΕΩΩΩάάάΡΡΡήήn2™‚Α #M[L©T"1pξάΉΗόΔ‰hgΒ4cWTT”€‰*•J‘PΤΦΦφττ̟?κΥ«/^”ΙdGŽωŒi0H3 VΔ%‚£Έ··yτZ λ^>EQO>ω$ω ύΡ²²²X,\Oΐ¨ΎjRΏΰbΪtЧl6;..N(κt:ΰ}Ωlφωση›šš CLLLtt48υJ₯’Ρ­τψγ6 ς’F£qχξέ ΅Όωζ›GŽillδσω[Άl‘Iαρx ‚B}}ύ]»<¨V«;;;Ωl6V) 5τη Y`…„εεε‘逩θn‰„τ˜F·‘ΘΖ‘Βά£Ι“'F•JoŒΓα@!!β]σ™%(ŠB)‚‘,XΠΫΫλt:Q ‡ͺUE-Z΄¨9‚ΫJΰB?ήησΙd2­V›žžηwR wζ-OŠ\₯ΨBQQQαωyϊ#k4δ-pυ"‰m΅ZQ@!a=#ΛΝΝ½pαEQ3fΜπz½¨yωύ~€(ŠΪΆm[TTΊ\ hθζ Q•J…uW‚» 9j|X‘P0ε"aϊ|>₯R ^=ή"†‚Z­Vΐ~A”M9”ΔιL2™μθΡ£F£Q,?ύτΣ"‘ύUξΌσΞ½{χNž<ΉΈΈΈͺͺjβΔ‰tFΪΟαp8ΞΔΔD›ΝJ5Y` &ΐ™CA€ ,ZlB‘Hδυz[[[…:zτh0„κwyyΉΕb!k‰© : Q}ώ £ϊNΈAο°§§ηόωσΰπŠD’δδdh‘S5qβΔκκj|λΘΖBΆZ€0 iτ- …œ§κ(Š:zτ(ˆφtDb^,wuuαaβ½c†π>šΑIΕ¨§3ΡΏH$GΜΚΚr»έrΉœ>'τ―Άf͚;w~πΑ―Ώώϊ«―ΎϊίύίΛ—/φΫo 7ήb 3½σΞ;ΰLμΪ΅kωςεΧ―_g ' …l6±ŠL&3 rΉ|ϊτιv»ύXΌxράΉsρI±XLΕEφˆί^֏ΈΫΔδΙ“5 π΅δ‡XΘ²0JP• …ΰq‚#Ehˆΐͺ‰Ξ>,K—Λ5cΖ hΗθυϊΣ§OΗΖΖ&%%!%f6›-N₯R ‡ψάΉsΓ‡oooOJJZ°`Α±cΗFuςδΙδδδόό|"(֏ακΑύk·Ϋ»»»%Ιψργ/]Ί€P(,KCCŸΟΏzυ*Ρj 3C$ ΤΠΠ€ ―ΙdB`ιθ3½^Oπ'RSS‘ͺ@Ψ΅|¦ƒ„[ii©Α`0 R©Τf³ …B‹Ε˜9 ˜ΪπαΓI}h5Π/ξΖΧλυΆ΄΄2Nfδζ§M›α=Š’nΛm cχόσΟJμφνΫ!ηsί}χQΜ½Z<©R’œB1N§“τͺbΚ̜9“ΗγαK₯R‘P‡ εNFΣ#6wξ\Ή\sh¦ [‹ή E †Λ—/Σ„J·sηN@Ύ υ‰Zα9ΐ9tθŸΟg744󎧚™™)bbb".yPΥΫΫk·Ϋq7#{‡ŽΡj΅šR­VWVV_Ώ^"‘|ύυΧv»έλυ>\©TφττάsΟ=οΎϋ.$Τiͺη 4ˆΛεZ­V‹…–'ΐAκk^­A“ΙΔεrt”Γ!πf‚Α ΫνΞΝΝ€C(:3Q<—””δrΉ΄ )rςδΙΰc΄ŽŽŽΈΈ8θΌTVV’$§R©~ύwA ΟΧ0ς‹(gΣG@EρΤ©SρρρˆbIrη&‡ΓdTnn.εr9N ³Ω,—ΛΥj5ΰ€b±8...------%%E―ΧΫlΆθθhr‹Π·œœ¬(”}‡T*4iΣqˆ½χή{K–,Y³fΝ–-[ΆlΩ²uλΦ5kΦ<σΜ3/ΌπBΔcξή½{σζΝ=τΠφνΫ?ϊθ£²²²Η{lΛ–-ˆEι›X,‰Dθκ8)Κ»ΰA?~|ĈE‘ύ ύKKˆΗγ‘Ε§Ϋν†ηνv»q}"ή`κ‡έΒq&ž=EQ“'OŽ`ΐ€€$«ΐEt‡Ιcqβ²X,·ΫM‡Ο§R©ššš¬V«Σιœ6m€^d2ttqΰgffž;w»»;''‡ζ<΅ZmSS$’ &ͺΥjωε—ωσηΖί~ϋ­°°°¨¨H«ΥiR‡T‚P(ŒΗ·ΛΚΚR(Γ† ›9sζ#<‚FX•••J₯’>B†’(Fχ]ΕΒλ°ΑΓ½+ΛΚΚrΉ\H7RΕf³ι“΅o1,žΕ‹{<žΪΪZΠΠΛ8 bΖt9QUXX¨Ρh€c!ΔP―ΧKŸΔFμή{οεp8±±±W\ΑAJjDl6Ϋb±¨T*·Ϋ­ΡhΨlviiι_u?pμ† Fςg7nά¨««£ϊ"$¦Χ>ΏeΛ’ΈCŽΠ6oήL1„ξ‘M„ϋbccεrΉX,ŽŠŠ"gzwπέwί}υκU$ό d&‰l’(Ѝ±μΩ³‡f(v^CCØ1cP>—’(©TJ’·‰‰‰υυυl6›) ‘··§›ΝFχ3d­"βα·΅΅Ζεr±EEE9N―Χ Νkϊ ‚ΑƒoΪ΄I­V744ΔΔΔ„B‘•+Wξέ»7:::---55Hš'ˆR©‰D2™,;;Η1©’γB‘P€§2 D†x„999.—+))©₯₯*qqqq••• „DͺOž‘ΕIͺ‡`:EQ?ύτS]]ΣιΔ7mkk³Z­Α`Pd_τz=βϋͺ]HΠR},L¬Γf ΐο«―ΎJFΓχε—_& JtFC› —Λ₯ΧλOœ8qόψρέ»wFNW]]½aΓ†oΏύιdƒΑ€Κ£(1'''66&Έ ‰$ υ#5 UUUΥΥΥ΅ΆΆΦΧΧΧΦΦΦΥΥ‘·zΔ Š’„Bαš5k^|ρΕ¨¨¨ΦΦV7ώό^x‘΄΄”ι8E‘9ζ–-[***Π"Βd2χ€ϊγργΗΕbρΘ‘#i‹―6tθP“ΙΤΦΦf6›qΞC”»³³3²\5δ’X·k%fΣ£žΟη³X,›ΝV__/‰°1q˜ΰ8T‘K'Α–­Σι‡B‘°Z­z½Ύ­­ %τχΤιtR©T­VΣg†ˆUyyωΦ­['Mš$•J‘Q–J₯χή{o}}=Ζ”””ΠΡΫƒn—Λ…‚P(μξξζσωΈ~ύΊΡhτz½R©T―Χ#OC•Ξ< ± gΒ);.—+—ΛΡUζΏΕΤj5BΝ`0ˆ˜‘JkΈa©h΅Z"“$“Ιμv;ŸΟ'  8vΉΉΉPέςϋύD„Εb©T*¦ˆΐ»ξΊ+ –••}ςΙ'wήy'Τy± Ιm•‘‘Αf³kkkNη_{kύmη ˜R©$Ψ΅·ήz ΩΕΌ%Hηηη+•J»έŽΧCΒ£¨¨(«ΥJ"c6ν>HŠš šΔ&•JQΡΗΗn{ό’[9΄!菆Ηγ‘Ιd"ίΎ}ϋΛ/ΏόΐμΨ±£ΑΊ ƒτ“e„ΕbΑA)**Β;cŠ€z'Ϊl€’ΐMdΌΛπiO²Ί‰$!!Jit =ψŽ;–˜˜Έ|ωrΐVFλΎϋξ{ν΅Χd2Yss³Ιd’H$23Φ¬Y³uλV£Ρ8mΪ4΄1% [‘xNC† Y²d‰\.§ό·Ϋν ]:ŽφφvΠ–ΕbqSSΗƒθ ‘(9Κ€Š„5ΟtŠ’Ǝ›ššΊoίΎΜΜΜP(€R©‚ΑΰΉsη „§•••YYYθŸΛtόΌΌ<΄"Μ €ΜfsJJ z]ΠόϊPŽ-..·>7`Rwί}wee%›Ν¦ΙBΡb±€₯₯₯§§³Ωμ>ψΰΤ©Shτyώόω’’’ΦΦV@Υ4$nιηνrss% ΄^­VkZZZOO›ΝŽ ’Bμΐl6ϋΪ΅kΈρ`σσσ#Σ:-]ΊΝg9ΐ!CvνΪ₯Χλ'MšτΨc=ϋμ³τΗA/‡κκꬬ¬›7o’‰t€-Kssσόωσσσσ/^Όψό‰=:†εQZZŠ?€€"‰δryyyy (..nii‰¬ΤEξΆπΒλbΖπx>Ύ«« υ‰Dβt:%IGG@₯€E’’’@E:Eq8œ””FάΨΌΌΌγǏϝ;;³ΩŒΤŽ,υ»οΎϋόωσgϞ½-Ši€υj0H%Εαp`Πg Γ>yώωηΡEžμδZΰχˆΕb΅Z ^ Ν]κrΉςςς‚Α p΅.— κ!o’Ϊ}―ξ駟f³Ω?ύτEQ .D ―* !s»hΡ’—_~™’¨ΊΊΊ©S§θΨaAƒA…B–Gpμΐ“ρx<(cΝγ‘utt Αzτ€R)£^@T_ τλM IDATE0@/_Ύμρx>ψΰƒγǏŸ={6!!Αb±Η‹ζν~φμYΔϊ'Nœψκ«―Ž92gΞτRίνvƒƒˆ«Tqdy½^:Žj―TŸ”ρδ$ ²!‡cΠ Ah/6sζΜοΎϋŽζΧ'†2„œpu"S™ 4H(BΘ(Δ N§3βD`llloo/ΞyDς‘>Ά>Σ1!IQψ ΐͺ’ Π;v<σΜ3m›;@Ύ‘πΒX,ςŸH„2Ν*aΧέR &)8vR©π2ϊ[΄’’‚ΗγΑΉv:.— M₯τzύΤ©S͐ΜδyŠ’Š‹‹ 0EAΨοχ“Μβ/ΏόB§5!ŠΉ*•J­Vϋ|>ΰ–n‡‹ΟηS«Υ~ΏŸiΞvτθΡ€„Γα @ȝ1|EQiii§ΊΊZ*•ξέ»χΔ‰P9ijjκνν₯ί·'ά† >#tΨΉ\ξ˜1cžyζ™Ώ“αω;#.Q82άU"ΕF°0β†ϊΘΰ<πΐ’%K²²²p4™L†Οη>ωδ“λΧ―l+>>Ύ¦¦ζΝ7ίlll\ΆlYaa!θκ,‹Q½{θΠ‘¨žΤΥΥΘΒγρΠ/„ώ α_]]}ι₯#GŽTVV^½zυςεΛ•••7oή4›ΝτU…Ϋ΄iΣΪΫΫY,VNNŽZ­†šέΰΑƒΝfσΕ‹΅^ψφΫoΥjuyyyIIΙΝ›7»»»wμΨ!“Ιˆ¨ΫεΛ—KKKίzλ-ϊ,¬j4›ρz½ΈΟΌ^/ΔΈΈ8"?κγ΄4δ8oΩw$κ ?L*•"‚ aφ„_=ΡΡΡ===Π_€CΪ·oߝwήωόσΟ'&&:ŽsηΞ•––ƒΑ}ϋφνέ»wƌEEEόρπαΓ)ŒβkήuΧ]ΉΉΉσηΟ/..nll¬¨¨,ן^―§Δrϊ¬»»›€ΰΐš‹Η㉏w»έΰ#9λd2Iχ ':Λγ χω(ŠŠ¬ΛγρMW’ΗγEqQ…4<Ύ5—Λ‰Dθe™ΜDΝB}ΝWγρ2pθΠ‘@L4(<"€·Ϋ •¨S§N±ΒΔzˆ ±#ΥπΣ O‹ΕΒhTN"||§pdff–——ΣΠl6ßL‡ΠF|>‘q1ͺΓ~ωε—δΟ(nΒύ’ϊ\[‹EΘ Δμ߁€Εb‘_)Iΐ±’ό~ΏR©Œ‹‹³X,Œœ­V‹<H$b…5j„‡‘oȐ!rΉχ:d‡ rυκU8L+ΌπPlέΊuλμv;ΤAγββNž<Ι¨i&y•·υΫX}=C)†˜|xωςεΘrυττ˜L¦3fμΪ΅kψπα .DΪ’ˆf1?| „Aw‰3Ζνv'&&*ŠΓ‡—””Ώί_VV–’’ΒαpnήΌ™€^X Ύ <Έ’’‚ζΧGKuŠ’Δ“\g|¦^Ξ<?8ά¨>vπβΕ‹W¬XAηaχ#—ΛoάΈΑαpJJJ***κλλŸ~ϊι‡~ψηŸ~φΩg‡ZSSΣήή>eΚdş©©©‘P¨»»{Ȑ!7nάΠh4===•F_œ’(“ΙτΣO?™L¦@ € ΘΆLυ aj΅Ί‡ΊtιύΧ%$$΄ΆΆΆΆΆfddDΐq‰ŽŽͺͺš;wξΦ­[Ϟ=ϋΰƒ‚ΰ…Β²L9Œ©©©R©΄­­ W&ΗKII1™L~@C £ΡΘθ #T°πš)ώ€™H$‚5Υwέr+‘o„ΥjE’ž¬φμΩ³θ‹ $qyyΉV«Υιt^―wΤ¨Q‡Π‡Q}›nΣ¦M£GV(§OŸ¬¬LLLŒ?vμΥWlp(’Ιl6›IŠιI"υb6›ΡŽ4Η‹hλ€³³“τ,Έρs™L–ŸŸOσ‹‡ξ#2U°Δ"6jΤ(„šx³ Θaωύ~©TͺR©ΪΫΫ™Ž‰’ύ-o/:²ΝNυέοTΨ²Ηq ϋo 2@Ϊυμ[– q ˜h2E’`$[”iV€ΗγΉ\.‡Γ ΡWŠό.ΊbS Q$3?cQ}y ΎΙ²θίΠΨ’ά¨ΑC8v­Ε‘Ψύ k΅ZάhbA–>°L%ρΒΗ$§9Z΄±@¦j,x#n·ϋ‡~°Z­J₯ςΟ?΄Ωl‡γΚ•+±±±‘₯cccΓEsώzIΠ<‹Γ«’ωωωQQQΈr°δΟ<σΜΆmΫ\Ή’™™Ix¦L3vδΖ½e—22΅Z-‹cbbμv;R"‘(662QΠ6™Lqqq"‘Θn·―\Ή’Ρ³βž1JΖXφˆ—˜φD=gVνΒΧχϋύΰ3Ωο 5Θεrh†Oš4I­V㚀(*;;{͚5Z­φ‘GIOOΧλυE‘C1ύ©Ϊl6¨RΫl6‹`Λ‘qGΦ]»kΧνΫ·οή½{ώύ{χξέ·oί]»φμΩ³ώ―Ύϊ*‚1U*άΔƒN˜0A©Tξέ»Χ`0δηη‡B‘ŠS>Ÿο™gžΩ΅k—Χλ0a‚Σι¦άXβΞ\±8»RSSα@ '[LL zm£τ’EQŒΒθLέΦ" 3ΕΔΔ…B@`³ΩώZηΒΙOQ”έn ‹Q< (ȏ?R©|>_nnξΩ³g:„σ“Ρ €ι=όπΓ6x<^ZZΪ„ PΪ†ζ?Ν[C*•ϊ|ΎΈΈΈζζf4α$ ά\.Ντ€Pg±X4£#FγυzǍ7rδΘΌΌΌΙ“'Ož<9//oάΈqΛ–-[²d h³yyy$uΗΘ ό€\2ήέEξ€ΈΈ)[x\.7!!=άC‘£zΔ Jκψ!ψΆύ¬ήώ ŽΗγ!•ͺO”ŠΌ—Ϋz8dμ’’’€d…Ιξ᠏`–d*δkίRΫBv‘ώ.R«Υπκ@„ …$'Ξo’oα‘ΰŠhHυ±¨ψ|>a Π •HN  ι ‹Νf§₯₯rKΒH#X€‰πӘn°€P'ε ^9τ θρ˜Β… 'NœΠτ£>[]]=vμX‘H4|ψp€Š)α? υiBβag'°ΒΪ! ς"‘HΜf³Ιd’ΛεkΧ΅Z­(n²ΒxIτ ›$kρœ…B!#ŠρŒ3φξέϋΞ;ο8p`όψρ---@ΠφΫoyyy£Fιt«V­*(((..‰DŒšH"9†―%lω΅T_λš[L¨bΩνv£Ρ( αΩP…ΤRυΨz½Zχt"ΊυλΧ—””Μœ9σςεΛ&“I&“ΫΪڊf©ΰΠψ|>‡ΓρώϋοG cG”’@Θ ™‘ό;ΛΙΙΦΈ²@ κ1ΤΞ‹‹‹Οž=ΛtLθω( ‰fύ~ω~Xll,<B>£ϊ2kνννδϊ«2€λc4Γ‘pνΡΆ+‚YΑCώŠ‡ί”(2rμ€.— _­ΊΜf3Ξ¦>(ωΧΝf3šΣ!3‡qΈ\nSS£/^Όxι₯`0Cΰ&g=ɎgZ^^N§vF ‚)DE/‹ΔuFS…ΞΒ)D‰ρ󨨨ήήή„„Bφ‘9EQ>Ÿ―­­Νιt–””h΅ΪU«VέΈqw€i™ZΈϋ “ …u₯3qιβγγ‡ΫνNNNξμμμκκ …YYYεεε7oήLMM+LcψΩxMΔΛašΫ²e‹L&Σιt …j½sηΞ-..ΆZ­sζΜ±Ωlννν===S¦LΡj΅cƌaTPˆ‰‰!'ϊ)Α«Γ„# ρBϋ ΰ―YU―Χ«R©h.Q@Κ’““ΎŸ3gΞεΛ—_xα…ψψψί½··wΒ„ mmmsζΜ4­hŠ#Β ΤΪΪŠΗ ½\Q‘υAͺ>zτθ―ΏώΊ{χξmΫΆmΪ΄iΣ¦M›7oώϊλ―W­Zp4SΛΝΝέ½{χ… €N§;qβĐ!C***š››αCG0ζΒ… SRR~ϊι'ΗƒH;½··’•LW{AAδ–‚Α`\\œΩlV©TR€²bY,ί²"¨s 2$33³₯₯εΐιιιπBΰΩDχŸΟηρxί|σ ΊέΠ<##Γh4Ά΄΄ ρ.‘ Θεr>ŸεΚ*"yκκκΣ§O_Ύ|ωα‡>wξœΙdjnn~υΥWρš²X,©T H°ώΑ EώΪˆΈJ ΨΉ‡ΨδΙ“M&œμˆ(qgggUUUWW0kΦ¬‰ J$ £ψ+zf0„DΡΐS tvv²X¬ΌΌ<6›H)‚1 JΫ€”‡ωοΘζ Ž,x²C‘ŸΟμψΆϋh€ΓϊΚ•+S§N τ5ν2,²X“’¨φφφττt’θ ߟΗλυс 7ΤFΑW%ςxˆjjjπ™°Ο³¦¦ s”(ŠB5…ϊαζ—}Ώ–H,R}H#@`·Ϋ₯RiCCΓk―½Ζhͺt`ͺ/‰ˆ₯q¦[7.Ά7ΐΒέΑ„ `©Οη“Λεl6{όψρ\.wΛ–-|>ŸάΎŒp'=jI4ƒœSΌ‘@ P(έέέ½½½rΉ<..sll¬X,F`Δγρrrr!eLp$nh3-!mΨ°ΟηΏρΖΠ …§OŸΎzυκ{ο½][[[PPποΫλυяBar―X“Α°Fmψξ8v………HW’yψϋ …BB‘pδΘ‘Hkυo[·n½tιψργǘ1czzz ΕθΡ£Αερx±±±}τΡ΄iΣƎ{νΪ΅sηΞA’Žαν7άΤΤ°2ΦέέέL5Γaί}χˆ#„2‚ΏΒπz½4©-αvνΪ΅kΧέ{aΰΒ… ‰‰‰έέέυυυ­FvΥ½ρΖS§Nmkkλκκ"ϊ[ΨA¨G3EΘd2Έ_@@"‘Έ\„„Ί°mΡݜΡɌ0ƒϊίη9ώΑ·Φιt@`ƌ111Π3G¦6ΠΧ(Τ‘P‘―Η$γρx©©©Θ}€Π=φP(tσζΝ΄΄΄ζζf¦_Ÿ’¨ lΨ°‘ͺͺκςεΛgΚ”)f³Y*•ξίΏŸώ€mmm`Ψ΄··§¦¦z½^π¨ΎΚ8V&JόsηΝ8qβϊυλvαΒ…EA•V`‘ @eŠ’Qφx<{φμa*Ζυu‚όCB‡ΡΔ@Φv»έΡΡѐ€βOtt΄B‘hkk‹LϊξJxJ‘PΘησAN?2–T*%©*laόŒŒŒΏSϊΫΓ‡{mm-θ₯α·fdˆͺ±Œ›#όλ8 Ϊl6Fϊύ~μj8s@¦χŠX3²Šί:wξάύχίΟησω|>.§¨¨¨;XAAϊaSaΤπΏPφ2™Lp I@4γ’ΕbqΉ\¦]†Θ˜^―—Ηγ ‘Pˆ–qqq€ΝŸV«₯™²%OιΎϋξ;~όψέwί]VVvκΤ©W_}΅’’’««+55έ ιGœ#ό0όΧ‰ΣL?ΘΖΪhΓf³Y,–#FˆD’ŠŠŠ˜˜Eκλλ•Je(Bq“ι]‚Xˆδ1σŸοΑ5jTwwwrrrNNŽ'6›Ν(ο‹§ͺΧλΩaϊζ]Ηbήz5‘l.v°ΩμαΓ‡Σqμputt :tΜ9gϞU(~ψαΝ;Χ­[7wξάςςςœœœ;ξΈ£©©©΄΄τΩgŸeΤRO  61j“Ι€T*α*Y,DΖLmέΊu,‹,v_[->Ÿ dcξΪ΅λΕ_ K—.½οΎϋX,–ΡhΜΙΙ‰—ΙdLερπ,KJJJ(Š…EQPe‡§Λθ ¦ͺ’*•ͺ§§G,'%%566μχϋcbb²²²Πݜ¦α`'₯ΓπΫߚQmξ₯K€Ÿ>όπΓ:g곑Pχ‘Υj‰‰Ω³gΟ©S§=X΄)ΚΜΜ„lgKK ‡Γ±Z­/^«€ώPα¦Σι$Ι /Ό T*sssΧ­['“Ιτz=£…tύϊuƒΑΆ€€1ΌΡhDΧ2(€'V¬XρΫoΏ Hn+,,;vμργΗΡ^'DDV―Χ#) Χλ ΤΪښ’’’V«ΏύφΫόγτgŽ.M>Ÿχύ_ό«₯¦¦ΒY—H$wέuθ*•*))iΤ¨QW―^¬‘-D˜SSSΔΏ¦¦fτθΡ111Œ–ΉζΠ±κ[πδpF° L-3Η%wͺ/Τ…B.—+β‚1ΤζΒΤ‘>-”’™κ„y<ž`01μ|ό5 BD—M[O5ά07 jˆή  ΚpLο9DΤΖ P}m¬0šJ­αΦΦΦ†EsKΆΦησ‰D"ϊΪΌΔ8„‚ccc=ΟΥ«W½^oUUζ(Ξ¦€€ΠΤ͉‰©­­Υιtl6Ϋn·λtΊξξn·Ϋ““#‹F£Z­†»Lί<K<ά· †΅%₯o#GŽτxΔ3Υw©΄eψg˜•b±gκλλρWd†|>ζΚh–ϋ‹£Νκk…Ώ’OΘƒk θ6ƒϊ ΌΟΘH0dΩ}}3IΚ!΅k•J…cŽP:HΔ‰Ϋešˆ‡ΰB'ά½γσωŒΤΙL€³Α.*--=ώΌB‘ˆ΅ΫνΈό˜’οΪHIIικκ7n  2™μ₯Kρρρ7nά€φ&}_™Εb!‰€wψ[&`RϊRΨ)))`‡ΘεςS§NeeeΙεςΨΨΨ_ύΝψΜf3έ2ϊξ0DΥ€Φ†‹Γ1_sΜ9θxφ.²ΘηΤ©S#GŽLNNήΏ]]έG}4|ψpFλίd2έ2%wq8œ2LΓ† CΎ L°―£Ή•ƒΑ M8 ΙqBžχΕ_4›ΝΥΥΥ£F:qβΔΉsη¦OŸ~όψρqγƍ1Βf³ΡοΕI,99ωϊυλ‹eτθΡνννPollLNNf ­[·ςΆθ%Οb±<Ηγq:III—.]Š@k™Λ%K–€§§χττ¨Υjμ…πΎ&ŒF£(ͺ...¦¦†Γα€12LΗLLLΔ™ιv»Y,4ο‰Dΐ9F¦Υ ¨ζ²ϊxN-Θ25r`²ϋΊ ƒAFƒζλπrPA’Ή[Ι¬@ζ³Z­v»ύϊυλΖn·Ο™3' ΅΄΄Ά)Σ oΩ²%>>ώϊυλ‹/~ξΉηN:•››k³Ω „˜™Ž[O2ΐ’ϋ6)‡ΓB...Ž _Ή\.ž|?c^Έp!??ώ:ω/κ°υυυ`¦£mΠn·/_ΎœΡΧGfκOΩ2΅€€€¨¨¨ΊΊ:«Υ ‘#ͺΟs0›ΝF£1>><FΓͺΥj.—[PP P(PEEE[·nlͺνννH~γšƒoGΚ}θ\ΫC~€³l>σ£Gϋ―Θf‰D:q<ΓOy`ή£££e2}fFOObbΔ—Α`Q] ΐ=τΙΨY,ααΝjκrΉnάΈA1!ͺKA§ΝI[£Ρ4444559R( ±X|X$%''£…ΐ”)ShR[ΒGnjj‚b'ω!/Bδϋ‘PˆΠΜΓ‡%«ψzϊ*•ʝ;wΎψβ‹.—λ›oΎ™7oή]»(Š [·nw»έΐ ‘ξυzAFΓ偳eΦ¬Y;wξpΐŒŒŒeΛ–ύφΫoωωωj΅ϊΛ/Ώœ5kV[[ΫsΟ=·oί>œΕΙΙΙ===cǎ=vμύΐfȐ! …Ν- ταv»§L™ΫΫ«Χλ#«QlΨ°A‘P 7ΐαp@˜θκκςx<ƒώόσΟ—-[ΖtΜ‘C‡N˜0❙™™ˆŽŽnjjΚΘΘ`” ϊή»Ηγ)**ΊrεJ\\ΪfeemάΈ#RΒπαΓΡ ½»»υΑΊΊ:―Χ›ššzι₯kΧEEEέ}χέ‰‰‰rΉ<77—ώπω|ΥΥΥΓ‡ϊ>ό!ΰFίΏ…ΠP”δp8qqqθ‹FΜΞΑ(=_PP {zz,KLLΜΨ±c)Šλυρρρl6k)‚Œ£Z­…B΅΅΅έέέ/^ΜΜ̜={φΑƒ1`7]^^žΕbAγ/„ {Σιt―Βk΅ΪΣ§O£‹Έˆ’(GŸQ}ΤF―Χ‹†FHΪ-^ΌψΜ™3τg› •JO:…ΔMlllĎݸqγ’££‹ŠŠ† 2bĈI“&9Ž΄΄΄¨¨¨?όsοή½‡Šΐ§ŸόΨc…χκF=Žb˜ \»vνΨ±cU*—ΛΝΟΟollt::ξ₯K===>ŸοΚ•+P½g:Ϋ .€¦¦’΄"X]gΜa”iΐρέΦΦ–’’RZZŠΤrΛθ?ƒ4ήƍΡά“ΞqνqβΔ‰aΓ†=όσ]]]p”M&ϊr8tN€σHρ™_~ωE―ΧOŸ>ˆLτ«vΉ\pΩlΆΣιΌxρ"h.tκ°F£ρ•W^ …rΉ\,›Νf­VΛγρκκκ Ζf·Ϋ»»»Ή\.zψ0*ρ[­ΦU«V?^©TΒ7ϊκ«―"VmnnώΰƒǞ={4 ΌX„Lνννrύχ›L¦šώ=zT­V+ N‡Œ…Ηγικꊏ‡κύeί2wξάαΓ‡§₯₯‘°‹¨ΖοχwvvVWWίΈq£²²ςΔ‰tlllόρΗe2`1rΉΌ½½ύ‹/ΎΘΟΟΟΚΚ1b„ίοϊλ―gΜyπΰΑΝ›73:χψγΔΔD‹5qβD‡ΓΑαpNœ8QQQ1bΔ­VK8dŒμ7ήHOO7‘PΘj΅r8œμμlϋ._Ύ™Ž]eeε'Ÿ|m2™§‡Qrrς† >ϋμ3F£‘·ωΘ#h΅Z@œAMMΝ¦M›p1ς<όœZ­ΆΩl΅΅΅.—Λοχ―_Ώ>%%₯­­­ͺͺͺ­­-99ωμΩ³LŸjQQΡ₯KΏόςΛO>ω$//―΅΅5''‡ΝfoΨ°bΨΗ‚κΫΏ/^όςΛ/% Nͺ;wΪl6$A!Χ€Σyδ3&Lψη?ιp8ξ½χήQ£FΥΧΧK$’7ΆΆΆΦΦΦGuζπαΓW\ΙΛΛknn–Ιd―½φځ ”žžΞˆOζωΒ /L›6(π{<Β:uκξP:§ά'Ÿ|‘Η††ό‘°°Πd2™L&ΔZΥΥΥωωωψ‰ΗγihhΘΟΟgΦͺΥκ·ί~{Β„ Θuww?ϋ쳌F7ŸΟWVVVVVΆaΓ†ύλ_ΥΥΥ8Υ/φΩgŸI$’7nŒ7nΛ–-₯₯₯|>Ώ’’bαΒ…Lu±·mΫΦΦΦ¦V«•J%’Δ€€€… ΖΕΕ}σΝ7Πbϋ»hΕ (¨εδδ‚„„„}4:ίhΣ§OOMM=qβΔοΏώ*++λΆψΔ¨¨¨‚‚΅Σ=I|6sζΜgŸ}ω•`0X]] ¬­ΘTE"ΡΏύo,M%ώωηξΰΏΞ6!! Όψψx¦$Σ[L‘P8ΞεΛ—+Š•+Wήwί}l6ϋγ?Ž˜«O~aaατιΣ‘Sά³gZΣΟέb“&Mh4hatσζM­VΫΣΣsτθQF¬ϊΖ(p'FΎV«}φΩgύ~Ύ}ϋΰΝD¦ŸN¦±dΙ’‚‚”ηϟφΫo©ΓΓ€(jήΌyO<ρ„Ο狍…/vοήY+XBBΒΨ±c―_ΏI°όόόΆΆ6=²G:gΞ½^Ÿšš:tθP‹Ε‚ΐ£½½Δœ‘ »|ωςAƒ!<‹ΕόόσΟΧ10όσ ,@Η>Ÿ/ ψαš†΅ς׍7N:ΥιtvvvNœ8‘|>2T1EQrΉόόωσUUU555@ƒύΟόS `8Ο ΈΈxωςε@+’αB‘xηwH7p:‹ŸΘ’ž2eJiiιμΩ³-”——>|ψΗ$κ6μΏ(&hΛ–-Σj΅@ΤΤΤ  Άzυj¦Ππ/υ―ύ+&&&>>ήλυB΅ΰ½χήήζVγmΠD’!;;;555++ um@`±X CwwwcccQ(Š;v,šM“Ÿh΅Ϊ‘#GFΠ ˆ|±cΗήqΗΰ7―ΧΫΫΫϋή{οQ}:_ο#@™™i±X8²m~ΛοΎόςΛΕΕΕD¬Εt’dF3uκΤφφv•JE€ϋ|>_EEΕ=χάσΣO?Ωl6ϊ‡3vήΌyo½υΦεΛ—333}>ŸP(ŒGύ„ρυύ}Ο=χόόσΟ§OŸΎpαT*NŸ>½qγΖΓ‡?ρΔTD)eτλ8yςdYYΩΙ“'Oœ8ΡΡΡρΘ#0‡’¨'Ÿ|²ͺͺκηŸ>yςduuυ΅kΧͺ««―\ΉrόψρS§N]½zυΰΑƒ_ύυ;οΌCu Ή <¦kΧΥΧΧ·ΆΆΆ΄΄„g+oi2ΨΏ‘U[[λρxl6[(²Ωl½½½ΐ"0‚m±ϊΪΑή{ο=³Ω|ι₯p―ŽˆМaaaa}}½Σι4Pχ¬¬t»έ6›­»»»ΉΉyϊτ錦ŽβŸ>}:U(„B‘iΣ¦έφ“ύήQqqρ₯KΡ>kζΜ™sζΜ™?ώ]wέ΅cǎI“&Q5‘ΔΘΣ¦M …Bz½Ύ«««³³3 ‘λ.#FBψ€E-^Ό8 •••ύω矑PθΣO?½εLM£Ρ` Y,ΐ4#‡Ψ7ί|SWWWYYYYYyωςεΚΚΚΖΖFΰΎΏωζ|†) tι₯[Άl …B===@ ΊΊ: :tθ•W^aΤ…¬αGydΥͺUEEEόq(:vμΨφνΫC‘PMM Ξ«7φ£©ΎύφΫ~Ώίj΅ΊέŽΆΆ6ˆέ gyψWXRRW_}uϊτιΓ‡Ÿ;wnύϊυLu@Ί.\ …Π„Ί··χ?ωOψΕ*pΧ‡ /// uvv’ΑƒΧλmkk …Bαzι>πώφΫoΛ—/χΏ½|ωςeΛ–}ϋν·ώωηζΝ›Ÿ~ϊiRχЈŒEQoΎω¦Α`šΦοχ#·°‘Σι$ˆ@FΗ2EQ:Ξn··„}δv»ΓβŒΞOόχ‰'ž" |ψπ–-[ͺ««>όύχί———Σ\πΩΩΩσηΟ_Ήr%ŠγF£ο: 544ΰ©^Όxqǎ'N$d4Β{ο½G#Μλυβ Πωuςo…~ψώϋο_Ίt©ΊΊΊΊΊΊ‘‘αΡG%ΧΎaj+V¬θκκ …B&“ιΙ'Ÿ$?ΰ¨†ητιΣ+W|β‰'ž|ςΙ+VTVVΦΤΤτττ w0»εfί·o_]]έόΡΥΥΥΥΥUYYyνΪ΅+V@²γΦAn;4<Α <ϊθ£IIIΡΡΡf³έbbbnάΈΑf³;;;α1υšΫΪΪt:€,R©T*•ΆΆΆΘ1£ͺͺͺ'”ό[“&Mzι₯—1ΙΪX±bEAAΑK/½„šiooο”)S&Mš„³žiΰΕησηΝϋΪk― …;w †‡z„’―ΎϊjέΊut”½ώϊp¬VkEEΗ6l˜}ΠΏΐbxύυΧύυWŠή‚‹Ε«V­zπΑΉ\nmmνΎ}ϋV¬Xαχϋγγγ}τΡ‰'’qπΥ«WyδϊΘβψψψ]»vνή½[‘P‚gžyζΒ… v»}ςδΙ~ψ!$Έ&Mš΄rεJšεέpkjj"Π6 *•Κ`0 ξΒ£ω²Έ\ξœ9s²²²8ΞΎ}ϋΦ];zτθΥ«WοΪ΅kΜ9V«υΒ… ǎΚC^SffζC=4{φμΤΤT@¨’@ 0 €o666nΫΆνΣO?eš±[Όxρƍ‘£ b#€{zz ΄mΫ6:Qwx•cώόωpΤj΅ΙdκιιILLLIIimmEC­V«qA@Oΐn·ΧΤΤ,Z΄ˆbrΚ=ψΰƒχέwŸD"9xπΰ€I“ζΜ™³cΗ6›­V«Υju||όSO=STT€ΡhξΉηžΫOoΩ²eϊτι¨8wuu'ί4—ζζf‹Ε’R© ™΅wο^$qϊ7€$—.]κv»Ηγσω‡80 W­ZυΝ7ί ”"yJ’ΐU]] 9Ή\ξσω€Rι7ΐάΉs»ΊΊΘ’ώi/‘H^ύυ_|Ρ`0X­Φ€€$NmΏ—_~ωλ―Ώ¦hΏ¦δδδmΫΆ©T*τœΕΉqόψρ‹/Ύώϋ`ΘƒAθέ{mtŽP­VϋώϋοϘ1£ΆΆΆ··fFFΖιΣ§—ΰρx~ψαζΝ›o;ΥΫ8vDΰ§’’βΐS¦LQ©T:.!!νqμv;ψ α.M{τΡGηϟουz‡Šτ˜P(ά²eKjjj}}ύΏώυ―~~7½±±Γ~ψaΡ’E‡£²²D„’’"”xΰ3gΞδζζ †Y³fέφ)FGG―Y³fςδΙDAƒΛεvtt€₯₯‘r ±XάΣΣσηŸBŒ‡ώF=vμXVVV0t:ψϊ‰D,_ΊtiάΈqŒ†’(jƌσζΝ—Ειtr8œQ£FUUUυττh4ŸΟwγƍ 6ΠΗ¨nΩ²eΒ„ ΰ„₯Ri0œN'D³¨Ύ}oΎω&\=„SRRŽ=*‹ …Νfc±XV«[vΑK2 #FŒ€‚MΚχίΏiΣ&—Λ•™™ dαύχίΏiΣ&|λ3fΠόΦ·Ψ€I“ΆoߎΊ![LLΜ§Ÿ~ϊΒ /Ο0*wΚ5λ½χή+,,9rdYY™έn?uκΤ]wέ΅qγFƒΑπΚ+―P΄ί;—Λύξ»οƌ#“Ιˆχ•˜˜xσζΝP($“Ι–:}`‡H$ZΌxρ’%K Γ™3g¦OŸžŸŸήeWWΧ΅kΧ$‰R©Όώϋ;::θ iπθΡN>άsΟ=ϋχο7 QΙήΡΡ1}ϊτΥνGŽωπΓ§₯₯ρω|¨Ο466ζζζΘ1ΓαplήΌY&“’Ήyσf4°:|ψ0# ά?ό3-- h"υ ‘/bˆf­3''ηΡGνκκκθθ`±XG‘P8qkΔΜηŸήO½8‘'NœH$π–z{{m6ΘLΑ`°΅΅₯s.—+ ].ΧƍΏώϊk:ϋθ‹/Ύ˜>}ΊF£"S‘PόρΗl6{δΘ‘*•κΘ‘#Γ‡‡piGGG?ζ™ššϊΒ / ]Κb±€R)TΑΐv²Z­ηϟONN#’ΪŸώω™3gϊρ•Γ»šššδδdT9ό~ΏΝfγρxqqqЁ \"šΞχΊuλ¦M›&•Jνv»ΧλMJJ‚Πss3ˆ½.—λ‹/Ύ ‰\ ?ZZZ<Γα‹Ε]]]ΈζΜf3)šΣœαΝ;[ZZ0Š’ή}ͺO‡Zρ€“fdd˜ΝfΉ\>ώόηŸΎŸΊH$:sζ tCΠ ]"‘DEE566fddX,xpPX,–H$ΊqγΖ<Π<—.]ϊΞ;οπω|ΐγγγ9rdFF†Ιd²Z­\.­MV\ωΡGυ3«O )…ΒM›6­V oF,;Ž#GލΥκΑƒΖGπε>RŠ’–-[φκ«―²X,§Σ 'G, γλυϊ;οΌ³­­mΐc9''ηΰΑƒ2™Μn·“Ξ(|_»vmκΤ©έέέ‘P•H$"-έϊΏA>ώψγ;ξΈΙ―P(Vubbb\\\ee₯H$βρxOκκκzο½χΚΚΚn™jωΖ€€€δδddΆmΫΜ9£ΧλKJJjjj"πκ<8tθP„ƒπ4M]]]SSτ§L™?3BΜJ₯ς‘GA΄ρΦ[oαΠ5j”ίο6lX~~ΎF£!™Ε={φpΉ\Π†/_ΎάΣΣC„τˆa)ΛεςŠŠŠββb½^o4αΔΕΕ9Ξžž·Ϋ »»»N§Ηγαp8yyyS¦LAb¬<0ώEχε—_666"μj5&&¦±±1--ν§Ÿ~Ν“¦cθ«OΛεr8ψ΅ΰ^ΩlΆ˜˜˜™3g¦₯₯ρΔ‰‰‰/Ώό²X,NHH@¬C3KŸπξ»οώφΫo‹-"Ÿ‡x²Ϋν?~όΫoΏ={φ쨨¨κκjtήΤχί?ώό`0ψόσϏ=Ί··Χn·ΗΔΔ<ώψγfπΰΑΓ† £Z-++²Z­‘P(66V(’/ˆΙdBrΉωY³f!ι4ς¦NΊjΥ*™L… ±X ΪiwwwzzzBBB}}=κέHQͺφΠΨκξξ>~ό8:―ΰ;κtΊΟ?ΥR‹{θΠ‘ώ ζ‹/ž1cΔ’ΡΔάU·Ϋ””(Δ₯!nηv»γββvνΪΥZ}οή½§΅΅„}‰D‚6¬rΉ\.— hSΫνv>Ÿ_PP°fΝ:_Ÿ’¨Y³f•””μέ»W*•–––ΦΥΥεεεUWWŸ?>..»»ϋ—_~‘Β:4Π±υλΧƒA€6Ρ »sD8©©©{φμp¨C‡₯₯₯uuu‘2ŽίͺͺͺͺͺͺΡ£G`ŠΦ&6› ιŒσηΟίv`Γ>ώψγ ,¨©©Α!ηΔ84_ˆŽŽΖφнχή{χοߏΜΞ―γύutςήxγΑƒ»έn½^Ÿ™™YYY©Ρhάnχό Σ4,]ΊΤλυ655uwws8³ΩάΡΡQSSsμΨ±˜˜­V[__ …ϊo„—7sζΜR₯R·eΛ(b+677£›΅ΙdΚΜΜ”Λε .œ={6ŸΟ>|ψœ9sn;,"?ώX θt:―°Ωl‘HΤβt:@WW—Νf‹ŽŽF(HŠV«]°`5R ΣNOOηp8:ξƍΈ-‚ΑΰΩ³gΫΫΫ ψD4Λ(iiiF£υ>Ÿ]M$¨!σε—ργΗΣ‘ΞŸώψγΣ¦M;{φlOOΟ°aΓfϞžžήΤΤ€Χλ…Bα‹/ΎHυKλ[°`4·y<ޏ?ώˆ ΛεΊ4**κπαΓkΦ¬AΝj΅Κd²ργΗίv(ΐ†~ψaΐžbbbŠ‹‹ΛΛˏ9²zυκŸώΉΌΌόβΕ‹«W―~σΝ7?ώψc‡Γ1eΚ΄=μμμ3f EGΪk―:tˆΕbI$”ž‹‹‹-Kcc#6ι›oΎIšk xά%$$ΰ|#­Q £Ρˆ[ΘΦλυzΰλn(¬Ϋ#Fΐ“ΖεασωΰΜ‰Εbδ0ΰκEGG“φΠKτş~ϊi£Ρˆ^ιιιiiiθh’””d2™ E„ΆΆ>Ÿ―ΉΉωυΧ_§ώή―U*•)))HMυττ@Jχ©§žb±X•••Ηh4ŠΕb§Σ ρޘ˜41λΏGH(¬Α€Ηγσέ`0 e98^n].Xπ½VΞΛ–-ΓovΣΪڊŒƒX,F¦ͺ6›m@φ%Ά˜1c~ύχ•+W¦₯₯ ,pθQΕαp:;;ǏΓ?|ϋν·˜φΏ–Α€I“Δb±V«]Όxρ /Ό0}ϊτ]»vιυz‡ΓράsΟ-Y²Ϊa~ΏŸΟη#Pμͺwάq„λx<Cΐ—”” ΅ZΝf³[[[‘pΕUω IDAT)'rssϋΑn’””6› xΐwή©Υj- ”+RRRβββΐ‘‘s…B‘μμμ &DGGϞ=»»»{Σ¦M ?ώψγεΛ—'OžŒΈλ»ξBσ š»©S§rΉ\d%°=C‘X,&²pΗ`0ΠΤ5“J₯&“ Χe°―χc’U__Ά.H¨γPΊ­a„I“&έΌy‹£’’ΰdγΐ΄½yx›Υ™}΄Ψ²ek—lyί—lNb; !l!@ k†}›₯Lg¦3e¦Σ2έ(-W;PZ:}iYZhJRBBdOΘκ%ήΙ²­Νς"ΙϋΗηχœŸjK ουž?Έ‚—γGη9η>χύ½Ώχχ6 Δσ€Σf³™εMu2n¬Ϋn»­­­­ͺͺͺ’’B§ΣεζζX±‚ζV«υα‡υ―-ݚσ†n Ϋ&H΅l ΐ•••'Ož$U(ζ“_|ρΕ¨5z<žρρρνΫ·ς—Ώt8<BωV«•:NwβΔ F366ΦΪΪ*2Ψ;«ΥΊ~ύϊ‘‘FΓ  l%]Vςςς0 f³™Ώe4gff.Ύψb±Sςη?ωχ{{{—-[C1 =zΤh4._ΎΌ­­νε—_^ΐ«c±Œr•Α!ωωΟn6›y/₯U()N cδ©…‰DΒνvgςΌ\*=φ˜TŠ>{φμΤΤΤχΏύ†††d2ωε/Βr2™™˜˜POξKšω}χέ‡¨υΜ̌F£!ξΤιtxΜ€N"‘Θππpee₯ϊ%'Ηε—_Ξa›œœϊθ΅Χ^£εΞφνΫ?ϊθ# §ΈAm6ΫuΧ]—ι!ΉΌ/ …B'NœθμμdκtΊμμl:Q&‰P(WLρπΓ§]OŽΥΥW_H$Š‹‹KKKΉzzzb±X__Y*H«Α`¬qss3:Rκχ‡΄Z7ήx#―ήγρh΅Z“ΙΪέέ}ϊτιH$rμΨ1—ΛΜ°ΰK·Ϋν6›­°°Φh4œ¦d2Ι5O€As-υΩμv»”eεΎΕΑΥ‹ΗγR#Pύ‚η#ά|σ͜£‘‘‘?ό᝝‰D‚Ί«sηΞE£Ρp8ό»ίύΞλυ’„LAR¦±vνZό”i‡‡‡·nέzβΔ Ϊ9|φΩgV«udd„ DΔF]½z΅Κ΄2cuτθΡ‹.ΊH«Υ–””€%“γ³ΫνΔ’UUU‹oΚΩΪΪΚΆ$θ2$(GGG₯ub©TΊζEγί°Ϋν€JΨ·“““œMάS’ΩX,ΆbŊgžyF,δy“‰‚vφμΩ?ύιO½½½‡γΐΏψΕ/τzύ=χάε+:<ψΰƒ»wο…ByyyάΚάs‡ώϊΧΏΡh~σ›ίΰ©ŒΛ.»ŒΓσΐŸΓKΟΙΙΌέ³gΟξέ»)ΰ'0]π³Ώϊκ«PλθV[[›——ηρxPι‚aϊψγ?ϋμ³ Ξ&„8όσɊςŽJΣC &,> `iεΚ• ΞY\\,­ΙΙI\Γ£©-YB•©δ›ΊσΞ;ρ ƒViΤ#KeΑ 7V2™D!/‘τvΞΈε–[€ΟΣ Όψ⋁@ΐj΅nΫΆ†ΆτYŠΕb.—K₯*[pηw"‘MHͺ/ Ή₯›$(‚g³ΰΆoll$ϋ¦Σιΰ …;2;;K~Η`0¬_Ώ^,¬mhhΠh4δ8rssQπΗW&λιι!5;;»iΌPNξνν>yςδ©S§¨ €Ί§§ηΔ‰$ώ„ρx\ΕoΈΰ‚ @Ή"‘ˆΝf»ϋξ»ρG΅Jσ"NwΝ5Χ\qΕDσ<ΏŠ¦bΥͺU‘P¨€€>ƒΕb)///,,\Άl§€½š——wβΔ \:³ΩŒ&_¦iy‘wέu—ΛεβN&“4Y1™L6›­ΉΉΉΆΆ„΅§§DyΑϋ£¦¦-·x<Žξz<F£ΌτD"ΑM<;;[XX κ3 ZbΔγρ‚‚N΄P=%“IZΞ,{ž8ͺ¬¬Lύ!…Π|Αl|>ΎΏΏxΥΚ•+£Ρ(μγγ㲟ήόA@>==]__o4£ΡθuΧ]wπΰA”¨ŒF#ηϋ NŸH$T ΎPξ#Šίiεμσωΐό ΥBΓ7 ‹μ8‚ L¦ΕtvΉ\p6πα{‘«:==ΝW`bκ‘™UŸί%‹w0¬ƒp8LͺH$n‡vΞΩυΧ_―ώΩωωωz½Ύ¨¨ˆ΄ŒFјΐzπwikD+υqΕWp- ή!J4“““xxBt5νv»JJŽAn'Πh‡νŠμT0|ύυΧΏϋέοώώχΏjllΔ ˆF£κΣς6srrŠ‹‹ρζΟ;οΌ«―ΎzΥͺU@ΐαpποΆΆΆΑΑΑͺͺ*—Λ₯~ή…\.xƒ«y`` ­­γPVVVPP*Ά`ΚXQ^^^PPΠΣΣsθΠ‘3gΞμΪ΅λΨ±c“““YYYxΊgll, F£Ρ¦¦&±8€©ΎΎžt°Νf“pŸL»a?ΥaE!„Ϋν`–Jwl|\ @ 2uάψζK/Ν4gkkk4'…uξά9.b|MξΠD"αχϋΫΫΫέnχςεΛ©Ο€&GΧh4VUU` wuu½i4θ₯½½½Œp’,™B κΞ΅p_Γ2J"‘ΐOΚδwσυςςr G8ή³gO(*//oll$ > fpΓ† Α`x<_wέu\Ισ±ΠΖΖFžIp€η–b±ΨͺU«ΈβŠόόόϊϊzΏίŸ““£ΠTWWΣJEیB6‡ΓAI3¨έn_ ΠRVV&Α$ n7~_α8qΩ/&θšBψ|>^‚dXΨχp9 υyδςΎωζ›ye8ΔX΄‘‘!Dm€γEt tD?Y‘9΅]XXHΙ{‰D"£££ύύύθE\'•&ͺN§3«x0ίγk¦β1ΨχX,4‹Qf/RPΊ°°rαΔΔσ !θ{Η5 ͺ”:(ΖΫfBbτX,*@U.’ΩΩΩ¬¬,υއΕΕΕF£1‘H¬^½Ί΅΅uzzϊg?ϋΩƒ>xπΰΑ?ωΟoΌρΖoϋΫ·ήzλΓ?;N<‡]―Χ)$@“ ¬Ηj΅ͺ³~+**hx βυz‘ΰŒ;«Υ ΦΘέ vrΝ5Χdš°΄΄;‰»L&·mΫφΖoάύώοNŸάρρqp;N{I}σ³z«V­βθ‘ ΐ8°œGi.‰-ΌxΐŒΌΌ< )Τ@±-Ηs1-LnΏύvθzxΡh”ΥΐsΩΒγL&“κ©m!DQQύEͺͺͺ rΉ\ΝΝΝυυυ%%%MMM—]v΄„+V\~ωε°)Tœο†† © .Βx³Ωl³Ωp›†‡‡srrjkkΑ}£Ρ¨Ίξ F†ΌD}}}yyyUUUSSSVVd»¬¬,β"ξ¦x%ύk\±h4Z^^b‹%_»««+++kνΪ΅_|±Λε*((ΘΚʚ˜˜'¨½½έh4~ϊ駁@`tttrr²½½w6ί΅‡7š››k4₯•h~‘››Λ²†Γα@ P[[Kr677W=ζΎώϊλqκΙο%Σ%?h§!υz=‰9υA·+ΙNY>&}”D"A†žKQ}NΜM,kkkγΚΚΚB―•λ_―ΧΓ9F£‹1Η_ϋΪΧ&''- ςΆTAΦΦΦ677“ή’ͺΣιΝ;g±X¦§§UPz§ΣI= ΟΓ%G<ΐAΗγ΄Δ€.&5333ΓϋMΝ‡J»l΅Z7Χ0Ωΐ§…Ι`6›ωŒ©X l_—άάάLxUκΰΈ°©“Β9¦ŸANN©Ό(ž_Y¬&6M&“>Ÿο©§žΒς~ψᇣ££θκκ:xπ`<ύυןxβ‰.ΘL*†Ύ©© D›δΕ‰'6 κ–€ΔεrιυϊLNΓκΥ«yΧ”χC £,Š1’7Pι‰έ+**¨ΒV_XΨά333ΩΩΩ‘PιδΙ“gjjκθΡ£~Ώ? E"R ρΌ¦μμlς2ψ.D_"ε¨bKνvϋΜ̌ϊ­ ΘAP”Zƒ•_η¨ !Ό^/1ύΠАz,ΧΠΠ Σι¬Vkyy9Ι8Ώίr‹Ελλλ3™L μ+ŸΙοχcΥI—••! ψ£ύ( ώηώgcc£Χλ­¨¨@χ[As9uΏ–° ΩvΚφΩ΄2;Α͊Žz5ƒε’ufδ²&™™ΞΝΝΕ ,ˆ©C©d?“‚gΞ©©)πuƒΑ@–*΄X,Ά ίΰrΉΌ^occγΨؘΛε*..†b”Ή›žž6›ΝΝΝΝ^―—λ€œLU«θυΤΦΦ"́‹«AΆ¬¬Μb±œ8q‚έΕΪfš–Lθ‡₯²²277—^Ϋ |΄`‘˜TτXΊt©Σι€^j5°Γ)]LJŠ%εvΠj΅«$+N£θKCU°ŸAH”‚˜"~38Ρ5‡‚Kς:ν€4)δρςςςrssٜ„^Ιd’:£ΐœν”Ζ±[½z΅dρί 6πͺFGG °5¬ιιi,ι‚KΐcαΓ ΕΖΙ”rkΐφLy«»οΎ›bς@ π?σ?ρxόθΡ£€L2œϊδ“Oؚ+V¬¨©©Υ :Ÿ(STTuƒ§βdFS_„4H$a‹¨Τ΅ !.Έΰ‚R΄΅$l–VΩcccννν@ ²²2//oνڡꋉ]0™LL"y6PΦΘ²Ό މDGPeN`|⦦&l4ƒΐб;‰½Λ½"eΜ†>|ψπk―½&bΠΔΔB ΡΔυωŸω«Υ:55e2™2m€ςςr»έž““C†ˆ‚P΄?8 $‹! ŒŒΜΞΞ"s£δ ²²o›Η”5‘\ΐŠ<³Ωl"j΅‹)›r:00Ψ™’;˜κœq?-θ1S#„œ#έ šΞεχ#„ vœ™™A{,Σ }#„°X,f³ωΏψΕ<πӟώτΡG½α†ž|ςΙ‡~ψϋίώ 7άπάsΟ*]CCC§OŸ.//η―gš9!„ΛεϊΩΟ~ƍH$‡ΜΒΓ7₯VΓf³Ωνv•s$½%BΡ¦Vΐησ;vŒG₯0\¦γ€€_ΪQQQΑ5'„())©©©qΉ\@ͺHΝιtΊ–––ŠŠ 6›m1»ΖΖƜœœD"(dAώ~9―d2©ίμ`σΌΣŽŽ ύ!Hxrό₯ΉγTwCe™­^―‡/‹ α:;λ‘Tτ+°ŠsάΠ4k±bΕ ŠΪŠŠŠf oψ@αpΈ  `jjŠ+Gm1D]’ϊθ°˜Ό 0ίb±¨σ·.Ύψb“Ι€Υjc±˜ίοmhh@†/Ηj΅>|xίΎ}wέu—ΓαΠλυGމF£6lHˈ$αΰj°Xωωω”¨R WWWΫlΆόό|Ό~)LŸiFΚ«ͺͺΗ²eΛV­Zεv»υz}]]]yyyEEΕωηŸ___―ΡhΊ»»LΕΦΦΦ†B!n‘d¨YInz^Ώ΄YτWgŠ ΊΝ₯ V/η€$V(.Ύ£Š›ˆoqο½χ’ΈsθΠ‘ώώ~‘dWΩξ Υόƒχ522βχϋu:Ιd"+7 CͺΠιtΝΝΝ”#ΈέξΒΒB*­V+αmΘΙΪdggCK;–,Y"έΈ.Ξ*ߚγύΖχίΏ³³“ΰUύΜ !άnw~~>ug vψ7DΜ8Ν,u"‘X°ΚΨιtbˆ1`p5βJψVΠ,x6‹‹‹q8άnχΆmΫ:΄ώ]»vmίΎύύχίίΊuλ»οΎ»uλ֝;wξΨ±ΓλυB“εΒΛ”‹‡,KΐWδ€φυ)κbq±Ωlά™N=Ny^^Ɓ­855Υέέm6›=6Ξn· £ΡΈbΕ £Ρh·Ϋ5Š°Κ  @Δ­<99I ΒΠΠΠψψψθθh[[ΌX|!„ŠgΓ(**BK«Υr…’”‰ΑΜΞΞv8]]]±X¬ͺͺJέaβ:O‚dΜ&#!ϋo‰,­ * „hnnfύχνΫWQQΑُD"ΙdοχŒŒ ΞΞΞϊύ~³ΩΌoί>ΐrLwΪ ‘Šƒθ;NˆAμ§ΣF_}υU«Υ:66Ζq .UOλΛΡΧΧΗGN%ˁΑ‰ΗγˆVͺx6r°ΰ2·K YB‚,’©©^{§ΡhΘξρYΈ%HFΌ ₯OέE™!??ίf³½ύφΫTΊΘc•L&hΔτττόΧύΧςεΛ©&Ι„Σa6 ΝΜΜ<ώψγ|v–‹ΚEƒΑΠέέ-ϊιΝ;ΉgΝfs&ς·\|’>ιvσjt:P4YBˆΕ€ί,Ab±X~~ΎΩl–0jnnn,«««C"ΐ`0,x6…n·[*UQB‘š»#ƒίFΞJUεÍ9pΰΖ­kΘη%€ολλσx<ΨeΞIξ₯  @―ΧƒA³ΩΜ½&uΑ€f‘ͺ!#„(μδ;cGL!Gˆ9HπΟΚe±XΤWB‹Ε‰DtEIf’™8NΡΆϊ)";`0Μfσ·ΏύνC‡•••ύξwΏ£Λ8~C$©©©yύυΧkjj<F[[[‹‹‹aζ͟³ͺͺΚf³ Β¬{ΰέOLLx<΄‹aΣžFuΜφ’K.qΉ\ƒαΐέέݟ}φΩgŸ}ΦΧ׍F;;;O:uζΜ™={φτχχ;N|GυΕ,** ƒ¦¨¨Ά_iοx_θύ¨§a²sj€ΰ•ᐑtP1ρBˆ[nΉebb";;{ίΎ}2ύMT‡ιδHB?όΠl6ΟΞΞΒdšŸ.‡c‘ŸŸO$€²IOOΟηξλλloo’j]‘β†lpΒΡΩ—ΘJꏑΡ~χέw H€T£g&” ²άφ,―{Η§§§Lμ‚&ΚKƒ‰ηDv†³Cτς”ΰŠ‹‹].eσ€aM, ά#N …Ί»»νv;ΰΠ|Μ[(<9Π_Jύ5JA±άE`K³³³H αΥ₯υνΘηbv ΪPR\\\QQQYY …L&“Γα(**’L>NG©š:AͺΆΆV£TGq9egg―Y³†+pΥͺU€b1κΆήd2[Sͺ7NŠ#y–‰DˆΡf³QНiBtSηδp5J‡x‘@w˜,Žή€ϊώDμƒh–[Αh4.–””deev"Ίa‘P¦9ωΣuuu±XŒΜ#fΩh4ž9sfbbΈŽJdλ*ΟΙ’bΥI“Lΰ[2;99ΙݏG’Ξ/ €Œ£)Ea_H0#¬Ž•••±η(άΑB ŌpίγΣC 2 ^―W©Er?©――oxxUDΉΉΉ‰D" ΚκΓ?1’+IΪ9 Œνv;7 ΰx‡@Bˆh4 ΄ασωΆnέ ϊ»oίΎLΊ ΨO™|H€€Ϊ’ΐΕ[#ΝΫQ?G%%%X9Jΐ¨ˆά¦¦¦π€γρxnnnee%ι¦Ε4 ¦€gTiSν F2™€Ν‚EH|Ψ¬¬,»έΎwο^πŽ„"zΒύΛa‡Df€lrΪw„kHΩ²B―ΧS‚γρxΠnΤj΅( D"<{²ΫμήΤ©μW—ΛEΠΟΥ+DΟ%:Ν>c]δB4-o8‰ q&© +--U―m)--υω|]]]οΌσΞ―ύλκκκϊϊϊ»οΎϋΒ /œ˜˜`³ †ήήήξξξgžy’tΪ }<@tΉ„ρF£p.//―ΌΌΌ¬¬¬ΈΈ0OfT»ΞΞNN{MMMsssSSSSSSYYYvvφ’%KšššZ[[Ώτ₯/ MMMΑ΄SY@‘H$²dΙ’p8ΜγΜα4Θ«4‰”••ΡPˆUO IDATRύާ™#Gζz„bΡ0p‰D,―QύΚΜΛΛΓ}ςΙ'jqf¦§§©βΙΞΞ>yς$ž’’nχξέ΄‹ΙtyΐI⨔”””””/]Ί΄²²’r–κκκΊΊΊϊϊϊ²²2l ₯—™žLK§Σ‘{'„ΐhJ<@rI…===rY€ΘX,ιqbSν8n.8\4]#βrΉΈΛΩή€Duΐ<|­’Χ ΕΚe‘’]ΔΩηΌπό4Ε"η•φͺ#cΕež$«‰eԊCΊzρiCš§Q§ΉsηN­’ž““c·Ϋ:d0FGG'&&ZZZ^zι₯Ε`Bˆšš‚`YΒEψ*6‘ψ²‰DB cυ Ό΄΅΅I§D£·ΰεζζkᩨ87ό<—" +μR!Œ|Xn*Οιv»‰ &$γΓ¦γχϋύœqnΑόό|˜$iί~0gΩb±μέ»7‰P»Κ’Φεgξ<ΙgR੬ρ|ͺ›‹_N{$ «8L©C:m„C€#΄J™φͺrάBΪΰζζζΎώϊλCCC8yI₯„ˆ†$•έnίΏG}D€Bi ˜ŒYDM’hF#Λα’ςϋύ™p«Υ:>>ΞAJ^8 τNQVV¦ΥjύαΗJKKέnw¦€fO:«(·Ιυg—B͝E S»PΉΊ’ͺͺŠΣm‘©μv;uΗδ „±XLΆ YLζ°ΊΊšt46”Fžο²(ΦΞΚΚςϋύκ₯WrWdee½ώϋ“““„1ά;(ͺ€ΌΊ\νΫ·SώΒK;³έnη”±hέέέψn·XN―ΧSP’Χλνv{gg§Μμ ₯OΙω,σgGΈ?χφφΚv%μK©Δ#”ΟlΑKΞαp uΛΗ•'œ.ŠκŒ¨²²2Šwάnwsssqq1₯©Ÿ|ςΙππ0}vμΨ±zυκΡΡΡ;vτττ€σQρ4gZΜ:aœ"'' ε‘‘d_€ Ό^/€P(γ…£ι?δq:~όψ©S§:;;ΗΖΖ’ΙdGGGOOOoo履~ΚΦ4™LK—.UΟνr[#(˜zŠδΖ˜ΖοχSƒ¦2gaa!χρ«H¬dƒ‰ΗοΤj΅*Κ,ΝΝΝ.— #;44Dž‘3Ÿ““ΓK&“$y_›7oFQQRR’Άd Ho‰™‡††ϊϋϋOœ8ΡΫΫλρxΊΊΊϊϋϋ?N/QβωZΣ”³³³_zι%!¨UR‘Db)ˆγ…ˆςΕ)2¨”"˜Νζ©©)ιάhͺ ŽΠ―ϊlνΐe‘°}ϊ4_dŞcν“Ι$τπύϋχSbl6›Σϊ΅xΫ€ QMβΥ+!ό$y¨Χ!Wž••΅`KxX+2ͺŠΊ€όμ E5)Θ]-ސtΒ•a@Υ‚Ι011‘H$XpώœzJŠ ΅¨¨θτιΣ½^Ο.%:’αkvvφΨؘln€w•””`½ωDW>ŸKGΊ³yyyά999όL¦§EMM:v¬*Φlebb‚’f―Χk΅Z‰6Γα0©€΄srυsFΈάe4(ί>/έγρΐžΒTߟΕΕΕyώ‹κ5ˆHϊ|ΎΡΡQ‘¦¦¦#(k·Ϋ9ƒ~Ώ_F©0LV‰ο¨?$ —cCCƒΟη;zτθΩ³gΡaρϋύ8 έέέ¨B"β₯gίΙΟΟΗQιθ萒© Υh4Θ>Ηb1›ΝΦΩΩ Eš.u;₯±Ξ<`βE™<’IκΪt:,"u4HAseΐCΘ•N§S&ͺ°€ΣΣΣEEE^―We6z~χττX­Φ‚‚‚+Έβ·ΏύνΛ/Ώ\PPΐ-EP‰D½φΪ‹.Ί¨――οΚ+―\΅jUuuυ‰'Ί»»+**ζ{«Υ*iέBYYPP€c,³X,uuu.—«€€²‘6zH™žYφ ?7›ΝEEE………\9HA–——{½^δρzzzΤΣ” ΡΑV«TŸ!80Bˆ9W‰DΣ©Ž^Έ\.,Qjβ5Υe„ΑΗϝ;ΗnVρlΎϊjv³₯"pcαV« ‡Γ΅΅΅‡O§ΣιΦHζζζR‰O@οΕΪΪΪεΛ—ΧΧΧC€ΩΪ²eΛJJJΨl~Ώ_ε2.--ε2Ϋ³gPή—&₯ΔX(X#Λς§?ύ c½`*Φεrω|>h°ƒB`,ƈ›" Yi•Ω@ι@ζ(a6*ο$› σΗ―HHOε³ΟΜΜΠ?~Vi„ΚΠ(l_FƒΟGα0ΰ₯ £η ’pΦ₯Ϊ_Ϊ>@/œBžMž8ώϊότDnn.灁D"qςδI‘Xω©©©ΞΞΞ£GΘ‰J^Σδδδ‰' Ψ~*ψ7DΜ,₯] nDOΠz€4p@YΤ•&‘fK†IRΡ²X,2‹Κ’5ŠlM&QYβ{¦ ƒ©eRςg4)΄–˜’²›L&Uξ$’­ΩΩΩƒƒƒ¬ττ4!ΨT‹ #ΠΡΡa΅Z!ύ̟PKBˆΆΆ62°πα$GM§hfAoκοο'θRŒ…Θd°mΰπ₯ξU‘8Έ¨Βς΄ κ-_ΎœU˜$·γޝUz*Š…Έ•lΦsVю&ˆ%fΠ₯¨"ΜΔζW0JKKΑή(Sγrγπρ!ž’ϋBHΕςL (€Β3ΎrόψρνΫ·Λš••UVVιh|||έΊuΌq:‘€“mΖuCvBzEό@NN«κrΉL&©M }(ν°ΩlΠϊuŠΈHα‘£o …†††ΰMNN.Fρ„g£φ‚0 ™Β¨ζίj\(u4$$ ]uΥU¨ ­%ϊϊ,₯₯₯7ndbω1Ms†Εbθ/λ,Ή)τz½ΤβΡh4’ “T”VA[R›τŽρ΄μšΗi‘‘‘†F>ϊ‚RqΖ΄ΤW³;gΥfR₯‘P(ͺΠΛΛΛ—.]ΪΪΪzκΤ©œœœχή{οΌσΞϋΞwΎσρΗΏώϊλ²xB£ΡlέΊυ'?ωI(`K$γγγ”Μ―ΏΓ I€ qgΏί  °΄ZνψψxOOO N$θ²&333™vρλΤΤ(΄ΩlΞΞΞFe ?I–˜ΝfRƒAύςtl‰ωΛ œ“Pδ!x6.fυƒD¦zr~~>gO£”p.F‹Ε‚&“F£QρΏ·lΩŸΰό£Px"%_,” “‡ωΘ±XŒΦΤiΓ¨hΙΛΛΓšœœδuœ;w«««―――··χΜ™3]]]Ǐοξξ¦jD:i™x<~δΘΎ’κΝYσςςς}ϋφ !¦¦¦Dμάn7Ν‘1gL+?;·”N§£K"‘P—&ΑA„s-WζγȞC(暀λn™Κ§  €»V™EB`‘`dYb&W άA8\ygγ‚ˆH$\$©€bη_HpΏπϊϋϋix0™››[^^Ξ†4›ΝUUUθkx½ή’’’cǎ|ͺ¬€Λε ƒ~ΏK  ˆμΔΔΔΉsη˜₯\ ΧG½@¨‘Α±±±ΩΩY .ω©aaΑ}>G>“σ]QQΑ_—J2rγδ=:«΄Ν Σ”L&U0ΰϊϊz‘`0H•ŸŸ ³Q…΅NQ\\|ψπኊŠρρρ΄N˜^)4›ΝGŽ‘ΪΌΨ(ž0™~D©`ˆͺ,©6₯ψ—KN’ι΄%•L£e;ΛΚΚ05:XaŽ·LΦΜϊ€ώn,;qβvŒΩ0,E،›ΤαpτττhΟLsrX ²³³‘ΰ)))™˜˜ ”$UE膙»d2I±ημμ,櫦¦fύϊυRtirr²··wύϊυτm+++£·LγΜRO~vvm,έ_Κhσι^Ο½ŸXDR".\gΩJƒΙΠ…?“••…Xζ‚θ’PΜ8°ˆtgωο§Υjdθ !4M XΎ|y0D{Λf³QΒRPP@}½Οη[·nέργΗωΕ’’’΄Ž7―Εb‘Ζ<”––ςι°ό(w‚κ•”” qW\\ "J³ΎoB λBZ±ƒ±Pœ Bη 9 e‡$ά°hέέέ]΅ Υ&3Λ–-ΫΏ?>%•ω&“‰Ά‘W^y%΄?ΊWΥΦΦ~ο{ί+,,loooiiιλλ[Ίti]]έΤΤΤ|(Ώ‚ΗιυzαšΝfz—•””a’ZΌ—L&ΡoΜδΪŽƒΙιtΊƒRΓ=κρxDHΈΉ\.€=•Ε.Ζξ°;AπΙβJW4ξ{¨9*s’NBΊ„t©i¬ΌΌΌ@ ΠΥΥUYY‰ƒžT•~mnnT#»Š,ώ’ƒ,CXά!ή{ο=“Ι„PΒόi}>έ!Γα0ŒΡ²²²R€:£ΡXSS³|ωςͺͺͺ††š@ 𴃻\―ΧΣΰ+υρ€yβ:Bάxγ/HΠ.))AzW―ΧKg1™LΚ"²ξξn:€«Γ T‚ΛΨƒ₯γ)w h.Q‘„§*A1βAά‹”θr½Ι Ž€Χϋ255•φνλ”~ηδΆXX¦ΚΎ•4P^zRcιdΓI`΅;::X"L<6„RΠX,Fε5Y±pDΈΙ2­ ©οΕΥ^ZZJαΘςεΛ©©‚(S\\L½€ΚkbεαBΑΤ‘C9F95]HQ³V‘§;˜kŒGε'εF)HƒœτJέz¦Λ˜v:§§§ΉΉ„F†ά|ή¦¦¦p8<00011qϋν·8p€$cZΣ€UxбXμκ«―nll€“ΊΩ’οŸ §΄΄”g˜#‘v€UΟ9RwΈPψ…°ΔBΩ |YROρPΕΟΏQf•Ό^οb;T*JJJ0}c6› ―H£” ΡMAœiNΰ½^?11±zυκΆΆΆh4Z]] ‡GV\šΝ扉‰‘‘‘ςςrΏίo΅Z‘‹K;'ξ―Γα‡Γχάsyp±X¬¬¬,?~άb±ŒŒŒΈέξ©©)Σ™φ’Ž!p•Ξ±όΌ|]§ΣΡΟIοΗT»«³2ΉΉΉ}τΡΰΰ ’ΩrMδ₯†ΞqώbͺbeAƒF)¦N(εhd«HBβ‡δηη#Έ˜iΐ„!ϋδv»i#Δ·€…‡έ‰DJKKqΚω»ΤgΜ•••΄2 ###$άƒΑ αΊ΄Q$Σ‰·‡‡‡Jγ©Ϋ)Ν‰’+¦D‚Έ ؎ΩΩYΐ Ž δ*ƒΛ†Ι²ς²Τ( -ψ<ΐΛ™ζq:½½½ΡhΤj΅;v ‚šΙdΊγŽ;Μ9Γc-:uͺ½½ΰαΨ±c$O?ϊθ£ΆΆΆ΄ 6>υψψx<'~εxŽŽΒ’˜ΣL-q UΣ>0ω ]»v={Φl6oάΈqΥͺUuuu₯₯₯ΙdrυκΥK—.­&ΰφω|2žS333N§³½½Σƒ…β2δ ΚbCI(Ι4ŠŠŠΨ‚ΏωΝoή|σΝH$‚‹ΐ‰ yι₯—>ϋμ3ςΏZ­6SΈ©ΧλAυ²³³Aμ€J…˜ηہΰφ !žώyΞ‰Hv»έnʐiσ‡&…ίοολλγΐτχχŸ:uͺ·····—Z*ϊ*>π†S2«γαެY³†Ά˜A(ιχϋύ~?'#i’ͺ:Ž&.V«@Ke6P,,V"₯Ϋ4‡ΊZ$>ώ7ӜάΗ&“iΧ]Ό#ime’\(i ’Έ„‡>νΦNέχρττt8žUjή“Jζƞ^ι’"=Ώ9ΊέnžΑn·πΑ…ς qύ~ππ0lN·oί>ŠgΛΚΚπET"ήή^Μ%E‚ρx<χττx<žX,vτθюŽδ ^΅··«kΥΒΞΝΝ£­¬¬$Χ)ΉV‹₯³³“+¨6ˆ΄³I}(`Z £$Ζȍ*>xNRΆ#S}=$WξΒΏύΫΏe«ΰ΅‡B‘‰‰ ¬ή’Α`ΈυΦ[ΡδJ=ιœa±X€ΊdAAΛεΪ³gp—|Zxx;vμΰΟ ‚iFυ“ZP—Pz·σΑ™G§¨4γχ¨L(„μήΡΡQ©HΒδ,ZqΘI¨Ψ:†Α`())ρω|N§Σl6£Γΐ,“h4Έz###•••YYY*A‚Ρh„δWTTDƒ€ρρqXζBΘ©ωωωcccεεε€C¬UΪ9AρQφ>οΌσ|>Α@j«•εΛ—k΅Zς²OΨu™L(v@f6εN–h%oP«TWΘΔt¦‡ Λowήy6›ΝιtƒAΤjqšsss $βk6›S έΌ­­­££ƒΌn„v»}``ΰ)­ϋ%‡[†΄WKπΩyυx΄ψϊ ΠΫz{{3!i4šόόό’’"Έ ΩΩΩv»5f„θsssm6§Νf#1εσωΐ εTiήεO—gαžΤwjjjAMH­Vλv»ϋϋϋ k²”f5ϊ”z[:’sgš'_ΏΎ   ‰lάΈAκΙΙΙ-[ΆΌπΒ ΄φs:έέέ=τPggηψψΈN§««««ͺͺΪ½{wMMM^^ήG}4gZά#tM{zz€CQŽA-™LΪl6‹Εή‹οH³ ΖLGါΊͺ΅΅5οΫ·oΧ]ννν4OŸFUrΟλυ:NIΧ!ϊβμΐxƒ3 ΡhpL}>i΄LΫ‰άb,«¬¬¬¬¬D[‰DB‘Μ§Ÿ~šL&<"D_™L¨<³\š2 ΞΞΞζ–ηψƒδ±ρRƒΖ΄ΓαpH~‘bjj ^572[0(??Β"ώΠ‚Y”άά\‡Γαυz9€8£š–*ˆi4­V«Nv/,,δ^‚£)7* ŽΌ„H΄ZνΡ£G)o13Π« …B6›­½½έn·ŽŽbπ1Ό΄0‘)&³ΩάΦΦ …PoN₯4€Y\·„²‰#υΐτJOΜ΄ΥjUΉ8SŸψ‚ . »ξΊΊ:`0Ί³ΩάΫΫ{ΣM7ejΔY^^N’ΠΞλυz<žΥ«WOOO―_Ώ5Ρd2IΡΩυΧ_ΏtιRΒAŽΔe—]f·Ϋ'&&Ύτ₯/=ύτΣ©3CU‘μwdd€ΌΌH ™LΖb±ΡΡQ4π0—Z­m'ΔQ!Ag2%YYY^―wώύΈΏ^x!N³Ηγ‰Ηγ«W―©©΄χω|έέέccc( ©,¦Dχξέ{ί}χρŽΐ~F’J…ΉΡhDΙB%33³eΛ–ίώχ+W$zΞT=ΐZi΅ZΚ°2’μŸϊ…β:`¬o½υΦ?ωΟBφΧ¬YσΛ_ώ2ufH~\“γγγH“Σ» δ|rr•γd2 ?Ν‹LNm}}=—βΐΐ€‚$|δ9Ώ"ΙLMMM§OŸ^³fM<w»έ|€χή{ο½χή+„θξξ¦0@β”αp‘χυλΧΛσLƒΜ8·…ίοΟVteΕ Ωωx<άE€€«ζ RΥƒ! υφφΩ'ΐο!•TtO4 ”€eΣ.)?‰ρέ³gέn' ΟΙΙihhψΟΙΙωμ³Ο€#‘H{{ϋΕ_Μ†ŸοΨ‘(Όΰ«ΑRuΉ\‘Pˆ};::ΊiΣ¦ηŸ~ppFmmmςyTR±{φμY·n]gg'*ΗΡh4τφφšΝζςςς?όΠαpΨνφΊΊΊP(τγψξ»οώ‡ψ•Χ„ψ7ΊΙdκοο‡g ΙG"‘œœzqeL~–’H86 άΎψ7ς@αQi΅Ϊξξnκ(ι@­’œ’θ~{{;τ,!DaaaUUήωτττ‘C‡dτ”Ε~˜?Ϋ†=CΟ|δ(ŠάH±‹˜ TeIAnΈ’$•oΔrUa«Ή‰ΤΖϋΥ―~΅cǎ±±1³Ωμp80 ΰρv»έγρtwwcOΊΊΊ¨‚RBF3>>~ήyηI2 7ΩaRσό•²²²ΊΊ:όEŠ”©D"ΚΚΚΠO₯¦< ΎP(7_£Ρ?~œbL‘ŒΩl ždcQηηη£ρ‘——wΥUWuww7559ΞΚΚΚ={φ,_Ύ\―΄œ™?`w‘7φ ϋ/έ8Ύ‘’’εφ™Κl…………Ψ[b?ŒυCBxΙό―F£ ƒ _iSySrΣΣΣ>Ÿ/[ι&αCήWIIIggην·ίn2™Τ‰Τ<[gg'šΓΓΓXN!DR6€€ͺ½’’βƒ>Έΰ‚ ‰ιψ9ƒcξv»ύ~ooοΕ_l6›i' ~ΔΔxRˆωώϋοތ§ΊτE[\$₯ΊM’ARΨ0‰qͺσ…τ0›Ν―½φΪιΣ§eΫ†D"αχϋΙτΥΥΥύθG?zψα‡3MB֌«΄««λ»ξzϊι§i,qΗw 0*<ΞGyd``ΐοχ9rdσζΝǏΗƒŽΕb—_~ωœ™)!†ηήΡΡqήyηΙύ δF$199I!πώύϋ·lΩίί―Β`›Uzx,]ΊtrrςΜ™30 M&“Ωlξθθπx<Uΐό›œœljjΪΏΏΚbκΕγqΔχSk$υz=0ͺ^ΡO:pΰΌ=uΏΑj΅NNN:Ξx€Šχ¬¬,1W`†Ώϊ«ΏBΠ~'Σ„Μ#„8vμ˜Pς›š”uŒ€’Yΐg …BW^y₯βψργMMMSSSσΑjΒŸΟ΄€1—ίΤΤTAA-VHΐΑŽΕbΰδi•ϊ­VΛ1γλ•n y‘$”ώ#GŽΠφ;@eU…Τ‡Œ™J“J$²A§ϊψΰΐΐ@kk+ek%%%όγ‹‹‹—,YΩΩi0ό~™3gμvϋΧΏώυ„’–7gΆΪΪZV‚=Ϊώκυz)OJ\d±Xz{{–.]:11!”†T!Ό΄λ»ξυΧ_οκκ’\'/;;{ύϊυΣD"±jΥͺgŸ}φΩgŸUMψϊkΧ}α…γ—ΡlݜœœΡΡΡP(΄aΓ†C‡eΚx nσΚ+―\~ωεδΪ8ς€κ¦¦¦u’Ρθ©S§<Ϛ5kŒF#¦?ν΄2ΊθθθŠφžΒλυΞΏΉόpΡ2!v†”fw‘H$77wtt4rαε%’šGΎoΜγρ΅··gZR)™.½%‰\ΚbpnPY”£2θfAƒGΎ2<<œ–S€ξΥ %Y,„hmm%D‘q yRž•ώΩΩٍ7€R3ΝΙ‡r:Ο>ϋμΑƒoΉε–’’”ž¨ ΛΚΚZ»vm{{ϋΙ“'φοίΘ#@·ΝτρΑL&Σώπ‡Η{쑇’W˜Λε’}YQQс†‡‡ΉύŸ~ϊι+VΌώϋ²ˆdώ€―&x½0!q΅μ…ƒ^,Δ™›²²²D" …hͺ.”Ά"YŠž0ϋq{ »”ξΊ*oκλ_ϊ<ΗŸ~ϊι±±±„’™/”Ύ|X•p8ΌiΣ¦ΦΦΦ?ύιO*³={φškιμμD½‹2p€<tΏΏ΅΅υ»ίύ.L•΄P θ5χΕψψψwάΡΩΩi±X@OqdiIννM7έΤΪΪJωίγ IDAT’D(΅kη]Ο™Ϊl6χχχaȐͺRL6xlVίF½¬IŽόόόΡΡQ8ͺ"!†‰ά¨Κ―Cs>zτθργΗǞ={ξΊλ.’Έ««+''Ή/―׍F ssskkk«««;::N:U\\<333 R¦‹ΕΐμμlqqρΉs縟𠲲²(,'ΫM‘εΗ|Ι%—€"Oσ»$Ÿ>}Ί²²2''§ͺͺjfff||œΨ‹Δdaaa8ξλλS7%2ξωψγi2[)υΓpfffJKK·mΫvΩe—aθUζ€63 ρΡ@ΖβG£Q’ζρxυ>™βΒώη~ωε—o½υΦ]»v Eδ‰Π\RODŠ“ΚθΎπΦ[o­\Ήrϋφν²†Hš|deeMLLψύ~‚!Μ Ÿ—―ȘfvvΦf³Q›’φQΛΚΚψ8 vΤΚ₯l΅)B'ό# ž9s†_W/†gΕJJJΊ»»ωԘ?Έ άIύύύάΎx·*ι‰`0ˆ₯θνν]Άl¦„”7Y-Ω’ΐf³_,[Ήre{{;ύ‹kkk}>ί=χάσ›ίό†Χši*Δ>ή|σMΗγv»Ή–€"eΖΕ†πςΎ}ϋΖΗΗ3ΉυPΠ(8θκκΪΌy37ξιΣ§‡††L&Eτ+Wδ6έΈqγwή)ςΤτNQYLτdŒHΣIL0eΒX:³ΩΌdΙ’={φ@ΌUŸΣαp€.H’Y?‘d‚„bώH4™u4†††ή|σΝ7ί|“½ι¦›° E]/‘hjπ_.§P(δυzΏυ­o}λ[ίJ;σππpuuυτττΠΠu‹0-ˆ_9Q"₯OφB^Ϊ «««YF(YLΘWŠήž 7Y¦¦¦έ»w ! x©,)‡֎ΗγaŸλυzΌ%ND‘‚ fƒƒƒ@ΐd2΅΅΅9rδΚ+―qΙΚΚr»έRŒG’?£N§Cš<ν„mΖήήή±±±X,†zχ΄ΧY«Τ$Ρϟ3‘HsΔ«JšψKeΔ„¬‰g;yς$₯Ασ%%%άάΈζuuuLHZ«ΥVVV†B!&immνιιΉόςΛ_~ωε“'O£~’²°BˆΦΦV 9PwˆƒsssQ,J$]©HΫ·oB|όρΗBˆ‡z¨««‹΄iNNŽl8KθUZZϊβ‹/"%iμaε½^ο'Ÿ|b·Ϋι“‹ £ίο'°kψπαƒςpN X 6)_M2₯8=uΘΧΗ?2₯M±ΕΕΕ[·n}γ76oή,Ι S$«ΧλwμΨ±}ϋφΦΦΦuλΦaΈΤqρβεΔI¬€š?ι£9ΚI₯·²’ι›HQYΑΒ0>ŸΟf³UVV:Žl₯K¬F£α¦ƒθIςTΑ­ͺžζβ°ΜΑŸΆoίΞK;ό~?<ύLΜ(δt:ψ(XΪόύΜ “=δZ4M;ηΰΰ ΐGwww&ad‹(;Ϋ΅kW]]]8VαArd, ŽΞΘΘP–^iG›——GE#ʚ\IΤdšS~4v2o‡—Ξ_)rτ²ϊ>tqL;`εVTTψ|Ύd2Ωέέ͜>Ÿm{{{Tι¬ΣιΚΚΚάn7χQ¦sΔ]Ζy™}!9†††Έ²γΩvyξ<ΜΟΟοξΌϋξ»‹‹‹+++'&&Ό^o,γΞωσŸ|ζΜ™P(ΤήήΎ`LΜΓuttœ={SΗϋϋϋι Ef‘  €Τ@&FT0€ύbccγ‘C‡ΈϞ={φμΩ9?ιρxžxβ‰Τ― ϋ\WW788HΔ3gu01³³³N§lFC©% »έž››k·Ϋ±&Ρ2=σππ0ΉœdvvT™ά’ :ŽλŸ9U !w0WΒ7ΏωM‚„ΖΗΗqωρχqA`Θ©G±?όpmmmUUΥe—]†Θ57:ιΏP(Δ?ˆΌwνΪΥίߟκ§>!μμμlGG‡F£2$^‘H\Ϊl6ηεε©K~ΠϋΘn·?~ό›ίόζΫoΏ‹Ε9BƒA,—Α`hhhx葇.ΎψβkΉϊ]Ϊ ±ž±Xlοή½|eΞO&η\{ν΅/Ύψ’DbTž–—xψπα;v¬_Ώ~`` p‘~ΪΪΊkΧ. ‡ΥίΈβ™gžyΰθ»pΓ 7Μω.œ¦’ΆΊ»»[τsFMM reΰ^€Ώ₯ -™#¬†Ύ‘‘ŽΖ+Wœ˜˜Hk—‹ŠŠΈΘ₯œι¬&aΐΐ-§ωΞ"ό*8©Bˆώπ‡_ωΚW r ιD>Ϊj΅²fffΚΚΚΎϊΥ―ž>}šRZe§] M9N­VKέ%΄<:™‚j€xsΑ V~"L ©R $–’i•Iχ£ΜμKŸž cΆ gΏώ 6δζζή{gΪ²e -ο’Ιδ—Ύτ₯h4 ΉΝα“όΣ?ύΣ;οΌσ½ο}/??Ώ««kώ„ΤIηΘjz 1$έx‘²$+:u;Νuμx2IρΕΥWŠ_Y°˜ ‡Γ=τΠ‚fЉ›ššZZZ>ώψγήή^œ9‰-‰Ώμ3#£Lω»x9MMM4kΧ%QΘ ’‚ώύοΏ――ορΗομμ€,ˆη1™Ln·π`vvφg?ϋΩ£>:==έέέ=55%5xηπuλΦΡΛ29mδηηƒARοvόψρΊΊ:‡ΓQWW—φ­Λ100°yσζ·ήzK,NƒΧ^{­€’€/Ώό²’±±ρξ»ο¦b‹β@x$aα:ŽΗ{ ώ\Ϊ1G£ό駟nmm½ύφΫ|Ξ«Ί K“‘fŠs›L&'''GGG%ι;ΣΏ΄Ϋν™ŒHqq1§ˆΕ©¨¨hnn–ˆX,V^^Nε?;-‹½σΞ;v»ρ‚ .`έyώοήαpΌπΒ ηŸώόγΊΊΊΙΙΙM›6ύλΏώ«Ό¬ƒXf6››››ηHiΞWŠŠŠ2Ε|XΧ;wξή½»««+77ΧλυKΓλ‚ϊ‘υx<Ο>ϋμ¦M›ξΊλξξξ΄ΑρίύίΏϊκ«v»Ί‘κΙomέΊυΖoœ˜˜˜Ο―M$€y;vμB<ωδ“O>ω€N§έ‡¨VJκΤ²wοή5kΦdr2δ‚oΪ΄ a @hκoΜf3 N’ΡhT—&ž3­F£)//‡ΓUggg- ΡN2™4›ΝR,Σ*νέ»Χj΅¦u§2œœœ+VLNN²hσΗ’%Kh(L*P…/Gee₯Σιt»έiEFλλλ ή&''₯bε―ERVxG žUU Σj΅Α`π‘GΩ±cΗc=ζv»©ΥγαIΙΑ i…ύ\—vΠΊ€rΞΟυ‹hΦΧΧΏύφΫ²_}δηηΫνvΘ'i‡Ρh€²X*n€n™zNύ•P(d΅Z—-[†O0Ψl6 xΥυe€β6›nŸ™pύϋχ———Ώώϋς~™γtJB ³€€$ͺTΜ477#ώGη·ΫMν„ur}F£‘¦φSSS”0ζηη·΄΄ΌςΚ+κŸKΜ`IQC“‡ͺ,ͺV…YŠx¦#Ψ"„xξΉηž{ξ9!„Σιt8€ργ!zΙίςω|iΡ(!eΕƒattvP*Η@όεηίt75›Ν”νΛοΞuμzzzvοήνv»Ÿώy‘ ΪYΙΓΰYί~ϋm«ΥͺB}MΪ”B}ˆήppΘt)mζŽW^y…rσΟ?ΗbΞΊΟωπnα+²§Nc뇆†ΪΪΪ’Ιd θμμόφ·Ώύνo›:ͺCPX˜υx<ς|πΑU«V;wŽεš?~ς“Ÿ •zδΘ‘_ύκWκλσ­o}«ΈΈxηΝ²kjΪρ駟σ‰ΏŒδmζ³³³οΌσNQQ‘Š "”ΫεμΩ³^xα₯—^ŠJΫν³δ&‰ώώώwήyGΕ«K;νwάqΗw!JJJ–.]ZZZκp8‚Αΰΐΐ€ΧλνκκšSš€Žίώχσ7“••ΕgQχ„„Ο?ΌΓα8vμX¦b”gžyγΕξλλ“9D•1>>ώ裏šL¦­[·ͺ€ό cccΧ]wέίύέߍοέ»χφΫo_±bΕόV™*χ»ίu8ΏύοωJjφ6Ռr(^{ν΅²²2Ω tώxζ™gςςςΪΫہu―½φZυΟΒxα….Όπžžž^xaώw‘ΠPΞΌ`ΕΩΊu«ΩlnooŸoμ.Ώός†††ρρρΤ°dvv6 .(7³rεΚΌΌΌΞΞΞL?)Ÿ­©©iΓ† άλΙd‘Κ–ρq}>_4₯ιΘ"G8ήΆm—T3ΚΦΚγρψ±cΗz{{ΕBΫψ+_ωJuu΅€ϋΘ%³Ά©“<πΐkΧ ™`ΰ|·ž”ρ‚^βέwίEϋγπαΓσΏ‰D<³ΝΟuΚ‘UΪC!H")ΣίŎq[Μ‚ϊdΞcǎ8pΐd2±Uζόΰ?ψΑR?ζ§sNŠŸiκ˜θ‡~˜••5<<|ζΜ™W_}uΓ† uuu!7R^ΐ~‘Pθέwί½δ’KΞ?|½^Ώ N,Ÿαε—_««›žžΆZ­κ‘PΘ`0LLL8pΰχΕ"²(Ώύνo>œκ!FGGΥΓ°M›6eϊΦoΌρ裏κtΊgžy†―¨ΌwΉΒO>ωδγ?žH$~τ£Ιοͺi›ΙqΕWάsΟ=ύύύ&“ιΓ?”nΗ‚7kꐇβξ»οΎτKΓα0¨ΐξέ»ίxγ ±ˆ›`Ξ„όC>ΓΆmΫΠΝΒ‹ΏυΦ[Ϟ=Kδ±ψηœ3–.]ΪΡс/Α΄··ŒŒ€ϊ‹ŸkoΌρƚ5k*Όχή{O:υŞMŽΫn»mυκ՝v»}Ι’%ωŸ™Άšz1CΎ‚Λ/Ώό?ώγ?ΠgΗγ555›7o†#ςΉ^Ӝ‘““ήλυς©‹©2ζ¬σW\ .vJKKIυΒ€t:θξ¦ΊŒ‹yS---7ί|σΊuλΆnݚ››;11ΡΤΤT__ΑμάΉσs]νσΗSO=UPPπόσΟίyη{φμI…?$ΤαrΉ~ψΓξΪ΅K£ΡlΪ΄ιΩgŸύτΣO₯―ΕΞζ'˜8[«Υώφ·Ώ… ΧΊνs††ΑΑΑ/6‰άίώφ·m6›ΥjEt8»――οΛ_ώ²PXŸw~‹Ε²nέ:Y¨Ρh‚Α`WWGώσšωσΟ=χ\]]έΘȈΑ`(((ψΗόΗγǏ4žΉΉΉ·ήz+2οό―τ<$³Θ§εηΏς•―όΫΏύ[oo/ur¨„Z­ΦΛ.»¬½½ύ ˜MΖςεΛ©ψFΫyttτΨ±cŸ ΡTlυ―,8ξΌσΞ+ΈΎ/Ν…Χθμμ|˜Ÿω\Ώ±±ρWΏϊU{{ϋΤΤ”Ϋν6 Α`°ΎΎΎ§§η§?ύ©Μώ!ΰ‰'žΈώϊ멊CΖθΒ /œΡζή5φmεΚ•[·n ƒΙdιtώΰ.—‹ *ƒΑpυΥWŸωδxήBJ©ώπ‡?ΰΫ-ζQrŸD"’’΄]A E133σΩgŸqΝ}±ύyλ­·Ύϊꫨ ΓΦ}λ­·nΉε–Ο5‰,ŽB<όπΓίωΞwθr&„ ΙΗ“O>ωoφoβ/3*#A κY1;;‹ΠrTΤhwttπφΏ@δωΨcύΣ?ύSWWňo½υΦ#*>Ϋ‰γ )i $BΫ dJZ` eO[hg§νž¦:ΪΞμ²Ϋk†BK§”a6 Κ‘Π@ %G;'>eY'Ϋ²dΙΦαϋγχ½λςG¬WšoύΡ+ Ξςϋw­g=ΟύάΟύ<ύtOOίοοξξ‡Γ/½τ;οΌ³ώ+cΙρ‰P»­­mίΎ}M²ΫσσσCCCπ¦s°εŸέnw__ίή½{}>ύš‚ξμμ„Žpΰΐ•+WζώΚE%H(Ι\j)< ½lq2qΙyδ=΄|ως-[ΆΌώϊλ;vμΈσΞ;Ÿ{ξΉΡΡΡύϋχ?ρΔ/Όπž={φνΫχόσΟϋΏ{OO΄-Θ‚κΟ‰œ΅ίο'― Ÿx≣GΚfnn.nήΌ9χB †/~ρ‹6l@€κα‡ώέο~χΔO:t( αεΨlΆoΌ1»z½ώΛ_ώς™3gŠŠŠŽ=J½ͺ.ϋφν»ύφΫeυe޲°_ϊΧ>\__?::ΪΧΧ788˜J₯>σ™Ο\ΊtιΖoيE–Ο>ϋμ‰'θΏόοώονννηΝϋόη?‡ο»οΎΕϋ£j΅Ϊ–––ΚΚΚβββT*U]]½bΕ ΤΰrŸ zεwάρΠC‘ωb4i LGΑ’’’§žzκΏϊœBˆ‚‚‚Γ‡wwwΧΧΧCӎF£uuuΏϋέοNž<)S–ΉΏΈάΓv»}ΥͺUt[)..F ρ‡WΗ₯…ΩΉε–[ςςςFGGƒΑΰΠΠΠΐΐΐΕ‹e}¨Fιμ¬2-άvω$eeeΣΣӝz½Ύ©©itt*j‘κ₯KŽΗ{¬«««¬¬Μd2577Χ+ΓλυΒsϊ/ΕΧό―ύλϋξ»Ο`0ŒŒŒtwwk΅ΪU«V«₯•ž™ζI/ͺXr:“““ΓΓΓ###4‡€4ςΤ©S===.\@EΟ,λχ’^ݎ;Ύχ½ο;v ΨοΔ‰ηΝ?wξάΝ;yδξM™AΚεΕkkk©%οννυx<ΓΓΓCCCόρΕ‹}>Ÿ$Šό—|š«―ΎzώύέέέΏύνoα΄@‰›œœΌξΊλ†††ή{ο½ 6δ2>KτΗ?ώρώϋοG3ΏΏΏςεΛT^ήsΟ=€ARrA}Nι’Qͺ Ήˆ΅Zm …B~Ώ?ψ|>‰_¨Η3‹GmmνΏύΫΏuwwoέΊυδΙ“p9ι4bμϊӟφξέ»{χξ\¦Κήxα…–/_>00ΰυz ΓΩ³gίzλ-B―‘‘‘©©)Yύ}εώΜΈ_[ZZ»ξΊx<>:::== b‡²ΏΗγI&“Ϋ·oΟΡ·K§Σ₯₯₯Ώώυ―|πAθαFΈ\.—ΛεσωΰA_}υΥ?ϋΩΟ^zι%uΉg‘τ”Όκͺ«Ž=zπΰΑO}κSγγγHζ–——···£3==m΅Z}τΡΞΞNΩΑCΕoB”——ΏφΪkίώφ·{zzΦ¬YS\\όΗ?ώρͺ«zυΥWΗΖΖΦ]ΫάάόπΓ:tθξ»ο•­οv»΅ZνΎπ…†††²²²‚‚‚ŠŠŠΝ›7―[·ξόωσYK΅?§iΣχί``@(IqκηζζB‘PWW—TΙWίτ‘|ώωηi’GŠφδ:KJJΖΖΖΌ^ο§?ύι'Nd’\dzΰt:m0vξάωΪk―Έφ·ΏE+\(GN%'»ψ?ύέίύέΜΜLeeεŽ;zzz^zι₯_ώς—O<ρğόηΗόΡGύιOJc Η#U޳:Νuuuˆ)€ΣιιιιΙΙIxHƒƒƒ”¬Ηγρ\t’Δ’cΆ|ωrΏί‹Εθ κv»Χ¬Yc΅ZFc}}ύΔΔDuu5€Φϊυλs\Ο^xαΘ‘#χ/»nh4—Λ588866f·Ϋzθ‘χή{/«”ξβ!|θΚ"s ΧγρHΟ&GΧ‡iέΊuόρ§>υ)$„JJJvμΨQ__ίΪΪJσŒΑΑΑύθGςϊΜΡgβ;Ϊνv»έŽ ςQ±X €άύy’LK?Φh4Z[[ΫΨΨH}†Υj ‡Γ.—K ¬¨Ο©YTΌ΅jΥ*―ΧϋΡG555=υΤS_ϊΧί~ϋν±±±φφφ5kΦ@ιΛq°-Ή½Τλυ΅΅΅ά@<π€ _sτ–$SSSσ΅―}푇jllYΆlYqq1 ¬S©Τ-·άrΓ 7¬X±"₯ŒL³i΅Ψ°aΓ#<‚:Μ† JJJh|IMχC=D„Rd‡s\„={φTVV644τυυ½χή{Ο€‹u IDAT=χά‘C‡ώτ§?υττόW}D‘|}“ΙτφΫoίtΣMl  Χ¬Y#σqκT'*«κκκξ»ο>zD"Ϊ™Νf“ΙTSSÍD"ύύύχίΏP Už°ͺͺκωηŸχx<―Ώώϊ?σ?OLL$“ΙζζζΦΦΦΊΊΊeΛ–Q†Ό{χξ?ώψδΙ“‹έ;•Α»Έέn“ΙΤΪΪj2™œN§ίο’iΓαPrZrX­Φ½{χ[·έRXXXTT”N§gff‰Dkkλ{ο½—KxΜ[ά}χέοΎϋξυΧ_OoYYΩ©S§φξέ[QQ4χΊuλφο߁[Qζ7ήxγΛ/ΏLK•ΒΒŠŠ ‡Γ‘ŸŸ«G3‹™L¦³gΟώς—ΏΜΡ B<ωδ“£££hΑrΏ#OασωϊϋϋQ3ψφ·ΏΛlΌΛιΣ§ρ;ΑS;;;πƒ ;Eg)”–|χŒ!ψ=χάΣΠΠ@Zjjjͺ©©‰"ωžžžςςrτol6۞={²>₯ΙdzςΙ'‹ŠŠ&''©Έv:|πAmm­F£ωγHώ+ 1~ξsŸ»xρ’Ц?Gu8@΅ͺfό~O<±zυjφΦάά Δ]»vY­V€±+‡,η~ζ™g\."½TrX­Φϊϊzξc›ΝVUUεσωhvύυΧk΅ΪLšWŽίύξw”Ι„B!ΔR©E^%%%·ήzk.5Ȍο~χ»ρΐwAAACCC0€FμάΉsΘΣξΨ±γ»ξϊΝo~£n@ωOŸόηϊӟŽΣk‰8ˆΙHyq>ΉϋΫΫΫηηη>œuZ½^_SSΣR[[KCͺͺͺυλΧοέ»—bdT‚‘™PŸŠρο|§  ΐαpάqΗmmmθ0υ«_έ΄i“ΩlΎξΊλΆoί~ύχ766ž?ΎΌΌœ*$‘Ν»½σΞ;W―^­Ρh(œŸŸ§ΡΘΨΨX"‘0 EEEF£ρ7ήȚ—δΦ|ΰΆnέzϊτιt:½kΧ‘‘‘Γ‡·΄΄,[ΆμΜ™3UUUgΜ!ουzο½χήh4:66&Eό—»wοήΉsηδδd$‘ηΊΕbh …š››σςςpΔ›››Ο;>šΥΦoΨ°‘§§'§R)ŒΕδδ$ ‹\Ζ:ξ+_ωΚ[o½555₯ΎŒ2{²oί>“Ι499™——GC”Υ«W_ύυN§snnΝΘιι醆†cǎŽŽζςœŒ―}νkO>ω$Ώhtt΄’’ΜςφΫoGY4—IP~Ϊ°aΓξέ»gffΦ²Ϋν±Xμ™gž9vμ˜Α`¨««Σj΅Yκκκ>ψΰƒŸΠl6Ώώϊλ»wοώλΏώλ·ήz+oΫΆΝb±tvv„ύλ_ί½{w*•:~όx.²ζίόζ7σ›ίS»=99i³Ωfff6mΪtέuΧνΩ³Gϊ*³Ι₯Ύηž{nΌρF­Vλυz/\ΈΠΣΣ³{χξλ―ΏΎ££γτιΣH₯R---kΧ]·nJŠKN˜VΔ:::žzκ©Ν›7ΧΤΤD£Ρ`0h±X0>HI θtΊ‡zˆζΘόq.――ΣιΆoί~σΝ7ϋ|Ύwί}Χαp\ΊtΙεrΝΝΝ]Όx±iΎTΦ!_OϊΣψC»έΞ‘·Ϋνίύξw?ΎsηΞh4JNι«_ύͺΙdR!ΧΚΤ3Ο<γp8‰DKK ΕXΤΫΡ63‰ΠΛ•ώΤ·άrΛΛ/Ώ¬n–ίzλ­Ο~φ³ψˆΡhΤb±Ί‚ ₯Ί“Ξx<^[[ϋ­o}«¦¦F½†CŽ7~ιK_ςx<(•Pn0h rΰΐΔΓs»vνΪ±cBί©Βuž ƒ(κΛφNRεTeόξwΏϋ‡ψ‹Ε2== p^XXXUUU^^NΫξΩΩΩ©©©eΛ–έqΗκ‡Bˆo|γίώχ­V«Ηγ‡o033ƒσΈ€¦·eeε½χή‡³ξζζζ;οΌ“΄žΣι/((°ΫνEEEgϞ%!‹SQTT„œE.γρG(’8ϊΪk―ύΖ7Ύa4*++C‘Puuu$9vμΨ•Ζ3cΔpΝ5Χ,Ζ!gggAΧGδ:GcλΦ­₯₯₯‹{ΰTWWίuΧ]CCC‰DbΧ]UUUΑ`Ϊ1.ΡmΫΆ©Οω‡?όΑh4"{-Ή,΄ΏΧ―_όݜθ©0::*ΉWN&φ(Sρn±XΠL‡ΓV«ΑΖΛ—/C€e›fΚp_9ώϋο\iσσσΠiΩ—h› i4B\Ζη>χΉαααρρρd2‡Ož<ΩΣΣ3>>>00@ΫYTg{zzΚΚΚ~ς“Ÿ¨ΟΖW~ι₯—‚Α`4-((H§Σ¨3ΜΞΞVTTζσz½>Ÿ/‰ΡΡQ”kT’Ψk―½vΥͺU€Μ._Ύ<<<|φμΩW_}Υοχ_Ίt IΏ¦¦¦νΫ·g’ŒYό[Ύχ½ο566„tώύf³ωxπΑ―Ήζšͺͺͺ‡~ψŽ;ξX·nέππ0M”ΎωΝoΒMB-“γk_ϋ­E‘°gΐό-++λνν• ξβρψ7Ύρ ‘ 6p©¬[·ξwή‘‘Τ ΰ+. ŠQθt|θΠ‘ŠŠŠτ"Ε―+‡! 0 €N§F#’ό333ιt:™Lβπ%‰ΫoΏ=λ’2 Nœ8ρΓώP£ΡΠΖΐn·Λ³_QQρ?ηΜ±ο4b•P(€Χλέn·Οη;uκTYYQΐg>σΉtΩyε•W6mΪΧσ±Η»ϋ9‰DςςςΆoί~χέwΣOβη?ωίώνίf «½cǎGy„φιtzvv6??Ώ€€$™L.,,ΜΜΜlάΈžYŽ˜εΧΏώυͺͺͺξξξ‹/rεεε=ςΘ#O>ωδ]wέυϋߞ™{{{OŸ>‰DΎυ­o©SSSP&ΤG:v»έλύ―S§Nυυυυχχ_ΊtippFΙύύύ“““ǵZšγΨ΄iS:ΞΟΟΧ*Ν-A1Θ*@μΓ^½:— W―^=:: ΞβΤΤM γρΈΝf‹D"©T* d•€BlΫΆmffΖησΉ\ͺͺ*΄τwBΘ~ex±i'&&vμΨ‘uζΦΦVΠY4_].W__ŸΝfK₯RΤΒc[„WφΙT‡ƒ-΄°°‡l»»»iι‰J^Ν•F>£c‡|iΨ…ς$ŒElΜϊ|t`$šΑωΟξκκh4SSS.\8rδό ΤωπΖΤηlll€N3]δ"ρIAώ΅ΩlΫ·o_r6ΎθζΝ›5 Š‹v»](έ]΄Z­Γα())©¬¬Δf₯R)‹Ε²eΛ–¬+ „XΏ~=r;@BiA˜L&½^oAAAyyωƍs™Š ΄‚† 455UQQQSS#;Ζ Τ’ΥjΗΖΖhlͺξΦδηηOOOG£Qή‹ΐE(ν;Q³kkk«――§Š*«(R2Š‹‹—-[†F Ε¨Ζœ={φ•W^‘oŒ"‰LOOΟΝΝ΅ΆΆfR΄ΒoήΌω‘‡κμμμκκκιιq:ΥΥΥαpψwήιξξΆX,‡›™™1›Ν«W―.**K&“ϋφνC2J%χQYY‰»PVVF‚(ΧόόΌΝf£Μ·Lύ­‹…δΘ—Ύτ₯ 6¬Z΅jǎTŸ½ύφΫΫ·ow»έ“““z½> =ψΰƒπ{ΤηΤιt2cΎΎ>=N­V›΅rˆ-ρ£ύΧ0™LF"T$hPΖaͺτω|&“ JƒΊ7/„(..–(/Αϊμμ,Ύl*•"&FŠ,™LΕεΒ’yτΡGΛΛΛ1χ±X,/,, M=77799YVV–‹X¦βκ«―FκΆ²²rnnnhhθΰΑƒ333Ϋ·oΏχή{λλλaλ666VUUɎgYsϊΥΥΥ«V­ςx<Ψ‡>ψ`bbβΦ[o₯ υΜΜ H°N§γο³>'ΏρK_ϊττ΄V«-..­αL‘Ί‡nyy9Ϊxκf9•J­X±’²²rppή†P<‹‹‹ιŸώιΰΑƒνννHpω|>ιt&εHŽΥƍρeN'ύ{@§θ PYYɁ’ƒ{8Ίκͺ«²šϊ]»v(ΎσΞ; ΥΥΥ>ŸΟf³Ή\……… .ΜΞΞZ­ΦσηΟk4š]»v帞λΦ­C‰Φ ©T [—iΟ―X±υ F3>>ώκ«―Λ°··wjjͺ»»› I©θΌ²ϊ'>“ΕbA5 h¦  €+I‹Ε‚?qβΔ‰}ϋφρΉάςό+©χKδ i€ΗIΞ¦ΣιL-ŒŠŠ Βr!­Ι8ο###±X θ‘ΏΏ?‰`pJKKΥΉ 6›­΄΄T«ΥšΝfυβŠΰtŠEΌΊ Λ—/WZβ˜\Z₯σ`‘s‘0Pm6[Ž΄¦¦& ŠM&’ŸΩΩY§ΣΙ!βΎ^ςŸ/ύ;©ρΒΒΒt:Λ ‰ε((( S!0ƒϊ¨©©α=‘ͺδεε™ΝζιιιΑΑΑΣ§OΩl6|2ώλΤΤT¦VŒΒΒBPnΟZ­V§t Pεo$S£Ρΰ•oΪ΄IeΪΆΆΆt:Šγττ4εί4’όσω|###i₯G'–rdGΙφΜς‘Ήr»έƒ!ΗPή4Gƒ2‚B’Γ††Έ†©T*‘HD"&WŸsεΚ•όŒΜγΒΨS8>>~ώόyͺ±ψ›L{w͚54Ιΐ²Λ7™Lf³Ωαp8Κ’Ιd(ŠΕbψ Wιώϋ…ϋ ξΒ… yyyΝΝΝ555eee8|~ΏΏ³³σάΉsuuu4Ξςω|ΐ-*·2Α4ΡKMMΝf›œœδ”šΝf˜gιtZV\<,ΛυΧ_—ΏόexxΈ――οΩgŸύΟόO¬‘HδΖoάΈqγαΓ‡7lΨπΒ /„B!—Λ₯~ζ[ZZh] RΞζ)***))!vβΫ‘…_XXΘ‘΅ΩΨؘRnΚ°X,F‚2‰ΜΟΟγP !$σ=Σl\TkΧV”•Δ·οΌσΞωσηΉ;ρP³Άaάzλ­τ@A#™LΦΦΦRp βHv₯Fΰ’cεΚ•4€—%ύ‘:d47oήμρxKKKGGGαK`λ²VpoΫΆMβ”xœkΧ λ/Ύψ"i_<³+Ϋγfννν^%}‘:˜υω|ωωωωωωxŠY²££HιχΏύόΗ<ϊθ£ς/ςΠC½ςΚ+7nόΕ/~ργψ_ώε_~υ«_=ώψγO=υTsss__ίͺU«–œ_·bΕ ŠύΡ3‡Ή!„ˆΕbƒm#R‘‚ ά|σΝꏺf͚™™»έFO:e6››šš0Θz½ώόωσ›7ož™™A‚?kϋ8‘“υλΧsΧ’YXX(**κνννμμJw|F_PeΆφφvξ#bΰΎΎ>‚–h4ZQQAΨό~Jι~ν΅ΧŠΜ"‚[·n₯`…@¨ΉΉY^α‘H„ΕΔD'“I”_¦§§γρΈ ώRδξΐδδdaa!(šN§+,,”zζ΄gœŸŸΏpαΪ«*­•δ@pŠC½ΈδY£ f΄ZmVW^ΡΠΠ€Λ₯`±X¨αM§ΣεεεδaΧ­[g·ΫικTPP ή—eύϊυ‹= ƒΑ@―0œž*½¨ΑkE‹‹ΒΒΒ¬Jψn·[ζjkk£Ρθ²eΛz{{}>Λ’——777Η»η˜—[Ήr%u¨,ζͺυϋύ ρsCΎςŸ/}‘ΤΦΦΞΝΝαiή$‰>ψ€@ˆ€@.™©R 1fˆ ζhduΊκ†ώšk!τ‡ΐΩΐ{γ; O—™‰q—Tν—ƒΓΙeIF Γ”J₯ΘυφφξΩ³ηsŸϋœP*q΄ZmŽŽ\ϊ‚γ„±·θ-f4£ΡhŽŸό―ώκ―pΪHδKYΕΓ‡P@‹ΕR\\Μή½ώϊλΥηΌα†Έ†…Ιd’Θ²€€Δh4v¦Σ鞞žx<^ZZJGΡP(” X}Y½z5ξB,#ϋ&O:ψϋΏϋςςr΄i¬VkAAAYY|π%νΘςεΛι”j0V¬XΡήގ‰O&““““sssp―Ήζš-[ΆΤΤΤ Ϊ^TT”ŸŸŸ΅n’boo/έχx5ζ@ ͺ‘H$TLόβΑλD£QΘ@kΦ¬‘΅¨¨θΨ±c§OŸv»έηΓ?΄Z­YγΒφφvœoΨuBΩσSSSΨβ½^o·ΫηηηΝfs.Smm-Ά#NOO“2ωΖ9ΓΌR=TN+²pbQu'%‘H;v¬ΈΈψšk©©©Α"σœ\rYύZΊh§Σi:Jq‚πυ[H͐δΚ:κλλ΅Z-Wciii"‘˜™™‘;υaN§Ώ<NηΔ !Z[[ΣJŸΩ@  Χλ­V«ΧλEλ–[n)//Ÿžž¦§sIII.‘7ήX\\ U@(Ω"ϊ‚p›βεΔb±ο~χ»"½ΣιŽD"½ό&1ύζηη₯Ϋ=Zέ ­¨¨ ώ€^D\ν|‘X,VTTD·₯d2YXX(ΑΕ¬Σn·γ…]Έpᣏ>Ί|ω2Yέ‚‚—ΛuΟ=χ<ϋμ³πyTΪΜ|bΐςΜΟΟ…BγγγtΊνΆΫŒ‰6q“Ι€lQ“iH°Κf³…Γa§Σ‰D ™!ΐΖ’Ρ(ϊˆ™†ΌŒβρxqq1-Œ‹ŠŠμvϋΜΜLGGG[[ΫΦ­[ΛΚΚ4MooοΕ‹-ΛΒΒB¦υΔ’677oΪ΄i||œ.­œžœx<ŽΫ‡oΈα,ž ϋ‚QVVΖVΔ£Ε41Ώš<ž΄ϊTBˆnΈˆ4πŠΥj=yςdWWώ„ζŽf¬ŸόηU&\·nμ[<2ΝʈW1P4φ•Ώ·€€$NΟΟΟg5z΅΅΅D†£££ΕΕΕL’A9#–™^‚9¦\{ν΅ά˜ρx< †Γa»έNΔ866F€­ΣιŒFγ’;β>Ž?DΤe±XΒα0Ν…± Ή9„6›m``€o„wλrΉ‚Α`AAΝf£¨Σεrιt:—Λ5==έΥΥ5==­ή됂@5ΐcϊ?²ΌBˆT*%AΦ\X°LΫΪΪZ[[Kl!DQQ₯ΑΔYIWΕ&¦•šhώΎͺͺŠ /΄F₯UΑ6©g9W―^ ­B(΄3‚:Ϊέςξ¬FMMMŽ\œ9Šθ C{{ϋŠ+€ξΒα°ίο§zŽη4›ΝΉθb_‹rΘωωω––[―ΧΟΞΞVWW΄³™ C.Ž]yy9Ω B<^–͐R„sμ¦E°j±XϊϋϋgffΞ={ζΜ™³gΟ?~|zzzxxψΜ™3ύύύ^―·°°Πh4NLLd­βt86›­ΌΌ‘Μ&[šπΨl6§ΣιεΛ—£$―nτnΊι&όRiύύύ»vνŠΗγ|πA__ίπππ²eΛNœ81<<Œ—P‚ υQTTD¦δ#%ΐΙdR’Œ…€UBΞκFUUL*•ΒΤƒC{<ΗC–°  @ϊ ©TjdddŊ™&δΧ!ӈλ–N§aΧ”••‘ζ{υΥWŸ}φΩS§N=Rš–)kΜIόΑ~ l‚°y¨δ8ΝΞ΍Ζααaπͺ¬νIJKKΉ5€c]XX8114 χ2|.NW]u|aa! Sͺλό~?m`8υ€Σιt4mkkS™°££ƒWΰv ‡Γαp8ƒAΊrƒΑ@ (ΰ@ΝΞΞΖγρ¬Ψ BH£Y­V‡Γ155E°M‘$U#³³³*}δς]ΐŸ\εx·€έ)”$Z^’`Ά΄Nlΰ}₯R©p8LN–g…Γ˜Kpl³ΩP‡]ΨΦΦ–R$jpΑi˜NηργΗΥω[T«aΤ$πΛίEΧ‘ƒΟK'ζT*₯bξ;::xkΦ‘d+.6£ΧλνθθψωΟ^\\¬Χλ!‹!‹‹‹Αφ2ϊϊz4)zzzΈŒ1—δ”i­έΤΤδρx\.—zSW! ⚚§Σ9:: ΝΞιt–––‚,’Š …BΛ—/?pΰΐόόόbέΪ%‡€ζ$ fbkH4O½ΊΊšΰ[ε,‘Œc^Λg’<ŒM›6}όρΗl€X,f±XΌ^οΤΤwη•ΓŠ+(D§ΏtΜ­[·NNNΆ··—–– uvv·­­M«Υβ»έξΑΑAš9fjΒΫΡΡΑwχω|LLL8NƒΑΰυzm6[4…VRR’Ύ’ œΉψ‡p»έŸώτ§wμΨa΅ZϜ9ƒ‰§ρξ… ξ½χή±±±;ξΈ£««λςεΛ555KφdTVVrΣpΗ !Y ¦Ή„0Σ###n·›ΎU™νt8ƒ?ωΟϋϊϊ™b±M?ΛΚΚ._Ύ<66vςδΙΩΩΩ%ώ›››ε”±>7ΰŸF£F_`aauœΙνvΣO j./’X,υΔd2­[·NύΕ…‹…'%εΰγCœΗ@±˜&“‰Ξ‡ΥΥΥ™qΚAT k%??ίνv³’ ·Ϋ½°°NFrΛ–-Y{ΣmέΊ]†²ΈX?<άά\‚CP -_xα…žžnz!„Ωlξμμ­¬¬ŒΗγΫϊϊϊΥ«WΣj-€+ηDή–DΔ E`Ή€²M$±XL]σœΗƍ§§§#‘Θg>σ™'Nx<žϊϊϊ/|α ?ωΙO—/_b—c¦oεΚ•U!²!‹ŠŠb±Ψττ4™>™α¨ͺͺΊtι’³mΩ²…#“N§ω:άDΙdνvΏωζ›ΰO²σ 8Εbω»Ώϋ;©Γυ‰Q]]-…-ψΈαpΈΏΏύϊυ$ŽKKKΧ]‹3Q]]]ZZ d»dbN§ˆοΪ΅«§§GβΎ”“ƒP@ώ£ψ·ΟλυZ­Φo~σ›Ή΄p$‘! Ύ,Bmm-š8s333ΰLY?t»I”ƒ~ω|ΎυλΧρ+ΐΫπ{ΤcNκs…σσσ%%%h> ZKά .™LRs‹ΕŒFcVWLV9ΨνvŸΟ7<<μrΉΒα0_œ <‘(δˆΨΆεεε£Wΐαb§577ΏόςΛ«W―.//_’Α΅tΖjB0”Δ5~cvv–m‘ΏY"`‚$ό˜œ›ΌΌ<ΘR:ŽA@Ω*‚? !ˆώeR¬NΖB ½PΝυ—ΘͺrΞ-ŽH4M&“εεεUUU$‚A5² φVTTΰΣƒAr=`ΏSSSZ­–t*.rVLa·Ϋ‹‹‹m6[2™lmmmmm… H$ό~?Έ:ύb―Β_β2 υυυΣΣΣλΦ­Λ…Ή(„Πj΅Τ ΙΈ+/&H~WΦ‚ΊΊ:bBl…τ@pςψ^–K?™L0Σ„εεε N§+R«Σι`μ™Νf\:’§˜P$₯„RG¬ς΄9(lβνΐ;y0Μ ¦)‹εH}&‘υή{ούᨩ©‘ΰ " μκ|πΨ±cEEEK^—K―oII ώ,ζRϊIPΦ΄Z-ΊABυδόGQΰPφ%E7½¦¦&ƒΑ ο€LBƒ μ σq*86Žέ@ό!-¬Βn·/9ηΚ•+ΙΦk4šP(„ΰ·ΐΥγΫΣ)//―ΊΊX‘ϊ ”––Ββ‡ΜΐεD†Γ‡_ΊtΙd2εΒγ\’——722’ΧλGFF Q ~!u‚±Xlbb‚eϚ/&g—J₯(MˆΕbu$Φ‘Ν ‡ΓIE^Ε­GΜl6·΅΅a•dl‹Ε€ε¨›YXXhkkŠ“,υOŒ«―Ύš‹Ά©©Ιοχwuu 8N*’l6ΫπππΔΔΔΤΤΤUW]¨Η…†]«B• xβ8ΰrO333Ιd’ό—^―Η}Μϊt:έG}΄°°pϊτιp8ΌqγFΪΠFDW2€¬Όz˜D]Ήδ‘Λ kYw6??ρβEπ¬ί]j»˜L&Nύω?η™gžyχέw?~ΰΐ^xI?tUςσσ³Zy‡Γρ_λAΈuϊτiό’ΌΌΌ¦¦&6'IV¨ ξ3₯a`8Aψΐx|5F“•ϋ‹ΟΑ—Z6<™‘\‡Θρ‹r‰»(Ζ ψρξΤΘ{ŽΌΌV«Ν%ΉOΠOF8r£ΚŒΥ₯K—ΨφY?:;ΨΜγρ°‘°Ι€)R‹z ƒCTWWk΅Ϊ’’’LT³R92D@€Nl0ΒXΤ~Ώ?B·b•T―: φυυi42Χλ}ϊι§Ρ˜ΥλυuE£QucεΚ•cΰΦh4‘Hdtt4•J‘MΖ·Z­„%*gS~Δ ψΙααaόE &«ΥšŸŸοσωjjj6lΨΐQ5™L™ZΒKTΕαp„ΓαK—.Y,κψ8v·?€ΕΌς>βS~υ«_ε ΓS„A+„ˆΕbΰθ<°V«…%„ ¬υ+_ωŠPΤΙ)k΅ΪC‡Ν2Γb`Œ—ΚΚΰ’n4ަΌ;΄J/nΎ!M:Ξ„°°8όŒ¬ε"³ …(Η-ΞΟΟΉΨJ$(ͺ+›L¦”RζDW^†΅d>Υ C555€5/^μλλΓ )**βίJwxx˜;ρΚ–v쀩πά…R©›N§ρ‘9ςοΥQβ=8F ±˜\7> I‚<Ξ‰ŠyB ›xw````` λυz‡Γ!³?NMMωύ~H²<|GGΗ’s677γΕS‡ΒηΗοd/B0'Ÿ"σ•rΓ©/‚Γα Š5 %%%θ4βk:N豍Ζn·gΝ#”””°EΜf3m(-Λωσηi`"6+Ÿ fΦ˘­Ι‘¦šDŒ…Ž‚«Μw/Ξ²}bΰϊ,,,ΤΤΤ\Έpl_bŸ|Η{Œ\˜’©©©··+‡—ŒΉ+**ΐΖq(ƒΑ ΒοχΣ;λυ–——ί}χέƒαΔ‰ΠY’Ρ(ΩmžG_VΤj΅ΣΣΣ2VK$2OΝH‘———‹c7<<‡ΛΚΚhSΦΨΨΨέέMKν1³Ωμv»KKK½^/ν’Tζ„>o΅Z?>??O”…‘‚ƒ/^PPπο­fw©?'6•JΡQžuv»έΥΥΥ‹₯΄΄”@ˆΖz.β·ωωωlQ!„Μ0¨δ¦ξΎϋξ––*R§¦¦\.W~~ώθθ(1C2™ …BεεειtšlΎbrr’œμΜΜΜ_ώς—%§ΥλυΌ) MEE…tΌ„²R }’HBώ7Σ.½ζškζηηLBjBpZQT₯ žGE=~||<“L˜tΒ5™Lˆ"±ηy<ωΌΛδδ$ΏQύ>’τͺ΄s’?πؚEέΖΨo|ρD"‘ ψoii±Ωl¬Ε=r’Œ†ΜςqχεηηΫνvΪn©¬½ŒcieΛ“21φYδF1ΔάsΟ=ZŠk΅Z.ΝΫoΏ½――­{ε QN_7d{Ι‡c r9Eά„˜ ρK­V ‘M―ΧΫΘRVή*3XKiiιή½{±\Y)°Λ—/ΗΉAF( Ι υ%H‡›m5Hhmmεs %QBލD!9 ,GX«ΥfΥƒδ}Ω6yJ›Ng‘!‘HLLLδΒ²²Z­ψmΌB\dζόό|›ΝΦίίOcxκΣJ†(‹&‰z2Th”Ή°°5‚Χ*rNgΜI*υ†π)uŠRξ>UYs».—k~~ϊΑΉsη`1wFZ'Β,G"‘γǏSܚιiI°²‰­Dζζζfff0’ζ533ΓU7;;+ΩW™"^₯₯₯GŽ‘h)³=###Α`pll¬¬¬ Ώϊλ !μv;YγgŸ}Vf{ΨκF£ož«τΉηž³Z­*lς?ωΟΣΣΣψ΅tyB /VDQ(J§Σv»Ÿ‰έ₯Ρh^~ωε+ηt8du€Ύ16_«4ΐΕb1Βd2Ιζgη"γΑ)£‡ςυόv. tΈΉ°X,v»]ΊBtι―Ύϊjp}b€"ηεεIίb―κυϊ@ @ά¨~Ž(?QΓΣ’ ·¬†¬εP ouε())Aχ€¬+νŽXaΐ―ΧΛοβΰΣ ­¨¨hvv¬€gΙ¬CΧεrI'€ΈΈ˜=@΅8€‰/ͺϊ#€Σιβββκκj²%θf°€‰Dβ»ξ­€)ψ‰–Ά€\·Ψ2 Κ™ΤώεΛ—!©¨?"Ύ = q+°AIn²}KKKgggιΑŠn…ŠS―Q‡ρΥhœN§―»ξ:²uEDφΐβ·Xς 577(ύΠ`CfτQλaΧΞΝΝq+„ΓαΙΙΙΈj(!GO. ’>ΦΨ±c---$v3uc”ƒjSξB:†UUU™L&ΚΠI&“§‘‘A£γΜΟΟ«;v„Yόp4₯ή[†/Έ“““DΫςώS±‘###`œ8jεεεΘnρα0χP€)σ™ŸŸοξξ†\|₯Ϋ²eΛΚΚΚψΠ4«^΅j•ΣιtΉ\Ϋ·o‡J877‡rΟVXXxμΨ±ΑΑAX/p"3q`­V+[ˆ'„VŸŸŸΟ•™:ΔΞγρ΄΄΄455-,, •ΎaΓ:špOΨνφ†††T*υε/ΉΎΎžt-Šπ*5Ρδ.u:j΄ƒl@Ah<‡δqαΒYA©2Π)ΜΛΛλιια»hz™FQ•,XY;z@c=„:NBυ$ΤtŠd αwŒΊΖ$σθυzš%π+΄Z-׏ŒΌ…’“RqBO$(η€cύSJ5F<‡ΛΏΚκΨ±ΑΈ&QJ/|Y ―.,}U‡όέnw~~>½*++‘Ο"%#A―Λ—/g₯…!­Α|±ΙΫ’Š\…ΌSeCVΨ%ηδt`-YODφ Œ9G%%%lHBٍZ΄cο‘3!οFz‹„‚žλ©TjjjJ³—ξδδ$};„Έ2Έ€Σ„¦0±@΅3Νf±XΈϋ?όπΓ’„=“XT)gQž)ώU:Ξ!΄΅΅Ι 1€ ”ŽV‰Dbff†"£ΡxζΜ™ΒΒBΠ8.ΠLO+ΟΣO?]ZZJ՝PblΘQΥΥΥρxΌ§§‡;Qεέε Ψνφ#GŽ,_ΎΌ  ‰D >[1 ΉέnΙWΎ.-}°;”Λ ›Sš——‡σ833“•ϊ*„ 8ΓΌxρβΐΐˆ…PΔ¨– RύάΉs³³³₯₯₯‘H$Sά)υίqΈΕq ψBlφ–΄ς†. ‰1ϋ|Ύ©©)nt’S–ΨGν"m<Ίε †¬ˆŒiΕ_κt:"­VλυzI'©D )Ÿνσω€XPΰ"ΝGςΒαp466JӜυ!%ƒ+–. ΔΑ⍉Ίc—L&?ώψぁFC½…,j‘$ž΄β•–………ώώώΩΩYZ'-ž>ίτηQc±Ψΰΰΰΰΰΰž={h\Φέέ=55Ευ‹Ε‚Α Ν§gffP)#,[ςi1τςυ ]€qα,MLLΰQ©/#ηrΉμv»ΗγΡιtƒƒƒN§σΖoœ…‰OΚιt>|ψ³ŸύlUUΥΠΠΠ–-[hBΏδœΘL‹Š_‚k+_Ϊ |ΪΨgεs¨λtΊααa‘„L:Ep_»¨·4ͺ"mΌ¦¦¦”’BΒ?9{φ,·»aΖΦƒŽΰf•K*Β‘, W²’ [PP€ΒbVλΉ§Ί „€φ„UΑθΰG2ΏΊί€Υ’e˜&ŒOΕ•ŒΫ'R½ά‘ͺͺJ―Χ i³hΈςΜ@pΟ­™•ΞΡΣΣ399‰eJ_μ}ΚΖ\ύ9Ώί/οΡO βC ;š„²˜±ΔKΤ!qWqΏͺ<0?±ž :Gς‹KnŸ‚p4λ•$„γγ7n»ν6ξKnρΉΉΉόό|Π\Π2ςh€t2ΝvθΠ!”Υή}χ]“Ι„`8!°’Ιδΰΰ N§³Ϋν]]]§NJ&“sssǎ[rB> E.›`@«4ceγΤ.φ˜—4Λ7έtS<·Ϋν‡ϋΙνθ577GA€l_žŸŸΛh΅ZηηηαWdZώ@ ΐν&ΡhI†“@:j%£J}πnR¦§ΕIΝΛ˝šš"ΒI§ΣΨn;‹ŒŒΠΙMεέl€d2ωΧύΧHg0Έž$¦ΈfΝHΫWΞΉτBTUU­]»P}q9½d5"Έ°vνΪ\θe ά΅CCC2 Αi—žPΞ„Λε"ΑΊδ„„#œ:™_ηΩ;υ’!ΠςζΎrN§Σ933SVVVWWGeί†―)›xVQXXˆ3Ξ;ͺ/±ΪΤΤο΅°°€€¦ΫΘλυr‘¨OυΨ`0ψ|Ύk―½–Z°x³o•σ.Q‘‘q¨B"γbρΐ§Δ©ͺͺbβÁ"#»ƒυ¨¬¬$ŒΜΟΟWνp²eμ'ξŎ,› {¨n@ψξ σσσˆω‘Ύ€WΪPNNNήrΛ-/^L₯RYΛBιτSPP066†\p΅„ Ϊj΅Z„ŠNΖΖΖTjΠΞ%!HΞ”`i~~8CJΣz!D €±NC‚LJ˜H$ˆόρf΄J}‘ŠŠŠΑΆϊλS£ΖΧΉυΦ[©‚”„Z˜ο|Έd2YXXHΗO·6Φ›: ώžx_ο‰D&&&8U‹B)άfˁ€€Α Rœƒ&‹PpΣ+9Κ«V­šžžFrΏ¦¦ζίώνί<*~Ϊ™s(!Pδ±°°ΰp8TΈ›8‘HD§τ.J”ˆΝ'<0T¨#˜όY2ΓuiepN3ω‹4DζknέΊU&Φ!g[,δΫXFBϊ²²²›oΎ!ˆΉΉ9βή%%#t<ηoΘ·j­ώ†s!˜ϊΠj΅\΅΅΅ΐΘcπI†,_Ύ|jjjΙ[xιΝϊ“ŸόδΦ[oύαˆ!« ˆYIOΌωζ›Ϋ·oφ·Ώ­ώˆ%%%‘HΔεr!*H@`A:Iασω$³Νοχσ3™Ύ=»Βη4³δ―pώq˜`jKŽΉΘΝTWWƒΖΡ? γKj¦΄΄”M<—΄λΒΒΒΎΎΎήήήsηΞ©/‚Ρh€K›F£Α㟠!ΨIιtΪl6g…C ύΞΝΝ•••νΪ΅‹0^7a=ίόζ7±§‰Eκ\W0φΚή½{ηηη½^/ U€―ŠŠŠΖΖΖ'''ιω›Κά'ΰδΙ“TοRL σςςθ%Wl'V’24ΊeΧΥΥ]I• ¦xdddωςεP©βρx}}ύ… vμ؁ςάμμμΩ³gA<OSSSww7ž •Θ###™Δnp›ώζoώ†¦&°‘[‹žΧ^{­ΛεϊΙO~’ώξΈγށX,ΦΤΤTPP`±XŒFγώύϋνv{__ώ±έn(//Ώ|ωςΒΒB__ίεΛ—S©T¦Άr\“z½ž2:RšH$ Q8W ?vξά9Έ•κ)NΩ€‹έHηY@zH<²0fg.Π―Υj%ΙΑΫΨ‡€‰eΕ1HŒϊ£r=βώ*ο.„(//Η\άpΓ \±B;Ω °·{ξΉŽŠύ”t“Ι©Ζ`0H"—V«΅X,EEEΘ‚šΝ恁YΘΉδ„θΆπ3pΠρŒ)dZ$Nƒy<R«ρxόJ²ΔΝ;AO0υΟ=χ”’ωάδ%ΰςΗ?ώ±„5™LͺΘΡƒηρ™Δ"Φg*©”ζύe¦`Π8gρύ"1oώ/~δβ³ σ KŽ«Ί oψcύϊυˆ`$‰RxαΰΚ333›6mJ$€h2iΕ1ͺͺͺΰΓ,NC±ž‹'ΰrS*οΞ co^ι6΄8n΅zυκd2ΉdτΎτf gΜyϋν·₯ƒ•R”™Ϋ-ΛΘΘΘ‰'>ϊθ#υGDΦk˜PŠŸΑ ˆc±φ:Ψl6ισ]9ΰας<ρx<rI^–žΠΥG‘U¨¬Kǜs”λ“Ι€Ϋν^·n]kkkEE šRZάΊέξΊΊΊΖΖΖ‚‚«ΥJΧΛ¬»—_~ω{ίϋ^OOΓα0Πώβρ88*™ίρρρΑΑAΈ*ƒ~»ƒ‘―――±±ρή{ο}όρΗ_|ρΕ?όαΟ?ό /Όπκ«―ξΩ³ηΕ_ό—ΎD};Ρƒ λw‡[[μp8|>!ο^QQ1==]SSΣΨΨθχϋΑ%w|*•ςz½mmm£££ΝΝΝΌlΎ‹–4ŠNιΒ­ΩΦΦ†H=>Π'&„ηdPδm“J#?ZW‘ «­­M₯R‡&Q”ΤpήpC#‘H&Ϋ”PΪg!d%“G™!ϋŠU"Ο’ώό~?œΡΛ—/G£ΡΦΦΦH$b΅ZϋϊϊB‘Βεr½ϋξ»³³³O>ωd4}υΥW ¨ƒYrΞϊ§"y'[S,†ε§¦¦€X|·Ϋ>b2™|πΑU•½­ΣιΘ#ŒτΡGηϟχϋύΑ`0 Qo(„8x𠌺•Ϋ힜œδ10IBΙ­ †3gΞΜ+½#5ŠΈAσππ°:όo2™-EM!§βυΉ~***²rμΨΨBΚ;!§ƒ«!ιPΨVιμͺ‡^yŠ< 79―tςΥ*υ.EEEέέέ###%υ§ΕΉ\²²²y₯KΦ’ΨHΨd2ρ“*†Γα‚‚\.!x’Α`‡ΓΤIδ)#™Lb 9tΪ–œ“'Αή.[ΆΜνvOLLh4šςςr:“‚Ο% ©ŠGξO…΄ η}vvν_‘ψΗψ^α’Ιδψψψν·ίNΪ.+9½ΊΊA5kΦπυ%Ŋβ0‰‚LMM΅΅΅Q―–Π…u‡™)ž°Z­@•N§3₯TwfzT—Λ±8“Ϊ«ΥΚ‘ζJΉΈP(F/^ΌˆΚήΙ'&άΉsgRi}1;; …Μf3? ]%R8R]]½wο^!„Νf34sΛτξ6› ™I)›Δ™25922"²υ˜‘Θ»TώpZa3?ΰYώΌEj»W§Σ‰ϋ“ψκ«―–m6@©eN+Βm!uΗF£1SYοξp8LŠΎΥ]’‚*O“ί\Ԟ±30%>Α"“1F(r8^― μ3,½Ye“Œ›,ύ%Ka{“π˜ IDATN6‘R—Πj΅555F£q||œ­ƒ™csΗγρ’’―Χ ΩŸς’’’"ΞΨ’’)”λt:MΓAΆ‚ AΘ&°G%™‘ Ξ•s•@ΦγρΌςΚ+ΠPV―^½{χnYyξχϋ~ψα’’’{ο½—ΏillΜ„Ιαχϋ{μ±ύΏ·Νf£‚„\ΆΓα λFAAΑργΗώσŸ«Ο#„0 ~ΏΏΌΌ< ωύώ¬Νˆ`LLL¨ ό'3‰H;Žς8Η J)ΑwKK wvyy9gυγ΅Χ^{葇zzzΒαπΚ•+/]Ί„“477ΟLFαT“εΛ—*hώΏνkΈΖ†‡‡ΫΪΪςσσ›››/]ΊtαΒ…eΛ–-[Άlpp0??hhΜ_αΜ™3_ψΒ&''χξέK“ƒL‹ΐ6–pΉ‘ΘD“Œθλλγ‡ειΘ4ΊΊΊκλλχνΫ§ΧλϋϋϋW―^}ι₯ϊϊz³Ωάήήn΅Z©;»λ»ž}φΩφφφΎΎΎžžžχίΥͺU‡ZrΞ±±±ΊΊ:£Ρ800 )8ZEN;ŊΝΞΞvttΌσΞ;%%%f³ω₯—^Κτœ0ύ!ΜΝΝ΅΄΄lέΊ΅¦¦¦΄΄ΥΟΞΞ"H£Nλθθ ‘έίߟJ₯μv»\ΓD"±vνZ’ždω˜EυϊžΡΡΡΛ—/χφφΖ`0Θ‘dGi”6ιtϊ•W^q:*Ω’ «Σι±ΘƒŸC«°Ω’›’ΊΟΨ Υjω .e@’VϊηB±Κύ€ώπΨc1”άh4ZWWGΓ=™’Ρh4LΛσ§R)“Ι΄d?1‘ΔΫΧρ¦¦¦Τ&| ‡Γ.—ΛοχC#όΦιt$@2=*–Ηοχ777Λ•$-(θρxG―1 &ΩR""rp„Ύx₯d?ISP+FζG=ƒΖϊ W%i…:₯U(‰cRή\Ψ²Ό`ΙΩhi6›5MOOŒΐh4 έnw0€–“J…βββΡΡΡφίώIΖΖFΈeee@ώΑ`ίH§ΣyoS^sπΰΑήή^—Λ5<<Wm™ΊkΧ.άΎG}”Ύa2ΛΞΧιt>ŸoŊ_ϋΪΧ~ψaυωΟj΅ΎφΪk---ψUx9H&Iεσω<ͺΰ™Φ“(ν6έη $$“It)#³X,`¬ΖΨΨ·‘Κ¦ϊя~τϊλ―ΏρΖ;wξδPγΜˆ°]Qzκ©§žxβ‰\Ę>ωΟ !nΊι¦§Ÿ~š†‹πΟ………ΦΦΦLYŽ₯;‰‚‚r'AbP­VΫΧΧ‡•WΙΗ1¨y„δ„›%Ζ±XŒΐ‹Lφμμ¬Α`ΐυ‰F£™;IΈž››{ϊι§Ώς•―·IβŽN!™ ₯ς»»»££—nI’.φhnnnbb’――oη͘€ΎΎΎ™™™₯q“V«ύΥ―~UZZΪέݍΦ"΅œYcDΎG ¨¨¨£££ΪK—.Ζ‹/Z΅ͺ©©)GΗˆ‹υΡ+­„‡5ERαυzΛΚΚΤ7–N§Συφφ"f6==]QQFικΘ=”H$FGGΛΛΛΫΫΫ (ηζζ–$τh΅ΪP(tθΠ‘φφφcǎ}όρΗ8z½ž΄»Υj₯—³N§3™LΑ`ž`‹Ω'BΊd2‰Da’Β΅X,ǎ£“Ψθθhqq±Ωlƒυυυ.—λ₯Keeez½Ύ. ͺΞΨΖ0΅Ju½SeM°ϊ7κξξξξξή½{χϊυλίxγM›6ΉέnΏίουz].Χΐΐ₯ΗΛ—/ΧλυΏψΕ/L&Sww·ΧλΝDζ8yςduuuGGΗ™3gΠyg?CΠ*-½9uuu½½½HUwvvfzNζI§Σ^―χ‹_ό"Š|h~€˜^«ΥR€˜ΎF£1›ΝŸ Aʁ(ZuuuMMΥXUP (κόeqqρΔΔΔƍiρ²ͺ_ώς—ωÞ={<_~˜šT`ΌυΦ[Y£‘ΤeKΨX*&HΨ΄RsF˜!²•&aBz«――7τځ£Χλ©ΡN₯RΫΆm3™L“““$|Uζ|ύχί}zOαΞJfž1Ϋ5‘H¬\ΉςΰΑƒYߝWΓj‘³.**G% _>+ΰθc¦D'χŸLCŸ={–+Ή««Λιt[]ω5‰€I Γ¦ώ¨μꚚ8Ν4•†Jh0L&Qh8ž­««Λͺ5ˆΆ‘$ΰeΚHR²Δ h•ŽαY;pΔςςrnb)Ξ@a4žt:]ZZJAaL₯ή C7>>Nα**Ψΐ§OŸ.,,lmm₯.^^Φ‹g[·nP"½^λ_ZρΤSOύνίώ-α.ιΜΜ 1§ΓαΰΎ:xπΰ}χέ‡ΐ›Υj΅Ϋνκ=ι€QΔuŠΞ0*ΗnZ ο‰Dbdd€¬¬Œ-·Έ£ښL&/_ΎLW‘LλΙλ766>ώψγB·Ϋ=22\Ηvu8TΪ‘Ϊ ‡Γδv>όπΓM›6ιt:•Ρ£££D;‹E~Vœ9’sžR΄B…η2ΰ–Εx-$m£΄˜xΙ‘^^PZŠq pqr$ώΏΏ /obbbŊ’$$vΕb‘± *Ύ;„Ά%'d‹!L&Σγ?ώ?ώǐŒB–ŒNˆDδόύργΗ;::Έό–”“@aΘh4|γίŠ+vΫm·ύκWΏš™™Α£ΟΟΟojj"w|υΥW9r„u χ€2xΰώη>qβΔ<ΠΠΠ°bŊ7ί|sίΎ}?ώρƒΑΰΜΜL.Μq‘ ±ZE3"©(}βΧΙ»yxxΈΆΆVέ‘|‹x<~ρβE!Δ¦M›ϋd[^†Γα())ωύοΏ}ϋv’n*Lν£Gξή½ϋΘ‘#ccc”γ2 ₯R©h4ΪάάLͺ«ͺͺκΝ7ί”8Δβ©FGGFcyyΉΩl†k‘X&ε Ê+ώς—Ώισx<€ΛC‘PEEv›Ν†Χxε南&„hD―ΧΛ―œ IBρ―ϊ―Z­ΆnhhΘ`0œ={–―†Δk―½ΦΥΥuμΨ1·Ϋ½aΓ†ΡΡQσρΨc=φΨcόΉ‘‘AΪJθYψρPΰ%{Z½Ώ‘Pι4 Ω.ΏίΟΕL@¬Q(ΊBά&ΰy:EΛzΙA"Α»έ>22‚pšF©ΞarqΛ$bi11kN§S―Χ{½^³ΩL‘Υ½`ΆƒnΪ΄ P'ΣOζεεMNN¦Σi—Λυη?™›^ڝ„k9₯ΤΫ !ΎψΕ/κt:―Χ»d•Χv xλ­·~ϊӟζηηΏυΦ[+WD0Ιb±ΨlΆ‹/ΖγρΞΞΞ-[Ά8NΕΦ_Ήο½χή™3g¦¦¦‚ΑΰΆmΫ(Ά€JΌrεΚ@ Uϋφν.\(--››λμμΜΛΛkhhά·oίκΥ«£Ρ¨zέC  Ε_$˜Λ‘„P~υ•_Ό½½½Bˆο|η;kΦ¬ωΤ§>Eq____4ύμg?»eΛ–·ήzλƒ>ŸL䀂k4šΎΎ>‰|Ζ₯”¦)ΣΣΣΉ4=BΨl6π€ΑΑA›ΝV^^NΨΚΣ.jΒh³Ω<˜H$l6ΫψψΈzg-ŸΟησωΊκ*XVR"N‡ΓaD:ŠκG X±bΕΘΘΘ’ ύΕƒX]]eH)ύΩπf¦§§ηηη/]Ί$c\uKoZjnΰHnΎτα‰Δ6oήLy Κ΄d@ΦόΛ_ώ }>_CCCkkk8ξξξ~ε•WJJJζηη;;;ϊӟΚdΚœϊ觟~Z²d ν‚mTWW―Z΅*|ώωηυBNŸ>ύΡG]ύα#GŽL›6 rά#2zQ`ό‡"]›ρ5‡Γ,Yr:šššJKKς6™L;vμhy)‘H¬V+6Αf³‘^§ͺ!·«'Dζ1&BdΒκΛ—/C E˜Ÿ!By<žΝf3<*œΕ°P©Tννν3gΞljj‚γA”™8@ ΥjQ3›ššΚφΖS˜ Ρ:<Έ―Ϊ‚{ €Zαp˜₯B»„Ωςςς\.—ΣιDŠ H`§ςςςόό|§Σ)—Λ£=ΓαP©T?ύτӎ;²³³‡††G||<`–FρT* 'OžύΜ™3μ7ύΜ™36lή±cGWWΧ?ωOφΦΤΤ<τΠCR©4ΤγρLš4Ιd2'Αησ‘Λ0'B‘Œ¦J#CbJ₯rκΤ©θννΝΙΙA,‰}@xΒ"wΉ\T›Pο%&B =ms8]&‚φ†,σ ΎΎΎ‰v$’6lΨπ裏Λ7ε9К‡γ­·ήΗΗΈAΕwί}W.—υΥW …βΪk―mmm56›­ΏΏί`0ΐQ@ϋμ-·ά"‹ ™ΰhiiΙΘΘπϋύϋφν»ϊ§N§³ΏΏŸi•Hƒ₯ΜŽVl6: ‚άάάϊϊϊ β0¨ 2™ΤΤΤ .ΰΏ …* €<¦OŸNX kΌl©T*‘H/^mNΪΧΤΤΠgαFΪσ]ύaJp¬ƒήvΜ9ιF}ϊι§?ώψcwwχ?ώh0 q©ό~ΏΧλ=wξάSO=EΧLE#gγFͺmHD½ψβ‹ .4 999ˆedd8©Tj4Αώο{ώύdζ4ڍ’Ζ‡ΥjΝΘΘΰDzoΓ)zϊΚ•+Ρ60Ϊωη, rρ„*άKKKϟ?OM:–¨κΘuκυz€K†ρω|ΰD@²2{φlΊŸ,³­X±bϊτιΩΩΩϋφν{ΰV―^g‡Ϊ ‘}‰Dρρρωωω›7oFuј—hΤSΧΧΧ=zT­VΛd²hδΓ•••θŠ38’·M΄s~θΠ‘uλΦ=όσƒ}-AΒ©gŸ}φϋοΏ§fHλ+ ³ΩόΜ3ΟTWW#ηBqŠ‘H+䎎Žύλ_ΉΉΉˆo±΅νΪ΅ ₯τ,  ©χή{κHϋ>Ϊ=ώΊέnΣ©ΗγρϋύΙΙΙ°«θΧ°s:8ΨXδD)@ϊπ”ώijjͺΑ`θμμDƒ/Έξ`’+’Ρhš››iC°“'O †άά\",Đf³9 ΕΕΕUVV^Ίt©ΆΆ1$aiΔ: ΅΄΄ϊύώhνθ(..–ΛεrΉάεr¦7 7d9i•%Šv% KρνZτε—_nΪ΄ιΥW_…¬‡Γ¨°ξξξΖ‘ιt»wο†ΦΡtGff¦T*U*•&“iΫΆmμCŽΪ~Œόώ3Ο<ΣΨΨψόcσζΝ#SŠΘ’‘œpψ>œ.  !.\xωε—g͚uδΘκ{x)))RσFτB€X¬΅’dΌ›Ξ‹τlΰ˜Ά%{ƒ"(`ρHX΄ΚεΧ^{ν·Ώύ-f …B›7oV©T€\£ ¦'¬ptK—.B|>ίΕ‹ΩνΜ€ωD κεΐŸX²dΙ™3gPv:ρμήέwί]XX˜˜˜ΈώhΧlδ_)--ύλ_zαΒ…ššš1αΡΖ¨Uύ’E^½ ϊ΅Z­Fσ ·ΫϋΔΔΥ`fήΌy2™ t\]]]&“ yν Ξpυ ,X0cƌ9sζψ|Ύ¦¦¦Ÿ~ϊιƒ>@€φWοΰ24œσ›ίόζ‹/Ύ Žγ/šmώόωYYYsˆΕb™L†κŸ¦¦¦††Ϊƒrβ«•H$?ώ8ŸΟΧλυ u€ρ‡Γb±|ώωη»wοώE‹€­–νv{YYΨCL&Σ―0”G‘H4kΦ,½Q˜υ‹–χΘ#h4šϊϊϊ#GŽ œ››[\\¬T*Ρ0Πυχή{–³lΫΆ-))ιδΙ“Ο<σL΄i Ε’%K<m™Ξ5Χ\c΅ZΏώϋqΓΐ<οζ›o.---((HMMeFΐ@λκκͺͺͺͺͺͺͺ««a֌ϋήsrr|>ŸΕb‘!₯1?Fε*!$)))66Ά½½ύκ%&&ΎόςΛ8<=φXCCCEEEFF’€h WWW—Πά܌rι={φ”——ίvΫm‰δλ―Ώ~υΥWΗ\ΐβΕ‹oΉε–|φΩgμϋC)//μ±Ηvοήύζ›o²|lΥͺU3fΜ0›Ν―ΏώϊβΕ‹'Mš„NPˆYB4Y,·Ϋ}ρβΕ}ϋφ}ψα‡εεεoΏύφ³Ο>;ζ„eee7ί|³ΛεzςΙ'ρΙ“'¦€€X,p,ϋ|ΎΆΆ6Z¬½eΛ‡σ駟’χ¨1uκΤτττ3fΤΦΦξΨ±ƒDρΠ˜Θ€}ρΕsss―\Ήβv»YŽθΕ GH&“ΝŸ?_©T")P »‡ΒηΩ%^YYΩΫoΏέΦΦ†βΠ‰νoΏύ6##γ‘GΉš*λ‡Ag€I ,Œ¦˜Νf³X,ǎ›€˜ϊ\χί†  Η«¨¨8sζΜ΅Χ^ϋΐdffVUU‘άmμ’͈!•J†AΦ…3_⨙< „ˆΕβuλ֍΄ΡΓψWΜL·533xp@°~φ ΝΈK%„όυ―‹‹ϋφΫoγββ m6Kj‚cυκΥIII Γpf±XPͺσλ–zηwώύοgϊψΉηžΫΊu믘mΤv­Y³¦©©©§§gΑ‚ίύΈ‘–ώŠ_œψΨ»woaa!ψ>Z[[―š`jϋtΠg_΄hΡάΉs›››αά›L¦‚‚‚}ϋφ>}ϊWμ}΄S§Nuuu!Γ•ššj4Χ―_?κO₯BξΊλeΛ––βΆΫn£ŸωΏπyh6d"«ŠaυκΥ€<Ήωζ›GήΝ NȌ¨ΗψπΓ‡††<F£ τρGƌ'2-ΥsχίŒ3`7ψύ~‡ΓqμΨ±όγγbό£ΝIωςΛ/'Ož ω†Όφwί}χπΓ“Ε±Ÿ={vfff}}ύ”)Sδrω–-[~Ε$£FYYYnnnCCC0ΜΙΙΩΉsη―>?τμνΫ·²αpΌΧΤ©Sίzλ­¦¦&¬0!!‘ξ‰'žυ±‰Oˆ‘‘‘qδΘ‘£G~ϋν·‰dήΌyO?ύ4h­`1OόΈΧͺR©–,Y‚„R=MMM}τΝσώ mxο½χfffφχχγ¬κυϊ . €Κ₯с˜hλ+**zϊι§'Ožœ€Nj}}}a>|ψ?ωb•#eθ—_~ΉtιRBH8v:ϋφνϋγH;rόΊa0>ψΰ«Υj2™ΚΛΛ?ωδ*›Fϊγ.’~μŽ;ξψŸω­V \ΆB‘θιιωΛ_ώ2&\fάA7T6›M(–””455‘ΩΐΖΩΊuλ}χέ‡hN§kjjbi2‘Α0LFFΖ¦M›ΆΣλυΫ·o?}ϊτ/ΥF$ςΰσηΟε•WΠY₯RΥΦցšššΚΚJ¨_d4ŒΊ…Γa ¦ž{ξΉ?ωΟτAΘ/)w „όρ|ρΕ=ΟΣO?νrΉήzλ-ΏίΏkΧ'žx‚₯±Μ¨1Κb8qβθc/‰ΜργΗ7n܈LπρG~lλΦ­?ό0ψ¨hΧΘnΈ:‰όZ!²vνΪW^y—q``ΰΔ‰ψΓθɜΈΑ‡ω|ώ5Χ\³dΙ’ΌΌ<‡Γ‘P(§OŸώο 8ΗOώ¨½ϋξ»λΧ―ζL*•ΖΗΗ···―X±‚E&²₯#?“ŸŸψγOŸ>]©T *Ύϋξ»mΫΆM0@P†6lΨ²eK πx<‘=Ψ³9Ξ–-[ή~ϋν‰@6GώΡ©S§ž={–ίί/ `Bο/ΏόrέΊuψΨΔ_=vuυκΥsηΞ}ζ™gf̘‘’’RQQρ·Ώύ­ͺͺκW\ŸδδdN§Υjϝ;χςΛ//_Ύά4mmm7ί|sII‰ΧλνκκϊE@:€φ…B)))θ@ B»υλΧΓ¬ŸΈ‡ύΜ΄cFžί§8&Έ x‘ƒaοή½H[Z§P(NŸ>½dΙ’‰ :< wDσ`"ΫΫΫ­V+ΣζΛΏN}ΔΕΕmίΎ¨†ΨΨΨήήήO?μΡ. IDATύτ_ϊω_x†ηΝbΫοχ£‘cJJ Θ5'>ν¨ύτΣO===ΰ:JNNž9sζ₯KOŸ>LdWGΞ‰ΦΫΠλυ~ΏΌΉ‰δτιΣ¨ΖΗ&θΞΡ™Ώϋξ;ΚπJ"/δ5ωωω(‚ωEo_χχχN t—ˍ™w#—uυŒ‹-ϊΫίώ†>6`›D=—@ ΘΙΙ ͺ¬ΫΪڞ|ςI*υΨΝ VUU}όρΗ{χξ5›Ν‰Δ`0\wέu³fΝzπΑίy睉_=ζΜ™“žžώόƒΟη£όηŸΎuλV³Ω PΙ2bbbξΊλ{ξΉηΚ•+³gΟFΉςΐΐΐΕ‹υzύ“O>9ρj rΥ•Ϋ±c8*U*UJJΚ±cΗ~ϋΫίFϋπΥγκWΈ`Α‚mΫΆυττ΄ΆΆ’ΔiζΜ™=τœΉ1…eˆΕβ)S¦€ϊΌ΅΅uǎ=τΠργΗηΝΫήήήάά<.ϋ+τώωηέέέN§³ΆΆ6==],ηηηΓIΪΆmΫ½χή ψό§₯c€IΫΆmƒX,FΚC­V?φΨcΫ·oGͺ‰μΦΉ|ως7ήxνω€ΝGΓ BjΣ»ξΊ#GŽLd?ιƒsΉάE‹=ςΘ#>ŸO§ΣeeeλΨh4Κd²-[ΆΠλ3ξ΄8qqq|πAaa‘J₯ByWsssbb"Z˜#νυzοΏώΪΪΪ‰‹ϋόόόλ―Ώ~€Iρρρ6›mΦ¬Y<―ΎΎήj΅rΉ\›ΝΦBωVΨ…U8q‚ΟηWVVNš4) ‘^O*•"eœ‘‘ΡΠΠvΊ Q‘HτΘ# )Ÿ˜˜ˆrώώ~ΈΘέέέννν6l eOΡή‘B‘ψη?9yςd4Ύ#„€¦¦"‡Ψ؈”ŠL&;zτθ½χή‹Š?–₯ŽάǎS©T€οMΒ=΄dlll\Όxρ/‚ά{ο½oΌρ†Υjνιι)((Ο-ZŠutt€¦¦VVV.X°`‚DY#g~β‰'°{ΰ±³Z­/^€θhψ–«Η† ΐ(ΙεrέnwMMΝ_|‘˜˜;gΜ€€€ΌΌ<0V†B‘oΎωζ9ŠW\Ρj΅F£Q(*•Κ`0h·ΫΡ,5 ήsΟ=€WŽ;F]ŠGydσζΝH%Aευφφ‚RώδΙ“τcTɘόΡG}πΑ»»»‘•“Ιd&“©»»{εΚ•δ—7L€*Ύσδ“Oήύπl6›^―ί·oί=χάCέ ϊ,œ:u*ŠΣ€F£‘J₯?ώψ /ΌπK ;(ξΥ«WΏσΞ;―½φ&„žίοΏι¦›fϞέήή>G"ΎDffζwή9gΞ±Xόμ³Ο>ύτΣΈ8N§S,Ϋνv.—ϋκ«―B„²/˜ώtυκΥ·ήz«N§cζμΩ³“&Mš?~8ΆX,Ÿ~ϊiqqρ‚ jjjΎωζ›ΏύνoγN;j?~<99d«ρρρ΄£©T*]»vmUUΥ/MzδηηϜ9σŽ;ξ@#%0™L&ΏίφΫoWVVFÍ6μςσσOœ8)LZ}]†††€0Ew†aΐݜŸŸ?.^²^§Σuvvζδδ˜L¦yσζ=z”²™ΝζK—.εζζ‚Ωn‚Ϊ(!!aεΚ•j΅://οΒ… wέuΐΤ:nηΝ—.]2 ύύύ'Ož·υ}Ο?ότιΣA__ŸB‘ι|oo/κΜ!JΆmΫφ‹²ΉΉΉεεε«V­JJJͺ««;{φμ’E‹ͺ«« P†ύύχί³σΕ_=yδ‘ 6ΐΤG<‡Γ‰D 0G>ψΰƒ‰§T8ΞςεΛ•J%XE!?ώψγλ―ΏΎjΥ*NWVVΖεr…B‘L&‹Ε»wο¦%΄,·=11ρ«―Ύjll”Λε¨[SwwwZZΪΉsηξΉηž‰¬Ύ£”””^x!77Έ>Ÿ―½½=++ 4:X§Χλ΅Ωl?όπ‘#GΘΔξg{{{rrroo/Ly)E„·”˜˜κŠqg£•€Ο?ό’%KΜf3κ\Ή²tιP(tδΘ‘ΤΤTΤΙ;ŽϊϊϊG}”°*ϊ£cǎ•––Z­V0c΅ήƒƒƒ(™”J₯&“ ι,·‰>Εϋ￟––Φίߏ~JN§sι₯rΉόΨ±c.—«²²2O™2%??ωηŸ?uκΤDήΡϋoωςεηϟχϋύwέu!€­­-%%%33σάΉsGŽ …ΕΕΕγ–1bόρ|β‰'βγγA{ϊ²ΑΑΑK—.‘‚ž²…AXέzλ­ί|σ ϋ: ΕΗl³ΩΠΒεr₯₯₯%$$”••;wΞαp ζ4Α`p͚5γ{Ί»vνΚΛΛσϋύh½300 ‰:;;џjσζΝί}χϋTτέ«Υ:‘›N©¨¨ „444€¦T©Tž9sF«ΥΦΥΥ-]ΊτθΡ£Λ–-3›ΝΐΒΛd²€€€χή{}Nlfffζ_|‘™™ιp8B‘P p8πυz=Μz‘H΄tιζζfφ»I·tεΚ•χίVVψŠΓα0μo΄R±±±]]]---/Όπ…μZyδE{ι₯—Π‡m^A#RMO&PίCGRRͺU«4Ν²eΛ”J₯V«…ΖδρxGŽ ƒuuu»wο·e9xU«V½χή{~Ώ_£Ρΐ ‚zφμYPό"›ήΊuλΝ7ίΌgΟΉ\ž‘‘‘V«»»»νv{IIΙ’E‹&ΎBBΘσΟ?Ÿ““#PP[[[PP°zυκΎΎΎ†††ΦΦV“Ι”““v: Ω!­„ύϋχ£Mb||π ΅ΆΆnίΎύjSd4Οπ«―Ύš““c΅ZQΫ‚”šLΓ;„Α'“ΙbccΗu•p6mΪΤΥΥΕησ7lΨπτΣOk4šςςςλ»ξ8pΰ€Z­ …΅΅΅?L>ϊ(z˜ΝζM›6}υΥWΕΕΕΙΙɟ|ςΙ‚ ¬VkMMΝπππΜ™3[ZZ&’κ½ηž{***φ”Ιd¨œ2™Lf³Y­Vgee΅··£MPyyωΠ}ΞΩ³g?τΠCx½ήŒŒ BHWWRTMMM«W―.**ΚΘΘp»έγF!₯₯₯Ÿώy^^^OOOss³Ιdκοο—J₯ Bμλλλθθπz½ΕΕΕλΦ­«­­—B™²fΝ.—ΫήގΠE0”Λε‡FH §Σi³Ω|>_aaaCC»‡„/ΒαπδΙ“7lΨ “Ιt:(OQ³ήd2ύ"Ψϋm·έφυΧ_§§§£Oθ%“““яŽ288θp8@―zηwŠΕβΓ‡³LΘD˜«όqπR)&Β}r}©TΊsηN8d,ώΣώή{οM™2 άn·L&λμμLKK³Ϋν---2™¬££Γνv‡Γα’’’ΒΒΒ}ϋφλqή{ο½+W΄Z­ΘΑΑA₯Rιυz].ε:ολλΣh4)))@šŽ9!}„½{χςωό€€€pΉ\£Ρ¨Χλνv;Γ0—/_JHHƒ …‚a˜[o½uοή½ cQr?ώΈJ₯Ρhδp8Σ¦M …(i|ώωηΑXΤΩΩΉpαB‰D2ΔΟΝΝέΉs§ΟηC'3@D<\xDΓ€AW\9.QΒ»οΎΛγρPήΧΧ‡ŠΰώώώνΫ·£Ύ/&& \.—\.Ÿ>}ϊϋ_– ρš4Ν–-[΄ZmRRR(B”Ηγ±X,ε¨=φΗ«¬¬dŸmΛ–-λΧ―οκκY&“%''744ΐee£N§ƒ”FΤvυκΥ―Ύϊ*₯Šs‚7vww#hQUU•››{φμY“Ι4{φμΓ‡#¦žšš ήr–‘V«ΛΚΚzzzPΠc·ΫΓα°Α`πz½{φμιθθΘΟΟ#ΗΗΗ£’]§ΣΑcŸό½χήS«Υ(,Η/ l„/§Ρhf̘ρώϋο³ΜC-³<όπΓdƒΦ¬Šh.g@@ €¦¦ή|σΝ³fΝΪ΅kW8Β >ζ›’ΧaήΌy>ψ %Ά@‹-₯RιρxNž< ΖP–©FŽιΣ§ίsΟ=sηΞ‹Ε&“©ΆΆΆnαΒ…}}}_ύυ‰'¬Vk__ŸL&[ΊtiYYY \„}KqξΊλιΣ§‡B!»έ>88F@ΰ –e"+5ž|ςI‰D’V«ΡΓΙn·Γ ƒ+V¬ƒc‹\=rssoΌρFqqqΉΉΉxρΕΑt ΤΝΰΰ ΧλΥλυZ­φτιΣέΡζΌα† .\ΈησωΜ9344tαΒΔ;ΡLμάΉs·έvۜ9sœNη•+WζΝ{πΰΑ nΒ–-[ζΜ™ΓDΪ²#TΖ0B‘0))ιΫoΏH05§¦¦ξάΉ@5―Χ‹.φG«Υ^Ίt %αpGe2YEEŞ={FumΨύωΟ‰Dφ‚%εΣά‹΄ΝfΓΊq”±•όρΈ}ΣM7ύιOšχάs€­pΉάΎΎ>§Σ‡Α*yι%Xβ.j΅Ρ –Ψci΅Z4ΉtιΒuj΅šΗγ?~ΌΊΊΪιtšΝζήή^>ŸΏnέΊκκjx ,‡ΰƒ>`Ζb± ;ŒzGΠ«™M·Ϋ-‰ζϟ?np‘Οη—––ΗŠ B˜±Π’qxxͺύ€gŸ°iΣ¦iΣ¦Ή\.πvttτυυAϊ …Β‚‚‚W^yŸWΔBvξά ΏP(„ΎRΰrC³B"—ΐΠΨlΆΉsη~όρΗΡZ!‘Θ]ΊγŽ;nΊι&τnΗ7)η ‡ΓΑ“J₯2™l"χS.—ώχΏοιι|iΈ€€€ζζfΠξSN―p8ŒοΎϋ.Λ΄ψΡ_ώς™L2κs8ΤΑQ)ŸΟ'‘H΅Z-Ky σκΥ«Σvμ؁VžuuuHKK;xπΰΏώυ―ήήή–––ΔΔΔωσηƒύ«­­mήΌyϋχοg±κ ΓΒ… ΫΫΫΡ_Έ   ΉΉ9###%%…Ηγ?>uwwΫlΆΛ—/———WVV²N=ύτΣS§N§.%~ƒ‚”ΛεάHΏm˜w NLLμιιaQ$rΉόθοοG‹O΄Eϋ™ττt’’:œR'99ωΘ‘#μ ½^όψq΄BB$U(ƒAȍδδd.—λp8\.WrrςμΩ³?ύτΣ1ηΘ|,ll4π@Β>> ΰ&Γ0½½½j΅‘Vϋϋ…^hjjͺ©©aζΜ™3^―W₯R‘™υ'Ÿ|b±XΈ\nmmm^^$‹Pj΅4 Y₯‚/akx½^κ/αέM$Šsύχ£Ϋd{{;Γ0ˆ…B!Τφ!ν(•$c,ώ‡~˜={voo/H(Π$3 !6δΓ‡777ƒ[*€₯₯εδδDs½¨τςΛ/ιOZΏ~=Z 2΄§§V)"Ύwί}wbbβ?ώΘbΫ‘gν·ί~χέw·ΆΆvww£³+@ΐ`0<ϋμ³'11Ρn·‹D’‘‘‘εΛ—ηδδDλ 3jΦ―_Ÿ••Eyͺ‘dpΉ\ώχΏ)ΏξΗΛ/ΏόΒ /@}πωόμμμ’’d*Βbν%K–¬_Ώώ‹/Ύ@Ώ5–Ω^|ρEΉ\!IΫΜlήΌ999Y­V§₯₯%&&`°ΛϋχοgχdΆnέκσωΌ^oYYΩΠΠΠ΄iΣφνΫ—–––’’ΪΪzθΠ!½^?oήΌΞΞΞ·ί~κάάά½{χŽ[Σyχέwϊι§eee‡<P‘v»ένv  ΛεύχίOaObΟ·nݚœœl±Xh:e= ο…jγDz»£η¨ύhή,Έ˜ˆU€O€/ˆR‰ƒ œ””Δ²Plτν·ίώφΫo£ν‡ΓpΉ\^―](p@9BDΐœ«γ“““Ρ½‰gDΛE"ΡK/½φΌ†aΠΪ™}62‚qž‚|X£@˜N1 ‘P]όάnχ’%KƝσΖow.τ·P(DS2³ΩμρxΜf³B‘ˆ‹‹3›Ν€ξ=z­ύX<oΌQ₯RA ₯§§'''«T*΄άE³Ό,΅Zf”2™ &Y†\.‡„HΆ‚a ΈpΌ±*>ŸπςΈŸŸŸοv»W­ZΥέݍ¦a999GŽAˊΔΔΔp8l2™ΪΪΪ^zι%!¬a™pι₯hdΛ6NlBBN€Eq8œίώχΡ&€φ<@9ζηƒ–§y<ZξΐΎΞεΛ—C¬ΗΕŁ!i``ΐαpx½^P³"#ΓεrρΦβγγ)ω\΄‘ΣιΠδ*€–ΌΎ|>Ÿ‰P½Σώ.Z­φšk‰6žzΜ9pϋΠ]­V#λt:ο»οΎ… rΉά.·Ϋνυz …P(LMMΕ•ΖΊ7uκT³Ωμσω._ΎŒƒm·Ϋ[[[ϋϋϋ»»»-KKK‹Χλνμμ„ψkooŸ7oϋ³8LΏƒW344ΤΡΡS[[K™;€αp8¨ΠŠ6–,Yι.ΰ ίb"όˆ΅ _°ίοΖΈeIkΦ¬αρxX-ΡΠΠ@½½½6›mhhS―Χϋΰƒ²Μ&h .œΗγa΄pΰ–J₯uuu^―whh¨··Ωjli΄Κ ‰D‚cc³ΩzzzΆnέzπΰΑ`0xφμΩwήy§₯₯…ΛεΦθ7aJΰ'„pΉ\pΡϋύ~·Ϋ ܎H$ςx<("‘Ν]†sΒΎŸ™™™θ'†φ€‘­qΩƒΑ ’†μ³]sΝ5³gΟF§Δ8ar…#Mi‘›rss—.]ͺΡhοοοŸ6mz+_=p•ήxγk―½666`Ψ΅8`ˆ•ΐ4Hΰwή‰ΆŸ8~2™¬¬¬μ₯K"‘D3Paxe ΄΄”ΛεΒ_Ώ^―k »Υ¨ΥjWBa)Γ0v»}ΫΆmηΝkkk«Γ@bb"Hζδr9»P"„\Έp-μ~όρΗήήޝ;wζηηgdd$$$tww'%%]{ν΅ μ\³fΝ±cΗ@»Θnή`lάΈq`` ³³$‡ΓbZdψΧb±X­Φϋξ»/Z{ŒQζip`hBΰx _<^;Ž)S¦Œšaτ. €Λα‡Λ"„ ρς»ΘGλˆχwί}χFtcδFz‹A»\.>ŸκσωŒFγ¦M›ΘJ±ΐΈ •†°'€gww7x/‘γΑšΖή΅γškη‡N— FόY$₯¦¦rΉ\ ΨPεt:―ήΠQcΚ”)q»έn(`$) Ρ@E Θ0LAA»ΊvνZΤ‚Ρ\HNΡ6MB‘ަΫν†1=Όƒj‡’ G:ΘA—ΐΘΓ#[ΌKb:ž{ξΉζζfšΉ³Ωl~Ώίb±ˆD"MΏί?<<άήήΎ|ως»οΎ{ά )³Γ0(Ι$UΖΘQΊQ€;ΡEqΜA…έ”)S`+S{ŽŒ°πΒα°L&C\pωςεd<Γnƌ ρBV4K8&>>>)) πp8,‰›;w.ϋ³ίzλ­rΉœΗγ!U„nαI/_ΎόΣO?!SqΓ 7°<5Γ0YYY„Ψsπ V\©Ρh&OžάΡΡ±wο^άΏσΞ;~Ώ_©T:ΞΞΞN½^Ο²NTVA(B._ΎάάάόΦ[o}ϋν·Ÿώω'Ÿ|ΨΨΨΤΤ …h8‡υ—’Σ醇‡qkB#˜œαΖΐ'€ν" ³ƒΑ`qq1˜YYYΨόŠΗγρω|θΫ100™ƒ‚& €ε±/5??q_―Χ ―@ tuuυυυ ΐS*μοeΛ–9,žββbΔ‘Ρ¨7!!Αησ…ΓaN‡œ!$ –”” Γ λσωXΙρμΓΓΓ …B§Σ͝;W­VŸ?ώδΙ“F£Ρh4’iUjjͺJ₯ΒΚΗμΩCΊΨ!°>(ZΰAP9Δ2!Θ&³οgYY`γψ-`ššš:::ΐΚ ι4gΞφΩ6oή<44DK%ΰ- ψΑ‰½ƒ`1Z€¬V«J₯’EΗW΅Z=ώ|4 Δ΄°5νv{0Δγ‡#,θF£±ΌΌ<š™ˆ ž|6qjjjGGzςω|£ΡX[[k6›NFΑ"ξ:ΞγρL›6Œ% °τ­ΎxρbJJŠίοW«Υθ;‚χ…Ώ>eΚ”‹/ΟΎŸ+V¬ Hβ!ΞMyΞaθˆD"›ΝF+yYΖΠΠβpS§N-**š1cΗCύYFFΖ¬Y³rrr@ΏЧŽζ{ά}χέEEE§OŸή½{·ίο—J₯ .ΜΛΛCΈαή{οέ΄iΣΕ‹Q`4srrZZZB‘ϋ="„ά|σΝ|>`` ..* uHΓ‡β6|½`Αφ ₯Rirr²ΟηC8θ ‰D‚,ΥΘWΑ9Q*•£Μ°Ρ†B <XZbι ©A"lLγšφ©©©j΅‘p?Ϊνv  ΰ(p8x„Ώί―ΣιΨ%2Θ$‘%ΔRΉ\.b°GιM$ΑGAΛ πšL&»έ^YY‰€αππpss³ΡhliiΉtι ¦ΑΑAφHΘl ψ|ΎX,FA8ˆπ°a£œέnΧj΅ƒƒƒμΧiφμΩn·[.—λtΊp8άέέ Ώρ! θνv{ΏR©LLLτω|γήOΔ*θΎaa„XŠxιhΏ‡’΄19θGŽςςς””tj€δγ(΄DΘ»a·Ϋ)˜3fΜπ€…΄ΫνV«U ΐΓCg!ΰΰ—Bςςς’Mˆ³±lΩ2ΈΤh4„5ΐU’y“Ι„}Fό½Έ θIΗ#—ΛγγγQ—000ΰt:΅‚300€ζ6F£qάP5O½^/θ*†KŠγ€V«[ΕΗ€ζŒ6ΣΣ‘ΊfΜιrΉz{{ „E~~~ ˜6mΤΉ@ Ψ΅kWggηΠАΧλEp1Ϊ€ψ• ΨC­V+‹[[[{{{…B‘Z­F8ώ("1μΟn0 ΰhoΜ ) ιAΨ…P?Pν؁@€F8p™gBLa–‘˜˜Θεr- e©pΉ\:ψBBnX,†c-Ρƒ/Y²D(BIΐ5JJJΕ ψD³³³²„I‡~΅”ϊΜ1wξάώώ~―ΧKicΑ˜› …έkjj’Λε@j³Λd.—‹n(>Ÿ///O&“ρω|©T*‹E …@₯RΙd²Ήsηfffvvvz<žqۏβn"{€t9|c€&[ZZGbb’Νffqα0 ¬@‰DΒ0ŒT*…β@*ρ9δ=až2 γυzqJJJ’M[^^Ž3‡<#D1„ΜGΌΠP(„θI4έ!SVVζρxΐ”)S€Ri__ŏΪνvd<Έ‘N ρρρF£`Π@ 7)š‰SYY ™γv»λλλ―\Ή‚(rWWWGGG}}}mm­Χλ²e" +<ˆωύ~ϋžž(JxΉΈGJ₯’½]|~†aoxι›oΎq:===mmmGŽιιιιξξNMM…­)†Σι ·ήzλƒ>xγ7–””θυϊΦΦΦwήyηΠ‘Cί~ϋνΑƒŸzκ©ΞΞNμgll¬J₯χD-^Ό&6ν”(Γφ‘――u αpxάΜΜμΩ³‡‡‡AG€^ΐN§’hrΚ4‡ Ge'ƈ[BU@GBnB±‘#1dΰ’T0ΪΘΚΚB–„ Z­ΦώώώŽŽ³ΩŒΠ% όΕ΄΄4φ‡'„ >OiD‡Γ‘ššŠΖ2ˆ^š€Φ4ϋ„)))聃.Ρ¨~Εϊ|ΎžžΗc0 fgOGCOš4‰†ϊq]ϋƒΔDμ:>>>33S©TΊ\.–ΗKHH€‘„Ψ'D”!§*Νpό~?‹HΒ@ 0ςΐ9FΨξ,’@#acΩη\Ώ~=ΜVΏί|ΫνF;pΔ/α<BUV«Υγv―7 p< ΏεrΉH$ΡI__Ž:θΑŒ†υΟςš ώΦ] τ$"όX6Ϋ i΅ΪγǏοΩ³'&&&==}‘„τeOHHP©T ₯₯₯ΉΉ OBΘΐΐ€ΩlFΏN‡HΖΈ‘ ’’3“ ΫΟ…ͺΧλ§OŸ.‘Hΰ‚ E³haΉ’X‡Γα΄΅YΜVŸ IDAT΅566"pεσωΐF!‹SRRf͚5mΪ4δVL&pNμK…m‘R©€Θ&„„B!„φ•J%’88Zh‰šSφgg"\bΈ2ψ'‡‘iΚ‰o–φμύΰΣŒ‹‹ΓσςωόψψxT†1 ƒΔ€ΦΠΠ<™q³Ζ*• g ͺ°ƒΑ bNπ—ΟCVΖ«ηέ\XXΑˆδ”ΙdBE||<<ψΦΦVΗΣΫΫΫΤΤ:€“˜ΓΖ:N‘Pdee­X±bζΜ™4ϊŽ8+ΪθεζζnάΈ1##ΧX-Θ– 6™––&‘Hrss°DŒpt<λοοξ»οΦ­[χ»ίύ§§gαΒ…”4nΜ‘˜’$Έϋ …ί‘Λε^―·­­βυzΗ5»Έ§>LFΌbŸΟΗDzHBO#"‡Μ―H$Š6νϊυλQΕFp;%’€ψβ΅hξσωΨ³=V«1Z7eΚ|HΌ€€€Y³fAΦ!ήΩΡΡ!•J‹ŠŠ΄Z-‡Γa‰ύ#‹ηt:}>_WWόŸξξnt—±X,ςΝΝΝ‘P¨··W©TŽkΩB²²² ΰy$„ ]†w 4―HL³‹P½^+,•Jm6›ΙdBt*66Φνv#‘ίίߏϊ‘άά\4ς6 ,s’J―»»pˆχίΓ?ά΅kH^l6ΫμΩ³.\XXX8sζL•J•™™Y^^~ςδΙq䀆'16΄ΤΓY’L&Γ‰W},^ΌKNN΄ΝΝΝέέέ}}}ƒƒƒN§Σb±twwΖ˜˜˜g0μg†]ff&ήΔ"!ΞlIπs#ƒ‰4=A΄QTTDM ŠB¬―ΡȄŒ)ιF ό ­δ'Nœ8ώ_0„JƒTFeeeη»οΎ{ν΅Χ`&†Gwαί„„„M›6Α³ˆ\B‘HIIYσCg2™†z•}Ξ„„zηF؟a8ˆΘX!U‡‹ TάΥSAθ̟??55΅΄΄tεΚ•Α`πΜ™3Ÿ}φY__ŸZ­>sζL\\\ss³ΟηƒΪή΅kΧ’|Œ}ΓΓΓz½̜ˆ›’_;ςS±±±ύύύ°€˜HΕ:u#iO9@5 ΜD‚τR©A8š˜Cq ΗC~=ΰ’H$ζ±Μ‰ίυϋύ)))τv@nP¬ T²^―§'aΡ’EΡ&ΜΘΘ@Ÿn.—››› “‹JKκΕυχχ·΄΄€§§£ϋKtxxψΔ‰‰Έ’™3gX±+&&&--­°°P―ן;wN,[,–ΊΊ:B!­ΐf³‘0"!!Α`0`UΠp]]]©©©N§sχξέ(”ΊœeKΣΣΣύ~?>)‹Ρσ _DΧpμιv±LE΄ΞXδΑΑAΰ …„ο=44δρx¬V+Ψ1<Ο€I“¨Δ" uvv"‹zΨξξn 5e2œy αΖ999~ΏξΚΚJp²`Ω …Βf³`!!!UΫƒ!//Οl6WWWŸ?ήνvGK̟?‘Δ––xY°i\ωw€waN•––²o)!ΈΧˆΐ^„6ηρxH#rΉ\―Χ‹=dΟN@ΰΔΔΔτυυΕΖΖ’€ P. €RΒα0ά0Ρζ\Ήrerr2ŸΟί³gO~~ώ‚ ώώχΏΏώϊλ€ΠρxΌŽŽŽ’’’={φddddffnήΌY‘P°Ϋ6„…B‡ΡωΡVψ±°σ0 …BΨ„p8<.φ=†1™L‹Ε`0 Ι!!V2$§Z­v»έƒƒƒ.—kπgŠAE2"=BBQ`ϋPdΐώσω|0Z£ 8Ž@Hxα$α§8AΆ’]=€μ΅‘ό&G„ ±YxcΠ©8ΎμΒhΰρxz½>33Σf³!†‡ Υ†:## J–ΞΠ„| A~ΔΙ‘“ί„SC™‚ί0ΘX”GQQΗŸ“^―‡±(•J…B!Ž8\"Έ@B†‡‡Ω£ͺφ‡+ΗDš“ˆ;NS΄kΦ¬aΟΕδΠT£ΡΠΧA"QυηΖ 6„μO-ΧΎΫ‹xξΨ.`ͺΒ°#„°<ώφνΫ‘Φ]K₯μc|/@Ž€>υΤS,λ$‘΄ΈX,>pΰe!τD|βr΅/°!’MXZZ l2vFΆ‚rΡx0έ€rž 6V«…’––ΆrεJ™L¦V«Fγ‡~ΘησE"‘Ιd²Z­3fΜX³fΑ`hii]Ρ’%K’!„!b±KEl†8 „B8N?bHπ…Ϋ%# £™Λ …§δ‚‚©TJ“qΜDAβv€Pfppm6i$@ 'Mš0!$66 CGZœιιιˆΙd2–>ΕΕΕύβq γιV0 γv»•JεM7έ …Π?&ZL0¨’9s¦Ρh4›Ν]]]‰$11†HGGκ0nΉε–άά\θΧ1'„c™PTTΤΨ؈`‡ΓA’_*•ϋύ~X₯8fIII­­­θcνΩI100  ‡‡‡/]ΊΤΠΠΰt:*(ΞΨh4²§ΐ׏9ωƒEHD4—ΛυϋύΘ͘„ef“Ι„<8‰°Σ’)pτΐ†A ψο(~Š‘cνΪ΅S§NέΉs'Hυ4N§ΛΙΙAΪς?>>ήl6[,­V›‘‘VF:ŽΓατττδζζŽ9σ­·ή 8{uuucccLL X!y|“Ι΄kΧ¦¦&±X<.ž3g\VμM—ΑΕςϋύo½υV]]ζΗΆ£@0ΪP*•0£»ΊΊͺͺͺRSSα«#¬Σι ]C‘\.?sζ 4*O£Ν‰Κ†I“&UTTœ>}ΊͺͺκΘ‘#hƒΠ—Ρhά»woWWΧo~σ΅Z™™ωΒ /„B‘_|‘έKΔΩƒ1gƒα!N βF‹ΕƒdάSrr2`Έ˜ Γx<«‘ fR P \ψΩͺFώi8Δ₯ρ/­…‘Ι)ΨcF °sƒχ1\!<6Α°bccA·ΑξkbˆD"œoWΒσζρx J’ΨHj|€=Ό„^O@™€+ ΐ13ΠQˆ,N›6 ύ|pΌXζ”Ιd€h΅ZδΐžͺΥjεr9@h4 Awξp8`€F“‘J₯xDˆδζ ‰BκK°» PF$±d·ρHYͺT*X#ΣXπȁΐXaB–ϊ‰άά\΅ZR|¬ F jŠρ©T𙙉 κζf͚؟ΤΟƒωŽdίοzitšςζrΉrΉ•DˆXΗ‹-’θBΌœvœ%§ΣIqŠ`X»vm΄ A΅O"ρ•JT>ƒ £ίοokkΓ²QmΞΙ“'#²ϋXx„@΄ &hΔhAex,.—Λαp477O›6---mŊΧ_=R*•jϊτι\.Ύμ’E‹Š‹‹ΫΫΫ§NΪΧΧΝ°γσωΤΉDDŠBuCfNκΧ…BΓ%ΪƒΣΑ°ΟPΫς'&ΒώŽτ†¨Ÿf2N™2…κάΑώώ~D@Α*βρxpΊΊΊ’’’°ΫΨ·… F[dNN`Ž#_4—ΛEY=υαyγG>Ÿ/|-66Φh4βbnίΎ½ͺͺ Qάtš†fF‡ΓΉύφΫI€οv΄² Θ%|ζΤ©S3fΜΘΞΞ†²>Ÿ―ΣιΚΛΛ‹ŠŠŠŠŠ\ΉR]]]SS-©ΡhB‘F£ΙΜΜτϋύhβGL€Ή΄ΎL&λξξ.** …θc3}ϊτhϋ š:@½^oss3N,zN‡#‘HL&“ΗγάŽfΣBPΓ™0Œ0ΈΣp!Q‘υ8@ž)…1§MHH³ZΖwΥ α Λ‰‚Jqώ‘qƜxΗY³fI₯ͺͺ*Δ- `K]]]'Nœθοο—ΛεαpΈ··7 Y,–3gΞp8όE“φj΅zhh’?όπΓ‘C‡Ππ ±j‡sρβΕ½{χVUU…Γa$»Ζ-’C@Ή|‡zΕPχ7άpCQQQoo/4μππ0;°166φΜ™3§N‚zΒ&ϋ|ΎššάχΊΊ:·Ϋ}ξά9¨QΌ©1'„1‡―\ΉrεΚ4΄4›Ν/Ύψ’Νf+))ό ό,f³ωύχίonn~ε•Wάn7Š££-1Z<ιH―’‰tβλΨΨX™L†ΔΕΈp#ΔwΔb±D"ρx<@kσΟ‚œ ² αpx”mΨα8RߚžD½¨υΚ‰ †ahE̘C­VƒΜj΅42.8ς^a/ό~?{D*'G–2ΔσΫΫΫ©αΘ2!`Ή°΅m6[GGGBBZA–Ξαp@Ccy—,s’φΦ7u|>ΘJ¨^—Λ7ŽΗγ)•Κyσ恇ΓαDΣΗ0Ž‘Δ„ΩMIα«Θ!Ηf)¬°Eψ|>ŒΆΔΔDP³Rϋ6)kR©Tΰ0ƒΒrη‹ŠŠG$ ‡žfω±~ΐ@‹@Ζ2'ς L„ΔΛ@ &=™Θ ΘJ ‡ΓHτDΫόŒ ©TЍ^ΣΥ9 Š {ΔρwάmZ­ŽV«mhhΐy,Ξ§Σι„Χλ[.E4kž₯ίίοrΉβγγΑN2<< 2hHLBWB47ZδΏ¬¬lΦ¬Y(²ιιιΑ ρx<—/_ΦιtS§NEΠE*•ώπΓ―½φͺ,Λ… ‚Α`4° Ÿ Š[o"}λ€QΌ/–λ‰ ‡ζ€»B½MϊκhγFͺ|¨j‰–“ΚΛΛΓ%I{{;°ΑΑAœXΙiii6›­··$ψ8·,(™€€$άnΌSΑ)•J@i,υ 0Ν£M8mΪ4ŠCέ΅kWee%ξ;βI4 wΆ~―2²qYT7k΅ΪŽŽŽΨΨΨββ⬬,τ™™™ B=qβ 999^―7ZΨ>0<=½^ΗO&“!LΥά܌¬ή,0±Xl6›N'H ’νgffζΰΰ 6 μΒ3R 8!D&“\܁,X@˜4r“IƒUζαβ0 ƒ’žžδπα1§EθoxϋX$‚ ¨§†pΖi‡pζρxΡξfee%ϊ?]Έp‘  ΐh4ΆΆΆBήςω|…B:Hi<‚@ ˜7ožF£ΩJ΄κΰŒŒ ^½zκΤ©6›νΗσΜ3<π—Λύ裏„BαυΧ_?00pθΠ‘έ»w›L&Fc΅ZώχΏ§¦¦Ξœ9“εDI₯RΌSΤ …BN„ ŽΪ0ο„B!D{š §Τ!ήή^pΦ’Hct(5“Γ‹UΖϊ3ΓFŽ ‰ΈΘdD‘" Ϊ…"}0qCΨ{a)•JΈ;T±QΉŒη‡ΦΗΨvάeΘwh4—ΛΥ‚7,X`0άn72³8 0ϋΨ‘ΤπδSΣ zΠ@±±±rΉΌ«« €.—‹GΛΛ γf³Ωπμά-ΐC­I"όy(iLOO7 4¨yυΛ‰D"Q(‡Σh‘€‰ΈHο–*98Ί€$`dΓΥ†&„ΔΔΔτφφBΒ"cmNlšL&ƒ ˆ°ΚH―€Œ(;Ε@š’₯c,δ Τ’¨M!„ƒAtJ†Œ3F­IBH΄πŠ+({ #žŒ8φΤΙΙΟΟΗ- ƒ,e0βγγΗργΗQ›Œ­ΐk‰DIIIGΥιtPT:.ڜIIIΠβΘοάgΚρ²M$S@…’)βββΦΦΦ‘‘‘ωσηΏώϊλΓΓΓ ,@wee%Ύhiiikks»έ₯₯₯ύολκκRSS―\ΉchΜi)3™T*EŒ$T…CΈCω!†ΪIΈ(ўG Τ-ΑDΟGΑΆ‘τ§ΡΦ‰„#Γ0ˆ Y,±X ίwhh°»έœ~cc#ΝKPΠ՘#;;S*•<δ&xe#S8™ΤζΜBΩΏΏP(t:`Ζ<#]ZΣϊΣO?a«£ΕA³²²ββ‡ώϋοAMMMuu5‘P¨½½ύτιӈί­Vλp8πNa» ΎQ7NELΚνv³H{ΰžγββ:;;‘A,„ψ9–21ΧΣΣχ—Ϊ…ΠRˆbR‹a§P€’†EΑ£<’Ηγ!‚‚uΖΖΖj4„sΰ*AΤBΔ„ΓαhατU«VΡ›²΄α}9=κΘ%‘HΠ[-Ήr„p8LΉΐΜ‚šAY™žž^WWg6›qηY »@“΅u0 @‹ ό Β€Žͺ ƒϋχοGΉ_ffζτιΣΫΫΫ?όπC°δœ:u*77wφμΩ:.;;Ϋ`0455εεεI$’ββ⚚`pΈ\.^!@ ΏΏ¨;Ψ―(ŽFθŽ&;{Ž0^œ΄Q¨;깍ΤFK|€μ΄;p)ρNΑώˆΚ˜GMMM”KˆΕώV©Tΐΰγ b*θΒm8p③ǜ­¬¬ ·ο 1 $Κ‡††,œ {‹ί Κ¨=9<O{{;,_~ωe^^ήδΙ“γββϊϊϊbbbΠΦbƌΐƒU‘ΊΊΊ§§'šΣλ'>>>77W£Ρ@ž›Νf” ΐΚDΙ”T*U©TgαΒ…YYYΠ|,0 $RβββP‰„­ Η«―ΞΛΛkhhœš%δՈΐvUU.ΡΘ:kXNψ0’Pˆ:Γ‹Τ‡ΟηύυΧ&“ τψX!bWxγ¨λκκκͺ†hŠΡ.+++))‘Ιdεεεv»G&n=}Ώ @QΪΩ³gQwίάάάΣΣsυ)Υλυ Ο@±ΆΡhDΪίύξw …"==}γƍΧ_}bb’ΕbAςΥΰ­«Œ|͍΄ΑΕ±€Ψ\+ °,Κεr F)Ά±££#77W§Σ.ΝλυΪνφ˜˜˜={φ€Δ1šΗ%•Jkkk[[[ω|~ff&J£RSSg͚UVV–——ΧάάΌpαΒ©S§Ύϊ꫟}φ*ϊ Φ]k0𛛣-5)) f"0 pΣ‘‘Q‚œAο`π…E›P©TβΝ&%%]Ίt ΑN¨τyAΓαp»έπ9I$(8ςρ¦™μv;΅~8ΆΖ‘ƒ3’E&•V§΅΅5κ[Š€MαΎPΐ 59‘b1:Πξ)))μu P„ ΓΤΦΦ"² ΣX,S-\Θήή^0Ϋ±όI€›Š>Ÿ‡σp8ŒŠk•JcξΨ£y±ΘIq8@@ H! ψ B1B+ȊF;ϊ111Tύ΄··£^QIΘ„Κπψ¨*ˆ‹‹λννeIΕΒsE€B8΅‘°΄€aB‚ Φ;HNNϊ&‘HΞoo v<β£q‘ή °–X˜YΔb16 P?ΜαŽ0Œr,6=MGΓΗdggƒ*–2kΦ,D+1-7R£MM‡P(d6›±E|>–[nsN‘PˆΣRWWW\\ γ€Ψ@dOΊ‰Duuu¨ω`‡šαxγP– ςΒΙ‡IŠOβ›ΰ.sΞΔΔDΰSRR`h΅Z΄LEU8ΰήj΅]€Η 7ά Υjy<ήάΉs‹ŠŠάnχ˜l΄(ΐP(€V«΅ZνΒ… ±μβββψψxF#•Jaš£Ϊ”_ˆ»@υ τ’°€‘Έ„½³/šAΣ0ΔP].—@ ¦0ΕΕΕ ™™™ρρρ}}}b±…Μ,― ΧηB4T4?‹ΗAΉ:œ“1g+--…K 9332žϊtÈΤιt΄juϋφν$bυŽYȎΑ`(**B#A³Ω¬R©²³³ƒΑ`|||qq1—Λ=zτ¨Z­>yςdzzϊ7ޘ’’Ν’‰‰±Ϋν™™™ΨΈqγ•+WŽ9RSSΏξVoo/8o?ϋμ3·Ϋ=ώό.N€Ϋ^΄ύδrΉn·εV|>Μ±±±}}}ΙΙΙ Γ( ŸΟGyU’Ν¦V«AFΩ±c”"¬ά5Αp„ϊ5 ‘YΘ›oΎ εt:Ηt½`^λt:˜8p8qVG:Š~Ώi†a’ ωŽŽŽŽŽŽŒŒŒγǏυΥW˜‡ζ^Α?…J‘‘!—ΛAŠvα§OŸFBφjυΝησ)†p₯€€L:5//O£Ρτττ 5©ΰfg~ ”!šŠ rαΊ½ΈζΠϋΡς›'>>žΊpθbμt:C‘@ 0›ΝνννΰόGV‘€€δψργ0’ιβΉsηŠD’eΛ–₯§§τΡGMMMΏϋέοΠoύ³Ο>~κ©§z{{ψα΅Z}ί}χ=ϋμ³/^ΜΟΟoiiiooga½Φ{εt:αT#,3NΈ`]ΐ΄ˆ6‘N§ƒ$„ AB&$$ „]…6ONNΆΩlΠΧ‡c$KΪΟ »φφvn€¬QŠ1/ ¬Š‘–ΩιΣ§£-½Β(\΄‘mdzό7J‹Ηΰ0]Qo Ә%˜†…Γ?οGtυ@†Bΰ1Bΰ#ΰt:Ρα4£‘‹F"ͺ©© ` "a‡!ΨFAΠ΄΄‘ΨvΡή=ς;x1 p“’HyZ0Š€hlΛa’©j\'ΪΖͺ˜Q―€SΫΣΣγp8hMΐ˜,č†ΚΜC};zωqo9Βzl)7ΰ‘ΦΧΧΣ/'RΓ‰%βy>ŒΪTl]=αΚ•+‘UΔKœ5kΦHiHν9±*š›› κu‚Α K« ”ΆTVV–””ΐ w ρ D.υ>~ό8J½’ΝF"η“2ψγ‰πFλ§ο j@ 0¦£Χλ'OžμrΉ€RιτιΣ?όσššA%’“«ΥZRR’Ρh²³³333­VλωσηcccΗLFγ²γ‚`%6›Νιt>|Ψλυ:ΞκκjͺA].W8†SΞ©%W8]ˆhΑ›’Α~―ΧΫΫΫ ΩmZ„g°ΪΦΦΦββb‡ΣΨΨΌ”H$2&“ SRRl6›Ηγΰf9φˆ;ΒΑF8hΪξ^ώ4ΔB΄ΠoFFE;vμ „h΅Z<8κhω3‡ΓA™1u5^δ,7ΒΩm‘pςpDh_a&R6Aw‡jPj~±σ γc(k€ΫŠ’0Τ―ΡτβXL„׍eB΄‹·X,===‰$++K $%%'''£™Ρh΄Z­(ύΓ ‰f؁ο4C£{&n,<œ`Ό ©TΪΪΪκrΉ(L!š¬‡E u…ΐ ŒζP(‹ξήππ0ΊC|°Ψ  ‰DΈή¨½€;‹w„= !zΨ ,APΰl(Λ ύwhhˆ‹γVP$ψ“X7@™ΠΠ7C¦PŒ&‚€$rχΖLΠ|χέwƒαΝ7ߏXρBc5TΐβSRRΏώϊx`φμΩ*•*ΜP8Νωωω`ƒC? (u\υ@ `2™&OžάΥΥ‚e– EΝΣ2κ‘ΡnΨ(‘σ ©—$Q,>Ÿ?{φl΄#ΛΛΛλοο_Έpα΄iΣΒαπwήΙ0 Κkjj<ΟΕ‹Νfσž={ή|σMtέαρxuuuch …B―ΧKK:`ΦA‘d4±l&.‚εΎ+ ” Y­Vΰ“B?―Ύ"hΠ‘P‘N§λκκB½g΄Ω’’’pe¨ΓC“Ίs<‘8D•‰ψπ˜o \’ Γ΄΅΅Œ#KMFψœ‰€©© ΧvL3 ^―χςεΛ‰$;;Ό€H•@ΑqH‘]G§ΣY,–οΏήλυώπΓ‹εκΊuά8hm?ͺk°~ndΰ›ο,ΚАΤβiRŽ Μ N.ΘηhΨ΄S’ω­V{πΰA†aκλλAnn.ς`υυυ~Ώl¦ˆFƒ)=zτ‹/Ύ€FΣh4ǎϋχΏ=mΪ΄λ―ΏΎ««+[­V‘PXQQQ[[{θΠ‘U«V‰Εↆ†δδ䁁hώ ‰‰ ¬N"²α*xΪPpΠΤ~ΏŸ=»†%v»}``@£ΡΗBO jΓΈΟΚΚΊ|ω2P"#m†ŸYανŠbYαH©,}ρˆ‘ Jm…―‘AG°2π°I„ZŠPHμμφ(t38<6œrZ䈻%Œ0¨±Lˆ|‡ΓILLδρxh‰αt:{{{a’ΓŽAΣ·ααa‡ΓͺΙh‘jJΰ άn7D9•³F£Ρn·3sΌ'Ό6„’]'\!¨ΰ-pbυ@. §‡iŸ¬R©ˏ€9χφφg aM£itύ‰D°tY¦Υj΅}}}θšΏ!4¦§ †4%TΎΥjeᦓ eΜM €‘pΐψψψΞΞN·Ϋ- @4Τn·oήΌ9))‰a˜Ϋn» A~f8DΚθπN;φϊλ―ΧΥΥ±ϋ`0Ÿ•Λε"_‡N,‹SPP ΡhŸe7ΎρίΔξΈΨ2ΜI†Βς‹–δ‚γ~κΤ©½οŽkςjϋΏ“Εa†½QPQAPΕ‰Šu?ZΕY­ΪΦZΫZ΅>ΦZ[­ΦΦj΅ξ­uΥ=Πb·  ‚²7„fΩΏ?ΎΏœO’hŸΥη}_―?ό`Έ9ΉοsŸsk|―οΕγρ°Β5͐!Cάέέkjj‘’εrΉΞΞΞ}ϋφMMM-,,΄΄΄ό%%%…2ΑΘΓγρω|>XίΘ©FK‘˜πRHή™_Sώ“ƒΝfηεε‘φq΄?G“Γ§@N”ι¦ΰX–HU8P*•ΊΉΉ‘B‚cΜΗ:GWυXZZΊΊΊ"6lκV ή€N§£Ύ 7δΚ‘NΒ@st•ŽZάθhδΰΏrε ~¨©©Ad PW<%"F}ϋφΕ•PwFM1K]gzΉ\>i€ͺͺ*Έ²¨₯\D >>^&“‰D"///SϋρΧΪΪΪϋχο_Ύ|ΩΤδΜ?ψηΐ§of>λλλAρΝεrI§££œή€ΈήΝΝ @73‘_xΪL&³’’βΦ­[ψfΨOΰ»βφθ:άQYYEQννν(Gν<,¦Z&“yyy΄ͺΥυ“λ:ί5U^^^4E3Θ°Γ€Ϋ΄iΣΓ‡ …‹‹Kuu5Κƒš―――GYμΗb±X£C±ŒμοοσΠ7Ž€–DpΘˆ‰@KΫΪښ!­€tΞ‡Γ'9fK—$χΖ₯ΡhMMM¦šβ 5ϊŠ’Εbρ­[·X,Όt[innF‚•Γα€3κΘ¨oμββ£Gooοͺͺͺόόό]»Nž<™N§ggg—””8;;;99uοή½kΧρρρλΧ―Spp°――/¨ΚL=;ς°|>4uΨέ¨ή… T’ΏpnΊΦΙF–‡Γ),,τχχΗι2j,l€Ξ0¦\....FŒC_/©Πκ„|nT‘‘TΊ)Υ A$ŒaJHB– ΙΈ3‚Ύ4oΨΖcŽπf999₯¦¦–——ƒε– ήW6Fb0‰„gˆD"‘H„fb‰ΔΗΗ§wοή666PŽ€€˜ΊCΒ‡™——‡0‘<΅xΰ€¦ΣιP¨ikk³³³3…AΩ3“Ι₯œEkkkβ1ΰΑ`‚ξ+΅΅΅0|M=;jfΡVΌ©© ύΰ)Ov#όcOOΟάά\₯R ΊfScΒVU2pΗΚΚ !<’ΕΚd2δVΜKqά"‰VRR‚5€ΥŸ†,Au j™£«”φΗ"!S¦?Ιγ#°‡k&ͺ ?΅ΉΉY("pˆ,€T*mkkC€|χ§c;ΰ>M=;QP‹@j’.”|O†,ζάθяΕR*•ΚεςU«V544€₯₯υθΡ£΄΄΄€€D"‘ΐpύΑΘ‘#'Ož, >μγγ3vμΨΡ£G]’,«ΎΎ§vCΧΥ  ,μcπ]&ζ8δaοši›‰³¦ΞΛΛ °΅kΧ–•• >œ£λyXYY)‰κκκ@UPP€ ―Ρμvhh(@„]ΊtΙΜΜ|ώό9ƒΑθΣ§Ο Aƒϊφν‹A~~ώΎ}ϋlllΣΣχνΫΈdkkλ7ξέ»gκVΡ±“±‘F£‘l{ ήr¦$ΌgT€ΛB-Όα!£D.$ΦδrΉD"ιΦ­˜Τ`ν‘qώX&Ή<ƒ=ΩωΣκ1mιτΐΐ@S-Υk₯ιJ„ |Q7€CZ£cΑΠ‡šΎσσσƒ6G¨γΛεr‘PH œπ †§§§J₯2SΫBQ`'“Ι Fο©ό Ρheeeb±[Χθ€–:Φ_μ @`mmS(xΈH4455!hD€S¦ξΨ,[[[±X\UUεξξE€Hb‚ΐn¨«««ΆΤkΉcTΦςυυΝΟΟ·°°°³³C>”¦+Ζ°³³«­­e±Xώώώ½zυΊΎcρΩ³gέ»wg³ΩhKθΘλκκ²–4¦H­VΓv1ƒ€”ΠΑΑ‘¨¨χŒ“ρEς€"—Λέέέ«ͺͺœ G†¦†™Μ)±XL½! ήb±Θ9Δω €†Ζεrq+•J¨'3>κ‘kξR*•Π›˜Fbm`G •΅R©4ΊμGŒτγ?*•ΚΘΘH6›™‘‘tTqq1‡Γ©――χττ”H$ϟ?ΰdρρρ©F2Ε¨)οΌ½½έΞΞ‡ϊθΩ€ςI€Ύ---«ͺͺpμAšzvΌVƒρόωst“@&§’ώ cEcc#1ςŒŽ‰uΒγρ7ςππhkkƒ5 ₯$—ΛΡ^ )±X\XXhgg‡§©[…_AΜ8ΌnOOO$+pbΈ ©π0Ί8}||κκκˆn\΅j₯ƒR:ZšŽβ?00ŒžE½χή{ωωω½zυ2Ε.[__Œ09ŠUY,Vuuuff&ά<„¦ge³Ω7nά0΅ίΡB­ΎΎήΙΙ‰Δq Šό…5h!PVV6xπ`3A>:.•Jγόˆ°Ÿ ²ˆ萒’FσJ<Ά ’Pψ™¦λIΥR]]νξŽΜΖΖΖ/^p8KKK£ζ αεεεΞΞΞΡΓ ΄±±!ΥΦS("ΏFϋ# <‘ξέ»cƒ …Bτ$T(°cZ[[­¬¬ͺ««±ρΑρFQ”MYYŸΟΏpα Ϊ111ΙΙΙ#χξέu<δδΥκΗ(]¬ˆ%Fpi4{{ϋή½{ΏxρΒΤ¬"Ύ†¦λKΩήήNΘ)ι: 4v1Ž~σΠ=Φ½{χΚΚJΰκD" ½>Œˆˆ°ΆΆ««8pΰζΝ›SRR¦M›Ζ0Ρ κργΗ³fΝjjjzωςε˜1cΔbqYY™V«EγΪgϞωϋϋ‡……ύςΛ/fϊτιΏόςKsssvvφνΫ·Ν ƒ―Δ1c­VΫΡΡŸ @|­a:¬ 3©X:Ž¨€L&sssknnφα `ˆαθ’p½[τΓ₯θ θ4MGKΧ£#&ζ—VWT‘Υˆ΄΅΅uνΪΥ”a'‰BP |KΗ―΅&£ιΘθql˜‰άP΅yσfr8 q0ΓΙ €V«Αo΄`ΑΰvΝ ˆ³‡ΕbuώήΞV‚m ι2eΨA_‚λABQzggg‘PΣ‡Α`ΐ6G § ΡaΡ ΥΎ³Ώ|ωSJ τWXXXTWWƒ¦ΨLD‘‰D‚π/ Z(ŒGθ…y$"‘¨΄΄΄kΧήήήΧ]3Γ,PYY ©7Ίΰ_«ΥΒ)A!Ξl ©ŠΎYΌCl…v-τΒ$j΅Z"‘tι₯²²R£#U25,₯;uΰFΓΦΔηϊ-/ΚtβŒ €G*–ΊT*Eo%Š’―B΅—ΛνΪ΅+ϊ£›σΐ&Lhoo/,,dιqœ"gLžΕΪΪzΛ–-Ÿ~ϊ©•••Ρωωω2™L,ϋϋϋ£3ςΟ? ΄Scc#ŽΟ΄ΆΆ’…VoSSSLLŒT*ΝΜΜμή½{UUUη‘αMΡιt'''θ Dβ±ζ cκΘJ°ΪΫΪΪp™©g'3κ"JG}‚™$υ ”ŽΔX«Υœ•Ιd¦–(iu­θ:n9dK‘θplγ@E2έL3(΅Ž²ϋ~/2kmmmΰV%Ι\,‡‡"μ}ψοΎ}ϋ sP'4Ί^…θΌ˜9JόvξάI§Σ»vνΪyd ///΅πω|θ%Β;ˆ :::π[€;›šš€6ϊΤxδΜgZτŸ  @«Υ]EDœΑ?L§ΣΕFnmmυχχ—J₯ΐSβuttΨΩΩ™iψfgg‡½,‘H€ρ"%ΠΰΡlnnvrr*,,$ˆ”gϞυνΫW«Υ}:†NXXΨΊ V­Ž) λˆ£Aƒ‘8Χ(˜›ΊΉΉΩΫΫ[©TνŠΚ‘Pˆ-'œ,¬·αΓ‡_ΉrE(&''Λd²Œ,‹QΜGlYc Λ ‘%N/))1―<‘0‘ F² „†pΰ•™OΎ#μνεε•••emm]]] {(00°ΈΈQj±Xœ––φμΩ³ΨΨX£F§Τήή~σζΝZ­φΡ£G‘‘‘Ÿ~ϊιŽ;`$ΉΈΈΌ|ω2..€€$11ΡΩΩyΒ„ ~~~+V¬°ΆΆΆ··?~ΌX,«HgΡ άάά€Ύΐ@˜oŸΕbUTTΐ$0γΔββρx¨ΛFb %S„BΉ>D%τψoooΔKhΊB3ύι&ΉWJκ`θ8ΓΜlfPΒp88 Σu”ά0π•Ίή—ψ 33ϋ“’(™LF 5’"!_|ލ;’ΦfV©JwΊwΕΙ«,ΓΤ€X7PΔ---ώώώ?FυŸZ­njjzτθόo(}π€?‘Ο d Θβ©Υκ€€€={φ̝;οž€T:ΙΞΞ>~όψ΄iΣ† †τŸ™Ηonn....--F œγ„7†x y<ޝ;wβββ€Σ75 ƒƒC]]ŸΟ·±±aκθΧ΅:NJ‡N tΝέ~C³©1α¨ΥκΒΒΒ`ΰή°„ Ε½ΘιΣ§ΓΓΓ ΅Κ+ψh(&œDυCΫΎΞ  S(„©•F£ωψψ Z<«pΛθtΊ——WJJŠ――/‚(¦Ζ|ωςesss^^^^^Zύ`&q·Ψ50Π¬U©TYYYαααF9& jjjfϞ c&“Ή~ύzƒk¬­­;?οΠ‘Cg2™>μ<2^š•γI…pssλΐ”\.·°°°  %ύfΜeb³‘`I ±ιΊN>mmmιιι”N“œ=nnn4ΝΓΓγωσηEt9KΧ{!x‰ΥΥΥψ"S·Ϊά܌zUά\”ς@ …B€k±’ΫΫΫΙ)k ,½NE]Ίtι₯K¦ΎΧ@ΠΊΉ°ΞΏe00a}}}kkk †‡‡ZK!‘lFff¦V«iΌžE¨‹ζζfΤδτκα ϊ³¬¬L"‘DDDΐt05μΓ‡Oœ81lΨ0­V›——άήήΎV›››=<<ΤjυεΛ—g͚υμΩ337‰ΛΞΞFτΑ`¨Υj++«ΖΖF'''Δ•aegg4ωŠΞΓ’(wwχ’’R卸²~‘ƒΑ¨――GΦFsηΡΚΛΛ½½½,)((€‘†…z,TΕ"oƒp2 >>>999 …"00ΠΩΩ_ύ‘ƒƒƒy<T“\.'Ο‚4ΡΖ@)ΰ π###9bjV E@@“Ι¬­­…£Ρh0p•ΊFjXiΘ}‘7IVV–ΡΡ΄Ί³"τκΥK ΄΅΅a(‘H8΅Aπ~ΓDΧιόόόsηΞ …Bxz;vμ(,,Œ‡ŸιιιyλΦ­––.—;vμXWWΧƒ–••555Αf2“Dœ†ΙdώπΓύϊυ‹ˆˆΠj΅θΧΤ Ψ˜Y,ΦΊu뚚š–.]ŠWoj@dxΨlvuuuxxxUUœLΈZ­,ίp…+»uλ†œη†ˆΞ ™œθ”^ŠJμ8Δf¨nΠDQt ψ₯' Y(PbGb455™o‹»W²ΈUb.ΰ0Heιzld¦ήfŠΤήE’?~Œΰͺ©15P(δσωgΜ?~ύεΛ—ύϊυƒŽ ϊ#999I$’ &$&&~ύυΧf’•eeeˆ%{zz>\­λ2BιvN'Uχ …βθΡ£›6m25ZIIIyyΉΟνΫ·¬F?LLLŒŸ6mZίΎ}vQ”””˜˜:nii™žžŽζ€ŽŽŽ¨φW(~~~•••={φ4•–‚@Yk΅Ϊ/^<}ϊtΨ°ax)πμ‘ςhΊšk ‹μμ슊 JΧcΐθ˜t:ω&tŠ3υΥϊςΛ/Ώ 8US¦a2™π‘q"j΅ZDΌ |@…@ά‹ͺ&£^–Ÿ~ΔQ?#aτ‰0ΩΩΩ }Asw.—‹^οΓ‡—J₯EEE~~~ΉΉΉpŸ>}ΪΦΦVTTτ駟 …Βΐΐ@S›H"‘$$$\Όx1** Ž1έ *ΉOΔcξοΪ΅«™ΖE6lΨ°aEQγƍknnt‰ΤBZYY544Κχ»w7€ιˆ$€RιγǏ)]°Š¨)˜;X¨8€ΩΊ~ύϊW_}…φb‡?@Nh“@&(‚Φ8‘‡όάy΄‘C‡Ύώϋ4­ͺͺjίΎ}B‘°€€ΔRΧΩΆkΧθ«δααA§ΣQ_¬Ρhž>} OlτθΡ'NT©Tιιι;ΣL&ƒΦΦVƒ΅‡Iΐ‡H=ΛεςΪΪZ”˜’O>ωΡ»wο½I|₯‰ W«««ί}χ]oooRd ‘ΐυψΌ'Ei4šΞK–ΊT*%ΡΗΞcŽ3ΖΒΒ’¬¬ΜΙΙ©¨¨(33sΐ€<―   ¬¬¬½½],ϋϊϊ …Β+W€ΞI&“•••‘Λ‹GΞΩΩ,ΚΫ·o73KEΕΕŁ\ƌ!TV·oί^Ώ~ύΦ­[₯R)πl666ΐzͺT*tonnώώϋοοάΉsγΖ $mΙ80μΐ ^SSγηηΪCŽιι ώ‡sώύž={šjΎKQ”H$βp8l6{Ρ’EEEEΓ‡οθθΰrΉΎΎΎH€j΅ΪϊϊzΌϋΛ—/ΏσΞ;γǏ―««3oΨ‘“5*]η"ψΈΘ€`ΙB3š·κ(Š*//G’KΗΌ₯t 6‚»κ,ΝΝΝR©T₯R!d2mΪ΄///4˜‚W„z–ŠŠŠγǏ?~όΨΧΧ€`'[[[ΫΠΠΰκκ £Š©£ύλ,x=2υ,555“'OΞΛΛƒ?‡²;Š’ΠΈΒΠlt ***BdΒԘΧ]7nœL&|κΎ΅΅Ι,rjkknAΞ΅΅ΥΛΛ+;;ΫԘ˜IΌ¦C‡>}ΪΡΡΗ'ͺn±œωσ“½½=¨‰y₯@›R:Ž½diiI"ΔfŠ"‰huEg{φμΩ³gω<“%σ(r,ΰΜΜΜππpθeΔ)±μνμμEΊtιŸ+ι5ŸώyεΚ•<οδΙ“”^a ρ(Θ7τΪΎmΫΆmπΰΑΞΞΞχοί'u…ϊΗΡΒΒ"))ιλ―Ώ½½½½¦¦Αi‡ƒυz%K– 4ˆL—©g§( ξˆψα³jt”"t]+Bννν₯₯₯ΣΤξψωηŸwμΨ‘T*Ν“«λ |*΅Z­B dϞ=ΡΡΡ‰ΔΓΓ#""I „ΊQ`S€ΡhŽ9’T*οάΉΣy([[[•JΕb±.\Έ€O Τ}  α@1Udoo€z[[ΫΉsηΘηFΓ]ϟ?·°°@Ψθh—.]’J₯B‘πΓ™š"ό*''ΗΥΥ΅²²277ΧΤ•ϊRSSŒ>oπύPψŒ ΅₯₯ε+»PR%‘HzΟΜΜΔ'ΐσ TŠΎ+H’η)..FK(„u θ‚ŽŽŽ’’’ΆΆΆΒDρ2ΐL&f±έιΣ§ „κΊΞ£ΩΪΪςω|@žžpΚ5k4έΣ§OSSSA^^^@@@UUΥ¨Q£’’’Z[[mllΔbρηŸ₯–––ΞΦCΏ~ύT*•££cjj*ͺJqxαΔΔώΒ>b0%%%ΐ‚³X¬°°03³š™™‰ωLMM>}zcc#f2;;»––­ω|ώ{ο½Χό§/¨Σ/‚Ρ·«  ˆY’ΥUŒUTT`³MΝegΖzΪ• IDATgGEEΩΪΪΦΧΧ3™Μ5kΦ<~όψΙ“'θαΩΡΡαεε…Hš―\Ώ~½ώΉΉΉ£Fjhh 5ΕΤ‹*r4˜y(HYYμ]3 η*#֞mΐ±pαΒ“'O,u///x°ϊΤ »©S§|ύϊυππpΠβγW0Dπ•ˆ^(•Κ«W―ΎύφΫ#H~~~LLŒJ₯JLL”H$iiiζήΕΕeΦ¬YΎΎΎζ±”ήΑ‚±Xμμμ E”¬’@­k0eή°μτƒ7u̐Azΐ‘2v;πUψδΩ³gfEB[I₯RSY£Ρ Z jΒΜqˆο•H$<ΟΫΫΫΜ†ž««λ±cΗ’““θ&ρω’’’ššD•‘ί­¬¬Πκnj±˜ ζ//―βββάά\XH°ΧœœHEwwχηϟ›WEnƒ’¨ςςrŠ’ΪΪΪΜ$q hΤ-cζ2²<μμμ*++›ššBCC/_Ύ,‘HfϞ]^^ΡhΜx/‚=R]]έωW@RvώMfΖΤ_½ ιεΙEUUU!Ӂc‰<”©΄"Δ$Ήij›cB‘Pπωόξέ»›ΊOψ555EHDΎϋξ;ς3(¬ΡΈΙΤ³ggg£Mj{{ϋζΝ›/\ΈΠΤΤD£ΡΰΌb§8½ –‡R©FÊΣΧΧwΛ–-E!o &§ιˆ< D€ΆΆ WΜΨ"§OŸF.R ΤΧΧgee±t½(d2`4 ΎuHHˆ©žžEΩΫΫ#pBύQƒu~Gϊ 4,kĈG–J₯`y£Αί2tΐ‰Vwss«©©αrΉ¦Œ§ŽŽŽL™2εϊυλΨ’fτ†MLLŒŽŽf±XFM₯Ώ&‘HΐΉ- j ( *=Νyρ⅝X,F)ΐ½{χzχξM²ΖΕΕ ‘—/_Β:Α‰ˆ›½½=‰€&L±ΞJ΄„&Βϊ0τ·ί~ΫBΗl »vνΚΚΚrttΌ{χ.EQΥΥΥQQQ0gQxηθθθμμ ίΛΛ )c²¨ζΝ›Χ»wo.—Ϋ9qΏqγΖcǎ988τθΡγ³Ο>;v,TŒ $aΙ‰μΩ³5kΦ$''···›ι‹MιBΕj΅ϊ“O>ΉώΑƒΛΛΛΕbqII J ½ΌΌ.ŠΟΘΘ tεPFΝ†R©TϊδΙv7οHγ·b±6IΎΎΎEEE666ΡΡΡΩΩΩ6l°²²jnnΎzυ*πβώώώ>¬ͺͺςσσσππΘΘΘ@N#--­ΞΜκJLLœ>}zJJ 1lHF›\CΠk999₯₯₯‘‘‘Π9F%88Ψ’ΗγΑώ10vμΨ‘1ΡN€k_ύΑ°#Υ^Γ‡ …={φΤj΅ŽŽŽvvvεεεΩΩΩX¨ΔΖΕζ+'NœH§ΣAίΘ_&|>ΰΑƒΙΙΙJ₯rνΪ΅+W$ΰƒΧΑ±½‘7ςFˆX[[ϟ?τιΣχξέϋξ»ο@tςW9H$cΖ@ &j˜Ψν½‘7ςΏ[Lς©Ό‘7ςo•ξέ»oίΎ]‘P‚’’"τΟEjϋ•Ε+oδόίΊMͺJ₯š?~xxΈ――o`` T*mii)//OHH(,,ΔΕ―Lξ›ˆς)S¦ΔΕΕΉΊΊz{{Λd2.—λδδΔεrϜ9h?'― ƒώK„ά€ω―ΜΝ½ΚΨ«DεVΧwŠ’¨„„„_ύυΧwάxkkλyσζ]Ώ~έ<Ϊή”€‡ώ‡7n΄±±™?Ύώ‡o »7ςŸpϋ…‡‡_Ίt‰Α`„‡‡=z477744466†έ­ώFήȟB EQ”ΏΏΔ‰ϊι§U«VέΉsG4ύo°“χμΩsηΞt^a³Ω\.7%%dγEνή½;44433Σ CΚ^=n₯ΎύϋχGΕθΟ}ώ·‰ώͺ£Ρhί~ϋνύϋχϝ;‡ ,ˆ θtϊ;οΌ•––VRR‚bώ«wξάd¦Υψ_%ΞΞΞW―^=vμΨθΡ£•J₯΅΅5 »Χ1jIπ›Οη·΄΄΅φρΗ‡‡‡§₯₯ΩΫΫ/Y²dσζΝ`¨‘(κ ¬αό{*ΑΑaζΜ™?‰Dό1‡ΓA₯R·nέAjjjCCClllpp0(΅ώŽ₯q’OV9pΰ€΅΅uvv6ΚΠώͺ{#Z!»cεΚ•Χ][Άl™y¦±Ό`±‘l`η/---((ΠΖ6ΜΓΓγΦ­[Uϋ72y‡Υ«W{xx899]»vνΏκ>ΫΔ€/)""bΒ„ ³fΝ‰DχοίΗ{Ÿ>žΛε–••={φ €%%%uuu―ωΰ˜%Η +V¬ψβ‹/ϊφνΫΨΨxτθΡ/Ώόςψργχξέ“Λε·nέϊ͜ώΟϊFވNΕƒueΑ‚EέΊukΑ‚ιιιΰ]ttt¬¨¨ΨΉsηϊυλ»tι2{φ윜œΧ©λ|#’―&x<ή‰'όλ―ΏRfyΕήΘ8A»‘’φpγƍϊϋ…ΓαΜ›7―ΊΊϊτιΣmxΙ(ι *@κλλέέݝœœL‚ώ„τ.ι72έ(₯(J"‘444455%$$μΨ±ΓLΧΤ7’/Z­φλ―ΏζrΉsη΍ŽŽΎ|ωr}}ύΕ‹»vνΚb±Πκζ_¦1cΖψργΑέ»w-Z”‘‘a΄άψί*€WρŸ§OŸ-‰ §M›vοή=;οέ»—ΟηΟ›7oΩ²e―7θΒΛΛkΛ–-AAA …βΪ΅k6l0 γ ΡhYYYOžθΧ―_{{ϋ’E‹ΪΪΪ–,YRTT€T*===Ǎ2—7b^τ9„)=λΝΟΟοςεΛ‘‘‘¦ˆάήΘ\-ω§Ÿ~ΊiΣ¦ŒŒ ‡ηϟΣιt™Lζμμlkk‹Oˆ^AU°vΙ’% 9ϊ" =Τέ»we2ι•ήάά¬Οnψί#?ώψγβΕ‹ A‹­V«Ρdφϊ­­mHHHvvvgKƒΝϋΏ@:³ΈQ³vνZ0οΫ·οβΕ‹”.9ϋΟ<ϋˆ#Ύώ{ggη?όπθΡ£Ož<‹Εqqqδ#όY!VŸΟŸ4iπαΓιtzAAΑΦ­[ W<δΠ‘C+W|ηwδrω·ί~ϋΚ‘±Ω===ηΝ»}ϋvύΡπ₯„₯yπΰΑί|σMdd$υ&kT:s Χ€\z#E£Ρ$%%έΏƍηΝ+((ΰσω………θsζΜ—ΠΠPt4Y±bEyyωΟ،θ/NPIλΓ5N:%–-[vωςer=!Cϊ nχόλ„9\ΉrδΘOOΟ!C†>Ÿ_\\\UUuπΰΑ™3gŸοααΑησυ­oΏύvλΦ­ρρρΓ‡ίΌyσ’%Kjjjœœœjkk²Ω™—=z„……υνΫ·[·nφφφ …‚4%Λj!&&fαΒ…7nά ŸΣtς§†’τΨΧP-JKK?~αζζγοοŸ’’‚ΥŸϊ ύλ6lΨΰββςύχίoΫΆ-((hδΘ‘ΕΕΕfΘ&‚’^½z­Z΅Κήή>--mεΚ•Ώώ»L&#Z™ύή½{'''·΅΅EFFͺTͺWyhυ¦¦¦δδd™LF49₯ΧO S]\\όή{οΉΊΊ&''JΕ2Œ°°°±cΗΖ`σ’―ίzλ­ββbtzmmm5ˆ”tΎώt’‘J₯W\5j”OSSΣΙ“'ίzλ-ψρS§NνΥ«WFFΖϊυλΝS Ώ²5~H¦°°-ϋτ{WΓψ_°DυBPεξξnggά™ ρ_(#GŽμΩ³gxxxuu΅ƒƒ&ΦΚΚ Ϊ7lΨ`¦§œΐέB'€ΛΉ\npp0:Žδεε½|ωΕ½Α­Rzoπ5tΕ ΏBrύλΏzάdPPIθ"}ό788xδΘ‘ΎΎΎxπΰ™‘τŠό€Φ±ΞΞΞ±±±‡ήΏ‰' ERR¨Q£ώ,FŽ_»v­J₯Z½z58‡£££αΙ|τΡG¦zΡώ[₯  ΰΰΑƒ¦Ϊkα¬ͺͺ HOO|ψ΄ΖΪۘ6λΩ³ηΐΡK­²²²££ΓΟΟO&“1ΒR$͟?•†Α=“ρ=<<|}}i4ΪΙ“' Εψργω|ΎH$R©T\.Χ@_½Rϊυλ·uλΦβββργǍѣGττςςzΝqτ5y­ˆγώYA§Σ›››aΥιKšlα‡ŒŒŒΘΘHFγξξ.•J pνΪ΅Wn^u£bŊhρ5xπ`㆝Ύ.θΌ>΄z-‘Φ―_ίΡΡ±fΝΨζ¦Ύ^ί 3fŒT*‰D(ύ՟G??ΏΈΈ8‡œœ3OkpŸρρρl6»££ƒv“&MЉ‰‘ΙdΦΦΦhsλΦ-3―M?žŒ[ΝΙΙ±··wss+//ŽŽ>vμt+N·±±±²²βp8ωωω―\ t:jσ†>’t:}ψπα#FŒxψπ‘J₯zςδ ξΣL#Μrδˆω§†tώ^i»tιbii TDlllnnŸŸΊ_w~ό« FGGπΑ,«  -†OŸ>νββRYY™–––››K£Ρξέ»geeE zσ― SΑαpFΝ`0ςσσ§L™ςύχίλŸ|>ίήήΎK—.₯₯₯999Fνr1Η#Z›Νf7N©TFEEyxx444,[Ά ;{φμ!C†€¦¦>~όψργΗζυ2¦ΒΣΣΣΡΡΡέέύσΟ?ΟΞΞ;wξ₯K[[[ηΝ›—™™I“““›››‡‡Η“'OΜtΧ5J’dJ\\\ΆmΫφωηŸλwΐμ,ˆ¨Υκ°°0 ‹œœœΙ“'?~άΐ$²ΆΆφςςςφφώΫίώΆrεJƒ›Τ7ƒh4ΗγrΉξξξωωω,λκΥ«υυυ={φΌ{χV«}ρβΕυλΧ­­­ϋφν +ωO™5Π*Π•γǏg±XQQQξξξ4ΝΧΧΧΗΗ§ΞΫΫΫΕΕeνΪ΅fΖ±΄΄D{ε>ψ ¦¦&..N$;vΜΰ2²ž ΰ8‚{ϋζ›o΄Zmvv6₯[΄θCΟ_R<oχφφΖi>]Δ]Τj΅(ώ1bDyyΉZ­^°`Α;w EPPPgÏ€§+W,,,lmmU©Tί}χ݊+°}:oΐW²…‘…½>Ώ·nέrppΠ‡ωΪΪΪR…–¬EEFFώ)Γ.??ίέέgΏ@  ΣιMMMΕΕΕB‘pΜ9?ύτ“©AH6£}ωε— …"//oΠ AΏώϊλΑƒsrrΊtι2sζL,ƒί½¬¬μϚςAAA/^,)) …4ΝΓΓƒΛεΦΥΥεζζΖΖΖΦΦΦΒ}₯ΙH.Πj΅Π\.W(Ί»»£±$.λθθΠh4»vνR(‹-z›Δ* Ϊ΅kWZZ‚τdi…„„πω|•JΥf¦„Β IΧδΙ“ϋτισΙ'Ÿΰ·mKKKR—jTτ[€5 Ι'ο½χ^pp0JΕ1Θfgασωƒ BΣN₯RihΨΔ`)­-΅z\JGŽ5jTQQњ5k°τΎu2ϋvvv‹-BEδ₯K;::–/_ί\yαΒ…AAAΝΝΝǎΠΚ¨Πω>Ωl6›ΝΖ‹ moo6l˜——Ύ—ΟηsΉ\•JΥ9$`p0Ό• .τθΡγή½{ύϊυ+**rwwŸ={6#h46›Ν`0Z[[Ή\L&λόΰ€G2₯χΚY,ΦΑƒ}}}ω|~]]H$BΨ)$$D*•zzzΆ··οΫ·ΟΤr7M_μμμφοߟžžΎvνZ̝NχσσσςςBΓ¨YƒX.&ΚΛΛ«K—.ΎΎΎ+V¬ψν·ίοάΉ#‘H6nάψšΫο•‚Ε F-—Λg͚…Ούύύ—ΛΝΝΝ5萭_sΤ§OŸ™3gr8œ+WτιΣηΪ΅k@Ρh΄ΉsηN:5888%%εΣO?•Ιdχξέc³ΩZ­}3.Q’(>Ÿί»woΉ\ξιι9cƌ_ύΥΝΝΝΗΗgƌώώώ\.—Ηγ}ψᇦ ;Š’:D§Σσσσ]\\/^¬P(:::lmm•Je]]޽'Nδηη;::z{{Ÿ={Ά©©©ώeeeζϋ3RΥ₯K‡SPPππαΓ3gΞΰΓuλ֍=ΪΡΡqφμΩ;vμπρρ‰mjj*((¨­­5ΪΫ:α¬+ς8¦Μ‚ΨΨΨuλΦ̟?γ?6:&&‘7ΖΕΕuοή}ρβōζσΟ?Ÿ;w.ΉrΩ²e<Α`H$’eΛ–UTTŒfoooooΟησ †X,Ά··―««ΛΙΙyόψ±₯₯e||όΰΑƒοάΉ3dȐ/^\Ήr…ΗγυμΩΕw°nΤ!λ–F£mέΊ΅΅΅577χωσηΛ—/ojjzτθΛ—/sssόρΗεΛ—K$Δ‘±pc° —-[fΎi/™ΨλΧ―»»»ΟŸ?ι₯‡60nˆΧmήͺ›7ožP(Τj΅αααζΠ‘Cφφφ]»vmoo?pΰιώ‰‹‹ rO …‚ΔΖτ1[~ψ‘………———³³³ƒƒCFF†½½½Α dFFFvttx{{oέΊά.Ώώϋ±cΗςσσOœ8‘””$‹΅Zm\\άψργa+WVVΎϋξ»ϊΈ¦yLπDΘες#GŽμή½ϋζΝ›ƒ Βώώώ”N“755ωωωόΉΡFTVssσέ»wιtzdddŸ>}`Π(•ΚΆΆΆ––WWWSw₯y%ρή½{χξέ[VVΦΨΨ(‰vμ؁(`}}}kkkmmνργΗ'MšTUUΥ9Ÿ†τ~όλλλK§ΣσςςzφμI§Σy<^YY Ξνέ»7++‹Νf“tΏAΤΩ Mιωαψ―΅΅u=\]]ΣΣΣ΅ZmttτΫoΏνααQ]]έΠΠpόψρWΎ#C^^ή/ΏόbPW;tθȘ˜‚‚©TJ£Ρ:―%ƒ‰Ε_Y[[Oš4)$$ΔΥΥυϊυλ2™,''§©©ιςεΛϊ οW"ƒ’X£‚-ίΠΠvξ’’@ΰθθˆΓλŸ‘-[ΆΜœ9³¦¦¦±±ΡΝΝ-99™FnKžA@@ŸΟOMM5ͺhp‹ΞΞΞ.\°³³S©T£GFξΓΰz&“Ιd2q†ΩΨΨοΪ΅λθΡ£{φμiooίΊu«§§η³gΟΆoί^XX(‰ΎώϊkΈΉΉΉΐιΌlllT*½…„„ <˜’(kkk‹ŠGe³Ω({ρβΕΡ£G;³±άvPPΠ‹/τηΔήή~€I§N‚ιΣ§O‰Dβιι™›››——Ηb±<<< †Aτ‚Εbi4}σŸΟηχθΡγβΕ‹–––#GŽT(ŽŽŽL&ΫμζΝ› ’’"55΅’’ΒΰΥΰΏ>>>={φtuu½zυ*Il1ŒΝ›7§¦¦ŠΕβ… ϊϋϋϚ5λΩ³gd2™yyy―ΤΤμίΏMM͞={ή}χέ¨¨¨ΌύφΫ999l6»K—.Δ#‚¬θ?XΉre}}=ιqή«W―sηΞi4šμμμσηΟΣιτ}ϋφι›\pώf̘1vμΨ¬¬,[[[Ή\ž••Εb±τΑOl6{Γ† žžžΦΦΦ/^Ό@ίΙΙ _+++…B‘ŸŸςδI£“FvΑτιΣ‘Τ0ψκ8""bΐ€>>>R©΄€€€¨¨ΘΝΝ­΄΄΄½½WZXX@'κΏ;’F0Ψhnkι₯σζΝγp8»wοξ²2Hό-\Έ0<<ΌΌΌyp[[[77·1cΖΌ|ωl‘‘‘/_Ύ|ϊτιΣ§O 0ιΈ''§^½zI$’ŒŒ ­V;eΚ”ί~ϋΝ ŒI(φιΣηή½{?όπΓχίΟd2KKKυ}E"ˆΧ’ƒ Q.,4K W~φΩgφφφ£Gf2™VVVϞ=“ΙdQQQ€½3Œ;vl ₯3 Βɟ~ϊ©Z­>|ψ[o½₯P(F5mΪ΄={φ 'KQΤ”)S"""β‚υ& IDATΰ»_ΉrεΑƒζΓ!Ψcƌ=zτΑƒ---‡κθθ8gΞύG#2tθΠύϋχϋν·»vν’( k[₯R7ξμΩ³<ΈtιRbbbΧ]'MšdggWYYΉώ¦¦¦mΫΆUVVŽ;–’( ό-9­υƒ‚F'Y­VGGG«TͺϋχοcI J§ΩοΏξλλΫΨؘ——'“ΙlllrrrV­Z₯?₯Z­ΦΕΕεο»΅΅υτιΣρΉ>VdτθΡ‹-rttμΡ£GVVVyyωιΣ§ύυW’ΪϋSh3rρξέ»ίy睜œœnέΊQ•pδΘ‘ββb•JεοοίΏ}•)Gbπ+ ‹ΠΠPkkλΪΪښššqγΖeggοΫ·Ύ֘½½½~R{€I7n‰DYYYΏώ{||<›Νnnnf³ΩMMM<―¨¨hάΈqoL(a0θ‘T*9ΞΉsηΦ―_―R©*++)Šf‰Α`Θd2Ή\K§ΣU*•Ύoo`1™L¬ς-ψD₯Rωψψ,[Ά A\>ŸίΪΪϊμΩ³GΥΥΥωψψ\Όx±s΄εO½/άσž={άέέΛΛΛΓΒΒ¦M›f Op‡Da8°­­-99)GGΗ)S¦tλΦmδΘ‘mmmIIINNN ―c™±πΘΊ=vμͺƒ½½½O:υvδΑ‡ϊώϋ„Πh΄ΪΪZDCΒΒΒhϊSΓ`0μμμBBB¬­­9ŽR©|ςδIQQ‘Ρ€D@@ΐεΛ—ΫΪΪΑ—_~yΰΐΞίͺσ_|»tιRƒι˜1c@ί·}ϋφ>ψ@*•~τΡG€ΙŒώ*'CΉΊΊΊΈΈxzzϊωωUTTμFDDĜ9sŠŠŠ΄KKKKIIikkc³Ω\.Χ|Έ<ΤΤ©S£’’^Όx‘’’B!E1bαΒ…rΉΌ‘‘ΑΞΞnοή½‹-ΪΊu+β1­­­•••˜‡ΣήήΞb±Ζ#Α`=ώά€P4&&fΒ„ Ώώ{JJJηzxςψ8‰§M›6rδȏ>ϊhΨ°asηΞ]΄hΙ8\Ίt‰ΓαμΪ΅λΦ­[3fΜXΈpαΆmێ9ΤΤΤW‹ΧŠϊωω­^½ϊΔ‰7nάΐρ–ššZXXΈbŊ΅kΧr8œiΣ¦i΅ΪE‹mΫΆMίϋ³ς½‘‘‘0_πɞ={SSSΡ…ΒΕΕeΪ΄i4ΐ™N§γΚΚΚΆoߞ‘‘‘νοο?ώό›7o-[ΆŒάR\\ά’%KΪΫΫ ŸΟ?~<Β'4­³eοΰΰΐf³ΛΛΛ‰Ν§Ρh’’’Z[[•J%NηrΉ‰‰‰iii€7=}ϊιSαΊθθ興Š’ξέ»gmmέΦΦφπαC’:tθΔ‰$Ιύϋχœœδr9‚p[·n}ε4ΖΖΖΆ··η‡<;@ wοή=zτ£GŠ‹‹9lΗφφφΞ“ΰiχξέϋφν;kΦ¬œœ£-έΨlφ/Ώό2`ΐ€ΖΖΖΥ«W=zŸ“μ6 *„……mΪ΄©½½ύΦ­[6l ‘P­VτΫoΏ<~όΈΆΆφΤ©Sϊ{ΑhŒΰŠ₯K—nάΈ1))iΨ°aEΝ›7oΐ€ΆΆΆgΜyϊτ)—ΛU*•ΝΝΝt: wwχ—/_vtt΄ΆΆήΈqγuΞx‘PθΰΰΐγρςςςZZZπaPPΠεΛ—SRRV―^νμμΜd2…B‘X,6PeŸΕb9ΚΚκΣO?}ώόyGGΗνΫ·‰ξώΫίώ6}ϊτ₯K—ZXXlΩ²%''§±±ρΐ―YŠ©ˆ‹‹KLLόψγϋτιcmm=rδHbI \²dΙΤ©S}||μμμτSΐNNNeeeUΝ‡~Έ`Α‚”””­[·nΨ°N§=ϊun¬σ<Œ5κξέ»ζ΅~ΊπΰΑο½χ~*•Κσηϟ8qBϊΩ³gχμΩsεΚ•x¦NM΄1°··7°ψ”U!Ϋyώύ³gΟώ駟>όπΓ—/_ΪΪΪΒxrqq₯ϋO δ={φtpp¨ͺͺΊxρb]]p5Έ‹5sζL•JΥ­[·-[Ά”––²X¬iΣ¦MŸ>=+++$$D xzzΦΦΦfffΪΨΨπxΌK—.‘»Tg½D‰Ύ}³|ωςοΎϋ.999:::>>ΎξδΙ“εεεΈ 666((ΘΦΦΦΡΡQ ί^‘ώψR˜L&i ”0nά8‘P¨V« 0“‰$((h͚5 c‡ωΧw’zτθρα‡:::BΏΩΪΪΖΗΗŒ fcc3pΰ@±XόΰΑ”κξζΝ›λΦ­»sηN\\\YYΩ„ š››+++_td^>ωδπ΄··oΩ²ε5ΣϊεΛ/Ώœ4i’³³ssssKK ›Νnkk«――4hή ŸΟ°²²²²²’Ιd ؐh@*q(έArόψρΆΆ677·γǏλ[u”^J {x̘1«W―ή²eKll,.°΄΄Δ<ͺΥκ .0™ΜΕ‹Cϋ ˜… άΰRΔ’CBB`α"Ί ΚΡΞΞΞΡΡΡΗΗgΓ† cTΈΨθ†ησω]Ίtqww/**:qβDqq±££cmm-.NLLΔΎςχχwss›4iR^^ή“'Oψ|ώ;wΘόβi m###7nܘP]]­”γΙd2 F{{»Ο AƒT*ΥΕ‹qξR₯Ρhΰ^ku‚Η¬ͺͺ:pΰ€D"IJJjkk›?ώ³gΟΰ‘=ΪΒΒ">>ήΩΩyΣ¦MΩΩΩ;wξLOOΏ}ϋ6₯ ·žΖEύόσΟ£F"w(ͺ««E"Quuυ;w€Ξ~τθΡO?ύ΄oίΎφφvl]R‘ά~₯ΰ{ϋφν‹ΣŽl*›πωό#F(•J‘aρο€I“άάάψ|ώO?ύ—––ΆkΧ.‹εοοΏgΟΌτππHMM‰‰©ξίΏ?Αξ˜0yϋC‡EπoΫΆmZ½n†4 ƐB‘θ₯ΛνΫ·υΓ C„X½ΆΆΆέΊu+)) τρρ9ώό–-[V¬Xj‘€€€€€€έ»w«Tͺπππ†††ͺͺͺ>}ϊ$''oίΎύu¦ρώύϋ=zτ°²²"φJ₯R%%%={–Οη?}ϊ”Ιd²X,ύ&A(vι%22²kΧZ­ΆΈΈψώύϋ ΑΑΑ999DΝ‘Ή;vμηŸξεεURR²|ωr0ΤΆΎιΡ­[· &S–ΝfiGQΤ‹/nάΈQWWW\\\VVfΰᐽiii*—Λ΅Z­@  Ρh·oίξΩ³§R©<{φ¬›Ν–H$Ož|θλλKτΦ•H$κΥ«BDHͺtŽw/—ΛU*ή)¨ϋ¨NXΧ²ηΜ™C§ΣǍ7{φl>Ÿ_QQA£Ρx<ή… ^9Θ딏?ώ裏&L˜°uλVggg//―ššύ}J§ΣǏ ΦΠ‘C<ΥΠА˜˜Θγράέέ‹‹‹g̘!‘HV―^=i€;wξΐͺC<ΎsΆ Κ Ÿ2$..ΞΟΟoήΌyXΥiiiiii=zτ˜ίΦΦ6==]*•ΒΔ!“ dΒ=cǎݻw―~N™C"66vπΰΑZ­Μ ΒVϋΫί,XΠ­[·{χξ=zτΘΣΣσΟVΩΌyσδΙ“6nάΈyσf…B±iΣ¦iΣ¦ΈΤ‚ΝfOœ8SP__Οd2;::Akk+‡Γ±²²βσω€Ž‘•Ϊ½{χΤΤΤ²²2‘HT\\Œ£ϋ–˜π˜¦wί}7..N3d±ώυΧ_mllF5lΨ0vFod·H₯~ύϊΡιtGGΗΊΊ:δ˜(Š’H$555 Ώός EQ£FΊpα M°ρ¬«xFF†ΑsΙd²'OžάΈqPχM›6=ώόΐδ{‘ψkllŒˆˆ¨««S(cǎΥ7jυ$<γΝ;wξάΩΉαΆΩxεεε, ΰM}ΧΑ¨–OHH€…Q[[{ξά9++«έ»w?~όλO₯R?ήΝΝ-22ς·ί~ΛΟΟξ»ο’’’‚ βζζΆtι’’’ϊϊz@Fάέέ«««™L&1ΟΏtιL>}ϊ<ώ<555,, [χŸΑe―Ο;i€ΚΚΚ·ί~»wοήsηΞνΥ«—Aρ’PrΉόΡ£G\.733ΣΩΩΉ€€€΄΄T.—'''3ζϋοΏΗΕB‘°wοή‰‰‰VVVǏoii D°ΊΎΎžΔδE"Ρ|pφμΩζζζ & (Όξί~ϋΝΩΩΉ±±Q"‘”””L:uωςεεεε<O©Th4Ψά„cSίPΦj΅plmmλλλϋτιΣ―_ΏŠŠ RY±bΕΕ‹322$‰ΟΡ£Gϟ?šˆpέωσηϝ;wθΠ!­&‰’¨Λ—/―\Ή²΅΅΅°°£J₯’œs!!!οΌσN}}=Η+//ίΏ[[›“““ŸŸ_AAALL δόΙ‘#GΒΓΓ6θίΏ?ω­~f‡­‡8p@?v‚8%œT₯R9ǵΦΥΥM:υώύϋR©ΤO©Ρhόόό† ‚δ&‡Γa0θ’γθθφ]™LΦbee”XkkkJJʘ1c$ n¦₯₯'=EQϊΰWΌίΠΠPΤ”Œ9277ΧΑΑr ₯K\ͺΥκnέΊρω|°μ’.Υiύ;88Όϋzϊτι?όpϋφν€€€άά\ ˆuρξ»οΆ΅΅8pΰπαΓδo‘ΐ4λ‚’““―^½ZUUUPPπΞ;ο|ςΙ'¬ΎώΜ™3_Ύ|©ΥjΛΚΚx<Η߬[·ΞΗΗ‡Α`@ϋ-^ΌψΘ‘#π™ιt:ΠΙL&Ž&`………,+!!αν·ί¦Ρh°(ŠR(rΉœ8u¦€°°πάΉs³gώŽŽ^΅jU``ΰ… -ZΤΤΤδδδ΄aΓ†ΠΠP…B‘™™)‘H\\\„B!φ&9Η<"ƒΑP($₯‹UABEωϊϊvttΰ’?I’ύ0οπ6»uλ¦P(Nž<ωπαΓεΛ—³X,:N #βηηηξξnkk{ώόyύo4eδ}τΡG]Ίt9uꔝ‚Lδψ€ Q©T …ΒςαΓ‡l6»΄΄ΤΥΥuƌWWW‡„„lέΊU­VYZZ’§-e ώOιYΊΛ–-‹ŽŽͺͺJNNώτΣOΙ7βί¬¬¬μμμώύϋ2€{χξiiiΐ2qΉά€€€ΊΊ:ΕajΣιτ1cΖΌύφΫ ƒΟηƒ|ητιΣxkkk­Vϋ·ΏύνιΣ§wξάιΥ«“Ι|ρ⅍@ πχχW*•ζq₯…X`cƌY°`££γΡ£Gϊι'•J5yςδΕ‹#;§oΩcBV­Z•€-,, ΄‰Ε’±H$ͺ¬¬δp8@C"JΥ9ΥcF "¦ ,˜1cΖΛ—/Ώϊκ«ηϟπΓ\.χΛAοίΏΒ„ ρρρ€2oέΊusζΜA¨Υ-όΤj5R–*•ŠΓα¨ΥjΉ\ήάά,•J ΒΞΆΆΆ»vνΚΟΟW«ΥΫ·o_³f >ΧΧqψ©S§κλλQE€;δ·¨]½zU$}υΥW^^^cǎ΅΅΅:­££ƒŒLώͺ‘‘άΦΦΦΝΝΝϊaΉ³gΟ–””dggGFFΦΤԘͺD’ΤΰC++«1cΖxxx…B|’R©,CQŒ\. JHHXΌxqώύ–/_N^6–‹Ε²±±!9Ω€€€;wšz=|>DnλΧ―χςς*--…•liiΙαpφξέ zδ/^455YXX466ꄇމ‰Ω°aΓ±cΗΊvνκθθ¨ΡhμννmllΪΫΫλλλιtϊξέ»333΅Zmmm­­­-Š.‘G¬B‘Έ|ωςΑƒΕbqAA fmmΜαp\\\|υκΥ>ψΰΘ‘#Ÿώ9ƒΑhllDRm‚ŒΦŽ:―zƍχρΗwιeοή½qqq;vμpvvNLL€(jΪ΄i±±±j΅Ί₯₯₯­­­’’βζΝ›}ϊτQ©TK—.@›Ιd†……577WUUρx<©TͺP(œœœf͚υΰΑƒ]»v 2€±±‘N§ …Ββββ+W@•TUU„††ŠD"–™™‰ΥλγγΣ£GΕ‹ΗΔΔx{{——————τΡGŸ|ς‰1ΎVb³ΩPvl6ΫΡΡQ­Vs8KKΛΓ‡0 ,,L$ιw’Λε)))9998–RSSy<ž­­­D"1Pv8ƒaUθΧϟ9sf͚5Ϟ=KOOwwwˆσΜ™3ˆΈ···³Ωμ   ττt2ηQQQΩΩΩ HνΦ­Š=•J₯΅΅΅­­­~pθΠ‘6l@ζbνΪ΅x)E1 ,ΛΊΊΊ²²2ύνί£Gx58'`fΑ"š‘ΊΊΝπ‡5fUUU[[›ƒƒ‹Ε αp8yyywξά™9s&—Λεσω={φD%  ¦¦¦ΞΚΚΚΖΖΫ$  ±±ρωση° :Y•••999±ΩlŠ’>ϋμ3DhΊ:’λΙsυοίΙ’%δ]PΊ€: DQU[[λγγ·gϞ_ύu̘1UUUλΦ­#ΌώϋQQQΧ]KJJ>|8t Ή%βLEg+‘OŸ>eeeQQQ555 ‘ξΣ§Ο¦M›^Ύ|)•JκλλoέΊ―lΡ’E ΓΝΝΝΥΥ•ΓαΈΊΊ¦¦¦ &“‰Ό Τ2L:&“‰z#F#“ΙκCPΉΆΆV.—K$ƒHΙϐ|…P(|ρβΕ²eΛ(Šrssϋκ«―όύύ―^½*“ΙnάΈάΦ¨Q£πηλΧ―ŒŒ|ο½χτγςςς·ήzλ₯Kϊ“lPΆwZQQ!“Ι0™―τ6 ₯σάR:΅€€€‡fee‘¬„’¨ΚΚΚσηΟ„~)ŠŠŠŠrtt¬Ύwοž›››§§§Ρs‡Δς΅ZνδΙ“GŒρώϋο{yyωωω΅΄΄H$²;°χ§OŸήΪΪ:yςδ‰'ΒSΝΘΘΈrεJnnX,¦Σιξξξ{χξ2dΘ{ο½'‹§OŸξγγƒ°"‡ΓqwwΟΘΘΠΗ– Rsΰΐ:ΎpαBr“π:ˆα‚?Ή}ϋφνΫ·]]]CBBŽ;6hΠ $zχξΪsάδ’%KΰT°Ωμ’’"t}˜7on›’(.—{θΠ‘κκκ£GFEEUVVB#544tttΤk€)Δ £–…A0xΕqqqkΦ¬)**4ha{Ύ~ύϊίώw’ΎPh…pο₯K L=2¬ώ›‚%Gύ±FκΟF1τΚΪΪHΈΝ›7“J¨ƒCΣ ΌέθΘ?όπΓψργ333‘%q @ΐΆ²pttœ,fwwwH4»uλΦΡ£G}||Ο?―Χλ!™@«ΥΪlΆσηΟM›6M©T₯ΡΟΟθυz<―V«AŒŒ|α…ΐΣ‹ Ψ΅t:.ΫA<ΑΐcFOP½^χξ]>Ÿ/‰»ΊΊE"ΡΊuλL&‘HΌώ‘#GΜ9sςδΙνΫ·4Κ[ΓO#eύΪk―ΑωxβΔ‰°°0₯RYRRB₯R‘ΑFηhww·Z­­­…h)‹={vssσώύϋ‰D"j±Z­±±±ρρρ, ’ΓοΌσ¦έάά=zTRRb2™²³³ΩlΆR©T*• |Ψl6 ΡhόύύGމΓακλλ;;;u:έwί}0lΨ°ΰΰΰΔΔDθόσβ‹/‚ψ …Ά‡\.W«Υ¨8ΛΝΝ5j0`εΩl6&“ωΰΑg_ΞΣ —D"A%zƒΑπςΛ/Ώόςˍj RVV&“Ι@ξ|ύχΧ]KNN rssKOO―­­ί…I$T§P(&L P(X,–Ιdz{{ΫνφΤΤT`π@΄λδΙ“žžžžžžwοή΅Ωlj΅’gΙd²··χš5k` ™™™rΉ|ΫΆm‹e͚56› ςUέέέ5 Ην ’ΐx<žB‘΄ΆΆBς&…B …*• M&SEEErrς₯K—BBB ŸRyyω™3gΆoί^__―ΡhrssB΅)\0Υ= ρoΏύV&“­Y³ζε—_–Ιdl6"ͺ TY­V—ό› &Όψβ‹εεε^^^111V«Œψ9f³ωφνΫF£ψ~~~·nέ‚εδΙ“wξάιεευα!‘8ž5 „ω\άΊΞΪ[EEΕΝ;™LζΝ›7ΏόςK&“‰Γα@©…"&]]]gϞEUX¨¨("‘Ψέέ½cΗ»έ–.π»½½½(ʁ : °ΒA»Υj΅!!!"‘¨ΊΊy,ΔΥjυ’E‹Z[[! <¦555θhεxCCΓ₯K—jkk]ή·Ωl‹/f±X‚DDDά½{—@ €€€DEE577«T* ‘οΫ·O­VCζ;‰DJMM4hΨΤΤT°²πx<@θξξ^±b… QΜωρ9Ž˜˜˜όό|‡Γ‘˜˜xρβΕ'N€Ύ   88ψΠ‘CS§N…‹ψα‡!C† ‘C›ΝV__/ζΊ> «A½S "ΟιΖΖFˆG½τKdŠju(œF₯R…B!ƒ1z½>33sεΚ•QQQ —pΉ\HΒ€N4Λε’H$&“Y__αΒ«Υ vŠ8΁\Bi¨ύm# €¦ψλ―ΏήΊukτθюΗωΕD"Ηχ¬β§dyyyCCCbb"Η»}ϋ60œΏΞω{™L槟~Ί|ωr___ooοΞΞN"‘Ψήޞœœœ,ήGωϊϊFDDLœ8Q*•nέΊ Τ………-^Ό8(( ƒ›7oB"paa‘ŸŸί7Ψlφ£G’££ΑŒD₯GFFΖ+―Όβ’οbQ8ΟISSΣ—_~i΅ZΑK‡ ˆV«…0…Υj]Ίtiff¦J₯Z»vνργΗe2YxxΈ\.‡5όΛ/ΏΌσΞ;~ψ!τ­ŽŒŒτσσϋ裏²²²|||0Œ@ hmmuaa:“až–ˆŠϊΧ­[WXXωυhΔΞwψΥ‘‘‘kΦ¬ΙΛΛkjjΊvν—Λ­&§½½ύ‰ŠόΫ·oΗΕΕ566²Ωl£ΡJΒΣόΎΞktŸ:οY<ΏdΙOOΟ“'O>|½Ψέέ½'³|CO¬w"}ĈΣ§O―――5j”ˁ© Ο`0:;;Υj5—Λ…ΫAΆέn©g³Ω  9Υ t( ™LvssγrΉt:H$’„œœ£Ρ( Y,VXX˜H$ιt iY,p#UVVž:uͺ±±ΡΕΈαp8PbRYM&‰DΊ~DD„OHH™Lξξξ:'π3’££•J%θgh¨¬¬„«§§'›Ν†FU ˆX­V₯R nB /z½(;z½ώπαΓΐ2d³ΩL&S(‚κi4+++[[[E"‘HΤιt‰$((ό(<οή½{ΉΉΉΩΞγρ˜L&F »xρ"ψΫu:]{{»V«U*•Χ]syxYYY·oίή·oxΉ±Xlkk«\.Χh4………8Ξίί?((Θb±ΡΑb±€WR«ΥšΝζζζζφφv—υΗησ½½½έάάΐγ­Σι@Ÿ€mL/”ͺΩ3‰RρY,VGG‡Νfλθθ0 θΑ,  €P( Zκp8θtzϋ.ΓOϋΛz_ IDATζp8555z½~ωςε©©©ΐGœψ­­ι%—ΛŸ˜ͺ3‡#‘Hz½žH$BD y|ΙδΤΤT¦R©L&SCCCEE…Α`˜4iΧ_m΅Zνv{aa!Πανv;x¬Νf³Νfkmm_=|Ηkhhpssƒt}x3‰τΓ?¨ΥκΔΔD½^o³Ωx<ž\. τυυ­¨¨HJJŠŽŽ&‘H,«¦¦F©Tϊϋϋ ±Xμp8&NœΘγρνv{HHˆΝfƒ@ΐO?ύδ2₯4mȐ!γǏγ7œWΞ?ώριύmmmUUU`!…πΣΑφ=~ό8G8ŽT*εp8 ΣW ζ 4o“Ι!°ΆΆ6ήύςΛ/j΅Z­V=Ξαp<|ψ000π7ή‰D8μG…mP(ΐVτπππσσƒMΑf³›ššBCCνv{vvφŠ+H$„Ψt:Νf»yσζ΄iΣ ~)‚ έέέ^^^  Ρb4M&(τ---\.711Q.—www3 Hže0ΐέ;jΤ¨W_}υζΝ›uuuΏώϊλνΫ· ra±Xœε,NηrΉΰΌLMMMNN^ΆlYqq±»»»@ λtΛ–-7nά`0v»½’’Βn·777“Ιd///ŸŠŠ ‰e΅ZΕb1T6†’Hj΅Ϊέέ]«Υώόσσ…θΚwQμΏ­Hwξά9™LvλΦ­₯K—.^Ό˜D"-[ΆΜαpTVV‚V‡2‰‘ΗΜγηŒSqSwwwH―Fk½:Wt#‰±±±p£,{₯Ri·Ϋ»ΊΊD"Qzz:”˜6™LοΎϋξΜ™3Α3ΰ€ΐαpuuuPκμμ4™L--- ζ«―Ύβσω ό$!‘H¨Ωyœ$Ιl6»δφΒqƒ HNNŽJ₯š0a‚³,ϋΆ€ ε†Γα3'00P"‘„††Z΅κΝ;111θΗ9—ΛεrΉ:ŽΗγ}πΑ"‘(**J§Σ‰D:ΗΗΗƒ½ΪΡΡqώόωΠΠΠ .ˆD"©Tϊγ?Bx½»»΄:Θ€qwwΧιtt:΄aΉ\ξp8ςςςθάΏgθΠ‘ΙΙΙPζ󉕏zB&“΅΅΅>@§Σ½ΌΌnέΊ²mΫΆŠŠŠΨΨX¨xγp8Ψlφ–-[ήzλ­ΑƒCn+Ψ±c‡@ HOO_°`Γα‹Εd2Y*•Ϊl6___—‘ [___hJρΕ_Έd|Σιτ;w–••‘ZΊΪ;;;I$8πJKKW―^=~όψ΄΄4hυΌnέ:`±Γ݈D"‰D›NF£Χλ§M›6}ϊtΗγANG£Ρκλλ!rν »έή{Aγ)S¦ˆΕβ’’ΠκPo\eeeΟ,ΗΣ«εΑω»fΝ7ώ|πU‘΅!яŸbW]]=ώόΎ<γίΘ'ψ'€ζmΈ ¨¨hΫΆmP2‘Ιd^Ύ|Ωn·»»»Γ‚D ±4‹νμμd2™T*ώφήωU6›­ΌΌόχvPmkk{Zύχ'~E_oiiqΞ~&œε Όf2™°ώ°X,…BWj.ƒΏφ™ŒZΤίή œiL(Ž;vμΨ1‹%‹ΑβΑ‘ΡhP78‚ Q‹ςΨl68@z:ˆŸB‘QA„Bαψργ™L&!–H$vwwƒε?nά8Πήp8¬¨ΪΣΡсΗγ[[[κβ€Y³f=νOχξέ 8¨X,Vtt΄ŸŸ‰DGšΕbιμμΌuλ–N§kmmU©TΚg6›‘J₯yͺR©ΠΰKss3Τβ‚EΠΠ@&“AΒ1Ογρΐ‹F$+++α―X,Ά©© θ˜f³Ωb±  ©»»›Λ妦¦Ž7nυκՐ€όΪk―5J‘PL:υύχί·ΩlχξέC’δδδφφvƒA£Ρ ͺˆΗγ Δ7jkk‘—Ρ?.—  4 ή“"βΜοώτΣO Ε«―ΎΊwο^wγΖ ‘H”™™ >›ΐΐ@ψJχΤλυO˲ÁR—l6[ZZ€VΈΩ—-[‘:ˆ’hƒΑ@₯R‡\.‡<°βΫ‘φΠ3aw*βοp"5‚hZΆlYbbbbb’σ5‚@΅Ή3gΞ ‹!b΅Z₯RivvvDDDLLŒ——WGG‡V«½uλΦ•+W222μv;Τh4f³²[…F‡6lΨ°sηΞΥ«W£M5€>„F’!λX:@v‚„^―ΏpαByy9•J=wξ“ΙΜΟΟχςςβρx7nlnnξκꊊŠ2dHiiiDD™L.))Ή|ω²ΙdΒγρhe8πΰz{{«T*™L¦8:«ΐν;vμŒ3L&dŒ’lWΈΨ ‘\Zξ…ω’’}€Νf³Ωl …7Du:ψ³Pαΐ§M›)φh”ιΑƒΞ ύκ'2 99Ωd2‘ήηsΝyo’λ0--mξάΉ«W―¬¬t!h[·.&&fοή½hMVη% SZΠL―X‹ΕRTTNu>ŸοξξΞf³Αid΅Z©T*œ² 8C…(¨ΚT³ƒΊ kΐ©Ύ~ F—Λe³Ω hhv$Κώ†ΰ&TΞƒΣPDώι —Ώ+žΖ¨­­e2™QQQQQQ»vνB›Λ°… ¬ΧŸ=6FσΗφαniiι…OωOΐΕωzψπah’υΖo¬_Ώύ«X,φππHHH€ϊ#ΞyίX,Ά₯₯Δ%«ϊC`4‘ςNίν:΄’ΫΣ;”x—Uα’²ˆββb@`±Xƍ·xρbAˆD"xAΙ«­­σ€ΊŽ;ΆpαΒ‚‚4·Υκ/^œ‘‘ρβ‹/φΜ•±=Ϋο’£† ˆB‘xf[¬‡‚‚H/ν=Ε)κΒ@Θ[o½E"‘Π3Ξ™j 5₯aN@ulίΎ]§Σ₯€€TVV:kl|>ξάΉΥΥΥoΌρΖΗγ|tώΗ(vΞψ]^¨gΒαp@ςsόΡ—ϊζ…€Ε*“ΙΠ’9“Ιd·Ϋ‡N§Σ!Μκ"Φϋž‡ρ702•J%‡ζ€“'OΦh4―ΏώϊϊυλαˆΡH€ΌΌ< O93́™΄rεΚI“&‘)’ύ«½½ύ™ΑJ(ρ|FpΦι!žϋΩgŸ…‡‡_½zwοή­¬¬”Λεγƍ‹‹‹›9s&D¨ϊh’θs3θpθ¦…ε?MŸ>Γα#Π9j³ΩZZZώ<«’όPAΙ“'―[·N₯R9wΈ†]sθΠ!“ΙY2¨³ˆ1ΐοD/Ε W(Ά`4 ‰D‚ΤC«Υ z?Δ…) Έξ' ά 8šOLžu©pφ4~$κεΝΙΙqωSKKΛή½{ί|!‚ W―^½zυκΥ") =nάΈPκΑZ²“X,ΆX,)))=B­ &“‰Α`ΐ‘H£ΡΠ,%¨΅ ύ‚ƒƒOž>>''‡ΝfC3›––±Xψ|>ΤΞp6ΌΠ]α,U›ΡΦΦΡ"‘X]]””ΗησCBB:p`Cυ―žŠέ„ ͺͺͺή~ϋνφφv΄€s?ώ#πωηŸ_ΌxQ­V/Y²dΓ† dΧλυ}τ‘P(&ΓΞuΰžYξψ,<ƒ1tθP₯RΩΪΪ&RRR6lΨpμΨ±M›6M™2…L&»”²GΗ³ Pψ' /((hΚ”)ΐΣΣ“Γα€—ς©-Z΄wο^ƒΑžžών·ί9r~=γΒD"gOΣ'ώ«:ΗθΡ£}}} CUU•J₯κμμΌ>ƒΑ “Ιεεε‘‘‘ΥΥΥΙΙΙΉΉΉP’Λb±@eάcǎΩνvššHKί·o…BρυυuwwΗγρ YYY³gΟ‰DW\Νyzύ‰DB"‘ώ€ξNEδώύϋ^^^P eMP(”-[Ά˜L&¨Ώζ|τƒ8ΌΤοΏ>”/iii!‰L&\ΏΠVΨj΅Ξ˜1#""Βj΅.[Ά ωmχyμw³ΩŒ–ͺθWμϊρΓΣΣ“J₯vtt΄··ηηη/]Ίτή½{.lΆΝ›7k4š™3gΊ|–D"A[‹ώΠΆ3 ΑAΒΒΒ§e<8sΖ?GEοΗ_‹‘C‡ξή½‡Γ) ΘAIHH˜;wξœ9sΦ―_O₯RΧ]»gΟ&“ωϊλ―»ΤμΚ―Νfλ…ΓχΗΐεr;:: Ftt4—Λ‹Εx<^«Υ>\§ΣΗ«gtZτ’νvώ Œ3ζΝ7ί„ŠTέύ!Νξϊυλ Ψ=zτΕ_Dz¨npRzxxΐΡ”σZ€SYYYYY) _xα…!C†dff‚ΙΡΨΨI αα၇Γ9g°±X¬•+WBΉΖγρΨl6€LmίΎ½ H$’§§'—Λυσσλθθ@Ϋ΄<θ.7np Έ„S‘Η „„???Θ{υττ|υΥWιtz~~>ΪΌ'ŒF#˜ +V¬`2™)))iiiz½‚0°‹!bΣ΅fΝ4€λkv<ξF₯Ra>ϋ»~ό‘xυΥWύύύ•J%•Jmjj ΞΜΜ ”Ιd—.]ϊτΣO9Ξ₯K³²²Ζτ(Ο Ž:Χ—ŒΧ~τγο ­V ™zL&S*•rΉάŸώyςδΙ»wο~ο½χΒΓΓ#""<==§M›Φ³œς˜%3ŸΫ˜#""&Ož,‹!pEZZZξάΉC‘P’££α`vρΗΓPΫΪΪΐsσg`σζΝ›7oŽŽŽ–ΙdΎΎΎ0-ΰa2™t:½ΆΆ666bΔ(¨‹/BzΚσ€-ώ{ΒώΈ‡Χ…ŒΙd†‡‡CύNφΰΑƒ .ΤΥՁރ&ΦΥΥ …Bθ H΄»—3:;;!m’/ޝG… ȟ§Υ!2cΖ ±X lKhνύθΡ#Θ{MNNŽŒŒ4  ΰrΉ—/_£Ν t9μΔb1°λμv;δC€€€Μœ93&&†Οη³X¬¦¦&Πnm6Ϋ΄iӜ+c?1ΣH‘P¬Y³Β2–‘ԏNH€Ι“'GFF†„„Θες††¨©ˆΕbΫΪΪ:::<==CCCwξάΉiΣ¦ž‡ύρΗ0`βΔ‰ΟόύθΗΏάάά€―Š ˆN§‹Ε½³m@yJHHΨΎ}»s φΗΜ™3ί}χ]¨D#•Jσςς‚X,¨¨ΐαprΉœΑ`xyyωϋϋϋν·ΞMΫP@‘£I“&=zτΟsΪυύaΦ~<žžž€Ιd²X,*•J"‘ ‘tϋθθθ¨­­ΝΝΝν™Kα‚ςςς₯K—Bۘžΐb±ΠΕ»­­ΝΉk_€ωΛ7R?ώ ‘H™™™2™ŒJ₯ŠΕbOOO»έ.ξέ»·bΕ gΎK‘n«ΥΊkΧ1cΖx{{EcοG?ϊΡWψψψ@¨Τ΅²‘‰…BΡιth‰™ž]ŠB‘Μ›7οσΟ?ž#οG?ϊя~τ£ύθG?ϊρlτt@ ‘HΰΏσηΟησωΟ}\θχΨυ£}ˆ*΄γς€I“,ΛεΛ—ŸHιG?ϊΡAp8”²w)؞ŸŸŸžžΥj]ΨW‰D³ΩΌtιY³fΡh4 C$»ΊΊ ΗF‹ˆˆψ«ΗψχΔσ«γηϊŏΣ:\τz–••uμΨ1΄zΌψο ¬Π7—,YΒεr‘ί6Wώˁv@{ω₯€€,Z΄θƒ>HHHψ«G׏: 5Mž†χί9­φΡΠΊ3h6%ΌHHHΨ΅k—P( …ΘίτAk2AFŒααα‘P( ;41 »}ϋφ_=ΖΏ-ώ‚¬X΄ά ttώΣώύϋgΜYUUΥΤΤΤΤΤtγΖ &“‰6–~ώCύc*Ξ/œKΰp8___ARRRΌ½½·oίώ{Y“pι»‚ώW"‘ΌύφΫd2yι₯Λ—/kMX ƒΜΉ’Nχσσ#‰“&Mjlld0.eŠϊα΄7<‡ΓιθθψΏΒθΏνπH§ΣηΝ›·uλVh‘ΫϋfGw 4Q…€Θoχ4|δρxx<^‘Pό=<"θοB8€κτππ P(§ξΝ;Ÿ}φ”œΨ±c‡Ρh|bΓ~<7dggCwy‘Pάήή­œ‘§$9ώ§–ά¨Q£,Λ±cΗΌ½½G M8*** ?[?ώ Σ„C₯Γαpξ‰|ψϋοΏ‡F‡ΠNτλ―Ώώ{¬{Λ ΘB%'OOOΝd2ω|>(»Z­6>>Ηggg'&&@Ώδt(Md³Ωάέέ›ššΰύˆˆˆ‘#GFDD„3gΞ\Ώ~}αΒ…&Lhhhψ]K,;lΨ0>Ÿ_YYI‘Px<^JJΚΓ‡9ΥΥυ»Τ/xL6›-(((!!Αb±Έ»»ϋψψxxx0™Lθ΅L θtzggηίγιόI@έν2™¬ΎΎήf³‡††~τΡGΙΙΙ/Ώός… BBBςσσέάάd2η’!$$D«ΥͺTͺ.—Β‘ ζ‡~ [·nˆˆxf?οΨνvΠ•7nά8uκΤ}ϋφ 6μγ?v8</##cΛ–-‹Εd2mίΎύ£>BϊKxόu@=ύOμΪξp8 ΓG}4f̘η>΄η‹Ε²gΟŸ3gΞ( OOO£Ρ;OOΟΫ·o0 _±ϋ3πΧ(Ž―ͺͺ2dHss³Υj‹‹Γαp‘‘‘Π833sΜ9™™™ΥΥΥ«W―ώώϋοNφ`·ϋψψL:U(677c±X«Υš››{σζMh;(‰–,Y^VVζεευχPΒΒΒt:]nnnVVΦΈqγV\ΗεrΏωζpαtttp8œ©S§φR©«'Έ\nzzΊX,†–,x<ΎΊΊ:''ͺ{.ΰp80+cbb EBB…B±Z­ΥΥΥmmmυυυ999+Wτυυ‹Ε<―?y’€VqπΰA???@ —ΛΑ€I“t:Νfσχχ·X,nnnX,J>“S qU‘P˜œœŒΑ`Θ»έήέέ­V«KJJBCC EGG‡D"JQ―hiS§N Έtι’D"Ρh4ƒ1bDvvφξέ»ηΝ[^^~ϊτiΒC³D£Ρ =yOό=‚ΪΟΠΑ q*ΐn³ΩΡhd³ΩŸ}φ΄Šϊ; ιϊϊϊ“'OFFFξή½Ϋε‚εΛ—_Ώ~Hxp&x,]Ίtΐ€7n8p ――οͺU«ώκΡύnΰžσχΑά-Z΄ˆN§»»»‡……Ιd2™LΦΨΨΨΤΤτωηŸWTT\ΈpαψτTf±XΧ―_ζϋ’cΑησ.\˜’’—ώλpΊtΔbqff¦ΏΏ?όδ_ύυδΙ“UUU&“)((hΫΆmj΅:22²°°π/Ε>¦œœόΡGUTT¨T*"‘ψL―@ss349NKK£R©#GŽ>|x\\œF£ΉrεΚ¦M›JKKαΚ &΄ΆΆŠΕβͺͺͺgͺeΰe2™»vνΊwοή_|qσζΝΆΆ6( UZZ w€ώz}<έα²°°°‘#G–””\»vνψργηΝ»|ωr^^^yyΉΙdβp8IIIl6;//ο™7DΗωχ ώ.`0­V+—Λ>|XPP°ώ’’"7aΒ³Ω¬Ρh222-Z€R© ‚ΣΛ^FWc`` ‚ Π-ψd$I,ΗΗΗ{{{c0˜άά\WSSSZZϊχΠκΗ+Σl6gddθt: …Βb±Ί»»χοίΏwο^£ΡX\\Œ6Ηαp°κ +σ™w†L&σ»οΎKKKγρxχξέCΈα&‡#&&†Λεώ-ιΏ %UˆαY¬X±‹Ε*ŠqγƝ8qβwυƒ~©ΞΥ@ϋ"Ÿ3πxΌέn?~όΘ‘#Ώύφ[—Ώ^Ώ~ύίSaΪ΄iӊ+~ύυΧ΄΄΄—^zΙn·‡††‚˜ϊέΟU±ΩΑ`0FΕd2­VkIIIAAΑO?ύτέwίέΊu맟~‚¦’YYYΣ§OW«Υ:.&&¦§Ύο|O Χΐn9~όψˆ#ΣΣ-Z”‘‘‘P( ·t@@ΐμΩ³-Zd³Ω<<<._Ύό{m…ψψψg–“ξ ­hήΣψργ‡ͺΣι„B!•Jέ½{wcc#“ΙLLL„v"b±Έ¦¦F§ΣέΉsgϞ=Ξνw~/ #*Σρxό{ο½·sηΞΒΒBg‘ΠGWξφΝ7ίΌϊκ«Z­6??Ώ₯₯qb>= V«U.—'''Ÿ>}Z,³Ωl«ΥzύϊυE‹εεεαA@0yςδ’’".—‹ΗγοίΏίϋmα{-K[[Ϋ±cΗt:][[[II‰\.Ÿ9s¦B‘§γ1zΞόΜΜΜ .δηηwvv’Δ`0 °<<<¨P(Ž9ςΜΩΓαpv»}Μ9ΑΑΑΎΎΎmmmƒaΤ¨QΕΕΕnnn|>?88xόψρ“'O­­νE£…A>Mϋ驈ΓΑόL8χGD,GEEΥΧΧχΌ’Εb >φB_ *Έ­σ0ΪΪΪ|||""",ΛΠ‘CΧ¬Yσλ―Ώφ1hΟB(²X,:π‹y˜ IDATN£ΡΰM₯RYSS-,ΩlvRR’X,ώόσΟΒ΄zτ«·oίήΠΠΠΦΦφ/ή~»V«‹ΕƒnC@@€P(τςςBΔΕΙ Ι}4fΰίΓ‡›L&£Ρ8pΰ@vηΞψ8ό;wξ\6› ξπΎ[&“………υ\KΰpύW\€‰„Οη£›ΕyCq7uΕΊuλΚΛΛ1ŒJ₯ …¬xPΛA‘#GΞ™3‡ΓαΠιτ—^z‰D"UUU‘?“@ ‰Dp˜υ}o"‘’’"‰ΰΙΊHA„B!΄κ#`‰‰‰%%%EEEθϋ7oήΤλυVυ¨αhσσσs8T*΅nτθΡΎΎΎί~ϋν'Ÿ|²tιR,k4aΗύ[ΗΓα†ά½ι|…³€Ί7ώ@KΗ[,–p8AΆnέZ[[[__κΘcε Aƒ Eww·^―—J₯O[χ0BψTll,ƒΑ Σιv»H$ςxΌ ΰρx₯R jDEE…Α``0\.·οk”Ιd ‚Gy{{Ϙ1γϋοΏογa3+CCC“’’JKKm6[QQ‰DΚΞΞ†rνT*•B‘h4šΊΊΊ!C†όόσΟ%%%‰D.—?-, ΰŒD‰e!!!'N\ΌxqGGΗΉsηϊ:„ƒ Ÿ€N§/]ΊT,_Ίtιν·ί†Λϊ(= BFFFnnntt΄P(,,,μΩeH&“ 6›M$™LfΗi·ΫΡώβ°ͺ««oίΎ~όψqτ2>Ÿo±XžΆ9a©Cν%θγτΔk`V#"" ­8‘HŒŒŒίFO š"L‘§§'ψBΪΪΪͺͺͺάάάΘdςΰΑƒ±X,‘H€P(X,Ά©©©χMη|ΠΒH–,Y2{φlηΏΒΪuͺόBη4νwήygςδΙj΅Z ?~΅‚πx|jjκΤ©S£££%ΙΝ;ϋ~gη“‚,X° °°J₯ή½{Ϊ;ΒΡιτΎμΝ’’’βββππp///‹e΅ZΥjερx …’’’bΒ„  ε _ύόΏtΧ]ώώώŸ|ςΙ€I“ώΕ‘ » 69rdǎZ­φƍ™™™ί½ΙdrŽ(Αͺc2™f³Ή6 ‡’CF£‘Λ冄„\ΈpΑl6———/X° ))iίΎ}°ΉΆlΩΒf³ΛΛΛϊι§ΎAοΎϋN§Σ}ψα‡ΉΉΉΘo‹ύ+†«§§§ΏΏΏΑ`hnnΦλυΘoΝΛψψxŸ³gΟ‚³ΰί0'ΙΙΙf³Ή΄΄”ΝfΛd²φώAΰP3›ΝL&³ΎΎ~δΘ‘ΑΑΑ₯₯₯ ΡΡΡ‹Εl6577S©Τœœœ‹/φμ{λrOgIb2™JKKγββ""" ½˜ΟηϘ1C*•.]Ί΄^+XN‚ΔΗΗ———Oš4©°°L&―\Ήrόψρ$iωςεΘoUŽΏ_ύucc#@‰Dd2Ή²²’ΕbΉ»»―_ΏDӚ5k²²²ώ‰ƒψ:QΩΩٟ~ϊιΈqγJJJΰO¨xw~ΦOζΨ‘+ }'++ xoΘΏπ0`QQQ γώύϋF£ΡΝΝ­ΌΌ(V«=5G­P(@wΆΩlPμη‰γ„Β§(ŠR©$‰Η …B­V+‘H@δQ(hάΫ‹·Γω§ …BθΤΫΩΩ9~όx>ŸΟ`0¦NzπΰΑΎj΄"ΓπαΓΣΣΣ«««ΒB₯R΅Z­Z­†!©TŠΗγ)ΚΉsη„B‘T*½wοNŸ={vOΔ‰ƒ>γτττ˜˜˜₯K—ž;wnϊτι.\xζMΠI Ζl6 ₯R8~όx‹Ε’žžήχ@7―LNNΞΟΟΗb±---ρρρo½υκc€Α'$$ΨlΆΐΐ@NχDΥκi?yΌbΡ…^RRςζ›oΒ됐OOO.— etžvJ ŸΟΗb±C† ‹Ε@­VC²Ά\.W*•f³9<<\£ΡX,‹Εχ4ΕΞ9…AF“››ΫΡΡαγγγp8$I{{{cc#ŸΟW*•gϞ½|ω2ˆΞήwϊΧτττ5kΦψϊϊ^Ώ~}πΰΑˆ“J§Υjuww΄'A ‹Ε‚Ήˆ†ŸŸ_JJ ƒΑΘΝΝνκκΊrεJccccc£ΙdŠ‹‹«««³X,$ ‚‘}mΓkΤrγσω|>?44τΒ…  jΗΔΔ@tώΣO?u6ρŸ6±‹₯¨¨¨¨¨ˆL&K$///2™ J‘X,φυυ½rε ‚ v»έΛΛK£ΡΈθ‹ `NΠαM›6M$mάΈy ŸΜΫΫ[₯RιtΊήκ}<|ψ0“ΙΤj΅|>Ώ¬¬,((θ™ΣυLΐWWWWS©Τςςς°°°ξξπππS§NA:9ŒΑ`μΨ±£¬¬lύϊυO»•³ήίΦΦΆkΧ.02sssρx|HHȊ+^{ν5»έήήήP(ΨlΆ³)ή ΠωΩΊukRR‚ ΒΥ«WΡχ BvvvJJЧ§gFFΖΉsηž={Ά°°0((ˆH$Ά΄΄€O”ΝfGDD°X,</‹{QμΐOƒy\m‹ΕΆΆΆζδδ=zτθΡ£=/v™πΫχμΩSUU%•JΩl6‹%‘H=ΓAΞκ‚ f³ΩΗΗgέΊuR©4))ιΝ7ί ―««Σj΅­­­---žžžnnnθΗ{ϊbΤ¨QσηΟ_»vm^^^@@Η»qγ’δδδ΄΄4“Ι$—Λy<šτΦδεεωωωΕΖΖ²X,‹ΕB₯R±Xlggηλ―Ώ~φμY€oω­ …L&Σf³A·ϋθm  ŸΟ‰D$)..ξτιΣΥΥΥhh«½½ύ—_~!}Ή-‹₯Σι$‰J₯vww »ΛΐPΐΧ¬YΓησοή½{θΠ‘ττtτY€¦¦Ž7N.—σΝ7 Kρ=?μόvcXX“Ιόδ“O΄Z-ƒΑpώJη0θ3γ\pT*νξt8`ΐ9œΚ ΒεrE"ΡΓ‡‘Γ.™Lv‰%7Δ1κsv8/^?~Ό\.ηp8,K§Σ΅΄΄Πιt…B1`ΐ€ςςrηααa0BCCΡςcΞ“ˆΎΰp8ήήήd2Ή°°ΗΏώϊλ%%%nnnƒa̘1W\ι{.Θχ©S§Ž1B«ΥΓS駟όόό¦NͺT*=zTRRrσζMXFIII‚Έ»»O›6ν₯K½Ο*<ψ]|δΘ‘>΄ΫνS§NΝΙΙAΤ;H9QQQ …βκΥ«f³™Νfλυϊμμμψψψ»wο‚’ žΒ3u}Η»|ω²V«]Ύ|9@Ψ΅k—sεq Aƒ Β\ίΛ=A zš’ηϟΟΞΞ?Ύ@ °Ϋνd2™Ιdφ’ΨΩl6//―xyy >xπ`ΤΙg2™Ψl6‰D²X,:ŽH$‚εΠϋπΠ ―¨¨Ψ΄iϊ~^^ž――ο¨Q£zΎ—ω„»Q©Τcǎ‰D"‡ΓQWWηηη§P(Δb1Έ@ΰλD"QVVVLLLEEΕϊυλ]:l"Nƒ©©©yπΰΑ₯K—Ύψβ‹Χ^{-,,ŒL&{{{³X,―άΊuΛd2Aμ―/θ)1†ͺV«I$’F£)..NIIY°`Z­6™L8w―€³S nn4!»}ϋv*•ͺΧλΉ\.¨2ξξξαααώώώ999.'ά5Φ―_?hΠ ;v$%%3&==έε—J₯³fΝr8 φ!OQΎ! b±X°Xμ₯K—@if³Ω]]]d2ωΚ•+)))H=ˆ†½zwι9KΪαΓ‡ϋωω•––ͺT*±X¬T*:δ<ζ#FLŸ>έίίΠ‘CΞ7!‘Hπθ­V«έnˆˆΨ»wο?ό V«—-[ΆqγΖ &|ρŐk\WW§T*%‰Ρh|πΰΑΐΡγ ~B_μόƒvvv~φΩg'Ož\·nέ©S§‚ƒƒγββRSS%ICCƒV«uwwwζ푚q/ϊ―Ύϊ*%%B™v»&Φf³uuu™Νf ΒB€ή.~tv»=88˜Ηγ½ώϊλkΦ¬ωρΗ%IXXXcc£››ƒΑΈsηΞλ―ΏήϋνhωFƒ‘T*έέέΙd²V«Εαpήήήθϊt ‰~–L&ΏόςΛ™™™p:άΌyσζΝ›_ύ΅\.ΏwοžΥjυυυ•ΛεΏός 0Xœζq9Iη;CjΉ»»ϋώύϋ'NœH"‘>ώψγΥ«WϋϋϋΟ™3Ηh4666FEEGάj΅FEEυE±ƒς/½τRllμΪ΅kg͚Ύξξn>ŸΑ€VΧwΐhSSS FggglllBBΒωση zƒ‹ΊŸ‘­V1ώ|0ά 0 ΈΠΑΐh Bzzzzz:_΄h:r‘P›ϋγ?^ΌxQ―Χ …Β¬¬,±XόθΡ£»wο^»v­ηœχœOτ5$ŎΛεj4­Vk47oήL κκκŒF#“ΙΤλυ•••.!Eη;;^ƒ ρςς‚Œ­V{νΪ΅Ϋ·o'''0@₯Ruttτt΄ΐ2dΘ΅kΧbccΏϊκ«+V̜9sΛ–-QQQχοί_Ίt)bD"QjjͺΏΏΟ?Œ>Αž[v%lI°}ϋv•Jεp8”J₯T*e0ννν^^^›7o~ηw\& ά«=§ρiμ³Ο~ψα777__ί¦¦¦ιΣ§Ώχή{‚ 0`εΚ•b±‹ΕΒIŸ‚‰rΦ›gΜωφΫo—••½ώϊλ;wξυψργ"‘hΜ9·oίΞΙΙ™;wξΕ‹###ǎ{λΦ­Αƒ»ΉΉ©ΥκžΚΔ ΗŽ+‹Qb4¬sηΞY,–έ»wϜ9333“ΟησxΌ‹/ †ςςς­[·>-•oαααΫΆmΫ³gϏ?ώο΄΄΄όψγoΎω¦R©ΜΟϏˆˆΠj΅ƒA£Ρ°ΩlƒqζΜ™ž\@ Ύ€Σ1--ΙdΊ»»ΧΧΧƒC·±±±ΊΊΊ½½½©©‰Α`όόσΟUUUηΝ«¬¬¬­­νϋ3κ ˜1™L¦ΡhH$‹Ε2›ΝνννT*΅‘‘Αε2A„BαάΉs)JPPB‘8zτθœ‚sηΞ½vνšΡh4 111§Nr οΈlt21LxxxTT”F£1 B‘ώττ«W―ϊϊϊΊΉΉlΡιtW―^ν ±’D"ΑάnάΈͺτ}ψα‡υυυΙώλ―ΏB: κ«―t:έ‚ Π!Α ‡Γ‚9Dsss΅Z­››[ii)T“XΈpaqq1JΣBy’H―Κεύ[·n΅΄΄…ΒΜΜΜ––›Ν~ώύ’’“Ιν[ΐztρζ sΛ`0βγγ‘΄j'Σh4›ΝF"‘ž9c½Γω|ίΌyσ|PPP “Ι ˜ΦΝΝΝ ¦‘‘ΑΝΝ 5ΊώΏb‡ŽςζΝ›ΰ'+--}ο½χΠ4«˜˜Ή\^WWwςδIΈnjρΞ6άΟΉ!C† RVVvξά90 §η~šΤΤTg4[[[‰D’KζˆNU«VI$6›M‘PφνΫ·dΙ??ΏC‡Ρh΄ΘΘΘΦΦΦΚΚJΰΫαpΈύϋχoΩ²εαΓ‡oΏύφˆ#θtzΟ$YYYΉΉΉwοήE?P"_yεoo±XξηηΗf³wμΨa2™PN+ ΗcΞ(²S¦Lαρx:.**ͺΆΆΆ­­D"αρψ€€wwχΧ^{­ΎΎώζΝ›‡cφμΩ,«££cΨ°a0Z­Φl6;‡±‚Α`pΆ5ΩlΆ‡‡‡Εb ˜?>Τ '“ΙUUUΎΎΎΞ{šξr …B£ΡΨΡсΪΚπώιΣ§g̘|λΦ-διVΕΣ)±Θγ΄ͺͺ*³Ω<{φl0>222ΎόςΛ†††ΖΖF`ώN;Ξ‰DJHH˜5kήǏ―­­₯Σι‡Ιd>ΣΗPZZzι₯7ήx#**κΡ£G ,@…)ƒ‰ϋν·q8“Ι”J₯:ξξέ»ΞRΙωVθŽ9’D"A’ :₯………iii"‘A2™Ηγ1 2™|ΰΐ .ΈΉΉαp8‰DB"‘ EQQΡ‰'ΐ‹ωΜEεόσΒΒB:Ύ`Α‚²²2‡Γqοή½όγ999`ύƒΡΕf³“““±X¬L&»{χ.…BΡj΅A,χLξ έΊuλαΓ‡-ΛΜ™3•Jε±cǜυώœœœΒΒΒ¨¨(£Ρh³ΩfΜ˜Ρ‹ηΖf³Ρh΄… ϊϋϋ:jB5°Ρ+·oίΎeΛ–W^y%77φ—X,noo?sζΜƒ°θΡ»wοޚšš 6ΔΔΔΘd2¨·5`ΐ&“I§Σ‹ŠŠΌΌΌN:uκΤ©^žΤο7›Ν/Όπ›ΝV©Tƒ‘₯₯ΕΝ͍ΛεVTTΐ50c“&M2‹-ŠŒŒœ8qbXXX`` Δ.¦ΤͺU«.\h6›‹ŠŠ6oތτΰΟΉpε)ŠŸŸ_VV–Εb9sζŒH$jll‹ΕΒϊπÁδέΦΦVWW΅œΦ]ΫΗΰ;Z(G«Υ¦₯₯!ςθΡ#-…B±Ωl™™™±±±ί½^―/--E»Ša~ΫEmJδεε5eΚ2™ΌlΩ2­V‹ Θ€Φ¬Y³bΕ AΆlΩ²gΟ‰DςυΧ_#}φ2ΈLQWWWIIIIIΙνΫ·Ώωζ›ŽŽ>ŸΏzυj‰g(^Εύ’W^y…@ lΪ΄iƌΏός Δ"€ς»;t8p $$ΔΝΝmωςεΉΉΉ‡ΞM‘PΨQ ƒ 7.—L&“QβέWμΠQBάͺ΅΅΅¦¦fψπα.ίϊφΫooΩ²₯ΊΊzρβΕ‰‰‰!!!ηϟΗb± aΡΑ=q–άΤΤ΄~g·0H[˜»yσζΕΕΕΥΧΧ766‚σ6?$xBμAaΓ†%%%UVV*ŠAƒ-^Ό˜Οη;v¬ΆΆ6000??Ȑ!$I₯Ra0˜ΈΈΈ_|x QQQpΊό.77·wί}wϞ=Ξ’ΠPοƍΧ]Λf³½ΌΌͺͺͺ»ΊΊ ‘–ž+>5ώό°°°‰'„#GŽΤΦ֎=Ϊ`0<|ψΪiυ^"‘$&&b±ΨΌΌ<*•ΊrεΚ;wξ…B«Υ q%τζ(›A€€€ΰΰ`8`πxό‚ ‚‚‚t:δΰ’…+£’’<==…B‘‡‡GPPPCCΓδΙ“]fώ%‰R©τƍθΣt~ˆσζΝ9rδκΥ«Χ­[Χέέβηη—žžΎnέ:ΤρΦ Γj΅’ŒZψWΪΫΫ-Z€ΣιV―^}φμΩ3gΞ…B2™ΜεrW ϊ ψ|ώΐ§L™‚Γα]»Ά|ωςoΏύ–Εb‰D"¨TμΌ&]2ηξξOvȐ!›7oφςςZΉr%ΘΈ¬»»;((H―Χ·΅΅8pΰφνΫ555Θo“P“b»K–,ioowΞoξΑƒgϞ––©βv»].—wuu=|ψ°ηoΗ`0B‘pΐ€‘‘‘ǏŠΙ;οΌS[[»}ϋφ²²2<ίΥΥεp8¦L™ςΥW_a0˜ˆˆˆζζζΫ·oŸ:u |5(Xf³Όq»wο₯ͺ»»›B‘tvvβρψΠΠΠςςr›Ν!έςςς™3g‚!η’p8X³6›Νf³9/!TϋΏuλVss3ŸΟ/((ΐb±G«ΥΪl62™όLB½Λ—Β£χττμμμ„Ϊu#FŒhkk«¬¬μξξ†3.Ύm¨β O|ƌŸ}φ‚ Αj΅:t( ΰΒ… ǎ3 γƍ{χέw{.6ΤIŒ8ΙΊωσηΓγΠh48‘‘‘ΉΉyέΊux<^«Υ’Ιd¨^φρΗΏύφΫϋχŠβρxΠΒΤ¦U«VΥΤΤΐΦCΕ)**Oœ8TZZzξά9©TͺT*i4ZIIΙ’%Kβγγ'L˜ππαC 3dΘΉ\ώε—_βρx Γ}&L˜°{χξσηΟ‹D’Z­V.—[RRTζκκj(F³gϞ+V΄΄΄444H€R*•XSSƒΗγkjjƎ[\\ΜγρΦ―_Ÿ““sϊτi­VK£ΡΊΊΊFŽ)‘HD"ΡK/½tμΨ1gρψΑL˜0!//Α` ‹V£%‘HψΗ?*++―]»vπΰΑΝ›7wvvΚd²Ι“'_Ώ~έYP―]»φΝ7ί,**ώ4‹=qβ„³wΚy΅DFFιt•J5cΖ ΤΊΈΗŒσώϋο'''_Ώ~ύΛ/Ώ„Τ] `X,–Ίζ3蔉ŽW:N$‰D"ΈTƒ`x<^&“­[·N.—{xx΄΅΅…††GDD S V«Α`(((ΘΝΝ ι9‡@ ‘7tθP›Νφή{ο:tJ@έΗ±cǞ:u bβ‚3‹ΕΕyώόωp72™ αϋ'ώvΨς Υ]ΊtιΑƒλΧ―‹‹ƒ`‰D"‘H—.]JKKΫ»wο7ί|£ΧλΑ₯‡ό–Ž…Α`²²² €Εb<j ‚ …H$Β… <WRRβοοΏ`Α­V{οή=FΡ0Τ„~"Πυ@£Ρ ΜΥjυψργ—,Y`³Ωΰ¨" yyyΞn‘±±± .|υΥWέέέ-‹έn―­­Ω LG”ς‹ž2Ξ¬Η§Ω~~~‘‘‘\.—D"­X±’.`όwuuuuuFΉ\N£Ρ ƒH$ςυυU«Υννν.\˜;w.܏’΄P1Έ…Nž<ωΙ'Ÿ NŽψλ‘#GΆlΩ‘Γ+VδεεAΚ$JΈιi"ΐοI‘P(p8`£AUX¬λΧ―7nœΩlήΆm[DDDPPPUU•F£qρ 0`Ρ’EUUU555‡£¦¦¦¨¨H­VϋϋϋσxΌ††OOΟ’’"wwwNWVVF‘Pf͚•••… •J u™_&\ϊ~’H$ooοΘΘH©TΊkΧ±cΗΠh΄#GŽxxxŒ5κή½{ΞkΓsηΞyxx„……½τKV«5  ΄΄τΘ‘#ΎΎΎR©ΤΗΗ'??ίn·λυz6›R2pΰΐqγΖ•••ΊΖ`0πxΌ^―G—Δƒ’’’ΨlΆZ­†όƒΑ°tιRΤT‡GΪ¬Y³²³³CCCΛΚʐǁ8oœ&κ.…‘ΓAξόQφΓαΠh4J₯R lΨ°ΗγA[“ΙΤήގV‘Έ˜•PœΒYIμΨ±cσζΝD"1++ληŸΞΙΙ‘Ιd°©l6[ο›Σπunnn±±L.Ν IDAT±IIIR©4((ˆΓαX,"‘¨P(άέέ]ξιμ ΅Z­~~~=ŠŽŽNJJ‚zx‘‘‘>>>ΠηA˜˜˜Ω³gίΈqγΨ±cΥΥΥL&3$$D₯R)•Jt&S’£££,Xpϊτι·ήzΛ`0lέΊΎhPPPWWW`` Γα(--5›Ν‰φππŸ%*D ΖΌyσ ƒΝf«¬¬tΗμΨ±γΑƒgϞ}τθ@Πj΅x<ώ₯—^ϊκ«―ζΝ›Χ“ƒβΰ˜6m‘H―ΆΑ`P«Υ …ΒΝΝν›oΎikk{ε•WΒΒΒ/^ 6’V«=yς$κžš} ξdTϊ£K6;ƒ9rδˆZ­~τθ‘L&S©Tf³t½^Ο`0t:]ο67@€9q>`°X,Η«­­‘‘‘ΫΆmc³Ωƒ [ˆΑ`˜Νζΐΐ@Θ¨€6žžžΝΝΝφ}πΰςΨ‘Œ Hee₯ΟάΉsOž<©ΥjW―^½zυjψ—ˍ‰D>>>§OŸΞΟΟwΫ]»`ΐr2@aa‘N§γrΉ‡ƒΙdR©ΤΆΆΆξξξ1cΖΨl6³ΩΜγρ, Π?@_w*!·ηΜ™3=<< ΐF·Z­‰dΠ AΣ§OŸ1cFyyyQQQjj*l4.—k±XΐΟαp8Əξ»οzyyΉ»»―]»φφνΫb±’‚xxxπΓ©©©7nμμμT©TT*Υh4X–P2Πd2ό΄Z­[·n}σΝ7g͚uώόy•Juοή=…BρΰΑƒ·ήz«‘‘aϋφν?ώψ#©e2ΩΗ|εΚ•[·nAWψM›6UUUI$ ΣέέέάάΌ~ηπΡh½T*… ΰΌy󚚚4MVVΊ•―6‡ƒΝfWTT8― Œ™Ιd?~όκΥ«---00Ά¨S>ψΛ/ΏŒ;β-_~ω%, T|υ]«{bp@, :ήΤΤΤΡΡξ:η+ΉvνZ…B±mΫΆλΧ―ςΙ'‘‘‘EEE111p ˜ΠeG,£Υd\b―θhm6›V«%‰§OŸŽˆˆ¨­­εσωεεεΓ† ΛΚΚ"‰«W―v8eeepnςxΌ'N χμΕiΟn·ƒ*ΌoίΎ   ΘΘH0΄ ο"ƒ6lΨƍ,X@‘P€R)‡ΓAkοΛd2"‘¨T*U*Υ‰'κκꀂ"::zΒ„ ήήήΝΝΝΕΕΕPς”ΕŠŠ *•ΊpαB"‘¨R©L&SddδΌyσ\\­D"υ,DFFΪνφ’’’Αƒgeeϋˆ‡ϊδ“O]»¦Χλέέέ=z4sζΜΌΌέΡΡQRR•Δ***p8‘H€Σι™™™žžž#L  Hm±X`/‡NζεεέΉsgϋφν:nγƍ·nέ5jTbb"ƒ—o[[[SSΕΈzυκk―½&‘H.^ΌŒR©”Νfƒο;Υ, Έ9ν½ζΥW_…PΒ‘C‡‘Ιd`Ψ9::φ%T*΅££Œ Ψ‘ŸšL¦9sζΌωζ›§NϊρΗkjjΰ”I§ΣνρpΞΞ΁υυυpΕb±z½Ύ/`nψπα>>>/½τœ4<<< …^―·X,f³ΖΧW`’Βά­­:~όψρϊϊz‰DUYYYSSƒΕbu:&&†Λεz/::zώόω―Ώώz]] •œe2Ω{ο½χϊλ―³X,H%ι;¦θ4pssƒc­[·ΚΛΛΛΚΚf͚΅vνZΈ‚f£Gvttd±Xb±˜Ιdr8™Lφ+$ΩlΆ»wοnΩ²Η8pDmίΎ=11A‘PΘησ‰D"‰D’Σιj΅Ϊl6ΣιtH‚†ž——W]]]MMύ.άΥΥεθθH£Ρ˜L&£ Π@Ž=ϊϊλ―ƒΉL Φ―_ίΧͺC λοο―ΡhΔb1‰DZ΄hΆ³w€υΕN1U=}=u‘ή`h!//―'!š^°qγΖ1cΖμέ»,τλ¨ν΅|ωr(*ΪΦΦVSSΓ`0€δΜΣΣ™L€!Ο‹ΕΚεrπk4£ΡΨήήήΥΥΤ111"‘θΥW_­©©1ήψΞ;οΔΔΔ΄ΆΆιt(lΕεr ŸΟ_°`Αˆ#¬Vkmm­D"ρφφ~ρΕ·lΩςε—_&&&ΒΆ΄,,‹Λε^Ίt)..N ”••A*Ρh>|8ΰ$ ECCCtt4δνΒ¦ †H$‚ζ’R©$‘HξξξΰΊ_ΊtιΈqγt:]ppππαΓ©T*©ΑœΧh4΅΅΅;wξΌxρ"<: …Βd2εr9 YƒΔ t ;{φμΊΊΊΘΘΘ;wξτςcΑˆ―^½Ϊb±μίΏŸD"™L¦;wξ444€5c΅ZνE€τJ(‚ε‡’¬@x<ήόωσΛΛΛO:ΕγρΊƒ<ŸššZQQΑ`0Ž9rνΪ΅7np8œͺͺ*Ht3(**J‘P>|˜8‘J₯^^^ p8ά)ψQ'+€>UTTΔΗΗ“Ιδ₯K—ξή½ϋάΉsΰIOO?zτhSS“››ƒΑ€ͺΎX,–B‘˜ΝfϋPΒΘ‘#§NκκκZZZΚεr!υ5--­’’"333??Ρ’EΎ}ι%Ίr‘':N―ΧϋωωΕΖΖh40ž’’’ΐΨ₯Σι cΩ²euuu<D"ρxΌsηΞιt‘P(—Λ;;;Ωlφ²eΛ…Ηγm6›D" NJJκθθxόψqeee}}½ƒƒƒ^―Χj΅V«•Α`μή½;''gΪ΄i...B‘Πd2q8±XόΕ_,\ΈpφμΩ8ΪδσωP5j™9s&䂉Εb@Έ`˜;yςdUUUKKΛάΉsΑθωζ›oΐ°€ό\&“ ΦΏ½«£—ο?%%%,,μδΙ“θqqq‰ŠŠrwwν΅ΧΰJ΅Z v'B*--…!‘‘‘^^^ΐ έ ²X,ΐhΣΨΨ(ΐ§ˆš­ααα`§φšyς$4qι%"‘xϋφm˜ Ζh42 p@Z,–G544„††Bd:ήΪΪzσζM‘H$‘HΜf³Νf«¬¬Τj΅€Ν’Λεΐςξ»ο~φΩgYYYiii&L‚Ζ†††ζζf€ώ@ ½;θ*l`š;88@τ ΑΗΗΗ`0”••ΉΉΉA­αΠΠPΨΓΒΒͺͺͺ 9J₯ΦΤΤ¨T*q05X,X$pR©΄³³3**J«Υ~ψα‡h²0ƒΑ P(|>ŸΗγ9::a–Α`ΈqγΖ‚ `)•ΚΊΊ:2™\WW‡ LΐS#σε—_Ί»»Ώχή{†CdώύŽŽŽ…±Εb<Μ«―Ύ ‡)S¦”””‚ιΣ§/^ΌΈ³³‚ͺ8N(666ζζζB …βθθθξξT_=ƒΟΥΥuϊτιnnn ₯‘‘aβΔ‰λΦ­«««‹ŽŽζp8C‡F=&“™””tτθΡΆΆ6«Υ G€G'Γ;Η~€>χυυmhhxε•WPp‡“H€ξξnγǏοίΏŸΕbωϊϊšΝfƒΑ±]t/ΘΝΝ=vμΨθΡ£‡Κησ³³³m6•J%‰°uκt:΅Z­ΥjρxΌB‘P*•ǵ™B$΅··H€ΦΦΦκκjP§¨ω1gΞ³Ωόν·ί:99ύτΣO{φμ)..ž1c²92oή<A$Iww·§§g@@πώ`±X@mΒzΟΛΛƒ Z«Υ’H$₯R zΟΩΩrόύύoίΎM§Σ›šš€‘P©Tj4x8h~˜­—/_ž5kΐažόόσΟ/Ώό2D`Ο‡ΜKΨλ!Ρήb±ΌτKh2™€RiWW—B‘Έsη>33sυκΥ\.‹Ε*Šζζζ^x‘££ΓΝΝ Φ°ί0™L8½Q©T4’όπαCH εh΅Z}}}?ψΰ€λbzςψΰΆ½½½‡ X%4ΐJωε—_~ξΉηŽ= ΐ €'₯Εf³AœƒΑμΨ±bφ<―ΉΉ‘NNN°Η˜ΝfFή;°0 Ϋt:ΝfÎ{0ΐΪ¨TjDD„D"ρςςŠ°?F{xx0 NΧέέ-—ΛM&S]]L&KNN¦Σ郑³³“@ |τΡG:ξΐ2™L.—;99έΈqcΤ¨QC‡U*•>|ψπ!”ƒX{MMMuu΅³³³Υjυφφ–J₯ρρρεεεrΉœΙd’ϋ’L&ƒbΙ p01117nT«Υ‰€ΊΊΪέέέΥΥΥd2A˜‰N§F•J-ΏτK½θ< YD₯RΉΈΈ WWW>ŸoΏYBšχψργ7nάxωςe{†XXλΧ―Ÿ0aBQQΡϊυλя ±NOdAΕl6εKCeοή½555YYY0ϋA π,4-A…BαγγΓεr³³³ ‹ŽŽ&­­­•••R©Τl6οέ»wεΚ•R©~ŽD"UcΊυ £€sbȐ!111Σ§OΟΛΛ;~όψΠ‘Ce2Ynn~ΊmΫΆ:t A<Η£Ξ€΅™L&ίάܜ‘‘Έ`ƒqφμΩιΣ§ύχ999€αHNNŽŠŠzπΰAkk«F£‘Σ鞞ž‚Νj΅’J@ΠΦΦF&“Α QZZ*‰( D ?ργΗ­­­p>~ΪσG…J₯Β‘F―׏;V*•‚Ξϊp;S¦Lqssλμμ‰D8ŽΛε2 FγββΞc•JžΪ‡’ΙdΫΣUVV‚•Έ˜ižžžί|σMee%€"έ»woξάΉ‚p8''§φφvXž,λή½{Hcώ…εœššΊbŊݻwŸ>>p# ]‰j΅v#ηννέΡΡργ?8pzλιι ^A²γ¨R©ΊΊΊκκκš››Αά:X,Ά€€™!!!b±Ζ"€ώώώJ₯ςπαΓΰΟ†|OA pP©T”35μ0 ¨YˆoθtΊ_~ω(¬e2l₯B‘πΘ‘# θ?»»»αΤ SQ§ΣQ©T•J…Εbήš%ξξξ‘‘‘ Υ/]ΊδξξξοοΏrεJ'''πι* @  +**ΪΫΫ;;;aA„Ν›7‚‡ ˆΩlΆΟ`ν;K{‰­‡δλδΙ“!>>ΒΚψ‹ΕpDquuΝΘΘωK—.%%% …ΒŸ~ϊΙh4:;;Ÿ8q’ΉΉyωςεǎ“J₯<F£ωϊϊΊΈΈψϊϊΚεςœœ‹ŠΦ£Ιd:wξ‹­V+Ke±X;wξtqqΉpαδ% α γδδD$εr9T1 ΰ:‚€ ύέY­ΦΠΠΠ'NTUUeeeMž<ΉΌΌ>WάάάvνΪυΥW_ρω|°ΪQ²ΩlF΅±Υj½|ω2κ‚₯R©T*‡ΓΡιtτΈk6›ΑΙΝd2akFA €³rεΚΎt•π(222’““[[[ί}χέ­[·fdd0™Μ‹/.[ΆμΑƒΨ΅kΧθΡ£a +++Ωlveeedd$@`‘M«ΥΊmΫΆΎ”$ ΊκμμL‘PH$’ƒƒΠξ_GGLj#|||ššš‰¦ξξn(ž >{π^υΥWQQQD"188ψω矏‰‰ε ¬CyyyƒK4 Mrss lllόn2™μβββζζΖd2ƒƒƒ!*aλΙσ²Z­P|Bΰ&“©­­J₯1X`pφ²Z­ΗŽλKu“ύβ‹/j΅Ϊ¦¦&΄Bl½ααα{χξ½}ϋφςεΛ‘ž$ XTW―^έΉsηΉsηΠ5“——·rεJ@M ‚κκj‘HpαΌΕεr©T*ƒΑΐb±PšI£Ρ@00mx<žH$~ύχ¨Okΰ3-Ϋ‚Ηγ{±Q―Y³&33σΗΔγρ---PG•F£Α~l±XΒΓÍF#FΣh4iiiB‘°ΊΊ€ΰ²f2™‘‘‘ …Β`0ά»wΣ¨`0gggOOO Of³Ω„₯₯₯ λEεοοΏaΓ†‡Β”"‰—.]*//Ηαp€&&//履~‹Υ\«V­βrΉŸώ9Š·)..†Ÿƒτ@ϋl T°XlDDπ­ΐv‹΅c^ΌxρΆmΫΐ'Š ŸΟβ‹/ΚΚΚΘd2‚ ...oΏύ6τ„F£₯¦¦ΖΔΔnίΎΕb›μ°he2ΩΤ©Scbb†ŠΖχύόόλλλΡGqοή½Ga{hi‡gΦsηΞEFF8pŽ’]]]qΌ~‡ oΤ‹P«ΥŽ92;;Bx°Θ±XlTTδT<[™LΦΨΨΌ pzΓαp v8ΐd2ΫΫΫχοίΜ;&“ =Ριt Ζ΅Sγρx*• 8Th YΘύόaˆMιυz&“ JTν v½vΉΉΉkΧ…‰6.— ξ0(ŸώωΎ}ϋ’’’`ηE4‚p8œoΏύφΟ__ί€€ΰVKyy9aH$RVVΦ{ο½—€RΦί»w/%%επαΓIII—/_.** …ΏΑHxV!aaa~{W „††zxxtttΐ(ΐΘ‚ΖvrrκκκMCi2™ ρ  ---JE4Μg³Ω’’’ζΝ›7dΘ₯R μmmm~ψ!š-ε—_rΉ\πΩ Ι_πέ‹/~πΑ………½ ‹ΕJMM…’’l6œ[0o._Ύ,D"‘ΝfσπππσσƒάupοK$‘HΤrλΦ­ίSΚ¦‰ŒŒ<|ψ0°σΓ™L­Vwtt€ne³ΩΑΑΑΥΥΥ`CčH$’Ιd‹ΕΒf³έάάZZZh4ZSSΣΆmΫώ€N" ΰΰ`HQb2™---Z­Άͺͺͺͺͺ Nοξξ――7 iii*•ŠΛεj4š²²²¬³Ωμθθ蘘΄εŠŠŠRπ%···=z%*ƒa’Σι'N¬©©Σψ]¬Vλ;οΌC$όρΗΤΤΤcǎ•••‘&œG%‹a?»rεΚ3εβόCΖΘΫΫ{τθΡρρρ€ΕbMŸ>&•J?~nnnff&ŠBΏ Έx`ό‚λ‰Dβ°aΓ²²²ΐGA.“Ι‡8BΥl63™ΜŽŽ`φ‚€>3‘˜L&δIό]εί%‡ž9sfpp0€ΟΫΛ{ο½ FΉ½0 θXpL‰8Λ’~@ Ό½½Α§‹"―p8θ·3gΞμάΉ”'p™ •B‘|ϋν·¬Qφ$<<|αΒ…="™™™wξ܁”#€IΘεr©TΚd2===₯R©Νfƒΐτ]»ΖεT”hθ IDATΚ•”””δδd«ΜŸ?ί~Χψ3ότ°ΑagpUβρxΝ‘ychώšL>~ˆY?™ ψw Ά‡;wψπαοΎϋ.Ta‚ΤB¨’ωςΛ/WVVž={vρβΕ!!!ΐxŒb“‘žs'$X =nX΄}•JΨΥ^wιμμ‹ΕR©Τh4τ ΐ4&“‰H$ …B‘Pˆbk`S—··χwί}7@Lξο—ǏoΩ²ŽY‘»»ΫΥΥuȐ!°»‡‡‡Σh΄Σ§OΩgEΨOkHε g?Lcƌ)))ΉwοήΠ‘C{… Ωlvnn««+Xu؞R ƒ‘«« τz=б³Z­sτππhΡΛ/Ώ|ϊτi …βιιιηηΪˆ¨@ω]p€Γb€€#ΜΑ΄΄΄ΒΒΒ©S§lάΈσŸlέΊυκΥ«ΰτJπz‚³N§CΘΙh4‚9B₯Rœœ’’’t:»»;ΗkmmόΗ΅kΧΊΊΊ`υ‚ΰ&€ΐόBΟΝύϊΈτM4A ˆ~φ#PR j}εΦ­[x<žΗγEDD8::vvvQ°‡‡ΗΘ‘#F£ΏΏγǏηΜ™γζζ†ό·›ΌΞz½Ύ££# ΐή\Ę··χγǏΩlv{{;4IύΓ?˜L¦°°°¦¦&(Ug??!;‹ΕšL&πί?γϋ;°boΌρΖΪ΅k«««©TjUU•@ `2™|>ζΜ™ΗŽDισΟ?ώ}€:ΐ GΝϊ_~ω₯»‡nAx7oή‡Γ ½‡ 2™, «ͺͺ  7€ 2ΊΊΊT*T8}Λχ¬-Y²dυκΥ:ΞžLΐj΅N˜0aζΜ™«W―ξkΥ!B"‘žΈΊΥj5ͺ]™rύϊu`4$“Ι(£ L?@ζ:tθπαΓ>>> Ζd2Βœ`ŸΘ&ϋJUUΥΚ•+cbbh4‡«NJJjhh„¨Ωl¦Ρh@&“™Νf.— ™m ­――?sζ °AδχO5©Ακ…Δ¬'^πLδ_Ša‡žΑ!ακκ Τ:ΞΡΡqζΜ™………χοί ΛΚΚzτθμˆpcπE¬ΥΦΏKα9†ƒ°X,&“ P‰L&nΝh4R©TΛεr>Ÿ___Vh{§ΛŸ$“BL})Kϊ—… φzΖ‹L&ƒ9<<άΕΕ₯¨¨ˆΓαŒ3ζψργp’λξξNHHxσΝ7Α Gέ γααA$‘ž$¦Ε‹ƒSΦΩΩ9,, xe‹‹‹‡ βββRRR’’’’’’rηΝΌΌΌλΧ―χ’Yyψπα­[·†Γα† K‘PšššΤjurr²R©δσω/½τRVVV[[[JJ ƒΩΎ}ϋωση#""ΐ’γεΡ…šuR·:₯₯ε‰(œ«RRR2sζLππιυz€½ͺL*•‚f<ώό¬Y³vξάΩΛmŒΔZ­V«Υ2™L₯R‰b ίΕΣΣθύ, Τγruu’'“Ι€Ρhόύύ‘ 8£y±=ΌΎπšΑ`@©θΏτ‘ό>εήάά\WWΣ) @­VσxΌοΎϋ.22²ΊΊZ"‘¬Z΅ŠΝf£4{(2τΠ³Ϋz²άzΑ[ΑΣάO$ `ΏPΦΣAAMΓ²Z­ώώώEEE{χξ}α…l=4@πbϋφνΕΕΕ½²Q±ΗDώ»dξάΉ>>>cƌDςΰΰ`«ΥͺT*•Jεwί}WVV3Θ( C &‰?΅“&“ Ž£PQӞ¬»A+2ό{εO1μάέέ}||ΪΫΫCCCΩl6x_Υj5ΠB„¬¬,sψωωΦ’–h h^m/eτΟ‹ΕβγγγζζQŒΦΦVΰα)ZΗf³Α©—@ DDD„„„L›6 ιq[Β]©Vݟ!£F3fΜεΛ—[[[)ΚζΝ›άάάΊΊΊΐ‰T&‘‘‘λΧ―///tˆ•JeUUpΦ@ΈAΒΒΒΈΈ8ΐM›Νf¨AT*;F£Ρξέ»WTT΄zυj`˜Dϊμ^V«u̘1°ΓΑ~/•Jω|>˜‰Z…Α`AXXΨύϋχCBB:;; ΐό‡ †–‚{Ξ`0ΐŸΟ///KŸς?OBxxΈH$’Σι2™ ˜ †Α`€ςquuu“'OφρρΙΜΜμυέΖΖΖ{χξfπττ6 AΒΓΓcbbjkk‘@­——X„oΎω&0ψ«TͺaΓ†}σΝ7€;D‡^tvv666‚Mo³Ωϊβ·ώ±βοοΨD'''@ΐεrΙΦ`0¨T*8ήpΉάI“&?ώΣO?νκκΒΪUŠCΫ`ΝςAω b―œλλλΕb1N§Ρh|πTu:­;vπωό΄΄4δ)Ωpbό+{ώG €…ž>}Z£Ρ@^䬀cΨΑΑ!""Žy؏ 9ƒτος£‹δO1μΣΣί}-ωϊϊͺT*B\ΐd2‰D’Ρ£G„uλΦ2¦£ ()ΰαό3zψη‰Ρh Ÿ2eJNNΞΘ‘#‰Db}}=PR‹Ε::::99yxx8;;§€€@ F₯ΎΎ>!!aΜ98.**Κh4’H$Ψ§»»»³²²”J%™L -..^°` ΉƒΔ΄”””+VΐυV«ΥΕΕeη͏?F󽛀7Θώ°­[ZZ |­B‘hkkσππΈώ­[· ŠτΤ3%‘Hh0εαB]«Υκκκϊ@³α’P(vοޝ’’Βγρ b›Εba2™0²T*5)))55rεP\ λ―ΏΦh4 K—.έ±c€ͺώ|{ΤƒqwwZ5€‡‡ΙdBΪ? λAμV ΄C£ΡΆnέ ΔN‚8pΰiΰ•¦ΰρxΐh:88.M&ΣΓ‡‘N¦GP8 ሎŽt'I2uκΤεΛ—o‚ ΑΑΑΪ Uς (££’’ϊiησΟ?7™LPΆλί%~~~Γ† knnˆ6`Tv!°κPΦ!ΐΩl6XΏ€0f0eeeUωo‘ξdPε@ P ήHh€Έ9Τ’P(D@zJ(‚ίŽJ₯ΊΊΊ‚υπ7ίΟ  Κ όενξΰθθ|[€BρχχΧj΅Ϋ·o‚θ~δΠ‘Cf³ωίhΨa0˜ΨΨΨΈΈ8(œmP&ό2€  ’ΛεΐKο;·B‘ zε•Wϊ)Y4(ΏY »AωŸ‡C Ψl6p ’I[‚h΅Z{ώLx %e€Ύ[­V“H€λΧ―ΌePεS€`ς#]]]Κ:¨  4@SοοοάsΟu’H$Bωƒ2(ƒ2(ƒ2(΅μΪ΅λώύϋl›ΡΡџ}φ‹Εϊc›”A”A”ŠΰlΪ΄iH»μ  Κ όΕ€Eφ…ΘΎψβ‹ίxROϋμ? …’πωηŸ‹Εb‘P•‚;rA”A”ί#›έ9qήήήK—.5™Lx<>!!αΜ™3mmm™™™;vμhmmύW§M \ΠD6ˆχνΪ΅λΪ΅k³fΝϊ»ϋ5(ƒς?*}λ?~<88ψ7΄ƒτ$v<όσ[·nuvv.))ΙΚΚjiiΡh4X,¨XžΥj{Ν£ο•kγκκzξά9διeLePε€όm†€n-^Όxώόω$ιή½{,+***44T"‘pΉά1cΖDFFώ/Xu hrίζΝ›Ρd+ΰ½ϋ»»6(ƒςΏ(ώώώρρρIII~~~P€aΥͺU~ψα3΅γδδ΄nέ:wύϊυ7n$%%ΥΥΥέΉs‡ΙdB™A///ΰθ_Pϋ ε0ςa(Μƒ#Εησ) zΩ³ίύ?Z „ ZΦΦ#Ώ§Mΰζ€ΗPZAPφ`4IƒVς όΕb?εΠ΅ίkigffFGGηηηNv°ί+w`³Ω3gΜ7o^XX‚ ΛεΦΦΦ>~ό-9?‘R·πππφφv(ˁ $ Κ  Κ_#° CCCλκκΤj5L6›νΝ;‚9r€  ΰ™|πΰP(”Ιd˜6mZee₯X,.**Ίzυjgg§P(΄ΩlΰόUEτ_B‡ΓΕΗǏ?>77—J₯ώκυ7Δ²βζζΊfΝ6› ˆ}0ύχHMMΝώύϋ‘AxΜ ό3]Χqqq»wο^Ώ~ύΒ… aΞ#ς·ΩLΰŠS*•Ǐ?rδHuu5‚ f³Ή©©‰D"I$ϊξ™V&°dΩ«HτuFFΖ’%Kΰυ΅Ϊ› <’LAΟά‚|ϊι§<O©TΒω—V›”― ΠˆŽŽήΊu+x5~συZ†€+ύ{Ίδγγ£ΡhΔbρ¦M›p8\\\‚ ·oߎŒŒ|¦―_Ώήέέ-ƍ—’’ςΓ?΄΅΅1 …"“ΙΦ―_ΧΠΠ€τ)šWμCd2ΩΙΙ)88ΨΫΫΫώšΰΰ`ƒA Ž;¦ΣιzΥΟ πxΌππp??ΏΎ}πΑΟΪΰ(`WAΑ!=U•5jTfffvvv^^ήΊu됁©ztΞΫ_Μεrύύύ—,Yrωςε`±X(s 5¦θΫ”AιOόύύg̘1i€Ρ£G;99!=Ϊ ..nβΔ‰΅΅΅»wοώμ³ΟΠz²σα‡Γ[)(΅ϋχοwww+•JG₯RηΝϋφΫo?SΕX`>΄Z;vlVV–Εb‰ŒŒ|πΰ‘HόωΎνωTα/(¦}ϋφ1ŒϊϊϊΙ“'#υPΰέ  Κ3ΙΘ‘##""Š‹‹Ÿ‰₯<όΞΞΞF£1222**jϞ=π‘=ΰuήΌy6›mƌGŽxΛ@͍ΒΞ`bσωόmΫΆ=χάsMMM*•*==½W₯ΏRPE„ΕbY,–ΡhD΅Sffζϊυ띝Ψ¬άC‡eff2™L½^_YYΙd2)JkkλΪ΅kΑ θοοZQQρ« ’ΕI €P(‰‰‰2™μΜ™3?¦P($©  ψŠΡΝ@: γλλλ»dɁ@"‘t:][[Ϋ•+WΘdς«―ΎŠΓαΤjυƍ—,Yςwς†{ρχχ―¨¨πυυ½wο^qqρΉsηŽ9…Ή½½½_xα…κκj¨ <~Β΄sηΞ‰'j΅Z6›Νf³ιtϊ/ΏόΤΤ”žž~γƍϊϊzϋ><“τЦΑλI“&!’ŸŸ{ δO_(Θ.‹[›ƒςGΙΣFΦΩΩ™Ιd …BϋJͺύˆ§§§V«Εαp6›N§ ƒΑΐ`0nέΊuαΒΈμGkόχπ;…ΗγUWW‹Εβ––Χέέ-‘H²²²~sƒώώώΩΩΩx<^&“ιτŠŠŠC‡!šΈo%  mD€³³3!!‘€€€ΉΉ9%%E τcΟΩCm*]Π_ Ηνg’ŸŸίΛ/ΏμββςΝ7ίDGGƒφΦΫG―ί΅kΧνΫ·;–——Ηb±<Έo(η&&Ζώqυί¬Ž·ήz+55Υh4γšJ₯ͺniia³ΩνννG%‰999εεεΏsϋ@ηΨιΣ§;::V­Zυ¬…Œν;NYτίψψψ 6Œ5jŊϋφν`ƒθvγααράsΟuww‹Εβόό|6›½pαŽŽŽ3gΞθυz›Ν6@Cδ\ rζuγΡ£GΙdς_|Ρέέ]TTd_e§―  eH1 F=z΄···Z­Ύ|ω2“ΙliiiiiA 8ύΏ/ώ 7υεβΕ‹ "‘H₯R‘SYY™ššΪ·μ­%ƒ‘››λθθ5©x<žP(tvvφρρ)**ςφφΎrεΚ φj‘Οη·΄΄τϊE¨(οDFFNš4©₯₯κ6φ/ ΓΥΥ•@ @;ΰ³Όwοή­[·―\Ή2vμXΔnρ{yy577?±)¨FDž››ϋθΡ£)S¦`±X±X¬T*‡~νΪ΅+V δ  7‹Α`˜L¦R©œ2eΚΪ΅k™L&•J•ΛεF£‘J₯*гgΟ.X°ΰόωσ―½φΪΐ[ώύώ:88( `{φ¬ύ„GEB"‘ŒFγ€I“>ϊθ£ΗK$(” I»rΉά`0˜Νf …άά|όψρ~š‚Šοˆ]„422ςγ?†ςΎ‚θt:FΓ`0ΪΫΫιtzCCΓ€I“:::ž5:}F$//oάΈqώώώΰΓKIIx#H~ΰp8|πV«­ͺͺΊpα‚Ωlξθθ@―xz}}}FFΖ35n/0|Πm‰tμΨ±sηΞq8œόό|Η°·¨%I$0ΎξξξK–,™0a‚F£ΩΎ}ϋwί}χL½b³Ω~~~wοޝ1cΖτιΣω|ώ‘C‡|}}ΑWΤΤΤ$‘HΎύφΫΎ—{ι–^StρβΕ>Ό~ύϊΣ.ψ[φ5π«`'ggηY³f}όρΗΘ³τ<,,,66A'NΨ›Βo½υΦϊυλǏοδδ»iΣ¦ίPQΝΫΫ‹ΕΚ5«­­M,γρψϋχο·ΆΆΒ§nnn‹εW ;Έ¨H˜ššzχξ] “ξ5–ΏgㄦθtzUU‡ƒ ±L&‹ŠŠJOOΏsηN~~~YYΩΆmΫϊι$‚ °`V\ΩΦΦF"‘δrytt΄ƒƒ‘H€R©:££γΐΝΝΝ`υςlυ …’Χλψα.—+ !£νΑƒφΧΌφΪk, TσψργŸΦ<’₯K—Ξœ9“N§‰D(¬R© nJJ ‰Drss“H$θ· X,ΦΘ‘#ϋι'‡9r€‹‹‹F£ιμ쌎Ž3f —Λ…\c‘P1θGyyy‰D’5kΦ Π7€=9rdaa!˜YJ₯ŠK"b΅Z™L&`υnέΊεθ蘟Ÿ>§ ‘H4™L'Nœ={Ά‡‡‡N§kll”J₯ρρρwοή]½zυΐ›κ+Λ—/Ÿ7ožƒƒψ§W\9ποφέπx<†ΆΩl<ΟΟΟ―‘‘J₯R(@0ΐ)ϊD}vτθQτ1cƌ5J"‘δηη·΅΅υΣ(Cθm``ΰζΝ›™Lfkk«Z­vvv …^^^f³Ή½½ fΛ—/·WS}΄Ί··χΜ™3—,Yb2™$Ihh¨Z­f+:NΑŽŽ//―ψψψ–––g:~τzΌιιιǏοκκ’P(›6m ³ σžžžUUUPWƒΑxyy­Y³fŊ,kσζΝ“'O&‘H$ιΥW_E#_ο*€άΒs†{\Όx1›ΝΎuλ›ΝNLL|λ­·ž©M{ΑγρΛ–-9rdrrς7ί|σΚ+―<ΣΧΑž†Ύωωω566ΎόςΛ0mqssS(ύL!€ΗΔDz¬y›ΝF$ηΝk΅ZΛΛΛO:e?iνkFυ¦Ί‚ Š=L~θ˜8N"‘,\ΈpςδΙ6›m€I€Xˆγοοΐαp°Xlttτž={bbb¨TͺΑ`(,,ά½{χΪ΅kǍwρβΕώ›²χΨ! ΓMOOηrΉζόωσ`;2™Μ‘#G&%%8qβW0vθΙ`θΠ‘_ύυ–-[(ΚώσŸ^ΛοχΈC Η\.¦—T*Υj΅...]]]wοήυρρ9{φl„F£qΛ–-θϋ'OžΔ`0Χ―_‰D)))±±±`5ΒΦΥΟL‚§©Χλ—-[F§Σ8ΰιιI&“'Mš΄bŊoΏύΆ¨¨hΑ‚ &“©££cλΦ­ƒ‘Ÿh(,—]»va±X½^±KΘσΓΤb±˜ΝfP—gέΊuΩΩΩώώώ{χξ}βC³Z­ααα›6mΊtι’Εb ‹Ε‘‘‘ŽŽŽ Γl6K₯δδδϋχο‹D’?ώX( ©TΪοhτ~ γφμΩC V―^-—ΛQ₯f³Ω.\ΈpαΒ…ŸώΩΩΩωo ŸQ(”ΨΨΨφφφΜΜΜΖΖF¨λϊφΫoΧΥΥΩWi7nάψργ[[[[(νŸ/pNΐb±θιpώύf³Ωέέώ'J»&L MOOΗγρ …’ΎΎžΕb………i΅ΪΦΦV@gΝ~œ+°–sssυz=›ΝΆX,£F …F£±««‹J₯zxxΐ€ Ε_ΤΦΦςωό€€$HSΈ˜L& σγ?ž={6777$$$99Y.—«Tͺ'ΒU`q‰ΔkΧΕΔΔΰpΈΞΞΞ1cΖ$nΰ‚j¨€>x>L&J؁mΑd2bΨΩο.φΞ¨χΒ /<χάsΕΕΕΧ―_g³Ωύλη^ŸΦΦΦNŸ>½’’Ηwuua±Ψ΅kΧ"ςξ»οΖΔΔ‚ξξξώέ `±yyy­Z΅κξέ»?ώψc||ό¦M›ήύŽŽ"‘H X,–T*νξξ6lX]]„D~Γ>‚ξ|―½φwvppX³f v|πR©|ύχϋi¦ρŒ3^xα…όό|‰ΔγρBBB†ͺR©h4χςς²Ωlf³ƒΑϋμ³ΒΒBΤΒ³—ΎΦt•L&³X,ƒΑ R©¨Tͺ··7“Ι,--EFΆW“Ιτ΄Υ>lƒρΝ7ί0 ΐ•Β·@‘κt:ƒΑ Ρhf³yλΦ­Λ–-ˆaηηηΗεrα΅ΩlV©T[ΆlΡj΅'Nœ0 ^^^ί=€;|υΥW c€QψΎΏλοοO"‘d2™Ιdrtt9r€««+Η»rεΚƒ~Ε°sqq‘H$...ιιιο½χήΠ‘CΉ\^――¨¨¨©©A­<Ώnέ:??ΏΉsη€—φ†««+Τbχςςιt …B$}ύχppΌ}ϋφΐDS–l6[TT”Α`W*š0B"‘’’’ΒεΛ—{]Α`( ¨­Ν›7ηδδά»woάΈqΰ“J₯ …bόψρ‹-²X,---€F$ϋ§‘‚Ÿ8zτθωσηgω<}γ IDAT͚εκκ*‘H¬V+dxιtΊΫ·o‡‡‡Γμ<}ϊ4€ja“ξ§G}nnn555A$Ή»»‡‡‡S(­VλθθH‘P:;;ǎ+‹ΫaΞ.&“‰L&k4šΜΜΜϊϊϊ‚‚‚S§NΩΫΩΎΎΎΙΙΙ₯₯₯}]τ |Ήzυκ₯K—z)ΤΥjμΥΫ'‚ŽA Ν›7oΫΆm7nœ:uj}}=‘HΜΞΞ.--MMMMMM}ϋν·›››I$’Εb‘Ιdp;Ώα9όf‘R©x<^§Σ=͜B•ώοό!°Ψ`:κqqqΑb±pοpΝΐU<FΫ·oΔ‘jkkƒ‚‚t: ΚΉ\.€l———'$$lάΈρiMA’DpppNNΠRϊϊϊj4.—k6›Ακ:}ϊtiii~~>H:uκTCCChh(Φ‘ž· θ\(.ήλη`V@¦‚ Ο?|iiikkλΟ?xπ`γƍωωωπΡ3΅ƒNοΎn ψˆΑ`‰D›Νσ\˜}ι5Iz-τ_ΐ(ΗΔΔlΨ°‘­­ν?ω‹εσω ¦½½½o³(˜$88822²€€A‘H†NTTΤΕ‹έάάПΞΟΟ‰D€υαρxυυυφ Ϊ›˜°O …B₯R™––βζζΆcΗ³Ωj΅Z•J%,I__ίΝ›7τΣOˆZ τΨη<<<ΚΛΛύόό~ϊι§aΓ†!²xρβ~Β1ƒD"a0£ΡΨάάάάά ή”ύϋχΫlΆ?ώΨΙΙI©TšL&OOΟ„„ΠΥ½u«@ž =τ“Λε:4 @§Σ‰ΔŠŠŠRWWΧοΏn€ή ϋhυˆ#V―^M&“ρx|KKΛάΉs![bΰΨJ W\Ή2$$‡ΓΙεςΧ_Ξ0x<><<|Ȑ!;O;Πs€€€ . †\.2d™L.--ΝΜΜ$“Ι$iνΪ΅555&“Ιf³………>QCڏ―ƒƒCXX˜ΕbQ*•d2ΩΟΟ―«««₯₯eϞ=ΞΞΞυυυG©TήΉs‡H$ςxΌS§N©Υκ'ŽΰΡ]]]oήΌ©Σι€R©Νf«­­Υj΅f³Ξpˆe0‘‘‘ kkk‘ž3€}S¨^…ασφφφρρ…ŒΗγ!ΰT*%ΙΈqγςσσσσσΏώϋ΄΄΄«W―"ςD«%Ÿ’3@ 6,55Υb±TTT¦€€>Ω°CU† ψ|ώ·ί~λξξξββ’V«=<>>j΅’Ζ'Nœθκ겟ρOĈ`0غƎK£Ρt:]ίαttt΄Ωl|>νΌΙd‚S__ίk€ΑΛ½eΛ–κκj…B±hΡ"NηααQZZϊζ›onΫΆ-''‡Οη—””¬Y³¦€€ΔΓΓΓf³Q©T2™Μf³/\Έ`}βLκξξ†{Ρλυ«V­Z΅jΥΤ©SηΜ™σε—_655%&&Β§Ο?<t&βB聁QQQiiisζΜ ϋΰƒΎϋξ;Xωφ) ˜ž²KΰyB›ΆΪU”>Τb±€"ΈuλVaaαΔ‰a7ιt555mmmz½Ύ¬¬,00¬yN‡FŠν9 l6@ψκ«―4­Ρh¨TjggηνΫ·kjjžθ†΄χŠΓ$Dϊœ¨ΰΰθζζζν흙™€P(8N[[[YYΩΩ³g[[[ΡΉ:@sαiͺ}Տΐ€XYY οΰρψqγΖαρx”ύ]tΒί7ί|τ―··χύϋχύςwμΨρΡG pΧ9::χΚŁ׀\Y½zuFF†ƒƒCGGΗΥ«WCBBΎώ{ϋu‡Š««+,|XͺJ₯fΗΈΫέέmŸΖώΔ3£Pt‘Z­ΞΞΞΎ|ως3mΐά‰ŠŠ2QQQπ&<₯gj§ΧΕ}Ώ %ΛPƒΖ~ωτsΤι₯ Π¦ΔbqllμθΡ£:$‰ »B‘θ»k’·ωΚ+―888dffšΝf:n2™ŒFγ—_~yβΔ‰™3gšL¦υλΧC0Z‘P<|ψ°««+++λόωσφͺ¬t…"’““³|ωr@ΐf³›šš8‘Hliiqww·X,ΰeGW₯νI Ό¨e΄'–YBB‰DΊyσζθΡ£i4šH$ ηb]]έ“‡§§Ϋ‚H$:ξιι9{φμ―Ώώ±[㢞’!Z­–H$κt:£Ρ8dΘ{£ƒΑP©T½^DpοΑλ„„ΐΆ··geeΒ>jooομμ$“Ιθ’ι%θν#=ζ,R.—»~ύϊΰΰ`:.—Λy<^ff¦X,_Ϊ .—kμΥ2jΩ/[ΆμΝ;οΏώ¨Q£ςςςRSS¦Nj±XƏ/—ΛNž<)•J«««{mpX,Ό ›7o>|ΈR©δrΉ—.]ςςςςυυ ηρx+V¬¨©©Ήzυκ™3gΑƒ°X¬Ρh€ΣιΙΙΙ{χξ}’ZC=66ΦΕΕεΡ£GΝΝΝπšζŸ–––žž>}ϊτ)S¦„‡‡Σιt2™,ΐ±Ÿ<f―9NΏzυjMMZ­&“Ι φƒΑ@ τz=—Λ₯R©NNN³fΝ²·gzMΒΎ+Λd2ΉΉΉa±Xΐ§ΊΈΈΘεrf2™άέέg̘Q\\Œ Xu Γd2Ω'/ΓΔΣΝΎσ½΄ΜL΅ZΝαp’££T*U«Υ‰‰‰°γ‘ήœzΩFόqBB,E8F—””ΈΉΉa0˜"‘˜žžN§ΣμΈ°°°0ό~K£Ρ@HΕj΅* ???©TΪΩΩιββλΣώ+½μ'˜ξ(Έύ΄ R©"‘(<<œJ₯ξέ»—N§···—••uttΩwΐd2Α,α…f̘±|ως[·n!²rεΚτττ3gΞ?~Όά―Ύϊ*—Λutt½\P½ϊ‰nœΰεV©TS§N=|ψ0:~€{υφφvvvΆZ­|>?11ρwήΙΚΚBΘZ­ΆΧ †‡‡§§§Λd2&“ 9e‡ή·oŸR©œkϊΘΥ«W‡ ‚ώϋf|C€Aˆς@η{1Ϊ<μgbgΩ?ΰββ"‹?ωδ>Ÿ¬Σι:;;Y,–L&λυλp/4νγ?Χ›ΝφχχW*•°–έέέ·mΫVVVvζΜ<ΓγρœΕbqSS•J%‘Hξξξφ†ύi‡Γα\Ίt)<<¬0©T*¨Αζζf…B1tθP©T V‰D‚±ξϋQ σžfζΦΦ֚L&—~ψA©Tvuu566j4šμμlPMOhΣd2έΏίΩΩ™@ ΔΗΗ—••Α€”ΰζζ& Δf³ΩΫ @£~¨b™6mZbb’»»ϋ‡~xδΘ‘ιΣ§Σh΄œœœ‚‚L€ϊ‰©-φw ;<:ΎtιΌΌΌ.«ΥΪΡΡΑb±:Ψyh*)))###77·n̘1O»wΨο>ϊθ#•JuεΚAƏ―V«›ššΦ―_ΧδηηΗΗΗ#’R©bccϋζχΰρx­V‹Α`.\Έ°aΓΰΚΩ΄i“Υj…:Θ8nθΠ‘ρρρεεε4 \ο^^^W\9ώqΦΑΖΖΖΎψβ‹θGp9γƍ2dHlllNNNPPΠ† .]ΊsΣS©“B‘H₯R{D,Oš4ιΕ_ͺzΠΉ………[Άl‘ΡhK—.]ΉrεΛ/ΏΜεr­V«@ ΨΏφνΫ;~TL|L_K?±¦R©ŒFγ”)SΌΌΌJKK%‰ΩlFW¨½Gžp{{ϋςεΛΓΒΒZZZ.\Έ0|ψp&“Ήxρβ~ψ‘¬¬ ‹ΕΆ΄΄444X,©Tϊω矷΅΅ΥΦ֚Νf4εΣ~)a0˜M›6]»vν§Ÿ~κeΐ>Š1ϊιœ9s, 85‰D’½ΧΧΧχ₯—^š>>‹-‚όcύ‰ŠŠ '''G‘PΊ»»ϋnπφτ'v•Ο>ϋ άAAA‹₯«« ζ8™ΠΛΠ9“››;qβD//―ΦΦV‡S^^~γΖ ‹Εf³I$RSS“^― ±Z­?ή·oΗΫK, ΅D{‹£’’ΚΚΚͺ««=zδθθ ‚455‰ΕbƒΑ@"‘Ψl6Η;qβ|₯—³ΚώΑ΄BΗ ψφ: nάΈ‘D">}:**κΤ©SiiiNNNT*Υh40εόωσo½υVmmmxxxmm- `Dεr9`°ΐaΆ„DGGCξŽX,~όψρ¬Y³$‰··χΔ‰%‰L&σσσ[Ώ~}AA}Ή\nff¦P(„€,*°—Γ*€Ϋ'οΌσΞσΟ?―R©D"x"H$R@@δlΖΕΕ­X±ΒΑΑΑίίΗ †~Ό•Ё±cΗΜ™3ηξέ»ΝΝΝrΉό«―Ύϊζ›oPΓAtGCkU‘α2‹Ε[Ɗ+ 9&//―€€δΔ‰Γ‡χχχάΕgŸ}ώΪΖΖƎŽ …βεε5fΜ{ΐ·ύ”f0‘‘‘‡š0aBlllbbb]]:[vΕιυzΘ?EώU…ΨyΏ«nυκΥkΦ¬)**’Ρh)))p²‚p9Ψλ<πφφ†0ΊV«Ό/™Lφππ R©½R'‘ž…I₯RέάάΰœΣςΙ'Ÿ¬Y³&ρkοΚΓ’¬Χφ;Γμ3Μ Ϋ0€€μ*Θ*Έ€G+Χ΅Μ<š·¬SΉt:šVn‰Zα†y ΅"—2MqΓ%PMEf`€™aφυϋγώ|― ¬γιΤwΞw]>x)οΌΛο}~Οσάχs?ΙΙ---L&“ΛεA£ΡnέΊ% _ύu›ΝvθΠ‘ξξn…BρΰΑΧολλk0’££εrωΑƒεrωύϋχ]Wΐ·ΐΐΐ7vttπx<"""$$Χxόψρ^ρ(b&9pΓ‡χττT*•6›νΑƒhςWlΒ„ ΨϋvνΪηp8L&“ΕbylΣyίƎ«Ρh@hYΏ~}xxxXXΨψργΏϋξ;ΧΓ»Χ•,Φ] υ @Πήή~ι%ƒ±kΧ¦¦¦I“&EEEI₯RN‡FœΛ—/Λεr r=+‚ ΄Z-z„έέέΧ­[—””τ駟 ²ΌBή‚ H ~ί „τ>>>οΏ~dd䁬VkJJJ/δŠΓαœ8q"..(*dtΣΣΣΡμΥΣΣsυκΥΗ*έ°X¬~ύϊ]ΉrΕέέ_ΧΩΩωΦ[omΩ²>I,•JείΉs§±±±­­Νf»»»»¦1C† INNnmm-))Ήxρb~~~nn.ΩnLF΄“'OŽ‹‹[Άl1ΤQcB‰šFΔ’E‹žώyψ/h UTT”••y{{£₯€΄ΒΒΒ‚‚‚R‹ΕJΑ³Ο>›˜˜έBœ™X,φςςϊ—JwXΈ …β‹/ΎΨΌy³Εb!ε*,‹››<©Σi.((hnnή΄i(€{φμY΅jΥϊυλλκκήy睆††/Ύψ‚F£]ΊtιάΉs8a$V« ³ργΗGDD‘^ YΰυλΧ+•JlHN§³ΈΈΈ§§ηόωσ€qοή½λεε₯V«Oœ8Αb±ΐΚ7l6ϋπαΓδuΑM6lǎ9…Τ€I“nήΌΉsηN|¬ΈΈ*\δ/’p‰ƒ€’9qͺΓα˜>}Ί——WWW—V«νίΏ?“ΙD5‹Tωg2™X$αt:Ί’„ŒνΫ·ψα‡ ,ˆˆˆHNN>}ϊ΄ΩlήΊuλš5krss‘τͺ™ΧΤԠڌR||||NNΞΌyσΘ5ΚεrΉ\.R|‡?E{NΧήήΥjU*FΔ”&“ ΐΊΓαΈ~ύzii©ŸŸίΕ‹U*Uhh(ˆ>F£‘βO?ύ„³5]]]ωωω.\P*• :Πιτ;w„……!ΆΩl—/_φχχηp8|>―£££ͺͺ ··έn·›L&”°™L&Τ3Π¦@ξ ‡£°°pΧ]‘‘‘ …"44΄¬¬Μh4ŸO₯RE"ΡΑƒΪΓψ|~FFFvvφάΉs—/_>uκΤψψψ^EppπΦ­[£££oάΈ1i€ηž{ξ•W^‘Ιd\.Χl6Σh4$s6l8p •Jυσσ3---GŽ‘J₯b±8!!‘³³322’Α`(•J€­‰‰‰“'OV«Υ«W―ΞΟΟ_΅jΥ«―ΎzηΞ …" IMκ₯•—— …B…BqυκU>ŸO‘P’££ΣvνΪ΅kΧ… Z,ηλλΛ`0’““ύόό‚`2™j΅ΊΊΊHΗnFaa!bξΊΊΊυλΧ―]»\Ί^)Šλή?bĈκκj‚ 233Ÿ0°ϋςΛ/gΜIDiiieeεœ9sΜf³N§σφφ­­ύmQΡgΛρςς:|ψpmmmuuuxxxssσc{Wγγγρ‹\.wρβΕλΦ­«――ΟΚΚΒΚΔg²³³­VλgŸ}e4QE)†|ŒŒwΓΒΒƌ3vμΨθθθ={φ΄΄΄@ϋΠd2 <Ψέέ½‘‘ X2™L"‘<|ψΠΣΣ3==Έabb"rͺ^xΑ5={φlhh($!<<<όόόvνΪυόσΟgffNš4ΙΣΣ³¬¬,--νΑƒuuuƒm{χξ•Λε=₯Rι–-[Ž=κt:]γΰΓ‡ͺΥj__ίΪΪZτ’·΄¬¬L₯RΉΆ©Ά΅΅I₯R“ΙD"ςΏτ¬{εQΕΕΕ3gΞlGD``ΰηŸ>dΘ•J%άάάΰτz½Z­veΏ‘»N­VΧΦΦΖΖΖ †C‡]Ήr%>>ώαΓ‡{χξMKKγσω·oߎ=}ϊ΄‡‡‡V«­ͺͺϊΗ?ώQTTτΨωdT |ύυΧ £§§§¦¦†Ηγϋj6›ΫΫΫe2Ω–-[¦M›€[·n ³Ω,‹ΙΦNς˜δ};vμΜ™3οέ»šŠΙd?~<ƒΑ˜0aΒΌyσπφςšIwFΡ4::šJ₯644όε/αp8‡cύϊυ  ΜΜΜ,++;sζŒV«%=،3^ύuΉ\N§ΣD7ΫΫΫьrςδΙ„„ŸŽŽ…B±f͚uλΦΕΗΗGGGόgίΎ}aaa@6`([πx<­Vm2™άέέm6›N§3™Lf³™δ‘ϋωωUUU₯ΡΦΦζΚ² bΠ Aΐ¬Ή\.Ηγp8ΠΰT«Υ\.·/џx„₯ήΎ}{ǎ?όπƒλ<…Ε‹\Ύ|955uΤ¨Q‡~γ7–.]ͺV«U*•›››»»;yAdggggg8p ΅΅ΥίίΡ’E7nά@sw―5œ‘‘³rεJ2pΗ@‡Γαηη‡·‰ζεε•ŸŸΏdΙ§ΣΙησ „.6‹Ε"•J/\Έ`4 E8σ<IDATmm-Ι°¦Ρhl6Ϋαp”——Ϋl6©T:dΘπ i4Zkk«k`Χ«Φw‘KmΜ9 εΓ?$©‘XLd»%>φΦ[oΕΖΖ&''ΛεςC‡mάΈ‘Οησωόύϋχ?όσΐΛ>|}ηΞ™L&‰HΰœJ₯rΉ\$222XWWg±Xh4ZIIIII‰··χπαΓ›››9NzzΊŸŸ_ddδΛ/Ώ\XXxυκU …2bΔ”Ω;::Phνιι1™LΎΎΎ===€5ΝfsTTԝ;w¬V+NΏ~ύϊ>ωδ‚ <==—/_~ϋφν+WlέΊ5))I,»>ΆΗR2A*7 ‰… ‹Ε4Δh4>xπΝΉΨ Ήƒš €εCJάάά C―&++λΨ±c---C† A qξά9'Mš„‘7 ˆL&[Ίt)z‘μv;y2€Y­V΅ZMv"Ί9…BρXΕ56›½nέ:±XL£Ρ‚ƒƒi4†22 ›Ν’^WW—Α`ΰrΉl6[$aΦH~~ΎΓα`0C† ΑnDΔωση«ͺͺž\έν mήΌy‘‘‘ΰΪ3™Μ#GŽΔΖΖ’r :-•JΥιtεεεf³Ωl6γιx{{ΚDοζιQ(NΧέένͺQ’””4jΤ(­V»f͚իWΧΤΤδεενΨ±ƒΤλš={φ₯KOŸ>=nά8l  #₯­ˆΞSSSΣP<¨©©Α³ƒ:^―g³Ω!!!]]] ήΣιτ}ϋφυττ”””(•Κ}ϋφ7ξμΩ³<F£566.Z΄ˆμ^"’’’B.—WTT FC‘Pκλλ₯R©»»ϋ˜1cΜ9£ΣιΪΪΪP.…›λκκΪΎ}{WW—P(DΙόυΧ_GOzIIIwwwLL •J-**ΪΊuλ–-[άέέ§NΚd2KJJΰΝΙξ+<ρ,[ΆŒJ₯Αε₯₯₯‘βυX#χΡ™3g&''“Pοƍλκκrrr@Α\»v­§§'™½<ΉΉΎn\.χλ―Ώ‹/Φh4:ω!ΚΰZBBB’’’ξή½«ΡhD"ъ+Ǝ;yςδΣ§Oμέ»W­V§₯₯%''oΪ΄)&&Ζl6“ΑΠ Ι-„ ±a̘17nܘ={φ˜1c˜L&ŸΟηρxb±Έ¦¦¦΄΄”F£υοίςγB‘°°°pΠ A±±±ΗŽ3fLGG‡Ιd:|ψ0tUβββ222h4ŸΟG°’ΥjN§D"’ΫΠΠpδΘ½^ζ$₯Ri·Ϋ₯R)‹Εh4PŒβσωψή‡R\HύοΪΪΪ^|ρΕϋχοΧΤΤ\Ήr₯ΊΊ΅½«W―ΦΦΦ’ΰΊ³ άެo‡ŒcccΉ\.ΈΤAtvvΆ΄΄0Œ²²²%K–dgg;ΞmΫΆ­^½ΊΉΉΩl6“G‚b'Κ?γǏ/..Ζς³X,πŠ …ϋ₯₯₯,Λl6χττ455=Ί^„dg_νt:ΩlvFFΖτιΣ-Kuu΅έnf2™"‘"΄(}σΝ7›6m"Eˆ\{₯=Δ#έG.—ΫΪΪzοή½œœœΦΦΦ·ί~χ­   _Ώ~b±˜¬š».3%%eάΈq@©TΎϊκ«*•ͺ½½=//οΦ­[±±±ΐsssοή½«P(x<ž§§gss3\§Σ©T*wοή#—Λοέ»‡³½rε vj½{χΎςΚ+cǎνξξž0a•J=qβΔΝ;Ÿyζ™ΜΜL§Σιαα)…Ba2™mmm .Δ^ΓαpˈD’–––τττβββΑƒ£ρ"""‚ xΆyσζ …Β΄΄΄˜˜±Xμp8ΪΫΫAc@ΆΨέh4Ί»»{xxLŸ>½½½ΤΣόŠ}9))ιƒ>θξξ&Ϋ]E"ў={._ΎωδW.f–“`*•J£Ρ<<<¨T*Η#³pΔύAFΘ 9NNιωββb±X !υΕ‹S©ΤY³fήQ[[‹Yηιοοι%@ ΡhX,Ž&‹Q]`±XH. Ε… ‚ΐŠ …aςττiΣ¦Mj΅:==ύν·ίvssΣιtΒγζζVQQQZZκαα‘””„ΐ±ΧMC><Η8p`―τ©—‘nκΒ… ¨•Z΅ΚιtΦΧΧ―[·nεΚ•aaaqqqύϋχ_Ώ~ύΏωLχμΩƒΌθϊυλx(ΆŸΟ•ΗΝLLL€P(‘‘‘ ­­-##C£Ρ¬[·N$-Z΄(!!!77wμΨ±[·n•H$θι#}™Ή‘klllOOƒΑ¨――ίΏLLŒΙdR*•ΈK\.7>>Ύ€€€³³4ΈžžNΗ`0„Bα’E‹¬V«+Ι GŽŽŽ6lB:θ½Άsssλξξ†š&…BinnΆZ­eee …Γαπx<…BšΓα¨Υκπππ¦¦&τR ͺ{χέwgϞLš IIIH JJJΦ―__YYyϋφm2ͺ#· £ΡŠ—½;²‡&---++‹ΛεξΪ΅‹d_Ύ|™J₯Ύωζ›/½τRIIΙβΕ‹± •J…δ1™λn’•••••΅eΛ–ŽŽŽNš4ιΤ©SŸ}φYJJΚ«―ΎΊ{χξλΧ―ιτ€€²†ŠΪ$Ω€Ρf³ΎϋΔΛΛ«’’’ΌΌ\£Ρ€€€@³ ›MMMαααΣ¦Mω‡Ό.ΐ )„‘ΙoΣ¦Mέέέ:ά__ί½{χnΫΆmέΊud“ΝαΓ‡ΓΒΒ4 Ί$AΨe0z½ήέέ½ͺͺŠB‘΄ΆΆ΄΅΅}ύχ2™¬©© ]νΰTάΈq£΅΅XΌŸŸ_EEΕ©S§ΐμκkοΌσΞG}ΤΪΪΪΪΪκζζ&‘HξάΉS]]m0‚‚‚L&ӟώτ§+Wœ:ujΪ΄i·n݁Г+~βζζΖ`0 –šššžž«ΧλH‘βrΉ%%γΝ›7+++;f³ΩΌΌΌΘ} ‘7Z ’{›Ν6cΖ |QHH•J΅X,‘‘‘ πτττππ°ΫνζΑƒωωωΰ"nΐΝΘΘΰρxΘT*•«4†ΏΏ?A·KJJFŒqνΪ΅„„ƒ±mΫΆμμμ©S§ΎόςΛ—/_>xπ …Bqκ\ ζΰπή½{—Εb‘Ή : W(T Ύ±Z­xd(‘#ηCy?'Βl6£$‘H^zι₯>ψ‡Γ),,\²d A#FŒΨΎ};’d‚ 6lΨ°lΩ²¬¬¬ΰΰ`΄ ¨ \ ,›Νώξ»οϊrD~Gs•Ή§ψΰƒΔΔΔ‚‚Œ[Ε#ΐLΦECCCƒ‚‚ξέ»G§ΣΓΒΒ@™Υh4&LΨ±cΗΤ©SθγγsμΨ1.—λαα9.—Kq‘Ζ0›Νh#bΦ¬YΡΡΡΕΕΕΧ]ϋρΗέάάt <((ΘΝΝ ¬¨¨Θιtφοί? `ƌS¦L!•€pzL&d~~> yPτΐ]†’ΐV@€μΤνθt:9z[ ŸΟomm?>At:ύΉηž ΟΜΜ¬««c0΅΅΅>>>^^^ΰ$ 0 ::zαΒ…uuuγǏ'• ˆG5‚¦¦&t…o{ νg’^Ψ†"##7oή\YYΩΨΨψΙ'Ÿx{{cŠB‘Ψ²eΛτιΣsss]eΙ0‚\l šgίήΡΡ!—ΛU*ΥoΌqκΤ©Γ‡ΗΔΔ”——/]Ίtχξݟ~ϊiNNN]]ݐ!CΠzˆγ &6aΒ„ςςςςςrDΊ3fΜxφΩg0α­½½έ`0x{{GFF’1dfUUU…”ž$+“‡…hΡΝ;wοή=tθP‚ Ύϊκ«―ΏώzψπαsζΜΩ°aC\\άΠ‘CCBBd2ΩψργY,€Nt7egg_ΌxΡΓΓγέwίυσσ … *++!mΫέέ ŒkπΰΑίΓΓΓM&ΣιΣ§αjX,ͺJB‘066ΆΆΆΦUώΦn·+•JR₯₯W―λΏ€0υκUƒΑ0eΚ”@ΰιι‰xϋ&V‚L&#)OΔΟ%‡ΘK₯RοίΏίλΫρ,€ψk΅Ϊππ𚚚۷o‹ΕbΤΤT³Ω¬ͺͺιtΑΑΑ!!!7nΔ9―$Δ μv;Ηϋ_=Χ Πh4Ώ$3Kš+ΏυΙη0’°ΌuλΦϋχο―^½štx' ššš““sσζMͺ‹ΖnξxhhhRRΕ‹===ω|>‚ŒΛ—//Y²dŊ,+44τκΥ«ΥΥΥ(­K₯R„tP Β5cU=V6τϋMMMΥΩκkΖWYY ΦΌΙd"gy1xπ`Έο… BH³Β\ΗΞ?Χn@ͺΧλ/^ΌX]]νοοογγ-Mβ³τ)άIδjH_π'"ZF§Σιχοίooo_»vνwί}7ώό€€aΓ†αujjjςχχ/**κίΏΏ\.Ώzυͺ^―σŸάΤΤD§Σ―^½š––6tθΠξξn8 ¦νΚϋ£DC΄Z­λϟpΗύdz½ήΛΛλν·ίf³Ω2™ z+ΐRSSoέΊυμ³Ο* ₯R9wξάΎSTϋU*Ω–Εd2λλλoάΈQ`ΘRΨ9vaaaT*uĈrΉ\*•J$’ϊϊz™LφπαCdAΨΫ\ˆπππ^x‘nϞ=P,“ΛεΠΉΌpα‚§§gFFFggη7ί|STTΔαpbcc±rpδKH”ŠυΊ.Dδ$ ~φ±ΦΠΠΰ:˜ςI /¦P(\Όx1A:Qμwί}'‘HΦ¬Yσή{ο:thςδΙτhέ€Αγy{{?ΎΎΎžMFVΤH@ƒ ˆ€€77·{χξ‰ΕbŒ’w8>>>θ+LMM΅X,qqq₯₯₯ΑΑΑΨY]_RLU Ϟ=ΫΆm[°`F£ijjaF«Υβ•Ώpα‚J₯7n—Λυρρqww¦P(σηΟ‡“w-)‘%°˜LfRRR\\œέn_ΈpaKKK[[ۏ?ώ˜žžn΅Z;;;Oœ8‘œœŒ]°‘‘aψπαf³σ- Caa!ŽωρΗgggί½{Χαp`H`rrς‘#GΝ;·gΟ£Ρ—H£Ρ0p™a…“$ƒKΰ6›Ν΅j•™™9nά8‹ΕςύχίCi½MMMgΜ9zτhzzϊζΝ›?ψΰβηe0RGρβK/½‚šˆD"ιξξЍðοΫ·oΏπΒ :.""",, ΰIΏτK{χξνίΏΏΝfc±XV«Υl6£K Θcrr²Ωl†H(Β:u8j΅{b\\œλ’se%βhέ @m©££#88„ΒΒB©TΚησoέΊΎ——ΧΝ;έέέ‹‹‹8ΠΦΦΦ2xπΰΒΒB΄Ž΅··#›3μΨ±cǎσρρΊuHHΎH$uuuq8œoΏύvΙ’%pΡT*5??_.—ΒF)“άάά‚‚‚'~SeΫ±cǎ;ΔbqLLLXXXDD€γL&“N§ƒ‡Dό²,Ԟ‘ECEΌ½½ύμΩ³A€ΐPSS3lΨ°‘C‡‚ƒ„¬L&s8Pl8~ό8lW•%©Tϊή{ο577K$dGrΉόΒ… ›6mzζ™g:;;…B!K΅ZDΧΫΫ[.—²ΈuλVhh¨J₯"…·Θ8J(‚)Ξf³y<•Jύ'“'~›!%7`‚ V­ZΥΏ‹Ε2hΠ ™LΦΪڊβ9Ω,έΥΥτ8#ܐ5δoΏύΆΞιt2™ΜΠζφνΫ—PWWχύχίƒΎ N7z?Ξ’ς —' Γφ­.ζγγƒr=„0σω4(Ei²ΗηWϊΆΰΕpͺΨή@@τττ\.Ε9²³59§πO³ΩL~ —έΉsgΡ’Eψ{ddd||ΌΥjυςς:sζŒ‡‡Η_|:G/žά† RRRΤj5•J%sεΎ}ΰOνί·††’Αb±d2YDDΔΘ‘#­V+ς£ΡΈώ^ž.žΛεfdd…B“Ι$ΐ½8ώόξέ»ηΜ™••₯qΚ`0 8pΤ¨Qννν*•ŠΑ` 6 ΜΡξξξsηΞ­Y³ΖιηΚάΒ ‚ Φ]+•JQLυππH$ ?VTTœ;wΞιtΖΖΖ £ΡˆΦ-›Ν¦R©μv;BO‹υ™η‹kA€Ο$ˆΕb!ͺ#AΫΤ@ςγσωΈ'N—ΎΏύνo |.T*Χ‘/)@x-&“I €“ω›Νf»vνœΩ%€Lϋ•JE₯“ ˆΚΚΚ#F€¦¦Ž=:444""β±===J₯R«ΥF(Πh΄›7oΉjYχ:Cι¨Αˆ8wξBκO?ύ”όŒλμZWŽγ/%Ο.\ΘΞΞ&χ½^Φ¨ΦΦΦ}ϋφHpζΜ\—λY‘Ρ'ŸΟW*•ˆΐ ƒkΥJ,>|8!!Αf³₯₯₯eS*•ΉΉΉeeeC‡έ°a9‚Œά’qΗ#νt‚ Ž=Ίtι &¨T*Fƒ2$Z+(Κk―½&—Λ…B‘F£ιθθXΆlδ‡ Γ­[·ΖŒ3qβD‘HT]]ςxΌΪΪΪ‚‚ €\.ΧΫΫ[$=Ő τz=‡Γ9uκT―™Εd’E0 »έξοοθ£Μ}}}-Kqqρόωσu:έ»οΎ έ—_~ιt:Ρ=ΦλYΤΦΦώτΣOMMMυυυ6› ˆkΩΦΦΦΦΦFv’9Ž_|ρΧ?σ‡ZggηΩ³g™ύ›¦ΣιπšƒyIξ³έέέ*•Šl ώ|ŠcGGΗ¦M›d2Y{{;bJ‹Ε‚œzP«Υb±ΙDε‚ΐμ’ΦΦV&“ >%εηJ–F£.Τj΅‚’Ρ›žςٞ={θtΊR©ŒˆˆΠλυ™™™Δ£ΚyZZΪΑƒ –.]J~žŒΊͺ««³³³Οž=K₯Rβ²Ρa žr>‹qT#έάά€M ƒœ:ƒΑJ₯υυυ}~ϋμ³Οζϟƒ[ίKΎ„L+ PSSCFτδ%wvv’Ψʏ?ώˆόο©=΅?ΘΌΌΌΔbqpp°L&Cvξξξ­ΰššškΧύS“B‘ƒbŒ©¨β}D-’π …N {’@±˜›\YYωŸͺΌζεεM™2εΔ‰«V­BœΣιtΥ!*// }γ7Θ–φΗΪ„ Š‹‹·ΉV©T*ˆ"(|β}g³ΩAAA Q·΄΄@EΘˆwt:_²ΪA<>K<šFG< ΑλΗ—2™ΜK—.A‹Υ5ΎαrΉxβΠΐΨΐŽŽŽΦΦΦ›7oώκΖ²²²ζΝ…ΛQ©TN§3 ΐn··΅΅‘ εJΟ€α,Xπζ›oBύK"‘Œ7©©I H₯R»έώη?yόψρ:ξγ?v8kׁέd2ξίΏαΒ…δ‘Θ=’€€D&“ζ‘ΥjcΑαpβγγ½½½ύύύY,–@ @Va Α>|ˆγ +Ž9*ΚΎΫΫΫ5 xcδ΅ %Y"‘ƒ&ύ‡’&Ι&tΧk'βΛ/ΏΤλυ===B‘πψΗ―4 =΅‰DsηΞ5›Ν$3Š `ŒΰΦσω|Ό’N§³Υ6f́@Πέݍi₯ΕΕΕHŎ ξ-’ΌΌΌ+V §Α`r.—‹μ|εΚ•v»ϊΞ}ΥαΙΙZ‡°——ŸΟ …ΰ σžέnομμ„ &A6›M£Ρΐ{¦€€πω|³ΩάΪΪκ:Οκw7ΈΈ²rI–'qžt:½ΉΉœ<ςz]I9δι=9ΨύԞΪo3@πΏM]†&ƒίρ”ώoŒl:ψϋίώΚ+―P(”©S§N:• ˆ}ϋφιtΊηž{Žό<8Υt-ΏπΒ ΝΝΝ#u μή{ο=OOOh©Έ6‡‘ZΎ|ω™3g Ε¬Y³N:EY‚P(ήήޏ=”«3),,\ΆlΩ΄iΣάέέu:τΟ$Ι+―ΌrμΨ1lκΞGͺœhβγρx@Πp„ΚΚJ‘PθηηΗγρZZZΒΒŒF# l.—‹–τΡΓ7‚Νf³έάά„B!ΩΗ‚F{μΠͺZCΊ^YYI€ρςςκΧ―Ÿ§§§Υj­¬¬„Šr_ƒΟάΎ}ϋ‘C‡ξίΏO^υΝ;<ˆ>3‘PΘαpΌ½½ƒƒƒ1sΓ{υ~‘@9ώ™——ΗεrΡΦγΊ$žΪSϋχB‘¨T*θπ£©V,γuΦιtP jllt]ωΙ$V½½½½½½ιtzqqρΕ&&&Ž=ΊώR©σt‘lα,;;;E"’ŸΝ›7χmu!OϊΤ©S‹/~¬6ΰ³%%%}ςΙ'ΙΙɏύί~ψaάΈqΘ/A’#ϊ¨ΐΐ6oήμŠP?΅§φΤ~G P*•Ο<σΜΦ­[±ίσωόλΧ―‹D"£Ρ <Φ<==λa±XΪΫΫq>u^•IENDB`‚ignite-0.5.1/examples/notebooks/assets/fastresnet_v2.svg000066400000000000000000001245771465426447700234700ustar00rootroot00000000000000 G cluster_prep prep cluster_layer1 layer1 cluster_layer1_residual residual cluster_layer1_residual_res1 res1 cluster_layer1_residual_res2 res2 cluster_layer2 layer2 cluster_layer3 layer3 cluster_layer3_residual residual cluster_layer3_residual_res1 res1 cluster_layer3_residual_res2 res2 cluster_classifier classifier prep_whiten whiten prep_conv conv prep_whiten->prep_conv prep_norm norm prep_conv->prep_norm prep_act act prep_norm->prep_act layer1_conv conv prep_act->layer1_conv layer1_pool pool layer1_conv->layer1_pool layer1_norm norm layer1_pool->layer1_norm layer1_act act layer1_norm->layer1_act layer1_residual_in in layer1_act->layer1_residual_in layer1_residual_res1_conv conv layer1_residual_in->layer1_residual_res1_conv layer1_residual_add add layer1_residual_in->layer1_residual_add layer1_residual_res1_norm norm layer1_residual_res1_conv->layer1_residual_res1_norm layer1_residual_res1_act act layer1_residual_res1_norm->layer1_residual_res1_act layer1_residual_res2_conv conv layer1_residual_res1_act->layer1_residual_res2_conv layer1_residual_res2_norm norm layer1_residual_res2_conv->layer1_residual_res2_norm layer1_residual_res2_act act layer1_residual_res2_norm->layer1_residual_res2_act layer1_residual_out out layer1_residual_res2_act->layer1_residual_out layer1_residual_out->layer1_residual_add layer2_conv conv layer1_residual_add->layer2_conv layer2_pool pool layer2_conv->layer2_pool layer2_norm norm layer2_pool->layer2_norm layer2_act act layer2_norm->layer2_act layer3_conv conv layer2_act->layer3_conv layer3_pool pool layer3_conv->layer3_pool layer3_norm norm layer3_pool->layer3_norm layer3_act act layer3_norm->layer3_act layer3_residual_in in layer3_act->layer3_residual_in layer3_residual_res1_conv conv layer3_residual_in->layer3_residual_res1_conv layer3_residual_add add layer3_residual_in->layer3_residual_add layer3_residual_res1_norm norm layer3_residual_res1_conv->layer3_residual_res1_norm layer3_residual_res1_act act layer3_residual_res1_norm->layer3_residual_res1_act layer3_residual_res2_conv conv layer3_residual_res1_act->layer3_residual_res2_conv layer3_residual_res2_norm norm layer3_residual_res2_conv->layer3_residual_res2_norm layer3_residual_res2_act act layer3_residual_res2_norm->layer3_residual_res2_act layer3_residual_out out layer3_residual_res2_act->layer3_residual_out layer3_residual_out->layer3_residual_add pool pool layer3_residual_add->pool classifier_flatten flatten pool->classifier_flatten classifier_conv conv classifier_flatten->classifier_conv classifier_scale scale classifier_conv->classifier_scale logits logits classifier_scale->logits input input input->prep_whiten ignite-0.5.1/examples/notebooks/assets/tb_cyclegan_images.png000066400000000000000000021110031465426447700244450ustar00rootroot00000000000000‰PNG  IHDR Ύkƒ`r 'iCCPICC ProfileH‰•—XSΙ€η–$$$΄@€„ήD)₯ΧΑFH %†„ bGX *"XΡUΧΘbΓ,‚½?QQΦΕ‚ •7I]ύή{ί;ωζή?gΜ9ηάΉσέ@5Š-e‘jd sΕΡΑ~ΜΔ€d&© π‡"ΝζHDΎQQαΚπύŸςξ΄…rΥVζληώ*κ\ž„9•+αdC>ξΜ‰s τB½ΙΜ\d"ŒhŠa€Meœ`W§*8\nν9%*›-N@E3“ύ¨”BΆrBΘ͐½8|6ςgΘc²³g@V΅„l™ϊŸτψLρΙf§°"Ή($’,φμ³[²³€Γs˜ΐFε‹C’e9Λκ–9#LΖTΘη…©‘5 _pεφ2~Β—†Δ ΩΰHόaΝ”Κe„AΦƒl,̊{₯ ‚XaνΡXA.+V1εŠgDωGgρ$1ΓΜΛη’ΩK3γ|‡|nβσXΓ>›ςω± Š8Ρφ'—¨Θ +ΰ γ†βΗΚDΉ~ΡCφΫEYQCφX3/+X¦7†ά&Ι‹Ϋ— ›"_ˆr£b±αšμΠ(E Έ5ώ 0ΆT0dA[oC/ό§θ l ι€l‡4Γ#δ=Bxωΰ/H< η'οε<¨2’U\mAšΌ7O>"<œ Β@ό/•ŽΜCΰ§Ω90Φ,Ψd}?ι˜ͺΓ:b 1€B "ZαΊΈëlΈ+ξ6Χ7{ΒBαα:‘“p{Ί @όCδL0tΒƒ†²Kύ>;άzuΒύpOθϊΖΈ.°ΕΗΓ™|qo8·Τ~«t$γo΅ςEΆ#£δQd²ε¨X«8x‘UκϋZ(βJ©–HϏyψW?.Ό‡ύh‰-Εbη°“Ψ¬kLμ8ֈ΅bGe<²6ΛΧΖπlΡςx2‘ΑOσ±‡ζ”UMbWkΧcχy¨δςfεΚ^’ΩbA:?—ι wk“%δŒΓt°³w@Άχ+Ά–7 ωžŽ0.~Σεœΐ­*ΣΏιΨp:ςϊ»o:“ΧpΩ―ΰh;G*ΞSθpΩ…(@Ύ):ΐξ]–0#ΰ <€‘ Δ‚$0 Φ™Χ©ΜsΑ"PJΐJ°T‚Ν`Ψφ‚ 4ƒ“ΰ,ΈΪΑup•nπτw`ABCθˆbˆ˜!6ˆβŠx!H8$!)H:"D€Θ\d1R‚”!•ΘV€ω9‚œD. Θmδ!ƒΌF>‘JE5Q}Τ‡Ί’Ύh‹NEΣΡ4-D—£h5Ί­GO’—Πλh'ϊνΗ¦Œ10#ΜsΕό±H,KΓΔΨ|¬+Ηͺ±}X|W±N¬ϋˆq:ΞΔmαz ΑγpžƒΟΗKρJ|^ŸΖ―βρ>ό+FΠ#Ψά ,B"!0“PD('μ &œοN7α‘Hd-ˆ.πέK"fηK‰‰uΔΔb±ŸD"ιlHž€H›”K*"­'ν!']!u“>()+*9()%+ • ”Κ•v+SΊ’τTi€¬F6#»“#Ι\ςlς ςvrω2Ή›<@Q§XP<)±” Κ"Jeε ε卲²²±²›ς$eςBε εύΚη•*€jP­©ώΤ)T)u9u'υυ6υ F3§ωΠ’iΉ΄ε΄Ϊ)ΪΪΊΚX– WeJ•J½Κ•—ͺdU3U_ΥiͺωͺεͺU/«φͺ‘ΥΜΥόΥΨjσΥͺԎ¨έTλW§«Ϋ«Gͺg«—ͺοVΏ ώLƒ€a¨ΑΥ(ΤΨ¦qJ£‹ŽΡMθώt}1};ύ ½[“¨i‘ΙΜΠ,Ρά«Ω¦Ω§₯‘5^+^k–V•ΦQ­NΖ0g°YŒŒŒŒO£τGωŽβZ6jί¨+£ήkΦφΡζikΧi_Χώ€ΓΤ ΤΙΤY₯Σ s_ס֝€;Sw“ξέήњ£=FsF>0ϊŽͺg­­7Go›^«^ΏΎ~°ΎH½ώ)ύ^†A†Αƒc=†tC/CαΓγ†Ο™ZL_f³‚yšΩg€gb$5ΪjΤf4`lag\`\g|ί„bβj’f²Ζ€Ε€ΟΤΠt’ι\ΣZΣ;fd3W3ΎΩ:³sfοΝ-ΜΜ—˜7˜?³ΠΆ`Yδ[ΤZά³€Yz[ζXV[^³"ZΉZeZm΄j·F­¬ωΦUΦ—mPgΝF›Ž1„1nc„cͺΗά΄₯ΪϊΪζΩΦΪ>Λ>Ά`lΓΨ—γLΗ%[5ξάΈ―vNvYvΫνξΪkΨ‡ΪΨ7ΩΏv°vΰ8T9\s€99.plt|5ήf&>\Ÿ>O}­|3|χψΎτ³σϋφ{οοξ?ΟDPΠ¨Xψ Θ8(=¨6¨/Ψ)xNπ‰BHXΘͺ›,}‡UΓκ u z:ŒVφ(ά:\ή4:qυΔ{fˆ†HɊ\y?Κ"*'κIΔIQ“ͺ&=‰Άž}.†3=fwΜ»XΏΨ±wγ,γ€q-ρͺρSβkβί'$”%t&ŽKœ—x)I7IΤ˜LJŽOή‘ά?9pςΪΙέSœ¦MΉ1Υbꬩ¦ιN˚vtΊκtφτƒ)„”„”έ)ŸΩ‘μjv*+uCjǟ³Žσ‚λΓ]ΓναyςΚxOΣ<Σʞ₯{¦―Nοα{σΛω½A₯ΰUFHΖζŒχ™‘™;3³²κ²•²S²5„™ΒΣ3 f̚Ρ!²‰:sάsΦζτ‰ΓΔ;$ˆdͺ€1W~d·J-₯ΏHζyεUε}˜?σΰ,υYΒY­³­g/›ύ4?(·9ψΜ–ΉFsΝ}8ΟwήΦωΘόΤω- L.θ^ΌpΧ"Κ’ΜEΨ”Ό]œ°Έ©PΏpaaΧ/ΑΏΤ©‰‹n.ρX²y)ΎT°΄m™γ²υΛΎs‹/–Ψ•”—|.ε”^όΥώ׊_—§-o[αΌbΣJβJαΚ«ΌWν*S/Λ/λZ=quύζšβ5oΧN_{‘||ωζu”uuαλMΧ―\Ή’_y½Κ―ͺnƒή†eήoδnΌ²ΙgΣΎΝϊ›K6Ϊ"ΨrkkπΦϊjσκςmΔmy۞lί~ξ7Χίjvθξ(Ωρe§pgηθ]§k\jjvλν^Q‹ΦJk{φLΩΣΎ7`oγ>Ϋ}[λu%ϋΑ~ιώηΏ§ό~γ@؁–ƒχ2;΄α0ύpq=R?»Ύ―ίΠ٘ΤΨq$τHK“GΣα?Ζώ±³Ω¨Ήκ¨ΦΡΗ(Η  Ο?ήBt’χdϊΙ–ι-wO%žΊvzιΆ3agΟ :{κœοΉγη=Ο7_pΏpδ’λΕ†KΞ—κ[Zιτηα6ηΆϊΛ.—ΫέΪ›:&t»β}εδΥ€«g―±]Ίq½γF܍[7§άμΌΕ½υμvΦνWwςξ ά]xp―ψΎΪύςzͺeυ―ΊNηΞ£Ά>Šyt·‹Συβ±δρηξΒ'΄'εO ŸΦμϊθϊρά§„OOf~&}ψbυ₯ιkΨΧ{ƒΩƒƒ"Ά˜-ΐ`CΣx½Zόvh€2Yq6“ ’8OΚ ό'Vœίδβ ΐNβΏQ6Αf™ ο²OπX€::Ž΄!‘€9:(|Qα‰…πapπ>€&Ύˆ6~Ωƒ½ ΐ‰Ε™P&²3θ΅ήčΐςoLΗplw x pHYs%%IR$πiTXtXML:com.adobe.xmp 1596 2862 1 OΎ,”@IDATxμ½|\Ηu/|Ά @$Α^Α^DŠM…€¨ή‹%;’lΛ’{‰Ÿ_œΔI>^ό)_ςœΨ±σ¬8.‰νgΗ–»­buΙ²­BQ’HŠ"Ε&Š]μM숺Ψο?χžΕμεξbΑRδ ‰™3§ΝΉwοž3νΖκAβ“·€·€·€·€·€·€·€·€·€·€·@X ή2Όooooooooooo΅€@όΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΠeπH—™Ϊ ςπππππππππHzx x x x x x x x x x œ ˆ‰Δϋ’£˜ƒh;ˆΌ€uvKx¬;Θ*A—ŸύΘΫπW|κ8‘IdsL7 ή’ ;αZ :R.܏Ώt]Xξ,γЈΤ;^ »μƒΦΞ2ρψήήήήήήήή§άτΫ,ΩΉHCμ–‰GŸ”Ξ.qέ…ϋΙrΊ1$(6+/άΐͺtΠΘΧ3ήΌŽΰ― νΈ™„ΧeAxΣ3θlΓMλ?π`bτL=γΌρ‡.ι-ΰ-ΰ-ΰ-ΰ-ΰ-p.Z€Ύ}JώΡρB)Mί ώ[¬gX†“́ε6ΆχBύ!Π¨oDΏ…Ž*hπ_ΘK}Βι_џ€ΏΤYΏ$§;ΡGŒυA·v]€ λ^ƒ lSŒOz‰Γ—L·I|ΘT˜©›€¬†ΏL;Γ'mΫ…ΌƒΐAƒŸ€€χΎ-±£$1ζVΈ ‡€mΓΟΤB±ͺαΰ·ΚΡζ…yΕ:<†71ŒBgUo0U‡•NiθtΆα‚&θ RnFV˜Α`„ΔΘͺ 7BΫ”qγΔyΣ £)Qg)Βzš7 Γ§m ΘSOž Αp#ͺqΐƒΞv|0ώ ΛδΓ:o2u–qcQΏͺ›%1~Ž€VTδΘ°e;nΦJ škU€Nμ$ΠχΖΒnΖ*ΰ‹‘ΒLγΜΦ `Rσ%a?]‚Z 4^Θt l‹*Ν+ΕΤYλΎ Vα=™½~ΩΠήa‚μ6؁Όπ½εχ1Vz|)ΣM°9ΔJ_φ&ܐ,'xMšρΐ—›ίεʁ@έ˜Ί3φ /ΖA’ρU‘κ“·€·€·€·€·€·€·@~ ΐ‰IΑ—£ϋˆΏ4ώb₯ptš1ΰIwˆ`4λH}’ΎFƒŽλ—²ΙiιοΒ§Q>τ«ΰκ0©Ϋ‡6’ӯ9]ƒͺ>Τ§¦‚T”ލ«ŠθDΆΥΈ,>ι“0±Βi[ύσΐλ6δ;ΐ—F 1άΒ8pά|P3:HΚΏ°ώ\΅4ώφŸ€υ‰‘έυRϊ‚ άς%Š0hΊ1-₯wόN£§ΑυΔΕ)‘αΫ€εΉIκoaŒΊΧtK>&8/EŽ8΄iι#eŸ|Nύ@&χn‚iyι~iώΕ_i€*@UίΰΦΐ–Έ)40-ι…ŽέNj¬r8œΪ­’>„Qrθ«aΛ!8½ψCΠ•ό³οHΩmŸ‚ƒήŒ›«DZί|NZ~χ>8·ϋAƒ€‚7c•$t©Ϋ)R‹2bXUOIΧ’ΞkGΎ•Iiۘ’ΔUSΐο‘Ζ}‹%΅w ΰŒ¦χ© Όςtc-"ΜΫ±Μn΄­ϋ/θx@β£ή«—΄­ύQπ%λ>Y€[wIο_„ΎΝFL’€Ν^£‹œ‚Γίχr‘£λaΓ]t ϊ0νλ1Γ5φ»X“/‘Ά-/ΆΧFΦek…ϊ‡o3ƒnΣυI76JΌφΫρ€Ϊ7>κ£"‡Χb"ctΨ­…ήoιύœΈόλΠe—€–~ύΈ ύƒ›TΪΦόX€η’5 m_ΔΝxχC1ΊΣ·y x x x x x œΥΐlFΊΎΡ€ΟKΌ'|! 6Η0λΡΊπHΙυ!­‹οƒί8HJnό¬€DΪΆ-Δœ/KbμdIΏ³cΝ{$1ς|ψ5iψ¨u•ίΏ€ΖΆ{Hκυ„+>NJ.Ί m-οΝAςVI­ψ½€Φ?„nϊ„˜IιςT }0ψΜΥ.τY1 φ2 Ι5HΑc•²?ΑΗΨ¬Nb—ΌGRέ1-­―ή_πα°OœΝp’ΔpΜtl•δ5ߐψΘ ΐ ƒΝ•άG*™ύIŒ ]σCw>νμΟ•°o$}p‡”}>hΟΎτΠίK|τ΅ΰ½6ο#₯·IšIψ‚χΑ7GPΤ† ¨@Κ€0άδ”΄ΞύoiνV-e·­΄m^$ΝσƒΓό†@τ37ΚχαΧο“δΜχ “=±Š§Ÿ΄.ψ6Œρ:ϋ=‰ΧŒ•Τς'pσ|Wb5ο“’Ϋ>©G볕ؐaϊζ"t<I άD‰›OHlμ§€μΚχJjΙpΆ·KΙG7α~i}ι㐍ξΒ”Δ”+€mλk’zεK’˜ύΟθμ`π©—Τ›OKιό4Μ^˜5@?4δ₯’Qa«œH–*₯λί‘ψ„Ώ’δΕW xhΔ¨©ΈαΧHb: \ψΔ„Ω|'%q5pF‘Ζoέ"ρ9wI’w©4?ό "Z%Sa~Ά{φόŽ”ήπyΔΚnl’$&‚wΛQINΎQη}Έ_^…γίΑμCΌ?tΫ!ρqwHι•7JjΫN)}4|ύIW~^ΚΗw€ω±’ΆηI·ρi]ϊ 4}ϋcRvοbLpaV£­ƒΖK|Δe˜”*•ΤΞM˜Π‰@hψ:I^°Jš~4ΑΎ ŒjpΨΒ'ooooooo¨8­Ÿ;ΦkΈΔϊ! Hυ’q£€mϋ[Xή3«²0_s$'\ˆΰbχjIN™Ώτ~‰Oύ3‰5ν“Τ捀],­Οό—ΔΗHβ=0ΠΪ½ό”λΰώ ƒ£ά[bmpϊχJjέλ"‡Ά³ ξrχ¨^§¬—ƒΐρ7Β?jΕό¬ˆ«ΊΙ‘…H {t&$Aχ}[₯τΣ„ŸΫWΏ;RˆβoςΏ~Ζ‹Kλ _SŸNΪ±šc)[Ί}ξ7XJ―ϋ δΑ—CJΧb6€ι¨$j&λa©·Ώ„ΐνkBΰOλ^BΓ”’ΑGςς―BαπεRφωΠ φM^/M~EšψίπU?' +8κͺDX:ΛcL²σ<C2NΫ4c:#ί\bσž‰‘ρ­ϊύoHΙΏ?+₯bτ}ί^ιφ‘ο"(yZΚnϊ ’ΡΝΈ‘†AΉΑΊi»”^gyΫ&ιvχΧ₯±΄JJύk]΅%%U’28›₯μΊAOά»ΆB’²Ac‰ ~τ-)eω (­D”6Qš_ώƒ”½οpƒ“δΝ'-εε’˜t‡$ •ΤvFέ)qDΏι†&Μ€`Z§d²;}jk\Z ˜Ωˆ•WHλš—q‘k%9ύiΫπ’΄.ϊΆ$/ω2¦ΐΞΗ…«D„΅x―Ε== pq%YbΪ-^κt¦!V‰hAZjΙο$>³ƒΖ"©ΐ™υ’~{%.xy‘ ¦Π\ώ•(ΡΩ&ʌŸ/Ύ°ˆ€a¨t‚§KξΣ "ήw΄Δ/„mk†KΣOoΐ΅Ή6Ή’2τι‚ͺΫOJzTKΛςgƒeb±Αΰ‚)]kYPίθ-ΰ-ΰ-ΰ-ΰ-ΰ-pZ€λ­θ»€…΄b VΔ΄:,ΙYDΉώ[IŽ™,© Λ%>pόμY8 qΡoα,V}υΨπ‰Œ#mΛJlΔν’.iΔLΙv ό^„€LΪΦaPwΘl ŽΧˆŒHIjχK‘OΩ]8@έ° ΎμeRzΣηαΧbΦηΐviϊυ_ΐΉ‡2τuίK¨–ς§±r(6lŽ$–¦_|NΊΔϊcd6hššΰ‹νƒίYέ;:ŸΡΏ6n…ΟΆy•$Ο›ƒ]Ϋ€ρ§π½χΜΗ*§—»TR{°‘όΰζ`ιZΞΑγnΈ&PqΒi]Mߏ1Κ:iώ©ΧcRrω§€ιk—HzΝπΙ3M@³Nά’‘'©Ϋš»K*γX3ΒΥ.‘ΨψŸΣ.C€°ΑΕ›:σ;F­“¦ŸŒ”¦Ήz#κ¬θš8"·MόΚ―%>l–$ͺ«€ρΎώψ«ϋ$>| Šˆͺρ0FΰHλ[ˆx1k‘Δ”Rrό%‡0Κg˜θŽ‚ψkΜΈΤΜΐ’‘6tώUμA‚Ρaλψΰ‰*§uωΓτψO$Ρg0œεΫ₯ια‚ώНW₯+ο3μ?Ρ½αΫ~/­K^ΐ—ΰLΒ~˜gKΕ†©ΥHl8f=z2iA?o³-ψξ…Ϊ˜m‹»6=ˆ=GΓΡG½ΉU’W}KΈΚ0#ς·ϊΪ˜)Œ›αb cnNϋXΰrΊ$…69½=ψ $GΦS’ΈΣ―i@?ϊbƒΡ€k 7§)ϋIςΒ[%ΐI˜αˆυ*ι͏Hσ‹ΏΒΘF)&ΞD‚ά7ŒΚ}ςππππππΘiσΟ°lG°=VQ…€ar ΎX¬Άˆ₯<ΨλWƒξ^­”ΨθA’Όϊ{X σaΈ -+φBΠO­¨”Τͺνψƒ½QώΪ*1h½KΊDPR.JΧ:†aο±Ι;Φτ/ά+-‹0{ «ω‰#mo£\6(;ψ 1B\λ5Ύ"φ€Ζ,He lΥ_Z_ωoiψ όγoΧ (Ω,γΚ΅€ ϋKb%£°z¨QZ^ώž*Άw“€WΝΗ26Έlλζ+,΅zž΄½ώΨ>uϊ€Β²?ΘpΚ~cΊώ7RΛ―?&IL0$FN‘–¨Ϋ-„§bU’/ηώŒ©c/±­ ƒΩp@™#Κ’o©8y –¬–eΟΓηάΐ|iά“ΆJΛkΟa΄ώxΌξUa»Hbθ(iYπˆ΄-ω©ΔOB€…}Ε»^Η* Π΄ρuωγ™ό)ŒNcœI`„‰Ώ4/μ-’Δ.zŽΠ'†Η)`©Η’#ήH±RD—pp“—}3±4g‘”^~§€V"ͺ­9_Κώn‰Hf>°O’mίA8βΣ΄_:h^>@ΚΎŒ½ ½F ͺmΕr₯Η€τΖΏΑ2,t¦;FΫλ„pΙRwDΐX―Β†n,E’ΜXlŽYϋάX_Α”ikB$ΜSΊ2#ρŒœΊ α(ZξΥ†M8ϋ[ύ’pΣ~Ϋζ'%y)’r­/ύ7Ύ JΫ¦οIz'‚¨KώŠαdΓψ¦”χAρ(f9–Τ‚KlΔUΊfa‹€·JZ1C‹ΥI랝8εk*fB•ΆbφˆB„JˆŽΉδ2½g)l‹M[Έ‘€­VZΣσ%Φ‚PΈt lΰcΓ"i}τK›Š})ga_Ν3X>χE̊¬—–WπeŠΖj&JbΔ μGyHΪr–Σƒ|'3`Γ7œΆ σ‰…”ρmήήήήήήη¬°<'ΦΦoύk» 8jŽ%Y-Ώ{ƒπΤ›±©neλΛ­Ύ’žˆ΅r"ZŠΰnVΩ&iyζWpκγφζ?λŽƒΨ€Έ€žύΈςŒυIJλŸ>‰ΡϋαπM1H݊YŽž6…J'α'q«|ηξύα‡!€Θ•t=>όεC;0cς„”ήςyψύ”-Fΰp‰”^ϊ~ižϋ›pΆ>`Ξ1Iμ9{ΥΑGμ?Πe·όE»D²₯I»W„K°ΪΫ¬”‚ŠΛΡϊκ₯μc%‰KΏ ­KΧ…ί·B'ΚώζϋXI³Χ>iΏΈŽ›:gήΑ1ΌΈJΗSuϋΔμZ‡)#Μ|SZŸύGΰ 6Xί‰hϊ8ΨG€uώΏΓ¨/Β¨=Π—ΒΡXN }ΰ#ŠΓj'~yb₯˜ΆͺΕΜλψθŒγ£’Α€οD!„qς€A,&)b=F’ίX—Η{ν<Ύ7݈НΈΔγo\’X•!²ŽnΑρΐ€εΘƒρ’LςδL R¬ϊ|π_ ’?špοiΒ ¨8μρYo `bNu’Cψδ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-Ё‚w‰N’:p,θDι«θ¬`Ά„ŽKNGσ.¬ε¨Όnv&qθ`‘}":7L„ιΠ}Π€οΣΠαyΐ ‡x]™¨#Gμ9" 'K>Βθˆ±ί‘3ιΓtžσΟR2 ώ0_έΠt3IjώWΰ― A7w€6OβιUυϋp(Τνd‰ §7–ΊW‘[°œΏuΙπέJjΩ7‘ˆXξ΅Χ~Ύό‡0{ƒνϋφ@ν6μ#ΉDχ&7ύθbΥMτδ ˆ;@ˆIƒ`YΧι0W`Ξ₯3ΞI_ρη²#F  \ΨOοŸ#!9q¬WΰμœfΪ~ͺϊΎΈΏbΥυΗρmΥxςθήtύΦv:ΈΈ―<ˆ η^sά‡Ί'‘~{€Ο{Žr9ΛΖ%GζY£Τ5 ρΕ~άπΝi(ήd|™g•τ%:PœFδ qsΠΖz3R9έΐ 8#Ξ8 Αˆ‰o½Δ/₯‘!τζE@’oΓ P ͺΕAγλΛhh@ώΡ>ΰΓ~όB3΅ξdρ}+|K‚:Βθ)\CΎόƒpΦωςAςγϋ™k‘ό|ςππππππΘ²φ ce‹Ζ Yπ•Π•)€qLΣqΓγ”ΰR© ΖχΦ©OζHŒcΠaψ·θH¬'’CΑΐu¬jl·ΝAŒA ›ύα;b#Ί*χξ/₯w?W—4?ύοX>υu09V?/ολ*B>˜Iβ+6βη}BJ.ύ$x`Ε Ά;€Ά―Ζ$ΐ‡—² ΎnΝη¦aQ!η&P5‹C(;Ε·»`F₯|ρH Π"šPg.ξ ^tœ¨θr!ΐι§dπ%ΔΧθpF4m» cΠaGtΓ—r#΅F#pzuΏπSp†ƒΪe¨Γ GZwΓ σΙ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΰ4[~όΘΨΐ`τ~₯ξ3αAλΉσIš+€Žμ@ π ʘΡε%Ž β˜ιΰ u KΆ’τ§ι# †σΔh‘6₯ΏN?ΘπΏƒ%ψq|»ώ=g]4hq£,ά:ί+RΏcΣΊ’‡Ξ‘ί5~ΌLwΜ§ΘΔ•μ–ΡωLΨκ ³2sώ!XΘ$ΐϊ—†£‹Β£4Δc"Ÿ\ΙΥ+W»‡y x x x x x x x œ> ΐ—cϋ8ΑpŒuυ‡ωw§O«Β’ιwž¨ŽΖΓrJD+f .ŽΌ Gž+SΰΥ“°ͺ&³jΕυ­A,€Μ³|u`+m$²δ«e¦IWτ zαΚ[‘Γζ<Β7C•U8Α$‹—―œpoο3P½Ό*ήΗC“WίpVXΰLΎ'ΞdέNζΕ?WϊιΪμέη“­ηΙζηΪΤ— [ jϋh½0υιl —`Qαs81€α$ˆ.ψ9Ϋ޽Θ01ˆ9γ“ΟρρόS ŸΞF œhœ~ΊlrZ/L}:[qΌ?^Θ§žχ 9Β§³'G6ήΌFΨfΠ‰Y„b%{?pοΙHΗΟΗ 'Γώž‡·€·€·€·€·€·€·€·@η-9Ιͺσ€žβέkn–πΙ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ K,ΰg@ΊΔΜ§QΞmίΊsš”@ŒΛR8BψΨ9ΐΣ€“λ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-ΰ-pΊ,Ls'|&ΡC<‘Ν(F ]!£€ψs© '€χm Nr;]s]ά›„“ίb#pkαhf=2ω\ΊΎ―ήήήήήήήήνΐΛ Kšqδ—Og§p6sς֟ΰˆ;œέΚCš»x ‚G:””αm™”Ά₯ία>3žέΕjœΧχΚ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΰ]hψΙ·Fυ ӜήiG³0ΕΰκΦ‰β}&΄±Hm­R2h:ή‰·Π·Ά"ώΰ΄nˆ‘hφ‘nνΡά’ΛΛxhΟχ.)‘ΦΓΝ|¨Dbέ*₯΄¬L―KεΛΊρqΫrΑάφh9Š―:©#Ω.Ÿ(·Ν-ŸJή&'—..Μ-M‘<Š­­Α£Ή΅ŸΜάdtΔ³³xΉπ fyG2£νωθ Ν‹₯βYέψ[/„Η6~’<ΖΝ;Β±φhn< ž―nπ“•GεΉ| ΅/Ϊ­»Ό •;’먽οbΫςΙpαnΉ#ΎΕβΙž³ΡzКύY,οlͺ―uV‹ο–σiNGνωψNZ&ΧΞV&όDx“Ύ³ΙδYNz·άΏbq]<·\ˆ±x…xtΆ­32]\·L™¬3ΉΧ6€δώŒηΖ:φΪδ£sαn9ί(<Β]Z–™\{c?γξŸc›O9„O[›46EbRέ»: @NΉd/ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΰŒ±₯€t+•dίώ§ΩA=cŒβ9•8zτ¨.λΫ·oΞDc) ΄°εbΕκDz‹ΛŠ₯)³5δg‚Ω›€2ͺ£ΆοTθ‘OWʌκaΈ¦k΄½Ρϊά[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ 3(ΖΏΰ H²H"a―cοŒλ-Π9 π>£#Μ―ΨT̍\,―γΑ;^ωΗKΧ;’‘«=¬32=·€·€·€·€·€·€·ΐ‰Z€>aΌ¨e<'*ΙӟΣ γΛΝ]X}}½μέ»W:€yss³,€iΓ.KΖΓh­ήΤΤ$©TJΡXnΕ¦{7žΡY[”·α1gΐtψπayϋν·½‘‘Avοή-ϋφν“ΊΪΊŒ<γ΅~‘lΉ|­9ωš «»ν…Κδi΄”qΛΪΐ;V neΆΑKӝpΒUΦ™’t4ς\Ύ, ι:’ 掲Θ:U1zΛ;Eάr”g΄ήωIi>2OŠβžΙi±€Ώ_NΜμ'Λ~ΕςΙ…— vb½κz곑]o΅—θ^'·ά‘&Α5^/pπΰAiiΑ©«H.<nΌKΧ‹˜>?'-@˜ΙrΧtήϋίΛ}χέ' .TG™?gMZZZΕ–q͝;Wήyηεc7ψψnj3NzsΌλκ° ‰2ιΐ[€@8λο‘,βπ―ΆΆVσ]»vɏ~ψ#yα…„2ωΕZ°`PΦ?ώΣ?fxš β™\›ιa E9όBšώ”aςYΆ>¨’Ξue"-ς4ύί³{όα`1'‡z(£ƒ&,Ο<σŒ–ΙΧt! ―.ΈlΝΐe€ΗΎ0X$.Ψ?γνΗ‰.F3zΛUι“τε­Ÿ$1ٜ™ςg΄όύrb—ηdΩ―X>ΉπrΑN¬W]O}6τ‘λ­Φυέλδ–;€3ΈQ^ }ξΉηΤΏ‰ΆY~ƒ₯Δ½χήϋΏ­βsoSeΞHπΖ«¨¨ΘAΪ^½zɘ1ct†αƒό ,YΊDζΎ8WφμΩ#½{χ–Η{Ti:βΏώυ―•ΟΈqγΤρ&εΛ—KŽψ­–Χ^{M†*λΦ­“ίύξw²sηN0`€|λ[ίRg™Aq8Ϋ½{wyςΙ'eΩ²eJ»vνZyι₯—4Ψ艻.½τR™ϊ¨τΗ>«E‹i`Ε~nΪ΄I~YGŽ)ξ2H:ρμΟc=&Ο?ΌTUUΙΛ/Ώ,―/y]ϊχλ/[ΆlQ8iΩΖ€‚:ε –~όγ˜9stFiξKsΥ”ί€γο8³³iγ& δ\mέΊUƎ«AŽρΰu‘.σηΟ—_ώβ§oY΄p‘a=zτΠ θη?ΉΌώϊλ2pΰ@½†F›u‘}Ε[ΐ[ΐ[ΐ[ΐ[ΐ[଴ύ¦κή£»T?0_OΫrτZUsΐ=Θ[ K-`7(GΣ»•uΣθωΡGU‡˜Ξό† tΤ½OŸ>2jΤ( .žy±κH‡—‰<θ¨Σig€ΑeR &ΎψΕ/j0ΐ6:κΧ_½:έ%Ι1b„Όϊκ«:ϋAǜ³œ‰)--Υΰ’¦¦FόϋοΏ_nΏύv•Cg›3Σ§OWZ.4hΌςς+:pχ=wΛΗ?ώqyε•Wdǎς‘}H†Ξ9ωΎωζ›κόS_ILμƒϋG‹|δ#ppΆ„Αuε—šόQ6ƒ.&£g™ƒΆ›nΊI&L˜ 45Γkδ7ήPέψν²ψ΅Ε2sζLα, ₯K—ͺΎFοςc°σαXš›šeνΊ΅4ύιΉ?ιLΠ]wέ%ŸωΜg€ΌΌœ€Yz(ΐx x x x x x œΥΰ-ϊ5ΆR"og%έEο¦S“οΞŠOήΕZ ΠΓϊ£υ: ί­[7©¬¬”Ω³fιμΕW\!7n”%K–θΘ{}]½Š³Ωήτwάq‡:έ³@ΓεKΌ/έεK 2˜< 2Xg'ΈœˆΡϊθQ£…3* Rxpfƒ3$?ψΑ>zτhyΰδ–[nQ>δO=‡ &ΣgLΧ ©φH­:ωDH&“¬zs•ΞΖPg(‡³=”ΑQ~iνΟ–n‘/ggXgΰ2nμ8 Ύžzκ)εΛώΪς'Κ²Mώδc<Ψw␦/„$ ƒ§ργΗλwyΫΆmͺε\y啨ΉΌΜΆ€ε΅`βΰΑƒeΦΜYZ§ύψΗg“-σΟ5‡πππππ8g,ΐ•!6 ™«ΣWτ,:Aό£3ύ³¨‡Ή%: —¦…`”ΪΪ»*§¦WΰΡΩ;ωΝα2Y'_Β»›£» Wΰ˜ΞΠnΔ‘ƒLΑg?θψαεΜGϋ§M›¦#ϊ«W―Φe?άΫ@ǚŽ<—Yq†€³\ΪDΪίόζ7ŠwρΕ+ο!C†ΘͺU«tiεΜΑ«Ν›7kpΑΩξ-α©3fHY·2YΌx±~™ΈΌŠŽ6y30yλ­·tςIΟ€‚³Τ“³œiαχ…³6=*zΘΦm[ΥI§σO>FΓ%c –8ΛaΞ<ƒξIaΏ9KB}¨ƒ#φ{SΈŠAνFΉΤƒτ΄sΪ’|1q)—‚1ΈbΏ§N*΄α\ φ`ΐΓ‡Ρ›.δΓ2ϋAZςα20φwΚ”)ά¬Η ΥΐTXLΌVξwOώΓ[ΐ[ΐ[ΐ[ΐ[ΐ[ଳ€ϊΎ˜‹ΰrt[™‘Λ6˜ΎΒΉΘ;}aG7Ή¬…NGA]g›Ξί`8uƒ°œe2g{"‘D ’Δ² l€Ε(n>gkkΠNΛ+ΰΊ¨Ι³<ƒ‡‚)mmJOp›¬dm€I`Ί ookKλΘq:έ=ΓS•HΗήgτ‚&W»u+Ξd²β° ίA‡Νq­=Jg8ηBNΨ&o:²¬cήO6 O;ρ>΄Ρ}ς[τΪ"Όδ=₯7ϋμK.‘ξ³(o—Ζ΅5―g(,ΉxΡΆθ5ŒΚˆκi< εFΓ½(ό^±_*χdYi™\‚ώX_ΙΗΥΟ-σKΜ₯c.ys ƒ K&Οκnnm\†Ε%h΄‹+ƒ3Jξˆ†α»<ΈΟ†#uζ29ΞEνδβη-λχ1okη ρ+Τ•Τά(mΎ:y2Ež_π]τΩ‘m:ju΅hU;κsGνΕ :Q>'JozΛ ž+/'έ©€Q¦wϋw}ˆΪΥ­»eβžͺΤUrN•ώΕπ=™},Δ«P[!=sΡΖTθ>ΟEP΅ΣΡοΎ΅s 7ΦQΒQ\.ΥΰFέ‹.ΊHZq‘u‚ΞGGΉυξ»οV§’Μ“˜%©=ΈOΆνzGΖ`ιHSύA9ܐ–αƒϋcT–'ϋ 0@€’NσTΐ%ω2$‘ΨOΒ(ƒΞ*&:€tŽδKL΄ΪNmm­²{Η.ιΥo€τ(/…s΅O₯³²ΌΫ:%ͺd%)1PbbPBΫ΄_pΜ¨Λ\˜ƒ\_wDšRΨ(ά'£«:qδόt.ΖιVΑgΩνε …ΊηΪΦμe0±ΜdmZ ?\<‚¬₯)']Ϋ\2ΨnΙψ°žO†΅―(žρΚ—η“Ρ>ΖΓrW§ Œf-τpBs7,“υ‹e7ΉΈ.ά—½ΌΌΌΌΌΞm 0iΞc :\ΚΑ%•εθ°9tΎΉdƒ'ύΠ1ηΘ)ίnΈΧfyθΡίcΙΖ ™Ώp‰Œ3HφΧ&d`ΏjΠ&€$™ΐ‰AG$YV.e(·‚ΦF{鸘³N~M8±§AeJΠ¦₯£Εε=zJΣ‘ύςάό₯rω΅WJ©ΎK1˜m`πΣPW+©Φίχ(“Ψ,;ηΦ;₯ΊͺBvnί*εΥC₯wUw9>έΑ³{%eRŽΧΒ7aT½Ύ©KZ( οY¨―“4τ-+Γ3τ•ΛK*@“H BΰΔžC8m¨gοΎRδlί[/½zVJμU.W#6πθQQž94©Οz0―-“9§ZgΠ™Ζ΅Γ΅Υ¨Σ±‚ασZDΛ¬Œ$vO²lπ,:†’”:Ω9qB9Φ¦k•Ιφ˜δς·F£Άœxn› 7†cΉαΥΩΞ²['Œ‰Έn2Λζ[ΩrΪ?Svˆ—Ιg“Α\|+kΔ[έπiOWŠΰυu1ώZ·›έΰe ―ζδΓ{ΖpT@ΐGyςƒΧ-ΤAυ‰ΤM7m#:μ˜‘k:‘IHΗάΥAEπ~B2Έ[Ξ+“Ό‘»ι¦ ”& EΣ…Ή&΄eμ§Κψ*υ Αa_2€‘ž£φOWGƒ*­σ}3ΈεFΓο«κα­ϊ80«kN=Γλfpς΅6νe[{˜^Δ±~™NΜΩ~L mmΊfα9Χ!‹§Γίμ¨τα3Κμ¬χp©;ιUη¨έ(#TΦτws6Ω½ Ί©"υΗl£ΆF»Ωͺ½Π`z[ΈŽ~ΤM B&¦“ΛSυƒ”©ΊΉφ7)#c‚œΊS‡.ͺ³ι€ΉΛGIΓηρ‰άΗZςηoY˜LΣΥ•₯ΙMυ5]άώςϋηκ@όP¬ιouφΫ-ηΊ—΄xaR}Ω#΄6§Κψ™Ύ7ԁmn”­Σf4<εκ―|(“4av5‡ί7λ/εεJΦ6›\νW(‹0K*Ϋ*Ρ<Τ%ΓΓΎ?`¬χ$υ‘Β!_ζ*³λv݌}΄ΏΚ#μs¦ »Œr•Oζ,‡ν™œŠP$·Ϊ 4ΦNΈ²Μι›υ7΄{@Šφμ#’ΏρΛ4‡<: @L)ΫΠjοQ œAGΆ9t K―8+‚ΰ`ύΆrNΞi¬=Œ” ςό’—eχΫoʜkn”ͺX½<υϋ₯Χ !2cβ9Pί"5ύΊΛ »εβσ†Λ δ·ήt΅μέΆIžρe9Rί sΊVδθ^ωΓs―J5ΦϊκW%Ώϊυγh9rΈYfΞ+s,’ρ£ΗΘ’E εf#»ώ:ιUέ;θ3:ά C΅4‘‡~ρ”N%€/“«FΐΠο.·έx₯,|ω%Ωsπ°L»ψ2Τ=-<ρ¬4 8ΊκΊ[₯{κ,xc₯TU”oΈNͺΊ%dή Οʚ·wΛΐaΓeβΘIwΝΚ8Qθ5ΩΧT"wήzΌ64΄¦εςk—‘Cϊ!iΰΕΞώO»ισεv#λMšΓpΝ:nέΚ–Žε.<«l‚ο©‘g})]|EˆΰfˆΒΒ1ψB1m…pŒ•‹γ–s΅¬˜<Χ;—W΄έ­»e₯‰ΨΞδƒdƒer»VdςΙjΜψ©¬θG„ζxΈ)‹wΨ ό -Κ8FCτœεM'Εeϊiυ¬ώΖκ–gϊd…0#'Oέψkκb0£΅άΰYΉ«KΔŽΔ‹Zέμiϊ\iΨ‡Pk·zψΎlcryπΣΡυ<γeΉ"΄SΟ¨ήš2FΣΞ%D νdν–gυΡ©dΪAnφΘδ^¬,:χΪ„}΄Ύ& —²;ΐ±φ(m:a™δΨ‡0“kΉβ…²5¬BdmΝϊˆΪΑ₯Ι΄ΐv:‡Ι΅ΌΙΡ-lόˆγΪ.KfδzΈ4!›ά}&O£5y‘zFƒ›‘>™¬,έ’ΊLψ™I:»Gϋ)ͺ—Cό,\ξςQ"§ΝhŒo¦n89ςh]ώΦγηζήZΩεe0—&g9ΤΙπ-'Ιwω†—΄½Ν±΅αgδ8ύΝ΄Eε… ]ΉFŸ‘‘.vYN:γoAF“U6ω9δζΔ'±›ŒήιwV3ΰ…NNΤC‘Ά$Šp+“)λ±XjeψΨiςΉ'δ§?όžL™y₯τ©HΚμ«n Ηφ–—/‘zL½άσηŸ“έo.UλΧKχnςςΖέ²~λ~‘ϊ}2lό4Ό’@χC‡φK·fΜ°ΔΛδwά.Ώψαύrσm·ΛKzDvξ;Œuσ}€³›6¬”M- rγχHˁ²rγΩ΅~₯Œ2M–Μ_(^8SͺGτΕΪύC˜=)—‘ƒIΣΡ:Ω΅―Nξ|οΥ²jΩBΉtΞ%²~ΕBΩί”J9(+ΦΌ-c†ΒlRπς7χBœνe»W¨2Υ%tt:ΈŸ²Ώ5n”ίΉ6wŸDΈεr}W•_G•Η>Ο†μ~ζ““K·\°|τ.Ό3Ί‹K<&χaθΚ,¦\Ό¬βS±όςιfτΉοΗβtΘΛ[Ÿ™ΗνσρνjΈΩΖl•oνQψ™X?ήοS΄/ωlax΅^Gy”O!ύs΅Θ΅‰Κ¦Ή`υαtΆ³yŸN]sΙvν½–Ρz.ϊ“ sυ9ήΕΠƒs<²‹₯9ςΗ©ΈFΖΫνή縁ƒΫΞr.Ίcp:ψΝ*†y2v X8q~Ωώ΅Οv{(܎±Μέοk–-–= ωΒώRΎω΅—£GΚΠΡSuΙRIi‰nΦζ©?‡ˆ +©=oΙά­Gεƒ—O“{Ώύ°<ό‹?ΣθcηŽM²yχΣ――μoΔ2-8΅˜΅ˆ·pI˟a)TJxGφγt"n._·ξM,£*‘}zι^n‚ηώ¦@NΙ`JuοώRŠ%[eεέp²ΠfΩΆ̐ώ²σH½tΗq£\&–nΰ»)J±Ό¬DͺzVΛMοΉIzU•#Πj‘AƒGc†₯Nψ’· Ο*U=ΚeΡKΏ— ‡JεΓN‘ΗΧ/ςŠ2§+•χ꟡|ϊœK‰'§qΏΧύΩ}t.υίχΥ[ΐ[ΐ[ΐ[ΐ[ΐ[ΐ[ΰ\Άƒ nίΰ`tΑ„Ž"‘™Ϋ1ΌΆιš΄2£Ε¬{DγΈΞ7žzFξ_υ†\pΥυX.Υ]κZΚ°©»D-b&α©ίύϋ1ΚWN‘}›cςΎq‡Y…Ώϊt3"%ΊbΠΠQsνVΩΆ»VFO½Hjͺ»Ι3=(=—›―»Rzto•CF―’‡}Jj&L–‰£‡ΚB,{ͺmŠKMe/DZ1ΨπŽh«o߁˜Α»#0θ‘–Α˜‘@χ°q|¨τμ7DZ’··ο–Ac&Ιω#ϋγΕvσeΕ[+δŠο‘[o½A^œΏXϊ .°7…ΑPsSlάΊC&Mš"C† ΒΎ’ZΩΌq ν=ψΌL},{m‘¬^·QfΝ́–s2ΩΜο!ž¦dΡ―Fγ6,wLzpΡxaΪ4DΛ2n†錐Θ!ΎΡ)ȐƒζΰӁY‘Ή&”'*.=•3…ΒοŒφ4N«†¦e6šŽΦ˜₯€!o]0\Ӂ4ͺρœ2αLΉ`Φ`mšƒ‰Υ£tgžΡΕ¨\»@αϊρΰ‚‘/]}Ι†΄ΚΟ)?Ά3…rν9dυ 1DPG†5šL™>!‰’˜|ˍΉΥ™3Σ•xΦ—(n@Ρώ©Ί‘Eπ5–ΟL’ιϊρ’gλ.Ή]oΒB=4Οΰδι‡α’,£·ƒKzWeΪG€¦»Ϊ ΐΠξΗτ3ƒGBγν&XMΆew€™ϋHρI¦LέxŽbΦ]œφώ‘H}³y‹ΘP|•…Ή@Κ`R›XEψ@xώg’ΙΞPPd'Ο.Ί˜Z6™zΨŸ|μΞ*£]qœvΦέd*ςΟΎΎ!‚Ρi•ƒ—iΐvΪ Μœ6κD»[­)dm`Ri e(·Οy‘|ʈπΚθnΧΨxΊΉ+Χ„«zh0;jDΚπ¨ώv \ΎV6XΟθ6’-ηχPεQ1€P‡φί‡¬ΊP•%Γ;lΞΞB•/[”*Θ3vtΑh7xFηΦnSEMΖΦκΜΥ6Θ΅_ΗΚ€Wݐ™|k{Wδ‘2χCΨ_Η†Š‘Ά`ρgmΦΏ…™8™{„8†ŸΙήd€ ρμf mši#UψG!d­³νΚjΏφς§Μφύ$¬qxΡ§`ρef³gΝF€ΡBZM @8ͺΝ7UίsΟ=Η’Gίς4©ΖΖ&)Ō¦ € J„:κιR)π‰Η΄‘[XΪ…>qc7—Rq£;qυ8P‘‹9 $b@JaE³4Ff?8ΉΠ`:Ϊ™Rά(ΗιSx¨·Ιη©VdΜ!grΜfNXόZΑ°οDΨψΦJY°x™μΩχŽάpΫϋeκΈ9‚wA”ΐ‰’ΚεμI#6Ι—ΰΨTš–3-Κ{AΈ‘Ύςyp 2Ήρή=†X=Η>xοt―θΧ•7깞ڿδgΆ%ή-zζ²bπhθΊ8…Ϊ\<–O… (ŸεάΪE5xχΦ;cηwo/³5οθ~9Y69Y|²΅?wjg“ύ’} ž.]{-»Z&Ώgτ-»ςz"}€Ÿιβ='Žηκεδ ₯3qΔρ0=Ι4Τ‘«   &“ΞϊzμΥΘχΎμŒ/MγIXκΘ‡ΞeŒ3# ΅”ΥF‡?Δ³vΛνi;/~¨ 5Κƒ4fpγηβ°=‹H†cyœ²p;γˆ`Ύt­΄Ό‡τλΣ[§‹\DeΈτ‘¦ΩςTv9ηζ'KΎuΫfΞΞM+ψ^{ x x x x x œˆN$8Ή'JϋnΥϋDϋν3¦:Όˆ°ˆπ‘ΛgΜ‘w±ΜΐƒλΉς΅Η‚–;“’tΩυSs)Mχ-π!=ΉŠτ΄©mFG&:Σ³ ·3ˆ]ƒNυΤάΕ«ΠYωΕ/^“Σ‡y’}:QϊHΟ έG…Ϊ"l8’ω>Gێ·ςƒΕρ²83θ:Ίf΅Ÿ½8ΉZtΤηŽΪ‹Τ¦3χpN–'Ip2?τ‘?Q NNeOπLε»wΜ½ΰφΝ-Ÿ œ‚δ]$Ηϊz―9X±νmIr@ŠΉ·^P'$ΐJ&Ίj€grbd =X5c84@'OΒ3‚Qζo_JM0ΦΧ芘^Ϋ0}ψh)WΏ2ΰ™‘ fΊ|³[:]Σί―Ž¦@Š‘W NΪY’Μ"Ύq9_bΰQ(ψ ]Gν…x»mΩ|œ;ΚE:Α²ΙΰϋO˜¬^,Ϋ(Ύ"ş‹x| πΟRΤ†Ο•iάr.άb`¦‹ιΰς4ωΈpεΫΩΫ±HόcδD:‘«=,BvjͺEφ)―π₯0v―W€©SίλSρ.€[TΧ3ΊήΡ5λ¨ύŒξάq*ΧQŸ;j/Rμ ίC'IŒQ ΏbpŠμ £IΊœ`gŽΉάΎΉε”SΌ«δ„JόxΡKςΕωO‹ΰ]nx ‡Ρ@ΨΘ:,6œ«Š%φA€Πξgh[3|[,ΩΗΪ}llΖΆ :k0ςΐ~_s”y£γΧu”–ƒ?h±·YiπΎ7μ=ςVϊސCQΔιή'Ό‘Goύ˜Όϋ™5 /όΟ› ΅ε%Κέ Ώ_ρ먝¬‹ΑΙ­BNhΑMθ.—kι˜/τΉf€.κ/eΪ:joFΙ7‡ΪU‰mFKx΄L˜α°¬_žπΩγΒέ²’Eta»›LƒSOwyq‰cί·.+?«_ƒ»u+.q fψlsa,[›Αήr·=_Ωp}ξ-ΰ-ΰ-ΰ-ΰ-pΊ,`Ώc΅xύTVΛΟ.ΎF¦ &O])ƒ{TΙt”Ώ³τΉjπHέeόλMoΙ—/ΎJΆΰΔΤy»ΆΚg§Ν–%;6Λ§—Ό(ίp—¬?°OFΰ”Σ‘={Λ£λVΘ΅5γπi‘o/_(ΟμΩ*_ΏΰjΉqμ$Y°u£l<|@1VΎ±ς5ωΒΔς~³f™\?|¬T`Οσ—Ο•kpΒκΜa#ε—kWΘ§Ξ›!OmZ#ί]·Lκ0c€lŸβtΩρtΙ΅½s/ͺ8]χrsZ€Ξ.&<Μ`Σ¦M²cΗΝ›š›Τ7η™yτΟh9;GzΆΧβ {Y&λL:D VvƒγcmœωZΉj₯ž@ήά΄mΫ6Ω·o_&Θ!.u₯<.?ΆYπAω,fŽ=an2Ή–³ΝΥ‰}ΫΉsη1< ‡Ί­X±"Σ7ς!Ύ± εοŽt lΓuϋ”Žψ>y x x x x t΅x)g-φ4•·ξ“›$ λΥGvβΨο9QzβΠ›a8 υNΌξ‡ F€ρ‰©³d‘Ρ}ϊΛΒ;λ¦)ύ+zΘ}»€³$W #Χܚe$4Rš1g±zο™>€§ͺ–ΙΘκ~2Ά{•¬ά·[iΔιCzUK3Ά#ԁΗm¦J΄ΧΒΏΥg€τ) fKJx’&g¦«vΘγ “@Ξ€‹αUΐ,%φ­Y³F~ψΓͺσά†wΊμέ»/nlV‡˜444Θξέ»…'²Ρ9ΆDΊ΅kΧjuΡ’E²gχ-oίΎ]sξ=!/ζϋμΧw‘0( ƒN8nδMΎΏψΕ/dύΊυς裏jϋΑƒε‘G‘ίώφ·ŠKηžιΝ7ί”W^yEŽβαG~<€ΈΤsΧ]ŠΓ– £œ\Ž<Œύϋχkqν0–©3ߝΒ~1=sςc°υ½ο}OαΔePΔ΄xρb9ŒwΪ2BOn@’HΞυ{ηwB›πˆ<φ‰z±OωtwXψ’·€·€·€·€·@—Y€ΏK‚%T«μ•!˜Αx3 ΐ75θ;βΓΜGΚΓ[Φιi¨*{βT6ΩίPί·„Ό³τ…+ρή·~SyRκγΰ1oσz=δΣ“.»ΖO•ENFτκ ψ:ωΚκΧΑΏQ6ΤΖλ"š°κ*!Ol\Ω‘ RŽ ηΗ—ΏGͺΚ+€'ώ~_{P6ξί8—iq™y—™ζŒd3 IΧ‘;£5φʝQΰ_Ώό'¨yπμΥ«—άpΓ :“qι₯—ΚΌyσtTŸ'¬ 8PληwžtΓΙΟ?Ό\y%ήΣ£‡JcέεoΌ!={φΔ‹(ΧɈ#4` ?yςdεΉyσf-Σ15j”\pΑ2wξ\uΚ/ΌπB &θΐϘ1CξΈγ©¬¬”ο~χ»2tθP>|ΈΚΔ'>!K—.Υ cΠ A8fΉDŸ­ΫΆΚε—^.<ϊˆΜš5Kƒ)'—]v™:ςK–,‘‰'ʍ7ή¨N½μ;ƒo~σ›rΡEig[ΨηqγΖγ=4σTΫ¨Ot/ΰdΰD[Πf΄ΓΕ_, … JUU•τοί_Λ”uΧ]wIuuu&!Oκqύχ+e³€›4i’ΌώϊλœέvΫmj^+&>y x x x x œN θ/~Ώ>:qΊτΔ^ξxυΑAΣ —oΏ6Wͺ|i<*ΟSx£p@IDATΨ#ψͺ=;dΥώ½ς©ι³e5ΚωϊrωKψ]{οΨΙΊJ{BοΎ23-€ύbυRyxΗωε₯·Θ@,΅ά£§ΜμΥOφΥ‘ΎZή Z.՚Tέ_F"@I"ων›―Kwμ ΉΛ΄qΕ a-χ™@¨κ“c$Gž}ςθŒθ@:­3ΌˆkŒΎ˜ίPŽΪαPž6^ t²G Έxο{ί«e:Τ<—#,s6 ’’B6nά¨/<ό‹Ώψ ωωΟ3ψΐΤι~ϋν·…ΑgM8«B'›£ό 28Ο@ˆœΉε–[T6g>ΏώzuΚ9ϋ2mΪ4•Ε–OϊΣͺ/α t09r€Μ‡ ’΄ϊtsϊΛΎSoΆ3θϊϊΧΏžισ‘C΅Οvό5§™Μω7›1ΈΈξΊλ4HΫΊu«Κε FίΎ}εΞ;οΤ%bO>ω€0”ΕY F―LρQ†ieH?ύιOΥ>lμ±Ηδ―ώς―€ΊO΅ΪΘ•ot>χππππ8¨mΑfolϊΎγΥ?H)ό’>πV6ΑΑζμI–Κwwo‘’nέε HΦ6ΤB͘<‰ άXŽMκσξ 6c9Χd0«°½‚.»ͺΕL‡Tυ‘/_ ‚Ώ‹ΠΎ4·@7§?πάΓ2 26γ·΅~ΓJ©ό-u‡”ίW6½ΙlΉ}ρ‹2όΈY½ΑόmΞ„œΓΑˆ-ΑJrDΉ+RfΧW;Ε2Ξ¦Ύ―©lxιsΡΡιε2!7 8PŒ?^t/Ώό²:Ο 8+`χ.—0M™2EΞzτΐΤ醍dώόωˆ/—qτžΞ7—Mq¦ƒ Gϊωn:ζ DΈ”kεΚ•Ίο㦛n₯O †tp―ΕΨ±cuΪUsθχάsΟ©σΞ™.•βg«2i£ššš ‚lΞφ0Ρ6Τƒφ‘^ΔαΎ– &¨]^™Šζ£G–>}ϊ(ρIη“·€·€·€·€·@W[€Ώό Ίdδ8‘ν₯‚, –X^5AΒ;xιρΈn@<μδ`Ϊ•j‘ρx―ΣVœR5 3&ε8ΙͺtΝš€»>Β`­ΰƒ]2<šPf;’7ΐw8‚ Ζ@Ό[Φƒ¦~‹«=‚ίΠI=z ᛉ€ΔWiσUΥ»«ͺeΠ…Aω ?G?±~F{«ίb4Ÿ=ΤαζΓΛΟEuδsκΐk^+εΑj‹—“G>₯:€gx™ažw@_l³ΪΑΞh6Yyˆ£6ΛƒVψdς*F ή\/"4{²ϋ+θˆ3αR :φύϊυ“εΛ—λ‘1cΖΘ[o½₯{3ΈgN:g18βO§›τ 28›ΑeP3gΞTηšryίp‰qΨpv³ .HΗδόσΟΧ}”OŸ {\βE}ΩΛ€_~*‡KΎQ?l7Ύ,³ϊί²e‹p–‚³ Τ…Αua°5bĝ©YΆl™μϋά£²‡ 2TΫΘ‡‚Ν†0(α3βrΙωοΨΉCj†ΧhG8ϋΕ>pζ‡ΊΠΖδΓ2νΞ ƒΑνJYη²+Ξ1a0E}2(bš3gŽΞΪΨu+ζΪ{ooo3Ν|†1ς):Ω}ΊeΉu·μςŒΒ£u·P™tLΦ—(Ÿhέε₯΄τ³ΐΒθ­έ₯+¦L:ε‡<ΚΛx›»|²d“7ώΨγCυ˜ι`ίρ›ͺyȜmΔΙ$·έ-gP0¦FH&LVgΩ[aL†Β zρ}rάs«’{€{Žr0Xχ€bd4jΖsά4Ύϋ§Κω¨<χAm³:o`ς#.d¦3}g/¨£=”©;ƒQΕ$AFK|'’ έdW =q`ΠnΖΗlΝ£P’ήΊ\Ynκγ,ˆOήήήgƒμ9θφEaτ*CΗ2:`η°ΜdΟU–­έmsΛΔ±δβƒΉ8,³=Íζ.―|e—Ζp,g[1ε(^.ž.,_Ω•Εa“Ω)Ϊ~&Χ υλLΦϋdλF‚HΡο9Ω x~ήμ‹i9Ϋθ,ΣΡu8,σΟw{Ρ©Ά™ΟƒcntQ9¬“ž_¦θέ₯γŒx,Ι5\ƒ+_ŒvΔΕa9_ A=HG^όsιL?ζh™.–½Ϋk³άτ€=sΦN|+[Ÿ£~ωδ³έ'ooow›lPΗ`μw$ϊζ³P œη³=§9“νσYΙ?Ά“Ώ=7]<ΧNΨαoƒΙ΄ΊρΦ <’eΚ£.”Οr+»Ί_[™ΊρwΑ~Kμw—νΝΨSQŠeMZnBΉ,,‡ύVΈcΦι\R.ΫerυT@žβ1‘uaί γŒ=—σ0Ά1±zsuƒιΝz tΙp€ŒΧ“φ7±lϊŽuώ±Œ‚ΎΕάΰΤ†o5·ΊαΡΎn2~#~cxνΐ₯-hΪ#Šk4ηRΞοSβή{ούίZκΰƒFcβpS.cζ‚Ή4'£lϊ°Φ™“ΑΧσ8uΰ—ˆ»_ψ@αύΕeQ<6–KˆΈδˆgςKΜ2q^zι%ωΖ7Ύ‘$Ά}ωΛ_ΞΚΜx x x Ό‹,`Ώ7ό α²Rώ~p +—τςs.‹ε3ξΥW_•ν;Άλ2`:ΆœπwŠ4δΓ>ΈL•τ\ΒΛ㹜•τάƒΘ½e₯eΊd˜GΉσ7ϋIΗ}‹―½φšόρTΗ”Λ^y°ΙΓ?¬ϋψxϊγΣO?­mά―Θ}|=τξι«ξ]-Ώόε/Υ1§Ύ¬£¬ 6dN@δR[._ζ[ξkd;OLdŒL:Uυb™}cΞeΔΆΏ‘ΏΥ\ΒΛCXZ[Z₯/Ρ{όρΗΥι'>υd’lξ7dΐcϋy ΓΕcΊ4šφ`» ΪoνΘ€ΖΜ 8Ϊο —2Σ†άΣΘeΔ\žLmΖ‰–μ3mMΉ4š4Ό.άίΉK―y ϋ|ψΠa=D…Aˆ]w^KκAί‚τLV6=ΝΟ`ς‰Η²ω δA~μ—aσ0ƒΡ6Lά;:˘ §ό?ύιOzmΈΤtQΔsπƒύ§]Š@h|s”\γLm¦ΈJΑ¨5o*”‰ΛDz—Ž0·ž―L<¦h;ε’' %ήΰΤ#VtZΥxQSGό ίη[€Χ‚_dχž±λΚΡ >Pω]΅j•ώπ!Α‡6ρω0yρΕ₯gUOιΣ·ξ‰ΰfνΉ8J— O‘β‹ ‰ΓS²ψΓΒ£om―Γ™pν~ζ[.ΐˆY½XzΓ3:7·ΆBΉαΒρmήήήgΊψ,[Ίd©:ΜtΈlΫΊMGΣyJ"— Πω9r€:Ϋό b πΔO¨Μ‘w:žt.ΈπΨs:γδG–Ώ[,ΟΓqκtJ―Ύϊjύγΐ{tͺ/ΉδΝω{Ε ‡ϋ9ZΞΐ†{§OŸΏqΤ™3δ5xπ`έηΘί7Β)ŸϊΡQgDg—Ξ:#©KαQκζpνk_²ΒίZ:ςωΘGT§+ΈBe𷘣υ<πeφμΩ²sΧNύ-εο,χ2Pαι‹”»zυjΉωζ›5ψαα+ ’h? RXζoο~χ;Εΰo=aΤ—§ΔI—”ΓΎSwΪσ™gžΡΰcĈ(1x’MΈ—‘Έ δx( qΉΧ’{+y]΄°_ F8ˆ9sΦLΥ‘Ξξf.Τ•ΎΑα#‡5 γub Ζ ΆaΏψώ/5ԟϋP© Ϋθ_Π ͺθπΐžΙ ‰|tQyΡζΌx°ί ϊxΪ%χir_+ϋΟλv&φŸΆΚžGκΐ́ζΡcIgy ™΄΅Ξ:ύ4n΄£p"Σ,CHNdI N p Ξ²Υ •M(./n3^ΣΩΌΡΐ.“”_X#œ7(ξ•G0Ϋ-WΎšϊΒKpΓqκΜ`Jδ?N™ψPεÝͺΡcFc3ψdY°`>€ω₯εΤλ]ΌKVΏ΅Zuΰζk>ξΉηžΜ(Ζά0Ξ~αωπΙ[ΐ[ΐ[ΐ[ΐ[ jΎ?Š36ΫΞ“Yg’£K8g+xg+θΨι?aΌŒ€cLί‚Ž)ΐxΒ!VβqŒ‰ο’ϋžχΌGχΝρ7ŒΎKapP^Qƒdœε0g”νΔ3Ύό}£ƒΛ ˆ³,ΜuPόyx Gΰ9ΛA}xŒ:gΚΏϋξ»•CΙ›όΘ›N3ω}μcκ(οά±SO”€Ύt’ΰμέ³W":μτοΘ“pStή0ΩΜ ως·›Κ€/ΘY΄ΰΔ(O}0 ‘ΓΞ …ƒ‹ό]gŸh7€apB{RΎ³ŠmδΗk@œ=`@D»Žœubb wӍ7i_HΓίκΕΎ“'u`N€Χг3 ΊΰΡŸϊΤ§”'―gqxν™°|ζ3ŸΡΎ1bπ°jε*½n $iŸ«ΊJε0p€ήΌ/h;&# 4Ω'ϊ'ΤΙ§v t€ΰž•’$"Ύy’§~yς‰§dοΑ:5f,έ"Λq1Zπ&–$ΎΜqœ‡œn>*O?ω„4aβ7ˁ=;eΛ֝X7ˆ@‘oή|Δ$“%™%(k!‰T 4€Α DίTY†5ˆλV-–εoβΈΤMoc ΰΐ5ήAΰ€/τ^³z46sδ=ΨθΛΐ‚|‘S §¨NθjR†€iΣϊ·δHC#‚RŠζ?N±ψγQ·œ―ڊΡ({ΐŽ7VGgž~ζi}¨SŸύόgςoφoϊC1ίο|η;z ωΐΎοΎϋτΙο ŸΌΌΌΌΌΜt―½φZαοg:„1ΡQ§CΟ.kβ‰Šœ‘^ލ΄KΎύο«SΛ™{ώήpF#έLœ½'ΫJΰ<όΠΓzz"Ϋ8pΚΓ<(»oΜζ‹q™8šΟ₯P‡VΗ–Ž5ωrVΛ„˜8ΛDη—>qιΜsτŸ#ψ R¨ƒ©~}ϋ).rκΟA9Ωςδ‘Γ†ͺγO$φŸν5#j䳟ύ¬φ§Eryy²OΤƒrmιO‘δ2-Žτ₯ΈqιΛ΄)gq8@ϋΡA§£Οί{ΆΡAηŒΛ BΨ_ ό½gΠDƒ9φ›'5ς=_œb?0qζδ…_ΠΩ ώή“Žϊ0@a}ήKσΤ†δΕ?Ϊƒ}9r€βq¦†ώƒΠθiאr‰GέϟrΎ^7Ϊ„}`ί¨7mΞkΐT hhKΪ‚ύfΰC9δQϊœͺ΄ΎέkNnt+IΛ―ό­ΜΈθ*Y΅θy2ξ"iΪ»^΄”H_Œ6OU#―Ύτ'9p4-3¦N’Εσž“ζnΥrρΚ5‹e=ήΛrΓUΙ²%Λp—χ@€zlίπ¦¬\»Yf_z™΄ΤΎ#‹ίX%Ο.}»'dΡβ₯wp "ν™ ί΅•Λ–Θ›λ6Θ„)IMΏςάσ/ΘΫ[·ΛεΧ]/έŒ0B>bŒΪΉM’ε•²kΛΩ[‹σšχ—Ÿύχ/ε#ώI9zp‡lί}7_•Τή/£&](γ‡υΕhΑ\©ωΠ7ΰ5’γΟDώΤ…ΊRGΆΣΆδI‚φ€,ƒΩ¦Ξ΄χj0¨`B|ς‘\ς’έ‰G;—0½yMYη5‘ήLΤƒv₯,9l£ξ΄Sάs±\όΛ―ΐ2rΜ„αήαΐχΉšhW^ΟβΦ±ύFκ›p£Τ”+`Δ…/½(Χ½kν—/“ΆT›τκ7B–ΧΛ²΅ΑƌȌ §`Ϊl… ι;A6PΥν”ζx?AIή9\‘λMΏΊ—4aXοΚξ²ο@­LŸ1Mjwo“΅ΫvΛhLo]tαER{eα+/ΛΆ]{δhKRzVΖe‚‡–ύ›δ`ŠK±ZεΎl3g]!{֐f[Φ-—ŠCeβΈ1²vΥFŒ.Œ—g^˜+7\s΅<ωϋηδΦ›—Χζ/Β·Vγx1θ»γržΤT'eΗ!<„šȈɳdΤ |Zڏ-=Wo˜“Ρo>  …dπDZMψβγ)•έ 8άrNdτππππΘ²ΗdƒQt:Γt–θœsΤίR‡Ώ-EώFEωΉ|έ²αY^tυ`_πΟ *ŒOΎ\ω£Q©σόΦ­« mE眿ΧΜ]›~4wιΩΦQ½#ϊh{Gu:ΒΔΈΈQ=άΆΞ–SΙ―k8*=+πώ-Ηπφvt4―ΣYώο6ό4μQ[W[δ1Ό8V΄‘9%W\‹MG«^•΅«ΧJΟ>ύ€ C λόXzΕεUΙnRЍ― IoŽF—aiΰ M˜:Δή‘κκ>R†m$»χcJ$—!#Η *M∷€”%ΆΚ2,Σ„ŒΕ“%(O™z!f@šdε[λe –αμΨρzυ<4aιW)θΛ₯ώH­:°_!2ξή―§œ7γY΅b™μΨ[H³UGΚ»W"ς―’>θ$Jρ₯j‚ξ=ͺϋΛΨIεk%YY…Qχ„μF@šΒώηš+εΫΈž ΧÎ} δ³ χqH‡K°ψεgΑœΗΰ1ψΰÍQόWΈ> Θ,Δ³6˜ϊ_e2fᷟIγe€τΑΓpk7«Bܐ™΅ίR—π(ΜΥEΫρA^¦aφ€QzβDm““Ξ‘γ^SΓ5ΎδΕ”₯“CKΈ›LvŒ•‘]—Le`0—‡•3ϊ€•ςˆθ`x&ΧΕW˜ pdƒβε…ΈQ9FοΆΗ’k7ƒΉΉ«mΤ‘=3ψa!—ž*ίι£ΡPΫf}±vζ–Œ―Υ™gπ¨ύΜπ\„©Ά£β–²[AσL…ΈN›‹Η2SFF(?€όMŽεΕB$Σ3‹OX9¦/Φ?GŽυέ₯–Yg2=΅μς cL§,ή!±΅‘‡›\ή„mž«Νpτz¨".ηΰZΉΓ3TΣ)ΓG…tΐΥί‡>ƒΆiΆ6GΪ~W”KΠ¨&Ρί!•MΦΑοmΚr΄Ν~£x{Br½&‡ΈV65£:άr•ŽΞk™ŒC’€« H²S†/Α!IXΜAυΦ†ΐ~ΪΤMO›°ΑBβ[RZΗN€eb¦xΐ μπ6|Β¬½ύώqδ+ؚΛu¨;|Mβ+ςoΗUyψ VƟΑGΰ{ϊάδZ΄n™u7‘Ϊεkmθ•$ΨγΊτ 9ϊϊ―$%Χ|N#¦δ§Μ•ŒUq9•ˆΖ…Πΰ3ΫΞr18QšuϊΠLΎ—/ͺΗΪ;lΜyυ…?Hyeo™sι…²λ"ΈΠ‘!˜žz}α«²pέZ3υ"S3NcBφ"ƒ ΐ‘εΛdzWacπΡF™4e†Œ>@Voά.Σ°F₯ΑC]#6φœ'exqύώGτΝέJqU’L&M-;φμ“~3u(yΛqpΊ6fHΏ2ύό©ςΪ‚y’¨”9“«eλΌιΉG΅ŒΖZΖ}ρfΩΆc·ŒΑτΏx5ƒ9%Ω&ƒFŽ” ‡Μ”%―-’#υXΒ5j’4'8š”Α*$VΗΊΚm2vΨ 5”ϋA>>o{Πδ₯ΰC ‘œ–ŒΖrή|ΈYβ3ΗΪsΛ z³’[uΛa€ͺ1iw8ep Ή4-ƒKή!r&EyeπŒΞΑ7\ΛΩdψZ6\C@nE2eΓ#½Sv‹Qψ1υ`ς£νΖΛΰ–œy†6G£ §ύ 7_žKΆ Σ2gdG66™·₯5œhn¬ ίκπcΪ(ΣQΘ” w+9κFΖ<nžEγTrαEau ιmsd°sΖΓx[έΠ’υ &ΟrRζ’Υόκ#όο–x φmΊρν‹;$ήKΚCΗxdςv52 ’ ΉθrΑ’ΜNN”oz‡K°HKϋ›ΖƒΧΙσ΅ςΌΰ),©)ΑšΊCομΔd/Λ;λεΚλo’q#c£RSH⌁υR«:t[°΄‰›ΑΈYšΉ) λεx#λωξΎιš›ΦγXΣΗ5Κh»¬¬›,_ψœ,έR/ύΐ{₯΅ΉAΧΤιΕG;§Ό¨3qΫ ŸΣΉΎλς˜σ FΚmΨC@„§Σ)-σώΖν ZΤU[q2,s ο%\‡Φ K₯u)ŽΈ+―Β·“3OΕ|N†Vž‡·€·€·€·€·€·€·ΐΙ΄ΌG:“πqR+ˆSφ‚y³Hι(IοZ*₯Ÿ'%S.γτ£Ϋ“)ψŒηEΏΌ¨= Φ›zbn‰Ξ>댏b=W:Q"•έyό7EΣ`Δ5ΌN—ΑŸ30AόΘRΩ€3Ψε°R,Α*E hΰyΥλκjς£ΉιΓ\ϋ₯ςΒ2`ΔΟ•8}DΝ|κœr zεpm‘ΆϊZ=ϋ‹hVnΏλΪe²pΛΩbψ,GΫ³₯)ğ4†oΉ 3žΡ<.aLΉδ-Ω²rαΊ|Ωεiνς°vΒ- 3|ˍΞrƒGsk·άm7˜εn›•­9SΤ~ΉΪ]XΎ{ΑpνŸωδ#Ϋf8Ήr“νƒΑMΆΥsαEωΑέ:Λρ0ό|v²vΛ£rςΑ Ος\xlc2]άh9ΐ pέ6ƒ»Ή΅[^¨8LΦ++0ςαςΛW&‰΅Yn0ζ&ΗrΒάdΆ Μθ™3Ήm¬άm3ΒάdpΛέ6–sΑ c2Ή.NΎr@q,?ίp,wΫ’eβ˜|Ïζ.M΄u·έ-Α˜[2™ΦFxΎ²Ρ}”Φ₯‹ς1Zξς1ΪhnψΜ£ς‹&γipOΒ¬έxž΅ε‚ηk3Ύωx惛L—>ͺ§αXnΌ¬Ξΐΰƒ)ŠkuΛ-¨![ζc8ΌŒL΄ΓxΝp^6NΰΪ=v†W›AΕ j'«8ΊΛ)›Ι­[9K§-ΐ₯0ŸN’`KбŠ*IΰΟ'ooooooo³Ε₯7|NwΜ•τ–WΥWMΎχ{>Ξ Ίηψ©gK‹νGQK°Ša¦3@4η½šΕ92OTηs™>χ ΘΉl‘³€οΑεYί o³ΜαJ€³¬Wgww8ΖΙQT¦ŒƒjΓΟnŠζDκaU3<ςˆβ˜p^¨μ*\mΑνˆΧ»‘ΆΔ |VyμΨ,ι²rI Ψαύνμά)XE\γ :&š»mΡ2λΗ$λg‘܈άΞ,’σωΑ7Š­ΗI’‰ΰ½$YΖΜΒ7‘Y@§ZBεšpkŸ1¨Ο€B¬Κƒ†π³]b{‰A-*Γp,'K·Μϊ)LngψάΤ¦#OŸ₯¨gTb)$t«AƒƒkΓwλ<τ5&ϋjλεΆ[―“«/™’ΎBίΝΰ™ž{.Τμ Vό¬sΑ*Ύ§Ν[·n•=x›λΤ)π₯,‘ωσŸ•&΅άΨx1#‘[nϊ$^πΣKζ½ό’lΫΉEΚΚK₯–αuοV‰cz«dΛΦ%xσ荧O΅<ώδ/₯ηΆ§ΰ”O=Y†φ*ϋφο”ρ¦ΚΖuλeυΪ%οΦ{ˆ*₯‘n— ÈΔ`Όiϊ΄YΨU/?όΙ½2vΜlΉό’λ₯ŽάΝ;dέΪυRΥ£·¬ή²Tͺz”X)ήήZQ‰–ΩγρF[”K=P?(; ί²•/Κyη]&Σ'Ο”ΑC‡αεPu2χωgeΣζΥx9@™6m&‚Ž4θΚx Γ1Τ‹dυϊ΅R‰Υ =WαΘθΎ2yόExV9ŠsΔχ8 ϋ[ ””I<Ω]Ίυ¬F@Ρ"-uοHϊΘFikAQήSF/³gΞ‚Μƒ²gχ>ΌέvΈ,^4O† ‡7ϋύχΚ˜Ρ“ •Λθ‘γρr¦ΈΌ8χ)y{ΛrΉτ?Γ±Ψ%²eΫzΠ7ΰέ:•RQU-£pβݜ™SδνΝ›ΤΉ8hNŠ{6›!+V.ΑΫokε»ίωͺ¬\=S*―Ÿ,΅8 ^ZρπΖQΫ‡s…γΆΥχŽ%qΰ!š dTβD ΎZoΥΒ&=ώi@œΟ~w1>ι8‚GυƒΝ’8&»™‡RΖ‡X+iA“ΐ)‚ϋqδ2°ΔΓΎΑQΰ”³?θx‰U§μIGƒU hyFπ[υΗ‰Η'HK̐ΦFτoJΖ±γ ϊΊΕq{”ϋ€γ™K…;―ΏφΝτsŸύk)ύGΏ™bΊb±±ΖOε:G €ϋžg"Ι)λ]D€`„ωΉΈ˜Ε?Μσ4(Μr-Ζά²\ίQ–€‘α™Dζύ ^ŒΛzm‹EΕe[Ό‰ό“gώΫ|ή>t’ΨΞy:q½uΫw«*ςεΜ<ΰ²^?ΜRΐΘόΒΘ+Šβcώσ^yσŸϋξ7ιβό\±‰ΩVσƒc&³t‰=¬A‘η{§Ό’Zis#π₯—Ώž>ύς§τsŸ³ς[ΙGσšc»ΓϋΡΟγ^°!Π€°{βΚ…΄±ΆΑ†Zc‘6CΩΑ0H—/_Ž`λά‘MEΏΉΆ MVNO\| :v^Ή.©¦§Ÿz)ή)„ζϊκZΊΘ κ₯ςBό©t|΄›.ξl@η­₯F­•Ž ύμ³/₯΅V-­―!1\LOγφτSΟEΎ#Ξ™YZ\‚ΐΎΕ91λiάψ<½ ©¦f{ΪΉ…6ƒ2žy.mομ‚ίΣ&§―^½ϊRj΅qςμ*ŒS "ϊΕ—^JΝ„4ΘΛθn››λqXS½VI«τεΞΧYήJ«~—žx‚q7)k Ψ~ ¬υrZ`σ¨Β8I€–AvΓAΊMυΜGf’Mϋ―pO=­–W"@Δ ί£œ ιΚ“OrpηΝ$Ό/_z’ œ€„λΕs›iR~1­sNΞΕ­Kμ9Σtgg; g 0EηI1?MP¦­Γ)·+œΪ Α ½±± ³t!ύβ/ό›ιδςJϊτ WS―ί ΓΘxH0B¨«aΡ)ΟsF©«0†cˆq ϊΠΌ@—@ΨADρή±Ÿ²ιI»ƞγΐŸH,k~DζξόζvΖe=’vnβ‘ŽτSΚ5MEF†φTΓL˜εhw3΅VόΛL ’{L™M:€Ι£ͺ– L93Ά›Y"j}S«Ϊ%wχgΫ #γsξl}„I±έό,͌;OΟ‚pn·#­€γ¦ΫΆ—5›e *0+jΔμlΦda`i³m‚I„€eμa¨ΈFϊIV©C‹¨AΘΈ9N)ίυ!,¦2n˜Υ€C˜–€uœ|ώSι©g.2O}Μώωβ\Ί"θ‘Θ-œ½ό€MA|δ{RρΫ<9Y†G<”χŽτfΙΉυΗ½wώŽZ|T#οΉw&˜Ξ9’€gρΚΩΓ˜"Šυ;g‹ηΎπš™Α$Μiσoˈz,?ϋd{Š4~5ε:}oίiΗ<Iό+žss2ΚγΜ3"Κχ]τƒzΜL‡οβ/žΠχά{Ÿ:k"%° SZ#ύζV‹uΊκ0ΰe^―¨.ίΎηg€?Ϋ—Ύ,ϋa°~―œ•^ίKžœ#Ϊ&ŠόΕο³iΌΟ}πι»}4½m+~ŸMω°ggίΏί}΄οΔ# :ΰ©άiα₯τόF¨_<β„ρ:ν y”HΖ?όσ8B­&θD\a¦!Δ(ƒ#ΨQxΒό˜ŸΙlσΌ Sb_;.ž;§Ε‘!Ε§b›SŠ69;σθE[Xω]^ŸYΨΝ‹ωΜSΪζμQrl6ζ½Μw&βΟΔ―Ρ·@ΆωΦυ‘η.ίσŒΙœ4ίδ"X}Qη½2Δoy #‚y8ۏh!s…6™o£·–(§ lkΰθ*pv] %Ώs[lο!i=}ηΩs,σ©ν–σQΎ2œ2_όQ†Γ㾘@@Β§†dΉΫ=I}NΥJδΡιΑX40BJΜo e Γ1Δ¬¦N''"―­p(ζ―iwwοJ")™Œ=PrDΔ΄DόBο6„n"|?-•Sηx˜¦Υq:–XFZΘa–VδΙ·‡ιφ»aŠ"ΡfyuΪοmcrUMγκrš •ޏΒ|i0ΑΫζ“CΪz €’κnη¦η0uΊΗaβΥλaB–ϊ†ͺF8κώΰFbυh‹D΄eΝ›Ž ψΛh†F‰}4 Ν2š¦ŒΩ w˜ΖNι=y;΅*[΄βyBϊ"blsΐζ›ί}δΧ&Cf _O‡²ANψΠ_hDΏ³ Δn z‰τ2[c;ŠΏš6΅μ¬†ΡΞΔ5Δ4ωSuζK Β=ΜΩ(Ϋ-m8‚ψFX&™²&hFj H_‘«ΐ Ίi° G=J΄f0Ό!ΥbRށŸν/3_cƒ¦ύJ©%ςάΘ4S#λι&ηYF2WΞΧΌ3*)#''΄EΣ5)C’χήΙQjΦ` =IΡ₯οΠnΐ°.ʁ88COκ”ΡΐΖΦΗ»‘ζpΤ§Ή]Ήn€ΐZšΠGŸ—x¦<Σ¬pΜ I<π³*D:ύ¬ύ’^6XGN¨G£ωŒΛώΖ3ϋ*l­”JQΉΤ D>‚X—pŠΌ£–‹<$Ά$¨†ΘAYqΕsΛ₯V“³CΒΘύi:ξ3c c¦ΦEX8Ρ–yk-€ΆHΪGΘKΉL z™ΜTΆ#7ΑZΈ3―/­•qΣl±8sΐ2}Ϊή›&ωiΝλwΎ&jΥμ»Δ˜ω3l­Ζ— 2DŸΥ|σβƒωeΫ¬E˜Έ^ΘΙoΚ’ί~ϋ{ ±9φÜU žpσω£^–β• Ϊ|φSΟnx%φβw‘9ήήϋ8eZξ=βŽ‚HŸΫ}οEΡχ(*ϊ^Τ{60)žΫΎ³ue΅œΝW<+Ύ%P£aσ§yΙ”gGΞɊLβ»(7ΧwavΫη#(θ6ί]*»­>š0/΅β~γBtΜ‚ Ž$Ξ?Δ˜TΦΜšŒFL(ž“vȚW@RαΕMU™"xpUΎœ62 ™ΉΰχΞα) J…υXς™ŽŒ2φC+„*ω,Λd¦Ουq|kΣΆ1ζ1JωhδπQd@˜,qΕ쌏?Σ3!/άOοsίσπ?읋¦xnκ„ iŸτΓ>ζAšT›Λ,ά*DtJ}$ζkkk!½pώ<&IΧΓKd3„PΏ~γmˆτ]4‹h+VιDβ AHΨ‘U£ h#}ψžΜ†02‹δČfββνθΰ0΅ΧΠ*€P:'=ΧV:頝hΐtTΣwίψ.ˆ‚σ 8/¦€φ]DΒ"° ΡYGϊ<€Ψ•ΰmC싆΄£οu;‘q˜€l;έ.e6c‘@d/-/‘0AπLcΓ€ΰΤ'E5uLφχo€o%ΆiŠ”{σΠΔό¬‚F₯ΉAσ!VΧΘ[ faBΝΞB»EΉœΫƒΤί6₯r>wgΠ?‰BSO½BϋΑΎ·ή B}ui5υ!ΞΩ7œέD,ι;‡ϋHΥ5_‚Ι±` Ίέ i³Ζ ―ΞΚ©AΐJ°yζέ‘ @>•d$ωΦFbn ΥΫSssΐΝΤ*Ρ~π\mIήμΘΫ ›ŠσΥχά@Ζ!66ZΝ¨$ΦΡΔ3Λ–‘³Ξ:ζO°i˜ωe_‡cμ\/I€Γ΄F024“eΊoZ”¦ Ř94£,ŸΩYΟR£2–ΐ§ρ’’c˜/Ά(~Σή—…”Δ‘σΜeMͺ,ƒ­]&ΓršhεJΜ{^²’Ÿ>  &S‘i‘npœφΧ4Ά‘₯yπͺΫsΜa¦Λa!札³κؚ‘A­c5 \Ξ•FΓu qM™ŒiƒΉά9b^#E_`Ψ{›l›%:b|ν ι£ύ΄ΑΌ’nΜ¦˜ΪhΖ>ˆn» ,lhfFrΫlz4’€ω½7ζΟ—―ύeΡίψζb=Χ‘D=φΟD2#4ŸšrΞΘg-S…φ“%εFβžWŒ»·Ž™Ε ~S~΄y}γέx© ³Ο£:.^Ήώ°ώ 8Ÿςžvδώζ₯`:,Οί΄mNLΙXΔ“(ΐΌοΎ€#Qκr‘bω—gžΊ0ΝΟ2άμ»οs)σύω—yvΕΣω+Ώ‡m,Ϊy6[ΐΠBHYLδM$Ξ7ο[yΟ\‘lŽ——uGύό>­wώ.ήGͺ\εό6ΎŠfœ}ζ}Μc бzπ%Ώ—Δe=EΦ·3υΩ7—T0φ1?l…mΙγμή™΅Šΰς+ίϊΌk€…4xPc‚Λ\Τΐ1Ξyρœm‘vύˆΓ’αΐ/ΪΒΚίπŽ?ώϟ;³Ι$‚ΰ+ίΟί»vHΈ%Ϊ+‰Rάλ]g–ŸΧ² xδLΉ> ν¦ωΉΜ—qΟs|n_mg”kF‰>χ₯혯 [ πιμ{֌—oϋ©f(·Η'³“,Ύ½ε½O­§ξ©ξΧφgβ~dΚHŸxΞϋψ δ™Qc@Δ„A|1e$L\013μΊb±ΖΒcαΖ ”ˆIμ(e °ˆ b —ίό =όKύ Mf,Ϊ*Τ Χv©‹€X©–Πnμ’νXβ^σRP…Σ΄½w3]}Μ°φΆ1γΪΔ$j) ¨bλ>uƒYYX\[†Θ,³ρ+q.Λ@€NΠZŒΫ} }-Zδχš@pξb²΅ŽΘυo…°₯ZF* ‘­μυ³–&­ί˜χ‡ΗGH›ADHΞ»'Ϋ|;Z H£ιŸΎ 5όξξά bXb\m²ϋ ΆEb’ΚZΏ[Hω•ΊΣ’zΗ28‡„/ΖD† ρ9ƒ'φςŒοΡρ^Ίpω"μ$­ožO7nΌI] `ΣH“Cυm;pΠÍG†`†&ψ΄š+ͺ΄(Ζ)―ρz||œφΡ0Ηh“zΗi3hN4‡kΰη1@«°Έ‚ff_8’ιώ ‚\'ϊ*i€Bκ’Φ―@ΖD©‘ΜΫXBŽ A€O£‚΄ί±…Kζ#ΤίNX ? Fζf`Œ†FG*/Pf“ϊ$θaT$Θ©ίΩ,Xe£­£Χ,L-Z…9$ό45rσ‘¦VΖ4‹6Τ0c± χ’™Ύ'ά ³­…ΔnxΚΜπ–1Ÿπ'oηm£Ν˜ aνŒ[ιC‚O{κ˜ΟY—kmŒI›κ{Χc;- Sˆ ΐσZ7%gšqΙ°Τ`2,̐λt ^›1/GhΡQ˜UƘρ¬Χ+i‘©ζ„q%UψνΨθ=ΣXZΔTnΘ{€zΑ|1ζ‚Ψ\Η΄?«0σb,Ζτ+6w֎λ$.ΗbŽ/‚)@2šίO¦˜ΕΡάΈ'EžΠ1ntΐ>d£"­)e/ rΛΚυ*}”IΟ„‹―˜ΜΡ2’[‰‚ 1¨Γω ΏŒBγ#ίM[;Η]ς6πb °N”τΪfΛSRimSζ”sv¦Šj'.ΩI[‘?Q4Z©. βΌ‰y™ϋγΜσ [%K`z𭝽οr]˜/ΧΓ λά£ΦG? ωH5ΟΕsκβΥ½ίΦο{Λα&raΧO«σeΩ§ζΟ>ψλ”Α4χ|œΝuΆΕ}ροη]ρΎΈBvΐΣVœΉ‰ΦŸ-`žι^1τ‰ϊΖδ B»(ΨoŸω]dΰϋ΄xϋ{ώ`>LΡ‡"ΉY‹+7γlξβMώ.ςίτΡ~ΦG!ήΏw-ο.ΟρΓΣnρF~/‘뼐Άe Œ|uϊǍΎ`b¨–ί¦χΚψ*ΐύFD`(Έq.G^ζŸBΜD[sϊΌζ2a:H¬© xΫBQ‚χΆΧ-5ξ2›X/ €ȘNhvθΨζ>βϋ΄“$:σσ΄ΞxŸσšΦϊ‚ ˆυμσάΞxΑ»‡]ynDKr { ,έ6lΥ8οŠ6 α.¬Lΰκφ·:sjΜΟ-ŠgρΕG€΅ΠΗW@ – H@ψϋ d8ηB„qQfρΌxfŠβώΑοœϋήϋ‡₯=›Ζϋ’ž³χgλ,žϋν%α4ΓT‘„”<μψΩΤ±QX”ŒΚ3²σέi=σϊN‘ 9NΣΞσg΄’«³Ό³ο}ZΤ‘SδϘܼρΏuΑ?Ξ¦ϊχ,M‰΄ΧΗΐθQ}‹ŠΔΔΥ εώ ΣI Ε‰πT₯”ΓίE‚ΰϋΉ ΌΤ‡yΡΡα^ΪΩΩ M&&ΐC& QΉ}χvZΈΊ!ΕbχΧ‚U³­E4ϊ9L§7ΐO N-ρ(α1„bR2„ΰ$a%a_GΛ2›ΥIb±Β!fW#$Ϋ΅*&E0w·oΑΠΰgΜdzj|ΓΑu»«4 "†]U‰ς f3ΑΤAΰuwjWˆφ!fY 0 ˘AeΣ'œƒAΎ½2,­V;vqΨ–P­Υ—β·x‰Α–)}q/-SζBνΐŒρί€ψ<ήMΓ£·S}ω2ωυιΒόJϋ~ΗΤ_cμΛ%RΪ:Dƒyzλ| “5Mτy€Sς Ÿ£‰•θ―š‘ †ψΤΡ{Q[Γ™ΊL%Ϋτ­YΕρΨjFΦ9ΰΐ‘Ζf7£ή„ΆσyH_œΫ€nDFή’IPΓ‘ PfL-Η€μ%.EθΨI³HΏhHŒιΤ69Rμ3vΩT’μϋΰζ8!uL%ΦΩ#‡{ψ­ͺΡΓά ‚Efѝ4KλΙ μ$Φςxδwy£ζL/N―,“ΟLI&šμˆ8W”($Κ ζ’dΛY$>7_/ΐ–I'QυΜ5Ε»Hn‹HiωhΒpʐŸtΊΕϊ„Sξς»ΝϊΡΜς£ςIFP:πΔτe^Ξώ3ΰ»ΉΤH ¬Χ;»ϋ”°ͺuRKι’yQ‹›‰v˜±½½’?[θ=υΖ½Ÿ¦`ŽΪ~σΠΗ€)B=ŽSξζ— ηοΈ‰(x~“Ο€–3y’/Ÿ˜žz„εχxεά9Σ{εŽ&~PΉDΒΪrΞ–kΦ€Θ[pTμMΎόY<²Q± ‘ξ`HζιόΚσΤ†σήΆΖ }²S\Ž―wt›‹6ΩŸΜ+Θχ¬`ΰL”Ϋ).vF6R‡8‚Ό¦³Lr1HΦηϋ.G]χ=Ν?ήοέC’Ÿ>zXΎ’ήχͺΛΜΛwZθόζQ<˜η!Ώc.ρ<Ϋ<$Α£?’GσΑ;ΝSt²ψφΕΓξ‹gΕwQΐΩίΕ}ρ]€ω 2‹tζsViCύϊ—SϊϋDΫ—RΊϊW «τ_₯ϊeV‹βL‹ϋSd]Τ=>}NΡ§iηω‹ίχͺΟ™|^Όχϋlyσ~iΟζ{―{Mγε―~9½}w[ςVzώ…ηΣλίό&Οεtns#υ1/Ί»s˜κ˜%]<Ώ’^Ξ;|Ÿ‡p,§½έ»8€§ž{!ύΔ'?ƒ₯ 0ΌW½ουόQϋ3ž@tMρ%PσQ §μύύΡz $υ|$’U“j»/’˜ώ!"Σ&YΨ'_1‘Έκcκ$/Žh/yhΉRrP_˜Τ©k$a˜Ϊ0e‡λ8gχ:<ο’ηRhT$R'h=*5œK˜_!ύVΫQ5Μ%eΛΌA%ΤT’"άͺ1'tEAΝF;Ϊ/¬τ'qlŽa^$8e4ͺ<Λώy^B€α%ό?ŽaŽ”„WprΧl¦ίΩFς’κ+—ΗςJΕ>B˜C uισb{•ώΰχ‚¦Β50BήΗΜΛMGζAβιΒχψψ ­o¬œƒΠ„Π­φ$p%ΜΖdvεσ8αΓ I΄ δ$Xχv3³RήΩ~'-]ωΧ Tώ˜~e5ζ£Z£r6‘’ )0¨(Νg|e†D€U΅3lXJΈEή•Α³#Δ:aΣ¬0”2Ÿ„₯Ήλ‹‘FŒόδs[s;–l1CDM―άd ;i™Ι¨PX`Η2e.9ΤˆΉ©+9/S―3^†A m e«YΡ9ΣdKϋ,•™Q²ΰ¬Η@2#`t‹ζ…Οy&±›6ωœ―'6Τ’$°«2¦β™,žΗΠیH&QLΨ πO2`Εlœ€™8·Ήœnίݏ9ΧΖΛwM•ε”Π^Ρ"ΪVχ4™4΅B’XΎοΓ(']Κΰ mŸ(hP»dΣ‡{ΖΘ,ΆΣžΠ>½χ‰σ.Ώ‹Ρ‰> ώ‘ΝrœŽ’ξ|Ω#ΰLξ³—¦˜–―#pnυx™Ž{ʈ†Dͺ\¦o?με\ 8ΨŠ|6/ϊ]<πΫΆήϋΚ„b~tο3g:…ΒkŒL€γŠΉ—‹Šίρρΰο{ol–οaΟ,ύ•ζΑrς»C±Ϊχw|ƒJ°ρΞpήΟψŽq΄¦3Ο"}ρ{ž=μΑrΜwφ:“'ΏϊManTϋ7Sϊ;ŸgG%Ης3)ύαίD,€™Ι―ώΧΉέφƒ+L$&θϋ|Gβ>jFpωEQΦΩdEš‡Ύ£σδ‹ σώ˜ΦΏG½Φ€?@‚ω§~2uξ^K―ΎςΦRzφ‰'Σζj;ύ_ψjzκ“?“6–ZlΖo§Ο—/§΅υΤΩΏ“ώωW_O?ϋ™Ÿ„(ƒhq‘>jείGΊ2„δς9/$ϊ ­:’φp!ιUΪΠ$μˆYbC$+" O`0#’Υ©»Χ#„’’ mΑKUœ£)©!ίA Ρi₯ —Rt €xaH[0#šlT‘ΙL4›OΐΈΰ(a a@j2"―­σ[„ϋ½‘Κ|‚’ΥΙϋ“.%ίϋGψM@ψ5!μ ›~$sΞ„δšρ=Φ «τ?L‹ vuŒoͺχˆ0·:‘k^6D{RΑdmυά3Ύ‡i²z5MΊwπδ;”Q{!ˆΓ~˜HΉ$hΛΡQHs%ΜTQλQ­αLos­ηηZΗ»Αf₯ωΝkg«σBZ„Ψ\€xΒ ΄`n:=œ₯•”ο„sΏΜŠRτζ+!9CH<0gB6Bkβ€_„QΞΐπ―ιΈ̟ŽΡMΖtΒορ„²JτωW‘=ε:¦s†σžε)υC`ϋ^ΈIΤ 5ύ2ͺŒS˜'Ρ/O;Ρƒιςj2~5 ζk†’ϊΥqC9ώ…T-L³£[©©Q3η°Μλͺΐ Vgλb]dΙ;L,ζL 84Ηkΰ;€ιV˜0Ι”π ηО@ΐΆΒίΐlθŒ₯mtrέδ™³P±!}›`ΚW‡yνu\€ΠUϋ$Ρ><΄Gf@‰Ύcΰ¦έ!Z[ΥΝ^)'c!Σ]>2β%Mνάԁ» ό-πˆ΅ ωοz1ZœΪ”ώ.νθq§–Φ‰Œ&γΨ%³؞ύφ.ZΪυάΣW‘nŠ·2Ι ΐcβ-ΦQ\$pΆΡ»ΨΈΛp=ζ σ&ΪDH`Y†Žσr†φN‰)ƒL½Μa5·0 jΡΤ ΅˜[#4}#ΪΦ–™ ίaAh ΡΞA?`fΖθÔð’1ZaN€O a„-,Σ+Ο8Πn™M3-αΊμaTYΟ%™ρ’λ(ϊ:gΦ£S«%ˆΈΌΧΌΠΎπη§χ^‡QψhB=‘ΰ•B2Ε3ί[·eDQ–!,™SΞΣIΜifY™λ”&h—«’o,νΓ_Ρr- pε˜έ?―‹qͺΜ_εχ}fXύyΟtQγRΤQ”1/; $(ΌHσ`ς‹ϋ?Ώ―.S‡sΩφΜ{pαό‹9A° *Ζ_ϊWœ…H#/™q₯&C¦xO"Έ±NHtΨtœγ°¬™Χ}M`™|2Hώ‹”±TC³ΞEό>“!—©@;Β>5dqTg½΄fΣj‘‰ξ„Ήb„ŽζY‘ŽσXΜPλΧ)ΜώJ}Φ6ΉXKoέξ§›ΰΝ·Ψovr4Φs pnο$ν·βχYJΛξΜuΗ©k`>·ηp΄ΧΟΈγ+zp |ΏηƒoRΣ{1¨š7ͺ=·l™·g ƒωΟ©;/ΐω:zƒ93Œ εX²γσ‹oq~¦ΩhWό†΄¬ΗΧ}ψπ ˆ;ƒ’έ7Ύ–Ώψ»°ΉkL@Θ½!Ύ―’ӁΏοιύ?%Νύ9ενdNϋoh^ώΈ|;•/œKγ7^zγλn7qHfS™ψ(Eώ8%‚tΎ~β‰'BχȌσΎ σΥρΟ°5―€_ϊΕ?ŸΎτϋ_L{ϋϋlΒ ισΏτ―§W^~©z›―··Σώαah7c1κ”ϋΓΎœRqƁD1n*slŠsŠ4S?LFΗpΝTxš%Μ;MαbKlδ[›[ίνԁΈ’ $I’;wξ ΐζΔ6υ Κm Xϋ|¬€wΫψ›wΡx„ŸŽιlύΨήΆvŠ ’NziLψSˆ¨λHϊ09ΪΪ[ΎŽτš™O¦©αΤCβ-ͺTΚ―ΤΏ†)• RΤ0†¨1κœ>D’^εlabKk™s?nގ°ͺ­υO¦&Nβ’u%ίcϊ‹ W †Bge΅0UΖρ`W Η0Α·”‘ζPlLjΚψ²hκU©,M6ˆ}™ΏCœΝcsƒΈ\⬕AΖg5#ύ]Τδ‘9©.Ta!ζNΠΔ@ψ.qNJζ€ΕΈuzΨΓ°yMπΓ‰θ-lHjCn,τΧhb‹+Hϋ%⁣RλO!Eϋ¦€—T«¦ 5يβ]‘•„ώ‚2BkξVΐ¦’D¦TζpΔ{iA#C'jM3/Ν­2Q§φIζ–¬ΐΑm7š”ώj© Xΰl΄wψ¬½`ΐΜ €5υ Ζ֍Œ GM‰—&Σσ†]\Ιφ"0«U ~)·LΝ3‘ CΖ]σ/Ck†§ΏŽ~;2α•ΔœΣ΄Ξ9Τ€ρίJxΘTιοδΌςlηŒ΄~+ύaφλ±ΆIΣ:}mάͺuJ3Ω€H¦O‡ηhMτ#ι}Ηθt«+H)1ΝΓΪ§Ε&>F( ™*%ΰ)Kcμl—}β'b£vϊί‡ΒΧ5’€ œίa\[M΄qUξ5l@Ρ[Ήη0άΩ'ΠmP’Ί„4Υ1“ΰP0 3Ά{ ¨Qγt έ\m₯s•4¬`Ϊb}οΓΜ;_vˆψvns 38πm”X³D#χόNλ‘˜‹ϋ`z39)μBAΝψΰϋ/.ΰl?³ζŠ΄L$ް‘o™½Ι°sΞ ;κ–a M ι#₯FbΓT…ίΪ―cLΓ3}Έ€ΆeCόQ<‰²@nG|ς>`zζΡχpkξΔe3½lζͺΜ(π!Β’¨/^[ιχp}Ιί]2|Wήκ‘žΘΜΗ9ο%xσŠχύφ‡Γςΰ;ŸϋΜλΑχgӞMcΪ³οόνυΐ3'h:Ό“ίψλΔ—όώ/₯ΩνWRω3Ώšžϊψ'ΙC΅£€»ΉμbΑ=rγθ’ύg?χω΄}ν;ι­kΧ!¦87σ«1„ωΧΎυzzώωη·Ύφ5ˆn ξ•΄²„yΆžΐb€΄φ‡y‰μ CΡ¦) DΖ²NΫΡ]$""ƒύΫιcϋ8‘©αG5Γ`‚$;α²ς­q ΘTb§†ΩΦ©εαΡĘfY£ιΨO<π'HΧΝ}’–– ,yΩΛ‘}wvvΉsη!τχ ^ =Έ1ΜNB?B¨v₯ΡΗΤΡ!ά―ΔTœA”¬z­ ΧI7oέ„(Β™F©Ž#:FθD”βŒLŸ(˜:iW)Γ^ζΛ³ϋa”―€'ο+‘ ’sgD€²ˆ”$Ό0WYΣ84₯ &$οfox]s:H6€₯σ&κ Ι·MeΌ€ο„ωκΑ•!ι§~o˜ ΚU«₯Σ»›χfš‘2ΘΗΝ¦ Ξ\5BšΪ"ύ ά«Ž»fx˜Σ…³3σxFyΆEί‘)υΥ`J-ͺFt*Ψͺ˜“m}…˜Λ’eϋ&A:a *Ω\Ξ¦Q t/€K…5SpΘ •2@ S€syΖΈψ$c‹Κ&»Œ)\<°UPƒοs»μάfφΞτ<§nM ΥΆΐύ I2ζ0© λ8 _λ5OnŽΎ\‹Ό?½Ό΅!QΛιΣοιΖ"b|‹\”ηo―L/>ΰ›,.7ηΜΓ.›Y4=šό°Dορ¬ΘWΌ~πwράοχ{χay2DΎ‡ ŠŒ| ž "˜lηΏΒ  ψ\œ‘5›ή3ίQ•i"š.ΣAΖ΅ΞήΔšPη£MΔin }vŽΚ`“Ž…Pc½Lρτ Ψ•K}Ξ,ƒp΄ μi™ U@€ig)"Oͺ!…ωg`m›—s›Ν€©λZ_L{·Ώ›v^y3}γOΎœώψ/§§?ρΣμUΣτΚΫ_NΓՏ§ύΤΏn=JΛ€b‘P»ΆlA QϊD‘Ξ ΧΏZŒ ₯Όξe¬ŠΛυλrήρ‚yl›λ• σ9vΎ³Ώyn[oΈΜ „s1Ζ΄ gŠΦ—ΗΖ,‘XΨήΦ&=ώ˜C ζ䇇ΐΦ„‰θχE;/>›ΏχRϊέ_…ψ{%₯R*ύŌ½˜ Ιež)?Ύ½(ό£΄ΠI/aύΒ§>ZHΘ·V"έέ;JηΦ–ΣQ—ΦΧΟ₯Ÿω©OZ–“ΗάΟ£m€wήz'έ½Λ†Œd{™M” lΝοpWl02±A(ͺ…BϋdυΡ‘Žo¨P5!ξ2jI eYCSγ¦e„­±L ΜΪIϋβΡsKfh-<R3«Ύ;£ξs­…ΔψΚGδ¨!}˜ j‰y`Δ-₯†%ΖΗωΛlG’ξ€:|Κΰ–˜“}˜XaξΖD§„(γΥΌ:ͺϋΜΉ3čΜ%ΰǜ2N%`¬―Γ^¬ ~Σ>ΫT,9mu•Pρ«6Αρρ'QRAZΉΎΏέα@Λ΅4Œω5Mϋ{žEΣJ-4 3`ΌR†‘°yσΖιΒ9L'GȐ 9‘ Ϋη΄0Ήώώ–q“\XD›geΰeΔΏjNΒί­€~™pTp‹‡™@CcDΎ`&…«ΐ6Β33”Ε%‘„2/o}5$ΦV1A’ΕΤ\C0Υ0i"ηϊ’ˆVϋŒωhr΄ƒΦ£-fήΏ΅e‘”Γ`„²ΓΉiψ³ƍNς3·iŒΟˆxTHξ[&ΨeprKm« ²¦wΞC 9Ι"΅­Œ#}΅la¦&?,ΡΈ5 °šROXŸΐ€¨}ͺ0ξΜςF[~ίΔgθJόŽΖrwοIΎ?“ψ}nsηeΨί³ΧΩ"Ο>ΰώa-x Ι{ώ|°J‡σGq=?[}΄νΜƒ"Νχί>4’Μ+gVΜχ9œ­JF~ƚ νkΘ#Γ*ώpΞ›¦J^Γ«Λ+ԁWš4`@œgj<Ε΅ž₯Oί°8FmΎgIΤΛ|ΐ§€Υv=m |8A>d=tΑ5}Cή³&jΜA°6ϋ‹D;λζdŠT‘ƒYξB΄«νZΪΨj¦Ώυώ―ιŸρw&­―ΌύΥΤ?@°–n€Ώπ_ώ΅twPΗά—Πρšœ!Œ©‘Ž~Θ|½d&\―nω¬κΛkNl‘Sς›αα"Κca:~Ε_NιMb ΎΓκ+ηzό…Θ'—ຍδf‰R­ηή“\§i2γαZΤ·v™υϊψΚpΌΌΎO„άD’?ξ—θ'!₯+―I‰²Š°mFš;…8qςΔζ?ŸDNΈxφ>ίvχ½ (ήΗlΝπΎ/Ο|ξΖ?[žισRr1δΆe>Κ·υJ\mœ»ΐΠ°ˆ‘€_½²u?ΛBp£¦ΨτΉσ—Έ—h₯OώΔOςIΆΔΟΕ‹lΞ €³KνQκώΠi¨Σh]ιΣΔΊΪLγd<4aΠΩ[j@³©8³AδJjύΚAš©έBάj¦΅Ύr!½yύMφl2”i‹ό‡£'€W… Χ~\$ΜΞ ;‰©‡χι3њ,β3€]}OŸ₯²lό˜†τπΫπΌmΰ•Θ‚U")€™"o~―¬‚3' –—6΄,¨ΦD&$€ ΐžζˆ ΘZˆ1ιΗSΜΙ¦j24ΥΑ” e •ˆl[„ΎΊπ°8†Π„Π’’qβ,,1Ζ@ͺ‘0΄lOb5#Λ”£DΊΣ;»Œ fhΓΠ°CΟ1‘π!/€_,iΛT7oα˜ΗΎž'rΤέ†ΰΦώ΄Ξ†tˆΣΎŽφW€ό}LΌAͺWG[e˜^Χ”ff4—qΖD ν،a6­€ gF”ƒfξjn…Ωάf›SΐG†ˆ61ώ«nUމ«R|zΞ~¬Ά€ρΦ„ x2όΤ)± “&‘ΐܞΧ‘ΡΧ&·0Συ ,X?Μ1b Sΰ¦Μ{£Z507«ΒμΗ†Μe΅ίyγΤ@°€νΆ›΄ρ+́4c+«λ˜8䦀yώΖΧΣΗ_|&`So,€"F$ Γ!•tωQNΧοξF8ιΝ˜YςŒθ+€e8τ·ήΞ?΄JF«jzηΐWαΐ+ϊhZΧlΖΧPPδQ“"a₯Ί}“ ΎC²:β9>HLιs‡„’^³Έ6œ§υ„Ω\0ΤC{"Y]s!cΦh2Έp,SίΪΜ$XGž\βlΧ·Β‡΅ϊ\g^"`ž#X sΔΐ±¬ƒ–\t0cΤη¨ΙoCx«ΑΡ/Ηυ'ρ₯Ώ”ΜdτΎ θ<ίD›dBjƒ€»NΏΛ-ŸΣψωεz}χU<3‘χE†βω»s؞‡]‘ϋα―ή•\’Ρλ½’π7ΝΩ{?x}ΠϋΣ Ÿ…TVgόΐ*Cksάη8ΩoΝΗΥaQSηœ`j…ΙWbz5(2j'<ιτAP’·±―:sΏšo9Οs›Δα!ψΕ΅¦"]ζΈΑ<ϋ‰«D©-¦Γή$±+¦oέ XΟޚTΥ|‚[†¨ΝΣ‘ Δ΅0†»©³ϋvΊφκ₯O>ϋR”= ΥΏπ™_N]"]ΎΉ™>vυ©ΤXΖGΔιόv}{ηηιE‡γ·Μ\©~»¦όxψώωZ”ΰ ™ž΄”Sz>nξeY‘ΣˆdΔdtδrR%YN€η弈xg¨}χ …  "‘Άό#γψx} ˆύ«X5„2MΛ0,2 7―³“΄Έ ο³ωL…ž-χ ŒŠ΄άNŸM?/ΰμ»’ΜGω6Ÿ›zΎΨΜ\Ι,ΦΒi_ƒHΞ+jΞlδw6΅8£`^ΐΏτ/7ν Ž‡Ž!ΚZ˜/iN@e-΄ ϋ΄“Π΅V†φttLki·0e$&uτՁZ†b2tl><ήAAΰ(ΡΡη’rΒ9!4nθϊd"šχh†FεVšˆόtώžad΄Žώρ-hFˆnΒπV9 |1ΕΑ$Id}1{χξ-ˆ^ˆA료»wnCd@Œ`Ϊ”@τˆ°ž˜•ΘH@lΔyΣ½4μbΊ³z…³5τιvF+B«‚Μ%|ƒ#‰Η<Κ3+ΨΔ|΅₯§Rυδn»τSǜM#ƒyfΔε‹8χan΅wpύtφ0ΙσtpCυ:”ΰKθX¬ΘΣ1pSJΫDϊΟv†)Λšœτ‰ͺζ%M’©γdAΓ†}ιq ¦ο„ΊWZDάBς^ζo±½>)­V9]9Ώ‘žΏ²I¦œD?f3γL—έYΪ9’oε£t~k3νn£…AŠv„C΄Ζ:Byi‚­ σ²±3IΏ<…ώνɍΫτ ’-mPΞ έAjέጐŠ&Whkΰ^‰Š†ΟΔΎΪ ‡ΑΠ)i›hš@d*s°Δ†Κ(Α$ή™q$ώ1qΆΣ΄‡eI¨N!ά <Γ!s2γ ƌDςhΞ(ΑLή&hN˜KS#)ρlŠίMU`œ4­«aΎ&CJ‘Μsΰ ­Τ»¦“Ή¦eš±ρΜΝέrΒ„­Ζψv‚9έgΞ¨ƒ6!*ΰΡŠΐp’^bΨ3JΤ|Θ̌`Ž{ ’ηŌH+Τͺjv˜+}L½f˜)α7ρΖ›=nΙ—ρΌ~λ“2Lšέ=ό€Θ³²±œvξμ!έ„Q¦κ•E’o+Μ)$Ν잼°‚S=ašιŠ50}Φ“Qΰœxk‹H`!Z` ]K dΨwΒ €@S5a₯‡B%΅μΞO5ϊ|Π9Φ‚"K\ZQκ’9—4™ι+γpŒyπ'β<|Ž|΅’UζΎkH3΅`F+Αψu`ΌΐKΣ)3©έ‘™‰΅βzQΝD-C±5€τ152YΝRσ•ΑOdFΐXζEšˆfG»fΜ«π’j«h™zάλΤkXtρ_„’¦?^ω@D’ξ7M$G<­ γ§€@$εΨΔeŸνρ½'ρΰΎ΄ο~›ΣΌχ§8άqΜ₯ΏwΊ?Ko’Οίc‡ξ…ΞΜrΕ‘³„‰‘~f2ΜuζrQŽ(Γ½Ν™fyρ^\n<ΓG­‘Ɗ pTμi ΎIΝΗ n˜η+8"VΙσ;Τ*I˜I°K„†™π‘2μ(P˜€P!Δ4m™!a›αητάZ”-α:Α©Q3, Θ„.Ηkˆ1ΆΉΥΕ:LΔ<Ρ“Ξml…–€ƒΗ>6«ΐ^ψ!8έŽτ₯Φ…yΣλ37cΗ―΄Ϋ ’˜6p…LσĈbs_hώ ξ%πΥζx¨έŽε΄ Φ‘ρ΄{ŒΏF]mσq¦¦?ŸfLeς•ŒOΰ«ι sζŠg΅”θ·Ξη1³˜#’)ΧΖBTߘ±ΜΟΤbΝdt_w6C3cHK=Μέ°έΆύ€ΥO‚j€§Μ½qμsκ)c‘Q βu’ΆŽvΆ˜#ί~c›φΒ4šΆΪœ€ ΐζκrΊy³›Ύ>:Nπt«λK8‡#€@οΑΘΊn–aVFP3=υ<οeˆWъl2ΦcΞn9δ54=Οd‚ΐWcγάσ­μ‚sžΆk’΅ZQη»x[ί#CGg΅z¨4€:xΒ΅'₯Ns2’°"Μ€†+š€θ³Τ€Nψ8FS­D;sNœ!Ρ  ΅J΄9#4yA*5Θΐ3ϋΥ•²&`ЈŒζhώ&Q‹ ˜yΐezތk°“{œεΪ2bΫ<h9&tΐd Σ­Yά±k‹Ί*u™ˆ7˜-ƒ,ΐ|κ`/Ž‘7ΞL ¦‰Ξru2Ί0#ΐ•sx„Ε˜άΎ³ŸΦ τ2ΤH<'Δ"£?‹›ψφΧY¬Ϋϋ’ΎΟ‚ 1IQΪΩ’ŠgΎηAάωk~‰ο‹+'ΰΟ€βζ—π>}wΎΟυέKEbΛ>[^QΐCΎs­Eξ3ΏNΫ—ŸB€EXέ"—ΕzoΚ³©‹{ίΫ&χZŸΝοζOίύœ'LΤŽ }V»νϊ+ΰByΞ)pE^<;kƒsΔι¬ν˜(Τ«πΘƒRC[ΈE! x•Y‚ Χο\°v ½λNΝu°ΐτ½j!¬ΑAά4΅«0Κ!j€λ¬υΫΕLœθήλΎγΌ΅ŒΠηΞ;ιλδN_ώ»]zφωO‘ˆv½™•Ϋ©s>ds)ΟnώΣ S3φŸύ«iΌ|G%ή&ΨR ΓΪ#ΓΜxIL©Κ2cγeV_tW#ψ1W5ΏΠΘTcζΜpi ŽΨc§§ΧΣυΫ‡©v€“<)oο Σ i³Ν|ΔτνΚΉ…τέ·XŸ΄£ΖuJινΙaΪά%λne‘”ž<†џλκφ.ΔΖΝs(³‰=΄Μσ{A‚ž9ΆˆΖ$4hτžυŸλY3†e΅|{Iv/-9§4GήΎ£Νς&φˆΩ†2/΄£ΖxΤppwχFΊςδ•tΘ<θΒθ΄VЌ‘ƒ!–`sΪγφ`šNζωœ5. `Πx‰ΒZ\$6=τXΖSώ€ 8FC"σ±±Ϊ “C'‰–kmeyPΨ=4K»0uM4‚s0Ž_˜s1ζ%ΖΣ‚eδ α­E)΅ύSƒΔ•Δ£Mΰ/΄lΰ™0Ε֞œήΐdΣ³ΤZ’€ϊ1'ΨΜ4Ώ|zο§ΏΌς“xgŸβ*ήuϊόή³y’œr>VΕ³KΈ/'?Šί9˜™gρa ω­3]Κ’ΥTΗ5Ξωζ]4N›ΰMτ±εŸ9ο=GŸŸΝ4/ή΄–?-‡:r άηr5kςΦV›6WΞ·ε ρEŸσ˜,7Π<–žη9^ΩO ³m›σOŒgμ‹|χ˜SCρ σΖŽ£Ίσ4kω4-Ά$Vσ‘ οΓ)BcΦΠ`χ7ih<‹Κœ?ςAΠ γ匁ΝH\C[*ΜGͺΑœ!οwΐ3 vμ}«¬ηΝV'ν‚O'ˆ °©₯ΙΥt‰°φΫ/~ϊ½ΏσιΪ7ώ~zζκΗSaΟφ>λ7‡΄ˆ2Ζ„V»ΌˆPζ΅Ώχλι"Ρ%/ότ/§“Ε­TΑŸQKπuZ‚ŒΎΠ€Έ)b]x¬ΈT|%F»Vβ7k χ<`jn―ž{e&%nω ΥΏΈ2C£tΚАωΜ!•γ-τΔͺ>§LΖΙrύ$ Ώ_σΥβΜ{|=†ΐ.ΦΨžΫΑΌ‰Π~ΩnΘJHglϊ¬ο ΚOpϊΥ΄cβo0Β4$·΄Έ Sr3mn\Œ zσ 9Ν±–.¦AηzΨδ―m}<zhή"ysΧ0§ΩHΔT…ΘTFοh ςπ=ρPΐf^ΣρBH››Τ;Ί½š0₯HΕ8)Ά> ΩG3 Νc»’.%½FΖrCΡJB'6Œ!\χ‰žU‚ˆ²ŒαX3Ξυ Œ¬)AΤ’σ\‘|*„ƒΒρώ1vΊΣw0!γ”φΦσ©{p#U°Ν―xI&N_ή‚Θ‡¨€Δ„ŒŒ‡Žυ:H7¬”Ωσ5:˜\ιnλ—€'[ˆ₯l_Ο‡€ΈN=Tύ„ξάΉ…ΙŒΎ:,V`”0"­…U$ηא΄λψήγ/Ρn#kiC1Ξ&V̦3w'gΝΒ^~νZϊτ‹³W7!‘WŠΠDͺΦιΰЌΜX†£Γ\ eΫ'’‘a‰[–η/H@€—κOΐX`ΞF…ϋΨx‚΄ΈŽΉΨΑ!Rζœ©WŸ ψΊέƎ…qξΛ Δις} |: ƒ‘$vRk[όρu‘%z‹8]ͺIͺ3η:Cœ.!ΈG0]ˆε‰’lLŒ–5F£–ϋ܍δτ€υˆs²“ZXJ—fΗ™ΘζmDΡΤT\s5 ¦Δ1ΣUεΈ %‚ι@φΝ0 8$Υϊ(„k`¬˜«³}”CP!ιDcŽΩ#Ά1iX+%ΕlζΜζτ{ VϊJΫΡΪθx?±Οn”Œ + ƒ5(u=‘ολ+0hV[γτΣ—7οLMΖρBΏ$6ε2γΌ3{H”·stk•qή9F@€Ϊ>ΘΕ΅Μƒ6̌‘«F0C‡ϋζΓ‡.ΐ$²v | `[&ώk0ΌΒ%˜g4žύ’~`τύζuΜYM4[’hΰ‹ƒ,σηό_ώϋτόΪ_N»¬‹ŸύΑ&–R΅+Ήs #ΪFλIα0˜Β‘‘πΟσ]t|WΛθZ6˜£Hϋ\―Ό‘α“Ξp0Ζ0Ÿ‹KθΝβ°C΅jΝEπωΥΒμJΨv«ρ©ς­ι¦…†χLƒ4Hόεσm‹*ϝ_2j°$H€/‹g±¬3Γ`Ώuχ:’€¬•wΐ₯/_?H/~‚PΟ ί|ρνΪξάφ―ψΜ)$€|6'V‹|ω!sͺ{„—)ωGϋ$½"'i2qΗ/Λ2zΝΏ„Οsq™‹Χ$,~Ęʼεڌ–Λ΅$ζ¦3―παΛG›(Χ󽀬eπ.'ε17‘†΅““ρŠgωqΌ‰ηάΩ–xη=wωωΰ1Œ΅ΈόΚΕΚxR ά&Λ€k δ?μS™¨ 8Γ5Τ- ΨR#Ξ’  ’k>Έ’ξ,Q‘L„°m‰ΥuˆOf!π£^ΫDtnΛŒ6iΑ)kΰμ-ρ&‚;¬Σ‘ x7Ac!žΫ"*ŸΒχ4ΤK₯Nzγ7ύΏΓœž\"]ΉΜ‘Ζδu/”±Q`γΎ#ސΦε!ΔK€έϋ½ί o:>kμjŽŒ,lC-F§s>¨‹ +τ7δmŒEŒq,LαYΜ5^ΝσE6>διgζ<ŽΛμdΉ7žάσ,„ Ύ°rΛΰ! ΟΙΌŒ‡-Ι›(ό“>pψΊϋΐρψǏ .Χύ=πƒΨQ’£-ψ|tΰ–1ζ3*5+HχEμΟΏ›–‘œ>ωδ³ιOΏρ•4zρΣιΒω'@lh0@D‹HO––7ώ‰φΪJƒJ0ζ…0Θ;`i_―b"R[ΒΔΝ«ΪΨ@b BΧ¬ΚSΦΕ7GDΈZX\J»ψ‘ ΞΡaͺΤάρ«!Αœδ’tͺ κF F$œŠ!@rό~%ςήμžΟ"€‰Yψuθt  %π·Ϊρœ„§!uEfžAxŽ „π.Ρ¨*΅Υ΄΄ω uΡίu΄:˜Α“E4σSοtdηνέΉWΪj‡h …ε ]S2θ€hθ^ΟK±ž€6Ό=4 K0d μφχ ήΨτ bO8)ή>«ΝΗͺαq»-/ς³8`°‚Ÿ ΄VͺbŽ£š>ž{rˆ&kθQΫ B8λ ό?‡Ί‚™ΞNͺήΐΗÍa‰ί šJAΤUpvΈ<Ϋ€.£Βΐτ@HλΓ#ΡνζeD­φΚZ–ό’)(μύƒ§BsBΉπ¨τˆ£‘žK[Πε“ΚΣιmΞJ1bΡΖκVΊ΄±šzΗ2‹F §-~/"…ΫCŠ<,§›{'ψ€Œ]΄ϊ[Αη₯ ŒJkɘ–…Ώ°ΐ2‘FrΘεΠΠΙ3*‘¬½ͺZ ‰κήϊ’h¦Τ;L/ ξδrΈzτΣςΖϊVΐ—V`  G \ΠΥμ‹ ›ΎK(KŽ·‚X\3±k«Βάφ,©~.jV([2+"­91θ“gΈ‡ΙŒυ“5α[Z\eMX‘ΫZ,₯KψΨ\#XΓ5˜ ψψ΄€&i Ώ(΅Loοt™«λhmxΗ8|μωΝtBz[χΠ„ul3V0‹œ«rC[MΖ“D₯{ΜΖSΕAJΫlSμ”ΡλX;σ˜pΐ¬θWΒ|ν©§Ξ±^ξ¦wήψxbǁOΏύόV|_>ρTΉ\<=š²Λ4 ‰%kw‚„W υ*χš΅xШĆ̍šΧ’ΡΨ€€ώa]˜{ΣyvŠ6χj]η2 0όŽ#I ό;Κd QΜΆβSM"Y%τ­Š™޲^ιθς²š]΅*‡τ Ρ ιφ0?λ°NcήΣϋώΚ\WKOlιοƒF ΝbSΛ2>KΈV₯½0ο²υ™Δ’ŽΛυύλœnp1Ή‹ο-mίΝq…xΪ58OΕw‘—;ς‘"‹ΝZΎe›ΗςLEΗ§σ8“Ϋωξώ€™iΝiΉ·'2dm‰ΖσΓΆϋΜ/Ύ-ΟQ y”")₯¨HιLc’H§YRn_όf<#?i¬Ξ>PMρŽq<ρA”mšœ7Κ·P3σή~ΙΟΪFηRρ< ‹Κƒ|¦ΛˆXλ΅F%݁‡'랡iΑŠ5V'ŠΤ²νN,ʝɰ&؁ >Ίjyβ^ΓΝgΒ<Μ2Ž›ΈΦ6ύ”}ρΈ©Ζ<]C£|\ΌJΊ‚>Ύ]`7πŠ’zΙzπ,54!γ1>z+Œn;ύΑοόΝτΒΥΟ±†'읭ΠHΆi·kκ­|¦I½Ž„Ϊšΐ˜!W8Οjην―§'^ϊ©΄~αΞ!BΘΗ9Wβ†1}υάwo΅Ό˜ ΒΑ§φΗFβVj«4Oγς½ϋ›ibDϊH’?ζΏσHδ<9³εRk.>Yc>Ψ|O"~šVS=ΏmΕγ+C@yΉχ<ΎCΰGQΑΪΪΔι›4ˆΔ*~QIά­6Φ! JH\ΥΕ"Ž—α-Đ™f³#‰b'|J~ΛόΦ½½ˆΩ£ŽΦ#ςJ˜υ80oŠY•ˆνΫύλ£QP  ­vgϋžΜτNΰlς >Δ ~ H‹τC“!cγέΓαœg±!€Πχaμ“ ί)έ5άπι² W―г;(Σs9$V•ϊε³Y G‹T)lƒώ” λ W©f’Ν ­ΫCI8.^B]'}t{(’R0}κ0@ 8ήw0a‘y‰+Q ZŠ~y»Άϋ:₯λpξσVϋ<ŽΠPψ/tΡ@=yεώBΊuγ:υΧ‘ΰbΞt€τΔ¨zA ίΖhΒ¦ΩW BUΪϊ[eGgνιΥ‘ ifψxΒuΣτ[h/ΎzζψβG’d΅M_”χΓ₯ΆΡxΥalŒΠe7’a˜dΡΖGΈY€m΄)ŽY―s§ΈΣ$ΪYC}“ƒΉμ–h—<ησ―}€|;KϋQΖ1'α±ΎΆDρ[θ‘-xυΝλψnΰΫA;jD|2j“ΆΡΰ<Ε„n ©Ή³O7ΐή’%4rY ™Νxˆ‰ωmοB\ΞQY†x\ίbž3'n1ͺΙ|!Ι7θ‚’ϊ₯%’aV· ³€B>Ή&AcΎ₯Y—‘8gΦqz0νrΞBμγ€<ζCzd@β5 Σ“Ή“‹¦c¨„·Α‘ΤΧωέΖTOΤs―Σ…0‡8Ah£pJ/^†Y„ω8€](«EΈλεξDπxυΪ~ϊτ³+N΅tŒΩ€Jίxc']=ΟΑ˜0’»‡hE€Α‘gqΠw΅hΞΏ2š€u„nά2#‡G˜lΠη&&Ž]ΩY{Λ˜`·vυώφ΄ε:yˌΫWΎςOΣ—Ι—ώ˜¨], κ`Ένν·=ύ/ώ[ι3?υσδ₯ζQφWι―‘ΕdΒ›ha44B›>Υ֎λΑ %ˆ­σΨx $ϊŒv5†ΩSΛ§ω—Šž*f’ž‘r Γ*,…ι1~›kν΄΅DC§“]ϊ†uͺ5Ρ€ΔπΕβˆCF °¦˜=Μ]ͺ„A%bm[Ζg…ζΒΔs@#σeΨHίa^ΏΣOKWΣ+„17 1=e­ΗRŒn+΅φ™€YAžωΫK"5)ξιb|Ζ; ˆ_ω#ˆ=d ˆ€(•‹SψΜmΣq 흅Q†Έ'˜ΙyyQ‹H,^Gβω=Έ“vz}LɎ³++ZΔkna$β#ΪΔwΦ4σ›ΚΝλsχ™`ZrƒLmsβy$:-ΚΆάkOΡ:isžœ"π|ςd‰ς ςΚίQ£7Ή^`ΨF`‡yίxœk;­ή& mŸƒ 83jΕ$ŽΗξLMΧ™}Œ ΐuα €lρ„Žγβ@…zqΎ‡φB’‘8‚Δ26 ΄%€w6πcσΑ%π’š‹σ ίsBœ T!ӐhyŒ5e&ϋ m†sͺ6Z@°3Nw―ύaZ{λΛiσٟ ­uνΙ€}Ž ΰHΫ+tβΤU†b„ωͺA-φ^ϋRJŸωlϊ‰ŸύΞn#Πψτό3b­ m3Pωœ07όΈˆΜNPF0Yμ@^BΛρς*ζFώe?}α\d}‰ψmIζ+xΗϋ(¦h20—±σ™ΣΙΊO‹π™οωv~ψ^ Φγ+C χΗ Θγργ΅„V-ƒK_δͺˆ Z”_Ε΄ Ρη’nIρ’ΩΌύφβ ¦CD=ΪΉχ€¨>m|†Hlϋ}$‡ lO#_€|1Β„₯ˆΉ±θl΅Φ9ˆ[̎<+#μ΅1]κuοΐiΖDMˆj5n𬰋@P ŠF#CβXoCΰlδ-Z"ΙicΎ£FΑ“ΪΫ0ϋR†(¬!}>Ώq.½yσ„Λ1f&SŸ>L ©«/IιD€ ’e³XGΊΎsχ&ωπAΚάΗtlqpžM)r„LΧδπ»0%œΫ€Ι˜ Nζ€ Α%š―Α((™‡― σGι‡ΜU ’o QΩ%*˜6σ2H2:J„«i:₯“Ή„˜ΡŸ8ΦΆ`0€°4ρZΑ―ΕθA8ͺ5Z6t"όuJΈΰβ6OΛocS‡!@μ²σA€B€αKCˆG8Y6\Ϊ;$όю˜©ΙrŽˆfUC’|ʞΐˆJPF€Bp’ΕΝ”ήz’Έ&4ΖΏ½ cΔV₯‰ΫΪΚRjsΈeŸM¬΅Ί‘Κ˜(I'/ e\ΩDr7βTvξ·6΅ΛΟZŒ‡²»G0ΑhVjŒgpži’Ψ`cWβ-\#Ί ύάΩΫ£N"~!½v― Η6Ϋ Ϊ‘?N ³£€a~ΧΊ΄ ϋ€‚MB΄Σϊθ2&oΤ΅ΎΎ‰f&Ζ`gncωkNΧeΌdώœΧ04 λBϊτΚ?uζ·ώ60σQ}pτ ΨζL ’[yͺΉΕ"*ύΡΔ舢Ωlηsι•?Έ–ΡώιJ©%Μ–Nπk«m€—ΚΗ<΅x7ͺ λχρυ‘Y\ƒ8ο0–tμΙΏs»‹‘­ΝΈ6iχ·€Ο~Μh„^Ɋgμ_ίIO”7ƒΡ’x4’—Œ ©9Ωd‰uΑ{¦~Fζ’ρυΔvΤuΞϊΈρΞ[ιό£/pΐ ‡) "DΙiΕόυΊvγ­τΉΟώyΚSςΚy,Ά¦d ™μsF½ž‡»4Аδ f…{· S|‹pΣOώ›uΘ|ο£ΥY_Ω 3Μ‘v€ZΦ‚¬4‘;†ΩRRG«’VqΏγ².ŽXY†{¬’―-‚5‹ ±μ£Σ‰έ ši X„Z’λ0g·PsΌxσ€I§fζ†#΅(–Α<—ΎΤ'h*`š r;)Οc‰·`ƒΙ”ςΠDόΞĜˆΓG2Κζg,ψ“0OΔ‘¦"PτbΉœσε/ΣζΌ1 *$°~\ϊΟ|TͺεϊΥ―ΰψψnZƒψyςΙη90ρεΨ”<Aσ«ΥΊ! †_mˆ%5ϊΈaρ bj"i5b–¦.CΔ‡Μij8Ρ"ί δ΄Άu>UΎ¨½S*Œ„‰ΐC|>lƒRς1Q›”‘Έ†πΥ>›3!0‘(#‰yy:‚Ή@ZS.#©‚P=„MFIMΓ³ “ό'”@j>#" &‹›• iuk+•nΰι–υ†X­,b ³D•l‰~χ0YQΦ»F”§k΅»dPTl2FsυΡβΈ 4θD’{PHIέ`ĝͺτκs’ΥΣήƒΠ‰,—¨Ws˜΄/AΛΣV }CŒŽΤιοaΞ…¦ΗYΝΨtΖ6ΒV…΅FtrSβ_±”%.ρLmΪ«HΌ±ηOπ‹0H€’8ΫέDmά‚ώh΄< N“ΆQ’Xή›ύ%N]ΣΨ$ΥUδΣdΕ±rγκRGH;©Γ³•ψι°>ƿÍV&hp<ΦFMσά‰Μ^ Ι±6φ{0Ϋ;₯t‡C9uθWKAΛ0y†α©'/Ρ—QΊ~sFv/-α;΄ΠφŒ–JZ’ΛK"=±)Γ°Ωϊ[·n㈏ٟ>2˜δτ™'[Œ/m6*Σβ…σD‡Z†YλΡ. ΠN €‚ηΰΰkL*Μ!΅m³ξ!š:’ρ¬Ζa&'ΞγΠΡΫΉεœ “―K0Wlβ'ψ6„τΖsΎ:c$γrι» K‰XM;]΄nh‘κυσlœετι™=HA+τ“΅Γϊ8ΔΉϊm[‚ˆξ‘±;ψ5ώh/£Q§ϋψ"¬“wFͺŒΣύ?Fι[oο¦uD¦—6—ωEΣΔnάh]Jωœ%`,…FφηF­#λ2”ώ"Αε™„z ‚ηrHkdχΩ@IDAT j₯3Ήψσέ„`ϊζ«―…QΤ~-ΤγΕ Ν]œΪ—Σλ―Ώœ~σ7ώzϊ΅―Χ½Ύ˜|2ΥhΕΌΞjΆ²¦fβm‘ΉΩβ,šό»0ύΡ«ίH«άω+ΏςWp=Gπe‘wwζ"λ &©ρPΖψ=½Ήύiα ηŒVGΣRBqΣίeΖF©φaͺG˜βΉΦ{pxβ°₯U 0–Β£iB„ζΞ o’Ι«‘έΡ4F†Γ]2 Ύ}c> Μκˆΐ#t+P“$‘D'γμ½Δl†Οx/²ˆoΦ ΰςC-qRΚ‘Ν7ζ‰KB,ί‰oβ`<²„˜……Pƒ6F+¬‡ωdΩQΥπΜ>Z¦Z ΣωΞςζ)γ™ Bn€O©ƒŠΕ=ρ< sNςΣG‘Ÿ·—ŸωΙEΦxΗm0FvΛη<ΜΔͺΏrσόΚŒ7ΑEsώ8ex,ƒ-‰ΜβΡ(<CbΎ…K0(ω'ΥF2σDc%³–œ:ЎUΩί`†=·g(eO)ƒΗ­ΗΉa»έ­¬HfSβN,6’ˆ{ʌ±'΅ŒNhudφψMΦ€aηλ¬­ψΖPκC„D=Š4Εˆό#΄‹Μi$8N‘„šWύc52Ώ²φuθ„ΓVΊςΩΏ”nΏρΊΑaμ9€—9:b/ι£Mχ€C]ξΏφ]f€³n‡$ŸžžΗ ° `λέόšίΗψrοόΘc˜DΣζά@ΨwQBθθ\κ±.Τ*½λΚIίυ8Όί»‡ηΘO–―¨ϊlŸ,γaω>Lšσ<δ·σΠλ1ςΰ<~τ#€σQB#Β…bf ιΓΕsΣφ℃h•²xpΫ1ΌŽ΄M$―³ Rp»y<ιΉnt(#HΑD `NΚΑ”°i“vŒ‰’Δώ%L°ΆΆΞA‘w` β©Ϋ³΄Βi/n@ΨAό‚Ε•§ΐϋœ† noBL‡―?”¨1d³QFΊΣΒ‘}Œτ_ϋΥE€Χ€_―Á™Z˜ νγΐqžΣ’ΥdάD‚mt―eΜU”ΪΚSΈ‘―΄―_"*””B„R…p‘x8ΑLgŠ©—§΅ΧΡ ‘i¦‰„ΖPΏ€B•΅η!T8(0ρ»² Ν;ΪmΞΓ±\)‘O¨ί Χ0/:Αζ\©|μB_“±Žχ sΪ„ό ‚ Ν D:Ζ[ΉεpΘήΫέ&]φΉ»s8dυώΝLmωBͺ.«UbΧ‘ž1†θμH°Ψΐ€¬>JΓƚj‘ ‘Θ2z”HŸ"±u¦οΦdj”–A¬‘ύ8€xV*>!X€6Β2 :θŠΚΚž2Znښ)ιΟΡƒ Κγ ΝSj<ǁ7ο&Fσb#e³•Y„KΖBΗηή.fn ±Ήξ*ρc“krhιkoέJ_ωγ—™_JA-Μ‘γΫlΒθb6£?\kΊpa Ιd½G«˜yαBέτB¦&†fr*g]Πoη@—y¦οΒ*C ηuœπ9ΤRFʈoX1₯¦œc€Δj «DSS§)Γ„F‰2LZ ˜σ‰¦Iόchf–=LΜg}˜εpΟw ξpζD"tˆCύ]ێ³&Μο5ΖΏΎ,Α¬©ƒ ΟΌΙf:Β¦L{"D+ΈEβ]ΊL³W…£jΒ¬*@5@!ζk8n“OFΒΞu¦ɌΞͺ, KBό χˆάεʌ<Κ»ΕΩΰQΚvι/c9šY2XG(ΛωηW˜Π|€Αψ“6ζΈ§~λŠ"sSX›ω½Y-ΒΦϊ$(Η<σ2#'-£]βJCc+PrΎγEϊΜ,XJΞcξΜ”Ω°l°c$€πν°!΄Oΐ5Ψϋg{:s’”β£o2*:‰[n `θλζΑ{ y5#μΑ΄Χh§¦ k\ΞΆΥΟUbΖ&cί`―θ2{Μ3ΗH8e˜P°wmΩ q™Ÿ:B°&B…ι “`ž°Βι‹β΅Υΰ&˜UΞMφLλΦ ƒ§?B˜@›»„aM[0‰o¦7ώτ·η¦λ(Όυ¦κi,8 Z¦_­k0FΆ]$Fω]Ο£’|"­³‡l_OΟ±χ­―±Ο’¦9˜!ε« σ¬' Θτ0#9~δsΚaΊ†™#±€QΈa#ΈςܜKο=σΉ£›/αT\ŽW0 σ2Δε‘7° ε'Ήbό˜Ρρœn°Ÿ1T΄λ^y–ΧC―ΞTϊθ‘nVζÞ=XΨ*Νƒε>δw^©‡€ζρ£\ΐFv9@*ΏuξB,θ]ˆ[%„%π}»{ΫH‰ΤdΤOΔɐ–θO ΎΧ>φΰ`I=ζ Š1‡ΘiW=‚X«#ΧEk±Ιv ΅»“03’GΥ!›H•šN1ΰbΉJξ5£9Ψ#‚Π°«Ψί@k!&A0S˜Γ.ΐlΔΙΝ0&gnκq 7άώiR”ϊ£7Κi; βΥ\’T†X„y‘i·«–ΗM t Γ ϊC5γΐqΎJ_5-šALΤ/B0αΌG\§:ŽΒ h3$¦έHΕ—J%D‚!udγΣ|KD=Ε>e:<@ϊeΈa$Ας8Yf3ε9Œš‡ή-ΠΧ ¦5ϋ>ׁY’‘Q+U…`a[s Γ6 ͺ‘Ω"ΙŌ -££T“γ ό 3 ν?BƒΤМNν =.C9˜©&GqπνΥδ $c‘ώ§―l|2HJΌάΨ%xd$dCΆ/iLΖGΦ=\§wM‰άtf˜Νύ₯†o€ζA’F-ZiΪ~%žw1CK§Ύ3#΅1A’¨7­šΏ%ήΤ$ΘHAI’Ξπ”FI«¬ ΅£}ΗλK$)QΡΕ,πψφvάλδ¬FD‡m₯vFD+avXν؏qϊφ›oE=λ««ιO^}ƒωŠ)ϊ"ΔHιΑhl M™2Ο,kss“˜GμΑXΓ2Q¨–Β‘Yι›垹"±ηy:ΚΜ !Χ9ΡΌJL‡R΄υ΅˜oΤτGsGα)3Έ‹ι–ΧK8Έ»”šη+„U3v©–6πsy{›ƒ +œύ’ΙsS“Ε μ  ³2σΪ Φϊ9­Β°K„nqŒΎA€1―59’ψd`X%|4αΐ<3΄%"₯ννβsΔΊ~ω_Ž8ω³6ΎυκˁΎ6Π%zζdf<Π<ΑŸ\€˜υkΘΨ0―מN£}T€ο‡w4£‘„џ™k‚ίKΛh:;ιϊ3šv7΅1Ρϋ½ίιΝwήIξsfJ‹u=…Έκ"HiφpΘ•Ydm;·wπίсό"'€·™OpQΨ Ρκˆ zΠz=ζι Bƒύp„‹cw‚φιΚy„»tυBΜ]`H‰™JΜCzΊ„ξ³:ξ2ζJ™«ΤpJƒ©υ$ΞU › Ι”œ;?Τ>θŸ&ξyε!ל@罄žι;Χ ·LvΎ€opΪόδqfFœKΥφΕς,Λ Ρό½ο9α=γ/sα4½ΪK¦E‘•χ΄3ϋΠ ΖΗBƒ91%Ι-G†!ΜΞΈ'Γό=-δ^X}—A ΣΫDέΦε—ζBJΖm9βήωC2σΚŠ™6”YΤ!α₯Ώ…~f˜ρΜ$QΟL‘[;¨-gη·Ν^^Φ'žΆ([t• O.Χ‰DΗΩ2δ©b:Ω¦h‹W{XΓΔIί!ρ ΨΫwζkν‚a’½jΦ¨0°¬†ύ”1Μ8Τͺ}«¦ƒ˜‰¬'Ξ’•uπ¨λHΑŽAW<SMγŒ}υD-aΌ™λcΪ;c^ΦυAΥΧ―€OύΫIzug”ώΓΏό+ΑΰόνΏυ›ι‹_ψΝθc•ύ¬Σ:ˆ_*κ³ό΅Α/ΞΟc­,_Ί’Ύως+ι™—~όvF‹S{CΖΪae,ΕR±x1pΝΟΨš°λ °>α¦Ζ¦‘¦ά΄2DfŽQΠ0.BMo &OMŸu\rŒΥŒj()­;—n`Αΐ #ˆψŽ.ΰο|ΊΩ$|σŒΠ£ξ{rMA _VΫΰcY‘ƒΆ¬Šξ¦h?«ŒO5k€†άFV:5’-ϊίΣΨKΖ5α˜1jΎζUpηu­1Oϊΐcέ uΣZ[Fε}}#ivA™~}~ιJψk»5nn^€™ξΑ:PB`!>‚Ρ`5ςChψ±ΒXm|iΕXjvšHΓTžο‚Ρ.γΪ oΆ›³n2]ΐŽ©G›‡Π̜μ§ΞKμ^Z·ς0‘`μπθιV„4ΔK`œ,Θσ2EΑ0f‹" S rΑji«©i‡JΔkΰξΖψ'(v©₯ΔΘa¦‹‡ ’…(e€d„zCžuCθSϊς/§³ožK9=Α@ι ΣUαC\Ο6:&”+ΩομΚΪ)°ζ7ηηR“θΪZχ„ΐRΊγ$nvŒW*˜‘,N₯S§ί ΰ°Έ½μΐε!άB.]81.?ψρΏ F@ …%ά+uΏ3£Π(±&;d`;sυ€$'@s\Ζ«Ί‹€ƒ’…°―τΒΕUβ|HΜ ξN x€žΝ-ΦΞoΟ;,—90;ΊxΉz‡τš{θσcςM²Άε (€Y0ͺΐ@Ζά5"ƒ/Ž{Σ,(ψwΕ9nsώB ‡‹:!ƒεTϊΚ¦ ™S•β‘Œ―ξ>Ίωόwΰ/VfχΫ‚s λρΊ™gΠλ9ΨGc¦¬u!3izη& .wM) iq6σžλ> λˆ/\ehτ8„kίi‘~ρ9ώχjΌVα[₯oe…Y,³Pc%–Ζμ@5CunΜΚΧ±$΄°„υ«†j7-4φ)ή.<ψαπ2!-5gΟεΟΜUί’n_šθΏ2n…,ιΈ©Κ}NΌ*‰γΜyŒ`Tp&₯ξΟΒ?f=Pœ|ώ›Ώp[zψcŸ€FP)}ύ‰?HΏω―Ο4Ή`Ϊ^ΕR©@M7Tͺ‰›Mφo]:Η9yρόωtμθ κ7πήzΔ²΄ {θ>ϊbR ]-\λ\¨RωQ‘-Vϋ1m;OŒ¬B»z;˜μ΄ |i„œN*ŽΨ…>ύΞ‰XΐΙ΅!6gŸυΩ³©υIŸ’Ξ«@pͺu­½yΌ(·φ¨—}λ-7ύy‚@F†ώμη)4P.²=όFοΦ·w;Έ²6-Δ§«”šώ ›Qfu W©ˆ£0εmc3΄<ϊMo!t±9― ν­ 6ΔΝE&hχΙΨ»ρ†G4ŒLœΕϊ ¦ #R]ͺJ:εm\†z±h Z|} w'Qσ±ιky ~ώP7‘άW³a ω%hΆΖλ2Q yάdtqγn’™χζΟ»EfPάyvΉnLŒΰjΤ,ΘfΘNi‘Dρ©ΑF¬6²p)<έ( ώu˜ΈmζHmŸΪ=œξβˆbγ1𻠐©gΥ`F]ŒΨ`ؐaTqa>Ψd˜΅†f”RΈν1sLbΜ L‰LΈΩ A…αΐ4” "v|aναέ Αμ–Όh'π’²'p…u…ώΙθ+=Ιxm1Gjςpδz*1Fπnl,Qjέ6yη‘φΊτ4Κ tŒ‡9©γͺ'#UDXƒ/Iηgηο΄ ˜ϊωε3¦νΒ₯%ψάτ¦ΡΌχ#ΰ/ΰϊS7O‹Y0ΈήΝzάFSσZ]^ΐ€…Ι@yλΘΔΊ“»ΆJ\Λ4©mΗB`Jή2ΩqdΚΕ)οΩFpT0ΖΗΰWuΆΊ•Θd")’b–˜ ,BΣ…2JΉ™LΟΛ›ήvd4SZΘψ—&ψΆMί.’¨ΰλͺ²z‘JΞ·€ΦΈρcύ$) aΏoΌ‡Z>ΰ0Ι~νίύ¬Ζθ+ξ…{G™ kύ¬ύΧΟΏš9žn?yk x©AbΑΤΝ²Fš`Μ­ƒ³FUωju9νκBΓΌυτΑp3νΫXB,ςXΗ…²Hβ ­n&H=΄ΒΌͺU%V₯ °Α·ΨnΒςfPΎ΄i‹υ± KhΘe#;ZΈιΕz—Vgλ^ν΄ŒΆšΪpŸβΊΪ}―kυΣ5 7ΐ6εkΔsx/r8—Ξ‘‡0ήρ©`Αύ”ΉGdΔ΅ςω€‚­Μ7ΠχΕƒ¬Όε«ις·Ύʁ¬l%RΎή}η](&pηDΐk2ίuζ¨3άΒ…ΣtІdš³ω€—Ρoι“GΈ°ςΧ}0γrˆŽ…q GΩΔ=_q9žΝ,±]nβχAƒBˆγ»£Τ ΚG¨`ΐΤΧ8ΆHgn›\—‘§wό)dΨ'αjαUθ06Φ~Η«‡8€· .oΦΣΥ oϊl·ύίϋOš€εZaΚw)œ©`QιγtE±YθŽΦ V΄#ήΖP2†]e–c—:ϋΞχDU=Œ1iH~9™Uΐzθ‚$²Π9βlŠG EYOƒαZϋv ΛΫBΪ Γ2Φΐ&»ι;?’FK*žžu”<§‰Ίβ‘gθ7ιεTΜ-.clχ"œ›Ξ½€K™Κ¬Λ(Šz ^ύΠ0HOΈ“FŠlϊνΦ#]―0Φn–6vι ‰˜Œ]ΰQή "<tϋE΅Ζ>a{!&{@±‡Οΰ80Υ΅+π ψ[Α‚€πγnρΜΑŽdp¦gq_žy΄½·ž w<ήλΪ;> αΗΞέp΄’w}—χΎŸχ½Ÿ{nxοχϊΪ©¦χζqT¨έr“ΊρΘυg²οοvώ-w²^Μw¨ˆWΐ¬šΗwZACϋΜj―C ‡‡‡Ω`!zdΜi@8tc2CΡόΒ|d’‘Ψλ5€”‘’¨œ \§nZ ΞaJM}Ω P.W ~1°Zh˜·qo€°AΐoβϋήB[K€ΠΚ2hͺ€“1FΑrVΩnΑP6Θ\UE’αvc7πΊ%Q₯„΅­2VZA6(”'Γ©ιΫΎHΠ τΆΈβvu5„#™ΣΎκM4ο¦vΓΤ%«I‘³±Ρ‘Τ‡p°ˆ¦zpό4R–-ΰ-ƒY«!|” Τ2ΊΙΠλs.M2‰οU°ͺγ»«™ίΐs™ΔF³7MŽB»JP.Zί¬’&e˜Wϊ)q•ώTK_‰Ή°AΰQeόΎ‡-g™ΨόΤ™Mφ%ώF:c˜L s‹>Τx.ΖΊΫΩovL5 „/ηIέ`ό¦FΦO^\kkYΝπ`ι?pCpκΔPικΥεG—6¬Ξ7ζΰ’`b ΏΟγJƒ+T/Μo€yΦ2Β•nΞw4Lΰψ”1%aΑΒκ‘―˜€ νš0€Ήeά`nϋŽc!’Ώ‰π,uΛ3Ž(‘Ž ΎΚ.‘˜j°eBλŒUίέ\ΤXΪR3·ΙjαΌ•·Υlϋ2ο7>’Α|Όn–&q’Άλγ­#0Dπ:x+†_5s¦ΆΣ¬a9pAΛ\Έ˜mͺγnpΊσ V‰wεΡPΪV“κν Ζy˜½n<2%0CpΗ«Δ!ν#uμΔ@!]Γς2C{•+Œ’’XλE XžŸ#΅μ*ΪQπαώc2€΄Ζ΅R•™²"xg§,Ό·Χ’AŸ#`žz)c$™Π-‹uΤ³ήGόK7Μ·Y|#0ƒI†Sθ9§@I€Ÿ‡΄&fsg°{rοΘfΥσγζi™DyΎΕΥΛΔ^˜OB‰WΎϊ¦'Ώš=46rKzπžϋ €νKχί}[ϊϊ³OΗ…₯Υ¬ΘΒ―…Q₯ouBpΌvϊλιϝŒΎλJYG0ΦeS&Ό†UƒΙ$ˆ_­=ΩάH=ά_d]²NΔ©‰}ϋ+iΈŠ6—υPaμyζz΄Λx.ΦΈ€Έ+—iTBVp]q€¬'pF]ΆΙš$Ϋȁۛ€‹NS¬ žΥ-*Ϊ€ΦΈΆΒM ψͺ-·om‚S΄΄\λΰ­ΑύΎ2bξߟNά~–)jMNβΦ3™JώηHΎ°«²Z$γ-Θ₯ϋ8¦ΫeΔpπ~ϋIΎΛξϊΗΉ–Φΰ4˜ρ8ΦΘ;h ΫΘIώŠqωΓηβώ†νqοΖΎί~ψ™|Χ΄ΰρΓs! D{ΔDϊΚEϋ$)8Δσά/,`"έ ΐ«΅:sΕύM')žΩ›Ξ)ΠD@ηϋνT“g^―•$Rζ”ο1n(θ;ΟΪχΜ­ZZ•ΰ·y–φΐ%Ί#kυ€4πΗh‘c( Œ3ΩƝ=CΧΓz({μοP1BK Ϋ¬_(5KκΔΏ­€η^|‰7ΰrˆu/ΰΘ5‘€θ!-ŸIO=ρ©τ±Oό<°g/Εκ!n)Όυ)d3Q f'4Y$xρjeγ*ΖΒO'πp<Μ0π`½¨’’y_e˜WQ|‘_ÞΔΨ31“ ΚGΰϋ…­sޝ31™‹<ΘΪτ^ΎzψιZβΆΰ ²‘Ε₯μŸο:ρ>―έpΫΫΏΪ§·οtξνχΔ ΏλδΫN|wΣo»αύύvΞIΈψPος†ξwξυ±λΎρΪΫo_σώΏϋ»}xή£ύμΫgWγωΜο³}cϋŸοΦφ ·ό‘ΏΆΫlήΠΐu)³}­ύΩΎ§ύ»ύΩ>nŸ7ήwγχw»½ΞίψόΫΏϋ\|7^{―φήvΝ±Ώ»$ƒ‘i₯Τ²4>‚ΆΧMKΙ-S.A@ ~Z±΅…Yό¨Ιΐsδ’ΧτošM«[| ΔΊΠ3B«Έ!‘6ή’λP7Zς2΅j μΫ"ΖcΪN}ΛhRΝH΅C°\Ύζ=Έfˆc‘§³5΄—…n,'τLμ„Fڏ…οΎeT!z0Gά)”g<ο^Z^ΖmιPΈdm ₯φ‰} ­NG¦ƒ~u@ ˜―‘jT OG Α€{$ͺύϋ#©„aΞj0$p–©UFΪΉŠ5Ι8=εΖ΄ΗπB@ ΈY)y‘™Ί#tγV.―0¦Ή€Y‰"ƒZœζlͺ΅h™`σ‘VšοF€S©λ•AΤ=hee~vΙΖeζ$7ΎŒi³ƒE6ͺq‘)‡ΎθJ‘7hžMQk–sΟώ©iΪ\’PL~Μ2M"°sœW •΅Ε{efb,@Ζ< E΅T }gΓ`3ξ@0€γgλ€) Νm΄[ͺΘΨ„l[Α¦­uχwx†γQ$«“d«šωλέ¨u‹Šb}t@«FλPψŸn4滘JvHJG[hl†$Υ=5 κ1ΠΜ5Nζ«™]€kϊDƒzic…jκ_9π8OΊγ"™t§‘Aξ uŠnDššz„<7ύ<}μ%Σmx]ϊXφ>ΐΤΐ2§…ΚLY%όΪΝθ€P¦Ϋ‚Bλ.p6fέι§>~22€m’&4φcsKxΥΡIκ°ΐ \]$ζβ"Φ5ž«Δ-SDFu“y2«Φ "XέβΡ=%pŸeduq΅T†•ƒQ§wŽYw„9¦όσN‹vYs Ά4S~κφ!ƒΰ’Ϋΰσ/|-]#ΉΓ…σh]|Ί©Ρ\Μrΐcοηή‡w:LŒοώΘ|$ΝΟ-¦³W―Rcλ$Ή^—VΞ€Ο~εLάϋ™ίc=ΒL}όΗώ»ΤM’ˆ ηžO§žω!¬¨Π -aО+σ‹ι™―Ώ˜˜!Ες¦δ!j]΅Ίc2ΣΆA1A5²fYΦ T1_==Ο΅nΰ„°Š’bsβ§Ζ”1ͺΊώ㬕ΒΟ”ε½>,3bSN0{–ΒΆ.€-’°vj瘏[xŽυ. Ϋ}Pˆ·β]|ΊΕEo ¦›Baΰož`9ρ.™.ξΰ‡Ι!ά —‘p·£›žΟωΫΦκ(ϋΈFϋ€$s‘d-taυ½ςκ·₯WžJ[e‡AΦαΣ§¨”fyκ•ΥτΠ3§Σ‰CγdϊΚ₯™©ƒd.$‰ΘαΫΣ-?žΊˆ¬¨˜‘‘v¦iΏΘ8DΠιƒ~ΐ:rΞ}„―Αΰ#{Π;~KG –ΘρAϋέ΄ˆΖ"9…aβ2ΌωŽΕW·Ma"μ€suΜΡή§Pθϋ€•ΒI:ΰρsΜ“a ’θF©D>Ε {Ž₯‡T@œΊΗΗ\;Vηεΰτ‚ρΔάBLTό˜™ͺ %‘ώh§‘τ©τrΎςΎ ½°²ˆlξΊm‹λMMλόoBPE‚ΒΠw9VM3[ν’Aθ£ `ίγžΐM«₯ƒ§Ί v£€[ŸŸO§žόb™Hd¦sΡ Y‘-₯π-θ€ρ+¦δΆw F U ΰZiŠ΅ςt1O⦂θt‘Y6ξ ςOόγ|iIκbMνς|J–ΨΏcΌ(`lƒžd/ΐ―ο%ŒΑ,‘Ψd¬17NpLοπωψA›όp΅Ώ`B\ΙNώΕώ· ‰N±›ΗMόQ!π‡’vΗΕ^ΐί]Ώτ ΰΞη!^˜dσ.7A‰: Κ53Χ-„5_f w)΄Ήf#Rΐ°`_5ά] Ξά£y‰Ά·ηΞp ίsˆ{'>υCdή1Ϊ|7v΅ω#€-uσYΗ―ΌZG+1+v Bτ Δφ>,$»hρ¬2ΎCΝΕ›hu"x»ƒ RŒ#6tΙ„Jfč<Oθ›ZyΤΟ΄‹l§“άdάΔ‰ο 0Ψϋ\§U馦θ&½«›=Α 0μ0Εh^ςΈ6υuίό`€!ΐjΥ ΛHύŒ#0Εώτπή]ϊZ ΄φbG1jdΡν(ή©ΐΗΖX$Ώ†0ΤΨ^£?Ν4:6JPΰ$ηt©"0š8χZU‚ϊΗRqd*΅€E‚€‚˜―›–Ϊ"ηΖΎXΙΩΜenκfΦQ›₯–ΤΪ"ΊΉ»Łh@‘υΦ*Π φTp'ηth wΈέγ.Άάx‡LΉcnbζΧd_GΓΪ~Zς -έΗ„·–ΫB ˆ,?tјωΆ:V0αε&RFkέKόKz1„ΆΜΪ…[.nξjβ°Œ KΖ/2б‰a><-€+ϊM±9Υιƒ ·V<¦Š8β^`:sΰghf–dψ‹Ί5pNΌΤ―Ω~™ύ¬&¦@tΞ*sl†'φ¬·!,0f₯OX€g·k6*0~ΦΙc!©ΰϊVbœϋ¨D.S…s™ώœš$πy>=ύΒ΅τΘIά μό.ξ_ΈΣΜR@8iο*yƒ}>1,ž8=NZ]¦gqy…€ΥLšΛaάJ$ χΰFΦ§ #.‚-$¦ΜOžyi άμ"p›βv ’ βμ52’½όl:q‘³0΄a±Έ'ώ•UΝd1=@Έλ‚‡ΰšV‹cΗnIǏŸΐΊρMTžΌK«T™ρ[{HΜc'Ηω]bBςλιΫnK?xίTzr,Ÿ~ηχώ ΰ–ζ:ΪΐBuϋ‰“ιθ‘Γ #tαΐ€{›("4τ2jQ—–HΉ 5J=¦ Ag-\Vd η 2ο+Φ¨GB!\ΛΚ³7EΌ5r Πέλ|_™·nO‘Z1Τ·A¨4ξ©ˆΛ›xΧ½œ9Έ/&QŒ•sΒΩјΐ5―…JM»kR†K&Nζ[XieRQQW‰Β=™@ΟsΠoQ;°‚‘γ ΰžΒŠ0ZKΉ&}£ϊ¬¦σΗΉΨ7θΏ³!νΎzιrϊΖS_MWqυ\'Žgd¬7}κΜ₯τ>ρtΎ˜^ΎΊš.Y·†u²@βˆηfΟ€iπ4wϊ\:ώμӏ}ΫwaΡώσœγυŠΒcυΦΆοqΥ+όϋι5Χ_g(d΄m;θχ&ξγ»ο ζ?q;ζκΞ4ν ’Π€§ηx@ΑίψγŒΨ˜;ϊΖΫ¦n[9πYΛ‡ΚΌXI ₯οAό~Bš€˜Lέ6χnpΥ [ZIrœΤσ@4PΈlB‡ΛόΠr° mπ_d―BA@v‘λ RφY7K•]–΅m…½^φ¦Λ³π*{ηa,³(Gθ‰nΙΑΎϋ"i²–h «2}ϋΕo§±C'ρDΐν“$$_χ)&¬w ϊΣι³Ύ›?ΣΌ«,*²‹ΫZ‰KtςlΧvŒνcΝχπ>¨6B0ΚGζΎ .7θ§ψYd€―pž`\Iβ»‚­ΦeŒ_ΖάκόkƒBhŒ;oώΣ†@g,ΐ½_±f™4ύ>ύ-ΐγΘ`ΜΟμDϋ^ΖεKœ«½wοΌΟΖBa’nό~ύχ]Χή½>ίn«½ψύΌρxΛσΎ›λνsΩ’Ο~ίψΜ[ϊε{Ϋ}Ά³ν1έΨVϋωφ½qk»+>Ζχλοeμ7φ³}ώΖgn<ηΈ½ζ{olΗsm˜xΏΧ·ΑΟμvΖΗΧηͺ=gνΟxθ=ϊζ³ήγ»ό.ό²߁%Χ£{mzΉ=ΎθW8ί‡O§Χ ΧΌ*ˆ«DZw%΅‹ΎqMMD¦T iƒΐ‘ν1ΣߚΘβql€Ϋ\A³±B+™g6o‡™5%ͺj¦­€^κŸ‰ ΝκΪ,vφ£•μ…8±‘ͺΉη~7Tγ7όnfΊ5(ψή₯?lq(ΥΦ_‡qZ`C§ΰˆ΅¨‰©σξf‹*Ϊ0VZ ά\2†Ζν‘ΝΒηΈt1’9ς0Z0„]ΈƒΕ ΒjRεΠ*ό{!œuάyτοή₯ψ›τ-`€“­‹ 0`³QC%#o!Γ0qC0’~θ>D•gιQ…˜ΧkhΩ,Δ ƒ‘#K1Ζ’Ψ‘Π†Βœν"”¨!c30¦d€€~QΩ*ςN煉?Nζ₯ώ‘ποDΛΩb{ηάώ$ξ»!<θϊS ζIΨoηΣ¬Yέ0Tϊ Χq±ΗΎmΈ‰ zΝΎψ~]ΤpFF3S70ΫΛ166G¬6UpB—™ΗοΨΔi˜ιΜ#˜:ήρ0lzu2€}lRΖoΈΑhωώhQΩH*ψΣ3¬R€%²ŽΙπw"8«]Ά°_ΙΨπΜ"… ΄k+kΈΜ((Σ5΄ c¦ΥšγFoQB£Π Ο9ζ,R5Π‚nTΐ°ΖV&Ώ³WH2ΖZδΊn]—―ΜE/­@ΒΓύXfΧΊ8ςZΫā³₯λΜδΘ0™˜VI‘LM  qΘ677VΣλ/­²†ϊ™‹ΛΜs==wφ±1€•%Mσύw’>ζ ϊŽώY RU™DŒ}°Ά¦ κ#»”^“ϋ&h§Β»i?Aυ֞Ής&uV˜;-RZΠ†FˆΙ‚ι1°=2ώ¬=ρΈ s0: *V;ΏγΨTΪ_ύ\ϊϋΫ‘Α 5€'WWΆrβTΐ)ϋ–9BΫΙIΣwξs_€ *Γαf"#Ομ–±@4ΐ{^τΖ”Η?ϊΡIηΏω΅τΖΣ1ύ­α₯{ξΎ?’`τ2'9πmφΚ|XGFK[iD ’*rβΓXOzπ)c•Κ#X=<…λ\ kΞVΜΡ.Β†4 j ±~&Ζ,†9LV/,- ύύX°:‹ΠFןŠVΐ‹<σ9Μ¨κ!”ˆχ„K1…Qƒχ –‘|ζ—σ 4x Μΐ½XŸ0fϊΩ{&sεzρqα ±Ε‰ΘΆΕ32ˆΑp1g±· {ž‹w°ή\sώΕώβsIΆΗ›IPPM/SηακΥs0‚έԈHkΞ#kε£Σιώ“ΗΣOosιΚbzw‹Τ:Ο3¦?A€=um7]ύΒΣ½W/`™·&ΐδαΤ=š6tΟγP,ψN&”Oϊβ ‘!™¦ŒaήΌL%8ιSAλxV¦ΡqgnXMq,Zό”Ί.ωš=Γρ—~QX:^α“eMβάc» ΒO΅ύΊ© g•cΒ,²—I»™snŽϋέέΉU`‰Ψ²ΘΜHμkΊ}9§β·₯EAi.,²ϋ+―,­φΗ¨΅@EU'LΊ}+DiόiπΛHd τ πρΑ]QPPΰ£₯Ή“mβ"&…oό  Ζ“tcνΥl›g}Χ΅KΉrγϊB©ΦΔjή#tφ—~P)CP½‹,yRΧ«(’†I_* ai‘;ΰ5ΟΔ|Θ@₯ΪQ„ϋ3νtη‚Κχp‘Ε#FI,³ΈF²~°·¦uέMπƒπ`ά’§τ‡ϋEη@A]Ϊ’$}Gx€ή μ{{Œ„OΟωά^KΡάΝ™-v‚Θ#>€ΩsρΡώ§}―ΏΫΜθυs{΅Οίxύ߯_‡w΅ΫjίΣώτωφqγΉφχλŸ{ciίŸοΤ―ξϋ^οl_Ώα‘ Λhόϊ{ΕΌŽφωŸyϋΉhχν}»&ν&oψlχ₯ύμ;~ξυ£ύΎφg»{ν6ό}γ΅φχ··ωφϋΪν|Ώ>%qn λƒΠΤ ΝŠΕ© ‘ØSΣj­£…m옹ΙͺιZ²@" αΚcΩh΅πΑBYΰ>ƒ ΧΧρe§¨E• ήΝτ ΅6Α₯Υ]‹Qπfύ σ©E»‚¦]’]! †€‘€ωΈ qΝν{œώhžυ~˜™&›*tš@„i'ƒk+’F,ˆXVπL–Ζ”ΪϊΨΦ[PD79ˆ·ρ2޳F :Œ‘ΦEƜŠΪ4­"T2oŸN‰³ζzϊΪ‡0΄nŒŠ°αyσμtίQ‹)Σ―&skΕΐπ °fs°«%•T€XΔ $ώš&ΨΝqtd7˜"ζ«][ΔΈ+I«.½A“Z+°Ž …Ξ2Ν „&δ˜s,&€!Ν3ΏΊ(ΈΈωΛS’Φ*²WρΌ.Tέ7eΪՊ±Τ˜λ: E*\ΖC§Ψ€ay‹Ή¬k·E6 jmERΖΰΌΘ hqBΖ»άΐ­.Ž> Z‘x qE|1M¬ή£ \EX1ž¨/ܚξΨ \ dL›.Sϊ-Λ*p*,κb“ |GC~]ZjΆ€κ βdh§e‚-šž!@˜―eΖeoM™ ρ―Œ{RΔΓ0(΅αΖ}€)ΑΌΠk­§š_Λk9ών-Ψ0Ιuƒΰ»Μχ?9B] δˆvέ—h#B φ­£ι*BφΛ'™Ώ>k”`έαQή!ΖϊV{*ƒMœμΗtο:5(¨©CaΗΝu«₯#6Σ‘Ι1,ˆΖCPˆ‘GZΗr²ΎΙΖ s΄ŠΫΩyπQά“φ·\ϊΪVΓ?66$/ψΡπ΄@n"xώ‹Οπv`£Α±F2ΔσΫ$;ύŠ›œ{―Θ@ pΈ|εR\5s– (tΏΤ½ΠV_k` ·Ζϊοό]hΖXzκΛΈ]N¦WHύ{οΗ?ύ₯1ύκΏϊΝteqžψ˜΄ˆΰrmρ"BΓέ\?ˆϋžό£©My%p&#q\Γ£ƒi¬s+]τήΧθ#kƯ̜[\UA°oHάU[›£Bύ0eς5―yθ–υsς€νn™!5 ₯huc=’^ΜXίX_IΉcŒƒ@–πdm±6‚<2Fj²·NŒ£Δ‡Π‘i»ž„›“a‘Oρ@<ςν}CάπPi "ΎƒnΠχ ‡5ά"X,œ}ƒ%EΜ²*–― ΄κC·N₯ηΏώT^˜K·ƒsΰπ Φ’₯S―ΌH΅χ±τΪ…9ͺn§ΓTΌ/]ςͺΎyu+ΫjκxιΫTߞL“SΗ)\Š`G<Ѣˆš”.Α=jΧ’Κ(- Ze[ΰ°™*B@eβ^ήΐΖρ…[ ΛΜ‡2Ίβ\66Ύ±Ξu­m³¬~JΏ\%2¬sRD@Ώm³_ϋζ°}n‘8V ;ίΝγά‡ Φdί'Νjγ»ίΌ%ΤΠAήΑŸτ΄³sBNi;ΎM…S™ΗΤ±Š Ά=RρbΊή]ά.Qcqžqσ,€ψGΰ’"ΕΝ6΅‘ΒΨt_s€Ύ»3ά­Δ³l­‰e*"t³φϋΩΗ ΅₯΄4ΛΑ‘+kCϊˆeSWΡt8ΰB_tΛξ αΒΒΒ©Ή5‡πp0Α=­4ΖΜE’ΰfΡpΜ#UhZιι%}b¦Ic­DfΓτΉΈeΌΜsΜ}/kΞ‘³Ώ h‰AΥ|†ρΥxΰŒ ™ZN²±1ΏΌS!U‹“‡ aχ]FΔ―ln\/Ρ08tσx+²9ƒέ[―|Ώ9ߏχ|ΏΪω“ŒοΟCώ$ύS~VBμ’|―Γυ«ζΩE«uCΝ’›ŸšλNάbΤ”‹@2S2Θ¦†Υ…\Έ¦€b+$¦ΰ•yt£,°ρτφOΑ<Βδ™j—ySsg_ά$­$ά$mmlNΓ•7€$]ƒŠhjΡ§Ρ`ΤeΦΥښ.·J=Œ.6ΑNŠξ•ξNυ•K‘†©s3ΡoΦ8­% +ˆš7™a7Π 2V}υΥTΒI@e>eœ³λjΩς β3t΅φ‡.‚‘„ΆΌˆΛΤ„ΤΝ;¬T0O±)+RžM- ΏΡ5\·ΈŒ@·™Ž,¨•‚ΨδτΠQάGF¨tŽΛ['pΜαf₯•±ΗΙε~mu9-Μαώƒπ¬œ‡Φƒ Q/6υFΩͺξ°drΟΠπnl-„9c_ΤTεI_ΫCΤΰξKΈY₯]νy§L–58†φ@4θn sπM{'2 ιΞƒ« ΅ όmΆ‚θMλϊFρωΥ4»ΎC̏/`Γ&Έ»Υ6s0<0ΑΩ2zΖ±τΖbNΝ-ϊΆDΐ³Ί>ϋlΚl›ώ¬XΜq«Žφa¦+Ψ.5\„΅›”.`92SεœjSZΨ΄Υjΰ+›{ ?¬ξ?e6B,XΊάψΕ kΫψώa£Pόo0ΔN¬ H*œΙΜ‹TZpΘƒ–r0y²MŠ…97>²"hO Mοͺ¬΅ΞtΧ]dsBΘ Ό)9Β5 XͺΣE\β?Φσ6Ω]Nγi%ΰ2εœ3š¨Ύ^€Ψ*.4βΈΑνg<|`˜Ψ ΦPX?¨nbWžOOŸM~πY=©4’u”„ D…s‹%šv›y.]Έv’ήΔJ„ECa―βΐ½½ΰ7χUΆΙŒ…U³³΅χ ₯κΆΔPQ―@³ψ&`ͺMb›ζMήΉδv «Κ4IΏD΄`¨άiC—Ή—‰‡~ΔdΣvκYB]Ψ{ΈTΚμς'#μσΆ`V5S€W± _-ΏcŒiμyγΤx±FΚύ]@‘±ϋ­gSηΘς7”&L!Έν¦#'N€ΟεΙ΄„ήA˜Ϊ"4ΆD»ώ.„\θξε³—R «ρώ³Œ“TΦ“3ЌΑTƒ&n‘!GχRu) βήΪΡ;‘–9·E2ιγRy.>hΊΆ†εψΑ'lι¬ ¨ΜͺΏcœ ,Έ€ c A‹1²‘E(H αΎ$£LqΜn…G+ „QƒΉσhntύ΄c=DεŽhjΫ™·{sΦ{9ΰο·°¬p"2²ύΆE»1‡4₯$;μœγ˜_žΣ5)šamj‰Tu/΅¦R‹sΆmL^ΰ¨―¦›ρ~6BΪδζΫ™UγΖ’Ρ~Ξ­‚Ρ“ΉD ξ–όωKηΣΛί~š΄ΫΒ ―«©1νΊφc΅ς’€7/d5¦ύυtω΅o₯;oΉ/I;PΒEΟQΠ9ZΊΕX°θσ©;œΥΟl,;‘W»ξ૞ YZ\Ώ³rŸk«‰ΐΡΒEΤ*λ™u…9—μ“tΓ½WtgάΛ'‡`ˆόMϋΠ΄}wώώI/ΎλˆgΏλlvβ½½Λ#qϊžσœΗ;t!»ΐΏοτάυ‹{_ήΟ=oζ=~ˍ½ο£M€Bͺ~ίOνέψGxύM·ίιΉxﳝΫόσΠ‡?ρ ώτ}―ΊΔΜ₯ 9€ΘΉˆΩ –«C§ΜΒΧύΧ˜G ΪΙΓW5[όV6ΈVΑa‡ύ9~WΡ0o£Α4ψ:p;"bS΄~ΑNω2ΌΦ‡ήΌΧ‘Μ6;D#8UΣwXКμΒΨk=œϊ|ΛCŽT§ΊΞ4ΠΦΊ’ΊΩ‘6aVeΊK#0ƒšuYr“ΘΣχMͺ[K6«0 D7ψŒn€ϋ…Amc 1D›―eEΛXŽΎ\ν’1ά]L›ΧfΓ•£Π?,JhδΩΔ ΛXo:Ι Ζ χ&65˜ζ(ςΗ›eVvΚn“θσ]΄»8’6v1Nͺ CΩ-Β'YΧg6aEκκš„aΐ’ΑΌ(z˜XZ«Ϋ”πt.<>ρ±§™£ιβ…σΠeSŒ€Σg.P5z'έzδΤΤ=gΟΒ;Üηπέ&†‚­F+σlŒcŒ‰Έ*­ρ¦q‹M;ρ’m΄@bψΥp Κ1ŸβŽΣ”cSΙ±VΘVΞΖΝτ§0Υζ΅kXaJιƒGΣCpD³œYc&_<ŸΞ]‘Ψ%~ζWp§Y Bχ~Š€MΰΦ!Ž^ž#ν3>>\]IoΞ^ΖΔΟόl’uFΊΫ:'d’ΒZOό΅Vj΄δ΄Ή‹W‘ΡΗbOxήΑxjΈ‘Ȑ[%Š‘rΤz/ΉN4γΌΛ’ƒq–Ah <*+ΆP–Œ¬.η°ΕΛ{)ΔezΥ° !ŒΞλGp>±L,­Μ΅¬²…—3λhŒ°)W΄t}S€ŽuL»ΌMFŒωθb~'σΛι–1γdZƒι‡‘p^ΗFFΣ#χέ“žύφ‹ΔL 8Γx oΧUlφΩο6υρ|F‡ΌΗ_Ϊ[Υ~Ν5§$\Xx―kΐ@ο-jxότ_™tα₯τ₯'ΎœNLΟ€­+Έ>š†—wXάqei™Ά-h gά•Χ&ŒΚ+«‹ΟΌ!=ωΤΧΣ©sgΣ ―œΖ•h =iζΠtΔXΕ]D+HχjcQŠ„–υP’¨ΰ!β{π)².k*Wšλ †Ή€Ή€²fnήμC]d΅Ϋ€V©ivnχ*P2fY~(ƒ}ώήdlˆΪε8ΐ[­άΐ-Ξ«Κά‘Δ/Ώ+ + dpψι#λΝCϊ&3οuα#푇cθL‹WN§I2Σm1¦Β΄ΕVWI’[©¦υνυΤΉ°Ν+€9,C*ŠΔܜ˜>Ξ@η4ΉΏΞšιοGIΛ\ΡJN.±6…α|*ΟΏ SΘΊ‘8mgΟΎΤ,/cQΔβ²»ž†°PφHω‰#τ8S―-FŽ!‚ΨΈZna€ε½:£ ”"IΥρ#„μm&2£Ε…– 8VpΛ]šOy¬ZΞƒ„ Ήυ,ξ)7q(uMNω#·§MjΈΘ„«H`Τό±Χ9_Β‰ω3)/ΰ=pΘΌ?uώΝ[θΎημ'm™”BZ³'ΣΟ)@e끏xNz-ρŒ‘iM„Ηάˆ@IDATίέ„ώγ[οΰ#Pΐ΅a«Άa&.‹Go$ γ4η‘\ӊ"­1 ΗpO> ΗAΦνcι'NμυΕΛT73;rkZ›]ΨΓ zλΧ—ν’ γQ8ίBΈΠ£γΎΘΨ‘υΈ.j} qΦIΥεQc|*,θ 4ΛΉQx@„‹9ς{όΡGGΥK¨ ƒ³€ΐSΖ.Ο ΐΒo­–Ί"Ίλkmo°Ωiq¦›τ5θ— v•F³?aαoίg/D{)θwοpκϊ=οuνϊMοπ坞{§soτϋuΟΫΫ}ίΚηο됀Θdx(ι‹hοv΄‰ΡχxξΖί>ϋNχέΨf<Γ;Ϋojίγ=νονkoGϋϊ»}ώqŸ{·φnžγC`€ΰey'ρLBη’—°X}»Υš”ΛgEπμL|MqW 6]‚v` ¬ξ¬`†’Ο™΅ΛτΆδπίBkiUτRDC"‚{ˆmδς‘σ>kSΤTΜv#£ε5ΧZ·/6ˆ‘ο7έͺU—ΝΈb°ŽIΘ[hΐ;) XΖW{ΜμΈxXΠLTCΊ™©έvs³`ΎωΦ¨jΈζξώύ0lƒQΒ ‡,Ee6`3+IάXFαο―_|2ξdν`߁ΨpΤ$Z΄ΠΜ*ΔΟ)£6ΐ&»°°ΘΈa|§.]ΨЖ恛Z«*ξl2Έ<'ξ h‡d ]dΈBƒΘΪU„xξΡE‰†ΪρlaαΠΚ£”ȝ]ϋΟ6¦ό4ІψγIίψΖσιΥ_ΔΥ Ζ?ξΪΆ…σh–x fύ*ΪΆξjΓjθΔubΓΒ ΆΊΖFΊ-Nθΰ\ι…πΡέ;ρC ζ~KBCy,XUδzςˆΝ&ηΩ νͺn€ήXϊ±ι&3Z±<φ™νGοά—ΎeA`Φ»G‰?) £e¦– Ο–w˜ΊkF²so"pε§B8¬—ω•±LΈΰηΰθDZΩ${”1#-\A`nͺl–Ίό!A&˜Β<υNΤΐπ«$ΠθbͺΡΤ½ι )7́YΐrV—gΙΒ†ˆ€u(―΅f>6ƒ—4nς‰ΕIΖ ‘· Ξ)T’7 κΧΐρfe™~°΄&2—%ξΟρ~Ψπ—ψ‚σ:6(D¨)”1ιA³?€ͺ»ΎFεφ%όψaΨΡnƒkΛ«λhζΐ‘jꃱ f‘…ejaP†zye“ycλ‡Χ@ Φ.RΉOχΚ >b°VΑ'S%wwi±κ&'4ό« ²…p$Npο‘5(8ΎΉX+ώξ‚)lWσ–Ycfb/a8Ω}ήη9ΓΪtνuΚDΡ/ w=t•9ξ\buD…ςύ½Ό@œ W¬Po^#ύ7Βχ:ΦΓ!RX/’¦·Ÿ”Ξύ€v^§Πb™μa}αZΕΎπ»ŸI†ΝE›MύεωΥτ‹ύί¦n σDr …½°π2_[ec’Œ‚‰b^ ¬S5ΦΊNc=(Ρf?ρnΊmΙ,[½E€pXnmw;Φk0f—ӍΤ-CπWΨΠκwή >ΈΪωdž…•Љ°DC{œ7ΩOa£`šiD™λ‘&šηdΜΕEŸ—†¨ΑχPΠρpΏ/κfγ±ξ/Γ¬΅΅ω(H(Σ™G`Ψ ΅Ά1ΦkgήwwΐUžYΪΌ˜Z—IοΌIΖΓΎnάHYcμ fα3)ΓΚ9DO€C'N¦‘ƒΣ©cm)΅ήx‰ φK(EXSΰϋrυMhΝKi„ω9t"•fξJ«Έεu ι»Β…ΜΏmjWKSΣ±³¨\J€•MKs©ΞίΞβάί–φΒΉT»v†qqφ hτνΏ—Ώ“)·₯`FζΑΕ7ΰΔρΤ9‰@²‚e …ξnPGIOdbœ€!s!]~.Ι䀋,΅p֊η9– ;pεH!z_γ=1o>ΑϘc”ψΕ:' ¬ό ‹―μτΌ!܊$zΞ?οwοΙSψVΑΓΰςσνΌΧX'1· Ό˜…`M‘Σa2_™‘°—ςνksgi‹Λt>ϊYΌθkΌ‹Οθ+χθ.5<6ž.½ωFΊxϊεtίƒ‘(N’IDΔU‡§ βΞ@—‘³ΙCΟ™Ÿ,X .Φ€ϋœϊ©pΦMŸ»˜ίΒ‘»<ΥΝX+H8‚p€/Rέ°B9aŒ9:ΰLdσ;@-΄fώς.‘ζύ~ΊΎno…ΐϋ@Dz UδξΌέΈsθͺΡ^ν&eΤβ^7G™3‰ΦήΉφ§χΆΏϋΌΎj‹ΪηڟνϋΜηοfβ½ώ΅ΟϋžφχΨl蟌“iσ\±Pχ>γFP@δh£€ορΉpAa!¨έπάΝγΟ‚~ Χ›A6"όq˜xq­1& Ό±˜FάD©‚6Ϋ*γCd`Z ΐΣϋΤJθRmhΜOk²ΖΫΊ]ΈMX_Α:218ώ0Χn¬%d4*‘u₯…fx‹ϊω‘ύ6I«k‹0š˜ΘΥD†Ϋ Δ‚₯ΖϘ“ΞΞEΔ©4q‚πqOΪkήΉΕζ©vΘjΦΦ‰p=H†ΤϊQηΧ*Ε·Œ9±ˆbΤγA`)΄ ώ*ω±΄Š%§‹1ΥaXΕ] §‚HΑ xLψω\Μ°œδ$d.:pϋj’Ω«CL];Ϋ΄oΠΎ‚l h—αθ.Q°Πχΐœ˜ω+wρBPΠΜοΖΨτQ¦…/―Z7 |Ά9ΰbq_e֚n" Z–<, ι|Œ€^μ‹~`eψΛ?ργŽ€sηΟβ#0Ν]Ύ<·I[̌ΠίGξ =όΘ‡•ΩΉ`τΞ»ήΌ<Η ‘‡Yο%žezz栚ζqύ:vτ8ηΊΣ+―œOΟΌ1υ,ŽO ŸMeͺςΙΐ”„ 10Ί3ε‰|<8}Έογ·–p9ΥjG:a³e©yμθ!€:ƒ·ΑΊ Γx„°4¦§&Β Δώ7 Zοr+Ν“Θ”›`ŒT!~γBϊΖ·^HEΙZθ°Vνηή^Œ:<ǜθΒΤ@ύθ–έb£Οuβ–RΨΖ] « }©1' 2€αΌΒ‡‚&¨E”ςik–±Nqw/7Ό}ΡͺL;ΈžΗKΪX…η3‡†RfcΝ{lψ ;ίΖX0l &Ρ:4-jη°3§+c0E]›©Ί>[Ρ.ξG«d§LεΩ₯p4Ν―AŸeθb 4iŒ± XΨrmvΈΈ°­ί²ΛšΫ‘ϋώ Φ܏VΎΖgbζΉ€£΅₯Š_Ί °νvQ\²­κš.› όtgQ0x_Kεγ~·Ώτβ©WΐOƝVά ``ψφZ­ΊΦ]πΎ[w'Ύάn]g^;“^{υ%a%ďΎ_"έΌΝ©»=¬·±JN2WΠ^γ”z°JΗ3L^:w6„‚Ζ.t’€uT·Α/=ρdϊ‘ίK² pΓ`{π‘‡υdŠ]ή^|ΰ«XB7°Ι΄uWB2l΄κ­€ΓΜ-‹yk‹&ΈΌIΌHƚΊί‘ΘnŒΆ¨bFA—ώι'm•ΆaTMθ%%›LπVΙM­ƒVva%Ӛ#σΆΛΌΩ‹‹ΤαΰΠO1˜»‘ΰ„™ΪLΐ`6#iMeš{žΣ’“zp?#Γσ-λ),+Z€v\oΜY‘šMŸ–ΛXεψΖ%qΧΌsΠΕΪAότŸoX‚ͺi AlΉ—@7³f%œ_>C}(bπ]Β§Ϋ!.εpηΪ·»±‘^}ξιΤE’™γίLϋΙͺΥ{πφΤ„VαtΚ\ Αώ(EͺXœš(Oκ€uo ΙOdsj!U7ζRεκi˜S»#hSη¦ΒZΪ­£τ)=BMζKXž@ω|Pj°'ν?t νjzσΫ˜zΟνKNܞFέ™r‘ΑΗς ;0ΔώD]ΈΫ ˆ³%.OΔXΐΣΜ₯H–Xψ{ήΥ Žs-ΞπΙρ Ρ?cM«dΘψ˜ςΈG¦Ϋ§8ΌΖ;€ϋ 8BΨ0ξ­„βšcI“ZZIΗΜξ§e@ ‚Οιξ€MΊNβ )Φ)θxc)½π­―Eσ&Ρ=Νe%nsŸ‘οφΟΓΎ™Yςαϋ>œžΖsι‘G?ΑέΚ>Mό'{jw/3tν²Χ΅θWƒφtεέwΝΜb&Β0‘ΧΜ>O•σΖKFf0­L\ΧuΪvT~Ψ€Ιoφϊ¨0|₯­ PαΚχψ gp‹ύέ―νAπUω-’xΝγ: Μ|ΏPΧ―μ}qc5KΜ•‹o€―<ρf>}ΰρ¦;NMjΫόšΉr˜†1—.œ}’x }Δπ‰²›‡‡ίeˆΚ›δp_\OGgrNq΅1|rŸΒK7 Ηλ/}=]]έ‘­‘tΔλγ]„2 v[„-A Ξβ':²o2 γC*Sd[νόΤΎ3Μΐ £ βŠΟ©Α½rρ,΅ΖH{ˆ,ύz_BΘχ€™ο»y|n‚ί!)ί9φoeέ‚ΨeΰΥ(;W ωxD]„ͺ‘›QI7o·· Š#‘yΡCίΝZμύϋ¦Σ+§ž…‰™NUˆjέ`2"^h  β’Y‘ P, M4xΦƒ―kΤ^|΄#КΎˆΗ¦σΥΏΑ½]λO•ΉΣ0‹X-F:n…&υΐ+…L‹ƒ?Μ‰~ΧkX`–ρkŽ’ΰΉ–ΗbZΥΜί™‡ά₯‡ϋC¬(臛@ˍ̹BΔ$ΘΐjυΑ8z$ퟹ?-’-,b1ωΠc`“Ή ¦«”Fφ’]bIα]ΎFCνmŒRI‹WqΜ‘{Υr?tRϊn<%βΖajΆθΧόΒ+>―Όv>]ΗM xκr¦ρ‘ƒδkOQCbqŽ–½ΆBcO)<,OZU¬%£hϊS-VŒ/Αvahβ+ΎΊJΆ°Ž]΄υλΔ7 4γφΡOΦ―V«χ4€¦*F=??‹ΆΎŒ ξξΜβͺ³Jζ¨Ciί„nO¦Ζ­†#H$튣πΊ'λ ά4ΊΑΓ&sΣ¬­2v+ΗOaέΒu@†Z"GbΏLD– €SZUΐιn žΧ/Ϋ,[ΔΔ¨]/Γ°ζIU G8ΚξJ»Γΰ!Lίs!¨Έz£h_λ0Φ}0ΗZ#Š9,Ilψ«NάgκXΈV©Œ^€Q‚i &΅IΛΧ/Ν§—™ƒΫŽOb€Ζί±ρa”XnΣΰ έ2σ{ιc4υ.. ϊΫk=^1θ{† κ¬Ιnϊψ΅gŸOO2„ΐΈγ 4/}e]yτ°n―Ξb–αi΄¬„Έ γ7ίΟ3\ξ«πŒμTˆ΅\&08݌>qΜH?p<|t_dΟ9r€Z@KΜρm0Ž·Μ%¦ ϊ`_*ΰΌk§™f—ΐ‹žU`ώ{ž/€ƒGo9ŽΦuΝΎ•γU0,ϊδ‹”'ΫΈΪUλ9τ·QΦυT Κ‚Πk-0ωΨKΘ,UΗ₯ΐeb€fš¦hδΙAβ"–u+-§!φΕΧ+(K¬ί²Nˆ^χbp]wΗ]N|?ψ†(I­2t˜PΒ}t¦Α‘φ—Θπfζ¬!hŠB–υ~€ί UΗp΅«pο*χΟ2tΞX†™…KΪβ.υƒάθΧλ―&Ί ξΐςή¨΅Γ§J%έdάοw˜§Ζ>Eν$Ι^^ΖυŠkf>²²5δŠ}a--¬‘$eL‘qf’―Υ6Θ Hύβ{ϊ±TΩ«g[@oΤt:yψ0‚±rΈm.c•ύ.η_H]±‘³˜[Sšηί±kΥk©±t!pάΈv!uŽίυj”P?Φ2Ξ_ΠS‰SaΫ¬s •μA}SiόθmΈ³‘»«K‹i…Ι0‚ν΅7/§έΣ/…%ylA¬0­`ΐ#4ΦΠλYdΚ\•ψ μ%->C Vzʠ°wqŠο‘μ|~oM„K'£xŠ–²£}­ΫZΤ:™©ΊΝHeΑ?>θ΄ΈΈ·c$½Α΅ϊ+!‡βHR™nΪ ~ο·~γΧΣοώήo₯C‡f"v›œ<Ÿ}c |€.0Ÿ*tλ]ΒͺtΧL‡ί‘fQ<υAι“Ι(tρe΅ς‡ ωΧR1bX΄~Ϋf\‹Β5]€MΦyΐ* }u_ΰ|@1C££ΚΞ3©ƒεπ_%?΅‘ψŸΈš)39Λ5…τ 4ΒT€s·kFαΡ=ΝGήrψΫΫήιx―kοtϋά;=Χ~ο»½ΛgίιΉv›νΟχsOϋήχρΙΞτ=ξ‰PΟ₯/}ξ³ιρŸψ/S©EO£•μ'Ηϋώαη‰{N·NQ=φ«xQ°iέsGϊςŸ§Η>ωs,Π X5́ρtφΜΩtλ=€ |YΏϊδΣibϊ+u5ύ»ίώjϊ'δ—>ͺ͞yυe|c_MΣΗoOw;˜>ϋ™ίI―½~&=πψG@œŽtϊτ+ib4LΦ2»¬^MgρΧ>~t&ύΦΏύχι£?ωIά*ιυs”‚©¨ΰϋ?2}KzψΞγιΙ'ώsΚυŽ€»n=œžϋΖ³T\m¦‡Ί7}ωwο4|ϋ₯Ÿώρ1N7―οχwΛχ€κ_¨Λνό^ƒv1ψ-£₯6ΓͺΟf R£bT]y:1Ε6άΈ―‘ΥΊ‚ζœ|π0J2Δ¦>υP£ͺ•’HLAΏΫ(ΰ³Ϊ6I†Κ\!U‘ ΦeμςnΪΪfƒεσ0r]¦σ…ˆΥάΰhWίΰ0‡±ŸU²N ΑβSΐ―³Θ¬ΑΔ[hΙ’‡ΦδΠl€œώϊό―β^bρΑM4nEάΒΊΨΌ—Ψ„¬J±.h(έP7Vηψ‘ΓlψΩ]‚—ι€š> 5D:€V 3iQyλΦ ή-AΆ˜]‡`Έa€έό·£Έξ0Φ&°>‡ †–—‚j­dή‰ΠΒE:ΪδΏ²nR5„›„΄•0L 0Γ0ΚμΩΆρΛhš­ ‘Ξ, ΏΜ›ι•y‹έΑܟm˜MοΨΣM@>Ν—ΘqΨ;}G:tΰΦΨΌήά€9}ev Ζ²a ο(±"%ΖΪ‡K‹*Έkͺvγ5ˆ–sah-ώθΔ(Υ³£G]Δρά‚ΐΦ@kxηT‘ςKι"І2Βΐ:4I7΅Vƒ o¬€…ε%ΰ4Bυχ1ŠE„*ά₯°ZY±Œ ƒοΒ`¦ω`Ϊ?9IzΦ%hΠΖΌ–šnb©°Β<Ύ”ξΏλHϊ™ŸψP:„»Η*nHSφK`˜E™λΉ«—ΑC²ˆ c‘Γ’“Z&½ν5,"Έ^` ”pχWV Φ_\ΧsΔI\#ΓqΔτ€»gœˆΜ;y„€ξ^έwPΘΐDc «[0<-mλκ’ΰ#Δ>‚Ÿ^·΅H ›–’ ½ά@Ž6:7N§©‘c0—pU0 Ί€€>]‘Ϊ }j’Έά±dTLΐMi‹Έ«*Zΰ" Μ¦5>£ŒFšf >wŸρšΤΎBšΒ5PΌ†–_:/σIRO„ί¬0#Θ 0ŸΈ”©Ε$R€αιj#O[2]Qΐ-8 ΄ψh»Ώόε/±Y΄–xξ1σ)=’q’]¦»όΑΓ0™φؚ1φ«EΦ0{a&²K[EΪYΏ;ΐα žœžšA£½¦Ήώ›Ώυχυk"έΛ^ΨY€q?;HŽΰ›΄Dj*Q έΦ}£ΒΊΡeTpίθXϊκמJ3GξH'N%ΞψΧ<d>“YUΤ’%Ν"ƒsTΖZt‡ BΏΆ΄@:hΞ#πνβκ² 98}€>θ!DΦ?XμlMœmŸ=œ^e―’ ` Şm4Yϊ>°€•₯σ7ƒ~f‰μ\*#Τ ΪW‘LΊ€ !ΏΪ²Žν‘ά€hf΅›ΐρρ΄΄Ί€\,/ΒΘΒύ©eaΐΈ€„jcΰ–ΣΡYO+Ϋ‹ιΫ_όΓ4:9τήΪ ΞRK πξDΉQaΌ  / )λv<\cάc$Z˜&—X^ΧΊkPqΜ*xΊM¦”!³ΜΨ›ngΌ»GΖ“=Βz7[(œφ“2{᱁0F©βfˆA[\LΠŒνωΧΐIRFμ’:zθŽΤ=>  cc‡™_¬™hθkXšΔη5°@ά»‘q}μ5―>ϋuά0±Τ·Κ•Εt€=͘¨ς&„Œ#G ε©[ο&΅ΌΖ}Ό{ρβ)²ƒ]I'οΖ τΑ΄Cβ$5i`ΰfΰ#eΨ¬eπΛ‰Ž_ΩΏ²ΜςΊΦύ‘Ž7Pv ψΞ­~δΥψ5 αςδΒ7Ϋ«³υγ…?§YqΠ@ΑnφΐψŒšΠx!{s"ίέ`-8oiσ J,ψƒ¬{p·Λo»ž>ϋ₯ίIλ?ώŸ‘#·AΛ–Γ%T–+βYψBwiR͈’U6$‡ΪMάΘ–Ζ»ξίΟ՟6±,fύΩ‹Q=†0ECaD%ΉύŠ΅-, gξWA:ΥΪ|έuΙyiŽοQaΨΏω³ωj³ΎˆGβ™΄&²¦Ω?‘₯pη·<β€ΘH{ΩόwΘuχ˜„½{Ϊ\{Χγ½½λC\x§ηήιάΫΫψ~έσφvίγ7³ύ‡@„WΡΒυυ₯ϋFR?՟χO₯ωoώuϊΛ?υ3ιΥηŸI_|εε4 Γ4=A˜Oύΰ₯cΣιsψ|ϊψ'~2­ΜžƒV7_z9έqh?YMVΣώƒ3iόΐtϊαώ@΄ξcύΘ=^zώ₯΄2w1 Mݚώ‘ι ΜΘμB ρ:ΑxΈM yœ_έM+WΟ€>χ]l–>ώƒι(ο|⫟O}ψG˜ώ }τ‡~4zξωτΉΛg0ΟbBΕE`Ετo“ιΑϋ&Σι Wέ=ž§ŽΔ†€ύ~ζ :yσŸο/ :ωήXΝuˆœΔml!n\]HχOqCԊ° #^BΡ¨Œ ιy5.ƒk )ΊΩ κλ‘xŸ ά6πΟγςSέ™€hθ>„ζίέ~g)Μώu\ΏΊp•0 υ/Π"θZ Oίj‰Αι¦ςUCά*β"PBC†—E ΤžθΪ` Y7Δ*ώΙ- ο¨β§Ό…  ΅c ”+θχ5Lω]Δ*ΤΠ¦ε>Χϊ· ’tHFja u†AΣ―· Γζgγ&H3ά΄p!„W+‰ξ#yωL5IΫ/ΖD 4U­/R¨LQμCΓΙ&ΡE ` ³5aXΤ>ΙΈΈ‹¦Ψν`=FΝ—V$…—^4ΰ•κωΤΓ`V -ϋΐρ43s$-―Ξ7#οΪA ιœιφT«a"‰|Έ PΣdin9­―΅TXΊΨ\NΎΖΑύP- šΣ…g FήΏ„7Hœ¬ΨXK0ΠεRu»¦"g]—ŽΑ΄θ‡ι‹ΫιΜΥ'ЌΛΑSS2ζa'&©iΡWB€šeL ‹ΐ‡Ήμ&6£Z%£JVL6±E₯Ή΄0sˆ{Τ.4γϋp?K₯»;˜B˜56Sέ{’&'ΑIpΓ ni{uαΏ:Ομbˆ Π“hžΑ·n<3§]zs>½~κnfsΈtU UHŸ€I{ϊΩη°ζ\ƒ^…ϋό2Œ.Btœ&XR!œΧυ  VηŒ θ6£ΠίAˆ/0&0Ψ¨a„ΎSΤΡL\ ΟύΔωD‘FΦ_ys ˆbAhh‘Α59Έ¨m—±₯"λ­\Β-JΑΖΟ,t“#ϊ†UξλΈo™ΊwζκόωK0Ν[a2όώGοa-μ€Ι‘QΈ§γΊΔΊΞ¬#γ­ ’xPWh¦†ΫΊiw7οΎύφτ«―†₯ΘΉ―Ή‹>³ξψeΜ„šYγ d”œ]JΤdzMZ!Νƒ»iΝσ Χn™5k»#Έ<ꞨΑ#ξYŒM8L܏H”ν·cν™@ZŽΧžu>,μYΩιHyπ‘4Α\όΫίωtZ˜’΄Σ¦‹Τ•«o€#PJπ|TΜvŽ₯EJ,i«ΛΔXΑ’XΫd­‘•a­„ωΒΪΣazζ»G«‰ώŒΕBη–Χ«W/§£ϋφ……bEΜ2ΜίΑρ}Δͺ¬₯sΔ«Œ’¨q.RLυ0)†σΜ‘‘ΝLAχPθκœ–pίά`έδa.gyv έΊv˜Ÿ‹0μ*O–P^Μ¬ƒ…ΐ6U7s=ˆ•DAƚ uξο‚©\CΐώΜ© ι'fާψ‚̝†‘f."Ξ„= Ά‹‹tzˆΤΡ ψl- ˜tφσύtr‹Bσπ'=ΰ₯ƒZͺ”cΜqEπ‡IJΉw(έe;Ι|pnΦ‚Φd-Μ(λΕΒΪΨ15Σ5RΑ!$υΞ°n  (LxΑ7\Εΐ2ϋ°²ΆœΖo{8υŽa}ήLηΟΌž`|@K*Έα.Ο₯ž§žI}μ£Έˆb‘Ξ˜Ή±υrθφ{Σς•Λ©g”B’Μύ…KŸMgΎžξωo‡"4CυyX:E>ŽŒŠ|η›8–>ϊ˜Έ^°Ο|w]ΈΕ`•ψΟÝΐ½ \§βkX{™G㎸fΠ§w ’ΠΓκ Ž³Ζ™ža„ζžω|ϊτ―jΊν–[Σίω{ΪzqζI_ύϋιώβΟ₯“'Ίϋ}€@Ά}„‚&J{αrεR“θfszπΞL£G>VpGΈέζ}›λ&eηPυ·€i»NVψ₯Tϋ/Š<]Θ†£Μ­l R˜yGKΓ'φ³€Œ„#€ΑTxΏΏΈζ§Ν(ΎιΦ”Θγͺmϊ=ϋ_nώsο-€77{ό2†Wf―tΈš^:υΪ"rΒ£‘R#΅ α#GϊΘ`GZΆΦΝΥ}£h*‹ιΩsη>6Πσ” iymΒ3„ΫΨ1Šn]N«uŽ’©ιœWΰαQIφpμ:tn~ωS…@ψ¨³‘Αr@°ΛΈίΐθ‚2±2?5ˆΌΪh5šY\°0eφΚl|V—ΥβPaσ•@jΒΗ^w3'Ո Ψ•Bσ΅‰0λ‘C[ͺεN¦¬Ί6ΗK°R¬ ΐψ•aχeDφD3‘W˜VِΥΪbnHM ΒόΥYu„ ΨHήΗ&‹Ÿo“ F2R¦q]X˜G3€FW'™EήiΊΝb †MŠg—ΐωA4k:Z±(ΨμɊd5ξL¦ φY Ήα|Γ.‹»Τφ2Β›Yšqp]½[O“q6f€Ϊ)π›oΒtΈubŠ0’ϊϋk’6΅ƒ5v4Wk‘a#7›SŽρv#ΔερΫξΐνΘ"|ήεF%’^•;\½UΪΝQ\?ϊzlj2°ΖΏθža_ΤJEΥk~I+†Θι/œ6© β8Γ$ €T#έ‘?2¦°0Cﻁ3Β\vΓΰΒΨmb™#Ζ`™•u²SAGdδϊΖnIχ<|04ΔΫXPεNŠΌ/‡paΚεM,El”5”΄n)ϊΛμτaQAΪΗ I]ΓΰΜn%poΑ₯Ύ΅ˆΊœŽ= .b‘’Ÿϊ-“ a†±κ’ηά¬―o«Έ>Yύ7KF`½ˆZdπvZςd92«ΠeάΛϊF¦wάM n‡0–έ0₯Bš…±ΟΣV°RMΚji¬Βπ‡vΑ0{Ρ Γ¬‹Ϋlζp—μNL=}a48‹uG­xVo€λ΅ΝσΊU5q‹{πΑہC#ι3ŸύJzεΜy,;0ή0TΟ<ύ\ΊηŽc$l`\4ΊžfτAΧΠ-Φ3Α©²άHpΫѝΟτΘ»¬Έ¬ˆ½)πώbL^QD ‘ϋšŒZysi…¨%„γr:ΝΉϋπΑ4€[αρ‹l—Qκΐ•pζϊόΒl:02–Ζ°Ž˜hcv}•=Ψx!p\ή€a/#hΊoΦ2x=kXˆεΣ5”Z{…θVBkŒ`υcφbar­6GηΖBΪΊψZžOY§Žy’QΦ’+σΜΛγ·1[œλf¬Ξ“γ29Σ—&:ΣB Z”Ε)πpΠ_…'ΨY/ΓΌΫ63—$βaˆrΐ]|P»>ŠU’s»₯² δu¬9€v\ε¨V+•Ζ’μΘ“€‘‰BΛΊ ΪEθοhΟxΪ‡ΠNΗB™Šp!Ώ»šΩ±Zΐξ₯WN§‰#ΗΑ#‡Α/­Μ©Μ\šˆDFΈςπή8ρΐCιW>σK©πΜ‡Rψͺ"YαΪZxkFΙΪ:&™_1ΩO~ςη?’±λiο+Χ=ν=ΆαY™qOϊ΄πσ»§“>χ[Ÿηϋοώk‘‚πρ7αIάφΑS¦[„7 ΒςN{βzu™ϋ~¦,ΦΏB€ ©n’½Δ 6Ω·6PΎEMϊ$¦ΥY·Z.x4`mρ¬ΓpΞ=CvŒν1Η)/Δ+³O―sΚ=-dον6Ϊ?"ζ.F@Œ%^EΏ’ώ‘Άω'LΓ₯άΑή<„^@α½o θθ_JO<ω6|ϊπΗ~(5 ώνίψχιθχ¦~m'›§ΉΕχΓ”`VΏxι2n‡Ω¨ iζΰTΊ4w-M£ΕJΧ(419{2Γνj7ƒC˜ςI―,D!¦GΉ'}γι'qΉΨM|μ‘tφβ›ιφ“w₯— `ZA›τ‘Η>˜–η. ˆt…ΉΉ ΓsρΒE‚gρ&'φr σyϋχ§—_ψflξG¦Ž&2e‚ ]˜Ž§α‘τω δ—>ςήČ?;¨qUd₯Κ0;K›k~g{F`œ¬7·’’”ΰW6ƒ¨ pa―Βόξΰ’‘›‰.(e΄ΠΖ-‘Χ‡hͺ±„δΒlΧψή‚*γRaΈIκΈ2Xύ8K ρΏ΅pΈρV¨”ήΫ7LZ ²Φ -QhοQ·¦Υ6;œdެΝΠDϋΎ‹|“Νή-AfΣTΊΛ˜ΫGΟκ*ΰbsΏEqΆ^'γp0τ€ηpAƒ¨›5+|Nέlƒw„BΓΨt„Λ)#—N!<™ih?b4ΒγΣΕ§+M7 χ]Ν$”ΊŽιB–Υ2‘™ΟΆ!έqτƒ5•pΣτ©D]ΪkZBƒώsΔ¬SGeFdz’«ROΊpώ,Ύ½TόΖ•ΔΨ³§¨(0<φΩWΧΣΥνΖ‘Ϋ…–ΦΜ‘g!μ‹ ›YΟΪ|ϊ«΅€=Ÿ^ΛK¦y,pΒτΚ9Rθ69?ІW—&Οω¬jβυοE:Š0#Σ°ΈlϊV\Υά0q'€Ž^&} ·ˆkΜΗΖ&)S±(€?ώ ΈAμpR/ξœEfπmΝ·ΫΖQ[Ν©Kl}Θ5i,.Œ«Œλ‡Aΐg_?Π‡€%q Φ‚πj†aπ†FNqw0Ϋΰ"¨ΖόηΡ‚ΟΣ¦k`/.a%΄3ΤΉ±šφιΧ^O]Έήh1˜ŸΏ …πΘ3݌ Δσ †ς£έΈ…u#a8;xG‹λ:§τΈ³ƒ#[TξE%„*Ϊ_-\ZΫŠΊϊ_IΏριO‘Δ9Γ{0²‰‹ξδZ:œ7ν@2ω2ih‚Ρ6Άΐχ*(*PΘxκζ΅tαcΧ™ΰτϊ›Σ‡Η Ef”«Xo‡u―ΰ;!=‰Ή²ι}.Α0†2ζΌ ΣΫ,pΗ0 ZΠm†fοh„2&"~f§°^ΰΎ³8€^λW°ςώ̞Αω>ϊΆNB΅»Pf¨( θꇉξeΎ|ΎΒ΅}XΪ:ΠΎΆs'}νδ™ΗΌ?b‹ς4ΨΑšΤ"Y-Wγ;Β€qΝΫ"v©7M;’’`η˜7ˆ]h€OMΦΪ먈†}AΘLNꣁϊ!Ψ‡L—Z‚^šΌΐ@}ƒΘ·–ͺЍjZˆ²ΔΨΒ‹~ώ!XA Xύ€νκrkΛ,[Ÿfkζ2‚ΤΚ-8ηηfΣsέ₯wˆΐYΌ7-Y ›ˆb0κ°`qcϊΐ§\$hΑ(ξ€Ci½ΰb‘I”˜‘²~!Uζ/€—Ύς₯τϋΏ΅tχ­‡±ψβV .Ι+8w‘’\Έ›.ο_B1Lνjά—Η–·»±δ ς}3½± …&H“k0£ΒΤ d)]pΆjΖ#Q ³^ΔjΨƒ€‚Ξβ"΅kF›Δ€’*ψ©Σ7ώnΌrύη±*kauόh@'„±-ΛAσ›6Ξ±’k9/kΣ·μτΤ¬WŒ’vΛ Kι*Š‹]ϊψτΣO§[Xλ'n;A_:Σ‹ίόυ¬WήΣ7Ϋ)₯#SΣΑΗ?‘ώΥžHSέΥ4YΌ/˜Z… 1=cΦωζϊΰwόIη‚rςή+ΪΐMξ©όeT8ΔΒՐρd-ϊ"yμ©΄F[ΎK8*xΪ–°τ³ξ!‡`Μ‡J¬ ΎΉ §TBQL}‘ώΡ[“Ÿ#§)\τϊ)κ©•ΦyVΔwŸ—ŽH·’Ρ_ΗΔϋPΆν’΄ŸΊ‘Έ–ŽŽβRH6ΒΚP€τ…ώ† pΞFFƒ΄ΗXTŒΫaΉ™ν½/ΪΆ}ώβ&!ηWg™ŽΠ&W²&ψMίΈΑ}OουZμΛ~χ θ!/{έWιΒ^›™@Ι<‡β »y³½Ήώˆ€Τ€]KδΜδ_;$ΩP!ZΈcύόΜ‰`Θ’ΉΨ<Ȑ²ί)Iι€~6‘λΡΗ?–d—Uh{GŽG σΐ­?ρΙΏχ¨ayψ?ξΫ»Ο6~ό―|2΄»—N?OΕΪ₯τ£?|4Α€ -τ±ΓΡnΜf³y8έΚ»Τ4ΌψθCΐΠ4Σ?@—ΙUOŠ;έFtIΐiΌΣ§Η‘£όζ½RΖ©›ό@ΐΥb5w£•ΦEʚ}Γ'؈qΏ`>³τ‘Ίvΐθ L0ghΉΠΦFεj˜5ΊΊ“ΘD™Σ["ZΑί½Ώa₯.΄©{”Ωnταο„Ι3“V“ €Kχ™θIV3]Μ·o/_Α΅b]ցE %8-ά :κψKSG££ό„0vλΊδt‹ ”9³«DΧ”u―Nc,ΐύ]ϊ«πΤ0εͺ/—¨AdλΉϊ‚Λ/w“—αγk ΧšΡ“‘΅S³VĊ“[nlφ J2΅βΉ°‘‚η΄,TahlΗΜ9Ocΰθa^`Xƒ¬Ίρ06…‚Ϊσh¦?ύkΏ’όOΠ~_zώωo₯KηΞ§Ÿύ›?Œ‚±)2ήύΓ€D >Ž«ˆ Ξ τ_ΨΣφ6ά„Β’ξGΊANΒ @7‰›asa~b>Ω¬:`œœ/λ˜Π†YœV4ω›UΔvθh΄ΟΎμ)\GώΧs“ΉΜtΝC €!λ’φD7AΞZ•:`"ŒiΔ[Ζ·Α7›wό«λHΧγcŒƒQ£»ŽK€!•*qE+(ς{ …Kύ(‚Δ*V'˜wh₯ŒόθψΪt|ΓabV`΄ΐd`ΈY„ΉsύΧpίΈxi.Νb%F4VΊQ,Λf;Z§8⁃Xyp–©ΥΡS‚™†Ω^U4ρ2Kf8³Ο%,onΗΖT˜"kν›ͺ΄XD»ΞœT›I86pΙrF΄Κ™KfX?™ΩnRΌzΌyy6Mν?‚ H3kƒ1Q>gFDΣ_οŸ>˜Nz5ύςΏψ•τΟώ—9Ÿμ#ve«όΌ₯Dr…ˆ ΦΕα\OZ’>Cυ™Pk)P ¬‹ ΣJ±JR₯bέ0([GAΣ€n­Dά™ώχ_ωεh―‡>˜οί‚ γ¬+DŒπ3RXsΩΰ&ΘΔζή {ώz`σjɁχη@@‘-4΅?ϋΙΏJ[ι7ϋΣ£Έ‹[’šώΡώ45Aͺibc&ƒε\’α7Δ'b£`Š–œ:΄A<€ηL|λ{ +†G(b]€τιίϋRϊ/>ρ1jX,§ξ}£”·|ωΛιΗ?π֊Š»•t`l_ΈντγRdŸ!ŒSE6ίίƒUΞBŸ*&rΐΦxRθ“`ΗΑeMDG­|Ζ΅ ŽŽ§ ׈Ǩ"°Θ"θ'Ακο€λ¦deθ,=‘°&€»ύΈκN¨’‘‰Ϋ"I« N&₯xd· o-29i©eΧ%” €KΤ>Y8›žϋΦ™τΟώι―§ρϋN€\e"qiΌλ‚ΖaμfΞ1ΈμΥ¬‘tΨDΓAΧ‰ƒ‘m§M4αΊή=| W\ξ;Ό» Μπfd0 ΄kŒAI…{ΖΚψ¦uηΌ0‘ƒ΄rεJ™D-Ζ_ηώN2·5˜―Pj©πβ?l~Π-?4φ€}•μ`QΙ3λ‘΅R₯FπA>ΓZl7φή―’.S#[bŽΔ–nΜ}ΓX‘τ£?π³!ό>ρ»Ώžn9N cΟ—–©ΗnՈ”^Ή7ρp|Ζw~ΗyχθŠJ]½7Ɏ9qτ5xΟzš,‘€TΩKzϟϋ€γ–ΡwLό…@ΐΌΓTΏΎΓχ9Ξ,„‡cŒ+>˜ύ–·ˆ.―σ+ξπ5ςήιπςΧ1«<*q-ώΩ{ιήσqα/ψ?Φ‚sοXΦ6bκΗξ!"ͺQοNGH³|Ζ32υ|woφŸ“ΑΠ”κωh—ΙΡ'Π…’+Fρ’Tϋ₯ΏρΧZ ζw ‚Yxβ±’oΆ#Cγ§ΠXjl(n:žSjΝ΄ΟίέW.έ<ώŒ!š}ϊPΑEFsε&Μ_ψ‚UhζZMκB€; S ½h³L'Ω” y]λ‡DDΏ]Sύ…»ZΘώθ*šΟ}va…{؜`‚λhλ;Ψ0Si?›ŸYR``v¬ ž‡I ˆ—V ΅θ ²¦ˆ¬ρ\όλθ& /.-άtΒ™>θŠ“/ ³φsŽηΐ/3Ÿ °±μo­n†2ƒΎGό`Έ ιή³Nμ‹Π¦LUCWˆ‘η ΨηήΌˆ‹ŠΪo6P,xMϊθFZΨ χΗypœ±κDf§ Β†DΤ*Χ !n–θGΫΊtΘqέ"ˆΦi5e¦XίtΨΝΧϊ»\» #:Η\όφo9=ύρ g_NπόbŒKW%5΅†πΗ©„Οz'֟θ7@ Λ‡kOλ“ ¦©{£ΐύ€Ve06ΰο&C’vj\$O―NΰŒ Κ‚7Ν%λΫyGθ3ΡΈ IΰCˍ0V°†ΌM9sd,RKΕψΜ†#+ψ™3Ki ΛI/Aπ9ΤΨΓduκƒϋΏ΄Μ5šdΑΒΪ° γb»L±ο.ΒΚν |λW…ŸΦ¨pSΰή<‚“8΅L0ιZθΕ₯¬ŽELœ1jͺ΅κι>Ψ‡–Π4―⠌Q ΦΕi‹Τ΄«Έ .Ii³\Β Ε»³οΪΖ²SπFψ W|Π²›…°Ί±‚EΨΓJ/Cs( -zGœ šW}άMY«πb•ψ"BM[kΈb}‚Ώ{܌™Sψ3RqR՘Έ½E,)W―Dρ·z°Ξm!{ ύiƒριBh¬Bω:ρ Z‘Œ![SλΝbQΓλqΛ‘ƒι9pέΓ½DΟ:V‰n„«Q=ΠΟRW’€ΠΒ5Ι`¦ο|šsΉι5΄Έϋ†Ζο;2·HΘ‚EŽώΎ@,‡ œ–Γ"γ:ώ΅τ;@ΰΒΉ«Σγχ?^ϋφ © ›9μΑξ:0Bή‚`Εu€@9OΠΉ>Ζ!tΏ5ά”όμ½yx₯χUηy€+ιjίw©T›ju•]ήw/I:Π$@hHšΏ·”Tœ8);ay&~m•ήϋ.Ώυ¬ίsNΧψ+t‘½‘GΜAI)ΛQ[ΆI‰2ζACY+~_ƒB›ρeb^˜>ΖΌψ©Η’m 3nΊι@,ŸΝ\$‚ /-ΟCψfNJΉ:Φ#οήD"Tα%;ά°.0ƒΠ<βΤΨC§HΔ0‹φv£€dΒ¬θΑJ荆Ε7…7Ωq–Ά#kNj‘’u ‘DαwžυqaŠŒ{d»yOΒύ{C8΄˜ύ=Ρ#μΪMt…uW <»―›°G½»φۊχΊ¨ό.žƒNKw“<ΑgΟcdL΄v―#`δgβ™ki'–§†Œ~ƒd΄[ŒΗ>φιΈσΘυΔ’‘†wj„Γ€mF±±Μ2{½LεŸζ,@SN_Έΐ;€#ξΫ νZdlˆ!)†}ο#[ց]{γΊCΝ1}ςbΤξbύIσ8ισ"Ϊ-ρπOW½|Ζv_9aχWKRŸ2εΜ»άουPzφΉύζKi*{A™}Ο9Ÿηώ\G¬@TY-lϊJSβΎοϊ!hO]ΧΜYΙH†œf+1§)^ΓήqίWΆ5S$ )}ς˜Θ ΏβPNΜΖ‚'pŸ3₯Λ1HŠ Εkά@ιωzv―tψ<•΅4hͺ©6ύšs©/\£"])£}ύψА_]ΣαΔfΛ/›δt›ς#ώ{λsΊσ«Ν&ϋͺ;Σδ;E[χωBI½ŒI•o}·υ[Ϊ±υΩλ·>»δΆŽ­s/φΦω­λ^ύ;I B0°ΊΈLh‚ Qs0ΣqΉ ͺ{›ŽΖ‘€`q0γ+Jl¦ΰM©cQZ‚ΐg_Σϊ–Σ¨iι¦cAΐ₯Δ贚Y/yT`09˜?”…°WFV \ρkγ]œ!ήΒͺD*΄½gί)εͺy.άQˆ‰ΥΌΛ’Πβm%ͺΔΉ’, .ΦJ§·NqoŒ4Jwt0-:*½νdήAΑβ~ +™Ύφ ”¨uΪ`^{-6•fΪ‚Y›6΅D±Ί•U¬V@hV8ζΖ§ΙΤ’kΚBU–IKx™ƒ2w{ΚjΊ\Sn€2εΈΜ75O\„JΘ9‚’Ÿ?> >½¦ΠgŒοΫΔ]wή¨‡@‡™-‰-ΟAXhjΜG[+™^V$Ε€›E0[ͺ 1ΧΫ€"TD1Ί,e—5–„‡d0‡ΟΧt 7†dES[*άUc…]Ζ+°"a nk΄ψl!kΦΆPΈτΖJ²7εašMuύ+ί”«ˆ‘00<™w¨Δ0·‹dZa­₯jχ _U…©tyΒ©ή,Ck©A Υ·AM₯I‘^–Σ€0žΗRŒ*εΔΝ4σBΓ‹’U_%Ω^Zά†Ήφτζ YΕΕ *Dx_Δ’:€—vž¬>sdλͺνN‚qg{^Ϊ834œ”0ΦυZκOLΖΩ‘Qœ Ÿβ±Μ[=^—δ<γ½uΝ-i¬¦θΣ&k'‡…X–#¨4QƒkZo )†efΣRΡ.2¦Ÿϊτ'πΎ­Δν‡ΔΑ]»‰«A‰ažA͐]μtΌχƒΔ·ŠΛΓο'v`8܏?υLϊyσCΖΞm]qdίΪg#‰γžh z ΙΘΘ%”Š"J^Eδ,/’Π]ά+„6"P(p,/jglρTI &fΖ|w{ow<…§cru†±”)ya‚ΖsΌαα7€4ΛφΎχΕΆξn f+…†xΌρ»hΓXΌx‚D μΛe8θ€±fG@Ι_Œs—†•φkMu|ΜΕJ ΐ4«Z”Αjΰ”k%-ӎφΎqw’^•}4CΊω5βYϊH7Ν ŠgŸ.ώκOζ•z–”χ*φΰERFΛΉ„d~ϊiκάx ϋΈΰ™‰ΈώB;9PΧPήηΙfUŜOMCkΘ4Υ­"ύ΅<Ί1σ@ΰξ)αϋΒ~% γIζ‚lΟρ‘FωΑͺΜ3Χ½€9Ήφ@{YΤ‘ΐΌχSOΔ3‹_ˆιΫοˆI„Α 2Wζ -ΛμmiWυ.΄°w`ν·(lu%ψKD ΡόΒ±˜™ n ›Ρ0x[–H‘ΝaΌgIΖQ£ρΑΜέ˜Ζ˜ί Ϊκ z9Ν¦Ά0³IAA’~°₯LHKΧ³ΟΩ»ΜρσCΣqΓΆζΈcGG<ς"Ζ$n†’@eTd‰Q’·ϊ¦VνR7‡ρœCiœF–fllt xγ}k₯X(ο[E Ψδ7ŒΪΒ{ ‡MxΗ΅Τ1LΩVΣ™Ÿ%φλμht-7+Φισ'Ω“Γρΐ}wC»֚^3γίjq―²―₯iΞ‰5Rζΰž>Gλʈ‘Ε‡„’ΆJŒή&²5”ΧVΦλαψ“η^ŒτǍŒŽ'Q9S,ΊiG—βΓ—d5¨“ŸΩχ )γζEΞ9γΝgεŸ$΄§[xf:ηχΩ#Μ°•¨3„3}Ηωτ$fΆ«"π+V&ΨƒŸŒy s—/αzϊ² €ρw|ό»w½=zφ±/xtYH΅(d*2Ά! ωΎ φΗυ Α­Θβ%ίGzoŒ||o–:Χ©Jϋ€’”υŽϋ4ά_^λ SIαΧWΩεrβPqΛ@IDAT(Ÿασδ?Œ}σ;Ϋ•½Δ[ΉΞuΙ^Ÿήΐ/?g7ΥTψ›cΝ}^§ςαaΌ’ΠΨ|ζυ#ΗΚγšμΆl@³Ο―ξίΧ*μ{Ÿ–―υŒΧή’WΧώΧ―ώ»ƒkυvd»" ρ_κQUCŽH€‚&Β£V’<–Η2¬€kX87H!š\­0mΘ|Š@†·—„OρΔTԊg—dΕώz]²ΐ³ΎΚρRT@^.¬dq$>a+‘“g¦…D‘ΰ`υ*¨θH”ΰU8€¦­οδ($Λγ0`8ΰ«…°Θ fΝzE6‘ŽVwςίK|ηR11 fΪ@ΊF…άσI»˜ΖΦI²υꨦ^ΞκΝ©Jq4χχέ;vΔSΟ=ϝ$•αά0ο=X·cwιh&SΆΡΤ^ 1‡Όnα/ °vAF–„vρQW%‚dI?ω3ρs?σxδ‘GX­‘†>ϊρψ‘wΌΟ±I(Θwήrg|ξΙΟ₯ϋΪΨπ­ /SπίC²Κ»>SR-ιHΠςpϊj5>%Ύοο! -ZΧ*kβmόmρΡΏϊΛΈxωrk•Oη&yANϋϋ·‘τ™σ₯ίή}{μΫ΅“ψj·άJΪη?ύPRπΜΦ€kˆΨ-·ί€€B2υ2„ώ₯5QιΒͺοuΖ4γeTA6Γέξ~Γi M*q«L!D³žVPώς«˜ΗΣ££qφεΤ}Ά"‚Ÿ m›EΪοώ€»y`@Ξ½žSH›/‡ς;ŽB3|i4φοΨ›ΰ>Žƒ΅Jœ;χ‚0U3]UβΙ+#m³ΠΆŒwBλXίΖ?ΊζτTβ­Π›§ š„Œ<ν@k7§bδτKρΙλ?F P©ίϋ£χDΧ‘Cρζ›vΔ`—X~Ό™lv…σΝub2†&Rό• k΄j―γΙmhͺVG&Ϊ#VŠ·*Ζ€©,jl@όgO*pς2!= q΄—φ1j.{βΕη.Β8±œΨь³”ƒψ"‚βO^\]λGΆ΅Δ³Γc(”BxL bš‚Ε©Ή½™œ˜ˆEοg+Žc•·šΌJgaq9φ¦ΎE֎Y˜τ&*H²οURšυd―ΓKͺ[ͺbδΜΡ8qξRœxφ³1sαh άυύqς1ZΔΆΦ²–™›| λ‡₯;Μ΅0\•|ώα9•ρβι3±k₯3Ίsš}±ε-7>‚Gs9υR˜—Γυΰƒ$ΧFŸζΆžgλΘ-./τΏΘΞgπ9Oeίω΅Χωœt­η9—ύΝynΜώ†FΐΫόΓyΡκο;ιτ’=‰θ‹ϋ@όφ―Ώ‹»™kŒ„έ»wPΣδ ©ŽΧγ&ιπGώUόιούΔ<ν€~ π5η•vm)άHx 'έ36Ho‰44φPή—dωθ₯ώtŸ[“j™ΨGώΆY«9‘:Ε―+ΐ™tύΦyίιW*ͺ¦£χYr‘„άς•©Ÿς9λ/~<γ[RϋΣύ>#έΐ’VΉ†y${#ƒxΡ7揖׏«FΰU) Ωg~Υ3ι£χΊ$Ύήέ―τό­IΞπυ_w-Χ|ύ'|ωΫWjΟ+ς―ξΣ·ϊy―ξν―ύκ—·ϋεΏΪ'‹?R"S«Fwσ*δd’ntRb" ϊc]]‘1eθ 8hαΣ#’'EσšΔ †–=[1IΑ(t5 Ύ( «0%2ΆT`‘»<­ά 0I¬—ο‹3/gBϋΪ…o`©ΗK±AjYqΕό¬/œl w3Ν‡ΙFάΎΧz ϋ[ΓΊU@Ρ™†ρ]—,Ÿ΅XΚ«πXθ­@m:<}#gƒΏ―=ΥήΊ.n~αη~>ΝΥK§wκŒK€eύ—οό‘Ψ»χ:¨ΌKπθ[Ύσ­qΣ ‡γoύXL‚A›±Gπe_T/U…¨‡KœΉΒc&ΌΆafšΊ*u¬½5³sωŒc tA‹τ;~ΰ­1J’“?xιOρ:K_J ύμ“OΗ‰Ÿύ¬Ό!‰!l'a€mš™ ωΕΡς=Š <ΟCXΤ…‹ΠήΰO*›Bš«έp¬„2ΆY eάΏ‰Φzfhε }]άGJZφL=ίYε½₯Ή1^:sžz3 YMž 5ΧI’«ιΗΉR(Rξ ΦήDZ^ǁu}az‚ͺξ/Ε}wί=3-PL¬Ξ,b…βζ₯4S(‡BΤzΊ:(’y1΅ΩH<%­>€>hY…F€$ τΫΥZ"Y‚–νΪΛgΨGΤπΊ4gΉώ.²έύϊ―ώ$ BŒ©odŠξ‘aQOL#¨I@CV,θΜΰV κΦΫ’BΣxmQp—ψζdŒ„°%A‘z^‹˜β/ι{ή₯Δλc+™OOΖ}χίίqΟΑ8Οt<ϊωSqώμEΰzd` /)[χŽ˜‘%Ήφυ1Φ§ˆ=²Gτ@s†‘Gυ­Δϊ1“xΌVIS­v6¬£€―]MtZZΡJaR•+‹™:φžŒuRΑ“”ͺDjH*².φξΨAΊά‹±ύsΕόψjKL³Φ†/ £tγA sm"ηEπ>!\ˆ4ΎUœΟόw–zf›¬ ζ`΅΄JΖD‘‹{‰ςPδΦ°•l—˜—5£f’B“ώς ώζ³&ΎΙ'χ·Π;Ϋwo©qB₯/ύ\Ή7 ςφ&οtέθ!ε3Κ ίSΤβϊθoύzμΫ{;Ι8FΣΎ*7ϋ7?q?.’β'Υ; 3έ‹w}“χiΨ“FoA“ΜhœΞΤnΫΰΘδπ ΟQtšK]{oJ4MΟ·π-!PιΈςΛ‘d`9•ylsRoΉ =7{΄ŸΣŸ^Κ‡Τžεn) β₯·DEd“9SvΘF(%Sk'εˆ+³Z#άΗs˜b $¬ bΒLŸζȝάΟzφκ1@¬³ q*~εq₯-_yςΚ__ο»―yCvς+=JW³Σi^αζkyί΅\σ Ώϊ΄kΞckE_ύέ+~ήΊι/ψ:_\Λ½ί蚯7v[―Ύ–kΆύFΏ_©=―tώ=ο•ΎV?ο•ήσ­>ςvΏόοWϋΎρΔ ‰XΎŠΕi˜:" „‘H\CuYΒ°6@άς Ω°LcXMκΓ’–2ξKX}…•%0Ρ0UƒUZά3’]‘Sj]ΩΛZΖ,°tαθ‰ψ?θCρ~σ7’nΫvpφΣq‘{Ϋ[(‡₯qzh$Φfΐκc‰άΔϊX€bξ8ξΈq/ρ/υέqXx ηSΑ)!:Aΰφε #Ρ,FOFmVΕΊΕΈD0εΞ7 n‹sΤ½Π ΊŒΠ·B@° F-9-ž›Xω­ϊήΒύ{]GmˆsQ“*΄#’5­Xδ™•€T₯qΒλ4ƒGοΞΫnΗΣΠούƒχ¦,h A:l³χWσn>’4•Εξ=ϋ’οΨΡ8uώ*% › 9ύί@πw\œK†2.εOWyžU ©Icμϊ̌Zޏ`Μ–i\Gk’–φ·1FM–j€ω¬γώTΰTΦε‘uUπ[ŠύXώΚ#kΦWžΫϊλλ}·uΝΧψ”ψ—Zη^v ƒπUgΎϊΔ΅\σΥw}ΥιΗ«R@Ύκ)―Ÿx}Ύ…#Pf°6„ «; ^ζY― ˆr­ί4m(R%ψπΌAͺP!…+4›ΙΙΨαR €Φ509Ε4@Κ)ΕΣ (ΒΈž„΅ΓT./ΖγŸϋb !½γ{ί’¬”›%‚ΖσM`θ»HI»ŸόΰŸΔ~돣₯Ώ‘Llc‘8"Όο‘hGΰ-hX½BzNσΉ/η`€dΚŠ?ϋ㿌G>{*ϊw4Δ`oOΕϋ\ΰ\#‹±_0ι"ψkk(u¨ˆ$R©ηM‹©|χ#ΛRRς›q²₯Œ1Qr˜N9γbž ¬νΒΒRφ@™γ‘₯9G‡UΜdœ ˆ υ«(*"&`X€bϊm€BΟ,)ƒ±Ÿ²φm+=α}βθe +Γ x5†’»•xή…ο₯”¬HdKRη-ŒCyμήv0vχμ#~Αμ^άȞΠςΧ‡γΊέ­΄Β₯H==ώtœ|κ£@ŒH’ \›‹]ϊc ―T‰94ρΒOόΰρϋϊqΦ’tγtGqQOZ‘5&μ΅˜αχΡ~oυ%=ί?Ω'}OΞGRΓΈ8•ΉCcXˆH(.Mδaπ½νΌ‰Άβεf}7°Ξ[[€·±Ρ*t±ηP:hΏΌn z&ͺ£>T³&Mϊr4εΫϊΧλ Θ·υτγι<{9:¨1Q#n–l;y?J+σXΗ ΐν‹–6°βσ“Έ·ΉX^Άl£‹¨–°ε‚.b²Ή ΤΝrΙΚςœΜΛ D@灛 €L k*vξ‰A€…»ξύŽdeΡ΅^Cq΄rb;ڐ‡φΨ§Έολ=}½<ί”υΐdΖN^ˆ%ž³tωƒ‰¬lQκ½ηΦψπιΟΔ‹xNξΏggΚ~"ƒύΘΎGΟG'[Ž<ύ™/ˆV‚Ήίτ»„ˈ j λδΪol‘/Ÿ5λΡΑ0ωΊN ΊΥΔ©SΟ‘d(»φ“YΙΧΨ›€†fύϋ_όež­§ξ?|]ά|ΗνΡ‹5·+ξV+Ο>C†?όƒ'™!šˆθ’ ΑP`Q((εduΡ%­PmΥk©y²ρΤsocI•ΣK€έΝΛ Ίxy{4ΟDε$Ÿ δš$„J‹)αYβ`δαΉΠ{Ψ‘ύΖ/Œ£Δ–‚›—PόsΗΓBS„½ς™ JLάΨ !B–ΜŸoUrυž<–Ω&„fU …π&pΥ&,Ζ„¬D&vλ€5p?¦ŒΌΦN!" ₯zsr”›ΨΐΤΒΘ~6ΤI!"¬1>©0,1ζςΊjζ$ƒ·ΙΕΓ°QŠΕ*'Α€φ§xΦaζaΙ υ™ΚV%$AQ΅hβ*Γ;S‡pεxιε1c˜ΟQΡTx²JΏ\τ’9ΆKd³η¨Ύϋ’o‚"Ί*μ~ΘΒ,qH”ΥΡΙE<^( Ϊσ7H.°ΖzDΓlo1θΊxιΤΕx «·5bœχy’坯m}Μ=U½Ή§λdΚ‡Eτšπ‚τuwrkOαMΤ¦ΨOΥnRŠ’Cx`c Ι/6η±ζw0_U±k{P·ZΖhΖ‚ͺ,ŸXΨU‚ΛPϊgQ0ͺŒ±!ϋX‰}֐/‹žνύŒ+B2‚  ½oΑV!I+°σ`œ%<07Џ[ŽHΥΘ?ρθqid&~βΗo'žRφd8Ο2χVΧQ·‡Δ½=ΫY·fΆ’oΐTβ*YΓυuνqό"AΝΆ «IΦ“Ζ°ŠVŽψΞι\W©ηά&΄vaύΜΉ‘ΗkS‡€§Δ½–Ή[BlΗϋκ Sκh©‰ν€!Ύη†=qp°?ύ,u½f š%6ίx i²΄Μδf,lβ3Sθ#™5η‘οXσž B';·΅qκηN\ŒŽz枌m( *oί=wΗGώϊφ'-cfέα± ’ΛΙ‘ \#yI †{h]Q,ݏΩ3œg鏓-½Lτ‡aυpx₯ώ™~σΑ˜ŒtΒσάζγ³λΈΘMΚzAτΌ™©,½žΟ+Τ>ϊΜGώ,ZϋwΏο$ˆ…βΙ.ˆG\€Ώ0φ¦hΞaΩ@yhΘcΐXœΚ νFΑΜ”SΗ63LΈFκ12εW“.hx©Ό9[%™LΎΜ˜Mbβ !ΆΕfΛ—TdTόCeΚΊ€ύΘ…ι·c ρ#»rή+„ΫΕ€qsŠ?ςώΈYca™p‹ΤNι' Ÿ#ν0‹ΓΔmΠ’fdRkDλ.̇/°~6αczψτΖ–3Χ9ΦέλG6ŒvϊπGqΒ=\ύ―/#\–XΖ›i_™FƒΫU·e‰Μ=Zφ–ΙMo₯ΰβŠ…νϊΐ_WbΝFΘ‚©Μ#θ~M!NβΕΛΝF[ƒψ˜’Φ`°Mκh˜ω'GPf ή”Ρσc126•γΠ%λ›b~ij8*Su φβ./#Ÿ"Δ’5nc6 ަ¬€iΛ,F†NΡ^Στ"PcΕZ†Ψ\ΏΏ5.\žˆΗN“š+΅U½%Œzjj!‚η‡ΞΖ ¨£Φ ύϋφhΌ‹ηž?·έt’T;±|γΑ€‘..T Ό€k­-Q˜3ι ±L—υο€:šρK>8m0dρΒΓC₯X$ΎΓ:C{·οΩ…€hjέRœ8;ΟΏ₯mΗ« Fοΐππωθιλe|L)+μ o‡D217¬C0CX$4]²ŠΏ$όž$―EJG|kΩfj!΄ΰŒmΐAvμμΗ#Δύ0nŒΟΠ«±Μ;ŒΡΚetqnT«ζΧ%±†‘`%Φ2Y…Χ&GΖ0!ΚmfΩΡ3$ŽΈŒ„ετ·‚οYΔΉgeλωπxj—Ч ΓunΑ*“3¨­/‚W&E2Βa‘ΎVβ!Y‹€˜'ή‘ˆž5”ύ Ρq(•cΖ’[ZgΝ!5΅3"z‘κθΏήk…€΄ΗτΧBe9„έT?†>Να«Dΰ7•²ŒS«%L’ˆ •°ΠIΘQYAΩΰy+@7RζήΟ…6*¬ŸΐZf¬Rm²eQ8|ΗXo”ΗK˜ο¦ΙdV5Al γΟΞ‚α’Όpcb½–:”1γ „Ι(δ)DΧpn‚ŒJ*:B"M=Μ@¦uΰyΫα{=¦YσV W φ:G}™,Lί› œ΅j@ύSO>Ώσώχ§΄₯,Z€‡b<}β| Ό!:˜ƒ=&tΘβO Π_€f‚UΑϋͺ+‰ΓPˆ0»[:žy‰*ΪΝ(f(²μ©₯αΑ{oJ ˆπ―:λ= μΌνΝ4Υφ QM;ΪPκI0°^FltcGwκGZϋ|ͺδ>ΧX‘x •˜*Ζ£‘ϋ ~η;ΐɎ‡BB[η(އɝŒO@ƒtτ΄˜荐 ΨΝ’ΆH‚3ΛM_vωB„^SF%rβΖ<τ|ΤRέ~ ˜ΖΝΧŠ{nΉϊ3(|>εύ΄-)σŒ½mΡ&©I-R–ΕΤ¨kK‘ή qΡAήΨJ±e!›SΔz5uRtφ24„ρ1p½‘Zd>Κ²'©(οbmˆϊ6Όf›uŒΏή SJγ₯‡ώ#¦ς$4-νuΖΐΈ)•­[­Γ³‹‘C!šŸδZ£ς ›˜šω₯ΏUφ( ΠΎfl³ώz½·σ'Gζ™Jΰ΄;A”X έ ΩŽ¦43}β9*4Ž•χ»&θμp|φ±ƏTΉ›x Ή J4qΡ :(²X§z(Χ0Žδ βƒxΟ£ΤZƒΗ?(χ}*›ŠBŠ“α†Έ°+ ΘΪΒh4B{ •C9ΔSIŠKZ·(Ή΄zƒ1άΰο€Ψ:·φ‡φ$ŠιίφŸϊΫ/ψ—ρτ‹€&εΕ{ͺ8W.±Ε(VFκ*• S¨f,„Tš6Ί†>X$ξ„ΧXDx6΄DΕ*A—y„πNKΦΒͺ¦/‹«ΌμΔMώαψαH ‰X0SΚ«ε~dώ7œ›Υ?§ ΘΆT(΄S|v‰ΡΥΗΦυώώϋ8œςΚJV,ο•QζH ΜOZ‡βΨύm™ρžͺ„čΠ&‹œζm δΗς¦5εγΗ]l`°Π•„j¬ϋ‹Ν=χΤ™8}~<^zρ qΧύΗ/ύχ]tα(€/θώs4wŒ “…Ήη!†y _`ξ!“Κ"xχT‹!†ό2QFΌ¬))>¦rUy8>LM”‡J―–y‹΄°J„φ2©³Τ°ͺ²ζ‘‘‘8}φΪVkjYΔ³Τš)ρτΏΐΜ<¬—u_M=ΈχΊf,­TCm€x’-'qnF`T,ԊiΕhk#™zͺ€kH`‹3ŸΏ0‚€Ί™”™mšbΪΏIl δ8΅Α9χzhnφγza‰ΧQΔd`ή’"γƒΛΌBϊΝT!)§]9¬ΘkcŽkbπθΔπε€|XΗF+Ώ0‰ ?ϊ\όόόΨ;ώYάqγ IΘmnl㽋i|ͺ…Ο07ΖG)i½―«―ŒΑν€…¦΄‰Eφͺ•¬Qv’ό~lΧN”ξsΜQ>) =Τμ$E+bS0l7Ρc (°€Ζ‹Ί€Η­ ΨΙsβˆC(3sOFοnΰόώΎφμAΗ;L―άΡא>WΟ) ψΧΠ…r»‚ _²9Μώ6υπ&sՈ²\`νi8ρψoρG€ΝΗ―Ώηw™+b΄χ0ΥΈχ― T3“qλΝ7Ζ$±gfB3Εο*JF㲌!¦Ύ—9F!°^bΟO#ʌΉ>{6ςέϋΏL`sž ZI±M)˜™ …λ„σgΝθΙtŒM/ € #μS ‘ο…_ A²XπΤά,ύFΒδ9›¬ΣyΌΡg/^NχTδ.ΗށΨΡΣ'ΟαaqΎ|£4Œφq5toƒ=f†*½«EήkJq7Ύτ₯ΐωΣ’³ž±fšθW qa—'f£e΄#Ατz43Ζ·έs8žψΒQ o,¬ρC«*θΓmj5Ώ<Βώg}2ίΛ(σΦψPrOκ74EzΪε_ΙK ΄Κ+a9%α—:\szK ¬o½ž-d‘[aφl'ΖΨ0ϊgς³*°šαNΘX cP%Δ CΦ£qiŒ@ζ­­³#Φ'xρ"j.‘Œ3ΧkΧγ>[dM”*ραΩ΅{R>ΈΞρδŸDG³ψ†μ³χ0άφ‰ΓkΣuόΝoΏσoΞΎχJχΦύμI?ΣO=¨ιΩξ9>λ5q-l/>ιƒβ Ύ\ΣήΥ?σcΏοω_‹{x12€Ÿža¬‰ΗU Œw²»0HŒζx‰=[Ε:²%ε_ΘπΊΪι?σ/MV'N]>4*ωp*π.ŒŒπ‹”l„udΏ€E|Πη½Μs¨\ pΞ±ψ;)V\+=΅οΚ;L7:^ɘ³ςό]©±‹qTˆ ¨¬QΌ¦ ž™ΡΚh­K}*§­ͺ@kΠA½VYb<ŒΠ[Ά¨Dϊ.—iώΉ8{r˜λgRπν/όβ/ΑσΈ†—S ‚.ώf2j Ξ^ϊ΅ΞΟKΟ?›^$“!£IιhK-Š ψbwT°„WoŠZ,5K΄O†WΟ8/!lŽa©UρΫΐJ'aξμ늿ϊ›OΗώ=I ?ΩWZ1ΝΌ£(Ν Χ—aI\A±ΥΙζ‘qcŠCh'VΙ+bͺβ’εΞ ΗηG€ŽμΝ5Κ’'—>€Œ—Fρ>―hf«> )˜λζιRNάsύ6‚Ž»β₯i‚+—Ξaέ]Δ£Δ#–Θa―­I2¦ΠVWΤVΐ€$Gβ, «λuž"±Ά₯‹ΣΙJΨŠ Έαι1㌠Œc %₯₯?ž_'h}‰ eK@t.h‹π[b@L©\Eύ—z2quQQθνΕRΩ@`z ±Zp `Υ Μ[Α h‰uJ„„%/J°A­Ό–†uΑ00xp±3ΟUxε„mhυR`«œ€BhΖ:ΐ­'AH Ls[-ΙP>Α§WSœΪ•z,˜Ο"ζBλ,«Ω,-_P•yΞΨw2ΔΊ¬ΓI˜ΰ*γ›‚γ7Μ±΅ΤFΘΌFμk”3ώGωΖΛΔXΉ,… υ:– vŠρsnMaͺ%R˜—Ι μuŒηπΦ,`εφ0Fΐ#Οjiζo[“Ρ,?ρϋΐu€)ΜΛ£Š}’Φγ'Lξ‰gŸJηUζΘ'ΤK„kepϋφψП=ΏσΗοKΧΌεoIή”ΦC<ˆg¦9.-θ‘“Ž0€Tέ„Ρ€JΥBeζ‹Ό‹" λόΞγΈϋΎ{“RΟΚwyκPτv7Ε‰“η9ί™˜ΕττxLΒ8ϊwξŠ‚pCΔxύίεΦqι\Ί0MEYςΌ―!ˆ―Χ!³$νhοπ& 3Ÿ«'ΠΆ–€πabPTζΙο\Βάόm`’MŸ˜·Š6Ι,A΅π'ˆΝփс s`#ͺ3ρ/ώ«ŸBQΑcͺΦaV1ρVDΧ3‘[ίb€ϋΙ0dΡ+3lhΣ³Q€Η /ΕD@Α€bρ€ι’ ˜–a™eJ&$΅8˜i!Cf΅Ρέ/CJdΠκG?ϊρΈωξ#ΜOKμŒν[’°ώCA„ Kδ—€}Ι΅Lƒ›'²ΚK!³Αlv₯gΊR¬ώ7B·½p”ƒΕH«»ΦnΒwΙφΝVdv™€€{&Ε#^Ε(pζ‰G˜š*ΔŒS伟γ[PΡ ώEW;Ο€U©_Ι¦Υ«Š£…Γ‡<4ec’ β31W ΧŠ₯*q}UsΥ‰†±ώ―aUΦ₯+ΫφM«ŸΞaύΦ“’E₯•εΒgΎ§ψ^qžΊγC φT[Gφ’! y¬• Ή5·α‰)ǞΓCΑ²‹ΐ2C•rR:›aKQCz γΟZpŒ6ΛœιOm λ†SβRFΆ³’ˆ_ H|tv2y%V(·LNJΣz)ΜNεοzaI@mϊ{{Sΐj?pΈξνt(Δ4U‘ΖY‘ΠΜXΛXWM5μξ6άGζj`ψkΣυ:B:Ϋ ~r0ί˜βCŒ ,Ξ OCaTi­ΑZ―†’εή _ΗSΈV E‘Τώ ™ ί2 o•Ύ - ?I˜°ͺdΑιp{LR¬³Zrn•τ%,ό)σJq#η₯‘³ρ©'>Νx}~νBμΡΘψ8Žmύν±H ΡAθΝτΜXœ|ζ921mΔγ"~νίώΟ1Έ{96fžΑ-\Ž‘‰σx,Š…‘ψ«z •,‚ξΈ;Μ:ŸόΜγ鋬cμ›Q²ΧΝ#°ΦΧP˜ζ:οΥKΪFύŸ»ΊΨρωD|τ—I₯'ϋlğΌ)J?σRDχ ‚μ~ύHζZ‡Α‘Υϊ8Γ=xψH,Ηя±GKqpϋNΰJ5ρθ#_ˆΑ#wD3Œf <§0„νΫΚ$λΜL;ΓNβϊ?‚ ΕΖ†Μό}ΜΒξν]T»Ε3³ά–  γc–I¦ ŠRXΪ"š±ξMΟχ@εr­O£cδδGP­ƒ;Ξ"²v ‚.B`,‚„o5* γη†βΦ[oO§S{κθg+Zǚ­υ΄T"Γ½9I ˜λF,6—. '\¨ΔM%Δ\δΠ*ˆŒ$.YšSM˜½OΜK\‹΄(1>(wQ‚β*<Ζράl`Q«&_/ΠΦrƒ˜-Z—κdI“!―7‘ ›¦*Dρ˜Ÿό –tν+»R*ίβΤE– –Kή—π§0gΟφͺx€yδ~]ώI”)ILΉ@¬Ά©U¬ΌΠuΤ„°<Œδ{ήόζxψαβgήύ qσMυΡί]5TEΏˆ`fλ$ΈΙ±6adΪΙυ<¨€Tΰ})GπΗ– ΓPρ଄ —Ξ α;~Άή†χ:ΆUX@«Qμ΄”«i#|ζ­΅XAΑ ηώp{ΊΖΆλ ΘσΆL%snf …υ€)Z/X:菞 ―Sωrs!-σνγΝZgω§94ύͺG3°΄Vb!6Θζsnψ\:gζ&³y>x]*ΌψΔSOF+^…Άe„οxΰ<Η±―ΰŠ…ϋόΉψεϋoβ=α=ΜU-½ΔrMNϋΜΰŒΗ3^δš 5l3Ξ4Β]>n8°ϋK Θ… cΐ9 /²Η (΄WA\AKꛍρΨ…7c[_ _"σŽ΄ξ7 3›Τ‘ 0ω,Οέ=έx0§™“MΌh5ΜW-kƒσ?bJmςΦV<(V|Ώ²ΜΊƒ–$`žy'Ÿ‰οΊ%ήϊΖ8GVκό,³ή&QVσΝAhκ§~λxU΄“vΆΘޜšœ€Ζ t™¬b*,ϋϊφ³† kĝ±S“ΦΜ1?θΈά@MMm̌τμMs£βχKe]―˜λJι%α|8›Ψ½©}BR Ϊ]‹‡)OΈrφέ"^N6eΆ—Y*όsœ―EQ€\ρ ­½ΒyKρ1 B3§šηΈ^ε:lέ…ΔjhΖ"Π­Βh“5TŠx%Tl₯CKtb£Q™ΪBΪχz[άc*d¬Οτ<£¨΄uΦΕόaν°y7ΟζΌρ<\ž<ηi-9xfTΆjSΎέΩ’(3nρZFΓ™$X4Ξ>ρğcAT²ΈζC ‡λOύ^D_/ŸΙhT·/rK'βς“ŸŒρ½lV¬Ζ Jί‡™F+•wϋϊϊXθZTq<Ψ¦1}ς‰Η!ΚρΐύχΔη?υ阘‡ρo‹ϋ~ξηc‹{ρV žΔ}ίΤξWΛ5YώΨω3±}η 'ˆt=d¨|>Α\6°Εsƒ5ž™6άBΛΕΖ\b ΥλΡΣI¦,¬+K֘ }μ$L/Α₯α³B,ΗdΦR†V&«τ"©e;:zQ`ZX‚ Œl€ψί*€«’g—βsLμΨΏ ΣVΚ…μ©d(e'­C{όHŒ’5K°l²P7„΅ͺ ΗαW:΄Š¬AΘd$zwΔΕꛁžαjnιΟ} Ό)Α-„  ŸΫž΄sP‘@[° &ΎΉ>ςρ0?ΣjΈœ#YΖ°'orR_?ΈO~ 9€ωσ ίϊ ώ1 x‘·Aδ–»οŽε|k|η[Ώ;οκ!ζ#bτE &’«Ό-TΉ 3hiΫ‰΅Œ5φ+ΰ“αAT.|³ΒD²Έ#@xήJυ cΣƒ ©x¨Xl8ΫF%‚€pΐ@eΆ6ΟJκξu1χ…°­d‘b<’ςΗωuΈ„i™‹†Ψφy>c@ΊΧ™eΦ £±(#A™Ι‘JΣJπdqͺ@ UpΙb°χ<Υ²δ2„vc“6Φ μεέ)«”L’Uεϋ] ιI‚Α‚§'M’ΙτPHUτjρτ8ΎΆjEηβρ‹/XρQ°ς0Aα=Z!λ…τ°@ά‹*™‰β ₯pE7ΞΔΪ1 x8ŠΔ&, oB’Ϊͺ—β^V©Z€ΛxSjθ―kΤ5i‘-«2[±λͺλ»Α)ΕLι=α°?ˆι³=βtFeq―G 1VXp7XΛΔb¬­Ο1~σρΨ'> c˜ΐ"ΛΝ7Cƒ(ΊΖœ9o3€ΣώxδΠaΦΣr|ζ‘ΏŽΞΫΨCEΝہέLΖωsg ƒ(  rY/3“W?žjγ¬₯Ι@IDAT l£Ψm1ut†9Ή"$ωόR%ŠmžΜJ΄Β NkXMΈ΅£ό˜H @β„:ƒ7Δώ»ΏŸυ)*˜ξ‰ηŸ|2 m0VZxO+»οχyΈzF'¦’o»Β$›΅xδ^lŽι± o#•!pB£<*’^"Φ£”*O-€jͺCϋc‡kζe6 ‰\Šρεrfšψx!(bϊΣψΡ~iΑhg˜MΆ”BζX”0)Œ³oοFPρε²αΕ{wmbZ¦πYΒzU ΊKJK™W€(΄6τ½ ₯―…ŸςĝT•[κΖ–Γ›D£u»ΣFΙoΪ‚Ό3S@ΈΤ—ωΐœ„Ϊ”PRrX’jΕλΗ»ήύ³ΡΠ†DΑ5½ ] 1C¦œiβYpP°…μΠ—Φފr],[tŸ‘%Tl΅P,‹Y!T AΌ6½Ώ’>ΦΫcsœ£€Έ8N<'£٘{^ˆ–š°=Χμ P’Ψ{„-…k€”J0FΪ΅ΚίΎί”ˆ)M"o2=ς&η—‹ΰκahΕ˜‚χς,Y’HPίHΝ Ψu²|ηψψ,χΓ„€Ν•Σρ€ΈΡΨ0©ΚFOΪmΤϋaπΆmK5θDͺO͜f4z›Φ“+€`π±Κ0–SS€ΖQ–ψm¦*ί’π£’Β2"0 FκΈ6 ψίdΜΓem σ[I9ΩWŒχiΐZ[_£Πβœ0_<Υ΄ΓΖ-a’δml%ΡΔήψΠ³J0ή=EŽΑRφ lSοΓ Ι!<†.žΗ½–ji κ#θbωή¬g}Υ0Λ™œ…†YQ½‚jΦ-Q5Π“ξσŸζΪφθo۝ψ•½@(’bH‘7˘žj G&ΐ(CY«Η3Ό†ξ±op/pΉⳄα}ΐ΅†η©‚ΊyŒΦPν}Εcqm–δσ±³o7k¨―ΚHœ93wέzS†Ηbވ£Έ‰RŠ’'M―R΅ «υ%š˜§I,ঙ5VjΟM%PŠλ ‚}cWޜY Lx!±ώΟ“Τb˜ΜZΣSK±­3vξά τt!žϋΒΗβήέ‡Y‹τš’χΦώηρΌ€ΜkŒ£‚—{KΪ…ΞΛ@ΖΪ)؎ U$$‡’%Ρ’n} WιΛ€„jε]KE.YΙΏΗ>υ:–ττ9§ηλ°΄R]₯ΈάΨεΛ1@œg j΄Ρ^Ž^'(Q˜9―,}4%΄‡iLέƒ©΄…\β @˜%ΛΊ2j=­ 0ΧΠ?ηrƒ5=7‡·Œ–Is5ώΈšy$δ.‡ Ž–$Ζ$Ύ {sπ―L‚*€Uήΐ§y»ŒΞ‘Ύ›?ζMΒYŸeŽSqχ-Ζ“eΦq ‰μM'εZναz€νZζΟ³Ώk€@WσΖ(³g-aΩΡ dΑMΊ4qf½*šyN“{hΔpΎμ[ YeM‘N?‘}ΜW=ΟhB9iΪ%4sΪΠ՜ 6\23'ΐ¬Ž$α§Bz Νc―‡=)@™Έš1*!ΌίΊ³³ŽJτlΐΓIp>₯…MΪΊΚ΅wξ‰λίψ“qκ…c©²LmU€Ϊ‘Xα[βιύύ„’@gΛΈ7 tΟQiy5Ζ+ώ€―Ρ ί]Λ^ܜ>Ο<ρX<ψΦAΪ§ŠEφIι+ρz«π¬MxLR"\SπgƒŽ·1nzͺUφSvML>!O8§ά―ρZ >.γ=40JοLL€Ί™2t /Υ οš1¦Jϊ(δnœcEτ ©xTp―εzΞs™λΚΑ…―KΈ_?@AοonDœd&Κr ΓκbςΘ^,#ƒ GάχΓμ†sxB~"ΒΧoύ/QΉλ0λΞοΝΆρν}¨t$ΜρΊΖCz©₯h‹’id;€‚\žš# ξβΡ‹`h;γΖλ89ΧίqU“«±0ž‹0ύmΥζΝqӍ¨ΨEW¦λ_ύΪ/γ=Ϋ·ΐ(±VB}$@³“y*³M½€pΎΡ…ur€M?ƒa 1 Ξv~h>ΞΝ œeƒ€_35΅΅ΤΓΟJ(ΰ½αTK0…ف!ZEΉ­­; SΒ*’EΠ\ˆγΕ“/Dia,ξΎϋP|ηύ·Ηω£/§Ι±&S0 ΔJ‘XBξόH`Δ‘Š;5Σ^χ λΒ—¦ џίευή”1}YK‚VΒς5ILΕ8P‘έ\·‚P΄^ΆnΚΝY˜RΎ+<ΔΏ‘$•.Ει³±<ρ8 !¦n'Μη±B₯Ύ`Ž„i†L+<κɐ™₯s<_^Οk9δf ―xK`€ΟΉ­εΓγ`«8έΫcψQ·τ"²+Y­X’ΉΉŒPž‡Hh΅¨N0nZΖΎUŒΩ¨B°ΠzοZ2>Ƙ …ςuζzAΓX•U0ΤΛ`‰ΈΡ^‹V˜H{υΩKψeŽqΤZ§8ΕhππΌΒ3νΘΌ%™5>νή£7CEV&ͺ‡Δ XoχI3k-)-(櫁―Φw:fPΨsď4·umŒ@rjΈθπωZ1—m?kίh*c-ΟΛ”ΩLQ¨Μ‚wσUΌ[h“žΫ_Ž―’°FΗ€sLt3ϊ!Φ=IτWf˜Όd<ΎŒ1»4gq@‹±aι„Ή•h»ŽΧC=Όk­†n(Lυif[_Δ@φi D•(υ5δΆ\G.c>+ΐ bVΐΗ!qεπ~Χ ύd­ ¨h5«Πν·ά·έr BεXR@τlιΑθ¨iFH@bΜ—Q=v˜Όw`₯8rσξhνό~jΠΌ?ξ#Θ{Α](_(ژ-χξν'Eυ.ρΉ8ρά‰ΨΉw_‚QκYh!σ›kγ JEbΎT"…ι΄>PWK7J €άέrΓuρδsG40‡‚°ΑΪ­"¦μάτ!ρ“XΖΩΛ5τΨΠΩ›±­Κ ‹`σϊY»51:2‡pο¦6ΚΠ™³€ΨUΩÏςяEΆH"qζ5αeΜωΝ}x…H…L¬)lGP,οΨ‘ή»c yΠ Π΄I²Υ”αεDΩΏ<‘Φς²ΚϋfŠ˜ͺ¦ΪŽΨ9ΘώfοΝ‘%«qW{θ“)ͺυ@‘$ ΜšβYΈV‹Z<Ύ—ΙΩ5•fŽοΙV fM$ν²ƒ™£ύ`=›ΕknŽby3£$·`ΕT°Y ₯I’7œ9Ν±V;κ7 ‹x›Ž2Κ­GDfΎ:1L―Ύ§$‘α>T]ž!UQMGQg-Ο›κξhE…&cό)iυΖ°’χMcV{c3ΠtΈ#SxUΔ‹ύίύnΪπo„&ŒV‘Ά€ j~ ‹ ψnRχ„Β’c°ζD.A_λα3Ήή¨₯QMΔmH§₯ε([ οΖφ‘ή0_(tl5ΰdHvΗήθ`l›k‘5%βaͺQvWg qπXΦι σ³‘bΖz•·ΠrΌM…vuώdPaΞN]v›Δ‹ŸŒtοw‘’?ΡD=yθγ IΧΰ]Ρή#žΘ<(<ΟρΑΫήωΎΫbœϋ«(©χhόX#’FFˆ@HWΩd|U4ši$l"ξξρO}$n|θ»’ͺmw0†τWΘΩ*χ8ΖTz΄4_`ŒL]ΑGea‘\g­0Θ&g|CZͺπžmΆŸL1§ίoǜΡΡΣT%rl\;I6c€4φ¬ΕΜ#ΒΈς ΏsίΘ£ψ'yΣM―σ₯`{~3“ΐয়Χς…%*'ΗΫ=>θwCΰzm½‰9'Bΐδ9‰ί萰IT―ε·ΟςΪ«­ϋ<·υyλχΦu/{λό«½ηZžsυ3ΣgΖαΥ.z…άΛ ΕŠcνΒ:)CPΈΫ²zuυτσ9’nΈρζDΠ„±(¨χ‘)sΟΏΊwΏšv^}­ΛȌ 7`=8ηφσζΑP[χƒΰN2š<χ}jβ Π\@C€„`v•wD7Ug°ή­―`ΛκΟ(«#X³#ΖΟΜ 4!° €l!XTwςΌ,ώ ₯.•θ"°^ϊξ3§>{vΏ¨C{άχΰΓρ‘O>·w9–dRΛˆ^Eΰ«a½ …Xƒa/β9©GXIΑz!‘–Ω`‰’8J f€]Q˜PχxyUŸIQ\Υ™­[Ί\ŽΗΓχΙ tω3ετK "‚V§„Ωp‚"ό†­su-(XάI˜Ζ‚εΑ7?LζH‚ž':°Ž–€~Νβi|ϋ]»βψ±„hΪ³Ζώhζ³γΗRλ’οUΐW ’Α‰ΉUh―ΒλQ.σFΠ_a …Α‰αuϊ ’_Iι§θ²NAΘU”Tfψm5½)•“‡pE1TtžJdFΦ%Sl*oHkŸG§λ3…F/žΪγύf.Qͺ΄„ηw+…Y .'cζZ‹GΜρUΰ«‘βΌ…χ¬S²‚ΐXΐΫΐ­ΌCe e~,§>Σ?ξ5XQ¨Sgq7•―-θ\WŽ‘Ε€J‹άΉGvLi›Ά<Ϊg«};gΙrKlχ ϋ|‰Έ§54_aM›(Ԍy…Aδξw>'«έxτΓ@QΪ…€‰Ώ―BαibT‹©ΘγŠzͺ€Ξͺ%fκ-ίύ¦xς‹ΟσFd™,?uΊWx/ΙκGxo ΦEsΎ‚gqΨ³«E€΄Θ΄} υχ}οπ.(pΡ@P™¨©)‹Ÿώιw²°$γεΠ+»€'₯šXJπθm<ΫD­M1° £ά2πΓ€€ˆ’ ¬QOlˆσiJΫ\ωΒ(dΌϋμI ΘοώΡ{£Gwαοž‚Γ§ˆ«cjmžΗc€"oŒmxϊτ―oΞΕ·<S€Pύψ§ρSοζz $’ώUΪ‘KήδξdδΠ4ƒΒRS½M*©uTΗͺ͞¨'…―ΠΗνΩkumkmc­SG‘ώ)――b)œ;AP΅…ΡΉΧ{ϊX;(`œ*πΠ©¬λ±YƒNι=œΊ¦'σ2°ΪVΌtyΖαμ…σ¬O`hTpΧ„‘4ν^K{υ€pεώ£‰†)T)ˆ—…»t!Ο>ύΧ₯οΎ•ς΄ό§‚Δί 9oώ±Ÿ‹ϊέάWηŸω\<ωΎίŠΩSΉΦ›R,anB“ΌcK°S˜΅„ ©’½² ‘;<'ηςπψ-Ωn :cbš”» ’’` ιHβ’OΏOτ„·L΅RREY‘* ֐1eΊBg2xp½|_‘Φώ*œK;΄i¨€#&AQ«u6Κε(#άα>2V§ K|3q‰#μ3SUΧρ.‹zZΗ£ε©‘β™«(ζΖΒA"~ŠZΠ³Aά’Š…φƒ@<ρδ“’z‘ π‹ΖΜI#A …CMGn@} ￞‚ΚκvŒN•₯ 6΅ΤVi‰6{ex=χB،][F1[₯?λ˜τrD²ο˜Η2c<ΤΟPΩXeκ=Ά—^ucρΗΡu£RΔψΙ»X?ͺf{ύΘFΐθρM* gΚFφCΎΖ†Ϊϊξk=οβ\#–šF<ΗN] XiϊdfΣΨά,DG[‰8±(‚“nB‘*±*M¨\]{[°ή"μcΙ©ͺ’ρ97&φ} β§…EΘU8LΧΐ“IιG–)έΝτW L&ΏLm‹6RΆ–ˁŒμ½ξPκͺP‡„2“‘Bs‚™Γ=ΎΌΉΘwk‘—Ρ^ηM¦Ώ€°DΆΈŒ_aάoaOω•`•’ F4ƒRΦ°e•%„z¬Θ΄εςΠIϊΆΈΩy„/• Hgžώ“Ι .GEψQZ…Eˆ?΅Χ9”θ§9δρ-ƚΌ!|/1UAF&—ΎΠ(­ϋy -&ΥνCΑ»,«‰ ζώ~< ΐm`^ ―°n//Ε#=ƝdΑž!·p ‚R‘qΣ½n¦ Η BΫ΅ΙsΧ`ΜαWbAΜ#Dΐni“λe-)$X θ³-ZA0YAψJΜD8“ŒΣψˆβ˜ψp½«\›ecπι©J·π) SPψΠʚëBγρωΙe3q½χPΰ[%08Ε‘πΌ”’9 5BΔζ*T%΄LΣ'ŒP ~ Aε·Φd-—˜Υ2”ϋΙ6­Ϋ0>‘ AΦ8™9”ζe”!*…¦½¬V˜’}*+%cGπ•g³Κ½ cΗ;TJ쏂ypBΦΈLR‹[‚ΌΑx5&h,C"šƒΝΜa½FA__5yΠΑ o<UdάΩDρνκ m1΄K(Ν΄z‘TUwφbΡΗ-ςι3ΐ¬o{„…5"€4Δ|8ώόΓI槎8yφ,cĜ΄φΖβi U΅)…νςLmαlLΫQZ©_Βϊ@˜Vdϊδ& Tσ(Χ³ܟxαt<ύΕSρφ};˜#‚~ΗΖγβΔ"0Ρ6”ΦΚTuy]4!μ/ΜΟ‘„b4vοdQŽgX…ϋΠ xδC΄>P"§멘ΏœRΤ–m˜δΑ‚pΦ‹°ψB J[pšή50Π ΄§‡Ν“ρωώΏρπƒο’¦Η6Uuτt“Ι S―T‰ρ)ςΉΉŽaσευΰϋυ ΦCWτ2”Eιrgηπt¦Zμζc˜ψ4cVzz{γ,²j`…νxŠ(ϋ*G¦θu]›θBε.ƒQA?0`H―'θ‹Φμ%<;vμNΩΠH)=†‡Κψι§ϋΑ= 0”£f΄pΩ΄βΜμ*ίeΫϊ˜Υ ‹Q³Ψ•AΐWθƒB`…xζihΡO|4n?\TΕΉΫoΎ3Ϊχο O|6Ž~θ‰ΕKOGyο ¬}h 8OΎ+•Ύ …lv}k)g_θuλμˆΒ«€7Ά!V«ϋΖ‘Ž©I{^‘Nšs‹|ΟΎ£ζΐχŒ™τ”₯‘θB>),ξeA$ΓdxKDMšθpπσŸ <@aRΓ…‚f*DΗwE%χ—±” ωB5όΕB΅uμϋδ!Q-βq‹Œ‰)Ž… Y*Α„f6Rίgˆ­ϋep[7±!΅q™˜ kε0Dˆ‰θ%}qKWΠ=Œf€‚φ΄“AN˜εΪͺΧΔY_’Εέ$A1ffKιPΒΦ νXJR…Η‘^—_›†ί Γ[—A‡λŸU<†+ΐ.MfaΡM‘JkΠψ5ϊ΅ΒΌ)/€4ΌΨρσ?GΓZTϋϊbΒ˜υΨ‡γποˆ Ό GNκ{ΓθσPΰxd9γ˜eΓ*%K 0Œ―_o^ω£^γ‡D]˜) &ι`QΎ~|kFΰ«ˆ+ΔχΚγ―ώώκΟ~ˆτ·¦Χτ]¦γΰΕ?υ…S)£Μ›ΌD€ZA•»[hΎ΄Άš<ψeν@π~”¬" Ε#Nϊ"rI‘Iκ|ωف¨˜Ÿ™ΐΒ#TrŠEζ<ο(ΰY1°1΅Ϊ:kNEe‹ͺVΉZ°ί/;‘ afξρP€MΩd$h2'„‘¦ά,‡ι˜qKKŠΒ­.zο«CΰV¨UπΥ²S΄~… ?α_ω­πjΖ« H\8VOυ6, ;‰‹ 3Vk#0`c2qΡM0@  Ρί—‚—N !θ“Q'ΡV”M kl[ †g{₯€Nˆ­Ό–@ νyXΐ,Ήπ±βorππαΨΉ4ΘX„GQjŠVCA-p7³‘]žΉ”¬€sKd,#2£ ¦•jΐŠœWαBŸ:~2Ε6[o 0qf~ΘόGαZ!A²ψν}΅0ώ4†2 hΌ‚˜ΜC…ρ*8ΒM|pŽ*±–qy‹‚x a+y ˜΅Ξ|ΘύΖC0“Μ₯ŠΒχρJ8>Χ ;&2‘–‘Q#ΐ³¦΄\›­LO‰…ׁ/͌k‰Cΐ’*wžM’pŽ*Ξνί5@e'πΣ•F3λ‘&9E0±P‚†f,™@VW-ΊΦ%ΡzͺΔ±Šΐ¨/-)t(Š΄Œ ƒΛg=!3ΤmW_M`φ*Αθ&AHk‹λ2Βcγ\ρΚ•˜Οrθ5ΞΌ@š<Ζ/2¬ΗΙΕΚΈ{ΗXΎ)0|0PΤής]ίM=F†Ό'’`τΨ㟎‡z±%υqσ*Ÿ8FΖ½iX3 §'’ƒ‚tf…2»Μ:΅jΰ^΅&Ζ§πΞΆ£°S”14>¦Jη³ΔΝ#@Ο/°_ψ a­/δμμVιF6Ν+ΒΊP8ηx© ΌΝP΅{΄j”ΐοΨΚΓ»ψeφ6:rψ&Σ(}γΣΓ *xhDpDIœ#Ž’‘mη`œ9}.vνލD/|O(bΜΝΚW\f.€z O_`φD‹`ƒB]ΥΤΜώBΠb,₯*͎ τ`γΛUF‹Sˆ‰$1ΰžzτΎŽν14z>Ξ; ½šC±ιNkΈFBjΙ§αUecR8±-₯©"Ι&XϋΫΆm'NΕ…3Cp=i?‹T‘Οaa·ΩzA]η*ν* kx7?§dΠ#t „E B|z&YΦέWY"ΖPšb ςŒ¬;ΩΖjQÁ}`|Ws3ΚιCo‰ώ#wΔΨρ'γ…?4φ³Q7p'qIΝ΄_A]ΊΣ ‰5ΏΪΫ@fΌrRJΧsS©'ƒFJΙΛΌlθΑΐά―•^z™ΘlΖUΊΑz†n‰αWŸpŒκθˆΫ₯ ž g@̚tΗ}ϊΒΝn•υ½χς4?λ;ŸΞ9η4έ===9nΤ&νjW,$!!,Œ₯ΊΒΗ•―°©Β>c['N.“… θ!„@J»Z­V›ΓμΞμδ™Ξ9ηxŸΟο^v­$TΊ³ͺ4οLwΓ~ρ‰ίηyΌ«tΕΈ°T—‡ρΞε ΗYnΝ½!e‡—β=4VCΈΦ‚¬P/-οΖ_œ>u…9šΒLZνf’%@+„ΕZBϊo]ͺj`€@’&)hk»τr―αν0ϋ’Φ½ΰ‹΅Δςε!Υ2 fΌ…!'Ÿσ YOp Ό!Μ%cοw¦Βΰ:&z Rμ΄«Ώs½ŠQƒK7ϊfΏ‘w>? ΛH܎]’§άΛΤΟΙ .½Μ!Z†qCyEY)@qΎxβo{λϋ4uœΊ3«x«+ŸzΦzY‘žxΈΙ6€1Œ…υ[v7ύιΕoύΞŒ#{1LŒRg§g sΉΣSˆ—ΤD*ς‚<Œ#‹Μ₯4 ΉΉ'ώνϊσρ[;όιΦ4^΅Μv1”4žIΏ™!ŒYΜcbκ\5Z³dAX ηςcŒ_ Κ:s'νΝb™KφWRVyΉͺΗƒypΜδaΝ‡ ΚοuΏhŒ2k–JCΚ_ Ε^γšC±SΙ’χδzž6‰λΗΛFΰο)τΛ>ώω “εVΏ~|ŽΫ3 ɍM€ο¬45π±+E±·άx})…qSπh«œ: Η8ω΅²΅ΰΑRа˜Ÿ;@ƒ€„¬Βψΰ‘ƒe ’ ƒ €έ§ˆάGώΫΦV±JYYψ žΌ…%κG€©.D°rλ VΔ%¬ή*Sˆ‰°%«οj‘ΛΑΟkν",ΩkΔ”bžž‘Z.i^a*P=”#ΧJθ²½0|ξυεωΘΎBχc=ΛόPt“ ¬„ΟυjR2ΔάΧNB2ΝαPEΘ₯P1ξxή#άm―γΙ!σW>iHάυιΩ*>Ke œ%\λyΟΒόdς  0f3ΚΌ™Υ)αwΣΉ*"^'“{¦ΎΒw c—’ŒLkΕΔ,˜‘¬φ[¬«—JυΔ-`/EpœΗΣ" Aά4³SΛQ·wWZ—IXR G˜XΗ;#άc}128LZκRl·F^ VϋΑ©†‘ӟ±©φ΅HΡ<ΛάhΌαuΔ™φ—γTœΌ/)€\S{[gšΣgOŸŠ|Γ[β& jξερΡx˜ϊ―Ύύ.„ Ub<Δ§Ξu:ώΔcpΎ)υuŒsσprXŸ90 b"–©>n^β­žEΕh™Ωٍ’޽έqγν7’ψλΐθ›Ιl+θ{f‚Ί'­ν=x2*γJ_RξN±ΣϋjljD+Ч~,)m¬*ΰœ2šQώ0>°†κρΐΤW6Ηπ—<¦Ι  Π¬p'-u―C‡Ω—μ6ΜOFχΜΪ&Ν`"Ω£[Φ‚g’}Мd|qŸs Σ” αŒZέMφα~Ν—h±·σ†νη^ŠΦφΆθΌιxœ½t9j–X3XκU΄ŒO“•n^αήνΏ4„" T―™”ΠF4Li ¨ŠgqΧYΖΈ¦I<z0Κπ|™Θddb†s5ͺ DΣWr¬E> ϋ"΅ Ζx½‚*AΌjˆfy5z ‹pͺ¨Πη<<›ΐ†–hΗ2BΉήMi˜tLQΰ₯ Τ+»²žyK5θp­˜€„eC4FΉΗB$hύ‘ω@— ;γΐΝ=1GήQtGΎ‡A  e΄”cTΪLSΚΊΘƒ™Y~χV ±#υ€€ώΠ?»/~ηχώ6Ώe–˜5” χœν,@Ω0VΖ¬k:~€½Pσ€ΜκρWn¦rΈŒ2œ₯„w‘,0ΧB¨°p-<ΑMΒ=U\L―,’¬ΗHΜ©‰·κIδ?Ÿ1œΟˆ»“ωžgΡWiC{ύΈfΎ7kuύνχίHθˆζvr…`Ρ«‚ψθΦ^ρ ΈΪsVΐcΐ8§’B°#„c{ΒDN~„ώR,»Ήy+qΟ½1<ˆ§„byg'ϊ’Ux«M LόιΣΣρž7W½ώΥqnλΦΣ%L²AA΅\―­ΟΑt8Ÿ¬=f†ΊΧ—&CΡ Ζ(΄hΜ§Ÿ87ίu3ΚCy²l–ΠΣγjUΦ2·ΐλd‡κe1―ύ B©€Pβ$£χ.aΣr―Π\Μ3[šΘ2΅₯ΔΉ¬Η*B8ος‘€²8OV°τ+ετ{Ž<λ9³0…yΪOE]²mbUάΦJ₯΅I’ ν,)ΐ«³V*tΛ%„wlΑx¬©!ƒHΚάωHƒ¨GpξdάrλΑxίΗχ°<Ζ…H&«ZΑ!O. #ψ P΅-˜Z‰“§'γOPΈ8όenβΞm„s›)g½B± Π0Zό’!Ho’°© τ:F*yEΌ LJΨ›–\]γΒΦT"d&|™<-Z €WΨπΩ2­RI ΠνΞμ}ϊ“).ώΥ»₯ %γIΠC€ Xy:_?:OHcΕm“2΅Œ΅ο3Ÿω,Ε[cχξ‡bζP₯E…F1LŠρo ί +@λ΄* α[žŽΩα+IQς)*»E@1T”Μ__ˆΠ_XZ‹Ϋ°XBQ J±ˆω’ =jΉά’ rο"˜±™ΏΤ);π—dmφ€œ.Ϊ-DΕΤ–zˆŠa Υ@κͺπ$-ΰE0·‘©αk}`a;»A›c}σΩΥ£o /φξΫwήqG|υ‘‡°tΖ£i™wuPΧ&―CΘ$^}jΉ@›l»εΎEš5M6ωB)τ€A¦Ÿ<ƒΈΗΦ„^Τͺν]ρΣοsό?ύBέ³?a/πDt.Φ»Ό‚Ήη΅}”ώk˜ΙψΖ*xΤͺk—o„ΣuΪ`| *O&>4»•μt‰ρY†Ύς5?fΌd,y KIΖ;ΨΣcXVW_ΉΠΈ?O`ΛλΗΛGΰΊςςρΈώξΪδΰ½ΗE?η/OB8uAÌπTl π­.ƒ±'dKSUy d‘θDCcΚ σd)Ώ]M­€Š;=ύ•'γΡΣ—b « &ˆδe&ήσ?€gŒO–ΒΘ€dv+X‡–paCεάΫ θu»e'ρΩOώM‘ΩΣύTRΗφ:Ίβ#Ώύ‘”₯ζ£ΏυXJLΈiΒ›Aρ <sbγaΚH$Tˆ2–Eˆ»L5ψ ‘¨ς²dαœΖ=ݏ5¬GΥζ!j lT%x‚U¬WΘ¦#τd…b…Β@JpQ[αYα"+ΥͺΜf}26qGΡI₯;K•τwΌαΐS.Ε'ϊ«Xί[¨—δ F$ƒΡΕ}ksPέά£ k7Fy4‘‰ψπ‡#φο퉓'/Q“6Β>cS€$Ε0ΰ+ύλx= )œ5_ΐbΜDΔ>S*΄ΚΘ}––'‰±˜Ÿ%₯CfΟxω:A₯ψ«P$|Eo’γ¦p£!ΣΨΖ"'CUqRΰΧ#¬‘~L’7Γ{ΑD£ƒΉΝR“φ=Ε†ΐ1„Ω_"“0ˆWΑ¬ Ψ”…ϋλ!ΙξΕ½yv²HςΉ‚₯ΚΣ<–ΩχŸ>lΗβο™xχώH:‡^'―CRbXSZΝ½G%Jζz-Κ}φ Ζ@Λτ‰nu8α:kuσRΊwᩬG@iŽ™R\Ξ¬½T€iΫ΄“£΄caEΛΉ™΅œΟ<=Ÿ›'ƁKK1§k,¦Eݚωx]Šh_:έ{0– οi7ήμϊ(ž‚ΈηΆ»βώ‡$3Υ(%›ZcOWwR@„‘-+zς©'Iι½ƝAβb<:Δ O}4ΣžK‹k©@j q#zšTΌ›©kaθθp?ŠDK4·΅3. θXδ‘Δ–ψ› ,2ώšξκΩΝ–&›γΧ½§-~ξή›hΔ™“§–Άcpx(Ž9έݝΡΡάB#b€ΚΩ3+@^rρ(#ܹ‘‘TΑžέ`\Ff‡βύοω±”βCΏόΏα/2~d6FϊϊcχΎγΡ„ΐVŠ%ؚ$Ο>§Ώτt¬ŒέG;£¦³Υ ‚s>ΚΑτl:Ξ]‰#ǎ/P‘2k΅Φ΄`ΝΆ²·Φ\εyβΘXgkŒMΗξ.h,`/Φz1EΥ|1ΥζΞ U>˜“θ‘[ζ GCΡ]Dΰ+N iκ_xG’ΰŒξ‹$y+0‰Ιb”8 €ž Ώœˆόκέl{Ϊ–R½"” Ηαwώ@Όν΅Μ“{–5ΗσΝόd°|ΚΕ<"='e@a/γNΧ‰WEαώοxςώ%”Eu˜qݜ΄]qPΩ‹|Χ‘"Ό΄ε£‘YΨ›“σψÏg “šΕΞφ§ ο(jξ;i„κΏ «kz…ύ‘’nΈwDΩw‰€0Š…Z³ΔτQρV\oPΚ τΘ,ΚV!†§3/ΗΖψ<Ζ±Υ82qC#τ›`ϋ©IŠZΒ7 z¦(Vπ,Œ#ΓύΓ€lΖΣΙ?=αΖΦΓ€·ΠΆhQך_w΅ΈξςΪ©AAf|ΟΔκLJ Ά¦pΜ<₯,aμηβΤOh#}uά· ςtн€>8&ω€υΞ%{•q ε ΣƊ%‘ŸΧYŠ]5žk=£δ ηo΅”Ά™λν|φ ϋNΎŒς“»E1OF0yL c0Œ4«Μᦞ}νŒafI«)ΗΛ•Ζ6σOsΥάo}ηΕΗώτwΨG‡QΐΙ:ˆ‡mfv~LρίrJ=]*X¨š¬ y„^]<d«¦φQαzkόΜ»_ψGKεέ©˜JœΚ΅Yϋ¬ύ’ ΄Πρ–~Σϊ΄Zό\Zζεf|P:₯G;°4γ;6™/cpPΡ¨zςΟυŽn >ηZΗ͘aΦ*Wς •c’<Εež?σίΠ'―v%_?’RΖ0\W@―…0ώωΓύρφβKXn€Ιt[@ΪΐζΪζΗ£qτX#ΒΣV4λ‚ '?eE.‚Θ$F°π: δ偯PΜ°£q^<ςΔI”n‚Us±Θ^޽œψΈͺΟa΄RκcS·jM[ΐe6‘B„ύ-Ϋ΅­lΜDΟkj’φθ}|Ύ xn:r4Z[-zXŸϊ$Ω{―@$»L±ΌqoλJhέƒdšI&‘F"L§ j‘P‰±A΄ρˆ¬\ήΦCφ κz,°x`Κ‹gcˆΚ„or‘mk4ΨήΛ ¦/>Q΅Ό ^3S“VPe΄€=*{γ†ŸšάŒγ'šβΞΫwӞθλήύρΰί=ŸόΜιη»&φφ·άΗo:όd,>ϊΡ?…>ΆΔθ­ΐMΦγΙ§/“aoŒKΛ«ΰiŠΌΥ”Pw{Uyi ­’„δΰΒΞc\bKsΣ,σ•Œ]«kΖd}„•P3V‰ i%JΜW¨”΅Oτ”¨x@δetXΑ΄šB7αΨ½/L@W½Ψw/< =Οz,ώ(xύ*ξ{Ÿ!dBΛd¦Πp χπ‘**(2-³2™‘ί;‘LbŠY3]Ύ8]­»©[ΡΏχ{B€q+AΨχΐt’ΠΟ‚'–Td3/“ρ*W@XΓ2ŒΒμm'p§”…†οd”ZωR #Ϋ:υ]†.cρO υGP>*kΙrLa¬―C)P7PNŒ 2ƒŽΑςλήΛ1–ωqOλxώ}\A0)Β’ΎŽ΅}σόž?‰A”Y’‰™Bx("F¬A<ό k‹ώ1vυίΏτ ?GœΤ ρΉ/~) Mx+”Ν€½η%{\7ΨK€ώœ&N£zC/œ¦p_SW N`u΅ώk™ΉnΖλΡΚܚΊ™ΕΙ܈―^Bι5S0­<25(¦sθ|₯€m3‹ψ€φ@5Eϋ― $‘ϊΰΡή€€,°~ ―£Ά‹ή„„υΟ|ιsqδΠ1Ό6@£†Ι…δο?Ÿψε.^ˆΗύ±U΄1ΪTn§šωF„<''ŸˆΕ3gbƒg•TJPΖf'’’ΆΉNμbΣ$°·\Š\–1gUUнΫ(Νx4ΧΠrιΣ ϋ5ΏpŽχγ΅ΡΫ`ν…Εiž³€l₯ydl˜Δ @ Hš€03==ΕΪZG<πγ^ŒΡZœ§J:cR‰Bυ#oΊ/­s½W%a½©'·EΜΌιώ‘˜<υ\Τ`Μa?n!°*+m™ΛJχͺί’Ίγνd±Ž!an·΄–ΉEvoζΛnΒ @=ΜνGH»ϊͺ·ΕΚ~56KožaD`3)μ+0[@ΟΨδVΪΚ}ά―,Z½Ν%ΔΰdBž)e‘ξ!θz.‚₯Π¦΄·x―p§«EXc!ΙD'­²nUR,tGe'—λM³ƒξωΦZ9)ͺδs&ω~›x -αz±™bœŸ#έ{4ΣΒ“†y°/5y”BΕZGΧξ«TI3ηP(T†τΪ1+$NaΟr―EΌv₯π0ω‚žši »Pˆ72¦Ε‚‡*ζΦβsŸΪΐ³ °kβ "4ϊ$Tϊ©‰Χ„AΜEaRh—viˆI΄I87A³²σηέ5Φ2tά~mεΗ1³7ΧΪ2½³ΜΟΦΓ„GΜ mΌWωιφ]Ϋš/›£…H±_m§tm―ΩΈ€k·Ž1q £ΔΝ·ά•yθU9kw›Ά/‚Z˜[ΗcDJn:QνqœTͺ q3(cτ9₯s‰½ZEΦ±ͺ’=ρ‘ό‡ψWκW™Š«θΡκ««=υΕyΆW.Χ”F-V*f{ηzJ˜Φ±kDΟxf¬["^G―wΏJ«9•«Έ”ϋrc,dhΣuς—t/ž‘)S όθϊ‘F€H―+ ΧΔχΔH>τξ#qσ ΗΘxc>ϋnWΒvξι),© )³‹dSoOγ󌸳6φ ψΩ‚< “•ζΔ³§.ΖƒΌ»ΊΐIΛ€X‚:Θ?ϊcoΎΤΥγλT…-ΔJΥΙ‹ξ=)pš3ς³{ί]ΫMεΔ<Ύw{ž7`HV©Γ†»ykcFSkZΰ°Z†aΠwχ³G“0ͺR’ σI tΓϊΐH (·ο B›žF˜»’ >˜M: ƒϋ4JUΑΰTά Ÿ{% `‘tΉdŸB\β€'‡˜•§bn7στ'¦βμΩ„­e,³ϋ±>ΧΒkγΡ'žJm@ƒŠ;n7ή`;N?ΜΚ3‡u]‹εŠΒ…‚Β€w³8ε°¬» …S‘$α›ι3" Β³ΥνU'"}ψαxΥ-Η£`i³ύ”!θ©€TΛiFRW[΅u5@› @oŽŽοΗ:L%ρωκxξΤ ΜŠώδBμέ³₯­6Ξ“{iΟΛκT4ΆΦ"²3G($E€"cη!x(|/ W ΨΤ¨β…w HAL%ΝtΈsέΛΛ›Ε`‘'ΐι7θφ…³@X€ži™ηΕ{³J }λF¨:~y`Ψf51fέμΩ™μγž¬Λϋ …¨*zδρ8zΓΑΨ·«7ήώζHσ~φςYζˆτΙ¬υΛC±gΟQ†1v­n₯ijœjΣ%νμ=νΓ€ΖΓ΄„Gζδs§‘MΡΣ³;Ζ©aςψ₯ ΙΓΧ@&4ΟΑk2ώΒcP΄ΈΒ±hXο”…!-o0ΛuΥτK!GeΗΌ«xCg‘}εΔ !;zWϋ’x ή˜z6CJ–Α(ΈͺŒCΪ_fž@e<άsME‡¦UΤYβy¦‹uΡΞχ=ΗςηcׁΩTΝΠΫmΌ [ 2eƒϋ+Ρί5ζΓ½”~h‡ήŽ|‚ϊέΗb…&oτ"Π;,ξvΪΰuξO@φ&ηΫ¦<„[3a)Ό›ΌΐΪ ž«'!U§†N˜dΒ`e•­σzR…h™β:8ΤϋΜύ–@mus «(ρ49ΫΧ*AΖD”Η§rnΏ<`ΌΫ―*'t”ΟμΕΩSͺσŒS)ίG©S³Pͺ‚`Κυ,‘…ύρΰΩXΤIsΕzαΩμkΗHεC―LRΌ0„Θτθ%EŠ>²“ςSH›ς‘]Έ"Φ{±‰0P₯XφΌIͺ{ΐš@Ž¦Κ¬Π15Ϋΰ΅ΖUx8WzPθvzž™ν€Gς8•ςdΕΗhβ_!X!ŒλΙ&)S―€³Ž·°Ωb<μ[xR¦¨4‘POΖ3CL@‚μ¬οϋߌ\ƒλ ΘχύRψή‰@α5HΧ @σ°-κS…Qeπy¬βρCΟa­:ƒ§’θ ά!έΰλΌ| Hΐt±("xζ€§¨Ω•KWβuwλ(ͺ‹©…"„'™:Ο\œ‰6:0Ρ@IDATž^*ΦΔ•+—€4,Ε=ϋΈu/γν@˜Ÿ!£ŠΝόy :N$\Γs%(ΤΨΥ$ζͺΜ{ΐϊ`iΥωώώ,+•ž-\gξ| 2ς˜ή U+C‡#εΠ(EXΊ+’zs)~φ={ΐ‘—bΕ‡α!,ŒO―Δs]λˆ΅("h“9iΑ'O D€9…ΤΖ»S<ώΩx`²‡φ·¦t±‘ΛΉ",.-υ£ΉŸkθ,„aˆΪΨΔ¨m@ΐ’šυ©{aΝžΖoμ…ε8Θ\8WΦ±^κ·άx,?{LΖ(Η…+πHk|Ο««d‡ŒLD+ ϊη16wk,$oGΊHk•ΦyEΆΈšχbΪe’ T\+ΟαžZž’Uη%/ƒJ‡mΐΕ >£m\(4ΚΓφS‘ΰνiΆΠ{eB‚kΚχBΈ„šδz€ ηηγΏώζŠϋο >σ‰ΟGοή}ρkΏρΖ,Α΄“Α~<*±ͺ~ψÞΤΡΔμ D&λΦ@•£¬_<Ση"μδ"³8>τY›Oci1ΚT“O‰Φn * PXΰ‚σ,Aζ1tξy„­bΨ *Χ‘8°†¨ΗQΒό44½S€c5Π³.-b-\YΝj°lΈͺ@€ΰεψέ)AHR0,ΗΫwο«οNγ)Σέ ΫΪ"p±υnzΈ‹ΜX«1]D₯g*»ηβIio#(ά$LΡΘπlJΗιgZΙˆK’SΗ6΅·₯ύ/n~žLv•5xΗ„ UQlΥΉ[\ `… ²β?ήΔ‹ά/ΌeˆΚΝ&νη7΅E:βž{nC™&­7΅^XΕqπ†CqγΝ―Nku οBΌξ5·S―ΰ@²ΰްφ~/ΏoΏχp܌’]°Ÿ˜)o “7\ꟈ½[)^YO…vΤΔ~‚γΏςΠ£qφά9΄J”£ϊ¨―κ‰ΗOΎωεGβθξΞ8rp/δ 5vZ9§1Ε ,hn‚ZL›%ηΤ7Րβ·ƒ bߍυΕαG©ύ1ΐzΝ‹έέ=ΐΎ†€©Nα%>e, ?I ’)3ύwΝ%Αš΅“²8ρ~•ΰθΚvŒυ1±ΚEgΟ,ƍoyOͺΨ½H¦ΐ4·μP5ŒΉ{Ϊ„6ΦU‘χCπWΘWQσΚm½£»Ύ1Ί.| «l¬@§πΛ¦`.™„4Άυ81,A^σ‡™ώ 5sΏ+@»kTμέΣη RγrX*c†’±ƒ¬[k@žζ0δc@’eͺλKr/­(ΤΨ@ρ6‹ρ_dY³)υ•5ν3k‘ol.Šσdh3­ξΙ Œ£sLMπαK;\iPς*!Ύ3~πΦ°ΔΝt¨’―K₯PKε©―žq8zŒ…΄Ήώ ˆύ3۞ΩήJρ¨$ž)φΫμ†zl·kCΈ–†Zΐ=I©ΪΌt–qςC³Rι]pŽμWR6˜Gη#yΨ<)pΪ ΕNρ~€ρΈΤωΡ[D£Rηιη&Ι#ζφM“λιŠDAπŒΨΫΉŠ2γηkbœ«M<εΒC‹Ιjy ^ SΦ°gμηs%0²Δυ κ—ahi…‘•K؜}‘f–ΰY™gοφœθŽίψΝΗA'τξ>„βΒΪ₯OΙΠ₯Βΰ8Ψ?ΖJΓ™3zΗ{‘ΩΙ0•Z̝]Ӝl,NJ©ΟH#Κ:–ͺ{L:γαΨ;žτ›±δ.<ΓΆ‘h&ώβ>€pMΪo<+—ύ€νΎοgΠγΊς}ΏΎW 'Ξ]œŒύ§#‹΅8žyΆŸΰZ‹,‘’—PFαέΕ%;ωDΒr―\].Ί"ƒpU’«βή¦Ί>yoΒ\Jχ}~Ή(ήήUγ§ΟΕσυ.ΜMA¬Ξƒμjί\’’‡•΅ˆ\αΠ8ΠR<q "Β½1[iwz!'κh.LBXΙΚΑ{…½B,―Ϋέ"ΰJ‹Sa™<ϋ«`βŒ•«―™DO+’ 7osεβxΐ­d ΐ„:wu“Ώ(Ξ>3I#€¦TXD$cEς7 ž?KΊb‚±RR½3’όn°ύ`0qηχ(,υ~ux“hκ8^œ!w:YΉΐηζQιš ΪΖΏ―mQ£‘ˆ˜™\2‘s₯r€b³Iϊγqΰ1…ββΎ­žΌΊ0Ιψ’zϊΜlL’VcqՊNƜ‘σ³•L’Œ-‰0ΰ,Ψ[AŸQαŸ$ΪΞΡJSKqpD-EZ₯τregH  vΥUε-]ΖXfŒ>Y°ΰ&yŒ­ΜU‹¨©O7ΐ)§λy¦5I|p,γAtdŒaΚ {™±'Nƒο½ΏLɚ;JMϊŒϋξχ‘λ? <·b}k‹O}β―ΠmΆ`|{γ7?ϊQ±―ko\ΎάO––ί‹_όΉf,ϊεσUΈ’Δyτ¦Ζ˜8] ŽΟeqΠ6Fˆ§ψκ׍™Ρ ρ»2…T@rŠΑΈηΔ ΖΊ Œ²…H+ρώη Z°²’΄Αυ±«³->Έ?Κ ^+ζϊδΩsρΨSOΗρŽΖ{ίωzΐeκšL# c„`mXΔytMhω–UIŠRγˆ*Ιƒ+μE₯Έš¬•‡xΩΜ–ΈΗJ%Κ-λ –Ί!ŸzψΡΈεζ;β)Rευ’nοRdW±Τ8κπ hIθr‚π˜§Οsœ[TXƒΧX UΦΗΟΗ‘ΧRΤvξ)Ά’=ƒ‘E‘tKα—qΛaτx¬BPl:·Κφ"λ7¦1-’fPmχ 1wαsΠ隘F@LΈ~Φ―kMkψBβΌ€!νΩδ•γ½pBnΎs9ο&qL’W€6a Q9-` τξ;CCρτ©σ±H‡r―'=ςτ]―’ΤeSšηHSŠρ=ΥΠ B9π7_Šiς|NzΧΘ\Χ4”³dη(¨ˆα'Ρ>ΖHαΤύk­<c! ©olΞΑ£πN1Ι8ΒήYSiaž…Η Α €2bv<•B)eŸk°ž’™χVQΜ€%M2ΕΊγ“bάπ, 8yNFg+ιΜΥqc¬2C οYƒλ΄ΥΉς— T’?ΌΥ a ―N'(΅ϋ<‘nA«”(p{ΘΌC8•9bξΤσΫ΅ζαψ*¬[ηΘώΈPWψœ”σΒΠJ[β§ή+ρ»ΏχλQέsc^ ”/Ζ[/‡Β»q@*˜’JPg₯εγ±Ν£o5eΔJΡ&Jx<“ΰ—Ν4Q i<εš5hά_ς‚πWeK¨›ν―¨(Ϋ<χ‡,;bˆeΠX˜Ξ%V ‘³dͺyΣ›^ƒπ³ΣQΫ ΑN6†υΘΡΖψΰξ‹_υ?H3uiΝτ­Τ`θF‘)7λ*ιLϋ isΞT'FηΨ@hΊrq>Ξ_<ΰF=”† 2PY—‘O\ ΚC G[ .Ύπx=Υ€IKπ{)–Λ‰e¨zbZVΖΌ2‹ά³™ωŸΖΓ“GL’ψk…[u”i…ͺ5ήΌƒμ‘ͺz‚μQ0Œφ“~\8•* "V>β0‡‚27>‰pMšO²ΰτΰ‰,α΅^SΟ&E•1\XžM!η£ σδ‚ΧΉxBPFr œ•ρ3†«x>RA4Ζ± HζΚxίE ‡ΰI%ύ1…²²*„o”ξρq2ς˜=#zτ"±œ|šx―φΰHάvΓm±»…@σώ‹q«ΎήγΔΎ‹―d Λ©–nξe™'OχΕ3gγ–£ ˆΥ,ŠΐεΎKNUΚςΙs”‡‚d€ϊ,^Π$‘`hυ@±Hu[ 'c_@ΧPΝ·Œ²€ :Œ"TLάΪ:œάB¦Β³,Θ(D‹$XΜΒ)ŠΙŠ"ζΩ H9Π)χΨq\BΪ ρ ŒO›ΙŽ{¬Μ¦&ΉQ”Ν_ˆφC·0‹ΒρξΡ―[rζ\$ο'{©E­G’]œφ(»‘]Υ80φk±a‰˜?9”iŠ,ΕZ&VEyV‘O‹·Ω‡€Βl–±xŒNΖϊμRΊ_>ʐ±pξ=“Št6Πhν,©αsΣβθ:| οΧΎ΄φ»ZΙPΈN8π―Š5εs!V©kόrMΘƒ‹Lαπ<Η*Ύφ: fΜΧkk½ρ›+@ΚΩ8ΆωIcN ιο…„4;7ύNΔ«kΏσF.εouΌΈAΏΙΉίκ^―Τ†—>{§?/ύμ;}ύJχz₯ΟΏγη|›cθύΏΥ]Ϋ†kΟn·ύΪη}§ο‘Χγρϋ©΄Ϋz‚π&¬¦5+ΡΊ«μ@!€ ;ͺς>Σ‚[Π«d·šθ?mϋΪ&Ϊ$KΤδTqœ½0s'sŽŒ«}LoΖ±D=Œ|0Β.†1V`ΑAˆ$&ΈG Aνf²Έ7·ο> aGψFΘ>yn1nBΠln P\%‚Χμ ¬`Υ0ΰ),­₯ZΥ`2Σ\b6rˆ‰€ΰH$λžAΡιξήEa΄aΨVς€—heŠΈϋξƒqόhOάt’'ΞΌ0’ζΎ++[ˆe$”YβZΖ'ΟGqu)Žαh πρ]wˆφφœxςδDG M)Χ Να.SV’@VŒ5άžεΧ Τ”·£” Δτ8Aψ@ Μtώ (σ’,ϊaΘ‹k.Y:e‚kŽkΧ₯Ÿμ('·q²rΒ©TDΌΞΟ\wZUΣυά[Χ€α`)κͺΛc„Ϊ³dλΗ³i ΄JλΔθτ‰‡@EjͺΜ€΅ΓΣ£Wω(d+ρͺc‡’Uτώ‡³Wϊ ΐ―KEΊͺ(²Κ>Z$¦eb~&Zš’ΠdόšΨIΪV^YGΆ΅Ά΄FW €ή€φMί1I¬Ys±E\Ψή„ΖφŽX €ΫΕo9x₯b;žv}1—lΗ€d*„mEb0kμ•Wt Œ9WΞ1φG‰±!5†:Oά…€^eΌ“7Νl{9Δϊ°Χe-Άiζ;S@³[Y—@•XW †ΗΎ±ς΄cBκƒdM―iοŽsκΘ΄© ²•i7GΚΤ¦§ƒυdAΞ.Ό_8„ΩΞΏ^@r²H‘\f1_xρΖSΣ{K4μΉ!6‹k€’‰I?ͺ«λˆΧb[PΓ:Ÿ_@:ͺ2•Υώqίٜ%ΦouΣ. O$xκ³I™―οΎ9ν#½iB4ΝΒ¦wFbγXh’Θd‘›t“ XΙVη‡ω9w}ΰΟ£‹TΤk(ό΅]·b ϋ †Ό? %ˆq„ϊΰ­tm`‡ -‚ϋgPT.B‘τώ΅Ϊd™Vh’{ŸΥ)έƒIΦ·™#ΖΫφ%―sj+o9€ΕY<ηrƒt/O΅_Μ“ο½ί΅²Ο‚¨π½y4L/—€ήfΞΣ$π(C|Ζ($ΊkŒt{Γ=δ³½ΞΉ–ήΑŽ8 Uάwa‰:^ έqJΘοώΏŽύ=¬=hŒtΚω6 =³—2Ÿ s’ώΠobk—»-εœαΉ>²ΕΣΩUΝΪ2&C4Υg±Φx σOΓF[ϊΔΏΤOΗΝ6.uΚώ:Σό°ή\s|γ¨πΫΏ>ŸwφΩKl²οψΐ<ΫqO†¦τΝυ_;γ—/Ξ1—γΙΈΉ―]ˆi0Σμ8'Ωΰξ α+ΏσύΞίoχΌσΏα_Ϋθρς&dŸ]ύύ]yΞ·ΈΧwσ/kό·σζκ<};§zΞ΅m½φύ·{ŸtήKΦHΒι_³ώQχΊφdξ½P(”Ž «©ŽC`;βτΙI¬υe„ Ύαh鬂ΆΔ•±”Φ€Ο[κf’ΌvΰΰqΡ {Ϋfz λΦ;oθL…?ώΰ³QWF^{އv)lkW“λΙγΎ T ΅ ZŒ[Χ'7tο½―‰O}κo°Ύ/Ζ#§NGOη8qΟd"pS²b―Q3‘€y—ƒϋ<ϋ”¬€£I„ΙΨO3Ζθ50ΰΩ΄Ρ™°‡'0Έ„]…Φ€Lΰ8fθ²Ψ[)VΗR-υμ1Δ΄Ψp?‰Ήθ#₯su-Π‘­J¬™ΣRΕ³_Λή΄½ΐ.š£¨΅5>ϋ/ΰ%¬D°#)P«+/<wΏεΝ‰™ˆ« ¨Υ{εw‰ ιeχ ­zΦ ’Χb9ͺg!@!œ‘ΔcC…vΖ»Š˜—Ρ‘!ڏ…p=5:Œ‚ŒΈΚύΓ?‰Žκ–ψΐ?{aOΉ±··•ϋSΤ―Ά!&&MNχESΛ.ζ}ύ8Žd1ήπƒ―ŠΌσ(]ύ(u؏ϋpΝΕυxώμiθWOV ΐτγG$~„ΊC-΄ξ«>·+SAήλΓ‡€ERλ`†Ϊ" Ό¦vv―”ΣΧ|ϊ£T©wdj₯fx ΈΣπΡΚδ‘8σμi„3½ΐίP¨NΏ‘ΚΫ‘΅ΡŽAežΎΜf‘Ι7βΩf΅[_cοΊ¦XXΪuY5v…Μ=σ˜—–UΗ wά§ž”5GκW<¦=ΕaΒ~@ωd)h•T'8•±Q ΟΚn?؜ƒΒ"­ž©2£ΰ¨ΰflλ[…zœϋOŽ^Φ έΖΰQLΕμ\ išR—Λ’°½8u9Ίo|GάφΦΕSxfi’LXΤDšKkAθ€Jy°«b2εΧ4SΜ²“΅L’σ54δα‰ΦcP`[tαY`X(£φ Εdϋ;yUyζ0žŽϊΌxΫϋήεΗ ž~ό±8χπηcδ±ίŽbφ~Ω»ˆU’Ε:Κd!™άϊ€&l qz!·ΆμNάOΪφΖΑ7ώV4οιM‰L©\ΫΥ³§x IΩ €·¦’{)EΎo’^…­eψ”υŠxkB(†’$ls –ώ=LΚ Ν„^§Y¨¨tCΊ™ύύ{9Nš‘ˆ²'r¨dΦώŒ†ϊΩ ήyθ6σ–~u {Κ}Έ+†=ˎ£Ÿ§_όUρ>C›ζF™²γΤ0bΏ½ΪΏ §΄:]K†ΎΝθθ:χέχΎxβ‹‹†φΖi"j«­ΔϊγΊ)’ΏlΑ_μx7ŒN †4 †?θ‚ΑβΉρ•―}9κZA!»ˆΗ.)œk»τ–$ϊ #rH½΄Oά339./QΔ|Ν=P3|eγνXfk(­yχrΎμŸτΦ΅Αšxρž©ΧφܟλΗKGšΗj`ΣqυοKγKOφυ7ϊξ}vνu―tν7:ο[~ΆΣήW8ρΫmΟ+\ώ²_ι^―τωΛ.ώκͷ衏½Ά­ΧΎΏφόoϊώ%k$#ΘίτμoϋKo{ay4ήZ±JJIΰSUΔ‚Œƒ­‹Azπ‰²κ²Μ%ώΓ Β—c —φ"xχ"2h4‘‘d~aee6ϊϋ&ˆίXˆΚFΰΌ΅(5ω•Ϋq¨L-Αάm倩„ωεh:ŸCfšΝΐ‚yπP-)=ρš@H ŠVchxεΓ %XT¨χ±»£ AgA‚ΨΌΞ―Ζ^C(ΦQν| ˜ZI΄@+<&Κd¦ Μσ*˜yƒθ΄€/cυιμ¦z;}ZΒΊ»ŒπgΪΪ (ΫΖM5W!:n"<>ϋμjtwBXOΜ\¦ŸχT‡/ΐΊ—ƒ²FŠΦ<α ΐΝ–Δο9V―½gW΄6U!ΠΜΗ•¦θhG #ζθ0{,™eΥ ic)΅dΣΎ‚hνDο&|€x™j¬³eE½±B΅υΒrE,―|ήD%άΕa¬΄τΗ΄©XIo³Ύ>Wv‰L,E™r’’ Π„UΧυbΪΙ$ψ3ί2πD¬‘ΛI ω™–Α₯₯Ζ/?Ο~ρβΞϊ" λ2[ζ9ZφΉ!ίy"Βψ2ŽΚr ˜Α¦`ά†ϋ±I5`L B ²δυ8ΉŽ;@ς’ρ™ΜΥCe&yMx -ΧΥΣ]»{γWόŠe]π/ύβοψqκ`έ^2#D )ή›>€bάC!ΓN'―Ο)ΰ'y@xήŒ^†ΉςReͺΑr$Obθτε!7Ρκ—|ˆΑ§Ž•;1\α(%5.I!T<”³ω'LtΛfιaz±ς’ †ξΈ) i)·ΠεΒ]φ0G`A ~ΓΝΚρ$¨γ΅R`Π£ˆφš Λcd)†‚BΪuκ'τcςΉΟ^Œϋξ9“@Ά:Ωƒ|&Δ¦’X”άύϋ©©QJ?$Χ΄m(ΐ³ΈΙΪZ%νιq"m@΄„d”9Τ³cŸΜηAβXŒdʚ™ζsbNˆΥ™'ur‚Ί €½ι΅―£6Νρw_x .€­ηͺ©§9jŠ›β?φŸ1 ”λΝΈυ€n … U 'πϊlΜΥDίΗ~Χ­7Q ψ φΟP’›_ugόπλο$UφFΌώŽqξς σ—7ήpo-ΑψτΡ€λ%ρBβΡZΫ›Ω»x_Ι`veΚμ{ΠΖΊfAy αi γGΧώzR|;2ΓC±―w γω©…Ά­"˜wwwSΔ ₯θΒknμΩՁΡd>Ί{χΔ«Ϋ›?‘jgΪ Wi+QQΪLj Rηƒ7‹χ½ŸΗωυŸŠβΖh%¬Άŝ˜9E²[$ΑrK»cŸ—gmŠ,ΞΞtΙΦΪΔ»R}ΥCΰψ1…œ‡φΛ‹\ΦΤlί3QΫΡKbΰ₯ž»LΆΏϊφ­°Ϊt±Gω9ƒQΩΤΫ•±U €«Ί“μZ«:ŒyA0·ΐΐΆ4ψP·Ι‚wkΐZ myKρΕΥ‘[Fέ&ΰφΏπX̏a€Qa5~ΐειήbΊo,4ΈV€’<ψl4άτ–Έωή7ΕM·έWΞΏ7ϋάΗcθΣ‰Κξ£±ΧGkΊ—ηKγ 9Œ₯¨΅ΙΣ@ΓZbί»~?φίu/ I–I₯ νVα«ί΅/.a¬Ϊ ϊwkH8gIqYŠΟΣγcαΟ\”Ή%kζk~agσIOkρΙυu’ 0nTxνζJΡlDWφΉ€i!Κ{ίCš›‰ύ~“IπζœtΙ‹ŸfίymΊ†Ώά>Λ4ΡOoŸρ|> O™‚Α}“ )ί⚴Ʋ6θ‘‘n₯T½Œ·΄[E()*Œ™Š©ϋάΫ(ΔΗoΌ ήt1¦.Γ €’Δ₯ΐ¨΅„i,4»•ρ5ΦΤΙΓ“Ηz(Η`΄™πΏ–ΖΦxβ©Ηγξ{ޝ6Ί<Ε@Ϊα‚%O*νς°ύώψn'~&½ζ½<ΕΆfο³ywόRψN…άNλΡ“ό’ΗΦOŠLz}u\h@6GœwύxqΘΜ)dγϊq}ώq# ±ωn2«½Um±9½vΛγ|μͺΑb?}¦…₯1œ7ΒI ‚ΡΚ‡ΥMdίY‹S§γΚY²¦© aΎrf‰ OΣΤΰ /Α‡%βΟ?IUήϋβ–ύGγ‰3—bΧjj˜IͺχxΫ2Α’k€ϊ#(5¦†ΐq¬ψTJ§¨7 ͺαΨq=»‹β©§†Θ|ΤνMqςΤ dκͺ΄0Ž$ K+‘AΊCk€ΊE.ΐνp4NaΉγ'Ϊ"ογ―ZΥہ$<σμΉxέ=@=v‘(Αp_ 0NJΙ)Χ}ς~˜νvΌξξz˜ΩRˆ Y7θ:aΘή†π¬iδ&’A]β•ψ«Ώ<ƒ€Ω!Šΰ0–XέΌ•\+#œœ'έιΙΈοΆΔj-Ύτ׏D}Ϋk ΄‘ir"ΊΊR/δVκ³|)Ηϊ”_­έ@Ύ π#ΓΦBρλ'>€œτ—{Ϊχ‘`{b1<¬¦Bdΰ˜E2dh˜ΐfbLpΎO^Ζ±VίYW‰)IΠa` y†Φ¨Œ9&#V‘YHφ·ΰb“„!Ρ‡ω $'a=1F! π(jZBUq $ε„5%“ε0 ˜–BΆΠ#ΫθuήKb|ž™¨ιu Ύφc c~σρ#dqš’ΟEρ²Fu΅6OΓ‚KŸM ‚„έ3 „[ΌNʏMΦ2ϊ γ²ίB9τΆ€ΎςήήΊžhuρ‹ƒχ<αzF,b(Ž<;φςΊ~(Œ)((‹8>Yΐ>γΒ½v‚ΦΝΜβAšώ(Tεͺ˜ ’9φΡ$λΟ"••Ωα Λ΄έΐΠ:mξe1²=τυ‘ΗžF)ΜΘ¦41@ΰ2EόΆJ£ωζRŠ |Έ7Ξ<…’zώλ`%ξΊνuΐ‘ͺP*ΨԌθ'¦c₯₯’ρe<‘s(o)ΛGS‰έDX.D¨[β΅υ:ΚFFΘ`$li Λ|Y ηY„rkΖδ¬SP₯yˆSW7©šϊ¨’θΒδX|ΰWώuCAΈ{O3‰ζ’‘«e:7ZΪ YΧΓ(OΠŒ3Τι(ΑΓ΄Ά6†ΐΏDΙ₯Ίz+Π±jbBŠ–F][g4ΦΥ«€•–υΥΩ…"Ϛ)aΟkœšΐπA2 ”Ή‰Eb &7Yƒ[ PΩ·³ΐq ΨΛZy‹N/‡ή- <0?Ζ3εβU]Ea­%«Τρ'Σs$ΰυ:Ή H˜ΐˆ&怕~l xtήΛZΔ;κ:fm»‘U|ΓΪIkΫύ€Αcz΄/š‰U{ϋO*Šή˜WΈ|2žΥ%Αz‹tΥc©Ή(#©VΉθxžσ₯$½Ε΅’9δcήJλμ Ώ8’2@η’·‚Ο2#”…οχά‡WRšμ©†]b–―ώ€ψ%}ςGΘW;‚΄€v˜…Λg₯&yσΪ!B*—Žϋ>S2 Π6}ΐ€prvΒ»Jό!Α#I(σΪ7h|νΛμx#ρψΎ€q0›]{OžͺBNΞ™€|l“l/’ΠζhΦy”kώ΄΅WΣ$=Ξθs€²wœ4v₯6ρ| PΉ.ϊ =MŠrκ}L'AE΅έ\Η8$žβw^Ο½δ&(ΰ?αίΥ~ο\GΫ₯ν~Ÿnισ/|ρϊq}ώΡ# δίKŒ¬½ό3Ώ—IάΎΥQ3ΕΑMμΒπ…Ψw”Tš«mΡ7I† ŽQ˜m aeŠ )Λ¦onΜΕδ< ˜A9λBt5 όΖ9`AάΏ― oΈμ…² vΑ3WFaδμΏ€WbŠ~ž%DAš`κ‰ρ1ΪKνα °ς‰_ζgψ…Eͺ&›5j&Ξ>7=ρxμξΊ“ψK\Q^8\o‚σ€zΒ_Zκ|͏“O Τt pΙΔ`°RWVβz'KΛ8νkoΉ3~ηw;ΖΘΘ•ƒ²Υ?Τ …€!?˜β¦«λΔΚΜ©K@yU!yυ‹&‘²%#.Η’όζξΗŽCϋΖγR–bbJpή (`‘ήΖσBΰόΔL!ψv¬²d8:w!βUχ€ΏΖ‚ΩΈkc…@‹ΐQD]– ™Ι:žQDb™€X…ουωθ!h8W ©Z Β^[&X²ͺ!䄃eΎ…­؛ˆΊVu…s+—[WcΗϋ*ΑO>΄HB-Εήa†zŒv^ϋΉkIωαΕΧΝά= ζž—hΦξIΌG¨‘ΩΌΠY‹νaτfŠ(μIμ{Vs – ΟaΕι:bΧ‡ΪI{ $e„64PΫετΕ>Š.ήJ:ΤB W€*g}LΝ/D[g'νA …&ξκνŽξΙ0"χ©Ψ²?ΧDς>B3rΆ―BσrQˆωφΔνw±†―¦~₯ΆR…]ΣΎb―(Δ₯ΪΖ °6TVυ,䱎] ˜Κ—k+(('iΫ‘,£χ=iΖQ‘HR„U?oκΎ7}0Ϊo"qA} >ϊΫ±VήBΣ¨6ΟZζ‘€‘¬]ζΧ=‹ΈO"θο Œ¦υ©…%•¬ei3’$Τθδγςβ¨iιf<Ι°Ζ=½ƒ…“ ΜΌ»^\³‘ΕΝژxώώ(½±šyΑλGL=wΎγ½qό΅?CΟ?$ξ YMSŽˆ’T ά―Ί©4Ε=QDVE‚Ν”φ=νΓ(blWnInάρžŸΛgΏNβ†Ό€˜J –€ΨΥ°ξ,ϋtWΫ™ΞρΆΎNηf†–€Ψπmζ “&‘°2NuuqλνoŒΏωΨ―E#iΓΘΞfV>Β‘•΄‡ω]Τ³΄]uμΙrΠ›¬Σ•eφ{Έ Ώ4Ύπ₯Ο‘ΰ%ΰ}β$5ζx1τ.-HχAήx&46/€°τDs$<ηΨOsŒμƒ< AŽ}fmfgf·φ]κΏγžΎαZΖΓΉΘ‡†ΚΑ‘nώ>Ν>ψfί½Β%ιγotέΞ£mπ+ίθΊkΟύvΞΉφšoςž€ ί¬EίδΚλ_]kF`gΣ]σρ‹„νΪΟ_ϊήkύςσΡΡΈψΤT΄QΥωης±Όyΐj8N0ζ:&§…₯"‚Y-“n§JqeνVΉ8{ζ"Xι‚8²{/D(TžuΙz»—βZTQ@ ΜΔ^κ‹|υ ιρ<¬•‘PLA˜°ΚAσΘp œκΰwUΖ™g‹ͺ¦Nz ‘DiΑY€‚•7Ceέ °”θ*§š:žυ5P₯± C=BΜ\–ΰMΓΓsρEβΗήςΪ{£™~Μc„Ψ…χσ֏β©)Γj^_}θ©€ύΐξ#Λή…Έoˆ{πήΨ½g7•YΎΫ’ώJ%Aξ}€Ψ-rΧ-^$akM ΔfΝRp΅4κρ˜δ’B|›1(Ε’k₯λbΰS +€*ζυνχέΓΪގžc€rδ”ηGgEVY+υm͌;Š$€jφŸžΡόΗΞ΅#Œ%%’OΚn{Vk„=Hς(v”„%hΙ&•¨Wxζγν0EΧ«°€1ηBcΪRf8©^Χ”7 ~zΩΈ!bΟϊž€f>Ε85ψD*ˆΗ{2ڎήÊΚ%^ο0δ.ζυŒšBσ:fΌUŽΚ·Κσƒΰ_ΒZΦ£JαήMbωΌ~οƒžέ|θ‰Χ•#’ΡΓ΅Ο=p 'ρ±ξ-kHν[ލ‘ηΎNί·ΰ`A±βza³ω<§ΟΔή;ξaά Qτ)yaΈ—cb¬`ŸΌζXβ- Z”NΊεžΦ£³ΑΌm’˜¨„6Ό;ς¦Ξcˆ©Β{γžΔ“Δψ[P»χ,Lu+f€ζεUŠξ;ίKƒύ1~ώoΣϊJƒΟΎΦ› uβ-‰ΏŽD?€WώψμτΪφqΎg½TΦΫΉ2Yπω. ει~άΝ>JγT(ις™?|ǘ½τ^Ωσ^ΪβσψI‡"μϋόξλ5,*>ΛnΖ7ιήΆr Y |ͺ³λqQΔb’ύ’μ1QC}-φ(@Εθ§ΐd°κΪ‰Q*NΊ *¬— βĞ?υx<ύτύ|R‡cΗo#‘Γ^ψΦΖba` dEσ9„ΆdΌΐ–¨ψ Θcν₯š^¬GΫ±J†(ڟΥorMρ“„vςBXkκοάOς0γAε§ςp|ƒ^<η›}χβIίΰΕ7Ίξ}vν₯ί­s½ο7y[½~\ω#ΐΆM˜'Ψ4@Oy)±#3D†©Ξ˜!°z ψΡ0άUυd>Ζk2K6­Ε8uz; ΦάΣέF0λtτt5@ŠΑ”Γ(±57?5δ€4ΏB&―\–°‹GΊύœΏ)ι3ΐCœ~φgNΔ8Π¨­ @?Ξ^Zœ†p!˜ΑȍqXC­?RAlq%+91KΕΦΚάnœτλMUemΪΫ σ"“O.„¦Uvωά• ”b(¬kΕ QYέ#—ŸƒPΊ©άyyt=9ƒπeƒc·’€!桜ηƒΖ=Ύ<Ζ:€Ήμ‰={‹bb’©‚bzyρw_ώΫΈ0Iφ­ξƒPVDšT,Ÿ±ΕB5Xe"Ÿ„ŒqΒ,Έ‘B· N&αe€žηŸ)}uψΉ ω‡W!l‡Yϋ—‹R›τΨfρΛk|Ύγ¦χ[Ÿ+|Λ*φb7Τ“ΚυkΡΦγsχ?ύπƒQ΅Ώ8>ώ—_GR+‰Ύ{O4=MzΤ₯ ␚βή;Ž 0КĿ²1Q‘2£“™›l‡υKlμŽ £p•z·HœΛφΙԜ묁BbVsΔΛ!_7ƒŽIΥ$όͺΔ₯κɌ―^ δ_;& ―‚ι7>ΙλΧ°,cZDί­η@ύκH˜Τqnςd΅wt'οΐ±WΦ{PτhŽΥΎ»%:ξ[±μ7ΦΝ‘€ΤΣ^-”φI€ σO] S ―Ψo;Dj[>‚1υπˆ‘֐¦vβŸ.Ε.RηΓ”΄Β6ϊ‰¨βE𡞨††ϊΕjmoη~ΒΔbžn“Rκp,ΕΒΓ‚@]BŸΪ©@ξΨ΅΅΅QMΑ«ώΑίmά§˜X†3g’OPΟΌρΘ qϝ·! Ν„$Šϊښ8sξ2™ΓΖγΘ‘ƒθ/ x(Ζbxd<ͺ[HΑfx¨Ÿύ‚‚Η:Ά c[k!*Η―ι½! rϋ6g‹$ΔΜΑ³z‚ΤθIBe5w¦Η'βΠρHγ;J–-T0'ŌOm5Αζxˆr™‹2«ΛγF³%¨θ0Y$P4UΰPΆP@ψΕγΑ3™K…–€XΈ TΜYΧ ΆΕΊq}₯ƒ’’νZ)¦ΠiΪ |aV*χG–Š”ηeq1Yg¦„uƍ£bkΈέΓxς0•ηιhή}S4}5}η‘Zό/7e=˜nΟν4γ›Φw›`Ζ8•cχ‚Ζ†΄§ι3ƒ˜„ΌΜ0ΰ9Wk Dy£κEU-‘Ώ<˜Φ’'Φh|֍ Φ¬‚β(Ω͊6)Ά:ΥΫuM)f₯TΟ {Qα{―_.0/ΰL{~@IDAT“dΥΓΉžΈS³ϊ¬΄oΉιτV¨­χ*q «ΜǐΐϊΖ:RƏɇž$& e\:Й*VΛϋ"η;s)†.Δ₯'PΨnύ'qλΫ>€qͺˆ2TE‘IνfρP›f HF’'—Οvθšτξ₯ΚGvU~AUhg6ώΝ?Σ“‘¬Bτί# Φ »ι†=άΟWΏIc¨B–ƒ½-MΩia22q?“AΖψ&5^ІhΟ}Ό·žα|Φe> ]GMCΤ± ˆ½ΊΜ>*i―bqž;#²e!μk˜A;M4y%/€|Φβ!-Θ#£kσΉηžφ6ohŒffΐb ΡxΧ·3Β9vD’χžuk»ψ2y6Ž*|δΈΫΏO}τ£¬?όNύr?±R9o+λu}«π7Χyύxω|Ϋ HZ|\ϋςΛoyύέυψΞF ’§AyŒƒo~αμιT8k wksγ.¬Κ£0r˜ސQςׁε^£šxEM#πŒ‚ΐv˜aK8”–γΉ9¬k+ΙκΏ„'ΜΟΙΝάε0Ο—―¬a!έ~œΨŒ2€‰("KZ50’ Έ~5ΒσΨψx|ώ/α₯kŒ;ˆ™YBαYBXžrΉA! ½‹¬+­ξΕBuX' ΣS1<0„e~=&¬3RΛϊ]`ΟΡ2΄ΠΌ±«-ͺk6Ε€±&ΊΘFΆ νX_$m-ρS{ήα΅k†Pہπ™ΗžˆGΏώDάz7P&jy˜1ͺ›ψ‰³§/FρJqάΌͺ„ XΣΉ–ι‘ΓZ}α°Fο Ι`·C;Zš[xr’OΔ,©rΫZšX l₯DωflˏRΌΖ‡T‘hb/ξ λJΈΥ<©C…Šn ΄’‹YοjŘ-ΥΪΫΫ³¬λ}ϋ»R  Kn5©V¦€ΧόΗΰοI<-¦c#ΑΨΞ „ζΝMΌΠΧEΦu-Ή³dα†ξεΈVθ—rœBW† ·lRˆY»ξ Ω5$SγYΒZ<„ύΉά+*δžο^1^‘ηaΉοΏ|Š9«@A%ρ†—ήWΏ œΤΈΜ‡JK ^’¦#―ŠK|Œ~ΥΗ:ρ:l ΦηUiz†V~^0&ΫδΐsνΝQ™g]K¬©RΘX(4ΊoK˜Χͺ–CΐOΣoηYλκ™™‚ίέ_κf«€Θν{ό‹qtM(Πsξ©wΒρΚΗΘdg·”ΡŽΎn £d¦]ϋ*biΟΠPι–cΐP@λPΒρΜΥ°>«αWV¦ηsξWœn…~™FφΑ―>§Ύψ`t8-7ήόΉOΖωηžΕCNA*ž“(mItθͺОuƒvρœŒnIg9#S,₯v©ιώφγ—œη:Θ  ζΞίΞί ΦσΕΟLž!ύT—ΥMjzŽ„lwηβ r3—ΕK_Ζ άΣz%ήŸ‹ 'Π“λˈω¦§‡γ§žorhάn†i#“̊ΗΔDˆk•νXNVŠ€ρΜsƒhJη’§ψŸωωgbγKί`Ν:˜#+5‰ΗΚ»Θ$½WήΎΜF ΓY΅3·&i?ΩqΒq'0‚Ωn ŒΖ6Žϊlφ?RΠΆ§φcxνwιX΄Š―½Fγό7θΟMœ5Kl°υBxe’άb–,ΤNu &―Λjr²°ς°qζKZ£·ΏλšΫΉΝX]―οL«bS7ΙΐŽœNŒ‰PžJ4Ϋ‰ †d™w釂‰δ? #ZΨ<ԊΛ|Ί!m£mOΜΌHs3ΠΘ<&7ˆ=ϊԍO@ηv7InKΧxEz‡Ÿήλ֐ώγ(…syΪ-5lΈEΊ–΄Ή‡Οω½ŒΎΧj“κX8΄θˆήΣΣΏψ7~„χqO]]ΝόF ίΉΟ<σlόξώbX7*’ΪηgΖH;Jٚ/Έτ΄Ο€2ΌΞ3‡χ[Π.sS› ˜yλ}©­\KΏm―BYφŽbωΜΛIͺtβ.ζ΅2B6Η+-G>G™W;Ϋ[  π3¬Ax0ΧW'4sQλ"‚Δ"σΌ$@+ʌRhώ.4|iΒα*¬Ρ«Mπ}<φϋρέd΅-/_Žo½ςuθs%΄ϊxj€ΠB^O;ά;¬iΦΏ)ηνΞΟΫKΩa}ݏψ'`,ΐ?ϋΕ}έλ\+en簌5ΦV%ZQ†R Œω±…’4BaςααΌρψΘˆζL1ŸšFιύ„]΄³”οu'ϋχΊηᡇ=`¬cώwσΨύΐ,Π²³I47u±ΈηΡΊΦ#$6νε‰ο '»UIφT˜dqγw‘A]]dN‡i‘ͺi ίΐ…dW–@ν­Lρgς'c»zƒxσρΦ•wγ©§Ÿe9dfφV˜˜2ΰ ν-mρ'ίω–:}LΊ-ρβ %+iˆ•5„υ|œ#žΗꑦlbΩΦΨ͏d˜ν}uqŠΫ-CΛΉΜ†Κ \ΔNΐhtw~2nήyΜzOttτƍ0:•Ρ<Π‰`@R²φ:°Θ@Πή™Ή•2"jΙμAτΛq*'ΏΗΤ(Ξί,Η Ϊ’UΎCN‘ͺ“Ρή Δ υΛί|7–?qλJSόΟδΔ!σολβΥ€p…vΊ΄1ŽΆηΪπ]˜Fp«ŒηΙaQοσΟΝrΦ9ŠkοnJΉθΖ΅ΊymΌKηί«ί‰±ιθκέ„ι&όρ0'΅[hu“ΦΪ!±•Ι.~ϊ=12ό'|!έ¬φΡM«xΘΰΈiωη3nξ™5λ\.·Λ`%3;z4+#vμ~ι\Ά₯¨­Μ6πŒΚθπΪ`-·Έρ$ςΖoΛPPJψhNfΉE8Ο͝khζ’ζ f@†’¨Νίψٟ…©^‚a₯©Ώ™Ίβ³Όš˜?™cχ=Ϋ©`‘Sΰΰ­₯ΐϋͺ)CkP²π°'ΈšmFθAŸΪ¬ ’„1ό‡}kΈΙ-νώIΞ£Œƒ°5‹ΦUşΦK5β Δϋ0»FΊα­©ntϋqrr rUl°Φx·usTT`}¬ΚΧΐΜO'k£ώΡ‘Ρ8yκ4Qεπ/š\Π|;y’„{dξžέZ8_ϊςοΔίώ•_‰Ο~ζκCόεωΈ3N. Gυ0‘2ŽjΩM¨v}ui‡οΈωήMBsOΕωGΠ„‹υάΨΨΝψ7θά…u a΄KxγΈ-Cυ.VΫVˆT1 œr‹{Ϋc ­@MΝFλλ%΄w;k‘.š€ΞΞNGθ₯@’κΠFo"˜Α[&ΛΕyHVR2>ΖˆεΝ‰ΩΈI{ϋΠj›³±©ψ „„±~bε㾏%#ε'€IΧ²'tL€‘,υ–όMŒμ5O›*Ρ„oπΒF¬Ju δ„XšγΪA˜Ρό` 'ϋά‰I‡!!抨!bŽώ„)έένŒ\3Ύδ‘ιžŸΒ "οl…n,)ά3%`Ž];μΨΘ||²“VšΉΑ€aSœs9OΌζŸΗZε2ζJZ#2»Œ“JnKηΌβεΙG‚ηεL€Έ2ρNLβK‡"›y0?φ7OρΟζ˜‚RbλqpoPΣMUςžλσΓΠζΩθ¨&„ψa~¦ϊ™χΙόρΟα6‚θ€ΜkΣ:HΉ¨·w ρ΄ρXAJsψ’pΣ>ΏΧhΏ9‚τΤ'€ΐ\NyDoi«>Ύύ―ώ·xώ?Œ’–£0ΉD “Y₯oJkΧ¬~#I0β<Ӝwω>‘Yίx½Rk“ύΔώ'Tv&Ίλho¬½HHg,zβ.AΈknνηφ\όώ£υudMžlAyύU”bμ‰G3ž‹u#έ,²ΘΦΗŸόΰψž1υιg+:1Xώω΅βwkξZ/Iˆd>x]’šζΛαX₯MšžεrΊΗŽζΟ΅λρ`ω^Oχ€+ΊΓ{Ώƒ πτQ BΕΠπυ8Z/œ?<,€F·*―ΘΕψΒk§ύjζ£BυΪ`n­mm¨ƒ&£P¬m¬ Ρνψ™Sψτ‰ψ/ύXώ‘G„H”ΐ s ͺΕΚέA«―‘™3K_je:·ν<›–ΦˆsΞΣφ”@ŸυύφsA:ž²Ε36 Τ―^€G:ΊoPΓ"5΄γα‘υ€kΒγϋ N(΅t―όΙΧblx%Δο“Ÿώ4κZ³£ “‚ξžΕ¦%—'3ΣzΗΓγa|χpž=yρ©8OψΓrπψΘd\ΊvFšΈόδαBΒΦ9˜œ%QQfz²…Jπ“ ©σSW΄&΄Hϋ`;Ηg/Η ‘–©¦Ύ"_cCο e«AGtw%ΤθVΙ™ΜI€Χ{„<-lR™“t Œ€jΨ˜Χ0J«0l–υj]vΡJ,t->u{UΡ|ό8DΘ€HF‘"nc5ΰhgsΡw¬ηKy΄›¬Ή5’ι―2@ΘΛΣΘZ€…α[oˆŸ_Ζia ߎM„¦a¬1΅lΜ %qΖsΟ›tm=Ύώ΅1rό»@3ΦβφΨ·£•θ*ˆHM„Υ%ϋy’!&Ι’|ώρ#Ηo+ D.IΦϊ€»Τo(€ί)ξiX kεNSœ£μ e D³ld “5Ι »  Ζγτ uΡIςΈ ¬/D λlξOBH·hm[‰Σ§Ιί€Ha’ΫJΜz\™–Œ‰Ιˆc\όσΊ» ƒZ5 ΈΧ\θv˜‚ ֐61(‰Lεν³ρXš-5Ž&R-n€±π»M(°Y{ŸΖP­—υl£,©μλθ³Ι‘{έ‡ά€ξ;ͺΙ£<ζˆΪ`ψ;Κ•εΪ€o+ᘡζP׌Ή³ά >¦pΰ†¬vUΖΠΊσpκ λ%„FyVG΄‘gφ\¦Φαϊxˆχήβ‘€ηΌΥ‚KΗ;νKK?)›—eάΗ™ΔœΙ iΩφ>κ496‚…mŒ>Z\‘Ύcƒ°Zϋ8žO*Ί;ψ‘xD{C<ƒΔΜΒy.Πϊ"@tΧ΅°G4§PšψTβ‡ρΒγΫo]Žλ£c1σώΨΩώ¨Ϋ>©–˜Mέ0›ΫZkΧm˜ΑΉ‰™hφ·„°Ό€2όΚ` k cΐ![€ΐ¨Δ)Βθ–ν―bΑ‰‘)BgΣ[Fτbγo'2Βέ¦GioD˜Ώ‹πDΨ\΄πyΪΎK€sAΤ£ά8φ‰'ργ ίΖ­H3)jU¨WZ‚œγ³s“@ πηβύM–ζ7iλΔ˜ΕΉi¬"‹ψWa<:€ΠΗ죫‘‚·±κ”β£°΄°Φf„!„χu¬Z·dςffΈ?5’¦ν0βΞθT,α?εk rR4τ&΄Š~23ϊΡηΞ?Iίά$ˆΈωζξΈ~γ Ik,Cς•έ0o‡Ύ F¬Œz%μ|qΒ0¦*™(Μ›l^€yrΘ@fŠF!X2PΞaΦ 4΅αα3afσ²›ΫŸ‰·^~9FζΆρS™Šηα?ώσO‘”0μpΆΞ XE\O Μ#L['Š ·νΉ[± ΓΨH6ϊ]¬kΎS Ώk†₯Ήšΰ’TU˜] 1Y ‡νϊΦ`Ϋ†Μ†ΎΛU‘’ιH,‘AGύ« Ζ甐sZ"–Κ*΄ωΡ³½ρΚk_Žg1:.βχΗϊ-GX‘V‚q2PF₯φ*Τ eT˜gΝq=YcR©5υΥΚͺ₯ΕΎ©$XBkh„΅³>yιλ΄rAΉΊό|Υηξίώώ~δy"κ{NΔ₯Χ/ψδ&a|‰β–hk”v&ε έ_΄HdŒpF·»D·˜ί*qλX€%Εq£[Σ‘έ{_XΈ7ϊ8OΌΥr?Z’И€kΕ{Kz <η…w;zόΡ©^idυ£Ά©N™ ‚σ*–Δ‘ΙΛX3»bα €ΐ±Κt5Γ%xΕ«wρb,φ™g s%„Ϊα…Κ φCΠف3π'cθέIdΈ£qec;ΚΎό‚Τ.0τπΩx¦δ”λυK²t=υέΰQμ7λ­eΘ–ι‹f#›)η΄²ΏΟRΰ€U(“w•‘&­m€ώ<<ήίίW±wέt†XΌŸύΒcδΝ―‘Δι«ρψ… ΡΣΡDe˜ qο\ΎγΥΟ=σp‘Χcυ3.:[„L«ώzΨχ{ϊ'N%₯d)ή ιήΪκd4!—ΚΠμβΜ7·:œ0½Β¨&qφ¬ ”T]52ΙΏj ›»ζ|uihΔj,¬E{#xbθΔ&‡i⊷Y«Lϋ Ή‘_ΤθΠΠ-ΜΔ‚Η£βΪέΈ{σ*Δ UˆGΒΞΒκ ak»ŽD݊ψβr˜ΏEΜΙ>?%h(/<ѝ U―}‡žΔωGίίΊ²O<ήN»ZΘ<4μχάH!>χ#gΪπY0ΙΪαre°[`bQ LLΑ  MΝ*9tό£Χή™ΕԌΐΥά£“sΌKσ>V’½ ΄A0RD―*-£nl‘F9u¬™­/FΖΧ`  $;F ˆ-‘7  mdE£*„&ΆΑΩcΪ.Αy΄•>hC›ΊJ’Εi΄OΛ΄₯ŠΔƒ›Deωύί&d0Nωš–+°U’AυlΌς!Q±Ϊτv4#`‘΅š Ϊ++k‰QΦ9S†XLΉ`šF!lcl"Γ` H– ϊΪΝLΛ‚ Ž›ύp7/w σVμ‚7σ-–“iZ³MΒ2ΤςͺٌοsZ?γΐϋοoΐ2ΩάΗξεζ ΐ’nnΒΌŽ2³Γ…lƒυΣ»²zgLη¦ξ&“ Ύ#»ŠIωΒ|d†ˆ΄I{θ4tn\IcF+³,ŸρέΦG¨šνςœL‚†ύg^₯ΰ•ΛgˆbbΊxfŸΤΏΞλC‘(ƒe(Ψ1+μ™(ΚςπO ¬υpuc΅Ώͺ-UνŠΝ9Βb^@ ί dbϊΈQύ’faκΡ, ‘؁qΈ~gˆzƒηG˜(Ρ!ez‘HNΌŠωrιΪ₯ΈsvO{"kΉψφ;—y/Q†Ίœ#54Žρ‡]žΥΩΪλX8η'Θα@΄"ˆ”Ž<Φ±ΦΆfΒ¦’ϋax yCνΉlΠ†γ#t©²­ ‡sΰJ0|ζ[9α‘xύkί„9'δ/ω’έE΄έX$€^U²w΅4·DηcODΙύώι?ω§(ζγμΩS‘’ΙΊ8ςΘ£Iπ­ινŽcύ¬`aΥ8–ξφ»£cρΞ(Ϊϊ¬8--1xξLš,ο]Εο8–ΩδΝ¦.[QΎNθbΖ³Šθ~Ό«ΆƒυIŒ\AEI5 Ύ>SΫ8Γ+τΞ/+π|^‘S–Μ±΄kΖk!«šy΄… U`\€‘utθˆ„Ή„‡‘ri ΊόŸΦ‹ŠΡWx`Œ˜sΞη±³sΩvn9ε]G2ή³CT¨4Ώ!*ιΊ„›;ίή­ŽΠͺ«©―σ₯¨μΎH^’³1ψΔgΖ±*QOΕ 4αΤ<λ0ŽπU kν{$–'£1žΑ†…ՊVΕ”‡΅%Sd]$ΑZEΦ?aJTsŸΦMς‰’1g±†ς(-ꉄUΫy"†_b[πΉ8ΐoλ(Υ0GΊ1ͺΪϋcqς6‰[›b¬σ<Α¦γ2ύϊ‘ŸΗ>Ζ=Λc ‰ΛcyδXΘa„)Γ¦ͺ‰ώP!k”h&΅μοΤ'pblΨ―‘k`䑁RX@ψX@x χι/ό\|υΏώϋQ%S5qΩ*v\Χ΄S’Ύ-YΐŸLsφ]Ζψπύ cilμοϋχf4ŠœφΊγΛGv$ō4ԟN «mυNΎΣŒtkϊ­‹5`yΕΗS!ΦΗϋœ7ιZ²ϊy§uΆt>αϋ β^¨υ°”H³XŠ—π54α ΞάZ*Κ -­Ab‰₯Seή2y‚ͺ€Ϊ7)ŠJGBΙ6αλϜ{!ξ_ΖQ|g§Fγ»―Ερ”‰μέ¬#ΝnМ$<2€Ά'Y₯ΩSνkλi'dυΝκœΞPwΟKC˜ƒΜγ4r½νΠ„&‚ί0Αj ›5@IλQΒΤ7²—gZΔυQœ1ίWIύΕ`Τ°yώήoV꿏“φκε›8U^ŒΡΫwlBž8—’Η\Ήr™Όw’₯³?™±οMφκξ~ΨψοΧΌΛΓ·%yλΑΒ0λlφkI«·Μ δ ηS6Šf­ šήq‚_™+%4­θ$Έͺ¨ΗΙ‘‚}‚ά‹0D00„ί­ͺSC΅·G Ζ(`έΙflLϋUpΫΧο\E¬uXUΨΝ–ΊάF›έ .kΕ:„¦4&HΪΥΧUG>o‚)EΣ{”μΆh\–—r@1ΪΑΙ―©"κΩq7HΚ§ζ^Χ γ,ΩέϋŸB(šˆwέ4Ρv“€oνιBJ 8υ—_}¦ξi ν1rw!FI΄¦Ύξτ9’xοyυΝ›XhV£ΝλnΙ’ b‘‡rΌ£Ά©:ήΌy‡~ ·£j"_εqF…Jcε $%QUJ!ΞΝX}Œύh>ŒΆ7Β|v4lφεω8{j0ΪΫuά+Δ_Ε΄°DΎΙ;Ψί$!€a°Β΅Γ€ΎσΞF|γk£ρw~M'BLΈαT·` evΔΚ<Λ’Ή6!`Q@Hυ`#—!ΟzŒC'T5Qφ“L΄›—D_gia-Š2Q2)ρœ»€V>„&±‡$!1Ωτ’τΘwΚΈψ™πΛn€ά—JεQͺL™'iŸZΖlηPcη½E²)3B›Ό'Ρ:žIZO|˜+n]εΌ'm΅l²Z1²:(QΎe§—guKΒχ±υή› WΦA>§|4»)šύ "1!r@ΤίΝ4cF¨;Β‰BK‚­ρ.”L+Ϊ?³?υI‚™ebm±Ώ{’­‡ΔlΜνUυ2Μ‹:‡―!Δ/Nέ‰Ο}ςG?<…r`ސ³$ζΔ²PIގ-&΅Ρ˜Ϊȟ1 <|QΘL!^ψΔΗ’†½΄΄‡g§Σ{Λπ[ZΕ©ϋ­ψζNγD8yόh\ΗοAηο:ΫrϋΒΊE «G ‹1ΰO΅KΣγΙ‡ifΖMψΩθοƚ³ΞHF9’½a)AψX^–kf­ήΎ/ώΦoΖk_ύ#2)_Dΰ«ΪIΒAœΕ—Q`Œ{š…ΰΣwdˆΜ~ά:–ŽΆJ¬•)šΣMqeΤuΑΕςΎo“¨Οά"ΞA§™sΒ<0Ξ+:τrΎ%a„si^ςLςG‘Ÿ2—όH˜²³Ξο·]iYΉV€g&ΗmKhί…‘ό…_' €‹Β<·³.•‘1΅Πb”υ„ŸΌμϊβΪ.ΓRe8`!„ ς„G…Εa;¨[²dΊž™σfbwIι$žΨpθœXό<0½!lγW‚Τ„9…9t›Ό΅ +{ηι'QΊLΕμΒZœ=ήG΄Eΰ::¬Β^“λ₯ΠΦΆΡΞD‚ˆ’S Bί” 0Rh4ΤuΚbM΄œ―;μ5Υ¬‰RΖoμΦυ˜ΎGt *@˜Σ΅DzΣ§JK\OgOT>ή†?ΥͺqDP˜up…λ”·Γ:§₯©ά$τ8‡κ”ΤVΝΓ1q|³1Ί.7G0»‡»sŽ£š~Ω‡ιΩΓ²²+™0‘,.…ΎέbjdC―&oΝI­‰1ω+ΠHϊ©f½NK ­ΫX>Ή―MΛθPκv3^οEm nlτ}}e$$*Νό‘8šΣf_ώtxb!ή~c*όiΒεφΔ/}‘¨R8ΗΞ-A$!Ž%$ϊ ‚?Θ@<ωθ@άΉ²7&7(‹X+hι`αHΪqj½ϊΞT\™ˆIBβΚΌtt6§ΨŽΙ ΣW"zᲆ?F} 0βϊοB„+q^έœsΜP7pE` 8ΚcZ'Φ&‰ oZV†ƒdŸ™jˆ-ˆ2\]k]œh‘"†n-Ηΰ`šλΚh†ΥΪΌE€§υΨ„ͺ&ΚKUυ)³9œ―Ε­Ϋ[ΰ·ρ™!ιβω3›?ΚΖ’v–ˆqq#”h«Y’ωήƒϋ( zZ‘A! xo–o(€~-˜-nXώ/Σνχτ Ο&F› §θΰnθZΟeΞ± ,Β"2 ‰oΖ$ƒm­τkΛ„6dNΘ@ωάFΆ‘:YΉdΌ~‘2θιΤ½2©›ŸΦ9• †8iš-‡±ΗdŸΝL!DXB&ΠΈ)gδ—GS9e˜ι‹s±ΎΎΟw؏žσ:€tΞςΙsφ‘’v&€ΘXX'ΛζΫdGσΥg½G`Γφ£5Wp±Hά„+μ~₯- ΅δ₯ρωmBςnαϋQM™ϋ ψ’ΞΥ?χγ?[ VgιE„‘²΄Ÿ-ΆδϊT―Οw΅fhΔΠk—ad}œθϋLτvΉͺλϊ8λ•,Η»@—ΦΨΜλcζ}jδ.Π¨ςθƒY›œN„P§@+΄i­Žž^Φ505,vu¬ύΦ[hύ7ΙWBεl™94 ΓήN`€*}ux~—h_w±άocšjmΓΑ|-¬‘D {ϋΝ8sρ1˜όΈtιvΌyg8Nφφ3QΆβΩΟA£,ω ΒΤΦΌΓ Δ\ŸλίwbΏδ΄Ό΄ΏχΖǟ~*šρλ*‘34 E[ψ’,͌Π fXQηζ‰Aθp‘…•: ΑHn3F»ΜA…œ»·o@ΧͺQ€RΈθ<`πIΦΘΜs–˜=BνV` έΑ²Γ cΝ0_`uΚJ‚P8hΘΰ@̍Δ{2K—βΌςΣ5¨V©Β‘ Ια €ͺo- 2aΏσ¨S ŠJJ…lΉώL (#ͺ_#ύΈΏv)φΚO_J‚‡νJο€f*šα0aϊΰ9ψνO΅γ^’,$Ht¬Sηu‚ΟHoΰIzΦԝ܅ΆƒVb]FΑδ'ΰH]\yρ₯ψεθoΕρ'?o½ψρΒ OΕ1^»†ΓΙ]λT…6#ψ$AaAȎb=… 5DΖΥ.‘Ÿ„ίεποπ„σC8―&†―ΕWΎό›ΡΆ|υΉŽ‚­š9ZŽ₯c‹ΰ+ΖΈ|T<ύΉψΧ_ϊш@ίEψΩV’ζιO§²Μ±Ht€—Ω©χ{ϊώχ΄Œ΄΄ΝίΕ£8ζώΆŒμωD±oy_<›ΡΞDCŠ…πiΟ+zJΡ,]Rγk2Ϊtψγπ½Εg}Ÿ–i χ~3^F•†ΩΰύΞBΒuŠ3C~/ΡζΚmφ‰ -@0u`}l_< ‡‘ ©ΐ’_F@…Q”O|μ§ΰHBŠ’²– ?φωΈόζŸ`ΝΥœd‡­-Ι΅ˆZΗb*¨HJ0Vχζ]aM­ζ#-η·Ο»„ψ:Οjy¦ ”O'°λf"s©ΜTΉu€΅Λ#‘aaω“=“TpΊςΓύOΆzΩ"Ύ_78=XS=qβΤΒμ½LyOCόΞWώuœˆVB¦‰’cHΛι9΄@¨ͺ0KW’ϋΐνΝΘFΔω€ΆE!φ΄ύ\lΞNΔΠΝΛΤ‘ ˆfb\Ξ•΄|xS}w47·εΊΌ λ,zηxwb$ž{d€0j…*ψڍxνΥ;ΡΫΫΖζγY%M`Ίΐα“ώT?„œπ©ϊ7ί]‹c=(Ψ„Ν3€ΣD^h %έ7Δ΄SIS8‘’3‘υ“³Θ„Œ rσTΨ¨‘~W°ΠqZaΔΓMU嫌ξ^ 7 ΛχSD¦FŠ;€ηύ3‡EfjϘq7­-»˜χ₯sή£δ;οY@θεδoB™nžξ―nξΉT7J²­2H §άΤŠΖdΆ`ΟΣΓςo΄οYY‡Ϋ›sζΫϊΫ.-n‚ώ§`$¨„ǁLL­Χ³>Λ f©΄Mm£ύo?eV%κFβAΧIb x—Ιή2Ÿΰ_ &nπΤu ‹Gžυ!τphθ›; @χ€-l€6§€πίJ’ΏΔ†ΠΟΛ‹DΏͺήŠσ ώ™Κ&νσάΒr|ε^‰γhϊΣΓ‘φB¬kŠMΩΌœ_‡±›G]E›*ΚκβΙ'k―½ΝϊF+άD$<,ν(ΌΉp‘žδžŸ‹N`—„Ύ=|&Λ}{€£znΗ‹o]Nϊο3?υSρk$#[œŸŽΥoD{WΡΪNΕφ³U¬΅•ά'σσ£ŸAΦ‰€·š’O={ξηKγώΖ;qβτq¬ @6c~t&vάO<‘㠣o Λ‡g"yAlΟ=K,aQμ†AΝB²ΞNXMλδ4Šΰk}έhΪ€ͺjsψ~¬0K ]+‡ι½yχnŠφΦCX`ښŽιψΛ„c™‰‹8©λπΏ0¦~ϋ¦Ζθθ" L™θ…ΆεσFΰsΠ 3¦nϊΜ,1›d¬θ/η|6]‡ώTL3g˜42i©ωp Ξ¬=@b衐XŽσ;­o֍Ώh«Π—’ά΄koΡ «PšμiΕ°¬$@;υΪ­k0O›+φA6’ΊσhάΎτJ|βΗΎˆΐ 䆨W‰ύ†…εŽ²•%δ2‹—,8š4AΈG«ί>BƒΠ― ΡΪ|K˜›\ήdή— T­&ŒrχcΫάw"f†Ηλdγώι#Η 62 ₯!‚άT†ί>€Α”g†R₯wΠv/υvνπGΏ»ζ„Ώ₯~‘Ÿ ^0Ÿ₯Ώύ›ρΟ~ύŸΗίωΥ/(rhΫ60ΰr¬C Œ)„Ί–8uφLόΓυύxͺ a³:+`}2vt9=ΖYyη’_F’%τ ŸaiBΖq³χϋl―τT’…Ž[’§ά{ίςεΝήΛE{[Ε‘θ"ߝLΙ„X―;7ŠΞμ&>Μ^Sœχίλϋ-NΡ.LVjΚφΌBrΘΩOώXΜάψc[›φˆYΦQ5ψΦμμ†ΰFα€Y’QΛx€ΚχΔ©GYg¦Β%œΤί―Ώφ}–‹[ΧoЏωθ9Ο3₯·aΟ€>β=wΊΑΞLφ€4ΟX»™ Η‘EΙ€!ζ©ΖBΣ„€ :ΤBtΊtΥΰ ώ^]ˆΰ.̊Š ƒ‘«Ά›0ό{=P\±χN|π‹“E“εsΟ<ΟΖΎ› V}馃xό©ηDχgšΨhˆœœ»§O1ρ!D`λά@  ™SωƒΕςχ_₯Άόy ΐGι/ηOe_œ;ήΚF ;Ό’ΖA$+`:ξ.LKύq4D~ΑΏ`yy BΞΗpάatš0«£₯ΕBR ξy―b+–wJrΐ |(VΦζb{…(QΜαfπεSdpnF@.«n桌συQˆΕ2{ΕZ|κμEbϋγ^Χ‡•L<>—nΜΔ±Αφψγ―ψφνψιŸ{:Ύυ ’Λ­ΟE‰ͺκΧΦbf»5*ΧΐiίhŒ‹ηaL°ΎDΨ] bΰ½b•{n\…@Qf;”“gΡ2ηΡ~N°*ΤΖV“62e’‘ hgŸB<ξ'Ζ―‚+Όΐu~ž½…Κ΄sωdΚ/C{[rRQ† ΗίΒκLά[Ž ηώV$›rMoˆΪ:±λσ»q %Β!„Λ’=^Ϋ›‰£„?ž\˜GΟ4Ε~bΛΟ>π‰νDFΊCxόόQˆΰΟΧ’»―-`(ZލWBiΰό.$ΓC ΰ&'#Ÿΰ˜iVΥ$ΚθΓΉ›σ]Ίa/}=ΚΩL««ΝΦM—ΐ(zM&z— F&E‘β} ΪT4½‹›…– Eρώ"’>7R³-[v9Φ€d€Q)ΐEͺνLΒ†%Β‘uφ™Γ‚ω€žY™ΓO-;nτΕrΉϋπ»ΟΠ2ο₯,ƒPβ½sBΉ€―>Ο­ήν―{ηe$ύδ>οβFοfξδ{φ~ λ vΡ‚Oi«LerΔΕ)^Ku&œe©m4ΊŒšΏTeeύ…†‘瀴lcΆ+Ή‚Ύ/ΪΙγc]62η/_½{@ŽΞw(Δ8–Œ^¬α=ΙR²I†ι&bχ—l¬Ζςού\Jπ7ΠΧ‡pn›άT0vρΤ*·OrΙj¬x₯(Έ6—–γφ;οF9N›Sc΄w;Ξ?y‘πΫ³qϊΤI6z6~’?VΩYΪ‹3§e~βΟ…E ««+E—zξΩϊ§œŒε§žς "υ“_ό%κEXYsk[άΈrΈdkίώWΛ(Vp-V¬? XM̐ηϋητ 11Bδ«#Ι­FY¨’9Š*αfλΘ€Ό's@£V`Ξ<žζœΎ;εΜαEhΦ֏| ZώΣρΙy "X3©dY ½Nx_5Α‰ΫO.Σ,“Ίζ¬Υhh{„oͺFpi!²Χ&빊q^Βϊ«%pd€‚jΨύMζ‚π©$3(|Ž―σ5EnKs‹ω“ζ³σŸ?§# ΅G σΖιι€L°,?-šώ†βuΞΥy—§oϊρ›Ήφ‡(Œ€δ©\ΨΪ\J‚†šfαTYt<κΖ5ελXƒΦVΝwmŒ_{š4ƒgRΤ.}φ2!ƒϋη©:2Ωz·i*¬‚upnϋΓ]Σ#)@INϊ.ύΛ #I@Ρω_ΎφΦ΅λρ£Ÿy&z{Šh~X oݍ§ŸA€―†B‡!ˆ3‡nΚ–ϋ‡Ι€θ)큹<ΐ7Η ΫΎ~W!%ΑwT†αŒ*^»όnΌŒ₯ε‘GŸ€Ξφ5*!¬‚ζ­ υšΓ―ͺ‰PΝO\|žRˆξĞεό"u±^’Υ—ΑΘΰh6υΎΠώ"ύρYιˆτ"£SόNtΥ+~Οh˜ϊ+)[<Ÿζ„ηξΣ7οχ·—Σ;|.YΤθΪ¬|.πΏs@Ϊ£žΔ{ο½Ϋώζj*ΓΊΪYΦδπͺεbŽœY'bόϊw EτX4Œ~UmήCˆ0η•–tϋΐvιϋ'“ΏΑ: ΙeCc'λHˆσ@΅Š‚ΈύQ…°pϋΦ"ΟΝ‘ΜxŠW"β{e _+•κ–Ϊ˜Υ9]+^GπΘƒ00‡‘ϋΜGR‡…kžeΗωG³Άx3σLΈύυΟcύ˜Ε―²6˜ƒΩ+-2Sn:j_₯|Bgά ’¦B.ύPΐH¬‰@RkVζA:£ΰR&*ŒMBKšHœ «q.>€BDΌΈšN΅ψZJІ›ˆajՎΙl%˜e›΄Šm…ς2AΔϋέΤ΅ŽTΣ―;0FΎRcέχqvδƒ:rsΤΊιλ§η3ϊ†Vλ2ο™Π6Κe›­k,aŸ)@¨K68gΣ;Έ7+σF2'ž„ŒQHφŽΓwηyXΒμ9ڝmΐΤΝ²Šρ–δ{,Δ.ηΈΧ,Ξ j Ζ]_AΙmWbš`ŒΘ„μΘτlNγ—sd|ύM6Y?U0—Mh΄kΤΰ"$Zζ& Τ@©ŽE+°*†—΅€Ο˜ϊΞΞ."C ’ΗŸa£΄ηpκ΄ΊB"νΑpΓ₯4’ƒ@&υਬ©‡šςŠA]ΦΩΤ—ΑΑ.‚04&ΝΌΠΧ}WαxŒάŠ*¬ΗOŽ7y,g_xτ ¬,8²b}1η₯«7βΘ‘ώ8~β’!•$XζjΣ7ίyΞRΘ­!ω(ΙΚ`AU"oA°0ζ§„ jό˘6ΜA€2Ώ}F8N#>gζΆB²ωΊα½Hβ4}ΏΜ †!­‰*¬²E!ΗΖΉi†m8|ζ*γΐpT㬊ΒάΡK>”Θ|@怕!μΤT •­Η44pnv™pΫτ=‘»ςš[ρ™Iy-ΐ’%εEŽΔ­NΆ ΝX'ή™•ι”–IS)“”Ύ–oΎΫ πλ‘Ώr*bώ λ,xi=dχ–ΐŒ§ΘDΠ ΅Ώψ„΅ωtbTΧ7PL@G“`ΜΪ)cώ%†{…ΊώχxYABj»^`-³β΅μα―₯ΟΆ©kΖZŸ¬nL’€=/=„ˆ!pŠ΅nν™[6TAεMί–‚Ή‹(μh‘«°ζ- |B0~ϋ$Wφϊζ«ρ‹ΏόΛΡχψOΔΔυΏΧ.UΕ”+ωΦΖDgXE” IkhmIB η]°Λn΄_Ό v%ΜΗ|ψζυψGπ!?N]iiα>@ΏΜχQ`,K 1}™ΉΊΓl~˜ΗΟ΅ΔΫοΝΗ'ιs³§m+Φ1MΌ2_ρυ©2ζΩ1J‡ήη‘θΟΫ†S£dΫΰυμ/+“ωΡ§{ΟρE:jφF8ωξ½ιΓ2΄jΛ+ς–‘&yRnPGϋυβ;B£€q6!ψΥ‘T@ΐͺΘ8ιg3uo‡΅²ΈlBK’ 2Ž•D³ά€•°§­oΟγ·ω4sŠυσ―5js Kω.<φιΈφφׁauχ3Κ Š,πΖψ…Υ°ξY™•φΨ$k·GΏΗΖ%Gsκ¬5Ή‰ύΈ»΅>νέΔ“€ί@aΚή£ςG?νˆ†Α6βΫ&J2HΡ3ρ'ΓΜ]ύ}Η~~δkο»ρ?>¬Μ;χΗ>X΅^NΏ?J9ϊΰϋOCιΔG@Ό³8‘ξ}rΈ©¦’)^w܊ίΌώπϋΓψ°pΎτφ’«Ζ`MbgΗI6υ ΄υ0*dύ–ΚΠ Σ±±9ΐΠ{τ BΚ8Π‹%ΰNΣh›ˆnƒω—HRε80na―#Dh5ڊM΄‡58€εaJpΘ&ΤεΖ&ΈκvΜΉkdgσ\[ΩΛΙ&U©³7½5-Ζ±350>eqηnc ž8ƒΗΤ0Ξ&·1ξNŒν‚Αΐ©φήπ(Φ•[άΏwn/§!N{*J ψΒ³΄a5ΎsυftτΆ²ΝLr›»Θ&Ž–Η&λ{d~'s3„5†u ηΙƒJ˜I˜ξ-π―Υν­QAΞ)B‘cUΙη‰κaήΓz²ƒϊieqˆ<&ΗbœDLC·nΗΰ#CB»žvςKΡϊΆ€‡Χ₯ŠpΪ“Τ·”o +ΣBMW7NΉτ] ΈΪϊe~m4i΄·ΩόKφɝP}2>7Γ&°…F› —Φ ΅Ό§~΅Œλ_ΖJ gσ”ΜΛ³A¦MΑM–χΙΰ+ Θ'ν,ηd6²M0LvΡΘ+”)άψ—Β³ΑΛΘλΫ LK₯Gͺeyζ$ρΣzθΜ[άeξ\Τ€J 4F-KτSDd"yͦφ Ό$νž‚cƒαP±ξEμ|QΨ±νI ίE₯λΦΡ??}N!‹nIέ“’fρK&4•Ιx–"œy[©Ÿͺ9RٜPQ νaΉμɜ@Ψƒ©΄2&yΦ‹―ŒΨ½ϋ³‰i³N™6άχ•FΦyκΚ˜άξδΌ†U­œΠ΄₯Dkš&Y¨žˆrΒΑnέ~Α½"Ί€c Ν;ΐΗb[η^"a-ιNδšBΖόpIςnr[Μ‘wc)Ύζ½ΖΘtΎbσ@cδ"##UB+_Χ·ξαO8MN :|•Ϊza$ρν*Μ’Ο†lεGŽ_†θ] ΒU6l&‘ͺ₯‘=ΡCώ…9 ž£“ψVM‘ƒal7EŒZ_Χ˜ΰ XC—πέPϋ_μJΈ]{;Ÿ³5@΅Κͺ“΄C›mŸΜ­—sΜΉMB›ύΎ„π!ΛσΕ-•@IDATΈ‡ΖΆ ­ΎΒμ6sS ΎσΦω-μKKΠ:‚»LͺΪzΗkΊ @ΆFΠͺσώ†&¬΄…Ϋ Β3ςLV…9 [‹SsψΒ‘ΠΊΆT ³£`ΈA₯rϊlβcβχύ ˜Ξ_b›σ—Mς4g\j–Υζλχdλxήeœh «ΨΟ,[΄ΦGS²r)·ΛΒͺs­Œ<ϊ6xQ%D>;oΨέ’σhŽ7}RC0€ŽΑ§Ρ~ 870P˜=½DΊCkCψFΏψΆΪH›Y/ΒUVxUΉ?εr yQ°kSΐWeζ]‡”»°6ŸΑnž†“O}".Ώx„Δ‘Χ-˜θ$eΜL|+=’8ήΝ›©ο‘α'ΗMMz)V…|ΓϊZ³½/LŽΖ?ϊοώ.VΜ£\9g˜£γ)IšGhβ:a ΅υυφ•§>υ“δ¨ϊuθΒšs‰f,m—+–N€τΉ_³εŸκd½Rίπi݊4'΅·Ε?Ύ €Qγζ9οMm΄ί(ί# ι»Ο₯S韝τžŒζHΣύΩ#Ό„2S‡χ§I”}Ož-Φ§ψιUιΫ>γqΣŸ ³₯Qφ=φ<,Τ%kΜ«‚4b°–aœ1·n‘ΙXi ψU|0Z!₯ψP€7G)VQΫ^#ŽώΞ,ΔΌ; DβY‚‘Ι5“/† !₯,τάA]l-n±ΙΪlζΖΦ2Z °£DnZΑ™Ά¦ϋπ§ςي%΄°΅hχΑΆ0γΔ‰―[qεšΙψj’I-ΰ?|ν&“–θ>‘*™αqr‹ΜTGLQg»ψaκGτ ¦&6=BΪρbˆjθ·’‡h6ΛΛMdIΞGgSΚ}ξœνΝQN}ΤΑ9nη0α–Ν ˆβRΧ/½†%xɞY|α< f««ΛD…―•>‰[Ύ@"³MB±ζΦ‡"ΐ†/M]«‰›WΏGΟΡ+``uF/11B‘,¦GήCXΓ’€V½Ήά6Ÿ«5[ρΤΡΖhofcΔAΆ€l (Δ|΅Νζd˜‰2ς”“y~XLIι2Π3‰΅–(Θpι’‡)H―sλτ{qSTSiύετ C7\ ™ϊ{Œχ‘Znnπώ•‘!aΉ·R­=Œœ…d=™ΦyΪ²„pΘό%‹•(B›djά,έ¬…πψΗ)κΘΒz3ω$˜lJ©Ξ0z0’isζήδ”ΚσΕMάg΄™˜, -6‘§S[-εp'O%Β\€~gς[Ά™»υρ ύbŸP4̍–4Ωό—2Zs @wΉUΒzŸίδŠ9ΌΗόΦW­I.m£ 0ZŒL$ι‘Υ;λŸb•cm²ΩΫXχY-`θ ώЊuΑπΤ³Xω&§–™D—#Ξ&γ753/ίψFš—ΗϊγάΉs1€@Ώ΅ †ΘI5J‡ΎσΞkΌ›\!†έ-AxΐψΤQΗ-  Š„ β­Χί…‰%8Δς ΐΜ&«π«9 23c3ΡΣί‹&’“0«X'„dφ;JNŒ…xυΥ·β+μγGώSq|°ŸΕNgλbΏ§Ϊ;3lpލ5MΤq_2ΛΧΗe­¨s§FΠώT¨h ΊhhP²‘W#T8gΜρ@ϋΧ€m"A§ˆZF;ͺ¦οΜΔžζ²“‡ρΞ¬%ΐ­°N2Ÿuδ–™5ΜΆΜ*7§:5ϋ²οMώX θ}²¦p§Wd€7XW+ψηΤΥ6S]Ɗ„£t~*ΑAΜk²ΗΌm βί>˜ψ=ϋ5ΐW°²μ# gΜ•“fΩy—„hΦsX¦ΡuθLUhδ:‚—(7³ZͺΫΕZ³Ν cNς UχŸ΅ˆJ„|σ!˜ƒ#G΄•QότόQŽάL£οMΡ€xΦ0§φ­σ{G†ζ»χμγ1φΞ?'xZ—δ.EφβAhΊυa­¦Ο¬ΊY9Ω»wι—zθuϋ…υ5œ±Ή„¬§ηΚxw5pΦe|θς¬ …(.%«QΝ‘Ο=DXVsώ‰xyπc1φν‘ SυΜ‘δ‹–Φ•BοsΝS²–žd}Eh,RœΖΩ‘C¨Δ1{YDyϋΥβΏEoAqƒΕΉ»3~χΛΏΞ€‹(’φaΈ·Q>Ma<Εό«F(κc/Δ?Ž_§O* 2ηZQ H‚€}ŸkβXΪ7™ΠQόξεlΜ3†?έΙ=ܜζ`²*ρΣ1Ρ7IZ‘Υ[m©ΛΝΚρ§eΫΏΞΛΆ#x<Νeoτ³Ε7§ηΌΏxψ=ΝύΓςΌTΌξΈν3ζͺšθ?υHά|ρυ¨?†R‘ιΈ…ΑhzŸύΙxΛο|πΝ΄Φͺ FπϋτşA) ΛI²‡‘ βB”T …R£ωm²/LOB₯^{[/АήM[Ήž,Χ̏dm†Ζr–s΄‡ ΌUψ‘ ŒΌ}°ΓΔΕ κΌΑ{7˜s‹¬έ€Ψ‚SZ²Ί³,bxιΓ#λfQϊβσπxΨα= M{ϋ>mdΧfc˜ή‹aœΜcζ`ζσ’0mχΏΎA„ΐ|lΝζž€ ©iΖ2‚IΥ(W ­έhM„v–rv«Γn<σH?Œ6› Γ&‚*΄’―‘eόs3{d '9a5Q5Πb,­vΕΉ³ΛDΖΩ!VMά&Γχ.šώeBn.V }ΜE=YΔtj`Γεή²>Βc*˜π S8CΟ’’^F$©B–ηg€yΥ6bς§^yPO(NδmαSΉθΗƒΓω`_ΩƒΉŸŠ'ˆ"C£qͺ5κΥRΒ Ο'ΙAŒ%€UXsΚkKc}t›h ΡPΉnz‘l»ηΙO2Vσ2˜ωΒϊD¬—mΑ¬ΐdρœo π,ˆ–ΆWβγΫ124 Σ€/ ΒYς$°ˆΪ|›~cް‘“+ˆ”˜XxΗΰV 6œ ‘Z`cž"#ϊΑ>~70ϊB«Δξ¦LΠn4jΡα_˜€βFfR?ύRL&Ι]iL0,™ ~+¬$TH=η7Sv,7L­ή³ DEςdπ+ˆθΔν¦-s£φΥ€e<žξρΎ΄Rb*6˜4νŽiσTƒ]@ «–79ρ:I½Ÿε„NΆ#“°#CI_ωέ:™EΫφ©1+ΦGh–ύν}Oaη¦5iΣK›9ΧF>έ—ή”zΜηΐ°iπΖ,Μ©Φ–‘pηΆQbPΈ[ΑΘϊρ­[zΖω)£a½eMf.γ˜ΗŒ•pΆ!γΆ-Ϊΐ2£\6rα1 ΅8³ΉQ­Όν#ΜOΘζ¦ΘΑ8–αΠ93Ζmφ*Μό»o½‘ }uUυψl­’ε{—HEsM4χγEw˜ Xν°Ά΅ΒtUΧaΝΓYωκυkΐo$FΌθδ3Ο|<ϊϋΊ‰f—' βυό‡dαήΘ6&/Ύy§ψe|±Z‹‰π>q+ώζίώk8™"0ίŸšΔZ|―›uwΗFι)$>Ί'fuu} αΛp sœΘ¬;‡i ύy„‡=D]΄a‡ωΆLέ…σ•CS΄,Τ ―’μ¨Ά¦_€ƒ‡’œ>M#”ΦBAΛ–!&VΖόΈŽ²ΆΕ\fxξlof}οΕΝΛγqαόy ‡ΠD,PZYJeμ)» x ϊάμLμ2Ή Ξ `α…0\ϊ8π}››#τh‹λ%c¦΄Β QNB3σ)ΝEζ΅!C]‰©OL¬SΊ‘—χΘ”1sιΦ/ηε:΅VIOœ»Ξ¬”p:cΦ’g!ΗΨ―,0·¨@„’}„GλF—ROX°Œ/ߝΛNΪ#gΟΕ·‘ΛŠΧ†‰>€‰WΓ|@™₯Τ™%­Q©‰°0Γ₯β6΅δXͺζϋ:τ@+―‘~ΜuήUI9Z’΄δΒΊ―³9†WӎΔTd€›ΙSΗšή…ΙlΓoθφ7pT'Ψ†πž]ΖΜ6ͺX¨DQ”`9”§ίŠ]žη³zj;ΆXGζΗ©ΔΚ,3ΫύωŸ$’\m;~yΠ#ύΜ%](CΛς$αΧ¦˜‡9n‰™5a‘0FΫ ‚B[©a–ύξHP‘tέ]ω)40Ÿ‰Ž€+v§t#»οπTšWΞ=•RŸŒ€1&Hϊ.λι°­aβΪoΎοπHcM›}ΏyίƒοτΆ{Ώ½οπ7ΕψHκΟy)νœ,ŽA%Ο ΎΡ¬Ί€ ³ϋ£PD8c]oo£œΰwk/ΎUε½Ρ…π½π2IO x€ςΙ#ΗΊΣή\9ΈU²N€ƒϊΩμ‘u >ϋι_Š―ώΡ—X_(ξTVT`fv˜œ\ηQDV1/ΉŸϊδ˜λ‰.j%ΓΚΠθ ι Μ*ΊΦΚJj‡!θσ²mλωKΐ°7™,Lυ2ζ„Ύ)Μ>‘±¬[ο}x0ψΟΓ=7› ιη‡ό ήσƒ*ηΟΤΏ uψ³Τ/α³Λ――܈c Η1QΓhA ϋŽ 5«ΧΌΛ³:…“Ψl ߏ`24˜ΔŸZΕiՈν0dLχ>€{›H¬Χ Ρ!Ωω-ˆ6uwt>nάάΔ?’+ΞξΞ1Μ­Θ*Ιg6cm— ΰh+jσ„“D 0ς“PšmΰB+ΣX3κΑ»‘ŠΖ˜Ek΅Α&9>½GΊŽm5¨o~ψJ± "ΔU!lt·χΖ©=ρ‰Η4ύΆv«7Ιψ‹&ζD?ΡΈŽ’α88ω50φ΄qΠŸ%„χ»;SO$.Φ²5m’ΙΥOαΫ9΄ΣCX.v·V“–ΘpΏ[δ-θ9Υ} KLc M%2ŒΐсΔl~LΓεΝ) ΘβόzŠ&ƒμ|΄Ο™“Τ΅ζ°νΔEœΠΏ“ΓοΕ€σŽρΘQ_!‰bρ+h§$lα#f?!v#<±~Q>H'`%“•ΙD5(qφ Φ±.8o/\|:£DYŸEΡ’1―jp}•σ|g?–€ §Μ\#kF‘W«˜Ύ.ώ¦3ΣZ’₯œΫωmΞ„Ύ;ΎΙyŸοΦ―λŠP8i`rΐ§~ZSžyξ“ροΌcΓ¬1²?xFλœ‡c&<Σv§ο‰4Ό-}r4€:bςœ7ΪU+k·†ρ©«¨alΩ—°—eNˌ‰$—±ά‰,€N—νΤ¦zΨG‘iΕ/Š­,4/§ξŽαύξΈήoίλΪϋο|―{Ξsίν]^ϋ°η<ΰρQξyπώοσ]`εŸΟρƒzΟͺœ?K«2ΤαΟRΏŒΟ§7?™4 εe0ˆX8ζΡΎΧ₯ͺ gΚ­υ(k‡TβΔΊD$,τR±‚E!‡ζ¨ hG'J"ϊΤΤγx]w ΏΪv΅£-ecŸFπhͺDbjx=Ύϊνw(i\Ίέ†SΪDΌ{έΈϋ;<1ή3s1n6½Β–ηe(ŸΪ7|KΨ™ΚK:βϊ΅ψ»†/ˆŒiE QhΆplm6BΟ 6ήΫ@B$€…Ϋ7G †· œ1u'—¦M“lm ‹›ΪΚRCLΞΈa“»έ­γhβ–cdsœMβ₯ νά6Z³"θT4+#Τ&šζ… "π`οŸ_‚YΈk ‡ϊ Ρ…ήgΓ.ki/‹νόHƒEPž½=’ξαεζ?aΕ,έX§ž C,’ŠΧρωxg»£X›ˆκ³<#£Cb˜<Κl:°€¨Νςψ$eUΕεWKβΔ#sqeˆw°ΘΔζ°~μΙ³8–Γˆΐ„5u¬‹Jλu'ΡΆ£Ηcvd”ΘCwX―]ΐN€τνΓ v-όςχHn;L”¬ˆc@¬ΆιΣeΜ<α Š™ΕΓr­ˆ .f DΟΣΡ€AΎb› qwr˜ΐΣX;Μ‡£6™Ί.Ψ†ζh'σ- ZΦq˜7‡FƘΊΔkn‚uDΏΙhΦ㏑@ϋΉJβΑIπλ솉έΏ]Ψ€.Tν°69/sSΐzk"Ο-,΅ σ‹8ρW’π@Pΐ?£u]g’G…胝q‹Hθb3Kγψ€=Χi^+Κ&e -IQ΅Z:Yσ2εωΊ3–οΧoΎϋF<{κ3¬C},h(c+Γμ§Lzf•dž³φœŸ%Ύςϋpm¦Iεάg¨™,ΞѝίΙοˆ{“Ž'‹σQM±‚‰s+iοI”:?NθΣΒ ‰¦z-‡υΖΓrάζ₯2—,f;59‚_TΠΟUΠ%ƒB8—:π «ηw½Β―c¨°Nxω Φ&ϊXΔχsΕδ6ŠΚώΠ›²¬Ίΐ½sπ1n†%ψ€6Τα»Vq‡ώ8ώώ†Ÿώ{ΝρΧ‡•ωaη>Xάκž–ϋ=~g”ΰ{άPΌtoRfσ»xϊπΣIκ„ΐιΏΰŸΦΩΓΕt―ώΑuzψϊο •Œζ6Ξa³0-»0ζ¦†β<Έ©G;wqp+A£xσϊ{$Ύ‚ΨTβ€νΉ€BΑXϊ8žI°T2ΰ»k%|:³ή̞tΚ1‘{ΞΦ‘kα9έ3—ΦTbΣχ}ηšσΚSι”MΛ}ŸΒNIωšΖo£TΑR„ΐζ8–ΐΜωΞtο΄o]H‰Ωμ<έ1¬άΣi^j Π―di-‹ΈΆ—’w±±f0άθ†xλΓΉ›"QYΆkΓuF;ςτ‡I“7ˆ؈/@sKw”’@i"’a?I*IΎJΙ5θC0ΓΖ–œαŸΑ'c2A󄽩ψ°}ΥΠVλ۝ΎΫŸ΄ΘCζΧ5¨ώ]«ΝK‚›΄ηφνΫqσ½Χ£Zέέm>¦¦8rt ώΝΜ·Ρcό½‘•ΧΔΓaΏΈ'%Ÿ.Ρ«©­Yί‘ώΕξΣ€μLqT;iPφ<fγM_™hLΊ^l_ΊPF¬ΧύοV…’βq―OξŸΘΚ₯|iΧϋ_κA]‹°Ξ%Ϋο˜ μι>v6½ϋkRZ_t{±23{ΐ–‰$ΦΩϋHܚ|Ϋιά™y6='Ζ@?;Ύ*{²ΩΣ k?4t;ΡEy‹&a\»|#ϊϋO’Γ«3Ρύ”ίΓ`7ΠΰF,νXEͺ€Η*¬HςΛz“vomνΗ:πγ5”BJΆπφœF97‹XΥJ@4αPΚAPN2?c―’ρ0A~4΅ό‡ύŸβ¬όΘHΆΩݟ€Er•4i'ψ>&I6ќLNH?<>x.MΪ4阊άΰwgh"dtψ==ΟχβϋR_ι5ΓIJtrC–ΉπΈwα»ΣΙώyίϋΏΛωοvΟ·?όϊoΣŒΕλ/fœ=υŸα\Ϊε…)Аo†ιΑΩ*Œv‘Ν-Ε^ε&˜qΜ‘UΜ3΄~7ŒΰΠΔ½…8sΌ2ΞγJδ—-΄8bξ ‘ΜΥ,Ε;ΐ„ΖVs1>2OHάγ@’rqχΪ;„g„YΧΎŠΟDQ~jΠΞ–`N`Ψ§J撁D~fr6ά^ΰ<»†f.Vάό%h~«Kͺb|Ξ΄+Δϊ/­ Ύž μ`UΛ:&1ρ–ΰ䈳ψ<Ξ‘8‚Χ·β ½6Ύ0Η.‚]ٍΙ! 8°“ι|7tΊΕ‰½ΒZΧΖ§ξ­EΚΑŒ–g‚‚ψ·4Βΐμγ­ΫΩάπ$±Θvι4P56Wpπ;»„λœ#©!XΤΎ²—Po4΄‹λ„ME0ΫΩ‡¨Ζ“ y~;Άxrν‹1;³wήέ‰ή~b²·‘ q½ΧQŒ`θσ}1>F"BbΤ·α~ηNΔτ&λ’½:r›@g‚Γϊ6£*4νlΩ‘Ρ…€9εšχ=ψχ ΝP+λ5΄±»Ι³±(k(x€gΉOΪγw7Y™s―§ χpέ» *”l‘ι’q37"­"ΙW“;$i³φ%͐Ρ7Ϊ‘Œh·ͺsaα=icεSηπ„Α¦‰ Β»D¬Oz¦Υw$Ώ 6Vί)-ςOΊͺ •ω`dQΌŠο° ώyΨ7ΎΣσΩσY›‹Χ<ο=ώω=ύΑEšΓγΰY°ƒΙy{Φχs{‚˜?“m’σ”α1δεΡtΰί ?Z±†56Φ°Άx†η¦€NUθ˜‰e¦Ό•,έ‹ηδ2`ύt·œ|_έθ„θ]ή8E†ς—^ϋzτvt"ζ€Ka η‡ΌΦ"“Mϊμ½KW£'μŸ|ώ)’<αοD_:vœz‘q$Γ*Ψ•ΰ΅ΕΥW"@›L0‡°‘ ΛZHΝ$υθ ,mž6―"@la™Μ#ΐ·{D+#”s@iη&Φ™ˆš*Z‚τ­pޚ +tΗ79rs?Ϊκ Γ‹υr}s&—°Χ`Δ ½ ΔGŸ³†& £ΐΖ6‰ό΅›[αy”8ιΓC%‹[=p’Φζ–˜–Φ€Ζ]‘³Ž΅ν;šN δΕ‘_ ”•«m]Γ/  ί™ΊΈqγRœ?.9ΜΧ [₯wQj” „Τt–μ¬ ΛjΌϊ[Mg?ΕσΩ|I«ΗΊ»¦ψσ£xψΥ5ζIŠMi6@{΅8€³9“Βjϋπα\“ΓV0ƌeN±>Ασο!Xν(¨3ͺ^meW&0Ÿœ£Ϋh”ƒΔL#ΥΉξΚ™OuτΙAE3pΤeϊey[°ZY‡”&UœύyΞuSΰύ΄ξ^ϋœcNgy“Ω C₯Eχ©OΗ4―Φη(€Ό/GŽ!Ό C/™XAt΅ξΑ'R~(΅κ%ΠRλZŽ΅=©νυ¬SΝ΄Rs$Ευr Σ‹™πΑšΝ₯΅)Ϋμτ,™ΓXΗ8β©8ϋΔ/cΉ"Α% + η}ΣNgv-”ΩZuοσVŽefΙ²€χφ±‡΄Άxx.)$,#δ_ώOs"υζύ²³χdO¦ηx—νΛhPΦΩsi*p#eΫ7άS|·χiVV†ε9jϊp–₯Œφ\Ϊ&*cYe3Vωηbθ•/E]gwΚ·3uνr,ž:ƒΏγ#μΣέ@­π={BM\}χr\|κ³(τκθG-!Ξ‹L‘dD»},£;ψτ(”kIͺbάFiI0f#fUBŒ°βvβwΪΘx x"v`εPΑς¨"« ί’>?†%²_4ΒΦAΖΙK4΅­XΫ 3ΌOR²ƒ…ε΅/G<σY―ιΦpIk†&$ΔI·ΛΚtu£Χ€¨ζΝΞ5λ©N~›˜@u6#¨χΈω₯͎Ii—;ε<ηd,NN?ύKζίΓkCφ¬“=[ μuάγ$χœŸΩDO5ί5Yg‹PΝ^φŒ&ζ©ρ6NΒ»’A^C[[Gb+‰QΒ‰σ> + P©ŽώΐϋӏώIυ’"ΕΆ<ΨΎn{ψυm¬3Ήζέδ‚Cw.Eωέ—p|eΓ`#ΨΩGΓ‰¦γ€πz‹[8=γ|½i›Δ=Η’΅•h4ΐC*[Πb‰³ήŒoΎ΅ό‚Ž@eͺ»Ιψ½]ΗΪΠ ψL½έυ0) Q‚ΣPΣ†― Ω‘s$?‹|gτ&VΘ Φ‚™ΙυθΗ»@’ΎY°ΫU +QŠRc½³>«΅Ώ†­έ΅»qΎˆ ”‹ ΒkξΖϊ°°ƒΥ€ˆ*h#%Š#SqτhK΄”.ΕΠΩ!P›07{d‘ 4Ίμœ[ΫhŒΡν2‰ηΗ‰φΣΡΖά‰Ί=¬)εΛd?3+“1ρ ‘»ΖKSΡΒ6ΤΐDΥjBCΉ{ "¦VV€Ε–μiΝޟk\OΕ΅μΥ΄yή&xπ·›[φ-°<κlΡ&&#iδ8‘&ΤηŠŸ |b)‘Χύ“α3ΈB’χdΈk06ϋJΰ.F(·­3½Ί #Gν'geΗT\²Ξφ@%ψ.ΦΪhF°Τ-ۜ‹mΓ½…Ω^§Z}2„lΘΘKGΛ¨—qι\ :[¬ŸBΖƒΟί«εF«EQσ«•ΗλEϊjY‰FRi·Χ9sXΎW3z‰tŸ,i:έΫϋRFό™ϋ)Ζ«άB1°ˆƒΕƒZ’ΓUΖιΑ#ρθy€™/D‚«’>“„*G0θ;Ξ:†q?ΩΕΊΈFξ…‰…₯Έ}χ.!V€3tΗ,LσθΨ(> „™%ΤιΡ©.>ϊˆ»5|Μ ό ΔΡ/ςW …ΒΦC²V •ž$ x ŒϋζΚοž&B3c-*0*ε άΦŽΪKΡsζp²εX'WH«„Ξ©΅δΨ‚qΟcύΠ©ΪTΕ}¦FtXN²„ΑΔW‘}YΑl ‘]˜ΗYΨ«€%–Β8Ί Eγ°‹wti*]?Fxΰz#ξ!H΅πΉ€`±ΌHCBWΓš΅$,gλXςvόΎͺ^C?4’'ϊZpηe$03,νΤ2ω‚bQΗήfOzͺ +Α+ »15M–τε‰4wqg£ό$°ο1φlyLU˜~™c64󴠘[œKξi>9eh³{ Bͺe±DΔΌΟ=”,=ξΣ–B΄ΒΜ%+χΆ’m`όςjΒh\›εŒo9Ο«έ/ Ύ)ςuͺ§mu­ψλa1šž‰„–¬΄Φx™υ*€Oi>Œ Κ„*Ξ%˜’λ„χ“ωφϊ< - R‡…¨˜ΧΝ2Ι!Uκ΄ €Ήϊζ먫ραΰΑfψ„Ž£'cβκΏA™3GАW2φςW}l§ΠΥ"ίαϋΌžz;υυτmLP4ϊnΦλΌ{1΄ν|ςΓ1πJG<ϋΒβoΌŒ’‰ΠΤΠί’2w‡5©²€ψVi χx$Ξe΅αΛw;θο‘γξέ›ψ$LZ•AΛμΧt‹7¦’xM:—}z=ϋσb&|eχωΫg‹ΟI“¬_:“]ΈG—œizχα5ο£&(η ‘?”΅@’OgύXA6'Ÿ„ά$*Ϊ-‹‘‘·c€\Yεeνμqύ1ωΪΧMΟώγ¬₯yPlΜΦηpήV \ͺEY·ΊzΑΊiΙ¨――qp'~ης{8΅wΔcΞΗΣO<XꌾΉBh#cΝ_ϊˆb‘z—H]„(`Ξ-0Άc±ΎΌšθ~ϊOΥΰƒeΧΦTΖW‚:0(«·ΛeW€σΗΫγ{ NΝY;@Gώψ[oΗ§^ψxΌψ{ΏΟ}ξ'bμΖ[Qέ1gŽυ Η"dΚqZ­mnΗ Md0όJψ₯-jέπ G˜Α2!Bl€‘!R6WˆΉχ₯H:0bσφ1~ L‡Vμ½s˜γf1Ÿ;9˜Bύ‘Ά)€©aQ͌ΕοΏψr<ρρηπ'XŒ7/]‰Σ'Oa_;ˆvN f@iXΈ„«¨iΌqΘQ6]γΚ&lh7*XΛΡπ©ƒa½ΧTvλΓ­{@’q7ΰρΗcbn,΅Μ$•δ€ΐβPΐΉσXc‘—Vπi؊w'aψz£ƒIGί4˜σUP[£λd5ΪΩ|\Ύ#$:›šX%r Œ$Ϊ΄zUC30’UrŒπΚr² —γΨΩ„οC)ζΦMυ#±O²!‹΅0Ζ+8ZW‘˜B< “2ڍεa„"4ߎ3GS‹_Δ†y˜ O]—]³0νΝσ8‡ ΈλM-k q‘π₯qsψUιx|²²3Žτ’K‘b‡$ƒhbQ‘汴TF˜ΐ±€Ζn“μμΫ[8Ω6χΣΔ¬ŸΏ­δψXœ‹s„ΉWΏ£π²ΚόέƒŠ©wuBNtžκϊΆh‡_}ϋ«087a&ΡoμΗΉ3δRΐ…d („q=Ώγσε$ŒFή“Ϊ:πν„β5ϋμΑΒU#Ϊξ¬!νM0:ε’ 8ζθ"™βN\8v ώ'§*βΡsνIk™΄ϋ {ΞNΐŽRάlη΄‘±h2 @¦-tΒ€)ΐgR x"ε½ΩyηBΪε²ν‘ΑσEfQΖP«†΄F¦ΖCΖQGK™ψβo1έ2Ψ>kβ9 ε}YˆΛ̿čùθΪgά΄kjΗ€U–·F_Fߐ­€1H0+…!ΕΓΊ…(ΏKΟ|'Σ™~Γα•*ΊCkŒ uR¨8Π’ΐ;ŠΟJ“Š‚HqS/Ά'Yox―}ͺΐW|Ζϋ}.ΥF\άm^˜γ\ςaφ™τ\bB3“*$zŸ GδXα„:•BsΡbο°!Ο-―Ε ~†»­%Q›Ά‰πcVϊώΑ:ζIֈΆ3­2ΧP¨ίωΖwHˆτΦ۝mΖ[—―ΕWώΰπΡ¨ŠΟ~ϊSδa €C/X||&JhŒνΞϋk@ŽθωhkGP†ΑηΏΙό5 ΐβ<λΈƒςw ,1αP%\χ.t‘σac,ΝΞσΎ·oŽ}oηœ{BOάlNX,‚$ ‚²Iš,ι³J’«€’mΚT(Γ¬²l“”%SϊΓ*KvI’ˆ2SΡEΪ²I Xl˜έΩΙ3sίΞ7gžσυ™Π.»T…ωfΊϋ†/œο|ηΌη ΟϋΌΤ[Θs¬jΘh\H1‹ΈςΑ·‰Τψ0˜†έš’1"sθ*ΙƒEι3W]†₯Ÿ,)Έ AedŒJΦϋP^0¨2{νoΫ EvhڈkK–ΘΗ럨†£@ήΎigΖOp«8*€€GpE‰Ύ z’ΒŽ ΑςΧN=‚r§£;jΝώΪΟƒ0ήΪ5„2Tτ‘ν—‘6ΖΣΧ7€,C†dΛខ.͝vέβΦ+υ© c·iͺn‡†zCΡ AFF#ωͺ‘¬y¨nΰ λΔK—βe™δ[­}xYo½ΉΖHδžΥGr.`ΔΓL&Yχξ­μΣ?Jχ6ŠrίbΤβʌNΔ~‚W9Á€€€E°'Η,Q5 Ψ•²€ΐuΜVΡ/}§6 e4hΩ_νΠΗξ/ΗΘ"y¦ύάgΌλΦ¦g­Mϋ”_Ί€δ†ϋDηt{<ς™φη{Ι ύmΙ¬–<Τ½>z οp‡΄“G[8?&)ϊ~˜λΖ'OΫυχg& ȁC‹$Yΐ‘9‰"ΟālΞSσc‚k{P]­~P%žmz\VHj΄+-Β€8χy"©@žaŸάήά‚Œ£T ¦§ivω’ΜlΒˆ3³ƒ0cΩΆp(΄…@ qΖαυ°/Ν²β’έδ€|ζ?q3Ζ»εςί­‘s4•>Ό74€$ό"pxㆡΥΥ5»玍<Οƒ»»jΏϋφ·m—¬όoγ6σΒ«,>»ςώMŠ$ΨSO^—[΅χί{Χ– 9MΝΨ…s§¬°·iκώŠMŸΎΐC-QljΥΞb}ΆAcψμ)’S|φΙσΐk9Kxb|+8Λ€aΈA9ϊτ…»qυm»ŽΡ#¦“+—/α] Ϋ /½dC(Jwoί Ju'ΈΌ…α`θξπƒχή΄U”X1R\}牽)›ι΅7ίΈ„‘ςŠ›™°K―ύ‰-lQΥ™ηΨΙS–§ \™Etyi8B\ν“&Αθꍻ,8£ξώ\q₯οΒǟ~Đ€²‹ΰž©žœ§ΎR½·kE:ƒη™δK<;@–,ŒW°—Bz$P§Pμg²DΊ = ΩΩi„j†π9lT°sc!BΔ£Ά±½Γάι°ΉΥ:Β―Α„₯‚bMλK‘Δ’^Š`ψmq1kΩ5δύ=ֈR«€±BMpάΤ)(Σ­"Τ&αζ ΖύiΔ"^\[an" Q\T=Ή^„*ΥžXΌΆWεd#pΜ1ΨrΪ86IUa¦ρά½Mϋϊ›5ͺ³wΩ©‰)Ϋ˜κΔΘ@xοn5lng‹¨Ι<.΄Λ±³ ΄¨νŠ€Κ+/f-Α‡T±Ω‹΄xΉΚΠΈΦbμΞ«r])@ξt9Vw)5aγ΅`£Πjg@θœ’qt^gŒs ν§MQ)ώ:·ŽΣώϊ‘­MϋιxN΅#κζV%cηπvb?ο8εΟΈ8‡Ϊ7sbš¨J#}€: Y …³i’`qΖF Ο Μ±‚WE©ύ †ΨwUΑw΅ £Νn‘_4sJIμE"›φΥ―axtυΪ§^~ΪzΘ"wi’Ρ§Θ£n+•’ήχΈ΅Ejϊ©Οdκϊ΅66<„qΗ˿ɚsœΫnΪβ¬σhGb]τžM~T’Y‡#’‚Bρχ1…ˆΒ% TΡ‰ΩN0(”) (>.zζ`YCπΜ SΡΐ=V5Φ«} ± Q†'ΪΤσΐΙQŽRO cN6M΄E°ΈΙ―#}<&8tAH”§ΡΣe#'NZ†±­~bŠ9£Λ)•s|¦H†3Lxήͺ‘¦θA?ς‡!π`Κ2Ξ4"(n2N4Œ1§™ΓšE(xœKͺ•ζu$CΖ]OoΡ)’¦Ι'ˆ€@ΧΜ9$ΐΘ0πΑdEd€θΩq~δ=Η8‹Σ|ΏΎ²Δ³TrΉŒRνΛ§΄WFe£Φι:'Χ ΨτΗΙχOφ~Ζ–ξΟΒ&Θ’‡Hƒy)ΈΥς} l£D[^NΙ£-A.H˜h»Šς„rJbŒε[ φχωϋQŒ]ˆ-pjμc|εΜ–^Νκg%`Πυ02Ί‰S’ΆE{‰42Š…=`ΊB6 ν Ρ½-‹Ό§o‰Z•²Π0[ιŽΨ γCΆ:wΜV½›Υ Poή“ωχD@ΤC²Jύxύ‡~―ΏύΆ½τΩ³E0¨ν½£–$€:D5κapβχΦχμβSΟξΆ7^ϋ:8Έ›»uΛfff0€Œ€ΉΓ³pοξ<ΘY&UΦ‚ι~ƒ“ϋ0D¦XP]Ί^5h_ψɟ΄«—ήΆ+ΌΟa@Ε2μ<œ}υOοΪ/ύβ_AΘ70fŽ[r(` σwμΔ'^f`ξΨ•χΩΘη?mC£#κ 2@ΐkΒΫ96yΜF`³Xž» )z*h_»Ύf½'‰ŠŒ9oΨ.”Œηž|Ιv9g›0Ύ{Tζn‹₯μ• ην6|σiBy~ *u³ςSδpOXMΡ―*Ιk›(ψ»ΧŠάπΫιΰ†Δγϋ»[\šπνίδ0€Η3Ρ άΔƒγ©Γ‡’ήŽ"C[;zˆJΘτ™―B˜ˆ\ ΈΦ,7! ]‘^L’ρΖ”Cδhμ–0FH"…7…ΑχSkƒδψ@‰©{$ΓΥ{­χμI α-Ζcž9€Ν<κ?aŒΜbέARεξζ9%(pγΐΤ¨ˆ¬dχ*ν=Ž"R©AΙ vυΙ§OΫ•k $ξ£°‘t՘[³· vώ ΅Cφλφϋ0ξςvφEyR;ρ F +—m;·hoΎΆcΟ?7e£CΗΝΧ‹ρ‘ηz!Œ₯Nψχ7μƒVH ή΄yΤ,‚Vμ-θlξΧΡ8αs-@,dRΦεdσ₯tkωvAφΜΑIμ¦ο\ύΪ$ƒ@p)9Ξα¬jZ$°νS½”rεs0V€‘ ο[&LߊžΚθ( 4JΉ”!ΰ9P’ΤV]—K>h‡XvΤG‚MΙ¨QxDƒφΥ½«Ÿaa9π™;V:6έ―`^ž%’wœ‹d𝠞Ρ2mj—Ύη"μ―Ά( YwϞ’€ύdX5‰zψ`R"Άΰ΅ρ p%ςςΤξˆ‘Μη­k ΪΤŠlΒ0€$iyΡΙΧdLΐ…b’ΗΈ ΅lύ Ή ?ύΕηZ‚πgΔ·t˜Ύ‰pΝ}Œ•6ξ?ΜΎRnR@!–WV‰^ίqΚxε_` ‡X|)Rΐ{Tδ.ŸΟ‘hz0,=+ξ‡;@‘‚ϊ#DΧ;W~γ60υ²rŒ*QνJT‰ν’YUίλ‡qG”B9υαήξ6ύΛTβ9ˆfXΤΐͺ½³CD£Ε‚K.9y}v ηΦ ν O€Ό₯FΘ—ΪZ²τ0δλ‡Ρλ65ˆ˜/(•Α¦Ό΄Κ}h±'±–k ’ΧMI•cΚχ ₯4vD*gΌzCj~]Q`Υ»a ‚AIγX›bιcΞw ψT`τΪΒα!γCΥΔε(Qή„’€r,bvΊη ΓΐOς½S(eΘhŒjMžŸ6'Cψ­Ή$eΖϞμΎwϋh˜³0ηΡYκώ€K>ΝΫZM§p|.`܁UcΛΰ0jmirtηKB†ΨΨΪΰWœ¨Oγxaξ½τ©Oλ n+γؐ±€Ό#υ©ώιœ:­Χϋޞ|Jι«ΦsD~ΠΑτΈχΉΞƊ.°‡{ΦϊΘλ2¨wGΫΡkΛ=£KWaΣΕu€»¨Χg8r27†ψΦ9YœG‡θ“ΞόΥvτεƒσ<όLQ2S”υYp4ΤYƒκDΥ•gY‡‘oc½ *ά‘aθο―ΣΖvφ ©Κϊ# ”H ΅Ύb;wpβ δΩκyδ „γ8‘L+2§:Θ₯T"bzά°jω…τA2LΕ+CVȘέήΈ…\ΙΊq&βG?¦¬…ŒΥŽ> ι:yΡq(ct€^ώ™MέpΤ­λ»?³σ#|Ψ9[έύέ₯Γ?μΈGNλ^~”}Ύσ˜yοΝߏ`€¨½zέ]iπγ7ν/ώΔOڝwΎnι‘“x RQΤHΦ°΅Bτ„­#<±ˆœ>{Κe’³σΛ0N ΫœεΪ49|,’:TažV?^›₯₯%ώ.‚E "n`ŒML;o‘έ!kqͺ·Γ%/Έ–θ Ϋ9Οώώ.Ψ\Ό΄/m°5¨ CL ;U­E{E¨ƒ&,`a›š„icΏFΗhΰ‡ΐ³+‘n’`“5w”°*Έ–pΰ1°ˆ=»qύΊ?yρC#?&³»όγ_³$’Sΰ€1όa«Ζ φŒ)B™©;μΪεΩΥ‘”ν΄^v²k»3κRΤ‘V,dΓφΪ7QΈ―Z;ΙΰΗ¦n£ αh’€ŠqPC¬D΅*юώϊήZΖ…ΝΠ6­­}ΝΊρ` Ε†,K΄D Ψf<ž@IDATιX½$tšŠΐZΣ>dsσo[G[ΚŽMΰ œΖ#Ί έfέ5{ΞΎ¬-ο-Ϊ7/mΪόάΫΞΈϋPV 6|–s&Ώmωνg¨>Ž’F£L*p•φA"…ެVͺγfQjrmΫY `ρ;™9ΫΖ{Δ!PŒ-Ϋ@ω;ۍg:β‡eηhτ%€hOΝ 0‘_ ϊ(‡݁@ΚR― ‹Ξs–ͺο°τΨϋ~›kΨKŸŽβKRΗ d―s~œω™GπμΥWžAΫ‚6uΕό™œύΔΜq›[Έc―½ΎlgΪΨHΔ< U•VΘ;L”Κy6έXΠύˆD°8ΐάCΝcκi1Ο›B©Q"Ί ›μBΏBBςο½Ee… “ΐΝυ¦”9–~Ή΅ͺ&€<Z8=g«·8κ½Γ=KfΉζπ‹ΟtΝ"pO- -ψ’"/N)ΔψqΪ`—°α‰E4Qt‘zΞΨ‘A1”ZdΧuRJ(8:―Œ οA–Έ%E ”ΧXχ(εQ‘φθ>υWΠ°9O*š'H»Ξη 8ξUχъzθ;^> J)Ψ•­κφ—!#…ѝ›cύ΄·ΞψΡ{έ“Ž“²©η&%΄+SΒ‡§ΈHEτ6jγtc@ΧPκΕ u0»a72[(jaΰCδSqΞ]>yε‘Φ3/ΡirŠv8OcL‰Η9ϊ€˜Γ ΙσQR=‹Κ}7S{yˆ€£PΏτμS&%ŽΙ %|Σ@Φ”Œ\±qmq>A³β’«ΖΨƒ|βͺκ4ѐύ»Ό’ΘΖΪκ’ SΘ§ηΒ Vˆ<©QO‰Σ GYŽ’Χ•#_EΟQήι s.'·Šg>{oE(Θ=&m‹’£[ΐϞ<Η–\C *jΆΟ½ζΘ½:Δ«š†…+5Η Ω±Ρ Š'Y„ΘΘόά= ₯¬q6(ο*A…φΚP.Η}bΚρΧΞηΊΏr*žPΑCΌ¬EayΖ](Πυκ7s]z?$©Ž.»ƒb­Jιa• κ γœ‘Α6ΙF³Σxφ@T€¨ω9§κ%ΘP±j •-]ZγXeω¨x‘ΛϊŽg‘H§UaVh²³pQ˜J™+‚εOu“<Ϛ*Γ_n7γ‘sz§g₯|kΈΖ±h•OΤJμ`2¬€„k«˚ίή_pΰ[»Ϊ˜έξ―χΛϋl5|ΦΓp€ΗΑ»673vƒB™S'OCΏ»κ*Λk>*φκ§R`ςΥniΒΐψ½6υ₯6Ν!wy]Φ΅Ηs8Θΰμς»D@β$Τ«£$σΈΦ¦|₯4y/k««š2τ½φ„QsR$2yNόvίπKΧCBΡ26<ω©&8mŒ&©]’‘’Wξ ΎΣ3*ΐ…L\eLͺSu΅£νθ΅φΤwž£ΣωέƒrΗΆΎgΪ ›n\¨MΊ·ι;έO .ϋπb:'uGλ~ddΊ‹ςρQhlF1ΦΙ‰JU»΅xΟ^ΎH2¦Έ^'F1Ρ*ϊΜρ‘i'+Ε”†΄Γa7`?ώS_d.ρyL’!°GŽŒ Ψ³Ο=Γ$3Gλ-ύUVΎγZυD)iƒF»ϊ"wΈΖ„Βξ"ς}nμIγŒΖ°²:ƒ(kƒi8©¨ι—¨‘ΤGήJΤ„6kλFέΎσύGύξΡύΎσυ‡σΓ>ϋ(Η}?ϋ|η1ίγ½ηNψ;h¦Koο°ŸΛ? n:jΟΏϊ‹w BoNžαm9Χ†yγϊΪ<,ΩΣ/Όl7nά΄J›θ}Ύ„=}œ"e‡vςΔη#—‚Ι==:{O½όβσΆ°ΌaΗO±γΈzΌσΆ-ξΩΟόΜ_΄Μ n±NΫ™„½π6ΤΙ3„)·±Σ;D+§c§νώνμ~Ρ§ž<γ€T\σT‰6ΰLbΡv¦’Ά tjtζ mΈIςq ―Τ1”5y‘δ/3›œΖhb‘ξœ9io]~ˆLΒ¦'π`± ³OMNΛ©ΝΒΤ΄ Ÿψ„Γ:eιH}―|όέwο ›“;ΠJN =„ιΓ‘2A2η‘M³°³D:όΠξ‘(P HΫ+e0κ Β€`9Q❃ΆΎ}6tά¦{ž'Zυm †€SΐύΌ€°5‰υ /ŸdG˜³,x§ϊΟ²ψS`,ψ!ήκ‡t²XE"i[Θ^ΆX1!\±φq³ρ~ΰ&Υ=Œd˜n’ύ°Kοjβρ¬&νς• φۏQσΰ~χ9„‘Z<$G‘Ό&cϋ%Kη-» δ †.ƒλρΘ‘H‘‘A€¦ŽTΞο±HΩ‘·ΎS.ΥΪμ-ΥCθOΪAqCfŽr’^»Rκ†Ζ‰ΈT#Άz{ŽE½h“CD({©Ύ«Qύ}ΜήΉqΩ:‘'ΝUHfή BgΥ4ΕΤEρεγΠ!‘›8’(w?xhBβ“vl84Κ5"vυƒ9"ΐΔ¨{P΄ήΉ»…’–°s§)·M&_λνΤτυ[HςΗ!…Q?mš"ZΜ΄p:yˆβ‘οτ™ Y ΞcΗ’‚7\Ο‰άpδς¨5QR”ΈιΰFrΫ’ΔHig­ΐΛ-Ο?Žž§”ϊ¦0$(Ϊhζΐrψ«…ˆ}]M&Ί[T½±θ‘ά°ˆxΖΛν“2F:F‹ΏŽΥώGχαŠϊ±¦^t’kΩΗEnΈ) 1X•t :— )χΚoΦET―.2Β=) ]J•[Žωεϊ‡cυ·ΡρJ―2>υΉ₯·IΙ8κGο¦ζκ½ Xκ΅CΖQλήeΐΘ ‘ρ’ύτ^ΧqηεΨwή}Ο¦''mxΘƒ%όΰS/Ώx‘{ΓƒΜΨ SDoww£N­γα›_^΅ϊ;ΏcΏςŸ’]ͺ‘"+ηƒΔΦ—ΙΗBAUdCy QiκŒlηkΤΜ 1”^ RG¨Q]$B…a μ²'A]Iη(νΊWW†ώ—*ΥΩK™έΎ ΄ Γ¨ Έ™ Z$ΰπΈώΑ-;υάσΠλ†ν7Ύbέΐ©ΊΘ³Ϊz6:Ϊo―_ΎB ΖbUŠΠŽMΧε·[ χμΜ±πύDE‘@!”*Η|­…1.']S†Οκn†y/F¦†«bˆ{τm‘H~ΖbΥ“MΠ’οΜ£ ϋAΙIP;Ęίδσ ΟTSPΙΣή?ξ›ΉA γΗF^Ύs+Ζ«’7ΚjAƒR jQεЈWIc˜ΩνtmΑ(s@ύ­ύω+ΕY‰Χ D1;Θεδ‚ΖͺΖ₯ζ“SJYLΉ„ϋ‘‚κ(}ωΎ!8%Ο·¦pΖωΓMηΦxψ‰^Š(ΒyΝωšΩώpnπzw‡όξO$4=0°-.-ΊƒS8 ζέxΓ:΄«ο_;Κσ””tΞ™?ωΦk >``κsΗθ—ζŠ6Ν#mz―kk“ρμXΔθ}ήΪχΫoΩkϊΊ›9ǁ2θt Θϊ_†Ύœ­C(Ν««‹ŒοMΖƒu)bH‹@G€ ‚ϋ<υŽΥyΌk?h“N/ΣΑkφtίρ“]vο™Z(ψϊΦϋ^{?8]봌νσΙΩ«{qχΜ‡Ί‚~»GΟΫ†:ί{χ­³κ81θ.ΕQήIέwϊήm<{ο|zΦ2+τ»6:H&V–`†œ²••m{ρω·™Σ§ρ w½ °—Q„³§:ά’8uόFΔ  Ί·3ΌΤtηHόKƒyΚ›ά覧ΰL*tΑˆyρΕηά’Ωσς«-Z€uώ.Ό.π044ΰέ₯ΐ{ρ…gέίξg_8š$ξœr ‘?Ε½©:0Ό«TΛύœ›,Z”΅Ι 49F™ŽŒNΈΏR*€d΅αvό˜Ώ$δ™p7ΐύΉΏσίΟξξΊ]μ#4pz’D\MƒνμλΒ³V=€z,4—„JΓ„G7·a’)ξΫŒx#’y1z³BސΝk1ά#IŒθUΜA<„Β¨$VΒKΫ ƒVΕn'ΖV¨*Τ£«@+’΅Mλ‚)£·^r?6ρhEΩxH›%BΌ‘΄£ΪΨ±Ω ΰ#ΰΏΰλ―ϊ2δKRU-)IςlƒŒi*“Νή„†³BUΤ0l/Ν:\β\S!ΰt“0s ¬9”»YΰMPyΘ½|OρΧ""Ϊb1)ΥYq…ΝvU‹₯yρ^‘ΟCΘόγϊ¬ςS›ό“ς¬ΖαDHϋhθbœIc`thΘ^{평*₯ν)ςCΥ67y₯1y΄+σ ‰η+šζˆ”ξ2ΜΆΨ«0T!ωγϊΔρžœΠKZΑή‡Ÿξk>ΦTΦ¦yS`,έΎuƒά›Ÿu}’η$CΐΙKuŒoέƒφ|°=ςRyzή[ύf?ΐ«υή;Κ3N$ΥuΏGgcw2R½γi;†”ϋFΧ₯νΞ©£{ΰ@Geouϊ„ΛΗΞٝ›o#χa‚$Zα©ν‰ θn~`O@δό A䔏jχ₯bΞE@ϊ(@Κ9%³eά»U„v8h-γ«CLUr^ι{ςyέF 8δ<Κ·9`}ωBίK>ν*ΧŠέ4θ›(Ÿ+ΟμΕ‘—Ϋ††„Dυτ&_4 ‘ΑΆm-ƒΒ±CNk;&‹₯OpYώ=ήφΓΏΧQgi2i`Ι"t ™$Ÿ>sƒΩ½tλΓ:VP›ΘΦ¦sh“gN―[ίI NLΟΨΒΐA©˜Hb9ω°G&ο‹&“’J΅΅Œݚ7A5ΡάW~ι>ώμώήΧ­6y4”\‘‰«ΉG7―6>Ί΅ϊζΡΟ>ξk7([7ΩϊϋqOς}μη™ žΰϊ>.ϊ=Iˆ˜ήWžθήvήΌϋŽ bπνξ%€-MΨ­@€°;k·‘•νn›Ν.Q₯86I΄`%εΠΒ΅( 19r†jxjφ…gϋXˆQ²β{xΎΦνΝλJ ϋ v?Ω²|$CΖI±šsΜ6ϋ,@έ@z i䇬ž‰Ϋ³ηGΐ@/ΈΉ`a<«QH HΚΝRow$΄4 βC9„g/ΦxΕ"5ΰ{…5VζvWKa Ϋ" !Ϋθ^Ξ@“B ™F@ΑtΪ^–’kTί>6ŽβƒgΈ˜’Η ŒςΧ¬g„#pΗέ„χŸ€Έm8w«{s!)\0α‘v 6ͺΈ£htc°ΡΟΆχ_uτYΟ4 Ώύ#,˜«6·vίτΝόŒ$Π O±ΨΆΫνω=뉍ΡΧ$ΒB³»{`+σ>rQ6  ŽPΐ1 ΓΘ‘ύλ―¬πaBš& ½„λ.^»Έ­-½e―λ›φ·ώ³_@Ή"†ςε'_Β›#ΨZπXΐ™G,½Μk”a<”š»­ωδC±d7·@ϊΠ Lc‘”Ρdr—‰Œhy£€H)'C›¦½Γ΄KAgΡVα©γAς ¦ ΤΚmxΛT£u=―1:ςa<Ω₯ΟψΤ΅uΝLqΚ‹6Tχ§Ή φκΞ yΤςŒ+έ³rŽTI]ΡA‘Q£hŒ6]Λ1ua°θ΅dώJˆ’) nOO1”q” obxxΨε₯(Ÿe}•:xΏ›δ§Qj₯Š ϊœ‡ρIEυx‘ΖΗ§πΘ“(»†b¬EΏ hνΉ‚RdΘ“"Ηͺ8$JX_0χd,.:₯+N^p-E€sx3χ ΥT_”ΈΎ Hq6 π )WΎŒͺ$3*Θθ²(ΘΔ[›Χ£T²ˆ0†Ό”Κ±ι“ȁœmέ»ΚyaΓΖ9€Gτ@μu°ί%0₯„k*:196„L²=λWb%ΈΦ.FΣ'Ξ^…‡˜f:5ΑόΪ°oΌρ5ž-³žSφ_ޞ%`¨#b³²Œσ’‚¬ς N„ZΔόC=\2₯lkλΫΠφΊ: ’\*3^ΧΧΙϋΒΡΦN2{hV…c3Λaό$ λP>Η.5O8 ̊‰Ό δΰj‚rݟ7?H…*ˆ v"%]Iηš}ξsΖ遌1™Zο€ Λ°— ‘M€ŠGΈ™Λwš ήͺα§·:Φ›sꐫak{έώωoώΎ½ςΉŸεLJ$—ξΐώ|οΝ)οh=cΕXoγyν“›1‹ΌΨΤΤiϊ‘Ζ5Ζ& €3ΆΉnk^hͺRΊ=g Φy`ͺŒΥ‰yχ­Χ“Q;ςAu€ΎόΏΆ;&b„’½ϊκg!¬Ή.QΞU֚’Ή 3Λ½ύΐn/―rOb"#**‡»I]MsΉΘ/΅ΩGςDχ‘Mχ¨ϋRΌ―}ν!΅9Η~:π?œ€I:tίτ?2ƒaΊΆΎŠœ—!Ις<ξP„ z-(ΈϊΦΙQΧ‘\Ηυ…w=][ί«…ž7_‚š'%ί΅•φrθτ’Ί’™κAχXψύpSν’Φζϊ΅υ†λiόθTœψθ>εr‚κΕ‘κΗw-}ννeι;ή;\#S–g΄`,»{λŽ-έύΖI§οŒ]|βYPr3G‚Œi Tύ¦(ξςʊsΘucdŠD#8rυ˜}τ½Λιc|Φ06j΄Ρ'8 ²¦Οd΄Y ‘‹Œ`!ί#ΤEΕwr!Κ@NֈŽv€—mΨΫ@EFT娑²8·Jψ:C ›ύ½6 >ΦΚ4D έΟsΏχT ΉO¦sΓv—ίfv.ΜβΉaΟ>C~VΕ‡ˆ4Aέ{ώΉ'©<‹ΑV€t"ΕbΠΓ’{tΐψdQΜQ2ΘqQΥf-9Z,΅€»ςΎνHiηK·ΉE‰ύΌΡ„βΓώ›=…‡ύY΄4i‘wκ ‰w( J“’ 5δ…_lCZ”ΨŸ½9‡ϊΣ£– nqTa/αΜενͺc ©oε—CÏq"H’†΅' ωμsνPγh”ŒβtξΊZH[Š|ƒΖ)ϋ|θζ†ξ‡γ~δ‰CyF©ΧiΙ8g8qOaXxάuΈEz΄OKΉ_Η›jZpi;m­Ου™~€ΨΚ­6΅ΰVήwžA£Χ:Fε―»7Φ_κΗ8₯‘λΣϊύi_pYŸ‘I„YlεI—r#“FΚE;ΉŠΰθ“n%G·Ι€†Α)Œbξ£Jχβ |φ·΄S€‘™#jΑΜ@9ή#RV&b@4ΥDyς "hxEyžΦΥD9ΨA9—b+eΤ YΐΙΩfμV¬''ΡxcΔorPΪΐxϋxξ~ 0Cwΐ~0ʟ|ςΣ\dl3"oDEή”#φ!T"η@w1ΞΛD6rŒ• QΘC”X)Ύςζ+ 5Fd`*J ΄­Œ―g.Ύb‹P18\‡zΪν7ώλ_Ϊ؎’’΄s§Ξ“{όβώ<πrΩ=RΩA₯xδXš<Ž<ќ&ΖtogRΊSΛτu|yφj>`lς\el¦Θ΅$R…}`ζ <ƒ„<gȊ΅)£cdd6I%ΕΊg­±,γΐ›R =#Ϋ 'oΖ­7H0ΰ₯²‘ΗΓσ“αμ'ΗKσΩσz»/έ{ w >rΡ ζΰΐ ς°L…TΆAκ*i‚+WCσDϋT04Ο4h{‘tFόŽ΄`–ώμGi{υG>οž‰ͺ„Pc\F› Ef8%›ΧRχŠ—ηΪξή»o³k “”;ΗxΎzνŒ™Τό`ϋ_·/ΫΚϊ¬ύΑούΆ{/Εο/δuqξ(Q©ίΣμoRXR‘VΡς*MŠ»λ;E?tYξ]ΝΧΌn©μ’aκ[Νε?ψ?~ί._»CΫ>»>i+ΘsΙΦ&η@˜ΌΤπ 7_Νξ/, ηΗννKoΨΉ“/9Oδ$ ζ…"Ί>ΪA/ΈkΚRά-«υBq~gD¨aϊ€οΔ"θ#ͺΧ‰K¦Κ0σΨO¨r~$‡u<γΐcμ=€Ÿr&ή]“Ώ:³Ϋt/τ,τW/\{Τ7|’s§•,d_NΙχήΡή_νƒΌd=ΥΨμr}užθόkΝ]Η @ω4Η‰ΑJ#“½Υ^9D$ρφ%™s1d’;ίy>ψ ΘΝdmP{΄?ΧČc]ηYp­2ΠAν§bˆ'‚`»³‡@φ`·ͺ³%P(ΒB—+[μ}ڝ€œ…6n‘‹D!'ښyγΦλ;2¦τβ;θh·)jŒυ&›Φ³3Ε„?Ηέ»Ίβ‡}scŒNψžˆE-VšDΫδ]΄Μ{ηύ°ίΏΖEGAœυHόyϊEΙkOξϋδινΪ • ” Šάυ`hτ…ΙΓQρ(ͺoAo9^΅Ή₯ŠτΆ=ύ|ρ‹ΎΧηk‡δDdΕφa“ΚοΫΫ³Δ©YNΨάME•FEGMπr›R1Η(„ή;`―Κ? ήαU[ΏΟ[ύΎέΎΆΗ’·“§°AJ―X#8J5ΫikoΞ£ΘΟ[Šε0‘A(9!¨uρ’Β’sˆ²‘ ΐœ„rR!πQ‚$½ϊI”/@5"DάΔ›Dψm€Mg”£ΨXԞN˜γ0n‡'Ipr4ΒΥvβ7e*P;e›ό–P+"6σΐ@‡(HA 4Υ6“°M<¨]ύ½Π’Q@p%+ μC‰Ÿ“γΐ5ΰ+/Αz…‡gΨΙ PΡώvžΣκό†JΝΤ ©5’,$τsœφΑͺ½ΖH’½™%b9bIεXlΥZθ§,c*Χέ;νGOΙSΔA .ΙΠ¬;zε0ΰ\GrΕ)4‹ΔΡβ,γCk––5-bn_)¬`nΨiΑcί–!"nw-€nC‘–€«q+{Δ1?Q[T™ήu₯ΈkQE«d-ήB¬λ²q!·λZόh]–’ƒΌv V’άΌl|^G^ͺ20€©λXΥβ.E’φŠ}Mp.yϋˆΟ‘\ρί‹ΐC,P2<#B€.O·’ΗυŒΙfLŽBXΛ*JŒͺΟ+:"£T†3όt=½ΊŽσ~<Ρ―ΟΤVg4q>έ ^;'‹ϊ iΕHΥ£Ε†₯Θ‡ £iMyHο”C17G$CDy{xqEΝ»K>V£$͜λLχX–¦>Ό“5ΌΜjY$kΐY‘¨aνf³Gžύτ¨mSΘ2„°§›λO9 "°G„ f[D$\<ψΌ3RφπRnnmEŠ‘‹SAι‚v{ _ 𨣄DT·‰( χQ+)†Β[ΖI‹Αa€γ‘“\A ”6ς3Μ“}ΨlD\’O“έ―ؐΡ&<Ίh<ƒD7€ͺΗyVλ`φOΓφ(E_Q£Άΰ52„±\‰σ瀍!@ροΐ°ΰyA‘#ς‚<J'Iζκ_τJΖ¨Ζr6¬ΓCΌ¨D˜Έ±§g.B‚}Ξeπμ3ŸΉΗ"ΚΠP?ηLΉˆŠfΥκjgΐ‰’jμΖ―ζcAϚ;ρ%ƒB *¨ Ζ±ς¬Ν7χ!Ίκ‘—I»œ‚Χ° ΊΓ=ψš‡|±.#8ˆαΟƒbh·ς>Šϋ―δ:01'd ‹B,sNƒ¦u :JsC†Ι›―½i_ώ­ί΅_ϋ{ƒ9ρFĚȎ‚5Φe (j¦œ―F’ΞΕEά{AsTίBΜ·οά°_ϋυ_΅rΔ“AIN€_οώG;vb^~εeϋςΏψ—φ_ώΥ_΄Ÿόٟ³_yΦL/b©ΫΉpα’ύΦ?ϋ-`n8yΈsDH}Υ}jN+Λ)Ν΄Ν―~”ΰ@†Έ: šΣD‘ξή½iλo~I§³σ#)€eϋ?Ώυ‡V ˆξ_ύyi€žΤ<Sά{¬’Οπ {ύ(ΐUϋΫΏτί“S{ήήώoΎj‰Κ”Ő‘u(œ+ Κ¬wd(…Fΰi h#Μι'Œ EΓp:9b9ΟZS€AŒ~"$3ΙOQΛυ«:” ƒΓ«V%o £d«en{°Ζλ£Ψήά³ζξ|ŒΏΖ†Ζ¬iϊΒODΐΥΚΰΦλŠ00ζ‚ŠιkδŽϊKΰ8χ9ϋ„Ε.§~’d ΅^³‹F"5a± ηkοΫΏύκo°Z‘Γgμ™ηώ# Δτ9Zξ'Ξ_ΦdFΊψ}Yή±§^™=C.γ)<ΫΟυ8Xάp•πζ•"P’·ΒB$Cπl!{ΉOά„*ltΚΗβ>BDZ°λ5¨ŸΥE‘ΡξŽMΨ27dίE˜&KYP›0b‘CΖ>5έiŸ>+&O"—PqcjΕ=° ΞΈΔ—xΌΉγAΫχ4@΄0i’ΗM‘ψτζΌŒck-˜γο{Χοv­οφωχ!Žόxέπ‘/υoλΡ•₯xy^žLΓ%Ό}9Βή`Ζϋz(―1 A< 6<‡β|ΎΙ–=e0‘Mbͺ›BΫ7\ΖKrEΕ«Hpol¬&ŠΨΉ§;Hλ³;χQHϊρXyΐωh‡χβ(½V ΅IAΛ:,SΎ Ό{λ°·eAΠαD΄+s‡°ΡIŽvύnW8x·(R-zγκŸΪΨΐ Uΰ?ύCΦCEp\)°«mΒ΅„Ύ Ύ7ΑO€œ(`$’’ ‘i`| 0‹2ςΫμήΊκ;§ηI’.7)bΈ‚’EΘώc&KJpP%pμώυ [_\ΆφΎ!λOv°ΨFl‚ΔΈ ‘2XΥx{ΓΞλ³ξ˜ Π);ώΌΦξΣ*8{Ωά&rΡΫO΄…]TQΟβAmΗ;-εnΈoΤV©Χ#9½«S|υU mιpςS™}ˆδreΦ‰•~γυλ6–pŠΠ0΄HO¦"&mxŸΫπBK)χ<ˆςNq·„πΤ%ˆŽ‘㕏%τ^h^ΦώjΡb_­&ZάWB‘rc%„w|ŽΞΥP ͺGΧY ό(’ς˜*ΏL ΆƒTWvaΌΜ2\ͺΐw°±ψž}Δξ‡"#εJ?Ί¬'½ ΰ΅S€'#½O½»‘‚’Ε΄*wΆΪΝ=¨­RZt§:«"ο½<Œύ/\FL‚‚Fˆg‘ ΘxbωvΠ^^‡ Ο›§¨NͺΚ½t νQη¨]ŠΌp}½γ>w•A#εΟ)€,Μ:Pžu§πΧY\W}ͺ}ξψ‰oq)\C01EFΗΘ;E …‚φ %ΓIƎ.rx<‡$QιQςΪΪ©w•/JΌ’OaΩ’(ϋΰwΜ„pL‹δο•)‡"6@±ΐ{_“g‚ξ$\Α½ Ιή1EIκΤs”Q oxtd γˆάŽ(lf΅}r—ϊ!³PξF;Ξ&4ύ%θάςŠ4ΰŽy †J~ΉYkΐ)a΅Β)Π@Yι¦VGX–ŠΞζΈvφ«vͺΏom¬£„’qήI«t„{.i0£ŠuK(3Œ!ΥDQβwMβRΘ‘CΚ*1UΌV}¨Ϊͺρ°I’Ί’K‚΅#λD\Afξ%ƒ₯ά*$膆ξW°!ε(θ;™«kΤΈΒ‘‘…Šθ !!œbοΪXΟΈΎQΤAs›!έ“@­«κΉ£ˆ²―gΨκvx’ΤΐP/Υ1ˆZΘAC/E”σˆ6ΉL$ΐ±)Ή ™ ^?F‡όΌλ.κΛs fd΄“ϋ₯Ψ)ΙΤω}DuΧNΙxUс+ °M^O7lhί~ν[ŽΆYEŠƒωŒ½ΛρR[=Ω 1.ΟΆθςέάbέ”YΟύύκοβ˜δYb΄’¬ŠΕP”q"ΛύΏψkμΟ}‹ΘΰmΎΗΙ…μ―‘:sφŒ}βι‹ΉέX€Ν«ί“_ΘEΔ*ΜE#bšΝκΧtΤ!žGTωw<Q&ήo0Ί8 Ι'θ ³Ÿzλs0nΝΊ;qο*ΌγΉφ؏~φ‹65= ½υ“@τφwΎτ7Θ+ά°kμό…§_ΑP/Σφlkqk }… ¨Ld)" ( JΚq pώ0°Σ"ΔAΎ(—θ$ϊ=J»°?ωΙ Œ°6D*γ-!#eŒ―(Ί―2Ξω…|@Ζh`¨3ΔZεγΑ8#VΦ6?AΖ… εt8κ`d‹F… ‘sHF±ιρΛΑΈΨΏΝ/8dΐ‚½qιk9€θε‰'>E$Gσ‡g"Ϋδ’ΈV1―b0Ω RΆ#δδθΉˆͺΐ>§Υ‘ΙάΡOUmš3‚c)ρ_γ)‚­¬‚ŠΒ– Γς7 <ς ΐΑY1Φ¨΅ Γ•{ήΌDŸΩΕm˜7Ρ˜ŠfζqXJƏφ΅Ϋ1hΙ“m8Ε’UΖ9"y.VX'F~ϊγν‘ψžΘ#ϋρΐ4πo{ΐλ)cϊχƒΪœRΆW±χ―|Λjγκψ8…Β•"—ί€:yΥo±n*Ζ.η©KΛΜZΙnΞ’tŠPhΡؚ_·S'ς$H³*ψμκυ;qϊ$<ωD*DlX|”άΆΏ₯Ϊx%%Άfr‘'ˆ`PK Ύ`SEώ ¬ ]6Ώk‰a›$ξ‹ΒΚIςσ2JΨι“30?[$±Μ"J.JΥvι& Βι601Βη‹4„`)l΄Νά ΨSBΒxΟvWlΈ―ι&ΥΫΛφΤω>K%oFΆYΐΐΛη)˜ΕB’δu)|΅ŽUk_³;ύΒEΌu—ˆ4œr‹ŸΑςΕkK ‡VtΝΫΰdΚΙ›™έά"a–Ό$ΰ π–EΪT+d /iϋ›y’Ψ‡mϋ Β8V.οβy’Ξ@i ε£ \€Pv /"U˜D{šεv”7?Ε ©’M2r™„ί{σEϊ>jŽ$ΑΥ{žςŠ“Œ-JͺO ό­’ˆ΅ΙΓ.‘Νjι’Φ8r†ή0΄4ΊZΨc™!2Xυ­ΦC'“€θ ΧξςJ΄Β±0σb΅αYk KΚ³0ΧRΆ<ε(‰;§"μ‹r„αDΉ(ςͺΦ1ΌPΥ9ŒŽQτ‚x‰g˜θZΊΩϊλn‡_ςδP}ΘkΌΒάse¬uΌŽΣύkA—!ΚRΧOjŠΰ7ΪΤNM2*΄ΏΪ©λΈhχ’Eί9Έ–ŽΡύ¨ΧZ†“3΄h·cζαώτή9θΙsΧ‘σˆΕ¨΅Ήϊ(°›‹·¬DήBhAΊ˜z” ‘ӍŸFa}ϋΞ]Όό2œD20 δ­†5Nd%ΰ@u”Ήv0ΣQyφρVdW΅ΓΪφαEΜct™Ϊ& whχξ`τMLχ’(@φPΓOΉDt›±<c£”S “ N Υ`©b\θΩHY–ηΎ‹„μ"ΦΣΪβ*Š1‘Α„ͺΒgӏEςS=#h†Μ˜²ω-Œς―ŽMa<§(~K Τ…0&r0}­@†Q&κ :Δ=δ‘Eά“r Bΰϋ Ώσ”λΉΧa¦Σ£ΘρLj(<πhαL€ƒeΚKΐh·Q…rg)Rl)ΰbT›…4bƒ\'`SδA°yΫ•ƒ©GΙιUξ&l^‘ΙͺλCyθWW—1B01tzΙάžέ‚Ž7»ςƒΕTΚΌ ZEvd¨·‘°f‰„pt¨ΦMΙ6ΤsΑhˆb(TˆΨͺΙ>ν™BB Όh—)rΫ4>«}JΔSΎ(†Α:Κa$ΪΙΉ!ϊΐΦQdEηkΚc/γc£‰²¬|Μ Ψ}N¨k|.φ”}ζG>K{θCΞ₯ΌA―dDΙ°Q_iz9Ϊ]Ν_”Ο€ΡAcλcάιš2€΄Mσ,ŸΦ£p}/EŸΩξϊ@ΖΓγ YΑω gΘ™P0€ΣœΡ({‚ώεs•~¬s― ζΒ‚g‡α§±NτE琅ΔυcA%Rvξό ")ηœό#DFϊΤ±Ÿ³/b¬Ί|jK‰ Z>°W^y֞~ζcYPΜ<ςy)tΰι^ ŒO—ƒ₯ϋd¬I ŽΤ(„Ιœj͍²Ά΅Ι‘¬*‹Ό; ?»;»Aχβ…‡΅Ιxn Ηc}τ€"ZŸ`Ќύ—²Ύ»‘ƒεiƊΞyAt‡ΑtQΧ™Στ+©ΘU$ CQŽ:£ YΒoE€ΈA Bδ%τΔd*Ίƒd”Π?u I§‹ωV‘7ŽΣCΣΈAΘΑώΊ}λΝ?d…Y²Φi/|ς 8Θ«`l‰ξθΒm2z46XGωθLJŽlΫ4‰ΰ#δK%Τ§τŸΏšεΌΊ.“œδς°θυ©οΥkfYβgΜwβŒς‡p@|ΗδqTdhvŒH€Ÿ5nn}Οώέν;ΆΛ )BΤι=FFΔ"νDI£e’˜"Γρ3~D靂ΎY²*H_†ΠRΘGF¦ΔΚγΗ‘qΑφ‘ ŠΑγή{άτ€!…τv'©­‚‡Ν‘r+‰£δƒ΅T=…@pΡ9Kτ`Θ¦O£|THϊσ Ν˜ ŽL!ΘΪ©k±μBΙ»ΛΒw χΏjκλΖ·ρΣI‹uP |ς4 w ’Ž’­gQ  ­€liŸ„2X·fN@ΩάΆi7ο­ΨKOO—ΘΈΕ"‚(ל₯°` X‹X7ސ%—sΠ@ΘIα R₯8 άͺ³U ‘ξ±^h=»lό―»ŒhΡ¬±Όhx…ŒΡΈΨnnZ¨οE„qΤVσpœw"pϋ‰Ύ”,“]Άς2ΨxχzfΜ…‘oήΨΆ‰1X~(£xιΚω0a;qBLaΐEXh»Γ;¬`Ρ›Φ <³N^ΛžHωz/ΟŠmC[ˆη`}iΗ`Š£\AK u1©+,(V—ΐ¬“KΣU½₯/ d…­F­Πw/ί±Χί[°_ϊ+0s‘Δα,EΙ΄Ε‚!Œm‘D‰9€wPπA=<εΐ­H΄ί{'%Ω (d”t)θnΡς>Π·,\,~5EA©” ΩΠN:_)š …TCε₯ °Ψ ’¦‚yHΡσŒ{‡qF±PM©. Όeξ\\ΌΖjYΧΒ.;ŠΎt&*]Ζ\ƒoŽ~XT9¦₯ΨKAӏ"ȞΡΐβΛ½ Ύ€ύ€\ΚK+#ƒ[δ8~Ρvgh¨7ΨΧƒaΙΘρΞεŒ” ΌϊlΊOE+‚ά§ξKν“qα 5ΓB½υΐΰ92D\$ƒσ· EVΌγ₯Hθ9˜}κ₯O36FQX€EXžΗ9Ρ ”ŠΕV‹γ'ͺ"¨’’z&9ζPOW‡»gΥΡΘl-Q»kŸϊΜO0V›ΐ¦6ι.ΚΓυ3„Ώ‚»f€ œϋ);M^Σ(Φƒ‘ˆ"3ŠχPφ‘rˆT§£€H' Όr'©΄!: TAα8Μo‘g‰Ϊm2φγδmLΫΝΰ³y]‘]^³Ραq›œ˜Β`θΆwn]‘Dρ₯† ,vQθW€VΤπ²FπΆ–‘+ŠΨ₯a€ΚcΌ;²‡ρI[Yή΄ ώςϊŠŸ8ξ ΙE U?ξSxτgFΆq€ρ@žc§ŠQΤdμΙσͺΪ‚ΰ‰ΙMΚ›Šfφτ’BΤγψZ kλTw72/ŠςdΞμ90IΫ”Ύ·S‘εCτ{“£½{„)ΕΈ£(K˜v(β¨(ȝ«οΪkόGvόμE’ӁΏaό(ͺ±šΩ¦―”τήŘoÈΌn=d.:€~₯»ϋ 1§/ϋχχŽ˜θιmΜB ΠD‘ΪZ#jŒ2Ϋ;>eΛχ―ΉˆNΎTŒϋομBώΰδ@αjς|q= πQτU2Q ?σ •ΠΙg$AQήE˜P Ή#C©LȐ–qοΪΝΡ¦ΰ7 9δu­Πœ0&Β0IΕψΥΉ0\`SB°&W…‰Μœ€ά2ΈιΙΗτ„AجU0’Pκk ±Ρ\ζ\ ƒPΟ2κDy4Οͺτq ¨’"Βq’½ιŒiMFŒ‹98¦""\ƒŠ!±!U‘€kΔ0ηυ"0 b o‘“$HΩ„#IΥ’ MŒ%Ee°7ζχ8H)>‹0wΘ9(G~δœj8°0τ(Ϋ†’\`lΘa’zeδΗ°€‘tR@UDU©›Γ„/†Ό@¦pu$A Γ°‡Eά+ΞΓΈ$r’ΔwΊL²ͺ,O?Ο±Fτ¬y”ΰ—t6eDπίΙϊ–Θ‹ŒΙGxμSžQ"š υ‰d½g€0ώ.aύ4‘ς^g\ƒB(#G^$ηγΡ+Q|Ρ2GXC|Œ‘8kGˆCͺΠΥ'™  ”‡ΤτθΓ /±Άβόθ ϊΕˆΘ—J3·ΒX­*Δ)θέÐ "D{εα«ηaογϊ ΫΑΖΉ1»j‹χg­‹¨UN6ωœ·6ma­υ}Ώ"Ο²έ ½χyλ»°oΡΟ‚Tζq€”%ΟqΦΤ9w•η.Y»»ŸƒXj©xΌρτιoΆl€Έ½έΒ€ΏG/:ΑνύπΧΡ‚Ζͺϋπ³Η―χΐ#=€.dŸ~~εAHZE$wΈj9<1ŒƒT΄LX4 4 2ΪΗ‘ζ¬ΰωμλEρίMBΝ[₯žͺIp‡N7l¬ΟΟ>I²$ ¦ΫaΊAQθΖ°€6– ΑAu-’έ ρ΄xΌGLA]Άž\XΫβώ¬έσynzΠ>χςYσ'ρ¦&kv8—’ΘrΰNΑγF(ΈΧΖBU«°@EY.‹_,ΒΉ‰ μ<ѝ(B–δΊNςNϊ0XΪα‘Wφwk@&€\₯π$“<ΊΉJ^wΠ¦ΙεXYƒΥ«0| ―[sΚΘ6―{xΗ`ΓΙβ-έ΅Ϋ7:XΌθŸpήλΛ(Iκv-Μ"ξ>„Χ'Fαΐ#½»“tΜ/±.κ βΑαΎύ!ΒΗΥ4‚›‹x`Q‚q-Φ-%ή`?,HΰŒwHόί^'/,Δ *Ψιρ δΠΰ}¦Ψ›²νγ΄3 ά1οyδ€(HWο†I –i—δΘgF…Β 1!εχ³C 9›2KǹΈoXPRΔΤ†7½M .:ν'…]JΈΌo‚ΗθŽ©eOŸKi—’"₯HΝ+@_\αAV\Q³ͺaΦ(-2Bd xΚΉΪα1νh)*ςξιΪ΄ŸΧnq>’—Šdθεφϊ@ήCT&)N,ŠŽλ_F RΩ#η”0wοά ϋΥP|ΒaΏπ’"άF…Ϊ₯Θ…ξMŸksύιŽ%g@Ύ“¨ύeI‘lν+ΊY 2HtRbT NΜ]ŠΎ)ϋ{~iž1pΜR(kχ0¨ΥWΐμνΕ£ \Α­ ~EΞΈ}™N’γΒC!Έ5›δΨΚ#ΘeΙMBΙ`ΘΆ‘8&P@‹POοa”H4…—Y  Πm8˜ρ8£‹n™>P±Γ Qͺ  κΓ@(WˆΆΠGb–ςηΙ•Β%Q›γ―½wÞ~ξi{ζ™η·D2Ι9QDNu­φ –'磝±ΎAފLΆŠx%B‘‚žηx‚*Ϊ8 Μι88ϊΞI¨λDΣ‚ieψpeΕng₯^¬IUδ@ž\49‡Ϋρˆ'˜ΣJΎ–G9Š‘ η%₯v3“q,~) cJ —V!ΚΤCρU†ύΝX—W%PcHυW”Θ>“RΫNΙΰήΔ@Ιΐ 8~ζYδΞi’›j7γ†1²½γί‘hDϋ†#GλΞ{<Œ±©βŒzφΚ—ρΗϊ™3@j˜ KgΌ(ΪRŽtƒ@§P;ΉpœΩ(εeŽ#‡6«Ε‰fΔ„ceώΥQξ¨ ’vLƒVpšDͺ– ¨ϊ8:‚"/γz'CΎšƒ•q"―Eγ±ΘyeH ±9–hΠ ΑZ$CTΒ“8Sεy΅aΘ‰ ΉVTĎ>¬p­.ΰͺͺ²Χι{—₯qΞψm0ρ€”"iΟ…sΘ0Δ3@«ΞιΣz"9ϊLyϊͺδψ*†™žm’½›γe|Σ?ڏώrΡ‰°H4މXA½¬¨ˆŸAq4ϘΞ@‰Χκκε\TχfΦΖνa€nΎ©W¦ΝOί'©K³LΞ’?Œ6ΤΈήγΧ΅ϋc3w@Τ„Ή( γΧΪb\ΟΚ(@h.§YˆDύŸ{βyr€φˆ‚o›Γ(SξΛ’‡1λRΕp`K¬mε<΄ίΜγ6F%0Λ^Ζ»ž[U†ς&ΜXl g+s­"γAYyΚS_©iˆ±’oUα\0Eeδ"q.β\X²R¦n£ΜŸηNP4΄ λά–½wσ>9EI&'ύηΡθλS‘*k₯ Šu;1l˜(ΖDo’κηδoρ\GΣ΄΄NՊ*žCΦ"Y%Ι‹ω};†1}Έ‡αc<ΝoοΨλ7—ν©γc@΄ FŸmΡώβžrλ ֍£γX’ΜΓHΓ‰uHŸ6˜ίΣcΤλ"*K{T—DΙ'ADυΌUt[λόc X#ωαζ­TίχWZΝX˜dx/΅ Š6Χˏt3“κ„zί»νC  ύhς*1ΤQΙiqηGŸkΣk§TπW ~λ˜ΦΒθ~ξ\μΣ:Ύ₯<Ί―Ύ{tΦΎ­ΟυW[kŸV;τ·u>oΗΏΏίΒ>u|ΧΖG&8‹{ζ>,X9λBΈ§Σ„3©Wρ’βT>AΰΨί©“Έ 5μp’’wvφaκ-…v- ½Cœ*±…²ή° αζJΤaa oΚ6γ,‚\Sž…–3Ρν`•ΨIΜ)ΎG‘˝[έC £ZsOλβl8•nΰ[Ξ½ca<ͺJ(W€!ξ±ΣΗg8e #sxEfq¨$ΑΒΖ…_ζΥθlGΡ’χ" €ΣvΪ‚°Κ –·~cb)=χ–φP¬τΤδH‘ŒŸ+²ΠΠ',¦ ΰ\KK„ω;"x(ΒPΘ°=%ƞ$ Τ‘›˜€ 6Ÿ|e Ο$JaΈ ¬:Π© Ÿ³e< Ή}? .­‘ί·8νΫ!qυΞ ^ΆŒwRK‡μςMΝ/Ήb„ιͺΖβΤλ>9>bϐτ~ύΦe ‰RY–uU[₯±Πu0€†ϋ_]ΩBΡE3wQ΄†X(dh“Tž₯­ω€Ο΄―ΰϊηmškž7U˜^±°8/>m–w P ςG!pΟp·I!OVι|ήK]CςBν’ςΦ:ΏΒi·Nu”3Β0;…œg’ω/₯]μZ*§ι3)φΊuΙ¦Φ=<*Κ έ£g¨5ύH3ΌsΘΘ‘ED‰΅ς;ηlΙ7.ιϊ@0y‰Υ‡2 dPh“£|mNNκξhŸ -G[Ξkυ­”Ίέέ]ϊGyκ/©θήΦ:ŸςvΊ$ͺΑ:sbΪ&F†\D­Τ~R4KΚ«‘χueΆ8ζR„€ν*ήڍL£~Δ’$I׊Ϋϋ(|x ‡ΪQΈ€eKΛTΦ Lr W·ƒ9sΐ<ΰx Wψ©c(“ψΔψΠ}Σ-Θ~’HxίuμU`I AΓƒΤδ ΰm…„Ογ΄)ΕΕiοδτδ”MŒOπΜΓά7-NAιίΪš„BW†Ϋ_0ϋώ*i@IDATΉςπϋΗπΣ»Ά}n’κγΡhEξΠφρ’ N·Z‘NΌΥ¨¨\O'?\Eƒ\•αvωΈzΰš(Ϋe"(ΈŒ'Ezy=₯(ύ¦gS$IXUύE潌¬² Γ#Δρͺ£΅O]"Q„S•“qSƒ}Nσ‡ˆ˜²0V˜s½ΤP„r ˜ †€ϊ%‰£ζΩO½μΖ” « uR½D…Oxm‘ž€&JC‘ŠΧ^‰ΠŠ&Ε€•©°£ΰE‡λBDώ΄ιmq΅…8”ΈxAΔd0₯0X δ³U8gΚ>΅2} ΜJQˆύ ₯8ƒΚigOL’‹"aο Ε8,Ή=œ΅ „+K6H>M;ςGΜ`‡D0d φ™η¦ά˜Νμbθς ځp†‘#%ϊ5ΐxD:Ί5A ‹D§”$Zθ2Οiηsa7³kŸ:}ڎM3~HΏ~ύ‘…@μlvώΩ~ϊ ˆ8Iq9’œbΗˆ? Ρ”KΔ5EΉ5 ―F""ΐ‹[»ΗωCύ‹ΥάέG3@΄Θ"ωΫπ$„ήϊk#”θV:ήΫ8™ΔOΌdυQΟΡΜͺ&UΈuΌŠ>NΡΝΈ££΅HŠφN¬*’u”ΐαR£œΗκBb―#LbΝβ2ž yŽ΄θΚ+$…E ±&²φs>£VE΄t -ΨςŠ…F$DkAWΧH¨sˆSt=‰”°΅£6Ιλ$ΛVEU6ŽnιρŸΫ<ƒυυ(αϋΉ x,ή0ΦPG‘\B0α%B˜°¨ΰy/"δΆPŠ 6εΩΝέ•&†@_Ž4ΒΨΒ°οErfΧΧ,YOΪ@ϊœ•šϋΆC~C?‹Ωνεπ¬~ž-Š"€ΒΚέ`ŸΧσ›D7š0bEνJsΈΡ-yν€xΕž]x\i“Φ–<^ΐRΫ2ža’Δ‘ 7|‡’ ©’Qε υQΌOή€"P§β6Κ‚Ά£›‚G)4φ#vw±IžΈ\ΣΡ#`Ψ‚’Ln=?†·ΔΌžA2ζ·YΤ(82D αχό›};}Γ%N{j„Ιaš€`Œ&ΨΒζΓφΑ•[ΐ΅€xυ‘X“_³ΝBΡO.ΝΚα²υΟ°0μ[O€5I&6yͺΟVg] b£Œpv”6ί‹ •Οƒχ1tn θE”)Ĉp>yžΥ›Ήƒ’£¨„ͺ,KaΣΌ–1ϊQŐΩΞlRgeΌ>ŠJ £‚y,ƒBJ­ϊΝρĜSβ«QΖ†ζ’čΌί…,ΰ™ŽxtΑE’„σk8:Ξ“Z0YŒ‰.lSσB ιžΥ ‘Ύ…₯9”rΰ5@RPϊxŸaλκ$§‚œ‹&Ε|EAΗΟI“^κoŒPχ#ΑσΟ δ‡cZŒQΠCxΨ-f;$ξϊƒPλB™½‰Ρ‹a«Z#‡(ΏιN΄Pj2ϊŒΰMi€ŠFQz‹(7Ÿϋδ+Œ5”JΪήέΥc½Κ)πΫ5<¦=(Ybζ’G_Ρ/99MI΄SDhU„‡FRϊύŠ)Ρ ₯ άΌrΣXLY( Ψu/+Σ2a (₯’O_Ό@N Ξ ž± =5Ζ¬κ8t€’@΅lktXΟQυTυΡ³έwŒHa_?^V"ž2PœΣ¨Ug&₯ύλ―_Άγ'Έ6…Q1JΔ¦'γrTœdκ4ΡTΡςŠ•McfŸœyΣΫ9o–܍Άv Y-sjwhB#@0Ότ§Œ'<θ(Ϋ~~ά¨η™’φ»1ŸΐΙ’ώμΖλ«k¨˜‘ΦΪ* € QŠ)ΡY‰ΟMΖ`”ό@OΏ+ΦJ- aŠ\˜ύγ3΄Pω'\—5ή‡ηωάσ_`ώ!Ϋ^₯M~λ>λξ/NI‘ΪIUrƒ\ŠΆ&Ί&,N4‘ ΆˆAΦ$ϊ‘ΙŠΤ†`SγέωEθ@οPΥπPɍkΝ%Αœlpbεh2ΎέΖgMΖυ>2ooe‘Θ°ŒRrŸΒ)σq?š³ΊŠKΔζ―«]δdΗλ|ά©ždŽh•%ϋCνpf 禽=$ΣΤτ“ύ§δΗ0’τ₯w―ΦŠ3ΟE[’θyRˆυ+Š#NPQAš|\«#=h »Ε5ΑE=hiΖoη Š"Q‘θAœJ ’)`!žs­Έρκ;θi0΄u0n‹δW‚ ¨©€ €R]9γχ‹41lˆˆ&I‘Λ(ωλ'΅FŽαζ,cρ5άΞRkΫA ”€³m‘΄‹Ϊϊδ±vX)΅‰ΌuΊ<η-KrΪœω-όΒϋΜ‰u’uŒžlζ*ΔχC@Ca1|•ΫΝ4τΚχ(ˆ=Α˜£x5η%ξΘςΩ2«IfΊfqΪ ”2@4I…%λβi,˜•¨ Άεu βˆ)!oΖ‡vb,ΔJ‡6χu@˜§iΨσNMτXe’ηττ'‰h5lθ^'Ζθ!ϊ‹5³"Djƒ5 t ’8ΚYeŠ—™γ¬‚<3–FnΗώx£Ό™ΒΪτ‘zƒ‰†nώΉeσ­ΜZυ3?1‚ΓΒ£•³‰QΈuΕΧ.Yξq€Ά[όΥΫΑ·ώω6—ΰ,x žκ3Ÿ΅F 9ΪG“skράή @Ϊ†9wŽ“·7ίΉLέ‚“x¦ΆΎΊLˆ6χάWπ’%ρ6Oƒ«ΏokΫY;}j†…/ άοe’ .+ΛK(xΰv‘4]'Δ¨„’>0»IΌz k(LIJL^R„π:Jjžˆά^¦nΌxJ;ΰ=Z±wn2θOΞ€‹Ωϋxnβ}61:θΆσΗΫχίκΎRVkr Hvδb~Lt|ΗΗπˆ…WHDκ…:Ωm/Ωr όΆΖ‚qεφΆν”μσ?Υ‹ςˆ ΏI₯ ΐr£jή› ,Μ(ΪΡBω±t‰Ε˜Ο/§o[ ‘M(χm [^mβŽ€ ”‚ΦAθ?8"ƒ₯ ADI¨0N›xΉ°ΆδQΠξ/^²΅Ϋ‹65qοπ½s(,pαGπZ ΐΥ$ŒΟψmrx˜PψU[§NG˜κUŒϋμ~έΪKŒρ͜ν/3Φξ„ȁ•‰΄¨Y;˜οMπ{W—μΒ‰¨ύεΟN8Μz“±|βT'ύp•™3(I#ƒPΖG XΔEθ\E¨Jͺ0ΏΙ} ΄σΕEΌ[‡P’*q”€ΰ#₯] s‘,ιαό0±TρΧ .υG§]A¦9%xFG‰υ§  †VΥ*S(wΰπ‰ U‚’°Psœ<„ςDωi[ΕII¦Βτ…Ιf!–'Vή`y=΅ΐ;E~W"3+›³’ν+Σ…ΡυMο—ΞοΗ3¦e^€ˆΩpΆ ςEηβ7{λKώς_P…ηγ ΧΡΦΠ:…ŽaΧΦ~Β1 ή#₯ΐ}―ΣΈ9ο«ΟτγΞΓΎΊ‚Eχ‘ ).΄_ΚΏΛ9Ρ±(&NƒHKβ^›τ‹;- όJmR‚΅ν<΅μ†θ6KΧOξ\R~₯> ^¦όΌŠ: P>€KΌΤν±―ξΑ=(jΊaCmՏ»'ŸγΆQ°§&¦πΦ'IrΖ³ŽЁށ§>Ε8”’w„γ ³Am`‹Β§ον“3ΕsaΑΧXΛ­ͺ(1jPτyΘμ­›GΒ}κ#iTΣu „uΨΗΪφΆlrp%\ΟxΡε-(b#zY—Ο–qβ₯ΧqŒλLb$‡ιˆduζ!ς±ˆS+’Ζjc…HέΉc °¦n3†ͺzγ,ΐœ9ά‚dξz•b§<§"tήΫΐΜ—$,wQ"oEr₯ϊzp0˜MŽw»hΎK₯ίXί°ώ‘a .ιΓXπνδ~@ΌΕYπΥ§^°fͺΣx`έ$ΐjq&δWŸ>ν"M< ‘7ΏΖkρ§ΎhυcgyΒ§oό‘ΥGO‹R8R8LΌΆx:ώυWΑΦ°ΉΕeΫ\[ΒΚΜΨόβžπύΟθΧlδΤ³Φ8X§ΐΪΌ%[ΥυkΧ\mƒνBΓNLΨ―ών_ΐ£ FΉ­`χού};τKTΑ,%k_ωΏώΠ†ρΠυvΩμμύΖ?΄ιsmeλζεoΪ/OΏiŸ{υEϋΚού¦έΒ‹πΤ'.2 ³φ+γ―YzόŒ-άΈ†MuΩ»s °}»‡16{χ8Ihί’QIq‹χwιΒΗkύς"S-«ϊDYύvύϊM+6ίB o·ΛW7μ½;©2‰y}`} •V·ΧH€Γ8άΪ,"$‘ΖμFAs8»ΊŽΑ¦—š@k±Ωe¨ξkΓGΨΈ—κ@cΰΛ»ΊZͺβ9 0^'wc‘‘ΗΊ΄Y±»«D  ,ίpŠγ²Y!Ώ"φ…fQήa»¨bŒΰΖr˜θΚXγ64δΖ•λͺΓύMXZI…+λΤH¨wY'0­…;{–ΓCά$:’ŒαΝΟΓΐ«uf”|π£‡ϋm6;·k—οRdœgΰ!'|܍ΥΗύΖρ|)Τ½·AΒω΅E;} %/Ψ8`%O6’ΏˆB?l9=Γm63=ŠghƒβjRjΑςΟ^ΒσkΉ6νΒ_S λΞ6μ,„α@TˆήH‰¬ηΫμ­›σΠ7Ϋa1.wmb\Jω&l †w­szΰv,ξunuΞή}η]ϋόgžaαn=Μ†ž”<%ij‘Me EI^PαΛU¬M^@…­UΉW ηƒy$O νPΤBaόέ½Œ[Œ;%sψnow›ΉΈι<ΙΒb+Šκ0Τ(ϋ»P₯² sI·Ή|N¦χΞο}υ` κσΦOKΉW$ώDχ©: 9NPvτ‘§Ι΄yxœ;ήήutEOάημ'εCcΎ₯π{ ΚŸλœnγΞ‘Ζσ™” vp‘ξ[Ρ mN!r„:t§z R˜Υί^”–HSŠx―v»λΘ›­~G΅Ρ}σOΗΈωΘ9ί»rΥz ‹ξd!nΗσΎ6;DtPΨϋ"η2λΐ!ήόeœCqαœ₯8ςYPω-zΙΌH ΄©"p‚(FžρΉ‡ΰχ'0ΞQP¬€Έϊ;©hίΪƚΓαLjNβ`ΧRΟ] Ηβ<9šσŠz‹@ΐƒ»ˆΨ@l5x΅9›*…ΧΈ’Žv 4šv ω ~R$Cw0f/ΣώΩ"J ²{LΌ aŒ>Ϋκ#ˆ‘”ž™>ΰœ*€(¨† -ͺNOΏκ€€ΘcYX\ fΑ*‘Σ8Ήas(y$…Swh ‡\.EJ+8ήξέΊΘΧ»vσŽ3ώ_φή4ΘΞλ<Π;χφ½·χ½ξέhμ (p‘ER"%YΆd—FV<ήε)Ϋrδ™Œ$™IU~$UIURW&vβ€μ”-/#ΛΆΖ–Dm€DR€ΔMά@±  ½οέwΛσΌ_7ΈˆΆE{ώ –{οχο¬οyΟ»ΏƒιβΨζ]„Ή…¨ŸD{Ρ s§y¨~4e/sW…‘Τ‡G›rMt–ΡΖϊiXΩE΄Pσ8‘먏αNπξqΣ >Y΄<Έώ€ΗakY ΅•iFΛό³/Εa†Ωe— Μ„}–Qζ$`«epΎmΞ»°Xζl„γε;}’;Q; ‰€`΄#ά T…#?υΦ0Œέ‚ΉžŒ2V”—ό€CΒ+l3‘νςčΉJ$S™#q»{ΏΒZδ ώ󬇑ƒ…₯lρ>8'SήΟφsΖx/σχ ¨{<α€ι‹7΅aζ‰Y­γzϊ‰GΆΡ›ΡΚχƒg¦¨W#Oˆmώ¨υ‘ŒΪ©OΑ*°];?ψU΄k˜/Υ‘œ;―eL‰—ωm”0·8{%πCά"seη9’€ς~~\;›ωƒ/έ}x3.’’±Ύ­¬C'fekK¬C/²~έΐεLςΞΡβaΩ‹ySK$„5Νφ„F˜·Y4€%ˆό*³~5kΰύ9Τ\ΆβSAΊOλœ“θ[Π΄ΟΠΞ<{i‘yΒέζ-"ώ1ΒH/›7‹wΞ‘gεΕΏŸN­4¦gΘΙρΕιτς…ιτ·ίxΓ˜n¬¬^JΫ`ΰKΜΛ`/½ ™ΚG‡ϊJ˜}„kšΐiΟ;ƒ¦‘ \…αŽσX› R” ΜΑy’ΐ $ξΙ‹ hIs©s'㽄 δωσcιζΏ―] Κ8ΤΝ‘eLͺˆ9Ζ­―T™@ 5πŽπήΒ†Up°“ΎΐΟ„¦Wm3£™( ¬|4‚‡ΜœΎmLs&LhBη+SNXΗυ’C&`ψ½tξhj8τΙtBφΐ³ŽσΗυbΛ«½ Nn¨Μς2ΥέΡ€`η-±ۣ帘ς$b D|n8φ|ZθSΩf§\΅[l–l«Γ»ƒ9Aΐ»€›n}oό“Htkι§>ρ±tεδ«0 ·₯C„&-ε"hl{OKzξω—C7¦χ§ϋδισDM˜IγS„ݝή{Ϋ-ρζ±υί·{ρΒ9΄7@y.ξ=± `wΎš}βΙ4<Ί+έ|ψlη‘:OL₯o8žyβ;$‘ Gχ¦ϋ>p/c=]Ί:ƒD„©χޟz±χ[,γ;0ΨΗφ&ΒιΗ¨ώ‘qC Θ«―%φύi‰dƒOγΰΊk€ˆsg‰˜ΰ+§@ZH<Πœ›XNη'›Σ«―ŸL―œ|=-`ΌS’3ΩԐβω3ιΫϝIG/’Ζ~τθQγΛΗ±_56ώετκΔjš!δηΤN“Ψ ―‚,ζ¦!f!~Α8 2fγΪΧ‰²•/“°pσ+ΡΒκ2Β2.λΜI’2>th!χ•}gGΪ·s»ULϋ¦ˆ-ΎmΆΒΔΞ’!΅»-œ<94ζ« KœRq―ΰάΎ£IεL‘HU8αbՊψΤΌσ˜W΅ 1„ηΰ.,6p ¬€―=y:M]@bΈJτ!φY;Ξ¦[ΆB|s8?}”|"Ψ¬—κ;ΣŽλWΟ €ͺΎ!¨ˆχlλG„ν7RšΉ7ŽyWu›γ#Αΐΰππ€8δny7ΦνJhΡNΥa0ši#&ITΪΘώΪ…οΛx:@δ‘]»†pΔ%Ο’₯Λ0&έ=ύ¬ σd€6,q2MƒrH•°‚ β·1Ω%Œ=ΰ]‡πΉ$Ίaϊ4ΑdΉƒYœ»‚‹ΠΔωΗ‘YA’ΔPΏ+ h» l#O ƒΈ>Γχ~ρoFœΨ†DΉ°Ήy(dD‹?ϋ!Δ™{άz²Ι±I(A½εΚήη]ΚSΐα—1!ΦEQΪ““ξ †€οJˆ­GβJ G#ܐ0„ΒΘΪ΅NλΨ Πβ¦υE•ΌK9ΛHθ8μΨ΅A.2ΧΎ·ΙτD;γδJςμ£}υ²œι^|) f'ά^Fθ:Œƒ5Qςχψίwι _ZͺbFwγA$£μ!#M)­υί*]£un―Τ0{`= h1Š˜S’νjΜΑdpΰ+Ρ/T›ρI:gΗaŠq$EΈeVσ*c_‚H+κΛ€­Έ~j„"―γbCcKΫήΜsβΨΝ.ίΔ{λτC³+ΗͺC¨fŽOYΠΗΡΌ»ξFΡ[£ŒζPϊ2΄@€1+ψœAœΑδ” )S΅„cσΤδU&«ΐ>S@β’œ¦{dh;!½Ρ֐8•91lλώHlW€–°žψMlIΩ‚Φt §W“_*νmΓ,*§–Ε4 v<λeψ―­κΜZ¬Cδ¨ι°Ο:X«ω—1Φ4Mk…HZeLL`ΐϋ£/€‘»oM|ΰ^φ˜λ ncρ‹£yh$³3έ63¦ΤzΜ©"#ΓR0<Ύf @ί›UπήμΔiκ Τ¦β߈P *88/ΟOD›qΤΧDIFΙχ “έˆu8F™Š*桁Β\•δo5~kΎ©i—Ρ―*ψ™­c~Z¨gαΎ%τBΓɞ1<ͺ„ΊεΜtm˜Ϋu΄0ζQ£"ˆο2šnVa„V κhLυ―P°’΄r’ΊΑs›ΌΧ’OΙ,ώ[·»rξ7.α;„Icbβά»4 nbMθ―U™3Ω`§ΨWψλ2ƜΒhEJhΤBΉ_›‘Φ―γ€VΗ$Ά]‡‘snυUρχάβJϊώΓο§{vφβ#Z`μν0 yuqωω(ϊ€‘vφ”ŒŒ{C­c³ΆvΜ‚ yόΚ‘ΧB(cŸΚό.σ§p©jœC@ †ΞΠΦ•5΄‰ΨιžC( Ά“έ3.c°r…` D„{a¬γœ'„±ΣΰΪξΪ³/]&"•a„?ώ‰s–΄₯IN»ƒPŠάv_I|7/]δ\Τ³ύ•0oΐΠ&ΤΞgύ“_膙jE£ ζB³†@°Ξμη'ζ`<揍ΉπάL(β!όLΤ.κ4Ά0O΄9@α$ΒΆχΥ ίαŠ6¦/½Šb  Ε"g‡0Χ„°a Oq°9xΩOš_κΏ"ΎpνΕ—ό Ψ1ˆL£πو ₯Ή§¨&΅΅γkƒf#‘-Υt™θqμΔk©ψήλ 3ψKDΝή»»@qΚVJ8μΓψ{γͺ+ΝΐD«N4‹(«ͺΡbPΌ 21±CxΗΓͺBαβ©#ιρ—N§_ύ—ŸL_ψ㿈Cn IWp  V…o½ε–4ωΨ#ιoΎϊLΊλ}w ’‘€˜§Ζ‘BaƒΨΐb?ρ½ηύοΏ5TΰsϊτGΎ‘†χ݁i9"΍±Iφ‚ΈδPσH«ŸMㄦ›œ8‰3ξi ’ΉΙΛι»ί{ur)½rόtΊa€/ύΥ—Ώ•>σΏ™žωΖ—#δ"ΐf+E¨Χ―ή H4½pς›iϋΘ€nd6.Ή:–Y§™Ήzz„Bi%½zΆ@2±ΧRMΎŸ<³“$ΐC³VYΉˆYΡq‡ξtβΒό=ˆ:5H‘nέό Θ΄šΎςψ,ˆ‰C|90ΪzQιγ”Ί‚ƒΩμi`“\"eNπԈyF#¨E|NΪG9Q^/žη΅«‹d'qZ' l5«³ 'Ϊκ!_ jπ­y,κ`⷏hH»Ι6§Σ'LBΈ”φ‘νxν₯Ωtα¬φΡω4Έ½+=φƒ±4 q α+χ΄2Ž­¨ύ‰3rΥcar5E’4Ή­CbŒC«'έ|η^B Ϊ™zK:yr†Έ­ EΚ©ΧSzκ…ΣιSχn!Ι#ͺvΞeh“ΤΓαfψΡ=C©tn‰< ιπ{Ά§½»‘N6`Ξ„ͺyfi šaBβœΩ°ΐžΪΞΑq9Τ˜˜DioΊ ““οA΄?ΨΑ·΄‰ΈΩϋ euβ+΅!ν&³Dε1²R;*¨Πxp)ΑV~[D‘ι\Qδ H,S^;Z*dΞ‰΄ Ÿ0ˆ0 ©6"υ”™ω)84”οΏ‘„rJ«ΠJγE[›DΏΙ±Ό6™Q—DŸD—Δͺίm?#ΐ¨CΫ¬/Y”*ΡΜ‡>,γ’h .ž…TWœΘΨ:‡«Dρ>¬-Gqͺ8Μ%f|K©lvΡ ^k`<2>QY<Šx %±¬C°Lœ„vŒRν7jΏlKΌλ%Aξ?/Ημ>τ]5&ύkEΪ§d;ΙN΅6vAbšώ›χίBP")ζOΊœκ:ώ;V50ΝΌ³ΒήXΕ©{βOΙ{'~'3똳ΐ `†»V…ψA[½°t&4|8U:5Κη±GgηcvY­bs{S•ILŒd€ϊ`n%¦•JΞcfα΅yΙt8? ~­Δι7+τΡΪ`€Υψθ !ΥίΤ›Άb¦;½€f³ΰΜωσ(Ήtγn4υ―^‚ΡEJ aΟDΤ9’6-ΰδŽ6²σ„¦tΪ†0‡ψ„κΑρvž 6Αfλ„`mC+ΤXĜˆžΒ Ρ½Τh4Β€ο@Λ€?ŠαvkU’αC²€9V„ ώj»”ϊ=Θv €½LΊhΨίYΜ΄Ϊ•`C0O’I™›@Π1†ύ:š\όkd1C>~ό(ϋ½ΨΏ•1ΑD‘`±­GΠ$ΆϋhYχDlη³&SL-{ I½°š'f$/‘]BΨΈ >l'€π ~B[‡† Ν{.8z$ν>°—ΆφΣW˜0L›$φTƏΜ|jj5Ε\E #ώk€`l€j+£Ϊ6‘p€»τΕΑ™ζŽΕd¬FN™ `KCcL}'p‰gšβUΡώΈΕΜxΧP°ΞΫ΅ύMΒ¬D€LVBήhoy˜ƒπςZ:Ά¦Ϋξϋ0  Έ‘oθΖ XuΦ7ͺ’ϋ²8\ƒ‰‘ιiD¨£aΗ‘že¬Χ p—0ιn"x© )θΔ£ϊf¦.¦ΛΟ¦; u»½1•FwνΓH„ΌTμq™ZS#HΑžeΞΛΐ‘yitόžΗά'·¨ωšF4Β•%4“LGciI³˜L.”ƒˆ_γL[„Vš#[jΖ0Ψw™V"Ιa6Iΐ0“wWIT87·–†·fΡ69Φ<횴 1ΧL¬>`§3…A+wg0Q.ΐ¨6‘΅ήڍΦsζ|ͺώ$ŒCζ²Βψ:ŒΜΞαȅ›₯ν{‡8Χβr‘«iδΑ _‘wρ*Α,κ2νͺXΜj{…DŠ·οؚ0«ΪeμόYΜο#ΑβΩ±t`‚f³˜Uό—–6€iΆΜ!–Χ!ηΑ] ·τ Φ_€C”+Σ Ό–Χ X‚A¦“΅ssˆKœQjΑ"Ψ8:‡O°ZεΉΙBΫΪJΰΛ,Μτ$k₯ _oΜΓ»c@Δπž’bφΙw1Uάd²+ΗbΥHθR@šΓΎΎΡΑ*bvg{ϊ(&[ΫθAV— œχώόΟRηΞΓιΨΡ$3N_ψ³Ο§Α]1υ@ ·ί`—ΨδmΨΙήzηέιΎϋξJίϊκί₯/9B²šπ M/>σύt‰q zQu™ζ]³dχΌgtb©>ό‘m’AνL‡οΌ/ οΏ!}ωίJ[PΏΥQ{Ά@˜5‘«ΰ·~ϋ_§ηπ,yzδ«_Bυ˜KGio`d4}ο‘Ώ#Lj_ϊιΫšΆΑΧksύ)Ÿ>ψ?§τKΏ³šnΏy[Ί S،φ²‰ΓήΝιΘιq¨R$ζ Η-ΔΙ'ΗFy3§vBΟφδΥ7‘μ„P@=Ίm¨5m?D4U3™ŠGΊϋΙ3hπpz^AZ’Γ~s5οω—Θ‹£fx1–~'α ·6¦Kσ„œ#Ωΰξχ§α‘έ˜JKηNawŠiΖ 4c½DˆZX˜B#q8­=ŸVJs$gΓτ’’Oυ§qθ '±oZHο9TDC2¨o?€)WšL/< Σ€–fxί{Θ@ψΰ2ά°ε†KDΖBΕKxά5β:ΒΞΎΨΌN¦Η_>ͺbͺ΅Œσ[! Žτ€6΄!μ–ώ+2AΟ-_₯Ύφτ‘{φ§i‚³c?H£­{ΣΞαͺxφˆ|?Σ§±ύ]FrΦ2…ΊΰΤλψάΰΐλA;1ζa3˜nƒ¨˜…ΡšΔΜrŠΨη/Ύžn»i{κήβ>>…ύ>αJΆ¦οΐΘόΚGΊ`ΜΠμpθ%’²™-[ΒY©nΞ!$jF(ZΒ&Ÿθ-[ W¦ƒp˜?lšaA€{˜I„KPh{<£κΰŽύ„ž„xΑ rŠδqλΥ΄\WωήžΙœRΛ„Y`I˜¨Σ%‡Έ&’μb)ΓAΊ[³_΄ͺ)Ω%Μ&‘’:Lq RΒT„—‚Tg­%«)sn—δΙξK$ϋ\yoŽ΅ †Ι²x_βv2Tκύ¬?šŠ‰RΥG=LžυΔ»ρ…βL·2ΗX™6ναeˆ`j8Lυ#±Ο^›8ΚOm2Z>‹`΄©Ι’Qoϋ kRΔ¬C‚YζBMƒυι„nR: `Οc™…έΓ2]0-F–ZFΚΎ,q 9lέΦ•.cŽ—*i΄g™'αY!,šΪ *H˜a2‹MΫ0οšNσH·Ϋ 4Ή+γ‡d6i5ϊθ#P•!Τ"”2}41’‘”œΫUL!«hΜVFB‡v P+CjΦΡ‰””Ύυ%hš°ΣK˜?ΝLL§ηŸy>ε?ΨHΌΰ] C‘€ ύ„΄nIψjώt§Ϋ₯…+ΐD;„|6α=δΘΕΦ\3‰Nηͺ€dί NCžAψΐP­(ŒγΫΦ-ψ'β{²΄ ƒΡ@D!ύ’*ΜΏDΞ-³vι΄LΉμ’kdBL ₯ ί…“v`~όq3°Ση/bΒ|>Ήp©mkϊɏ<qσ<ήΙ —bάgΞ^@+ΔΌBΠεˆ0θ>RΪk&φN4O'ŽΎΐ=Mδ m―³gk:φΣά»Κσ-DϊΉZφΒ{nœυ^B2܊Ιλp!Ή.°4xΝ:π0|ΰΰςYΣΦ pB/,gΜTˆg ΤdΤ ώ‹τYz@BO˜ ν%ί9ϊ«š gn)f–.θμη;š˜ΰdΨί<ƒŠΧQDνˆs‘Y“[ή•Π\ΕόFΏΡ­C£ΰ+rΐ0™΄eάьΛ:¦RMhmB‚^38_α€ZߐΎ&Α΄‘œfΡ5Rhθ^χίx°P0‘Ι!H‘_$Φ{·ŒΒŒμ’_) woKΛύ6ΑΉ[§γ)Ϛτ”€¦ˆ]’"ΒUο_ΉŠ&’ύ_#"Vh5iίό)+\ZαOgΡή/β[qxΜοhΝΥpΈοDϋŒ)υ/ έW³+3¦–±‡Θlh9Υ€ά|lμέDc$ˆJρϊ‘”ΓΤ₯ϊΎ±‡•τΤ‘‚|~σίώ»ΰ~ŽΡΩ±/Β΄¦ΝL«ϋoΈ-Κ.Γ½ŽξΤρFΦyθcŸ€{&|)Ξδύ·ΐ˜άD Ix ΄?WZπΣ?σρ yρ£γiIϊΆ@\z*}τΎ]„˜YΎ―©+R$¬9ˆυNΒΙrΨ‚H― 9δΰΊ 2ΚsXφa#’S±‹σJۍάq!€΄kσ+Ga 1;XO΅"—5ΑqH[mΐω‰0υAα„νλΎ9=ϊ?₯ƒϋˆ}*}™˜ak±σ—ˆ1Žm-D!ke¨―LBŠ` ΌVCƒix€‹δhμ=HV{JΨ§NΗ€Γ‚΅νNΐΨά2 σέ™¦^^Mˆ\’lyʜ/³™LηΫΆsm‰Cr,ΉL­6bGή‘μΩβ&μ0ΘppN…˜ƒη˜'L*vŽξJΠ~σΙGΣΕ9Ž©ΆA€¦ΝilUΖp°[ ΒWηq²Ÿβ_±¨μœ"™}¨tρά)"Ρώ`ΛΆ°‰5‹rAFŠ=;1ΥΦέΟψ;Qν“5›hE:§O_ΎήzD’Ξšk”©°υ–h?g½u—‡ίΦ­&4QΌ D˜cS ΜΊx?d˜Νu$g8`{ΆƒψJœ:ƒh{γΏ0§ΰ™&#Χ΄%΄@\o‹¬¬b‰Z $rY"Ž XΧlš=ω €ςΜ—‘„Β”Κ’r(œv )ο>3,πo£* EΏύάμŸοm2 Φš 5ομ‚™‰ϊ©g£/›ψOνˆ6GΤ? Λτ‰75Wjf-:Ω©VEζ±{gΫ6" ο”ξΩsRτρΏˆT°9βϋηH6ˆp1€ΖfoΩ5ΖΗΟ«H+»τ#ή [Π²±―jFΜbo·‰y+φνwE€Άΐ’ŽΣ³˜t¬ΝΣfή,ε ΄ϋΪ±Χ―»7μˆM(Yž§ θΥΎlA;b’>Cr·ΤŠ”·ŽvηIpjRΈ.C„ΒΤθθάΪ£ΐctδZEL2ΣtF5 ? Ξ%Mͺd‚λH„η \5+*2HΧl Ɓƒxi€a'™)·‘Zs8^«Aθ…ΡΙr±Έ’&+œ Γΐ ‚Œ>ζY Qΰ0;=‘ ‹ιЁ±‡šπχXaΞ™ι^φΏ‰ΥδΤ‘Όv"9Ώm`ˆ€₯#ιF˜©Ρ#²μo’Š!ΙέΏ&Ηy.a.‰Ζ‚ώ,ΒT6vŒΘ\Μ`™0ˆ šg`R{ρHŒΤ`?sΡ8ΑΙ~žF₯J€ΌEL[ ΖΪ³FψB48J8δΡ½ι΅—_bν0iC°ΨΦ΅XB2 q*¬ΐ;`ΚZψΛ‘]±{“Α»R˜0ZQ>X/ŸΑ\Δn`ž½d6Ψ«ΎS†H6 !Ÿ(ζq8Δ¬ς›χΧ0/2Μ«vύλ+Ηΐd©\’šΉ!ςτ£•ŒBrπ™ώdζcβ\αΜ¨`¨r8©ƒάQ?fά$²α»ν@[Πo$™£€Αέ<ϋΑηθXψΜώBΩ|ψΫq‘qΡ©?.αΓ‹•ςUkο51Evs΄Tψ>΄°–β“y4rέ¬Γΰ.ς_δžγ›ΡKπ‚C{‡ΡΠφŸ U•Ψ·mAΏΓί&·»ΝΦ&kΌrDR4ΑαΪΚ±Άˆζ†ffϋφaΓι·Ι4;`ΞeΈςΐέ,ΒΓ]‹ΟjB…ζΚ@@jΤΖΰιΟΣ‚XΕ¨”$κ3ƒpU +0κX*4umKGŸ-Π KŠφxh >t‘”)CΆqwβ#u™s¨NΤ)΄£hidΊΘ§Υ “1 ~ΈΚβm i&¦£Ν,φζΡ;ϋ±d€yTk)S¨©Uk˜R1vφN#Ύ\2&%Ξ«φΑ폋˜Ό5λ“Μ*<3_—Ύ3™ω&τ)Vσh+žΛ0še±Ρ³Ϊ4uΐΩ,‰Φ¨m-—Khgzd's³Λωcύγwγ—eΩxuΤjω£O₯&€–›<ϋtωσΗRυΠϋ²ίlZξ*ϋo‚A‚vόΕ@*υΎ΄N­Θ>*ςΤ΅6΄†"Y Υέ„^TB§DA „ΘGdεθ‘„pt+ bΡ£κ Ι›M3‚@njΩM‰δ&£ Ν₯}6 2ΫuχŽ΅HΌζ!NΞΎ· _ΜΥΊSœHbλD.Ί D\ΰ 1\ξΉ‰sη~’Wα°ίM^€" άfWϐ₯}%]8ƒcύρΧπ."Μυp€1ΏΉΦΛι‹ίαΠΈ„οΑ-©ŸŠkΥΗRoσ±tβΔ ©ΤΧƒ9Hζ :Ρ.--eš W‘β‰C&―«ιχ"ύΥΗΉ'ϋŠ=ΡJi i‰ƒ§Žζ«ζt›B Ήψ˜ άDps˜ƒ˜uΩ䆓ΨH7α³£O«> 5€Jί‘ρ4fSƒ2Έ,.ex‚>0Φ w0fžΡ³ψ?8 ν§— HΌμΗΖ%ώρ]eof8Ζ~ˆgΒά Ωl/+O_θŒ*ώθ³ڐΰF΅όWωNΖeΜEVΏ’cbύvˆώCΙ€Dέv\Ωx˜i˜ ο[Ÿ8ΨχΒΤ‘Œš„ανί&X#λYC"ι;šr΄ΑHΟ‘j‚$π$σ7>q9μΣ›ρυ0ˆ‡™„M€† a{ R²ΦE>ˆirεœεV–0ΝΘrk€ Ξψž€ΦeBVΟ͍‰JH–ςL^§π-4<0X=sνˆ•(k*ΦA"³τϊΙSψ ν‚xh"I}ΌŠΦQ?͍Φπ(g||BΠ2τώ~ΒKͺήΓqA=‰iŠgΐ* ΗΞ±}˜K-N₯~V»ΣΩ‰qφ6YŽρMΡ₯ ηάΠ­2ΞζΒοΨλΒΤgjV |Μ”^'Γ³p΄ #`d2™Ώ%ζ]°Z͈!ΎWΠΊLγΐ_BKβz•€{󂬒mς&φ@‘εtΞݍiXΪ1σι“'9ˈΠuιR0E:l«]Ž5/pζ*€“₯ΦίΘpΗ•ZG˜? ˜_ͺAˍο8>>[ΣΑ³'^H3ψ΅‘!½Ψœ­…Ι ‘$ΠncΪwγ‘tζτ©τ*šβ·Dݚ^ˆ"Ϋ'Β£ϋŒƒ–ώΤκ„ΪOšF‰ι‰³ŒW"-U΅scŽΤXΨ—)ΈexτυR“‘ΐ`‰Hl-0}šΎδaDœ#΅© ζ–6ΤVδ5³βޚώεΙ0½ΚcΕ0 ‘ΫcBgά΄#S‰Σ=υ«%ςώ,>Jξ‘Vp#Tu0ΞχbμgρšλhiΜε“gΎb{sO¦ΕρDHcϊlώCO’›Ι««q1?«œŠš`‘NΨ܎DžXΠΧ\š[0JX+Β\|[0q*”ΘȎ ­Α[恣ϊΈ¦C„oζ]x΄c8N”ڍρΙΣτ‘Ξ01 νΔ;Ι-P$„¨™:φ¦c„0»tΩV9ν?tC:΄λΎJΣιΫί}’‰ΘΦAL:°Ϋξλκ' #HυΜΉτ΅ΗžL-Ψ‹δ‘;SΟ>αΣ‘>υ3χα»tšˆC˜Fmi£άY|Wψ?™OcižΖΘH!—/Ο¦Qβ–sT¦ξΎ Ι³‘jE₯ώΤcΟaφήtŽdqφωCnH/“‘zΑΐ~βΆ?ϋμ³Dθy4ύΔGB„h\gΟ¦Ζ:v»σ$NΔΜbΈ―ΙιΘy–Γ ‡=še$ΈΫ‘ύυ_}>=πΰΟ€ο>ω8~5 ηYΤα78QΑ‘ C©ΏΗμΝό}GΏ‡υ™ρ©t;‹Cσ1hz$¨‘nM¬α³ΑΐqΝο:γ^ΠSί,φΘc³—ΣΎm£¨Λ‘CΐΈ7•T›ΎΣ’Σ΄υ44+½£N`BόTΧl’{ζwχˆψ‡ΐ0CO0yΜ *`bΜ\δ`lΠA‘‡Ιχ*’Ao·±©¦NOVν©M˜˜S»C=™Š^3Hs#Χx5c'J˜Ζ‰ Bq ψž5`Ψ^CΪ_£ίUϋ+ŽE:^„Ψ6 ²’V£Hευ€˜©A@AIŸΕLy„%Άrΐg0Ξ]o &ΕPLΖ;̏kΔΕλ9ϊ>IΆε€ι†Ύ5ag$…cΜφ_Q"PBΝωЬετAζEΝC f¦_ ™ω*D«Γ• ‹½Ο<ΩOΓΧJ¨™·’ŽΌh@‚l@ e5 ’ŒvΤΐΘΩ΅'ΝHζgρι'―b6θMgΝυ fG\cB43BΉ·‚f³„Sj+fQ»K˜ŒH,cΌ‹­ Imv$Πά•™λ^΄‘₯xΦδΒ5_\œgNΔ§š3ϋζ9&h0DxΆο”xfη27Λ¨ab>xξšI4 l Μ49ZGΪξύ–2Bά>6π‘©]Œ—±8^ξ+Ϋn<‘½mΔ3χH˜\yŸϊd4β²=š»vfσB„¦½Ψ£<τYτΗFl‹6œγΝΆ²qβΐcך‰‰~ΕX’nΗdί€Y|d=–Ι˜;ΒMηΫΓΜQdγ?_ΘnEωl~}jejΗΩ‹ΛΏΛΤsθ!ϊŽΓ5Z‚4fΛ”G߁&©<Ÿ`•4‹4žύSΗv2}ΰ#™*α!8‘ΠΗh€ED3š™G›΄μ @……Ch·šTΎTιo+ϋΝzΧ„1ΰK8nράδs`θ‘/½ΰŽ2{fΥysέXsŠc‚Ιo>‹Τ v<%¬αWD¬Ξn|’ΐUxϋ$ά%©<ΔΏΰΉ{‘’:¨O“¬o;4M£)¬Θ GαΚ΅‘κ›Gδi΄›ϊΰŸœαXWχW3uγ²3yϊΘcL5£2†fΪ+3~£ZՁλaJΰ½2kΙ)sθš6‰ΟmƒF ŸΏ€AέρšΒ1v—Υ:5;Τ—ζρ―Όώτw1ύό/όBμ1ϋτγz‰c1_έΨ₯?ϊ4Tvdπ‡^aσ!-ŠYί|ζ‚Θp\»6VΝ•{Ϋ•!7nΎύχζ“7ίσχ7žo~ϋ§ΎS½BΫ›{ύŽeώιMώΨΏ)@ώΖ/ι'>φα4Ίs4}ιΛ§1”ˆΆ@IDAT—œ ψiDνϊΒσΟ§_ϋΜ―?GκΙ₯τόKdJο±t5₯›φݎ½σ]ι?ΒΔlΪ™ξ»σ–ττηd?'jRΣ[οMΉώτέΗ^JŸψΔO€ηžy*}ύϋΟBLb*WD+ΰσm˜0Œξ!šV{:σ"φθƒυτkΏψI$,kιτΩ‰τθcΟ—Ύ|(Τ!σU$l₯ υ΄GKځΉΟή=±a­€Σ§Ξ’$π©D¦ςήτ©O|/l»ώ0}η»_Γ—a8έtσM„η]Ovί”n%šΫ·}$}ύΙWγϋoό«ί€όBzεΜBϊνΟώfzψλίJίόξΡtονC˜ _Ώ S ψν#HyͺιΔ‘cψ½h恭>κόb΅#}θ‘ϋΣΟ|μΑτ—ώ‡ι—ύ_qpυ€x0}σ‰§ψ‰¦τΉΟ}6ύξŸώ§tϋώχ¦Ÿχ§π{Ώ—Ύς•‡ΣΗ>φɐ9ή„/ΙR±£iΠPHˆΟΕnMσΜΚΟΎHχ§}ϋφβ2‘·”>'šnωΰ}τηFΉ¦ebB6"y¬l6μ."ΠΥ@π‡χξLsH¨Μ[‘ΓΦΈF‹ mͺ"ΟΫHlΧ\!½«‡¦uJW8Zρν98J˜S`g‚’-e„Ε$:WI) ±UΚ*ΉkAύφωψ5“΄¬N{8Ζ»©=rˆΡ”ξC.a­•>Π†K›εDΖ:u ŒN…hx+8K~΄ŒMΉŽΛuσ@πΫpDυ@’‹α . Χιά„ͺšΛΎΥ|U`F_£$i²ΎNY;Νr­$½ŒOO•5,@,/ i ΏˆβV’l©ιXΑ~?׈Ά3½2I «† ¬‰'¬=#• σ\ζ «•eTΠξ‚ρλHMM ΈN”CVΓΣπ‘ž»έTMχ>π>4oψΚ™gR”sœυd€B™§ˆ8F?<Τ£b‰˜ϋιœΒm ε€wFŽνΫY΅hjφ„‰2΅βΎ#LΑkm%ΆE»ΜŸ¦kΞcPΕΦΝV—wΠδA˜θ5ϊGΥΌ!N½E~+6"6ㆩD΄M%`QͺZc>΅€fG– i»„œ’Œ‘3‘ Μ”μTΌα(ο:fd }‰o2q£ΤεζΗ'ώsƒjν sŒΗώvήHB.Όΐ= VΏ:Χ|ςΓGζp±yO&…ςΐρS†²%˜οΛW'νݞ>χΩΟΖΈμw„Že―8χ^λ2³ΡžυΣo;cέήσ{Œ%Ϊu}l…+Ϊe¬…A ‚A¦>J_+/ΓεϊψΎkγ•υ›=b;u:²ΝρlΦŒ@ŒQB~γmΧ$ζΕ{ ¨Η:£vžEίμ]LXφmH€ΫV”u]θ{ŒIΨ… ŒχύΟdΆ‚δΜϊΗΣlζγυψΟy³L\Q5u_{ί½ΞΈωu{£/τ;ζΒϊbάΩ}λ’‘‹f;›}S£ΫŠ@μ΅cΗa@0_Ώχη2aΊκ:πÈNgL3΄sΖΧυ€Δfογ΄NΓΘβΐ·’xZˆ#ψΉ‰Ρ(‘±Βœ€ιNsΕ}ΑSnFa‹θ03Ξe‡ΑV5ύΒπΨIΛΜέΈΊ3Π$.€4.ϊžeςeφ]$Ί€―yϊT’\#υ¬Αx/³¦&ύ€4m‘}653”Zα}α‘ έΐDš2ϊֈpBζQOji¦&„+¦`ωNχ0—fŠϋx?ζš₯ΰ͌θšzΑB#¨Β|Š2ψ¨2wϊώ)pί6ΛΜ2ξ€ϊ*³Εž³οyΏ‘΅lmΣτTδj9>θ›ΫΓΠς&›m±Ž/quΟυ‹9r–8§ήν\Τ՝9ΛqΕTΏρݍœνΈ{|ΌεwΦθ―»>Ω x6δ![AZӘKLNMD(ΠɈ*˜Qt“ι[€m„ž•V έ ¦7 Μ:!ΪFw @e‡ͺR΄πΨ ]0Θ™d±HύεNΤ©mΓH•ΎBC±r0BNaβ ‰©D‘Rε<‘ 0uθ€QβjερHTUΐwCY’H“§μ=―B°>xΝtdύ4ζUγ!e%Κ/±Ορ%9sΔ֐φνݝ^~…„—˜$Νγ$Έϋ†°OoΓώš<ΨγΆcNaδΏ+Eά‚†Τ‰‰1œΫΙχ1v5>‘oޱSs8_#‘οDœsμθ«ιΐ‘½δμXOοΰΖtι ΒRοKοθΑτo=š~κγBΪ„™ N«Σ8Ο+n£Osh, ιY†ψχRSΰάMΑh cW|uBN)¦"%lkσa BGWή·΅5½τΚ=χήƒσιtˆz‚tβΈδbΰΠΨΨc!ΑΛ!>F"Ο၄\QC₯GHμI>εreXB"Φ’Β6#Š8°±ƒφPΒWgS%Jϊp¬„ΤΊΔoΈβˆN³Ζ:ƒ·Ϊ±—.@€…G‰΅ΈΜ₯Φ’dζΪSΛGJ«Ψ‹£Πb-θ ‡RΖ«ŠφΗC©H6θQπ˜‰8h#Œ UQ–gύό.‘\‰QΣ‘}uk‰11φαΡ>ŸJΐ9TCšOp„*&ΝD1«`>ΤσVFt›k$ΊŠΜNεΧaΖ4‘ΛιΚB[ cΓ¨*hΔΦ1?k„h§wΨ8wΒdRμ0Λ"Œjp^CrΪΐ^2λ|¬ χ:0­X"ͺΊ:ΗΖΔδΠ’UΖ/=βˆƒœ·‡ΤέCΦ΅b %ͺ₯§όtέ<)”&KΗ©Αxƒ;`~Cͺ/Ρδ3ϋB[±$ΆΖΎ”h¬³4—w™ΗΠ’ρUb]}»λ]`€x°I™zΩ0{"Y]Ϊτ΅`Ϋ―DRΦЏγI©!4΅δ-Ψ¦L€Οω.a―#΅„Tθ2`6MP¨y]γ>ε’γU Α{^2&ώ2“ 5SΖAΠ6/dkαe_ν%’=懩Θ`“Oι)Χ ›SΏSΞ ψ΄ν¨CΩU VۀŘۊͺ6ž9ŸΒ‡„cόΤ #αΝzI”Ρ-;Η}‘2φ›w£"ndΟμˆοσ)σαWΪ·#φ)φ U\Έ?χ¨;Νχ˜ημ²ξΛg›—οπ瑝wR’ΞΝχ6žg½ˆ²Β–έ~γΚ~ΔΊZ—οoΆoΆc{Ω€)±1ތŠ€|Lε|•rρ3»ηήpάqΟΊΉΤbΕ½hΗ—ΌΉQΞ1π³Žϊ†¦ΠΥα)wΠ4ΐp„Ά’ί%}£8_HJD>Θ| žε,•3Β­}ΚϊΠdsŽγδS‘…ψWΒΪL+Δ| ?t*XΣjΞ<.8λΣ™Œ">φ!}­σž}Ύb˜3ΆRκQ;ΌΗq/o›ό­#΄ FΌΔy’Ƙœl •jšΥιOΰη9Γ7ΧImœ=w\Γ,ΨΐξΣx&‘„χOžv0¨51‘©ί…MσzΓΰΥ½Θ©e†ψ(Ϊuz.δN£Ι£Λ¬ Jψ5ΰCμ]χλL'uΜN ΟΞ₯Œκk€ύκ)0Θ#ύftS€P°Πυ‹pzqΒΌ»«S†@.ΩϋoyوF'qom^αάΉρ#φ’ »ωπMŸΠόΐΠ7+ψωξ{o.χζο›UE.ϊΖ—·ΏσFΉ7ΥΏQ―νύP›Ύ©ŒuόP9o^ΏώY3Π‡yΝκ*!—ηΗ0Α€Έ€¨$ˆg s\;A²ͺΏSk’~­Fš’ρι)lΡΡthϊρΔΣ/DΔ+©΅5"[!"v>¦<Π‚­j‘VUv3Ιύ¦Vr[σ(lέσΔo1γλ 8GΉΆ˜œ Τ¨$?Δχbldz„ΜlD=nnƒV|1ΑΩ ₯ΊJD3ΰ Ξu8_ΔξΆ ©t[g;uΛ„ΕΏUœύ¦0ίiD’ή†o•}Τ D©V˜¦€ e–* k"mΑž‰ϋϊι6€πeΟNμΆoΫJƒδ£Yb.*? β'>ώΡτσΗ`rφ₯o|ύΖΩ—>tί½Ψό’ΰdQ"ΖFρyœ³«W W.^Β±όTΊiΣKgN¦°^Η‡ΓpŸ†ΫGKΠf>­C«qΩsHˆ«hΏBRFνj)βcώCŠGoλΨ{h©Sζ"σΙ€’Yΐ΄K©±š%bšzε «‚86νΏ„AL[ ³!±mΟΓΏ"Ρ!ΑΰάC@x0ζЎ Κμ Z‰V##ƒ€#¬Ύ ΒλDΜΑΰ5“"σ0ΣΒΪάF_2kΌDn S–ˆv™― ςν#G%Ϊ"Ο«˜m)•Π/βDΝG˜¬Ρμ Q *0*%ΰΑ†‚υ€―Β ιόΟΘ‚ φ ).‰[q¨Λ)1ΔΆAΨΡ ό¦ΧS8·¬αj“Θ MΏέ§†HΧ\NΖUsOX§#VΜ[‘™γ0A’‹+‘ΰΌaζ$ΒTŽΊΤ4δΣ^‚ι5τζ2ΉœΜ‚^—1₯J_ν;ώ³ΤmΩ‹S ΩyΤ,ΜEϋŒAΏϋ€ΙW™ΎD_)/±δ#5 Ύou21'ΒΟ¬Η‚Ξoήη—Meӎe)―ϊΥqΟΫ~η_ -#ΎcŒY©XSΧ5˜φ›x’†6Θ€;Α³Ά2}μ Α1ΖheυΒ~¬ ƒΰάρ;˜αό›ƒαQ›ΰώΡ2ξΐ2‚.Ϟͺζͺΐ©šΏθ£πβ<„GΫ‹ΰ%ΫΘΰu1Q)ΜRΤι§σΔ™μ:δΑ½Φ‰+i/ϊΝ ™˜7ρ» Όƒςžx<ΟΎέθψ |Θ½ΰ¦’μ†{ΞΎ1φŸG|s)…‰žkοx‹ΙPν+Wάg«Ν³―j°b―Ϋ;ΘZm >b.yΓ€Ύ†&6Μ·ψΘ³€›ŒοΞοɄԏ›˜£h)šό±ώΟ½ζυ#1 K©§—NN·©-΅p_€Ω»ƒ(>‡k뚹Έa?̏LρŽ‘O3€’uΐNψ[Δ«DΦ¨n^m-ΓN–g.€82lM0ΫS*,§k? Γθu­‹χx‡zešάΘΌš΅O{ργMνgύPΊ•IΌ”ŒπEνYΆkΉ,λ² Χ[Λl½ώρ.g@$ΎL¨=Βe€Έ` ‰˜C„£M4+Ή^ΐ©86₯nΒκaš ‚λx§Τ4"‘³gH„uΩ•±έž ³Ž›+"@ΚoΨ0#ρ΄LdͺΞ.ν‰ξΤ½58}6έqϋ=ύemv­B.;u2Μ]J†sh Œλmˆι†+ώŠΐ;” u΄kDήΑW€›L΄«΅ΦCΫBxNCΔ±‘7‡Η]W?ŒΒεΛαΗ0e>· G8L_ ξX`ND(α‹ |ώLŠgv€{γL«Cl±k bUS€ρ+‰ήΣ—N<™ξΌωNBs.%φBΪΉw˜haGΣƒy(ύΏςωτ»ξΔΆΏ?ύΕίΌ‚O†*ώVφσ\΄‘jΜhΨΟχžΈ ΑεΙ…½Z#Kϊ:ށΝ‡ ½#³„£γΠξ‘τβχβS²7ν9Έ/=GφτξNκ`³Ι 9LΎΔη? Vγβρ޽Œ¬δ‘ypΫύfΌD5ΗoHh©I[cM§ΔF’ ‡μ€ρ Ϋ["O&Fšπ$:)η!DU±Χψδ5π οA…ζ$N!DΦuM²ΖžY†Ž iλ"m¨†0₯}Οr%`ΞΤ Γi2ΟJΓ‘μaŒΝδΝ) ³γ™κη{ΣaŽαΑjίΐwfχ%[&&bψJθ“Z„αV3‘&§L£ΐGτS˜w 03’Π-ΰaΘΥUœ–=μJD± Ϊ¦‘ά­Γ\€4Cb©Tή‹faR†=Ή=Δ‘54VubŸ™$oN|ˆΜΑώdν…ΕˆRΖαΝ$A x\;άVκšψ!‘Λ]'Χ‚ί#Ρ2λγœgD²σ!Μσ.{JB\³%“τNxZ\μήπSν`εdB£ΛΠΣ·ΰδh‘οΞ·IεLή'Μ­ΖOŒζLG]‰{ΟΊΖ|kρžCD!ƒ’Σ΄‘–ͺVμGα¨,ήΗΌE>l™  β…°KλGΤ€Y‹ Aς|nLu|J9ΐ8°Ÿσδ8ν‹°+Qλ$jŽί½ΟTξ+Τ%ρ“O|ƒYΛΪVŠφ,Δ 4Q«Ξ•σ•qί~ςŽsδŸ75kζ-sιΨV3ΫDv£xτώnΤ“-(ΟΌ³ \dυ{/ždΕX6ΎΖ}³σ~φ^v?{£ξkun”χ|φΚF²QOv‹»oΤ·’μ[j€HLNΤρ–~f/ΌυώF[ήdι6»ύ½Φx/{΄y/κ₯τ³Q3m eμΚFyη-„m!„pώ˜Δ`γ ?έ?"KߍύΗw6Hΐ {Ωy’ ψ~ΑE5ΐœU"M>kΠdͺ’=gCj―Υ@hKΑ/Ω‹% ξΪΊhK<} [P/›…>Π?ώΈmςn,§ΰ$Šަ Η° ³Γώ rΟqΟsΞa„φ˜*cΎ¨Vάβ{>³ς`L ¨₯ˆqΪͺςŸx6›KscΘ¨Ε|3―!|²pΜ™ο;ρξo#qy†8ΩX)}qtqyΖΨ&?z‘ς`‹ΨKμ0ώπgš::χ Υ"ΔZ죬Šη™Ν>Λπ_Aς‘†ώožM?}Έ/β[ \ψΝHŸ?;G†κετιϋFƒ°±ώ›γτ•…τά)lρ‘Κξ$TΓνD9ŠƒNXe¬[Τ*Οf(½}<A^Ε~΅ƒˆ%aλ‡Σ¦Γω·»ŽH―‹Πh˘,qΘτ2$.Τg9‚}Ώ [i3[.RΞdfm˜1HbΤ ώρ©Ό^βi.‘/œμ)g Š+Hƒ…›\ލ8TNOO₯έ„—lCΪΌLμ„>²‡λ8Ή Ά‘7ΊgQΧΎμYΗ:u¦Κ2γφι-‘[;74 mΖBG#α%Žu¬ΠΦβςRΨ]αόVΒΌ©Πԁ6fš<ε4ΈGΒϊοΡ‰KšŽΪ%;ΓύΝϊrΨ)αΌ0±D ςυπM(@δ—HΖ§|{'0…Άδ*™Y‹˜$΅ΐthBcr7s,’l³ M†ͺiΙv‰ χ ΈV!όξ}ί-$0|1ΜΕ™BT4`―» 1΄ƒΠΌsΣsiχθh:wρ2!ͺ‚’ΣȎ‘ΤίGΜ·"ϋΖ¨@[Άφ€gΙ*Ν؍6rφ ζWμ΅,^:έͺΥθ`;{0cΟ©ιίƒY™!άξVœt‘ŒSg †l¦κήϋοM―9ŽcύPš}φμ©­œiμ)F!c¨HDΜ€¦@€ αζ†`*™4;Ÿeˆa Πm4΄βŒαe©ΐ^tΎ όρ b—“§ΐ<{ΐΠΆD¨\ΰΔ$rUήmΗA9˜ πAΈρUrΟΓQ‹φ=tŠ0ζ «Ό@ς0έΠ hΤ<]«*π’Sr^“4ˆ]£γ”Ρ ™ρΆFδ£η ©9μ hΞzΠ&T<4΅ζY$V£ΏŽw UQ$d,T}–!Η| Ψo@Ϋ%Ρ+AΩϊK>}bB“‘ n)Σ Nͺΰ -’™ΘΥμ(Q, S%όρ ΤO’NΟcPf5:ekžV%!eΫ1χκ š™fc9˜BC9ΙΣ_B[ν–Œ‚BTΜ―ΜλΓ³XmΦk3g‡ŸALH pΰ{KΜjAΨKh3™WqΪmCrͺε Š‚ίšŠ„ AB„χΤΚp;Γ½Lž#ή—Φ\ΖFψ7`Β†Ω›*°EπΑ™σηΐЎ0ε4?:&mŠΜsΤH=Λ¬₯η”š ΅ϊΝ΅ΤN'­M4h»:σΆ’x‘ΜΘόκ4‡/Ž₯0?ž-Ÿω)›n8`Ν+ώg=e¨\Gތ³(œd™£ΨβΪχŒ₯#ΌΕX§sΘ-‘W°t<ς,σ…ω ,eš0g ΣχνJ$jJΖ²Ε؏±ZΆ½Ω― ’2ΫΆ>Δ/”²έΨ„ώΞΪσ[00ήΰ‡uΕSΖδ¨όmΏ¬"ΦΫrq#ϋπgμoΏxΕΛΩ—L✽χm?Ζ—νί¨”ΎfΥe­YAΖ΄emτ† cvxΜ}η{cΒψΊqeύΝήί¨ί‡Œ7«cƒdΪhΟϊβΎο[₯υE]ρ_φέ{\ΩGΦΛk eά€,c ζΓ‚±¨ήΫ¨›2yφ„&€jTC ,ˆγκμq^ΊΓ„Ρw„?›χŸϋ†>‘m[‡9vЎβ©BŽ&χ€Œ΄!ΟD ΐΫ-ˆr f[Βe5Ρ π‹Φή{2ΒΡpj@ύ6dœ‹`2μ?0š™3³'―“{ΗηΆ]qqήQ5–59Θ E0pŠ!|c8΄ζ†τOa‹ύΜΞ„lO3$Ά?ŒSa·e€ψθgF›Ρ'7­Ο6>$ž¨œeΉ˜Ά˜ 1Q|PYΌΛ#>΅}ΗşΏx¦ΘκΕή³>Χ),€μ››.?λ»~e+ Jώ‘¦Β‰― βπξτ3χνΑ*yΛ[{δ]ƒγιΉΨΨσG“ayρτtϊΫ'§o'bφδρ©τGžIŸωΰh,’ε”ŠΥΘ°ϊw_ϊaΛιΠΝ·‘Ώu9}ηρ§ΣžχΌ7έrpgϊ£ηJεΟ₯ahΖΏϊ Ρχα} ½πΤγdΈžLwίχPΊγζŸόΑΏO}ϋξI½„E}ζεc8ΞξNwΏχ`zψα―§mΓ{Ν7έD„£ξtκΨ‘τǟιη~νΧΣ‘=£ιό‰—οωΓιΏώ·ezδαΏe£v₯Γ7ߜφ’‘ϊώέ-έxί'πζK'Ξ\JC»φ₯ΎΆ†τ½g^ ±PWϊ(„^/Ξ³‘βhό‘fτz‘·Ν€L ΞiϊSθ€;‡)ѝwί—.^ΈΞžKΝΫ0ƒšΕώΔ‚b _””΄ΐ,Ά I*·α€eΈtΓ΄ €Ez8 "ΚKφΤڍ†…{œ9€Ή%$@ζ09YͺιnΒ=Γ}lŒ€Δϋ+αŒ›Η‘c•μ±Fϊ1ήΉL©Ρj”… ™9?αI§ Ρ6’T’RΒΈ₯­s€M΄™}ͺέΑ~Ά―& "žCΐ¦ΖiΧΌGΔ ΧϋF‡0€]ν[ ‘Ji Ž›@‚½h<Ζ/_ »{CΊ€ζedρωWJa!,qθ–! Dl+ϋ±ͺQπ€Ά 1*“’VΧ„bj]ΰ§£.M£°ήζe«h6,§ Ι{h`Y‡fόhBΐΑ8j0/:YS-“’ΆBVόΛ;›s’€Ÿ†~]A›θS‚6αψά'š%ͺ%qά2m9LŊ0PE°YφGFΖi€ΑX/*ΉπԚ9u€UmΩ{d•6ˢɚψ¬…²k˜$κΠ]!ŽIέk|w½”ž‡pΗ}C;žΗJcž7Ο€ s)G½MEζΌb8Πα{ψd―3w2kΒJ\‘ΊΔΏα1%tΤΧ$*‚ΠGY Χ»σ·"ŒΒ₯+σdIžI£CC0ι¨ΘΦJ(χv$ΓΦ!Α‘I"υΣm֍Μξ¬{ζΣDwƒδκέ:”^}υ5 .Β#3ΧΔά„χ€aΑ§†¨pΒ^f’Εϊ86 ΚΦ ˆ0ΛhΗΓ¨ίϋž₯ΆΙ€r3#Έdb¬,˜ΠξάΙƒ]γ ‚Aα†ύτŒ¦D|W{γΏ ΈEFCm ΠEAZΦθN‹ 9„ooΣ«¬ΊγwΤρžέr§Ppγœ‹Ϊέ,ύζΟx_ΝυΖ±ΈΡWol|υΣbΧ~ςΜ·βwΌΟ·μυψΜ9έΌGAΊγEyΡηΩ㬬σΟωΟf­Ϋ+ΚωΕ{°θze/o”Κ^ΝκΆ¬sdώmΦε}Λ~lΎ}ΰε X}‘KΈŽqgοGΩ(ΏQC΄ε3ΏdυΗL`ϊ “œC D4ΔΏgN6NΈΧΡ9'Ρ̘Ο΅rΐϊvM³R“΄vΕ°Ξ9³ #nΐ“ΦΑΕα0ΘhΎTDΨ„FՌυΦQGXBŠΞe+Μ~TΑoΰ• 8Μƒ–.𚾠šzžΐ+½„ώε<3΄ο2BŽ;–ρ§Τ€₯Ξώǚ$¦ΨFD"Ά`LŽΣ9—Ψ-:½eά?0ϊ– ¦ΕRNα†σ`…±Η|ΡΉσφγΖX\X­ibΦ}Υ=κ:€ί’Ξ¨#NΛ¬Νuυ’tφ/{$Ϋd=Εi1˜΅ΰˆ-ψwύΚ œεϊ‘§‚ET"€ •κ2ΜΘ&‚δh I―Q¬XΫο²―Ό<‘ώΝGv₯>3#όιO9•^85•ξ:Έ†F‰"fν»ηΟo<όp=pCϊΩ»ξHί{ω ΰ–τΒ‹'ΣGχޝΆνά—~αΰ‘τΧϋUœ™ΣΉΣηΣƒ·F6ΠyLuϊήtˆDjAP­§οοIH“¨S±“'ΰwntK:sόHzωμεtψƒ…΄=·2>Λ]ΌœFξΌ-ύ/ύbϊλ? qt•cŠ|}2ŠΕΎtε2qκ!Κ΅»άџ.,\β°Cϊό·ΐp¨)jeLMHςτ“ΰo gΧΜωӌm½fb3퐄ζ ξxO΅Έ‰š€βS::GΠ—tlP§E澈»Dl•9Ν4€„|YΓΑΎ’[?†*oq]¦†ˆ΅σΠ– Ξ3§žwk+š+θ[‘&ΔC2ς΄ΡΘΑTΗ>Η~―qθ©m)C$¬+† Jγΐ ΛπΎY­L1Y‚‰Τ’J+h€ΤϊHO”tΐ§ m½%ΆU`p>$π2‘pΪœ…Γ_ΖφB‹Φ†χ8eH\Όfηi…PΣ)kΕΡΎΪuK¬ J§c*CΗaMŸΒƜ}Άˆi] ¨Z1σPœΏΐϊ@ΐh3Ύ#αάφ΄’’¨£ΤΘzTyόθp]œέμ<%i“ZΦ#θLζ»FΉp©vΕ}*1 ©d3πΒ΅!n 1/JH‰XƒίΣB‚ΰNhQPI?1”2χKžω4ΊΝ4{¦ΆPL3WfρΛ‚-Ιu.»‘Δ…hTΙ€M²@ύ4έ2‘Ψ2„V£α”©»&‘Žh,L/1/ΖYΤC2ΪF.™%φ” V…½ζϊ­γWR‡³oAθ°Jώ–5fY ώ)Œωτ\ΝΖ*Ή¨SFS>Αr]y‰MΒ?|l,Η;7š…)\₯α Κ|_­Gϊpΰ 8޲¦B΄Kˆeοh%£Γ`7ώPŽ =—-$ΑνXtf3ρκ5bχƒθ€HHž}ς–‹Εχg΄Λ=«ΌvY)—υςgγ7ψfƒ–υζΖ§½“θŒGo«Η{φΧOΛeWόΘΪ€|Φίμ3ϊϋ¦6²Ί-δ›Ω{Q>ΪΆέl~ΔP$&ήT·ogvjl’L”₯oΜAΦ·hΔ’Α|^ŸD­°“”•±€εƈ¬ƒ½ΛΪdΪNϊδzΈIXsiδpΆζ‹82ΎS@ ½/‘ihf›0ΝΤτ΅Ζ§u‘ЊΚX’¨™Ϋ(uτ@•ΫΒδ²JλμŸ`(4«b_Ω+§₯i0=τ]aDδgα ,Ϊ•)Y‚΄„?Τ,»rιφέέιιΣ3ιΩβ‹l[ΘΊΪά²˜ώ⋏¦Ÿό©ŸJίϊΚ7±§†8H;Θr=Θ!1Η!}ΰΰΑτ­GMϝ»D$£ΜžΏ ΖaeζJϊβ_KnΊ9½p)}ψ;ΣWΏτιΦ{>H&̎τ™ίψu$ΑOÐ#KξΦτΠƒ¦2Α6‘BΑSίI――€A$΅ηΖgΣΏψΜgΣεs§Ÿ}ώƒ@9LŽ‚³η.¦›χοΰΛΖδu@kςμγίHƒή›φν$—&0ίζυw="φGΏ}<ύ›j€d~ηpΠ^† άJBό ~…Θƒ0ЌΖ,°«JηέΡE1‰‰ΈVΧ!β%0Αp―—!~Œ›^,δ–Ι1OώˆYv’dš@ #w€χmιψληξΡm$ |©1=χβ±τ۟k‡H•h$άζ!ΐš”0ΡIj4 AXΚκa[΅γoR4qρ£ŽwβzΗ>΅0m$Σ+qίΜޚzΨ!Ίμ«Μ±ΔΏL$υ⁺J"ΏΡιςΩ«hL°Gς³…eΜ ι–Cdoξbn`Ή:Fπ=7έ†;.LaƒŸ~ς™tψπΝA0­Β΄E1Wˆ~dζˆ‘Ν±δ]Ρ+2[ϊ‘אΊψΐH$™uؐ·Ζ' K<”Οπ(ΒΓΊF§Βo…ŒΌ:ϊ3φ2#\…ρB萃p œ‘V-¬„T_„―Τ»Lτ―I' FeNZadΜ%€#0¨<ΓΑ&²‡π.γhžƒ±τ}mΦaDΦΦΨ³¬_3k§γϊp’­ΒΏFΝ`@=Θ= ™(Φθ;mλs ™Η ϋ^ΨγΠΦΘW­X˜πN<η₯ΉK{ͺε=Δς˜ώ¬αΘ”ƒ±]^©5ΜςΒ_1–!fe2ΚΐΌG6joΖΰM#yί,Νy5"J»ηί5“±6BΞ΅Ξ’ζ ‘"ϊ‡ok°Jέ2ςpeΜ§ ':σ¦D—”¦ΞAΈwͺ8OHΰc“ΡZFc%ΣΧΒώ›ΈB”Άn4ΐ[[LΙ&ξ:Ζ=΄ƒpGj l°ΔΊ42wλΜΓ:ΎK%‘ϋ£šΗίx3+qaΜE †ΒyΝ{ʁζ1™G_»˜n=Ό¦f±ΊŒ°/eΦB'ύumH~Œ²gWΡl.€SgΞ¦χ§-[ZΣ*ΜΘ2ζ„3œ/Ϋ υΜψ͟‘©]ƒpΜdeΈdhšaxΤxΙhš»QγyΐΉTŽσ˜·°αaH˜oŸ)$a¬9Φ@¦@¦Μ€–¬8ˆˆ”&Ζoi΅;F\«Ψ.Œ–φη¬Ϊ " Ž΅RƒyH„=Η?Ο`χ…>=’2%Θο6p/ Q&: m?Ψ›Ρ²„λπα™ΜŒsΟΛ΄ε»ξ6ŠZ⽬njgί`6μλfY>e6XoΕ!U—σαχkŸ―6οσ5+݈5Ά›Γπγ•Θ΄ξμ™oΠΣ¬@ΤL‚γ /q.oVJI.{λΩα³#ΟΥΖFέτΙgA|r?Ζ#ηΕeΏωΙ8ΒΘ2ρ”OοΉ8΄›εŸO3MVΤΙ3§7֎7Ώ8!±Ωρ¬Ζ˜cΦ…nr±ιΤl€tȎ³O\ Ρ(-ΨnΖ@ψ;4"± ¬x¨@–pœ¬a>˜W@!ŽCxˆ3F₯l(ƒ„Pˆ>¨!iΕGl νήB½2MΒL­ΰž0C»΄^t0€Λw8kΩΣΞ«Ρ%Ε7μ"Ξ=ΐβ}­©3λ*gΫ¬]Φf¦‰_2“:ΙZ^»<~&8KίgΑ4`„Ψ7…—8‡iOϊΣ9Ξ€"›«MM+Γ Ίη7} ˜₯ΈŒ@\Η³9-¬·©O_1§PhvQbοϊ‹)ς_lψOXtΟR?οψ,Φ'Ϊ’,ηLθ_τ3Φ’Ή·rp€ΥΏε²ϋoΏ·YΰzΆYζ>ίι=οyύ}mωμήσώ›―₯Μ›Λ=ί7Νί’Mž€ε¦²o|ϊύ–ΐ \!M.fŒ‡ΙΗTΡ_#ͺΟΔΎ£t‘“3ύŸλ”JΓ·αg ‰rJ_ϋΚ—ηE{²RrHuυ ¦=;w€‹ψšάσώ»=–ΖϞJ]¨οΉηžτύΗMσlζoόέ_¦―>u4ύφ‘;ΣΉ3―S~.lΦoyοϋ0ΉxΘ² ‘Σ 17΄λ`z)Ρ—Ύφ(ΜJ:B†M#Ντa¦sλα΄ρ0αG·Ύώ0φΎΝiKWKzώ{O€ίϋ£ΏIΏυ―?›Ζ1Sθ†yΉξŒώΖϊSΎ Kέ{1ωΩΟΟ\ε€.cΎƒΚ‚}^b»£ §n³ΌΦpψ†q€΅αήΉ³B@΅3ˆΎŽD’ˆBΓh&βC¨%«―M~“DqκAc°qgR3₯E$BšxΉAuώnΔVvdN²μNσ\i{CΊ qŸZz‘ξ"•α ¬sؘπNBxμΠFΕΊ&[zA’δCi†Έtω΅48@r݇Ssί0vν$Bγ˜Ο·!]^L―=F.‘ϋ!ή17Γ‡γψλΜ —Lp }Ψ›z\2s‘—‚ύ σšϋ&Ÿ νΔ”Ξέ†vΏŠl=θυΕjΐfxC©R!ϊ{’eϊΧ΄6’ρ³ž“&Ξ5‰΅%„&wkiθ‰#“ D"%ˆΫVέ=Έ5ο)mΊ©£šϊ%2 q©I‹ί<Ύ8khdκŒLUaފ­HΔ¨Gψ)c2°²“=[b.rλ댻ȁ[Δ—’Β!ΉNτ£ Δz΅κ’KcΒηρ&DαοA™"0‘ΉkŽ~ˆΊ!@θO₯jΖκΧάJ ς*xv3―jfΤ$ ^d N Eg Ύ:v4%~$Œ«΄€Ϊα΅Δ]« ΞηaΖ†ΔΟCΥP½!Υd4‘ΣΧDƁc.|ξ\?Ε Œ`Ψ Β!TΎ*„νU|-#ΡgΈ―ƒˆϋϊ„tU &{AF£«·'ά{ˆ1ΰΧΤ“΄Z {ω<悋ԍΙfc½ΐsλΝ°ς©%Μ²z·!4RγTh…ν£_%€ž9πΦKΒ›ΣZ¦΅Š©Ξ*ύ[Ηo²ζ&l‚Ψπ€χΧχ€νΛ"ΪΙY2‘Œ‘Rζ’θάBθH4„Ο{GνY3 Oσψτ¬,OΉ@vs³3χϋΐ`ΤPέιLΊι¬*3oˆR#m±?ΤΤΊίƒ€ ΛNίY©X?ϋ¨ΠA- Cδ €πH ς—qΣ{-Μς΄OΡlpeL¬sƒuER,£F›>š.Γ8-ψλΐ EˆΥˆ@[φ‘IsΈ—ωM«ρΏ>–*ώ1”ΈgοeWvζ3€u?}δΎ£κkŸAόσD Šg#b‘Θfu‘ηo‰=²ΎxuJδ―ΒpΤ“½vυμΫ5CH6«δΣ9g6o=”±zίζ'˜ϋnΩέ¬”§5—ˆΒΌg^Šς<‹υ‘’—οYa|f΅SΕ"Ίυˆ#²Κ¨&T|9>lƒ?Tω¦Λ_ΡCώw²§1~4jƒam£N— ScεΩΐX^δΚ`J{φΛW ˜Ωw5Ξ“uÊ#jg«₯΅>ΝGΑ*ΐ Βΰ³Yί>–ν4‚>M΄ΈαoXΓ"›¬Θ"ϊpοΫg‰x2΄ ΐ~ψoΈaHj9p‘gͺB¨5ΞίK@8΄6v6εO½ ‘‘•ΩŸŸLǟϊNΈϋύΰtΝ³8—–¨Kg &ΣΒͺ‚ ΗΟ?χ^€qLxqΙ…™–λμ\Έψ^όζ sΗ’ŽŸ8‘Άμ Ϋ³8²ϊB06·χ₯Oκ Ž΅έι~Μuΰ+pΝHRκޞ;ΔΜ#ϋƒqΩy€}&UΆ€}»G <ά(υtΣχ…Š―›΄―Ώ? μα`λM—/”Š-§{έ€„Ό™:Ιl­}9hŽ;•ξΠ©JvαίωίΚ$S1Ή?ΚΚ½Σ*\ΏχΖ ΐ€θ'ΑTΞΓ,΄5α(Ν:•”φ#aAΒ¬Ί!Y›[ΫβpP2ΣƒŸBgGo'ͺΥI˜ ƒΊ΄έ.t€ψ@ 3$mσP™·΄χ‚  €ab΄ρ<τ ­ΩŠγ­~FίκhΗ4Βh†₯ I7π5FΚΦFύ(ΒpH˜ζˆβ±2>~ L\ΒίI¦yMƒš™‘Κ/ΤΧ»…„ύψd\Β¬Œ½FHβ°’!ŸΣw ΰ\MH3DκΩi˜1ž”!ΆjψPΤAζψ»\žΈ˜φUφ§6|^)ovηΥ…YΖ…”v$TδφhΗή2ΩΫ{;KϊΝ^E†ΪΔ”ϊbŸεG$λΎ(3f/Œ:cŽύ‰ΙΙόBͺΟ3 J V({ζ¬‘ΓŒ{τ΅Θi4Δά½|υμxH€Χ`žBρ¬]qk+D#„j½‘νM/g(&BΜaΉF1˜‡BΡ\/0d00ͺ¬ΧΠL-°ΖΔ~σ‹cƒ‰lΧŠ "ΖD(ZΞeψζ"Oί;‘`8_a"Χވ f8Ψ±©?†UL‘Z1½ͺpπš¬N‰υV|‚ 0Πpq€pVƒK8žΐe:­KΝΐ—‰ϊκ˜°¨ΜZ΄ j©šθAιΑΈΑμα―a‘ΘΝ\yXjFΰ‘&ΥPk€›žL“ΥΙΈWΓa= €τ›C^mŽDd fΔPΙ2²βΩ"ΜΆDΙ:ŒšcΎκH1sŽ›%ΡMB΅3(F ζ£ ‚bU³ η¦%Ξm€-3Q ΑTα3C$/ϋ~D“η/3܏pηό…ΛiΙ$Ί?4|­©άΎs`/¦ψj͚m’Ζw‰Ήh&dυΔδζœϊsΡ“"Ε”\.Αό³•Ω³-©XΘ€΄0ΑΑΑΐτ²Ύ»ΰΔ nτΙΡd’;Pέ½νi?¦³MAά‘ιbώυ5\wΜ”Ρl2ˆζΨwjΜ₯°MΝ0―ΕΥΤ;@βΡά`:{v,ICƒ˜qαKΣάQBγ6ΗΤ±θŠZΩ+yφw[PΧ q3΅«$„”7Š$&Σ4Zςΰ0Ν’ι$=}0ξE>¬!hh$Œ΅$h•`Gδ.Φ5ό ˆ2Vƒ0΄]#±’γε€pB†Σά‡™_Β fΘ€&±”1²ΔΨΥ€Θ—±³Οό£dβ²ΊΔSœ€Ρ†ΰ² –άΞθDΐό¦–!˜οR§₯‚jων³ŒΉΰ7ί…ΉHηςάW"„*8}$ΏI°jΒ)ήq~mΦ·}ΗϋΒz˜sƒ«Ε'MΑ~†oΫή~Jόž\³E#ͺmφ3ζ'κ€pΊNΝΎ§€0Ϊ΄OtΒςβ<Νθ<β‚γ‘ Ϊ͈κΆΡoχl±¬²W¬‘ϋŸώΊ—‚’ίj]Ϋ[£]qbŏώ}ƒ"”Άγ ΪΙq;gΒ…σKέρŒzόd½+ϊ!Θƒ*ή‘ώΠ°ΈΩiΒΡ&·ι}cοΌA$+Έπ7Œ'ΒƒŠΈχ  3`»oΤpjϋ  “nJ«ό$4<ά¬ηΦZ=榧Ÿ@<œ«+δ’ΚaφX^Ε―ŒύRCh;\ΒΦΒ°)TX6PΖ™œΑ‹iΈ£9-]LO>ρνtβΕ§ΣψωS©cϋ ςiςΤS©cη=?Ά¦΄ΓΝŠ©R§‚—†0=eό¬Ρfp§!L\ζ―ƍΠΐЧiΧ?ώυσKόuξ5ωŒgjͺ7– >…χKΖ4σΰ+ΎΔΕ:FuΎΔάlΒ_” ¬pmί α‹ΦuΝ”ΟBΧ―˜wΑ€dk86³šN-e> L¬₯;θKh%Φ@.λ€ο'ί·#ύέsΣογ‘‹ˆ:ϋWήΏ#|BΜ$ ¨gΟήύ±ˆnncίvϋ>ogWoͺθ]ϋφΜtΨ]%’ ‡Θ›‘§iݍ߈βmCB%Ϋ–:φίx8ή7„€|­H‘«§@ƒYx³Ο½D·R5½}ηή4²[›qό\7AμΐCΏύ8 CA½νg[Τ―?Œύz3ƃ뽫p£0jΝ<ζW9$.‘{βhB}˜„wšiΥL.p[š^žBΫ’Θ1AςB‘ΌIԚ 8{Qέ’šB‚„HΌΐK™d iΫ`9νN]01+„ιEΞαΌα‡τδΪ yθ3’ΤVs‰40žΤ]ƒhB΄‘7`[Ϋ³ŠyΧ<Ž©{ޘζQ!ŸΉR…`δΟ’«ζ&“Ζ-³_0•‚Θ)cώΡήΆ/CrH2λkΐτϋ}εΎ ΰ²Εw9„š[Ί@|c0`ν©`+άs©₯{{hLr+„μΕΑΌ½³”vŒn‡žM“λiΫΆŽπ±(·kjρ^8q©XR¦­…ύ+»§ΌτaΉp βœύβŸωΣ'‘ͺ{†έΝ8Θ„ΫΪΣΖΑAx"Ύ/}€ŸψπΠV"υ†H«³ηh«‘§ύΐς $Ld“!^M,ΘΨκu΄70“εULyΨσšPωžaq%B{{ΠΠΏPHΌι]‚Ρ0Α_5€sHΝ985¨IͺHFφ6ˆΠ&ξΚΕE2¬£g@"ΏΊ†fu.γWэhΣ€³«Hφ53@S \'n5[:ΞKΠAΏq˜KΨ37’lq} ‰3λ)ΞfΐEζ*"]!•Χ€§S₯FΰˆZΕadžφ'FhΒJ†#U "Ω•ωηa*n]£―U!dΧρ όͺ>,ΆΓhy_bTΣˆP6†Δ^d460CδyΐΒ_ζ>3±£Έ²ρ y€˜/ΓH(6°€Μθ3ΟΎšξΎχ–ΤΛώκd*ςiμ" ΠΎ;y!Ζ»gοQέbζ4—†wν$qηzκ%Ϋω‹€ζR#šMής„ρCX4?Ys²gηn`cήάsE#¦±~U4 ζ(Q²Ο΄ρ.Δ›D]§oϊΦΞώ(°Fkϊ {2-Œ=4ϊ=°NUΧ΄ Fρq`°χ Ψ &…Άtur…ύODΓΎmiϋΆ!‚9θ5Ü=p28Χ™eό„ΑΈ0NτΊΪ"ΑLn€ω€9dΡζY}]›`6a@΅xƒb#1'Δk9 σΚ<›σ€ΒΔ0jΓC+˜ƒ¨λL30₯&f3(…¦‘1C%R―Ι|ηεjYcWΞ?l ΖσΝ<š7&6(Ώ5Χjƒ‘Ήl2…–hˆ!ρ–Έ…»nVΐΞ;aV¦„°ΦψR<$πICΉνi1ώ£ΈΙ±:UμEπ ΆΉat7ϋ¦¦ςgοMƒd½ΞΓΌΣΣ3½ΝΎί;3wί°ƒH€$(IT •R9‰£Δ©TώΨIIωεςΟ$•€RIωU)ǎ]Ž]±EŠ–X‹)Q   ±έ}Ÿ}Ÿž™^¦{&Οσ~wΐ‹K‚)WςCχζvχ·œοœχœσξK ΈΒykL(ώxŸ‚΅@ 7PξΧBaΖ2¬hΖή—°DγΕ2Ώ»¦€Φ4δ8ΈΆγά˜kΥΙΨBλΜ#‘€Δ>8Xp›.Έ‘ήš…Φ φ]›sβ …£]YΜ σαdπ ΰ0Pρ77ήΒ•Ν[xωwώθ΄0`2θm‹˜=Ϋ>2§Ζ#εF %ξ˘=žuϋdΈfέj'j@ݚcηH8ηyΦ6ΕΥyΦ΄λ){kΎΫ ‘ŸB'x`ՁRFϊBŒYζWo“τ² ˜‹wά,­Ι2Θ1/VΖ[Γ­\₯"n“½αZF,bΤ±xw€ΗžΔbέ‘“εtowψάφ$Vΰœ]”Σ‹Ηϊ4α 76»ΨHc]Έ;·ο|—BΌ—ρθNλσ―³^jιΐ±ciδΤ±΄6ƒm˜Β7HΛ/>VœR€Χ₯Qλ”)4ΔΪΠtίσΒC¬ΖŽΙζΜ8‘°φΦ8εΰ„WvXeσΑcήή ‹GƒOέ‡΅„„‰lL™1C½¬#V0*Δσ|7V§[mݚ°X cΣX7˜Ώ•μ‡PžMŒΗκΈ™ΞŸ}Ζ¦9†™DΨΩ4)τCΕD{GαΡ½Ω…5­AΌKΧ`‡“s~cw½"™η:Α…M$Σ-ο!$¨©.Ȑ³ΒF&F΅‚{›Ϊx&:φΊΜ nίO7ƒ†‚±²₯‡\Ώ΄[ϊʟίν° ­ΏxΖΈΔ9υ“Λ2°jž½'4ρμH™fH{Μ‘ηΔΝ –χΫ–Ÿ2ΏS'ξΘΞΛ8Ϊ1ϋΰŽ†(GDlρ<―σΊΘφaΧΈίI[R:Μ/>γαθœρ]jϊƒΡ‡ˆΏ½ˆρfά'Oπ]ΩΓ΄ΫY2~Ϋ"χ3,ωςΈΥ·ψΌΤΜyΛΪΜ>MΚΐπ’­°€η’ ύӚηxυ€ƒ›‘Νh!Ζ”΅T}–φ#ΖΑ~BOs‡`€ΘΡΓ§`ρΫeM˜”A‘ΒΓΓόόωΚ)ΗsoηΕΫ(T Λ,vβu֍BsXΦΩ)ZkM°Z”ΆΩƒZˆw Ί]Ϊ~ρΰ·& ›“½ιτ™ρt“μ \)ϋ­tυ:™/VeΦWϊ% 3ΪΒΪdMO―^IΛ—ή‰XΜα‘aΪ†ΟΓʚβ,]5ά―K•“τ>£μnοβŠYΰέ,PτWΐƒ΅.χοξŽ;γGΕqάΓ΅˜^αuϊW˜O―Ηs–[Ώ 0γΌ·qHOΓ*%lCζΝ™~ΟΚχnζ«Χ²=ΐ7πΎ―³ DγA{έdwΎΟ}ΤρIΧ>κώύsυœη<>ξ]^ϋ¨η<ϋρiξΉύώΏδ;˜θ/ΉƒΛέŽΑžbϊ΅Ÿ»δΰΆδϋΗώΔd‚Κ>C.1ΣTŽάύ¬Ϋh ΛΗώ£ρ™!ΌΫOν·αΉΫΏ+Dμ!ΥίΦΫοϋΈο?xφΆo{‡Ο}ά³w~ΏΝ»Ÿ ΧΚ_vΈΩΥxΊQ›0•κ%P ΚH£Ϋ…FΟ€OΟiM0m¦Ω5tVι„ΰ ΘHŽ`ΆE#ŽγFP׈Lθς:άγVj— Xm€£Δ]Ί‚ΠRWK§…ΐŒ7]¦ΠύΙ>ΧͺηCC#!iς φ8 ϋ4˜4τ:œ S5HΫJΫ‘ϊβ¨ 1}γ:χƒςŒ ǁυ7Σ8BΥ_»p‡R ˜.NΌ ˜‡pA-h»hpk―EΊVϊ¨ΦΫή©UλΗ­γΠψ `›wVΓ•p}α|ͺτ“•Ž1MAπG˜°š°Υ¨Y NK;“Ά`L!n ;Ά[‡‘阜 F(,}Œ»CF ϊ#ΛbaLψ!ϊ}ΰ„:ΜΤΠΠ\l°4p~­w™Τ¦{›3*Sαώc_[šM#GtC°„‘;pp8=ϊΘΓ†Tœ_^ƒ ω¦ί5Σ&ƒΔ+σ[ίEw§:ZΈ²Œ!L”š=kι~a}αxρμ{ιζΥU΄Λ)}ι#ιΖεe΄έXŒP~ί€Qn#ΜΆ`π twumm¬·° m΅‘gfQκ†Ω-χΒ ±·7ΡζΎν՘Δ|Α·4 ύ©ωμD8΅Q†žUNΛ΄Ίλ¨-μZΡΜ|ΥfN©OίY«ΰΔ`lΫ:0ϋρβ΅:Viΰ5-΄J™α BD[fˆ7i;ΦGv΅ Έy‡υήRΐvu,;2˜αRΗονuζœq9ΧΊΙι‹Lr‡}³?τ« £‘G°‰σΈ<΄Π0Wa,6Ζ6Qa1X!֊q ΌVp½(ΠΙω™y#β«`―Ξ^O=ΓΓ©Š°ρ½—ίΔb2ˆEχ%Φ}MύΡFϊ©Ν4;—ξ;q XaεaŒ½Y›X―·p#$;u›²= °lΙ”κNYE›A7Γ~L MΖΊIRΆ<.Yl&φŽbcΈKΐ€)L†ΩΨŸ=ΐ¨(ΠL±ΎPtSΕ-!ΔbΑΫf­(Τ,ΞάHΛά34₯Z?e’ΓκγΒH&T1GΐMΖЎd|λ™9AθΦ[ΈΔίΟBŸΩ_α&gΫ>ο Ύ{ŸΟΩ—ύη·2–ΎIΓΓοqž{Μ~Ε‘ΞΝ>Ȟf {ήGft^7yπ/άdtŸςΉpόΝ[twύΑ§σΔ_(DΩΏΖtΡ=ΰΈ…“ω‘%)jα€;‚A—~ˆσPŽιjΩW[ό/Ζ ΛpΧyŸσΦ Kύ1³ ‰ΖC¦e}°΄Ψ*(;Θ,™λM‡¨$};yh0ΝP uτ|Ε³ΊΆεsXη„+σV_Ί’ήΏπZš»τ:±&ΐ}*Ύ€i ‘Φ7ΐ;΅Ω4uΟn5β&gRΎη ‚ Κ*φ‚ξ™Κ1v`ιC‘t“λ xE€8σEc½ΓsΜ³Φ…”l §ΗΔMόΓα\Ζ Ωšϊf²τ₯! _αm3±ήΨ 1C4鎁³Φž}α]Ψfχ7po…ύωC‡ύψΈγ“}ά3ž¨η>κܝmό»ΊηΞv?α7ΛιΣ" πΝα3‚ώφ#ϋύa&]XdΒ‹χ{ν‡…ΫΫΈϋύ―3ΰ ΠBd‰··ƒ,ΩθŠΧ Γ­F^ΊώΪζΧ2η†[E‰šp‹UΓΌŠ,?`ΠΡ2ΓάΥqΛΡr!N1^@Z·™‘@dr΄iAΆ.|αwvp‚!ΥmΈΪ‘Ωμΐ_ΏΣk1e<Δrš8πΓ7Υh…Ϊ"\]tp*Μ$π~€©hKΔ-ƒw?¦oc@‚I†˜Iμ'Ιf§¦TK‘…:Eζ½ΈimnMγ‚‚»ŒTΝv±7Ÿ^ϊφ‹ι«όgΔS €~˜ΗŠι»Ηi˜”ΥΎ„Uζw―3ƒΤΰ™KGN…±ƒQeŒέ₯-β1Θd€‰AfΒ¨¬Tfa*£†έdΞ±h!Œ6©Qαœ*L\½ώVΊπξ;ιθΡ)Žˆ–ŒΒ†ƒd;}%?ΡAΥφe‚Ω!Ύ2 ΘΙ~,£0”e\Ί`”–WpRΗΚ΄@°υ6†ψJc fs—χjqB'ί©»U/.]ύXb΄ΐ^a.RΕύ7Εԝ…³Θ@ϊyΏRΔΎ ™ΧUc!…ΑGHaq*!3ˆ8kΤ@ηβO,Ε°&P^7 /‰f‹ΤΑx&F,\•XŽΦ` +‘=κd‘Φa°wI!mœ2ά-~&ŠκϊZTΟύb†8ΣwΓΰ/,-ΑN°W°Μ)·Ζσiαg’Β―k$lxύν‹<ΣL=ψpzεΝ·CgŽ€%„όw_Ίάύ¬g˜ž&E,σdΒjtϊή©ts¦FόGϋu9„ϋrοnZYΫIχœ>Ν|³*hωΥλ^εz­P; 3sΧa›Lr•΄ΐϋ·X³έΈ|Έo¬"ϋkP}Ρ› ¬λ₯EΆ s32F†U§«€Ϊυ=bl ŒS7Λnή!SQ’6ˆ)ΌrΊX»ˆΓ±.­ρ±Wn₯aμW):JχΨ™ΐQF°Ι±·€°]X©!Έι.H}ž…εtόΘ©4Ϊκ'Flα£?ι·Π"·ˆS›ΫFXkƒ{ΜΈ%Γcf¬n”+k¬AΜeˆˆj€q5›ιfΧ‚cΛ‘DP¬΅‚e$šα|>­β θjŸ%x] AxΊκ“.3eέ…p½b·Γ*&£·Ìa―J³ωŸYΰ»hΓοβ 9« υ€IυqŸρ ΎΣϋΫόŒ0·31ΩwK―4ÞΡν(„ڌΫζΠ“ίΪ8ΊΩ‰θψ0&θ#°₯ΠΙΰοgί’«>,³lOμ~?οs½0fD?"–Εώ26ϋfΜΡγC9Μ+· gGΙ2Œ>IaŒqĎA Šmί€’Bό©rJ!&ΐcž W+αlŸ0σθ‡šoυœ)ΐMKn,š­—π%֊-n6ΉΈCΕ•hbέ‰r.:nχx,cΐι#Š.Χ·PΤυ π[aEš e‹+ ΒX›–6zLX^Qi‘% _Φθ@5Ϋ  λΰNχ׏OHoaΡlρ<–εnϊ΅GΕ΅™ iαμ d»ZƒυaaY ‹cΦBVSΡΜvλΧυ7o€ώ‰Ο¦ςθCυΔυ"Μηˆμv@·ΩŒ•vyN₯αΎ₯J`*@f±W¬+ΖιψC8N.+ηd?Ϋ s&KV tΈ‰Γγ~žΛj8?ΩΘ„b–l ϋν½>°φIζ•)Œ½ͺΕ;:νχ»Η‡!ΚτGL €άχYŒYrox‰vτΑΞv3x«+ξξqw@ΐu±½EP+©hwκU˜΄«¬5‘ŒΪΧ–χˆΈ7«ζέYΐ‘b&¬UŸΓ—ψ ξ"f₯<ˆ–Љγ'₯ΛgΣγԎΩ^ΫdΩΚfιcEdV3WˆΐdάΎr=hwθ§Θ]—‡^41΅mI›μ ™ώ@Z .€…‘θ„qT(‰ ώvk ζP'Μπ!„ƒQEψE³i>WCca•σŒ°ώΈVηή‘fςρέZ^΄š(gUa΄—π?sβh:mΖu7έ|γ₯451ŒΊHΑ;‡kRίΪU“΄Ί1Α¦^Xœ£―φ~ΡAΒΔDΖ'Ξ 3ύ~OO™Ÿš2-A2ƕ軬ΖW†ί:(2_fΎ‘ε »u!Ξ9oΪ³2ΉšNkJΰ΄ΐ^ΰύ0³·ZXs˜,hΓdcΎΥψ΅ ΰ/aqͺT†Hή°\πΧ2½kR_οŠœ°DͺR˜έιv``L5Ϋΐ½ QΦΑB—°< ½.]ζιo2Η±‡t τ©Jωs;=sƒ8ͺcι0χmsξεο}/=υΜO€μζD:|ζHϊζσΟ§ϋΣi‹Μ(I"Φ—κικτ{ιΨ±γi‘΅ΨλΪκb-υX>uŒ˜έAk‹½ŸΗύΚ r³Χ…Φ˜Ή7Șδ(ζ† ”Λ6Ήucσ€ϋžkE"ώi‰=3‚Π:uπ`zη= r>rZ½Ύ†ΠXL=ˆίοjκ­P˜ 8Ž ±>]Τ`μ¬ΊXLsΈ}™9­y•E¬€α ͺ€ΐO6K1,ύ€†_^ΊΚž-¦%dˆζ…2χu“Ω (ˈ`-©cuQ9RbNλr΅ ³»ΡΤ-œ–1—©™[ζ/ΣXkΏh#Ψ3Ά‹KL‰5£«ΤJcg6Θ pmS­œμ«ΠβΒtEκ]^)ΣΝRfΜΌTn ΈI£έk2iβΫ ΩτΔ/v3Ύψ™]ΰ λ C&cφΑαz§mΟ‰³G2ζΪΆe~νG¬&-γ)2†={‡O2οτM˜1<γΏmKΌΔΣ|γωS"t₯Ύ8ΎsI3 ;l‡βmΘ|σ~Z§ žγΌό‘χ‹ίΡνy^z㝴― !αΗιXsξ{ΊdKqoΈ³JΏXKΞ — a2σ K6’Łσρΰ-X{BšαaΊκ8ψo²Sc\hΖed…aέ§ΠU1ΏΰΏ›{·ΩO&q`ˆT‡qg~BαΕ3‡¬Γ1—ΐkG:« –qDΞ€£^€)ΰ6;€ςΜKiΦ,ξΏπβpΏΩ&‹ij|„8)­uHΑ*ŒΘ”ΨE"’ωχ^ζοΫΰκ Ov±PrήqίQGŒx—ω.{¨:eE>qΡκμ‘'ξ†Ά =œΚ°ή#(Ζς+ ¬"‹ΒbN­Ϋ$ώσ™˜Œx7—…' Cπόηͺπ‘1Ν{ΉΝ΅όkμΧμ9n»u-[—+OxΏ ;ΫδkΕ?Ώ»ŠξξmO/€Δ&gσP,ΝͺΗ1;Ρ„KŸν ‘ΘΗ'Ia&BƒΖ§fΐ("ηύΠα†όΠ‰ύΨoηC'οψΘ„pϋϋοΈ%ϊβΉ Qe} Ÿπκ;›ˆ6|ώGΆΨ~πϋξ· ψΒk鹟}†€c2«±DλhΊβv‘Vc-»ΕγŠ£sNΔγk΅νΩΕ TŸΑύ0D·‹Š΅ `Z«`Σ«5:81Bes π!"xϋm4:0d"νRΗ@ΊΊy¦7΅•ΑΛΆC-,έ¬΄:ΦΡJBπ Wh1uf ύ&ο4ΎΒ?δ˜(Σϋ’‚dέχΐΠΛ”› ρ -(T’Q!Γς‘ οΌ€‹Foš₯ώ‚.!p¦C΄„\B‰ς³œ6Σθοœ;KŠήέtμΜceΓ­j³‹ΐρψ ‘u‡)]ƒM1†νm ^Ν|S ύ=’PΩn@Κ vΒzμπ@Δήl‘q7G‹“Φ†Α\A(ͺyžΨ3- ΄Vό68RMBϊ°όζレ>χψ: mΫ$Ÿ /½ŒΧ’ f 8jπ@jΔΎΌόέοP³η “l­fΘ˜Ύ”;οa8j뚸«lD±ώζέ(3•…€σ2q&M4‘JݞΦhΤ-¦ ‡D`ufŽΉςΏ=4±"¬S¦˜τ–ϊRΖpu•”Θ<ΧQBΨcΔ ‘a‡yΣ}ΐΊ.E¬0ΊάΥΜΩΎΆ‘zΫ pš–…*V‰έ<š{,m ¬%„Μ’Ϊu|ύς·Π*νМoΟ ‰Ϋ3πS¦”Ώ2±>ο  TωΊ%UeΎ:±œ˜yKΧΌή `²ΆΆuΕA/ϋkμƒξy,"Ξ“di[―BνwƒίΝ&I0τξ›±? ,Ζ"u{”pC‚ΩΨΥ‚ΐ|vΐάμΘ «ωξόΓπ•1aΏaL“Η§…ιURyφ§₯j-M>•^yωu‚ΠοI/|λετΣ?ύ˜ύ/¦?ώΖKιλή³ις₯‹ιϊΒθεtίύχ§o’•j$m― h±·tΊxυjΈωŒ*„wP{ww>v32hΕ΄Κ»X’6Œ–|δtνέ#π[ί{ρy“Έ€ΙC€Ί&Ζ£Χ°n %ώΞοώ+φμ/₯›gη“?ύ΅₯ƘCβ7ZX;`τζ—±€±¦Zhm‹Έš\Αψ–N\‘ͺ!€Η:iΓdN¬ƒ,$iΖ3 ¦μ£ζ¬pΞΠAφΗ†Σ…ΛT9X―¦Cχ²ΏΐBv/·ζxZ‰0ή…”λ ;Α–ζηι9xE|E‹%γ8n„=Ψ‰’r@‘±ΕΉ*{Α"žΫΉ»Μαx ·Rž½:=ƒFϊoθΣ,X XnMqΊ CiρGΑ\s1—!ŒpMR¬uŽN ι0+N+4ρ~gΪfQχρLΠ?žσ§ΟοΠ΅Πό€Fžgέ),yΨv3PΡWϊι΅ϋ°HσΛσ(θ‹υuΜ8ͺSχ&d‰Y ‡¬Gω]“du~΄Ψ‹Γ‘•>ΟΕΈ{i|Iίb_gs’kU¬Aξݟ[…&ο1yΙΔαρtlj,‘œδΈˆΒ€OL$χPηƒμx­Ž^ꆐmλ9Φρ₯Χ^IΛο~'υŽ‚“qƒΞe™Ίoja1{‘pvΥXοcά™ΓbΉƒ‚©Ή9ŸFˆ%Ϋk/„pΤΩΔΪΡλSiUf/ϊγb“VۘTΧ±Β£έ·|x*³όΈΖœίLθ —4`β|z(ο[Hx:ΞΕ?LŽB·πHΆ"¬ΒΝλΦgv^₯‰B.wΔγΆύƒfώΊΛfœνΐpŸt(­w αΦoήHΣΰJ]‡Ž1‘ΩD9ωV’έΉr1 ώΜ/¦α§žF@ΙΚΝΔ`@δζ…s$!ΩNεΙC©0<L 3_Κσb!ύV5Ϋjς”‡ές«Ϊ]}•`Γ”ΙΉΨΜΞό­CC³©Έ¨•B#ΈŽλΆιτώΨδ|ŠΠ-^§–Χ·„η­ΆΌgΨοch=μ¦νρΌίȌρ ŠΫΊ²ψέΟ Λν• |έvϊS΅7,ΰάΑε@tΊ­¬Αx5pΏ*£ ίƒ1VS,ΣT†y/£IY\Z€ψαtύϊUš{ѝkkYθ›ίCΨ‹–½f^·ƒi`ϋ;ΊΉΞΪ‚πtΰ"΄‰;Q‚άMv€mj{ψέ€ι_‘2τθΔdΊŠ•‘fQs]\:EHμSͺ³‡ΔN‚&rΦ_m•ΩXΆ°πθΗέmρLΚκnΆ ca Φέ/`4±'°vaφ@θšλž³ kh›qSGΰ ΓΨ¬+ΛΠδρΠ«-™K+7–!Jƒμj,ΰR!P{WŽ=`Π`ά~dšAΖMΏeN~gA[]‘ΑyYAθ+`Ϊί‘@ V|θ;iŸmΖΈAƌ]λUνΉY̊ΐceaνψφή4ŒΙΎAιΘ€΅q#h―Άa‘-σzκMϊβΫiώΖbκbNΜu˜T;πήώCΤ40šϋ˜zŒc€τŒκœ-ΰ֍Η<σŒΩslDάŽθΏ™^Φ*†pμ ‘ζœu€λ›γ^Ύ;Δ”p©ι§ύ5„Š-΄θΓΔ8<’6Χ lpμcΜγΔάΎS$€n‚h<Ϋpu%4ί­έRΟ€ ‘³#7‚εΕΜ-dη«Λά0Ÿ»Ξ™˜Π\wΙ€r}Χdb»Δπ΄Xs-kuBΰšε­ ,n’«3±χp=0Νk€ΙlPο€Λn0rυe4žy»~…!‡‘PΨΙπάΝή0Ά§€@TGΓήF£ή¨ΣύΧ΅₯©["p6H~ ‘E‚Ωί` —―ΙlΞΘ,e³νJ$ΕtρϊB18τ½L h+m€Gωlϊπ·/ώ'Ώœ|ττ7^K=ϊXΊπΞϋιτƒgρξΣι₯Ώx#}ζ3€k7o¦S'F±ˆ,R¬ΆMΜ1j£ΰΊHπΆπ0έn ¦£³bαNλ\˜„ Ž ά ο€k³wMrΠdlφSkva>=σΐcιƍιtώΖ ΅tκτ™΄LψΝο¦ΒΤhš_D›«Υ4J1Ν™₯kΐ+4k΅χ―΄ΟLIZe=oέu΅S7άE²‚ubcŒƒή…‰έFxΥjΩK¦Ί₯Ήε΄Ό†@£ο:ΒΡ"ρMΜΝLQMa%ήΒd‰δ[τms75άΈκ¬+3Ρ­ΐΈApYsjΌIh@=›Εεzκ"kXu*ŽXŒ€γ |¬εέtxτYΣ°nΑ`O²ƒz λίυe3…α† Ύ4Γ€ΑκZŽd°ΒU*φΏYΐœ †YDΑžΚ¨!ηΐsξ1.Wͺq!nGɎ±γœτΡk2δ,υh;žZ 3ζΣ<κ7Ω9Ai΄q|αF'εύU… £ό4ΑuKΟΉ ‰°-Ηc’GΊΝgŒΝwp ψh ΟE;μ™hΡ‹τCKšΦhρˆ½CfΘ{Ο0Rž·]ϋM·θ tŠίΩy`νjE¦Ύ#ή#ςχ-^Ψούη1Ά€"pA“VΔΣ(@DΨέŸΈξU2δ`pν}u"cL0k³rΰ -ξΖdθ‚e­+χ’£V‘δ[vYαΚ^έ·(dξ\4”VΈhζΨs½ύ%Ό ΖqA€B±†ΐΊΧyˆW£Mp%¬ K·;κ~v&­qH£Πk”7\zGβL\Y]§Β;„4ϊ$lUdλa1Ρυι+i¬‡Ηο}8&'°›–Q[Ί܌κ—nΙ'θ“`r§UΑW|₯ΰΠ§]λΊΨGάΘΥ[+@(ρ~ώυζXλΡ}ρaΟρ§₯Oxνο„p―βηζ=kAš|%kΤΓ§HxQόώΰŸμuόόΠ—OΊφ‘οψρQΟyΞ#λNφύΞ?κΉεž;Ÿω„ί¬OΈΊ‰ŽΉρΛK©ό™Ο₯©_ωOSΛ4mL›΄“ti«ί{5mαƒν9wΉ;ψβ/όζ?O]£γ)λΐΖ·Ύ‘z?OŠΞΟ}νζξ[#β~ι[Ο§sWfΣW~όYsn₯ύ’ϋ3ιτα±τόŸ}3=@ݎC€βόί=’±τΣΟ~9½υʟ§χ¨9πμOόT:~ψ@ϊξKίJ½Tan€oύ }œΗ—ωl0”>φΩ4wνlΊ8³ž~φΉ―₯kοΏ‘ΎƒŸσ/όβΧΡ^­€—_y§'β]Ογί€ξ±cι™―|d¨xZw?DŒC@+0υEr–ος†‘b#ΓνEα4΅ΰj“;AŠήΣƒίΆ΅4C=~­)™Š β„AGaPΥvΥa$t;ΚγΗm³¨αηgŠLgΌ5u4βyάr6aRΰA2Έ$Ώ.7E„ο+WζaT`Šaά XFΔ#9˜‰Λ&V5υjρ€ι‚VόA˜΄U" jΜbV›"~ΈcEΰ0LΈΪζjŒφΡ7bHΥ£Δ₯l€k35ϋM£%”°šΛΪ7M˜YuαΖf0hΌGž΅ή Γ©»‡Œ:{Έώ”ΉwΎV,„aJπ˜JτYΤh†9]«d˜΅" hςgnR„.&Έ€UΗ8™>MIb0|'°¨Σn€έδw7}―­Ο‘:&·²΅M,hΙw0»ϋξγΪTˆΑj3Duic¦ϊ!.0’5βn΄2ΐ^\ž &ͺŽλIo„•bus7ΞSXFq₯w0 φα£&Ί†Λ’Š lΑ¨Χˆz°Œuί„9g=@¬:ΐ9½€²κΒ’±Ξœ­cΥΪXœe-Α΄΅J%p«ωτnύ}ˆ΄Ν­:B+Y™:·t[ιl#]Ήz Z/‚Ι(Ο‘=«ΎFΪSάˆθ€ΑΧύA«0Ό <ξT&N@σHŠΨ>Ζu°Vwˆ7Θ‘‰ίΪF3ˆ₯l€Ψ™<ΜΔξ\27χά;ΑΘ΅j‘ΤαdσbΈ-c—cΎ΅΄€g7υ9̞¦k„’LωΉΑΫΑJS"ϋ”kΨδ ΞΛ0ϋ΅p`] 4εY(M‚ΠR2&]qKK«iΉΟ±–s‘Χ9?J;ξ΅y˜ϊS§qΑΕk+ Zθ{±Šœ»x1?υhzξΉ§Σ«ίy-}ιs₯kΫ—Σ•™₯τ裏§wΞ~/Ίο³©p<}χ- ήϋ ±;$z`nΰBiψπ#ύ±ξ[τ»°dͺ97Α‚Ύμ@ ZԁΣ5»Ξ8¬šB‘Ί3~Ÿ:I†8•W²«υ"„<8.n?ψ@Ί‚‚bƒD?ƒu&g n€!8Σ`‡Œ$£Aβ\JC sξά+9ΏGI!ΧŒΩXμ·-ή]&¨ρXv†Οι0LλTZίͺΝ#”€Ξm qΞ-₯kW§±p7ΑSGˆλš8™Φͺ»i¬αέqΜ,,²w#Kœξ~U¬†ο½ t% ΈΨ¬bb^uύ3ΓB… e*/ζζ¦ή°Μ ΐΤ‘š±ΘΜΝ€β γ*£P‘u1hΠςƒΑf…ΐ~R“Ο”Λ³1 .?[ΖZ Ζ^&ύΟ  •)Έύ©ΆYK”k!pc΄γ9B5Σπ 2„"fڐ΅”ΠβΪvk}Ÿ“#Žc©qM74\#Ά†άy%ο”qε“ο P˜e•!τ…μ+M(`_J#VFOͺεΞ\xelnυΧΈ8Ύjέ†~gB ·ΠΆPΠ2°πέŠ~ 0™a«Φϋ[AF‰³ΑKΎ΄9n,…- Ύ—ξڝh#λ™MЏx gΈnΏ8Œ5„g>:$šβ\˜‰0Ηw ?ιBπdŒY7$ηP«‘c-ύŽ@xG?Έ¦λVΈ‰ρ^­Δ&ΙΉ·>ΐ‹CμƒžŠq%Œ™υΉJuh-ΑVϋξ+να^Yη#”£δΘRΩ"άBΟ*ΰΊ 0μΑ’ŒΜ“ͺτwňŒψλΣ4γ{μkη1`Κ½Ίˆιͺ Ψϊ_οχƒϋο=3E­ΓX!;52cν@ΧWρh`IŽqΣ;•Ξ»‡q1Ζv2’P€λΖ§‹•σΓόό3AΣsΒΝs?Κ=w>σΏsΈ₯O„ί$υ­YόΰΑ˜T7 Fφ‰g!-ώΞo€Ύ'ŸNύ<ΖB©όΨΣiζŸόz*ŒHε#GθeΠꬁT‹ύιι'Ryό› ՞τεg~<½ωΪkψ< δz5Ml>žκ³Π! ζkιώθp%θMOŠ―jš@Ϋ² SgϊΐΘvΞƒŒeœ{aπΤ\ΞΜάδ9²³A°»{FS?˜r „Q¦ͺφκκš!ΘΤςΡβ6θΌΧ^W΅6{Ψ΄ŽDw0/ΘTkΩ‡ΠxΚ€4aήM—ΪΒΒV„‰ΚνaFΖ§hα8ϊ―»@ ؟ͺΜΓXn–±Œ,Α(!P“Αb?€‡Θmš>”Ύ[Σ¦EΑ4³X™Nu%@Χ-/jΗ«0ξ»XК!m‘5]J'Oœ"°ΈŠΰ=AJTλ XοD‚BΧyَ‚ ρ643„ο8Ο飬E£s†™>” `u„@Σ/cU8 q‘ϊkύP›ΚΗΥ«Μ\>χ7ΡψN5Ɋ,,%Gz&pw!θ¦*upμθJΛΤ…¨Αlμ2Ÿ۟½t9εΠϊnΓ”yίά Β%Lzfύrοx/Œ",YЎ‹ „€ΏXρ#\ξΒΨwBΨZXς¬%k[4X-ΗΓ͌,ZG'FΙβԟ6a¦{©aRdnΫΐ ‘ν/1 "hΚζŽ"½ded!‹ΞμJ₯VÏ‘θx„ΚΩ;5-,2έ0‰m\`Φ(θόu(ͺ«`Α€Q„διιΉ¨Τ…O™Αοf“XKΝΥD8d=Y@uΫX%ϊS€‘8|’‚σπ(9φ―] Αr|’θ³7ΔzX[ 0ˁuξ‘π2³hΤM'mΖ$5‰½ψl—Θξ₯ΫB`ZΗΪcCm™j¦Ύ˜tΏ₯+V8΄—πΑ^Yy‘ŸύΛTΊ§’}wΟ 6)‰•ιdGΗwΣςτBXΟ&°`΄š+遇OamXGωNzόσkqŽυR'xu4]›Ύ†°Τ›Ξž?ŸΦ&qs†P€μuλΫ}sι cnƒKΫτCλ€1±e˜§Vc‚EŠΰAk ΰ^H°½ξې°.d¦ͺΗeͺž­ΜΣ7ͺ·S”±ϋα*ϋ£Θ2ΰOΉtŠͺμZtoά8ΛΈz‘ƒόf YΟΓΈ±ΈŒΑ1›^ςΐζšΥΔ-°amaukκ2s«ΰζ<·ΙΜ΅€o€κΫf‘Ο•΅z˜€71ͺλ A ΐŸl  ”Ι(LrY(‚] ΌΪ\Ύ™]fL¨Υ¦η―žOƒΗ!έin=—Žγ=W.γβ°“ήο½ΪO=φΆ^xαy‚Bw³K«ΈDύ˜†ΨA±²o‡Λ§ϋ.D]ά_ΥχήωόΏχΗγΊνΩώ‰ω<8> QΡω΄·@"$γ.΅‚(βR°F™ζ.8.k#μα>b ·ιξ’xŒ„‹S7©ͺ>±Π%40‰cوόάΜQΛΑ1\‘LΉΉ‡%£!sLΆ)0ΘU_Y΄Œτ“e‹03si­€2mκA›Ε=ΑΑfψΐ!Šηθp±~dΩόQXPξ‰qlΑΌYMάϊλ qc,†ποΗ…Βΰχe„‡eόΐ]fή ·(ΠΕψΔΣ7o. ›RιEΐ©W±‘¨ΊΎΉˆE„Š₯’[Χ)2λ ΕUfAΔԜE>±ξˆε*}QA¬Œ`$n@œ$βΊi˜φ4+ΨάΉ‹ΐ||AΟl)fQhαΨΤΑ―ΈW1€ΙC§ΠΪχΓτ‚”©™ πUƒQξΕ ΊK…ΫMΰ4sim-σ„Ή₯L2±d*κξο"~‡Α²λΜ~RF3»Ά9Γ9΄·qΪ ˜ς[‘qtGΑ#Ρυ ₯\h贘δςήcλ€ΠνFΘ"t3ŠZ ι;žƒIͺΑ8Z|Ψ…>α_̚šΎ~M4.PdAƒYU{UĊaΰψδΩ‹πεΏti1-’mή&#C£Ό3—Ζ±B˜›KE‘ξ0Γ Χ™Iyξ¦>¦ψ’ΓB70”Uδq4Z+ `,]X8¨?rόΦ‚π«‘ιGˆ6½ ‘olΒHχγZ60†ΰ°„KnV0ΏC¬²Ά° "LˌΤBˆŽ'‰Υ&χΐJΨdώ¬‘‚2ζbu Α—ψ–-Ϊ\g"¬Ώ#CςΖΑKι…KηAήMа‡ ή]X]LGΖi“:(ΦQ9vr<nT΅Ζ,i—ϋ>ŠΞ¦›`ŸΓς|˜.ΰnTffnN§30E,6E΄ϊZ9αWX‹½0όΫΊ"q―υ`Tzuΰ>€{EV5sσKXέι? Μξ!₯­se܍ͺa|ι/ώXδΘ:7‰‘€8.ϊΈŠEΝΈ†<0*ηp'ΑΊχώ—-ύέ_ϋΫΑό/™Ψ‚ΈŒ*ΦΒφ.I0hΣ½²+Ν‘aJ¦nh΄—Šμύι=g鍳kι΅·.¦Ώυ7ŸIΗOε=<U­FΏλnlt,uR e š¬˜{Σev2Ϊͺ#μμ‘±kΈ!3ψι3:¬υ!ΓΜ{ΓΤFιΕZ[`G² 4ΞλΠHD^”pξwώx_„&.OκκBψEμoI˜V¦ F2ωά'&“Zs΅φφΌ”eqʘύ°~p-π•―Η D‰«}n+Ω΅L©’b΅θjτLωͺ5…Ζƒ«Zx’0uΡΏV»ΗCδAΈ6 We‹ϋXW' !ζ™(ρ˜‚†ΜepΘρ›w9ސϊ³qgι―aΊQhΘΣ¨5W§3―eώ#ˆ›Ά"1ΙΨ{π5ώ‰O`‘u:Ξ§[S΄Γ5α.œι1οaΉžx0  " Ξ­φ[zΕ2 *„k=*"x²‹ρukQΗ²žή’>°?ΒβΚ½1vήηZβ8 ₯L| «Έ‰ tΕΜΖΰ˜8x7γυΉΌVιMΣ ΰosΕ–q+&Έ›!°/φˆω m6 ˜uπa•Ώ:‰6¦‡ΌžY^ϋ'ΣΦκ’2ΤPp‘ŠzΕ!°Π’Κz@ξνbΉόm9{„vλ’l’œžΏ±’ΖΗτ­dlΗGΊ±Θφ₯%p₯΅·θ"ψλkJΕc±D?K4`U|ʚqmεΩγ¬8xήΜ΄f„ςΖ5γ|π¬φ‚VίΕdp>»Ξ Ε}BΛ5‚¦sΗwg5›[Χσΐ3ΎΣ‘,ΐυwηα$ψš:>ιΪGέλœύΊ“ίŠsΎθγή峟ζ}ŸζžOθ۝—\©ŸκΨΏνΦ}δ3ϋχΔE”Ybβ .ϊœ”[9Nς5~럯ino8}εΘ†—;oΏnPΉΪβ;2lΈ•LaIΉoi!ύ_ψbϊωη~"Ώ|5u’―‘ΕΖL'oο»ιζF+~εΕτ›πBϊ―~υWɈC`#ιO›x«α‚σΘύgx?U± λ8N§ZιOΏω|ϊςΟJκiΞ§οΎ{νβ,ΒΞΙτΔΗ―ύΏŸžψΪ/²Έ·pΏ:™V^•>₯tιό{Έk]KβZŒ1i£ΉYίXΖL­/L?ΘJx†o1Ÿm,9-΄€Ί¨Πι—+w$qΘ#Œ ¬·ΎΊ€r·¬!ƒ0vZ«0eK؞9qAx‚9χMΥξJϋi‰γ&\ u d< „• š•ΔΪ¦AφB'ύ,’Εgsƒ*ς T ζ [—―¦ιbΡΜU°4Z }nn‹’Μ‚L‹@N%‰''‘ΕΫvΔ)Ξ†}«Ή»RΌ.9βpτρΟaMͺ#ΘΜ"ΔΥwΊƒω,2ί ζ6pSG¨±φ‚DB9™,+ΞοκEεκ=˜q™€Ε–ΕWšμfr•ˆ_y£ KΪ`΄bT ζfdbz@’ΣΫλ¬αšYKo½1֍=S¨bHd|Ή6K@6©eSΗ2ώΪD΄Μΰv†P₯U$ΎΉvΑW„}‚ j΅ǝ΄ή[Ω0ވšX^Θ‘:ŠΐέΜϊIΔ%+ Ε ™½ηœV€:8o}i¬„m‚ꉩιD¨)P―Žϋ‘ΦέΊ Aέ pο,a- μqώ`„WI}Ϋ]!V@Η!˜ο2ϋ¬ƒš(¨θœηp³`pPΦ7.wΥj²/]Սˆx—Mκ̘κF(*R4±‘ξyπΜo¦™+Ϋι·~ϋωτ₯/)yΰA\†κXή₯zψ½‘•kw£‘>bŒ¨ ή’–I₯[p+ΆΓ4°­ΛqΌκή>6%#DΌ k±‰ΈŠ U‚!GoΐψY+Ÿεq2•I°p•sιΏώ‹θqΦ2‚ kΉΒώθGΙ΅CL6s©ϊΒΤΙϋŽ₯W^}->|„ ΡΓΜAΫΤ&™¦fP Χ9 anΓΤ” X‑tΛ؞³ο_JoΌ%:vωΉ’ή9u3 τ„‘Fω†ΉΌ0—`•ΡΝΣlZ%`]ζϋ΄ͺ@ɎG€9δώ˜6‹»΅ποΧί’uf<+UNθfƒΊΖ§α© +/UϊΏΌ±”ΖΗ6δ%kβFΊKuC—@Ρ^,"Ωv­Ί¨ΒήSCΦX Ό!¬$ΜAΖJ‰%]ώΚώKm?k%άOΌNŒI’0Ξ[›C‹ƒ ½._<Œ˜-ΉΥισ«μ 5‚y΅`¬Μ΄‚―: ƒ@bΊlΆψDόγsΊ§F8άΊΈKξΞ‘(˜8J₯3ΑΜ‡υ~/En5Ά0„+ϊΘWoγΘξW“±†ΩHν“°οξCΗ¦ εc‘ηρ?†jKρO‡6Ϊφ[‹{Ÿ2 JTqOς–’¬ητ›{²φ„!ίΑ•Ζ2Μ”Γεs|–uΨ’ΑF WΔRι™ιd«‘ΦKζό'“νίρwC$OΑεp%—Uλ} ΑCt—ΧLd¦΅ΈnόΖ7½ŸΉW|lΦC¬.ξΕ[–Ž~2οι‚ΊŽΒ`ΑΈ^Χ"Ξ܁ηΝθ7€ΰΠΓ_L―Ώφtϊ‘ΣιhΧdšΉq>U°j‚λ{Α™ΞιϋQ—%ϋλ*ˆ>Ρ“ KcAΓϊ°P=p(U‰ƒ©5ΐWΈλvQhΧB₯ΊύνΡ§: ¦MΧ#ό"Φ‰ο ³5%"ΰ’>Zψ]$&Ίπ`Χ…Πg:rΧ…σΒCv‘{9k.½ζϊŽωtΎ\ΰXŸσAΧXΔEΖjœwΪέΧΕΰ‡Α±·΄χ±Η']ϋΨ‡œΟ~π£ΞύP?όΨέβτό»8\O·$„OΫ$}Δΰ8I?Έ¦q‘¬m*άn]Ύ˜zOίΓά³9Ώφ­o€/?λͺŽ—Šΐ0f₯ώρtνΧΫο^HO}υιτβ·_NŸ}ςΗ@ώωtλΔHžΪ 0ƒf°ωϊ/}==xΟ | ·ωλ ιǟύΥf‡ΣιγΗ!0HΒ+Σι œ½χΦ[ιΤΙ£ιά―¦B_zζ‰ΗiO$°—Žœ~0•Μ•a½³O’ι#` ΫΡριts₯ž~ς'$ ʍτΔWŸK_όμgΠd^LΟΏψbzΰΡΟ£½Oίό“o€‘Γl*²BHιΣ‚ρξ} -“&Ρ8γ6DzΓγ,―uά^6Π€Z1|׊y0ύ+#Α€±X1ιΜτrXDBy”ΙWkXOX‚&*+Κ-F»m’DΊΓ}τθ!4πTc†Ρ°θ!ξΧaΡ΄Ϋ£±8ΏJϋ$0ΐ]’†φ·ssί0¦&Λ?Ÿn™ο GˆCΔW'ΰtŸwSͺ΅“ˆ—rίƒ§@œδφimρ&r›Šί%\˜"Σ ,΄|Ό[λO&O}έΖςΦ*ροδΫ-7γPϊŒΠ:š€{€5@IDAT{μ1ΈβΜ`ε™βϊ“‘vXό!€eΣ­ @sώΩ·/€β€πΓ6 Χ%`Άˆ–UΕA¦Φm[ΗZ€–*a²&K ­ωYŠΚ0£„‘w­λn5[ΈH™Q¦Ψƒ›6Μ~™qš…Κμ\E|zaΘͺΥΥΤ76˜š Ί )τt3&>aFYNΝ5;.•ƒ0‡Ί/%2|!SΠ>ξ1 e{Έbe>ή60žΊivβB΅iζͺφL’A½hΓLσΚ΅M\˜HeΪf,Ίnm7«0Ε0u0ξj£νδ―Ύƒ`aξG‚ΐΊΆͺŒ½RbΡΊ±ŽΦiΧTΑy\―ŠX‘FFa¬˜kSω(<ΐ$«©+χX ΞXίd-ofηΙA]H ΌX9v`τώπΕ領ν]ΈαΝQεόςεΙόχΑ €ΰ5ΰ{™;³ -"€τ“½ι ξ­2™u”62aG&Η‰΅ΙνFΛήI\ξpΖ‚?0Μ:―cUδ]π!ύ€Mξ'ϋTΎc$5’*ΈΐΙξβFΑƒiδΰTZ˜aό©ŠPxxr ν₯ττdΏƒ€λΥCχί“ΊηXΊpρ\:ξΉtγμεtότqښHοK׏<œŒκbίt` ΤnN_Mγΰί΄šm„ηƒΔ΅±kΣΛ4˜‚·½Χ‡₯ ν!Gp>ΪΤΞ1¬λι[ίϊΰPΧOΒ”μ₯Ο+(Ά™Œ›Wn€+K3pF0τΈN X-Μƒv€χcΝμκ^#έ6Φ:Φ§©³kΔΞΘSα- υ°ΰŒŒ³Άΐ›‘ύ ²'# ,™O/Θψ*ΘeΜ€Μ™:Α[ζα|»q?)tψ\Έ†ςŒŒ’q$Ωέ΄+—Ε9“?¨eΖ‚=œΠΆŒΊϋΨX2 τs‘bΕΆ ΰράΝW@ΐΜ!hW—ΦΨΏά‡’E }‹{aυ賌Ÿ¨<`ΏΒJK?u³αέf0γΦθ‹BƒΈΟžΪCϋh=οSψb€œ‘‘DHσgάKΏι»IKβ“{„―c΄x9ο•α΄Φ„±2ύ*Β|‹ν{ŸŸY]ήΗ~Χ(Ϋ σYά…wσ.`-λ­eIΖΦg3KΏιHϊ˜Oβ›„ΐ΄J ”±-fΔ½―ΛHαέd%>JφN{ƒ+Ι €1(3sUbl2Θ Α’…LYŒΝ‘–‹N$+@ΰu³QS°PLEο­Η1Ύ°χKΔͺmb-―‚ˆUbΠb_€7±˜ΆΨ“|ρ+©2τ?§{Ž“…4η―Ύώ^zχ­7Skwcq)σcΔ­”™mLχδ°°Σ&τΌ„kώ Ε«(›'(pΪΓ{―sμbiμΖ*XΟu‡BόMUFϊpΰͺ ΏG†ΊΑnαNί:κŒΟΩZšX1¬ζ—΅Ν£¬ω ΦD¬ N'€εΒΰηIAšγœΉφ\ϊ•qΕυαzt Ή6β?~‡‡p6«έέ#ƒ€λέ#πDvκ/7LˆJΐL@ό P.ςαs’–’&„fδηFZψ?Yͺ=τΩΤ 2ή|υ₯T:}oκ>uE4›|›A­?υάΟe›XA…γoό! Β‘˜:|2£&Δ‡pΡrΥ?όψ“ι‘'tAdjθFdιΚΡ)\¦θΟ»Ω'žϋyΞ"ρΒ04”Άωuμδ}\Γo•ΕφΩΗα›‹EυΔ—žNŸg,;h’KŽ€‰C'`›ιΰΡ“ιWŽŸŽ6ΥόΜ/όr΄­Ζ•7ςwχψ«A$²άč 2Of3'™~ΦΊ"VΌ @F”εά’ι ξΛKcϊp;ΉN ¦Dy ‹ͺ­—ιΠό™Π7‘b¬©a·Μ·E˜Πe‚ ;Νχ³ΧfάI\ ϊΔο‚HEΔ"$΅Π³ζΎψŽ%\ŠŒΛ@°iBνͺΫ«˜‡ΥFΦI‘ΉŽ#½+λΔΏ+rΞ“–dqq5­ΰ–OvύΜ%0Ζ—,­/Βp“ϊ +W€Ύ€_ΊΦH@hΝΧ0G;aeσ.ΦξΚμlΚaαxτsO"d§Ωε›ψ MΆ˜Ω^Χ‘!|φ 7Ÿ>Έ°:Ha"P’ά‚}Yη΅‘FaΐCwχJψ*c]Έ―γ_Ϋ α‚ C`F‹:n7‚vJ·/n—©S26|,¦j_«yלoEξ›Χ©Οε³ωώρ›φ H†yΪ«Έ/Υ¨²‡°Ήƒΰ‘g < iA0ΐόŽ Q‚g†έΒ Ώ Μ] ·΅&0‘QμĝɴΉu˜g•Nm>)rH«Δ«… [‹v ΈΙYŸDmb W₯5R?—ιγ&„7\:Π¬pιzSYƒρf"ΡzCĐ$ ‹­ΟA4ΥZ\ςΤ{Ιγ:ev+*·Ρhb«­Nζ­:.Ÿ5„%X0²f±.ι`Rσe\Ρ~Ί‚‘!ή‰υ74r$\V»Ι WΐUk“ωΪά aAίxjaα1ε°θ·‡y^EY0ζ«Mα¦λΘόuHYG;X©ΚΈψ΅Άˆ—ή0ρ / 7—H›©Ϋ)±PXtKάfοΜ―.§#}c¬=‘msαf2-b%«tDΐ*€gž|,•Ρό—™ϋZm)]|g6™I‰ΓΟ>’V™ηιΩ9˜Vρ7Ι§Ub?6·Χα±£τ‡¬s( –—Ικ†ϋ(‚I‰ωλ*{CΏΩzΐ0S.¨]ΤνΕZμΖrΦ‰αdπΠ‘4pφϋΏσ€+Χf#•u˜Λ ¨vΟfμ Μ{· Σ??Ώ–NŸ>γ΄#…5os9½0ΎϊΥ/γͺVOί+ΑϊΔ£ χΠN\Ρ2ξrγΐ]Ž1υKζΣlS*I:’fg/§gp#SPΖlkk>›$eρΒ%ϊΕZC`>rφι*B|n3¬ƒLq%Ζ σА?Zή†0\NnB—ή€KΣϊίƒχ˜χώž±_7ΆBgz;˜λfClϋΊ §λχCw{°Χ0U2C`$φ7'ΑGξu1΄LΘ/ΊΉβΊ «ί!‰ρηN•i7ζBΕηdςƒ‹υ>…~ϋŸ 6ΏŠ2­qΈ[±O ΰs_½£ΫσYbo•ˆ[ι­ΰ ‹&Ηξb¬ ΩAa-‡>‘…g½™lD]S‘wι>£Υ[FάTΥΖΞ΄TΫsΠKώγp°>σι½ZMεΓ΅1dUΕε3…°r8ž·ίΆ@KΡ‹Z-t+σfP1ψx1Nγ Δ©¦e†§ΟSaf§]•t2Λ‡n¬N΅7όΟ5I<€ΓΌ05”OXλME\…ΖhqΦ&cΎi™7¦§ -£x KœΌlM€:ητ1³vΨ9Qš0€μk‘ ώr=h7…^#]x8n“˜HCT"­o°ŸUbqkσξ]ζ<φ+Šb׎ʏ<ύCœI“₯α€CΔΘ½GκξηλΥtδήΓτK5 &ϋ$ΰτ€ ΔL- όΫ„V=y‚nΆΣx0ǘ̘6€ΐί‹<‡‡‹ "’ΔΥ;΄Ρ€Ώ&΄1†,KΎΒo¬άZέ6€ .ΦΩ| !Φ[A ‚6π%…i…&Έdx™€ hx·Β($#^Ιg³έwCαœp4(^χΌlp|ά=ŸNnϊC††Σλ‘’]‹ΰ/€λξ2Φ£yω\όΪΟ²θΨ„,NΣ<&ώσ_M›gίΕ€^MΓΟ}=•§Ε΅Tn› ¦IΛNF~iΟp"Šϊάϊ_¬‡ηeχ]< „‹ƒΟX·.ξ·eϋϋ– “‡νμfωΫο±HX@ Fƒ%Ιx|ον’FƒσvφΞqΨΖέγG€σήC}ŒΥ’Υ:ιΏΉMPhd“βZŽί{ Ψ6~’jLΤή ’u fl &¬$U\A*ΓΈSm‘ZΩ‹€5Ιeβ!fΊϋ0>€κ8A³η^?‹―φ ~d‹ΒQΕT-1(€Έ7VpΧ ½mhν>Μ£~ϋC샽³ 0]™V\ΒSFkŽρ7*DΧΡHjΠ’£«Ν"ZΤ«σiηT5‚ΟοwۜόΦ`0UncδΙ~R ¦Λ€©u…R ƒ~’-0©ΕKιΐpOz㝋©J΄/ϋ›ιΜ=σ.Ϋ#Ξ£M†°.όsajΤΥΪΘ XDΠe­PArQxφ ”GM’ν{(œx_Δ@ΨάGi Β₯[ λlξ²ξ]Zk–Α'@XJ''©E2ŸΪU`ž_ƒh―²*0}ΈΏ¬χqe•žδΡގΣB#ξIZ2ΆΙ4U xcϊňίΡΉ Aθ홀ؐ٠0£95΄°Η‘cm¬Cu?ΣΰΈ.ΫT€ψ[„ref—³RZBΈ„:DΙΉΤ–bηΪ\N@ *ϊ”!8 μJp0θZ} ln³u}(Zτ Χ.YϊΜ,ΦC,…ιqkΐ䖁v‹ŠΏΔΩμ’5jμHΦ³ARc ¬E¬VΖΌΤ¨R߁ΫV+Gv$bB¬Υ±ΗΌΥ—Θ&(‘5ΧοB-β–Χuƒϋ*q{Δ.p ¬)­ 4|RΨΦ.Ϊdˆ}QKŒS7VίkX—κGξ£U ςΣDγX6§ΎJΈσ =ΌΆDlLx–˜ΒΖ2©[―έ nŠωλbηή?;2‹ΨV£54ρφ<Τ‚f ψς£Αψ…‹ΑΣ ‹;Β 81…`„–”9ξΒ=Μ$ξΕ‘#ύτ‰t»,Ό‘‘q, ά–f€y/VκƒΤpνΒE―Ϊ’’ΘTΥE\ΨφH‹ΣοΡΗ"ξY}ΓƒιΑΣ'Σο³&{pιRIfŒ ™*-”ΖoΐcB XOϊΛιΪ•K鳟Ή?½ςΪΫιɟz6]ΌzŽup%u}ιI氞&zGa:*ΰŠΡτ ΎλσΤϊό0nŠŠbEιÚV’/U„θ˜―"λεβ{Σιs¦ϋOΟTT顝ΖQ΄H0Dφ6Ψgb„πC?>{2·Cπ lV·Ύ2VAςI,?e\Ά†ΙΨV&Δψ#μχBqŠύΔ8ˆ_©0Ÿhωσ₯•°.‹Pέ‘†|ΐy~gg5-£ΐΠΚt Ό"£€ ’BB4c½3‡²|*"\%!`?Ng4Σ{YWΨ{β(PDzv\‰DΟ{.ž‘9‡ΩfΞem£V k[Hρ•΄sμη•ōtιΒ›ιΖ•λι".Γέιλ?σD=†Λ4iͺλ σμm3‘uΐπξ Ljš.|eͺΪ=έ†x§š}~-³*[ΪΌ4‹π ξgΗY}ΈEV?Θde?Κ+iΎΈ%*Ζ3™]ήδ ŒX:&~Άpƒ¦βX{Ζωιjζx €ΦξoΡ6Μ)΄"ήg.q±@F(PhGΝ”O‚O‘P˜³~κΔ₯‘ \Ά…0i§}―½ΰy·X šbm‹Λ΄•Ν‹‚LΔF(Μγ6₯‹Γb~Ω€8_e2―e€OYΊ›<Δb³ύμ7Λ!THΔdˆΕΫNcΰ8­![μ1ω"872ΰhΪwϊ-π&ε^±(Γώ-ƒ›ΐm›·μΧt‡&ώ€ΣŽC8hεΩ@Ι₯7„nΞΒUχΎύΧYps€υP‘Ÿξ£”CD±πnp7ΒΕτtιψ9ςλ+}0;`Ζ J½k€Δ{ͺπƒ¦ͺΧ%Μ ·‰naŠŒD:ΙθW€¦§ΒVMΛ†πcqΧKŒA.%Δ}Ξ;Χn’‘7ή=€ΠώΛ₯9­₯ƒιπίϋoBK΄o6Œ§8“PΐDύ„ !0-!ΐžej@rυΧσ DώqΗνLώΗ}χΩ]ϋΈΖnΠ½Ω.+Ωω[γόχωύφ6o{ζφΣwΏhΆΊAΥΠr`ΦZ qƒEπŠνb6νΆ.ΘHœ`v)‘―qΜ2afi˜5‹v‚ͺ0τǐξ[ϊUλΒgvŒ@Έ ©…3Ή~άa6§(XΗWγ@$Ξ2|4a 6Π&Ÿ>yo€Κl 5΅ψ*zΦ†1 t˜LŽ €Δώΰ1˜β".P0ε+©Um%β3ςh³kVh:·Ρ‹ΘkΌ#‡Φ·‚iƒ@ϋπ±¦ΟŽk­vHXόά‘Ϋ„OΫcΤ5ά‡ούCΔ ¦«WΧaވ΅€β]_ΌJ|1Œc« ΣΗ[ά]5˜@±€ZŒ° qΖε!RVrΞX aΞ0šˆ•“ψ‘ —求gaςζςPG©γά‹FsƒΚθ2<ͺŠλΚfαΟκΘτ’ ΚΤ[ΔS΅π ςsχ₯\­΄xΛyY?'όςμw^Κ‹„šJUFmv~18Dς\΄†ˆΨ%PΌΙσχ>t8ύ9ι{ΧVVΣgŽbυˆψ°›— iŽl_‡~&χΉκRh~MΏέ”Ιe½”Α₯+Ιϋ§(ξb[d#[ΦBeX]yžΑκΦίw 5ɈUS‚Δ αλρoQσdx°EZκ]φΨφ"Œ1n—(<Ϊ2ΝμIlii,p~ Ο^φ‘Es†ƒ9λ&Ά+ ληʍ¬[xWΜ{EkCĘΑdΙ²U'¨βη3s'ς“EΑΈμ»Θ@ ΏΜΉΪδΠ’³Ο6’‘θW¦ΌΙϊλd?ΪΜ’draΞ8ma―ήί&M™¬{’.λX>^ηΟIΊ0Hν#€ύΕ{WΣ΅0ίϊ]ά«{qΝΓm“Sχ"p[ς!k΅4IHy„Ψ*}•ύΦΝό +ϋΠKΥΌ. IΆ b·Π^Έ—rQL“Υ±€ρΆ2Ώ|Ί’ΐ(ύv\ <θ·HΑnγΗ3Ν¬Œ ³£’@Ό!ƒ/S }š¬]θ°71„Œφ΄BJ…˜BsΌ-^¦ \γ>ϊ`pyCψQΏ†έ₯ McoZ|T€ΕφυμY!Κqΐ`K—Ί₯m½Xώ €­_[7M3τ€9b ΐ­ΌŸχ))@Gœ πT¨%ΕΉΖ―c2ARw E9\Φ'ΖF#]Ά5³Z˜Ϊό™–Ίb¦ŽPψQά«k,+Nε!=KW–ΣχΟ_IγSΠ`AcŒœ˜ Χ’§ΨWΠgγ%!eμχ.Œ¦DΗrΑϊμ‚O(σ'>Φkΐπr[#₯[Νnƒ{psεn„-Œ[jXΉl(ΊΊΑ Ežˆ$KAρ©Α@ύθΔΌJσ(ό­’F˜Z«(νΪgώT)ΐνΠOϋΏOgωmR`Ν…»ΗΛ|Ί#qVl>ς…AVԝ€*Ι·g@0m#2=˜ —»Η]|Ά¨ω`‡ pπF³ƒ Υ2›œ›DΛ<;³ rFΐa»Žx NƒΌΒ,Ν;L\ŽιΑΗ aλvΰ"„Άέ¬+ƒ¦Af{*‘­‘Ρ‚ηΒ}δKZK΅γ[Έa,,¬¦γ€|^\έ³r7LH~ΨFK„δ-±-Žs Ϊ‘zΤ(c^6Ÿz¨»ΉžΖ+ΗΒΒ2f‚NΙΐΧΉ>O5鍕 4εΓι=Lʐ`ŽL=ͺ€Fj —΅qe4Gϊψn!DDφ€aκλ Ά€xΛiςne ΈΕ«7ψI˜94cΓ£,[Jί‰3Aσ?w₯€‡nUEˆR€†9φ˜ͺ ˆšlU΅u)½ϋVίφu˜Kϋ%νVWo\ž1ξdΌežοΖwήzgλD›oPΌζσh«L Iϊ#žGΓDμŠ6‰ ΏΔvΈ›ψ…­θΌ 5Vδ¦ά" ©eΓm">7FW˜ΜƒYZ¬`_Qˆ€1Sσo‰.Όυ$1λ…΄>ƒ –Xό„‹ƒ5λϊIψ»‰κd|³Έφ”6{q·‘Α6ύ―ΥΛ€™iTλsP™ϊU­f θSΧΥƒ5eun…±Π€ΓθφΡ0ΦU‚ΤG›ζš-ΐl:x₯υ4[Ε‚ΓΪ²Jτ YΆ0Ζ3 QψOW­%ϊ¦Φ·Α£mΎΥ±!£XbFQŒ#b(τξα£Mϊd\‰i`‹μsΣ―–μJΔ£4`ΰ‡z©­‚Λž,n“8,™MkΊŒςξ*Ib?5šή+€Œ^[BXxυZZ$[XAΈ˜+Έ©Yν–ϊVθ1ώ‚ϋ?y½Π=J݌™ {˜YδZb‡±"(ό4w–(ŒΝW₯^Ζ¬–m ,ΌπΗ †ΕΛ”» χ 0άοοώ·΄’ƒŠ “Ύ‰œs§²QbιaY26iƒπMΛ}cf-=όθCi~–΄ΏC½ιζΕσΎ$MŽOoΧoRεLΈq\ΎrΧ_Oη.Μ' _ιo—+έ©4w}5½ό;J$γQ,€Lh*¬•MβJφ(ΈΩ ύu's1ΐœΤ¨₯Σ€_›XΌ–Φ―Βμ܏ΐ¬@b’ˆ.πΩ:χ‡‹IΔI½XEφv7λsΟtω²~Λ6ω’„ƒΛvΑYƒΔZ αr©π°έ΄^ ©ΊΔ@)]Β΅ΝX έxt7ΞΑDι"δ_zq©Œ³t9΄΅ξeΟΐLΠΘ,2Ι4 ηf…ž¨kΐs¨ ΨΌ‡yw_ w2’ΩσšX΅΅άΙEΚDv‚ƒΊM€Α©"±™+XΜ*$†ψΣ—^#φςΙ4Ήά™ώοίύνt)¦Ί‹ώςs§ΠΦΰψ=μ흴H όζδρth‚Β³Δλ46`²Ia“±°7ιG| εF‘ο¦e΅€Ηέ ΊJJ+p½ΈΌ…@ο Ϊ$­π¦‡Ν3'Βb˜©ΨωgσΊ°W&¨Dκ^φ6·³§3AEΑ£…ΒΦΜ] »9^γœŸ]„ŠθB 5-τ qΚΊ8ωX³ %4ͺW‘H3ΞψQ&ή>`ͺ`:Ε9πο”>鞫Β"²qΡ]z όΑ2XŠsΑuΐ:bΜ;tΚyζΣšβ:ΚfϊͺBØ-§]Ϊͺ©½ uΪTι&³Β‰ΟΠ'!¨`i²Δ-Mΰ₯uXαξΰ@ θΨ"k]έ—WWάΜωTΐ]±n3E4K/[;Œ%ΦͺIKhΧΎ!3MB€BΨ£ο`Τ¬9„Hα$8@AŽwv(ΐ8Η v-Q޳Ν―θ‹₯•YEΩΖ ›88*΄›©Q««\ΑΡΦBYΔ4ίՍP§ΝX3λ™‚Ϋ5/Ώ«€K/yŒ dΪ°[Ωαχ~μŸόkύω©‘$RQ‹ X=% ΏυΝ‰rσί`ϋΗmw^²»Η]μC  RΡ\‘‡P·1—Κ€ΠΐLšζ³—"mE΄ΰ/’–Χχ“ο™‘SΝ EΛ€ήάΠ!' sΠ±AφΊ·ˆ8‚Α†Έ¨½œ™ŸM‡aΘ«pΣEΖ%MγM™θYŠVjήyk‚«7ΜDυ¬›‡I}ξ·ηΉΗ&\p:AΌ¦ž‡x/‘F“ΰkΜ1‹έ-)··C %Β|4 rob––sκ‚XH`’x0ή§k–B•Ε‘ f0Τύΐa½­‘CΆK\gό_;yϊm‘=Βͺ$‘ΣΎ —‘0vΓCfΫτ·fJY[™ŽC€―žG3Έ„&LJ$5ύU¬Ίθ’dΖ­HσΚs%„EqΑ›7Σγ_Ό‡΄±Tv¦φ„ΩTJ0²Ί#μΐ4BkЌAL"6H±HŠ Zj9³‘ΔΈ%ζΐZ\’{Υ&V―"΅` GΔΫ4—S!Σ‰%ΒZ02©β§29ua *CΈL-ο3mτ›g―’dγ01M«ιέ‹Χ‰3BΈ`MLηΣΧ=HPμH:6:†5N!&8ΚpZυ}r‚kƒι³γΔ„œχtαΪ{„2t§ΛΐVa«ψ΅±pT:μOΦͺβ΄ΪΛέΌ9q€)ΆB».‘:.©XΒM’:ΏφwώNzγΝWΣΝ…λh‡™K%ˆ|r0~;lNπr ½Φ!ζnΙ”œC‹ΊλT——ΣΤι) LΞ„O¬9RbΟVΣρ#ΣΒ\•”Γ€ .Ž’Ah;=ψτΑDu§k3 ιδΙ#ιώκ‰τo^x-0¦*ΒφΉ ιžΣι‘“'Y¬άπ6¬_ά΅δΎΊP‚τd‘Ο*Š ν«dά²ώΜIVΥδ-Φ¦7ςΐθPh™·«ΰ$΄ψj€el‹ SΔ7υƒ§–ζˆcΎgηΧ3w-ζ‘‚πl‘_ηvwΉχgΨ'dβ˜Hv5Ÿ άwLΝfT[mvkθκΧFZ5ΛΆ‰x–‰wˆ7dΧ2ΝΉitΕGQsΒqr―Ϊb-Œβ™E­ Α 0Χl+p}‘ _†Ωe©0ζE=Ο§λί?‘&Ί₯•k{ιόΓ_OμτΘƒχ¦—ΎύrϊφwήK‹Š—_YNϊώ§ŸόΜI@ξޞ ν(Aώ­½ε”«’=Λ0a¬”RΠ†λ² Σ½ΗŸΦ$γυΠ‡`Q•iΝ„2έΟͺ(v:KΤD"ήgk™qꊬő6₯ ‚±΅%dsΰψΎG±$~θWεΈFγ μSalΨ‚‘υ’TX™8€”#¦ Ό‘{­ŠˆΜ-ώJƒsd€M?Νhœ3„ίψƒυΔ&˜eNέϊΟ }εϋTNτ€Ÿ:<{ eΚΗΐ 2AΣ6ΔsΔ'Π/ΐο&1ζΡ€p-‰[…:BŒΦ]w±LΞ“YΑrkάΔ&xFWR/φΥΆy˜ι6©e%Φι!`__\IΛηSiL‚Š Γ:sœŒ/sgRPbeAχ₯5Χ―]N£Σ7Σ‘ΚΆΕIιk zQ „—6θΐΕ³LŸChcSΥι³ ŒηΙƒoΝ?$6h_W@0>Λdβƒ ₯¬²+\_’³Œ·‘@Έ(Ž•₯Ξ™0.£]„@­`&>ˆyαΌK݁ϋα‘ΡuΣΗ,ά=~1φ§:bΝsgQσ%σπƒγ?δΐρΒωƒ’5k䖝ώπσΩΉ}ΣΤΎ“ύΞήυΓίyάω 'bzοΌφCχρΚΫΟ}šοφς‡ξ£·5ΙέT΄q£1»G˜S!ΨϊΣκ&5Š–P”fpβUΞƒΜqŸ•CV}!쀬όi@@;’@n»κnξ…ΐbΎέΔM$MΊ†Œ#†±„YΕŠ`GίηϊΜ“ξVwŸwƒΈσΑΨQΏA† ‚£[—±"; ψ2«άWΕ—ύ Ÿ6± ΐplVΧR _έ“ΆΡΘΥAήΊ!±UΒef›ŒC0pН€šnŒζS,‚zν‰ ·A„ϊΜg~ΦXc(φΆ†~hŒhM Εa΄ϊ0Θ½-˜έn‚Š znβF€Π {š„Dˏ‡Β…D‚ΐό¦§ϊ§pg™‚€7‰»ΠWΖΤΓΌΪΔ-ͺhw“YΚb%¨VbUΎξόŒΜ*.[2ψ{ΈJνξRœœ:v kΰ’ξηέψ η Xψ½‹ p'V¨&γο“usJΊ*Πζ(ρkXxΑ°˜ΦHηΪ ϋSΊιD#Œτ"T°0Μ/Ν_’@Ě‘RtκR%“ŠVτΚJέLr΄Δt“±Mπz‹΅!Ω…IέΒ* Λ[ΓΈwŒχ0h¦‘lBΜ±βΈ\gΊ’μ@¨sh£­ώΎ‰–Ύ‘ΣΨ@4“X$z;¬@ΛΣΣ ŒΥΨ1`Φbρ$AκEΦHΈv!ΐUΐΚ%β@˜' ά•ώ_φΞ<@²:χ§ͺΊͺkι½zίΧΩf†a`Fvd’‚,ΑΈδΖΰ½1*šcLr“{ 1‰γr%WD‘e@vD`f_»§gz_«»z©ͺͺϋ{ޚVΒ ΉΙ™zΊϊ«o}—σ>ηœηœΓ»eαΔ3Έ‰ΉO±Ÿ“\ΞŽc±ηr9Ζ£²%‰A88I΄5Y=]Ξl‘GΠGœ―>>³CPκ4Ύ¦ ώ₯³“€ FΑΕΛ₯φK„ΐfρΐW―:ƒ¬…τ9}Ζ`M”ΑΗ§έ€Τb‘ΟπΦ•03/εΑ_Ά¬ƒω3O2y"Θ^8ΰmHΌ9@_ͺΤΕ΅€K•dŒΒL€u\^MΖ½TΪHŠ}$,jOΦΥwjiDω$mπΘΜ°£X ͺ^Œa”%ρ» (λΩ’UΔQύ₯Jτ@Ϋ(XT ΟXKG™@{bΜ”‘u¨ŸχϊI Pιj]aΦΖ»1jΣ(±QΌ0mMνΆΎ+nύΗΈeΞΦ[IαΑ);ptΏ}ϊF?d޲φσH!­tΌ(Έx‡Q4$‡˜”«πςrD|ξ=”½jΞhΈExoe,ͺΑ+²€εWΙbΜQ)τrΐY›™·’ί(fJ5€Pδ©0JL{sœ'~ζžΞA*ηAm§ͺσcΔ~”< g…MhΞsΉΰ™sΕγ/€yE}&˜γ ’μ|m‡ >`-MmΆξΜNΫ³€.lΥx•+ΰ»ΆΩ½ϊ ΖK‰I¦Iy΄e-UŒ…)Ϋ»£›LrX±›θkR‹^¨Ψ9_xε«o@%}‘ωδΕ` £P<‹Œ C˜)p>Œ ά+ΑΔ%U”0‚ΡP€Ω§x6’,’€Χ£W £ΓTχ‘ν]wVZYΕ90q1Ό‘0aτΰ"nμH1ΙC[a#T ώT›KN;ΰΞ·ΒY\Α²δυπ‰εdύΕ—:N²ZγξcDq”%Œ·(γ bΟβ26±Άκp¦2ύ§{*˘ǘ`lMρ>’—*ΰ[ΚΗ,ν'ΕίeZγΩd”Dΐίy Аζ1 χq…|5Χ\lΗΈ1₯‡’\Kpβ„$›FG]6ΊjΙ)sH3-#ρ Ή„qί ϊ yΙ΅¬·Q„R₯ €5Ξf˜~Σ SRš°A0FˆΆ¨ΰ§A:‹lŸeLŠ:F#‹*¬„b ΘΛ.εΩ… Π8b8…‘«kΏz.Žp/’y¦Άs›kϋόΗΚ.!η7₯€h0Π”΄œ½8‚Π;1I΅—ν»Ύ’J ( mjrΦ!\wL0΍ Ι2¦ψ|b°Ή£θ#vΚ nj>-χ΄Ώΰ+‹’ŽX‘E‰Θ@@ 2±5Αœešλj@θž:֝ΟΒ« —wƒJϋG0r M\YΰΎ—E˜ύr!Ί@.‘λΛ-ΝΥΥ@`v¬θΪz.Θ{β™–”¦―sκΧW 0‘ιεΔWΦI ϊEm+ „ΈΛQΐeˆoZNΦZ²f1Ώ8v•@ <ˆ₯dQŠ+Ž›0?οΰ‘‚θΑν‚a₯>₯/iSΕΒδxζπ (Κ •#p[O%Λ-D8€EΦ%ΥF`LL«œ4–§,ρ3ΓTA/δή,ΠIό©;EοZ€K>GΊ\£½•-JVNfΊ%¦ψ7Πΐ3£<° Wυ« a­(I‘*/ _V|Ρέ ‘•1’)‹7eKr‘M°Θ»Sΐ˜š%φ!BΦ¦†βfΎKp>Ε#Qba¨εBζ!‰PcE–g”3.Ζ’>KΜ‚κ™•d£+§€q` IzNeYžbPfŒ“Rψ,±κχ0΄Ω’K«J‘7‘τ€Ύ pΟΨ /dΩOA)Ρ’—fΛ{&gPάΠε Rͺ]hͺLΞkii’xݸ͎QSƒŒ;Ρv αΠ ΒRΜHmΧI₯Ά5ΕO<‚£Ια}*%ΰ$ˆΌV, ΐu’1vΰp―5Χwa‘₯6 ±Ex>Vv΅[ΟF<6@U‘Ζ2Ϋ΅{ΠJκj˜p!¨}=ΐγEΤ΄ r]₯ω”qΒΗχΓCφ…ΏΌ-ΞˆήH’™γ:pMS1†σYoh@c™ΰcp)Ύ¬˜Dυ*$O¨E’DŒ AŒ%(;ƒCCPΦHAŽbFωΥa‰ήXθ―p}#Ή™ fYΎ&(0©·ζ© -tΌ ΘJqχε5Ә‘gW »”X†›δ’d«Νqf>ϋsτ½Όw:NŠ8gεœ‡N€S—BΑα^’‹(8tγ/%žmΕνΈΛ#}ΜmΌV&0η~ϋν·žΙVOΝVώ;rt/΄@j>`τ𓉬Œ΄Γ-MuvώY₯φδ“OR{帝Φ^g‚τΗ‡ππ±vDkIι*Δ8ΣΘ3Σ-σΰβ⼌ƒ42 Ηu«‰™FI§¦O σi‘Ψ€†£ 3γΓ‹fPΚQκεH)x#ƒήgχWJš,ν©6tu£ υΘ‚€Ά… Zs‚ςΆq‰>ddE{¬’χ(‘žΗΚJR2κ£jeΘR§Μ†aβž¬RlΌ2B @0?l@)υUΎΤO.E0κΐœEζ›π"•Γ@F’½UΧHύν<2œ/#ώsž}:Eε’Θ…€ά2?°•iPΙXœ’#-‡γ€Υξ·Λφ…G‚”’“c€%%ΒYεXμdτ hˆR" R€Ύ)*―±›―ΩdUΥ”‘Ο9ή--ΈΝXk4 ΪωXΟ(Φ|ζ@ί±>βx8°S7ΎΑiqs(…θΓΪνΗpΥΦήL,Τ―Ž.β¦θΉ3g‘Γ’Pp7+γe(,›ΞΈŠΉ3M ΏΧφ:ΜZ‘d R6°z³θΛHαg-πσχ<ŠLeNρ:*Θ©Ή;Φ7be瞍ό°ͺ”ΗXœTΊ1[΅Ί …A醱zΣ•¬Cσx7'PP«ηΆ]Vί‚ΐ-ΰΪβκ{x†I ½EI$Ρ\Oν(‰)Ϊ=.Aφ ˈλ™B™.cόΞ΍SSκU;{Γγž5œq™ΰ^Xœ1KΔδl‚Š ‘ς ’!+£ωPP–D–@½YΡ_ Υ…zœ=Δ;Θ ]†ή`ΐ;01J6€ŽgΙήΎσ0ΐ˜7_εzΖMM337jEuQŠΟ%HΑ π§Ν‹rJͺΐ˜£ωΣ,FŠέΝΚx7’,”bu•W―άSΨgψ2φPρ¬†ηJΐΟVΊΥ2vωh—L¦«8ή(do€ηΝπ >ΊNNa½ΖβˆͺΔ‚ ΰη=2XΣU―€9!ͺ³ °ΐv<†΄uΩ;ϝŸΓژ°~β Ί+σΘβEEΪXid˜§zϋ4Ιd½\ΩZMlVrEŠ›κL “ *šV{γΏƒM)΄£X0+!AŽ‘υ—ŽΕbͺ`tή19ŒόΗ£6FύŠH9ΰ€­bͺB^„Η͍M―Ιρ””―ΛmΧΞƒΦΠήΞ«€XίΙ$8žgU!QeνΠJ1wά\εmڞ]N―ndž ΐγEjeΏ•ΔΣήGαan`”˜amͺ«¬Ά#ϋIξ°Ί:7Ȋb€5Ο31%ŠλIYqΕ-Qv  sͺςzŽwSαΆž”BΌHΑ _{ΝxκhXΥvΈΠz0j©hncΤγXΔ‘|‰T§X·Έ’΄qEΒ‡ «Γ0Γ{Ν“žx™¦¨$8“qNΪcζ‘Λλ›’Ξk'•’2 ϊaΌŽ4ύΒόΒC&o¨³άfeόQάUZ13Ž€RοΓ°ΐ ς&1bp“WˁBg5FV1•ς5-λ ½€–«ϊŒQGς±ΐfeά Uδ‘α{ρεΤB‘ςγ9 Γ:—­΄^{ ΟZœD€+F¦<ρβ.θTeΆο―ΏoŸψοWΫ•—]b;v>eŸωτ—νοϋS»ύ>n?Ήϋ>ΫΆg»LtΫ;ίz9‰1BΆ{琫›1ƒ‘#  ›Œ•ΥΫ±;3#“ΔŸ©.”YΖ©κDδzϋθO―5­9Ί:iœ%6€Ιœ$.GΟΆ9Ϊ-Av6±`­τξ p*ž< ˆ}Š0Ž_yu—=ύπKVΧ\ŒerΠΎ2¦$™7~δtίρC6x¨ίή~λ»Α;΅ΕπβΓH’‚nε§\fEΪ«ο žθ{Ι ύδ ΪςcCk‘ϊ¨λΖ΅ϊ@ ˆ κ‘ρ1Nt,ύ‡ΌQ_‹~•gŠp>ϋ€xπ//G !τ&ΥeaΒσή:–ϋςΟo·k­ε:Κ8–@τΰIV{Jϊ0(„hΟED™!΄.ωΏOqmη§1½(yϋρ6ξ}Ι–‡–aaœςŒshj›Ί·ΛΏ'Χ.Ψ½{»]pΩευꑉ΄%ςOΎ΄Έ  Xή—υ@Ύ»9δΩrbω₯'ƒc€§QσŸλςn^n¦ύ.DΜΨ”±MkΪ*A;+ §0‚ΌίΖΌΌ^Šγ3BΚ­ ρ.TϋΠ…ω ?hJ· λ₯hfΧ¦υωυ[ώu_ΏηWŸΣwΏ:κύt²σ΄OΫοŸί›χdη½ώ{}~3ΗΌρœ“όοgšΗ¦†wSαy§€HΣΓΒC©β―kh' pήa/nΟt1iΨ§Μ§U©°PΞ^_΄‹°Ζͺ£Έ¦΄ν·_ϋn›&•ησ―μcB…솛oΆg~ϊ ΤΙJ»κš«TΫ°Ά•λ‰ ΘΨϞ|Κ–ŸΎΞ.h«³ŸΏr0sΐb³~[Γ"°zΝψΈI»wλcX.ΣδζGHp3Y!†qe/ίπΫBnφxΘφwwΫ9—^Mζ#6Ž™ϊ’ /°ί{/vžeάχ]Φwh'|q+fRΟΐΧOa©iθ°+.»‹% apjϋΝ-ŸξΏω ?Š₯ςs+θ,‡•J\qρ΅η‘)yXΘT7€_@π)«‰Π‘Η Y9 Mυα.¬ψόc±)%Ï\ξΚ4“AJk ©²²Ό ²β8!MŠΡ2ΐ‘2’¨¨WZˆq­3x΄ΐ Δ}Γζ@IDATja-T±%¬{zV΅œ₯’q …€=€}[ž[@όHξh}uMScΠ1ΫBLΫUΕ· |€‚[!”‰HTœζΎE€ύ΅Ε’…ˆCaVΐ5‚“χ“5_iΈιοσ θ–’€tTΗ”¨5PaΛ!εΗΟ\’…H‚£˝<4ΚX€MYYd(Π—)^T…Ρ²PY‡γRj„%D«+Υ69kΔ+xαyZηŠεΦΞXŒΉ€9%Pͺ%‘bGι!ž‚…ε ”ΐm#£ͺΊΙ.½ξV;Ίo»ΝA%™ΑZ›Α*μ‘8NNθs€%@Λ¦εζβyf‘`R„R–GQ/DκCIρΌο Ρ–a¬8RGX%ιc-άsXšΛ±’+‹Z|š±ClΝ왁؝ΐsPΨΎθ’·Ϊ[―ΈEœ,hŠSPϊ2ꆔ―‚„e½€X—ϊ*ƒE΅€q)U—ΤSΠE{Ν’¨χΠ ˆVŒΚΟΓΫ›EMMŒ:€―v…γ€(Z՞γ<_‚²‚Ι³<ΠΕ­Z’K”>]˜±Pͺ€²Aμιήq—^Wœ‹|Ξzh=Μ δ<–K?ފ”[dρBπΌ.™wΛA1&D3 aόYΰxGy„gG₯―Šϊͺd@‘œ` ΉΐzΡGs£σy0šiω )1ΆQVη°ζK)T6Ί9”j)oΖUΪΝ< 2mg¬o^²ž‰ς(γƒdŸΕ…€·+2γ/δ—ε]T/$ΪTBɐA#wfΘΘRΜΉό¦ρψΔΈμ©ώ7•qςCΐžB>ηΘΟΚ’9+©ΰΌ%ΌSΰͺΚβΖ¨O#(XŒ6'σ[:-Έ†(K#ͺ!±υνeR―³5«ZνΑyΞ–/ο²ίϋƒΫ¬©­ΝnΉυcφ§x«nxο{-EŸ}ζ럱YΖΞεWkΛ*mϞ#d±4ζ0ΗŒΏ(ι–cŒ•¦ω$΄ͺβ²:ΕsΙΊή‰±ΰω_όZέL+Œ§Ϊ&ήo#-Ey, ίήAμΚΜψ€=Ψv‹ φYIKή”j[Ισ―_ΣnΎ++Θ€Ά £s/iqF~βω”eqzZ *xήUwΨ š>ηPά™ΪόΞwƒδ€δυ/!‰P±D?²_띬σξG]Fί+™€ΤηΡΰ y7’Θ /ŸetsΧg\λz2-«/¨@u}§ΜPJΠQ‡’'†ΚτΌΌΑŒMpŸ²OρRθM~ pΠyf%χ}b`Π¬gθδ‡ϋsqΖ#ˆ{JQΥσJ#q1#άΣK΄Τ5Ψώ}{lσ™g1Χ˜αOlΕuΘc―⃬VœΘ:Θ{(ύΉδ+ λΈ 2’MK\`6"d<Α§‹[žj)oy―­’’ˆr%E-… AcΞ \ρ_FΟ€{πΘ΄C?―„ΈΥΧΝ.&§­ΕtΠgy@ψŸλƒoΤzΔΧoϊςΧmΏι»_wŽφŸμΌ“ν{γ5ώ³ŽyγuΓί’-on;ρpjΓόšœΏ”0’J€€>«fŸΥΫ€:jLCYgQΪ0sΠ5ž|q·½ϋΊwΨ?ΊŸA―…€Dxcέ›ΖMΆvνiφτ“OΨ}»؊+Φ₯8ԁμ³\ί{φΨy›ΧΩ}χάooΉθr«% ψΦίύovhη/μΎ‡ΆZGk‡m>λ {μώ{lΣE—!0^γΉςiωΔy”«5‚₯"ŒGΔƒeγΩmϋμ½7ήh±±!ϋΐς5vΟ~`­Λ° Ϋ(ΤφŸΤŒρžU8Ή ‘HV ef™”g(ΌVU‰’ Α>«:!)@Š@°€V’L&ΈŸ+Χ,·ξcGم𒁿™„:γΖ`sΐ%Ο›ΌнΥEη«ΦΔΡγ½G#ΓOkη΄U–‘n¨‹bQœ&{!x —ΑΊ9ޏWdy+™pΒΤ! pμG<!¬εˆc@U1uΒ6LΊRS =f3ινΩϋ’Ε/›ψcgΚ‰ŸΟY†²ΤHɐt–Εpe ΐ3'€<±"„λ lokjfb1ΑZ©BS3,šσPˈX„¦@7ΣXΡ5 Ά>^τ"ΦϊŒάΡq2(d’⨀eAΗgWΕΔ η’œ€1ΐJΩPUεŠqΚbDP”υηxο˜=ππΟlυΪΣI;ŠE&LΥt²Z HΘ\ζE)/F™κ™³ΥK \…‚”±£ΗQΒ‘Ϋ2F”^3m&*Ο#ύ§Ϊ>.άԁ ˜B7ƒK/*NMε-ΆΘ€ψ• 4ΝαqςfyήΪ§} ΪΜΛΨεNΖ1UΚΌ„Dϊ |”:ϋΊ‘ι’”pΞ?Žή‘@δYŒiδHΟO€Ξ³μθοDn$“šͺ»OρaΌψš«+σίύ"Κ½ζjϋϊWο°ύ·γ=‰Ϊ»~λ:—]ο3φ*ΜΆ³ΦtΩΫ―»Ϊvν ΐf܎Ερ| my=Κ0νΧςEφ C;::0$Uᑞ΅VΖΧ Χ]zε9Ά{o7—f›ΐγUN"3Ό]RxΩhQΠ§Η˜ŸfM«N'yΑ¨χ³κ¦*hδu€υ.²—χΌfŸ ―tΘΈε}Θ–ϊ˜ρ7a―m°5£v5xη›_ωΊ­[ŽbyψUΆΥ[Y9ιͺ1Jω0X”‚}ΚPΦ―Έ<Ν{jιΊΖΙ|QL%›ŸΪh7ΧzτΟ›nŒ 'Ε.£LZ]Ϊ·΄!s­Nκ0ή&Ρ­DΣG ΅hςυ,>κmR&½ŠPφ8­*83§xΆY<‰)<*~2Q:2Œk-ΖbˆχW•ιtΉž’eΠ«Ό/ΦEΥ s%Π©XΕjyQ:mνiλάqŠΛˆ@mρβ±L3Χ ΉΏjγ!Ψ»½³4©XdP\•±Όci―ŠͺΦήϊΕ―,p\Ϋ«˜<ς<*°[ž#τϊUύ‘ pa™=ψΓΪOyΖΆlXAβƒ:Wΰ0Fα?ντΛΒΝƒNŽΗΒ*ΎFJmΪ\1\9΄1)τά„ΎDΆΰέ©'†0‡2Φ‡w’iS;²†@tτz8V ™‚G•Ϊ³ΎΩjΟͺ± 2.ξY…’ΔΨAN΅― bΟΌ$ΊŒVΒνΗƒJTΪπωx ω' ΕΌol šγe% +ƈ–νRRW5΄ΪΐΰŒΙW‰FM}#ΦMy2˜_YdΤ„E₯)Dφ3šίy€fρΠ, l(½r–ŠηJ³­ΚΠ‘,½xrˆ#a~™ΰXλShz d^’I·Ή1₯Ώ™WEy«Rh¬aζ‚‚ΎϊΊ­ .ƒ…ω%J–#yΡJh’ΤΙ³θŽΟO9cEŽώBb€UδͺΆ32I­\kS^θΘΑβ;ƒ‘,νŠ WΧ&ˆ ›>j—\w±ήΏ—ωη±φΦZŠ·–Ψ> ‰·ΎηνP«;νϊk{lGχŒ}εΫΫΗo_R*` \bŸΏγoμφ‚d~{ί­ΧPΝώό/>cΡ†F{pλ3xΈκPψ1ΘΜN[= ρ $Ψ²n=ι χ[Ε1‡Fϊœάυα-Κb€˜"›X Ρ³On³g­³'žyΤΞ=η\Ό€uβ²Tμb|šΠ2鯚΅ΛmΉ;rμέόΑYΟȈύΩ_|Ϊfϋζν]7ΎΫ~ϋ£dΌcPQ:ε²JΫPۈ½`‡QfŸ}ϊ9{χυWΪ-xŸέύ­YkbŠ^›ΕΨ2ΛX=ντυ4”'?‘!K»IaΑ ΰ,γ²J2Z ύvJŸ΄nI‡NΙΧlαtdMοLq)‚2 PKp?ZΨ―uUχ₯N™U[Dl+Ε•(λTŽσužΌ§ŠΟΜΜ(‘OΟ!qzRς™·,CΜYΦ]Œ€½TΉΖ?ίiϋ½ε™ρΒάΣ{ΙB’ ξΙη qο"―<Λ$FaA]±Ί‹{)λF)Œb€|•¬ώ”6¦’– —’¨:·ξrΎγQ–Ή’–‚Ε3£[ KœΖϋς[;8^tm½ά]s²wy/Κ–*΅kΩԚ¬΅‘ΩxvΧƜΚs;Žv°ιow<Χ•B#]ΤSΊχ_o:ά]λ_οvύ¦οNrψ/wμΌόcύϊ{ι䓝χΛ‹žψπfŽyγ9'ω{IQӐ~sΔ˜dΚJF1ΞR«σζGJˆ:F ­M,Ό«;cW7ψGό|xю ya=4„…&‡6σο}Μ³z¨[.ΈΨšϊϋL, ΠpV¬<“Α €Ex^·jΦ°]zιε.MdSs“γW^xω•n@*θlΕΊΝ(m«]€κJΤΧV£ˆΜΩι›/†uΌχ΄Υ·―ΓsRΛΐ€˜o xQRλλͺœ²#Z2δœyζΩπ6ϋΘ΄QΟ$ΜZΫκυ bϋ ·Ύ{‘Sœ΄–ϊω€_Ύn§Šy „DœDdωPž@E ΐγC@H* „Œ#θC,†i‚}]@2cΙΗΒδ£―$$$ŽΣΈBxι.²ήΝC»PYYχεŽφ1ήdέQ&:/rGIoO Œ@UU` κ,^3d*Ά•Ε]‚Ξ‡‹@!λJ–β^~θͺψέΰ#ΐΈk%~(Λ3+«W*9 e k7?βVO£€”@Y(EΘ—`%ΝCcAγB,΄y@)οΣ‡ΏQzX$•nRYiXλgώ|'0α:ΛP’#ž*@;‚V‚A+Ίϊ2Τ$8ΏΚΌτD`κE₯€B‘!€–6`¦{VέW\mΡ±D7 ŒoΈώ²Έ¨–„€«Ξΰ2ίx ‡¨Ÿ@ΒDKNχ‘ !|jΘqq‘‚[Β‹Ž(|ͺ$Δ^4E*'9›δΨ…γƒV X•hΛ?PρΚNE9ΰΠ;ξ,TΤZQ¦FΕ°ωρ)θ΅6 0ν'‘­c•ΝΒέ¦Šv‹Λt J_«‹EšAq+`1 }σ ”ΤΚMΕ*Μ½KQœxŒ±Žh”&­υP_Jλ4[Œ1u J ₯eγζ _Υf۞§2°€Ε·¦*Κ„¬˜9β-#P(IΠΎa3ސ X@=}…n ±‹ΐqlΦ ˆ°8Κσ‘D)ΖMŠŽΒPΘ±³Π*zφLb5ΖƒΦ\I3T₯wu>KΜ 7€]e}‚rΖΪV~θηύrέK£D§‘£Šjo#/σΑ#λ;ν/ΖΐH o tž·’ΉTUAΆ-<4Ja¬ΑθaPΝeZΛO9¬YΌ ζr₯βΚ«/‘jωYΆΟΧ+»ˆ`%PP ¨ *Δ¨ΰyPTLHy˜ηέ•­Hιiε}—!  ϊΦ›@HT2ΐ2ž‹šΚB”Uφ—Ÿ·[}‡Υ6Χ:S67h]ΛΫνα‡^΄;ξ8fοΏυJ[Άb™]ΩE±λ²ΏΊγKφ±άnkžώ©]uΙωφΒ;―²Ϋn4γΆΜn|οΥ6Π½Χ$Hβ ;zΈ›Ψ!―­_ΆΒφο΅KΟ½˜ΪγœŠ˜΅Wα‘;rœΡ€QΒCφ2RgΗCvοƒΨΖ·œa—\΄ΕϊιγΆjY§σV6΄αΥg.…­«k5‰CRΆ§{Θ^Ϊώ’ύώm±vΌDκμ·ί>;ΌMŒ₯bΫωΚ+φΜΦΗνŽωfŠaΤό†½υ’ ­ƒKS[£=χσgμ=7ήb—]s©ν}α9”·Zž%hάύ=RΞ›mbξ ΐZΐ1Γ—uJΚ„ζžώ–'KλˆSFœ8ΧΐΘƒŒ—2αΦ^}VΛ3Œυ<\>g@ΈΙ€§y­8),"\ΉΜM ^kC’; ­ΔR„•”€Λπ<<„Yd]έ{x/c΄ΠΪY‹ŠUEν&H/ύψΦοΫK۞ΐ V Uu„gαΊόΟUΓXϊΔ.ž›E;GžKkν(ΠiΙ΄α₯*`.Θ<©Mϊ‹θbΜΘΣ«·XMWΕ€΅³zYwEέΥZHγ0–y_O·Τ›Ι°ιΐ«"jd΅‡λΊ&οζ–:φ¨₯O_ gΈ|‘)ω‚…(SγΊΒ]!Np» κ’―ΫNΆoιλίτέ1'ϋ}²σNΆοηώgσΖλžδo7.Ω¦Ζ8’{6FNεn¬7΄°žW Μ³S‹ΦN–§ΞΣ’Ά±šΐK“§Iέ«…¦₯δ¦vz]―γΤΓ²ΔUΓ—wŊθHq©;;»ψ“υY`A“L` ‹›₯&-&σOye•γή+ JΪl  –cΡ4piΟuM-ξ|₯ΦΥΎς Σϊ7qmC3ίΓœΉΟ<“<5€Υ5Τ”¦­K΄/‘οά3qœψκ:§Άx ¨H™f·XSΚ±>ˆΠάVΜCPhf—„ψYΎΕŝgH˜)E!8Λ‘EΖΉQ(anUς~ST°Ξ@UB ’ V ΖζZZΐd#GFά9:E ‚Ά½(£ΕxJ#‚T>Oγ΅VvAΡ(I€n}Τ›(Nγ.·αc=dΚ«±[ή{ƒ}ύχΩ ΏY»ι¦χΨ9kVۚΣWΫίύΩ§νΟώχŸΪύρΙ?°;οόš}χgΟΫ•V½Ά ΆΥ‚­n_α‚υdaθm9κΣL AΉkZ –NHΏυ·U]«¬σ΄V{ψρgμΊk.² ²rfρδŒΖHί"]oΉM“\§›Έ‘ϊ‚εA½ύΨΗνώ‡΅’νάω2ΝF{ό±Ημ§ž_™%U€Pρ<‚„°ρ·f½βM²τYsϋ2«ΖˆΔΈ“ΠjC_αξζxΝ,°šήgζν%κωaύΒ¨Eθ–{ήλDώΑΉ'ΗΊα:X|ΑdLα]x†<.δ»|³δί_ΨSΟΗ±jD]CmλΪQ{yxaZ΅›Œw:Nνη\@υaŽΡ9 šΥ}3 hF1,\1@Ύ(IeφTYIε‚ΊQϊ\Ρ§‘u(3ˆώ•)‘ FΰK ΅‚AUƒΐ‹PSαΞhW>£Μ4,ΧͺΚ¬:εPΎx)ήzޚ|Λps nzήK΅fjαD§‚JM[Θ lRάC໊Έ–½4^ŸΏe€4‡Θε8«vƒζ@‚be)ςΊΧΧ €ςlcΕXέ₯Pi¬/@hFο@@Rƒτ΅Κˆ₯η—χCΑ—Qžs|’’}ΌE*)o’ŸŠ€ΩEΕ­œ—…ώd$;ωP\Ρh·^“έυΝΨΦgž²uλVσόε(v΄3k‚ ’Š{%}«Ό<Κh4‹B&p^F…‚ ΐ γGάώ@zX/€Όβͺ­‘L(3ΉwU©Y‘—EkIέ;θΖoηt†θ’sΔtΆUC‘BaF~Dπ€zPHLΙ ₯škαe™F‰‘hžΎΊoO‰=ύΤ/¨{‚‡¬¦Ψ^zq»­hz'@€3Ο³!ίD!γlN±W‘$"m«E΅vb“ E3Ύ ¦¨‹θ'#Δ<ψ‘±bό˜GqŒ£°{0ΘΝ#δe&™Η“(}ސ(ŠQ|PΟε§IhQͺΔxOzŽGV42VmrxΔ:,@Α/Β‹‘£fΡ$אb¬΄ΗYŒŠ)’ΈΖύ— ƒZεάGρΚ,&K£UΔΨΰ΅„*8ΛsψΞ3}#vdϋ³rlδζ Υš5vV[!qίό§§νΖΫ°ήφAΫφΒ6ϋΗ»ώΕΎC[όφuο±Λ.Ώ %γsφγοΧΥ‚YRςπaϋδ'>aόπνφoZΣΝ¬ωsvψΰ²4[²`ΞͺΘ2GΆΈΕt9²ΐΙ―«Y‡ χAΣς;·Ψg>ωY;kΓjλ¬maAYή[X·tτ°6ΰΉߜΆάGΩωξGΎkvΎB_,Ϊς―©ŠΨΎ›.ΌΥ’Mvㇳ§^x―ι°m%sΧ»ΏŒΊ&ΦΥj۞{άVŸ±ΙκͺjΐGΘ>²rl9sƒ}»#v<ώ[V#& OΏΌŽ’(‹Ά. θYωŽ( Β:ΘoΑiύ0σ ™Ά–ΰS|„p’…„‡–·ώV2yRδQΆ'Ύδ:ζ Ψ…€9Ε΅Έ±ΛΕ΄dάα½F†Ωo;žόtΘυΔΉ Ωρ“veχo[%±Š―>χ²d%λή4F;˜ ¬2n9dΟψ£Ωx€ό°™ήΒ­σŽΎ7jΕΝ­i0πΙλΟ܊ΰ‘SmeΔd `ž³ήςΌz©D’OJ¦ΑήϋD«p}ΙΧ~ΌΝυήΪ›?”‡ΠύΑ±ξ‘τLΊΫνΎδ;)μ`“ΧΓ©`ΰ .)Bj_/TΫeψ]MΟ₯d’m§65sΎ>φ¦CΥnŒ=;―ΖRγΏρLYύ€)žθwœΠυ·ΞQΰ–~Ÿμό%`ΏtM§PœψcIqПoόόϊΏuα_έ{ιΣΏ>gιo<οΔ­άυ—ΞΤ1―?N|i{ύώ₯}§~·€DN Αv…,‚ˆI(%.§š Sπ h&ExΒDαeTŠf«‹KˆΌPΚ4 o½«a†ο§Δα"ΐ Ω‹’XbC§άι>Hΐγ|ΟΕ *₯€¬΄ΊακŽ%@ΘΒ"Φ@)4 Zϊ]ΦPΚ†£Dpœθ!³(F~€pΛΈ ‚G9‚nΒ"1‹•₯†M9κΡΚ¬΄,ΞeIΑΠBeΟI,” Šλeͺ‰ ΅Κσ^7emσ#`λ[:έ’ ζΚ/† x‰ο]ŠχΕ‡r&ji<1iέ€­T=-τΡͺj&ΌX,’²ΒΚͺ­¬ZS( ςζ56uΉK ΛΥ&A€*ΕkˆΕoŽ΄Rœ‰`εΊ΄½‚‡Θώς‹ηžΆ‹/: °Wiέγvχ}?΄3[kœ²2Kf+Y‰΅ŒΑα@AΊψXΠTΝVt a?¬ Pb’Τ/ρωΈξq ¦Ρφ#aΕτ ?’’`­f!W_CE)sŽP@ƒœ??…]œλ°d+[Ϊδπ(Φbΰς~)zڊɺ)Ζ͘ η!@μAΉΙβΑQžχΌ3sΣγx…T0œΌYq¨>I²Y-2fΔΣWŠΝq¨W‹xiΌκεά`?#C(T.K?C΅ πŠΔ©O›C-N1U‘˝Ί-N ―2Ό Ο„Ÿ~ζ‹h PΌ*‰‘+‡Œ 32υγxo”yTHGrxz‹£9K»‹Pn7\C"ΖήΌ‹ΔrLaψ¨(«±Qb*RΠ‹Pv«j*%x[‘’yυτ‘Α±ΥY·ƒΔ–Ν@J2ώ’eXν‘3ρ άΛ¬Ώj'Κ#xΈ_Ž66Kœ‰+”Ηψœ%ζŠΘ§4Š’’‘ρΚ–f5Ζ:Š–dœ:hŽr²ŠM‘ΡBΠsπΓ£(0ΘΞle‚1ΒH˜JOΪEOƒx’ŠKH ΝΈφ‘T£tcJ“ύO©£•EM,By q‘Ρς<²8>`##cφΪού&ΫΩ ”·0ήA)šε$QΈρύo΅yΌŒσΥ£_`ν(%/l{ΦξϊρέξηSŸψ5‹ΒφόσΫ›5φήίΊΪΡ£Ώό₯/ΪM7ίdίώΦ?ΰ}sα9ΖZ>‘ΙήΞ³6‘°‚lbx^Ξδσ‘ξ>d[‘m‚N·—Q8Ύχ½“Ž9ζβ2Όϊ‚5._M«—μ’w\ŒΗfCQ(vΝεP3SGηλΊΛ>{ΟνŒ‰€½όβ>δHΐ.Όψr7 EηP  #νήσͺ=ωȣԘ9‡b‰{ν§[GlσΉWγυ.±Cϋ12ŒΨj’ά(-q‰KΫWΪΎό{ο-ΧΫϊv{wΌΧ\Ρ§DΏ5ΡΡ¨eR;€ž+n κΦG’™³R(€ŒhršS@e‹Ο:ΪeΕβ“πŒ ΏΚΰΊξΓsizυLQά™€ hŒ ’  QiΙнxΦZρͺΕmπH·-_½žβ;Θu)ΟΘQ(ΡΠ]φ,yQYZ5τ#ω g–'—i‹LΑΨ„‘¨e»ΎΎZ-ιΎ+IBBΚo0Lbؐ·>‹»_°,ǜ—ς.£k¨ž‡SΨ§w^Π‚¦ΜYzgeΕΣ.½Ÿk χZμ@‘Πζjp€π¬Ϊ\ΧpίπlIuη¨τP‚ύΌk«κWΙθ£8žŽϋ ηYΏΠ₯uΞ©φΝ·ζ›σ€¨ΑΤnL‘yώΪMρΖΦ Χ¦Ξ[ϊμvœϊηT ΌΎ 2.°Θc5KLΐ¬²UΑ£-CΚpΟ qόΟ`‚¦CƒqΠχΡέ– MΪpO7>G…X"yΰ―RA†2V+%KΙθL.‚š_ŒΟ LKc…ύπžΗνΉ'^±υ›Ί¬h««b#HmKΡ³yQζd Mγx3tr )πq櫟y&žiŒž YOKρZΚq< Νυxό?g―]Ζzζ·K)‰dΑά ΗB(žkΊΪθ[Ԑj—·Τ˜–μRΖ¨4JΠ"^‘ ²ς)Y`–bΌLR\ς.Y¦Šiο‰<υ‘6Q]<<σ Τƒ¬5 @0V€?ρ%[»b₯u67σ,XU1ZψQ  5φYl‰ˆαΊ˜τsΤ± ΣFPΠ‚τ₯Δ>δjŽωε••X”;ΌšEd 1ο—*IΗ₯"/ ΨΗΓ1ΧWx†‡‘G«[¬ŒΈ©δδύˆΔGΜΦ4t)(€€,Ησο;dυ­Δα©]H Xl8ξhͺ崝R8ΟaύW Ζφνϋνξο>m‘φM6ΔX–·¦υr/χ,ΖΦZ(œkέ³{π^œΏι4;ϋœN»υCο³{Ύχ˜ύ―Ώω[{λ9μΗOΌh§―Yeλ7œnΈυ{ν՝φσ矱―χ^ΐ|‡}ϊ&†2ͺ΄κ><`’ή:sciΑžzςyΚ ξJύ&δ]1ύpΟ!»ν#7Ϋ§nίφO_ωs{uGΖήΆjx΅ωK/κŠMΝLΩ Ε°ΉA§φΩί=ς9β‘VAρc«ΠΉφ2GeK‘FΉŠwΏ{λvη?ώΠ>qϋοΨϞύ™0ogPΞοΊσ‹vΝ{·ε+ΦΫΡώ^κG=GΪΪZ¨œΰ,’l9»ϊͺ+μ•­[ΆKΛ #0&ζ† ³ΠJΙΗ?ωN „°XLKQ»ύ:_§£Œ0¦O@j~λΏ<—β@ΌΎeώ‰ώ,c°˜Dˆk›ά™ƒζΖ‘ζX™Ϋε}–€ »zνϊwήl₯7\eςΥA.΄1'YHγaώHq…ή‡ΰα"Žυ₯‹#·€ΘΖ-άΌ/DŽgΗY„g_ .Ÿ[—ˆ‡’xΐh'G gΐDΰ^ΞΝd”ήG—eOΎ-8Κ5˜Žζέ•έ}‹φ’OΪτžΩX/8„λΙθB[9Ε₯Λ1!θsζ‘b.Sό-㚟γ₯ΤΙƒ$/Ό*Ω‹²ͺTY]w-,¬‹/έ,Λ²ͺm΄Ρ}o~s  κFΗs-+kρX£ŠŸόν8Iκκ―Ω€ΰΈ‰Γχ―όϊΓίΈ/ϋλφŸτ{=£ΗIΆΧ_ηΧ}>Ιi§vύ;[€ιλŠ•ωˆ h>•‘G΄#? Ή,ΡIž‚έ”g|Z½Tg:EΜF9§’nhA«T$N†LlJMι#σڌβΘd΄€ΥσPΟQθ>d<Β:© 0‹Xg‹°FY°ύdlšC`NΑ /#°3€-Ž0 @TP{ ` €/><:LFŸ*@yˆηNbρJ LœAw~yj> #ΕͺGΉRPvVZšαηό«­}™Χ–aLBS%π xγ們 ₯8•E9…Η¦χX ½žg!x\@?VΟ0JHEΐK0r ώ –άY`Tε\ΒYΑϋZ_T€BžMτ2ΡΜRœΞcέτP ožv*†Wž¦X™φsΈΛϋ‰XΐϊΌ•ΕP?Ϊώςӟ❠ΰΠ~°“πξ©$π„T"/1!J*€Ζ FŒτ0&Εύ`΅΅JžW«EM•ΦUμJlκhθy ¦"•^θT‹«m¨ψ¬σΞίd眡ήξ{πQΐ;FŠβbζd$ζ_)^‹E”<š –? \t#Υ–P­™*h€ŠS oŠΑΫ Έ$Jlς ‘‘‘s¨ΙƒαƒΝFcE(GXχY' •ΘΕ όIΡ'ΩΤ5ΕyΝːdL7…¦ (>Ž ]ΣPΟ>Ο[K~λ†Ϊ$yαΑƒ9‰ΧEq_E(˜Ϋ_άcϋ˜―νήCς2V­Xg}“γ€—=h7Όύ"<Δ1α©ΝX}±€Ρ€—lT^φ…Δsτυ°«°Ξk>ω(θΔ’9¦tΦRBδ‘g.IUριTŒ2€ŠζωΣ΄O†ω¬a"ξkω²N›y†ω7foY©υC‘„ήB!L!#f'7J-oH˜νn{ε§/PŒu3j™ΫΊځή#$mθp©ŽΣxΥzzcφόΞγΦ²v9τ/(cΔr©ΖΈ4ϋωm‡mϊ‰mΤΨi²•+‰Ε$)L” sλν―ΎπGΦΎͺΡ>ϋ—_‘ζμώϋο³ΖΦvβθjμφήζEYŒν΅iŸ«NŠΌ*ΡϊΖΨC₯4kΘωœ2— π}P΅3Ȏ΅{Ϋ«x 6ڊ(™C½P΄ΘxF?­?{1gdlk¬³Wvl'Ά ε蔇°VΌ•+ yy‡ΪΪV»σkίΆ‹>ύ‡6²6ΨθΖμ>ώwφ7ίψβͺlj¬‹xΉ^ήyŒ΄Σdμ|ςa»μ’λ­h1jGFw[”g:Ț…5X^e+–uΨψ ³=Œeαΰ_δ’’8Ω€ίA‚½ mΓYπFΰd6δ°KkΐsΛΉž£r„Όξ\r;„NuϋΩ' .Œ”αΈ4?’Γ<EΘώ4kΥδ θ$ο«ΝΞ;χ<8r΄c}/ctΑ€Μσɐ€!G8J ) ϊ,™©g\ΪtO9&΄ŽO£πνν9jg¬XΞ:₯˜Ld%Ο!Š“d¨N˜uY#-Ω/AϋυŸ}/ύφκΊK·”wHήιtR>τ½”6W―#U§hH‘αkŒRlςΧstζR‹υ•χΦ‚ΔͺεD .Δ±,Ά/F)ϊKΕΕΎ`ڝΪhυΆ—’rλ59θ1ύ™ίΤ£B/ιL‘Κ#άΪ/Ϊ‚P>kcς»ΟκΡ₯οΤ­Z€%X΅ι³m—N“b’W€Σ. ΰ_σ«οσ—Χds™άΦ)N'ΞΧ΅uΧ_?™g`/―£γNφL<ŸήδηθΊ§ΆX „ ‹ !Β€ …ϊΗ ΤΉΚNU‚’η!Λ’)Χ¬b€N–,χ7zJή‡ΙʚhŸ™Ž²ŠpJBιςQΥY‚&CˆQ@±£ισ2¬ίŠS`uG°ΞX™ˆ; ­ΙZΧXšdΜ&Λ ¦'‘jk°ͺr₯…ΣCxGfHΡ©Jί9‚–C€%,(.ΕΚ)s;γ9Ž£‘οl€°”’j‘d”Xχ‘cd–Κ8+¬€š`DΠβtμe²ο Όž¨ο±ΫxΞkkν$–#Eύ2‰Hgυ%π¨Iq«±EXx•“_”),Hw1@­Ε}Η_yϊU=^#]m*ΗCžΕs .8‹%sDM;+oT>¬XΉΪφκΆΛΟ?ΟΞ»δ<8t€^͎7?$ύμΑύ†3ž€š’ΑδΓϊ)‹’@O1ž%˜ΰ‚ίPΘ|)o€’QΘ’'k²ΐžͺK£^±“5Jjτάύ,Ls,zστ±²ξ¨ίΘΥ…¨AiεZYιAY•ΑΘψΘο@Λ©%ζγcφ_»Λͺ;Vbu›½ρ ϋςwΨmΈύΕη>ε²NΕPΜ#4BZ”Dͺ”ΗΘX'^ώΎέ‡I‹=n«Φl°Ω‘Qηiii%“ί€έp덀τΡΪΧ¬°ΗHΕ{ρΕo³½; Η‹­ϋΰaΫpZ'UιKνY(―ΉsŠμΥ|ο))‘QUC*‚β γΕ―Α¨Α˜ϊςΧώfύδ§O+Τθ(ΎUP‘&'0(υ&μήΗώ­^΅‰Lm5dœ[°=‡zXl΄ς¦ibA6#Έημ―N9°ζμΏτΏ0ΆTj\α@‘€bΝΐγ³δ£"ψ˜δ<m`ω‰}:^ŠˆΫΟŠ™Θ++ωλ(!‚ΖœRαJf»ϊΰ Ϋ2}=ΆσΩgmλΐakͺ©°sΫ.EA.Ζ`TeΏsΣϋμߜΆγΘ.Q«0P1䐙Θh$Ιh)!ω»€ι6ΒVΪ„ρ\} Ζi€qΫSAΕ=3Œί,η‰ή€ηtο ηε2ϊΜ‰ξGο"Ω₯«ηΫJj{Ω§{ΈcωDσ±O2‡Ό§ΪBΕXω μ–β‘g“αD:hΩ’‚‹ma$ ΑΚ΅3ke™9a!‡g8F,"vSηΥ±n…9Αvj£ΤΪNobSOŠzKœ/>`žuM4ΌF‘στ]n€y/Xk—ž₯U_w ±Ω€Ξξ8L'Α#_ΎoM{ώ)œŸWpυΡσ @PͺήWz[,Π׏ΐ’EΖρŠQ~Q‘Λ TΘq~Λ’²ˆW0–˜€¨I*+ͺ€ Σ˜Ή§+½ŽwζΈ—Λœ€ cΉΜI|πNρ.…QipͺHž&ƒ΄€†qOeΒzcθί:DΓ ³κ@hpΒ;;ΰ%ΐ8AžΪ9X\€X›ΰAΠ-brm- ’P$±μΚΪ«ΕBι‘%\`,Oιn8Ί°4¬ͺΒq„b!‹E Ϊ,”ΡΎ#€‹ΫΌyƒ=ώΔΓdq£X–^eTJγz/*= εǏ\ΕλhΠ- "¦¨lέΌόlGρšΆ•ΊϊJA-t˜9Ÿγρ ©GY„ΡεΠΒ$όz{-‰%1žˆCwώ@jxŽ“±MΟη(7ψ}ϊ†―WΪĝ=hΜrBΠ½f(Φ5ƒ5ž΄‡₯­–ς! ―΄₯^¬ΚcXZ#„Nγέ©bΝbΙKΑsWf?@:Š₯7Μ<μλνΆηvν°cGβΐ fΕι:ρ(Ιk’Lt)-Rψγι«ΣblUΫ!1ˆ^ζZθ¬T’ψHo)jŒ j§$ R ^›£O=XΉΕGwΩΝp·ΣYŽ‚₯ B@ƒ ζ-2Χ2€PυΣ? NΟΐ©]€? d††š₯…HΦfQ+dέTΈŸZ- |§z)€”jδƒQ"4±±|ε@Έστ™ˆε(z@nŠΆΘ`έ“‡«0€bŠμΛΠN*xͺx”Q­“#Δ―HpΎψΝ3G`εC@Λ'Έκ@Šw’Η%Ψσ`W‘Ί4ΚK}W€ΨVυ'@ΐx1…+’-(7xĈπ‘œI¨ƒ~¬Χ-]λlλ}?²Αγ‡μΪnEφP<―‘t°,‚/›#> HU6―B έMΆη”{%ΰ­ΛςίE+N»*hέΟbŽ_ύH΄YTδ0ν¨«t¬ΓJ”ρY”ί^άa d€š£˜ ΌB€1%.AE9£M•Xk¬sΩJ;ή3ΐxڎ' «ε »ψ‹ˆ½AΎ2―xΫ₯X‘χ³>@ ΛΐŸG©HΝCq"ξ ΔόM%ρ1gΔ%ΏΕεζq蔀²ιζx9Τ§}RUQnkΫΪQJ€ςIΪ“$)Δ„Μγω”%S1QYΖjŒŒUa¨wEτΑςΖzΗΣWΕj/γ> Θ>vp@IV±›1Μ{c΄K«(4)ΡΒζΙΞ—Β«‘"Ž­Mpμ‡Θ&†’eδJY§}¦ “E0Π(vF^&2@₯οžθo>ΌΜ‚dS]%οP쏅ΪXΟ ω]bγνœG¦έsχΧ©Ÿu­u‘P\~ε5xͺ &(Ψ·eb)3eΛZ©υ2aŸΈζOμcx(ήώξkμ _ύž’UΆ,[jνΤΫΪΆοδΤ8NMνΚ^ ϋΡ–Ιtζa!^?ϕ»χδΣΫνsς;σ\š‰½xρ‰]φΗυE³Ώϊ–έυυΏ΅·_{•} a_Έγ.ϋτퟲΊŠ(΅A.·+ΌΒΈ1RκGQ&¦pψ1‘ -77`­k E•Ϊž¬Ά%j;χξDzΧ1Ύ *Χ½σ{παΗlsM³έίvξζ  L d*exΓI<—λVž‰lOΫή‡θοEžy+žΉ+μ᧞Απ'ο[πΖUΨΙEό.:ο›'Μ³²%˜ΉŠ‘&>Oβ”Ε£έ‡¬e9¨/―P\NŸ•7σŒνφΎΣΪ/Έ‰ρA›ρ#$ΎA·N2dαψ͏4 νsΏehΥΈ€„p4η)Dxa‘‹R<ς?ZuεQŒŸ8NΧ^ϊGcVu@<ŒΣYŒہΩ8ΚΗγΆγ‘―+³™uƒ±ΌyμΡ'mUί0EpmMη2{eΫ/ΘˆGޱ%₯]Ογj/j*θSPO*Ύƒ΅L§W8Ω/>‹}©¨ΩE(W™–ΊυVMͺ<—Ή-ΪΑa‘ΆIΣ’ΙΝ’*MΈ(Œνθλ,°{ίϋ{|?›‰ »|ώ(ΪY« φ"> ͺKΡx?«f!ΞχLrOΕ•”mFpŠQΝςV0)[²lu ²€n°rx‘JωύWl˜Z‚ ¬0NΊ4ψρ/\qs_ΝξΌκA€±žΑc“J‰­Τx,Œs3 ,ΉVcjΆFή)[šqOu|:ς"ά[Ώ•R·βΑ™―€kν…Λy ’€fWδ;ΤyϋΞνΠFϊ9ηΣ8”-?…¨ΓCQΈυd#Έ6Ξ§σΕ@`•¦Π>θ΄£†’kυ³ηδΟS~‰ BŠc¦¦gϊ23Ωάg'ΔK€‘Γ'€#˜ Σπ( &uM»š1²-³j*άεJQ[βΎuθAK‹Qg G-££ξΆβκ*mŸ E,ŠwƒΆ‘‘ͺ₯F_ #t²^t(₯ύ8u¨_ΝΒ‘Χ5θuR€p"ŠVΤ-Υ~7` Dr)Φς,A•δ–Υέ|κ]NŽψώMΝ2{p„yΑ‰€Dτ$)8©Žξ_ΝσBY1({ ‚8„£RP^αY†ΒΪvΩ"μΧΔ$έ™©}Έ~ο‡fgβμOEΕQΖiΖ6%₯0…Γ>ŸrΣkj§q™ŽΑώ[S―Ζo vζl³ƒΆ¦Έx’ hˆ:(ͺš©k1Ut£[>3/0έ΅·―›†q[νbK Nι’ Θ–ΆaΛwίi‘ςjT@±Y7…•~»› Ξ³ΏhM'©dV‘θKQœέi? F4Ό΄ 2 δΘΛk xΪ–χ)φK§.‹kƒ2Άzυ"Ήi;I£Ή”E/Ξ@υ$ΐVΤIΰ”ποιαžB Χ‘ƒ%X™c.ΖΘNΝ²ζϋ†‘±Ώ+θΩ2ŒB””lΒ¬λ8χ>DIh«— Rυ1ͺAJΔ(`“€04€jzTδζF¬ΪεΤ,Ω(z>œΩ‘$QΞH>΄­Χ­Ya'$γ3kω¬ku=WŸ‚Έ’,φ‚‚c­ŠŽ€~01’„<εC¦·Ÿϋi Ψ[Έ^-=mB€5dŒRdϊrP̦&J”ΔRh‘sa‚bƒg` < Ψj ‹vBȁQvŽΖz–ς‘ Ψp‹eψpήΏrΆΕ>ψ‘φΦ»οΐ%d¨ ύ†νvδτy»xφ„΅tυsΩΒ»VΩ{?φΗφ•Ώώ€}ΰοΆ?ωΤίΪΩΟϋΫρn˜*;~¨™}Αzδϋ`p5σλˆϋΞ¬ΐΔΑ*kμ>ʜR‡γ Ω΄|©m]Iφcουφ—ŸΎΧήυ»·ΐύψνwάgAφϋ;‘κύΨGώΜ"?¨΄5Λ—ΨοΌλdΰ‡vUej€ tEv9lUΤ―(«>‚`AoΛA‚ΈR«(^hΝ.[ΞΝ›h*:I#Ϊ.»λŽέnŒ¬-Ω7?RνΗΎNΠ #ΥΡi{v€/L§mΊn 4΅I»νφ{νŸϋ’ύΝg?kg^>H@ς€½ο½€P½—lrΙPδ"κHΘΈέ΅4AP#ιάΩvΛ\2”Ό-ήγ‘©k? i₯|¬ΧςυbΏTŸ!›¨ΰBR²r:δp» Cͺ΅Žέšwδ™cFΣ)cρ&IΔ:&/SπΗt»«‡ @ψ<Ω9ωo >X˜ό8οΈs΄Έσ–ƒf>έHyz?͎rΥ+νΔε³τ[©G^;iGŸ{ΖΎχΓoX„ώ*+κ9GΚŒ£.H“Ώ§€[nΈ>ΧΥN°†Ήhώ₯5©‡ž%3ΚΩε#]Ύt)ΐ‚F0a“΄†Ή6½_ެ²ζσχ·iλ·ϊξ[ϋP?Ι9Συo}?+ΘΡ0κvυύn|τjώ­ M‚λΤy’ΛΣk΅bUƒΓ48 ΚΙe3ο©ΉqϊτδXEa!}  - `₯½@Α2ŒΏκΛσ9ϋ&ηοoό΅~θTΥΓχ™Ο|ζΟέOέš0—4M˜ 8ήευσYm&аάBvςσ­ht.s˜όΡK–ρ›7˜wa άrΠβΥ RZXˆd)ͺ#L3›rΠ'V.©Γ‰aŽΩή›o²K'_‚PΟ&oΣ^g‹#VG“¨‡ŽZ¨€ζMk–ΨΩ•%Ωφ…ΟύOψ•λιPΆυλΧΪ‰WΓ‹ Ϋώη^΄Υ·PΌXΞLr`ŽΨΆν[νΒρ# }Άlέ6 ‘{>’h΅―}σ!ΫΊ}=ΊφΆ˜φ€vj7{oΪkν—ΟΨ…Km4*zόjήSIP#~ΊπŸ?’Χ]Λj]{•ŒΖνάωs6†1/υ?wώ θε ύꝚΜρΣ§9dSΆzε2`€*Τπ―£Η GzQΞ:ŸΡάFp‹£³lI]„ŸK΅ ‡Ξ>¨ΊΊͺηD€ƒpΗ0m+ι¬*Ηϋ{χ?bίψζ·νΓψ^€M#vρ|7Ή²­ͺV§i6u‘ %‘„=谝=ΥU\E­πΌc1τλ‹*\Ρl1R”o\΄Δ–.^bίύξχ큇Ÿ·³GνΦ7ΏΩΣ6Πoh_…%>‘†—™JMΛ1ζΪ’ δsωYJ^IŒ»š Ξ€¬/_~¦z¨²‡p>h_Τ/uΣωVΗkŽWš†4δ‚άΖ‘΄ˆK―.ΦAΖH<ωY‚₯}8έ1œL₯ξcΖΞNΪ ŸsβτE(=gpFΟ:8HΐNjFT<_ΙΓ’©Μύ«³Εξ°^Θ5΄Μτ³Žφ6ΊxG@΄3qζ&ΰ·Οβ4N9§qΥΑΐέΓΗΙ©πx‚Ώuττυq0Ρΰ”ύ:ΛόbΏAh%Η‹»ΛαC”} 0μhW…‘²8%Μ' Vd"%aqhfzυ€ ˆ€Γ―γ§γ/JRg.ΒΌ†AΎ•A 3φ’F©Γ΄k6‰=LM±β8Χ„.ξgeέζΠΉ{†υΐΡrλŽ5·ŒSP—΄ŽΥΫ N <Γχ¨1eŠΓ=ΑηQ!Cέ ”"υ (p8… Ι)PζYΎs˜¬B/΅?m85—A$a{‡­·Sκnk£˜όJ{-Y+M}#&Ϋ5=ͺC™ ¦Ξΐ₯ε΅8ζ ώ±!²’3rΨc[‹ΙΌeqκΙTΫΠ`uΥyVG3Άe΅9Ά ‡mt£2€`‹π~jςΆ΄&Lρn‹]€Qkaˆώ6Ω6H`ΖQR"μρωΊ.9Χdκ˜g vθg±=ΰς—;/]€Π^ρr0ˆv₯Ώ1†.ηPααvk™Ο…V$Ί^6sJΔ“1<ςΤO,€΄όν7οtφh°Š"6Ό8MMQΟhΆ°‹5“`Ξ(2ΥΪΊξα~Α²η›Έ.9ϊ\“7@vnvrΐVνΊΣ *ρ ΄‰€ty.qοP懱P` 1¬ΆžWΤ ­Ar…>Wχυκ\πΑύύib}ήΒΫ%•.΅L&ΚϊλwΊFο³YπΩ;d²3ΘΨJ•ΕεV]YK&»„sJ=Ή°υdοCΜs.D!5sγ‰CΨχΥ«W»σβΧΩ_Τy)VΣ/˜aτέγΥeγVΏΠ„jV4Ρξ―>Ο‚Nχ›‡θέƒ„gGC^bή ‹BšQΨ¨ W=Dιjψε?όαlχ {μ•—_©*#zτ[aIΔVZaγ υuuΦτβAk-ΞΝ†uYYŸwΙ~τΐƒΆύ¦;9ΐ'lι[νΰsΩB:ε6ΦWΪ½χ½#vΦΪΫ8~β-·ξ΅Σ/=mυ«6’BΡ,αβΊz{‰Tα4μΝ{7βψϊ]DœΘwνΆSΡ—#Ÿ‚Κ0‚TcΔ<EP~XŒ7Ώ°q¬sΔΪΓQ¬MκZ΅QθœηΈί’γ}Δa‹βψ9LƒZqJjˆN‘K!δ)μQ4?N¨k‡Α”υPauR—4g2― ΐ²σ-ηmο­φΞ»ή•ˆμĜΗvί|4‘ •TΪΕΗνν«εήκAdςΣ,jέ&«Η!hik…~Q‰#§·€¨ΤήσώOΪιSΟΩΚυΫνΓφQœNŸ]hnΕyΖαΎ~‘ΓϊθΉ«v=Ž •ε8Ψ\ϋ4ž Ίγ ϋεu’!ζzη@b«­*]Λ΅#οK£½«—Γ°Τυδμ¨ cάι)$O=ϊ° œI iˆλ²Λι ΡF3B©•ΰ˜εδ = Wύ'?ώ]ΉrŽ RŽ* ή‚ΖZΠA28ιΪί4KΛa<ς# κ™vτ•£Άwγ{ΘrδY fϊN=‘Λ֌";KΜ@=,FŸ”>S ΰBu$urȈ&#yή8H`lRΝήz,:‚(nΗOHœΞ™Ž#δ ‚G9ϊ ½€ Rρ!EX —k/Ζα%¨βΥE ΰ3’f‘Θ‘(ΚΗ It™4²₯BΡ2< r\ƒ²0CμK"4Łρ Γ?ΧA–$½nRθR!9*Žδ›9J]‘išοΰ…‘Ίˆžεη³Σ|psEw¬­Ÿυ©Bφ$Nη€C-]Ώ"Q[Ή"SΦ4Χ­: ‚εΈxΔ8γιŒ$Σ8'q΄sΛρ :•#!œ2DσΕ‘NλοAΉ­Ψ)οL’Φ%Ξ1™Έi°Έσ[B₯%%d)˜‚8ŠQ“#(j•!‰ΊΥζψLυγ8s±Οφ”ο,‚Ξ͈Θx g¬„,]’>x0Žκ3#]_SŠ’Υ4Χ0ϋ―­― I,{Έ*Xλ73H­39#RP*&ΫΠ E1‰ύ)ε:eι\(γύ@"ΜažΔ‰EV*hΉd…ΤάR uxο…%ε€Q >>LQψ8Α-=fp`jΛͺέ^XΏ¦Ϋ’ Τ²ƒ*ΨV“QIdO”ŽHUqgΟΰσ{²dˆ%Μπšϊ9ΰ­BwL'f Ψλ ψƒ9Μ'λHk'Nπ©@`š [1HNJ ‡μk*3 ­Žυ2ŒRUW‹ŠVχiθ9Υ¬%9·ΆΤC‘2/a‚jλ¬’yA`ΗmΕβj€y&±­…‚_ρbκA¦<δϋ¨iJ³GV6ΰδŒΣ2b΅8=ƒͺ9Γ™Βyγ-Ξ1γΉG!ίdy Ξβ©i7j¨WN'bœqYΦΥΡj/=n9‹±;5εφΒΑƒ.lϋζ΅–)ε½ΘC‹Ι" Cαzϋ{m γrβδ1»2Τmόΰ_Ωό‹?°·ΌλνvρΤΦ*κ|₯₯*\f?ͺο¦LβlLšl!Ϋ†LΦη@©=όΝνΞχΎΕΆμ€ΆΗχΙ@Ι.nόΒηΛ gύŽ}ώƒΏΗρ/vϋ7Ϋ_ŽφΨgβqψΞήχΞχ#BRˆPGέΠ›Y‡ω4|Ό•ΆŸυ‚Δ²όGζ₯‚μŸφηαC―Ψ(ΰWΓ² l‰\ždΌv΅:›©ϊ3ρbκ­4C₯’‘Z ¦S9vαb6'ίͺ P5.₯Α#ςW>όGφΐΡημέοΖΦ8eyΉŸ;m=φ¨νΊώz‘~2σHKs_OγΪ°S…yΘςΟΜΒ˜^φ`t5wΚB©v‹)”΅ΑΗ‘γ.{Λ―ϊ―^C:3πΧΛβζy9ಫ ;έπz™!ωΧ¬moώϊοώ$8ΑV3&ΉX‡<ΦΪ4YΚ֎.»26hŸψΫv”ΘΎώε/bŽ‘Ug%xή/z"Κ°„Ψ»³c€22θ\§ΥΪ©ΆB¬ΰΐέφSοϊ[Κβ”SSΧ6GV!Δ^Q)?χΤ&•ίE€―qpχΝω#[’Μ… bψh½Fλ_/u*Ÿ­―ΤΪΣ½Ήλaw*+§=­PSj¬2ίΓ{ψ―Α—Ξ 9#2a]™‡R€Ÿ,hΨUœ-ΠHÞΕζΕXrD2ωΩ;—―oασίxhδθρK špfοηό§ωvžχ`(Σ4%C¨­Λ”(} ςΚjδ—―~3Œι·―εK6ΧHΑ E₯¨zωeλ ² «9‡y‚΄gιΪ₯ΆlA—=τμ»kί6; 2>4 VΣjθUΗΌ`ƒ5Ύτμγφ£§ΫΗπχ¬»σ*4 19Τσ‘έΊn₯{ξϋφChτ1λΈΠcgO Τ@M@Q9…_P"όώ¬fΑ2ϋφΛZ4XΓAœ$hϊ/RΘ;gKΚμΨ‘ƒpγ{mγ›ˆΜε!Ϗ§»ί7ώψεG@©δΘIC%„¨ΰRόχι~²clθ Q5α ’B5M‘žœ©$hβR—²Eaœ”|œ›Nšs@άBZ¬·2γ Χ†Pρ5Ή¨ϋ”X;Š4ΎP™mΫΊΕ.œςΎ?Fξs‰uχtΪΡγ―`œεΔψЎΏŒώ|³+-‘ψυΣϊ˜}ορ‘™|Ι†CτŸϊ#2"φΏΏςOφk>Ήnιj»xρΞ- 8=Uώ.>'R½eζ§v%ŠƒζεL y@OcΤΞBΑ ΐaΗ«±Φτ ΄ ‡ Lj/r‘٘_2KB€βσ“‰ Γ3EΦH}gJΘdI΅i˜¦ˆ¨>ij9τϋϊ ½„„P:h\IΰΘΔ9η·κ>ΗΈŽ€μϋp Ή!@’8”-o”5θ™ f©Ÿ?A7ΓΑ±Ύ•εΑ)’\ͺ|0(Ά>sb fP>(¦U¦KΝςζ uM1ž™ ‚%qΣӌΧNelxΚZΫΪΙΜϊΩ)ΔV+ «'Ήbe£4Ε δΊζtο*°Nσ笚+ΒΓF;ΈΜ ΩξΑΟRέ©ΗY»Ν)H`d/Εf‘ώ0‡ΚΖΔ¨ θBαG}(Τ£"‡Ήƒz΅lΑ"W;₯―B*ϊ.Ξ½“d@P[c=^9ήΌd%6–ΐΗE [1ƒ7`^(ggFέώVΠ)]5σε2Αο2^ΚDPΟB!Ά€b‹pώ.Άu³N‘/0κ·\’₯Δnz88 rΌU‡‡Ε,*΄;³•fR‹₯Μ|Ϋ’`Žr(ΊΟΒaΜΰϊŠΖ6–a“bΡυ°Φΐ”Ω/ΤA‰’EΠbA eύωq¬σ ^δUδXŽ΅δ\…S™Ε:&θ…~€3žMpŽΕc NZΥ’EΦΈ°’ΐΝg/9g—ϊ¦lۍ V_ΔzαB3θί2ΝгοItAωͺδoάI‚ΨNτ©Δ4‚ΠAϊΙ$ιl^P€j›‚2ž8m’Xγυ‹N—AΠγΗ!›"c  ηPG'{ )βkνάΙγvτΜE{ψ'Ϊ§ΖΖώ& Έ?πŽ›lίm;¬Ž €‘uΛΔTψ†νΟξKΠ₯Ÿ·λ―#€ΝcaΗ ^iξ±υ«KΈ$h£μ)ω…T»βϋe Z{/Ϋ›σ·Ω‡εφgγS€E AΨw-ΰ,χؚe«μώπ―ν‹=χ؏ώυ“(‹ύ³έΎο.;ϊδ1»pώ²=φΰCΤΙΥ.¨f³€¬cN€Μ†™Λ)”lμΜ8u4Ρ~€κ―"UE©WlΪαΚEυΦ7E B“{eL² .ε•GW$ ]^±cϋŸc-,Άg޳5›Πs$ΣΎό·Ÿ³]{χΩ-‹ν?ψWTΥ(d!Πp‡έ΄fƒ ξ»Νžέ™τC¨Ώ‘Μ6*Αΐ |Α«›4A6z'ަ‰‘P―Mž3oxnŽaœfώ#κΕ9ž§ λΪDβ²ͺq~>Xκƒ *δTλU’κνϊ%ω>η9υKGεb|賡η$YΐΆˆnΚvÏcνBmΝ€†©ϋΜ »~εJ[³j5-I„φ™EYM5Ά!ξΑ+0»Hά@¦ΐ%Ι«λ»”‚μΘƒA‚Ί3 Ž\]€δt”Ϊ./=΄X§’Αχ°gβ܏EW―¦ϋβž“Ίω“KΦŸ€ΰσ€θ³υιn]Μ₯ L!ϊOΕρ₯ΠΘυ,ρŸz€ϊyNV6VUΕ xΩ™d6hΖ‰­σcWK3ΨxΟ ΤEΖFΒ^6Q„ψ”,@΅#Θw7λΎυΧϋ­E=~Ι„‰Υ –Ζ`2ΜΗaοα0ϊ‹ΤƒCζΑqOΎp|;Χ°±xr©gN[Ζoνv‘€S1`ν[Ίτωiνθ₯ώb―;vΒvνΉ‘E™ΆΪϊε ΄ϋAΝHγ΄ΌυmχΪ‚ΪJ‚{FνΖvΞ…bEΚ•‰‘rηή]8™W1υ6tι¬ kmγκ•D£(ρ@έz۝7Ykσ[΄b­ωšΞ@¬Μ6ΕΩeetταΓ(²Θ`Kζpχž½8–Ηmν¦­€Ϋ²]€TΆzƒΥ–ƒRc|ΑΏρψ>BoΨΗNUΗK!Žα4wT•hJˆƒ} DjAoδ «Yj₯Ρρ(8τqDP±Š !ΕhH₯#@ξ–^2x({h, ­ϊΡx“υφtX€ΊιΗS2ˆ¬ζΩZ’bc€Y‹iŒ+ηΩΒ΅ VΧΠ@­Q‰9rΜΪ(D.*χY{Ϋe»ονwΪχύ{ΛϋίNρoΝ¬~κβΛ_ό(υ!ϋβ_~Ωώω;_·oΪjkV hΑ `ΌΜΧ9~ΕΒFη\Α…Gλe+υ›€Κ32Χ `ˆ ¬Πκκθ Rcν#CP ζ›ΪephdfP _Y)ϋΚz$`1€ΨL‹)°r 5ώόεf;N°†Ž£ξž6[΄ΈΗκ$N]£‰KGΝΕ©[‘eγ8!RZbn9|vgG»ΥFP}bϋΗ8hTjž‰MPQδ<_9ˆ…8ΚEπ†ψV(!rΨρ²Aν$I1Έ”¦pζ…ΎIΜ!›ΰο ΐId*9”¨•)Νχz ’T(η>Η‡†"Ψ~ζ°WͺΏˆL©‘ερtΘΡΦ¦ρβIwOΣ4M<`Y―LN’Yz?Αi4Ž(DVΕΞD??Δ™¬,ΡEΘ͐9’ξ5‹Γ ξΕαΗkG>œ”‰‘”ΥTV~§AˆGlτxYυGN ƒλ³5F7ϊ2ž3Α (0Χ/ΉXqα-ƒ¬ ½$HEώ %ψbt8θ#UΘ%sέ…Πঐ`&F ˜QmͺW¬²t‚ŒAͺ¨] œΒ1θX ΐΠM'(Ζftγδ€3¬«›’ωciΥV(|τ1 Pί2wΎͺA"5 ΥeϊΰπAφ –-d°%cέ†°*bφ²Ÿ²©g™Ζ‘^΅κ:«#m£Ν”‘{qϊUX κ•8˜k:uΠιγ¨Ό• `¦Ω%œœ₯ωΫέ·ξ°•KW‘•½ŸEF'c–ΐΡΓ€dαœ πͺΦN™…W»ιF]@£Iz½Hό!Np€ΖŠ +lŒ¬Ξ4Εΰƒ=έξŒΪΈαˆT’Ε‰)Rΐ0σH°’)aξ (ΒΡΜΰΠΐ& &|Ώ>ΈμG.Žα šrϊΔxh Ιΐσ½Ή†*‰“‘ω›ΐΘα;ΚΙ:©<-zΧ›E€> έ¦ύΜ)²ε9ehbΦvs.¦ PΟ_j‡nΘR·Ζq‡*^ΎUBӜ£1ΰ$φΥζ@”― {†€S™Yκΐ$‚%h BƒΛΔQŒC-ττΊ 56ImkLΑ†jv0‹ΏR˜ω•QΝ 3΄ΏΩ3>i¬½(φqf* Ν±€}’ΒωΏέΆ¬»ή>ϋρOXJhudΞD}v!{τ‘oΨǏl”ζΨXsΆ›ΦΩޝ7ΪhO―]n½JΆ&ΚϊΜ±q²dμ‚d™•Y%NwŠo‚™…δ³γH f‡­»«ƒΉž³ίzχΫ`AΤΪDo³΄Gr&{lΓΊΆο½oόϋWμSϋ+ϋθ§?b·ίw—υ|韘ϋaΛ£–εβ‰CΜ•Ξpz‹,]a-§.“}œ`ΏOv±<>·Όͺ&ͺk¬σrT<'{:Ίϋ p/³V²G…τΞ™Bφ9ϊΉl’½¦K-ˆ- t­tΝΊ%7Ψ Υ‰ή ¨|>[ΈtΉέE χ©“νΑΞα _΅O~κ/ΘvΰΦr]£€9ΤwgΥ—ššœSΑ$$“>ǚΛŒDΆ6† CeŠ`iϊֈ’'o@`>x$€­8;₯(ε.λGG§‚:ΥF(Λ ,΄WcΜ{1₯Μ)ΏΗ «Ρ«STζ€ΟΰΌ‘Χσ™)cΉλςkτ?¬’IZ>„μϋ(ς«'Nڞ·ξ±J$£Π³bO^½ ΠЍyκκn'π‡6ŠΝ’ν(#‹;Fbžρ”ψ‚ΎKN½λaΒw¨7‡jοt>φDƒP#v9κ5„½$Vc¬T{F¦QrξΨaeΤG2έΣ²γ.Λ3?ς1mgΉ1Π}κžτ·n—ρuΦΙc‹²X—ͺΉς~(£/₯lIΆGLƒ,&Α αηoΡƒ39W@ΫΩ/05(ʟ$ȝŒ 2UWv―μƒΪHڜΫ|γρšψ%&ͺΉΧ’­„₯œ”ZόLš2©&~§•m€ω9cίK jcΟ©[z!J3“@opˆƒ!‡†Κ:;ΫΡjΥ5υΞ±OC €Τφ΄:‡BN©ŠΒS)”nΥΔn•#!ΏiˆyνΧ¦ή$ꁐρφ@ύf:Jλ‘ΰ@”9r³φ™ŠΘ•IIy(Ÿ @Γ ξƒΆΥŽΒO‘ωΰPe‚&«SΊt,Τ9α³pv‹ΘΜTU RŸ€Ά -§·Ν.!ˆ!u,₯Τ£8™²=|φπΐ0F,Pm©Α9"„  jlΒΡfΙΘΘyŠAŒ‘=(€:Μ@©₯°@eΉ,@ j>@ξκι’υ¬ϋQΰ ή#Qi(Έυ*θb½ƒ¬λžC€£T³8§€pξqN %&  &°}Y(βRλ +Ι£ ±oΒH΄ζA5Β5wœr5ͺσα{@Ω₯ζSŠ…gΥΨ1“5£&œ3:€9ΈΙ›pΊ£JΖυOβ°O±o2γhjλ±NΈχJΝˆΑ₯[Μώρ³Ά$Λ,%ΐ|hIΓdΓ›Ή¬«žΎ^š$ŠΖՏ{Θ"ήγ€OPΧ45JφhΠk/8βL€06Ιx‚4+HAλΰΡΣΦΤΤG ‘€'©‹†ΖEu6BέP›;‹““9`νSπYR M'›1`D–Ό#(w³dΐ/^ ΰ~„qη%l’©œ)?΄&7 [ι\NΠꉐ=Ε)mœ±ϊ\LΑ ΚxdΒ “'Ω?a½ΙΎΠΠXh’œ~ΠήJœΦ]λ§ό•PυD±“μ4 ΗΠ=T₯†'Μ6ΩhŒSΛ•vΞΏ1[Ώn™…XgΠΨ†8•εμλ&π˜ΒφεεD(¨)-c ’ρσQλ$¨φ¬Ε‰S’f!Β*•¬aj7p~ΖU[3Τγ2DWΫ‘šΥ9gŠ _T5§Ι΄ƒ;ϊ³z˜Χυf”΅°žφO[ Άςώο>`όέ·“υŸ°ε₯φ•ώ¬έχώΏ΄›6.ΆΣ―tΠ\³ κΫ*ϋΫΟόΈλv»ϋξ½V„τΆ?gπ‘ί³}o»ΛŠGcΆMΝ(ΤΝUΰUœ`& Α Žΰ@š`P@€ΐ bEMΔR£RY+Gπ£Ÿu­μ*„¨UEJͺν„OίcΏωφϋ`@ Ϊύίψ–=ψΨΆ²Ίq£uvP°?bΗ/[mυ[’WΟλΖ¬ŒŒ\ΛΕ‹ΜΩD#Ζx·žj¦ž£• rΫ"1Β^‘@…Φhš€Šbβ άAκμΪ‘v•" ΰθ9Ϋϋζ}φθB3Β•d(σΉο}vθϋΰϋήgΉτ,ϊ›ΏώSϋληsφνο~ΫΚ7Ψm»φΨ±ι'l¦dΠB.Ζd‘5ςJ°Ϋ₯΅£u,a‚ΛC#τSΉh+ω=Ξ90ˆϊό`‚XΕL$Ξ1 v…πAg((»ό*0yl*v’ΧΘ‘]P6Γ!ΟόνΓKθ@b.*nW_&WάΝsRςS]‰j ψ6`%₯%–°1Λθ"H»tα”}¨ζCό.dUdΫξή³ΟώνΛb·έv#ŒϋͺUtyoΓηR½L‚ωό(š¨IްζCμeώEsυL\»\vέ–•¬ΚΚ«ΆΎζKΨK`gL8‘ ΗΆΫΗ}i€hͺ F²ξ’"– ‚Ÿ³UŸ'‹…ΖΛ€Ιπ y{ΧΙwe αΌ…έFPπAρkβ¬UV†ΟT jˆ{WΝ£ΐ6/Χ† εcΙz`z8ε,†£F:ΕYœΐώΗΉΖ)μqAΌ¨S€ ζώΛƒούΩ_ύΗσέsρ’Χωαυή§ίιρ3_?ΛW|½χύ—π_δ5?ϋžΧωχ΅qψΕ9ΨdήΧͺ”­Ž2βšψW?Y7Εβρέ°ŽΩfuκυšt ~Ζ[vZωΗ4Η ƒόο|»‚χΠί"P τpA Ηpτυ³ψƒ ‘kΟ =uΏη9Η“~υ=Šδ₯kΑΉMͺ]ΙC―Uc)χ³έ΅χ½zνσΟƒhρp‹½~ώϋœθ‘Χθ1χκ5ιg9½<α>O~γρ«€P—α1ψ°Iœn! κΟη/.©`rT| ’Cͺ7;›–ΓkŒζGυ9ΟΣ!βd  0©hYζΚ)€Tσ±η’ˆΆxΉ9G£'(L >>ρ‘ί·ϋξΎΣzQ(9qό²5,©Γ‘ΞB±m'υK!¨-qψχγƒWνO>ς!σΑβ‘Ηνkφ˜½γ–­Φ†σ§’Ύ½»VΫc>κOW]Ψ+-=n Άo_JαiŸ=ϊΔ%Δ E\±Η^‚ΟΆ΅υ‹mΧξ7YΪύgZ›(pΩ€‘αΒbθ&Qκ!ΟΊ#ΐ&­«Ψͺ3‘fΎ:]g€¨ΣΟa°Ξž*SφHΘͺφ ϋT†ΠΌ(s„ͺ–MΰΦ‡RU±`5„(¬’ΗtΚΩ§BDΥ`P–: δoNT όDl #ŠΣSαZkψ:ϊŠ€ι·0I9Ξx’Išρz¨°ΡGP£znΙB(#ΉΛ\o”^EΩ2ω2ˆ:|8—~œA©‡H©+¦4}ž>7“lJ. έΉme₯Λ)qϋ} ηfŽΐ56!΄IEΓP«ΘΚΘfeβDKN5Βό©m³¨8€Yp«λiTς)ωΥΌ"ζ“cD/₯8˜3PœβπΥ“™τrΐϊsJd>΅v ‡κΕΛΝ όŒIΟ —½H²†5 ‘P?>WuIΎ³Œΐ§€ 7BpδuRΌκD]SΧΘ‘˜°ώŽ+@p§§ΘΎ.DuΒύ(σέN!?μΟMsΐ—’m’ˆv€€ZTš2ξŸLV?’Άpf9Ψ'ιψȘ— WΖΨ84C°Ι0°Ά8LAJ…άΉbvΤΊΤ°pˆ$ Υ|₯% ͺκΒ92££Πέ†6J¨ΣλΔρs4YζOΚXs:~28Y8ϋ`‚vμΙW,–9c+qo‘‰κ";~ώ8~•CΑ€ξ£š Ωο$λ¬Ί† xΖ]8lmmvΗ];qˆ‘ꁏ‘XΪXMF$Ÿ½nνSœ”YX?|y/Α©ΤŽ—5 ؍‡ΪΥjλ€9-Ι‘L1υ-iΔ&ιϋ03C ΅cccΤΦ0v^Τ™©˜βά°ύ]P™ΒWαό΄7ΧΚ*),EΕμ,Α`–u βrŒΨΗSψލIΟ‘•€W\”‰=t²ΉiΖ^@Aϊ°‡1Jp66w ΪωΦvϋΝίΈƒυΰ5=n+V/α5Π§ˆjΏω―ίΓΉ%ΰ‡eεͺετ–Θ`¨Yb&‘― T©"ψ L’)‘λvQ™{»ϋΙ!]Š·ͺœκ-²‘—Σ&yrΌXζ„½ΐBWŸ…'9Ϋ]ν μ,=]^ Γ|#}eΎω/Ω7ι;֐3΅a-\XdŸϋπέ|FΠξΉi‡55_Ά~‚‰ΎΒφο<]ΕgψΠ=¬γ»ΊΑ}ΰΗφξίϊ¨£ %Q’‰QŽB·ΦpSl`)ψ…ΨΤωμ―0Χ# ΠPΪΰ$ŒΏϋΠύΤ/ ¨#}}슭DujυŽΆ{Χ.Δ6ΦΧyήnAλΠ+', '@ˆ¬zη{a–lB™ΌE΅ˆ‰Pϊr ±KsΠ‘Fu΄5ܐU$Λ)ϋ=PίPgΓ­ΚžΟ2?’Ν45_΅5€@ώK+¨U‘¦5ƒ`plΖj–-aήΘ–”cΣ fbŸJ*K-ΜgΌ° νΉi“ Lt‘1θ·UUΦ\ηcO>j[—.Ά΅¬Σ{ƒ{lΐΏ£σ²u·MZSΗE+Ğη’Ω•”Όλωσ4†­ΖΨρ9Δβ$ΚΚ^σƒψ»#'ZϋšMΐί FδUK˜@aՌHxC”;.²χ)μΌκ’€t'`BŸA<Γ>(βΉ0η™(Z~œο0φ!ƒ½ζΉ8™ςަsΌ2ƒύ₯Μ€Ÿ&©ˆ₯,΅}ζνϋŸϋΌέϋϋχΩZ.όζ•σ-’f©ο‹ίV-FΌ„ΐzΊθ6!ΑΉΝ­q8ψΊ|[AJk”λ˜θkΆ––υ*ωF(N:π/9=8wφp²΄Ν)Σ½NvBχ$ΐK4+ς eΫ©ΐƒσCχͺl‰¨k€„ωœ<‚%Jΐ­KEσCρΰ zΐŒθ?]¨hc’€₯π1PΛf9G“ΤΉIyRΦΜ5^ σς‰h& ½ŠJΤΰτ5έψΟ{όwΟύΌχθχ―χΎΧϋέΟ~Ζ_―ωΩΟ}r,9ΰ85ΚbdΎ}ƒ:Ÿ¨Χ0πxϋΪσ/ΰ=ξ}θn;'^Ο1™σ«ΰΏ~†œΧ>9ύϊέk~νλœΌvΜ^ϋΊŸχσόηρΎΧΌρ΅―}νχύΌίΏφ5ϊωΗ―>šŽζ³ηH—@g @:ΐˆ€YΘ!O@‹™ΟA΄šΓγ 5 xνθόΗ Ηt#&½qν:¨*€²eˆ1 ™ˆ=iO=ϋ²»Θ»οΈΕ¦λι°}yΠηŽtIcŠ1ΘκχΙΉ¬ΒŠ«—ΟQlJΡΈΐκ~;ΫN._@χΞkΔ‘ΔΩ LΞP“΄εfΧιωΉφΫoΌνFέ ύψωCvκ*:σΑBτά+­TΪΪ…ΛνήΫφ`Όύ΄Hƒ Ÿ9ΧLαn΅υƒ,/ e έ#)ZŒe€“KάցΞ^%N%Ž\š1SΞOΐ)c&Gr–Ώ…^«Ζ!Šƒ₯λ%HŽΉΧi)A Β—‚+ ΜΑ¬½›Δρυqί)¨F’0΁––}b(0aϋξΩg§ŽΌbNœ³ίωΝ@ pΛΝ'―„Z ϊ¨01 ΓŠƒΓR@’ "2¬ΊΩώ$2ΌIρηΩ„:”&§LT—€ˆC„C1΅­Α„@IDAT”4πtœBWR›s οŒ½2`σ9―™ζzUΈΛ)B‡Εη τχ2±αv’βB;Χ}Υ}'?EΨŠ•$GRJc’MΠPJ ½8xr^Δ#NαhLαά§‘݈6¦ˆ•RΨ’@dIΔΡA… 4γ<g?α%x₯6Π ΩΫ65›CΚ\œ\( υ΅εpΔΛ,»¨Ζͺ72–¨wαδOsCC}[γ β8Ή.μ9ε¬Gδ’)ΠΙ§†c–μ\R…ΉCΘΧbSŒ‘’u s" F Sφƒh_Ω8k!žSF1J-L€ΟOπ›ΥΣ‘ιΈ:",\Ί²ΟΡαζAK%ψ$ˆ‰0n³νŒ t0Q dζ’ "Π§0·``+ T.υGβE 3εΠΝy€wŠZ2dd †Ζ@Βι’FΕΉ€CIu_ΗA 떝w[έΒj{πΗΟΫͺ₯ν›_Ί½ω­7ٝΠq•QQχ76ήΝg »Ί,€`&r₯³«Υ΅Ά–zΑ«νέ8 d΄FPœ―γΔ .c<Β8Β³φ1D.²¨a¨υ4Ϊ™«'q”°-ϋ†pώ)θnΌ…»Έϊ„Π ”LŸŠpΙ³acϊ Θތ±¦ 9IέΛΓzΡαd€ F¦–Z‘Œ„5TTQΨέb_ύΚwν“ς^[\‘^k‚`ƒ½ΗϊΚdBα€έq( >Ι2jΙΦu]bΞζχΆ¨kZƒy-EPήRΤξtuτ0¨ΐž Y7ϊ€œη³Ώ˜wφ@†ΐύΜVΰ#§)Hφ,₯=Οσ½ˆ~\±ώΞ?>nχΌw‹mΨQjŸϊΤΪ³O>bŸωϋΨϋ~c72£ωvπΘY² Ά~aυCQ»ΠO Oζμ%”)·¬-³ KmbΨcυ43όΘΎΝφ|ήΩ£c”ΝάKp›#ψ#$(ΑƁ›{X•ώΛ@]hΗ¦λ­‰LΓϊΛ€έΠsτ‚}ο©ύΆjΩγφŽ›ίdK–Ϋ’Νo²M[7ΩαΗ΅μλκy?2εЍΐ½€υΈxyƒ]hi³ΖεdS)¨ ._^GπΡ†ξ˜U(ψEΈ Ϊ1 TnΕ¬ ΰΣ'/Ρ…½˜@ΐ¬³­Ϊ›²¬―Π―2©±nςςkQλΌΜΪ#9ŽŒ.”Ϋʚ[|u؞yϊ‚ “™=rψŒm^YEoϊ9AΣ›™AR› z5pZW)?7ηXUΡλ‹ΙΞχΨe ςοΔv5DΜ8™˜?@YFGT* λ G›=­ϊ9Φ ‰η¨…›‘C̜ϊω9J²J²—3C½–² gΨC³Πυ$Ε­ΰIκv%Dτκ%g]"ϊ<W .”ΛwΘJ‡ =΅`·6]΄U[Ά`GAϋyΐ.υΊυΆ[h‘πcΫ΄~₯q;vί;ξ΅ΞΏϋ–΅!tR·΄0ΚKšsg~Κ5]Ε>³Ρ’Δ„ƒ)φŠh`”β€--ΝΆl5Ά…{ΘbŸ`2-ΞV©+ΌΦpRΐ σΤ„θ[YΨΉ‘²@:h΄hόt^*σ’χΟ‘9tΤDΖSτόlφ]€ουΙΦσb'­ε$ϋΘοE½δ~?_Rύ•δw1χjœ&©ƒ‰Aǚ€&9 Π&…»${ΣΗ5A_­šΏ]Ε―υƒ•ζξΛ€θ₯,ZMbZΤ«Ÿσp»^wνqνg§›5=εBΠk/xγο7Fΰ?G \4ί`°J€J»ϊ[ 4ZH}R šF ‘eTV†Φ0";‡·ˆ˜”„―TqΞτ Ώ—Y4? rŠ‹μ–;7ΪιKEπys(Ό~Ικ*jQΙ΅ζφVΛ§3oe#ˆ›h_ΒΑgpξc8θ j# ήqϋΫό”Kn°έ›ΑΝΞΆ1ιHϊ‹―œη Š―άκ?ΰY°Π6Τ:DΜ…vωΈνΉ{­+TΧΑ•€2Ά~εb‹Q;πΚEϋ·Ÿ#ˆ*±½Š΄-2ͺ8$#8ς*6”δiC)ωC₯“§ H…² ¨sα9Ζ"zΫΥΫ‚‘ΕΡ„Άe2"8±rβ<εΰ`Ο‚~ΙΘΚΙ!ΰ*†23 j)•/I_Ξq€εε‘”„±ΜD9,}FΖA2²ϊ`xεδiΫχζې1]kŸ8fː¦.),RΒ… ZΧΫ?Œ# QΏ`('F7JΑθAšΫω‘YrL‚ΚRl΁'˜E κ˜&°a“ζτγ΄rIΨyΜ<ˆbˆŒAο]2©CΡ蛣ξG ³ςω~nΓ)X)@Pα (t ΆόZ0|ίjŠqΡ΅Ζ‘XMR8F²5αΖAF²Jx΄:Mr}. Α‰Δ *@λθ=*ΨNϋe˜"ΥΙ1T/|vGΡ‚ͺΔA€B}I`&Dλαο|Φή,”>9~R8ΚτCοAi”ΐd4 G°ΓrN΄$ ¬€<Ηͺ+*­ͺa%A’κΨ@‹‘Vq^ΣGf„Τώ ƒ’¦±ŸIΎ’|Fˆ`%†x@΄ΏθI’RŠγ8¨xΩk²r(₯Iκ"z HZy‚ΪυήΘ₯7Θ¬jΘD94° Ρ+ΘGJ’5AΔΗ:τ±o²­“,I1nΪ#djκ”…”b΄WΦ’— `б½Œ$z!4œFœ IΛ²ζ¦“Τ‘œ±ΒšeP_ςmœ@§ΎQ½3θŒέΪκꜲq†Η μkj*νθΛmΛφνΠlFmΥu‹μ§d+‹ͺ\f#F¦\ˆŒlœŸΐ3%Π£f‘άC- °ι$™C/Yž"€‰vš~²Ž ΎŽ~–²Yd7F6aA0DΠ)Aš=E>@‚2ˆn •Bί ΤΪ0΅(₯,8 ΐ ΞRαβ(sC τ~¨ˆ%dp bP,ŸG£Ε *\SdX$ Θ,‘©hŒ~8έpΌ&Œσϊθγμ]οΉΣΩ‡ή‘N—έ—Δ«`r¦›F’EeεμwκSθ$ΉίΖ$«0BΐJνΩI–§iBβ~‡aŒŽφbk¨·‘1žμ’¨djθΛ"A•)Β#b―Z25wΕΣwφM²Α"δΔ5že8=ΨΆ£ πL&λ$‡Ίͺ³Α7<ύι‡ο΅o|ύa»α–VSΥ`ώόμύ·ο €&ΰε3—Τ²ΦYŸμCΆϋξ ΆyΓδi«ΘBυρ΄φ±¦ Θδ©SΗP›CΌexŸ„ žΞρΩ)k,CQλτ »ωΖλm}υgνρηΨΏ>ψ<«―ΘΞ\h²ds5oΆΌκδ·i’ΚΒΜ#ˆιηΎs‘1Νa Qα 2Vp«PdΟ°H=šΖΊΨP ώd#5=Ψ•IκŽr™£b‚€‰a(_ؐ™†1–drœ:O(vˆητSΣ² ~©ΓYΗ‘tU’Y…"v•―F:œ«Ÿ”¨ŒƒΓ4Eάh‹V.²υχ_₯‘6W™χσ—Έ~θ~¨zMΖ[QΧ|›]9KϊΆL«Λ§¦5ΥCί§₯:Aλ±sM ώΎ^)½Α>|ΰ€€r/fΝmnφ¨=T)?χΕυ*™a L`“ΖΤS¨ϊΙ45v^₯ ώ›Šύ3h.› cΨPηc/‘tΗ^Έ)3*)\Ζ ΜAHφ„₯#–‹{šE•MF;ƒ¦Š-vυ†oΘDΝύΠG>N? 3œ3[rέ­vΟΫίiOzΚIΦ&f†°ΙΨ7²cœ…r ₯`…±rA_§P ΰ£Ξ½I2ΔΌ & ΣH7‘"ΥθeI‘Μ§ΈΕQύˆŽ‰“Œ’­瞦”ζL²§ΌΤYωΘ‚{ σy‘όq#ξZψγΧώρΛe@^.–„3š?›Έ6ššάΧ„Χ~Ντ³xBρΘλ=/|γ‡_γπΨσΟΌbwξeC#CˆΔ£€r;:ϊqΌΊq¦QC£Αme3ΓνG)m„zΞZ%(r2Eԁ’υχ[uJA$VŸ?π‚͍φPšu€ΐn½α{ξ‘—μό©γΆqΗv ΈΣυ *νΚ… 6ΐaT³0Σjκλ°,C6ήΣnοΌs―=μ$Zψ§¬†»κ9QSG°7\Ίϋς‰ΡΜ€ƒ=/7ΐνΈΪ•«Τ¬Δk¬‘°-ΣZΪFμ[7ρ6ΗkΆϋ‘cγΐuΰhέ|Σ.j4"NξvBiQ)R»τˆΆŠj A3ΥΩ$EIμΈn{-Ξ..˜ψΌͺ­˜½–’‘šόΕδ$iΧ‘…PV"APΓΡ/%şŒ©›x΄8Φ|zl¨QYτ3―NΎ: oΨΆΦ6nέLΆaΞφή²€T $Ά―§“~ͺ«‚ϊƒ<©hC£γrθκ»Α±Εky^=+œθ„ $ ΄:šKvΡΓŠΜDΈΓO}3€HW†Cτ3ΩΙ'"…ϊ₯¨jΜ"+’31Ι5©W‹Ž h2όhfJ©Σs’²h 0\aœcρˆ“)Τ›H›ΗΙtŒ0~’Ω‚—Jο!ΈU«YΝ'AχSΠhΖδ1†AΦ‘‡¨SυΚΚBy‘cΙ1Aτ1ΎHYΈΟΌF½•ώ3’δpx{@€…*C#τΏ ŠΣX΄έΌpzI%ΧAσ8²^i29~ΖG’ΗJπ3ozO’@Y&?Α^ύ:†p| ^Ρ~¨{|‘υΜDGq†ιχ}5ž Ξδ0(‚χΖ ςΐ Ί8„Y·*Ά βΨ‹/Μ)Ε‘™²8ωC£Œ΅V ²}ƒ(%r‘ιdΩΥ–Nλθ·†ΪZTΏ(η~GYc„Dμ+zΗ0‡ œύΤ²\9Σf7ί½Λ¨/%³“EFέ'κΤ!:/ZΑΎM„z˜ΥZŸϊDΰDJρ.6]E²iζTτ2ΦγΓ#Μ_§M ‹›‰Y*€C―9³‘ΗQŠα¨2ΏΕG ˜Wc:Ή Ύ4Υ ν™ »U8Μη[.A3Ykγύ8Y‹œδΩh"Bφrά’¨Μ­ͺ(eήΘΕ‘ϋ₯O aŸe{‡ GVxεY˜@d2ζ΅α2&PδΒμΩ)œq$ƒ, ˜έ<±ό!²u{k½Q5‡“:Β~0.1ΠξΉ)φ#φIςΈω¦sŸΣΜa>ΩIˆKŽ<Ί£«­ƒnI'θΠ ΅Τ=iη/61>t fmΞβτ{A†E' °&ΔϋŸŘΧβ;g]Κ¦ˆΎϊγούΉ=όθγvφτe»nΕr{αa$νλΛνž}›νΉƒ-ΆgΛBϋθ[o±h<άΕ5U°¦’dvλσΘΈ, ίΫmν#Z ¬₯c˜uHm@Žzξ „ŒβΜ+0T4Λ π¨ͺ q*אA£Β^²zaΦa€ͺ؞zΰ~T³VΡΠο]φοz·uΆtXσιSΤλ Ϊί|ϋ_Ψ“»μνχ½Οfvν!ρ {0ί¬υΟ΄ΪΤΉ6‹d{™Ο!ηάΧΥ•Ϊ‘ˆΟ,e ΤθQ€9μ¦κ‰šΙ–ΔjE[ΚGPba ea}Ψ©ι28ϋͺ…ͺ*¬’I1€<·†Ύh9ΤǍγP;ή„ly‡yΆ―qΝV7n"ΣXP,ξ(΅dΚ܎ υΪh†#/—/Ωκ%yθsΝγvμπ μ$–ΛŠΙˆ˜ R23nUΤ©ƒ V {Ν¦βs„Ζ±›Ββ3™</TΧ, K QpΔ&Η†‘h‘HΌi爍aΗg‡Έoœx"l}>φDt3ζ–¨/uB0ΚO™8Ϋͺ)S μ,κ½]έvύυ›ΙΒEl ™To6ΓχmފˆΠδŒOο·ΚΥYΆhύV«[½–ώ(OΪ±ηΏηκεf|Θ¨ςσ]r o¨&CύF$bŽ•ζ?l#„€§ϋ;―Έ¬UMΉTϊ ›bŸΤ;+ λc}IA ζ2ΉϊΌ8χ• `se°―h)―1r΄)^“rY†‘Χ)K’σ XΛΠ8­άΩ‘`oŽk”"˜κπBdŽœ/>²ήq‚ T3άš HΧη2‘κ₯Ψχ³œΓΚϊρ¬MagYί?Οwfˆ­ΏtDCDΊVΈΝ˜°pτΠΐJωEΟ_{θ=z¨O3‘,MΆώρ3Ρτςk€χώμΟzΧόηsωΚ€Όζ=zν΅οΣG_{ΏΎΚiMσ;'Ε¦·ρΩמΏφZύ}ήε)ξ•ΉΧιχΧήσڟuS―w/ϊ¬7ΏάhžΌΐ,)Še½>ςφ)«œ›4Ξ^‚4y8³ΐΦl%ȝ™L^΄S@ze(ΣΦΫΫGύ έφƒβΒίίΊiƒD‚χΔ™[±9M4Έ›₯ΐ΅’Ηƒ†ατ–Vq@d€tYrΌΗvνΫ‡sRΕA6jG>gŸώύίβ@™Άϋ9j›‚Œ.{ΟoΏΗv_ΏΔQFΔΥM@ ™@Ά4‹ΫTŽ£‡UR–’&VwάΉΑ ›zyu)λ–‚Κ9tώ‰„’ ¦!ή—Ζ G§FݞSŽΌϊ€φmԝό’BPZŠΟ1δ8²’@¨ ό)y­qΞ’€λω‡μΟτΣ¨0εΰΔ‚ΠWΣΜ/ˆ#1b3p> ΘσC98­Π9pϊq(βΤ«ΜP‹'ΘW_βU*ήTš\Εζ’W”γ#oU‡ Ή—‹—s.N²²Il‰KΝs€ͺΐRvCΚfͺcΑΑωη(yMp_ΉΜ…ϊYψߜ“ξπ‰C ς«u%:Ϋ”RF)ΪΗRΨrT–ŽδΑΥΠCο™(Όοi:rΗi’„b₯ΜPš‚ω…υυ‚ι¬ι*ͺhώi!…¨• )SoŠ8Ÿ#E©αiνyΉΦ€²VBγusQj.ιησՏ!ΕΊΣ’Σ<)HπCΛ#‹7ΚΟ/ΡαEόiX_RN&]ί»ΤI˜;ηυœ§μ$D!g’ 3gSΓr&!ύpX‹N7G &ΚFz’(w)Φ\σ[ …+=½*—9Ν`εΰΔpBΌαbζn;₯N"i[V-°—‘Ϊ¬₯ξO™°κ&„–‡u­4γΜΚρۍ{6R<=gΗO'˜E­”O .ωŒΕcc’‘MgΨΚ ΅ˆ6`»QΫ*Δ‘κμθ"{’c7μάDpC£Ι’\»rξ Ε«‹¬·­ƒ€σ“Z^žMpŸQFΜΖΡ‰βΔΞθ„Xw0f~©w@ωHNn¨€ΉΓAΈ”ΩΝ\ΠyX>Bi'{ F‘Y±2;aŠή8ηƒ}ύ ²dkHβ°”±pA£(]ι€ΐ~8N#AIωBytŠlˆO̐]*’pUA.΄+θIτŒθ­Ν!«V†Μj@r†Šsη›\ζUΙ$MT³@DηbP‚ ”zΩCXIΛυ³Τ€Mρšγ)ϊ”$?ωd~¨KΒq/B,a G/;D6‡b2¨ηO^`ŒpT+|4w€1 λζ*tͺ…+Λ°³Μ±ϊ¨p•œ±)M ’YωξL @Ρώ;tπˆΝmj°χΌοέτγzΙ~ςΠ“Άο¦Ϋ¬―½:f;Εά\όN'ρ|©₯Ιςι9–‡Βέ\O›+ŠLO’u‰Τ¦±=”Έ¬c.k~r›BQυ3ωΜηJtΕ…Εμέbλξn%¦ XA­ Δλ–-· ›ΦΫώg§·R댠•5δΔ(‡)ΰ>² `ΒTΜg>ς¬mΨΉέjΪΞS—艫Y]7™}ξ―gˆž<ԚυΕBVΐEU°'ύ ιυ‰5±#όΑ₯ž&$ˆ£"t–Τ62>yΧι|˜«Θ€βˆΊ]`]>gΚ€‘ZH*=ζ•£LPCζPύωΖ†Œσ “m>ƒ ΰ€½ΐwθΰΛΆfηφτ#ώ—Νχ©φn@'L6kΝΪΨw\/5J L,^ϚzΡePuj«—M&vR_υP *ωλŽκU/yάΞ?Υ_\<~Φ[ΊیΌ2`”h―>‚jf@C/pB烃 0D “±2G:+|ΨDQτψAμ$_αŠΘ΅φΉ"“  K5ΘqΨ*„—<Όjqέ ϋ ΥΉWΆ„πrNz°E ΖB•&!φώ ο•oθθFΊΣύP8ξ]ΎΦ6Τ4β°γυ{&U™f”2˜υEŽ9Λδ^ .ά ωCΉb ~ΛρŒ‘ΠK-|9B ŒƒΦ©Π9YQ‡ά€\(‚ΧΑ―χI+Θ­‘ZΓ9Zι0ήκ‘bv₯%ΑιšσΈ zΐΏ5$ZPΊW!Ϋs\/'9‘"ΠDh-κ„,…$!H TUΏρψΥG@λ(2œβP.€R’|_wG'ιzΠ~h%£¨]ννΆΚv8εP™\isλ"§»Ž“_lKΤ .”OρͺT‹0A U=Cφ‰ОxyΏ9vaή8 φ@εΑ`ΛωΕgαό†ΘͺtOB‰ΙJΣd?t–{Η;ξ±₯«WΫwΎϊ-+]°ΠΦQΪX Ϊ&eΖrήNνITXλ.I°}q=ς›Hvι!d/EuψΕcΆΔ¨΄’Ψ<Αښ#ψ²];nγΊλΡ…?o§šΪmχ– ²Π42 fΚόDι{!=q©u$pTHc'¦ΗlrγHΖ‚Έ‡_( 9NΞ—Bβ$]'SΖ=ˆ ΙΔδ,έ• ΖΙ”•’κΒ1GZ:Aͺž% ²‹#F­B&χ³gΟ^‚ˆ€υχΞ£ή}ύτa@z2Ÿϊ‚ θS“νΌŽΰ€9ΛΒω,‘Ϊ9 ½-„³«Aν9Ήg3ˆ(m.ωάl ™?O6r²„Π M^Γ‡η``+(a αR]‹„ €ƒ’C‡z !•ΪΗΰs ζ’iΰί)™…²ή$τœv5Γ‡ΐP™9Ξ c4ƒc₯ιœ ‘Y\§Τΐ($δV†iŒ€tΈΏ·Οg½­8ϋP4JΛ°7"%°ο9ќΔ#vBŽ€ΒY­~V¬#SΧ«5’Ξd”Œ…9•ϊ’l6 5Ÿ.`Ž :Δϋ…Ϊ+ϋΰ… @])cμȜ¨žΖHD8 γ87³ ”,OŜI‚ˆΖ,H ₯™‚j.§TΒΆ0Τ‹<ζ,»HEΨ£\‡?ŽCEΦ€A©'­—ŒFΟ-‚Ώ_TZ€άψθJγθέΣm€uB/yd9λεδΚ‘F  bσ†Js•†¦Αΰȁe:'Χlρ’[ΦΈΠΤΤΪH ™2$}!kΡΟzˆA3›θš 0Ξ¦Ψ½§.ŒTv/Eό‘rj€lX§S rΤDNTfs6@ƒ*₯&΄ͺE2ί~²1• υ6 έΓ\ŽΗˆ;¨Yg@ΜΈMσΊαήAΧϋIκw «Ψ7ΝP‰ ί叴R˜<°!¬ Jf ― J$ΝνcΎHΊβώ Φg`‚›J©)@{%ο%ˆΐQVΪρ‘“‡ϋξ‘6₯€)υlz ΪΗ=€+œ]£ θqœ•YŽ/'s•+Qα*+Ψ ΆBΫ,©’YAω\„—q˜Δωœ (Έ‰R1d[Θ αψŒ‘έμœ@\#Ή…,*K>²]RΓˆ'•8qβ₯H'ΊšΎͺ―Λ.ЦμCΆŸΠ›εχώψνv[νMφΣ‡΅λ·οA/³.²Δ‹wήΐ|TZϊΦBκCž΄ξ§d«ξΉ‰ΎΜΝܘ΅ rVN8'ϋ JŸƒσžΑ}M2ζAΠυαπCσ›!Γg<ΫΊ;©λ(†’WdΣdi¦l±nωJ[yΓ2»γ·~ωΫ φύο}ΧΊpΤ7l\ι™δ“o]ΏΚž~κIκΡΚΩ'ΠA TƒΤ‘°€,[Αw%ρ<Ψ>‰/ΔΩs’«Ž "ς@FLbΈ ©‰’όyFΓ™\λ=?ϋ– Šε ʈWG(τ|‚Ύ^@.ϊσ N»z’’rŠΕ―Xρ†εvΓ­7“=:nU4ABμ㉧Ÿ’ŸΛ)Ϋ±c9Απ¨NBύ]Œ’g€κΧΠ9‚cœF π0€A!ηQλ?Ÿys5^8Ωαgsœ!Η£Œφ+Ώ$‹¬D;d₯ɜq$ η™ΧΒ`gi%ΤQuKχPs₯ΜlZεεώSτKQ"Ή3)²ϊIΐG5"VφV"%—qθ΅εΫQ©»h­W—Ϊεkψ\ωFψ`μƒ(P³΄fρZΞ.˜8ζh…•••N;a αδγ€3G’dV£S_2‡ςόό^½>΄VεΗa47½BΗωUζŏœcΏd’a}±!]—0 G vˆ›`‹ΟΧ²ιwŒί‘Z£\|»0sdΥσƒg8ˆ '8(Q]Χ-0)Ι†eA|Nv°?P€E€@g†€3}έη}L{;”ζ~%β’:Ί,!­³LQΖψ>ωΆo<ώs|ŸωΜgώό?ωϊ?)Z ξΎŒ¦ώ©³n»ΡV–WΓΝ¬·΅•uΆ­~0!NΡ:€PΔš$hψΦ‰ƒΦ­E ΉiΎ@ΧΤ «IPκr>k!pιDΆύŽrΘ³Y¦Gνᇑψ:†αψΡ#\8ΛPjž~ΒZz†IωWΫΕ“Gν%6viYF=›§‘¬D —ψθcc4θ@ΡΫ+GƒŽ·Γ[ΜΗ‘£x΄»Νž|ςiΧ¬K(φώ§žp}ͺ*‰ΨqNƒ$”WD΄§Iͺܞ;ΘXHΞ™ΗΔΡPΑ'pψ(h¦βεσωŽ€¨VšKίŽάΌ0Y.lbΚv‰gœWΜ}βτ 1TΓ΄)Τ§f‘GEΗ ΅Εΰ ˆpΐpkά μ†:Φ³<™― lΑNΊ(3>Φ}…¦‡LS&‹ (―ΠΖ8‡šGχΐ½π ’€€ͺqW°cΗG†4Ž@’υηe>Ή5Ζ‡ƒŽs/lkΞ±$™'q(h m# ζ1ΖŒυ4‚<ν°υ±oΤΉ\₯Η†Ζœ“4…LπδHN1ύΒ%v‘­Ϋ–Xb8‡£Ψόښr‚+ΊŒ„H9Μ‘($@‰T‘%’μJ^ψŽF΄vύ:W[ΣΣΡM#l‹+­·Δʚ ςϋ aUVΣ=˜ œτζ9Δ=«žKІ κš.ΆXϋj)…Δs‰1ωΙ "Ξ:γŠ 0’)ϊ–$]Υ™\ϋ% Gτ—K—Aο©Η)§‰ $½eω|Ί±:ωΣώΎ>Ξ#ί;£Ύ D:««²¬’Žξ§Ω›’Μ'«„ξ4€H1ήΉpπŠ@ΓΓH¨vυφγΌAe!€ͺ­¬¦Fƒ₯ͺ’k5Pœ`ΝDqZδMC/”bZ€ύ:„‚\ˆυ7ΑdRά«"₯ εΌWVδTsSήΙplψΜΙ‘A—ΕμFύŒΕ?A œύIς·-Κ‚2Ϋӏž‰^mkΧmd[Άˆ.γ•₯Ž70Dφ‹yΝFΑό0Α–”Ρ’ά‡μ„z‘D•‰Εη)g]·O΄ΩzŠyΩ @”ΪΩΩ–\jPδl+d²=ΗΊφ2ξ)‚J/Α›hVεΥudε –αό+3²daϋ}ά*)fΏηή;πG^΄ ]Φ ϋr¨TUΨ~μ$‘fŒwάy'KNz©.ρ[ίωζ© ͺŽsŒ q|€ο."C©³&ΔuuM¦lΫΪUΞ'˜εΔ"HžάAQdξr°ϋΔ*ΩΨόl€€bϊ˜•‘=ΥY₯Fy šX&ά€B˜$hW™"/‹_ΕΦla^GlΞο$Λ|νlV!8&ϋ ψB`#εΕ  θ·R\fuυœM―‚,Ψό ζ‚(e Έ|@PόGΐT@ζμJΣ§Δ₯Z=‰D8₯->[}6XύΜΏΞ Φ6Ϋ@‘γO0ΙŽN’PY\…Ί@£žcΔΎ tρAƒ¬σ,μq6ί‘ q>Au67¦„}&{#ιϊ η_gγ₯|‰Ξωq:*Dϋ’A‘Κq+>#ψœ \–;¦ο€θΣb€]FgŠρ’@ϋ<H"*¬ΐk5BVO-‰>tΆwC ΊžIΧΖVwπλψΠύΟΣ?‘»Χ²ΰ gB δlN-9’BεθHι!ΐ¨‡^-tπgΩΪ²*ΫΦ°Θ-ζ]›/ΩoΕ₯’Xqδ|8Σ±ΆwaΌΒžφI—6U1Σ‰Γ-cγ{φι‡m/J1±Ύ«6λC›TμΉύΟ;wiaΐŸ8cwά°ΙώϊΣΏoϋήWV‚Ζ’%KμδΡψ]gϋŸΩnyσέΞIR#«σ§ΟΫΒ%ΛμΒρΓΦs΅ώe!ΝΊš­½Ώ·Q»aΫμ|ΧSvΰ™Α/·[όΦBMΑrΏ-X±Ζp K+k) ;Lc•U#χ cψ³Y7oόρ €Ζ.X]A]Α(Αb?]·ΗΘ€ ofΩΖ₯e(ϊt`'Ίϊ9D›₯ΝπΓ=¨Ž5Ά` Κ$rF0Ύ;0§Nž΄ηž;c—Z/Ϊ›ΆlΔА’­πΨ GΡ1΄ €» -`ΜŽ ΘX|νΚ묽}e-ΈνW)ߌaT._€tυ6Ν…ŽPR¦^4©Κ.bΑγ$O‘yαЛ͝!0Y»y ΘsΠΞΆͺψΠ@Μ"tο³²₯ευΆxρ2φΡ„;Έ›―Ά’ΎΞ²ZΰlZ5›Œ^Ά*κMβ¨]υα ʘω3²‘’δ@kαpdHεJ™…ΞΒ8t¦<ΠΈ zϋe ­§v4άΓώΛ‘h0Mq{&–΅ͺ*ίz„μρoœΦœ\šΫ%‡ x ::™T7jΖgvύ{P Σ o¨%™Άx;ΑE›3£pΌsH]Σρά…Λά%Ϊ*ΠlΤ‘< ¬κζ8μ€δ!Aξ‡+ŸΒ‘NŠΗ γψό8 |4Άc]PκGuHΞΥσŒ ›’ xχ Ίδ0r)K*d.Θ!,ϋ€CΚ‹s©μ†(ŸξEp–”‘MR­H&Aπ}E”ΉpˆθwYQΦUˆΧf“Ρw)[":€—1B7FWιiI}’.ΰu1²Jt Τ’$­ψΘΣάkορƒ²ΥpΠ%RyΨG2©DΚHω ŽŠζ…ƒ‘nίΤEƒ ## Ψ!HœcWλ @ΛΔ+H£’€:“ΦΌζIŽœ²jf˜fΞ5ͺΚpu@d…‘’”£•’‡Π& EΞPp,ۘζA, §Ρ‹³UEt0€V&EΠ œ¬Ye–ψlρηΡmz†§˜ΐw`’›΅…B—œ%ΖBΧ63‚γΞϋT+3EΠfΘ77·Ϋώ#ην>Ό`€±˜!¨bMζ“5>“ ΖΛ<…ΘXNAλ§E~>ŽF ¨)Y  κ^ό2}8ͺNJ:6BνEΨΙEgα, ј#ξ‚\Φ.d–Υ4 M―œ^ΐͺό«―ۍσ”iγέmμ•Zœ62nYPŠpH²¨™) ΚΘ’Φb`pŒz yΙeΠtΟG³΅8”$RϊΑ žQJ=D;’²Π’ψ^ΡχZΪϋρ4ΩW¬₯$Ž\hŸΩ8γ’+εfG•/Dp€b9Iρϋ4Τ―0έΪ"D‘ηΜ"²1ώΩ{ο KΟλΌστΝ}ϋφ½sN“s r"B„@,‘¦HιΧԊZkι-—½τ–Kε%ΉΘέ’μ²hΩ€LŠ’B$'`f0Ήs˜Ξ9έΎ‘oθύ=ocH˜†hHςš‹ΜτνΎο η=η9Οy ]3“ ΦN‘z',EV§χb/u(8Μrά„θ  gνˆr(†‚7ω’¨ΰάa"θ#)νB{κ'―ێΓ¬‘χ¬/%ιΔ>fœys½γvμwο§χ Θ>^r'­€Ωnk$8ΨyΔg'νϋςuσΟΎD3ΤΫ°UP±θΗ’lk(Iΰ—b=‡Y»!Pψ-EE6OΆ‘‘ ΰu VLα•ElDqνΑξ± ύύφ»_ύXαf<ΎΗZjun•5ζξ Ϊ–c¦AŸ#d(²μ 5³—Τ3JΓ μ91ΘnrΟ κυΌχΜΎ'p•-ΰ7ΨUΖ°T yy―§”χ„ΨΛqlJ)ρψ"Ψθ,V MHˆΝA=¬χ’ο½bŸώψ‡­ητyϋώψž΅ξiq4,63ηM™M,,Ί^%Rmμξ=ΘΣdΧ²oΩs θr ω‘κ.#γ[cγ=έΆ΅ΆZ_ΑGά‚Σ}θrΞ±%Ψφ"쫨ν˜€d–%¨P–3€]ΟθΔΘ°φ-ΌΨY?ύ*œ€’x †(M^€ WHM€‡±sj’ͺš)•ΉΊ lYžυ)»Lƞγ| Η‘ŒΚώ¬‘±QFΉ 1@pΕΐσ)ΆŠ—5"­>G^ϊκ”οΪi'·Ψ«#opΡ―ΚY1{Ώ[)κꁝΠυυ­K‚fO§Σ ¨™―ώτ)Δ >dmΠ’mΗζS.γμ‘²πΚNͺ΅σS9CΥΈPEν’Νwΰs¦‹Ϊ`¨ξDΕζόϝ)Ϊ ς_hΕύ*Γ†ŽκYδg]δθΧ£3ή‡δΆ<ζ©ί\‘Ζ'¦¦@ršΪ΅qΐΩεd%³œ»+d³œΉ θ|΄ΥRΎωxgXοηΑ.}η!ΞΆlWΛΑs*ΰQ#/₯sυ*eKDOšiR”s””[΄UΏ/#πψΘΙ[γ#ΦZ^Ι«•ώΒ! Σρ‘_Ψ^yώikii³IΠ–}‡Ϊκτ˜UΥ7Ϊ#>³ˆΓ™^›e1l ›:eΫA^φt6Ϋ󯜲ηŸΑŽ}ΰ3l;qχ}π_Οc€λ¬šΤμNΌήk—X0(νίφΠ#Ά0rΥF) ’ΡΪ…#Xq»lέ:~γΟώ[’€x ήoUSή^xω€=ό;μλ΅!Άσΐ!»tφ5FcόA^έΫΝΗίζW§ml’ί―_η@!-L£½νUΆ­Cέ‡Ι¨q˜εΙ‹B4ǁΒϊA»€Γ?:9iM΅πι!"%Šu β ‡OD;<·a―ŸzΓvli·7^;k‘kŒ"/46άk-͝ ΠκF ‡‡lkWUΜ<ϋόIλήΪZG§h V‚Œ…ΤeζΉ†(/ν‡qΚ)L†O.ιΣ4Ξ‘2’8][^Bρ%oΜ‰₯Y{ ΰ?p?ΞJΜ^yΝ Τ=··ΦσθH7Εzύ͏Ήη#Θ³ͺF$*CN¦°¦½Žͺ˜₯i;Š΄hŠiq΄;rΒ7p‚υGΩ]Q8½Ψ e]ȟρΩ’kς{ξ? •5ΗΌ:ΪλKΟyΘd…qt ΕFςΰbnˆ–ι<‘ £ œK%ΦΥَα²εμΖΉŽϋG €/U‚ύΗΎ.p‹½gί«ΒΏšBmΰ υBζ£² ;Ιω 5* ($[˜'@Ό·65ΪwfϋmWΕ!μy!―/±60΅‡£+ΚΜ`‹ΥΐΦ'&›ϋΧh Yϋ:Ψ—ΌDX‡Οηψ^ΚΙγ4±«έEλγβ`iΠ— +£.₯Ώ`Ρz{°ΤΪaΟD1\‚(„ΞB­QΎόζCΛ靁xŸΘ?fGύq‘Ι;?Έ»1a8ε…ΚYρΈQ˜ΰΕ5~ΛΗΝόώ“/Ϋχίe3€ΞΗΒ ΖPrπΰW)Ό·ΞΖϋήΟΪΎψ[4Ν™°ύΗn±±ž·8Μ§ν؁ύd=.ΫwΎχcϋ_ι—­χμ+θ¨_§‰ξ­Hmγwτ^>ο²9υ­vpίϋ맆st‚H–MŒuχΥ‹ έ†Τλ ς‡₯MUnsί\[›sϊwωΏΖCΤTI UJ‡,Εz"H)ƒqυβl{ KνΪΐ7uuΈLj€·dύ4ΌjΣΓ4HBΙΘ[T‡‘. “1bΝu ¨ŒP8‚Λύ/ώَύΑ(γt―PC²0ΉH‘`ƒ½>|έ=q>ςρί°έ€»'i&ε£ pgξκ¦*Φ,ι m•ύμ\·mΩή/uΨJ[ΈVP½ΆvuΩ£/ύΈϊΩ™y”΅ζθXLgφ±!²/§%’¬, 7}Πώβ{O“QΙ oy»νΨΆΓ9Ρ\΅ uΞΡq’‡d JΫΚ¬:ΚΕζ£siλ§©Qš Aτ&L4¨ 5c’ΰ€O§GΒ4rUΥW¬€΄ C]ύe!”Ίœη<™9Ϊq­2λ‹\λ"™]uΞ^?{ήώοίϋ‚?ΈΓž}ξ%72–ŒΆd‚•-XCŠV‡šD‘σ‚k ₯ˆRQύ†:ή eS­ Q Ž3¦#―šΞ&ξŠΧqΪπk­Φ±γ( :§ΉΎ€υ œ³ΫοΌ§4LSΌh“Θd―Ξ]Έ†]^ΔήvαθαάΠ@tazŠωΡ~¦†2`r"AטΣ<Φ~œ•₯j“ζ7—vP@K‹²]μΑ4’ΏΥ^ΖgΪXyε&SέδΗ&¦¬Yάr2Ρ –‹xMbV5L’hσΗL3λWκc8ί8> σ)ΟpN2Θq<Σ\ΛτΒ¨& Z―gq”^m8Έ-dΚ FF¨YΔYε«ΰ’Cν$γ¨BΩ±‰A«¬ζs΅zXcͺ˜†.”)"€,$[ΉZZ€„nGNυ11²~‚…%²sΠKΨRξϊt~ŒMΰHˆH­ys=vΠ~ηkdŸύ΅;lή]τHδθ¬Ά₯ΤAΙ#μα~Yl€2tm­Θ…Ž [“ΒΉΤω’’kW€ΜY’œ!`g€²!!lœκΘ©Ή€­€½l±dΰ•ΑΪΆ­Λ^œ|[JGnš.’%ίud΅JPU·n³‘+gνσŸώ'φΥρ―μϊΚ—ν•'Ÿa-`7 ύ Ό&σx5Ήxγ6@P\Aΰ63Ga7²ήcSs6K–b*²±“(u[3Σם?•`νΰΥ» YsZHΚFΕζ‘`κ}¬}њT‡)’ζ=Ρb(žŒIΤ3έΣ:Τ·<ϋP ŽBθ™H|Τώ Bjέ*Έ$JaχzΛΌ;·C‰RZy„RS˜€²Ϊ-―ˆ,]<ZΤΣ8ί_¬:€Ώ4χ·Ž ΖΔφΒε ―9*ε‡οΉŸzΔ:2Ε„ΑΨO:?tˆO†utηF‡³U…α@>œ :₯ 0ξ€c΅ψ“ Γ‘δΌχ)"{`½DΘ΄ͺξcp₯$%Νο ‰‡ΟKΛΙXMΜΨoΌεϊnβΜ\…1ΡΣ=ȁ@ YΫ"”ςrζοΏ— ψύΠ.Σγ}Χ€ψq"€γ=bΊ·‘ΕΡ—ŸΓZΌκ)ψΕs8…»Y”λ‚0Qβ Γ}Φ‰AΩ(c2YΨDί»ό–¬m²₯§8\Š˜…ϋϊkoΈIJ²€;9δ^|αλ$5Ω…Ύφ*© υ9ε₯6J mϋn;w~§σ­K}vΟ}Ψ Τ‘ΚqΒZ[šlqz˜t²R«h‘Ύsϊυ—m.ι³ά{―λΉpρΜ-L±šΫ0oΩ‡ρΓ=hϋwοt°έπ£D½O?Šέ~Ο=Njp‰Thu]ŽBά^~ωU6`«νάι6·ŒCqσρ+FΰWΥ€\Ήr…·ΣΘΎ’‘ &B²v2ώc8Ϊ@/’YΎίεΒUΤj0ˆΚlΝΓQNγDΦP7€κϊϋλϋ΄C€gPaͺ`½Τ–]xλŠU76Ϋι~»k½?Ίίζ@zWh 6Ϊ)iΰ‘₯Α!gυψsφθ#χ“ i²W^|ΑιgΦίέΟ«+tuiΕοέہνΞΣ«dΒκh€Βΰ­]Ϋl’z‰ή‹—mλ–FθK–Δ‘ά­@φρ§pPšΰ—SπΌ†.|μ΄}ϊΓ²CΡ³­­D±+‚ΉD`ΰΓπΧWGωόrŒaُq‚οΠ’4{' §x9ΏŸŸFχsIiμ»Έ΅–i²$y;Όu ϊΤΕΰp8ηP ₯²˜άΎ³βμ_e/Ό¬ε/ψBΊ’ ή‹+zΊΊ œΜη΄κ)Š šqθb{”\(¬ΛΠπ–‘£‘Έš(ϊLeaπΟΈWΎO―€šΰL(Σπς[ηpT‘Nεs#8—’]IφXίKΩλBj)4P$h(ΔΩU-L ΄S?γ 4Ώ/”‘‡ΐuδ%/ΨΔπkΦ{αg6xξ9»vξ€ λΉ|Αu ζδ₯ωΤΎ5κwr4ž[αo†ΟΣ7bυΈD‚©sΚlθθ’ν –‡ΜΒ"τΈ†0GmRšƒ]ΠΟSFLΞ,H%Žz‰γ8C‹γ~}8’…‘h΅LΝ™ΘΨ Y;<ΠgΝ( E …‘œŒ2η>œ/Ξ@ِΉy¨+8.S¨ͺ«»Τ€πσΙΘ(BVa½‡™Lγ₯ŸEcAb—;ŠΌtdεʚ pψ£ePΈψεΪ*.H­”ΈΘkqφ@± °Ϋ`L%>2΅ig*Oj΅€F‘ πͺΚΚwΈΖ|C‹Βa«k¬‘¦Υ0ξw½―>AœΙ€z‘’¨Γ5n2©ίωΐ=–‘~ξΩοΓ5΅[υƒά—Qλ$GD5e‘H…]Έ<€σ B€³Ν+„COS―³Qνš·πy2@yœ$ψαJυpr’™(T³\/ ŽΔyω5œfœJh]ͺΙ QO±†ZΣ4™φ θi–ο_£XΎZ">Δ)ƒ)Lv")BuΙhDKͺ]±ο “—_:i΅ƒ τB=rjYYφ–JΟϜηΩδ!ΖσόΙΧΩͺΨœΐ₯Ε)(dFι]Σ܎‚ί)ΤχZ׎έξμW° ₯:Ρ‹ή’μΓΊœDφΛ π¨άvξΐ~”5ΩόP/ΑQ›E-$%O΅‘ζ> •°ume5ύ& ΫΘmŠΖXΫ vυ*l„‰q¨{q»•Κ^°]Ωχd α9Ξ QA#XΤ—° ›©ŸŽhυXrK½Nv†ΉχγΜKlCΆ!ΗZ LEήl}²%1Ώ•ΥvΨwž~–}·haφMWGNhΚF‡ϊ\ΰBψΞO|μQλ³ή8 θΤ€ύZtެh¦³στy!γ©Ϊ‘‘qφ >J-G΅k=@“Μ%Ω½ ³ ±•+SΰˆΨž]»Ή'ωσPψ‡jχ”αΈμ&σ!_LK‚| Η>ƒύPΆ+'€„υ‘cͺ(I°Θ°±N°h¬DY$б \±›ϋ|I»+C쾈ρπ†pΌSΌw‘½™…N*ywQ e'η!βΚ ³Β¬1/Ο™Ωl?’@ΓΧ§νZο5φ)=‘Έ%φ`*1_θθ[ζkOSHΦϊ*ΰ€(΅šΝ—€°I²0ς!ۚjf`Ma—½ΠνrΠρp«cΉ²F»Θλχ³ΩXP™€vSzκπ”γ}0&ŒV r3A£όœ[ΚJK>| ΐ‚ό=I¨ιό‰ΐ.¬τ+―œβΎBv`Ζ!gW»―‘Ρ¦  ψbϊΕ)bτ¬Ω½{c’σμΓψ·¬q€#‹˜T0‡‚ώxYω\W ΙΚMΛ(ρŸž aμ>Ίm―ύΩΕΣv’ξnΨNΓ₯₯xhGM=…@+T»σθ ,,!BOύφΩφ- ’jxλm;ωT8€ž]ΤM…¬œέrΧύvŒΕ)κΕ©χζŽ.v"ΧZΠAο Ÿ''¬©Ή…w3Ω|Χ*ϊσΗξzЎιΊω½Ύ«±ρcΌ‰kαώTάvΰψ ώ™Ge? ΅φΊλL€(:z«Ϋˆ>žO~ͺ•ˆ§Δλ4.“τΏηDΩyςρ,ώ ΄2jξ#₯£0ŞΉ σΊϊΟΉtmm}‡‡zG5ϊ p9΄i¦Ά3~εόπ™qϋڟ…ύξWΎh••φτ³oƒΠ†Q²Ϊi¨ ŠTμ±Q'tκS4=œ±vζυθργφKgmΈωΥFT€^†Hα±ήώ[[°‡nΫo{w6Σ­“ƒ%b?σ$—+X§βΥgqNΉV¨z$pͺ‘„έNݐ£ΦC¦ξ؎»>6LŸ‘6ρ {δα{­kk§υvΨωW_³/~μχ@‡²μB;] ·TτΤ2ςΒΚ`άT0ŸΖ σȁΐ)gIΰdŒ3€μS¬q‰)ΜΜOΠOdΏ}ό‘ΓφʏŸ±—|LŠjH§ }p•HωΨ²u΄T‚8ΧΒIAg|ΥώέΧΉmι*wΝ7p\W—Ωχ LκΎξέ§IΩ*Eώ…ΤfM­RΈίC}…ΟΧz3ρ•‘λα\m•£Γ  yή xΓ§wN‘θtj©[ΊjΌŒ«zflpΘ !-ΰ`Xaχβ ©Χ‹ŠΧ}Ψ žeHΨη8£ !œ \\ίQ @τ$ν(ωZ’!‚=ρŠέ;qHψ<ά ‹Χπ’"² £8Θo2οϊb]»ƒsž‘(mKSΤΞ iΛΧϋ Π…Ίƒδ½ΌNσ 9Λq/:x=\OΗ5ΐα™e”ιf°=9„5VA”ŽF˜C΅U=υ_YOAcνΆ₯ΰ@KΤ)…ι?d\£ˆi„ύˆ`“ ΨqΠΖαδg‘R­ΰΨΰ!©Δ™υ2ΠΚNEοαΐ[‡22εEά½ΉrφcΕ4Θ‘‘nΑCύ„seS©iŠΦXkm-’γ8Gp½AUKΛΓv„ώ?ύΩ3ͺm± ΞCAͺ ‹DD“€*‹SR} ܐ,„¨t‰f ν"ΝΎS»ΤYέCΘ 2SdπΖωμρ‘Iζ¦ΩH€Ϊ­­vϊμΫ6G†Α‡Σαγ³€Χ/ΪGŽ z”ΰaϊ€½›g•? …wGωώ]»Ψ·jEq+gΝm―„j™‘š]eΝCΙΈφ]zZpήvνΫ‰rT‘ήIœG(_£ύaSNϊΊ«*%’Yqœ/™*?\¨@8νC­ ;GFΘ/‡R’β8ΑΥԁHNΩ"@ 9 Ήι›@a~1RΏ’—X6T&Τ°8ϋp„p8ΣPUό*₯€.ξ][PJ‘ΝΏόr9έZύΨTWμΛOΜΊ£γ¨πΈΎžš7hQ>Πς>»7ϊ#ϊgμ±φΞVwά‚³Ÿtf9‹ *»¨"g¦Ϋΐ>$ΐ&Ϊχ>jσcγΆ8t[₯=Α^/ΪΩƒ PΦ}l”ψφ)!ίΙH)σY ™ζικ‰p:ε΄BMŒBƒL³U˜¬¬†€ˆεˆ"”Λ Hπ ¨°a<lŒΦwŽq–b§(ŸΚΆ7πϋ…οŠbg= [–žΨ ž+ΐjνζa_œ>ω*MήΩ{—= έjΫξ-\CΏ:}jo­υ#’ς΅―ΛΎϋέoΪέΠ―>ϊιί²šθ'ΩSΨI#)_„±j§j[ž§WD»§&’ ·0=aζΉΟκς(Nθ”dΏ’Ψ©Q”αΖ'‘Μ­ΠάΨβ¬λ€ehHgŒyΥ]0Έ<‹cΝά€ "Όsδ₯’Θf,X’ϊeψ~<0œ{Ωh|e<˜eλ’ŠjΌ§ *`Ε>)₯€;ΟΎNςg™΅"iσ${Aϋ]5}ͺσP¦ΕΛ΅¬-SϋΰέΧκ”•MQŸ*ΡΫ"€Ιϋθ ςƒΗŸD%²–,­š˜ΪΥ9Ξ’0 XG%QθxEvͺ/NΚΛNqϊœ 6εΜΉηι_hχ8Hx@0{5KfUυ’ΐ‹ξL3Ωΐ<λ@yΡ8―SΖK’μΊwΡhYξlΘ°dΘΰ‘Rι|˜›e_―81‹ ’zΥDΡ“όϋRw/h=4ίάΘTΜZ9Ν‘i·PN0‰―»‚Yk<–πΝΗ»F@ΦθψPP‘€£ u‹+ΧΞΩΌψΧn’6ί(jƒΧFΦVμ#Ϋφ1Ήll&T©μBώι‘ΫμΚδ˜ΣνΎ»u‹u\λ€f%όό{υ/'gΛsZ jv£Ώ Έ£ΧσΠΏ5ƒ7€oυ]zŠ—ΉίΉ(έ½rσ pDΙxχΓ)¬θ <τ{=Ό›?›ΟΉοηχ›Ÿ―4εζuάψϋΖ΅Ί/Φ»u7Ο( 8@€ˆžR”v*i…΅,užβ[ŠP««q<Ό'P;PΎšΜ 2ͺ’,τM pn΅νφYŒ?ψϊŸΠ|π8θ)\]Šλ«+mh―y˜ΆΡΡ Tk"ΦέΧk/^΄mP¨>Εί°ΎkύΦWίmΌο»σΔN .‡-΄•.υ* žŒχΕKC8π₯1Ψrd…°-αPa«y°–Y{)HΩυΤ?Όuςœ=pδ0ς’KvόψmΤψμτSΟQ(kv­oΐΎσ—Ϋη?σ((-Ίν$ΗΙΨΰ.q\ΕP³’ΑπNPp*n‚Œ]τ(‡‘Lγ¬i!ιmqΛ=¨1ω9άφmο²& hkΜk'~οs6JΖh„ώ$==ΓtW.·G8BΦΠkQ($σΠΊώλ_=‰4«Οώρg> Ύ„ Δ· •€>iŠV\ƒ ·ΈΡκ°Κ(Β?{aυΊ3\P%νT†΄Ÿ8ˆ\­…£_aΤݞΧA ΧpθBͺ#νόlM„MΥ‡ˆΧ,Iχ!U‘Bdˆ΅EβΫΏJι“‘Ψ€†$u:κ1 }(έze2T¨­ξ^Ω―”j+ψ>Iγz”νΐfph¨ωGf…+ΰšUΗ£FŠvΟ€κq²‹=ΖίP`¨7 γΐ%gΗ©ν‘ήΖ΅†NΚΥQ„1*(‚΄κά} θρ’ω~eE„"zΈ^?TD!ζNχβKA™ΰ~”ε9cd ?N <ω RΌ¬u xP?C-θ)a‹Τ“”B­+Az:ŒšWŒ1iΎ/@ρl%ΐ8Ψθ{–{Λ"1š‡jαjp8ΘΓΐ« Ψ‚Κ}¦ωne||BCΉ(;Εη¨Cu%ržK3+ΦUΟα_Lcθ©C΅Ί’τ© cHFgμΗΩG`Σi₯e’T2WμΡ/Έ,œYΡ€(κk˜'Uλ?ΚοεΔθΙΰc#εω·€μβ=CdΓY«i(ΆkΟ3NœΦ³θW3σiϋΖώ™}ε+―€迊κ/uŸ΄GύΫΤԊ>sΪ’UΆgΛVύ²¦BʎΕτY²«ΟΎny2Ά-XΛt½‡FΕ¨#O η»aΏ§Τ0…Ϊ 5o ‘YZΖyS~sT Μ ‡kOν RΦ²'’|‚`Ρ$ ‰Ξs?•«€1QΔ qIΜS£#u5Ν '%TΣλ8ΚΈŒμ…ρλΤΈ°^wu4²φ G±ώΨq¬u9Wμ"œ#ΓBwΥ‹!Βk'‘LΝ.Z3ΞΊhcυ Ά}ϋV”˜Šlτ„έw­’Ύžl‘κΐθšΝZ‘J‘LΙ=;9lκς XΗ¬k¨@ζ+Z\aΫΨoώΊΡ>2³. ΦzW`/ΐ@΄P>6šZV‚ρXK!β2¨dΔ¨γK`η6Ψ7*αXc$pΒQUs–Bς$u ΊΓ VMUχK1Ζ 0&@Ζ—ΰ'ΑS!νψ7?c“uφΓG°qώΐ"Y& †:ŽΫk|wgύϋγoό™Όε(λ‡ϋ0Χ‡Z6ωΤ+ν±ώšέzοmφ΅―~Φ>σθημ7©i‡j-“λ΅³€”υ‘‰Ϋ"™œb‚]‰²½½8°Ι%o²dΌ"F¦Q…u²²Œεˆ`аzΞΚNαωp?ΤόΈ4ζ ›Ÿ' WfJ΅/Κ⨞JŽt‚υ¦~!κ¨ ‹pβΓ”j rœΈŸ#Q–e$ξӜ7 vΚ€©-Μ*pƒ³¦`ΕΓή‹3‹Ψ§5κξ4–RΞ“|Ή²y *£¨¦-Ό¨&b™ΐβΆΫv:E·μš¨˜|·qδθQ»ϋΎl¨ϋ9”γΊq.œ dP΄²jSκΕ΄πŠΎΗ~ V&[6=u΄α”Wή|»QbΗφμF ©5@GD6 ”br>"v‚λ‘mW2]υΛΘXζ>’ŒwšŸu^8‰\|BΥό(σς₯°y€±ij=μο5zLL“ωVΆ›38Τ}’{ΌλVΧ”±·»Ο&¨»σΞ[ i؈ΝNΘb2_ZΓ¨Η°o>nŒΐϋ @0TJW“ύΪ]<0pβœ-e!ΔIԁ±ι¬ΛΝPRβŽΞνξ₯:Τ€|…εaωό·w;ρ7ώύΛ»wΌη{7?λΖλίύΙ£η~ρϋ_\Ρ/žϋo?χΖσ7ώΦ}ά|όΟ₯fοΎ}«ν9z7¨1Hl Ž€v0oƒ½#–ƒŠ’Λ’0ƒƒ6ͺΞΫρΤ›šN`8gQJν¨·soœ³τ—awήqŸ=φπ}plAVξ»σF#ƒ°@³)€κοwzμϋvΆΫ~ŒΧ ?;oύΓΦΡΪ‰‚Υn Υ H*‡#Ksτ’Εαˁ―Q+o΄Ζ.Ÿύπ™—A>)ΤƐ©[T&©ϋD8 /§}dΊ‘ƒΗΟΈ'A¨Λ@υƒΛ±τς}3δ|)1AŒΛΒ)(’©†:₯—§‹‘P©―#j©"ϊ0Χ΄αs2*μƒ$έΥ oΜPΐIΠC «iƒζ‡R …δ…πτΛιg£¦x ζ+8!c“P?\i Όyq’)ϊM0ήAΠY½PjπoG9©π—ιR^λ³ΫΪk=稧۳‡u)œκ­dΗ…NOΰ>€°βͺF*KύKHN`¬pέ*S°ΦζαL/‚ξ6R―ƒ.ΐ‘Ή>4hΖ$Œ2^8EΩd=‘ΝeC½dqj³N%PΗ*Λλˆ]‘*QΔYη2Ή^ή†#–!› Œ`Sˆ+Έψ+Qκ!Š Wή{d‡u4ˆžg Η‘χ³―Rγ%p5c^£O~ϋ«dn*μωΗΟXγVš–9hw=KτRe` phgθχΑn#K ΔΘ`‡ˆ¨_iIΤT ύ¨¦§O1€ƒΔœ’!γ%pG―π« IŠf²Kq¨˜GAΫS€†ωΒ_#8`T»€’Zφ%D‡X 2Ψ>μ 2˜a>Ώf΄p4^Ih‰A²Ύ¨€:SΤs­ 9λ²zζŸΰE5Κ2η€RdOdOΥό1K?‚σ}š"ϋqŠΤ?ςΡΫιοŞ8Θ1ΞAόΒ‡νƒφΫΟ=mϋ‘h䇲ͺBy=>_Ÿ%ϋHFš;LVΔ‘²π™M4©žL4© ™Μ§_|šΒύNθ›•\?gΑΎΚ°Ίž+›“bj;,“ρ]g]π}KŒ]œŸU莩ηS7©ib\(ƒψ˜ƒζ*сΞEPΊ—‘‚― ˜P€΄ΥSΩ¨={w9ώ!jH_ώιI;~l•Ρΰν³=d> D"§=Cv6ΕβΘsσρ‹x_ˆ^ξŒΖDEδ… |ουιέ9JίIANˆ¦XΟέ|܁_Ξ»ή}юάϊŌllœΛ₯±1?uΗEα šD˜tpO_4Ž―8Ξφͺ₯ηϋΰ£BρŠ’ςWχτ†ηΠξγI„ φ[oί€MOυΓ΅‡— w׏’ΙΊŒ†ςΝ3 ^΅ZIEGΙkηίΈB»ΤZΆΐΑ.‘²%42j€fƒ7_,`—_>c½ƒm’ Vοΐ˜+@ E  δtDΩ0΅ πw―ΟαHPψ}ωςU;χϊφΙžtΈΫv΄G¬ηjΏ₯ο:* 4—ξ·•ϋqπξloε–αZ![Άή«Cƒέͺγ€ίA',ΝKrHσQYJpΧB•‰ΰ‘ωΘί_κξΆ9j9ZΘZΘQ¬’ =ES.gc46Ί>KaδΌuΦΦ‚π Β―]GJ° ”,j—Μ9•9y9œ>Š'Ÿ{•Š/cΝ-|χšίίeΗΰˆΏ~Ίo3xΐA‘³Γ‰νίd‚Ε/ΧCΑ†(‘.αE.ƒ‘ΰA„k9!f:'5υ ν*OCŌ’UΤzα$Bς•ώ$”Rk‘Μ.?˜œΰ=πt’χ»Θ£¦¬8š€»0}AΞ΄υζbE1\&?αPα jόp¬ Δœ¬£8US_ΚΨΡ…ήGσPm@|ΛSΆZΣΟΑ½Dkr²ίΌΞvΕv¨yΔι‚φ¦ Pˆα$’Ύ*Θηθη^„Έ) "x„"–…Ώ-jh Κ0ʐιΐ\‡~€bmτ @U¬/$±²NυOœόAήŸμ±ΡΛ(Xqέ*bU­TD΅ΩR€’Κ™d‡—‘§d EUˆΐ•Oq.‘IT–Ν³Α˜"%+t\s’΅ςαΓ|O€z†€•#ς!:~ u΅ά cŠƒΐ± B©Ζ@)ΦzΆϊYΰ*u%PLeˆ‚ϊ'ψŠ~!ϊά ΤXOGNlα:θŸA‘ηυρ€5’‚·†γ³΅«‰eͺΏ#ΰ…N™Ε»’m)Β$xpΘ01οΣΏWΥΧp퍾ϊΘμΠΗ±Ρnkαω(ي*hθ`+Τλ*4¦Φa{[΅U7΄"θ@vξ1άF=βξΑg£<ρτyφuΞyπΈΛτ,[”ΰ—YΔÁϋŽ ΑSž=(JYUM1Ψ ­ƒu°Jqqϊ[ˆΐΛΓ=H―R[2=:ΝΈ‘!#‹D™Ÿ"l= X9)lœ‰XFυ4}dΌTΗ€±Y¨7MP―RˆpδΉ‡Rj-s‹ρ1¨%jŒh‚(―ΊΜ%+¦Mΐ‰•Z’θHB|eKEo,‘Ξf^†$M ZU¬U&ΤΟΨ±Yφ!€{Ÿ£Dα0g|hΫikGkΟσ–Λ¬‘Χ^UUg­ϋYfΆ‚–SΫVΘζT€I…ΰ€κ~υWΔο*4GΠ¨&ΖΖ2.’"κ‚6„Hσ%B±₯^EDDΐφŽ“ @γVD)δ+Cύ4Ώ€ωΑαΒ ύVώό€Κ"eσPΏΙ‚‡‘OR/5Η:K‘-ȐYπ°†­“=ρsž,ΜMΪΆšzϋΤ‡†F†ΜμΪσƒ’Γ[;kννΛƒ\?„VΦΡΕλ“Ά½–ϋ„²Cͺ›Žδ1€κ’zeU³dU₯Όθ‡ζ&DτΒ 2*–°OΦv=ΠτHб‘–3L&«l‘€ Ω¬Α„¨Jκκg±ΖΧTOΗs’žΛfjBδ–‰φ&π7ΞFQΦCυ’lY˜ˆƒ)%(9ύL1φ£M]SM>c(Ÿ)[³/ΫZ[Y†θƒΦΪ›ŠΧŽψwϋœeό (θ*…)pαΪ†]Az>ϋƒŸΑHΈι πzŠΚ xkΪμ± Ωηo“%ΫΖύΡfά•-–θˆΞUI$γ΄‘ &‘Ηqζ/L+Υ!κ4™Ÿ™%μ& e™σAυA”§T‹¦ Y”·<`Υω›T(μ~€ 5Ϝ‹Ϊ― ½λgEΰ€ΐCΝΧNΦ †‰N€'%+Q‹Ψ‡I‰£ζΧΦΦjm-ζεκΕnΧOj[G+g3ςόΘ 7·4σ»U²’cVF&ληΰ5«ώςC§Ώο;Ή1XŽ>uγ‡_ϊ[ƒϋΛμžϋωλ6Ώτη?ήόΗΝxgΔS~‘ςδ‚… vΜϊ―^aC‡8˜α+• ΒS οKŠλΒ ΎU](YQ—'΅YΒα^[ΧβRΩβ‚?υΜ VVΑλ1ς­­ν «Θυ"Ωι[΅­{vΪλoœwu&CΧΙfΠx$@]Ρ.Wΰ 8iqΠΪ(ΆœΎYP J.₯α2€54[‡dqήA}l²τœΈBΜh6i`©pψ‘.…AΨΊO¦1αQ¬” Œ,Μ[>2CfΜ€8NC}['=jZμ‡?|ΥΒυΊ€LτΰΠΰ`sΰ^Ίc³€QGΡφυžB•άcΜx€κΘ­όΒΤβ ]£Vγ—lχ–& €Τdˆ f‘΄%βσ ¬k(‰5X€&yg_½ΜΑ΄a€½ιf‚/ίuš£ͺ‹²ΪqtŠ4Υu’sρV 2TY_M?Π!T/΅NώGTΑ…jBλ’›ΒΣΞNlpPΰq`ς,ι²λ@.₯ŠQœo­ηW4RΑƒγͺζΓ™–³ξβ‘q`: ρ˜Θܐmΰ³ΥgΚOEM ε`¨˜ίCF΅"BqυεΈδΊQΔςΐΚ p^9Z†šξ<Έε4œ”wζq–GHɏ]^CvN7[‚λ*.¦y#eeΰ£΅ ZNάΉλ ΟB$%Ύ‘:5˜/_Χcλd\ΰο©0Wߍ}‚:"‡―Ί™1OtΖ]R­ΊΡeΦuš,Ž‹N5[ 3&κ3GΚE™>œ³€Š"kiڊσZRՏ‚o7—€s΅‚ΒlΥCδ œ‡‘ϊ0Y½VίN#1š~Š!‰LΗͺ©mX"ΨUs7)#Iϋ_»|Wχ±ΘAέ74벁L›υClκh sCα;T«$L8Rm±ΊD!&pψbPΊq¨« ‘Η@χZ$³¦ŚW9πjJ*ΉκRšΓ1`.ΨQ{΅š j%ΌέΖ ΦWpΒ¬0ΧY²ή‚“Ζώ§~‚ ΔπˆΥt ιŒΪΑ[oGmh‚&žΧ¬ηB7λzG Ήέ©^›ΎŽ3{ΉŸ p™ ΎΨžxβU2[A;°υΕ―Ψ²ͺˌ››΅²ŒšΊ*ƒŒΠhΪΆmι²49ΓΕ;ΫΣcίϋΑφπ#‡ΙφnΑβxflˆlV‡2A\(hwΊ!§ψ؟ed>‹‘#―‹ͺ„Γ.qŠ뒐ύЈ¨ *aβ «_€ˆΕi$M‘³&P?SΟ –ŸΖμ)ξζO†ΰΣK6W²ΦkΨΤΉ‘{bώUK‘=Ό£Σ.ž;ΟgϊνΆήΟή&xg( ]&Σ£βsQw$³ͺ`W3ΝOώ€DŽͺ”Ψς jφhmγλ›Ÿ%« EoIΑ³²}”πq}!2š’]]ΖωW@nΒ5©ι,ΑJJR'’²½ŽsΛψ¦˜{QLc(ae LΠ~ΒμεΦiΐΐΆ½Ϋ‘H&¬9ΦΙ5bΕ“^Η6(Sƒ•ΐΦaSB>λΒΠ L¦€μ9 u՝J»>(£[™°.‚D=Hd‡‰2ΤSUQŒ½{wƒ]fό:PΖάίPN` U{"d?XΚ8‘™–B€ΉSΡs^@Ά#Jΐη#K§,B‘(‚9Ίq‹:δ)†z›#ψ•ΪΨ:ي {ΝπΊd‘Βdΐ$ν›ΧΈΰΨcωΈ;eΞ~±‡rΤ•hΒρΟpο±'œJ8Χ^φͺl±:Ι4§ίqĝ€{X bκυ€ΪΊ™<σγeT•«xΫʜKΊXYκφB½ΉdM Ω‹2ŸΨ[μΕΫ§θuRdwέuϋ‡ ΰCΪ‘#wήeη/Ÿ&σ9οΐ"]ƒ£ΰκz?IW;κΆF=hΩΓΩ »ΗχŒιώ$I.†Α™³gqψ;‘qKx€Ε.°½‘‚zeΘσΨtՊιz4V|…Œοΐΐ¨“ι-°.ύ[Ε9wΕ―XΕΞηΉ_e>2ˆZHŽ_tΉF /}=ƒ|OξΎσ„λη4wfuE,½σo]ΔA ‹ΉVκζCg­Nlζηo3 &T4ϊ7=Tƒ‘Νρξ‡~ή J˜όw~·ωσ»_Ε9㦃M€ ωΞϋτΪwΏΟΤAϊ’¬ΝTΩΞ–:«―ŠYsk;\;Jm―ΩŸ 8ΐΙTS₯,5()œ>ι₯Έq‡PΒyθžϋq€Γ4ž*ÁΟΪ© W(J₯y'ίG?ϊύπ{φ_ΎχΈύϊΓ[έΑ°JοΧΎΚ‘šU†ΐI‰η@XUΨ κ2Kφ"ρ΅€α_Ž_X4'ašu₯ucδE}¨dEHϋ)RpˆΎ:§V2NgψϊΈυŽq ,ςZŽ/IαŒ/R›2B SnMτ―Pη`t€e `ΒΡΠΙλΤΔԁ ΛΡ’Qήμ9§ΞευΥ9ΗU‘$W…f±£98΄―΅ΏΨnόOΛα—³―FΐPl9žW¦ΓIDκ9(RQIŠκ"―Iρλ•UQ=ŽλGΒuŠ^’ŠΘ¬Q/ƒ~#rΠ…ώζq‚„ςΗΚJ±8 cΒτ¦ˆΔˆGΘHUz¬ τ΅(KΠ₯hš@― ΤΏΊ&Ɓ ε„υ+Η-EŸ!^>wΣ~αΰ(q ¬h\υΞ₯p9 ₯Eυ>’‹•γα§ήDτjΜςͺ5=0U<)G5Λ½ΘαTL!ZŠεΚœqφC4ӊŠFm†W‚νΊς :»HF/'X—»ζS 7UVϊ₯,ZAΙ' Š*ct’]’£(4ž !Pΰη9„Ϋ8¦”Υΐ©£γz8 w…ώ,‹¨y ΈpχS«ΓdCbΤΉ@ωˆ؎VœΦσ’˜kυMn•)ΡB?<τκ%pB ρf¬λ TΒ57Nψ,nΌWqX A±KΨ£S‹s6ΥƒμΊξ—y¬/Ϋ½e–Frτβ} u(t(iζ} ΤR£Λ;šκQΆkΗ £ΧΤ€εΠΙ±)+/'IA¦– h Yš ͺκγ χ>1lM]Μ_ Τήc>t γOϋCεY ƒΜMΚΘτΞ ¬,ΟUΰτ$ Ž¨γ}>ΏΐλqJApΥ`p•qMA͌CAU‡υ0Aš²?)hΣ (‰XImƒθΒΨ!Ρ›β>GqˆΤυ\›AT›4ˆΊœ½ Žχcΰ³κΫ; ϊνMš@–ω2φε/ύΚ^§τΔαΧΎUχrΒsSՁ$σe’5ΙΤω¨5©"o^D@L6ΚAm]Π3Η―[|ΆΗ*©[š€λbΟΎ€ ‘„2rZη +σφΖi„6Θ~ϊ‘”EpÌC‚@Z.‹ΖPΗφŠ ‚\Kε–-Ά₯c«£΄₯JRPήvΪΔυP†3\MύΙ< 'QΊkJΗΪK±7—ι2.ΪΡ"4¬υ!œ;€’dΘWpDWP8«dμζQŸ+XΉξTάOοΟa”…6ͺ©{bsSςyB<ΌWςšJ;J.SRq’ƒsƒ’λds ₯Šγ‰ΕzC}ΛIΙρ}¦ήσ^cα>θζήχh!τΑΑ^Œ3Kύ‡ZKS5Ž:h iήψΪ)έκ5ε8RκHƒπ- Ή`Εu\TOHνΧQL˜B­ͺΏw D-J[hJy ΤB¦«‘=δν­‹Τa ρ_†γ–ΒΉΖβsΛ™7/RlΩ€Α™·ϊΖjœ&pΆCΫ€]ŒΓ'ΉΒωω œσ^š[’YΩΥa¨ΊCzFΥqzΓPCς\—¨έ—Θ\L ΩλoΎΔڊRψZoGŽέo»‰ͺƍΣ:ΘΘψ8θŒucΠΒΎ&T>ήrλ0Zˆ4euΜn=Άεκ\ϊ@ΆAp Ε š<₯r$@`9¬€ζ]RΣ¬U‚΅ͺΖŒ$mQ%ΘΟΞVΈšΓ9a3OΤ„E~οΦτ0ͺ`ΫΪΪmοώ}6:ηηiVsœ­₯Y!‚Ρ ξ8~n8ˆ?h` ™)_¨'ι%φ>N9Ξ¨z6x9(θΠ`γΊ½λ‚ „φœ‚ Žb›οQ£NΧ#„ΧH>Q―HƒΚΛvηpΒ ” ’Šμ‰`\°E±Q ρBη±/ͺ-a«;uŸxŽjΐϋd˘Ge]tX’3αεΚ¨( β;°XŒ VOœjΥ+`Nπ^x7Χ’φ:H[΅©ŽΨH.Ε±ΰωEμΘi”CLΘΏŸk]"H,Š2όM© 9ήϊ5ΓϋΑ©%‹γ’3–"λE…½άώ΄sx£’πŽ0΄-ρΎΕοNγDΘΦ uvδ8iΚ”Dp=)dGΪ–+)gSγdeω^IfΚILΑa^€z«`šNχ(p˜LΛΔΤu²(βε­&  ρ_ŽορCY‘σΗαΰfœ|΅μπ₯+ύH¦ΧΰΜ­@ΚXG%ΆœμΰΤDΗ`‘`—Μ Ά:υ±ŒΠλ8κΧg  Χ)0oo―DuP΅σφcdQkEe-Ν₯©γρ!z1jΌJ+G'μ<Β:ΊόάJAMœ’`ͺ«vυεΕ±ε#Γϊ,ϊ^…€2Κz¦€5VZj—Ξ#yLΖpϋžύŒc΅ΠNΖ_™ Υw­"΅Ϊ?2j·΄‘1@ƒ J J\Χ{‡9οGfEγ&&QΥ“³{₯·[AπDΣXߎŠΤnGα\΄±!dΉY—^jcκκ‹‘π@‡K F@€:©5V„σ-# €v ·N Ÿkή &τ•Œο2R >¨uSγκΔ.΄6 έ΄Χ9ρ‘Rj žˆ£―Ν₯f}r€όμuύ*X”Tπ½œoύρd9Yœkφ±Ÿ½BΫί{ΤQΩDMR3GWδΝz°…|+aΉΐΨC@ο#{£?š}E4‰ύ&z΄χέa/<=C?„•’½9sς"6ΗV΄»²›+Μν6Gυ9 P}T§Pˆ­–}U ζ³6°·˜lΦ;@λ½mηλΔ^ωΨ§ ±pU…Υw΅ΨJϊmPΔΝ™ΐ% ξԝ[h6hf$hΧ±w«ƒ=φ:Αr3[όΎ;φ³ξ©y₯^8 εrj™'«8τόb —S·΄Dv‰€#‚ίaήβμ£RΙ±‘q‹Ρ³)•d,Ιf?ψπ£VΣάlE­ν–˜’ž€{X]!s+睹_‚ζTJύSžcwA#˜& ώE}―΄ηΨνŒ+Y |ΥHH…,ΔΈJD@"'k3ͺ)Ρڐ Sd#ŸΙΉΨd„π„Όw–{ΓΛΛeτ™(§d‹Έ?eΠεΊϊ8ŒΊΛs9dOιC…mŸ€]'γ₯ _u*NWΖ+GŠ,³ό!eͺΛȘF\Qύξ]mΤ6ŽA·zΩ>ω™a7QyλRΐήΦΎέύπ'μΙ§ώ‚laŸ έ&Z-ή"ζ\Yα΄²Ύ¬;Χ šœ/ΙΈΈFŒP¬ζ‘‡OΎωφά/ω2—%VθεfWE·b<l(zΉ„ ΎκλͺQ©#ϋͺβrIrKh‘‘Ÿƒr)‚’$5U₯μI)­πώEX±h)rϊLΜΝ* FΠ’… Β‘—τL?ky ƒΠΔόΛFͺ)aIΑΝNθLκΟlαχρ`ρ‰Κ°ˆ±ΧŸ¦¦&·ΠέBcb…~ΜsXLΡ› ³³“σT€θ πq§§™ X”Bυj•βb2n!:@΅‘η¦A›gά ε"mη/]²ϊ–vtΧ‹lnftNΕv€B{ΪΕ]­ΘŽΐχ]³Ξ‡Δ¬ΑΟpΘ‘ <ω…o­ IE62<ΐBΔ`ƒKqŠfpυΚ%«¨k’ΏG JΝ% 8cΦPλcύχR—κΊ>GWΧ`‘NA=‰’TjΈΐυŠOYGƒ"mp9<7χΠ:|ac}«Mx§\O9'W9·7ΪΪυIΈΐ%ρm:Šλ ͺžΉΝή<ϋ*X—­¨¬G₯”qζ£SG‡yζ¬Ό¦ή*„Lpψ\^ΔΠΜ(4˜‡βΈ‰‰IΫ±΅ £ΛV€?-gl•ƒ:ŽAi§'IkΙ›5¨E ”fΖAg)ν[#p]·7ήΎŠ² ΅rz@ͺαR`€ψ«^ ova Gmΐ^xσY»pv§ΎΙφμ<ˆqφΪ‹¦>ψP΅-ϊŸ@_9Ό­… +a?yκMΠ(rΠΟ­\΄C{Ϊ-'ˆcY&J (κε‹η € γ—@°Š)%‰ gηΘΈI&@~fη—l­‘Θ.ž‡Ύ` VΫΆmΗΑQύB‚=‹¬ NXάΥΡιU( tz%ΥΗ(gΖ]Εγ΅MuΆΚ ‘j‚οκeμ+αΙGhη‘²OΤΪk—€”ͺΏ ?ΰ˜(…½ {εΒ8  Œιš.ET+GUαyΩ Qx’?ό–χεDά€#qκaΖ½Ÿ1N58Tάβ-ΤGλpΪδ1Λά(Κα‘ΐAi{Dκ/E9šy² Nάy§šQzθτψN)RϋjΘ IΫΐρΩΦήlω™Λ6£kΨm+Μ’D/‡Β™Άn§;yΗ/ ΚΌf pδ(8G Ή]W|ͺΰžεΥohžqœl(ί“‡λΏΌŸœG£y!Ϋ †¬28cB“½πΖ³8ηr:uΟ*žR΄£ šme‹6Έώ$…› Φ¬ΐ“5Φq‚ή"‹%©ΈτœΝK8Ά‹τ›οwΝƒ8—iΡΦXΕHΔΞbϋŠΘ¬R$.Gv{θœqΑΉ$r•ΜΓc λ@Ηα™Ηqb~ύ^θa¨‡ωœE ©—?ΨήΦNmɊ]œν΅»‘ΟAž§¦°Ÿΰ©Q‘vϋylIr4g`Žƒ~…μf₯œ.¨>”Δy¨jk€Yil=± οc'CY"s59=Β~†σΕ™ŸΈΪYnσKτ™’–k™ fθκU:°ΛΞ\ω’d1¬­ ²Βσγcσ6­€œϋπ¬ΩΐΘ€Να€ϊΙΤέ½— ‘ωUQ?ŽαΟt3φyΫΦZk—ς^ΖαlinEYŽ’TPpŸΛΪ[¦°'B°a¬§ΖζΜSœ'XΒρ‡VWBQτYγB ζ©$γ*Α¨4‚£Χ1‘^ž†j΄ •%@—8Œ EάnΉεˆύζΏ`?ψ“`ϋξΌΗ^|ιyβΥ/rNΓ8”QΝΐα@IDATŸΥ3ZeO°>YŠκ5"£œΥ‚{Θ)3ά.gQ°ƒn_Ρ->Λ^Ύ|ξ45rˆ/ϊ“ψ§(ͺέj5pγ“8α~Φ”›«4τΖΤ€ŽX ΑwRΠ+sB·%/Μ5°%ύμ;­?!Y”ΪR8ΧI(q>dCy²~­-[qv―Ω €’°FΨΪο:‚Τ₯(cκεlθΪڌΌξ-Φ±σέχΐΓφΐƒ‘1ςsφŸΏρΗvΟΡœΝ6ψύΠt κΖ–Ω_2UΨ™ςb‚AT³D«§yΰ2B9jwξϊΨoΩßό(“Κ˜@?“`1Žj62ΫΉKέ˜·Π+‰³ %«­»:ldlŠz8Υ^©} ΕνZΤƒ>z―}ϋώ•Υv΄³°‘ϊnQJΉΦ,η©O™^ΧŠρȐ–‘ •Π©%Š"Ψέϋ6΅YΫx#΅ؐ4A‘-υCQ¦xp;Nο/{&Bΰ=Ι΅ ŒMZK ’αΘΛ³·§<&"ZΫ¬ΙΌ-ΡhΠOΦΟΓ^L°Η”q‘¬a±.”ΡCΐZšq˜' ¬ZB€Ύ(Ω^%σ.Hyηœs―~η›Γξg~ρο_υ»_ΌκΏΧ{½OΟιΑ”ώχzί/ΏψύΌζ—ίσ+~~ίˆsψ -Z9,ο@τωBτnΌF$Mτ©¦ʈθg½―ͺ‰θ[s“:xΖ @9ͺλυcŸψ”υ_Ά·{ƒΚyν‘Η³Ÿ=ω= κμγΏρ ^FΉ°@1[»U‚.ž©Ψ~ΰ νf‘Ό|κ¨πdΊ8œBvψΠ½˜sφ£g_αΚHΧB΅Zΐ +ΘX&]vΰφpPΫ“O?oγ³3vψφ{-3ƒ\άȈ―Mڝήα’ΐLXŒΠppwν=—’›ΏΑžK6N”<<4ˆΚLdΣAΈq›ΏέHm‘‚ΪrΦΙ τ•Χ™;Ϊ¬ά‰™9ΦO#œΓd0L§cς£–ŒY·&€ξ’Ό³π―i:vvθ’ρξΖpΐ•ηΏΕψ€:²Ξ΄Ηv —XV‹# ž§C1EΰS £Τ3t ZA£9”P8— , »s`sp0σ₯¬ΩlΒG_Cp|ημΉΧ^·ίώβη@„GA‘ΙHΰ ,crΠ\fAΔƒP ϊϊ†8¬8΄ mΫήiƒ 68ϊ 5Aγ¨ΖaπΡΰΔ%‚l©Ί©ΓG.Ε­Αω‹‘ιΛpΈ,Γη?uς<λZόΤ0=…ΙŒ—θ1ρ  ΚYO£τ$΄•Εα\l[Άνa–s?Kd8Hά±’ι ,žΞZ 0!±ϋ$gπβXάΞΌπSϋg?gΫ·(+‹’`^DgοYΗΆHaΞΟ’Ωΐω=HWQόr»yΦSžί){(€<ȚNΜFX—ρ‰!Ϋ±«ΣνλŽϊΫ₯k½¬O:ΣaeSΡΘ Lƒ9)φvŽχ¨·Kφ9‚ΔnˆυξaΏIρŽ+ό`t¬CyτSLܐ]Ρ=+  »Χ΅l±ΩQθaj¦§†˜™<™dšjŠk\F-μ•WΞpΞo…VTb; FίAω;o±όhO>‡θH›ωθaΓpq&d²ΏP_Ω”M^Y°΅9κΒΐω \·ν'³’^.²yd‹ΈΦŠrKRΉQY’€„†Ζ€Ϊ†0Š θ:h€ΜΟMΈ^3ξ7Fοu„²zqζ[χ‘4e;4°“]0(θ~ΖΦ άq=–2Žš}=œs©Ÿυo­*ŽΖΚ“ °EΔ’“ ΈŸ („σΠάΐ8H”Na{ԘRΆΗIβΚγΚΡΟ±ΖKΚKύž±Λ—¬‘©ΦQν*©“`; VNp.`G ―‚‰κΊ»η#Ÿ²Σ/~ίb°W¦η'Ή6J2Βͺ…­™Ηe£u-AjLΨ|†‰οΤHψρ&m˜?­;θΖυ ψΌγΔ`άxr¬HQLEρi²’SŽΝMœ¬#œͺκJ轎B€…ί»f΅ΨjŠΊ™kά”ZgLuNΞ“ν)${η§ό Αύ/Q»Yk AO=ƒΓ.˜+D=Σƒš„-ΦΏιρ«~χ7½GΟΏΧϋήλΉ_ώŒY―ωεΟ}Ÿ7WŸ3οορΫχxκηΗEjΑήψσ/u‡ͺ ιυλ€½œ(h‘£%׍‡θŸλ·—ΠMώτΗ΅οη/] ’I]Kψ hΠ>Ϋ3/½`υΒ9;x`™‚L Θ")υ—ΰpjAž½t^[μG?ωk»σ‘ZΤ·nŸψΝΟ[ί…Χν™ž‡n³έv•>ρƒΗνŽ‡? RyŠ@‰B]’Χ‹'OΉ -Mτ3(₯ ΒΆgG“ •ZΡ­ ά‹χ [Ήh=((ί·ΥsgΨoάΨΝΏV#€=΄Οx7@ˆ+†Œυ³mΟYρBΩP―·œ`bΆΣŒ“έΈΨΫ:…'KPRΕ"cPn9Np**ΜΩ”rxήΑ"j80¨ΓWF) %hE‡(eρΠ'ΘΣ t@°.rœ‚x 8α£ͺKΩsΘύMMTΫ’φμμ².(8SγHπr@+³ ΅<Ώe'O=%ͺλ6yήγΌo„Βξτ™œB'J@/4—"5’„[μΕ³§γέk5₯ &W)έ“³kΠ£¦ωώrκB&Y«:B‡ˆ·\ρ°z9νRΖ‰qΕ0„9Ιcc3φ3sΘ•ΆY '4DΎ:KND{O^£ZYSeΥ%evνr·sπTΤ.f³(WZˆΐΨœZ¬$΄„>œΤH ¨,{T\έvζ/ Υ-Γ΅§8θƒŒϊqΈ:.ΎO]x…ͺζ ]Θ©Z&ΣΞ‰ιΎOMΣγδ»6­‘==W ž―P¦@,ž cΒ (PaρθπτΙήπnΒ žγT"Pρ’S‘;7λΦ”Ψ:’λH‡’P<'ίΛk”%Kσ–™T₯ŒMV”>‚³’η4ΰ4JΉκgό…dΒΤ”·C -³έΨ¦–vϊ@dζ₯ε)k­€ψq,|θιηŸT*κᱏšεš6kŸΈ‡)Qp ο-BhΈξ—δ·GjKςάT†Γ9GN› Ζxδu<Ιφκwͺ³AΆXΤ!ˆj(GNΕΉ,Ύ΅ΠΦ"hΐKτε qx ΔQsE\ QψΤw>ζ8Y‘χH)Hΰ$‚Ι0Ύqφν,ΰŒ·‚¦{Wg΅u΄‘Γ9-†BSDύŒφϋ©›X™d’Τ ŠΗφζ¨&4²Δq‹’ά“ε r] W^΄ECΕΈ‚ΜC*Ν$cPΘχK΅gamšΟ!gMQErωl2«E¨”©Ζ§YY*9> uMP»'ΙH«ΐV΅E’TIΎTλ_΅PRb›ΕΦφψ­ίω’M~όΧ¨Z¬¨€šΪ9λ›6"‹&ΠC½bDΛ ωy/ˊ5¨½ ΜΊ’ZŸφ½j&•΄sh’—€P;Ξ‘NFπΣΡΆΟξΈο#Ψ©!»πϊSψ…d‡%ξΐžΰγΐη™SΦ+ίKα ĞΕv‰φ§ΐDυΚ~ωΙδhψ¨Λ’3―5+AAIy 42gΛxΑ“kLŠlΆ@†ΐΙJYXύς±Λ68Τmm»,Αfά sϋmχΫ–ζ=φΪ«―Ωεσ―Ψtο‹OŸ§Αr»lyot§UoέM-_‹>~―mΩΩAΠIφ*ΐ ekΥ<*•Ψώ[°άWμΦ»ο΄%jn–©«aJΨΧdΈbh?’λφ1weΨμ "5ΤΛLΝΠΓG  [Σ5Ρco €R^xέՁ *Ε6pfnšΖ@6rSžœ1Δ°ΈΜ*kAŸ₯‡Δ<\°#ΚJaœ°q¬m πα«x½.ΡΕ„ςωΐ/iΞΝ½Ζ[s―3ˆouY5r €5Ά4Π͓針@νc€,}!bIμ_ςQ7Œž±/»)οFx Qε"\Η@1ϋ_ͺάh‰ΠΧ°ζZ±Q'ΚkΡΠ ρZΊ ό'Fπ„œy Nœ¬8‰ŸΗξγ83ίB*Τ΄I”‘Z΅P,΅ΚΞtη˜)°%zAόΙχC†‘Θ–ΰ8¬‡Κ–v n‘Ύ½γπz=4ΝZ­#ͺ Q+F€D%0ρΰUF笊ft7O—(Δ !©€LE±ͺάΙd€±γ9OYi”γΐBΚBΖ.χI74 P²RAΚε― Ζέ o)RΗ(KpMηJ(TτrΤΎ< Θw!{9ί[7ši€EΈˆ΅6— Ίd‰Ξg€'ΙΟΟ‰†/³ξxFr2Μ‘=Ϋ€YβΨψYƒNπξ΅d…©aέo²F6ΐώUΙΗ<5 ₯’ΓύdνšCΉ{‰ FŒW υ$υ*›dSŸEΠΐnQDž£Sϋ6ΞA:ΩΔ›Š5|Β?RDΥWYWΚ„ι‰q2θ@νχ‚!0O N}UKŒ–Y„Mίφl#Χ₯΅]›œ ƒ“Τ+QOb£=kB€ώ]ΩΒΈΣoγO"υ%£[3sψ`ψφ ―†…b*”Y+“#cDAqX_B¦:Z)R§ 7]L`„σ»¬i;ŸΏx)tχ4±n¨I!s‘-@[bUM”½γάgŸ cό.ΘT«)Ψ„$%Ψfύν²Ÿ³YŠο1ͺ,›βΉ²N0€šΘςT”u‡Ϊ΅©±4œ>zŒ¬=†xvε¬ρ "­Φ4f0€VnΜa!j mΓ&¨.V–πόY+B πΉ7 2e`¬ hον&xしΖigm|*².d<4lΩS΅±S9²Β •&ϋ’C&ν±—V7©K8αZeέλΨ—%γ[‚œ[ΖHLΦt„Gύ‰ΠΦΙw±΅fžV―Ά†YΞ]'σΈΗZWm&/Af9_hŒ£Ξ310`6ΖΎ= +bγCd_'{έ.χœ%}(œ+Η= Γ1cθ½’Ύ1N…ρ_ΊkZΓΘτοMΤ16΅0Ac=Λv₯ΐΝϋ[Ÿ }κqŒ[¨›ηΠ#μζ°Ή]I°Θ’=φ…†¨Η΅1·¨ ΑάaΌμ1`@ ¬™£' §?υχ_‡.Έ*™ρ- œidͺσ73E s§ δb‚Ρ‘Eζ­k8’ZΝ<6~$qόόi–IV3ΫθΓΠα} : %[μ„8oŽ‘Aϊ&?u6|ΎΜz΄s”)œ°,λs”"CΒ‹-fώτzŽΕLœBaGfΣΜRΪ;H’!’)ž1Ω­–υ’«€ΨΝ8ΠΩΧ93ΓYΘχ€ BΖΟfI"o‘ΰnλ?.ΎΑ~e] ˜ΡρΘ>²*ݜƒeŽ£™+ˆ.`,@Fouːρ,šw›ΠŒ\= IK «#配x£s½)Œk‹ΜΌ„#)ΖΡ»ζN|€„Ζy(GΧQ;ΌJMq=Yš ˜»6q,χ½Gΰ‚,%θ‰MξcωTΊ‚l‡nυ’0‘ ½ZBNΏψς«Ψ± ‘£Ώ'άΌv-?οŒώξ+?>βυΊγhXΛ‘#αK£Ϋχ-Bχύ;Ηθt€YœUΠΘέΎMϊ­½=~> SвΎΎΎθhp-~ρ—qtXΠ¦aΞDρΓ(¨:6/M¨ŽάΛ—ΩΩt#΄χ ORpΗΒώρO}–Τ;|Ξυυ,* ΝGŸ`c"μ٘§p³ΐ)ΞgM­DΧΨ¨5κ­σύgl8yFT‘–Ο;:ΫYŒDΠαwuO~φ§†MAαΚrzΆF dέzτŸΒ΄¨†Tλη>‹p&ڌy'Γσ±&ςξA:fʞώΦM ?zK€I«6E”YrΐՐͺ^₯id~œvηΎn„γnθ&ς4? ΒψP. ·o­…ώc}αΚωΫφ‡τθk'’WΎ>ωPWψξ_]D)υ‡ΣϋŽΣδ©# ΈŠn γdnq:4qέιЉ1Όͺ)&§JC½…u‘F™Α2ˆΙDΤΜ”’]Ω6 ?ξΦζ-ΰ]zφθ‘΄DΓz ΆͺΆκtpΞ.0%ΘΨ¦Ίχkjcc1τB`’!«VΛ>i†&4g Aψ“€T`πkd₯ΜσK―σ½[αό•›αώ“GΒq`”ΦΛφΞ“χPάLή€9{ύό0;α3ŸύdΈuυzΈ5A ζ΄•z΅mŒΗ ξΝΞΜ)Φ‘‘Τ] &e«„,-=SXΚFu΅o‹‹}’Œj¨‹\ΕΉΟR˜?=½δ Œ΅Υpέ4δMΗB†4!„]8gιf=Yˆ#W όG} „Eε.{ΖΜžl\κΪ’f‹ΐĈΉ)7œϋΫ$SP³'ݟΐΓZ/b/˜DΡθUW §1#ιώ0š­e―£;‚±I{ΦΟπΝkΜθΘΦ‘si@IδϋΡ'>AύUͺjκ&{`ρώ"™ΰvδtι¬[DB΄€ΐ.`όI’ηΌα/:Φ:Κq―³/” )ΜRc€ρiΨ²&…d†jκ YΑ6`oPSdwφγ,ζωl“΅+`LΔ^pξ0JΙΨ―Α,Ξ Ξlc5ϋ{IsmμΕ‘Υ3»\@ )G ψW’uΙƒΓ),βΊ₯₯Μ'γ0;ιμmα|n,bL9κΐŠ3Τ[₯ˆΚWbtΛ–tότQ ZΥ§ά―]Έeδ/όΒ/πΞ6N)σ"μ/‰μxϋωWθ“’c”‡ϋO…ύ‡OPse—t²4왬ΩfGξ«ί€‡Ω9ϋΙΈΦ|v‘ή8ν|nΣΖU ’»μ§BœWW·Α(mΒMΦNu5τΔ€hΧ6h Μ΅°)unή€n_ζΉπw::aoΎώ&Ξ rλξλ{3ΐϊψ/ζ27—›ΡΈγ€θ|,`ΔψΣ—ο[ eΝ‡ΞΙψψx|ίhKooo<ΞMμqρx$\9Ί 0ιn ρ„MΝ-\#_Œ©ΰϋ ₯Z’kF>e+(’ ·ΓΤB·χd#ΩΈF&ˆRΌq//ov8\΅ψD΄Ÿy/w>―¬‹Θ¦tCψŠΡUŽMΡϋ ­>οσΥD‹°n˜Ijσηάu>β”ύΘΡy₯€( ·€\Θ³]ζ|z6%0αUvx₯0tšCžWͺ ˜Εl3…‘Ÿ4uŝbEgη–ppn,cTδ¨)Ίλ /…φ’Ρ€Ήβ‡ͺfRÏMΗouDΒΆ›α2Q7Qk1τE0΅τ‡‰kΧαΗo€nδPψφ³―…OΤ“‘gkψ³?-ŒήΊ"ΨV΅%mŠ.ΧD„ζo¦Χ‡ΏY"»G{@¬@V†’’'ϋ!dXƒVxΠQ(rιπ|μόwαέΏ11‹17ΉΙΣ0hνP“΄„ΡW‰AτΠΩƒ¬b"γΔΉΧ0Ϊv)ΌG£a |Ω{DΛ½ΎΉ>…‡ώ•¨θ~ ¦ώƒΗBE}F%ΖΕΠ{PxήΈrHεZ€¬΄Έά’Τ 2@;ξp?ScTΓ“Α(―j'"Kq2¬`­8Su, MQδ:NΐjfAΓf¬ΉE”{e{f‘5REZw‘ΐxwΏWπ”σNAlDȘ‰”8Β\Η#‰‘°ψUS EζΨ Qb9’oZl"γ˜ΝŒ!/Μ½™2{Έ?ύΫ1¨$ςEο(9#Ύ8):#˜ΰ aƒžΰ8φΌΦŸΩ²’s\^§&Ησ‹ΜY@υTϊFQ•7Ϋ0‡‘zObtΜÞԊ‘<Ώ4 EšuGΓΐν‘₯§-ΌCΨ?OνE™ύmιπσ_z’ŽΝ€ό‘₯;D­c‘™{8 tΖ’οθ¨ύΆΪ{–^šd ΨνCζΕ³δ³<;DXe沨UΗ*Ε\Ω4ŠŸΖTޚqςΨ et-omnΕ`© WΙxΞ…{φD§{aŒ('΅X…ΐο!z¨… ΕΪ―dŸbδTVAA]X†0ΓՈΏΕs pΖsΘ"³Δψί’›ω {:€rž[Njlμ‡σkολ~j XkJ’ν£~›=΄‡?g^ (h€ξαψ˜ΑΛg]НΒυψ,ΦS±ψ­'(L™ΥPχ'σ‰QεFŠ ϋ0r%λΙμ(oσ €Κχεώ‰Ζnν›°>l] N?φx[Xχϋτyt8?0Ν{0τγZ \ΔxΛΙ8Hy~σΒ­0ΙZςwχkμΥΑ½šωI(#|1ƒΑZμ£ΞHj@2†Έω₯X[ŠL Λ;ڐ—΄Ά7sνqŽΡiς«*tΦ 2ΗΆΠ\/υw^J †½VΕ3“nX±bFv ηE6©(3” 8ΐ)ΰΑnΒ-ζTγΩ΅;Ί:I+ΘΑφŠ6Dkk[8yκdψΦΠ΅P}ς.ίY=³Μ±Uε-°€N†ω7GΕDψΦ«o1_!<τψ§‘σΤΐXX―έCfQΚw·v”EŒΟž$«8ΚS;ΚcάΔρjΤλHY‡O䃋rΜ ΄uHΒ=aχywόm¦Δ“δŠΟ:Γσͺηs.";PNζωΦ™Œΰμ£RΠ!6΄tr °Ϋ€m‚™&[ΩB–°’>])m>ξa !”Γ˜O26εͺ Eušr“8_ΘdΆbmCm( ŸΞ‹οLRg[Ž<@n!^χPMPC‰&Φ°I]Ÿ˜ooΣ}TC@Δ :tΙ—―^"ΓΥJΦ°‚L A,&O»”―Ž5uή*±s¬»uθχjΘ¨^»qYƒƒNy έ-μT»Ρ½'ΛΞςfλ“/³θ罈̿ύv&€Yώφ—<όσφ+αΨώδeΚnφΗά}}Xyσ+:,œ œ„:’ :!wœ‡;gϋ@eΗRΡωΊsNxTΟρύόCΟG>xΎ‚οΞΛΟ¬πεοοΏζγ|w γ΄(άOμ¦θ έ9?iΎw­ψ)χ’υQŸϋ}ωο5§vΰκ\ώΞϋ~φΑkΖ‹έύΟτ ¨Lφ·Ώnh‘o8 Ν„‹Χ)ΖH²‹χΠ­a²\SτΐΈz1κ>JD€hΣVΈqc»N*›h#°••Y iI03h“d±ΊšzPΦΕahKYY‚π–0F·εF,l„gš²K`Ι8›:αL€‰f5·VBΓ;ΐ%³GTεwεώΩοΞ„‡j‹WΗΨn«Λ8]]Ν`ΖQΦϊςΎπό•η(lΟ„z³š[j©H„‘qj$OΖΝrzšεαΑ©ώπϊςFhxœ%΅Eτ*€έaΧE³΄ιE/]z+6¨Θ(B±dQ’Xζ0ΑΘηDŠΌuΘB Πƒ„Ίsg€‚q$Χ\~ν•—Γσ/ž‚­μΧw.ΠWθΚ†Œ9""]8mϋπήι±ΐΧY"³e`Υ₯• £Šΰ‰Α±i²•bi5›χξα[1,Θ=ˆ³ΙχΫΚ―#Υ,fŽαϋY'Εϊ'χO9) lšύv韁“ζΎΥΰ*dΈ§\φ:a€œ»ΓyfΠ„Š™ΈtγJt¦₯H›\ {ϊΒa’Ρtρ`±g™œb²ΏΥΘ¨Ψ†j¨Ω°ži‰ϋ­kΞ y£7#K"ηφνH Φ3{œρψΤSΞδ8^φΏ" άuID^xνUπύUΜ―Ω+άx’@ξœ#ζ·ϋψώ™œŸ‘όν₯pο™“Ψ:δΓόξAXh¬αΩΊΟ„πˆ΄°ŽΔΪkb@qΏΦ|°—Ϊ!]—ύ±ˆΉΊBœ-aM)¨›‹qΦRΘ²–– j7pXΎφΞ΅PψΑ/<:Žχ‡ίν?€/Ξxxπάύ܊2@‡AcέΉπ;²ΘNMZ/1ξc3₯šβ‘pe:ωŒυ Wζ―όπ >Δ(s‘’\p³~ΟρώΆY™=²¬|€XBφΖuζ9:Bό³©­kŽΜ†9³Ί₯Ϊ—“ις<37NŸ9Ω‹Ι.θΘ¬­―²_Πρ˜1dυ)φG2ΰΈ<9šXοϋ „Ψκο3+8c³aJμπζz’θPσ€ΘvΗχ:ήq’[ Ύ(f72> ύp$‘H›ΓFpŸ#„£#D¬gYRΖ}ιhΘ²Z.ε8°j ¬α°xύž=R›iC—0_ΕΜM‰¨`Θί‘Iρ>sh…ƒ8ΓPjsώ›oΏCfεaΎλξλΞ |,ΔƒYͺq£ΫDόΓ^*»;FΊŸη uΌhŽΰο<ƒΧ|ίηχx=Ώηƒ~oοϋύΧσύϊϋ£ή°sήύ»Ώπ3ΰ\_ΗΉ9τj'tθ ‡ΩμcΡC#W((WΞ¦?°ΏΘ\ 0 oΙ,Ϊ²D$ζg‘ίE$9ilΕθفΑl φ"z²v¨n@ν\K`eγ& 49χw°Ό;ϋ„‘Ι‘ΠD΄’ƒnXΣΔΔx˜‚ι.ωεν[±–¨Α?ςW0VzΓίωΩ§>ΛM Ό6)&>sμ,Ρ jK|TΣ/P^BԈeŒ>’ž(Ό2GφUga§κΡŠνP$=ΝναψύΓh"ΤDM‹ΈΏB žΗF&Β[o_%J S™ωΝΧq Œζ*Μ iΒ”ΛQΤG€*Ζ% βέdμ…*œ{ΈTγΎπτwžεϋτX%ΫC‘πF˜Έa-©νm¨X1.+10ΆfΑώ±.‡Ÿ&0‡0-.…ϊ˜μ| duUΜ%4‰«4π*βpid4 ON„O=ϊ(‘<::£±,ςŽ[’ˆώT±ωlP‰Qig0nΝI;kΓBΤ#J>$B©PFmJ?*E΄T–:e PβIξOΨR‘‘4”„π³£{8ρ[’6FΉ Ιβ;•]LSώo€aH©χ"nBž°’βqju-ΰo‰JZΗ†ΌgtR“P~}ΝOQϋH7zΑ4‡ΊΞκ°4mj*N '‹Š0λ‹PJΩπwώφOΔΏO!:iκΆΘY,Ÿ«#‚8¦d<„"mΩΞ°A–/6B$k†‹±LQ?c’E)‰qκπs’ΜΏ0ΞFœΡDΜ7‚Ša‡9ΟόY4ͺqβy2Φ γœ!v½¦PΔc“Ϋ06πγ>E¦?C)ΧͺζY‚Ζ9ΗΨΰœ[ƒ·θEq_ \τFλμθ|θ>†Σ{α`.Dτu:kJšfΥch$ΓΝι!&¬u]GŒ β^16ΗΗ3Ν`TΟNFgrnr„’hYIj—(D’φ€²~#:Μ/„•φΥiͺ³Ž£ΎδΗ'Z@v`lt£žu[ΓΠΚ8}5ϊqΛΒύ°(Β¬·@vČΤΡΤގ:ζ—L†fŠg² τk“½«ΣPG³]œό‘ρ1Ž‘Ϋ3Δωtς†}Ο¬μΞζλ)ΌDοŸώφφΘζXH…ΞΉle°£•ΗXΓxͺ‘©™Π&‘›fη Λ»ˆzƒ9'θΠ Œ“ΎuΤή ί`žΛ’Q¨в³ΧβD€ίu-nΐRf_˜’·ΫDκ+€ α1c,ΙZ&‘@%Λ8Dπ`qm[(Q– ) ωά5ιx-κF6{2χγ4RiΖΉ8€¬3Vs QΧο›ΖLαexώΓωήEΕ-axδVΘ–μ…‡Ÿx*d`τΚQ‡WΒ•2ΦΊλ6ΪiHΧ@MΛς$ΕσΧ”ίΔΑG¬Ε%άΦο²ξc y₯σμšt<V( xpΞeοφό¨―§aŽSΞΘnU=P½iύwκ|’4;$Z=AaŽό;εΠΐ΅πΦ[ΘΝGž€+:² {v“ωD*‚‚«GΐΜc(Δ±χ%:Μ ZάSμ/³ΕDν£C‡“΅Γή³&«‡€΅ηC°ƒόhn؏S>j›ΙΜΔ'Β?ός―ίΟσ‹B,\½ώn8~bθν>„¬±ΐŸ9ΣPη Ex+Ο<> œ0εšΟ7ο€ υpΆΎΗ\ΛgΚ1>W³έ^GΩθ=FXοΗΐ.‹&φ QΆ*Ή?³«Έw8«dIωg½–Y€4{Αsbφ.: :€ΕώE‘΄½~Y=p›†œϋYΞzyŸc38)ΊΩ¬ωMz­..@·ήŒ>I‡ύ̍,‚s k8Μ…Nzkτυ·884~V„΄Ζk‡”Φ&Ίτ œ΅tƒ#S‘pf|| 4wτ†Ξΰϋ¬‘,λ?Γzn3€ΘW;Λg ;/― Σ―S4³ί€Κ€Τ:z;Νέ„Œc›{ίΐρ–…λ'ΨC βqθΒ_|α₯ΠOߟŸόμ§ ΰ$ΐ‰™D^L ίf}>κrΉϋzo&οM{ 6Λυ½“Tπw~ηWφ]£ύ½©Ήϋγ‡šΧ^0ΆOώΔct ‹ΠχAYΫ~y;Κζ ’…3‹CΠU‘ΒάΞ@εIΔΛlΕ<όκΗέ‹BΫ†ζφr˜Ξ—A˜QJStcε:c@bΔ–Χ+j&-ύκΤ–B7,f…d Άζi B…_Q߈!3 πΚ`z†šj(¦)€šO}β ’'nήZ‰όαK4Δμμh‹u Esk]Œ³Ό¦’ΏTpŸΣύW‹`ˆ?ϋ·ξΈ1v<^#ςvaθ6ΞΦΠέ /†Cœ{‚ζuΥ ΐGΒΡƒέw…©ΡQ΄e’z΅afΤ.֐⯠(Θ3!Rme ΝΥ|ΝΝ†–εξπςλc±oHΡιbŒƒ•’p ¨ΥπΙΓC„Ήϋ/Ρί%Ϊ ]΅XX ‘YŒ¬6θ¦ϋ¨GΩ„’΅²’§DΑ»ΝΌΣ#§³'œ Β΅9?޳„ρP§Ύ‹’Aξxs’Z3ΉάFTάf@rΡ†ΩζFbq’ξΞ›ΊΣ(žŽ‚ 2ΑΆGζEƒekZx&!:οέ‘ρΗ5₯βՈ%J§‚K ά’ΡXΰL c# cE%l$MΓ7φaμ(\<Κ3ΔZ4ΔΌFΒ ;”›]±.ν‘ »„ΛΚ‰ΐ1o»dγ*P<•'ŽqMša‘sΛθRΏ ΔhuΝϊ80‹Ο‰π2Ζ]˜ϊp5£a#ƒU Ξ¬]»ΠVΤP+¬jc˜ 3F­]8Σ_Β―ΈΖ£†!††‘cspLeΰ1cc‡t9ϊ­wI9ߘ0 œŠ cb‘E™j…HΘΕΪa.ǁe³P_ӈ³˜.ιΈ/@‘yνθ$806P¬5@Vj*Ϊ £%ΛG1ΓŽ{)ΔŸ~βIœ±…0Gd1GD~zz¬ζkα3ύ$kƒ΅L·λ]œμR βχ€ ‹σ~Š‘\]#C³Ά2ΛxhRKΡςψΨPhΑY/ΎŽΑ±©…±OŠϋ©™’PΤωZœ]£6Β^°GαUύ^›zQΛύšΊ~k4τυt©'Λt₯c)]J‘=2hžΊ‘f2σΖ'  ƒ]‡Ω c¨¨€ζ~λ‹ΐΨp4&ΒuφJCΔμ3Φr:Π΅yΦΑ‹•<›Ση»acς¬)6}ΜeY˜Ξˆ½Θ –ƒF ΦwŽ΅’γΨ ŒlΆ;‹λ‹¨mΩΑ(ΫΪγžΘ„%Ιbm’-kΒ1€nlb9œ8ΤFζ—θ- 5³Mτ˜Θ{†±-<Φ„ H„δεH+EƒΦΎ81² sŸ »ρΜͺΧΰ>iPoC›ΰΏΞSό›½b? }墎Š}μ<οrΜ²ήKp˜fgFC+ίΝcαΦΘbψ…_ϊ9ΨΊ φΰ{2d‹νjΏ«ΐ"cSNvBΒεω1zΚΐ°1œ)›Ύ*jYϋΘEj»bKa}Ν€ Ή5’Ή*χN΄Ύμ CάΐQ“]ͺXΧ3x1Ξ:l&XF61ΗwΑJ׎όeΝ>Ψ~λ7Ύš~ϋΥΠЁsΙgŽΜΤ(Η¬‘sŽ4τ ΠfnσπMζBΒ\ oKέ·Yž„ΌΑZ’<Ίψφξ0|«Šλ)A4MniΆ›²|ήs$<όι ήΎWYΈžπ—ϊ‡ΤP΅§¦›}ΘΎŽΞΧηΧhΈϋu%άϋ€b6U§ƒρ˜~γ11nž­².ξ1ŽVNx₯όχ£Σο]0ΏB°r|Ž”`n ΐΠ4ρ§ψ=σlΤ „εAφ”gξ:U–D‚ δˆΚr0•adl§b“βzŽp}žO€RχΩς½iH)δϋ…wί ΝΚ3œ@™dβθ‘ΥΡΨJ οά‚9 ϋmε:4υ%d£m 2 άΈEέoGtΞW·_Βπ§‰1Οxzl,΄ρήBΆm ΛΠfιd†4£±K=™Y# Ά˜άΚΖp`Θ²ZGd‘½l•²½­³ΟΜ™%δ©ΓΖw#Όρζ₯π_όμ§ΒI2kПY \3ΘΓ›Χ„{ΟήηŽ ά}½7ΫαΙΊς,„ˆιΓf°ΐ #h<ξΞ,j$Cώ/W;ρ£^1‚ΰwπzοο?ήχ}EG‡ίύλœžψΖžηΔ³σŸ;NΏνƒŸίωξ{ίΣΰϋή»ήέ?κ „ΞΞ Έw T•΅E=‰Κˆ R±cn]½—ηa[B©ιh¬ΚϋODˆFm#Π  ,«ΐ" YcFf–ν]ΠIFΖΝ+sπΆO#;Κ¨!‘yP“ͺΆ¦c L'…υaγ"›€©h£%CΘ‘ΊΠΏ·6ΕOl£€j±)VŠΰΐχΊ0X0Ϊ¨GZ‘‡GUk'kj# ܈‘U{ΤποΒϊPhΔ ("³ΡΩ]‰“@–όό"ΡΛΙIΜ%’¬Y £L u D9WgylI‹υ+³λašνu ‡H3Ζδ0’š ’—ΒˆΜ—ΩΒr #³CαžϋzΓ™ϋώ²-DOΞ…³g£tdΫY«ΚQ"ΐFS7ΑΨj@Ι£ΎEΑΰΈd•ΜΚ,LDMTŠΟKΠ<•ΐΕlΆ&t§½«…ίιŒo HšωFίD]¨©/ή]«!,΄!ʐBέΝ£ψ3=BWSωθxA‰α½C–!σŒ,…Q%€Ιγ4Ψmχ€=Ο½ψh1!βΝyfωά«2YgGΈ„σk³@£ΗEόS!x岏¬χ–Φ:zΤt³ΰ»Ηαί ]„3PX@ΦO¦€°Ž΄μγ0Ζέγί^Ή †"°ψB«ͺQπυ@/Άw€΅†?ϊΪwΒgΞΆ†cΗNP¬=…ΡŽ!ΓΨF­εΧίeν,Bρ l„ ™8œ˜,Ξ‡ρμ>3&WΰV«8š…όΑA’ σΡξ ΝB Š«8;:ιKšγluχ0n»MηŸοδι³OΑœ 3ƒΓ‘‰Ζ₯οή€cϊ:F$†Pw …βdκšͺΐ S\ ΉΌ²Žώ@9πωΰΖ§­§’?HsoHwtΣXƁȅuϊ=dpβ·€5ŒΠρ\*ΥTίMƒO ?+μaΊy[H¬3½Ιƒ›…U―’œχΈφΝ rš@f™ΕhB|$Γy‘:")kŽΞOIΡ'¦žΘνά ΞŠςqušυ ό’=` €=6ŒάΛ’dΖΟu!t*ŸQΐxΤ™`ύGgž=²Η:ŽΎͺ ƒSCΣγώ°ΨΩ—Qυ-χš½r{ωΕ©πά‹/†ξ?ζηΓ“>«†,„A¨ΐΜΕ.†œ¦{)4Δe8ήiϊ%­κ`ƒ"©σ–v}Έ9Ο½j1³PBl Ό<•¬»UV$Ο^ϋV°³rZ[:ΓY4j$!X#*-|¦ ΅†σWˆ¨lPθ?x dϋΕ0€“ZJ=D­±˜έ¬’ٞ"ζ+Κ!ζJΆM6)Κ iƒ²€ν²ή”B¬K°†™έ2˜A―ŒοKZXά’Πz”` j;zΒΟύς―†_ωϋDΞaZ*f]ΝήζωΣ§B9aO¬cΎ‹p}Fοσg(ξkΒ˜ζ9ψœbφ_ΉισβŸ$3Ζ±Ώ’ΟΏcK)όΗυψθΞI1[Βߊ’”–η}›0sŽn\#ΡHtfΙT"ω~©¬‘'ΖΩΩ†Μ‚Œ·G[$Ÿ2(€σΛψKY›+ΣαΖΥΧCC5š‹°[1Ξ5œΠƒΗ:B+A¬VŠτ³»«8ž4ε3μ/U‡²s‹΅%|švκΐη’τ…k ϋΎ}+μo†Cϋ»CWGF™―€e‚ZΆ¨n”Ž>Ν8 LΜ3η8+3ȍ9κ›λΠΑ:2WΊΨ•ωΒt€μ "ΤμΩoΏAΑωηΓ£ή‡œZ₯q1kˆg½4;ύvgθAž{ΞέΧχgΰ‡p@Xy,ΈδΠ­ktFΟΫ5ΛƒΘ΅uΣΠ u’=O[ΡΘί(‰ψr%ΏχΊcπ«@οΤxψ{LΡ½· <άγς…“d~ςph…±fk΅G‡ήϋkq 2αςυ[ΨΫ|/-…2θ€m XMΡςβΚ\˜δϋΘ—Τ…Q $±Ο²uX―°iq\ 4€ qdC lγΘνΒ#?Eƒ8ΖZLτ±£>ƒ[M‘έQ)*?`d* xYmuΤt h7ˆδnΟ.―sΐΆ3τJ˜J0/ƒ‘šˆΦ@yλD“jΘώTΒ¨u Ά§IŒ‰Dψϊ›·Β?zͺΓ7ό@  \\Ζf€2οPΐ’ΒΨέ—*/bΩΰο¦ψ9˜γ%*Ξ(+0X°D(‘ό&ΞοAC³’ξ[ -χΆEΥvυΞL,,Φƒπ ]‚½n&†ƒάΘqί»Χ#«{=ΟjΓ9(v±γPtaJπž’½ΐ\,<ΤρΣ!p|9 ±Ϋ.φ{ ²α`ΒV˜xl(,h-™Fxύ>R4q±W’,3±Ÿ ζX(”7Χζ½h β η;‘c4°Ύ#Ό„{-Jb½DŽh‘󣝢$B–+€=֐ζ„p /λά¦0ή"Τΐh8‘ΒΨ…ηa£Β σ‘ θάσuŒ”λY"²•IϋΫi6 ©„΅3Δ±€Z Q—'YχS8&τΐ€ αΩo+άξLθ’Ah;τ΄…@ϋ††Η¨{Ϊ£Ah"\Όt=Όzu μλνϋν 'z[0φ/bΧκp‘uδ9n³…‡­‘U³N«ΫQ’—9 ­qdΣD ν:.;W¦€ΥU –°γς‡所ΓΈ)a¬εάΕ‘Ÿ„|b‹({9™‹μ*Ευ@·2F-©I*uz*!iο>‚sBτυν7™ηέΪϋΓΦβ•Ϋƒΐo¨mΔ[e^›0~{»θtgŽcΠ―oMCΠΠ@­K'sŒ£ kŽP/‹t+Ω—fsφ0nφ`Ύ*aV΅@`}VρY Qx£Θiκ]Φy†RŒ–ι`Ϋ»DΒ ϊ‘ [${ΆŽ³WN'τyφ–lVU@ϊ¦ΖηwΰΔiψ*_€ΆΨ‹Θf“ ¨¨(Λ”gjηrλƒ"4‘ίu4’#‘QΝZI²N<0mt™΅ξšwΈˆ4b%_1λζ~Š Tηρι’-f}g€¦aHΈ1OsΎ₯πΚWΏϊŸ‚Δƒ"y#wκZ’82|΅Θ'²‡Θ/ Ÿxφ†φ›z›ϊΈ'7ƒΐχΗ…Ι“|O4’Ώ˜˜Ιd½M³4v’—ΡΜϋ“ΡŠ‚>Αω'šΎΑΊ#_ ;ce­l,R?„£Ί=>FγΙ₯ΠqπxxχςEšΣؘ@S‰³Ÿ·v¨+Iσl<λd’ύ‚\pͺ4„±x>̝·Λ\ƒ―΄ͺ™΅ΪΖ'ΒΊ#½†σ8Ηz43»ˆ>[&ΒήΏp¨h=Κϊ1sΜ7 _¬ΝΡNfδέηώρ}ΪA:;ΚDνŸ³ϋ=ŸΡΘCη”O:³ρΉ3χρΊlr21σEπ†Ηΐ>τtΧ…„{πΎ‘sΪL^…cπ]‘‘ƒΚ΅ ΕZžΡςΘώlKdIΣΐΝΠ'φ:RlfΕΰ…0½<ΜΟ΅(€ŒycMYΧΈΌ)‰°Π‡5J²8e²Pγ7dX"H&ΣΩΤ<=»P2Β― B­Pξ³)₯4r e)β·-Κ]ΧΛ6ΆK—.r§RΰSο…¬Πv”uSΖΦmd„YVW\χκλ.j[μKλ˜7©ΥZΗFˆέί™g±]zΖ Œ†…©©πΛΏψSα‘{Οΐͺ·J?­ |/Τ}ϋpšΠ“Ντσš ΣΠmί}}>ž‚ΨCq%Gn‡τW~'δŽ<Ο:ʏΕηΒάC '/‡Δ>ŠΛύ4©q)σο'–ΐύήΎ₯ΜnckΘuνGXζ΄ηη †Α"_oWU]Ν†’˜Ξ# νιB»z·‡†ς{Βψ໐^‰Q‹™i`(¬uŠΡκΫλCλn7›ΒMžΉ4“Ϋ­6Ϊ*.κΔV2Σe2:H„‹i …ΰYgη0`Θ›(N+&1œaΈSσπΚΛΓΤΰΫαπΡϋΒΘΐx8tτ άω0i]ΎIσ) < ±ηιBž,Z 'Ο<Ώ3’M›αΑn°^½τΥp ϋ`8ά}GδώFQIΦ”ΒνΒκώ˜Ύ;α­Χή%³q˜΅σ“ΞΤ ]•Ω:Χ¦ή K5[d:Βψ΅RΞ(Gκ4*›ΐ“‚˜…(›MΖIγΠtΊΦ¨+(ηoGυ‹#aΈAy ž1L/Ξbˆ…cΎζ1žj+a©+ής@#3 &˜ ΐ7ֈ7Πh«™=φΓχpΏ($ŒθΣΗź‚s 0ΤδΜL…‘y ?ŒΫC–žΏ|9π%ΡhJb΄ΟήR*bcaξ{ή1ϊUH]IŒΎ /AQΉΟ48€<ξ™ΰxŽŒQΥT!μ4¦ΘΙ μ @Nδ΅&ΡoΰFά uˆΕ—Œ4MτΙZaY2M*Gύ 5K8˜F°|SΆ+·³χ(ŒI§ΙΘ£2ŽΙΚ26t#2ͺ±žΔi 8ŠΎ—CœοΒ[jrœ,Ξ_‰\"λΓ…wWrΕΉVςއj ³Βδx lœΗ £aE$/:gd«,Ξ΅±V Ό±…η h kωkθδΩθUe«ƒMΈτ-,XέFT€Ό.δŸΞ”tΚ².eΌW Š ί#ΝβZκyŠ)|—„an‘Z&zΜS<_@F!kvw'u Uτ☠ϊϋB λ°£₯*Τα„]Ώ <’η)™Β±y+Ήi08<<:Ϊ`š*λχέP¦ίΘuΞΏΕ ֟ΡΫ«τΑ9u΄—Μ ; "Μ¬¦Ι ρΖ@αy•Tρœ‘Μ­c-Wœ˜ƒΑ­xΗ•›γΤs€·'γtυβ`ŽϋΓ³ί½>χψ½8ΧΤιΠ󣐚„±!z}ΰΘ•­c`b0­―­ύψjXeΏΧQάΎ‰|Έ~s’:£2Ί€,βμ4·wp5³Αšž.Τ^GΏ‚βΓJ[Q{±ΆA`ƒ&‚7μίWζΧW(8¦a$iΆχ€ ₯ˆvOŽΰΌ,…žΦͺθ mΒψυΩ‘™psp=<|ζϊ«%Μ,ΓhG a½XdG]ΈKqo™˜ρ%‚d=6)θ•]NX(9ϊNˆ½Ÿ™ΣΉΑΙpω²¨έI±Ύ†χXή:²ΗΊΞPgaΓΌt4ς‘§z ¬ΓΘθΔϊPu_₯Ιxτ³:φΝΑ`4K—e] [)`ΝΚ^eΚ”ϋK0­Rτ@χOςτΆVyΫA˜Ν&œφ*AΟ7BπφηΓ‘CGp³ΣΡπΣ9ΦέkŸ1κ° ΛΉγbί!΅4˜ dlς½ρšΨv Oρ9Ή2²‘»» XοmΩκXΟ'‘΅#ˆŒjœžΙ™ΑΠΫιυx345ώ±§ΎΔσ|]³k  퐱ξKdS{— Ž΄Ίξ±$sγ&w/Ή‘,μ‚-At )ΐο¬[dšYkΩ/Ώψzxⳏ…Ε‘©(‹Ι6βͺ K‚SΩ{ΟΑπϊ«ί„rƒ€CΙ^τώ,ŠΆ‘-φ²ΆΣλ5‘WΐοB© D*]δΟΨ Œ2LGΟΉqŒ|Χ‘Ξ³³b.‰˜MdΣ{Ž ο±’#3΅ώo’οRx>ΧR'Ι¬κ (ο"±ΠΓE(Ϋ DΥAvRŒν΅ΕΌ%pϊΝ²*σ΅ŸΜ\ε~J ό™ω·oΘΤ<-œ—OώδSαήΣΗγχOŒΓdYEjG˜ϋ 2–iΞίΑω½ϋϊΑHώϊ―ϊ?ωΑ·>δ/&)’#b }ς‹!Χ{(δ ΛQ8–έ«Ό.$ͺΎgAπJ291ίωΣ°ΧάφͺθpύBHzŒNˆ—— 4 Χ―ύş…7ΟγΌǟώιWbM6‘ίωςΏ5α”ή€‡Β‡+τuhmi ί}αΩπόΛί%ΊΠΊΪ[ŸϋE##š"hž~ζ[νΡαΉΊ$|ν«_%bΎ…2+Œ²zυ…ηΒsΟΏDTœΝM`ελ_ύ‹pιΦBͺ=Ότνg¨!˜°(ΌσΦα•Χή„K¨Αςtψϊ7ΏƒbΆu;όώοώn(₯θ²ŠG)φςQΪ™»»o}oL KΕ¬πΉσŠΡ#$β•+WΒ•7ώ2τΆŽƒ+΅VZΨ]ν+Α Œ¦²ˆ}ήδύp₯Υ`3₯α”ω€ΦBNŒ‘Y eη(2΄ίLp™,nMΕ·Π€―‘© cΉ,:&#Z  Ξ(J1AΧήΦF±ν©` ¬ϋ‹ƒγΡ­pζ@7ω68έ}8=αφΨ­¨ XwKƒ#ƒ(΅”e:΄β°φΉ(AͺΪI"3€‹αPΧq>ΪΏ/<~ξ4’ψitα `ΐ·Šν--±pq™uΫ -γτάx€s¬―iΔΐΪ {4ΤΉ|¦)a.dŸ±Ž…ƒeέZΐɐϊ1ΛK₯PΧHΣCΨDu˜ΎΟ±A’‰@XΣU™ @0Φqz{ϋΑQ€92BDΈƒΉ¦Ώ”«uD™τ2X£‘©†&h•Mt«Ÿ£ΧηΓ™Ει0#ΪΠ<δΉύUΞ& Λz f‘rΖՌΜY2B˜s<(₯lΜ¨άԘΔΠ0[XsO†Ϊ אM­©2ŸΔLΈŒ49Χ΄ ΧlC!βδπ{>ͺ±’μA¦qŽΞ‚Y$±ΗZˆΛ@β³Wι«΄cο 0uιΪΐ0*MŒ=―ι34¨α+:@8S*Ϊq2₯p,”s^.|>°#Ό†h•>xŒ(Cό[ Œ±Ψy…όχ»&΅"TΞiŽ8&Mx£rF½#Λs(¦˜`Mη\έ,& N…ξd½2Dζ͞Hΰόy?InςόΡ%F¬/kdΩpŠ)žfW9,^tβήΠμΧ°ΛΪγΏ‡Lž¦)¦΅Λ 3τ&$꽂,΅^AψΦλo„/ότOa$W‡?όƒ:φ₯ωk ΟZiφ™™N³‡fΚmšiPΓΪ.Ÿ—π/ΔsƒC‚μaRsΑΜοw`[¨SΏώοBjέώ#dJτ†ΑΨςσδ}Ε\ΟύΥӊπ₯ΏχχΒKΟ>²ϊΓ8ΞεΎΊ1B:χΑP[ΈΎρυ―‡[_ &4Ψγ{¦&‘i<; fζhςGF”έβ2\S[ Ϙθ0󐅑«Ί‚uǚ·Ήg1ΦΊυHLΖ€žfΉ6YΒΌ<ƒš5ZΦ ρΆτ¦ŒΧ½Δήτ½ι6Χ]Δψ+yY΄ΫΚα$ي¬Μ|eΥΘ»d Πͺ^εϊδxw·§I>aq3eGΡ1kY[QΘuΊKS+pΊΥi²A½rhbXσeτ]ˆM„n2²ΓΙ εfˆjΖ/Gv;λ΄v“RX§yΖΤ‘0¦Bφ@{ΔΐrΞ_ό.χδΝύΜkzz%ݞΊg‹ϽžzόΎΠίΙδΰ₯πΦ₯«€₯—Γ}άή~ιΩΠ~δ,i;ΈΊkaY"ΩΉ€OuŽbΉ َ7/ίbγGΜhQYU8xθ0Š:ΓΣίψF8zοC!Ν‚Z…ω€»Kής»ο/©ώMAωQΛΐwfŸύ³πΤΟ|1œ8E34Χ…Εkmρ‚Ψ“lΆF±s9}ΪZ›QΌσΠ”ΞEΓ0‡°—S£―μΊxωU„DlUMκt(’ΖΑ6EΩ6˜\έ°»z=B―€ΊW¬»H5‘›Rΰ#tI>I1w!LSˌητ}…ΧɈ½€πρΗΞ…·_Ήˆƒ‘ΕY 쫞Tσm νЍ ‘ς%Ϊš™‚Ρkγjrb4œ½οžΙ4ΚΫ^χ6#œΦΓe(q«ΉΞΝ[PŸβΩK`XΦΪγ†’%TAΓ|‡xm²C @!ŒRξ Uύp3Κ•ιΐΤΔΚw`θ5Τ4‡+TZ|iQδ ΒΌ‚ϋ›gn–1¦–Α§w΅upΒΊ¨#R&! U9Ψ°‚Υ―­/ ]½}σφOΗ* ΑloŽμξ4½τ-©o€Ύf&œι#ŒK³“;*?e‚ƁF„я])xQ)£ςΘ•›™ςXΘI΄+CδΩByτcOσ}`χ‰’Ω¬ΞͺZ3žc£Gl’|tΕ‘/j&;‚Q£*‰ΧE±δΘΖ΅Μ’Z†ΌŠc―ˆυag_!‹MuvqbT@Œ‚TIϊΎxμŒ=" ~ΗΝs0ΓΝοη^7F‘«ΖŠŽ’†“$ ±#CM3§œ‡βΥXΡΡ2&iΆ†t ŠΫθ*ο10#ΖF£ΐ5…uY<©­ΐ7Δ¬…F ‘;Ω‚bDs3?o`ψ:{Nψ­Β’ΓΪΖ’†iΙ¬KΠa©UιiRZήJΝ0ϊƒ$ΙNΩ\¬"Τ‚―Άaβ,JyΰΖxθΗY―'ΣΌ0½AN:Dσ9h„ζυτv3–B˜šp𑦀Γ'KW1™ŒUο³Δ$°ΊΗΊ·°Ή₯qΖ ݌ν .€‘Ώo?Χ>zΐο›]ΡI°Y`†4ϋ`ηI>ηϋφ„ƒέέμ'ŠΖ1„Η‰©edFM8sO/χNƒΑ&Τ`9Ÿ”Ϋw’ŒŒžK‰Rf3KΜ9p²ZΎ»Ή™BRΰ—9Φ™ƒ2κwκip ]Œθ Šeΐ}·04ʁ‰Ω/!E­H5 ΙJ‘>{»pkμαŽ‚ΗQf}oc¬ΧΣΛHlΊΈϊBδ–ς(‹VN  n¦Έ ¬[{.h8Ϊ‘~ΦΌ™­ ’ΨG§˜ιu[YΦQΑŽ Ψ¬IAΛ}ο™S89yΓΩ@«*έv Οي³Αη\œ|ήsΞR¬9ƒf’­ΘΆs/1xΞgΐμΉΈζω©cΐf\τήΠ缁Ϋ‘Ί΅#4ΆτΔ9Ι€΅_',tG ne4K˜k³ή9y¬υεWŸεΊιπ­ο „£G[B7ƒŠp1;Ή“Ÿ‹{Fƒ˜ 0·@Γp€uŠtς{“ύœ!΄Y˜S}#Ί.δ—N†ρΙHJ4X‘s‰e Τ’πΕ/~‘ŒυbΈ=2VF†Βƒ>Ξ|’Kάί¬Q™‘βή%Ε!Cd]$œ0»‘1,ΌRkΏΦ‚P6™ΝΘlσ›Ο„ίψŸώWϋΔηX3ΊcΐŠ1š³8€λdΑϊϊ›ΙμΣΰ˜ύ1xϋ₯πΖ+WΓΉŽ…‡8ž~ξ*ΆβΟ ?#δ‹Μ2Klΐ ΦΣπ]f.Νt9―ή~ήQtjuRxΞΘ‘ : 13=)~gώ₯œζΜgœΦ(OγϊŒωwGn›αόν=ϋ{—΅,,,ƒΜ4ζ˜4ψ3Θ΅Μ"σΜ vFΈ2Sέa“,ιI3ǁwv΅ΤG$ΐςΜX„πŠΖX±Ν~_Α©œ#h½ YΔvΕωΛΧCΟΎξpόψqζΞυg8>ΟμώΓΪωα3 Ξ'Ζ•ηκσŸo|οwΰΩρχž‚9Φ‚ΈΪ•\† xpa•_ŜΛgD"ώΕφ›!Ω~ F΄†΄φ³ί|:Μς;u•(νŒ 5‡Γώš‘L|θ>pφ/‡ΉΡAp“΅αΜ™3α΅ΎM]ΐfxξkώμ… αWq0†oΔ†θχΠ‘“αΎ‡Β ίψ£πoΎρVψΗΏv*lN'ΓωW^dƒfψόHLy$J"θWH±w΅·…Ι…%ΌΧa”€Αγr0Q=„=w¬Χω₯θtύνυΑqποκ~،§9ϊ:« ξK©ͺ'=‹ γ QκΪΚzΣ`aώ'³F₯pτ>ŒGm³0Ϋ&O+ΤBlρŸ› UΰN ӍD‰ΰBΈΉ΅ΊšΫˆ>ΡPˆθ&ΰ…p…^½=d0μ`€*«€m#‹π cω؍Λaί™§ΒΦ––·1nφ‡ΙαΙPΫI#4 ©k―„ξSϋ£aœDΝY'Y‰aTJ4υΜ‰ž9Ψv œ½DXC(uu7‡ΖjšΑ΅M:ωφ4L'μ‹ΚzpβΜ―Ξη`α¨ S0(ό7 Hγ“ρI–‘Ρ‘ΘtƒlŠX !Λ·2η˜F ΩŠžΒφάdΈΊx%ϊΉππΉGΓ»o½ 1¦ΚaΚBέ#ΌQDD›v‘.\;s˜AΘO“α0σΧΦέjωήΥω ‚U£0()λk€qVΘΪθΠ0τšΧCίώ“až±ήΌΊ»{ΒΠΨ$BΎ §ΑΓͺF¨84’BώΔ—ePμ2Δc>†9ΡJΨΥω"·(Λ]Ώ †J.%κ*dJ!ŠΧ¦‘I`.z ΡY`œw;DΕ€bέƒJU‡ΐcΰΝ<`ΘΎbx4€(RNuΦhOaδ¦pβ8oΦΈgQΚΒ£‰†σg$9R4²Ζ,XV“Φ£k“°‡‘bD_CHe¬q›0bld™οΡvΣαPfήɜΪ/€wγ9_eZηb„4U:9œ¨€΅“»ΕΙ^_Έ@’λϊΏ½θΈ₯VΩr E„Έα€jŒsŸf4d.cWΑr>Χςώ4\2Θj³!1³Ο+ͺH38βΆ)ΌΝ1Œ~ζ0η‰RcΡO£’5λ Ž}K…Ψφ6Ξ+V²C+ΧnΒ:ΣCց~dDV¬½’^AxΜ™ŒT«ϊM Wšͺ‘ΰEΙ7©ͺŸ?ΆPΩƒ@ΊΨo-Mξ胣5F5Θ… ς4M2›JΓ(c™ΐ:@τ:±ΡDζŽ‚c2iK₯3D˜1€·Ι6NS\ …υ {aB¬<μ*;¨‰I°§ΛΘ(ξξRLK¨ p'¬Ή*&rΫΐ|lβΘp•₯YfοNoŒ ˜"‚ φ~ΨZΰ)1χΡΠr0wβχy“5ΒΪη~‹­­™%k«CΙwer|7ηSQDsP£Δ¬Ω]zIvPˆ³ŸŽπ˜" θi [d‘ζΪΊš|Y†Uk©ά5p΄ͺpž˜dcύi³Ο\kψόΧ7Λ@ƒSέγμ!–NλOΗ—£ŠS½Δ5­C gΓον]ξΑŸΒ²8M‘θxX†1 »L&+Β4Ζ|ζ„D :υΤ TΨc―ΘΖ–eNΉD(ΐys=ΧΑζUUKρE`c]Ύϊ«±W60σΟvώ¦βžβ pώχ4σε-ςo¦ ?̘Ώ ½~ο‘26―ΐl2wZήH>0Βq¬Σ˜5ζΧΕε‘ˆΗrο|Wώήyξή§“€ Œ%u绀­M!'e=σ9ˆ<(§,τ*φQΒY.ηmiMAέΌΑ\1'ΠΟ――!χُœ'δψ~αŠ“£·#ΑŒ$4B±œγ6ωΨgN³‡i8™hΏ’³ΉήΤάΞΏφ !{C Ȋ"œŒjΖbΠ2΅Ko!Φ«Ž5C‰χc¦Ϋΐo°{ΘΐΈ‘’`κ#ΈΧ€-A@‹,»²pcežL pl ™λΨ+9lXauΦ£ΰΨdqLΦΨχ>›xωp>ψޝώΊΟξσa??μ<ίσυQίεgvžοΏυqŽyρρ»Ά’―.2O–Kφu,θ=  ++$€^€]ΜυFΨE>1p5:»ν=q!IΏψ•=σXΨCX«X=ίbΣκΖ6˜Dͺ’7j”l¨έ™³χ»\\Ž1†bC1/ΑtpκΜ½πi·ΡΤ‹Hžξύχ%ΊΥ ½iЧŒze8€1);Pgw@’ζuναΨΑύ,(–$Bβήλ‘§}DΜJπtΫzH› p³N*<žxόρΠ*½!΄ž{μ{ ‹¦Β‰ΣgC#Ώ2ώh[eΓψQ½Ω¨>βAύωνŽϋƒpμmδeπΉΧB5ΡΖ‰‘”-ΡMŒ)0GD`‚’’Ά>Π6tRαΤQ`Δz‡¨€Γ};Φ`ΐh`oB_ΩΤYJή+K(``D`3k›*ˆ<’πͺ!` e,/'ڊ’i©#:ƒ°YχŽΨ@κSΠ ίa’›αA―ΧΡήfηˆΐ`,.―L’ρθ@”Σq—H*6oΈ?.dψS²f@―[+PفξΦ­ΕπΥo~ΒFh‡›ZΙΎ΅ΒŽAA9‘9ι:ίFIVV@Ε tδ*όωφFl.Ÿ!Œ‹‹‰ͺ’ŽΆQŽŠc-@ΡΫ’ήe‡~—ί~=œ:Ωι|_ηzm]­`°;‰.a΄§ςDsdΰ£ž λ“! Gƒ%PŒ–Zζ†LC#Π‘fŠ]ΡΌ‘ρh™θUƒ>QPͺ5(@il―ͺfamΐ«/‡GΦπyσΓ¬ ’CήDl±ΦRPΜΏ/a >«·1ž(b£eQ+WΜbπž†q„8 +ŒœΨΏAΕeVΐ"ΟBŒή4††UΧYŽc¬-1;{{xMaZFΜ€eF.₯£ά&ϊΊƒΌplΨJο81ΕdŒ ™§θ χ<Ο΅!ϊzκ*P%Έ YgΚhŸ–ΎCC/‹γsŸθ€Hƒ«Bˆ›θdDUΟx|ΣοΝcΧ䈬ZΌ‡Ÿωu(νψ™ΓfN™/λ=’γ'έ·ιƒœ2γιΦ8³―vFcŒzsόۨœπ²σ7&Β7Ο_ }­τgΰωρlζ‘•ζ«άχΔ4Ž&y ‘{μ½$Ž{=JYZΜωΩ9žXiœψBŒΦ] ,γYΗpŸ„Έ@‡l–œ€a#π’jŠs볉@ٌ4bTΰΩ…ιjyygw",(`Ι΄Φ·‚΅NQ¬αŽƒΊJΣAγ\¬οJ²6*|νkaΔλo_`ΏPP»M7°άJ²;CC³ά Ζ%ΤTδ0ˆΛq’Ij10ΠG&2žŸΩ ! [θ‰ššzŒ)Ί'έδQα¬α\δŒBΠ [ΐ>ά “P Ά17‡αšaΜΐM ~Ψ.ϋm5g;-%ΐ· Œ”Σch‡σt’Νrν‘ν―§os.Ξ:bίσώ:΄Ύi Ι ’ΛΛΤξd·€/AΧ €Μ¬7Ε<°/Šep )ϋβyΣ¬p³Yp‚ϋΓ^K©b5cίs<„,ρ€£>Φ8Ÿγ@Ε,K7Ioœ—5#ρ4 2Χr4XΩfu ]³D­mΎ604Žέ }½=Τ“5FCN›x9σmφYλ:ε ΛΕί œ₯N”,e]Ξ&P»4s,MtόΩc2wΑ7¦Ι΄ρύχ)Χ1ΧEnX?₯N€Ζ,E)΄ϊnL/#fβΟ3C ha¨ΗΖhλμ O>ρΙΠ ΄ϊζΥwCικT8pφaή§8ηWFΕ l9?­a("³βwΖ,σΉG#XIk3Μ8]‚F―Ώy-όΛϊλαΏω•ίΏφ_ύjψτ>&a7{ύςmΖif}ΰπXXτzϊ‘toι†|§*ŒΒlφ'ό‘ΪΧΓ‡NΡ?η&N1Y.ΜzΖ€2Ÿ5ΖηηΡη€#ΎŸ{ŽΟ•Ώ#.2H9ΰ<ϊ<}zΈΡ‰ΩU‚6>KΚΏςٚAΰ~t*ςΧΰω±ΎύΫ"ώ{uIφuόn2£Τ‰•΅Λ¬Ak(Μz;f%."‘ Χ}ΔVc,41dol|ξΕ+ŠΕη’m’Ρ˜Άyκ‰OPžVΗw.γ\˜S70枾ώpμτC,'zκ8ξ(KψeΕμοΎφ(…Fž!0{av¦6j*7\YΧαq¬'ΡΙ‹a‹Œ³SP‚|mf-―’mYš‰6ƒΔεΥυΨΓ°ί‘yœ‘žkŒΊΘ5HΦHΩ¬²/u”&2<π ˆΫξ£^έguŽοΨyΎχaοΏ:Σηuνχ_γcώΝόCf@Έ² ΨKBΦ(’„n@ο/`M¨€ή» Žέyδ3!ύW_ ΙΙαΌΓ1;²gŸ » -@½QΚq£ ΄1²Ž=Ξ©lv•ψάϰ¨PxΔ5ΰuUΎΏπ-Q(Όλφž}‘»ŸD& …„”pZ ΣΞn·)η°ψŸΊ7žoϊLC­«wθQΙϋ9‚ωΘ šΚ±ύ^œ«}|ζ5ΪΊBk Ώο‘({œ”,‰«kΰyjαDέΉgrχυ;{ανkΐ—ξ) SΐŽήΈt>€Δ¦CΙ\ ΏΙ„L‘¬Α§cx€ ίcύ-ΐŽ5£YWW7SΠMΤ*—.G聑γn†λƒ£8¬ Œ’Mh„`;u0τX€+žz–Bρ’·8'Γγ€δ1:Θ›…4μ=)¨1GgΑtBx¬― ‡h= ’$W.§Ά”―<‡C“ 0n™ϊj"Ϋ¬Νƒ:kα΅7ί&{GC΄•Aœ‚²πΠύ Τ246¬Gxš4ΑᏂ’°ύΘΎF’+υa‹Οm–UΫ₯-Ρβ! x-Š›DΈΒQV5e[xoeJΖ‡ΕΜǝΈœ¦ΏΒψKšΉ#έ<66J‘]-kuΜό ›ήά₯fΎAΡz}MCΨΒωΨ%ΚTAgλ ’˜άΗ9fι«BΝJJη…μΕλάοΪϋ­„¨jj=bs3[Μoy"Τ]Βe7aLpo;YL7Ž Ρ:PA’τάϊZϋ»DCccA”Ψ²Ζ»Š,…—0ͺHDLQƒ ΰ:VάƐ5 6Ϊ‹Έ[&Ω‘Rη§ ―έ+Ή κΜXΕ―ο`@ο"gRΠΞς₯œc±»{' CΆ₯„AωnΖΊΜπ¨˜•5{Τ†­0r/ΌIε«£ΑΞGΡ-Q¨ˆ{‚.ΪR5&ωΎΟγx‰–‰/6Sc4Πl‰ΡGeht‚œ :#ŠB£’cbΐDKK…ΞϊΦ‹00δu"Z!1ΛΔf η"ۘS q­OΡRsΝhv3ͺ§0»¦χ§ŒΞQ} ‚c(λN€†₯”ːWrΓ;‘™΅dΝΕ6Ž…xξb"Η+¬½EjB^ΎHΧξ’Ѓۏ=ωIΨ0 ?Ξ2vž Œ€"σ—ο0―₯ΐͺ–½O σΠΖz[ΑΉYΕ©Iΐ˜uα+4CΔΠ¦ρfG'Ωΰ„[`λ‡)ψήΐ±Ω$3₯SS^ΩB€b5,’}+Η8θμνΒΡΉLP‚η!ΆΤΠΕΜy/"[I _ŠAΞψ „tfί„iΛιΤ NlΗυRZՊaŒœΑθ(ΤqRΌE–±œ€X˜Πςϊ.υ#U †d»: ±X”kj“L\ŽκIκ› +!2ΎŽ|²p{^C:{0λ•Μ2p²ΛwK£΄Ύ‹η–sm²Ύ–)<·ηL#5…Žέ€dBh¬z~dͺ„±Γ±ή"#ZDt“@‰μX6ΔΛ3ΛYθcΜ=zέ¨ƒμnKm|ΫužΩ"£\’ ³ ,ΦG~m9I1ΛΗs“AΞύkί%vΉ˜CŒώήβ βΎϋόοЏθΎxWŸ©5K’-°Y돒0΅4υYυDΎ€Φ³­Αs-ο1ž]{εUτŸ°š±ή%Γ$νk7δ>δp,ξ !s²₯Γ’ΡοΎ{9\»M†zm6Β.—pΘʊwΒιΦ&d2ŽE;5§Χ'_Η§S6˜αAd²GJ€Θ₯Δ#Gΰ'p`t¦ ACΈχ‘g:zi&Ή” Χ6ŠJζθόςΏΦ*ΚΙΊΐ 9σ tΟ°°Ύ.C–ΙžΥ$XΓ±\ŽICaέH&ά—L ΒΫ̞εk@yΩkΒx8f%¨Κ»•b^ςu!>3¦€gg¦Ε‡fΞedŒς†ΉŒς“ω‰ΠMτƒNˆSη³δ°θxθlδ ΣύŒ'ιg<ΟΤ βOν €―ρ$eKh0g•uΈΒφ™K‚a3?k―dVΝ1g:/‘ͺ]ιΔulΩΨΤιν‡fH&φ°-PC5yϋfxψ _χάϊιΙ0»0„3aνΥz}36nT.ηphvΌWξ‚g%³]{8rφ,r`†LKΦχ"­a Σ7C_w?ί£S‡νΗϊdΡα‘v2H€όuύ#§|ξC7‡Ιz“ρ$ŒTΐ9…xλ Ίn–@Φ8ςnΜj™hζiρqέ-7’oά}}oΠNγεjC‘ο6΅„pZ»?ϋWQaΔ3T'…Γ™‡>Εj7ͺ‡’τ‘α˜l?υ3!Išmvο},γ ώήWΓζ€σuǘ·'ƒΏϋ/vJ~ο³mŽσ=š•”mω臩X—C@ΉΩρΪםσύΛs8•ΟT ίϊ‘^Š ξτGΊΖ'pάόϋ‡“ss6¬λΣτϋ˜AΉPoεΐO"XWHΗβ—εlΐΈi5G`ΕKνΖ@!BJeΪXCUџbc›ΖDz»κRαΔΑώΠMΈ]PM‹ΧΤ!ˆΔ”έ-Όͺκh.†!΅J$vSίdα$Nυ#γ€κΛθ J­ΓλW'0\Θ¬4υ…CΝΐ9Ζ©Β(/Εω΅+zEr{xˆ₯Oφl†sŽ?Bέβ9 dΫNM Ω³‹W―s_(Sκ0Ί*C'†”E{ƒ` ϜΉΪIπιKfaΆag) -πυp¨―Γ *@ §ͺbKK}ώφή3ΨςϋΌοϋ~{οmοέ{w[Ρ )‚U HͺQ²lΖg,eΏ³ .!¨ΌΙh°»ηžϋ?ς+Oύ>ίg~f A2ZάggTΒ0`•(8'}m³5»μΦ¦ŽΠ9@„‰βρ ΏŸƒ:΄œ„&΅"`\W3@έΰ’ΐ.Ίϊ(φ–³Ά»Š“ίEα Η™H{c΄‘EΡΐkO=Mδ*Ώ«Ρ§ςC~£˜έ|φω0κ•βYάs:^FŒ-"ΪSΫΓ΅•$ΓYuΓ£ΡšJΡ&j ”€ΚV6š‘Y™"Κ;EDέρΣ©ΔξΣŒG lαYdCUp`XT1Σfc8Ή»0 ›‡ζΦΈi”Ά2¦B„:²JαΤ` DΩg4O¨J§ΆŠ±œΕ@-’A‘ά’΄ΕΒVtPP―¬IξΙο°H5$Uώ6͊ŒZ¬7 ‘Ϊ‚σ 8`4Έ-d«gΕ ΠlN ²γ«ά“,bΈ£<γΘ_ΦΨsΌ5(Φλ0ψ\ZΓ=Qφ|…9PΎƒ‘6`#³PG°±ZfzOΐ•…䣍¨γŽY’½5 …σdΛˆΚ7ωj”–§{xh8*l§ϋϊΕΧBΩο-ζ{—Ϊ Φ d3PΫ6Α¦H ͺQ›‹³§£ƒ½|’΄Ά¦/c c|‘Υh>ڏqH„CluO'©Γ"HΆ(l-aΠxoy`›:«―-VΒ 0ŽΓd'KD/φΈ.„]­Y2*8Nٚ£+λΪTρ8χuœΏΚΣ"YΛ4Ԝ;;λμ—$΅° ξBΏ‰=2,r—lC,¬MΧ₯Ιm cj7o λWξŒλ@Ύ$™Χ"p(χ\ž1l§Yj²•lh«Nυf@ŒcŒ²…)ˆN¨•©7μνΓΑΓ‰ϋΞΉsα>‚ mMŒ;PH³tfl끦e(F/Γ< ςΎΆYΓνƒμ φ{!%‘Cu ˆ;Ϊ…’ •q)8οu„ŠΕδTή0Χ%œ‘C:\˜u°kΊW“Rh‹R'9bi˜rσ\ΛLF0N«=XJκ]Ž©‡9²pΔΐ‡aΫsΖ8ςΤ »*Ύ―=θ q= hέ³‘ΠΚ2€k+s‘rτ8«– ΏχάfG…fj$›‘JΡ²Μ¨“ŽœgΫ‘“ύƒ|‘ΉBέν½"β‘JΡq™ξΨ¬un Κυ7ΓG>„s<( οŽB°0MΟ§}KΚΒθžNS­”„UΠZΌ$ΧOA:P$Rου«μωΈίΩV",μœήKΓ܏}ϊύdAA„pOΒ4χˆŠ·΄υ +ΠiΘς~ψq €ΛtdίAg4P³D֐uΨN‚―φԁ6ΖΝgV–μPΞhξψ―2¬ΆΧu6j6φ»_ƒž‘cmπtA Rθ,ω™σXT^Q/$žŸiΊωβŠρ‹Κ ηOv:3ΎGxΛ%=λ‡Ό¬ z~βΎΌiΎΠ{Ξθ…BUU„—Iχ\Β9Tκ¬+ο“os]ήρ<ϋŒsφ²’Έε,MΧXϋxŠθn2λ3ZΪ†¨½θ"ΓΙ=4RcΓk–ΦθBΎ"ζ’υQΐ}0~οc?ώΓΏ·d+ΧŒ™ΑˆP;}ψ}±.rc_ΫA6;²­d4mψκϊ©n)TΦΗnΰΟfΓμ‡d­©7_"˜t}y{[ᙬ½zω’Ω‡fmœY%ΫEη—ψ€ίσ—σR€οω8ώπ_ϊέί<ϊ»Ÿ|Ώοω™―t-χύΎηη·ΎήΝ1·ή»v|±rίΕ‹ƒMYU₯όΜ?α=³{γ΅•Ν9p±9!ψφο8ΞE\&κg‘=‹΄XάοΈ¬­―›7θg·ΎΏυ8£€7oγΗέϊxν[Nξοnύύ;ίίόωη7βrσuσ˜›?]ώU$ρυΞϋ~ηΟ»g"ς€ΐ·@+Κ{ –( δ~8ΐˆ<ͺXΚ%^Vˆξ!(QœI:-osΌβ₯΅I"™‘ŸbW‰]Ž$ͺΥΧ‘Biτ2Βυ4y:‚pΩ _ψƒo„‹DSNStηι‰jΤ‡ Π0―‹ε„ν,“"ΊˆΑ#Ελ<€ΒGΦ(2ΣΈm‚‚–vJc­‘EcGy₯²Ά°ŽSCΓΫ]¦ΜζΠGΖ£€daτ8uϋ0γμΐvbDh–‚π φ‰Γνnφši%jJT8VCK §1Š`KAθ¨δΨ"Cπ›7ΓZYƒ=…mΈMFΔξ¬{DcŸ›‘PγΡ‘ώ‘>ΆEκ4e¨έΨέε}Ί#…€Τ§$­ύeojnμξ,’ήǝ’ΨΘ‚uΓ8“AΨ.’ν(W„kΙώh©eee’-Π―ΔμΠ·ζ°ά'cik1Yyπkk;FσΩ?Fϋ£Š2κΥ1*ŒLGf*ΐΠ:}ξ;ŒίD δp4ΪUΈQΉς>Λ|«5Τc&e(ξW£<Ο—e#Š]Ÿ5ˆgdΤΒ¨Άkx,Hgσ̟ƿ±Ά„λ« -άτ>S§ΡΒ4ώΉ8\£Ά@…ˆ’₯iΌηχμxžΒα°/C,:'’mδΆ>¨`tœη-Zτl†FγŸs—qF#ά Ίͺ"Ζ«κΔ΅­Q‘LΔθP—›ϊρIY[Y”‘'‘χ\\Ϋζ‘o(#Φnό ?ŽuœΗqΥΡα†cφΑΎ ‘α†fmΉ:Φs¬±΄Ό½½,€N-Ε$RM,™ήD¨©'²Β"T«Ε6 ϋφΠM1φΨ±ώ ™X¨ΔŽσΖτLŒϊηθΏΣΥr#'…"§ λρSγ“Ι0™fο³>ϋ¬°:@IDAT ‚ΧCΘHθ~˜žRpP <Γ" s3«PsοΙ%›©υ˜Η 1“ΩFDŽζ}v /ν.°Η9?ΰύ!ŒΈV 8₯Ψέv©Ÿ]˜ ρΤωπΰέΗΓ ί©ΛΆ³ίYό¬μσ­Σΐ6žgΚ@šVΙ~–‰²ζxΎΦ†ζŠΜ(ΕζiΦYY‘‚ΐ`›ϊ žšŒ ΄ΰ«Ν}γ¬Ζd οD\ΧΙΨg`ΎjFi{‚qHγ< ;ς₯md0,₯2ψuΦϊN̝Η3₯Τƒ­ΣL‘@X cΛυU’.ε ɚbV³@χˆΌ.Q$/]ΆYγ"\Ώv¨_’πφ‰«¨Y]D¬{ΜfΒLΊ*M&₯\‘"‡Bhk\,]Qž#t4~QfψΨκzΧNΩ¬‘ηs-[xmS: vΘ8¬(š^X`ΥΨ½(ιŠλZΦuυ¨Žί碐7-αώχ| έΧ©Ώ=lS=Ξ³Ω–:œΝ΄0/φ§‰σD†J0δŒq*c”qΒy*8Fϋ+όΌŠsΊτοΠΘ ΰ3ΗΓμΤˆ‰ :#AuHz!Λe'…ΙEžofj9<πϋ ψM2AV,‹ˆ‰ΩVahIώM&ΫθGΓbn"8Αή ,œΟˆκ“yΡψΟη­ε!b°=›δώ·θP?:1κΪsaμθα0;Ήž{ζ,0pΦf‹Œ…ΎΜφΤ‚όΐsΔL1珙1t,γtğγ¨ςσβnχ3Ζ™9OΌ`.νXξΨθ\ΤκxXόlο&³,Ί.ε-Σγ•β…ψΙ›‰'Κ₯σθογwkŠ‹τΑρ–_2–n ΛΖl³‘Ϋ’D3εΧ‰5H’#”"ϋΈΌN=WWxπγ?Ύτ‡ΏŽŸ>ϊ‘νήZ²μpη]¨n_?έW¦Θ πΚΤ2~ΚΞXΛ¦Lgœ4Ω¬―NS#NΝ™§·½Εg<™³χ<ς‘00<Θ|³=ΈŸ4ί—Ήžlp‘`@ u"=lτχ΄xŠGΐ,א..:‹@«–‘TΆ†Η²&‚%2kφΖ10Š΅Βΐ™ΚlΕωe€ΎϋŠϋΰ»?~Ο»οΎηΐwόπύΎχύ>{ΗΧn,•w~ϊ½?Ώ›σ|ο7ΎοO7ˆ•wωr&QΨQ`ΈΪβη3ώWQG /ΞψΝSϊ^nερώ•κΝn{{Ύ;ϋ† qΨ'+€|‘ ςΕ°²Ba(Fc#‰9qΪ<>‘ Ρ‰=‘vΨx°‹αΩ§9a[Gd‹iNΣ­2ΞQσA–@άSΟΌo~)< mσψΙχ†Θ\/†ΉMπΎ`ΐ0Ά7v0Biv·c7EdFΎ3Da­J’ΝC6Η¨XsgT½—0BH“c4’' OΎrρl¨~ΥE€˜i8yτΖηVΈ~υ Šg„λoΎB4 %νηQ–]γh 'bή- ”­] )³-ϋtX]Β™X ¬μ.)h;Σ!.·ΰtlqI‘Λ@M²™¦pt|4 ΓίΒΙPl^,Πi‡& δ,έ¨‰£aŒΑ«Ž‘ΠYK„›Ώ0ά²a‘pj8ΰ! £¨Σjб)|΅k#0 ,dˆ>‹Θy8>―=Ρα‰r+“γΛDς}Έ2΅%I²5Μs5 μ6 L“2·>«ƒ §…Z£―F–ŽŠ‘V䕁 %c΄Χ£Ø@Ήδ‰bZ؜бΰω4p­Eρzb―«a:>6{tΞ*2|©ΤQΜ²S©΅νΟ!λOŠΉ‘έ Ψ–ΖS‰Œ1† χε¨ΚΤHZ-3«3!dΕρU¦ςΤ5ωΝ ―‚¬vόqP FΖρΣ‰AΩ{#{,~Ζ`―Ε΄V λΜpH¨'BάΕΊι8=Lο HθH.„Δd΅Ξ…υ= ηώά έσΞο Lp„9FΗΥιEθͺ»ΒΡc’ι(„b}ξΞQ<ήB0x_¦DƒΏpjΫσ―Ar0ˆσ —/m„vΦ=πϋHέyξβT4"Oυ‡}ζ΄ΐšH0FY»φΞ~X£š@Pg‘–XO'‘₯_ΔhMpό:ΤΦ/Ώp9䀡³οRœΈέήUΤlΝ”θ„αbLX£8˜ >—B:ΕZͺ°–³ Va JΠ9Φ-{†gl₯OJ₯ϋίgΩf|Ί;hJ&f–Ld―Ύ…XόR žΙΈν(ΰμ,AύΎIΔφhš5rS^E±ω1 Œrdp™VmΨ--ˆΐiα~*8- j7WΈ_£Ρμ…±CDψi¦ˆΎ² σΥ~Œ Ψ£†•‘a%¨“ΥΗLFΜjπέ:ŒuYή„Δθ‘ ­1Κ!dΡ·ΎΧшŒI|‘}|¬»«‘gίFzZφs„θ°–l&'l¦ ΩΩέ:„ τθbάμO3G7aŒξWaf,tξƒ 53]ƒ‡B寁—‘smλ™λ:oLoΦ3»Ÿ‹<³N‹ΓkQ³Y₯u3ο¬­’Κ€8}PSΨNΖϋΨaœΦ¬13ΕΎ=|Λcs/1΄”Σ?ξ‰λΖ (ΟζJqp’<ˆ3δ|ω%>ᏯΪό"«xk$ ΅l©“}γΕs(+jgδ¬ρ$΅ίΥΞβοΌΟΛί\Γ{¨}ƒ΅ΕΟή―ŽLX{τΠj+,±…L‘pΒ:"αb~‰HvΣ€ @v«εT6:iǏχ†“w‚}]£σmmzΏH°JΤEG& Jdqς @aνϋΒ$έ8·™Γr>ΐHXߞμŒ3ΠΤωΉΏ φ S¦]Δ9΄rΚnΑeNhΆΪ‚}PΗ|ZŸVΊK tψ²tΡkμ9›&κf46sR)$ΐU$OΰnΘXΑΤ‡£ΪR}†Ÿ>˟ۯΪ:e)m†".=δΫ‹ξ+.ψΆHγΫ·ς(£œ΅ήώψφ›Ϋ#π=#°‰ό7š69½€P€κξδ™pˆ¬Εσ/ΎφΪ₯ΊƒP‡Phh šΎ²u¨§„­–Ή•’ς,Q§‘‘² ΐ0 π”)a€Γ{Ί‡7Ξ_B@E.21> ύnŽξ° ŠΝ(Lϋˆ”n«‹τ@!Vν%‘ε±)$€EίE„΄Μ@°ψ«JT…ω p°ΡΔ°λn1@Ί~c­|ΰP(#›(εΖ '’–% ZwΙΘ ‘ τΡH6tνά'›C/”\Δpo“VN‘hGΰ@μ-Y‰¦."†8LDFΕί7±1RΣAΑ,Π‹FΤΒ΅ 1”Œ5Γu9; Τ%f©ΗJTB#F±{23yθzηϊ©n¨>ηBœ΄Γ&φ₯K γŽTΦ‹\ΕυωπΐPτ‡ψ#w…σ₯{υΟ T«Αέ šIe^EΈϋJ₯ŒŸΖ0JΘί!­uZTΤ|1Φ«Δο @̊ 71n€D‡„3klp¬}’νyY?FFΡd^ κB`ŠdZ„>θKΕΚ§°μΕ‘Ε@΅K―‘>£gžΣH\U 8†ΈεͺsOΖ φγΰzR•¦Iί7PΔlc-u^TƈΣd•9¦ΖθΜΐ”₯3’F'1ΜT²² eqR„nY,oδυ€ŒRBGcΡ~BbTλi’β±™Υ ΑΐEvAΆΖχλ8FΘ γσ_ΖK˜–ΟΓΤD6†_”Υ:p6ηχ%>ώˆƒRά.κ:HFkν•²ΎΆ Ώ§ΊJLxϊ]odα„'mβLχvuSdΉΞ“A,ε;@5nζ NA3N ŽF'f ςd% :k8›»IΨ©ΒΟΡάEcΠΩ«Πn½N…iΰ[ΧφΒ ―^ ?ϋΔϋq v@|ν‡CέΝΤ[PeA<˜ςvφZ–5ΟS'ED•ΘύΚΝεX =mW`lΟ-%Κy#Ϋ ατ1ΰX|·‰¨ϊ”@šRœ#x1χ~™lƒΜh˜!˜8ny`ΎΊκΰV˜Σ,FU‰@D3Q]α;Φ.P?–f?΅΅7@I<ΗΈ­†^`dΝdKΚU³jMΜ?Ζ ο.…ο[ΐېaγ0†Y&Μ­ΪQ)±c³R²Ÿφ‚ΑςΕ}hii‚Α―‚αJ”΅G«ž(λ`/Δρ››‘ƒ{ϐ±,­•Ω³λΤΏŒΖ&ksΧΙ$IΪAu–ug’g&œψΩJ,Φa\7:άμ“θ@πμΊ³% fWέ,x·†NΊ?²!aψKBƒ₯ι¦e βπ²$0ϊa[ζZk@γ²D¬ ,₯qͺŒ΄ΫXΥ'™Bt0p‚…š±žΣΩE¦{αrΨ­“…-†^ϊ@UΘfΪηΑh6­εψ>Π0œ.r‘ό«Γ€|©Ο{δμΤlΠEн!ζi~%|νk_‰έπγ'ξ%h• Ο‡Η‡N„s@Λ_σ›ίocϋJ1Ξ―Όώ:° t ƒ3RΗ5ƒCX’)iμ3ž:9^‹bpC€ͺ°+* Γ:œ?3Ά3ΤϋM_Ÿ‰pΩ.κε‘=ή{*|α7~‡,γB8‘ ?Ο³­< ΞΛ³ωh\ƒ‘f^ψ!ώο(ϊβΊρηšYΗ-Υ>σC^Ρε;ΡqŽΨίŒλ\˜yφπ˜Qαό5™ZϋΜο֘Σ8/Ο&œφνλF{Ξ#Ό7ΞνIΌœχΖq:΅Κ·]œρ"u³mθa)©χ˜›)Ί'b½ ς5Κ#„5f‹’±–4bψŽ@ΌΗ…F+‹ΧΘV-ƒBΏΪω\NΝ\”οϋϋB B3ΩμX;ΔXIf`χr“Υω+θ`joς [₯gΥυy‚Γ}ΡρKγ(­,¬/­’qΙ†1'ΤV%‘…”¨‹σ8„kB0:nc_μ`daœ« ή€™sέ­σΡBpΑ¬eQ½ΒVΪ5ΘH―™Ϊά8nΏ_κ_οΪ‰‹χΠ’^ΧΨ;_?E7ωζqΒω{x,fΊyΐ-'ρό΅…μ‘cΟΓΒηΟMFίGŒ8F―ϋζwΈ―Έώo^πίΏY’Rζ«ράί{ώΪέΌ–§1₯|λ=έΌv„€q€ΟκgώΉύϊf€―H‡;ˆTIˆ·ΊΎΞm*Ξm“½(6jkZ³‘υ‚a%†χόΥ«αp?œύβƒ8ΗΖ{(pασK!TkXΥsΛΐ¨P„ίxρeŒ€4t§ΡW䫉N$b6K½ΡT’υ e’ώkk‹ΠΠφpg‹ΡQΜ―C€ 8εŽ’š_XΖh$Ϋ@ΔUΪWΈ?)κRΥ ³Fj<1Εikt o‚J—5#ΨhšΈͺΡ£έ88τ YζZΛ€˜·χ‘ΤΡ~0D„†LΖμΒ΅ΠJ'άΖϊN25€r‰ΨτΡuέ .–@/Ά λρ™VyeQ0-d4ffgΘM‘w˜pύ£a&·|¦¨CQξi-ΦΣSAΆ3•CέD/1.ѐDΏ)>ήΩIΓ‘ίφκ,υ(!χπ,U°κΟ½όTΔΈi @Μ5ΐJ²Ša”EY$¨=1]-“Π yS3ΦQ:ͺJwŽEbeΛ0χhιŸS‘rz:Y¦ά-λΌβχΨΓάkt8Œόq@εnGb–L4pό‚}/„Y%LɊ‚Α#n(Rβ¦ά‘4œ?#€i j*Δ4σθύ¦Ι*™qΒ‹Ξ!7Ξl ω₯"£φAx… ΦiŒφi€%x»³sλ„H­™jJdδQ±§(ZM£T³ΐv0ΰΐqˆŒvR\a-Κ–UΑρφ;>ΏΧ’’\-ŒCMf!Ί„v[v|΄|ήX€ο/ƈ'σ©1yCΑΛσ7VSϊ~ΙΓβW\ώχ9βxβ¨α¬YϋΠΥGl‡’Qޱi¨κ²PecL΄a”οs‡YK£τ )ΰ`§ 7@χ†nŒΊ –n‘±4š DB¨Ώωʟ~>χΎΝžmi•κΈ η‘H]YΑ¬λIˆ”‘ξ  ‰ h–Kΐ³τ,Ψ_]\ c$p^W©©΄$Β`η c œŒ'»d'B…Z dΙ6p­$Ξ‡)ά*p2 1pA μΒφΈNα5σ„>mΖι)BΑέB–©όόF5ά1A‘ωF}ΨbmCΒ‘`m΄Πσ€\JT…α Ηγ[Ο?ι»yΙ%ωƒsibδs―¬™$kίu)|IGΔmeŸ–2 ™ΐΟF―υœ™‹›λl_\wό^"αh€s€ίΆΕŽ"ڟ§Ε]ŒcΝΑI³\“RκVΈ–:V'_ƒΏβΎhb?˜₯Ψ„Εkfiž(τ)ž‹ -kΓ}.ΌEΉaJ:|Χϋ€DΌe~Σ™Κ²VΝ€r):Ϋ―„~ Αχ 'Ρ‘ΜβQεW˜―ΉΧ‹]ŒNEή^¬Uϊ;26^zm–ω‚ͺ½΅‰λ’…ΗΡ4œ.q 0.φ„Pžnj͐3)ζήMε³ 2 }#Φτ΅kμ…Ω0Œρl―)3}=όΨΟ}ψ!”ΕŒeζΝ—D>{œξΫμ΅.’chΰΓωˆp:Gέ‹ψbβ$ܐ΅,Ά“Κ‚ηvΜ%UPZoηΥΉ‹ ΏΞ{γ`δ'Οβιψγ΅,„Wr([΄<—N­?ϋ>¦½%€K+oIΐujA½}> {dŒΊ!ϋIQk™gO”•wήύhψόΏϋsΨΘΖωŒϋΐωXίXŒ”Ψ‰\;k’‡¬ί5$Ακ4ϊzΤED󁎩 „{6ψ$ΥΈ€$Φš1Μ ™ŸΌžvέGΏ±4zςΠΠP8<2FΊΫΠ‘άπΩ"–‚Τν2~œ―βfA:fι#— θͺ.2O ΅h H³ΕwΜςYΫ\@v΅ Wff|`ΗυφλζΌ+Δ…' aƒόβΣSLŠΕs5aδ‰X―lμjψΨύα°μ‘†ŽΟ₯t1Ο€ue1τΩ‡‘ BΊΥpw…“R22N1I9’rι«τ Šλs³Ζh% @Œ†‚,’ς8)πά.zα.j Άκΰn ›η3š)=Ÿητ^mŽυΔχD/Έg‹έ#€‚sήΌ'ωνr*σzήkόδQ€·>‹γqϋυÏΐ&π'ρνbοw1„ ”0ΦΆΐ:ԁ°Εψ€Z\Ψ’6 ƒ+»Ζςd(H.η{B…™Λ—aΝϋ»ŽΣPB9Υa(φ·GfŽ}„{Ζ€,pŒΦφ!  {D%‹(ΎVψ&ηο$Ϊ›€€ρκΉjHμAΠBρλ*\υ—0rZ0H ݝcwž"B‰πα~ο> ε'Π˜βJ°Ζ5ί‘Ž5Σ6,>δYv·—θL= ΐλ`HΑIˆ½€ Ρ~ΖœmΐTfˆΞˆ₯ξ¦ zcy—NFϋqΆΚ@·dΩ88Ψo\ϊπ‚;Iι3fDμ–lΖ&ΟΈCp'Ψ›%φŒ–ΆΘΪτ1VMdŒ4>μ.?77Ί¨ιίΪέ< g&w jH μ••}’εK†.£s*₯ΨθΟ°8F‚0xυn4όΑ‘ ѐ±ι5DFλ-ΈΕΚΑY!Ϊ†Α“Β@I°X«`˜Ή$'ΰ½…ˆ*jCαcΦ£‰žIΛR€+%¦N—Ξ’λ]£_f2kR’ήΔπ¨5~SͺLQφsxnΟkNPώ 7ŸΑ@ΧρeœX–¬*NQ"ΒΊ44\Έ9>7Άͺ‘¦#E؈uΗ²_uxζˆ€Θ)'mjXGC·^Ϊϊ†1θ]Œ€jfjήD7ΡέQφλ'΄‘@ΐΥι9Θ6Γ΅©©pο™χΒnff)ˆ΅h€Ϋ+€Μw‹κmΦt_?Ξ?ΜϋΞο«+ΥΙξ·…, ao<“Ώ?vΗΡπςΕWΒ"π­ςύ§™+V/ 4kWp.χM,~Ή€ˆˆu$5€F-ΈΜθΉoΌρVψ­_ϋ7αcΏτ³Dΐ0m­‡΅y’γ°–ΘΎ0έqήe܌=EΘL4c«Μ5?rœ5†\Ι2~«σV%›ΔΚ5 «γ^ΛΥδ›tΪL²™²Π6qΏ•X›SΧ―9ΏΖνŽpΓyœίYρΊ˜ΉϊʟAψΜOωO-{Ρ—ηHY]3ώCζΓΟ ¨ήΜDΕ}ω›·ς>=RΉΐωbM˜’ƒΫρ½GΫΉάγuRόΟλ8– ‚Wΰ ί8r<Ύψ9~ζϊπxŽŒ΅A|¬b`P ›Lκ„”ΠE¦Λ h0F$~qs"΅½ ξi―ΩJζ>ΧΑˆΕΓCόT8ϋΪσa€Ÿ=TjS/’―z  .§†!dΣ{…sm™™οδ―†ψ υθ8’PθΛΊ˜u¬5iεΎYƒq¦Μ‡o?ωνp&ΦγΗFCoΝK™Ϋ•5Θ)ƒ2b™ J;μ’;’Θ‚‚}υuxDaŠϊ+dϋΘz3n ˜ uPΆΘς*·!ΚH‚Πθ!*Γ6ε~nŒam$ήώ}c₯Ύ» Htp,D\ͺρ?t˜Θ3Λ"qQ6GxώΒJxξΝ₯pŠͺ7 ‘4{`^ΰiRσ¬α&vψ,ψΩ'ξι 'FΪβ"t‘yn<ΡΛΧgΓέχή2Pœ}ϋ©WΒΔ‰3x¦-ακ%:Ÿwτh/= ˆΦpΟιαϊε7ΓM§ξΎλ. &Ή˜Φ75Φ‚ασν—^£GN†a”―Ώ9™ΗΗ'ΐύΑkO$νΥWΟ…AθxG1'―]U€5 `˜]|σU!‹³\‹θpΠ4‚… E‹a¬³·0Α@β_ρΥͺRΩfγρGΕΗxΊdP^‰ςαg’Gš™@ZC"u"ηΐΨζc©[ΝΘz\ό/FVzY΅0ρψžγΝ–#J–eN˜BΊrrργ„$Ή•Wa»\“‡kaˆH1’;ͺ£ktdΜN€­Χΰ~5θR/¬c©β°yM ―Θ4ƒq—ζzκtΩX’tΦybό –XΟ "ξEπΘiraK²~%Δπk‘Yγ ρΒ(:$ežGƒΓ:.ΗUˆL„½αωIΠiyv‘i^'KΠ¦Ζ§~θP뎏r,ηΤΠ‡-ƒ\ΖΆFyγr‡qͺδΣτGκ¦E7ΠάOn,±nΆΒΜΒZhΑ©956,,m9OgbΦοΘ‘H)½Λ96vW0ξμc†aFcΈ₯Uœmœœ&²¨`†Ώd5( °ˆ΄°X“ΡUΦ0€ι €ΰγΗ‘^Γ ±.ΚυUο:Π+——Θ^e©kΓ`‘˜ϊ ίCdλˆδο$H`εaΪ‰Ν‰'Š pk8U#›’ŸœΗ!•.6š†GXο4NΔ1OΠδt‘¬k Η°•HlGc_xνΥσ]τ²οΧŒ ι”#RŁΰ&¨7€φϊ‘S /ЌΑξ6ΝF‘d Πhhζ8–B9\lcδ(}ˆ’ι`gp4pΞX/ε8šŸΆrX¦z4Ξ™ΩB£άώ‘εMؚ²€ΡαάΩ/§W69ΎΐΕxΟ<²0X§όβΖzRί» u][,IŽFξπΉFydbάRD€%ha―ΣHu†ZΎϋιZOΈ”YBiž N e2TΒ‘Π1*cΪ¬˜άπΥ΅₯Y @!;υΡH-]-#― &XƒaΦY{ΌH€Ϊzχ³Y;ΈΛpvӘ5λ{Η=…VjLΜφαg‡M./α@²Φ hοRS—B2°ηκ2ν¬Ωd9©OUκΔ<ŸφydsΟ³Yo’"’ΘιΡS,)•ΣΨ :Η=Λύ,L] _ωυί 'ŸΈΩ³‰MΑ0ΌFΚ{Ι4/>=.ΎυVθΐ ŠQŒΙξ [r|}>eI npN•βpmί;[εJ”…ά­Α'e£½PόρΟούΖz:†-ΦΉρν›6™ΕιΎ8”οΤή»ύΔ”[όU»˜τHώWšy]ε2Š3ESY“α»Κo³A#Ÿ#} sdΤŠςλ†se―›ΈJphlœΰΕ΄€‰ώBΩP³‘ƒΪ©N²GφZY~…lHΑŠ΅(K›Ρ•Etίζ½\3½ΊOΐi}έζ§ά:χ S™u^#γcαd\χjnR£³ 4k‘n©@eιΓƒ£[δ“σ<uk%)˜©½άBχ iΫ€ŸΘkΏŸ:Θ7Φ—oPj"8vb€' uΌŸ±δβ·_Μem Aοφε² a’žl"°2”hπιρJ“ΉΊž¦ΜRvgΏΣkα όϊΧ† %ΠO6DOΨΕq@Dω™gž'²ΫΎρ―‡F\g©˜ΏυΝo<~σΧMψΜσ/Γώςddέ©K-Η‚£9"j ―gΞ&Ï~πΑπ―ώ‡_οϋι: |‡ων§ΎΊοLψκWΏή!8ι‰jhΠύε_3Τuτ„§Ώώd MtψΒψΝpΧGθ Όε/Ύ[KSψΦS°Έl½Ζyκ™η(΄m ΏϊΏzψ_~υΧΒυs/…©ω΅pπ]ΨQ2‡ϊl„@ρݎηνγnQ ˜˜«’N³ΜΣ*‘ϊvΈ‡ΓΥk@,€O΅©Xš™ΗG…‚©› W.M‡): R,ΦKߏfθl_cϋΝ'Ο!(PΜ‘M8Βχq*;ΐ«·ΐ„‘§Στ?q—°œ!AρκΞδU’M0tPbP9M2ΪV&ΎΗܚνΨeQξ`ύ”5RΆσ±~BNϋΖ\g83’ SDΣκsΤXPxΪ^ύŽsΈE¦Ύ)œ}ώωΠ3J-αυF ξ£Τt `lr©©«ύ·Q E«Χ._ χ?Nο™ζp¬§§/ξ©²'}8βe ¦irU4 „ΑΩΦ”….ρ'FG©ƒA ξβΕ—Γ‘#DšιΠΪΒΊΗPm₯θ²£λμ•ΛμΧΆπΘ}χΠ]~ # θ@툾Έ².―^Η'ޱ",hqj:Œ Œ…iœ”ω™+a fKšγ―†,Ψw‹οš{ςΖœ9œ,©oc€Ž~ )ξ1FΌ04t5bTf9"½Δ£b0ۘH"Sψ$f-TDμ½Θ Εw'|ΑΡΞɐ;7œGΩ›σ ͺ‰·?ςЉLΖ,†MŒΊr}”Nd_αKδ‹Ÿ·'HŒώb)Οt~@Y°Ζ€ …Qˆ¨|2fP―ΰν΄«A€A’†Š3BK1x͎Tp"g‰ Gͺ\žΗz-œ}₯ žEgΕgqœJ8zΊ:5U 5ˆ ‹ƒ{‡›, ϋΰiωΓωˆ>ΫΧCG€φ!ŠΡ‘ΕͺΤΠ@σ»i"Ο GhJ^ƒ DFOγΡlJ‰˞ΡαΎe rΜ} ’Νξ Αd…Ϊˆ*΅ e”iπ'’_B& dGφ§0R3¬ω"γ½O!h+j#ΦΩ/ΐ"PΜuΐάζpκWΧc=Η=Ηh‹‘i/…FΖ<±Hεμ= DjRz‘₯ηbo]ΉJj><τΐΙ8F«Πτς— Λ@"͌šΙάΤ„ƒ¨‘Íύ)Έ92)ΐwZ1ŠφιdήΣ¬΅ –cDΤ§ͺ¨ΓN+LΧΑθœιΛ?‰ΩΜڜœ›%σ±Ί `±20~š©Λp=R£B{#Ξl‚μVΓ;M¬•ŒQΧά~rθΠαHΥ+cί f;Ψ†ΡYΩj£M;ΒtήβΣΆ΅΄GΓk©Υ­ιPίήƒ­tz_§€ύπ±‘l`.θ{²O΄·;=ΒώœΕ 'Á‘ή Nφ‘K BA˜wώ3Ϋ₯“Η&clάλw­€Χί«ο4]S«ϊΈ–X/Κg‘±φh‚})²9vΏ+=fv%†BGάΟψQ_',†σ+²dΛ4ζάΤf1jΤάΚβ5Θ΄&ΊSηX·gζBλΰUδχfΰϋ<‡Fι0\a_Uμ„ ΠM!Pδξβε@’ΰ‹LOΓ"©KΊvυ2½=†GΖόφώLΈ0VKΤέ1$η_δ9q@5Ž5Ζ; /o@.dΈŸk#dP (:μΏ*™kΧ‹Νu „D!,Έ6χDφΠ.οώΒΑʜo§΄ΞΎόdψφrbύm+°‡ΜΘ‰±pΏϋxkΈF-Υ{c(άΜΌ ;44τF_ΩθϋH/ΜGq_ϋζ"zψΜό¨ϊ4BFyΓ:5Λ—±bά#xΧΎςΦοΕ0ŽσΙ~Χcψ*ηχ7Ό”ΩΌσΏ(’ό™΅‰λƒ΅γqρhΞΒΉylζIͺgΖEηsκLιΔE'1*Ϊθ9ζ92‰Φ]€‘jKY/tΐ|7unο$Pόζ+ah`²ν…KαŽΓ8r@Eθ‘u=ΞC£τΤΐβΪι…³C­†χΪL棄yuς7”'SY‡L' \t>­!ω‘Gο#‹E0 Ψ)™θ52θ-Πj·,ΰzeΧΤe{ϋΐ­¨χΨί[η^eˆ΄g{ϊΏθΈ™%Ζ…μ*Ξ!γύuaœF¨S3…ÎΓtϋ―8ζwωb&Yy¨ΝZn: ²Δ&r£ΈX-"ZמΗγ}™>ΌO5‹°¬πwφ„.―…EΒFPά€E?σσ?Ξ½τ ΖcŒ»O<ραπΝ―|9tφ‡ΟώƒΟ“e1’8νΪžξΥ—_ 'οΏ/œ™ ίxζεπάwΎ&ξϊιλ\xίϋž+J DΠlΣIτbjjζŸ†05™~μS+ακ•ΙpCλΣ?ωΣa‚ΓuwGŽήξ>1>…ί ύ‡’τΎψεΏ Η?ς#α'?ω‘˜&΄ΩάCο},lOΎΖwΦΓΨ ]07μνΧ9,œΎΡ>ϊKΕ€P΄·Θ,‹„&ͺ?9τƒ ˜y[³4Β£ω^χσΫKA'ԟ(ŠΥεbxρά5QχAΑ’} ͺ`θ³'}Τ0Uqή’Ά$£ˆ²h‡1gzzšϊ‹U"oτώ¨_γœΝdbˆ’ς(£‡ΗhΞ— S³OAl30₯&0Β6JΛ6bΜβΜτρK %Z τf›θΒτŠ­ŠγH6f*Œ ΔHa‘¨P/Ρ–₯5 apυgrhEŒΆξή¦pχ©γ(v„3FσPΟhœΐ©!‚fΔ]‹h‰ΔwCαX†"v Ζ–}ΪτΜ΅PιΑΜ…ϋήϋHΈ~ε|8:Ž3ԎπΗΩ!{rζξ;BςN{Τ&kΦ―\»v~ '‰ήt… Π°z2NγΠομ9VΩΛ―ΰ΄@|μ(ΚΦ«ΆΡ©Άcj3D—ΐί_Ε!λ­+d)ΌΕD«±ΏDŒο$ƽɈΓRk!ψ#t‰sŒŸJP£ΈΦW&¦π ψ`#£~EκK£‹ž4Φ`x>‹Wq-ˆ•:Φ4_©ιε{Θ¨‘F δXHΛΉ’φδϋ~§X frPTΐςͺΤ}ilι¬hΨΪ@PZ]‹ncφ‚4D‡ \η½Xg‘β¦:2+iδ‘θ0fTΒ}^£φB^ΥΤ<$σ Γ›$Jν³Ω`­7шΑXΰf’#ƒQs\ψž™α,ž³BτΥηQπ»>{40nό76xδgq”ψ½Δ EdW©@=Ε½‹FWΗ:Aώ…ΉM2 -1³ΌΠΦ jdΌ„ΦΨLSP9€Ω‰Hq=k% ‹Uy9N³£ƒ&`v#‹{ο’vͺ‘ €8Π¦ZbΘΓ2M Γf²tΐ\ .Ξ0φ»‘—¬ωu­@ 4T‘‘Ν5ονΗΠ€¦ΖυΏo3ϋZ§lί?Τ[΅“½Γ€f/YΗ‘X[ΰ,υ `3ξ;[4Ό£θ9_‘^#Mt˜L‰λmΘΩ4‹Ά΅»„cY"˘%₯7FQ2»ŠΣF―h]pL²DΛgW̌itωΑ±ζ»iy2^­έd' lmγΨΨ°pφ9b!K–΄Œ1ΤBΓΘό.EφΈ 8° ΚμAz|¬S°ί…ƒΧ@Άw°c,ε2 ©ίv‘ E2\2h•\;ζΐΟΚhΚ…2k$[Τ¬aœ’‡>ήDVκη4ΩΦY C6Χ[tΪΡ»œ;¨t ²?pd]g΅eW;>ΒΌ8JƒΞm€}ΫEν•7―†πœvζŒspΙzα~Œ‚»€οW^³¬gPeΓ²ΟIj Η™’}Y†βΪEfxΚϋ)RΘrBΚβy˜Σ*σ(š«`‚{ίόkVw£pvvyϋ‘l‘«kdΠΒxxιeΊ €£7–gΙdI£ΛuΨ3λΐέN=t/uGξŸ9ΐΩ1Ω#ξ™γΌŒ[yγ«bΤJχm@Γ_σί Q ŠιΛg/r•ξiξEl‚Š9Λ³:ΝΐσξΈσDΨZ^δNjzŠW=ϊNηA™’ε؈χςΜ΅Μ2ΕAδφ€ΞC”ΉΌgd=π™ο™XŸ#fd|Ε “θ=ϊ™―α‘:6΅os₯8m~ΟsΕrη%Xα|ϋ uyΟk{\{Ȍ(ΘZWY£;ςΞ‰~i½εΥΙ μ7› r.n^{4Ε:ېrύ°Ξ[pj„* c λ8+νΤ}ΌΖ+ƒ Δ0…caΰ‹«‰ΐc"‰εi†ΎSd*y”FΦΤΖAdyΡl΅‘ϋ…"Ω:g„`d‚lΜˆ‰4}ΚnΏΎ; $•Έ€ΤΈ!γΏ¬Χ”nœΧχ¦ΰx~ͺRσ%cŒ5 ¦έ$§0³°π­s/†gߜ θg?~·/F=6Y±.e²MΰύχέΦΎυW᏿ϊ4NΖ#€ΛHΏΣlinχ•y£ΫαΩ—ήgξψε? ?ρσ0€σα?ρ™pνά3α™_ χήyg8@a|ω‹_ κ§£ΐΫ'ςQ,#8ˆΖlΑ}ΏŽΦfY%p‹¦μ kΣ…»ΰŸ}‹ ·ΐ8―£š‡†xˆΪσΕ‡ΌύΧ5 Ξ:˜2ΪΪadz΅@έΠζτJn? ΄φc€—`³šGρ·y Ύ₯;³2!Απ΄Σςδ,,p†0hx"ΜN_ž₯3. k!؝cO'‘C ϊzl·,3’Z³Π@Š€™k»Mηψ‚άήi’΄ΰB«DQ,”²)έF„W νˆ„œ8sšθο2u Yί½057ςHμ+ΐ m4hΡw;ΠaIo]Ύ†IΡ:¬Wi ΝΉ§ ‰Α‰!ŠXΧ0ΰΈ> ιαC_¦¨wšη¨C0Κζ“₯°όΪ—wAπp}«y:Ϋ`\Β°ά₯&…A86|ή.θDQŠUκΑΎŒ<²/ΐΝXl‡+ΣP‡LΔ‚ύ*=ˆΨΨ!9[Θ.k_GHZδ:9₯Έ? €‰±Y !\;ΕΪ―Λσa¨ ˆZ[#u8n9:“’PŒπ£kˆ|E™ΑΚΠ'Φ"FεH„!#RΠΡΦ+°!½#Id?J(I{°ΔΞΊ([Sω*·ŠAε`qΔυͺ€Ήš ˜†4ϋΤβrρκΡχvPh1υO”΄VK"$K’ˆί-δΔ"Ε"Ζm#Ec#M„Ϋ¨?ΊšνŽ‘O¦ί–Ÿ‰ΏbˆηPVvaWΉy=ΗPηΩσh€kσpόα\f{™΄μ–.ΔA‡C‹@ㇻαPŸO ‰{*±†°x4ΞCD6‡1ψ8bŸt΄†kΣΣΐR—u‡9¬Φ”υΦΩ€3f \Ÿ8.Λ {ΐVΖΘ0WBŽqd#<‡c͸ٌ.MΖΔσ¨ΧuX\\ΡΔΥ¨Tvς™Αk μˆήDm^΄§/u¬η3ΫμZΥa7-€K;š9N8½^Θ€T` ³?6βγ³h`sˆϊΨ=£±XUNp/βΤ„l -c±± Hp¬‰eζόΙ?όOaδ=χ³³a(ά‹―Ύ›Υ.£GR €Λx]xϊ₯pϊ០ΘT†RΌ3Œ„=HR]d₯€Σς|φ1CΘΫx40YY;fr P°ΉΆΟΒ¨πŒt” —§Ο…o=χtΌN¦  Ε²ƒ{[uˆ›€yΆΒœ8yύY2v›ql=xΘϋϋ8ΙX ϋδ’ΡπŽ;Α%dŒ”a:ώ§£ΒXσYt(˜Sε°~„ΝXks†sΐiω8ώλ7£σ·Œ³ΏˆφŸšQaΨ9‚/xi0qq}8ž,ΊhΘ-ι«₯ΰΝ<@FΕΉήΠΘͺ"σ3Αœ&֐wΤ 1˜Α™΄Ύ.K€%ΚEΦ·$ +τ†Ήzνrψ™Ού£X;£ŒΘa?ͺ/³θδ™©E‚ΒK1£™"8dέ#—s$όΜΟ}9CSCdΖ„½=ύμd8sΧύ0iRό―>#{Χu€έέfό7€\βX΅]¦Ρ.ώf.Ό~ _~ΰΓ,T£ΩzΪ‰hl~ιOΏBμΑπ‰‡‰Ύ£δ5(nΏ~ψ`)„Σƒaƒ™˜Gθζ€ΆνιΩ€θ<™ά„R+,…Ά!j8Hw‚Ιΰ4bXΥq¨‡ηNH #=‡²LCj€©-…6LIGβf©- Λ ‰%0·ƒdλhz%ή₯U@`#MH«Še%*C$uΤ ΆΊ©£›bUŽWήDJ–ϋήΔ?ζΚ p©Α0ΖZOΏ2,έ}άk΅Ό€Β\½t‰ΒZ"50ΎhP%K°Σάmxΰ0†ΪzX¦Vί‰a6¬%`Ν―\˜ ‡Ž€[εz‡FΗx‚Rxνε«1²š y™ς›― «(΅ρ‘;Β©ρ.64cœ >φ(ΨY!/Τx°/*a Ž­ηͺ9νcΡ½ƒ\ΠπNa˜iΈΗ4Ύ#d„q’"4o]{0­αm&!*- QŒEai©Uτn‘ΥG–/‹=€„ΰηΊΐͺ΄ΡΕώeΤθαφγ{bΜNx«ΜΏEηœ‘θ΄Εγav―°‹‘=§±›/—ΓπE!aΜί2B.¬%BSˆ~G%κΉxΦ’F>χ¦[\Φda¦240¦Q ςύY#†φ&jQs‚Έ Ž•χ$Μ,OŽ°- f£#E0F!Qώ1γ„dΧΠΣΙ¨"ϋlτeΤΉ΄@λ(ήΏΜϊ‘ςΥ(¨ΡDvƒ, Μm£u †7YӍQM”/_€ϊšF…[kKΜ$Dςgf'Ω#ΐˆ€EnQ|αάsα ϊπ‹ŸύΡπX+=(/Σ gcv mξ‘uzPl¦ζι2‘K(’!V(―Π9ΈŽˆ&s²ΊΙάω\Τ^΅ΠΓ n\Ce Σ:”ό=iςΤρtuQSœ%’/έΐšC†‹Γ@-φδ&0­Ν}œe"™ sE:‘ΥlΞDZι\z7t‘(`ΔΘd5|³ggΓυ,°‰$5Uc”Υ`xyκΏ6Ωγ}#Τ}αdœΏ:ξΊλXd™»>ΉŒSƒ€\*.€οΧ1†Š{h”FuU:.o…ΉEδAˆV2;ΠrμwΔ~ΑΣΐΙxΆ^†Œ K!…|©#³)“ΧΩ—Ικΐuύβn) "2G§t’½0Fa§Λ–Ι¦ξ…‰!δ4ΨW`‹,UKΰΰnτ)hhBΘL[ΟaTέω·©‘Kά`PΝYa°ΦtΚu,d;2€£μ1¨ΐώaMEΘ–'‹/Χ²·ιNcž&έdv`“2“μώχχZμΔυ$<°ξŒΕ36ογdΧ9,aΫ#»U3t5ό1ΔΉ?ΝkΜ|δ7;™ΟΌ|JGΑιbu0Ž r,α€τΆ£y Ω`dΥζzv.κ‹ŽŸ .†bkπί3αΩ ηÏ"kϊ&”€Μ!ύ―ύλπΟό·aΰΣ}θdϋ1:qŽPΡη>ʐ%hξλόΔ»Σ ΰΗΎˆέΒ՝πΧ―/‡Ρ@γR w»«Τ΅PK(M²²Μ@k6Σ…ΟSXsΊΞ:i‡LŒr ‰q_λΑβžeωeδ^œ·ΪΘΖ9Žp5‡8π―šƒη½ρŸ²y3»θύŒ(γrΎ§l½GžΗo³jΟΙ1ځ±‘‘γΞ9<·pΊη6δΎ²ϋΌ…ς,œYkœ„fIR['|gΧΙα^u\Όή™‡2Δ'έ `΅»όΚ3ΐΖΓεΙπ υ? #G޲FΠρfpΨ;:+f©ΛI’"Y‘Μq~Ο¬q μ֟’n‚laiσ Xˆ’©βœ[f½`©"%ΉΠT‚G¬ο-(x7ΧζγgνμC{Pm€©‘`^ H‚]²šR©―mδΓλζXŸhf“Ή^'`73³Ξ8·_Μ“Μλέ; ,=ΓΈ8Ω,2Bά„`™ζ4Νe†Γ„¬g³ώψύύα7ώκzψΘΙ.¨3α™·ΦπΣα4ŸΕ=Φ},:δ?ώ•ΖHδϋM,Œ±c'Q¨"rǎίΛ†I ˆχΒ‘Sw‡3D \€μ“œ >[Αtšv…N₯r*<ψ>Œ;~׌ >4ŠToxHΙÏ*<τAxι1κH•6>XFe>ωιŸbγTbZ­Ώλ±pκΎ‡γϋ=δ£όX4-Γαg?ϋ ΡRp(Ho; ·]ΕπS:LAμd]=4@†c‡“F^ΰ€»ιύΡΡN‘‘Ζt}— ΐ$€}`ΠoΞοΔ^σ`Φ7³‘V«B~1τ`%3κ»Eδ{›t~\§4ͺM@9\`sΣεf ./©C8#,-’Jawυ."›‡ΖzΘt\Αι Ή!…Ÿ›λ€c1ΐŠdhκh4·ƒCλuˆš.Ξ’9 ΒήIFg !΅ΛϊPPΚ”³G“ΐΖΠRΏŒ‚.!7ΧΒ ©Ϋ$P¬εΚ\82:JCΆN:υ^’°wcŒ¦dPοΚ²ΣδΕhΛμβ\˜_\¦!7KΤΆ@7εͺΡΎ~p«D6Ήf{›dMΞΞ3 |'0ώxΞΝm’Fΐjς(£ΙΩΨΑ8QΛ=8uΤή@IDAT.άyί}(0νhΆσηίb,–Β–hu,\ØΌ2Cfθ>λe²'°ŒmΡ*cΡ{ώΠςΠ΄Α z”‹*ƒ@{L8Ω7^B7b@ƒyςXΤΗY‘rGyŸ3{P4Κ―ƒaρΕΌFϊνJ¬Αi<@αR(αf²² ΪΛ€JέΤΓοβ#τρ€˜zuEvΑž"²zυ¬ίeŠDΧιΙΠΧ‰Λϊ―'¨”aΏnhΘβδιτπ,EŒξ"5PΫΘβ~œδό °*bΙEΎ ΙP‹"ŽA½Η•Ψ`²@3Θ<μp/©4™ ζzli‰ŒBΖH%‡i”μγ`μsΐ0ΜIα{ϊΤ±Ρ·Ώ-籉ΎΠK$\{ΉLͺ«Hζ6σΦή>Κ|8κ»αρGΙΘΕΎ:}+™ ρ¦ξ00:ήxκJΈϋ0φχήGΦΝΔΡ;ΨΤsP 3;CυΑ:πOΰΔΦ 0Βd#«4KFv¦Pš,"r―»ηŸο°ο­e ΩS“iκΑuvU«£`{5)L­™¬n™LΣΟΫ€Q·KΦ¬BfŸεΐ–²ζΚή¬wΖΩ’f•¨Y?#φnΕο’cΐs QΧ*'κjΎ’ŽΆ‡OtΦ9‡ϊV› Ϊξ_–zΜΰΉ~ω| u$όω—‚`Q>ό?ώΩΈΖ₯-γtEη˜Eχ½{Ο½w€5n+ΧC‚Z#άΚ ΆK\£fΩlˆεάW•γ#³%²Υf£ΦRqgμ―B˜½~>τSΟtμαγ8•#αeδ“―’Θ²ΆMPΉŸ8Ύτδo…[Ϋ±γΤ²6z†…Χέοp]οΣ ˆ oeΉ"Υn5nΠ‚€+υ5ŒtQn •Ί:3―yuSi₯&†un-’Ρ~λ”6Εό&PςΥε% xL4/;o/ˊ¬œΜW$Ή0jΒXΈ„šΥ šΓe*λ<β|!Ψ*λΒ”s1 ΒX)πŠ8¬:!ŠΌ? $Ξ'?s|†:7ƒ?Θ|λΧd’σŽlΡρaŒcΖΕ=‘QΖ'N’°:g΄ΐyu«:!1pΔwωŽ΅gΟκ伌›"9^ƒ~qk2Ι<ξl‡ΛΞβΒs―?~όό"{ιt$2CηΪsύc.²Μ8 Ex€™vϋ·H8φYE2kYν4δ8™φžΚ|WB&ΠYˆ ·ζΉΧΉ&zq@/Ως8ΰώ'E0 2‹Nτ6p šΠ΄χΒτkϋ=hΧχ“cƒ4Λά§f„ZC Πm<γνWm\³ΎP-οβŚr±΅!ğΌ4…GxŽμςβsΞ£ϊό^ψψ]=,>η2aM ΄„_~όpxώj˜^;ι' ρΰK~ωΖ«ζγ₯ϊα₯€²iΣqΎσ―…δ±)Ηω=;lJίvσε±~.Ώ?ϋ: Xί³³x―7ސε΅ΰOΗΕ—ŸΩαVΓ) Z?3RδύΔσΦŒ?爺»Yo;qψώΞ)ܞώφS8-πψoΓB± ƒ†ي¦F ΔΒ:γέHηβςK‘³{‘Σ–§¦‰2Žσο‘ΘMMP }@!#”—Ε¦pψθ(Βc…^T"^ΌΓyk£¨3IΈεηD£νkΐό%ΝbΌ΄eP~Hyλξ§«/Τ »‹(šμΡ”m‹οκxδ‘ = R82 sŠΕ‰DΆ‹D[—¨Κς}a sK‹©ϊΈ^7‰†ζ1P«u›S°·‘τΪικΪ=uf-&')X£:²Z\ΖXZΒ Α(`{¬ci#Γƒξ έΰΣ—¦0ŒˆΦ Pϊh~$wψl‡‰:λΊ`Iͺ‘}φΩ7‘Hg―-†Ο}β”χόο«!Η^/“ˆΈq””…‘ξζH]‰+ΔJcBUVΓ„#₯£§βχ*=‚:’E…½=’βC™((R#ΖΪ½X‡ΜH3oFjΩ°(k ž«ΝL–8} ΞΌΞ ϋάΌTτ/ό>Χχ£u±(V%Ξ1θJŽσt(JήΩƒC±ι½XΜm¦Γˆ¨„΄HžΘη‰u-ȎN“uzfcŒ8šQΙP(owtσMδΤΒB³4xT΄Οζ|¨>β7¬Γ”3šŒCc‡iϋ‡d£μ4βJ–…©ŠΜ ­β<Šš±@™Fγ€sjdXΖ£ΘMiXγbΣJ³4MΤ΅aν@km=ίΚΑ λ< dτšqͺ 8P‡6"΅LgΜ:&ψiϊ^΄ΤlΖΕΜ‡u3Uζ’‡Μ†μ6Ϋ‘:€πΌ #ϋX x£ΓΨFW“ž7τΕ‘†*I ‡ug6ο`wy€φ HS†Ήvέ Ρœ³―/yΞ-Ν`ΐΡ¬H`vΉžΕ‘J`€ξξSτKΪ±£Σ,PC dέ=ΐ0‘Ε­cν5ΡΔ\ χ‘IήΘΙϊν)Aέ:Ψ‡s€as~?Iδt’‰dŠνν:I°?qŽž8Δ:d¬ς¬9Σu²Šmd(\Σ‚–vŒV2„uP„κθJ\(₯m¦Ά‹5j`cj™a kΙ$+@>ˆ΄j8vQΧUΔρXέ4«&Q/π ;μ§2O%Φλ>λ<Λ`Š"@¨D™‘β:š[‹…Σ7Φ½N…†€Y2Š΅ύP['B―bχwIφ£λݍαz2šΧ(+Ξ½z°΅ΟΌSƒΒsκ0]…$δΝλί ?χΩO2ηΜ)Ϋέ½‘?―ξχγΚC–ΔύΖy₯,ŸΌ4Λ5αSŸώD8uβ$˜_δ{‰Qvx/n{=Du―ςΚρφΉ,ΎB³Φ§ž~:Μ1Vο;:NAs}ψΏχσHϋ‰πΠCχ„ώΰΗΓ|ώχΒ‹―ΏΥαc0` „uΓ ω—ε•πΛ#8ٌα>AHΗ‚ŽΌςΐ`DIY—ξ8€ΩgΚχ&ξ+?S'tm)ΌπδY²Υ}dΫ¨=.6޳^¨xίʞ4πAήkλ@Ιϊπ’„α΅W§b (‹¨Υ{!«x^Mg"fμ‘uŒ`ΤΒΒ\g‘έeγU!qBͺ,|OXΌΟρeH?„©%YOˆΟΈΖuXΜ1gγw‰Έψ 9^sp˜•|AYE5ΗΧΏ8ΚyΏΑqΪU|dP‰#•2ρχ΅fJ~ώγ|δ ϋ=—ko‰Ωψמ~*¬M]ΰ† °.~<œ:sO$…±ΓΌ6ξCΓΩ»]XΣ’8M-Ύ¬spˆa…$ϊ‘mκxώ”²†ωہYMŠc`‰«’Ψ ©Eε«•mΖ όv|Η'ƒ,·ΑΓΞΉ5†$e#κb’•³Γ4ΊΆVMuCY’!κ=ΪΘΆξ’±νaέ2OΞ?ο_ΞΉ―Ϊύ½L•ύPwcψŸ>sœ(;w½ ©6¨eΑw΅#`0Z<ή—ο;˜ω'Š?{Έ‹Έ8k‡ΔΟύ«Ά€ω ίυΟMΓώΖ©ή>N‘υΆ3ΐ§7{ϋ€ψ†eΟq5Γ‘fΨΈ}όž―˜BΎqο7?σσψžΟ£GγΨοw~Σ9ςί[Ώο9nΏ~Ψ¨†?ύ[a79žκ…πρO0˜Θ*ϋΤδ DsΐT^Ά‰ή4ΛÈν ''Zh Φα;Βρ¦Σa~zc£…’0ٟ€ΦAzιΒ‹@›F1ͺκΓΨPOGi^½ŒΆυ„f ƒ-θ;+D[CικHθΑ œ™y=$iΦ§Q»Έάdw h^™¦h‹3d;lΎΔΎΏΊ Ζ_2CW`pΫΐ r8K{K‰’Ξμ!RΏFΛ-ΎWΏSτΎHΤX£jŠ­ ω•娛(€·?Γ*PƒwέIτ3žϊ«o…;αΟ?~βx8ϋμ Ρΰmθj‚vr1θ SΧ(bz،ΏM‘ΜsgίΓΰdΧΑ\―γ2ϋp˜&ˆkK (ΞcDΪH9s½Y‘Η'BSg!Ό ·ώwŒRgKΦθP8 @9ώžρ™Α1μ ʝΑ›Ο5ρ?’Ϋ8BtBƘĎ@N ŒPdΡ8FΩi°+—ά«†εδq‚ާ0C>³θ†‘ˆF‘Θ’2γ]b}$)ώ.±dl¬h°ή`yЎl0³΅1ΣHF™MηeΗ]±>»qŽŽn χ?3‡­₯­}CΥnœƒKd/aτ›œ »+8#τX‘‘¬›¬Π<΄ΊYΘ$4Žσ¬{©z+@’ЍfΘΊIνšEF”σdw0‚™C¨ΕΊwiΘδ·›‘ΪhkSh)6κε¨#³VΘ}!Š<΅πΗh²~’^Ċ4 W!’μ΄ΧfxΟΪη#φ‹πB jkό ξOΟ‚Ύg}ωk4* ΎΈ[ΪλΒOώΜƒαΉ?»Ž?Ξϊ3ΪΞX{žΒkiΨΊ(1μφُftζ^ γΏϊ—Pφ?>φψΰ€ΠQξaƒH8‘Ιͺα‹ΛΟχΜ42g\Ϋ§J°6ΝϊΠ@θScxγ₯³αχώγ—ΈZχ^ΊφΎψ'α…ηΎώgτχΓ}ε―Β·ΞώQxμ‘GΒΧ~ϋ·bM>cίDρ·½T|΅"7­‹Ω†hΓlGtΨ‘Wd€‹ΑΆφσ˜bύHΕm¬Ο?§ωζ“Οόe<όp4»›/ώυ\8ωh§ ψΔμ*Ώ΅6όϋχKαΒδ λXxγσαW>χΡpφg)d'#ν 1^μΦާ²ϋ0. ΥρΠιQ9φρ±~Δcλ# s0LφΖFΏ {¬;>'θΐwΌο8<‹π5NΟχΉž?΄S2Dω|cοψ;>·Ž#^˜‹;―LN|f―π‹υ3ΌΟŠΜθψ°nμ;£œΤΩΑ—‹u\Y >ζΜεs@ƒ_K“K၏άNžd_A°|TJ[‡eΜkκDYϋΥ5H€Θΐ ϋ±ž}B [ŠlR$ QF2ΚYΩ \˜²ζ/£NF·Ωna› Ι.™ έΝθ―P %Π-θ‡4ς.UΑΑfsΜΐ ™AξΝ‘»4΅D6τNS"Lt“ % œ€δ`O CeȊΗγφ_ŒΪΪxWΘΫΖwz‘έ|Ϋωˆ‚£v"‚Uϋ©φ ‚Α¦Dρ7σΫηϋž7,r~συƒ ϋw~ώΟΏχέ°ίϋϊAίσ¨[wλϋ[Οπƒ>Ώυ˜Ϋοίύθ~φŸ>ήϋήχ‡Σ@¬τ;[3at¨žθ#P:b,FJ ” ΓΒ™ abόQώm  „(πŒDeΚuD7vΧΛ€ίο/Έ:I³/jE$²Ϊ4·Œ 5.ԏΤΝά‚ƒΏDΏŸ£ α>ψϐ Ύo Θ0S†Hm™Αba•f}ΣEυςΤ*­θn{)>Ÿ¦ϋ. Τ¨]Ιc|扬y-i_ν‘£/ξf l‡Ϊlc:\ŸΊ:šύ0Pπΰϋy” Qϋ: γ4ψ2ΛMή<ύ:Ίˆ‚οΟ!Πw) έ"βLc)|ζ'ί.\YΧ\„Ήjλ8ζw6ΒΨ8TΏΰθο½g‚BW"ΙΩ•°Π¬ŸΙ°OΫ: >ζΉ‹Ψ Šk»Ίξς6ζΧφ‘ωœFηqͺθΓB“}κbfζαH_/ΕÍΐVFaΐκΖ_w†1Ξ\B™€ΣaF‰«PΣB±0ηvGm՘Χ`ΦΎΠ VσΔ¨Š=‚αDFAmj‘.Fw„9qL…1±!¨YL³IŒψ˜!@‘”PΒΫ4l΄»x–σgp.Έ ΗS܈ςMΗΊ Ζ…©n4š§ΑT`ΜΰŽ­1Iε2«αο#e₯Q«U˜’χX_FэžEΉ‡Αζ1y!Q8CYB°šEh6>ΦiΡΰœβcδΞ"zΦ3lY ُ€Ξ΄w i’ΘθY1/φ›Έ·ΨT1ρJv‚N0ž ~Φ‘š8«s’‡R΅Ο‚ 2ι½ψE|Ž"cζ=hΘI‡Ι-ΕρŽΚα³Γœ8θΨ$^’d6ΊPތ)ΞXgΌ‚"φ©€ Ξ“H$q8yžΥΌω<+dϋ*ΤβνlLη*ΐBΨδjτΠL‡FŒ»5˜l29pώŒuƒ/ΝΈΦ±Ά²­ΜWΣΰay²,@d†ΑlsΛ@ τ‡μHŽΜτλ―— ΓΞ΅^Ԑ¬Q―‚ J€z8T·8:υDœwΐΤ—x–*FŠΩϋ!€‘ύ΅—ƒ0Ύι…EŒΒœ¨&φrβ δΙ"΅bβΘι,>•lw7Ξϋ:΄μτϋИ+ht―\δΌδgmi C‹O©Γg!JωΣ&³+ϊ‘œ-κ>€}vQΉGD^ΐρ*Δyζ½θ™¦-ς΄Μ)Tα6o«&‰T€,£LZ™΅ν:ΖεώΜΰ„Ω“¦¨ηT΅•Ά2Οkl€₯κ%d0/ž“α‹ϊUGA§SˆŒQpun š££ΚiT\ύf΄ΌΚpΩW{άϋ=gξίώΖwΒ€k‘“:!Βcέ»`‡@HZ ˆB•Μ‰…ε^#4Πβλ7_~3όΟλξ=z,όη>Gvz0|ωK^βفζ Σ\(&κLπϊ?η‹ό=ίήρ…qΖΰΧ>π«αΜψ§’ΑΎGΦΞyΙ!σ ΄62nu¬ο9&pΜΊ»ΑuΘ”WFŸ=nM—Ωf.„π› qͺmd―uγT―·e›1°~R§ΐl‘άŸc&3׍/;ή+=JX;§—k»VύΠΜ‡bΜ Y§ΫΜTό…uRΘ­43[BͺͺdF½φzλάwž σσαΡO|,ά}ί―‘΄ΚD޳Λ!WΑYβœ·ύy™¬ΩΨαΣρ€m“ιο ¨ΡFϋ AasϋΤ’1{Δο !ΗyŽΖ(›™KžΏψU΅  ¬O›qΊ–YΥΜ!k=˜'θ’«»Ο6aΨ­Γ¦΅<·ΑZb8` GJΘθΑώ σΎ §™ˆολΓ.ζŒ2‡•θqχΠ00f wΎ·+q{­=φ‘!S!ΤΐΩ΄±ιΓάτJψΐϋίτκ>k™½βވ5]άg‚½θώŒ(d„-‡ΰπΕgŽ…`jiδ™― j λwώ7‚BDΑΝώqΌŽR4Ω?fjO›-χήΙώ7 ΅*Χ#zžζ؎΢Π;<@ύ L˜°&™qpΖzRaH6ψlΔ1+3g^Τ=vΐ Γ² ΌΩΙΓγΓzPs‚ΠήάΝ}•Βa"ωΏςίs~ξ@φ²ΧΉί"{θΎ{θYφ§–Θ@ιE“"υψ a­’cΗ†έΜ°Ά$˜>λi ‹ΐ@Η­e|Τy±ρ{Ω̎Š…9 ˆ1χmcΚ}ΨE›ΈNA«$έ½ Ό5 »u²Μ(#ά—5 DΆ†qΦ±Q2ϋLU%fOjU'~flΜ88§ΦξΨΘΟι5π”fψ ΰΤp\ YΕͺq" 4ΝΎu.\‡ΰdΨβΡ Άχ^ΖΫ>\Φσ1ζΛθWaΔ ‚-²Κ0?Κ€ˆk:Ψϋ9dg0ιΖ,{:ΔB7χ`bυώ!>@Υ‘3Zμ B?‘=j#[X6Θ‹HŽ΅χXvΏ²όη'·ΓU(Ι§—Φ‘qdX€αΗuΝύτiΔ^θΖifΌαΈF\“©,NˆΪφˆλŒ‡ό{ŠA/Fαέ; 5λmΣO΅εΘ²αnŸΪΛΕοη€›±Έτž=ή…Ζ{wΛοo ׈Y>τgΏγ‘σ½§ΰ|ρ˜Ϊϋx~Žίzϋw·~–γ8κΖWΖyn=η­οΏοωΉΞwŸ4qϋ―rœΟΙ)1ε+@:ΐ0-3MœE€‘2Ίpq5,aœδ˜b„[ {(ƒ—ίšE 5[―†o}η•πψ­(ΠΙp ₯y–š"‹ύ½ƒHοΖΝ%Χ©§@XI·6@-:B—MΕΠ”₯·.†α#¬C ΔΘ’±Ϊk†ΞΎϊ`lw4»š₯H[Έλ άν°Κδ€£lο&€~Q_!˜Ψ\O7ΡcψωshΌΤΒmΟnΣ΅}mcΐmš’-‡ΞΦ4F G;Β£χAπaΘ“ 1γQΧO­E»ΤDΥȜό?μ½ωsδχyίωAθn qίηΰš“sςΎD‘β!Y¦dΛ²;Ά+.{c'©έΝnνώ ›Ϊ­ΪΝ¦²΅Ω8Ωœrβ”“Ψ:lIvDΡ-Y"Eΐspξ ξϋF7€n½―Χ§α"]TœŸΦσ%1έύ=>ίΟω|žγύ0ε›0ΠbΘsΩa{Ψ-€»,˜QŸ`γzžΰ$R¬€AΫΔ’a€Ÿ40ΛΌuυ&ZΜΊ0NΉyœˆsέ8ΐ§ar8νη€Ώμ’e-Ϋ© Ν0+0ѝτ}/šΌŽA #©0CΞ“[„Βž_€ΗaŠP€]d©Vλ%τC!@˜BΎ&%t²»ψ¬Dψ‘ένΓω_?‘"kΊΜ²Q4Σt.k©Τ7PψNΝ΅!u™ΤΡΒ£―ε„AU"”¨0‘Th½ύ,ŒMΝ=cа/t‡΅Ν ™Λ@σθWaE:!«`­B`Ρ―4M]AψΠqΩΉ–C0vνg±HQ1`oHdZe2y·~')„C#Ψ™“ΒΘ™MDm βΰ†PMθ“οιι& g νƒF˜γ€ŒυœG«oϋΞηcπœ¬J κSƒV₯Qΐ8rΠϋMaE1V; φBD‹]‚;(<UύG?¬@k[Hœ™d./a]Ϋf.ξُˆΛΨ³ŒΰdψΩ:| kΣε•”nϊ 2_‘Ϋf„wžιλeP!Χ"„ώΏ›ΜωrΞ1™aπ©KQλ0J­TͺαΌ s«΅MΊ€"ΔΜχ9Χ½}¨΅M*¦ b44}žΖξ܊‡†&φΔ§žb a^g^λ$Ž̈‡Z»πΝΪΒ Y]ΫΕ?m‹hͺΝ5Τ ΄’ΈΧt£Šχ¦ΦΜ1ΣLŽ+ΆœΛι” ϊ/ΝΨdͺ (6ͺ  FV›œ\βB)θ),ΊΒπ Q σŒa >l …gύ Χ€L³jΌΰ!VPΆΕΟZι#\λύ.–PςοN'@μ4'‹rιΝs CΠ0¨‘A·œx™ΘΗOhψˆ›‘“ŒσεhluͺŒŽ•H“eE,‘Tgο°Λ“ΩPδ"5\šΞίn’j5ΰjAŒΨ"ƒ"A‰Qe˜δ:ύ8¬.h”$±^1?ΟkNυ>ωMΟ–'³#f¨ `μ =^«`ΡΉiη™ΐBCJu’|ήιsζψπ3žΏ||μχέΗίΑΊ0½–αμ€Wd0¦aήwΨθΖ'G`¬Σ„T8Π‡Ζ"ζcˆέ¬Žω ±Ώ‹»α‰Ώ;DθY4„Xn’‘ ™αN˜Da«Δαka€\j)3ƒ=‘‘MΈ ¦‘œ<΁α[y„Z6žy΄§S!Υ`4"OQθω/zzŽ!θ&"Cx牙;$0bVƒ?Η3jε‹@Ε*Κ‰@SΑ†'—Ν†nΜπr¬]Ν!?»T =φ0!:!¬h±ͺ QΊsΈŽΜI4/XIrήdπ³.ΚEC Α―C#[ΣQε=ν.ΌΊpθI~Ϋΐ^ή={=478Hξ”ΕΥλhˆΠΘΐšln}a§‘†d_\μΔρύΐ4―$6l"ς˜ύΎΓ˜ˆZ‘Ο’‘œ™,„ήn23‰k}α νV-πθή=‡0ΈˆΙ»7τRΖΘΝ«XŒ~ώΑ/όπώ&‚bΣ’έE£/.w Η?αRbμ]—Ρ‘’M[¦Ψ ΐ6Α€Ξ°&i0§ ΪlΊQΣεyξ5‘©σ©θ5Φt-cΜe`¨U6‘!^ί‡π€Η΅_ΝΖd2F& Ÿζs€‘!²N…:¦ (g£U,”©šH5ΒI ·˜§οΤDσΆX·ΌΡV>P6<:vSf‰΅p†SΚ°ϊΞiˆaΔχ );œΧϊ μΣoΚdζŠs *>e“ψ‡¨Ε–ΆD «E)„1JΞ›ΰ‘ΡφΚ@ Η¨B§P!c₯†V«’tΦXϋ‘(B …Θ¦Y[0Γχ²B™ϋ03Š’@BΕwΡά›?αΨ푇ΠζA †nyyςV„&„„9#ΊεpŒέΞ€p#ƒiˆη šοvοLΤ&Π†%Τ#€l­εchίu`KΥX¨‘°…εΡ΄βd_έ Υ„΄l‚ρHΓΘ16›΄£ΐωΠD-Uϊ€`RδrΤ`.cA0ΚY% I—–aTΕ$™OΣsψBΰ»ΡψpΈqεf£ξCh»eMRƒσ<ΟΘHcAΰμ€ŽT“7Βπš!Γ<'τs5GΪ“ψuα7ΦΪI‚N|MV°@ ]Π`1ι‹Θ²·δ€ˆ%\ΩΟ›ζW)ή§Φ.λ €OΪ.Κ•h dΞεΘΨ^ V30Όr―€+1Ι9™'O NΠ΅ΐ@„°mΐ/x›yžB©Q“ZΖΈ›€5M9m-ΰί+Θ‚>6gRαμwί"ς!`0‹<‹˜ΐό/ƒ.Φ45Ϋ… άΧ‡ρiλŠ™ͺ σijz‚ιAxβˆ°EψXζπ:Β“Œσ$Τ«:(=†§Φ|vy&&¨‚9+Γ2΅Α{Œf)'KBG8Xή ΖŸ1WΩ₯Ύih»7¦(ϋ2β-Ώ~v|6±he±8§Θγΐ₯ #9,HφiM=Ș©Y‡‘mς2ξYr’DΚά†Ωz€EWα)FK’W†QVεύt%νΒjƒ 456­ΝT„υ Α ΊΚώ‘UρZBύ¨οco8λΖV,ίLb5ό(}€κΩsτ—δŒ“q%‘ϊzh}Q‘"4OΟtRΏ yΛ­’.›Œ΅J""υΙΰΣ096)ΖΜχ4Ρ#T‘a+N tΘ\€§±Œ΅Φ–œŒ9ΟlQξΰ1’EΑg͎ϰŸ±Άh[π\χV}Φ„ψ%Φ+ΩS(ž `ΚK |‡ŽΣLΪM_&ιΛτI:κΨb‘ίΉaΊl©ΦOι‘4R(²σ ζRAH¬cŽΟŒMB[©ΌΪŸ>ϊ΄…YφΨμόσz@κ±ΪΗ'°φ£4ΪA˜^\$b\]Εjhb\λ±]M[Χ±ΠTC“„]6™j h Θ ΨΛ§οŸ{Ξ֎ ύΏD‚Τ·.‡woάέ$?m#°K‚̏œνΖM!ŽgiPωχC§ξ^tN~ά΅»7}Δ—zΞs]yυ\ι©χύ$χΌχΗ~c'Χ>‘Δ έ…»vϋFXψO.4Όόe²Ή"υ:š–&δμ»o‡Βόlθό₯ΏΝ\ΆT-δκy˜”s?ζ6H9ιΣΟΩ © ‹$– ScvαI"?tvv!DγΔ hli‹L§‰]ΨU0  „€+iki$ΰ"Rμ&ŒX[JdVΜ„œBƒevλ&OνΪ2ڝ 4™ 8݊—wQŒα€Χž8ΓζPJ>c„-ΛΜ1‰Ί:;ΐξ-‡)΄Υ`ά]0QΛ©ζΎΌCJrΣέۏννΏε>‰€&στ₯/ό\8vκ$σ‰MΝ –<3¨Ίƒ“6ZϊΖ6Μ―=†fDΫ77ŒV{1θ"Sςi"fΪEβvθ<€!Ύ 3ΐA–fcΣuΪ ΄ͺFmk%6ζΩ΄ς;³Μ76?œCμz5 2‘ί\8t¬ χ©0< Λ&σήυςΝ¨UGc†vΌζG¦Ή³χ0Œκ̏‘«ς@Ί°p4t‚ 7‚•Ϊh˜ΎΜbxπ1œεŽ2$€jD“Ό|zvLϋrθοD+šhζ½hζΜΓ~0ι³?˜Vώ«Η’S«9 E(L7Žn[»αϊ»—qΰl G8Fα ws& ξG™ kδβ₯-1jUΝV8ςΐ‘0lmvΑ€ωΫΡIŸqK!όΜΜΐt@ΘsΤe=»š›ϊ @ Κ`ρϋ{و—ΓΝ‰a6ψM£“Ω‘°DFχ:„œL]si¦#˜ £+J†wi~ ! Dƒ)qένD ƒ0Fs΄((D ]Šd(N­1 kύΜέN‘ ˆV 5L[›+l8œΓ ±ΣςliΓUq±ΛZφ½4Š{aT UjZJ₯₯£ ³‘$δL8‡4«œωS.τŠέQg@ΈΒ„V™j™†]6Tη·|d8€lƒZf?#ζ=’I6wαΜ΅₯T‡‰š@λΆΏ*̌FEλ‰αU"#Γ& a›‹01‘#{ΎŽΈy4§2Š*L*Ψ”w`h=,’rHl4 Žύh· ³³?„yνθ$ ³α»SlPS™@಑–Ήf/Z{vΫΡtΚf™[Xο¦ΨΚVCΡ±F NPŽε ΐοŒφ0”qxδ‘€ζ‘εiθ|=Πƒ ŒκΩ Wΐ˜7Β,‘AƏd… )ΊŽŒί0du’³μ3λΤ1SQ`fHΣ:,>eσ8‹ο@ƒ·iϋ ΒϋΝ›#X< aΰ0Ύ'h«MθYŠω;qg‰Ζpνϊ{!5S;u‚:.Da}Ηψ c±ΝΨΒ²R=ίέKn΄ύ…Εθ―’~Ό ¦E9’N˜¦=eΐa–€lZYΰ’X"²8Εο"ΐ―x ,SˆHuάΧƒ? p1όšKΠ_@?ͺρ(2'6θ;Cb7 ˆ™ŒΒΎ*a$;»Ϊ˜G0|ζŽΠΧιιΐγ™&‰a=ΡχΘ1’?Θ΅k#„KΞ…ΣΟ>>ϋΛ_F ŠIΦά&ϋg=Š—:|iκφΆ™{-=C1‹ΌϋΉ– ϋΊ₯«F‹B±°«σT± Μœςϋ•pkm Bd@V€SŽoΛq-–ƒ φeW₯‰|«€>’άOα₯£§—\\ΓψΒmAχEzιέw£OK#ϋϋ.Zλ Φz„!˜ι<Η^m„Μ4–˜Eΰ­2Ξ)Φ§BŠ 5γ27,ΙF8Λ#8$»:h“¨M’c^ ΧkΨ5eŽ *5ώΆ;Γ\ΧΊΊΟ”Žτς*Q‰ G­‚ š5S†@SEž#{©π;Ό;†Ήf/¨€ ΅PΧ™JLΡuυ”O<γ»at… /τ’αU ΆŽF’S`Υϊβ‘€/Μ½#}¨†yΞkyC.+  0 Γ ο –²*nˆZqκPzeXs*"Œ`‡²>€ιΛ,oνT= |,Œ΅˜QΛtœΏΝψμ$τ`'JιDΘ…|ŽΔ˜τε&5 XθΧHΗθoΪQά³ˆ˜`]T pR8ίFI€‡aΔ·₯GπPUυ|}°.)ˆW!lrυ νCsߏ9’Ψ9ΤN±ή!Μ- rοάΊΚV"ω@˜›Gπ /»:QΆV„ρ₯r„ουΠŸ†Οwθ ¬Z8M„Ο― aη&ώ—y¬πyϊ@ /5k! kk‚b‹(+&¦ΒuφψΛ#«α‰§ΒΚίH’GfF‘ $kηΤΑκΠ׍Hτ:hς ΐξλλ ΰΫUς²α¨s!ˆωaΨψκ›!ͺόξθίΗέ΅}ˆ υάGϋp΅ξωpΉΝοO$€ψ|ΤΔΑtgž|6tΌπJ3?L ΛΆD(ΓΥwΞ–O'—³,ώΥλaγΚ₯ΠςsΏH˜:r.\Ύ¦~ ]Ώω‘©˜Fy6šΰˆυό'_ύ8ήDθ?tŒMd3όψ­ ‘㇏†ύόσπείώŸCof'όι·_a“ͺ Ο>σdΈπζ‰ΏΎ|όΩπ4~χό_BΟι—BSΩrΈtsά]Gxϊ‘γαΫίϊσ0pδD8u²δ”τκ7Ώn娚 ϊτγ…?ό7:<όΩ_ Oο ίψϊW™0ΙπYΧ‡―_&’NίΡπ…Ÿ τ{"lT…Ÿ}ξxψ§Η? _ψΚo…Η>Γσν[QώšΎΎι―ιMη©ς)  C1‘ρΏ›2 0-Μ%Ϊ*0€ 4¨»b*1%Η€F;ε­‘¨S’;Iž₯•QOpΝδ¨D[Υ†ΰvb‹εbΜyΊZΗZ΄ΔΏrγ*s’#­ΐ±: !Y œƒΝΊ΅–ϋ`n`t —ή™Χ―Ύ‹PӍ֨1!χ€]₯ ‡:ΆΎΆ9;tbNΒΚΡ›0<ΓlŽ•„ΐ$ Ύ9€Τn Kh½ςh›ͺR lŠ$}›Œο‰0Bjz;άC³ˆ Δ|―­+1x›h^λΫΒ@ίαpνς₯pφfϊ GO?ˆΠ#Νά½yγ=ε‚£ο…IwŒΓΖγζ#Ψ μͺm₯i‘LΏ‚lƒQ’3±Œg"n€ jπάK4ΌYζƒ ΡBlD(ps2B―`Ϊ"τIˆŒ€t^`7lSa[&ζH-kŞιΎBhAl7χρ”ω&!Xƒ Ž!ΒΉfθT‘… Φ%Z—¨΄σDψ‘ΌωMX||–R0‘Φ'ΒΰΠΨΓ{rp?mVΘYΘ&ΒθΘDΨ\š ‡ΞΰάIRΚ­ΕΡpύφ4s­Žδ°ΜIΊ£‚<8™ZζI@΅Κu©?Œu@š('zΘηΠ„_ǝ±ΉΠc[j€e₯Œώί(L"ΘπZήk_$΄z DlκϋD½ja7‚ͺ?ΥΨ@†aK§εhŠY³Ιͺ²pt¨ (ΪΏŽΎ Lv‘Τ`·<φxdψ];ša’S¬©­5B#V˜+υLτu”eΦBηoΈ€ˆσ.‡©TKΎΕ8¬,cΩΨ„Ιeή Wcρ€Ύ I&hC–H#$%a°+¨r0l)ž“ξTσώΩη—‡TΰQ<©2&°’yہΐΎ>‡―σΏ…ˆa­@, ¬-V:p―€1EΟ,P°4sΗΘ] 0˜$ΊΛΣ΅Dγͺ«₯'‰³…Ψ.ΉF²ΐͺΪHLͺf]ΐω„Ϊ:Qΰΐ<ͺT3’'ΣKhh6ZεΗΉ„ΖΪ< 0έ`RVI†… πω 3Μ―Ό\9Ή<ΚΤμ‹·~Φ†…IΏ-σζ‘Ε&ŠΛ!pjy†ƒG+β—φ£…o~ί3ζZEΕψΪ τβJ…"–h{΄v0WVC#cVƒΕJ@IhΈ_ΧΊpIhœ}Μ{˜'³]GW…靺 >VRh£Κ ιP °–H:Κe׊λΜυ*lJ‡θYό.¬sv|) ΔgS {€q #dΈΦ]aϊsΕπΕ\0ʜ}«•‰Ή‰eζΊη?skˆΨ`M«LAσ…}tŠΠ•ΘW!d(ˆΤ£*$β‚VƒϋSΨ6T•dU₯¨‚R²@¨μMΰŠ‘ em(- Μ+ο*h­‰₯YD8 8WW@ΨN™‡ΜΣ&¬΄›(f±¨Vπg@τ@ΰ2_P9e\›!ΡΘ„*~³ŸΥΓ\―ρΎσcˆ‘΄σΨ!ό5ρuκHζΎ aίH”7‡NF@’zðӘm”Έ•΄9…u%I;υkJjέzκ Ώ ΣU²Δ͝›‘b}=<9Πδhα£lp‹t¦“–ϋΉ³αό₯αΏωηΨO+HžJδ=iehAΑbΔ=ζ*e€Ψ·ΣΛx‡u” Ζ'‡u;»:ΙxcΝŽU‹φμBz7QŽ‚S“Ρ²ΩΧ’Β=Nu³έ*°―塜1 FsTΑ–φαΞPt.νeΝ²>\(½|°>±βc.-nz;,zVY\(ͺuόν–Ω;X@Γ‘ΕςΡύ;˜Ξ‡ a§jyζ3HΦD+:ϋc,!/ΥΘΠ~μ‰0/Ύό₯°Ή<^σ<„,~υ7~#Όώνo2Α /|ξωψΞ‰‘±0tόΡΠJd•WΏσ “ϊTxϊΩΞπƒs7ΒΘ0lb- =”=DΆςΣα«ςηhnr„0 Ηd1ƒε#{n‰ ¦&όώούDμ₯π쳟 λ­™ †Ξ„Σ,’?ϋώ[αK_ϊ₯0wϋΉ Θ==ΐTž~ϊ΄Gα…gŸ†e(#rψχ€ΪΩ…‘‘0CrŸΉυΩΠB³"H]=‘ ŽxΪ)ΒεdskŠp΄@~ΖCsw7ΩƒηΓ•α›0;&KƒP1΄‚€ –k8jL―‹ l/ֈΚD]˜žXŽ9&p&[+`ιμAλfSσ)›ΊNsΣcK8¬n„yBΘΞ£]c³±΄βΑ‚Π7qB-aFZ¨]<{>†D5N λ Π £―4ΐ4eΥψ²v&Ft€ƒα΄ “Ud#^ζΡ^}ν‘m ω £δ©†°„–e¬ωΒ(° ODk»ΐ>Z7°v 9kΌκP=LXeœ':΄5Rοl˜š(„Wt!<φΘAj’§cΊf±Μtu΅†Ϋΰ†3΄;·‚¦―-‰γϋν0Ψq,˜Ζ<Μί& M‘°†ž˜!ΏΜ½πFη€”£aδΦΝπΐQ¬60u1t7σ²΅:ˆ_@ RPšώμ LrΠ2XœW5ŒlZKDk:w Μ½˜Ω& Ιaˆ9ΓD‹!T™sF£+EUΒ‰ωΣYΙ–X9n¨±W Ρ('μqΖΞΉΛDζΜ΄‘ mL|‡r(FœS«Ž₯1Ι<ξnλe~Π—œΫi€Μ‡3wΣΗdŠ2ΥΥ‹°ΔΊΞ³žŽκΤŽί™‚ŽJ—Z"ZƒΆ€θ•-ίP3ΩλΣ8ΚG_+κΰ:R‘°ά«€+M‰V>ΪXnθλΘΚΚ»p7sH\α—.‘ψιΑ`RΑYA}a5`d@Kθ{QΑ>₯VΏ€Ν¦© ‚‚ύ°Ο ΄<ώη“ŽƒπΖŠάn7² #ŒM tLΤ‡""yŸpνS7¨4F‹C‰Mkb_iΖBhώ˜~ۜ`vΩKϊz Ή‡–@IDATΟ¬ ,ϋ»H'τ”ζ|‹}OΛΉ?v‘ mν Τֈι濚\6·F ²€΅'‘O²ΎWIP b,ƒιΫΠζϊ·»£5t0οVιι`Εφ"Ιy;hCEΈx~˜@X παMƒ(ζhh;V2­eMmμλδχ*O·†±Ήi,~τ?e-₯‰Ά,±žΪžΑα«‹ώ2X,Ζ―] ½(;;šPJc­@q·€­Hδθω7Cέ#'@τ„QψVΦ‘f‰°·…"Ι:­Ζ2ΌΞ:˜žY—bŸ£sηQ‚ιwV`,`‰ε5 :|μΙ'ΓψΔ$!KŒ―F˜lήYΔ±xVW;Β~υVΈ³Λ:‚]ΐjȜE(>†?hΉQμP–Υ’»eWΖ³Ωe œΐ3TΆ€|:φχχ{ΰ§@|L‰_«…+7.6ΟA¨βJήλ^5u£²«bφRΜ¦ BXuθHX?ϋ†+,ž3*KΒRA²oώπέπε_ψΉπν―} !šKŠ­ο׈4ͺiρψ‰α/ΎϋjψΡΥ[ahh(Ά"…†+»0Ύφυχ‘ΑpνΦHxώӏ„o{όΉ—B/›εoύΓ#ϋ#’k˜ΥϊΓsŸ~:|ο[}α󑝉5…V˜ύΝ½‘Ε*Cΐdξ8€Ζ`+ΌώΖεπw~ωΓbύhξ;†Y;?σΉ(šΒuο•z€Ξozΰ3„p1ΜsE8u<ϊ46…Ϋ™Ζ±Ώœυ;X€Π°o‘Ω&ςΣΑγ0~α+„۝šέ<™ͺšΊώ°²0:Γ N¦k„֝˜Έ…9šΨΰΝΜ7P ΏΞᛨρ–WqφfγŸ‡ΩŸ›Λb…Ω 8Τ–ΓDι[₯.a4DΞHaι€ ³ ³yσYEφρμβ|ψγ—αΑ'p’γϋ֏„Σ§Ž†bŽh9)}ύ¬ΚhJvΦΒ4°FΈ gΕΡΩ ˜­tψ³οN†ώήZL½¨i “:LXρnπnή·&¦ΓχΟ]GϋΓƒ'‘³€ά#δiiΒρ­κ$Ϊ»ΙΫ·aΧBπΫnΐ`솑9's}jX­sut£}ϋφ0ƒΪηιS˜,O 0vϊΈ¬d1OίB›— Uν0[ΐkŠhΐ’Π€VQμžxp(\ž@΅¦–D‹&ͺKΦG««ŠώΠ%Fζ¦HAŒ†Ό¦©-7s…F-»κθx ₯„ψaΉžh-s[CβΔ$0<>3Σw`66B›P"πΎ2/Β«6ψΜTΐ@πF&)–hB‰ ]†[ΌΎ£X‚•˜ˆΪJ¬:SͺΑ€BfΤHZ‡ζ'ι -όηΒ ˜”λ{xΜ‡qΤ‘ΩP°’Aj$)£δΔφς°Iκaϋ$TC­§’Ϊύ(€ QΓ\Fί ˜±™Πώͺρ‘jθ'i—R— …Ι4YΟΖq +Ξ°»j|j„^Τ΅Τ2Ί–5uGh’>1ί—ˆΆS₯–ήŒέh`‘½Πώ³"ϋΐ0ž(¨)Μΐ g˜ϊΣlΡ6ΠφΡ—©ΛΩ*mμŠΨDΉ«”»Ό8‹ φ»–φΠ,)»ΤΫHrΛ‹ΐ. Xc˜Y}°ΚΩK΄ΤχΖ²νbΖHψ¬Φ,L™Ž­Κcma‡ο ϋζζ4V,Φ\ZgΖL‘+ΑXl €μœfͺsΜω6XΣΓM‘‘ί Λ+K@·„V0Ύ³KSαΙ‡OΡχ8°’ ¨Ί–°»ψƒTΆ‘A'‹;κKΧGΒ`w¬: Œ¬'`˜ EυX+VaΌα±<&Β {N ɍΚ4‰"e­{1OΫ Y\KΉcΐ=―\Ζρ‘™½tšR‰ίI’φΕθ@ψ…ν"€n3MΦζΈF$ζuτqd})bH¦]α¨Γ/?™j&φ&cΟjaZΙ6³.œlΠ$‘‰ρ!Hμ熽.ΐX&‘3ζ„(υ`ˆrM*0²Y ²΅0‰P˜( ι nn$n†Aν­έX!N1΄6}^k»ρC@$,ρτ­>eϊm’pF‡9½geΆΘV ϋB΄j°Φ„jj ‘I±žρΣvπE“ΏΉBΉΞ±naOFό½«C=}‚μΣ_ «Γ‚^‹²'.7-ŠΤ]QAΝsΎΗΕ£ΫΕ›T4Ψ·¬7w!βZ£θ~Φ‚! rcb€/}Ντ½2ς$(οZ,6Β—†(»ž΅UΕϊ,°w•‘°Ρ22Ώ€H?ΆtbAΆZž‚ΤێS9!Ο1] _ΫBiΣέΥ¬ψ(V¦ ²„ΎFHO3^*kΜ³LΏαΉΥyΦD3Ή+Μ±γΪQ€Δƒ9ΡAxΩjyN“`·ΉAξ[‚Τ†`‘±Ÿί>ϋnx€εύ‚βŽϋς@§Vή‹Ύ+]]Ca›9§…Ή ήK?ΊŠˆύ0₯˜UϋΨ"s=OΤύΎK>œeφ²τ΄‡EY˘ύΤSd+­ ·°ΚάΖr†ΓϋΠvXš^bο†iͺΕV‰-œb³ΐ†Wςa|*–η0MΗLχψ¬m@ؘ«]=|ΰŒ‹_…–-w 4e2@Z3dz(WΖ#jd#νδ;ν’a‹SM―KGΚΐ@Œ‘ύƒ‰„Uή­ZGε™ͺH?!°iΖύ &₯ΘΌΤ2ηͺΠρΧϊ&EM8 AtP‡kέ¨@ – ²™.Ϋ%„«δ›μFχP₯$mΩΒ—b g#χ΄«ΈΌιβ…0²Q#ω«_x !NΐTΤ’κWW“^σS¦o_Ρe0ά›hΞMIΠiڎΥΏ I”ΕXίZS΅βΰ^ΪWiBή²KDƒ!Šk@­π6s,šκ*s½…67ό(Π²JHκJaš9ΦSžΉUZΦύ©;jηΧX1««ΕE,•@w+`JΜ]†–΅ˆο@šΤM 穚gϋ'Ώ…0 SV μν"ψπΥυiκ 39‘·`NλπKhlhA9Αήdt …ΓΤψͺ‹¦šΐσ³³ΐ[πc£πΘ!¨Ταsη6a΅aΐκπ][Cp+ƒΩή`½¨pό&}4»»Π ΏΊŠ–XΛ‚~¨«¬ Pຌ6ΠJ­ύ‰–Ύ°ΑP˜Φ7fƒΊ ΥάΒo ’~k@Ήζ¦Κ7stP ŸΜkW kΖ9§υDΑΓ½’™Oϋ±0lβœGhQPƒΥβbξ­i1k9Χ΅ZʐΧ7΅2ΟTΘ€Γψ1+#Š!‘?p ‹uΠ²'€ŽŠD p#Δι/Œ‘ ΤΫ@΄‘u$sο:T0ŠKŒχh‘΄ΦΆΙϊͺ| v,|,ˆό Ηʁׯ„iwmeƒuœ™š='„ΡoΑ'υ@,j(£Ά˜)ύMθ$ͺJO1‘–ΘP΄0* ¦Žπ< @3Ξjd.μ-D΅X tŒ^žΑZLˆWύ‹ ΗLwγwC-¬ϊ(θΜoΞkΎΝ΅NΣΥμ7MX“³«aκYY}νυX―{PξΉ’?bώž¬DYf8μœt˜~­%\ύΒ PX’°9Οu¨Κ@ο¨_=k|[%keαVξλei.ά&£;a3Β&}Šέ.¬όψ‚χv˜‡vΆ#Ψ#ΌΟζ+ŸΎώ‚ω‰F!m…ΫW―‡SgΞ„ž„ aϊ€ˆ^+uZ˜›€Dαn½ r–}ŸθΉόA—ΒΔ–˜ ,Ÿ+ψδ6aω¬GX5βδŠΆ7ί½C.Υpτ0Hα¬χ-hϊΩΧί [Π…šΊt:@XΦJΒ^ ” ’VΗ/Ζ:Τ…u<ρδ‘žPάyϊ ΙA±Δ†fό]°pΞN²Ο°`] -„ί6_Ν2|‡Q4Χ¦¦ΓΚ9‚πƒ«φξ₯³‘λ`khκ&>(κ€œΞNΎχΝNύyΈΫnWŸψpΣT˜ˆ?4­nΎ«¨–CG*»‘I€“,Ž4¦γ™πoC πͺ26νΕ·/†ά;o…ΞίϊGq3wςΤ όςoύwqPyCxζΕ—€€ά νέ’ζδΘ±GΨ HΨΓ¦VΧ~ιΛ§RjΓ‹/Ό€Ζšhƒƒh’α³_όyΚbΒβΠ.δJFΟΑ’–iM_o7"Ž?ςιΠόρ¨qP˜κ;ό@hƒ Ua^όη> l‡K½hdκ“{ΠΧ ]θΗΙ©5œ|T Ή±Ό„Θ”'E¦δχβύ?ͺάΨίΈϊϊއs·nΑxχCtΆΓkί#Lb‰8σΠQ’’΅EάΜj:Όyε"Ϊy’άτΑ iΖtΒ;O6πεsΓψ1ŒaϊΔQlλ|§Μογ'τ\ 81M’Ω$€¬!jγW–6‰·N˜^4k50ε„ΫaS¨@³Κw7Eδ%"λH Χ€ΝΟΜΓΈζοΖ¦-κ=@2C²Γ(ψ,ΩRΑαβ@_Σxό ΨΣd ‰g4κΒ@wΔts „ 6˜χ.M†–6-T„Ηξ]xΣνΐL%`²WΨ°jΒ•«`°|΄ΥG‚xrπyEΈpγ’ͺδρI!* c/ΡmΚΨΰΎχφΩ¬―„Η¨›ΰnΓ”`^ί$|°°Γ˜ΛΧ·ζYW0†’’΅9Π׏ ŽyΟQί9π@8{s‘pΊM7‰£ςΪΪΥΠΈέ–Ω fF1΅γ`™aθF γ6Π±„>;0#Υ5hΛa8ЬέXΆψ4ۖэ°pT ˆ02Neu3} f'¬frκ›’IΨΠa&aΠ̍Έ3ƒŽΖz"sΣ$ƒ* V2NG™Œ(8ΘL0nQ» #Γ_έt)KEύDηUξ݁yςΉ(ˆ€―–B ‘|…ž‡ι’ ρ™"Œ†ΟΑρg=TJdξTξ”’χΐ'Q΅<-5lΘ,……‘ΞΔύF(Ζ†Ζk&3©–”³)6\ud$…€”£α¦"hE‰HFΎyWa0΅΄e0―ΖΦ7ω#ΌΜ}“v}‚ ;ͺΙ'γ—€a«Ι―@_;˜ԍχ¬­c S¨QvτqXΓΟ)SŽe‚z‰q7@EšLqργκϋ€φ‚ΈH=Š8ƒ3“#€ΗB΄––²άmXB± ζΊA£BΖ!  6Αž€™@!YK δ[ΘΰΤ»ƒpΊJ΄7Z‹π„’‹Ά%‰Ξ•GΰW8kΔΩxiφΠLΰI΄Σh6|LjΨKμ7mg•(" ŒEžΕZd«Dΐ28CΠΊφ{{[ΜξhlΗʎ6φ₯šLχ Af>£ΒΐYš`νpU”—^œ<ΐϊίFωEώ!ζc[3~3D:8ύ%`+ŒA‚6YGfπ²;ψtΠ™aΛm±Θσφ=mYΕΎ_3‘―ΠGΛd@Ώxλj8‰ΨΦ"Za 99pω•Ξgκ΅‹ζΫ +K3ό,…ΦŸ› Pζkάγχ˜-g*dς³ΐΘ²ΐ2u”€.ι*ς‚·‚ξΜ-ΝcύΔw!³£»7ξ“΅J,%ζ­ΡςgΎˆ ;…봍ΐdπ}XbVtzŒ₯Dύ*ΆY“Ρ—Œω,ged%σ¨~C!ΗπΑ€G!€Ιk±l™£$ˆ3ηY@ ςZx”cςX]CF`R1‘P±„Ÿ‰Χ̍!‘2¦ tϊΐ»°Ί‘ T%ΙΪρήώ! x”Εœp)°νPfδ{θ/­ž*’’ƒλ,F„-™ΜœΔ΅— φυca'Ώb;AΦ°0o2\ϋζάPψV4GλM `φ8„p€4μ₯kt@-zν(„VWŽ1Ύ‚L#¨g‘}τ΅adSΦεVΈxρ:J²šPOύΆ΄€BΦQΰP²Π”uΚnΔͺgΒΜUφΦΉ©©p¦ΫlνcγΛ Pΰ}Λ<3σ(Q€Ξ »4Έ†‘Θjb>υΘP DhC;~μLΨd>œξkŒΠΖfό¬nߜ ―bεh'Β" jόωšΙa³ΉΪE+ŒSX£€MΦ`«£Ν&ΧՁίΰ * ™ta˜Ύ{νςh ύŠΠq„0φ]=„ΥžY K#“(¬P~ω‰˜#μϋηn…Σ΅X‰P΄•QΦΖ:‘© aΛ@y»Zπ+Λ 4!α¨Φι>3A¬e‹‘—υ|‰zO}ώe¬A π˜εXWVG[–¨ƒA5:ΧΎZΊCe}#PζωpŒ^Fτ«©% ‰Ϊ|…ώ’ΟύCj{α Q3†-ϋ£ΧΓtK+ZΊ’ƒBG9bύέ³!ΩΩUڟέΜ”ζg_Λ?ώQ˜ύγΝda‘j{Ώ£` ½ŠŒ;JΗ°žή{‹ΨΝ€Ι{β$Δmš–š[Œ˜Ρύύ,pώl" wβP‡΄‹4šC°pSβ0‹hvΫΤh:+„Ύ‘ΓQ{£Υͺ‡Θv qΌΞ’b‹Yτz{Wo Θ(x_)΅8ldXkjkΩ(3CŒz’Ζεώ€Šρ7ψGHΛό‡? ŸωWΒ’<ν’δ*δΡ$B4²8ΓήΎ±Ζ‹KΐvΓ5˜Ψi"ί ?-ΝνΐžVŒΜΧCΏa}Yrˆ"ΧΩΣ r.ΤB ._ΉƒOΥzxπψΑPOί­Ϊsmc–΅£ίΙQ‰ΕΆƒΓ:ašΥΊΣ•y,°Y„ΉRP…b8'σKX“a‘>¨Α‰:KxZsρ$`fΧͺs–mjb­ΠH,πΞ)˜r΄αΡ aVx|PV‰•†y-εtΑ-β;Cσ†Τ;Σu` ZPΣ|gδ: ZcψYAοˆNχΨ)ΰˆΣSα{ίψOΈd%ρh Νό­«b›Ε·¬™2(ζΖΧbDΙ*¬@EθRyλ6ΣB{–Αγ΄ί?x,τtu’Œ™!|λ(VV8XSt&^Ÿ^ ίόζWΓΣž@q²Aίφ²?ΚΠDΈήΐ±šε’Βƍ|LΦ‰\%0œ"χΑ^Fjz™6ΰ€ιύT†R£‚υ,΄ΠυβΪΫΕχFΗtVm\)όŒPιΰΘμ« Υ±œν…ο”ΓŒ9EX§HYω@m]·ΤŒ%ς αΎψ›{½°΄fƒ(0Ž~gΙ•Φkj !j‡ΉQ‰αš4²žπK•Ω•,ΡΫaΰΰ‰0=>mvΤίϜΕςEπ‚ |£–fŒ¦Ιά;w1N›i Ο)GAFΛq„ "tΚwΓόΓΰ.ιƒΐόήf}Ψ fx«φzšKύ ΐ‘Tά\½=ΪQX% ή0:Mθζe…Wx*ζ½3(Βδ΅) ψjh‹†Ήb„'΅μ ”·‚%―!dΊš‡6l.‘oγ°NHψztF‹SMάwVˆΘ₯ƒ…u[_/ΦY#λ²Σϋπ*{g pΩμ,Π^P=‡‘ε6yΪΨΧy€ψv.Ž1(ZΨ©k\2‡Ÿˆ–1•‰›Π]+΅λKƒ½•αgž;ΕήXΐ0M”Κ[αW~σ‹αaϊσoεΓΙ£CΤΦP‡Œ‘Ψόk:γ„υ‹ν™ ΪΒΎ ¬uψ4 X[±Ό–£XΓa|ΚΊglπIΝb—uάEΑ•7’]#>”{Z 3ŒΣ.~^Ξ΅J`f z¨ "=ηγoύ‘βΙγ Q;&ΣΦΧšΏό+‘-£c-CM†Žι™γ'CέI2Š2ΐϋ‚…ŽXO}:Τ?LHu…VΞέ>ξ,ε—4“lŠ†ή΅’Άs~χ>5Q@a’ϊέ ^bΓ’ΰpcckΪ{>$ΞΖί|JT’ζ-nπΌ.ΟαυΈyΣ.ΛΛ³Q‡ΣρόΈ+pά['ίxψ›υ€}νVΗGGΓW~ζ ˆο*‘ρΐd‚˜XƒΟL’`o§i`x‹lˆκGqƒ3b:l!qΒ«dσ&{xθΘIˆYx Ρ—G`θ>ΤΪώDΎp+ πζξ¦π!πΝK`9ΑH§±~ΝΝβœΖΖvδH_ΈucΒΔdσyQφ©ΞΦKρ|—ήψ#WΑ‘”Αέξ&2υριό_ΒE9 Ψλ£ααw…Ζ?ο‘ι”Εo©4‘²œ–^²νcѐω²¨rΫΗe5Ψρΰ€χΛ9ή†4Ή’©œ‘oθŸX?ΏsE,sήr"ύΔκ”&Š’θHΣ(ΟχyΝhC† 5ά₯™χ"ε$°›ΐΡ:λΎ£Ύ“εΆζΪP††|«r#N°e„θ΅α0 UKb<6`λ‹8­"Μ.!g‡ tKc Iυ&bιW΄”ζ^YƒiY‡9> €Ι#ŸΐαnAAΐ°εB•HΫ2§G†±+&Ά% ΄όΜ­6΄ό†ΤžΑΪ’NΤ2ž&ςμB“ cE9¬%&nΔ—ΊŽ.{’  =„­ΐvŠαͺDYΠ!y΄ŸK$]"ΒT5 χΞΏΑΛσ κ9¬$yž]£―n]»Nž92ƒϊ#h«l˜#ߍJ”!q}ΓΌΊNKNέ΄f\Pς£©γ;ŠShn™ma Mj›€ίι;ρ0{Fyhι Z‚τ›Ρ₯ «E;ΡΘLΌgω 3JΎX΄Ίΰό₯”…Υ†ψάνž!’TΛάτ44žΜ­-ψP!.aΡoΐb'β’PΐqhtΎφv’°ΚTaω#μ{’½* Na/“Ή§Ν«ΐ([Ί:XΧ¬Eϊ*Η9₯Ϋ‚J)i¨‰R›ΔΠΰ7)bIrYσ΅F‰ΆlΒΠΕ₯ε0C ˆ ώYZŒͺ6Kτ΄&ΒXJκ°kt Ь»t&Υ’ƒΉŽ΅α΄Kzέ~~’TΎΩΉ*¦ς5­ΨΠ³rί›±hόΒKg ?|gοί‘=ožΏ‰εrxό‰‡HΤ ,4DzvA€Ξ1dH€€ύ²οRΛRa™#θ€PPƒ±τb‘ͺǟ&°A€ome]2Ž«Xχve¦H΄*ι ΅ΞΊ4/UΚ6Ϋe>mΦg)Wπ,ȍe„·šιQΦy·cHοθO$€Έ[ΊΡ £j|ςSόtIδa&τbάlίΏ#]) π¬‰=>κyΟέ{ώ“~Ώχ>λΉζ{Οίϋ}ύοί+τηφ›'s±έη>όxνώ?£A:H Ο>L HMS[[˜»x ’O¨Ώ•νπΓ·oBPqψ\ <ώ8BΕθŒEXΞ­p•Π·ˆΒaΘΑ4Μ5j²Ώb…@XήDƒžLλΌ»ν f[JΝ󰍩“M@¦΅’m-†ΙƒF―£ω―n C}ναϊε±0: Lό† ^˜‚‰Ξαδœ…A[ŽΤL’£η?υ,&ξsheaϊ‰šaδŽfέ%ξΫdsBO†ζΛ ‚ΕργCψ` } ³φά&‘œσ±‘7‘!­… σ#–9Ξšΰ*°ππ/(ΣΡςf…xu‡ώf "hγͺ²ad&|v8Y)φώ˜λe˜ΩE–±ώ.4Ωεψ― IΓ’XŽcŸQΑςK„3D‹™H·‡7ώκ‡˜ΆgΒQα‰ΐΩrz›Y 7˜ΦσUψθ΄²Α`Y=z8ΌyξB˜^i$Ίω–q―EΫαE"€‰JqA‰…κQκ=tΚT»q ν/}°•¨ 3½αUΧ· Χ)“Ž/‡ ;T>aΓ"™©HF·Ž‘Ιͺ„‰Ϊ1ρOeDS3ώ³d³%α–€mςΨa»ΝLXxHL€₯dLι6#£ΩhΌK\κ.]0¬ΈΤ^)H™£„ŠE&C‘A†‘«m σ°,˜Γ·R– ¬H_<―΅DAΖ~α,—"ΓD©0/h)ΗχΘΐH_ΆŒΘ#JAΖCe‰,IlίΝ†ΝCœα^N+θ€Sγ7wa©q-Ρ„(P±ΛFK­¬tΠlΜF˜‘™*C€6cΊ’RΆu ƒi+#š”pΤ£„ΎΤO`–θ52ƒ5xγnή<σke k ά.ŒI]:KBO„g6β u[b#W£ι¦lt%£πt•[_Gc© γC“ΒΛ`ΫX+`œ`ά‰6U _ƒΟΕ< ΧωΰΚў——€‘fέΞL―†«@,ϊ  1#FyBπ¬*¦¦άvνbA©¦Μj(…Μ"π‰ Ž«ΫXQΜΤ½SNHWό,΅δE0‘agC…Zρ‹2ΠŒ‚Οϋ£y sψΒ΄΅‚™oμ!Ω)H’ ΙΘΝ,MПιh₯ΙΑŒ'™?8cD˜ŠΎUB†·a¬+XΣΰ[’΅R;D΅ΛΑœ”U.°fΦQlΌ5/ύ‡…’ΎΪ)ƒρž¦”©c±Κ΅ψτU¬ et ΐ1<…GŽ5‡,“³Sΐ ˆΈ¦ rLΖϊΘ©“”S8τtεΜ:ΪtaOΠ¦’ωhj`ΚΦ kΐΠΜ7aT-Bs $(¬u…Ζ— VmΗj²El†TΛfχ j(A^οώΤ£…Ληί#Lψ­πΰSΗ„x Δΰ^˜—ΒcS˜(&˜«wEζ} Mσ*Φ΄x»:4Ϊ,„rξp/ζΉM˜W“‹Fh-+˜¨x@cρ“ Β5i³λY­,ύ@Œh—ΒΪ#°­«…o#²“ ΙL~ΜΪΝ‚κοˆσ2‰o’αυΫ„ΛΐV!πx_₯ފ!֜τ%Fъ5TΨη΄k“ρ2GŽ|“BΒ±YΒ΅ΒYƒT(™˜₯]: m+“(±fUπΒq1tB/);ΦV3δ‹ΖJXσ*Λz J‹X*«:C~VΒNυMΚtzΘy42ψ.ΞΒHg€^-³Ξ…mB“τεΪΐ΅.›#ϋ ΒŸB© XŸ³„γm&Rα΅ρ›μΗu@ά°„φuϊΌ–²gɏVΝZί —Τf9Μ$F§Ψ;oS&ΣWνΪ R ŒXΘξβ› Ό«œ(iμ•IΚήbΓ3ακ*֏y|¬– ι0mΛX kΓ€N0;NI‘8λδBR€οΞzαB+:a’υk 3 ψŠ4eΒ*~΅ΚϊU9w6‰ΈŠͺ«•Lσ2 yΚζφ DψρΕΫδNͺ†iŸiΓbE„ΌYΌ,Ξγ˜ΫΑš"t%yJ2XFϊ[I†z‡,ήΓ@ζμ/’ύα„np}”’U~A?š’Ÿ1Ύ΅h»] ƒ7ΈΖ±Α@+hοπ93—+8R#Ψiyγ&{π-֚r*$ΛΐS„ayΰEΡ9ΛXKΓΔαžα›;ΫaAŸd-‡0@άTΕ<}?<…Ο ‚άt‹:ςΚω·α³yυαAήGW–C―γ A˜NΒΈ³/ΰ7wηΦ8>€œ―{ Ϊ‚/ΔΒs{(l4t½ύsΪΧ…bΗο5Η aleωBX€Ψ#8Λ!Ÿ|=πC!\ώά(VƒKΜΟ ΑNϊ6ƒue!{4zlμ<ϋzfn~T•ŠΙβ[5;†₯‹9Ž™Α‡|v{ρ‡)»ˆmΖβ<0κΗΒζΖFΜΘ„@j·9‡žΗλΩΞwPJ=ΖώΐžΓZ™ϋA¨l}˜Ύ'oΙ °3 kYκ(,8™&κUΎ½Ώ’΅bQB‘R‡½Ž`ckΠΚ νI„dn *Iς’”Α8Š5ν-φΥηιWr]ΏΓϊy kλΰ‘—²Z‘yΓ4…αΏάΣeΩ,ꘟβPi% ψ¨CmΕ‡χβ JZΑ{Φηά*%χφ€ΨZύst¬Ϋ?J;ώθώ(όγ―|%ό?ϊϋ|ω"DΑΌs«ω9Δižzτ16ΎͺpιΒ{₯υVd6@$nάΊCώό{ˆrγζm˜"­°‘ΧγΜW+–X@Ί‰Ι Oΰ=[ϋ5’kτφtE­V3qΗΛrn\y¦Ώ ‡oπDυ{ͺγh §ΕΜ±ZAΚaΒΜ Prζ=Ό#f­’ Ι¨jkΰΞΥ–54Κ¨4ώ7]Ζ‚–¬os[3šb’TNΣμΎΣ“canb– ·­0”…E#ΘIY„iΡoBF΅€½WΫΏC™‡I²³ƒΫΠΨ “Bt«n6Xγbtβ›Š£4r ­ZΣV괉ΰeœσ:°Σw†―G'Φz=ȌgZΜΆmXN5υjZa ©B\Τζ 0B]šσ·ΐ·‘U;ϋ6›Αš=8tœ­f“·OάΨ… I&4_³―GMq7k™αYb©ΛψΜρیλεŒsΒ‘€ 2*žZ“M™ pώPR²Ι ι€^‘°6ιWCψΦ ­Ώω „7‰χΦΑNΑ bI%z&ϊP:ΑΏόΦράziQπ’ςrά¨l‘>jW₯Xšσež΄‚(LςΠή9ή'U‹tΣOΎπ\΄\Dz©€Γί/GΓ!4£ςώoqεΦ! ;|–#Όθ§’ΰΔcοΧ{Ώ +d=(7ϊt8^Φ7V‚K^φ»ŒRτ—c‘\ξˆ@‘W£·―γCu2j`wrŒώβ#>Ν­±™ΉΨ^ΩW6ChX+Ÿυuκ‹c{bδ‘X€Φ'„5«9”)χššφ¨ΐ’c|NX­κΐΜΝLvκΗ)#[%™/τ6ύΛΕΪ “rσΒ±ΧΉΨ(7 Βpζ vμ*ŸR³e.ργ&5ΜΦQOΊdˆz„)Ϋeh)βω₯f+œ ΡI[Ώ΅ύσ°–J₯’-V‘Β0sσ¬tŸπ>™dλQ‘0JϋbΨVΪ§v\ΗxΤœΫcnCΩ: Ξ@±”Ν§ο7›u©°aόŸdMF˜Ώsh†+ξΎπςη‘‘€ΈxFΖV‡ji1·Η>—!φ‡΄0M:η]τq’ ϋ('ΰΊπ$ߝ„©. ΦΜE„ui£ύδ_dœc™ψ†κ‘Œ<©ΠναάΨ?βœζ‡sORiaμΥ‹ΆΫΰHxΏkΜ9aŠ|ΖφSΎsΟρυΣ’’5Ρ©\7Ό/ \υ>Χzτ{’―mοέ{Ήξ5…}¨΅‰R)²΄fθΓ}ZΧΡ½οδίΎXwOĈxŽQΌΖo>£ΐΓΉRΌΧ Ύw”i!ΑωhOδŸ3}φΛΠ=κ˘'‘*|‡ bS@3Νc±ζα­»΄Š;ΌζŒr~WΠJξΥGExΉ‘•M'PKΈ^ib’ίΫNχΊ"Z*—μΊjžΆdύ΅†B‚PΨ•θPŽρ1:›νYI°£οΪΜ L²lΛ­eLώyκ-L©‘ϋ-0νk Η,Χ•OΌL#H<ήG_ω<ΏqϊΈΆh—4Ηκ.SρHŽZΛĐχΛ,e¦i<·Δϊ¦ΉχN”;/(»’st{΅cQ*ίs~P|Κ°\λξ)&Π΅ΦΏ†Ά₯ΝΊŠ0°ήYΖU,“ΣQ`(οώωπξηΒ―ώΪ―So(˜…ώ-=l:–NηλOuΜ£­Ψ ηχΦg|ΦΑu ›ΐϊΉ8aψNR†3NhhzΨύ{β'£iϋDΐsχ~—ˆΔο¨Η’Jχί{ί½χί{ήο^ί?byόή'„ϋΏKΧχ'‘οϊ`=ξ}Η‡Ώ—ž½οi8!Ώςίώ6›εΟΒθV£‘v G¨ωΉMν8Zν_ϋυ_Ηη’>|λ[―€ί^b^‘0‰MMaPoψяίž>ΣisψΟ―ό9Δ ­Ή9†ŽΆ4ˆφh!δϋΉ³ο„[#Σ0Ξ hz²@:&ΓΰF {ψθAW!όήΏόΏΓΐΑπΒσ/ ½\#ΖDΈ‰·μδ ΅Πi †l$ΚΞ@ο{"m°ιŒŒυκΞ›„=~*œ~θa΄™ α;ίϊvΎΪ{{qήdή'ˆxEX]΄·οΎu.άΉ~;:^wυvΕοi >φι'ΓΥkWaφc| 49s,5< άΡΎλΛ΄f`mmCεuα/O°),'ΓΫD‘λΓ ύυΧ₯.|φ³Ÿ%‰Σlθh­ΗAΎ1|ϋλ_ηΞ_ ŸzρE4|D>ŽΜ“»GLY!Dϋ‡#7™ˆΦ#„ͺށώπΦΩ g―ΆνwίZ /:J]–γΖ#,BGθΛβ† σ₯s=‹Sf”ρ—©. @Ή5θzΖX†BXT$0K^'VVόά§ntμNΪ6d6Μ—lr4™851·γ*Σ§ΰακΦ)=Jυ€‘YΰS†[zΕ~ΖνNβ¦Δ―=¨DΛd8Οό”Ωtw.RΗH§"CλΖΓFΫ)#ΐwΪ*S ΠΒƒρ{,…ϋm“ ώFŠeS¦ο*CσšύΓή‡%@&‘ σ–iˆΨ˜ ‘·hΩ°Oμ "M~@™ϊ;~–ƒΘxsέ ξŽ…QD³;§rζ©Ο’0ߎ(nαΌΣ’μ-˜X kΚρΰάώW{KςDμ“Ψ‡ͺΠΊqγJψ'ΫxΨ}όB D`‡φζ\·Μ:έσz€' )˜0‡DyFΪλΒ"Ώ½}λ¨―Ο7Άr^Έί~Η`‹ƒύΜ(“"BΙΖΖwΫΙe‘Ά‘Φξ• yΒˆ]N1 ΒF…oφώHΫΈg›ωqάφΦ.g*΄μr^ƒ‡4Nͺ‹‹I€Α>o){Τ: ‘ZΠμnn2ˆ½„ς"?OωP<Ϊ δ|£ορnĈΛ³Bή[½ΩΚ=%RΏWχz8Βc|8F"Έ<μO›‹ΧOhQJ² ώβωΨΞ ξα™ Ž‘ηuΏŸ½O©>‘βT’ΕχΟnμ §O'‰‡j"―aHω\{"ΌΠƒfoΟσ™U€λ‹‹:έ…pHΖ@)ιγ£₯1ΤŒš!oΥΞXj)…0&'»Žδ:¨FF€Ω€΄κw₯f5@bBuζS«!#!ζrrΰ€Q“‘Δi}Υz‰Wγ%Γ`ωnζΞ@5s2)ΦC&(š~a윰†ψ‹υcR©Ω‰šΛζ>'κύγΏΌθF U8ΚΑ4-—0FŠ1pνηZ:fgΡV΅L–Ώύ…$ƒΖί‚πnX=ΐ„2ί*PŸ”4΄„FD‹lT‘”N”`—η―„Œa[%ά̟¨ρƒ{ήEkjpƒ2΄¬’&³Aλ/ΠB€£ŠδΘΒ«–/Πaρ^Δ$MDοZ‰.³Nάσœίτ YΕ™³Ιy7KΨ^5@ύCCh΄Ζ’vΔS]Xl„€la‰°λ`ϊΝ8œͺBϋK-ŒΆΙyη;$9 KFΡ&δμK MŽC‚²N<@’Ξ›£8D.…!ΰβϋ….˜{ RηC}7ΐk‰P@ΫEγμxΚΖ~ΤΤ₯ƒ]TΛ‚kVb.XκΰΟΈώνχHϊKΎ΄φΈͺ¦œΎ‘t e&Υ9ͺΘx9—t\υ|„eπˆšFˌε2g¬‹ˆΫ€λΏ Σ}άEβ»ΡΨ3ΥD«ΥVϋk;㽡Χ:3κμ«VΩM’H’&Ί(ΝΜB KχΔwSo±αΎ΅@Dͺ¨ƒΖΕS·€υ…φ ΪZ`YFΕΊdβF#Ά%h\cOύ΄†Ι,DŠ{΅šΔ]Ω2¬mK0…pUP_5ΪΞλra=”€΅IF]ϋSΓΞρ{dψ΄Ύ%ν±_γ ρœmrLβΈΖϋ|4š%ΕώβFNΖωΗJΕ3ρ„ϋΝ½G|ΧνZ_eŸ{Δ[ω'ϊζΠχ₯{γŒε½1Œ7ϊfϋί9IIΤ/–ΐ? b*ke eVJσΛΟΨΚHΌΏmξK±7(ΤYΆΗώgι—ΏχΞ87χΗχΖΎΌχύχοίυ~Y±/)'֘rbWRάήEΪϊR)φ=oqNΠ™σ˜ cοΑRΌΎώπω3ΦΝ±d cGίsΟέ»ΉοΫ{€Χά=|ΤΓWΕοw -ί·4?>¦πύŠΕzΠ&>KσgοΕ~χœοϋ¨b|Ρ‡Ÿςώ½ΚΕrJ?½½Τͺχ―ν?_ΊφώΏΎ.ΎΦ[ωΧΖώε{Κ.]έΏ°χΉ_ίύΟ»—-΅Τ”ύKqμ(Ορs>¦ρ‰ˆω= dG‰ΌŠΓ”βž΄{—ν±ŒRQQ`ΎίνQΡ¨μ‘ήΔΎΰay1 d‰ƒ§-€gœώΉγr°LžρΆ»οΨ»]%ίŸEP8cYo₯:ωNi™U‚ŠΔOˎες±*–Ι}ξ½aπ 'χΞϋΥv–γCΌ“₯wπ‹sΦΝv{O|Οy½T€ΟΠ^i–r~•ώψŸσΩίϋ/τaΞΡoΚϋߍξ‰Œνƒ@IDATχ;?¬#”"ρg»|°>‘β#nΚKX?ž¬+ ΏvԐlnD₯ ή™Ω ‘ΟqΏΒΗ8Y’γΨvx΄δRΰ‚{zqB| !…ύ‘ΙγΘR0`ηΧΎϋJΈ6φΉ^""H6όɟ~'<όΜ δƒθφΝ? |ζεp )ΎφΥ―†έL[ψΉŸy>œϋ«ΧΒ{ΓΣαsŸ9μ ―ΏBυ¦~"6l„οΌφWα3‡‡O „Χ^ϋLP}xπΑc–ΟKηή ίγ™΄Ο“ύpxυ?Y<ύt8ΦΫΎρυoœ->χΩΓΤ­Kα/ίΎ£yδζFΒχί<yϊΩ0„SΤ«―ΎJ$π™ηžώ‘ɚ¦|°oοϊ){ΐθ92½Scc]ζ“H†Ξž’΅ΰ0OUΐ­VΧΤ„#|π—C#$“j2²iπšυƏב\'DMχ:ο ]—ΩO‘1$u©«ΒYZUΗΩ-˜Z–QšΔλξΩ(ΰΧ« 6i"δLƒM•ε0σ―μ:¬u8™Zf"B>tκΔ‰sfΪ­D*ͺzά1ΆΑΜΘ π Α2²I ξhv—θIUYHFψ0ςT‘>¨Ζ9—_„£O[lψY}rη•VFpvπ31ΓpλΘ$‘1kπcyοβ¬4Δ2Η=_‡NŠΆsWΒLΊeRΝΜlς¬Εωi•E¬]Τ[M» ΑX΄"‘zŒ_Khv„¨ΕD[8‘%•κ£w`°Yτ0e—ςd_Šω3Ψ5eήKΏ@JŒctδ€ν±ύŒ™πϋ€€8`ΈΖμώ—A2δ­Nή 22δ*JVL:X!ΞkZάψ?Ύ?ώΰ^Ϋ_z'η-Ο›ΈΛhXό‹Pm₯Ίς^!bΎcˆžŸ R>βζUgiάΝ™sb(a_¨-An„MΑ4Pw#4Ο[lG©Ό}βXGΛešŸΓΨf›\F{b9WPπ ?…ΖΙPZηΌυ‰PϊM¨ EΗ5`}mB†„σΛvF₯$ϊBky@θΚXfxct’₯N•D*hμ7+d½(–{ωa=c-Kνφ†Xg{ΝwϋO¬«Oπ¬mαξυwμΏRYžGΌΟwΉΧxwYexŒ7ίψ,+v+ŸŽ»L‡σ'ήοaYaΦ‘B€V3Η.nΛ²€ψz>y‡§¬—χEaΤίρŠΧ½ζ§g¬›Ώ-’ΤVŸ‹=ΰ=ρg©>ΑοwΟΔ/{Ώψp‰Z·RΙ₯‡J΅+έc΅iμέχψs‡1.Ν­ψ(ίKΟ—zΠ2Jχ[}λΛπμή»Ό#6Ο/>φ§}Ω=G©.₯Έδψ½kΈθ9_ΌwĎδ{ΌgΏnχ\Ώ[_ΞύD9{/²¨?χήύηφΛή{oόΨΏΖγ4Ζ·ή}μξ—χΟΕΩΟϋΟϋΟΖ‡|8–Sκω8'½XκθRAχΌδžWΔ"Jkdο¬υρ«{―Ϊ4ήqΟΉύχϊορ_»5*X~Ζ#NάΧXp,ŸΈΩ±ŒΣ*ͺχπ~ αˆs»τ%ώΎη–½ϊq#©±­wοχΫή»χŠŠοΪ«o(=ο;ξž|½ρ•±LλP:Ό/·{>#}σw| ’;ͺΑ―Ψ¨RΩwλlβ³œ§μ’βΕ±6υώ‹φΚ»ϋ>~ϋ½€l*΅•Η™ηJUεΌ’Ω~9{Εύmώ(υT©>Y?0χB«ƒ„– °άG₯J<ΥNjυ'Ϋα+½εαωžςpΊ΅<όύΓ•a‚ˆ ΧT„φ:χέ6ΘζΩΨή~φω§Β?ψ^xgΪ—Ώτ%œ{/ƒ:Oω$”b3Όρή{‘λπΓαā–πνo}‹dL5α₯g ._#οΒ|ψ7κw G&hlŽΏψεŸΗΙφ"NΑcᝳΙοΡ¦Ώ—nƒ.†_όΕ/‡ΡKη(ΏξmgΏ5 6'ύ4ΉΪΓ«ίy%Œ.ΒΟΏόΞ—―cΪ¬Ώτ₯—Γυwί! κ΅>tu~&&B,ΑChΜύγoΠΞ)χ΄4•¦1…†_ΖW†i“H12 ό jˆζ²Ν8FΜ,ΧrXΜ.+•][…ΣΉfŠ!Qp) H$΄8‡7aόύ4y₯xρ*ή333‡F™ˆ:X6 ˜δα ΚͺΡςΒΝβ'’ΆQ!š–ΏβΡ«H-Β‚‹ ..$/Ύ(X…? c«c~ή½„K:³Ώ@ΰΆ|Ή7|ΛΎ%`μB‹DοΜέyΖώ" φƒ΄ ε· e`UHn kͺeΥψ τδΣΔ!Μ(‰V£½Ή€X<€AςΡJqΩ6bΪΛψŸ…‡οάύkίkΩ–Σ„΅ι.υήΒφ†χ¦NδuQX›ξ‚8;πςXίμο’Όή4ή›₯oΒ›ͺ&‰°Ά-.ʏΧ\οΰ?IΫ;_₯*ρίΉ‘Ε΅8ΞίkœzΟsπoΩ)’dΣYΞΏ³zοXζ3mξ_eˆ« ‘Y§#z†I/ %ξ«{vˆΗ7Σ΅ ΄wΏεn>Μ7»Ώ1δΤ0γ\`JάδϘĜηŸ¦&œοΎχςή‹™ŒφΞΏ^°ς%¬l{ψsρƒ‘›σoώL§6½-ώΈ…MXσΧ<[fώΜ·¦σ^ΣξŠίΤ³~³γpoλ,\Φ«“ΏεΦ†›ΏMlαΏ‹[7ό―γώsίΑCεφŸΏ Ÿσ(HΨΎω`yI¦ f|r’9z’|ο©―–ΟώρΚ]ύ θbyϋέw–οϋr9ώ–ΫΚ‰«*Ώϊ·~΅<Μcx^ΐ㛇?τ‘»ΛΣέWέpkΉ† Ύλ³·”§_Ε㱟/cηO•Ο?>[ξΔΠc?|΅=r;±rηο(_ϋ³Ο–·έρή2Υ3_ϋς}ψΥcƒm5Υϊι±Έ“ΒΖh0Έψƒ§‹αΎψύ§ͺ‚DΕΘ£χ™*5•§@½ΜΚόeζX‘χtXι+η!8ZWo †B-Γ9M’Xύζ»Ε™™0ω»Bίοα~2θΔS@1 uγ¨ζ œ°½ΜŸ‡KIΠ /xΘύn?n§pA‰A1˜umωefρ8ε ιρ/O[z_†ωΧΕk=αΊΒ©CΛ]F˜rs·‚•¦…υl že­S:ϊ†§p―s~C?uΪKέ_|α9_ܟR_YY φρς„»@έ "Θ —яΉhSf=Μ !…=’Xfj ΝΘ,&“`$ 8„Wwh'Α‘BEΪ Ο:ΙIίp]ΐ±ΜΖz|ΑΟ …WΡ°y³3M€ ^’Ίb†€9 …: ‡Ήs€acζέvΜζm'w?±dζ!N][ԏƷOτ»*ΟD«Ω©fνT-}8Ψ‡!¦­²Ή™φpRλ‚6bκe>– Ήr‘$ω £„F1šΓi“0lJΒNΜNς”*ΪCόI3Βg ”#½Ιτ‚!Βe1οή>4˜x§ry–!`„€,S-σ7Ί ¦‘DÎd4ΓLnήzƊCu‰Si\£ώKβ,N€£²‘”Czα—™Pπͺ",»”αΔω0ͺνq΄Ά₯°σΝΕ–hSΘΧQΛ?K^υ{σ ϊdΌyαEJ"εKπι;1,±ΝΩ€z%}2γέtΟ•θy2˜0βx·½l t½(َ  QηNŸF+¨c œHPŸ–ύ4MΎ.²w›ϊA+όOyΩWl}δνΖρͺ=ƒSEJhͺ©GzPv>[ΙT±ΦMΖί«Φ•_^+^j΄šžg?ˆζVγ'Ϋϊcv 2‡#D‰'3ΰ'Ιλ›!)#%η'±Ϊ¬σ=Α<™e›Ηξ†Ηκ=Ι~ς‰jΎθ“Γ…‰*ή›ͺt>m‘£ΆάΞ§ jώζέϝHΒΠ~H /΅6m],‘₯/£t(‘ςSz¦©‹1ΘΑO—p₯θ&½Ρ+½qBΗaκΠ!„eߍ€βΠM™ D |,ωF\ώ–…h΅WӁHΝ›Υgn>9ffΉ~Ι_ϊίόDoί)#&wΈ¬‘SbMί 7v+AWh·)Χα‹4•΄…ΕœΉ,—Έ©·Ό'NyM~ωœΒCσdΨ’ΎyΆ ΣX‘ζΦΑi“™π΅u²5^~NΈψhΪ°€iΎ?sœ°ς,¨υrA„ώΨδΧ†vξΖKƝ‡Ÿτm'Φλžχjύv>%Μ‚ή¬,£^Jy—g§ΨθΣ₯ ΰ–αυΖ5r’ΞB(‘Ε½kPπ ΠΓ€ΧΙΛFE f‚ϋ?χQζ†,ά?ΕJθlyψ‘‡ΚΛΣK1_q£λ|χH9ΜFή›ΨόΗ_y όϊΗ?̊ξSe“ƒΧ6@ψul.~τ[ίδ0œRΈχ/Λ§β―Κύ_όΣrκδ‹HΦψggA7‚Ν·ίR»Λεί}ρώςOώΡ?ˆ+ΌEύŽΓ€­γ²πϊύ^ήχΏL°§`oIίϊφ·9gb¬άχ•/”/=τ£ςΟξΌ»ά₯ΛΫn{W™~α©r†S|αšuσJ¨bηRήjΧ»”˜ίŠs1άΏ4ΠΪa–8|Θύ+ΒΥGέΏwg pθ%½ηvΈ©y-&Rš‘Θτ@?0„v|χ*lxb6ƒ’~ωΥ–ΘΜ;θ)‡U^‚αμˆ}ρ¦eZmε΅wW ‘?ξlέίΝ¬°ίčλלΈ>¦N$Γΐ a7[_Κ¬h2Έ*ΜΜ’Iss£ϊ:BJόŒλm‡:©!qΡŽ{@ά·΄Βκx\―’^—ŽdkΞ0K¬ψΒ¨ΊΏ5`U{k Χ³ho4νšFΡ­6όL‹ *t¬°¦ΫΛshB&ΠβΔ|J\ Όk’Τ‹ΟxέMLτήα„ΧΗήχZυjΆΔY n _γl€ε5\iη §χΉ/…vθGsd5C§[K=} Œ¦ΖυfγΘΨͺ΅±Ϋ+ΰ€ξŒu2‡J!NJ[΄‘Ίs֊“#ν(n=”Μ ±Υ 9šd₯Ψΐ§eDؐq‡†œ“4qR0΄5K1… £eaςι™DΡ2*ύl²²Oδΐ§ΆΓρKA ‚ut€ΐ€Q™M΅0— ₯UY‚WFΧ)ίv&ΫF1 ΦΝ2€“²ͺ`ΐΪ<4κD°T—6­6ΰŠΓΦKRf ¬Έ BXμC €βLα8ElΓIDΥό(”E€ΰ98~…q-Šb²¦–Š:/sŒI'ƒxŸSΐ‘NΰEΠT  š“*|ΩΈζΌgψ³?&sr2/™„€ΞO&EΫ–0M«€iΈπ˜ΉηŸmM^zΩηΘΪ΅;Γxΐ@…|³^Βm‡\„6ΧΠ8jJΉ<Γα–δ­ΰIζJ‰Δ7mg³ί: j4‡ •g8`LEy­Ÿ½ΰh.¨°lύΫύΆkΜέΜ-Dˆ*€ŽB^Ú:‹›ΑπPxΰ0ΌFKά6ŠA¦ΖΰŽ7λ¦ΐexΝW,ššwh‘F·ρ%ίrχGό™ΆΉLΆλΥΈφ›ά"BSD4ŸύΪΉ.Θ’ΊϋΑ‚v•e~^nω•ymrinωnωFΛοΞOηέΔ‰Γ½{XΣ՘ώVΚΙΓNΫz΅%OSL βN©―κ$ojΨ΅πϊΚ³q†ώCί<ϋNFV…ξΔK»&°ωζ'ώjίαN\χ'h2<Θaœ›hl·`Ό–y‹<;πΨK\WϋΣ νoό[Γ1…tjα βΉ,ƒοm `fδ_ƒΗQ΅ΡxΈηβ’%/Ί uΌ[7σBΣazΧ¬RΜ¦Μ«Ι“§\•φšgnΦΡψνέψνs˜ΎMμ#ˆ€ΔdPΣŸWΣ° ½ΙןŠη$IX␏}­ΛyΚή…ƒ|\„πΉ^f,]ο…ϋϊ“Ύ½Aτ6Hψ/Ύή(μβ8—Tήλ³~]6— Ό.]ip'MzΑŸa͟™κ•a ππ™ΝςΞLŒ¨ΊŒϋKφό&fYž—D² StτΪ›™œ{ΚΣld}‡ξ.|λΫε=ο@\Ζ=v+{ΪδcŽ…η‘Ώύ·?QnΈζήaVʏ^>ΛiΥ)ϋ9ˆθΔ±cρΠ΅ˆG α9θ™§~P»φDyω‰GΛφπΑrΗνοΐά3 NΪύθ/ώBά‘N²iχΘρe| M Œγ{οώΘ)gηχ”όΒΟ•Gžx¦Όχ½οΝ)Χ|χ-ε{O|Ώά~ΧΚ8ΪήνΫΚ΅Η#Δ |„k.^ˆΪΥ₯˜ŸpA+2Ρch'ΞUwš`Σ9‡Π±―BκšaΙ λ–TW„š8ΘΟι Λύ2ό j–X©—Θτσo$Ϋ¨¨ ˆ0/+0 ξ½π΄dM0\έ_'ου•ώ¬–«™S+βΑpj4eΡDIΚwOH—jeq°AϊΨλ;Πσ.ƒ)ω‘‰™ƒ’εΙb”‹$ ¬qΙ`ͺehMBΔRΜ:¨—ΜŒpΈ?γΥΧNCߜα³Ώ„0pφ₯SΩrμθU Τn&ŸΙα„h@²Ζ2¨ψ&υ—q\b?‡Œών³YasΞ` Ί&J†t l>«Y™‡T ΏξeΌζΩ―₯ΰԍyΠ:Ϊ*7OΛ<‹d£˜₯±‚yσH¦<ikM‹ŒB—”*t7Γ«’Χος:}ΡMδβZ±jψDF2Xnd7§h*ΐρ¬ŒΒ“.{}W ±  ¬g5[K43ΖΖ(r |1ω“ν£C2„"ΥB”œΊ`tΘά¦ξΖμc!¦ϋotο[' :))P g΄ΐιd/nΝΓς…SC(νιΧ½0ί+«„Π‰Ϋ‚›Β΄υv_”ω©Ή©B‰xΰyeFq­P$^79Δ _šSΡ=qΡ†ά‰S ς'‚`κ‘@κY 0λ˜0z.Εyš”Ζ·Θ«Ίδε@2L_­i›¬“,ΕΆ‘Ήη±}OAωήΒΧή‰*Ξ:WΣW|o£wΎνŽWm‹NΌ¦Έg–ε’8ψᏑge©5._o†KΕΞ+’š­θ~P3*νΨ9i”ΆvΕd»B¨«9ŽMN°6š+EφΉaΫ‘ΠύΪάgo­θΚ€ΜMΏΌ°€w*M­8ό‹Ψ2)2θόΝaJ΅Α‰―SšyΑD―#πŒβV׍ւ«ύΐͺ΅pσ»+ιjbΰUjωŒD #‹0Kn²Φ4L[σxεRX‚™uΟ‰€šυΜ$Β ZWΫelν„Λ΄Q?MIτ£Η«Ω•Yͺ[™ί΄DƒΈβ½ζΨq`p²ΰp­i˜‘N½ε°@mφeΕΔΕ',χΛyIσ0L:M˜žvp•ξ+«IŽL@Β2FΓD-γA¬—3ΘΤƌΐΈ­Σ‰ιΛ«x[ΰ°? ²ΐ'yΠ4žK φ$Β"Ο q2LξέqείITX6†ΰC†ˆm§5πζH VŸΆΐ Θ!gΪ<3J…1a LΒΖάv i“¦.Μχ ΐzΊ9£CV¬Ux˜Ϊΐ‹ ŸšR%½eƒyΖ<"Α’ΉΒπB–ΌσIΨ»ρΜfΫ8A:N„α§Ύ&U›`ˆ 'YƒΚ!λ^θaέΊ# «ιSΨ0oΫ3g-˜'ιm#Έ”±$LΣ·ΚπΣώ|–V,_<†F£₯"Ϋh<€`&>τ¦€β?πγΈ¦6°‹φ΅ίΨΟ"T™1εΗ΄αΠ₯yΫNWΥΣh χ±―nCΥ(Pd₯%κ"άA8η‘ω#o8αύξαr ΏŽ«2&ΒM&ΑCPOyš²R:ƒσƒθνΐήΙ,R¨ΡιΗƒB‘šΒ>όƒJΧ$N8Cˆ½NΛΩ‹³―p}ΰzά-"`iͺΆgb„2«#&q)»   2β§­Β†:JG~έd3Μ±ΙͺV²ƒ>Εm-­ω )Ygρ`φΦΛΆJ»›οΒl₯ώM%>ΈβŸψ4—Ϊ[ΓόŸαVΎ5ψkU₯Λδ'1ˆΛefj²dœ‡ϊκχ7Ή€™έWŠkΚ· Ηξ8;ΟMΪ]YΤǝ€ϊTa1]ΖHοM&-ΨΓΐ¨ „΅α6L'u“ΙE7λT£·p\…ίΔpEa“ρ…·]`Φˆ5QξmmPήƒσ 1ΌΙΆΘb›Π¦9ΎΨw Τυ!)€Ε0κ„KK2Ύz”&έ―Φ­‚‘.¦°u(KΏ¦u WΙκ^ 3XC3›1MrΆ^ΒΓxT[Β{;—œ9RςηιΚ`ηΈ)Ζ‰νrd/ζ»#=εyN •±MΖό-ϋpά²rΎ$Ϊ?Žs[Š²ΘŒšδe]jΡBZ―ΰΚ—φ›w_I(Μ©“5βξΛH\mzΊ]ςn‘Ÿ5υjΒ›Ψ5ΎcB žŒΉ|·-šl/ΌΣΗδt+όΊ«MπΊό€ooΏ {£toΦΖoο©β΄ωύ„{Ϋ‚—$€—Ζ~άο>ωΚvω_Ÿ`΅/™‹rƒψ*+ΐš§ΙΙzꡉeŒeήμ3 SN2¨‘yΜΪ4%Σ„K!ōΪ¦+œΰ\'0ΝΆ¨+Œšg’ cΊΈΙ&ψαL0xΤWΖΪΣ}eŒ=XQαLm–ͺϋά( žνΘ2Αύ΄Ϋζy׊;f›.Μ6Lγ†0“©Ϊ(i@“!λ+ν―¦v›<;TΝC<γ(‚,3qƒTdš0λΠZ8ՌΝ'ι(L<ωvΑt‹€ε½9sΣB1ƒG2ŽpήΩθ.^²…›ΈY¦5 ŽΝƒώ”―fΔΣή{1£SΠκΕ«˜OΔ€Ύ|·Lλg{J‘ 9 G|7– νΦ—fΤς(Ϋx ‰£Cg΄΄±υ3™ ™bάΜYaό°Šhœn@λCΠŽLVCΏœœ| #o šΫΝΣ›ŠL*έ ›Ϊ#σ”B²b%³ 8©ρŸτ$C­6$΄gδ$c-©Fξ©:ΰy6ŠϋΒ6θΣτΒp°‰¬6$ζgβ^(Τρ2ΰL›!΄5ŒЎZa4˜›hΟΎt2ύusm{˜φRΆŒ‚εςƒΰ'š[gj»ΤΒτΰυN$Ϊߝ£κΉ2βœY)‰X£( ₯`Α3— liS«ΜEi|%.>{%oIΟ]Ψpσsς›t*²Μšlω »†fJM«fσ2~šΔNS^κkίλ·ZP Ϋύ›ς-7qkΎ k"Y–W²δΩ{'²Νχ° $l~j²yw†Pŝ+Y‚Ν&_ρZ‘k’€Ÿ6€½·`TΈMΘ—rAΚdlk” $υKΒ΄`€Οa~K†ΙΫ x»β4πq3]²τΉy0Ύαυžίˆ|ˆpΩτ“T^6σ"Δδ8–grθ<ƒ8†ντ ΅Τφ“ΪNΐ§PΌ«ιmσιE{ΡΕͺσ š ΅Κp(μo (BV/σ0opiωt ’haK^Ž ŒύhΈΧ–ρΠ8ΕΒ΅“―”σί–~ΖBΩσ―–ΣΟΎVφί|+ϋ―θΰ€]ΘP8W¨ΘeuΕή­£ΠΨΪ>η[>‹«/)›ηφ»ψΞ0Υ¦I€]ι›ςΪ²R†i¬χ €εξ\ϊls#_uσM‚ΘCŸΪqi„7+αώΫ›XΩU€Ψ…8ΫΜΖπΔΛhšažx>ΞFt(”xbdnWzλκάN £½v?οŽ—ΥΘ6χέρήμΩθ "»²7 “K&ŸΞΫξ~½‚9h’YφέCεΠώh’–Mσaftp‘Y›¬”«_]0ζNΨ€ΗΛBƒΪ”ˆ+ΰIΌi―JΰkbŒsDπT7Οω-ηWΟq*,ξΩoΫΙ aZη~ρ£™•ξƒεŽΥ8`Λ”eΏΓΊΒοdάsΰ σ §½―ΒO²Μ }±G‰xβRΪqU³₯‚"(ΖAu€¬u&:iΞoΆ§±½;Ž6κa=up χ!ΔlŠ4'8±i₯‡z€SšBβy-ɟ8 0’αα•fjΦζaΞioοωnΆmϋΦΔΦ³Εmϋ5ν*'iσ1_| >­F€ΘύςΘΨ)¨ΏŽkCοπ›€r2ί}Ω©ρπnδελ2ήY=ΥΜ&-ΥIή‰ΎN°uU[νˆ΅ †L…ξt5W†‰Μ ,£‰ΜŒqΰ’ΫdU>S{¦0Λrγ8t =Gκt΅³šιΐ`°δ»ˆΖCΑBνά°‚‰Œ.q3Ο "—«ωvυ€΅Vΰ΅νμέΦMΧΩ;Αΰ*σήaX6Q;³g’§w†Νυcκ’ήΑΰmž0cψφSΟα-50I|πM'ž=xδ\Γμpο\$δΏΖθ/cͺέ¬š› Lx5½bθU`‚Up“ ράWn£αpΦAzΒICΩLL/a.ΥD`gb©*Ο0ΣK;h.ηώedHEs0ΝWΪ^a”‘ιeΌυΔFΧ!3`βΑό—<΄“}%Γ{χp Έσ2Ύpr³*”Qϋ™ν£‰^₯55&ΐΞΘqˆΆ= +Œeαˆz9†€ ·°Θ™/9Sήš„!_5›γΈŒvΏΦАζ’hΣIc7SŸmsΣg¬ƒšF`‘VβΪΪC5-GΆj"R˜šΔŸΥ€τηj:Jϋž~—Ρ!τ­ΠΌ¦£κ ˜ω–˜ΐβΈΨΘ+νi₯ƒ/SΉ:4…²όl}₯;Η/α#”–d Jψ‘Yχ£0ΥΨIQλΰc"ξΊf ©O5―M\"οΑ…οό΅ΏTMžΠΞ"…)L>5EύΙkVοb>ξ‚%ρ jsΞCίdˆ£œε±|ͺa5‘!»γ%”€δΔέo †ξψZρΘϋξΜxN^”eΝ­&Ώ8/Bύή&·-+ύiϊΝvLIΛ±Ί©ΏMiωά£^|³_H#sxW 7,B-…؏Œg¦Δ"Y¦@¬VD²‹n‘% ¦¬!Žί·…΅%ηHΖ f eFχ”xQ }‰gλέΪΣΧ†Y,έ+ε‰/ύϋ²υά}eκψ±rώΩϋX¬ΰ΄υίR†&™ΧΞΞ—‘+χg™τ#L?YΧόSˆ?~3ˆ?ο\Υ ϊΝx\--t~4ŸD¨ω§ΫZ_.Ϋ"―>₯ ZdYύ,Ύ“4IPa‘oQϊς>ΰΖψ—―Ё7%ή=χ¦’l0ύϊ8U-xαΗϊV;EMqαχΧηr9δo*dBӁYI„Αr²Χ&^Š‘ qυOζAΖR&yƒΈzμΠ»‡L‚ΟžΠ­+Wχp8 Ϊu…*³· 3:Γώύœ³ S+ƒ>‚ΉP›Œt262Ψλ0™–κ .Mε˜l"toƒπΔ‹ω;yΙλ‰JΣ―E4MTdz·`β5λλ]ζ\52ΰl‚ηϋy―R'i=© Θ@0 kXDuИΐΈϋ7v;±k6Μa‹«LKœΙ»ŽzΔsŸΛj7¦O{Pi/¬”½“γΡ†»ΝTΤ€l‘eQ ³ΎΑ½ψΥ΄ΖreΎe†<B³«˜œΐΘ»§%+Ε -Lϊƒ ΞαpFΪ`¦n ζR§σ„9p‹ϋuΌh)„ž1ρas3•)ΰΫB [F8tEmbr8†›«ς •2ΏζΌsaΣ½=š^ΙήΏE^œΓ  “§m’ c΅Zu&“Ή₯‚Άυ’ΩσμuRΝΨbΊΔt KNώœ4rΊ9υΫZ™Cˆ$P–Ξ³WΨ?ΐγϊς,°’% œhwΘXZΪD££X'p5I²;Υ}3ε’‡‚B/Œ{Vuί+C Ύ„QΑJΊθCsԅɐΉτA—jρCƒΤΝrτ˜ΆΆ‚Γ™?“6t€™οΞ‡VY=ΜΒZΫι9ΗδRž|ŽρΫ“q/SWLψΠΊΫq=°· ⏾Όόΰ—8+χΉ²χϊkX΄bή( B…E˜εsΟ–‘«₯½‚Π2J—ζ‘a8YŠ`κ­’“:Zίσ³ ΎΩ&ΉLΗΥά’‡τίOΒ©s›·©³˜‡}Ε›? η™οβΌΖ¨QΝO˜,ΠE„ΑΌ˜ψςΥbΰ† "ήYϋβ+­Οΰ ΓΥiaΣxΙxΨ~SMς aC‡pΗΥ>ϋΦͺ ύTYΫΞ΄“FΈμ\dςτ»ΤΑ·U'e‰»ί}φJ=›|,ΛΛ4ν•gβg’l/ίf ˆΩm΅ΰLf4ζ-<»"oJ0N2Zj/Tτ :τ˜F5z³r_RPΓ #=?+gL¦X]7Ι χaΜΡήδΙ°zpsΕ6ή„“,/™F'ϊ<ΛΈ;TsΧ―ƒ‹ζLnΈξƒΦΠLΜspa‚ŽŒ“Z“―œ,οψΉ£Ωμ,£₯ΫMΰŠΧ&κΨM]²Ίλ*4ο2Ϋn$wœ“gΡσ““μG[2LμΝπPΖύ0μΪΖo#ΠμeCπά©Τ5!Zʁˆ}J3ˆ{—αv΅9ޜ˜,\••iί†ι (7&U¬ΨjzΔ—ό™&.g3Ό _ν `v%„ž~ΜΚ–fqg ˆβI&NΖuœ{8απ ΪΥ2qδ@ϊ–‚Ξή}ϋΛαΓΣvqE ,2IΉ/ΒKm†‚Ÿ‚¦yjΎh(‘‘½ β}„s*l›§πxwφάt98Ž—{Λ ϋntμͺχi\e3ύΑ—ΊŸ&—tU £ez k‡-⍙NΑlfQC$7«‘p\pΥ|FΫρ¨?xu’F«¦it€`μDX6hpAΪυTκhe,Λwd[ΈZαŒδmVΪWΑΙ}¬ ½€ΧΓ/en)$ωκrΪ•LiΧ1΅¬gί€φΙΟ:IΟќPΆζ]›H‹ τfΝ ίΊze ͺ@h΄š}n£Μ"ΰφžW³£&m³ŒBλ#μ+Ϊ„(ŏ+χ‹τ§uΪέƒ8η9«gY—Μj$Αͺ{Μ£ψζκκθȞQwΚWΛζKξ£ώγΞΑ‰Μ9ψΞζx`’Ύeϊ]ΰ _.ΨΧ\\π<ސ¦™δΟ.$RωO!jQφu]ξΐ&νΘ ΕΥω©Ι²mlηž.ΰ°(-Πφό­ ³lΗ‘5„hΙg Λ=_šjY5= -}Ώ—₯5αχΠR/ƒUΚ΄ίHΞΞ[σσ δM»3ώ£ΈfM·t`· (Ω·˜ CKΐfΉqΈ ]#ŠŒ%„π3gΞ•±Cjza²€' '<&Ήύа¬’W‚㛍γΣ.ζ,©vήwžŒέ€©·ΌΧωΨς(ΝrΉ’'Ο)??†ϊ­σfε‡ZΎŸkς0β [5uΚΗ„μϊVcπ[γΆΩTpšτMNζUσ4§Zσφ©Β·ΖπwΑeNmή˜R'Bύ<Χ$ *΄T\D» mζιΓf MzAz)Ηφ„p‘›7²N™9τΪIW7OΛχΎΛ=C#¬ϋL6Ξ1D _E:‡”\<Σmς-Η6Κeh‰ ?»°^φμ(G8ΟMpNΞ¬γΒή>4Ι“|͘ykl­<}δΕ‡ξ/ίςΏ*'ώRΉώ– ],Ψΰn«Y[8γq_*G'―.=―e1½˜,ψ‰Κhz€Fr²nA/ΟΞέ^U dΔ‡§& ߝΏ Hϊ<ԏ–{ rΎυ=τ›1ŒT€¦―NνŸ‰Iφ~˟Aœ΄‡am4ρ6Π2Ζ»|—&€HI ΎΫΣx ϊΓ{h'0 #'ΌYΌδόΚ₯ϋmΧθR¦’Χ8¦;;[Ά™¨Ίχq9«ΈωΎ«Em3't;‘ϋ$ ΝNάθν`<Δ7W^y¬ƒ8εjΓή¦‘QΥ&LΜξͺΧW½œx,Ξxζ§-Έ¦6NR¦ΒΗ½+ΊyΤί½(Σθdc WΚ¬6δuuJψdŠΦδΈ._m ˆσ-νό9{ΐΥVY_Οfp°u΅'-ƒwW«λΧc‚`ΊΔ$U˜™φ{¨ι’acDqG“‰eι]¨ŸύNΊ2dΊ€•±ΩΠ< B”1Τέh₯-˜?θΧUš!08(Ή’μͺχ:e9πΖ–πκΗ{V˜¨‹ΜPAώ}|vŠ“Θ―ΚζΧ•³§HW-&•˜xΦCcj„iPtΩ@‰oŒΌΠ2+Ω<λMΛIΑφk0%Κυ‹σgΨd~6.q―<8Ý+„±š.9Φ& +ͺΎͺ‘‘&u΅:Ή?5MφOƒ§ΗςΗj;΄Ο,€a`β€F"ΒΉu‡sϊΆώ¦λ£o»ftœSΫΗ9ι}‰Υ2p<Š ”άΓDͺ‘ΰL4Dγwσœ―€­·+ΙΪΖΙ€2Eβ\¦―šήΙΨΦ>G$˜·MΗ΍™›=_NΏόt™>μΩƒιηΎtΣΞCxgrό™ι/shƒθβδg›2€κ&G½mo―`–Ζ!Š0{Β+LY™Iπ­³A™Ω·“(`¬ ….ΪG˜5‹€aAΰrZŒ–B3=pΌ]KηØ ΉK͊΄G\ΠIΩξM΄ ­t(}iή΅fΕw΅82œ=š‰€Ž0νFm¨΄K}c½ˆ7WφsžexΈπΉjΉΦ©4εr<”–W9η…D‘‰3ηζ0“›-χyΈd?τά%γ_χΡΜαbyyŽ>„€ƒƒƒ #,,Mƒ„9ΪJ •m¦¦2c)•WΡΰ Β’9]Ψ_4£γΔvgi`Q ³ΨχόΕ3ν‘„ψNλz΅*ΫΰΡΎ¬B:nj0 MS \π’9ƒ†Τ†Q4€Μ DŽ€O2ΰE«@»Λh)ΌιφZ-FΝ“ο„;ΙHΊη(ŽP2š5&Ιh8eˆFέϊ&ΤΒ’amz”}4]ΰ/§M–θΗ–AκΤΟΎZt6yَΛΠρκjw ΆhΪΠ: ’‘¦"ό0Φ-cομ|gίίά>Œ,₯›œ?‡•ϊcΙ€s# ^†~2n&^'ΠΆiΏ΅1€%γ­05ιiG>Ύ›™‰Έ'm~š°šG'Y§άή€j’οJ—,yo²Άjmœš‘xm’tξGΫ”ΝKRωc>^ά:yΦ―58qjς`kyOΒ&{βf¬―ψ΅έ}iΚ»(₯_„5}uWZHfγ  ά(O’σ?w4§JϋZ~s’4‰˜²ˆKp~>My‰γžy˜Cζ<^’νη›Ι‡Ρΰ― ˜Ydή ’^χβζtvFσQΣXdpŽς8†Νσ―–ηώfyόΣKYŸ~Ί\}Σ΅Œ…ΈΤwL#mY# —ξK―<[žV- –‰λίΓސύμΩƒ_£?Έ€Α-Έ±ίΎόT8…9θpφήΦ’w>10oι‘o^‘UοΖi€o_ˆA–I_oΑh}'/Λ ―ΰ”wΣWxόXΫΖανςU1Π`πχ€He ¬[―œr–,}ΩGα|˜ ‘VfTV!ζPΐο>SΊo½„Ÿ–Y³lόΙ7 ³Hˆsš“šιφ}υ!€Fν*?|ς»ε?zΉΌϋ=ο-ύΫKεήo<€»άw•+M–GΎσX9pε5εОαrο=QΆQ›Ώχ·•<ώς£W¦ΛwΎ›Υί±ςŸ)½£˜l—ϋκΑrέMο(Χ^Ή―<τν‡`0ΆΛ7Ύ•ΐγεμ©—Λƒ=ZΊα¦rΓρ£ερG.£ϋ(Ηξ)ίϊΖΧ8u½‹“ΟίUOΏZ^93Wn|ΛυqŸzκ•—Κ,&W-_ύςeί‘«ΛΫήz=υ•δ._?3θ­+sΣeמgͺ%;hI™ΑΦ•Q½)­ΒtJwštΐΒ`Ύδ†sHN―XΪύKšμΒ=―žυ1œ=σZ9~υ5€suΫDψ·ˆ‡Žeάvκ%)L¦ƒ Cω¨-ΐ‰Ή­+Λ@l2_0Tμq3±ζ2 1œ/s¦l›ΥπaV>Ÿ8‘ΥKέ†Ί/‘; #ΜΈΜυ‘‘μ₯CΈͺΉAίQ ˆΕ£Μhp#°ΌΣžqh&Yχ’/Ώό£rψΐaά§φ–sΣη"xΟQ.Y?Œι’–Να ΩِΘ$e½Β¬2IθεK·PnͺξEWXθδQ³Ap¨§;55 n4Ξj;LTor4ŽΌ[λlGIχ”τ.€νΕΤkφά)šAƟΓΰH/so}OΎςJΤ)΄8“˜b37Ρ»?€Y•ΒΜ &1šό8°+ Ί(±Dϋk³ο’ΔŒ«gΓ°ΒΑώ›ύl°GS¨\Άv˜ΏΉl;»y9„A[³‚Ύ #¨›ο²ΕαŒΠŽΒιάΜlݸリεUr¨E&{`x­Z-ςqΕΫφλcOˆš_΅ΖΧ1€eΩ2 –K³Œ/«Γ=zlƒV2_™[™΅λΔs2_E(χM"Β°Δάn±X†`Ζ|“=Bζαλ’ Σ…`·ΡtB DNΊa’ν ‘]&|ΐŒ)šŒ, ƒs=L5΄½d‘=,.!&H]ΰΎZ"OMq:°†&nΥΝN?ΛY!#W=ΤUΟoγΠ©ζŠΓΎΔ‡Β{IΤ&ΠΏ»VtΘ₯&hnqQ½en™ώ˜ΡζβGΆή΅†¨?ε"΅9ΙKθ2mšΊ?ΚE …—­υες—Ÿϋ“ς–·ίVΊq&qυΥΧ—>ϊδ4fX#[x#—Π]Μ­δΑ…šUχΗ€ΠŒ+2TΡPπ΅KσEh…a26<_AojφU„-ΜΫfιwKšOΪΆx"K΅<Τ.G"hΫ# ŸaΠΥ!.ψ΅3§…ŒV…¬ΤSPI§FΨ3ζΨc³HŸœ‡υϊ΅₯“ ΜZΒΘ’ήΑD4I‘φε$ηYάVζ« –%γφ;QšΛ]W“ǐ@)άdA9ŽŒ\΄wl1σ‘Η ‰*[’―m’'—€2MσΙ/Ήςήσ‚χšt'žί‰8ΰ.Oβ=O5²πΔ45a5r³F'<΄ωδ½Εgr¦ ξδŸΥs£7q“OΎ&­kΎƒ…δ`|βu‘uΤόsθγΠ4Dw%™₯"Gψ°£Θ’AƒXς§Jψ`γs…Ζx4M !DΑ_«ŒEΩ–‘ŠΊŽCΏΗαɐg‰ΊŠγ‰ΧΞΥωdΟύšμΗٜΎΐžšζ΄Œu―>_ϊw’<ωΥO•ƒWν+Γ‡―dάΖ\•1έΊ;χθuOآшτ μΗσGεΤƒ’°υ2rό2ΈoŠE7Œd¬ζI:J¨Gρ@IDATλ!*ύ ΅ξց\Ζρ§6‹5Αb!Έ0n"ζ#ΏΑA§IΤ%]’˜GSN`πΛχ¦ΉS?—/0ΠR»΄t‰-ΓΐΨu`’tON”m&πff@Ζ.νΖφι™N:jo|φ₯μ/½ΏqWZtϋ4§–›Ώ,]Ώσ‹δƒϋPΛnVWfΟ”<ύ\9zdΉηž/—QλΙ=ϋΚ·οΏΏ”wέ^>χ™O•_ω²,Ÿzα€U΅³ελίΈ‰{μλ+ίόΞwΛ―έ}Gω~ύΓ±μο],G)ίωΦ}Έ»…<ο+ωψ―ηΰ,ΫGz€ζπΆ‡οϋZκώ`ωκŸ~Όε}Ÿ`’\ΰB6J•…ςΐ—½Λεί~ραςϋόFX͍ςσ_Žίρ[ε7.c¬΄>ωθƒeί‘ΓεΨΎ1&b'ώ†κ.£—£ν`ΐŠ<;iΎ”ΥHT†9L3=^Σ*M§4uʊ—‚…)\ρ[ρ”tφTo3˜Š°ΗΐAΣI~ fAζb “¨εM…Ξ₯ΑξΙS§Θ s™eθuMΝH\]Ό2Π“-κͺ»&Bzςdφ ΦΜ•WaUˆ~αΖi52)€GތθΜ0b’ϊ.3 #ε€'σα₯°α†fa\ƒ‘¨ωΓ€Ι‘&9Ί–ΌT₯»!x f­ A`ίαkΚωχβΊvαμ‹θΔΫeμάap\ΩΦΤC3"WΝΈ½«q‘^λ?…66RΓψ+$(ψ Y˜;Ί½ZBΠ–φp΅8&rΐ¬&4߈―–dˆ}=όnc·λjρ"η6 tΑާ=<}ZωFΫ|mξ_ψ1p; ŽΨOA=Η'&’%Ψ3©‹αnhb>ε֍Όl0·Β¦6f’M‹Ί&VΨ΄]—"—0CYα›ΒŒύrF9“Ή(-’ξL―‘ήονƒ4ω£Nάέ >„π£ ‹ήΒtϋ;΁{γchoa(WYa>?Πξ`M‘›^6Ξ#0ΐTΛ°:™Ϊ† –)tΦVi/c…™K=¨υτ1 “‹tͺ6EΝ^˜ ςŽVƒτj3œL]yΤΔk…}5›4NΜ¬hι©aΐύ' ¦8U8Dh¦>ai΅z½”Ρ…φ§Ÿ~`š'e‰ ]όR“ΠΌω»q\ψ„t³ΌB~]γhο퇽τKϋ—Z°5θQαz–s:&Ρ„Έ`0ƒ0§9ά<Βωm ΉDS؍YψΧμpΣ~Γx―ͺΣ―*££T!Ϊ₯?KvφƒaΞΌ© ΰ4a6ΆCΠ Nλ§ΠΈ^ίgΠΠPφΒόωςΘS—Ωωi4esε³ί+SSWaξs'­Po΅" δT—φp ΝΠXεtsθ2Χβaƒώ'(Ξΐ5y$΄G; £?ΓϜ™‰ΠΌwοΪ‚΄kk,HΈp‘6KψͺνΫKΠh­}Β}R 8 h΄xZΗόJd¨i]^πΑW§ΏŸg‘Ο6^α› =mBΆβ‡  “AεɊΆ„Q ΪΚ>Oο― 5./>‹Ts _eκob4ί*­Χ¨-ΓUc™WRΧ__Θ§Ιύ‚oɊomμt^; tˆΑsβ·χ€z“"Wθ[h,8ΩβbR 9aFη7ί χ2M[{ŸeΆ#ΐΛ{β$±ŒΛO φNΞ”>NœN|/\‰Ο=mFΒα­ή2Γx.Χ―@ †ΟΚΠaM ίE₯˜^q7ϋΩfά‘’F›ΜΗΜόAΎŒώge2Ύ˜’υ5_"ΠΕ~ο?„&&z#dH3.P°˜‘ϋ6‹ΞΠ(€ͺ΅aίΚ|y𠺜DψΈζΖλ9{kΑ–…:ςͺϋΨŸ„S$[0ymmb½Π ¬ω^Y{νεΐρλθ£Xΐ¬2Ξ εθ^ZzΘJΗ ή «ˆN=xK]rΚ7£„Θ›΄yε'u΅R\Ι"¨‰ψ\$\m§ΞUŸσK!υήΰŽ—τε]q“[θώ~h0v‰ͺ EVL]ξŒdφnF6WUr9)=_Ά™¨ϋ>ω~ΥΥUΎcέ}χ-eσ±gKοGο Ρ`Θ«gh’όζ'?QΎuοWΚ‡ ‘8_ξxϝεή/~8r¬|ς·?Y–˜ ΰœ<χαιώ¨άόσ·—[»ͺάsίCελ_Ώ·άρ‘ίΕ„£―άυ‹-/=ϋDynb?εΊkŽ—gž~ ‚‘₯wΌc νΖsε Κ½φΖΚΗύ7ΛΣ―-!‘ίZ>~ε‰ςΉO‡ς–w½«ΌυΨήςƒcRq>ψΝ{Λ7½§œ,7έz[ωήΓχ——ΞΞΰ“σ­Κ1v°tωαgΓ€‡ΉΕd|»ͺη`i{;)κφSZq3wxGf!O·_‘QΓ.•½NIƒξΐμεΎ΅C#{ρ"΅—Ι[fu.›P7₯ Hša„œ(4‹2p€Ι_fy f…Ϊ}mΝcW―]=vhŠrUΎΧ]Ι6 ΝΠͺϋV€{™cVΧ1ΛρAMό\^E°ΡuηŠ’\NΛ€Ίκ/ΓC‘Ξ!δϋNY2ΥΓW2ζSϋ•±)TΤ07CΤ™ϊOΏˆiΛ¦X0Λ™f`tΘ8ό’Œ•ΨPΫήBΕFfwϊ'πΊςyeN!·l*ζ€δ`!3g7ΜQbήC^‘}ΉβΛ¬)໇cšύKš²Ή ]=[1² Iσ:λ'.7ΩG±Šφσ<‡P9»Iί6΅ΌQΜ³&έθ¬ ζ~„¬š“AΖ™yΖN_ς§^{Ί1F‘NνΔΒβδΤ>\9cDy2ϊ2δLtŒO΄σ^„έ+Ÿžžc―Ζ&›ΰΗΩΈ?s¦XVDšκ§νΟΓ\χ!`,Β f£±cψs/BLq8ΟΕ10Β₯υβ{n0[˜‰Ι˜4«π' { ₯Œΐ:Œ‚„η—Έ/#›œ‘sq³Œ$&xΤέϊ―o{B94γa921βY\iΊ΅9y9χ"ι–Ψ6κΒMg=hG›θλ›.FȈβ°ΈΞ³ίl™bΫΒ@#±žς³™—8šάE`ϋΒ:ΈQΛ$ ¬B[³ΈύVq―ˆš’uƚYφˆhΌˆtڈ ,šs"¬)ΠLαZΨ|†q—ο υσhHW6ζΛyΨ8<S‘ͺ™Kϊ–YrwτςΤΕχίDρης“οήA;Οώkΰ†o| ƒΝέ₯6Ύ­U‹nsiΣΥψr’™ψ4γUΈ%jŠK;‹«φrΜ0Z˜ϊcΛά\Λε›ΟΦ©ζYϋ‡ιk/°]“g-. -Αψ5oΤC|l.λ —ΐaY^΅Oσΐ»ρ¬‹iΫδΖ3?²εH~EŽαά€ιΜNΟ£ΝVD?ΠΓKΫρSbήΝΟΕԐًQΏΧ±ΒΕ‰μ³8―ΰιXƒΗdM>–cŸΰaνƐ1„ §Œ˜s˜1ZΗ=ϋ‹²ω0cΒΡ©ήςάƒ˜S}υΚΑ#0Ÿ£ }˜9y§ZΟμ˜ ί±1νό‘”3§O—ScC˜ΥΌ\–0…˜y­<πh)o9Ύ―ό‡ΟώYωέΏΚΦό©ςž~¨ΌπΤ·ΛSΟώΈάρs·•3/?[>ύ™Ο—Oόί6‡=ϊ ·rΤ§?υ―Λΰ‘›Λ 'Ž”…™300‰Lπ?Β%ε ^rψζ_•}'Λώ}GΡ|Œ—Σμo™<ȊUκXk|ωχ§Δ€΄3ΐλ€»F›σ|ΊΒΚ@%Σζ*|(υ‘±WKΣΣ₯“7{κ{₯ ιOΨΘ쏖t\7}ː¬•W_x±|ζSŸβPKχ™Έ€\γγΚ#ίΏ†f¨œ8~άΥ `‘,ΖᐑΡ[ΫΒ€taIŽ•YgΤu \,£σ쑉‰1Ϊ•ΝτΔChSθGzš9Iy”ΫΟ>,ΖOpŸ=?M›ΣW‰«Γˆ½S“ΔAH³ΟΣ?₯ΫΖ΅zάΚβζ[η¦g³_Fσ΅>†F©=‹" ( €σs˜“"ΐ`²GΏX₯οΏτςΙ2zΝPyu yCN΄΅}_xn0ΰζjΚXrη_€σλΧζ‚nόά$‘Œ:ΟΖου{α/θMœŒ+ΐΠIKTΣ;Ζ™,ςΖΰ%{rόN˜i’`Ϋ(†Y%Β,’ΤΎβ•ͺr‡ν­e€Φ5οNz"Υψ„η“9ΦK(k]j˜ŸσH^hΣπφr dAηͺXc§Αm>Τ₯)&ρlό&(¦Œ ΝX‘y«jεŒwŒkξk2rάν‚ Γkz΄λŒ™Ž³1ΏbΠ•Š¦ΔξΰΕgΑσΗ‹ψ™§Μ“ρ’ώ=‚0λέoφ“yL¬"¬Π:IηDσαAΖψ%Θβ1ϊoΧς96^»g‘3ͺΤώ’–A€›|Υ―Μ‹)±ήXμ‡ξ DΒ‚ςbΉεΪα2΄w œΔΒ•αŽ2ͺ&ΠΉƒ©%υv€—­ ]΄^ύξO«e€‰‹ΙΜ½Μ‰6Χ{²jΊΙκόJΌsŒŽ–AΜͺd—™€=ΘΟύa8πΛ/Γ*Γ>1Ɋ"f9ν°Rpq°‰Η&$5|ώ/#€csξ€ ‡$…kΟζP{!³ FΗ„ž?ΰΚκζS§—NƌE-CV„-ΚtΒ”αΡ&_3 λ‘Y!όΉJέl@f•q^rΟ‰ίa*€dnLζ_¦–Ρ#δ+.ψωsΝΌ€„2τ΄“ΎιldΏζ/+ΎΖwβΞςP‹δŠ«Κ&yȘٱΓθ:Βψ*τ1?Μ’υ‚”‘]ζΔ§ŽΦ|7―D’^ΒΓκ0γ‹ζ.}¬¬{ ίΜΌ WΩ3γέMέγΊΤ2ΆΨ ‘†,ξ Μ˜h>Βm=˜m³BŒ= Β‹\ΠΠΰ(»4Xi¦+,ωξ>…°ΑQΖ:(ΒxΕu°“{yxxbΥΚ‘΅“<υ˜ƒ9υΐ^΄Pσ¬Xοε”mWΠe,-Ϋνλj[..1>l!@v΄½LL}»ΕGϊ6Ξα† +C•ήIΒζχνΡsΧ42ž@T‚|!‚qLcdβΘΤΏ½ςΜ'ν| ^†&B MόΚX¦LίΝΧΛ½saC8|vJ™΅ΨDITΎωέ1Φ2§ζivtΕζ2’ι•§ϊ^Š7ΩPVΕfbCΣ†BxΝ»¦4[΅“-ΞSmλ˜Μš{§b5/½ v―δΙ‹Ž>θγμ!‚7 ‡žZjπίβ’…[8@Έ(‘&sxž©³“&·Z~2©΅1 CύYχζΏ0B³Š&n™ΒmGLjnβL’€Ÿ˜Ÿ»Βmq~ΟoH{―?‚V{p½ ι‡Ψ»G#w9–ΠŸt`Α„F«Ρ¬ΐθ™LΓ{¦ΚχοωχεΦwέU›ΐ©H?^ψ\ΠcŒ[dAjφK;/‘Ωz§ΞΆy’©°&l‘apΪ4Wη»Φ@ΡΆ·yΤΛRλ›y «o>[//Ÿ½κ7^ό–wa’^._cΰ§@ΐ&ƒi—›ιd Tn€yύ²Η %“#”S[βκβΔ瞏άƞ―”ž»oΕžΥ»‡~˜ΦιΉωfa™š‡Ž΅ ƒρ»ΰgw ”ι;qύθWl―»ώVΪRSƒεrΣΟ½+«δ2cοϋ‚e9ρ:Ι\ϋΦ›ΙΟfΎ‘Όλ.)V–1K8vόDeΜ¨Β<φwΌΌ›r5ui;~MΉ"ΥΫ.Υσ{1‰Ή Dσ_Ό‹jW¦μ0ώ©_EηcDψν£Ηcζ!\\΅{1‚/Ώ  ͺY ψΖ¦}ΑbxŒ•ήςjπλΚͺŸ^6d°p²ͺμ€ΛΰβΚ¦Kk΄Η°+ΎΖeπΜ8Μ#£‡­ Aϋ9(―ΰώάO —ΎΠy†Ι†6\UUέ¬fζμyl¬‘Y'8…WΎ΅ΥdΓy7FΣΆξ[ι  12W˜3D σ1΄0λ½ΨΉ’Η«ΕΊωuφl=;Ε[ed2EσƒΑG˜CέAŒkυͺγͺΆ}G—ͺΊGt#ΆŒμ&ζ }Wjƒθ0$˜1P±jͺ1›}7”nR'.κ+žΘΓΙΞ42c™ΐkgΤ΄ΖI|f(•-pέ?σΖώ‰δK˜3‘ύeΣ6¦4)’©–M€!7ήΌτ,¦ γYβ@ƒ‡ΪΎL,ζ%ξiβYIÁ`p Σ= eεˆLhΖΤΐ„€C5 ­o[ζΡ†­¬(ŒΊšn\&Βϋzeώeάh[&ΗWρ*恉šω8y»ΧAΟNΛj:`~]₯žžžαŒBSccœ΅’ Δ8δ~­TΫΆΰ¦`˜}χd΅ž1ΟΙUαyΝzP…ΦmθΓI_ν˜πΊZZΕΕπ žηΨ,έ…ϋΪnΜ*–fgb6†έΏτ5L9ž#νٞdQicιΔM؞Ώ„g«.hΫEΟp{ΙχθήIήλ!iέ}‹vŽ{Φc§!+˜υ–ρFΨŸˆ₯˜‘κaΟe«<€ι°ύ6¨›+ώ««σz˜Ύ²¨£I—ηρ P­`Ζh_“‰r/Λ>¨zE/YΨΆI7g―¬ΡχmιΜqUΗYΉDΝυ3θ!”ΐͺπ£@ G΄9Ό --œ/_ωΣ/Π¨[0GγΡΊ ΄DŽόIVΞYžσ‡ψ/(IΩsψJ+cΪZSIΝ›ΪƒCMΣDΖ€ 4ψσhk>Η½‘”§žώ6yNΉαζ·G‹9m,λ’ΪΩCΕ§c•ΆςcЁΠ€K{Σ*†f‘2djωdβΗ'8‡~?‹Ή˜nΊΥ4yfNπ@?Υ¬ͺŸώ=Μα‰τrΞǁQγL mϊΦyφΌΔ«ΉλΘΓ}`― ’šRΗ2ρ :ΓΈΥ‹ΗRY¬ΣyενΌfΏ"«f|—»ξ{β˜y.ZΜ@ς4€>ωZίΕΛWγ9τHΏΆ— ½ίtkZΝ*ΣΌΕTŠρ>ωΗξτ–θς-O 1Γ|«H_ƒ½₯ο4ο†Φ²L+Ύ*,υ3‰›τ‰g\ψhξΒlΎΖM4Έ€»ΔkΓ lα©§“oΡψρJwΙε"Ššu†汊«Τˆwdϊ\i/ή3!†{ςΉ0™_­s}¬Δρ.ήMc|†bΖ/|XτXnjRͺ&_UΘ²Ο™± ΜΨϋ8ΦθϋšzNœ΄΄Δ<;0uˆύΒ7”ω“Ο°(ŒΙ+Ι\½Ÿ6e‘³ΔŒΑŽΓ \΅₯\iQ28Ό·œyεΕςΚΣίCΉŽύdϋΛ¨ύZc^ΐjα˜]<†ŠgiA‘ΝΉΔFΠ\Ϊ2¬cκ@=…%B·βΌώ7΄ώO;ΤWΏ‹#?΄χΰΐ„s§,I· σ1wa!ΝpωΊL{—r9₯ ΅τζן*λ΄δΆΞΰΑ$²Ε3έ·\][ΐVα{χ WαύЉ’=.Γt]}¨τάrqh&šΦ3Ÿψ3—Ιœ0&”!Γ•8ŒV6¬ρdΦόž‹g‰*ρqς2ž—ώς<σNyš*(€Œ¬να†^MkͺΩjέJYea˜Du; Ӂ[ZW=Mΐ•Mœ2»ΠJ3IdAK΅zΐgEZΏω>kΣΠbωΒ€ωΖ΄―FCΖΠΔN―Aγ"§PBˆ ؍Μp=YZY/cμΙπ Ο ™€ 9ςELc`Ռ(ΔΈΙΤM¬dœNΆτ7hΞ?ΝΊFfMΔ”©kX₯+έyΐ„χSοh€z ιμ 4GMƒ+£2? $YΥ…tO•}#½%3$+βŽώ‘sα ― epΰWαC½°384ŠVX«‡)’‚τρ©=9ΰ1žˆΏID`πΕ 8Κ†m`tEΏέϋc›ˆ/'%4!σ„rΤmdd*φΰŠ‰(„§σΡ‡©cΫη­†y»Έ‰Ί΄―Ž%βc…+VWλ©«39y»zFWNœœ±Β1„ύ¬:ϋQZg΅Zαmyαφμ"Υeε.B«ovΑ…ΐ'~v3Ήg\Τ±η,ηdH7-“£I‘ϋ5Z˜©-“7Υ£ Τ˜E˜C8φΠόΤxΛl>ίπν έmž Χ}ε4&ajŸά§’Ω•΄?ω«Œ½‚θ”f―Δ΅-M/#΄-ϋ.»%}ΰE¬‹  βi°W:ηk ΐ₯΄₯€Ίΐ¦Ψžnμn €H‘|―K₯α„˜>›}VšΝΏ ψ«™q*ζ¦αΡΝυ½˜Wy2²LzO/8VSMžzνΥτΩ)μΎέC•F do \†iά7c»­€h…ŸΉσ8”`κάτ©rjφ4¦!γT₯ŽΧ•q‚fB@ΰ9AA_7Π_ϊ£Ο–[ίϋώ2Ύ ϊ0ΰθ'«ϋΠΔμσŽ<.;lΑψ― έόϊ= nJΩΏp枯ύω—p=Γ~BΝΡψЏηp<ψ!W„gΖ&θԍν+k«¬ΎšQ„dΒ£Ρ€–4Uρ€Θ>θΣΝεϊΤΪan]EcΟΨ₯;ίIϊΪ&q μ·TΣ΄½ΜΦ(¦ΙΊŸSόŽIφSΫWΊQ“ΚΰΌΣ?yεkξαώJύφς$—}9Ψwσ‘Jκ\SΙ$ίp“˜ΗŽPcXΝuΣ~)cΗΏΊxP»sΖz*)Mi~+Œ̐?σ${sοδα’ K4"XoΗ­ΆŽ>ZG5a”ηη6ˆIΒέ΄β9W“g©;υιAw“wcVœ€Ώη­2Γ)šΟΦ‘^δΦΆAΦW¨Μ†?΅o™ωΨ1ŠΆΑCωXO’€>ω*¨tΦaΜΌΒΰΘe}έO§&oD™οΈW3)0ί”αtgΨ—Ρΐ‘³σΩ†Ά±”!.]Ό3OηFbŒpΎΗ&q4]δμ)Ω2(Άδ•Ζϊρ£Χ–γοωςωί§εΞίϊ-4&ύε‰ο|Ήlb^ο0― s―–&ΆΎσ'm8gΚž?ωZ™ΔŒλfXη\ΤΒΊΨ†kΖlΘ—><Ęu‰\Ž΅;t‚p< {)ΗΊ™Ώίύm)Π0 1β€ζΑ›ŸΞ·NHMΘ+¦γI΅mζς,LΆεελB ΨΎρKΔA έW*½ωGΛ6&94Mœ'5Œύ•KχΥGͺ©•Ά žNa~π±mkΒAVf ί/*9«ži|:—y\t΅@\;λγω½$ΫΈηηχ7Ίή¨μ‹Σf„ ¬o”Γ尟NDj0d,ά«ΰ™‡YYγ =ΌŒi'ΟΚρ 4β )s¬™{d™aNl\΅‰§!˜ιΚ|d–3…9§<οΊQυpΊ}ϋχΗΦZζ]υ°¦DͺuIλͺpV€(FFihˆξ£6Πb(Ό»ς©W.™A½ Iž νΧ^`Ω‚ωπ€±lεKνΩ:ΐWΑ—ΌXΉ5]..L™ƒ[„^$ςGώNΒεκz·{=†'Ωo‘7„ΟΒaΊ s£ΫTΝd€c7hwqϊδ‘œ\uβ³\ληΜSvΚPΣ γΈξ Θ%<]MΉwfU|'£~VΩΙ†IJW΅˜E₯-X²ͺL}΅%v_O‚SπŸ‘ždΞ‚l&—9 1ύOόΟΔ™}!šέxJ9@ΤCΎΑ©[M°D^˜&+  Γ튲ήW¨5+wi=ΐφL΄Ž%Ωo”Άd21q¦wπ\> ΩUZρl '~/ΫΑ/·9λAΑΣtšρΔ\ZrΣΔH!RΪ’ωUa.ΥBh§­&d˜g',dρgŸ{BΟjΠ7ŒπΛ'§c†₯»ήώΎσ”Kψ―Χ―˜r!Τ(@λŽw ?ϋΓΠαΑύϋ²±^‘]wψ…E3¦E΅v0νNΙϋ¦Ψ‡³Α†|Κο¦U{βΡ}Džο g<Œaλω+£ΓΈ€¦> Μ{1%šΔ|jfϊ žkζΛυA αž]MΫv2άzZS—ΩοQL,tO­”9ް"ƒ¬η΄Œ»΄‘τ€—4=pIοKhΖΑΓš‚o|υOΛ™W_€ξGΙ [ΤOσ:ΗχΚLJΘ2 Ό‹4λ¨–r aκΤ+/2~Pηq°θΠCά<³VΝ?E±t‚ΰ4„6βΗ―Ύ„‹ψϋ8DσΒ‘^χhϋϋοω<š‘³ε–ŸΏ œŒΔ=΄ŽϋΚFѐi’θΎ˜ε%„G ±H8ΑΏZ ιΠΈλΛ8p`―ΘY\joΠΟάί–6EΈ˜˜ΐLνΛ'Τ·Ϊ9΅h<;NO΅Ν†XΑ–ωξξΖc›WSχτθ¦ΎΦ{πb€pΓӞ¦¦ŒvTίΎι7žόa•OMzqZƒ›8υ›aπŠC’ˆίΣ.‘3r§Σ!ŽΡηιj‚Ψ6GίΦs ς5ΔBό³@©£aνˆΧαΔtωΪDiS›ήΕͺυ2}*šψIKΘΞ·6Δ"ެ?x ΗΚ}-Λ΄ŽBώ9F4EηYP[dlγέοU(¨π F@Ζ€ηfh˜>H†,ϋ Ίυφ»4@AΓό…K›™€Ί,H™Ώγ³%Sω5‘½1ώEθΰ›ναXλΌΊ©$A>:š1&ΎΜτ`Τf{@«{χͺΖRLXΝ5ΠRήφᏗώ=GΛ{nΉŠύ‰eοΧί[όΣO—±Ω²pκ₯2χβlΚvό°ΞV=―ΒIΌŒ>σέο•«ίρ‡jβ)σλEϊ…ε²Pι3jb{F`θχ΅ΎΞ"bƒ|zιΟی9ŽΉfΈŒI~†¦ ΛŠKέλ;Έθ4>‰Κώ‹οζ-χϊSΎέίwΗqΊ—―‹0ΰ {ιΤέ}γ [`₯άφ°!R‚mΓOͺ;ΜE€:*4οήκ@XΓv?οŽΥtNE§Ύή¬μ ΚiλxAΰε—ŸΆ£η|Δ.¦^σ9ΟΥМE“ '’œ !-Α€ΈR¦’f1θΆήΝͺφ*^C؟Γ\O†Bςq?E7«ύucr]Τ›ΥΩ<˜-²£ Μ›7=°­»λhLGd.¨rΰ«νNk. Ί%ΪϋyWΨ‘kesψ’9ς€l΅Γ Ύ NAέ0ƒΐμ&UΜKP<P&Θ}š„ΙΜ›G·0Σ¦” "@±!'"pΝM°σ)ΗΊ ! 3/˜Μ^V§dώɐ;{5¬aΰځ³#xKΓ ΰ2bΫl4–AΤμE“Fρζ 2Q[C™|]Μ’MΞ`|œpœλΖέ‹yˆ“Ζe£1Ξ]s½Nι K.cŠc[dB sŽ€…5Z VΆ¬/‰ΓθΕy^&χ?dΒ"‘p ›¬{L > ΤΧρ*Μ yS7=o₯oΛΤ@?ύ΄ƒ¦*š±ιΚύ€A₯LH›Ά₯\…άΊ0a^Φ_vM˜Αeˆ‰Κ`Χz·+ξΥtΑΣ%?5‡ˆΙ&pΪ6©GEMΩXe7'0σΣ-ϊEϋ d„5up4튐Tλά­V«g¨,Ρ7–±½½ΰTcϊš_ΗΓΤIΝ΄!G0’M‡™¬υšc?šc€eμΗUμ“»2:"§ΚŸ)ݐtšͺ•QΘފ6‰Mژ}i“­Ζΐ3_Τ¬."`‘V†Ω>β!½½ΩOe˜uΧλFπ8‹Θ**q γΟ“ΐ'ρ>¦pν%M“œ―A x„rh£΄'αšbfoύιΒφψH_yζŸ5Xΰ`Λt€±-ΣoΉ›—ddϋKWzΎŠFπzώμk”?SŽΏ‘τξ/ΗΉ*ύSζή ίšž­aΎ§‹λΈ?ωΊΗΕξ#\ψΘΔTωΑχ/Χ`:ΌοΘPκΉ…Kg=ΈΝ’€ΦτŽwpο(BΔ"BΟΎι] :bμR°CMξ=ΏF―hŒ}h1tSΏmΫ~n [‘q`e?iS>TZΟA]’‡ζ\dR™Υ5ά%&δΈhw9-σΖ%vκέ‘Κ+ΏβΗ―AθPs›EΜν—ΫH%:VΘx#|―Vš “υJ&Μ1’Ν{‡Ή§θΠPΰ²GΙ°Ά*†σξk˜τδ·ƒ₯Κ{o’U`’Mπ£rχΠ–σ~œD@OŠ}ΧMνjl\T³n[Π NκXHaρ4 πv?ΛγS†ΈYά χ1xβΪ"ά [xΰ’Ύk9Φ&¨#sqέΞΏ‰ψ7όGόxύtέΒζ΄%”δ°λ§’ΤŒ;Α΅5šΧ‹Ύu"]~ΈŒ;8̝Uν‡ X6΄ΑŒ8Δ,Ɂf)tΖ`’ζΒΑCFg»ax6΄aLdF3 ―‡AJω0xLvN<£l@bEfvžUk&ω!<1uΓ F€€Ή³EΌuβ―α ‘Ρ+“όμά BQ?Dλω F›Υt±›‡#! Ψœ-V5εy]ιξA0Ψ„‘“±¦nφ1ΝS¬³›Ω·ωΞ¬Α$ƒΊ™ˆN²²Έaή'ΩTμIΣ³xΗY^aBZ(ΗO\ γΚΰKš^ΜΌΐs^«ώζοθ¬) ΰ¦Ι ‰‰SΌ:„ΚPΗ4‹‰_FΥUφΰP˜€ΕΓwWώ7`ά§Pc pΑ:Y--`£ϊ5κF[ΒMΨ^ƒhfτ€δρe;;Dχ0)dί °h—Ώ&"PΧ΄=pXΆ’‘ ~£’Τ/œ ιΑ uPS₯pβώ ZwΪPS:L†œTuΏ­BΖ؍ΐΒѯֈ:ηL˜½MώNN6j(š<©=χ꽋J§„Q8±a &t'¬E±MΖΑS±3™‚…½aie[€E‰k;(ΤΚ8:AΙ+ΈP›0盀)ι’=!©}BψŒ©-h [n]Αξc\Έγr˜<=ρ|BZF@XαΠJ=ΓΡ#`Š…‘‰ώΤ|„G]λ*ΰžζ ‹žYL7 υ^Μ—f*a˜ι+ݚ€QΧΑqL€,εr†ΐ₯ϊ2θ2ΜΑ6Ξ@Τdκn“Jλ Ψe`ά+~†>1:‚ΰΞΌ23sڞ@ƒ0Š δaŒΰΒPΙ£SVšΑyϊ}<π:Š›_―ͺMγ2‘™ςͺl€Ο΄!εzu«%Λ³b+}–Ί —'α\(κ8{φzΌTν+{χβ6~ͺ»L`ζ4uτpωΑγΨδ1΄8-ž‚tZJΪΣLSΝΣSί΄|k€+ˆ£{νnϊ[/ž„Φ6ΤΜ€G8ΘIž ’“ήύ.8ŽΰŒƒŒ? d•>ΰώ* }β™ ‘$ΒΫΆΞ8ΔiL=›G³MLlΊβB[Z‚ωξΎd–²A6ξTΆͺβ#Έ€nOχ2Ώ\AM+ HƒRUΕWβ%’@z«€ϋ|ƒ+U;Φ%}Β{M& mn>WXόŒAΏ\+η^{Ή|χ±ο”ž±<ρΓgΚΫξνεcΎΝάΎhΊ69ό¦‡=e]Πί LxL% σ42xΦ+€ Η+„Ι>†[‘8jΕWη²ΎΒN@ΰi>YF“.w±XΓ 3Nέe΅kYΐbDώ|7ͺ·š6Ω»†›]˜R£·€$i-ƒX˜Κ<Ξ#ζhc0ζœΜ‹χ”ΕγΉL•―|«wƒ|¦λUx(M\W`σHŽyŽF“#O1β ΪV ΘsՐ8Ημg‘bz^%ΎZϋ8ΰa&ΖxJΗUπέύΦr1ύΨ1<n1w­I ‚ΐσ=Δ«‹Πωβ¬ή΄πΈΕΙ°+(F'Š‹aΎOΡΐC­£i1—e|™GZ@Βθgμ`?}Υd ψ΄vX’0Όq§‹p_§.snβ«βΗrψ”6 ώΜ!<Έ―ρœ#HΟOg³x™OϊοΡ΄ηςe›WDΘ \’™ά»¦Ι B}\g2Νš5Ϋέ«΅ΫΨ8MλΤ(ίΥΞσρ χςΫξη6“X€§d>μΞοΝς7bςΨ•[^[Ζεϋ;ΠLΑΑA›hmλέΌΪίο‘sB\QΝ™LDšΊΈ‰9ζ6 ŽΊ΅υδiGΞ΄7“ΈΟήdωΟD)’fαΑ”ΉβΫߏ0ΒdΏΌΚA™05ž¦.ΣFm‹•^‡ΈU…QΡμIνE|―3­ΒŒιnΤ•Όa±©ΙύYΕΥ=¦fP,Π”!7κε Uo/ ΄“¨ΛY2ψ ޚ_ΤΑ›‰R&‡©¦ξ Ynf7Δ»δε*θα£Ι{σά‚b² {Π3ΈΎκͺc |NŠ0@ ήΒλκueάν2Ή*ȋ „,™j…1ορ2ζh NνΣNΦjvtMkΟξ‘ Φ€'Ύ1]ƒ™θ–ΙΕΖsNteͺ“ Y=ΝΘκ”hcRoj`pQ “Ma’±Γ$Žληβƒ4ΰb{›>¬Ÿΰ}SOXꊰΑΤ§°΅Šπ§`¦ΦΔ4ƒždώ„g•ύ ξ‹wYΛ/Β‘?ΪDθ²™‘vφ9•9S…xβΥ@…qq‰»0­γ 5ωfί㣦€Ν6ηy%δ)’Cκ |ί`%b NΘ<ߜΪκiκ œΊ"ήΒ€ADΪ"›ΐ‘’όάWPWύ4;NΰŽ³ΤuΑΠΉ*ΩcK\π½©Ρ|ρŽ·½z@Λ±Fk |ͺέPΨς`²U6n/rv‹Z&ϋΦ&ϋX4έόΌΒj­α‡L±/Š}#tΘ*Hΐ¨Π·Dε{’dZΤFτŒ³°0ˊη)θ§ξοθ§o{’ό(šJO`w3ΈW7΅š³3ηΚ,Β^~ρ₯„«•°[“0Ία+έ”WΩ,3°-· rΖq‘‡GΊώkχήF⊩ƒεΚ«ŽΗ…π(BŸ–3b>¨Ϋ,=Ψ©ΝJ_Ώγ˜†>ŽηΕ;ξψyT‚#ΡtlNφ1=W)Phβ58ˆi{n4ggεΨ½:§OΏŠVΣ-S€Ϋ%–hgp+?‚·Ζ‡½7‘ό:;_UuWίGuχtχLΟ}’Γs(’’(Ι6)‰’,ΙΆlΕR,ψH‚H†±°6F²λF›υ&N’`kiΫ’BIT,J‘D‰€DQΓcHŠβ13œϋθϋͺκͺΎφχϋώ]ΤxR”ΐ ¨dOUύχο{ίϋήw]™c-0½°2[¨kβ\·`…ϊΕ:SαΤ…•«εξ€3ΥkΰA»ŒURθ.Ά‹ŸΞL2ΜΞέΘ0ξ{Ϋϊτ^t½άx„K)7ΟΛΠzduSθΦΝΞ‚Œο‘y«’ΑλβχŸJ…₯™ΤνΊ ηΤs?H—Ο]I{†{±ΞuγJ8€PΈ‘+Y{ΑϊΈ|“Άz8¦ψ`¬’οs½Ίž7έ3ψ%S•„ΤF:ΰ= RΒγΝ!π…ΗBhΆM^!FmCŒΓ΅Š’λ"Φ°Χ²Ά€“[ΊqŸΏ_ΐότΛπ,2ψΖoςψΨxvo‚·ΖI9‹£³]–n!μ°·HΚmΒωςό~h‘Δƒ­Qaτ™w۟€ŸΒ%³tdΟΫΆ–a" Ό&.Ψ¦FRχ1ΗX*ιj:„iθ„ŒΌνbτA%BX}9³r°†%Ρ€"Σ—§Σ·ωΒ%΄ 7LxŒΟ€ ΏtA.βΞ8=~šXC2U²OŽ/BΗν;χ™ϊΌ ΛG —,qL!Γφμg;_S•΅κξSΰΩ€! ¨2B¬8ˆβd0γΫDRs½+œ‹ MxŽοφͺ™¨ςG œ£Γ[—ψΞu~&O{w ΜΦ“‚#ϊ/ΩώηM0]?ή!@&.`θr㍍›fv@:`$Dο"h‡™qF$N2nu½ ΈωΌoo n–2)‘εγΎ&ασ~ΏΗζΚuοSγ%’…όΦυζ}7>ΜD,ž­ΕO;7^χ}Νηβ^:n΄ιoίΫόkήΧ|ΖΟνγΏ  &ήd#ΙPέή‰ YΧ!΅/Ί*θV£†[fUMΆ‚ˆnVfαQ£c‘?1Οΰc‰KXJ8/γ˜iΪјθ’D[­ψ΅a8ͺ“4·ώš”ΐQΪZ‘…U©»p™Ÿ#Ρ Δ -&|«pχγ- ­ŸjΨυWhYΑΗ[­:\7+›)m·ΰσ-ƒΔ όZœ‚Ε©ΞOσSK΅Δm9ρ<[  dTϋœ3e„ ϊήΥMvΪΞα+ίSΒU &g“>΄·C`ιλ֞ρ¦: —–ˆšš5Ÿ§"-ˆάΝΙμYZŽ>ΚnŒΝP“1Κd‚Ƒ́̔΄›0ϋΏL_"΄ιF[ Šg§c „1eΖήD},G+u„¬ήΫa¬k™τΩ`΅ΎŒ[e›B2`OšR› ΓήL#φ*„ϋ†ΒπΧ κpΎ΅B9βλ&Eσ*4 ƒJNη±ΙTq‰υΞΈΧ—£Τ…S1NΕΪp~'ύΒ!,ύm<τΟί*:nόt fv™`aθ€t-΄θ?ΟυΜΚΚ[Σι—_Jγ—N§ρ«WIΕΏœ(€«ΧR|;?7•¦»ΗH/)τKiΗ1˜ΡΎ4{7Ϊα]©Z\θH9p°šd׌5Z͎δϊΧZ€°#=ΙζήΎsήώΠ7γ”‚— ΏΒ5o&AοΝ†ΟώpΝs1~žσ»σΑcASΌ]Ψ6l74αΰύ!ˆ±°„‰‚ŠAφλ2Π¦τ/|tέΊ~€%ZF³d< φ?&Σώ€πώg›`λϋωŸ6ιŒύ‘]P…»x}€… οευ1~ρίξIΊ-ys΄Ξ'CΰΪVΫά£"œYΖΆ’YόΙ{ƒ}΅-?iœ4•8Αιέω4ΑϊM‹”K"Ήιν½ΕΆβ~>}žΏζ Φ‘‡Λ˜Ύ–YCΊ‚iMpž΄J³ϋ+[ œWΡΥί’E"™ΎšΩŠA­aNΟΎ›~0Rtςƒ2uΡΗ\NLϋ ˜·*H)£θ"Ν²^eŸ¦ΫΥΧ_&« @–’Y ρΎ Χ‹lZnΰ’™Ϊ]™/BM{)hUρι— ΉqΚD*X>εuλαcϋψoέ ΄h΄_!m‰”•ΞΜ" ΫψΗπg5½«α·›¬Δ" 3¨―9€’«π‘έ»Σfm:XΕΐ₯ ζY‹AGŒιL9m›Ρ*ΛO.‘Λͺiw’iƒŒ0χΊž4₯8 5βlDš„ωΧ°z΄#@©QN›XMh£Σ>κφc ΈΪJεrπG8kκίΕ…rΤ2ΉγΞΫΑύΕτω‡&επ‚–ΗB:tψHΪ·?LΕΣŸΩΜ6ΦEΖ0Χt;{ B‘i³ΓM<Ωτ+‡οΤΊΥeφHΦ]ω4γ:~ΞλκV$ΈΖ}ΣΣΣ¬«<ΕKkΈΗek²‹†ZVdD{‹=TA‡f!l›Wί™L―Cπ"Φ€gTHΎφΚkιΉο| M΄4‘ž&]LOσ»ιωΗ#Y(¦x9MCΣmšΉ:“&Ζ©¨Ν:ΐ 2L‚…9ξΩ΅χhκθI92ςεˆΩ)δX;¬‘lΝΗ›³uΗ*¨•—9”φΚ(‚$;ΰύW»6Δ瀋°`<ΙΩDΑt2"­ΦΩ8₯KXϊEpΊ@IDAT,™'αS‡φnΆ$x'νC…γ9Ί}7›”@˜ς Ω―εή¬™ΥΪΞJύόΜ`΄ ϋ禀Ւ.Χͺ 1<q{|-ϊ–΅mπηMA"揓 ‰ώφύΆηα˜ΔηΟ½GccyŒ»ƒ=D…Ϋiόe/ϊOΫφWΔ̌ΒY&ά~W¦.G»&O‘ZtŒ*y[γσ…ΞƒλJ yϊΕη‰ygΪ3ΚyχDixΕυXhη³€`ΐ„ΥΓkτχθήκ`μ“τ@€σφ‘ƒ±£¬©Œ*Ν"¬ηθ =κ2‘YΌπOψΕΌψΌ°CΪqi±%^8 ω–ψτΏϋάοoOn7B [17žωQί¦™VTg±I΄3‘έLθλ€ό[cΣώ›οJ h…„Ήˆͺ–υ© gΣ ψvΎοΘqZΝ₯«˜Μδω§ί}Λ;bqΗζH;f»ψΚ—2“σώž·Ώ οΨετΥ―=žn½η]ιφ£cι3φώΝ΄―ΏώγΓ_ΐv?ˆθύιΤS§3W&ΣούΕtΗρΓι‘Ο|2υμΉ=•ςKιΫ'_Hϋέ–ήvηΡτ5Š–†Ζ'N€]E<ωδcιΩ—O§έަ·Έ%}ιαΟ€[ήωtΫήήτΩΟ}o”φτήJs—_M―όtμζ[½wέ–žόΚ)nUJΏπΆ#ιOτΣιηήϋΛιŽ[Βδαv’m?%ά $.cBπC(4£πUc€›ίՎJššf…}‰ƒJp­±BP9όΫ:,b.ΐ?‰ΩZΚεΔBZϊΨπυο&Kχ›ΫΏ‡&έ”$―!Δ@atύ™θΰœψ­•‘ωξ’S†Eχ“ˆ’±«"›PdστošΝFM‘>’ΧEQ»>6b}γ)ZηfΔΨΌcD¨ŒrΕZRsΏ#¦πk)έΓκfa]ΈΉt΄τΐKXuύw\†X!…΄£V…m­I°ΐ’η鐂U•%윊MPΉπ Em„Ίγ©(ΠA’6˜Hς„)]Wtιieœ­Π+D+hρtΆIϋήλΫ”Id$£ Œ!ΘψσŸn>ςδžπΐ κξoώΣ*ηΈΗ ΘΉ7vΔ7Εζe9¬?!ξxoh―xΦΝ,:!3k@ΊŒE€{†α΅ [r“QH ¦‰>4PpD ;WTb„„‘ν‡Ν–χ.Uœρ Ι€‘57bƒ·bλr,΄υ.ψξνώζ˜nηSPΪ;ύ©CΈδ€Κ•"se%o-†j±mP3Δ9¬±DυξΝΩftjChη―¨π€fί€ ‚YΦ άΊωM,z€θνΠ/\D΄ο6q ܍υ¬v£Ν4Gεξ2δ0lgZ]ηqΦQ^RQ$œΓݍA˜j:ε jgžΗp1ά}iR;™sρ‹Ύp―ŒG<οoΡO8Ώ~W˜ώΒRΈ»ψ£ƒ ‘sβπΧνl„ΚνZGΏώΨcιΐιφΫoN/ž:f¦gθw iyGΣΥk“ifςzΪ=z8ٚf©ϊ.ήG{ΜU‹MΩ±ΊHΧxA?ά?: X2(ΊΚ;;³Œk[«V`Η@!Qͺ©Χ¦bΒxƒ’];˜Ί|w΄.xΎ«λρ’υT2m―0—Ώθk‡ΔΊδ]Ώdx9šψ€Ο‹ΠΠsŸ ~ 7πΕΓw8·£¦&]ˆ‡Βƒ'Όf.S~,c->υμχόδ]Q(τκΔ\νI›•4ό†‡Σ1FΌ[Ψ C‹σΰΙ BΧjeεK#•yοτxj!³`kYίGH Π8ε&)qμ1Š ™θXgφ”>Έl¬T+ν„eΓρς݌Œρˆpβ·«Ύl₯CΒΙλαΦEΣβ—θ=fΖ‹€yΖhB χ+χ-α¦ΕMm»Š?B–U†9;φ=΄ŒsZ:ΝΠΰΆξυŽψχfdmG[\v6œWρ&Ύ»§ηέΎ%ώγ^aσαœπ»Θš5₯mfrxνrέ6έ’£)£υs#΅lpΝΒƒamˆNeo―„•V έ³γΐ΅p)]?χ*Wx^Ίψ³Υρ¬ƒœΛζΘX°bg.M_xwΟΉTΒb’-.Iί€Uaac\α bσZΎ„™‚M1¦l€f‰4m0ΰ<5€^«Θ0ΖΠΐyRδigiΕ8ΕqAθΫ€[Pw +ηΙ#ψ‘­ο4λΒ!ω=h4RdΨΔχν#πO0@ζά„r&!Ξΐ+0X¬€τvό2Fόσ/=*ΠΥ,`98yύRϊΨ­w§O"t<<~)}κέΏ Γ²–N^>—@(©ΒτΈaXlπψoMwκιOžDKΤ›>ϊρίLί}μλ©qh?…wBl1ΗΎ~9ΊύΎTj­₯GΏόε4ΆPϊπ·₯g_=ŸΖ;~τ±τ‘ί>FώιΡτύHzδΛ_IΧGϊΣi*ΦΎοΓwΒτA΄ρΥoλI›'g?ύκ 22μέK¦’rͺv₯χ~ΰWΣυ3Ο§ση/¦Εk—ΣRB†{ΖRyv‚φΏœN<πλl}i/ΦΥ†£“‘ڏ Θνϋ~άμ\©― “ ’VΙ….ύωQ#-Α–hI„Vέx<,Ί¦»Qψβ‹„ΆΓgΠm~E†-p―Κf½JJPœˆcΓu_;πqo±J+m@ΑbƒvPλ ·DΜΎθŽ~lDnτ9\ͺ†wŒ€Uό–Γ=Lν-›†μς6\LMVΉ5nα6pΡμ.-kΩӝǴ½2φ)¬‚τkMiΔ’Πž›n;ZLΨ ΑWΨaΫ Χ°y4’ lΔΗŒ«ιξΑ§|SΝπrœΆν6 6KMρ݌&• θYΞyŸ7 gϊiύ‚%­N²]u’‚Υkοš $ά’²8φ€λΧ/3v³Ήh•‘Ά>ΐγ“™·ήBhώέΐ%κΐ$jyΈ»{fŽΧΚPgσ@Wb……\˜‘α•I·NŒpwC2ν΄Šχ3E“α:ΕόYΙZS |‡.npΜ“Z|c&tΝ’ˆv™/c€d d±£fŸβ©Ϊzέ_BXD ’IφšΝ³W'rζ‰—C/³­e,>xSŒα0ܐj}+χi9a<ΈIις$}ίƒ~hΚι“}°ή„ψ*\΄ΔbΞ7μ'Ο2η ŠAMηΒC&jx³d΄ο]"β‚>ΊψξΩΓ\cύ‹±Ελiζ A†fcS.π\ M­]\ˆŸ*ϊΫΝ "7Y›’Μ8 ,/䍙pm΄ΐ Θ s‰ΔσF€ŸνΕύΙ tΥe]#±b΅X§eΕaΜ”₯λ“ιSŸώ$Œ8™εLνΞαΨ3ΖΚΉςΟYσ?™+>³iΝΰΜχΜ˜α0¦ s~5(μe&Αγ„ Ηͺp”›YLW―\I·#σΌ7}ώ?’‚Eƒ8Π@ϋZΐΕ ½@όE/UΧ­εa»USP_ΎrMΤN£;‡Ωλ¬U₯kη,cΕΊ#dΰώZ£Μ{D°h¨Νž§ΞˆS;Θ hέ­)ύύ½Ρ6§Οΰkǘ™φ₯ra)­’Έm'i’cΚ:!ˆ¦wξ\:2NΒ&X_~­cμZB{Ό‘/ZneΒό“¦*°yΔΊπ<ίeNeΚΈ –”G³ΦυxˆοΌ4›#οOσœIγΧ/Σ‘v*Ί/¦5ζ }ΒώΗkγΣηόΧ―βTΈ+ΉΦνγΝΪEA-πYIgoG.φζHΏΫ’N]˜LΟ|+ΝEhmΌη†vm9^ν³_" —(GΑ‘<τ² ΪΖ*';%ϋ•ίxηf•\φΕ$Z)Φ™/i¨t¨Ζχ ΄ΔN ΰ-ή ­\暩ysT—7{ x ΅ΖΫ³5θCΩ‘Δr9ΖΥμ%Wc ΝΟ&›γ ˜xš£ςνCόΰ›Ω@Ύπςsι7ξΎ/ύM|…ΏσΤWSΪΔΘ™P«ΫΕ&qŸΨ»Ζφ₯‡φO_Όœ~λψ‰4m/ΪR7 ·Υ Šυτ‰σQ έΖ‚g3ΚΥ·ϋFΊΆΨmΩ v9ߝG§c‡φR j6=ψφ{ΣχΎw2-Œ_Ž ½Ÿ»ύφtς‰o’C½αγ‹ιαožJπwοM—/žM3ΛlΊ Ϊ‘#Έd±i<υ΅‡ΣŸ}νTϊέΏχ;ψΎ“΅₯Ά RAx0ιώγτ‡ώΦο₯ >Οή8GŠG\Σ]o}gΊςΪ ιι.²9@Œ6ΈAUfΨφρΣCΐΕ+δ&eϊV«‚I υhŠ$² ΅ ΊNΘ€ι"€&Ρ\η2lmψ³/Ήώ}Ϊ{a¨υ½†ΤΔ&Œ ΟΛ.γ’Υyϊa¬Ψ ΔΙπCg3oΊC…=„Mχέ "Ξ>WjRάx–ΐν.ˆd F’‹JΜ¦ζ]_'o?™?,*uΉυυζ½lt-0ήm€]d#uӍƒΡvΆ6k…ΎΙ,r26ΣϋZœΞJδσ3γ?6qͺ/σƒφwνΪ Σ#>Λ„ΚΐGž·Εh•1…Η:–αln >αrΑhχΊpχC—/I„]«v6{XL`›mŽYΰ·σγΖΈ°ΫίrόHΪ³k7L…Η2šΪp-yw‹6+έ,4>³€;sΜ†BΡ‹`ΰgp΅Θ΄~›W0Ž„{ ƒŒ™ο©‹l2²φRα#R/K_€»s•Ενhb…σΫX/Ÿ―Μ5]Ώ|gΊ ¨ρ#Žίν·FΈB€΅E΅ -",uλ_O›2$ΧΗ§`ςpCδϋ8B–F{κΠΔ/σ(Γ¬ΐ#­,Άφς]ˆ;vΈε…Φk’°‘!Ω—5UοSΈvsΤν¬F7όΓ™?Ή-4Ζ6…&ω—±•ΑXΓ2 z(‡%„΅γ|Κδ1›1— 2Š,L8²MζJΑ%4ό=H;° ·`. Έΐ¬F ƒ·Ηϋ£ηΎ‹΅Δ”RΨ@ΰcRΥπ[(Μίνv‘ ΜTž‹ΔέuQ”Οψ‹— o­!|Ρ7c‹ͺΠβ°ΤΣp=an»φz€ρΊ jυΜmΆGαΠλ“aΐρύΦΔ… ρ[œτwŽ9Ζ˜ί]ηq.`Γ]| 5ΫsΥΈΔ«*ϋD'ψ³0?ΌάŠ;”}1¨ΌN ΩρΤC0τόί‰}qύ*”kΡ4šB₯Œ‹ΦžGΏϊ—ι₯ΧΞΡηήτƒWNcυ™Oοyΰ­©Τ·k)8 m©ƒ¦υ΅0ε:ˆ°ngr=Ζ(–Ωwt•ιŒ½±Α;ԞΫγN„:iƒ .¦5|Τ X 2‹©:εca"½ΐTΖW܏˜!QDxρgBqQœ<*)l@ζRxϊ,Vv]늰σz`.άeΪΔY™aΦ°hΗ= ( ™ΰuŒΪ»λ@zνυnΠκ%sIAFhA%ΐΈ΅Ίk4υγX["S!}ΧχΏl_5„—”)«ΰQ/{΅Ε@dSk@ΟΧP$υτΓ΄V°ό!”mΤg°xΗ©‚€ωT¨¬‚ΧνC£©Ψ;˜ŠΈpΉŽρdx ™FSηPp¬”Ω”0£cεj`ύΎχΌ/έC\Χ:νΊI…Υ‰ρξ)1†„ΠΠ:ŠR m}X¨xοΑέψ€ƒZ>φp―cΧάΐαͺ3a ;‘ΎjSM»ˆ`Φ=ϊ/ƒΡ€)•Α’α‡ΏD9’ΰ«O9=„9wžrX„t²NGžt«Z§jΌ?~jQ‹˜πΨΉ†",$β7ύz3N YέΌ/-sί©g'‰Ω™†K€ΫVŽ™nBw¬0Ma>fΞ8%&6\Ϊ€uΈΔ±(φΙ [™@άCσKϊ^q‘•k G2ΜΗΐ¦Υu+o˜f­UhB—ψΔ9–«ŒI!DŸ~ίΟmΑˆyΏίύ³Ν<Β©πHS‘D†·3G k±…yς¬ZΜ€oA―ψμgΥv_σΖ«―Δwi’°―£ŒΠQ‡1\gVYγ%˜τΚΒBšœ΅ί?RAΩ4νŸΕMmt˜8<¬—WP"τι¦Φέ’zρ¦( πυVYΰVp·^ƒhE*?…|€°LμJ*† α’dΗΩ3Xš(5€«0ζ&κ„\_Wpk PY…7’—)ŒΉΑΥV[Σ8Zώ φ ΐ… Ω—φŒ‘½k΄D†Δ|*_x6uχ+ €,z\M-¬EΪ£!k «³τHε€eΜmΆΚδ‡`’ αn‰9α*έqΟ;ƒΞ,›ησ Θ U… rς§ξ!\3°H)Lg΄zeŠ-¬}π.ELRΔW:φ^Θ@ΈeΩ‘ψNΫ gY―όWΐp•ϋbπόŒ3~ςgίβ/nzσΏl7@ΰΗ@œXη&)hΐό‹WNρHhzCψ€ι_ BžM€ZΒή|GzόΧΧΞΎΒ’Ά€Πjϊ{Έ1υ£Ωτz ϘύθΞo‰n‰„2CΏp»‘MhβΨΜ‡πΏu6Υάt+Α} T ΖΎΓ7₯CΗτ3“Βp)όc‰WJω‘΄P†Žžxλ}ΑhΥΩl‘΅0CΗcqψB}Ήs%4lΩ’Ήηή·F?d|E²±=`ΪΡΎZŠ‘Q7•.¦dέΰ³o5P<ΈύΟ5 ΠUx•ινΔ΅Ι…ΪωΠΖ£Ρ‡0¨ 4E©:ιAœ2σΈaF&©Αž=»arfyΰR ±Ι΄"ΛL†VΛ퍄f+ Ώ]ξ­V2 ˆ>κ2†¦v”‘0›‡ˆ1λ˜ϋBVW+•bφΗtW…™*/–q‘οh,½WΑF¦ Όˆ €Φ·A-X¦υα„'θ³Αΐ2?j$Zv[Χ1έ™Œ} ·1.dδ•ΡpC‘M²Αi 4I?a$ΠͺlΌΨηpS€•‘ZGΨW*΅‚…‡«Cψ 7{ ½ξΒAKƒŸ‘)‹697ƒνάN§δδοΑuA+Tψ£ Ζ4\ΕXOˆL¬ΕώK‰{I7°bP(φμH³h5WΠʎνοI“σiκκyΪJ·άq"έvΧ=iΎiŽ Ε*k¬ΖΖ===IŸ΅l4M­3 Oέ0ePϜ9^gS‘’n FNAΠμxϊή./Ξ€K Œt LoΥ*ΊΥrџ‡ιθFKŠ !ΰΩ²"3̘ΈSAs*ΓT£ŠH3Œ΅5WΈδΤ‡Φ›1ζpU²ΐα}^ @6Cn‘$N-φ¦9\Rώ6ΐ©ŒΈ΄ m¬šrΝ ”Σ₯FMΏ.omΰ…ι ½ξΪ°{ΐ’ωP+’ρ§{γ‰?4zXZ κΦΊa_ƒ6i½ΐΚ€f^š*έΚ!ωDζ%0!ΫθΑ ¦‚~Πμχ2Ί…MΦ8›ώ%πI—ΔN˜!³ήt¨&Ɲkjͺšf±nΓ@.Νγώ‡ΰΩ ΣΤ\<ηΪ4Ά‘ΛGuαϊ6 ½ιZY.γΪG°΄E]«”dœ;‰†V\eΌƒ|GA€/FΥwak]Ÿ&ύ f)PU¦Α΅/όsλΝόΕW~:}²(žoσπ>:Ϋ‹Ο 2π¬ξIΜc36IKΥΕΛ°”i=ΟΦ“©–wοK»vŽ«†πή,!Όj‘p-Δ>;3G¬ΘJŠσ ΗVζEκ]Όγž{l€cΐ‹Ύ‹o ΫΞ™u–YΧUπO‹Ÿ1KZ.]oŒ`+SΏΒžXδΉ*AΆkΓyπCν9ΊA€€ΕΝ(¨\Eψμ’Ώ&° m°ύΜ―Œd“γ~΅ΜΊΙμ…ϋ¦¬@Σ¦§ \ΐ—{cžh§—6₯έΛF#ξ•NΆ m™vv₯³R˜œΒJ:ΘZεώ^™nIyφ^΅ž4žΤ–3«–J’ΦZ;tE\Υeώ"λ₯·Έv‚χηˆY›C‘p}ž7“^yǎΘ.Φ žηX‡mm=X™θ{ƒδ9ΜΕZu–υ; N!`‘·L΅Φ!lηp3†lX-―WΣς,)’§'"x½₯wen›€hφ‹Πyζ§ΑZ6Ξ¬ ž§ΨΡnά½L²‚ΰn\”Ω6Λ$»ΙA»6WP€ŒμK­=Xcΐaέƒ i_™ˆœΰγ^ Ššo 1Ι^aHΝ?Ώ8χώ›}Šχ[ΧωφΓσ>”ρ@qχψΫφcyπ]δ„Π!|Ιb7}D§Β~a±?Pγ'€Ή™εΐ οCXBF9υΛιΟy4‘‰—½ Έσ—fφ:)SτξΝίαΊ(|ΛΠγ+ΧηA”ΝZšuΗΛσ.·³A*ΰΡΝ°4<Ι/…(Gιo«¦‡PΕ8\λ ΅ςhΰ±ΟΉξ}Κ SA“ΒΊΒEω-DΡ¦Ώγ\φ™Νς·Π N>ωƒσ¬°ΫZ'qΧφ?ΩΟ|χ~†ΠΡμŸΟ†θχb™έΪP|ΞCαΓοΆ/“ζΖLέ }Š·ω©! Σ+Α‘ُ:ΒΪyΰOWΉ^6]¬–©6^­‘ΕηtAbvΐC,Ζn΄Wβυά9ΙΌA„Ψ@"θ-pΌ]–+5 Bœ €›ΈΩ,’EΣ%‡NpΏ>όnnΊŒ 9gΞ£H‘οδέ§@χl³‹MK―ξ|-έlθτΩ’uά«τyΧ­e ˜MOOATΡΘW΄L6 qQ¦zk‚DςΔΛEZc^w\“HIΛo™έήŒΜΜ„k$~η°\hat„»ιΎEŠΊaG—…L™BΎλΒ”ͺΎ#‚ϊΆš>ƒϋԊ­°΅²ΊZXw“jϊƒΦ@γΕΠΪ,`fκZœαoŠ*Ϊ3h΄!.+dEͺΓπoΜi­YN3ψfΧ©’έŽ€6ΌE@Η֊ήtΰΨMυch_ρH`/0.2½¦ύ‡ΔΊ+"`Ι°ικfA7c<‹x²wΟξτΞϋήSsΒ¨5ΡΟ“MH!νΒη% ‹ΤXemWIά…E捗žMs_KŁA“±4ˆvT ς E5dώη&\ D έ§AλΒ­ΒxΥά뎣"δΐ‘Γ0MΈ`ΰ ΄{ί‘ΦΏ=‡Ά x/ύͺ›.Uηb&ΨΈ μΦ ± UŽ ΈsVζj0*hlυc‡ήΜ“+_τΧ‘Jχξޞ°„h!Σ]ΟΊ-l©•£2]6Ψ(MiΚ)žgβω‹@sζX•°€©φcg ‹˜c€]Γ2W.4δ;ϋΠΎΓΆ03γ ώπˆi1Ρ¬p.ιlιI3SX&μ\b7x)“ΉΊΊ #Χ‰"` •¦ΦφAΘh§ί­η 6d­κF΄ΜΊ‘CtU\σΏ5QδUτ+50.5ΠO~η‰τΪω—C£l©ΐmπz“k]qC\±WΩΎΐ΅XC4 ­πΊ $~gΏΒΒY―G|κV&]κ€ρ΅ήΟ}ο %(ΑΡ­p]ΗΑέ §Ο€;)@8Ίs74 2ΏZ”jτΝ9iA‹;‹ΦήΓx1-η24ΜΈ]#ϋSiλΫ¦x),V)ΤΧB‘_‘•Ž^)Ό„φ6hŒ—˜ϊ‰‚CzΡ*ψδ<@έƒΩ%΄π ΰ(qv!0/ ΠτpΡ u Šζˆ>—Qˆ,#XυΛΦΚJ ‚‚κ8΅Η&θ'CΧͺy, fνZδY-έX°h·’6‚v’σ<1@¦€0fN¦~΅<= οά›ή8.u!O›  ŽΛ΄ο^„ϊp!czt₯ΤΊ»΄„«.‘=*1•zςXBΧ—Κ‘°©„_lcξ‘?³΄εd·’δ\X›I}ΛΠK„ό”Fς)έΔΟXψύ(€…sΘ„ΔϊMκΪOΜB 0—Wa6„σo‘Η<8ڍ΅»²€ΐGR 2p-±Νa[`}[`Ξ-Šh±7ÞΙΘ7ΨP]«=ψΧj₯tύζQT™ΫŚ?}ρjϊίε₯tφ™TDP―±χiΩq~Ά:β‹’Y‘n¬•Ϊ\*Ή3>~KšEA˜_bίaΈΞ₯vΌ¬Γύ»·φΨΓ΅€Έ'HΏέ U°iIwΉ λrλυς ±ΖkΘ/φE  8„…/σCϊέϋ5n±#oώζ ΛΝΐˆάv€ΟOqBXό—_½γή B Ύ&σξ|TaΞ¬!b%h8ζυψ±υOh¬n8qγ=7~ΏρΎ`V³qΔ“7ήwγw±ε†ΫβύίλΝW’5πyγ}?κϋ ·oύ) ΠΚζ.E•-PH•‘VϋL›Ήn'2Ϊ™Ή} ζΏ^L©›ΆE  L-($p—HˆQ˜ R<Τm&\±ΈΪb’DD7XέcLΨ’WθpΙώjl¨Ί8δλ¦ΨΣένkxNΘƒŒ˜C°ΒΖΦΒfάΦ‹λ Μ šΎ-έΠ;ΩΥπΟΞMCœ`&aΪθ>›nBh„sύ0mU]-ΖUΙi•‰4ΐΌTGΧ”‘ΌWfƒΝ­½XYa.΄?ό`œ™‹”Lt]&†gϊ¬U‘ !»£¦/Až0|γ2ΟoΗχ½kg‘’–WڟBά V‡qάͺ.½φ ΦŒˆΦ˜U΄ήλτ#‹›‘`36Ž °-’bJ cw.βž2ΉxxhŠ{Dζ‚°„ΙΞg FΞ‹σΤ ΑΠ|Χ-§M’Χ ΎW#<Ζ§[ΤM7!0Ώ‘NŽ_O―^Ε»% "˜Ίmι>Vώ›h₯W§.¦«ΞcYΑb˜;aΐ°G€‡ΈŠ`νι$XίΚΧ5°"ZL5MΓ»cx”‘ ΐn Λ˜³v…C›»Ύ^LΓl:KΈˆμ’/ΣΆΝ~„PlΖ}Χ­ΒKΪ˜*}pΈ›χΤ)όwωβ•΄Ff$€©΄{ο~ΰ‘•+—ψD˜l‘9Έ)γ·Εt9iT&u όCψ‘αΧΒnPά«ΥL+³ ž8QΧΤΊ»~΄ΈΩ–Υ»]g«•«iGίAΩ1:­@£r‰ΧpLœξfn°Gξ1G9ΐο8κΒΫ :΅Κš~˜¨ο-ΐ€/Β„Κ ΥΡώš§d”Iή <ΌE‚πα/’<V:€Γ“a@α`N]Έ~”b_R &Σ-ƒαΌ†ΰ"ΑΉΠΞσ8§ύ?ορ»pπS˜ωτύΟΒw¨m†πΟ<:φU,Ÿ³Δή7ΨOΫ›©„ς»ίσ@ϊw§_'φιfE–·?!:1&­Wλ¬ϋ>=Α‘v„cΧu Χ³πbΊνŽΫ#λΨ2Za-ΉyΦ‰τEeŠkί½p†?Kη΅Ζ kf‘lα^.ίk:e«†;mξΙf›Ν *Ϊψ„4-s ΤέB`ΌΫ0Έ]Fΰθ€)wA·070ΟkΈ1!$‚KόήX£u2±ξuεl‘=Rθ]ΓϊPΔ"%P/^½–Fpƒ”–©,0Ύ…ω κύμDϋΪ+ΧΣο’ώφ‡ίƒΥkρ(z: £K­ X9­ ηΈme¬xiΞf~%υCc±―y!,ŽΦ•©ΧT&™U€op oL‡cgέ$”Πˆ"ΦΌ ]«ΛΔΆ„C­Εfvr:GI6γZ)(# !'Υ/±Ό7Ο^₯ΕPKl™ νύΐy =(+ϊ†£ΦΨuž_ &EzΩrώRzΛ+ιφ»οE0d―B‰P£~ΪΠŒUΛ@2χΥ© ιδ3'ΣΞ±=ιΞwύ<.b0κ δ_@€±ΏΕΩμ6Νo| :ΰ'ηβ{|fχ{NκΕ β“?ύνy.ώrΫοq]q–οZ<ŒƒΉ7VE«HΌΌΫYcκς\ϊΞΙ‹ip׎tΫ-{:‰ύ€χ›ŸHό/ώ(½π™?M;χο EUΆξ|ίΧfφkλ_p\šR"‰ΐ"™η6[H_rH:W••€? Ν+[ά%sΕόŠξŽ IK²d*φ›³Ž‘?•‰ο迍c8ΊsΕΈψ4Ω‚‹xΈ»­v qΌωιΊηQωiͺ±(Mή!£:Ωύ?λ6aρc KdΡ]ΕυΏxπ ιέμπ›ηdΰ€ž~ί>Ά!π£ ±M…›-‹~·:…]€ X$z Έf’‰Φ5D ˆι)uΑΚ2Mi “Pfn4Ίvˆw¦"υό2œ\… ΎA» .ϊ›₯¨ΓTΕ-JM mϋ™ΉoπP1ƒΖ΅†˜*WΒeP.ύ‚q— ·%6oQ™Φ`Š ϋ=b3šγ=X&ΠΔΑφ³0  󿅏㺍ΙπiQŠL^\8 ϊО7 ƒR“NχŸώώ΄w߁΄ƒŒJOΖ>ɝE7ψ‘ΆnήzExΡ©§O!ŒŽΣej πΆΓ΄Ώqζl:ΘΊιDΠΦ› G?t{β+ +η€eRΧGΧ“)‘΅:V φ7°œm‚GΊΙ S+A50ύ^ΖΊ9‡5°AΖ89Ρ‹W'q{ܟ‡všα­]¦ΊΨ./9ΰΉgdGΐ@Α€…wΚ†.a’”IŸ)C›ιc'Β? ₯%lϋU¦½*ρVή3 cΛ_WnŠ(΄ ™ΩΜ •&/Jls ŒzΉ¦%Aχ#…)-1UάWWq³ΡL…ƒυuͺd±λΒ§%Δ Zϋj( ΈSv*,kαΗΦ'Φ ^Ω§U ED+σΒΚDS*ν䚫ΖΓ)ό„‚‰P6δ<*fΣ΄$·…¬€;Q‘Μƒ-Ό{τΑnBι3œf«­AάΌΛ#λΫm,αΆŒ"@Ϊnݜ—~p:νΪΏ·ςލN¬HΪ½'υνˆΔ7*Y,Κi“ό›4DRƒκF€Γ\0₯ΐ aEgΏ,CD€αυCϋαyο‘–rΑ{iž#ϋέΔužsxxΩ6L|΄"ή—βB΄C#-ŸQ(l£_ŸλX„ΏχΕΏH⟧›ϊΕΤςΫΏ™ήσφ»R›ΟώόΣι©η_¦έΰxyΒ’¬qχ q}ΗαΛeό£eϊΛΪj,/¦}ΗߞvΊ‡LyƒΠθ…dλƒ•β’ΫκH qŠν―χ:›(0¦8@Ο…β‚>ˆ2 «;ƒ•wKΚψˆύΣ¦NΦ]m‡Νžz {pνγ>ηή -ρησΝ±ςuϋp—ό §%&τΏτŒΐύG\ŠΩϋ7lŸή†hC δ [ ¦‘ύΗu/8T(”Α«υUΜζlVλεJddL­…a!.³ΤKδ Wα–Ρ|*σΰFΈΖ¦%£5Gγ˜L$ E~Ηήc!Aγ7ω«R ΛΓ s™7ZΙ’ S#)5Ρ]ŒΆ <-l†šq­αδ‰GZa–yW'Κyt+šO5{Ζθa¦₯Y~Ԉ™φVΝ]· ›|v0‰αv#'#£—qζΐίΐM`~Χ’RΒ²”ur,e˜ΰΘΦΕYέ¬‚qf’‰36B¦2‡ΰdA·5œK8%˜s”νQqEζ!L?· M:ϊ^΄Ύν‡e¬/„’Μ‚Αšρfήm^5š‘ω€_žζΙσΰ£mϋ6^Γw~σ˜ψΦN~Έ΄-ΤiBˆΔ%ΠφŒ“θ&ƒ‘.Θjό H\Ί„ήχφ{ΐ»vΦ8)β#Σ—n΄ϊEƒšyU:vΣ~ζ₯'=κΕτέgžΖRFp4ν=ύμΣι]ο|GΈ ΅ΛZ@‘vΰ‘}ίΔ’ΤJM•ξ1ΣΈ#°.κΪG΅Œ_€Ά 0ΘbpIkη{ψ»ŠK™EρYχƒ6’†˜l™ΜY=Έ5υ³ΆλXsά³€Π\h!žχ₯sgΚVˆ%Y­^q}4ΫxΜ(p?C‘2Ν (1aόΓTM“›‡4’9ΐ™ΐζΕq2[c>?ω'Ύ[Ύ·y.ρl43₯Α`«»Ρbν7ΫTΩΆBα3ί~ α㦃·Nσ§>™ώ·―~2-ύΣ? šςόκΉ-cΥmƒ>5tuΟΆ‹ζKμr~ΨwM­ΈΦ™enΟ½{ΙΆ+εD\ΚM”XΕ"¨Έ؏±ƒ AC|εgœ‹VU g‚@(H8ΒΗΦ§°tόΎ[\φhΞ…cΟNoβ°oώΟpΚ"ρN.‡ΰΖyΐm²U‡Ϋ!¨χE#?γlaΰO&€όŒΓl{ψ! Y^-Q=‡0α)YΨ‘M„ΡtΓά”BS,₯ΦΗέ΄· #3™ t! αƒ 1\²`Œ έ0jfή‰˜ΣcΒ,ŒάΫΏ‹mβΑ†<4\ ¦Aλ6%7ήŠ`$Μ%£ٌJζ“ΡZc³s£n…)„ F—Έή…F½_f+[ %χβ+ΟζZΗ"’ΛΕϊΪPlκΊYKC·(·9ϋo&ΠθΊρρ[aG m ·Ω₯¨ά°ŒΓ˜žΌJf&)‘-RΣξ½Z{ e2XΒA/ΗΖ)g<Ž]YΖ`RΌ_-¬Œρ*F+γ―{ς{Ο€ŸΉwγ~Π™^|ε…τ½ΗΏ‘ήOM 4‹3dBšΕΥΓc‘ rϊ^Λx»9Iω7Ϊ”·΄ Ζ~k Wϊ"΅Φ­Μρ˜l@· 7 ³ύ΄Φšθ§σ«&7Λ>§o7ύgΛΈχΘ€εΨΠΝ U@ƒΨέ γΓ³ZΤΞƒ0ΐ0cJο©‘…hrj<0Xž9BσZ&†¦Σ"#­v[Q8Tq—“k¬VŽn†•₯γ³Β|Ι΄/!„Αi;η΅ŠΛ Ε υ§ϊu χ ΛΕΕU4« €]d*Ϊ;σΔΖTp±Ίσ·ΘœΰNf–'\Όzt₯Ι§Λ—―1nό‘΄ggΛαώb­’pd£6cΦ* 7?³α.ά_όƒ9Μ#Έ!―Ά"β3²Χk „7N„Ρnή§p«»BΗΙgΎNΨ#ιΞ;ΙBξXέΩΉ *ΔΌι­ε$΄ΎX―c7³γ·ήΒ<σr.…¦Πέπκ•‹$ {!ΜΧ8iŒoΎi_ΔO©@PQ`¦$3@™Μ¬po{*ι νΓΥ©)b&GΫΚΊ²fΔ5ξmj0:B sΈd_Βm—»lΛΆ}6ξαwΰc7ΦΘ1°­Φ^<φ~­}28έ}*ΐC]Šˆθο‘YήcV82~Fϊe’€Mj£D06F³€YK§h6'₯ΔAŸšYΌ^yν,;Έζ‘ ί…ϊ₯ςlΪ?6Šf½?³<βBN\νθVΰb(X·2ˆΖg΅CηLm y J7|έ}ΐ§Eπ±ΌSˆ­@/΅PΜPoC:«•₯Β|UδŒΧΠ:!^a Vω\Ý©ΡuŒ±/€ήΑαˆΫ`ήtMλΧL`':r ›(McΕϋΜ§>™ΎτŸώ2’_ΊDjcH@'uρ£,eΦkLα&_ŽΧˆ#κ.αζ&ΖŚ‹ΔΨε τ- Α΄Ω‰…£₯U;s‘;˜ξš …«τvν=©y—η0¨Φ*Μ»ŠΰΘXL† ΕXe΅$ŠΤώΨD±Β€Wάp‘Ώ¦g6φIα‰.#Μ@σuShȏ€4ޚ.P:`—O­η/\Γm΅œnΉύv²wφ§Ω3gƒ&φS€ƒΪ;*SvξIΓǎ€ϋ3_ΖEτRΪΗλPFίψ7ΦΊ”žςsH°Ρ@IDAT$( ϊΣη€kCΑΥ/~Ζ£q3ί½θS|„πΘ³ΡΆσν9οζb#~•„x‹ΎG<σ’©Ju•.o,ρ=₯σ—ΖSͺ€tΰ¦ΓιλμkΘp8Κή-ή&n¦Γ‹[Π$‡ σ½Z…Φƒ}»ξHΔιυb]κνΗςDίΦιDΈZ9θ[ΦWθ‡Οs.;νušτ$D]bFψΝαX\Žp-γ“ΫγπHRΠhχήζIΏzGVΑ­L2!-mβέΒΘ>θIΑnΘψΑiu€ΫS p8~" Θ6άΆ!πί ’£›”DN†;‚£±lΘό™υE¦\ {Δ©υuqC͘%σ#Ω06CŠ’ω‰σu‹™uΚφV7ΨxΨ8 Δ,Γȏ pl Ul ΠHdΝ`#3― –Φϊc[cD\]J¬˜Žj4ˆΤŠ.?ΐ‚ΩΠ½Κwτιc±χ^ γ΅ PΡK˜‚Eqθ$s“Μٚ›wŽΝU7‰8Ι$C«˜ihaΖάΨ± ˜?>4xΐΗ@Ϊ:ΎR›€€ξ¦v€ΜΉ~ξ₯‘΄K| IO© Β‡fQ+’Εί,ό&x΄τ(0ΙPj8³ΐΐυαϊ€[Χzx―σŒΑΙσ Œΐ7ώςσ[[H`σ­'O­3W/ύϋΡΊβϋΟ»­`νax;q™% x³AΣqζ‡?(Ί&oΨ;`'g~hάΝψ£π'ƒ/QWΐ^mݍΉΆ‹SzψΌσοaUvΗ£EDŸk7V]$vΦΡ]Γ ;.ΣI™!ΛΜc/qPΦ―h@{ž|β±τžϋί•ŽCPƒIoCξ{!ŒΚΜ|(Bˆ5‹y₯=iŸ1 yάƒt©3ύ¨υ{Œ#&*ΔW];₯·±:ζ°E8KŽœB8 #½<;M,G‰΅Gζ!›±rλXΫi7όιE›i²‹κΠ…― ‚Ό#ktΓ­¬ο5έx‡Ujm}χρo¦ΗώψSiδo!©t˜ΆT4HγΕcέgν7ςο€&³πΫιxk¦―*Œi-z:Ψ‰gœΘΰ:ξ¬ΰ ό3)4Ρ„Zς"}Sˆθ’_ΆiκhI]Λ’±cωNq :ˆp²†Ώ—υ[!mzsΠ€^·αj΅Ί@BπΫ"uΜ\ckΠ‹fΆ±ΊΗ&ι£{Κ±s*3 ¬w³†ΰwϊόΥ α£ύ}iΑ΅Ο{ΗgQR<χR:vΧ=‚θΛΐ₯F6>,F9bgzΙόyχ]w§'ΎώB"<.πX υ Ω7?έ/™‚8\;’±Έλ?!|pbλrœχΪ{γΦύρ Μ}Ž6]7ή+SοΎh»ZZQλα,Γ.=beη=όήΓώς0ΧACψP(·Ύπ©O₯CΤ„²Πκ2IX\k2ηk*eδΞ=šΙ~Ε{=i―uo^&­½#Δ ’y‘ŒikπB aŒΎdOΈΪg;+^»ίq9~ΗkB@Ωzo3FΜupe\ΎΫ™v·ΒΓ½Η5.\όξεPi‹–eI€YΏ@ωx‰Οψj-±ρ…λ]|εcϋΈΫΘ ΐΨώϊΧVvδ»η3Μρl u|„Λ!‘fσΠΥGΧc$$Bav`II–°HΣd:ΝώάΓ‘y47b Έ_­kΕ₯Λ—0ci‘½u4U–Uψ‘PΚΜκg­›ŠΎΥεΘΌEεpk\¬²‘Ϋ3%u‘νŠ†n؟ωΛ₯™™ι°RŸΠcE³ΌouK«‹V’6ϊ‰‘0x”Ξ‘†ϊN|…Iχ ƒ©ΐQ―Νp>6P΅eyΜω2α G³ΣN\"™dwΘΙhwαΊy…!]Ε₯bŸt„Όξ›0.;C€φPχ―Dfl*F΅Hθζ&`…™ͺΜΑ)2ϝ;γΨ‰ϊ7γOLωgδχ#ψά`k™ƒC 6έ!ό9s5¦2nςΎO­#€>ζJΝ»™΅*LΧpΛΓ}ZBo\³m'η7ŠηO7 7)5ωRv36ω>·/³ΟΈ ψξxBL ηVˆj'˜<ΐBΡB—)(…4έP|_7 H‘A„VžΎ«9‡:ΘΠ%“S£ΐ%³4ˆ°&Cٍpšν7ΐ—ΘώByΛ`Μ ΜΒR½Am˜j6wβπ"ΎύΊι¬βR’cN,|Φ<ydt€΄ΓΈ»_Kψρ―βU  ΄ρ"³νό#μ"ΈeΒΫVv0:!ΣΫM?Ν.(œu'ςύ!:Γ)»·Β‰Ι$Ωi5άΞ_h9ε€>Η·ŸϊnΊωθ‘tψΘ~܍Χ"žΐ@ά«/€kΧ"|0V6ηηN=ΩΒ>ύ'.½γηHχά{7Ϊf2‘ΡΝƒgK€p$@_w- >NLΞΐ΄URλ`_QfKΛjτ(|γ ΦY£άƒ΄FEb `d}•‡ήή`ˆ{μλ̍+€x¦d %¬0°€|1n A7ŸEΦ΄‡Έπ£ B‹ΪΐPOΜηlέ8!•#0ΕjΖ l"`φΑ4Z8q“Ύ˜Ι¬ˆp:KΖ/cƒT:t"ΘW€…Sχ:ρdΖΉ—Φ³X ίxγB6&pΐΎŠ½¬ί'Ώρ(Ψ'½ά—{ό‰tωΎτ‘_y(֐u.Z« ΛΈψL‘HA»B†ƒ4ιC[Ϋ0u*pA‚Φ5ΜβΈϋΪτ8-s]ν~/σ£«Z;Zμ0(Τ7vŽ €GΎϋΙv¦[o=ްN|֊άϊ"τ … Κγ#jΰz‘yρΪh Ω›ΐΟD:Ϋe\] Š₯β΅΄DLΣΔΥ©τΪΥΕtτχ‡ΐL]3r‹ΤR…:呍™Β‘ƒ5&w²tΒΈ™’fΊ!DfΨΨ‘EpΆ Aͺ‹¬H{Θ¦we 7*ΪTω4n  τ‹Ζ m+τ©wF­7ΊiΦΑΗ6Φ»1 U°wKYe‘¬`ΝΥ6GΔ…’Vj&fμΛχvι]7΄αγΑΦ»χBFΉΌΛqΏΕΗ°`]™Y— ΝpιβZwΗ:ΈtΫ±#ΠQ34ΘΊWGρƒΒBΖΉ„{λξ=;R\P|ϊ  `/>]ΊƒM{qέσq)ζ;[Γxώ šΚEΖΐΏσζ'?ωM{4hσώΕα7hαxK|κς/ΥΠγ‘`AϋΪt:Ο|Χ¦―ΔmΏς7>Ζ^TJγΒgO=‚8 ΌΔiχχ—@Sώ‘Υ§CΒ6ϋ?ωbͺ³”―_I…QRκ£<±[uΠ.]Μh%ΘόΣTŒΑΎKӘ˜#Gcα|6¦μ=*/ƒGΰ>ΎecφϋΦσΒΥΫmαŽQΪ3юύνX³7qΟƒ=A©-ညxŽFŠΰ_ >XfΘμ•μoΫΘ_ΗφΏN¨)w#4 šoh{±Dΐ«%vSΧln!A©ΎΘVωeΑΛόΉ!ΔΖΑ5MΌ¦Jbξ+ΘLsi-Ω]#θ²FϊF}”‘^ΘΊΒ¦ƒΏšd΅€m»Α4―lX2ώU6=σΉΛHΈ!AUΠ.cΝΰS¦WW¦Θ`Β¦£ΨŠ 1ΣUH7ͺ¨Υ1RπP{ν3K0½φ» ?φρ κ]Π¬ώγϊ8owPHσb1l§;ƒΰ‹iΡ›pΫA!9ΖΏΜfΚ{€Y>Χ‡ ;›šΝu6O«·:n]Id­ 0„:ξ9^KΨP`lμσ›ζυK—qΙ ώ€@Π³ΈLβs^* Αx ₯sg^IΏφ7>œξΌϋnΦNFʚ›ΏW3™Ξ.˜UΔ ϊΑ;ψS¨‘AκR[J΅ DΦw1έ-„2sΙvΒ}™ϋ… |0”Œ'揫 ḿk.c ωδ¦–6˜…2)Sμo-nzϊ§;H…!MωΕΐ΅οhφiΔx"«³kΡΠM©ε  &W«’.:jOu”ρέA©₯νe5έhecΌΪPEΖ؊ψƒ;w­0ƒ½d=*k5ίΨ¨*Υ{©jOαΒπbvAFάέΎφμέ€ b'VaΖ«ΈΞt`i1ψό"šΥy΄κ2Π";~‹rY―ˆ μ DΓΈkι“‘²Β•Έ›ΗΒbM 5ϞrNBk\±]£™oMŸψχ&ύΖG>šn»ν¦˜ζ["6ει“Ο€KΧ―EάJ τ-G¦y„Œ €πg_x)} Mχ{Ό?½οέχ‡ !ό—o̟λΦ"u„A½ς—ΑΣΔϊ,Βΰ Λ5ΈQ Ž` ίλ0άNαιŠ7οΘ12|*=β36 ή‘ ΐq0ΏβŽu3OΉŽM^P'ήg˜.»tό¦;Σ]€ͺΦJτκ+/…Mρ-₯9ζώΦێΰφ4LF7ύϋI• =)†xά?Πixͺ5ρN΄δΖψτŒn›iu…ί ZΫ%˜h…UθV“E˜ς7Μ¦ α‘ͺZϊ >Š *MΠ•2nŒ­E5Η§§θΛ,Εv‡"ζbή8!„SΗ$|¬}177I2ϊB½„i”Ή Φ ±Δ(¨Ρv&Όf Zά[X Έδkΐΐr…ρMκߜ=σjϊμό³΄χžc—ύ©ƒ ωυp§|Ε2?;y5 μΫ—φڟ6j ιΥ §aœχΑ0B£±*Ό~ς»i†\­ΛΠλe¬a›¦ΪΔ­τM˜+ ―$%ΠBm %]–6ΐω.Š{υASΦY3ΜS–遂w™š;œ7^dˆ”ΉZH–'‰—"˜ή€χ mΌ@ΛOχηY'2ˆυyήrNΪΠBΜΙ‡QZ@™cέ`ΛΔjXΏi KI;ψ³Βηz½ˆ.v:AΔlΑ`/^žwΧΣ•ΪMŽΗŠZem΅‘©nΛΊtjΈ:C Ξ2–S‹ J³¬[‘Ϋdub*jΓΫ‘ A‹ΰΩ™Φ΄>§άbμMσUΟJϋψΟωγC”‰?Χ‘ΔΟkρΙoi›tΟSΝΓ9χ™ζΡ|>ά–8ΩΌžΡξellΚχ0f™ώ`όYΖ6,\Ήœ>σo?‘Ζ_ψbΪ ~?q λ—,¬fΏώ±₯ίωΔB?₯ٚš Ζg³7[ŸŒγ‡ΈάY©μΪMZχΨΗ2ze»‚₯L¬˜žikœ4Bη›cάgbHΩΏν2V2Oαr‘θΒ5₯ΟβοΘ7Ξ†u`[Ή_&ƍMͺ€<‹&]˜c-ά›%PV₯ne£μdσ±ˆί<ώυΗ ηo ΅γ=ΈHθ²γ†™ƒ©40YFMΒ*AΚ,&0mlΰhCΧhΧ”ΐφΓZ˜+—Θχ^gγ5ψT-έΐΐ@h’§`δeΒ CΨRΓή_eΣ_„ R™Fδ(ξAζΌW€Qλyνςλ b# BψI™&¦π‹δzd\S`Ϊ΄b˜ΉH8Y»’m½–³(©ͺau±Ζ€χκϋ¬–ύΜ…Λιλ_ω*…ΎLΡͺεΙ Έ¦Β Ζζ2tC’QΨя{­©=Υΰke Ν°R“Mω‡Ψ$Ϊ2ψfΈιήΘτΚτGV.`•Y+˜ΞΙθ‰ … φAζ²KNΈγ½ S^σO·2w!…’< Œ*]⌷ρ½Νzv$6$ξγžε1ž_[_θ§©ν… CίγZ΄―[L=s-^ΰ«+”8vmbš†„3mƒ‡ φ%πΟ{`ς¬f?”†˜+ύγΥX›·§«xPΉ½ŸT lΈΓC¦»… ή ΤoΡΕG ώΞ‘‘ττΣOGŸoί»¦3o'BBΜ eέ›\§ r΄Έ0qΞνΒ‹‚HXœp—`X[kƒgΌΦ0\ΑŒλΠ΅ΛΤ₯Ÿ}ιΛ_ωΟι…N!4WΣUb<†’‚yMΓ£cMCiϊΕ)`Η†9ΌεΦιŽ;ί n―@Υϊ}τγιΉηžΑ’6ΑΊ3έ2…εσ€Χμ!}±.r£DΫ yΒRŽKΛHfPaI!A:`„V&οΰ‘½Œ%ΟΎqφu„ξœ+-™έrΓC=γΖξΊλ bξ! φ4w)„τͺhŸ=sΑˆψ `ν±{χNΦΥm^Š6³š+2ΗΈλ‘-?@,€d)‚©‘b{tΧXOZŸ΄(NMγΒΓύέόnΕJ41> ­5R<|•}tΎ3HCΟΐ-­™‘\(΄+θ\»ΒzΟvξΑ΅k ζ±Φ΄μ”q Μӎ0Σ oΪ“ΟιŽl1j΄·Ε’Ζ»ΔSΗiϊeέ@Ε@ΚΪβ8vηΘ¬£}νxϊβgώ,}ΰmοOq £ΖΑέΗAάQ±ζTΘ΅D-c½ι1L—Ÿ9“vΑˆzw¦οΎv1πjιZE“=5;S¦œy•αψ-2Φ F€ΛΜΒνξ†ΦΑ”s3 .St{tΟ΅)μΚA­ΜC?Ύ0c}τOEtŸλξ'¦½ΦΊ±FόYeEeVζIFΨ Z‘ƒ-0Œω<ιyΆ=΄n‰ρFqΝγϊ¨bΑψ χϊ:ϋύθ_…Z&“ ΅tqφ‚D=νožψξΛΈ^ ¦έX0ΧΑ}­kEBΠ¬Ε³Œ«›eaΥGΠ±>ΘIŠ/…ROΈ#b:IEφ‘žΰΝΊ Οξ_@€D@†Ρσ‹sZ’Ό’}Ζ©μ¦­½W‰°ΔΑ”ΛΓ»Όψ’ΑΤsόΩZόφ>ώ<ηύ2δ+¬Ω.„‘}~ⳟK―~ι_§γ·ί̞Gό 8ψωΟ|:Έχ=QηΫξKίωO_OΓ»‡—Γς,퍞σ–袝π‹‡/τΙ–bΩ³eΣ³Ηs1H•Β‹ΎBcγ‘h.£λβ…‡hγώμšη•Ώ=ό`HΩΫ=ΟwaΎς,ό†ηΌ#ΰΐ§εV•ΪŠ©|6½t+Ι(΄νχΆo€ep³‚b°Š²΄/߁‹Vk*‘Θ¬\bΆ²0ΙhοgωŸζ\l ?ΛX𳱇ζ›>©QP­a|‡$AΖ*‡ouM~λ*’;ΦΜ± —©qΊθΒ΅C`¦ΰ‚0ΩJL \Z*ΤψB4LΥΊΣ°A»¦Ÿ΄ΦΖgήHχξcj U Ϊ*΅y ˆUaΒ|NŸο‚Β"ŒI/)\ 8₯νΎŠb9Γ«p!K6#Ηd֟4nf²Ÿ3t/‘©ͺ·{βF,6;«Β‘q]"υpy£ŒFM ΛΜ4΅sX;΄4`HΝΤbž{]wŒƒ0NΑ Mμ: Μβψk3T³LI7­ύa=³χ˜J· νΈšt5γ!%ag^Χ„ŸWΏ9=ώψ·»Yu$ΎjμΜH†VWΨγJHHρΉ ,Tψη²αΘf!>πΤΕΔμD‘ >y“Ύ«}WH0#•DήώeB’›<].n²ZtQΠ‚ ΌΪ΄q&σΡW#eBֈg1²Μ>m¬Α 9Ά¨ΐξΡΠ6N;↋VΫν‘c’ϊ(QΪƒΐ„ Ϊπ}šω›ηέ³x[rγ“™‚‡TPpΓ[Ρ8΅φΰ\ŽίYM›51 $βŸΞΌ)άjΙσO+L³Ολ(#ځk‹΅3TΛX+0/j±'¦Θ€zΧΠ¬—ˆM¨W1J€ζ]CΜGΖLFεtϊ›+Μ“›θ4ρ;Χ&fx~>,φi}τ―‚σ5\j΄Š¬0Χ άF<"ˆO}―/_'ώ1` χL£Ή@v.ϋ=ΆΏ@ ύσ₯ϋ}œ™LχΎύγiΎμ¦YξA[βD)ύΰΥ—ΙŠDότΑ5ΩΖBНMΑ[­ώο «“«|ͺ’ΜXΑϊΠXζͺn–$Μho‡FρŸΚ’^UΛΠL]yA3Ζ§ Y©iEΖΪΞ= x›ΐ=³‰\B-p‰ΆOŸ»D’“ œΑ"8–€)ά +μUkXj6aVUV­J“Xγ 62Ρ΅k W«iρ#Ίκκκ΅œ, τ²^ο?₯DρΧόβo˜a1ΖΟ ͺœτ·1―}¨ί·ζΓω·₯PΖx?ͺ0Bππ*ί³ ΩyϋΊΒ|ICsSιΚ³§}ϋΉœN{π|zό §GμαΤ΅oˆβΥ½_d/ήovŽ΅Η›υKσGΦοPμ‘ΐγΦ;n œ—ζyW&Aηθ³slπΈtΗ#ΖcsŒόŽΣŒ/. q"k‡₯(θςQ—·υŒψ β€Ϋ’pπ^Ηn›6Ά5nR±R§έwΩ—!ΏΜ3‚ ΕkVP …Δ™Έ"—–¨“RcIl?„€4gϋΨ†ΐ_;€έ« xEˆJζΏ/ΡP+z8'}‘†ΙJJ "͘E]ž~„(΄ιsVήme’hΈzqY\p]iJέiœœψO|ηΩττ©gΣΏ·*Υ*hŠΫн\/ϋπzϊώK―  \I“ΈΑ¬ΐ'0³Χ6J.{ϊUκ/A­¬σ@ί‰'覀_ej*=ύ½“¬b:vμXΊΣt;K5`ζδ/£\ΑΖk𩠟ΜΝz{T!ŸC‹hœCΰHΰΩ΅5šN—Σ(Ϊ65Φ6ΈAΗˆZ άb‚ϊtλ‚cc5xmψ±ΧqωiΐδVΠZNWgΠ0WΣ…K—ΛΈ’Όπόχ‘²Έ4ΰ*€@ΰ\ΈyIΆάΦ­ΚKޘ^‚%Κ(c’Π"S°†š‚ŠLŠ€?„CaΟΔι Wϋι†η(cPƒ‘λC[-μyόν7€i†dZΡΚλ&cΩb01 Ολ«^ΐ¦P¬ ™Χ`΄gζΡμ3ζ΄§k+›Ι»M€c\ΏFΡLpv•Ί­λ 0ώΪ‹…›ω9~σw7 Χϋ/Νζw―γ3ο=—¬ΟqZΆ U44Εψρ^o ·Ρ€©a+Ll>Λ‹ω.L#μ_!Ε-¨ξΓΠ ΈΘφ“₯Ί&Όw}]lΈFF2L„ά`ο؁=dw$φ^Έ#ΐf/ ˜k–e\`lZ“ξya}ΘΐTΓ5 Η–π”±v* 5ΓΈ7aL5™ΊYXtΗ»ΰύkGωΈ|ιf:wξr:02”ήωθƒ0³ŒΌ&Π„ΠΦ”ͺ&]:w6ύα! uυ§±ΉI‹ΔŒρdi˜¬.+‘-jlλrκ$SV3)X΅μ_'ν Ο=Ÿ– ρjτc1½FJFΣζρ άΈr#}γΉ—±δ§Ηήυh:|xkZfΉUhΩ€ˆοΩ‡²‘PAίΉηΡ£GΣφΑƒα‘™CΠ+­“fθBLόΌ4‘nAπΉ§?aœγGަ£ΗŽqΏ!¨)ŒF] σ―ηΊ«ΖΏψ§ι"+=L-mX·…;YάQ`@;Yψ?ψΗb€Έ䛀ΰhAα «aΖ΄&;ΚE/d~ΔΩο*CˆΥa‡1™ΝΔΖ‹™@'™†PίbDrœπZ ˜eή`NψšΡJοK!°•Ψ"^°BiΡΝβ3T6e/ Ώ0¨*)D]_zΩΜ f⁈/‘}3HŸ*Δ#YΟZδ\x½c’π¬βg!9›ΦΥh7k9 :J‘|c¬ΝΐE±fωθ|ς &Ζ%t=λ52θQψadτ™΅Ρ$€Ž±RΣσ™έ’0<ηςυ1β/€ ’δƒS&›V‘―XΚ,–pαl2c™w;–ς"°~¬ΚΞ΅iP !ˆWx›J…σgh!ͺ&clό;-„FΫ-FξlΏl£γ± 4Λg*τ+€9rŒσρVΰ%(’ d΅$2…q`αζΦ<ΧθΉΛ=&Δ}ι»…Ž6hBEje Θk‘Ζ&ύFUCΉ(SΟ! Ύξ$ύξΣ§™οœajTl[ x»ν}iˆΒv•^ f™λΗbο!œΙ‘N<$z΄jΟӎ2ΎDΑ@ΣT7μάG –γ ηJ‘³Βσ"H]šδ^a ͺ΄)Τ«8€μΞqn‹xM‹(5ΣΫΣ‘FΧ5ζ=T„ΧΧ{΄‚Grx,¬f«€‡~ ν#+—Β”Sl*ΐ3; ΐ"±Δ»Χ›‘-A ˆΚ ^½PŽΈΖ9Κ¬ήn|Ž?ž§ €7B8a=k₯oP#YG™Χ_ψv:uρPϊ.ά cY΅!FνDΈVΨKΥQz…€EjΪγX»-S2A¬ƒΕGρwαλF ΩΑ#Yf4$Έ#˜δPBα`Ό’mάPƒ‹ oCžήY<x>ˆ™bYΥΤϋG˜+Ξ™ΒΫ€§‹τμ?φ0Jž†‹y ΗΠ8:•5ΖΆŽυW^=•8ζ"Ά]lxΔdl TΊ‡„› aΪ *Η”Υ°`,]Άξ]ρPDδ5Ζά•‘₯ΛxP4t‘šd”x.S%Ÿ@7ήEΊ˜'Ž…τZΐZ—SC‹ž•h«{Ϋ5bρΝωέγυ;@λhdνψPΈQˆU˜B‘ν*k’ ¨}έΐƒΉ)cŽτš¨tνo=Χm7ςηέ? Ω­χ>#ώψΞεɐ%»ΡΔύ*x_/RΛΖγ#ύ•tμΤ±τ>ωQκA‘εz›λcοιWp(/q-†οیΖωΈh—γαA_1|ι±χ(Γct•Ί_ƒ†ΉOx“ΝΈx5\“^k| [ωΦοΩXΕ­γnž“)"R0;^²―~η δϋΦ~»f "χω^ PMh_κΒSΨΛΎ)²„:j@υwαΘ»f]Y·Δύ\»A?’U·²χ²Ψή0μΐΫ``dXR…,'ΠΨ€0σ‚ Η’žnft •gˆ‚ŽΒ‘ή!"V7›ΚŠΕΓ¬ Η ‹“ΠƒΗ΅z©”\Έx ‘βΡ?œζ ?|ψ 0±Δ@‘ϊΉΏj π₯» ¨μίw0ν›οD€Χ ³€¨Τυ«—‘X°‚g‡JR;°ξN`υš ΕtŒΣιεo;]Gρ0Έρ<vq`-ΏόΛΏ£mƒ‘B, >œ'}§Β±Κ”Ψύe,’S3αPΠΉ6:ž& V.Ά›ε λ9ŒwΈF#‚ητΡτε―?VΚ m8sαRJϊgιΘΰ`:Δl?ψwσχ―@ΤΟ^Όœ‚K/b!wάΝφ%dE†ιg™€d^z‡ργ+„8λœπ Α5εμεΛW`H8(Δ₯_Z‘:[ψ+X4FΧ’© lƒ TP75¨‚‚Οα’ϊυT) ¦•]λ₯΄ZΛ­μBζ§υ_e3£―SΔΤψϊΐa0D΄α―οΙ:.iWιW ₯£P8H¬w „’Έ‘λvΞ¬8ηή 7ΝηšΣKΟ?›φ uCϊκ_>”Κ&Šs2gΦNQ°=zοœ#=„λ‘˜Τ0Α~ήΔ²οΠHzAύ™g_ΆΣΝ#,τYN§OΓΘ0Κ΄4E΅• mツà ρ›‡γΏŠB΄Ώ΅‡ρΦ*B έ©c=δπΜm¬- ;@|Θ χfž^-@g’Suλ•³°₯^Ή<Ζ ‰TύhUYζ|cL–±ΘΟΞύ„^ΝΛT3ΰύ\σ€€}䝏€ϋΈε©1ύΑοώ; ‘³ιΓω0; uRΰ"›ξ™2ιpσ(J=xDU"<_O‘ !ͺ@;[;Hd\ΝΓyΣ+dΓcΘͺψϋΐο’·ˆ!©…ŽNŽO₯΅"το€σγ%₯ΚΙBhϋeΕΚLυ©Ξ£DEγ‚k—ΨgK(–ΗŽ ˆάόλs©£Ώ,Y«hcλl―—kmznΕF…•œ8΄%Φπ:ήΧY,οwδζ½μ  VŽ_'έ½ζΫ!>ƒ­‹1%ΓbŠ|om‰-ŒΦ!aϊƒm°w5Ϊ―‘Ÿ^γC…rιιΒDΖgΦΟY–J_ΦY§“Μ₯YΥς$+ινμƒ&γω¦£x6ΦπNc«‰φkD³D$[ΐC·ƒ‡tXO]ύ 㝠ύ ;λέG»γ³}™)•Ϊγ3…ƒζΔΌf―6‹σΈ&ΎΜžΔ'ή³ub]p³Μσd#<—W―wόβ<Ύσ‰g[E…ά]zιs!=ωΎχ§»ο{gΊΚΊ°ΠΡΎAhΌΩΝ„;sNΞ ΌΙB”›ζk@όNOxΈΠΆx²Οv ‘MΛ3αΙΥΈ$οΥ(γ‰yζͺμ}όΘ£€ωΆ]ΚΞKvp^ŒA4„οΉ­MςΡ\ρ;x4FeDeFΓU…g„1σ’zξγω )™ψ<J7λΎ‡„yn*4Οue₯φmͺΕ3ε³ζ½5P }ͺ¬.ωδ¬]?Χυδα\ύΐΗ­eŸΦc}λ}ήο”ϊςvΟέ6X @μΊΤDΑyΟ&f# Ώ’PΘμΧΙUŽΩψ¦G΄ƒ)k`*{ˆQΧJ,ήΈ‘ԍUˆŸ΅VΧ—IΥ8—ΖI—Έ cθMΗοΌzV›ff©MΠfίπ!\σγ0B³͎^O=πyˆN!cKw;,‹EЁώ‚ΌΠβ"˜ΐ3kΥB‰ΈΖσΚJyΐZΊzI˜§ί2Λu7Ζ&RgO7 †uM¦Β(oΰΦ%\σ³Z;{Ɋt\pΩ‡ΘžA“)|Τηρ‹ΩΤTΖΡΓ³„G‹ Ν[αύΛg^MρόsY‰0s΄WοΦP- ¨°ΦŸνEΎχZΡ3°(˜1ω†–bήΑ\Πuυz3P„€dΥ1ή­xŸΪ±ΔGž}™Χͺ<(;Ÿ •>CήLMfFΪ€/%Ωx>ύQωαyΡ BοV9ΛͺŸS# 9ζCτLbVhΦβh? 6n@‹ΆΜ¦VΓy£Φ½¨E@s­ι}π³x…@ ³ Oͺ₯0g»£%k3³ƒς/LTkι_Εmw‘₯H%Ή!BΘ‡–0”οΙHk‘ΧΊk³άR/Ax5Zυ ˜ m†6ΙκΘΈ—ž%cd„ήΏΒ½½Ÿs§uΡ~j}§wάΖη^™ΉσΑΫ,»e¬Ώ™"α•ΜλΪέ±9Ό$(ά»°8½w bCύΌfϋ¨JͺX.UT΄θ{οα±ϋͺΰdΕσώ ŒΨ_†Mέ‚ žgŽά――ΌςRϊΚ_| Α•±œejγΛW/¦ίύνίOΏτ©5¦#!ˆYτrfv’T½«’cL`ߝ:z„μrΣ€μžBI¦ΎʊǾ}ƒ(eΓ‘`¬P?™δ>€ΣΕ@³ μJ―•OΛXš‘ΊπL₯ΠΖ¨~mY*O₯)hK]5vΌ«λΠΆf†!QΉX[Μ(΄QΠ`ZχΑ"ρ4£c$ #ŸV_•‹†Φ†u˜vH=jLΔ5鎏O€;€^’!TΣ"Uχ1ާgˆkγΪ’Š-χτˆtΡOH@¬OhΧ¬k“n„ ηϊ2ϊhyu;ΝΤnΰUθ$† ‘₯Βt»° ΏκΖC½έXί\"»γΓύCΙ@ΠΫf¬Φπ&Έ§j¨οQFiSAŒt嬋Φ”φ Iͺχ‡υŠ5JΆ=Š6nCΓκ Mt5ζΞ€ ΊC{5dΖ‚ §flΜkΧ(F?Y‘dαε2ΝρmmVΙ΅±V˜ι~‰€uχ‡UΑ]§5Μ Δ€&³φiΣ&ρ.&0ε4oϊi ²Β΄seb §UεΒ{οξEίΨVW(Λ!~4..Ξγ ―χœ]ΊκΗΈ˜‹T\95ϊυCtZƒ©U$Ύyφυ±ιζε―§ύܜŠxR‹T6?rϊ½©zύKΚιλZšY’Z½όE-jfΟ-‡§Špiύ_Q“[ŠΞάjR΄χ₯ω)< ΠΟφν,­yKΪΓ[θ)cλψmƒ΅%Κξέ(3bρ$žαcο-Œ4ΠάΓuξ{•«zΦΜ4ΝύNoK‘yΝ£όΠBŒS*’ζ9·}ΐv΄…vΕ Ω-ΜJ ΄Κ}k‘Ϊ-θΩ TP§ψ{Λ“ψ–Οo}ϋ7ύφΦσΎύ_wίy8OΗ_wέχŸϋƒœσύΧό5ŸwηϊΑέ‹~π+Ύ{ζΜ΅ί½ΛΫγݏR_ή#*]Ι«8~kmXχAL» Σ Ϋ")]ΆZέά0―Vφ:[vΆƒΟMωΕZ‡%Z"ΏFΐφp†FΤ „ν«/Ήzƒ8Ž2™ž€_ϋΥ:½ϋΘ Φ’σόσ/ΑΠ°bσL™΅D΄‚p“MΧ>3•‘Β0„HBF xΎ){±vΡΎ •EΔLΙhšGPkΜaΝΪ”ΠΒ8eξΒΜP€εQλg#Aίyύ;CX Ζ΅―0ώ )Z3Eb‡dp΅Υd% E;… ΎJeΞzv™₯RΫcJOλXx¨ „^Βh£Ÿ}έύ“ωd„œΉ‘O εZ*o?<žt dΚ“›―PχfZQγ\QaˆT’(E0a…W+›[5YΑSFλ( ©ι!~A8ƒ ˆ1>·ΙXQ‘ζežcKΈ7ίm#4­.ΐtP›r ²€hύEPR9Q±(8L–k««k‘KAΗ΅0‹ic£‚ŒŸ&;?VεΦ“£BΒ› `lŒ_~δψ33Xί2V;σVΐ’ήKΐ¨Βπ”p­c…y¨Ε#‚Έ§pτ° Α3΅³)…c₯1Ψ9bHθ£σ)DΜλτμ)TD`>m³ϊB^―zŽvv¬B†–GΉ-OΰΑ‰Y_Γώι)4`Ύα[\»Ρœί‰Ι|Η†η:O·ξΠ ίσ=—ΗΨψήߍΓR±ŠΟ/xˆ‹βΗE¬ηBο^Ήš^ψϊΣ©·o ΖXeRΤ"££XΪΓgΏ@€ψ>˜υN²φE ζαEӏ:€`»sμ^Pr-§Κ²»}Φς2ic™=¨}ιΑGξNΟ~σ9<~ΓΆεΎ3 υ‘"γVEIΧΨ‘2£’ΤEαƒ#i CAo‡‰ΏθλF™ΖΫALΒ92e5!˜vw“­ Θ‘RO…¦³Β•UθΒήJ jkθ‘ή€λμ/Χ±*½Vk7ΖN«΄ν΄ΆH=<‘–±Π§¬€-茴IΉk_ γν‘GμSΦCχuγλΩbμ£^η³}ΰUԐΩΦ3gˆ]ŠΒav7=Δ]Z‚_$h8"΄½«cτdΉŽd&ΐε|˜ž<Ϋo²€ €θ:Œ]Žκζ{ςήγΰρGσ85‰LYˆΛΡμg^cNβž~ΝΉuΎt$ΞγgϋΠ;ή{Žsτ…›fΤ"ϋ섨Όΐζ’Ύο„ώ΄zμΒ9•†φ%»Xc:}κxϊΤ/}"ύWλx%rφq c“xμœ{ζ·Ž~mγΆ€Εx;Ξ»‡ό=ˆ ¨(ΙΎώʋ遧>˜ϊDΩdΐYΫςR΅%knI‘œ»]ZmνΣ­©Œωσ,gΩρWπcpϋΝχ*}Όo€.YηVvWαφ±?š8Ώ  ΚΗσ\ “¬Ζ o4|5‘»Νά…,bΐψ’5H·IΫF=π; ^άο{ŽοόΦ¦ίήzήχΏλϋλΎϋAϋsΞχ_σ7|–[μ{#πC7ν,±XG…i7}¨ι_sডψE 9„¦ o‡§,n2›LhFg-… ‹΄ΜΊ££“ιΕo}=²ΒΌyζ,ξ¦4NΠ_όO~.ύď½c; ν‰9«(„oEΓβa[`6G―œMχv„ΠΌΒχ¦’ DΠΈ ΝJ΄‘Κϋz(ΌΒ₯DTΟC ζašZ­GA ιWΖό„ΊΰNƚ’°|φsιЁιπύΈΒrWγYK:FΆ•"„ψ|Ύ―”Œt‹ή²BΠiM&P5“=ΛCφ£•Ϋq•©`AςaΆ(p|₯%“‘̈₯˜/C` β·ˆσ%ά2U=K³@φ2OΦ6!tΫZ$pHΜ?Υ-˜ s!εƒώΩ†­­δβΜVΪZPVŒΓ°-*>M<#,˜0•G3?ι 2”1a=„ωΨ~•-—Bv¬8½Y&Ί„₯˜Ι؜…ήκ0X DmUx Bκπάe¬Σά[θSΖ ξC΄’ep(˜&σ'ΌBΟ‘Vψ¨ΒφV/^ &΅4ΈŸ©sU0cαZkE7ρ)– hl,€ έ\ΏA’0―ΞGίG!+η ΑΥ6Y9»‰{­2ΟΘ+¦™6X5wλ\λ)Έζ½—JΛ-„ zxbθ―‚'eύ‹5av)j(κmβΩ2[χU…ρΥ3ε‘Pλ χ … α,ΛΖ“ΑΘThhύg~9ΗωςXEyΠ£’'e­συς‹/Œžϋ†ˆΓ}ά€ήwp` ]Ώ>š^{5«ηqψΰ±ψΎ“?yβXzθ‘ϋQπΖζaSZ‹ΕZ KtyϋaΆ"=bο~ΧC‘€5σhΗ@‘Π`ΡΠ†Όk«*AΑBŽl}•6 φ§q u(ΔMΰψ+XΰF°(’TκΜυ}H ΒΦ›((»PΌLΝΞ`αE b_–τζaω/ίlΊεsΦμΙ\χ&1e?ϊ θ"1(Ήτw?ψχΒRŒςςΟσ_ΰi΅Šϋ΅’ξ1yžŠZΖΩzΣd˜Ί8H S·γ 0ͺŠΐ³Ό°˜f§1BΠo._†žŽμΏύ–·’ v.™γΎΈίξ~Ο²Η‘œπΫ χxζΟ τΧPzu OkΠ‘γΤaΦπNΈ[YοόυuαΉ•~°Ÿ{c•€±F" Φ±R3…™*=2_±©κ™ϋ”‘²βXψaQ% [Ή Ώπ~ˆίτ’6π»ΰΞ0NΠ? c\†ΑΗq,ﬡM=(Κ¦ηQΔ„ΩIZΰYLEf ΣΫ©—Μ”Β¦ω]™O#©χπ©Pd8·D ψIRοš1«XΠ@=R’ν1–LέqΪΗs₯L]Όwǟ σΪiόŽ& ^κώ¨cΌΩσKkοθ!Υk`Φ³ =Šχ(2w~‚heBmyŒβhΌš΅)‡υφΝ7ήγέnΘ zG0?Ή AXaΠ2αy ŒUQ@ֈA©‡* Sα4˜a fUD1Φ€6Αθ΄‚†Υ[ˆTn¦*a5ZΌ Οτ k›\«ΖσύŽσ²ίi;cΏŠWιΰ‘γΤPΈ7}ξ3ŸNέ˜Χ“^³kδ&Ψ}Ϋ\,vE°sΉ„&,l)'ό„Ώ ŠD&$ γαώΜ₯0’ˆ“K€₯'σ(žZ!?<dγͺ…ΡΧΦ#”Π.­ΈB–6n;Ϋ?SVξΞ΅c«Ε^ΕAΨΠϊή'ΦΡζr1Νΐ4,4f0x m# ˆ°­ZcJ΄¨eA匁–HΖ%bhΟΚ`Θ2.2ω² *BjΘ$άOάΈ‡ŒTΌϋ<ΩΕlλΊ°AŸ˜c<˜K~f§pΡFΠ|WW'γ֜zX·υυXΦΰT^΄š/!,―Σp©Μ c*aI3ƒ™V{ŸMgθ«J`¦ˆšΛ`uΗΪοb-#¬*\h¦+œ/l±‚ͺΩ.²_„@Κσ"pΥyαpLUN]Ώή/ƒ•©–eΧΈΏτ ω<Χi3‚†Bwo_(Š2ΚδθΡtξ움 ―Ζn|‰ M(Y<»­­Ζ!”E*Ώ£ ™Ή pI>ΟΨΤ₯ŸώιΏ‡·04ŒυΝά.,Ν’’N *Z@IDATδ°/π΄dŽ€q=LG£έ†~«I1ζ!πηΈŽœΚSγιά‹/₯cǟ`ν6§uΠ…&[©iυ+Ω§rΧ}χ{Ξ₯Oύκ—ώΙ―:η€:RχˆΎοοΗ½PΑγ¨—Υ>qάϊGzwλ^‘§Ηε3ίNΗxΕΨττΐ©ϊ™βΈŽ©D>nqΎ œ²€OŒ/‘€8~ ,αkΖΥ¨ΤKσMτΰά2£Xn’ΧΉmrOασ6cγν]«9ι" ‰ί₯υU ŠΔzpίmφΓΘ‡ ΎΣKή ΞRΉ’Ɉ΅w|wφοŽΕή»ςΤhυΡΧAΜ 4_>C@Ά5)JZJpwFl…ΌΊσΐjυ,SΰOαJ‚Byβ€7-a6θv »χ―ΘΪΜΤyβ‡ ilb ΟHoXAΆa<™2©"–VRΪ(:“(ΆH ρf0F’]Ψz,p™F`v‰–ΩΊFΝ’KNΛωΩC(§ΏiUΣ‚£υ}ψΗwΗZ[€α"ΔΓ=΄Τkٍ€I‰Α­BoTΆΒ6JK䈿Iΰ'™pr­©\C­ˆ%Ό™0i©–}ΪΞs$ž†˜†g„ID=v`2Yψ6Κ€€2¬ύ( χίw7™ΒKτιe«“λ•A(…;F[›™mΑΉ&'ηdο€±6Š7g ^Φ76NJ«17`?«s –η›Π„Ž6Š2²Vυ»ΈΞߘM3‹«©“/υ‚ΰ™c“…˜Δ«h‹ύWΘw}―Rd²™½Χ^ζEgΨ΄V1ίΒ †’³]Α‹Τ·ΆC;\3ΣsξΟBŒ‰°₯ΘR$³©Ά…₯C »„yΒ›ŽΐΌ…sάΟ §ŽK.ΖΖϊQΐ”vΪg‹³jα‘œsB €ΧΛ)4h‡όΒsx^Š“^•*Ζ–&ϊο0ώajΎlΘύKλ΅°σ|L!©½΅:&1ΚυιΆ‘}©³Ψ€7‹μ‹CΓ_]œžO7―\Š,oξ/§ λyf±η•nΖΖΞΊ^ ίK'7ChΦλΑΎδΉM<·‘Z2߈ΒQΧ 4˜(se½ )Χ‘~Ο`dk„½Μ}jTž™ƒΟ—:ξγοΝΠ₯~ΖΆkδP*kXB .sΎΗΌ#ύΪς/Σωk/cXλIοxΧ‡G~ν7Υo?ŸΦ.₯Ζ ^Kφϋ†ρ;'ɈDj·ON ŒΚ'qO‘§ sΊ~ζŠ>ώlͺΆχ³5΄H»h/Κ„t›ζ1g^ΚάrΎΕoΝR•gn‚6ρ£Κ”†Έˆ%₯όί)7dq*’ΰ*2QΞ‘ϋŸ‚v―₯ΗφVx ―ςV†η™Z]žΓ8AaSΧK c₯²Ύ·αPΪ΅w|wώΦΩ“ΜμGαψQκΛΫi>nάΈ‘Oξ΅tcΙ<c]"Ÿ}… ΠA3k(²!€ΟΓθΔε·ΰφ« °­E@³+T>SϋΖwΞ…UPkŸniG§ΑίNπΉΔM(JŒΤψ -κΖu(„LM\N7ΐ1wAθk¬Υ b,Γ‘ye8`ˆ$τ EH\C+ρω/ΟWhφP`ζc.¦^‹Φ6 Ν@?ζiwg?uA h]@=,l¦‹?2ΐΐ “g©$it—I !0l‹EΘ’† –A}&Dά#³ ρpΪ$΅6V“hή „0½" Τ29θ/„Z/YF°δ»νdΊγŽ0ΊτΙO~ AΏ@X¦ρΖh rό¬G±bέΰ&ΘΌM`aύ :ξ―Π!4¨™°Μ쀐ΐψρ½Έ_Θ{ͺbΡ ‹;c‘Ρ ~§½ž#Ρoυ•Φρ¬s©6ωf€…›qΒτ·€Α¨ŒD6+Ǎδx"£‘ι\7)ά† :‹©Y0‡βPD`4;‘J¦p+…?‡ΆZOΐx šλQFθ 9”Κ†£ρŽ)Z0SX„a` ‘‰ρPI™Ε:Ώ†ΏŒ5΄«smœ‚Š…JC3 ‰^‘i‘θ06 ΆY/Ι"Β·}Œβ”L΄†Ρz¬›ΈϊΛΧύ­ΐšͺd 2Zώ`ΜU-4Ÿ© ζbιαrQθ ‹ ΏΩΧ’‡*Ο6c›G+‚ΊΓ눫T<—ψm…ώ\Ίp! σdΞ9ΈH@‘ζηζπ‘Ξ• Œu0©&`,Z1]'Ϋf cg|J“c“(4z­T -Ί ΐϊΞό Ε‡C1’% OfAΚη!@―‚dmŸ:φ’„•©#Sίχ“Εξτ]§Σ—ρ‚΄°χvͺx½€aU€I­.ΟΡ kεSΏXΖیNσΠ)•–r”eζ¦=2υν<±( ΖΔθΝΊ1:€Ω•N?Nμ±d(nhϊ4'χ›™X˜s¬AΑX4¦…v2(;­΄{z†š=τ‘τϋΏυOΣ‹Ώχ›Τ₯i….„…y·ͺzΦ»θ"΄ΪΙ½€νL7νΩL]CCιμ‹žn\<ŸN<:˜(fξGΝ«™¨lσkΙnx?η)b#ωcΓ:7;‹ž~B3#(Ώρ ;*œώm…Β;owΣίαΊ­€6a6.Ή¬΄5”yώ:ΕRΰŽό±Žτ^:”zφνΛ:ΚΙ¦ΦΖ½γ{FΰoMΙ„ˆοyφg?ό(υεm3 :ˆM؊)˜Β ½„!‰RHλξξJΗ`6Ζ,‚‡_ZΗ3Ρ‘"/όδDΖ^%žBYζ¨ψ\Ω6/Κη΅#(]εΎƒά±όμΒ΄ 8lDΈZC°Y¦Z &kVŸA„66Œ^λΊNS^ŠΔΖμ$2$-`Α g γΌ \Τ*³ςZƒΝ+} ’)Iσۊυ―¬‚ρΥzo1?bU¨"Υ'” ϊΕΣ°–Oα_#@Ύ›Brg ΰ‘Θ–ρe‡ŒX‘YβI³yΥΚισ$ςZΈU>"nΑοε\΄8N’)KD'ΧOύύ_‰T½σŒΛ‰#(>2Y,‚d ’v“ΣMρκ“HδKΐgV–π,ΠWΣ튁-β‘v%†ώ ##yυ„ e°ˆ›υΔRλ₯ˆΰyξ­Π'ΖOA*6Ϊ§P’`ή”s€ε―ˆΌW±rϊπ=Τ„ΐng%˜”Β ΅ „)˜ ιΛ¬;ˆΠIκgpόy‚φRϋ»ΙΔC› Zφpό,Ρ.Ϋκϊ3 ΫucΞ;Ώ ‡ΓΚΊ°ν2EϋΘ[ξƒπ‚`$“χ7$=Ϊɜ·`Eεž,Η`¨ή§ΐυ«³« μ@dΰb=ΦΥ Ηaz„SdPwφ Φs!+–#τ Ζ™Η©R£@šWϋζŒ5`=qώ ύ΅“foρPσ7ϋ¦!Φm7ξ€ΠΪ”~όƒNxΏώε―₯N Beͺϋϊ©yΓΊ˜_αo‘hS`Δ,X‹Α:</^’:ϊ},OQsc!³-]½t)k>œ¦Ζ¨σ@!IχNWGΚ ©…k2” IΤ_@U`ΜΣ΅!œuUWK}€NΰJ`ο¨*½eœ ή2S­‘ Σφe’PΪΪΖΒrΏΖΌΟP8T‰‘‘xχ―E«¨§θ™Ωζʈ‘5­©Ώs0Y³&9ΫŒ»+χ§ΚΊS=4σŠl$εjπPΧυ¦Χ¨O²π„?vτΔ8§%κήπ#—rŒΟ2ωM²7­#”jε·‚»ιX MmS’gΚŠ*5 „VŠσ±’…Ό]™ΈΒώR\O#ΓCx–Σ›ίώV:xμή€yͺ˜+Σ»ψάs‘P»yύŠ{H 4²\»q“Ή'–£5Ϛ/σ<`)(K5¬!c<ΌbaφϋΧΜRœΪr(εQΜ€WU֘k–ρR˜I5|ΗjTι³H CΝΊΜ֎γεZ΅h›BΫ”"6°―/ν;0L KO( BΙ΄ j½Ν±λYZΙIβ044”φ<ŒΎΒz$~ΠRΫΣOφΊζz°ε¦SήN¬œΞX«γόΩσd:κMm=(‚N;(EfKΪ§BΏŒ§Αd1δ³±Jm-ν1^*<ς`ϊΚΧΎ–^ΎΖό£œP³˜΅ΏA¬uΡUB·yst4u26Ν]xu¦ΣΑC½XζρΠl \K'αYθ%F‹xWQ%ΔόœΓϊΝ£™sΦC©GΟΞπ žIqΞφvΊTΕ3Ρ‰ˆΗ‹s%£Ψ oo ΚδJ8k`α^Δ2{§»… ^(sζέ@)ic\«2 –Α±o΄-ΠΐŠŽΒoG© š±œΖΐΨ»ή"}­τIaHΊΐ|j0‰Ψ -΅Μ»ρn%Ό”υκ—ϋ'TA uί4PƒtΪμΪ„ƒt΅΅…g›y)σιΥyn;βΜήWGΥτmφωŠc ΜsΠWƒζɝV Mht„Έ(ZΫLfΔ4'b@ ς7…lΗAΎgF;Ύ Z€§«Έεvb#ύΆž…K Ÿ5£ Σ^yGΐMUBθoˆΝτ9 zςΩυΔΊ­‘ c7§‡NKγΧ.₯ύΪG†ƒ&ωl…sη΄Ώ―Ÿ@{¦VGƒΚ₯Ÿ6Ζο…Ρ¨|ψΙhd(TŒ]λ˜sa ΫNž$ΊωKΉŽξ°Vηf¦Qrz‘Mιζψ0jΜLe±`Ξ[/φšΚ‡σΝ ‰΅%€TWŠ”ΐγβε«iώΖ›ιԝ§X->Θ|ΠΈZ¬η₯­ϊ΄|ν•τΤΗqϊρŸύH&΄‚iΏοO/ώε—+ŸϋίΘ‰>—Ϊ†OOP Ί$vσͺ‡2φcΙΦ0΄ά¦ eυ4WcAF/²}$‰ͺ[#P).π·Ιu € ε[Œ!(οb@ό%R›Δ‡UεΙEut‹!^ŸZ¦ςΥE±>λLΤ‘nΩt½WIy,l•=R·Œ EΪu^€Š kΛNͺ_Βc‰S[fqot3<όΡ=/Β¨*¬%t:Φ•Βx…ΐqfŸ Tζn«"’@αZ‘σŽ²ˆGOξ֎υŽ€Λ4 ϊ£—FΊ‘π,=–v;žΆˆΏΌοΔ‘tjπ€W.\M•\joVΥB™η$z”iϊήFr—kbΗtUS_wOϊ™ŸωXϊoΏJΚνVc‘†ΆΡ~0`zά]―N׌F;Ÿ+O§z 1B)ύΩΏώ­”οNΗ§EζAΘW }RΥΐΎάΑ cšνΐίϊ(/“σύ捱tεϊώ2€GΓβ·o AZΐ±Κ Ι2…©0-xΌTœKƒCƒ©g³+JδdΛJzσ;ηa„Β-pe#kš'ί=<^γD ]"„S/‚q#§–D ] ˆ±x+ÞBo€ϊ›.³J&­‘Ίc=d°jΝ­†Ο΄KAΧίeRΊ %ΜaΉB™›]ΐŠ»‚ǁX dύTdίΪ'.¦¬?‹χތ~Τ‘ζ֊ιΫ0m±ΝoβJ—„κΚχˆΤ0Ή€YΙ8B΄…+„KτCτ  Αpo‘€\§K³‡Le¦oεvXύ)ήΘX"‰Wί@XΪξl‡Έ61ήo€ΛcΚ#`2ήZλLjJWΗ!rο3B§,ΦWΓ)$;ζ*qZŒ‘σΑpΔΫk=undH^―WƘηC˜X€τe,…ΒΨ―ΧJͺ iV/½Oφήηθ ’±’υΚyk`όκΪ)VΙqŸ/ͺˆΞυY x*©ώ™₯ΝΜT›Xνίζ6BŸw€χ +3¦βΔ₯¬I`0@Ϋδs=_ψ0šoδύ‡‰Ή” 䡿ΏύS0ͺuΝ1;Œ}X)ͺ)“¦k܏ρΑbJ²λ[Ύs\ WQQΙU˜qν™`” BdαxHAJlΉJK ŠΞ¬Ήd›Β"{γσZJ―O½BΠi1 ξ?”Ύσν3±vhP 60ΩFǎ€Λη.„β96uEˆη4£l΄΅Γΐ›30KΡMdφ«υoš²[…^Δ±¬l¦Λ—―€ε™₯4ˆε³‘ΕΜ=x.ͺyΧy’‘¬|Ϊ+μψ ϋxοhWw?cdΘ’…R! sχ˜˜œ"ΦΖz)₯"ΩβζΣ)x¨ΐΊώ¬Ρ‰εZ‹ϋ±+©9χHκFθ]ΖΆ<7Šπ©ΒΚ`ΰwσ˜cΦ'M8BN6-δEζ1υήΔ<˜xx¨'Mη±ΉhΖ*‹³‘vX™°p^…$λF΄βeSΰ6†˜Lπξ’„,.ΰΝ`Žk³«­ΰ©¨bYξ΅έlΕSžA„ρэkŒΏΠBšαJ‚ΖΨ^Lž¦‚6χ•нΏ›δ’Ί9Π―FΪ_―@¨ΘŸψυ›—S8z{Κ·“f™¬{LY{_Kzκ§~>»σΎtιβΉτκŸAڞ)u>΄XΣΑύΩ 1ŸG› μ—b\Λ½€ϋ5γ’mΥ;!=²Έk3™Τ¬2EΨ GξWi‚ΏU^‚0RΎ6skιnŠ’)Π₯sη«d‹”.l‡RΗ{ šΐΨvS(G±‚r° |Χc’¨°iϋΨ’±Χ4°ΤaJσΔΊ5»Ϋ"I„5ι–ΙΫΌ΄’χέd:”¬Σ…n…"ЇUsΔ‘Ν°‘’²'„Y“Ċδ˜Π™τ‡vπμ<7mΰ½VkQ8Œm.0Ώ_ΧΰQlώ Ί²Η©QΓχkͺΦ±κksmJƒX₯1Fξ±Ε~W₯{Όw|4ŒΓb\ 0"!άאZΈhμ|‘\^$ˆ~ΟΩνV™€''Η$―°’/ΨI§ΆΌu€T΄Ή»οN'x_š'¦#OM +SW·α ΤC°†ΡɘPBΘƒWֈγ|‘X¦‘} ΝΎφΩτβŸNοϋŏ£ΘE )².: ίŒΛΧΟνkζ»:xPe‹~0Ο&ˆ@zh_x1θ°ktΧ‡ο™ΤX3ΆEžΤΘ«1ŸΖήι=+³¦€Ρξ,ωDΤ«bοͺ言θ²Ž‹!PΣ4³Μ˜΅`«Ω‚δς½#F`OΩ[o‹Q,Γ¬&¨ >=qƒΤ’³©!χπΎŠ}Qε’Ήf:ποβύΝ_ΐυ½‚•uvf !λ’̜sW)€ΆBPκ*pοmΥΰΘj…Br7™uΆxΥRrQ‚q”QLf L+ڍεσΩsi„ψ •™†„GΑš ‘ΝΌZΝ Ξ–ΩIΨ%`r<ΎΘ,Γχ : …9(΅’ ‘Α =Rω)[ΘΡ—*ΔΞβmmέ’΅ψΘQnΣΑα<0κ² ¬θΤ‘°-bΏK0‡%ίvp‘΄9p+‘Lυ*ΨΚDƒ)σD>”ΎΫFαPHχGa7πf<υδcιۏςψ –~¬;bμsX}›ƒU―.ާub%l„Xη-¬Ϋq0ήαAA@Τz%Ζ›Gπ,Μ/b9βω‘bΏ9Oίω‹,ax> ιΌWbPVΔι Ή³γœΘT"h;}–^™•ž*‘J€&οΡH0¦χΠ³a’ο©π―E‹IΘ`zhc4#ΤςΧΐΚ ‚c(ƒ1¦Pu’«5T„Ψ,PάUˆΠΞy*Z»UΔ£ %}nbάblYƒ«@ΡBq!Οθψ\ŒέeέοΊΨΔ½ιυ—_ !ξψm·Εψ?συ―β λI―Όx&ΌσΞ΄odΑͺ+=z$]Έx9–ΐΛ/½‚‡μU½‡‰%(›ψ‘ζΓu`«N`JZφWP¬θ±”aΠ«dOΊtαJ€Ί}πΙ{RχPgd¬°Žε‘½ s_#½iΎΨ/Ζ’D0λ’ή)Ώe„r‘…ψ-πΌybΐb@‰1²;υτ2GμuΪ“'–ΦμE%λs¬s]=–~ΣzηΚbτ―­³.½ώκKiαϊ•tδώϋXΐ6τa ‰ziq.Χ+΄ΉΈ—ΑΈfΑ² ς&ΒΛΑ–β€μkδ…κX;c EΓΎΑi₯d%b“4:ΦS°v‰υš°ΠηH©μžqξτ¦δI\Pƒ ΎQļμž6 4λX °―…Όaγεs3…1έ—sφΒ”G(P|t ¦²ψvΖR%»wθ0{*‹‡,œ©8l xΣ‘¦αύϋs{™ΉT0―‘οΈ?ΎγΎtΧύ¦ΧΎρΥtωΕO‡η°ο@¨ͺΙώeΏ›žΦύΏΝΦ₯WΑBe' Jΐ“Μ –―6β…nΎhΔ1αAΐiŸΒ ¨ΌPήΈ-λ\―41Χro*γ ά6φ¦t2q•.θ€B²Ζi'"'Β"’6ΚIΔΘοψέΪJQs†¨ΓšoQH…Λ-h₯^ΑzΪͺ§Ηpbb&]Ώ1žΪ¨΄13Xwͺ=CςΠα©τωΉϊˆςΑΪ0£ήΘΘkƒδΐWYΝ #67ˆ‚χ5B+\ίUցύfαΣD•JξΞ«Nί³ΚΒβ~ΪΒλΡΐz6γY…~h“―€dΌ*LΠ)μτIo½Aύ’Bι‘POe”k8ΗΕμ‚ڐ]©‘ILpηιw±ˆG$ΦΐYLκΦ΅ωjΑE#‹•‡ο‚5FςρO`¬k&E{…κμ΄ΪΤ}\―bFϋ]Ϋ πΧπ43†α5f/ȝ{ aΫ(Χa4΄ΫΜ©΄.³nPΠ αaaΉ/RΕοΖT7γœΤ³ζΈ5ςˆΠήΜθη5[ΔΊX+Ζ@uœTωΝ½ΉwH•™/HΘή±7?ό`ΏCΌ[i€"Msδν/0ގΐ_ ŒM¦ˆΦΨδ °‰e¬~Έςa,ʚœƒΘΓΌ‘α1˜™Η#°‚@ΕχΒs D?υSοη_ν? Ό’I 5¦°” ΫZ" {C«axdnX¦dœ%Όβl£P„.`64Vfοs‹Iά} ί{h51—Φ"-΅W+YjCx”ΐ•„Yԍ`EΑ’Γ…š°Žu0Ί­ηΧΝ),‚5x ΄π*„„v( ΕC p½8½T‚ΒόΜZδs`ι0]Ά…K΄QF¦’πš§?φΤ{wžHoΌρ–m:Ψl{zˆβ±°xh]ΩU¬KΖ]ΐ§Ή/χη9›κςΛΤ€'ŒgΒ5ƒ ;ŽZδ£ ;X6U8ΟΛ$S*#aγ G4c*·ή @³φΑtˆV+VH0γQj€ ΰœύΝ‚UXθ;Ώσo€iΤϋ…2-¦ŒΏ Œ/ωŒ`Α:Ό‚RΦΣμο?HͺΦΦ‚‚ŸσΨA? FΖςAχ([X¬Λ(₯ωρ4ƒ`T‹«‹΅–ρέ… mφ.3ZYT³…‰Ϊ‰iΛ IkXΓΔ"…jŒ1ηoUQˆ§_"㐯)€νZΌs2NΧω:‚χ.ΫV‹ΗH«] «·±0zτ™ή΅Ά\ nOλuEΓcψU=0λ:<Γg­”ŽθΉ7Ο#@νηZ2Ηa0xγμY„χήτε/ώYZYΌ+½ϋχƚ[£m³€]C!2c’)½OΖCm±κPΈβeφ«λγδΗRη@ B)‹0Ψ_η›nd‹λλ6ލcΕFΊ~εF:@%s3q-#ΈΆΆ!„²/zc­ρο π/η0₯YΨ£pχ‚1MΤ2Ψ¬%θ›ΆΉ4=0|`;Mc£7ΣŠ‘ž– K€ΜFΤΗ(‘ρgLQ>§ƒE$=@·ΦƒP !dΫίœΖs[wHZC3΄j™=Kμtͺ ‘Χ΄΄*Π;]%“@ƒLΑmαΡj‘Jv¬h‚Š1ΦUΌ7*Μ‹k–ΨΫC‘’γ(°„γEΗ:5Σσ¬[φ:έΜƏ1dι όΪΎΜkέε;γ\*Δ ΈΧT a|Š[ΉΆt=έύ#„F†¬€"ro“dq5 7λέwˆΦΎtατιτΕΟQšyύ‹©»cˆ6°π‚(Ω1B¬-„xΖΧ΅ΎC{cΌ›ΪΤ,dF1Fuw’ hSπ·m2o)τ9―‘ŏΫμΰ΄Oy€]^xoΏάΏΠi IZލ]’6Hgέσ1ο|ΞθMb<5TΘ'ŒKΚΨAF/„nΡj✺±Έχ€?ύG€&Φ%Šή2ΖρXΔΆs]OΧnŽΤΙ~#›—kEΛlYœ6ΦΙ"†ΗCoς/ c‹u W_L±.δ²Κ)]ΎΒ‚ŽPαΈx ζ=­\¦;νΔΩ„ΰΏ†»»–X M›T_*ΛaF₯rΑχrCƒaΣ{δpϊφ«/cAο&˜΅7j(ΔΦAGΈ”ž‡5B½-/η±bηΏό±τή'ίBB;Ο/‚—7@{žώQD"KηYζΊQ2rML[“dΖΨIΪ§W‚±Pΰ€ω9zD$9>[Α  %γΰκFΘ€`7ΞΪÁ„ΐQ‹κu GzdŠ1‰2&¬] ˜αΡα> ΘM>Ÿqwκ NηΩ*²qΟ‘YΌLΕAοHΦ>c`PFα ξBd’Ί7Ο0 8O|Ξ<ž΅ΟώΙηS/5[ξ{παtμτ<†Lίi4]¦ν(:ZΟ΄ΆSΣ;‡|Σ2NFΉ1‡`1šζs­h*’™"DΏH§,$£H…uZQΚK3 τat~ΔΨnS~*Ψΐι€Π`Βe,ρΖƒόaS₯KΟ™‚YΖ DŸ'S™E ›IιZΤ£εΈ‡‚ ΖΈY­}gбFLˆLNσďtPύΰύ€oΏώ:‚eGx,ΗFΗ9Ÿ‚ŠΤΧΑΛ³ό©aΫ5%[«ͺΑ0›ΐ‘ J—ΗRXD8ΡΛD?ΜθΖp₯f*ƒ·vLΕ6žρ*`―’ ΆaαΟ«Δ39 Τ­Ι<8+z3xlvPή"θΫ@Ο–hRsΓό…ΗMΑw]ubε†‘ΈΝΝiQgίΕάξ„·B!νάΝ|μ€WΎρΥτ3/€–ξinn–¬XXi†υ΄6SοΗΕK7"VΝ*ךJY:!¨˜ξϊυΙτωMjŒμK§ξjΝ<@Ψƒ^Κ°%²;ΛΣ„Ε‡x¦}ͺWd›AΚΜfzxV–¦PT-ΈJΣyΆ…΅žλ1.ό‘Ή ˜kΘΊ!}ύ‡ρR6xƒyγΦxμuƘα‹{ΗΪ`ηΈΉ§ί«­alΙsΊv°Œλ©k@Dδ·JΊλΡ'’ˆη‚–c¨R€Χ‰SΐT±Z₯z©ήυ0ΚΘΡτΥ?NS/ό{φMJ-FΦ„Vi7|<›q֘ΰ^6Ζ%θ#{·΅₯ ©1ΒdBΕ7bχQk4β…€ΕIWU.T>τHx–υ#€½~y%φ–>αfL:M†&Hsγ 紉ο}υΫi0Ε3h τ΅i₯σ΅λΣιP/ήiΰš Π ‹LY,,ΜXΕώNŠ'Ξ¦ρΙEΌ\μyψAžύ[eΊ7σΠ0 RBθžΓnΆ{μΤ,<@/„c‰Qφm©x²F&¦Q.kϊς(Ε“R™MMoy.ζH:›[†Žn ³~vΏF’Ζλ&Ÿͺp"«‹zΌgμSχ@ΜΖ)‚Ρ™_χBv0WŒc‚I&Υ:XΛxΕπ²”T8Ιύ❫θ[(Je Τ=ν€Θ§BΊΖ&ά*μ pήΎƒ‡Σ±Sχ₯ωs/§<ŠΉFˆqͺ’/ΝTΫB4}6l„TΖ(^*(Œ±5½z™Ϋτ`ϊέόΛ©PωταύtĚΤ1ί\'ΆHeΑ*ο Hv˜d*†σΛ ±~Ά˜[ηΐ–Kλ]ΚόkΡlmN?ΝΆsŒ±ά+ֈž3ϊΝ’­Σηe ,ςsƒνυ$š±R>.Σν»OΌίήρ½#°§€|οxμ}ϊ!€ηυWž "6ƒ‹Ϊ\ν΅`Ÿ[°.κΦT8–Fμκ Αg›ψ†Ξ£CΆΛ­„½dœψsD1°κ—Σ~αΟΣ‘}ΓΑΔVΙD²―»=έ}κhΊˆEΏΎ@aςšΫz#†Β²β<|4=ύΜΣXƒΔWΣήgRЉu¬ipί½ΗΣCχOΗ¦‹gΟ₯ρ±jn‰cW BΜ+LN"3·o2P‰—Φu…°LB”ŒMQΉΈ~s†ϋL‡™=§JPλ<<žBy0±°|γM€%’`P„ͺ³uτ9G oUΨΔ5ƒl!°ΞWy!OUέ‰ΡτΑχ>”ήχθ‰τψιτϊΩΩ[³«—DΆρέCQ’―·+ˆ¦ί~μη?±'W―_A¨l‡»a‘CK›Ό γ±Έ›ΨΨ:ΰσΐX._¦ "J`w»d‘Εf aSα]!@ζ€ΥcΧK!-2LaMεK!Δ~GΨ~ ΡΜ6ί©HDd¨ΨϊΈΚ‡Ιl,τ€π σ5Υ―ΜJΐ~i½V(ΡJ5O`JΆ%σeνΥσγ;ƒ w„,¨π_°UΏ£ ¦²mD£¦ΓΩλ¬Ρ­΄ψ΅g΄cΥ α;Œiο‹Vπ:pόΪΰr—΅U Χέ¨„LΨΧκU„QM| ΗŠε–oƒš7ΑF―!ά̎’ εOE΄!Ώ eΥX‘K₯žρ…ΰ1,T TΖ ˜vEHGU4έ#ηh£Η–gΎ]ψ{Η[G`Oyλh콑Ž@ψΡΒw3 °ίΡΥ“ dεYA9Π5»ƒ!ΌΓœρB΄.HdMΗͺΕG+†™s„O!ϊG_f(xΦ <ι*Bγ―ώΗP`ΓB«{|Σ^MΥvΑΧ―SΘj L 0Ž£ΗŽ’-h’ ΠΊτ˟‡ #ΒMέ{δπP$e Xο±λ—aXp–ά€}S‹ Ά``0Zˆ’νΤ"ΒΌB¨eΰRΕ`8Λ·Ιgχ£“€n-υK9,f+bΝΕΫ.“Τϊ+€¬J Δ6ψ•—’8a#©<―·” Μ~όθρtη©c΄y8=ϊΘ£ιυ3Σ›η/¦ρρkx‘ΘπΓΈŒ φ“ω¨5}‹ί~>cφ ύ0u&Σ Οή rΠ½T&iPusԐΊ΅«ί•k7Σε c`φyͺ ‘`ψ*θXXΜθ+$=Ζ‰‰ϋ3Μ“|AFΚΠΔgƒε η2?™dPCΘUξ†ε}8?Ax,Φ†εΌΌ—˜n¨EYKq-'+€(H α#āϋ'ό'XΏ‹ΆZ• |8Ώ ŸˆsUΓ†¬ζ¬ι±W©eΌωΚk©k`9Ψ4 υaAF‘5·)ί…"Pd>bκ•³nx*eƒiBs).[„Ύ ½QˆWΐtYΑζP†H€@»– Z¦_¦$Ξ‘8‡ήB6Έ<―UΪΌΜu*λΞ Χ3Λ‹πΗΐƒ‘ eΚώήΛAqBΐ£}2θμΰΎ‰ϊΌ=Vˆ“²·P»–Β]1'_{ϊiφa ‚…Γ „Ε’5’Λ5§”ΆLμρλΧR;ή‡ΰNt3‚¦—ΉŸqu ΰύΩ³Β…₯αΣ!Φ9qˆˆνΎΦΐš«c@Œ;.žυΟΉZŒ·ή{Y§VKc€>u§ν7ίΐ»1^g(ΠLβωgΏυ;ιΧυ[Όvε|μI S‡έ–_»ΕJwΪ€ζUAΦJΖξkΌΟŸ»­ΐλC ­c]£§`“”ͺ« …œΰ|ΰ‘&FhΑ£PBΙ4n$<|(ˆd^τ4’(mV¨ΞήΠς+¨²Ζό…xδͺb±ΙšΚ70Ζ„ΐόm- Eψ%бn€=ŸCQqΝ­qƒ"ςΤ½΄;8΅ͺ;Ο*$ Š!w’EϊΖρ­B+[π<¬rοz,ΧMEβPΘ†ί‘zΧm‘A=*fšΚ({:J_²b―sOχ‹°ΖφΎΤ}δtΊώΚ‘Zϊ§έ₯€­x«-θUAδn Vk‘UΚϊ ψ#γ"ΜΕρΧ•)Tz@Ω/fϊ’aAΑ\#λ―΄ͺΙ τŒκRΑΡb-}tίϋ ΧΊ‚΅ΨόΕχ*OŽΨξ›$·Mόwεζdd¦ͺΝƒλgο ­7Ι=+Ll›v,"[cJ˜›π5B\Άά™ΐ{φŽ4?£oZΗ©5Ø-1φ5`›Tδzf„Gΰ4νΘ±gvˆ2­±Y™hkΐ˜( %1‡ΠDϊΘΝ*( |χ‘ΎBY˜”l\λλ€ΠΔο>Ϋαά]Γ3 A ΩfώΣx ΝΰΜλ‘Ζ¦˜ξ0=c)یXWqžŸ™―ΖSιδUT{€H΅βΩt(LfΠœξΔ]οΰ©(1λ°•>A%xx}jYϋEΖ―PΠ£μά‡9ŠσδŸ*Z¬sΪwd±τΩOfΪGαΰ“'YŠ”L9y/Σ?ξΟΨϊ•k‹/Κ@IDATθ₯Π;!ŒΠ΅`Ό7s@gωs/J—ΛΠUωCƒ·VθF/ΞΣ°θJώmrS{­Ζ9Ϋκυ¦07Λ#drοψΎΨS@Ύo@φ>ώpF@’φΰ#€»οΊ‡Œ6ΣXA -ͺ#d›Zstτ „¦Feβy°ΚKΔg4Α°-ΌΆB֜Y W―ꀁšiηΏπe‚Ά‡Γ*&\αΑŒ?φ`jonΔ²šπ"Lc½ά©)₯‡ƒρνOηΞ~'ΫϋΑϊγςΖΊ30άDG‘΅ V}ΐ, ’X»¨tΌ8\κϋ  iςΰr1Œ wnήΛμΓ !„"€‡‘ζ˜„–y˜†vOΝ–γ#ΦW–n}!K ž–žξΪXΎ[μ>˜zo=€R}ZνΉ«²τs7ψο?~μ1#Δ":<4’~β'ήΓΨ͍!hX‡^Ÿ 3Ύφ†r’ƒ 8A8Ε–ν‹XΠnΒΤ$βx`ψnΕ@ΐf,ŒX΅.œΉœ^#³σDQΒ“'ξJG_Οƒ17φW\n:HYΟ3"οΈθ™P‘!ΰŒ°ΘΙπΘ 6€&),„G¦c Uα\‘²Fp ‰ΜΦC%TAΔWΉœή…<Χ9ΊeZΈόB% )#`>Ο EκζΥ"£ζά,ΈFH{η±jΏ,ηρS§Σ κ„δ[ΝμD&’ωσ€Εj[ιNϟÊ\›ξyτρT@S(Υ[Ε†•=κ­ψt<ZφΐΆGVζ¨!Μ‹6ε` λ¬[S„¬’Y‹`jzͺ€<š½‘Ζa€z,˜˜Γ:ήάށβή…Γη{•+-ŸupK™γ ΊEBy¦hΟ k2BZkŒ‹Κ½“π­αΑt`h?ϋΟkΰόAΧο|τατ΅§_Šρ*"°6SƒΓ5εΡlΟΐτΦ<Υǁb¨0ΨΎJœΔC­γmk΄tωRZš]NriΦcυΤrkβ‹‹ oD&`Ο#ˆ1©§EˆώΓ²Cϋœ·ΖМύ€«…χ‘9©ΈVwW7žKβl€J½vφ|Z𙠁r aqbf<έ›OŸόψ/ HΏΔS―C3ž¦|πgΙ¨7œΎωμ3ιΰ=οKΓ‡¦‡οΏ—Ϊ£ι›Ο=—:°ήΦ°ήQ0ρ^έ`M•ΉoŒ{'FpUιΚ₯+!*Ϋίύ?Σ?ϊχΣ©Ϋo 3bEθ&’`ηώ#GR'c!v^k©ρ«μέ%”σfPΎ°Ά±(χvQ;!Θ σ81ΙykΪΤΫ ¦ŽYΏϊϊ‰υb[­oz"ΔJκ“ aΎz¨DωΧΔΨ±δƒ>™ΤCΪy«Ϋ&Ύ og‘@ŒΞΚ™τΑ_ω ‚Σχ‡ΑF"ηρΆξW*4‘Nσl>σƒB»ζηΐ~χ;•ο{’±&ύ1σ€ΰ+žίuh¬· š™y$4Τx9΄ΣvB"ƒ°0U½΅xΡ4b .mΘ!μλω𚘢|ΧJν>^£_φ7YiƒόƎϋlƒŸ…Hšˆc› V― ϊΔ}M9­Β0B½šŠί xž bΜΧθνR―²Ζ θCΔΙΠ •ισζυζΏ3ϊ’6γΧmQяΐuΡΈlh₯^:i·}‘½«ό©XlνΗ΅4>-o’ι±{ϊ…ψ?€υΟώ Όv?1FΤxΡΔ3Ϋ ¬©ŒB€hΧ[.ΜV0•΄°Κ~ ψ^€?ωάg0I}ΓΘ ¬ξ₯w]―yx>mλΞBΧoQP ­φ›g†ΡΜqθ{†πή¬ZYL’JΫώmήzΦ£*°‡νs¬UPlE)=Ω5fBΧΈŠ%Φ 8οŸοŽΐžςέ±Ψ{χC 8kΝlόU (Σ–ηψΦύΉ A‘qzzΖH€8ΜwmΦJη#\δζΫW‘ΐ 9ΠΥᨆΠ}ρu0§p™Οΐ°8*Pcω^C›Έqτ ύV™°yικ%<0`n1„`Θk`§–. izΌκΤD:wa4κ@hΦκ+‘α08%z&ΒjRΡΒ.4+,HΌ—8™U ;F~ŠŒ6ΖoHδŒUθΐϋ up΄‚υDyΑs‚F!>  ϋ¨Cω KkάΑxuzπMGs€~™uΖ…  ΣΧέ‹ΰn\&M­ƒυεmπΗ3ιμίΏΐ=π~ΜΝ"@"d• θ.‘9HkΊ„ά Κ3η’ωΔJΥ›x:ιk5έA°ϊΙS·€ϊ|0€€V1~,*λ Ζβψ0¬Ύ‡‰Θ‘XόN…A:ν˜ιύπ-› 8όΙ …F©dχ€yΠ7γ!Ό{nΑdΘ^ozNŸΓΙqŽBΦ^•~Wήύžϋ'O€W(Xωζ_Ύ Δ!—ΖIUΌNΡΏρ™jšž΅2>MŠαtœzσZ28mηŠ•ΒEΖΎ‚ιΒ,kΑ(ΐ/i;νl@p/2…J’P6•Ή¬Κ;ρ:-¬z֐‚œΰ‹…LΏ| ―P±•`Q Jz6“ΰ@aό€Κ2ύ1ν¬^‘PΖ[‘ΉjYRX‡§FaOa³³·˜ή“O¦W_?ό‰bžίuΫΛ½~ξη~’XγIπJς›kΪ#2aΆ«γΧL}7΄…•)„χu,λX)Υ4·@Π)„₯9κωτχ1ΦX{iOm₯1R υ§R½φ`Ψ€XΝέΜJξ1!$ΖΕδ˜γ b…΄k5_&F‘―$„„ƒ‡χ§τ©_ŒΨ₯©ΙkxϋΙZΥώ±χž1Ί¦ηaή3}Ύι½Οœ)ηΜι{Κφ%w—ά]-‹HI΄lΪμ6DIώF$@~ζ$A~  "²%’)ƒΝP΄Ψ–Ϋχτ:s¦χή{λ~gΆ‘\‚Α₯˜ωΞ™™ο{Ώχ}κύά½0ΎjβJκΒ…g‘+GŽZέ'Β²AόˆŠˆžώ“ˆ n+ιOΏω-jtl§ηœ‹ Σ Bž™„Δ)[EZψT˜RΈι?s*]yβ2 λL{ΞgqCΙΣE…ΑΪo=ιλ՞oX˜ΝDJΛΘϋPEό0(μT£qΧ₯«­΅•`ν¬ŽJ=AΑΣ3Σ/ƒ Ν ιΉ§ΩG΅Χ˜d€…/έ{8œ7πgAνφ2B˜Φ8&‚bƒώ)κʘz.Ό˜N^ΔΪ……IΧΖβŽ“)cΛ9α(σ.ώίΖ/κ6Β3ϋΡΡs2u]|>mMΌ‹f% 8l—Ψ―J#χ²„sιφU"Μ°&k»ΊΞnΚδƘtœJώψΖOνyΡz ul‡s ’Ζ*υΦf±₯θfCwB„…#α‘gΕΊŒ₯G!b5΅Žƒ™Xτζc΅<ΩV™κ©…d*ΰB,ωŒΛτ¬Ί jα7™Ύ8*ŸΓ„κiΐϊ.»zi`εΜΕGt―•DόbΆΎ|όΎdtu=³iΙΦ ZtuάΠ‘Ά„/8ύΠ¨Ή€I-τDΞ»Š]ΕcΞ φ(ΓΆ~i­’°(€7UϋD&(nΥ 7Γ<‡0ΘίΨϋ€?Ώφ|I“\o³χ©Τ0)@dŸT©sΔhλ:GΒοΚ²Αυdχ‚.YσhΥBŠŠφ]ΈšϊΌ”Fήω.֍€ ?:ΗMŸβž=„GΗ/ž‹Y9&%Γ_Mήoi‰睿JoΎύnuΔδ ϋK°t*‘騕R‰P9Οq)LqK AsΈWJ…ŒΦ2ι]lκš+MώέZb8*"~3 œΟh;œ°­«' ”)QR„εŠYΏάΙ€¬Py―Ηρ |κ+ ¦ξΦ΅wqŸ¨'@|Γz@\Αmά*HmH³0(k‘JgΌ7AΣ\*#·Έ­!jσ›κΫnΐτJ}5₯Ϋ ~s“·΄ΠšΔmόΉσˆ-)Γ'{•4Ό 0γ“S ω©Ν±ΎϋVy^œΗš ¬₯ƒ[w`_άr˜Š ˆβ·‘εDͺœ]—1Ο’‡ΜQ>55Λšί‡V0ΘjŽΤ„x?}bšž¦_"ΪΊF˜0˜οS< TΗΣ[σΈ{ΰD r¦]„ ΄nt+ΉςZͺ棑°Δ³2νΎΞžξƒACŒϋO™3*€:Ε?~–Ίϋ0s{h€tΓ*Ζ_}¦C­[$.…XZΫ!ΣχΔΥ€›GΎwΙΨ"iP‹°ΘΙ@[ΉΎœ}Y&ˆu•ΐxut2;A8‚‘VHtDΰΩ„ηπGmΫibbξΟDl π*£­‹ΣϋcšpaMf–«¬)琸ύξƒ e΅όRΨ“ρΞMσ!σˆυago3UγZzκκ3(U¦Σ½koE?`0Η‰N"ώŠΉ Ÿ‘εgβyάΞ„aαHXΕ„…h«”}4‘„±WMd₯S@sΒΕQˆΙlΗt»NΖ`iSzoiΕ@I΄ΛΨ0Π/Œ+J ­ β=­!*E€n‹™CΉΒgΣr—qάSέ*·#₯<b­vΑUξŸ0fV7ψή`ώ΅D(TΕ\cΦ.ΟΈΎψc‘ΗΈ‡@8ϊΐ-ΓΜ;MΗέ±“ξc0μΰfϋeΠwήB|&ΐP0ρ;α[83ΆEψβλθΗ’[dύ Έ!ΉΖNΤΙ"μ~φε―€ Δ=Ϋ“eκ<뀝ΠQφ>¬΄ΐͺ°ί;±_Z1h―ͺ²5έΈ~#υžΎΘYΐڍ¦P*‘P˜Wθ―ΡTX@lΓu7U±‚g(„XK '–œΐ7τC<.’ή¨ν@ €i•"νβ¨']<]7ιAώΥ‚…cΉ~όΚV@>ΒWFΙ³kΗΏWΰS[ Ÿό«7HΪAΗ7ζο - ͺ’mΎώή¦δ•™*Cƒͺkˆ¦y},Λ`Bτ³ΤG½σΌΔΆ­%…Τ£"ϊΌ‘ι™[di$yχ¦Γ2PŽΰ#±\…πχ]θ¦―ςΊΟΘM08Θ΄νcBL=yΩpΧ*qΈOόΓ*›Υdς°>€Ύ¬ +ŒΔ »fί0γƒΤD€š»%4+€ά|ϊς™τχΎώ›ιϋ?ώo\ͺ¨ςŒ»™ σ³Α4-Β$­―lšž˜+Z<ˆΉ„IcW¬Ij—΄Ά’E‹Ε Ls ϋŠΎuv‘νf,d'!έؘ‡ˆbήGX˜Η…«Fg„ŒaχrΘ.DΎˆk$+Ι\ΐEΝL`­mν _+Z+Σ‚TΥ–Γ”η`(ƈ―!)@CΪΖ Φj˜΅’?΅›ρ¦ΨΞAΛ2Š"ώ`P "j©ΈΘ(:eθ4Ԟ…Ζ‰‹TΚN5†‘ƒψ4ˆ³=ΘΜ[μ/kΛϋ„B“%R…`’ΗdT½jΓgΖΐޘϊSΒ-Σ »•YΕd ]Cγ% uLƒ‹€Ρ,€ΠV0ΝυƒκšА‘πUŒ΅$ΛέΜτΔΔtj=Ρ“* €΅ΝeΰΟ`pΝ2λ΄­PkΒ[‰λ&ƒιΨέΟ¨’Ξύ ϋ¬£1GZQJˆϋQΙgNΒΏH-RZ0LρΊ³bm5ηV}Ά=Σπέ»ΙΊ§…U‹žΛΈS‰ΌŒΰΩjάC3Λ(%π2‡¬Eg²λD[¬ΉϋRcd–/k#,£Ε··ΜτQ!Μ}έώv±b’2zK¦q₯Έ ­wXσΦq£\ΔΚηδέOkφΘhΐΐ΅;R_[‡;U#VŠ‘ι RC q2Šη»ΫœOΖΑΙΒ{κžαhνβΕz{œν6)ά“ζξGaΈφΆ.4νd5Γ}ιΦ­Ϋ‘ΰΨ挭 Ζ1—ζςήE?°ΐω<ΡήNκώp?i――`ΉΙ£φ‡ (X›7Z’–xf‰ ξΞΤΰΠ(©ˆŸLgOυ‘©ΛΔ{ιόύ/|NΠ-η0j¬FoS_zβΩΟ±G*<ζQPx”ΧΐI2j 2Ώq&af=ΫώςΜΪΏ‚ŽO[ έη.c±ΎŸ–Gn._’}-$*Β|ΛdΓ‚’Αν”l‡6„2``—83Ήε&s¨Ϋ”}lσΌ5s{sχ™Τwκ4.ˆΝΰͺΤ{φBΔ°¬ρl-γΥΧ—λ![©Λ’'|-ΐ;Φ^ ΖεA{Τ”ηΡΗ}h]vΎ>·ΉΒΝΜKk­Έ\Ό°Β†ΈƒŠθΈ'Μ 6₯φΜΫιόώ›τΔS—·Ώρ‡©+(ΝςΚ πVΈ¦«ΊHzφ΅p‹΅ώ Ηl5Άšώ]!»œοσΕΆχŒYˆδXT‡‰?U΄(€ΈiΜΕ-ςvrρ V,oΙ„ήΔ ΡΟpίgQn2ΈΓΤξadž ‘ξ±} bσLθ±QѝbΓ.±rλ™1χB¬[yœeγάΪ{ϊΣηΎϊŸ¦ο}σG nM;+(§“ Iˆ5f¦Z…β3m‰«ϊΈBξ€βλ²b†%ZΜ%Ϊ€†π\XΆΔυŒ'V*žc}…a.8^œ ΞΕΧB‘{ΧE‘ή§\γΘ ˆLŽΰ>³p―M0Ε m›5 ΪΒy4fΔ8€°WΗ―l€ώΎŽl=Ž ¬ΐ4cΨ„€«aΪΔϊΠFNΝ‘„YWΖ΅FΡQ"+hΥΨVlT’‘7 ’“¨ˆβfΓ㳩Ώ«-sΑg^wΎu4awp!jν>‰KJ5ιaŒpk0;’ˆτήƒt¦ΏεOdΩB#ΩD¬G ₯![ :ςΚψ£τpπQ*¬jΙ=«U ¦Δ)ρqοbn.ΨEΓ,sB4ˆ»FΟΧΣΟ>G'pψAzοϊ½`(ΖΗgHγ8ζu\Ε­’N9;[ͺ ΄»V‹›wn¦Ρ‰#©Πr—–JP ŠΈ ψͺΗ_ά΄š›‹kΒGK_‚Ώς .:;h²Y‹„%όΦ‘ΐΦI0»―±±ΡΤv5:.=Δ}m’Έ‡j˜ξƒΓ"n2οMh”Ÿ}κλRΞ~-„¬[ Œ-γt#Π›ύπ½Ϊ!k HΫ2‚'ƒΒgΦC,οsρ%H)΄"'ˆŸ"~α“V?›xD«‡‚Š‚S«EhΚΨŸ7Έ3σωΞΪΞƒρ2[ŽD=/νE …Ϊ/ˆšΦΗ"νΓ‰v xΆ?- †’Ή₯KΎ”1,₯*wUjjΘ₯Ϊq–)z1sW.D › :G&,η.C¨ζP`•ΐ)88Kύˆ–μΫϊUάΓ½ZŠΡΖK˜‹‹©›‘λkηΈ₯«f‡ή¬!R,λ_ΓχΊ.Κxκ~’F^†Ι%Υ—|g-Λ²₯?³λlkIxΎ<„ϋ%,€Υd]"΄³¨ΫFΦ5‹{˜ψb7a°‹±Rόθ'―…Λ,n/ΎJ―Βρφφrν7Β°GΥ`ΞA]Kmd₯Z^bn{½ΫX±κ3ώΙΕ™τ™ηŸ…©>‰…βΜ­Γx)lθ―m–%ΞM%W#hŸLSI“I‡9Ί2Ίm“Έ‘σ_Ž ₯+IcΜ³΅­ζ4½ύξ#κl¦φNΰζ‘hKΙΠ")ΔΨdšα tvΆΑ„pΆ2φ ˜ώ…„t7Γ½|p!ό₯Œ1…τ$ϊzz‰έjLγFœ!έ¨Œφκ* sσy„’h¬Μp~jΠ’ηbFZμ½VIλcΤΔ«Ύ;M`cvfαg‡ZHsΐ΄VjΡΜ#`ήΉyψ3˜]2Ν0έsώ¨‰5ωBΖ,RЌ\μ€LΦ&G3$»8ΠΥ”Ca’ŒΗ_ό<©t{¦pE’Λψ΅’ͺl‘ ΄m–XtΧγ/ύθ’’Ή’y†pές9`ιάΣ/₯7ΑmU>Λ½s¬©{‚Ζσr Ϋ λIΈλUc±«΄:8πZ†[¬12*"‚ρ£ W<ΝpW¬!¨ωΩΤuφb0€μe][7υ"N§τπ/Β{δά­Χβ…€ρΛxΟ³~KΛ€SjooMm€ƒ/Β’Ν"ΐόCά/£σε―ψO‹‘όΎsuψϋΐYΨj8O%Xξ–IbωΩτω/} «L}*©ϋVʟΊΙ>Z›:ΑΌ¬joQX₯Ψ _‘„?ΖωύS‘%u$Ζ?°Β7ίe]Œ9qζ³½π“L3Γ†dγf‘θέβΏχ,芬₯ήΟ>eŸξ‘―μ9ίπϋε\ι€±  α²87Zxώx5‰gόδYτύΑξ™ύΆΑ›΅άnšrϋΟO§Ÿό ™¦,!5μωτ$#ݎϋmΛ {Ž2,ΖξΟ+80¨8kCήƒO 5uiuζŽΖΰŒ%Q„θΆΚ€\•ΐυλμ™ρC Αφ‘r‡. ™ΰŠ0>ϋΌk§'ώ²@ξ9:MZ2δΩG$‹8֘ρˆξΌZD}άGΗ―l„C_ΗHΆΗΏVΰc(Χ•S …Ϊd0&FηΒ5j²‘Ϋ‚BτΡΌ-œX°ͺ¦Ύ”μNΧaB`Ρή–™ —$_εjΞ@Ϊ­]ΔxΐG2EΥaοΔΫlY¦ήΤB`ρ6ƒIu»Y’Šς. Ε•+ηΙ„Υ‡;Fh6gg΄ 8L¨ΖΚΒjΊyν>ξ 5APd Εά2sΰθh΄^Θͺ­ΰΎtτk ’γχ΅…VθφΫ©ξP ™Ακπƒ½ΥΟwΤ3€΄Γ2σΦ‰pΎ«³hcΝβU £ςίdmφvqŸ ί]“φK ]#ŽW)–7?{ ϋΈb)d¨Ω_Εε`i™@SάOΖΙ γ+‚GΡ$.‘EΥ"S„…Δ b‹·ΝΝΜF|; nm΅T E,±26ϋ «oˆ΅9Ω‡K…8›5)ΤMJf‚‡$†χŽVτ,i‘ΰ…ΦΝε`Α{-7±B’.-ΤeLWJέeΦ<MνΔKΘπŽ[ΣgQ±’’q`kΖάn:¦Ÿ qΓή|ˆΐ]λm%{\tœh!Κ°‘a,>*%ta›@coΪμ2κͺh΅Ρk¦W~sh0=iΪΰvŠ4CΧƒ…g όeεvλžθn277E½—J4²¬ΞΰΦYΝι±8¬iγ‘ρo†š«¬‰σ*`’Vο΅ΐ-!$šymƒ}ρu$¨zΖd¨ΆΉ'+ŽŸ0dό–BE9Έslh!υφŸ’ΠλΑΤXŒ:zpΏΜόθeΤ"Ψ8¦2Ξ(Ψ ά$C('mV -‰Ί0…R@ζTΐg^›ΐΨ nn₯ΔώΤT§†ζ„[ΰΥσ@«ΦžY?χ]Ί’{κŸα;‚Πœ φ΄€™,AJ(ΑzWΩΠ†2ιtΚΥΐΈb1ίFj΄>F>4€ Βaε9Ξ γ άNUγΝ°”SU‰μK_ϋο°•ωουtλ΅oQ3‰-IU~` ό.ŽR㏒ƒ³Ϋ*WŒ&%…΄fSχ€ω…‘ΤςΔ+ι3_ώ:YIœ€±ϋβSXό†ψž˜:,1eεZ”aΚγ\Ϋ$+PπΝc<‹ωX΅Tfq¦u‘ƒ°Δ:{ή΅ρpΞ%cƝΤ.uο½Ξoώ+ΈkΩKμΰuΡβ.~»©Ξ1» £Ν'ύM‡; :Ζ¦AzηšΨƒxΗσθγ*zΜΜ%]Ξό¬’Ο4ξ{dnη*ό©<©ΒςρΤηώ^Ί°Γz/#LΩψΠΉˆOΒ:β< ξŽ~θsia* >Έ—Ξ^iŽώ 2ΧBη|œ‹π±„ŒpG!œ£U±„φU9­Ο,mΠOϋςόΈ*ŽWEš+εlΩ‘lπ«›™pι|<'Z£ά?qΆη#O˜εΎγΧGWΰXωθzϊ”V@€₯¬‡\-α¬z+c'b4ΠΖ’UZ¦(Χ.Ί-’ϋhD%₯J„§f–Ρh.₯α‘ΡT ²ΙΑŒ˜έ₯‘½ δSξθ Ϊ† 1hPΫJ₯Š·*±T“αi©Ιt`ψQ˜tΥblα—$ΣV¨ρ€^’ŒK‘y1‹•΅(BSŽ W€@WiΎ·―-¬"Q΅5j‚Τ¦κꒈΫ0ΑŸψΕΓ6γbV…av‘,S΅Υ\Ϋ«ƒ©>ΥψΟΝΟAΕ`vM<ψζΆTHυ‰%g˜LCζšTƒTa˜IίXB& Bjƒ46ŒφτˆvŽͺάψ©Kδ$€3 Ε¬‹Aše­ΠΈΜ3d&2e©U]Ν›―Ά&/ӚNβR‹ΰTPCI@―šycrΠ ρ“ š’u "`'ΑUƒιK<$0šΠΑΝb|γ;ήσb»άZΈδOν?!‘±ή/q8€`C6ψΉrQh@&…Ιџεγn_Ύ$ 2•6θΈ$jkmWA―„ριž’α—Τρ’s9|6²σh Αš^sΡΩَ° “³UœΊO·§ΦζΞ”΅ζ?~;f‡Θd΄CiUzcR)z^˜ ™΄m­.ŒΝ΄£ju{ŠμAΜ­wΗhοŽΙΧ@Wέ\$ψΦ:)DΘPu!K±H…ί1π­ΥΝη‹ˆ‡r~ΞhB¬aέύέ]5‹ΆεΟ&φpωΠE/‡«–}ΜΞΞ| ΟΫξ]ΰZΰ4χœYpc+,gέƒ40ΘD CΒ†…EΧ—!λό7ΆαΒιKΧΕi˜τ³5uΐ#ΛαVΉ 3Π†•Ασ²Γ{Βψ«EkT¬Π /{₯˘M…9ϊΞCΈΥ²dΦΈmbΖ‡xH†Έu¬OkτΏ‚P°š6κq9*₯VΗ<5:Ζ(6JjYΟzgΎ‰ RΣΈZGgΑdΧΟ%’Mμn’νD(ολν3|‹ŽŒ ΓDW²>dOB 3εθY]tΆ6Q#β€,[ϐ˜ΰάΙvζ€πΕχe(WϊOυ„Ε¦Šl|9άψ΄š¦ΩvžφžΌΆˆ ’΅‰κ›šY+”"¬αΓϋCΜ“€g„`ύψ΅ͺ,»a dS/Krΰ-]K›°8½Ξ † ή πgΝ„1]<‡žΖ ”-O>ύLϊο~1͌¦:ζuλήkΈJaγ Κ’ ΅ΊCωςΟΐxJάͺεωφ'\P)1₯558JΐΜV Ζ―’%k{…E5nv K[ŒO‹Ϊψ΄½HΌΘ©tζρ—£0€=š~|ΉωΧ³-ChΜ_91Cΰ'μ"σ(cΚGΑc2“64χœMn]OyZͺPΔψ˜³η@ό ζ_…PSCIΊtωjjΏ@Ν€ίω§ιΧ_K―ψϋιήψγΤӊϋ€JRa1ΨLΖ6Γχ6U>.&‰]δp₯§ΎϊΟ•^M₯5δΣjnοLC?–qη_Π‡Rφ»T«#=χΠΣa(]ΜΨVΘ9UΣn­]#=γŽ?T0Ίό¦9„ ζΓΧl kιςϋb±\/:Τμ%.υήΈκ>ς†uQˆ»ot¬βΛLΐ l0`ŒœJ€°ΪOτιƒτΓ•FΖ‡»πAϋ⅐MπRq‘a΅‘4‚$΅m=ισ_€ΏώΣ ·ΞΆ”·aΡ]πγ4ύ°ΰδθ‚™§-­Μ"}en‘oΌρΓΤxβlΪ+€ή ηXaΝ”ΉΊO)ˆ»4ζšΑ΄ψWœͺrΙΉ$Θρ¬+χΣ}όηΒ2OΕsΡ&pΘ-ΐ„{ Q¦=π‘η,£K\Ώσ3λ–…B΅@f³ΰΟρ+V@nεψuΌŸϊ ˆ\pΟ†ωQ›΄€oσ>¦»4ΐW·…Fκ˜Ήjƒ|ζεX9Φ ΄.ΖΤ,)(ΡΚHΝ‘EΗΒ±BΠΧΦx‘T>ZΎ“gOBΌχ lοΒύ’β αǍ¦ ₯UΪκλξH–ΥΝffza=°;IFL+«ΖΡΡڞ޽v/ΝΑ„?χΔ9ΖΊFΏž€y5“ Μ0θΗlZA¬y_€V”qMβξτΔ₯σ‘ΡuΜΖ.Tθi:U5§Υ0φ;hΧsR.ͺ@/ΰ7σϊk"S©JeβMΫ[ΑÍ‹ΞejSš#)ζxΑ : ³ίJ]',^&3[…»uRV±*υυv’QΕu€4“fSΐ2½ZgΡ¨‚Ά¦ΕHJ4™Φt0 -jΑΧžΣ7άϋs¬ασ£Θ,ΖVγV'F©?4Kτΰx‚J¨ψΡ=ƒQγY5ͺ|%u2Ζφθf !°N„pΔCά$™†ιGh²-έΨ"žAΜG_Cψ%"Φ Ω5Ύ…Ζ%Σ«;.­VΊθ.uˆ8Ι—0½L­n€β/šOτ€\mEκ½Π‹Rgͺ’―wο^O'κObuΒυƒbZς{[Tζ©»FLΞ ­" ³L L˜„O—+ižn-Γ2Œ30Ύ"R»^ΣνH˜pηQ¬*…ωhω%ΆλD΅ αO;gӁD]ΧΕ`Ϋ½Ps—ƒιdΜ¦Ρΐλ΅L*Xγ›j€‹΄φλΔ/1΄ΤRͺΛ^aͺ’α…Q–I6VΕΧ"Β9‡!wΓƒ,ΔOa5»~σ.ξKh‰ Ϊf^U0ΥXφκΫR°‘«@ΰEΰqΖΙΘ\°z@n/ΔTlpj(°§@―ΐcΪd…•eά‡–py¨%Ι¬AσX+wX{«/s>#^ŒΆ^₯`Ω^y5ύρŸώλτΪλo0ξ*|τ/λ1‡ΛΨpjeΊ >W¨r€ώ]&ΑΘƒλo§ΪΞσ©€’!=ρΒΛικg>Ÿ~τΔgΣΏώ/5TPη¦w.Ϊ  έΐ8Δtθz³Έ0“ΆH‘~ϊ•τ•―bΎϊ°ncρf]-Œ΅dΔ[IΔυ, B*€m_φ˜ΑΟQ¬Ω ‰αΫδGeGqEE±–:GƒάΕΒ,―£υ 7*匘>?Ύΰo|p#ΌθŸ£οωθEa"Ύ„Fd’έxΔθ‹s„X;>‹?νί£ξϊΩoΐ†0ΐ~ ρ#Uί:V“aψ½VXί_ΖGφš,c=™¦;έ|λρ“VdfcA<φi§Ί)ψHˊˆ_RXΟΰόzυιφ­Ÿ€'§Ώ N>‹J/„­JZ²€|Ζ\2^η°Ιd2 ަήsύ0lUi–ο ΡΘ™ΪT"₯‹ˆ=‡Ζ³Ίk V S(Šξ°°˜–5;3*—•Υ€V¬47οέ‡x΅£έ4pNQώ.Pw)ƒδ­Ή&G@Γ>d₯k΄ιf)2KΥ ΄L YCUcζ‘‘*5_‹‚i hKu7*#ΰ4‚«ΡX*ό¨_%ΐ½—X‘ύϊaœ°>AΐΥ2Ν€ήJΠύ‰Ξn˜]ε!f…Τ(©ƒxΚHΟΟa‚•™2Ÿ½Ϊb-%fΝځi5'ΊνΪ¦ZIc φ-θ³bΜƒTTΒ€†^[ϋ Λπ š— 1g6<ˆP0>R>ˆˆΧ%€2~†°Fq7Δ‚€{_uuPξ Τb#C–eΩΚ΄yŒEβA;ΞG‚"%ΰyφΔ”¦΄» ΅K•μ‚Zά@šSβZΪO²'0κ€Sν@ϋΪQEP%1=Z" *^Ζ•D‘ΡX³pEΖ-™AΗΒl%†2\°›‘)tNQσ„ώά»ΪPΗ”1RjδX_φ?„η‘ \  Α:ϊ|¬ sήEΞ„5ήsΟ.σ3Yxτ¬±V‘QŽ}΄ήŠZωM„•ά±Μ6΅Βy‹@pύuΣM΄ΒΫ›ΐAΫν-‘6~K&tiy+͎ceΓJΉ₯Sγ~Ÿ»p~;Χο¦ώξ“ιΎ.Έ6uφυ“‰h™ΰγρ.€ώας†ΐ+ΓmυΞΎ2T{ΊMτ­ι―‹9Σ£γ™ΆFvaΨμvk(&Μζ*cI%ή Ύ~λΠ­'f½žΨ&ζHΜΒ ΠFΔΊ`M©03Τ&λf-r,KƒΛΖ.’²v GscU:κ?{Iy\Š *±,2Ε}\Sΰ΅Βϊ>Έl1Us‘;άΔτxΈg™Β3‚kjjΡζ+ΨΈ·ž£yΞ€![˜³Ζό°vΞ{‘λ2Nβ‘-¬UT Β2 ~@Π3F’νq3ϋΆ‡ΕΆ―§'Ύ–‹€uΞLΗΗ@}™"¦Ι‹δΰ§φΦζτ?όχ5‰5–œ¨H_VY̌"e•ΑνΙD*€Ϊg4[€Mλˆn4 π>g`ΆΕ&H~°»8ΥϋμΩΪώΣW>›>ϋωtύ΅ο₯‘·šΆ`ΖΛq}#ί‚u{¬_XΉ. Λτ΅ψ7ΐΰΉ}ΰN,kΥΡΕNeΔ.ŒY΄κΫ{άƒ·cΝδtΖ +γΞ΄Υd]›žJs“c©’B˜Xν¬«σό«_N}'ίH?όή_₯w~ς—dύ Θϊ4σ1‘Gσ+$»ΣΙ'Ώ’<ύΉΤ<[‹Η Ϋi^œAΧ—D29φ]ω\ϊώύe:sωζgœJ-sζ& *Eΐίοπ¬™ΠΔe+…yΒ§K€˜ήγ?wΈΊβŒμΪ‘ΥτΘbVˆΈ\ΗΉ‹±±Žεα+Ϋ^n±Eq†X…Ώ­² /Ά7~Eί±ϊτ ύΥ]I«‰ΜΌ}ˆ―½7\όόŽόnMΰn‹ΎuGr>*2΄ΦοΡ_JΎτ;©χΌwΎϋ'©œ)μX‘^‰Οβ­»X―Εq?-CI·»«άΩτcy~%έ»}$ ΖM‘Δƒyُί; ᱁ ³*g:Ο;]?λͺε5‹CTcΌŽX«GΌj‰U°~„Cι"Λ–0cϋRωhu)$ƒ!gm|ψχαϊψϋο?ι»χoϊι7±1ΟΎ‹kŒΜ?χυ‹τχ‹άσs;ψι/ސŸ^“γ+ŸΒ x.ΗΑρΈhLΐ,X IMSΒof™ˆκμό"‡ιYRδjžζ• y7B-­―3Έ8˜_€6E;M­?φw£ΑC8ΑO|ίν bͺahd°fpm20\­5F&Θ’#!Τ—½mζ΅ ΤrQnoωΓπŒ€·ίΉž._=G–.9Α–…Ν₯Ν”DΎυ2ί$ρƊ˜rRw&Σ Wam¨Β½jtlšμ-Ԋ€αϋώk?Ž΄ΐ ib|$–Rc#Υΰ{–Ž0χ‚Δς \₯’‰&ud1ŒΗžΫtη1ΰx']yκ"q1·3Ο^δή4ΞS0Αj`ΐm¨…Θ‘ΕΓb6­u„‘Τ­8ωΨ>BΈsΰ!S^J†$Χ¨’”,3ΈΊμQŒΠάζ»[d}‚πλ\ƒ›‘(}Kρ΅`ΊΡ…φ‰1ŽΑμ5j4ΏηΑ‰ MQ© œ/‘ψΨΏ’1©`ΖΩ_aΰ—JF]…)W #Βΐ“Aθ©ΈIx’¨#γρ’?":‰„DBk wnM!:’1³]έήτWxˆ`ΚXwΪ₯™|ΰμXΖ+ŒΚIb&q,©iŽ>Wp#‘j*`[a"ΦaΠ ς©Œl„u+¬+³£P±‹œ0Pα›Π‰p“Ώ§Ε†x!ΗΝXƒ‘c|2¦€•QΧ-Ζe ]’œ5NXΑd)‰]OŸE+ ±φ圡pΉ66¬P¨π'\J4‹P»ύh<>ο²€ΊΗμ”½Nb«}‡ΐ¬Ž>‚±_N#ƒΓιcgjφO~r Έ¦ΰžX†z\ͺ€«sχŸΌ”zzOΐ<Ρ}*u΅“ά7$cm\σ¨#‚°ΰ›½f—±θ3nMŒ)ΰO‘ ΛeUΎ±r:n-  "5τσΞοηjΥΗ±ΖδT" €Qh'ΰΌα`ψΡ pΎ–ͺ‰εzζιΗΙΆU‰cχ=’4ΐP+xŽMΠ?ν 0tut₯~M΄ΥdΞCΪ†Q_Ε΅ΚL{ Ν/€½έ(?‡346 £Y1!οqώΞ‘ ° έΩ•Μ$΅Ι9XΒSCΖ+ δΉ[U0&ΒΡ21!fΡ`eΪΊ 9ηEό]€©²ώ‚Dη·%F!gZ¨‘aλ2V+ λJ…C-qe0―EiKL  „kž m6 ΣΞΚK@ϋ\Q[΅cdͺ6)ΌgͺpαS8ςε>ΑfΖg­!NΚƒγ;ΟΦ6p ΕΖ> ©swί₯˜NpFΈ₯Ύιρtϊκ‹μ'…γΐ;χΎχ'‘τ`ƒΚξΦ7QΡΕό8³Βeœu…kΦσp ηŒ\e!ΏLσξωPIΕ ’FSqνi€{΄ώ1Τh‡OόeŒτ‘βθw'­ Γο½–Ί+Sqn€0φΖy4χžLΏΥށ{Ϊ?’n:BŠ]ΑΨ«rΞs–AJ)ΧCΦVwΚ=Χ@†”•R!Uΐώ+l=zσΛ eM…‰ t…16qQS ,Κ#6¦£›ραI:ο–SИ’ϋinύ―ΐΏŒάsξbœ_†g=γY2r|NόΗίμ%ήτ+>£ω†<ο~”ήψςͺ8Ϋ}ΰ7Wd°iΑ½χϋΈn2ΰٜ=γΒBτm·ό°‹ήkΟ^¬xBoΠ§ΊΖϊtωΉη[ ΐj†XSφ]‹—E"ΧQ„h‰Θa΄Ψ¦±l{ΰ\qY5πϋφΏρkΥuΈm6₯:¬E!ΰ˜ LκbεZ[L0ζΞ|#ύ2„Yώ3ήlΎ*¦²Yk1α<π₯ψQαuQNXε•XwΟWζ"JNxy½'΄v}°ξΟ—}ύΌΧ'}χσžαΊ΄α㯟uνγχ|βXŽnώ馏Ύω[ύ=<Ν«g:^¨+π..΄ύKkQ΄¨ς΅-<m©q0ΰkdΨQ›d&΅½V=U›[„ ΘΨP01‘³Ύ’Ά1MaZ― «ΖΒIcs3ƒ αΣ§λοέ€±―Kύ½=©Λ€O"†α‘A¬'dΥ"ίώξ'Uς«Τ 38ΘEXVΏυޝτςσΡfKΊKp+X)4ΊŠ‰p$:ZC41Χ6T€vκΰέΡΤΡ…ok`R#όΤ“Iͺ¬”Mha-ŒVTXIμdΈ“εΠ0χνd2UαpθQͺƒaΊpυ<€ͺΔm£@&•™™HΔ››κΏΞ0 ΰxji48Uν©Ύ zx/EΧή½y-έΖ:2JΏ/ Β­’m5nEm§Œς³Έw\ΊΤ‹ζΎ”ωοα³™Ώx!Υ™i Χ™|4uΦ•ΠΝ§‘ζ»5? <¦Ÿ0τΓ₯‘{7 _n±©%bϋX—Μώ"”ρ©«Q 7!°ω.npΙp862μ–§ VžΊtΏϊͺiΟπ<‰:H!“YrhaU‚Χ„a ]Β΄Ώ‡S°{ΏD’`Nΰko/ΊΥϊš~8#νͺ‘Φ2&w>Β„γλDP­2aZOd”\+Σλ?2ζ*σ/Ν4έr5ΜΈ΅&ς`Št\[Λ'CΪȕ°Hk[3gW\“rΖ3α¦Φu’)>‰…ΰτYͺ“ηR;…11pS=ÁΘp‘c¦Ρ@ƒŒM·3­ωξZ¬I¦¦]ƒΑPJ©2οΎΣz/ζ+s³…pΠL» ΒπβrΔJττ΄₯^Iλ8¬cMl„ΙΡ"V]WN€y„!ŸΔzΙω^l 87?‰ΠσπΑΒΞRzγ­χ—Ύπrκ9ΡB°λγ+HΟ>}Χp[ς}Μκ{Χo§χn  ―D@hG)ΐ>ΐ0)L—’Ρ֊€_Ίϋ%#TΕ9’Q/#NΘ”«ΛΔsΑΜΤ²žϋ€VΆŸž{ξι€Υ'^ε|O œ±ŒΫ΅k’Θ¨1cOtΑ“ΑιζB‡£"x%˜EζLϋͺΰŸ1Z¬%k³ l‘ZΜΆ‘Π―€…R&83Φ]‹ΰŸUϊŸ\ζžrNŒaβώpZ|Σ†K&ι¨—wJσΟόŒaΟPmΎ?U΅τ‘Rz ΑΈσθ+„…+"”‡η5„'Ο°›o?Ό‰@m>Ί‚…Š•βΜG™”οYa B‘=nMZΤΖ+­Ό:Ÿ~ΧԚNž]€'[ήωr_cίi!ŠΕ₯…wBλ€έΜtν’NVƒ•xDΏ>ΊΗΘGΧγψΣ§ΈPΤ QP+deή‚}ͺΤΦTSW@χ |‰%šΘQXFfή“έh(1£C€·Ιϋ^d@EΝdζhp” n\¬ͺl^}ωy,Mi¦~Ž”–¦όljlBƒJpιπ£τΤ³γ§lP[iκνj!X|mmg03ΧήΎžΎφΫ_Ω€τ7?zχͺƒ0ΝΒc­ŒΠΜϋ&F7}“U$Ω–‚DŽ9Ε ΜΧNΐκΰ@!Αά₯αSŽcγA €ΙοΔzγm\`¬μjλ„§|ύ₯‡ΛΰWμΠ`‚ψt―)ΧM…ΐς•/ρšΗRt’₯2uœξM΅˜³ej΅¦θjσ2³b-²>`ώψΞ9θB£‹Μ~οƟ4Τ·‚œΙά‚`֎¨ΑC‚ Υgxt,άΜ”³C0ošξΉP·SΌ€@τΐΪθ*g1―Ιΐ(ϋTͺΗνhfΗx#χΏ~™Β2c&h_Φ±λz(‘—Ω֚€ΐδI \tžΐ΄ ;ςˆP‘εά—pΑm!=τ …'[ΊNh’Mρsΰ―λbΚidI‡Δ\·μ‡+\C δ^ΧΣχ²°β+γυJŒ{«!ή¨©λ$ΙM^OυΐΑσ/.'ΛίkιΏyϋAϊΞ·ΎI!ή RΕO¦†K₯τ{Ώ‡ΠΞ£ R±`{Όd± ΆΟ™dŒŽ‰K|—Εύq”±f‡ΏωςπŠ+ηdψΦqΗG&xΈξαvδ^sγξΛ'™(0ΫδΊΈ+Ϊ‘ α%RΪ²^a  ½8³άš)‹Έ•5ς~{5sŸϋ°ΫœΦΓ›*«+qΗ–§‰³:Σތλ& œι†ϊ²ˆ³~•λ,8{ 2t›jH₯ ^ΩΕj;rχ άcϋRa+Vyϋΰ{…OέΘ„mŽœ}ϋ6?IΠeξ„~T±Ψ$Ν3ϊ±/Χ zlΑDΫ’Υ€KaΣ„ZSΫZΑμm1ψJeΦρλ£+p,€|t=Ž?}J+ ώ('¦ΥσZΖςς}1 >’Έ4νί₯ΥYˆΦ΄ eΈMŽ€θΠώi…ΨΑΧ¬C΅ ¦ƒ¬6`¨ΛΠΚnΒ€i'—Ϊ°ˆΌCv­e…\ΜΑ- ‹BjKΛΥΤ‰-aμ ΐ,­£0`ρ&Ρ°Α¬Γ€ύθιέ;c9w„e,’vλ l‘i­ͺ.'΄)}λΟΎΝ΅Fͺ²ΓζΚΓuČ5W/]ΖΗΌ„*˝ι«_|!ύρ_Ό†Ζ€m&ΒξO0V2κO>1Ν\)^fpΉyνΝV€Vή@άΠάΘ8H J«ΣψΨ\zς±0"G4Λ9–χέB+? #Ι:»0:ŒΩ ΌMΜ†iC·iΧΤ”--­hIaŒedyyY‚…q h€6 Œo¦v7‚"bdœσκ25š[ƒ)σ³ξ]`π`NEδ‘‘ š#γ !£`€š{(={"1͈ΌDtW1ž₯Gq'‡γaZY\ΰfMί)CmΚζΞ}Β‘Ώi.žΎπ^Bη ‚sΘ$(ŒAβZ&xΨ›?!~Τjim1Έ[ν˜„4!:.ο6A€•ΖΑΐČ ίOΝg,Δ―ύ+―ΎB°q'Λ¨p?APsgnI―§SݝiAπ±Η―„u`™ΕδΒGˆyHΜ¬o±₯« ¬ΫΝ¬μx Ώpoηc΅ΰ,γsdœ‘x€ ;K‰sT(pά 2b‘mg±uΗΚμaΎ œ21Wζ©`iiΖθ˜>SKD).!ϋΔ$ σ³S…²&VΎ_¦xŸK4[’ξ…c#Γ©‹bgPπ1¬yΫMΈ?P :Πηu‰˜‘;wp*I'±Ž˜ωh Αƒ0Ϋ`’…α ςh„CP`G&G'Σ£Αΰ…κάσΣΐ I*`ΖkI½*³;KΊΦ΅υz„ψFά{˜# Lm~ LΦthbf“•dμ­-Z«Δ.Νb5ΕΒ#c°GΌ ηΏ„s$,-βjuζΜ)C3Š —Ζ>9χ›ωΉ9κλp-«Λ„wΖY΅g›Xš*,*ž"Ζ΄Λyš›)]vtWl FΝ=­ς¬φ‰Ϋ˜BτŠ‚u,Ce5…dŽΊƒ•#ΜγN΅Κυ‚βΡ¨­ή8ΰόt=kͺ±’πy•Ψ7!&κΆpΎtυ¦σ™cXYΪ°RΈΔž#6)Ξ [Δu{ς쏑Ιg°2”ƒνΐ9CBχ„₯MA—gύ‘ υH……Ρ3ƒ 6?p3- ίK0~ƒ#γιά‹_O½η/aαn3αΖ‚{Νέ}$ΪψYϋpΧ#›”Μ[xΖώΒυ…φ-(/ΌLP΅/~ψ%#ι˜Δο2Šf"<`Ο‹aώκ[»Σό#«’ΣηX₯‡8R7Ε]άΜΚR¦ΙΔΤΠ”Ÿ\{#υ_y:EΊΦΘ{ΣsΜΟXΠ#/.Fg|aΓ³—] λο]Ηn7(‡*φ={Ωοΰ’ -pi­%K‘UΝΝωΰξ}άe'RίΕ'SiΛΩτηίύλτζ;w©Ύ^|“U08πν†R…5VΩγJxγ(bhΎΕ‰+|β‹p³ς:γ—νψ–{βI>°Œ±‡^Υbžο™ΰŸkŠoΰzX¦\ΰΔ—νψΡΏΎΒ’ΒΌάΗζ«2N9Q'ΖΰΡOΨ{–‚x'ΆΈ9’4b}’˜Ξ–T„ΠVΘβX3d} α΄ zΩΎ5+˜Έ=β“Ψ(ΩΏ#ΤZZLcβΓE¬o·8ΟΔ…¦_Ίι°εy§ƒοθΓΨχάu5)Gp«€Γ/τB 7βΖ  ϋhX›Δ-φΞΪψ#-^!ζ« Z_Α6Λ™ » ώ8~}tސΗρ§OiD―§ΤKΊExεΤVGν|ΥSΑ σΘƒ¬KhΪΙϋΎ σ mq¨)SΜ»mβ:̚£vΌΝIξQΛψλκ FYΏΰ-ξ]0U"H΅€t fa7MœX?€Έ¨ σοxzώ3Ο3’[Φκ; <ΐO\ ΈΫˆ Ώ&΅N}=έ™d€†OMήXp{‚ιXΑcuQ’š5z"/λΤ~o`(΅6–Π?³ς₯σέι­χ`Ppe!Uj1ιQ_¦ρω),γa (#[ΝΪ:MΙ{‘5‚Θ‘Υ…–F?EωΈΚ°.½ν ινλC8€$Aώδ½ϋ¬AΒEΛ`¬MQΒ³Ύ¬l[†§†w ΖA׏uά^¦g'CΘ*Ζ#f{‡”’TC Ιτ‚Oϋό2‚Ξ„² i1Ω‘pF Π2Ct}‘ΩΝ4ƒ|‚6€hϋˆ ΉF«ΐUέ$2’„–—y2hj U9Œ_&@Β$|μiζΎ%Qυi£Œ0ˆόγ¦ψ†λ<@KA”ν7¬$μKΌΈUX„δrέη Rp΄ŒŠύ0³”Z{ >, Πτ˜Ϝ%ω4λC³‹5 ΉΉ–C«KπλΏ›V—ζ`πΩk\„Μά$•ίΧ(gΕšΘ„ΐPʐτΰ ‰³ξMΪ@:…3ϋu― ‘,,‡L•#sψ ež¬£σα95€Ίθ)DΖ]Ί\)†γBsNl3jΪzγγ€€θžœE0Œσk€fΎE4Zβ™‚8ϋοΑ~hf$άr€eή–dΪ'H`p «ΑΤ8ΕφV©’&=|1IšΠή―ΰ©Ϋί6Lu=ΕΪ’Ϊ4ce0Ω™™%c¦πα@:{Ά7†u,R¦Λ­FžA˜Ά~Ž1Ν -!ƒή:J‹yŝ³–£)2Y),Υ\n0ΊId^κj;؟F¬uTiξWq΅RΠΧ]«|£…I†uέX˜•U\;kͺ€qڏσμ˜]gYwΐ82cQΨ]»žNχυ²¬33/ΖΚγΪ†k璚4­ΊD5pžJJ7ΒV04‘2„€*\χ02Α " χ‚eͺŒ9ΞΟΚ*n¨(6ֈϋ2Ζ+RR³v‚²‚•ΈF…ι?… έA΄ς(|(Έ)X8~…S™|­jt ΰΔΈξYΦ}fχ5ΓΆαΉςΜ… lΔ_σήΘ€Gωτ±έ@`Τ­fœέ}ρ³ιρ§Ÿε>]½|Θ©μ©%λ‘L^>Θ`Ž όφέ+ΊœΰΈ„ϋύΓUhΚ†Μ—ΌT&x‚€νRφ±Ύ½+]NJP‘€G­–UΦQ§3η+ΣΉν(!έτ6)œ§nέHƒχ©άώD¬Ήx–-arlΜίΩΗδωKWμ ΏΌ‡A„0ΰ_nqL*ΒuŒOΖS¬#Ίw•Π‰B ¦.φ,―‘E«³ο|Ίϊό+鏾ρ­ΤM2–°ώΠƝΓ©―‹j-ΦN>‹Ϋμ,S€Έ_β?―ep;―ΕΈ]-G“½Žήy5Ύ?ϊβύΟή!~ΛΦΠ>έ_:*Ϊε½0f»Μ0λ›g²˜ Ÿj§Š΄ΆΠ²pεΏΨ·JΖ°yήcύ΄Ϊ x~|θ!Κ’MπΉœ:9EXΙfV6ӌψΒψMά9뉑t,Β°1’አlΈW c­­'PΨGœλό"jά<ΈM~ιύο?ι»χoϊι7«gρΓ―ΈfG½όα[b.Ÿψ½w-Ητю>ψt,€|°Ηο>Ε/ŸJ Ϋ“YB4«jaώΝ’E9`]{ΆΠτ‰$^"™‰}R ΊΞwΛX VΠb–ΰ¦₯UD„€6Γ@iΠ A±hB°l,‘Εέ@Ø'“Œ†sMΧ(~χ 0Dΐ$`oϋ>ύ₯9βP(· ­6sMτih³Ίh†ρ75 Ψξό³—`φaYqA©‡1ΥBƒ[Vδ`-]|¬?uu·Ύ7p[J“3cXY ΘόU₯†Έm4gEhΜ )zΨΣΥ ’D©“=/ǝlrm°3JXχ@¬ؐK`t΅Ύ <|HœΕΞ&ήΉ9Ll;–«+/ΐκΆe…σWΏϊ›Q+ΐO­τ©“¬Bk^οebsξWυ€šέΕ½ G*©RͺƒΩά‡!κƒa³v€Φ¦MΦ3‚ΝƒΑG‹ΰA†"ψ#!$‚Οž€?vS+HΔ~‚Τeμ γ<―»Q~!-5h °ΐΑ@±qΌΟˆ…Dˆ)πΛ-,J¬g?ΰΐ{dΊ3l ĝ§ΈU¦]DΝO [Ϋ($Dh§ @enjΦτ;—έ1°_Έ΄ΰΒεξφ|κh#6„Bf2 Zυ*Κp‰‘ΎΟoo[/M-ξI1Μsw! žϊ‹—α’γ{+˜WΧαΊρ ίh`}ΉΛ:4¬ΐb¦+ΗkΚΌΒοίρΚ€­γ-€Ρ\s/Μ…Œχj ‘8jQ=If]Α»AK­ίτπxΪCkηsV’ΦMIW­-­*”³|Cν, tΐϊΟTB…λ)κj4₯/Ύψ,u,†ΐη:Μϋ{oέ!}'=υδUφœΉ²zL ΅@xVAgŸϋ `Bυρ63_C#ΓΔΧΜ€Ωκ*@ΰ—‰ν`¨Π\΄ πέ9β†U˜\³Κ™…m΄Σ30ιεŒSk‡1;΅ΈLYCcWΓΛΟe)‚ΑΊ} 9φ*Ώœ>Yš›aΝ±Β€Μ‘ΕΞΉ™ ―œ³΅@zpkŽττa% §υGŠ˜KΆfΏλιλN'q™Τ…NxvέbΆΕYα:"SΚϊΚ ι‚£ ‘U£u8‘ΩэT|–žuβ¬s­‘±!έx„R”NυΣ’Gά'Σβ£Ί ••Λΰμ½pšΉ¦°ζ|φό ζ9G?ž!™)ΑG˜‘ΉχАuV|ꈱ‘‰ !«ήtΔτΘ€ρXœε©Α»iaj0­γXέ}… G_ —EΣ‚;ΆψӐodMΫ!mρ Β`Χ"88ξ•!ΞΞ&C‹s΅© όDΌ…uŒJΌ’YuƒΩΐzΚ !8„b…k›fSˆFΫ ιTΕi{k%5“χ½σNΏύ/ώ%©;7ΡpόS˜Α ΌΔΰ—θ–7ΎΠΒΈ "SXYx‚ λbΖ³pε(ρ.;hψ­(Ο—XΛ¨sšzόω₯`)‚FΩם;w‰ξnκFΥ²7–cέ_Β@‹ζν_?ΊΩHά‰ΛόβŸγWφαπjφ—X»XEŸ£υLψ`>ΐž“WpŒωW(nlΐuq βοσ <ΧL­r.s―uΝdΰ…+E”L‘β_-nΕlΘ ―7ήN'IΏΗζŠ 6oΒr±ƒ5vgt–½Γ‚Aϋž·U<6πz('Ι†τ±«ΓψΔDzρΥ―¦ ά1ΏύΝ?ΑϊΉCݟ›ϋ£Χ€w«Q$鐘α]gΜ6 &œ1φ$°*8M5’!Ü1?cΖ˜'³>eJ<U]λm€VZ£Λs·Db³Φ“”ζp‘ψ{ψrύ~ήλ“ΎϋyΟpύθŒ~ψ–ŸuνΓίΗϋ_€Ώ_䞟jψ§/1qρ—&€x Ž:ύιαόέΊςλ4—_ΖΚBλRlξz B€Ϋ‡[FΔjΠ ¦.5₯Dq‰ΰπrLζΊZiBW«¬™» Ώ ² ざ&VKˆJ.Rσhβ¦aτφΘ"CΖ)AQƒΰZ}Χχj(¬`LΗάτ &ξ%|Vπ‘ωωGF"S…}Β°ΧΤ4# A΄°rX”l‹ρξΒ€ΚxbΎB}  ΝΟ[ψΖK¬d€Nφτ₯=­LuibΗ;΄θxΝ7Œ.„»0·†mΜΕ ΒdθZ;ODπξθΨhψ—š5J΄‚"k²Δ‘~ρεΣ«ŸfQ‰Ǐ_iζ“βx m4V~ͺe₯hbcΉͺΡ[0JξneΔκ>ΡI°uiΊ{οAΪΓoΉδiJΝE–iž2™η–χJ ~Ζθ;"P=cΤ-BΝΣQ ¨Ϊ+©Uζ;ΝK/ 1Y΅j[‰½λ •ο›ΔΡT‡‘Ρηo"X‹cί’ ™? ͺ/ s¦ΩΛ¬4A\Χ%ŒΕΠΜ1Z[K½O-Ά„ bƒ°$3,IRΐ’*aίu‰3εj° ³b\†™z@ՐYmά±°BΑœΨŽϋŒ ΅mέS{JιΣ‚€2`jΟw€νM*‹»Ξ2Ίk™IJΏζ°Ϊ# ΒΞOaBW;~epΒWF@“c—±¦Υ@;y™ΡΙI\—€z,z0ΌLF?xΞHΜ€Δλ@!dΥuΈeaq,«> l0[ŽF?[+ό™ydC”w~ς£°€gqs:MWtφΛRݏu{¬Α"B€.-ΦΙπΜ/.’zkKu„Ι’„\κ‚Ή›Α184ŒΫ#V,+Q€€‘j—5£+Σ©έγWˆΕΣDΖ¨7PέYO‘ΐώt΍43nΊΨ²tύΖΝ΄B­ λ©t΄Ά2& "ΐWΑH45’-Ž5Ž€ XVπEΧ’ΪK@΅gΩΪ "fσ‚O„‘5˜Α†ώ7ωΎ.³ωΰζhj^ͺ&Y0ϋg)ΗΈ¨F!Βlt―EΖΜVžΛyβΧ^ΤόVb%™~x—ώŠclKΰo5ξEœM*«ƒ ²/€{Ά²ηJχ’89mΰšKοž?α^Έυε}Ω{zv9mό±9έΜ&‡F›ίώ·ˆMXέH ςΔ /₯r2μΡί#°oβ;ΠΚ`’‘ͺ¦Ύ΄½4 _ ¦’AΈ α8»έώ³1ˆχ<±Ά1@…]Ο"πΞ:jέρxW·’‚‚‹S0‘Δ^°ž ΨVΠΆΎΖŸέƒ}ωvλξΌφΝ4pοv:[O6,p‘mδbύ\ηΞσŽ?«Σ#^βμp£k’-‘ωΜΝz(,›ά!BEΠ³ν9bΩc­¦βϊz,>Ğόώυϋι?ω‡yΊRGΖ·νi χίz+„γξt› χ&ϊSψŸΕr8Hφਃύs]λ–#αcŒ)&” ’ bΪ£WάαC‡?‡χσHΰ·»g[~Ο |vγ[ΏαYnu-ΔΑGY―XΦ0’{lωDμ!ΓεςBš½{;΅_νΗβnc©ΗRΩJzε#”_άΏ΄HΌ"–%‚Άcύ—Rϊ—ωΪ'5tφ§ΎσO€·ύΏ₯ΪzCztη£5uφZ¨Χ€χΜ­M˜ž^¬‘B:K >$.μΠR/½!DvNψχΒ“(Wƒιολ"ξƒΨ,:*"Н%jgl’D|Ωc”ό’Νθτθσ‡~wΎογοΦs^σuΈΕΩ‡ύώYΟ}μ–OοΗού„ΟGPχK@Α†τwη«_§Ήό2Vύ]/wi– σΑ‡‘6‚t<‘εhυCχπšbr™€˜ ϋ…φ βa —.OjŠυίήY†ΘΧΈJ Z΄‰VΦΧW ]6,Β΅ˆ…b¬³‚_ι …Θ$2pΙ€βKM€ν”92Ϊ~Ά``ͺΠvVΑ€ά­›ήn“:Ϊj]HJη ‚›’υβφΝ²υ„†x‰dΊ±ρρτ›_z)²'­―b–†8wt‚œπ{}„―»Dj&e~žΒ\EΜFtK‡–—Ϊ:ΣΌQƒd˜>džΠ δLσZC\Kq1Φ”,12Μ…ΜUΔΌ‚UB_h΅γλ0J2€-€4}πpFΏd4JΊ²UγΤИŠ` ΡτΞ̌Βlš © ½χξ;Α`MΟM³žΊŽθΊVJ}’GΡΪ ‹,Lšf„.'aΙaMΤ0eqϊζBŒ!βaΦ‘G<Μ†Δ2 ˜i}ΓΝϋ. ˜‰Δ}‘   fΔ?ή |~ˆ\BΑ (|n&0%!„ρδ"}‡†’~Γύˆ~3†%ήό8F²`˜ ¨ RΊ²ΘTΐ(EͺMνY~ f€εŒψΐπXΏFΑ)\›_ΠΪU0‰ωθκΓU™F­ {Δ-PηΕμ:Υ` dN0Υ…ΐ‘Μ™Α› HV w^ΚI2οξ_h†™γm’ "DΊ(Ζΐ ]Sα|tΧΝΉFύf`ρΐžμΜϋΈΞΩβ0OmΣ»²¦Νtnχξ[Χ£BK5ι‡eTŒs©RΓ™EayxŒ: ΎW―φ₯Ά&Γ‰‘Π’·OάΒΎs—ZΖκQ]Ib‰Νιήƒ‡\~9OΊ«T!ΰ:Ώ Σ+cjΤ¬™ lΖXνbΥ`ϊήT'‹›λ"ΓiŠνόΘΛp£R`³– !έXχZB°²4Ÿ^νM”EιΒ‘ul¦° šΑΜR2\5ΈδΚ¨ΰΝx΄΄N“iNόΡΦ–κp₯rm‹^L·»ULν©Αΰaw`½L½]U£D›%μc™ξ„€t!΅ΪD‘QVldΈΑ<ˆ!Σei‘5‘ρΜ!ΔZ#D˜*cm7ΐCSΣ“μ  μϋŒ-ڊϋ.ΣλgΫφΩΜ•λ€ΈΌ‘4?~ŸΟϋι±/όs‚―{²³Κ}ξ·ςŽφω‘™-&ωΒ>YŠΆζFCiβ^°Δ™ΐ€-―Μzγ1ˆ£ ρAΖ‡ΐ»hόΘ’£"iŸuΞΎ,ξ·…°άΈΘ‡i+ A;Τ’!‹Ϋτ#ΞΨΈΏ+-Μ‚Η΄²‚_²ωgk£ˆu“uB‘{ηΑ’ˆθΧ Ω†°oB—<Ώ9¬,“3Γiiv,/;Ζ|Ξs‘q/ΐ—ψ€χμΩ)DΌά8αΡέsOΥΘΕr\Σgπσ¬)›–ύποβύ‡5ίqΛ1ήχωΖoβψΛOlλα7nτŸ[aΝ¦J"έ7Γ ΒΪ3`` |΅B`£}]dΕ­ή~ΤA αTΞΊžθfΘΧ+ ζ:G¬Δu+”¬OŠ0zβ^ιχzΈLΪ―Vt­‹yΰL_ցΩΒ+’υ+θφpΎ(l82p›σ‡5‰μhPKΎΐ²Θ˜sΠUΗ¨ςHλYŒ˜ŠO|―HψΞ³ΕUπΰlΠ―Š¬žŽv²jšn_+ρB#0ή΅ΰd-ΘΒ¬q0G»@£Ύ\‹Ÿχϊ€ο~ή3^YΟύ¬koγ?Φ=oχg|ƒψϊ₯ ?c Η—ŽWΰύQήt-{μYά‡κΡζe5:t©ͺ«#pM€ΎεώLL ΅Ϊ/ žZ_H8MΟΙ YΟ*Ύ«ω€?€’xΑ©Ζ”˜o 3φˆίΧΡ”Z@LΎφΝ7ήH#㏕KΓ…λΜΙ“Γ£‘Α§Ϋ‡ΊS™•ΓΰΆ¦ΖFβGζ±4EJί©™9˜Ž!\šjΓΚ’ΉGO‘ε$˜Ν (©§»Ζ~&*©Λ`0t*9Ο’Bx BU”_Ώ«Σ~κλiOΕh1erΝ­ί ƒ΅“1MzPјΪΜ‡)œqi²^³?ΖζΎΝšYƒ£†h_\c>$lσ0lΝέΠ”²š‡C˜’αφF‚ύΙb:ΚžΉ(m£o§ώ.f2Ρ†ΜηΔΘPPjεκΡ0M+(ΑtΉ jΤυ=Χ•ˆŒΚ±ξ3ίB„ΤΈƒάω?¬‘Œ–‚†ίΙjEpΣu³*ΕΨ{#ΐšύΣϊq΄χΚ„ι6rd1)Bc¦0X¬ ‡ύΙΌk1P8Q˜“0¨Ν4α/`°θ;&!ˆ>χxΏΒ˜„¨€Ο_3«Έ¦Zέšq±Ά2σaΪη~ “ω F¦τ58Ρv‡„ΉK—ƒ‘ΠœΡφQ\ŒΪ4……Hέz2˜‚ΰ²_21ˆ”2”‘Νsmψ}Š‚X 7ΐ†p_RβΉaΜ^#ϋΨΟιŠ…u—Ώ33U ٘£)MWρ₯6uf’X‰2ύ?ΫϞ”‹0ρm‘j²‘€ιjόe|ξ­ζ-³hv5γ–6±$ϊSD,G+LcC]™œ!„ΑΰΓΓΒ·nep`hyn;κο!]o51RΔ.±R¬ΟFΈQΒp p‘ γVkγ‡RΐCΓγΔ%Q<‘ϋ&Ζ'p«'^c$;έΟ|Ξ€“i#!μo¬ΟαϊE,Ψψ ?i†`ߎͺhVw8ϋ+ΰŒrΖD0ϊ¨ηlλFgv-Y3dŠk"α„}(P»ΆΓτe‘Ρ;·ο€ξΞ6,)ZX±R`uUp3`_gž€³Ζ<€¦Uλη8cΠ½δτ©>ΦΞ’ž&ΤΘΰMK―ΦΟ[5ηΣ3ΐAX[Πd›\k’ύΓεL ₯ί{ΦL΅Β†ΐMξ}& @ΐ‰ϋΈΤσ‘έΒmΐχ!'κΉ‹GωΜσ‹;„o™b/z^θ.4Ώγ£#Έ:­Π?Š“n ͺ3ξ¬υμπŒνψL ί7uΒψΖί bή(dS€ήφŒzğŒΥ³βšΡHŒΥqΫ°qΟ“?1g―ΣΎN]]iϊφk‘]±ˆ=üάi»€"•μsΫι‹iΑ„KS©ηό•΄z€@`ΨgBzΞΡ6ηJͺγeύσΞ9ŏΈΝ½γD9@ω•‡{Ρ.π£7Q4P(χbΪE@—AΥΊ’ Α«ž¬ƒ―Όp)MM£ˆu΅ΨilΑβ¬UZœ/—<ΖÌΐxΟΰb< )ΦC<ΘB}|Ή,ƒ˜[ΰjyoόŽϋ|§Ό—mΚχ»"‡΄Κηέ³ψΐ7Β†ν*™ω+! ζnc©ΐ‚’·Έ›±fv1Ef^†f kš2c1*HρX[‡€B]F3P_χ™*^λ₯VgU@~~H6©[γ»Gb!A+ ΘΗ ¬ŽόχΛμΑ*kRW_ŒόάDκ .dΛΜ"V+γzzΊSLD0'Π,…ϋΆ¨£DL–ωΪΩ%+oMΧ)'S«©Ϋ¬bΊu„/a±P£$s >σw dΦmW‚OΝZΪ(_37\€`NΒ "-’4W‚ΗMΩΜΊzΘhθgoΠ– Z$2­^Ζ`ψή/ŒG1;’ £D‘uφσΙfYCώΑ”8sγtμOΙΞώβYΎ,Δ ‰psΖiLF6Ž.δ1‚¨»†€οερx6„Z™ΧΟyρ£ ωνOƒφƒGaLZΔ’ Έ^ΗέΕ4·Φφ°hf1^ς2ξ•ήP‡[£žΖ€K_%‚|ΑχρK—Βκπ``8ηά §ή”ΐ™ΒΎ‚b6N:Oα»Νϊ–‘()1Aœς\Cζ“iIΕ͡ڎRb0^κ¦ΰb΅œχbŠnuΔUuQί£ΉΨD³ΩL°6Τ2„ζ‘±I,Έlrο8ΩσN9Μ«‚π4šmέγ̜§kb3ρ;>θžlΓΈΧ54±φωΤ™Ε*D¬c\ϊΆL©9ΒχΖνΐU€ή€ˆ‚­υM<›p›l@azγM².±θ5œέΞu¬VΚfq·™GΛ‘Θ‘υ_'μοΆƒ΅ iΒ a˜ζΑS Xh§±(V"€lοScΔμyσ™°I„bΞΒ°p‘°"ƒΎ“{€{$ΛƒXηŒud 8(­XΕΒYŠτψυΑ όΑ8C tώwυέ―Σ\~•φ`sy84šΎΥ*η@6{α UΙΗ·sΕΰo·šβm‘HJίξ55όπͺe,A[^“$ƒ)·˜—.ωωΈn!|¬ΐH™oΏ† ε—κšΠ†Γμ5 ysμ[α\_-BIΜ”ΔΊŒ¬Vε‘R¨ ’ευ=΄ Α@;ΎUS_ΞcF5‚ΡjsmBhΠκ £ZΫλΣτ δ; TΟ‘‰Ν>šΥ14Λ¦¬&ždFf~~§5MΜ­k-b3δγΥμ­aέН'†Σ8Ž\Ž dj|ΤβB₯%bb‚ Ϊu\ ŠdvΘ‚ΕFρΫhf b5ΦF—εe²Šˆ.svjΟ<ω՝{©G0™°,Π5…彡Ν¬5d’j&ΣΨΦΘD_[Η e«ˆl΅œL‘[FSBΪϋ Π$ρOζΩύS lX+|0™U³B1Ο=ˆ·ς d‘€[Ά°ͺ¦ρ(C”b™vχάͺΚτaεY4Ϊ…x©₯Σ%&θ+c”8nKZNδΝτ£Ÿ=[ύͺ©s½£.ΧG9,4τ/γq>0Ž{kΌ8V)Ozζ)^ωΔ‚e–θΚΠYσƒΡ/8‘g8Εο²>djIέ |d‚ˆΎΣ4ΓΌtU`Αb}Μ|Ι:‹χΉ6(μq'L }§ƒHή£–n¦?|œa€\υ·ίΔνaƒ_›ω₯‘‹›.¦˜UHΠͺTΑΓςUπbΐ;ΟB”΅bTΒDΉξkΓΡ©ΉτΖ­τ₯—žΑͺׁOυnΎ[YY1š1ΖXŠY²]±|―Ρ¬U’εκώΰ½X£eΰkΰΡ`zιs/’α¦·ΕnφŠ΄Ύ(RVχH­»8I6­ΕOc‰@q.Έˆ¦Ή΅­=ά3άM?M’…\"κ8'ΈRbyhB˜ /A€gώξπΧΔ66aδMI=Ξ΅8!»ƒΖw(Ÿ[b₯œ=U — ϋŸωΜs!€(L•£q_‰2nΝ@Vέ茿2ȍ"«0“Β’pȚˬ‹oLzq’›`Vp‡Š…΅-Ξ2YπX§ΥE*ir‰ΐσΒ:R’“…Nx5ΩΖ.)‘Mmκ?‘ΛΤΐŒβζ £t‡4™χž!7„ΰ$j{°Σ/lŠqμωg±QΆ#lΑtyΙσ’KŠΪήΙq.“Ύ\ΧWΫ‘iυvϋ‰Τΰ΄'œΫΆx’kπΞφ,0υxΉ}7Ώ…TKf³pU’эnωSΰoŒ„/΄πΠLΜφHΫξž1>\w€Ιπd+šρ}² NPIΌP‚•Τ—‚ΰΕΣ§Σ½ΏO7_ϋ^ͺ?r4Λ0»‘”ˆ]wμΌθ7pmΛ°ͺ¬ΛΈΗ9ƒ’k¬+ŸΗY1£Βڟٟ₯[Χ―§―αYκL‰°ΐa5-+­Λή:ΕeΛ‘/WŸ~ŠήΎ‘φ— &ώ¨N‹"Ι?œ λθϊΕ+[˜tτΕeΧ"ώω/χύϋ3PˆqΕbfψ[Θ]ργEίΗ—ρ]|pqύή9ϋ—.­ΏάC{Q ŠM°ΰ'KΝeοεr Ό7~'.πœ³Z$ϋͺoJ§Ξ?›ύ͟‚WΪψ†š<χ%XFŠΙ‚)ΎΤd}x.φΨΆm6\mjοA©AΝΞ”υΒκI&ΐu9‹σγ$Γψ>±%ΤήjιM§―’>Ύ€³λŒ3˜Γ΄8;B3Šoœs¦’,νxΠBm ­•ώͺπ©τ€okβ…pΑκ„FΆ€„ϊ" 3ώ€ό4ۊ0Š)~ΆNžwƒfσ@RZOΒ‹Λ† Y ι9ΫZ0Η‚`6`HΞτχβNbΊD*™“NU·­εeR«ΒΔΏϋζ»0yιμΉσiόνΫ 5΅wΣ§₯e-§ξR#π>~υ2LΫ~ϊζΔwΘ泊f4ž5ψ#£½Τητδ‰ŠΉU¦αρ%j¬‘ύ¬MK3“©½£mѝ &Β‰ΦΗ``xΑa p…” ˜’ZΪ³…Η«Œ΄•ωhOΝo^‹ s3TΜηIΜωΥΜQ!ΐΣjŽŒRkˆLh#Ε g©oζ―›χI»‚`Dν΄Dύ§π‘…˜šΉd!oΛΟδΤBTΎ.Ε-Ν6uΣΙΑΔωΧuΧB {Gdƒ@Θ`@Š‚ρ Λ³ΛC3h<‹š[‰ͺό΅ΜmhψhØ™C}΅C ÜΣFΓφBΠΰ)]Œ4…‡Ž5 + ϋ.΄#η.ƒΎ‹†ΡΎεΓl#˜Eϊ–AχšDU(4Ίά§@‘ΐ Αsœ 2`‘q‹Ω(,Hμ‚ ~Ζ„π™1%X•‚*2'ΩΆDϊ(†‘€Ί_‘ϋXrΞΎμ# ηC¨ζΝϋ$ŽΞC‘,¬Χ•ΉkεπŸ7J€5[!9˜/Y]…Ά` «aΐ’p#ν(Έω2υ²νW’*σΟvΞδΓ‡[2“›Yβ–©ΗS„P¨ οsυ€25Έάu›ΖΪ895™ΞφŸ‚YoΐςAΑP{]ϋ΄Ψ%4 A’*ύ·Ε?F0©L]]­Λ ‹ΊΩ)ψμꇋSCKΈ΅ι‡=†k–ρ^ΝΝφƒτ/5„Eλτ©Σ0ζΈV0>“NXgΐv€―^ΈB ’>α6ΕX—©χ!L.―σω™gž K ‹‰%λ%Ά7Ργ. {q_ˆο ‹^!x’–3₯φ‚ΥΒt¬C½±OZκЌγνkQ„…ΦέΌXR¬Δά0?Σm›YL c9§οξ‹.[VA_k ±#2e읙εΚΒ]”φΐ/fNcPaΡΩ'υ΅λl2‚²ςʈ‰ζ<'«ΈŠ «Z¦Δ™:9šζ¬ϊ9βΰQΈ 7(ΦΒ3 πδ<2ΑCΈτ;ήσ‘4*|e/Ξ6ίEΐ7<›Ίvφτ₯{ΥSΜύ.Υgχ’!χlE™`"Σ§ΕΊ¦‘?*—Ώ{σf¬y}«ŠŠ,+ΰσk’ˆ8ίώε9Ϋq\Ρ^œ†ΚX=«aα!llmOg―€ιEΎΨΠ-Ρ`­zF€400˜^~ιωTΣ™΄πν?HΧίz#u<ύŠ2’±Ož;Ο nˆΞ1pk'³±8tΝ[\©T|0f­*ŠdJό_ύ?ιί|γί€§ŸΈŒ@BSBL²©γKKCbyVΈκpMΛΌ·Δ{ΫzΈό{Ÿζ_?I™G½χ¨{οןχ»¨:~’{?νϊ~’6-σ/;WχϋαίΥ~d’κέ+_}ς£OίE2:€3u_­ΘŸ°ΆA†i€‘μξL‡Λβo`›ή Β…I«’$Υ72{YkΓ+PΖj@β¬PξΤu‘NΝ{$¦hJ?ιZ0‘UψΠ¬Ξ>SΑNs<1sPƒώqο†ΙˆΨυf6βΎϋΫ€ ͺμ΄΄O·Ž)3Iμκ:ΕΡSώΔΎH”λ”ΒΡOκφLΩΧFκvI(©a‘ι̌•f_TLΣfwœ†΅-'₯ˆΩ[=ΐ=‡ "ΑΡ–ΤΖh£ΏAή†-œΗ/ŽΘ ;4sL vJ hΛϊ1s2κΣL‚λ‘)€N·‡G˜ΰΑ HHtaV¨Ά@͎σέΤΥ C3so&sŸ“k˜ύ] Gφη½fc€¬ςΛD’+wδδ€λ«λhΦ"d=Œ’‘² v £rΒΨ<}ο^jj#U‚ Ζ:K. Zœ”Ω1a©4žά‚μ φΪ!N£#‡‘Βό“ςG˜€fϊ›³ΚœkRbf}xΤΤ9–0adΡĈ’ΠΠ~A(ΩwvAh: œα^PsˆAλ Γ"œ²nšϊKΐ"ŠΡ FJσs‹h{ΘΤΡΟόφ!!¬Έ&%[Kœcv{ΊΒΠ²rj½${]χ* Y%Ϊ=Jš•‚{©% FβΪ²ίϊ ΙΨ¨‘Qh{²1VχΆ5@zώΤ&7 ½kΡWfIMϋΑgξA³²Λ.ηψ ŸD¦Β·­ςm£—qD_Ζl η{ϊκ~CB;Q4ώ“ζχΚ½uŒΒK„”§zέb]<—ž+Gά€&ozα>mφ¦QpΛέΥΜΣΫΚϊκd{u‹ΉμMΧ:ύπ…ΙτΞ‹ίHŸήώORπˆ©o Ί596α‡Œ’ ΙάϊΠ·πƒΠ°”7’ωηώΡΧΣω7ώfϊ΅Ο|:}ι˟KA,ϋrΎΝάΐˆkR¬¦Ύƒ3π₯ίϊJzϋο?—η—ibε11@Ηγ@Ε«ώ΄Ρ©˜£άoT& x₯œ—ΈΕ»1ίβ»%ί=ΉqΓ‚ωύόN~ΩbU¦ΑηœκΏoTۣϚΰzήm/όΰoΐCΦε¦%˜:žΓΒώck¬Χο¦­α²Οδ@Ψ7υψ’cakM$°.ΒΜ‹τɌνGέξπkO=C”;˜F΄ŒΒ@χ]+>₯—ΈοεO°ΔΎΩ؍ΨDο`άΨFF?Nm=Ϊ‹#€‘F·2jŒQ)ΐ‡ψ‚hF„δσ``“₯PB1v•¨Šΰ.Œ\€`1€εΐƒ¬· ₯Πm8’›ω»™ον%²΅ΦΤμγPή‹)!R©C€-ŸΪqV3»€EΔΪ…¦Β„H)‘¦"xM&‚ϋ8_Κτ,­ΰT2Ζϊ+_ϊžFn@‘”jσ0]»zσ­2Ω€°Η„Œq.@)‘UΛs†Mi’9Q:@ΤΞQω ζ bφψF…?gόή%‡Η:φφCjQj6­[·§>ύK0"SH₯Ν«@τ" y O|1)ŽσшΎŒUg'!=Ρ¬ΤBΰμu ‚σM –ήjqš›Πx uΩΆβ#Σ¬;L!ÐΖ%ΜMθ96ϋAΈ(=‚ΰΕμAζ@@.ƒ¨Ÿ@ΰ?Es:±_˜7 ‘’;‰€CΧ„Ί­_Δ&ͺ„š$φΤΦHθhώ₯A„η? χ†ςŽH5ς‰AΔl€HφЎω>šh ¦τ°³5‘§ΜBhHXηHΛ>ΨqΫ–υΉ}R³’΄‚“>—Ψ·ξ“HΈ PFά1h:g†ƒRhφq&’@„μ=λγ/Ÿβ “BίνΏ¬C‰Esγ«ŒΡ9 fζZ)tv Œ Μ‡DuψΆΠf"¬M#DZ-a%o ΞΕ•ϋ±42ꌌhσbΘIΟR―kλŽ‡xΔ_€†vΣΏν­lΨΒyP’―ύ“^F³a?%ΠΝOΡ`μώms{P ΖANπyP ΄OΤΫ·f0‡άMζ°§Ή“΄Γ.³ͺ―D=’δ‘α1ζ ι&f‘―Ύ~ $φώ›«D³šJœΧΛ“—`΄7pς†Ya6Υpθ$ΚΜ*81Vλε}χ¦{…›ρ\f@“C &³‡™F¬‰ Bvς§Λμ7}@dŠ3αλλšr…—½Φ(1Ε{Ό ―g§ž³ηΪ κ%FkQm΄ed`άY)}C(Γ^ίΕ²ν-˜M²gΫZπˁ‘ 3₯X 7k.£JsφΕ½nςOMκΌ$Hetd<{ήΙmΉ₯άiξ$ψξWφ‡›Π{±ή†‡Γ‚ύΔοͺ°^w6,όJ˜±u+΄ρwγΊΖΉmv?ΥΙ@Δώ‚‘μ›ΌœξΝEΏdΚ„―ξuMvμ[τΧ>ΠB)l©2αŠ}Š3ΕΨύαΩQ$±zγΚM4λi‘ύ{ˆ9[/.]ΡΝΞ0†ω­ζ²W―?‘f'žHε™ηΑ-ϋi˜fk W…N—σηήtνΑA„Dr„Μu{KFείϋ^zα;/¦Ώϋwώηt\Τ‰φμωηΏ‰ΰ‹(‡ΰ"M΅œ»2mEΦpZS³5υΨc΄τχ4ρΓό•¬|aʘό8'Aΐσ™'%χ+'ϊΘo 9~οίΌ‘‰ώ*Γ3ζάZŽ΅°n‹5τΝhΜ—#Ÿ•'~γ•Κϊ8ΟA0FΎO=2ίρϜGa©ΟΛ¨—{Υ"΅ψ`xφ m„Ε~,­Ώυ|:Ed4-σ0[h"?ϋΕ_υ΄<σ0 M(χvΧcO|+… ΐΗα(όΐΘsVza*Σw9¬'Œ‡go~ζv /LfέΣpό4γp`2F1ΐ•hρΜH|β…v†ΙΧημΪFŽ‘cpσ.0―τ—Α@IDATI@r’φR›Θ fΌ²ρΫΗΗ‘ο‘ΡhΖΧ£ˆJ»§§ ­ΙΚ|$—AS˜„Ÿ0—/ §φ&Πΐc“¦ƒR=Μ‡Yͺλ#ͺΟζΪ.D Ζ&ΨγΪΪΦ@TBϋbsmFq…’-8—°Γx1:‘I₯tΒ,5œb{:@4“ετƒΧ_₯M˜‡ƒm’Αττӟ‰h=8vΡ8,­n@| u§/“A ΅" Νa'¬ΤΗ·€ΐfQ0? ɚ4%Ϋ"YbOΧ8οC€οα;2€σ*QvΈθΟ²°D²κοˆ-C*Ι ζr ·FΖΠB2'₯Ύϊ«\½LΦX$u†-c:V9od‚²΄nafηρ­a‘7˜l\AŠͺΓišC€U%8ͺ„] u‘%Hτ+σ{•i¨`ληb4ΝbΔ‹"υlB’” I/kc2&4βΝ„qŽ~e½’JϊƒX„ΔJv„tKK_I<Š<)ΎA@ς›β P™$κ4Όj m€HΊjn -½Œ”φρ £*?ήΡ|Λzυ- FL /v¬\Jh3Ό’σ!γ&Ό—M½(O!ϋΡ±«ΜMΌθ}0?Aψ٘uΠn“p“ΐiΐ'ΚΑZŸŒΉfMž /ǐ‰ƒL”fβ”μΤH +ρ6! “{Db ηg ζU’Άσ€Ξ‰~ϊ ½}ϋvκΖ$ͺη맟z*ό­φ™³ZΉ (ΣΈΊΆFΏ ’a΄ƒfΌ"φ. ύ$tŒίA£ςΞ;wΨS<ΐ±τΙk0Ε½„]‡ΐX&ɊC;gΕ€ˆ¬†Αmο²ά0ƒHV„αέB+’–@Ι{=}o-dέσ¬Ζ:ζϊH©ΡΡΤμ©’Δum‘ΉEΓ £Ήα·Υπ)Χ ͺ_˜2α~ΓLŠ!ΦrŽt΄Χ§Ε2Η™JΓ;{˜…IT›3(―1 9σͺζΙυŒ Τk¨α`žgΡd¨šX™;Cβ"…({h!Ÿ„i_'ο{6Κτ›φƒFο"ΈT0δ™θ·ƒœζLf:΄Μ½ϋί+οJΞ-ŒεeŠΒΈŸθgΪ.rNGμ1ΰ›‡ύΚs렌Ϊ=4(e>—n}ς€Q`„g13Ϊ0@΄kΆι–6ΩΔ9ρL<’Fχ†gΝ62όOΨe˜½θ£OxT_ΧΚ b!λw¦ωoώΧφ‹sχ'δͺ’ξνS4–'HΠ›ΠVŒΐ-₯F&.S†RΜΏσ_sη= χΨ;φ€οŽ?¦%¦Š˜ΧΨ™βWΎ<ΡΊ?}/Šρ]Ψα?`ŽpΑo<ρ~3׎+‰Άœƒ˜θΈon (Ι‡Μ‘―ΨGηΝG2j|aœοΑΌΩi+ζo^œN~7ΰ3zιΙ4ύϊσ©[ό‡Iπ1¦Wσh©~εΧ~==σΩ_MχfήIΛΣί%,o/Μz +…³τΙρΛ΄ιΊ0Y±X φ„u^Έψ8Ža4r›!ΤtΓ‰OΧξ!μμK§@ΏιŸε‡³%όz†™–ί„Ώ ώvΔ‡­ ±¬—gTέΖ>4ΐ6η~[š„Ή4΄Ά[DψΧT‡ιd„bͺΞ«Μΐ9rΎ>3 ,zηώFž%ŠφRύΩϋΔb˜lPI‘‘T/ώ ζ 89Aς€‡αϋNqVM*!­T±³Σ,ήΔβ+₯v$]MM’γb±"ΝΔ« ‡6£Γ4@°vn­B,p@’›DHQΛ`m›—76H‘ρΉ `Ω?XY (Ίh$9$ϊU@ΟpΆEL―ŒΈ΄ QΠPDmi££Γ‘κo€‰P%k’1΅ ?|ε-μ ³{–_ΖQ€(c±Ό‚ύ{WczκΧΣ­ιyΔυ9LΆΦqzΏ7sTβΦCψ*½m€)πφ‘νήμ­4<> ‚Δ¬΅½7ˆ¦Gud k›ΛΜ%!ω₯dΘρ›GAbVIΝμ½wπιIΓ˜R‘Z^ί@%±L6»z3vξ»8₯ονo@τ‘‚Ωκ%Dr#σ[.γ»NU$KaK+q„ Θ.ˆ-9)‘}πC$Hž9Θ+½χ›οjR¦„2$$Ύ"ώ8 0ΪΝ!j}]“.MEDόJΦ³yΪΖ±ιΩpΑΪ‡%*يP₯v‹vΤ„…”›:r†πЧΒhψμ”1Hθ‡― ΔΫ1 Kφ_€cJhX£’ mD ΄#sσ¦YGH\Ύ8WΑp8ωL”Ό”fΛLΙΰΘ”I|2‰QBDD†αW&œ ³!JO)ΰ|kFΓ*A›}P$° *!x%ΰ#›·„}PrΌ‡x8φY»98[D_£Ύf˜κό1Μc¨gύ$ŒZdh_‰―•΅4XΒ|kdΟ^![GB£@½ΝμkηΈ b €‘jwIβwnš }œ±ή4uƟ jC ο«€ΡΘjϊΈg6_νb2¦ΐ@¦€σ12uΥܘ'HSΧξ‚™§5+T;€`{ΐ\’ρ7žx*o,€}`g+>OΡ/₯Έw‰½ΜπbœžK!δ™šJa%γsέύγXcύψ/ΰ ζεM/>-αOχƒΣhΑŒψ.γτ¦ύͺΦ―ΉH•+Ών‚σΝWλαNξƒ_*}‘Ύ``Ω[‘ρdΏfΖ3ο‘‘ς^₯€*ήA3ŠΑ₯1CΊšG-±ΪΕΌ£…oνL]h5Ϊ olbuσj‹ ή`ΘωΨ’ΌΪkήΎ˜~ωΧ~3}νwΗ4܏pα•8™; ή ι€λΜ¬;ϋ‡ύ8樑MμέΰB‹Ξπά“‘DCžgyΧΘ\ΰϋΘƘ…‡uμ5Ge“&ž_Ξ@ήGœ•σι8ŸΓ υ‰=ΤΑ {Ο"½―·ΙΩΖ±Ήž_ v·φΨΒΘΐ7&.5 ©=ό™ΗAΔmXΜalΒH₯>ŒJR\|60 inθσ5υwŸ7]žš"Dη βύBt9lήΝl­κ΄&EΏΪŽ€K‘“–ΪΎΕά§-μβ%"4oΩ†0WzΉ­©„ΖΡA)βƒ†Σœν­υibb8­‘νXΩXΙτ³C'Ζϋ‰ΘΥDή.1’‘€ΐ¨§ύ $Όν„Δ0&ΜE MxεΖeΐo!LΚdVΦ76Bλ°M•eBγš₯}gO{fΡΒ\@²ΰ4lαπp/}jOEΜ|/eό|`ΗτψGn¦>Βώ6’¦vΜΪ³θK‘< »Ψ—ΧΧmQ'¦A8ΆkκΥ #53GψUΕΎv‡υ+H’`Β”ό³žσ!§.3V‹Τ$ΆETš=I܈(]{ ”@ˆτΥ+EΎΒ; θQN§A»ύ•ΘΜ ˆF©4ΟΞ @ΤP„M½L ”Sh$θ{ Ύα2#Φ―_„νƒθ\_MqΌ2ƒΐZΓ”ŠmG“±jτq HzυΩπ~˜k1&£­ˆ 4© {p5Η§e~„νqQ§Θ.ό=x&Ρδ½ 0"jΔγ΄^{δ?Ώ‹ΠdΒ%ƒ™ .ΗΗ£(uf_œ#@Ό–!‚%’ίό¦œ‰Gύi@Ί0a·οoˆMΜ΄Ρ΄˜»V˜ “gς$φxc“ΜžŒ?¦Uά3Ό³!‘Ν ""Ώ~νL­ΒKh10u9˜ΑGj#κ»45Μ™c6qηΔ₯)΄§iαώ\Dœ3+τ:ΜΔΔΔηs>ΞmΞ& έΑ e‹πΊš‰Ρ׍Υ0ΑtŒ:ΣλΨ]CΏMJhjmϋp§_†L§ζ&jWΦV7Ύύ|ϊμ³Ο€VδΖ†Vζ¦9‹˜‘Άμ‚}³‹€Γ@š8–‡Z0%ϊυ° "ΠE-{Υϊ«”€Ξω˜³’Ξˆv‡?™I=ƒΆ‘–f™£ŒιˆοΡτ¦‡ηF“=M$?φΤMϊVB»dސCΞ«άl’d(μBF‰’šm4Έƒΐ%3~+…]Z$+όΤ'݁πeΜάHyύέ `Έο™‘ΐζfή:±‡x‘ηΑ0ξ± ώ©$φ›uρ\BΝl+ˆΏ|ξhŠ’307˜ΧLZ!EcΏ+=—5 B•}܍hκ£Ο€·ΏχΣdX,U}ΚBk£™“πžΟ½gΑένΦο)ΰCσ9ϋ(Έ²0Η~-§_ώάWΣ ›iώ­7ρR “5Ÿ–5AdϋόβΠn―α[t…yΡτMœΰržΤGύΌ—Ο> )ω·O|ΔlσώiΤig#„OXk5Γν12ΧΔc7Σλί^Iλ³o€±γ_aaxΨwš”z™œSXΣ0ƒqςνW5IQˆ†3A—aE΄οlD_’ωά- »ήυŒͺ”ϋ@ΩΥρ]akW,•|8.N€ƒΖq°r~XΦίΥwψTώ˜„5§ξ±XΌ<ŸφάΏΎcβk‰=ή£qqςrZ]˜Ώ,“‘j*gκ#2œm=c4ΜΖyεXr¦ΜA%~QΫ,!„Ά}R$›$ΔΆ1¨ Νo²ά³Z„ƒ΄‘Ÿ ϋΖ15ςžΰ@ν‡BΊNLεΊ°~hB Ω„¦VσVMp†ΆO{0™2ΪφΣ„jG]«FφοB‘‚’4°< ύσΛΉΝμœ9ί š89Α\x­ ω¦ 'D|Q’t¬Zι’Dyv3DGT£Ϊ#$L-—Ζ4DG΅ `t,B‘ΠCΞ‚6Βͺ(^~γugx’H#„[\ψ~jXήK Ϋ/GhΜ#ύP§–Λ¨Ξ1c:ΕLιTιŽ#ˆ£l˜5έ£S‡Νω<š“Ιi"€ΊΥΟ$­­Hr[€x:ϋŽ]@2Jβ#’›¨-Y[»Kϊ―)yiη]cA0‹8Ί›o―,1ΪΧΜό2~ +Δ)'γ:Ξΐ"ŒB»oΎŸž’@k(_ψC΄vΤφ]=½ψg¦’J•ή©½aiβR†€’2χ‡ώ3"‚CM1ΒζΊqΎ…ˆ4QΫAU5Δρq=ŒDΠj2Σ΅N’ΝHιφpb_…ΩΠ^yˆb#„ Φτb §Γ i•B*#θŠ2‘¬ΆJBž₯ͺ|šΰ] …|)ΉuˆΥΔM 2ž‰ D”L”ŽΖΉ’ˆ!SΠοŽ)›m…~€ΐ%ζlO΅ξ;f%›jBΙχ`Š˜Ώπ©τ&ˆ,Ϋ‘7vσ„u’ρΤΑΊDΨI^y<”w „Jm’€ΔIBE„ΜŒΔœRg₯t2™p²–Q²Ζ'sŽ―11Ρ]s~3ΐžσ7Ύˆτ(τWβ„ͺΈθ»­Ξ%md‚Š'άζ+ΚΡoήsνz`:H¦”ζ=΅dvaΌΟŸΜλ!33„IΥ$av%Ψ49ΣWΑΠΊ—&. Α„°†β χ!6Δςg¬BΪΘYσs3ψ‡h*5ρ|”fΠ†^ I8{D¦ύΝ[˜va&γ97?‡ΧC4†Β5 ¦ΪΝkρχθο-€!ϊͺO’{G­ΝZΥ₯₯EL)wΣΨn΄6§ψk8kιίύιf•xQKζ8 ΰά©™2ΒX“GΓδΦ#emƒ™Θ|œ±=|Ρ`ΤΚ`lΧ™=’j›$’λ9ΓμΞ#"p€UλΣ #‰H&‚ύ Θήζ­6ˆS£ΥΉ6ϊl’A‚KΣΈ}ΞΊϋys½ˆHσΈzΖܳf§/ξ―„―W#εkλ [nT6΅,ξ[ Β»„ύ“Ώ+ pΈζΞ»">«ηρΑgάυ?™?<³žRήgΜ(=χRhT˜³¦NB‰ckoP†Μ#―ϋΎν©τtCOHκ†Iλψ'Kίψ„^εΜh* ΡJέΎ•χ5?­‡{A83|‰σlN9cyέe‘σ $ΪԁξΎΤ?8p`κ±λΖΣ·ΎZΊsϋŒά.Œokδ’θ~6ΝߝA†¦΅Ξ#‹Κμ»—w*_ς§χγ–ηΗήVΗΎBƒΚzίΏ?½š τ·₯e„¬λ#ι6<Œ2ΧȞ³Ο—σλeŽ$%οjεcΌ”³φΑωwoz½ϋΣΆ£qσGύˆrΎgω€½Ήο³5βrήμxόŒχσhσXs‘ίe6άS֘_ ΏxΗ΅ σ2sk.™ϊΜ΄ρύmi ΫΌnS\³ΈœΠ―~Œΰ-wo =˜0xύtH"Α’fŒ0ϋύΖϊ]φ"9#»˜…jRΝa@‹A…μMŠΩ4$6άNK3oνRZ\3ά7}φΚτΫ q–>iϊ41έΑ„t#dκο„qŸΫAϋKŽ-5ΕΐΞ"Β—}4ο0>΅ΐƒ†t΄ΓpΙ’†_>Γ:£†2M˜jΏΒHΏβPα―κ:g@~α·Β‡gφvτ!5Σ—AiΚυΛΧΙ7ž~ψ A95žϊΘ‘‘„L«ω2ŠψJτΰFU‘‘ˆ³ξ<ΐDH,ν•±Χgέ‚)‘Pk€£Œf’ͺDM’η]kŸ΅|_z9σ½Μ“―yή©—pΔ†γUkx„_V'BŠϊSΔρ^Έ%᳉ΠΕ!2±ξ™`€a*N!΄:™ƒ=΄2bPr"pΘ’ω ˜˜ΉΖEžβc6~q, τ§Mσ•τ±Χ 5ζ„σοZ»œ«Ψ ¬±ϋα!λsώ)ΜΟ62—ϋΗχ-— λ<žΗ(O™ Νά£±‹ΈΟ3o›°ηί^PΓs†ΰΒ½οi†~»ω€MόΓ}Z0 >π&΄Ηt9Ÿ?^€;tΤOϋΕ^…`uΛlY/O2«ΐ ύγ™*βSτκϋOgώ_Ε Λ‹λij€']Š7nέy…ύHvl`­šεž ΄Ή·§qτΖ6τδ~S6ν’3ΆbcvΪ‹Fν;'L€Ϋ¦OY:΅κi‘Rό ΐήzΪjεσβΤDzώz)•9L ΐ{ΐ―D0Q§£αKc4e*Νpƒ'ό7ΉεΛΥΎπ™™Œ\K<£ϋŸύ€λ•;–±½ΚΛόόΡ―ψΟ-¬ToE›2…¬ kΔ=σšη€IΤJω`‚)λάe“@ͺbξΓ\Œ^Jƒ“7ΐew9?φ:λΣφϊ}ό›Πϊ·“νœ¬ρχkρƒΤjΣΘνEΰŒ.Ϊ†Ψ[μ³Οkž}Θ³₯ω;ϋ4Œqkm¦$¦cjN΄+ΐ u]D"$Ι`+Ϊ ™˜#π°APJΰˆ=ΰžϋέ(§h˜π-=:\Ζaέ°2Λ™γΜχ΄³η<(@Jœέ-ΞδΛyžbΒ~±«ξβsδ{|¨F?}ϋv:ύ—IΖ$AP‡s6 υ–W@ά› !Uε˜a ThΔτ`nlσnΜί»qΡAγlϋ`zβ±I[C΅λEs`‘χύΧ^Φ†ƒΈŒΓ΅ f;<+${4Ϋκξ…hΠ§aβϊߊ€1½‘xSΟ1Μ†ζGF΅Q‚g"‘hΪ`2NOvpZE‚Y RnQ‡φ¦NΔΓ€¨4WG)υ mÎu ΩE’’•6€κϋ@Θ[(“˜υ5eBi’]8kϊ2?;+YŸFΖFp`„ψΑΚ@ӏ’$Ι-vυDχΈΏ°ΆηH 6Ψ7ΞΓf³ξκ†π!κ—αW»ˆDκgΞ°ΑGbΏNτ£u…'FΙS†&λ0HCƒ2Ψίc’dex΄„μT*‹pΑ}¬Φ*η*@ΓSζ6sOzƝwͺIMήΈ,Π¬I"Ω€§εŒ„f—2Ε›0g­Dƒ‰tνΒ”Η΅βŸΜ]h„ΰP”κλ¦ΖN3>%«2wγBγ)ΓƒPF¬ΈsxšžΌ~%ζ_ψgΎ#5+†'— “%ζχ{䟦‰›OΗGΰΗB4Ÿ<ˆϊ‚!‰Ρ9VώU Ή«Μ‡χ$φcΟ9'ŒŸ‰ˆ’ρŒυ‘qWσ’ζAxa½ξ5₯ΰUΖEΝύζ>gΰμƒ|–›Τu†φr—(g Jβs%€ΐv"»:Ÿρ>7œΧθl<€J„Φq(DΎˆΟ‘J'L ΫΜΌωΒS/‚¬±˜ίΥ°HxθΞήΎΤsρJΪxηEφ.Δ¦βtκ”y³ aN\Υ~σ$nΩV?ΰσιœ{@οΝMGάΆφ¦tΖΧ…½t%}τΧ $εhaΔΩ„C4nϋψςdS?η]XβΊ8HWΐfbπΡ^u΅βΎΩntήΉ”η3<Uk³dΤ]wΐQ χl+·η*Η•ςΥ2ωŠ9¨ΜύŒ=Βά)άqWΧ+ζ§ςN|§Ξ©ε"H e…Γ­ϋžΒ\ξώΏ.“dfγhw1ν­/±θd'QiΫΰDZ~ρSmλPΪ„ΡέέXN½wQ"ΰΎΤΚP½e΅Π &cΥ4K!R ζΝsχήΞ`IΡ?Œ?ZWΊ49™Ζ†ΊΙΟ…ΐΖΆ„ις!¦”ΫδΜ*"01’_™ϊκΑ†/ΤΛΰl²Οηiƒ¨”ψ6ΛdΨxΜ'MmqSsaͺ3uώ™w"gρg56˜ΝΟͺΕuνόλ4–u³τ/V³Ξ•ͺͺΡe°$²@ωr§ d¬ 0$ξ U YΡή6ˆ‚₯ά-ΝH,‹Λ8…γ` q)™Œ¬΅ˆƒί›&Ν‡6ˆ˜Uόv†-aN$@κνΑaΦ„d Γ¬:L²: PJΨu/Ξ-9 ϋv’5j9$ˆΐiΡ7ϋcωzˆ0ϋοΈEδŽIMΣ)R1M«τ­ BL€ Z‹N L^ >ΓQϋuK€…φ…ΊΉ«ΙsŒΆηX$*ͺ&n[mψO&D’ ’€²A°pΟwCΊM½šΩ–„jh` ‚Ζ`,h x/Μ€ –°­³μΘό§&‚QdR/λ—πo†Qκ`ΤιTσ(yW–Φπ{"˜ζZ“/Ρ!~ Χ{Ÿ½Σ{¦± BpdŒytώœrά`Ά£―„Ϊ η:I‚šƒύΞ šL―6h;ό­€2Ύ0ςΑξA₯―ϊYDh[Χ βaΑάΑŒΒ…θ€ίS)sͺv0‡R†et.gΐXzš½-ΜΨAšΙΦC“£v¨‡θZΌ·%Bξ4…ϊ[­γϋPdή:&8»0%ζξq4Ϋ+ξΉ^9›ΌΒƒML§ζhΏ“ΑπekΒTi0F…Ώΐ=#kTσ1γ" Y±X"Tς ¦Dcμ“SC.“ΔfŽΉο7“΄xΈIΏέΟΉSύΙg)ο Ί?όŒ=BΉκ™΄œ―:οω= ψd=ΤψxωΜ}Οδ§F`e¬γž πjbγ}Ϊ‰Ά€±Ώ­“J}֊Ƨkt4m-ΞŒΰ^Ίxi “r²rq^$¦C£GSaZΆ0νTθ^― d„οΌυfΊϋjJΟώEφΈΒ„›·ˆ΄Φ?‘Λ MKp{nDπS†¨,Πχ΄x»HΞ»˜ί8s•ώ9ͺ¦ΝVΗΓ­ΈΗ—Oσ<ΉΒ”΅₯τυ?ϊ½4ΦΑϊ7qΆχ́“Θa3ρ‰gΛ_ί{:9δ:πWCsθώ±¨“Irmό§ ‘z;xeβσθoΩέΚΏ¨…BX―Μτρ…ςΦ _­;Ζe‘Έ*γ­|―T+”°Ύγ³¨x‘pˆm09`—Μeμ/ W5ΉWξ ζ a™MΥή;œžόψgΣϊνoΓ`χsvkΣΚόt%’UM[– ύΐeΛfaζΫ+ hΠΖ‰†έΜΩ>ϋώΉ=Υ|=K2•ϊ՜€—1͚½ύZšΌz3=vy‚β‘U9BsͺOŽ›j&Wf^Rœ ΤhiΔ aσvMΦWQ„ ψŠH³(ΑΦt΅žρ φ·€§8QLΞ»/Ζ"Ύϋfεϋ={Dρ·υ^΅ΩχkΛ—υήƒJ+_~’2ΏσΏ+`γJό”UŽΚO©ΆŸo5:εη;“οm½00RΎ 8’ξ‹ΐΙq<@Θ\%›7―_EΊ ‘as{z!t⛐Φ&»ΰbT¨Vό-ζ ΛωΓ7οbrEVc²ΘnmbφqŸ3dš#4nt0m’فΐΡAtue]τ–Jh$vΙmάόœΔ]ΐ€ΊUΪθƒ=ΐLi'q$ς}ιΛ Ύ}δ 8«95#=‘pE ’©E#Q„ΩYZXJ KΛωfϋxHq²MΪ†Έoj @*­ΏΛ)LΠΒύϋΨ “ b\ ‚j%ŠΛ ΏWΣ1N”½%Cž“Ί{καQ»Θ QY TΎwϋNͺ½4Β†€$~ϊ’μh:VωWRβ–Ɓ4‡ƒο Q:–ΦHπ†™˜ΔŽφο˜qjt“챓c ε6"aΑ@ν¦AΒύξλhŒd¨ˆΦδΪΥkΑI¨ž‘š†„Ή jGμΐŠŸ2ΐ5a—Ω}%uΝω²J !YryΎ‹°ΒΡΰe!fDXžEaj0&!Ν³~ZΉH4θ{ˆ˜ϊν‚LYψ„p7;ss“–‚A€8²―‡21{ϊιΘ,α₯ζCΗΡ†@½j9”„;&χ’N¬v(~™@,irG2M™‘™:χφW[{΄vŸ>Xf|b=νΎCkCΉˆψςχϊπ72L«Y֍φvL½έH͈­G„ušΌ{wξ …(¦a⍫“)ϊΘxŒ©― €Qπ^‘=V„AιEJ1b:Ω7ζΟ q!ΙΘΆ!ΒOρ«κ„iWR9VfPGhqΘΦαTσ48χζgΨοδšΐα[FΞbŸ ΰ» †&3­—%Br“}„0‚ρ·sΜQ$β^\Bcc(έ&λ£½~a]DX*nί'Χϊ`j»Τ£©yϋφ½tγΪuΞ Β ζ±Ώ·#–ά€°;˜ύ΄fψf˜wΈ·K˜{΄2Ž$Ό˜j•ΒtBφ@'ˆ=|HΊρΝѴꑬNξϊx xΒ½―·Ι+c)Κ!δ}‡DΨ3aύώsgjΟέ“|qOΔYαn0Ό{g1¦Β©«Š’lυ¦{ΘzΩG d8šΙΏ°ΗώXΑ,ο{ήδLϊΜeΨ6ΤkoΌά―ΨCό·‘±{ύuό‚ι/η€R=γ€,ŸžmοU&Ž|ft•wΤ„–Ω/Ϋζ‹‘D=Μβ)kΌΗ9GΈ΄ζ"ΏY)Ε<¨rΝ…Iήτ{₯eϊ@ρJ]@ΈΨ§ c¬άΉTΫΥ»ςΔΗΣζ«ίLgΜψό?"δuŒ΅ρZΪΕΏ² „Υy`(uQO΄L―EΘt Ž2©QύΊ?θ‹ηAΛθθ”&DΔCϋΈBdKσeΥ#Ό©'Y­Έ² ΐHκΐ›ξ‘¦›λΣτ•ΰ+δ*Ÿ]šΦOόΛV–7ΣM˜Bߘ$IkΓgώV&)8οw}Π³χ{ΗϋzοQχγ§Uζαzρ;Ξχf Θ#ϊp~λ|ή3“C˜.p˜—Wη@ήψ" 7“Δo;kL=°ΧΉp™ψώ‡ϋ˜ €lίyη>Rϊ416„‰Eg˜HΌςΦBzλφ}$[:”km²§3L–†‘a"!!‘t‚– H’3£υθΣaμzΓ€—β «)βί QgZs@l¬"…@ΡΡlU­‘u»ΙΗ‘°Z~-ΝέD₯ΪδyubψξtΊˆτWβ¦ΥςθxSl‡θ)Γ°l ahΖT£³1ό`|Κ¬€‹‰"³Ρ;Κ:ΒσξΩ*έFOΝ?$Ϊ°­.nοΑΑ$AΜ ΈΧfS LΛζ: Ϊ™BΘ"H;Aξ/ΏςZΊŒ†γΙΗ§πuY…xλƒΠΔD;3;Φ '‡G@t†“¬Α,­;4γχq'ν³F]hJΪ ―ΌΑ»„νe- Β ‘³ ˆ­ΥτJbDΈ–‘΄¨$(‚α~*-ΗΔ’–‚AXπ»Š$«›DD(Ρ/"ΛτοπΠw¬'―7Έ$Ά|Μ Ώsy>Ω9Φmt5₯λYΊΙ§ΔG`_%’vΝό({ΜZW‰3ά€‘’βC³ 1/Α%ctΜήΨΧ&ψf€zd $^©†ΑBX38ϋθdΘ ΨΎ}c’bŽ#T.mλ[`!Νhθ-Ο3Α&ΑΪU‡iK sηlfBΪ ΛΌψ&υ: /¦0LΜΤΘPρ ϊυD»0υΪS?ζ|V΄(T£ƒn?>?2ΟR-eόp•Σ¬ΰΰdŸΎρ,K%ϊ˜Σ΄fJ/AΛ,΄ΒΈY―Œ›Yΐ§.jΒ’Πμφuz¨ΓςD?ΓB³z0„Βζμ˜]ψΝ·ο =ήLOάΈΒΈjBϋ7‚¦wΥΙ8UΧN’s YŽλg†"kbΨν³³&'4Ž”w$Šβ¬σιέ‡ζ|ΡΟΓυΣtΞ½½‚ύ„LP©ΤŒb7Žσ;l5„;Jϋ±;ί"Y’&]ž-œΙv΄£ΜΙΘπ(u˜˜Ÿ.ηfšˆu'œhKͺ±Α&`H}›ƒ±Δ©–sd¨α`˜ΩmDs…ΖϋΙω#Γ†Ζ²‹yT9 &Ρsg°›nDηxuύΔΉ­έ§~aΉψη9ϋΡy“΅`Ύo UΞT|woΕnφεΈ,λ_ηΠϊ7 πΘ‚ηn|b"}ϋKιΖπ`0ρUIwΐNQ>*`TτŸτ‚u3 m ιτκ ‚€Λμ…8ίΒ Κdτ?(ΥψžΙΪύ¦c6μc~5χφkHΛ‘”³>žΫ}ό=Κψ© -ξ^™'―S1ζΊf£ ŸΑ4Ζ<3“{ΰ`„hΩ:s_h˜σY™•ΈWΥ ΘYΉΏΞτO‘³ϊ!};ίβ˜Υΐ€Βό8oσZ˜HρΜα~Ku“άσχ©ίˆrΒτX/'›Λ²2|яΌt1Ÿά‰ώΡx”³–xƒ/φ-ͺε†χVXΟ”Φϋ;·ΚΝ(ο§c°lΎΗΉMjˆ>¨ΎδΧΚχΌ7hΟuεž{ΗΎζ9ŒΌ– |ε{`ζΐ―mj:Pά#θ λRΐ€sώξ;˜jΥά ΔϊμΫDΕκΐLz‹\\[ΰ(wΰ}4άΈύ=ΥήHda†ΙΉ\$ΐJ V΄uΐ~;`Ν;Ρφkα S€―‡y³N‘OVYΟe¬/V±ΗΒܘnχ`ͺ¬Χή>˜h¦ά/Η]Α§ςβ…1ΜΗπUqΟ―k/–;ΏΞgΰη>§+ΘX q{€γgŸΎ„ΣTEN‹Ε₯M’<υ„mχ™rOπ ΒnσΒPΪC Ή³«Šτ ݚΕaλ(L―H₯vD)e;κτΫ>Ž]œ ˜ι'!²ΏCή]€Cί`φ ά­Dš"bΊŽ½Ί~¦οή“v4ν͝Ά‘š˜΄@” τΆ…mΌaϋŠ;h ŒDό”€λΫkιβψ₯0'Q΅oƒH.SΏΞβϊ` Θd šA,΅hO‰Ή‰6‹1ޝK}:η/―ΜΕ|ͺi<δw;Ύ½½FΗrΝkΘνΣ D€6̘ WjŽ%―Ϊuς―F9·‡T›}i˜μf˜ύΦ”±2οTŒ,˜Ρ†φΡΚ°»ΛμW ϋq{§›Dƒ„²LΜΪΪ0 6|Ψ/‡˜m9–aΞΠΫoίΕ<ΑζY#£Γιήτmϊ‡+Μ‚Β‘ΐ-0"κ²1ί:A[Ρڈ’~'ςξμC„΅D‚GύHΦlμǜߦϋιb™c‰.΅1ϊs5@PΥγ/R½Bσΐ;AhςιΔqI8sŒΥΉΰxfύτΥύšO¬³βKU>ω*ξ―0 ͺœΏ>L=e††'.Σ.Qf?£Ο ΝQ֚ό?ΰ"$χŠŒπκ¦@ ^°Τσb/Οh΄γ?λΚς—€žί>ϊή«ίN―Ι\‘»bΎ ΏΠΒ) h†π-—8_ξχςγqf,\^CR[51WWΫ³κ}oΨ±xΔ¬yΡ ΪΥŒGQ(―εΌ‘ϊ|β;••χε\Ξ+σύ`£8NορΑίxΧΟό‹ν(ƒΌΆω¬δςφ'ο9 Ω²οΖZΒ$Θ‚ {Δ''ΰ;4ρgWΟ`Ί·: ²kM{'h­ο ‘f~2«ΤS‹Γήφ&Zwˆt†ω‘έdύq ­!Όύ51§„6;ώ»;ΛiqώuVސ»DγμΔg²Ά–d©;ΰW4ΦΡ꣐œ!€L˜B"4t¦φ0»ΦΫςόr6άuησ½π!™QSΫ φz’σՐO‚Lή¨Yέͺύ8<אPpecbbiκHΩe|š%ΔrβΎ+±ŽΨά¦HL°VΞήPjVΒ Œο-œ£AΥ Ϋ=$’Wΐ–₯ή >hFΈ–N™Ά4Λα―AsΏ@Ό#q&ƒ 1’vϊ ΏΓy˜Ξ6Špθcš2‰wύy”¦Gr?κΧDβK‚($λ΄9U T”βŸκέθ=ϊ₯ ‰ΘϋŒgφNηd³­g„‘0·Υφμ‡vδΌ•ηΨq²§$>B«ΒΈ¨+ž3?ΦgŸ`_£~,¬ρ)ε J­#Ξ%MHlς'΄ TϋŸwe$5λsήΓό0(Zϋ S’ΛvέLτίΎδίριcŸαχΖ\.ΌΌœ¦>u“£ŽοΪτλ7YΔόοF:d δξΛι­Χ_KϊYϊІ}ΉG ™ΙšV5Ϋ  f-ɍƻώσΑΨ5-³¬ΕcNXί™ΩετΦχg‰|Υ ΜGHC²O€6™WΟf¦uυ}“ΐγm€ψEβ\­ξ“8Sψ„€„qR«υ¬Μ“ο­γη5hωΚεs.[&~πιβrξcΌθOnKͺ­ΎΒ}Λ»^qωΫυυ²±Κ}ϋS];οΗ£J‹²”όcΩΈΨƒN"—ϋžŠ’ώ―0&ο9κtO /νBΑcΞw~b !vήψμMΞ‹a¦I$ά…©(™ΧΕ "ΚρN Η ο+ ΈHP 4q;»λ}Ω όvqς±ˆ φδ͏’‘B@‰ζΛ„ΒN-G‹>IΈΧdœί·Χηΐ}ΰ€uμmχx°@.f(ς:ό* …ΦΠoBLήMDΆ4Aοτ½ΧΣΰΥ?οΠα―Ό»Ξ_ψπ‘™`ΪΤh?š„vΖ>Xgμވ{Ώ@>%›χΠ€¦ {0$"‹cTžΝ8 77AĈέ§5Μ­κ"ΰs+r_p/`%·p» F Ί!F ³;|ι" »k"η΄½ ΰ1©trŸθVεS$š„ΨkkΓ)ϋκζ&€ΖΨewwCΐ­vχ` ζ1υ8ΔY)―œι—ΞΫ2 5tFB± …΄€­›0™›Ϋ-,;ζZ2HgV˜χθ#C΅+"‚1‰ΙΰŽŠ0—°!ο ιΔν0U£t4ξw†₯†v†‰]^h BH ‘Eδw§IθΓΣX8FΊJΈα3’ž ŒHGχ–!ˆr„Ν³„›DΪjζ ΓΓK=hU0ηfg˜'$ΒΠι«[‡ΨΤί!”•©«α#S>Β "κΒ…q°K…ΐg@t£'F•ψΘ('MιP2―$_Gl‘VHΓΐf†ώ=¦Χ€–ώͺmP ΕQ0j";2oˆΟ@bjZ‚°ς3¬LAdFΚύnύω³‚\ωLΤ:Θ@xΩgσY„t‚Ι}$ΑχDδ†αU²{a\ΛΎ Σ'§ŒJˆ/Β;"Ατ½π+‘~5Ρ2vΒ26Y¬‰‚Έ]©»&[y :lκW’/Οƒ!£oGDt©aξE‚Ζnξθ…όmŸΝs‚δ.έηΜ%ϋ,ΞpΜώ“ τ™>("~οyέ#πΒ6΅Ι‡X.’aΣ’Žu΅FΣ¦Ϊha-ΞchΙx―¨OŒί;ψ<ρ/9ΕΌ"Ÿ1εΉ­EΓ€ο‰ΑΘδgμεϋs©vb(uC¦·{ MߟŽu0‘{¬k‰yΣδ{ίy!ύζ_ψKΜ;汘Ξ<χ»KivαMŸωwώ£τ8Ϊ‘I₯Ϋρ~ό ύά―|+1&ΊB_$ͺ…aΟύρwΣ sΣις΅)6)ϋq[AΈ‰ύ­?χBοyŸ^J[λ[‘M³F5ΧϋΫL«`–ΨΓLO09|qμ΄ηΟΒ1K•ΩεYΜ{'ζ6OvτΙsnωΠ€δjόΆ&&λρ;ecΌ|D]ωWLG%iύ„°ϋ·šχ^•ωyοΝΚ―zφΘ>ΰ½<α1εοϋκOήORζ}ψρη&X?>'ηw~3 œ˜Ό†Δ?œ)[ˆ₯ΏˆyO'pCΓ Δt_Hσ» ’M"¦σfL;;Η8}§m$²+„ω<<yτχ“x“$™Δ`οά z †ΔGRΔζο<@IDATUδΗΙ€Ή ˆ dVΧΞ τ₯3Z;!¨ϋ₯ΫD"‘­β4&Qδ> "πΪ ΪM§€H‘Έ”ΡπσψΨ$†00ψ†μnI 5Θfžh@‘ίt‡` '^ή‘Q2ΉcŸ Π5—ˆ*Ϋό5Ί:ͺ…«tβμFΠrηMΜ>Φ0ך»{'L”Ϊt'8δ.Žοu’#ZαΟ WΦΚΓ0I+ΤW &XΤg.‚Ι7pn6q}”ψθμ ©γp;οJ,—Σββ,ΜΝ>œ$I“0˘•Z°…lΟΨΒ*©5Ιγϊς.Dφς«χΣ$Ξυ‘”€«ΆHβΖK©³ˆIΔ¦C",V!›“AœP^[ΰϊ Μ2΄ΣάE €‡R鐊2W]αkΑšj#N‘@Π"<χ“ζmaŽΔόš [fAζ%‚ 0Ξ Ύ+ΔΊΩ±W‰§0sβ=šŒΊ™BtMIS– όBŸ£v&kGlSB/œΘa‚Qbœπ>ρŽN§MHΪΤ†3ΒXN d˜dx3rRΒ,Bφ?‰΅22%Φ£ο‰{‰²όGm†σjY}Eό'βœΩŽ{έωŽχaΨbY3΅ 6j?γ!ƒš¦ ΪX„Ϋ}ƒ©KSΜ)‘η`΄cœμamκ‘3c~Υ0~μcO₯gž}6ΪΣ‡αTŸκ¬Οδzšb¦Πγ·νͺ]ΠatΗDuš Ap›Aό€ί&“ΑooοαžΙώh–’ρΙ"Q—ΘU‚―y₯ŒΈ‘{χaάλ!^šΡμΐΥsώN#R›!œ‹˜ijn)s¦™gœCζjdDmM֞I,@€v@ΘΔξδwgε‚Ώ“―2Ϊ MΊaτWΙ%° s°}yΌ/|֞ϋγ?I_ώβg˜‹'ΘǁΙΥψ8ωrИšΩ|cXA]ŽύD'YΪ·ί2p†“jΖΜL-b/πΤ5™Ιud¬%4ej-ݏ=†+^μΒP‘γ<"•Y‚82©&q/Υc’Ο‘{CΙrl°XsΧ›_”γ3Ξ’?Όά'\<χŠ2ώŒ»ž]yƒη~ΙΕ*εβΜf¬„6ύύ#ΧΡPzζŸŽώsΰ!k<σ»Ρ§J[ Τ`žd"ΟOnχέηΆνΏmWΗέπΏp†ρώ[0γιβ΅'Έt₯ηž{=iΰU¦2ϋ¬‰`Ÿ|ζγιΉ?ύFϊ[h~Ε1Fv«νKίψ½.έόΒoў‡ξΨΌήE`;jΪ‹~δB1-&Rά‡‘}σΕ€ϋ!xͺŒμ`‹ˆ†τ€wY΅·ghάW!jw0«Ϋγ™—Œιš/#uΐcχ­Œ‚› δYΧ<2 ’U8Ζ³ψ. φό»Φ”’―…sTdζ»^Q&ͺd}ynqg[юŸβS@–…½Λ‡?όΒ?κφvήΞQυ8 *ζ†&˜¦ΨoΒ)χΏΟ|Ο"ά€μ8U3©7^~>5“σcυώ\zφΧrΏώΡ8·FFtςš-­=0nσœύŸˆ/»ς-αEνeΐH™v|=€4Oˆώ€ΑΐO`HC½šT’­pF1?ζmsnΟψ^ ;ήGxάq.  ^Χ$•χav^zυ{§“σΉΖs7]ΉH0L>‹X%΄γ«ΒςΕρ˜Ψύ|Ο·zφž‚ύxΤ{ΊχΠky‘ΎωΠž‡^ω Ÿη ΘΝΞω³ŸΩ ˆ@ήx‚šlΉ+Hφ”’J­ΗyEκοB†iV |eqι‚!ω ¨E—` Σ N~]-u:i˜8ς€]…pΒ$Ζύ3σH(!–%Zš‘ΘΛΏ(Υ±ϊ5U€ο‚hΒχ€"œ¨FΜ2«ωπ fϊ}?Δ° ‘£iΗφ£†oΐζ»ΒGΒΈDU½υfί6aqΜζ/Pj„F£ ΅ρ>„‡αH ά[_[…Θ2 Χ:}YaJŒ™vλ‹ sΜ’ΜKZ±?5δθκςRrLΚ~wοΞ Ρ1Ό­DDΎFL6™8½OF$ζv"s°Bδ—‘α ‘εΠ gskζ'MA‘0¦JίΡβˆψΖ(χ±~ŒύP—ήΎu/-mb*†έrWG7ύ‡9!YΤLΡ ίy9ύΦoύE΄C$«#~½vι <–ς­,‰Ω(сdlΏ€AΨΈλt ψ*­_€Œˆ ˆ\‘–Ÿϋόi))WrΙk‘ΪΌhšΚΘHI„‹xK΄νϋΆνρ=ϋQHŒΛψL&‰6X «³›a€U―ˆR‚±s΅6"εpxw8ΎΛ˜%•fMMί‘’λOcΌ+%o υ(€ϊ~Π1ŒR5Ÿˆύs=Β.ΪΎΨκПΑωQCζž•σ‘Μ™u‰{ΛπfŒΕΟ ό͟ϊC/£/αχ!aϋˆžaΫθ—Ρˆ²F@‰ΎΟ6ΓHΌΘ|Γ8ΉηΪ1νΣο₯ΕσCη>l±ΡlΪWf{΁σαφqΊ7ϋ±ητ ¦]SK#bΑK}ΏvπΓ?h||$|¨δΦ4§;ΐΡωmIw—Ήy ν‹ίοØhβ¨)^¦μ£fεΩ3»ΐ?ΟΉζ2„ϊιψΟύ¬0£•φ4Ήr ύ'A·S\cΎρΡ1ΒkΈTƒfΤ΅fΓΕ~‘Ήbά‚ω?ΎΗε xΉGύπ'λeQ‰ΉΚK>Κ_}R}OχUfxσm¦^|)½ψσιoό7«RΤ³—›²Όη¬BήΖM$³ΝΊyh°;=ωΤ“8€Γτ©5Œ~e":ΓOKτ¦wϊύΝg[˜qŸˆ„oέΉκ0ckKϋœ‹πΏƒ/AwΊ1֝.M=ΎφΝΧΪq; ϋτΝ99!EπtξM΄ζ˜ώ8 α£&¬ IϋmγyΤήπ{ξ†ηΥώ9Ÿ2aš(Ύς§_KδIΖp‚ΥvΊ?3‹€'ΰ ½ ΉΪΖA}Mή•%F_²@¬€Ά¦p–5}Μ Η‡ύ[™ΘΠ.χΤ¦ΉFwτO΅wΒΖ]ϊ%”qΩΧBH}tΊΊό~a,½π/ώxχεοΨ|VžΕ:VΫΰ3δGΌlMξ x§Rwό€NX΄m;j$N‡u±]ΩΓGι΅ο`5φύgΎœ†FRΪJ~$^Žρ6"9ZΐG¬—¨yψhFdLΪζ8„`NG£@ڎfV‡E„ |―Γ„ςFG#`02LζR‹XX•0ίό(€XM΄œE|΅ΐF‘A5Ihc‘€gιΝ[χD„D»»±u†ϋΪRgΉΨΡ 2Πݜ–tyx.Ήυ‹|3 ΏΘ«!»ι•ΌaӘζξ‘Χβrψlν¬(`mΙr+ψ6ΓˆŽΨΪΔϋλ"η!y+ž d~ s 3πώ>ώ$hvˆ53w§΄Ρ°$bΖ6 ΐΪϊ6€ζ u@˜τΰXZKί¦–α ͺ‚퐳€8:žB„hμλμ@ ‘A½%…ΪΞ4|a„Ež‘eTό˜rœ!έ6iΰ1οΦΆΪ!)8Ω¬Ηd‡Ϊ”ͺ•α(υ?€/ΌCAhQ$9=HVœΣŠΏˆ–€΄»Ι(98O*ωΦd₯@ΈCN‘&bΪ’~“pΕ‡„-Ύ~νZhe^~υeBr’(U·ίΉ6N•0 šhτΡΖώ>Άμ { q“’ν‘Ρ臁Z@£¦¦ΐ+afΘΧ.# Β|’Έ‚O€Ζ;³ιΝΧn₯§?ώQo΅ί0Y8qN]‰μ²λ«™“j„ β38Θ.’2=c} @‡ΒfDF@•_<Ιίr2ζJ@=ˆVXξx‚Π—Α7π"Δ‘Œx•y.@€2ˆͺδ%‰!ՎF’š±"Τ¦λB봍Ψ'nˆ@έ£αΤ’Μ&*Ψϊ38lΜΤ1εœΣF W5iFϊΚ· βhΡqͺΪ―ΩςG“™:ϋKSj2d*όtΨWοϋŸε%&”d‡Σ=ύΦ^½Žμδt‹s‚Ο€φυJ‘Ν‘αε;N$ί—ΡΔΙ—d^||‚#8ƒ‚°‘( ¬γ€ρ“αμ"β“±μeΆaΌ”ZΆΒp¨²ζ3m˜AΔμ’αˆΰ²Z2fΫ0ʞG΅dxΝ0‡0ύ,Zδ‰ΨVκO%‘£$λ«„ΰ¦ούFOΚeN5ΓcNμ›f:OΞƒk§Ο„ ¨‘ͺΜxΏ±³~(Ϋjx^‚˜7|υυ«WΣμμ}ζΝh£`ΰ%Κψ*4°OΪΨNΉ=΅fφGŒ‘f,LiΫ°Δ-Ν0€žjΪ7hΕρ1ωp€W.§Ο~ζiΦJΙ,φιδ+Ω_Z]Š}ΈΉ±Ε8ˆ(ΖόžΣ䁆ˆU“£Y•λš+Φ<φΔ©Ρu *ak„1ΝuT?5Œ0λ-σ€ΉV7ζ]&7άgΩ 0RΗΨ±#ν~Ξ‰~?ψκ·|±%ό‚XεσΑΕWο£ηMφNξX&.ν£gΞ2VŸλ–9FΓΤ—~σΟΫι ŸϋHψΙμQσB;ρŽ}ςς-f“ϋ2wξάIίΔdι©Η¦³Ÿύ<ο@,ςžDb !Ι_}Ϋ‹κ*ε‡jLˆϊ'ίώvϊώ—ΏKΖΙ”.άψhš]_I―Μ€τ+Oχ¦ΏώΧ³τυίZzϋΞ[ι―ύφΏ—ώΚώW>©qΖ!V7fWž Vk »[ή+ΟU<α‡ςlY.Ÿ+ ϋ=φβοώώ€·ε'–^‰χ¦†ϋΣ7^NqU{A}α΄i;Gτ―Σο υ%=uγ*~"[DLL«‹¬#y₯Μ.¦ψԁs ΰΤΎΜ½τάΫ/ϋΰ€„©σκ©φ–ύ”oθkLfΒ†ΉΧ|L˜Bf;ΜccδyŒ1~Κ‘cOPa΄εc[π3Ύ;<ŒNSbύ’iJ#9žwᎰΚbρέr―žgζΪΉσΦς½wΨσ‡iς‰Oπογ„—Η ›sιωςp’W`°j—wc= Ύ΅ώvΒηρJΨU+σ^0‘(‘ν1‹ζμ3WΒδB=ΈœR n«ApQ$ΨΛ η5‚ΝΈ|‘΅ν§Δ΄E’Μ¦5Ν,o§[χ–Ή_‡S{sϊΘc£iλ‡Ι|0ρ Ω!GQυΧζΑόπνόbΐσmπ‘˜‘Ο'?ύ‘τιg)½ό*YO±'*n/₯KΓψTτ·α1œŽ8μ"ΉΨ!4ξ,9=ΞΘ@:<<‚“6ͺ<6(MDJΤq^K€¨“€ŸAύ}Γ!sny δΟ\©ρy€pΰω1„U_‰ FGϋώƒΓ7Cϋπl· γωύοίJΧ\›aσŒ΄!₯="Ϊ–Ο-$ššm―½’©$žΉ76σ ‰: €ask`4΄mCΛɘ@h~ƒx₯λF3$]i‡wH[ˆ ΜPψcώƒzΝ*$Tfπ9† j§Ν0 †9mΗωΉ`[άYƒpλJ_ωΥ_JΣΣ³dΫι±λc0˜ϊ@ΜȐ” Έ_Ήύ;$l‘R[#©φο‘“H ‘^‹\υHyV7±C_^ΐ Žxθ«+HιˆΒƒΆg}s•Πΐ½8Εc"ΠοdN7 p<‚ιζšŽγ ?σ’δΌρ–H\{pmtΥX.lŽΑ`‘Ž—HαOΒΣ9‘²δŸgI+šζUDyR•Xiς’ΝΉ„²Δ’fK")™>%μLΩ΄+·Ξ@Ž2|?BZ•`΄Μ ¬Τ9› €0AΞJV½²v<"Ά {*€Μ8άΛ"ϊ`΄μ7ΈCqΚσ^6Ρ‚Α)ͺν*AŸ²ο\ƒv4]:A‹ζΥΦH΄©ωρŠ9£―†–Ρ‘j>sD,™’0γς&`έΉ΅UνŒu˜kΓώ[Σ1‰ϋ%λΜ3οΘ΄9w{Eόœp¬φ:e›”±…Žφ3$3‘7°–=;»Μ{S2h›s`7ΒΔ‹uφ¬tb‚ΔγͺΗ„rηυ‚γ€š1Φΐ΄λόf΄ΩLt-M‰:ΪλΠvς.ύ2|ΆΔ‘ŠΤ¬θG†ŸH"Ι¨LΘζJϊ¦Τkξ³a.#€I΄κ7~΍—ZΓ›ΦbΎJ_΄#w%KΗ&όΜL‰Ρ€\«ΎžΘfI™ώU²Y͊&•έœYϋ¨†2’•Ή'™₯2̐ω@Τ.^…a> ₯[£k@™Ώ-0χEηG†u›σΑ΅―a Ά‚Ήg%γ=vz¬™Ρ›Πlκ›’™ŽQπš#ˆI!E™+ΘgϋΛΉw=\ΣΨ£μ9χdœ§˜ ώ‹}“χpΎ/!ͺFΛχΨΜο¦DΞ`ΤηXCjMŸb/Y—_ωOνmΜΟ_ώχΓM !‡¦‹w]pχ%]a'(}foϋƒο2Θf>α›ίJ{r<}ϊ3ŸGpt3ΰΩ·‹Ξj>Oθξ _° 7l:”«…9ϋΑ‹ίK―|οŸ₯ίϋϋD©]ԟȣ‘~ϋ7-` GpLξΈœΎτ!]Ή~“:’&RΪΘ#ζξ«_ύJϊά[oβΨΐž ΓΌΏknoωO†Σ&3οΉ‘pωa^\S™©—ΎϋτGνίNα―!}ζ Ž>Ÿ¦?όƒ―%R ’eΦδŽξ[!π₯Θ™ϊ{πΣU΄χ›σ„COιχώΞOί;W~γ―€/}—†–7yͺšι3RM@…±ζͺšZ9Φ[{"|Ά0a'tΪu½hΐ6lO.lςr>ά?qλUyߊܫΆ£K†„R2rώꚀNΏϊBzρO~Ÿ}אžωε―¦QΖk‘eευΩ+CJφ§–5˜›»›n~μ,"Θ‘Cψy΄kA²ΒCWŸgʁ[̟Ι9dh7 a†”lζ]ΐ:ΒjM―…ω9#RZίθϋ½Ό·“nΟ¬aI p±Œq“D˜eΓp΄4Χ€Ο}ςrΊ2:˜Κ»`„0—3 Awˆƒω‘\OλL¨!!·…¦ [DΈΪΔι΄ΠΤ™8θΫ‚_G½ΈB&o’€I8Υ!Ε(@”`τ‚ιF9 Œ ΑĞΈΤw_ΐˆq #[0ΰ&$†;H8Q―€|>γ”ng₯.-Mgιε—^J£γ8 7c»½‹ƒυpΪ`Ÿ7£ήܚΎC?BΦβ—Ρέ;‚½/fdŒΛ ŠMμ?{z;ƒ;†ΰΡ!·σ$%WJFŒžU&ι™„άς cκoHOέΌˆte6-n°…ρξAψ ηEJΣ€c:€ίƒ8Όw’iΓμ”π‘c#C& `€βΦ££}3HόŒ4-š΅'δ3$!ΪςςJ Gg# ‰@η0hARmNe’Ε¬‘EͺGZΌM˜Ρ:ΜΦjŽχπ»ΩŠ„n{H_g0™IJˆI`θ€Ÿshΐ,ˆυaEΪ»‹€Uύ ‰EFFΊR*& 2ζAi ~π؎;ΰ; 1}ξ<;ΎŠ }O€&ξU-΅ζAV€4Ή±'‘t†δXΏΫkΒΤΖΎHPψζQΌ›΅ϊz°Ot ιT*%—lΗ!6ΙΪ_Ζ #a[ξαά€Γ±Ο #ίγ™R8ΆάSς¨„M¦)fζΞ¨ψwπf$TE}ΪMˌ8)ŽΏ2g0άΑΨ‘ πΉLΟ½ν€Lύ†ΓώHPΫν Ψ¨846΄@uΎ„”ZMΦ^ψώwyς $Α½‘lSΣΝΔ$Ζ#c1m7cj’VηζΦΘ32NjE ϋcξmW­ŠRΦz$“C½Α»Ά¬MΈŒ³Υ³XΓ’mΘZ=`#ΜΆ^΄Ο9σ<r6ργω΅―όjκθ₯ΆΜά†ίύιBD+|±1κ²Δž¦;&οKd~ŸΊωdΊyγρπ©‘ Rα˜θ }Ρα8₯ΛOήLS§Oπ;Gcΐ”ΰu΄Ω¬ΝΥθσΔ>V»ZEζHζΌ 7$τ…!αgξ…-W&/₯ψΖ‹μ}˜|Ξ€…Ο~ώ‹ι·η+SqN4tόŸύάΣσύajΥ@fmΓ~όSΟ’$ΦΘj݌†MΨΜͺ²Ζΐvΰ'›½HΏ…mτΕ}%;&LS³Βή?„Y+Ρv $μHf ψ#(clΔ~‚Ωe\ΗψΗΙ΅0yύι4uΥ0w1υτΡ₯pΔōύΘf}ΞA†I΅0DΞ‘kβΈ²–ƒ•:7Φa…ΎŸY»siΤaZš½“ζοΌ#^“z/ήL£S§6ϊ€Υ²?~gA—€C΄qH„H΅‘Γ+ϋZ΅7@πAπ"އFσR‹–Σ@nFΧAš|ަ‚πιKGΘΩ@’˜"±–ή? '‚ΔŒΪ {œ‘’,‰!λΦ§Aδ-u"‰†…ώ؏5*βLϊC7xίψRωNίέΟώ“¨³oŽ+Μ©(£tΈ@[jo‰Β05 •9 Ν‡’ B–΄Š¬%xlC 1Λbc™Θ™ˆpKi0ϋDiqH0!Βα˜Βώ‘97sv~DύJžωFιψ§9_ψ'•”±ΡαΜ+΅7:”λwŒdXM’y9N@ΠJΙwq΄”ΩpΧο‘E*`ώ‘]ω­€ΎxΈM΄¨1ͺgΟαξ !AοͺΦ6•—8;kδηY"α 9d\;Ω§a&ΕΣoκ? /Ν‹F†ΪcΟh–΅…”‘ΑzzvˆX‡Σ p[Kwš‡Π;9%IηΠžγΆfO"Ω ₯~4tΫ0<ύƒDΠ‘†uό΄Ίa€™'-Β•K„hς΅°ΎŠΐ€uMhΡμΑ°·H˜V`;8{ŽIΖγ”Ή6*Ϊ.Ύ*&6-‘‰±¬š“5Ί”ΤλΛqά±H];†dE¨‘―Ι4΅•†mf˜Νύ„y”ΐrΟ¨ΡpH΅pυ1;FΨq·†)¦eΤτ5!x˜Ύύ2ΜΜZQΐ7R0μ?C›–!be 7kBW5ji0τr™1œ±WυΏP`Z ΰ¨{ω„g}Œ§ύ?Ζήυ5©ΫΙ1Β‚‡¨ιu‡Ω¦Μ΅:Ηn}ξkηά³ε~Μe€MhΚ”`K[Ÿ¦w™ΰε rGΙs¬“Ί¬Οώ(`ΰAΌ'ŒPkiΎ$ΟkτŸύmDΈj[¬ε9λοZ\‘Μ‹ϋCόγ}ηEσΘπυ‚ˆυσΝ…Œ{h ιgœu~{¦Υ†Dp†šέ|Ξ& p “#Γ4viζγ2ηΥΩΐ&rΔ™…ωœe-ρνΖƒηR»Ξ|qiΚθ9—±υΜθ3u†DΏΉFϋ‹9‘‘w 2‡ϊ ©y¬Εg©γZ£T„θs˜*)$P(ΐͺ²Wœ+0Φ.BΜΑ·ϊ‘Υΰ£Va-ϋ‘&Yk3Ζ¨πB3Βπy£οΆεψΟΉyw7xt‘luέ+잼p|³€>p2h2Φ»«λι₯o>‡Vf#^z<}α«_‚eνK[©•5ˆ©#CΉ°»Μ<Ν¬^VσίΫ ƒ΅7λWd_Ÿ τΓΝ2LŠ[ω@PΈώ‘BλQF Ω€†ΏνΕ tD3gxcο0Νά§= Ο“Iη—‹ιύιΛψY6ϋ0γ,*θ¦μ³›DΈ“9δLn` άƒΐDDωC£!jχu‚λωυή`fΞ―σψpΜ@=Hξoο½Ύ4;―‚Ο]9η\Υ]ͺ“ZΡHrΐΖ|kΐ¬aζ†aΰjάrΛ σp5kΝ¬5sɐfπψp’-Y²d+΅ΤA««ΊrΞi~ΏηΌ§ϊνR©eΛnYηHΥο OάOΪy·α ³» ĝέe€ ™—*οΡΞ775‚pΓZ$φ…<ΙiX#•ŸΒ;FŸjΈαkF€άΞ†&­λΩu£ΡρˈέuΕΨ™ŒDΫ9·4γc[·΅θR³y΄΅λU† ~¨ιFμ8>q4!ΌΘ·ξβσzδ|orόh,ΰ~3qEA–@E<ΐU“.Ύ\ψφ8:xΞΩ$NBPk<ρψClPψ§όͺΪUΤΘhoc3ܚ9ΘΘ»ΕfήΦD?1†―‘°U6Ν;pG£Γu<ƒTrXΎ…š•ύΩ»xεFͺΓΐf‹ m• ΪΝ¨p)ž_Α˜·³½ΘΧc{–Ά–.< °‘κͺ”8pŽϋϋϊ™ nΚΒ=ιμ«›zΜΨψνΔqn†+4Oδυ©Ϋ£ Ψ€@‰ŒLcςΪ‹―Ζοό_Β‹L'υaΈ 7_5›UΤ’vαΠͺ^"β­ FίI5„£H$$d ³πθRj’rα’ΐŸΌto)^Θ—\πŒ+Iz  7γIXWΘη 9(Η PzώB—WI—ȃƝͺD¨–xθ%_π”Cω"DΌ!―2ˆ.°tU,$’²Ά€ΓˆLν·ΝφyπRu˜_bΛ#WΦ£‡Ώ?ΫWΑͺJν’ˆHR GŽͺhšΔSκ-uΪBۚ€}Μ‡ŒƒH?Q7x™Ι{1ξUY!SBΐ$e\ν―œPcedˆ€c†1«ƒϊϜ9•ŒEn x(ή₯ €P]Hλ׈ZπΙmΥ(]2‘`Υ΄Vˆk0Ώˆͺδ*”Π8–̜ο@N3ΔsΘΐž-p:ϋ κωMx¨Rh’DΛω―KαVΦ₯¦Φ<γ(RWΗ~°€:!ͺ"³Ϋ£ΪŽU B8ΟΏπ„"^kpΓͺj†6AέΈ²ΦΎDo[«Έβά‘ιμO㳑΄Mή$'Ibac,"α$ΩέΥΝΎ„€†ω½‘qd /q₯lQ\Υ’ά΄ζU¨yι2·ιͺγ/!(Έ%Φ·™”)P%㱑uœ<1 eIτŸ1Ϊpr[3' ™‹αΙ)"fƒvœsΤBH;3’Kbφ m™œJ]ζξΜΕ₯Wވ•cZΕ; γ΅Α¦€sξw3—ˆστθ €ΨJH:>Μ›μV”¨΅ΰUH‰”kJb>©ͺ²7Π΅w`(–Ι„°`lοhmφηΰNΌHρ*tΣ2 („Ά@μ€ψ‚3nξ<§užΡgφP8#aN‰$»v˜wΜΐ,i«36­AΖI˜ΨGqί»v$ζ”BiCezΏ§‚X‡‰˜I“ίΤΩήαΉ£§EΛt_”RuTf2ΔdpXξφ‰΅HοκQ΄]–`ΑξCΪπ“φ:ψEΒ>(ΐe‹²ά”p-£“ΰTΡ‰l†”Ά·«δUxpΘΰ²=΅ŒΟ,ή =―vX_¬b[δΡ–‰ύe…ωX‡ƒχ HΞˆg%ηΜΞ.1©6qΥΎ\‹ΠVŒΰ~ή1]D^ΙϊQ-Ή‘±0ιρͺυBΗPιlΓΎ¬#mέΓ­υ.㟌 ά“ilb‚ΈwΡ/ϊZ$Ζ=!S3f œΒ‘ο2’KaΗΈΪοd€¦^Ούώκq™Ώ£L[ΓΣΈOΎ35ŽΆ’>ςΧΥbKΦ€~ΖΧύ§[0λ¬αV<<ΆΤ£ΉP ³Œ½Ή†2·kPΙ†HVΓΐ>ΡΌ‚6 KχΨͺ4yκ¦:ψΦσ‰Ρs›u8”Όίι’tBΪρ}ό±ΐ`ζι*V—δ0ή‘CYjX¨κΌΡεΉηkZν‡πAz]\w!ΎwŸ‹»?ˆ<}ρSΏ=ςΘ6β—εUΉ―¨Α½ZFνB_ύΙ'ΘΓ,ξ^χ8\Nž‰V8ώUΔηXE‡[ώε™s½Ρƒ+ΩΉYΈ6›\ -¨GΤ`L†{^9§{UpλΨDkΨΔδφ '\Ώ Ηp)v³ £FΤυ‡:##1B‚²qα­k yσpυeγΓG<ο{»Ρ!fSœG…BΟ>wΛmjΖNc¨›aŠKα§Nž’¨ΑυnkΒs½σ»Œ]EOw?›$Dō‹p’ˆ<ή‰ϋNtνu!ڌͺEˆ#2;O~ΈΔ}kmp:oΒ½νŽγ'Žq`ν {Τ\&°CΩΒυ¨‡ œέ:ώNμ@vαΘhΌ_2μJ7:*ΙΑœAΜHν"1Ό«Γ“N\’γ#€@ΞΕΝQΌ”!nS½»΅˜„zΈj΅z:%Tg\―L-QM°­¦’.2‡@;Ίξ‰γM5ςsΣιΡΜgLO UND<΄2mΩ ͺŽψλ&μ4τlδP1"' H+yDD²“ͺ‡—Ώ5τ©‚Ή#A₯JˆΆ1°ό‚©3*‰NΧ‘k‘˜œΛ'BoΩΙΓUκ―m '}’xπ.CFMι˜pI ΩWΔΓ?罆ΓIŒŸZο‘ΜαLYιJ?φ*;ΌE˜DΦtNq«3$NιDBΑ±4β4‡D¬>‹1πW„ΓφΛYφΤI‡C?<|K†–ΐS£m½Δmΐ½o…+­ΪΜ2H΅ΡΘ—a ˆL©NcmJ,L7ΡPο‘ Qΰ|mΒHϋ•k€­§mmX{ I §ω"±7V!L ¬]„γZ β#Β§@Β#•€‘ΑI²Ά„$τ΅7/& 3p•εhŠœnΘλ› ΙίΖϊΦP?Ž"ˆζ'ϊψπPRΫ”P™ΓΎKΫυϋΡJΫt©+2’sΤ+œΑ›;7Ά‰Ž8·ˆδ€υΎB΅‡0Π]mMGR£ύr*A0ΐmήΚΌ'ι1Νω[α#qΰΈ+mTͺΪ q― ή2Μ fΜJT’R$e&ž.aExiZ‚ΫiTρκ'Θ£§άzΣΤρΧ„-ΚHφg+ŒΥΙSgψ; ΜJγ^βNλΔ’…Θτͺ"z΅±wΙέ§qŒ •q Ÿc}³Ή†–c·Α%n…ΰj‚0ιIR”vφ,/χ Άhμμ 0FΜ$ο;%&kΛs€Υζ ;Ζ―ΏΕ»ϊθ8Ό6bfl<₯q\Ά!Pα"#Δ1¨ ­’pΞ5₯4ΊΔ6¨¬j}ͺ•*Α€²Τ½:αu™,a‘+c׎k"i°Ÿό₯uΜ]θ\ΥΔHς\‘‰”μ;x§=ΞkΖ66΄t€²λαr§0Sˆ nξ_Ϊ XΆΊΔ’—Λ^ΒWΥK%.ԍUΞZNz 0ύΣz”ySΓ:τ’λΏΎ±HΫπΒΘ^κήΥ„„]‰ΜΜ³uΖi±―ζo“²™ΊΐE&œΔ:κmŒ­φ#7ƒέΆΦAΐClΧΤ’ςάΓώ ΏΉ5σHέέ7ŽφcίP΅sbs γ€TΔΈT8OP’ΈΣ°ΤpzK…Hτdͺ,Bΐ“ l:œWΫIB–ΉΖNͺV¬fζ σ[7ν"τ³BΟύΰ{H)—γι§ΟΖ㧐Τγ·bq,ξ\ΊΓοwunΗςδ5Φ29g~%RΞK·Vβκ[Χ㠟 ΅θŠhηŒk€σ-h%(ιΦ‘„Μ@Υ%ϊUOTϊ―τ«Žzχ€εĝIφΆ΅ΈxγDΕF|ρ‹ŸFΪΒ8³Ιi$ϋ0χ<>kδtΊ°eθ)!sŽ?81ˆ 2ž-;ν”7ΡΫRςΟ'°ή³Šλ  ˜„Hρόs€›rGkut5Wc2ΖbΧ°K_ϋ’,ήy|q+rΦpuΔ@ξJ6Υ³lγΆŝ‰k±΄9ΕΑRΛQUG„τ* Λ ,lΔF1ήCwΊ΅}ˆM7γf^Έxύ΍8uβHRS¨‚£΅7΄»w~ΛH₯b™8vιjά½GFeSLΖdNSˆϋ»Ζ‰γ'9¬ΧctΫ ά(Φ£ͺΤ Χ€­U]Q61Ž>ϊSQ.Ž–FΉ0zΊΪÎe† „…€I ϋ ¨—έ¨,Αii`3\†CΌ‘ΈmλΕΆε[—θeΔΡcΓqφά)‚ jW² 27<ŠtΟ^λI#k-*\]xS~·U Ξ‡…% (%4H~T-i!0›οόΜ$Θ R'’φ*:^Et¬KSεΙ55mικHڍΧήΡW.Ώ™/)…ρΪΰπKneΙ[ βζA*β5=‡‹ώ$€ dRDp―ΔAKφœ ¦ίƒ ‘£*η4ι—§³T—ƒe΅ƒΎΙi-ηΨS…—ΖΤ%β«ψž•θHtˆ˜‹Όͺ#’žrΚQuLΔ υx©*‘€Bχ¨"‰φYΔ SρΘΎ›ΞΤ"ΙY.ΫβƟZBΘi§D’D”©“€Δw₯‰KJΫΘdqžQΤ άμ}Ο$+τ… rL ‘'mb„ƒm]ηqRb#LElR™">”o~/ο%<΄‰)ZƒcΨ‚ Fvέυ'1D.RK ; w’c·/Βύ݈_zβqζ]wRΥ[ΐ’^εjm‚μ«~₯JΡnUj`”€ε[dYwΓΊw–r.;:±kbύ€XκWwΟ‰θbŽi”_—U@κNΈnͺAΕD¨T‘ HΑ%\ΊΒm„#*Α{5+U°κ@κγΠ‘»)GRΕjŒσq"υύΖθmμ†hšοΤλzP:ΪΚ\_£/ΜΉνͺ˜TP‡vΞΏ5Λy(σh‚s’Tg -ŒSZΔwRΕͺ©/v α}xWΤπΊMλ¨#"9umΥ#~h6˜-D–XΜΑ†θn^MϋΞ45 fqBR‡ΚŸΑEλ ΜΛΉΌ¬§GςhSiτ‰#½Ι-ϋˆFΩ¨3^»5ŽχΘΞyt$ΕΪβ\O^¬ΨϊκP‡ΑK$ƒ ύœOλo}4ήΌxχπόέCz::ν•ρω§8w^kΓj,؎ŽήhGmj‹σ}·ό^½0˜Γγ0lN+Ξ( Ϊ΄KS}Mf‰*V œmΫ%Οr«‹Δ]A"xύΖ8p’ μM#'aV²ηLO-@|L³ΗΤΖ 4švβμ1‰˜ŸM0$Hj‰Œ^ΑžQΓ>ZΓΉTC_X—[nνμC,$ŒΣ" |SK‹\)^RΜ…nζSΣoασβ ±!ψ:άΖ΅ΰ`mC΅FΠβΚ$‡’ρ/φP©Cέ¨7&gΗ‰q5©\tτλيMΓ¦ΎͺIΑdάΈŽΗπn"3Wθ1k›’j r,[p½Xgr…Γ›ψͺ"LΜαι‰ΈkDߞ_)QΨ½^ 'H.-*"Ύ%_ώŒΣSS,)Ž6%c_ˆΤ*~]β«Y‘Λ΅1§Α*κ=œΠ Έόƒp˜ΐυh'κ_o\Ύ‚»ΟnT+ϊΨμΪAjbŽ(Λ‹θ»Ή‰”‹<‰°tΒ9cƒΏ= ²M”aΈLMp§ϊO$Ρρκ/kσΛqεΝ ρθ#ηADv9ΈE;ρjfJ—8$ζ!Nœ8#θ!_Ίt Γάμ’³V׈Š.Dυ tώάYΠdˆ²«΄… '‰–­1|ί7ža±„XΪΒmπ¦RΕμlΔΖ*YAΧΌ›Ά―"Ω‰ΠfFΓ t…a ²'’ΰ́οϋδŠ™NΌΊ:!δD4&ΕΞEnœπρΰV΅§€i”d ΙORΚT5)©]ΡΆ$2 Oϋ’*Rp$Eδ37U‰Ρ 7#œψf»xNψΝ”Pʐ ξω/Γ.­'Ϋh%D*Α8-3”ι—Œk›!%VjIb"gΠ Zκ|gpΘϊηAšDΛΆ*ζš8N¦~€ͺWFœY™Θ–06X‘’ζοAt E,UΛ’€6)Ζ i-c~~šώκ…j€β₯₯‘£E²° PwαW²D|l‘-°Αxnσ­δD; Nη„0«?Ύ ρa?k8δλ!$>΄ ίΓΡΏρTΤNωΣDVϊ!q±‘)ξ—qͺ αg3q:œσO?ωs„dΆ[šzΤ…Dβ:!XΗΪkAy$ΪΡ5€δ@nϊRΚ6$½.)1@‰ϊu…kΌJ`.Υ1_5ZU…NI‘{J3mΣΎcnv {¦©DΔi#£„€ŽΠ6*Χ:!₯[m¨0mΒr΅ŽόœRα―ͺ€ͺUFUo£?Ί7Ά0kμ?γ02°W‘(Β(^£ξφγU΄`#’G°5J½’= \dΥ4U3[NpE @Ξmη(Σ$­Α΅OΎw΅I z9”X8wT]ς·Ž·ΘxN¬λΥZ| [ŠΚSNc»™9Χ΅*’Ϊ%)Iθ&κ‚ Ϋ$Mυž}βc‰04J|ύΡ›’ΔA1Ω‹P+SkQCˈzΞ8ΜI a»ΣnΑΏΆ…uGbLΥΤ_σΉ%*ΙΚ³„όΟχ”g£\ͺ~Ι@‘ΣΏγΘη*Ζ2Sέ2c~QŽςΚ"„CΊ±|\‰xIι©ΥΊψn›2‚Θ‘αrM§ΒR±¬Ηs΅6_ž·ΩοZˆΘ] 'Β½‘β‘ΏW vApρΫ!2Ž υ³^2鑇pp―i#>Ε"\ϋΦ6Ζι’ξΩoάAgei#Αœ‡A€t„χ8…©@νͺfˆ9ΨΚ,­zžκMƒ1k χoΌqƒ!GŠέGz0ήG%M£kv2Ξ©ž€VΩΡ©#φœͺŒrF¬±g™ΗJ`u>ρΠ߈'=NΩ+‰ž» !B?œηΊw^"­¬Ηmξδθ-Φ7LΖϊ€…CΠΐTœCZ±ƒ€.ڐv£₯gL‘*έΠx’WϊΈ­†ΐw~i?&ήKP!TΊ50ŸŸŠ]ήWΡΟγ}mΡ؊KζžΞ²>ΰ{Τ2j^«¨_΅’=qμ‘Αθ‡·ΡΪΘώΡsb8Zl!0 aDpΆ]φΤΜβa‘fA€“၀ϋw}λplsΘVT5bΛp)Ž “­η¦υ΅€ ]Έšœ"œŒ*UˆP“‘Η6@O·gP§ιύμΙ'ΩXρtΑ{£w?#Γsγ9kcc‰ΝU8=S­΄.&ήd°—Ψ‚ψ˜ΓνΪ:ƜD8 VHcϊžpΰΆ8D{I{mΑΉ―Η΅¦ˆXς¨wr£ς—^ψA ΑY€+΄'0Tί]7Z4„“· >Xp\wA”έπυ Τ€daΥ―Œγ―^gs?‚:Hz"~¨ ΰ#¨ITΣ―ρΙ‰x?ςC}ƒρя~ DqiΊΏ8pΞΔpϊiΞ²έ8~l`‚,Υζe ₯…uό«Γρρ€…‹Ω†aέψΤ$B{ιϊΦUΈ‚a\†¬’Σσš„«Τ@TγVΪ0 \ΆqWΨΚAWY*ͺX± ίΌq‹q"ͺMˆΉMEP`Μ ΄κ,s6,©1A9žκ ƒupfΛ₯…£Ι³άNΥ9’Zˆ‡4I4n5e/šγ–!°ζζξ€ ¬ƒpvΡnΈψΰš"‹σs[ͺΊ έ€ε'$„CLDΚtIjΑψ‰π‰0ˆyφϋ^€ΐ{η₯φ-ήlsΨz#—ΨφK.%δΕΣ…‹(FiHΦ‡D”πΦ9’axβ’’Ο²E $DΪΑ½\ ­zΪk½"B" I2’ο•τ¨m3—πΙΪBG›ϊŒ‚4λΕ·}=R ‰ %$6Β[γΟ€"ΰ“}¦"ϋJ{jH[ ύψΘQ$ƒ}Œ*K­¨ψ4HƒτJxlMI„ΚPΕ‚"K£έ ι䐇0P₯Λk™ƒ_(-A€sΓΨΖαΠۚρt¦ Β©ϋl%•έŒg;Œ՜6Φ«@ό‘ͺ€`ԁ¬o‚€Ιύ— Τ5κ8ήΟ0/%Φ6VXΫQ#ΕPέ’ δU’VιF-„TΠΑ„v0­Hf@Ϊ•Ž΅d«βδ\QH)1rlΌtΝκm'ͺ\΅m1R’KimF&AJ$Ζ– ”$ˆΟŸEβΒ|·Lη·šBέζ°™CεγΔΘIΚ$κ5*Iͺγ,ƒΐ΄@Δ―%•#λΫΒΝψ Ę:ο¨Α ”7‰Fm&Υ{ˆD€™uT(mmζ4AWƒ]~ί%Ž>ΞJΘΆσŒIBζγOjζsΉΗ;ηgšŒζζsΦΉ,Ρbz 4Σ»&,3MSG%˜γ,βμzw=8εNλ@bά9λ:’Ψ³ ]μ+^Jh*#"υ=ηtjyDZœsͺ§i{ζεK„χiσlΏTƒJ?eϋ\~•?KhΨV²%ΈYc£^όšbnό{uζϊ•§ς]_‰i°_ˆ••Jη7ΥIy–™ύOΩξΒά·δO}6JrŒKα\ΜΣ€¨έ–Ν{wƒ^¦oδm­'-ΑvΧαήW‘Dυ½IΦ‡κ³]]zA䬄Έ8:4ΘZψ8ιΦΝΊκΈ= ΨΣΝ­xχr―M Ζ|Υcއ˜y²Z―FνŽγꀫμ{-ŒΣ‘‘ց9+zτΰύqiθκΚηXG`Ώ‰λχG=IDχ9ˆjβΫ4΄αΚϊΟ\ˆ[γΨU Γxbύ³} aW₯W3ηΑφDόΪt 6vFκU“S¨2³•ΞΧ@ ΈΆš9o§^φέΕ―q^+a™˜ΔqΜ0gp™hBͺ3‰τvŽxΫ0*•p( juΨ.j/ΧΜn£Ό$5 xͺ40!l°˜γl=ζdœ8>˜'μm+μQžφͺ|λγΤΡ£œυx°„‘Ω£†€„†άφπάύ³ΣΚoL –6γy±p$ޝ+N†ρε>βUH@>Δ“ΰAκΊwE ΑϋΰΒΌψϊ[Uͺβޞ$ nb]‹z’Œcγ Γ"[šΑ‘ήVΜΒe¬ζθ#&Θ,ϊ±lœ·n]α`_AΤ bΚ!TzD_Θ‹^₯6 Xζ’ΞΊάVν:τ 34 "±Ν¦»ƒΛ%vd6ΥDފόϋϋϋ9+1؜›HΕ†1Θ\3F΄ξ-¨1Œ ΗDΒ"JηΟaΓ܊ηŸύˆΗΰWΕk―_Az‚5$UΈTR•αμ‰SΤ»7κogγŸψί0 lΰΠΒ]nKœ9uSΘΥF ˆ€›—^z€n=yΠ™›ΫHˆ–φ'κbΧrˆ·kΣΥ†žν₯«7’ Wm]+›;ž}δτu5αVΈ‹ΓJ―&σImbr£Q8±UΈ±<ίψΞΛH.cψΨd8EςͺrΣΪΠΫkrWρŠ7ύΖε‹h+s₯έΧΕD„΄χ§L6ݎκ£Η@ψΰά’/―ΪΠΡαͺΓΥ!qΧÎͺU’3r“›NΚήS]ƒwr²f¦Η±!釫Š/η‘Rι-F$ڈΓΙΘ›χrXεψ«P —O&¨yiσ—l)!!½σN)€œΖLύ$γ‹WyΨ₯?κOƒˆ“εŠάΌμ$+!bι›šΫͺHHΟ–“ώΛ&‘=ΰˆ0‰k€?Ύ[Άˆˆ‡Žœksʁ7άηdCy`^ 1IˆσJΒGΓώz™Φ2PHˆ…οτκ%G_אr€m³)$ε.VΒιάaΌόOfδψ±D$¨J5 -7Ό.τ$Ύη_xRσΤ±ΏϊΉO'$[Os`Μ[%%MΨ €(ΧshίAZ)²§1΅μ ωa smb– &uΧ*QΠ r°”K’@΅-9›"Ψͺ™ z6ƒ!}cμO’*ζ&s@bAcVπέXLA8θMHaf@ΌJ°θΑJ°v¬*žΫͺQ€ κήWZ·§5xr’ΈJΡκΩjθγkp©I°^αΡKV}Υ–γθ0=ΕRΝλ<2 t?άίΧQ…°ζεMΰND^)ΘΔ\Φ¬Fm—³,β­Qλδϊϋ–ƒ.a¨t΅7ΖG$RδΥφ8ΟR4z&›y–°—›αλ±Χ–Ι9"!ΐάγOOZ†°Α Έ˜„ΠX@IDATi²Ξ9Θ²2\τ-ύ².veπMDάΉβάŒΜ MΏdsΘ{ΛHλ€vΉ'&B‡ΆϊE$;I[xrlΛ4Β/όzοOFΠϋ  ›„U2κ¦=Uΐΐφε—„cjc^FϊPϊž5Ε"³4ΆΨσθXBΥOαhέΦ1;q#Žœ~‚qk`Ώ„H%·Rmτ΄λHuρ.#Β(вuΧk“„”²„©.~S¬ŒΤVV$„l sΥΊvΨϋϋi2f‡«’²$ϊθ§c塊]I|i‚Φ†+dέΡΟΞp@χυ‘&Tg'΄_υJmΏ—Tσ– lR^#Θψ4σ ΞΎ@]8§ΉΖžΩΘόSή’‡ΫΨM5«‚ ΣκΥΡDοΡm<τ@xιςMΦrf5Π§ζ"Zρε―½M0»ŽŸ8+¨NbtWφO΄ƒΈ^!ώ’rˆχ&˜γwn³Τβ– ϋΜθ­[֞φη‹Χ:’CγΝΞ­qΖbϋΚ₯ωλ“ΛρΒ…›¬³U˜qΨβΘAΌ‘Pέμ"gžϋ©ΜŽ‘a£Ϋ£Š,Ÿ±±Ι€Ύ¨ΫgΥΤ<›Tέ}ϊ#§h„Ν%4/XΣuxΌjΐυό.σ ώ(S§‡@Ύ8cΐ·!BΪc•°ωq˜uhQˆgάΑΙΜ©γG£ΌA•Ϊ6TΔoݜ‹‰W‰ŸϊτaΗΒ« @>μ3αι?ϋ]ڌ6Ά»γ«Χβɏ<†¨x9Ύσέg±λXŽΗŽLc\Ή‰Ηb5~ό_1ˆ 6Οηjτ=WΧηXμ7γ­λΧΰδ΄%λΖ¨—―^ˆ=υK.¨ˆ°ΡΤ€΄ˆ„uΆΛA3ΦώΦgΨ ·!(°Ε Ό΄α°mΑY‘ƒ§š€ͺkθ»ͺ2±²:—ρͺ>UZ:8HΰˆΗϊbΣQ$r0ˆhΊψkΧFγόι~€C΄½2πž±2^UΩQ5  ’ Bυψ£gΨ;γ†I{w"qt½―\ΎŽη.ŠYΏG~„r ύΥk qΝ±Μα£Τc›όδΡA6Τ­xξ‡―$.ΟyT€ΆApΰ’ցΌ-ΰEoBǎτCt]Ν<ΰrP7€CΓΓ tˆ˜QuωΜη>ŽΡ96!¨„Τ#^φ`Ω$oΑΦˆ ͺO‹ §­¨Nτ‚tυv_@š4ΙaͺtΡ3°Σ0\.ρΟΑmξΒxu½ϋˆ!NΟOršE]…‡*g":r•΅SΙ\­ΒΡ‚ϋ§ΞnA½HΠR_„FŽŸk"j ()Α‘α—\\­FΌ2ΔAih(γ+Χ>!j|φ>ΩM€€’θΗΦy*rα%‚@fΚY„°αpςOΔ$γ KHˆδ›žω±ώ”/•!–lzΛ2 (}§ςeHHΖύυ)F©4‘\Υ*Σ<―ˆLž΅ΐ7q)U`μŸ’yͺΚΎ—³h›=4A’@±ύΦizPΒDL·Bd` Ÿ‘=šuT!vχΦPΟB Dλ·e8vJ\Ω/‰v,H ‚ V#vΡ™n‚σΨΜα."\ ‡Ρ+·£/@ΫΨ~¬2ψΨ‹ϊ= (HC 8ιύdΜ Ίtj$ž$"ελ•Νϊε–k *€W)Θ#νƒώH’ΗΤΜΤ?‡&‚8Ζ\βf”:ŒΛϋ‘ϊΤ&„±6Ϊ1IδnΛΚ€>`ά‡$H/_ΐ«—ΌΊκΦƒ_m4fƒc²ΖξΒφKΙ\ͺ3gOOάX₯ͺaiQ_?§©6[Iε'›9I>Πε΄(5PeΡ½L½kg ‡ŽΝ ̘yb#)ύ½~ΨxVΙ’ƒ,’+„‡σSXWΌ–ξ]λH“”ό8χ|v]0&‰0睰Υ=y‰F{;™λj]Ι6ΰ-PXΫHŸ τ*’Ξ€SnΆŽœTΙδJσƒΊΩŸ¬ΗtFΦ•―-₯hNT]σ9ΝK‰CU²$š ‡φ &`κάX³‘~벟ώ%ɍ/¨WιƒΔ'ιΩ½e“σΕ²t’ΰ>ΰεϋžα³xŒ9mpm¬C8Ίžt ¦€|‰Zi•.LGΝ5$a‘Ϋ\ۚŒΪYΊΆmΔϋβ*·Rbχω4GΙZ\…tΡq±|m’š[ΧΞ._3υFpέ$•Χ¨Ώ΅[!֘.ԝ·‹Ψql3oΧ9;<*Ω+ΗQMΊ|γ*MΥd]νςOHԌϊΎ“ΌΙ™ΎΘEˆ =*Yϋ₯ΗΞSΔ"Ρ«šj“)γ0ͺτ§Gf/}ζ,νκ .UWŒ‘Χ ΉOqgˆ]QIΔxΰ₯-„o=ξŒ-Cδ*ύϊ/ˆFŠpΞ}β:rΈ%–ŸΘŠ‰!―Dδ%jDΥE,D Dϊύ΅s9NΒ'ΉN-!0©X8…"=©‘ŒΑχ΅Θ-ί’Ly"{–!‘D‘YΛEνm’OJ²2x• mΎ#[V6χ"uΙΰ˜vθ&8C‹8΄AŒδZ£$n·yi|BN-„ΛΓ^€GΧ΄γ“ΡΔνu…ΜP2 D]’»/|ώΣ‰θΠΈ³ŽΓ\υν-B Δ€‚@Z@†@Ό4oΖϋά2‘ƒEhtχ¬'― ˆ7υΏ[PI'(¦œ-Ρ&i DΑy.ƒ@;Zε%Φ v9< Α)ωGΒ`\›91HΠHT Ι&j%2λ „Λ l”ŽVwT!dmh³o^Ύ‚{έ„Σ΄gHKt¨ ŠDZ7₯E*•τH(©>£‡:=9DTk]+Ιvβ£₯₯N1‘‘UΕ`^P€p¦u–ˆC€ΌHbχπ½½§Η$§zslδŒΛΥΞf !&η·Θ¦ύR—}’{­1€W^gί€`Όs+κιX@zόκχΏ‰,¬2ϊž†3 N±εLΑξΐnΖύWΙ†Œ™JκUe€ι•φ-–Lίkiΰψ Φ«N(π0ΆΊ˜τύUΧΩΦcΧ°α»q!Nœ}$ZπŒΥΔޝνΨlG‘πd@Μ“πPβλΌ΄‰Έ“Έ`q(tύT‚Έ;χU!KΔ2sΤωξΧ5πΙKι[28睟ϋ΄8όζυϊ›^sοXfjc"ΠΣ+q‘Lˆ‘Ά#)±νkξΐΥ2vE©χ¦qfμ[Rγ€O8L0(Ž –TE…YCή…™;ΜT±‰p}J|¬ΈgΡΠ]‚Ub'΅³š λtΫfsΨVΣ―ΝQnΓα€1qpJ Z°ΗZφH݊Kx¨ΞΈΛΎ³ #νκ­©³’―t[+τ5^½ƒiΓ€­‘’w„λΧ‘,ww@Τ&i:;Ε9ΖΉ’*σj…-H\”n°&u-}t¨ˆjˆυ–48©95λQg2Hψ΅ΏZ‚8‚vζQ*fo’9pDκ–sΔ‹ZF²?„Z œq#Ηπ¦ΖzΎzυf/bcqsKή•Ί“έ%jT0βVX£OžŠΟ|ό˜ϊrϋ¬•ψεOε"`ύ₯ ^/χ½fΌRJHa„I Ρ‚ΤV©c }οννA₯kΘhc‘ΝxΚ(Ψc}μ¨’Ζy”€ζ0Ψ*YΓB±’΅’J¦Δ0±λ!l9ί’ι'Ζφλ0τš‡©?΅’ψ'‡@A€δ(~π`yφωˆ‡NOΔχΕ'! ΖQΗBB€Α\μ«Χ&ΰvmGG z£†€ΐΐυqσΧΐ­₯Ÿά£χtTΗ§?~q4PΣθOκS―ΌςJββs€%±q*._Ό rNάt~§1Χφ  δόβΫΛ3Χβμo=ŠjW\½~Ρ*†olH lψͺα'œx$Έ“Όyƒe $Ώχ΅θΛΓυ‡³ΔΑ²JœŽΎξ95£cl’—βτρ“la3r;nWMΗ'~ωi€νImͺ†ΓaoέS Uλ8΄μχ›πΘ©΄ιΈqc $°™ίk–xΑ>fhh0jβΠΑσP]Η }DL»Σ裏^cτΡΐœτ|Δ`v!\zΫϊxς—>ΑaX…;ΓqgrŠψ Gw{an ·”;qκτIƒέ•ΊΙΕ3ίύ~ό£ΔI!!ˆδ4ϊΎFӝGΗΈ»ύI€0 ŸlΌ›γLŠ:0˜$Bͺ¬BH¨zuρWcΰͺX•ri9pι£ξ.X-ΧWŽ”ΜJƒιfr½ωΑ‘3 jF‚_iˆΒ•EΥ2†ρ?‡κ:[δδ^°[ίΖ€χΘ)6}‘ vp Κ!‘= )Iχ EA’±Iήή‡²$޲ƒ#Cd,HΔ*!2€VΛr<Νΰ‡ς5K½‹ŸΚ*&aρ’»œl HβœO\_>ωΤ‹rR2²ΐ­•˜!}V³ψX―₯Λυ’»kS,'q΅ωͺj}΄ύ©-©©<ƒ8P#εT.½‰Δ%bSΔ‰ΛΨͺ Ψ ΏmΖ¬˜€,ρΊΑΰnͺ„0>Ι€dI ]©n z$QΡ7΄2υU5 *ΦΓφ [pp—24‘co»μ«άΘUͺ:ϊΊ ΧΎ›u’$ΓCήρIάm‘UŽ”j: £kS‘€MPJˆϋ°1<'Ώφ«KH/@u@Q³ α!Υˆ‘ϋ q{ͺ –W·qoΌ“Χί|™υ³³ΐ@Ÿuψ³Cp¨o/CBcσ©ι™Δ8pnθΥ«§§ι\+ŒyΦηDšΓ)κ6pvŒ•ž87ζ‘:NΖw¨Eoœ™•TY”I0Aw€ϋiK£Q?λ‰κι;I„§sέ9Β1JP’a{Ζn’Ύ‚C $©rΙU‹μΐ{“*{ μ]Z»ΐd©ςΝλΧ€G7L0ΰv—ίmν=­±ˆjΞ"j’ΪΚl­²ΉmυΖ[—.—aυ²ΤE/kJu6‰"a ~žvUηβ΅gΏ§>ς$NC‡Œt§+€§ύl<Ί«N1σΤ΅šμΌ˜£ͺί9)‘ΑΣ=C»\`F¨ϊ m·DΝCiiΎ›Ο{―”'»΅κ4A|tH ^ΡfνozNΡmK΄’-V]i~Kx&΅Gο$΄b‰ϋ`[9K$P”ϊU€D»:]λΪΦΥ¨΅ŽύWDΊ΅ Ο‹Μ'2¦uYΟϋŒ΅½$Έš»RSϋyΆƒkΛΛV|ΔνI<%’>5…}’NΊY ΏσΨu‘ϊͺJm-ξ—$’€›Ρ­¨΅ΐ3πνλͺ½K―„H€γ"kAⲓ€œΩ’Ψlmαυρ>ΫρήΈΐ\hDj'ΏA?&p ’ͺŸφXΥ82‘£§w:=γ­ "Φ;ΠΝωW Ζ"κ…Ψθαej¨ωˆL%ΖT¨/rΥ¨Sλβ½p(nŒŽ²?L°¦PŸΑ·ώMcnL3ς)MΤF#wΐΨ‰έβλŸ bΛd΄›³w1^|α Μ7˜§ΨMA$Oqžkω=€Ί—κU›œcυœοͺ€·¦fšq~”ξKθlξ ήL LΞVyG:θλkgΦ‘ž{nD³χ‹ρ‘ωΈE»\MΧπ*Œ—λκΚFΒ'ͺκ9‹PΫ`oΒΉ]SΗΌΈ2H1xx|ι3Νρ‰Β=c¨¨μŠ₯ Τ°?Π³#IΝίvρΉ_ω4›ςN²-θΣ&Υ£e$!yμ ^Bτ‰ΟAΒ&>³ˆψ;­UlšAΔm€ ‰£Θαo€ΰσCŠύMΕ[l*K¨0 βͺ²·gqμEtήΗΐnp·Ι†©[ΞDΖκwkiDτSΗβsŸϋT<ƒο°9γΣ΅”s½l-r(UΒν_›ΡΒ ΘΉ³ƒL‘Ϊ4›8°zκ`³>ΡM’κΈ’­αŸ‘Ζλ0βknΰ o₯}ˆ~gηΧγρΗ£/έiιŸ†“6H_Ɋ:ΆΆiϋŒάηŠόν ξtκτΩ$ξG[˜Γ‰uυε^ΐΛΞ@ΪπŸΑ˞'kΐH?ϋ ΅°Ί!\ι©$˜YW'ύ~μΡxύK”ѝTOΦ8”kαώτδμtCΈΊ9 όfΗ1L|ψΚ©‹[7ξΐBΒ­¨ϊψ‰γlκŒ1ά[9™ͺ€h@m»ΥW½ΑΓΦƒω‘‡Ξσ€ŒCd;ž.ΆV  >₯+ςνι5J;\|t—«Qk¨@²fAŸΰ"ƒ΄dˆˆΌPf‹A 6Φ#Ž!2οΑN‘ž„1ήI΅Κ^ό&ΒG γΩtdLΏ"A" ΰλΌ±Ή€` ’t…v™Ÿά©=Ά)!ͺ"«”E¦„₯’y'—·ZD”<‰JΝΙώΤnή§lδK„Ώκ‚Ϋ>ΉyφΜ5b9Y?S'S$ΔEό;;Ίγαsg˜― SΣIΥʺԟΎns΅έ€Ιf„qŸSE#ͺEΔ#`ξrβ'Cu‡cΗO`,:N@Š€©d#o:g˜SΪ‡HŽDde«fh 6½GIδφ±\>s ηc ϊCGSG$jBkΈ¨ώН€’u™Γ!ΠCψπ*ή€ΔtΐΥe©6$ƒΜάzž8I NΑGžžΔώEZΤΈ τ2ΑmN­Άi]δUεg Βi`’ijj:uΠ²Δs2ζΡΩeν3δNeΜν9Ν€Ž¦²•$ΩπF€HΖ.Ψac\¨ΗαΥΎΗυ’J¦D¬κŠΊό6°bΔU7ϋΗ'Ÿz 5•eφ‚ΕD„7©Ύ…˜ ugŸx:Š’ΜΖ'ӟ*rNIZLω ˜ eJ)Œ’]£΄Œϊ|―έ—ΑιŒ:½Μž*#byϋ€φΎ$©β19τpΜϋŽΔιǞˆΡ›—Ι"WOR&;λΨώε„xšφ ΨdkΞ5Α—6J‰όšΦ” Mι³4¦ΝˆpF8ˆ$ZVκ{Vv•./ΠnΦ•zΐ#Nρέφ+]'€Sn3„Œβ:0Η8۟΅Γ’Jmr©MvƒqMmJŸ_‹cE?ΣS©_ά@JŽ„ϋEΖDπή xώΌW₯Ηhχ^M0št6²±ΓšbΆBD"έ>ΥΓΐ΅9 /Ηl·’¦YGœfn{žι­₯-ζ†MηŒQβ^ΫΛάQ"(!νΈΧ³oΆ ©TέyM€·n/Qv{>Δ₯Δ*Rμ³«¨_α“ &D>sςΨΘρxω5Τo‰ΓΥHώ%˜HΧncοA»ΖηΚ" ©CrΩ‰³eΏH}yPΖBWš_ύφ2_Œο~뛨hœŽ‰΅Λ±ΈΥί»8kΦΣ]½lζŸΕ³Ε,›F―“ϋ―܌ψάC ˆ½ΩΪΫΞΖάΖ(›Άœ% ΥgΠ½ίϋ:圏‘|9p>ΰv@ΰΐ°α†?ϞΫόαrnίνΥ+Ω3ήD»N²)ς©Bβ‘#OΖ³―`Œ‹ΝΓ“ Ψκ@Ώφϊ56}–h $­žΝxkg γΈ pΙίρΘωΟΕΔΨ7γ―_ βϊυ/ˆhΰβ³ϋ!N W[Η€“9i<€E<―Υ7BΐΧ·ƒ 5CΠ(Ν«Ln›uΗΉΌ<“ΤŒϊ|Nώ:*Ν ’ΖεP:²Ύ‰τ€ /Z«ΤΏ±"Kr]wͺ ϋνV› 5u”½2ΗBeό@Τ@Dl*@ŒήΊ~3nίΈžtή+ vE€#—sΈ?E$^―8ΊW GυΆ„όsWΉ¬ΖO©a1ψ₯λΧ`₯Ί1UΝm•dϋ䜣 Ξη¦Ά#«rgεΦ\ τWχ2Pδ²@ŒΪEΥΓ|1ΐ‘(w-u¨Ϊ§νΜˆΩ mιy|ϊ£ΏδτfΣ’ ΐ-‘ΎΜqηOςˆζœ±έΞO€d‰P—``ξΨgΥν³IΪ-v.`G?κ $”\`«—ζ£I1ž‹Ν·².ίJˆžM%Κ’Ny’ VλRjkqn0Žt ƒqEεwϋpeώξηu⦞θDBI–„…Δ™Œ  Αχτm±PΫξ³w ΙηN’Υ€2sΔi Ι—rΈ†Œg2O‘0nΰr[†0ΚΦΈγ.,³²RͺqoqŸ~–—Š΄!|³Yr₯ηTŸΟ”“ΦΊ·zΧW-RzΞoηƒι“nΣ?η`(βSŸαμβ|ΏΙήΟΉ΅<Α~L bάFΧ1ˆhͺΡ! ¦†"4# π"Ρ‚mή$φŽœu 'ή_Ζc}|c[όχ87š}‰C±Μ[bΜΒ“Γά"ˆσO}–ς:Ε ίΉS΄αΘ'he|ο9€§ιu>v„60Υ©.n½‚ή‘=NΠθ₯τΣ§X‘dN:gΉHΓQ_Ώρ+§ψ†$aβ5ςR/ΚρΖIs4ββσl'€ςSτvΎρκœ~@°΅€6wυ#'ΌΖ$ε@ΰ‡<{ϋX{Η‘˜ρ ˆb@τΏ ƒšržφŸn~£ζψ<ΖηΜΐU<~]ΌcδΉώΤΧ9ηvγΒ³”½ύνxγyΦW m€“ωBΔυ?ΠΙβr&(T ;˜έ@) π>C@έW½ΕˆXζWΪόΩx/_ΎoΌωfΆΑ³ϋŸ²άC~ψ'ΟṘ&~η#»ιg‰I[vkNΣ§”6•Ÿ²€χ~OΕ—Υα»ΓTŸL›Užκ͐TΥΤΨ,gžΔ΄ιπ+•ŸΈξ ΙΝ^džΕΩJ7Ώμ}βnσ\z}·ύ΄Ϊ2²‹’-ŸJΝI―σfδοLŸη0A^—νΚa}—{Ξ›²Δ©=©όμ}ͺ22}kΚΚK&OΦΪGilν9eI²L₯Οι]6 ee•>ζι}Ό[QžσνΏ₯rςδy‚»0Ξ X–Œ$χ>εyξΦWށύ―άδοσF–Κρ§τ)ΏέοwyvοIΰΝ r3β&›/₯²ΜΈ_H–9υ…wiž§Wχ֟ζŒp₯/Ώττφžfί³₯,i.ωήςΛί•ŠH?©|τΏŒ04ƒO^©qTžΥšζf^PϊΎžύφε™?›ŸYφ,oz™½ΘΛΙ;”ΚΛZ›}ΨψšŸS²¬…¦MeϋλCΩeι]ώ!eρe* ••χ-Ο–·ΩxYΆ,mΆβMe!₯ό)Si–Ώς}–9koJG>”ξΤΣd™²€ρ₯=^Χ~™y~{ηηςΌeΙΣ­ν— —qΟΗԏωφΧtyΏςŠςξδυ¦zJ~»η}ͺνξ?yήt&0‰€%C*γn²τΒΊmƒ’ΉlνeΉmkΦFΏg™όΩogzE‰ωGŸSώSΚΰ»m*ΟΆπœΖg}VDž5}7߁b|.―j? εdEeπ-oŸισϊ,Ξcχn_!t“t–σž£ΜΌώΙΌr{™ί³R{Σ§NΕΉsηRεc™₯όπό+§Kρ‚ωπŒωΟ½§‡ 6*Ϋ€J«υηήΚ’ ( P@ €@Ÿ= |'c"K€ d+?_δœfq( P@ €@~α ŸUυΩβΚ P ΕLx ςaI>ƒP4’€@ ( πŸ‹‘3­ΈD·‹’ψŸ0*`κΌͺί©£<˜ΥΨΜ’I ( P@ €@8ξK€HxθqCΒC·kρρ€ζϋά< ‡tίY«As£˜ο3ΐ‹β ( P@ €@Ώ€Έ/Rή_‘Να,‡Θ‡οΎ˜Ύ1/z\@ €@ ψYA@m―›ωYUόώ•“Ήgϋ©Κ—Θ’€rcθr’K €‘ό»ίΚοσΊσwω³Ώεi{ΞΣ–Χ—Ώ+~ ( P@ €@ |Π! JΏΧ} œJyπ;kgˆŒΏlh‚D¨"dΠ0/ ‰‚ά7ΉώΛυη¬oζό»ˆΏ‡τ΅­šQVyρcž«ΥΥw‹ˆ΅²θm‚ΔIψ§‹ΩœΘΘςgžu{gάͺΌ(sOmdbΣΩDt€ τD™’†₯ψ§€@ ( P@ΰχ%@JR’ΊΫ"πkKqις•ΨάΪ!Zl}œ<1£7Ζμz<ςΨγΡ\[?zρ•X'”λΉ‡ΖκέxυΥ׈[ηΟ?σD™ξθι#Bh=‘—―€HΟuD“9υυDY%η«Κ;}φ‘X[˜‰ΕΥν8vl(g§cv~)Ž C¬l'’ζΦΥΛq{r&Ϊ:»£Ώ·#ζ—7βψP?‘iGSΔΧ-’΅ž<ΪΧ½]Τyϋϊ՘#χ©3g£»£-EO.ˆzڍ+ P@ €@ xΈΏCβ@X†Lκ€qt]Cœ>ΣΣγqld$Ζ―_ŠυІ8}l ^υΥxύυW£Ά­'NŠ™ι©xύ΅W£΅χhμŽIˆ[7Gc}c+ͺ _yσΖ­hnλŠα£ƒIŠ’„c’γΫίϊVΜ,ΔκςRάΊ=‰£&ΦW–H;EΓLΔ’Œ[ΧΗ±“§bsa6^‘ΉDΛMŽίŽΩΙ;ρ•―όsΜ-,Εάμd\½~9nM―Δ ˆ™Ι©iΔ#χ’χ8ΞEΆ ( P@ €@ξνfZDDCοۈ$©ŽΦΆΆθθ茢–¦Ψ@bqμΔ‰8vόDΤm―ΔόκZ;2€;αˆŒ½ΨΡκοŠ₯₯εP΅JΧ²5ͺ^AlΤΧΥΔˆ…™ΉΕ¨βVq’δΡΗ‹±[7Πέͺ‰F€"•+ͺU)!©R-+©QEΤ7ΤΗ•ΛoΖβΖN ‘ˆ©B*£χ¨š¨mŠ>z&^yωGHc)ΚH uΦΕ•k£ΡΧΫƒώΨΞ}»Z|, P@ €@ ( πA„@nήqδƒ3mέ―,Η6v uυH&nΖνΡ[±^Υ퍍qγζXμaηq}l*ͺΙs{l2v··βο΅αX\ZŠ΅΅5$!Ϋ1 αίΫE©±²87GοDKKkΜLŽΗ؝©X__%ˆ™ΝΝΝX‘Nγ€lnAQΠ”ΝΝνθΐ€»ΚκXžŸCΪΑίΒJΚ7pμTτw4ΖΛo\‘Ό©hνΰΉ.žωυ¨€Έ) ( P@ €@Ώ¨¨ϊ“?ω“?½_ηTqΪΑ{}}ύ7Ž–ΩΫ«ˆΦφΞθμ舩±›169ηy4†ϊ’τb±ΓΘΘ©μ[؈lμTΖιS#Q;1>>«|oinˆΩ™©˜GMͺ»»;ΦW—’Ή³?žxμ‘h¬­ΖΓτνυΈ39τ£ΓυΏ3‰`€.ΪΫ[ccc#†Žˆ–ΊΚΨά«Ž¦κxγβε9ƒGKT’n›‘ϊššθλλΡλΧbe3βό™ΣΡΤPwΧ0ύ~σsψ¦Š™1@”νΟνΠ ίόͺ΄W ( P@ €ΐ‡ ˜wΘΌ―XYYΉ―₯‡ˆ ηζ°cΓΐ/=]ν` ^ŠUŽθŠ,'ϋ _=Z‰ώξς§Κ”οσΛώ%―U€«0ιτbΕ{Σ枫r8€rΛΚρΩτͺmι=+―ίτ~Kε[Ÿeσg[ΛίΫmςεεηνzP~ν[SS’ –}Έό$mSΚdώάΩO’·H[@ €@ ( πΑ†€Έ€ZCχυ‚•#Η€ξ»Γ₯ƒΫό•_‰˜@Gj»δƒΨ―’TwIž%B@”σ+',K‚BiP~ε„ΒΆD—Οών?ύH+<σΛοΆ΅όJνα}q( P@ €@ ψEƒ@nr_D$ωƒvν·™ΆΏSλ~9˜nΏŒ²Ξηοςί²O‰Ψ8μω`Ϊw{./£Έ/ P@ €@ ( π‹<α}•ρΛ9φΏH/ϊς“C 'žŠ9ρ“ΓΘQ@ €@ ( pο*‘RΙ‘OU˜ŠλΓ ‰άεΓ …’η ( P@ €@οΉ} T0f ΥU·cγ ΝΒ{©ΈΘσΑ…€„h}}ύΎαό·'EΛ ( P@ €@ώ³!«`½;Rj™ˆηϋyiž}Πγ½Φ§­χ{5_‘ΛŸK|«έΎ$y~–}>¬ήχγ]‘‚υ~@΅(³€@ ( παΐM€¨~₯ϊhŽ„ζΏ‚+GΪ}—ίϋ›yŽΒοT" ’–E`q’‰T|_Β’ηΟHXη~Yž,Νέ{Ÿ­Ϋϊͺͺp™KP@]ρκγͺΌMY;,ςn;σϋJ"–­|kkoW™ΊYή–<Ρ·^HξΜƒV©œό»°(ΏlCUUe©=δΩogUΠΜΤη»}ΛΪeώ<7©ŸΌn»φΏ•*2…JΏΒ«Ό‡ίηy~ΝΛNΏ”GͺR™Ύ/ ( P@ €@οχ5BΟ Ή±7JψQΖEε`@Ί‚ιωλsiꐔ¨²%ρ°··KKΛΔΕ¨‰ϊRΛɈ„JΥFCC}¬,ΟΗΤμ,eδŽ@u"Ή"ή%\·ΊόNά²¬OD8•[_—Κ³Άa¨δw&f)·!‘ε•ΌSz“CθΤΥՐ>k»ε₯6S^uuUl¬-Η₯K—bHζΦaΠΌκΌ_ΆhŽέŽ½Šš¨%}ž7‡E}σ²έφ±†όΫ›k16>•΅‡χy;W–cbz6φϋf&ώκˆΰ.d{km°τ~—Ψ&Λ+k©Ξ¬α“ύΡΡtŸ~ω'Ώί<ΟΑ4yΩι7/+₯ΎŸΥ%ςKβΙΛίό½Ώωϋη»ί²”ϋyζMJεείςw–΅_&Ο[žοΰ»ΤΪ²6—§ΝοSšΌ3Φ]J_ώύ`Ή>—/ΏOiο‚1₯;XG^^^Ξ=ωΐ"OSΦΔ¬ŠXεyχΣ₯―ΪWJ›’―”eΏ­ωsJο[σδ}*ύζsb=‰σ~–·ι`Y©Μ²φάσχϋεZžΟε”ηος΄ωsyYή§χy»δΝΣΜ›κ|‡φν—Y^VΝέJ–—Χs0oώlϊƒύ8XFώœ–ΰ‘ΏΛΑ³LΑ)έX¦tw›Ή_gή½Κλ(½H?ω?λΙίΏΫoήGΣ,#Α<5πn)Σδ_ΚΫ—”υ)OγοΑtιωΐΈ¦όe™ΚΫXφϊήΫƒυ|ΆξCκΙίεu–·Ο ςχιή±+Α#½'MYYΚ»/ςτι}©εu—·ŠύηCκΜΏYχώu·ͺύWε7yσϋόϋ~;Κΰ“ΏΛΣψλ»τgΉ–›'ΛjΌ7O^V^LyΉϋεδp(e=XΞ~ΊΌο­fΏ―)οώ•ηΟλΟΣ•Ϋ/Ύ¬ϋοR•)Wͺλmω΄ηž|ecλϋςΌy‰ίηΟ)νφδωσί{Z~YύφŽΧ!m./Sίσ|HAωχς:χa\֎<έ!Ed―ΚκΚΛΚσψ»ξ')³¬²<Ώ}ςJmt\ΚΚΫ_Jt°^Ÿ³K…XŽ•ΚΘΏ[ŽWzφΧzψοΰ»ό9ϟπΟ»FBO κGτŒ—^|1¦¦&bjz>Eό‹-b]ΜΝΜ€qC”M|lτvlξμEG{{Œ^»7&’·³%nάKΘ΄’ “MόωΩ©XΩΨ‰Υ₯‰Έ9ΉC=]1::ΊS:`cEξg¨szn!!ρ«K 153ŸΪ-/ΞClLAτ4B(dΙότD<σέD[G[457ΗζΪbά½-Ψ°¬―,’wB§Š¨ηγQKΎΤζρ ˆ”Ϊψή3Ο€δ―Φ;ΡΪDπΕYzT5*ccΡL„τηž&–Φ"ΪΫZ"vΆ¨μ?bjrbB‚L‚θk+ρ½η^@?zρεhlm‰ΖΖ¦Q’γΞ­kqcr)ŽτuΔ΅«Χ£©΅zvγΦΝ[±I€υ"’ONŒΗΚΪ&°l‹·ή|5¦7γΘ@/”­ŒΰΘGρςk •œx”πΙ/H¦tλoώ>F₯χϋ?₯<)]Y3—η=¬άόΩL›_ω}ώ›ήHs0mώμožΟίς6ηοί–¦Όn ΘειήιώΠ΄w»²_Vyέ–•_oΛH?Sή²2Ν»?&εm?δ>•_>eγ•·!-oΛ=οΜ“Χ_ϊΝλίo›ΚώΛσ—¦~˜¬=χ|η}ω7οσ<χ€+Uš§=,ιΣϋΌέ₯¦}Ϋσ6”Χ»_fyY 4w+9X^yώƒί|N•ΰ‘ΟσΌωsJ›χ½τ{χηή6$Ψ•ΚMεψωn’{α\φ‘ΌŽύ|yCRw ΙΫUφωoσ±2AyΎTί!γ|0M^pJ_joJs·9y’τ{0]z.‡Ηv˜©Ό©Γώ9XίΑηCΚ)―;΅Ω4₯ς*ςχ>§±+οc)Ρ~š²:ί©œτ>ŸWωoY©,ΚΙΛ<¬Ξό[ήΖτ[Vχ=ο΄1Υ_κCž.‡oώλϋςϋςtενΙίηΏokW©MοTgyεεξ—“ΓαΚΩO—7ΐίpΘΣ€6”Ν³ςϊR6ΎνWΊ//6έ—΅£όΫ~ΎR είΆ§όΫΫΪP–8/Στή—_ϋί΄'O—ζyσηrx——χΆϋ{«KŸσ2JokΣΑ2ςτεuζύ½η݁Ύ,ΗΟΛΪφKΎ†ΚΗφέΚ,«$ϟgImtόΛΚ3yz_JdύωχύχeνLιΛӘ― ¦ζ?¬ΜόέΫςΣ–ϋ"4“D@ ω©Ϋ£QQΧΥ;‹ έ+±³6wζΧbya>Ϊ 6j›Z’Ήz;Ζ§ΙSŸΒH7ύΓ#ρύο~;VΆ«βφF΄tχGgsm\Ώq R„¨‰Ά¦h¨oŠηΎχL"TŽŸ‰OόΙ¨¬Ϊ‹™‰[ρά^Aυh+ŽŽœŽͺυεxύς΅8ώᘸy=6ιHGίp|ςι'RΐΚ€ξ΄?zιω>‹ΣS±ΌΊ3σσ176΅mέQ±6£3 ρ‘Η?‹3cqύφx΄vτΖg?ϋ…XŸgx ΙΕF|λλΗΞFwsu\yλε₯Ν΅1vύJ,ΝΟFύξzL­nΖρ£qωβΕhμŒ_ύά/Σ§½ΨάX«W―E{g@܊W~ψbt§Ÿ8ŸEI―ͺ‰κ½υxώΉgcv© ¦j;4hŒΧ.ΌύGOE[ksŒOΜΔ#O%Hβ“ψp.I|...& Ω’΄ς μχβ* P@ €@ ψΕ…€Έ οjύ‘€7oވ#'‹ΊΝιhξ‚zYœŠμ‰ΈzαyψlΌώΖ«1‡hΰ3Ÿ/1φΦkρ曣ͺΎ%κ©ay«>Ύτλ%& ^|αΉ»S½Υ1xϊα8wb(^yν%$³HO&γδιΣH °@ςQ‹4anςNœ8χhιͺW/^€Αώž˜Ÿ‰ΆΞώxθόHΌψϊ[ΥI b§Ž?œλψξw’½ϋ\|ιsŸŽ―~νŸck―%>ρΔc1~ƒr$"^»'ΟBΨT`‡²΅Ο>χΓψμύυhΨ[Žα3ρΛO=_ϋκ—γψ™Η‘P¬ΗFu|αΧΎ?ϊώ3q{l!>σ…OΗάΤνθιν‹ΉωUT―lΗ^"<Ξ=τpt΅·Δΰ‰x걓ροίx6ͺ!””ξ¨ž57u'ͺ‘ΒόΖ—~=Ύώχ_Ž«‹»ρΫΣoΔ΅Χ_Š]ΤΡNŽ]Κ›Ό3UmΡΩΪ[›λPͺ?–ζά5{υ ζ˜ͺžηU U* ( P@ €@4έP#ζώˆ*P ŒΛ ³1΄γρޘΎ1Χ―έnLv ΪX¨€=G}ΝFόΗΏ}=:ΪΊ’¦j-Ί‡NFoOOΤWΎ‚}ώρ§βτΙαψαυ…xβΙ‡γίϊnܺލ₯!Ϊ;Ί’iΖΒβR=2γ·±7‰¨oιŒΡWγϊ…ωhξξ‹™ι™XίZ‹ζΦNZŒΝ·ι†ΧwΖΗbΔv~~‘6c―²ΎG‘l-ΝΗ—Ώς/1tμx¬.¬ φYuΎ--,@(ΤΕ™ΣΗb ιΘ©‘Sρύz¬μΥΗΤ؍xγG?ˆΉ­j$' qδψ ʝ‹Σ#HT/ΕΧώωŸ’·Ώς{Q%[…ωiΤ΅VΰθC,@0m!=illˆΥΕ™―­Žιρkρo³£Ρ;0w$ΙόŸC₯¬gπhμ­ΣΎ/Cτ ˆ£§*γ»Ο|;–fbδΜ}؈ΥΥ₯XžŸŠ‡žx κkόϋADݝlΪΕ466~xVYΡΣ ( P@ €@{ °΄΄+++ Γ‡_ͺ_I`¬―,ΕβκFτALμlo&; ΄gΫ4Up΄_ϊώ7#Z‡βρ³§b~n[ŽΆhn¬υ΅ΥXXZ‰ΞΞΦxζ›C§žˆ‡OIv»•5ΡΤRN]Ψ†Μ-,BΌTBδ\έŠθιθ„ΈΈ/_ΟύΪ—βHwKΜ/`ΡŒ$I’m;ήΊϊV¬oGΟΐ@  ‘ﳍ]JUμ‘Ί5ŠSWww" j°Σ؁h˜‡Πιμξ‰JMΝΜFsK+ͺRΪ¦lΐ‘d«€ U΅΄―>f°sinm§Ÿ{±°°­mάλq EΕή6%μ6jγ&ja :½ql°/ΆυZ΅·[»ΡPSo’ͺ΅΅SCGŽΖΐ@νی™Ωωθν돉ΫΧβϋ؍lT4Δoώƍ5ˆ§Ϊ†ΖXa ΪPεͺ…°²mφϋƒv­’§naWWWRλϋ ΅Ώho ( P@ €ΐOqΑyχ%@Rz{cΤ63ͺJ£ŠΟώκj ρΊΖ–„(σ*½7œoUoΦΰζOLΝΗΰΰH9οy§½Dr-KerχυF•η1ί6.q'ξάA¬6zΊ»R;rw΄Ά/I©}Ψ“€˜+ΩΩέα‹4’Τ^U€ςΆζ}Θ+&΅ 8τ¦υ[^nvŸ΅Ο4rρ½μ~oύζΣ[VήξTνΰ[N+θΩk‡w–γeΪ¬Œ¬Οήo@¨MC ΅" jmnΌ§½y})σμa€5―nΑΓƒ^άO"λIγPVp>Žω+Ώ|—»ίo^nΣς2φύΑ½_ογ·ςΆVΝ;}―°8¬Žβ] ( P@@Ό+~QζRΌ;’` z˜πμ»ΘΉ―Λ‘2+1—Pš‘]"τάρœκ„P¨ΐPeKμ­AΚ²δωJΩύ‘€\οRρ7$ΙΫP–γ^D3―›rξ¦Ό?₯{Ϋ“ZY^RvΏ_‡)k@‚Fzgλ4μνΕΌνεzεpΠ=°˜ΔΖA‚#OϋΆB>/μŸˆ}Θ% εύΉ;.χv¦ό}#σ•ίί›γή§Γ,σ°ςς4ω―₯ήοήο‡υη`žςt~+NώΙσL{Ψsyύ“ηΝοσ’σtεe”§ΝΣό-Osπή΄yΉσΟ ( P@ €ΐ‡ ’8Š{OΗsόA Θύm@φ³•‰s9²‘ίϋ›f~σww³—xΩIΕ) €η·ςtdσΌν20 —ι³tχ&)/ηή/)Σ~©wΣ•—sχΎΤΚ·α‹ύΌ‡6ΐ–ήφC ;π2/{U­Mά[Tώξ@_ŒΗ2Pε“Q}@=dι¦WχlJJΌχΚ%Ky烍ΤτςςrŠέb ˜–ζ–}Cwηε$n’PΟ3o^g^Nώ›Χ“?ϋ{ύϊυDX=z{œΥ€v¨κ‘•·ͺˆωU^n~ο·Ό\ο}ο•ΧQž.}(ϋ'O“ζiσgΤ'S›zPΜΏ™=Ώ&SSSqζΜ™ύRmχφOύύύι]žΆ<ί~β²›ΌN_yoΎόήίςr‡βŸ ( P@ΰCρ€ιιιh#μE9nτNψ™ΊS1)Γ-©Sdώ)Ι”ςΌ—|‡•υ`Ώ>¨Ί}8ϊzοHH ΗόGόٟύYόθG?Β[#ŠyχY"Ελίώνίbbb"έϋέλƍqαΒ…ψσ?στ'EΠ%f$ώώο>Ωρ˜^ψϊ+Aαe="ζͺόΉ€Dά½ΎσοΔΏόΛΏΔ?ύΣ?ΕεΛ—γϋίώώ·ώπ‡ΈYΎšΩφ—ΨΙ₯="ϊ>[ν°λφΟoεj© €φη›ΧΎδσ"oŸDΥΏώλΏ¦\Φπϊ›Ώω›Έ}ϋvz=K O/σ~ύλ_Oχ–›·%oaε˜XΗ φΕ? ΕΌφ5/ης¦ΚŠ ( P@ €@_8δgΜ%Ύρo$|ΕNζοί©Γ?^ ΒwΚ]Ό/ πcB GΆ“,pε™φWb X2§NJ’Šίωί‰ηŸ>Ύϋέο&ZjϊΛ_ώ2A*Gr·ϋ·Ι›Φi\6η— σ?χάsρ{Ώχ{!Βύ•―|%.Ό~]ρκ«―ΖoΌ/½τRœ]Ήr%^$ΝΔ‰}–ˆ±ϋrι₯DάHD8q"S]„€0Ÿ ΦίΏϋ»Ώ‹o}λ[Σl Ϋg}ΆοΦ­[ρΝo~3Α₯΅΅52=τΠ~Ύ<Ώ„ΖŸ?Ώό‰_NĚeΨƎŽŽDLŸΧoΔψρη·ήz+„gR£,΅!'Φ$Δώς/2©Ο=ϋμ³ρΒ /Έη%ΒρE”ΪwΛΞλΟΗ₯ψ- P@ €@~q!γ.:‡ςjjjΪχxκ·ƒ—οΔ~¦ƒ•ΟƒΐΑ ™?ΛIWl§€γρA!²tC‚@δ]βA’ΰcϋX*ΊœΒώλΏώλψΤ§>•u‰τjbΙḦΌαώa|βŸHD† ε·ϋ·SΥ‘DΨ%”΄Xy?Ž„‰ψήχΎŸόηceu%~πƒ„HΈΘΌDΙλ―ΏόΗœˆ•oϋΫρ裏ΖΒ©ΔBΗ–azŸU+yχ^D_&ﻝ)ο‹0ψύίύTιEξ­[υ2ΥΑl«κUεbΞ<ΏΏ¦΅/ώZœ;wn? ₯D4ΔΗ‘#α&q&χ"oG^–ΟŠTΰώ ΑΖz%šμ«’¨ίύέߍ?ϊ£?JπJ™‹ ( P@ €@Δg΄ρ–yωNW9ΞS ο₯βύϋrδφ`%ͺι)LΑΏ§Ÿ~:!ξΪcˆΐ‹DηjHNf”|(Ρxδ‘G’Jy΅!ΧBδZΏκRrο΅γyχχDπX§ΔΗG?ϊΡΨΐ³οEΌτϋΣψΝ/ύfj¦mϋ­ίϊ­D`HeΞ2. λ“@π²^ …ψ‡H”Ύν9vμX’2€ί3§“T!W+Λϋ‘/NΫgyy;%ŽCΜH˜ΩV%JΆΧ?/ΥΌ–α7Ή ζ©©ΝΨ‡§ž"¦ 0S­Lϋ%4Ÿόδ'αU^–eζΟφΛΆ;₯Mφίφ # !ΗΔ+ozx/Ό]“μ½”r7ΟύΚ»ί·»%dw?IΪƒyίιΩ2ߏrί©Ύχλύ»υαέΎΏ_νϊy–ϋn}~·ο?nΫΪr~Ϊόy;σrςίόύaΏ?NšΓς½οlΛƒΤžŸ¦ϋQώ\~%vλ@ΨIDATΣΤρny³κy·vΌŸί–}Ό_YχϋvΏώ–Οw‡½//ηέΎ›φΗH£ζΘύ⽕γ… VωχοΚU°CR}§”C€~dd$ΪY(‘—ϋ/ς+A’xος₯Λ ‘Α6οk―½–€ "ΥΪWˆP+=‘θxψα‡.ρ"RED|xx8•©4CαμΩ³IΪ’η±V*#‘ ―₯₯₯%Υ―„ωU=ϊ«Ώϊ«t/ρ""~δΘ‘T·*cΦ­TΖ{Υ§|N–ΛWβρΗORϋm=Ά-ηψάG°ΛcΓΗa%₯tEυ/ν:“4H"JɊp0ώη"χήΆΤϋfll,ΑΡ6KΜ<ρΔ©ΒS›ϋ/œ··Ά–—γ„°lλ=$Α‘DXΩώ―}νkΙΖ1³-φίρPΒσžŠχ”λ3έ―Όϋ};XβO’φ`ήwzΆΜχ£άwͺούzn}x·οοW»~žεΎ[ŸίνϋΫφŸΆœŸ6ήΞΌœό7Ψζ°|οΗ;Ϋς ΅η§ιγΑ~”?—ί4uΌ[ή¬zή­οηχŸeοWΦύΎέ―‡εσέaοΛΛy·ο¦½OΟ}ρ΅GΔΌχέΑ+'^ρΣΒ7?­tIENDB`‚ignite-0.5.1/examples/references/000077500000000000000000000000001465426447700167565ustar00rootroot00000000000000ignite-0.5.1/examples/references/README.md000066400000000000000000000005171465426447700202400ustar00rootroot00000000000000# Reproducible trainings with Ignite Inspired by [torchvision/references](https://github.com/pytorch/vision/tree/master/references), we provide several reproducible baselines for vision tasks: - [x] Classification - [x] [ImageNet](classification/imagenet) - [x] Segmentation - [x] [Pascal VOC2012](segmentation/pascal_voc2012) ignite-0.5.1/examples/references/classification/000077500000000000000000000000001465426447700217515ustar00rootroot00000000000000ignite-0.5.1/examples/references/classification/imagenet/000077500000000000000000000000001465426447700235425ustar00rootroot00000000000000ignite-0.5.1/examples/references/classification/imagenet/.gitignore000066400000000000000000000001501465426447700255260ustar00rootroot00000000000000.ipynb_checkpoints input output experiments/plx/*.yml experiments/plx/*.yaml .polyaxon/ .polyaxonignore ignite-0.5.1/examples/references/classification/imagenet/README.md000066400000000000000000000036161465426447700250270ustar00rootroot00000000000000# Reproducible ImageNet training with Ignite In this example, we provide script and tools to perform reproducible experiments on training neural networks on ImageNet dataset. Features: - Distributed training with native automatic mixed precision - Experiments tracking with [ClearML](https://github.com/allegroai/clearml) | Model | Training Top-1 Accuracy | Training Top-5 Accuracy | Test Top-1 Accuracy | Test Top-5 Accuracy | | --------- | ----------------------- | ----------------------- | ------------------- | ------------------- | | ResNet-50 | 78% | 92% | 77% | 94% | Experiment | Model | Training Top-1 Accuracy | Training Top-5 Accuracy | Test Top-1 Accuracy | Test Top-5 Accuracy | ClearML Link ---|---|---|---|---|---|--- configs/???.py | ## Setup ``` pip install -r requirements.txt ``` ### Docker For docker users, you can use the following images to run the example: ```bash docker pull pytorchignite/vision:latest ``` and install other requirements as suggested above ## Usage Please, export the `DATASET_PATH` environment variable for the ImageNet dataset. ```bash export DATASET_PATH=/path/to/imagenet # e.g. export DATASET_PATH=/data/ where "train", "val", "meta.bin" are located ``` ### Training #### Single GPU - Adjust batch size for your GPU type in the configuration file: `configs/baseline_resnet50.py` or `configs/baseline_resnet50.py` Run the following command: ```bash CUDA_VISIBLE_DEVICES=0 python -u main.py training configs/baseline_resnet50.py ``` #### Multiple GPUs - Adjust total batch size for your GPUs in the configuration file: `configs/baseline_resnet50.py` or `configs/baseline_resnet50.py` ```bash OMP_NUM_THREADS=1 torchrun --nproc_per_node=2 main.py training configs/baseline_resnet50.py ``` ## Acknowledgements Trainings were done using credits provided by [trainml.ai](trainml.ai) platform. ignite-0.5.1/examples/references/classification/imagenet/configs/000077500000000000000000000000001465426447700251725ustar00rootroot00000000000000ignite-0.5.1/examples/references/classification/imagenet/configs/baseline_resnet50.py000066400000000000000000000052231465426447700310550ustar00rootroot00000000000000# Basic training configuration import os from functools import partial import albumentations as A import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lrs from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow import denormalize, get_train_val_loaders from torchvision.models.resnet import resnet50 import ignite.distributed as idist # ############################## # Global configs # ############################## seed = 19 device = "cuda" debug = False # config to measure time passed to prepare batches and report measured time before the training benchmark_dataflow = True benchmark_dataflow_num_iters = 100 train_crop_size = 224 val_crop_size = 320 batch_size = 64 * idist.get_world_size() # total batch size num_workers = 8 val_interval = 2 # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_transforms = A.Compose( [ A.RandomResizedCrop(train_crop_size, train_crop_size, scale=(0.08, 1.0)), A.HorizontalFlip(), A.CoarseDropout(max_height=32, max_width=32), A.HueSaturationValue(), A.Normalize(mean=mean, std=std), ToTensor(), ] ) val_transforms = A.Compose( [ # https://github.com/facebookresearch/FixRes/blob/b27575208a7c48a3a6e0fa9efb57baa4021d1305/imnet_resnet50_scratch/transforms.py#L76 A.Resize(int((256 / 224) * val_crop_size), int((256 / 224) * val_crop_size)), A.CenterCrop(val_crop_size, val_crop_size), A.Normalize(mean=mean, std=std), ToTensor(), ] ) train_loader, val_loader, train_eval_loader = get_train_val_loaders( data_path, train_transforms=train_transforms, val_transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=batch_size, limit_train_num_samples=batch_size * 6 if debug else None, limit_val_num_samples=batch_size * 6 if debug else None, ) # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) # ############################## # Setup Model # ############################## model = resnet50(weights=None) # ############################## # Setup Solver # ############################## num_epochs = 105 criterion = nn.CrossEntropyLoss() le = len(train_loader) base_lr = 0.1 * (batch_size / 256.0) optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=1e-4) lr_scheduler = lrs.MultiStepLR(optimizer, milestones=[30 * le, 60 * le, 90 * le, 100 * le], gamma=0.1) ignite-0.5.1/examples/references/classification/imagenet/configs/check_baseline_resnet50.py000066400000000000000000000052531465426447700322150ustar00rootroot00000000000000# Basic training configuration import os from functools import partial import albumentations as A import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lrs from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow import denormalize, get_train_val_loaders from torchvision.models.resnet import resnet50 import ignite.distributed as idist # ############################## # Global configs # ############################## seed = 19 device = "cuda" debug = True # config to measure time passed to prepare batches and report measured time before the training benchmark_dataflow = True benchmark_dataflow_num_iters = 100 train_crop_size = 224 val_crop_size = 320 batch_size = 64 * idist.get_world_size() # total batch size num_workers = 8 val_interval = 2 start_by_validation = True # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_transforms = A.Compose( [ A.RandomResizedCrop(train_crop_size, train_crop_size, scale=(0.08, 1.0)), A.HorizontalFlip(), A.CoarseDropout(max_height=32, max_width=32), A.HueSaturationValue(), A.Normalize(mean=mean, std=std), ToTensor(), ] ) val_transforms = A.Compose( [ # https://github.com/facebookresearch/FixRes/blob/b27575208a7c48a3a6e0fa9efb57baa4021d1305/imnet_resnet50_scratch/transforms.py#L76 A.Resize(int((256 / 224) * val_crop_size), int((256 / 224) * val_crop_size)), A.CenterCrop(val_crop_size, val_crop_size), A.Normalize(mean=mean, std=std), ToTensor(), ] ) train_loader, val_loader, train_eval_loader = get_train_val_loaders( data_path, train_transforms=train_transforms, val_transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=batch_size, limit_train_num_samples=batch_size * 6 if debug else None, limit_val_num_samples=batch_size * 6 if debug else None, ) # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) # ############################## # Setup Model # ############################## model = resnet50(weights=None) # ############################## # Setup Solver # ############################## num_epochs = 2 criterion = nn.CrossEntropyLoss() le = len(train_loader) base_lr = 0.1 * (batch_size / 256.0) optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=1e-4) lr_scheduler = lrs.MultiStepLR(optimizer, milestones=[30 * le, 60 * le, 90 * le, 100 * le], gamma=0.1) ignite-0.5.1/examples/references/classification/imagenet/dataflow.py000066400000000000000000000062531465426447700257230ustar00rootroot00000000000000from pathlib import Path from typing import Callable, Optional, Tuple import cv2 import torch from torch.utils.data import DataLoader from torch.utils.data.dataset import Subset from torchvision.datasets import ImageFolder import ignite.distributed as idist from ignite.utils import convert_tensor def opencv_loader(path): img = cv2.imread(path) assert img is not None, f"Image at '{path}' has a problem" return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs): if limit_num_samples is not None: g = torch.Generator().manual_seed(limit_num_samples) indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples] dataset = Subset(dataset, indices) return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs) def get_train_val_loaders( root_path: str, train_transforms: Callable, val_transforms: Callable, batch_size: int = 16, num_workers: int = 8, val_batch_size: Optional[int] = None, limit_train_num_samples: Optional[int] = None, limit_val_num_samples: Optional[int] = None, ) -> Tuple[DataLoader, DataLoader, DataLoader]: train_ds = ImageFolder( Path(root_path) / "train", transform=lambda sample: train_transforms(image=sample)["image"], loader=opencv_loader, ) val_ds = ImageFolder( Path(root_path) / "val", transform=lambda sample: val_transforms(image=sample)["image"], loader=opencv_loader ) if len(val_ds) < len(train_ds): g = torch.Generator().manual_seed(len(train_ds)) train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)] train_eval_ds = Subset(train_ds, train_eval_indices) else: train_eval_ds = train_ds val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size train_loader = get_dataloader( train_ds, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True, limit_num_samples=limit_train_num_samples, ) val_loader = get_dataloader( val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) train_eval_loader = get_dataloader( train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) return train_loader, val_loader, train_eval_loader def denormalize(t, mean, std, max_pixel_value=255): assert isinstance(t, torch.Tensor), f"{type(t)}" assert t.ndim == 3 d = t.device mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1) std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1) tensor = std * t + mean tensor *= max_pixel_value return tensor def prepare_batch(batch, device, non_blocking): x, y = batch[0], batch[1] x = convert_tensor(x, device, non_blocking=non_blocking) y = convert_tensor(y, device, non_blocking=non_blocking) return x, y ignite-0.5.1/examples/references/classification/imagenet/main.py000066400000000000000000000361651465426447700250530ustar00rootroot00000000000000import os from functools import partial from pathlib import Path import fire import torch try: from torch.cuda.amp import autocast, GradScaler except ImportError: raise RuntimeError("Please, use recent PyTorch version, e.g. >=1.6.0") import dataflow as data import utils import vis from py_config_runner import ConfigObject, get_params, InferenceConfigSchema, TrainvalConfigSchema import ignite.distributed as idist from ignite.contrib.engines import common from ignite.engine import Engine, Events from ignite.handlers import Checkpoint, Timer from ignite.metrics import Accuracy, Frequency, TopKCategoricalAccuracy from ignite.utils import manual_seed, setup_logger def training(local_rank, config, logger, with_clearml): rank = idist.get_rank() manual_seed(config.seed + local_rank) train_loader = config.train_loader val_loader = config.val_loader train_eval_loader = config.train_eval_loader model, optimizer, criterion = utils.initialize(config) # Setup trainer for this specific task trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger, with_clearml) # Setup evaluators accuracy = Accuracy() val_metrics = { "Accuracy": accuracy, "Top-5 Accuracy": TopKCategoricalAccuracy(k=5), "Error": (1.0 - accuracy) * 100, } if ("val_metrics" in config) and isinstance(config.val_metrics, dict): val_metrics.update(config.val_metrics) evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val") train_evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="train") val_interval = config.get("val_interval", 1) # Run validation on every val_interval epoch, in the end of the training # and in the begining if config.start_by_validation is True event = Events.EPOCH_COMPLETED(every=val_interval) if config.num_epochs % val_interval != 0: event |= Events.COMPLETED if config.get("start_by_validation", False): event |= Events.STARTED @trainer.on(event) def run_validation(): epoch = trainer.state.epoch state = train_evaluator.run(train_eval_loader) utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(val_loader) utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) score_metric_name = "Accuracy" if "es_patience" in config: common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name) # Store 2 best models by validation accuracy: common.gen_save_best_models_by_val_score( save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml), evaluator=evaluator, models=model, metric_name=score_metric_name, n_saved=2, trainer=trainer, tag="val", ) # Setup Tensorboard logger if rank == 0: tb_logger = common.setup_tb_logging( config.output_path.as_posix(), trainer, optimizer, evaluators={"training": train_evaluator, "validation": evaluator}, ) # Log validation predictions as images # We define a custom event filter to log less frequently the images (to reduce storage size) # - we plot images with masks of the middle validation batch # - once every 3 validations and # - at the end of the training def custom_event_filter(_, val_iteration): c1 = val_iteration == 1 c2 = trainer.state.epoch % (config.get("val_interval", 1) * 3) == 0 c2 |= trainer.state.epoch == config.num_epochs return c1 and c2 # Image denormalization function to plot predictions with images mean = config.get("mean", (0.485, 0.456, 0.406)) std = config.get("std", (0.229, 0.224, 0.225)) img_denormalize = partial(data.denormalize, mean=mean, std=std) tb_logger.attach( evaluator, log_handler=vis.predictions_gt_images_handler( img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="validation" ), event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter), ) tb_logger.attach( train_evaluator, log_handler=vis.predictions_gt_images_handler( img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="training" ), event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter), ) trainer.run(train_loader, max_epochs=config.num_epochs) if idist.get_rank() == 0: tb_logger.close() def create_trainer(model, optimizer, criterion, train_sampler, config, logger, with_clearml): device = config.device prepare_batch = data.prepare_batch # Setup trainer accumulation_steps = config.get("accumulation_steps", 1) model_output_transform = config.get("model_output_transform", lambda x: x) with_amp = config.get("with_amp", True) scaler = GradScaler(enabled=with_amp) def training_step(engine, batch): model.train() x, y = prepare_batch(batch, device=device, non_blocking=True) with autocast(enabled=with_amp): y_pred = model(x) y_pred = model_output_transform(y_pred) loss = criterion(y_pred, y) / accumulation_steps output = {"supervised batch loss": loss.item(), "num_samples": len(x)} scaler.scale(loss).backward() if engine.state.iteration % accumulation_steps == 0: scaler.step(optimizer) scaler.update() optimizer.zero_grad() return output trainer = Engine(training_step) trainer.logger = logger throughput_metric = Frequency(output_transform=lambda x: x["num_samples"]) throughput_metric.attach(trainer, name="Throughput") timer = Timer(average=True) timer.attach( trainer, resume=Events.ITERATION_STARTED, pause=Events.ITERATION_COMPLETED, step=Events.ITERATION_COMPLETED, ) @trainer.on(Events.ITERATION_COMPLETED(every=20)) def log_progress(): metrics = dict(trainer.state.metrics) epoch_length = trainer.state.epoch_length metrics["ETA (seconds)"] = int((epoch_length - (trainer.state.iteration % epoch_length)) * timer.value()) metrics_str = ", ".join([f"{k}: {v}" for k, v in metrics.items()]) metrics_format = ( f"[{trainer.state.epoch}/{trainer.state.max_epochs}] " + f"Iter={trainer.state.iteration % epoch_length}/{epoch_length}: " + f"{metrics_str}" ) trainer.logger.info(metrics_format) output_names = [ "supervised batch loss", ] lr_scheduler = config.lr_scheduler to_save = { "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler, "trainer": trainer, "amp": scaler, } save_every_iters = config.get("save_every_iters", 1000) common.setup_common_training_handlers( trainer, train_sampler, to_save=to_save, save_every_iters=save_every_iters, save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml), lr_scheduler=lr_scheduler, output_names=output_names, # with_pbars=not with_clearml, with_pbars=False, log_every_iters=1, ) resume_from = config.get("resume_from", None) if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found" logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}") checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def create_evaluator(model, metrics, config, with_clearml, tag="val"): model_output_transform = config.get("model_output_transform", lambda x: x) with_amp = config.get("with_amp", True) prepare_batch = data.prepare_batch @torch.no_grad() def evaluate_step(engine, batch): model.eval() with autocast(enabled=with_amp): x, y = prepare_batch(batch, device=config.device, non_blocking=True) y_pred = model(x) y_pred = model_output_transform(y_pred) return y_pred, y evaluator = Engine(evaluate_step) for name, metric in metrics.items(): metric.attach(evaluator, name) if idist.get_rank() == 0 and (not with_clearml): common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator) return evaluator def setup_experiment_tracking(config, with_clearml, task_type="training"): from datetime import datetime assert task_type in ("training", "testing"), task_type output_path = "" if idist.get_rank() == 0: if with_clearml: from clearml import Task schema = TrainvalConfigSchema if task_type == "training" else InferenceConfigSchema task = Task.init("ImageNet Training", config.config_filepath.stem, task_type=task_type) task.connect_configuration(config.config_filepath.as_posix()) task.upload_artifact(config.script_filepath.name, config.script_filepath.as_posix()) task.upload_artifact(config.config_filepath.name, config.config_filepath.as_posix()) task.connect(get_params(config, schema)) output_path = Path(os.environ.get("CLEARML_OUTPUT_PATH", "/tmp")) output_path = output_path / "clearml" / datetime.now().strftime("%Y%m%d-%H%M%S") else: import shutil output_path = Path(os.environ.get("OUTPUT_PATH", "/tmp/output-imagenet")) output_path = output_path / task_type / config.config_filepath.stem output_path = output_path / datetime.now().strftime("%Y%m%d-%H%M%S") output_path.mkdir(parents=True, exist_ok=True) shutil.copyfile(config.script_filepath.as_posix(), output_path / config.script_filepath.name) shutil.copyfile(config.config_filepath.as_posix(), output_path / config.config_filepath.name) output_path = output_path.as_posix() return Path(idist.broadcast(output_path, src=0)) def run_training(config_filepath, backend="nccl", with_clearml=True): """Main entry to run training experiment Args: config_filepath (str): training configuration .py file backend (str): distributed backend: nccl, gloo or None to run without distributed config with_clearml (bool): if True, uses ClearML as experiment tracking system """ assert torch.cuda.is_available(), torch.cuda.is_available() assert torch.backends.cudnn.enabled torch.backends.cudnn.benchmark = True config_filepath = Path(config_filepath) assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found" with idist.Parallel(backend=backend) as parallel: logger = setup_logger(name="ImageNet Training", distributed_rank=idist.get_rank()) config = ConfigObject(config_filepath) TrainvalConfigSchema.validate(config) config.script_filepath = Path(__file__) output_path = setup_experiment_tracking(config, with_clearml=with_clearml) config.output_path = output_path utils.log_basic_info(logger, get_params(config, TrainvalConfigSchema)) try: parallel.run(training, config, logger=logger, with_clearml=with_clearml) except KeyboardInterrupt: logger.info("Catched KeyboardInterrupt -> exit") except Exception as e: # noqa logger.exception("") raise e def get_model_weights(config, logger, with_clearml): path = "" if with_clearml: from clearml import Model if idist.get_rank() > 0: idist.barrier() else: model_id = config.weights_path logger.info(f"Loading trained model: {model_id}") model = Model(model_id) assert model is not None, f"{model_id}" path = model.get_local_copy() idist.barrier() path = idist.broadcast(path, src=0) else: path = config.weights_path logger.info(f"Loading {path}") assert Path(path).exists(), f"{path} is not found" return torch.load(path) def evaluation(local_rank, config, logger, with_clearml): rank = idist.get_rank() device = idist.device() manual_seed(config.seed + local_rank) data_loader = config.data_loader model = config.model.to(device) # Load weights: state_dict = get_model_weights(config, logger, with_clearml) model.load_state_dict(state_dict) # Adapt model to dist config model = idist.auto_model(model) # Setup evaluators val_metrics = { "Accuracy": Accuracy(), "Top-5 Accuracy": TopKCategoricalAccuracy(k=5), } if ("val_metrics" in config) and isinstance(config.val_metrics, dict): val_metrics.update(config.val_metrics) evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val") # Setup Tensorboard logger if rank == 0: tb_logger = common.TensorboardLogger(log_dir=config.output_path.as_posix()) tb_logger.attach_output_handler(evaluator, event_name=Events.COMPLETED, tag="validation", metric_names="all") state = evaluator.run(data_loader) utils.log_metrics(logger, 0, state.times["COMPLETED"], "Validation", state.metrics) if idist.get_rank() == 0: tb_logger.close() def run_evaluation(config_filepath, backend="nccl", with_clearml=True): """Main entry to run model's evaluation: - compute validation metrics Args: config_filepath (str): evaluation configuration .py file backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config with_clearml (bool): if True, uses ClearML as experiment tracking system """ assert torch.cuda.is_available(), torch.cuda.is_available() assert torch.backends.cudnn.enabled torch.backends.cudnn.benchmark = True config_filepath = Path(config_filepath) assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found" with idist.Parallel(backend=backend) as parallel: logger = setup_logger(name="ImageNet Evaluation", distributed_rank=idist.get_rank()) config = ConfigObject(config_filepath) InferenceConfigSchema.validate(config) config.script_filepath = Path(__file__) output_path = setup_experiment_tracking(config, with_clearml=with_clearml, task_type="testing") config.output_path = output_path utils.log_basic_info(logger, get_params(config, InferenceConfigSchema)) try: parallel.run(evaluation, config, logger=logger, with_clearml=with_clearml) except KeyboardInterrupt: logger.info("Catched KeyboardInterrupt -> exit") except Exception as e: # noqa logger.exception("") raise e if __name__ == "__main__": fire.Fire({"training": run_training, "eval": run_evaluation}) ignite-0.5.1/examples/references/classification/imagenet/requirements.txt000066400000000000000000000002331465426447700270240ustar00rootroot00000000000000albumentations numpy opencv-python-headless fire pytorch-ignite tensorboard torch torchvision tqdm clearml image-dataset-viz py_config_runner>=0.2.0,<1.0.0ignite-0.5.1/examples/references/classification/imagenet/utils.py000066400000000000000000000034441465426447700252610ustar00rootroot00000000000000import torch import ignite import ignite.distributed as idist from ignite.handlers import DiskSaver def initialize(config): device = idist.device() model = config.model.to(device) optimizer = config.optimizer # Adapt model to dist config model = idist.auto_model(model) optimizer = idist.auto_optim(optimizer) criterion = config.criterion.to(device) return model, optimizer, criterion def log_basic_info(logger, config): logger.info(f"- PyTorch version: {torch.__version__}") logger.info(f"- Ignite version: {ignite.__version__}") if torch.cuda.is_available(): # explicitly import cudnn as # torch.backends.cudnn can not be pickled with hvd spawning procs from torch.backends import cudnn logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}") logger.info(f"- CUDA version: {torch.version.cuda}") logger.info(f"- CUDNN version: {cudnn.version()}") logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info(f"\t{key}: {value}") logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info(f"\tbackend: {idist.backend()}") logger.info(f"\tworld size: {idist.get_world_size()}") logger.info("\n") def log_metrics(logger, epoch, elapsed, tag, metrics): metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()]) logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}") def get_save_handler(output_path, with_clearml): if with_clearml: from ignite.handlers.clearml_logger import ClearMLSaver return ClearMLSaver(dirname=output_path) return DiskSaver(output_path) ignite-0.5.1/examples/references/classification/imagenet/vis.py000066400000000000000000000061611465426447700247210ustar00rootroot00000000000000from typing import Callable, Optional import numpy as np import torch try: from image_dataset_viz import render_datapoint except ImportError: raise ModuleNotFoundError( "Please install image-dataset-viz via pip install --upgrade git+https://github.com/vfdev-5/ImageDatasetViz.git" ) def tensor_to_numpy(t: torch.Tensor) -> np.ndarray: img = t.cpu().numpy().transpose((1, 2, 0)) return img.astype(np.uint8) def make_grid( batch_img: torch.Tensor, batch_preds: torch.Tensor, img_denormalize_fn: Callable, batch_gt: Optional[torch.Tensor] = None, ): """Create a grid from batch image and mask as i+l1+gt1 | i+l2+gt2 | i+l3+gt3 | i+l4+gt4 | ... where i+l+gt = image + predicted label + ground truth Args: batch_img (torch.Tensor) batch of images of any type batch_preds (torch.Tensor) batch of masks img_denormalize_fn (Callable): function to denormalize batch of images batch_gt (torch.Tensor, optional): batch of ground truth masks. """ assert isinstance(batch_img, torch.Tensor) and isinstance(batch_preds, torch.Tensor) assert len(batch_img) == len(batch_preds), f"{len(batch_img)} vs {len(batch_preds)}" assert batch_preds.ndim == 1, f"{batch_preds.ndim}" if batch_gt is not None: assert isinstance(batch_gt, torch.Tensor) assert len(batch_preds) == len(batch_gt) assert batch_gt.ndim == 1, f"{batch_gt.ndim}" b = batch_img.shape[0] h, w = batch_img.shape[2:] le = 1 out_image = np.zeros((h * le, w * b, 3), dtype="uint8") for i in range(b): img = batch_img[i] y_preds = batch_preds[i] img = img_denormalize_fn(img) img = tensor_to_numpy(img) pred_label = y_preds.cpu().item() target = f"p={pred_label}" if batch_gt is not None: gt_label = batch_gt[i] gt_label = gt_label.cpu().item() target += f" | gt={gt_label}" out_image[0:h, i * w : (i + 1) * w, :] = render_datapoint(img, target, text_size=12) return out_image def predictions_gt_images_handler(img_denormalize_fn, n_images=None, another_engine=None, prefix_tag=None): def wrapper(engine, logger, event_name): batch = engine.state.batch output = engine.state.output x, y = batch y_pred = output[0] if y.shape == y_pred.shape and y.ndim == 4: # Case of y of shape (B, C, H, W) y = torch.argmax(y, dim=1) y_pred = torch.argmax(y_pred, dim=1).byte() if n_images is not None: x = x[:n_images, ...] y = y[:n_images, ...] y_pred = y_pred[:n_images, ...] grid_pred_gt = make_grid(x, y_pred, img_denormalize_fn, batch_gt=y) state = engine.state if another_engine is None else another_engine.state global_step = state.get_event_attrib_value(event_name) tag = "predictions_with_gt" if prefix_tag is not None: tag = f"{prefix_tag}: {tag}" logger.writer.add_image(tag=tag, img_tensor=grid_pred_gt, global_step=global_step, dataformats="HWC") return wrapper ignite-0.5.1/examples/references/segmentation/000077500000000000000000000000001465426447700214535ustar00rootroot00000000000000ignite-0.5.1/examples/references/segmentation/pascal_voc2012/000077500000000000000000000000001465426447700240725ustar00rootroot00000000000000ignite-0.5.1/examples/references/segmentation/pascal_voc2012/README.md000066400000000000000000000100411465426447700253450ustar00rootroot00000000000000# Reproducible PASCAL VOC2012 training with PyTorch-Ignite In this example, we provide script and tools to perform reproducible experiments on training neural networks on PASCAL VOC2012 dataset. Features: - Distributed training with native automatic mixed precision - Experiments tracking with [ClearML](https://github.com/allegroai/clearml) Experiment | Model | Dataset | Val Avg IoU | ClearML Link ---|---|---|---|--- configs/baseline_dplv3_resnet101.py | DeepLabV3 Resnet101 | VOC Only | 0.659161 | [link](https://app.clear.ml/projects/0e9a3a92d3134283b7d5572d516d60c5/experiments/a7254f084a9e47ca9380dfd739f89520/output/execution) configs/baseline_dplv3_resnet101_sbd.py | DeepLabV3 Resnet101 | VOC+SBD | 0.6853087 | [link](https://app.clear.ml/projects/0e9a3a92d3134283b7d5572d516d60c5/experiments/dc4cee3377a74d19bc2d0e0e4d638c1f/output/execution) ## Setup ``` pip install -r requirements.txt ``` ### Docker For docker users, you can use the following images to run the example: ```bash docker pull pytorchignite/vision:latest ``` or ```bash docker pull pytorchignite/hvd-vision:latest ``` and install other requirements as suggested above ### Using Horovod as distributed framework We do not add `horovod` as a requirement into `requirements.txt`. Please, install it manually following the official guides or use `pytorchignite/hvd-vision:latest` docker image. ### (Optional) Download Pascal VOC2012 and SDB datasets Download and extract the datasets: ```bash python main.py download /path/to/datasets ``` This script will download and extract the following datasets into `/path/to/datasets` - The [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar) dataset - Optionally, the [SBD](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz) evaluation dataset ## Usage Please, export the `DATASET_PATH` environment variable for the Pascal VOC2012 dataset. ```bash export DATASET_PATH=/path/to/pascal_voc2012 # e.g. export DATASET_PATH=/data/ where VOCdevkit is located ``` Optionally, if using SBD dataset, export the `SBD_DATASET_PATH` environment variable: ```bash export SBD_DATASET_PATH=/path/to/SBD/ # e.g. export SBD_DATASET_PATH=/data/SBD/ where "cls img inst train.txt train_noval.txt val.txt" are located ``` ### Training #### Single GPU - Adjust batch size for your GPU type in the configuration file: `configs/baseline_dplv3_resnet101_sbd.py` or `configs/baseline_dplv3_resnet101.py` Run the following command: ```bash CUDA_VISIBLE_DEVICES=0 python -u main.py training configs/baseline_dplv3_resnet101_sbd.py # or without SBD # CUDA_VISIBLE_DEVICES=0 python -u main.py training configs/baseline_dplv3_resnet101.py ``` #### Multiple GPUs - Adjust total batch size for your GPUs in the configuration file: `configs/baseline_dplv3_resnet101_sbd.py` or `configs/baseline_dplv3_resnet101.py` ```bash torchrun --nproc_per_node=2 main.py training configs/baseline_dplv3_resnet101_sbd.py # or without SBD # torchrun --nproc_per_node=2 main.py training configs/baseline_dplv3_resnet101.py ``` #### Using Horovod as distributed framework - Adjust total batch size for your GPUs in the configuration file: `configs/baseline_dplv3_resnet101_sbd.py` or `configs/baseline_dplv3_resnet101.py` ```bash horovodrun -np=2 python -u main.py training configs/baseline_dplv3_resnet101_sbd.py --backend="horovod" # or without SBD # horovodrun -np=2 python -u main.py training configs/baseline_dplv3_resnet101.py --backend="horovod" ``` ### Evaluation #### Single GPU ```bash CUDA_VISIBLE_DEVICES=0 python -u main.py eval configs/eval_baseline_dplv3_resnet101_sbd.py ``` #### Multiple GPUs ```bash torchrun --nproc_per_node=2 main.py eval configs/eval_baseline_dplv3_resnet101_sbd.py ``` #### Using Horovod as distributed framework ```bash horovodrun -np=2 python -u main.py eval configs/eval_baseline_dplv3_resnet101_sbd.py --backend="horovod" ``` ## Acknowledgements Trainings were done using credits provided by AWS for open-source development via NumFOCUS and using [trainml.ai](trainml.ai) platform. ignite-0.5.1/examples/references/segmentation/pascal_voc2012/configs/000077500000000000000000000000001465426447700255225ustar00rootroot00000000000000ignite-0.5.1/examples/references/segmentation/pascal_voc2012/configs/baseline_dplv3_resnet101.py000066400000000000000000000057211465426447700325750ustar00rootroot00000000000000# Basic training configuration import os from functools import partial import albumentations as A import cv2 import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lrs from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow import get_train_val_loaders, ignore_mask_boundaries from torchvision.models.segmentation import deeplabv3_resnet101 # ############################## # Global configs # ############################## seed = 21 device = "cuda" debug = False # Use AMP with torch native with_amp = True num_classes = 21 batch_size = 18 # total batch size val_batch_size = batch_size * 2 num_workers = 12 # total num workers per node val_interval = 3 # grads accumulation: accumulation_steps = 4 val_img_size = 513 train_img_size = 480 # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) train_transforms = A.Compose( [ A.RandomScale(scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0), A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.RandomCrop(train_img_size, train_img_size), A.HorizontalFlip(), A.Blur(blur_limit=3), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) val_transforms = A.Compose( [ A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) train_loader, val_loader, train_eval_loader = get_train_val_loaders( root_path=data_path, train_transforms=train_transforms, val_transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=val_batch_size, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None, ) # ############################## # Setup model # ############################## num_classes = 21 model = deeplabv3_resnet101(num_classes=num_classes) def model_output_transform(output): return output["out"] # ############################## # Setup solver # ############################## save_every_iters = len(train_loader) num_epochs = 100 criterion = nn.CrossEntropyLoss() lr = 0.007 weight_decay = 5e-4 momentum = 0.9 nesterov = False optimizer = optim.SGD( [{"params": model.backbone.parameters()}, {"params": model.classifier.parameters()}], lr=1.0, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov, ) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a): return lr0 * pow((1.0 - 1.0 * iteration / n), a) lr_scheduler = lrs.LambdaLR( optimizer, lr_lambda=[ partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9), partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9), ], ) ignite-0.5.1/examples/references/segmentation/pascal_voc2012/configs/baseline_dplv3_resnet101_sbd.py000066400000000000000000000061051465426447700334220ustar00rootroot00000000000000# Basic training configuration import os from functools import partial import albumentations as A import cv2 import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lrs from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow import get_train_val_loaders, ignore_mask_boundaries from torchvision.models.segmentation import deeplabv3_resnet101 # ############################## # Global configs # ############################## seed = 21 device = "cuda" debug = False # Use AMP with torch native with_amp = True num_classes = 21 batch_size = 18 # total batch size val_batch_size = batch_size * 2 num_workers = 12 # total num workers per node val_interval = 3 # grads accumulation: accumulation_steps = 4 val_img_size = 513 train_img_size = 480 # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] assert "SBD_DATASET_PATH" in os.environ sbd_data_path = os.environ["SBD_DATASET_PATH"] mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) train_transforms = A.Compose( [ A.RandomScale(scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0), A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.RandomCrop(train_img_size, train_img_size), A.HorizontalFlip(), A.Blur(blur_limit=3), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) val_transforms = A.Compose( [ A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) train_loader, val_loader, train_eval_loader = get_train_val_loaders( root_path=data_path, train_transforms=train_transforms, val_transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=val_batch_size, sbd_path=sbd_data_path, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None, ) # ############################## # Setup model # ############################## num_classes = 21 model = deeplabv3_resnet101(num_classes=num_classes) def model_output_transform(output): return output["out"] # ############################## # Setup solver # ############################## save_every_iters = len(train_loader) num_epochs = 100 criterion = nn.CrossEntropyLoss() lr = 0.007 weight_decay = 5e-4 momentum = 0.9 nesterov = False optimizer = optim.SGD( [{"params": model.backbone.parameters()}, {"params": model.classifier.parameters()}], lr=1.0, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov, ) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a): return lr0 * pow((1.0 - 1.0 * iteration / n), a) lr_scheduler = lrs.LambdaLR( optimizer, lr_lambda=[ partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9), partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9), ], ) eval_baseline_dplv3_resnet101_sbd.py000066400000000000000000000032671465426447700343600ustar00rootroot00000000000000ignite-0.5.1/examples/references/segmentation/pascal_voc2012/configs# Basic training configuration import os import albumentations as A import cv2 from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow import get_inference_dataloader, ignore_mask_boundaries from torchvision.models.segmentation import deeplabv3_resnet101 # ############################## # Global configs # ############################## seed = 21 device = "cuda" debug = False # Use AMP with torch native with_amp = True num_classes = 21 batch_size = 9 # total batch size num_workers = 8 # total num workers per node val_img_size = 513 # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] assert "SBD_DATASET_PATH" in os.environ sbd_data_path = os.environ["SBD_DATASET_PATH"] mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) val_transforms = A.Compose( [ A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) data_loader = get_inference_dataloader( root_path=data_path, mode="test", transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, limit_num_samples=batch_size * 5 if debug else None, ) # ############################## # Setup model # ############################## num_classes = 21 model = deeplabv3_resnet101(num_classes=num_classes) def model_output_transform(output): return output["out"] # baseline_dplv3_resnet101_sbd: best_model_78_val_miou_bg=0.6871.pt weights_path = "d8b4687d86cf445a944853fdd6a6b999" # or can specify a path # weights_path = "/path/to/best_model.pt" ignite-0.5.1/examples/references/segmentation/pascal_voc2012/dataflow.py000066400000000000000000000156501465426447700262540ustar00rootroot00000000000000import cv2 import numpy as np import torch from PIL import Image from torch.utils.data import Dataset from torch.utils.data.dataset import Subset from torchvision.datasets.sbd import SBDataset from torchvision.datasets.voc import VOCSegmentation import ignite.distributed as idist from ignite.utils import convert_tensor class TransformedDataset(Dataset): def __init__(self, ds, transform_fn): assert isinstance(ds, Dataset) assert callable(transform_fn) self.ds = ds self.transform_fn = transform_fn def __len__(self): return len(self.ds) def __getitem__(self, index): dp = self.ds[index] return self.transform_fn(**dp) class VOCSegmentationOpencv(VOCSegmentation): target_names = [ "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "plant", "sheep", "sofa", "train", "tv/monitor", ] def __init__(self, *args, return_meta=False, **kwargs): super(VOCSegmentationOpencv, self).__init__(*args, **kwargs) self.return_meta = return_meta def __getitem__(self, index): img = cv2.imread(self.images[index]) assert img is not None, f"Image at '{self.images[index]}' has a problem" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) mask = np.asarray(Image.open(self.masks[index])) if self.return_meta: return { "image": img, "mask": mask, "meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]}, } return {"image": img, "mask": mask} class SBDatasetOpencv(SBDataset): def __init__(self, *args, return_meta=False, **kwargs): super(SBDatasetOpencv, self).__init__(*args, **kwargs) assert self.mode == "segmentation", "SBDatasetOpencv should be in segmentation mode only" self.return_meta = return_meta def _get_segmentation_target(self, filepath): mat = self._loadmat(filepath) return mat["GTcls"][0]["Segmentation"][0] def __getitem__(self, index): img = cv2.imread(self.images[index]) assert img is not None, f"Image at '{self.images[index]}' has a problem" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) mask = self._get_target(self.masks[index]) if self.return_meta: return { "image": img, "mask": mask, "meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]}, } return {"image": img, "mask": mask} def get_train_dataset(root_path, return_meta=False): return VOCSegmentationOpencv( root=root_path, year="2012", image_set="train", download=False, return_meta=return_meta ) def get_val_dataset(root_path, return_meta=False): return VOCSegmentationOpencv(root=root_path, year="2012", image_set="val", download=False, return_meta=return_meta) def get_train_noval_sbdataset(root_path, return_meta=False): return SBDatasetOpencv(root_path, image_set="train_noval", mode="segmentation", return_meta=return_meta) def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs): if limit_num_samples is not None: g = torch.Generator().manual_seed(limit_num_samples) indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples] dataset = Subset(dataset, indices) return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs) def get_train_val_loaders( root_path, train_transforms, val_transforms, batch_size=16, num_workers=8, train_sampler=None, val_batch_size=None, sbd_path=None, limit_train_num_samples=None, limit_val_num_samples=None, ): train_ds = get_train_dataset(root_path) val_ds = get_val_dataset(root_path) if sbd_path is not None: sbd_train_ds = get_train_noval_sbdataset(sbd_path) train_ds = train_ds + sbd_train_ds if len(val_ds) < len(train_ds): g = torch.Generator().manual_seed(len(train_ds)) train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)] train_eval_ds = Subset(train_ds, train_eval_indices) else: train_eval_ds = train_ds train_ds = TransformedDataset(train_ds, transform_fn=train_transforms) val_ds = TransformedDataset(val_ds, transform_fn=val_transforms) train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms) val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size train_loader = get_dataloader( train_ds, shuffle=True, sampler=train_sampler, batch_size=batch_size, num_workers=num_workers, drop_last=True, limit_num_samples=limit_train_num_samples, ) val_loader = get_dataloader( val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) train_eval_loader = get_dataloader( train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, limit_num_samples=limit_val_num_samples, ) return train_loader, val_loader, train_eval_loader def get_inference_dataloader( root_path, mode, transforms, batch_size=16, num_workers=8, pin_memory=True, limit_num_samples=None ): assert mode in ("train", "test"), "Mode should be 'train' or 'test'" get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset dataset = get_dataset_fn(root_path, return_meta=True) dataset = TransformedDataset(dataset, transform_fn=transforms) return get_dataloader( dataset, limit_num_samples=limit_num_samples, shuffle=False, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory, drop_last=False, ) def ignore_mask_boundaries(**kwargs): assert "mask" in kwargs, "Input should contain 'mask'" mask = kwargs["mask"] mask[mask == 255] = 0 kwargs["mask"] = mask return kwargs def denormalize(t, mean, std, max_pixel_value=255): assert isinstance(t, torch.Tensor), f"{type(t)}" assert t.ndim == 3 d = t.device mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1) std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1) tensor = std * t + mean tensor *= max_pixel_value return tensor def prepare_image_mask(batch, device, non_blocking): x, y = batch["image"], batch["mask"] x = convert_tensor(x, device, non_blocking=non_blocking) y = convert_tensor(y, device, non_blocking=non_blocking).long() return x, y ignite-0.5.1/examples/references/segmentation/pascal_voc2012/main.py000066400000000000000000000412121465426447700253700ustar00rootroot00000000000000import os from functools import partial from pathlib import Path import fire import torch try: from torch.cuda.amp import autocast, GradScaler except ImportError: raise RuntimeError("Please, use recent PyTorch version, e.g. >=1.6.0") import dataflow as data import utils import vis from py_config_runner import ConfigObject, get_params, InferenceConfigSchema, TrainvalConfigSchema import ignite.distributed as idist from ignite.contrib.engines import common from ignite.engine import Engine, Events from ignite.handlers import Checkpoint from ignite.metrics import ConfusionMatrix, IoU, mIoU from ignite.utils import manual_seed, setup_logger def download_datasets(output_path): """Helper tool to download datasets Args: output_path (str): path where to download and unzip the dataset """ from torchvision.datasets.sbd import SBDataset from torchvision.datasets.voc import VOCSegmentation output_path = Path(output_path) output_path.mkdir(parents=True, exist_ok=True) print("Download Pascal VOC 2012 - Training") VOCSegmentation(output_path.as_posix(), image_set="train", download=True) print("Download Pascal VOC 2012 - Validation") VOCSegmentation(output_path.as_posix(), image_set="val", download=True) print("Download SBD - Training without Pascal VOC validation part") sbd_path = output_path / "SBD" sbd_path.mkdir(exist_ok=True) SBDataset(sbd_path.as_posix(), image_set="train_noval", mode="segmentation", download=True) print("Done") print(f"Pascal VOC 2012 is at : {(output_path / 'VOCdevkit').as_posix()}") print(f"SBD is at : {sbd_path.as_posix()}") def training(local_rank, config, logger, with_clearml): rank = idist.get_rank() manual_seed(config.seed + local_rank) train_loader = config.train_loader val_loader = config.val_loader train_eval_loader = config.train_eval_loader model, optimizer, criterion = utils.initialize(config) # Setup trainer for this specific task trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger, with_clearml) # Setup evaluators num_classes = config.num_classes cm_metric = ConfusionMatrix(num_classes=num_classes) val_metrics = { "IoU": IoU(cm_metric), "mIoU_bg": mIoU(cm_metric), } if ("val_metrics" in config) and isinstance(config.val_metrics, dict): val_metrics.update(config.val_metrics) evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val") train_evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="train") val_interval = config.get("val_interval", 1) # Run validation on every val_interval epoch, in the end of the training # and in the begining if config.start_by_validation is True event = Events.EPOCH_COMPLETED(every=val_interval) if config.num_epochs % val_interval != 0: event |= Events.COMPLETED if config.get("start_by_validation", False): event |= Events.STARTED @trainer.on(event) def run_validation(): epoch = trainer.state.epoch state = train_evaluator.run(train_eval_loader) utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(val_loader) utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) score_metric_name = "mIoU_bg" if "es_patience" in config: common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name) # Store 2 best models by validation accuracy: common.gen_save_best_models_by_val_score( save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml), evaluator=evaluator, models=model, metric_name=score_metric_name, n_saved=2, trainer=trainer, tag="val", ) # Setup Tensorboard logger if rank == 0: tb_logger = common.setup_tb_logging( config.output_path.as_posix(), trainer, optimizer, evaluators={"training": train_evaluator, "validation": evaluator}, ) # Log validation predictions as images # We define a custom event filter to log less frequently the images (to reduce storage size) # - we plot images with masks of the middle validation batch # - once every 3 validations and # - at the end of the training def custom_event_filter(_, val_iteration): c1 = val_iteration == len(val_loader) // 2 c2 = trainer.state.epoch % (config.get("val_interval", 1) * 3) == 0 c2 |= trainer.state.epoch == config.num_epochs return c1 and c2 # Image denormalization function to plot predictions with images mean = config.get("mean", (0.485, 0.456, 0.406)) std = config.get("std", (0.229, 0.224, 0.225)) img_denormalize = partial(data.denormalize, mean=mean, std=std) tb_logger.attach( evaluator, log_handler=vis.predictions_gt_images_handler( img_denormalize_fn=img_denormalize, n_images=8, another_engine=trainer, prefix_tag="validation" ), event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter), ) # Log confusion matrix to ClearML: if with_clearml: trainer.add_event_handler(Events.COMPLETED, compute_and_log_cm, cm_metric, trainer.state.iteration) trainer.run(train_loader, max_epochs=config.num_epochs) if idist.get_rank() == 0: tb_logger.close() def compute_and_log_cm(cm_metric, iteration): cm = cm_metric.compute() # CM: values are normalized such that diagonal values represent class recalls cm = ConfusionMatrix.normalize(cm, "recall").cpu().numpy() if idist.get_rank() == 0: from clearml import Task clearml_logger = Task.current_task().get_logger() try: clearml_logger.report_confusion_matrix( title="Final Confusion Matrix", matrix=cm, iteration=iteration, xlabels=data.VOCSegmentationOpencv.target_names, ylabels=data.VOCSegmentationOpencv.target_names, extra_layout=None, ) except NameError: # Temporary clearml bug work-around: # https://github.com/allegroai/clearml/pull/936 pass def create_trainer(model, optimizer, criterion, train_sampler, config, logger, with_clearml): device = config.device prepare_batch = data.prepare_image_mask # Setup trainer accumulation_steps = config.get("accumulation_steps", 1) model_output_transform = config.get("model_output_transform", lambda x: x) with_amp = config.get("with_amp", True) scaler = GradScaler(enabled=with_amp) def forward_pass(batch): model.train() x, y = prepare_batch(batch, device=device, non_blocking=True) with autocast(enabled=with_amp): y_pred = model(x) y_pred = model_output_transform(y_pred) loss = criterion(y_pred, y) / accumulation_steps return loss def amp_backward_pass(engine, loss): scaler.scale(loss).backward() if engine.state.iteration % accumulation_steps == 0: scaler.step(optimizer) scaler.update() optimizer.zero_grad() def hvd_amp_backward_pass(engine, loss): scaler.scale(loss).backward() optimizer.synchronize() with optimizer.skip_synchronize(): scaler.step(optimizer) scaler.update() optimizer.zero_grad() if idist.backend() == "horovod" and with_amp: backward_pass = hvd_amp_backward_pass else: backward_pass = amp_backward_pass def training_step(engine, batch): loss = forward_pass(batch) output = {"supervised batch loss": loss.item()} backward_pass(engine, loss) return output trainer = Engine(training_step) trainer.logger = logger output_names = [ "supervised batch loss", ] lr_scheduler = config.lr_scheduler to_save = { "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler, "trainer": trainer, "amp": scaler, } save_every_iters = config.get("save_every_iters", 1000) common.setup_common_training_handlers( trainer, train_sampler, to_save=to_save, save_every_iters=save_every_iters, save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml), lr_scheduler=lr_scheduler, output_names=output_names, with_pbars=not with_clearml, log_every_iters=1, ) resume_from = config.get("resume_from", None) if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found" logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}") checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def create_evaluator(model, metrics, config, with_clearml, tag="val"): model_output_transform = config.get("model_output_transform", lambda x: x) with_amp = config.get("with_amp", True) prepare_batch = data.prepare_image_mask @torch.no_grad() def evaluate_step(engine, batch): model.eval() with autocast(enabled=with_amp): x, y = prepare_batch(batch, device=config.device, non_blocking=True) y_pred = model(x) y_pred = model_output_transform(y_pred) return y_pred, y evaluator = Engine(evaluate_step) for name, metric in metrics.items(): metric.attach(evaluator, name) if idist.get_rank() == 0 and (not with_clearml): common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator) return evaluator def setup_experiment_tracking(config, with_clearml, task_type="training"): from datetime import datetime assert task_type in ("training", "testing"), task_type output_path = "" if idist.get_rank() == 0: if with_clearml: from clearml import Task schema = TrainvalConfigSchema if task_type == "training" else InferenceConfigSchema task = Task.init("Pascal-VOC12 Training", config.config_filepath.stem, task_type=task_type) task.connect_configuration(config.config_filepath.as_posix()) task.upload_artifact(config.script_filepath.name, config.script_filepath.as_posix()) task.upload_artifact(config.config_filepath.name, config.config_filepath.as_posix()) task.connect(get_params(config, schema)) output_path = Path(os.environ.get("CLEARML_OUTPUT_PATH", "/tmp")) output_path = output_path / "clearml" / datetime.now().strftime("%Y%m%d-%H%M%S") else: import shutil output_path = Path(os.environ.get("OUTPUT_PATH", "/tmp/output-pascal-voc12")) output_path = output_path / task_type / config.config_filepath.stem output_path = output_path / datetime.now().strftime("%Y%m%d-%H%M%S") output_path.mkdir(parents=True, exist_ok=True) shutil.copyfile(config.script_filepath.as_posix(), output_path / config.script_filepath.name) shutil.copyfile(config.config_filepath.as_posix(), output_path / config.config_filepath.name) output_path = output_path.as_posix() return Path(idist.broadcast(output_path, src=0)) def run_training(config_filepath, backend="nccl", with_clearml=True): """Main entry to run training experiment Args: config_filepath (str): training configuration .py file backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config with_clearml (bool): if True, uses ClearML as experiment tracking system """ assert torch.cuda.is_available(), torch.cuda.is_available() assert torch.backends.cudnn.enabled torch.backends.cudnn.benchmark = True config_filepath = Path(config_filepath) assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found" with idist.Parallel(backend=backend) as parallel: logger = setup_logger(name="Pascal-VOC12 Training", distributed_rank=idist.get_rank()) config = ConfigObject(config_filepath) TrainvalConfigSchema.validate(config) config.script_filepath = Path(__file__) output_path = setup_experiment_tracking(config, with_clearml=with_clearml) config.output_path = output_path utils.log_basic_info(logger, get_params(config, TrainvalConfigSchema)) try: parallel.run(training, config, logger=logger, with_clearml=with_clearml) except KeyboardInterrupt: logger.info("Catched KeyboardInterrupt -> exit") except Exception as e: # noqa logger.exception("") raise e def get_model_weights(config, logger, with_clearml): path = "" if with_clearml: from clearml import Model if idist.get_rank() > 0: idist.barrier() else: model_id = config.weights_path logger.info(f"Loading trained model: {model_id}") model = Model(model_id) assert model is not None, f"{model_id}" path = model.get_local_copy() idist.barrier() path = idist.broadcast(path, src=0) else: path = config.weights_path logger.info(f"Loading {path}") assert Path(path).exists(), f"{path} is not found" return torch.load(path) def evaluation(local_rank, config, logger, with_clearml): rank = idist.get_rank() device = idist.device() manual_seed(config.seed + local_rank) data_loader = config.data_loader model = config.model.to(device) # Load weights: state_dict = get_model_weights(config, logger, with_clearml) model.load_state_dict(state_dict) # Adapt model to dist config model = idist.auto_model(model) # Setup evaluators num_classes = config.num_classes cm_metric = ConfusionMatrix(num_classes=num_classes) val_metrics = { "IoU": IoU(cm_metric), "mIoU_bg": mIoU(cm_metric), } if ("val_metrics" in config) and isinstance(config.val_metrics, dict): val_metrics.update(config.val_metrics) evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val") # Setup Tensorboard logger if rank == 0: tb_logger = common.TensorboardLogger(log_dir=config.output_path.as_posix()) tb_logger.attach_output_handler(evaluator, event_name=Events.COMPLETED, tag="validation", metric_names="all") # Log confusion matrix to ClearML: if with_clearml: evaluator.add_event_handler(Events.COMPLETED, compute_and_log_cm, cm_metric, evaluator.state.iteration) state = evaluator.run(data_loader) utils.log_metrics(logger, 0, state.times["COMPLETED"], "Validation", state.metrics) if idist.get_rank() == 0: tb_logger.close() def run_evaluation(config_filepath, backend="nccl", with_clearml=True): """Main entry to run model's evaluation: - compute validation metrics Args: config_filepath (str): evaluation configuration .py file backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config with_clearml (bool): if True, uses ClearML as experiment tracking system """ assert torch.cuda.is_available(), torch.cuda.is_available() assert torch.backends.cudnn.enabled torch.backends.cudnn.benchmark = True config_filepath = Path(config_filepath) assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found" with idist.Parallel(backend=backend) as parallel: logger = setup_logger(name="Pascal-VOC12 Evaluation", distributed_rank=idist.get_rank()) config = ConfigObject(config_filepath) InferenceConfigSchema.validate(config) config.script_filepath = Path(__file__) output_path = setup_experiment_tracking(config, with_clearml=with_clearml, task_type="testing") config.output_path = output_path utils.log_basic_info(logger, get_params(config, InferenceConfigSchema)) try: parallel.run(evaluation, config, logger=logger, with_clearml=with_clearml) except KeyboardInterrupt: logger.info("Catched KeyboardInterrupt -> exit") except Exception as e: # noqa logger.exception("") raise e if __name__ == "__main__": fire.Fire({"download": download_datasets, "training": run_training, "eval": run_evaluation}) ignite-0.5.1/examples/references/segmentation/pascal_voc2012/requirements.txt000066400000000000000000000002331465426447700273540ustar00rootroot00000000000000albumentations numpy opencv-python-headless fire pytorch-ignite tensorboard torch torchvision tqdm clearml image-dataset-viz py_config_runner>=0.2.0,<1.0.0ignite-0.5.1/examples/references/segmentation/pascal_voc2012/utils.py000066400000000000000000000034441465426447700256110ustar00rootroot00000000000000import torch import ignite import ignite.distributed as idist from ignite.handlers import DiskSaver def initialize(config): device = idist.device() model = config.model.to(device) optimizer = config.optimizer # Adapt model to dist config model = idist.auto_model(model) optimizer = idist.auto_optim(optimizer) criterion = config.criterion.to(device) return model, optimizer, criterion def log_basic_info(logger, config): logger.info(f"- PyTorch version: {torch.__version__}") logger.info(f"- Ignite version: {ignite.__version__}") if torch.cuda.is_available(): # explicitly import cudnn as # torch.backends.cudnn can not be pickled with hvd spawning procs from torch.backends import cudnn logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}") logger.info(f"- CUDA version: {torch.version.cuda}") logger.info(f"- CUDNN version: {cudnn.version()}") logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info(f"\t{key}: {value}") logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info(f"\tbackend: {idist.backend()}") logger.info(f"\tworld size: {idist.get_world_size()}") logger.info("\n") def log_metrics(logger, epoch, elapsed, tag, metrics): metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()]) logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}") def get_save_handler(output_path, with_clearml): if with_clearml: from ignite.handlers.clearml_logger import ClearMLSaver return ClearMLSaver(dirname=output_path) return DiskSaver(output_path) ignite-0.5.1/examples/references/segmentation/pascal_voc2012/vis.py000066400000000000000000000102101465426447700252370ustar00rootroot00000000000000import numpy as np import torch from PIL import Image try: from image_dataset_viz import render_datapoint except ImportError: raise ModuleNotFoundError( "Please install image-dataset-viz via pip install --upgrade git+https://github.com/vfdev-5/ImageDatasetViz.git" ) def _getvocpallete(num_cls): n = num_cls pallete = [0] * (n * 3) for j in range(0, n): lab = j pallete[j * 3 + 0] = 0 pallete[j * 3 + 1] = 0 pallete[j * 3 + 2] = 0 i = 0 while lab > 0: pallete[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i) pallete[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i) pallete[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i) i = i + 1 lab >>= 3 return pallete vocpallete = _getvocpallete(256) def render_mask(mask): if isinstance(mask, np.ndarray): mask = Image.fromarray(mask) mask.putpalette(vocpallete) mask = mask.convert(mode="RGB") return mask def tensor_to_rgb(t): img = t.cpu().numpy().transpose((1, 2, 0)) return img.astype(np.uint8) def make_grid(batch_img, batch_mask, img_denormalize_fn, batch_gt_mask=None): """Create a grid from batch image and mask as img1 | img2 | img3 | img4 | ... i+m1 | i+m2 | i+m3 | i+m4 | ... mask1 | mask2 | mask3 | mask4 | ... i+M1 | i+M2 | i+M3 | i+M4 | ... Mask1 | Mask2 | Mask3 | Mask4 | ... i+m = image + mask blended with alpha=0.4 - maskN is predicted mask - MaskN is ground-truth mask if given Args: batch_img (torch.Tensor) batch of images of any type batch_mask (torch.Tensor) batch of masks img_denormalize_fn (Callable): function to denormalize batch of images batch_gt_mask (torch.Tensor, optional): batch of ground truth masks. """ assert isinstance(batch_img, torch.Tensor) and isinstance(batch_mask, torch.Tensor) assert len(batch_img) == len(batch_mask) if batch_gt_mask is not None: assert isinstance(batch_gt_mask, torch.Tensor) assert len(batch_mask) == len(batch_gt_mask) b = batch_img.shape[0] h, w = batch_img.shape[2:] le = 3 if batch_gt_mask is None else 3 + 2 out_image = np.zeros((h * le, w * b, 3), dtype="uint8") for i in range(b): img = batch_img[i] mask = batch_mask[i] img = img_denormalize_fn(img) img = tensor_to_rgb(img) mask = mask.cpu().numpy() mask = render_mask(mask) out_image[0:h, i * w : (i + 1) * w, :] = img out_image[1 * h : 2 * h, i * w : (i + 1) * w, :] = render_datapoint(img, mask, blend_alpha=0.4) out_image[2 * h : 3 * h, i * w : (i + 1) * w, :] = mask if batch_gt_mask is not None: gt_mask = batch_gt_mask[i] gt_mask = gt_mask.cpu().numpy() gt_mask = render_mask(gt_mask) out_image[3 * h : 4 * h, i * w : (i + 1) * w, :] = render_datapoint(img, gt_mask, blend_alpha=0.4) out_image[4 * h : 5 * h, i * w : (i + 1) * w, :] = gt_mask return out_image def predictions_gt_images_handler(img_denormalize_fn, n_images=None, another_engine=None, prefix_tag=None): def wrapper(engine, logger, event_name): batch = engine.state.batch output = engine.state.output x = batch["image"] y = batch["mask"] y_pred = output[0] if y.shape == y_pred.shape and y.ndim == 4: # Case of y of shape (B, C, H, W) y = torch.argmax(y, dim=1) y_pred = torch.argmax(y_pred, dim=1).byte() if n_images is not None: x = x[:n_images, ...] y = y[:n_images, ...] y_pred = y_pred[:n_images, ...] grid_pred_gt = make_grid(x, y_pred, img_denormalize_fn, batch_gt_mask=y) state = engine.state if another_engine is None else another_engine.state global_step = state.epoch tag = "predictions_with_gt" if prefix_tag is not None: tag = f"{prefix_tag}: {tag} - epoch={global_step}" logger.writer.add_image(tag=tag, img_tensor=grid_pred_gt, global_step=global_step, dataformats="HWC") return wrapper ignite-0.5.1/examples/reinforcement_learning/000077500000000000000000000000001465426447700213545ustar00rootroot00000000000000ignite-0.5.1/examples/reinforcement_learning/README.md000066400000000000000000000004221465426447700226310ustar00rootroot00000000000000# Reinforcement learning training examples with Ignite ported from [pytorch-examples](https://github.com/pytorch/examples/tree/master/reinforcement_learning) ```bash pip install gymnasium # For REINFORCE: python reinforce.py # For actor critic: python actor_critic.py ``` ignite-0.5.1/examples/reinforcement_learning/actor_critic.py000066400000000000000000000145451465426447700244040ustar00rootroot00000000000000import argparse from collections import deque, namedtuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical from ignite.engine import Engine, Events try: import gymnasium as gym except ImportError: raise ModuleNotFoundError("Please install opengym: pip install gymnasium") SavedAction = namedtuple("SavedAction", ["log_prob", "value"]) eps = np.finfo(np.float32).eps.item() class Policy(nn.Module): """ implements both actor and critic in one model """ def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) # actor's layer self.action_head = nn.Linear(128, 2) # critic's layer self.value_head = nn.Linear(128, 1) # action & reward buffer self.saved_actions = [] self.rewards = [] def forward(self, x): """ forward of both actor and critic """ x = F.relu(self.affine1(x)) # actor: choses action to take from state s_t # by returning probability of each action action_prob = F.softmax(self.action_head(x), dim=-1) # critic: evaluates being in the state s_t state_values = self.value_head(x) # return values for both actor and critic as a tuple of 2 values: # 1. a list with the probability of each action over the action space # 2. the value from state s_t return action_prob, state_values def select_action(policy, observation): observation = torch.from_numpy(observation).float() probs, observation_value = policy(observation) # create a categorical distribution over the list of probabilities of actions m = Categorical(probs) # and sample an action using the distribution action = m.sample() # save to action buffer policy.saved_actions.append(SavedAction(m.log_prob(action), observation_value)) # the action to take (left or right) return action.item() def finish_episode(policy, optimizer, gamma): """ Training code. Calculates actor and critic loss and performs backprop. """ R = 0 saved_actions = policy.saved_actions policy_losses = [] # list to save actor (policy) loss value_losses = [] # list to save critic (value) loss returns = deque() # list to save the true values # calculate the true value using rewards returned from the environment for r in policy.rewards[::-1]: # calculate the discounted value R = r + gamma * R returns.appendleft(R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + eps) for (log_prob, value), R in zip(saved_actions, returns): advantage = R - value.item() # calculate actor (policy) loss policy_losses.append(-log_prob * advantage) # calculate critic (value) loss using L1 smooth loss value_losses.append(F.smooth_l1_loss(value, torch.tensor([R]))) # reset gradients optimizer.zero_grad() # sum up all the values of policy_losses and value_losses loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum() # perform backprop loss.backward() optimizer.step() # reset rewards and action buffer del policy.rewards[:] del policy.saved_actions[:] EPISODE_STARTED = Events.EPOCH_STARTED EPISODE_COMPLETED = Events.EPOCH_COMPLETED def main(env, args): policy = Policy() optimizer = optim.Adam(policy.parameters(), lr=3e-2) timesteps = range(10000) def run_single_timestep(engine, timestep): observation = engine.state.observation # select action from policy action = select_action(policy, observation) # take the action engine.state.observation, reward, done, _, _ = env.step(action) if args.render: env.render() policy.rewards.append(reward) engine.state.ep_reward += reward if done: engine.terminate_epoch() engine.state.timestep = timestep trainer = Engine(run_single_timestep) trainer.state.running_reward = 10 @trainer.on(EPISODE_STARTED) def reset_environment_state(): # reset environment and episode reward torch.manual_seed(args.seed + trainer.state.epoch) trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch) trainer.state.ep_reward = 0 @trainer.on(EPISODE_COMPLETED) def update_model(): # update cumulative reward t = trainer.state.timestep trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward # perform backprop finish_episode(policy, optimizer, args.gamma) @trainer.on(EPISODE_COMPLETED(every=args.log_interval)) def log_episode(): i_episode = trainer.state.epoch print( f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}" f"\tAverage reward: {trainer.state.running_reward:.2f}" ) @trainer.on(EPISODE_COMPLETED) def should_finish_training(): # check if we have "solved" the cart pole problem running_reward = trainer.state.running_reward if running_reward > env.spec.reward_threshold: print( f"Solved! Running reward is now {running_reward} and " f"the last episode runs to {trainer.state.timestep} time steps!" ) trainer.should_terminate = True trainer.run(timesteps, max_epochs=args.max_episodes) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Ignite actor-critic example") parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)") parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 1)") parser.add_argument("--render", action="store_true", help="render the environment") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)" ) parser.add_argument( "--max-episodes", type=int, default=1000000, metavar="N", help="Number of episodes for the training (default: 1000000)", ) args = parser.parse_args() env = gym.make("CartPole-v1") main(env, args) ignite-0.5.1/examples/reinforcement_learning/reinforce.py000066400000000000000000000107071465426447700237070ustar00rootroot00000000000000import argparse from collections import deque import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical from ignite.engine import Engine, Events try: import gymnasium as gym except ImportError: raise ModuleNotFoundError("Please install opengym: pip install gymnasium") eps = np.finfo(np.float32).eps.item() class Policy(nn.Module): def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) self.dropout = nn.Dropout(p=0.6) self.affine2 = nn.Linear(128, 2) self.saved_log_probs = [] self.rewards = [] def forward(self, x): x = self.affine1(x) x = self.dropout(x) x = F.relu(x) action_scores = self.affine2(x) return F.softmax(action_scores, dim=1) def select_action(policy, observation): state = torch.from_numpy(observation).float().unsqueeze(0) probs = policy(state) m = Categorical(probs) action = m.sample() policy.saved_log_probs.append(m.log_prob(action)) return action.item() def finish_episode(policy, optimizer, gamma): R = 0 policy_loss = [] returns = deque() for r in policy.rewards[::-1]: R = r + gamma * R returns.appendleft(R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + eps) for log_prob, R in zip(policy.saved_log_probs, returns): policy_loss.append(-log_prob * R) optimizer.zero_grad() policy_loss = torch.cat(policy_loss).sum() policy_loss.backward() optimizer.step() del policy.rewards[:] del policy.saved_log_probs[:] EPISODE_STARTED = Events.EPOCH_STARTED EPISODE_COMPLETED = Events.EPOCH_COMPLETED def main(env, args): policy = Policy() optimizer = optim.Adam(policy.parameters(), lr=1e-2) timesteps = range(10000) def run_single_timestep(engine, timestep): observation = engine.state.observation action = select_action(policy, observation) engine.state.observation, reward, done, _, _ = env.step(action) if args.render: env.render() policy.rewards.append(reward) engine.state.ep_reward += reward if done: engine.terminate_epoch() engine.state.timestep = timestep trainer = Engine(run_single_timestep) trainer.state.running_reward = 10 @trainer.on(EPISODE_STARTED) def reset_environment_state(): torch.manual_seed(args.seed + trainer.state.epoch) trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch) trainer.state.ep_reward = 0 @trainer.on(EPISODE_COMPLETED) def update_model(): trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward finish_episode(policy, optimizer, args.gamma) @trainer.on(EPISODE_COMPLETED(every=args.log_interval)) def log_episode(): i_episode = trainer.state.epoch print( f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}" f"\tAverage length: {trainer.state.running_reward:.2f}" ) @trainer.on(EPISODE_COMPLETED) def should_finish_training(): running_reward = trainer.state.running_reward if running_reward > env.spec.reward_threshold: print( f"Solved! Running reward is now {running_reward} and " f"the last episode runs to {trainer.state.timestep} time steps!" ) trainer.should_terminate = True trainer.run(timesteps, max_epochs=args.max_episodes) if __name__ == "__main__": parser = argparse.ArgumentParser(description="PyTorch REINFORCE example") parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)") parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 543)") parser.add_argument("--render", action="store_true", help="render the environment") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)" ) parser.add_argument( "--max-episodes", type=int, default=1000000, metavar="N", help="Number of episodes for the training (default: 1000000)", ) args = parser.parse_args() env = gym.make("CartPole-v1") main(env, args) ignite-0.5.1/examples/siamese_network/000077500000000000000000000000001465426447700200345ustar00rootroot00000000000000ignite-0.5.1/examples/siamese_network/README.md000066400000000000000000000003721465426447700213150ustar00rootroot00000000000000# Siamese Network example on MNIST dataset This example is ported over from [pytorch/examples/siamese_network](https://github.com/pytorch/examples/tree/main/siamese_network) Usage: ``` pip install -r requirements.txt python siamese_network.py ``` ignite-0.5.1/examples/siamese_network/requirements.txt000066400000000000000000000000401465426447700233120ustar00rootroot00000000000000torch torchvision pytorch-igniteignite-0.5.1/examples/siamese_network/siamese_network.py000066400000000000000000000276721465426447700236230ustar00rootroot00000000000000import argparse import numpy as np import torch import torch.nn as nn import torch.optim as optim import torchvision from torch.optim.lr_scheduler import StepLR from torch.utils.data import DataLoader, Dataset from torchvision import datasets from ignite.engine import Engine, Events from ignite.handlers import ProgressBar from ignite.handlers.param_scheduler import LRScheduler from ignite.metrics import Accuracy, RunningAverage from ignite.utils import manual_seed class SiameseNetwork(nn.Module): # update Siamese Network implementation in accordance with the dataset """ Siamese network for image similarity estimation. The network is composed of two identical networks, one for each input. The output of each network is concatenated and passed to a linear layer. The output of the linear layer passed through a sigmoid function. `"FaceNet" `_ is a variant of the Siamese network. This implementation varies from FaceNet as we use the `ResNet-18` model from `"Deep Residual Learning for Image Recognition" ` as our feature extractor. In addition we use CIFAR10 dataset along with TripletMarginLoss """ def __init__(self): super(SiameseNetwork, self).__init__() # get resnet model self.resnet = torchvision.models.resnet34(weights=None) fc_in_features = self.resnet.fc.in_features # changing the FC layer of resnet model to a linear layer self.resnet.fc = nn.Identity() # add linear layers to compare between the features of the two images self.fc = nn.Sequential( nn.Linear(fc_in_features, 256), nn.ReLU(inplace=True), nn.Linear(256, 10), nn.ReLU(inplace=True), ) # initialise relu activation self.relu = nn.ReLU() # initialize the weights self.resnet.apply(self.init_weights) self.fc.apply(self.init_weights) def init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) m.bias.data.fill_(0.01) def forward_once(self, x): output = self.resnet(x) output = output.view(output.size()[0], -1) return output def forward(self, input1, input2, input3): # pass the input through resnet output1 = self.forward_once(input1) output2 = self.forward_once(input2) output3 = self.forward_once(input3) # pass the output of resnet to sigmoid layer output1 = self.fc(output1) output2 = self.fc(output2) output3 = self.fc(output3) return output1, output2, output3 class MatcherDataset(Dataset): # following class implements data downloading and handles preprocessing def __init__(self, root, train, download=False): super(MatcherDataset, self).__init__() # get CIFAR10 dataset self.dataset = datasets.CIFAR10(root, train=train, download=download) # convert data from numpy array to Tensor self.data = torch.from_numpy(self.dataset.data) # shift the dimensions of dataset to match the initial input layer dimensions self.data = torch.movedim(self.data, (0, 1, 2, 3), (0, 2, 3, 1)) # convert targets list to torch Tensor self.dataset.targets = torch.tensor(self.dataset.targets) self.group_examples() def group_examples(self): """ To ease the accessibility of data based on the class, we will use `group_examples` to group examples based on class. The data classes have already been mapped to numeric values and so are the target outputs for each training input Every key in `grouped_examples` corresponds to a class in CIFAR10 dataset. For every key in `grouped_examples`, every value will conform to all of the indices for the CIFAR10 dataset examples that correspond to that key. """ # get the targets from CIFAR10 dataset np_arr = np.array(self.dataset.targets) # group examples based on class self.grouped_examples = {} for i in range(0, 10): self.grouped_examples[i] = np.where((np_arr == i))[0] def __len__(self): return self.data.shape[0] def __getitem__(self, index): """ For every sample in the batch we select 3 images. First one is the anchor image which is the image obtained from the current index. We also obtain the label of anchor image. Now we select two random images, one belonging to the same class as that of the anchor image (named as positive_image) and the other belonging to a different class than that of the anchor image (named as negative_image). We return the anchor image, positive image, negative image and anchor label. """ # obtain the anchor image anchor_image = self.data[index].float() # obtain the class label of the anchor image anchor_label = self.dataset.targets[index] anchor_label = int(anchor_label.item()) # find a label which is different from anchor_label labels = list(range(0, 10)) labels.remove(anchor_label) neg_index = torch.randint(0, 9, (1,)).item() neg_label = labels[neg_index] # get a random index from the range range of indices random_index = torch.randint(0, len(self.grouped_examples[anchor_label]), (1,)).item() # get the index of image in actual data using the anchor label and random index positive_index = self.grouped_examples[anchor_label][random_index] # choosing a random image using positive_index positive_image = self.data[positive_index].float() # get a random index from the range range of indices random_index = torch.randint(0, len(self.grouped_examples[neg_label]), (1,)).item() # get the index of image in actual data using the negative label and random index negative_index = self.grouped_examples[neg_label][random_index] # choosing a random image using negative_index negative_image = self.data[negative_index].float() return anchor_image, positive_image, negative_image, anchor_label def pairwise_distance(input1, input2): dist = input1 - input2 dist = torch.pow(dist, 2) return dist def calculate_loss(input1, input2): output = pairwise_distance(input1, input2) loss = torch.sum(output, 1) loss = torch.sqrt(loss) return loss def run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler): # using Triplet Margin Loss criterion = nn.TripletMarginLoss(p=2, margin=2.8) # define model training step def train_step(engine, batch): model.train() anchor_image, positive_image, negative_image, anchor_label = batch anchor_image = anchor_image.to(device) positive_image, negative_image = positive_image.to(device), negative_image.to(device) anchor_label = anchor_label.to(device) optimizer.zero_grad() anchor_out, positive_out, negative_out = model(anchor_image, positive_image, negative_image) loss = criterion(anchor_out, positive_out, negative_out) loss.backward() optimizer.step() return loss # define model testing step def test_step(engine, batch): model.eval() with torch.no_grad(): anchor_image, _, _, anchor_label = batch anchor_image = anchor_image.to(device) anchor_label = anchor_label.to(device) other_image = [] other_label = [] y_true = [] for i in range(anchor_image.shape[0]): index = torch.randint(0, anchor_image.shape[0], (1,)).item() img = anchor_image[index] label = anchor_label[index] other_image.append(img) other_label.append(label) if anchor_label[i] == other_label[i]: y_true.append(1) else: y_true.append(0) other = torch.stack(other_image) other_label = torch.tensor(other_label) other, other_label = other.to(device), other_label.to(device) anchor_out, other_out, _ = model(anchor_image, other, other) test_loss = calculate_loss(anchor_out, other_out) y_pred = torch.where(test_loss < 3, 1, 0) y_true = torch.tensor(y_true) return [y_pred, y_true] # create engines for trainer and evaluator trainer = Engine(train_step) evaluator = Engine(test_step) # attach Running Average Loss metric to trainer and evaluator engines RunningAverage(output_transform=lambda x: x).attach(trainer, "loss") Accuracy(output_transform=lambda x: x).attach(evaluator, "accuracy") # attach progress bar to trainer with loss pbar1 = ProgressBar() pbar1.attach(trainer, metric_names=["loss"]) # attach progress bar to evaluator pbar2 = ProgressBar() pbar2.attach(evaluator) # attach LR Scheduler to trainer engine trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) # event handler triggers evauator at end of every epoch @trainer.on(Events.EPOCH_COMPLETED(every=args.log_interval)) def test(engine): state = evaluator.run(test_loader) print(f'Test Accuracy: {state.metrics["accuracy"]}') # run the trainer trainer.run(train_loader, max_epochs=args.epochs) def main(): # adds training defaults and support for terminal arguments parser = argparse.ArgumentParser(description="PyTorch Siamese network Example") parser.add_argument( "--batch-size", type=int, default=256, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--test-batch-size", type=int, default=256, metavar="N", help="input batch size for testing (default: 1000)" ) parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 14)") parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)") parser.add_argument( "--gamma", type=float, default=0.95, metavar="M", help="Learning rate step gamma (default: 0.7)" ) parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument("--no-mps", action="store_true", default=False, help="disables macOS GPU training") parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "--log-interval", type=int, default=1, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") parser.add_argument("--num-workers", default=4, help="number of processes generating parallel batches") args = parser.parse_args() # set manual seed manual_seed(args.seed) # set device device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # data loading train_dataset = MatcherDataset("../data", train=True, download=True) test_dataset = MatcherDataset("../data", train=False) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers) test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, num_workers=args.num_workers) # set model parameters model = SiameseNetwork().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=15, gamma=args.gamma) lr_scheduler = LRScheduler(scheduler) # call run function run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler) if __name__ == "__main__": main() ignite-0.5.1/examples/super_resolution/000077500000000000000000000000001465426447700202565ustar00rootroot00000000000000ignite-0.5.1/examples/super_resolution/README.md000066400000000000000000000044611465426447700215420ustar00rootroot00000000000000# Super-Resolution using an efficient sub-pixel convolutional neural network ported from [pytorch-examples](https://github.com/pytorch/examples/tree/main/super_resolution) This example illustrates how to use the efficient sub-pixel convolution layer described in ["Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network" - Shi et al. 2016](https://arxiv.org/abs/1609.05158) for increasing spatial resolution within your network for tasks such as superresolution. ``` usage: main.py [-h] --upscale_factor UPSCALE_FACTOR [--crop_size CROPSIZE] [--batch_size BATCHSIZE] [--test_batch_size TESTBATCHSIZE] [--n_epochs NEPOCHS] [--lr LR] [--cuda] [--threads THREADS] [--seed SEED] [--debug] PyTorch Super Res Example optional arguments: -h, --help show this help message and exit --upscale_factor super resolution upscale factor --crop_size cropped size of the images for training --batch_size training batch size --test_batch_size testing batch size --n_epochs number of epochs to train for --lr Learning Rate. Default=0.01 --cuda use cuda --mps enable GPU on macOS --threads number of threads for data loader to use Default=4 --seed random seed to use. Default=123 --debug debug mode for testing ``` This example trains a super-resolution network on the [Caltech101 dataset](https://pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html). A snapshot of the model after every epoch with filename `model_epoch_.pth` ## Example Usage: ### Train `python main.py --upscale_factor 3 --crop_size 180 --batch_size 4 --test_batch_size 100 --n_epochs 30 --lr 0.001` ### Super-Resolve `python super_resolve.py --input_image .jpg --model model_epoch_500.pth --output_filename out.png` ### Super-resolve example on a Cifar-10 image #### Input Image ![Cifar input image](./images/input_cifar.png) #### Output Images | Output image from Model | Output from bicubic sampling | |-------------------------------|------------------------------------| | ![Cifar output image](./images/out_cifar.png) | ![Cifar output from bicubic sampling](./images/bicubic_image_cifar.png)| ignite-0.5.1/examples/super_resolution/images/000077500000000000000000000000001465426447700215235ustar00rootroot00000000000000ignite-0.5.1/examples/super_resolution/images/bicubic_image_cifar.png000066400000000000000000000242221465426447700261410ustar00rootroot00000000000000‰PNG  IHDR``mϊΰo(YIDATxœέ}i“ΫH’εsχ€d¦€:zΊmΜΦvmΟΪcΊͺ€ΌHˆ?φC S₯ꙝž%e’ ρηG ("άύzQΝΝΝ͚•Z–²˜YΞωx<Žγ@€[ 71SCΒ @ ΄½ώώ#ύω]ˆχpsS#h¦@„[ wfN) ν¨ώcwύέσΧΗέm#’CγΪ¬VΧZkWS­α1ŒΓιtιΘΜ@—ž{qωΗHP‡ζ?^ΕΎ^κθ4Σ’eΛμf3α­΄RK?|ΐ?¦œ%₯ »+ύή3ψΟ!AΫαnͺ­΄e*ΣeΎ^Z-fjͺe)K© ΦV‡Για!΄JL?hρΏ¦ 7m΅,Σty;Ώ<]ί^Λ2›ͺ›ΦͺUMp8Z-¦ξψΗ‹ό  ?ΐ…mΗnΦκ²\―—Χ——ΟΏΌ=)Λfa'­ΕZum9!l^ θχS΅?X‚ϊͺ¬mς3O—ιςvy{ΉΌΎΤe†;(83‹ΦΪ_¦šΜ‘ΊgτkύΎ#όO’b…Ήi-ΛΌLΧΊ,‰‰Y˜Θ3Σ¦΅΄R΄ΥΑ__ζχΆ’7€ώ |ύΕ΄΅ΊΜσώw<ώ€zδG‚"άΝZ­eY–iš―ΣT3΄±{bR5!ΤZ[-jΒE‰δΓψπαγατH’X21±zγݝύfϋ?‡ω.>Λ4MΧλ΄\§θ 9 “ik΅Ί{„_Α`O§ΗOηΓΓ’”FbΚu$θύΡ½W™ηiš¦λ4]Σ|Ήj-d–ˆΗœr WZ™‘€ΛΫΫΫλΛp|σ‘8³0 @Ώ§―£Š•‹PΣR–ι:]/—ι:]―Σω|)ΣμΪρaΘ‡! ΒY" GΈ˜Χ··Χ§η4ΐL2HX2Πρ‰n’ώ~ΏΗKP¬Ί.Λ2/ΛΌ”iY.ΧiΊ\΅V†|‡Σ˜N£`HΜ O—K~y–υ·ηΉ+Κν[ρώ_ϊ–€ίΩ#ΌζfjV›•ͺK©‘^€•ΪLΐ@qˆœAΜΦJ™ή^αΘy8žN‡Γ()qΙi½~¬ΰtΏFχ+Χ=έ:¨ψςφ νn¦Λ¬n™˜˜™˜Aδu―j₯ͺ5e’Φ4ΒY@L±°΅RL-,Ζq|x|8)η4ζ4fαχt?ΉίΫΏ"Aχ'ύ»ŠύŸD`‘aΗΓ0Ž’ˆΜ£©•Ϊ΄)3{˜8QDΜBs&εΐςφzy>γrΚΗ1ΚΜ«μb‘x7Œ  1οϊ•Žlߍ_λΘνάΈ{#nAβ6 υί›σ₯Ϋw@Jιx<=>~8=< γΘ’@€fUUUED‘3XX2%ΘυrΎ> )Iψx#1DŚΉ4νC\σΫ©žίΟ‹­ό5ΆΜΜ=ωΫ"I"©' N§‡Γρ˜‡Y"`Akf†β1₯‘…“ DŽhσt}γργΗΓιH"ιΐ’™Φ`οΕ>–ί‡―ŽΏ m!vnw6cψ·ΠιΦ“YRΖ8?}ϊξ»οx}9Ώ<ΏΙω‚fξ‘jp˜3Λ5₯ˆ†Œ$ΒTkΛ"γρtόπq8@r€Δ’Αt―ί ‚ή#؏ ϋ·ΏΎΕΧοά<!»S"zo•Ύa.AΔI†ρρρΓ?ώιΟηλε<½<½½½^Z΅¦¦ζ°pjW.)@ξr8δΤΜbv¦<†Σ)₯(I> Γ™»θέi½¦X­Σ»9ϊ~%A>σθ‡‡Ή[„‘ˆ0σίΞΚD,)εΣιαϋ~œ¦εόv}ϊόόφvV5Ÿζ֚»G@A:Q‘!dI)'‡²ΑAΧ|Ζ§$cΚ‡ρτa<œ˜˜ˆ D«qόFΜί³‘οW « »T¬ΗΚ+V5S5ν₯”:s{Π7QlC!’ρpότέχ΅ΆΛezyz¦ΩΝU­ΦfκrDƒ-D8§ΔIFρΜπr™/ι5Ρ0 §γγΗαpbβ4έ3zxDlΉ΄^1"tnα₯ώ­ι ―Ξ7Ž=±ΏΟ X¨ι²,₯,΅U3%Βαp‘œsχ΅ρΞ*νhQδ]A9?}B ,υzžjiΪlš–λe P„Γ4("X(εaHŠ6—)ήΨdŽΗ‡ΓIDŽΒ)§ ΒΓ0ƒΆ₯‹S7uνzόVˆ7HP74χήόώ³€Ή•RΞ—συz)eQUfzxx fΙΤ£#ϊΆΝP—$εSΚ .K½^¦²”yž__^ΟogWg Β’ ˜ΰyσ†d<NǏ_†γIr–!ɐDC5Œ½ž/ šiΡZ­™['τύίh]είf‹΄³‘οn΅ΥΛυςττεωεyž'UζΗš©šžNγ8y ΎέcOο1ΐZέ`–Γ!>}ϊτ—Ώό₯–:MΣΛσΛυr₯@+ΝΝN`PSZJ(Α@.1O―o―Ώ|ζq $<&ΚBγPaŽ˜S@€’ju)ZU›Ή™™›{DΈΗP¬b². Z—ϋ^‚¨[Uή‚Smσ<ΏΎ½ώτΛΟ?όσυzΡΦDδΓǏK-΅ΥοΏoŸ>}—RΘό{ˆq[›}ΡDιααOώ'χXζωειeΊ\ρφό6O“ΊQ§ΘͺΎ„‡sΠHi€,!΅ε|}ύε³1AXŽ "vΠDΡνe¨ "ͺ–©]—ΆTmͺMΥΜ΄KRD|%A;³\cͺΝAωΆΔΩAξ΅ΥižήΞ―OΟO?ςσΏόυ_Ξ—sθγυ¬™[€†a<Ž)έ)±_πpsοyžΰ ¦Γadώ„ˆιzyϊς4]/nͺ΅ΥΊhƒ#4ΒΜZ˜‡g’η#ε$‚@—λ€ŒŠ !εΗ#Ιϊcr&3k₯Xm!Β«.S»Ξm­6mͺͺ¦]ΫΎθήFD„Ή»[OF  ξΤ”ΒΪΪ4O―η·§η§ΏώόΣϟωεΛησε’΅ŠπΌ, ΓΗ?|ψ‡ΌϊŽ„τp3mͺα")%I‰SNώηΏόω|~S­€·Zk[μκ5Tέάƒ&W.$Ι!9•Vΰ4&9ύ°|’Η# Ιάκ\Z-0§πkV›Š.Mλζ‹-άέˆ―b±žH§άLUU»%Ρp#"Αά[kσ2Ώžίžžž??}ώλO?ύόε—§Χ—Λε’΅ΡRŠΉp<ώτ§?}ίΎ|ιδ s·aj^[«΅ΊΩ8 CΞ”₯ίκt:ώψ§L{Bψ<]σΉFk‹5Us§ -€”μΜc€…Xn•B=³gž¬ωςόφz™―Σ2·R 03εœ?}έΫων:_%KΞI˜E„ˆ" κ­i­ZJ)₯τŒPN’s€ˆγxό§οΝΫωόϊσ/χσσ/Χ6ΝV\]έ¬δ₯ι5;ε ‘’0³“‘Α› ŒcΆϊ‘•VυΡ K©₯–uν½ͺSs4Ν‹m₯άυ­aU'DΈ»5­σ<]/—yžΝΤζ^[—r―oησσλΛΛΫλλε<Χ₯Ή9ΒP³RΛ4OηΛωευεωεΩΓΖqΘ©ΐhUΛR—J)΅VD˜sbf¨²{˜63#Αx̏xότΓγλόv^.XάΓ(Θ=Zψ⚜2Ι ™ˆ’0ΘW8G sr2WδΤܚ©Zkͺκ-Π‚ π@7Άπ5˜JwηώƒpwΥV¦ωςόςτϊϊ:/KΥΦ΄-₯.΅Μe™–ι:ΟΣ²”R4Œ2'KAρˆΪΪυ:=??Ž₯–Σι0 CΞIX"’¦yžk­Υ΄±j†»EOΐΑυ*=|<~ϊΣ‡Ηλi8'Ίq¬D,Ό„J ±dI ²dFβ@­vv cFΚ p9<±3aδFέ/1 ! B8ΒαˆΥΝWlΖ2"ˆˆ˜ά]΅ͺΦΪΚΚΓ§γγ§γρiή’™“ξΡά—0α–€€αH§ΔΜΥ\«Ή&α<DH'³gQςbͺ€σΠ*a»»Nη―rFD0³RΚ4MΧι2MΧiΎ^§λωzΉLΧΉ,ΝΜ·π`"–Μ"9Θ«Ά\΅4­ΝLηe~}{ƒΓ/ΧσιxƜRረEηΉ,KSmnN„Γa|~ώ<C„k-ζšs:bLΛΥΠςQNΖǏ§ΗΛ AΊ„·p·ˆΕŒ[ ŠˆΔ.ΒBAˆπ–Σ< ΞΛ§μCj‹«Ί!ΞΤ)aν‘4νl1½Ύ>£oΔDΤi©–ZζiΉ^ΟΣ|-e©ZK+sY–Z!ε4A"‚†<ŒaΆ’υRΚužp­ΧZk‰3j+‡Γ8rNID˜»‘ΆV­ͺ™š›E83eaaŠπ0p8δγι0 )ΨΥgƏŸΛTΙωͺΛR›;@p Ί‡V#OΙ%EΚ‰™™˜l.Λλ[ΥΣ ΗΤ©¦’X§οfέ£EDz~yˆˆ{δέ«0Φϋ›φΠiOt‚δ‘sώξΣw§‡‡‡§yΖq8(©ΟV"’"’ͺ™V΅Z+'¦,ΘΜ"Μ™SJ’Ι£€Μ 'vζa$ICJyΘΓ0ŒΓaΗ<ζaΜ`$iσˆΐ2/₯, ]¦Ϊš…‡qušΥŒΜΒ,ƒχͺ,… ‰Yχ―Δ$Ρs±P"qb–žΔ τB `p 1X˜’I BαŒ&H’”e(gΞ9ε”sΞ99))η”…˜)σaΐ(ƒV½ž―ΛΌ¨›šVkξN ‹hŽ%HΒ™8₯,fSάΒ›»s$0"%‘EXku)΅΄@oηs„kΣΆkΖΰ,‰@¦&,Γ06 "6‹ZΫ&:δ4 99™%C±H’”#F>x„…ˆXˆ%QNΒ‰9q§α‰²$€ϊ}›.KkꁦZ[s7<\#*‘I5« ‰G11…Ψ( L&Ι’‡<Œζ3ΒU΅Umͺj‘¦ι꽏}^ΌYβtΗγ1‘¦ZJ»^§σωz~»œίΞyΜ§Σ!'EΥκaP%υ:ΞPΕ΄TW󈐏‡όxNCzςiΜ‡Γ8Η”³5usgΑ0`ιp”γCFΌ5s‹•ΐ$ΑN,D™ςργcϋ‹AK)Λ²„y˜#Β"j€αΙ,΅Ζ`G ’„Έg\$(QJi”ρŽ§αxrH„_/Lπpuk= Oσ2»{+u™o6€!IrοkO©Ω²,—ΛυrΉNΣΌ,‹Ή-ΣΌ (šVwCSͺΦςLΞήPζΪJ1U" ΓπαΓγχ>†Η1Ÿ†4ŽCΥ¦©ΤΪ‘‰ζQ!₯!±»\=¨Επ€EPE8KριpŒο™ Ϊόr™–Ή ¨.՚Ί‡Ν£˜§¦ ^ι2Q0Βƒoς3ŽNRJIΒLAθ/'xͺ΅Έy+΅ΦκκΒ"αR"Τt)e^ζΪjDτJ<\0‡Ή{«£ m±,u:Ÿ{‹σιxψσŸιŸόγΗΓxJδP·ΪZY–ω:Χ₯2#L‘M:2ΜΦž“7g·€,’³₯"9KϊτaΜi γV Cώςότr=_]έͺΉ@»©$’θA2y¦FM‘*fb"uCI’˜5χ0US ₯œς%Io¬΅Ξσ4Ο“j“$γaL"BL„9`¦ΝΤ’-s›K9OΧ²\‘ιΓιτίώωŸηψoŽ#YΣ2_§ΛσΫΛωz>Ώ\//sͺP”£ΤQςΘΧςΐΓ0 yLi<’`X8εaΪ8ŽΗΗγιx<<&™O)Zσy* £€šƒάΰ±z'¨pw°4M%'φœι0p s η,έZ…G2Υπ°•§­%КŠΏNΧσεόv~;_Ξ₯, 9 Ό)EΈ©«Ίά­i™λ<-s©S]š•,γaȟ>~όӏ?>+ΣtŽλ|]Κςv>ΏΎœ―Οs›šυ u””‘†ΘΗ‡SŒγš8±žŸα`α”σ0ΤvPς4δSΖΣραϋο~(ΕΟ—ω—_ž$½€5^’#fV ζ`(άT©IΝΒ)%E˜+’$Y:±€jΦέAλiŠ···Ο_>OΛςωΛσO?τεσησωM[₯8¬ΆκξͺZͺ΅ͺππΎOg©₯5uYz—yΎœΟV³.Χλων₯――η·λ|©6™Z©  䁡Β*c„£©«9(‘KJ’ζa˜ηk»NuOf˜–jζΜ’σ0Œmκα½ΰ-H¬ξdΑ0Š`›6΅Ϊ¨Y–ڈ‡ΔάΓ2Šˆδ¦ξaζj₯.Σ|Νηœ‡DγxψόεωόουΣO?MΣdjA@σ°%΄”ε:΅e 5(Π¨Ίƒƒ(σςεσηAhΜlΛ4M——Χη_ž???ΏNη’“ϋΠ†V(eΚ#εA΄Q-Θ©™y©fj"œY…B,ixI‡cΚ#Ι’΄”Β,γαhZΤ›ά),Pƒ`‘0œV’f&JK‘”F7s'¦<δ^Ξλ₯΄ηc₯ΣΊ”Efq3‘τειεηŸώϊτωsk*,Β ˆ³:ΟσωZηζBΔ ΎhN Μ)§Δlͺ—·σ‘Δ°2/συ|=ŸΟΧy.΅ͺ)Β3oŠll 2ΧΪ “ͺZ)ΝΤRβØrκπ@„INΓaAΕDΒ’Sςp£χTύήΓPΚγ ξθ5 ςπΦj4΅ͺΛεΪζΕK55°KƒYˆzQA$xΈ―o §!γ0ŽyΘ’§₯Δ9ΐ™e@4oΥL4HΓέΙ99gη ¨»:4Θƒ`07r#L v"'Φ@3/½E†˜SΙZ• χ2u Χ­:ιΰ^Γa&N’’€œR―$nEΜ΅ϋmΘαα`ζœ\λBΈΆͺs΅RΩ| &ξmΘ[ρlο΄!κe*&f" ‡©υ*;άaEΓzζακn-XέΘ"’8ΝΓƒqS8mU` Χ°fήΜ«™y°€Dά+knt­’o½—o‰kj΅Ώά#bݍίλQwE;εœΜΌy¨yQ΅ͺjή™,‘Η0 ±μ l„wκΤ‰¨0X„ˆUmš€΄Ω|‘L ˆ^[JY–Ά,ui­¨ͺ›E˜ΉΧ&ζϋ-ϊv0bfˆ¨ηΝCΝ«Zν7·^‘wm΄vMΔΦ p0anM{q@kV"N93υ–±pI²D 9bξβQ՜PΤά‘&I©ο0f±ΉW55 rοe‡θΐ(@ΜjΝt.f^k[ω8 §œs3]Κ2—²¬w„y{x3ΎΕŽ6! &&„ˆ¨#η0υ¨ΝjΊ‰ˆek«Έ3²΄c΄UnzC'zaK­5­΅₯œ‰,‰„¨Χ€ Qβ>DN!ŽΎiί6€X"3IR€κJ|­’Γ`"†GτV$WR3Χ¦MDσ` Υ©,³6±€qL,©Ά5γαπήκKΫn~8‚‚œΌΥς£Ξ›Ή{€‰Α °°P ˜@Ρ;-V€ˆ"Ό£δύΪξj₯6– υŠΆwέR0―Ι"  "&0‚έΩ=ƒX’τ ©ˆ\©4νΖ’˜™9XΈΧν{ έάχpfjEAΉT–jͺS--<Ž‡G9Υmš —ZkMݝ™˜D˜{Š<"πΥyΓYΐ’§΄ƒΠ#kτ”Ρژθˆή›ΩΣΙL8ƒ=«€E„ͺΥ@β˜3­Ο!$_)bτz}Χ΅Υ*υ$S „ˆƒΉΪkΣAaJ‰$±@υζfκZδΡ"4¨‚$Π΄-­γ(ωτ‘ΗawU75S§°ήΧ™‰wYu!˜ƒΰwwPν-Π[ϋ 1q8ΐΡ֚ΘDZχ(τΎ¨95νJ"΄vψRSέZ,ά›³›“ƒ‰shtsϚš·¦Υl.₯”RU# 3SJ”2§„€œšFτd­ζš“»;,ΐΥVΝ\(7ΣfΦΜΒέάΝΓ"<ΰ ι%‡9™w_ΙάϋΙ‚ά‰|uL½bN΄·‹€VcˆˆNΑΨ”–ϋ7‰‰EK^!q³ΐ0ˆjm½T¦ζ‘Ξ†dΑβ4އμβά|Ρ¦m©u.uͺυZΛ€­D0Θ)qΞ$)" ξ]ΆΆΓθ%ά::Έ?Υ%"ˆ΄Y)σμ΅­jMΓχl–”tmα!"Β¬s1JΒkKaτš›EoΩμ…%χθ2ζnΆA"œv”3§,I@^hγ ©U½Hœΰ”œ„E†QB4ΨZ΄hKΣΛΌ\–ej΅Έ)SJIΦ–Πήg  ΠΞ‚ΈχRRΈΉ9Ψ#< @@ΝK©Ξμ₯[i57οuΰέμήD`FD03D8B@=θ"˜z[S―ώl +}₯6χΏZ""’RΚ’rJ™S"ξ¨sε)ˆ^’²n‚8ΐN ρRρΚR@s`2ŸΤf΅ξAn.jΤΜIΙΒUνΔo»Νϊ 7'3rPoY[pjk„Τ¦ffζαb1kMAδξζ; ϊ.{"αˆDD,«= 3˜cmοF˜Ή[u}μ.ˆ™E¨ΏvωξXσ‹ &ˆ€…;‚AΔNαDNQΐ3x&žA30K§Wηͺ!Eάz«΅©uΪΆ&ί¬?v#<ΦΎ’θΩ=ξΡV­μζΐΪ,°6P©’–ήsin θ½φΨ}U"rρθΜ Σ^Ν4uΪΆ–¦@θ]ξ―˜H„Xΐ›ρ’πZςφW"gD¬.Α ΰ€8¨»6 ”ΐ† ’ j ν΄Υ½571οαΗ­d‹υ‘#=φ±ή†έ±Y‰1!¬·Ϊ`γΝ}.aαMu/}9}%Λ½”$Δ+CΩHύ]ΫS—“U9UλsοΣΊΈu ΠΏ»w­ξΡ@‰Α}·ΣJ3ƒθ¬ίΜͺY1[ά‹{h€‘ο›9©z8ƒ0w3³πβ-ΥΤρζήΙ½Ϋ—²uγ‘Γ΄Z&a0ΕJŠA β• cν%%Ί…•Ž­1,ΦM˜ΌŸ·ς;£Φ;₯Χ‡ŸνΪ}΄Άž˜Ίug°{fΡιSk­ΤZZ+ͺ₯?amνbμqitDH-<Ό— ΊΙθΡsμ[ΆΒ ­]εάy%ΕΊ½tΤΐm•χ~ Ϊ τJψLkβ¦Ϋ¦Ž0νΣΪ ϋVŸ»Xγ.ϊΨξ»υύDΈϋϊΑώ"ΊΫνk[§<΅•ΦŠΆjͺξ†&&ΖΝΤΖvνu=±=‰ξέlί}ΗDbM2ΰλΣnΕ&=Έυ&wP#xϋahν…"ΒΧΧΩξχ«φγk ²5tvUνΥĞUnMk«΅΅Φ[‰]σ%₯5A–uͺ;τ²οΩM’πώΛPΒm‡kχTIΩ·#υαοŽ~=5ξwmб-ΥξΰW_ΆΛα=@=-ΓΔ«Άc±Ϋ2υο%m-"ΊΘt&RΥ¦ͺΝL-άiΫ]C Ή‰‡w²ί;ά2ίεu;ΤφχŠR  ;•ˆ- Έ_Ν[h޽»Η.ο½ηwDD[ζN½ξΦg?Ÿ;ιedZm5ή"JmΘj½¨Wמ|D‘‰˜Ψxo—έΧd3ΑwO!χΚuΓͺ΄«δ6Ώ]Ζο¬φάΕ]ƒ{μή‹VKύN‚°›‘@뱡tΡΊ§ιm BD©?{ΟΝZ³Φ7­ίδ{Δ$$«DχGfΡΝElυΙ[R§ƒΆ.ˆnέ0Ϊ¦ ¬EL^―€ήcΉΙ‹»[Ο&έΤEmίPΌ΄:ΗχνېnY£ d;ˆ(•RzΛ―©›Ή©uΏξσχwτtj "ΨΨΤΘ7­ήm$ kœLZΕž­Z―F|3CοΜ#φΣbέ±ιΨ;νλRίΠ›»˜oOα7k²¦έ˜x.β―Mp»p3υdU±ZkŸ‚χmw·Vσ›―»ώ·ʊ{ΒΎ+@»ΑΨr]½.uσ,[Jb΅ξτn› Ό·C›ouΝκο›Ω.[ΨœqΊ]gχ˜}„ϋΆšέ6ί[†€ͺ«H{0a܏―ί‚eέ?@D[Žη―ΦuΨΦoΝΈφ―?"bγ?ο_;θ@ΎtΡ†kΔΩ)4֘Lή―¨oz‹Θή-ΓfΪ±‘Ϊ‡ΡgΈ²–"JλΖ μW݁D·…kŽ. wV’@―c]—«Ύ6ΝΦ£wVώ  Νpξ΄Gx/Cϋ 7’5—•uά&ΠέS:οd'ξθzlύˆ":ω—ϋΣ.€ΐϊdŒMQV…bfI©· mυ€½(φ6έΰŽΝΠbUοm2έΤνׁτϊύo ƒ;‘Ν2ξΠ¬:»Q!άΨσ»cχ}ΫR„γf΄φ ευY)D=#½ςiψš ŽΎυ”…V&&oπGD‡Σj³b5VΜ,LkόΥΏ±K έ4γύŒv'·»ΖΝφέsθΛoΆμW,ωW`{%«0ήγšΖqά¨<ΌŽΊΫμnˆ kSΩJΜ °χ€ώΕMzδˆΰག‹ξΨV.U}Ϋρ` Τ=‹ΑυΡˆplq₯B7εΪ·εŽΝ[έ Rάn°9ψ.m7°GN ˆ=Ν«NYΏDOξοΎΰΞ‰lšΦεθ+ΑΎ-ϊ& ~³κίT΄υΤψκΨΦΨc΅¦+2›5ZΡΥ‰ήkς{€Ί’έIξύΘΣ0 @{!`eh}«vΝ «†―βUŽΡp]8XSc7FΫS:›fέΟώ«Ÿθ«Ο@_§Nν<`Gΰ† "<Ί+φˆχ»£κ_Ζ]Ίw2Π‘Ϋϊ‘RΞ - Ϋ…Π‹Nκζv³£-~ΪTθfG@Dάmz±¦λilΣέ¬Ν6ϊέΰvƍ)€UpA`³4› λmoΏCΎn'αΤεΜΡΉh+σμΝΞcS’΄^’·άvο²>ε}“ϊn7ΰ7§ΎΎωN(v}‘>¨w’²yκ;„bsw•ΨV:6QΔ^ίΊσΞ»o~[©{ˆπNOAΐž‹’u즊hηhHΤ{«oSάρχ―ΨΝΪ6έΥnίHlκp³†οζ΅!·αόλεήq|―Vϋ™±υžGlK²έ‹6΅ιΛρ~‰ξ"ΊZ­Ύ‚nuΘ~Γ»]ΟD„­m£o°ν‘Y―6ψž?ΰ£M{œ@ένυvΤ•{n9ή š5Ηsg©Ϋ&Εύμw' ά”θφΰ˜ή³Έςέϋ°δ&ΗΐφΠaΖώL·›}Ψ©τφΨκ₯)ιΆz7WΪχoݎώκΥoΜτ>¦ nηέ±ύM€οeπ=0·Έkeε›½ŠΫι7λΫMi'ψ_yΑ[rΓφξ„-ͺX?ΏΣŸΈΟNu€ξΐιάΗΧg|ΨέΛέΌ3„=·ΡΏΦŸ˜°χστ›σž?θ1ΨΫ»|؝›yo2Φ[ϊs9VBpχήuq;s§ό_[εέ|νL»χ3uw#Ή±6ιuΔΦ%$(έ‘γύύΗώκΝWΆ=εΞάpέW<Ί{€-WOάgέSJ7Db3Z7ΩΪ§|7νΥRuJμNΦwΓo…χw…ŠΝτwΛ{6ΩmK]m#dζ^Iμχν†τ6€=GLHw²³ΣQΏύΌκυγ؟sΏŒw”bC‡w€ή­έMŠχ)nDϊfZί_n[βυ‡7mχυ™ύdxgΓ[μ°%?‰ˆΦώžΫ#{h``Χ½΅±‡h‹ζΏΠΦ`·yώ›Τέ–z‹pοζ.>Ψύς–%ξB[J~₯ λM€UμnΊ³%Z …+θΎKαϊχζ<θ+ΰξυnW—Mš‰z5)6γΊ‘ }R_d±₯6‹P€φ-†}Ψ,¬‘ΆlV‚χ’ΆrιΊ– ›^Ρ>­uΒδ½Ϋω.·ΡΏο·ϊŽΡώΞ=:ξλζA¬Yrβν‰?›ο<θΞω|}l΄Ž½·μͺBοjb}ΞΓ&€ο–΄=’ού·οϊƒˆά³F_IΔ~fΎ?ώψJ‚v“Ψ—_ήίy-ΕϋcΧΖoŽοέ―Ώ ЊĿνψ-€Ύ9Œ{ΫίάΟό­‘kΐm Ώ:ώ™(Ι»ψIENDB`‚ignite-0.5.1/examples/super_resolution/images/input_cifar.png000066400000000000000000000040361465426447700245370ustar00rootroot00000000000000‰PNG  IHDR όν£εIDATxœVY\G>ηTέ­{Ί{zf<γel Q„H@Š„"%„, GA x⁄ĂήyAD"888qΫ3Ž—qlΟζYz»χvί­–sxhρbδU•JυmU9("Μ Ο2±*ΚΡxΈ΄Τχ¦NZ-F‚Δ€κ)‡4Ρ3@Sfγύ{·³,/^{ϋϋέ$ |„y&"„r΄χπζG΄U,τ«<λ.-1  = ‚ŸmŠmΚΗ{;έVrώΜΉftxήƒ€ΘSAž5œΉόρxτθΡξΑαΰθx4οάψ||r ς΄ž=}ρϋϋwχ―^ΏuύΦvYΜww6―}RΝ Eˆ‡€ΰ$Μ5±α―vΩYg§e½<ΎuwηxTŝO>ή½³ΕbYDΐΟ?ύοΙ‚OώdξΩ! βyxac£ΥιζEH[{'‰Žtmn]ω`ωάZύ":AAd’^:}5#’ €°0{cŒΘάάάƒκχWΎϋ½7ΧΜ«*3—χw²Ϊμάέήόΰ_M>O"(ΰ@ˆB 8'˜η‚ ^άφύ{·oίnŒaαΉiΕ _}νυ½σNΖΎ–έAΊ}2šeυέΛΧ|~Σƒ›BUqνΉΓΓΙΑή`G‹ΰrΣ‰s„’•ƒ½ΓIڏŸμ<ά]h'-1―ͺΤαן»ψά©^§ί=9ΙϊKtζ|{š—!CΜͺ{ͺχƒΎ5žδΗϋ'Γ†[YΎΪνj”s₯φΪιƒGL9ΥE–•u΅βlšνμ=Zμu}Qcέέ?|€Ξƒ‘tšNrcδΤ鳆αήƒAšQœP«U07VςY3˜ΜͺΚކEVˆ•VΤ"TΕNa»­Β°n g%Œ£N§Ϋj-X+μPC@ΓBΑ!ͺCΗ3Γ0ΚTP–ΜΒX9'βΓ < gL&€(ήI C((M €(B CaFE„Zk ¬Θ¬jΖy>6 ΄8UW56Ζ ©v―«”RZ ˆ(₯”RDHLDJ)͞½’RD„ˆ€Δμ眞Mgy^³ͺ(jDθ.v£$$Jt„‘R*΄Ϊ3‹Μ‹("@ρή;ηDΔ:ηA”VZk‰γ8 ΄°’HG#k|]cLAVUEŠˆAηiJZˆg†y#eYzοu …‰QDβ8‰’H[k@Hλ Š J@@ J)π‚ή{EJ…Š u "ήϋyΑˆhqqΡZΫγQζθΞ9η,x ή{½ΌΌLx/Φ±G©λ "3ϊΐœΟ[ΗsՈΐ,Ξyφ’΄rΞYη,;RjΞ‘”"ο=3λn·ΛA¨16/g:P*Pή{π9fφžΕ Οk§°gbaSk-ƒ‘0³€΄β8Ԋ΅ΦΕΨ¦n*k )₯‰Δ³qq ‘h>±›§ ˆžYIc ‚y]ο…@˜@ΨY―™ΉiŒ΅Ζ˜Ϊ4ΖXΗΒ¨”Š£ˆ΄ςΞΝ;p$…€D*u];η‘RJDš¦)Λ γ8VDΞ4„Η‘ΆΦZkœs ’΅R ”""!΄Ξi­½χ’T@τ$eaЈζ4ȀΜnG­¨…ˆψΔ"QbχFαIENDB`‚ignite-0.5.1/examples/super_resolution/images/out_cifar.png000066400000000000000000000331221465426447700242050ustar00rootroot00000000000000‰PNG  IHDR``mϊΰo6IDATxœ­½W“,K’ζ"Df–θξ#ΔΞ`– 3š†7ωίΑ@γ‚ vgg8ͺE©T‘άωYyκž;»6 ²Ϊ’«²2#<\‡ϋWx<1Ξ9kmΞŒ1"2ΟsΧu)%k-ˆ‰ό…UUΥ:f^0ΟsΣ4Bπή‹ˆδ’sξϋ>„Ι8+χχχmΫ¨¬/P (R@μΝ³nηSJ1Ζ¨*"@Ξ9„ΰœ#""BΔišκ›Γ0ΰ<Οήϋ#"23ΥιΦ{9η*κΒQDώEƒ[ͺΥwκT1猈υΉˆ ύε’sξϋσαpxxxπήΏ}ϋP‡Λ₯οΟ―^½Κ9[kw% 2₯”€MΞΩ#ŠΰŒ-₯0b}h%D₯"¦”ˆΘ₯fž¦ λVΥΉΥ-8N N§“ͺήίߏγΨΆm)₯k†¦iκΐZk­1Φ»εfsͺδ¨U‰NDσ<[k½χu&ψςό(ΉŒSίχ=3w]SΉ{Ότ•—ΫνζααAί₯’EΨ ’1EΔ²!’‚1†ˆBΜΌΞΗZ;ΟsέώišΪΆeζΎοsΞ]Χ₯”6›M%Π4MXω’’.—Λf³©$Œ1VZ_λeuίκ#κ;1Ζ¦i@%ΝA43θ‡Όsš“u†ˆŸžžR‘ύ~φλ―ήΎωZ Ω8+"9K•‘9ζ:g½>βΟNƒ™oΩj•ρq+Τυ>==©ί !δœw»έJ—•:λ]κ#«u~·ο¬άTΩ[EŒ%Ipxy6 ηΣρQcŒ—Λε‡~²!…‡‡ρm'"bŒAΤυ«(ύ3σYWTυxο`U»υεœ3UΧ\.—»»»ͺŒ¬΅"2Žγv»]c¬_(₯䜽χΙ@DRJ·ƒRŠͺΦ9…Œ1—Λ₯^stΦΜ—‘ΏœΟOŸήΏ;½<§8#Β<ΟΟΟ/}?6Ϋέ<ΟoήΎžΖ˜Œ³Dfš&οΫΊŠ¦ΫΦ;·Λ=σŸs]‘snέ³£ˆΤ}Zy|Ώί/Δ«άΥus.„`­έn·UcUΒ―<‰ˆ•’ͺώzPε·ͺUmšΖZ[Jr΁J‘4 ύΛγ§χ?ώρΣϋχB€"’Š”97ΏιJΚΦZk™ΨˆD$‚”€m[bΪ K)«Ί] ±Κx•ΚˆXgRΏ[W½hRΈκνz":ηώ)ώ\5ό_8¨ίRΥuPηwkb+α˜@DζqˆΣx9Γ8lZ? γf³ABhύώα~·io-Χ₯ 17lΧ ˜c¬t―’'"«Ύ[η³.g%Se+¨7!’Κzγ8.+‘ΆmcŒͺ:ŽcύNJ©JV}ž^_λψ/Tλ^V›PJ©S―€,%ΥyOΓpιO/ϏOKŽŒŠ ϋm·ίv’Š„i<_ϊΣqμ/cίηy.9WQͺ³­>„ͺVŸξϊσ©ΟͺK)­Ϋ6MΣ:½:1f6·μW₯΄*ͺJώ•EΧ/Τ§Φ7EƒυV·OŒ%" ^Ω§υφ9Δκdl»xσκή0:η6›ΝO₯dHiΊτΓιμ\£ͺ†MΙBDD&«€q>½>λΟΞgRεθΆm«[εIU©’°―’ j²Ϋ%­7ύλUŸ†+₯–]1NΣt<ΟηsΞωΝ›7ϋύώξξn»έcTK:ŸŽΗ—ηœ€hI‰Y%ρΏt&«οΊΜǘΥŠˆ΅–ͺŠ*₯T†‘ΊvΥά€”*±*‹Φ΅ύΧ n©SχGDDEA‹”zΑω|ξϋώρρ1ΖX'ΐΜBΣάz;\ΞηγK σ‡Ÿzy|²L+QRJ JDEŠθMDςηζ³Ύͺ§hΗΜ‹ΧΐΜU_VbYkWγEDU&«όO9]λ όΣZύ¨^SMOŽ™-cΙ‰@Uεωω0ŽsF0XGσ<[¦œσαω₯sή=~ψhί="2Y:.©HŽΙΟσ¬%12μv»qŽ3ΦΨqœAιπψΙΣΆναι~³ί€Z…Ί―΄κΪϊ6FΔκžUήΡ›<Ιͺ4!b5~|Ϊn|η­wΆm”‚!¦’‚%ηΊqJl 3ελž₯8crΞͺZ]Η9όBĈ@‘ωK›υλ\ά琹~ZΩ­Ϊμκw­L{ϋυ^2ω5=ΌΫνqηύ~‡˜Λιr6dΟύΠu]ΜΕ7ώ|>ZΦΗΓ™^νχσ~x|~~fβ)ΜΦ;cά0N)KΙ`ΏošOχέ¦e”ιt<&QΫvMΫέέΏbgm·χ¦ϊwPR6Μ@¨Eˆ ‹jΥ· S₯”*₯Vλ\U‡Ρk6D$ί*‹••†θsPv=“Δ’²]|‡%,N)Tv½²ž–R*‰R*«SŠH0Ε`\ΓΔΕ2oΆϋΧoΎϊέ_›χοϋqŽShZ‰1Η8C₯ˆ5N”ϋafmΣN"ί4Mσ|<4)‡a|χγOνŠΒζAΆoDA@΄šN„\2)a ±F^9gc½ˆΜ1έ8Ι*’_ˆΨ/κΧώαΙv λΐϊͺ‘Dεή”’sŽ·ύΥΕήω”ƒˆxc§yjΫφΝ›7Ώύνo/§išώσϊ»œs)ΊΩlΖq²Φ†9μΪύΛρά:χx8ΎΎΫ=t›β¦ΫυηKΜ?!§v»Ωή»f£Ϋlμ’WνΊND€αš T$bkˆH―ς―UΔnνΛ*™UΔ9v·^7Žb%2b)%„0Οs)‰ˆΊ»Wβ’Λl‚‰B ¬‚πππϊΫoΏ½œϊΎοKΜΏύο§i$’²e·i6aN$ταΣszΨ»Ζσρδ­+!¦9¨β󻏠Dμkχw―Ω@0†’$Π²X ΝΖΌLkmΝ– ’E¦ͺ'}=[CV!bkM)₯žΆV₯»Κ€ζšΠΆ6kšΎοϋγρxŒq6Ζάίί7›n·έ)@Q) ͺRΎ}:Ξ—σω|8[k±₯$6XžΟηΆ΅zχξΝ~οΑ*eVΚsLe>~zϊtχέoΙσ·Ώύ­ΏΫ@SH%7ގi`$g,J.γ<Ξ‡5­kŒ1.ιŽ:Ώ)„%£ΈhΦϊΉ€hŒU)™w)Fk-¦Ζ0}ώΣϋ>}ϊDD§Σιt:½zσ0ΞΓwί}Χ5η\) Ψ"€‚Š$Ρ@!ef€9ŽMΧ2‚3†w]χ―~σW>|ψW?ΏzzΊ\.ΜάχύΓΓέΗν~SBœgΩ5›σ8Ϋ–ίnο†th}§)?Ώo»Ζu­Ϋ΄o[PƒfE9Oγ₯oAjEΡ9Oύxι‡cΜ±žλΤsΣεdq%КjόuπΝΖθυΨ$ημΌΏšv°Φ–q8^Ξο>Όγ:N΅όαϋοΏ|ώTεΎωΚ0³5@EΥZ§DΔΔ1ΕκUxοΖq4DΦΪΝfσ»ίύAŽΗγιπœβܟz-2Ξ9ŽZΨ»i°δΓ₯χ`ίnο†iήlv9¦αxžsž%ۍ·›Φt»ΫFIΓ8”RRœϋ^ηg6 2Εώιτ\4]ΖKυNκωΟιtjΫv±bΥ­k^νN ² ΄V>ȚH1ƜΖ0|ότχχψγαρεε%η|Ώί‡W―ξkuwχ°ΫοATEˆ«'M†MΚ©“MΣ€EΦ}rsϋξ»o·ύu†ξφϋώνω|Γ ˆw›{ΡR¦iξŒ}ϊιέ‡Χ›ϊFRN%υ‡γy±±θm1κφfΧ%-Γ8ΞΣ4υˆ6Ξ’JΦπ|~>υ‡,©ΊŽ• !„’Ρ¬Κ8§p­’ZrΓ0”RRJΓεθ½W-rΧ΄ͺΉ‡išŽησρ|zιγ~ψǟήύxΊ§0‚ΰιr9žΟ)…ΝfσΥW_ ΓίΎ¨ή+eΙ\˜@€ σpι/Μ|’ΐfΏ½šxυφN)†0ŸΞΗΏϋ»Ώ ύΜlΟύΕ:“₯ψΆ€sŽΫ¦Bj {ΣLύ,_^ώπϋ΄ΌωνχΝÎwϊΛεR+i<‘ŒVbbš€tƒͺZkηRJ€ϊY7ίΈ…Kˆ„¨9ǜSυΗSJ΅γ<Ν1\†αωωωεxψωΓϋ?ώιΗζ|ΫΜ1HΦZ7v8jŽy sΤlΠ 0Kt€ E΅ϊP)₯»νΞ{_-‹jΙ9[cοvΓψoΟψ§ΏΏs.Ηar₯ΫΠˆBΩΐimΗοŸΜ«―ΆΫνΖλγyώψ)Hž5Ο%>|χvσp—r/}ίχ)₯‰ ”DV’NΎ΅9GDE„”BΣ4Ξ™išΜzhnj"ω&=ͺMγϊώ<Ž |ότž­Ι"ήϋσω|8ΟCψτττττρρΣζRJΘ‰¬Ɋp:ΊM3†ωγΣγγγγf³iš†kZ³Ίd†])ϊργγρx¬Ε7ΞPΚ;o Μaœ¦i³ΩxgJ·kώΫΏωλŸ?ώ0ύν\†€§Λ±qνέݝF€χOppξfyyq%ε0’i.aŠΣ§ίHz]J&(9Šf@ιΗA<‘ΜsΙΞ5!"Cd.—“΅ΦdPМΔ“RBRΓΖ{« Ξ›η—±ςBΞ9δ0‡€|zz€Σωόψς<…yNΡ9‡ŽX qfΣ4 θrZπξΓΟν¦Ωνv uͺqΫΆ1ζ—Γ!„t>ŸΗ~Έ»» )].—MΫΣp9Ηq alš&ΜγξΎ½³οώέΏy:>Εγιάo·{PU4f,ε0υ@ϊvs_$ίνφBςܟsλd/MλΈk,σn·λΗΡ‘)`ρlU$#ςέ~SσΘ›N+PR9禩gU Rjτ~>?|xχtx 1Ζ’SΙEδ2S˜ €ξφ{UE’ΖwΕGΝ*Ή€†q<ΟΟΟΟ]Χυ}οœ¦q·ΫcΚXbL}ί§aΒ4—RšΦν·έγσΗ¦i¦i||όtiœe4†ΘΒξ‘Ϋά5oΎ~xψ‘γεrjάΖsΓΐY †ΨXχtΉxοŸN‡ϋυŽΖyh O§Σ₯qΆρΞϋύΧo²%jœuL™bpΞΟγΨzη›M ΞΟησf³±¦!šikZΓYStΞ¨Š"TΏγρρΣγ㧟~ϊρ‡Ÿ||~šcPη=;›₯ΈΆΥ0•vΏυή«*fˆγ‡ΠŸ/"0MΣαphZWJΉΏΏίn7Ɛsn·ΫΝσB:OΗΓ9Ζ(₯O/‡γγωπβ7Žc>MΣ€P:ο\λ­Γ,‘ιμξΎϋϊ›·)•σi€"¨0Žcη;μpŒ ˜~~zz»kAŠšr()₯’ΖγΉiΊg’Λ8΄oξ±q“ζ1Ο©dο}žΘ¦ ώ8Ž"r>Mσ<ηœΝΗOοkYUN IˆBˆ1~zόp8>σ4Ο³1& #dΊΏ{5Ν³€4»n»ίu]ΗdXiξηηO1δqž€8€ψτ|1Σ`™ΪΆ­:(₯TŠž.ηΣράχ}ΧΆ1dί؟~ϊ1—¨9 }Oή;ο}ΫΩΧo_ΘΒrχjχΥ·os‚—8Κ4Žm³+Ή€αTΚ,’σΤzn‡ώυΫΆ;§σύfΧϊ6\.diNσq:kλ‚–QsAJ©΄¦aAI)ΥΔΠϊΧ<=}RΥΆmE ¦mυSJ₯”ZeΑΜ_}υΥζχ?²5sνn»ΫνΪν¦iΫγp6Ξnφ»λίBR‰b­5Ζ0Ω———Λε΄ίοοοχΎq†0—Έζ4ÜΨDN)υ—sŒ‘c˜rŽ E‹XΗΫmη½Ώudj· ;ϊζ»orΝ0 ρ8Ηyš§θ}Ϋ4iό&’<…]γ7MkŒLι4 ΪΠpr &Ν‰M’¨,»išj±β<˜ϊ`‡gkmŒσœ²%~||ΌœzkνλΧ―Ώ~ϋΝλΧ―χcŒΚφΨO‡σΐΦ[γρn0ΗiLs?wlΊ{uw/±Θ,ΞR*0„ .…0£„aL)xοζ0ϊ¦™Γ΄έμvwχC$*mgΈi\Σ4MΣ΄mλ½oΫMΣy- ]Χ΄Ύ9™ώ›o_Ÿ_.ύ™ζl<‡cΫ΅Σ0:Η)…1N’pΣϊ˜…-7ήΟal­ΛH9ζR€aŠΦy•μΩ³ZD²ΐ!–0Ο9KΫΆdŸŸŒ19&k}§qγœφϋύwί}ΧuέΓΓΓv»O/ΗΎmŒ!ŸNίv*K•Œ€¬EJΚP$§ΤΪ†λ½&€δL!€#d¨EΩ©σŽ-o»v»ι,Σ~χ0Η‹mww%‡¦5ϋύV6›Ν~w/"Ξ5dxšgg]Χ4¨ΤΨ&Ηtx:|όψ1Δ8ΕΑ7Μƒ΅οχ»w?ώ4ίυ[ί9κJΞή:fnš¦οΟsέΆέ4–|·iΎωφ«Woήμξφ1•ΛeςήσΕ"ξΪf³uw―χή3“œOύ8¦PRΎΏ%₯tΦ[k›¦-ΉdΠύ~WυύωάΓδ½ϋx|*g˜Ζ15Θ Ÿ'D|νοSffΛ‘$KΤ΅›ΒμΪΝώώŽš–#€0τ %L“3”ΒD fžηRΚ4MήΊq½χΞxΉΏΏ_sŒγ8>??χ}ττc$…8Νaš†σ9OIBJΣΞύ%kr“§ιωγ^Οiοξξφξ›―Ύz}§a&MoήΌzxύz³ΫƘ%γαppž IωnϋΊ΅$³@žΓxΎφy*p·Ϋ9Η–³δ”₯@Σ4_ύ΅΅-‚ΙIϊΎ†y9κ°M“CcτΦ€1OΖX7Ξ3:’ηqnοwήΨΦyΏΩŒ!X&ΥRJR(’₯”²ίnM5κ"r>ŸK,Έίήνχ{cΜΪΣ1Žγρx|zzͺΦ-§$₯ —ΎΔδΨXβι2zdb`["γόΗw?Εi„’]kέ7Σίό7@9‘¦y·Ϋν4ΟΗγωrΖσά΅Ό΅όςξΩtΰŸS"9η( ΔX$™S±€¬ͺΐΔΔYΚέΓύf·uˆ%ΖDσ¦k γv»Υ’Y”›ϋΝHΖœa<χŒζόr8=?=_lkϊ_ξ?όϋε?όϋΩ’η—Oο~~9½ŒΣx8/ηρωΣK™‹BζβγΛω@J‰Y»σήΏή½‘γ Ω<•§Mη_±ιΆšΰΝλ―ψλ·―·›»―^³ιvρ?ώOΘ?ώπaΫ΄ΰ½#DεσeΜ.{c ΉΫ΄lM!9#bFh|“BC{2 ΖZ2άtž€­΅Ξ93φC=“Θ97M·m»ύώnžηzLX3κ΅΄©Φ₯οv»»έžϋσ₯u^‰ƒ$Λ~Ίœ‡ΛX’\.Γ8…αtΙσTv]ϋΥ›ΧoίΎm-?‘”0/Η———OO/O§γ‡S™Ε;3ŸΝ¦s’±h0ήΎ} 00dζQ@Uε<ΝΖ8”Ι“ΞCkwΙ§ϋύˆMVώτ§Ÿώπ?¨Β’1.ql„ψΌ~γΊMΧξT±ρέύλ7ΫΗec}Σ¦iVc,Ϋ(xc%ζ)‡"(*iαΦƒ±5ϊI)νv»q|Ϋ¨jΫ΅k˜ΖpQΙ?νχϋ—γρO?ώπόrόΣO?ύέϊΏŽ/ΟΣ0άίίΏΊίη˜β4k.ŸήHqžΞύ½|ψψψιωpκSΊˆNsNΆlˆhqΞχύdΜy0LΓϋΎίn;Fάν6ͺωx|"γŠ||χΓΗf»σέζξώ‘(Β«W―~σ›ίτύ’(9oG)B8€AŒ³YuΞ ™cIgΗq†—ίΆ₯`l6­οšυdΤT–)1䜭wlωτόT@Γ40Ϋ?ύψσπΓΣ§O°νΊηΗ'ƒη0χC</a-›άOή9fV"(²ιΊliχκn†γσΛbγ€šη‘Ÿβtι‡R΄žPͺq@ϊ!l6žΨ‹X’φtš‰ς8NŸžsΞγ8ε”΄HŒρ|ξ‡qΐaNΫ4έζΝW_;ί@c}·έŠR˜bšCΞ…YΙ9/Eζ\$ΟΎυΐ^ 3²ΝEζ±ΆΥrγμr V{ZΨ砟§’€ͺ—wοζy–”-»Ηίόγ‡w?;ΧhyH%&(ηΗIE@”΅¨ΐHc?Τγ φ¦±ξνλ7]ΣZ⠚b™¦I »ν–;³—"KLΦPΞ1)ξΊΦ4. Xλ.Γ4Ž1 ͺςΚαεœ“„4—)§9f%ϋrώΨtΫγiΨμφEρ2τˆKžcRBDCEQAИ1F!DΔΆkΙ6m»©I`ck Ά…m6Îχ~Ÿ₯ ύTHTu σ~³3†β’Ξγp9O¬ )†~μΙ0`˜ΗΦ8k¨έή‹ίJ.]ΫΖiΦ’Ž]?υnΫωf³Ϋέ}υΥΧίMλνωtxz$+a·Ϋ³υqJq‚τp8ΔynΨ6»fΣQ–"\†v·Ks’ηΖρ“΅‘‰a†6Ζ€"‡ΓαωpTδΆνŠ"ηJΜΘΐ€€ͺBŠH’ͺΖΔ™¨΄Mη|ΫusυΤ«ϋ¦MΧ–RΜξnˆ—ah6XΈλΊΦ5X4†€’eŽΫ¦ι™JV,‡IKρΦΔvέ•lΫi‘i™ΉΦ/™RtΫuΞΨmΫ½Ύ½ιRˆΓ€" ΰ6- •φηττtcBQΐ‚MAF6ύ8₯,`\I‚Qυp8³JΣ€jl:²ΞΠΖ9 ρr9)’†7Ϋ} J"¨€ά6MJΉΤ*$UH9†œ,›’€dY|ΣV³UfHΥ’±QΔ£k<²Νͺ9€υ x|~IΣ¬)³€5KŽ£ "ƒΆΞηœ™μf(ΒƁh™#Χ4MaDDΓnžγω|‰!°²!»m7δΪvΗ0§σП.—1Ζ)₯œSlBVŠΖH(0L $λ½Δs1ΖdΡ2…0Ξ1«bL‘νηκΉišI η‘ˆŠ(ΐ Y€Ι"šRε+ͺ˜s-NfcŒs5=OPšΦ‰*vΤ”’2Eλ=Σ %YUΗτζξN—‚;)`Ψ•RζP΄”βJ)μmΓ-3ƒaϊώγϋ§ΓqΏέ’Ξ9ΗmΜi:Γ4ΞηwοŸ‡1Οg"“EHυ8Ž ‘(OΣT[πŠ!6MΛH`γRΏ£ZDΒB‘)Μ₯¨5ŽŒ3Ζε,šΥ“RΓ¦ΖLE2)ˆ5N$ B‘išy S[q°€ΊΆAUΒRΔ΄]'"EEEcɝoc<ΌœH΄„Ήμ];Fp­7Ζ(PVQΕqšΘ•JBΔ8αςv.ΉΏŒ‡γ±i&ΈίξΎzυΰ­3ΞΞηχOŸΞγ4Œ!d%cUΥϊ¦(„”ΣωR­l­œF!ρΜΖy2&Η„„%ηašΗy¦@†­qυ”™υˆyŽŒ1dŒŠ[+"΅R1ΗlŒQq™IˆIΥ{CHΉD! ΜΉ“iΫV’l·Ϋ2%ο\: Ηsšίw[ού~ΏOͺΗσ%ΔhŒ %’mρΦ#’Ν„8Ο!‘@‘ΛpΗΩ"”1jHή؜σΛιx{e³έέοΌΟ²4~—¬1dD¬L6Ε’"`D[6δ ₯”²@ˆ9€S–½2 lΌkk©aΫΆUŒ–*R$BPΙK½ŠΑœσ<ΟΖΩ——ciwΏ‹1³΄ύΔ :2lE@K.I, ’‘LœB”­€³t·έ7Mγš–­!€ΟO) fgΩ84Ll@S–9ΓLΕΣ6Ϋ’(¦Y& Σ8ŽŸžŸ2κξυΓέέέΓΫ·SΚ§ΣI/—K­ΪREcμR±fQ’)F΅ˆ…$i"k0±«ΕQR°ΓΜή6Ε,§‘9ηκΡX²‚hE³*Η83ΡR BTB²FNΆmΞ„T š₯Ξ²²΄χυΞυ)[bPO†6Ύ!2Sˆ)̇κη―H"K)’SLdΨΨ&ΖμœK1ζ"Yiμ'‰iΗώ< 3~Nοv»]ST‹œΓ,YAΑ²i›ΆΒ°sσ<#ˆs.Χκ?@QER$"ΜIbΘΞ&U,₯π΅I§ckΕ„ ‘ΦR ΅8ΖHΖΜS¨EΎˆ΅t5§”LmU !Ε₯Θ8Žœ )V>ίn·\Π‰Θιt±ΞM)Η§Γ!JFf_yΚ9Ά6gΗ9δ"H%KŽΉέt))B‚¬€Yζ)δ\T΅d†irV !-ή½Xfο}=Έœ¦RŠ΄€”’P K)JΈΦIZkc^Ϊ¨K)*΅N³υ\½αDTȍ³KQ|)4³u€r.ͺhœrΞ΅w[D²`Ž9E5Ύλ:γΣʜSΘ1€Γρ4Ζt.ΣΕ2+ ¨qή·- 1k“·BU™ PJ)EE ¨bPRΕ”Κ0 ‡——\4Œ“$Ι!ΧRFnk<Š΅>„DŒΜΆi½ˆΔT„X‰ΥJk)K‰9QŒ0—ΈT°hΆdΠ°]Ϋ!œsΖYΓMε&€΅eM©‚£ˆ•¬yŽFΙξοdŽ†Β€γ8_†q:œN—iŽZ†)hαΞ·ŠTT©ˆˆ"+Š‘3£f%( DE°(’±@¨ŠΓ0ΑΣ‘¨Μs†ADrΚυΔnςΪηζ\ΛΞ’u’30eA2Ξ¦”¬wΛz˜Tužgγ"YjjΨIϊ§6°X6Ζk­aΛnHRUP¬fMDL‰jΙΟΣLΘR2r† §`3‰X&>§>ζ1η~ž€d€lξbΘ0ŽΔœ³„¦(ΔΘΞM1B‘œKŒ UI„‘rΞ@ †c*Γ8Ξ’™yžcΞyš¦Ϊ―b<ŸΟ΅:IΨΪ,’rζœkm8±1¦Ζβ‘ @*΅ΘBPΒ΅ρ€Ωb*κ=a-ϊ^ˆH€ͺΖp-Ÿ'dC@*JjJ.ͺTλ$\Σ–Xf(iŒ92eg‹oŠ›cJ٘"PB.ύ4³o”Έφ‹Ζ0# ³E‘Π,c’E‰TΘD@ΓhMαT4ζœKΞΉ(ˆ Ν)8d­ …¨φJkHYU΄ιZ‘\œχ"’e‘‹Z!§ˆκ½­E9 ¦ "KDK ”γYpi~Δεň\Ο8 «-₯86!‡’ΕXgΘ*0Z›Rξη9% llb*Ξjv"₯”ΪoD9Ι<Η” 0©jŒΉ”RDQ4•,ͺ!–Ι’5l@TH$Ε"Z€gk‡DH‘"]@EΘ0)B΅ΆΥ΅aftNυ‰"Β"K―€1D „Φȟ{°}£†acT@³”΅°*¦:&2)Γl9†ΤΈ&A‘"ll*’9§/Σ,©Δ¦œϋg‘€ H’%I) j₯žχ^J)1d-%–Π“U² 09ο“-ˆΔΜΐ\T°6i_+·œχ9gB,"X ”RλFŠΥZrΕ›}Έ)ιΠZk)Έ¨ŸŠ^ΕW€kӍ札[:΄––κ.D―θB @@–”b­))Οsdζ˜b I‚δ(2₯,ΔTA©š€>γ„‘€RR ΅’™Ι0ˆΪΟ›ΏXV@Ak |.ΛVBγ"2,;‚ΐW°Έkί ΦΆ­R SU LŠ*Ɛ Υ°έ€ΓΌΆ[‚1\kΖΰ Ρ΅ql \έ?,₯H.k%uŒ1ζrJ₯δRbN©dΆFc@&YΪθε`nιΊΊ6ΩΧΊΆfuΙκ_&«ͺŠ@Y…­΅7Ύλ•ΥΩ³kU .mXt³£+ \ϋ:kΨEˆzmt/π‹Ύζk—(!’½–ƒγM 2\g²4#V™O)‚j΅’k“[J%₯BΜ1ΧΧΪΆ.€―½ς΅€€Œ1•Λk)ΙκQ­VUk}εdf¬šx51+τΓJρΟ­[Δ+pΝκ¬ΡΦ"ψ‹₯–RΘώ`ύtντ²Φ.±D}ΦΪ5†ˆ&NJώBσ<—¬)₯’ͺ†J)%K₯‹΅Œθηyι+ͺLΈj5UΝΥ<©‹‘xmν¬₯ϋ’₯Vq"’­ί2ΧvτE I©’‘εΊΥ*ޚJΑ €± έϊ‘ˆΔœ Q…ΈZκ4*υ—„‘.ΡFΝCκrΓ’”¨6."B5"pK (ETuΕW¬ ¨ VrΣ[K*W+fŒ]:‘ψΆΧ½u‹½vδ“hεŽΟ[–1KΈdθs`uU%Όsέ€ͺΆνΪΌ N#,ŽΡΥ¦N©ZϊΊs†±~]q‘΄Wx³…@9KΩBͺc©Q‚ bΝ$Vœ3a^»©3ΙζJ³¨F@Ν9#.Λ3Ζ¬@]BΎΕύ·¦r»^ΫΤω:Xe –f °ϋuEZΊ°―wm¦ύάp{kϋnY[΅eΦΉe{ F₯cΥ 5σj’Aΰͺ5,3ǘ›ΖεL΅Β°ͺήe΅x&…«ΙFDˆΉ"UΡ¨m?ΖDŠYš¦QU½BdΝuIR–|ΡΌp\΅|―žσΝσΌ’ζκ'ηkQ©(t…q£kΟm½~5rΣΪ Uy/««ΪΦ#TγR•NSΚΙ9‡\σΧΖ³QU ,*Šνn΄"Z6J―‚WD,’ .ŒΓΌΪ‘+οπ"e Χn»Θ&€«χͺ ΈhpmŸͺύ9zŏ]8…―«•°Š•O+H‘š*)R©³š…ͺΪ+–R’LT«ž¨ŠXU7₯g—Ε;Wω3)-ύαWΧ ED˜8«(δ²δτj»™¦Rj4«6–ΝΥ‹[6Άφή.†Φ~Γ+ˆAΥΚetU…ͺΚ΄ό‹W ΰ?Ε[}¨ΚΦPΝ“T-ΎͺΕ”’©`X΅±kγ3³-%9B‘RΡΡdΠ""²­B„5P2Έt,‰Λ”hι-Ξy6¨Z¬u[ i\έF6‹λQυšHΥ RE %ηΪΌB ’sZΥͺ˜R)†Q@Ν bΐ«ŠY½d"ͺ³«Π‰ΘRί“σΪ…jVύOD„ °hŠz]­θ@"η3Γκ ΅£΅nx}j=r"RD&Θ@ˆF—4ffcˆI‘ ™>ƒ6ΑMjbu…V· ―Ύ_ύt±5ΦΦΕ―dYόήΟX«@έΊW·oͺͺά€Π΅‡Ύ2—©=ξΦZg|Ι*R‘G–ΕηœΩο}Υ8x…¨jP&΄ΒI!ΦΣΛΥF€uΣ ­εš/%βηΐΛ/ΜΠ­HΧBœΚ;λGΥtT[Χ‚Ά(HD•RVΟπΦΥW)Ε.0F`xΕK·ΚΥnŠˆ©eB„†Ρ³ˆ”’ΜEDrQη=!/`yc•”,•TŒ―ξΙϋjΞΦ8ΙEθΚ Ζ*Šΐ*ט£ΚcΙΉΤy *_WˆWW¨‚Ψ,D‘”ΚJύͺƒ*™VYΡ$iρθ³Ϋ΅κ΅ͺ=%WœYF’/Ά χžˆ@Ι³toΛƒXd9@DΑ%»E«&"€kΔTO˜ςΊ₯+Σ!bΨ&‚kπT;ΕΑ_‰ό²AeΥ΅=TΛg,Ο²κ‘υ#½Ξ~iΘ–υ_AΏ~ͺz+ς¦"β"°5&ΜUi-±bˆΉ”T1dςνΤ?»ΒWAX={…~§›ό -³Ίs+τ]eδΦ/„†E pURΧPŽ― υ%[&k¦‹|->νuzpσςΖVŠ.RΌn|U"2΅εš+A\2&ΞΉœsQ‰q–+$ΙM€‘ͺ(2" *:ΆͺšEUoϋ\A€U@ΰ«{ΉξVΦ₯ͺ‚  “Š .Χ¬’υ™ƒπ3Tλ:ψ‚:·v•,Ύ"°Tϋ[―·ŽΝϊRΑ0Ο„”sfΎζΧι}%σκς―βͺŸ‘PιωάV&Z\@D”kͺpΥE~±T-―D€ς_οV ±flλώ-lHΈκιΕf]ύ&AΉ…B\7©šζͺOLuF˜ˆR,UWφI9Ι)η»―S―ήG}R΅# {/|ΎpDΡΟj«λ±rίJ ½V‹κ‚σwe₯ΕξVVRΠ+r!\ωRΦ&’R@•ψšKΊ’Iιϊ ΕTΥΉ7 p’ΏV„;S“p(’‚€&L±λ:"Š₯ )’–’D$ηX „ "&΅R„―(¦υ1Μ|…|Ε\ωύΖ—Α› HUΉΖ΄ΝHkΓψ²‡«ˆ©!(TΏpm[–©bΑ¨‚f6ˆˆr} €ͺζk‚M Q)šΣbr‰m˜Q Q)E²J)©DcΜ8ŽMӘ%DΜy΅šMΣτ}OD"9„€„ Ÿ3LλςV•T£‘Eqͺˆ@ω%Δ.έδα—PˆWΧ†ID―ϊ’WψO¦5³qu‘>D”­ώ*/,Ώή‡―a TΌ1$"Z‹΅Ζ˜£΅F€hΣx‘²όͺΒΚσ5+„ˆ)₯z¨s’Y,ϊϊ_1;+ίV©‘"‹ˆα‚ΈωΩm•kFuuήD„ρκ^?‚UOU'…`Ι·ΛzρMŽυ Iϋ‹;—R„Φ,θmoΜ‚ιΛWL.U]ςb9―Ώ(Qc}clΫV―ΩF"*% $ΰyN ͺ €@Δρšθ¬'ϊΈ€YaΝΤ8c³¨e‰ΧJ‘ΒUΛjA«)1W–³`ΥhDdΔκ"β<Ο9‹±vΣΊb§έ&z*Eš%±gl}:UIG0Ζr°cPPP —KΫΆKrΡV4³rfίχPύΐΚσ’l””“M)MaεŸυ·^T΅ώβCυDκO”@.5p+Χ}Έ5δtΝσWξΠ+τ?βηδιttEm^WND+f_AΔθ&Νxkdυš&_νοW^ρ ‰¨zZR­Τ"’yšˆΘ9―Ψψ¦”B@ΔišκΧjpTm^£’Ίi•κœjΌΛW4έΥ\Α†τš±…λqJεδυμiM0ί΅5)Q?T|ΌβBV―½ήvžηΚ›UπΧLΕj³ͺ†­+ͺά΄.§ώ0PmLjΌ_α§m["κϋ~»έ~†ΠrΞ՚ιzΣ”’a&’&k †œk*«Χ[€”κ \>U΅&rŽ ³T–ΞΧίπI)-q9[γnΏ^Ωo~ρa%ίϊS7λ©ΓϊE—T W)χϊ£=ψ?w°J"6Mͺ»έΆ€μ½ίt]pΧuΦھ«Η ΅₯΅ Z AV’@Σ4ufυη7˜ΉŒ1ήϋ* •§θŠ8\7ͺ~΄&FκΤυšΖΥk&ψV‘¬Η!τΛ_ͺ’΄ώΈCύ¨²ΨJ‚ΥfU*ΧΠgevΊIο¬ηQ5{ίΆmΣ4Λ™`ŒU;›Ϊ>_ε₯Ϊ£κ[―[˜Ή†AŽΝ5κ]~τeεjΈqκΧΧͺVsΆf‘κn3Υΰf9–ΈαX―ήcε”Υ3†kL»:e· ΙΥ±¨;TΉxe¨ϊͺμι­‘κϋ€”žŸŸΫΆ=ŸΟ/dT¬‹!RιIENDB`‚ignite-0.5.1/examples/super_resolution/main.py000066400000000000000000000120731465426447700215570ustar00rootroot00000000000000import argparse import torch import torch.nn as nn import torch.optim as optim import torchvision from model import Net from torch.utils.data import DataLoader from torchvision.transforms.functional import center_crop, resize, to_tensor from ignite.engine import Engine, Events from ignite.handlers import BasicTimeProfiler, ProgressBar from ignite.metrics import PSNR # Training settings parser = argparse.ArgumentParser(description="PyTorch Super Res Example") parser.add_argument("--crop_size", type=int, default=256, help="cropped size of the images for training") parser.add_argument("--upscale_factor", type=int, required=True, help="super resolution upscale factor") parser.add_argument("--batch_size", type=int, default=64, help="training batch size") parser.add_argument("--test_batch_size", type=int, default=10, help="testing batch size") parser.add_argument("--n_epochs", type=int, default=2, help="number of epochs to train for") parser.add_argument("--lr", type=float, default=0.01, help="Learning Rate. Default=0.01") parser.add_argument("--cuda", action="store_true", help="use cuda?") parser.add_argument("--mps", action="store_true", default=False, help="enables macOS GPU training") parser.add_argument("--threads", type=int, default=4, help="number of threads for data loader to use") parser.add_argument("--seed", type=int, default=123, help="random seed to use. Default=123") parser.add_argument("--debug", action="store_true", help="use debug") opt = parser.parse_args() print(opt) if opt.cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") if not opt.mps and torch.backends.mps.is_available(): raise Exception("Found mps device, please run with --mps to enable macOS GPU") torch.manual_seed(opt.seed) use_mps = opt.mps and torch.backends.mps.is_available() if opt.cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") print("===> Loading datasets") class SRDataset(torch.utils.data.Dataset): def __init__(self, dataset, scale_factor, crop_size=256): self.dataset = dataset self.scale_factor = scale_factor self.crop_size = crop_size def __getitem__(self, index): image, _ = self.dataset[index] img = image.convert("YCbCr") hr_image, _, _ = img.split() hr_image = center_crop(hr_image, self.crop_size) lr_image = hr_image.copy() if self.scale_factor != 1: size = self.crop_size // self.scale_factor lr_image = resize(lr_image, [size, size]) hr_image = to_tensor(hr_image) lr_image = to_tensor(lr_image) return lr_image, hr_image def __len__(self): return len(self.dataset) try: trainset = torchvision.datasets.Caltech101(root="./data", download=True) testset = torchvision.datasets.Caltech101(root="./data", download=False) except RuntimeError: print("Dataset download problem, exiting without error code") exit(0) trainset_sr = SRDataset(trainset, scale_factor=opt.upscale_factor, crop_size=opt.crop_size) testset_sr = SRDataset(testset, scale_factor=opt.upscale_factor, crop_size=opt.crop_size) training_data_loader = DataLoader(dataset=trainset_sr, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True) testing_data_loader = DataLoader(dataset=testset_sr, num_workers=opt.threads, batch_size=opt.test_batch_size) print("===> Building model") model = Net(upscale_factor=opt.upscale_factor).to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=opt.lr) def train_step(engine, batch): model.train() input, target = batch[0].to(device), batch[1].to(device) optimizer.zero_grad() loss = criterion(model(input), target) loss.backward() optimizer.step() return loss.item() def validation_step(engine, batch): model.eval() with torch.no_grad(): x, y = batch[0].to(device), batch[1].to(device) y_pred = model(x) return y_pred, y trainer = Engine(train_step) evaluator = Engine(validation_step) psnr = PSNR(data_range=1) psnr.attach(evaluator, "psnr") validate_every = 1 if opt.debug: epoch_length = 10 validate_epoch_length = 1 else: epoch_length = len(training_data_loader) validate_epoch_length = len(testing_data_loader) @trainer.on(Events.EPOCH_COMPLETED(every=validate_every)) def log_validation(): evaluator.run(testing_data_loader, epoch_length=validate_epoch_length) metrics = evaluator.state.metrics print(f"Epoch: {trainer.state.epoch}, Avg. PSNR: {metrics['psnr']} dB") @trainer.on(Events.EPOCH_COMPLETED) def checkpoint(): model_out_path = "model_epoch_{}.pth".format(trainer.state.epoch) torch.save(model, model_out_path) print("Checkpoint saved to {}".format(model_out_path)) # Attach basic profiler basic_profiler = BasicTimeProfiler() basic_profiler.attach(trainer) ProgressBar().attach(trainer, output_transform=lambda x: {"loss": x}) trainer.run(training_data_loader, opt.n_epochs, epoch_length=epoch_length) results = basic_profiler.get_results() basic_profiler.print_results(results) ignite-0.5.1/examples/super_resolution/model.py000066400000000000000000000020251465426447700217270ustar00rootroot00000000000000import torch.nn as nn import torch.nn.init as init class Net(nn.Module): def __init__(self, upscale_factor): super(Net, self).__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) self.conv4 = nn.Conv2d(32, upscale_factor**2, (3, 3), (1, 1), (1, 1)) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) self._initialize_weights() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) return x def _initialize_weights(self): init.orthogonal_(self.conv1.weight, init.calculate_gain("relu")) init.orthogonal_(self.conv2.weight, init.calculate_gain("relu")) init.orthogonal_(self.conv3.weight, init.calculate_gain("relu")) init.orthogonal_(self.conv4.weight) ignite-0.5.1/examples/super_resolution/super_resolve.py000066400000000000000000000024511465426447700235270ustar00rootroot00000000000000import argparse import numpy as np import torch from PIL import Image from torchvision.transforms.functional import to_tensor # Training settings parser = argparse.ArgumentParser(description="PyTorch Super Res Example") parser.add_argument("--input_image", type=str, required=True, help="input image to use") parser.add_argument("--model", type=str, required=True, help="model file to use") parser.add_argument("--output_filename", type=str, help="where to save the output image") parser.add_argument("--cuda", action="store_true", help="use cuda") opt = parser.parse_args() print(opt) img = Image.open(opt.input_image).convert("YCbCr") y, cb, cr = img.split() model = torch.load(opt.model) input = to_tensor(y).view(1, -1, y.size[1], y.size[0]) if opt.cuda: model = model.cuda() input = input.cuda() model.eval() with torch.no_grad(): out = model(input) out = out.cpu() out_img_y = out[0].detach().numpy() out_img_y *= 255.0 out_img_y = out_img_y.clip(0, 255) out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode="L") out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) out_img = Image.merge("YCbCr", [out_img_y, out_img_cb, out_img_cr]).convert("RGB") out_img.save(opt.output_filename) print("output image saved to ", opt.output_filename) ignite-0.5.1/examples/transformers/000077500000000000000000000000001465426447700173625ustar00rootroot00000000000000ignite-0.5.1/examples/transformers/README.md000066400000000000000000000066521465426447700206520ustar00rootroot00000000000000# Transformers Example with Ignite In this example, we show how to use _Ignite_ to finetune a transformer model: - on 1 or more GPUs or TPUs - compute training/validation metrics - log learning rate, metrics etc - save the best model weights Configurations: - [x] single GPU - [x] multi GPUs on a single node - [x] TPUs on Colab ## Requirements: - pytorch-ignite: `pip install pytorch-ignite` - [transformers](https://github.com/huggingface/transformers): `pip install transformers` - [datasets](https://github.com/huggingface/datasets): `pip install datasets` - [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm` - [tensorboardx](https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX` - [python-fire](https://github.com/google/python-fire): `pip install fire` - Optional: [clearml](https://github.com/allegroai/clearml): `pip install clearml` Alternatively, install the all requirements using `pip install -r requirements.txt`. ## Usage: Run the example on a single GPU: ```bash python main.py run ``` If needed, please, adjust the batch size to your GPU device with `--batch_size` argument. The default model is `bert-base-uncased` incase you need to change that use the `--model` argument, for details on which models can be used refer [here](https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#automodelforsequenceclassification) Example: ```bash #Using DistilBERT which has 40% less parameters than bert-base-uncased python main.py run --model="distilbert-base-uncased" ``` For details on accepted arguments: ```bash python main.py run -- --help ``` ### Distributed training #### Single node, multiple GPUs Let's start training on a single node with 2 gpus: ```bash # using torch.distributed.launch python -u -m torch.distributed.launch --nproc_per_node=2 --use_env main.py run --backend="nccl" ``` or ```bash # using function spawn inside the code python -u main.py run --backend="nccl" --nproc_per_node=2 ``` ##### Using [Horovod](https://horovod.readthedocs.io/en/latest/index.html) as distributed backend Please, make sure to have Horovod installed before running. Let's start training on a single node with 2 gpus: ```bash # horovodrun horovodrun -np=2 python -u main.py run --backend="horovod" ``` or ```bash # using function spawn inside the code python -u main.py run --backend="horovod" --nproc_per_node=2 ``` #### Colab or Kaggle kernels, on 8 TPUs ```python # setup TPU environment import os assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator' ``` ```bash VERSION = "nightly" !curl -q https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py !python pytorch-xla-env-setup.py --version $VERSION > /dev/null ``` ```python from main import run run(backend="xla-tpu", nproc_per_node=8) ``` ## ClearML fileserver If `ClearML` server is used (i.e. `--with_clearml` argument), the configuration to upload artifact must be done by modifying the `ClearML` configuration file `~/clearml.conf` generated by `clearml-init`. According to the [documentation](https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html), the `output_uri` argument can be configured in `sdk.development.default_output_uri` to fileserver uri. If server is self-hosted, `ClearML` fileserver uri is `http://localhost:8081`. For more details, see https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html ignite-0.5.1/examples/transformers/dataset.py000066400000000000000000000015271465426447700213660ustar00rootroot00000000000000import torch class TransformerDataset(torch.utils.data.Dataset): def __init__(self, texts, labels, tokenizer, max_length): self.texts = texts self.labels = labels self.tokenizer = tokenizer self.max_length = max_length def __getitem__(self, idx): text = str(self.texts[idx]) text = " ".join(text.split()) inputs = self.tokenizer( text, None, add_special_tokens=True, max_length=self.max_length, truncation=True, padding="max_length", return_tensors="pt", ) inputs = {k: v.type(torch.long).squeeze(0) for k, v in inputs.items()} labels_pt = torch.tensor(self.labels[idx], dtype=torch.float) return inputs, labels_pt def __len__(self): return len(self.labels) ignite-0.5.1/examples/transformers/main.py000066400000000000000000000347551465426447700206760ustar00rootroot00000000000000import os from datetime import datetime from pathlib import Path import fire import torch import torch.nn as nn import torch.optim as optim import utils from torch.cuda.amp import autocast, GradScaler import ignite import ignite.distributed as idist from ignite.contrib.engines import common from ignite.engine import Engine, Events from ignite.handlers import Checkpoint, global_step_from_engine, PiecewiseLinear from ignite.metrics import Accuracy, Loss from ignite.utils import manual_seed, setup_logger os.environ["TOKENIZERS_PARALLELISM"] = "false" # remove tokenizer paralleism warning def training(local_rank, config): rank = idist.get_rank() manual_seed(config["seed"] + rank) device = idist.device() logger = setup_logger(name="IMDB-Training", distributed_rank=local_rank) log_basic_info(logger, config) output_path = config["output_dir"] if rank == 0: now = datetime.now().strftime("%Y%m%d-%H%M%S") folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}" output_path = Path(output_path) / folder_name if not output_path.exists(): output_path.mkdir(parents=True) config["output_dir"] = output_path.as_posix() logger.info(f"Output path: {config['output_dir']}") if "cuda" in device.type: config["cuda device name"] = torch.cuda.get_device_name(local_rank) if config["with_clearml"]: from clearml import Task task = Task.init("IMDB-Training", task_name=output_path.stem) task.connect_configuration(config) # Log hyper parameters hyper_params = [ "model", "dropout", "n_fc", "batch_size", "max_length", "weight_decay", "num_epochs", "learning_rate", "num_warmup_epochs", ] task.connect({k: config[k] for k in hyper_params}) # Setup dataflow, model, optimizer, criterion train_loader, test_loader = get_dataflow(config) config["num_iters_per_epoch"] = len(train_loader) model, optimizer, criterion, lr_scheduler = initialize(config) # Create trainer for current task trainer = create_trainer(model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger) # Let's now setup evaluator engine to perform model's validation and compute metrics metrics = { "Accuracy": Accuracy(output_transform=utils.thresholded_output_transform), "Loss": Loss(criterion), } # We define two evaluators as they wont have exactly similar roles: # - `evaluator` will save the best model based on validation score evaluator = create_evaluator(model, metrics, config, tag="val") train_evaluator = create_evaluator(model, metrics, config, tag="train") def run_validation(engine): epoch = trainer.state.epoch state = train_evaluator.run(train_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics) state = evaluator.run(test_loader) log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics) trainer.add_event_handler( Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED | Events.STARTED, run_validation ) if rank == 0: # Setup TensorBoard logging on trainer and evaluators. Logged values are: # - Training metrics, e.g. running average loss values # - Learning rate # - Evaluation train/test metrics evaluators = {"training": train_evaluator, "test": evaluator} tb_logger = common.setup_tb_logging( output_path, trainer, optimizer, evaluators=evaluators, log_every_iters=config["log_every_iters"] ) # Store 2 best models by validation accuracy starting from num_epochs / 2: best_model_handler = Checkpoint( {"model": model}, utils.get_save_handler(config), filename_prefix="best", n_saved=2, global_step_transform=global_step_from_engine(trainer), score_name="test_accuracy", score_function=Checkpoint.get_default_score_fn("Accuracy"), ) evaluator.add_event_handler( Events.COMPLETED(lambda *_: trainer.state.epoch > config["num_epochs"] // 2), best_model_handler ) try: trainer.run(train_loader, max_epochs=config["num_epochs"]) except Exception as e: logger.exception("") raise e if rank == 0: tb_logger.close() def run( seed=543, data_dir="/tmp/data", output_dir="/tmp/output-imdb/", model="bert-base-uncased", model_dir="/tmp/model", tokenizer_dir="/tmp/tokenizer", num_classes=1, dropout=0.3, n_fc=768, max_length=256, batch_size=32, weight_decay=0.01, num_workers=4, num_epochs=3, learning_rate=5e-5, num_warmup_epochs=0, validate_every=1, checkpoint_every=1000, backend=None, resume_from=None, log_every_iters=15, nproc_per_node=None, with_clearml=False, with_amp=False, **spawn_kwargs, ): """Main entry to fintune a transformer model on the IMDB dataset for sentiment classification. Args: seed (int): random state seed to set. Default, 543. data_dir (str): dataset cache directory. Default, "/tmp/data". output_path (str): output path. Default, "/tmp/output-IMDB". model (str): model name (from transformers) to setup model,tokenize and config to train. Default, "bert-base-uncased". model_dir (str): cache directory to download the pretrained model. Default, "/tmp/model". tokenizer_dir (str) : tokenizer cache directory. Default, "/tmp/tokenizer". num_classes (int) : number of target classes. Default, 1 (binary classification). dropout (float) : dropout probability. Default, 0.3. n_fc (int) : number of neurons in the last fully connected layer. Default, 768. max_length (int) : maximum number of tokens for the inputs to the transformer model. Default,256 batch_size (int): total batch size. Default, 128 . weight_decay (float): weight decay. Default, 0.01 . num_workers (int): number of workers in the data loader. Default, 12. num_epochs (int): number of epochs to train the model. Default, 5. learning_rate (float): peak of piecewise linear learning rate scheduler. Default, 5e-5. num_warmup_epochs (int): number of warm-up epochs before learning rate decay. Default, 3. validate_every (int): run model's validation every ``validate_every`` epochs. Default, 3. checkpoint_every (int): store training checkpoint every ``checkpoint_every`` iterations. Default, 1000. backend (str, optional): backend to use for distributed configuration. Possible values: None, "nccl", "xla-tpu", "gloo" etc. Default, None. nproc_per_node (int, optional): optional argument to setup number of processes per node. It is useful, when main python process is spawning training as child processes. resume_from (str, optional): path to checkpoint to use to resume the training from. Default, None. log_every_iters (int): argument to log batch loss every ``log_every_iters`` iterations. It can be 0 to disable it. Default, 15. with_clearml (bool): if True, experiment ClearML logger is setup. Default, False. with_amp (bool): if True, enables native automatic mixed precision. Default, False. **spawn_kwargs: Other kwargs to spawn run in child processes: master_addr, master_port, node_rank, nnodes """ # check to see if the num_epochs is greater than or equal to num_warmup_epochs if num_warmup_epochs >= num_epochs: raise ValueError( "num_epochs cannot be less than or equal to num_warmup_epochs, please increase num_epochs or decrease " "num_warmup_epochs" ) # catch all local parameters config = locals() config.update(config["spawn_kwargs"]) del config["spawn_kwargs"] spawn_kwargs["nproc_per_node"] = nproc_per_node with idist.Parallel(backend=backend, **spawn_kwargs) as parallel: parallel.run(training, config) def get_dataflow(config): # - Get train/test datasets if idist.get_local_rank() > 0: # Ensure that only local rank 0 download the dataset # Thus each node will download a copy of the dataset idist.barrier() train_dataset, test_dataset = utils.get_dataset( config["data_dir"], config["model"], config["tokenizer_dir"], config["max_length"] ) if idist.get_local_rank() == 0: # Ensure that only local rank 0 download the dataset idist.barrier() # Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu train_loader = idist.auto_dataloader( train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True ) test_loader = idist.auto_dataloader( test_dataset, batch_size=2 * config["batch_size"], num_workers=config["num_workers"], shuffle=False ) return train_loader, test_loader def initialize(config): model = utils.get_model( config["model"], config["model_dir"], config["dropout"], config["n_fc"], config["num_classes"] ) config["learning_rate"] *= idist.get_world_size() # Adapt model for distributed settings if configured model = idist.auto_model(model) optimizer = optim.AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"]) optimizer = idist.auto_optim(optimizer) criterion = nn.BCEWithLogitsLoss() le = config["num_iters_per_epoch"] milestones_values = [ (0, 0.0), (le * config["num_warmup_epochs"], config["learning_rate"]), (le * config["num_epochs"], 0.0), ] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) return model, optimizer, criterion, lr_scheduler def log_metrics(logger, epoch, elapsed, tag, metrics): metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()]) logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}") def log_basic_info(logger, config): logger.info(f"Train {config['model']} on IMDB") logger.info(f"- PyTorch version: {torch.__version__}") logger.info(f"- Ignite version: {ignite.__version__}") if torch.cuda.is_available(): # explicitly import cudnn as # torch.backends.cudnn can not be pickled with hvd spawning procs from torch.backends import cudnn logger.info(f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}") logger.info(f"- CUDA version: {torch.version.cuda}") logger.info(f"- CUDNN version: {cudnn.version()}") logger.info("\n") logger.info("Configuration:") for key, value in config.items(): logger.info(f"\t{key}: {value}") logger.info("\n") if idist.get_world_size() > 1: logger.info("\nDistributed setting:") logger.info(f"\tbackend: {idist.backend()}") logger.info(f"\tworld size: {idist.get_world_size()}") logger.info("\n") def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger): device = idist.device() # Setup Ignite trainer: # - let's define training step # - add other common handlers: # - TerminateOnNan, # - handler to setup learning rate scheduling, # - ModelCheckpoint # - RunningAverage` on `train_step` output # - Two progress bars on epochs and optionally on iterations with_amp = config["with_amp"] scaler = GradScaler(enabled=with_amp) def train_step(engine, batch): input_batch = batch[0] labels = batch[1].view(-1, 1) if labels.device != device: input_batch = {k: v.to(device, non_blocking=True, dtype=torch.long) for k, v in batch[0].items()} labels = labels.to(device, non_blocking=True, dtype=torch.float) model.train() with autocast(enabled=with_amp): y_pred = model(input_batch) loss = criterion(y_pred, labels) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() return { "batch loss": loss.item(), } trainer = Engine(train_step) trainer.logger = logger to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler} metric_names = [ "batch loss", ] if config["log_every_iters"] == 0: # Disable logging training metrics: metric_names = None config["log_every_iters"] = 15 common.setup_common_training_handlers( trainer=trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=config["checkpoint_every"], save_handler=utils.get_save_handler(config), lr_scheduler=lr_scheduler, output_names=metric_names, log_every_iters=config["log_every_iters"], with_pbars=not config["with_clearml"], clear_cuda_cache=False, ) resume_from = config["resume_from"] if resume_from is not None: checkpoint_fp = Path(resume_from) assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found" logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}") checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu") Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint) return trainer def create_evaluator(model, metrics, config, tag="val"): with_amp = config["with_amp"] device = idist.device() @torch.no_grad() def evaluate_step(engine, batch): model.eval() input_batch = batch[0] labels = batch[1].view(-1, 1) if labels.device != device: input_batch = {k: v.to(device, non_blocking=True, dtype=torch.long) for k, v in batch[0].items()} labels = labels.to(device, non_blocking=True, dtype=torch.float) with autocast(enabled=with_amp): output = model(input_batch) return output, labels evaluator = Engine(evaluate_step) for name, metric in metrics.items(): metric.attach(evaluator, name) if idist.get_rank() == 0 and (not config["with_clearml"]): common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator) return evaluator if __name__ == "__main__": fire.Fire({"run": run}) ignite-0.5.1/examples/transformers/model.py000066400000000000000000000013541465426447700210370ustar00rootroot00000000000000import torch.nn as nn from transformers import AutoConfig, AutoModelForSequenceClassification class TransformerModel(nn.Module): def __init__(self, model_name, model_dir, dropout, n_fc, n_classes): super(TransformerModel, self).__init__() self.config = AutoConfig.from_pretrained( model_name, num_labels=n_classes, output_hidden_states=n_fc, classifier_dropout=dropout, output_attentions=True, ) self.transformer = AutoModelForSequenceClassification.from_pretrained( model_name, cache_dir=model_dir, config=self.config ) def forward(self, inputs): output = self.transformer(**inputs)["logits"] return output ignite-0.5.1/examples/transformers/requirements.txt000066400000000000000000000001031465426447700226400ustar00rootroot00000000000000pytorch-ignite transformers datasets tqdm tensorboardX fire clearmlignite-0.5.1/examples/transformers/utils.py000066400000000000000000000027521465426447700211020ustar00rootroot00000000000000import torch from dataset import TransformerDataset from datasets import load_dataset from model import TransformerModel from transformers import AutoTokenizer from ignite.handlers import DiskSaver def get_tokenizer(tokenizer_name, tokenizer_dir): tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, cache_dir=tokenizer_dir, do_lower_case=True) return tokenizer def get_model(model_name, model_dir, drop_out, n_fc, num_classes): model = TransformerModel(model_name, model_dir, drop_out, n_fc, num_classes) return model def get_dataset(cache_dir, tokenizer_name, tokenizer_dir, max_length): train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"], cache_dir=cache_dir) tokenizer = get_tokenizer(tokenizer_name, tokenizer_dir) train_texts, train_labels = train_dataset["text"], train_dataset["label"] test_texts, test_labels = test_dataset["text"], test_dataset["label"] train_dataset = TransformerDataset(train_texts, train_labels, tokenizer, max_length) test_dataset = TransformerDataset(test_texts, test_labels, tokenizer, max_length) return train_dataset, test_dataset def thresholded_output_transform(output): y_pred, y = output return torch.round(torch.sigmoid(y_pred)), y def get_save_handler(config): if config["with_clearml"]: from ignite.handlers.clearml_logger import ClearMLSaver return ClearMLSaver(dirname=config["output_dir"]) return DiskSaver(config["output_dir"], require_empty=False) ignite-0.5.1/ignite/000077500000000000000000000000001465426447700142765ustar00rootroot00000000000000ignite-0.5.1/ignite/__init__.py000066400000000000000000000002661465426447700164130ustar00rootroot00000000000000import ignite.contrib import ignite.distributed import ignite.engine import ignite.exceptions import ignite.handlers import ignite.metrics import ignite.utils __version__ = "0.5.1" ignite-0.5.1/ignite/_utils.py000066400000000000000000000002661465426447700161530ustar00rootroot00000000000000# For compatibility from ignite.utils import apply_to_tensor, apply_to_type, convert_tensor, to_onehot __all__ = ["apply_to_tensor", "apply_to_type", "convert_tensor", "to_onehot"] ignite-0.5.1/ignite/base/000077500000000000000000000000001465426447700152105ustar00rootroot00000000000000ignite-0.5.1/ignite/base/__init__.py000066400000000000000000000000541465426447700173200ustar00rootroot00000000000000from ignite.base.mixins import Serializable ignite-0.5.1/ignite/base/mixins.py000066400000000000000000000017371465426447700171010ustar00rootroot00000000000000from collections import OrderedDict from collections.abc import Mapping from typing import Tuple class Serializable: _state_dict_all_req_keys: Tuple = () _state_dict_one_of_opt_keys: Tuple = () def state_dict(self) -> OrderedDict: raise NotImplementedError def load_state_dict(self, state_dict: Mapping) -> None: if not isinstance(state_dict, Mapping): raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}") for k in self._state_dict_all_req_keys: if k not in state_dict: raise ValueError( f"Required state attribute '{k}' is absent in provided state_dict '{state_dict.keys()}'" ) opts = [k in state_dict for k in self._state_dict_one_of_opt_keys] if len(opts) > 0 and ((not any(opts)) or (all(opts))): raise ValueError(f"state_dict should contain only one of '{self._state_dict_one_of_opt_keys}' keys") ignite-0.5.1/ignite/contrib/000077500000000000000000000000001465426447700157365ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/__init__.py000066400000000000000000000000001465426447700200350ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/engines/000077500000000000000000000000001465426447700173665ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/engines/__init__.py000066400000000000000000000001271465426447700214770ustar00rootroot00000000000000from ignite.contrib.engines.tbptt import create_supervised_tbptt_trainer, Tbptt_Events ignite-0.5.1/ignite/contrib/engines/common.py000066400000000000000000000674161465426447700212460ustar00rootroot00000000000000import numbers import warnings from functools import partial from typing import Any, Callable, cast, Dict, Iterable, Mapping, Optional, Sequence, Union import torch import torch.nn as nn from torch.optim.optimizer import Optimizer from torch.utils.data.distributed import DistributedSampler # https://github.com/pytorch/ignite/issues/2773 try: from torch.optim.lr_scheduler import LRScheduler as PyTorchLRScheduler except ImportError: from torch.optim.lr_scheduler import _LRScheduler as PyTorchLRScheduler import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers import ( Checkpoint, ClearMLLogger, DiskSaver, EarlyStopping, global_step_from_engine, MLflowLogger, NeptuneLogger, PolyaxonLogger, ProgressBar, TensorboardLogger, TerminateOnNan, VisdomLogger, WandBLogger, ) from ignite.handlers.base_logger import BaseLogger from ignite.handlers.checkpoint import BaseSaveHandler from ignite.handlers.param_scheduler import ParamScheduler from ignite.metrics import GpuInfo, RunningAverage from ignite.metrics.metric import RunningBatchWise from ignite.utils import deprecated def setup_common_training_handlers( trainer: Engine, train_sampler: Optional[DistributedSampler] = None, to_save: Optional[Mapping] = None, save_every_iters: int = 1000, output_path: Optional[str] = None, lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None, with_gpu_stats: bool = False, output_names: Optional[Iterable[str]] = None, with_pbars: bool = True, with_pbar_on_iters: bool = True, log_every_iters: int = 100, stop_on_nan: bool = True, clear_cuda_cache: bool = True, save_handler: Optional[Union[Callable, BaseSaveHandler]] = None, **kwargs: Any, ) -> None: """Helper method to setup trainer with common handlers (it also supports distributed configuration): - :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan` - handler to setup learning rate scheduling - :class:`~ignite.handlers.checkpoint.ModelCheckpoint` - :class:`~ignite.metrics.RunningAverage` on `update_function` output - Two progress bars on epochs and optionally on iterations Args: trainer: trainer engine. Output of trainer's `update_function` should be a dictionary or sequence or a single tensor. train_sampler: Optional distributed sampler used to call `set_epoch` method on epoch started event. to_save: dictionary with objects to save in the checkpoint. This argument is passed to :class:`~ignite.handlers.checkpoint.Checkpoint` instance. save_every_iters: saving interval. By default, `to_save` objects are stored each 1000 iterations. output_path: output path to indicate where `to_save` objects are stored. Argument is mutually exclusive with ``save_handler``. lr_scheduler: learning rate scheduler as native torch LRScheduler or ignite's parameter scheduler. with_gpu_stats: if True, :class:`~ignite.metrics.GpuInfo` is attached to the trainer. This requires `pynvml` package to be installed. output_names: list of names associated with `update_function` output dictionary. with_pbars: if True, two progress bars on epochs and optionally on iterations are attached. Default, True. with_pbar_on_iters: if True, a progress bar on iterations is attached to the trainer. Default, True. log_every_iters: logging interval for :class:`~ignite.metrics.GpuInfo` and for epoch-wise progress bar. Default, 100. stop_on_nan: if True, :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan` handler is added to the trainer. Default, True. clear_cuda_cache: if True, `torch.cuda.empty_cache()` is called every end of epoch. Default, True. save_handler: Method or callable class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Checkpoint` for more details. Argument is mutually exclusive with ``output_path``. kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`. """ if idist.get_world_size() > 1: _setup_common_distrib_training_handlers( trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, ) else: if train_sampler is not None and isinstance(train_sampler, DistributedSampler): warnings.warn( "Argument train_sampler is a distributed sampler," " but either there is no distributed setting or world size is < 2. " "Train sampler argument will be ignored", UserWarning, ) _setup_common_training_handlers( trainer, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, ) setup_common_distrib_training_handlers = setup_common_training_handlers def _setup_common_training_handlers( trainer: Engine, to_save: Optional[Mapping] = None, save_every_iters: int = 1000, output_path: Optional[str] = None, lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None, with_gpu_stats: bool = False, output_names: Optional[Iterable[str]] = None, with_pbars: bool = True, with_pbar_on_iters: bool = True, log_every_iters: int = 100, stop_on_nan: bool = True, clear_cuda_cache: bool = True, save_handler: Optional[Union[Callable, BaseSaveHandler]] = None, **kwargs: Any, ) -> None: if output_path is not None and save_handler is not None: raise ValueError( "Arguments output_path and save_handler are mutually exclusive. Please, define only one of them" ) if stop_on_nan: trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan()) if lr_scheduler is not None: if isinstance(lr_scheduler, PyTorchLRScheduler): trainer.add_event_handler(Events.ITERATION_COMPLETED, lambda engine: lr_scheduler.step()) else: trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) if torch.cuda.is_available() and clear_cuda_cache: trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache) if to_save is not None: if output_path is None and save_handler is None: raise ValueError( "If to_save argument is provided then output_path or save_handler arguments should be also defined" ) if output_path is not None: save_handler = DiskSaver(dirname=output_path, require_empty=False) checkpoint_handler = Checkpoint( to_save, cast(Union[Callable, BaseSaveHandler], save_handler), filename_prefix="training", **kwargs ) trainer.add_event_handler(Events.ITERATION_COMPLETED(every=save_every_iters), checkpoint_handler) if with_gpu_stats: GpuInfo().attach( trainer, name="gpu", event_name=Events.ITERATION_COMPLETED(every=log_every_iters) # type: ignore[arg-type] ) if output_names is not None: def output_transform(x: Any, index: int, name: str) -> Any: if isinstance(x, Mapping): return x[name] elif isinstance(x, Sequence): return x[index] elif isinstance(x, (torch.Tensor, numbers.Number)): return x else: raise TypeError( "Unhandled type of update_function's output. " f"It should either mapping or sequence, but given {type(x)}" ) for i, n in enumerate(output_names): RunningAverage(output_transform=partial(output_transform, index=i, name=n)).attach( trainer, n, usage=RunningBatchWise() ) if with_pbars: if with_pbar_on_iters: ProgressBar(persist=False).attach( trainer, metric_names="all", event_name=Events.ITERATION_COMPLETED(every=log_every_iters) ) ProgressBar(persist=True, bar_format="").attach( trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED ) def _setup_common_distrib_training_handlers( trainer: Engine, train_sampler: Optional[DistributedSampler] = None, to_save: Optional[Mapping] = None, save_every_iters: int = 1000, output_path: Optional[str] = None, lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None, with_gpu_stats: bool = False, output_names: Optional[Iterable[str]] = None, with_pbars: bool = True, with_pbar_on_iters: bool = True, log_every_iters: int = 100, stop_on_nan: bool = True, clear_cuda_cache: bool = True, save_handler: Optional[Union[Callable, BaseSaveHandler]] = None, **kwargs: Any, ) -> None: _setup_common_training_handlers( trainer, to_save=to_save, output_path=output_path, save_every_iters=save_every_iters, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=(idist.get_rank() == 0) and with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, ) if train_sampler is not None: if not isinstance(train_sampler, DistributedSampler): raise TypeError("Train sampler should be torch DistributedSampler and have `set_epoch` method") @trainer.on(Events.EPOCH_STARTED) def distrib_set_epoch(engine: Engine) -> None: train_sampler.set_epoch(engine.state.epoch - 1) def empty_cuda_cache(_: Engine) -> None: torch.cuda.empty_cache() import gc gc.collect() @deprecated( "0.4.0", "0.6.0", ("Please use instead: setup_tb_logging, setup_visdom_logging or setup_mlflow_logging etc.",), raise_exception=True, ) def setup_any_logging( logger: BaseLogger, logger_module: Any, trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]], evaluators: Optional[Union[Engine, Dict[str, Engine]]], log_every_iters: int, ) -> None: pass def _setup_logging( logger: BaseLogger, trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]], evaluators: Optional[Union[Engine, Dict[str, Engine]]], log_every_iters: int, ) -> None: if optimizers is not None: if not isinstance(optimizers, (Optimizer, Mapping)): raise TypeError("Argument optimizers should be either a single optimizer or a dictionary or optimizers") if evaluators is not None: if not isinstance(evaluators, (Engine, Mapping)): raise TypeError("Argument evaluators should be either a single engine or a dictionary or engines") if log_every_iters is None: log_every_iters = 1 logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=log_every_iters), tag="training", metric_names="all" ) if optimizers is not None: # Log optimizer parameters if isinstance(optimizers, Optimizer): optimizers = {None: optimizers} for k, optimizer in optimizers.items(): logger.attach_opt_params_handler( trainer, Events.ITERATION_STARTED(every=log_every_iters), optimizer, param_name="lr", tag=k ) if evaluators is not None: # Log evaluation metrics if isinstance(evaluators, Engine): evaluators = {"validation": evaluators} event_name = Events.ITERATION_COMPLETED if isinstance(logger, WandBLogger) else None gst = global_step_from_engine(trainer, custom_event_name=event_name) for k, evaluator in evaluators.items(): logger.attach_output_handler( evaluator, event_name=Events.COMPLETED, tag=k, metric_names="all", global_step_transform=gst ) def setup_tb_logging( output_path: str, trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> TensorboardLogger: """Method to setup TensorBoard logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: output_path: logging directory path trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.tensorboard_logger.TensorboardLogger` """ logger = TensorboardLogger(log_dir=output_path, **kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_visdom_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> VisdomLogger: """Method to setup Visdom logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.visdom_logger.VisdomLogger` """ logger = VisdomLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_mlflow_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> MLflowLogger: """Method to setup MLflow logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.mlflow_logger.MLflowLogger` """ logger = MLflowLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_neptune_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> NeptuneLogger: """Method to setup Neptune logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.neptune_logger.NeptuneLogger` """ logger = NeptuneLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_wandb_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> WandBLogger: """Method to setup WandB logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.wandb_logger.WandBLogger` """ logger = WandBLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_plx_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> PolyaxonLogger: """Method to setup Polyaxon logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.polyaxon_logger.PolyaxonLogger` """ logger = PolyaxonLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_clearml_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> ClearMLLogger: """Method to setup ClearML logging on trainer and a list of evaluators. Logged metrics are: - Training metrics, e.g. running average loss values - Learning rate(s) - Evaluation metrics Args: trainer: trainer engine optimizers: single or dictionary of torch optimizers. If a dictionary, keys are used as tags arguments for logging. evaluators: single or dictionary of evaluators. If a dictionary, keys are used as tags arguments for logging. log_every_iters: interval for loggers attached to iteration events. To log every iteration, value can be set to 1 or None. kwargs: optional keyword args to be passed to construct the logger. Returns: :class:`~ignite.handlers.clearml_logger.ClearMLLogger` """ logger = ClearMLLogger(**kwargs) _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters) return logger def setup_trains_logging( trainer: Engine, optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None, evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None, log_every_iters: int = 100, **kwargs: Any, ) -> ClearMLLogger: """``setup_trains_logging`` was renamed to :func:`~ignite.contrib.engines.common.setup_clearml_logging`.""" warnings.warn("setup_trains_logging was renamed to setup_clearml_logging.") return setup_clearml_logging(trainer, optimizers, evaluators, log_every_iters, **kwargs) get_default_score_fn = Checkpoint.get_default_score_fn def gen_save_best_models_by_val_score( save_handler: Union[Callable, BaseSaveHandler], evaluator: Engine, models: Union[torch.nn.Module, Dict[str, torch.nn.Module]], metric_name: str, n_saved: int = 3, trainer: Optional[Engine] = None, tag: str = "val", score_sign: float = 1.0, **kwargs: Any, ) -> Checkpoint: """Method adds a handler to ``evaluator`` to save ``n_saved`` of best models based on the metric (named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``). Models with highest metric value will be retained. The logic of how to store objects is delegated to ``save_handler``. Args: save_handler: Method or callable class to use to save engine and other provided objects. Function receives two objects: checkpoint as a dictionary and filename. If ``save_handler`` is callable class, it can inherit of :class:`~ignite.handlers.checkpoint.BaseSaveHandler` and optionally implement ``remove`` method to keep a fixed number of saved checkpoints. In case if user needs to save engine's checkpoint on a disk, ``save_handler`` can be defined with :class:`~ignite.handlers.DiskSaver`. evaluator: evaluation engine used to provide the score models: model or dictionary with the object to save. Objects should have implemented ``state_dict`` and ``load_state_dict`` methods. metric_name: metric name to use for score evaluation. This metric should be present in `evaluator.state.metrics`. n_saved: number of best models to store trainer: trainer engine to fetch the epoch when saving the best model. tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val". score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better, a negative score sign should be used (objects with larger score are retained). Default, 1.0. kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`. Returns: A :class:`~ignite.handlers.checkpoint.Checkpoint` handler. """ global_step_transform = None if trainer is not None: global_step_transform = global_step_from_engine(trainer) if isinstance(models, nn.Module): to_save: Dict[str, nn.Module] = {"model": models} else: to_save = models best_model_handler = Checkpoint( to_save, save_handler, filename_prefix="best", n_saved=n_saved, global_step_transform=global_step_transform, score_name=f"{tag}_{metric_name.lower()}", score_function=get_default_score_fn(metric_name, score_sign=score_sign), **kwargs, ) evaluator.add_event_handler(Events.COMPLETED, best_model_handler) return best_model_handler def save_best_model_by_val_score( output_path: str, evaluator: Engine, model: torch.nn.Module, metric_name: str, n_saved: int = 3, trainer: Optional[Engine] = None, tag: str = "val", score_sign: float = 1.0, **kwargs: Any, ) -> Checkpoint: """Method adds a handler to ``evaluator`` to save on a disk ``n_saved`` of best models based on the metric (named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``). Models with highest metric value will be retained. Args: output_path: output path to indicate where to save best models evaluator: evaluation engine used to provide the score model: model to store metric_name: metric name to use for score evaluation. This metric should be present in `evaluator.state.metrics`. n_saved: number of best models to store trainer: trainer engine to fetch the epoch when saving the best model. tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val". score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better, a negative score sign should be used (objects with larger score are retained). Default, 1.0. kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`. Returns: A :class:`~ignite.handlers.checkpoint.Checkpoint` handler. """ return gen_save_best_models_by_val_score( save_handler=DiskSaver(dirname=output_path, require_empty=False), evaluator=evaluator, models=model, metric_name=metric_name, n_saved=n_saved, trainer=trainer, tag=tag, score_sign=score_sign, **kwargs, ) def add_early_stopping_by_val_score( patience: int, evaluator: Engine, trainer: Engine, metric_name: str, score_sign: float = 1.0, ) -> EarlyStopping: """Method setups early stopping handler based on the score (named by `metric_name`) provided by `evaluator`. Metric value should increase in order to keep training and not early stop. Args: patience: number of events to wait if no improvement and then stop the training. evaluator: evaluation engine used to provide the score trainer: trainer engine to stop the run if no improvement. metric_name: metric name to use for score evaluation. This metric should be present in `evaluator.state.metrics`. score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better, a negative score sign should be used (objects with larger score are retained). Default, 1.0. Returns: A :class:`~ignite.handlers.early_stopping.EarlyStopping` handler. """ es_handler = EarlyStopping( patience=patience, score_function=get_default_score_fn(metric_name, score_sign=score_sign), trainer=trainer ) evaluator.add_event_handler(Events.COMPLETED, es_handler) return es_handler ignite-0.5.1/ignite/contrib/engines/tbptt.py000066400000000000000000000106341465426447700211010ustar00rootroot00000000000000# coding: utf-8 import collections.abc as collections from typing import Callable, Mapping, Optional, Sequence, Union import torch import torch.nn as nn from torch.optim.optimizer import Optimizer from ignite.engine import _prepare_batch, Engine, EventEnum from ignite.utils import apply_to_tensor class Tbptt_Events(EventEnum): """Aditional tbptt events. Additional events for truncated backpropagation throught time dedicated trainer. """ TIME_ITERATION_STARTED = "time_iteration_started" TIME_ITERATION_COMPLETED = "time_iteration_completed" def _detach_hidden( hidden: Union[torch.Tensor, Sequence, Mapping, str, bytes] ) -> Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes]: """Cut backpropagation graph. Auxillary function to cut the backpropagation graph by detaching the hidden vector. """ return apply_to_tensor(hidden, torch.Tensor.detach) def create_supervised_tbptt_trainer( model: nn.Module, optimizer: Optimizer, loss_fn: nn.Module, tbtt_step: int, dim: int = 0, device: Optional[str] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, ) -> Engine: """Create a trainer for truncated backprop through time supervised models. Training recurrent model on long sequences is computationally intensive as it requires to process the whole sequence before getting a gradient. However, when the training loss is computed over many outputs (`X to many `_), there is an opportunity to compute a gradient over a subsequence. This is known as `truncated backpropagation through time `_. This supervised trainer apply gradient optimization step every `tbtt_step` time steps of the sequence, while backpropagating through the same `tbtt_step` time steps. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function to use. tbtt_step: the length of time chunks (last one may be smaller). dim: axis representing the time dimension. device: device type specification (default: None). Applies to batches. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. Returns: a trainer engine with supervised update function. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. For more information see: * `PyTorch Documentation `_ * `PyTorch's Explanation `_ """ def _update(engine: Engine, batch: Sequence[torch.Tensor]) -> float: loss_list = [] hidden = None x, y = batch for batch_t in zip(x.split(tbtt_step, dim=dim), y.split(tbtt_step, dim=dim)): x_t, y_t = prepare_batch(batch_t, device=device, non_blocking=non_blocking) # Fire event for start of iteration engine.fire_event(Tbptt_Events.TIME_ITERATION_STARTED) # Forward, backward and model.train() optimizer.zero_grad() if hidden is None: y_pred_t, hidden = model(x_t) else: hidden = _detach_hidden(hidden) y_pred_t, hidden = model(x_t, hidden) loss_t = loss_fn(y_pred_t, y_t) loss_t.backward() optimizer.step() # Setting state of engine for consistent behaviour engine.state.output = loss_t.item() loss_list.append(loss_t.item()) # Fire event for end of iteration engine.fire_event(Tbptt_Events.TIME_ITERATION_COMPLETED) # return average loss over the time splits return sum(loss_list) / len(loss_list) engine = Engine(_update) engine.register_events(*Tbptt_Events) return engine ignite-0.5.1/ignite/contrib/handlers/000077500000000000000000000000001465426447700175365ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/handlers/__init__.py000066400000000000000000000020611465426447700216460ustar00rootroot00000000000000from ignite.handlers import ( # ref # ref clearml_logger, EpochOutputStore, global_step_from_engine, mlflow_logger, neptune_logger, polyaxon_logger, tensorboard_logger, tqdm_logger, visdom_logger, wandb_logger, ) from ignite.handlers.clearml_logger import ClearMLLogger from ignite.handlers.lr_finder import FastaiLRFinder from ignite.handlers.mlflow_logger import MLflowLogger from ignite.handlers.neptune_logger import NeptuneLogger from ignite.handlers.param_scheduler import ( ConcatScheduler, CosineAnnealingScheduler, create_lr_scheduler_with_warmup, LinearCyclicalScheduler, LRScheduler, ParamGroupScheduler, PiecewiseLinear, ) from ignite.handlers.polyaxon_logger import PolyaxonLogger from ignite.handlers.tensorboard_logger import TensorboardLogger from ignite.handlers.time_profilers import BasicTimeProfiler, HandlersTimeProfiler from ignite.handlers.tqdm_logger import ProgressBar from ignite.handlers.visdom_logger import VisdomLogger from ignite.handlers.wandb_logger import WandBLogger ignite-0.5.1/ignite/contrib/handlers/base_logger.py000066400000000000000000000022361465426447700223640ustar00rootroot00000000000000""" ``ignite.contrib.handlers.base_logger`` was moved to ``ignite.handlers.base_logger``. Note: ``ignite.contrib.handlers.base_logger`` was moved to ``ignite.handlers.base_logger``. Please refer to :mod:`~ignite.handlers.base_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/base_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.base_logger import ( BaseHandler, BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsHandler, BaseWeightsScalarHandler, ) __all__ = [ "BaseHandler", "BaseWeightsHandler", "BaseOptimizerParamsHandler", "BaseOutputHandler", "BaseWeightsScalarHandler", "BaseLogger", ] BaseHandler = BaseHandler BaseWeightsHandler = BaseWeightsHandler BaseOptimizerParamsHandler = BaseOptimizerParamsHandler BaseOutputHandler = BaseOutputHandler BaseWeightsScalarHandler = BaseWeightsScalarHandler BaseLogger = BaseLogger ignite-0.5.1/ignite/contrib/handlers/clearml_logger.py000066400000000000000000000026011465426447700230650ustar00rootroot00000000000000""" ``ignite.contrib.handlers.clearml_logger`` was moved to ``ignite.handlers.clearml_logger``. Note: ``ignite.contrib.handlers.clearml_logger`` was moved to ``ignite.handlers.clearml_logger``. Please refer to :mod:`~ignite.handlers.clearml_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/clearml_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.clearml_logger import ( ClearMLLogger, ClearMLSaver, GradsHistHandler, GradsScalarHandler, OptimizerParamsHandler, OutputHandler, WeightsHistHandler, WeightsScalarHandler, ) from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "ClearMLLogger", "ClearMLSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", ] ClearMLLogger = ClearMLLogger ClearMLSaver = ClearMLSaver OptimizerParamsHandler = OptimizerParamsHandler OutputHandler = OutputHandler WeightsScalarHandler = WeightsScalarHandler WeightsHistHandler = WeightsHistHandler GradsScalarHandler = GradsScalarHandler GradsHistHandler = GradsHistHandler ignite-0.5.1/ignite/contrib/handlers/lr_finder.py000066400000000000000000000012761465426447700220620ustar00rootroot00000000000000""" ``ignite.contrib.handlers.lr_finder`` was moved to ``ignite.handlers.lr_finder``. Note: ``ignite.contrib.handlers.lr_finder`` was moved to ``ignite.handlers.lr_finder``. Please refer to :mod:`~ignite.handlers.lr_finder`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/lr_finder.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.lr_finder import FastaiLRFinder __all__ = [ "FastaiLRFinder", ] FastaiLRFinder = FastaiLRFinder ignite-0.5.1/ignite/contrib/handlers/mlflow_logger.py000066400000000000000000000016541465426447700227550ustar00rootroot00000000000000""" ``ignite.contrib.handlers.mlflow_logger`` was moved to ``ignite.handlers.mlflow_logger``. Note: ``ignite.contrib.handlers.mlflow_logger`` was moved to ``ignite.handlers.mlflow_logger``. Please refer to :mod:`~ignite.handlers.mlflow_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/mlflow_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.mlflow_logger import MLflowLogger, OptimizerParamsHandler, OutputHandler from ignite.handlers.utils import global_step_from_engine # noqa __all__ = ["MLflowLogger", "OutputHandler", "OptimizerParamsHandler"] MLflowLogger = MLflowLogger OutputHandler = OutputHandler OptimizerParamsHandler = OptimizerParamsHandler ignite-0.5.1/ignite/contrib/handlers/neptune_logger.py000066400000000000000000000024471465426447700231340ustar00rootroot00000000000000""" ``ignite.contrib.handlers.neptune_logger`` was moved to ``ignite.handlers.neptune_logger``. Note: ``ignite.contrib.handlers.neptune_logger`` was moved to ``ignite.handlers.neptune_logger``. Please refer to :mod:`~ignite.handlers.neptune_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/neptune_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.neptune_logger import ( _INTEGRATION_VERSION_KEY, GradsScalarHandler, NeptuneLogger, NeptuneSaver, OptimizerParamsHandler, OutputHandler, WeightsScalarHandler, ) from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "NeptuneLogger", "NeptuneSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", ] NeptuneLogger = NeptuneLogger NeptuneSaver = NeptuneSaver OptimizerParamsHandler = OptimizerParamsHandler OutputHandler = OutputHandler WeightsScalarHandler = WeightsScalarHandler GradsScalarHandler = GradsScalarHandler _INTEGRATION_VERSION_KEY = _INTEGRATION_VERSION_KEY ignite-0.5.1/ignite/contrib/handlers/param_scheduler.py000066400000000000000000000027551465426447700232570ustar00rootroot00000000000000""" ``ignite.contrib.handlers.param_scheduler`` was moved to ``ignite.handlers.param_scheduler``. Note: ``ignite.contrib.handlers.param_scheduler`` was moved to ``ignite.handlers.param_scheduler``. Please refer to :mod:`~ignite.handlers.param_scheduler`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/param_scheduler.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.param_scheduler import ( ConcatScheduler, CosineAnnealingScheduler, create_lr_scheduler_with_warmup, CyclicalScheduler, LinearCyclicalScheduler, LRScheduler, ParamGroupScheduler, ParamScheduler, PiecewiseLinear, ) __all__ = [ "ConcatScheduler", "CosineAnnealingScheduler", "LinearCyclicalScheduler", "LRScheduler", "ParamGroupScheduler", "ParamScheduler", "PiecewiseLinear", "CyclicalScheduler", "create_lr_scheduler_with_warmup", ] ConcatScheduler = ConcatScheduler CosineAnnealingScheduler = CosineAnnealingScheduler LinearCyclicalScheduler = LinearCyclicalScheduler LRScheduler = LRScheduler ParamGroupScheduler = ParamGroupScheduler ParamScheduler = ParamScheduler PiecewiseLinear = PiecewiseLinear CyclicalScheduler = CyclicalScheduler create_lr_scheduler_with_warmup = create_lr_scheduler_with_warmup ignite-0.5.1/ignite/contrib/handlers/polyaxon_logger.py000066400000000000000000000017021465426447700233200ustar00rootroot00000000000000""" ``ignite.contrib.handlers.polyaxon_logger`` was moved to ``ignite.handlers.polyaxon_logger``. Note: ``ignite.contrib.handlers.polyaxon_logger`` was moved to ``ignite.handlers.polyaxon_logger``. Please refer to :mod:`~ignite.handlers.polyaxon_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/polyaxon_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.polyaxon_logger import OptimizerParamsHandler, OutputHandler, PolyaxonLogger from ignite.handlers.utils import global_step_from_engine # noqa __all__ = ["PolyaxonLogger", "OutputHandler", "OptimizerParamsHandler"] PolyaxonLogger = PolyaxonLogger OutputHandler = OutputHandler OptimizerParamsHandler = OptimizerParamsHandler ignite-0.5.1/ignite/contrib/handlers/tensorboard_logger.py000066400000000000000000000025541465426447700237770ustar00rootroot00000000000000""" ``ignite.contrib.handlers.tensorboard_logger`` was moved to ``ignite.handlers.tensorboard_logger``. Note: ``ignite.contrib.handlers.tensorboard_logger`` was moved to ``ignite.handlers.tensorboard_logger``. Please refer to :mod:`~ignite.handlers.tensorboard_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/tensorboard_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.tensorboard_logger import ( GradsHistHandler, GradsScalarHandler, OptimizerParamsHandler, OutputHandler, TensorboardLogger, WeightsHistHandler, WeightsScalarHandler, ) from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "TensorboardLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", ] TensorboardLogger = TensorboardLogger OptimizerParamsHandler = OptimizerParamsHandler OutputHandler = OutputHandler WeightsScalarHandler = WeightsScalarHandler WeightsHistHandler = WeightsHistHandler GradsScalarHandler = GradsScalarHandler GradsHistHandler = GradsHistHandler ignite-0.5.1/ignite/contrib/handlers/time_profilers.py000066400000000000000000000015161465426447700231360ustar00rootroot00000000000000""" ``ignite.contrib.handlers.time_profilers.py`` was moved to ``ignite.handlers.time_profilers``. Note: ``ignite.contrib.handlers.time_profilers`` was moved to ``ignite.handlers.time_profilers``. Please refer to :mod:`~ignite.handlers.time_profilers`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/time_profilers.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.time_profilers import BasicTimeProfiler, HandlersTimeProfiler __all__ = [ "BasicTimeProfiler", "HandlersTimeProfiler", ] BasicTimeProfiler = BasicTimeProfiler HandlersTimeProfiler = HandlersTimeProfiler ignite-0.5.1/ignite/contrib/handlers/tqdm_logger.py000066400000000000000000000012771465426447700224230ustar00rootroot00000000000000""" ``ignite.contrib.handlers.tqdm_logger`` was moved to ``ignite.handlers.tqdm_logger``. Note: ``ignite.contrib.handlers.tqdm_logger`` was moved to ``ignite.handlers.tqdm_logger``. Please refer to :mod:`~ignite.handlers.tqdm_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/tqdm_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.tqdm_logger import ProgressBar __all__ = [ "ProgressBar", ] ProgressBar = ProgressBar ignite-0.5.1/ignite/contrib/handlers/visdom_logger.py000066400000000000000000000022741465426447700227550ustar00rootroot00000000000000""" ``ignite.contrib.handlers.visdom_logger`` was moved to ``ignite.handlers.visdom_logger``. Note: ``ignite.contrib.handlers.visdom_logger`` was moved to ``ignite.handlers.visdom_logger``. Please refer to :mod:`~ignite.handlers.visdom_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/visdom_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.utils import global_step_from_engine # noqa from ignite.handlers.visdom_logger import ( _DummyExecutor, GradsScalarHandler, OptimizerParamsHandler, OutputHandler, VisdomLogger, WeightsScalarHandler, ) __all__ = [ "VisdomLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", ] VisdomLogger = VisdomLogger OptimizerParamsHandler = OptimizerParamsHandler OutputHandler = OutputHandler WeightsScalarHandler = WeightsScalarHandler GradsScalarHandler = GradsScalarHandler _DummyExecutor = _DummyExecutor ignite-0.5.1/ignite/contrib/handlers/wandb_logger.py000066400000000000000000000016411465426447700225440ustar00rootroot00000000000000""" ``ignite.contrib.handlers.wandb_logger`` was moved to ``ignite.handlers.wandb_logger``. Note: ``ignite.contrib.handlers.wandb_logger`` was moved to ``ignite.handlers.wandb_logger``. Please refer to :mod:`~ignite.handlers.wandb_logger`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/handlers/wandb_logger.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.handlers.utils import global_step_from_engine # noqa from ignite.handlers.wandb_logger import OptimizerParamsHandler, OutputHandler, WandBLogger __all__ = ["WandBLogger", "OutputHandler", "OptimizerParamsHandler"] WandBLogger = WandBLogger OutputHandler = OutputHandler OptimizerParamsHandler = OptimizerParamsHandler ignite-0.5.1/ignite/contrib/metrics/000077500000000000000000000000001465426447700174045ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/metrics/__init__.py000066400000000000000000000006361465426447700215220ustar00rootroot00000000000000import ignite.metrics.regression from ignite.metrics import average_precision, cohen_kappa, gpu_info, precision_recall_curve, roc_auc from ignite.metrics.average_precision import AveragePrecision from ignite.metrics.cohen_kappa import CohenKappa from ignite.metrics.gpu_info import GpuInfo from ignite.metrics.precision_recall_curve import PrecisionRecallCurve from ignite.metrics.roc_auc import ROC_AUC, RocCurve ignite-0.5.1/ignite/contrib/metrics/average_precision.py000066400000000000000000000013671465426447700234520ustar00rootroot00000000000000""" ``ignite.contrib.metrics.average_precision`` was moved to ``ignite.metrics.average_precision``. Note: ``ignite.contrib.metrics.average_precision`` was moved to ``ignite.metrics.average_precision``. Please refer to :mod:`~ignite.metrics.average_precision`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to /ignite/metrics/average_precision.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.average_precision import AveragePrecision __all__ = [ "AveragePrecision", ] AveragePrecision = AveragePrecision ignite-0.5.1/ignite/contrib/metrics/cohen_kappa.py000066400000000000000000000012641465426447700222310ustar00rootroot00000000000000""" ``ignite.contrib.metrics.cohen_kappa`` was moved to ``ignite.metrics.cohen_kappa``. Note: ``ignite.contrib.metrics.cohen_kappa`` was moved to ``ignite.metrics.cohen_kappa``. Please refer to :mod:`~ignite.metrics.cohen_kappa`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/cohen_kappa.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.cohen_kappa import CohenKappa __all__ = [ "CohenKappa", ] CohenKappa = CohenKappa ignite-0.5.1/ignite/contrib/metrics/gpu_info.py000066400000000000000000000012231465426447700215620ustar00rootroot00000000000000""" ``ignite.contrib.metrics.gpu_info`` was moved to ``ignite.metrics.gpu_info``. Note: ``ignite.contrib.metrics.gpu_info`` was moved to ``ignite.metrics.gpu_info``. Please refer to :mod:`~ignite.metrics.gpu_info`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/gpu_info.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.gpu_info import GpuInfo __all__ = [ "GpuInfo", ] GpuInfo = GpuInfo ignite-0.5.1/ignite/contrib/metrics/precision_recall_curve.py000066400000000000000000000016741465426447700245070ustar00rootroot00000000000000""" ``ignite.contrib.metrics.precision_recall_curve`` was moved to ``ignite.metrics.precision_recall_curve``. Note: ``ignite.contrib.metrics.precision_recall_curve`` was moved to ``ignite.metrics.precision_recall_curve``. Please refer to :mod:`~ignite.metrics.precision_recall_curve`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/precision_recall_curve.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.precision_recall_curve import precision_recall_curve_compute_fn, PrecisionRecallCurve __all__ = [ "PrecisionRecallCurve", "precision_recall_curve_compute_fn", ] PrecisionRecallCurve = PrecisionRecallCurve precision_recall_curve_compute_fn = precision_recall_curve_compute_fn ignite-0.5.1/ignite/contrib/metrics/regression/000077500000000000000000000000001465426447700215645ustar00rootroot00000000000000ignite-0.5.1/ignite/contrib/metrics/regression/__init__.py000066400000000000000000000050251465426447700236770ustar00rootroot00000000000000from ignite.metrics.regression import ( canberra_metric, fractional_absolute_error, fractional_bias, geometric_mean_absolute_error, geometric_mean_relative_absolute_error, manhattan_distance, maximum_absolute_error, mean_absolute_relative_error, mean_error, mean_normalized_bias, median_absolute_error, median_absolute_percentage_error, median_relative_absolute_error, r2_score, wave_hedges_distance, ) from ignite.metrics.regression.canberra_metric import CanberraMetric from ignite.metrics.regression.fractional_absolute_error import FractionalAbsoluteError from ignite.metrics.regression.fractional_bias import FractionalBias from ignite.metrics.regression.geometric_mean_absolute_error import GeometricMeanAbsoluteError from ignite.metrics.regression.geometric_mean_relative_absolute_error import GeometricMeanRelativeAbsoluteError from ignite.metrics.regression.manhattan_distance import ManhattanDistance from ignite.metrics.regression.maximum_absolute_error import MaximumAbsoluteError from ignite.metrics.regression.mean_absolute_relative_error import MeanAbsoluteRelativeError from ignite.metrics.regression.mean_error import MeanError from ignite.metrics.regression.mean_normalized_bias import MeanNormalizedBias from ignite.metrics.regression.median_absolute_error import MedianAbsoluteError from ignite.metrics.regression.median_absolute_percentage_error import MedianAbsolutePercentageError from ignite.metrics.regression.median_relative_absolute_error import MedianRelativeAbsoluteError from ignite.metrics.regression.r2_score import R2Score from ignite.metrics.regression.wave_hedges_distance import WaveHedgesDistance __all__ = [ "CanberraMetric", "FractionalAbsoluteError", "FractionalBias", "GeometricMeanAbsoluteError", "GeometricMeanRelativeAbsoluteError", "ManhattanDistance", "MaximumAbsoluteError", "MeanAbsoluteRelativeError", "MeanError", "MeanNormalizedBias", "MedianAbsoluteError", "MedianAbsolutePercentageError", "MedianRelativeAbsoluteError", "R2Score", "WaveHedgesDistance", "canberra_metric", "fractional_absolute_error", "fractional_bias", "geometric_mean_absolute_error", "geometric_mean_relative_absolute_error", "manhattan_distance", "maximum_absolute_error", "mean_absolute_relative_error", "mean_error", "mean_normalized_bias", "median_absolute_error", "median_absolute_percentage_error", "median_relative_absolute_error", "r2_score", "wave_hedges_distance", ] ignite-0.5.1/ignite/contrib/metrics/regression/_base.py000066400000000000000000000043341465426447700232130ustar00rootroot00000000000000from abc import abstractmethod from typing import Tuple import torch from ignite.metrics import Metric from ignite.metrics.metric import reinit__is_reduced def _check_output_shapes(output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output c1 = y_pred.ndimension() == 2 and y_pred.shape[1] == 1 if not (y_pred.ndimension() == 1 or c1): raise ValueError(f"Input y_pred should have shape (N,) or (N, 1), but given {y_pred.shape}") c2 = y.ndimension() == 2 and y.shape[1] == 1 if not (y.ndimension() == 1 or c2): raise ValueError(f"Input y should have shape (N,) or (N, 1), but given {y.shape}") if y_pred.shape != y.shape: raise ValueError(f"Input data shapes should be the same, but given {y_pred.shape} and {y.shape}") def _check_output_types(output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output if y_pred.dtype not in (torch.float16, torch.float32, torch.float64): raise TypeError(f"Input y_pred dtype should be float 16, 32 or 64, but given {y_pred.dtype}") if y.dtype not in (torch.float16, torch.float32, torch.float64): raise TypeError(f"Input y dtype should be float 16, 32 or 64, but given {y.dtype}") def _torch_median(output: torch.Tensor) -> float: output = output.view(-1) len_ = len(output) if len_ % 2 == 0: return float((torch.kthvalue(output, len_ // 2)[0] + torch.kthvalue(output, len_ // 2 + 1)[0]) / 2) else: return float(torch.kthvalue(output, len_ // 2 + 1)[0]) class _BaseRegression(Metric): # Base class for all regression metrics # `update` method check the shapes and call internal overloaded # method `_update`. @reinit__is_reduced def update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: _check_output_shapes(output) _check_output_types(output) y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() == 2 and y_pred.shape[1] == 1: y_pred = y_pred.squeeze(dim=-1) if y.ndimension() == 2 and y.shape[1] == 1: y = y.squeeze(dim=-1) self._update((y_pred, y)) @abstractmethod def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: pass ignite-0.5.1/ignite/contrib/metrics/regression/canberra_metric.py000066400000000000000000000014621465426447700252610ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.canberra_metric`` was moved to ``ignite.metrics.regression.canberra_metric``. # noqa Note: ``ignite.contrib.metrics.regression.canberra_metric`` was moved to ``ignite.metrics.regression.canberra_metric``. # noqa Please refer to :mod:`~ignite.metrics.regression.canberra_metric`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/canberra_metric.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.canberra_metric import CanberraMetric __all__ = ["CanberraMetric"] CanberraMetric = CanberraMetric ignite-0.5.1/ignite/contrib/metrics/regression/fractional_absolute_error.py000066400000000000000000000016341465426447700273730ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.fractional_absolute_error`` was moved to ``ignite.metrics.regression.fractional_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.fractional_absolute_error`` was moved to ``ignite.metrics.regression.fractional_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.fractional_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/fractional_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.fractional_absolute_error import FractionalAbsoluteError __all__ = ["FractionalAbsoluteError"] FractionalAbsoluteError = FractionalAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/fractional_bias.py000066400000000000000000000014621465426447700252610ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.fractional_bias`` was moved to ``ignite.metrics.regression.fractional_bias``. # noqa Note: ``ignite.contrib.metrics.regression.fractional_bias`` was moved to ``ignite.metrics.regression.fractional_bias``. # noqa Please refer to :mod:`~ignite.metrics.regression.fractional_bias`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/fractional_bias.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.fractional_bias import FractionalBias __all__ = ["FractionalBias"] FractionalBias = FractionalBias ignite-0.5.1/ignite/contrib/metrics/regression/geometric_mean_absolute_error.py000066400000000000000000000017041465426447700302250ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.geometric_mean_absolute_error`` was moved to ``ignite.metrics.regression.geometric_mean_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.geometric_mean_absolute_error`` was moved to ``ignite.metrics.regression.geometric_mean_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.geometric_mean_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/geometric_mean_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.geometric_mean_absolute_error import GeometricMeanAbsoluteError __all__ = ["GeometricMeanAbsoluteError"] GeometricMeanAbsoluteError = GeometricMeanAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py000066400000000000000000000020431465426447700321150ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.geometric_mean_relative_absolute_error`` was moved to ``ignite.metrics.regression.geometric_mean_relative_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.geometric_mean_relative_absolute_error`` was moved to ``ignite.metrics.regression.geometric_mean_relative_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.geometric_mean_relative_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/geometric_mean_relative_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.geometric_mean_relative_absolute_error import GeometricMeanRelativeAbsoluteError __all__ = ["GeometricMeanRelativeAbsoluteError"] GeometricMeanRelativeAbsoluteError = GeometricMeanRelativeAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/manhattan_distance.py000066400000000000000000000015231465426447700257640ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.manhattan_distance`` was moved to ``ignite.metrics.regression.manhattan_distance``. # noqa Note: ``ignite.contrib.metrics.regression.manhattan_distance`` was moved to ``ignite.metrics.regression.manhattan_distance``. # noqa Please refer to :mod:`~ignite.metrics.regression.manhattan_distance`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/manhattan_distance.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.manhattan_distance import ManhattanDistance __all__ = ["ManhattanDistance"] ManhattanDistance = ManhattanDistance ignite-0.5.1/ignite/contrib/metrics/regression/maximum_absolute_error.py000066400000000000000000000015731465426447700267300ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.maximum_absolute_error`` was moved to ``ignite.metrics.regression.maximum_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.maximum_absolute_error`` was moved to ``ignite.metrics.regression.maximum_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.maximum_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/maximum_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.maximum_absolute_error import MaximumAbsoluteError __all__ = ["MaximumAbsoluteError"] MaximumAbsoluteError = MaximumAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/mean_absolute_relative_error.py000066400000000000000000000016711465426447700300650ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.mean_absolute_relative_error`` was moved to ``ignite.metrics.regression.mean_absolute_relative_error``. # noqa Note: ``ignite.contrib.metrics.regression.mean_absolute_relative_error`` was moved to ``ignite.metrics.regression.mean_absolute_relative_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.mean_absolute_relative_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/mean_absolute_relative_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.mean_absolute_relative_error import MeanAbsoluteRelativeError __all__ = ["MeanAbsoluteRelativeError"] MeanAbsoluteRelativeError = MeanAbsoluteRelativeError ignite-0.5.1/ignite/contrib/metrics/regression/mean_error.py000066400000000000000000000013731465426447700242730ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.mean_error`` was moved to ``ignite.metrics.regression.mean_error``. # noqa Note: ``ignite.contrib.metrics.regression.mean_error`` was moved to ``ignite.metrics.regression.mean_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.mean_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/mean_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.mean_error import MeanError __all__ = ["MeanError"] MeanError = MeanError ignite-0.5.1/ignite/contrib/metrics/regression/mean_normalized_bias.py000066400000000000000000000015451465426447700263050ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.mean_normalized_bias`` was moved to ``ignite.metrics.regression.mean_normalized_bias``. # noqa Note: ``ignite.contrib.metrics.regression.mean_normalized_bias`` was moved to ``ignite.metrics.regression.mean_normalized_bias``. # noqa Please refer to :mod:`~ignite.metrics.regression.mean_normalized_bias`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/mean_normalized_bias.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.mean_normalized_bias import MeanNormalizedBias __all__ = ["MeanNormalizedBias"] MeanNormalizedBias = MeanNormalizedBias ignite-0.5.1/ignite/contrib/metrics/regression/median_absolute_error.py000066400000000000000000000015601465426447700265040ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.median_absolute_error`` was moved to ``ignite.metrics.regression.median_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.median_absolute_error`` was moved to ``ignite.metrics.regression.median_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.median_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/median_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.median_absolute_error import MedianAbsoluteError __all__ = ["MedianAbsoluteError"] MedianAbsoluteError = MedianAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/median_absolute_percentage_error.py000066400000000000000000000017451465426447700307060ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.median_absolute_percentage_error`` was moved to ``ignite.metrics.regression.median_absolute_percentage_error``. # noqa Note: ``ignite.contrib.metrics.regression.median_absolute_percentage_error`` was moved to ``ignite.metrics.regression.median_absolute_percentage_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.median_absolute_percentage_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/median_absolute_percentage_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.median_absolute_percentage_error import MedianAbsolutePercentageError __all__ = ["MedianAbsolutePercentageError"] MedianAbsolutePercentageError = MedianAbsolutePercentageError ignite-0.5.1/ignite/contrib/metrics/regression/median_relative_absolute_error.py000066400000000000000000000017171465426447700304030ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.median_relative_absolute_error`` was moved to ``ignite.metrics.regression.median_relative_absolute_error``. # noqa Note: ``ignite.contrib.metrics.regression.median_relative_absolute_error`` was moved to ``ignite.metrics.regression.median_relative_absolute_error``. # noqa Please refer to :mod:`~ignite.metrics.regression.median_relative_absolute_error`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/median_relative_absolute_error.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.median_relative_absolute_error import MedianRelativeAbsoluteError __all__ = ["MedianRelativeAbsoluteError"] MedianRelativeAbsoluteError = MedianRelativeAbsoluteError ignite-0.5.1/ignite/contrib/metrics/regression/r2_score.py000066400000000000000000000013451465426447700236570ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.r2_score`` was moved to ``ignite.metrics.regression.r2_score``. # noqa Note: ``ignite.contrib.metrics.regression.r2_score`` was moved to ``ignite.metrics.regression.r2_score``. # noqa Please refer to :mod:`~ignite.metrics.regression.r2_score`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/r2_score.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.r2_score import R2Score __all__ = ["R2Score"] R2Score = R2Score ignite-0.5.1/ignite/contrib/metrics/regression/wave_hedges_distance.py000066400000000000000000000015451465426447700262760ustar00rootroot00000000000000""" ``ignite.contrib.metrics.regression.wave_hedges_distance`` was moved to ``ignite.metrics.regression.wave_hedges_distance``. # noqa Note: ``ignite.contrib.metrics.regression.wave_hedges_distance`` was moved to ``ignite.metrics.regression.wave_hedges_distance``. # noqa Please refer to :mod:`~ignite.metrics.regression.wave_hedges_distance`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/regression/wave_hedges_distance.py" f" and will be removed in version {removed_in}" if removed_in else "" ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.regression.wave_hedges_distance import WaveHedgesDistance __all__ = ["WaveHedgesDistance"] WaveHedgesDistance = WaveHedgesDistance ignite-0.5.1/ignite/contrib/metrics/roc_auc.py000066400000000000000000000012571465426447700213760ustar00rootroot00000000000000""" ``ignite.contrib.metrics.roc_auc`` was moved to ``ignite.metrics.roc_auc``. Note: ``ignite.contrib.metrics.roc_auc`` was moved to ``ignite.metrics.roc_auc``. Please refer to :mod:`~ignite.metrics.roc_auc`. """ import warnings removed_in = "0.6.0" deprecation_warning = ( f"{__file__} has been moved to ignite/metrics/roc_auc.py" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) from ignite.metrics.roc_auc import ROC_AUC, RocCurve __all__ = ["RocCurve", "ROC_AUC"] RocCurve = RocCurve ROC_AUC = ROC_AUC ignite-0.5.1/ignite/distributed/000077500000000000000000000000001465426447700166205ustar00rootroot00000000000000ignite-0.5.1/ignite/distributed/__init__.py000066400000000000000000000002651465426447700207340ustar00rootroot00000000000000from ignite.distributed.auto import * from ignite.distributed.comp_models import native, xla from ignite.distributed.launcher import Parallel from ignite.distributed.utils import * ignite-0.5.1/ignite/distributed/auto.py000066400000000000000000000360511465426447700201470ustar00rootroot00000000000000import warnings from typing import Any, Iterator, List, Optional, Union import torch import torch.nn as nn from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader, Dataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import Sampler from ignite.distributed import utils as idist from ignite.distributed.comp_models import horovod as idist_hvd, native as idist_native, xla as idist_xla from ignite.utils import setup_logger __all__ = ["auto_dataloader", "auto_model", "auto_optim", "DistributedProxySampler"] def auto_dataloader(dataset: Dataset, **kwargs: Any) -> Union[DataLoader, "_MpDeviceLoader"]: """Helper method to create a dataloader adapted for non-distributed and distributed configurations (supporting all available backends from :meth:`~ignite.distributed.utils.available_backends()`). Internally, we create a dataloader with provided kwargs while applying the following updates: - batch size is scaled by world size: ``batch_size / world_size`` if larger or equal world size. - number of workers is scaled by number of local processes: ``num_workers / nprocs`` if larger or equal world size. - if no sampler provided by user, a `torch DistributedSampler`_ is setup. - if a `torch DistributedSampler`_ is provided by user, it is used without wrapping it. - if another sampler is provided, it is wrapped by :class:`~ignite.distributed.auto.DistributedProxySampler`. - if the default device is 'cuda', `pin_memory` is automatically set to `True`. .. warning:: Custom batch sampler is not adapted for distributed configuration. Please, make sure that provided batch sampler is compatible with distributed configuration. Args: dataset: input torch dataset. If input dataset is `torch IterableDataset`_ then dataloader will be created without any distributed sampling. Please, make sure that the dataset itself produces different data on different ranks. kwargs: keyword arguments for `torch DataLoader`_. Returns: `torch DataLoader`_ or `XLA MpDeviceLoader`_ for XLA devices Examples: .. code-block:: python import ignite.distribted as idist train_loader = idist.auto_dataloader( train_dataset, batch_size=32, num_workers=4, shuffle=True, pin_memory="cuda" in idist.device().type, drop_last=True, ) .. _torch DataLoader: https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader .. _XLA MpDeviceLoader: https://pytorch.org/xla/release/2.0/index.html#running-on-multiple-xla-devices-with-multi-processing .. _torch DistributedSampler: https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler .. _torch IterableDataset: https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset """ rank = idist.get_rank() world_size = idist.get_world_size() logger = setup_logger(__name__ + ".auto_dataloader") if world_size > 1: if "batch_size" in kwargs and kwargs["batch_size"] >= world_size: kwargs["batch_size"] //= world_size nproc = idist.get_nproc_per_node() if "num_workers" in kwargs and kwargs["num_workers"] >= nproc: kwargs["num_workers"] = (kwargs["num_workers"] + nproc - 1) // nproc if "batch_sampler" not in kwargs: if isinstance(dataset, IterableDataset): logger.info( "Found iterable dataset, dataloader will be created without any distributed sampling. " "Please, make sure that the dataset itself produces different data on different ranks." ) else: sampler: Optional[Union[DistributedProxySampler, DistributedSampler, Sampler]] sampler = kwargs.get("sampler", None) if isinstance(sampler, DistributedSampler): if sampler.rank != rank: warnings.warn(f"Found distributed sampler with rank={sampler.rank}, but process rank is {rank}") if sampler.num_replicas != world_size: warnings.warn( f"Found distributed sampler with num_replicas={sampler.num_replicas}, " f"but world size is {world_size}" ) elif sampler is None: # removes "shuffle" from kwargs if sampler is used shuffle = kwargs.pop("shuffle", True) sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=shuffle) else: sampler = DistributedProxySampler(sampler, num_replicas=world_size, rank=rank) kwargs["sampler"] = sampler else: warnings.warn( "Found batch_sampler in provided kwargs. Please, make sure that it is compatible " "with distributed configuration" ) if idist.has_xla_support and idist.backend() == idist_xla.XLA_TPU and kwargs.get("pin_memory", False): # TODO: How about XLA GPU ? warnings.warn( "Found incompatible options: xla support and pin_memory args equal True. " "Argument `pin_memory=False` will be used to construct data loader." ) kwargs["pin_memory"] = False else: kwargs["pin_memory"] = kwargs.get("pin_memory", "cuda" in idist.device().type) logger.info(f"Use data loader kwargs for dataset '{repr(dataset)[:20].strip()}': \n\t{kwargs}") dataloader = DataLoader(dataset, **kwargs) if idist.has_xla_support and idist.backend() == idist_xla.XLA_TPU and world_size > 1: logger.info("DataLoader is wrapped by `MpDeviceLoader` on XLA") mp_device_loader_cls = _MpDeviceLoader try: from torch_xla.distributed.parallel_loader import MpDeviceLoader mp_device_loader_cls = MpDeviceLoader except ImportError: pass mp_dataloader = mp_device_loader_cls(dataloader, idist.device()) mp_dataloader.sampler = dataloader.sampler # type: ignore[attr-defined] return mp_dataloader return dataloader def auto_model(model: nn.Module, sync_bn: bool = False, **kwargs: Any) -> nn.Module: """Helper method to adapt provided model for non-distributed and distributed configurations (supporting all available backends from :meth:`~ignite.distributed.utils.available_backends()`). Internally, we perform to following: - send model to current :meth:`~ignite.distributed.utils.device()` if model's parameters are not on the device. - wrap the model to `torch DistributedDataParallel`_ for native torch distributed if world size is larger than 1. - wrap the model to `torch DataParallel`_ if no distributed context found and more than one CUDA devices available. - broadcast the initial variable states from rank 0 to all other processes if Horovod distributed framework is used. Args: model: model to adapt. sync_bn: if True, applies `torch convert_sync_batchnorm`_ to the model for native torch distributed only. Default, False. Note, if using Nvidia/Apex, batchnorm conversion should be applied before calling ``amp.initialize``. kwargs: kwargs to model's wrapping class: `torch DistributedDataParallel`_ or `torch DataParallel`_ if applicable. Please, make sure to use acceptable kwargs for given backend. Returns: torch.nn.Module Examples: .. code-block:: python import ignite.distribted as idist model = idist.auto_model(model) In addition with NVidia/Apex, it can be used in the following way: .. code-block:: python import ignite.distribted as idist model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level) model = idist.auto_model(model) .. _torch DistributedDataParallel: https://pytorch.org/docs/stable/generated/torch.nn.parallel. DistributedDataParallel.html .. _torch DataParallel: https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html .. _torch convert_sync_batchnorm: https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html# torch.nn.SyncBatchNorm.convert_sync_batchnorm .. versionchanged:: 0.4.2 - Added Horovod distributed framework. - Added ``sync_bn`` argument. .. versionchanged:: 0.4.3 Added kwargs to ``idist.auto_model``. """ logger = setup_logger(__name__ + ".auto_model") # Put model's parameters to device if its parameters are not on the device device = idist.device() if not all([p.device == device for p in model.parameters()]): model.to(device) # distributed data parallel model if idist.get_world_size() > 1: bnd = idist.backend() if idist.has_native_dist_support and bnd in (idist_native.NCCL, idist_native.GLOO, idist_native.MPI): if sync_bn: logger.info("Convert batch norm to sync batch norm") model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if torch.cuda.is_available(): if "device_ids" in kwargs: raise ValueError(f"Argument kwargs should not contain 'device_ids', but got {kwargs}") lrank = idist.get_local_rank() logger.info(f"Apply torch DistributedDataParallel on model, device id: {lrank}") kwargs["device_ids"] = [ lrank, ] else: logger.info("Apply torch DistributedDataParallel on model") model = torch.nn.parallel.DistributedDataParallel(model, **kwargs) elif idist.has_hvd_support and bnd == idist_hvd.HOROVOD: import horovod.torch as hvd logger.info("Broadcast the initial variable states from rank 0 to all other processes") hvd.broadcast_parameters(model.state_dict(), root_rank=0) # not distributed but multiple GPUs reachable so data parallel model elif torch.cuda.device_count() > 1 and "cuda" in idist.device().type: logger.info("Apply torch DataParallel on model") model = torch.nn.parallel.DataParallel(model, **kwargs) return model def auto_optim(optimizer: Optimizer, **kwargs: Any) -> Optimizer: """Helper method to adapt optimizer for non-distributed and distributed configurations (supporting all available backends from :meth:`~ignite.distributed.utils.available_backends()`). Internally, this method is no-op for non-distributed and torch native distributed configuration. For XLA distributed configuration, we create a new class that inherits from provided optimizer. The goal is to override the `step()` method with specific `xm.optimizer_step`_ implementation. For Horovod distributed configuration, optimizer is wrapped with Horovod Distributed Optimizer and its state is broadcasted from rank 0 to all other processes. Args: optimizer: input torch optimizer kwargs: kwargs to Horovod backend's DistributedOptimizer. Returns: Optimizer Examples: .. code-block:: python import ignite.distributed as idist optimizer = idist.auto_optim(optimizer) .. _xm.optimizer_step: https://pytorch.org/xla/release/1.5/index.html#torch_xla.core.xla_model.optimizer_step .. versionchanged:: 0.4.2 Added Horovod distributed optimizer. .. versionchanged:: 0.4.7 Added kwargs to ``idist.auto_optim``. """ bnd = idist.backend() if idist.has_xla_support and bnd == idist_xla.XLA_TPU: cls = type(optimizer.__class__.__name__, (optimizer.__class__,), dict(_XLADistributedOptimizer.__dict__)) return cls(optimizer) if idist.has_hvd_support and bnd == idist_hvd.HOROVOD: import horovod.torch as hvd optimizer = hvd.DistributedOptimizer(optimizer, **kwargs) hvd.broadcast_optimizer_state(optimizer, root_rank=0) return optimizer return optimizer class DistributedProxySampler(DistributedSampler): """Distributed sampler proxy to adapt user's sampler for distributed data parallelism configuration. Code is based on https://github.com/pytorch/pytorch/issues/23430#issuecomment-562350407 Args: sampler: Input torch data sampler. num_replicas: Number of processes participating in distributed training. rank: Rank of the current process within ``num_replicas``. .. note:: Input sampler is assumed to have a constant size. """ def __init__(self, sampler: Sampler, num_replicas: Optional[int] = None, rank: Optional[int] = None) -> None: if not isinstance(sampler, Sampler): raise TypeError(f"Argument sampler should be instance of torch Sampler, but given: {type(sampler)}") if isinstance(sampler, DistributedSampler): raise TypeError("Argument sampler must not be a distributed sampler already") if not hasattr(sampler, "__len__"): raise TypeError("Argument sampler should have length") super(DistributedProxySampler, self).__init__( sampler, num_replicas=num_replicas, rank=rank, shuffle=False # type: ignore[arg-type] ) self.sampler = sampler def __iter__(self) -> Iterator: # deterministically shuffle based on epoch torch.manual_seed(self.epoch) indices: List = [] while len(indices) < self.total_size: indices += list(self.sampler) if len(indices) > self.total_size: indices = indices[: self.total_size] # subsample indices = indices[self.rank : self.total_size : self.num_replicas] if len(indices) != self.num_samples: raise RuntimeError(f"{len(indices)} vs {self.num_samples}") return iter(indices) if idist.has_xla_support: import torch_xla.core.xla_model as xm from torch_xla.distributed.parallel_loader import ParallelLoader class _MpDeviceLoader: # https://github.com/pytorch/xla/pull/2117 # From pytorch/xla if `torch_xla.distributed.parallel_loader.MpDeviceLoader` is not available def __init__(self, loader: Any, device: torch.device, **kwargs: Any) -> None: self._loader = loader self._device = device self._parallel_loader_kwargs = kwargs def __iter__(self) -> Iterator: parallel_loader = ParallelLoader(self._loader, [self._device], **self._parallel_loader_kwargs) return parallel_loader.per_device_loader(self._device) def __len__(self) -> int: return len(self._loader) class _XLADistributedOptimizer(Optimizer): def __init__(self, optimizer: Optimizer) -> None: super(self.__class__, self).__init__(optimizer.param_groups) # type: ignore[call-arg] self.wrapped_optimizer = optimizer def step(self, closure: Any = None) -> Any: xm.optimizer_step(self.wrapped_optimizer, barrier=True) ignite-0.5.1/ignite/distributed/comp_models/000077500000000000000000000000001465426447700211215ustar00rootroot00000000000000ignite-0.5.1/ignite/distributed/comp_models/__init__.py000066400000000000000000000025151465426447700232350ustar00rootroot00000000000000from typing import List, Tuple, Type, TYPE_CHECKING, Union from ignite.distributed.comp_models.base import _SerialModel from ignite.distributed.comp_models.horovod import has_hvd_support from ignite.distributed.comp_models.native import has_native_dist_support from ignite.distributed.comp_models.xla import has_xla_support if TYPE_CHECKING: from ignite.distributed.comp_models.horovod import _HorovodDistModel from ignite.distributed.comp_models.native import _NativeDistModel from ignite.distributed.comp_models.xla import _XlaDistModel def setup_available_computation_models() -> ( Tuple[Type[Union[_SerialModel, "_NativeDistModel", "_XlaDistModel", "_HorovodDistModel"]], ...] ): models: List[Type[Union[_SerialModel, "_NativeDistModel", "_XlaDistModel", "_HorovodDistModel"]]] = [ _SerialModel, ] if has_native_dist_support: from ignite.distributed.comp_models.native import _NativeDistModel models.append(_NativeDistModel) if has_xla_support: from ignite.distributed.comp_models.xla import _XlaDistModel models.append(_XlaDistModel) if has_hvd_support: from ignite.distributed.comp_models.horovod import _HorovodDistModel models.append(_HorovodDistModel) return tuple(models) registered_computation_models = setup_available_computation_models() ignite-0.5.1/ignite/distributed/comp_models/base.py000066400000000000000000000333051465426447700224110ustar00rootroot00000000000000from abc import ABCMeta, abstractmethod from numbers import Number from typing import Any, Callable, cast, List, Optional, Union import torch from packaging.version import Version _torch_version_gt_112 = Version(torch.__version__) > Version("1.12.0") class ComputationModel(metaclass=ABCMeta): """Base class for distributed computation models and defines interface methods. This class is public and should be used for other custom derived distributed models. """ # this is an additional local rank storage used when idist is setup from existing native torch dist context _ext_local_rank: Optional[int] = None def __init__(self) -> None: self._backend: Optional[str] = None self._nproc_per_node: Optional[int] = None self._nnodes: Optional[int] = None self._node: Optional[int] = None def _setup_attrs(self) -> None: if self._nproc_per_node is None: self._nproc_per_node = self._compute_nproc_per_node() if self.get_world_size() > 1 else 1 if self._nnodes is None: self._nnodes = self.get_world_size() // self._nproc_per_node if self._node is None: self._node = self.get_rank() // self._nproc_per_node @abstractmethod def _compute_nproc_per_node(self) -> int: pass @abstractmethod def get_local_rank(self) -> int: pass @abstractmethod def get_rank(self) -> int: pass @abstractmethod def get_world_size(self) -> int: pass @abstractmethod def get_nproc_per_node(self) -> int: pass @abstractmethod def get_nnodes(self) -> int: pass @abstractmethod def get_node_rank(self) -> int: pass @abstractmethod def device(self) -> torch.device: pass @abstractmethod def backend(self) -> Optional[str]: pass @abstractmethod def finalize(self) -> None: pass @staticmethod @abstractmethod def create_from_context() -> Optional["ComputationModel"]: pass @staticmethod @abstractmethod def create_from_backend(backend: str, **kwargs: Any) -> "ComputationModel": pass @staticmethod @abstractmethod def spawn(*args: Any, **kwargs: Any) -> None: pass _collective_op_dtype: Any = None @staticmethod def _encode_str(x: str, device: torch.device, size: int) -> torch.Tensor: name = torch.tensor(bytearray(x, "utf-8")).to(device) padded_x = torch.zeros(size + 1, device=device, dtype=torch.long) padded_x[: len(name)] = name padded_x[-1] = len(name) # output is tensor of shape (1, size + 1) return padded_x.unsqueeze(0) def _get_max_length(self, x: str, device: torch.device) -> int: size = torch.tensor([len(x)], device=device) size = self._do_all_reduce(size, op="MAX") return cast(int, size.item()) @staticmethod def _encode_input_data(x: Union[torch.Tensor, float, str, None], is_src: bool) -> List[int]: encoded_msg = [-1] * 512 if not is_src: # Discard input type if not source return encoded_msg if isinstance(x, torch.Tensor): shape = x.shape dtype = str(x.dtype) msg = [0, len(shape), *shape, len(dtype), *list(bytearray(dtype, "utf-8"))] encoded_msg[: len(msg)] = msg elif isinstance(x, Number): encoded_msg[0] = 1 elif isinstance(x, str): encoded_msg[0] = 2 return encoded_msg @staticmethod def _decode_as_placeholder(encoded_msg: List[int], device: torch.device) -> Union[torch.Tensor, float, str]: if encoded_msg[0] == 0: len_shape = encoded_msg[1] le = 2 + len_shape shape = encoded_msg[2:le] if len_shape > 0 else [] len_dtype = encoded_msg[le] dtype_str = bytearray(encoded_msg[le + 1 : le + 1 + len_dtype]).decode("utf-8") dtype = eval(dtype_str) return torch.empty(shape, device=device, dtype=dtype) elif encoded_msg[0] == 1: return 0.0 elif encoded_msg[0] == 2: return "" else: raise RuntimeError(f"Internal error: unhandled dtype {encoded_msg[0]}, encoded_msg={encoded_msg}") def _setup_placeholder( self, x: Union[torch.Tensor, float, str, None], device: torch.device, is_src: bool ) -> Union[torch.Tensor, float, str]: encoded_msg_per_rank = self._encode_input_data(x, is_src) encoded_msg_all_ranks = self._do_all_reduce(torch.tensor(encoded_msg_per_rank, device=device), op="MAX") if is_src: if x is None: raise RuntimeError("Internal error, x is None. Please, file an issue if you encounter this error.") return x encoded_msg = encoded_msg_all_ranks.cpu().tolist() return self._decode_as_placeholder(encoded_msg, device) @staticmethod def _decode_str(xs: torch.Tensor) -> List[str]: # xs.shape = (n, size + 1), e.g. (world_size, size + 1) out = [bytearray(x[: x[-1]].tolist()).decode("utf-8") for x in xs] return out def _apply_op( self, tensor: torch.Tensor, device: torch.device, fn: Callable, *args: Any, **kwargs: Any ) -> torch.Tensor: out_dtype = None tensor_device = None # check if the tensor is at specified device if tensor.device != device: tensor_device = tensor.device tensor = tensor.to(device) if self._collective_op_dtype is not None: # cast to _collective_op_dtype if current type is not floatX if tensor.dtype not in (torch.float32, torch.float64): out_dtype = tensor.dtype tensor = tensor.to(self._collective_op_dtype) tensor = fn(tensor, *args, **kwargs) if out_dtype is not None and tensor_device is not None: return tensor.to(dtype=out_dtype, device=tensor_device) if out_dtype is not None: return tensor.to(dtype=out_dtype) if tensor_device is not None: return tensor.to(device=tensor_device) return tensor def _collective_op( self, tensor: Union[torch.Tensor, Number, str], fn: Callable, *args: Any, **kwargs: Any ) -> Union[torch.Tensor, float, List[float], List[str]]: tensor_to_number = tensor_to_str = False device = self.device() if isinstance(tensor, (Number, float)): tensor_to_number = True dtype = self._collective_op_dtype if dtype is None and isinstance(tensor, float): dtype = torch.double tensor = torch.tensor(tensor, device=device, dtype=dtype) elif isinstance(tensor, str): tensor_to_str = True max_length = self._get_max_length(tensor, device) tensor = self._encode_str(tensor, device, size=max_length) tensor = self._apply_op(tensor, device, fn, *args, **kwargs) if tensor_to_number: return tensor.tolist() elif tensor_to_str: return self._decode_str(tensor) return tensor def all_reduce( self, tensor: Union[torch.Tensor, float], op: str = "sum", group: Optional[Any] = None ) -> Union[torch.Tensor, float]: if not isinstance(tensor, (torch.Tensor, Number)): raise TypeError(f"Unhandled input type {type(tensor)}") return cast(Union[torch.Tensor, float], self._collective_op(tensor, self._do_all_reduce, op, group=group)) def all_gather( self, tensor: Union[torch.Tensor, float, str, Any], group: Optional[Any] = None ) -> Union[torch.Tensor, float, List[float], List[str], List[Any]]: if not isinstance(tensor, (torch.Tensor, Number, str)): return self._do_all_gather_object(tensor, group=group) return self._collective_op(tensor, self._do_all_gather, group=group) def new_group(self, ranks: List[int], **kwargs: Any) -> Any: if isinstance(ranks, list) and all(isinstance(item, int) for item in ranks): return self._do_new_group(ranks, **kwargs) else: raise ValueError("Argument ranks should be list of int") def broadcast( self, tensor: Union[torch.Tensor, float, str, None], src: int = 0, safe_mode: bool = False ) -> Union[torch.Tensor, float, str]: if not (isinstance(tensor, (torch.Tensor, Number, str)) or tensor is None): raise TypeError(f"Unhandled input type {type(tensor)}") rank = self.get_rank() if tensor is None: if rank == src: raise ValueError("Source data can not be None") elif not safe_mode: raise ValueError("Argument safe_mode should be True if None is passed for non src rank") device = self.device() tensor_to_number = tensor_to_str = False if safe_mode: tensor = self._setup_placeholder(tensor, device, rank == src) if tensor is None: raise RuntimeError("Internal error, tensor is None. Please, file an issue if you encounter this error.") if isinstance(tensor, (Number, float)): # have to use Number and float to satisfy mypy tensor_to_number = True if rank != src: tensor = torch.empty(1, device=device, dtype=torch.float) else: tensor = torch.tensor([tensor], device=device, dtype=torch.float) elif isinstance(tensor, str): tensor_to_str = True max_length = self._get_max_length(tensor, device) if rank != src: tensor = torch.empty(1, max_length + 1, device=device, dtype=torch.long) else: tensor = self._encode_str(tensor, device, size=max_length) tensor = self._apply_op(tensor, device, self._do_broadcast, src) if tensor_to_number: return tensor.item() if tensor_to_str: list_str = self._decode_str(tensor) return list_str[0] return tensor @abstractmethod def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor: pass @abstractmethod def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor: pass @abstractmethod def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> List[Any]: pass @abstractmethod def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor: pass @abstractmethod def barrier(self) -> None: pass @abstractmethod def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any: pass class _SerialModel(ComputationModel): """Private class defines non-distributed computation model for code compatibility with other distributed models.""" name = "serial" available_backends = () def __init__(self, _backend: Optional[str] = None, **kwargs: Any) -> None: super(_SerialModel, self).__init__() def get_local_rank(self) -> int: return 0 def get_rank(self) -> int: return 0 def get_world_size(self) -> int: return 1 def get_nproc_per_node(self) -> int: return 1 def get_nnodes(self) -> int: return 1 def get_node_rank(self) -> int: return 0 def device(self) -> torch.device: if torch.cuda.is_available(): return torch.device("cuda") if _torch_version_gt_112 and torch.backends.mps.is_available(): return torch.device("mps") return torch.device("cpu") def backend(self) -> Optional[str]: return None def finalize(self) -> None: pass def _compute_nproc_per_node(self) -> int: return 1 @staticmethod def create_from_context() -> "_SerialModel": return _SerialModel() @staticmethod def create_from_backend(backend: Optional[str] = None, **kwargs: Any) -> "_SerialModel": return _SerialModel() @staticmethod def spawn(*args: Any, **kwargs: Any) -> None: raise NotImplementedError("Serial computation model does not implement spawn method") def all_reduce( self, tensor: Union[torch.Tensor, float], op: str = "SUM", group: Optional[Any] = None ) -> Union[torch.Tensor, float]: return tensor def all_gather( self, tensor: Union[torch.Tensor, float, str, Any], group: Optional[Any] = None ) -> Union[torch.Tensor, float, List[float], List[str], List[Any]]: if isinstance(tensor, torch.Tensor): return tensor return cast(Union[List[float], List[str], List[Any]], [tensor]) def broadcast( self, tensor: Union[torch.Tensor, float, str, None], src: int = 0, safe_mode: bool = False ) -> Union[torch.Tensor, float, str]: if tensor is None: raise ValueError("Argument tensor should not be None") return tensor def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor: return tensor def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor: return tensor def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> Any: return tensor def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any: return ranks def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor: return tensor def barrier(self) -> None: pass def new_group(self, ranks: List[int], **kwargs: Any) -> Any: if isinstance(ranks, list) and all(isinstance(item, int) for item in ranks): return self._do_new_group(ranks, **kwargs) else: raise ValueError("Argument ranks should be list of int") ignite-0.5.1/ignite/distributed/comp_models/horovod.py000066400000000000000000000177171465426447700231700ustar00rootroot00000000000000import warnings from typing import Any, Callable, cast, List, Mapping, Optional, Tuple import torch from ignite.distributed.comp_models.base import ComputationModel try: import horovod.torch as hvd try: # old API from horovod.run.runner import run as hvd_mp_spawn except ImportError: # new API: https://github.com/horovod/horovod/pull/2099 from horovod import run as hvd_mp_spawn has_hvd_support = True except ImportError: has_hvd_support = False if has_hvd_support: HOROVOD = "horovod" class _HorovodDistModel(ComputationModel): """Private class for `Horovod `_ distributed computation model.""" name = "horovod-dist" available_backends = (HOROVOD,) @staticmethod def _get_hvd_rank() -> int: try: rank = hvd.rank() except ValueError as e: rank = -1 return rank @staticmethod def create_from_context() -> Optional["_HorovodDistModel"]: rank = _HorovodDistModel._get_hvd_rank() # hvd must be initialized if not rank > -1: return None return _HorovodDistModel() @staticmethod def create_from_backend(backend: str = HOROVOD, **kwargs: Any) -> "_HorovodDistModel": if backend not in _HorovodDistModel.available_backends: raise ValueError(f"Backend should be one of '{_HorovodDistModel.available_backends}'") rank = _HorovodDistModel._get_hvd_rank() # hvd must be not initialized if rank > -1: raise RuntimeError("Can not re-initialize Horovod if it is already initialized") return _HorovodDistModel(backend, **kwargs) def __init__(self, backend: Optional[str] = None, **kwargs: Any) -> None: """This is a private method. Please, use `create_from_backend` or `create_from_context`""" super(_HorovodDistModel, self).__init__() if backend is not None: self._create_from_backend(backend, **kwargs) else: self._init_from_context() def _create_from_backend(self, backend: str, **kwargs: Any) -> None: self._backend: str = backend comm = kwargs.get("comm", None) hvd.init(comm=comm) self._setup_attrs() if torch.cuda.is_available(): torch.cuda.set_device(self.get_local_rank()) def _init_from_context(self) -> None: self._backend = HOROVOD self._setup_attrs() def _compute_nproc_per_node(self) -> int: return hvd.local_size() def get_local_rank(self) -> int: return hvd.local_rank() def get_rank(self) -> int: return hvd.rank() def get_world_size(self) -> int: return hvd.size() def get_nproc_per_node(self) -> int: return cast(int, self._nproc_per_node) def get_nnodes(self) -> int: return cast(int, self._nnodes) def get_node_rank(self) -> int: return cast(int, self._node) def device(self) -> torch.device: if torch.cuda.is_available(): index = torch.cuda.current_device() if index < self.get_local_rank(): warnings.warn( "Current device index is less than current local rank. " "Please, make sure to call torch.cuda.set_device(local_rank)." ) return torch.device(f"cuda:{index}") return torch.device("cpu") def backend(self) -> str: return self._backend def finalize(self) -> None: hvd.shutdown() @staticmethod def _dist_worker_task_fn(backend: str, fn: Callable, args: Tuple, kwargs_dict: Mapping) -> None: from ignite.distributed.utils import _set_model, finalize model = _HorovodDistModel.create_from_backend(backend) _set_model(model) fn(model.get_local_rank(), *args, **kwargs_dict) finalize() @staticmethod def spawn( fn: Callable, args: Tuple, kwargs_dict: Optional[Mapping] = None, nproc_per_node: int = 1, hosts: Optional[str] = None, backend: str = HOROVOD, **kwargs: Any, ) -> None: c1 = "nnodes" in kwargs and kwargs["nnodes"] > 1 c2 = "node_rank" in kwargs and kwargs["node_rank"] > 0 if c1 or c2: raise RuntimeError( "For multi-node configuration, please set 'hosts' argument instead according to horovod.run API." ) if "nnodes" in kwargs: # Remove 'nnodes=1' as it is an unexpected keyword argument for horovod.run del kwargs["nnodes"] if "node_rank" in kwargs: # Remove 'node_rank=0' as it is an unexpected keyword argument for horovod.run del kwargs["node_rank"] hvd_mp_spawn( _HorovodDistModel._dist_worker_task_fn, args=(HOROVOD, fn, args, kwargs_dict), num_proc=nproc_per_node, hosts=hosts, **kwargs, ) _reduce_op_map = { "SUM": hvd.mpi_ops.Sum, "AVERAGE": hvd.mpi_ops.Average, "ADASUM": hvd.mpi_ops.Adasum, } _manual_reduce_op_map = {"MIN": torch.min, "MAX": torch.max, "PRODUCT": torch.prod} def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor: if group is not None: raise NotImplementedError("all_reduce with group for horovod is not implemented") if op in self._manual_reduce_op_map: op_fn = self._manual_reduce_op_map[op] return self._do_manual_all_reduce(tensor, op_fn) if op not in self._reduce_op_map: raise ValueError(f"Unsupported reduction operation: '{op}'") op = self._reduce_op_map[op] return hvd.allreduce(tensor, op=op) def _do_manual_all_reduce(self, tensor: torch.Tensor, op: Any) -> torch.Tensor: # We have to unsqueeze otherwise tensors will be gathered into a single tensor # without splitting (e.g. [1, 1, 1, 3, 3, 3] instead of [[1, 1, 1], [3, 3, 3]]) # and reduction op wont work as expected res = self._do_all_gather(tensor.unsqueeze(0)) reduced_res = op(res, dim=0) if isinstance(reduced_res, torch.Tensor): return reduced_res # output can also torch min/max_return_type: (min/max_vals, indices) return reduced_res[0] def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor: if group is not None: raise NotImplementedError("all_gather with group for horovod is not implemented") if tensor.ndimension() == 0: tensor = tensor.unsqueeze(0) return hvd.allgather(tensor) def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> List[Any]: if group is not None: raise NotImplementedError("all_gather with group for horovod is not implemented") return hvd.allgather_object(tensor) def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any: return hvd.ProcessSet(ranks) def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor: return hvd.broadcast(tensor, root_rank=src) def barrier(self) -> None: # https://github.com/horovod/horovod/issues/159#issuecomment-424834603 # hvd.allreduce(torch.tensor(0, device=self.device()), name="barrier") hvd.allreduce(torch.tensor(0, device="cpu"), name="barrier") ignite-0.5.1/ignite/distributed/comp_models/native.py000066400000000000000000000660711465426447700227730ustar00rootroot00000000000000import os import re import subprocess import warnings from typing import Any, Callable, cast, Dict, List, Mapping, Optional, Tuple, Union import torch import torch.distributed as dist import torch.multiprocessing as mp from packaging.version import Version from ignite.distributed.comp_models.base import ComputationModel has_native_dist_support = dist.is_available() if has_native_dist_support: NCCL = dist.Backend.NCCL GLOO = dist.Backend.GLOO MPI = dist.Backend.MPI class _NativeDistModel(ComputationModel): """Private class for PyTorch native distributed computation model. Supported `backends `_: - NCCL - GLOO - MPI In this implementation we assume the following mapping between backend and devices: - NCCL <-> GPU - GLOO <-> CPU or GPU - MPI <-> CPU """ name = "native-dist" available_backends = tuple(name for name in [NCCL, GLOO, MPI] if getattr(dist, f"is_{name}_available")()) @staticmethod def create_from_context() -> Optional["_NativeDistModel"]: if not (dist.is_available() and dist.is_initialized()): return None return _NativeDistModel() @staticmethod def create_from_backend( backend: str, init_method: Optional[str] = None, world_size: Optional[int] = None, rank: Optional[int] = None, **kwargs: Any, ) -> "_NativeDistModel": if backend not in _NativeDistModel.available_backends: raise ValueError(f"Backend should be one of '{_NativeDistModel.available_backends}'") if dist.is_available() and dist.is_initialized(): raise RuntimeError("Can not create new distributed process group if default one is already initialized") if init_method is None: if world_size is not None or rank is not None: raise ValueError("Arguments rank and world_size should be None if no init_method is provided") else: has_rank = rank is not None has_ws = world_size is not None if (has_rank or has_ws) and (not has_rank or not has_ws): raise ValueError(f"Both rank and world_size should be provided, but given {rank} and {world_size}") return _NativeDistModel( backend=backend, init_method=init_method, world_size=world_size, rank=rank, **kwargs ) def __init__( self, backend: Optional[str] = None, timeout: Optional[int] = None, init_method: Optional[str] = None, world_size: Optional[int] = None, rank: Optional[int] = None, **kwargs: Any, ) -> None: """This is a private method. Please, use `create_from_backend` or `create_from_context`""" super(_NativeDistModel, self).__init__() self._env_backup: Optional[Dict[str, str]] = None self._local_rank: Optional[int] = None self._master_port: Optional[int] = None self._master_addr: Optional[str] = None self._init_method: Optional[str] = None if backend is not None: self._create_from_backend( backend, timeout=timeout, init_method=init_method, world_size=world_size, rank=rank, **kwargs ) else: self._init_from_context() def _create_from_backend( self, backend: str, timeout: Optional[int] = None, init_method: Optional[str] = None, world_size: Optional[int] = None, rank: Optional[int] = None, **kwargs: Any, ) -> None: if backend == dist.Backend.NCCL and not torch.cuda.is_available(): raise RuntimeError("Nccl backend is required but no cuda capable devices") self._backend = backend self.setup_env_vars(rank, world_size) init_pg_kwargs: Dict[str, Any] = {} if timeout is not None: init_pg_kwargs["timeout"] = timeout if init_method is None: init_method = "env://" if "env" not in init_method: init_pg_kwargs["world_size"] = int(os.environ["WORLD_SIZE"]) init_pg_kwargs["rank"] = int(os.environ["RANK"]) self._init_method = init_method dist.init_process_group(backend, init_method=init_method, **init_pg_kwargs) if torch.cuda.is_available(): torch.cuda.set_device(self._local_rank) # Call barrier after init_process_group as in # https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 # Define device ids for NCCL to avoid warnings # [W ProcessGroupNCCL.cpp:1569] Rank 0 using best-guess GPU 0 to perform barrier as devices used by # this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping # is incorrect.Specify device_ids in barrier() to force use of a particular device. if backend == dist.Backend.NCCL and Version(torch.__version__) >= Version("1.8.0"): device_ids = [torch.cuda.current_device()] dist.barrier(device_ids=device_ids) else: # For older versions there is no device_ids arg dist.barrier() self._setup_attrs() def _init_from_context(self) -> None: self._backend = dist.get_backend() self._identify_local_rank() self._setup_attrs() def _compute_nproc_per_node(self) -> int: local_rank = self.get_local_rank() # Create new cpu group to get nproc_per_node such we avoid using # badly configured NCCL gloo_group = dist.new_group(backend="gloo") tensor = torch.tensor([local_rank + 1]).to("cpu") dist.all_reduce(tensor, op=dist.ReduceOp.MAX, group=gloo_group) dist.destroy_process_group(gloo_group) return int(tensor.item()) def _get_all_hostnames(self) -> List[Tuple[str, ...]]: import socket device = "cpu" if torch.cuda.is_available(): index = torch.cuda.current_device() device = f"cuda:{index}" hostname = socket.gethostname() name = torch.tensor(bytearray(hostname, "utf-8")).to(device) padded_t_name = torch.zeros(256, device=device, dtype=torch.long) padded_t_name[: len(name)] = name out_t_names = [torch.zeros_like(padded_t_name) for _ in range(self.get_world_size())] dist.all_gather(out_t_names, padded_t_name) return [tuple(t.cpu().tolist()) for t in out_t_names] @staticmethod def _compute_node_and_local_ranks(rank: int, hostnames: List[Tuple[str, ...]]) -> Tuple[int, int]: from collections import Counter c: Counter = Counter(hostnames) sizes = torch.tensor([0] + list(c.values())) cumsum_sizes = torch.cumsum(sizes, dim=0) node_rank = (rank // cumsum_sizes[1:]).clamp(0, 1).sum().item() local_rank = rank - cumsum_sizes[node_rank].item() return int(local_rank), node_rank def _compute_local_rank_via_hostname(self) -> int: # get all hostnames hostnames = self._get_all_hostnames() local_rank, self._node = self._compute_node_and_local_ranks(self.get_rank(), hostnames) if local_rank < 0 or self._node < 0: raise ValueError( "Failed to correctly estimate local rank. " f"Debugging info: local rank: {local_rank}, node rank: {self._node}, hostnames: {hostnames}" ) return local_rank def _identify_local_rank(self) -> None: if "SLURM_JOB_ID" in os.environ: os.environ["LOCAL_RANK"] = os.environ["SLURM_LOCALID"] if "LOCAL_RANK" in os.environ: self._local_rank = int(os.environ["LOCAL_RANK"]) elif self._ext_local_rank is not None: self._local_rank = self._ext_local_rank else: warnings.warn( "Local rank information for native distributed setting will be initialized using " "a heuristic approach based on the hostnames. In some corner cases, determined " "local rank can be different from the real setup. To avoid this warning, " "please either set `os.environ['LOCAL_RANK']` " "or use `idist.set_local_rank(local_rank)` with correct local rank index." ) # use socket gethostname heuristic to determine number of nodes => local rank self._local_rank = self._compute_local_rank_via_hostname() def setup_env_vars(self, rank: Optional[int] = None, world_size: Optional[int] = None) -> None: self._env_backup = os.environ.copy() if "SLURM_JOB_ID" in os.environ: if rank is not None or world_size is not None: raise ValueError("Arguments rank and world_size should not be specified with SLURM") self._setup_env_in_slurm() else: env_vars = ["RANK", "LOCAL_RANK", "WORLD_SIZE"] all_env_vars_defined = [k in os.environ for k in env_vars] # check if all necessary env vars are set # if partially defined raise an error if any(all_env_vars_defined) and not all(all_env_vars_defined): raise RuntimeError(f"PyTorch distributed configuration should define env variables '{env_vars}'") os.environ["RANK"] = os.environ.get("RANK", f"{rank if rank is not None else 0}") os.environ["WORLD_SIZE"] = os.environ.get( "WORLD_SIZE", f"{world_size if world_size is not None else 1}" ) os.environ["LOCAL_RANK"] = os.environ.get("LOCAL_RANK", "0") os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "15000") os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1") self._local_rank = int(os.environ["LOCAL_RANK"]) self._master_addr = os.environ["MASTER_ADDR"] self._master_port = int(os.environ["MASTER_PORT"]) def _setup_env_in_slurm(self) -> None: slurm_env_req_vars = [ "SLURM_JOB_ID", "SLURM_PROCID", "SLURM_LOCALID", "SLURM_NTASKS", "SLURM_JOB_NODELIST", "SLURM_JOB_NUM_NODES", ] for k in slurm_env_req_vars: if k not in os.environ: raise RuntimeError(f"SLURM distributed configuration is missing '{k}' in env variables") ddp_vars = _setup_ddp_vars_from_slurm_env(cast(Dict, os.environ)) # define DDP env vars required by PTH: for key, value in ddp_vars.items(): os.environ[key] = str(value) def get_local_rank(self) -> int: return cast(int, self._local_rank) def get_rank(self) -> int: return dist.get_rank() def get_world_size(self) -> int: return dist.get_world_size() def get_nproc_per_node(self) -> int: return cast(int, self._nproc_per_node) def get_nnodes(self) -> int: return cast(int, self._nnodes) def get_node_rank(self) -> int: return cast(int, self._node) def device(self) -> torch.device: if torch.cuda.is_available(): index = torch.cuda.current_device() if index < self.get_local_rank(): warnings.warn( "Current device index is less than current local rank. " "Please, make sure to call torch.cuda.set_device(local_rank)." ) return torch.device(f"cuda:{index}") return torch.device("cpu") def backend(self) -> str: return dist.get_backend() def finalize(self) -> None: dist.destroy_process_group() # restore backed-up env self._restore_env() def _restore_env(self) -> None: # restore backed-up env if self._env_backup is not None: os.environ.clear() os.environ.update(self._env_backup) @staticmethod def _dist_worker_task_fn( local_rank: int, backend: str, fn: Callable, args: Tuple, kw_dict: Mapping, world_size: int, nprocs_per_node: int, node_rank: int, master_addr: Optional[str], master_port: Optional[str], init_method: str, kw: Any, ) -> None: from ignite.distributed.utils import _set_model, finalize copy_env_vars = os.environ.copy() rank = node_rank * nprocs_per_node + local_rank os.environ["LOCAL_RANK"] = str(local_rank) os.environ["RANK"] = str(rank) os.environ["WORLD_SIZE"] = str(world_size) arg_world_size: Optional[int] = world_size arg_rank: Optional[int] = rank if init_method == "env://": os.environ["MASTER_ADDR"] = str(master_addr) os.environ["MASTER_PORT"] = str(master_port) arg_world_size = None arg_rank = None model = _NativeDistModel.create_from_backend( backend, init_method=init_method, world_size=arg_world_size, rank=arg_rank, **kw ) _set_model(model) fn(local_rank, *args, **kw_dict) finalize() os.environ.clear() os.environ.update(copy_env_vars) @staticmethod def spawn( fn: Callable, args: Tuple, kwargs_dict: Optional[Mapping] = None, nproc_per_node: int = 1, nnodes: int = 1, node_rank: int = 0, master_addr: Optional[str] = None, master_port: Optional[int] = None, backend: str = "nccl", init_method: Optional[str] = None, **kwargs: Any, ) -> None: world_size = nnodes * nproc_per_node spawn_kwargs = { "join": kwargs.get("join", True), "daemon": kwargs.get("daemon", False), } start_processes = mp.spawn # start_method and start_processes in pytorch >= 1.5 if Version(torch.__version__) >= Version("1.5.0"): import builtins if "__IPYTHON__" in builtins.__dict__: # use fork in jupyter default_start_method = "fork" else: default_start_method = "spawn" spawn_kwargs["start_method"] = kwargs.get("start_method", default_start_method) start_processes = mp.start_processes # TODO: `spawn` wrongfully does not adopt address and port from environment if `init_method` is "env://" if init_method in [None, "env://"]: init_method = "env://" if master_port is None: master_port = 2222 if master_addr is None: master_addr = "127.0.0.1" elif master_addr is not None: raise ValueError("master_addr should be None if init_method is provided other then 'env://'") elif master_port is not None: raise ValueError("master_port should be None if init_method is provided other then 'env://'") start_processes( _NativeDistModel._dist_worker_task_fn, nprocs=nproc_per_node, args=( backend, fn, args, kwargs_dict, world_size, nproc_per_node, node_rank, master_addr, master_port, init_method, kwargs, ), **spawn_kwargs, ) _reduce_op_map = { "SUM": dist.ReduceOp.SUM, "PRODUCT": dist.ReduceOp.PRODUCT, "MIN": dist.ReduceOp.MIN, "MAX": dist.ReduceOp.MAX, "AND": dist.ReduceOp.BAND, "OR": dist.ReduceOp.BOR, } def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor: if op not in self._reduce_op_map: raise ValueError(f"Unsupported reduction operation: '{op}'") if group is not None and not isinstance(group, dist.ProcessGroup): raise ValueError("Argument group should be list of int or ProcessGroup") reduce_op = self._reduce_op_map[op] # We do if/else here for compatibility with older pytorch versions if group is not None: dist.all_reduce(tensor, reduce_op, group=group) else: dist.all_reduce(tensor, reduce_op) return tensor def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor: if group == dist.GroupMember.NON_GROUP_MEMBER: return tensor if group is None: group_size = self.get_world_size() elif isinstance(group, dist.ProcessGroup): group_size = group.size() else: raise ValueError("Argument group should be list of int or ProcessGroup") if tensor.ndimension() == 0: tensor = tensor.unsqueeze(0) output = [torch.zeros_like(tensor) for _ in range(group_size)] # We do if/else here for compatibility with older pytorch versions if group is not None: dist.all_gather(output, tensor, group=group) else: dist.all_gather(output, tensor) return torch.cat(output, dim=0) def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> List[Any]: if Version(torch.__version__) < Version("1.7.0"): raise RuntimeError( "Current torch version does not implement dist.all_gather_object. " "Required version should be >=1.7.0" ) if group == dist.GroupMember.NON_GROUP_MEMBER: return tensor if group is None: group_size = self.get_world_size() elif isinstance(group, dist.ProcessGroup): group_size = group.size() else: raise ValueError("Argument group should be list of int or ProcessGroup") output = [None for _ in range(group_size)] # We do if/else here for compatibility with older pytorch versions if group is not None: dist.all_gather_object(output, tensor, group=group) else: dist.all_gather_object(output, tensor) return output def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any: return dist.new_group(ranks=ranks, **kwargs) def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor: dist.broadcast(tensor, src=src) return tensor def barrier(self) -> None: dist.barrier() def _expand_hostlist(nodelist: str) -> List[str]: """Expand a compressed hostlist string and returns all hosts listed. Source : https://github.com/LLNL/py-hostlist/blob/master/hostlist/hostlist.py Args: nodelist: Compressed hostlist string .. note:: The host names can be composed by any character except the special ones `[`, `]`, `,`. Only one sequence `[...]` is supported per hostname. .. versionadded:: 0.4.6 """ result_hostlist = [] nodelist_match = r"([^,\[\]]+\[[^\[\]]*\][^,\[\]]*|[^,\[\]]*),?" nodelist = nodelist.replace(" ", "") for node in re.findall(nodelist_match, nodelist): node_match = r"(.+)\[((,?[0-9]+-?,?-?){0,})\](.*)?" match = re.search(node_match, node) if match is None: if node: result_hostlist.append(node) else: # holds the ranges of nodes as a string # now we can manipulate the string and cast it to a list of numbers num = str(match.group(2)).replace("[", "").replace("]", "") if len(num) == 0: raise ValueError(f"hostlist invalid : {nodelist}") num_list = num.split(",") # find range of node numbers ranges = [elem.split("-") if "-" in elem else [elem, elem] for elem in num_list] # if the node numbers contain leading zeros, store them to be lead_zeros = max([len(s) - len(s.lstrip("0")) for s, _ in ranges]) # list of expanded ranges of node numbers nodes_list = [list(range(int(s), int(e) + 1)) for s, e in ranges] # flat the list final_list = [item for sublist in nodes_list for item in sublist] # put final list in ascending order and append cluster name to each node number final_list = list(sorted(set(final_list))) # prepend leading zeros to numbers required hostlist_tmp = [str(elem).zfill(lead_zeros + 1) for elem in final_list] # append hostname to the node numbers hostlist_no_suffix = [match.group(1) + elem for elem in hostlist_tmp] # append suffix to hostlist if there is one final_hostlist = [elem + match.group(4) for elem in hostlist_no_suffix] result_hostlist += final_hostlist return result_hostlist def _setup_ddp_vars_from_slurm_env(environ: Dict[str, str]) -> Dict[str, Union[str, int]]: """Method to setup DDP env vars required by PyTorch from SLURM env""" # 1) Tools like enroot can have hooks to translate slurm env vars to RANK, LOCAL_RANK, WORLD_SIZE etc # See https://github.com/NVIDIA/enroot/blob/v3.1.0/conf/hooks/extra/50-slurm-pytorch.sh # 2) User can use torch.distributed.launch tool to schedule on N local GPUs using 1 node, 1 task by SLURM # To cover case 1), let's ensure that defined RANK == SLURM_PROCID, LOCAL_RANK == SLURM_LOCALID, # WORLD_SIZE == SLURM_NTASKS. We will use defined MASTER_ADDR and MASTER_PORT instead of defining # them by our means # To cover case 2), let's check that defined RANK >= SLURM_PROCID, LOCAL_RANK >= SLURM_LOCALID, # WORLD_SIZE >= SLURM_NTASKS, SLURM_JOB_NUM_NODES == 1 ddp_vars: Dict[str, Union[str, int, None]] = { "RANK": int(environ["SLURM_PROCID"]), "LOCAL_RANK": int(environ["SLURM_LOCALID"]), "WORLD_SIZE": int(environ["SLURM_NTASKS"]), "MASTER_ADDR": None, "MASTER_PORT": None, } pth_ddp_env_vars = {key: environ.get(key, None) for key in ddp_vars} defined_pth_ddp_env_vars = [v is not None for v in pth_ddp_env_vars.values()] if all(defined_pth_ddp_env_vars): nnodes = int(environ["SLURM_JOB_NUM_NODES"]) if nnodes > 1: # ensure that all pth_ddp_env_vars are consistent with slurm vars for key in ["RANK", "LOCAL_RANK", "WORLD_SIZE"]: slurm_var = cast(int, ddp_vars[key]) pth_var = int(cast(str, pth_ddp_env_vars[key])) if slurm_var != pth_var: raise RuntimeError( "Environment variable defined for PyTorch Distributed context is inconsistent with " f"equivalent SLURM env variable. {key}: {pth_var} vs {slurm_var}\n" f"SLURM vars: {ddp_vars}\n" f"PTH vars: {pth_ddp_env_vars}\n" ) else: # ensure that PTH RANK >= SLURM_PROCID, PTH LOCAL_RANK >= SLURM_LOCALID, # PTH WORLD_SIZE >= SLURM_NTASKS for key in ["RANK", "LOCAL_RANK", "WORLD_SIZE"]: slurm_var = cast(int, ddp_vars[key]) pth_var = int(cast(str, pth_ddp_env_vars[key])) if pth_var < slurm_var: raise RuntimeError( "Environment variable defined for PyTorch Distributed context is " "inconsistent with equivalent SLURM env variable. " f"We expect that {key}: {pth_var} >= {slurm_var}\n" f"SLURM vars: {ddp_vars}\n" f"PTH vars: {pth_ddp_env_vars}\n" ) ddp_vars[key] = pth_var # set up MASTER_ADDR and MASTER_PORT from PTH ddp_vars["MASTER_ADDR"] = cast(str, pth_ddp_env_vars["MASTER_ADDR"]) ddp_vars["MASTER_PORT"] = int(cast(str, pth_ddp_env_vars["MASTER_PORT"])) elif any(defined_pth_ddp_env_vars): # Let's warn user about PTH env variables that we could not taken into account warnings.warn( "We detected the following env variables: " f"{[(k, v) for k, v in pth_ddp_env_vars.items() if v is not None]},\n" "but will not take them into account as the following env vars are missing:" f"{[k for k, v in pth_ddp_env_vars.items() if v is None]},\n" ) if ddp_vars["MASTER_ADDR"] is None: nodelist = environ["SLURM_JOB_NODELIST"] try: # use scontrol to expand hostname list hostnames = subprocess.check_output(["scontrol", "show", "hostnames", nodelist]) method = "scontrol" except FileNotFoundError: # expand hostname list as scontrol hostnames = " ".join(_expand_hostlist(nodelist)).encode("utf-8") method = "ignite" # at least one hostname should be defined hostname_list = hostnames.split() if len(hostname_list) < 1: raise RuntimeError(f"No hostname detected in SLURM_JOB_NODELIST by {method} (nodelist={nodelist})") # master address is the first hostname of nodes list ddp_vars["MASTER_ADDR"] = str(hostname_list[0].decode("utf-8")) if ddp_vars["MASTER_PORT"] is None: # port should be the same over all process slurm_port = environ["SLURM_JOB_ID"] slurm_port = slurm_port[-4:] ddp_vars["MASTER_PORT"] = int(slurm_port) + 15000 return cast(Dict[str, Union[str, int]], ddp_vars) ignite-0.5.1/ignite/distributed/comp_models/xla.py000066400000000000000000000140361465426447700222630ustar00rootroot00000000000000from typing import Any, Callable, cast, List, Mapping, Optional, Tuple import torch from ignite.distributed.comp_models.base import ComputationModel try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp has_xla_support = True except ImportError: has_xla_support = False if has_xla_support: XLA_TPU = "xla-tpu" class _XlaDistModel(ComputationModel): """Private class for PyTorch XLA basic distributed computation model. It handles single/multi-device computation model. Supported XLA devices: - CPU - TPU """ name = "xla-dist" available_backends = (XLA_TPU,) @staticmethod def create_from_context() -> Optional["_XlaDistModel"]: return _XlaDistModel() @staticmethod def create_from_backend(backend: str = XLA_TPU, **kwargs: Any) -> "_XlaDistModel": if backend not in _XlaDistModel.available_backends: raise ValueError(f"Backend should be one of '{_XlaDistModel.available_backends}'") return _XlaDistModel(backend=backend, **kwargs) def __init__(self, backend: Optional[str] = None, **kwargs: Any): """This is a private method. Please, use `create_from_backend` or `create_from_context`""" super(_XlaDistModel, self).__init__() if backend is not None: self._create_from_backend(backend, **kwargs) else: self._init_from_context() def _create_from_backend(self, backend: str, **kwargs: Any) -> None: xm.rendezvous("init") self._backend: str = backend self._setup_attrs() def _init_from_context(self) -> None: self._backend = XLA_TPU self._setup_attrs() def _compute_nproc_per_node(self) -> int: tensor = torch.tensor([self.get_local_rank() + 1.0], dtype=torch.float).to(self.device()) xm.all_reduce("max", [tensor]) return int(tensor.item()) def get_local_rank(self) -> int: return xm.get_local_ordinal() def get_rank(self) -> int: return xm.get_ordinal() def get_world_size(self) -> int: return xm.xrt_world_size() def get_nproc_per_node(self) -> int: return cast(int, self._nproc_per_node) def get_nnodes(self) -> int: return cast(int, self._nnodes) def get_node_rank(self) -> int: return cast(int, self._node) def device(self) -> torch.device: dev = torch_xla._XLAC._xla_get_default_device() return torch.device(dev) def backend(self) -> str: return self._backend def finalize(self) -> None: pass @staticmethod def _dist_worker_task_fn( local_rank: int, backend: str, fn: Callable, args: Tuple, kwargs_dict: Mapping ) -> None: from ignite.distributed.utils import _set_model, finalize model = _XlaDistModel.create_from_backend(backend) _set_model(model) fn(local_rank, *args, **kwargs_dict) finalize() @staticmethod def spawn( fn: Callable, args: Tuple, kwargs_dict: Optional[Mapping] = None, nproc_per_node: int = 1, nnodes: int = 1, node_rank: int = 0, backend: str = XLA_TPU, **kwargs: Any, ) -> None: if "start_method" not in kwargs: kwargs["start_method"] = "fork" xmp.spawn( _XlaDistModel._dist_worker_task_fn, args=(backend, fn, args, kwargs_dict), nprocs=nproc_per_node, **kwargs, ) _collective_op_dtype = torch.float32 _reduce_op_map = { "SUM": "sum", "PRODUCT": "mul", "MIN": "min", "MAX": "max", "AND": "and", "OR": "or", } def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor: if group is not None and not self._check_group_type(group): raise ValueError("Argument group should be list of int") op = self._reduce_op_map[op] xm.all_reduce(op, [tensor], groups=group) return tensor def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor: # from https://github.com/jysohn23/xla/blob/model-parallel-colab/Gather_Scatter_Broadcast_PyTorch_XLA.ipynb if group is not None and (not isinstance(group, list) or not all(isinstance(item, int) for item in group)): raise ValueError("Argument group should be list of int") group_size = self.get_world_size() output = torch.zeros((group_size,) + tensor.shape, dtype=tensor.dtype, device=tensor.device) output[self.get_rank() % group_size] = tensor xm.all_reduce("sum", [output], groups=group) return output.reshape(-1, *output.shape[2:]) def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> List[Any]: raise NotImplementedError("all_gather on object is not implemented for xla") def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any: return [ranks] def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor: # from https://github.com/jysohn23/xla/blob/model-parallel-colab/Gather_Scatter_Broadcast_PyTorch_XLA.ipynb if src != self.get_rank(): tensor.fill_(0.0) xm.all_reduce("sum", [tensor]) return tensor def barrier(self) -> None: xm.rendezvous("barrier") def _check_group_type(self, group: Optional[Any]) -> bool: if isinstance(group, list) and all(isinstance(item, int) for item in group): return True return False ignite-0.5.1/ignite/distributed/launcher.py000066400000000000000000000322641465426447700210020ustar00rootroot00000000000000from typing import Any, Callable, Dict, Optional from ignite.distributed import utils as idist from ignite.utils import setup_logger __all__ = [ "Parallel", ] class Parallel: """Distributed launcher context manager to simplify distributed configuration setup for multiple backends: - backends from native torch distributed configuration: "nccl", "gloo" and "mpi" (if available) - XLA on TPUs via `pytorch/xla `_ (if installed) - using `Horovod distributed framework `_ (if installed) Namely, it can: 1) Spawn ``nproc_per_node`` child processes and initialize a processing group according to provided ``backend`` (useful for standalone scripts). 2) Only initialize a processing group given the ``backend`` (useful with tools like `torchrun`_, `horovodrun`_, etc). Args: backend: backend to use: `nccl`, `gloo`, `xla-tpu`, `horovod`. If None, no distributed configuration. nproc_per_node: optional argument, number of processes per node to specify. If not None, :meth:`~ignite.distributed.launcher.Parallel.run` will spawn ``nproc_per_node`` processes that run input function with its arguments. nnodes: optional argument, number of nodes participating in distributed configuration. If not None, :meth:`~ignite.distributed.launcher.Parallel.run` will spawn ``nproc_per_node`` processes that run input function with its arguments. Total world size is `nproc_per_node * nnodes`. This option is only supported by native torch distributed module. For other modules, please setup ``spawn_kwargs`` with backend specific arguments. node_rank: optional argument, current machine index. Mandatory argument if ``nnodes`` is specified and larger than one. This option is only supported by native torch distributed module. For other modules, please setup ``spawn_kwargs`` with backend specific arguments. master_addr: optional argument, master node TCP/IP address for torch native backends (`nccl`, `gloo`). Mandatory argument if ``nnodes`` is specified and larger than one. master_port: optional argument, master node port for torch native backends (`nccl`, `gloo`). Mandatory argument if ``master_addr`` is specified. init_method: optional argument to specify processing group initialization method for torch native backends (`nccl`, `gloo`). Default, "env://". See more info: `dist.init_process_group`_. spawn_kwargs: kwargs to ``idist.spawn`` function. Examples: 1) Single node or Multi-node, Multi-GPU training launched with `torchrun` or `horovodrun`_ tools Single node option with 4 GPUs .. code-block:: bash torchrun --nproc_per_node=4 main.py # or if installed horovod horovodrun -np=4 python main.py Multi-node option : 2 nodes with 8 GPUs each .. code-block:: bash ## node 0 torchrun --nnodes=2 --node_rank=0 --master_addr=master --master_port=3344 \ --nproc_per_node=8 main.py # or if installed horovod horovodrun -np 16 -H hostname1:8,hostname2:8 python main.py ## node 1 torchrun --nnodes=2 --node_rank=1 --master_addr=master --master_port=3344 \ --nproc_per_node=8 main.py User code is the same for both options: .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... backend = "nccl" # or "horovod" if package is installed config = {"key": "value"} with idist.Parallel(backend=backend) as parallel: parallel.run(training, config, a=1, b=2) 2) Single node, Multi-GPU training launched with `python` .. code-block:: bash python main.py .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... backend = "nccl" # or "horovod" if package is installed # no "init_method" was specified , "env://" will be used with idist.Parallel(backend=backend, nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) Initializing the process using ``file://`` .. code-block:: python with idist.Parallel(backend=backend, init_method='file:///d:/tmp/some_file', nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) Initializing the process using ``tcp://`` .. code-block:: python with idist.Parallel(backend=backend, init_method='tcp://10.1.1.20:23456', nproc_per_node=4) as parallel: parallel.run(training, config, a=1, b=2) 3) Single node, Multi-TPU training launched with `python` .. code-block:: bash python main.py .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... config = {"key": "value"} with idist.Parallel(backend="xla-tpu", nproc_per_node=8) as parallel: parallel.run(training, config, a=1, b=2) 4) Multi-node, Multi-GPU training launched with `python`. For example, 2 nodes with 8 GPUs: Using torch native distributed framework: .. code-block:: bash # node 0 python main.py --node_rank=0 # node 1 python main.py --node_rank=1 .. code-block:: python # main.py import ignite.distributed as idist def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... dist_config = { "nproc_per_node": 8, "nnodes": 2, "node_rank": args.node_rank, "master_addr": "master", "master_port": 15000 } config = {"key": "value"} with idist.Parallel(backend="nccl", **dist_config) as parallel: parallel.run(training, config, a=1, b=2) .. _torchrun: https://pytorch.org/docs/stable/elastic/run.html#launcher-api .. _horovodrun: https://horovod.readthedocs.io/en/latest/api.html#module-horovod.run .. _dist.init_process_group: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group .. versionchanged:: 0.4.2 ``backend`` now accepts `horovod` distributed framework. .. versionchanged:: 0.4.5 ``init_method`` added. """ def __init__( self, backend: Optional[str] = None, nproc_per_node: Optional[int] = None, nnodes: Optional[int] = None, node_rank: Optional[int] = None, master_addr: Optional[str] = None, master_port: Optional[int] = None, init_method: Optional[str] = None, **spawn_kwargs: Any, ) -> None: if backend is not None: if backend not in idist.available_backends(): raise ValueError(f"Unknown backend '{backend}'. Available backends: {idist.available_backends()}") else: arg_names = ["nproc_per_node", "nnodes", "node_rank", "master_addr", "master_port"] arg_values = [nproc_per_node, nnodes, node_rank, master_addr, master_port] for name, value in zip(arg_names, arg_values): if value is not None: raise ValueError(f"If backend is None, argument '{name}' should be also None, but given {value}") self.backend = backend self._spawn_params = None self.init_method = init_method if self.backend is not None: if nproc_per_node is not None: self._spawn_params = self._setup_spawn_params( nproc_per_node, nnodes, node_rank, master_addr, master_port, init_method, **spawn_kwargs ) # The logger will be setup after the idist.initialize() call self._logger = None @staticmethod def _setup_spawn_params( nproc_per_node: int, nnodes: Optional[int] = None, node_rank: Optional[int] = None, master_addr: Optional[str] = None, master_port: Optional[int] = None, init_method: Optional[str] = None, **spawn_kwargs: Any, ) -> Dict: if nproc_per_node < 1: raise ValueError(f"Argument nproc_per_node should positive, but given {nproc_per_node}") if nnodes is None: nnodes = 1 if nnodes < 1: raise ValueError(f"Argument nnodes should positive, but given {nnodes}") if node_rank is None: if nnodes > 1: raise ValueError("If number of nodes larger than one, arguments node_rank should be given") node_rank = 0 if node_rank >= nnodes or node_rank < 0: raise ValueError(f"Argument node_rank should be between 0 and {nnodes - 1}, but given {node_rank}") if nnodes > 1 and (master_addr is None or master_port is None) and init_method is None: raise ValueError( "If number of nodes larger than one, arguments master_addr and master_port or init_method " f"should be specified, but given master_addr={master_addr}, master_port={master_port} and " f"init_method={init_method}." ) params = { "nproc_per_node": nproc_per_node, "nnodes": nnodes, "node_rank": node_rank, "master_addr": master_addr, "master_port": master_port, "init_method": init_method, } params.update(spawn_kwargs) return {k: v for k, v in params.items() if v is not None} def run(self, func: Callable, *args: Any, **kwargs: Any) -> None: """Execute ``func`` with provided arguments in distributed context. Args: func: function to execute. First argument of the function should be `local_rank` - local process index. args: positional arguments of ``func`` (without `local_rank`). kwargs: keyword arguments of ``func``. Examples: .. code-block:: python def training(local_rank, config, **kwargs): # ... print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend()) # ... config = {"key": "value"} with idist.Parallel(backend=backend) as parallel: parallel.run(training, config, a=1, b=2) """ if self._spawn_params is not None and self.backend is not None: self._logger.info( # type: ignore[attr-defined] f"Spawn function '{func}' in {self._spawn_params['nproc_per_node']} processes" ) idist.spawn(self.backend, func, args=args, kwargs_dict=kwargs, **self._spawn_params) else: self._logger.info(f"- Run '{func}' in {idist.get_world_size()} processes") # type: ignore[attr-defined] local_rank = idist.get_local_rank() func(local_rank, *args, **kwargs) self._logger.info("End of run") # type: ignore[attr-defined] def __enter__(self) -> "Parallel": if self.backend is not None and self._spawn_params is None: idist.initialize(self.backend, init_method=self.init_method) # The logger can be setup from now since idist.initialize() has been called (if needed) self._logger = setup_logger(__name__ + "." + self.__class__.__name__) # type: ignore[assignment] if self.backend is not None: if self._spawn_params is None: self._logger.info( # type: ignore[attr-defined] f"Initialized processing group with backend: '{self.backend}'" ) else: self._logger.info( # type: ignore[attr-defined] f"Initialized distributed launcher with backend: '{self.backend}'" ) msg = "\n\t".join([f"{k}: {v}" for k, v in self._spawn_params.items() if v is not None]) self._logger.info(f"- Parameters to spawn processes: \n\t{msg}") # type: ignore[attr-defined] return self def __exit__(self, *args: Any, **kwargs: Any) -> None: if (self.backend is not None) and self._spawn_params is None: self._logger.info( # type: ignore[attr-defined] f"Finalized processing group with backend: '{self.backend}'" ) idist.finalize() ignite-0.5.1/ignite/distributed/utils.py000066400000000000000000000541201465426447700203340ustar00rootroot00000000000000import socket from contextlib import contextmanager from functools import wraps from typing import Any, Callable, List, Mapping, Optional, Tuple, Union import torch from ignite.distributed.comp_models import ( _SerialModel, has_hvd_support, has_native_dist_support, has_xla_support, registered_computation_models, ) from ignite.utils import setup_logger __all__ = [ "backend", "broadcast", "device", "available_backends", "model_name", "get_world_size", "get_rank", "get_local_rank", "get_nproc_per_node", "get_node_rank", "get_nnodes", "spawn", "initialize", "finalize", "show_config", "set_local_rank", "all_reduce", "all_gather", "barrier", "hostname", "has_xla_support", "has_native_dist_support", "has_hvd_support", "sync", "registered_computation_models", "one_rank_only", "new_group", "one_rank_first", ] _model = _SerialModel() _need_to_sync = True def sync(temporary: bool = False) -> None: """Helper method to force this module to synchronize with current distributed context. This method should be used when distributed context is manually created or destroyed. Args: temporary: If True, distributed model synchronization is done every call of ``idist.get_*`` methods. This may have a negative performance impact. """ global _model for comp_model_cls in registered_computation_models: if comp_model_cls == _SerialModel: continue model = comp_model_cls.create_from_context() if model is not None: _set_model(model, temporary=temporary) return _model = _SerialModel() def device() -> torch.device: """Returns current device according to current distributed configuration. - `torch.device("cpu")` if no distributed configuration or torch native gloo distributed configuration - `torch.device("cuda:local_rank")` if torch native nccl or horovod distributed configuration - `torch.device("xla:index")` if XLA distributed configuration Returns: torch.device .. versionchanged:: 0.4.2 Added Horovod distributed framework. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.device() def backend() -> Optional[str]: """Returns computation model's backend. - `None` for no distributed configuration - "nccl" or "gloo" or "mpi" for native torch distributed configuration - "xla-tpu" for XLA distributed configuration - "horovod" for Horovod distributed framework Returns: str or None .. versionchanged:: 0.4.2 Added Horovod distributed framework. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.backend() def available_backends() -> Tuple[str, ...]: """Returns available backends.""" out: Tuple[str, ...] = () for m in registered_computation_models: out += m.available_backends return out def model_name() -> str: """Returns distributed configuration name (given by ignite) - `serial` for no distributed configuration - `native-dist` for native torch distributed configuration - `xla-dist` for XLA distributed configuration - `horovod-dist` for Horovod distributed framework .. versionchanged:: 0.4.2 `horovod-dist` will be returned for Horovod distributed framework. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.name def get_world_size() -> int: """Returns world size of current distributed configuration. Returns 1 if no distributed configuration.""" if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_world_size() def get_rank() -> int: """Returns process rank within current distributed configuration. Returns 0 if no distributed configuration.""" if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_rank() def get_local_rank() -> int: """Returns local process rank within current distributed configuration. Returns 0 if no distributed configuration.""" if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_local_rank() def get_nproc_per_node() -> int: """Returns number of processes (or tasks) per node within current distributed configuration. Returns 1 if no distributed configuration. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_nproc_per_node() def get_nnodes() -> int: """Returns number of nodes within current distributed configuration. Returns 1 if no distributed configuration. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_nnodes() def get_node_rank() -> int: """Returns node rank within current distributed configuration. Returns 0 if no distributed configuration. """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.get_node_rank() def hostname() -> str: """Returns host name for current process within current distributed configuration.""" return socket.gethostname() def spawn( backend: str, fn: Callable, args: Tuple, kwargs_dict: Optional[Mapping] = None, nproc_per_node: int = 1, **kwargs: Any, ) -> None: """Spawns ``nproc_per_node`` processes that run ``fn`` with ``args``/``kwargs_dict`` and initialize distributed configuration defined by ``backend``. Args: backend: backend to use: `nccl`, `gloo`, `xla-tpu`, `horovod` fn: function to called as the entrypoint of the spawned process. This function must be defined at the top level of a module so it can be pickled and spawned. This is a requirement imposed by multiprocessing. The function is called as ``fn(i, *args, **kwargs_dict)``, where `i` is the process index and args is the passed through tuple of arguments. args: arguments passed to `fn`. kwargs_dict: kwargs passed to `fn`. nproc_per_node: number of processes to spawn on a single node. Default, 1. kwargs: acceptable kwargs according to provided backend: - | "nccl" or "gloo" : ``nnodes`` (default, 1), ``node_rank`` (default, 0), ``master_addr`` | (default, "127.0.0.1"), ``master_port`` (default, 2222), ``init_method`` (default, "env://"), | `timeout` to `dist.init_process_group`_ function | and kwargs for `mp.start_processes`_ function. - | "xla-tpu" : ``nnodes`` (default, 1), ``node_rank`` (default, 0) and kwargs to `xmp.spawn`_ function. - | "horovod": ``hosts`` (default, None) and other kwargs to `hvd_run`_ function. Arguments ``nnodes=1`` | and ``node_rank=0`` are tolerated and ignored, otherwise an exception is raised. Examples: 1) Launch single node multi-GPU training using torch native distributed framework .. code-block:: python # >>> python main.py # main.py import ignite.distributed as idist def train_fn(local_rank, a, b, c, d=12): import torch.distributed as dist assert dist.is_available() and dist.is_initialized() assert dist.get_world_size() == 4 device = idist.device() assert device == torch.device(f"cuda:{local_rank}") idist.spawn("nccl", train_fn, args=(a, b, c), kwargs_dict={"d": 23}, nproc_per_node=4) 2) Launch multi-node multi-GPU training using torch native distributed framework .. code-block:: python # >>> (node 0): python main.py --node_rank=0 --nnodes=8 --master_addr=master --master_port=2222 # >>> (node 1): python main.py --node_rank=1 --nnodes=8 --master_addr=master --master_port=2222 # >>> ... # >>> (node 7): python main.py --node_rank=7 --nnodes=8 --master_addr=master --master_port=2222 # main.py import torch import ignite.distributed as idist def train_fn(local_rank, nnodes, nproc_per_node): import torch.distributed as dist assert dist.is_available() and dist.is_initialized() assert dist.get_world_size() == nnodes * nproc_per_node device = idist.device() assert device == torch.device(f"cuda:{local_rank}") idist.spawn( "nccl", train_fn, args=(nnodes, nproc_per_node), nproc_per_node=nproc_per_node, nnodes=nnodes, node_rank=node_rank, master_addr=master_addr, master_port=master_port ) 3) Launch single node multi-TPU training (for example on Google Colab) using PyTorch/XLA .. code-block:: python # >>> python main.py # main.py import ignite.distributed as idist def train_fn(local_rank, a, b, c, d=12): import torch_xla.core.xla_model as xm assert xm.get_world_size() == 8 device = idist.device() assert "xla" in device.type idist.spawn("xla-tpu", train_fn, args=(a, b, c), kwargs_dict={"d": 23}, nproc_per_node=8) .. _dist.init_process_group: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group .. _mp.start_processes: https://pytorch.org/docs/stable/multiprocessing.html#torch.multiprocessing.spawn.spawn .. _xmp.spawn: https://pytorch.org/xla/release/1.6/index.html#torch_xla.distributed.xla_multiprocessing.spawn .. _hvd_run: https://horovod.readthedocs.io/en/latest/api.html#module-horovod.run .. versionchanged:: 0.4.2 ``backend`` now accepts `horovod` distributed framework. """ _assert_backend(backend) if kwargs_dict is None: kwargs_dict = {} for comp_model_cls in registered_computation_models: if backend not in comp_model_cls.available_backends: continue comp_model_cls.spawn( fn, args=args, kwargs_dict=kwargs_dict, nproc_per_node=nproc_per_node, backend=backend, **kwargs ) def all_reduce( tensor: Union[torch.Tensor, float], op: str = "SUM", group: Optional[Union[Any, List[int]]] = None ) -> Union[torch.Tensor, float]: """Helper method to perform all reduce operation. Args: tensor: tensor or number to collect across participating processes. op: reduction operation, "SUM" by default. Possible values: "SUM", "PRODUCT", "MIN", "MAX", "AND", "OR". Horovod backend supports only "SUM", "AVERAGE", "ADASUM", "MIN", "MAX", "PRODUCT". group: list of integer or the process group for each backend. If None, the default process group will be used. Returns: torch.Tensor or number .. versionchanged:: 0.4.11 added ``group`` """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) if isinstance(group, list) and all(isinstance(item, int) for item in group): group = _model.new_group(group) return _model.all_reduce(tensor, op, group=group) def all_gather( tensor: Union[torch.Tensor, float, str, Any], group: Optional[Union[Any, List[int]]] = None ) -> Union[torch.Tensor, float, List[float], List[str], List[Any]]: """Helper method to perform all gather operation. Args: tensor: tensor or number or str to collect across participating processes. If tensor, it should have the same shape across processes. group: list of integer or the process group for each backend. If None, the default process group will be used. Returns: If input is a tensor, returns a torch.Tensor of shape ``(world_size * tensor.shape[0], tensor.shape[1], ...)``. If input is a number, a torch.Tensor of shape ``(world_size, )`` is returned and finally a list of strings is returned if input is a string. If current process does not belong to `group`, the very ``tensor`` is returned. .. versionchanged:: 0.4.11 added ``group`` """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) if isinstance(group, list) and all(isinstance(item, int) for item in group): group = _model.new_group(group) return _model.all_gather(tensor, group=group) def broadcast( tensor: Union[torch.Tensor, float, str, None], src: int = 0, safe_mode: bool = False ) -> Union[torch.Tensor, float, str]: """Helper method to perform broadcast operation. Args: tensor: tensor or number or str to broadcast to participating processes. Make sure to respect data type of torch tensor input for all processes, otherwise execution will crash. Can use None for non-source data with ``safe_mode=True``. src: source rank. Default, 0. safe_mode: if True, non source input data can be ``None`` or anything (will be discarded), otherwise data type of the input ``tensor`` should be respected for all processes. Please, keep in mind, this mode is working only for dense tensors as source input if a tensor is provided. It also leads to some additional collectives before the broadcast, making it slower than without using this mode. Default, False. Returns: torch.Tensor or string or number Examples: .. code-block:: python y = None if idist.get_rank() == 0: t1 = torch.rand(4, 5, 6, device=idist.device()) s1 = "abc" x = 12.3456 y = torch.rand(1, 2, 3, device=idist.device()) else: t1 = torch.empty(4, 5, 6, device=idist.device()) s1 = "" x = 0.0 # Broadcast tensor t1 from rank 0 to all processes t1 = idist.broadcast(t1, src=0) assert isinstance(t1, torch.Tensor) # Broadcast string s1 from rank 0 to all processes s1 = idist.broadcast(s1, src=0) # >>> s1 = "abc" # Broadcast float number x from rank 0 to all processes x = idist.broadcast(x, src=0) # >>> x = 12.3456 # Broadcast any of those types from rank 0, # but other ranks do not define the placeholder y = idist.broadcast(y, src=0, safe_mode=True) assert isinstance(y, torch.Tensor) .. versionadded:: 0.4.2 .. versionchanged:: 0.4.5 added ``safe_mode`` """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.broadcast(tensor, src=src, safe_mode=safe_mode) def barrier() -> None: """Helper method to synchronize all processes.""" if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) _model.barrier() def new_group(ranks: List[int], **kwargs: Any) -> Any: """Helper method to make group for each backend from ranks. Args: ranks: subset of ranks to be grouped. kwargs: acceptable kwargs according to provided backend: - | "nccl" or "gloo" : ``backend (=None)``, ``pg_options (=None)``. Examples: Launch single node multi-GPU training with ``torchrun`` utility. .. code-block:: python import ignite.distributed as idist ranks = [0, 1] group = idist.new_group(ranks) .. versionadded:: 0.4.11 """ if _need_to_sync and isinstance(_model, _SerialModel): sync(temporary=True) return _model.new_group(ranks, **kwargs) def set_local_rank(index: int) -> None: """Method to hint the local rank in case if torch native distributed context is created by user without using :meth:`~ignite.distributed.utils.initialize` or :meth:`~ignite.distributed.utils.spawn`. Args: index: local rank or current process index Examples: User set up torch native distributed process group .. code-block:: python import ignite.distributed as idist def run(local_rank, *args, **kwargs): idist.set_local_rank(local_rank) # ... dist.init_process_group(**dist_info) # ... """ from ignite.distributed.comp_models.base import ComputationModel ComputationModel._ext_local_rank = index def _set_model(model: Any, temporary: bool = False) -> None: global _model, _need_to_sync _model = model _need_to_sync = True if not isinstance(_model, _SerialModel) and not temporary: _need_to_sync = False def _assert_backend(backend: str) -> None: backends = available_backends() if backend not in backends: raise ValueError(f"Backend should be one of '{backends}'") def initialize(backend: str, **kwargs: Any) -> None: """Initializes distributed configuration according to provided ``backend`` Args: backend: backend: `nccl`, `gloo`, `xla-tpu`, `horovod`. kwargs: acceptable kwargs according to provided backend: - | "nccl" or "gloo" : ``timeout(=timedelta(minutes=30))``, ``init_method(=None)``, | ``rank(=None)``, ``world_size(=None)``. | By default, ``init_method`` will be "env://". See more info about parameters: `torch_init`_. - | "horovod" : comm(=None), more info: `hvd_init`_. Examples: Launch single node multi-GPU training with ``torchrun`` utility. .. code-block:: python # >>> torchrun --nproc_per_node=4 main.py # main.py import ignite.distributed as idist def train_fn(local_rank, a, b, c): import torch.distributed as dist assert dist.is_available() and dist.is_initialized() assert dist.get_world_size() == 4 device = idist.device() assert device == torch.device(f"cuda:{local_rank}") backend = "nccl" # or "gloo" or "horovod" or "xla-tpu" idist.initialize(backend) # or for torch native distributed on Windows: # idist.initialize("nccl", init_method="file://tmp/shared") local_rank = idist.get_local_rank() train_fn(local_rank, a, b, c) idist.finalize() .. _torch_init: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group .. _hvd_init: https://horovod.readthedocs.io/en/latest/api.html#module-horovod.torch .. versionchanged:: 0.4.2 ``backend`` now accepts `horovod` distributed framework. .. versionchanged:: 0.4.5 ``kwargs`` now accepts ``init_method``, ``rank``, ``world_size`` for PyTorch native distributed backend. """ if not (has_xla_support or has_native_dist_support or has_hvd_support): # nothing to do => serial model # maybe warn about this return _assert_backend(backend) for comp_model_cls in registered_computation_models: if backend not in comp_model_cls.available_backends: continue _set_model(comp_model_cls(backend, **kwargs)) def finalize() -> None: """Finalizes distributed configuration. For example, in case of native pytorch distributed configuration, it calls ``dist.destroy_process_group()``. """ _model.finalize() _set_model(_SerialModel()) def show_config() -> None: """Helper method to display distributed configuration via ``logging``.""" # setup parallel logger logger = setup_logger(__name__) logger.info(f"distributed configuration: {model_name()}") logger.info(f"backend: {backend()}") logger.info(f"device: {device().type}") logger.info(f"hostname: {hostname()}") logger.info(f"world size: {get_world_size()}") logger.info(f"rank: {get_rank()}") logger.info(f"local rank: {get_local_rank()}") logger.info(f"num processes per_node: {get_nproc_per_node()}") logger.info(f"num nodes: {get_nnodes()}") logger.info(f"node rank: {get_node_rank()}") def one_rank_only(rank: int = 0, with_barrier: bool = False) -> Callable: """Decorator to filter handlers wrt a rank number Args: rank: rank number of the handler (default: 0). with_barrier: synchronisation with a barrier (default: False). Examples: .. code-block:: python engine = ... @engine.on(...) @one_rank_only() # means @one_rank_only(rank=0) def some_handler(_): ... @engine.on(...) @one_rank_only(rank=1) def some_handler(_): ... """ def _one_rank_only(func: Callable) -> Callable: @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Optional[Any]: ret = None if get_rank() == rank: ret = func(*args, **kwargs) if with_barrier: barrier() return ret return wrapper return _one_rank_only @contextmanager def one_rank_first(rank: int = 0, local: bool = False) -> Any: """Context manager that ensures a specific rank runs first before others in a distributed environment. Args: rank: rank of the process that should execute the code block inside the context manager first. Default, 0. local: flag to specify local rank or global rank. If True ``rank`` argument will define a local rank to run first. Default, False Examples: .. code-block:: python def download_dataset(): ... with idist.one_rank_first(): ds = download_dataset() dp = ds[0] .. versionadded:: 0.4.13 """ current_rank = get_local_rank() if local else get_rank() size = get_nproc_per_node() if local else get_world_size() if rank >= size or rank < 0: raise ValueError(f"rank should be between 0 and {size - 1}, but given {rank}") if current_rank != rank: barrier() yield if current_rank == rank: barrier() ignite-0.5.1/ignite/engine/000077500000000000000000000000001465426447700155435ustar00rootroot00000000000000ignite-0.5.1/ignite/engine/__init__.py000066400000000000000000001064261465426447700176650ustar00rootroot00000000000000from collections.abc import Mapping from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union import torch import ignite.distributed as idist from ignite.engine.deterministic import DeterministicEngine from ignite.engine.engine import Engine from ignite.engine.events import CallableEventWithFilter, EventEnum, Events, EventsList, RemovableEventHandle, State from ignite.metrics import Metric from ignite.utils import convert_tensor __all__ = [ "State", "create_supervised_trainer", "create_supervised_evaluator", "Engine", "DeterministicEngine", "Events", "EventsList", "EventEnum", "CallableEventWithFilter", "RemovableEventHandle", "supervised_training_step", "supervised_training_step_amp", "supervised_training_step_apex", "supervised_training_step_tpu", "supervised_evaluation_step", "supervised_evaluation_step_amp", ] def _prepare_batch( batch: Sequence[torch.Tensor], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False ) -> Tuple[Union[torch.Tensor, Sequence, Mapping, str, bytes], ...]: """Prepare batch for training or evaluation: pass to a device with options.""" x, y = batch return ( convert_tensor(x, device=device, non_blocking=non_blocking), convert_tensor(y, device=device, non_blocking=non_blocking), ) def supervised_training_step( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable[[Any, Any], torch.Tensor], torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any, torch.Tensor], Any] = lambda x, y, y_pred, loss: loss.item(), gradient_accumulation_steps: int = 1, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """Factory function for supervised training. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function that receives `y_pred` and `y`, and returns the loss as a tensor. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the form as required by the loss function output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Callable: update function. Examples: .. code-block:: python from ignite.engine import Engine, supervised_training_step model = ... optimizer = ... loss_fn = ... update_fn = supervised_training_step(model, optimizer, loss_fn, 'cuda') trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 Added Gradient Accumulation. .. versionchanged:: 0.4.11 Added `model_transform` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample .. versionchanged:: 0.5.0 Added support for ``mps`` device """ if gradient_accumulation_steps <= 0: raise ValueError( "Gradient_accumulation_steps must be strictly positive. " "No gradient accumulation if the value set to one (default)." ) def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: if (engine.state.iteration - 1) % gradient_accumulation_steps == 0: optimizer.zero_grad() model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) output = model_fn(model, x) y_pred = model_transform(output) loss = loss_fn(y_pred, y) if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: optimizer.step() return output_transform(x, y, y_pred, loss * gradient_accumulation_steps) return update def supervised_training_step_amp( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable[[Any, Any], torch.Tensor], torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any, torch.Tensor], Any] = lambda x, y, y_pred, loss: loss.item(), scaler: Optional["torch.cuda.amp.GradScaler"] = None, gradient_accumulation_steps: int = 1, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """Factory function for supervised training using ``torch.cuda.amp``. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function that receives `y_pred` and `y`, and returns the loss as a tensor. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the form as required by the loss function output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. scaler: GradScaler instance for gradient scaling. (default: None) gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Callable: update function Examples: .. code-block:: python from ignite.engine import Engine, supervised_training_step_amp model = ... optimizer = ... loss_fn = ... scaler = torch.cuda.amp.GradScaler(2**10) update_fn = supervised_training_step_amp(model, optimizer, loss_fn, 'cuda', scaler=scaler) trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 Added Gradient Accumulation. .. versionchanged:: 0.4.11 Added `model_transform` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample """ try: from torch.cuda.amp import autocast except ImportError: raise ImportError("Please install torch>=1.6.0 to use amp_mode='amp'.") if gradient_accumulation_steps <= 0: raise ValueError( "Gradient_accumulation_steps must be strictly positive. " "No gradient accumulation if the value set to one (default)." ) def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: if (engine.state.iteration - 1) % gradient_accumulation_steps == 0: optimizer.zero_grad() model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) with autocast(enabled=True): output = model_fn(model, x) y_pred = model_transform(output) loss = loss_fn(y_pred, y) if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps if scaler: scaler.scale(loss).backward() if engine.state.iteration % gradient_accumulation_steps == 0: scaler.step(optimizer) scaler.update() else: loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: optimizer.step() return output_transform(x, y, y_pred, loss * gradient_accumulation_steps) return update def supervised_training_step_apex( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable[[Any, Any], torch.Tensor], torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any, torch.Tensor], Any] = lambda x, y, y_pred, loss: loss.item(), gradient_accumulation_steps: int = 1, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """Factory function for supervised training using apex. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function that receives `y_pred` and `y`, and returns the loss as a tensor. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the form as required by the loss function output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Callable: update function. Examples: .. code-block:: python from ignite.engine import Engine, supervised_training_step_apex model = ... optimizer = ... loss_fn = ... update_fn = supervised_training_step_apex(model, optimizer, loss_fn, 'cuda') trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 Added Gradient Accumulation. .. versionchanged:: 0.4.11 Added `model_transform` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample """ try: from apex import amp as apex_amp except ModuleNotFoundError: raise ModuleNotFoundError("Please install apex from https://github.com/nvidia/apex to use amp_mode='apex'.") if gradient_accumulation_steps <= 0: raise ValueError( "Gradient_accumulation_steps must be strictly positive. " "No gradient accumulation if the value set to one (default)." ) def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: if (engine.state.iteration - 1) % gradient_accumulation_steps == 0: optimizer.zero_grad() model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) output = model_fn(model, x) y_pred = model_transform(output) loss = loss_fn(y_pred, y) if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps with apex_amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: optimizer.step() return output_transform(x, y, y_pred, loss * gradient_accumulation_steps) return update def supervised_training_step_tpu( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable[[Any, Any], torch.Tensor], torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any, torch.Tensor], Any] = lambda x, y, y_pred, loss: loss.item(), gradient_accumulation_steps: int = 1, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """Factory function for supervised training using ``torch_xla``. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function that receives `y_pred` and `y`, and returns the loss as a tensor. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, TPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the form as required by the loss function output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Callable: update function. Examples: .. code-block:: python from ignite.engine import Engine, supervised_training_step_tpu model = ... optimizer = ... loss_fn = ... update_fn = supervised_training_step_tpu(model, optimizer, loss_fn, 'xla') trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 Added Gradient Accumulation argument for all supervised training methods. .. versionchanged:: 0.4.11 Added `model_transform` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample """ try: import torch_xla.core.xla_model as xm except ModuleNotFoundError: raise ModuleNotFoundError("torch_xla cannot be imported, please install PyTorch XLA.") if gradient_accumulation_steps <= 0: raise ValueError( "Gradient_accumulation_steps must be strictly positive. " "No gradient accumulation if the value set to one (default)." ) def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: if (engine.state.iteration - 1) % gradient_accumulation_steps == 0: optimizer.zero_grad() model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) output = model_fn(model, x) y_pred = model_transform(output) loss = loss_fn(y_pred, y) if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: xm.optimizer_step(optimizer, barrier=True) return output_transform(x, y, y_pred, loss * gradient_accumulation_steps) return update def _check_arg( on_tpu: bool, on_mps: bool, amp_mode: Optional[str], scaler: Optional[Union[bool, "torch.cuda.amp.GradScaler"]] ) -> Tuple[Optional[str], Optional["torch.cuda.amp.GradScaler"]]: """Checking tpu, mps, amp and GradScaler instance combinations.""" if on_mps and amp_mode: raise ValueError("amp_mode cannot be used with mps device. Consider using amp_mode=None or device='cuda'.") if on_tpu and not idist.has_xla_support: raise RuntimeError("In order to run on TPU, please install PyTorch XLA") if amp_mode and on_tpu: raise ValueError("amp_mode cannot be used with xla device. Consider using amp_mode=None or device='cuda'.") if scaler: if amp_mode != "amp": raise ValueError(f"scaler argument is {scaler}, but amp_mode is {amp_mode}. Consider using amp_mode='amp'.") elif amp_mode == "amp" and isinstance(scaler, bool): try: from torch.cuda.amp import GradScaler except ImportError: raise ImportError("Please install torch>=1.6.0 to use scaler argument.") scaler = GradScaler(enabled=True) if on_tpu: return "tpu", None elif scaler and amp_mode == "amp": return amp_mode, scaler # type: ignore[return-value] else: return amp_mode, None def create_supervised_trainer( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable[[Any, Any], torch.Tensor], torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any, torch.Tensor], Any] = lambda x, y, y_pred, loss: loss.item(), deterministic: bool = False, amp_mode: Optional[str] = None, scaler: Union[bool, "torch.cuda.amp.GradScaler"] = False, gradient_accumulation_steps: int = 1, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Engine: """Factory function for creating a trainer for supervised models. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function that receives `y_pred` and `y`, and returns the loss as a tensor. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU or TPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the form as required by the loss function output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. deterministic: if True, returns deterministic engine of type :class:`~ignite.engine.deterministic.DeterministicEngine`, otherwise :class:`~ignite.engine.engine.Engine` (default: False). amp_mode: can be ``amp`` or ``apex``, model and optimizer will be casted to float16 using `torch.cuda.amp `_ for ``amp`` and using `apex `_ for ``apex``. (default: None) scaler: GradScaler instance for gradient scaling if `torch>=1.6.0` and ``amp_mode`` is ``amp``. If ``amp_mode`` is ``apex``, this argument will be ignored. If True, will create default GradScaler. If GradScaler instance is passed, it will be used instead. (default: False) gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: a trainer engine with supervised update function. Examples: Create a trainer .. code-block:: python from ignite.engine import create_supervised_trainer from ignite.utils import convert_tensor from ignite.handlers.tqdm_logger import ProgressBar model = ... loss = ... optimizer = ... dataloader = ... def prepare_batch_fn(batch, device, non_blocking): x = ... # get x from batch y = ... # get y from batch # return a tuple of (x, y) that can be directly runned as # `loss_fn(model(x), y)` return ( convert_tensor(x, device, non_blocking), convert_tensor(y, device, non_blocking) ) def output_transform_fn(x, y, y_pred, loss): # return only the loss is actually the default behavior for # trainer engine, but you can return anything you want return loss.item() trainer = create_supervised_trainer( model, optimizer, loss, prepare_batch=prepare_batch_fn, output_transform=output_transform_fn ) pbar = ProgressBar() pbar.attach(trainer, output_transform=lambda x: {"loss": x}) trainer.run(dataloader, max_epochs=5) Note: If ``scaler`` is True, GradScaler instance will be created internally and trainer state has attribute named ``scaler`` for that instance and can be used for saving and loading. Note: `engine.state.output` for this engine is defined by `output_transform` parameter and is the loss of the processed batch by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. For more information see: - `PyTorch Documentation `_ - `PyTorch's Explanation `_ .. warning:: If ``amp_mode='apex'`` , the model(s) and optimizer(s) must be initialized beforehand since ``amp.initialize`` should be called after you have finished constructing your model(s) and optimizer(s), but before you send your model through any DistributedDataParallel wrapper. See more: https://nvidia.github.io/apex/amp.html#module-apex.amp .. versionchanged:: 0.4.5 - Added ``amp_mode`` argument for automatic mixed precision. - Added ``scaler`` argument for gradient scaling. .. versionchanged:: 0.4.7 Added Gradient Accumulation argument for all supervised training methods. .. versionchanged:: 0.4.11 Added ``model_transform`` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample .. versionchanged:: 0.5.0 Added support for ``mps`` device """ device_type = device.type if isinstance(device, torch.device) else device on_tpu = "xla" in device_type if device_type is not None else False on_mps = "mps" in device_type if device_type is not None else False mode, _scaler = _check_arg(on_tpu, on_mps, amp_mode, scaler) if mode == "amp": _update = supervised_training_step_amp( model, optimizer, loss_fn, device, non_blocking, prepare_batch, model_transform, output_transform, _scaler, gradient_accumulation_steps, model_fn, ) elif mode == "apex": _update = supervised_training_step_apex( model, optimizer, loss_fn, device, non_blocking, prepare_batch, model_transform, output_transform, gradient_accumulation_steps, model_fn, ) elif mode == "tpu": _update = supervised_training_step_tpu( model, optimizer, loss_fn, device, non_blocking, prepare_batch, model_transform, output_transform, gradient_accumulation_steps, model_fn, ) else: _update = supervised_training_step( model, optimizer, loss_fn, device, non_blocking, prepare_batch, model_transform, output_transform, gradient_accumulation_steps, model_fn, ) trainer = Engine(_update) if not deterministic else DeterministicEngine(_update) if _scaler and scaler and isinstance(scaler, bool): trainer.state.scaler = _scaler # type: ignore[attr-defined] return trainer def supervised_evaluation_step( model: torch.nn.Module, device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any], Any] = lambda x, y, y_pred: (y_pred, y), model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """ Factory function for supervised evaluation. Args: model: the model to train. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the predictions: ``y_pred = model_transform(model(x))``. output_transform: function that receives 'x', 'y', 'y_pred' and returns value to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits output expected by metrics. If you change it you should use `output_transform` in metrics. model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Inference function. Note: `engine.state.output` for this engine is defined by `output_transform` parameter and is a tuple of `(batch_pred, batch_y)` by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. .. versionadded:: 0.4.5 .. versionchanged:: 0.4.12 Added ``model_transform`` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample """ def evaluate_step(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.eval() with torch.no_grad(): x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) output = model_fn(model, x) y_pred = model_transform(output) return output_transform(x, y, y_pred) return evaluate_step def supervised_evaluation_step_amp( model: torch.nn.Module, device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any], Any] = lambda x, y, y_pred: (y_pred, y), model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Callable: """ Factory function for supervised evaluation using ``torch.cuda.amp``. Args: model: the model to train. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the predictions: ``y_pred = model_transform(model(x))``. output_transform: function that receives 'x', 'y', 'y_pred' and returns value to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits output expected by metrics. If you change it you should use `output_transform` in metrics. model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: Inference function. Note: `engine.state.output` for this engine is defined by `output_transform` parameter and is a tuple of `(batch_pred, batch_y)` by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. .. versionadded:: 0.4.5 .. versionchanged:: 0.4.12 Added ``model_transform`` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample """ try: from torch.cuda.amp import autocast except ImportError: raise ImportError("Please install torch>=1.6.0 to use amp_mode='amp'.") def evaluate_step(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.eval() with torch.no_grad(): x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) with autocast(enabled=True): output = model_fn(model, x) y_pred = model_transform(output) return output_transform(x, y, y_pred) return evaluate_step def create_supervised_evaluator( model: torch.nn.Module, metrics: Optional[Dict[str, Metric]] = None, device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, model_transform: Callable[[Any], Any] = lambda output: output, output_transform: Callable[[Any, Any, Any], Any] = lambda x, y, y_pred: (y_pred, y), amp_mode: Optional[str] = None, model_fn: Callable[[torch.nn.Module, Any], Any] = lambda model, x: model(x), ) -> Engine: """ Factory function for creating an evaluator for supervised models. Args: model: the model to train. metrics: a map of metric names to Metrics. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. model_transform: function that receives the output from the model and convert it into the predictions: ``y_pred = model_transform(model(x))``. output_transform: function that receives 'x', 'y', 'y_pred' and returns value to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits output expected by metrics. If you change it you should use `output_transform` in metrics. amp_mode: can be ``amp``, model will be casted to float16 using `torch.cuda.amp `_ model_fn: the model function that receives `model` and `x`, and returns `y_pred`. Returns: an evaluator engine with supervised inference function. Note: `engine.state.output` for this engine is defined by `output_transform` parameter and is a tuple of `(batch_pred, batch_y)` by default. .. warning:: The internal use of `device` has changed. `device` will now *only* be used to move the input data to the correct device. The `model` should be moved by the user before creating an optimizer. For more information see: - `PyTorch Documentation `_ - `PyTorch's Explanation `_ .. versionchanged:: 0.4.5 Added ``amp_mode`` argument for automatic mixed precision. .. versionchanged:: 0.4.12 Added ``model_transform`` to transform model's output .. versionchanged:: 0.4.13 Added `model_fn` to customize model's application on the sample .. versionchanged:: 0.5.0 Added support for ``mps`` device """ device_type = device.type if isinstance(device, torch.device) else device on_tpu = "xla" in device_type if device_type is not None else False on_mps = "mps" in device_type if device_type is not None else False mode, _ = _check_arg(on_tpu, on_mps, amp_mode, None) metrics = metrics or {} if mode == "amp": evaluate_step = supervised_evaluation_step_amp( model, device, non_blocking=non_blocking, prepare_batch=prepare_batch, model_transform=model_transform, output_transform=output_transform, model_fn=model_fn, ) else: evaluate_step = supervised_evaluation_step( model, device, non_blocking=non_blocking, prepare_batch=prepare_batch, model_transform=model_transform, output_transform=output_transform, model_fn=model_fn, ) evaluator = Engine(evaluate_step) for name, metric in metrics.items(): metric.attach(evaluator, name) return evaluator ignite-0.5.1/ignite/engine/deterministic.py000066400000000000000000000265601465426447700207710ustar00rootroot00000000000000import random import warnings from collections import OrderedDict from functools import wraps from typing import Any, Callable, Generator, Iterator, List, Optional import torch from torch.utils.data import DataLoader from torch.utils.data.sampler import BatchSampler from ignite.engine.engine import Engine from ignite.engine.events import Events from ignite.utils import manual_seed __all__ = ["update_dataloader", "keep_random_state", "ReproducibleBatchSampler", "DeterministicEngine"] def update_dataloader(dataloader: DataLoader, new_batch_sampler: BatchSampler) -> DataLoader: """Helper function to replace current batch sampler of the dataloader by a new batch sampler. Function returns new dataloader with new batch sampler. Args: dataloader: input dataloader new_batch_sampler: new batch sampler to use Returns: DataLoader """ params_keys = [k for k in dataloader.__dict__.keys() if not k.startswith("_")] for k in ["batch_size", "sampler", "drop_last", "batch_sampler", "dataset_kind"]: if k in params_keys: params_keys.remove(k) params = {k: getattr(dataloader, k) for k in params_keys} params["batch_sampler"] = new_batch_sampler return type(dataloader)(**params) class ReproducibleBatchSampler(BatchSampler): """Reproducible batch sampler. This class internally iterates and stores indices of the input batch sampler. This helps to start providing data batches from an iteration in a deterministic way. Args: batch_sampler: batch sampler same as used with `torch.utils.data.DataLoader`. start_iteration: optional start iteration. Examples: Setup dataloader with `ReproducibleBatchSampler` and start providing data batches from an iteration .. code-block:: python from ignite.engine.deterministic import update_dataloader dataloader = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) # rewind dataloader to a specific iteration: dataloader.batch_sampler.start_iteration = start_iteration """ def __init__(self, batch_sampler: BatchSampler, start_iteration: Optional[int] = None): if not isinstance(batch_sampler, BatchSampler): raise TypeError("Argument batch_sampler should be torch.utils.data.sampler.BatchSampler") self.batch_indices: List = [] self.batch_sampler = batch_sampler self.start_iteration = start_iteration self.sampler = self.batch_sampler.sampler def setup_batch_indices(self) -> None: """Setup batch indices.""" self.batch_indices = [] for batch in self.batch_sampler: self.batch_indices.append(batch) if self.start_iteration is not None: self.batch_indices = self.batch_indices[self.start_iteration :] self.start_iteration = None def __iter__(self) -> Generator: self.setup_batch_indices() for batch in self.batch_indices: yield batch def __len__(self) -> int: return len(self.batch_sampler) def _get_rng_states() -> List[Any]: output = [random.getstate(), torch.get_rng_state()] try: import numpy as np output.append(np.random.get_state()) except ImportError: pass return output def _set_rng_states(rng_states: List[Any]) -> None: random.setstate(rng_states[0]) if "cpu" not in rng_states[1].device.type: rng_states[1] = rng_states[1].cpu() torch.set_rng_state(rng_states[1]) try: import numpy as np np.random.set_state(rng_states[2]) except ImportError: pass def _repr_rng_state(rng_states: List[Any]) -> str: from hashlib import md5 out = " ".join([md5(str(list(s)).encode("utf-8")).hexdigest() for s in rng_states]) return out def keep_random_state(func: Callable) -> Callable: """Helper decorator to keep random state of torch, numpy and random intact while executing a function. For more details on usage, please see :ref:`Dataflow synchronization`. Args: func: function to decorate """ @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> None: rng_states = _get_rng_states() func(*args, **kwargs) _set_rng_states(rng_states) return wrapper class DeterministicEngine(Engine): """Deterministic engine derived from :class:`~ignite.engine.engine.Engine`. "Deterministic" run is done by adding additional handlers to synchronize the dataflow and overriding some methods of :class:`~ignite.engine.engine.Engine`: .. code-block:: python for e in range(num_epochs): set_seed(seed_offset + e) if resume: setup_saved_rng_states() do_single_epoch_iterations(dataloader) If input data provider is `DataLoader`, its batch sampler is replaced by :class:`~ignite.engine.deterministic.ReproducibleBatchSampler`. .. code-block:: python for e in range(num_epochs): set_seed(seed_offset + e) setup_sampling(dataloader) if resume: setup_saved_rng_states() do_single_epoch_iterations(dataloader) Internally, `torch.backends.cudnn.deterministic = True` and `torch.backends.cudnn.benchmark = False` are also applied. For more details about dataflow synchronization, please see :ref:`Dataflow synchronization`. .. Note :: This class can produce exactly the same dataflow when resuming the run from an epoch (or more precisely from dataflow restart) and using torch `DataLoader` with `num_workers > 1` as data provider. Args: process_function: A function receiving a handle to the engine and the current batch in each iteration, and returns data to be stored in the engine's state. """ def __init__(self, process_function: Callable[[Engine, Any], Any]): super(DeterministicEngine, self).__init__(process_function) self.state_dict_user_keys.append("rng_states") if not hasattr(self.state, "rng_states"): setattr(self.state, "rng_states", None) self.add_event_handler(Events.STARTED, self._init_run) self.add_event_handler(Events.DATALOADER_STOP_ITERATION | Events.TERMINATE_SINGLE_EPOCH, self._setup_seed) def state_dict(self) -> OrderedDict: state_dict = super(DeterministicEngine, self).state_dict() state_dict["rng_states"] = _get_rng_states() return state_dict def _init_run(self) -> None: self.state.seed = int(torch.randint(0, int(1e9), (1,)).item()) if torch.cuda.is_available(): if hasattr(torch, "use_deterministic_algorithms"): torch.use_deterministic_algorithms(True, warn_only=True) else: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def _setup_engine(self) -> None: if self.state.dataloader is None: raise ValueError( "Deterministic engine does not support the option of data=None. Please, provide data as iterable" ) self._dataloader_len = self._get_data_length(self.state.dataloader) # if input data is torch dataloader we replace batch sampler by a batch sampler # such that its random sampling indices are reproducible by prefetching them before data iteration if isinstance(self.state.dataloader, DataLoader): # attribute _dataset_kind is introduced since 1.3.0 => before 1.3.0 all datasets are map-like can_patch_dataloader = True if hasattr(self.state.dataloader, "_dataset_kind"): from torch.utils.data.dataloader import _DatasetKind _dataloader_kind = self.state.dataloader._dataset_kind can_patch_dataloader = _dataloader_kind == _DatasetKind.Map if can_patch_dataloader: if self._dataloader_len is not None and hasattr(self.state.dataloader.sampler, "epoch"): if self._dataloader_len != self.state.epoch_length: warnings.warn( "When defined engine's epoch length is different of input dataloader length, " "distributed sampler indices can not be setup in a reproducible manner" ) batch_sampler = self.state.dataloader.batch_sampler if not (batch_sampler is None or isinstance(batch_sampler, ReproducibleBatchSampler)): self.state.dataloader = update_dataloader( self.state.dataloader, ReproducibleBatchSampler(batch_sampler) # type: ignore[arg-type] ) iteration = self.state.iteration self._dataloader_iter = self._from_iteration(iteration) # Below we define initial counter value for _run_once_on_dataset to measure a single epoch if self.state.epoch_length is not None: iteration %= self.state.epoch_length self._init_iter = iteration # restore rng state if in the middle in_the_middle = self.state.iteration % self._dataloader_len > 0 if self._dataloader_len is not None else False rng_states = getattr(self.state, "rng_states", None) if rng_states is not None and in_the_middle: _set_rng_states(rng_states) setattr(self.state, "rng_states", None) def _from_iteration(self, iteration: int) -> Iterator: if self.state.dataloader is None: raise RuntimeError( "Internal error, self.state.dataloader is None. Please, file an issue if you encounter this error." ) data = self.state.dataloader if isinstance(data, DataLoader): try: # following is unsafe for IterableDatasets iteration %= len(data.batch_sampler) # type: ignore[arg-type] # Synchronize dataflow according to state.iteration self._setup_seed() if iteration > 0: # batch sampler is ReproducibleBatchSampler data.batch_sampler.start_iteration = iteration # type: ignore[union-attr] return iter(data) except TypeError as e: # Probably we can do nothing with DataLoader built upon IterableDatasets pass self.logger.info("Resuming from iteration for provided data will fetch data until required iteration ...") if hasattr(data, "__len__"): iteration %= len(data) # type: ignore[arg-type] # Synchronize dataflow from the begining self._setup_seed(iteration=0) data_iter = iter(data) counter = 0 while counter < iteration: try: next(data_iter) counter += 1 except StopIteration: data_iter = iter(data) return data_iter def _setup_seed(self, _: Any = None, iter_counter: Optional[int] = None, iteration: Optional[int] = None) -> None: if iter_counter is None: le = self._dataloader_len if self._dataloader_len is not None else 1 elif not iter_counter > 0: raise ValueError("iter_counter should be positive value") else: le = iter_counter if iteration is None: iteration = self.state.iteration manual_seed(self.state.seed + iteration // le) # type: ignore[operator] ignite-0.5.1/ignite/engine/engine.py000066400000000000000000001527061465426447700173750ustar00rootroot00000000000000import functools import logging import time import warnings import weakref from collections import defaultdict, OrderedDict from collections.abc import Mapping from typing import Any, Callable, Dict, Generator, Iterable, Iterator, List, Optional, Tuple, Union from torch.utils.data import DataLoader from ignite.base import Serializable from ignite.engine.events import CallableEventWithFilter, EventEnum, Events, EventsList, RemovableEventHandle, State from ignite.engine.utils import _check_signature, _to_hours_mins_secs __all__ = ["Engine"] class Engine(Serializable): """Runs a given ``process_function`` over each batch of a dataset, emitting events as it goes. Args: process_function: A function receiving a handle to the engine and the current batch in each iteration, and returns data to be stored in the engine's state. Attributes: state: object that is used to pass internal and user-defined state between event handlers. It is created with the engine and its attributes (e.g. ``state.iteration``, ``state.epoch`` etc) are reset on every :meth:`~ignite.engine.engine.Engine.run`. last_event_name: last event name triggered by the engine. Note: :class:`~ignite.engine.engine.Engine` implementation has changed in v0.4.10 with "interrupt/resume" feature. Engine may behave differently on certain corner cases compared to the one from v0.4.9 and before. In such case, you can set ``Engine.interrupt_resume_enabled = False`` to restore previous behaviour. Examples: Create a basic trainer .. code-block:: python model = ... model = model.cuda() optimized = ... criterion = ... def train_step(engine, batch): model.train() inputs, targets = batch[0].cuda(), batch[1].cuda() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() return loss.item() trainer = Engine(update_model) @trainer.on(Events.ITERATION_COMPLETED(every=100)) def log_training(engine): batch_loss = engine.state.output lr = optimizer.param_groups[0]['lr'] e = engine.state.epoch n = engine.state.max_epochs i = engine.state.iteration print(f"Epoch {e}/{n} : {i} - batch loss: {batch_loss}, lr: {lr}") trainer.run(data_loader, max_epochs=5) > Epoch 1/5 : 100 - batch loss: 0.10874069479016124, lr: 0.01 > ... > Epoch 2/5 : 1700 - batch loss: 0.4217900575859437, lr: 0.01 Create a basic evaluator to compute metrics .. code-block:: python from ignite.metrics import Accuracy def predict_on_batch(engine, batch) model.eval() with torch.no_grad(): x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(x) return y_pred, y evaluator = Engine(predict_on_batch) Accuracy().attach(evaluator, "val_acc") evaluator.run(val_dataloader) Compute image mean/std on training dataset .. code-block:: python from ignite.metrics import Average def compute_mean_std(engine, batch): b, c, *_ = batch['image'].shape data = batch['image'].reshape(b, c, -1).to(dtype=torch.float64) mean = torch.mean(data, dim=-1).sum(dim=0) mean2 = torch.mean(data ** 2, dim=-1).sum(dim=0) return {"mean": mean, "mean^2": mean2} compute_engine = Engine(compute_mean_std) img_mean = Average(output_transform=lambda output: output['mean']) img_mean.attach(compute_engine, 'mean') img_mean2 = Average(output_transform=lambda output: output['mean^2']) img_mean2.attach(compute_engine, 'mean2') state = compute_engine.run(train_loader) state.metrics['std'] = torch.sqrt(state.metrics['mean2'] - state.metrics['mean'] ** 2) mean = state.metrics['mean'].tolist() std = state.metrics['std'].tolist() Resume engine's run from a state. User can load a `state_dict` and run engine starting from loaded state : .. code-block:: python # Restore from an epoch state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)} # or an iteration # state_dict = {"iteration": 500, "max_epochs": 100, "epoch_length": len(data_loader)} trainer = Engine(...) trainer.load_state_dict(state_dict) trainer.run(data) """ _state_dict_all_req_keys = ("epoch_length", "max_epochs") _state_dict_one_of_opt_keys = ("iteration", "epoch") # Flag to disable engine._internal_run as generator feature for BC interrupt_resume_enabled = True def __init__(self, process_function: Callable[["Engine", Any], Any]): self._event_handlers: Dict[Any, List] = defaultdict(list) self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__) self._process_function = process_function self.last_event_name: Optional[Events] = None self.should_terminate = False self.should_terminate_single_epoch = False self.should_interrupt = False self.state = State() self._state_dict_user_keys: List[str] = [] self._allowed_events: List[EventEnum] = [] self._dataloader_iter: Optional[Iterator[Any]] = None self._init_iter: Optional[int] = None self.register_events(*Events) if self._process_function is None: raise ValueError("Engine must be given a processing function in order to run.") _check_signature(process_function, "process_function", self, None) # generator provided by self._internal_run_as_gen self._internal_run_generator: Optional[Generator[Any, None, State]] = None def register_events( self, *event_names: Union[List[str], List[EventEnum]], event_to_attr: Optional[dict] = None ) -> None: """Add events that can be fired. Registering an event will let the user trigger these events at any point. This opens the door to make the :meth:`~ignite.engine.engine.Engine.run` loop even more configurable. By default, the events from :class:`~ignite.engine.events.Events` are registered. Args: event_names: Defines the name of the event being supported. New events can be a str or an object derived from :class:`~ignite.engine.events.EventEnum`. See example below. event_to_attr: A dictionary to map an event to a state attribute. Examples: .. code-block:: python from ignite.engine import Engine, Events, EventEnum class CustomEvents(EventEnum): FOO_EVENT = "foo_event" BAR_EVENT = "bar_event" def process_function(e, batch): # ... trainer.fire_event("bwd_event") loss.backward() # ... trainer.fire_event("opt_event") optimizer.step() trainer = Engine(process_function) trainer.register_events(*CustomEvents) trainer.register_events("bwd_event", "opt_event") @trainer.on(Events.EPOCH_COMPLETED) def trigger_custom_event(): if required(...): trainer.fire_event(CustomEvents.FOO_EVENT) else: trainer.fire_event(CustomEvents.BAR_EVENT) @trainer.on(CustomEvents.FOO_EVENT) def do_foo_op(): # ... @trainer.on(CustomEvents.BAR_EVENT) def do_bar_op(): # ... Example with State Attribute: .. code-block:: python from enum import Enum from ignite.engine import Engine, EventEnum class TBPTT_Events(EventEnum): TIME_ITERATION_STARTED = "time_iteration_started" TIME_ITERATION_COMPLETED = "time_iteration_completed" TBPTT_event_to_attr = { TBPTT_Events.TIME_ITERATION_STARTED: 'time_iteration', TBPTT_Events.TIME_ITERATION_COMPLETED: 'time_iteration' } engine = Engine(process_function) engine.register_events(*TBPTT_Events, event_to_attr=TBPTT_event_to_attr) engine.run(data) # engine.state contains an attribute time_iteration, which can be accessed # using engine.state.time_iteration """ if not (event_to_attr is None or isinstance(event_to_attr, dict)): raise ValueError(f"Expected event_to_attr to be dictionary. Got {type(event_to_attr)}.") for index, e in enumerate(event_names): if not isinstance(e, (str, EventEnum)): raise TypeError(f"Value at {index} of event_names should be a str or EventEnum, but given {e}") self._allowed_events.append(e) if event_to_attr and e in event_to_attr: State.event_to_attr[e] = event_to_attr[e] # we need to update state attributes associated with new custom events self.state._update_attrs() def _handler_wrapper(self, handler: Callable, event_name: Any, event_filter: Callable) -> Callable: # signature of the following wrapper will be inspected during registering to check if engine is necessary # we have to build a wrapper with relevant signature : solution is functools.wraps @functools.wraps(handler) def wrapper(*args: Any, **kwargs: Any) -> Any: event = self.state.get_event_attrib_value(event_name) if event_filter(self, event): return handler(*args, **kwargs) # setup input handler as parent to make has_event_handler work setattr(wrapper, "_parent", weakref.ref(handler)) return wrapper def _assert_allowed_event(self, event_name: Any) -> None: if event_name not in self._allowed_events: self.logger.error(f"attempt to add event handler to an invalid event {event_name}") raise ValueError(f"Event {event_name} is not a valid event for this {self.__class__.__name__}.") def add_event_handler(self, event_name: Any, handler: Callable, *args: Any, **kwargs: Any) -> RemovableEventHandle: """Add an event handler to be executed when the specified event is fired. Args: event_name: An event or a list of events to attach the handler. Valid events are from :class:`~ignite.engine.events.Events` or any ``event_name`` added by :meth:`~ignite.engine.engine.Engine.register_events`. handler: the callable event handler that should be invoked. No restrictions on its signature. The first argument can be optionally `engine`, the :class:`~ignite.engine.engine.Engine` object, handler is bound to. args: optional args to be passed to ``handler``. kwargs: optional keyword args to be passed to ``handler``. Returns: :class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler. Note: Note that other arguments can be passed to the handler in addition to the `*args` and `**kwargs` passed here, for example during :attr:`~ignite.engine.events.Events.EXCEPTION_RAISED`. Examples: .. code-block:: python engine = Engine(process_function) def print_epoch(engine): print(f"Epoch: {engine.state.epoch}") engine.add_event_handler(Events.EPOCH_COMPLETED, print_epoch) events_list = Events.EPOCH_COMPLETED | Events.COMPLETED def execute_something(): # do some thing not related to engine pass engine.add_event_handler(events_list, execute_something) Note: Since v0.3.0, Events become more flexible and allow to pass an event filter to the Engine. See :class:`~ignite.engine.events.Events` for more details. """ if isinstance(event_name, EventsList): for e in event_name: self.add_event_handler(e, handler, *args, **kwargs) return RemovableEventHandle(event_name, handler, self) if isinstance(event_name, CallableEventWithFilter) and event_name.filter is not None: event_filter = event_name.filter handler = self._handler_wrapper(handler, event_name, event_filter) self._assert_allowed_event(event_name) event_args: Tuple[Any, ...] = () if event_name == Events.EXCEPTION_RAISED: event_args += (Exception(),) elif event_name == Events.TERMINATE_SINGLE_EPOCH: event_args += (0,) try: _check_signature(handler, "handler", self, *(event_args + args), **kwargs) self._event_handlers[event_name].append((handler, (self,) + args, kwargs)) except ValueError: _check_signature(handler, "handler", *(event_args + args), **kwargs) self._event_handlers[event_name].append((handler, args, kwargs)) self.logger.debug(f"Added handler for event {event_name}") return RemovableEventHandle(event_name, handler, self) def has_event_handler(self, handler: Callable, event_name: Optional[Any] = None) -> bool: """Check if the specified event has the specified handler. Args: handler: the callable event handler. event_name: The event the handler attached to. Set this to ``None`` to search all events. """ if event_name is not None: if event_name not in self._event_handlers: return False events: Union[List[Any], Dict[Any, List]] = [event_name] else: events = self._event_handlers for e in events: for h, _, _ in self._event_handlers[e]: if self._compare_handlers(handler, h): return True return False @staticmethod def _compare_handlers(user_handler: Callable, registered_handler: Callable) -> bool: if hasattr(registered_handler, "_parent"): registered_handler = registered_handler._parent() return registered_handler == user_handler def remove_event_handler(self, handler: Callable, event_name: Any) -> None: """Remove event handler `handler` from registered handlers of the engine Args: handler: the callable event handler that should be removed event_name: The event the handler attached to. """ if event_name not in self._event_handlers: raise ValueError(f"Input event name '{event_name}' does not exist") new_event_handlers = [ (h, args, kwargs) for h, args, kwargs in self._event_handlers[event_name] if not self._compare_handlers(handler, h) ] if len(new_event_handlers) == len(self._event_handlers[event_name]): raise ValueError(f"Input handler '{handler}' is not found among registered event handlers") self._event_handlers[event_name] = new_event_handlers def on(self, event_name: Any, *args: Any, **kwargs: Any) -> Callable: """Decorator shortcut for :meth:`~ignite.engine.engine.Engine.add_event_handler`. Args: event_name: An event to attach the handler to. Valid events are from :class:`~ignite.engine.events.Events` or any ``event_name`` added by :meth:`~ignite.engine.engine.Engine.register_events`. args: optional args to be passed to `handler`. kwargs: optional keyword args to be passed to `handler`. Examples: .. code-block:: python engine = Engine(process_function) @engine.on(Events.EPOCH_COMPLETED) def print_epoch(): print(f"Epoch: {engine.state.epoch}") @engine.on(Events.EPOCH_COMPLETED | Events.COMPLETED) def execute_something(): # do some thing not related to engine pass """ def decorator(f: Callable) -> Callable: self.add_event_handler(event_name, f, *args, **kwargs) return f return decorator def _fire_event(self, event_name: Any, *event_args: Any, **event_kwargs: Any) -> None: """Execute all the handlers associated with given event. This method executes all handlers associated with the event `event_name`. Optional positional and keyword arguments can be used to pass arguments to **all** handlers added with this event. These arguments updates arguments passed using :meth:`~ignite.engine.engine.Engine.add_event_handler`. Args: event_name: event for which the handlers should be executed. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. *event_args: optional args to be passed to all handlers. **event_kwargs: optional keyword args to be passed to all handlers. """ self.logger.debug(f"{self.state.epoch} | {self.state.iteration}, Firing handlers for event {event_name}") self.last_event_name = event_name for func, args, kwargs in self._event_handlers[event_name]: kwargs.update(event_kwargs) first, others = ((args[0],), args[1:]) if (args and args[0] == self) else ((), args) func(*first, *(event_args + others), **kwargs) def fire_event(self, event_name: Any) -> None: """Execute all the handlers associated with given event. This method executes all handlers associated with the event `event_name`. This is the method used in :meth:`~ignite.engine.engine.Engine.run` to call the core events found in :class:`~ignite.engine.events.Events`. Custom events can be fired if they have been registered before with :meth:`~ignite.engine.engine.Engine.register_events`. The engine `state` attribute should be used to exchange "dynamic" data among `process_function` and handlers. This method is called automatically for core events. If no custom events are used in the engine, there is no need for the user to call the method. Args: event_name: event for which the handlers should be executed. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. """ self._assert_allowed_event(event_name) return self._fire_event(event_name) def interrupt(self) -> None: """Sends interrupt signal to the engine, so that it interrupts the run after the current iteration. The run can be resumed by calling :meth:`~ignite.engine.engine.Engine.run`. Data iteration will continue from the interrupted state. Examples: .. testcode:: from ignite.engine import Engine, Events data = range(10) max_epochs = 3 def check_input_data(e, b): print(f"Epoch {engine.state.epoch}, Iter {engine.state.iteration} | data={b}") i = (e.state.iteration - 1) % len(data) assert b == data[i] engine = Engine(check_input_data) @engine.on(Events.ITERATION_COMPLETED(every=11)) def call_interrupt(): engine.interrupt() print("Start engine run with interruptions:") state = engine.run(data, max_epochs=max_epochs) print("1 Engine run is interrupted at ", state.epoch, state.iteration) state = engine.run(data, max_epochs=max_epochs) print("2 Engine run is interrupted at ", state.epoch, state.iteration) state = engine.run(data, max_epochs=max_epochs) print("3 Engine ended the run at ", state.epoch, state.iteration) .. dropdown:: Output .. testoutput:: Start engine run with interruptions: Epoch 1, Iter 1 | data=0 Epoch 1, Iter 2 | data=1 Epoch 1, Iter 3 | data=2 Epoch 1, Iter 4 | data=3 Epoch 1, Iter 5 | data=4 Epoch 1, Iter 6 | data=5 Epoch 1, Iter 7 | data=6 Epoch 1, Iter 8 | data=7 Epoch 1, Iter 9 | data=8 Epoch 1, Iter 10 | data=9 Epoch 2, Iter 11 | data=0 1 Engine run is interrupted at 2 11 Epoch 2, Iter 12 | data=1 Epoch 2, Iter 13 | data=2 Epoch 2, Iter 14 | data=3 Epoch 2, Iter 15 | data=4 Epoch 2, Iter 16 | data=5 Epoch 2, Iter 17 | data=6 Epoch 2, Iter 18 | data=7 Epoch 2, Iter 19 | data=8 Epoch 2, Iter 20 | data=9 Epoch 3, Iter 21 | data=0 Epoch 3, Iter 22 | data=1 2 Engine run is interrupted at 3 22 Epoch 3, Iter 23 | data=2 Epoch 3, Iter 24 | data=3 Epoch 3, Iter 25 | data=4 Epoch 3, Iter 26 | data=5 Epoch 3, Iter 27 | data=6 Epoch 3, Iter 28 | data=7 Epoch 3, Iter 29 | data=8 Epoch 3, Iter 30 | data=9 3 Engine ended the run at 3 30 .. versionadded:: 0.4.10 """ if not self.interrupt_resume_enabled: raise RuntimeError( "Engine 'interrupt/resume' feature is disabled. " "Please, set Engine.interrupt_resume_enabled=True to enable it" ) self.logger.info("interrupt signaled. Engine will interrupt the run after current iteration is finished.") self.should_interrupt = True def terminate(self) -> None: """Sends terminate signal to the engine, so that it terminates completely the run. The run is terminated after the event on which ``terminate`` method was called. The following events are triggered: - ... - Terminating event - :attr:`~ignite.engine.events.Events.TERMINATE` - :attr:`~ignite.engine.events.Events.COMPLETED` Examples: .. testcode:: from ignite.engine import Engine, Events def func(engine, batch): print(engine.state.epoch, engine.state.iteration, " | ", batch) max_epochs = 4 data = range(10) engine = Engine(func) @engine.on(Events.ITERATION_COMPLETED(once=14)) def terminate(): print(f"-> terminate at iteration: {engine.state.iteration}") engine.terminate() print("Start engine run:") state = engine.run(data, max_epochs=max_epochs) print("1 Engine run is terminated at ", state.epoch, state.iteration) state = engine.run(data, max_epochs=max_epochs) print("2 Engine ended the run at ", state.epoch, state.iteration) .. dropdown:: Output .. testoutput:: Start engine run: 1 1 | 0 1 2 | 1 1 3 | 2 1 4 | 3 1 5 | 4 1 6 | 5 1 7 | 6 1 8 | 7 1 9 | 8 1 10 | 9 2 11 | 0 2 12 | 1 2 13 | 2 2 14 | 3 -> terminate at iteration: 14 1 Engine run is terminated at 2 14 3 15 | 0 3 16 | 1 3 17 | 2 3 18 | 3 3 19 | 4 3 20 | 5 3 21 | 6 3 22 | 7 3 23 | 8 3 24 | 9 4 25 | 0 4 26 | 1 4 27 | 2 4 28 | 3 4 29 | 4 4 30 | 5 4 31 | 6 4 32 | 7 4 33 | 8 4 34 | 9 2 Engine ended the run at 4 34 .. versionchanged:: 0.4.10 Behaviour changed, for details see https://github.com/pytorch/ignite/issues/2669 """ self.logger.info("Terminate signaled. Engine will stop after current iteration is finished.") self.should_terminate = True def terminate_epoch(self) -> None: """Sends terminate signal to the engine, so that it terminates the current epoch. The run continues from the next epoch. The following events are triggered: - ... - Event on which ``terminate_epoch`` method is called - :attr:`~ignite.engine.events.Events.TERMINATE_SINGLE_EPOCH` - :attr:`~ignite.engine.events.Events.EPOCH_COMPLETED` - :attr:`~ignite.engine.events.Events.EPOCH_STARTED` - ... """ self.logger.info( "Terminate current epoch is signaled. " "Current epoch iteration will stop after current iteration is finished." ) self.should_terminate_single_epoch = True def _handle_exception(self, e: BaseException) -> None: if Events.EXCEPTION_RAISED in self._event_handlers: self._fire_event(Events.EXCEPTION_RAISED, e) else: raise e @property def state_dict_user_keys(self) -> List: return self._state_dict_user_keys def state_dict(self) -> OrderedDict: """Returns a dictionary containing engine's state: "epoch_length", "max_epochs" and "iteration" and other state values defined by `engine.state_dict_user_keys` .. code-block:: python engine = Engine(...) engine.state_dict_user_keys.append("alpha") engine.state_dict_user_keys.append("beta") ... @engine.on(Events.STARTED) def init_user_value(_): engine.state.alpha = 0.1 engine.state.beta = 1.0 @engine.on(Events.COMPLETED) def save_engine(_): state_dict = engine.state_dict() assert "alpha" in state_dict and "beta" in state_dict torch.save(state_dict, "/tmp/engine.pt") Returns: OrderedDict: a dictionary containing engine's state """ keys: Tuple[str, ...] = self._state_dict_all_req_keys + (self._state_dict_one_of_opt_keys[0],) keys += tuple(self._state_dict_user_keys) return OrderedDict([(k, getattr(self.state, k)) for k in keys]) def load_state_dict(self, state_dict: Mapping) -> None: """Setups engine from `state_dict`. State dictionary should contain keys: `iteration` or `epoch`, `max_epochs` and `epoch_length`. If `engine.state_dict_user_keys` contains keys, they should be also present in the state dictionary. Iteration and epoch values are 0-based: the first iteration or epoch is zero. This method does not remove any custom attributes added by user. Args: state_dict: a dict with parameters .. code-block:: python # Restore from the 4rd epoch state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)} # or 500th iteration # state_dict = {"iteration": 499, "max_epochs": 100, "epoch_length": len(data_loader)} trainer = Engine(...) trainer.load_state_dict(state_dict) trainer.run(data) """ super(Engine, self).load_state_dict(state_dict) for k in self._state_dict_user_keys: if k not in state_dict: raise ValueError( f"Required user state attribute '{k}' is absent in provided state_dict '{state_dict.keys()}'" ) self.state.max_epochs = state_dict["max_epochs"] self.state.epoch_length = state_dict["epoch_length"] for k in self._state_dict_user_keys: setattr(self.state, k, state_dict[k]) if "iteration" in state_dict: self.state.iteration = state_dict["iteration"] self.state.epoch = 0 if self.state.epoch_length is not None: self.state.epoch = self.state.iteration // self.state.epoch_length elif "epoch" in state_dict: self.state.epoch = state_dict["epoch"] if self.state.epoch_length is None: raise ValueError( "If epoch is provided in the state dict, epoch_length should not be None. " f"Input state_dict: {state_dict}" ) self.state.iteration = self.state.epoch_length * self.state.epoch @staticmethod def _is_done(state: State) -> bool: is_done_count = ( state.epoch_length is not None and state.max_epochs is not None and state.iteration >= state.epoch_length * state.max_epochs ) is_done_epochs = state.max_epochs is not None and state.epoch >= state.max_epochs return is_done_count or is_done_epochs def set_data(self, data: Union[Iterable, DataLoader]) -> None: """Method to set data. After calling the method the next batch passed to `processing_function` is from newly provided data. Please, note that epoch length is not modified. Args: data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`). Examples: User can switch data provider during the training: .. code-block:: python data1 = ... data2 = ... switch_iteration = 5000 def train_step(e, batch): # when iteration <= switch_iteration # batch is from data1 # when iteration > switch_iteration # batch is from data2 ... trainer = Engine(train_step) @trainer.on(Events.ITERATION_COMPLETED(once=switch_iteration)) def switch_dataloader(): trainer.set_data(data2) trainer.run(data1, max_epochs=100) """ self.state.dataloader = data self._dataloader_iter = iter(self.state.dataloader) def run( self, data: Optional[Iterable] = None, max_epochs: Optional[int] = None, epoch_length: Optional[int] = None, ) -> State: """Runs the ``process_function`` over the passed data. Engine has a state and the following logic is applied in this function: - At the first call, new state is defined by `max_epochs`, `epoch_length`, if provided. A timer for total and per-epoch time is initialized when Events.STARTED is handled. - If state is already defined such that there are iterations to run until `max_epochs` and no input arguments provided, state is kept and used in the function. - If state is defined and engine is "done" (no iterations to run until `max_epochs`), a new state is defined. - If state is defined, engine is NOT "done", then input arguments if provided override defined state. Args: data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`). If not provided, then ``epoch_length`` is required and ``batch`` argument of ``process_function`` will be ``None``. max_epochs: Max epochs to run for (default: None). If a new state should be created (first run or run again from ended engine), it's default value is 1. If run is resuming from a state, provided `max_epochs` will be taken into account and should be larger than `engine.state.max_epochs`. epoch_length: Number of iterations to count as one epoch. By default, it can be set as `len(data)`. If `data` is an iterator and `epoch_length` is not set, then it will be automatically determined as the iteration on which data iterator raises `StopIteration`. This argument should not change if run is resuming from a state. Returns: State: output state. Note: User can dynamically preprocess input batch at :attr:`~ignite.engine.events.Events.ITERATION_STARTED` and store output batch in `engine.state.batch`. Latter is passed as usually to `process_function` as argument: .. code-block:: python trainer = ... @trainer.on(Events.ITERATION_STARTED) def switch_batch(engine): engine.state.batch = preprocess_batch(engine.state.batch) Restart the training from the beginning. User can reset `max_epochs = None`: .. code-block:: python # ... trainer.run(train_loader, max_epochs=5) # Reset model weights etc. and restart the training trainer.state.max_epochs = None trainer.run(train_loader, max_epochs=2) """ if data is not None and not isinstance(data, Iterable): raise TypeError("Argument data should be iterable") if self.state.max_epochs is not None: # Check and apply overridden parameters if max_epochs is not None: if max_epochs < self.state.epoch: raise ValueError( "Argument max_epochs should be greater than or equal to the start " f"epoch defined in the state: {max_epochs} vs {self.state.epoch}. " "Please, set engine.state.max_epochs = None " "before calling engine.run() in order to restart the training from the beginning." ) self.state.max_epochs = max_epochs if epoch_length is not None: if epoch_length != self.state.epoch_length: raise ValueError( "Argument epoch_length should be same as in the state, " f"but given {epoch_length} vs {self.state.epoch_length}" ) if self.state.max_epochs is None or (self._is_done(self.state) and self._internal_run_generator is None): # Create new state if max_epochs is None: max_epochs = 1 if epoch_length is None: if data is None: raise ValueError("epoch_length should be provided if data is None") epoch_length = self._get_data_length(data) if epoch_length is not None and epoch_length < 1: raise ValueError("Input data has zero size. Please provide non-empty data") self.state.iteration = 0 self.state.epoch = 0 self.state.max_epochs = max_epochs self.state.epoch_length = epoch_length # Reset generator if previously used self._internal_run_generator = None self.logger.info(f"Engine run starting with max_epochs={max_epochs}.") else: self.logger.info( f"Engine run resuming from iteration {self.state.iteration}, " f"epoch {self.state.epoch} until {self.state.max_epochs} epochs" ) if self.state.epoch_length is None and data is None: raise ValueError("epoch_length should be provided if data is None") if self.should_terminate: # If engine was terminated and now is resuming from terminated state # we need to initialize iter_counter as 0 self._init_iter = 0 if self._dataloader_iter is None: self.state.dataloader = data if self.interrupt_resume_enabled: return self._internal_run() else: return self._internal_run_legacy() @staticmethod def _init_timers(state: State) -> None: state.times[Events.EPOCH_COMPLETED.name] = 0.0 state.times[Events.COMPLETED.name] = 0.0 def _get_data_length(self, data: Iterable) -> Optional[int]: try: if hasattr(data, "__len__"): return len(data) # type: ignore[arg-type] except TypeError: # _InfiniteConstantSampler can raise a TypeError on DataLoader length of a IterableDataset pass return None def _setup_dataloader_iter(self) -> None: if self.state.dataloader is None: if self.state.epoch_length is None: raise RuntimeError( "Internal error, self.state.epoch_length is None. " "Please, file an issue if you encounter this error." ) self._dataloader_iter = _get_none_data_iter(self.state.epoch_length) else: self._dataloader_iter = iter(self.state.dataloader) def _setup_engine(self) -> None: self._setup_dataloader_iter() if self._init_iter is None: iteration = self.state.iteration # Below we define initial counter value for _run_once_on_dataset to measure a single epoch if self.state.epoch_length is not None: iteration %= self.state.epoch_length self._init_iter = iteration def _internal_run(self) -> State: if self._internal_run_generator is None: self._internal_run_generator = self._internal_run_as_gen() try: return next(self._internal_run_generator) except StopIteration as out: self._internal_run_generator = None return out.value def _internal_run_as_gen(self) -> Generator[Any, None, State]: self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False self._init_timers(self.state) try: try: start_time = time.time() self._fire_event(Events.STARTED) yield from self._maybe_terminate_or_interrupt() while not self._is_done(self.state) and not self.should_terminate: self.state.epoch += 1 handlers_start_time = time.time() self._fire_event(Events.EPOCH_STARTED) epoch_time_taken = time.time() - handlers_start_time yield from self._maybe_terminate_or_interrupt() if self._dataloader_iter is None: self._setup_engine() epoch_time_taken += yield from self._run_once_on_dataset_as_gen() # time is available for handlers but must be updated after fire self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken handlers_start_time = time.time() self._fire_event(Events.EPOCH_COMPLETED) epoch_time_taken += time.time() - handlers_start_time # update time wrt handlers self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken yield from self._maybe_terminate_or_interrupt() hours, mins, secs = _to_hours_mins_secs(epoch_time_taken) self.logger.info( f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}" ) except _EngineTerminateException: self._fire_event(Events.TERMINATE) time_taken = time.time() - start_time # time is available for handlers but must be updated after fire self.state.times[Events.COMPLETED.name] = time_taken handlers_start_time = time.time() self._fire_event(Events.COMPLETED) time_taken += time.time() - handlers_start_time # update time wrt handlers self.state.times[Events.COMPLETED.name] = time_taken hours, mins, secs = _to_hours_mins_secs(time_taken) self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}") except BaseException as e: self._dataloader_iter = None self.logger.error(f"Engine run is terminating due to exception: {e}") self._handle_exception(e) self._dataloader_iter = None return self.state def _maybe_terminate_or_interrupt(self) -> Generator: if self.should_terminate: raise _EngineTerminateException() if self.should_terminate_single_epoch: raise _EngineTerminateSingleEpochException() if self.should_interrupt: self._fire_event(Events.INTERRUPT) self.should_interrupt = False yield self.state def _run_once_on_dataset_as_gen(self) -> Generator[State, None, float]: start_time = time.time() # We need to setup iter_counter > 0 if we resume from an iteration iter_counter = 0 if self._init_iter is None else self._init_iter self._init_iter = None should_exit = False try: if self._dataloader_iter is None: raise RuntimeError( "Internal error, self._dataloader_iter is None. " "Please, file an issue if you encounter this error." ) while True: self.state.batch = self.state.output = None try: # Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted if self.last_event_name != Events.DATALOADER_STOP_ITERATION: # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.GET_BATCH_STARTED) yield from self._maybe_terminate_or_interrupt() self.state.batch = next(self._dataloader_iter) # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.GET_BATCH_COMPLETED) yield from self._maybe_terminate_or_interrupt() iter_counter += 1 should_exit = False except StopIteration: # Define self.state.epoch_length if it is not yet set if self.state.epoch_length is None: # Define epoch length and stop the epoch self.state.epoch_length = iter_counter break # Should exit while loop if we can not iterate if should_exit: if not self._is_done(self.state) and self.state.max_epochs is not None: total_iters = self.state.epoch_length * self.state.max_epochs warnings.warn( "Data iterator can not provide data anymore but required total number of " "iterations to run is not reached. " f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}" ) break # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.DATALOADER_STOP_ITERATION) yield from self._maybe_terminate_or_interrupt() self._setup_dataloader_iter() should_exit = True continue self.state.iteration += 1 self._fire_event(Events.ITERATION_STARTED) yield from self._maybe_terminate_or_interrupt() self.state.output = self._process_function(self, self.state.batch) self._fire_event(Events.ITERATION_COMPLETED) yield from self._maybe_terminate_or_interrupt() if self.state.epoch_length is not None and iter_counter == self.state.epoch_length: break except _EngineTerminateSingleEpochException: self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter) self.should_terminate_single_epoch = False self._setup_dataloader_iter() except _EngineTerminateException as e: # we need to reraise this exception such that it is not handled # as a general exception by the code below raise e except Exception as e: self.logger.error(f"Current run is terminating due to exception: {e}") self._handle_exception(e) return time.time() - start_time def _maybe_terminate_legacy(self) -> None: if self.should_terminate: raise _EngineTerminateException() if self.should_terminate_single_epoch: raise _EngineTerminateSingleEpochException() def _internal_run_legacy(self) -> State: # internal_run without generator for BC self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False self._init_timers(self.state) try: try: start_time = time.time() self._fire_event(Events.STARTED) self._maybe_terminate_legacy() while not self._is_done(self.state) and not self.should_terminate: self.state.epoch += 1 handlers_start_time = time.time() self._fire_event(Events.EPOCH_STARTED) epoch_time_taken = time.time() - handlers_start_time self._maybe_terminate_legacy() if self._dataloader_iter is None: self._setup_engine() epoch_time_taken += self._run_once_on_dataset_legacy() # time is available for handlers but must be updated after fire self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken handlers_start_time = time.time() self._fire_event(Events.EPOCH_COMPLETED) epoch_time_taken += time.time() - handlers_start_time # update time wrt handlers self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken self._maybe_terminate_legacy() hours, mins, secs = _to_hours_mins_secs(epoch_time_taken) self.logger.info( f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}" ) except _EngineTerminateException: self._fire_event(Events.TERMINATE) time_taken = time.time() - start_time # time is available for handlers but must be updated after fire self.state.times[Events.COMPLETED.name] = time_taken handlers_start_time = time.time() self._fire_event(Events.COMPLETED) time_taken += time.time() - handlers_start_time # update time wrt handlers self.state.times[Events.COMPLETED.name] = time_taken hours, mins, secs = _to_hours_mins_secs(time_taken) self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}") except BaseException as e: self._dataloader_iter = None self.logger.error(f"Engine run is terminating due to exception: {e}") self._handle_exception(e) self._dataloader_iter = None return self.state def _run_once_on_dataset_legacy(self) -> float: start_time = time.time() # We need to setup iter_counter > 0 if we resume from an iteration iter_counter = 0 if self._init_iter is None else self._init_iter self._init_iter = None should_exit = False try: if self._dataloader_iter is None: raise RuntimeError( "Internal error, self._dataloader_iter is None. " "Please, file an issue if you encounter this error." ) while True: self.state.batch = self.state.output = None try: # Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted if self.last_event_name != Events.DATALOADER_STOP_ITERATION: # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.GET_BATCH_STARTED) self._maybe_terminate_legacy() self.state.batch = next(self._dataloader_iter) # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.GET_BATCH_COMPLETED) self._maybe_terminate_legacy() iter_counter += 1 should_exit = False except StopIteration: # Define self.state.epoch_length if it is not yet set if self.state.epoch_length is None: # Define epoch length and stop the epoch self.state.epoch_length = iter_counter break # Should exit while loop if we can not iterate if should_exit: if not self._is_done(self.state) and self.state.max_epochs is not None: total_iters = self.state.epoch_length * self.state.max_epochs warnings.warn( "Data iterator can not provide data anymore but required total number of " "iterations to run is not reached. " f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}" ) break # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events # if no data was provided to engine.run(data=None, ...) if self.state.dataloader is not None: self._fire_event(Events.DATALOADER_STOP_ITERATION) self._maybe_terminate_legacy() self._setup_dataloader_iter() should_exit = True continue self.state.iteration += 1 self._fire_event(Events.ITERATION_STARTED) self._maybe_terminate_legacy() self.state.output = self._process_function(self, self.state.batch) self._fire_event(Events.ITERATION_COMPLETED) self._maybe_terminate_legacy() if self.state.epoch_length is not None and iter_counter == self.state.epoch_length: break except _EngineTerminateSingleEpochException: self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter) self.should_terminate_single_epoch = False self._setup_dataloader_iter() except _EngineTerminateException as e: # we need to reraise this exception such that it is not handled # as a general exception by the code below raise e except Exception as e: self.logger.error(f"Current run is terminating due to exception: {e}") self._handle_exception(e) return time.time() - start_time def _get_none_data_iter(size: int) -> Iterator: # Sized iterator for data as None for _ in range(size): yield None class _EngineTerminateSingleEpochException(Exception): """ Exception associated with Terminate Single Epoch event """ pass class _EngineTerminateException(Exception): """ Exception associated with Terminate event """ pass ignite-0.5.1/ignite/engine/events.py000066400000000000000000000511621465426447700174260ustar00rootroot00000000000000import numbers import warnings import weakref from collections.abc import Sequence from enum import Enum from types import DynamicClassAttribute from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, TYPE_CHECKING, Union from torch.utils.data import DataLoader from ignite.engine.utils import _check_signature if TYPE_CHECKING: from ignite.engine.engine import Engine __all__ = ["CallableEventWithFilter", "EventEnum", "Events", "State", "EventsList", "RemovableEventHandle"] class CallableEventWithFilter: """Single Event containing a filter, specifying whether the event should be run at the current event (if the event type is correct) Args: value: The actual enum value. Only needed for internal use. Do not touch! event_filter: A function taking the engine and the current event value as input and returning a boolean to indicate whether this event should be executed. Defaults to None, which will result to a function that always returns `True` name: The enum-name of the current object. Only needed for internal use. Do not touch! """ def __init__(self, value: str, event_filter: Optional[Callable] = None, name: Optional[str] = None) -> None: self.filter = event_filter if not hasattr(self, "_value_"): self._value_ = value if not hasattr(self, "_name_") and name is not None: self._name_ = name # copied to be compatible to enum @DynamicClassAttribute def name(self) -> str: """The name of the Enum member.""" return self._name_ @DynamicClassAttribute def value(self) -> str: """The value of the Enum member.""" return self._value_ def __call__( self, event_filter: Optional[Callable] = None, every: Optional[int] = None, once: Optional[Union[int, List]] = None, before: Optional[int] = None, after: Optional[int] = None, ) -> "CallableEventWithFilter": """ Makes the event class callable and accepts either an arbitrary callable as filter (which must take in the engine and current event value and return a boolean) or an every or once value Args: event_filter: a filter function to check if the event should be executed when the event type was fired every: a value specifying how often the event should be fired once: a value or list of values specifying when the event should be fired (if only once) before: a value specifying the number of occurrence that event should be fired before after: a value specifying the number of occurrence that event should be fired after Returns: CallableEventWithFilter: A new event having the same value but a different filter function """ if ( sum( ( event_filter is not None, once is not None, (every is not None or before is not None or after is not None), ) ) != 1 ): raise ValueError("Only one of the input arguments should be specified, except before, after and every") if (event_filter is not None) and not callable(event_filter): raise TypeError("Argument event_filter should be a callable") if (every is not None) and not (isinstance(every, numbers.Integral) and every > 0): raise ValueError("Argument every should be integer and greater than zero") if once is not None: c1 = isinstance(once, numbers.Integral) and once > 0 c2 = isinstance(once, Sequence) and len(once) > 0 and all(isinstance(e, int) and e > 0 for e in once) if not (c1 or c2): raise ValueError( f"Argument once should either be a positive integer or a list of positive integers, got {once}" ) if (before is not None) and not (isinstance(before, numbers.Integral) and before >= 0): raise ValueError("Argument before should be integer and greater or equal to zero") if (after is not None) and not (isinstance(after, numbers.Integral) and after >= 0): raise ValueError("Argument after should be integer and greater or equal to zero") if every is not None: if every == 1: # Just return the event itself event_filter = None else: event_filter = self.every_event_filter(every) if once is not None: event_filter = self.once_event_filter([once] if isinstance(once, int) else once) if before is not None or after is not None: if every is not None: event_filter = self.every_before_and_after_event_filter(every, before, after) else: event_filter = self.before_and_after_event_filter(before, after) # check signature: if event_filter is not None: _check_signature(event_filter, "event_filter", "engine", "event") return CallableEventWithFilter(self.value, event_filter, self.name) @staticmethod def every_event_filter(every: int) -> Callable: """A wrapper for every event filter.""" def wrapper(engine: "Engine", event: int) -> bool: if event % every == 0: return True return False return wrapper @staticmethod def once_event_filter(once: List) -> Callable: """A wrapper for once event filter.""" def wrapper(engine: "Engine", event: int) -> bool: if event in once: return True return False return wrapper @staticmethod def before_and_after_event_filter(before: Optional[int] = None, after: Optional[int] = None) -> Callable: """A wrapper for before and after event filter.""" before_: Union[int, float] = float("inf") if before is None else before after_: int = 0 if after is None else after def wrapper(engine: "Engine", event: int) -> bool: if event > after_ and event < before_: return True return False return wrapper @staticmethod def every_before_and_after_event_filter( every: int, before: Optional[int] = None, after: Optional[int] = None ) -> Callable: """A wrapper which triggers for every `every` iterations after `after` and before `before`.""" before_: Union[int, float] = float("inf") if before is None else before after_: int = 0 if after is None else after def wrapper(engine: "Engine", event: int) -> bool: if after_ < event < before_ and (event - after_ - 1) % every == 0: return True return False return wrapper @staticmethod def default_event_filter(engine: "Engine", event: int) -> bool: """Default event filter. This method is is deprecated and will be removed. Please, use None instead""" warnings.warn("Events.default_event_filter is deprecated and will be removed. Please, use None instead") return True def __repr__(self) -> str: out = f"Events.{self.name}" if self.filter is not None: out += f"(filter={self.filter})" return out def __eq__(self, other: Any) -> bool: if isinstance(other, CallableEventWithFilter): return self.name == other.name elif isinstance(other, str): return self.name == other else: return NotImplemented def __hash__(self) -> int: return hash(self._name_) def __or__(self, other: Any) -> "EventsList": return EventsList() | self | other class EventEnum(CallableEventWithFilter, Enum): """Base class for all :class:`~ignite.engine.events.Events`. User defined custom events should also inherit this class. Examples: Custom events based on the loss calculation and backward pass can be created as follows: .. code-block:: python from ignite.engine import EventEnum class BackpropEvents(EventEnum): BACKWARD_STARTED = 'backward_started' BACKWARD_COMPLETED = 'backward_completed' OPTIM_STEP_COMPLETED = 'optim_step_completed' def update(engine, batch): # ... loss = criterion(y_pred, y) engine.fire_event(BackpropEvents.BACKWARD_STARTED) loss.backward() engine.fire_event(BackpropEvents.BACKWARD_COMPLETED) optimizer.step() engine.fire_event(BackpropEvents.OPTIM_STEP_COMPLETED) # ... trainer = Engine(update) trainer.register_events(*BackpropEvents) @trainer.on(BackpropEvents.BACKWARD_STARTED) def function_before_backprop(engine): # ... """ def __new__(cls, value: str) -> "EventEnum": obj = CallableEventWithFilter.__new__(cls) obj._value_ = value return obj class Events(EventEnum): """Events that are fired by the :class:`~ignite.engine.engine.Engine` during execution. Built-in events: - STARTED : triggered when engine's run is started - EPOCH_STARTED : triggered when the epoch is started - GET_BATCH_STARTED : triggered before next batch is fetched - GET_BATCH_COMPLETED : triggered after the batch is fetched - ITERATION_STARTED : triggered when an iteration is started - ITERATION_COMPLETED : triggered when the iteration is ended - DATALOADER_STOP_ITERATION : engine's specific event triggered when dataloader has no more data to provide - EXCEPTION_RAISED : triggered when an exception is encountered - TERMINATE_SINGLE_EPOCH : triggered when the run is about to end the current epoch, after receiving a :meth:`~ignite.engine.engine.Engine.terminate_epoch()` or :meth:`~ignite.engine.engine.Engine.terminate()` call. - TERMINATE : triggered when the run is about to end completely, after receiving :meth:`~ignite.engine.engine.Engine.terminate()` call. - EPOCH_COMPLETED : triggered when the epoch is ended. Note that this is triggered even when :meth:`~ignite.engine.engine.Engine.terminate_epoch()` is called. - COMPLETED : triggered when engine's run is completed The table below illustrates which events are triggered when various termination methods are called. .. list-table:: :widths: 24 25 33 18 :header-rows: 1 * - Method - EVENT_COMPLETED - TERMINATE_SINGLE_EPOCH - TERMINATE * - no termination - βœ” - βœ— - βœ— * - :meth:`~ignite.engine.engine.Engine.terminate_epoch()` - βœ” - βœ” - βœ— * - :meth:`~ignite.engine.engine.Engine.terminate()` - βœ— - βœ” - βœ” Since v0.3.0, Events become more flexible and allow to pass an event filter to the Engine: .. code-block:: python engine = Engine() # a) custom event filter def custom_event_filter(engine, event): if event in [1, 2, 5, 10, 50, 100]: return True return False @engine.on(Events.ITERATION_STARTED(event_filter=custom_event_filter)) def call_on_special_event(engine): # do something on 1, 2, 5, 10, 50, 100 iterations # b) "every" event filter @engine.on(Events.ITERATION_STARTED(every=10)) def call_every(engine): # do something every 10th iteration # c) "once" event filter @engine.on(Events.ITERATION_STARTED(once=50)) def call_once(engine): # do something on 50th iteration # d) "before" and "after" event filter @engine.on(Events.EPOCH_STARTED(before=30, after=10)) def call_before(engine): # do something in 11 to 29 epoch # e) Mixing "every" and "before" / "after" event filters @engine.on(Events.EPOCH_STARTED(every=5, before=25, after=8)) def call_every_itr_before_after(engine): # do something on 9, 14, 19, 24 epochs Event filter function `event_filter` accepts as input `engine` and `event` and should return True/False. Argument `event` is the value of iteration or epoch, depending on which type of Events the function is passed. Since v0.4.0, user can also combine events with `|`-operator: .. code-block:: python events = Events.STARTED | Events.COMPLETED | Events.ITERATION_STARTED(every=3) engine = ... @engine.on(events) def call_on_events(engine): # do something Since v0.4.0, custom events defined by user should inherit from :class:`~ignite.engine.events.EventEnum` : .. code-block:: python class CustomEvents(EventEnum): FOO_EVENT = "foo_event" BAR_EVENT = "bar_event" """ EPOCH_STARTED = "epoch_started" """triggered when the epoch is started.""" EPOCH_COMPLETED = "epoch_completed" """Event attribute indicating epoch is ended.""" STARTED = "started" """triggered when engine's run is started.""" COMPLETED = "completed" """triggered when engine's run is completed""" ITERATION_STARTED = "iteration_started" """triggered when an iteration is started.""" ITERATION_COMPLETED = "iteration_completed" """triggered when the iteration is ended.""" EXCEPTION_RAISED = "exception_raised" """triggered when an exception is encountered.""" GET_BATCH_STARTED = "get_batch_started" """triggered before next batch is fetched.""" GET_BATCH_COMPLETED = "get_batch_completed" """triggered after the batch is fetched.""" DATALOADER_STOP_ITERATION = "dataloader_stop_iteration" """engine's specific event triggered when dataloader has no more data to provide""" TERMINATE = "terminate" """triggered when the run is about to end completely, after receiving terminate() call.""" TERMINATE_SINGLE_EPOCH = "terminate_single_epoch" """triggered when the run is about to end the current epoch, after receiving a terminate_epoch() call.""" INTERRUPT = "interrupt" """triggered when the run is interrupted, after receiving interrupt() call.""" def __or__(self, other: Any) -> "EventsList": return EventsList() | self | other class EventsList: """Collection of events stacked by operator `__or__`. .. code-block:: python events = Events.STARTED | Events.COMPLETED events |= Events.ITERATION_STARTED(every=3) engine = ... @engine.on(events) def call_on_events(engine): # do something or .. code-block:: python @engine.on(Events.STARTED | Events.COMPLETED | Events.ITERATION_STARTED(every=3)) def call_on_events(engine): # do something """ def __init__(self) -> None: self._events: List[Union[Events, CallableEventWithFilter]] = [] def _append(self, event: Union[Events, CallableEventWithFilter]) -> None: if not isinstance(event, (Events, CallableEventWithFilter)): raise TypeError(f"Argument event should be Events or CallableEventWithFilter, got: {type(event)}") self._events.append(event) def __getitem__(self, item: int) -> Union[Events, CallableEventWithFilter]: return self._events[item] def __iter__(self) -> Iterator[Union[Events, CallableEventWithFilter]]: return iter(self._events) def __len__(self) -> int: return len(self._events) def __or__(self, other: Union[Events, CallableEventWithFilter]) -> "EventsList": self._append(event=other) return self class State: """An object that is used to pass internal and user-defined state between event handlers. By default, state contains the following attributes: .. code-block:: python state.iteration # 1-based, the first iteration is 1 state.epoch # 1-based, the first epoch is 1 state.seed # seed to set at each epoch state.dataloader # data passed to engine state.epoch_length # optional length of an epoch state.max_epochs # number of epochs to run state.batch # batch passed to `process_function` state.output # output of `process_function` after a single iteration state.metrics # dictionary with defined metrics if any state.times # dictionary with total and per-epoch times fetched on # keys: Events.EPOCH_COMPLETED.name and Events.COMPLETED.name Args: kwargs: keyword arguments to be defined as State attributes. """ event_to_attr: Dict[Union[str, "Events", "CallableEventWithFilter"], str] = { Events.GET_BATCH_STARTED: "iteration", Events.GET_BATCH_COMPLETED: "iteration", Events.ITERATION_STARTED: "iteration", Events.ITERATION_COMPLETED: "iteration", Events.EPOCH_STARTED: "epoch", Events.EPOCH_COMPLETED: "epoch", Events.STARTED: "epoch", Events.COMPLETED: "epoch", } def __init__(self, **kwargs: Any) -> None: self.iteration = 0 self.epoch = 0 self.epoch_length: Optional[int] = None self.max_epochs: Optional[int] = None self.output: Optional[int] = None self.batch: Optional[int] = None self.metrics: Dict[str, Any] = {} self.dataloader: Optional[Union[DataLoader, Iterable[Any]]] = None self.seed: Optional[int] = None self.times: Dict[str, Optional[float]] = { Events.EPOCH_COMPLETED.name: None, Events.COMPLETED.name: None, } for k, v in kwargs.items(): setattr(self, k, v) self._update_attrs() def _update_attrs(self) -> None: for value in self.event_to_attr.values(): if not hasattr(self, value): setattr(self, value, 0) def get_event_attrib_value(self, event_name: Union[str, Events, CallableEventWithFilter]) -> int: """Get the value of Event attribute with given `event_name`.""" if event_name not in State.event_to_attr: raise RuntimeError(f"Unknown event name '{event_name}'") return getattr(self, State.event_to_attr[event_name]) def __repr__(self) -> str: s = "State:\n" for attr, value in self.__dict__.items(): if not isinstance(value, (numbers.Number, str)): value = type(value) s += f"\t{attr}: {value}\n" return s class RemovableEventHandle: """A weakref handle to remove a registered event. A handle that may be used to remove a registered event handler via the remove method, with-statement, or context manager protocol. Returned from :meth:`~ignite.engine.engine.Engine.add_event_handler`. Args: event_name: Registered event name. handler: Registered event handler, stored as weakref. engine: Target engine, stored as weakref. Examples: .. code-block:: python engine = Engine() def print_epoch(engine): print(f"Epoch: {engine.state.epoch}") with engine.add_event_handler(Events.EPOCH_COMPLETED, print_epoch): # print_epoch handler registered for a single run engine.run(data) # print_epoch handler is now unregistered """ def __init__( self, event_name: Union[CallableEventWithFilter, Enum, EventsList, Events], handler: Callable, engine: "Engine" ) -> None: self.event_name = event_name self.handler = weakref.ref(handler) self.engine = weakref.ref(engine) def remove(self) -> None: """Remove handler from engine.""" handler = self.handler() engine = self.engine() if handler is None or engine is None: return if hasattr(handler, "_parent"): handler = handler._parent() if handler is None: raise RuntimeError( "Internal error! Please fill an issue on https://github.com/pytorch/ignite/issues " "if encounter this error. Thank you!" ) if isinstance(self.event_name, EventsList): for e in self.event_name: if engine.has_event_handler(handler, e): engine.remove_event_handler(handler, e) else: if engine.has_event_handler(handler, self.event_name): engine.remove_event_handler(handler, self.event_name) def __enter__(self) -> "RemovableEventHandle": return self def __exit__(self, *args: Any, **kwargs: Any) -> None: self.remove() ignite-0.5.1/ignite/engine/utils.py000066400000000000000000000020611465426447700172540ustar00rootroot00000000000000import inspect from typing import Any, Callable, Tuple, Union def _check_signature(fn: Callable, fn_description: str, *args: Any, **kwargs: Any) -> None: # if handler with filter, check the handler rather than the decorator if hasattr(fn, "_parent"): signature = inspect.signature(fn._parent()) else: signature = inspect.signature(fn) try: # try without engine signature.bind(*args, **kwargs) except TypeError as exc: fn_params = list(signature.parameters) exception_msg = str(exc) passed_params = list(args) + list(kwargs) raise ValueError( f"Error adding {fn} '{fn_description}': " f"takes parameters {fn_params} but will be called with {passed_params}" f"({exception_msg})." ) def _to_hours_mins_secs(time_taken: Union[float, int]) -> Tuple[int, int, float]: """Convert seconds to hours, mins, seconds and milliseconds.""" mins, secs = divmod(time_taken, 60) hours, mins = divmod(mins, 60) return round(hours), round(mins), secs ignite-0.5.1/ignite/exceptions.py000066400000000000000000000002261465426447700170310ustar00rootroot00000000000000__all__ = ["NotComputableError"] class NotComputableError(RuntimeError): """ Exception class to raise if Metric cannot be computed. """ ignite-0.5.1/ignite/handlers/000077500000000000000000000000001465426447700160765ustar00rootroot00000000000000ignite-0.5.1/ignite/handlers/__init__.py000066400000000000000000000051211465426447700202060ustar00rootroot00000000000000from typing import Any, Callable, Optional from ignite.engine import Engine from ignite.engine.events import Events from ignite.handlers.checkpoint import Checkpoint, DiskSaver, ModelCheckpoint from ignite.handlers.clearml_logger import ClearMLLogger from ignite.handlers.early_stopping import EarlyStopping from ignite.handlers.ema_handler import EMAHandler from ignite.handlers.lr_finder import FastaiLRFinder from ignite.handlers.mlflow_logger import MLflowLogger from ignite.handlers.neptune_logger import NeptuneLogger from ignite.handlers.param_scheduler import ( BaseParamScheduler, ConcatScheduler, CosineAnnealingScheduler, create_lr_scheduler_with_warmup, CyclicalScheduler, LinearCyclicalScheduler, LRScheduler, ParamGroupScheduler, ParamScheduler, PiecewiseLinear, ReduceLROnPlateauScheduler, ) from ignite.handlers.polyaxon_logger import PolyaxonLogger from ignite.handlers.state_param_scheduler import ( ExpStateScheduler, LambdaStateScheduler, MultiStepStateScheduler, PiecewiseLinearStateScheduler, StateParamScheduler, StepStateScheduler, ) from ignite.handlers.stores import EpochOutputStore from ignite.handlers.tensorboard_logger import TensorboardLogger from ignite.handlers.terminate_on_nan import TerminateOnNan from ignite.handlers.time_limit import TimeLimit from ignite.handlers.time_profilers import BasicTimeProfiler, HandlersTimeProfiler from ignite.handlers.timing import Timer from ignite.handlers.tqdm_logger import ProgressBar from ignite.handlers.utils import global_step_from_engine # noqa from ignite.handlers.visdom_logger import VisdomLogger from ignite.handlers.wandb_logger import WandBLogger __all__ = [ "ModelCheckpoint", "Checkpoint", "DiskSaver", "Timer", "EarlyStopping", "TerminateOnNan", "global_step_from_engine", "TimeLimit", "EpochOutputStore", "ConcatScheduler", "CosineAnnealingScheduler", "LinearCyclicalScheduler", "LRScheduler", "ParamGroupScheduler", "ParamScheduler", "PiecewiseLinear", "CyclicalScheduler", "create_lr_scheduler_with_warmup", "FastaiLRFinder", "EMAHandler", "BasicTimeProfiler", "HandlersTimeProfiler", "BaseParamScheduler", "StateParamScheduler", "LambdaStateScheduler", "PiecewiseLinearStateScheduler", "ExpStateScheduler", "StepStateScheduler", "MultiStepStateScheduler", "ReduceLROnPlateauScheduler", "ClearMLLogger", "MLflowLogger", "NeptuneLogger", "PolyaxonLogger", "TensorboardLogger", "ProgressBar", "VisdomLogger", "WandBLogger", ] ignite-0.5.1/ignite/handlers/base_logger.py000066400000000000000000000270211465426447700207230ustar00rootroot00000000000000"""Base logger and its helper handlers.""" import numbers import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import torch import torch.nn as nn from torch.optim import Optimizer from ignite.engine import Engine, Events, EventsList, State from ignite.engine.events import CallableEventWithFilter, RemovableEventHandle class BaseHandler(metaclass=ABCMeta): """Base handler for defining various useful handlers.""" @abstractmethod def __call__(self, engine: Engine, logger: Any, event_name: Union[str, Events]) -> None: pass class BaseWeightsHandler(BaseHandler): """ Base handler for logging weights or their gradients. """ def __init__( self, model: nn.Module, tag: Optional[str] = None, whitelist: Optional[Union[List[str], Callable[[str, nn.Parameter], bool]]] = None, ): if not isinstance(model, torch.nn.Module): raise TypeError(f"Argument model should be of type torch.nn.Module, but given {type(model)}") self.model = model self.tag = tag weights = {} if whitelist is None: weights = dict(model.named_parameters()) elif callable(whitelist): for n, p in model.named_parameters(): if whitelist(n, p): weights[n] = p else: for n, p in model.named_parameters(): for item in whitelist: if n.startswith(item): weights[n] = p self.weights = weights.items() class BaseOptimizerParamsHandler(BaseHandler): """ Base handler for logging optimizer parameters """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): if not ( isinstance(optimizer, Optimizer) or (hasattr(optimizer, "param_groups") and isinstance(optimizer.param_groups, Sequence)) ): raise TypeError( "Argument optimizer should be torch.optim.Optimizer or has attribute 'param_groups' as list/tuple, " f"but given {type(optimizer)}" ) self.optimizer = optimizer self.param_name = param_name self.tag = tag class BaseOutputHandler(BaseHandler): """ Helper handler to log engine's output and/or metrics """ def __init__( self, tag: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ): if metric_names is not None: if not (isinstance(metric_names, list) or (isinstance(metric_names, str) and metric_names == "all")): raise TypeError( f"metric_names should be either a list or equal 'all', got {type(metric_names)} instead." ) if output_transform is not None and not callable(output_transform): raise TypeError(f"output_transform should be a function, got {type(output_transform)} instead.") if output_transform is None and metric_names is None and state_attributes is None: raise ValueError("Either metric_names, output_transform or state_attributes should be defined") if global_step_transform is not None and not callable(global_step_transform): raise TypeError(f"global_step_transform should be a function, got {type(global_step_transform)} instead.") if global_step_transform is None: def global_step_transform(engine: Engine, event_name: Union[str, Events]) -> int: return engine.state.get_event_attrib_value(event_name) self.tag = tag self.metric_names = metric_names self.output_transform = output_transform self.global_step_transform = global_step_transform self.state_attributes = state_attributes def _setup_output_metrics_state_attrs( self, engine: Engine, log_text: Optional[bool] = False, key_tuple: Optional[bool] = True ) -> Dict[Any, Any]: """Helper method to setup metrics and state attributes to log""" metrics_state_attrs = OrderedDict() if self.metric_names is not None: if isinstance(self.metric_names, str) and self.metric_names == "all": metrics_state_attrs = OrderedDict(engine.state.metrics) else: for name in self.metric_names: if name not in engine.state.metrics: warnings.warn( f"Provided metric name '{name}' is missing " f"in engine's state metrics: {list(engine.state.metrics.keys())}" ) continue metrics_state_attrs[name] = engine.state.metrics[name] if self.output_transform is not None: output_dict = self.output_transform(engine.state.output) if not isinstance(output_dict, dict): output_dict = {"output": output_dict} metrics_state_attrs.update(output_dict) if self.state_attributes is not None: metrics_state_attrs.update({name: getattr(engine.state, name, None) for name in self.state_attributes}) metrics_state_attrs_dict: Dict[Any, Union[str, float, numbers.Number]] = OrderedDict() def key_tuple_tf(tag: str, name: str, *args: str) -> Tuple[str, ...]: return (tag, name) + args def key_str_tf(tag: str, name: str, *args: str) -> str: return "/".join((tag, name) + args) key_tf = key_tuple_tf if key_tuple else key_str_tf for name, value in metrics_state_attrs.items(): if isinstance(value, numbers.Number): metrics_state_attrs_dict[key_tf(self.tag, name)] = value elif isinstance(value, torch.Tensor) and value.ndimension() == 0: metrics_state_attrs_dict[key_tf(self.tag, name)] = value.item() elif isinstance(value, torch.Tensor) and value.ndimension() == 1: for i, v in enumerate(value): metrics_state_attrs_dict[key_tf(self.tag, name, str(i))] = v.item() else: if isinstance(value, str) and log_text: metrics_state_attrs_dict[key_tf(self.tag, name)] = value else: warnings.warn(f"Logger output_handler can not log metrics value type {type(value)}") return metrics_state_attrs_dict class BaseWeightsScalarHandler(BaseWeightsHandler): """ Helper handler to log model's weights or gradients as scalars. """ def __init__( self, model: nn.Module, reduction: Callable[[torch.Tensor], Union[float, torch.Tensor]] = torch.norm, tag: Optional[str] = None, whitelist: Optional[Union[List[str], Callable[[str, nn.Parameter], bool]]] = None, ): super(BaseWeightsScalarHandler, self).__init__(model, tag=tag, whitelist=whitelist) if not callable(reduction): raise TypeError(f"Argument reduction should be callable, but given {type(reduction)}") def _is_0D_tensor(t: Any) -> bool: return isinstance(t, torch.Tensor) and t.ndimension() == 0 # Test reduction function on a tensor o = reduction(torch.ones(4, 2)) if not (isinstance(o, numbers.Number) or _is_0D_tensor(o)): raise TypeError(f"Output of the reduction function should be a scalar, but got {type(o)}") self.reduction = reduction class BaseLogger(metaclass=ABCMeta): """ Base logger handler. See implementations: TensorboardLogger, VisdomLogger, PolyaxonLogger, MLflowLogger, ... """ def attach( self, engine: Engine, log_handler: Callable, event_name: Union[str, Events, CallableEventWithFilter, EventsList], *args: Any, **kwargs: Any, ) -> RemovableEventHandle: """Attach the logger to the engine and execute `log_handler` function at `event_name` events. Args: engine: engine object. log_handler: a logging handler to execute event_name: event to attach the logging handler to. Valid events are from :class:`~ignite.engine.events.Events` or :class:`~ignite.engine.events.EventsList` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. args: args forwarded to the `log_handler` method kwargs: kwargs forwarded to the `log_handler` method Returns: :class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler. """ if isinstance(event_name, EventsList): for name in event_name: if name not in State.event_to_attr: raise RuntimeError(f"Unknown event name '{name}'") engine.add_event_handler(name, log_handler, self, name) return RemovableEventHandle(event_name, log_handler, engine) else: if event_name not in State.event_to_attr: raise RuntimeError(f"Unknown event name '{event_name}'") return engine.add_event_handler(event_name, log_handler, self, event_name, *args, **kwargs) def attach_output_handler(self, engine: Engine, event_name: Any, *args: Any, **kwargs: Any) -> RemovableEventHandle: """Shortcut method to attach `OutputHandler` to the logger. Args: engine: engine object. event_name: event to attach the logging handler to. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. args: args to initialize `OutputHandler` kwargs: kwargs to initialize `OutputHandler` Returns: :class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler. """ return self.attach(engine, self._create_output_handler(*args, **kwargs), event_name=event_name) def attach_opt_params_handler( self, engine: Engine, event_name: Any, *args: Any, **kwargs: Any ) -> RemovableEventHandle: """Shortcut method to attach `OptimizerParamsHandler` to the logger. Args: engine: engine object. event_name: event to attach the logging handler to. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. args: args to initialize `OptimizerParamsHandler` kwargs: kwargs to initialize `OptimizerParamsHandler` Returns: :class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler. .. versionchanged:: 0.4.3 Added missing return statement. """ return self.attach(engine, self._create_opt_params_handler(*args, **kwargs), event_name=event_name) @abstractmethod def _create_output_handler(self, engine: Engine, *args: Any, **kwargs: Any) -> Callable: pass @abstractmethod def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> Callable: pass def __enter__(self) -> "BaseLogger": return self def __exit__(self, type: Any, value: Any, traceback: Any) -> None: self.close() def close(self) -> None: pass ignite-0.5.1/ignite/handlers/checkpoint.py000066400000000000000000001275221465426447700206100ustar00rootroot00000000000000import collections.abc as collections import numbers import os import stat import tempfile from abc import ABCMeta, abstractmethod from collections import OrderedDict from pathlib import Path from typing import Any, Callable, cast, Dict, List, Mapping, NamedTuple, Optional, Union import torch import torch.nn as nn from packaging.version import Version if Version(torch.__version__) >= Version("1.9.0"): from torch.distributed.optim import ZeroRedundancyOptimizer HAVE_ZERO = True else: HAVE_ZERO = False import ignite.distributed as idist from ignite.base import Serializable from ignite.engine import Engine, Events from ignite.utils import _tree_apply2, _tree_map __all__ = ["Checkpoint", "DiskSaver", "ModelCheckpoint", "BaseSaveHandler"] class BaseSaveHandler(metaclass=ABCMeta): """Base class for save handlers Methods to override: - :meth:`~ignite.handlers.checkpoint.BaseSaveHandler.__call__` - :meth:`~ignite.handlers.checkpoint.BaseSaveHandler.remove` Note: In derived class, please, make sure that in distributed configuration overridden methods are called by a single process. Distributed configuration on XLA devices should be treated slightly differently: for saving checkpoint with `xm.save() `_ all processes should pass into the function. Otherwise, application gets stuck. """ @abstractmethod def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None: """Method to save `checkpoint` with `filename`. Additionally, metadata dictionary is provided. Metadata contains: - `basename`: file prefix (if provided) with checkpoint name, e.g. `epoch_checkpoint`. - `score_name`: score name if provided, e.g `val_acc`. - `priority`: checkpoint priority value (higher is better), e.g. `12` or `0.6554435` Args: checkpoint: checkpoint dictionary to save. filename: filename associated with checkpoint. metadata: metadata on checkpoint to save. """ @abstractmethod def remove(self, filename: str) -> None: """Method to remove saved checkpoint. Args: filename: filename associated with checkpoint. """ class Checkpoint(Serializable): """Checkpoint handler can be used to periodically save and load objects which have attribute ``state_dict/load_state_dict``. This class can use specific save handlers to store on the disk or a cloud storage, etc. The Checkpoint handler (if used with :class:`~ignite.handlers.DiskSaver`) also handles automatically moving data on TPU to CPU before writing the checkpoint. Args: to_save: Dictionary with the objects to save. Objects should have implemented ``state_dict`` and ``load_state_dict`` methods. If contains objects of type torch `DistributedDataParallel`_ or `DataParallel`_, their internal wrapped model is automatically saved (to avoid additional key ``module.`` in the state dictionary). save_handler: String, function or callable object. used to save engine and other provided objects. Function receives two objects: checkpoint as a dictionary and filename. If ``save_handler`` is callable class, it can inherit of :class:`~ignite.handlers.checkpoint.BaseSaveHandler` and optionally implement ``remove`` method to keep a fixed number of saved checkpoints. In case if user needs to save engine's checkpoint on a disk, ``save_handler`` can be defined with :class:`~ignite.handlers.DiskSaver` or a string specifying directory name can be passed to ``save_handler``. filename_prefix: Prefix for the file name to which objects will be saved. See Note for details. score_function: If not None, it should be a function taking a single argument, :class:`~ignite.engine.engine.Engine` object, and returning a score (`float`). Objects with highest scores will be retained. score_name: If ``score_function`` not None, it is possible to store its value using ``score_name``. If ``score_function`` is None, ``score_name`` can be used alone to define ``score_function`` as ``Checkpoint.get_default_score_fn(score_name)`` by default. n_saved: Number of objects that should be kept on disk. Older files will be removed. If set to `None`, all objects are kept. global_step_transform: global step transform function to output a desired global step. Input of the function is ``(engine, event_name)``. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.global_step_from_engine`. filename_pattern: If ``filename_pattern`` is provided, this pattern will be used to render checkpoint filenames. If the pattern is not defined, the default pattern would be used. See Note for details. include_self: Whether to include the `state_dict` of this object in the checkpoint. If `True`, then there must not be another object in ``to_save`` with key ``checkpointer``. greater_or_equal: if `True`, the latest equally scored model is stored. Otherwise, the first model. Default, `False`. save_on_rank: Which rank to save the objects on, in the distributed configuration. If ``save_handler`` is string or :class:`~pathlib.Path`, this is also used to instantiate a :class:`~ignite.handlers.DiskSaver`. .. _DistributedDataParallel: https://pytorch.org/docs/stable/generated/ torch.nn.parallel.DistributedDataParallel.html .. _DataParallel: https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html Note: This class stores a single file as a dictionary of provided objects to save. The filename is defined by ``filename_pattern`` and by default has the following structure: ``{filename_prefix}_{name}_{suffix}.{ext}`` where - ``filename_prefix`` is the argument passed to the constructor, - `name` is the key in ``to_save`` if a single object is to store, otherwise `name` is "checkpoint". - `suffix` is composed as following ``{global_step}_{score_name}={score}``. +----------------+------------+-----------------------+----------------------------------------------+ | score_function | score_name | global_step_transform | suffix | +================+============+=======================+==============================================+ | None | None | None | ``{engine.state.iteration}`` | +----------------+------------+-----------------------+----------------------------------------------+ | X | None | None | ``{score}`` | +----------------+------------+-----------------------+----------------------------------------------+ | X | None | X | ``{global_step}_{score}`` | +----------------+------------+-----------------------+----------------------------------------------+ | X | X | X | ``{global_step}_{score_name}={score}`` | +----------------+------------+-----------------------+----------------------------------------------+ | None | None | X | ``{global_step}`` | +----------------+------------+-----------------------+----------------------------------------------+ | X | X | None | ``{score_name}={score}`` | +----------------+------------+-----------------------+----------------------------------------------+ Above `global_step` defined by the output of `global_step_transform` and `score` defined by the output of `score_function`. By default, none of ``score_function``, ``score_name``, ``global_step_transform`` is defined, then suffix is setup by attached engine's current iteration. The filename will be `{filename_prefix}_{name}_{engine.state.iteration}.{ext}`. For example, ``score_name="neg_val_loss"`` and ``score_function`` that returns `-loss` (as objects with highest scores will be retained), then saved filename will be ``{filename_prefix}_{name}_neg_val_loss=-0.1234.pt``. Note: If ``filename_pattern`` is given, it will be used to render the filenames. ``filename_pattern`` is a string that can contain ``{filename_prefix}``, ``{name}``, ``{score}``, ``{score_name}`` and ``{global_step}`` as templates. For example, let ``filename_pattern="{global_step}-{name}-{score}.pt"`` then the saved filename will be ``30000-checkpoint-94.pt`` **Warning:** Please, keep in mind that if filename collide with already used one to saved a checkpoint, new checkpoint will replace the older one. This means that filename like ``checkpoint.pt`` will be saved every call and will always be overwritten by newer checkpoints. Note: To get the last stored filename, handler exposes attribute ``last_checkpoint``: .. code-block:: python handler = Checkpoint(...) ... print(handler.last_checkpoint) > checkpoint_12345.pt Note: This class is distributed configuration-friendly: it is not required to instantiate the class in rank 0 only process. This class supports automatically distributed configuration and if used with :class:`~ignite.handlers.DiskSaver`, checkpoint is stored by rank 0 process. .. warning:: When running on XLA devices or using :class:`~torch.distributed.optim.ZeroRedundancyOptimizer`, it should be run in all processes, otherwise application can get stuck while saving the checkpoint. .. code-block:: python # Wrong: # if idist.get_rank() == 0: # handler = Checkpoint(...) # trainer.add_event_handler(Events.ITERATION_COMPLETED(every=1000), handler) # Correct: handler = Checkpoint(...) trainer.add_event_handler(Events.ITERATION_COMPLETED(every=1000), handler) Examples: Attach the handler to make checkpoints during training: .. code-block:: python from ignite.engine import Engine, Events from ignite.handlers import Checkpoint trainer = ... model = ... optimizer = ... lr_scheduler = ... to_save = {'model': model, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'trainer': trainer} if (checkpoint_iters): # A: Output is "checkpoint_.pt" handler = Checkpoint( to_save, '/tmp/models', n_saved=2 ) trainer.add_event_handler(Events.ITERATION_COMPLETED(every=1000), handler) else: # B:Output is "checkpoint_.pt" gst = lambda *_: trainer.state.epoch handler = Checkpoint( to_save, '/tmp/models', n_saved=2, global_step_transform=gst ) trainer.add_event_handler(Events.EPOCH_COMPLETED, handler) trainer.run(data_loader, max_epochs=6) > A: ["checkpoint_7000.pt", "checkpoint_8000.pt", ] > B: ["checkpoint_5.pt", "checkpoint_6.pt", ] Attach the handler to an evaluator to save best model during the training according to computed validation metric: .. code-block:: python from ignite.engine import Engine, Events from ignite.handlers import Checkpoint, global_step_from_engine trainer = ... evaluator = ... # Setup Accuracy metric computation on evaluator. # evaluator.state.metrics contain 'accuracy', # which will be used to define ``score_function`` automatically. # Run evaluation on epoch completed event # ... to_save = {'model': model} handler = Checkpoint( to_save, '/tmp/models', n_saved=2, filename_prefix='best', score_name="accuracy", global_step_transform=global_step_from_engine(trainer) ) evaluator.add_event_handler(Events.COMPLETED, handler) trainer.run(data_loader, max_epochs=10) > ["best_model_9_accuracy=0.77.pt", "best_model_10_accuracy=0.78.pt", ] Customise the ``save_handler``: .. code-block:: python handler = Checkpoint( to_save, save_handler=DiskSaver('/tmp/models', create_dir=True, **kwargs), n_saved=2 ) .. versionchanged:: 0.4.3 - Checkpoint can save model with same filename. - Added ``greater_or_equal`` argument. .. versionchanged:: 0.4.7 - `score_name` can be used to define `score_function` automatically without providing `score_function`. - `save_handler` automatically saves to disk if path to directory is provided. - `save_on_rank` saves objects on this rank in a distributed configuration. """ Item = NamedTuple("Item", [("priority", int), ("filename", str)]) _state_dict_all_req_keys = ("_saved",) def __init__( self, to_save: Mapping, save_handler: Union[str, Path, Callable, BaseSaveHandler], filename_prefix: str = "", score_function: Optional[Callable] = None, score_name: Optional[str] = None, n_saved: Union[int, None] = 1, global_step_transform: Optional[Callable] = None, filename_pattern: Optional[str] = None, include_self: bool = False, greater_or_equal: bool = False, save_on_rank: int = 0, ): if not isinstance(to_save, collections.Mapping): raise TypeError(f"Argument `to_save` should be a dictionary, but given {type(to_save)}") self._check_objects(to_save, "state_dict") if include_self: if not isinstance(to_save, collections.MutableMapping): raise TypeError( f"If `include_self` is True, then `to_save` must be mutable, but given {type(to_save)}." ) if "checkpointer" in to_save: raise ValueError(f"Cannot have key 'checkpointer' if `include_self` is True: {to_save}") if not ( isinstance(save_handler, str) or isinstance(save_handler, Path) or callable(save_handler) or isinstance(save_handler, BaseSaveHandler) ): raise TypeError( "Argument `save_handler` should be a string or Path object or callable or inherit from BaseSaveHandler" ) if global_step_transform is not None and not callable(global_step_transform): raise TypeError(f"global_step_transform should be a function, got {type(global_step_transform)} instead.") self.to_save = to_save self.filename_prefix = filename_prefix if isinstance(save_handler, str) or isinstance(save_handler, Path): self.save_handler = DiskSaver(save_handler, create_dir=True, save_on_rank=save_on_rank) else: self.save_handler = save_handler # type: ignore self.score_function = score_function self.score_name = score_name if self.score_name is not None and self.score_function is None: self.score_function = self.get_default_score_fn(self.score_name) self.n_saved = n_saved self.ext = "pt" self.global_step_transform = global_step_transform self.filename_pattern = filename_pattern self._saved: List["Checkpoint.Item"] = [] self.include_self = include_self self.greater_or_equal = greater_or_equal self.save_on_rank = save_on_rank def _get_filename_pattern(self, global_step: Optional[int]) -> str: if self.filename_pattern is None: filename_pattern = self.setup_filename_pattern( with_prefix=len(self.filename_prefix) > 0, with_score=self.score_function is not None, with_score_name=self.score_name is not None, with_global_step=global_step is not None, ) else: filename_pattern = self.filename_pattern return filename_pattern def reset(self) -> None: """Method to reset saved checkpoint names. Use this method if the engine will independently run multiple times: .. code-block:: python from ignite.handlers import Checkpoint trainer = ... checkpointer = Checkpoint(...) trainer.add_event_handler(Events.COMPLETED, checkpointer) trainer.add_event_handler(Events.STARTED, checkpointer.reset) # fold 0 trainer.run(data0, max_epochs=max_epochs) print("Last checkpoint:", checkpointer.last_checkpoint) # fold 1 trainer.run(data1, max_epochs=max_epochs) print("Last checkpoint:", checkpointer.last_checkpoint) .. versionadded:: 0.4.3 """ self._saved = [] @property def last_checkpoint(self) -> Optional[Union[str, Path]]: if len(self._saved) < 1: return None if not isinstance(self.save_handler, DiskSaver): return self._saved[-1].filename return self.save_handler.dirname / self._saved[-1].filename def _check_lt_n_saved(self, or_equal: bool = False) -> bool: if self.n_saved is None: return True return len(self._saved) < self.n_saved + int(or_equal) def _compare_fn(self, new: Union[int, float]) -> bool: if self.greater_or_equal: return new >= self._saved[0].priority else: return new > self._saved[0].priority def __call__(self, engine: Engine) -> None: global_step = None if self.global_step_transform is not None: global_step = self.global_step_transform(engine, engine.last_event_name) if self.score_function is not None: priority = self.score_function(engine) if not isinstance(priority, numbers.Number): raise ValueError("Output of score_function should be a number") else: if global_step is None: global_step = engine.state.get_event_attrib_value(Events.ITERATION_COMPLETED) priority = global_step if self._check_lt_n_saved() or self._compare_fn(priority): priority_str = f"{priority}" if isinstance(priority, numbers.Integral) else f"{priority:.4f}" checkpoint = self._setup_checkpoint() name = "checkpoint" if len(checkpoint) == 1: for k in checkpoint: name = k checkpoint = checkpoint[name] filename_pattern = self._get_filename_pattern(global_step) filename_dict = { "filename_prefix": self.filename_prefix, "ext": self.ext, "name": name, "score_name": self.score_name, "score": priority_str if (self.score_function is not None) else None, "global_step": global_step, } filename = filename_pattern.format(**filename_dict) metadata = { "basename": f"{self.filename_prefix}{'_' * int(len(self.filename_prefix) > 0)}{name}", "score_name": self.score_name, "priority": priority, } try: index = list(map(lambda it: it.filename == filename, self._saved)).index(True) to_remove = True except ValueError: index = 0 to_remove = not self._check_lt_n_saved() if to_remove: item = self._saved.pop(index) if isinstance(self.save_handler, BaseSaveHandler): self.save_handler.remove(item.filename) self._saved.append(Checkpoint.Item(priority, filename)) self._saved.sort(key=lambda it: it[0]) if self.include_self: # Now that we've updated _saved, we can add our own state_dict. checkpoint["checkpointer"] = self.state_dict() try: self.save_handler(checkpoint, filename, metadata) except TypeError: self.save_handler(checkpoint, filename) def _setup_checkpoint(self) -> Dict[str, Any]: if self.to_save is not None: def func(obj: Any, **kwargs: Any) -> Dict: if isinstance(obj, (nn.DataParallel, nn.parallel.DistributedDataParallel)): obj = obj.module elif HAVE_ZERO and isinstance(obj, ZeroRedundancyOptimizer): obj.consolidate_state_dict(to=self.save_on_rank) if self.save_on_rank != idist.get_rank(): return {} return obj.state_dict() return cast(Dict[str, Any], _tree_map(func, self.to_save)) return {} @staticmethod def setup_filename_pattern( with_prefix: bool = True, with_score: bool = True, with_score_name: bool = True, with_global_step: bool = True ) -> str: """Helper method to get the default filename pattern for a checkpoint. Args: with_prefix: If True, the ``filename_prefix`` is added to the filename pattern: ``{filename_prefix}_{name}...``. Default, True. with_score: If True, ``score`` is added to the filename pattern: ``..._{score}.{ext}``. Default, True. At least one of ``with_score`` and ``with_global_step`` should be True. with_score_name: If True, ``score_name`` is added to the filename pattern: ``..._{score_name}={score}.{ext}``. If activated, argument ``with_score`` should be also True, otherwise an error is raised. Default, True. with_global_step: If True, ``{global_step}`` is added to the filename pattern: ``...{name}_{global_step}...``. At least one of ``with_score`` and ``with_global_step`` should be True. Examples: .. code-block:: python from ignite.handlers import Checkpoint filename_pattern = Checkpoint.setup_filename_pattern() print(filename_pattern) > "{filename_prefix}_{name}_{global_step}_{score_name}={score}.{ext}" .. versionadded:: 0.4.3 """ filename_pattern = "{name}" if not (with_global_step or with_score): raise ValueError("At least one of with_score and with_global_step should be True.") if with_global_step: filename_pattern += "_{global_step}" if with_score_name and with_score: filename_pattern += "_{score_name}={score}" elif with_score: filename_pattern += "_{score}" elif with_score_name: raise ValueError("If with_score_name is True, with_score should be also True") if with_prefix: filename_pattern = "{filename_prefix}_" + filename_pattern filename_pattern += ".{ext}" return filename_pattern @staticmethod def _check_objects(objs: Mapping, attr: str) -> None: def func(obj: Any, **kwargs: Any) -> None: if not hasattr(obj, attr): raise TypeError(f"Object {type(obj)} should have `{attr}` method") _tree_map(func, objs) @staticmethod def load_objects(to_load: Mapping, checkpoint: Union[str, Mapping, Path], **kwargs: Any) -> None: """Helper method to apply ``load_state_dict`` on the objects from ``to_load`` using states from ``checkpoint``. Args: to_load: a dictionary with objects, e.g. `{"model": model, "optimizer": optimizer, ...}` checkpoint: a path, a string filepath or a dictionary with state_dicts to load, e.g. `{"model": model_state_dict, "optimizer": opt_state_dict}`. If `to_load` contains a single key, then checkpoint can contain directly corresponding state_dict. kwargs: Keyword arguments accepted for `nn.Module.load_state_dict()`. Passing `strict=False` enables the user to load part of the pretrained model (useful for example, in Transfer Learning) Examples: .. code-block:: python import tempfile from pathlib import Path import torch from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint, Checkpoint trainer = Engine(lambda engine, batch: None) with tempfile.TemporaryDirectory() as tmpdirname: handler = ModelCheckpoint(tmpdirname, 'myprefix', n_saved=None, create_dir=True) model = torch.nn.Linear(3, 3) optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) to_save = {"weights": model, "optimizer": optimizer} trainer.add_event_handler(Events.EPOCH_COMPLETED(every=2), handler, to_save) trainer.run(torch.randn(10, 1), 5) to_load = to_save checkpoint_fp = Path(tmpdirname) / 'myprefix_checkpoint_40.pt' checkpoint = torch.load(checkpoint_fp) Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint) # or using a string for checkpoint filepath to_load = to_save checkpoint_fp = Path(tmpdirname) / 'myprefix_checkpoint_40.pt' Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint_fp) Note: If ``to_load`` contains objects of type torch `DistributedDataParallel`_ or `DataParallel`_, method ``load_state_dict`` will applied to their internal wrapped model (``obj.module``). .. _DistributedDataParallel: https://pytorch.org/docs/stable/generated/ torch.nn.parallel.DistributedDataParallel.html .. _DataParallel: https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html """ if not isinstance(checkpoint, (collections.Mapping, str, Path)): raise TypeError(f"Argument checkpoint should be a string or a dictionary, but given {type(checkpoint)}") Checkpoint._check_objects(to_load, "load_state_dict") if isinstance(checkpoint, (str, Path)): checkpoint_obj = torch.load(checkpoint) else: checkpoint_obj = checkpoint def _load_object(obj: Any, chkpt_obj: Any) -> None: if isinstance(obj, (nn.DataParallel, nn.parallel.DistributedDataParallel)): obj = obj.module if isinstance(obj, torch.nn.Module): obj.load_state_dict(chkpt_obj, **kwargs) else: obj.load_state_dict(chkpt_obj) if len(to_load) == 1: # single object and checkpoint is directly a state_dict key, obj = list(to_load.items())[0] if key not in checkpoint_obj: _load_object(obj, checkpoint_obj) return _tree_apply2(_load_object, to_load, checkpoint_obj) def reload_objects(self, to_load: Mapping, load_kwargs: Optional[Dict] = None, **filename_components: Any) -> None: """Helper method to apply ``load_state_dict`` on the objects from ``to_load``. Filename components such as name, score and global state can be configured. Args: to_load: a dictionary with objects, e.g. `{"model": model, "optimizer": optimizer, ...}` load_kwargs: Keyword arguments accepted for `nn.Module.load_state_dict()`. Passing `strict=False` enables the user to load part of the pretrained model (useful for example, in Transfer Learning) filename_components: Filename components used to define the checkpoint file path. Keyword arguments accepted are `name`, `score` and `global_state`. Examples: .. code-block:: python import tempfile import torch from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint trainer = Engine(lambda engine, batch: None) with tempfile.TemporaryDirectory() as tmpdirname: checkpoint = ModelCheckpoint(tmpdirname, 'myprefix', n_saved=None, create_dir=True) model = torch.nn.Linear(3, 3) optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) to_save = {"weights": model, "optimizer": optimizer} trainer.add_event_handler(Events.EPOCH_COMPLETED(every=2), checkpoint, to_save) trainer.run(torch.randn(10, 1), 5) to_load = to_save # load checkpoint myprefix_checkpoint_40.pt checkpoint.reload_objects(to_load=to_load, global_step=40) Note: If ``to_load`` contains objects of type torch `DistributedDataParallel`_ or `DataParallel`_, method ``load_state_dict`` will applied to their internal wrapped model (``obj.module``). Note: This method works only when the ``save_handler`` is of types string, :class:`~pathlib.Path` or :class:`~ignite.handlers.checkpoint.DiskSaver`. .. _DistributedDataParallel: https://pytorch.org/docs/stable/generated/ torch.nn.parallel.DistributedDataParallel.html .. _DataParallel: https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html """ if not isinstance(self.save_handler, DiskSaver): raise AttributeError( f"Checkpoint's `save_handler` should be of type `DiskSaver`, given {type(self.save_handler)}" ) global_step = filename_components.get("global_step", None) filename_pattern = self._get_filename_pattern(global_step) checkpoint = self._setup_checkpoint() name = "checkpoint" if len(checkpoint) == 1: for k in checkpoint: name = k name = filename_components.get("name", name) score = filename_components.get("score", None) filename_dict = { "filename_prefix": self.filename_prefix, "ext": self.ext, "name": name, "score_name": self.score_name, "score": score, "global_step": global_step, } checkpoint_fp = filename_pattern.format(**filename_dict) path = self.save_handler.dirname / checkpoint_fp load_kwargs = {} if load_kwargs is None else load_kwargs Checkpoint.load_objects(to_load=to_load, checkpoint=path, **load_kwargs) def state_dict(self) -> OrderedDict: """Method returns state dict with saved items: list of ``(priority, filename)`` pairs. Can be used to save internal state of the class. """ # TODO: this method should use _state_dict_all_req_keys return OrderedDict([("_saved", [(p, f) for p, f in self._saved])]) def load_state_dict(self, state_dict: Mapping) -> None: """Method replaces internal state of the class with provided state dict data. Args: state_dict: a dict with "saved" key and list of ``(priority, filename)`` pairs as values. """ super().load_state_dict(state_dict) self._saved = [Checkpoint.Item(p, f) for p, f in state_dict["_saved"]] @staticmethod def get_default_score_fn(metric_name: str, score_sign: float = 1.0) -> Callable: """Helper method to get default score function based on the metric name. Args: metric_name: metric name to get the value from ``engine.state.metrics``. Engine is the one to which :class:`~ignite.handlers.checkpoint.Checkpoint` handler is added. score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better, a negative score sign should be used (objects with larger score are retained). Default, 1.0. Examples: .. code-block:: python from ignite.handlers import Checkpoint best_acc_score = Checkpoint.get_default_score_fn("accuracy") best_model_handler = Checkpoint( to_save, save_handler, score_name="val_accuracy", score_function=best_acc_score ) evaluator.add_event_handler(Events.COMPLETED, best_model_handler) Usage with error-like metric: .. code-block:: python from ignite.handlers import Checkpoint neg_loss_score = Checkpoint.get_default_score_fn("loss", -1.0) best_model_handler = Checkpoint( to_save, save_handler, score_name="val_neg_loss", score_function=neg_loss_score ) evaluator.add_event_handler(Events.COMPLETED, best_model_handler) .. versionadded:: 0.4.3 """ if score_sign not in (1.0, -1.0): raise ValueError("Argument score_sign should be 1 or -1") def wrapper(engine: Engine) -> float: return score_sign * engine.state.metrics[metric_name] return wrapper class DiskSaver(BaseSaveHandler): """Handler that saves input checkpoint on a disk. Args: dirname: Directory path where the checkpoint will be saved atomic: if True, checkpoint is serialized to a temporary file, and then moved to final destination, so that files are guaranteed to not be damaged (for example if exception occurs during saving). create_dir: if True, will create directory ``dirname`` if it doesnt exist. require_empty: If True, will raise exception if there are any files in the directory ``dirname``. save_on_rank: The rank on which the checkpoint will be saved. Used in distributed configuration. kwargs: Accepted keyword arguments for `torch.save` or `xm.save`. .. versionchanged:: 0.4.2 Accept ``kwargs`` for `torch.save` or `xm.save`. .. versionchanged:: 0.4.10 Argument ``save_on_rank`` was added to specify the rank on which checkpoint should be saved. """ def __init__( self, dirname: Union[str, Path], atomic: bool = True, create_dir: bool = True, require_empty: bool = True, save_on_rank: int = 0, **kwargs: Any, ): self.dirname = Path(dirname).expanduser() self._atomic = atomic self.save_on_rank = save_on_rank if idist.get_rank() == save_on_rank: self._check_and_setup(self.dirname, create_dir, require_empty) self.kwargs = kwargs @staticmethod def _check_and_setup(dirname: Path, create_dir: bool, require_empty: bool) -> None: if create_dir: if not dirname.exists(): dirname.mkdir(parents=True) # Ensure that dirname exists if not dirname.exists(): raise ValueError(f"Directory path '{dirname}' is not found") if require_empty: matched = [fname for fname in os.listdir(dirname) if fname.endswith(".pt")] if len(matched) > 0: raise ValueError( f"Files {matched} with extension '.pt' are already present " f"in the directory {dirname}. If you want to use this " "directory anyway, pass `require_empty=False`." "" ) def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None: path = self.dirname / filename if idist.has_xla_support: import torch_xla.core.xla_model as xm # all tpu procs should enter here as internally performs sync across device self._save_func(checkpoint, path, xm.save) elif self.save_on_rank == idist.get_rank(): self._save_func(checkpoint, path, torch.save) def _save_func(self, checkpoint: Mapping, path: Path, func: Callable) -> None: if not self._atomic: func(checkpoint, path, **self.kwargs) else: tmp = tempfile.NamedTemporaryFile(delete=False, dir=self.dirname) tmp_file = tmp.file tmp_name = tmp.name try: func(checkpoint, tmp_file, **self.kwargs) except BaseException: tmp.close() os.remove(tmp_name) raise else: tmp.close() os.replace(tmp.name, path) # append group/others read mode os.chmod(path, os.stat(path).st_mode | stat.S_IRGRP | stat.S_IROTH) def remove(self, filename: str) -> None: if idist.get_rank() == self.save_on_rank: path = self.dirname / filename path.unlink() class ModelCheckpoint(Checkpoint): """ModelCheckpoint handler, inherits from :class:`~ignite.handlers.checkpoint.Checkpoint`, can be used to periodically save objects to disk only. If needed to store checkpoints to another storage type, please consider :class:`~ignite.handlers.checkpoint.Checkpoint`. It also provides `last_checkpoint` attribute to show the last saved checkpoint. This handler expects two arguments: - an :class:`~ignite.engine.engine.Engine` object - a `dict` mapping names (`str`) to objects that should be saved to disk. See Examples for further details. .. warning:: Behaviour of this class has been changed since v0.3.0. There is no more internal counter that has been used to indicate the number of save actions. User could see its value `step_number` in the filename, e.g. `{filename_prefix}_{name}_{step_number}.pt`. Actually, `step_number` is replaced by current engine's epoch if `score_function` is specified and current iteration otherwise. A single `pt` file is created instead of multiple files. Args: dirname: Directory path where objects will be saved. filename_prefix: Prefix for the file names to which objects will be saved. See Notes of :class:`~ignite.handlers.checkpoint.Checkpoint` for more details. score_function: if not None, it should be a function taking a single argument, an :class:`~ignite.engine.engine.Engine` object, and return a score (`float`). Objects with highest scores will be retained. score_name: if ``score_function`` not None, it is possible to store its value using `score_name`. See Examples of :class:`~ignite.handlers.checkpoint.Checkpoint` for more details. n_saved: Number of objects that should be kept on disk. Older files will be removed. If set to `None`, all objects are kept. atomic: If True, objects are serialized to a temporary file, and then moved to final destination, so that files are guaranteed to not be damaged (for example if exception occurs during saving). require_empty: If True, will raise exception if there are any files starting with ``filename_prefix`` in the directory ``dirname``. create_dir: If True, will create directory ``dirname`` if it does not exist. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.global_step_from_engine`. filename_pattern: If ``filename_pattern`` is provided, this pattern will be used to render checkpoint filenames. If the pattern is not defined, the default pattern would be used. See :class:`~ignite.handlers.checkpoint.Checkpoint` for details. include_self: Whether to include the `state_dict` of this object in the checkpoint. If `True`, then there must not be another object in ``to_save`` with key ``checkpointer``. greater_or_equal: if `True`, the latest equally scored model is stored. Otherwise, the first model. Default, `False`. save_on_rank: Which rank to save the objects on, in the distributed configuration. Used to instantiate a :class:`~ignite.handlers.DiskSaver` and is also passed to the parent class. kwargs: Accepted keyword arguments for `torch.save` or `xm.save` in `DiskSaver`. .. versionchanged:: 0.4.2 Accept ``kwargs`` for `torch.save` or `xm.save` .. versionchanged:: 0.4.9 Accept ``filename_pattern`` and ``greater_or_equal`` for parity with :class:`~ignite.handlers.checkpoint.Checkpoint` .. versionchanged:: 0.4.10 Added `save_on_rank` arg to save objects on this rank in a distributed configuration Examples: .. testcode:: python import os from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint from torch import nn trainer = Engine(lambda engine, batch: None) handler = ModelCheckpoint('/tmp/models', 'myprefix', n_saved=2, create_dir=True, require_empty=False) model = nn.Linear(3, 3) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=2), handler, {'mymodel': model}) trainer.run([0, 1, 2, 3, 4], max_epochs=6) print(sorted(os.listdir('/tmp/models'))) print(handler.last_checkpoint) .. testoutput:: python ['myprefix_mymodel_20.pt', 'myprefix_mymodel_30.pt'] /tmp/models/myprefix_mymodel_30.pt """ def __init__( self, dirname: Union[str, Path], filename_prefix: str = "", score_function: Optional[Callable] = None, score_name: Optional[str] = None, n_saved: Union[int, None] = 1, atomic: bool = True, require_empty: bool = True, create_dir: bool = True, global_step_transform: Optional[Callable] = None, filename_pattern: Optional[str] = None, include_self: bool = False, greater_or_equal: bool = False, save_on_rank: int = 0, **kwargs: Any, ): disk_saver = DiskSaver( dirname, atomic=atomic, create_dir=create_dir, require_empty=require_empty, save_on_rank=save_on_rank, **kwargs, ) super(ModelCheckpoint, self).__init__( to_save={}, save_handler=disk_saver, filename_prefix=filename_prefix, score_function=score_function, score_name=score_name, n_saved=n_saved, global_step_transform=global_step_transform, filename_pattern=filename_pattern, include_self=include_self, greater_or_equal=greater_or_equal, save_on_rank=save_on_rank, ) @property def last_checkpoint(self) -> Optional[Union[str, Path]]: if len(self._saved) < 1: return None if not isinstance(self.save_handler, DiskSaver): raise RuntimeError(f"Internal error, save_handler should be DiskSaver, but has {type(self.save_handler)}.") return self.save_handler.dirname / self._saved[-1].filename def __call__(self, engine: Engine, to_save: Mapping): # type: ignore if len(to_save) == 0: raise RuntimeError("No objects to checkpoint found.") self._check_objects(to_save, "state_dict") self.to_save = to_save super(ModelCheckpoint, self).__call__(engine) ignite-0.5.1/ignite/handlers/clearml_logger.py000066400000000000000000001111411465426447700214250ustar00rootroot00000000000000"""ClearML logger and its helper handlers.""" import os import tempfile import warnings from collections import defaultdict from datetime import datetime from enum import Enum from typing import Any, Callable, DefaultDict, List, Mapping, Optional, Tuple, Type, Union from torch.optim import Optimizer import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsHandler, BaseWeightsScalarHandler, ) from ignite.handlers.checkpoint import DiskSaver from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "ClearMLLogger", "ClearMLSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", "global_step_from_engine", ] class ClearMLLogger(BaseLogger): """ `ClearML `_ handler to log metrics, text, model/optimizer parameters, plots during training and validation. Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server, S3 bucket etc.) .. code-block:: bash pip install clearml clearml-init Args: kwargs: Keyword arguments accepted from ``Task.init`` method. All arguments are optional. If a ClearML Task has already been created, kwargs will be ignored and the current ClearML Task will be used. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log training loss at each iteration clearml_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. clearml_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) ) """ def __init__(self, **kwargs: Any): try: from clearml import Task from clearml.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper except ImportError: raise ModuleNotFoundError( "This contrib module requires clearml to be installed. " "You may install clearml using: \n pip install clearml \n" ) experiment_kwargs = {k: v for k, v in kwargs.items() if k not in ("project_name", "task_name", "task_type")} if self.bypass_mode(): warnings.warn("ClearMLSaver: running in bypass mode") # Try to retrieve current the ClearML Task before trying to create a new one self._task = Task.current_task() if self._task is None: self._task = Task.init( project_name=kwargs.get("project_name"), task_name=kwargs.get("task_name"), task_type=kwargs.get("task_type", Task.TaskTypes.training), **experiment_kwargs, ) self.clearml_logger = self._task.get_logger() self.grad_helper = WeightsGradientHistHelper(logger=self.clearml_logger, report_freq=1) @classmethod def set_bypass_mode(cls, bypass: bool) -> None: """ Set ``clearml.Task`` to offline mode. Will bypass all outside communication, and will save all data and logs to a local session folder. Should only be used in "standalone mode", when there is no access to the *clearml-server*. Args: bypass: If ``True``, all outside communication is skipped. Data and logs will be stored in a local session folder. For more information, please refer to `ClearML docs `_. """ from clearml import Task setattr(cls, "_bypass", bypass) Task.set_offline(offline_mode=bypass) @classmethod def bypass_mode(cls) -> bool: """ Returns the bypass mode state. Note: `GITHUB_ACTIONS` env will automatically set bypass_mode to ``True`` unless overridden specifically with ``ClearMLLogger.set_bypass_mode(False)``. For more information, please refer to `ClearML docs `_. Return: If True, ``clearml.Task`` is on offline mode, and all outside communication is skipped. """ return getattr(cls, "_bypass", bool(os.environ.get("CI"))) def __getattr__(self, attr: Any) -> Any: """ Calls the corresponding method of ``clearml.Logger``. Args: attr: methods of the ``clearml.Logger`` class. """ return getattr(self.clearml_logger, attr) def get_task(self) -> Any: """ Returns the task context that the logger is reporting. Return: Returns the current task, equivalent to ``clearml.Task.current_task()``. """ return self._task def close(self) -> None: self.clearml_logger.flush() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.clearml_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: clearml_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.clearml_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on ClearML. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python clearml_logger.attach( trainer, log_handler=OutputHandler( tag="training", metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ), event_name=Events.ITERATION_COMPLETED ) Example of `global_step_transform` .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[List[str]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ): super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler OutputHandler works only with ClearMLLogger") metrics = self._setup_output_metrics_state_attrs(engine) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) for key, value in metrics.items(): if len(key) == 2: logger.clearml_logger.report_scalar(title=key[0], series=key[1], iteration=global_step, value=value) elif len(key) == 3: logger.clearml_logger.report_scalar( title=f"{key[0]}/{key[1]}", series=key[2], iteration=global_step, value=value ) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with ClearMLLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { str(i): float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } for k, v in params.items(): logger.clearml_logger.report_scalar( title=f"{tag_prefix}{self.param_name}", series=k, value=v, iteration=global_step ) class WeightsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's weights as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by `whitelist`. Then at every call, applies reduction function to each parameter, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific weights to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's weights are logged. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log only `fc` weights clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler( model, whitelist=['fc'] ) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights which have `bias` in their names def has_bias_in_name(n, p): return 'bias' in n clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler WeightsScalarHandler works only with ClearMLLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: title_name, _, series_name = name.partition(".") logger.clearml_logger.report_scalar( title=f"{tag_prefix}weights_{self.reduction.__name__}/{title_name}", series=series_name, value=self.reduction(p.data), iteration=global_step, ) class WeightsHistHandler(BaseWeightsHandler): """Helper handler to log model's weights as histograms. Args: model: model to log weights tag: common title for all produced plots. For example, 'generator' whitelist: specific weights to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's weights are logged. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights of `fc` layer weights = ['fc'] # Attach the logger to the trainer to log weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weights) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log weights which name include 'conv'. weight_selector = lambda name, p: 'conv' in name # Attach the logger to the trainer to log weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weight_selector) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler 'WeightsHistHandler' works only with ClearMLLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: title_name, _, series_name = name.partition(".") logger.grad_helper.add_histogram( title=f"{tag_prefix}weights_{title_name}", series=series_name, step=global_step, hist_data=p.data.cpu().numpy(), ) class GradsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's gradients as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by the `whitelist`. Then at every call, applies reduction function to each parameter's gradient, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific gradients to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's gradients are logged. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of `base` clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler( model, reduction=torch.norm, whitelist=['base'] ) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of weights which belong to a `fc` layer def is_in_fc_layer(n, p): return 'fc' in n clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler GradsScalarHandler works only with ClearMLLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue title_name, _, series_name = name.partition(".") logger.clearml_logger.report_scalar( title=f"{tag_prefix}grads_{self.reduction.__name__}/{title_name}", series=series_name, value=self.reduction(p.grad), iteration=global_step, ) class GradsHistHandler(BaseWeightsHandler): """Helper handler to log model's gradients as histograms. Args: model: model to log weights tag: common title for all produced plots. For example, 'generator' whitelist: specific gradients to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's gradients are logged. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of `fc.bias` clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=['fc.bias']) ) .. code-block:: python from ignite.handlers.clearml_logger import * clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Log gradient of weights which have shape (2, 1) def has_shape_2_1(n, p): return p.shape == (2,1) clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=has_shape_2_1) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, ClearMLLogger): raise RuntimeError("Handler 'GradsHistHandler' works only with ClearMLLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue title_name, _, series_name = name.partition(".") logger.grad_helper.add_histogram( title=f"{tag_prefix}grads_{title_name}", series=series_name, step=global_step, hist_data=p.grad.cpu().numpy(), ) class ClearMLSaver(DiskSaver): """ Handler that saves input checkpoint as ClearML artifacts Args: logger: An instance of :class:`~ignite.handlers.clearml_logger.ClearMLLogger`, ensuring a valid ClearML ``Task`` has been initialized. If not provided, and a ClearML Task has not been manually initialized, a runtime error will be raised. output_uri: The default location for output models and other artifacts uploaded by ClearML. For more information, see ``clearml.Task.init``. dirname: Directory path where the checkpoint will be saved. If not provided, a temporary directory will be created. Examples: .. code-block:: python from ignite.handlers.clearml_logger import * from ignite.handlers import Checkpoint clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) to_save = {"model": model} handler = Checkpoint( to_save, ClearMLSaver(), n_saved=1, score_function=lambda e: 123, score_name="acc", filename_prefix="best", global_step_transform=global_step_from_engine(trainer) ) validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler) """ def __init__( self, logger: Optional[ClearMLLogger] = None, output_uri: Optional[str] = None, dirname: Optional[str] = None, *args: Any, **kwargs: Any, ): self._setup_check_clearml(logger, output_uri) if not dirname: dirname = "" if idist.get_rank() == 0: dirname = tempfile.mkdtemp(prefix=f"ignite_checkpoints_{datetime.now().strftime('%Y_%m_%d_%H_%M_%S_')}") if idist.get_world_size() > 1: dirname = idist.all_gather(dirname)[0] # type: ignore[index, assignment] warnings.warn(f"ClearMLSaver created a temporary checkpoints directory: {dirname}") idist.barrier() # Let's set non-atomic tmp dir saving behaviour if "atomic" not in kwargs: kwargs["atomic"] = False self._checkpoint_slots: DefaultDict[Union[str, Tuple[str, str]], List[Any]] = defaultdict(list) super(ClearMLSaver, self).__init__(dirname=dirname, *args, **kwargs) # type: ignore[misc] @idist.one_rank_only() def _setup_check_clearml(self, logger: ClearMLLogger, output_uri: str) -> None: try: from clearml import Task except ImportError: try: # Backwards-compatibility for legacy Trains SDK from trains import Task except ImportError: raise ModuleNotFoundError( "This contrib module requires clearml to be installed. " "You may install clearml using: \n pip install clearml \n" ) if logger and not isinstance(logger, ClearMLLogger): raise TypeError("logger must be an instance of ClearMLLogger") self._task = Task.current_task() if not self._task: raise RuntimeError( "ClearMLSaver requires a ClearML Task to be initialized. " "Please use the `logger` argument or call `clearml.Task.init()`." ) if output_uri: self._task.output_uri = output_uri class _CallbacksContext: def __init__( self, callback_type: Type[Enum], slots: List, checkpoint_key: str, filename: str, basename: str, metadata: Optional[Mapping] = None, ) -> None: self._callback_type = callback_type self._slots = slots self._checkpoint_key = str(checkpoint_key) self._filename = filename self._basename = basename self._metadata = metadata def pre_callback(self, action: str, model_info: Any) -> Any: if action != self._callback_type.save: # type: ignore[attr-defined] return model_info try: slot = self._slots.index(None) self._slots[slot] = model_info.upload_filename except ValueError: self._slots.append(model_info.upload_filename) slot = len(self._slots) - 1 model_info.upload_filename = f"{self._basename}_{slot}{os.path.splitext(self._filename)[1]}" model_info.local_model_id = f"{self._checkpoint_key}:{model_info.upload_filename}" return model_info def post_callback(self, action: str, model_info: Any) -> Any: if action != self._callback_type.save: # type: ignore[attr-defined] return model_info model_info.model.name = f"{model_info.task.name}: {self._filename}" prefix = "Checkpoint Metadata: " metadata_items = ", ".join(f"{k}={v}" for k, v in self._metadata.items()) if self._metadata else "none" metadata = f"{prefix}{metadata_items}" comment = "\n".join( metadata if line.startswith(prefix) else line for line in (model_info.model.comment or "").split("\n") ) if prefix not in comment: comment += "\n" + metadata model_info.model.comment = comment return model_info def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None: try: from clearml.binding.frameworks import WeightsFileHandler except ImportError: try: # Backwards-compatibility for legacy Trains SDK from trains.binding.frameworks import WeightsFileHandler except ImportError: raise ModuleNotFoundError( "This contrib module requires clearml to be installed. " "You may install clearml using: \n pip install clearml \n" ) try: basename = metadata["basename"] # type: ignore[index] except (TypeError, KeyError): warnings.warn("Checkpoint metadata missing or basename cannot be found") basename = "checkpoint" checkpoint_key = (str(self.dirname), basename) cb_context = self._CallbacksContext( callback_type=WeightsFileHandler.CallbackType, slots=self._checkpoint_slots[checkpoint_key], checkpoint_key=str(checkpoint_key), filename=filename, basename=basename, metadata=metadata, ) pre_cb_id = WeightsFileHandler.add_pre_callback(cb_context.pre_callback) post_cb_id = WeightsFileHandler.add_post_callback(cb_context.post_callback) try: super(ClearMLSaver, self).__call__(checkpoint, filename, metadata) finally: WeightsFileHandler.remove_pre_callback(pre_cb_id) WeightsFileHandler.remove_post_callback(post_cb_id) @idist.one_rank_only() def get_local_copy(self, filename: str) -> Optional[str]: """Get artifact local copy. .. warning:: In distributed configuration this method should be called on rank 0 process. Args: filename: artifact name. Returns: a local path to a downloaded copy of the artifact """ artifact = self._task.artifacts.get(filename) if artifact: return artifact.get_local_copy() self._task.get_logger().report_text(f"Can not find artifact {filename}") return None @idist.one_rank_only() def remove(self, filename: str) -> None: super(ClearMLSaver, self).remove(filename) for slots in self._checkpoint_slots.values(): try: slots[slots.index(filename)] = None except ValueError: pass else: break ignite-0.5.1/ignite/handlers/early_stopping.py000066400000000000000000000100531465426447700215060ustar00rootroot00000000000000from collections import OrderedDict from typing import Callable, cast, Mapping, Optional from ignite.base import Serializable from ignite.engine import Engine from ignite.utils import setup_logger __all__ = ["EarlyStopping"] class EarlyStopping(Serializable): """EarlyStopping handler can be used to stop the training if no improvement after a given number of events. Args: patience: Number of events to wait if no improvement and then stop the training. score_function: It should be a function taking a single argument, an :class:`~ignite.engine.engine.Engine` object, and return a score `float`. An improvement is considered if the score is higher. trainer: Trainer engine to stop the run if no improvement. min_delta: A minimum increase in the score to qualify as an improvement, i.e. an increase of less than or equal to `min_delta`, will count as no improvement. cumulative_delta: It True, `min_delta` defines an increase since the last `patience` reset, otherwise, it defines an increase after the last event. Default value is False. Examples: .. code-block:: python from ignite.engine import Engine, Events from ignite.handlers import EarlyStopping def score_function(engine): val_loss = engine.state.metrics['nll'] return -val_loss handler = EarlyStopping(patience=10, score_function=score_function, trainer=trainer) # Note: the handler is attached to an *Evaluator* (runs one epoch on validation dataset). evaluator.add_event_handler(Events.COMPLETED, handler) """ _state_dict_all_req_keys = ( "counter", "best_score", ) def __init__( self, patience: int, score_function: Callable, trainer: Engine, min_delta: float = 0.0, cumulative_delta: bool = False, ): if not callable(score_function): raise TypeError("Argument score_function should be a function.") if patience < 1: raise ValueError("Argument patience should be positive integer.") if min_delta < 0.0: raise ValueError("Argument min_delta should not be a negative number.") if not isinstance(trainer, Engine): raise TypeError("Argument trainer should be an instance of Engine.") self.score_function = score_function self.patience = patience self.min_delta = min_delta self.cumulative_delta = cumulative_delta self.trainer = trainer self.counter = 0 self.best_score: Optional[float] = None self.logger = setup_logger(__name__ + "." + self.__class__.__name__) def __call__(self, engine: Engine) -> None: score = self.score_function(engine) if self.best_score is None: self.best_score = score elif score <= self.best_score + self.min_delta: if not self.cumulative_delta and score > self.best_score: self.best_score = score self.counter += 1 self.logger.debug("EarlyStopping: %i / %i" % (self.counter, self.patience)) if self.counter >= self.patience: self.logger.info("EarlyStopping: Stop training") self.trainer.terminate() else: self.best_score = score self.counter = 0 def state_dict(self) -> "OrderedDict[str, float]": """Method returns state dict with ``counter`` and ``best_score``. Can be used to save internal state of the class. """ return OrderedDict([("counter", self.counter), ("best_score", cast(float, self.best_score))]) def load_state_dict(self, state_dict: Mapping) -> None: """Method replace internal state of the class with provided state dict data. Args: state_dict: a dict with "counter" and "best_score" keys/values. """ super().load_state_dict(state_dict) self.counter = state_dict["counter"] self.best_score = state_dict["best_score"] ignite-0.5.1/ignite/handlers/ema_handler.py000066400000000000000000000271161465426447700207160ustar00rootroot00000000000000import warnings from copy import deepcopy from typing import Optional, Union import torch.nn as nn from ignite.engine import CallableEventWithFilter, Engine, Events, EventsList from ignite.handlers.param_scheduler import BaseParamScheduler from ignite.handlers.state_param_scheduler import LambdaStateScheduler __all__ = ["EMAHandler"] class EMAWarmUp: def __init__(self, momentum_warmup: float, warmup_iters: int, momentum: float) -> None: self.momentum_warmup = momentum_warmup self.warmup_iters = warmup_iters self.momentum = momentum def __call__(self, event_index: int) -> float: denominator = max(1, self.warmup_iters - 1) curr_momentum = self.momentum_warmup + (self.momentum - self.momentum_warmup) * (event_index - 1) / denominator if self.momentum >= self.momentum_warmup: return min(self.momentum, curr_momentum) else: return max(self.momentum, curr_momentum) class EMAHandler: r"""Exponential moving average (EMA) handler can be used to compute a smoothed version of model. The EMA model is updated as follows: .. math:: \theta_{\text{EMA}, t+1} = (1 - \lambda) \cdot \theta_{\text{EMA}, t} + \lambda \cdot \theta_{t} where :math:`\theta_{\text{EMA}, t}` and :math:`\theta_{t}` are the EMA weights and online model weights at :math:`t`-th iteration, respectively; :math:`\lambda` is the update momentum. Current momentum can be retrieved from ``Engine.state.ema_momentum``. Args: model: the online model for which an EMA model will be computed. If ``model`` is ``DataParallel`` or ``DistributedDataParallel``, the EMA smoothing will be applied to ``model.module`` . momentum: the update momentum after warmup phase, should be float in range :math:`\left(0, 1 \right)`. momentum_warmup: the initial update momentum during warmup phase. warmup_iters: iterations of warmup. handle_buffers: how to handle model buffers during training. There are three options: 1. "copy" means copying the buffers of the online model; 2. "update" means applying EMA to the buffers of the online model; 3. "ema_train" means set the EMA model to ``train`` mode and skip copying or updating the buffers. Attributes: ema_model: the exponential moving averaged model. model: the online model that is tracked by EMAHandler. It is ``model.module`` if ``model`` in the initialization method is an instance of ``DistributedDataParallel``. momentum: the update momentum. handle_buffers: how to handle model buffers during training. Note: The EMA model is already in ``eval`` mode if ``handle_buffers`` is "copy" or "update". If model in the arguments is an ``nn.Module`` or ``DistributedDataParallel``, the EMA model is an ``nn.Module`` and it is on the same device as the online model. If the model is an ``nn.DataParallel``, then the EMA model is an ``nn.DataParallel``. Note: It is recommended to initialize and use an EMA handler in following steps: 1. Initialize ``model`` (``nn.Module`` or ``DistributedDataParallel``) and ``ema_handler`` (``EMAHandler``). 2. Build ``trainer`` (``ignite.engine.Engine``). 3. Resume from checkpoint for ``model`` and ``ema_handler.ema_model``. 4. Attach ``ema_handler`` to ``trainer``. Examples: .. code-block:: python device = torch.device("cuda:0") model = nn.Linear(2, 1).to(device) # update the ema every 5 iterations ema_handler = EMAHandler(model, momentum=0.0002) # get the ema model, which is an instance of nn.Module ema_model = ema_handler.ema_model trainer = Engine(train_step_fn) to_load = {"model": model, "ema_model", ema_model, "trainer", trainer} if resume_from is not None: Checkpoint.load_objects(to_load, checkpoint=resume_from) # update the EMA model every 5 iterations ema_handler.attach(trainer, name="ema_momentum", event=Events.ITERATION_COMPLETED(every=5)) # add other handlers to_save = to_load ckpt_handler = Checkpoint(to_save, DiskSaver(...), ...) trainer.add_event_handler(Events.EPOCH_COMPLETED, ckpt_handler) # current momentum can be retrieved from engine.state, # the attribute name is the `name` parameter used in the attach function @trainer.on(Events.ITERATION_COMPLETED): def print_ema_momentum(engine): print(f"current momentum: {engine.state.ema_momentum}" # use ema model for validation val_step_fn = get_val_step_fn(ema_model) evaluator = Engine(val_step_fn) @trainer.on(Events.EPOCH_COMPLETED) def run_validation(engine): engine.run(val_data_loader) trainer.run(...) The following example shows how to perform warm-up to the EMA momentum: .. code-block:: python device = torch.device("cuda:0") model = nn.Linear(2, 1).to(device) # linearly change the EMA momentum from 0.2 to 0.002 in the first 100 iterations, # then keep a constant EMA momentum of 0.002 afterwards ema_handler = EMAHandler(model, momentum=0.002, momentum_warmup=0.2, warmup_iters=100) engine = Engine(step_fn) ema_handler.attach(engine, name="ema_momentum") engine.run(...) The following example shows how to attach two handlers to the same trainer: .. code-block:: python generator = build_generator(...) discriminator = build_discriminator(...) gen_handler = EMAHandler(generator) disc_handler = EMAHandler(discriminator) step_fn = get_step_fn(...) engine = Engine(step_fn) # update EMA model of generator every 1 iteration gen_handler.attach(engine, "gen_ema_momentum", event=Events.ITERATION_COMPLETED) # update EMA model of discriminator every 2 iteration disc_handler.attach(engine, "dis_ema_momentum", event=Events.ITERATION_COMPLETED(every=2)) @engine.on(Events.ITERATION_COMPLETED) def print_ema_momentum(engine): print(f"current momentum for generator: {engine.state.gen_ema_momentum}") print(f"current momentum for discriminator: {engine.state.disc_ema_momentum}") engine.run(...) .. versionadded:: 0.4.6 """ def __init__( self, model: nn.Module, momentum: float = 0.0002, momentum_warmup: Optional[float] = None, warmup_iters: Optional[int] = None, handle_buffers: str = "copy", ) -> None: if not 0 < momentum < 1: raise ValueError(f"Invalid momentum: {momentum}") self.momentum = momentum self._momentum_lambda_obj: Optional[EMAWarmUp] = None if momentum_warmup is not None and warmup_iters is not None: self.momentum_scheduler: Optional[BaseParamScheduler] = None self._momentum_lambda_obj = EMAWarmUp(momentum_warmup, warmup_iters, momentum) if not isinstance(model, nn.Module): raise ValueError( f"model should be an instance of nn.Module or its subclasses, but got" f"model: {model.__class__.__name__}" ) if isinstance(model, nn.parallel.DistributedDataParallel): model = model.module self.model = model self.ema_model = deepcopy(self.model) for param in self.ema_model.parameters(): param.detach_() if handle_buffers not in ("copy", "update", "ema_train"): raise ValueError( f"handle_buffers can only be one of 'copy', 'update', 'ema_train', " f"but got {handle_buffers}" ) self.handle_buffers = handle_buffers if self.handle_buffers == "ema_train": self.ema_model.train() else: self.ema_model.eval() def _update_ema_model(self, engine: Engine, name: str) -> None: """Update weights of ema model""" momentum = getattr(engine.state, name) for ema_p, model_p in zip(self.ema_model.parameters(), self.model.parameters()): ema_p.mul_(1.0 - momentum).add_(model_p.data, alpha=momentum) if self.handle_buffers == "update": for ema_b, model_b in zip(self.ema_model.buffers(), self.model.buffers()): try: ema_b.mul_(1.0 - momentum).add_(model_b.data, alpha=momentum) except RuntimeError: # Handle the case where ema_b is torch.int64, torch.int32 etc., # where a runtime error will be thrown when performing the in-place operations with floats. # In this case, just copy the data ema_b.data = model_b.data elif self.handle_buffers == "copy": # assign the buffers for ema_b, model_b in zip(self.ema_model.buffers(), self.model.buffers()): ema_b.data = model_b.data else: pass def attach( self, engine: Engine, name: str = "ema_momentum", warn_if_exists: bool = True, event: Union[str, Events, CallableEventWithFilter, EventsList] = Events.ITERATION_COMPLETED, ) -> None: """Attach the handler to engine. After the handler is attached, the ``Engine.state`` will add an new attribute with name ``name`` if the attribute does not exist. Then, the current momentum can be retrieved from ``Engine.state`` when the engine runs. Note: There are two cases where a momentum with name ``name`` already exists: 1. the engine has loaded its state dict after resuming. In this case, there is no need to initialize the momentum again, and users can set ``warn_if_exists`` to False to suppress the warning message; 2. another handler has created a state attribute with the same name. In this case, users should choose another name for the ema momentum. Args: engine: trainer to which the handler will be attached. name: attribute name for retrieving EMA momentum from ``Engine.state``. It should be a unique name since a trainer can have multiple EMA handlers. warn_if_exists: if True, a warning will be thrown if the momentum with name ``name`` already exists. event: event when the EMA momentum and EMA model are updated. """ if hasattr(engine.state, name): if warn_if_exists: warnings.warn( f"Attribute '{name}' already exists in Engine.state. It might because 1. the engine has loaded its " f"state dict or 2. {name} is already created by other handlers. Turn off this warning by setting" f"warn_if_exists to False.", category=UserWarning, ) else: setattr(engine.state, name, self.momentum) if self._momentum_lambda_obj is not None: self.momentum_scheduler = LambdaStateScheduler(self._momentum_lambda_obj, param_name="ema_momentum") # first update the momentum and then update the EMA model self.momentum_scheduler.attach(engine, event) engine.add_event_handler(event, self._update_ema_model, name) ignite-0.5.1/ignite/handlers/fbresearch_logger.py000066400000000000000000000255601465426447700221230ustar00rootroot00000000000000"""FBResearch logger and its helper handlers.""" import datetime from typing import Any, Callable, List, Optional import torch from ignite import utils from ignite.engine import Engine, Events from ignite.handlers import Timer MB = 1024.0 * 1024.0 __all__ = ["FBResearchLogger"] class FBResearchLogger: """Logs training and validation metrics for research purposes. This logger is designed to attach to an Ignite Engine and log various metrics and system stats at configurable intervals, including learning rates, iteration times, and GPU memory usage. Args: logger: The logger to use for output. delimiter: The delimiter to use between metrics in the log output. show_output: Flag to enable logging of the output from the engine's process function. Examples: .. code-block:: python import logging import torch import torch.nn as nn import torch.optim as optim from ignite.engine import create_supervised_trainer, Events from ignite.handlers.fbresearch_logger import FBResearchLogger from ignite.utils import setup_logger model = nn.Linear(10, 5) opt = optim.SGD(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() data = [(torch.rand(4, 10), torch.randint(0, 5, size=(4, ))) for _ in range(100)] trainer = create_supervised_trainer( model, opt, criterion, output_transform=lambda x, y, y_pred, loss: {"total_loss": loss.item()} ) logger = setup_logger("trainer", level=logging.INFO) logger = FBResearchLogger(logger=logger, show_output=True) logger.attach(trainer, name="Train", every=20, optimizer=opt) trainer.run(data, max_epochs=4) Output: .. code-block:: text 2024-04-22 12:05:47,843 trainer INFO: Train: start epoch [1/4] ... Epoch [1/4] [20/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5999 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [40/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9297 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [60/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9985 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [80/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9785 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [100/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6211 Iter time: 0.0008 s Data prep . ... Train: Epoch [1/4] Total time: 0:00:00 (0.0008 s / it) ... Train: start epoch [2/4] ... Epoch [2/4] [19/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5981 Iter time: 0.0009 s Data prep .. ... Epoch [2/4] [39/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9013 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [59/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9811 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [79/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9434 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [99/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6116 Iter time: 0.0008 s Data prep .. ... Train: Epoch [2/4] Total time: 0:00:00 (0.0009 s / it) ... Train: start epoch [3/4] ... Epoch [3/4] [18/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5972 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [38/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8753 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [58/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9657 Iter time: 0.0009 s Data prep .. ... Epoch [3/4] [78/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9112 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [98/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6035 Iter time: 0.0008 s Data prep .. ... Train: Epoch [3/4] Total time: 0:00:00 (0.0009 s / it) ... Train: start epoch [4/4] ... Epoch [4/4] [17/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5969 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [37/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8516 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [57/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9521 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [77/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8816 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [97/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5966 Iter time: 0.0009 s Data prep .. ... Train: Epoch [4/4] Total time: 0:00:00 (0.0009 s / it) ... Train: run completed Total time: 0:00:00 """ def __init__(self, logger: Any, delimiter: str = " ", show_output: bool = False): self.delimiter = delimiter self.logger: Any = logger self.iter_timer: Timer = Timer(average=True) self.data_timer: Timer = Timer(average=True) self.show_output: bool = show_output def attach( self, engine: Engine, name: str, every: int = 1, output_transform: Optional[Callable] = None, state_attributes: Optional[List[str]] = None, optimizer: Optional[torch.optim.Optimizer] = None, ) -> None: """Attaches all the logging handlers to the given engine. Args: engine: The engine to attach the logging handlers to. name: The name of the engine (e.g., "Train", "Validate") to include in log messages. every: Frequency of iterations to log information. Logs are generated every 'every' iterations. output_transform: A function to select the value to log. state_attributes: A list of attributes to log. optimizer: The optimizer used during training to log current learning rates. """ self.name = name self.output_transform = output_transform self.state_attributes = state_attributes engine.add_event_handler(Events.EPOCH_STARTED, self.log_epoch_started, engine, name) engine.add_event_handler(Events.ITERATION_COMPLETED(every=every), self.log_every, engine, optimizer=optimizer) engine.add_event_handler(Events.EPOCH_COMPLETED, self.log_epoch_completed, engine, name) engine.add_event_handler(Events.COMPLETED, self.log_completed, engine, name) self.iter_timer.reset() self.iter_timer.attach( engine, start=Events.EPOCH_STARTED, resume=Events.ITERATION_STARTED, pause=Events.ITERATION_COMPLETED, step=Events.ITERATION_COMPLETED, ) self.data_timer.reset() self.data_timer.attach( engine, start=Events.EPOCH_STARTED, resume=Events.GET_BATCH_STARTED, pause=Events.GET_BATCH_COMPLETED, step=Events.GET_BATCH_COMPLETED, ) def log_every(self, engine: Engine, optimizer: Optional[torch.optim.Optimizer] = None) -> None: """ Logs the training progress at regular intervals. Args: engine: The training engine. optimizer: The optimizer used for training. Defaults to None. """ assert engine.state.epoch_length is not None cuda_max_mem = "" if torch.cuda.is_available(): cuda_max_mem = f"GPU Max Mem: {torch.cuda.max_memory_allocated() / MB:.0f} MB" current_iter = engine.state.iteration % (engine.state.epoch_length + 1) iter_avg_time = self.iter_timer.value() eta_seconds = iter_avg_time * (engine.state.epoch_length - current_iter) outputs = [] if self.show_output and engine.state.output is not None: output = engine.state.output if self.output_transform is not None: output = self.output_transform(output) outputs = utils._to_str_list(output) lrs = "" if optimizer is not None: if len(optimizer.param_groups) == 1: lrs += f"lr: {optimizer.param_groups[0]['lr']:.5f}" else: for i, g in enumerate(optimizer.param_groups): lrs += f"lr [g{i}]: {g['lr']:.5f}" state_attrs = [] if self.state_attributes is not None: state_attrs = utils._to_str_list( {name: getattr(engine.state, name, None) for name in self.state_attributes} ) msg = self.delimiter.join( [ f"Epoch [{engine.state.epoch}/{engine.state.max_epochs}]", f"[{current_iter}/{engine.state.epoch_length}]:", f"ETA: {datetime.timedelta(seconds=int(eta_seconds))}", f"{lrs}", ] + outputs + [" ".join(state_attrs)] + [ f"Iter time: {iter_avg_time:.4f} s", f"Data prep time: {self.data_timer.value():.4f} s", cuda_max_mem, ] ) self.logger.info(msg) def log_epoch_started(self, engine: Engine, name: str) -> None: """ Logs the start of an epoch. Args: engine: The engine object. name: The name of the epoch. """ msg = f"{name}: start epoch [{engine.state.epoch}/{engine.state.max_epochs}]" self.logger.info(msg) def log_epoch_completed(self, engine: Engine, name: str) -> None: """ Logs the completion of an epoch. Args: engine: The engine object that triggered the event. name: The name of the event. Returns: None """ epoch_time = engine.state.times[Events.EPOCH_COMPLETED.name] epoch_info = ( f"Epoch [{engine.state.epoch}/{engine.state.max_epochs}]" if engine.state.max_epochs > 1 # type: ignore else "" ) msg = self.delimiter.join( [ f"{name}: {epoch_info}", f"Total time: {datetime.timedelta(seconds=int(epoch_time))}", # type: ignore f"({epoch_time / engine.state.epoch_length:.4f} s / it)", # type: ignore ] ) self.logger.info(msg) def log_completed(self, engine: Engine, name: str) -> None: """ Logs the completion of a run. Args: engine: The engine object representing the training/validation loop. name: The name of the run. """ if engine.state.max_epochs and engine.state.max_epochs > 1: total_time = engine.state.times[Events.COMPLETED.name] assert total_time is not None msg = self.delimiter.join( [ f"{name}: run completed", f"Total time: {datetime.timedelta(seconds=int(total_time))}", ] ) self.logger.info(msg) ignite-0.5.1/ignite/handlers/lr_finder.py000066400000000000000000000530621465426447700204220ustar00rootroot00000000000000# coding: utf-8 import contextlib import logging import tempfile import warnings from math import ceil from pathlib import Path from typing import Any, Callable, Dict, List, Mapping, Optional, Union import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers import Checkpoint from ignite.handlers.param_scheduler import LRScheduler, ParamGroupScheduler, PiecewiseLinear class FastaiLRFinder: """Learning rate finder handler for supervised trainers. While attached, the handler increases the learning rate in between two boundaries in a linear or exponential manner. It provides valuable information on how well the network can be trained over a range of learning rates and what can be an optimal learning rate. Examples: .. code-block:: python from ignite.handlers import FastaiLRFinder trainer = ... model = ... optimizer = ... lr_finder = FastaiLRFinder() to_save = {"model": model, "optimizer": optimizer} with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder: trainer_with_lr_finder.run(dataloader) # Get lr_finder results lr_finder.get_results() # Plot lr_finder results (requires matplotlib) lr_finder.plot() # get lr_finder suggestion for lr lr_finder.lr_suggestion() Note: When context manager is exited all LR finder's handlers are removed. Note: Please, also keep in mind that all other handlers attached the trainer will be executed during LR finder's run. Note: This class may require `matplotlib` package to be installed to plot learning rate range test: .. code-block:: bash pip install matplotlib References: Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186 fastai/lr_find: https://github.com/fastai/fastai .. versionadded:: 0.4.6 """ _lr_schedule: Union[LRScheduler, PiecewiseLinear, ParamGroupScheduler] def __init__(self) -> None: self._diverge_flag = False self._history: Dict[str, List[Any]] = {} self._best_loss = None self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__) def _run( self, trainer: Engine, optimizer: Optimizer, output_transform: Callable, num_iter: int, start_lrs: List[float], end_lrs: List[float], step_mode: str, smooth_f: float, diverge_th: float, ) -> None: self._history = {"lr": [], "loss": []} self._best_loss = None self._diverge_flag = False # attach LRScheduler to trainer. if num_iter is None: num_iter = trainer.state.epoch_length * trainer.state.max_epochs else: max_iter = trainer.state.epoch_length * trainer.state.max_epochs # type: ignore[operator] if max_iter < num_iter: max_iter = num_iter trainer.state.max_epochs = ceil(num_iter / trainer.state.epoch_length) # type: ignore[operator] if not trainer.has_event_handler(self._reached_num_iterations): trainer.add_event_handler(Events.ITERATION_COMPLETED, self._reached_num_iterations, num_iter) # attach loss and lr logging if not trainer.has_event_handler(self._log_lr_and_loss): trainer.add_event_handler( Events.ITERATION_COMPLETED, self._log_lr_and_loss, output_transform, smooth_f, diverge_th ) self.logger.debug(f"Running LR finder for {num_iter} iterations") # Initialize the proper learning rate policy if step_mode.lower() == "exp": self._lr_schedule = LRScheduler(_ExponentialLR(optimizer, start_lrs, end_lrs, num_iter)) else: if len(start_lrs) == 1: self._lr_schedule = PiecewiseLinear( optimizer, param_name="lr", milestones_values=[(0, start_lrs[0]), (num_iter, end_lrs[0])], ) else: self._lr_schedule = ParamGroupScheduler( [ PiecewiseLinear( optimizer, param_name="lr", milestones_values=[(0, start_lrs[i]), (num_iter, end_lrs[i])], param_group_index=i, ) for i in range(len(optimizer.param_groups)) ] ) if not trainer.has_event_handler(self._lr_schedule): trainer.add_event_handler(Events.ITERATION_COMPLETED, self._lr_schedule, num_iter) def _reset(self, trainer: Engine) -> None: self.logger.debug("Completed LR finder run") trainer.remove_event_handler(self._lr_schedule, Events.ITERATION_COMPLETED) trainer.remove_event_handler(self._log_lr_and_loss, Events.ITERATION_COMPLETED) trainer.remove_event_handler(self._reached_num_iterations, Events.ITERATION_COMPLETED) def _log_lr_and_loss(self, trainer: Engine, output_transform: Callable, smooth_f: float, diverge_th: float) -> None: output = trainer.state.output loss = output_transform(output) if not isinstance(loss, float): if isinstance(loss, torch.Tensor): if (loss.ndimension() == 0) or (loss.ndimension() == 1 and len(loss) == 1): loss = loss.item() else: raise ValueError( "if output of the engine is torch.Tensor, then " "it must be 0d torch.Tensor or 1d torch.Tensor with 1 element, " f"but got torch.Tensor of shape {loss.shape}." ) else: raise TypeError( "output of the engine should be of type float or 0d torch.Tensor " "or 1d torch.Tensor with 1 element, " f"but got output of type {type(loss).__name__}" "You may wish to use the output_transform kwarg with the attach method e.g.\n" """ lr_finder = FastaiLRFinder() with lr_finder.attach(trainer, output_transform=lambda x:x["train_loss"]) as trainer_with_lr_finder: trainer_with_lr_finder.run(dataloader_train) """ ) loss = idist.all_reduce(loss) lr = self._lr_schedule.get_param() self._history["lr"].append(lr) if trainer.state.iteration == 1: self._best_loss = loss else: if smooth_f > 0: loss = smooth_f * loss + (1 - smooth_f) * self._history["loss"][-1] if loss < self._best_loss: self._best_loss = loss self._history["loss"].append(loss) # Check if the loss has diverged; if it has, stop the trainer if self._history["loss"][-1] > diverge_th * self._best_loss: # type: ignore[operator] self._diverge_flag = True self.logger.info("Stopping early, the loss has diverged") trainer.terminate() def _reached_num_iterations(self, trainer: Engine, num_iter: int) -> None: if trainer.state.iteration > num_iter: trainer.terminate() def _warning(self, _: Any) -> None: if not self._diverge_flag: warnings.warn( "Run completed without loss diverging, increase end_lr, decrease diverge_th or look" " at lr_finder.plot()", UserWarning, ) def _detach(self, trainer: Engine) -> None: """ Detaches lr_finder from trainer. Args: trainer: the trainer to detach form. """ if trainer.has_event_handler(self._run, Events.STARTED): trainer.remove_event_handler(self._run, Events.STARTED) if trainer.has_event_handler(self._warning, Events.COMPLETED): trainer.remove_event_handler(self._warning, Events.COMPLETED) if trainer.has_event_handler(self._reset, Events.COMPLETED): trainer.remove_event_handler(self._reset, Events.COMPLETED) def get_results(self) -> Dict[str, List[Any]]: """ Returns: Dictionary with loss and lr logs from the previous run """ return self._history def plot( self, skip_start: int = 10, skip_end: int = 5, log_lr: bool = True, display_suggestion: bool = True, ax: Optional[Any] = None, **kwargs: Any, ) -> None: """Plots the learning rate range test. This method requires ``matplotlib`` package to be installed: .. code-block:: bash pip install matplotlib Args: skip_start: number of batches to trim from the start. Default: 10. skip_end: number of batches to trim from the start. Default: 5. log_lr: True to plot the learning rate in a logarithmic scale; otherwise, plotted in a linear scale. Default: True. display_suggestion: if True, red dot shows the suggested learning rate. ax: Pre-existing axes for the plot. Default: None. kwargs: optional kwargs passed to ``plt.subplots`` if ``ax`` is not provided. .. code-block:: python ax = lr_finder.plot(skip_end=0) ax.figure.savefig("output.jpg") """ try: from matplotlib import pyplot as plt except ImportError: raise ModuleNotFoundError( "This method requires matplotlib to be installed. " "Please install it with command: \n pip install matplotlib" ) if not self._history: raise RuntimeError("learning rate finder didn't run yet so results can't be plotted") if skip_start < 0: raise ValueError("skip_start cannot be negative") if skip_end < 0: raise ValueError("skip_end cannot be negative") # Get the data to plot from the history dictionary. lrs = self._history["lr"] losses = self._history["loss"] num_groups = len(lrs[0]) if isinstance(lrs[0], list) else 1 legends = [f"suggested lr for param_groups {i}" for i in range(num_groups)] if ax is None: fig, ax = plt.subplots(**kwargs) # Check to show the suggested learning rate if display_suggestion: sug_lr = self.lr_suggestion() idx = self._history["lr"].index(sug_lr) if skip_start >= idx: warnings.warn( "skip_start is larger than the suggested LR found" " and it will not be visible on the plot. Please, make the value smaller.", UserWarning, ) corresponding_loss = self._history["loss"][int(idx)] # Check if optimizer has multiple param_groups if not isinstance(sug_lr, list): sug_lr = [ sug_lr, ] for lr in sug_lr: ax.scatter( lr, corresponding_loss, color="red" if len(sug_lr) == 1 else None, s=75, marker="o", zorder=3 ) # handle skip_end=0 properly if skip_end == 0: lrs = lrs[skip_start:] losses = losses[skip_start:] else: lrs = lrs[skip_start:-skip_end] losses = losses[skip_start:-skip_end] plt.legend(legends) # Plot loss as a function of the learning rate ax.plot(lrs, losses) if log_lr: ax.set_xscale("log") lr_min = min(lrs[0]) if isinstance(lrs[0], list) else lrs[0] lr_max = max(lrs[-1]) if isinstance(lrs[-1], list) else lrs[-1] ax.set_xlim([lr_min, lr_max]) ax.set_xlabel("Learning rate") ax.set_ylabel("Loss") plt.show() return ax def lr_suggestion(self) -> Any: """ Returns: Learning rate at the minimum numerical gradient (ignoring the increasing part of the curve) """ if not self._history: raise RuntimeError("learning rate finder didn't run yet so lr_suggestion can't be returned") loss = self._history["loss"] min_loss_idx = torch.tensor(loss).argmin() # Ignore the increasing part of the curve decreasing_losses = self._history["loss"][: int(min_loss_idx.item()) + 1] if len(decreasing_losses) < 3: raise RuntimeError( "FastaiLRFinder got unexpected curve shape, the curve should be somehow U-shaped, " "please decrease start_lr or increase end_lr to resolve this issue." ) losses = torch.tensor(decreasing_losses) grads = torch.tensor([0.5 * (losses[i + 1] - losses[i - 1]) for i in range(1, len(losses) - 1)]) min_grad_idx = grads.argmin() + 1 return self._history["lr"][int(min_grad_idx)] def apply_suggested_lr(self, optimizer: Optimizer) -> None: """ Applying the suggested learning rate(s) on the given optimizer. Args: optimizer: the optimizer to apply the suggested learning rate(s) on. Note: The given optimizer must be the same as the one we before found the suggested learning rate for. """ sug_lr = self.lr_suggestion() if not isinstance(sug_lr, list): sug_lr = [ sug_lr, ] if len(sug_lr) != len(optimizer.param_groups): raise RuntimeError( "The number of parameter groups does not match between " "given optimizer and the one used for estimating the " f"learning rate: {len(sug_lr)} vs {len(optimizer.param_groups)}" ) for i, lr in enumerate(sug_lr): optimizer.param_groups[i]["lr"] = lr @contextlib.contextmanager def attach( self, trainer: Engine, to_save: Mapping, output_transform: Callable = lambda output: output, num_iter: Optional[int] = None, start_lr: Optional[Union[float, List[float]]] = None, end_lr: Optional[Union[float, List[float]]] = 10.0, step_mode: str = "exp", smooth_f: float = 0.05, diverge_th: float = 5.0, ) -> Any: """Attaches lr_finder to a given trainer. It also resets model and optimizer at the end of the run. Args: trainer: lr_finder is attached to this trainer. Please, keep in mind that all attached handlers will be executed. to_save: dictionary with optimizer and other objects that needs to be restored after running the LR finder. For example, ``to_save={'optimizer': optimizer, 'model': model}``. It should contain "optimizer" key for the optimizer. Also all objects should implement ``state_dict`` and ``load_state_dict`` methods. output_transform: function that transforms the trainer's ``state.output`` after each iteration. It must return the loss of that iteration. num_iter: number of iterations for lr schedule between base lr and end_lr. Default, it will run for ``trainer.state.epoch_length * trainer.state.max_epochs``. start_lr: lower bound for lr search. Default, Learning Rate specified with the optimizer. end_lr: upper bound for lr search. Default, 10.0. step_mode: "exp" or "linear", which way should the lr be increased from ``start_lr`` to ``end_lr``. Default, "exp". smooth_f: loss smoothing factor in range ``[0, 1)``. Default, 0.05 diverge_th: Used for stopping the search when ``current loss > diverge_th * best_loss``. Default, 5.0. Returns: trainer_with_lr_finder (trainer used for finding the lr) Examples: .. code-block:: python to_save = {"model": model, "optimizer": optimizer} with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder: trainer_with_lr_finder.run(dataloader) Note: lr_finder cannot be attached to more than one trainer at a time. """ if not isinstance(to_save, Mapping): raise TypeError(f"Argument to_save should be a mapping, but given {type(to_save)}") Checkpoint._check_objects(to_save, "state_dict") Checkpoint._check_objects(to_save, "load_state_dict") if "optimizer" not in to_save: raise ValueError("Mapping to_save should contain 'optimizer' key") if not isinstance(to_save["optimizer"], torch.optim.Optimizer): raise TypeError( f"Object to_save['optimizer'] should be torch optimizer, but given {type(to_save['optimizer'])}" ) if smooth_f < 0 or smooth_f >= 1: raise ValueError("smooth_f is outside the range [0, 1]") if diverge_th < 1: raise ValueError("diverge_th should be larger than 1") if step_mode not in ["exp", "linear"]: raise ValueError(f"step_mode should be 'exp' or 'linear', but given {step_mode}") if num_iter is not None: if not isinstance(num_iter, int): raise TypeError(f"if provided, num_iter should be an integer, but give {num_iter}") if num_iter <= 0: raise ValueError(f"if provided, num_iter should be positive, but give {num_iter}") optimizer = to_save["optimizer"] if start_lr is None: start_lrs = [pg["lr"] for pg in optimizer.param_groups] elif isinstance(start_lr, float): start_lrs = [start_lr] * len(optimizer.param_groups) elif isinstance(start_lr, list): if len(start_lr) != len(optimizer.param_groups): raise ValueError( "Number of values of start_lr should be equal to optimizer values." f"start_lr values:{len(start_lr)} optimizer values: {len(optimizer.param_groups)}" ) start_lrs = start_lr else: raise TypeError(f"start_lr should be a float or list of floats, but given {type(start_lr)}") if isinstance(end_lr, float): end_lrs = [end_lr] * len(optimizer.param_groups) elif isinstance(end_lr, list): if len(end_lr) != len(optimizer.param_groups): raise ValueError( "Number of values of end_lr should be equal to optimizer values." f"end_lr values:{len(end_lr)} optimizer values: {len(optimizer.param_groups)}" ) end_lrs = end_lr else: raise TypeError(f"end_lr should be a float or list of floats, but given {type(end_lr)}") for start, end in zip(start_lrs, end_lrs): if start >= end: raise ValueError(f"start_lr must be less than end_lr, start_lr={start_lr} vs end_lr={end_lr}") # store to_save with tempfile.TemporaryDirectory() as tmpdirname: obj = {k: o.state_dict() for k, o in to_save.items()} # add trainer obj["trainer"] = trainer.state_dict() cache_filepath = Path(tmpdirname) / "ignite_lr_finder_cache.pt" torch.save(obj, cache_filepath.as_posix()) # Attach handlers if not trainer.has_event_handler(self._run): trainer.add_event_handler( Events.STARTED, self._run, optimizer, output_transform, num_iter, start_lrs, end_lrs, step_mode, smooth_f, diverge_th, ) if not trainer.has_event_handler(self._warning): trainer.add_event_handler(Events.COMPLETED, self._warning) if not trainer.has_event_handler(self._reset): trainer.add_event_handler(Events.COMPLETED, self._reset) yield trainer self._detach(trainer) # restore to_save and reset trainer's state obj = torch.load(cache_filepath.as_posix()) trainer.load_state_dict(obj["trainer"]) for k, o in obj.items(): if k in to_save: to_save[k].load_state_dict(o) class _ExponentialLR(_LRScheduler): """Exponentially increases the learning rate between two boundaries over a number of iterations. Args: optimizer: wrapped optimizer. start_lrs: the initial learning rate for parameter groups. end_lrs: the final learning rate for parameter groups. num_iter: the number of iterations over which the test occurs. Default: 100. last_epoch: the index of last epoch. Default: -1. """ def __init__( self, optimizer: Optimizer, start_lrs: List[float], end_lrs: List[float], num_iter: int, last_epoch: int = -1 ): self.end_lrs = end_lrs self.num_iter = num_iter super(_ExponentialLR, self).__init__(optimizer, last_epoch) # override base_lrs self.base_lrs = start_lrs def get_lr(self) -> List[float]: curr_iter = self.last_epoch + 1 r = curr_iter / self.num_iter return [base_lr * (end_lr / base_lr) ** r for end_lr, base_lr in zip(self.end_lrs, self.base_lrs)] ignite-0.5.1/ignite/handlers/mlflow_logger.py000066400000000000000000000300331465426447700213060ustar00rootroot00000000000000"""MLflow logger and its helper handlers.""" import warnings from typing import Any, Callable, List, Optional, Union from torch.optim import Optimizer from ignite.engine import Engine, Events from ignite.handlers.base_logger import BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler from ignite.handlers.utils import global_step_from_engine # noqa __all__ = ["MLflowLogger", "OutputHandler", "OptimizerParamsHandler", "global_step_from_engine"] class MLflowLogger(BaseLogger): """ `MLflow `_ tracking client handler to log parameters and metrics during the training and validation. This class requires `mlflow package `_ to be installed: .. code-block:: bash pip install mlflow Args: tracking_uri: MLflow tracking uri. See MLflow docs for more details Examples: .. code-block:: python from ignite.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Log experiment parameters: mlflow_logger.log_params({ "seed": seed, "batch_size": batch_size, "model": model.__class__.__name__, "pytorch version": torch.__version__, "ignite version": ignite.__version__, "cuda version": torch.version.cuda, "device name": torch.cuda.get_device_name(0) }) # Attach the logger to the trainer to log training loss at each iteration mlflow_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {'loss': loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. mlflow_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration mlflow_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) """ def __init__(self, tracking_uri: Optional[str] = None): try: import mlflow except ImportError: raise ModuleNotFoundError( "This contrib module requires mlflow to be installed. " "Please install it with command: \n pip install mlflow" ) if tracking_uri is not None: mlflow.set_tracking_uri(tracking_uri) self.active_run = mlflow.active_run() if self.active_run is None: self.active_run = mlflow.start_run() def __getattr__(self, attr: Any) -> Any: import mlflow return getattr(mlflow, attr) def close(self) -> None: import mlflow mlflow.end_run() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics. Args: tag: common title for all produced plots. For example, 'training' metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{'loss': loss1, 'another_loss': loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.mlflow_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: mlflow_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.mlflow_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) mlflow_logger = MLflowLogger() def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on MLflow. mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python mlflow_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", metrics=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ) -> None: super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: MLflowLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, MLflowLogger): raise TypeError("Handler 'OutputHandler' works only with MLflowLogger") rendered_metrics = self._setup_output_metrics_state_attrs(engine) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) # Additionally recheck metric names as MLflow rejects non-valid names with MLflowException from mlflow.utils.validation import _VALID_PARAM_AND_METRIC_NAMES metrics = {} for keys, value in rendered_metrics.items(): key = " ".join(keys) metrics[key] = value for key in list(metrics.keys()): if not _VALID_PARAM_AND_METRIC_NAMES.match(key): warnings.warn( f"MLflowLogger output_handler encountered an invalid metric name '{key}' that " "will be ignored and not logged to MLflow" ) del metrics[key] logger.log_metrics(metrics, step=global_step) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, 'generator' Examples: .. code-block:: python from ignite.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Optionally, user can specify tracking_uri with corresponds to MLFLOW_TRACKING_URI # mlflow_logger = MLflowLogger(tracking_uri="uri") # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration mlflow_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently mlflow_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: MLflowLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, MLflowLogger): raise TypeError("Handler OptimizerParamsHandler works only with MLflowLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag} " if self.tag else "" params = { f"{tag_prefix}{self.param_name} group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } logger.log_metrics(params, step=global_step) ignite-0.5.1/ignite/handlers/neptune_logger.py000066400000000000000000000653461465426447700215030ustar00rootroot00000000000000"""Neptune logger and its helper handlers.""" import tempfile import warnings from typing import Any, Callable, List, Mapping, Optional, Union import torch from torch.optim import Optimizer import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsScalarHandler, ) from ignite.handlers.checkpoint import BaseSaveHandler from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "NeptuneLogger", "NeptuneSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", "global_step_from_engine", ] _INTEGRATION_VERSION_KEY = "source_code/integrations/neptune-pytorch-ignite" class NeptuneLogger(BaseLogger): """ `Neptune `_ handler to log metrics, model/optimizer parameters and gradients during training and validation. It can also log model checkpoints to Neptune. .. code-block:: bash pip install neptune Args: api_token: Neptune API token, found on https://neptune.ai -> User menu -> "Get your API token". If None, the value of the NEPTUNE_API_TOKEN environment variable is used. To keep your token secure, you should set it to the environment variable rather than including it in your code. project: Name of a Neptune project, in the form "workspace-name/project-name". For example "tom/mnist-classification". If None, the value of the NEPTUNE_PROJECT environment variable is used. **kwargs: Other arguments to be passed to the `init_run()` function. Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # Note: We are using the API token for anonymous logging. You can pass your own token, or save it as an # environment variable and leave out the api_token argument. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project="common/pytorch-ignite-integration", name="cnn-mnist", # Optional, tags=["pytorch-ignite", "minst"], # Optional ) # Attach the logger to the trainer to log training loss at each iteration. npt_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss}, ) # Attach the logger to the evaluator on the training dataset and log NLL # and accuracy metrics after each epoch. # We set up `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. npt_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL and accuracy metrics after # each epoch. We set up `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. npt_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the trainer to log optimizer parameters, such as learning rate at each iteration. npt_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name="lr", # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration. npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model), ) Explore runs with Neptune tracking here: https://app.neptune.ai/o/common/org/pytorch-ignite-integration/ You can also save model checkpoints to a Neptune: .. code-block:: python from ignite.handlers import Checkpoint def score_function(engine): return engine.state.metrics["accuracy"] to_save = {"model": model} handler = Checkpoint( to_save, NeptuneSaver(npt_logger), n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer), ) validation_evaluator.add_event_handler(Events.COMPLETED, handler) It is also possible to use the logger as a context manager: .. code-block:: python from ignite.handlers.neptune_logger import * with NeptuneLogger() as npt_logger: trainer = Engine(update_fn) # Attach the logger to the trainer to log training loss at each iteration npt_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss}, ) """ def __getattr__(self, attr: Any) -> Any: return getattr(self.experiment, attr) def __getitem__(self, key: str) -> Any: return self.experiment[key] def __setitem__(self, key: str, val: Any) -> Any: self.experiment[key] = val def __init__(self, api_token: Optional[str] = None, project: Optional[str] = None, **kwargs: Any) -> None: try: try: # neptune-client<1.0.0 package structure with warnings.catch_warnings(): # ignore the deprecation warnings warnings.simplefilter("ignore") import neptune.new as neptune except ImportError: # neptune>=1.0.0 package structure import neptune except ImportError: raise ModuleNotFoundError( "This contrib module requires the Neptune client library to be installed. " "Install neptune with the command: \n pip install neptune \n" ) run = neptune.init_run( api_token=api_token, project=project, **kwargs, ) from ignite import __version__ run[_INTEGRATION_VERSION_KEY] = __version__ self.experiment = run def close(self) -> None: self.experiment.stop() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics. Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.neptune_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: npt_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently npt_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.neptune_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite", "minst"] # Optional ) def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on NeptuneML. npt_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python npt_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", metrics=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ): super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, NeptuneLogger): raise TypeError("Handler OutputHandler works only with NeptuneLogger") metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) for key, value in metrics.items(): logger[key].append(value, step=global_step) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration npt_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently npt_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, NeptuneLogger): raise TypeError("Handler OptimizerParamsHandler works only with NeptuneLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } for k, v in params.items(): logger[k].append(v, step=global_step) class WeightsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's weights as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by `whitelist`. Then at every call, applies reduction function to each parameter, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific weights to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's weights are logged. Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Attach the logger to the trainer to log model's weights norm after each iteration npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.neptune_logger import * npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Log only `fc` weights npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler( model, whitelist=['fc'] ) ) .. code-block:: python from ignite.handlers.neptune_logger import * npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Log weights which have `bias` in their names def has_bias_in_name(n, p): return 'bias' in n npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, NeptuneLogger): raise TypeError("Handler WeightsScalarHandler works only with NeptuneLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue name = name.replace(".", "/") key = f"{tag_prefix}weights_{self.reduction.__name__}/{name}" logger[key].append(self.reduction(p.data), step=global_step) class GradsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's gradients as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by the `whitelist`. Then at every call, applies reduction function to each parameter's gradient, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific gradients to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's gradients are logged. Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Attach the logger to the trainer to log model's weights norm after each iteration npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.neptune_logger import * npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Log gradient of `base` npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler( model, reduction=torch.norm, whitelist=['base'] ) ) .. code-block:: python from ignite.handlers.neptune_logger import * npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) # Log gradient of weights which belong to a `fc` layer def is_in_fc_layer(n, p): return 'fc' in n npt_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, NeptuneLogger): raise TypeError("Handler GradsScalarHandler works only with NeptuneLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue name = name.replace(".", "/") key = f"{tag_prefix}grads_{self.reduction.__name__}/{name}" logger[key].append(self.reduction(p.grad), step=global_step) class NeptuneSaver(BaseSaveHandler): """Handler that saves input checkpoint to the Neptune server. Args: neptune_logger: an instance of NeptuneLogger class. .. Note :: NeptuneSaver is currently not supported on Windows. Examples: .. code-block:: python from ignite.handlers.neptune_logger import * # Create a logger # We are using the api_token for the anonymous user neptuner but you can use your own. npt_logger = NeptuneLogger( api_token="ANONYMOUS", project_name="shared/pytorch-ignite-integration", experiment_name="cnn-mnist", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-ignite","minst"] # Optional ) ... evaluator = create_supervised_evaluator(model, metrics=metrics, ...) ... from ignite.handlers import Checkpoint def score_function(engine): return engine.state.metrics["accuracy"] to_save = {"model": model} # pass neptune logger to NeptuneServer handler = Checkpoint( to_save, NeptuneSaver(npt_logger), n_saved=2, filename_prefix="best", score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer) ) evaluator.add_event_handler(Events.COMPLETED, handler) # We need to close the logger when we are done npt_logger.close() For example, you can access model checkpoints and download them from here: https://ui.neptune.ai/o/shared/org/pytorch-ignite-integration/e/PYTOR1-18/charts """ @idist.one_rank_only() def __init__(self, neptune_logger: NeptuneLogger): self._logger = neptune_logger @idist.one_rank_only() def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None: # wont work on XLA # Imports for BC compatibility try: # neptune-client<1.0.0 package structure with warnings.catch_warnings(): # ignore the deprecation warnings warnings.simplefilter("ignore") from neptune.new.types import File except ImportError: # neptune>=1.0.0 package structure from neptune.types import File with tempfile.NamedTemporaryFile() as tmp: # we can not use tmp.name to open tmp.file twice on Win32 # https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile torch.save(checkpoint, tmp.file) # rewind the buffer tmp.file.seek(0) # hold onto the file stream for uploading. # NOTE: This won't load the whole file in memory and upload # the stream in smaller chunks. self._logger[filename].upload(File.from_stream(tmp.file)) @idist.one_rank_only(with_barrier=True) def remove(self, filename: str) -> None: del self._logger.experiment[filename] ignite-0.5.1/ignite/handlers/param_scheduler.py000066400000000000000000002052451465426447700216160ustar00rootroot00000000000000import itertools import math import numbers import tempfile import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict from copy import copy from pathlib import Path from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union import torch from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, ReduceLROnPlateau from torch.optim.optimizer import Optimizer # https://github.com/pytorch/ignite/issues/2773 try: from torch.optim.lr_scheduler import LRScheduler as PyTorchLRScheduler except ImportError: from torch.optim.lr_scheduler import _LRScheduler as PyTorchLRScheduler from ignite.engine import Engine class BaseParamScheduler(metaclass=ABCMeta): r"""An abstract class for updating an engine state or optimizer's parameter value during training. Args: param_name: name of engine state or optimizer's parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). .. versionadded:: 0.4.7 """ def __init__(self, param_name: str, save_history: bool = False): self.param_name = param_name self.event_index = 0 self._save_history = save_history self._state_attrs = ["event_index", "param_name", "save_history"] @property def save_history(self) -> bool: return self._save_history @save_history.setter def save_history(self, value: bool) -> None: self._save_history = value def state_dict(self) -> Dict[str, Any]: """Returns a dictionary containing a whole state of BaseParamScheduler. Returns: dict: a dictionary containing a whole state of BaseParamScheduler """ destination = OrderedDict() for name in self._state_attrs: if hasattr(self, name): val = getattr(self, name) if hasattr(val, "state_dict"): val = val.state_dict() destination[name] = copy(val) return destination def load_state_dict(self, state_dict: Mapping) -> None: """Copies parameters from :attr:`state_dict` into this BaseParamScheduler. Args: state_dict: a dict containing parameters. """ if not isinstance(state_dict, Mapping): raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}") for name in self._state_attrs: if name not in state_dict: raise ValueError( f"Required state attribute '{name}' is absent in provided state_dict '{state_dict.keys()}'" ) val = state_dict[name] obj = getattr(self, name) if isinstance(val, Mapping) and hasattr(obj, "load_state_dict"): obj.load_state_dict(val) else: setattr(self, name, val) @abstractmethod def get_param(self) -> Union[List[float], float]: """Method to get current parameter values Returns: list of params, or scalar param """ pass @classmethod @abstractmethod def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]: """Method to simulate scheduled values during `num_events` events. Args: num_events: number of events during the simulation. scheduler_kwargs: parameter scheduler configuration kwargs. Returns: event_index, value """ pass @classmethod def plot_values(cls, num_events: int, **scheduler_kwargs: Mapping) -> Any: """Method to plot simulated scheduled values during `num_events` events. This class requires `matplotlib package `_ to be installed: .. code-block:: bash pip install matplotlib Args: num_events: number of events during the simulation. scheduler_kwargs: parameter scheduler configuration kwargs. Returns: matplotlib.lines.Line2D Examples: .. code-block:: python import matplotlib.pylab as plt plt.figure(figsize=(10, 7)) LinearCyclicalScheduler.plot_values(num_events=50, param_name='lr', start_value=1e-1, end_value=1e-3, cycle_size=10)) """ try: import matplotlib.pyplot as plt except ImportError: raise ModuleNotFoundError( "This method requires matplotlib to be installed. " "Please install it with command: \n pip install matplotlib" ) values = cls.simulate_values(num_events=num_events, **scheduler_kwargs) label = scheduler_kwargs.get("param_name", "learning rate") ax = plt.plot([e for e, _ in values], [v for _, v in values], label=label) plt.legend() plt.grid(which="both") return ax class ParamScheduler(BaseParamScheduler): """An abstract class for updating an optimizer's parameter value during training. Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: name of optimizer's parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). param_group_index: optimizer's parameters group to use Note: Parameter scheduler works independently of the internal state of the attached optimizer. More precisely, whatever the state of the optimizer (newly created or used by another scheduler) the scheduler sets defined absolute values. """ def __init__( self, optimizer: Optimizer, param_name: str, save_history: bool = False, param_group_index: Optional[int] = None, ): super(ParamScheduler, self).__init__(param_name, save_history) if not ( isinstance(optimizer, Optimizer) or (hasattr(optimizer, "param_groups") and isinstance(optimizer.param_groups, Sequence)) ): raise TypeError( "Argument optimizer should be torch.optim.Optimizer or has attribute 'param_groups' as list/tuple, " f"but given {type(optimizer)}" ) self.optimizer = optimizer self.param_group_index = param_group_index self._state_attrs += ["param_group_index"] def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None: value = self._get_param() if isinstance(value, list): if len(value) != len(self.optimizer_param_groups): raise ValueError( "size of value is different than optimizer_param_groups " f"{len(value)} != {len(self.optimizer_param_groups)}" ) for i, param_group in enumerate(self.optimizer_param_groups): param_group[self.param_name] = value[i] else: for i, param_group in enumerate(self.optimizer_param_groups): param_group[self.param_name] = value if name is None: name = self.param_name if self.save_history and engine: if not hasattr(engine.state, "param_history") or engine.state.param_history is None: setattr(engine.state, "param_history", {}) engine.state.param_history.setdefault(name, []) # type: ignore[attr-defined] values = [pg[self.param_name] for pg in self.optimizer_param_groups] engine.state.param_history[name].append(values) # type: ignore[attr-defined] self.event_index += 1 @property def optimizer_param_groups(self) -> List[Dict[str, Any]]: if self.param_group_index is None: return self.optimizer.param_groups return [self.optimizer.param_groups[self.param_group_index]] @classmethod def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]: """Method to simulate scheduled values during `num_events` events. Args: num_events: number of events during the simulation. scheduler_kwargs: parameter scheduler configuration kwargs. Returns: event_index, value Examples: .. code-block:: python lr_values = np.array(LinearCyclicalScheduler.simulate_values(num_events=50, param_name='lr', start_value=1e-1, end_value=1e-3, cycle_size=10)) plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() """ keys_to_remove = ["optimizer", "save_history"] for key in keys_to_remove: if key in scheduler_kwargs: del scheduler_kwargs[key] values = [] scheduler = cls(optimizer=_get_fake_optimizer(), save_history=False, **scheduler_kwargs) for i in range(num_events): scheduler(engine=None) values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]]) return values def _get_param(self) -> Union[List[float], float]: # `ParamScheduler` does nothing special, only returning what child class returns. # Intermediate child classes edit this method return self.get_param() class CyclicalScheduler(ParamScheduler): """An abstract class for updating an optimizer's parameter value over a cycle of some size. Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: name of optimizer's parameter to update. start_value: value at start of cycle. end_value: value at the middle of the cycle. cycle_size: length of cycle, value should be larger than 1. cycle_mult: ratio by which to change the cycle_size. at the end of each cycle (default=1.0). start_value_mult: ratio by which to change the start value at the end of each cycle (default=1.0). end_value_mult: ratio by which to change the end value at the end of each cycle (default=1.0). warmup_duration: duration of warm-up to be applied before each cycle. Through this warm-up, the parameter starts from the last cycle's end value and linearly goes to next cycle's start value. Default is no cyclic warm-up. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). param_group_index: optimizer's parameters group to use. Note: If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should usually be the number of batches in an epoch. .. versionadded:: 0.4.5 .. versionchanged:: 0.4.13 Added cyclic warm-up to the scheduler using ``warmup_duration``. """ def __init__( self, optimizer: Optimizer, param_name: str, start_value: float, end_value: float, cycle_size: int, cycle_mult: float = 1.0, start_value_mult: float = 1.0, end_value_mult: float = 1.0, warmup_duration: int = 0, save_history: bool = False, param_group_index: Optional[int] = None, ): super(CyclicalScheduler, self).__init__( optimizer, param_name, save_history=save_history, param_group_index=param_group_index ) self.start_value = start_value self.end_value = end_value self.cycle_size = cycle_size self.cycle_mult = cycle_mult self.cycle = 0 self.start_value_mult = start_value_mult self.end_value_mult = end_value_mult self.warmup_duration = warmup_duration self.total_cycle_size = self.warmup_duration + self.cycle_size if self.cycle_size < 2: raise ValueError(f"Argument cycle_size should be positive and larger than 1, but given {cycle_size}") self._state_attrs += [ "start_value", "end_value", "cycle_size", "cycle_mult", "cycle", "start_value_mult", "end_value_mult", "warmup_duration", "total_cycle_size", ] def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None: if self.event_index != 0 and self.event_index == self.cycle_size: self.start_value *= self.start_value_mult if self.event_index != 0 and self.event_index == self.total_cycle_size: self.event_index = 0 self.cycle_size = int(self.cycle_size * self.cycle_mult) self.warmup_duration = int(self.warmup_duration * self.cycle_mult) self.total_cycle_size = self.warmup_duration + self.cycle_size self.cycle += 1 self.end_value *= self.end_value_mult return super(CyclicalScheduler, self).__call__(engine, name) def _get_param(self) -> Union[List[float], float]: """Applies warm-up if the scheduler is in the warm-up phase, otherwise returns what is returned by `self.get_param()` """ if self.event_index > self.cycle_size: warmup_progress = (self.event_index - self.cycle_size) / self.warmup_duration return self.end_value + (self.start_value - self.end_value) * warmup_progress return self.get_param() class LinearCyclicalScheduler(CyclicalScheduler): """Linearly adjusts param value to 'end_value' for a half-cycle, then linearly adjusts it back to 'start_value' for a half-cycle. Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: name of optimizer's parameter to update. start_value: value at start of cycle. end_value: value at the middle of the cycle. cycle_size: length of cycle. cycle_mult: ratio by which to change the cycle_size at the end of each cycle (default=1). start_value_mult: ratio by which to change the start value at the end of each cycle (default=1.0). end_value_mult: ratio by which to change the end value at the end of each cycle (default=1.0). warmup_duration: duration of warm-up to be applied before each cycle. Through this warm-up, the parameter starts from the last cycle's end value and linearly goes to next cycle's start value. Default is no cyclic warm-up. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). param_group_index: optimizer's parameters group to use. monotonic: whether to schedule only one half of the cycle: descending or ascending. If True, this argument can not be used together with ``warmup_duration``. (default=False). Note: If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should usually be the number of batches in an epoch. Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 default_trainer = get_default_trainer() # Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0 # over a cycle of 4 iterations scheduler = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 4) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 9, max_epochs=1) .. testoutput:: 1 0.0 0.5 1.0 0.5 ... .. testcode:: 2 default_trainer = get_default_trainer() optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.001}, {"params": default_model.fc.parameters(), "lr": 0.01}, ] ) # Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0 # over a cycle of 4 iterations scheduler1 = LinearCyclicalScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0) # Linearly increases the learning rate from 0.0 to 0.1 and back to 0.0 # over a cycle of 4 iterations scheduler2 = LinearCyclicalScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler2) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr (base)"], optimizer.param_groups[1]["lr (fc)"]) default_trainer.run([0] * 9, max_epochs=1) .. testoutput:: 2 0.0 0.0 0.5 0.05 1.0 0.1 0.5 0.05 ... .. versionadded:: 0.4.5 .. versionchanged:: 0.4.13 Added cyclic warm-up to the scheduler using ``warmup_duration``. .. versionchanged:: 0.5.0 Added monotonic argument. """ def __init__(self, *args: Any, monotonic: bool = False, **kwagrs: Any): super(LinearCyclicalScheduler, self).__init__(*args, **kwagrs) self.monotonic = monotonic if self.warmup_duration > 0 and not self.monotonic: raise ValueError( "Invalid combination when warmup_duration > 0 and monotonic=False, " "please use either set warmup_duration=0 or monotonic=True" ) def get_param(self) -> float: """Method to get current optimizer's parameter value""" cycle_progress = self.event_index / self.cycle_size if self.monotonic: return self.start_value + (self.end_value - self.start_value) * cycle_progress else: return self.end_value + (self.start_value - self.end_value) * abs(cycle_progress - 0.5) * 2 class CosineAnnealingScheduler(CyclicalScheduler): """Anneals 'start_value' to 'end_value' over each cycle. The annealing takes the form of the first half of a cosine wave (as suggested in [Smith17]_). Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: name of optimizer's parameter to update. start_value: value at start of cycle. end_value: value at the end of the cycle. cycle_size: length of cycle. cycle_mult: ratio by which to change the cycle_size at the end of each cycle (default=1). start_value_mult: ratio by which to change the start value at the end of each cycle (default=1.0). end_value_mult: ratio by which to change the end value at the end of each cycle (default=1.0). warmup_duration: duration of warm-up to be applied before each cycle. Through this warm-up, the parameter starts from the last cycle's end value and linearly goes to next cycle's start value. Default is no cyclic warm-up. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). param_group_index: optimizer's parameters group to use. Note: If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should usually be the number of batches in an epoch. Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 default_trainer = get_default_trainer() # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler = CosineAnnealingScheduler(default_optimizer, "lr", 0.0, 1.0, 4) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 9, max_epochs=1) .. testoutput:: 1 0.0 0.1464... 0.4999... 0.8535... ... .. testcode:: 2 default_trainer = get_default_trainer() optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.001}, {"params": default_model.fc.parameters(), "lr": 0.01}, ] ) # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler_1 = CosineAnnealingScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0) # CosineAnnealing increases the learning rate from 0.0 to 0.1 # over a cycle of 4 iterations scheduler_2 = CosineAnnealingScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_2) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr (base)"], optimizer.param_groups[1]["lr (fc)"]) default_trainer.run([0] * 9, max_epochs=1) .. testoutput:: 2 0.0 0.0 0.1464... 0.01464... 0.4999... 0.04999... 0.8535... 0.08535... ... .. [Smith17] Smith, Leslie N. "Cyclical learning rates for training neural networks." Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017 .. versionadded:: 0.4.5 .. versionchanged:: 0.4.13 Added cyclic warm-up to the scheduler using ``warmup_duration``. """ def get_param(self) -> float: """Method to get current optimizer's parameter value""" cycle_progress = self.event_index / self.cycle_size return self.start_value + ((self.end_value - self.start_value) / 2) * (1 - math.cos(math.pi * cycle_progress)) class ConcatScheduler(ParamScheduler): """Concat a list of parameter schedulers. The `ConcatScheduler` goes through a list of schedulers given by `schedulers`. Duration of each scheduler is defined by `durations` list of integers. Args: schedulers: list of parameter schedulers. durations: list of number of events that lasts a parameter scheduler from schedulers. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() scheduler_1 = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 8) scheduler_2 = CosineAnnealingScheduler(default_optimizer, "lr", 1.0, 0.2, 4) # Sets the Learning rate linearly from 0.0 to 1.0 over 4 iterations. Then # starts an annealing schedule from 1.0 to 0.2 over the next 4 iterations. # The annealing cycles are repeated indefinitely. combined_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[4, ]) default_trainer.add_event_handler(Events.ITERATION_STARTED, combined_scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 8, max_epochs=1) .. testoutput:: 0.0 0.25 0.5 0.75 1.0 0.8828... 0.6000... 0.3171... .. versionadded:: 0.4.5 """ def __init__(self, schedulers: List[ParamScheduler], durations: List[int], save_history: bool = False): if not isinstance(schedulers, Sequence): raise TypeError(f"Argument schedulers should be a sequence, but given {schedulers}") if len(schedulers) < 2: raise ValueError( f"Argument schedulers should be of more than one parameter schedulers, but given {schedulers}" ) if not isinstance(durations, (list, tuple)): raise TypeError(f"Argument durations should be list/tuple, but given {durations}") if not all([isinstance(t, numbers.Integral) for t in durations]): raise ValueError(f"Argument durations should be list/tuple of integers, but given {durations}") if len(schedulers) != len(durations) + 1: raise ValueError( "Incorrect number schedulers or duration values, " f"given {len(schedulers)} and {len(durations)}" ) for i, scheduler in enumerate(schedulers): if not isinstance(scheduler, ParamScheduler) and not isinstance(scheduler, ParamGroupScheduler): raise TypeError( f"Value at index {i} of schedulers should be a parameter scheduler, but given {type(scheduler)}" ) self.schedulers = schedulers self.durations = durations tmp_optimizers = [s.optimizer for s in self.schedulers] tmp_list_optimizers = [s if isinstance(s, list) else [s] for s in tmp_optimizers] param_optimizers = list(itertools.chain(*tmp_list_optimizers)) optimizer = list(set(param_optimizers)) if len(optimizer) != 1: raise ValueError("schedulers should be related to same optimizer") tmp_param_names = [s.param_name for s in self.schedulers] tmp_list_param_names = [s if isinstance(s, list) else [s] for s in tmp_param_names] param_names = list(itertools.chain(*tmp_list_param_names)) param_name = list(set(param_names)) if len(param_name) != 1: raise ValueError("schedulers should be related to same param_name") # schedulers should have save_history sync with ParamGroupScheduler for s in schedulers: s.save_history = save_history super(ConcatScheduler, self).__init__( optimizer=optimizer[0], param_name=param_name[0], save_history=save_history ) self._scheduler_index = 0 self._setup_scheduler() self._state_attrs += ["_current_duration", "durations", "_scheduler_index"] def state_dict(self) -> Dict[str, Any]: """Returns a dictionary containing a whole state of ConcatScheduler. Returns: dict: a dictionary containing a whole state of ConcatScheduler """ state_dict = super(ConcatScheduler, self).state_dict() state_dict["schedulers"] = [] for s in self.schedulers: state_dict["schedulers"].append(s.state_dict()) return state_dict def load_state_dict(self, state_dict: Mapping) -> None: """Copies parameters from :attr:`state_dict` into this ConcatScheduler. Args: state_dict: a dict containing parameters. """ if not isinstance(state_dict, Mapping): raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}") if "schedulers" not in state_dict: raise ValueError( f"Required state attribute 'schedulers' is absent in provided state_dict '{state_dict.keys()}'" ) sds = state_dict["schedulers"] if len(sds) != len(self.schedulers): raise ValueError( f"Input state_dict contains {len(sds)} state_dicts of concatenated schedulers, " f"but {len(self.schedulers)} needed" ) for s, sd in zip(self.schedulers, sds): s.load_state_dict(sd) super(ConcatScheduler, self).load_state_dict(state_dict) self._current_scheduler = self.schedulers[self._scheduler_index] def _setup_scheduler(self) -> None: self._current_scheduler = self.schedulers[self._scheduler_index] self._current_duration = ( self.durations[self._scheduler_index] if self._scheduler_index < len(self.durations) else -1 ) def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None: if self._current_duration == 0: self._scheduler_index += 1 self._setup_scheduler() self._current_scheduler(engine, name) self._current_duration -= 1 @property def optimizer_param_groups(self) -> List[Dict[str, Any]]: # We need to setup optimizer_param_groups as property # to synchonize with the latest _current_scheduler and its internal optimizer_param_groups return self._current_scheduler.optimizer_param_groups @property def save_history(self) -> bool: return self._current_scheduler.save_history @save_history.setter def save_history(self, value: bool) -> None: for s in self.schedulers: s.save_history = value def get_param(self) -> Union[List[float], float]: return self._current_scheduler.get_param() @classmethod def simulate_values( # type: ignore[override] cls, num_events: int, schedulers: List[ParamScheduler], durations: List[int], param_names: Optional[Union[List[str], Tuple[str]]] = None, ) -> List[List[int]]: """Method to simulate scheduled values during num_events events. Args: num_events: number of events during the simulation. schedulers: list of parameter schedulers. durations: list of number of events that lasts a parameter scheduler from schedulers. param_names: parameter name or list of parameter names to simulate values. By default, the first scheduler's parameter name is taken. Returns: list: list of [event_index, value_0, value_1, ...], where values correspond to `param_names`. """ if param_names is not None: if not isinstance(param_names, (list, tuple)): raise TypeError(f"Argument param_names should be list or tuple, but given {type(param_names)}") if not all(isinstance(item, str) for item in param_names): raise ValueError(f"Argument param_names should be list or tuple of strings, but given {param_names}") tmp_param_optimizers = [s.optimizer for s in schedulers] tmp_list_param_optimizers = [s if isinstance(s, list) else [s] for s in tmp_param_optimizers] param_optimizers = list(itertools.chain(*tmp_list_param_optimizers)) tmp_optimizer = list(set(param_optimizers)) if len(tmp_optimizer) != 1: raise ValueError("schedulers should be related to same optimizer") optimizer = tmp_optimizer[0] # This scheduler uses `ParamScheduler` which # should be replicated in order to simulate LR values and # not perturb original scheduler. with tempfile.TemporaryDirectory() as tmpdirname: cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt" objs = {f"lr_scheduler_{i}": s.state_dict() for i, s in enumerate(schedulers)} # all schedulers should be related to the same optimizer objs["optimizer"] = optimizer.state_dict() torch.save(objs, cache_filepath.as_posix()) # do not save_history for s in schedulers: s.save_history = False output = [] scheduler = cls(schedulers=schedulers, save_history=False, durations=durations) if param_names is None: param_names = [scheduler.param_name] for i in range(num_events): scheduler(engine=None) values = [i] for param_name in param_names: params = [p[param_name] for p in scheduler.optimizer_param_groups] values = values + params output.append(values) objs = torch.load(cache_filepath.as_posix()) for i, s in enumerate(schedulers): s.load_state_dict(objs[f"lr_scheduler_{i}"]) optimizer.load_state_dict(objs["optimizer"]) return output class _CosineAnnealingWarmRestarts: def __init__(self, lr_scheduler: CosineAnnealingWarmRestarts): self._lr_scheduler = lr_scheduler @property def last_epoch(self) -> int: return self._lr_scheduler.last_epoch @last_epoch.setter def last_epoch(self, value: int) -> None: self._lr_scheduler.last_epoch = value @property def optimizer(self) -> torch.optim.Optimizer: return self._lr_scheduler.optimizer def get_lr(self, epoch: Optional[int] = None) -> List[float]: T_mult = self._lr_scheduler.T_mult eta_min = self._lr_scheduler.eta_min if epoch is None and self.last_epoch < 0: epoch = 0 if epoch is None: epoch = self.last_epoch + 1 self._lr_scheduler.T_cur = self._lr_scheduler.T_cur + 1 if self._lr_scheduler.T_cur >= self._lr_scheduler.T_i: self._lr_scheduler.T_cur = self._lr_scheduler.T_cur - self._lr_scheduler.T_i self._lr_scheduler.T_i = self._lr_scheduler.T_i * T_mult else: if epoch < 0: raise ValueError("Expected non-negative epoch, but got {}".format(epoch)) if epoch >= self._lr_scheduler.T_0: if T_mult == 1: self._lr_scheduler.T_cur = epoch % self._lr_scheduler.T_0 else: n = int(math.log((epoch / self._lr_scheduler.T_0 * (T_mult - 1) + 1), T_mult)) self._lr_scheduler.T_cur = epoch - self._lr_scheduler.T_0 * (T_mult**n - 1) / (T_mult - 1) self._lr_scheduler.T_i = self._lr_scheduler.T_0 * T_mult**n else: self._lr_scheduler.T_i = self._lr_scheduler.T_0 self._lr_scheduler.T_cur = epoch self.last_epoch = math.floor(epoch) return [ eta_min + (base_lr - eta_min) * (1 + math.cos(math.pi * self._lr_scheduler.T_cur / self._lr_scheduler.T_i)) / 2 for base_lr in self._lr_scheduler.base_lrs ] class LRScheduler(ParamScheduler): """A wrapper class to call `torch.optim.lr_scheduler` objects as `ignite` handlers. Args: lr_scheduler: lr_scheduler object to wrap. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). use_legacy: if True, scheduler should be attached to ``Events.ITERATION_COMPLETED``, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() from torch.optim.lr_scheduler import StepLR torch_lr_scheduler = StepLR(default_optimizer, step_size=3, gamma=0.1) scheduler = LRScheduler(torch_lr_scheduler) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 8, max_epochs=1) .. testoutput:: 0.1 0.1 0.1 0.010... 0.010... 0.010... 0.001... 0.001... .. versionadded:: 0.4.5 .. versionchanged:: 0.4.9 added `use_legacy` argument """ def __init__( self, lr_scheduler: PyTorchLRScheduler, save_history: bool = False, use_legacy: bool = False, ): if not isinstance(lr_scheduler, PyTorchLRScheduler): raise TypeError( "Argument lr_scheduler should be a subclass of " f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__}, " f"but given {type(lr_scheduler)}" ) self.lr_scheduler: Union[PyTorchLRScheduler, _CosineAnnealingWarmRestarts] = lr_scheduler if isinstance(lr_scheduler, CosineAnnealingWarmRestarts): self.lr_scheduler = _CosineAnnealingWarmRestarts(lr_scheduler) super(LRScheduler, self).__init__( optimizer=self.lr_scheduler.optimizer, param_name="lr", save_history=save_history, ) if use_legacy: warnings.warn( "Please make sure to attach scheduler to Events.ITERATION_COMPLETED " "instead of Events.ITERATION_STARTED to make sure to use " "the first lr value from the optimizer, otherwise it will be skipped" ) self.lr_scheduler.last_epoch += 1 self._state_attrs += ["lr_scheduler"] def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None: super(LRScheduler, self).__call__(engine, name) self.lr_scheduler.last_epoch += 1 def get_param(self) -> Union[float, List[float]]: """Method to get current optimizer's parameter value""" # Emulate context manager for pytorch>=1.4 self.lr_scheduler._get_lr_called_within_step = True # type: ignore[union-attr] lr_list = self.lr_scheduler.get_lr() self.lr_scheduler._get_lr_called_within_step = False # type: ignore[union-attr] if len(lr_list) == 1: return lr_list[0] else: return lr_list @classmethod def simulate_values( # type: ignore[override] cls, num_events: int, lr_scheduler: PyTorchLRScheduler, **kwargs: Any ) -> List[List[int]]: """Method to simulate scheduled values during num_events events. Args: num_events: number of events during the simulation. lr_scheduler: lr_scheduler object to wrap. Returns: event_index, value """ if not isinstance(lr_scheduler, PyTorchLRScheduler): raise TypeError( "Argument lr_scheduler should be a subclass of " f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__}, " f"but given {type(lr_scheduler)}" ) # This scheduler uses `torch.optim.lr_scheduler.LRScheduler` which # should be replicated in order to simulate LR values and # not perturb original scheduler. with tempfile.TemporaryDirectory() as tmpdirname: cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt" obj = { "lr_scheduler": lr_scheduler.state_dict(), "optimizer": lr_scheduler.optimizer.state_dict(), } torch.save(obj, cache_filepath.as_posix()) values = [] scheduler = cls(save_history=False, lr_scheduler=lr_scheduler, **kwargs) for i in range(num_events): scheduler(engine=None) params = [p[scheduler.param_name] for p in scheduler.optimizer_param_groups] values.append([i] + params) obj = torch.load(cache_filepath.as_posix()) lr_scheduler.load_state_dict(obj["lr_scheduler"]) lr_scheduler.optimizer.load_state_dict(obj["optimizer"]) return values def create_lr_scheduler_with_warmup( lr_scheduler: Union[ParamScheduler, PyTorchLRScheduler], warmup_start_value: float, warmup_duration: int, warmup_end_value: Optional[float] = None, save_history: bool = False, output_simulated_values: Optional[List] = None, ) -> "ConcatScheduler": """ Helper method to create a learning rate scheduler with a linear warm-up. Args: lr_scheduler: learning rate scheduler after the warm-up. warmup_start_value: learning rate start value of the warm-up phase. warmup_duration: warm-up phase duration, number of events. warmup_end_value: learning rate end value of the warm-up phase, (default=None). If None, warmup_end_value is set to optimizer initial lr. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). output_simulated_values: optional output of simulated learning rate values. If output_simulated_values is a list of None, e.g. `[None] * 100`, after the execution it will be filled by 100 simulated learning rate values. Returns: ConcatScheduler Note: If the first learning rate value provided by `lr_scheduler` is different from `warmup_end_value`, an additional event is added after the warm-up phase such that the warm-up ends with `warmup_end_value` value and then `lr_scheduler` provides its learning rate values as normally. Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: from torch.optim.lr_scheduler import ExponentialLR torch_lr_scheduler = ExponentialLR(optimizer=default_optimizer, gamma=0.98) default_trainer = get_default_trainer() scheduler = create_lr_scheduler_with_warmup(torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=3) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 8, max_epochs=1) .. testoutput:: 0.0 0.05 0.1 0.098 0.09604 0.09411... 0.09223... 0.09039... .. versionadded:: 0.4.5 """ if not isinstance(lr_scheduler, (ParamScheduler, PyTorchLRScheduler)): raise TypeError( "Argument lr_scheduler should be a subclass of " f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__} or ParamScheduler, " f"but given {type(lr_scheduler)}" ) if not isinstance(warmup_duration, numbers.Integral): raise TypeError(f"Argument warmup_duration should be integer, but given {warmup_duration}") if not (warmup_duration > 1): raise ValueError(f"Argument warmup_duration should be at least 2 events, but given {warmup_duration}") warmup_schedulers: List[ParamScheduler] = [] for param_group_index, param_group in enumerate(lr_scheduler.optimizer.param_groups): if warmup_end_value is None: param_group_warmup_end_value = param_group["lr"] else: param_group_warmup_end_value = warmup_end_value milestones_values = [(0, warmup_start_value), (warmup_duration - 1, param_group_warmup_end_value)] if isinstance(lr_scheduler, PyTorchLRScheduler): init_lr = param_group["lr"] if init_lr != param_group_warmup_end_value: milestones_values.append((warmup_duration, init_lr)) # We need to advance torch lr_scheduler to avoid duplicated lr value # given by PiecewiseLinear and LRScheduler. # We suggest to attach output scheduler on ITERATION_STARTED but # torch lr_scheduler works with ITERATION_COMPLETED # See also https://github.com/pytorch/ignite/pull/2496#issuecomment-1065984440 lr_scheduler.last_epoch += 1 lr_scheduler = LRScheduler(lr_scheduler, save_history=save_history) else: init_lr = lr_scheduler.get_param() if init_lr == param_group_warmup_end_value: if warmup_duration > 2: d = (param_group_warmup_end_value - warmup_start_value) / (warmup_duration - 1) milestones_values[-1] = (warmup_duration - 2, param_group_warmup_end_value - d) else: milestones_values.pop(-1) warmup_schedulers.append( PiecewiseLinear( lr_scheduler.optimizer, param_name="lr", milestones_values=milestones_values, param_group_index=param_group_index, save_history=save_history, ) ) warmup_scheduler = ParamGroupScheduler(warmup_schedulers, save_history=save_history) schedulers: List[Union[ParamScheduler, ParamGroupScheduler, PyTorchLRScheduler]] = [ warmup_scheduler, lr_scheduler, ] durations = [milestones_values[-1][0] + 1] combined_scheduler = ConcatScheduler(schedulers, durations=durations, save_history=save_history) if output_simulated_values is not None: if not isinstance(output_simulated_values, list): raise TypeError( "Argument output_simulated_values should be a list of None, e.g. `[None] * 100`, " f"but given {type(output_simulated_values)}." ) num_events = len(output_simulated_values) result = ConcatScheduler.simulate_values(num_events=num_events, schedulers=schedulers, durations=durations) for i in range(num_events): output_simulated_values[i] = result[i] return combined_scheduler class PiecewiseLinear(ParamScheduler): """ Piecewise linear parameter scheduler Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: name of optimizer's parameter to update. milestones_values: list of tuples (event index, parameter value) represents milestones and parameter. Milestones should be increasing integers. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). param_group_index: optimizer's parameters group to use. .. code-block:: python scheduler = PiecewiseLinear(optimizer, "lr", milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)]) # Attach to the trainer trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) # # Sets the learning rate to 0.5 over the first 10 iterations, then decreases linearly from 0.5 to 0.45 between # 10th and 20th iterations. Next there is a jump to 0.3 at the 21st iteration and LR decreases linearly # from 0.3 to 0.1 between 21st and 30th iterations and remains 0.1 until the end of the iterations. Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 default_trainer = get_default_trainer() milestones_values = [(1, 1.0), (3, 0.8), (5, 0.2)] scheduler = PiecewiseLinear( default_optimizer, "lr", milestones_values=milestones_values) # Sets lr equal to 1 for till the first iteration # Then linearly reduces lr from 1 to 0.8 till the third iteration # Then linearly reduces lr from 0.8 to 0.5 till the fifth iteration default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 6, max_epochs=1) .. testoutput:: 1 1.0 1.0 0.9 0.8 0.5 0.2 .. testcode:: 2 default_trainer = get_default_trainer() optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.1}, {"params": default_model.fc.parameters(), "lr": 1.0}, ] ) milestones_values1 = [(1, 0.1), (3, 0.08), (5, 0.02)] scheduler2 = PiecewiseLinear( optimizer, "lr", milestones_values=milestones_values1, param_group_index=0) # Sets lr equal to 0.1 for till the first iteration # Then linearly reduces lr from 0.1 to 0.08 till the third iteration # Then linearly reduces lr from 0.08 to 0.05 till the fifth iteration milestones_values2 = [(1, 1.0), (3, 0.8), (5, 0.2)] scheduler1 = PiecewiseLinear( optimizer, "lr", milestones_values=milestones_values2, param_group_index=1) # Sets lr equal to 1 for till the first iteration # Then linearly reduces lr from 1 to 0.8 till the third iteration # Then linearly reduces lr from 0.8 to 0.5 till the fifth iteration default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler2) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr"], optimizer.param_groups[1]["lr"]) default_trainer.run([0] * 6, max_epochs=1) .. testoutput:: 2 0.1 1.0 0.1 1.0 0.09 0.9 0.08 0.8 0.05 0.5 0.02 0.2 .. versionadded:: 0.4.5 """ def __init__( self, optimizer: Optimizer, param_name: str, milestones_values: List[Tuple[int, float]], save_history: bool = False, param_group_index: Optional[int] = None, ): super(PiecewiseLinear, self).__init__(optimizer, param_name, save_history, param_group_index=param_group_index) if not isinstance(milestones_values, Sequence): raise TypeError( f"Argument milestones_values should be a list or tuple, but given {type(milestones_values)}" ) if len(milestones_values) < 1: raise ValueError( f"Argument milestones_values should be with at least one value, but given {milestones_values}" ) values: List[float] = [] milestones: List[int] = [] for pair in milestones_values: if not isinstance(pair, tuple) or len(pair) != 2: raise ValueError("Argument milestones_values should be a list of pairs (milestone, param_value)") if not isinstance(pair[0], numbers.Integral): raise TypeError(f"Value of a milestone should be integer, but given {type(pair[0])}") if len(milestones) > 0 and pair[0] < milestones[-1]: raise ValueError( f"Milestones should be increasing integers, but given {pair[0]} is smaller " f"than the previous milestone {milestones[-1]}" ) milestones.append(pair[0]) values.append(pair[1]) self.values = values self.milestones = milestones self._index = 0 self._state_attrs += ["values", "milestones", "_index"] def _get_start_end(self) -> Tuple[int, int, float, float]: if self.milestones[0] > self.event_index: return self.event_index - 1, self.event_index, self.values[0], self.values[0] elif self.milestones[-1] <= self.event_index: return (self.event_index, self.event_index + 1, self.values[-1], self.values[-1]) elif self.milestones[self._index] <= self.event_index < self.milestones[self._index + 1]: return ( self.milestones[self._index], self.milestones[self._index + 1], self.values[self._index], self.values[self._index + 1], ) else: self._index += 1 return self._get_start_end() def get_param(self) -> float: start_index, end_index, start_value, end_value = self._get_start_end() return start_value + (end_value - start_value) * (self.event_index - start_index) / (end_index - start_index) class ParamGroupScheduler: """ Scheduler helper to group multiple schedulers into one. Args: schedulers: list/tuple of parameter schedulers. names: list of names of schedulers. save_history: whether to save history or not. Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.001}, {"params": default_model.fc.parameters(), "lr": 0.01}, ] ) # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler_1 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 1.0, 4, param_group_index=0) # CosineAnnealing increases the learning rate from 0.0 to 0.1 # over a cycle of 4 iterations scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 0.1, 4, param_group_index=1) scheduler = ParamGroupScheduler(schedulers=[scheduler_1, scheduler_2], names=["lr (base)", "lr (fc)"]) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr"], optimizer.param_groups[1]["lr"]) default_trainer.run([0] * 8, max_epochs=1) .. testoutput:: 0.0 0.0 0.1464... 0.01464... 0.4999... 0.04999... 0.8535... 0.08535... ... .. versionadded:: 0.4.5 """ def __init__(self, schedulers: List[ParamScheduler], names: Optional[List[str]] = None, save_history: bool = False): if not isinstance(schedulers, Sequence): raise TypeError(f"Argument schedulers should be a list/tuple, but given {schedulers}") if not all(isinstance(scheduler, ParamScheduler) for scheduler in schedulers): raise ValueError( f"Argument schedulers should be a list/tuple of parameter schedulers, but given {schedulers}" ) if names is None: names = [s.param_name for s in schedulers] if not isinstance(names, (list, tuple)): raise TypeError(f"Argument names should be a list/tuple, but given {names}") if not all(isinstance(n, str) for n in names): raise ValueError(f"Argument names should be a list/tuple of parameter scheduler's names, but given {names}") if len(names) != len(schedulers): raise ValueError(f"{len(schedulers)} should be equal {len(names)}") self.schedulers = schedulers self.names = names # schedulers should have save_history sync with ParamGroupScheduler for s in schedulers: s.save_history = save_history self.optimizer = [s.optimizer for s in self.schedulers] self.param_name = [s.param_name for s in self.schedulers] def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None: for scheduler, name in zip(self.schedulers, self.names): scheduler(engine, name) @property def optimizer_param_groups(self) -> List[Dict[str, Any]]: return [pg for scheduler in self.schedulers for pg in scheduler.optimizer_param_groups] @property def save_history(self) -> bool: return self.schedulers[0].save_history @save_history.setter def save_history(self, value: bool) -> None: for s in self.schedulers: s.save_history = value def state_dict(self) -> Dict[str, List[Any]]: """Returns a dictionary containing a whole state of ParamGroupScheduler. Returns: dict: a dictionary containing a whole state of ParamGroupScheduler """ state_dict: Dict[str, List[Any]] = OrderedDict() state_dict["schedulers"] = [] for n, s in zip(self.names, self.schedulers): state_dict["schedulers"].append((n, s.state_dict())) return state_dict def load_state_dict(self, state_dict: Mapping) -> None: """Copies parameters from :attr:`state_dict` into this ParamScheduler. Args: state_dict: a dict containing parameters. """ if not isinstance(state_dict, Mapping): raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}") if "schedulers" not in state_dict: raise ValueError( f"Required state attribute '{'schedulers'}' is absent in provided state_dict '{state_dict.keys()}'" ) sds = state_dict["schedulers"] if len(sds) != len(self.schedulers): raise ValueError( f"Input state_dict contains {len(sds)} state_dicts of param group schedulers, " f"but {len(self.schedulers)} needed" ) for req_n, s, (n, sd) in zip(self.names, self.schedulers, sds): if req_n != n: raise ValueError( f"Name of scheduler from input state dict does not correspond to required one, {n} vs {req_n}" ) s.load_state_dict(sd) @classmethod def simulate_values( cls, num_events: int, schedulers: List[ParamScheduler], **kwargs: Any ) -> List[List[Union[List[float], float, int]]]: """Method to simulate scheduled values during num_events events. Args: num_events: number of events during the simulation. schedulers: lr_scheduler object to wrap. kwargs: kwargs passed to construct an instance of :class:`ignite.handlers.param_scheduler.ParamGroupScheduler`. Returns: list: list of [event_index, scheduler_0_value, scheduler_1_value, ...], where scheduler_i_value corresponds to the simulated param of scheduler i at 'event_index'th event. """ # This scheduler uses `torch.optim.lr_scheduler.LRScheduler` which # should be replicated in order to simulate LR values and # not perturb original scheduler. with tempfile.TemporaryDirectory() as tmpdirname: cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt" objs = {f"lr_scheduler_{i}": s.state_dict() for i, s in enumerate(schedulers)} # all schedulers should be related to the same optimizer objs["optimizer"] = schedulers[0].optimizer.state_dict() torch.save(objs, cache_filepath.as_posix()) values = [] scheduler = cls(schedulers=schedulers, **kwargs) for i in range(num_events): params = [scheduler.get_param() for scheduler in schedulers] values.append([i] + params) scheduler(engine=None) objs = torch.load(cache_filepath.as_posix()) for i, s in enumerate(schedulers): s.load_state_dict(objs[f"lr_scheduler_{i}"]) s.optimizer.load_state_dict(objs["optimizer"]) return values def get_param(self) -> List[Union[float, List[float]]]: """ Method to get current `schedulers`' parameter values .. versionadded:: 0.4.11 """ return [scheduler.get_param() for scheduler in self.schedulers] class ReduceLROnPlateauScheduler(ParamScheduler): """Reduce LR when a metric stops improving. Wrapper of `torch.optim.lr_scheduler.ReduceLROnPlateau `_. Args: optimizer: Wrapped optimizer. metric_name: metric whose improvement is monitored. Must be attached to the same engine. trainer: Trainer engine to log LR history in its `state.output.param_history`. Is used if `save_history` is true. Default: None. save_history: Whether to save history or not. If true, history will be logged in `trainer`'s `state.output.param_history`. Default: False. param_group_index: `optimizer`'s parameters group to use. Default: None. Use all `optimizer`'s paramater groups. scheduler_kwargs: Keyword arguments to be passed to the wrapped ``ReduceLROnPlateau``. Examples: .. code-block:: python # Metric "accuracy" should increase the best value by # more than 1 unit after at most 2 epochs, otherwise LR # would get multiplied by 0.5 . scheduler = ReduceLROnPlateauScheduler( default_optimizer, metric_name="accuracy", mode="max", factor=0.5, patience=1, threshold_mode='abs', threshold=1, trainer=trainer ) metric = Accuracy() default_evaluator.attach(metric, "accuracy") default_evaluator.add_event_handler(Events.COMPLETED, scheduler) .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() # Metric "loss" should decrease more than # 0.1 of best loss after at most # three iterations. Then best loss would get # updated, otherwise lr is multiplied by 0.5 scheduler = ReduceLROnPlateauScheduler( default_optimizer, "loss", save_history=True, mode="min", factor=0.5, patience=3, threshold_mode='rel', threshold=0.1, trainer=default_trainer ) metric_values = iter([10, 5, 3, 4, 4, 4, 5, 1]) default_evaluator.state.metrics = {"loss": None} @default_trainer.on(Events.ITERATION_COMPLETED) def set_metric_val(): default_evaluator.state.metrics["loss"] = next(metric_values) default_evaluator.add_event_handler(Events.COMPLETED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def trigger_eval(): default_evaluator.run([0.]) default_trainer.run([0.] * 8) print(default_trainer.state.param_history["lr"]) .. testoutput:: [[0.1], [0.1], [0.1], [0.1], [0.1], [0.1], [0.05], [0.05]] .. versionadded:: 0.4.9 """ def __init__( self, optimizer: Optimizer, metric_name: str, trainer: Optional[Engine] = None, save_history: bool = False, param_group_index: Optional[int] = None, **scheduler_kwargs: Any, ): super(ReduceLROnPlateauScheduler, self).__init__( optimizer, "lr", save_history=save_history, param_group_index=param_group_index ) self.metric_name = metric_name self.trainer = trainer self.optimizer = optimizer if "min_lr" in scheduler_kwargs and param_group_index is not None: min_lr = scheduler_kwargs["min_lr"] if not isinstance(min_lr, float): raise TypeError(f"When param_group_index is given, min_lr should be a float, but given {type(min_lr)}") _min_lr = min_lr min_lr = [0] * len(optimizer.param_groups) min_lr[param_group_index] = _min_lr else: min_lr = 0 _scheduler_kwargs = scheduler_kwargs.copy() _scheduler_kwargs["min_lr"] = min_lr if "verbose" in _scheduler_kwargs: warnings.warn( "Found verbose=True in provided scheduler_kwargs. " "It would be set to False. Please use save_history instead." ) _scheduler_kwargs["verbose"] = False self.scheduler = ReduceLROnPlateau(optimizer, **_scheduler_kwargs) self.scheduler._reduce_lr = self._reduce_lr # type: ignore[method-assign] self._state_attrs += ["metric_name", "scheduler"] def __call__(self, engine: Engine, name: Optional[str] = None) -> None: # type: ignore[override] if not hasattr(engine.state, "metrics") or self.metric_name not in engine.state.metrics: raise ValueError( "Argument engine should have in its 'state', attribute 'metrics' " f"which itself has the metric {self.metric_name}." ) self.scheduler.step(engine.state.metrics[self.metric_name]) super().__call__(self.trainer, name) def get_param(self) -> Union[float, List[float]]: lrs = [pg["lr"] for pg in self.optimizer_param_groups] return lrs[0] if len(lrs) == 1 else lrs def _reduce_lr(self, epoch: int) -> None: for i, param_group in enumerate(self.optimizer_param_groups): old_lr = float(param_group["lr"]) new_lr = max(old_lr * self.scheduler.factor, self.scheduler.min_lrs[i]) if old_lr - new_lr > self.scheduler.eps: param_group["lr"] = new_lr @classmethod def simulate_values( # type: ignore[override] cls, num_events: int, metric_values: List[float], init_lr: float, **scheduler_kwargs: Any ) -> List[List[int]]: """Method to simulate scheduled values during num_events events. Args: num_events: number of events during the simulation. metric_values: values to change LR based on. init_lr: initial LR to start with. scheduler_kwargs: kwargs passed to construct an instance of :class:`ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler`. Returns: event_index, value """ if len(metric_values) != num_events: raise ValueError( "Length of argument metric_values should be equal to num_events. " f"{len(metric_values)} != {num_events}" ) keys_to_remove = ["optimizer", "metric_name", "save_history"] for key in keys_to_remove: if key in scheduler_kwargs: del scheduler_kwargs[key] values = [] scheduler = cls( optimizer=_get_fake_optimizer(torch.optim.SGD, lr=init_lr), metric_name="metric", save_history=False, **scheduler_kwargs, ) engine = Engine(lambda _, __: None) for i in range(num_events): engine.state.metrics["metric"] = metric_values[i] scheduler(engine=engine) values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]]) return values def _get_fake_optimizer( optimizer_cls: Optional[Union[Type[Optimizer], Type[torch.optim.SGD]]] = None, **kwargs: Any ) -> Union[Optimizer, torch.optim.SGD]: t = torch.zeros([1], requires_grad=True) if optimizer_cls is None: optimizer_cls = torch.optim.SGD kwargs["lr"] = 0.01 return optimizer_cls([t], **kwargs) ignite-0.5.1/ignite/handlers/polyaxon_logger.py000066400000000000000000000274301465426447700216660ustar00rootroot00000000000000"""Polyaxon logger and its helper handlers.""" from typing import Any, Callable, List, Optional, Union from torch.optim import Optimizer from ignite.engine import Engine, Events from ignite.handlers.base_logger import BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler from ignite.handlers.utils import global_step_from_engine # noqa __all__ = ["PolyaxonLogger", "OutputHandler", "OptimizerParamsHandler", "global_step_from_engine"] class PolyaxonLogger(BaseLogger): """ `Polyaxon tracking client `_ handler to log parameters and metrics during the training and validation. This class requires `polyaxon `_ package to be installed: .. code-block:: bash pip install polyaxon // If you are using polyaxon v0.x pip install polyaxon-client Args: args: Positional arguments accepted from `Experiment `_. kwargs: Keyword arguments accepted from `Experiment `_. Examples: .. code-block:: python from ignite.handlers.polyaxon_logger import * # Create a logger plx_logger = PolyaxonLogger() # Log experiment parameters: plx_logger.log_inputs(**{ "seed": seed, "batch_size": batch_size, "model": model.__class__.__name__, "pytorch version": torch.__version__, "ignite version": ignite.__version__, "cuda version": torch.version.cuda, "device name": torch.cuda.get_device_name(0) }) # Attach the logger to the trainer to log training loss at each iteration plx_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. plx_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. plx_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration plx_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # to manually end a run plx_logger.close() """ def __init__(self, *args: Any, **kwargs: Any): try: from polyaxon.tracking import Run self.experiment = Run(*args, **kwargs) except ImportError: try: from polyaxon_client.tracking import Experiment self.experiment = Experiment(*args, **kwargs) except ImportError: raise ModuleNotFoundError( "This contrib module requires polyaxon to be installed.\n" "For Polyaxon v1.x please install it with command: \n pip install polyaxon\n" "For Polyaxon v0.x please install it with command: \n pip install polyaxon-client" ) def close(self) -> None: try: self.experiment.end() except: pass def __getattr__(self, attr: Any) -> Any: return getattr(self.experiment, attr) def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics. Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.polyaxon_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.polyaxon_logger import * # Create a logger plx_logger = PolyaxonLogger() # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: plx_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently plx_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.polyaxon_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) plx_logger = PolyaxonLogger() def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on Polyaxon. plx_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python plx_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", metrics=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[List[str]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ): super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: PolyaxonLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, PolyaxonLogger): raise RuntimeError("Handler 'OutputHandler' works only with PolyaxonLogger") metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) metrics.update({"step": global_step}) logger.log_metrics(**metrics) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" Examples: .. code-block:: python from ignite.handlers.polyaxon_logger import * # Create a logger plx_logger = PolyaxonLogger() # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration plx_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently plx_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: PolyaxonLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, PolyaxonLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with PolyaxonLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } params["step"] = global_step logger.log_metrics(**params) ignite-0.5.1/ignite/handlers/state_param_scheduler.py000066400000000000000000000504111465426447700230070ustar00rootroot00000000000000import numbers import warnings from bisect import bisect_right from typing import Any, List, Sequence, Tuple, Union from ignite.engine import CallableEventWithFilter, Engine, Events, EventsList from ignite.handlers.param_scheduler import BaseParamScheduler class StateParamScheduler(BaseParamScheduler): """An abstract class for updating an engine state parameter values during training. Args: param_name: name of parameter to update. save_history: whether to log the parameter values to ``engine.state.param_history``, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Note: Parameter scheduler works independently of the internal state of the attached engine. More precisely, whatever the state of the engine (newly created or used by another scheduler) the scheduler sets defined absolute values. .. versionadded:: 0.4.7 """ def __init__(self, param_name: str, save_history: bool = False, create_new: bool = False): super(StateParamScheduler, self).__init__(param_name, save_history) self.create_new = create_new def attach( self, engine: Engine, event: Union[str, Events, CallableEventWithFilter, EventsList] = Events.ITERATION_COMPLETED, ) -> None: """Attach the handler to the engine. Once the handler is attached, the ``Engine.state`` will have a new attribute with the name ``param_name``. Then the current value of the parameter can be retrieved from ``Engine.state`` when the engine is running. Args: engine: trainer to which the handler will be attached. event: trigger ``param_name`` value update. """ if hasattr(engine.state, self.param_name): if self.create_new: raise ValueError( f"Attribute '{self.param_name}' already exists in the engine.state. " f"This may be a conflict between multiple handlers. " f"Please choose another name." ) else: if not self.create_new: warnings.warn( f"Attribute '{self.param_name}' is not defined in the engine.state. " f"{type(self).__name__} will create it. Remove this warning by setting create_new=True." ) setattr(engine.state, self.param_name, None) if self.save_history: if not hasattr(engine.state, "param_history") or engine.state.param_history is None: setattr(engine.state, "param_history", {}) engine.state.param_history.setdefault(self.param_name, []) # type: ignore[attr-defined] engine.add_event_handler(event, self) def __call__(self, engine: Engine) -> None: self.event_index += 1 value = self.get_param() setattr(engine.state, self.param_name, value) if self.save_history: engine.state.param_history[self.param_name].append(value) # type: ignore[attr-defined] @classmethod def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]: """Method to simulate scheduled engine state parameter values during `num_events` events. Args: num_events: number of events during the simulation. scheduler_kwargs: parameter scheduler configuration kwargs. Returns: event_index, value Examples: .. code-block:: python import matplotlib.pyplot as plt import numpy as np step_state_param_values = np.array( StepStateScheduler.simulate_values( num_events=20, param_name="step_scheduled_param", initial_value=10, gamma=0.99, step_size=5 ) ) plt.plot(step_state_param_values[:, 0], step_state_param_values[:, 1], label="learning rate") plt.xlabel("events") plt.ylabel("values") plt.legend() """ for key in ["save_history"]: if key in scheduler_kwargs: del scheduler_kwargs[key] values = [] scheduler = cls(save_history=False, **scheduler_kwargs) engine = Engine(lambda e, b: None) for i in range(num_events): scheduler(engine=engine) values.append([i, getattr(engine.state, scheduler_kwargs["param_name"])]) return values class LambdaStateScheduler(StateParamScheduler): """Update a parameter during training by using a user defined callable object. User defined callable object is taking an event index as input and returns parameter value. Args: lambda_obj: user defined callable object. param_name: name of parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma def __call__(self, event_index): return self.initial_value * self.gamma ** (event_index % 9) param_scheduler = LambdaStateScheduler( param_name="param", lambda_obj=LambdaState(1, 0.9), create_new=True ) # parameter is param, initial_value sets param to 1 and in this example gamma = 1 # using class 'LambdaState' user defined callable object can be created # update a parameter during training by using a user defined callable object # user defined callable object is taking an event index as input and returns parameter value # in this example, we update as initial_value * gamma ** (event_endex % 9) # in every Epoch the parameter is updated as 1 * 0.9 ** (Epoch % 9) # In Epoch 3, parameter param = 1 * 0.9 ** (3 % 9) = 0.729 # In Epoch 10, parameter param = 1 * 0.9 ** (10 % 9) = 0.9 param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=10) .. testoutput:: 0.9 0.81 0.7290... 0.6561 0.5904... 0.5314... 0.4782... 0.4304... 1.0 0.9 .. versionadded:: 0.4.7 """ def __init__(self, lambda_obj: Any, param_name: str, save_history: bool = False, create_new: bool = False): super(LambdaStateScheduler, self).__init__(param_name, save_history, create_new) if not callable(lambda_obj): raise ValueError("Expected lambda_obj to be callable.") self.lambda_obj = lambda_obj self._state_attrs += ["lambda_obj"] def get_param(self) -> Union[List[float], float]: return self.lambda_obj(self.event_index) class PiecewiseLinearStateScheduler(StateParamScheduler): """Piecewise linear state parameter scheduler. Args: milestones_values: list of tuples (event index, parameter value) represents milestones and parameter values. Milestones should be increasing integers. param_name: name of parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() param_scheduler = PiecewiseLinearStateScheduler( param_name="param", milestones_values=[(5, 1.0), (10, 0.8), (15, 0.6)], create_new=True ) # parameter is param, milestone (5, 1.0) sets param to 1.0 # milestone is (5, 1.0), param=1 for Epoch 1 to 5, # next milestone is (10, 0.8), param linearly reduces from 1.0 to 0.8 # Epoch 10, param = 0.8 # next milestone is (15,0.6), param linearly reduces from 0.8 to 0.6 # Epoch 15, param = 0.6 param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=15) .. testoutput:: 1.0 1.0 1.0 1.0 1.0 0.96 0.92 0.88 0.8400... 0.8 0.76 0.72 0.68 0.64 0.6 .. versionadded:: 0.4.7 """ def __init__( self, milestones_values: List[Tuple[int, float]], param_name: str, save_history: bool = False, create_new: bool = False, ): super(PiecewiseLinearStateScheduler, self).__init__(param_name, save_history, create_new) if not isinstance(milestones_values, Sequence): raise TypeError( f"Argument milestones_values should be a list or tuple, but given {type(milestones_values)}" ) if len(milestones_values) < 1: raise ValueError( f"Argument milestones_values should be with at least one value, but given {milestones_values}" ) values: List[float] = [] milestones: List[int] = [] for pair in milestones_values: if not isinstance(pair, tuple) or len(pair) != 2: raise ValueError("Argument milestones_values should be a list of pairs (milestone, param_value)") if not isinstance(pair[0], numbers.Integral): raise TypeError(f"Value of a milestone should be integer, but given {type(pair[0])}") if len(milestones) > 0 and pair[0] < milestones[-1]: raise ValueError( f"Milestones should be increasing integers, but given {pair[0]} is smaller " f"than the previous milestone {milestones[-1]}" ) milestones.append(pair[0]) values.append(pair[1]) self.values = values self.milestones = milestones self._index = 0 self._state_attrs += ["values", "milestones", "_index"] def _get_start_end(self) -> Tuple[int, int, float, float]: if self.milestones[0] > self.event_index: return self.event_index - 1, self.event_index, self.values[0], self.values[0] elif self.milestones[-1] <= self.event_index: return (self.event_index, self.event_index + 1, self.values[-1], self.values[-1]) elif self.milestones[self._index] <= self.event_index < self.milestones[self._index + 1]: return ( self.milestones[self._index], self.milestones[self._index + 1], self.values[self._index], self.values[self._index + 1], ) else: self._index += 1 return self._get_start_end() def get_param(self) -> Union[List[float], float]: start_index, end_index, start_value, end_value = self._get_start_end() return start_value + (end_value - start_value) * (self.event_index - start_index) / (end_index - start_index) class ExpStateScheduler(StateParamScheduler): """Update a parameter during training by using exponential function. The function decays the parameter value by gamma every step. Based on the closed form of ExponentialLR from PyTorch https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html Args: initial_value: Starting value of the parameter. gamma: Multiplicative factor of parameter value decay. param_name: name of parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() param_scheduler = ExpStateScheduler( param_name="param", initial_value=1, gamma=0.9, create_new=True ) # parameter is param, initial_value sets param to 1, gamma is set as 0.9 # Epoch 1, param changes from 1 to 1*0.9, param = 0.9 # Epoch 2, param changes from 0.9 to 0.9*0.9, param = 0.81 # Epoch 3, param changes from 0.81 to 0.81*0.9, param = 0.729 # Epoch 4, param changes from 0.81 to 0.729*0.9, param = 0.6561 param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=4) .. testoutput:: 0.9 0.81 0.7290... 0.6561 .. versionadded:: 0.4.7 """ def __init__( self, initial_value: float, gamma: float, param_name: str, save_history: bool = False, create_new: bool = False ): super(ExpStateScheduler, self).__init__(param_name, save_history, create_new) self.initial_value = initial_value self.gamma = gamma self._state_attrs += ["initial_value", "gamma"] def get_param(self) -> Union[List[float], float]: return self.initial_value * self.gamma**self.event_index class StepStateScheduler(StateParamScheduler): """Update a parameter during training by using a step function. This function decays the parameter value by gamma every step_size. Based on StepLR from PyTorch. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html Args: initial_value: Starting value of the parameter. gamma: Multiplicative factor of parameter value decay. step_size: Period of parameter value decay. param_name: name of parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() param_scheduler = StepStateScheduler( param_name="param", initial_value=1, gamma=0.9, step_size=5, create_new=True ) # parameter is param, initial_value sets param to 1, gamma is set as 0.9 # Epoch 1 to 4, param does not change as step size is 5, # Epoch 5, param changes from 1 to 1*0.9, param = 0.9 # Epoch 5 to 9, param = 0.9 as step size is 5, # Epoch 10, param changes from 0.9 to 0.9*0.9, param = 0.81 # Epoch 10 to 14, param = 0.81, as step size is 5 # Epoch 15, param changes from 0.81 to 0.81*0.9, param = 0.729 # and so on ... the param change at Epoch = 5, 10, 15, 20, . . . param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED(every=5)) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=25) .. testoutput:: 0.9 0.81 0.7290... 0.6561 0.5904... .. versionadded:: 0.4.7 """ def __init__( self, initial_value: float, gamma: float, step_size: int, param_name: str, save_history: bool = False, create_new: bool = False, ): super(StepStateScheduler, self).__init__(param_name, save_history, create_new) self.initial_value = initial_value self.gamma = gamma self.step_size = step_size self._state_attrs += ["initial_value", "gamma", "step_size"] def get_param(self) -> Union[List[float], float]: return self.initial_value * self.gamma ** (self.event_index // self.step_size) class MultiStepStateScheduler(StateParamScheduler): """Update a parameter during training by using a multi step function. The function decays the parameter value by gamma once the number of steps reaches one of the milestones. Based on MultiStepLR from PyTorch. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR.html Args: initial_value: Starting value of the parameter. gamma: Multiplicative factor of parameter value decay. milestones: List of step indices. Must be increasing. param_name: name of parameter to update. save_history: whether to log the parameter values to `engine.state.param_history`, (default=False). create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name`` attribute already exists or not. Overrides existing attribute by default, (default=False). Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: default_trainer = get_default_trainer() param_scheduler = MultiStepStateScheduler( param_name="param", initial_value=1, gamma=0.9, milestones=[3, 6, 9, 12], create_new=True ) # parameter is param, initial_value sets param to 1, gamma is set as 0.9 # Epoch 1 to 2, param does not change as milestone is 3 # Epoch 3, param changes from 1 to 1*0.9, param = 0.9 # Epoch 3 to 5, param does not change as milestone is 6 # Epoch 6, param changes from 0.9 to 0.9*0.9, param = 0.81 # Epoch 6 to 8, param does not change as milestone is 9 # Epoch 9, param changes from 0.81 to 0.81*0.9, param = 0.729 # Epoch 9 to 11, param does not change as milestone is 12 # Epoch 12, param changes from 0.729 to 0.729*0.9, param = 0.6561 param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=12) .. testoutput:: 1.0 1.0 0.9 0.9 0.9 0.81 0.81 0.81 0.7290... 0.7290... 0.7290... 0.6561 .. versionadded:: 0.4.7 """ def __init__( self, initial_value: float, gamma: float, milestones: List[int], param_name: str, save_history: bool = False, create_new: bool = False, ): super(MultiStepStateScheduler, self).__init__(param_name, save_history, create_new) self.initial_value = initial_value self.gamma = gamma self.milestones = milestones self._state_attrs += ["initial_value", "gamma", "milestones"] def get_param(self) -> Union[List[float], float]: return self.initial_value * self.gamma ** bisect_right(self.milestones, self.event_index) ignite-0.5.1/ignite/handlers/stores.py000066400000000000000000000050701465426447700177710ustar00rootroot00000000000000from typing import Any, Callable, List, Optional from ignite.engine import Engine, Events class EpochOutputStore: """EpochOutputStore handler to save output prediction and target history after every epoch, could be useful for e.g., visualization purposes. Note: This can potentially lead to a memory error if the output data is larger than available RAM. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output , e.g., lambda x: x[0] Attributes: data: a list of :class:`~ignite.engine.engine.Engine` outputs, optionally transformed by `output_transform`. Examples: .. code-block:: python eos = EpochOutputStore() trainer = create_supervised_trainer(model, optimizer, loss) train_evaluator = create_supervised_evaluator(model, metrics) eos.attach(train_evaluator, 'output') @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): train_evaluator.run(train_loader) output = train_evaluator.state.output # output = [(y_pred0, y0), (y_pred1, y1), ...] # do something with output, e.g., plotting .. versionadded:: 0.4.5 .. versionchanged:: 0.4.5 `attach` now accepts an optional argument `name` """ def __init__(self, output_transform: Callable = lambda x: x): self.data: List[Any] = [] self.output_transform = output_transform def reset(self) -> None: """Reset the attribute data to empty list.""" self.data = [] def update(self, engine: Engine) -> None: """Append the output of Engine to attribute data.""" output = self.output_transform(engine.state.output) self.data.append(output) def store(self, engine: Engine) -> None: """Store `self.data` on `engine.state.{self.name}`""" setattr(engine.state, self.name, self.data) def attach(self, engine: Engine, name: Optional[str] = None) -> None: """Attaching `reset` method at EPOCH_STARTED and `update` method at ITERATION_COMPLETED. If `name` is passed, will store `self.data` on `engine.state` under `name`. """ engine.add_event_handler(Events.EPOCH_STARTED, self.reset) engine.add_event_handler(Events.ITERATION_COMPLETED, self.update) if name: self.name = name engine.add_event_handler(Events.EPOCH_COMPLETED, self.store) ignite-0.5.1/ignite/handlers/tensorboard_logger.py000066400000000000000000000634151465426447700223420ustar00rootroot00000000000000"""TensorBoard logger and its helper handlers.""" from typing import Any, Callable, List, Optional, Union from torch.optim import Optimizer from ignite.engine import Engine, Events from ignite.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsHandler, BaseWeightsScalarHandler, ) from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "TensorboardLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", "global_step_from_engine", ] class TensorboardLogger(BaseLogger): """ TensorBoard handler to log metrics, model/optimizer parameters, gradients during the training and validation. By default, this class favors `tensorboardX `_ package if installed: .. code-block:: bash pip install tensorboardX otherwise, it falls back to using `PyTorch's SummaryWriter `_ (>=v1.2.0). Args: args: Positional arguments accepted from `SummaryWriter `_. kwargs: Keyword arguments accepted from `SummaryWriter `_. For example, `log_dir` to setup path to the directory where to log. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log training loss at each iteration tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. tb_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration tb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) ) # Attach the logger to the trainer to log model's weights as a histogram after each epoch tb_logger.attach( trainer, event_name=Events.EPOCH_COMPLETED, log_handler=WeightsHistHandler(model) ) # Attach the logger to the trainer to log model's gradients norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model) ) # Attach the logger to the trainer to log model's gradients as a histogram after each epoch tb_logger.attach( trainer, event_name=Events.EPOCH_COMPLETED, log_handler=GradsHistHandler(model) ) # We need to close the logger when we are done tb_logger.close() It is also possible to use the logger as context manager: .. code-block:: python from ignite.handlers.tensorboard_logger import * with TensorboardLogger(log_dir="experiments/tb_logs") as tb_logger: trainer = Engine(update_fn) # Attach the logger to the trainer to log training loss at each iteration tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) """ def __init__(self, *args: Any, **kwargs: Any): try: from tensorboardX import SummaryWriter except ImportError: try: from torch.utils.tensorboard import SummaryWriter except ImportError: raise ModuleNotFoundError( "This contrib module requires either tensorboardX or torch >= 1.2.0. " "You may install tensorboardX with command: \n pip install tensorboardX \n" "or upgrade PyTorch using your package manager of choice (pip or conda)." ) self.writer = SummaryWriter(*args, **kwargs) def __getattr__(self, attr: Any) -> Any: return getattr(self.writer, attr) def close(self) -> None: self.writer.close() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output, engine's state attributes and/or metrics Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.tensorboard_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: tb_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.tensorboard_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on Tensorboard. tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python tb_logger.attach( trainer, log_handler=OutputHandler( tag="training", metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ), event_name=Events.ITERATION_COMPLETED ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[List[str]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, state_attributes: Optional[List[str]] = None, ): super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'OutputHandler' works only with TensorboardLogger") metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) for key, value in metrics.items(): logger.writer.add_scalar(key, value, global_step) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration tb_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently tb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } for k, v in params.items(): logger.writer.add_scalar(k, v, global_step) class WeightsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's weights as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by `whitelist`. Then at every call, applies reduction function to each parameter, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific weights to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's weights are logged. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log only `fc` weights tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler( model, whitelist=['fc'] ) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log weights which have `bias` in their names def has_bias_in_name(n, p): return 'bias' in n tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'WeightsScalarHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: name = name.replace(".", "/") logger.writer.add_scalar( f"{tag_prefix}weights_{self.reduction.__name__}/{name}", self.reduction(p.data), global_step, ) class WeightsHistHandler(BaseWeightsHandler): """Helper handler to log model's weights as histograms. Args: model: model to log weights tag: common title for all produced plots. For example, "generator" whitelist: specific weights to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if it should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's weights are logged. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log weights of `fc` layer weights = ['fc'] # Attach the logger to the trainer to log weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weights) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log weights which name include 'conv'. weight_selector = lambda name, p: 'conv' in name # Attach the logger to the trainer to log weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model, whitelist=weight_selector) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'WeightsHistHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: name = name.replace(".", "/") logger.writer.add_histogram( tag=f"{tag_prefix}weights/{name}", values=p.data.cpu().numpy(), global_step=global_step ) class GradsScalarHandler(BaseWeightsScalarHandler): """Helper handler to log model's gradients as scalars. Handler, upon construction, iterates over named parameters of the model and keep reference to ones permitted by the `whitelist`. Then at every call, applies reduction function to each parameter's gradient, produces a scalar and logs it. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" whitelist: specific gradients to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's gradients are logged. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's gradients norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log gradient of `base` tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler( model, reduction=torch.norm, whitelist=['base'] ) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log gradient of weights which belong to a `fc` layer def is_in_fc_layer(n, p): return 'fc' in n tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'GradsScalarHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_scalar( f"{tag_prefix}grads_{self.reduction.__name__}/{name}", self.reduction(p.grad), global_step ) class GradsHistHandler(BaseWeightsHandler): """Helper handler to log model's gradients as histograms. Args: model: model to log weights tag: common title for all produced plots. For example, "generator" whitelist: specific gradients to log. Should be list of model's submodules or parameters names, or a callable which gets weight along with its name and determines if its gradient should be logged. Names should be fully-qualified. For more information please refer to `PyTorch docs `_. If not given, all of model's gradients are logged. Examples: .. code-block:: python from ignite.handlers.tensorboard_logger import * # Create a logger tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Attach the logger to the trainer to log model's weights norm after each iteration tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log gradient of `fc.bias` tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=['fc.bias']) ) .. code-block:: python from ignite.handlers.tensorboard_logger import * tb_logger = TensorboardLogger(log_dir="experiments/tb_logs") # Log gradient of weights which have shape (2, 1) def has_shape_2_1(n, p): return p.shape == (2,1) tb_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model, whitelist=has_shape_2_1) ) .. versionchanged:: 0.4.9 optional argument `whitelist` added. """ def __call__(self, engine: Engine, logger: TensorboardLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, TensorboardLogger): raise RuntimeError("Handler 'GradsHistHandler' works only with TensorboardLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.weights: if p.grad is None: continue name = name.replace(".", "/") logger.writer.add_histogram( tag=f"{tag_prefix}grads/{name}", values=p.grad.cpu().numpy(), global_step=global_step ) ignite-0.5.1/ignite/handlers/terminate_on_nan.py000066400000000000000000000040671465426447700217770ustar00rootroot00000000000000import logging import numbers from typing import Callable, Union import torch from ignite.engine import Engine from ignite.utils import apply_to_type, setup_logger __all__ = ["TerminateOnNan"] class TerminateOnNan: """TerminateOnNan handler can be used to stop the training if the `process_function`'s output contains a NaN or infinite number or `torch.tensor`. The output can be of type: number, tensor or collection of them. The training is stopped if there is at least a single number/tensor have NaN or Infinite value. For example, if the output is `[1.23, torch.tensor(...), torch.tensor(float('nan'))]` the handler will stop the training. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into a number or `torch.tensor` or collection of them. This can be useful if, for example, you have a multi-output model and you want to check one or multiple values of the output. Examples: .. code-block:: python trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan()) """ def __init__(self, output_transform: Callable = lambda x: x): self.logger = setup_logger(__name__ + "." + self.__class__.__name__) self.logger.addHandler(logging.StreamHandler()) self._output_transform = output_transform def __call__(self, engine: Engine) -> None: output = self._output_transform(engine.state.output) def raise_error(x: Union[float, torch.Tensor]) -> None: if isinstance(x, numbers.Number): x = torch.tensor(x) if isinstance(x, torch.Tensor) and not bool(torch.isfinite(x).all()): raise RuntimeError("Infinite or NaN tensor found.") try: apply_to_type(output, (numbers.Number, torch.Tensor), raise_error) except RuntimeError: self.logger.warning(f"{self.__class__.__name__}: Output '{output}' contains NaN or Inf. Stop training") engine.terminate() ignite-0.5.1/ignite/handlers/time_limit.py000066400000000000000000000030371465426447700206070ustar00rootroot00000000000000import time from typing import Optional from ignite.engine import Engine __all__ = ["TimeLimit"] from ignite.utils import setup_logger class TimeLimit: """TimeLimit handler can be used to control training time for computing environments where session time is limited. Timer starts when handler is created and not training started. This handler gracefully terminates the training if time passed in the training exceeds a limit. Args: limit_sec: Maximum time before training terminates (in seconds). Defaults to 28800. Examples: .. code-block:: python from ignite.engine import Events from ignite.handlers import TimeLimit handler = TimeLimit() # 8 hours of training trainer.add_event_handler(Events.ITERATION_COMPLETED, handler) .. versionadded:: 0.4.3 """ def __init__(self, limit_sec: Optional[int] = 28800): if not isinstance(limit_sec, int): raise TypeError("Argument limit_sec should be an integer.") if limit_sec <= 0: raise ValueError("Argument limit_sec should be a positive integer.") self.limit_sec = limit_sec self.start_time = time.time() self.logger = setup_logger(__name__ + "." + self.__class__.__name__) def __call__(self, engine: Engine) -> None: elapsed_time = time.time() - self.start_time if elapsed_time > self.limit_sec: self.logger.info("Reached the time limit: {} sec. Stop training".format(self.limit_sec)) engine.terminate() ignite-0.5.1/ignite/handlers/time_profilers.py000066400000000000000000000730241465426447700215010ustar00rootroot00000000000000import functools from collections import OrderedDict from typing import Any, Callable, cast, Dict, List, Mapping, Sequence, Tuple, Union import torch from ignite.engine import Engine, EventEnum, Events from ignite.handlers.timing import Timer class BasicTimeProfiler: """ BasicTimeProfiler can be used to profile the handlers, events, data loading and data processing times. Examples: .. code-block:: python from ignite.handlers import BasicTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = BasicTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ events_to_ignore = [ Events.EXCEPTION_RAISED, Events.TERMINATE, Events.TERMINATE_SINGLE_EPOCH, Events.DATALOADER_STOP_ITERATION, Events.INTERRUPT, ] def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times = torch.zeros(1) self.processing_times = torch.zeros(1) self.event_handlers_times: Dict[EventEnum, torch.Tensor] = {} self._events = [ Events.EPOCH_STARTED, Events.EPOCH_COMPLETED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.GET_BATCH_STARTED, Events.GET_BATCH_COMPLETED, Events.COMPLETED, ] self._fmethods = [ self._as_first_epoch_started, self._as_first_epoch_completed, self._as_first_iter_started, self._as_first_iter_completed, self._as_first_get_batch_started, self._as_first_get_batch_completed, self._as_first_completed, ] self._lmethods = [ self._as_last_epoch_started, self._as_last_epoch_completed, self._as_last_iter_started, self._as_last_iter_completed, self._as_last_get_batch_started, self._as_last_get_batch_completed, self._as_last_completed, ] def _reset(self, num_epochs: int, total_num_iters: int) -> None: self.dataflow_times = torch.zeros(total_num_iters) self.processing_times = torch.zeros(total_num_iters) self.event_handlers_times = { Events.STARTED: torch.zeros(1), Events.COMPLETED: torch.zeros(1), Events.EPOCH_STARTED: torch.zeros(num_epochs), Events.EPOCH_COMPLETED: torch.zeros(num_epochs), Events.ITERATION_STARTED: torch.zeros(total_num_iters), Events.ITERATION_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_STARTED: torch.zeros(total_num_iters), } def _as_first_started(self, engine: Engine) -> None: if hasattr(engine.state.dataloader, "__len__"): num_iters_per_epoch = len(engine.state.dataloader) # type: ignore[arg-type] else: if engine.state.epoch_length is None: raise ValueError( "As epoch_length is not set, we can not use BasicTimeProfiler in this case." "Please, set trainer.run(..., epoch_length=epoch_length) in order to fix this." ) num_iters_per_epoch = engine.state.epoch_length self.max_epochs = cast(int, engine.state.max_epochs) self.total_num_iters = self.max_epochs * num_iters_per_epoch self._reset(self.max_epochs, self.total_num_iters) self.event_handlers_names = { e: [ h.__qualname__ if hasattr(h, "__qualname__") else h.__class__.__name__ for (h, _, _) in engine._event_handlers[e] if "BasicTimeProfiler." not in repr(h) # avoid adding internal handlers into output ] for e in Events if e not in self.events_to_ignore } # Setup all other handlers: engine._event_handlers[Events.STARTED].append((self._as_last_started, (engine,), {})) for e, m in zip(self._events, self._fmethods): engine._event_handlers[e].insert(0, (m, (engine,), {})) for e, m in zip(self._events, self._lmethods): engine._event_handlers[e].append((m, (engine,), {})) # Let's go self._event_handlers_timer.reset() def _as_last_started(self, engine: Engine) -> None: self.event_handlers_times[Events.STARTED][0] = self._event_handlers_timer.value() def _as_first_epoch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_STARTED][e] = t def _as_first_get_batch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() self._dataflow_timer.reset() def _as_last_get_batch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_STARTED][i] = t def _as_first_get_batch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_get_batch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_COMPLETED][i] = t d = self._dataflow_timer.value() self.dataflow_times[i] = d self._dataflow_timer.reset() def _as_first_iter_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_iter_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_STARTED][i] = t self._processing_timer.reset() def _as_first_iter_completed(self, engine: Engine) -> None: t = self._processing_timer.value() i = engine.state.iteration - 1 self.processing_times[i] = t self._event_handlers_timer.reset() def _as_last_iter_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_COMPLETED][i] = t def _as_first_epoch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_COMPLETED][e] = t def _as_first_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_completed(self, engine: Engine) -> None: self.event_handlers_times[Events.COMPLETED][0] = self._event_handlers_timer.value() # Remove added handlers: engine.remove_event_handler(self._as_last_started, Events.STARTED) for e, m in zip(self._events, self._fmethods): engine.remove_event_handler(m, e) for e, m in zip(self._events, self._lmethods): engine.remove_event_handler(m, e) def attach(self, engine: Engine) -> None: """Attach BasicTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) @staticmethod def _compute_basic_stats(data: torch.Tensor) -> Dict[str, Union[str, float, Tuple[float, float]]]: # compute on non-zero data: data = data[data > 0] out: List[Tuple[str, Union[str, float, Tuple[float, float]]]] = [ ("total", torch.sum(data).item() if len(data) > 0 else "not yet triggered") ] if len(data) > 1: out.extend( [ ("min/index", (torch.min(data).item(), torch.argmin(data).item())), ("max/index", (torch.max(data).item(), torch.argmax(data).item())), ("mean", torch.mean(data).item()), ("std", torch.std(data).item()), ] ) return OrderedDict(out) def get_results(self) -> Dict[str, Dict[str, Any]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time: Union[int, torch.Tensor] = sum( [(self.event_handlers_times[e]).sum() for e in Events if e not in self.events_to_ignore] ) event_handlers_stats = dict( [ (str(e.name).replace(".", "_"), self._compute_basic_stats(self.event_handlers_times[e])) for e in Events if e not in self.events_to_ignore ] + [("total_time", total_eh_time)] ) return OrderedDict( [ ("processing_stats", self._compute_basic_stats(self.processing_times)), ("dataflow_stats", self._compute_basic_stats(self.dataflow_times)), ("event_handlers_stats", event_handlers_stats), ( "event_handlers_names", {str(e.name).replace(".", "_") + "_names": v for e, v in self.event_handlers_names.items()}, ), ] ) def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- epoch iteration processing_stats dataflow_stats Event_STARTED ... 1.0 1.0 0.00003 0.252387 0.125676 1.0 2.0 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise ModuleNotFoundError("Need pandas to write results as files") iters_per_epoch = self.total_num_iters // self.max_epochs epochs = torch.arange(self.max_epochs, dtype=torch.float32).repeat_interleave(iters_per_epoch) + 1 iterations = torch.arange(self.total_num_iters, dtype=torch.float32) + 1 processing_stats = self.processing_times dataflow_stats = self.dataflow_times event_started = self.event_handlers_times[Events.STARTED].repeat_interleave(self.total_num_iters) event_completed = self.event_handlers_times[Events.COMPLETED].repeat_interleave(self.total_num_iters) event_epoch_started = self.event_handlers_times[Events.EPOCH_STARTED].repeat_interleave(iters_per_epoch) event_epoch_completed = self.event_handlers_times[Events.EPOCH_COMPLETED].repeat_interleave(iters_per_epoch) event_iter_started = self.event_handlers_times[Events.ITERATION_STARTED] event_iter_completed = self.event_handlers_times[Events.ITERATION_COMPLETED] event_batch_started = self.event_handlers_times[Events.GET_BATCH_STARTED] event_batch_completed = self.event_handlers_times[Events.GET_BATCH_COMPLETED] results_dump = torch.stack( [ epochs, iterations, processing_stats, dataflow_stats, event_started, event_completed, event_epoch_started, event_epoch_completed, event_iter_started, event_iter_completed, event_batch_started, event_batch_completed, ], dim=1, ).numpy() results_df = pd.DataFrame( data=results_dump, columns=[ "epoch", "iteration", "processing_stats", "dataflow_stats", "Event_STARTED", "Event_COMPLETED", "Event_EPOCH_STARTED", "Event_EPOCH_COMPLETED", "Event_ITERATION_STARTED", "Event_ITERATION_COMPLETED", "Event_GET_BATCH_STARTED", "Event_GET_BATCH_COMPLETED", ], ) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: Dict) -> str: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: 157.46292 | 0.01452/1501 | 0.26905/0 | 0.07730 | 0.01258 Dataflow: 6.11384 | 0.00008/1935 | 0.28461/1551 | 0.00300 | 0.02693 Event handlers: 2.82721 - Events.STARTED: [] 0.00000 - Events.EPOCH_STARTED: [] 0.00006 | 0.00000/0 | 0.00000/17 | 0.00000 | 0.00000 - Events.ITERATION_STARTED: ['PiecewiseLinear'] 0.03482 | 0.00001/188 | 0.00018/679 | 0.00002 | 0.00001 - Events.ITERATION_COMPLETED: ['TerminateOnNan'] 0.20037 | 0.00006/866 | 0.00089/1943 | 0.00010 | 0.00003 - Events.EPOCH_COMPLETED: ['empty_cuda_cache', 'training..log_elapsed_time', ] 2.57860 | 0.11529/0 | 0.14977/13 | 0.12893 | 0.00790 - Events.COMPLETED: [] not yet triggered """ def to_str(v: Union[str, tuple]) -> str: if isinstance(v, str): return v elif isinstance(v, tuple): return f"{v[0]:.5f}/{v[1]}" return f"{v:.5f}" def odict_to_str(d: Mapping) -> str: out = " | ".join([to_str(v) for v in d.values()]) return out others = { k: odict_to_str(v) if isinstance(v, OrderedDict) else v for k, v in results["event_handlers_stats"].items() } others.update(results["event_handlers_names"]) output_message = """ ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: {processing_stats} Dataflow: {dataflow_stats} Event handlers: {total_time:.5f} - Events.STARTED: {STARTED_names} {STARTED} - Events.EPOCH_STARTED: {EPOCH_STARTED_names} {EPOCH_STARTED} - Events.ITERATION_STARTED: {ITERATION_STARTED_names} {ITERATION_STARTED} - Events.ITERATION_COMPLETED: {ITERATION_COMPLETED_names} {ITERATION_COMPLETED} - Events.EPOCH_COMPLETED: {EPOCH_COMPLETED_names} {EPOCH_COMPLETED} - Events.COMPLETED: {COMPLETED_names} {COMPLETED} """.format( processing_stats=odict_to_str(results["processing_stats"]), dataflow_stats=odict_to_str(results["dataflow_stats"]), **others, ) print(output_message) return output_message class HandlersTimeProfiler: """ HandlersTimeProfiler can be used to profile the handlers, data loading and data processing times. Custom events are also profiled by this profiler Examples: .. code-block:: python from ignite.handlers import HandlersTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = HandlersTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ EVENT_FILTER_THESHOLD_TIME = 0.0001 def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times: List[float] = [] self.processing_times: List[float] = [] self.event_handlers_times: Dict[EventEnum, Dict[str, List[float]]] = {} @staticmethod def _get_callable_name(handler: Callable) -> str: # get name of the callable handler return getattr(handler, "__qualname__", handler.__class__.__name__) def _create_wrapped_handler(self, handler: Callable, event: EventEnum) -> Callable: @functools.wraps(handler) def _timeit_handler(*args: Any, **kwargs: Any) -> None: self._event_handlers_timer.reset() handler(*args, **kwargs) t = self._event_handlers_timer.value() hname = self._get_callable_name(handler) # filter profiled time if the handler was attached to event with event filter if not hasattr(handler, "_parent") or t >= self.EVENT_FILTER_THESHOLD_TIME: self.event_handlers_times[event][hname].append(t) # required to revert back to original handler after profiling setattr(_timeit_handler, "_profiler_original", handler) return _timeit_handler def _timeit_processing(self) -> None: # handler used for profiling processing times t = self._processing_timer.value() self.processing_times.append(t) def _timeit_dataflow(self) -> None: # handler used for profiling dataflow times t = self._dataflow_timer.value() self.dataflow_times.append(t) def _reset(self, event_handlers_names: Mapping[EventEnum, List[str]]) -> None: # reset the variables used for profiling self.dataflow_times = [] self.processing_times = [] self.event_handlers_times = {e: {h: [] for h in event_handlers_names[e]} for e in event_handlers_names} @staticmethod def _is_internal_handler(handler: Callable) -> bool: # checks whether the handler is internal return any(n in repr(handler) for n in ["HandlersTimeProfiler.", "Timer."]) def _detach_profiler_handlers(self, engine: Engine) -> None: # reverts handlers to original handlers for e in engine._event_handlers: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if hasattr(func, "_profiler_original"): engine._event_handlers[e][i] = (func._profiler_original, args, kwargs) def _as_first_started(self, engine: Engine) -> None: # wraps original handlers for profiling self.event_handlers_names = { e: [ self._get_callable_name(h) for (h, _, _) in engine._event_handlers[e] if not self._is_internal_handler(h) ] for e in engine._allowed_events } self._reset(self.event_handlers_names) for e in engine._allowed_events: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if not self._is_internal_handler(func): engine._event_handlers[e][i] = (self._create_wrapped_handler(func, e), args, kwargs) # processing timer engine.add_event_handler(Events.ITERATION_STARTED, self._processing_timer.reset) engine._event_handlers[Events.ITERATION_COMPLETED].insert(0, (self._timeit_processing, (), {})) # dataflow timer engine.add_event_handler(Events.GET_BATCH_STARTED, self._dataflow_timer.reset) engine._event_handlers[Events.GET_BATCH_COMPLETED].insert(0, (self._timeit_dataflow, (), {})) # revert back the wrapped handlers with original handlers at the end engine.add_event_handler(Events.COMPLETED, self._detach_profiler_handlers) def attach(self, engine: Engine) -> None: """Attach HandlersTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) def get_results(self) -> List[List[Union[str, float, Tuple[Union[str, float], Union[str, float]]]]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time = sum( [ sum(self.event_handlers_times[e][h]) for e in self.event_handlers_times for h in self.event_handlers_times[e] ] ) total_eh_time = round(float(total_eh_time), 5) def compute_basic_stats( times: Union[Sequence, torch.Tensor] ) -> List[Union[str, float, Tuple[Union[str, float], Union[str, float]]]]: data = torch.as_tensor(times, dtype=torch.float32) # compute on non-zero data: data = data[data > 0] total: Union[str, float] = round(torch.sum(data).item(), 5) if len(data) > 0 else "not triggered" min_index: Tuple[Union[str, float], Union[str, float]] = ("None", "None") max_index: Tuple[Union[str, float], Union[str, float]] = ("None", "None") mean: Union[str, float] = "None" std: Union[str, float] = "None" if len(data) > 0: min_index = (round(torch.min(data).item(), 5), torch.argmin(data).item()) max_index = (round(torch.max(data).item(), 5), torch.argmax(data).item()) mean = round(torch.mean(data).item(), 5) if len(data) > 1: std = round(torch.std(data).item(), 5) return [total, min_index, max_index, mean, std] event_handler_stats = [ [ h, getattr(e, "name", str(e)), *compute_basic_stats(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)), ] for e in self.event_handlers_times for h in self.event_handlers_times[e] ] event_handler_stats.append(["Total", "", total_eh_time, "", "", "", ""]) event_handler_stats.append(["Processing", "None", *compute_basic_stats(self.processing_times)]) event_handler_stats.append(["Dataflow", "None", *compute_basic_stats(self.dataflow_times)]) return event_handler_stats def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- # processing_stats dataflow_stats training..log_elapsed_time (EPOCH_COMPLETED) ... 1 0.00003 0.252387 0.125676 2 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise ModuleNotFoundError("Need pandas to write results as files") processing_stats = torch.tensor(self.processing_times, dtype=torch.float32) dataflow_stats = torch.tensor(self.dataflow_times, dtype=torch.float32) cols = [processing_stats, dataflow_stats] headers = ["processing_stats", "dataflow_stats"] for e in self.event_handlers_times: for h in self.event_handlers_times[e]: headers.append(f"{h} ({getattr(e, 'name', str(e))})") cols.append(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)) # Determine maximum length max_len = max([x.numel() for x in cols]) count_col = torch.arange(max_len, dtype=torch.float32) + 1 cols.insert(0, count_col) headers.insert(0, "#") # pad all tensors to have same length cols = [torch.nn.functional.pad(x, pad=(0, max_len - x.numel()), mode="constant", value=0) for x in cols] results_dump = torch.stack(cols, dim=1).numpy() results_df = pd.DataFrame(data=results_dump, columns=headers) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: List[List[Union[str, float]]]) -> None: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ----------------------------------------- ----------------------- -------------- ... Handler Event Name Total(s) ----------------------------------------- ----------------------- -------------- run..log_training_results EPOCH_COMPLETED 19.43245 run..log_validation_results EPOCH_COMPLETED 2.55271 run..log_time EPOCH_COMPLETED 0.00049 run..log_intermediate_results EPOCH_COMPLETED 0.00106 run..log_training_loss ITERATION_COMPLETED 0.059 run..log_time COMPLETED not triggered ----------------------------------------- ----------------------- -------------- Total 22.04571 ----------------------------------------- ----------------------- -------------- Processing took total 11.29543s [min/index: 0.00393s/1875, max/index: 0.00784s/0, mean: 0.00602s, std: 0.00034s] Dataflow took total 16.24365s [min/index: 0.00533s/1874, max/index: 0.01129s/937, mean: 0.00866s, std: 0.00113s] """ # adopted implementation of torch.autograd.profiler.build_table handler_column_width = max([len(item[0]) for item in results]) + 4 # type: ignore[arg-type] event_column_width = max([len(item[1]) for item in results]) + 4 # type: ignore[arg-type] DEFAULT_COLUMN_WIDTH = 14 headers = [ "Handler", "Event Name", "Total(s)", "Min(s)/IDX", "Max(s)/IDX", "Mean(s)", "Std(s)", ] # Have to use a list because nonlocal is Py3 only... SPACING_SIZE = 2 row_format_lst = [""] header_sep_lst = [""] line_length_lst = [-SPACING_SIZE] def add_column(padding: int, text_dir: str = ">") -> None: row_format_lst[0] += "{: " + text_dir + str(padding) + "}" + (" " * SPACING_SIZE) header_sep_lst[0] += "-" * padding + (" " * SPACING_SIZE) line_length_lst[0] += padding + SPACING_SIZE add_column(handler_column_width, text_dir="<") add_column(event_column_width, text_dir="<") for _ in headers[2:]: add_column(DEFAULT_COLUMN_WIDTH) row_format = row_format_lst[0] header_sep = header_sep_lst[0] result = [] def append(s: str) -> None: result.append(s) result.append("\n") result.append("\n") append(header_sep) append(row_format.format(*headers)) append(header_sep) for row in results[:-3]: # format min/idx and max/idx row[3] = "{}/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}/{}".format(*row[4]) # type: ignore[misc] append(row_format.format(*row)) append(header_sep) # print total handlers time row append(row_format.format(*results[-3])) append(header_sep) summary_format = "{} took total {}s [min/index: {}, max/index: {}, mean: {}s, std: {}s]" for row in results[-2:]: row[3] = "{}s/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}s/{}".format(*row[4]) # type: ignore[misc] del row[1] append(summary_format.format(*row)) print("".join(result)) ignite-0.5.1/ignite/handlers/timing.py000066400000000000000000000111411465426447700177350ustar00rootroot00000000000000from time import perf_counter from typing import Any, Optional from ignite.engine import Engine, Events __all__ = ["Timer"] class Timer: """Timer object can be used to measure (average) time between events. Args: average: if True, then when ``.value()`` method is called, the returned value will be equal to total time measured, divided by the value of internal counter. Attributes: total (float): total time elapsed when the Timer was running (in seconds). step_count (int): internal counter, useful to measure average time, e.g. of processing a single batch. Incremented with the ``.step()`` method. running (bool): flag indicating if timer is measuring time. Note: When using ``Timer(average=True)`` do not forget to call ``timer.step()`` every time an event occurs. See the examples below. Examples: Measuring total time of the epoch: .. code-block:: python from ignite.handlers import Timer import time work = lambda : time.sleep(0.1) idle = lambda : time.sleep(0.1) t = Timer(average=False) for _ in range(10): work() idle() t.value() # 2.003073937026784 Measuring average time of the epoch: .. code-block:: python t = Timer(average=True) for _ in range(10): work() idle() t.step() t.value() # 0.2003182829997968 Measuring average time it takes to execute a single ``work()`` call: .. code-block:: python t = Timer(average=True) for _ in range(10): t.resume() work() t.pause() idle() t.step() t.value() # 0.10016545779653825 Using the Timer to measure average time it takes to process a single batch of examples: .. code-block:: python from ignite.engine import Engine, Events from ignite.handlers import Timer trainer = Engine(training_update_function) timer = Timer(average=True) timer.attach( trainer, start=Events.STARTED, resume=Events.ITERATION_STARTED, pause=Events.ITERATION_COMPLETED, step=Events.ITERATION_COMPLETED ) """ def __init__(self, average: bool = False): self._average = average self.reset() def attach( self, engine: Engine, start: Events = Events.STARTED, pause: Events = Events.COMPLETED, resume: Optional[Events] = None, step: Optional[Events] = None, ) -> "Timer": """Register callbacks to control the timer. Args: engine: Engine that this timer will be attached to. start: Event which should start (reset) the timer. pause: Event which should pause the timer. resume: Event which should resume the timer. step: Event which should call the `step` method of the counter. Returns: this timer """ engine.add_event_handler(start, self.reset) engine.add_event_handler(pause, self.pause) if resume is not None: engine.add_event_handler(resume, self.resume) if step is not None: engine.add_event_handler(step, self.step) return self def reset(self, *args: Any) -> "Timer": """Reset the timer to zero.""" self._t0 = perf_counter() self.total = 0.0 self.step_count = 0.0 self.running = True return self def pause(self, *args: Any) -> None: """Pause the current running timer.""" if self.running: self.total += self._elapsed() self.running = False def resume(self, *args: Any) -> None: """Resume the current running timer.""" if not self.running: self.running = True self._t0 = perf_counter() def value(self) -> float: """Return the average timer value.""" total = self.total if self.running: total += self._elapsed() if self._average: denominator = max(self.step_count, 1.0) else: denominator = 1.0 return total / denominator def step(self, *args: Any) -> None: """Increment the timer.""" self.step_count += 1.0 def _elapsed(self) -> float: return perf_counter() - self._t0 ignite-0.5.1/ignite/handlers/tqdm_logger.py000066400000000000000000000313601465426447700207570ustar00rootroot00000000000000# -*- coding: utf-8 -*- """TQDM logger.""" from collections import OrderedDict from typing import Any, Callable, List, Optional, Union from ignite.engine import Engine, Events from ignite.engine.events import CallableEventWithFilter, RemovableEventHandle from ignite.handlers.base_logger import BaseLogger, BaseOutputHandler class ProgressBar(BaseLogger): """ TQDM progress bar handler to log training progress and computed metrics. Args: persist: set to ``True`` to persist the progress bar after completion (default = ``False``) bar_format : Specify a custom bar string formatting. May impact performance. [default: '{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]']. Set to ``None`` to use ``tqdm`` default bar formatting: '{l_bar}{bar}{r_bar}', where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'. For more details on the formatting, see `tqdm docs `_. tqdm_kwargs: kwargs passed to tqdm progress bar. By default, progress bar description displays "Epoch [5/10]" where 5 is the current epoch and 10 is the number of epochs; however, if ``max_epochs`` are set to 1, the progress bar instead displays "Iteration: [5/10]". If tqdm_kwargs defines `desc`, e.g. "Predictions", than the description is "Predictions [5/10]" if number of epochs is more than one otherwise it is simply "Predictions". Examples: Simple progress bar .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ [06:17<12:34] Log output to a file instead of stderr (tqdm's default output) .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) log_file = open("output.log", "w") pbar = ProgressBar(file=log_file) pbar.attach(trainer) Attach metrics that already have been computed at :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED` (such as :class:`~ignite.metrics.RunningAverage`) .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss') pbar = ProgressBar() pbar.attach(trainer, ['loss']) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ , loss=0.123 [06:17<12:34] Directly attach the engine's output .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer, output_transform=lambda x: {'loss': x}) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ , loss=0.123 [06:17<12:34] Example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python pbar.attach( trainer, metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Note: When attaching the progress bar to an engine, it is recommended that you replace every print operation in the engine's handlers triggered every iteration with ``pbar.log_message`` to guarantee the correct format of the stdout. Note: When using inside jupyter notebook, `ProgressBar` automatically uses `tqdm_notebook`. For correct rendering, please install `ipywidgets `_. Due to `tqdm notebook bugs `_, bar format may be needed to be set to an empty string value. .. versionchanged:: 0.4.7 `attach` now accepts an optional list of `state_attributes` """ _events_order: List[Union[Events, CallableEventWithFilter]] = [ Events.STARTED, Events.EPOCH_STARTED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.EPOCH_COMPLETED, Events.COMPLETED, ] def __init__( self, persist: bool = False, bar_format: Union[ str, None ] = "{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]", **tqdm_kwargs: Any, ): try: from tqdm.autonotebook import tqdm except ImportError: raise ModuleNotFoundError( "This contrib module requires tqdm to be installed. " "Please install it with command: \n pip install tqdm" ) self.pbar_cls = tqdm self.pbar = None self.persist = persist self.bar_format = bar_format self.tqdm_kwargs = tqdm_kwargs def _reset(self, pbar_total: Optional[int]) -> None: self.pbar = self.pbar_cls( total=pbar_total, leave=self.persist, bar_format=self.bar_format, initial=1, **self.tqdm_kwargs ) def _close(self, engine: Engine) -> None: if self.pbar is not None: # https://github.com/tqdm/notebook.py#L240-L250 # issue #1115 : notebook backend of tqdm checks if n < total (error or KeyboardInterrupt) # and the bar persists in 'danger' mode if self.pbar.total is not None: self.pbar.n = self.pbar.total self.pbar.close() self.pbar = None @staticmethod def _compare_lt( event1: Union[Events, CallableEventWithFilter], event2: Union[Events, CallableEventWithFilter] ) -> bool: i1 = ProgressBar._events_order.index(event1) i2 = ProgressBar._events_order.index(event2) return i1 < i2 def log_message(self, message: str) -> None: """ Logs a message, preserving the progress bar correct output format. Args: message: string you wish to log. """ from tqdm import tqdm tqdm.write(message, file=self.tqdm_kwargs.get("file", None)) def attach( # type: ignore[override] self, engine: Engine, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, event_name: Union[Events, CallableEventWithFilter] = Events.ITERATION_COMPLETED, closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED, state_attributes: Optional[List[str]] = None, ) -> None: """ Attaches the progress bar to an engine object. Args: engine: engine object. metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: a function to select what you want to print from the engine's output. This function may return either a dictionary with entries in the format of ``{name: value}``, or a single scalar, which will be displayed with the default name `output`. event_name: event's name on which the progress bar advances. Valid events are from :class:`~ignite.engine.events.Events`. closing_event_name: event's name on which the progress bar is closed. Valid events are from :class:`~ignite.engine.events.Events`. state_attributes: list of attributes of the ``trainer.state`` to plot. Note: Accepted output value types are numbers, 0d and 1d torch tensors and strings. """ desc = self.tqdm_kwargs.get("desc", None) if event_name not in engine._allowed_events: raise ValueError(f"Logging event {event_name.name} is not in allowed events for this engine") if isinstance(closing_event_name, CallableEventWithFilter): if closing_event_name.filter is not None: raise ValueError("Closing Event should not be a filtered event") if not self._compare_lt(event_name, closing_event_name): raise ValueError(f"Logging event {event_name} should be called before closing event {closing_event_name}") log_handler = _OutputHandler( desc, metric_names, output_transform, closing_event_name=closing_event_name, state_attributes=state_attributes, ) super(ProgressBar, self).attach(engine, log_handler, event_name) engine.add_event_handler(closing_event_name, self._close) def attach_opt_params_handler( # type: ignore[empty-body] self, engine: Engine, event_name: Union[str, Events], *args: Any, **kwargs: Any ) -> RemovableEventHandle: """Intentionally empty""" pass def _create_output_handler(self, *args: Any, **kwargs: Any) -> "_OutputHandler": return _OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> Callable: # type: ignore[empty-body] """Intentionally empty""" pass class _OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics pbar = ProgressBar() Args: description: progress bar description. metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{'loss': loss1, 'another_loss': loss2}` to label the plot with corresponding keys. closing_event_name: event's name on which the progress bar is closed. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. state_attributes: list of attributes of the ``trainer.state`` to plot. """ def __init__( self, description: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED, state_attributes: Optional[List[str]] = None, ): if metric_names is None and output_transform is None: # This helps to avoid 'Either metric_names or output_transform should be defined' of BaseOutputHandler metric_names = [] super(_OutputHandler, self).__init__( description, metric_names, output_transform, global_step_transform=None, state_attributes=state_attributes ) self.closing_event_name = closing_event_name @staticmethod def get_max_number_events(event_name: Union[str, Events, CallableEventWithFilter], engine: Engine) -> Optional[int]: if event_name in (Events.ITERATION_STARTED, Events.ITERATION_COMPLETED): return engine.state.epoch_length if event_name in (Events.EPOCH_STARTED, Events.EPOCH_COMPLETED): return engine.state.max_epochs return 1 def __call__(self, engine: Engine, logger: ProgressBar, event_name: Union[str, Events]) -> None: pbar_total = self.get_max_number_events(event_name, engine) if logger.pbar is None: logger._reset(pbar_total=pbar_total) max_epochs = engine.state.max_epochs default_desc = "Iteration" if max_epochs == 1 else "Epoch" desc = self.tag or default_desc max_num_of_closing_events = self.get_max_number_events(self.closing_event_name, engine) if max_num_of_closing_events and max_num_of_closing_events > 1: global_step = engine.state.get_event_attrib_value(self.closing_event_name) desc += f" [{global_step}/{max_num_of_closing_events}]" logger.pbar.set_description(desc) # type: ignore[attr-defined] rendered_metrics = self._setup_output_metrics_state_attrs(engine, log_text=True) metrics = OrderedDict() for key, value in rendered_metrics.items(): key = "_".join(key[1:]) # tqdm has tag as description metrics[key] = value if metrics: logger.pbar.set_postfix(metrics) # type: ignore[attr-defined] global_step = engine.state.get_event_attrib_value(event_name) if pbar_total is not None: global_step = (global_step - 1) % pbar_total + 1 logger.pbar.update(global_step - logger.pbar.n) # type: ignore[attr-defined] ignite-0.5.1/ignite/handlers/utils.py000066400000000000000000000015501465426447700176110ustar00rootroot00000000000000from typing import Any, Callable, Optional from ignite.engine import Engine from ignite.engine.events import Events def global_step_from_engine(engine: Engine, custom_event_name: Optional[Events] = None) -> Callable: """Helper method to setup `global_step_transform` function using another engine. This can be helpful for logging trainer epoch/iteration while output handler is attached to an evaluator. Args: engine: engine which state is used to provide the global step custom_event_name: registered event name. Optional argument, event name to use. Returns: global step based on provided engine """ def wrapper(_: Any, event_name: Events) -> int: if custom_event_name is not None: event_name = custom_event_name return engine.state.get_event_attrib_value(event_name) return wrapper ignite-0.5.1/ignite/handlers/visdom_logger.py000066400000000000000000000520571465426447700213210ustar00rootroot00000000000000"""Visdom logger and its helper handlers.""" import os from typing import Any, Callable, cast, Dict, List, Optional, Union import torch import torch.nn as nn from torch.optim import Optimizer from ignite.engine import Engine, Events from ignite.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsScalarHandler, ) from ignite.handlers.utils import global_step_from_engine # noqa __all__ = [ "VisdomLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", "global_step_from_engine", ] class VisdomLogger(BaseLogger): """ VisdomLogger handler to log metrics, model/optimizer parameters, gradients during the training and validation. This class requires `visdom `_ package to be installed: .. code-block:: bash pip install git+https://github.com/fossasia/visdom.git Args: server: visdom server URL. It can be also specified by environment variable `VISDOM_SERVER_URL` port: visdom server's port. It can be also specified by environment variable `VISDOM_PORT` num_workers: number of workers to use in `concurrent.futures.ThreadPoolExecutor` to post data to visdom server. Default, `num_workers=1`. If `num_workers=0` and logger uses the main thread. If using Python 2.7 and `num_workers>0` the package `futures` should be installed: `pip install futures` kwargs: kwargs to pass into `visdom.Visdom `_. Note: We can also specify username/password using environment variables: VISDOM_USERNAME, VISDOM_PASSWORD .. warning:: Frequent logging, e.g. when logger is attached to `Events.ITERATION_COMPLETED`, can slow down the run if the main thread is used to send the data to visdom server (`num_workers=0`). To avoid this situation we can either log less frequently or set `num_workers=1`. Examples: .. code-block:: python from ignite.handlers.visdom_logger import * # Create a logger vd_logger = VisdomLogger() # Attach the logger to the trainer to log training loss at each iteration vd_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. vd_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. vd_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration vd_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration vd_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) ) # Attach the logger to the trainer to log model's gradients norm after each iteration vd_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model) ) # We need to close the logger with we are done vd_logger.close() It is also possible to use the logger as context manager: .. code-block:: python from ignite.handlers.visdom_logger import * with VisdomLogger() as vd_logger: trainer = Engine(update_fn) # Attach the logger to the trainer to log training loss at each iteration vd_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, server: Optional[str] = None, port: Optional[int] = None, num_workers: int = 1, raise_exceptions: bool = True, **kwargs: Any, ): try: import visdom except ImportError: raise ModuleNotFoundError( "This contrib module requires visdom package. " "Please install it with command:\n" "pip install git+https://github.com/fossasia/visdom.git" ) if num_workers > 0: # If visdom is installed, one of its dependencies `tornado` # requires also `futures` to be installed. # Let's check anyway if we can import it. try: from concurrent.futures import ThreadPoolExecutor except ImportError: raise ModuleNotFoundError( "This contrib module requires concurrent.futures module" "Please install it with command:\n" "pip install futures" ) if server is None: server = cast(str, os.environ.get("VISDOM_SERVER_URL", "localhost")) if port is None: port = int(os.environ.get("VISDOM_PORT", 8097)) if "username" not in kwargs: username = os.environ.get("VISDOM_USERNAME", None) kwargs["username"] = username if "password" not in kwargs: password = os.environ.get("VISDOM_PASSWORD", None) kwargs["password"] = password self.vis = visdom.Visdom(server=server, port=port, raise_exceptions=raise_exceptions, **kwargs) if not self.vis.offline and not self.vis.check_connection(): # type: ignore[attr-defined] raise RuntimeError(f"Failed to connect to Visdom server at {server}. Did you run python -m visdom.server ?") self.executor: Union[_DummyExecutor, "ThreadPoolExecutor"] = _DummyExecutor() if num_workers > 0: self.executor = ThreadPoolExecutor(max_workers=num_workers) def _save(self) -> None: self.vis.save([self.vis.env]) # type: ignore[attr-defined] def close(self) -> None: self.executor.shutdown() self.vis.close() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class _BaseVisDrawer: def __init__(self, show_legend: bool = False): self.windows: Dict[str, Any] = {} self.show_legend = show_legend def add_scalar( self, logger: VisdomLogger, k: str, v: Union[str, float, torch.Tensor], event_name: Any, global_step: int ) -> None: """ Helper method to log a scalar with VisdomLogger. Args: logger: visdom logger k: scalar name which is used to set window title and y-axis label v: scalar value, y-axis value event_name: Event name which is used to setup x-axis label. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. global_step: global step, x-axis value """ if k not in self.windows: self.windows[k] = { "win": None, "opts": {"title": k, "xlabel": str(event_name), "ylabel": k, "showlegend": self.show_legend}, } update = None if self.windows[k]["win"] is None else "append" kwargs = { "X": [global_step], "Y": [v], "env": logger.vis.env, # type: ignore[attr-defined] "win": self.windows[k]["win"], "update": update, "opts": self.windows[k]["opts"], "name": k, } future = logger.executor.submit(logger.vis.line, **kwargs) if self.windows[k]["win"] is None: self.windows[k]["win"] = future.result() class OutputHandler(BaseOutputHandler, _BaseVisDrawer): """Helper handler to log engine's output and/or metrics Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.visdom_logger.global_step_from_engine`. show_legend: flag to show legend in the window state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.handlers.visdom_logger import * # Create a logger vd_logger = VisdomLogger() # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: vd_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently vd_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.visdom_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) vd_logger = VisdomLogger() def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on Visdom. vd_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python vd_logger.attach( trainer, log_handler=OutputHandler( tag="training", metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ), event_name=Events.ITERATION_COMPLETED ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) """ def __init__( self, tag: str, metric_names: Optional[str] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, show_legend: bool = False, state_attributes: Optional[List[str]] = None, ): super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) _BaseVisDrawer.__init__(self, show_legend=show_legend) def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, VisdomLogger): raise RuntimeError("Handler 'OutputHandler' works only with VisdomLogger") metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False) global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) for key, value in metrics.items(): self.add_scalar(logger, key, value, event_name, global_step) logger._save() class OptimizerParamsHandler(BaseOptimizerParamsHandler, _BaseVisDrawer): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" show_legend: flag to show legend in the window Examples: .. code-block:: python from ignite.handlers.visdom_logger import * # Create a logger vb_logger = VisdomLogger() # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration vd_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently vd_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__( self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None, show_legend: bool = False ): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) _BaseVisDrawer.__init__(self, show_legend=show_legend) def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, VisdomLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with VisdomLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } for k, v in params.items(): self.add_scalar(logger, k, v, event_name, global_step) logger._save() class WeightsScalarHandler(BaseWeightsScalarHandler, _BaseVisDrawer): """Helper handler to log model's weights as scalars. Handler iterates over named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" show_legend: flag to show legend in the window Examples: .. code-block:: python from ignite.handlers.visdom_logger import * # Create a logger vd_logger = VisdomLogger() # Attach the logger to the trainer to log model's weights norm after each iteration vd_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) ) """ def __init__( self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None, show_legend: bool = False ): super(WeightsScalarHandler, self).__init__(model, reduction, tag=tag) _BaseVisDrawer.__init__(self, show_legend=show_legend) def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, VisdomLogger): raise RuntimeError("Handler 'WeightsScalarHandler' works only with VisdomLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.model.named_parameters(): name = name.replace(".", "/") k = f"{tag_prefix}weights_{self.reduction.__name__}/{name}" v = self.reduction(p.data) self.add_scalar(logger, k, v, event_name, global_step) logger._save() class GradsScalarHandler(BaseWeightsScalarHandler, _BaseVisDrawer): """Helper handler to log model's gradients as scalars. Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar. Args: model: model to log weights reduction: function to reduce parameters into scalar tag: common title for all produced plots. For example, "generator" show_legend: flag to show legend in the window Examples: .. code-block:: python from ignite.handlers.visdom_logger import * # Create a logger vd_logger = VisdomLogger() # Attach the logger to the trainer to log model's weights norm after each iteration vd_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) ) """ def __init__( self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None, show_legend: bool = False ): super(GradsScalarHandler, self).__init__(model, reduction, tag) _BaseVisDrawer.__init__(self, show_legend=show_legend) def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, VisdomLogger): raise RuntimeError("Handler 'GradsScalarHandler' works only with VisdomLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" for name, p in self.model.named_parameters(): if p.grad is None: continue name = name.replace(".", "/") k = f"{tag_prefix}grads_{self.reduction.__name__}/{name}" v = self.reduction(p.grad) self.add_scalar(logger, k, v, event_name, global_step) logger._save() class _DummyExecutor: class _DummyFuture: def __init__(self, result: Any) -> None: self._output = result def result(self) -> Any: return self._output def __init__(self, *args: Any, **kwargs: Any) -> None: pass def submit(self, fn: Callable, **kwargs: Any) -> "_DummyFuture": return _DummyExecutor._DummyFuture(fn(**kwargs)) def shutdown(self, *args: Any, **kwargs: Any) -> None: pass ignite-0.5.1/ignite/handlers/wandb_logger.py000066400000000000000000000340571465426447700211130ustar00rootroot00000000000000"""WandB logger and its helper handlers.""" from typing import Any, Callable, List, Optional, Union from torch.optim import Optimizer from ignite.engine import Engine, Events from ignite.handlers.base_logger import BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler from ignite.handlers.utils import global_step_from_engine # noqa __all__ = ["WandBLogger", "OutputHandler", "OptimizerParamsHandler", "global_step_from_engine"] class WandBLogger(BaseLogger): """`Weights & Biases `_ handler to log metrics, model/optimizer parameters, gradients during training and validation. It can also be used to log model checkpoints to the Weights & Biases cloud. .. code-block:: bash pip install wandb This class is also a wrapper for the wandb module. This means that you can call any wandb function using this wrapper. See examples on how to save model parameters and gradients. Args: args: Positional arguments accepted by `wandb.init`. kwargs: Keyword arguments accepted by `wandb.init`. Please see `wandb.init `_ for documentation of possible parameters. Examples: .. code-block:: python from ignite.handlers.wandb_logger import * # Create a logger. All parameters are optional. See documentation # on wandb.init for details. wandb_logger = WandBLogger( entity="shared", project="pytorch-ignite-integration", name="cnn-mnist", config={"max_epochs": 10}, tags=["pytorch-ignite", "minst"] ) # Attach the logger to the trainer to log training loss at each iteration wandb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=lambda *_: trainer.state.iteration` to take iteration value # of the `trainer`: wandb_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=lambda *_: trainer.state.iteration, ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=lambda *_: trainer.state.iteration` to take iteration value # of the `trainer` instead of `evaluator`. wandb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=lambda *_: trainer.state.iteration, ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration wandb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # We need to close the logger when we are done wandb_logger.close() If you want to log model gradients, the model call graph, etc., use the logger as wrapper of wandb. Refer to the documentation of wandb.watch for details: .. code-block:: python wandb_logger = WandBLogger( entity="shared", project="pytorch-ignite-integration", name="cnn-mnist", config={"max_epochs": 10}, tags=["pytorch-ignite", "minst"] ) model = torch.nn.Sequential(...) wandb_logger.watch(model) For model checkpointing, Weights & Biases creates a local run dir, and automatically synchronizes all files saved there at the end of the run. You can just use the `wandb_logger.run.dir` as path for the `ModelCheckpoint`: .. code-block:: python from ignite.handlers import ModelCheckpoint def score_function(engine): return engine.state.metrics['accuracy'] model_checkpoint = ModelCheckpoint( wandb_logger.run.dir, n_saved=2, filename_prefix='best', require_empty=False, score_function=score_function, score_name="validation_accuracy", global_step_transform=global_step_from_engine(trainer) ) evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {'model': model}) """ def __init__(self, *args: Any, **kwargs: Any): try: import wandb self._wandb = wandb except ImportError: raise ModuleNotFoundError( "This contrib module requires wandb to be installed. " "You man install wandb with the command:\n pip install wandb\n" ) if kwargs.get("init", True): kwargs.pop("init", None) wandb.init(*args, **kwargs) def __getattr__(self, attr: Any) -> Any: return getattr(self._wandb, attr) def close(self) -> None: self._wandb.finish() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs) class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics Args: tag: common title for all produced plots. For example, "training" metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.handlers.wandb_logger.global_step_from_engine`. sync: If set to False, process calls to log in a seperate thread. Default (None) uses whatever the default value of wandb.log. Examples: .. code-block:: python from ignite.handlers.wandb_logger import * # Create a logger. All parameters are optional. See documentation # on wandb.init for details. wandb_logger = WandBLogger( entity="shared", project="pytorch-ignite-integration", name="cnn-mnist", config={"max_epochs": 10}, tags=["pytorch-ignite", "minst"] ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=lambda *_: trainer.state.iteration,` to take iteration value # of the `trainer`: wandb_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=lambda *_: trainer.state.iteration, ), event_name=Events.EPOCH_COMPLETED ) # or equivalently wandb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=lambda *_: trainer.state.iteration, ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.handlers.wandb_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) # Create a logger. All parameters are optional. See documentation # on wandb.init for details. wandb_logger = WandBLogger( entity="shared", project="pytorch-ignite-integration", name="cnn-mnist", config={"max_epochs": 10}, tags=["pytorch-ignite", "minst"] ) def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on Weights & Biases. wandb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python wandb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", metrics=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[List[str]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None, sync: Optional[bool] = None, state_attributes: Optional[List[str]] = None, ): super().__init__(tag, metric_names, output_transform, global_step_transform, state_attributes) self.sync = sync def __call__(self, engine: Engine, logger: WandBLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, WandBLogger): raise RuntimeError(f"Handler '{self.__class__.__name__}' works only with WandBLogger.") global_step = self.global_step_transform(engine, event_name) if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) metrics = self._setup_output_metrics_state_attrs(engine, log_text=True, key_tuple=False) logger.log(metrics, step=global_step, sync=self.sync) class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, "generator" sync: If set to False, process calls to log in a seperate thread. Default (None) uses whatever the default value of wandb.log. Examples: .. code-block:: python from ignite.handlers.wandb_logger import * # Create a logger. All parameters are optional. See documentation # on wandb.init for details. wandb_logger = WandBLogger( entity="shared", project="pytorch-ignite-integration", name="cnn-mnist", config={"max_epochs": 10}, tags=["pytorch-ignite", "minst"] ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration wandb_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently wandb_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__( self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None, sync: Optional[bool] = None ): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) self.sync = sync def __call__(self, engine: Engine, logger: WandBLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, WandBLogger): raise RuntimeError("Handler OptimizerParamsHandler works only with WandBLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } logger.log(params, step=global_step, sync=self.sync) ignite-0.5.1/ignite/metrics/000077500000000000000000000000001465426447700157445ustar00rootroot00000000000000ignite-0.5.1/ignite/metrics/__init__.py000066400000000000000000000060661465426447700200650ustar00rootroot00000000000000import ignite.metrics.regression from ignite.metrics.accumulation import Average, GeometricAverage, VariableAccumulation from ignite.metrics.accuracy import Accuracy from ignite.metrics.average_precision import AveragePrecision from ignite.metrics.classification_report import ClassificationReport from ignite.metrics.cohen_kappa import CohenKappa from ignite.metrics.confusion_matrix import ConfusionMatrix, DiceCoefficient, IoU, JaccardIndex, mIoU from ignite.metrics.cosine_similarity import CosineSimilarity from ignite.metrics.entropy import Entropy from ignite.metrics.epoch_metric import EpochMetric from ignite.metrics.fbeta import Fbeta from ignite.metrics.frequency import Frequency from ignite.metrics.gan.fid import FID from ignite.metrics.gan.inception_score import InceptionScore from ignite.metrics.gpu_info import GpuInfo from ignite.metrics.js_divergence import JSDivergence from ignite.metrics.kl_divergence import KLDivergence from ignite.metrics.loss import Loss from ignite.metrics.maximum_mean_discrepancy import MaximumMeanDiscrepancy from ignite.metrics.mean_absolute_error import MeanAbsoluteError from ignite.metrics.mean_pairwise_distance import MeanPairwiseDistance from ignite.metrics.mean_squared_error import MeanSquaredError from ignite.metrics.metric import BatchFiltered, BatchWise, EpochWise, Metric, MetricUsage from ignite.metrics.metric_group import MetricGroup from ignite.metrics.metrics_lambda import MetricsLambda from ignite.metrics.multilabel_confusion_matrix import MultiLabelConfusionMatrix from ignite.metrics.mutual_information import MutualInformation from ignite.metrics.nlp.bleu import Bleu from ignite.metrics.nlp.rouge import Rouge, RougeL, RougeN from ignite.metrics.precision import Precision from ignite.metrics.precision_recall_curve import PrecisionRecallCurve from ignite.metrics.psnr import PSNR from ignite.metrics.recall import Recall from ignite.metrics.roc_auc import ROC_AUC, RocCurve from ignite.metrics.root_mean_squared_error import RootMeanSquaredError from ignite.metrics.running_average import RunningAverage from ignite.metrics.ssim import SSIM from ignite.metrics.top_k_categorical_accuracy import TopKCategoricalAccuracy __all__ = [ "Metric", "Accuracy", "Loss", "MetricGroup", "MetricsLambda", "MeanAbsoluteError", "MeanPairwiseDistance", "MeanSquaredError", "ConfusionMatrix", "CosineSimilarity", "ClassificationReport", "TopKCategoricalAccuracy", "Average", "DiceCoefficient", "Entropy", "EpochMetric", "Fbeta", "FID", "GeometricAverage", "IoU", "InceptionScore", "mIoU", "JaccardIndex", "JSDivergence", "KLDivergence", "MaximumMeanDiscrepancy", "MultiLabelConfusionMatrix", "MutualInformation", "Precision", "PSNR", "Recall", "RootMeanSquaredError", "RunningAverage", "VariableAccumulation", "Frequency", "SSIM", "Bleu", "Rouge", "RougeN", "RougeL", "regression", "AveragePrecision", "CohenKappa", "GpuInfo", "PrecisionRecallCurve", "RocCurve", "ROC_AUC", ] ignite-0.5.1/ignite/metrics/accumulation.py000066400000000000000000000302331465426447700210030ustar00rootroot00000000000000import numbers from typing import Callable, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["VariableAccumulation", "GeometricAverage", "Average"] class VariableAccumulation(Metric): """Single variable accumulator helper to compute (arithmetic, geometric, harmonic) average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a number or `torch.Tensor`. Note: The class stores input into two public variables: `accumulator` and `num_examples`. Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is a ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). Args: op: a callable to update accumulator. Method's signature is `(accumulator, output)`. For example, to compute arithmetic mean value, `op = lambda a, x: a + x`. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ required_output_keys = None _state_dict_all_req_keys = ("accumulator", "num_examples") def __init__( self, op: Callable, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): if not callable(op): raise TypeError(f"Argument op should be a callable, but given {type(op)}") self._op = op super(VariableAccumulation, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self.accumulator = torch.tensor(0.0, dtype=torch.float64, device=self._device) self.num_examples = 0 def _check_output_type(self, output: Union[float, torch.Tensor]) -> None: if not isinstance(output, (numbers.Number, torch.Tensor)): raise TypeError(f"Output should be a number or torch.Tensor, but given {type(output)}") @reinit__is_reduced def update(self, output: Union[float, torch.Tensor]) -> None: self._check_output_type(output) if isinstance(output, torch.Tensor): output = output.detach() if not (output.device == self._device and output.dtype == self.accumulator.dtype): output = output.to(self.accumulator) self.accumulator = self._op(self.accumulator, output) if isinstance(output, torch.Tensor): self.num_examples += output.shape[0] if len(output.shape) > 1 else 1 else: self.num_examples += 1 @sync_all_reduce("accumulator", "num_examples") def compute(self) -> Tuple[torch.Tensor, int]: return self.accumulator, self.num_examples class Average(VariableAccumulation): """Helper class to compute arithmetic average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a number or `torch.Tensor`. Note: Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is an ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). For input `x` being an ND `torch.Tensor` with N > 1, the first dimension is seen as the number of samples and is summed up and added to the accumulator: `accumulator += x.sum(dim=0)` ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 1. input is er data = torch.tensor([0, 1, 2, 3, 4]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: 2.0 .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 2. input is a 1D torch.Tensor data = torch.tensor([ [0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3] ]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([1.5000, 1.5000, 1.5000], dtype=torch.float64) .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 3. input is a ND torch.Tensor data = [ torch.tensor([[0, 0, 0], [1, 1, 1]]), torch.tensor([[2, 2, 2], [3, 3, 3]]) ] state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([1.5000, 1.5000, 1.5000], dtype=torch.float64) .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): def _mean_op(a: Union[float, torch.Tensor], x: Union[float, torch.Tensor]) -> Union[float, torch.Tensor]: if isinstance(x, torch.Tensor) and x.ndim > 1: x = x.sum(dim=0) return a + x super(Average, self).__init__( op=_mean_op, output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @sync_all_reduce("accumulator", "num_examples") def compute(self) -> Union[float, torch.Tensor]: if self.num_examples < 1: raise NotComputableError( f"{self.__class__.__name__} must have at least one example before it can be computed." ) return self.accumulator / self.num_examples class GeometricAverage(VariableAccumulation): """Helper class to compute geometric average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a positive number or a positive `torch.Tensor`, such that ``torch.log(x)`` is not `nan`. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is a ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). For input `x` being an ND `torch.Tensor` with N > 1, the first dimension is seen as the number of samples and is aggregated and added to the accumulator: `accumulator *= prod(x, dim=0)` ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 1. input is er data = torch.tensor([1, 2, 3]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: 1.8171... .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 2. input is a 1D torch.Tensor data = torch.tensor([ [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], ]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([2.2134, 2.2134, 2.2134], dtype=torch.float64) .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 3. input is a ND torch.Tensor data = [ torch.tensor([[1, 1, 1], [2, 2, 2]]), torch.tensor([[3, 3, 3], [4, 4, 4]]) ] state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([2.2134, 2.2134, 2.2134], dtype=torch.float64) .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): def _geom_op(a: torch.Tensor, x: Union[float, torch.Tensor]) -> torch.Tensor: if not isinstance(x, torch.Tensor): x = torch.tensor(x) x = torch.log(x) if x.ndim > 1: x = x.sum(dim=0) return a + x super(GeometricAverage, self).__init__( op=_geom_op, output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @sync_all_reduce("accumulator", "num_examples") def compute(self) -> Union[float, torch.Tensor]: if self.num_examples < 1: raise NotComputableError( f"{self.__class__.__name__} must have at least one example before it can be computed." ) tensor = torch.exp(self.accumulator / self.num_examples) if tensor.numel() == 1: return tensor.item() return tensor ignite-0.5.1/ignite/metrics/accuracy.py000066400000000000000000000236701465426447700201200ustar00rootroot00000000000000from typing import Callable, Optional, Sequence, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["Accuracy"] class _BaseClassification(Metric): def __init__( self, output_transform: Callable = lambda x: x, is_multilabel: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): self._is_multilabel = is_multilabel self._type: Optional[str] = None self._num_classes: Optional[int] = None super(_BaseClassification, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) def reset(self) -> None: self._type = None self._num_classes = None def _check_shape(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output if not (y.ndimension() == y_pred.ndimension() or y.ndimension() + 1 == y_pred.ndimension()): raise ValueError( "y must have shape of (batch_size, ...) and y_pred must have " "shape of (batch_size, num_categories, ...) or (batch_size, ...), " f"but given {y.shape} vs {y_pred.shape}." ) y_shape = y.shape y_pred_shape: Tuple[int, ...] = y_pred.shape if y.ndimension() + 1 == y_pred.ndimension(): y_pred_shape = (y_pred_shape[0],) + y_pred_shape[2:] if not (y_shape == y_pred_shape): raise ValueError("y and y_pred must have compatible shapes.") if self._is_multilabel and not (y.shape == y_pred.shape and y.ndimension() > 1 and y.shape[1] > 1): raise ValueError( "y and y_pred must have same shape of (batch_size, num_categories, ...) and num_categories > 1." ) def _check_binary_multilabel_cases(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output if not torch.equal(y, y**2): raise ValueError("For binary cases, y must be comprised of 0's and 1's.") if not torch.equal(y_pred, y_pred**2): raise ValueError("For binary cases, y_pred must be comprised of 0's and 1's.") def _check_type(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output if y.ndimension() + 1 == y_pred.ndimension(): num_classes = y_pred.shape[1] if num_classes == 1: update_type = "binary" self._check_binary_multilabel_cases((y_pred, y)) else: update_type = "multiclass" elif y.ndimension() == y_pred.ndimension(): self._check_binary_multilabel_cases((y_pred, y)) if self._is_multilabel: update_type = "multilabel" num_classes = y_pred.shape[1] else: update_type = "binary" num_classes = 1 else: raise RuntimeError( f"Invalid shapes of y (shape={y.shape}) and y_pred (shape={y_pred.shape}), check documentation." " for expected shapes of y and y_pred." ) if self._type is None: self._type = update_type self._num_classes = num_classes else: if self._type != update_type: raise RuntimeError(f"Input data type has changed from {self._type} to {update_type}.") if self._num_classes != num_classes: raise ValueError(f"Input data number of classes has changed from {self._num_classes} to {num_classes}") class Accuracy(_BaseClassification): r"""Calculates the accuracy for binary, multiclass and multilabel data. .. math:: \text{Accuracy} = \frac{ TP + TN }{ TP + TN + FP + FN } where :math:`\text{TP}` is true positives, :math:`\text{TN}` is true negatives, :math:`\text{FP}` is false positives and :math:`\text{FN}` is false negatives. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...). - `y` must be in the following shape (batch_size, ...). - `y` and `y_pred` must be in the following shape of (batch_size, num_categories, ...) and num_categories must be greater than 1 for multilabel cases. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. is_multilabel: flag to use in multilabel case. By default, False. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: Binary case .. testcode:: 1 metric = Accuracy() metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"]) .. testoutput:: 1 0.6666... Multiclass case .. testcode:: 2 metric = Accuracy() metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([2, 0, 2, 1, 0, 1]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288], [0.7748, 0.9542, 0.8573], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"]) .. testoutput:: 2 0.5 Multilabel case .. testcode:: 3 metric = Accuracy(is_multilabel=True) metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([ [0, 0, 1, 0, 1], [1, 0, 1, 0, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 1, 0, 1], ]) y_pred = torch.tensor([ [1, 1, 0, 0, 0], [1, 0, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 1, 1, 1], [1, 1, 0, 0, 1], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"]) .. testoutput:: 3 0.2 In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of predictions can be done as below: .. testcode:: 4 def thresholded_output_transform(output): y_pred, y = output y_pred = torch.round(y_pred) return y_pred, y metric = Accuracy(output_transform=thresholded_output_transform) metric.attach(default_evaluator, "accuracy") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["accuracy"]) .. testoutput:: 4 0.6666... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_num_correct", "_num_examples") def __init__( self, output_transform: Callable = lambda x: x, is_multilabel: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): super(Accuracy, self).__init__( output_transform=output_transform, is_multilabel=is_multilabel, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self._num_correct = torch.tensor(0, device=self._device) self._num_examples = 0 super(Accuracy, self).reset() @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_shape(output) self._check_type(output) y_pred, y = output[0].detach(), output[1].detach() if self._type == "binary": correct = torch.eq(y_pred.view(-1).to(y), y.view(-1)) elif self._type == "multiclass": indices = torch.argmax(y_pred, dim=1) correct = torch.eq(indices, y).view(-1) elif self._type == "multilabel": # if y, y_pred shape is (N, C, ...) -> (N x ..., C) num_classes = y_pred.size(1) last_dim = y_pred.ndimension() y_pred = torch.transpose(y_pred, 1, last_dim - 1).reshape(-1, num_classes) y = torch.transpose(y, 1, last_dim - 1).reshape(-1, num_classes) correct = torch.all(y == y_pred.type_as(y), dim=-1) self._num_correct += torch.sum(correct).to(self._device) self._num_examples += correct.shape[0] @sync_all_reduce("_num_examples", "_num_correct") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("Accuracy must have at least one example before it can be computed.") return self._num_correct.item() / self._num_examples ignite-0.5.1/ignite/metrics/average_precision.py000066400000000000000000000071561465426447700220140ustar00rootroot00000000000000from typing import Callable, Union import torch from ignite.metrics.epoch_metric import EpochMetric def average_precision_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> float: from sklearn.metrics import average_precision_score y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return average_precision_score(y_true, y_pred) class AveragePrecision(EpochMetric): """Computes Average Precision accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.average_precision_score `_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: Default False. If True, `average_precision_score `_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. device: optional device specification for internal storage. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: AveragePrecision expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def activated_output_transform(output): y_pred, y = output y_pred = torch.softmax(y_pred, dim=1) return y_pred, y avg_precision = AveragePrecision(activated_output_transform) Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: y_pred = torch.tensor([[0.79, 0.21], [0.30, 0.70], [0.46, 0.54], [0.16, 0.84]]) y_true = torch.tensor([[1, 1], [1, 1], [0, 1], [0, 1]]) avg_precision = AveragePrecision() avg_precision.attach(default_evaluator, 'average_precision') state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['average_precision']) .. testoutput:: 0.9166... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): try: from sklearn.metrics import average_precision_score # noqa: F401 except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") super(AveragePrecision, self).__init__( average_precision_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, skip_unrolling=skip_unrolling, ) ignite-0.5.1/ignite/metrics/classification_report.py000066400000000000000000000135441465426447700227130ustar00rootroot00000000000000import json from typing import Callable, Collection, Dict, List, Optional, Union import torch from ignite.metrics.fbeta import Fbeta from ignite.metrics.metrics_lambda import MetricsLambda from ignite.metrics.precision import Precision from ignite.metrics.recall import Recall __all__ = ["ClassificationReport"] def ClassificationReport( beta: int = 1, output_dict: bool = False, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), is_multilabel: bool = False, labels: Optional[List[str]] = None, ) -> MetricsLambda: r"""Build a text report showing the main classification metrics. The report resembles in functionality to `scikit-learn classification_report `_ The underlying implementation doesn't use the sklearn function. Args: beta: weight of precision in harmonic mean output_dict: If True, return output as dict, otherwise return a str output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. is_multilabel: If True, the tensors are assumed to be multilabel. device: optional device specification for internal storage. labels: Optional list of label indices to include in the report Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: Multiclass case .. testcode:: 1 metric = ClassificationReport(output_dict=True) metric.attach(default_evaluator, "cr") y_true = torch.tensor([2, 0, 2, 1, 0, 1]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288], [0.7748, 0.9542, 0.8573], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["cr"].keys()) print(state.metrics["cr"]["0"]) print(state.metrics["cr"]["1"]) print(state.metrics["cr"]["2"]) print(state.metrics["cr"]["macro avg"]) .. testoutput:: 1 dict_keys(['0', '1', '2', 'macro avg']) {'precision': 0.5, 'recall': 0.5, 'f1-score': 0.4999...} {'precision': 1.0, 'recall': 0.5, 'f1-score': 0.6666...} {'precision': 0.3333..., 'recall': 0.5, 'f1-score': 0.3999...} {'precision': 0.6111..., 'recall': 0.5, 'f1-score': 0.5222...} Multilabel case, the shapes must be (batch_size, num_categories, ...) .. testcode:: 2 metric = ClassificationReport(output_dict=True, is_multilabel=True) metric.attach(default_evaluator, "cr") y_true = torch.tensor([ [0, 0, 1], [0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 1], ]) y_pred = torch.tensor([ [1, 1, 0], [1, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["cr"].keys()) print(state.metrics["cr"]["0"]) print(state.metrics["cr"]["1"]) print(state.metrics["cr"]["2"]) print(state.metrics["cr"]["macro avg"]) .. testoutput:: 2 dict_keys(['0', '1', '2', 'macro avg']) {'precision': 0.2, 'recall': 1.0, 'f1-score': 0.3333...} {'precision': 0.5, 'recall': 1.0, 'f1-score': 0.6666...} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0} {'precision': 0.2333..., 'recall': 0.6666..., 'f1-score': 0.3333...} """ # setup all the underlying metrics precision = Precision(average=False, is_multilabel=is_multilabel, output_transform=output_transform, device=device) recall = Recall(average=False, is_multilabel=is_multilabel, output_transform=output_transform, device=device) fbeta = Fbeta(beta, average=False, precision=precision, recall=recall) averaged_precision = precision.mean() averaged_recall = recall.mean() averaged_fbeta = fbeta.mean() def _wrapper( re: torch.Tensor, pr: torch.Tensor, f: torch.Tensor, a_re: torch.Tensor, a_pr: torch.Tensor, a_f: torch.Tensor ) -> Union[Collection[str], Dict]: if pr.shape != re.shape: raise ValueError( "Internal error: Precision and Recall have mismatched shapes: " f"{pr.shape} vs {re.shape}. Please, open an issue " "with a reference on this error. Thank you!" ) dict_obj = {} for idx, p_label in enumerate(pr): dict_obj[_get_label_for_class(idx)] = { "precision": p_label.item(), "recall": re[idx].item(), f"f{beta}-score": f[idx].item(), } dict_obj["macro avg"] = { "precision": a_pr.item(), "recall": a_re.item(), f"f{beta}-score": a_f.item(), } return dict_obj if output_dict else json.dumps(dict_obj) # helper method to get a label for a given class def _get_label_for_class(idx: int) -> str: return labels[idx] if labels else str(idx) return MetricsLambda(_wrapper, recall, precision, fbeta, averaged_recall, averaged_precision, averaged_fbeta) ignite-0.5.1/ignite/metrics/cohen_kappa.py000066400000000000000000000077311465426447700205760ustar00rootroot00000000000000from typing import Callable, Optional, Union import torch from ignite.metrics.epoch_metric import EpochMetric class CohenKappa(EpochMetric): """Compute different types of Cohen's Kappa: Non-Wieghted, Linear, Quadratic. Accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.cohen_kappa_score `_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. weights: a string is used to define the type of Cohen's Kappa whether Non-Weighted or Linear or Quadratic. Default, None. check_compute_fn: Default False. If True, `cohen_kappa_score `_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. device: optional device specification for internal storage. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = CohenKappa() metric.attach(default_evaluator, 'ck') y_true = torch.tensor([2, 0, 2, 2, 0, 1]) y_pred = torch.tensor([0, 0, 2, 2, 0, 2]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['ck']) .. testoutput:: 0.4285... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, weights: Optional[str] = None, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): try: from sklearn.metrics import cohen_kappa_score # noqa: F401 except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") if weights not in (None, "linear", "quadratic"): raise ValueError("Kappa Weighting type must be None or linear or quadratic.") # initalize weights self.weights = weights self.cohen_kappa_compute = self.get_cohen_kappa_fn() super(CohenKappa, self).__init__( self.cohen_kappa_compute, output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, skip_unrolling=skip_unrolling, ) def get_cohen_kappa_fn(self) -> Callable[[torch.Tensor, torch.Tensor], float]: """Return a function computing Cohen Kappa from scikit-learn.""" from sklearn.metrics import cohen_kappa_score def wrapper(y_targets: torch.Tensor, y_preds: torch.Tensor) -> float: y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return cohen_kappa_score(y_true, y_pred, weights=self.weights) return wrapper ignite-0.5.1/ignite/metrics/confusion_matrix.py000066400000000000000000000434471465426447700217210ustar00rootroot00000000000000import numbers from typing import Callable, Optional, Sequence, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce from ignite.metrics.metrics_lambda import MetricsLambda __all__ = ["ConfusionMatrix", "mIoU", "IoU", "DiceCoefficient", "cmAccuracy", "cmPrecision", "cmRecall", "JaccardIndex"] class ConfusionMatrix(Metric): """Calculates confusion matrix for multi-class data. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must contain logits and has the following shape (batch_size, num_classes, ...). If you are doing binary classification, see Note for an example on how to get this. - `y` should have the following shape (batch_size, ...) and contains ground-truth class indices with or without the background class. During the computation, argmax of `y_pred` is taken to determine predicted classes. Args: num_classes: Number of classes, should be > 1. See notes for more details. average: confusion matrix values averaging schema: None, "samples", "recall", "precision". Default is None. If `average="samples"` then confusion matrix values are normalized by the number of seen samples. If `average="recall"` then confusion matrix values are normalized such that diagonal values represent class recalls. If `average="precision"` then confusion matrix values are normalized such that diagonal values represent class precisions. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: The confusion matrix is formatted such that columns are predictions and rows are targets. For example, if you were to plot the matrix, you could correctly assign to the horizontal axis the label "predicted values" and to the vertical axis the label "actual values". Note: In case of the targets `y` in `(batch_size, ...)` format, target indices between 0 and `num_classes` only contribute to the confusion matrix and others are neglected. For example, if `num_classes=20` and target index equal 255 is encountered, then it is filtered out. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 metric = ConfusionMatrix(num_classes=3) metric.attach(default_evaluator, 'cm') y_true = torch.tensor([0, 1, 0, 1, 2]) y_pred = torch.tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['cm']) .. testoutput:: 1 tensor([[1, 1, 0], [0, 2, 0], [0, 1, 0]]) If you are doing binary classification with a single output unit, you may have to transform your network output, so that you have one value for each class. E.g. you can transform your network output into a one-hot vector with: .. testcode:: 2 def binary_one_hot_output_transform(output): from ignite import utils y_pred, y = output y_pred = torch.sigmoid(y_pred).round().long() y_pred = utils.to_onehot(y_pred, 2) y = y.long() return y_pred, y metric = ConfusionMatrix(num_classes=2, output_transform=binary_one_hot_output_transform) metric.attach(default_evaluator, 'cm') y_true = torch.tensor([0, 1, 0, 1, 0]) y_pred = torch.tensor([0, 0, 1, 1, 0]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['cm']) .. testoutput:: 2 tensor([[2, 1], [1, 1]]) .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("confusion_matrix", "_num_examples") def __init__( self, num_classes: int, average: Optional[str] = None, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = True, ): if average is not None and average not in ("samples", "recall", "precision"): raise ValueError("Argument average can None or one of 'samples', 'recall', 'precision'") if num_classes <= 1: raise ValueError("Argument num_classes needs to be > 1") self.num_classes = num_classes self._num_examples = 0 self.average = average super(ConfusionMatrix, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self.confusion_matrix = torch.zeros(self.num_classes, self.num_classes, dtype=torch.int64, device=self._device) self._num_examples = 0 def _check_shape(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() < 2: raise ValueError( f"y_pred must have shape (batch_size, num_classes (currently set to {self.num_classes}), ...), " f"but given {y_pred.shape}" ) if y_pred.shape[1] != self.num_classes: raise ValueError(f"y_pred does not have correct number of classes: {y_pred.shape[1]} vs {self.num_classes}") if not (y.ndimension() + 1 == y_pred.ndimension()): raise ValueError( f"y_pred must have shape (batch_size, num_classes (currently set to {self.num_classes}), ...) " "and y must have shape of (batch_size, ...), " f"but given {y.shape} vs {y_pred.shape}." ) y_shape = y.shape y_pred_shape: Tuple[int, ...] = y_pred.shape if y.ndimension() + 1 == y_pred.ndimension(): y_pred_shape = (y_pred_shape[0],) + y_pred_shape[2:] if y_shape != y_pred_shape: raise ValueError("y and y_pred must have compatible shapes.") @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_shape(output) y_pred, y = output[0].detach(), output[1].detach() self._num_examples += y_pred.shape[0] # target is (batch_size, ...) y_pred = torch.argmax(y_pred, dim=1).flatten() y = y.flatten() target_mask = (y >= 0) & (y < self.num_classes) y = y[target_mask] y_pred = y_pred[target_mask] indices = self.num_classes * y + y_pred m = torch.bincount(indices, minlength=self.num_classes**2).reshape(self.num_classes, self.num_classes) self.confusion_matrix += m.to(self.confusion_matrix) @sync_all_reduce("confusion_matrix", "_num_examples") def compute(self) -> torch.Tensor: if self._num_examples == 0: raise NotComputableError("Confusion matrix must have at least one example before it can be computed.") if self.average: self.confusion_matrix = self.confusion_matrix.float() if self.average == "samples": return self.confusion_matrix / self._num_examples else: return self.normalize(self.confusion_matrix, self.average) return self.confusion_matrix @staticmethod def normalize(matrix: torch.Tensor, average: str) -> torch.Tensor: """Normalize given `matrix` with given `average`.""" if average == "recall": return matrix / (matrix.sum(dim=1).unsqueeze(1) + 1e-15) elif average == "precision": return matrix / (matrix.sum(dim=0) + 1e-15) else: raise ValueError("Argument average should be one of 'samples', 'recall', 'precision'") def IoU(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda: r"""Calculates Intersection over Union using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric. .. math:: \text{J}(A, B) = \frac{ \lvert A \cap B \rvert }{ \lvert A \cup B \rvert } Args: cm: instance of confusion matrix metric ignore_index: index to ignore, e.g. background index Returns: MetricsLambda Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: cm = ConfusionMatrix(num_classes=3) metric = IoU(cm) metric.attach(default_evaluator, 'iou') y_true = torch.tensor([0, 1, 0, 1, 2]) y_pred = torch.tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['iou']) .. testoutput:: tensor([0.5000, 0.5000, 0.0000], dtype=torch.float64) """ if not isinstance(cm, ConfusionMatrix): raise TypeError(f"Argument cm should be instance of ConfusionMatrix, but given {type(cm)}") if not (cm.average in (None, "samples")): raise ValueError("ConfusionMatrix should have average attribute either None or 'samples'") if ignore_index is not None: if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes): raise ValueError( f"ignore_index should be integer and in the range of [0, {cm.num_classes}), but given {ignore_index}" ) # Increase floating point precision and pass to CPU cm = cm.to(torch.double) iou: MetricsLambda = cm.diag() / (cm.sum(dim=1) + cm.sum(dim=0) - cm.diag() + 1e-15) if ignore_index is not None: ignore_idx: int = ignore_index # used due to typing issues with mympy def ignore_index_fn(iou_vector: torch.Tensor) -> torch.Tensor: if ignore_idx >= len(iou_vector): raise ValueError(f"ignore_index {ignore_idx} is larger than the length of IoU vector {len(iou_vector)}") indices = list(range(len(iou_vector))) indices.remove(ignore_idx) return iou_vector[indices] return MetricsLambda(ignore_index_fn, iou) else: return iou def mIoU(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda: """Calculates mean Intersection over Union using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric. Args: cm: instance of confusion matrix metric ignore_index: index to ignore, e.g. background index Returns: MetricsLambda Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: cm = ConfusionMatrix(num_classes=3) metric = mIoU(cm, ignore_index=0) metric.attach(default_evaluator, 'miou') y_true = torch.tensor([0, 1, 0, 1, 2]) y_pred = torch.tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['miou']) .. testoutput:: 0.24999... """ iou: MetricsLambda = IoU(cm=cm, ignore_index=ignore_index).mean() return iou def cmAccuracy(cm: ConfusionMatrix) -> MetricsLambda: """Calculates accuracy using :class:`~ignite.metrics.metric.ConfusionMatrix` metric. Args: cm: instance of confusion matrix metric Returns: MetricsLambda """ # Increase floating point precision and pass to CPU cm = cm.to(torch.double) accuracy: MetricsLambda = cm.diag().sum() / (cm.sum() + 1e-15) return accuracy def cmPrecision(cm: ConfusionMatrix, average: bool = True) -> MetricsLambda: """Calculates precision using :class:`~ignite.metrics.metric.ConfusionMatrix` metric. Args: cm: instance of confusion matrix metric average: if True metric value is averaged over all classes Returns: MetricsLambda """ # Increase floating point precision and pass to CPU cm = cm.to(torch.double) precision: MetricsLambda = cm.diag() / (cm.sum(dim=0) + 1e-15) if average: mean: MetricsLambda = precision.mean() return mean return precision def cmRecall(cm: ConfusionMatrix, average: bool = True) -> MetricsLambda: """ Calculates recall using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric. Args: cm: instance of confusion matrix metric average: if True metric value is averaged over all classes Returns: MetricsLambda """ # Increase floating point precision and pass to CPU cm = cm.to(torch.double) recall: MetricsLambda = cm.diag() / (cm.sum(dim=1) + 1e-15) if average: mean: MetricsLambda = recall.mean() return mean return recall def DiceCoefficient(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda: """Calculates Dice Coefficient for a given :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric. Args: cm: instance of confusion matrix metric ignore_index: index to ignore, e.g. background index Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: cm = ConfusionMatrix(num_classes=3) metric = DiceCoefficient(cm, ignore_index=0) metric.attach(default_evaluator, 'dice') y_true = torch.tensor([0, 1, 0, 1, 2]) y_pred = torch.tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['dice']) .. testoutput:: tensor([0.6667, 0.0000], dtype=torch.float64) """ if not isinstance(cm, ConfusionMatrix): raise TypeError(f"Argument cm should be instance of ConfusionMatrix, but given {type(cm)}") if ignore_index is not None: if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes): raise ValueError( f"ignore_index should be integer and in the range of [0, {cm.num_classes}), but given {ignore_index}" ) # Increase floating point precision and pass to CPU cm = cm.to(torch.double) dice: MetricsLambda = 2.0 * cm.diag() / (cm.sum(dim=1) + cm.sum(dim=0) + 1e-15) if ignore_index is not None: ignore_idx: int = ignore_index # used due to typing issues with mympy def ignore_index_fn(dice_vector: torch.Tensor) -> torch.Tensor: if ignore_idx >= len(dice_vector): raise ValueError( f"ignore_index {ignore_idx} is larger than the length of Dice vector {len(dice_vector)}" ) indices = list(range(len(dice_vector))) indices.remove(ignore_idx) return dice_vector[indices] return MetricsLambda(ignore_index_fn, dice) else: return dice def JaccardIndex(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda: r"""Calculates the Jaccard Index using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric. Implementation is based on :meth:`~ignite.metrics.IoU`. .. math:: \text{J}(A, B) = \frac{ \lvert A \cap B \rvert }{ \lvert A \cup B \rvert } Args: cm: instance of confusion matrix metric ignore_index: index to ignore, e.g. background index Returns: MetricsLambda Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: cm = ConfusionMatrix(num_classes=3) metric = JaccardIndex(cm, ignore_index=0) metric.attach(default_evaluator, 'jac') y_true = torch.tensor([0, 1, 0, 1, 2]) y_pred = torch.tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['jac']) .. testoutput:: tensor([0.5000, 0.0000], dtype=torch.float64) """ return IoU(cm, ignore_index) ignite-0.5.1/ignite/metrics/cosine_similarity.py000066400000000000000000000105151465426447700220460ustar00rootroot00000000000000from typing import Callable, Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["CosineSimilarity"] class CosineSimilarity(Metric): r"""Calculates the mean of the `cosine similarity `_. .. math:: \text{cosine\_similarity} = \frac{1}{N} \sum_{i=1}^N \frac{x_i \cdot y_i}{\max ( \| x_i \|_2 \| y_i \|_2 , \epsilon)} where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)``. Args: eps: a small value to avoid division by zero. Default: 1e-8 output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = CosineSimilarity() metric.attach(default_evaluator, 'cosine_similarity') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]).float() target = torch.tensor([ [1, 5, 1 ,11], [1, 3, 5, 1], [2, 3, 1, 5], [1, 2, 4, 1] ]).float() state = default_evaluator.run([[preds, target]]) print(state.metrics['cosine_similarity']) .. testoutput:: 0.5080491304397583 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, eps: float = 1e-8, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): super().__init__(output_transform, device, skip_unrolling=skip_unrolling) self.eps = eps _state_dict_all_req_keys = ("_sum_of_cos_similarities", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_cos_similarities = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred = output[0].flatten(start_dim=1).detach() y = output[1].flatten(start_dim=1).detach() cos_similarities = torch.nn.functional.cosine_similarity(y_pred, y, dim=1, eps=self.eps) self._sum_of_cos_similarities += torch.sum(cos_similarities).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_cos_similarities", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("CosineSimilarity must have at least one example before it can be computed.") return self._sum_of_cos_similarities.item() / self._num_examples ignite-0.5.1/ignite/metrics/entropy.py000066400000000000000000000106371465426447700200250ustar00rootroot00000000000000from typing import Sequence import torch import torch.nn.functional as F from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["Entropy"] class Entropy(Metric): r"""Calculates the mean of `entropy `_. .. math:: H = \frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C -p_{i,c} \log p_{i,c}, \quad p_{i,c} = \frac{\exp(z_{i,c})}{\sum_{c'=1}^C \exp(z_{i,c'})} where :math:`p_{i,c}` is the prediction probability of :math:`i`-th data belonging to the class :math:`c`. - ``update`` must receive output of the form ``(y_pred, y)`` while ``y`` is not used in this metric. - ``y_pred`` is expected to be the unnormalized logits for each class. :math:`(B, C)` (classification) or :math:`(B, C, ...)` (e.g., image segmentation) shapes are allowed. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = Entropy() metric.attach(default_evaluator, 'entropy') y_true = torch.tensor([0, 1, 2]) # not considered in the Entropy metric. y_pred = torch.tensor([ [ 0.0000, 0.6931, 1.0986], [ 1.3863, 1.6094, 1.6094], [ 0.0000, -2.3026, -2.3026] ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['entropy']) .. testoutput:: 0.8902875582377116 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_entropies", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_entropies = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred = output[0].detach() if y_pred.ndim >= 3: num_classes = y_pred.shape[1] # (B, C, ...) -> (B, ..., C) -> (B*..., C) # regarding as B*... predictions y_pred = y_pred.movedim(1, -1).reshape(-1, num_classes) elif y_pred.ndim == 1: raise ValueError(f"y_pred must be in the shape of (B, C) or (B, C, ...), got {y_pred.shape}.") prob = F.softmax(y_pred, dim=1) log_prob = F.log_softmax(y_pred, dim=1) self._update(prob, log_prob) def _update(self, prob: torch.Tensor, log_prob: torch.Tensor) -> None: entropy_sum = -torch.sum(prob * log_prob) self._sum_of_entropies += entropy_sum.to(self._device) self._num_examples += prob.shape[0] @sync_all_reduce("_sum_of_entropies", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("Entropy must have at least one example before it can be computed.") return self._sum_of_entropies.item() / self._num_examples ignite-0.5.1/ignite/metrics/epoch_metric.py000066400000000000000000000156121465426447700207640ustar00rootroot00000000000000import warnings from typing import Callable, cast, List, Optional, Tuple, Union import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced __all__ = ["EpochMetric"] class EpochMetric(Metric): """Class for metrics that should be computed on the entire output history of a model. Model's output and targets are restricted to be of shape ``(batch_size, n_targets)``. Output datatype should be `float32`. Target datatype should be `long` for classification and `float` for regression. .. warning:: Current implementation stores all input data (output and target) in as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger than available RAM. In distributed configuration, all stored data (output and target) is mutually collected across all processes using all gather collective operation. This can potentially lead to a memory error. Compute method executes ``compute_fn`` on zero rank process only and final result is broadcasted to all processes. - ``update`` must receive output of the form ``(y_pred, y)``. Args: compute_fn: a callable which receives two tensors as the `predictions` and `targets` and returns a scalar. Input tensors will be on specified ``device`` (see arg below). output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: if True, ``compute_fn`` is run on the first batch of data to ensure there are no issues. If issues exist, user is warned that there might be an issue with the ``compute_fn``. Default, True. device: optional device specification for internal storage. Example: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: def mse_fn(y_preds, y_targets): return torch.mean(((y_preds - y_targets.type_as(y_preds)) ** 2)).item() metric = EpochMetric(mse_fn) metric.attach(default_evaluator, "mse") y_true = torch.tensor([0, 1, 2, 3, 4, 5]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["mse"]) .. testoutput:: 0.5729... Warnings: EpochMetricWarning: User is warned that there are issues with ``compute_fn`` on a batch of data processed. To disable the warning, set ``check_compute_fn=False``. .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_predictions", "_targets") def __init__( self, compute_fn: Callable[[torch.Tensor, torch.Tensor], float], output_transform: Callable = lambda x: x, check_compute_fn: bool = True, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: if not callable(compute_fn): raise TypeError("Argument compute_fn should be callable.") self.compute_fn = compute_fn self._check_compute_fn = check_compute_fn super(EpochMetric, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self._predictions: List[torch.Tensor] = [] self._targets: List[torch.Tensor] = [] self._result: Optional[float] = None def _check_shape(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output if y_pred.ndimension() not in (1, 2): raise ValueError("Predictions should be of shape (batch_size, n_targets) or (batch_size, ).") if y.ndimension() not in (1, 2): raise ValueError("Targets should be of shape (batch_size, n_targets) or (batch_size, ).") def _check_type(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output if len(self._predictions) < 1: return dtype_preds = self._predictions[-1].dtype if dtype_preds != y_pred.dtype: raise ValueError( f"Incoherent types between input y_pred and stored predictions: {dtype_preds} vs {y_pred.dtype}" ) dtype_targets = self._targets[-1].dtype if dtype_targets != y.dtype: raise ValueError(f"Incoherent types between input y and stored targets: {dtype_targets} vs {y.dtype}") @reinit__is_reduced def update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: self._check_shape(output) y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() == 2 and y_pred.shape[1] == 1: y_pred = y_pred.squeeze(dim=-1) if y.ndimension() == 2 and y.shape[1] == 1: y = y.squeeze(dim=-1) y_pred = y_pred.clone().to(self._device) y = y.clone().to(self._device) self._check_type((y_pred, y)) self._predictions.append(y_pred) self._targets.append(y) # Check once the signature and execution of compute_fn if len(self._predictions) == 1 and self._check_compute_fn: try: self.compute_fn(self._predictions[0], self._targets[0]) except Exception as e: warnings.warn(f"Probably, there can be a problem with `compute_fn`:\n {e}.", EpochMetricWarning) def compute(self) -> float: if len(self._predictions) < 1 or len(self._targets) < 1: raise NotComputableError("EpochMetric must have at least one example before it can be computed.") if self._result is None: _prediction_tensor = torch.cat(self._predictions, dim=0) _target_tensor = torch.cat(self._targets, dim=0) ws = idist.get_world_size() if ws > 1: # All gather across all processes _prediction_tensor = cast(torch.Tensor, idist.all_gather(_prediction_tensor)) _target_tensor = cast(torch.Tensor, idist.all_gather(_target_tensor)) self._result = 0.0 if idist.get_rank() == 0: # Run compute_fn on zero rank only self._result = self.compute_fn(_prediction_tensor, _target_tensor) if ws > 1: # broadcast result to all processes self._result = cast(float, idist.broadcast(self._result, src=0)) return self._result class EpochMetricWarning(UserWarning): pass ignite-0.5.1/ignite/metrics/fbeta.py000066400000000000000000000144341465426447700174050ustar00rootroot00000000000000from typing import Callable, Optional, Union import torch from ignite.metrics.metrics_lambda import MetricsLambda from ignite.metrics.precision import Precision from ignite.metrics.recall import Recall __all__ = ["Fbeta"] def Fbeta( beta: float, average: bool = True, precision: Optional[Precision] = None, recall: Optional[Recall] = None, output_transform: Optional[Callable] = None, device: Union[str, torch.device] = torch.device("cpu"), ) -> MetricsLambda: r"""Calculates F-beta score. .. math:: F_\beta = \left( 1 + \beta^2 \right) * \frac{ \text{precision} * \text{recall} } { \left( \beta^2 * \text{precision} \right) + \text{recall} } where :math:`\beta` is a positive real factor. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...). - `y` must be in the following shape (batch_size, ...). Args: beta: weight of precision in harmonic mean average: if True, F-beta score is computed as the unweighted average (across all classes in multiclass case), otherwise, returns a tensor with F-beta score for each class in multiclass case. precision: precision object metric with `average=False` to compute F-beta score recall: recall object metric with `average=False` to compute F-beta score output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. It is used only if precision or recall are not provided. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Returns: MetricsLambda, F-beta metric Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: Binary case .. testcode:: 1 P = Precision(average=False) R = Recall(average=False) metric = Fbeta(beta=1.0, precision=P, recall=R) metric.attach(default_evaluator, "f-beta") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["f-beta"]) .. testoutput:: 1 0.7499... Multiclass case .. testcode:: 2 P = Precision(average=False) R = Recall(average=False) metric = Fbeta(beta=1.0, precision=P, recall=R) metric.attach(default_evaluator, "f-beta") y_true = torch.tensor([2, 0, 2, 1, 0, 1]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288], [0.7748, 0.9542, 0.8573], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["f-beta"]) .. testoutput:: 2 0.5222... F-beta can be computed for each class as done below: .. testcode:: 3 P = Precision(average=False) R = Recall(average=False) metric = Fbeta(beta=1.0, average=False, precision=P, recall=R) metric.attach(default_evaluator, "f-beta") y_true = torch.tensor([2, 0, 2, 1, 0, 1]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288], [0.7748, 0.9542, 0.8573], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["f-beta"]) .. testoutput:: 3 tensor([0.5000, 0.6667, 0.4000], dtype=torch.float64) The elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of predictions can be done as below: .. testcode:: 4 def thresholded_output_transform(output): y_pred, y = output y_pred = torch.round(y_pred) return y_pred, y P = Precision(average=False, output_transform=thresholded_output_transform) R = Recall(average=False, output_transform=thresholded_output_transform) metric = Fbeta(beta=1.0, precision=P, recall=R) metric.attach(default_evaluator, "f-beta") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["f-beta"]) .. testoutput:: 4 0.7499... """ if not (beta > 0): raise ValueError(f"Beta should be a positive integer, but given {beta}") if precision is not None and output_transform is not None: raise ValueError("If precision argument is provided, output_transform should be None") if recall is not None and output_transform is not None: raise ValueError("If recall argument is provided, output_transform should be None") if precision is None: precision = Precision( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif precision._average: raise ValueError("Input precision metric should have average=False") if recall is None: recall = Recall( output_transform=(lambda x: x) if output_transform is None else output_transform, # type: ignore[arg-type] average=False, device=device, ) elif recall._average: raise ValueError("Input recall metric should have average=False") fbeta = (1.0 + beta**2) * precision * recall / (beta**2 * precision + recall + 1e-15) if average: fbeta = fbeta.mean().item() return fbeta ignite-0.5.1/ignite/metrics/frequency.py000066400000000000000000000077051465426447700203300ustar00rootroot00000000000000from typing import Callable, Union import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers.timing import Timer from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce class Frequency(Metric): """Provides metrics for the number of examples processed per second. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. code-block:: python # Compute number of tokens processed wps_metric = Frequency(output_transform=lambda x: x['ntokens']) wps_metric.attach(trainer, name='wps') # Logging with TQDM ProgressBar(persist=True).attach(trainer, metric_names=['wps']) # Progress bar will look like # Epoch [2/10]: [12/24] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ , wps=400 [00:17<1:23] To compute examples processed per second every 50th iteration: .. code-block:: python # Compute number of tokens processed wps_metric = Frequency(output_transform=lambda x: x['ntokens']) wps_metric.attach(trainer, name='wps', event_name=Events.ITERATION_COMPLETED(every=50)) # Logging with TQDM ProgressBar(persist=True).attach(trainer, metric_names=['wps']) # Progress bar will look like # Epoch [2/10]: [50/100] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ , wps=400 [00:17<00:35] .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: super(Frequency, self).__init__(output_transform=output_transform, device=device, skip_unrolling=skip_unrolling) @reinit__is_reduced def reset(self) -> None: self._timer = Timer() self._acc = 0 self._n = 0 self._elapsed = 0.0 super(Frequency, self).reset() # type: ignore @reinit__is_reduced def update(self, output: int) -> None: self._acc += output self._n = self._acc self._elapsed = self._timer.value() @sync_all_reduce("_n", "_elapsed") def compute(self) -> float: time_divisor = 1.0 if idist.get_world_size() > 1: time_divisor *= idist.get_world_size() # Returns the average processed objects per second across all workers return self._n / self._elapsed * time_divisor def completed(self, engine: Engine, name: str) -> None: engine.state.metrics[name] = int(self.compute()) # TODO: see issue https://github.com/pytorch/ignite/issues/1405 def attach( # type: ignore self, engine: Engine, name: str, event_name: Events = Events.ITERATION_COMPLETED ) -> None: engine.add_event_handler(Events.EPOCH_STARTED, self.started) engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed) engine.add_event_handler(event_name, self.completed, name) ignite-0.5.1/ignite/metrics/gan/000077500000000000000000000000001465426447700165115ustar00rootroot00000000000000ignite-0.5.1/ignite/metrics/gan/__init__.py000066400000000000000000000002251465426447700206210ustar00rootroot00000000000000from ignite.metrics.gan.fid import FID from ignite.metrics.gan.inception_score import InceptionScore __all__ = [ "InceptionScore", "FID", ] ignite-0.5.1/ignite/metrics/gan/fid.py000066400000000000000000000234121465426447700176270ustar00rootroot00000000000000import warnings from typing import Callable, Optional, Sequence, Union import torch from packaging.version import Version from ignite.metrics.gan.utils import _BaseInceptionMetric, InceptionModel from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce __all__ = [ "FID", ] if Version(torch.__version__) <= Version("1.7.0"): torch_outer = torch.ger else: torch_outer = torch.outer def fid_score( mu1: torch.Tensor, mu2: torch.Tensor, sigma1: torch.Tensor, sigma2: torch.Tensor, eps: float = 1e-6 ) -> float: try: import numpy as np except ImportError: raise ModuleNotFoundError("fid_score requires numpy to be installed.") try: import scipy.linalg except ImportError: raise ModuleNotFoundError("fid_score requires scipy to be installed.") mu1, mu2 = mu1.cpu(), mu2.cpu() sigma1, sigma2 = sigma1.cpu(), sigma2.cpu() diff = mu1 - mu2 # Product might be almost singular covmean, _ = scipy.linalg.sqrtm(sigma1.mm(sigma2), disp=False) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) if not np.isfinite(covmean).all(): tr_covmean = np.sum(np.sqrt(((np.diag(sigma1) * eps) * (np.diag(sigma2) * eps)) / (eps * eps))) return float(diff.dot(diff).item() + torch.trace(sigma1) + torch.trace(sigma2) - 2 * tr_covmean) class FID(_BaseInceptionMetric): r"""Calculates Frechet Inception Distance. .. math:: \text{FID} = |\mu_{1} - \mu_{2}| + \text{Tr}(\sigma_{1} + \sigma_{2} - {2}\sqrt{\sigma_1*\sigma_2}) where :math:`\mu_1` and :math:`\sigma_1` refer to the mean and covariance of the train data and :math:`\mu_2` and :math:`\sigma_2` refer to the mean and covariance of the test data. More details can be found in `Heusel et al. 2017`__ __ https://arxiv.org/pdf/1706.08500.pdf In addition, a faster and online computation approach can be found in `Mathiasen et al. 2020`__ __ https://arxiv.org/pdf/2009.14075.pdf Remark: This implementation is inspired by `pytorch_fid` package which can be found `here`__ __ https://github.com/mseitzer/pytorch-fid .. note:: The default Inception model requires the `torchvision` module to be installed. FID also requires `scipy` library for matrix square root calculations. Args: num_features: number of features predicted by the model or the reduced feature vector of the image. Default value is 1000. feature_extractor: a torch Module for extracting the features from the input data. It returns a tensor of shape (batch_size, num_features). If neither ``num_features`` nor ``feature_extractor`` are defined, by default we use an ImageNet pretrained Inception Model and use model's output logits as features. If only ``num_features`` is defined but ``feature_extractor`` is not defined, ``feature_extractor`` is assigned Identity Function. Please note that the model will be implicitly converted to device mentioned in the ``device`` argument. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = FID(num_features=1, feature_extractor=default_model) metric.attach(default_evaluator, "fid") y_true = torch.ones(10, 4) y_pred = torch.ones(10, 4) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["fid"]) .. testoutput:: 0.0 .. note:: The default `torchvision` model used is InceptionV3 pretrained on ImageNet. This can lead to differences in results with `pytorch_fid`. To find comparable results, the following model wrapper should be used: .. code:: import torch.nn as nn # wrapper class as feature_extractor class WrapperInceptionV3(nn.Module): def __init__(self, fid_incv3): super().__init__() self.fid_incv3 = fid_incv3 @torch.no_grad() def forward(self, x): y = self.fid_incv3(x) y = y[0] y = y[:, :, 0, 0] return y # use cpu rather than cuda to get comparable results device = "cpu" # pytorch_fid model dims = 2048 block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] model = InceptionV3([block_idx]).to(device) # wrapper model to pytorch_fid model wrapper_model = WrapperInceptionV3(model) wrapper_model.eval(); # comparable metric pytorch_fid_metric = FID(num_features=dims, feature_extractor=wrapper_model) Important, `pytorch_fid` results depend on the batch size if the device is `cuda`. .. versionadded:: 0.4.6 """ _state_dict_all_req_keys = ("_num_examples", "_train_total", "_test_total", "_train_sigma", "_test_sigma") def __init__( self, num_features: Optional[int] = None, feature_extractor: Optional[torch.nn.Module] = None, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ) -> None: try: import numpy as np # noqa: F401 except ImportError: raise ModuleNotFoundError("This module requires numpy to be installed.") try: import scipy # noqa: F401 except ImportError: raise ModuleNotFoundError("This module requires scipy to be installed.") if num_features is None and feature_extractor is None: num_features = 1000 feature_extractor = InceptionModel(return_features=False, device=device) self._eps = 1e-6 super(FID, self).__init__( num_features=num_features, feature_extractor=feature_extractor, output_transform=output_transform, device=device, ) @staticmethod def _online_update(features: torch.Tensor, total: torch.Tensor, sigma: torch.Tensor) -> None: total += features sigma += torch_outer(features, features) def _get_covariance(self, sigma: torch.Tensor, total: torch.Tensor) -> torch.Tensor: r""" Calculates covariance from mean and sum of products of variables """ sub_matrix = torch_outer(total, total) sub_matrix = sub_matrix / self._num_examples return (sigma - sub_matrix) / (self._num_examples - 1) @reinit__is_reduced def reset(self) -> None: self._train_sigma = torch.zeros( (self._num_features, self._num_features), dtype=torch.float64, device=self._device ) self._train_total = torch.zeros(self._num_features, dtype=torch.float64, device=self._device) self._test_sigma = torch.zeros( (self._num_features, self._num_features), dtype=torch.float64, device=self._device ) self._test_total = torch.zeros(self._num_features, dtype=torch.float64, device=self._device) self._num_examples: int = 0 super(FID, self).reset() # type: ignore @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: train, test = output train_features = self._extract_features(train) test_features = self._extract_features(test) if train_features.shape[0] != test_features.shape[0] or train_features.shape[1] != test_features.shape[1]: raise ValueError( f""" Number of Training Features and Testing Features should be equal ({train_features.shape} != {test_features.shape}) """ ) # Updates the mean and covariance for the train features for features in train_features: self._online_update(features, self._train_total, self._train_sigma) # Updates the mean and covariance for the test features for features in test_features: self._online_update(features, self._test_total, self._test_sigma) self._num_examples += train_features.shape[0] @sync_all_reduce("_num_examples", "_train_total", "_test_total", "_train_sigma", "_test_sigma") def compute(self) -> float: fid = fid_score( mu1=self._train_total / self._num_examples, mu2=self._test_total / self._num_examples, sigma1=self._get_covariance(self._train_sigma, self._train_total), sigma2=self._get_covariance(self._test_sigma, self._test_total), eps=self._eps, ) if torch.isnan(torch.tensor(fid)) or torch.isinf(torch.tensor(fid)): warnings.warn("The product of covariance of train and test features is out of bounds.") return fid ignite-0.5.1/ignite/metrics/gan/inception_score.py000066400000000000000000000127151465426447700222540ustar00rootroot00000000000000from typing import Callable, Optional, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.gan.utils import _BaseInceptionMetric, InceptionModel # These decorators helps with distributed settings from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce __all__ = ["InceptionScore"] class InceptionScore(_BaseInceptionMetric): r"""Calculates Inception Score. .. math:: \text{IS(G)} = \exp(\frac{1}{N}\sum_{i=1}^{N} D_{KL} (p(y|x^{(i)} \parallel \hat{p}(y)))) where :math:`p(y|x)` is the conditional probability of image being the given object and :math:`p(y)` is the marginal probability that the given image is real, `G` refers to the generated image and :math:`D_{KL}` refers to KL Divergence of the above mentioned probabilities. More details can be found in `Barratt et al. 2018`__. __ https://arxiv.org/pdf/1801.01973.pdf Args: num_features: number of features predicted by the model or number of classes of the model. Default value is 1000. feature_extractor: a torch Module for predicting the probabilities from the input data. It returns a tensor of shape (batch_size, num_features). If neither ``num_features`` nor ``feature_extractor`` are defined, by default we use an ImageNet pretrained Inception Model. If only ``num_features`` is defined but ``feature_extractor`` is not defined, ``feature_extractor`` is assigned Identity Function. Please note that the class object will be implicitly converted to device mentioned in the ``device`` argument. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``y_pred``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. .. note:: The default Inception model requires the `torchvision` module to be installed. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. code-block:: python metric = InceptionScore() metric.attach(default_evaluator, "is") y = torch.rand(10, 3, 299, 299) state = default_evaluator.run([y]) print(state.metrics["is"]) .. testcode:: metric = InceptionScore(num_features=1, feature_extractor=default_model) metric.attach(default_evaluator, "is") y = torch.zeros(10, 4) state = default_evaluator.run([y]) print(state.metrics["is"]) .. testoutput:: 1.0 .. versionadded:: 0.4.6 """ _state_dict_all_req_keys = ("_num_examples", "_prob_total", "_total_kl_d") def __init__( self, num_features: Optional[int] = None, feature_extractor: Optional[torch.nn.Module] = None, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ) -> None: if num_features is None and feature_extractor is None: num_features = 1000 feature_extractor = InceptionModel(return_features=False, device=device) self._eps = 1e-16 super(InceptionScore, self).__init__( num_features=num_features, feature_extractor=feature_extractor, output_transform=output_transform, device=device, ) @reinit__is_reduced def reset(self) -> None: self._num_examples = 0 self._prob_total = torch.zeros(self._num_features, dtype=torch.float64, device=self._device) self._total_kl_d = torch.zeros(self._num_features, dtype=torch.float64, device=self._device) super(InceptionScore, self).reset() # type: ignore @reinit__is_reduced def update(self, output: torch.Tensor) -> None: probabilities = self._extract_features(output) prob_sum = torch.sum(probabilities, 0, dtype=torch.float64) log_prob = torch.log(probabilities + self._eps) if log_prob.dtype != probabilities.dtype: log_prob = log_prob.to(probabilities) kl_sum = torch.sum(probabilities * log_prob, 0, dtype=torch.float64) self._num_examples += probabilities.shape[0] self._prob_total += prob_sum self._total_kl_d += kl_sum @sync_all_reduce("_num_examples", "_prob_total", "_total_kl_d") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("InceptionScore must have at least one example before it can be computed.") mean_probs = self._prob_total / self._num_examples log_mean_probs = torch.log(mean_probs + self._eps) if log_mean_probs.dtype != self._prob_total.dtype: log_mean_probs = log_mean_probs.to(self._prob_total) excess_entropy = self._prob_total * log_mean_probs avg_kl_d = torch.sum(self._total_kl_d - excess_entropy) / self._num_examples return torch.exp(avg_kl_d).item() ignite-0.5.1/ignite/metrics/gan/utils.py000066400000000000000000000076241465426447700202340ustar00rootroot00000000000000from typing import Callable, Optional, Union import torch from packaging.version import Version from ignite.metrics.metric import Metric class InceptionModel(torch.nn.Module): r"""Inception Model pre-trained on the ImageNet Dataset. Args: return_features: set it to `True` if you want the model to return features from the last pooling layer instead of prediction probabilities. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. """ def __init__(self, return_features: bool, device: Union[str, torch.device] = "cpu") -> None: try: import torchvision from torchvision import models except ImportError: raise ModuleNotFoundError("This module requires torchvision to be installed.") super(InceptionModel, self).__init__() self._device = device if Version(torchvision.__version__) < Version("0.13.0"): model_kwargs = {"pretrained": True} else: model_kwargs = {"weights": models.Inception_V3_Weights.DEFAULT} self.model = models.inception_v3(**model_kwargs).to(self._device) if return_features: self.model.fc = torch.nn.Identity() else: self.model.fc = torch.nn.Sequential(self.model.fc, torch.nn.Softmax(dim=1)) self.model.eval() @torch.no_grad() def forward(self, data: torch.Tensor) -> torch.Tensor: if data.dim() != 4: raise ValueError(f"Inputs should be a tensor of dim 4, got {data.dim()}") if data.shape[1] != 3: raise ValueError(f"Inputs should be a tensor with 3 channels, got {data.shape}") if data.device != torch.device(self._device): data = data.to(self._device) return self.model(data) class _BaseInceptionMetric(Metric): def __init__( self, num_features: Optional[int], feature_extractor: Optional[torch.nn.Module], output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ) -> None: if num_features is None: raise ValueError("Argument num_features must be provided, if feature_extractor is specified.") if feature_extractor is None: feature_extractor = torch.nn.Identity() if num_features <= 0: raise ValueError(f"Argument num_features must be greater to zero, got: {num_features}") if not isinstance(feature_extractor, torch.nn.Module): raise TypeError( f"Argument feature_extractor must be of type torch.nn.Module, got {type(self._feature_extractor)}" ) self._num_features = num_features self._feature_extractor = feature_extractor.to(device) super(_BaseInceptionMetric, self).__init__(output_transform=output_transform, device=device) def _check_feature_shapes(self, samples: torch.Tensor) -> None: if samples.dim() != 2: raise ValueError(f"feature_extractor output must be a tensor of dim 2, got: {samples.dim()}") if samples.shape[0] == 0: raise ValueError(f"Batch size should be greater than one, got: {samples.shape[0]}") if samples.shape[1] != self._num_features: raise ValueError( f"num_features returned by feature_extractor should be {self._num_features}, got: {samples.shape[1]}" ) def _extract_features(self, inputs: torch.Tensor) -> torch.Tensor: inputs = inputs.detach() if inputs.device != torch.device(self._device): inputs = inputs.to(self._device) with torch.no_grad(): outputs = self._feature_extractor(inputs).to(self._device, dtype=torch.float64) self._check_feature_shapes(outputs) return outputs ignite-0.5.1/ignite/metrics/gpu_info.py000066400000000000000000000101541465426447700201250ustar00rootroot00000000000000# -*- coding: utf-8 -*- import warnings from typing import Any, Dict, List, Tuple, Union import torch from ignite.engine import Engine, EventEnum, Events from ignite.metrics.metric import Metric class GpuInfo(Metric): """Provides GPU information: a) used memory percentage, b) gpu utilization percentage values as Metric on each iterations. .. Note :: In case if gpu utilization reports "N/A" on a given GPU, corresponding metric value is not set. Examples: .. code-block:: python # Default GPU measurements GpuInfo().attach(trainer, name='gpu') # metric names are 'gpu:X mem(%)', 'gpu:X util(%)' # Logging with TQDM ProgressBar(persist=True).attach(trainer, metric_names=['gpu:0 mem(%)', 'gpu:0 util(%)']) # Progress bar will looks like # Epoch [2/10]: [12/24] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ , gpu:0 mem(%)=79, gpu:0 util(%)=59 [00:17<1:23] # Logging with Tensorboard tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names='all'), event_name=Events.ITERATION_COMPLETED) """ def __init__(self) -> None: try: from pynvml.smi import nvidia_smi except ImportError: raise ModuleNotFoundError( "This contrib module requires pynvml to be installed. " "Please install it with command: \n pip install pynvml" ) # Let's check available devices if not torch.cuda.is_available(): raise RuntimeError("This contrib module requires available GPU") # Let it fail if no libnvidia drivers or NMVL library found self.nvsmi = nvidia_smi.getInstance() super(GpuInfo, self).__init__() def reset(self) -> None: pass def update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: pass def compute(self) -> List[Dict[str, Any]]: data: Dict[str, List[Dict[str, Any]]] = self.nvsmi.DeviceQuery("memory.used, memory.total, utilization.gpu") if len(data) == 0 or ("gpu" not in data): warnings.warn("No GPU information available") return [] return data["gpu"] def completed(self, engine: Engine, name: str) -> None: data = self.compute() if len(data) < 1: warnings.warn("No GPU information available") return for i, data_by_rank in enumerate(data): mem_name = f"{name}:{i} mem(%)" if "fb_memory_usage" not in data_by_rank: warnings.warn(f"No GPU memory usage information available in {data_by_rank}") continue mem_report = data_by_rank["fb_memory_usage"] if not ("used" in mem_report and "total" in mem_report): warnings.warn( "GPU memory usage information does not provide used/total " f"memory consumption information in {mem_report}" ) continue engine.state.metrics[mem_name] = int(mem_report["used"] * 100.0 / mem_report["total"]) for i, data_by_rank in enumerate(data): util_name = f"{name}:{i} util(%)" if "utilization" not in data_by_rank: warnings.warn(f"No GPU utilization information available in {data_by_rank}") continue util_report = data_by_rank["utilization"] if not ("gpu_util" in util_report): warnings.warn(f"GPU utilization information does not provide 'gpu_util' information in {util_report}") continue try: engine.state.metrics[util_name] = int(util_report["gpu_util"]) except ValueError: # Do not set GPU utilization information pass # TODO: see issue https://github.com/pytorch/ignite/issues/1405 def attach( # type: ignore self, engine: Engine, name: str = "gpu", event_name: Union[str, EventEnum] = Events.ITERATION_COMPLETED ) -> None: engine.add_event_handler(event_name, self.completed, name) ignite-0.5.1/ignite/metrics/js_divergence.py000066400000000000000000000113461465426447700211320ustar00rootroot00000000000000import torch import torch.nn.functional as F from packaging.version import Version from ignite.exceptions import NotComputableError from ignite.metrics.kl_divergence import KLDivergence from ignite.metrics.metric import sync_all_reduce __all__ = ["JSDivergence"] TORCH_VERSION_GE_160 = Version(torch.__version__) >= Version("1.6.0") class JSDivergence(KLDivergence): r"""Calculates the mean of `Jensen-Shannon (JS) divergence `_. .. math:: \begin{align*} D_\text{JS}(\mathbf{p}_i \| \mathbf{q}_i) &= \frac{1}{2} D_\text{KL}(\mathbf{p}_i \| \mathbf{m}_i) + \frac{1}{2} D_\text{KL}(\mathbf{q}_i \| \mathbf{m}_i), \\ \mathbf{m}_i &= \frac{1}{2}(\mathbf{p}_i + \mathbf{q}_i), \\ D_\text{KL}(\mathbf{p}_i \| \mathbf{q}_i) &= \sum_{c=1}^C p_{i,c} \log \frac{p_{i,c}}{q_{i,c}}. \end{align*} where :math:`\mathbf{p}_i` and :math:`\mathbf{q}_i` are the ground truth and prediction probability tensors, and :math:`D_\text{KL}` is the KL-divergence. - ``update`` must receive output of the form ``(y_pred, y)``. - ``y_pred`` and ``y`` are expected to be the unnormalized logits for each class. :math:`(B, C)` (classification) or :math:`(B, C, ...)` (e.g., image segmentation) shapes are allowed. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = JSDivergence() metric.attach(default_evaluator, 'js-div') y_true = torch.tensor([ [ 0.0000, -2.3026, -2.3026], [ 1.3863, 1.6094, 1.6094], [ 0.0000, 0.6931, 1.0986] ]) y_pred = torch.tensor([ [ 0.0000, 0.6931, 1.0986], [ 1.3863, 1.6094, 1.6094], [ 0.0000, -2.3026, -2.3026] ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['js-div']) .. testoutput:: 0.16266516844431558 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def _update(self, y_pred: torch.Tensor, y: torch.Tensor) -> None: y_pred_prob = F.softmax(y_pred, dim=1) y_prob = F.softmax(y, dim=1) m_prob = (y_pred_prob + y_prob) / 2 m_log = m_prob.log() if TORCH_VERSION_GE_160: # log_target option can be used from 1.6.0 y_pred_log = F.log_softmax(y_pred, dim=1) y_log = F.log_softmax(y, dim=1) self._sum_of_kl += ( F.kl_div(m_log, y_pred_log, log_target=True, reduction="sum") + F.kl_div(m_log, y_log, log_target=True, reduction="sum") ).to(self._device) else: # y_pred and y are expected to be probabilities self._sum_of_kl += ( F.kl_div(m_log, y_pred_prob, reduction="sum") + F.kl_div(m_log, y_prob, reduction="sum") ).to(self._device) @sync_all_reduce("_sum_of_kl", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("JSDivergence must have at least one example before it can be computed.") return self._sum_of_kl.item() / (self._num_examples * 2) ignite-0.5.1/ignite/metrics/kl_divergence.py000066400000000000000000000120401465426447700211140ustar00rootroot00000000000000from typing import Sequence import torch import torch.nn.functional as F from packaging.version import Version from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["KLDivergence"] TORCH_VERSION_GE_160 = Version(torch.__version__) >= Version("1.6.0") class KLDivergence(Metric): r"""Calculates the mean of `Kullback-Leibler (KL) divergence `_. .. math:: D_\text{KL}(\mathbf{p}_i \| \mathbf{q}_i) = \sum_{c=1}^C p_{i,c} \log \frac{p_{i,c}}{q_{i,c}} where :math:`\mathbf{p}_i` and :math:`\mathbf{q}_i` are the ground truth and prediction probability tensors. - ``update`` must receive output of the form ``(y_pred, y)``. - ``y_pred`` and ``y`` are expected to be the unnormalized logits for each class. :math:`(B, C)` (classification) or :math:`(B, C, ...)` (e.g., image segmentation) shapes are allowed. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = KLDivergence() metric.attach(default_evaluator, 'kl-div') y_true = torch.tensor([ [ 0.0000, -2.3026, -2.3026], [ 1.3863, 1.6094, 1.6094], [ 0.0000, 0.6931, 1.0986] ]) y_pred = torch.tensor([ [ 0.0000, 0.6931, 1.0986], [ 1.3863, 1.6094, 1.6094], [ 0.0000, -2.3026, -2.3026] ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['kl-div']) .. testoutput:: 0.7220296859741211 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_kl", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_kl = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if y_pred.shape != y.shape: raise ValueError(f"y_pred and y must be in the same shape, got {y_pred.shape} != {y.shape}.") if y_pred.ndim >= 3: num_classes = y_pred.shape[1] # (B, C, ...) -> (B, ..., C) -> (B*..., C) # regarding as B*... predictions y_pred = y_pred.movedim(1, -1).reshape(-1, num_classes) y = y.movedim(1, -1).reshape(-1, num_classes) elif y_pred.ndim == 1: raise ValueError(f"y_pred must be in the shape of (B, C) or (B, C, ...), got {y_pred.shape}.") self._num_examples += y_pred.shape[0] self._update(y_pred, y) def _update(self, y_pred: torch.Tensor, y: torch.Tensor) -> None: y_pred = F.log_softmax(y_pred, dim=1) if TORCH_VERSION_GE_160: # log_target option can be used from 1.6.0 y = F.log_softmax(y, dim=1) kl_sum = F.kl_div(y_pred, y, log_target=True, reduction="sum") else: # y is expected to be a probability tensor y = F.softmax(y, dim=1) kl_sum = F.kl_div(y_pred, y, reduction="sum") self._sum_of_kl += kl_sum.to(self._device) @sync_all_reduce("_sum_of_kl", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("KLDivergence must have at least one example before it can be computed.") return self._sum_of_kl.item() / self._num_examples ignite-0.5.1/ignite/metrics/loss.py000066400000000000000000000113221465426447700172750ustar00rootroot00000000000000from typing import Callable, cast, Dict, Sequence, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["Loss"] class Loss(Metric): """ Calculates the average loss according to the passed loss_fn. Args: loss_fn: a callable taking a prediction tensor, a target tensor, optionally other arguments, and returns the average loss over all observations in the batch. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. The output is expected to be a tuple `(prediction, target)` or (prediction, target, kwargs) where kwargs is a dictionary of extra keywords arguments. If extra keywords arguments are provided they are passed to `loss_fn`. batch_size: a callable taking a target tensor that returns the first dimension size (usually the batch size). device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether input should be unrolled or not before it is passed to to loss_fn. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Attributes: required_output_keys: dictionary defines required keys to be found in ``engine.state.output`` if the latter is a dictionary. Default, ``("y_pred", "y", "criterion_kwargs")``. This is useful when the criterion function requires additional arguments, which can be passed using ``criterion_kwargs``. See an example below. Examples: Let's implement a Loss metric that requires ``x``, ``y_pred``, ``y`` and ``criterion_kwargs`` as input for ``criterion`` function. In the example below we show how to setup standard metric like Accuracy and the Loss metric using an ``evaluator`` created with :meth:`~ignite.engine.create_supervised_evaluator` method. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: model = default_model criterion = nn.NLLLoss() metric = Loss(criterion) metric.attach(default_evaluator, 'loss') y_pred = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]]) y_true = torch.tensor([2, 2]).long() state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['loss']) .. testoutput:: -0.3499999... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ required_output_keys = ("y_pred", "y", "criterion_kwargs") _state_dict_all_req_keys = ("_sum", "_num_examples") def __init__( self, loss_fn: Callable, output_transform: Callable = lambda x: x, batch_size: Callable = len, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): super(Loss, self).__init__(output_transform, device=device, skip_unrolling=skip_unrolling) self._loss_fn = loss_fn self._batch_size = batch_size @reinit__is_reduced def reset(self) -> None: self._sum = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[Union[torch.Tensor, Dict]]) -> None: if len(output) == 2: y_pred, y = cast(Tuple[torch.Tensor, torch.Tensor], output) kwargs: Dict = {} else: y_pred, y, kwargs = cast(Tuple[torch.Tensor, torch.Tensor, Dict], output) average_loss = self._loss_fn(y_pred, y, **kwargs).detach() if len(average_loss.shape) != 0: raise ValueError("loss_fn did not return the average loss.") n = self._batch_size(y) self._sum += average_loss.to(self._device) * n self._num_examples += n @sync_all_reduce("_sum", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("Loss must have at least one example before it can be computed.") return self._sum.item() / self._num_examples ignite-0.5.1/ignite/metrics/maximum_mean_discrepancy.py000066400000000000000000000144641465426447700233700ustar00rootroot00000000000000from typing import Callable, Sequence import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["MaximumMeanDiscrepancy"] class MaximumMeanDiscrepancy(Metric): r"""Calculates the mean of `maximum mean discrepancy (MMD) `_. .. math:: \begin{align*} \text{MMD}^2 (P,Q) &= \underset{\| f \| \leq 1}{\text{sup}} | \mathbb{E}_{X\sim P}[f(X)] - \mathbb{E}_{Y\sim Q}[f(Y)] |^2 \\ &\approx \frac{1}{B(B-1)} \sum_{i=1}^B \sum_{\substack{j=1 \\ j\neq i}}^B k(\mathbf{x}_i,\mathbf{x}_j) -\frac{2}{B^2}\sum_{i=1}^B \sum_{j=1}^B k(\mathbf{x}_i,\mathbf{y}_j) + \frac{1}{B(B-1)} \sum_{i=1}^B \sum_{\substack{j=1 \\ j\neq i}}^B k(\mathbf{y}_i,\mathbf{y}_j) \end{align*} where :math:`B` is the batch size, and :math:`\mathbf{x}_i` and :math:`\mathbf{y}_j` are feature vectors sampled from :math:`P` and :math:`Q`, respectively. :math:`k(\mathbf{x},\mathbf{y})=\exp(-\| \mathbf{x}-\mathbf{y} \|^2/ 2\sigma^2)` is the Gaussian RBF kernel. This metric computes the MMD for each batch and takes the average. More details can be found in `Gretton et al. 2012`__. __ https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf - ``update`` must receive output of the form ``(x, y)``. - ``x`` and ``y`` are expected to be in the same shape :math:`(B, \ldots)`. Args: var: the bandwidth :math:`\sigma^2` of the kernel. Default: 1.0 output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, this metric requires the output as ``(x, y)``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(x, y)``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MaximumMeanDiscrepancy() metric.attach(default_evaluator, "mmd") x = torch.tensor([[-0.80324818, -0.95768364, -0.03807209], [-0.11059691, -0.38230813, -0.4111988], [-0.8864329, -0.02890403, -0.60119252], [-0.68732452, -0.12854739, -0.72095073], [-0.62604613, -0.52368328, -0.24112842]]) y = torch.tensor([[0.0686768, 0.80502737, 0.53321717], [0.83849465, 0.59099726, 0.76385441], [0.68688272, 0.56833803, 0.98100778], [0.55267761, 0.13084654, 0.45382906], [0.0754253, 0.70317304, 0.4756805]]) state = default_evaluator.run([[x, y]]) print(state.metrics["mmd"]) .. testoutput:: 1.072697639465332 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_xx_sum", "_yy_sum", "_xy_sum", "_num_batches") def __init__( self, var: float = 1.0, output_transform: Callable = lambda x: x, device: torch.device = torch.device("cpu"), skip_unrolling: bool = False, ): self.var = var super().__init__(output_transform, device, skip_unrolling=skip_unrolling) @reinit__is_reduced def reset(self) -> None: self._xx_sum = torch.tensor(0.0, device=self._device) self._yy_sum = torch.tensor(0.0, device=self._device) self._xy_sum = torch.tensor(0.0, device=self._device) self._num_batches = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: x, y = output[0].detach(), output[1].detach() if x.shape != y.shape: raise ValueError(f"x and y must be in the same shape, got {x.shape} != {y.shape}.") if x.ndim >= 3: x = x.flatten(start_dim=1) y = y.flatten(start_dim=1) elif x.ndim == 1: raise ValueError(f"x must be in the shape of (B, ...), got {x.shape}.") xx, yy, zz = torch.mm(x, x.t()), torch.mm(y, y.t()), torch.mm(x, y.t()) rx = xx.diag().unsqueeze(0).expand_as(xx) ry = yy.diag().unsqueeze(0).expand_as(yy) dxx = rx.t() + rx - 2.0 * xx dyy = ry.t() + ry - 2.0 * yy dxy = rx.t() + ry - 2.0 * zz v = self.var XX = torch.exp(-0.5 * dxx / v) YY = torch.exp(-0.5 * dyy / v) XY = torch.exp(-0.5 * dxy / v) # unbiased n = x.shape[0] XX = (XX.sum() - n) / (n * (n - 1)) YY = (YY.sum() - n) / (n * (n - 1)) XY = XY.sum() / (n * n) self._xx_sum += XX.to(self._device) self._yy_sum += YY.to(self._device) self._xy_sum += XY.to(self._device) self._num_batches += 1 @sync_all_reduce("_xx_sum", "_yy_sum", "_xy_sum", "_num_batches") def compute(self) -> float: if self._num_batches == 0: raise NotComputableError("MaximumMeanDiscrepacy must have at least one batch before it can be computed.") mmd2 = (self._xx_sum + self._yy_sum - 2.0 * self._xy_sum).clamp(min=0.0) / self._num_batches return mmd2.sqrt().item() ignite-0.5.1/ignite/metrics/mean_absolute_error.py000066400000000000000000000071571465426447700223570ustar00rootroot00000000000000from typing import Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["MeanAbsoluteError"] class MeanAbsoluteError(Metric): r"""Calculates `the mean absolute error `_. .. math:: \text{MAE} = \frac{1}{N} \sum_{i=1}^N \lvert y_{i} - x_{i} \rvert where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanAbsoluteError() metric.attach(default_evaluator, 'mae') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['mae']) .. testoutput:: 2.9375 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_absolute_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_absolute_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() absolute_errors = torch.abs(y_pred - y.view_as(y_pred)) self._sum_of_absolute_errors += torch.sum(absolute_errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_absolute_errors", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError("MeanAbsoluteError must have at least one example before it can be computed.") return self._sum_of_absolute_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/mean_pairwise_distance.py000066400000000000000000000100101465426447700230030ustar00rootroot00000000000000from typing import Callable, Sequence, Union import torch from torch.nn.functional import pairwise_distance from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["MeanPairwiseDistance"] class MeanPairwiseDistance(Metric): """Calculates the mean :class:`~torch.nn.PairwiseDistance`. Average of pairwise distances computed on provided batches. - ``update`` must receive output of the form ``(y_pred, y)``. Args: p: the norm degree. Default: 2 eps: Small value to avoid division by zero. Default: 1e-6 output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanPairwiseDistance(p=4) metric.attach(default_evaluator, 'mpd') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['mpd']) .. testoutput:: 1.5955... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_distances", "_num_examples") def __init__( self, p: int = 2, eps: float = 1e-6, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: super(MeanPairwiseDistance, self).__init__(output_transform, device=device, skip_unrolling=False) self._p = p self._eps = eps @reinit__is_reduced def reset(self) -> None: self._sum_of_distances = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() distances = pairwise_distance(y_pred, y, p=self._p, eps=self._eps) self._sum_of_distances += torch.sum(distances).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_distances", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError("MeanAbsoluteError must have at least one example before it can be computed.") return self._sum_of_distances.item() / self._num_examples ignite-0.5.1/ignite/metrics/mean_squared_error.py000066400000000000000000000071371465426447700222030ustar00rootroot00000000000000from typing import Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["MeanSquaredError"] class MeanSquaredError(Metric): r"""Calculates the `mean squared error `_. .. math:: \text{MSE} = \frac{1}{N} \sum_{i=1}^N \|y_{i} - x_{i}\|^2 where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanSquaredError() metric.attach(default_evaluator, 'mse') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['mse']) .. testoutput:: 3.828125 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_squared_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_squared_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() squared_errors = torch.pow(y_pred - y.view_as(y_pred), 2) self._sum_of_squared_errors += torch.sum(squared_errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_squared_errors", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError("MeanSquaredError must have at least one example before it can be computed.") return self._sum_of_squared_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/metric.py000066400000000000000000001037011465426447700176030ustar00rootroot00000000000000from abc import ABCMeta, abstractmethod from collections import OrderedDict from collections.abc import Mapping from functools import wraps from numbers import Number from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Tuple, TYPE_CHECKING, Union import torch import ignite.distributed as idist from ignite.base.mixins import Serializable from ignite.engine import CallableEventWithFilter, Engine, Events from ignite.utils import _CollectionItem, _tree_apply2, _tree_map if TYPE_CHECKING: from ignite.metrics.metrics_lambda import MetricsLambda __all__ = [ "Metric", "MetricUsage", "EpochWise", "BatchWise", "BatchFiltered", "RunningEpochWise", "RunningBatchWise", "SingleEpochRunningBatchWise", ] class MetricUsage: """ Base class for all usages of metrics. A usage of metric defines the events when a metric starts to compute, updates and completes. Valid events are from :class:`~ignite.engine.events.Events`. Args: started: event when the metric starts to compute. This event will be associated to :meth:`~ignite.metrics.metric.Metric.started`. completed: event when the metric completes. This event will be associated to :meth:`~ignite.metrics.metric.Metric.completed`. iteration_completed: event when the metric updates. This event will be associated to :meth:`~ignite.metrics.metric.Metric.iteration_completed`. """ usage_name: str def __init__(self, started: Events, completed: Events, iteration_completed: CallableEventWithFilter) -> None: self.__started = started self.__completed = completed self.__iteration_completed = iteration_completed @property def STARTED(self) -> Events: return self.__started @property def COMPLETED(self) -> Events: return self.__completed @property def ITERATION_COMPLETED(self) -> CallableEventWithFilter: return self.__iteration_completed class EpochWise(MetricUsage): """ Epoch-wise usage of Metrics. It's the default and most common usage of metrics. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``. Attributes: usage_name: usage name string """ usage_name: str = "epoch_wise" def __init__(self) -> None: super(EpochWise, self).__init__( started=Events.EPOCH_STARTED, completed=Events.EPOCH_COMPLETED, iteration_completed=Events.ITERATION_COMPLETED, ) class RunningEpochWise(EpochWise): """ Running epoch-wise usage of Metrics. It's the running version of the :class:`~.metrics.metric.EpochWise` metric usage. A metric with such a usage most likely accompanies an :class:`~.metrics.metric.EpochWise` one to compute a running measure of it e.g. running average. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``EPOCH_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``. Attributes: usage_name: usage name string """ usage_name: str = "running_epoch_wise" def __init__(self) -> None: super(EpochWise, self).__init__( started=Events.STARTED, completed=Events.EPOCH_COMPLETED, iteration_completed=Events.EPOCH_COMPLETED, ) class BatchWise(MetricUsage): """ Batch-wise usage of Metrics. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``ITERATION_STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``. Attributes: usage_name: usage name string """ usage_name: str = "batch_wise" def __init__(self) -> None: super(BatchWise, self).__init__( started=Events.ITERATION_STARTED, completed=Events.ITERATION_COMPLETED, iteration_completed=Events.ITERATION_COMPLETED, ) class RunningBatchWise(BatchWise): """ Running batch-wise usage of Metrics. It's the running version of the :class:`~.metrics.metric.EpochWise` metric usage. A metric with such a usage could for example accompany a :class:`~.metrics.metric.BatchWise` one to compute a running measure of it e.g. running average. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``. Attributes: usage_name: usage name string """ usage_name: str = "running_batch_wise" def __init__(self) -> None: super(BatchWise, self).__init__( started=Events.STARTED, completed=Events.ITERATION_COMPLETED, iteration_completed=Events.ITERATION_COMPLETED, ) class SingleEpochRunningBatchWise(BatchWise): """ Running batch-wise usage of Metrics in a single epoch. It's like :class:`~.metrics.metric.RunningBatchWise` metric usage with the difference that is used during a single epoch. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``. Attributes: usage_name: usage name string """ usage_name: str = "single_epoch_running_batch_wise" def __init__(self) -> None: super(BatchWise, self).__init__( started=Events.EPOCH_STARTED, completed=Events.ITERATION_COMPLETED, iteration_completed=Events.ITERATION_COMPLETED, ) class BatchFiltered(MetricUsage): """ Batch filtered usage of Metrics. This usage is similar to epoch-wise but update event is filtered. Metric's methods are triggered on the following engine events: - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED`` (See :class:`~ignite.engine.events.Events`). - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on filtered ``ITERATION_COMPLETED``. - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``. Args: args: Positional arguments to setup :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED` kwargs: Keyword arguments to setup :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED` handled by :meth:`~ignite.metrics.metric.Metric.iteration_completed`. """ def __init__(self, *args: Any, **kwargs: Any) -> None: super(BatchFiltered, self).__init__( started=Events.EPOCH_STARTED, completed=Events.EPOCH_COMPLETED, iteration_completed=Events.ITERATION_COMPLETED(*args, **kwargs), ) class Metric(Serializable, metaclass=ABCMeta): """ Base class for all Metrics. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: The following example shows a custom loss metric that expects input from a multi-output model. .. code-block:: python import torch import torch.nn as nn import torch.nn.functional as F from ignite.engine import create_supervised_evaluator from ignite.metrics import Loss class MyLoss(nn.Module): def __init__(self, ca: float = 1.0, cb: float = 1.0) -> None: super().__init__() self.ca = ca self.cb = cb def forward(self, y_pred: Tuple[torch.Tensor, torch.Tensor], y_true: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: a_true, b_true = y_true a_pred, b_pred = y_pred return self.ca * F.mse_loss(a_pred, a_true) + self.cb * F.cross_entropy(b_pred, b_true) def prepare_batch(batch, device, non_blocking): return torch.rand(4, 1), (torch.rand(4, 1), torch.rand(4, 2)) class MyModel(nn.Module): def forward(self, x): return torch.rand(4, 1), torch.rand(4, 2) model = MyModel() device = "cpu" loss = MyLoss(0.5, 1.0) metrics = { "Loss": Loss(loss, skip_unrolling=True) } train_evaluator = create_supervised_evaluator(model, metrics, device, prepare_batch=prepare_batch) data = range(10) train_evaluator.run(data) train_evaluator.state.metrics["Loss"] Attributes: required_output_keys: dictionary defines required keys to be found in ``engine.state.output`` if the latter is a dictionary. By default, ``("y_pred", "y")``. This is useful with custom metrics that can require other arguments than predictions ``y_pred`` and targets ``y``. See an example below. Examples: Let's implement a custom metric that requires ``y_pred``, ``y`` and ``x`` as input for ``update`` function. In the example below we show how to setup standard metric like Accuracy and the custom metric using by an ``evaluator`` created with :meth:`~ignite.engine.create_supervised_evaluator` method. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. code-block:: python # https://discuss.pytorch.org/t/how-access-inputs-in-custom-ignite-metric/91221/5 import torch import torch.nn as nn from ignite.metrics import Metric, Accuracy from ignite.engine import create_supervised_evaluator class CustomMetric(Metric): required_output_keys = ("y_pred", "y", "x") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def update(self, output): y_pred, y, x = output # ... def reset(self): # ... pass def compute(self): # ... pass model = ... metrics = { "Accuracy": Accuracy(), "CustomMetric": CustomMetric() } evaluator = create_supervised_evaluator( model, metrics=metrics, output_transform=lambda x, y, y_pred: {"x": x, "y": y, "y_pred": y_pred} ) res = evaluator.run(data) .. versionchanged:: 0.4.2 ``required_output_keys`` became public attribute. .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ # public class attribute required_output_keys: Optional[Tuple] = ("y_pred", "y") # for backward compatibility _required_output_keys = required_output_keys def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): self._output_transform = output_transform # Some metrics have a large performance regression when run on XLA devices, so for now, we disallow it. if torch.device(device).type == "xla": raise ValueError("Cannot create metric on an XLA device. Use device='cpu' instead.") self._device = torch.device(device) self._skip_unrolling = skip_unrolling self.reset() @abstractmethod def reset(self) -> None: """ Resets the metric to its initial state. By default, this is called at the start of each epoch. """ pass @abstractmethod def update(self, output: Any) -> None: """ Updates the metric's state using the passed batch output. By default, this is called once for each batch. Args: output: the is the output from the engine's process function. """ pass @abstractmethod def compute(self) -> Any: """ Computes the metric based on its accumulated state. By default, this is called at the end of each epoch. Returns: Any: | the actual quantity of interest. However, if a :class:`~collections.abc.Mapping` is returned, it will be (shallow) flattened into `engine.state.metrics` when :func:`~ignite.metrics.metric.Metric.completed` is called. Raises: NotComputableError: raised when the metric cannot be computed. """ pass def started(self, engine: Engine) -> None: """Helper method to start data gathering for metric's computation. It is automatically attached to the `engine` with :meth:`~ignite.metrics.metric.Metric.attach`. Args: engine: the engine to which the metric must be attached """ self.reset() @torch.no_grad() def iteration_completed(self, engine: Engine) -> None: """Helper method to update metric's computation. It is automatically attached to the `engine` with :meth:`~ignite.metrics.metric.Metric.attach`. Args: engine: the engine to which the metric must be attached Note: ``engine.state.output`` is used to compute metric values. The majority of implemented metrics accept the following formats for ``engine.state.output``: ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. ``y_pred`` and ``y`` can be torch tensors or list of tensors/numbers if applicable. .. versionchanged:: 0.4.5 ``y_pred`` and ``y`` can be torch tensors or list of tensors/numbers """ output = self._output_transform(engine.state.output) if isinstance(output, Mapping): if self.required_output_keys is None: raise TypeError( f"Transformed engine output for {self.__class__.__name__} metric should be a tuple/list, " f"but given {type(output)}" ) if not all([k in output for k in self.required_output_keys]): raise ValueError( "When transformed engine's output is a mapping, " f"it should contain {self.required_output_keys} keys, but given {list(output.keys())}" ) output = tuple(output[k] for k in self.required_output_keys) if ( (not self._skip_unrolling) and isinstance(output, Sequence) and all([_is_list_of_tensors_or_numbers(o) for o in output]) ): if not (len(output) == 2 and len(output[0]) == len(output[1])): raise ValueError( f"Output should have 2 items of the same length, " f"got {len(output)} and {len(output[0])}, {len(output[1])}" ) for o1, o2 in zip(output[0], output[1]): # o1 and o2 are list of tensors or numbers tensor_o1 = _to_batched_tensor(o1) tensor_o2 = _to_batched_tensor(o2, device=tensor_o1.device) self.update((tensor_o1, tensor_o2)) else: self.update(output) def completed(self, engine: Engine, name: str) -> None: """Helper method to compute metric's value and put into the engine. It is automatically attached to the `engine` with :meth:`~ignite.metrics.metric.Metric.attach`. If metrics' value is torch tensor, it is explicitly sent to CPU device. Args: engine: the engine to which the metric must be attached name: the name of the metric used as key in dict `engine.state.metrics` .. versionchanged:: 0.4.3 Added dict in metrics results. .. versionchanged:: 0.4.5 metric's value is put on CPU if torch tensor. """ result = self.compute() if isinstance(result, Mapping): if name in result.keys(): raise ValueError(f"Argument name '{name}' is conflicting with mapping keys: {list(result.keys())}") for key, value in result.items(): engine.state.metrics[key] = value engine.state.metrics[name] = result else: if isinstance(result, torch.Tensor): if len(result.size()) == 0: result = result.item() elif "cpu" not in result.device.type: result = result.cpu() engine.state.metrics[name] = result def _check_usage(self, usage: Union[str, MetricUsage]) -> MetricUsage: if isinstance(usage, str): usages = [EpochWise, RunningEpochWise, BatchWise, RunningBatchWise, SingleEpochRunningBatchWise] for usage_cls in usages: if usage == usage_cls.usage_name: usage = usage_cls() break if not isinstance(usage, MetricUsage): raise ValueError( "Argument usage should be '(Running)EpochWise.usage_name' or " f"'((SingleEpoch)Running)BatchWise.usage_name', got {usage}" ) if not isinstance(usage, MetricUsage): raise TypeError(f"Unhandled usage type {type(usage)}") return usage def attach(self, engine: Engine, name: str, usage: Union[str, MetricUsage] = EpochWise()) -> None: """ Attaches current metric to provided engine. On the end of engine's run, `engine.state.metrics` dictionary will contain computed metric's value under provided name. Args: engine: the engine to which the metric must be attached name: the name of the metric to attach usage: the usage of the metric. Valid string values should be :attr:`ignite.metrics.metric.EpochWise.usage_name` (default) or :attr:`ignite.metrics.metric.BatchWise.usage_name`. Examples: .. code-block:: python metric = ... metric.attach(engine, "mymetric") assert "mymetric" in engine.run(data).metrics assert metric.is_attached(engine) Example with usage: .. code-block:: python metric = ... metric.attach(engine, "mymetric", usage=BatchWise.usage_name) assert "mymetric" in engine.run(data).metrics assert metric.is_attached(engine, usage=BatchWise.usage_name) """ usage = self._check_usage(usage) if not engine.has_event_handler(self.started, usage.STARTED): engine.add_event_handler(usage.STARTED, self.started) if not engine.has_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED): engine.add_event_handler(usage.ITERATION_COMPLETED, self.iteration_completed) engine.add_event_handler(usage.COMPLETED, self.completed, name) def detach(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> None: """ Detaches current metric from the engine and no metric's computation is done during the run. This method in conjunction with :meth:`~ignite.metrics.metric.Metric.attach` can be useful if several metrics need to be computed with different periods. For example, one metric is computed every training epoch and another metric (e.g. more expensive one) is done every n-th training epoch. Args: engine: the engine from which the metric must be detached usage: the usage of the metric. Valid string values should be 'epoch_wise' (default) or 'batch_wise'. Examples: .. code-block:: python metric = ... engine = ... metric.detach(engine) assert "mymetric" not in engine.run(data).metrics assert not metric.is_attached(engine) Example with usage: .. code-block:: python metric = ... engine = ... metric.detach(engine, usage="batch_wise") assert "mymetric" not in engine.run(data).metrics assert not metric.is_attached(engine, usage="batch_wise") """ usage = self._check_usage(usage) if engine.has_event_handler(self.completed, usage.COMPLETED): engine.remove_event_handler(self.completed, usage.COMPLETED) if engine.has_event_handler(self.started, usage.STARTED): engine.remove_event_handler(self.started, usage.STARTED) if engine.has_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED): engine.remove_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED) def is_attached(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> bool: """ Checks if current metric is attached to provided engine. If attached, metric's computed value is written to `engine.state.metrics` dictionary. Args: engine: the engine checked from which the metric should be attached usage: the usage of the metric. Valid string values should be 'epoch_wise' (default) or 'batch_wise'. """ usage = self._check_usage(usage) return engine.has_event_handler(self.completed, usage.COMPLETED) def _state_dict_per_rank(self) -> OrderedDict: def func( x: Union[torch.Tensor, Metric, None, float], **kwargs: Any ) -> Union[torch.Tensor, float, OrderedDict, None]: if isinstance(x, Metric): return x._state_dict_per_rank() if x is None or isinstance(x, (int, float, torch.Tensor)): return x else: raise TypeError( "Found attribute of unsupported type. Currently, supported types include" " numeric types, tensor, Metric or sequence/mapping of metrics." ) state: OrderedDict[str, Union[torch.Tensor, List, Dict, None]] = OrderedDict() for attr_name in self._state_dict_all_req_keys: if attr_name not in self.__dict__: raise ValueError( f"Found a value in _state_dict_all_req_keys that is not among metric attributes: {attr_name}" ) attr = getattr(self, attr_name) state[attr_name] = _tree_map(func, attr) # type: ignore[assignment] return state __state_dict_key_per_rank: str = "__metric_state_per_rank" def state_dict(self) -> OrderedDict: """Method returns state dict with attributes of the metric specified in its `_state_dict_all_req_keys` attribute. Can be used to save internal state of the class. """ state = self._state_dict_per_rank() if idist.get_world_size() > 1: return OrderedDict([(Metric.__state_dict_key_per_rank, idist.all_gather(state))]) return OrderedDict([(Metric.__state_dict_key_per_rank, [state])]) def _load_state_dict_per_rank(self, state_dict: Mapping) -> None: super().load_state_dict(state_dict) def func(x: Any, y: Any) -> None: if isinstance(x, Metric): x._load_state_dict_per_rank(y) elif isinstance(x, _CollectionItem): value = x.value() if y is None or isinstance(y, _CollectionItem.types_as_collection_item): x.load_value(y) elif isinstance(value, Metric): value._load_state_dict_per_rank(y) else: raise ValueError(f"Unsupported type for provided state_dict data: {type(y)}") for attr_name in self._state_dict_all_req_keys: attr = getattr(self, attr_name) attr = _CollectionItem.wrap(self.__dict__, attr_name, attr) _tree_apply2(func, attr, state_dict[attr_name]) def load_state_dict(self, state_dict: Mapping) -> None: """Method replaces internal state of the class with provided state dict data. If there's an active distributed configuration, the process uses its rank to pick the proper value from the list of values saved under each attribute's name in the dict. Args: state_dict: a dict containing attributes of the metric specified in its `_state_dict_all_req_keys` attribute. """ if not isinstance(state_dict, Mapping): raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}") if not (len(state_dict) == 1 and Metric.__state_dict_key_per_rank in state_dict): raise ValueError( "Incorrect state_dict object. Argument state_dict should be a dictionary " "provided by Metric.state_dict(). " f"Expected single key: {Metric.__state_dict_key_per_rank}, but given {state_dict.keys()}" ) list_state_dicts_per_rank = state_dict[Metric.__state_dict_key_per_rank] rank = idist.get_rank() world_size = idist.get_world_size() if len(list_state_dicts_per_rank) != world_size: raise ValueError( "Incorrect state_dict object. Argument state_dict should be a dictionary " "provided by Metric.state_dict(). " f"Expected a list of state_dicts of size equal world_size: {world_size}, " f"but got {len(list_state_dicts_per_rank)}" ) state_dict = list_state_dicts_per_rank[rank] self._load_state_dict_per_rank(state_dict) def __add__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x + y, self, other) def __radd__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x + y, other, self) def __sub__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x - y, self, other) def __rsub__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x - y, other, self) def __mul__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x * y, self, other) def __rmul__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x * y, other, self) def __pow__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x**y, self, other) def __rpow__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x**y, other, self) def __mod__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x % y, self, other) def __truediv__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x.__truediv__(y), self, other) def __rtruediv__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x.__truediv__(y), other, self) def __floordiv__(self, other: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x, y: x // y, self, other) def __getattr__(self, attr: str) -> Callable: from ignite.metrics.metrics_lambda import MetricsLambda if attr.startswith("__") and attr.endswith("__"): return object.__getattribute__(self, attr) def fn(x: Metric, *args: Any, **kwargs: Any) -> Any: return getattr(x, attr)(*args, **kwargs) def wrapper(*args: Any, **kwargs: Any) -> "MetricsLambda": return MetricsLambda(fn, self, *args, **kwargs) return wrapper def __getitem__(self, index: Any) -> "MetricsLambda": from ignite.metrics.metrics_lambda import MetricsLambda return MetricsLambda(lambda x: x[index], self) def __getstate__(self) -> Dict: return self.__dict__ def __setstate__(self, d: Dict) -> None: self.__dict__.update(d) def sync_all_reduce(*attrs: Any) -> Callable: """Helper decorator for distributed configuration to collect instance attribute value across all participating processes and apply the specified reduction operation. See :doc:`metrics` on how to use it. Args: attrs: attribute names of decorated class .. versionchanged:: 0.4.5 - Ability to handle different reduction operations (SUM, MAX, MIN, PRODUCT). """ def wrapper(func: Callable) -> Callable: @wraps(func) def another_wrapper(self: Metric, *args: Any, **kwargs: Any) -> Callable: if not isinstance(self, Metric): raise RuntimeError( "Decorator sync_all_reduce should be used on ignite.metric.Metric class methods only" ) ws = idist.get_world_size() unreduced_attrs = {} if len(attrs) > 0 and ws > 1: for attr in attrs: op_kwargs = {} if ":" in attr: attr, op = attr.split(":") valid_ops = ["MIN", "MAX", "SUM", "PRODUCT"] if op not in valid_ops: raise ValueError(f"Reduction operation is not valid (expected : {valid_ops}, got: {op}") op_kwargs["op"] = op if attr not in self.__dict__: raise ValueError(f"Metric {type(self)} has no attribute named `{attr}`.") t = getattr(self, attr) if not isinstance(t, (Number, torch.Tensor)): raise TypeError( "Attribute provided to sync_all_reduce should be a " f"number or tensor but `{attr}` has type {type(t)}" ) unreduced_attrs[attr] = t # Here `clone` is necessary since `idist.all_reduce` modifies `t` inplace in the case # `t` is a tensor and its `device` is same as that of the process. # TODO: Remove this dual behavior of `all_reduce` to always either return a new tensor or # modify it in-place. t_reduced = idist.all_reduce(cast(float, t) if isinstance(t, Number) else t.clone(), **op_kwargs) setattr(self, attr, t_reduced) result = func(self, *args, **kwargs) for attr, value in unreduced_attrs.items(): setattr(self, attr, value) return result return another_wrapper setattr(wrapper, "_decorated", True) return wrapper def reinit__is_reduced(func: Callable) -> Callable: """Helper decorator for distributed configuration. See :doc:`metrics` on how to use it. Args: func: A callable to reinit. """ @wraps(func) def wrapper(self: Metric, *args: Any, **kwargs: Any) -> None: func(self, *args, **kwargs) if "_result" in self.__dict__: self._result = None # type: ignore[attr-defined] setattr(wrapper, "_decorated", True) return wrapper def _is_list_of_tensors_or_numbers(x: Sequence[Union[torch.Tensor, float]]) -> bool: return isinstance(x, Sequence) and all([isinstance(t, (torch.Tensor, Number)) for t in x]) def _to_batched_tensor(x: Union[torch.Tensor, float], device: Optional[torch.device] = None) -> torch.Tensor: if isinstance(x, torch.Tensor): return x.unsqueeze(dim=0) return torch.tensor([x], device=device) ignite-0.5.1/ignite/metrics/metric_group.py000066400000000000000000000035771465426447700210310ustar00rootroot00000000000000from typing import Any, Callable, Dict, Sequence import torch from ignite.metrics import Metric class MetricGroup(Metric): """ A class for grouping metrics so that user could manage them easier. Args: metrics: a dictionary of names to metric instances. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. `output_transform` of each metric in the group is also called upon its update. Examples: We construct a group of metrics, attach them to the engine at once and retrieve their result. .. code-block:: python import torch metric_group = MetricGroup({'acc': Accuracy(), 'precision': Precision(), 'loss': Loss(nn.NLLLoss())}) metric_group.attach(default_evaluator, "eval_metrics") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) # Metrics individually available in `state.metrics` state.metrics["acc"], state.metrics["precision"], state.metrics["loss"] # And also altogether state.metrics["eval_metrics"] """ _state_dict_all_req_keys = ("metrics",) def __init__(self, metrics: Dict[str, Metric], output_transform: Callable = lambda x: x): self.metrics = metrics super(MetricGroup, self).__init__(output_transform=output_transform) def reset(self) -> None: for m in self.metrics.values(): m.reset() def update(self, output: Sequence[torch.Tensor]) -> None: for m in self.metrics.values(): m.update(m._output_transform(output)) def compute(self) -> Dict[str, Any]: return {k: m.compute() for k, m in self.metrics.items()} ignite-0.5.1/ignite/metrics/metrics_lambda.py000066400000000000000000000162151465426447700212710ustar00rootroot00000000000000import itertools from typing import Any, Callable, Optional, Union import torch from ignite.engine import Engine from ignite.metrics.metric import EpochWise, Metric, MetricUsage, reinit__is_reduced __all__ = ["MetricsLambda"] class MetricsLambda(Metric): """ Apply a function to other metrics to obtain a new metric. The result of the new metric is defined to be the result of applying the function to the result of argument metrics. When update, this metric recursively updates the metrics it depends on. When reset, all its dependency metrics would be resetted as well. When attach, all its dependency metrics would be attached automatically (but partially, e.g :meth:`~ignite.metrics.metric.Metric.is_attached()` will return False). Args: f: the function that defines the computation args: Sequence of other metrics or something else that will be fed to ``f`` as arguments. kwargs: Sequence of other metrics or something else that will be fed to ``f`` as keyword arguments. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta ** 2) * p * r / (beta ** 2 * p + r + 1e-20)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F2 = MetricsLambda(Fbeta, recall, precision, 2) F3 = MetricsLambda(Fbeta, recall, precision, 3) F4 = MetricsLambda(Fbeta, recall, precision, 4) F1.attach(default_evaluator, "F1") F2.attach(default_evaluator, "F2") F3.attach(default_evaluator, "F3") F4.attach(default_evaluator, "F4") y_true = torch.tensor([1, 0, 1, 0, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["F1"]) print(state.metrics["F2"]) print(state.metrics["F3"]) print(state.metrics["F4"]) .. testoutput:: 0.8571... 0.9375... 0.9677... 0.9807... When check if the metric is attached, if one of its dependency metrics is detached, the metric is considered detached too. .. code-block:: python engine = ... precision = Precision(average=False) aP = precision.mean() aP.attach(engine, "aP") assert aP.is_attached(engine) # partially attached assert not precision.is_attached(engine) precision.detach(engine) assert not aP.is_attached(engine) # fully attached assert not precision.is_attached(engine) """ _state_dict_all_req_keys = ("_updated", "args", "kwargs") def __init__(self, f: Callable, *args: Any, **kwargs: Any) -> None: self.function = f self.args = list(args) # we need args to be a list instead of a tuple for state_dict/load_state_dict feature self.kwargs = kwargs self.engine: Optional[Engine] = None self._updated = False super(MetricsLambda, self).__init__(device="cpu") @reinit__is_reduced def reset(self) -> None: for i in itertools.chain(self.args, self.kwargs.values()): if isinstance(i, Metric): i.reset() self._updated = False @reinit__is_reduced def update(self, output: Any) -> None: if self.engine: raise ValueError( "MetricsLambda is already attached to an engine, " "and MetricsLambda can't use update API while it's attached." ) for i in itertools.chain(self.args, self.kwargs.values()): if isinstance(i, Metric): i.update(output) self._updated = True def compute(self) -> Any: materialized = [_get_value_on_cpu(i) for i in self.args] materialized_kwargs = {k: _get_value_on_cpu(v) for k, v in self.kwargs.items()} return self.function(*materialized, **materialized_kwargs) def _internal_attach(self, engine: Engine, usage: MetricUsage) -> None: self.engine = engine for index, metric in enumerate(itertools.chain(self.args, self.kwargs.values())): if isinstance(metric, MetricsLambda): metric._internal_attach(engine, usage) elif isinstance(metric, Metric): # NB : metrics is attached partially # We must not use is_attached() but rather if these events exist if not engine.has_event_handler(metric.started, usage.STARTED): engine.add_event_handler(usage.STARTED, metric.started) if not engine.has_event_handler(metric.iteration_completed, usage.ITERATION_COMPLETED): engine.add_event_handler(usage.ITERATION_COMPLETED, metric.iteration_completed) def attach(self, engine: Engine, name: str, usage: Union[str, MetricUsage] = EpochWise()) -> None: if self._updated: raise ValueError( "The underlying metrics are already updated, can't attach while using reset/update/compute API." ) usage = self._check_usage(usage) # recursively attach all its dependencies (partially) self._internal_attach(engine, usage) # attach only handler on EPOCH_COMPLETED engine.add_event_handler(usage.COMPLETED, self.completed, name) def detach(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> None: usage = self._check_usage(usage) # remove from engine super(MetricsLambda, self).detach(engine, usage) self.engine = None def is_attached(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> bool: usage = self._check_usage(usage) # check recursively the dependencies return super(MetricsLambda, self).is_attached(engine, usage) and self._internal_is_attached(engine, usage) def _internal_is_attached(self, engine: Engine, usage: MetricUsage) -> bool: # if no engine, metrics is not attached if engine is None: return False # check recursively if metrics are attached is_detached = False for metric in itertools.chain(self.args, self.kwargs.values()): if isinstance(metric, MetricsLambda): if not metric._internal_is_attached(engine, usage): is_detached = True elif isinstance(metric, Metric): if not engine.has_event_handler(metric.started, usage.STARTED): is_detached = True if not engine.has_event_handler(metric.iteration_completed, usage.ITERATION_COMPLETED): is_detached = True return not is_detached def _get_value_on_cpu(v: Any) -> Any: if isinstance(v, Metric): v = v.compute() if isinstance(v, torch.Tensor): v = v.cpu() return v ignite-0.5.1/ignite/metrics/multilabel_confusion_matrix.py000066400000000000000000000163141465426447700241240ustar00rootroot00000000000000from typing import Callable, Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["MultiLabelConfusionMatrix"] class MultiLabelConfusionMatrix(Metric): """Calculates a confusion matrix for multi-labelled, multi-class data. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must contain 0s and 1s and has the following shape (batch_size, num_classes, ...). For example, `y_pred[i, j]` = 1 denotes that the j'th class is one of the labels of the i'th sample as predicted. - `y` should have the following shape (batch_size, num_classes, ...) with 0s and 1s. For example, `y[i, j]` = 1 denotes that the j'th class is one of the labels of the i'th sample according to the ground truth. - both `y` and `y_pred` must be torch Tensors having any of the following types: {torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64}. They must have the same dimensions. - The confusion matrix 'M' is of dimension (num_classes, 2, 2). * M[i, 0, 0] corresponds to count/rate of true negatives of class i * M[i, 0, 1] corresponds to count/rate of false positives of class i * M[i, 1, 0] corresponds to count/rate of false negatives of class i * M[i, 1, 1] corresponds to count/rate of true positives of class i - The classes present in M are indexed as 0, ... , num_classes-1 as can be inferred from above. Args: num_classes: Number of classes, should be > 1. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. normalized: whether to normalize confusion matrix by its sum or not. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Example: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MultiLabelConfusionMatrix(num_classes=3) metric.attach(default_evaluator, "mlcm") y_true = torch.tensor([ [0, 0, 1], [0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 1], ]) y_pred = torch.tensor([ [1, 1, 0], [1, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["mlcm"]) .. testoutput:: tensor([[[0, 4], [0, 1]], [[3, 1], [0, 1]], [[1, 2], [2, 0]]]) .. versionadded:: 0.4.5 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("confusion_matrix", "_num_examples") def __init__( self, num_classes: int, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), normalized: bool = False, skip_unrolling: bool = False, ): if num_classes <= 1: raise ValueError("Argument num_classes needs to be > 1") self.num_classes = num_classes self._num_examples = 0 self.normalized = normalized super(MultiLabelConfusionMatrix, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self.confusion_matrix = torch.zeros(self.num_classes, 2, 2, dtype=torch.int64, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_input(output) y_pred, y = output[0].detach(), output[1].detach() self._num_examples += y.shape[0] y_reshaped = y.transpose(0, 1).reshape(self.num_classes, -1) y_pred_reshaped = y_pred.transpose(0, 1).reshape(self.num_classes, -1) y_total = y_reshaped.sum(dim=1) y_pred_total = y_pred_reshaped.sum(dim=1) tp = (y_reshaped * y_pred_reshaped).sum(dim=1) fp = y_pred_total - tp fn = y_total - tp tn = y_reshaped.shape[1] - tp - fp - fn self.confusion_matrix += torch.stack([tn, fp, fn, tp], dim=1).reshape(-1, 2, 2).to(self._device) @sync_all_reduce("confusion_matrix", "_num_examples") def compute(self) -> torch.Tensor: if self._num_examples == 0: raise NotComputableError("Confusion matrix must have at least one example before it can be computed.") if self.normalized: conf = self.confusion_matrix.to(dtype=torch.float64) sums = conf.sum(dim=(1, 2)) return conf / sums[:, None, None] return self.confusion_matrix def _check_input(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() < 2: raise ValueError( f"y_pred must at least have shape (batch_size, num_classes (currently set to {self.num_classes}), ...)" ) if y.ndimension() < 2: raise ValueError( f"y must at least have shape (batch_size, num_classes (currently set to {self.num_classes}), ...)" ) if y_pred.shape[0] != y.shape[0]: raise ValueError(f"y_pred and y have different batch size: {y_pred.shape[0]} vs {y.shape[0]}") if y_pred.shape[1] != self.num_classes: raise ValueError(f"y_pred does not have correct number of classes: {y_pred.shape[1]} vs {self.num_classes}") if y.shape[1] != self.num_classes: raise ValueError(f"y does not have correct number of classes: {y.shape[1]} vs {self.num_classes}") if y.shape != y_pred.shape: raise ValueError("y and y_pred shapes must match.") valid_types = (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) if y_pred.dtype not in valid_types: raise ValueError(f"y_pred must be of any type: {valid_types}") if y.dtype not in valid_types: raise ValueError(f"y must be of any type: {valid_types}") if not torch.equal(y_pred, y_pred**2): raise ValueError("y_pred must be a binary tensor") if not torch.equal(y, y**2): raise ValueError("y must be a binary tensor") ignite-0.5.1/ignite/metrics/mutual_information.py000066400000000000000000000111241465426447700222310ustar00rootroot00000000000000import torch from ignite.exceptions import NotComputableError from ignite.metrics import Entropy from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce __all__ = ["MutualInformation"] class MutualInformation(Entropy): r"""Calculates the `mutual information `_ between input :math:`X` and prediction :math:`Y`. .. math:: \begin{align*} I(X;Y) &= H(Y) - H(Y|X) = H \left( \frac{1}{N}\sum_{i=1}^N \hat{\mathbf{p}}_i \right) - \frac{1}{N}\sum_{i=1}^N H(\hat{\mathbf{p}}_i), \\ H(\mathbf{p}) &= -\sum_{c=1}^C p_c \log p_c. \end{align*} where :math:`\hat{\mathbf{p}}_i` is the prediction probability vector for :math:`i`-th input, and :math:`H(\mathbf{p})` is the entropy of :math:`\mathbf{p}`. Intuitively, this metric measures how well input data are clustered by classes in the feature space [1]. [1] https://proceedings.mlr.press/v70/hu17b.html - ``update`` must receive output of the form ``(y_pred, y)`` while ``y`` is not used in this metric. - ``y_pred`` is expected to be the unnormalized logits for each class. :math:`(B, C)` (classification) or :math:`(B, C, ...)` (e.g., image segmentation) shapes are allowed. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MutualInformation() metric.attach(default_evaluator, 'mutual_information') y_true = torch.tensor([0, 1, 2]) # not considered in the MutualInformation metric. y_pred = torch.tensor([ [ 0.0000, 0.6931, 1.0986], [ 1.3863, 1.6094, 1.6094], [ 0.0000, -2.3026, -2.3026] ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mutual_information']) .. testoutput:: 0.18599730730056763 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_probabilities",) @reinit__is_reduced def reset(self) -> None: super().reset() self._sum_of_probabilities = torch.tensor(0.0, device=self._device) def _update(self, prob: torch.Tensor, log_prob: torch.Tensor) -> None: super()._update(prob, log_prob) # We can't use += below as _sum_of_probabilities can be a scalar and prob.sum(dim=0) is a vector self._sum_of_probabilities = self._sum_of_probabilities + prob.sum(dim=0).to(self._device) @sync_all_reduce("_sum_of_probabilities", "_sum_of_entropies", "_num_examples") def compute(self) -> float: n = self._num_examples if n == 0: raise NotComputableError("MutualInformation must have at least one example before it can be computed.") marginal_prob = self._sum_of_probabilities / n marginal_ent = -(marginal_prob * torch.log(marginal_prob)).sum() conditional_ent = self._sum_of_entropies / n mi = marginal_ent - conditional_ent mi = torch.clamp(mi, min=0.0) # mutual information cannot be negative return float(mi.item()) ignite-0.5.1/ignite/metrics/nlp/000077500000000000000000000000001465426447700165355ustar00rootroot00000000000000ignite-0.5.1/ignite/metrics/nlp/__init__.py000066400000000000000000000002501465426447700206430ustar00rootroot00000000000000from ignite.metrics.nlp.bleu import Bleu from ignite.metrics.nlp.rouge import Rouge, RougeL, RougeN __all__ = [ "Bleu", "Rouge", "RougeN", "RougeL", ] ignite-0.5.1/ignite/metrics/nlp/bleu.py000066400000000000000000000262401465426447700200420ustar00rootroot00000000000000import math from typing import Any, Callable, Sequence, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce from ignite.metrics.nlp.utils import modified_precision __all__ = ["Bleu"] def _closest_ref_length(references: Sequence[Sequence[Any]], hyp_len: int) -> int: ref_lens = (len(reference) for reference in references) closest_ref_len = min(ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)) return closest_ref_len class _Smoother: """ Smoothing helper http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf """ def __init__(self, method: str): valid = ["no_smooth", "smooth1", "nltk_smooth2", "smooth2"] if method not in valid: raise ValueError(f"Smooth is not valid (expected: {valid}, got: {method})") self.smooth = method def __call__(self, numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: method = getattr(self, self.smooth) return method(numerators, denominators) @staticmethod def smooth1(numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: epsilon = 0.1 denominators_ = [max(1, d.item()) for d in denominators] return [n.item() / d if n != 0 else epsilon / d for n, d in zip(numerators, denominators_)] @staticmethod def nltk_smooth2(numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: denominators_ = torch.tensor([max(1, d.item()) for d in denominators]) return _Smoother._smooth2(numerators, denominators_) @staticmethod def smooth2(numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: return _Smoother._smooth2(numerators, denominators) @staticmethod def _smooth2(numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: return [ (n.item() + 1) / (d.item() + 1) if i != 0 else n.item() / d.item() for i, (n, d) in enumerate(zip(numerators, denominators)) ] @staticmethod def no_smooth(numerators: torch.Tensor, denominators: torch.Tensor) -> Sequence[float]: denominators_ = [max(1, d) for d in denominators] return [n.item() / d for n, d in zip(numerators, denominators_)] class Bleu(Metric): r"""Calculates the `BLEU score `_. .. math:: \text{BLEU} = b_{p} \cdot \exp \left( \sum_{n=1}^{N} w_{n} \: \log p_{n} \right) where :math:`N` is the order of n-grams, :math:`b_{p}` is a sentence brevety penalty, :math:`w_{n}` are positive weights summing to one and :math:`p_{n}` are modified n-gram precisions. More details can be found in `Papineni et al. 2002`__. __ https://www.aclweb.org/anthology/P02-1040 In addition, a review of smoothing techniques can be found in `Chen et al. 2014`__ __ https://aclanthology.org/W14-3346.pdf - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y_pred` (list(list(str))) - a list of hypotheses sentences. - `y` (list(list(list(str))) - a corpus of lists of reference sentences w.r.t hypotheses. Remark : This implementation is inspired by nltk Args: ngram: order of n-grams. smooth: enable smoothing. Valid are ``no_smooth``, ``smooth1``, ``nltk_smooth2`` or ``smooth2``. Default: ``no_smooth``. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. average: specifies which type of averaging to use (macro or micro) for more details refer https://www.nltk.org/_modules/nltk/translate/bleu_score.html Default: "macro" Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. testcode:: from ignite.metrics.nlp import Bleu m = Bleu(ngram=4, smooth="smooth1") y_pred = "the the the the the the the" y = ["the cat is on the mat", "there is a cat on the mat"] m.update(([y_pred.split()], [[_y.split() for _y in y]])) print(m.compute()) .. testoutput:: tensor(0.0393, dtype=torch.float64) .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 - ``update`` method has changed and now works on batch of inputs. - added ``average`` option to handle micro and macro averaging modes. """ def __init__( self, ngram: int = 4, smooth: str = "no_smooth", output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), average: str = "macro", ): if ngram <= 0: raise ValueError(f"ngram order must be greater than zero (got: {ngram})") self.ngrams_order = ngram self.weights = [1 / self.ngrams_order] * self.ngrams_order self.smoother = _Smoother(method=smooth) if average not in ["macro", "micro"]: raise ValueError(f'Average must be either "macro" or "micro" (got: {average})') self.average = average if average == "micro": self._state_dict_all_req_keys = ("p_numerators", "p_denominators", "hyp_length_sum", "ref_length_sum") else: self._state_dict_all_req_keys = ("_sum_of_bleu", "_num_sentences") super(Bleu, self).__init__(output_transform=output_transform, device=device) def _n_gram_counter( self, references: Sequence[Sequence[Sequence[Any]]], candidates: Sequence[Sequence[Any]], p_numerators: torch.Tensor, p_denominators: torch.Tensor, ) -> Tuple[int, int]: if len(references) != len(candidates): raise ValueError( f"nb of candidates should be equal to nb of reference lists ({len(candidates)} != " f"{len(references)})" ) hyp_lengths = 0 ref_lengths = 0 # Iterate through each hypothesis and their corresponding references. for refs, hyp in zip(references, candidates): # For each order of ngram, calculate the numerator and # denominator for the corpus-level modified precision. for i in range(1, self.ngrams_order + 1): numerator, denominator = modified_precision(refs, hyp, i) p_numerators[i] += numerator p_denominators[i] += denominator # Calculate the hypothesis lengths hyp_lengths += len(hyp) # Calculate the closest reference lengths. ref_lengths += _closest_ref_length(refs, len(hyp)) return hyp_lengths, ref_lengths def _brevity_penalty_smoothing( self, p_numerators: torch.Tensor, p_denominators: torch.Tensor, hyp_length_sum: int, ref_length_sum: int ) -> float: # Returns 0 if there's no matching n-grams # We only need to check for p_numerators[1] == 0, since if there's # no unigrams, there won't be any higher order ngrams. if p_numerators[1] == 0: return 0 # If no smoother, returns 0 if there's at least one a not matching n-grams] if self.smoother.smooth == "no_smooth" and min(p_numerators[1:]).item() == 0: return 0 # Calculate corpus-level brevity penalty. if hyp_length_sum < ref_length_sum: bp = math.exp(1 - ref_length_sum / hyp_length_sum) if hyp_length_sum > 0 else 0.0 else: bp = 1.0 # Smoothing p_n = self.smoother(p_numerators[1:], p_denominators[1:]) # Compute the geometric mean s = [w_i * math.log(p_i) for w_i, p_i in zip(self.weights, p_n)] gm = bp * math.exp(math.fsum(s)) return gm def _sentence_bleu(self, references: Sequence[Sequence[Any]], candidates: Sequence[Any]) -> float: return self._corpus_bleu([references], [candidates]) def _corpus_bleu(self, references: Sequence[Sequence[Sequence[Any]]], candidates: Sequence[Sequence[Any]]) -> float: p_numerators: torch.Tensor = torch.zeros(self.ngrams_order + 1) p_denominators: torch.Tensor = torch.zeros(self.ngrams_order + 1) hyp_length_sum, ref_length_sum = self._n_gram_counter( references=references, candidates=candidates, p_numerators=p_numerators, p_denominators=p_denominators ) bleu_score = self._brevity_penalty_smoothing( p_numerators=p_numerators, p_denominators=p_denominators, hyp_length_sum=hyp_length_sum, ref_length_sum=ref_length_sum, ) return bleu_score @reinit__is_reduced def reset(self) -> None: if self.average == "macro": self._sum_of_bleu = torch.tensor(0.0, dtype=torch.double, device=self._device) self._num_sentences = 0 if self.average == "micro": self.p_numerators = torch.zeros(self.ngrams_order + 1) self.p_denominators = torch.zeros(self.ngrams_order + 1) self.hyp_length_sum = 0 self.ref_length_sum = 0 @reinit__is_reduced def update(self, output: Tuple[Sequence[Sequence[Any]], Sequence[Sequence[Sequence[Any]]]]) -> None: y_pred, y = output if self.average == "macro": for refs, hyp in zip(y, y_pred): self._sum_of_bleu += self._sentence_bleu(references=refs, candidates=hyp) self._num_sentences += 1 elif self.average == "micro": hyp_lengths, ref_lengths = self._n_gram_counter( references=y, candidates=y_pred, p_numerators=self.p_numerators, p_denominators=self.p_denominators ) self.hyp_length_sum += hyp_lengths self.ref_length_sum += ref_lengths @sync_all_reduce("_sum_of_bleu", "_num_sentences") def _compute_macro(self) -> torch.Tensor: if self._num_sentences == 0: raise NotComputableError("Bleu must have at least one example before it can be computed.") return self._sum_of_bleu / self._num_sentences @sync_all_reduce("p_numerators", "p_denominators", "hyp_length_sum", "ref_length_sum") def _compute_micro(self) -> float: bleu_score = self._brevity_penalty_smoothing( p_numerators=self.p_numerators, p_denominators=self.p_denominators, hyp_length_sum=self.hyp_length_sum, ref_length_sum=self.ref_length_sum, ) return bleu_score def compute(self) -> None: if self.average == "macro": return self._compute_macro() elif self.average == "micro": return self._compute_micro() ignite-0.5.1/ignite/metrics/nlp/rouge.py000066400000000000000000000360041465426447700202330ustar00rootroot00000000000000from abc import ABCMeta, abstractmethod from collections import namedtuple from typing import Any, Callable, List, Mapping, Optional, Sequence, Tuple, Union import torch from ignite.exceptions import NotComputableError # These decorators helps with distributed settings from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce from ignite.metrics.nlp.utils import lcs, ngrams __all__ = ["Rouge", "RougeN", "RougeL"] class Score(namedtuple("Score", ["match", "candidate", "reference"])): r""" Computes precision and recall for given matches, candidate and reference lengths. """ def precision(self) -> float: """ Calculates precision. """ return self.match / self.candidate if self.candidate > 0 else 0 def recall(self) -> float: """ Calculates recall. """ return self.match / self.reference if self.reference > 0 else 0 def compute_ngram_scores(candidate: Sequence[Any], reference: Sequence[Any], n: int = 4) -> Score: """ Compute the score based on ngram co-occurence of sequences of items Args: candidate: candidate sequence of items reference: reference sequence of items n: ngram order Returns: The score containing the number of ngram co-occurences .. versionadded:: 0.4.5 """ # ngrams of the candidate candidate_counter = ngrams(candidate, n) # ngrams of the references reference_counter = ngrams(reference, n) # ngram co-occurences in the candidate and the references match_counters = candidate_counter & reference_counter # the score is defined using Fraction return Score( match=sum(match_counters.values()), candidate=sum(candidate_counter.values()), reference=sum(reference_counter.values()), ) def compute_lcs_scores(candidate: Sequence[Any], reference: Sequence[Any]) -> Score: """ Compute the score based on longest common subsequence of sequences of items Args: candidate: candidate sequence of items reference: reference sequence of items Returns: The score containing the length of longest common subsequence .. versionadded:: 0.4.5 """ # lcs of candidate and reference match = lcs(candidate, reference) # the score is defined using Fraction return Score(match=match, candidate=len(candidate), reference=len(reference)) class MultiRefReducer(metaclass=ABCMeta): r""" Reducer interface for multi-reference """ @abstractmethod def __call__(self, scores: Sequence[Score]) -> Score: pass class MultiRefAverageReducer(MultiRefReducer): r""" Reducer for averaging the scores """ def __call__(self, scores: Sequence[Score]) -> Score: match = sum([score.match for score in scores]) candidate = sum([score.candidate for score in scores]) reference = sum([score.reference for score in scores]) return Score(match=match, candidate=candidate, reference=reference) class MultiRefBestReducer(MultiRefReducer): r""" Reducer for selecting the best score """ def __call__(self, scores: Sequence[Score]) -> Score: return max(scores, key=lambda x: x.recall()) class _BaseRouge(Metric): r""" Rouge interface for Rouge-L and Rouge-N """ _state_dict_all_req_keys = ("_recall", "_precision", "_fmeasure", "_num_examples") def __init__( self, multiref: str = "average", alpha: float = 0, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ) -> None: super(_BaseRouge, self).__init__(output_transform=output_transform, device=device) self._alpha = alpha if not 0 <= self._alpha <= 1: raise ValueError(f"alpha must be in interval [0, 1] (got : {self._alpha})") self._multiref = multiref valid_multiref = ["best", "average"] if self._multiref not in valid_multiref: raise ValueError(f"multiref : valid values are {valid_multiref} (got : {self._multiref})") self._mutliref_reducer = self._get_multiref_reducer() def _get_multiref_reducer(self) -> MultiRefReducer: if self._multiref == "average": return MultiRefAverageReducer() return MultiRefBestReducer() @reinit__is_reduced def reset(self) -> None: self._recall = 0.0 self._precision = 0.0 self._fmeasure = 0.0 self._num_examples = 0 @reinit__is_reduced def update(self, output: Tuple[Sequence[Sequence[Any]], Sequence[Sequence[Sequence[Any]]]]) -> None: candidates, references = output for _candidate, _reference in zip(candidates, references): multiref_scores = [self._compute_score(candidate=_candidate, reference=_ref) for _ref in _reference] score = self._mutliref_reducer(multiref_scores) precision = score.precision() recall = score.recall() self._precision += precision self._recall += recall precision_recall = precision * recall if precision_recall > 0: # avoid zero division self._fmeasure += precision_recall / ((1 - self._alpha) * precision + self._alpha * recall) self._num_examples += 1 @sync_all_reduce("_precision", "_recall", "_fmeasure", "_num_examples") def compute(self) -> Mapping: if self._num_examples == 0: raise NotComputableError("Rouge metric must have at least one example before be computed") return { f"{self._metric_name()}-P": float(self._precision / self._num_examples), f"{self._metric_name()}-R": float(self._recall / self._num_examples), f"{self._metric_name()}-F": float(self._fmeasure / self._num_examples), } @abstractmethod def _compute_score(self, candidate: Sequence[Any], reference: Sequence[Any]) -> Score: pass @abstractmethod def _metric_name(self) -> str: pass class RougeN(_BaseRouge): r"""Calculates the Rouge-N score. The Rouge-N is based on the ngram co-occurences of candidates and references. More details can be found in `Lin 2004`__. __ https://www.aclweb.org/anthology/W04-1013.pdf - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y_pred` (list(list(str))) must be a sequence of tokens. - `y` (list(list(list(str))) must be a list of sequence of tokens. Args: ngram: ngram order (default: 4). multiref: reduces scores for multi references. Valid values are "best" and "average" (default: "average"). alpha: controls the importance between recall and precision (alpha -> 0: recall is more important, alpha -> 1: precision is more important) output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. testcode:: from ignite.metrics import RougeN m = RougeN(ngram=2, multiref="best") candidate = "the cat is not there".split() references = [ "the cat is on the mat".split(), "there is a cat on the mat".split() ] m.update(([candidate], [references])) print(m.compute()) .. testoutput:: {'Rouge-2-P': 0.5, 'Rouge-2-R': 0.4, 'Rouge-2-F': 0.4} .. versionadded:: 0.4.5 """ def __init__( self, ngram: int = 4, multiref: str = "average", alpha: float = 0, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ): super(RougeN, self).__init__(multiref=multiref, alpha=alpha, output_transform=output_transform, device=device) self._ngram = ngram if self._ngram < 1: raise ValueError(f"ngram order must be greater than zero (got : {self._ngram})") def _compute_score(self, candidate: Sequence[Any], reference: Sequence[Any]) -> Score: return compute_ngram_scores(candidate=candidate, reference=reference, n=self._ngram) def _metric_name(self) -> str: return f"Rouge-{self._ngram}" class RougeL(_BaseRouge): r"""Calculates the Rouge-L score. The Rouge-L is based on the length of the longest common subsequence of candidates and references. More details can be found in `Lin 2004`__. __ https://www.aclweb.org/anthology/W04-1013.pdf - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y_pred` (list(list(str))) must be a sequence of tokens. - `y` (list(list(list(str))) must be a list of sequence of tokens. Args: multiref: reduces scores for multi references. Valid values are "best" and "average" (default: "average"). alpha: controls the importance between recall and precision (alpha -> 0: recall is more important, alpha -> 1: precision is more important) output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. testcode:: from ignite.metrics import RougeL m = RougeL(multiref="best") candidate = "the cat is not there".split() references = [ "the cat is on the mat".split(), "there is a cat on the mat".split() ] m.update(([candidate], [references])) print(m.compute()) .. testoutput:: {'Rouge-L-P': 0.6, 'Rouge-L-R': 0.5, 'Rouge-L-F': 0.5} .. versionadded:: 0.4.5 """ def __init__( self, multiref: str = "average", alpha: float = 0, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ): super(RougeL, self).__init__(multiref=multiref, alpha=alpha, output_transform=output_transform, device=device) def _compute_score(self, candidate: Sequence[Any], reference: Sequence[Any]) -> Score: return compute_lcs_scores(candidate=candidate, reference=reference) def _metric_name(self) -> str: return "Rouge-L" class Rouge(Metric): r"""Calculates the Rouge score for multiples Rouge-N and Rouge-L metrics. More details can be found in `Lin 2004`__. __ https://www.aclweb.org/anthology/W04-1013.pdf - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y_pred` (list(list(str))) must be a sequence of tokens. - `y` (list(list(list(str))) must be a list of sequence of tokens. Args: variants: set of metrics computed. Valid inputs are "L" and integer 1 <= n <= 9. multiref: reduces scores for multi references. Valid values are "best" and "average" (default: "average"). alpha: controls the importance between recall and precision (alpha -> 0: recall is more important, alpha -> 1: precision is more important) output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. testcode:: from ignite.metrics import Rouge m = Rouge(variants=["L", 2], multiref="best") candidate = "the cat is not there".split() references = [ "the cat is on the mat".split(), "there is a cat on the mat".split() ] m.update(([candidate], [references])) print(m.compute()) .. testoutput:: {'Rouge-L-P': 0.6, 'Rouge-L-R': 0.5, 'Rouge-L-F': 0.5, 'Rouge-2-P': 0.5, 'Rouge-2-R': 0.4, 'Rouge-2-F': 0.4} .. versionadded:: 0.4.5 .. versionchanged:: 0.4.7 ``update`` method has changed and now works on batch of inputs. """ _state_dict_all_req_keys = ("internal_metrics",) def __init__( self, variants: Optional[Sequence[Union[str, int]]] = None, multiref: str = "average", alpha: float = 0, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ): if variants is None or len(variants) == 0: variants = [1, 2, 4, "L"] self.internal_metrics: List[_BaseRouge] = [] for m in variants: variant: Optional[_BaseRouge] = None if isinstance(m, str) and m == "L": variant = RougeL(multiref=multiref, alpha=alpha, output_transform=output_transform, device=device) elif isinstance(m, int): variant = RougeN( ngram=m, multiref=multiref, alpha=alpha, output_transform=output_transform, device=device ) else: raise ValueError("variant must be 'L' or integer greater to zero") self.internal_metrics.append(variant) super(Rouge, self).__init__(output_transform=output_transform, device=device) @reinit__is_reduced def reset(self) -> None: for m in self.internal_metrics: m.reset() @reinit__is_reduced def update(self, output: Tuple[Sequence[Sequence[Any]], Sequence[Sequence[Sequence[Any]]]]) -> None: for m in self.internal_metrics: m.update(output) def compute(self) -> Mapping: results = {} for m in self.internal_metrics: results.update(m.compute()) return results ignite-0.5.1/ignite/metrics/nlp/utils.py000066400000000000000000000044611465426447700202540ustar00rootroot00000000000000from collections import Counter from typing import Any, Sequence, Tuple __all__ = ["ngrams", "lcs", "modified_precision"] def ngrams(sequence: Sequence[Any], n: int) -> Counter: """ Generate the ngrams from a sequence of items Args: sequence: sequence of items n: n-gram order Returns: A counter of ngram objects .. versionadded:: 0.4.5 """ return Counter([tuple(sequence[i : i + n]) for i in range(len(sequence) - n + 1)]) def lcs(seq_a: Sequence[Any], seq_b: Sequence[Any]) -> int: """ Compute the length of the longest common subsequence in two sequence of items https://en.wikipedia.org/wiki/Longest_common_subsequence_problem Args: seq_a: first sequence of items seq_b: second sequence of items Returns: The length of the longest common subsequence .. versionadded:: 0.4.5 """ m = len(seq_a) n = len(seq_b) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0: dp[i][j] = 0 elif seq_a[i - 1] == seq_b[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp[m][n] def modified_precision(references: Sequence[Sequence[Any]], candidate: Any, n: int) -> Tuple[int, int]: """ Compute the modified precision .. math:: p_{n} = \frac{m_{n}}{l_{n}} where m_{n} is the number of matched n-grams between translation T and its reference R, and l_{n} is the total number of n-grams in the translation T. More details can be found in `Papineni et al. 2002`__. __ https://www.aclweb.org/anthology/P02-1040.pdf Args: references: list of references R candidate: translation T n: n-gram order Returns: The length of the longest common subsequence .. versionadded:: 0.4.5 """ # ngrams of the candidate counts = ngrams(candidate, n) # union of ngrams of references max_counts: Counter = Counter() for reference in references: max_counts |= ngrams(reference, n) # clipped count of the candidate and references clipped_counts = counts & max_counts return sum(clipped_counts.values()), sum(counts.values()) ignite-0.5.1/ignite/metrics/precision.py000066400000000000000000000442641465426447700203230ustar00rootroot00000000000000import warnings from typing import Callable, cast, Optional, Sequence, Union import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.accuracy import _BaseClassification from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.utils import to_onehot __all__ = ["Precision"] class _BasePrecisionRecall(_BaseClassification): _state_dict_all_req_keys = ("_numerator", "_denominator", "_weight", "_updated") def __init__( self, output_transform: Callable = lambda x: x, average: Optional[Union[bool, str]] = False, is_multilabel: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): if not (average is None or isinstance(average, bool) or average in ["macro", "micro", "weighted", "samples"]): raise ValueError( "Argument average should be None or a boolean or one of values" " 'macro', 'micro', 'weighted' and 'samples'." ) if average is True: self._average: Optional[Union[bool, str]] = "macro" else: self._average = average self.eps = 1e-20 self._updated = False super(_BasePrecisionRecall, self).__init__( output_transform=output_transform, is_multilabel=is_multilabel, device=device, skip_unrolling=skip_unrolling ) def _check_type(self, output: Sequence[torch.Tensor]) -> None: super()._check_type(output) if self._type in ["binary", "multiclass"] and self._average == "samples": raise ValueError("Argument average='samples' is incompatible with binary and multiclass input data.") y_pred, y = output if self._type == "multiclass" and y.dtype != torch.long: warnings.warn("`y` should be of dtype long when entry type is multiclass", RuntimeWarning) if ( self._type == "binary" and self._average is not False and (y.dtype != torch.long or y_pred.dtype != torch.long) ): warnings.warn( "`y` and `y_pred` should be of dtype long when entry type is binary and average!=False", RuntimeWarning ) def _prepare_output(self, output: Sequence[torch.Tensor]) -> Sequence[torch.Tensor]: y_pred, y = output[0].detach(), output[1].detach() if self._type == "binary" or self._type == "multiclass": num_classes = 2 if self._type == "binary" else y_pred.size(1) if self._type == "multiclass" and y.max() + 1 > num_classes: raise ValueError( f"y_pred contains fewer classes than y. Number of classes in the prediction is {num_classes}" f" and an element in y has invalid class = {y.max().item() + 1}." ) y = y.view(-1) if self._type == "binary" and self._average is False: y_pred = y_pred.view(-1) else: y = to_onehot(y.long(), num_classes=num_classes) indices = torch.argmax(y_pred, dim=1) if self._type == "multiclass" else y_pred.long() y_pred = to_onehot(indices.view(-1), num_classes=num_classes) elif self._type == "multilabel": # if y, y_pred shape is (N, C, ...) -> (N * ..., C) num_labels = y_pred.size(1) y_pred = torch.transpose(y_pred, 1, -1).reshape(-1, num_labels) y = torch.transpose(y, 1, -1).reshape(-1, num_labels) # Convert from int cuda/cpu to double on self._device y_pred = y_pred.to(dtype=torch.float64, device=self._device) y = y.to(dtype=torch.float64, device=self._device) correct = y * y_pred return y_pred, y, correct @reinit__is_reduced def reset(self) -> None: """ `numerator`, `denominator` and `weight` are three variables chosen to be abstract representatives of the ones that are measured for cases with different `average` parameters. `weight` is only used when `average='weighted'`. Actual value of these three variables is as follows. average='samples': numerator (torch.Tensor): sum of metric value for samples denominator (int): number of samples average='weighted': numerator (torch.Tensor): number of true positives per class/label denominator (torch.Tensor): number of predicted(for precision) or actual(for recall) positives per class/label. weight (torch.Tensor): number of actual positives per class average='micro': numerator (torch.Tensor): sum of number of true positives for classes/labels denominator (torch.Tensor): sum of number of predicted(for precision) or actual(for recall) positives for classes/labels. average='macro' or boolean or None: numerator (torch.Tensor): number of true positives per class/label denominator (torch.Tensor): number of predicted(for precision) or actual(for recall) positives per class/label. """ self._numerator: Union[int, torch.Tensor] = 0 self._denominator: Union[int, torch.Tensor] = 0 self._weight: Union[int, torch.Tensor] = 0 self._updated = False super(_BasePrecisionRecall, self).reset() @sync_all_reduce("_numerator", "_denominator") def compute(self) -> Union[torch.Tensor, float]: r""" Return value of the metric for `average` options `'weighted'` and `'macro'` is computed as follows. .. math:: \text{Precision/Recall} = \frac{ numerator }{ denominator } \cdot weight wherein `weight` is the internal variable `_weight` for `'weighted'` option and :math:`1/C` for the `macro` one. :math:`C` is the number of classes/labels. Return value of the metric for `average` options `'micro'`, `'samples'`, `False` and None is as follows. .. math:: \text{Precision/Recall} = \frac{ numerator }{ denominator } """ if not self._updated: raise NotComputableError( f"{self.__class__.__name__} must have at least one example before it can be computed." ) fraction = self._numerator / (self._denominator + (self.eps if self._average != "samples" else 0)) if self._average == "weighted": _weight = idist.all_reduce(self._weight.clone()) # type: ignore[union-attr] sum_of_weights = cast(torch.Tensor, _weight).sum() + self.eps return ((fraction @ _weight) / sum_of_weights).item() # type: ignore elif self._average == "micro" or self._average == "samples": return cast(torch.Tensor, fraction).item() elif self._average == "macro": return cast(torch.Tensor, fraction).mean().item() else: return fraction class Precision(_BasePrecisionRecall): r"""Calculates precision for binary, multiclass and multilabel data. .. math:: \text{Precision} = \frac{ TP }{ TP + FP } where :math:`\text{TP}` is true positives and :math:`\text{FP}` is false positives. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...). - `y` must be in the following shape (batch_size, ...). Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. average: available options are False default option. For multicalss and multilabel inputs, per class and per label metric is returned respectively. None like `False` option except that per class metric is returned for binary data as well. For compatibility with Scikit-Learn api. 'micro' Metric is computed counting stats of classes/labels altogether. .. math:: \text{Micro Precision} = \frac{\sum_{k=1}^C TP_k}{\sum_{k=1}^C TP_k+FP_k} where :math:`C` is the number of classes/labels (2 in binary case). :math:`k` in :math:`TP_k` and :math:`FP_k` means that the measures are computed for class/label :math:`k` (in a one-vs-rest sense in multiclass case). For binary and multiclass inputs, this is equivalent with accuracy, so use :class:`~ignite.metrics.accuracy.Accuracy`. 'samples' for multilabel input, at first, precision is computed on a per sample basis and then average across samples is returned. .. math:: \text{Sample-averaged Precision} = \frac{\sum_{n=1}^N \frac{TP_n}{TP_n+FP_n}}{N} where :math:`N` is the number of samples. :math:`n` in :math:`TP_n` and :math:`FP_n` means that the measures are computed for sample :math:`n`, across labels. Incompatible with binary and multiclass inputs. 'weighted' like macro precision but considers class/label imbalance. for binary and multiclass input, it computes metric for each class then returns average of them weighted by support of classes (number of actual samples in each class). For multilabel input, it computes precision for each label then returns average of them weighted by support of labels (number of actual positive samples in each label). .. math:: Precision_k = \frac{TP_k}{TP_k+FP_k} .. math:: \text{Weighted Precision} = \frac{\sum_{k=1}^C P_k * Precision_k}{N} where :math:`C` is the number of classes (2 in binary case). :math:`P_k` is the number of samples belonged to class :math:`k` in binary and multiclass case, and the number of positive samples belonged to label :math:`k` in multilabel case. macro computes macro precision which is unweighted average of metric computed across classes/labels. .. math:: \text{Macro Precision} = \frac{\sum_{k=1}^C Precision_k}{C} where :math:`C` is the number of classes (2 in binary case). True like macro option. For backward compatibility. is_multilabel: flag to use in multilabel case. By default, value is False. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: Binary case. In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. .. testcode:: 1 metric = Precision() weighted_metric = Precision(average='weighted') two_class_metric = Precision(average=None) # Returns precision for both classes metric.attach(default_evaluator, "precision") weighted_metric.attach(default_evaluator, "weighted precision") two_class_metric.attach(default_evaluator, "both classes precision") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Precision: {state.metrics['precision']}") print(f"Weighted Precision: {state.metrics['weighted precision']}") print(f"Precision for class 0 and class 1: {state.metrics['both classes precision']}") .. testoutput:: 1 Precision: 0.75 Weighted Precision: 0.6666666666666666 Precision for class 0 and class 1: tensor([0.5000, 0.7500], dtype=torch.float64) Multiclass case .. testcode:: 2 metric = Precision() macro_metric = Precision(average=True) weighted_metric = Precision(average='weighted') metric.attach(default_evaluator, "precision") macro_metric.attach(default_evaluator, "macro precision") weighted_metric.attach(default_evaluator, "weighted precision") y_true = torch.tensor([2, 0, 2, 1, 0]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288] ]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Precision: {state.metrics['precision']}") print(f"Macro Precision: {state.metrics['macro precision']}") print(f"Weighted Precision: {state.metrics['weighted precision']}") .. testoutput:: 2 Precision: tensor([0.5000, 0.0000, 0.3333], dtype=torch.float64) Macro Precision: 0.27777777777777773 Weighted Precision: 0.3333333333333333 Multilabel case, the shapes must be (batch_size, num_labels, ...) .. testcode:: 3 metric = Precision(is_multilabel=True) micro_metric = Precision(is_multilabel=True, average='micro') macro_metric = Precision(is_multilabel=True, average=True) weighted_metric = Precision(is_multilabel=True, average='weighted') samples_metric = Precision(is_multilabel=True, average='samples') metric.attach(default_evaluator, "precision") micro_metric.attach(default_evaluator, "micro precision") macro_metric.attach(default_evaluator, "macro precision") weighted_metric.attach(default_evaluator, "weighted precision") samples_metric.attach(default_evaluator, "samples precision") y_true = torch.tensor([ [0, 0, 1], [0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 1], ]) y_pred = torch.tensor([ [1, 1, 0], [1, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Precision: {state.metrics['precision']}") print(f"Micro Precision: {state.metrics['micro precision']}") print(f"Macro Precision: {state.metrics['macro precision']}") print(f"Weighted Precision: {state.metrics['weighted precision']}") print(f"Samples Precision: {state.metrics['samples precision']}") .. testoutput:: 3 Precision: tensor([0.2000, 0.5000, 0.0000], dtype=torch.float64) Micro Precision: 0.2222222222222222 Macro Precision: 0.2333333333333333 Weighted Precision: 0.175 Samples Precision: 0.2 Thresholding of predictions can be done as below: .. testcode:: 4 def thresholded_output_transform(output): y_pred, y = output y_pred = torch.round(y_pred) return y_pred, y metric = Precision(output_transform=thresholded_output_transform) metric.attach(default_evaluator, "precision") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics["precision"]) .. testoutput:: 4 0.75 .. versionchanged:: 0.4.10 Some new options were added to `average` parameter. .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: r""" Update the metric state using prediction and target. Args: output: a binary tuple of tensors (y_pred, y) whose shapes follow the table below. N stands for the batch dimension, `...` for possible additional dimensions and C for class dimension. .. list-table:: :widths: 20 10 10 10 :header-rows: 1 * - Output member\\Data type - Binary - Multiclass - Multilabel * - y_pred - (N, ...) - (N, C, ...) - (N, C, ...) * - y - (N, ...) - (N, ...) - (N, C, ...) For binary and multilabel data, both y and y_pred should consist of 0's and 1's, but for multiclass data, y_pred and y should consist of probabilities and integers respectively. """ self._check_shape(output) self._check_type(output) y_pred, y, correct = self._prepare_output(output) if self._average == "samples": all_positives = y_pred.sum(dim=1) true_positives = correct.sum(dim=1) self._numerator += torch.sum(true_positives / (all_positives + self.eps)) self._denominator += y.size(0) elif self._average == "micro": self._denominator += y_pred.sum() self._numerator += correct.sum() else: # _average in [False, None, 'macro', 'weighted'] self._denominator += y_pred.sum(dim=0) self._numerator += correct.sum(dim=0) if self._average == "weighted": self._weight += y.sum(dim=0) self._updated = True ignite-0.5.1/ignite/metrics/precision_recall_curve.py000066400000000000000000000137301465426447700230430ustar00rootroot00000000000000from typing import Any, Callable, cast, Tuple, Union import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.epoch_metric import EpochMetric def precision_recall_curve_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> Tuple[Any, Any, Any]: try: from sklearn.metrics import precision_recall_curve except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return precision_recall_curve(y_true, y_pred) class PrecisionRecallCurve(EpochMetric): """Compute precision-recall pairs for different probability thresholds for binary classification task by accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.precision_recall_curve `_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: Default False. If True, `precision_recall_curve `_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: PrecisionRecallCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def sigmoid_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y avg_precision = PrecisionRecallCurve(sigmoid_output_transform) Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: y_pred = torch.tensor([0.0474, 0.5987, 0.7109, 0.9997]) y_true = torch.tensor([0, 0, 1, 1]) prec_recall_curve = PrecisionRecallCurve() prec_recall_curve.attach(default_evaluator, 'prec_recall_curve') state = default_evaluator.run([[y_pred, y_true]]) print("Precision", [round(i, 4) for i in state.metrics['prec_recall_curve'][0].tolist()]) print("Recall", [round(i, 4) for i in state.metrics['prec_recall_curve'][1].tolist()]) print("Thresholds", [round(i, 4) for i in state.metrics['prec_recall_curve'][2].tolist()]) .. testoutput:: Precision [0.5, 0.6667, 1.0, 1.0, 1.0] Recall [1.0, 1.0, 1.0, 0.5, 0.0] Thresholds [0.0474, 0.5987, 0.7109, 0.9997] .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: super(PrecisionRecallCurve, self).__init__( precision_recall_curve_compute_fn, # type: ignore[arg-type] output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, skip_unrolling=skip_unrolling, ) def compute(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # type: ignore[override] if len(self._predictions) < 1 or len(self._targets) < 1: raise NotComputableError("PrecisionRecallCurve must have at least one example before it can be computed.") if self._result is None: # type: ignore _prediction_tensor = torch.cat(self._predictions, dim=0) _target_tensor = torch.cat(self._targets, dim=0) ws = idist.get_world_size() if ws > 1: # All gather across all processes _prediction_tensor = cast(torch.Tensor, idist.all_gather(_prediction_tensor)) _target_tensor = cast(torch.Tensor, idist.all_gather(_target_tensor)) if idist.get_rank() == 0: # Run compute_fn on zero rank only precision, recall, thresholds = cast(Tuple, self.compute_fn(_prediction_tensor, _target_tensor)) precision = torch.tensor(precision, device=_prediction_tensor.device) recall = torch.tensor(recall, device=_prediction_tensor.device) # thresholds can have negative strides, not compatible with torch tensors # https://discuss.pytorch.org/t/negative-strides-in-tensor-error/134287/2 thresholds = torch.tensor(thresholds.copy(), device=_prediction_tensor.device) else: precision, recall, thresholds = None, None, None if ws > 1: # broadcast result to all processes precision = idist.broadcast(precision, src=0, safe_mode=True) recall = idist.broadcast(recall, src=0, safe_mode=True) thresholds = idist.broadcast(thresholds, src=0, safe_mode=True) self._result = (precision, recall, thresholds) # type: ignore[assignment] return cast(Tuple[torch.Tensor, torch.Tensor, torch.Tensor], self._result) # type: ignore ignite-0.5.1/ignite/metrics/psnr.py000066400000000000000000000126251465426447700173060ustar00rootroot00000000000000from typing import Callable, Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["PSNR"] class PSNR(Metric): r"""Computes average `Peak signal-to-noise ratio (PSNR) `_. .. math:: \text{PSNR}(I, J) = 10 * \log_{10}\left(\frac{ MAX_{I}^2 }{ \text{ MSE } }\right) where :math:`\text{MSE}` is `mean squared error `_. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` and `y` **must** have (batch_size, ...) shape. - `y_pred` and `y` **must** have same dtype and same shape. Args: data_range: The data range of the target image (distance between minimum and maximum possible values). For other data types, please set the data range, otherwise an exception will be raised. output_transform: A callable that is used to transform the Engine’s process_function’s output into the form expected by the metric. device: specifies which device updates are accumulated on. Setting the metric’s device to be the same as your update arguments ensures the update method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: psnr = PSNR(data_range=1.0) psnr.attach(default_evaluator, 'psnr') preds = torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr']) .. testoutput:: 16.8671405... This metric by default accepts Grayscale or RGB images. But if you have YCbCr or YUV images, only Y channel is needed for computing PSNR. And, this can be done with ``output_transform``. For instance, .. testcode:: def get_y_channel(output): y_pred, y = output # y_pred and y are (B, 3, H, W) and YCbCr or YUV images # let's select y channel return y_pred[:, 0, ...], y[:, 0, ...] psnr = PSNR(data_range=219, output_transform=get_y_channel) psnr.attach(default_evaluator, 'psnr') preds = 219 * torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr']) .. testoutput:: 16.7027966... .. versionadded:: 0.4.3 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_batchwise_psnr", "_num_examples") def __init__( self, data_range: Union[int, float], output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): super().__init__(output_transform=output_transform, device=device, skip_unrolling=skip_unrolling) self.data_range = data_range def _check_shape_dtype(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output if y_pred.dtype != y.dtype: raise TypeError( f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}." ) if y_pred.shape != y.shape: raise ValueError( f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}." ) @reinit__is_reduced def reset(self) -> None: self._sum_of_batchwise_psnr = torch.tensor(0.0, dtype=torch.float64, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_shape_dtype(output) y_pred, y = output[0].detach(), output[1].detach() dim = tuple(range(1, y.ndim)) mse_error = torch.pow(y_pred.double() - y.view_as(y_pred).double(), 2).mean(dim=dim) self._sum_of_batchwise_psnr += torch.sum(10.0 * torch.log10(self.data_range**2 / (mse_error + 1e-10))).to( device=self._device ) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_batchwise_psnr", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("PSNR must have at least one example before it can be computed.") return (self._sum_of_batchwise_psnr / self._num_examples).item() ignite-0.5.1/ignite/metrics/recall.py000066400000000000000000000232131465426447700175610ustar00rootroot00000000000000from typing import Sequence import torch from ignite.metrics.metric import reinit__is_reduced from ignite.metrics.precision import _BasePrecisionRecall __all__ = ["Recall"] class Recall(_BasePrecisionRecall): r"""Calculates recall for binary, multiclass and multilabel data. .. math:: \text{Recall} = \frac{ TP }{ TP + FN } where :math:`\text{TP}` is true positives and :math:`\text{FN}` is false negatives. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...). - `y` must be in the following shape (batch_size, ...). Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. average: available options are False default option. For multicalss and multilabel inputs, per class and per label metric is returned respectively. None like `False` option except that per class metric is returned for binary data as well. For compatibility with Scikit-Learn api. 'micro' Metric is computed counting stats of classes/labels altogether. .. math:: \text{Micro Recall} = \frac{\sum_{k=1}^C TP_k}{\sum_{k=1}^C TP_k+FN_k} where :math:`C` is the number of classes/labels (2 in binary case). :math:`k` in :math:`TP_k` and :math:`FN_k`means that the measures are computed for class/label :math:`k` (in a one-vs-rest sense in multiclass case). For binary and multiclass inputs, this is equivalent with accuracy, so use :class:`~ignite.metrics.accuracy.Accuracy`. 'samples' for multilabel input, at first, recall is computed on a per sample basis and then average across samples is returned. .. math:: \text{Sample-averaged Recall} = \frac{\sum_{n=1}^N \frac{TP_n}{TP_n+FN_n}}{N} where :math:`N` is the number of samples. :math:`n` in :math:`TP_n` and :math:`FN_n` means that the measures are computed for sample :math:`n`, across labels. Incompatible with binary and multiclass inputs. 'weighted' like macro recall but considers class/label imbalance. For binary and multiclass input, it computes metric for each class then returns average of them weighted by support of classes (number of actual samples in each class). For multilabel input, it computes recall for each label then returns average of them weighted by support of labels (number of actual positive samples in each label). .. math:: Recall_k = \frac{TP_k}{TP_k+FN_k} .. math:: \text{Weighted Recall} = \frac{\sum_{k=1}^C P_k * Recall_k}{N} where :math:`C` is the number of classes (2 in binary case). :math:`P_k` is the number of samples belonged to class :math:`k` in binary and multiclass case, and the number of positive samples belonged to label :math:`k` in multilabel case. Note that for binary and multiclass data, weighted recall is equivalent with accuracy, so use :class:`~ignite.metrics.accuracy.Accuracy`. macro computes macro recall which is unweighted average of metric computed across classes or labels. .. math:: \text{Macro Recall} = \frac{\sum_{k=1}^C Recall_k}{C} where :math:`C` is the number of classes (2 in binary case). True like macro option. For backward compatibility. is_multilabel: flag to use in multilabel case. By default, value is False. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: Binary case. In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. .. testcode:: 1 metric = Recall() two_class_metric = Recall(average=None) # Returns recall for both classes metric.attach(default_evaluator, "recall") two_class_metric.attach(default_evaluator, "both classes recall") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Recall: {state.metrics['recall']}") print(f"Recall for class 0 and class 1: {state.metrics['both classes recall']}") .. testoutput:: 1 Recall: 0.75 Recall for class 0 and class 1: tensor([0.5000, 0.7500], dtype=torch.float64) Multiclass case .. testcode:: 2 metric = Recall() macro_metric = Recall(average=True) metric.attach(default_evaluator, "recall") macro_metric.attach(default_evaluator, "macro recall") y_true = torch.tensor([2, 0, 2, 1, 0]) y_pred = torch.tensor([ [0.0266, 0.1719, 0.3055], [0.6886, 0.3978, 0.8176], [0.9230, 0.0197, 0.8395], [0.1785, 0.2670, 0.6084], [0.8448, 0.7177, 0.7288] ]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Recall: {state.metrics['recall']}") print(f"Macro Recall: {state.metrics['macro recall']}") .. testoutput:: 2 Recall: tensor([0.5000, 0.0000, 0.5000], dtype=torch.float64) Macro Recall: 0.3333333333333333 Multilabel case, the shapes must be (batch_size, num_categories, ...) .. testcode:: 3 metric = Recall(is_multilabel=True) micro_metric = Recall(is_multilabel=True, average='micro') macro_metric = Recall(is_multilabel=True, average=True) samples_metric = Recall(is_multilabel=True, average='samples') metric.attach(default_evaluator, "recall") micro_metric.attach(default_evaluator, "micro recall") macro_metric.attach(default_evaluator, "macro recall") samples_metric.attach(default_evaluator, "samples recall") y_true = torch.tensor([ [0, 0, 1], [0, 0, 0], [0, 0, 0], [1, 0, 0], [0, 1, 1], ]) y_pred = torch.tensor([ [1, 1, 0], [1, 0, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(f"Recall: {state.metrics['recall']}") print(f"Micro Recall: {state.metrics['micro recall']}") print(f"Macro Recall: {state.metrics['macro recall']}") print(f"Samples Recall: {state.metrics['samples recall']}") .. testoutput:: 3 Recall: tensor([1., 1., 0.], dtype=torch.float64) Micro Recall: 0.5 Macro Recall: 0.6666666666666666 Samples Recall: 0.3 Thresholding of predictions can be done as below: .. testcode:: 4 def thresholded_output_transform(output): y_pred, y = output y_pred = torch.round(y_pred) return y_pred, y metric = Recall(output_transform=thresholded_output_transform) metric.attach(default_evaluator, "recall") y_true = torch.tensor([1, 0, 1, 1, 0, 1]) y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['recall']) .. testoutput:: 4 0.75 .. versionchanged:: 0.4.10 Some new options were added to `average` parameter. .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_shape(output) self._check_type(output) _, y, correct = self._prepare_output(output) if self._average == "samples": actual_positives = y.sum(dim=1) true_positives = correct.sum(dim=1) self._numerator += torch.sum(true_positives / (actual_positives + self.eps)) self._denominator += y.size(0) elif self._average == "micro": self._denominator += y.sum() self._numerator += correct.sum() else: # _average in [False, 'macro', 'weighted'] self._denominator += y.sum(dim=0) self._numerator += correct.sum(dim=0) if self._average == "weighted": self._weight += y.sum(dim=0) self._updated = True ignite-0.5.1/ignite/metrics/regression/000077500000000000000000000000001465426447700201245ustar00rootroot00000000000000ignite-0.5.1/ignite/metrics/regression/__init__.py000066400000000000000000000024341465426447700222400ustar00rootroot00000000000000from ignite.metrics.regression.canberra_metric import CanberraMetric from ignite.metrics.regression.fractional_absolute_error import FractionalAbsoluteError from ignite.metrics.regression.fractional_bias import FractionalBias from ignite.metrics.regression.geometric_mean_absolute_error import GeometricMeanAbsoluteError from ignite.metrics.regression.geometric_mean_relative_absolute_error import GeometricMeanRelativeAbsoluteError from ignite.metrics.regression.manhattan_distance import ManhattanDistance from ignite.metrics.regression.maximum_absolute_error import MaximumAbsoluteError from ignite.metrics.regression.mean_absolute_relative_error import MeanAbsoluteRelativeError from ignite.metrics.regression.mean_error import MeanError from ignite.metrics.regression.mean_normalized_bias import MeanNormalizedBias from ignite.metrics.regression.median_absolute_error import MedianAbsoluteError from ignite.metrics.regression.median_absolute_percentage_error import MedianAbsolutePercentageError from ignite.metrics.regression.median_relative_absolute_error import MedianRelativeAbsoluteError from ignite.metrics.regression.pearson_correlation import PearsonCorrelation from ignite.metrics.regression.r2_score import R2Score from ignite.metrics.regression.wave_hedges_distance import WaveHedgesDistance ignite-0.5.1/ignite/metrics/regression/_base.py000066400000000000000000000043021465426447700215460ustar00rootroot00000000000000from abc import abstractmethod from typing import Tuple import torch from ignite.metrics.metric import Metric, reinit__is_reduced def _check_output_shapes(output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output c1 = y_pred.ndimension() == 2 and y_pred.shape[1] == 1 if not (y_pred.ndimension() == 1 or c1): raise ValueError(f"Input y_pred should have shape (N,) or (N, 1), but given {y_pred.shape}") c2 = y.ndimension() == 2 and y.shape[1] == 1 if not (y.ndimension() == 1 or c2): raise ValueError(f"Input y should have shape (N,) or (N, 1), but given {y.shape}") if y_pred.shape != y.shape: raise ValueError(f"Input data shapes should be the same, but given {y_pred.shape} and {y.shape}") def _check_output_types(output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output if y_pred.dtype not in (torch.float16, torch.float32, torch.float64): raise TypeError(f"Input y_pred dtype should be float 16, 32 or 64, but given {y_pred.dtype}") if y.dtype not in (torch.float16, torch.float32, torch.float64): raise TypeError(f"Input y dtype should be float 16, 32 or 64, but given {y.dtype}") def _torch_median(output: torch.Tensor) -> float: output = output.view(-1) len_ = len(output) if len_ % 2 == 0: return float((torch.kthvalue(output, len_ // 2)[0] + torch.kthvalue(output, len_ // 2 + 1)[0]) / 2) else: return float(torch.kthvalue(output, len_ // 2 + 1)[0]) class _BaseRegression(Metric): # Base class for all regression metrics # `update` method check the shapes and call internal overloaded # method `_update`. @reinit__is_reduced def update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: _check_output_shapes(output) _check_output_types(output) y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() == 2 and y_pred.shape[1] == 1: y_pred = y_pred.squeeze(dim=-1) if y.ndimension() == 2 and y.shape[1] == 1: y = y.squeeze(dim=-1) self._update((y_pred, y)) @abstractmethod def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: pass ignite-0.5.1/ignite/metrics/regression/canberra_metric.py000066400000000000000000000060051465426447700236170ustar00rootroot00000000000000from typing import Tuple import torch from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class CanberraMetric(_BaseRegression): r"""Calculates the Canberra Metric. .. math:: \text{CM} = \sum_{j=1}^n\frac{|A_j - P_j|}{|A_j| + |P_j|} where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`_ or `scikit-learn distance metrics`_ - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. .. _scikit-learn distance metrics: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.DistanceMetric.html Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. .. _`Botchkarev 2018`: https://arxiv.org/ftp/arxiv/papers/1809/1809.03006.pdf Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = CanberraMetric() metric.attach(default_evaluator, 'canberra') y_pred = torch.tensor([[3.8], [9.9], [-5.4], [2.1]]) y_true = y_pred * 1.5 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['canberra']) .. testoutput:: 0.8000... .. versionchanged:: 0.4.3 - Fixed implementation: ``abs`` in denominator. - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors",) @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = torch.abs(y - y_pred) / (torch.abs(y_pred) + torch.abs(y) + 1e-15) self._sum_of_errors += torch.sum(errors).to(self._device) @sync_all_reduce("_sum_of_errors") def compute(self) -> float: return self._sum_of_errors.item() ignite-0.5.1/ignite/metrics/regression/fractional_absolute_error.py000066400000000000000000000062731465426447700257370ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class FractionalAbsoluteError(_BaseRegression): r"""Calculates the Fractional Absolute Error. .. math:: \text{FAE} = \frac{1}{n}\sum_{j=1}^n\frac{2 |A_j - P_j|}{|A_j| + |P_j|} where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = FractionalAbsoluteError() metric.attach(default_evaluator, 'fractional_abs_error') y_pred = torch.tensor([[3.8], [9.9], [-5.4], [2.1]]) y_true = y_pred * 0.8 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['fractional_abs_error']) .. testoutput:: 0.2222... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = 2 * torch.abs(y.view_as(y_pred) - y_pred) / (torch.abs(y_pred) + torch.abs(y.view_as(y_pred))) self._sum_of_errors += torch.sum(errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_num_examples", "_sum_of_errors") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError( "FractionalAbsoluteError must have at least one example before it can be computed." ) return self._sum_of_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/regression/fractional_bias.py000066400000000000000000000061441465426447700236230ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class FractionalBias(_BaseRegression): r"""Calculates the Fractional Bias. .. math:: \text{FB} = \frac{1}{n}\sum_{j=1}^n\frac{2 (A_j - P_j)}{A_j + P_j} where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = FractionalBias() metric.attach(default_evaluator, 'fractional_bias') y_pred = torch.tensor([[3.8], [9.9], [5.4], [2.1]]) y_true = y_pred * 1.5 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['fractional_bias']) .. testoutput:: 0.4000... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, dtype=torch.double, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = 2 * (y.view_as(y_pred) - y_pred) / (y_pred + y.view_as(y_pred) + 1e-30) self._sum_of_errors += torch.sum(errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_errors", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("FractionalBias must have at least one example before it can be computed.") return self._sum_of_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/regression/geometric_mean_absolute_error.py000066400000000000000000000061731465426447700265720ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class GeometricMeanAbsoluteError(_BaseRegression): r"""Calculates the Geometric Mean Absolute Error. .. math:: \text{GMAE} = \exp(\frac{1}{n}\sum_{j=1}^n\ln(|A_j - P_j|)) where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = GeometricMeanAbsoluteError() metric.attach(default_evaluator, 'gmae') y_pred = torch.tensor([[3.8], [9.9], [-5.4], [2.1]]) y_true = y_pred * 1.5 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['gmae']) .. testoutput:: 2.2723... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = torch.log(torch.abs(y.view_as(y_pred) - y_pred)) self._sum_of_errors += torch.sum(errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_errors", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError( "GeometricMeanAbsoluteError must have at least one example before it can be computed." ) return torch.exp((self._sum_of_errors) / self._num_examples).item() ignite-0.5.1/ignite/metrics/regression/geometric_mean_relative_absolute_error.py000066400000000000000000000102511465426447700304550ustar00rootroot00000000000000from typing import cast, List, Tuple import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced from ignite.metrics.regression._base import _BaseRegression class GeometricMeanRelativeAbsoluteError(_BaseRegression): r"""Calculates the Geometric Mean Relative Absolute Error. .. math:: \text{GMRAE} = \exp(\frac{1}{n}\sum_{j=1}^n \ln\frac{|A_j - P_j|}{|A_j - \bar{A}|}) where :math:`A_j` is the ground truth, :math:`P_j` is the predicted value and :math: `bar{A}` is the mean of the ground truth. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. .. warning:: Current implementation of GMRAE stores all input data (output and target) as tensors before computing the metric. This can potentially lead to a memory error if the input data is larger than available RAM. In distributed configuration, all stored data (output and target) is mutually collected across all processes using all gather collective operation. This can potentially lead to a memory error. Compute method compute the metric on zero rank process only and final result is broadcasted to all processes. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = GeometricMeanRelativeAbsoluteError() metric.attach(default_evaluator, 'gmare') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['gmare']) .. testoutput:: 0.0... """ _state_dict_all_req_keys = ("_predictions", "_targets") @reinit__is_reduced def reset(self) -> None: self._predictions: List[torch.Tensor] = [] self._targets: List[torch.Tensor] = [] def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() y_pred = y_pred.clone().to(self._device) y = y.clone().to(self._device) self._predictions.append(y_pred) self._targets.append(y) def compute(self) -> float: if len(self._predictions) < 1 or len(self._targets) < 1: raise NotComputableError( "GeometricMeanRelativeAbsoluteError must have at least one example before it can be computed." ) _prediction_tensor = torch.cat(self._predictions, dim=0) _target_tensor = torch.cat(self._targets, dim=0) # All gather across all processes _prediction_tensor = cast(torch.Tensor, idist.all_gather(_prediction_tensor)) _target_tensor = cast(torch.Tensor, idist.all_gather(_target_tensor)) result = torch.exp( torch.log( torch.abs(_target_tensor - _prediction_tensor) / torch.abs(_target_tensor - _target_tensor.mean()) ).mean() ).item() return result ignite-0.5.1/ignite/metrics/regression/manhattan_distance.py000066400000000000000000000053441465426447700243310ustar00rootroot00000000000000from typing import Tuple import torch from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class ManhattanDistance(_BaseRegression): r"""Calculates the Manhattan Distance. .. math:: \text{MD} = \sum_{j=1}^n |A_j - P_j| where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `scikit-learn distance metrics`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://scikit-learn.org/stable/modules/generated/sklearn.metrics.DistanceMetric.html Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = ManhattanDistance() metric.attach(default_evaluator, 'manhattan') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['manhattan']) .. testoutput:: 3.75... .. versionchanged:: 0.4.3 - Fixed sklearn compatibility. - Workes with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors",) @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output errors = torch.abs(y - y_pred) self._sum_of_errors += torch.sum(errors).to(self._device) @sync_all_reduce("_sum_of_errors") def compute(self) -> float: return self._sum_of_errors.item() ignite-0.5.1/ignite/metrics/regression/maximum_absolute_error.py000066400000000000000000000057011465426447700252650ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class MaximumAbsoluteError(_BaseRegression): r"""Calculates the Maximum Absolute Error. .. math:: \text{MaxAE} = \max_{j=1,n} \left( \lvert A_j-P_j \rvert \right) where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MaximumAbsoluteError() metric.attach(default_evaluator, 'mae') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mae']) .. testoutput:: 1.25... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_max_of_absolute_errors",) @reinit__is_reduced def reset(self) -> None: self._max_of_absolute_errors: float = -1 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() mae = torch.abs(y_pred - y.view_as(y_pred)).max().item() if self._max_of_absolute_errors < mae: self._max_of_absolute_errors = mae @sync_all_reduce("_max_of_absolute_errors:MAX") def compute(self) -> float: if self._max_of_absolute_errors < 0: raise NotComputableError("MaximumAbsoluteError must have at least one example before it can be computed.") return self._max_of_absolute_errors ignite-0.5.1/ignite/metrics/regression/mean_absolute_relative_error.py000066400000000000000000000066101465426447700264230ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class MeanAbsoluteRelativeError(_BaseRegression): r"""Calculate Mean Absolute Relative Error (MARE), also known as Mean Absolute Percentage Error (MAPE). .. math:: \text{MARE} = \frac{1}{n}\sum_{j=1}^n\frac{\left|A_j-P_j\right|}{\left|A_j\right|} where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in the reference `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/ftp/arxiv/papers/1809/1809.03006.pdf Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanAbsoluteRelativeError() metric.attach(default_evaluator, 'mare') y_true = torch.tensor([1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mare']) .. testoutput:: 0.25... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_absolute_relative_errors", "_num_samples") @reinit__is_reduced def reset(self) -> None: self._sum_of_absolute_relative_errors = torch.tensor(0.0, device=self._device) self._num_samples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if (y == 0).any(): raise NotComputableError("The ground truth has 0.") absolute_error = torch.abs(y_pred - y.view_as(y_pred)) / torch.abs(y.view_as(y_pred)) self._sum_of_absolute_relative_errors += torch.sum(absolute_error).to(self._device) self._num_samples += y.size()[0] @sync_all_reduce("_sum_of_absolute_relative_errors", "_num_samples") def compute(self) -> float: if self._num_samples == 0: raise NotComputableError( "MeanAbsoluteRelativeError must have at least one sample before it can be computed." ) return self._sum_of_absolute_relative_errors.item() / self._num_samples ignite-0.5.1/ignite/metrics/regression/mean_error.py000066400000000000000000000056151465426447700226360ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class MeanError(_BaseRegression): r"""Calculates the Mean Error. .. math:: \text{ME} = \frac{1}{n}\sum_{j=1}^n (A_j - P_j) where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in the reference `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanError() metric.attach(default_evaluator, 'me') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['me']) .. testoutput:: 0.625... """ _state_dict_all_req_keys = ("_sum_of_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = y.view_as(y_pred) - y_pred self._sum_of_errors += torch.sum(errors).item() self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_errors", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("MeanError must have at least one example before it can be computed.") return self._sum_of_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/regression/mean_normalized_bias.py000066400000000000000000000061371465426447700246470ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class MeanNormalizedBias(_BaseRegression): r"""Calculates the Mean Normalized Bias. .. math:: \text{MNB} = \frac{1}{n}\sum_{j=1}^n\frac{A_j - P_j}{A_j} where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in the reference `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanNormalizedBias() metric.attach(default_evaluator, 'mnb') y_true = torch.tensor([1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mnb']) .. testoutput:: 0.25... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors", "_num_examples") @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if (y == 0).any(): raise NotComputableError("The ground truth has 0.") errors = (y.view_as(y_pred) - y_pred) / y self._sum_of_errors += torch.sum(errors).to(self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_errors", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("MeanNormalizedBias must have at least one example before it can be computed.") return self._sum_of_errors.item() / self._num_examples ignite-0.5.1/ignite/metrics/regression/median_absolute_error.py000066400000000000000000000050731465426447700250470ustar00rootroot00000000000000from typing import Callable, Union import torch from ignite.metrics.epoch_metric import EpochMetric from ignite.metrics.regression._base import _torch_median def median_absolute_error_compute_fn(y_pred: torch.Tensor, y: torch.Tensor) -> float: e = torch.abs(y.view_as(y_pred) - y_pred) return _torch_median(e) class MedianAbsoluteError(EpochMetric): r"""Calculates the Median Absolute Error. .. math:: \text{MdAE} = \text{MD}_{j=1,n} \left( |A_j - P_j| \right) where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`. .. warning:: Current implementation stores all input data (output and target) in as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger than available RAM. __ https://arxiv.org/abs/1809.03006 Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: optional device specification for internal storage. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MedianAbsoluteError() metric.attach(default_evaluator, 'mae') y_true = torch.tensor([0, 1, 2, 3, 4, 5]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mae']) .. testoutput:: 0.625 """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu") ): super(MedianAbsoluteError, self).__init__( median_absolute_error_compute_fn, output_transform=output_transform, device=device ) ignite-0.5.1/ignite/metrics/regression/median_absolute_percentage_error.py000066400000000000000000000052711465426447700272440ustar00rootroot00000000000000from typing import Callable, Union import torch from ignite.metrics.epoch_metric import EpochMetric from ignite.metrics.regression._base import _torch_median def median_absolute_percentage_error_compute_fn(y_pred: torch.Tensor, y: torch.Tensor) -> float: e = torch.abs(y.view_as(y_pred) - y_pred) / torch.abs(y.view_as(y_pred)) return 100.0 * _torch_median(e) class MedianAbsolutePercentageError(EpochMetric): r"""Calculates the Median Absolute Percentage Error. .. math:: \text{MdAPE} = 100 \cdot \text{MD}_{j=1,n} \left( \frac{|A_j - P_j|}{|A_j|} \right) where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`. .. warning:: Current implementation stores all input data (output and target) in as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger than available RAM. __ https://arxiv.org/abs/1809.03006 Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: optional device specification for internal storage. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MedianAbsolutePercentageError() metric.attach(default_evaluator, 'mape') y_true = torch.tensor([1, 2, 3, 4, 5]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mape']) .. testoutput:: 25.0... """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu") ): super(MedianAbsolutePercentageError, self).__init__( median_absolute_percentage_error_compute_fn, output_transform=output_transform, device=device ) ignite-0.5.1/ignite/metrics/regression/median_relative_absolute_error.py000066400000000000000000000052751465426447700267460ustar00rootroot00000000000000from typing import Callable, Union import torch from ignite.metrics.epoch_metric import EpochMetric from ignite.metrics.regression._base import _torch_median def median_relative_absolute_error_compute_fn(y_pred: torch.Tensor, y: torch.Tensor) -> float: e = torch.abs(y.view_as(y_pred) - y_pred) / torch.abs(y.view_as(y_pred) - torch.mean(y)) return _torch_median(e) class MedianRelativeAbsoluteError(EpochMetric): r"""Calculates the Median Relative Absolute Error. .. math:: \text{MdRAE} = \text{MD}_{j=1,n} \left( \frac{|A_j - P_j|}{|A_j - \bar{A}|} \right) where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`. .. warning:: Current implementation stores all input data (output and target) in as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger than available RAM. __ https://arxiv.org/abs/1809.03006 Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: optional device specification for internal storage. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MedianRelativeAbsoluteError() metric.attach(default_evaluator, 'mrae') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mrae']) .. testoutput:: 0.5... """ def __init__( self, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu") ): super(MedianRelativeAbsoluteError, self).__init__( median_relative_absolute_error_compute_fn, output_transform=output_transform, device=device ) ignite-0.5.1/ignite/metrics/regression/pearson_correlation.py000066400000000000000000000114111465426447700245440ustar00rootroot00000000000000from typing import Callable, Tuple, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class PearsonCorrelation(_BaseRegression): r"""Calculates the `Pearson correlation coefficient `_. .. math:: r = \frac{\sum_{j=1}^n (P_j-\bar{P})(A_j-\bar{A})} {\max (\sqrt{\sum_{j=1}^n (P_j-\bar{P})^2 \sum_{j=1}^n (A_j-\bar{A})^2}, \epsilon)}, \quad \bar{P}=\frac{1}{n}\sum_{j=1}^n P_j, \quad \bar{A}=\frac{1}{n}\sum_{j=1}^n A_j where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. Parameters are inherited from ``Metric.__init__``. Args: eps: a small value to avoid division by zero. Default: 1e-8 output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = PearsonCorrelation() metric.attach(default_evaluator, 'corr') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = torch.tensor([0.5, 1.3, 1.9, 2.8, 4.1, 6.0]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['corr']) .. testoutput:: 0.9768688678741455 """ def __init__( self, eps: float = 1e-8, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), ): super().__init__(output_transform, device) self.eps = eps _state_dict_all_req_keys = ( "_sum_of_y_preds", "_sum_of_ys", "_sum_of_y_pred_squares", "_sum_of_y_squares", "_sum_of_products", "_num_examples", ) @reinit__is_reduced def reset(self) -> None: self._sum_of_y_preds = torch.tensor(0.0, device=self._device) self._sum_of_ys = torch.tensor(0.0, device=self._device) self._sum_of_y_pred_squares = torch.tensor(0.0, device=self._device) self._sum_of_y_squares = torch.tensor(0.0, device=self._device) self._sum_of_products = torch.tensor(0.0, device=self._device) self._num_examples = 0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() self._sum_of_y_preds += y_pred.sum().to(self._device) self._sum_of_ys += y.sum().to(self._device) self._sum_of_y_pred_squares += y_pred.square().sum().to(self._device) self._sum_of_y_squares += y.square().sum().to(self._device) self._sum_of_products += (y_pred * y).sum().to(self._device) self._num_examples += y.shape[0] @sync_all_reduce( "_sum_of_y_preds", "_sum_of_ys", "_sum_of_y_pred_squares", "_sum_of_y_squares", "_sum_of_products", "_num_examples", ) def compute(self) -> float: n = self._num_examples if n == 0: raise NotComputableError("PearsonCorrelation must have at least one example before it can be computed.") # cov = E[xy] - E[x]*E[y] cov = self._sum_of_products / n - self._sum_of_y_preds * self._sum_of_ys / (n * n) # var = E[x^2] - E[x]^2 y_pred_mean = self._sum_of_y_preds / n y_pred_var = self._sum_of_y_pred_squares / n - y_pred_mean * y_pred_mean y_pred_var = torch.clamp(y_pred_var, min=0.0) y_mean = self._sum_of_ys / n y_var = self._sum_of_y_squares / n - y_mean * y_mean y_var = torch.clamp(y_var, min=0.0) r = cov / torch.clamp(torch.sqrt(y_pred_var * y_var), min=self.eps) return float(r.item()) ignite-0.5.1/ignite/metrics/regression/r2_score.py000066400000000000000000000065141465426447700222220ustar00rootroot00000000000000from typing import Tuple import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class R2Score(_BaseRegression): r"""Calculates the R-Squared, the `coefficient of determination `_. .. math:: R^2 = 1 - \frac{\sum_{j=1}^n(A_j - P_j)^2}{\sum_{j=1}^n(A_j - \bar{A})^2} where :math:`A_j` is the ground truth, :math:`P_j` is the predicted value and :math:`\bar{A}` is the mean of the ground truth. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`. Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = R2Score() metric.attach(default_evaluator, 'r2') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['r2']) .. testoutput:: 0.8035... .. versionchanged:: 0.4.3 Works with DDP. """ _state_dict_all_req_keys = ("_num_examples", "_sum_of_errors", "_y_sq_sum", "_y_sum") @reinit__is_reduced def reset(self) -> None: self._num_examples = 0 self._sum_of_errors = torch.tensor(0.0, device=self._device) self._y_sq_sum = torch.tensor(0.0, device=self._device) self._y_sum = torch.tensor(0.0, device=self._device) def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output self._num_examples += y.shape[0] self._sum_of_errors += torch.sum(torch.pow(y_pred - y, 2)).to(self._device) self._y_sum += torch.sum(y).to(self._device) self._y_sq_sum += torch.sum(torch.pow(y, 2)).to(self._device) @sync_all_reduce("_num_examples", "_sum_of_errors", "_y_sq_sum", "_y_sum") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("R2Score must have at least one example before it can be computed.") return 1 - self._sum_of_errors.item() / (self._y_sq_sum.item() - (self._y_sum.item() ** 2) / self._num_examples) ignite-0.5.1/ignite/metrics/regression/wave_hedges_distance.py000066400000000000000000000053501465426447700246340ustar00rootroot00000000000000from typing import Tuple import torch from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce from ignite.metrics.regression._base import _BaseRegression class WaveHedgesDistance(_BaseRegression): r"""Calculates the Wave Hedges Distance. .. math:: \text{WHD} = \sum_{j=1}^n\frac{|A_j - P_j|}{max(A_j, P_j)} where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = WaveHedgesDistance() metric.attach(default_evaluator, 'whd') y_true = torch.tensor([0., 1., 2., 3., 4., 5.]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['whd']) .. testoutput:: 1.25... .. versionchanged:: 0.4.5 - Works with DDP. """ _state_dict_all_req_keys = ("_sum_of_errors",) @reinit__is_reduced def reset(self) -> None: self._sum_of_errors = torch.tensor(0.0, device=self._device) def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() errors = torch.abs(y.view_as(y_pred) - y_pred) / (torch.max(y_pred, y.view_as(y_pred)) + 1e-30) self._sum_of_errors += torch.sum(errors).to(self._device) @sync_all_reduce("_sum_of_errors") def compute(self) -> float: return self._sum_of_errors.item() ignite-0.5.1/ignite/metrics/roc_auc.py000066400000000000000000000216511465426447700177360ustar00rootroot00000000000000from typing import Any, Callable, cast, Tuple, Union import torch from ignite import distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.epoch_metric import EpochMetric def roc_auc_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> float: from sklearn.metrics import roc_auc_score y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return roc_auc_score(y_true, y_pred) def roc_auc_curve_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> Tuple[Any, Any, Any]: from sklearn.metrics import roc_curve y_true = y_targets.cpu().numpy() y_pred = y_preds.cpu().numpy() return roc_curve(y_true, y_pred) class ROC_AUC(EpochMetric): """Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC) accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.roc_auc_score `_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: Default False. If True, `roc_curve `_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. device: optional device specification for internal storage. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: ROC_AUC expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def sigmoid_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y avg_precision = ROC_AUC(sigmoid_output_transform) Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: roc_auc = ROC_AUC() #The ``output_transform`` arg of the metric can be used to perform a sigmoid on the ``y_pred``. roc_auc.attach(default_evaluator, 'roc_auc') y_pred = torch.tensor([[0.0474], [0.5987], [0.7109], [0.9997]]) y_true = torch.tensor([[0], [0], [1], [0]]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['roc_auc']) .. testoutput:: 0.6666... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): try: from sklearn.metrics import roc_auc_score # noqa: F401 except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") super(ROC_AUC, self).__init__( roc_auc_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, skip_unrolling=skip_unrolling, ) class RocCurve(EpochMetric): """Compute Receiver operating characteristic (ROC) for binary classification task by accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.roc_curve `_ . Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn: Default False. If True, `sklearn.metrics.roc_curve `_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. device: optional device specification for internal storage. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Note: RocCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def sigmoid_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y avg_precision = RocCurve(sigmoid_output_transform) Examples: .. include:: defaults.rst :start-after: :orphan: .. testcode:: roc_auc = RocCurve() #The ``output_transform`` arg of the metric can be used to perform a sigmoid on the ``y_pred``. roc_auc.attach(default_evaluator, 'roc_auc') y_pred = torch.tensor([0.0474, 0.5987, 0.7109, 0.9997]) y_true = torch.tensor([0, 0, 1, 0]) state = default_evaluator.run([[y_pred, y_true]]) print("FPR", [round(i, 3) for i in state.metrics['roc_auc'][0].tolist()]) print("TPR", [round(i, 3) for i in state.metrics['roc_auc'][1].tolist()]) print("Thresholds", [round(i, 3) for i in state.metrics['roc_auc'][2].tolist()]) .. testoutput:: FPR [0.0, 0.333, 0.333, 1.0] TPR [0.0, 0.0, 1.0, 1.0] Thresholds [inf, 1.0, 0.711, 0.047] .. versionchanged:: 0.4.11 added `device` argument .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def __init__( self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: try: from sklearn.metrics import roc_curve # noqa: F401 except ImportError: raise ModuleNotFoundError("This contrib module requires scikit-learn to be installed.") super(RocCurve, self).__init__( roc_auc_curve_compute_fn, # type: ignore[arg-type] output_transform=output_transform, check_compute_fn=check_compute_fn, device=device, skip_unrolling=skip_unrolling, ) def compute(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # type: ignore[override] if len(self._predictions) < 1 or len(self._targets) < 1: raise NotComputableError("RocCurve must have at least one example before it can be computed.") _prediction_tensor = torch.cat(self._predictions, dim=0) _target_tensor = torch.cat(self._targets, dim=0) ws = idist.get_world_size() if ws > 1: # All gather across all processes _prediction_tensor = cast(torch.Tensor, idist.all_gather(_prediction_tensor)) _target_tensor = cast(torch.Tensor, idist.all_gather(_target_tensor)) if idist.get_rank() == 0: # Run compute_fn on zero rank only fpr, tpr, thresholds = cast(Tuple, self.compute_fn(_prediction_tensor, _target_tensor)) fpr = torch.tensor(fpr, device=_prediction_tensor.device) tpr = torch.tensor(tpr, device=_prediction_tensor.device) thresholds = torch.tensor(thresholds, device=_prediction_tensor.device) else: fpr, tpr, thresholds = None, None, None if ws > 1: # broadcast result to all processes fpr = idist.broadcast(fpr, src=0, safe_mode=True) tpr = idist.broadcast(tpr, src=0, safe_mode=True) thresholds = idist.broadcast(thresholds, src=0, safe_mode=True) return fpr, tpr, thresholds ignite-0.5.1/ignite/metrics/root_mean_squared_error.py000066400000000000000000000055271465426447700232470ustar00rootroot00000000000000import math from typing import Union import torch from ignite.metrics.mean_squared_error import MeanSquaredError __all__ = ["RootMeanSquaredError"] class RootMeanSquaredError(MeanSquaredError): r"""Calculates the `root mean squared error `_. .. math:: \text{RMSE} = \sqrt{ \frac{1}{N} \sum_{i=1}^N \|y_{i} - x_{i} \|^2 } where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = RootMeanSquaredError() metric.attach(default_evaluator, 'rmse') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['rmse']) .. testoutput:: 1.956559480312316 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ def compute(self) -> Union[torch.Tensor, float]: mse = super(RootMeanSquaredError, self).compute() return math.sqrt(mse) ignite-0.5.1/ignite/metrics/running_average.py000066400000000000000000000261051465426447700214740ustar00rootroot00000000000000import warnings from typing import Any, Callable, cast, Optional, Union import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.metrics.metric import Metric, MetricUsage, reinit__is_reduced, RunningBatchWise, SingleEpochRunningBatchWise __all__ = ["RunningAverage"] class RunningAverage(Metric): """Compute running average of a metric or the output of process function. Args: src: input source: an instance of :class:`~ignite.metrics.metric.Metric` or None. The latter corresponds to `engine.state.output` which holds the output of process function. alpha: running average decay factor, default 0.98 output_transform: a function to use to transform the output if `src` is None and corresponds the output of process function. Otherwise it should be None. epoch_bound: whether the running average should be reset after each epoch. It is depracated in favor of ``usage`` argument in :meth:`attach` method. Setting ``epoch_bound`` to ``False`` is equivalent to ``usage=SingleEpochRunningBatchWise()`` and setting it to ``True`` is equivalent to ``usage=RunningBatchWise()`` in the :meth:`attach` method. Default None. device: specifies which device updates are accumulated on. Should be None when ``src`` is an instance of :class:`~ignite.metrics.metric.Metric`, as the running average will use the ``src``'s device. Otherwise, defaults to CPU. Only applicable when the computed value from the metric is a tensor. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 default_trainer = get_default_trainer() accuracy = Accuracy() metric = RunningAverage(accuracy) metric.attach(default_trainer, 'running_avg_accuracy') @default_trainer.on(Events.ITERATION_COMPLETED) def log_running_avg_metrics(): print(default_trainer.state.metrics['running_avg_accuracy']) y_true = [torch.tensor(y) for y in [[0], [1], [0], [1], [0], [1]]] y_pred = [torch.tensor(y) for y in [[0], [0], [0], [1], [1], [1]]] state = default_trainer.run(zip(y_pred, y_true)) .. testoutput:: 1 1.0 0.98 0.98039... 0.98079... 0.96117... 0.96195... .. testcode:: 2 default_trainer = get_default_trainer() metric = RunningAverage(output_transform=lambda x: x.item()) metric.attach(default_trainer, 'running_avg_accuracy') @default_trainer.on(Events.ITERATION_COMPLETED) def log_running_avg_metrics(): print(default_trainer.state.metrics['running_avg_accuracy']) y = [torch.tensor(y) for y in [[0], [1], [0], [1], [0], [1]]] state = default_trainer.run(y) .. testoutput:: 2 0.0 0.020000... 0.019600... 0.039208... 0.038423... 0.057655... .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ required_output_keys = None _state_dict_all_req_keys = ("_value", "src") def __init__( self, src: Optional[Metric] = None, alpha: float = 0.98, output_transform: Optional[Callable] = None, epoch_bound: Optional[bool] = None, device: Optional[Union[str, torch.device]] = None, skip_unrolling: bool = False, ): if not (isinstance(src, Metric) or src is None): raise TypeError("Argument src should be a Metric or None.") if not (0.0 < alpha <= 1.0): raise ValueError("Argument alpha should be a float between 0.0 and 1.0.") if isinstance(src, Metric): if output_transform is not None: raise ValueError("Argument output_transform should be None if src is a Metric.") def output_transform(x: Any) -> Any: return x if device is not None: raise ValueError("Argument device should be None if src is a Metric.") self.src: Union[Metric, None] = src device = src._device else: if output_transform is None: raise ValueError( "Argument output_transform should not be None if src corresponds " "to the output of process function." ) self.src = None if device is None: device = torch.device("cpu") if epoch_bound is not None: warnings.warn( "`epoch_bound` is deprecated and will be removed in the future. Consider using `usage` argument of" "`attach` method instead. `epoch_bound=True` is equivalent with `usage=SingleEpochRunningBatchWise()`" " and `epoch_bound=False` is equivalent with `usage=RunningBatchWise()`." ) self.epoch_bound = epoch_bound self.alpha = alpha super(RunningAverage, self).__init__( output_transform=output_transform, device=device, skip_unrolling=skip_unrolling ) @reinit__is_reduced def reset(self) -> None: self._value: Optional[Union[float, torch.Tensor]] = None if isinstance(self.src, Metric): self.src.reset() @reinit__is_reduced def update(self, output: Union[torch.Tensor, float]) -> None: if self.src is None: output = output.detach().to(self._device, copy=True) if isinstance(output, torch.Tensor) else output value = idist.all_reduce(output) / idist.get_world_size() else: value = self.src.compute() self.src.reset() if self._value is None: self._value = value else: self._value = self._value * self.alpha + (1.0 - self.alpha) * value def compute(self) -> Union[torch.Tensor, float]: return cast(Union[torch.Tensor, float], self._value) def attach(self, engine: Engine, name: str, usage: Union[str, MetricUsage] = RunningBatchWise()) -> None: r""" Attach the metric to the ``engine`` using the events determined by the ``usage``. Args: engine: the engine to get attached to. name: by which, the metric is inserted into ``engine.state.metrics`` dictionary. usage: the usage determining on which events the metric is reset, updated and computed. It should be an instance of the :class:`~ignite.metrics.metric.MetricUsage`\ s in the following table. ======================================================= =========================================== ``usage`` **class** **Description** ======================================================= =========================================== :class:`~.metrics.metric.RunningBatchWise` Running average of the ``src`` metric or ``engine.state.output`` is computed across batches. In the former case, on each batch, ``src`` is reset, updated and computed then its value is retrieved. Default. :class:`~.metrics.metric.SingleEpochRunningBatchWise` Same as above but the running average is computed across batches in an epoch so it is reset at the end of the epoch. :class:`~.metrics.metric.RunningEpochWise` Running average of the ``src`` metric or ``engine.state.output`` is computed across epochs. In the former case, ``src`` works as if it was attached in a :class:`~ignite.metrics.metric.EpochWise` manner and its computed value is retrieved at the end of the epoch. The latter case doesn't make much sense for this usage as the ``engine.state.output`` of the last batch is retrieved then. ======================================================= =========================================== ``RunningAverage`` retrieves ``engine.state.output`` at ``usage.ITERATION_COMPLETED`` if the ``src`` is not given and it's computed and updated using ``src``, by manually calling its ``compute`` method, or ``engine.state.output`` at ``usage.COMPLETED`` event. Also if ``src`` is given, it is updated at ``usage.ITERATION_COMPLETED``, but its reset event is determined by ``usage`` type. If ``isinstance(usage, BatchWise)`` holds true, ``src`` is reset on ``BatchWise().STARTED``, otherwise on ``EpochWise().STARTED`` if ``isinstance(usage, EpochWise)``. .. versionchanged:: 0.5.1 Added `usage` argument """ usage = self._check_usage(usage) if self.epoch_bound is not None: usage = SingleEpochRunningBatchWise() if self.epoch_bound else RunningBatchWise() if isinstance(self.src, Metric) and not engine.has_event_handler( self.src.iteration_completed, Events.ITERATION_COMPLETED ): engine.add_event_handler(Events.ITERATION_COMPLETED, self.src.iteration_completed) super().attach(engine, name, usage) def detach(self, engine: Engine, usage: Union[str, MetricUsage] = RunningBatchWise()) -> None: usage = self._check_usage(usage) if self.epoch_bound is not None: usage = SingleEpochRunningBatchWise() if self.epoch_bound else RunningBatchWise() if isinstance(self.src, Metric) and engine.has_event_handler( self.src.iteration_completed, Events.ITERATION_COMPLETED ): engine.remove_event_handler(self.src.iteration_completed, Events.ITERATION_COMPLETED) super().detach(engine, usage) ignite-0.5.1/ignite/metrics/ssim.py000066400000000000000000000230441465426447700172740ustar00rootroot00000000000000import warnings from typing import Callable, Optional, Sequence, Union import torch import torch.nn.functional as F from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["SSIM"] class SSIM(Metric): """ Computes Structural Similarity Index Measure - ``update`` must receive output of the form ``(y_pred, y)``. They have to be of the same type. Valid :class:`torch.dtype` are the following: - on CPU: `torch.float32`, `torch.float64`. - on CUDA: `torch.float16`, `torch.bfloat16`, `torch.float32`, `torch.float64`. Args: data_range: Range of the image. Typically, ``1.0`` or ``255``. kernel_size: Size of the kernel. Default: (11, 11) sigma: Standard deviation of the gaussian kernel. Argument is used if ``gaussian=True``. Default: (1.5, 1.5) k1: Parameter of SSIM. Default: 0.01 k2: Parameter of SSIM. Default: 0.03 gaussian: ``True`` to use gaussian kernel, ``False`` to use uniform kernel output_transform: A callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` can be un-normalized or normalized image tensors. Depending on that, the user might need to adjust ``data_range``. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = SSIM(data_range=1.0) metric.attach(default_evaluator, 'ssim') preds = torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['ssim']) .. testoutput:: 0.9218971... .. versionadded:: 0.4.2 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_ssim", "_num_examples", "_kernel") def __init__( self, data_range: Union[int, float], kernel_size: Union[int, Sequence[int]] = (11, 11), sigma: Union[float, Sequence[float]] = (1.5, 1.5), k1: float = 0.01, k2: float = 0.03, gaussian: bool = True, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): if isinstance(kernel_size, int): self.kernel_size: Sequence[int] = [kernel_size, kernel_size] elif isinstance(kernel_size, Sequence): self.kernel_size = kernel_size else: raise ValueError("Argument kernel_size should be either int or a sequence of int.") if isinstance(sigma, float): self.sigma: Sequence[float] = [sigma, sigma] elif isinstance(sigma, Sequence): self.sigma = sigma else: raise ValueError("Argument sigma should be either float or a sequence of float.") if any(x % 2 == 0 or x <= 0 for x in self.kernel_size): raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.") if any(y <= 0 for y in self.sigma): raise ValueError(f"Expected sigma to have positive number. Got {sigma}.") super(SSIM, self).__init__(output_transform=output_transform, device=device, skip_unrolling=skip_unrolling) self.gaussian = gaussian self.data_range = data_range self.c1 = (k1 * data_range) ** 2 self.c2 = (k2 * data_range) ** 2 self.pad_h = (self.kernel_size[0] - 1) // 2 self.pad_w = (self.kernel_size[1] - 1) // 2 self._kernel_2d = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma) self._kernel: Optional[torch.Tensor] = None @reinit__is_reduced def reset(self) -> None: self._sum_of_ssim = torch.tensor(0.0, dtype=torch.float64, device=self._device) self._num_examples = 0 def _uniform(self, kernel_size: int) -> torch.Tensor: kernel = torch.zeros(kernel_size) start_uniform_index = max(kernel_size // 2 - 2, 0) end_uniform_index = min(kernel_size // 2 + 3, kernel_size) min_, max_ = -2.5, 2.5 kernel[start_uniform_index:end_uniform_index] = 1 / (max_ - min_) return kernel.unsqueeze(dim=0) # (1, kernel_size) def _gaussian(self, kernel_size: int, sigma: float) -> torch.Tensor: ksize_half = (kernel_size - 1) * 0.5 kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=self._device) gauss = torch.exp(-0.5 * (kernel / sigma).pow(2)) return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size) def _gaussian_or_uniform_kernel(self, kernel_size: Sequence[int], sigma: Sequence[float]) -> torch.Tensor: if self.gaussian: kernel_x = self._gaussian(kernel_size[0], sigma[0]) kernel_y = self._gaussian(kernel_size[1], sigma[1]) else: kernel_x = self._uniform(kernel_size[0]) kernel_y = self._uniform(kernel_size[1]) return torch.matmul(kernel_x.t(), kernel_y) # (kernel_size, 1) * (1, kernel_size) @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if y_pred.dtype != y.dtype: raise TypeError( f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}." ) if y_pred.shape != y.shape: raise ValueError( f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}." ) if len(y_pred.shape) != 4 or len(y.shape) != 4: raise ValueError( f"Expected y_pred and y to have BxCxHxW shape. Got y_pred: {y_pred.shape} and y: {y.shape}." ) # converts potential integer tensor to fp if not y.is_floating_point(): y = y.float() if not y_pred.is_floating_point(): y_pred = y_pred.float() nb_channel = y_pred.size(1) if self._kernel is None or self._kernel.shape[0] != nb_channel: self._kernel = self._kernel_2d.expand(nb_channel, 1, -1, -1) if y_pred.device != self._kernel.device: if self._kernel.device == torch.device("cpu"): self._kernel = self._kernel.to(device=y_pred.device) elif y_pred.device == torch.device("cpu"): warnings.warn( "y_pred tensor is on cpu device but previous computation was on another device: " f"{self._kernel.device}. To avoid having a performance hit, please ensure that all " "y and y_pred tensors are on the same device.", ) y_pred = y_pred.to(device=self._kernel.device) y = y.to(device=self._kernel.device) y_pred = F.pad(y_pred, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect") y = F.pad(y, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect") if y_pred.dtype != self._kernel.dtype: self._kernel = self._kernel.to(dtype=y_pred.dtype) input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y] outputs = F.conv2d(torch.cat(input_list), self._kernel, groups=nb_channel) batch_size = y_pred.size(0) output_list = [outputs[x * batch_size : (x + 1) * batch_size] for x in range(len(input_list))] mu_pred_sq = output_list[0].pow(2) mu_target_sq = output_list[1].pow(2) mu_pred_target = output_list[0] * output_list[1] sigma_pred_sq = output_list[2] - mu_pred_sq sigma_target_sq = output_list[3] - mu_target_sq sigma_pred_target = output_list[4] - mu_pred_target a1 = 2 * mu_pred_target + self.c1 a2 = 2 * sigma_pred_target + self.c2 b1 = mu_pred_sq + mu_target_sq + self.c1 b2 = sigma_pred_sq + sigma_target_sq + self.c2 ssim_idx = (a1 * a2) / (b1 * b2) self._sum_of_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=torch.float64).sum().to(device=self._device) self._num_examples += y.shape[0] @sync_all_reduce("_sum_of_ssim", "_num_examples") def compute(self) -> float: if self._num_examples == 0: raise NotComputableError("SSIM must have at least one example before it can be computed.") return (self._sum_of_ssim / self._num_examples).item() ignite-0.5.1/ignite/metrics/top_k_categorical_accuracy.py000066400000000000000000000111421465426447700236400ustar00rootroot00000000000000from typing import Callable, Sequence, Union import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce __all__ = ["TopKCategoricalAccuracy"] class TopKCategoricalAccuracy(Metric): """ Calculates the top-k categorical accuracy. - ``update`` must receive output of the form ``(y_pred, y)``. Args: k: the k in β€œtop-k”. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: def process_function(engine, batch): y_pred, y = batch return y_pred, y def one_hot_to_binary_output_transform(output): y_pred, y = output y = torch.argmax(y, dim=1) # one-hot vector to label index vector return y_pred, y engine = Engine(process_function) metric = TopKCategoricalAccuracy( k=2, output_transform=one_hot_to_binary_output_transform) metric.attach(engine, 'top_k_accuracy') preds = torch.tensor([ [0.7, 0.2, 0.05, 0.05], # 1 is in the top 2 [0.2, 0.3, 0.4, 0.1], # 0 is not in the top 2 [0.4, 0.4, 0.1, 0.1], # 0 is in the top 2 [0.7, 0.05, 0.2, 0.05] # 2 is in the top 2 ]) target = torch.tensor([ # targets as one-hot vectors [0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0] ]) state = engine.run([[preds, target]]) print(state.metrics['top_k_accuracy']) .. testoutput:: 0.75 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_num_correct", "_num_examples") def __init__( self, k: int = 5, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ) -> None: super(TopKCategoricalAccuracy, self).__init__(output_transform, device=device, skip_unrolling=skip_unrolling) self._k = k @reinit__is_reduced def reset(self) -> None: self._num_correct = torch.tensor(0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() sorted_indices = torch.topk(y_pred, self._k, dim=1)[1] expanded_y = y.view(-1, 1).expand(-1, self._k) correct = torch.sum(torch.eq(sorted_indices, expanded_y), dim=1) self._num_correct += torch.sum(correct).to(self._device) self._num_examples += correct.shape[0] @sync_all_reduce("_num_correct", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError( "TopKCategoricalAccuracy must have at least one example before it can be computed." ) return self._num_correct.item() / self._num_examples ignite-0.5.1/ignite/py.typed000066400000000000000000000000001465426447700157630ustar00rootroot00000000000000ignite-0.5.1/ignite/utils.py000066400000000000000000000413251465426447700160150ustar00rootroot00000000000000import collections.abc as collections import functools import hashlib import logging import numbers import random import shutil import warnings from pathlib import Path from typing import Any, Callable, cast, Dict, List, Optional, TextIO, Tuple, Type, TypeVar, Union import torch __all__ = [ "convert_tensor", "apply_to_tensor", "apply_to_type", "_to_str_list", "to_onehot", "setup_logger", "manual_seed", "hash_checkpoint", ] def convert_tensor( x: Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, ) -> Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes]: """Move tensors to relevant device. Args: x: input tensor or mapping, or sequence of tensors. device: device type to move ``x``. non_blocking: convert a CPU Tensor with pinned memory to a CUDA Tensor asynchronously with respect to the host if possible """ def _func(tensor: torch.Tensor) -> torch.Tensor: return tensor.to(device=device, non_blocking=non_blocking) if device is not None else tensor return apply_to_tensor(x, _func) def apply_to_tensor( x: Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes], func: Callable ) -> Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes]: """Apply a function on a tensor or mapping, or sequence of tensors. Args: x: input tensor or mapping, or sequence of tensors. func: the function to apply on ``x``. """ return apply_to_type(x, torch.Tensor, func) def apply_to_type( x: Union[Any, collections.Sequence, collections.Mapping, str, bytes], input_type: Union[Type, Tuple[Type[Any], Any]], func: Callable, ) -> Union[Any, collections.Sequence, collections.Mapping, str, bytes]: """Apply a function on an object of `input_type` or mapping, or sequence of objects of `input_type`. Args: x: object or mapping or sequence. input_type: data type of ``x``. func: the function to apply on ``x``. """ if isinstance(x, input_type): return func(x) if isinstance(x, (str, bytes)): return x if isinstance(x, collections.Mapping): return cast(Callable, type(x))({k: apply_to_type(sample, input_type, func) for k, sample in x.items()}) if isinstance(x, tuple) and hasattr(x, "_fields"): # namedtuple return cast(Callable, type(x))(*(apply_to_type(sample, input_type, func) for sample in x)) if isinstance(x, collections.Sequence): return cast(Callable, type(x))([apply_to_type(sample, input_type, func) for sample in x]) raise TypeError((f"x must contain {input_type}, dicts or lists; found {type(x)}")) def _tree_map( func: Callable, x: Union[Any, collections.Sequence, collections.Mapping], key: Optional[Union[int, str]] = None ) -> Union[Any, collections.Sequence, collections.Mapping]: if isinstance(x, collections.Mapping): return cast(Callable, type(x))({k: _tree_map(func, sample, key=k) for k, sample in x.items()}) if isinstance(x, tuple) and hasattr(x, "_fields"): # namedtuple return cast(Callable, type(x))(*(_tree_map(func, sample) for sample in x)) if isinstance(x, collections.Sequence): return cast(Callable, type(x))([_tree_map(func, sample, key=i) for i, sample in enumerate(x)]) return func(x, key=key) def _to_str_list(data: Any) -> List[str]: """ Recursively flattens and formats complex data structures, including keys for dictionaries, into a list of human-readable strings. This function processes nested dictionaries, lists, tuples, numbers, and PyTorch tensors, formatting numbers to four decimal places and handling tensors with special formatting rules. It's particularly useful for logging, debugging, or any scenario where a human-readable representation of complex, nested data structures is required. The function handles the following types: - Numbers: Formatted to four decimal places. - PyTorch tensors: - Scalars are formatted to four decimal places. - 1D tensors with more than 10 elements show the first 10 elements followed by an ellipsis. - 1D tensors with 10 or fewer elements are fully listed. - Multi-dimensional tensors display their shape. - Dictionaries: Each key-value pair is included in the output with the key as a prefix. - Lists and tuples: Flattened and included in the output. Empty lists/tuples are represented by an empty string. - None values: Represented by an empty string. Args: data: The input data to be flattened and formatted. It can be a nested combination of dictionaries, lists, tuples, numbers, and PyTorch tensors. Returns: A list of formatted strings, each representing a part of the input data structure. """ formatted_items: List[str] = [] def format_item(item: Any, prefix: str = "") -> Optional[str]: if isinstance(item, numbers.Number): return f"{prefix}{item:.4f}" elif torch.is_tensor(item): if item.dim() == 0: return f"{prefix}{item.item():.4f}" # Format scalar tensor without brackets elif item.dim() == 1 and item.size(0) > 10: return f"{prefix}[" + ", ".join(f"{x.item():.4f}" for x in item[:10]) + ", ...]" elif item.dim() == 1: return f"{prefix}[" + ", ".join(f"{x.item():.4f}" for x in item) + "]" else: return f"{prefix}Shape{list(item.shape)}" elif isinstance(item, dict): for key, value in item.items(): formatted_value = format_item(value, f"{key}: ") if formatted_value is not None: formatted_items.append(formatted_value) elif isinstance(item, (list, tuple)): if not item: if prefix: formatted_items.append(f"{prefix}") else: values = [format_item(x) for x in item] values_str = [v for v in values if v is not None] if values_str: formatted_items.append(f"{prefix}" + ", ".join(values_str)) elif item is None: if prefix: formatted_items.append(f"{prefix}") return None # Directly handle single numeric values if isinstance(data, numbers.Number): return [f"{data:.4f}"] format_item(data) return formatted_items class _CollectionItem: types_as_collection_item: Tuple = (int, float, torch.Tensor) def __init__(self, collection: Union[Dict, List], key: Union[int, str]) -> None: if not isinstance(collection, (dict, list)): raise TypeError( f"Input type is expected to be a mapping or list, but got {type(collection)} " f"for input key '{key}'." ) if isinstance(collection, list) and isinstance(key, str): raise ValueError("Key should be int for collection of type list") self.collection = collection self.key = key def load_value(self, value: Any) -> None: self.collection[self.key] = value # type: ignore[index] def value(self) -> Any: return self.collection[self.key] # type: ignore[index] @staticmethod def wrap(object: Union[Dict, List], key: Union[int, str], value: Any) -> Union[Any, "_CollectionItem"]: return ( _CollectionItem(object, key) if value is None or isinstance(value, _CollectionItem.types_as_collection_item) else value ) def _tree_apply2( func: Callable, x: Union[Any, List, Dict], y: Union[Any, collections.Sequence, collections.Mapping], ) -> None: if isinstance(x, dict) and isinstance(y, collections.Mapping): for k, v in x.items(): if k not in y: raise ValueError(f"Key '{k}' from x is not found in y: {y.keys()}") _tree_apply2(func, _CollectionItem.wrap(x, k, v), y[k]) elif isinstance(x, list) and isinstance(y, collections.Sequence): if len(x) != len(y): raise ValueError(f"Size of y: {len(y)} does not match the size of x: '{len(x)}'") for i, (v1, v2) in enumerate(zip(x, y)): _tree_apply2(func, _CollectionItem.wrap(x, i, v1), v2) else: return func(x, y) def to_onehot(indices: torch.Tensor, num_classes: int) -> torch.Tensor: """Convert a tensor of indices of any shape `(N, ...)` to a tensor of one-hot indicators of shape `(N, num_classes, ...)` and of type uint8. Output's device is equal to the input's device`. Args: indices: input tensor to convert. num_classes: number of classes for one-hot tensor. .. versionchanged:: 0.4.3 This functions is now torchscriptable. """ new_shape = (indices.shape[0], num_classes) + indices.shape[1:] onehot = torch.zeros(new_shape, dtype=torch.uint8, device=indices.device) return onehot.scatter_(1, indices.unsqueeze(1), 1) def setup_logger( name: Optional[str] = "ignite", level: int = logging.INFO, stream: Optional[TextIO] = None, format: str = "%(asctime)s %(name)s %(levelname)s: %(message)s", filepath: Optional[str] = None, distributed_rank: Optional[int] = None, reset: bool = False, encoding: Optional[str] = "utf-8", ) -> logging.Logger: """Setups logger: name, level, format etc. Args: name: new name for the logger. If None, the standard logger is used. level: logging level, e.g. CRITICAL, ERROR, WARNING, INFO, DEBUG. stream: logging stream. If None, the standard stream is used (sys.stderr). format: logging format. By default, `%(asctime)s %(name)s %(levelname)s: %(message)s`. filepath: Optional logging file path. If not None, logs are written to the file. distributed_rank: Optional, rank in distributed configuration to avoid logger setup for workers. If None, distributed_rank is initialized to the rank of process. reset: if True, reset an existing logger rather than keep format, handlers, and level. encoding: open the file with the encoding. By default, 'utf-8'. Returns: logging.Logger Examples: Improve logs readability when training with a trainer and evaluator: .. code-block:: python from ignite.utils import setup_logger trainer = ... evaluator = ... trainer.logger = setup_logger("trainer") evaluator.logger = setup_logger("evaluator") trainer.run(data, max_epochs=10) # Logs will look like # 2020-01-21 12:46:07,356 trainer INFO: Engine run starting with max_epochs=5. # 2020-01-21 12:46:07,358 trainer INFO: Epoch[1] Complete. Time taken: 00:5:23 # 2020-01-21 12:46:07,358 evaluator INFO: Engine run starting with max_epochs=1. # 2020-01-21 12:46:07,358 evaluator INFO: Epoch[1] Complete. Time taken: 00:01:02 # ... Every existing logger can be reset if needed .. code-block:: python logger = setup_logger(name="my-logger", format="=== %(name)s %(message)s") logger.info("first message") setup_logger(name="my-logger", format="+++ %(name)s %(message)s", reset=True) logger.info("second message") # Logs will look like # === my-logger first message # +++ my-logger second message Change the level of an existing internal logger .. code-block:: python setup_logger( name="ignite.distributed.launcher.Parallel", level=logging.WARNING ) .. versionchanged:: 0.4.3 Added ``stream`` parameter. .. versionchanged:: 0.4.5 Added ``reset`` parameter. .. versionchanged:: 0.5.1 Argument ``encoding`` added to correctly handle special characters in the file, default "utf-8". """ # check if the logger already exists existing = name is None or name in logging.root.manager.loggerDict # if existing, get the logger otherwise create a new one logger = logging.getLogger(name) if distributed_rank is None: import ignite.distributed as idist distributed_rank = idist.get_rank() # Remove previous handlers if distributed_rank > 0 or reset: if logger.hasHandlers(): for h in list(logger.handlers): logger.removeHandler(h) if distributed_rank > 0: # Add null handler to avoid multiple parallel messages logger.addHandler(logging.NullHandler()) # Keep the existing configuration if not reset if existing and not reset: return logger if distributed_rank == 0: logger.setLevel(level) formatter = logging.Formatter(format) ch = logging.StreamHandler(stream=stream) ch.setLevel(level) ch.setFormatter(formatter) logger.addHandler(ch) if filepath is not None: fh = logging.FileHandler(filepath, encoding=encoding) fh.setLevel(level) fh.setFormatter(formatter) logger.addHandler(fh) # don't propagate to ancestors # the problem here is to attach handlers to loggers # should we provide a default configuration less open ? if name is not None: logger.propagate = False return logger def manual_seed(seed: int) -> None: """Setup random state from a seed for `torch`, `random` and optionally `numpy` (if can be imported). Args: seed: Random state seed .. versionchanged:: 0.4.3 Added ``torch.cuda.manual_seed_all(seed)``. .. versionchanged:: 0.4.5 Added ``torch_xla.core.xla_model.set_rng_state(seed)``. """ random.seed(seed) torch.manual_seed(seed) try: import torch_xla.core.xla_model as xm xm.set_rng_state(seed) except ImportError: pass try: import numpy as np np.random.seed(seed) except ImportError: pass def deprecated( deprecated_in: str, removed_in: str = "", reasons: Tuple[str, ...] = (), raise_exception: bool = False ) -> Callable: F = TypeVar("F", bound=Callable[..., Any]) def decorator(func: F) -> F: func_doc = func.__doc__ if func.__doc__ else "" deprecation_warning = ( f"This function has been deprecated since version {deprecated_in}" + (f" and will be removed in version {removed_in}" if removed_in else "") + ".\n Please refer to the documentation for more details." ) @functools.wraps(func) def wrapper(*args: Any, **kwargs: Dict[str, Any]) -> Callable: if raise_exception: raise DeprecationWarning(deprecation_warning) warnings.warn(deprecation_warning, DeprecationWarning, stacklevel=2) return func(*args, **kwargs) appended_doc = f".. deprecated:: {deprecated_in}" + ("\n\n\t" if len(reasons) > 0 else "") for reason in reasons: appended_doc += "\n\t- " + reason wrapper.__doc__ = f"**Deprecated function**.\n\n {func_doc}{appended_doc}" return cast(F, wrapper) return decorator def hash_checkpoint(checkpoint_path: Union[str, Path], output_dir: Union[str, Path]) -> Tuple[Path, str]: """ Hash the checkpoint file in the format of ``-.`` to be used with ``check_hash`` of :func:`torch.hub.load_state_dict_from_url`. Args: checkpoint_path: Path to the checkpoint file. output_dir: Output directory to store the hashed checkpoint file (will be created if not exist). Returns: Path to the hashed checkpoint file, the first 8 digits of SHA256 hash. .. versionadded:: 0.4.8 """ if isinstance(checkpoint_path, str): checkpoint_path = Path(checkpoint_path) if not checkpoint_path.exists(): raise FileNotFoundError(f"{checkpoint_path.name} does not exist in {checkpoint_path.parent}.") if isinstance(output_dir, str): output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) hash_obj = hashlib.sha256() # taken from https://github.com/pytorch/vision/blob/main/references/classification/utils.py with checkpoint_path.open("rb") as f: # Read and update hash string value in blocks of 4KB for byte_block in iter(lambda: f.read(4096), b""): hash_obj.update(byte_block) sha_hash = hash_obj.hexdigest() old_filename = checkpoint_path.stem new_filename = "-".join((old_filename, sha_hash[:8])) + ".pt" hash_checkpoint_path = output_dir / new_filename shutil.move(str(checkpoint_path), hash_checkpoint_path) return hash_checkpoint_path, sha_hash ignite-0.5.1/mypy.ini000066400000000000000000000032101465426447700145120ustar00rootroot00000000000000[mypy] files = ignite pretty = True show_error_codes = True check_untyped_defs = True ; a lot of work needed to fix issues disallow_any_generics = False disallow_incomplete_defs = True disallow_subclassing_any = True ; due to missing types in pytorch set to False disallow_untyped_calls = False disallow_untyped_decorators = True disallow_untyped_defs = True no_implicit_optional = True ; would need a more precise import of pytorch classes and methods, which is not possible, therefore set to False no_implicit_reexport = False strict_equality = True warn_redundant_casts = True ; due to missing types in multiple libs set to False warn_return_any = False ; results in too many false positives, therefore set to False warn_unreachable = False warn_unused_configs = True warn_unused_ignores = True [mypy-apex.*] ignore_missing_imports = True [mypy-clearml.*] ignore_missing_imports = True [mypy-horovod.*] ignore_missing_imports = True [mypy-matplotlib.*] ignore_missing_imports = True [mypy-mlflow.*] ignore_missing_imports = True [mypy-neptune.*] ignore_missing_imports = True [mypy-numpy.*] ignore_missing_imports = True [mypy-pandas.*] ignore_missing_imports = True [mypy-sklearn.*] ignore_missing_imports = True [mypy-polyaxon.*] ignore_missing_imports = True [mypy-polyaxon_client.*] ignore_missing_imports = True [mypy-pynvml.*] ignore_missing_imports = True [mypy-tensorboardX.*] ignore_missing_imports = True [mypy-torch_xla.*] ignore_missing_imports = True [mypy-trains.*] ignore_missing_imports = True [mypy-tqdm.*] ignore_missing_imports = True [mypy-scipy.*] ignore_missing_imports = True [mypy-torchvision.*] ignore_missing_imports = True ignite-0.5.1/pyproject.toml000066400000000000000000000013721465426447700157360ustar00rootroot00000000000000[tool.black] line-length = 120 target-version = ['py38', 'py39'] include = '\.pyi?$' exclude = ''' ( /( \.eggs # exclude a few common directories in the | \.git # root of the project | \.hg | \.mypy_cache | \.tox | \.venv | _build | buck-out | build | dist | assets )/ | foo.py # also separately exclude a file named foo.py in # the root of the project ) ''' [tool.usort.known] first_party = [ "ignite", ] third_party = [ "clearml", "dill", "matplotlib", "numpy", "pkg_resources", "pytest", "requests", "setuptools", "skimage", "sklearn", "torch", "torchvision", ] [tool.ufmt] excludes = [ "assets/", ] ignite-0.5.1/requirements-dev.txt000066400000000000000000000007771465426447700170720ustar00rootroot00000000000000# Tests numpy pytest pytest-cov pytest-xdist pytest-timeout dill filelock setuptools # Test contrib dependencies scipy pytorch_fid tqdm scikit-learn matplotlib tensorboardX visdom polyaxon wandb mlflow neptune-client>=0.16.17 tensorboard torchvision pynvml clearml scikit-image py-rouge # temporary fix for python=3.12 and v3.8.1 # nltk git+https://github.com/nltk/nltk@aba99c8 # Examples dependencies pandas gymnasium # temporary fix: E AttributeError: module 'mpmath' has no attribute 'rational' mpmath<1.4 ignite-0.5.1/setup.cfg000066400000000000000000000014021465426447700146350ustar00rootroot00000000000000[metadata] license_files = LICENSE [pycodestyle] exclude = .eggs,*.egg,build,docs/*,.git,versioneer.py,*/conf.py ignore = E402, E721 max_line_length = 120 [isort] known_third_party=clearml,dill,matplotlib,numpy,pkg_resources,pytest,requests,setuptools,skimage,sklearn,torch,torchvision multi_line_output=3 include_trailing_comma=True force_grid_wrap=0 use_parentheses=True line_length=120 skip_glob=docs/** filter_files=True profile=black [flake8] max-line-length = 120 ignore = E722,E203,E231,F841,W503,F403,E402 per-file-ignores = __init__.py: F401 [tool:pytest] markers = distributed: mark a test with distributed option multinode_distributed: mark a test with multi-node distributed option tpu: mark a test as requiring XLA addopts = --color=yes ignite-0.5.1/setup.py000066400000000000000000000024361465426447700145360ustar00rootroot00000000000000import io import os import re from setuptools import find_packages, setup def read(*names, **kwargs): with io.open(os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8")) as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") readme = read("README.md").replace( 'src="assets/', 'src="https://raw.githubusercontent.com/pytorch/ignite/master/assets/' ) VERSION = find_version("ignite", "__init__.py") requirements = ["torch>=1.3,<3", "packaging"] setup( # Metadata name="pytorch-ignite", version=VERSION, author="PyTorch-Ignite Team", author_email="contact@pytorch-ignite.ai", url="https://github.com/pytorch/ignite", description="A lightweight library to help with training neural networks in PyTorch.", long_description_content_type="text/markdown", long_description=readme, license="BSD", # Package info packages=find_packages(exclude=("tests", "tests.*")), package_data={"ignite": ["py.typed"]}, zip_safe=False, install_requires=requirements, ) ignite-0.5.1/tests/000077500000000000000000000000001465426447700141615ustar00rootroot00000000000000ignite-0.5.1/tests/__init__.py000066400000000000000000000000421465426447700162660ustar00rootroot00000000000000# Needed to collect coverage data ignite-0.5.1/tests/common_test_functionality.sh000066400000000000000000000061531465426447700220210ustar00rootroot00000000000000#!/bin/bash # Will catch exit code 5 when tests are deselected from previous passing run # (relevent for --last-failed-no-failures none) last_failed_no_failures_code=5 # functions shared across test files run_tests() { # Set defaults local core_args="-vvv tests/ignite" local cache_dir=".unknown-cache" local skip_distrib_tests=1 local match_tests_expression="" local trap_deselected_exit_code=1 local use_last_failed=0 local use_coverage=0 local world_size=0 # Always clean up pytest.ini trap 'rm -f pytest.ini' RETURN # Parse arguments while [[ $# -gt 0 ]] do key="$1" case $key in --core_args) core_args="$2" shift shift ;; --cache_dir) cache_dir="$2" shift shift ;; --skip_distrib_tests) skip_distrib_tests="$2" shift shift ;; --match_tests_expression) match_tests_expression="$2" shift shift ;; --trap_deselected_exit_code) trap_deselected_exit_code="$2" shift shift ;; --use_last_failed) use_last_failed="$2" shift shift ;; --use_coverage) use_coverage="$2" shift shift ;; --world_size) world_size="$2" shift shift ;; *) echo "Error: Unknown argument $key" exit 1 shift ;; esac done if ! command -v pytest &> /dev/null then echo "pytest could not be found" echo "The path is: ${PATH}" exit 1 fi if [ "${skip_distrib_tests}" -eq "1" ]; then # can be overwritten by core_args skip_distrib_opt="-m 'not distributed and not tpu and not multinode_distributed'" else skip_distrib_opt="" fi echo [pytest] > pytest.ini ; echo "cache_dir=${cache_dir}" >> pytest.ini # Assemble options for the pytest command pytest_args="${skip_distrib_opt} ${core_args} --treat-unrun-as-failed -k '${match_tests_expression}'" if [ "${use_last_failed:-0}" -eq "1" ] && [ -d "${cache_dir}" ]; then pytest_args="--last-failed --last-failed-no-failures none ${pytest_args}" fi if [ "${use_coverage}" -eq "1" ]; then pytest_args="--cov ignite --cov-append --cov-report term-missing --cov-report xml ${pytest_args}" fi if [ ! "${world_size}" -eq "0" ]; then export WORLD_SIZE="${world_size}" pytest_args="--dist=each --tx ${WORLD_SIZE}*popen//python=python ${pytest_args}" fi # Run the command if [ "$trap_deselected_exit_code" -eq "1" ]; then CUDA_VISIBLE_DEVICES="" eval "pytest ${pytest_args}" || { exit_code=$?; if [ "$exit_code" -eq ${last_failed_no_failures_code} ]; then echo "All tests deselected"; else exit $exit_code; fi; } else CUDA_VISIBLE_DEVICES="" eval "pytest ${pytest_args}" fi } ignite-0.5.1/tests/ignite/000077500000000000000000000000001465426447700154405ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/__init__.py000066400000000000000000000006141465426447700175520ustar00rootroot00000000000000import torch def cpu_and_maybe_cuda(): return ("cpu",) + (("cuda",) if torch.cuda.is_available() else ()) def is_mps_available_and_functional(): if not torch.backends.mps.is_available(): return False try: # Try to allocate a small tensor on the MPS device torch.tensor([1.0], device="mps") return True except RuntimeError: return False ignite-0.5.1/tests/ignite/base/000077500000000000000000000000001465426447700163525ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/base/__init__.py000066400000000000000000000000001465426447700204510ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/base/test_mixins.py000066400000000000000000000003671465426447700213000ustar00rootroot00000000000000import pytest from ignite.base import Serializable def test_state_dict(): s = Serializable() with pytest.raises(NotImplementedError): s.state_dict() def test_load_state_dict(): s = Serializable() s.load_state_dict({}) ignite-0.5.1/tests/ignite/conftest.py000066400000000000000000000454511465426447700176500ustar00rootroot00000000000000import functools import os import shutil import signal import sys import tempfile import threading import time from pathlib import Path import pytest import torch import torch.distributed as dist import ignite.distributed as idist def pytest_addoption(parser): """ Add custom command line options for the ignite test suite here. See: This function is a pytest hook (due to its name) and is *"automatically" executed at the start of a test run https://docs.pytest.org/en/latest/reference/reference.html#initialization-hooks * "automatically" is true provided this conftest.py file is the root directory. See: https://docs.pytest.org/en/latest/reference/customize.html#initialization-determining-rootdir-and-configfile """ parser.addoption( "--treat-unrun-as-failed", action="store_true", help=""" If a session is interrupted, treat the unrun tests as failed so that a rerun with --last-failed runs any tests that have not passed or been skipped. Note that if all tests in a module have been skipped, the module will be skipped for all subsequent runs. """, ) def pytest_configure(config): """ This function is a pytest hook (due to its name) and is run after command line parsing is complete in order to configure the test session. """ config.addinivalue_line("markers", "distributed: run distributed") config.addinivalue_line("markers", "multinode_distributed: distributed") config.addinivalue_line("markers", "tpu: run on tpu") if config.option.treat_unrun_as_failed: unrun_tracker = UnrunTracker() config.pluginmanager.register(unrun_tracker, "unrun_tracker_plugin") @pytest.fixture(scope="session", autouse=True) def term_handler(): """ This allows the pytest session to be terminated upon retries on CI. It may be worth using this fixture solely in that context. For a discussion on whether sigterm should be ignored and why pytest usually ignores it see: https://github.com/pytest-dev/pytest/issues/5243 """ if threading.current_thread() is threading.main_thread() and hasattr(signal, "SIGTERM"): orig = signal.signal(signal.SIGTERM, signal.getsignal(signal.SIGINT)) yield signal.signal(signal.SIGTERM, orig) else: yield # Just pass through if SIGTERM isn't supported or we are not in the main thread @pytest.fixture( params=[ "cpu", pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no CUDA support")), ] ) def available_device(request): return request.param @pytest.fixture() def dirname(): path = Path(tempfile.mkdtemp()) yield path shutil.rmtree(path) @pytest.fixture() def get_fixed_dirname(worker_id): # multi-proc friendly fixed tmp dirname path = "/tmp/fixed_tmp_dirname_" lrank = int(worker_id.replace("gw", "")) if "gw" in worker_id else 0 def getter(name="test"): nonlocal path path += name time.sleep(0.5 * lrank) os.makedirs(path, exist_ok=True) return path yield getter time.sleep(1.0 * lrank + 1.0) if Path(path).exists(): shutil.rmtree(path) # sort of sync time.sleep(1.0) @pytest.fixture() def get_rank_zero_dirname(dirname): def func(): import ignite.distributed as idist zero_rank_dirname = Path(idist.all_gather(str(dirname))[0]) return zero_rank_dirname yield func @pytest.fixture(scope="module") def local_rank(worker_id): """use a different account in each xdist worker""" if "gw" in worker_id: lrank = int(worker_id.replace("gw", "")) elif "master" == worker_id: lrank = 0 else: raise RuntimeError(f"Can not get rank from worker_id={worker_id}") os.environ["LOCAL_RANK"] = f"{lrank}" yield lrank del os.environ["LOCAL_RANK"] @pytest.fixture(scope="module") def world_size(): remove_env_var = False if "WORLD_SIZE" not in os.environ: os.environ["WORLD_SIZE"] = "1" remove_env_var = True yield int(os.environ["WORLD_SIZE"]) if remove_env_var: del os.environ["WORLD_SIZE"] @pytest.fixture() def clean_env(): for k in ["RANK", "LOCAL_RANK", "WORLD_SIZE"]: if k in os.environ: del os.environ[k] def _create_dist_context(dist_info, lrank): dist.init_process_group(**dist_info) dist.barrier() if torch.cuda.is_available(): torch.cuda.set_device(lrank) return {"local_rank": lrank, "world_size": dist_info["world_size"], "rank": dist_info["rank"]} def _destroy_dist_context(): if dist.get_rank() == 0: # To support Python 3.7; Otherwise we could do `.unlink(missing_ok=True)` try: Path("/tmp/free_port").unlink() except FileNotFoundError: pass dist.barrier() dist.destroy_process_group() from ignite.distributed.utils import _SerialModel, _set_model # We need to set synced model to initial state _set_model(_SerialModel()) def _find_free_port(): # Taken from https://github.com/facebookresearch/detectron2/blob/master/detectron2/engine/launch.py import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port def _setup_free_port(local_rank): port_file = "/tmp/free_port" if local_rank == 0: port = _find_free_port() with open(port_file, "w") as h: h.write(str(port)) return port else: counter = 10 while counter > 0: counter -= 1 time.sleep(1) if not Path(port_file).exists(): continue with open(port_file, "r") as h: port = h.readline() return int(port) raise RuntimeError(f"Failed to fetch free port on local rank {local_rank}") @pytest.fixture() def distributed_context_single_node_nccl(local_rank, world_size): free_port = _setup_free_port(local_rank) dist_info = { "backend": "nccl", "world_size": world_size, "rank": local_rank, "init_method": f"tcp://localhost:{free_port}", } yield _create_dist_context(dist_info, local_rank) _destroy_dist_context() @pytest.fixture() def distributed_context_single_node_gloo(local_rank, world_size): from datetime import timedelta if sys.platform.startswith("win"): temp_file = tempfile.NamedTemporaryFile(delete=False) # can't use backslashes in f-strings backslash = "\\" init_method = f'file:///{temp_file.name.replace(backslash, "/")}' else: free_port = _setup_free_port(local_rank) init_method = f"tcp://localhost:{free_port}" temp_file = None dist_info = { "backend": "gloo", "world_size": world_size, "rank": local_rank, "init_method": init_method, "timeout": timedelta(seconds=30), } yield _create_dist_context(dist_info, local_rank) _destroy_dist_context() if temp_file: temp_file.close() @pytest.fixture() def multi_node_conf(local_rank): assert "node_id" in os.environ assert "nnodes" in os.environ assert "nproc_per_node" in os.environ node_id = int(os.environ["node_id"]) nnodes = int(os.environ["nnodes"]) nproc_per_node = int(os.environ["nproc_per_node"]) out = { "world_size": nnodes * nproc_per_node, "rank": local_rank + node_id * nproc_per_node, "local_rank": local_rank, } return out def _create_mnodes_dist_context(dist_info, mnodes_conf): dist.init_process_group(**dist_info) dist.barrier() if torch.cuda.is_available(): torch.cuda.device(mnodes_conf["local_rank"]) return mnodes_conf def _destroy_mnodes_dist_context(): dist.barrier() dist.destroy_process_group() from ignite.distributed.utils import _SerialModel, _set_model # We need to set synced model to initial state _set_model(_SerialModel()) @pytest.fixture() def distributed_context_multi_node_gloo(multi_node_conf): assert "MASTER_ADDR" in os.environ assert "MASTER_PORT" in os.environ dist_info = { "backend": "gloo", "init_method": "env://", "world_size": multi_node_conf["world_size"], "rank": multi_node_conf["rank"], } yield _create_mnodes_dist_context(dist_info, multi_node_conf) _destroy_mnodes_dist_context() @pytest.fixture() def distributed_context_multi_node_nccl(multi_node_conf): assert "MASTER_ADDR" in os.environ assert "MASTER_PORT" in os.environ os.environ["MASTER_PORT"] = str(int(os.getenv("MASTER_PORT")) + 1) dist_info = { "backend": "nccl", "init_method": "env://", "world_size": multi_node_conf["world_size"], "rank": multi_node_conf["rank"], } yield _create_mnodes_dist_context(dist_info, multi_node_conf) _destroy_mnodes_dist_context() def _xla_template_worker_task(index, fn, args): import torch_xla.core.xla_model as xm xm.rendezvous("init") fn(index, *args) def _xla_execute(fn, args, nprocs): import torch_xla.distributed.xla_multiprocessing as xmp spawn_kwargs = {} if "COLAB_TPU_ADDR" in os.environ: spawn_kwargs["start_method"] = "fork" try: xmp.spawn(_xla_template_worker_task, args=(fn, args), nprocs=nprocs, **spawn_kwargs) except SystemExit as ex_: assert ex_.code == 0, "Didn't successfully exit in XLA test" @pytest.fixture() def xmp_executor(): yield _xla_execute @pytest.fixture() def mock_gpu_is_not_available(): from unittest.mock import patch with patch("torch.cuda") as mock_cuda: mock_cuda.is_available.return_value = False yield mock_cuda def _hvd_task_with_init(func, args): import horovod.torch as hvd hvd.init() lrank = hvd.local_rank() if torch.cuda.is_available(): torch.cuda.set_device(lrank) func(*args) # Added a sleep to avoid flaky failures on circle ci # Sometimes a rank is terminated before final collective # op is finished. # https://github.com/pytorch/ignite/pull/2357 time.sleep(2) hvd.shutdown() def _gloo_hvd_execute(func, args, np=1, do_init=False): try: # old API from horovod.run.runner import run except ImportError: # new API: https://github.com/horovod/horovod/pull/2099 from horovod import run kwargs = dict(use_gloo=True, num_proc=np) if do_init: return run(_hvd_task_with_init, args=(func, args), **kwargs) return run(func, args=args, **kwargs) @pytest.fixture() def gloo_hvd_executor(): yield _gloo_hvd_execute skip_if_no_gpu = pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") skip_if_has_not_native_dist_support = pytest.mark.skipif( not idist.has_native_dist_support, reason="Skip if no native dist support" ) skip_if_has_not_xla_support = pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") skip_if_has_not_horovod_support = pytest.mark.skipif( not idist.has_hvd_support, reason="Skip if no Horovod dist support" ) # Unlike other backends, Horovod and multi-process XLA run user code by # providing a utility function which accepts user code as a callable argument. # To keep distributed tests backend-agnostic, we mark Horovod and multi-process XLA # tests during fixture preparation and replace their function with the proper one # just before running the test. PyTest stash is a safe way to share state between # different stages of tool runtime and we use it to mark the tests. is_horovod_stash_key = pytest.StashKey[bool]() is_xla_stash_key = pytest.StashKey[bool]() is_xla_single_device_stash_key = pytest.StashKey[bool]() @pytest.fixture( params=[ pytest.param("nccl", marks=[pytest.mark.distributed, skip_if_has_not_native_dist_support, skip_if_no_gpu]), pytest.param("gloo_cpu", marks=[pytest.mark.distributed, skip_if_has_not_native_dist_support]), pytest.param("gloo", marks=[pytest.mark.distributed, skip_if_has_not_native_dist_support, skip_if_no_gpu]), pytest.param( "horovod", marks=[ pytest.mark.distributed, skip_if_has_not_horovod_support, pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc"), ], ), pytest.param( "single_device_xla", marks=[ pytest.mark.tpu, skip_if_has_not_xla_support, pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars"), ], ), pytest.param( "xla_nprocs", marks=[ pytest.mark.tpu, skip_if_has_not_xla_support, pytest.mark.skipif( "NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars" ), ], ), ], scope="class", ) def distributed(request, local_rank, world_size): if request.param in ("nccl", "gloo_cpu", "gloo"): if "gloo" in request.param and sys.platform.startswith("win"): temp_file = tempfile.NamedTemporaryFile(delete=False) # can't use backslashes in f-strings backslash = "\\" init_method = f'file:///{temp_file.name.replace(backslash, "/")}' else: temp_file = None free_port = _setup_free_port(local_rank) init_method = f"tcp://localhost:{free_port}" dist_info = { "world_size": world_size, "rank": local_rank, "init_method": init_method, } if request.param == "nccl": dist_info["backend"] = "nccl" else: dist_info["backend"] = "gloo" from datetime import timedelta dist_info["timeout"] = timedelta(seconds=30) yield _create_dist_context(dist_info, local_rank) _destroy_dist_context() if temp_file: temp_file.close() elif request.param == "horovod": request.node.stash[is_horovod_stash_key] = True yield None elif request.param in ("single_device_xla", "xla_nprocs"): request.node.stash[is_xla_stash_key] = True request.node.stash[is_xla_single_device_stash_key] = request.param == "single_device_xla" yield {"xla_index": -1} if request.param == "xla_nprocs" else None else: raise RuntimeError(f"Invalid parameter value for `distributed` fixture, given {request.param}") class UnrunTracker: """ Keeps track of unrun tests to improve the user experience when using the "--last-failed" pytest option and a test session is interrupted. This is particularly useful on CI when rerunning "failing" tests where the failure was due to a deadlock and many tests weren't actually run so they didn't actually fail. This is a pytest plugin that implements some standard hooks to modify the test session. Its functionality can be added to a test session by registering it with the pytest plugin manager. """ def __init__(self): self.unrun_tests = [] def pytest_collection_finish(self, session): # At the end of the collection, add all items to the unrun_tests list self.unrun_tests.extend(session.items) def pytest_runtest_teardown(self, item): if item in self.unrun_tests: self.unrun_tests.remove(item) def record_unrun_as_failed(self, session, exitstatus): # Get current lastfailed entries (if any) lastfailed = session.config.cache.get("cache/lastfailed", {}) # Add unrun tests to lastfailed for test in self.unrun_tests: lastfailed[test.nodeid] = True # Update the cache with the new lastfailed session.config.cache.set("cache/lastfailed", lastfailed) @pytest.hookimpl def pytest_pyfunc_call(pyfuncitem: pytest.Function) -> None: if any(fx in pyfuncitem.fixturenames for fx in ["distributed", "multinode_distributed"]): # Run distributed tests on a single worker to avoid RACE conditions # This requires that the --dist=loadgroup option be passed to pytest. pyfuncitem.add_marker(pytest.mark.xdist_group("distributed")) # Add timeouts to prevent hanging if "tpu" in pyfuncitem.fixturenames: pyfuncitem.add_marker(pytest.mark.timeout(60)) else: pyfuncitem.add_marker(pytest.mark.timeout(45)) if pyfuncitem.stash.get(is_horovod_stash_key, False): def testfunc_wrapper(test_func, **kwargs): def hvd_worker(): import horovod.torch as hvd hvd.init() lrank = hvd.local_rank() if torch.cuda.is_available(): torch.cuda.set_device(lrank) test_func(**kwargs) hvd.shutdown() try: # old API from horovod.run.runner import run except ImportError: # new API: https://github.com/horovod/horovod/pull/2099 from horovod import run nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() hvd_kwargs = dict(use_gloo=True, num_proc=nproc) run(hvd_worker, **hvd_kwargs) pyfuncitem.obj = functools.partial(testfunc_wrapper, pyfuncitem.obj) elif pyfuncitem.stash.get(is_xla_stash_key, False) and not pyfuncitem.stash[is_xla_single_device_stash_key]: def testfunc_wrapper(testfunc, **kwargs): def xla_worker(index, fn): import torch_xla.core.xla_model as xm kwargs["distributed"]["xla_index"] = index xm.rendezvous("init") fn(**kwargs) import torch_xla.distributed.xla_multiprocessing as xmp spawn_kwargs = {"nprocs": int(os.environ["NUM_TPU_WORKERS"])} if "COLAB_TPU_ADDR" in os.environ: spawn_kwargs["start_method"] = "fork" try: xmp.spawn(xla_worker, args=(testfunc,), **spawn_kwargs) except SystemExit as ex_: assert ex_.code == 0, "Didn't successfully exit in XLA test" pyfuncitem.obj = functools.partial(testfunc_wrapper, pyfuncitem.obj) def pytest_sessionfinish(session, exitstatus): """ Any functionality that should be run at the end of the session should be added here. This is a pytest hook (due to its name) and is called after the whole test run finished, right before returning the exit status to the system. """ # If requested by the user, track all unrun tests and add them to the lastfailed cache if session.config.option.treat_unrun_as_failed: unrun_tracker = session.config.pluginmanager.get_plugin("unrun_tracker_plugin") unrun_tracker.record_unrun_as_failed(session, exitstatus) ignite-0.5.1/tests/ignite/contrib/000077500000000000000000000000001465426447700171005ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/contrib/__init__.py000066400000000000000000000000201465426447700212010ustar00rootroot00000000000000# coding: utf-8 ignite-0.5.1/tests/ignite/contrib/conftest.py000066400000000000000000000002011465426447700212700ustar00rootroot00000000000000import pytest @pytest.fixture() def visdom_offline_logfile(dirname): log_file = dirname / "logs.visdom" yield log_file ignite-0.5.1/tests/ignite/contrib/engines/000077500000000000000000000000001465426447700205305ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/contrib/engines/__init__.py000066400000000000000000000000001465426447700226270ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/contrib/engines/test_common.py000066400000000000000000000602261465426447700234370ustar00rootroot00000000000000import os import sys from unittest.mock import call, MagicMock import pytest import torch import torch.nn as nn from torch.utils.data.distributed import DistributedSampler import ignite.distributed as idist import ignite.handlers as handlers from ignite.contrib.engines.common import ( _setup_logging, add_early_stopping_by_val_score, gen_save_best_models_by_val_score, save_best_model_by_val_score, setup_any_logging, setup_clearml_logging, setup_common_training_handlers, setup_mlflow_logging, setup_neptune_logging, setup_plx_logging, setup_tb_logging, setup_trains_logging, setup_visdom_logging, setup_wandb_logging, ) from ignite.engine import Engine, Events from ignite.handlers import DiskSaver, TerminateOnNan class DummyModel(nn.Module): def __init__(self): super(DummyModel, self).__init__() self.net = nn.Linear(1, 1) def forward(self, x): return self.net(x) def _test_setup_common_training_handlers( dirname, device, rank=0, local_rank=0, distributed=False, lr_scheduler=None, save_handler=None, output_transform=lambda loss: loss, ): lr = 0.01 step_size = 100 gamma = 0.5 num_iters = 100 num_epochs = 10 model = DummyModel().to(device) if distributed and "cuda" in torch.device(device).type: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) optimizer = torch.optim.SGD(model.parameters(), lr=lr) if lr_scheduler is None: lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma) elif isinstance(lr_scheduler, str) and lr_scheduler == "ignite|LRScheduler": from ignite.handlers import LRScheduler lr_scheduler = LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)) elif isinstance(lr_scheduler, str) and lr_scheduler == "ignite": from ignite.handlers import PiecewiseLinear milestones_values = [(0, 0.0), (step_size, lr), (num_iters * (num_epochs - 1), 0.0)] lr_scheduler = PiecewiseLinear(optimizer, param_name="lr", milestones_values=milestones_values) else: raise ValueError(f"Unknown lr_scheduler: {lr_scheduler}") def update_fn(engine, batch): optimizer.zero_grad() x = torch.tensor([batch], requires_grad=True, device=device) y_pred = model(x) loss = y_pred.mean() loss.backward() optimizer.step() return output_transform(loss) train_sampler = None if distributed and idist.get_world_size() > 1: train_sampler = MagicMock(spec=DistributedSampler) train_sampler.set_epoch = MagicMock() trainer = Engine(update_fn) setup_common_training_handlers( trainer, train_sampler=train_sampler, to_save={"model": model, "optimizer": optimizer}, save_every_iters=75, output_path=dirname, save_handler=save_handler, lr_scheduler=lr_scheduler, with_gpu_stats=False, output_names=["batch_loss"], with_pbars=True, with_pbar_on_iters=True, log_every_iters=50, ) data = [i * 0.1 for i in range(num_iters)] trainer.run(data, max_epochs=num_epochs) # check handlers handlers = trainer._event_handlers[Events.ITERATION_COMPLETED] for cls in [ TerminateOnNan, ]: assert any([isinstance(h[0], cls) for h in handlers]), f"{handlers}" assert "batch_loss" in trainer.state.metrics # Check saved checkpoint if rank == 0: if save_handler is not None: dirname = save_handler.dirname checkpoints = list(os.listdir(dirname)) assert len(checkpoints) == 1 for v in [ "training_checkpoint", ]: assert any([v in c for c in checkpoints]) # Check LR scheduling assert optimizer.param_groups[0]["lr"] <= lr * gamma ** ( (num_iters * num_epochs - 1) // step_size ), f"{optimizer.param_groups[0]['lr']} vs {lr * gamma ** ((num_iters * num_epochs - 1) // step_size)}" def test_asserts_setup_common_training_handlers(): trainer = Engine(lambda e, b: None) with pytest.raises( ValueError, match=r"If to_save argument is provided then output_path or save_handler arguments should be also defined", ): setup_common_training_handlers(trainer, to_save={}) with pytest.raises(ValueError, match=r"Arguments output_path and save_handler are mutually exclusive"): setup_common_training_handlers(trainer, to_save={}, output_path="abc", save_handler=lambda c, f, m: None) with pytest.warns(UserWarning, match=r"Argument train_sampler is a distributed sampler"): train_sampler = MagicMock(spec=DistributedSampler) setup_common_training_handlers(trainer, train_sampler=train_sampler) if not torch.cuda.is_available(): with pytest.raises(RuntimeError, match=r"This contrib module requires available GPU"): setup_common_training_handlers(trainer, with_gpu_stats=True) with pytest.raises(TypeError, match=r"Unhandled type of update_function's output."): trainer = Engine(lambda e, b: None) setup_common_training_handlers( trainer, output_names=["loss"], with_pbar_on_iters=False, with_pbars=False, with_gpu_stats=False, stop_on_nan=False, clear_cuda_cache=False, ) trainer.run([1]) def test_no_warning_with_train_sampler(recwarn): from torch.utils.data import RandomSampler trainer = Engine(lambda e, b: None) train_sampler = RandomSampler([0, 1, 2]) setup_common_training_handlers(trainer, train_sampler=train_sampler) assert len(recwarn) == 0, recwarn.pop() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" not in os.environ, reason="Should have more than 1 worker") def test_assert_setup_common_training_handlers_wrong_train_sampler(distributed_context_single_node_gloo): trainer = Engine(lambda e, b: None) from torch.utils.data.sampler import RandomSampler with pytest.raises(TypeError, match=r"Train sampler should be torch DistributedSampler"): train_sampler = RandomSampler([0, 1, 2, 3]) setup_common_training_handlers(trainer, train_sampler) def test_setup_common_training_handlers(dirname, capsys): _test_setup_common_training_handlers(dirname, device="cpu") # Check epoch-wise pbar captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "Epoch" in out[-1] or "Epoch" in out[-2], f"{out[-2]}, {out[-1]}" _test_setup_common_training_handlers(dirname, device="cpu", output_transform=lambda loss: [loss]) # Check epoch-wise pbar captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "Epoch" in out[-1] or "Epoch" in out[-2], f"{out[-2]}, {out[-1]}" _test_setup_common_training_handlers(dirname, device="cpu", output_transform=lambda loss: {"batch_loss": loss}) # Check epoch-wise pbar captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "Epoch" in out[-1] or "Epoch" in out[-2], f"{out[-2]}, {out[-1]}" def test_setup_common_training_handlers_using_save_handler(dirname, capsys): save_handler = DiskSaver(dirname=dirname, require_empty=False) _test_setup_common_training_handlers(dirname=None, device="cpu", save_handler=save_handler) # Check epoch-wise pbar captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "Epoch" in out[-1] or "Epoch" in out[-2], f"{out[-2]}, {out[-1]}" def test_save_best_model_by_val_score(dirname): acc_scores = [0.1, 0.2, 0.3, 0.4, 0.3, 0.5, 0.6, 0.61, 0.7, 0.5] def setup_trainer(): trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) model = DummyModel() @trainer.on(Events.EPOCH_COMPLETED) def validate(engine): evaluator.run([0, 1]) @evaluator.on(Events.EPOCH_COMPLETED) def set_eval_metric(engine): acc = acc_scores[trainer.state.epoch - 1] engine.state.metrics = {"acc": acc, "loss": 1 - acc} return trainer, evaluator, model trainer, evaluator, model = setup_trainer() save_best_model_by_val_score(dirname, evaluator, model, metric_name="acc", n_saved=2, trainer=trainer) trainer.run([0, 1], max_epochs=len(acc_scores)) assert set(os.listdir(dirname)) == {"best_model_8_val_acc=0.6100.pt", "best_model_9_val_acc=0.7000.pt"} for fname in os.listdir(dirname): os.unlink(f"{dirname}/{fname}") trainer, evaluator, model = setup_trainer() save_best_model_by_val_score( dirname, evaluator, model, metric_name="loss", n_saved=2, trainer=trainer, score_sign=-1.0 ) trainer.run([0, 1], max_epochs=len(acc_scores)) assert set(os.listdir(dirname)) == {"best_model_8_val_loss=-0.3900.pt", "best_model_9_val_loss=-0.3000.pt"} def test_gen_save_best_models_by_val_score(): acc_scores = [0.1, 0.2, 0.3, 0.4, 0.3, 0.5, 0.6, 0.61, 0.7, 0.5] loss_scores = [0.9, 0.8, 0.7, 0.6, 0.7, 0.5, 0.4, 0.39, 0.3, 0.5] def setup_trainer(): trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) model = DummyModel() @trainer.on(Events.EPOCH_COMPLETED) def validate(engine): evaluator.run([0, 1]) @evaluator.on(Events.EPOCH_COMPLETED) def set_eval_metric(engine): acc = acc_scores[trainer.state.epoch - 1] loss = loss_scores[trainer.state.epoch - 1] engine.state.metrics = {"acc": acc, "loss": loss} return trainer, evaluator, model trainer, evaluator, model = setup_trainer() save_handler = MagicMock() gen_save_best_models_by_val_score( save_handler, evaluator, {"a": model, "b": model}, metric_name="acc", n_saved=2, trainer=trainer ) trainer.run([0, 1], max_epochs=len(acc_scores)) assert save_handler.call_count == len(acc_scores) - 2 # 2 score values (0.3 and 0.5) are not the best obj_to_save = {"a": model.state_dict(), "b": model.state_dict()} save_handler.assert_has_calls( [ call( obj_to_save, f"best_checkpoint_{e}_val_acc={p:.4f}.pt", dict([("basename", "best_checkpoint"), ("score_name", "val_acc"), ("priority", p)]), ) for e, p in zip([1, 2, 3, 4, 6, 7, 8, 9], [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.61, 0.7]) ], any_order=True, ) trainer, evaluator, model = setup_trainer() save_handler = MagicMock() gen_save_best_models_by_val_score( save_handler, evaluator, {"a": model, "b": model}, metric_name="loss", n_saved=2, trainer=trainer, score_sign=-1.0, ) trainer.run([0, 1], max_epochs=len(acc_scores)) assert save_handler.call_count == len(acc_scores) - 2 # 2 score values (-0.7 and -0.5) are not the best obj_to_save = {"a": model.state_dict(), "b": model.state_dict()} save_handler.assert_has_calls( [ call( obj_to_save, f"best_checkpoint_{e}_val_loss={p:.4f}.pt", dict([("basename", "best_checkpoint"), ("score_name", "val_loss"), ("priority", p)]), ) for e, p in zip([1, 2, 3, 4, 6, 7, 8, 9], [-0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.39, -0.3]) ], any_order=True, ) def test_add_early_stopping_by_val_score(): acc_scores = [0.1, 0.2, 0.3, 0.4, 0.3, 0.3, 0.2, 0.1, 0.1, 0.0] def setup_trainer(): trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) @trainer.on(Events.EPOCH_COMPLETED) def validate(engine): evaluator.run([0, 1]) @evaluator.on(Events.EPOCH_COMPLETED) def set_eval_metric(engine): acc = acc_scores[trainer.state.epoch - 1] engine.state.metrics = {"acc": acc, "loss": 1 - acc} return trainer, evaluator trainer, evaluator = setup_trainer() add_early_stopping_by_val_score(patience=3, evaluator=evaluator, trainer=trainer, metric_name="acc") state = trainer.run([0, 1], max_epochs=len(acc_scores)) assert state.epoch == 7 trainer, evaluator = setup_trainer() add_early_stopping_by_val_score( patience=3, evaluator=evaluator, trainer=trainer, metric_name="loss", score_sign=-1.0 ) state = trainer.run([0, 1], max_epochs=len(acc_scores)) assert state.epoch == 7 def test_deprecated_setup_any_logging(): with pytest.raises(DeprecationWarning, match=r"deprecated since version 0.4.0"): setup_any_logging(None, None, None, None, None, None) def test__setup_logging_wrong_args(): with pytest.raises(TypeError, match=r"Argument optimizers should be either a single optimizer or"): _setup_logging(MagicMock(), MagicMock(), "abc", MagicMock(), 1) with pytest.raises(TypeError, match=r"Argument evaluators should be either a single engine or"): _setup_logging(MagicMock(), MagicMock(), MagicMock(spec=torch.optim.SGD), "abc", 1) def _test_setup_logging( setup_logging_fn, kwargs_dict, output_handler_cls, opt_params_handler_cls, with_eval=True, with_optim=True, as_class=False, log_every_iters=1, ): trainer = Engine(lambda e, b: b) evaluators = None optimizers = None if with_eval: evaluator = Engine(lambda e, b: None) acc_scores = [0.1, 0.2, 0.3, 0.4, 0.3, 0.3, 0.2, 0.1, 0.1, 0.0] @trainer.on(Events.EPOCH_COMPLETED) def validate(engine): evaluator.run([0, 1]) @evaluator.on(Events.EPOCH_COMPLETED) def set_eval_metric(engine): engine.state.metrics = {"acc": acc_scores[trainer.state.epoch - 1]} evaluators = {"validation": evaluator} if as_class: evaluators = evaluators["validation"] if with_optim: t = torch.tensor([0]) optimizers = {"optimizer": torch.optim.SGD([t], lr=0.01)} if as_class: optimizers = optimizers["optimizer"] kwargs_dict["trainer"] = trainer kwargs_dict["optimizers"] = optimizers kwargs_dict["evaluators"] = evaluators kwargs_dict["log_every_iters"] = log_every_iters x_logger = setup_logging_fn(**kwargs_dict) handlers = trainer._event_handlers[Events.ITERATION_COMPLETED] for cls in [ output_handler_cls, ]: assert any([isinstance(h[0], cls) for h in handlers]), f"{handlers}" if with_optim: handlers = trainer._event_handlers[Events.ITERATION_STARTED] for cls in [ opt_params_handler_cls, ]: assert any([isinstance(h[0], cls) for h in handlers]), f"{handlers}" if with_eval: handlers = evaluator._event_handlers[Events.COMPLETED] for cls in [ output_handler_cls, ]: assert any([isinstance(h[0], cls) for h in handlers]), f"{handlers}" data = [0, 1, 2] trainer.run(data, max_epochs=10) if "output_path" in kwargs_dict: tb_files = list(os.listdir(kwargs_dict["output_path"])) assert len(tb_files) == 1 for v in [ "events", ]: assert any([v in c for c in tb_files]), f"{tb_files}" return x_logger def test_setup_tb_logging(dirname): tb_logger = _test_setup_logging( setup_logging_fn=setup_tb_logging, kwargs_dict={"output_path": dirname / "t1"}, output_handler_cls=handlers.tensorboard_logger.OutputHandler, opt_params_handler_cls=handlers.tensorboard_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) tb_logger.close() tb_logger = _test_setup_logging( setup_logging_fn=setup_tb_logging, kwargs_dict={"output_path": dirname / "t2"}, output_handler_cls=handlers.tensorboard_logger.OutputHandler, opt_params_handler_cls=handlers.tensorboard_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) tb_logger.close() tb_logger = _test_setup_logging( setup_logging_fn=setup_tb_logging, kwargs_dict={"output_path": dirname / "t3"}, output_handler_cls=handlers.tensorboard_logger.OutputHandler, opt_params_handler_cls=handlers.tensorboard_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, as_class=True, log_every_iters=None, ) tb_logger.close() @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_setup_visdom_logging(visdom_offline_logfile): vis_logger = _test_setup_logging( setup_logging_fn=setup_visdom_logging, kwargs_dict={"offline": True, "log_to_filename": visdom_offline_logfile}, output_handler_cls=handlers.visdom_logger.OutputHandler, opt_params_handler_cls=handlers.visdom_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) vis_logger.close() vis_logger = _test_setup_logging( setup_logging_fn=setup_visdom_logging, kwargs_dict={"offline": True, "log_to_filename": visdom_offline_logfile}, output_handler_cls=handlers.visdom_logger.OutputHandler, opt_params_handler_cls=handlers.visdom_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) vis_logger.close() def test_setup_plx_logging(): os.environ["POLYAXON_NO_OP"] = "1" _test_setup_logging( setup_logging_fn=setup_plx_logging, kwargs_dict={}, output_handler_cls=handlers.polyaxon_logger.OutputHandler, opt_params_handler_cls=handlers.polyaxon_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) _test_setup_logging( setup_logging_fn=setup_plx_logging, kwargs_dict={}, output_handler_cls=handlers.polyaxon_logger.OutputHandler, opt_params_handler_cls=handlers.polyaxon_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_setup_mlflow_logging(dirname): mlf_logger = _test_setup_logging( setup_logging_fn=setup_mlflow_logging, kwargs_dict={"tracking_uri": str(dirname / "p1")}, output_handler_cls=handlers.mlflow_logger.OutputHandler, opt_params_handler_cls=handlers.mlflow_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) mlf_logger.close() mlf_logger = _test_setup_logging( setup_logging_fn=setup_mlflow_logging, kwargs_dict={"tracking_uri": str(dirname / "p2")}, output_handler_cls=handlers.mlflow_logger.OutputHandler, opt_params_handler_cls=handlers.mlflow_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) mlf_logger.close() def test_setup_wandb_logging(dirname): from unittest.mock import patch with patch("ignite.contrib.engines.common.WandBLogger") as _: setup_wandb_logging(MagicMock()) def test_setup_clearml_logging(): handlers.clearml_logger.ClearMLLogger.set_bypass_mode(True) with pytest.warns(UserWarning, match=r"running in bypass mode"): clearml_logger = _test_setup_logging( setup_logging_fn=setup_clearml_logging, kwargs_dict={}, output_handler_cls=handlers.clearml_logger.OutputHandler, opt_params_handler_cls=handlers.clearml_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) clearml_logger.close() clearml_logger = _test_setup_logging( setup_logging_fn=setup_clearml_logging, kwargs_dict={}, output_handler_cls=handlers.clearml_logger.OutputHandler, opt_params_handler_cls=handlers.clearml_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) clearml_logger.close() clearml_logger = _test_setup_logging( setup_logging_fn=setup_trains_logging, kwargs_dict={}, output_handler_cls=handlers.clearml_logger.OutputHandler, opt_params_handler_cls=handlers.clearml_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) clearml_logger.close() with pytest.warns(UserWarning, match="setup_trains_logging was renamed to setup_clearml_logging"): clearml_logger = _test_setup_logging( setup_logging_fn=setup_trains_logging, kwargs_dict={}, output_handler_cls=handlers.clearml_logger.OutputHandler, opt_params_handler_cls=handlers.clearml_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) clearml_logger.close() def test_setup_neptune_logging(dirname): npt_logger = _test_setup_logging( setup_logging_fn=setup_neptune_logging, kwargs_dict={"mode": "offline"}, output_handler_cls=handlers.neptune_logger.OutputHandler, opt_params_handler_cls=handlers.neptune_logger.OptimizerParamsHandler, with_eval=False, with_optim=False, ) npt_logger.close() npt_logger = _test_setup_logging( setup_logging_fn=setup_neptune_logging, kwargs_dict={"mode": "offline"}, output_handler_cls=handlers.neptune_logger.OutputHandler, opt_params_handler_cls=handlers.neptune_logger.OptimizerParamsHandler, with_eval=True, with_optim=True, ) npt_logger.close() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(dirname, distributed_context_single_node_nccl): local_rank = distributed_context_single_node_nccl["local_rank"] device = idist.device() _test_setup_common_training_handlers(dirname, device, rank=local_rank, local_rank=local_rank, distributed=True) test_add_early_stopping_by_val_score() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(dirname, distributed_context_single_node_gloo): device = idist.device() local_rank = distributed_context_single_node_gloo["local_rank"] _test_setup_common_training_handlers(dirname, device, rank=local_rank, local_rank=local_rank, distributed=True) _test_setup_common_training_handlers( dirname, device, rank=local_rank, local_rank=local_rank, distributed=True, lr_scheduler="ignite|LRScheduler" ) _test_setup_common_training_handlers( dirname, device, rank=local_rank, local_rank=local_rank, distributed=True, lr_scheduler="ignite" ) test_add_early_stopping_by_val_score() @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(dirname, distributed_context_multi_node_gloo): device = idist.device() rank = distributed_context_multi_node_gloo["rank"] _test_setup_common_training_handlers(dirname, device, rank=rank) test_add_early_stopping_by_val_score() @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(dirname, distributed_context_multi_node_nccl): local_rank = distributed_context_multi_node_nccl["local_rank"] rank = distributed_context_multi_node_nccl["rank"] device = idist.device() _test_setup_common_training_handlers(dirname, device, rank=rank, local_rank=local_rank, distributed=True) test_add_early_stopping_by_val_score() ignite-0.5.1/tests/ignite/contrib/engines/test_tbptt.py000066400000000000000000000074651465426447700233120ustar00rootroot00000000000000# coding: utf-8 import unittest.mock as mock import pytest import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from ignite.contrib.engines import create_supervised_tbptt_trainer, Tbptt_Events from ignite.contrib.engines.tbptt import _detach_hidden def test_detach_hidden_RNN(): # Create hidden vector (in tuple) X = torch.ones(2, 3, 4) model = nn.RNN(4, 1) _, hidden = model(X) # Function to test hidden_ = _detach_hidden(hidden) assert hidden_.grad_fn is None # properly detached assert (hidden == hidden_).all().item() == 1 # Equal values def test_detach_hidden_LSTM(): # Create hidden vector (in tuple) X = torch.ones(2, 3, 4) model = nn.LSTM(4, 1) _, hidden = model(X) # Function to test hidden_ = _detach_hidden(hidden) for h, h_ in zip(hidden, hidden_): assert h_.grad_fn is None # properly detached assert (h == h_).all().item() == 1 # Equal values def test_detach_hidden_raise(): with pytest.raises(TypeError): _detach_hidden(0) @mock.patch("ignite.contrib.engines.tbptt._detach_hidden") def test_create_supervised_tbptt_trainer_callcounts(mock_detach_hidden): # Mocking objects model = mock.MagicMock() # Necessary to unpack output model.return_value = (1, 1) optimizer = mock.MagicMock() loss = mock.MagicMock() trainer = create_supervised_tbptt_trainer(model, optimizer, loss, tbtt_step=2) # Adding two mock handles to the trainer to monitor that TBPTT events are # called correctly handle_started = mock.MagicMock() trainer.add_event_handler(Tbptt_Events.TIME_ITERATION_STARTED, handle_started) handle_completed = mock.MagicMock() trainer.add_event_handler(Tbptt_Events.TIME_ITERATION_COMPLETED, handle_completed) # Fake data X = torch.ones(6, 2, 1) y = torch.ones(6, 2, 1) data = [(X, y)] # Running trainer trainer.run(data) # Verifications assert handle_started.call_count == 3 assert handle_completed.call_count == 3 assert mock_detach_hidden.call_count == 2 assert model.call_count == 3 assert loss.call_count == 3 assert optimizer.zero_grad.call_count == 3 assert optimizer.step.call_count == 3 n_args_tuple = tuple(len(args) for args, kwargs in model.call_args_list) assert n_args_tuple == (1, 2, 2) def _test_create_supervised_tbptt_trainer(device): # Defining dummy recurrent model with zero weights model = nn.RNN(1, 1, bias=False) model.to(device) # Move model before creating optimizer for p in model.parameters(): p.data.zero_() # Set some mock on forward to monitor forward_mock = mock.MagicMock() forward_mock.return_value = None model.register_forward_hook(forward_mock) # Defning optimizer and trainer optimizer = optim.SGD(model.parameters(), 1) trainer = create_supervised_tbptt_trainer(model, optimizer, F.mse_loss, tbtt_step=2, device=device) # Fake data X = torch.ones(6, 2, 1) y = torch.ones(6, 2, 1) data = [(X, y)] # Running trainer trainer.run(data) # If tbptt is not use (one gradient update), the hidden to hidden weight # should stay zero assert not model.weight_hh_l0.item() == pytest.approx(0) # Cheking forward calls assert forward_mock.call_count == 3 for i in range(3): inputs = forward_mock.call_args_list[i][0][1] if i == 0: assert len(inputs) == 1 else: assert len(inputs) == 2 x, h = inputs assert h.is_leaf def test_create_supervised_tbptt_trainer_with_cpu(): _test_create_supervised_tbptt_trainer("cpu") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_tbptt_trainer_on_cuda(): _test_create_supervised_tbptt_trainer("cuda") ignite-0.5.1/tests/ignite/contrib/handlers/000077500000000000000000000000001465426447700207005ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/contrib/handlers/test_warnings_of_deprecation_of_handlers.py000066400000000000000000000055661465426447700315620ustar00rootroot00000000000000from importlib import __import__ import pytest @pytest.mark.parametrize( "log_module,fromlist", [ ("mlflow_logger", ["MLflowLogger", "OptimizerParamsHandler", "OutputHandler"]), ("polyaxon_logger", ["PolyaxonLogger", "OutputHandler", "OptimizerParamsHandler"]), ("wandb_logger", ["WandBLogger", "OutputHandler", "OptimizerParamsHandler"]), ("lr_finder", ["FastaiLRFinder"]), ("tqdm_logger", ["ProgressBar"]), ( "clearml_logger", [ "ClearMLLogger", "ClearMLSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", ], ), ( "tensorboard_logger", [ "TensorboardLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "WeightsHistHandler", "GradsScalarHandler", "GradsHistHandler", ], ), ( "visdom_logger", [ "VisdomLogger", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", ], ), ( "neptune_logger", [ "NeptuneLogger", "NeptuneSaver", "OptimizerParamsHandler", "OutputHandler", "WeightsScalarHandler", "GradsScalarHandler", ], ), ( "base_logger", [ "BaseHandler", "BaseWeightsHandler", "BaseOptimizerParamsHandler", "BaseOutputHandler", "BaseWeightsScalarHandler", "BaseLogger", ], ), ( "time_profilers", [ "BasicTimeProfiler", "HandlersTimeProfiler", ], ), ( "param_scheduler", [ "ConcatScheduler", "CosineAnnealingScheduler", "LinearCyclicalScheduler", "LRScheduler", "ParamGroupScheduler", "ParamScheduler", "PiecewiseLinear", "CyclicalScheduler", "create_lr_scheduler_with_warmup", ], ), ], ) def test_imports(log_module, fromlist): with pytest.warns(DeprecationWarning, match="will be removed in version 0.6.0"): imported = __import__(f"ignite.contrib.handlers.{log_module}", globals(), locals(), fromlist) for attr in fromlist: getattr(imported, attr) ignite-0.5.1/tests/ignite/contrib/metrics/000077500000000000000000000000001465426447700205465ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/contrib/metrics/test_warnings_of_deprecation_of_metrics.py000066400000000000000000000033171465426447700312660ustar00rootroot00000000000000from importlib import __import__ import pytest @pytest.mark.parametrize( "log_module,fromlist", [ ("average_precision", ["AveragePrecision"]), ("cohen_kappa", ["CohenKappa"]), ("gpu_info", ["GpuInfo"]), ("precision_recall_curve", ["PrecisionRecallCurve"]), ("roc_auc", ["ROC_AUC", "RocCurve"]), ("regression.canberra_metric", ["CanberraMetric"]), ("regression.fractional_absolute_error", ["FractionalAbsoluteError"]), ("regression.fractional_bias", ["FractionalBias"]), ("regression.geometric_mean_absolute_error", ["GeometricMeanAbsoluteError"]), ("regression.geometric_mean_relative_absolute_error", ["GeometricMeanRelativeAbsoluteError"]), ("regression.manhattan_distance", ["ManhattanDistance"]), ("regression.maximum_absolute_error", ["MaximumAbsoluteError"]), ("regression.mean_absolute_relative_error", ["MeanAbsoluteRelativeError"]), ("regression.mean_error", ["MeanError"]), ("regression.mean_normalized_bias", ["MeanNormalizedBias"]), ("regression.median_absolute_error", ["MedianAbsoluteError"]), ("regression.median_absolute_percentage_error", ["MedianAbsolutePercentageError"]), ("regression.median_relative_absolute_error", ["MedianRelativeAbsoluteError"]), ("regression.r2_score", ["R2Score"]), ("regression.wave_hedges_distance", ["WaveHedgesDistance"]), ], ) def test_imports(log_module, fromlist): with pytest.warns(DeprecationWarning, match="will be removed in version 0.6.0"): imported = __import__(f"ignite.contrib.metrics.{log_module}", globals(), locals(), fromlist) for attr in fromlist: getattr(imported, attr) ignite-0.5.1/tests/ignite/distributed/000077500000000000000000000000001465426447700177625ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/distributed/__init__.py000066400000000000000000000000001465426447700220610ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/distributed/check_idist_parallel.py000066400000000000000000000072661465426447700244740ustar00rootroot00000000000000import argparse import torch import ignite.distributed as idist def training(local_rank, config, **kwargs): import time time.sleep(idist.get_rank() * 0.1) print(idist.get_rank(), ": run with config:", config, "- kwargs:", kwargs, f"- backend={idist.backend()}") t = torch.tensor([idist.get_rank()], device=idist.device()) t = idist.all_reduce(t) t = t.item() ws = idist.get_world_size() assert t == ws * (ws - 1) / 2, f"{t} vs {ws}" assert local_rank == idist.get_local_rank() # Test init method: if idist.model_name() == "native-dist": from ignite.distributed.utils import _model true_init_method = config.get("true_init_method", None) assert true_init_method is not None, true_init_method assert _model._init_method == true_init_method if __name__ == "__main__": """ Usage: - No distributed configuration: ``` python tests/ignite/distributed/check_idist_parallel.py ``` - Launch 4 procs using gloo backend with `torchrun`: ``` torchrun --nproc_per_node=4 tests/ignite/distributed/check_idist_parallel.py --backend=gloo ``` - Launch 2 procs in 2 nodes using gloo backend with `torchrun` or `torch.distributed.launch`: ``` bash -c "torchrun --nnodes=2 --node_rank=0 \ --master_addr=localhost --master_port=3344 --nproc_per_node=2 \ tests/ignite/distributed/check_idist_parallel.py --backend=gloo &" \ && bash -c "torchrun --nnodes=2 --node_rank=1 \ --master_addr=localhost --master_port=3344 --nproc_per_node=2 \ tests/ignite/distributed/check_idist_parallel.py --backend=gloo &" ``` - Spawn 4 procs in single node using gloo backend: ``` python tests/ignite/distributed/check_idist_parallel.py --backend=gloo --nproc_per_node=4 ``` - Spawn 2 procs in 2 nodes using gloo backend: ``` bash -c "python tests/ignite/distributed/check_idist_parallel.py --backend=gloo \ --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr=localhost --master_port=3344 &" \ && bash -c "python tests/ignite/distributed/check_idist_parallel.py --backend=gloo \ --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr=localhost --master_port=3344 &" ``` - Spawn 8 procs in single node using xla-tpu backend: ``` python tests/ignite/distributed/check_idist_parallel.py --backend=xla-tpu --nproc_per_node=8 ``` """ parser = argparse.ArgumentParser("Check idist.Parallel") parser.add_argument("--backend", type=str, default=None) parser.add_argument("--nproc_per_node", type=int, default=None) parser.add_argument("--nnodes", type=int, default=None) parser.add_argument("--node_rank", type=int, default=None) parser.add_argument("--master_addr", type=str, default=None) parser.add_argument("--master_port", type=str, default=None) parser.add_argument("--init_method", type=str, default=None) args = parser.parse_args() config = { "model": "resnet18", "lr": 0.01, } if args.backend in ["gloo", "nccl"]: config["true_init_method"] = args.init_method if args.init_method is not None else "env://" dist_config = dict( nproc_per_node=args.nproc_per_node, nnodes=args.nnodes, node_rank=args.node_rank, master_addr=args.master_addr, master_port=args.master_port, ) if args.init_method is not None: dist_config["init_method"] = args.init_method with idist.Parallel(backend=args.backend, **dist_config) as parallel: parallel.run(training, config, a=1, b=2) ignite-0.5.1/tests/ignite/distributed/comp_models/000077500000000000000000000000001465426447700222635ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/distributed/comp_models/__init__.py000066400000000000000000000000001465426447700243620ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/distributed/comp_models/test_base.py000066400000000000000000000116561465426447700246170ustar00rootroot00000000000000import pytest import torch from ignite.distributed.comp_models.base import _SerialModel, _torch_version_gt_112, ComputationModel def test_serial_model(): _SerialModel.create_from_backend() model = _SerialModel.create_from_context() assert model.get_local_rank() == 0 assert model.get_rank() == 0 assert model.get_world_size() == 1 assert model.get_nproc_per_node() == 1 assert model.get_nnodes() == 1 assert model.get_node_rank() == 0 if torch.cuda.is_available(): assert model.device().type == "cuda" elif _torch_version_gt_112 and torch.backends.mps.is_available(): assert model.device().type == "mps" else: assert model.device().type == "cpu" assert model.backend() is None model.finalize() with pytest.raises(NotImplementedError, match=r"Serial computation model does not implement spawn method"): model.spawn() model.all_reduce(1) model.all_gather(1) model.broadcast(1) assert model._do_all_reduce(torch.tensor(1)) == torch.tensor(1) assert model._do_all_gather(torch.tensor(1)) == torch.tensor(1) assert model._do_broadcast(torch.tensor(1), src=0) == torch.tensor(1) model.barrier() def test__encode_str__decode_str(): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") s = "test-abcedfg" encoded_s = ComputationModel._encode_str(s, device, 1024) assert isinstance(encoded_s, torch.Tensor) and encoded_s.shape == (1, 1025) decoded_s = ComputationModel._decode_str(encoded_s) assert isinstance(decoded_s, list) and len(decoded_s) == 1 assert decoded_s[0] == s def test__encode_input_data(): encoded_msg = ComputationModel._encode_input_data(None, is_src=True) assert encoded_msg == [-1] * 512 encoded_msg = ComputationModel._encode_input_data(12.0, is_src=True) assert encoded_msg == [1] + [-1] * 511 encoded_msg = ComputationModel._encode_input_data("abc", is_src=True) assert encoded_msg == [2] + [-1] * 511 t = torch.rand(2, 512, 32, 32, 64) encoded_msg = ComputationModel._encode_input_data(t, is_src=True) dtype_str = str(t.dtype) true_msg = [0, 5, 2, 512, 32, 32, 64, len(dtype_str), *list(bytearray(dtype_str, "utf-8"))] assert encoded_msg == true_msg + [-1] * (512 - len(true_msg)) t = torch.randint(-1235, 1233, size=(2, 512, 32, 32, 64)) encoded_msg = ComputationModel._encode_input_data(t, is_src=True) dtype_str = str(t.dtype) true_msg = [0, 5, 2, 512, 32, 32, 64, len(dtype_str), *list(bytearray(dtype_str, "utf-8"))] assert encoded_msg == true_msg + [-1] * (512 - len(true_msg)) t = torch.tensor(12) encoded_msg = ComputationModel._encode_input_data(t, is_src=True) dtype_str = str(t.dtype) true_msg = [0, 0, len(dtype_str), *list(bytearray(dtype_str, "utf-8"))] assert encoded_msg == true_msg + [-1] * (512 - len(true_msg)) for t in [None, "abc", torch.rand(2, 512, 32, 32, 64), 12.34, object()]: encoded_msg = ComputationModel._encode_input_data(t, is_src=False) assert encoded_msg == [-1] * 512 def test__decode_as_placeholder(): device = torch.device("cpu") encoded_msg = [-1] * 512 encoded_msg[0] = 1 res = ComputationModel._decode_as_placeholder(encoded_msg, device) assert isinstance(res, float) and res == 0.0 encoded_msg = [-1] * 512 encoded_msg[0] = 2 res = ComputationModel._decode_as_placeholder(encoded_msg, device) assert isinstance(res, str) and res == "" encoded_msg = [-1] * 512 encoded_msg[0] = 0 encoded_msg[1 : 1 + 7] = [6, 2, 3, 4, 5, 6, 7] dtype_str = "torch.int64" payload = [len(dtype_str), *list(bytearray(dtype_str, "utf-8"))] encoded_msg[1 + 7 : 1 + 7 + len(payload)] = payload res = ComputationModel._decode_as_placeholder(encoded_msg, device) assert isinstance(res, torch.Tensor) and res.dtype == torch.int64 and res.shape == (2, 3, 4, 5, 6, 7) encoded_msg = [-1] * 512 with pytest.raises(RuntimeError, match="Internal error: unhandled dtype"): ComputationModel._decode_as_placeholder(encoded_msg, device) t = torch.rand(2, 512, 32, 32, 64) encoded_msg = ComputationModel._encode_input_data(t, True) res = ComputationModel._decode_as_placeholder(encoded_msg, device) assert isinstance(res, torch.Tensor) and res.dtype == t.dtype and res.shape == t.shape t = torch.tensor(12) encoded_msg = ComputationModel._encode_input_data(t, True) res = ComputationModel._decode_as_placeholder(encoded_msg, device) assert isinstance(res, torch.Tensor) and res.dtype == t.dtype and res.shape == t.shape def test__setup_placeholder(): device = torch.device("cpu") from ignite.distributed.utils import _model for t in [torch.rand(2, 3, 4), "abc", 123.45]: data = _model._setup_placeholder(t, device, True) assert isinstance(data, type(t)) if isinstance(data, torch.Tensor): assert (data == t).all() else: assert data == t ignite-0.5.1/tests/ignite/distributed/comp_models/test_horovod.py000066400000000000000000000165241465426447700253640ustar00rootroot00000000000000import pytest import torch from ignite.distributed.comp_models import has_hvd_support if not has_hvd_support: pytest.skip("Skip if no Horovod package", allow_module_level=True) else: import horovod.torch as hvd from ignite.distributed.comp_models.horovod import _HorovodDistModel @pytest.mark.distributed def test__hvd_dist_model(): with pytest.raises(ValueError, match=r"Backend should be one of"): _HorovodDistModel.create_from_backend("abc") def _assert_model(model, true_conf): if "cuda" in true_conf["device"]: assert model.device() == torch.device(f"{true_conf['device']}:{true_conf['local_rank']}") else: assert model.device() == torch.device(true_conf["device"]) assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] def _test__hvd_dist_model_create_from_backend_no_dist(backend, true_device): model = _HorovodDistModel.create_from_backend(backend=backend) assert hvd.rank() > -1 _assert_model( model, { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() def _test__hvd_dist_model_create_from_backend_dist(backend, true_device): model = _HorovodDistModel.create_from_backend(backend=backend) assert hvd.rank() > -1 with pytest.raises(RuntimeError, match=r"Can not re-initialize Horovod if it is already initialized"): _HorovodDistModel.create_from_backend(backend=backend) _assert_model( model, { "device": true_device, "local_rank": hvd.local_rank(), "rank": hvd.rank(), "world_size": hvd.size(), "node_index": 0, "nnodes": 1, "nproc_per_node": hvd.local_size(), }, ) model.finalize() def _test__hvd_dist_model_create_from_context_no_dist(true_backend, true_device): with pytest.raises(ValueError, match=r"Horovod has not been initialized"): hvd.rank() assert _HorovodDistModel.create_from_context() is None hvd.init() true_conf = { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, } model = _HorovodDistModel.create_from_context() assert model.backend() == true_backend _assert_model(model, true_conf) hvd.shutdown() def _test__hvd_dist_model_create_from_context_dist(true_backend, true_device): assert _HorovodDistModel.create_from_context() is None hvd.init() lrank = hvd.local_rank() if torch.cuda.is_available(): torch.cuda.set_device(lrank) true_conf = { "device": true_device, "local_rank": lrank, "rank": hvd.rank(), "world_size": hvd.size(), "node_index": 0, "nnodes": 1, "nproc_per_node": hvd.local_size(), } model = _HorovodDistModel.create_from_context() assert model.backend() == true_backend _assert_model(model, true_conf) hvd.shutdown() @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() > 0, reason="Skip if has GPU") def test__hvd_dist_model_create_no_dist(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_backend_no_dist, ("horovod", "cpu"), np=1) gloo_hvd_executor(_test__hvd_dist_model_create_from_context_no_dist, ("horovod", "cpu"), np=1) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__hvd_dist_model_create_no_dist_cuda(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_backend_no_dist, ("horovod", "cuda"), np=1) gloo_hvd_executor(_test__hvd_dist_model_create_from_context_no_dist, ("horovod", "cuda"), np=1) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() > 0, reason="Skip if has GPU") def test__hvd_dist_model_create_dist_1(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_backend_dist, ("horovod", "cpu"), np=4) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() > 0, reason="Skip if has GPU") def test__hvd_dist_model_create_dist_2(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_context_dist, ("horovod", "cpu"), np=4) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__hvd_dist_model_create_dist_cuda_1(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_backend_dist, ("horovod", "cuda"), np=torch.cuda.device_count()) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__hvd_dist_model_create_dist_cuda_2(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_create_from_context_dist, ("horovod", "cuda"), np=torch.cuda.device_count()) def _test__hvd_dist_model_warning_index_less_localrank(): assert torch.cuda.is_available() assert _HorovodDistModel.create_from_context() is None hvd.init() # We deliberately incorrectly set cuda device to 0 torch.cuda.set_device(0) model = _HorovodDistModel.create_from_context() assert isinstance(model, _HorovodDistModel), f"{type(model)} vs _HorovodDistModel" if hvd.local_rank() == 1: with pytest.warns(UserWarning, match=r"Current device index is less than current local rank."): model.device() hvd.shutdown() @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Skip if less than 2 GPUs") def test__hvd_dist_model_warning_index_less_localrank(gloo_hvd_executor): gloo_hvd_executor(_test__hvd_dist_model_warning_index_less_localrank, (), np=torch.cuda.device_count()) def _test_dist_spawn_fn(local_rank, backend, world_size, device): from ignite.distributed.utils import _model assert hvd.rank() > -1 assert isinstance(_model, _HorovodDistModel), f"{type(_model)} vs _HorovodDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size assert _model.backend() == backend if "cuda" in device: assert _model.device() == torch.device(f"{device}:{local_rank}") else: assert _model.device() == torch.device(device) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() > 0, reason="Skip if has GPU") def test__hvd_dist_model_spawn(): num_workers_per_machine = 4 _HorovodDistModel.spawn( _test_dist_spawn_fn, args=("horovod", num_workers_per_machine, "cpu"), kwargs_dict={}, nproc_per_node=num_workers_per_machine, use_gloo=True, ) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__hvd_dist_model_spawn_cuda(): num_workers_per_machine = torch.cuda.device_count() _HorovodDistModel.spawn( _test_dist_spawn_fn, args=("horovod", num_workers_per_machine, "cuda"), kwargs_dict={}, nproc_per_node=num_workers_per_machine, use_gloo=True, ) ignite-0.5.1/tests/ignite/distributed/comp_models/test_native.py000066400000000000000000000624101465426447700251650ustar00rootroot00000000000000import os import pytest import torch import torch.distributed as dist from ignite.distributed.comp_models import has_native_dist_support if not has_native_dist_support: pytest.skip("Skip if no native dist support", allow_module_level=True) else: from ignite.distributed.comp_models.native import _expand_hostlist, _NativeDistModel, _setup_ddp_vars_from_slurm_env # tests from https://github.com/LLNL/py-hostlist/blob/master/hostlist/unittest_hostlist.py @pytest.mark.parametrize( "hostlist, expected", [ ("localhost", "localhost"), ("compute!:b24_[1-2].r", "compute!:b24_1.r,compute!:b24_2.r"), ("quartz[4-8]", "quartz4,quartz5,quartz6,quartz7,quartz8"), ("c1001a-[11,17]", "c1001a-11,c1001a-17"), ("c1001a-s[11,17]", "c1001a-s11,c1001a-s17"), ("c1009a-s17,c1010a-s11", "c1009a-s17,c1010a-s11"), ( "gpu-compute-on-demand-dy-g4dnxlarge-[1-4]", "gpu-compute-on-demand-dy-g4dnxlarge-1," "gpu-compute-on-demand-dy-g4dnxlarge-2," "gpu-compute-on-demand-dy-g4dnxlarge-3," "gpu-compute-on-demand-dy-g4dnxlarge-4", ), ( "node[18-19,1-16,21-22]", "node1,node2,node3,node4,node5," "node6,node7,node8,node9,node10," "node11,node12,node13,node14,node15," "node16,node18,node19,node21,node22", ), ( "node[4-8,12,16-20,22,24-26]", "node4,node5,node6,node7,node8," "node12,node16,node17,node18," "node19,node20,node22,node24," "node25,node26", ), ("machine2-[02-4]vm1", "machine2-02vm1,machine2-03vm1,machine2-04vm1"), ( "machine2-[02-3]vm1, machine4-[0003-5].vml2", "machine2-02vm1,machine2-03vm1,machine4-0003.vml2,machine4-0004.vml2,machine4-0005.vml2", ), ("machine2-[009-11]vm1", "machine2-009vm1,machine2-010vm1,machine2-011vm1"), ("node[1,2,3]", "node1,node2,node3"), ( "compute-b24-[1-3,5-9], compute-b25-[1,4,8],compute-b25-[2-9,13]", "compute-b24-1,compute-b24-2,compute-b24-3,compute-b24-5,compute-b24-6," "compute-b24-7,compute-b24-8,compute-b24-9,compute-b25-1,compute-b25-4," "compute-b25-8,compute-b25-2,compute-b25-3,compute-b25-4,compute-b25-5," "compute-b25-6,compute-b25-7,compute-b25-8,compute-b25-9,compute-b25-13", ), ], ) def test_expand_hostlist(hostlist, expected): assert _expand_hostlist(hostlist) == expected.split(",") def test_expand_hostlist_invalid(): with pytest.raises(ValueError, match=r"hostlist invalid"): _expand_hostlist("invalid[]") @pytest.mark.distributed def test__native_dist_model(): available_backends = _NativeDistModel.available_backends if dist.is_nccl_available(): assert "nccl" in available_backends else: assert "nccl" not in available_backends if dist.is_gloo_available(): assert "gloo" in available_backends else: assert "gloo" not in available_backends if dist.is_mpi_available(): assert "mpi" in available_backends else: assert "mpi" not in available_backends with pytest.raises(ValueError, match=r"Backend should be one of"): _NativeDistModel.create_from_backend("abc") @pytest.mark.distributed @pytest.mark.skipif(not dist.is_nccl_available(), reason="Skip if nccl not available") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_nccl_but_no_gpu(mock_gpu_is_not_available): with pytest.raises(RuntimeError, match=r"Nccl backend is required but no cuda capable devices"): _NativeDistModel(backend="nccl") @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_config(): import os from datetime import timedelta os.environ["RANK"] = "1" with pytest.raises(RuntimeError, match=r"PyTorch distributed configuration should define env variables"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) del os.environ["RANK"] @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_slurm_config(): import os from datetime import timedelta os.environ["SLURM_JOB_ID"] = "1" with pytest.raises(RuntimeError, match=r"SLURM distributed configuration is missing"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) with pytest.raises(ValueError, match=r"Arguments rank and world_size should not be specified with SLURM"): _NativeDistModel.create_from_backend( backend="gloo", timeout=timedelta(seconds=10), rank=1, init_method="", world_size=1 ) os.environ["SLURM_PROCID"] = "0" os.environ["SLURM_LOCALID"] = "0" os.environ["SLURM_NTASKS"] = "1" os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" os.environ["RANK"] = "1" with pytest.warns(UserWarning, match=r"We detected the following env variables"): model = _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] del os.environ["RANK"] def _assert_model(model, true_conf): assert model.device() == torch.device(true_conf["device"]) assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] def _test__native_dist_model_create_from_backend_no_dist(backend, true_device): from datetime import timedelta model = _NativeDistModel.create_from_backend(backend=backend, timeout=timedelta(seconds=20)) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend _assert_model( model, { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() def _test__native_dist_model_create_from_backend_dist(init_method, local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) os.environ["RANK"] = f"{rank}" assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout, init_method=init_method) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) if init_method is None: assert model._init_method == "env://" else: assert model._init_method == init_method model.finalize() del os.environ["RANK"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ def _test__native_dist_model_create_from_backend_slurm(local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ del os.environ["WORLD_SIZE"] del os.environ["LOCAL_RANK"] os.environ["SLURM_JOB_ID"] = "15000" os.environ["SLURM_PROCID"] = str(rank) os.environ["SLURM_LOCALID"] = str(local_rank) os.environ["SLURM_NTASKS"] = str(world_size) os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ os.environ["WORLD_SIZE"] = str(world_size) os.environ["LOCAL_RANK"] = str(local_rank) def _test__native_dist_model_create_from_context_no_local_rank(): if "LOCAL_RANK" in os.environ: del os.environ["LOCAL_RANK"] from ignite.distributed.comp_models.base import ComputationModel if ComputationModel._ext_local_rank is not None: ComputationModel._ext_local_rank = None with pytest.warns(UserWarning, match=r"Local rank information for native distributed setting will be initialized"): _NativeDistModel.create_from_context() def _test__native_dist_model_create_from_context_env_local_rank(true_conf): import os remove_lrank = False if "LOCAL_RANK" not in os.environ: os.environ["LOCAL_RANK"] = str(true_conf["local_rank"]) remove_lrank = True model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) if remove_lrank: del os.environ["LOCAL_RANK"] def _test__native_dist_model_create_from_context_set_local_rank(true_conf): from ignite.distributed.comp_models.base import ComputationModel lrank = None if "LOCAL_RANK" in os.environ: lrank = os.environ["LOCAL_RANK"] del os.environ["LOCAL_RANK"] ComputationModel._ext_local_rank = true_conf["local_rank"] model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) ComputationModel._ext_local_rank = None if lrank is not None: os.environ["LOCAL_RANK"] = lrank def _test__native_dist_model_create_from_context_no_dist(true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=1, rank=0) dist.barrier() _test__native_dist_model_create_from_context_no_local_rank() true_conf = { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() def _test__native_dist_model_create_from_context_dist(local_rank, rank, world_size, true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=world_size, rank=rank) dist.barrier() if torch.cuda.is_available(): torch.cuda.set_device(local_rank) true_conf = { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") def test__native_dist_model_create_no_dist_gloo(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("gloo", device) _test__native_dist_model_create_from_context_no_dist("gloo", device) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_no_dist_nccl(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("nccl", device) _test__native_dist_model_create_from_context_no_dist("nccl", device) @pytest.mark.distributed @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_gloo_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_gloo_1')}/shared" device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_dist(init_method, local_rank, local_rank, world_size, "gloo", device) if init_method is None: _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed def test__native_dist_model_create_dist_gloo_2(local_rank, world_size): device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "gloo", device) _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_nccl_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_nccl_1')}/shared" _test__native_dist_model_create_from_backend_dist( init_method, local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) if init_method is None: _test__native_dist_model_create_from_backend_slurm( local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_dist_nccl_2(local_rank, world_size): _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}") @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Skip if less than 2 GPUs") def test__native_dist_model_warning_index_less_localrank(local_rank, world_size): assert _NativeDistModel.create_from_context() is None dist.init_process_group("nccl", "tcp://0.0.0.0:2222", world_size=world_size, rank=local_rank) dist.barrier() # We deliberately incorrectly set cuda device to 0 torch.cuda.set_device(0) model = _NativeDistModel.create_from_context() assert isinstance(model, _NativeDistModel), f"{type(model)} vs _NativeDistModel" if local_rank == 1: with pytest.warns(UserWarning, match=r"Current device index is less than current local rank."): model.device() dist.destroy_process_group() def _test_dist_spawn_fn(local_rank, backend, world_size, device, **kwargs): from ignite.distributed.utils import _model assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend assert isinstance(_model, _NativeDistModel), f"{type(_model)} vs _NativeDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size assert _model.device().type == torch.device(device).type if "master_addr" in kwargs: assert os.environ["MASTER_ADDR"] == kwargs["master_addr"] if "master_port" in kwargs: assert os.environ["MASTER_PORT"] == str(kwargs["master_port"]) def _test__native_dist_model_spawn(backend, num_workers_per_machine, device, init_method=None, **spawn_kwargs): kwargs_dict = {} for key in ["master_addr", "master_port"]: if key in spawn_kwargs: kwargs_dict[key] = spawn_kwargs[key] _NativeDistModel.spawn( _test_dist_spawn_fn, args=(backend, num_workers_per_machine, device), kwargs_dict=kwargs_dict, backend=backend, nproc_per_node=num_workers_per_machine, init_method=init_method, **spawn_kwargs, ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.parametrize("init_method", [None, "CUSTOM_ADDR_PORT", "env://", "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_gloo(init_method, dirname): spawn_kwargs = {} if init_method == "FILE": init_method = f"file://{dirname}/shared" elif init_method == "CUSTOM_ADDR_PORT": init_method = None spawn_kwargs["master_addr"] = "0.0.0.0" spawn_kwargs["master_port"] = 2345 nproc = torch.cuda.device_count() if torch.cuda.is_available() else 4 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, init_method=init_method, **spawn_kwargs ) if device.type == "cpu": spawn_kwargs["start_method"] = "fork" _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, init_method=init_method, **spawn_kwargs ) if init_method not in [None, "env://"]: with pytest.raises(ValueError, match=r"master_addr should be None if init_method is provided"): _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, init_method=init_method, master_addr="abc" ) with pytest.raises(ValueError, match=r"master_port should be None if init_method is provided"): _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, init_method=init_method, master_port=123 ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "CUSTOM_ADDR_PORT", "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_nccl(init_method, dirname): spawn_kwargs = {} if init_method == "FILE": init_method = f"file://{dirname}/shared" elif init_method == "CUSTOM_ADDR_PORT": init_method = None spawn_kwargs["master_addr"] = "0.0.0.0" spawn_kwargs["master_port"] = 2345 nproc = torch.cuda.device_count() _test__native_dist_model_spawn( "nccl", num_workers_per_machine=nproc, device="cuda", init_method=init_method, **spawn_kwargs ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_none(world_size): with pytest.raises(ValueError, match=r"Arguments rank and world_size should be None"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_not_none(world_size, local_rank, get_fixed_dirname): init_method = f"file://{get_fixed_dirname('native_dist_model_init_method_is_not_none')}/shared" with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size, init_method=init_method) with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", rank=local_rank, init_method=init_method) @pytest.mark.parametrize( "environ, expected", [ # fmt: off # usual SLURM env ( { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "2", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", }, [1, 1, 2, "c1", 17345] ), # usual SLURM env mnode ( { "SLURM_PROCID": "5", "SLURM_LOCALID": "1", "SLURM_NTASKS": "8", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", }, [5, 1, 8, "c1", 17345] ), # usual SLURM env 1 node, 1 task + torch.distributed.launch ( { "SLURM_PROCID": "0", "SLURM_LOCALID": "0", "SLURM_NTASKS": "1", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": "2233", "RANK": "2", "LOCAL_RANK": "2", "WORLD_SIZE": "8", }, [2, 2, 8, "127.0.0.1", 2233] ), # usual SLURM env + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "3", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "3", "WORLD_SIZE": "4", }, [3, 3, 4, "c1", 12233] ), # usual SLURM env mnode + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "1", "WORLD_SIZE": "4" }, [3, 1, 4, "c1", 12233] ), # fmt: on ], ) def test__setup_ddp_vars_from_slurm_env(environ, expected): ddp_keys = ["RANK", "LOCAL_RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"] ddp_vars = _setup_ddp_vars_from_slurm_env(environ) for key, value in zip(ddp_keys, expected): assert key in ddp_vars assert ddp_vars[key] == value def test__setup_ddp_vars_from_slurm_env_bad_configs(): with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.warns(UserWarning, match=r"We detected the following env variables"): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises(RuntimeError, match=r"No hostname detected in SLURM_JOB_NODELIST by ignite"): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "[]", "SLURM_JOB_ID": "12345", } _setup_ddp_vars_from_slurm_env(environ) ignite-0.5.1/tests/ignite/distributed/comp_models/test_xla.py000066400000000000000000000144301465426447700244620ustar00rootroot00000000000000import os import pytest import torch from ignite.distributed.comp_models import has_xla_support if not has_xla_support: pytest.skip("Skip if no XLA support", allow_module_level=True) else: from ignite.distributed.comp_models.xla import _XlaDistModel @pytest.mark.tpu @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_model(): available_backends = _XlaDistModel.available_backends assert "xla-tpu" in available_backends with pytest.raises(ValueError, match=r"Backend should be one of"): _XlaDistModel.create_from_backend("abc") def _test_xla_spawn_fn(local_rank, world_size, device): from ignite.distributed.utils import _model assert isinstance(_model, _XlaDistModel), f"{type(_model)} vs _XlaDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size d = _model.device() assert isinstance(d, torch.device) and d.type == device assert _model.get_rank() == local_rank assert _model.get_nproc_per_node() == world_size assert _model.get_node_rank() == 0 assert _model.get_nnodes() == 1 @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_spawn_one_proc(): try: _XlaDistModel.spawn(_test_xla_spawn_fn, args=(1, "xla"), kwargs_dict={}, nproc_per_node=1) except SystemExit: pass @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_spawn_n_procs(): n = int(os.environ["NUM_TPU_WORKERS"]) try: _XlaDistModel.spawn(_test_xla_spawn_fn, args=(n, "xla"), kwargs_dict={}, nproc_per_node=n) except SystemExit: pass def _assert_model(model, true_conf): assert model.device() == true_conf["device"] assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_backend(): # without spawn model = _XlaDistModel.create_from_backend("xla-tpu") import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_context(): # without spawn model = _XlaDistModel.create_from_context() assert model.backend() == "xla-tpu" import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) def _test__xla_dist_model_create_from_context_in_child_proc(index): model = _XlaDistModel.create_from_context() assert model.backend() == "xla-tpu" import torch_xla.core.xla_model as xm _assert_model( model, { "device": xm.xla_device(), "local_rank": index, "rank": xm.get_ordinal(), "world_size": xm.xrt_world_size(), "node_index": 0, "nnodes": 1, "nproc_per_node": xm.xrt_world_size(), }, ) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_create_from_context_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test__xla_dist_model_create_from_context_in_child_proc, args=(), nprocs=n) def main_fold(fold): import time import torch.nn as nn import torch.optim as optim import torch_xla.core.xla_model as xm from ignite.engine import Engine device = xm.xla_device(fold) comp_model = _XlaDistModel.create_from_context() assert comp_model.device() == device model = nn.Linear(100, 10) model.to(device) # Move model before creating optimizer optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) def training_step(engine, _): data = torch.rand(4, 100, device=device) model.train() data = data.to(device) optimizer.zero_grad() output = model(data) loss = output.sum() loss.backward() xm.optimizer_step(optimizer, barrier=True) return loss.item() trainer = Engine(training_step) # THIS CAN BE A CAUSE OF CRASH if DEVICE is OTHER THAN device tensor = torch.tensor([fold + 1.0], dtype=torch.float).to(comp_model.device()) xm.all_reduce("max", [tensor]) time.sleep(0.01 * fold) trainer.run([0] * 100, max_epochs=2) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test__xla_dist_model_run_parallel_n_threads_without_sync(): # tests issue : https://github.com/pytorch/ignite/issues/1096 import torch_xla.core.xla_model as xm from joblib import delayed, Parallel devices = xm.get_xla_supported_devices() folds = 1 d = 0 if len(devices) > 5: folds = 5 d = 1 Parallel(n_jobs=folds, backend="threading")(delayed(main_fold)(i + d) for i in range(folds)) ignite-0.5.1/tests/ignite/distributed/test_auto.py000066400000000000000000000333721465426447700223530ustar00rootroot00000000000000import os import pytest import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.data.dataloader import _InfiniteConstantSampler from torch.utils.data.dataset import Dataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import BatchSampler, RandomSampler, Sampler, SequentialSampler, WeightedRandomSampler import ignite.distributed as idist from ignite.distributed.auto import auto_dataloader, auto_model, auto_optim, DistributedProxySampler from ignite.distributed.comp_models.base import _torch_version_gt_112 from tests.ignite import is_mps_available_and_functional class DummyDS(Dataset): def __init__(self, length=10): self.length = length def __len__(self): return self.length def __getitem__(self, index): return index class DummyIterableDataset(IterableDataset): def __init__(self, start, end): super(DummyIterableDataset).__init__() self.start = start self.end = end def __iter__(self): return iter(range(self.start, self.end)) def __len__(self): return self.end - self.start @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" not in os.environ, reason="Skip if WORLD_SIZE not in env vars") def test_auto_dataloader_warning(distributed_context_single_node_gloo): with pytest.warns(UserWarning, match=r"Found batch_sampler in provided kwargs"): auto_dataloader( DummyDS(), batch_sampler=BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False) ) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" not in os.environ, reason="Skip if WORLD_SIZE not in env vars") def test_auto_dataloader_warning_distributed_sampler(distributed_context_single_node_gloo): dataset = DummyDS() rank = idist.get_rank() world_size = idist.get_world_size() auto_dataloader(dataset, sampler=DistributedSampler(dataset, num_replicas=world_size, rank=rank)) if world_size > 1: wrong_rank = (rank + 1) % world_size expected_warning = f"Found distributed sampler with rank={wrong_rank}, but process rank is {rank}" with pytest.warns(UserWarning, match=expected_warning): auto_dataloader(dataset, sampler=DistributedSampler(dataset, num_replicas=world_size, rank=wrong_rank)) expected_warning = f"Found distributed sampler with num_replicas={world_size + 1}, but world size is {world_size}" with pytest.warns(UserWarning, match=expected_warning): auto_dataloader(dataset, sampler=DistributedSampler(dataset, num_replicas=world_size + 1, rank=rank)) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_auto_dataloader_warning_tpu(): with pytest.warns(UserWarning, match=r"Found incompatible options: xla support and pin_memory"): auto_dataloader(DummyDS(), pin_memory=True) def _test_auto_dataloader(ws, nproc, batch_size, num_workers=1, sampler_name=None, dl_type=DataLoader): def _test(data): if sampler_name is None: sampler = None elif sampler_name == "WeightedRandomSampler": sampler = WeightedRandomSampler(weights=torch.ones(100), num_samples=100) elif sampler_name == "DistributedSampler": sampler = DistributedSampler(data, num_replicas=ws, rank=idist.get_rank()) else: raise RuntimeError(f"Unknown sampler name: {sampler_name}") # Test auto_dataloader assert idist.get_world_size() == ws, f"{idist.get_world_size()} vs {ws}" shuffle = sampler is None if not isinstance(data, IterableDataset) else False dataloader = auto_dataloader( data, batch_size=batch_size, num_workers=num_workers, sampler=sampler, shuffle=shuffle ) assert isinstance(dataloader, dl_type) if hasattr(dataloader, "_loader"): dataloader = dataloader._loader if ws < batch_size: assert dataloader.batch_size == batch_size // ws else: assert dataloader.batch_size == batch_size if ws <= num_workers: assert dataloader.num_workers == (num_workers + nproc - 1) // nproc else: assert dataloader.num_workers == num_workers if isinstance(data, IterableDataset): sampler_type = _InfiniteConstantSampler elif ws > 1: if sampler is None or isinstance(sampler, DistributedSampler): sampler_type = DistributedSampler else: sampler_type = DistributedProxySampler else: sampler_type = RandomSampler if sampler is None else type(sampler) assert isinstance(dataloader.sampler, sampler_type) if isinstance(dataloader, DataLoader): assert dataloader.pin_memory == ("cuda" in idist.device().type) data = torch.rand(100, 3, 12, 12) _test(data) if sampler_name is None: data = DummyIterableDataset(0, 100) _test(data) def _test_auto_model(model, ws, device, sync_bn=False, **kwargs): model = auto_model(model, sync_bn=sync_bn, **kwargs) bnd = idist.backend() if ws > 1 and torch.device(device).type in ("cuda", "cpu"): if idist.has_native_dist_support and bnd in ("nccl", "gloo"): assert isinstance(model, nn.parallel.DistributedDataParallel) if sync_bn: assert any([isinstance(m, nn.SyncBatchNorm) for m in model.modules()]) if "find_unused_parameters" in kwargs: assert model.find_unused_parameters == kwargs["find_unused_parameters"] elif idist.has_hvd_support and bnd in ("horovod",): assert isinstance(model, nn.Module) elif device != "cpu" and torch.cuda.is_available() and torch.cuda.device_count() > 1: assert isinstance(model, nn.parallel.DataParallel) else: assert isinstance(model, nn.Module) assert all( [p.device.type == torch.device(device).type for p in model.parameters()] ), f"{[p.device.type for p in model.parameters()]} vs {torch.device(device).type}" def _test_auto_model_optimizer(ws, device): # Test auto_model model = nn.Linear(10, 10) _test_auto_model(model, ws, device) model = nn.Sequential(nn.Linear(20, 100), nn.BatchNorm1d(100)) _test_auto_model(model, ws, device, sync_bn="cuda" in torch.device(device).type) if ws > 1: _test_auto_model(model, ws, device, find_unused_parameters=True) _test_auto_model(model, ws, device, find_unused_parameters=False) # Test auto_optim bnd = idist.backend() optimizer = optim.SGD(model.parameters(), lr=0.01) optimizer = auto_optim(optimizer) if idist.has_xla_support and "xla" in device: assert isinstance(optimizer, optim.SGD) and hasattr(optimizer, "wrapped_optimizer") elif idist.has_hvd_support and bnd in ("horovod",): assert isinstance(optimizer, optim.SGD) and hasattr(optimizer, "_allreduce_grad_async") else: assert isinstance(optimizer, optim.SGD) and not hasattr(optimizer, "wrapped_optimizer") if idist.has_hvd_support and bnd in ("horovod",): backward_passes_per_step = 2 optimizer = optim.SGD(model.parameters(), lr=0.01) optimizer = auto_optim(optimizer, backward_passes_per_step=backward_passes_per_step) assert isinstance(optimizer, optim.SGD) and hasattr(optimizer, "backward_passes_per_step") assert optimizer.backward_passes_per_step == backward_passes_per_step @pytest.mark.skipif( (not _torch_version_gt_112) or (torch.backends.mps.is_available() and not is_mps_available_and_functional()), reason="Skip if MPS not functional", ) def test_auto_methods_no_dist(): _test_auto_dataloader(1, 1, batch_size=1) _test_auto_dataloader(1, 1, batch_size=10, num_workers=2) _test_auto_dataloader(1, 1, batch_size=10, sampler_name="WeightedRandomSampler") _test_auto_dataloader(1, 1, batch_size=10, sampler_name="DistributedSampler") device = idist.device() _test_auto_model_optimizer(1, device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_auto_methods_gloo(distributed_context_single_node_gloo): ws = distributed_context_single_node_gloo["world_size"] _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=10, num_workers=2) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=10, sampler_name="WeightedRandomSampler") _test_auto_dataloader(ws=ws, nproc=ws, batch_size=10, sampler_name="DistributedSampler") device = idist.device() _test_auto_model_optimizer(ws, device) if ws > 1 and device.type == "cpu": # Pytorch <= 1.9.0 => AssertionError # Pytorch > 1.9 => ValueError # https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/distributed.py#L1498 with pytest.raises( (AssertionError, ValueError), match=r"SyncBatchNorm layers only work with (GPU|CUDA) modules" ): model = nn.Sequential(nn.Linear(20, 100), nn.BatchNorm1d(100)) auto_model(model, sync_bn=True) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_auto_methods_nccl(distributed_context_single_node_nccl): ws = distributed_context_single_node_nccl["world_size"] _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=10, num_workers=10) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1, sampler_name="WeightedRandomSampler") _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1, sampler_name="DistributedSampler") device = idist.device() _test_auto_model_optimizer(ws, device) if ws > 1: with pytest.raises(ValueError, match=r"Argument kwargs should not contain 'device_ids'"): auto_model(nn.Linear(1, 1), device_ids=[0]) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_auto_methods_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_auto_dataloader, args=(np, np, 1), np=np, do_init=True) gloo_hvd_executor(_test_auto_dataloader, args=(np, np, 10, 10), np=np, do_init=True) gloo_hvd_executor(_test_auto_dataloader, args=(np, np, 1, 1, "WeightedRandomSampler"), np=np, do_init=True) gloo_hvd_executor(_test_auto_dataloader, args=(np, np, 1, 1, "DistributedSampler"), np=np, do_init=True) gloo_hvd_executor(_test_auto_model_optimizer, args=(np, device), np=np, do_init=True) def _test_auto_methods_xla(index, ws): dl_type = DataLoader if ws > 1: from ignite.distributed.auto import _MpDeviceLoader dl_type = _MpDeviceLoader try: from torch_xla.distributed.parallel_loader import MpDeviceLoader dl_type = MpDeviceLoader except ImportError: pass _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1, dl_type=dl_type) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=10, num_workers=2, dl_type=dl_type) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1, sampler_name="WeightedRandomSampler", dl_type=dl_type) _test_auto_dataloader(ws=ws, nproc=ws, batch_size=1, sampler_name="DistributedSampler", dl_type=dl_type) device = "xla" _test_auto_model_optimizer(ws, device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_auto_methods_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_auto_methods_xla, args=(n,), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_auto_methods_xla(): _test_auto_methods_xla(index=0, ws=1) def test_dist_proxy_sampler(): weights = torch.ones(100) weights[:50] += 1 num_samples = 200 sampler = WeightedRandomSampler(weights, num_samples) num_replicas = 8 dist_samplers = [DistributedProxySampler(sampler, num_replicas=num_replicas, rank=i) for i in range(num_replicas)] for seed in range(100): torch.manual_seed(seed) true_indices = list(sampler) indices_per_rank = [] for s in dist_samplers: s.set_epoch(seed) indices_per_rank += list(s) set_indices_per_rank = set(indices_per_rank) set_true_indices = set(true_indices) assert ( set_indices_per_rank == set_true_indices ), f"{set_true_indices - set_indices_per_rank} | {set_indices_per_rank - set_true_indices}" with pytest.raises(TypeError, match=r"Argument sampler should be instance of torch Sampler"): DistributedProxySampler(None) with pytest.raises(TypeError, match=r"Argument sampler should have length"): DistributedProxySampler(Sampler([1])) with pytest.raises(TypeError, match=r"Argument sampler must not be a distributed sampler already"): DistributedProxySampler(DistributedSampler(sampler, num_replicas=num_replicas, rank=0)) ignite-0.5.1/tests/ignite/distributed/test_launcher.py000066400000000000000000000265101465426447700232000ustar00rootroot00000000000000import os import subprocess import sys from pathlib import Path import pytest import torch from packaging.version import Version import ignite.distributed as idist from ignite.distributed.comp_models.base import _torch_version_gt_112 from ignite.distributed.utils import has_hvd_support, has_native_dist_support, has_xla_support from tests.ignite import is_mps_available_and_functional def test_parallel_wrong_inputs(): with pytest.raises(ValueError, match=r"Unknown backend 'abc'. Available backends:"): idist.Parallel(backend="abc") with pytest.raises(ValueError, match=r"If backend is None, argument 'nnodes' should be also None"): idist.Parallel(nnodes=2) with pytest.raises(ValueError, match=r"Argument nproc_per_node should positive"): idist.Parallel(backend="gloo", nproc_per_node=-1) with pytest.raises(ValueError, match=r"Argument nnodes should positive"): idist.Parallel(backend="gloo", nproc_per_node=1, nnodes=-1) with pytest.raises(ValueError, match=r"If number of nodes larger than one"): idist.Parallel(backend="gloo", nproc_per_node=1, nnodes=2) with pytest.raises(ValueError, match=r"Argument node_rank should be between 0 and"): idist.Parallel(backend="gloo", nproc_per_node=1, nnodes=2, node_rank=2) with pytest.raises(ValueError, match=r"If number of nodes larger than one, arguments master_addr and master_port"): idist.Parallel(backend="gloo", nproc_per_node=1, nnodes=2, node_rank=1) @pytest.fixture() def exec_filepath(): fp = Path(__file__).parent / "check_idist_parallel.py" assert fp.exists() yield fp.as_posix() def execute(cmd, env=None): import ignite env = dict(os.environ) if env is None else env env["PYTHONPATH"] = f"{os.path.dirname(ignite.__path__[0])}" process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) process.wait() if process.returncode != 0: print(str(process.stdout.read()) + str(process.stderr.read())) raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd, stderr=process.stderr.read()) return str(process.stdout.read()) + str(process.stderr.read()) @pytest.mark.skipif( (not _torch_version_gt_112) or (torch.backends.mps.is_available() and not is_mps_available_and_functional()), reason="Skip if MPS not functional", ) def test_check_idist_parallel_no_dist(exec_filepath): cmd = [sys.executable, "-u", exec_filepath] out = execute(cmd) assert "backend=None" in out assert "in 1 processes" in out assert "End of run" in out def _test_check_idist_parallel_torch_launch(init_method, fp, backend, nprocs): # torchrun --nproc_per_node=nprocs tests/ignite/distributed/check_idist_parallel.py --backend=backend cmd = [] if Version(torch.__version__) >= Version("1.10.0"): cmd += ["torchrun"] else: cmd += [ sys.executable, "-m", "torch.distributed.launch", "--use_env", ] cmd += [ f"--nproc_per_node={nprocs}", fp, f"--backend={backend}", ] if init_method is not None: cmd.append(f"--init_method={init_method}") out = execute(cmd) assert f"backend={backend}" in out assert f"in {nprocs} processes" in out assert "End of run" in out @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip because test uses torch launch") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:29500", "FILE"]) @pytest.mark.parametrize( "backend", ["gloo", pytest.param("nccl", marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU"))], ) def test_check_idist_parallel_torch_launch_n_procs_native(init_method, dirname, exec_filepath, backend): if init_method == "FILE": init_method = f"file://{dirname}/shared" np = torch.cuda.device_count() if torch.cuda.is_available() else 4 _test_check_idist_parallel_torch_launch(init_method, exec_filepath, backend, np) def _test_check_idist_parallel_hvdrun(fp, backend, nprocs): # horovodrun -np=nprocs python tests/ignite/distributed/check_idist_parallel.py --backend=backend cmd = [ "horovodrun", "-np", f"{nprocs}", sys.executable, fp, f"--backend={backend}", ] out = execute(cmd) assert f"backend={backend}" in out assert f"in {nprocs} processes" in out assert "End of run" in out @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip because test uses horovodrun") def test_check_idist_parallel_hvdrun_launch_n_procs(exec_filepath): np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() _test_check_idist_parallel_hvdrun(exec_filepath, "horovod", np) def _test_check_idist_parallel_spawn(fp, backend, nprocs): # python tests/ignite/distributed/check_idist_parallel.py --backend=backend --nproc_per_node=nprocs cmd = [sys.executable, fp, f"--backend={backend}", f"--nproc_per_node={nprocs}"] out = execute(cmd) assert f"backend={backend}" in out assert "Spawn function" in out assert f"in {nprocs} processes" in out if "xla" not in backend: assert "End of run" in out @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.parametrize( "backend", ["gloo", pytest.param("nccl", marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU"))], ) def test_check_idist_parallel_spawn_n_procs_native(exec_filepath, backend): np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() _test_check_idist_parallel_spawn(exec_filepath, backend, np) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_smoke_test_check_idist_parallel_spawn_multinode_n_procs_gloo(exec_filepath): # Just a smoke test from check_idist_parallel.py for an emulated multi-node configuration cmd1 = "export CUDA_VISIBLE_DEVICES= && " cmd1 += f'bash -c "{sys.executable} {exec_filepath} --backend=gloo --nproc_per_node=2 ' cmd1 += '--nnodes=2 --node_rank=0 --master_addr=localhost --master_port=3344 &"' os.system(cmd1) cmd2 = [ sys.executable, exec_filepath, "--backend=gloo", "--nproc_per_node=2", "--nnodes=2", "--node_rank=1", "--master_addr=localhost", "--master_port=3344", ] env = dict(os.environ) env["CUDA_VISIBLE_DEVICES"] = "" out = execute(cmd2, env=env) assert "backend=gloo" in out assert "nproc_per_node: 2" in out assert "nnodes: 2" in out assert "master_addr: localhost" in out assert "master_port: 3344" in out assert "End of run" in out @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_check_idist_parallel_spawn_n_procs_xla(exec_filepath): n = int(os.environ["NUM_TPU_WORKERS"]) if n > 1: _test_check_idist_parallel_spawn(exec_filepath, "xla-tpu", n) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_check_idist_parallel_spawn_n_procs_hvd(exec_filepath): np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() _test_check_idist_parallel_spawn(exec_filepath, "horovod", np) def _test_func(index, ws, device, backend, true_init_method): assert 0 <= index < ws assert index == idist.get_local_rank() assert ws == idist.get_world_size() assert torch.device(device).type == idist.device().type assert backend == idist.backend() if idist.model_name() == "native-dist": from ignite.distributed.utils import _model assert _model._init_method == true_init_method @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.parametrize("init_method", ["env://", "tcp://0.0.0.0:29500", "FILE"]) @pytest.mark.parametrize( "backend", ["gloo", pytest.param("nccl", marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU"))], ) def test_idist_parallel_spawn_n_procs_native(init_method, backend, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" nproc_per_node = torch.cuda.device_count() if torch.cuda.is_available() else 4 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") with idist.Parallel(backend=backend, nproc_per_node=nproc_per_node, init_method=init_method) as parallel: parallel.run(_test_func, ws=nproc_per_node, device=device, backend=backend, true_init_method=init_method) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" not in os.environ, reason="Skip if not launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.parametrize("init_method", ["env://", "tcp://0.0.0.0:29500", "FILE"]) @pytest.mark.parametrize( "backend", ["gloo", pytest.param("nccl", marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU"))], ) def test_idist_parallel_n_procs_native(init_method, backend, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('idist_parallel_n_procs_native')}/shared" os.environ["RANK"] = str(local_rank) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") with idist.Parallel(backend=backend, init_method=init_method) as parallel: parallel.run(_test_func, ws=world_size, device=device, backend=backend, true_init_method=init_method) @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_parallel_no_dist(): device = idist.device() with idist.Parallel(backend=None) as parallel: parallel.run(_test_func, ws=1, device=device, backend=None, true_init_method=None) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_parallel_spawn_params_xla(): res = idist.Parallel._setup_spawn_params( nproc_per_node=8, nnodes=None, node_rank=None, master_addr=None, master_port=None, start_method="fork" ) assert "nproc_per_node" in res and res["nproc_per_node"] == 8 assert "start_method" in res and res["start_method"] == "fork" with idist.Parallel(backend="xla-tpu", nproc_per_node=8, start_method="fork") as parallel: assert parallel.backend == "xla-tpu" res = parallel._spawn_params assert "nproc_per_node" in res and res["nproc_per_node"] == 8 assert "start_method" in res and res["start_method"] == "fork" ignite-0.5.1/tests/ignite/distributed/utils/000077500000000000000000000000001465426447700211225ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/distributed/utils/__init__.py000066400000000000000000000401361465426447700232370ustar00rootroot00000000000000import pytest import torch import torch.distributed as dist import ignite.distributed as idist from ignite.distributed.utils import sync from ignite.engine import Engine, Events def _sanity_check(): from ignite.distributed.utils import _model assert _model.get_world_size() == _model.get_nnodes() * _model.get_nproc_per_node() assert _model.get_local_rank() < _model.get_nproc_per_node() assert _model.get_rank() < _model.get_world_size() assert _model.get_node_rank() < _model.get_nnodes() def _test_distrib_config(local_rank, backend, ws, true_device, rank=None, true_init_method=None): assert idist.backend() == backend, f"{idist.backend()} vs {backend}" this_device = idist.device() assert isinstance(this_device, torch.device) if backend in ("nccl", "gloo", "horovod") and "cuda" in this_device.type: assert this_device.type == torch.device(true_device).type, f"{this_device} vs {true_device}" elif backend in ("gloo", "horovod"): assert this_device.type == torch.device(true_device).type elif backend == "xla-tpu": assert true_device in this_device.type if rank is None: if idist.model_name() == "native-dist": rank = dist.get_rank() if rank is not None: assert idist.get_rank() == rank assert idist.get_world_size() == ws assert idist.get_local_rank() == local_rank assert idist.model_name() in ("native-dist", "xla-dist", "horovod-dist") _sanity_check() if idist.model_name() == "native-dist": from ignite.distributed.utils import _model if true_init_method is not None: assert _model._init_method == true_init_method def _test_sync(cls): from ignite.distributed.utils import _SerialModel, _set_model _set_model(_SerialModel()) sync() from ignite.distributed.utils import _model assert isinstance(_model, cls), f"{type(_model)} vs {cls}" def _test_distrib__get_max_length(device): ws = idist.get_world_size() x = "_test_distrib__get_max_length" * (idist.get_rank() + 2) from ignite.distributed.utils import _model res = _model._get_max_length(x, device) assert res == len("_test_distrib__get_max_length" * (ws + 1)) def _test_distrib_all_reduce(device): res = idist.all_reduce(10) assert res == 10 * idist.get_world_size() t = torch.tensor(10, device=device) res = idist.all_reduce(t) assert res.item() == 10 * idist.get_world_size() rank = idist.get_rank() t = torch.tensor(rank * 2.0 + 1.0, device=device) res = idist.all_reduce(t) assert res.item() == sum([i * 2.0 + 1.0 for i in range(idist.get_world_size())]) t = torch.tensor(rank * 2.0 + 1.0, device=device) res = idist.all_reduce(t, "MIN").item() true_val = min([i * 2 + 1 for i in range(idist.get_world_size())]) assert res == true_val, f"{res} vs {true_val}" t = torch.tensor(rank * 2.0 + 1.0, device=device) res = idist.all_reduce(t, "MAX").item() true_val = max([i * 2.0 + 1.0 for i in range(idist.get_world_size())]) assert res == true_val, f"{res} vs {true_val}" t = torch.ones(4, 4, device=device) * (rank * 2.0 + 1.0) res = idist.all_reduce(t, "MAX") true_val = torch.ones(4, 4, device=device) * ((idist.get_world_size() - 1) * 2.0 + 1.0) assert res.equal(true_val), f"{res} vs {true_val}" t = torch.tensor(rank * 2.0 + 1.0, device=device) res = idist.all_reduce(t, "PRODUCT").item() true_val = 1 for v in [i * 2.0 + 1.0 for i in range(idist.get_world_size())]: true_val *= v assert res == true_val, f"{res} vs {true_val}" if idist.get_world_size() > 1: with pytest.raises(TypeError, match=r"Unhandled input type"): idist.all_reduce("abc") with pytest.raises(ValueError, match=r"Unsupported reduction operation"): idist.all_reduce(10, op="ABC") t = torch.tensor([0, 1, 2]) res = idist.all_reduce(t) assert res.device == t.device, f"{res.device} vs {t.device}" def _test_distrib_all_reduce_group(device): if idist.get_world_size() > 1 and idist.backend() is not None: ranks = [0, 1] rank = idist.get_rank() t = torch.tensor([rank], device=device) bnd = idist.backend() group = idist.new_group(ranks) if bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_reduce with group for horovod is not implemented"): res = idist.all_reduce(t, group=group) else: res = idist.all_reduce(t, group=group) assert res == torch.tensor([sum(ranks)], device=device) t = torch.tensor([rank], device=device) if bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_reduce with group for horovod is not implemented"): res = idist.all_reduce(t, group=ranks) else: res = idist.all_reduce(t, group=ranks) assert res == torch.tensor([sum(ranks)], device=device) ranks = "abc" if bnd in ("nccl", "gloo", "mpi"): with pytest.raises(ValueError, match=r"Argument group should be list of int or ProcessGroup"): res = idist.all_reduce(t, group="abc") elif bnd in ("xla-tpu"): with pytest.raises(ValueError, match=r"Argument group should be list of int"): res = idist.all_reduce(t, group="abc") elif bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_reduce with group for horovod is not implemented"): res = idist.all_reduce(t, group="abc") def _test_distrib_all_gather(device): rank = idist.get_rank() ws = idist.get_world_size() res = torch.tensor(idist.all_gather(10), device=device) true_res = torch.tensor([10] * ws, device=device) assert (res == true_res).all() t = torch.tensor(rank, device=device) res = idist.all_gather(t) true_res = torch.tensor([i for i in range(ws)], device=device) assert (res == true_res).all() x = "test-test" if rank == 0: x = "abc" res = idist.all_gather(x) true_res = ["abc"] + ["test-test"] * (ws - 1) assert res == true_res base_x = "tests/ignite/distributed/utils/test_native.py" * 2000 x = base_x if rank == 0: x = "abc" res = idist.all_gather(x) true_res = ["abc"] + [base_x] * (ws - 1) assert res == true_res t = torch.arange(100, device=device).reshape(4, 25) * (rank + 1) in_dtype = t.dtype res = idist.all_gather(t) assert res.shape == (ws * 4, 25) assert res.dtype == in_dtype true_res = torch.zeros(ws * 4, 25, device=device) for i in range(ws): true_res[i * 4 : (i + 1) * 4, ...] = torch.arange(100, device=device).reshape(4, 25) * (i + 1) assert (res == true_res).all() if ws > 1 and idist.backend() != "xla-tpu": t = { "a": [rank + 1, rank + 2, torch.tensor(rank + 3, device=device)], "b": torch.tensor([[rank + 1, rank + 2, rank + 3]], device=device), "c": {"abcd": rank, "cdfg": torch.tensor(rank, dtype=torch.uint8, device=device)}, } res = idist.all_gather(t) assert isinstance(res, list) and len(res) == ws for i, obj in enumerate(res): assert isinstance(obj, dict) assert list(obj.keys()) == ["a", "b", "c"], obj expected_device = ( device if torch.device(device).type == "cpu" else torch.device(f"{torch.device(device).type}:{i}") ) expected = { "a": [i + 1, i + 2, torch.tensor(i + 3, device=expected_device)], "b": torch.tensor([[i + 1, i + 2, i + 3]], device=expected_device), "c": {"abcd": i, "cdfg": torch.tensor(i, dtype=torch.uint8, device=expected_device)}, } assert obj["a"] == expected["a"] assert (obj["b"] == expected["b"]).all() assert obj["c"] == expected["c"] def _test_distrib_all_gather_group(device): if idist.get_world_size() > 1: ranks = list(range(idist.get_world_size() - 1, 0, -1)) # [0, 1, 2, 3] -> [3, 2, 1] rank = idist.get_rank() bnd = idist.backend() t = torch.tensor([rank], device=device) group = idist.new_group(ranks) if bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_gather with group for horovod is not implemented"): res = idist.all_gather(t, group=group) else: res = idist.all_gather(t, group=group) if rank in ranks: assert torch.equal(res, torch.tensor(ranks, device=device)) else: assert res == t t = torch.tensor([rank], device=device) if bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_gather with group for horovod is not implemented"): res = idist.all_gather(t, group=ranks) else: res = idist.all_gather(t, group=ranks) if rank in ranks: assert torch.equal(res, torch.tensor(ranks, device=device)) else: assert res == t t = { "a": [rank + 1, rank + 2, torch.tensor(rank + 3, device=device)], "b": torch.tensor([[rank + 1, rank + 2, rank + 3]], device=device), "c": {"abcd": rank, "cdfg": torch.tensor(rank, dtype=torch.uint8, device=device)}, } if bnd in ("xla-tpu"): with pytest.raises(NotImplementedError, match=r"all_gather on object is not implemented for xla"): res = idist.all_gather(t, group=ranks) elif bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_gather with group for horovod is not implemented"): res = idist.all_gather(t, group=ranks) else: res = idist.all_gather(t, group=ranks) if rank in ranks: assert isinstance(res, list) and len(res) == len(ranks) for i, obj in zip(ranks, res): assert isinstance(obj, dict) assert list(obj.keys()) == ["a", "b", "c"], obj expected_device = ( device if torch.device(device).type == "cpu" else torch.device(f"{torch.device(device).type}:{i}") ) expected = { "a": [i + 1, i + 2, torch.tensor(i + 3, device=expected_device)], "b": torch.tensor([[i + 1, i + 2, i + 3]], device=expected_device), "c": {"abcd": i, "cdfg": torch.tensor(i, dtype=torch.uint8, device=expected_device)}, } assert obj["a"] == expected["a"], (obj, expected) assert (obj["b"] == expected["b"]).all(), (obj, expected) assert obj["c"] == expected["c"], (obj, expected) else: assert res == t if bnd in ("nccl", "gloo", "mpi"): with pytest.raises(ValueError, match=r"Argument group should be list of int or ProcessGroup"): res = idist.all_gather(t, group="abc") elif bnd in ("xla-tpu"): with pytest.raises(ValueError, match=r"Argument group should be list of int"): res = idist.all_gather(t, group="abc") elif bnd in ("horovod"): with pytest.raises(NotImplementedError, match=r"all_gather with group for horovod is not implemented"): res = idist.all_gather(t, group="abc") def _test_distrib_broadcast(device): rank = idist.get_rank() ws = idist.get_world_size() def _test(data_src, data_others, safe_mode): for src in range(ws): data = data_src if rank == src else data_others res = idist.broadcast(data, src=src, safe_mode=safe_mode) if isinstance(res, torch.Tensor): assert (res == data_src).all(), f"{res} vs {data_src}" assert data_src.dtype == res.dtype else: assert res == data_src, f"{res} vs {data_src}" _test(10, 0, safe_mode=False) _test(10, None, safe_mode=True) t = torch.tensor([1.2345, 2.3456], dtype=torch.float, device=device) _test(t, torch.empty_like(t), safe_mode=False) _test(t, None, safe_mode=True) _test(t, "abc", safe_mode=True) _test("test-abcdefg", "", safe_mode=False) _test("test-abcdefg", None, safe_mode=True) _test("test-abcdefg", 1.2, safe_mode=True) s = "tests/ignite/distributed/utils/test_horovod.py::test_idist_broadcast_hvd" * 200 _test(s, "", safe_mode=False) _test(s, None, safe_mode=True) _test(s, 123.0, safe_mode=True) t = torch.arange(100, device=device).reshape(4, 25) * 2 _test(t, torch.empty_like(t), safe_mode=False) _test(t, None, safe_mode=True) _test(t, "None", safe_mode=True) t = torch.tensor(12) _test(t, torch.empty_like(t), safe_mode=False) _test(t, None, safe_mode=True) _test(t, 123.4, safe_mode=True) if idist.get_world_size() > 1: with pytest.raises(TypeError, match=r"Unhandled input type"): idist.broadcast([0, 1, 2], src=0) if idist.get_world_size() > 1: msg = "Source data can not be None" if rank == 0 else "Argument safe_mode should be True" with pytest.raises(ValueError, match=msg): idist.broadcast(None, src=0) def _test_distrib_barrier(device): t = torch.tensor([idist.get_rank()], device=device, dtype=torch.float) true_res = sum([i for i in range(idist.get_world_size())]) if idist.get_rank() == 0: t += 10.0 idist.barrier() tt = idist.all_reduce(t) assert tt.item() == true_res + 10.0 def _test_distrib_new_group(device): if idist.get_world_size() > 1 and idist.backend() is not None: bnd = idist.backend() ranks = [0, 1] if idist.has_native_dist_support and bnd in ("nccl", "gloo", "mpi"): g1 = idist.new_group(ranks) g2 = dist.new_group(ranks) rank = idist.get_rank() if rank in ranks: assert g1.rank() == g2.rank() elif idist.has_xla_support and bnd in ("xla-tpu"): assert idist.new_group(ranks) == [ranks] elif idist.has_hvd_support and bnd in ("horovod"): from horovod.common.process_sets import ProcessSet g1 = idist.new_group(ranks) g2 = ProcessSet(ranks) rank = idist.get_rank() if rank in ranks: assert g1.ranks == g2.ranks elif idist.backend() is None: ranks = [0, 1] assert idist.new_group(ranks) == ranks with pytest.raises(ValueError, match="Argument ranks should be list of int"): ranks = ["a", "b", "c"] idist.new_group(ranks) with pytest.raises(ValueError, match="Argument ranks should be list of int"): ranks = 1 idist.new_group(ranks) def _test_distrib_one_rank_only(device): def _test(barrier): # last rank rank = idist.get_world_size() - 1 value = torch.tensor(0).to(device) @idist.one_rank_only(rank=rank, with_barrier=barrier) def initialize(): value.add_(torch.tensor(100).to(device)) initialize() value_list = idist.all_gather(tensor=value) for r in range(idist.get_world_size()): if r == rank: assert value_list[r].item() == 100 else: assert value_list[r].item() == 0 _test(barrier=True) _test(barrier=False) def _test_distrib_one_rank_only_with_engine(device): def _test(barrier): engine = Engine(lambda e, b: b) batch_sum = torch.tensor(0).to(device) @engine.on(Events.ITERATION_COMPLETED) @idist.one_rank_only(with_barrier=barrier) # ie rank == 0 def _(_): batch_sum.data += torch.tensor(engine.state.batch).to(device) engine.run([1, 2, 3], max_epochs=2) value_list = idist.all_gather(tensor=batch_sum) for r in range(idist.get_world_size()): if r == 0: assert value_list[r].item() == 12 else: assert value_list[r].item() == 0 _test(barrier=True) _test(barrier=False) ignite-0.5.1/tests/ignite/distributed/utils/test_horovod.py000066400000000000000000000232761465426447700242250ustar00rootroot00000000000000import os import pytest import torch import ignite.distributed as idist from ignite.distributed.utils import has_hvd_support from tests.ignite.distributed.utils import ( _test_distrib__get_max_length, _test_distrib_all_gather, _test_distrib_all_gather_group, _test_distrib_all_reduce, _test_distrib_all_reduce_group, _test_distrib_barrier, _test_distrib_broadcast, _test_distrib_config, _test_distrib_new_group, _test_distrib_one_rank_only, _test_distrib_one_rank_only_with_engine, _test_sync, ) @pytest.mark.skipif(has_hvd_support, reason="Skip if has Horovod package") def test_hvd_distrib_spawn_no_hvd_support(): with pytest.raises(ValueError, match=r"Backend should be one of"): idist.spawn("horovod", _test_distrib_config, args=("horovod", 1, "cpu"), nproc_per_node=1) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") def test_hvd_distrib_single_node_single_device(): import horovod.torch as hvd idist.initialize("horovod") device = "cpu" if torch.cuda.device_count() < 1 else "cuda" local_rank = hvd.local_rank() world_size = hvd.size() rank = hvd.rank() _test_distrib_config(local_rank, "horovod", world_size, device, rank) idist.finalize() @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() > 0, reason="Skip if has GPU") def test_hvd_distrib_single_node_spawn(): world_size = 4 idist.spawn("horovod", _test_distrib_config, args=("horovod", world_size, "cpu"), nproc_per_node=world_size) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_hvd_distrib_multi_node_spawn_raise_error(): world_size = 4 with pytest.raises(RuntimeError, match=r"For multi-node configuration, please set 'hosts' argument instead"): idist.spawn( "horovod", _test_distrib_config, args=("horovod", world_size, "cpu"), nproc_per_node=world_size, nnodes=2 ) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_hvd_distrib_single_node_spawn_cuda(): world_size = torch.cuda.device_count() idist.spawn("horovod", _test_distrib_config, args=("horovod", world_size, "cuda"), nproc_per_node=world_size) def _test_sync_as_hvd(): import horovod.torch as hvd from ignite.distributed.comp_models.horovod import _HorovodDistModel hvd.init() lrank = hvd.local_rank() if torch.cuda.is_available(): torch.cuda.set_device(lrank) _test_sync(_HorovodDistModel) hvd.shutdown() @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif(os.getenv("HOROVOD_RANK", -1) == -1, reason="Skip as controller is not Gloo") def test_sync_as_hvd(): _test_sync_as_hvd() @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_sync_as_hvd_inside_gloo_executor(gloo_hvd_executor): np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_sync_as_hvd, (), np=np) def _test_idist_methods_in_hvd_context(backend, device): # We explicitly set _model as _SerialModel # then call idist.* methods and check that they give correct values import horovod.torch as hvd from ignite.distributed.utils import _SerialModel, _set_model hvd.init() _set_model(_SerialModel()) ws = hvd.size() rank = hvd.rank() local_rank = hvd.local_rank() if torch.cuda.is_available(): torch.cuda.set_device(local_rank) _test_distrib_config(local_rank, backend=backend, ws=ws, true_device=device, rank=rank) hvd.shutdown() @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_methods_in_hvd_context(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_idist_methods_in_hvd_context, ("horovod", device), np=np) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_all_reduce_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_all_reduce, (device,), np=np, do_init=True) gloo_hvd_executor(_test_distrib_all_reduce_group, (device,), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist__model_methods_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib__get_max_length, (device,), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_all_gather_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_all_gather, (device,), np=np, do_init=True) gloo_hvd_executor(_test_distrib_all_gather_group, (device,), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_broadcast_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_broadcast, (device,), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_barrier_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_barrier, (device,), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_new_group_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_new_group, (device,), np=np, do_init=True) def _test_idist_methods_overhead(ok_factor, sync_model): import time import horovod.torch as hvd if sync_model: idist.sync() from ignite.distributed.comp_models.horovod import _HorovodDistModel from ignite.distributed.utils import _model assert isinstance(_model, _HorovodDistModel) n = 100000 m = 5 t2 = 0.0 t1 = 0.0 for _ in range(m): start = time.time() for _ in range(n): _ = hvd.size() _ = hvd.rank() elapsed = time.time() - start t2 += elapsed / n / m start = time.time() for _ in range(n): _ = idist.get_world_size() _ = idist.get_rank() elapsed = time.time() - start t1 += elapsed / n / m overhead_factor = t1 / t2 assert overhead_factor < ok_factor, f"{overhead_factor} vs {ok_factor} | {t2} vs {t1}" @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_methods_overhead_hvd(gloo_hvd_executor): np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() ok_factor = 6.0 sync_model = False gloo_hvd_executor(_test_idist_methods_overhead, (ok_factor, sync_model), np=np, do_init=True) ok_factor = 2.5 sync_model = True gloo_hvd_executor(_test_idist_methods_overhead, (ok_factor, sync_model), np=np, do_init=True) @pytest.mark.distributed @pytest.mark.skipif(not has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_idist_one_rank_only(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" np = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_one_rank_only, (device,), np=np, do_init=True) gloo_hvd_executor(_test_distrib_one_rank_only_with_engine, (device,), np=np, do_init=True) ignite-0.5.1/tests/ignite/distributed/utils/test_native.py000066400000000000000000000357671465426447700240430ustar00rootroot00000000000000import os import pytest import torch import torch.distributed as dist from packaging.version import Version import ignite.distributed as idist from ignite.distributed.utils import has_native_dist_support from tests.ignite.distributed.utils import ( _test_distrib__get_max_length, _test_distrib_all_gather, _test_distrib_all_gather_group, _test_distrib_all_reduce, _test_distrib_all_reduce_group, _test_distrib_barrier, _test_distrib_broadcast, _test_distrib_config, _test_distrib_new_group, _test_distrib_one_rank_only, _test_distrib_one_rank_only_with_engine, _test_sync, ) def _test_native_distrib_single_node_launch_tool(backend, device, local_rank, world_size, init_method=None, **kwargs): import os rank = local_rank os.environ["RANK"] = f"{rank}" idist.initialize(backend, init_method=init_method, **kwargs) _test_distrib_config(local_rank, backend, world_size, device, rank, true_init_method=init_method) idist.finalize() @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test_native_distrib_single_node_launch_tool_gloo(init_method, get_fixed_dirname, local_rank, world_size): from datetime import timedelta timeout = timedelta(seconds=20) if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_distrib_single_node_launch_tool_gloo')}/shared" device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test_native_distrib_single_node_launch_tool( "gloo", device, local_rank, world_size, timeout=timeout, init_method=init_method ) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test_native_distrib_single_node_launch_tool_nccl(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_distrib_single_node_launch_tool_nccl')}/shared" device = torch.device(f"cuda:{local_rank}") _test_native_distrib_single_node_launch_tool("nccl", device, local_rank, world_size, init_method=init_method) def _test_native_distrib_single_node_spawn(init_method, backend, device, **kwargs): world_size = 4 if torch.device(device).type == "cpu" else torch.cuda.device_count() idist.spawn( backend, _test_distrib_config, args=(backend, world_size, device), nproc_per_node=world_size, init_method=init_method, **kwargs, ) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test_native_distrib_single_node_spawn_gloo(init_method, dirname): from datetime import timedelta timeout = timedelta(seconds=20) if init_method == "FILE": init_method = f"file://{dirname}/shared" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _test_native_distrib_single_node_spawn(init_method, "gloo", device, timeout=timeout) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test_native_distrib_single_node_spawn_nccl(init_method, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" device = torch.device("cuda") _test_native_distrib_single_node_spawn(init_method, "nccl", device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_sync_as_native_gloo(distributed_context_single_node_gloo): from ignite.distributed.comp_models.native import _NativeDistModel _test_sync(_NativeDistModel) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_sync_as_native_nccl(distributed_context_single_node_nccl): from ignite.distributed.comp_models.native import _NativeDistModel _test_sync(_NativeDistModel) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_new_group_native_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib_new_group(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_new_group_native_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_new_group(device) def _test_idist_methods_in_native_context(backend, device, local_rank): # We explicitly set _model as _SerialModel # then call idist.* methods and check that they give correct values from ignite.distributed.utils import _SerialModel, _set_model _set_model(_SerialModel()) ws = dist.get_world_size() rank = dist.get_rank() _test_distrib_config(local_rank, backend=backend, ws=ws, true_device=device, rank=rank) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_methods_in_native_gloo_context(distributed_context_single_node_gloo): local_rank = distributed_context_single_node_gloo["local_rank"] device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test_idist_methods_in_native_context("gloo", device, local_rank) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_methods_in_native_nccl_context(distributed_context_single_node_nccl): local_rank = distributed_context_single_node_nccl["local_rank"] device = torch.device(f"cuda:{local_rank}") _test_idist_methods_in_native_context("nccl", device, local_rank) def _test_idist_methods_in_native_context_set_local_rank(backend, device, local_rank): # We explicitly set _model as _SerialModel # then call idist.* methods and check that they give correct values from ignite.distributed.utils import _SerialModel, _set_model _set_model(_SerialModel()) lrank = int(os.environ["LOCAL_RANK"]) del os.environ["LOCAL_RANK"] ws = dist.get_world_size() rank = dist.get_rank() idist.set_local_rank(local_rank) _test_distrib_config(local_rank=local_rank, backend=backend, ws=ws, true_device=device, rank=rank) os.environ["LOCAL_RANK"] = str(lrank) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_methods_in_native_gloo_context_set_local_rank(distributed_context_single_node_gloo): local_rank = distributed_context_single_node_gloo["local_rank"] device = idist.device() _test_idist_methods_in_native_context_set_local_rank("gloo", device, local_rank) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_methods_in_native_nccl_context_set_local_rank(distributed_context_single_node_nccl): local_rank = distributed_context_single_node_nccl["local_rank"] device = idist.device() _test_idist_methods_in_native_context_set_local_rank("nccl", device, local_rank) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist__model_methods_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib__get_max_length(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist__model_methods_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib__get_max_length(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_all_reduce_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib_all_reduce(device) _test_distrib_all_reduce_group(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_all_reduce_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_all_reduce(device) _test_distrib_all_reduce_group(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="dist.all_gather_object is not implemented") def test_idist_all_gather_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib_all_gather(device) _test_distrib_all_gather_group(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="dist.all_gather_object is not implemented") def test_idist_all_gather_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_all_gather(device) _test_distrib_all_gather_group(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_broadcast_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib_broadcast(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_broadcast_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_broadcast(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_barrier_nccl(distributed_context_single_node_nccl): device = idist.device() _test_distrib_barrier(device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_barrier_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_barrier(device) def _test_idist_methods_overhead(ok_factor): import time n = 100000 m = 5 t2 = 0.0 t1 = 0.0 for _ in range(m): start = time.time() for _ in range(n): _ = dist.get_world_size() _ = dist.get_rank() elapsed = time.time() - start t2 += elapsed / n / m start = time.time() for _ in range(n): _ = idist.get_world_size() _ = idist.get_rank() elapsed = time.time() - start t1 += elapsed / n / m overhead_factor = t1 / t2 assert overhead_factor < ok_factor, f"{overhead_factor} vs {ok_factor} | {t2} vs {t1}" @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif( not torch.cuda.is_available(), reason="Do not want to run this test on Github or Travis, but CircleCI" ) def test_idist_methods_overhead_gloo(distributed_context_single_node_gloo): _test_idist_methods_overhead(2.5) idist.sync() from ignite.distributed.comp_models.native import _NativeDistModel from ignite.distributed.utils import _model assert isinstance(_model, _NativeDistModel) _test_idist_methods_overhead(1.7) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_methods_overhead_nccl(distributed_context_single_node_nccl): _test_idist_methods_overhead(2.5) idist.sync() from ignite.distributed.comp_models.native import _NativeDistModel from ignite.distributed.utils import _model assert isinstance(_model, _NativeDistModel) _test_idist_methods_overhead(1.7) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test_idist_one_rank_only_gloo(distributed_context_single_node_gloo): device = idist.device() _test_distrib_one_rank_only(device=device) _test_distrib_one_rank_only_with_engine(device=device) @pytest.mark.distributed @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_idist_one_rank_only_nccl(local_rank, distributed_context_single_node_nccl): device = idist.device() _test_distrib_one_rank_only(device=device) _test_distrib_one_rank_only_with_engine(device=device) @pytest.mark.distributed @pytest.mark.parametrize("rank", range(int(os.environ.get("WORLD_SIZE", 1)))) @pytest.mark.parametrize("local", [True, False]) def test_one_rank_first(distributed, get_rank_zero_dirname, rank, local): def get_ds(file_path): rank = idist.get_local_rank() if local else idist.get_rank() if not file_path.exists(): with open(file_path, "w") as f: f.write("readed") return f"{rank} not readed" else: return f"{rank} readed" folder = get_rank_zero_dirname() file_path = folder / "res.txt" with idist.one_rank_first(rank, local=local): x = get_ds(file_path) output = idist.all_gather(x) if local: expected = [ f"{x} not readed" if x == rank else f"{x} readed" for x in range(idist.get_nproc_per_node()) ] * idist.get_nnodes() else: expected = [f"{x} not readed" if x == rank else f"{x} readed" for x in range(idist.get_world_size())] print("expected:", expected, idist.get_nnodes()) assert set(expected) == set(output) @pytest.mark.distributed def test_one_rank_first_asserts(): rank = 100 with pytest.raises( ValueError, match=f"rank should be between 0 and {idist.get_world_size() - 1}, but given {rank}" ): with idist.one_rank_first(rank): pass ignite-0.5.1/tests/ignite/distributed/utils/test_serial.py000066400000000000000000000052261465426447700240170ustar00rootroot00000000000000import torch import ignite.distributed as idist from ignite.distributed.comp_models.base import _torch_version_gt_112 from tests.ignite.distributed.utils import ( _sanity_check, _test_distrib__get_max_length, _test_distrib_all_gather, _test_distrib_all_reduce, _test_distrib_barrier, _test_distrib_broadcast, _test_distrib_new_group, _test_sync, ) def test_no_distrib(capsys): assert idist.backend() is None if torch.cuda.is_available(): assert idist.device().type == "cuda" elif _torch_version_gt_112 and torch.backends.mps.is_available(): assert idist.device().type == "mps" else: assert idist.device().type == "cpu" assert idist.get_rank() == 0 assert idist.get_world_size() == 1 assert idist.get_local_rank() == 0 assert idist.model_name() == "serial" from ignite.distributed.utils import _model, _SerialModel _sanity_check() assert isinstance(_model, _SerialModel) idist.show_config() captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "ignite.distributed.utils INFO: distributed configuration: serial" in out[-1] assert "ignite.distributed.utils INFO: backend: None" in out[-1] if torch.cuda.is_available(): assert "ignite.distributed.utils INFO: device: cuda" in out[-1] elif _torch_version_gt_112 and torch.backends.mps.is_available(): assert "ignite.distributed.utils INFO: device: mps" in out[-1] else: assert "ignite.distributed.utils INFO: device: cpu" in out[-1] assert "ignite.distributed.utils INFO: rank: 0" in out[-1] assert "ignite.distributed.utils INFO: local rank: 0" in out[-1] assert "ignite.distributed.utils INFO: world size: 1" in out[-1] def test_sync_no_dist(): from ignite.distributed.comp_models import _SerialModel _test_sync(_SerialModel) def test_idist_methods_no_dist(): assert idist.get_world_size() < 2 assert idist.backend() is None, f"{idist.backend()}" def test_idist__model_methods_no_dist(): _test_distrib__get_max_length("cpu") if torch.cuda.device_count() > 1: _test_distrib__get_max_length("cuda") def test_idist_collective_ops_no_dist(): _test_distrib_all_reduce("cpu") _test_distrib_all_gather("cpu") _test_distrib_barrier("cpu") _test_distrib_broadcast("cpu") _test_distrib_new_group("cpu") if torch.cuda.device_count() > 1: _test_distrib_all_reduce("cuda") _test_distrib_all_gather("cuda") _test_distrib_barrier("cuda") _test_distrib_broadcast("cuda") _test_distrib_new_group("cuda") ignite-0.5.1/tests/ignite/distributed/utils/test_xla.py000066400000000000000000000212741465426447700233250ustar00rootroot00000000000000import os import pytest import ignite.distributed as idist from ignite.distributed.utils import has_xla_support from tests.ignite.distributed.utils import ( _test_distrib_all_gather, _test_distrib_all_gather_group, _test_distrib_all_reduce, _test_distrib_all_reduce_group, _test_distrib_barrier, _test_distrib_broadcast, _test_distrib_config, _test_distrib_new_group, _test_distrib_one_rank_only, _test_distrib_one_rank_only_with_engine, _test_sync, ) @pytest.mark.skipif(has_xla_support, reason="Skip if has PyTorch XLA package") def test_xla_distrib_spawn_no_xla_support(): with pytest.raises(ValueError, match=r"Backend should be one of"): idist.spawn("xla-tpu", _test_distrib_config, args=("xla-tpu", 1, "xla"), nproc_per_node=1) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_xla_distrib_single_node_no_spawn(): idist.initialize("xla-tpu") _test_distrib_config(local_rank=0, backend="xla-tpu", ws=1, true_device="xla") idist.finalize() @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_xla_distrib_single_node_spawn_one_proc(): try: idist.spawn("xla-tpu", _test_distrib_config, args=("xla-tpu", 1, "xla"), nproc_per_node=1) except SystemExit: pass @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_xla_distrib_single_node_spawn_n_procs(): n = int(os.environ["NUM_TPU_WORKERS"]) try: idist.spawn("xla-tpu", _test_distrib_config, args=("xla-tpu", n, "xla"), nproc_per_node=n) except SystemExit: pass @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_sync_as_xla(): from ignite.distributed.comp_models.xla import _XlaDistModel _test_sync(_XlaDistModel) def _test_sync_as_xla_in_child_proc(index): from ignite.distributed.comp_models.xla import _XlaDistModel _test_sync(_XlaDistModel) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_sync_as_xla_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_sync_as_xla_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_methods_in_xla_context(): # We explicitly set _model as _SerialModel # then call idist.* methods and check that they give correct values from ignite.distributed.utils import _SerialModel, _set_model _set_model(_SerialModel()) _test_distrib_config(local_rank=0, backend="xla-tpu", ws=1, true_device="xla", rank=0) def _test_idist_methods_in_xla_context_in_child_proc(index): # We explicitly set _model as _SerialModel # then call idist.* methods and check that they give correct values from ignite.distributed.utils import _SerialModel, _set_model _set_model(_SerialModel()) import torch_xla.core.xla_model as xm _test_distrib_config( local_rank=index, backend="xla-tpu", ws=xm.xrt_world_size(), true_device="xla", rank=xm.get_ordinal() ) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_methods_in_xla_context_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_methods_in_xla_context_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_all_reduce_xla(): device = idist.device() _test_distrib_all_reduce(device) _test_distrib_all_reduce_group(device) def _test_idist_all_reduce_xla_in_child_proc(index): device = idist.device() _test_distrib_all_reduce(device) _test_distrib_all_reduce_group(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_all_reduce_xla_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_all_reduce_xla_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_new_group_xla(): device = idist.device() _test_distrib_new_group(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_all_gather_xla(): device = idist.device() _test_distrib_all_gather(device) _test_distrib_all_gather_group(device) def _test_idist_all_gather_xla_in_child_proc(index): device = idist.device() _test_distrib_all_gather(device) _test_distrib_all_gather_group(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_all_gather_xla_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_all_gather_xla_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_broadcast_xla(): device = idist.device() _test_distrib_broadcast(device) def _test_idist_broadcast_xla_in_child_proc(index): device = idist.device() _test_distrib_broadcast(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_broadcast_xla_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_broadcast_xla_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_barrier_xla(): device = idist.device() _test_distrib_barrier(device) def _test_idist_barrier_xla_in_child_proc(index): device = idist.device() _test_distrib_barrier(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_barrier_xla_in_child_proc(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_barrier_xla_in_child_proc, args=(), nprocs=n) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_one_rank_only_xla(): device = idist.device() _test_distrib_one_rank_only(device=device) _test_distrib_one_rank_only_with_engine(device=device) def _test_idist_one_rank_only_xla_nprocs(index): device = idist.device() _test_distrib_one_rank_only(device=device) _test_distrib_one_rank_only_with_engine(device=device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package") def test_idist_one_rank_only_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_idist_one_rank_only_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/engine/000077500000000000000000000000001465426447700167055ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/engine/__init__.py000066400000000000000000000045661465426447700210310ustar00rootroot00000000000000import torch try: from torch.utils.data import IterableDataset except ImportError: class IterableDataset: pass class BatchChecker: def __init__(self, data, init_counter=0): self.counter = init_counter self.data = data self.true_batch = None def check(self, batch): self.true_batch = self.data[self.counter % len(self.data)] self.counter += 1 res = self.true_batch == batch return res.all() if not isinstance(res, bool) else res class IterationCounter: def __init__(self, start_value=1): self.current_iteration_count = start_value def __call__(self, engine): assert engine.state.iteration == self.current_iteration_count self.current_iteration_count += 1 class EpochCounter: def __init__(self, start_value=1): self.current_epoch_count = start_value def __call__(self, engine): assert engine.state.epoch == self.current_epoch_count self.current_epoch_count += 1 def setup_sampler(sampler_type, num_iters, batch_size): if sampler_type is None: return None, batch_size if sampler_type == "weighted": from torch.utils.data.sampler import WeightedRandomSampler w = torch.ones(num_iters * batch_size, dtype=torch.float) for i in range(num_iters): w[batch_size * i : batch_size * (i + 1)] += i * 1.0 return WeightedRandomSampler(w, num_samples=num_iters * batch_size, replacement=True), batch_size if sampler_type == "distributed": import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler num_replicas = 1 rank = 0 if dist.is_available() and dist.is_initialized(): num_replicas = dist.get_world_size() rank = dist.get_rank() dataset = torch.zeros(num_iters * batch_size) return DistributedSampler(dataset, num_replicas=num_replicas, rank=rank), batch_size // num_replicas class MyIterableDataset(IterableDataset): def __init__(self, start, end): super(MyIterableDataset).__init__() assert end > start, "this example code only works with end >= start" self.start = start self.end = end def __iter__(self): return iter(range(self.start, self.end)) def get_iterable_dataset(*args, **kwargs): return MyIterableDataset(*args, **kwargs) ignite-0.5.1/tests/ignite/engine/test_create_supervised.py000066400000000000000000000705521465426447700240430ustar00rootroot00000000000000import os from importlib.util import find_spec from typing import Optional, Union from unittest import mock from unittest.mock import MagicMock, patch import pytest import torch from packaging.version import Version from pytest import approx from torch.nn.functional import mse_loss from torch.optim import SGD import ignite.distributed as idist from ignite.distributed.comp_models.base import _torch_version_gt_112 from ignite.engine import ( _check_arg, create_supervised_evaluator, create_supervised_trainer, Engine, Events, supervised_evaluation_step, supervised_evaluation_step_amp, supervised_training_step_tpu, ) from ignite.metrics import MeanSquaredError from tests.ignite import is_mps_available_and_functional class DummyModel(torch.nn.Module): def __init__(self, output_as_list=False): super(DummyModel, self).__init__() self.output_as_list = output_as_list self.fc = torch.nn.Linear(1, 1, bias=False) def forward(self, x, bias=None): if bias is None: bias = 0.0 if self.output_as_list: return self.fc(x) + bias, self.fc(x) + bias return self.fc(x) + bias def _default_create_supervised_trainer( gradient_accumulation_steps: int = 1, model_device: Optional[str] = None, trainer_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, scaler: Union[bool, "torch.cuda.amp.GradScaler"] = False, with_model_transform: bool = False, with_model_fn: bool = False, ): if with_model_transform: def get_first_element(output): return output[0] model = DummyModel(output_as_list=True) model_transform = get_first_element else: model = DummyModel() model_transform = None if model_device: model.to(model_device) model.fc.weight.data.zero_() optimizer = SGD(model.parameters(), 0.1) if trace: example_inputs = (torch.randn(1), torch.randn(1)) if with_model_fn else torch.randn(1) model = torch.jit.trace(model, example_inputs) if amp_mode == "apex" and model_device == trainer_device == "cuda": from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level="O2") trainer = create_supervised_trainer( model, optimizer, mse_loss, device=trainer_device, output_transform=lambda x, y, y_pred, loss: (y_pred, loss.item()), amp_mode=amp_mode, scaler=scaler, gradient_accumulation_steps=gradient_accumulation_steps, model_transform=model_transform if model_transform is not None else lambda x: x, model_fn=( (lambda model, x: model(x, torch.tensor([0.01], device=model_device))) if with_model_fn else (lambda model, x: model(x)) ), ) assert model.fc.weight.data[0, 0].item() == approx(0.0) return trainer, model def _test_create_supervised_trainer( gradient_accumulation_steps: int = 1, model_device: Optional[str] = None, trainer_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, scaler: Union[bool, "torch.cuda.amp.GradScaler"] = False, with_model_transform: bool = False, with_model_fn: bool = False, ): trainer, model = _default_create_supervised_trainer( gradient_accumulation_steps=gradient_accumulation_steps, model_device=model_device, trainer_device=trainer_device, trace=trace, amp_mode=amp_mode, scaler=scaler, with_model_transform=with_model_transform, with_model_fn=with_model_fn, ) x = torch.tensor([[0.01], [0.02], [0.03], [0.04], [0.05]]) y = torch.tensor([[0.015], [0.025], [0.035], [0.045], [0.055]]) if with_model_fn: y += 0.01 data = [(_x, _y) for _x, _y in zip(x, y)] theta = [0.0] accumulation = [0.0] loss = [0.0] @trainer.on(Events.ITERATION_COMPLETED) def _(): assert model.fc.weight.grad != 0 _x, _y = trainer.state.batch _x, _y = _x.to(model_device), _y.to(model_device) bias = 0.01 if with_model_fn else 0.0 accumulation[0] += 0.2 * _x.item() * (theta[0] * _x.item() - (_y.item() - bias)) # value of loss should not be accumulated _y_pred = model(_x, torch.tensor([bias], device=model_device)) if with_model_fn else model(_x) if with_model_transform: _y_pred = _y_pred[0] loss[0] = mse_loss(_y_pred, _y).item() @trainer.on(Events.ITERATION_COMPLETED(every=gradient_accumulation_steps)) def _(): theta[0] -= accumulation[0] / gradient_accumulation_steps assert pytest.approx(model.fc.weight.data[0, 0].item(), abs=1.0e-5) == theta[0] assert pytest.approx(trainer.state.output[-1], abs=1e-5) == loss[0] accumulation[0] = loss[0] = 0.0 if model_device == trainer_device or ((model_device == "cpu") ^ (trainer_device == "cpu")): state = trainer.run(data) if amp_mode == "amp": assert state.output[0].dtype is torch.half if scaler and isinstance(scaler, bool): assert hasattr(state, "scaler") else: assert not hasattr(state, "scaler") else: if Version(torch.__version__) >= Version("1.7.0"): # This is broken in 1.6.0 but will be probably fixed with 1.7.0 with pytest.raises(RuntimeError, match=r"Expected all tensors to be on the same device"): trainer.run(data) @pytest.mark.skipif(Version(torch.__version__) < Version("1.6.0"), reason="Skip if < 1.6.0") def test_create_supervised_training_scalar_assignment(): with mock.patch("ignite.engine._check_arg") as check_arg_mock: check_arg_mock.return_value = None, torch.cuda.amp.GradScaler(enabled=False) trainer, _ = _default_create_supervised_trainer(model_device="cpu", trainer_device="cpu", scaler=True) assert hasattr(trainer.state, "scaler") assert isinstance(trainer.state.scaler, torch.cuda.amp.GradScaler) def _test_create_mocked_supervised_trainer( model_device: Optional[str] = None, trainer_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, scaler: Union[bool, "torch.cuda.amp.GradScaler"] = False, ): with mock.patch("ignite.engine.supervised_training_step_amp") as training_step_amp_mock: with mock.patch("ignite.engine.supervised_training_step_apex") as training_step_apex_mock: with mock.patch("ignite.engine.supervised_training_step_tpu") as training_step_tpu_mock: with mock.patch("ignite.engine.supervised_training_step") as training_step_mock: trainer, _ = _default_create_supervised_trainer( model_device=model_device, trainer_device=trainer_device, trace=trace, amp_mode=amp_mode, scaler=scaler, ) x = torch.tensor([[0.1], [0.2]]) y = torch.tensor([[0.3], [0.5]]) data = [(x, y)] on_tpu = "xla" in trainer_device if trainer_device is not None else False on_mps = "mps" in trainer_device if trainer_device is not None else False mode, _ = _check_arg(on_tpu, on_mps, amp_mode, scaler) if model_device == trainer_device or ((model_device == "cpu") ^ (trainer_device == "cpu")): trainer.run(data) if mode == "amp": assert training_step_amp_mock.called elif mode == "apex": assert training_step_apex_mock.called elif mode == "tpu": assert training_step_tpu_mock.called else: assert training_step_mock.called def _test_create_supervised_trainer_wrong_accumulation( model_device=None, trainer_device=None, amp_mode=None, trace=False ): with pytest.raises(ValueError, match="Gradient_accumulation_steps must be strictly positive."): _default_create_supervised_trainer( gradient_accumulation_steps=0, model_device=model_device, trainer_device=trainer_device, amp_mode=amp_mode, trace=trace, ) def _default_create_supervised_evaluator( model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, with_model_transform: bool = False, with_model_fn: bool = False, ): if with_model_transform: def get_first_element(output): return output[0] model = DummyModel(output_as_list=True) model_transform = get_first_element else: model = DummyModel() model_transform = None if model_device: model.to(model_device) model.fc.weight.data.zero_() if trace: example_inputs = (torch.randn(1), torch.randn(1)) if with_model_fn else torch.randn(1) model = torch.jit.trace(model, example_inputs) evaluator = create_supervised_evaluator( model, device=evaluator_device, amp_mode=amp_mode, model_transform=model_transform if model_transform is not None else lambda x: x, model_fn=( (lambda model, x: model(x, torch.tensor([0.01], device=model_device))) if with_model_fn else (lambda model, x: model(x)) ), ) assert model.fc.weight.data[0, 0].item() == approx(0.0) return model, evaluator def _test_create_supervised_evaluator( model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, with_model_transform: bool = False, with_model_fn: bool = False, ): model, evaluator = _default_create_supervised_evaluator( model_device=model_device, evaluator_device=evaluator_device, trace=trace, amp_mode=amp_mode, with_model_transform=with_model_transform, with_model_fn=with_model_fn, ) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [5.0]]) if with_model_fn: y += 0.01 data = [(x, y)] if model_device == evaluator_device or ((model_device == "cpu") ^ (evaluator_device == "cpu")): state = evaluator.run(data) y_pred, y = state.output if with_model_fn: y_pred -= 0.01 y -= 0.01 assert y_pred[0, 0].item() == approx(0.0) assert y_pred[1, 0].item() == approx(0.0) assert y[0, 0].item() == approx(3.0) assert y[1, 0].item() == approx(5.0) assert model.fc.weight.data[0, 0].item() == approx(0.0) else: if Version(torch.__version__) >= Version("1.7.0"): # This is broken in 1.6.0 but will be probably fixed with 1.7.0 err_msg_1 = "Expected all tensors to be on the same device" err_msg_2 = "Placeholder storage has not been allocated on MPS device" err_msg_3 = "Tensor for argument weight is on cpu but expected on mps" with pytest.raises(RuntimeError, match=f"({err_msg_1}|{err_msg_2}|{err_msg_3})"): evaluator.run(data) def _test_mocked_supervised_evaluator( model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, ): with mock.patch("ignite.engine.supervised_evaluation_step") as evaluation_step: with mock.patch("ignite.engine.supervised_evaluation_step_amp") as evaluation_step_amp: _, evaluator = _default_create_supervised_evaluator( model_device=model_device, evaluator_device=evaluator_device, trace=trace, amp_mode=amp_mode ) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [5.0]]) data = [(x, y)] if model_device == evaluator_device or ((model_device == "cpu") ^ (evaluator_device == "cpu")): evaluator.run(data) if amp_mode == "amp": assert evaluation_step_amp.called assert not evaluation_step.called else: assert evaluation_step.called assert not evaluation_step_amp.called def _test_create_evaluation_step_amp( autocast_mock, model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, ): output_transform_mock = MagicMock() model = DummyModel() if model_device: model.to(model_device) model.fc.weight.data.zero_() if trace: example_input = torch.randn(1, 1) model = torch.jit.trace(model, example_input) device_type = evaluator_device.type if isinstance(evaluator_device, torch.device) else evaluator_device on_tpu = "xla" in device_type if device_type is not None else False on_mps = "mps" in device_type if device_type is not None else False mode, _ = _check_arg(on_tpu, on_mps, amp_mode, None) evaluate_step = supervised_evaluation_step_amp(model, evaluator_device, output_transform=output_transform_mock) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [5.0]]) data = [(x, y)] evaluator = Engine(evaluate_step) evaluator.run(data) assert autocast_mock.called assert output_transform_mock.called def _test_create_evaluation_step( mock_torch_cuda_amp_module, model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, ): output_transform_mock = MagicMock() model = DummyModel() if model_device: model.to(model_device) model.fc.weight.data.zero_() if trace: example_input = torch.randn(1, 1) model = torch.jit.trace(model, example_input) device_type = evaluator_device.type if isinstance(evaluator_device, torch.device) else evaluator_device on_tpu = "xla" in device_type if device_type is not None else False on_mps = "mps" in device_type if device_type is not None else False mode, _ = _check_arg(on_tpu, on_mps, amp_mode, None) evaluate_step = supervised_evaluation_step(model, evaluator_device, output_transform=output_transform_mock) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [5.0]]) data = [(x, y)] evaluator = Engine(evaluate_step) evaluator.run(data) assert not mock_torch_cuda_amp_module.called assert output_transform_mock.called @pytest.mark.parametrize("trainer_device", [None, "cpu"]) @pytest.mark.parametrize("trace", [False, True]) def test_create_supervised_trainer(trainer_device, trace): _test_create_supervised_trainer_wrong_accumulation(trainer_device=trainer_device, trace=trace) _test_create_supervised_trainer(gradient_accumulation_steps=1, trainer_device=trainer_device, trace=trace) _test_create_supervised_trainer(gradient_accumulation_steps=3, trainer_device=trainer_device, trace=trace) _test_create_supervised_trainer(with_model_transform=True, trainer_device=trainer_device, trace=trace) _test_create_supervised_trainer(with_model_fn=True, trainer_device=trainer_device, trace=trace) _test_create_mocked_supervised_trainer(trainer_device=trainer_device, trace=trace) @pytest.mark.skipif(find_spec("apex"), reason="Skip if APEX") def test_create_supervised_trainer_apex_error(): with pytest.raises( ModuleNotFoundError, match="Please install apex from https://github.com/nvidia/apex to use amp_mode='apex'." ): _test_create_supervised_trainer_wrong_accumulation(trainer_device="cpu", amp_mode="apex") with pytest.raises( ModuleNotFoundError, match="Please install apex from https://github.com/nvidia/apex to use amp_mode='apex'." ): _test_create_supervised_trainer(amp_mode="apex") @pytest.fixture def mock_torch_cuda_amp_module(): with patch.dict( "sys.modules", {"torch.cuda.amp": None, "torch.cuda.amp.grad_scaler": None, "torch.cuda.amp.autocast_mode": None}, ): yield torch def test_create_supervised_trainer_amp_error(mock_torch_cuda_amp_module): with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use amp_mode='amp'."): _test_create_supervised_trainer_wrong_accumulation(trainer_device="cpu", amp_mode="amp") with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use amp_mode='amp'."): _test_create_supervised_trainer(amp_mode="amp") with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use scaler argument."): _test_create_supervised_trainer(amp_mode="amp", scaler=True) @pytest.mark.skipif(Version(torch.__version__) < Version("1.5.0"), reason="Skip if < 1.5.0") def test_create_supervised_trainer_scaler_not_amp(): scaler = torch.cuda.amp.GradScaler(enabled=torch.cuda.is_available()) with pytest.raises(ValueError, match=f"scaler argument is {scaler}, but amp_mode is None."): _test_create_supervised_trainer(amp_mode=None, scaler=scaler) with pytest.raises(ValueError, match="scaler argument is True, but amp_mode is None."): _test_create_supervised_trainer(amp_mode=None, scaler=True) with pytest.raises(ValueError, match="scaler argument is True, but amp_mode is apex."): _test_create_supervised_trainer(amp_mode="apex", scaler=True) with pytest.raises(ValueError, match=f"scaler argument is {scaler}, but amp_mode is apex."): _test_create_supervised_trainer(amp_mode="apex", scaler=scaler) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda(): model_device = trainer_device = "cuda" _test_create_supervised_trainer_wrong_accumulation(model_device=model_device, trainer_device=trainer_device) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device ) _test_create_mocked_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.skipif(not (_torch_version_gt_112 and is_mps_available_and_functional()), reason="Skip if no MPS") def test_create_supervised_trainer_on_mps(): model_device = trainer_device = "mps" _test_create_supervised_trainer_wrong_accumulation(model_device=model_device, trainer_device=trainer_device) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device ) _test_create_mocked_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.skipif(Version(torch.__version__) < Version("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_amp(): model_device = trainer_device = "cuda" _test_create_supervised_trainer_wrong_accumulation( model_device=model_device, trainer_device=trainer_device, amp_mode="amp" ) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device, amp_mode="amp" ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device, amp_mode="amp" ) _test_create_mocked_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="amp") @pytest.mark.skipif(Version(torch.__version__) < Version("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_amp_scaler(): model_device = trainer_device = "cuda" _test_create_supervised_trainer_wrong_accumulation( model_device=model_device, trainer_device=trainer_device, amp_mode="amp" ) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=True, ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=True, ) _test_create_mocked_supervised_trainer( model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=True ) scaler = torch.cuda.amp.GradScaler(enabled=torch.cuda.is_available()) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=scaler, ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=scaler, ) _test_create_mocked_supervised_trainer( model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=scaler ) # @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") # @pytest.mark.skipif(not find_spec("apex"), reason="Skip if no APEX") @pytest.mark.skip(reason="Temporarily disabled, as it fails because of an issue from apex side") def test_create_supervised_trainer_on_cuda_apex(): model_device = trainer_device = "cuda" _test_create_supervised_trainer_wrong_accumulation( model_device=model_device, trainer_device=trainer_device, amp_mode="apex" ) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device, amp_mode="apex" ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device, amp_mode="apex" ) _test_create_mocked_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="apex") @pytest.mark.skipif(idist.has_xla_support, reason="Skip if has PyTorch XLA package") def test_supervised_training_step_tpu_no_xla(): with pytest.raises(ModuleNotFoundError, match="torch_xla cannot be imported, please install PyTorch XLA."): supervised_training_step_tpu(model=None, optimizer=None, loss_fn=None) @pytest.mark.skipif(idist.has_xla_support, reason="Skip if has PyTorch XLA package") def test_create_supervised_trainer_on_tpu_no_xla(): model_device = "cpu" trainer_device = "xla" with pytest.raises(RuntimeError, match=r"In order to run on TPU, please install PyTorch XLA"): _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_create_supervised_trainer_on_tpu(): model_device = trainer_device = "xla" _test_create_supervised_trainer_wrong_accumulation(model_device=model_device, trainer_device=trainer_device) _test_create_supervised_trainer( gradient_accumulation_steps=1, model_device=model_device, trainer_device=trainer_device ) _test_create_supervised_trainer( gradient_accumulation_steps=3, model_device=model_device, trainer_device=trainer_device ) _test_create_mocked_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.tpu @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_create_supervised_trainer_on_tpu_amp(): model_device = trainer_device = "xla" with pytest.raises(ValueError, match="amp_mode cannot be used with xla device."): _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="amp") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_with_model_on_cpu(): _test_create_supervised_trainer_wrong_accumulation(trainer_device="cuda") _test_create_supervised_trainer(gradient_accumulation_steps=1, trainer_device="cuda") _test_create_supervised_trainer(gradient_accumulation_steps=3, trainer_device="cuda") _test_create_mocked_supervised_trainer(trainer_device="cuda") def test_create_supervised_evaluator(): _test_create_supervised_evaluator() _test_create_supervised_evaluator(with_model_transform=True) _test_create_supervised_evaluator(with_model_fn=True) _test_mocked_supervised_evaluator() # older versions didn't have the autocast method so we skip the test for older builds if Version(torch.__version__) >= Version("1.6.0"): with mock.patch("torch.cuda.amp.autocast") as mock_torch_cuda_amp_module: _test_create_evaluation_step_amp(mock_torch_cuda_amp_module) def test_create_supervised_evaluator_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cpu") _test_mocked_supervised_evaluator(evaluator_device="cpu") # older versions didn't have the autocast method so we skip the test for older builds if Version(torch.__version__) >= Version("1.6.0"): with mock.patch("torch.cuda.amp.autocast") as mock_torch_cuda_amp_module: _test_create_evaluation_step(mock_torch_cuda_amp_module, evaluator_device="cpu") _test_create_evaluation_step_amp(mock_torch_cuda_amp_module, evaluator_device="cpu") def test_create_supervised_evaluator_traced_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cpu", trace=True) _test_mocked_supervised_evaluator(evaluator_device="cpu", trace=True) # older versions didn't have the autocast method so we skip the test for older builds if Version(torch.__version__) >= Version("1.6.0"): with mock.patch("torch.cuda.amp.autocast") as mock_torch_cuda_amp_module: _test_create_evaluation_step(mock_torch_cuda_amp_module, evaluator_device="cpu", trace=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda(): model_device = evaluator_device = "cuda" _test_create_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device) _test_mocked_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda_with_model_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cuda") _test_mocked_supervised_evaluator(evaluator_device="cuda") @pytest.mark.skipif(not (_torch_version_gt_112 and is_mps_available_and_functional()), reason="Skip if no MPS") def test_create_supervised_evaluator_on_mps(): model_device = evaluator_device = "mps" _test_create_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device) _test_mocked_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device) @pytest.mark.skipif(not (_torch_version_gt_112 and is_mps_available_and_functional()), reason="Skip if no MPS") def test_create_supervised_evaluator_on_mps_with_model_on_cpu(): _test_create_supervised_evaluator(evaluator_device="mps") _test_mocked_supervised_evaluator(evaluator_device="mps") @pytest.mark.skipif(Version(torch.__version__) < Version("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda_amp(): model_device = evaluator_device = "cuda" _test_create_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device, amp_mode="amp") _test_mocked_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device, amp_mode="amp") def test_create_supervised_evaluator_amp_error(mock_torch_cuda_amp_module): with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use amp_mode='amp'."): _test_create_supervised_evaluator(amp_mode="amp") def test_create_supervised_evaluator_with_metrics(): model = DummyModel() model.fc.weight.data.zero_() evaluator = create_supervised_evaluator(model, metrics={"mse": MeanSquaredError()}) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [4.0]]) data = [(x, y)] state = evaluator.run(data) assert state.metrics["mse"] == 12.5 ignite-0.5.1/tests/ignite/engine/test_custom_events.py000066400000000000000000000540351465426447700232230ustar00rootroot00000000000000from enum import Enum from unittest.mock import MagicMock import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.engine.events import CallableEventWithFilter, EventEnum, EventsList def test_custom_events(): class CustomEvents(EventEnum): TEST_EVENT = "test_event" # Dummy engine engine = Engine(lambda engine, batch: 0) engine.register_events(*CustomEvents) engine.register_events("a", "b", "c") evs = [CustomEvents.TEST_EVENT, "a", "b", "c"] # Handle is never called handlers = [(e, MagicMock()) for e in evs] for e, h in handlers: engine.add_event_handler(e, h) engine.run(range(1)) for _, h in handlers: assert not h.called # Advanced engine def process_func(engine, batch): for e, _ in handlers: engine.fire_event(e) engine = Engine(process_func) engine.register_events(*CustomEvents) engine.register_events("a", "b", "c") # Handle should be called handlers = [(e, MagicMock()) for e in evs] for e, h in handlers: engine.add_event_handler(e, h) engine.run(range(1)) for _, h in handlers: assert h.called def test_custom_events_asserts(): # Dummy engine engine = Engine(lambda engine, batch: 0) class A: pass with pytest.raises(TypeError, match=r"Value at \d of event_names should be a str or EventEnum"): engine.register_events(None) with pytest.raises(TypeError, match=r"Value at \d of event_names should be a str or EventEnum"): engine.register_events("str", None) with pytest.raises(TypeError, match=r"Value at \d of event_names should be a str or EventEnum"): engine.register_events(1) with pytest.raises(TypeError, match=r"Value at \d of event_names should be a str or EventEnum"): engine.register_events(A()) assert Events.EPOCH_COMPLETED != 1 assert Events.EPOCH_COMPLETED != "abc" assert Events.ITERATION_COMPLETED != Events.EPOCH_COMPLETED assert Events.ITERATION_COMPLETED != Events.EPOCH_COMPLETED(every=2) # In current implementation, EPOCH_COMPLETED and EPOCH_COMPLETED with event filter are the same assert Events.EPOCH_COMPLETED == Events.EPOCH_COMPLETED(every=2) assert Events.ITERATION_COMPLETED == Events.ITERATION_COMPLETED(every=2) def test_custom_events_with_event_to_attr(): class CustomEvents(EventEnum): TEST_EVENT = "test_event" custom_event_to_attr = {CustomEvents.TEST_EVENT: "test_event"} # Dummy engine engine = Engine(lambda engine, batch: 0) engine.register_events(*CustomEvents, event_to_attr=custom_event_to_attr) # Handle is never called handle = MagicMock() engine.add_event_handler(CustomEvents.TEST_EVENT, handle) engine.run(range(1)) assert hasattr(engine.state, "test_event") assert engine.state.test_event == 0 # Advanced engine def process_func(engine, batch): engine.fire_event(CustomEvents.TEST_EVENT) engine = Engine(process_func) engine.register_events(*CustomEvents, event_to_attr=custom_event_to_attr) def handle(engine): engine.state.test_event += 1 engine.add_event_handler(CustomEvents.TEST_EVENT, handle) engine.run(range(25)) assert engine.state.test_event == 25 custom_event_to_attr = "a" engine = Engine(lambda engine, batch: 0) with pytest.raises(ValueError): engine.register_events(*CustomEvents, event_to_attr=custom_event_to_attr) def test_custom_events_with_events_list(): class CustomEvents(EventEnum): TEST_EVENT = "test_event" def process_func(engine, batch): engine.fire_event(CustomEvents.TEST_EVENT) engine = Engine(process_func) engine.register_events(*CustomEvents) # Handle should be called handle = MagicMock() engine.add_event_handler(CustomEvents.TEST_EVENT | Events.STARTED, handle) engine.run(range(1)) assert handle.called def test_callable_events_with_wrong_inputs(): def ef(e, i): return 1 expected_raise = { # event_filter, every, once, before, after (None, None, None, None, None): True, # raises ValueError (ef, None, None, None, None): False, (None, 2, None, None, None): False, (ef, 2, None, None, None): True, (None, None, 2, None, None): False, (ef, None, 2, None, None): True, (None, 2, 2, None, None): True, (ef, 2, 2, None, None): True, (None, None, None, 30, None): False, (ef, None, None, 30, None): True, (None, 2, None, 30, None): False, (ef, 2, None, 30, None): True, (None, None, 2, 30, None): True, (ef, None, 2, 30, None): True, (None, 2, 2, 30, None): True, (ef, 2, 2, 30, None): True, # event_filter, every, once, before, after (None, None, None, None, 10): False, (ef, None, None, None, 10): True, (None, 2, None, None, 10): False, (ef, 2, None, None, 10): True, (None, None, 2, None, 10): True, (ef, None, 2, None, 10): True, (None, 2, 2, None, 10): True, (ef, 2, 2, None, 10): True, (None, None, None, 25, 8): False, (ef, None, None, 25, 8): True, (None, 2, None, 25, 8): False, (ef, 2, None, 25, 8): True, (None, None, 2, 25, 8): True, (ef, None, 2, 25, 8): True, (None, 2, 2, 25, 8): True, (ef, 2, 2, 25, 8): True, } for event_filter in [None, ef]: for every in [None, 2]: for once in [None, 2]: for before, after in [(None, None), (None, 10), (30, None), (25, 8)]: if expected_raise[(event_filter, every, once, before, after)]: with pytest.raises( ValueError, match=r"Only one of the input arguments should be specified, " "except before, after and every", ): Events.ITERATION_STARTED( event_filter=event_filter, once=once, every=every, before=before, after=after ) else: Events.ITERATION_STARTED( event_filter=event_filter, once=once, every=every, before=before, after=after ) with pytest.raises(TypeError, match=r"Argument event_filter should be a callable"): Events.ITERATION_STARTED(event_filter="123") with pytest.raises(ValueError, match=r"Argument every should be integer and greater than zero"): Events.ITERATION_STARTED(every=-1) with pytest.raises( ValueError, match=r"Argument once should either be a positive integer or a list of positive integers, got .+" ): Events.ITERATION_STARTED(once=-1) with pytest.raises( ValueError, match=r"Argument once should either be a positive integer or a list of positive integers, got .+" ): Events.ITERATION_STARTED(once=[1, 10.0, "pytorch"]) with pytest.raises( ValueError, match=r"Argument once should either be a positive integer or a list of positive integers, got .+" ): Events.ITERATION_STARTED(once=[]) with pytest.raises(ValueError, match=r"Argument before should be integer and greater or equal to zero"): Events.ITERATION_STARTED(before=-1) with pytest.raises(ValueError, match=r"Argument after should be integer and greater or equal to zero"): Events.ITERATION_STARTED(after=-1) with pytest.raises(ValueError, match=r"but will be called with"): Events.ITERATION_STARTED(event_filter=lambda x: x) with pytest.warns(UserWarning, match=r"default_event_filter is deprecated and will be removed"): Events.default_event_filter(None, None) @pytest.mark.parametrize( "event", [ Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.EPOCH_STARTED, Events.EPOCH_COMPLETED, Events.GET_BATCH_STARTED, Events.GET_BATCH_COMPLETED, Events.STARTED, Events.COMPLETED, ], ) def test_callable_events(event): assert isinstance(event.value, str) def foo(engine, _): return True ret = event(event_filter=foo) assert isinstance(ret, CallableEventWithFilter) assert ret == event assert ret.filter == foo assert event.name in f"{ret}" ret = event(every=10) assert isinstance(ret, CallableEventWithFilter) assert ret == event assert ret.filter is not None assert event.name in f"{ret}" ret = event(once=10) assert isinstance(ret, CallableEventWithFilter) assert ret == event assert ret.filter is not None assert event.name in f"{ret}" ret = event(once=[1, 10]) assert isinstance(ret, CallableEventWithFilter) assert ret == event assert ret.filter is not None assert event.name in f"{ret}" ret = event assert isinstance(ret, CallableEventWithFilter) assert ret.filter is None assert event.name in f"{ret}" def test_callable_events_every_eq_one(): e = Events.ITERATION_STARTED(every=1) assert isinstance(e, CallableEventWithFilter) def test_has_handler_on_callable_events(): engine = Engine(lambda e, b: 1) def foo(e): pass assert not engine.has_event_handler(foo) engine.add_event_handler(Events.EPOCH_STARTED, foo) assert engine.has_event_handler(foo) def bar(e): pass engine.add_event_handler(Events.EPOCH_COMPLETED(every=3), bar) assert engine.has_event_handler(bar) assert engine.has_event_handler(bar, Events.EPOCH_COMPLETED) assert engine.has_event_handler(bar, Events.EPOCH_COMPLETED(every=3)) def test_remove_event_handler_on_callable_events(): engine = Engine(lambda e, b: 1) def foo(e): pass assert not engine.has_event_handler(foo) engine.add_event_handler(Events.EPOCH_STARTED, foo) assert engine.has_event_handler(foo) engine.remove_event_handler(foo, Events.EPOCH_STARTED) assert not engine.has_event_handler(foo) def bar(e): pass engine.add_event_handler(Events.EPOCH_COMPLETED(every=3), bar) assert engine.has_event_handler(bar) engine.remove_event_handler(bar, Events.EPOCH_COMPLETED) assert not engine.has_event_handler(bar) engine.add_event_handler(Events.EPOCH_COMPLETED(every=3), bar) assert engine.has_event_handler(bar) engine.remove_event_handler(bar, Events.EPOCH_COMPLETED(every=3)) assert not engine.has_event_handler(bar) def _test_every_event_filter_with_engine(device="cpu"): data = torch.rand(100, 4, device=device) def _test(event_name, event_attr, every, true_num_calls): engine = Engine(lambda e, b: b) counter = [0] counter_every = [0] num_calls = [0] @engine.on(event_name(every=every)) def assert_every(engine): counter_every[0] += every assert getattr(engine.state, event_attr) % every == 0 assert counter_every[0] == getattr(engine.state, event_attr) num_calls[0] += 1 @engine.on(event_name(every=every)) def assert_every_no_engine(): assert getattr(engine.state, event_attr) % every == 0 assert counter_every[0] == getattr(engine.state, event_attr) @engine.on(event_name) def assert_(engine): counter[0] += 1 assert getattr(engine.state, event_attr) == counter[0] @engine.on(event_name) def assert_no_engine(): assert getattr(engine.state, event_attr) == counter[0] engine.run(data, max_epochs=5) assert num_calls[0] == true_num_calls _test(Events.ITERATION_STARTED, "iteration", 10, 100 * 5 // 10) _test(Events.ITERATION_COMPLETED, "iteration", 10, 100 * 5 // 10) _test(Events.EPOCH_STARTED, "epoch", 2, 5 // 2) _test(Events.EPOCH_COMPLETED, "epoch", 2, 5 // 2) def test_every_event_filter_with_engine(): _test_every_event_filter_with_engine() @pytest.mark.parametrize( "event_name, event_attr, before, expect_calls", [ (Events.ITERATION_COMPLETED, "iteration", 0, 0), (Events.ITERATION_COMPLETED, "iteration", 300, 299), (Events.ITERATION_COMPLETED, "iteration", 501, 500), (Events.EPOCH_COMPLETED, "epoch", 0, 0), (Events.EPOCH_COMPLETED, "epoch", 3, 2), (Events.EPOCH_COMPLETED, "epoch", 6, 5), ], ) def test_before_event_filter_with_engine(event_name, event_attr, before, expect_calls): data = range(100) engine = Engine(lambda e, b: 1) num_calls = 0 @engine.on(event_name(before=before)) def _before_event(): nonlocal num_calls num_calls += 1 assert getattr(engine.state, event_attr) < before engine.run(data, max_epochs=5) assert num_calls == expect_calls @pytest.mark.parametrize( "event_name, event_attr, after, expect_calls", [ (Events.ITERATION_STARTED, "iteration", 0, 500), (Events.ITERATION_COMPLETED, "iteration", 300, 200), (Events.ITERATION_COMPLETED, "iteration", 500, 0), (Events.EPOCH_STARTED, "epoch", 0, 5), (Events.EPOCH_COMPLETED, "epoch", 3, 2), (Events.EPOCH_COMPLETED, "epoch", 5, 0), ], ) def test_after_event_filter_with_engine(event_name, event_attr, after, expect_calls): data = range(100) engine = Engine(lambda e, b: 1) num_calls = 0 @engine.on(event_name(after=after)) def _after_event(): nonlocal num_calls num_calls += 1 assert getattr(engine.state, event_attr) > after engine.run(data, max_epochs=5) assert num_calls == expect_calls @pytest.mark.parametrize( "event_name, event_attr, before, after, expect_calls", [(Events.ITERATION_STARTED, "iteration", 300, 100, 199), (Events.EPOCH_COMPLETED, "epoch", 4, 1, 2)], ) def test_before_and_after_event_filter_with_engine(event_name, event_attr, before, after, expect_calls): data = range(100) engine = Engine(lambda e, b: 1) num_calls = 0 @engine.on(event_name(before=before, after=after)) def _before_and_after_event(): nonlocal num_calls num_calls += 1 assert getattr(engine.state, event_attr) > after engine.run(data, max_epochs=5) assert num_calls == expect_calls @pytest.mark.parametrize( "event_name, event_attr, every, before, after, expect_calls", [(Events.ITERATION_STARTED, "iteration", 5, 25, 8, 4), (Events.EPOCH_COMPLETED, "epoch", 2, 5, 1, 2)], ) def test_every_before_and_after_event_filter_with_engine(event_name, event_attr, every, before, after, expect_calls): data = range(100) engine = Engine(lambda e, b: 1) num_calls = 0 @engine.on(event_name(every=every, before=before, after=after)) def _every_before_and_after_event(): assert getattr(engine.state, event_attr) > after assert getattr(engine.state, event_attr) < before assert ((getattr(engine.state, event_attr) - after - 1) % every) == 0 nonlocal num_calls num_calls += 1 engine.run(data, max_epochs=5) assert num_calls == expect_calls @pytest.mark.parametrize( "event_name, event_attr, once, expect_calls", [ (Events.ITERATION_STARTED, "iteration", 2, 1), (Events.ITERATION_COMPLETED, "iteration", 2, 1), (Events.EPOCH_STARTED, "epoch", 2, 1), (Events.EPOCH_COMPLETED, "epoch", 2, 1), (Events.ITERATION_STARTED, "iteration", [1, 5], 2), (Events.ITERATION_COMPLETED, "iteration", [1, 5], 2), (Events.EPOCH_STARTED, "epoch", [1, 5], 2), (Events.EPOCH_COMPLETED, "epoch", [1, 5], 2), ], ) def test_once_event_filter(event_name, event_attr, once, expect_calls): data = list(range(100)) engine = Engine(lambda e, b: b) num_calls = [0] counter = [0] test_once = [once] if isinstance(once, int) else once @engine.on(event_name(once=once)) def assert_once(engine): assert getattr(engine.state, event_attr) in test_once num_calls[0] += 1 @engine.on(event_name) def assert_(engine): counter[0] += 1 assert getattr(engine.state, event_attr) == counter[0] engine.run(data, max_epochs=10) assert num_calls[0] == expect_calls def test_custom_event_filter_with_engine(): special_events = [1, 2, 5, 7, 17, 20] def custom_event_filter(engine, event): if event in special_events: return True return False def _test(event_name, event_attr, true_num_calls): engine = Engine(lambda e, b: b) num_calls = [0] @engine.on(event_name(event_filter=custom_event_filter)) def assert_on_special_event(engine): assert getattr(engine.state, event_attr) == special_events.pop(0) num_calls[0] += 1 d = list(range(50)) engine.run(d, max_epochs=25) assert num_calls[0] == true_num_calls _test(Events.ITERATION_STARTED, "iteration", len(special_events)) _test(Events.ITERATION_COMPLETED, "iteration", len(special_events)) _test(Events.EPOCH_STARTED, "epoch", len(special_events)) _test(Events.EPOCH_COMPLETED, "epoch", len(special_events)) def test_callable_event_bad_behaviour(): special_events = [1, 2, 5, 7, 17, 20] def custom_event_filter(engine, event): if event in special_events: return True return False # Check bad behaviour engine = Engine(lambda e, b: b) counter = [0] # Modify events Events.ITERATION_STARTED(event_filter=custom_event_filter) @engine.on(Events.ITERATION_STARTED) def assert_all_iters(engine): counter[0] += 1 assert engine.state.iteration == counter[0] d = list(range(50)) engine.run(d, max_epochs=25) assert counter[0] == engine.state.iteration def test_custom_callable_events(): class CustomEvents(Enum): TEST_EVENT = "test_event" with pytest.raises(TypeError, match=r"object is not callable"): CustomEvents.TEST_EVENT(every=10) class CustomEvents2(EventEnum): TEST_EVENT = "test_event" CustomEvents2.TEST_EVENT(every=10) def test_custom_callable_events_with_engine(): class CustomEvents(EventEnum): TEST_EVENT = "test_event" event_to_attr = {CustomEvents.TEST_EVENT: "test_event"} special_events = [1, 2, 5, 7, 17, 20] def custom_event_filter(engine, event): if event in special_events: return True return False def _test(event_name, event_attr, true_num_calls): def update_fn(engine, batch): engine.state.test_event = engine.state.iteration engine.fire_event(CustomEvents.TEST_EVENT) engine = Engine(update_fn) engine.register_events(*CustomEvents, event_to_attr=event_to_attr) num_calls = [0] @engine.on(event_name(event_filter=custom_event_filter)) def assert_on_special_event(engine): assert getattr(engine.state, event_attr) == special_events.pop(0) num_calls[0] += 1 d = list(range(50)) engine.run(d, max_epochs=25) assert num_calls[0] == true_num_calls _test(CustomEvents.TEST_EVENT, "test_event", len(special_events)) def _test_every_event_filter_with_engine_with_dataloader(device): def _test(num_workers): max_epochs = 3 batch_size = 4 num_iters = 21 data = torch.randint(0, 1000, size=(num_iters * batch_size,)) dataloader = torch.utils.data.DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, drop_last=True, shuffle=True, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = Engine(update_fn) def foo(_): pass engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo) engine.run(dataloader, max_epochs=max_epochs) engine = None import gc gc.collect() assert len(gc.garbage) == 0 _test(num_workers=0) _test(num_workers=1) def test_every_event_filter_with_engine_with_dataloader(): _test_every_event_filter_with_engine_with_dataloader("cpu") @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_every_event_filter_with_engine(device) _test_every_event_filter_with_engine_with_dataloader(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_every_event_filter_with_engine(device) _test_every_event_filter_with_engine_with_dataloader(device) def test_event_list(): e1 = Events.ITERATION_STARTED(once=1) e2 = Events.ITERATION_STARTED(every=3) e3 = Events.COMPLETED event_list = e1 | e2 | e3 assert isinstance(event_list, EventsList) assert len(event_list) == 3 assert event_list[0] == e1 assert event_list[1] == e2 assert event_list[2] == e3 def test_list_of_events(): def _test(event_list, true_iterations): engine = Engine(lambda e, b: b) iterations = [] num_calls = [0] @engine.on(event_list) def execute_some_handler(e): iterations.append(e.state.iteration) num_calls[0] += 1 engine.run(range(3), max_epochs=5) assert iterations == true_iterations assert num_calls[0] == len(true_iterations) _test(Events.ITERATION_STARTED(once=1) | Events.ITERATION_STARTED(once=1), [1, 1]) _test(Events.ITERATION_STARTED(once=1) | Events.ITERATION_STARTED(once=10), [1, 10]) _test(Events.ITERATION_STARTED(once=1) | Events.ITERATION_STARTED(every=3), [1, 3, 6, 9, 12, 15]) _test(Events.ITERATION_STARTED(once=8) | Events.ITERATION_STARTED(before=3), [1, 2, 8]) _test(Events.ITERATION_STARTED(once=1) | Events.ITERATION_STARTED(after=12), [1, 13, 14, 15]) ignite-0.5.1/tests/ignite/engine/test_deterministic.py000066400000000000000000000745231465426447700231740ustar00rootroot00000000000000import os import random import sys from collections.abc import Mapping from unittest.mock import patch import numpy as np import pytest import torch import torch.nn as nn from torch.optim import SGD from torch.utils.data import BatchSampler, DataLoader, RandomSampler import ignite.distributed as idist from ignite.engine import Events from ignite.engine.deterministic import ( _set_rng_states, DeterministicEngine, keep_random_state, ReproducibleBatchSampler, update_dataloader, ) from ignite.utils import manual_seed from tests.ignite.engine import BatchChecker, setup_sampler def test_dengine_setup_seed_div_by_zero(): with pytest.raises(ValueError, match=r"iter_counter should be positive value"): DeterministicEngine(lambda e, b: None)._setup_seed(iter_counter=0) def test_update_dataloader(): def _test(sampler_type=None): num_epochs = 3 total_batch_size = 4 num_iters = 17 data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) num_workers = 2 sampler, batch_size = setup_sampler(sampler_type, num_iters, total_batch_size) dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) torch.manual_seed(12) seen_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in dataloader: t.append(b) seen_batches.append(t) sampler, batch_size = setup_sampler(sampler_type, num_iters, total_batch_size) dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory=False, sampler=sampler, drop_last=True, shuffle=sampler is None, ) batch_sampler = dataloader.batch_sampler new_dataloader = update_dataloader(dataloader, ReproducibleBatchSampler(batch_sampler)) torch.manual_seed(12) new_batches = [] for i in range(num_epochs): t = [] if sampler_type == "distributed": sampler.set_epoch(i) for b in new_dataloader: t.append(b) new_batches.append(t) for i in range(num_epochs): assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], new_batches[i])]) _test() _test("weighted") _test("distributed") def test_reproducible_batch_sampler_wrong_input(): with pytest.raises(TypeError, match=r"Argument batch_sampler should be torch.utils.data.sampler.BatchSampler"): ReproducibleBatchSampler("abc") def test_reproducible_batch_sampler(): data = list(range(100)) dataloader = DataLoader(data, batch_size=12, num_workers=0, shuffle=True, drop_last=True) torch.manual_seed(12 + 0) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) seen_batches = [] num_epochs = 3 for i in range(num_epochs): t = [] for b in dataloader_: t.append(b) seen_batches.append(t) torch.manual_seed(12 + i + 1) for i in range(num_epochs - 1): for j in range(i + 1, num_epochs): assert not all([(b1 == b2).all() for b1, b2 in zip(seen_batches[i], seen_batches[j])]) for resume_epoch in range(num_epochs): torch.manual_seed(12 + resume_epoch) dataloader_ = update_dataloader(dataloader, ReproducibleBatchSampler(dataloader.batch_sampler)) resumed_seen_batches = [] for b in dataloader_: resumed_seen_batches.append(b) assert all([(b1 == b2).all() for b1, b2 in zip(seen_batches[resume_epoch], resumed_seen_batches)]) def _test_keep_random_state(with_numpy): manual_seed(54) true_values = [] for _ in range(5): t = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: t.append(torch.from_numpy(np.random.rand(2))) true_values.append(t) @keep_random_state def user_handler(): manual_seed(22) _ = [ random.random(), torch.rand(2), ] if with_numpy: _ = np.random.rand(2) manual_seed(54) res_values = [] for _ in range(5): r = [ torch.tensor([random.random()]), torch.rand(2), ] if with_numpy: r.append(torch.from_numpy(np.random.rand(2))) res_values.append(r) user_handler() for a, b in zip(true_values, res_values): for i, j in zip(a, b): assert (i == j).all() def test_keep_random_state(): _test_keep_random_state(with_numpy=True) def test_keep_random_state_without_numpy(): with patch.dict("sys.modules", {"numpy": None}): _test_keep_random_state(with_numpy=False) def test_strict_resume_from_iter(): def _test(epoch_length=None): max_epochs = 5 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 4): batch_checker = BatchChecker(data, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_iteration} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) @engine.on(Events.EPOCH_COMPLETED) def check_iteration(_): assert engine.state.iteration == batch_checker.counter resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_strict_resume_from_epoch(): def _test(epoch_length=None): max_epochs = 10 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): batch_checker = BatchChecker(data, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) engine.run(data) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def _test_resume_random_dataloader_from_epoch(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 5 total_batch_size = 4 num_iters = 21 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs, 2): for num_workers in [0, 2]: sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) orig_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) torch.manual_seed(87) engine.run(orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) resume_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) assert batch_checker.check( batch ), f"{num_workers} {resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch - 1) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(87) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() if sampler_type != "distributed": _test(60) _test(15) @pytest.mark.skipif("win" in sys.platform, reason="Skip extremely slow test on Windows/MacOSX") def test_resume_random_dataloader_from_epoch(): _test_resume_random_dataloader_from_epoch("cpu", setup_sampler) _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_epoch("cpu", setup_sampler, sampler_type="distributed") class AugmentedData: def __init__(self, data, enabled=True): self.data = data self.enabled = enabled def __getitem__(self, i): dp = self.data[i] r = torch.randint_like(dp, -100, 100) if self.enabled else 0.0 return dp + r * 0.01 def __len__(self): return len(self.data) def _test_resume_random_dataloader_from_iter(device, _setup_sampler, sampler_type=None): def _test(epoch_length=None): max_epochs = 3 total_batch_size = 4 num_iters = 17 torch.manual_seed(0) data = torch.randint(0, 1000, size=(num_iters * total_batch_size,)) if epoch_length is None: epoch_length = num_iters for resume_iteration in range(2, min(num_iters * max_epochs, epoch_length * max_epochs), 13): for num_workers in [0, 2]: sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) orig_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) seen_batchs = [] def update_fn(_, batch): batch_to_device = batch.to(device) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) torch.manual_seed(12) engine.run(orig_dataloader, max_epochs=max_epochs, epoch_length=epoch_length) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) sampler, batch_size = _setup_sampler(sampler_type, num_iters, total_batch_size) resume_dataloader = DataLoader( data, batch_size=batch_size, num_workers=num_workers, pin_memory="cuda" in torch.device(device).type, sampler=sampler, drop_last=True, shuffle=sampler is None, ) def update_fn(_, batch): batch_to_device = batch.to(device) cfg_msg = f"{num_workers} {resume_iteration}" assert batch_checker.check( batch ), f"{cfg_msg} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) if sampler_type == "distributed": @engine.on(Events.EPOCH_STARTED) def _(engine): sampler.set_epoch(engine.state.epoch) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(12) engine.run(resume_dataloader) assert engine.state.epoch == max_epochs assert ( engine.state.iteration == epoch_length * max_epochs ), f"{num_workers}, {resume_iteration} | {engine.state.iteration} vs {epoch_length * max_epochs}" _test() if sampler_type != "distributed": _test(40) _test(11) @pytest.mark.skipif("win" in sys.platform, reason="Skip extremely slow test on Windows/MacOSX") def test_resume_random_dataloader_from_iter(): _test_resume_random_dataloader_from_iter("cpu", setup_sampler) _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="weighted") _test_resume_random_dataloader_from_iter("cpu", setup_sampler, sampler_type="distributed") def _test_resume_random_data_iterator_from_epoch(device): def _test(epoch_length=None): max_epochs = 5 batch_size = 4 num_iters = 21 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_epoch in range(1, max_epochs): seen_batchs = [] def update_fn(_, batch): # if there is a random op when using data batch etc, we can not resume correctly # torch.rand(1) seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(121) engine.run(infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length) batch_checker = BatchChecker(seen_batchs, init_counter=resume_epoch * epoch_length) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_epoch} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( epoch=resume_epoch, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(121) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert engine.state.iteration == epoch_length * max_epochs _test() _test(60) _test(15) def test_resume_random_data_iterator_from_epoch(): _test_resume_random_data_iterator_from_epoch("cpu") def _test_resume_random_data_iterator_from_iter(device): def _test(epoch_length=None): max_epochs = 3 batch_size = 4 num_iters = 17 def infinite_data_iterator(): while True: for _ in range(num_iters): data = torch.randint(0, 1000, size=(batch_size,), device=device) yield data if epoch_length is None: epoch_length = num_iters for resume_iteration in range(1, min(num_iters * max_epochs, epoch_length * max_epochs), 7): seen_batchs = [] def update_fn(_, batch): seen_batchs.append(batch) engine = DeterministicEngine(update_fn) torch.manual_seed(24) engine.run(infinite_data_iterator(), max_epochs=max_epochs, epoch_length=epoch_length) batch_checker = BatchChecker(seen_batchs, init_counter=resume_iteration) def update_fn(_, batch): assert batch_checker.check( batch ), f"{resume_iteration} | {batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = DeterministicEngine(update_fn) resume_state_dict = dict( iteration=resume_iteration, max_epochs=max_epochs, epoch_length=epoch_length, rng_states=None ) engine.load_state_dict(resume_state_dict) torch.manual_seed(24) engine.run(infinite_data_iterator()) assert engine.state.epoch == max_epochs assert ( engine.state.iteration == epoch_length * max_epochs ), f"{resume_iteration} | {engine.state.iteration} vs {epoch_length * max_epochs}" _test() _test(50) _test(11) def test_resume_random_data_iterator_from_iter(): _test_resume_random_data_iterator_from_iter("cpu") @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.xfail @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_resume_random_dataloader_from_iter(device, setup_sampler, sampler_type="distributed") _test_resume_random_dataloader_from_epoch(device, setup_sampler, sampler_type="distributed") def test_concepts_snippet_resume(): # Commented imports required in the snippet # import torch # from torch.utils.data import DataLoader # from ignite.engine import DeterministicEngine # from ignite.utils import manual_seed seen_batches = [] manual_seed(seed=15) def random_train_data_loader(size): data = torch.arange(0, size) return DataLoader(data, batch_size=4, shuffle=True) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) seen_batches.append(batch) trainer = DeterministicEngine(print_train_data) print("Original Run") manual_seed(56) trainer.run(random_train_data_loader(40), max_epochs=2, epoch_length=5) original_batches = list(seen_batches) seen_batches = [] print("Resumed Run") trainer.load_state_dict({"epoch": 1, "epoch_length": 5, "max_epochs": 2, "rng_states": None}) manual_seed(56) trainer.run(random_train_data_loader(40)) resumed_batches = list(seen_batches) seen_batches = [] for b1, b2 in zip(original_batches[5:], resumed_batches): assert (b1 == b2).all() def test_concepts_snippet_warning(): def random_train_data_generator(): while True: yield torch.randint(0, 100, size=(1,)) def print_train_data(engine, batch): i = engine.state.iteration e = engine.state.epoch print("train", e, i, batch.tolist()) trainer = DeterministicEngine(print_train_data) @trainer.on(Events.ITERATION_COMPLETED(every=3)) def user_handler(_): # handler synchronizes the random state torch.manual_seed(12) a = torch.rand(1) trainer.run(random_train_data_generator(), max_epochs=3, epoch_length=5) def _test_gradients_on_resume( dirname, device, with_dropout=True, with_dataaugs=True, data_size=24, batch_size=4, save_iter=None, save_epoch=None ): debug = False def random_train_data_loader(size): d = AugmentedData(torch.rand(size, 3, 32, 32), enabled=with_dataaugs) return DataLoader(d, batch_size=batch_size, shuffle=True, num_workers=2) def _train(save_iter=None, save_epoch=None, sd=None): w_norms = [] grad_norms = [] data = [] chkpt = [] manual_seed(12) arch = [ nn.Conv2d(3, 10, 3), nn.ReLU(), nn.Conv2d(10, 10, 3), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 2), ] if with_dropout: arch.insert(2, nn.Dropout2d()) arch.insert(-2, nn.Dropout()) model = nn.Sequential(*arch).to(device) opt = SGD(model.parameters(), lr=0.001) def proc_fn(e, b): from ignite.engine.deterministic import _get_rng_states, _repr_rng_state s = _repr_rng_state(_get_rng_states()) model.train() opt.zero_grad() y = model(b.to(device)) y.sum().backward() opt.step() if debug: print( trainer.state.iteration, trainer.state.epoch, "proc_fn - b.shape", b.shape, torch.norm(y).item(), s ) trainer = DeterministicEngine(proc_fn) if save_iter is not None: ev = Events.ITERATION_COMPLETED(once=save_iter) elif save_epoch is not None: ev = Events.EPOCH_COMPLETED(once=save_epoch) save_iter = save_epoch * (data_size // batch_size) @trainer.on(ev) def save_chkpt(_): if debug: print(trainer.state.iteration, "save_chkpt") fp = dirname / "test.pt" from ignite.engine.deterministic import _repr_rng_state tsd = trainer.state_dict() if debug: print("->", _repr_rng_state(tsd["rng_states"])) torch.save([model.state_dict(), opt.state_dict(), tsd], fp) chkpt.append(fp) def log_event_filter(_, event): if (event // save_iter == 1) and 1 <= (event % save_iter) <= 5: return True return False @trainer.on(Events.ITERATION_COMPLETED(event_filter=log_event_filter)) def write_data_grads_weights(e): x = e.state.batch i = e.state.iteration data.append([i, x.mean().item(), x.std().item()]) total = [0.0, 0.0] out1 = [] out2 = [] for p in model.parameters(): n1 = torch.norm(p).item() n2 = torch.norm(p.grad).item() out1.append(n1) out2.append(n2) total[0] += n1 total[1] += n2 w_norms.append([i, total[0]] + out1) grad_norms.append([i, total[1]] + out2) if sd is not None: sd = torch.load(sd) model.load_state_dict(sd[0]) opt.load_state_dict(sd[1]) from ignite.engine.deterministic import _repr_rng_state if debug: print("-->", _repr_rng_state(sd[2]["rng_states"])) trainer.load_state_dict(sd[2]) manual_seed(32) trainer.run(random_train_data_loader(size=data_size), max_epochs=5) return {"sd": chkpt, "data": data, "grads": grad_norms, "weights": w_norms} out_original = _train(save_iter=save_iter, save_epoch=save_epoch) assert len(out_original["sd"]) > 0 out_resumed = _train(save_iter=save_iter, save_epoch=save_epoch, sd=out_original["sd"][0]) if debug: print("Original:") print(" data:", out_original["data"]) print("grads:", out_original["grads"]) print(" W:", out_original["weights"]) print("Resume:") print(" data:", out_resumed["data"]) print("grads:", out_resumed["grads"]) print(" W:", out_resumed["weights"]) # check data: for d1, d2 in zip(out_original["data"], out_resumed["data"]): assert d1 == d2 # check grads: for d1, d2 in zip(out_original["grads"], out_resumed["grads"]): assert d1 == d2 # check weights: for d1, d2 in zip(out_original["weights"], out_resumed["weights"]): assert d1 == d2 def test_gradients_on_resume_cpu(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_iter=25) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_iter=25) # resume from epoch _test_gradients_on_resume(dirname, "cpu", with_dataaugs=True, save_epoch=3) _test_gradients_on_resume(dirname, "cpu", with_dataaugs=False, save_epoch=3) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_gradients_on_resume_on_cuda(dirname): with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True, save_iter=25) with pytest.raises(AssertionError): _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False, save_iter=25) # resume from epoch _test_gradients_on_resume(dirname, "cuda", with_dataaugs=True, save_epoch=3) _test_gradients_on_resume(dirname, "cuda", with_dataaugs=False, save_epoch=3) def test_engine_with_dataloader_no_auto_batching(): # tests https://github.com/pytorch/ignite/issues/941 data = torch.rand(64, 4, 10) data_loader = DataLoader( data, batch_size=None, sampler=BatchSampler(RandomSampler(data), batch_size=8, drop_last=True) ) counter = [0] def foo(e, b): print(f"{e.state.epoch}-{e.state.iteration}: {b}") counter[0] += 1 engine = DeterministicEngine(foo) engine.run(data_loader, epoch_length=10, max_epochs=5) assert counter[0] == 50 def test_run_finite_iterator_no_epoch_length(): # FR: https://github.com/pytorch/ignite/issues/871 unknown_size = 11 def finite_unk_size_data_iter(): for i in range(unknown_size): yield i bc = BatchChecker(data=list(range(unknown_size))) engine = DeterministicEngine(lambda e, b: bc.check(b)) @engine.on(Events.DATALOADER_STOP_ITERATION) def restart_iter(): engine.state.dataloader = finite_unk_size_data_iter() data_iter = finite_unk_size_data_iter() engine.run(data_iter, max_epochs=5) assert engine.state.epoch == 5 assert engine.state.iteration == unknown_size * 5 class OldDataLoader(DataLoader): def __init__(self, dl, *args, **kwargs): self.dl = dl self.sampler = self.dl.sampler self.batch_sampler = self.dl.batch_sampler def __len__(self): return len(self.dl) def __iter__(self): return iter(self.dl) def test_dataloader_no_dataset_kind(): # tests issue : https://github.com/pytorch/ignite/issues/1022 engine = DeterministicEngine(lambda e, b: None) data = torch.randint(0, 1000, size=(100 * 4,)) dataloader = DataLoader(data, batch_size=4) dataloader = OldDataLoader(dataloader) engine.run(dataloader) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test__set_rng_states_cuda(): # Checks https://github.com/pytorch/ignite/issues/2076 rng_states = [random.getstate(), torch.get_rng_state().cuda(), np.random.get_state()] _set_rng_states(rng_states) assert rng_states[1].device.type == "cpu" def test_engine_no_data_asserts(): trainer = DeterministicEngine(lambda e, b: None) with pytest.raises(ValueError, match=r"Deterministic engine does not support the option of data=None"): trainer.run(max_epochs=10, epoch_length=10) def test_state_dict(): engine = DeterministicEngine(lambda e, b: 1) sd = engine.state_dict() assert isinstance(sd, Mapping) and len(sd) == 4 assert "iteration" in sd and sd["iteration"] == 0 assert "max_epochs" in sd and sd["max_epochs"] is None assert "epoch_length" in sd and sd["epoch_length"] is None assert "rng_states" in sd and sd["rng_states"] is not None ignite-0.5.1/tests/ignite/engine/test_engine.py000066400000000000000000001417361465426447700215770ustar00rootroot00000000000000import os import time from unittest.mock import call, MagicMock, Mock import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events, State from ignite.engine.deterministic import keep_random_state from ignite.metrics import Average from tests.ignite.engine import BatchChecker, EpochCounter, IterationCounter class RecordedEngine(Engine): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.called_events = [] def _fire_event(self, event_name, *event_args, **event_kwargs): self.called_events.append((self.state.epoch, self.state.iteration, event_name.name)) return super()._fire_event(event_name, *event_args, **event_kwargs) def _create_mock_data_loader(epochs, batches_per_epoch): batches = [MagicMock()] * batches_per_epoch data_loader_manager = MagicMock() batch_iterators = [iter(batches) for _ in range(epochs)] data_loader_manager.__iter__.side_effect = batch_iterators data_loader_manager.__len__.return_value = batches_per_epoch return data_loader_manager @pytest.mark.parametrize("interrupt_resume_enabled", [False, True]) class TestEngine: @pytest.fixture(autouse=True) def set_interrupt_resume_enabled(self, interrupt_resume_enabled): Engine.interrupt_resume_enabled = interrupt_resume_enabled def test_terminate(self): engine = Engine(lambda e, b: 1) assert not engine.should_terminate engine.terminate() assert engine.should_terminate def test_invalid_process_raises_with_invalid_signature(self): with pytest.raises(ValueError, match=r"Engine must be given a processing function in order to run"): Engine(None) with pytest.raises(ValueError, match=r"Error adding .+ takes parameters .+ but will be called with"): Engine(lambda: None) with pytest.raises(ValueError, match=r"Error adding .+ takes parameters .+ but will be called with"): Engine(lambda batch: None) with pytest.raises(ValueError, match=r"Error adding .+ takes parameters .+ but will be called with"): Engine(lambda engine, batch, extra_arg: None) def test_invalid_input_data(self): engine = Engine(lambda e, b: None) def data(): pass with pytest.raises(TypeError, match=r"Argument data should be iterable"): engine.run(data) @pytest.mark.parametrize("data", [None, [1, 2]]) def test_current_epoch_counter_increases_every_epoch(self, data): engine = Engine(MagicMock(return_value=1)) max_epochs = 5 counter = EpochCounter() engine.add_event_handler(Events.EPOCH_STARTED, counter) state = engine.run(data, max_epochs=max_epochs, epoch_length=2) assert state.epoch == max_epochs counter.current_epoch_count = 1 state = engine.run(data, max_epochs=max_epochs, epoch_length=2) assert state.epoch == max_epochs @pytest.mark.parametrize("data", [None, [1, 2, 3]]) def test_current_iteration_counter_increases_every_iteration(self, data): engine = Engine(MagicMock(return_value=1)) max_epochs = 5 counter = IterationCounter() engine.add_event_handler(Events.ITERATION_STARTED, counter) epoch_length = 3 state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert state.iteration == max_epochs * epoch_length counter.current_iteration_count = 1 state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert state.iteration == max_epochs * epoch_length def test_stopping_criterion_is_max_epochs(self): engine = Engine(MagicMock(return_value=1)) max_epochs = 5 state = engine.run([1], max_epochs=max_epochs) assert state.epoch == max_epochs @pytest.mark.parametrize("data", [None, [1, 2]]) def test_terminate_at_end_of_epoch_stops_run(self, data): max_epochs = 5 last_epoch_to_run = 3 engine = Engine(MagicMock(return_value=1)) def end_of_epoch_handler(engine): if engine.state.epoch == last_epoch_to_run: engine.terminate() engine.add_event_handler(Events.EPOCH_COMPLETED, end_of_epoch_handler) assert not engine.should_terminate state = engine.run(data, max_epochs=max_epochs, epoch_length=2) assert state.epoch == last_epoch_to_run assert engine.should_terminate assert engine._dataloader_iter is None @pytest.mark.parametrize("data, epoch_length", [(None, 10), (range(10), None)]) def test_terminate_at_start_of_epoch(self, data, epoch_length): max_epochs = 5 epoch_to_terminate_on = 3 real_epoch_length = epoch_length if data is None else len(data) engine = Engine(MagicMock(return_value=1)) def start_of_epoch_handler(engine): if engine.state.epoch == epoch_to_terminate_on: engine.terminate() engine.add_event_handler(Events.EPOCH_STARTED, start_of_epoch_handler) assert not engine.should_terminate state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) # epoch is not completed so counter is not incremented assert state.epoch == epoch_to_terminate_on assert engine.should_terminate assert engine._dataloader_iter is None assert state.iteration == ((epoch_to_terminate_on - 1) * real_epoch_length) # Engine continue from epoch_to_terminate_on until max_epochs first_epoch_iter = [None, None] @engine.on(Events.STARTED) def check_iter_epoch(): assert engine.state.epoch == first_epoch_iter[0] assert engine.state.iteration == first_epoch_iter[1] if data is not None: expected_data_iter = iter(data) expected_iter = state.iteration @engine.on(Events.ITERATION_STARTED) def check_iter_and_data(): nonlocal expected_data_iter, expected_iter expected_iter += 1 assert engine.state.iteration == expected_iter try: assert engine.state.batch == next(expected_data_iter) except StopIteration: expected_data_iter = iter(data) assert engine.state.batch == next(expected_data_iter) first_epoch_iter[0], first_epoch_iter[1] = state.epoch, state.iteration state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert state.epoch == max_epochs assert not engine.should_terminate assert engine._dataloader_iter is None # As terminated epoch is skipped -> iterations are not incremented assert state.iteration == real_epoch_length * (max_epochs - 1) @pytest.mark.parametrize("data, epoch_length", [(None, 10), (range(10), None)]) def test_terminate_stops_run_mid_epoch(self, data, epoch_length): max_epochs = 5 iteration_to_stop = 13 real_epoch_length = epoch_length if data is None else len(data) engine = Engine(MagicMock(return_value=1)) def start_of_iteration_handler(engine): if engine.state.iteration == iteration_to_stop: engine.terminate() @engine.on(Events.EXCEPTION_RAISED) def assert_no_exceptions(ee): assert False, f"Engine should terminate without raising an exception, got '{type(ee)}'" engine.add_event_handler(Events.ITERATION_STARTED, start_of_iteration_handler) state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) # completes the iteration but doesn't increment counter (this happens just before a new iteration starts) assert state.iteration == iteration_to_stop assert state.epoch == np.ceil(iteration_to_stop / real_epoch_length) # it starts from 0 assert engine._dataloader_iter is None # Engine continue from epoch_to_terminate_on until max_epochs first_epoch_iter = [None, None] num_calls_check_iter_epoch = 0 @engine.on(Events.STARTED, first_epoch_iter) def check_iter_epoch(first_epoch_iter): nonlocal num_calls_check_iter_epoch assert engine.state.epoch == first_epoch_iter[0] assert engine.state.iteration == first_epoch_iter[1] num_calls_check_iter_epoch += 1 if data is not None: expected_iter = state.iteration @engine.on(Events.ITERATION_STARTED) def check_iter_and_data(): nonlocal expected_iter expected_iter += 1 assert engine.state.iteration == expected_iter assert engine.state.batch == data[(expected_iter - first_epoch_iter[1] - 1) % len(data)] first_epoch_iter[0], first_epoch_iter[1] = state.epoch, state.iteration state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert state.epoch == max_epochs assert not engine.should_terminate assert state.iteration == real_epoch_length * (max_epochs - 1) + (iteration_to_stop % real_epoch_length) assert num_calls_check_iter_epoch == 1 @pytest.mark.parametrize( "terminate_event, e, i", [ (Events.STARTED, 0, 0), (Events.EPOCH_STARTED(once=2), 2, None), (Events.EPOCH_COMPLETED(once=2), 2, None), (Events.GET_BATCH_STARTED(once=12), None, 12), (Events.GET_BATCH_COMPLETED(once=12), None, 12), (Events.ITERATION_STARTED(once=14), None, 14), (Events.ITERATION_COMPLETED(once=14), None, 14), ], ) def test_terminate_events_sequence(self, terminate_event, e, i): engine = RecordedEngine(MagicMock(return_value=1)) data = range(10) max_epochs = 5 @engine.on(terminate_event) def call_terminate(): engine.terminate() @engine.on(Events.EXCEPTION_RAISED) def assert_no_exceptions(ee): assert False, f"Engine should terminate without raising an exception, got '{type(ee)}'" engine.run(data, max_epochs=max_epochs) if i is None: if terminate_event == Events.EPOCH_STARTED: i = len(data) * (e - 1) else: i = len(data) * e if e is None: e = i // len(data) + 1 assert engine.called_events[0] == (0, 0, Events.STARTED) assert engine.called_events[-1] == (e, i, Events.COMPLETED) assert engine.called_events[-2] == (e, i, Events.TERMINATE) assert engine.called_events[-3] == (e, i, terminate_event) assert engine._dataloader_iter is None @pytest.mark.parametrize("data, epoch_length", [(None, 10), (range(10), None)]) def test_terminate_epoch_stops_mid_epoch(self, data, epoch_length): real_epoch_length = epoch_length if data is None else len(data) iteration_to_stop = real_epoch_length + 4 engine = Engine(MagicMock(return_value=1)) def start_of_iteration_handler(engine): if engine.state.iteration == iteration_to_stop: engine.terminate_epoch() max_epochs = 3 engine.add_event_handler(Events.ITERATION_STARTED, start_of_iteration_handler) state = engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) # completes the iteration but doesn't increment counter (this happens just before a new iteration starts) true_value = real_epoch_length * (max_epochs - 1) + iteration_to_stop % real_epoch_length assert state.iteration == true_value assert state.epoch == max_epochs @pytest.mark.parametrize( "terminate_epoch_event, i", [ (Events.GET_BATCH_STARTED(once=12), 12), (Events.GET_BATCH_COMPLETED(once=12), 12), (Events.ITERATION_STARTED(once=14), 14), (Events.ITERATION_COMPLETED(once=14), 14), ], ) def test_terminate_epoch_events_sequence(self, terminate_epoch_event, i): engine = RecordedEngine(MagicMock(return_value=1)) data = range(10) max_epochs = 3 # TODO: Bug: Events.GET_BATCH_STARTED(once=12) is called twice ! # prevent call_terminate_epoch to be called twice call_count = 0 @engine.on(terminate_epoch_event) def call_terminate_epoch(): nonlocal call_count if call_count < 1: engine.terminate_epoch() call_count += 1 @engine.on(Events.TERMINATE_SINGLE_EPOCH) def check_previous_events(iter_counter): e = i // len(data) + 1 assert engine.called_events[0] == (0, 0, Events.STARTED) assert engine.called_events[-2] == (e, i, terminate_epoch_event) assert engine.called_events[-1] == (e, i, Events.TERMINATE_SINGLE_EPOCH) @engine.on(Events.EPOCH_COMPLETED) def check_previous_events2(): e = i // len(data) + 1 if e == engine.state.epoch and i == engine.state.iteration: assert engine.called_events[-3] == (e, i, terminate_epoch_event) assert engine.called_events[-2] == (e, i, Events.TERMINATE_SINGLE_EPOCH) assert engine.called_events[-1] == (e, i, Events.EPOCH_COMPLETED) engine.run(data, max_epochs=max_epochs) assert engine.state.epoch == max_epochs assert (max_epochs - 1) * len(data) < engine.state.iteration < max_epochs * len(data) @pytest.mark.parametrize("data", [None, "mock_data_loader"]) def test_iteration_events_are_fired(self, data): max_epochs = 5 num_batches = epoch_length = 3 if isinstance(data, str) and data == "mock_data_loader": data = _create_mock_data_loader(max_epochs, num_batches) epoch_length = None engine = Engine(MagicMock(return_value=1)) mock_manager = Mock() iteration_started = Mock() engine.add_event_handler(Events.ITERATION_STARTED, iteration_started) iteration_complete = Mock() engine.add_event_handler(Events.ITERATION_COMPLETED, iteration_complete) mock_manager.attach_mock(iteration_started, "iteration_started") mock_manager.attach_mock(iteration_complete, "iteration_complete") engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert iteration_started.call_count == num_batches * max_epochs assert iteration_complete.call_count == num_batches * max_epochs expected_calls = [] for _ in range(max_epochs * num_batches): expected_calls.append(call.iteration_started(engine)) expected_calls.append(call.iteration_complete(engine)) assert mock_manager.mock_calls == expected_calls @pytest.mark.parametrize("data", [None, [1, 2]]) def test_last_event_name(self, data): engine = Engine(MagicMock(return_value=1)) assert engine.last_event_name is None @engine.on(Events.STARTED) def _(_engine): assert _engine.last_event_name == Events.STARTED @engine.on(Events.EPOCH_STARTED) def _(_engine): assert _engine.last_event_name == Events.EPOCH_STARTED @engine.on(Events.ITERATION_STARTED) def _(_engine): assert _engine.last_event_name == Events.ITERATION_STARTED @engine.on(Events.ITERATION_COMPLETED) def _(_engine): assert _engine.last_event_name == Events.ITERATION_COMPLETED @engine.on(Events.EPOCH_COMPLETED) def _(_engine): assert _engine.last_event_name == Events.EPOCH_COMPLETED epoch_length = 2 if data is None else None engine.run(data, epoch_length=epoch_length) assert engine.last_event_name == Events.COMPLETED def test_reset_should_terminate(self): def update_fn(engine, batch): pass engine = Engine(update_fn) @engine.on(Events.ITERATION_COMPLETED) def terminate_on_iteration_10(engine): if engine.state.iteration == 10: engine.terminate() engine.run([0] * 20) assert engine.state.iteration == 10 engine.run([0] * 20) assert engine.state.iteration == 10 def test_batch_values(self): def _test(data): # This test check the content passed to update function counter = [0] num_iters = len(data) def update_fn(_, batch): assert batch == data[counter[0] % num_iters] counter[0] += 1 engine = Engine(update_fn) engine.run(data, max_epochs=10) data = torch.randint(0, 1000, size=(256,)) _test(data) def test_state_repr(self): data = [0, 1, 2, 3, 4, 5] max_epochs = 1 metrics = {"accuracy": Mock()} state = State(dataloader=data, max_epochs=max_epochs, metrics=metrics) s = repr(state) assert "iteration" in s assert "epoch" in s assert "max_epochs: 1" in s assert "dataloader" in s assert "metrics" in s assert "output" in s assert "batch" in s def test_alter_batch(self): small_shape = (1, 2, 2) large_shape = (1, 3, 3) small_loader = torch.randint(0, 256, size=(30,) + small_shape) large_loader = torch.randint(0, 256, size=(20,) + large_shape) switch_iteration = 50 def should_take_large_img(i): return i >= switch_iteration def update_fn(engine, batch): i = engine.state.iteration if i < switch_iteration: assert batch.shape == small_shape assert (small_loader[(i - 1) % len(small_loader), ...] == batch).all() else: assert batch.shape == large_shape assert (large_loader[(i - switch_iteration) % len(large_loader), ...] == batch).all() trainer = Engine(update_fn) def cycle(seq): while True: for i in seq: yield i small_loader_iter = cycle(small_loader) large_loader_iter = cycle(large_loader) @trainer.on(Events.ITERATION_STARTED) def choose_batch(engine): i = engine.state.iteration if should_take_large_img(i): batch = next(large_loader_iter) else: batch = next(small_loader_iter) engine.state.batch = batch num_epochs = 5 num_iters = 25 data = range(num_iters) trainer.run(data, num_epochs) def test__is_done(self): state = State(iteration=10, epoch=1, max_epochs=100, epoch_length=100) assert not Engine._is_done(state) state = State(iteration=1000, max_epochs=10, epoch_length=100) assert Engine._is_done(state) def test__setup_engine(self): engine = Engine(lambda e, b: 1) engine.state = State(iteration=10, epoch=1, max_epochs=100, epoch_length=100) data = list(range(100)) engine.state.dataloader = data engine._setup_engine() assert engine._init_iter == 10 def test_run_asserts(self): engine = Engine(lambda e, b: 1) with pytest.raises(ValueError, match=r"Input data has zero size. Please provide non-empty data"): engine.run([]) def test_state_get_event_attrib_value(self): state = State() state.iteration = 10 state.epoch = 9 e = Events.ITERATION_STARTED assert state.get_event_attrib_value(e) == state.iteration e = Events.ITERATION_COMPLETED assert state.get_event_attrib_value(e) == state.iteration e = Events.EPOCH_STARTED assert state.get_event_attrib_value(e) == state.epoch e = Events.EPOCH_COMPLETED assert state.get_event_attrib_value(e) == state.epoch e = Events.STARTED assert state.get_event_attrib_value(e) == state.epoch e = Events.COMPLETED assert state.get_event_attrib_value(e) == state.epoch e = Events.ITERATION_STARTED(every=10) assert state.get_event_attrib_value(e) == state.iteration e = Events.ITERATION_COMPLETED(every=10) assert state.get_event_attrib_value(e) == state.iteration e = Events.EPOCH_STARTED(once=5) assert state.get_event_attrib_value(e) == state.epoch e = Events.EPOCH_COMPLETED(once=5) assert state.get_event_attrib_value(e) == state.epoch @pytest.mark.parametrize( "data, max_epochs, epoch_length", [(range(100), 2, 100), (range(200), 2, 100), (range(200), 5, 100)] ) def test_time_stored_in_state(self, data, max_epochs, epoch_length): sleep_time = 0.01 extra_sleep_time = 0.1 engine = Engine(lambda e, b: time.sleep(sleep_time)) @engine.on(Events.EPOCH_COMPLETED) def check_epoch_time(): assert engine.state.times[Events.EPOCH_COMPLETED.name] >= sleep_time * epoch_length time.sleep(extra_sleep_time) @engine.on(Events.COMPLETED) def check_completed_time(): assert ( engine.state.times[Events.COMPLETED.name] >= (sleep_time * epoch_length + extra_sleep_time) * max_epochs ) time.sleep(extra_sleep_time) engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) assert engine.state.times[Events.EPOCH_COMPLETED.name] >= sleep_time * epoch_length + extra_sleep_time assert ( engine.state.times[Events.COMPLETED.name] >= (sleep_time * epoch_length + extra_sleep_time) * max_epochs + extra_sleep_time ) def _test_check_triggered_events(self, data, max_epochs, epoch_length, exp_iter_stops=None): engine = Engine(lambda e, b: 1) events = [ Events.STARTED, Events.EPOCH_STARTED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.EPOCH_COMPLETED, Events.COMPLETED, Events.GET_BATCH_STARTED, Events.GET_BATCH_COMPLETED, Events.DATALOADER_STOP_ITERATION, ] handlers = {e: MagicMock() for e in events} for e, handler in handlers.items(): engine.add_event_handler(e, handler) engine.run(data, max_epochs=max_epochs, epoch_length=epoch_length) expected_num_calls = { Events.STARTED: 1, Events.COMPLETED: 1, Events.EPOCH_STARTED: max_epochs, Events.EPOCH_COMPLETED: max_epochs, Events.ITERATION_STARTED: max_epochs * epoch_length, Events.ITERATION_COMPLETED: max_epochs * epoch_length, Events.GET_BATCH_STARTED: max_epochs * epoch_length if data is not None else 0, Events.GET_BATCH_COMPLETED: max_epochs * epoch_length if data is not None else 0, Events.DATALOADER_STOP_ITERATION: (max_epochs - 1) if exp_iter_stops is None else exp_iter_stops, } for n, handler in handlers.items(): assert handler.call_count == expected_num_calls[n], f"{n}: {handler.call_count} vs {expected_num_calls[n]}" def _test_run_check_triggered_events(self): # tests issue https://github.com/pytorch/ignite/issues/818 self._test_check_triggered_events(list(range(10)), max_epochs=4, epoch_length=10) self._test_check_triggered_events(list(range(100)), max_epochs=5, epoch_length=100) self._test_check_triggered_events(list(range(100)), max_epochs=5, epoch_length=50, exp_iter_stops=50 * 5 // 100) self._test_check_triggered_events( list(range(100)), max_epochs=5, epoch_length=150, exp_iter_stops=150 * 5 // 100 ) self._test_check_triggered_events(None, max_epochs=5, epoch_length=150, exp_iter_stops=0) def test_run_check_triggered_events_list(self): self._test_run_check_triggered_events() def _test_run_check_triggered_events_on_iterator(self): def infinite_data_iterator(): while True: for i in range(100): yield i self._test_check_triggered_events(infinite_data_iterator(), max_epochs=5, epoch_length=100, exp_iter_stops=0) self._test_check_triggered_events(infinite_data_iterator(), max_epochs=5, epoch_length=50, exp_iter_stops=0) self._test_check_triggered_events(infinite_data_iterator(), max_epochs=5, epoch_length=150, exp_iter_stops=0) def limited_data_iterator(): for i in range(100): yield i self._test_check_triggered_events(limited_data_iterator(), max_epochs=1, epoch_length=100, exp_iter_stops=0) self._test_check_triggered_events(limited_data_iterator(), max_epochs=10, epoch_length=10, exp_iter_stops=0) # These tests should fail with pytest.raises(AssertionError): with pytest.warns(UserWarning, match=r"Data iterator can not provide data anymore"): self._test_check_triggered_events(limited_data_iterator(), max_epochs=3, epoch_length=100) with pytest.raises(AssertionError): with pytest.warns(UserWarning, match=r"Data iterator can not provide data anymore"): self._test_check_triggered_events(limited_data_iterator(), max_epochs=3, epoch_length=75) with pytest.raises(AssertionError): # Below test does not raise "Data iterator can not provide data anymore" warning as the last # epoch is equal max_epochs # with pytest.warns(UserWarning, match=r"Data iterator can not provide data anymore"): self._test_check_triggered_events(limited_data_iterator(), max_epochs=1, epoch_length=101) def test_run_check_triggered_events_on_iterator(self): self._test_run_check_triggered_events_on_iterator() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(self, distributed_context_single_node_nccl): self._test_run_check_triggered_events_on_iterator() self._test_run_check_triggered_events() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(self, distributed_context_single_node_gloo): self._test_run_check_triggered_events_on_iterator() self._test_run_check_triggered_events() @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(self, distributed_context_multi_node_gloo): self._test_run_check_triggered_events_on_iterator() self._test_run_check_triggered_events() @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(self, distributed_context_multi_node_nccl): self._test_run_check_triggered_events_on_iterator() self._test_run_check_triggered_events() def test_engine_random_state(self): def random_data_generator(): while True: yield torch.randint(0, 100, size=(5,)) def sum_data(_, batch): result = torch.sum(batch) return result def get_engine(): engine = Engine(sum_data) average = Average() average.attach(engine, "average") return engine torch.manual_seed(34) engine = get_engine() state1 = engine.run(random_data_generator(), max_epochs=2, epoch_length=2) torch.manual_seed(34) engine = get_engine() state2 = engine.run(random_data_generator(), max_epochs=2, epoch_length=2) torch.manual_seed(42) engine = get_engine() state3 = engine.run(random_data_generator(), max_epochs=2, epoch_length=2) assert state1.metrics["average"] == pytest.approx(state2.metrics["average"]) assert state1.metrics["average"] != pytest.approx(state3.metrics["average"]) assert state2.metrics["average"] != pytest.approx(state3.metrics["average"]) def test_altered_random_state(self): # tests issue https://github.com/pytorch/ignite/issues/795 size = 1 def random_train_data_generator(size): while True: yield torch.randint(0, 100, size=(size,)) def random_val_data_generator(size): while True: yield torch.randint(0, 100, size=(size,)) + 100 train_only_batches = [] def train_fn(_, batch): train_only_batches.append(batch[0].item()) torch.manual_seed(1) epoch_length = 6 trainer = Engine(train_fn) trainer.run(random_train_data_generator(size), max_epochs=4, epoch_length=epoch_length) def val_fn(_1, _2): pass evaluator = Engine(val_fn) train_batches = [] def train_fn2(_, batch): train_batches.append(batch[0].item()) trainer = Engine(train_fn2) @trainer.on(Events.EPOCH_COMPLETED) @keep_random_state def run_evaluation(_): evaluator.run(random_val_data_generator(size), epoch_length=4) torch.manual_seed(1) trainer.run(random_train_data_generator(size), max_epochs=4, epoch_length=epoch_length) for i in range(epoch_length): assert train_batches[epoch_length + i] != train_batches[2 * epoch_length + i] assert train_batches[i] == train_only_batches[i] def test_engine_with_dataloader_no_auto_batching(self): # tests https://github.com/pytorch/ignite/issues/941 from torch.utils.data import BatchSampler, DataLoader, RandomSampler data = torch.rand(64, 4, 10) data_loader = DataLoader( data, batch_size=None, sampler=BatchSampler(RandomSampler(data), batch_size=8, drop_last=True) ) counter = [0] def foo(e, b): counter[0] += 1 engine = Engine(foo) engine.run(data_loader, epoch_length=10, max_epochs=5) assert counter[0] == 50 def test_run_once_finite_iterator_no_epoch_length(self): # FR: https://github.com/pytorch/ignite/issues/871 unknown_size = 11 def finite_unk_size_data_iter(): for i in range(unknown_size): yield i bc = BatchChecker(data=list(range(unknown_size))) engine = Engine(lambda e, b: bc.check(b)) completed_handler = MagicMock() engine.add_event_handler(Events.COMPLETED, completed_handler) data_iter = finite_unk_size_data_iter() engine.run(data_iter) assert engine.state.epoch == 1 assert engine.state.iteration == unknown_size assert completed_handler.call_count == 1 def test_run_finite_iterator_no_epoch_length(self): # FR: https://github.com/pytorch/ignite/issues/871 unknown_size = 11 def finite_unk_size_data_iter(): for i in range(unknown_size): yield i bc = BatchChecker(data=list(range(unknown_size))) engine = Engine(lambda e, b: bc.check(b)) @engine.on(Events.DATALOADER_STOP_ITERATION) def restart_iter(): engine.state.dataloader = finite_unk_size_data_iter() data_iter = finite_unk_size_data_iter() engine.run(data_iter, max_epochs=5) assert engine.state.epoch == 5 assert engine.state.iteration == unknown_size * 5 def test_run_finite_iterator_no_epoch_length_2(self): # FR: https://github.com/pytorch/ignite/issues/871 known_size = 11 def finite_size_data_iter(size): for i in range(size): yield i bc = BatchChecker(data=list(range(known_size))) engine = Engine(lambda e, b: bc.check(b)) @engine.on(Events.ITERATION_COMPLETED(every=known_size)) def restart_iter(): engine.state.dataloader = finite_size_data_iter(known_size) data_iter = finite_size_data_iter(known_size) engine.run(data_iter, max_epochs=5) assert engine.state.epoch == 5 assert engine.state.iteration == known_size * 5 def test_faq_inf_iterator_with_epoch_length(self): # Code snippet from FAQ # import torch torch.manual_seed(12) def infinite_iterator(batch_size): while True: batch = torch.rand(batch_size, 3, 32, 32) yield batch def train_step(trainer, batch): # ... s = trainer.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch.norm():.3f}") trainer = Engine(train_step) # We need to specify epoch_length to define the epoch trainer.run(infinite_iterator(4), epoch_length=5, max_epochs=3) assert trainer.state.epoch == 3 assert trainer.state.iteration == 3 * 5 def test_faq_inf_iterator_no_epoch_length(self): # Code snippet from FAQ # import torch torch.manual_seed(12) def infinite_iterator(batch_size): while True: batch = torch.rand(batch_size, 3, 32, 32) yield batch def train_step(trainer, batch): # ... s = trainer.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch.norm():.3f}") trainer = Engine(train_step) @trainer.on(Events.ITERATION_COMPLETED(once=15)) def stop_training(): trainer.terminate() trainer.run(infinite_iterator(4)) assert trainer.state.epoch == 1 assert trainer.state.iteration == 15 def test_faq_fin_iterator_unknw_size(self): # Code snippet from FAQ # import torch torch.manual_seed(12) def finite_unk_size_data_iter(): for i in range(11): yield i def train_step(trainer, batch): # ... s = trainer.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch:.3f}") trainer = Engine(train_step) @trainer.on(Events.DATALOADER_STOP_ITERATION) def restart_iter(): trainer.state.dataloader = finite_unk_size_data_iter() data_iter = finite_unk_size_data_iter() trainer.run(data_iter, max_epochs=5) assert trainer.state.epoch == 5 assert trainer.state.iteration == 5 * 11 # Code snippet from FAQ # import torch torch.manual_seed(12) def finite_unk_size_data_iter(): for i in range(11): yield i def val_step(evaluator, batch): # ... s = evaluator.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch:.3f}") evaluator = Engine(val_step) data_iter = finite_unk_size_data_iter() evaluator.run(data_iter) assert evaluator.state.epoch == 1 assert evaluator.state.iteration == 1 * 11 def test_faq_fin_iterator(self): # Code snippet from FAQ # import torch torch.manual_seed(12) size = 11 def finite_size_data_iter(size): for i in range(size): yield i def train_step(trainer, batch): # ... s = trainer.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch:.3f}") trainer = Engine(train_step) @trainer.on(Events.ITERATION_COMPLETED(every=size)) def restart_iter(): trainer.state.dataloader = finite_size_data_iter(size) data_iter = finite_size_data_iter(size) trainer.run(data_iter, max_epochs=5) assert trainer.state.epoch == 5 assert trainer.state.iteration == 5 * size # Code snippet from FAQ # import torch torch.manual_seed(12) size = 11 def finite_size_data_iter(size): for i in range(size): yield i def val_step(evaluator, batch): # ... s = evaluator.state print(f"{s.epoch}/{s.max_epochs} : {s.iteration} - {batch:.3f}") evaluator = Engine(val_step) data_iter = finite_size_data_iter(size) evaluator.run(data_iter) assert evaluator.state.epoch == 1 assert evaluator.state.iteration == size def test_set_data(self): # tests FR https://github.com/pytorch/ignite/issues/833 from torch.utils.data import DataLoader num_iters1 = 10 num_iters2 = 20 batch_size = 4 torch.manual_seed(1) data1 = DataLoader(torch.rand(num_iters1 * batch_size, 11), batch_size=batch_size) data2 = DataLoader(torch.rand(num_iters2 * batch_size, 22), batch_size=batch_size) switch_iteration = 35 def train_fn(e, batch): if e.state.iteration <= switch_iteration: assert batch.shape[1] == 11, f"{e.state.iteration}: {batch.shape}" else: assert batch.shape[1] == 22, f"{e.state.iteration}: {batch.shape}" trainer = Engine(train_fn) @trainer.on(Events.ITERATION_COMPLETED(once=switch_iteration)) def switch_dataloader(): trainer.set_data(data2) trainer.run(data1, max_epochs=10) @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_batch_is_released_before_new_one_is_loaded_on_cuda(self): torch.cuda.empty_cache() engine = Engine(lambda e, b: None) def _test(): mem_consumption = [] def dataloader(): for _ in range(4): mem_consumption.append(torch.cuda.memory_allocated()) batch = torch.randn(10).cuda() mem_consumption.append(torch.cuda.memory_allocated()) yield batch engine.run(dataloader(), max_epochs=2, epoch_length=2) return mem_consumption mem_consumption1 = _test() # mem_consumption should look like [0, 512, 512, 512, 512, 512, 512, 512] assert len(set(mem_consumption1[1:])) == 1 mem_consumption2 = _test() assert len(set(mem_consumption2[1:])) == 1 assert mem_consumption1 == mem_consumption2 @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_output_is_released_before_new_one_is_assigned_on_cuda(self): torch.cuda.empty_cache() def _test(): mem_consumption = [] def update_fn(engine, batch): mem_consumption.append(torch.cuda.memory_allocated()) output = torch.rand(10).cuda() mem_consumption.append(torch.cuda.memory_allocated()) return output engine = Engine(update_fn) engine.run([0, 1], max_epochs=2) return mem_consumption mem_consumption1 = _test()[2:] # mem_consumption ~ [0, 512, 0, 512, 0, 512, 0, 512] assert len(set(mem_consumption1)) == 2 mem_consumption2 = _test()[2:] assert len(set(mem_consumption2)) == 2 assert mem_consumption1 == mem_consumption2 def test_engine_no_data_asserts(self): trainer = Engine(lambda e, b: None) with pytest.raises(ValueError, match=r"epoch_length should be provided if data is None"): trainer.run(max_epochs=10) def test_engine_no_data(self): def train_step(engine, batch): assert batch is None trainer = Engine(train_step) trainer.run(max_epochs=10, epoch_length=10) assert trainer.state.iteration == 10 * 10 assert trainer.state.epoch == 10 assert trainer.state.dataloader is None # continue trainer.run(max_epochs=20) assert trainer.state.iteration == 20 * 10 assert trainer.state.epoch == 20 assert trainer.state.dataloader is None def test_engine_no_data_events(self): # Reproduces the issue https://github.com/pytorch/ignite/issues/3190 max_epochs = 4 dataset = range(10) def training_step(engine, _): assert engine.state.dataloader is None trainer = Engine(training_step) trainer.state.dataiter = iter(dataset) @trainer.on(Events.DATALOADER_STOP_ITERATION) @trainer.on(Events.GET_BATCH_STARTED) @trainer.on(Events.GET_BATCH_COMPLETED) def should_not_be_called(): assert False, trainer.last_event_name trainer.run(max_epochs=max_epochs, epoch_length=4) @pytest.mark.parametrize("data, epoch_length", [(None, 10), (range(10), None)]) def test_engine_run_resume(self, data, epoch_length): # https://github.com/pytorch/ignite/wiki/Roadmap#runresume-logic-improvements engine = Engine(lambda e, b: None) real_epoch_length = len(data) if data is not None else epoch_length first_epoch_iter = [None, None] @engine.on(Events.STARTED, first_epoch_iter) def check_iter_epoch(first_epoch_iter): assert engine.state.epoch == first_epoch_iter[0] assert engine.state.iteration == first_epoch_iter[1] # (re)start from 0 to 5 first_epoch_iter[0], first_epoch_iter[1] = 0, 0 # Engine run starting with max_epochs=5 => state.epoch=5 engine.run(data, max_epochs=5, epoch_length=epoch_length) assert engine.state.epoch == 5 assert engine.state.iteration == 5 * real_epoch_length # continue from 5 to 7 first_epoch_iter[0], first_epoch_iter[1] = 5, 5 * real_epoch_length # Engine run resuming from iteration 50, epoch 5 until 7 epochs => state.epoch=7 engine.run(data, max_epochs=7, epoch_length=epoch_length) assert engine.state.epoch == 7 assert engine.state.iteration == 7 * real_epoch_length # error with pytest.raises(ValueError, match="Argument max_epochs should be greater than or equal to the start epoch"): engine.run(data, max_epochs=4, epoch_length=epoch_length) # restart from 0 to 7 (As state.epoch == max_epochs(=7), # this should be like that as we always do: evaluator.run(data) without any other instructions) first_epoch_iter[0], first_epoch_iter[1] = 0, 0 # Engine run starting with max_epochs=7 => state.epoch=7 engine.run(data, max_epochs=7, epoch_length=epoch_length) assert engine.state.epoch == 7 assert engine.state.iteration == 7 * real_epoch_length # forced restart from 0 to 5 engine.state.max_epochs = None first_epoch_iter[0], first_epoch_iter[1] = 0, 0 # Engine run starting with max_epochs=5 => state.epoch=5 engine.run(data, max_epochs=5, epoch_length=epoch_length) assert engine.state.epoch == 5 assert engine.state.iteration == 5 * real_epoch_length # forced restart from 0 to 9, instead of continue from state.epoch=5 engine.state.max_epochs = None first_epoch_iter[0], first_epoch_iter[1] = 0, 0 # Engine run starting with max_epochs=9 => state.epoch=9 engine.run(data, max_epochs=9, epoch_length=epoch_length) assert engine.state.epoch == 9 assert engine.state.iteration == 9 * real_epoch_length # continue from 9 until 10 first_epoch_iter[0], first_epoch_iter[1] = 9, 9 * real_epoch_length # Engine run resuming from iteration 90, epoch 9 until 10 epochs => state.epoch=10 engine.run(data, max_epochs=10, epoch_length=epoch_length) assert engine.state.epoch == 10 assert engine.state.iteration == 10 * real_epoch_length @pytest.mark.parametrize( "interrupt_event, e, i", [ (Events.EPOCH_STARTED(once=2), 2, None), (Events.EPOCH_COMPLETED(once=2), 2, None), (Events.GET_BATCH_STARTED(once=12), None, 12), (Events.GET_BATCH_COMPLETED(once=12), None, 12), (Events.ITERATION_STARTED(once=14), None, 14), (Events.ITERATION_COMPLETED(once=14), None, 14), ], ) def test_engine_run_interrupt_resume(interrupt_event, e, i): assert Engine.interrupt_resume_enabled data = range(10) max_epochs = 5 def check_input_data(e, b): i = (e.state.iteration - 1) % len(data) assert b == data[i] engine = RecordedEngine(check_input_data) engine.run(data, max_epochs=max_epochs) expected_called_events = list(engine.called_events) engine.called_events = [] @engine.on(interrupt_event) def call_interrupt(): engine.interrupt() state = engine.run(data, max_epochs=max_epochs) if i is None: if interrupt_event == Events.EPOCH_STARTED: i = len(data) * (e - 1) else: i = len(data) * e if e is None: e = i // len(data) + 1 # Check the last events assert engine.called_events[-1] == (e, i, Events.INTERRUPT) assert engine.called_events[-2] == (e, i, interrupt_event) assert state.epoch == e assert state.iteration == i assert not engine.should_interrupt # implementation detail check: assert engine._dataloader_iter is not None assert engine._internal_run_generator is not None le = len(engine.called_events) # We need to skip the last INTERRUPT event to compare assert expected_called_events[: le - 1] == engine.called_events[:-1] engine.called_events = [] @engine.on(Events.STARTED) def raise_error(): raise RuntimeError("Shouldn't be here") engine.run(data, max_epochs=max_epochs) assert expected_called_events[le - 1 :] == engine.called_events # implementation detail check: assert engine._dataloader_iter is None assert engine._internal_run_generator is None def test_engine_run_multiple_interrupt_resume(): assert Engine.interrupt_resume_enabled data = range(10) max_epochs = 3 def check_input_data(e, b): i = (e.state.iteration - 1) % len(data) assert b == data[i] engine = Engine(check_input_data) can_interrupt = True @engine.on(Events.ITERATION_COMPLETED(every=6)) def call_interrupt(): if can_interrupt: engine.interrupt() state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 6 * 1 and state.epoch == 1 state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 6 * 2 and state.epoch == 2 state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 6 * 3 and state.epoch == 2 state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 6 * 4 and state.epoch == 3 # We did an interruption on the last epoch assert state.epoch == max_epochs # Run remaining iterations without interruptions can_interrupt = False state = engine.run(data, max_epochs=max_epochs) assert state.iteration == max_epochs * len(data) and state.epoch == max_epochs # Check implementation details assert engine._dataloader_iter is None assert engine._internal_run_generator is None # Rerun the engine from start to end without interruptions num_calls_check_iter_epoch = 0 @engine.on(Events.STARTED) def check_iter_epoch(): nonlocal num_calls_check_iter_epoch assert engine.state.epoch == 0 assert engine.state.iteration == 0 num_calls_check_iter_epoch += 1 state = engine.run(data, max_epochs=max_epochs) assert state.iteration == max_epochs * len(data) and state.epoch == max_epochs assert num_calls_check_iter_epoch == 1 def test_engine_should_interrupt_error(): Engine.interrupt_resume_enabled = False engine = Engine(lambda e, b: None) with pytest.raises(RuntimeError, match="Engine 'interrupt/resume' feature is disabled"): engine.interrupt() Engine.interrupt_resume_enabled = True def test_engine_interrupt_restart(): assert Engine.interrupt_resume_enabled data = range(10) max_epochs = 3 def check_input_data(e, b): i = (e.state.iteration - 1) % len(data) assert b == data[i] engine = Engine(check_input_data) can_interrupt = True @engine.on(Events.ITERATION_COMPLETED(every=11)) def call_interrupt(): if can_interrupt: engine.interrupt() # Run and interrupt state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 11 and state.epoch == 2 num_calls_check_iter_epoch = 0 @engine.on(Events.STARTED) def check_iter_epoch(): nonlocal num_calls_check_iter_epoch assert engine.state.epoch == 0 assert engine.state.iteration == 0 num_calls_check_iter_epoch += 1 # Reset and run with interruption state.max_epochs = None state = engine.run(data, max_epochs=max_epochs) assert state.iteration == 11 and state.epoch == 2 assert num_calls_check_iter_epoch == 1 can_interrupt = False num_calls_check_iter_epoch = 0 # Reset and run without interruption state.max_epochs = None state = engine.run(data, max_epochs=max_epochs) assert state.iteration == max_epochs * len(data) and state.epoch == max_epochs assert num_calls_check_iter_epoch == 1 ignite-0.5.1/tests/ignite/engine/test_engine_state_dict.py000066400000000000000000000234241465426447700237730ustar00rootroot00000000000000from collections.abc import Mapping import pytest import torch from ignite.engine import Engine, Events, State from tests.ignite.engine import BatchChecker, EpochCounter, IterationCounter def test_state_dict(): engine = Engine(lambda e, b: 1) sd = engine.state_dict() assert isinstance(sd, Mapping) and len(sd) == 3 assert "iteration" in sd and sd["iteration"] == 0 assert "max_epochs" in sd and sd["max_epochs"] is None assert "epoch_length" in sd and sd["epoch_length"] is None def _test(state): engine.state = state sd = engine.state_dict() assert isinstance(sd, Mapping) and len(sd) == len(engine._state_dict_all_req_keys) + 1 assert sd["iteration"] == engine.state.iteration assert sd["epoch_length"] == engine.state.epoch_length assert sd["max_epochs"] == engine.state.max_epochs _test(State(iteration=500, epoch_length=1000, max_epochs=100)) _test(State(epoch=5, epoch_length=1000, max_epochs=100)) def test_state_dict_with_user_keys(): engine = Engine(lambda e, b: 1) engine.state_dict_user_keys.append("alpha") engine.state_dict_user_keys.append("beta") def _test(state): engine.state = state sd = engine.state_dict() assert isinstance(sd, Mapping) and len(sd) == len(engine._state_dict_all_req_keys) + 1 + len( engine.state_dict_user_keys ) assert sd["iteration"] == engine.state.iteration assert sd["epoch_length"] == engine.state.epoch_length assert sd["max_epochs"] == engine.state.max_epochs assert sd["alpha"] == engine.state.alpha assert sd["beta"] == engine.state.beta _test(State(iteration=500, epoch_length=1000, max_epochs=100, alpha=0.01, beta="Good")) def test_state_dict_integration(): engine = Engine(lambda e, b: 1) data = range(100) engine.run(data, max_epochs=10) sd = engine.state_dict() assert isinstance(sd, Mapping) and len(sd) == len(engine._state_dict_all_req_keys) + 1 assert sd["iteration"] == engine.state.iteration == 10 * 100 assert sd["epoch_length"] == engine.state.epoch_length == 100 assert sd["max_epochs"] == engine.state.max_epochs == 10 def test_load_state_dict_asserts(): engine = Engine(lambda e, b: 1) with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary"): engine.load_state_dict("123") with pytest.raises(ValueError, match=r"is absent in provided state_dict"): engine.load_state_dict({}) with pytest.raises(ValueError, match=r"state_dict should contain only one of"): engine.load_state_dict({"max_epochs": 100, "epoch_length": 120}) with pytest.raises(ValueError, match=r"state_dict should contain only one of"): engine.load_state_dict({"max_epochs": 100, "epoch_length": 120, "iteration": 12, "epoch": 123}) engine = Engine(lambda e, b: 1) engine.state_dict_user_keys.append("alpha") with pytest.raises(ValueError, match=r"Required user state attribute"): engine.load_state_dict({"max_epochs": 100, "epoch_length": 120, "iteration": 12}) engine = Engine(lambda e, b: 1) with pytest.raises(ValueError, match=r"If epoch is provided in the state dict, epoch_length should not be None"): engine.load_state_dict({"max_epochs": 100, "epoch": 2, "epoch_length": None}) def test_load_state_dict(): engine = Engine(lambda e, b: 1) def _test(sd): engine.load_state_dict(sd) if "iteration" in sd: assert sd["iteration"] == engine.state.iteration elif "epoch" in sd: assert sd["epoch"] == engine.state.epoch assert sd["epoch_length"] == engine.state.epoch_length assert sd["max_epochs"] == engine.state.max_epochs _test({"max_epochs": 100, "epoch_length": 120, "iteration": 123}) _test({"max_epochs": 100, "epoch_length": 120, "epoch": 5}) def test_load_state_dict_with_user_keys(): engine = Engine(lambda e, b: 1) engine.state_dict_user_keys.append("alpha") engine.state_dict_user_keys.append("beta") def _test(sd): engine.load_state_dict(sd) if "iteration" in sd: assert sd["iteration"] == engine.state.iteration elif "epoch" in sd: assert sd["epoch"] == engine.state.epoch assert sd["epoch_length"] == engine.state.epoch_length assert sd["max_epochs"] == engine.state.max_epochs assert sd["alpha"] == engine.state.alpha assert sd["beta"] == engine.state.beta _test({"max_epochs": 100, "epoch_length": 120, "iteration": 123, "alpha": 0.1, "beta": "abc"}) def test_load_state_dict_integration(): engine = Engine(lambda e, b: 1) state_dict = {"max_epochs": 100, "epoch_length": 120, "epoch": 5} engine.load_state_dict(state_dict) engine.add_event_handler(Events.ITERATION_COMPLETED, IterationCounter(5 * 120 + 1)) engine.add_event_handler(Events.EPOCH_COMPLETED, EpochCounter(6)) data = range(120) engine.run(data) def test_load_state_dict_with_params_overriding_integration(): state_dict = {"max_epochs": 100, "epoch_length": 120, "epoch": 5} data = range(120) # Override max_epochs new_max_epochs = 10 engine = Engine(lambda e, b: 1) engine.load_state_dict(state_dict) state = engine.run(data, max_epochs=new_max_epochs) assert state.max_epochs == new_max_epochs assert state.iteration == state_dict["epoch_length"] * new_max_epochs assert state.epoch == new_max_epochs with pytest.raises(ValueError, match=r"Argument max_epochs should be greater than or equal to the start epoch"): engine.load_state_dict(state_dict) engine.run(data, max_epochs=3) # Override epoch_length with pytest.raises(ValueError, match=r"Argument epoch_length should be same as in the state"): engine.load_state_dict(state_dict) engine.run(data, epoch_length=90) def test_empty_state_dict_load_state_dict(): engine = Engine(lambda e, b: 1) sd = engine.state_dict() engine.load_state_dict(sd) def test_continue_training(): # Tests issue : https://github.com/pytorch/ignite/issues/993 max_epochs = 2 data = range(10) engine = Engine(lambda e, b: 1) state = engine.run(data, max_epochs=max_epochs) assert state.max_epochs == max_epochs assert state.iteration == len(data) * max_epochs assert state.epoch == max_epochs @engine.on(Events.STARTED) def assert_continue_training(): assert engine.state.epoch == max_epochs state = engine.run(data, max_epochs=max_epochs * 2) assert state.max_epochs == max_epochs * 2 assert state.iteration == len(data) * max_epochs * 2 assert state.epoch == max_epochs * 2 def test_state_dict_with_user_keys_integration(dirname): engine = Engine(lambda e, b: 1) engine.state_dict_user_keys.append("alpha") @engine.on(Events.STARTED) def init_user_values(_): engine.state.alpha = 0.1 fp = dirname / "engine.pt" @engine.on(Events.COMPLETED) def save_engine(_): state_dict = engine.state_dict() assert "alpha" in state_dict torch.save(state_dict, fp) engine.run([0, 1]) assert fp.exists() state_dict = torch.load(fp) assert "alpha" in state_dict and state_dict["alpha"] == 0.1 def test_epoch_length(): def _test(data, max_epochs, num_iters): batch_checker = BatchChecker(data) def update_fn(_, batch): assert batch_checker.check(batch), f"{batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = Engine(update_fn) engine.run(data, max_epochs=max_epochs, epoch_length=num_iters) if num_iters is None: num_iters = len(data) assert engine.state.iteration == num_iters * max_epochs assert engine.state.epoch == max_epochs def _test_as_iter(data, max_epochs, num_iters): batch_checker = BatchChecker(data) def update_fn(_, batch): assert batch_checker.check(batch), f"{batch_checker.counter}: {batch_checker.true_batch} vs {batch}" engine = Engine(update_fn) engine.run(iter(data), max_epochs=max_epochs, epoch_length=num_iters) if num_iters is None: num_iters = len(data) assert engine.state.iteration == num_iters * max_epochs assert engine.state.epoch == max_epochs max_epochs = 10 num_iters = 21 data = torch.randint(0, 1000, size=(num_iters,)) _test(data, max_epochs, num_iters=None) _test(data, max_epochs, num_iters) _test(data, max_epochs, num_iters // 2) _test(data, max_epochs, num_iters * 2) _test_as_iter(data, 1, num_iters) _test_as_iter(data, 2, num_iters // 2) def test_state_custom_attrs_init(): def _test(with_load_state_dict=False): engine = Engine(lambda e, b: None) engine.state.alpha = 0.0 engine.state.beta = 1.0 if with_load_state_dict: engine.load_state_dict({"iteration": 3, "max_epochs": 5, "epoch_length": 5}) @engine.on(Events.STARTED | Events.EPOCH_STARTED | Events.EPOCH_COMPLETED | Events.COMPLETED) def check_custom_attr(): assert hasattr(engine.state, "alpha") and engine.state.alpha == 0.0 assert hasattr(engine.state, "beta") and engine.state.beta == 1.0 engine.run([0, 1, 2, 3, 4], max_epochs=5) _test() _test(with_load_state_dict=True) def test_restart_training(): data = range(10) engine = Engine(lambda e, b: 1) state = engine.run(data, max_epochs=5) with pytest.raises( ValueError, match=r"Argument max_epochs should be greater than or equal to the start epoch defined in the state: 2 vs 5. " r"Please, .+ " r"before calling engine.run\(\) in order to restart the training from the beginning.", ): state = engine.run(data, max_epochs=2) state.max_epochs = None engine.run(data, max_epochs=2) ignite-0.5.1/tests/ignite/engine/test_event_handlers.py000066400000000000000000000422131465426447700233210ustar00rootroot00000000000000import functools import gc from unittest.mock import call, create_autospec, MagicMock import pytest from pytest import raises from ignite.engine import Engine, Events, State from ignite.engine.events import EventsList class DummyEngine(Engine): def __init__(self): super(DummyEngine, self).__init__(lambda e, b: 1) def run(self, num_times): self.state = State() for _ in range(num_times): self.fire_event(Events.STARTED) self.fire_event(Events.COMPLETED) return self.state def test_add_event_handler_raises_with_invalid_event(): engine = Engine(lambda e, b: 1) with pytest.raises(ValueError, match=r"is not a valid event for this Engine"): engine.add_event_handler("incorrect", lambda engine: None) def test_add_event_handler_raises_with_invalid_signature(): engine = Engine(MagicMock()) def handler(engine): pass engine.add_event_handler(Events.STARTED, handler) engine.add_event_handler(Events.STARTED, handler, 1) def handler_with_args(engine, a): pass engine.add_event_handler(Events.STARTED, handler_with_args, 1) with pytest.raises(ValueError): engine.add_event_handler(Events.STARTED, handler_with_args) def handler_with_kwargs(engine, b=42): pass engine.add_event_handler(Events.STARTED, handler_with_kwargs, b=2) with pytest.raises(ValueError): engine.add_event_handler(Events.STARTED, handler_with_kwargs, c=3) engine.add_event_handler(Events.STARTED, handler_with_kwargs, 1, b=2) def handler_with_args_and_kwargs(engine, a, b=42): pass engine.add_event_handler(Events.STARTED, handler_with_args_and_kwargs, 1, b=2) engine.add_event_handler(Events.STARTED, handler_with_args_and_kwargs, 1, 2, b=2) with pytest.raises(ValueError): engine.add_event_handler(Events.STARTED, handler_with_args_and_kwargs, 1, b=2, c=3) def test_add_event_handler(): engine = DummyEngine() class Counter(object): def __init__(self, count=0): self.count = count started_counter = Counter() def handle_iteration_started(engine, counter): counter.count += 1 engine.add_event_handler(Events.STARTED, handle_iteration_started, started_counter) completed_counter = Counter() def handle_iteration_completed(engine, counter): counter.count += 1 engine.add_event_handler(Events.COMPLETED, handle_iteration_completed, completed_counter) engine.run(15) assert started_counter.count == 15 assert completed_counter.count == 15 def test_add_event_handler_without_engine(): engine = DummyEngine() class Counter(object): def __init__(self, count=0): self.count = count started_counter = Counter() def handle_iteration_started(): started_counter.count += 1 engine.add_event_handler(Events.STARTED, handle_iteration_started) completed_counter = Counter() def handle_iteration_completed(counter): counter.count += 1 engine.add_event_handler(Events.COMPLETED, handle_iteration_completed, completed_counter) engine.run(15) assert started_counter.count == 15 assert completed_counter.count == 15 def test_adding_multiple_event_handlers(): mock_fn_1 = create_autospec(spec=lambda x: None) mock_fn_2 = create_autospec(spec=lambda x: None) engine = DummyEngine() handlers = [mock_fn_1, mock_fn_2] for handler in handlers: engine.add_event_handler(Events.STARTED, handler) engine.run(1) for handler in handlers: handler.assert_called_once_with(engine) @pytest.mark.parametrize( "event1, event2", [ (Events.STARTED, Events.COMPLETED), (Events.EPOCH_STARTED, Events.EPOCH_COMPLETED), (Events.ITERATION_STARTED, Events.ITERATION_COMPLETED), (Events.ITERATION_STARTED(every=2), Events.ITERATION_COMPLETED(every=2)), ], ) def test_event_removable_handle(event1, event2): # Removable handle removes event from engine. engine = Engine(lambda e, b: None) handler = create_autospec(spec=lambda x: None) assert not hasattr(handler, "_parent") removable_handle = engine.add_event_handler(event1, handler) assert engine.has_event_handler(handler, event1) engine.run([1, 2]) handler.assert_any_call(engine) num_calls = handler.call_count removable_handle.remove() assert not engine.has_event_handler(handler, event1) # Second engine pass does not fire handle again. engine.run([1, 2]) # Assert that handler wasn't call assert handler.call_count == num_calls # Removable handle can be used as a context manager handler = create_autospec(spec=lambda x: None) with engine.add_event_handler(event1, handler): assert engine.has_event_handler(handler, event1) engine.run([1, 2]) assert not engine.has_event_handler(handler, event1) handler.assert_any_call(engine) num_calls = handler.call_count engine.run([1, 2]) # Assert that handler wasn't call assert handler.call_count == num_calls # Removeable handle only effects a single event registration handler = MagicMock(spec_set=True) with engine.add_event_handler(event1, handler): with engine.add_event_handler(event2, handler): assert engine.has_event_handler(handler, event1) assert engine.has_event_handler(handler, event2) assert engine.has_event_handler(handler, event1) assert not engine.has_event_handler(handler, event2) assert not engine.has_event_handler(handler, event1) assert not engine.has_event_handler(handler, event2) # Removeable handle is re-enter and re-exitable handler = MagicMock(spec_set=True) remove = engine.add_event_handler(event1, handler) with remove: with remove: assert engine.has_event_handler(handler, event1) assert not engine.has_event_handler(handler, event1) assert not engine.has_event_handler(handler, event1) # Removeable handle is a weakref, does not keep engine or event alive def _add_in_closure(): _engine = Engine(lambda e, b: None) def _handler(_): pass _handle = _engine.add_event_handler(event1, _handler) assert _handle.engine() is _engine if event1.filter is None: assert _handle.handler() is _handler else: assert _handle.handler()._parent() is _handler return _handle removable_handle = _add_in_closure() # gc.collect, resolving reference cycles in engine/state # required to ensure object deletion in python2 gc.collect() assert removable_handle.engine() is None assert removable_handle.handler() is None def test_events_list_removable_handle(): # Removable handle removes event from engine. engine = DummyEngine() handler = create_autospec(spec=lambda x: None) assert not hasattr(handler, "_parent") events_list = Events.STARTED | Events.COMPLETED removable_handle = engine.add_event_handler(events_list, handler) for e in events_list: assert engine.has_event_handler(handler, e) engine.run(1) calls = [call(engine), call(engine)] handler.assert_has_calls(calls) assert handler.call_count == 2 removable_handle.remove() for e in events_list: assert not engine.has_event_handler(handler, e) # Second engine pass does not fire handle again. engine.run(1) handler.assert_has_calls(calls) assert handler.call_count == 2 # Removable handle can be used as a context manager handler = create_autospec(spec=lambda x: None) with engine.add_event_handler(events_list, handler): for e in events_list: assert engine.has_event_handler(handler, e) engine.run(1) for e in events_list: assert not engine.has_event_handler(handler, e) handler.assert_has_calls(calls) assert handler.call_count == 2 engine.run(1) handler.assert_has_calls(calls) assert handler.call_count == 2 # Removeable handle only effects a single event registration handler = create_autospec(spec=lambda x: None) other_events_list = Events.EPOCH_STARTED | Events.EPOCH_COMPLETED with engine.add_event_handler(events_list, handler): with engine.add_event_handler(other_events_list, handler): for e in events_list: assert engine.has_event_handler(handler, e) for e in other_events_list: assert engine.has_event_handler(handler, e) for e in events_list: assert engine.has_event_handler(handler, e) for e in other_events_list: assert not engine.has_event_handler(handler, e) for e in events_list: assert not engine.has_event_handler(handler, e) for e in other_events_list: assert not engine.has_event_handler(handler, e) # Removeable handle is re-enter and re-exitable handler = create_autospec(spec=lambda x: None) remove = engine.add_event_handler(events_list, handler) with remove: with remove: for e in events_list: assert engine.has_event_handler(handler, e) for e in events_list: assert not engine.has_event_handler(handler, e) for e in events_list: assert not engine.has_event_handler(handler, e) # Removeable handle is a weakref, does not keep engine or event alive def _add_in_closure(): _engine = DummyEngine() def _handler(_): pass _handle = _engine.add_event_handler(events_list, _handler) assert _handle.engine() is _engine assert _handle.handler() is _handler return _handle removable_handle = _add_in_closure() # gc.collect, resolving reference cycles in engine/state # required to ensure object deletion in python2 gc.collect() assert removable_handle.engine() is None assert removable_handle.handler() is None def test_eventslist__append_raises(): ev_list = EventsList() with pytest.raises(TypeError, match=r"Argument event should be Events or CallableEventWithFilter"): ev_list._append("abc") def test_has_event_handler(): engine = DummyEngine() handlers = [MagicMock(spec_set=True), MagicMock(spec_set=True)] m = MagicMock(spec_set=True) for handler in handlers: engine.add_event_handler(Events.STARTED, handler) engine.add_event_handler(Events.COMPLETED, m) for handler in handlers: assert engine.has_event_handler(handler, Events.STARTED) assert engine.has_event_handler(handler) assert not engine.has_event_handler(handler, Events.COMPLETED) assert not engine.has_event_handler(handler, Events.EPOCH_STARTED) assert not engine.has_event_handler(m, Events.STARTED) assert engine.has_event_handler(m, Events.COMPLETED) assert engine.has_event_handler(m) assert not engine.has_event_handler(m, Events.EPOCH_STARTED) def test_remove_event_handler(): engine = DummyEngine() with pytest.raises(ValueError, match=r"Input event name"): engine.remove_event_handler(lambda x: x, "an event") def on_started(engine): return 0 engine.add_event_handler(Events.STARTED, on_started) with pytest.raises(ValueError, match=r"Input handler"): engine.remove_event_handler(lambda x: x, Events.STARTED) h1 = MagicMock(spec_set=True) h2 = MagicMock(spec_set=True) handlers = [h1, h2] m = MagicMock(spec_set=True) for handler in handlers: engine.add_event_handler(Events.EPOCH_STARTED, handler) engine.add_event_handler(Events.EPOCH_COMPLETED, m) assert len(engine._event_handlers[Events.EPOCH_STARTED]) == 2 engine.remove_event_handler(h1, Events.EPOCH_STARTED) assert len(engine._event_handlers[Events.EPOCH_STARTED]) == 1 assert engine._event_handlers[Events.EPOCH_STARTED][0][0] == h2 assert len(engine._event_handlers[Events.EPOCH_COMPLETED]) == 1 engine.remove_event_handler(m, Events.EPOCH_COMPLETED) assert len(engine._event_handlers[Events.EPOCH_COMPLETED]) == 0 def test_args_and_kwargs_are_passed_to_event(): engine = DummyEngine() kwargs = {"a": "a", "b": "b"} args = (1, 2, 3) handlers = [] for event in [Events.STARTED, Events.COMPLETED]: handler = create_autospec(spec=lambda e, x1, x2, x3, a, b: None) engine.add_event_handler(event, handler, *args, **kwargs) handlers.append(handler) engine.run(1) called_handlers = [handle for handle in handlers if handle.called] assert len(called_handlers) == 2 for handler in called_handlers: handler_args, handler_kwargs = handler.call_args assert handler_args[0] == engine assert handler_args[1::] == args assert handler_kwargs == kwargs def test_on_decorator_raises_with_invalid_event(): engine = DummyEngine() with pytest.raises(ValueError): @engine.on("incorrect") def f(engine): pass def test_on_decorator(): engine = DummyEngine() class Counter(object): def __init__(self, count=0): self.count = count started_counter = Counter() @engine.on(Events.STARTED, started_counter) def handle_iteration_started(engine, started_counter): started_counter.count += 1 completed_counter = Counter() @engine.on(Events.COMPLETED, completed_counter) def handle_iteration_completed(engine, completed_counter): completed_counter.count += 1 engine.run(15) assert started_counter.count == 15 assert completed_counter.count == 15 def test_returns_state(): engine = Engine(MagicMock(return_value=1)) state = engine.run([0]) assert isinstance(state, State) def test_state_attributes(): dataloader = [1, 2, 3] engine = Engine(MagicMock(return_value=1)) state = engine.run(dataloader, max_epochs=3) assert state.iteration == 9 assert state.output == 1 assert state.batch == 3 assert state.dataloader == dataloader assert state.epoch == 3 assert state.max_epochs == 3 assert state.metrics == {} with pytest.raises(RuntimeError, match=r"Unknown event name"): state.get_event_attrib_value("abc") def test_default_exception_handler(): update_function = MagicMock(side_effect=ValueError()) engine = Engine(update_function) with raises(ValueError): engine.run([1]) def test_custom_exception_handler(): value_error = ValueError() update_function = MagicMock(side_effect=value_error) engine = Engine(update_function) class ExceptionCounter(object): def __init__(self): self.exceptions = [] def __call__(self, engine, e): self.exceptions.append(e) counter = ExceptionCounter() engine.add_event_handler(Events.EXCEPTION_RAISED, counter) engine.run([1]) # only one call from _run_once_over_data, since the exception is swallowed assert len(counter.exceptions) == 1 and counter.exceptions[0] == value_error def test_event_handlers_with_decoration(): engine = Engine(lambda e, b: b) def decorated(fun): @functools.wraps(fun) def wrapper(*args, **kwargs): return fun(*args, **kwargs) return wrapper values = [] def foo(): values.append("foo") @decorated def decorated_foo(): values.append("decorated_foo") engine.add_event_handler(Events.EPOCH_STARTED, foo) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo) engine.add_event_handler(Events.EPOCH_STARTED, decorated_foo) engine.add_event_handler(Events.EPOCH_STARTED(every=2), decorated_foo) def foo_args(e): values.append("foo_args") values.append(e.state.iteration) @decorated def decorated_foo_args(e): values.append("decorated_foo_args") values.append(e.state.iteration) engine.add_event_handler(Events.EPOCH_STARTED, foo_args) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo_args) engine.add_event_handler(Events.EPOCH_STARTED, decorated_foo_args) engine.add_event_handler(Events.EPOCH_STARTED(every=2), decorated_foo_args) class Foo: def __init__(self): self.values = [] def foo(self): self.values.append("foo") @decorated def decorated_foo(self): self.values.append("decorated_foo") def foo_args(self, e): self.values.append("foo_args") self.values.append(e.state.iteration) @decorated def decorated_foo_args(self, e): self.values.append("decorated_foo_args") self.values.append(e.state.iteration) foo = Foo() engine.add_event_handler(Events.EPOCH_STARTED, foo.foo) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo.foo) engine.add_event_handler(Events.EPOCH_STARTED, foo.decorated_foo) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo.decorated_foo) engine.add_event_handler(Events.EPOCH_STARTED, foo.foo_args) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo.foo_args) engine.add_event_handler(Events.EPOCH_STARTED, foo.decorated_foo_args) engine.add_event_handler(Events.EPOCH_STARTED(every=2), foo.decorated_foo_args) engine.run([0], max_epochs=2) assert values == foo.values ignite-0.5.1/tests/ignite/handlers/000077500000000000000000000000001465426447700172405ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/handlers/__init__.py000066400000000000000000000006641465426447700213570ustar00rootroot00000000000000# Needed to collect coverage data class MockFP16DeepSpeedZeroOptimizer: def __init__(self, optimizer): self.optimizer = optimizer def step(self, closure=None): self.optimizer.step() def _get_param_groups(self): return self.optimizer.param_groups def _set_param_groups(self, value): self.optimizer.param_groups = value param_groups = property(_get_param_groups, _set_param_groups) ignite-0.5.1/tests/ignite/handlers/conftest.py000066400000000000000000000055231465426447700214440ustar00rootroot00000000000000import subprocess import time from pathlib import Path from unittest.mock import Mock import pytest import torch from visdom import Visdom from visdom.server.build import download_scripts @pytest.fixture(scope="session") def visdom_server(): # Start Visdom server once and stop it with visdom_server_stop vd_hostname = "localhost" if not (Path.home() / ".visdom").exists(): (Path.home() / ".visdom").mkdir(exist_ok=True) download_scripts() vis = None vd_port = 29777 vd_server_process = subprocess.Popen( ["python", "-m", "visdom.server", "--hostname", vd_hostname, "-port", str(vd_port)] ) time.sleep(2) for ii in range(5): try: time.sleep(1) vis = Visdom(server=vd_hostname, port=vd_port, raise_exceptions=True) break except ConnectionError: continue assert vis and vis.check_connection() yield (vd_hostname, vd_port) # Trying to clean up slows things down and sometimes causes hangs. # vis.close() # vd_server_process.kill() @pytest.fixture def no_site_packages(request): import sys modules = {} for k in sys.modules: if request.param in k: modules[k] = sys.modules[k] for k in modules: del sys.modules[k] prev_path = list(sys.path) sys.path = [p for p in sys.path if "site-packages" not in p] yield "no_site_packages" sys.path = prev_path for k in modules: sys.modules[k] = modules[k] @pytest.fixture() def norm_mock(): def norm(x: torch.Tensor): return x.norm() norm_mock = Mock(side_effect=norm, spec=norm) norm_mock.configure_mock(**{"__name__": "norm"}) norm_mock.reset_mock() return norm_mock @pytest.fixture() def dummy_model_factory(): class DummyModel(torch.nn.Module): def __init__(self): super(DummyModel, self).__init__() self.fc1 = torch.nn.Linear(10, 10) self.fc2 = torch.nn.Linear(12, 12) self.fc1.weight.data.zero_() self.fc1.bias.data.zero_() self.fc2.weight.data.fill_(1.0) self.fc2.bias.data.fill_(1.0) def get_dummy_model(with_grads=True, with_frozen_layer=False, with_buffer=False): model = DummyModel() if with_grads: model.fc2.weight.grad = torch.zeros_like(model.fc2.weight) model.fc2.bias.grad = torch.zeros_like(model.fc2.bias) if not with_frozen_layer: model.fc1.weight.grad = torch.zeros_like(model.fc1.weight) model.fc1.bias.grad = torch.zeros_like(model.fc1.bias) if with_frozen_layer: for param in model.fc1.parameters(): param.requires_grad = False if with_buffer: model.register_buffer("buffer1", torch.ones(1)) return model return get_dummy_model ignite-0.5.1/tests/ignite/handlers/test_base_logger.py000066400000000000000000000250101465426447700231200ustar00rootroot00000000000000from typing import Any, Union from unittest.mock import call, MagicMock import pytest import torch from ignite.engine import Engine, Events, EventsList, State from ignite.handlers.base_logger import ( BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler, BaseWeightsHandler, BaseWeightsScalarHandler, ) from tests.ignite.handlers import MockFP16DeepSpeedZeroOptimizer class DummyOutputHandler(BaseOutputHandler): def __call__(self, *args, **kwargs): pass class DummyOptParamsHandler(BaseOptimizerParamsHandler): def __call__(self, engine, logger, event_name, **kwargs): tag_prefix = f"{self.tag}/" if self.tag else "" params = { f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } return params class DummyLogger(BaseLogger): def _create_output_handler(self, *args, **kwargs): return DummyOutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args, **kwargs): return DummyOptParamsHandler(*args, **kwargs) class DummyWeightsHandler(BaseWeightsHandler): def __call__(self, engine: Engine, logger: Any, event_name: Union[str, Events]) -> None: pass class DummyWeightsScalarHandler(BaseWeightsScalarHandler): def __call__(self, engine: Engine, logger: Any, event_name: Union[str, Events]) -> None: pass def test_base_output_handler_wrong_setup(): with pytest.raises(TypeError, match="metric_names should be either a list or equal 'all'"): DummyOutputHandler("tag", metric_names="abc", output_transform=None) with pytest.raises(TypeError, match="output_transform should be a function"): DummyOutputHandler("tag", metric_names=None, output_transform="abc") with pytest.raises(ValueError, match="Either metric_names, output_transform or state_attributes should be defined"): DummyOutputHandler("tag", None, None) with pytest.raises(TypeError, match="global_step_transform should be a function"): DummyOutputHandler("tag", metric_names=["loss"], global_step_transform="abc") with pytest.raises(TypeError, match=r"Argument optimizer should be torch.optim.Optimizer"): DummyOptParamsHandler({}, "lr") def test_base_output_handler_setup_output_metrics(): engine = Engine(lambda engine, batch: None) true_metrics = {"a": 0, "b": 1} engine.state = State(metrics=true_metrics) engine.state.output = 12345 # Only metric_names handler = DummyOutputHandler("tag", metric_names=["a", "b"], output_transform=None) metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/a": 0, "tag/b": 1} # Only metric_names with a warning handler = DummyOutputHandler("tag", metric_names=["a", "c"], output_transform=None) with pytest.warns(UserWarning): metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/a": 0} # Only output as "output" handler = DummyOutputHandler("tag", metric_names=None, output_transform=lambda x: x) metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/output": engine.state.output} # Only output as "loss" handler = DummyOutputHandler("tag", metric_names=None, output_transform=lambda x: {"loss": x}) metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/loss": engine.state.output} # Metrics and output handler = DummyOutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/a": 0, "tag/b": 1, "tag/loss": engine.state.output} # All metrics handler = DummyOutputHandler("tag", metric_names="all", output_transform=None) metrics = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert metrics == {"tag/a": 0, "tag/b": 1} def test_base_output_handler_setup_output_state_attrs(): engine = Engine(lambda engine, batch: None) true_metrics = {"a": 0, "b": 1} engine.state = State(metrics=true_metrics) engine.state.alpha = 3.899 engine.state.beta = torch.tensor(5.499) engine.state.gamma = torch.tensor([2106.0, 6.0]) engine.state.output = 12345 # Only State Attributes handler = DummyOutputHandler( tag="tag", metric_names=None, output_transform=None, state_attributes=["alpha", "beta", "gamma"] ) state_attrs = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert state_attrs == { "tag/alpha": 3.899, "tag/beta": torch.tensor(5.499), "tag/gamma/0": 2106.0, "tag/gamma/1": 6.0, } # Metrics and Attributes handler = DummyOutputHandler( tag="tag", metric_names=["a", "b"], output_transform=None, state_attributes=["alpha", "beta", "gamma"] ) state_attrs = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert state_attrs == { "tag/a": 0, "tag/b": 1, "tag/alpha": 3.899, "tag/beta": torch.tensor(5.499), "tag/gamma/0": 2106.0, "tag/gamma/1": 6.0, } # Metrics, Attributes and output handler = DummyOutputHandler( tag="tag", metric_names="all", output_transform=lambda x: {"loss": x}, state_attributes=["alpha", "beta", "gamma"], ) state_attrs = handler._setup_output_metrics_state_attrs(engine=engine, key_tuple=False) assert state_attrs == { "tag/a": 0, "tag/b": 1, "tag/alpha": 3.899, "tag/beta": torch.tensor(5.499), "tag/gamma/0": 2106.0, "tag/gamma/1": 6.0, "tag/loss": engine.state.output, } def test_opt_params_handler_on_non_torch_optimizers(): tensor = torch.zeros([1], requires_grad=True) base_optimizer = torch.optim.SGD([tensor], lr=0.1234) optimizer = MockFP16DeepSpeedZeroOptimizer(base_optimizer) handler = DummyOptParamsHandler(optimizer=optimizer, param_name="lr") res = handler(engine=None, logger=None, event_name=None) assert isinstance(res, dict) assert "lr/group_0" in res and res["lr/group_0"] == 0.1234 @pytest.mark.parametrize( "event, n_calls, kwargs", [ (Events.ITERATION_STARTED, 50 * 5, {"a": 0}), (Events.ITERATION_COMPLETED, 50 * 5, {}), (Events.EPOCH_STARTED, 5, {}), (Events.EPOCH_COMPLETED, 5, {}), (Events.STARTED, 1, {}), (Events.COMPLETED, 1, {}), (Events.ITERATION_STARTED(every=10), 50 // 10 * 5, {}), (Events.STARTED | Events.COMPLETED, 2, {}), ], ) def test_attach(event, n_calls, kwargs): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) logger = DummyLogger() mock_log_handler = MagicMock() logger.attach(trainer, log_handler=mock_log_handler, event_name=event, **kwargs) trainer.run(data, max_epochs=n_epochs) if isinstance(event, EventsList): events = [e for e in event] else: events = [event] if len(kwargs) > 0: calls = [call(trainer, logger, e, **kwargs) for e in events] else: calls = [call(trainer, logger, e) for e in events] mock_log_handler.assert_has_calls(calls) assert mock_log_handler.call_count == n_calls def test_attach_wrong_event_name(): trainer = Engine(lambda b, e: None) logger = DummyLogger() mock_log_handler = MagicMock() with pytest.raises(RuntimeError, match="Unknown event name"): logger.attach(trainer, log_handler=mock_log_handler, event_name="unknown") events_list = EventsList() events_list._events = ["unknown"] with pytest.raises(RuntimeError, match="Unknown event name"): logger.attach(trainer, log_handler=mock_log_handler, event_name=events_list) def test_attach_on_custom_event(): n_epochs = 10 data = list(range(150)) def _test(event, n_calls, cpe): losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) cpe.attach(trainer) logger = DummyLogger() mock_log_handler = MagicMock() logger.attach(trainer, log_handler=mock_log_handler, event_name=event) trainer.run(data, max_epochs=n_epochs) mock_log_handler.assert_called_with(trainer, logger, event) assert mock_log_handler.call_count == n_calls @pytest.mark.parametrize( "event, n_calls", [ (Events.ITERATION_STARTED, 50 * 5), (Events.ITERATION_COMPLETED, 50 * 5), (Events.EPOCH_STARTED, 5), (Events.EPOCH_COMPLETED, 5), (Events.STARTED, 1), (Events.COMPLETED, 1), (Events.ITERATION_STARTED(every=10), 50 // 10 * 5), ], ) def test_as_context_manager(event, n_calls): n_epochs = 5 data = list(range(50)) class _DummyLogger(DummyLogger): def __init__(self, writer): self.writer = writer def close(self): self.writer.close() global close_counter close_counter = 0 losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) writer = MagicMock() writer.close = MagicMock() with _DummyLogger(writer) as logger: assert isinstance(logger, _DummyLogger) trainer = Engine(update_fn) mock_log_handler = MagicMock() logger.attach(trainer, log_handler=mock_log_handler, event_name=event) trainer.run(data, max_epochs=n_epochs) mock_log_handler.assert_called_with(trainer, logger, event) assert mock_log_handler.call_count == n_calls writer.close.assert_called_once_with() def test_base_weights_handler_wrong_setup(): with pytest.raises(TypeError, match="Argument model should be of type torch.nn.Module"): DummyWeightsHandler(None) def test_base_weights_scalar_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) with pytest.raises(TypeError, match="Argument reduction should be callable"): DummyWeightsScalarHandler(model, reduction=123) with pytest.raises(TypeError, match="Output of the reduction function should be a scalar"): DummyWeightsScalarHandler(model, reduction=lambda x: x) ignite-0.5.1/tests/ignite/handlers/test_checkpoint.py000066400000000000000000001744071465426447700230150ustar00rootroot00000000000000import os import stat import warnings from collections import OrderedDict from collections.abc import Mapping from pathlib import Path from unittest.mock import MagicMock import pytest import torch import torch.nn as nn from packaging.version import Version import ignite.distributed as idist from ignite.engine import Engine, Events, State from ignite.handlers import Checkpoint, DiskSaver, EarlyStopping, global_step_from_engine, ModelCheckpoint from ignite.handlers.checkpoint import BaseSaveHandler _PREFIX = "PREFIX" class DummyModel(nn.Module): def __init__(self): super(DummyModel, self).__init__() self.net = nn.Linear(1, 1) def forward(self, x): return self.net(x) model = DummyModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) class DummyPretrainedModel(nn.Module): def __init__(self): super(DummyPretrainedModel, self).__init__() self.features = nn.Linear(4, 2, bias=False) self.fc = nn.Linear(2, 1) def forward(self, x): x = self.features(x) x = self.fc(x) return x def test_checkpoint_wrong_input(): with pytest.raises(TypeError, match=r"Argument `to_save` should be a dictionary"): Checkpoint(12, lambda x: x, "prefix") with pytest.raises(TypeError, match=r"Argument `to_save` should be a dictionary"): Checkpoint([12], lambda x: x, "prefix") with pytest.raises(TypeError, match=r"should have `state_dict`"): Checkpoint({"model": {"abc": 12}}, lambda x: x, "prefix") to_save = {"model": model} with pytest.raises( TypeError, match=r"Argument `save_handler` should be a string or Path object or callable or inherit from BaseSaveHandler", ): Checkpoint(to_save, 12, "prefix") with pytest.raises(TypeError, match=r"global_step_transform should be a function."): Checkpoint(to_save, lambda x: x, score_function=lambda e: 123, score_name="acc", global_step_transform=123) with pytest.raises(ValueError, match=r"Cannot have key 'checkpointer' if `include_self` is True"): Checkpoint({"checkpointer": model}, lambda x: x, include_self=True) class ImmutableMapping(Mapping): def __init__(self, d): self._dict = d def __getitem__(self, key): return self._dict[key] def __iter__(self): return iter(self._dict) def __len__(self): return len(self._dict) with pytest.raises(TypeError, match="If `include_self` is True, then `to_save` must be mutable"): Checkpoint(ImmutableMapping(to_save), lambda x: x, include_self=True) checkpoint = Checkpoint(to_save, lambda x: x) with pytest.raises(AttributeError, match="Checkpoint's `save_handler` should be of type `DiskSaver`"): checkpoint.reload_objects(to_save) def test_save_handler_as_str(dirname): to_save = {"model": model} checkpointer = Checkpoint(to_save, save_handler=dirname) assert isinstance(checkpointer.save_handler, DiskSaver) def test_checkpoint_score_function_wrong_output(): to_save = {"model": model} checkpointer = Checkpoint(to_save, lambda x: x, score_function=lambda e: {"1": 1}, score_name="acc") trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) with pytest.raises(ValueError, match=r"Output of score_function should be a number"): checkpointer(trainer) @pytest.mark.parametrize( "to_save, obj, name", [ ({"model": model}, model.state_dict(), "model"), ( {"model": model, "optimizer": optimizer}, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", ), ], ) def test_checkpoint_default(to_save, obj, name): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler) assert checkpointer.last_checkpoint is None trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": None, "priority": 0} save_handler.assert_called_with(obj, f"{name}_0.pt", metadata) trainer.state.epoch = 12 trainer.state.iteration = 1234 checkpointer(trainer) assert save_handler.call_count == 2 metadata["priority"] = 1234 save_handler.assert_called_with(obj, f"{name}_1234.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_0.pt") assert checkpointer.last_checkpoint == f"{name}_1234.pt" @pytest.mark.parametrize( "to_save, obj, name", [ ({"model": model}, model.state_dict(), "model"), ( {"model": model, "optimizer": optimizer}, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", ), ], ) def test_checkpoint_include_self_state_dict(to_save, obj, name): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler, include_self=True) assert checkpointer.last_checkpoint is None trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpointer(trainer) assert save_handler.call_count == 1 fname = f"{name}_0.pt" obj["checkpointer"] = OrderedDict([("_saved", [(0, fname)])]) metadata = {"basename": name, "score_name": None, "priority": 0} save_handler.assert_called_with(obj, fname, metadata) # Swap object, state should be maintained checkpointer2 = Checkpoint(to_save, save_handler=save_handler, include_self=True) checkpointer2.load_state_dict(checkpointer.state_dict()) assert checkpointer2.last_checkpoint == fname trainer.state.epoch = 12 trainer.state.iteration = 1234 checkpointer2(trainer) assert save_handler.call_count == 2 metadata["priority"] = 1234 # This delete only happens if state was restored correctly. save_handler.remove.assert_called_with(f"{name}_0.pt") fname = f"{name}_1234.pt" obj["checkpointer"] = OrderedDict([("_saved", [(1234, fname)])]) save_handler.assert_called_with(obj, fname, metadata) assert save_handler.remove.call_count == 1 assert checkpointer2.last_checkpoint == fname def test_checkpoint_with_dp(): dp_model = nn.DataParallel(model) to_save = {"model": dp_model} save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": "model", "score_name": None, "priority": 0} save_handler.assert_called_with(model.state_dict(), "model_0.pt", metadata) @pytest.mark.parametrize("filename_prefix", ["", "dummytask"]) @pytest.mark.parametrize( "to_save, obj, name", [ ({"model": model}, model.state_dict(), "model"), ( {"model": model, "optimizer": optimizer}, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", ), ], ) def test_checkpoint_with_global_step_transform(filename_prefix, to_save, obj, name): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint( to_save, save_handler=save_handler, filename_prefix=filename_prefix, global_step_transform=lambda e, _: e.state.epoch, ) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=2, iteration=1) checkpointer(trainer) assert save_handler.call_count == 1 if len(filename_prefix) > 0: filename_prefix += "_" metadata = {"basename": f"{filename_prefix}{name}", "score_name": None, "priority": 2} save_handler.assert_called_with(obj, f"{filename_prefix}{name}_2.pt", metadata) trainer.state.epoch = 12 trainer.state.iteration = 1234 checkpointer(trainer) assert save_handler.call_count == 2 metadata["priority"] = 12 save_handler.assert_called_with(obj, f"{filename_prefix}{name}_12.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{filename_prefix}{name}_2.pt") assert checkpointer.last_checkpoint == f"{filename_prefix}{name}_12.pt" @pytest.mark.parametrize( "to_save, obj, name", [ ({"model": model}, model.state_dict(), "model"), ( {"model": model, "optimizer": optimizer}, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", ), ], ) def test_checkpoint_with_score_function(to_save, obj, name): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler, score_function=lambda e: e.state.score) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=1, iteration=1, score=0.77) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": None, "priority": 0.77} save_handler.assert_called_with(obj, f"{name}_0.7700.pt", metadata) trainer.state.epoch = 12 trainer.state.iteration = 1234 trainer.state.score = 0.78 checkpointer(trainer) assert save_handler.call_count == 2 metadata["priority"] = 0.78 save_handler.assert_called_with(obj, f"{name}_0.7800.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_0.7700.pt") assert checkpointer.last_checkpoint == f"{name}_0.7800.pt" def test_checkpoint_with_score_name_only(): to_save = {"model": model} obj = model.state_dict() name = "model" save_handler = MagicMock(spec=BaseSaveHandler) trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) trainer.state = State(epoch=11, iteration=1) checkpointer = Checkpoint( to_save, save_handler=save_handler, global_step_transform=lambda _1, _2: trainer.state.epoch, score_name="val_acc", ) evaluator.state = State(epoch=1, iteration=1000, metrics={"val_acc": 0.77}) checkpointer(evaluator) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": "val_acc", "priority": 0.77} save_handler.assert_called_with(obj, f"{name}_11_val_acc=0.7700.pt", metadata) trainer.state.epoch = 12 evaluator.state.metrics["val_acc"] = 0.78 checkpointer(evaluator) assert save_handler.call_count == 2 metadata["priority"] = 0.78 save_handler.assert_called_with(obj, f"{name}_12_val_acc=0.7800.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_11_val_acc=0.7700.pt") assert checkpointer.last_checkpoint == f"{name}_12_val_acc=0.7800.pt" @pytest.mark.parametrize( "to_save, obj, name", [ ({"model": model}, model.state_dict(), "model"), ( {"model": model, "optimizer": optimizer}, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", ), ], ) def test_checkpoint_with_score_name_and_function(to_save, obj, name): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint( to_save, save_handler=save_handler, score_name="loss", score_function=lambda e: e.state.score ) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=1, iteration=1, score=-0.77) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": "loss", "priority": -0.77} save_handler.assert_called_with(obj, f"{name}_loss=-0.7700.pt", metadata) trainer.state.epoch = 12 trainer.state.iteration = 1234 trainer.state.score = -0.76 checkpointer(trainer) assert save_handler.call_count == 2 metadata["priority"] = -0.76 save_handler.assert_called_with(obj, f"{name}_loss=-0.7600.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_loss=-0.7700.pt") assert checkpointer.last_checkpoint == f"{name}_loss=-0.7600.pt" def test_checkpoint_with_int_score(): def _test(to_save, obj, name, score_name=None): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint( to_save, save_handler=save_handler, score_name=score_name, score_function=lambda e: e.state.epoch ) if score_name is None: score_name = "" else: score_name += "=" trainer = Engine(lambda e, b: None) trainer.state = State(epoch=1, iteration=1) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": score_name[:-1] if len(score_name) > 0 else None, "priority": 1} save_handler.assert_called_with(obj, f"{name}_{score_name}1.pt", metadata) trainer.state.epoch = 12 trainer.state.iteration = 1234 checkpointer(trainer) assert save_handler.call_count == 2 metadata["priority"] = 12 save_handler.assert_called_with(obj, f"{name}_{score_name}12.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_{score_name}1.pt") assert checkpointer.last_checkpoint == f"{name}_{score_name}12.pt" model = DummyModel() to_save = {"model": model} _test(to_save, model.state_dict(), "model") _test(to_save, model.state_dict(), "model", "epoch") model = DummyModel() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) to_save = {"model": model, "optimizer": optimizer} _test(to_save, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint") _test(to_save, {"model": model.state_dict(), "optimizer": optimizer.state_dict()}, "checkpoint", "epoch") def test_checkpoint_with_score_function_and_trainer_epoch(): to_save = {"model": model} obj = model.state_dict() name = "model" save_handler = MagicMock(spec=BaseSaveHandler) trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) trainer.state = State(epoch=11, iteration=1) checkpointer = Checkpoint( to_save, save_handler=save_handler, global_step_transform=lambda _1, _2: trainer.state.epoch, score_function=lambda e: e.state.metrics["val_acc"], ) evaluator.state = State(epoch=1, iteration=1000, metrics={"val_acc": 0.77}) checkpointer(evaluator) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": None, "priority": 0.77} save_handler.assert_called_with(obj, f"{name}_11_0.7700.pt", metadata) trainer.state.epoch = 12 evaluator.state.metrics["val_acc"] = 0.78 checkpointer(evaluator) assert save_handler.call_count == 2 metadata["priority"] = 0.78 save_handler.assert_called_with(obj, f"{name}_12_0.7800.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_11_0.7700.pt") assert checkpointer.last_checkpoint == f"{name}_12_0.7800.pt" def test_checkpoint_with_score_name_and_function_and_trainer_epoch(): to_save = {"model": model} obj = model.state_dict() name = "model" save_handler = MagicMock(spec=BaseSaveHandler) trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) trainer.state = State(epoch=11, iteration=1) checkpointer = Checkpoint( to_save, save_handler=save_handler, global_step_transform=lambda _1, _2: trainer.state.epoch, score_name="val_acc", score_function=lambda e: e.state.metrics["val_acc"], ) evaluator.state = State(epoch=1, iteration=1000, metrics={"val_acc": 0.77}) checkpointer(evaluator) assert save_handler.call_count == 1 metadata = {"basename": name, "score_name": "val_acc", "priority": 0.77} save_handler.assert_called_with(obj, f"{name}_11_val_acc=0.7700.pt", metadata) trainer.state.epoch = 12 evaluator.state.metrics["val_acc"] = 0.78 checkpointer(evaluator) assert save_handler.call_count == 2 metadata["priority"] = 0.78 save_handler.assert_called_with(obj, f"{name}_12_val_acc=0.7800.pt", metadata) assert save_handler.remove.call_count == 1 save_handler.remove.assert_called_with(f"{name}_11_val_acc=0.7700.pt") assert checkpointer.last_checkpoint == f"{name}_12_val_acc=0.7800.pt" def test_checkpoint_last_checkpoint(): save_handler = MagicMock(spec=BaseSaveHandler) to_save = {"model": DummyModel()} checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=None) trainer = Engine(lambda e, b: None) for i in range(10): trainer.state = State(epoch=1, iteration=i) checkpointer(trainer) assert save_handler.call_count == 10 assert checkpointer.last_checkpoint == "model_9.pt" def test_checkpoint_last_checkpoint_on_score(): save_handler = MagicMock(spec=BaseSaveHandler) to_save = {"model": DummyModel()} checkpointer = Checkpoint( to_save, save_handler=save_handler, n_saved=None, score_name="val_acc", score_function=lambda e: e.state.metrics["val_acc"], ) trainer = Engine(lambda e, b: None) val_acc = 0.0 for i in range(10): val_acc = i * 0.1 trainer.state = State(epoch=1, iteration=i, metrics={"val_acc": val_acc}) checkpointer(trainer) assert save_handler.call_count == 10 assert checkpointer.last_checkpoint == "model_val_acc=0.9000.pt" def test_checkpoint_save_handler_callable(): def save_handler(c, f): assert f == "model_12.pt" to_save = {"model": DummyModel()} checkpointer = Checkpoint(to_save, save_handler=save_handler) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=1, iteration=12) checkpointer(trainer) def test_model_checkpoint_args_validation(dirname): existing = dirname / "existing_dir" nonempty = dirname / "nonempty" existing.mkdir(parents=True) nonempty.mkdir(parents=True) with open(nonempty / f"{_PREFIX}_name_0.pt", "w"): pass with pytest.raises(ValueError, match=r"with extension '.pt' are already present "): ModelCheckpoint(nonempty, _PREFIX) with pytest.raises(ValueError, match=r"Directory path '\S+' is not found"): ModelCheckpoint(dirname / "non_existing_dir", _PREFIX, create_dir=False) with pytest.raises(TypeError, match=r"global_step_transform should be a function"): ModelCheckpoint(existing, _PREFIX, create_dir=False, global_step_transform=1234) h = ModelCheckpoint(dirname, _PREFIX, create_dir=False) assert h.last_checkpoint is None with pytest.raises(RuntimeError, match=r"No objects to checkpoint found."): h(None, []) def test_model_checkpoint_simple_recovery(dirname): h = ModelCheckpoint(dirname, _PREFIX, create_dir=False) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=1) model = DummyModel() to_save = {"model": model} h(engine, to_save) fname = h.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() loaded_objects = torch.load(fname) assert loaded_objects == model.state_dict() to_load = {"model": DummyModel()} h.reload_objects(to_load=to_load, global_step=1) assert to_load["model"].state_dict() == model.state_dict() @pytest.mark.parametrize("ext, require_empty", [(".txt", True), (".pt", False)]) def test_model_checkpoint_simple_recovery_from_existing_non_empty(ext, require_empty, dirname): previous_fname = dirname / f"{_PREFIX}_obj_{1}{ext}" with open(previous_fname, "w") as f: f.write("test") h = ModelCheckpoint(dirname, _PREFIX, create_dir=True, require_empty=require_empty) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=1) to_save = {"model": model} h(engine, to_save) fname = h.last_checkpoint ext = ".pt" assert isinstance(fname, Path) assert dirname / f"{_PREFIX}_model_{1}{ext}" == fname assert fname.exists() assert previous_fname.exists() loaded_objects = torch.load(fname) assert loaded_objects == model.state_dict() to_load = {"model": DummyModel()} h.reload_objects(to_load=to_load, global_step=1) assert to_load["model"].state_dict() == model.state_dict() fname.unlink() def test_model_checkpoint_invalid_save_handler(dirname): h = ModelCheckpoint(dirname, _PREFIX) to_save = {"model": DummyModel()} # Redefine save_handler h.save_handler = lambda x, y: None h(Engine(lambda x, y: None), to_save) with pytest.raises( RuntimeError, match=rf"Internal error, save_handler should be DiskSaver, but has {type(h.save_handler)}." ): h.last_checkpoint def test_disk_saver_atomic(dirname): model = DummyModel() to_save_serializable = {"model": model} to_save_non_serializable = {"model": lambda x: x} def _test_existence(atomic, _to_save, expected): saver = DiskSaver(dirname, atomic=atomic, create_dir=False, require_empty=False) fname = "test.pt" try: with warnings.catch_warnings(): # Ignore torch/serialization.py:292: UserWarning: Couldn't retrieve source code for container of type # DummyModel. It won't be checked for correctness upon loading. warnings.simplefilter("ignore", category=UserWarning) saver(_to_save, fname) except Exception: pass fp = saver.dirname / fname assert fp.exists() == expected if expected: # related to https://github.com/pytorch/ignite/issues/1876 mode = stat.filemode(fp.stat().st_mode) assert [mode[1], mode[4], mode[7]] == ["r", "r", "r"], mode if expected: saver.remove(fname) _test_existence(atomic=False, _to_save=to_save_serializable, expected=True) _test_existence(atomic=False, _to_save=to_save_non_serializable, expected=True) _test_existence(atomic=True, _to_save=to_save_serializable, expected=True) _test_existence(atomic=True, _to_save=to_save_non_serializable, expected=False) @pytest.mark.skipif( Version(torch.__version__) < Version("1.4.0"), reason="Zipfile serialization was introduced in 1.4.0" ) def test_disk_saver_zipfile_serialization_keyword(dirname): model = DummyModel() to_save = {"model": model} saver = DiskSaver(dirname, create_dir=False, _use_new_zipfile_serialization=False) fname = "test.pt" saver(to_save, fname) fp = saver.dirname / fname assert fp.exists() saver.remove(fname) def test_disk_saver_unknown_keyword(dirname): model = DummyModel() to_save = {"model": model} saver = DiskSaver(dirname, create_dir=False, unknown_keyword="") fname = "test.pt" with pytest.raises(TypeError, match=r"got an unexpected keyword argument 'unknown_keyword'"): saver(to_save, fname) def test_last_k(dirname): h = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=2) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) model = DummyModel() to_save = {"model": model} h(engine, to_save) for i in range(1, 9): engine.state.iteration = i h(engine, to_save) expected = [f"{_PREFIX}_model_{i}.pt" for i in [7, 8]] assert sorted(os.listdir(dirname)) == expected, f"{sorted(os.listdir(dirname))} vs {expected}" def test_disabled_n_saved(dirname): h = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=None) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) model = DummyModel() to_save = {"model": model} num_iters = 100 for i in range(num_iters): engine.state.iteration = i h(engine, to_save) saved_files = sorted(os.listdir(dirname)) assert len(saved_files) == num_iters, f"{saved_files}" expected = sorted([f"{_PREFIX}_model_{i}.pt" for i in range(num_iters)]) assert saved_files == expected, f"{saved_files} vs {expected}" def test_best_k(dirname): scores = iter([1.2, -2.0, 3.1, -4.0]) def score_function(_): return next(scores) h = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=2, score_function=score_function) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) model = DummyModel() to_save = {"model": model} for _ in range(4): h(engine, to_save) expected = [f"{_PREFIX}_model_{i:.4f}.pt" for i in [1.2, 3.1]] assert sorted(os.listdir(dirname)) == expected def test_best_k_with_suffix(dirname): scores = [0.3456789, 0.1234, 0.4567, 0.134567] scores_iter = iter(scores) def score_function(engine): return next(scores_iter) h = ModelCheckpoint( dirname, _PREFIX, create_dir=False, n_saved=2, score_function=score_function, score_name="val_loss" ) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) model = DummyModel() to_save = {"model": model} for _ in range(4): engine.state.epoch += 1 h(engine, to_save) expected = [f"{_PREFIX}_model_val_loss={scores[e - 1]:.4}.pt" for e in [1, 3]] assert sorted(os.listdir(dirname)) == expected def test_removes_each_score_at_most_once(dirname): scores = [0, 1, 1, 2, 3] scores_iter = iter(scores) def score_function(_): return next(scores_iter) h = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=2, score_function=score_function) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) model = DummyModel() to_save = {"model": model} for _ in range(len(scores)): h(engine, to_save) # If a score was removed multiple times, the code above would have raise a # FileNotFoundError. So this just tests the absence of such a failure # without futher assertions. def test_with_engine(dirname): def update_fn(_1, _2): pass name = "model" engine = Engine(update_fn) handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=2) model = DummyModel() to_save = {"model": model} engine.add_event_handler(Events.EPOCH_COMPLETED, handler, to_save) engine.run([0, 1], max_epochs=4) expected = sorted([f"{_PREFIX}_{name}_{i}.pt" for i in [3 * 2, 4 * 2]]) assert sorted(os.listdir(dirname)) == expected def test_with_state_dict(dirname): def update_fn(_1, _2): pass engine = Engine(update_fn) handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) model = DummyModel() to_save = {"model": model} engine.add_event_handler(Events.EPOCH_COMPLETED, handler, to_save) engine.run([0, 1, 2], max_epochs=4) saved_model = dirname / os.listdir(dirname)[0] load_model = torch.load(saved_model) assert not isinstance(load_model, DummyModel) assert isinstance(load_model, dict) model_state_dict = model.state_dict() loaded_model_state_dict = load_model for key in model_state_dict.keys(): assert key in loaded_model_state_dict model_value = model_state_dict[key] loaded_model_value = loaded_model_state_dict[key] assert model_value.numpy() == loaded_model_value.numpy() def test_valid_state_dict_save(dirname): model = DummyModel() h = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=0) to_save = {"name": 42} with pytest.raises(TypeError, match=r"should have `state_dict` method"): h(engine, to_save) to_save = {"name": model} try: h(engine, to_save) except ValueError: pytest.fail("Unexpected ValueError") def _test_save_model_optimizer_lr_scheduler_with_state_dict(device, dirname, just_on_zero_rank=False): torch.manual_seed(23) model = DummyModel().to(device) optim = torch.optim.SGD(model.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.5) def update_fn(engine, batch): x = torch.rand((4, 1)).to(device) optim.zero_grad() y = model(x) # Below code raises: RuntimeError: torch_xla/csrc/tensor_impl.cpp:144 : XLA tensors do not have storage # Probably related to https://github.com/pytorch/xla/issues/2576 # loss = y.pow(2.0).sum() loss = y.sum() loss.backward() if idist.has_xla_support: import torch_xla.core.xla_model as xm xm.optimizer_step(optim, barrier=True) else: optim.step() lr_scheduler.step() engine = Engine(update_fn) if (not just_on_zero_rank) or (just_on_zero_rank and idist.get_rank() == 0): handler = ModelCheckpoint(dirname, _PREFIX, create_dir=True, n_saved=1) engine.add_event_handler( Events.EPOCH_COMPLETED, handler, {"model": model, "optimizer": optim, "lr_scheduler": lr_scheduler} ) engine.run([0, 1, 2], max_epochs=4) idist.barrier() saved_objects = sorted(os.listdir(dirname)) # saved object is ['PREFIX_checkpoint_3.pt', ] saved_checkpoint = dirname / saved_objects[0] if idist.has_xla_support: device = "cpu" loaded_obj = torch.load(saved_checkpoint, map_location=device) for f in ["model", "optimizer", "lr_scheduler"]: assert f in loaded_obj loaded_model_state_dict = loaded_obj["model"] loaded_optimizer_state_dict = loaded_obj["optimizer"] loaded_lr_scheduler_state_dict = loaded_obj["lr_scheduler"] assert isinstance(loaded_model_state_dict, dict) assert isinstance(loaded_optimizer_state_dict, dict) assert isinstance(loaded_lr_scheduler_state_dict, dict) # Specifically move device to CPU first model_state_dict = model.cpu().state_dict() for key in model_state_dict.keys(): assert key in loaded_model_state_dict model_value = model_state_dict[key] loaded_model_value = loaded_model_state_dict[key] assert model_value.cpu().numpy() == loaded_model_value.cpu().numpy() optim_state_dict = optim.state_dict() for key in optim_state_dict.keys(): assert key in loaded_optimizer_state_dict optim_value = optim_state_dict[key] loaded_optim_value = loaded_optimizer_state_dict[key] if idist.get_rank() == 0: assert optim_value == loaded_optim_value lr_scheduler_state_dict = lr_scheduler.state_dict() for key in lr_scheduler_state_dict.keys(): assert key in loaded_lr_scheduler_state_dict lr_scheduler_value = lr_scheduler_state_dict[key] loaded_lr_scheduler_value = loaded_lr_scheduler_state_dict[key] assert lr_scheduler_value == loaded_lr_scheduler_value def test_save_model_optimizer_lr_scheduler_with_state_dict(dirname): _test_save_model_optimizer_lr_scheduler_with_state_dict("cpu", dirname) def _test_save_model_optimizer_lr_scheduler_with_validation(device, dirname, just_on_zero_rank=False): torch.manual_seed(23) def _build_objects(acc_list): model = DummyModel().to(device) optim = torch.optim.SGD(model.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.5) def update_fn(engine, batch): x = torch.rand((4, 1)).to(device) optim.zero_grad() y = model(x) loss = y.pow(2.0).sum() loss.backward() if idist.has_xla_support: import torch_xla.core.xla_model as xm xm.optimizer_step(optim, barrier=True) else: optim.step() lr_scheduler.step() trainer = Engine(update_fn) evaluator = Engine(lambda e, b: None) acc_iter = iter(acc_list) @evaluator.on(Events.EPOCH_COMPLETED) def setup_result(): evaluator.state.metrics["accuracy"] = next(acc_iter) @trainer.on(Events.EPOCH_COMPLETED) def run_eval(): evaluator.run([0, 1, 2]) def score_function(engine): return engine.state.metrics["accuracy"] save_handler = DiskSaver(dirname, create_dir=True, require_empty=False) early_stop = EarlyStopping(score_function=score_function, patience=2, trainer=trainer) evaluator.add_event_handler(Events.COMPLETED, early_stop) checkpointer = Checkpoint( { "trainer": trainer, "model": model, "optim": optim, "lr_scheduler": lr_scheduler, "early_stop": early_stop, }, save_handler, include_self=True, global_step_transform=global_step_from_engine(trainer), ) evaluator.add_event_handler(Events.COMPLETED, checkpointer) return trainer, evaluator, model, optim, lr_scheduler, early_stop, checkpointer trainer, evaluator, model, optim, scheduler, early, checkpointer = _build_objects([0.2, 0.3, 0.2]) trainer.run([0, 1, 2], max_epochs=3) saved_objects = sorted(os.listdir(dirname)) saved_checkpoint = dirname / saved_objects[0] loaded_obj = torch.load(saved_checkpoint, map_location=device) for f in ["trainer", "model", "optim", "lr_scheduler", "early_stop", "checkpointer"]: assert f in loaded_obj trainer2, evaluator2, model2, optim2, scheduler2, early2, checkpointer2 = _build_objects([0.1, 0.1, 0.1]) Checkpoint.load_objects( { "trainer": trainer2, "model": model2, "optim": optim2, "lr_scheduler": scheduler2, "early_stop": early2, "checkpointer": checkpointer2, }, loaded_obj, ) assert checkpointer2.last_checkpoint == checkpointer.last_checkpoint model_state_dict = model.cpu().state_dict() loaded_model_state_dict = model2.cpu().state_dict() for key in model_state_dict.keys(): assert key in loaded_model_state_dict model_value = model_state_dict[key] loaded_model_value = loaded_model_state_dict[key] assert model_value.cpu().numpy() == loaded_model_value.cpu().numpy() optim_state_dict = optim.state_dict() loaded_optimizer_state_dict = optim2.state_dict() # "params" contains tensor IDs, which are different del optim_state_dict["param_groups"][0]["params"] del loaded_optimizer_state_dict["param_groups"][0]["params"] for key in optim_state_dict.keys(): assert key in loaded_optimizer_state_dict optim_value = optim_state_dict[key] loaded_optim_value = loaded_optimizer_state_dict[key] if idist.get_rank() == 0: assert optim_value == loaded_optim_value def _check_state_dict(original, loaded): original_state_dict = original.state_dict() loaded_state_dict = loaded.state_dict() for key in original_state_dict.keys(): assert key in loaded_state_dict original_value = original_state_dict[key] loaded_value = loaded_state_dict[key] assert original_value == loaded_value _check_state_dict(trainer, trainer2) _check_state_dict(scheduler, scheduler2) _check_state_dict(early, early2) _check_state_dict(checkpointer, checkpointer2) trainer2.run([0, 1, 2], max_epochs=6) # early stopping should have triggered assert trainer2.state.epoch == 4 # If Checkpoint's state was restored correctly, it should continue to respect n_saved # and delete old checkpoints, and have the correct last_checkpoint. assert os.listdir(dirname) == ["checkpoint_4.pt"] assert checkpointer2.last_checkpoint == dirname / "checkpoint_4.pt" def test_save_model_optimizer_lr_scheduler_with_validation(dirname): _test_save_model_optimizer_lr_scheduler_with_validation("cpu", dirname) def test_checkpoint_load_objects(): with pytest.raises(TypeError, match=r"Argument checkpoint should be a string or a dictionary"): Checkpoint.load_objects({}, []) with pytest.raises(TypeError, match=r"should have `load_state_dict` method"): Checkpoint.load_objects({"a": None}, {"a": None}) with pytest.raises(TypeError, match=r"should have `load_state_dict` method"): Checkpoint.load_objects({"a": {"b": None}}, {"a": {"b": None}}) model = DummyModel() to_load = {"model": model, "another_model": model} with pytest.raises(ValueError, match=r"Key 'model' from x is not found in y"): Checkpoint.load_objects(to_load, {}) model = DummyModel() to_load = {"model": model} model2 = DummyModel() chkpt = {"model": model2.state_dict()} Checkpoint.load_objects(to_load, chkpt) assert model.state_dict() == model2.state_dict() chkpt = {"models": [{"model1": {"abc": model.state_dict()}}, model.state_dict()]} to_load = {"models": [{"model1": {"abc": model}}, model]} Checkpoint.load_objects(to_load, chkpt) assert model.state_dict() == model2.state_dict() def test_checkpoint_load_objects_from_saved_file(dirname): def _get_single_obj_to_save(): model = DummyModel() to_save = {"model": model} return to_save def _get_multiple_objs_to_save(): model = DummyModel() optim = torch.optim.SGD(model.parameters(), lr=0.001) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.5) to_save = { "model": model, "optimizer": optim, "lr_scheduler": lr_scheduler, } return to_save trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) # case: load from filepath handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) to_save = _get_multiple_objs_to_save() handler(trainer, to_save) fname = handler.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() Checkpoint.load_objects(to_save, str(fname)) Checkpoint.load_objects(to_save, fname) fname.unlink() # case: multiple objects handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) to_save = _get_multiple_objs_to_save() handler(trainer, to_save) fname = handler.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() loaded_objects = torch.load(fname) Checkpoint.load_objects(to_save, loaded_objects) fname.unlink() # case: saved multiple objects, loaded single object handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) to_save = _get_multiple_objs_to_save() handler(trainer, to_save) fname = handler.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() loaded_objects = torch.load(fname) to_load = {"model": to_save["model"]} Checkpoint.load_objects(to_load, loaded_objects) fname.unlink() # case: single object handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) to_save = _get_single_obj_to_save() handler(trainer, to_save) fname = handler.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() loaded_objects = torch.load(fname) Checkpoint.load_objects(to_save, loaded_objects) fname.unlink() def test_load_checkpoint_with_different_num_classes(dirname): model = DummyPretrainedModel() to_save_single_object = {"model": model} trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=1) handler(trainer, to_save_single_object) fname = handler.last_checkpoint loaded_checkpoint = torch.load(fname) to_load_single_object = {"pretrained_features": model.features} with pytest.raises(RuntimeError): Checkpoint.load_objects(to_load_single_object, loaded_checkpoint) Checkpoint.load_objects(to_load_single_object, loaded_checkpoint, strict=False) loaded_weights = to_load_single_object["pretrained_features"].state_dict()["weight"] assert torch.all(model.state_dict()["features.weight"].eq(loaded_weights)) def test_disksaver_wrong_input(dirname): with pytest.raises(ValueError, match=r"Directory path '\S+' is not found"): DiskSaver("/tmp/non-existing-folder", create_dir=False) def _test(ext): previous_fname = dirname / f"{_PREFIX}_obj_{1}{ext}" with open(previous_fname, "w") as f: f.write("test") with pytest.raises(ValueError, match=r"with extension '.pt' are already present"): DiskSaver(dirname, require_empty=True) _test(".pt") def _test_checkpoint_with_ddp(device): torch.manual_seed(0) model = DummyModel().to(device) device_ids = None if "cpu" in device.type else [device] ddp_model = nn.parallel.DistributedDataParallel(model, device_ids=device_ids) to_save = {"model": ddp_model} save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpointer(trainer) assert save_handler.call_count == 1 metadata = {"basename": "model", "score_name": None, "priority": 0} save_handler.assert_called_with(model.state_dict(), "model_0.pt", metadata) def _test_checkpoint_load_objects_ddp(device): model = DummyModel().to(device) device_ids = None if "cpu" in device.type else [device] ddp_model = nn.parallel.DistributedDataParallel(model, device_ids=device_ids) opt = torch.optim.SGD(ddp_model.parameters(), lr=0.01) # single object: to_load = {"model": ddp_model} checkpoint = ddp_model.module.state_dict() Checkpoint.load_objects(to_load, checkpoint) # multiple objects: to_load = {"model": ddp_model, "opt": opt} checkpoint = {"model": ddp_model.module.state_dict(), "opt": opt.state_dict()} Checkpoint.load_objects(to_load, checkpoint) def _test_checkpoint_with_ZeRO(device, dirname, local_rank): from torch.distributed.optim import ZeroRedundancyOptimizer model = DummyModel().to(device) opt = ZeroRedundancyOptimizer(model.parameters(), torch.optim.SGD, lr=0.01) mocked_opt = MagicMock(ZeroRedundancyOptimizer, wraps=opt) # A `step` should be called to optimizer state get populated. out = model(torch.tensor([1.0], device=device)) out.backward() mocked_opt.step() to_save = {"model": model, "optim": mocked_opt} checkpointer = Checkpoint(to_save, dirname, save_on_rank=1) engine = Engine(lambda e, b: None) checkpointer(engine) mocked_opt.consolidate_state_dict.assert_called_once_with(to=1) if local_rank == 1: loaded_state_dict = torch.load(dirname / "checkpoint_0.pt", map_location=device)["optim"] state_dict = opt.state_dict() assert loaded_state_dict == state_dict @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo, dirname, get_rank_zero_dirname, local_rank): device = idist.device() rank_zero_dirname = get_rank_zero_dirname() _test_save_model_optimizer_lr_scheduler_with_state_dict(device, rank_zero_dirname / "1") _test_save_model_optimizer_lr_scheduler_with_state_dict(device, rank_zero_dirname / "2", just_on_zero_rank=True) _test_checkpoint_with_ddp(device) _test_checkpoint_load_objects_ddp(device) from ignite.handlers.checkpoint import HAVE_ZERO if HAVE_ZERO: _test_checkpoint_with_ZeRO(device, dirname, local_rank) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl, get_rank_zero_dirname): device = idist.device() dirname = get_rank_zero_dirname() _test_save_model_optimizer_lr_scheduler_with_state_dict(device, dirname / "1") _test_save_model_optimizer_lr_scheduler_with_state_dict("cpu", dirname / "2", just_on_zero_rank=True) _test_checkpoint_with_ddp(device=device) _test_checkpoint_load_objects_ddp(device=device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor, get_rank_zero_dirname): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() dirname = get_rank_zero_dirname() gloo_hvd_executor( _test_save_model_optimizer_lr_scheduler_with_state_dict, (device, dirname / "1"), np=nproc, do_init=True, ) gloo_hvd_executor( _test_save_model_optimizer_lr_scheduler_with_state_dict, ("cpu", dirname / "2", True), np=nproc, do_init=True, ) def _test_tpu_saves_to_cpu(device, dirname): torch.manual_seed(0) h = ModelCheckpoint(dirname, _PREFIX) engine = Engine(lambda e, b: None) engine.state = State(epoch=0, iteration=1) model = DummyModel().to(device) to_save = {"model": model} h(engine, to_save) idist.barrier() fname = h.last_checkpoint assert isinstance(fname, Path) assert str(dirname / _PREFIX) in str(fname) assert fname.exists() loaded_objects = torch.load(fname) assert loaded_objects == model.cpu().state_dict() @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_single_device_xla(dirname): assert "xla" in idist.device().type _test_tpu_saves_to_cpu(idist.device(), dirname / "1") _test_save_model_optimizer_lr_scheduler_with_state_dict(idist.device(), dirname / "2") def _test_tpu_saves_to_cpu_nprocs(index, dirname): device = idist.device() _test_tpu_saves_to_cpu(device, dirname / "1") _test_save_model_optimizer_lr_scheduler_with_state_dict(device, dirname / "2") import time # hack to have all proc properly sync: time.sleep(1) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_xla_nprocs(xmp_executor, dirname): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_tpu_saves_to_cpu_nprocs, args=(dirname,), nprocs=n) def _test_checkpoint_filename_pattern_helper( to_save, filename_prefix="", score_function=None, score_name=None, global_step_transform=None, filename_pattern=None, dirname=None, ): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint( to_save, save_handler=save_handler, filename_prefix=filename_prefix, score_function=score_function, score_name=score_name, global_step_transform=global_step_transform, filename_pattern=filename_pattern, ) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=12, iteration=203, score=0.9999) checkpointer(trainer) return checkpointer.last_checkpoint def _test_model_checkpoint_filename_pattern_helper( to_save, filename_prefix="", score_function=None, score_name=None, global_step_transform=None, filename_pattern=None, dirname=None, ): checkpointer = ModelCheckpoint( dirname=dirname, filename_prefix=filename_prefix, score_function=score_function, score_name=score_name, global_step_transform=global_step_transform, filename_pattern=filename_pattern, require_empty=False, ) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=12, iteration=203, score=0.9999) checkpointer(trainer, to_save) return Path(checkpointer.last_checkpoint).name @pytest.mark.parametrize("test_class", ["checkpoint", "model_checkpoint"]) def test_checkpoint_filename_pattern(test_class, dirname): if test_class == "checkpoint": _test = _test_checkpoint_filename_pattern_helper elif test_class == "model_checkpoint": _test = _test_model_checkpoint_filename_pattern_helper model = DummyModel() to_save = {"model": model} assert _test(to_save, dirname=dirname) == "model_203.pt" assert _test(to_save, "best", dirname=dirname) == "best_model_203.pt" assert _test(to_save, score_function=lambda e: e.state.score, dirname=dirname) == "model_0.9999.pt" res = _test( to_save, score_function=lambda e: e.state.score, global_step_transform=lambda e, _: e.state.epoch, dirname=dirname, ) assert res == "model_12_0.9999.pt" assert ( _test(to_save, score_function=lambda e: e.state.score, score_name="acc", dirname=dirname) == "model_acc=0.9999.pt" ) res = _test( to_save, score_function=lambda e: e.state.score, score_name="acc", global_step_transform=lambda e, _: e.state.epoch, dirname=dirname, ) assert res == "model_12_acc=0.9999.pt" assert _test(to_save, "best", score_function=lambda e: e.state.score, dirname=dirname) == "best_model_0.9999.pt" res = _test( to_save, "best", score_function=lambda e: e.state.score, global_step_transform=lambda e, _: e.state.epoch, dirname=dirname, ) assert res == "best_model_12_0.9999.pt" res = _test(to_save, "best", score_function=lambda e: e.state.score, score_name="acc", dirname=dirname) assert res == "best_model_acc=0.9999.pt" res = _test( to_save, "best", score_function=lambda e: e.state.score, score_name="acc", global_step_transform=lambda e, _: e.state.epoch, dirname=dirname, ) assert res == "best_model_12_acc=0.9999.pt" pattern = "{name}.{ext}" assert _test(to_save, filename_pattern=pattern, dirname=dirname) == "model.pt" pattern = "chk-{name}--{global_step}.{ext}" assert _test(to_save, to_save, filename_pattern=pattern, dirname=dirname) == "chk-model--203.pt" pattern = "chk-{filename_prefix}--{name}--{global_step}.{ext}" assert _test(to_save, "best", filename_pattern=pattern, dirname=dirname) == "chk-best--model--203.pt" pattern = "chk-{name}--{score}.{ext}" assert ( _test(to_save, score_function=lambda e: e.state.score, filename_pattern=pattern, dirname=dirname) == "chk-model--0.9999.pt" ) pattern = "{global_step}-{name}-{score}.chk.{ext}" res = _test( to_save, score_function=lambda e: e.state.score, global_step_transform=lambda e, _: e.state.epoch, filename_pattern=pattern, dirname=dirname, ) assert res == "12-model-0.9999.chk.pt" pattern = "chk-{name}--{score_name}--{score}.{ext}" res = _test( to_save, score_function=lambda e: e.state.score, score_name="acc", filename_pattern=pattern, dirname=dirname ) assert res == "chk-model--acc--0.9999.pt" pattern = "chk-{name}-{global_step}-{score_name}-{score}.{ext}" res = _test( to_save, score_function=lambda e: e.state.score, score_name="acc", global_step_transform=lambda e, _: e.state.epoch, filename_pattern=pattern, dirname=dirname, ) assert res == "chk-model-12-acc-0.9999.pt" pattern = "{filename_prefix}-{name}-{score}.chk" res = _test(to_save, "best", score_function=lambda e: e.state.score, filename_pattern=pattern, dirname=dirname) assert res == "best-model-0.9999.chk" pattern = "resnet-{filename_prefix}-{name}-{global_step}-{score}.chk" res = _test( to_save, "best", score_function=lambda e: e.state.score, global_step_transform=lambda e, _: e.state.epoch, filename_pattern=pattern, dirname=dirname, ) assert res == "resnet-best-model-12-0.9999.chk" pattern = "{filename_prefix}-{name}-{score_name}-{score}.chk" res = _test( to_save, "best", score_function=lambda e: e.state.score, score_name="acc", filename_pattern=pattern, dirname=dirname, ) assert res == "best-model-acc-0.9999.chk" pattern = "{global_step}-{filename_prefix}-{name}-{score_name}-{score}" res = _test( to_save, "best", score_function=lambda e: e.state.score, score_name="acc", global_step_transform=lambda e, _: e.state.epoch, filename_pattern=pattern, dirname=dirname, ) assert res == "12-best-model-acc-0.9999" pattern = "SAVE-{name}-{score_name}-{score}.pth" res = _test( to_save, "best", score_function=lambda e: e.state.score, score_name="acc", global_step_transform=lambda e, _: e.state.epoch, filename_pattern=pattern, dirname=dirname, ) assert res == "SAVE-model-acc-0.9999.pth" pattern = "{global_step}-chk-{filename_prefix}-{name}-{score_name}-{score}.{ext}" assert _test(to_save, filename_pattern=pattern, dirname=dirname) == "203-chk--model-None-None.pt" with pytest.raises(KeyError, match=r"random_key"): pattern = "SAVE-{random_key}.{ext}" _test(to_save, filename_pattern=pattern, dirname=dirname) def test_setup_filename_pattern(): # default filename pattern assert Checkpoint.setup_filename_pattern() == "{filename_prefix}_{name}_{global_step}_{score_name}={score}.{ext}" assert Checkpoint.setup_filename_pattern(False) == "{name}_{global_step}_{score_name}={score}.{ext}" assert Checkpoint.setup_filename_pattern(False, False, False) == "{name}_{global_step}.{ext}" assert Checkpoint.setup_filename_pattern(False, True, False) == "{name}_{global_step}_{score}.{ext}" assert Checkpoint.setup_filename_pattern(False, True, False, False) == "{name}_{score}.{ext}" assert Checkpoint.setup_filename_pattern(False, True, True, False) == "{name}_{score_name}={score}.{ext}" with pytest.raises(ValueError, match=r"At least one of with_score and with_global_step should be True."): Checkpoint.setup_filename_pattern(False, False, False, False) with pytest.raises(ValueError, match=r"If with_score_name is True, with_score should be also True"): Checkpoint.setup_filename_pattern(True, False, True, True) def _setup_checkpoint(): save_handler = MagicMock(spec=BaseSaveHandler) model = DummyModel() to_save = {"model": model} checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=None) assert checkpointer.last_checkpoint is None trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpointer(trainer) trainer.state.iteration = 10 checkpointer(trainer) trainer.state.iteration = 20 checkpointer(trainer) assert save_handler.call_count == 3 return checkpointer def test_checkpoint_state_dict(): checkpointer = _setup_checkpoint() sd = checkpointer.state_dict() assert "_saved" in sd assert isinstance(sd["_saved"], list) and len(sd["_saved"]) == len(checkpointer._saved) for saved_item, true_item in zip(sd["_saved"], checkpointer._saved): assert saved_item[0] == true_item.priority assert saved_item[1] == true_item.filename def test_checkpoint_load_state_dict(): true_checkpointer = _setup_checkpoint() save_handler = MagicMock(spec=BaseSaveHandler) model = DummyModel() to_save = {"model": model} checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=None) sd = {"_saved": [(0, "model_0.pt"), (10, "model_10.pt"), (20, "model_20.pt")]} checkpointer.load_state_dict(sd) assert checkpointer._saved == true_checkpointer._saved @pytest.mark.parametrize( "to_save", [ {"model": DummyModel()}, {"model": [DummyModel(), DummyModel()]}, {"model": {"a": {"b": DummyModel()}}}, ], ) def test_checkpoint__setup_checkpoint(to_save): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=2) checkpoint = checkpointer._setup_checkpoint() assert isinstance(checkpoint, dict) for k, obj in to_save.items(): assert k in checkpoint if isinstance(obj, torch.nn.Module): assert checkpoint[k] == obj.state_dict() elif isinstance(obj, list): for c2, obj2 in zip(checkpoint[k], obj): assert c2 == obj2.state_dict() elif isinstance(obj, dict): c2 = checkpoint[k] for k2, obj2 in obj.items(): if isinstance(obj2, torch.nn.Module): assert c2[k2] == obj2.state_dict() elif isinstance(obj2, dict): c3 = c2[k2] for k3, obj3 in obj2.items(): assert c3[k3] == obj3.state_dict() def test_checkpoint_fixed_filename(): model = DummyModel() to_save = {"model": model} def _test(n_saved): save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=n_saved, filename_pattern="{name}.{ext}") trainer = Engine(lambda e, b: None) for i in range(10): trainer.state = State(epoch=i, iteration=i) checkpointer(trainer) assert save_handler.call_count == i + 1 metadata = {"basename": "model", "score_name": None, "priority": i} save_handler.assert_called_with(model.state_dict(), "model.pt", metadata) _test(None) _test(1) _test(3) def test_checkpoint_reset(): model = DummyModel() to_save = {"model": model} save_handler = MagicMock(spec=BaseSaveHandler) checkpointer = Checkpoint(to_save, save_handler=save_handler, n_saved=2) assert checkpointer.last_checkpoint is None trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=123) checkpointer(trainer) trainer.state.iteration = 234 checkpointer(trainer) assert save_handler.call_count == 2 assert checkpointer.last_checkpoint == "model_234.pt" assert len(checkpointer._saved) == 2 assert sorted([item.filename for item in checkpointer._saved]) == sorted(["model_123.pt", "model_234.pt"]) checkpointer.reset() assert len(checkpointer._saved) == 0 trainer.state.iteration = 124 checkpointer(trainer) assert save_handler.call_count == 3 assert checkpointer.last_checkpoint == "model_124.pt" assert len(checkpointer._saved) == 1 assert sorted([item.filename for item in checkpointer._saved]) == sorted(["model_124.pt"]) def test_checkpoint_reset_with_engine(dirname): name = "model" engine = Engine(lambda e, b: None) handler = ModelCheckpoint(dirname, _PREFIX, create_dir=False, n_saved=2) model = DummyModel() to_save = {"model": model} engine.add_event_handler(Events.EPOCH_COMPLETED, handler, to_save) engine.run([0, 1], max_epochs=10) expected = sorted([f"{_PREFIX}_{name}_{i}.pt" for i in [9 * 2, 10 * 2]]) assert sorted(os.listdir(dirname)) == expected assert "PREFIX_model_20.pt" in str(handler.last_checkpoint) handler.reset() engine.state.max_epochs = None engine.run([0, 1], max_epochs=2) expected += [f"{_PREFIX}_{name}_{i}.pt" for i in [1 * 2, 2 * 2]] assert sorted(os.listdir(dirname)) == sorted(expected) assert "PREFIX_model_4.pt" in str(handler.last_checkpoint) def test_greater_or_equal(): scores = iter([1, 2, 2, 2]) def score_function(_): return next(scores) class Saver: def __init__(self): self.counter = 0 def __call__(self, c, f, m): if self.counter == 0: assert f == "model_1.pt" else: assert f == "model_2.pt" self.counter += 1 handler = Saver() checkpointer = Checkpoint( to_save={"model": DummyModel()}, save_handler=handler, score_function=score_function, n_saved=2, greater_or_equal=True, ) trainer = Engine(lambda e, b: None) for _ in range(4): checkpointer(trainer) assert handler.counter == 4 def test_greater_or_equal_model_checkpoint(dirname): scores = iter([1, 2, 2, 2]) def score_function(_): return next(scores) checkpointer = ModelCheckpoint( dirname, score_function=score_function, n_saved=2, greater_or_equal=True, ) trainer = Engine(lambda e, b: None) to_save = {"model": DummyModel()} for i in range(4): checkpointer(trainer, to_save) if i == 0: assert Path(checkpointer.last_checkpoint).name == "model_1.pt" else: assert Path(checkpointer.last_checkpoint).name == "model_2.pt" def test_get_default_score_fn(): with pytest.raises(ValueError, match=r"Argument score_sign should be 1 or -1"): Checkpoint.get_default_score_fn("acc", 2.0) engine = Engine(lambda e, b: None) engine.state.metrics["acc"] = 0.9 engine.state.metrics["loss"] = 0.123 score_fn = Checkpoint.get_default_score_fn("acc") score = score_fn(engine) assert score == 0.9 score_fn = Checkpoint.get_default_score_fn("loss", -1) score = score_fn(engine) assert score == -0.123 @pytest.mark.parametrize("obj_to_save", ["optim", "trainer"]) def test_load_single_object(obj_to_save, dirname): # Checks https://github.com/pytorch/ignite/issues/2479 trainer = Engine(lambda e, b: None) if obj_to_save == "optim": t = torch.tensor(0.0) optim = torch.optim.SGD([t], lr=0.1) to_save = {"optim": optim} elif obj_to_save == "trainer": to_save = {"trainer": trainer} c = Checkpoint(to_save, save_handler=dirname) c(trainer) checkpoint_fp = dirname / c.last_checkpoint Checkpoint.load_objects(to_load=to_save, checkpoint=str(checkpoint_fp)) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.parametrize("atomic", [False, True]) def test_disksaver_distrib(distributed_context_single_node_gloo, dirname, local_rank, atomic): saver = DiskSaver(dirname, atomic, save_on_rank=1) mocked_saver = MagicMock(wraps=saver) mocked_saver(checkpoint={}, filename="test_disksaver_distrib.pt") if local_rank == 1: assert (dirname / "test_disksaver_distrib.pt").exists() else: mocked_saver._save_func.assert_not_called() ignite-0.5.1/tests/ignite/handlers/test_clearml_logger.py000066400000000000000000001152071465426447700236350ustar00rootroot00000000000000import math import os from collections import defaultdict from unittest.mock import ANY, call, MagicMock, patch import clearml import pytest import torch from clearml.binding.frameworks import WeightsFileHandler from clearml.model import Framework import ignite.distributed as idist from ignite.engine import Engine, Events, State from ignite.handlers import Checkpoint from ignite.handlers.clearml_logger import ( ClearMLLogger, ClearMLSaver, global_step_from_engine, GradsHistHandler, GradsScalarHandler, OptimizerParamsHandler, OutputHandler, WeightsHistHandler, WeightsScalarHandler, ) def test_no_clearml(): with patch.dict("sys.modules", {"clearml": None, "trains": None}): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires clearml to be installed."): ClearMLSaver() with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires clearml to be installed."): ClearMLLogger() with patch.dict("sys.modules", {"clearml.binding.frameworks.tensorflow_bind": None}): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires clearml to be installed."): ClearMLLogger() with patch.dict("sys.modules", {"clearml.binding.frameworks": None, "trains.binding.frameworks": None}): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires clearml to be installed."): ClearMLSaver.__call__(None, {}, "") def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler OptimizerParamsHandler works only with ClearMLLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.tensor(0.0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with(iteration=123, series="0", title="lr", value=0.01) wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with( iteration=123, series="0", title="generator/lr", value=0.01 ) def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler OutputHandler works only with ClearMLLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(dirname): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with( iteration=123, series="output", title="tag", value=12345 ) wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with( iteration=123, series="loss", title="another_tag", value=12345 ) def test_output_handler_metric_names(dirname): wrapper = OutputHandler("tag", metric_names=["a", "b"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 2 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="tag", series="a", iteration=5, value=12.23), call(title="tag", series="b", iteration=5, value=23.45), ], any_order=True, ) wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() with pytest.warns(UserWarning, match=r"Logger output_handler can not log metrics value type"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 1 mock_logger.clearml_logger.report_scalar.assert_has_calls( [call(title="tag", series="a", iteration=7, value=55.56)], any_order=True ) # all metrics wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 2 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="tag", series="a", iteration=5, value=12.23), call(title="tag", series="b", iteration=5, value=23.45), ], any_order=True, ) # log a torch vector wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() vector = torch.tensor([0.1, 0.2, 0.1, 0.2, 0.33]) mock_engine.state = State(metrics={"vector": vector}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 5 mock_logger.clearml_logger.report_scalar.assert_has_calls( [call(title="tag/vector", series=str(i), iteration=5, value=vector[i].item()) for i in range(5)], any_order=True, ) # log a torch tensor (ndimension = 0) wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor(12.23), "b": torch.tensor(23.45), "c": torch.tensor(5.01)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 3 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="tag", series="a", iteration=5, value=torch.tensor(12.23).item()), call(title="tag", series="b", iteration=5, value=torch.tensor(23.45).item()), call(title="tag", series="c", iteration=5, value=torch.tensor(5.01).item()), ], any_order=True, ) def test_output_handler_both(dirname): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 3 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="tag", series="a", iteration=5, value=12.23), call(title="tag", series="b", iteration=5, value=23.45), call(title="tag", series="loss", iteration=5, value=12345), ], any_order=True, ) def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 1 mock_logger.clearml_logger.report_scalar.assert_has_calls( [call(title="tag", series="loss", iteration=mock_another_engine.state.epoch, value=mock_engine.state.output)] ) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 2 mock_logger.clearml_logger.report_scalar.assert_has_calls( [call(title="tag", series="loss", iteration=mock_another_engine.state.epoch, value=mock_engine.state.output)] ) def test_output_handler_state_attrs(): wrapper = OutputHandler("tag", state_attributes=["alpha", "beta", "gamma"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 5 mock_engine.state.alpha = 3.899 mock_engine.state.beta = torch.tensor(12.0) mock_engine.state.gamma = torch.tensor([21.0, 6.0]) wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 4 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="tag", series="alpha", iteration=5, value=3.899), call(title="tag", series="beta", iteration=5, value=12.0), call(title="tag/gamma", series="0", iteration=5, value=21.0), call(title="tag/gamma", series="1", iteration=5, value=6.0), ], any_order=True, ) def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.clearml_logger.report_scalar.call_count == 1 mock_logger.clearml_logger.report_scalar.assert_has_calls( [call(title="tag", series="loss", iteration=10, value=12345)] ) def test_weights_scalar_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = WeightsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler WeightsScalarHandler works only with ClearMLLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_weights_scalar_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = WeightsScalarHandler(model, tag=tag) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.clearml_logger.report_scalar.call_count == 4 mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title=tag_prefix + "weights_norm/fc1", series="weight", iteration=5, value=0.0), call(title=tag_prefix + "weights_norm/fc1", series="bias", iteration=5, value=0.0), call(title=tag_prefix + "weights_norm/fc2", series="weight", iteration=5, value=12.0), call(title=tag_prefix + "weights_norm/fc2", series="bias", iteration=5, value=math.sqrt(12.0)), ], any_order=True, ) _test() _test(tag="tag") def test_weights_scalar_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = WeightsScalarHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with( title="weights_norm/fc2", value=ANY, series="weight", iteration=mock_engine.state.epoch ) mock_logger.clearml_logger.report_scalar.reset_mock() wrapper = WeightsScalarHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="model/weights_norm/fc1", value=ANY, series="weight", iteration=mock_engine.state.epoch), call(title="model/weights_norm/fc1", value=ANY, series="bias", iteration=mock_engine.state.epoch), ], any_order=True, ) assert mock_logger.clearml_logger.report_scalar.call_count == 2 mock_logger.clearml_logger.report_scalar.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = WeightsScalarHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="model/weights_norm/fc1", value=ANY, series="bias", iteration=mock_engine.state.epoch), call(title="model/weights_norm/fc2", value=ANY, series="bias", iteration=mock_engine.state.epoch), ], any_order=True, ) assert mock_logger.clearml_logger.report_scalar.call_count == 2 def test_weights_hist_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = WeightsHistHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'WeightsHistHandler' works only with ClearMLLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_weights_hist_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = WeightsHistHandler(model, tag=tag) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.grad_helper = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.grad_helper.add_histogram.call_count == 4 mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title=tag_prefix + "weights_fc1", hist_data=ANY, series="weight", step=5), call(title=tag_prefix + "weights_fc1", hist_data=ANY, series="bias", step=5), call(title=tag_prefix + "weights_fc2", hist_data=ANY, series="weight", step=5), call(title=tag_prefix + "weights_fc2", hist_data=ANY, series="bias", step=5), ], any_order=True, ) _test() _test(tag="tag") def test_weights_hist_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = WeightsHistHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.grad_helper = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_called_once_with( title="weights_fc2", hist_data=ANY, series="weight", step=5 ) mock_logger.grad_helper.add_histogram.reset_mock() wrapper = WeightsHistHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title="model/weights_fc1", hist_data=ANY, series="weight", step=5), call(title="model/weights_fc1", hist_data=ANY, series="bias", step=5), ], any_order=True, ) assert mock_logger.grad_helper.add_histogram.call_count == 2 mock_logger.grad_helper.add_histogram.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = WeightsHistHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title="model/weights_fc1", hist_data=ANY, series="bias", step=5), call(title="model/weights_fc2", hist_data=ANY, series="bias", step=5), ], any_order=True, ) assert mock_logger.grad_helper.add_histogram.call_count == 2 def test_grads_scalar_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = GradsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler GradsScalarHandler works only with ClearMLLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_grads_scalar_handler(dummy_model_factory, norm_mock): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = GradsScalarHandler(model, reduction=norm_mock, tag=tag) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 norm_mock.reset_mock() wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call( title=tag_prefix + "grads_norm/fc1", value=ANY, series="weight", iteration=mock_engine.state.epoch ), call(title=tag_prefix + "grads_norm/fc1", value=ANY, series="bias", iteration=mock_engine.state.epoch), call( title=tag_prefix + "grads_norm/fc2", value=ANY, series="weight", iteration=mock_engine.state.epoch ), call(title=tag_prefix + "grads_norm/fc2", value=ANY, series="bias", iteration=mock_engine.state.epoch), ], any_order=True, ) assert mock_logger.clearml_logger.report_scalar.call_count == 4 assert norm_mock.call_count == 4 _test() _test(tag="tag") def test_grads_scalar_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = GradsScalarHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.clearml_logger = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_called_once_with( title="grads_norm/fc2", value=ANY, series="weight", iteration=mock_engine.state.epoch ) mock_logger.clearml_logger.report_scalar.reset_mock() wrapper = GradsScalarHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="model/grads_norm/fc1", value=ANY, series="weight", iteration=mock_engine.state.epoch), call(title="model/grads_norm/fc1", value=ANY, series="bias", iteration=mock_engine.state.epoch), ], any_order=True, ) assert mock_logger.clearml_logger.report_scalar.call_count == 2 mock_logger.clearml_logger.report_scalar.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = GradsScalarHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.clearml_logger.report_scalar.assert_has_calls( [ call(title="model/grads_norm/fc1", value=ANY, series="bias", iteration=mock_engine.state.epoch), call(title="model/grads_norm/fc2", value=ANY, series="bias", iteration=mock_engine.state.epoch), ], any_order=True, ) assert mock_logger.clearml_logger.report_scalar.call_count == 2 def test_grads_hist_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = GradsHistHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'GradsHistHandler' works only with ClearMLLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_grads_hist_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = GradsHistHandler(model, tag=tag) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.grad_helper = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.grad_helper.add_histogram.call_count == 4 mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title=tag_prefix + "grads_fc1", hist_data=ANY, series="weight", step=5), call(title=tag_prefix + "grads_fc1", hist_data=ANY, series="bias", step=5), call(title=tag_prefix + "grads_fc2", hist_data=ANY, series="weight", step=5), call(title=tag_prefix + "grads_fc2", hist_data=ANY, series="bias", step=5), ], any_order=True, ) _test() _test(tag="tag") def test_grads_hist_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = GradsHistHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=ClearMLLogger) mock_logger.grad_helper = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_called_once_with( title="grads_fc2", hist_data=ANY, series="weight", step=5 ) mock_logger.grad_helper.reset_mock() wrapper = GradsHistHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title="model/grads_fc1", hist_data=ANY, series="weight", step=5), call(title="model/grads_fc1", hist_data=ANY, series="bias", step=5), ], any_order=True, ) assert mock_logger.grad_helper.add_histogram.call_count == 2 mock_logger.grad_helper.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = GradsHistHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.grad_helper.add_histogram.assert_has_calls( [ call(title="model/grads_fc1", hist_data=ANY, series="bias", step=5), call(title="model/grads_fc2", hist_data=ANY, series="bias", step=5), ], any_order=True, ) assert mock_logger.grad_helper.add_histogram.call_count == 2 def test_integration(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) with pytest.warns(UserWarning, match="ClearMLSaver: running in bypass mode"): ClearMLLogger.set_bypass_mode(True) logger = ClearMLLogger(output_uri=dirname) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) test_value = 0.3 # example logger.clearml_logger.report_scalar(title="", series="", value=test_value, iteration=global_step) logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) logger.close() def test_integration_as_context_manager(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) with pytest.warns(UserWarning, match="ClearMLSaver: running in bypass mode"): ClearMLLogger.set_bypass_mode(True) with ClearMLLogger(output_uri=dirname) as clearml_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) test_value = 0.3 # example logger.clearml_logger.report_scalar(title="", series="", value=test_value, iteration=global_step) clearml_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) def test_clearml_logger_getattr_method(dirname): with pytest.warns(UserWarning, match="ClearMLSaver: running in bypass mode"): ClearMLLogger.set_bypass_mode(True) logger = ClearMLLogger(output_uri=dirname) # Create a mock clearml.Logger() object mock_logger = MagicMock() logger.clearml_logger = mock_logger # Test a method called by __getattr__ calls the corresponding method of the mock project. logger.report_single_value("accuracy", 0.72) mock_logger.report_single_value.assert_called_once_with("accuracy", 0.72) # Test a method called by __getattr__ calls the corresponding classmethod of the mock project's class. logger.current_logger() mock_logger.current_logger.assert_called_once() logger.close() def test_clearml_logger_get_task_bypass(dirname): with pytest.warns(UserWarning, match="ClearMLSaver: running in bypass mode"): ClearMLLogger.set_bypass_mode(True) with ClearMLLogger(output_uri=dirname) as clearml_logger: task = clearml_logger.get_task() assert isinstance(task, clearml.Task) assert task == clearml.Task.current_task() task.close() def test_clearml_disk_saver_integration(): model = torch.nn.Module() to_save_serializable = {"model": model} with pytest.warns(UserWarning, match="ClearMLSaver created a temporary checkpoints directory"): mock_logger = MagicMock(spec=ClearMLLogger) clearml.Task.current_task = MagicMock(spec=clearml.Task) clearml_saver = ClearMLSaver(mock_logger) clearml.binding.frameworks.WeightsFileHandler.create_output_model = MagicMock() checkpoint = Checkpoint(to_save=to_save_serializable, save_handler=clearml_saver, n_saved=1) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpoint(trainer) trainer.state.iteration = 1 checkpoint(trainer) if clearml_saver._atomic: assert clearml.binding.frameworks.WeightsFileHandler.create_output_model.call_count == 2 else: saved_files = list(os.listdir(clearml_saver.dirname)) assert len(saved_files) == 1 assert saved_files[0] == "model_1.pt" def test_clearml_disk_saver_integration_no_logger(): model = torch.nn.Module() to_save_serializable = {"model": model} with pytest.warns(UserWarning, match="ClearMLSaver created a temporary checkpoints directory"): clearml.Task.current_task = MagicMock(spec=clearml.Task) clearml.binding.frameworks.WeightsFileHandler.create_output_model = MagicMock() clearml_saver = ClearMLSaver() checkpoint = Checkpoint(to_save=to_save_serializable, save_handler=clearml_saver, n_saved=1) trainer = Engine(lambda e, b: None) trainer.state = State(epoch=0, iteration=0) checkpoint(trainer) trainer.state.iteration = 1 checkpoint(trainer) if clearml_saver._atomic: assert clearml.binding.frameworks.WeightsFileHandler.create_output_model.call_count == 2 else: saved_files = list(os.listdir(clearml_saver.dirname)) assert len(saved_files) == 1 assert saved_files[0] == "model_1.pt" def test_clearml_saver_callbacks(): mock_task = MagicMock(spec=clearml.Task) mock_task.name = "check-task" mock_model = MagicMock(spec=clearml.OutputModel) model_info = WeightsFileHandler.ModelInfo( model=mock_model, upload_filename="test.pt", local_model_path="", local_model_id="", framework=Framework.pytorch, task=mock_task, ) mock_model_info = MagicMock(spec_set=model_info) # Simulate 4 calls to save model and 2 to remove (n_saved=2) filenames = [ "best_model_5_val_acc=0.123.pt", "best_model_6_val_acc=0.234.pt", "best_model_7_val_acc=0.356.pt", "best_model_8_val_acc=0.456.pt", ] metadata_list = [ {"basename": "best_model", "score_name": "val_acc", "priority": 0.123}, {"basename": "best_model", "score_name": "val_acc", "priority": 0.234}, {"basename": "best_model", "score_name": "val_acc", "priority": 0.345}, {"basename": "best_model", "score_name": "val_acc", "priority": 0.456}, ] dirname = "/tmp/test" _checkpoint_slots = defaultdict(list) n_saved = 2 for i, (filename, metadata) in enumerate(zip(filenames, metadata_list)): mock_model_info.upload_filename = filename if i >= n_saved: # Remove filename_to_remove = filenames[i % n_saved] for slots in _checkpoint_slots.values(): try: slots[slots.index(filename_to_remove)] = None except ValueError: pass else: i = i % n_saved break basename = metadata["basename"] checkpoint_key = (dirname, basename) context = ClearMLSaver._CallbacksContext( callback_type=WeightsFileHandler.CallbackType, slots=_checkpoint_slots[checkpoint_key], checkpoint_key=str(checkpoint_key), filename=filename, basename=basename, metadata=metadata, ) output_model_info = context.pre_callback(str(WeightsFileHandler.CallbackType.save), mock_model_info) assert ( hasattr(output_model_info, "upload_filename") and f"{basename}_{i}.pt" in output_model_info.upload_filename ) assert hasattr(output_model_info, "local_model_id") and str(checkpoint_key) in output_model_info.local_model_id output_model_info = context.post_callback(str(WeightsFileHandler.CallbackType.save), mock_model_info) assert hasattr(output_model_info, "model") and hasattr(output_model_info.model, "name") assert hasattr(output_model_info, "model") and hasattr(output_model_info.model, "comment") assert isinstance(output_model_info.model.name, str) and filename in output_model_info.model.name assert ( isinstance(output_model_info.model.comment, str) and metadata["basename"] in output_model_info.model.comment and metadata["score_name"] in output_model_info.model.comment ) class DummyModel(torch.nn.Module): def __init__(self): super(DummyModel, self).__init__() self.net = torch.nn.Linear(2, 2) def forward(self, x): return self.net(x) def _test_save_model_optimizer_lr_scheduler_with_state_dict(device, on_zero_rank=False): if idist.get_rank() == 0: clearml.Task.current_task = MagicMock(spec=clearml.Task) clearml.binding.frameworks.WeightsFileHandler.create_output_model = MagicMock() torch.manual_seed(23) model = DummyModel().to(device) optim = torch.optim.SGD(model.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.5) def update_fn(engine, batch): x = torch.rand((4, 2)).to(device) optim.zero_grad() y = model(x) # Below code raises: RuntimeError: torch_xla/csrc/tensor_impl.cpp:144 : XLA tensors do not have storage # Probably related to https://github.com/pytorch/xla/issues/2576 # loss = y.pow(2.0).sum() loss = y.sum() loss.backward() if idist.has_xla_support: import torch_xla.core.xla_model as xm xm.optimizer_step(optim, barrier=True) else: optim.step() lr_scheduler.step() engine = Engine(update_fn) to_save = {"model": model, "optimizer": optim, "lr_scheduler": lr_scheduler} with pytest.warns(UserWarning, match=r"ClearMLSaver created a temporary checkpoints directory"): clearml_saver = ClearMLSaver() if (not on_zero_rank) or (on_zero_rank and idist.get_rank() == 0): checkpoint = Checkpoint(to_save=to_save, save_handler=clearml_saver, n_saved=1) engine.add_event_handler(Events.EPOCH_COMPLETED, checkpoint) engine.run([0], max_epochs=4) idist.barrier() saved_objects = sorted(os.listdir(clearml_saver.dirname)) # saved object is ['PREFIX_checkpoint_3.pt', ] saved_checkpoint = clearml_saver.dirname / saved_objects[0] if idist.has_xla_support: device = "cpu" loaded_obj = torch.load(saved_checkpoint, map_location=device) for f in ["model", "optimizer", "lr_scheduler"]: assert f in loaded_obj loaded_model_state_dict = loaded_obj["model"] loaded_optimizer_state_dict = loaded_obj["optimizer"] loaded_lr_scheduler_state_dict = loaded_obj["lr_scheduler"] assert isinstance(loaded_model_state_dict, dict) assert isinstance(loaded_optimizer_state_dict, dict) assert isinstance(loaded_lr_scheduler_state_dict, dict) # Specifically move device to CPU first model_state_dict = model.cpu().state_dict() for key in model_state_dict.keys(): assert key in loaded_model_state_dict model_value = model_state_dict[key] loaded_model_value = loaded_model_state_dict[key] assert (model_value.cpu().numpy() == loaded_model_value.cpu().numpy()).all() optim_state_dict = optim.state_dict() for key in optim_state_dict.keys(): assert key in loaded_optimizer_state_dict optim_value = optim_state_dict[key] loaded_optim_value = loaded_optimizer_state_dict[key] if idist.get_rank() == 0: assert optim_value == loaded_optim_value lr_scheduler_state_dict = lr_scheduler.state_dict() for key in lr_scheduler_state_dict.keys(): assert key in loaded_lr_scheduler_state_dict lr_scheduler_value = lr_scheduler_state_dict[key] loaded_lr_scheduler_value = loaded_lr_scheduler_state_dict[key] assert lr_scheduler_value == loaded_lr_scheduler_value @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_save_model_optimizer_lr_scheduler_with_state_dict(device) _test_save_model_optimizer_lr_scheduler_with_state_dict(device, on_zero_rank=True) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_save_model_optimizer_lr_scheduler_with_state_dict(device) _test_save_model_optimizer_lr_scheduler_with_state_dict(device, on_zero_rank=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_single_device_xla(): device = idist.device() assert "xla" in device.type _test_save_model_optimizer_lr_scheduler_with_state_dict(device) def _test_save_model_optimizer_lr_scheduler_with_state_dict_xla_nprocs(index): device = idist.device() _test_save_model_optimizer_lr_scheduler_with_state_dict(device) import time # hack to have all proc properly sync: time.sleep(1) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_single_device_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_save_model_optimizer_lr_scheduler_with_state_dict_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/handlers/test_early_stopping.py000066400000000000000000000314401465426447700237120ustar00rootroot00000000000000import os import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers import EarlyStopping def do_nothing_update_fn(engine, batch): pass def test_args_validation(): trainer = Engine(do_nothing_update_fn) with pytest.raises(ValueError, match=r"Argument patience should be positive integer."): EarlyStopping(patience=-1, score_function=lambda engine: 0, trainer=trainer) with pytest.raises(ValueError, match=r"Argument min_delta should not be a negative number."): EarlyStopping(patience=2, min_delta=-0.1, score_function=lambda engine: 0, trainer=trainer) with pytest.raises(TypeError, match=r"Argument score_function should be a function."): EarlyStopping(patience=2, score_function=12345, trainer=trainer) with pytest.raises(TypeError, match=r"Argument trainer should be an instance of Engine."): EarlyStopping(patience=2, score_function=lambda engine: 0, trainer=None) def test_simple_early_stopping(): scores = iter([1.0, 0.8, 0.88]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert trainer.should_terminate def test_state_dict(): scores = iter([1.0, 0.8, 0.88]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate # Swap to new object, but maintain state h2 = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) h2.load_state_dict(h.state_dict()) h2(None) assert not trainer.should_terminate h2(None) assert trainer.should_terminate def test_early_stopping_on_delta(): scores = iter([1.0, 2.0, 2.01, 3.0, 3.01, 3.02]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, min_delta=0.1, score_function=lambda _: next(scores), trainer=trainer) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 1.0; counter == 0 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.99; counter == 0 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.01; counter == 2 assert trainer.should_terminate def test_early_stopping_on_last_event_delta(): scores = iter([0.0, 0.3, 0.6]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping( patience=2, min_delta=0.4, cumulative_delta=False, score_function=lambda _: next(scores), trainer=trainer ) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 2 assert trainer.should_terminate def test_early_stopping_on_cumulative_delta(): scores = iter([0.0, 0.3, 0.6]) trainer = Engine(do_nothing_update_fn) h = EarlyStopping( patience=2, min_delta=0.4, cumulative_delta=True, score_function=lambda _: next(scores), trainer=trainer ) assert not trainer.should_terminate h(None) # counter == 0 assert not trainer.should_terminate h(None) # delta == 0.3; counter == 1 assert not trainer.should_terminate h(None) # delta == 0.6; counter == 0 assert not trainer.should_terminate def test_simple_early_stopping_on_plateau(): def score_function(engine): return 42 trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=1, score_function=score_function, trainer=trainer) # Call 2 times and check if stopped assert not trainer.should_terminate h(None) assert not trainer.should_terminate h(None) assert trainer.should_terminate def test_simple_no_early_stopping(): scores = iter([1.0, 0.8, 1.2]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) h = EarlyStopping(patience=2, score_function=score_function, trainer=trainer) # Call 3 times and check if not stopped assert not trainer.should_terminate h(None) h(None) h(None) assert not trainer.should_terminate def test_with_engine_early_stopping(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = iter([1.0, 0.8, 1.2, 1.5, 0.9, 1.0, 0.99, 1.1, 0.9]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 7 assert trainer.state.epoch == 7 def test_with_engine_early_stopping_on_plateau(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() def score_function(engine): return 0.047 trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=4, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 5 assert trainer.state.epoch == 5 def test_with_engine_no_early_stopping(): class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = iter([1.0, 0.8, 1.2, 1.23, 0.9, 1.0, 1.1, 1.253, 1.26, 1.2]) def score_function(engine): return next(scores) trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=5, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert n_epochs_counter.count == 10 assert trainer.state.epoch == 10 def _test_distrib_with_engine_early_stopping(device): if device is None: device = idist.device() if isinstance(device, str): device = torch.device(device) torch.manual_seed(12) class Counter(object): def __init__(self, count=0): self.count = count n_epochs_counter = Counter() scores = torch.tensor([1.0, 0.8, 1.2, 1.5, 0.9, 1.0, 0.99, 1.1, 0.9], requires_grad=False).to(device) def score_function(engine): i = trainer.state.epoch - 1 v = scores[i] idist.all_reduce(v) v /= idist.get_world_size() return v.item() trainer = Engine(do_nothing_update_fn) evaluator = Engine(do_nothing_update_fn) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): evaluator.run([0]) n_epochs_counter.count += 1 evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert trainer.state.epoch == 7 assert n_epochs_counter.count == 7 def _test_distrib_integration_engine_early_stopping(device): from ignite.metrics import Accuracy if device is None: device = idist.device() if isinstance(device, str): device = torch.device(device) metric_device = device if device.type == "xla": metric_device = "cpu" rank = idist.get_rank() ws = idist.get_world_size() torch.manual_seed(12) n_epochs = 10 n_iters = 20 y_preds = ( [torch.randint(0, 2, size=(n_iters, ws)).to(device)] + [torch.ones(n_iters, ws).to(device)] + [torch.randint(0, 2, size=(n_iters, ws)).to(device) for _ in range(n_epochs - 2)] ) y_true = ( [torch.randint(0, 2, size=(n_iters, ws)).to(device)] + [torch.ones(n_iters, ws).to(device)] + [torch.randint(0, 2, size=(n_iters, ws)).to(device) for _ in range(n_epochs - 2)] ) def update(engine, _): e = trainer.state.epoch - 1 i = engine.state.iteration - 1 return y_preds[e][i, rank], y_true[e][i, rank] evaluator = Engine(update) acc = Accuracy(device=metric_device) acc.attach(evaluator, "acc") def score_function(engine): return engine.state.metrics["acc"] trainer = Engine(lambda e, b: None) early_stopping = EarlyStopping(patience=3, score_function=score_function, trainer=trainer) @trainer.on(Events.EPOCH_COMPLETED) def evaluation(engine): data = list(range(n_iters)) evaluator.run(data=data) evaluator.add_event_handler(Events.COMPLETED, early_stopping) trainer.run([0], max_epochs=10) assert trainer.state.epoch == 5 @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_with_engine_early_stopping, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_engine_early_stopping, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_with_engine_early_stopping(device) _test_distrib_integration_engine_early_stopping(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/handlers/test_ema_handler.py000066400000000000000000000372561465426447700231250ustar00rootroot00000000000000import os from typing import Any, Callable, Union import pytest import torch import torch.nn as nn from torch.nn.parallel import DataParallel, DistributedDataParallel import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.handlers import EMAHandler def _get_dummy_model() -> nn.Module: model = nn.Linear(2, 1, bias=False) model.weight.data.fill_(1) return model def _unwrap_model(model): if isinstance(model, (DataParallel, DistributedDataParallel)): return model.module else: return model @pytest.fixture(scope="module") def get_dummy_model(): """Returns a function since the fixture is needed multiple times in a single test""" yield _get_dummy_model def _get_dummy_step_fn(model: Union[nn.Module, DataParallel, DistributedDataParallel]) -> Callable: """Get a dummy step function, given model is a (wrapper of) dummy model returned from _get_dummy_model""" def step_fn(engine, batch): """Increment the weight by 1 at each iteration""" _unwrap_model(model).weight.data.add_(1) return 0 return step_fn @pytest.mark.parametrize("momentum", [-1, 2]) def test_ema_invalid_momentum(get_dummy_model, momentum): with pytest.raises(ValueError, match="Invalid momentum"): EMAHandler(get_dummy_model(), momentum=momentum) def test_has_momentum_scheduler(get_dummy_model): """Test the handler has attribute `momentum_scheduler` and `_momentum_lambda_obj`""" momentum_warmup = 0.0 warmup_iters = 10 ema_handler = EMAHandler(get_dummy_model(), momentum_warmup=momentum_warmup, warmup_iters=warmup_iters) assert hasattr(ema_handler, "momentum_scheduler") assert hasattr(ema_handler, "_momentum_lambda_obj") def test_ema_warmup_func(get_dummy_model): """Test the built-in linear warmup function for the EMA momentum""" momentum = 0.5 momentum_warmup_1 = 0.0 momentum_warmup_2 = 1.0 warmup_iters = 5 def check_ema_momentum(engine: Engine, momentum_warmup, final_momentum, warmup_iters): if engine.state.iteration == 1: assert engine.state.ema_momentum == momentum_warmup elif engine.state.iteration >= 1 + warmup_iters: assert engine.state.ema_momentum == final_momentum else: min_momentum = min(momentum, momentum_warmup) max_momentum = max(momentum, momentum_warmup) assert min_momentum <= engine.state.ema_momentum <= max_momentum # momentum_warmup < momentum model_1 = get_dummy_model() engine_1 = Engine(_get_dummy_step_fn(model_1)) ema_handler_1 = EMAHandler(model_1, momentum, momentum_warmup_1, warmup_iters) ema_handler_1.attach(engine_1) engine_1.add_event_handler( Events.ITERATION_COMPLETED, check_ema_momentum, momentum_warmup_1, momentum, warmup_iters ) engine_1.run(range(10)) # momentum_warmup > momentum model_2 = get_dummy_model() engine_2 = Engine(_get_dummy_step_fn(model_2)) ema_handler_2 = EMAHandler(model_2, momentum, momentum_warmup_2, warmup_iters) ema_handler_2.attach(engine_2) engine_2.add_event_handler( Events.ITERATION_COMPLETED, check_ema_momentum, momentum_warmup_2, momentum, warmup_iters ) engine_2.run(range(10)) def test_ema_invalid_model(): with pytest.raises(ValueError, match="model should be an instance of nn.Module or its subclasses"): model = "Invalid Model" EMAHandler(model) # type: ignore @pytest.mark.distributed @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_ema_ema_model_on_cuda(get_dummy_model): """Test if ema_handler.ema_model is nn.Module or nn.DataParallel and under eval mode""" model = get_dummy_model().to(idist.device()) model = idist.auto_model(model) ema_handler = EMAHandler(model) ema_model = ema_handler.ema_model assert not ema_model.training if isinstance(model, DataParallel): assert isinstance(ema_model, DataParallel) else: assert ( isinstance(ema_model, nn.Module) and (not isinstance(ema_model, DataParallel)) and (not isinstance(ema_model, DistributedDataParallel)) ) def test_ema_load_state_dict(get_dummy_model): model_1 = get_dummy_model() model_1.weight.data.fill_(2) state_dict_1 = model_1.state_dict() model_2 = get_dummy_model() ema_handler = EMAHandler(model_2) ema_model = ema_handler.ema_model ema_model.load_state_dict(state_dict_1) assert ema_model.weight.data.allclose(model_1.weight.data) def test_ema_get_const_momentum(get_dummy_model): """Test if momentum retrieved from the engine is constant and equal to the handler's momentum""" model = get_dummy_model() step_fn = _get_dummy_step_fn(model) engine = Engine(step_fn) def assert_const_momentum(engine: Engine, const_momentum): assert engine.state.ema_momentum == const_momentum ema_handler = EMAHandler(model, momentum=0.002) ema_handler.attach(engine) engine.add_event_handler(Events.ITERATION_COMPLETED, assert_const_momentum, ema_handler.momentum) engine.run(range(10)) @pytest.mark.parametrize("handle_buffers", ["copy", "update", "ema_train", "invalid"]) def test_ema_buffer(handle_buffers): """Test if the tensors in buffer are also correctly updated""" model = nn.BatchNorm2d(2) model.running_mean.data.fill_(1.5) model.running_var.data.fill_(1.5) # manually register a buffer to test if it will be correctly updated model.register_buffer("dummy_buffer", tensor=torch.tensor(1.0, dtype=torch.float32)) if handle_buffers == "invalid": with pytest.raises(ValueError, match="handle_buffers can only"): _ = EMAHandler(model, momentum=0.5, handle_buffers=handle_buffers) else: ema_handler = EMAHandler(model, momentum=0.5, handle_buffers=handle_buffers) def _bn_step_fn(engine, batch): x = torch.rand(4, 2, 32, 32) _ = model(x) # manually increment the dummy_buffer at every step model.dummy_buffer += 1.0 return 1 engine = Engine(_bn_step_fn) ema_handler.attach(engine) ema_model = ema_handler.ema_model if handle_buffers == "ema_train": assert ema_model.training else: assert not ema_model.training @engine.on(Events.ITERATION_COMPLETED) def check_buffers(): if handle_buffers == "update": # the buffers with torch.int64 data type should be directly copied assert ema_model.num_batches_tracked.allclose(model.num_batches_tracked) # buffers with floating type will be updated rather than copied assert not ema_model.dummy_buffer.allclose(model.dummy_buffer) assert not ema_model.running_mean.allclose(model.running_mean) assert not ema_model.running_var.allclose(model.running_var) elif handle_buffers == "copy": # the buffers with torch.int64 data type should be directly copied assert ema_model.num_batches_tracked.allclose(model.num_batches_tracked) assert ema_model.dummy_buffer.allclose(model.dummy_buffer) assert ema_model.running_mean.allclose(model.running_mean) assert ema_model.running_var.allclose(model.running_var) else: # buffers will not be copied or EMA updated assert ema_model.num_batches_tracked.allclose(torch.tensor(0, dtype=torch.int64)) assert ema_model.dummy_buffer.allclose(torch.tensor(1.0, dtype=torch.float32)) # engine will run 4 iterations engine.run([0, 1], max_epochs=2) if handle_buffers == "update": assert ema_model.num_batches_tracked.allclose(model.num_batches_tracked) assert ema_model.dummy_buffer.allclose(torch.tensor(4.0625, dtype=torch.float32)) assert not ema_model.dummy_buffer.allclose(model.dummy_buffer) assert not ema_model.running_mean.allclose(model.running_mean) assert not ema_model.running_var.allclose(model.running_var) elif handle_buffers == "copy": assert ema_model.num_batches_tracked.allclose(model.num_batches_tracked) assert ema_model.dummy_buffer.allclose(model.dummy_buffer) assert ema_model.running_mean.allclose(model.running_mean) assert ema_model.running_var.allclose(model.running_var) else: # buffers will not be copied or EMA updated assert ema_model.num_batches_tracked.allclose(torch.tensor(0, dtype=torch.int64)) assert ema_model.dummy_buffer.allclose(torch.tensor(1.0, dtype=torch.float32)) def test_ema_two_handlers(get_dummy_model): """Test when two EMA handlers are attached to a trainer""" model_1 = get_dummy_model() ema_handler_1 = EMAHandler(model_1, momentum=0.5) model_2 = get_dummy_model() ema_handler_2 = EMAHandler(model_2, momentum=0.5) def _step_fn(engine: Engine, batch: Any): model_1.weight.data.add_(1) model_2.weight.data.add_(1) return 0 engine = Engine(_step_fn) assert not hasattr(engine.state, "ema_momentum_1") # handler_1 update EMA model of model_1 every 1 iteration ema_handler_1.attach(engine, "ema_momentum_1", event=Events.ITERATION_COMPLETED) assert hasattr(engine.state, "ema_momentum_1") # handler_2 update EMA model for model_2 every 2 iterations ema_handler_2.attach(engine, "ema_momentum_2", event=Events.ITERATION_COMPLETED(every=2)) assert hasattr(engine.state, "ema_momentum_2") # engine will run 4 iterations engine.run(range(2), max_epochs=2) # explicitly cast to float32 to avoid test failure on XLA devices ema_weight_1 = ema_handler_1.ema_model.weight.data.to(torch.float32) ema_weight_2 = ema_handler_2.ema_model.weight.data.to(torch.float32) assert ema_weight_1.allclose(ema_weight_1.new_full((1, 2), 4.0625)) assert ema_weight_2.allclose(ema_weight_2.new_full((1, 2), 3.5)) assert engine.state.ema_momentum_1 == 0.5 assert engine.state.ema_momentum_2 == 0.5 model_3 = get_dummy_model() ema_handler_3 = EMAHandler(model_3) with pytest.warns(UserWarning, match="Attribute 'ema_momentum_1' already exists"): ema_handler_3.attach(engine, name="ema_momentum_1") def _test_ema_final_weight(model, device=None, ddp=False, interval=1): """Test if final smoothed weights are correct""" if device is None: # let horovod decide the device device = idist.device() if isinstance(device, str): device = torch.device(device) model = model.to(device) if ddp: model = idist.auto_model(model) step_fn = _get_dummy_step_fn(model) engine = Engine(step_fn) ema_handler = EMAHandler(model, momentum=0.5) ema_handler.attach(engine, "model", event=Events.ITERATION_COMPLETED(every=interval)) # engine will run 4 iterations engine.run(range(2), max_epochs=2) # ema_model and model can be DP or DDP # explicitly cast to float32 to avoid test failure on XLA devices ema_weight = _unwrap_model(ema_handler.ema_model).weight.data.to(torch.float32) model_weight = _unwrap_model(model).weight.data.to(torch.float32) assert ema_weight.device == device assert model_weight.device == device if interval == 1: assert ema_weight.allclose(ema_weight.new_full((1, 2), 4.0625)) elif interval == 2: assert ema_weight.allclose(ema_weight.new_full((1, 2), 3.5)) else: pass assert model_weight.allclose(model_weight.new_full((1, 2), 5.0)) @pytest.mark.parametrize("interval", [1, 2]) def test_ema_final_weight_cpu(get_dummy_model, interval): device = torch.device("cpu") _test_ema_final_weight(get_dummy_model(), device=device, ddp=False, interval=interval) @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_ema_final_weight_cuda(get_dummy_model, interval): device = torch.device("cuda:0") _test_ema_final_weight(get_dummy_model(), device=device, ddp=False, interval=interval) @pytest.mark.distributed @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_ema_final_weight_distrib_nccl_gpu(get_dummy_model, distributed_context_single_node_nccl, interval): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True, interval=interval) @pytest.mark.distributed @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_ema_final_weight_distrib_gloo_cpu_or_gpu(get_dummy_model, distributed_context_single_node_gloo, interval): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True, interval=interval) @pytest.mark.distributed @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_ema_final_weight_distrib_hvd(get_dummy_model, gloo_hvd_executor, interval): nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() # pass device = None to the executor. Different from other distributed tests where the processes are # already spawn in the context, the processes here will be explicitly spawn by the executor, so we # pass None to the function, and call idist.device() in side the function to get the corresponding device gloo_hvd_executor(_test_ema_final_weight, (get_dummy_model(), None, True, interval), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_ema_final_weight_distrib_single_device_xla(get_dummy_model): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_ema_final_weight_distrib_xla_nprocs(get_dummy_model, xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) def _test_ema_final_weight_xla_nprocs(index): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True) xmp_executor(_test_ema_final_weight_xla_nprocs, args=(), nprocs=n) @pytest.mark.multinode_distributed @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_ema_final_weight_distrib_multinode_gloo_cpu_or_gpu( get_dummy_model, distributed_context_multi_node_gloo, interval ): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True, interval=interval) @pytest.mark.multinode_distributed @pytest.mark.parametrize("interval", [1, 2]) @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_ema_final_weight_distrib_multinode_nccl_gpu(get_dummy_model, distributed_context_multi_node_nccl, interval): device = idist.device() _test_ema_final_weight(get_dummy_model(), device=device, ddp=True, interval=interval) ignite-0.5.1/tests/ignite/handlers/test_fbresearch_logger.py000066400000000000000000000071601465426447700243200ustar00rootroot00000000000000import logging import re from unittest.mock import MagicMock import pytest import torch import torch.nn as nn import torch.optim as optim from ignite.engine import create_supervised_trainer, Engine, Events from ignite.handlers.fbresearch_logger import FBResearchLogger from ignite.utils import setup_logger @pytest.fixture def mock_engine(): engine = Engine(lambda e, b: None) engine.state.epoch = 1 engine.state.max_epochs = 10 engine.state.epoch_length = 100 engine.state.iteration = 50 return engine @pytest.fixture def mock_logger(): return MagicMock(spec=logging.Logger) @pytest.fixture def fb_research_logger(mock_logger): yield FBResearchLogger(logger=mock_logger, show_output=True) def test_fbresearch_logger_initialization(mock_logger): logger = FBResearchLogger(logger=mock_logger, show_output=True) assert logger.logger == mock_logger assert logger.show_output is True def test_fbresearch_logger_attach(mock_engine, mock_logger): logger = FBResearchLogger(logger=mock_logger, show_output=True) logger.attach(mock_engine, name="Test", every=1) assert mock_engine.has_event_handler(logger.log_every, Events.ITERATION_COMPLETED) @pytest.mark.parametrize( "output,expected_pattern", [ ({"loss": 0.456, "accuracy": 0.789}, r"loss. *0.456.*accuracy. *0.789"), ((0.456, 0.789), r"0.456.*0.789"), ([0.456, 0.789], r"0.456.*0.789"), ], ) def test_output_formatting(mock_engine, fb_research_logger, output, expected_pattern): # Ensure the logger correctly formats and logs the output for each type mock_engine.state.output = output fb_research_logger.attach(mock_engine, name="Test", every=1) mock_engine.fire_event(Events.ITERATION_COMPLETED) actual_output = fb_research_logger.logger.info.call_args_list[0].args[0] assert re.search(expected_pattern, actual_output) def test_logger_type_support(): model = nn.Linear(10, 5) opt = optim.SGD(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() data = [(torch.rand(4, 10), torch.randint(0, 5, size=(4,))) for _ in range(100)] trainer = create_supervised_trainer(model, opt, criterion) logger = setup_logger("trainer", level=logging.INFO) logger = FBResearchLogger(logger=logger, show_output=True) logger.attach(trainer, name="Train", every=20, optimizer=opt) trainer.run(data, max_epochs=4) trainer.state.output = {"loss": 4.2} trainer.fire_event(Events.ITERATION_COMPLETED) trainer.state.output = "4.2" trainer.fire_event(Events.ITERATION_COMPLETED) trainer.state.output = [4.2, 4.2] trainer.fire_event(Events.ITERATION_COMPLETED) trainer.state.output = (4.2, 4.2) trainer.fire_event(Events.ITERATION_COMPLETED) def test_fbrlogger_with_output_transform(mock_logger): trainer = Engine(lambda e, b: 42) fbr = FBResearchLogger(logger=mock_logger, show_output=True) fbr.attach(trainer, "Training", output_transform=lambda x: {"loss": x}) trainer.run(data=[10], epoch_length=1, max_epochs=1) assert "loss: 42.0000" in fbr.logger.info.call_args_list[-2].args[0] def test_fbrlogger_with_state_attrs(mock_logger): trainer = Engine(lambda e, b: 42) fbr = FBResearchLogger(logger=mock_logger, show_output=True) fbr.attach(trainer, "Training", state_attributes=["alpha", "beta", "gamma"]) trainer.state.alpha = 3.899 trainer.state.beta = torch.tensor(12.21) trainer.state.gamma = torch.tensor([21.0, 6.0]) trainer.run(data=[10], epoch_length=1, max_epochs=1) attrs = "alpha: 3.8990 beta: 12.2100 gamma: [21.0000, 6.0000]" assert attrs in fbr.logger.info.call_args_list[-2].args[0] ignite-0.5.1/tests/ignite/handlers/test_handlers.py000066400000000000000000000010771465426447700224560ustar00rootroot00000000000000from unittest.mock import MagicMock from ignite.engine import Engine, Events from ignite.handlers import global_step_from_engine def test_global_step_from_engine(): iteration = 12 epoch = 23 trainer = Engine(lambda e, b: None) trainer.state.iteration = iteration trainer.state.epoch = epoch gst = global_step_from_engine(trainer) assert gst(MagicMock(), Events.EPOCH_COMPLETED) == epoch gst = global_step_from_engine(trainer, custom_event_name=Events.ITERATION_COMPLETED) assert gst(MagicMock(), Events.EPOCH_COMPLETED) == iteration ignite-0.5.1/tests/ignite/handlers/test_lr_finder.py000066400000000000000000000623641465426447700226300ustar00rootroot00000000000000import copy import os from pathlib import Path from unittest.mock import MagicMock import filelock import matplotlib import pytest import torch import torch.nn.functional as F from torch import nn from torch.optim import SGD import ignite.distributed as idist from ignite.engine import create_supervised_trainer, Engine, Events from ignite.handlers import FastaiLRFinder matplotlib.use("agg") @pytest.fixture def no_site_packages(): import sys matplotlib = sys.modules["matplotlib"] del sys.modules["matplotlib"] prev_path = list(sys.path) sys.path = [p for p in sys.path if "site-packages" not in p] yield "no_site_packages" sys.path = prev_path sys.modules["matplotlib"] = matplotlib class DummyModel(nn.Module): def __init__(self, n_channels=10, out_channels=1, flatten_input=False): super(DummyModel, self).__init__() self.net = nn.Sequential(nn.Flatten() if flatten_input else nn.Identity(), nn.Linear(n_channels, out_channels)) def forward(self, x): return self.net(x) class DummyModelMulipleParamGroups(nn.Module): def __init__(self): super(DummyModelMulipleParamGroups, self).__init__() self.fc1 = nn.Linear(10, 20) self.fc2 = nn.Linear(20, 10) self.fc3 = nn.Linear(10, 10) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) @pytest.fixture def model(): model = DummyModel(out_channels=10) yield model @pytest.fixture def model_multiple_param_groups(): model_multiple_param_groups = DummyModelMulipleParamGroups() yield model_multiple_param_groups @pytest.fixture def mnist_model(): model = DummyModel(n_channels=784, out_channels=10, flatten_input=True) yield model @pytest.fixture def optimizer(model): yield SGD(model.parameters(), lr=1e-4, momentum=0.0) @pytest.fixture def optimizer_multiple_param_groups(model_multiple_param_groups): optimizer_multiple_param_groups = SGD( [ {"params": model_multiple_param_groups.fc1.parameters(), "lr": 4e-1}, {"params": model_multiple_param_groups.fc2.parameters(), "lr": 3e-2}, {"params": model_multiple_param_groups.fc3.parameters(), "lr": 3e-3}, ] ) yield optimizer_multiple_param_groups @pytest.fixture def mnist_optimizer(mnist_model): yield SGD(mnist_model.parameters(), lr=1e-4, momentum=0.0) @pytest.fixture def to_save(model, optimizer): yield {"model": model, "optimizer": optimizer} @pytest.fixture def mnist_to_save(mnist_model, mnist_optimizer): yield {"model": mnist_model, "optimizer": mnist_optimizer} @pytest.fixture def to_save_mulitple_param_groups(model_multiple_param_groups, optimizer_multiple_param_groups): yield {"model": model_multiple_param_groups, "optimizer": optimizer_multiple_param_groups} @pytest.fixture def lr_finder(): yield FastaiLRFinder() @pytest.fixture def dummy_engine(model, optimizer): engine = create_supervised_trainer(model, optimizer, nn.MSELoss()) yield engine @pytest.fixture def dummy_engine_mnist(mnist_model, mnist_optimizer): mnist_engine = create_supervised_trainer(mnist_model, mnist_optimizer, nn.CrossEntropyLoss()) yield mnist_engine @pytest.fixture def dummy_engine_mulitple_param_groups(model_multiple_param_groups, optimizer_multiple_param_groups): engine_multiple_param_groups = create_supervised_trainer( model_multiple_param_groups, optimizer_multiple_param_groups, nn.MSELoss() ) yield engine_multiple_param_groups @pytest.fixture def dataloader(): yield torch.rand(100, 2, 10) @pytest.fixture def dataloader_plot(): yield torch.rand(500, 2, 10) @pytest.fixture def mnist_dataloader(tmp_path_factory): from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) root_tmp_dir = tmp_path_factory.getbasetemp().parent while True: try: with filelock.FileLock(root_tmp_dir / "mnist_download.lock", timeout=0.2) as fn: fn.acquire() train_loader = DataLoader( MNIST(download=True, root="/tmp", transform=data_transform, train=True), batch_size=256, shuffle=True, ) fn.release() break except filelock._error.Timeout: pass yield train_loader def test_attach_incorrect_input_args(lr_finder, dummy_engine, model, optimizer, dataloader): with pytest.raises(TypeError, match=r"Argument to_save should be a mapping"): with lr_finder.attach(dummy_engine, to_save=123): pass with pytest.raises(TypeError, match=r"Object should have `state_dict` method"): with lr_finder.attach(dummy_engine, to_save={1: 2}): pass with pytest.raises(ValueError, match=r"Mapping to_save should contain 'optimizer' key"): with lr_finder.attach(dummy_engine, to_save={"model": model}): pass to_save = {"model": model, "optimizer": optimizer} with pytest.raises(ValueError, match=r"smooth_f is outside the range \[0, 1\]"): with lr_finder.attach(dummy_engine, to_save=to_save, smooth_f=234): pass with pytest.raises(ValueError, match=r"diverge_th should be larger than 1"): with lr_finder.attach(dummy_engine, to_save=to_save, diverge_th=0.0): pass with pytest.raises(TypeError, match=r"if provided, num_iter should be an integer"): with lr_finder.attach(dummy_engine, to_save=to_save, num_iter=0.0): pass with pytest.raises(ValueError, match=r"if provided, num_iter should be positive"): with lr_finder.attach(dummy_engine, to_save=to_save, num_iter=0): pass with pytest.raises(TypeError, match=r"Object to_save\['optimizer'] should be torch optimizer"): with lr_finder.attach(dummy_engine, {"model": to_save["model"], "optimizer": to_save["model"]}): pass with pytest.raises(ValueError, match=r"step_mode should be 'exp' or 'linear'"): with lr_finder.attach(dummy_engine, to_save=to_save, step_mode="abc"): pass with lr_finder.attach(dummy_engine, to_save) as trainer_with_finder: trainer_with_finder.run(dataloader) with pytest.raises(ValueError, match=r"skip_start cannot be negative"): lr_finder.plot(skip_start=-1) with pytest.raises(ValueError, match=r"skip_end cannot be negative"): lr_finder.plot(skip_end=-1) with pytest.raises(ValueError, match=r"Number of values of start_lr should be equal to optimizer values."): with lr_finder.attach(dummy_engine, to_save, start_lr=[0.1, 0.1]): pass with pytest.raises(ValueError, match=r"Number of values of end_lr should be equal to optimizer values."): with lr_finder.attach(dummy_engine, to_save, end_lr=[0.1, 0.1]): pass with pytest.raises(TypeError, match=r"start_lr should be a float or list of floats"): with lr_finder.attach(dummy_engine, to_save, start_lr=1): pass with pytest.raises(TypeError, match=r"end_lr should be a float or list of floats"): with lr_finder.attach(dummy_engine, to_save, end_lr=1): pass def test_attach_without_with(lr_finder, dummy_engine, to_save): _ = lr_finder.attach(dummy_engine, to_save=to_save) for event in dummy_engine._event_handlers: assert len(dummy_engine._event_handlers[event]) == 0 with lr_finder.attach(dummy_engine, to_save=to_save) as _: assert any([len(dummy_engine._event_handlers[event]) != 0 for event in dummy_engine._event_handlers]) with pytest.raises( RuntimeError, match=r"learning rate finder didn't run yet so lr_suggestion can't be returned" ): lr_finder.lr_suggestion() with pytest.raises(RuntimeError, match=r"learning rate finder didn't run yet so results can't be plotted"): lr_finder.plot() def test_with_attach(lr_finder, to_save, dummy_engine, dataloader): with lr_finder.attach(dummy_engine, to_save=to_save) as trainer_with_finder: trainer_with_finder.run(dataloader) assert lr_finder.get_results() is not None for event in dummy_engine._event_handlers: assert len(dummy_engine._event_handlers[event]) == 0 def test_wrong_values_start_lr_and_end_lr( lr_finder, dummy_engine, to_save, dummy_engine_mulitple_param_groups, to_save_mulitple_param_groups ): with pytest.raises(ValueError, match=r"start_lr must be less than end_lr"): with lr_finder.attach(dummy_engine, to_save=to_save, start_lr=10.0, end_lr=1.0): pass with pytest.raises(ValueError, match=r"start_lr must be less than end_lr"): with lr_finder.attach( dummy_engine_mulitple_param_groups, to_save=to_save_mulitple_param_groups, start_lr=[1.0, 10.0, 5.0], end_lr=[10.0, 10.0, 10.0], ): pass def test_model_optimizer_reset(lr_finder, to_save, dummy_engine, dataloader): optimizer = to_save["optimizer"] model = to_save["model"] init_optimizer_sd = copy.deepcopy(optimizer.state_dict()) init_model_sd = copy.deepcopy(model.state_dict()) init_trainer_sd = copy.deepcopy(dummy_engine.state_dict()) with pytest.warns(UserWarning, match=r"Run completed without loss diverging"): with lr_finder.attach(dummy_engine, to_save=to_save, diverge_th=float("inf")) as trainer_with_finder: trainer_with_finder.run(dataloader) assert init_optimizer_sd == optimizer.state_dict() for tensor1, tensor2 in zip(init_model_sd.values(), model.state_dict().values()): assert torch.all(torch.eq(tensor1, tensor2)) assert init_trainer_sd == dummy_engine.state_dict() def test_lr_policy(lr_finder, to_save, dummy_engine, dataloader): with lr_finder.attach(dummy_engine, to_save=to_save, step_mode="linear") as trainer_with_finder: trainer_with_finder.run(dataloader) lr = lr_finder.get_results()["lr"] assert all([lr[i - 1] < lr[i] for i in range(1, len(lr))]) with lr_finder.attach(dummy_engine, to_save=to_save, step_mode="exp") as trainer_with_finder: trainer_with_finder.run(dataloader) lr = lr_finder.get_results()["lr"] assert all([lr[i - 1] < lr[i] for i in range(1, len(lr))]) @pytest.mark.parametrize("step_mode", ["exp", "linear"]) def test_multiple_optimizers( lr_finder, dummy_engine_mulitple_param_groups, to_save_mulitple_param_groups, dataloader, step_mode ): start_lr = [0.1, 0.1, 0.01] end_lr = [1.0, 1.0, 1.0] with lr_finder.attach( dummy_engine_mulitple_param_groups, to_save_mulitple_param_groups, start_lr=start_lr, end_lr=end_lr, step_mode=step_mode, ) as trainer: trainer.run(dataloader) groups_lrs = lr_finder.get_results()["lr"] assert [all([group_lrs[i - 1] < group_lrs[i] for i in range(1, len(group_lrs))]) for group_lrs in groups_lrs] def assert_output_sizes(lr_finder, dummy_engine): iteration = dummy_engine.state.iteration lr_finder_results = lr_finder.get_results() lr, loss = lr_finder_results["lr"], lr_finder_results["loss"] assert len(lr) == len(loss) == iteration def test_num_iter_is_none(lr_finder, to_save, dummy_engine, dataloader): with pytest.warns(UserWarning, match=r"Run completed without loss diverging"): with lr_finder.attach(dummy_engine, to_save=to_save, diverge_th=float("inf")) as trainer_with_finder: trainer_with_finder.run(dataloader) assert_output_sizes(lr_finder, dummy_engine) assert dummy_engine.state.iteration == len(dataloader) def test_num_iter_is_enough(lr_finder, to_save, dummy_engine, dataloader): with pytest.warns(UserWarning, match=r"Run completed without loss diverging"): with lr_finder.attach( dummy_engine, to_save=to_save, num_iter=50, diverge_th=float("inf") ) as trainer_with_finder: trainer_with_finder.run(dataloader) assert_output_sizes(lr_finder, dummy_engine) # -1 because it terminates when state.iteration > num_iter assert dummy_engine.state.iteration - 1 == 50 def test_num_iter_is_not_enough(lr_finder, to_save, dummy_engine, dataloader): with lr_finder.attach(dummy_engine, to_save, num_iter=150, diverge_th=float("inf")) as trainer_with_finder: with pytest.warns(UserWarning): trainer_with_finder.run(dataloader) assert_output_sizes(lr_finder, dummy_engine) assert dummy_engine.state.iteration != len(dataloader) assert dummy_engine.state.iteration == 150 + 1 def test_detach_terminates(lr_finder, to_save, dummy_engine, dataloader): with lr_finder.attach(dummy_engine, to_save, end_lr=100.0, diverge_th=2) as trainer_with_finder: trainer_with_finder.run(dataloader) dummy_engine.run(dataloader, max_epochs=3) assert dummy_engine.state.epoch == 3 def test_different_num_iters(lr_finder, to_save, dummy_engine, dataloader): with pytest.warns(UserWarning, match=r"Run completed without loss diverging"): with lr_finder.attach(dummy_engine, to_save, num_iter=200, diverge_th=float("inf")) as trainer_with_finder: trainer_with_finder.run(dataloader) assert trainer_with_finder.state.iteration == 200 # num_iter with pytest.warns(UserWarning, match=r"Run completed without loss diverging"): with lr_finder.attach(dummy_engine, to_save, num_iter=1000, diverge_th=float("inf")) as trainer_with_finder: trainer_with_finder.run(dataloader) assert trainer_with_finder.state.iteration == 1000 # num_iter @pytest.mark.parametrize("step_mode", ["exp", "linear"]) def test_start_lr(lr_finder, to_save, dummy_engine, dataloader, step_mode): with lr_finder.attach( dummy_engine, to_save, start_lr=0.01, end_lr=10.0, num_iter=5, step_mode=step_mode, diverge_th=1 ) as trainer_with_finder: trainer_with_finder.run(dataloader) history = lr_finder.get_results() if step_mode == "exp": assert 0.01 < history["lr"][0] < 0.16 else: assert pytest.approx(history["lr"][0]) == 0.01 def test_engine_output_type(lr_finder, dummy_engine, optimizer): from ignite.handlers.param_scheduler import PiecewiseLinear dummy_engine.state.iteration = 1 dummy_engine.state.output = [10] with pytest.raises(TypeError, match=r"output of the engine should be of type float or 0d torch.Tensor"): lr_finder._log_lr_and_loss(dummy_engine, output_transform=lambda x: x, smooth_f=0, diverge_th=1) dummy_engine.state.output = (10, 5) with pytest.raises(TypeError, match=r"output of the engine should be of type float or 0d torch.Tensor"): lr_finder._log_lr_and_loss(dummy_engine, output_transform=lambda x: x, smooth_f=0, diverge_th=1) dummy_engine.state.output = torch.tensor([1, 2], dtype=torch.float32) with pytest.raises(ValueError, match=r"if output of the engine is torch.Tensor"): lr_finder._log_lr_and_loss(dummy_engine, output_transform=lambda x: x, smooth_f=0, diverge_th=1) lr_finder._lr_schedule = PiecewiseLinear( optimizer, param_name="lr", milestones_values=[(0, optimizer.param_groups[0]["lr"]), (100, 10)] ) dummy_engine.state.output = torch.tensor(10.0, dtype=torch.float32) lr_finder._history = {"lr": [], "loss": []} lr_finder._log_lr_and_loss(dummy_engine, output_transform=lambda x: x, smooth_f=0, diverge_th=1) loss = lr_finder._history["loss"][-1] assert type(loss) is float dummy_engine.state.output = torch.tensor([10.0], dtype=torch.float32) lr_finder._history = {"lr": [], "loss": []} lr_finder._log_lr_and_loss(dummy_engine, output_transform=lambda x: x, smooth_f=0, diverge_th=1) loss = lr_finder._history["loss"][-1] assert type(loss) is float def test_lr_suggestion_unexpected_curve(lr_finder, to_save, dummy_engine, dataloader): with lr_finder.attach(dummy_engine, to_save) as trainer_with_finder: trainer_with_finder.run(dataloader) lr_finder._history["loss"].insert(0, 0) with pytest.raises( RuntimeError, match=r"FastaiLRFinder got unexpected curve shape, the curve should be somehow U-shaped" ): lr_finder.lr_suggestion() def test_lr_suggestion_single_param_group(lr_finder): # , to_save, dummy_engine, dataloader): import numpy as np noise = 0.05 lr_finder._history["loss"] = np.linspace(-5.0, 5.0, num=100) ** 2 + noise lr_finder._history["lr"] = np.linspace(0.01, 10, num=100) # lr_finder.lr_suggestion() is supposed to return a value, but as # we assign loss and lr to tensors, instead of lists, it will return tensors suggested_lr = lr_finder.lr_suggestion() assert pytest.approx(suggested_lr.item()) == 0.110909089 def test_lr_suggestion_multiple_param_groups(lr_finder): import numpy as np noise = 0.06 lr_finder._history["loss"] = np.linspace(-5.0, 5, num=50) ** 2 + noise # 2 param_groups lr_finder._history["lr"] = np.linspace(0.01, 10, num=100).reshape(50, 2) # lr_finder.lr_suggestion() is supposed to return a list of values, # but as we assign loss and lr to tensors, instead of lists, it will return tensors suggested_lrs = lr_finder.lr_suggestion() assert pytest.approx(suggested_lrs[0].item()) == 0.21181818 assert pytest.approx(suggested_lrs[1].item()) == 0.31272727 def test_lr_suggestion_mnist(lr_finder, mnist_to_save, dummy_engine_mnist, mnist_dataloader): max_iters = 50 with lr_finder.attach(dummy_engine_mnist, mnist_to_save, diverge_th=2, step_mode="linear") as trainer_with_finder: with trainer_with_finder.add_event_handler( Events.ITERATION_COMPLETED(once=max_iters), lambda _: trainer_with_finder.terminate() ): trainer_with_finder.run(mnist_dataloader) assert 1e-4 <= lr_finder.lr_suggestion() <= 2 def test_apply_suggested_lr_unmatched_optimizers( lr_finder, mnist_to_save, dummy_engine_mnist, optimizer_multiple_param_groups, mnist_dataloader ): with lr_finder.attach(dummy_engine_mnist, mnist_to_save) as trainer_with_finder: trainer_with_finder.run(mnist_dataloader) sug_lr = lr_finder.lr_suggestion() with pytest.raises(RuntimeError, match=r"The number of parameter groups does not match"): lr_finder.apply_suggested_lr(optimizer_multiple_param_groups) def test_apply_suggested_lr_single_param_groups( lr_finder, mnist_to_save, dummy_engine_mnist, mnist_optimizer, mnist_dataloader ): with lr_finder.attach(dummy_engine_mnist, mnist_to_save) as trainer_with_finder: trainer_with_finder.run(mnist_dataloader) sug_lr = lr_finder.lr_suggestion() lr_finder.apply_suggested_lr(mnist_optimizer) assert mnist_optimizer.param_groups[0]["lr"] == sug_lr def test_apply_suggested_lr_multiple_param_groups( lr_finder, to_save_mulitple_param_groups, dummy_engine_mulitple_param_groups, optimizer_multiple_param_groups, dataloader_plot, ): with lr_finder.attach(dummy_engine_mulitple_param_groups, to_save_mulitple_param_groups) as trainer_with_finder: trainer_with_finder.run(dataloader_plot) sug_lr = lr_finder.lr_suggestion() lr_finder.apply_suggested_lr(optimizer_multiple_param_groups) for i in range(len(sug_lr)): assert optimizer_multiple_param_groups.param_groups[i]["lr"] == sug_lr[i] def test_no_matplotlib(no_site_packages, lr_finder): with pytest.raises(ModuleNotFoundError, match=r"This method requires matplotlib to be installed"): lr_finder.plot() def test_plot_single_param_group(dirname, lr_finder, mnist_to_save, dummy_engine_mnist, mnist_dataloader): with lr_finder.attach(dummy_engine_mnist, mnist_to_save, end_lr=20.0, smooth_f=0.04) as trainer_with_finder: trainer_with_finder.run(mnist_dataloader) def _test(ax): assert ax is not None assert ax.get_xscale() == "log" assert ax.get_xlabel() == "Learning rate" assert ax.get_ylabel() == "Loss" filepath = Path(dirname) / "dummy.jpg" ax.figure.savefig(filepath) assert filepath.exists() filepath.unlink() lr_finder.plot() ax = lr_finder.plot(skip_end=0) _test(ax) # Passing axes object from matplotlib import pyplot as plt _, ax = plt.subplots() lr_finder.plot(skip_end=0, ax=ax) _test(ax) def test_plot_multiple_param_groups( dirname, lr_finder, to_save_mulitple_param_groups, dummy_engine_mulitple_param_groups, dataloader_plot ): with lr_finder.attach( dummy_engine_mulitple_param_groups, to_save_mulitple_param_groups, end_lr=20.0, smooth_f=0.04 ) as trainer_with_finder: trainer_with_finder.run(dataloader_plot) def _test(ax): assert ax is not None assert ax.get_xscale() == "log" assert ax.get_xlabel() == "Learning rate" assert ax.get_ylabel() == "Loss" filepath = Path(dirname) / "dummy_muliple_param_groups.jpg" ax.figure.savefig(filepath) assert filepath.exists() filepath.unlink() ax = lr_finder.plot(skip_start=0, skip_end=0) _test(ax) # Passing axes object from matplotlib import pyplot as plt _, ax = plt.subplots() lr_finder.plot(skip_start=0, skip_end=0, ax=ax) _test(ax) def _test_distrib_log_lr_and_loss(device): from ignite.handlers import ParamScheduler lr_finder = FastaiLRFinder() _lr_schedule = MagicMock(spec=ParamScheduler) # minimal setup for lr_finder to make _log_lr_and_loss work rank = idist.get_rank() loss = 0.01 * (rank + 1) engine = Engine(lambda e, b: None) engine.state.output = loss engine.state.iteration = 1 lr_finder._lr_schedule = _lr_schedule lr_finder._history["loss"] = [] lr_finder._history["lr"] = [] lr_finder._log_lr_and_loss(engine, output_transform=lambda x: x, smooth_f=0.1, diverge_th=10.0) expected_loss = idist.all_reduce(loss) assert pytest.approx(lr_finder._history["loss"][-1]) == expected_loss def _test_distrib_integration_mnist(dirname, device): from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import Compose, Normalize, ToTensor data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_loader = DataLoader( MNIST(download=True, root="/tmp", transform=data_transform, train=True), batch_size=256, shuffle=True ) class DummyModel(nn.Module): def __init__(self, n_channels=10, out_channels=1, flatten_input=False): super(DummyModel, self).__init__() self.net = nn.Sequential( nn.Flatten() if flatten_input else nn.Identity(), nn.Linear(n_channels, out_channels) ) def forward(self, x): return self.net(x) model = DummyModel(n_channels=784, out_channels=10, flatten_input=True) model = model.to(device) optimizer = SGD(model.parameters(), lr=1e-4, momentum=0.0) to_save = {"model": model, "optimizer": optimizer} engine = create_supervised_trainer(model, optimizer, nn.CrossEntropyLoss(), device=device) lr_finder = FastaiLRFinder() with lr_finder.attach(engine, to_save) as trainer_with_finder: trainer_with_finder.run(train_loader) lr_finder.plot() if idist.get_rank() == 0: ax = lr_finder.plot(skip_end=0) filepath = Path(dirname) / "distrib_dummy.jpg" ax.figure.savefig(filepath) assert filepath.exists() sug_lr = lr_finder.lr_suggestion() assert 1e-3 <= sug_lr <= 1 lr_finder.apply_suggested_lr(optimizer) assert optimizer.param_groups[0]["lr"] == sug_lr @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(dirname, distributed_context_single_node_gloo): device = idist.device() _test_distrib_log_lr_and_loss(device) _test_distrib_integration_mnist(dirname, device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(dirname, distributed_context_single_node_nccl): device = idist.device() _test_distrib_log_lr_and_loss(device) _test_distrib_integration_mnist(dirname, device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_single_device_xla(dirname): device = idist.device() assert "xla" in device.type _test_distrib_log_lr_and_loss(device) _test_distrib_integration_mnist(dirname, device) def _test_distrib_log_lr_and_loss_xla_nprocs(index, dirname): device = idist.device() _test_distrib_log_lr_and_loss(device) _test_distrib_integration_mnist(dirname, device) import time # hack to have all proc properly sync: time.sleep(1) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Not on TPU device") def test_distrib_xla_nprocs(dirname, xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_log_lr_and_loss_xla_nprocs, args=(dirname,), nprocs=n) ignite-0.5.1/tests/ignite/handlers/test_mlflow_logger.py000066400000000000000000000273761465426447700235270ustar00rootroot00000000000000import sys from unittest.mock import call, MagicMock import pytest import torch from ignite.engine import Engine, Events, State from ignite.handlers.mlflow_logger import global_step_from_engine, MLflowLogger, OptimizerParamsHandler, OutputHandler def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler 'OutputHandler' works only with MLflowLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with({"tag output": 12345}, step=123) wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with({"another_tag loss": 12345}, step=123) def test_output_handler_metric_names(): wrapper = OutputHandler("tag", metric_names=["a", "b", "c"]) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45, "c": torch.tensor(10.0)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with({"tag a": 12.23, "tag b": 23.45, "tag c": 10.0}, step=5) wrapper = OutputHandler("tag", metric_names=["a"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor([0.0, 1.0, 2.0, 3.0])}) mock_engine.state.iteration = 5 mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call({"tag a 0": 0.0, "tag a 1": 1.0, "tag a 2": 2.0, "tag a 3": 3.0}, step=5)], any_order=True ) wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() with pytest.warns(UserWarning): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls([call({"tag a": 55.56}, step=7)], any_order=True) def test_output_handler_both(): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with({"tag a": 12.23, "tag b": 23.45, "tag loss": 12345}, step=5) def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.log_metrics.assert_called_once_with({"tag loss": 12345}, step=10) def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call({"tag loss": mock_engine.state.output}, step=mock_another_engine.state.epoch)] ) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 2 mock_logger.log_metrics.assert_has_calls( [call({"tag loss": mock_engine.state.output}, step=mock_another_engine.state.epoch)] ) def test_output_handler_state_attrs(): wrapper = OutputHandler("tag", state_attributes=["alpha", "beta", "gamma"]) mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 5 mock_engine.state.alpha = 3.899 mock_engine.state.beta = torch.tensor(12.21) mock_engine.state.gamma = torch.tensor([21.0, 6.0]) wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with( {"tag alpha": 3.899, "tag beta": torch.tensor(12.21).item(), "tag gamma 0": 21.0, "tag gamma 1": 6.0}, step=5 ) def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler OptimizerParamsHandler works only with MLflowLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.tensor(0.0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with({"lr group_0": 0.01}, step=123) wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") mock_logger = MagicMock(spec=MLflowLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with({"generator lr group_0": 0.01}, step=123) @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_integration(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) mlflow_logger = MLflowLogger(tracking_uri=str(dirname / "mlruns")) true_values = [] def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) v = global_step * 0.1 true_values.append(v) logger.log_metrics({"test_value": v}, step=global_step) mlflow_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) import mlflow active_run = mlflow.active_run() trainer.run(data, max_epochs=n_epochs) mlflow_logger.close() from mlflow.tracking import MlflowClient client = MlflowClient(tracking_uri=str(dirname / "mlruns")) stored_values = client.get_metric_history(active_run.info.run_id, "test_value") for t, s in zip(true_values, stored_values): assert pytest.approx(t) == s.value @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_integration_as_context_manager(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) true_values = [] with MLflowLogger(str(dirname / "mlruns")) as mlflow_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) v = global_step * 0.1 true_values.append(v) logger.log_metrics({"test_value": v}, step=global_step) mlflow_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) import mlflow active_run = mlflow.active_run() trainer.run(data, max_epochs=n_epochs) from mlflow.tracking import MlflowClient client = MlflowClient(tracking_uri=str(dirname / "mlruns")) stored_values = client.get_metric_history(active_run.info.run_id, "test_value") for t, s in zip(true_values, stored_values): assert pytest.approx(t) == s.value @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_mlflow_bad_metric_name_handling(dirname): import mlflow true_values = [123.0, 23.4, 333.4] with MLflowLogger(str(dirname / "mlruns")) as mlflow_logger: active_run = mlflow.active_run() handler = OutputHandler(tag="training", metric_names="all") engine = Engine(lambda e, b: None) engine.state = State(metrics={"metric:0 in %": 123.0, "metric 0": 1000.0}) with pytest.warns(UserWarning, match=r"MLflowLogger output_handler encountered an invalid metric name"): engine.state.epoch = 1 handler(engine, mlflow_logger, event_name=Events.EPOCH_COMPLETED) for _, v in enumerate(true_values): engine.state.epoch += 1 engine.state.metrics["metric 0"] = v handler(engine, mlflow_logger, event_name=Events.EPOCH_COMPLETED) from mlflow.tracking import MlflowClient client = MlflowClient(tracking_uri=str(dirname / "mlruns")) stored_values = client.get_metric_history(active_run.info.run_id, "training metric 0") for t, s in zip([1000.0] + true_values, stored_values): assert t == s.value @pytest.mark.parametrize("no_site_packages", ["mlflow"], indirect=True) def test_no_mlflow_client(no_site_packages): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires mlflow to be installed."): MLflowLogger() ignite-0.5.1/tests/ignite/handlers/test_neptune_logger.py000066400000000000000000000410761465426447700236760ustar00rootroot00000000000000import math import warnings from unittest.mock import MagicMock import pytest import torch from ignite.engine import Engine, Events, State from ignite.handlers.neptune_logger import ( global_step_from_engine, GradsScalarHandler, NeptuneLogger, NeptuneSaver, OptimizerParamsHandler, OutputHandler, WeightsScalarHandler, ) def assert_logger_called_once_with(logger, key, value): result = logger[key].fetch_values() assert len(result.value) == 1 if isinstance(result.value[0], float): assert math.isclose(result.value[0], value, abs_tol=0.01) else: assert result.value[0] == value def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler OptimizerParamsHandler works only with NeptuneLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.tensor(0.0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "lr/group_0", 0.01) logger.stop() wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "generator/lr/group_0", 0.01) logger.stop() def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler OutputHandler works only with NeptuneLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(): wrapper = OutputHandler("tag", output_transform=lambda x: x) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/output", 12345) logger.stop() wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "another_tag/loss", 12345) logger.stop() def test_output_handler_metric_names(): wrapper = OutputHandler("tag", metric_names=["a", "b"]) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/a", 12.23) assert_logger_called_once_with(logger, "tag/b", 23.45) logger.stop() wrapper = OutputHandler("tag", metric_names=["a"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor([0.0, 1.0, 2.0, 3.0])}) mock_engine.state.iteration = 5 logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) wrapper(mock_engine, logger, Events.ITERATION_STARTED) for key, val in [("tag/a/0", 0.0), ("tag/a/1", 1.0), ("tag/a/2", 2.0), ("tag/a/3", 3.0)]: assert_logger_called_once_with(logger, key, val) logger.stop() wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 with pytest.warns(UserWarning): wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/a", 55.56) logger.stop() # all metrics wrapper = OutputHandler("tag", metric_names="all") logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/a", 12.23) assert_logger_called_once_with(logger, "tag/b", 23.45) logger.stop() # log a torch tensor (ndimension = 0) wrapper = OutputHandler("tag", metric_names="all") logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor(12.23), "b": torch.tensor(23.45)}) mock_engine.state.iteration = 5 wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/a", 12.23) assert_logger_called_once_with(logger, "tag/b", 23.45) logger.stop() def test_output_handler_both(): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, logger, Events.EPOCH_STARTED) assert_logger_called_once_with(logger, "tag/a", 12.23) assert_logger_called_once_with(logger, "tag/b", 23.45) assert_logger_called_once_with(logger, "tag/loss", 12345) logger.stop() def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, logger, Events.EPOCH_STARTED) logger.stop() def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, logger, Events.EPOCH_STARTED) assert_logger_called_once_with(logger, "tag/loss", mock_engine.state.output) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, logger, Events.EPOCH_STARTED) result = logger["tag/loss"].fetch_values() assert len(result.value) == 2 assert result.value[1] == mock_engine.state.output logger.stop() def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, logger, Events.EPOCH_STARTED) assert_logger_called_once_with(logger, "tag/loss", 12345) logger.stop() def test_output_handler_state_attrs(): wrapper = OutputHandler("tag", state_attributes=["alpha", "beta", "gamma"]) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 5 mock_engine.state.alpha = 3.899 mock_engine.state.beta = torch.tensor(12.23) mock_engine.state.gamma = torch.tensor([21.0, 6.0]) wrapper(mock_engine, logger, Events.ITERATION_STARTED) assert_logger_called_once_with(logger, "tag/alpha", 3.899) assert_logger_called_once_with(logger, "tag/beta", 12.23) assert_logger_called_once_with(logger, "tag/gamma/0", 21.0) assert_logger_called_once_with(logger, "tag/gamma/1", 6.0) logger.stop() def test_weights_scalar_handler_wrong_setup(): with pytest.raises(TypeError, match="Argument model should be of type torch.nn.Module"): WeightsScalarHandler(None) model = MagicMock(spec=torch.nn.Module) with pytest.raises(TypeError, match="Argument reduction should be callable"): WeightsScalarHandler(model, reduction=123) with pytest.raises(TypeError, match="Output of the reduction function should be a scalar"): WeightsScalarHandler(model, reduction=lambda x: x) wrapper = WeightsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler WeightsScalarHandler works only with NeptuneLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_weights_scalar_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = WeightsScalarHandler(model, tag=tag) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert_logger_called_once_with(logger, tag_prefix + "weights_norm/fc1/weight", 0.0) assert_logger_called_once_with(logger, tag_prefix + "weights_norm/fc1/bias", 0.0) assert_logger_called_once_with(logger, tag_prefix + "weights_norm/fc2/weight", 12.0) assert_logger_called_once_with(logger, tag_prefix + "weights_norm/fc2/bias", math.sqrt(12.0)) logger.stop() _test() _test(tag="tag") def test_weights_scalar_handler_frozen_layers(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=True) wrapper = WeightsScalarHandler(model) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, logger, Events.EPOCH_STARTED) assert_logger_called_once_with(logger, "weights_norm/fc2/weight", 12.0) assert_logger_called_once_with(logger, "weights_norm/fc2/bias", math.sqrt(12.0)) assert not logger.exists("weights_norm/fc1/weight") assert not logger.exists("weights_norm/fc1/bias") logger.stop() def test_grads_scalar_handler_wrong_setup(): with pytest.raises(TypeError, match="Argument model should be of type torch.nn.Module"): GradsScalarHandler(None) model = MagicMock(spec=torch.nn.Module) with pytest.raises(TypeError, match="Argument reduction should be callable"): GradsScalarHandler(model, reduction=123) wrapper = GradsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(TypeError, match="Handler GradsScalarHandler works only with NeptuneLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_grads_scalar_handler(dummy_model_factory, norm_mock): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = GradsScalarHandler(model, reduction=norm_mock, tag=tag) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 norm_mock.reset_mock() wrapper(mock_engine, logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert logger.exists(tag_prefix + "grads_norm/fc1/weight") assert logger.exists(tag_prefix + "grads_norm/fc1/bias") assert logger.exists(tag_prefix + "grads_norm/fc2/weight") assert logger.exists(tag_prefix + "grads_norm/fc2/bias") logger.stop() _test() _test(tag="tag") def test_grads_scalar_handler_frozen_layers(dummy_model_factory, norm_mock): model = dummy_model_factory(with_grads=True, with_frozen_layer=True) wrapper = GradsScalarHandler(model, reduction=norm_mock) logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 norm_mock.reset_mock() wrapper(mock_engine, logger, Events.EPOCH_STARTED) assert logger.exists("grads_norm/fc2/weight") assert logger.exists("grads_norm/fc2/bias") assert not logger.exists("grads_norm/fc1/weight") assert not logger.exists("grads_norm/fc1/bias") logger.stop() def test_integration(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) npt_logger = NeptuneLogger(mode="offline") def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger["test_value"].append(global_step, step=global_step) npt_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) npt_logger.close() def test_integration_as_context_manager(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) with NeptuneLogger(mode="offline") as npt_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger["test_value"].append(global_step, step=global_step) npt_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) def test_neptune_saver_serializable(dirname): mock_logger = MagicMock(spec=NeptuneLogger) mock_logger.upload = MagicMock() model = torch.nn.Module() to_save_serializable = {"model": model} saver = NeptuneSaver(mock_logger) fname = dirname / "test.pt" saver(to_save_serializable, fname) assert mock_logger[dirname / "test.pt"].upload.call_count == 1 @pytest.mark.parametrize("model, serializable", [(lambda x: x, False), (torch.nn.Module().to("cpu"), True)]) def test_neptune_saver(model, serializable): mock_logger = MagicMock(spec=NeptuneLogger) mock_logger.upload = MagicMock() to_save_non_serializable = {"model": model} saver = NeptuneSaver(mock_logger) fname = "test.pt" try: with warnings.catch_warnings(): # Ignore torch/serialization.py:292: UserWarning: Couldn't retrieve source code for container of type # DummyModel. It won't be checked for correctness upon loading. warnings.simplefilter("ignore", category=UserWarning) saver(to_save_non_serializable, fname) except Exception: pass assert mock_logger["model"].upload.call_count == int(serializable) def test_logs_version(): from ignite import __version__ from ignite.handlers.neptune_logger import _INTEGRATION_VERSION_KEY logger = NeptuneLogger( project="tests/dry-run", mode="debug", ) assert logger[_INTEGRATION_VERSION_KEY].fetch() == __version__ ignite-0.5.1/tests/ignite/handlers/test_param_scheduler.py000066400000000000000000001463031465426447700240160ustar00rootroot00000000000000from unittest.mock import MagicMock, patch import numpy as np import pytest import torch from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, ExponentialLR, StepLR from ignite.engine import Engine, Events from ignite.handlers.param_scheduler import ( ConcatScheduler, CosineAnnealingScheduler, create_lr_scheduler_with_warmup, LinearCyclicalScheduler, LRScheduler, ParamGroupScheduler, ParamScheduler, PiecewiseLinear, ReduceLROnPlateauScheduler, ) from tests.ignite.handlers import MockFP16DeepSpeedZeroOptimizer try: from torch.optim.lr_scheduler import MultiplicativeLR except ImportError: has_multiplicative_lr = False else: from packaging.version import Version # https://github.com/pytorch/pytorch/issues/32756 has_multiplicative_lr = Version(torch.__version__) >= Version("1.5.0") class FakeParamScheduler(ParamScheduler): def get_param(self): return [0] def test_param_scheduler_asserts(): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler = FakeParamScheduler(optimizer, "lr") with pytest.raises(ValueError, match=r"size of value is different than optimizer_param_groups"): lr_scheduler(None) with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary, but given"): lr_scheduler.load_state_dict(None) with pytest.raises(ValueError, match=r"Required state attribute 'event_index' is absent in provided state_dict"): lr_scheduler.load_state_dict({}) with pytest.raises(TypeError, match=r"Argument optimizer should be torch.optim.Optimizer"): FakeParamScheduler({}, "lr") def test_linear_scheduler_asserts(): with pytest.raises(TypeError, match=r"Argument optimizer should be torch.optim.Optimizer"): LinearCyclicalScheduler({}, "lr", 1, 0, cycle_size=0) tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=1) with pytest.raises( ValueError, match=r"Invalid combination when warmup_duration > 0 and monotonic=False, " r"please use either set warmup_duration=0 or monotonic=True", ): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=2, warmup_duration=1) def test_linear_scheduler(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lr_values_in_cycle = [1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8] for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=2) assert lrs == pytest.approx([*lr_values_in_cycle, *lr_values_in_cycle]) scheduler.load_state_dict(state_dict) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, cycle_mult=2) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=3) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ], ) ) scheduler.load_state_dict(state_dict) def test_linear_scheduler_warmup_duration(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, warmup_duration=5, monotonic=True) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lr_values_in_cycle = [ 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.9, 0.8, 0.7, 0.6, ] for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=2) assert lrs == pytest.approx(lr_values_in_cycle) scheduler.load_state_dict(state_dict) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, cycle_mult=2, warmup_duration=5, monotonic=True) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=3) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, ], ) ) scheduler.load_state_dict(state_dict) def test_linear_scheduler_cycle_size_two(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=2) data = [0] * 10 max_epochs = 2 simulated_values = LinearCyclicalScheduler.simulate_values( num_events=len(data) * max_epochs, param_name="lr", start_value=1, end_value=0, cycle_size=2 ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0], ) ) assert lrs == pytest.approx([v for i, v in simulated_values]) @pytest.mark.parametrize("cyclic_warmup", [False, True]) def test_cosine_annealing_scheduler(cyclic_warmup): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = CosineAnnealingScheduler(optimizer, "lr", 0, 1, 10, warmup_duration=2 if cyclic_warmup else 0) state_dict = scheduler.state_dict() data = [0] * (10 + int(cyclic_warmup)) max_epochs = 2 simulated_values = CosineAnnealingScheduler.simulate_values( num_events=len(data) * max_epochs, param_name="lr", start_value=0, end_value=1, cycle_size=10, warmup_duration=2 if cyclic_warmup else 0, ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lr_values_in_cycle = [ 0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263, 0.5, 0.6545084971874737, 0.7938926261462365, 0.9045084971874737, 0.9755282581475768, ] lr_values_in_warmup = np.linspace(1.0, 0.0, 2 + 1)[:-1].tolist() if cyclic_warmup else [] for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([*lr_values_in_cycle, *lr_values_in_warmup, *lr_values_in_cycle]) scheduler.load_state_dict(state_dict) assert lrs == pytest.approx([v for i, v in simulated_values]) def test_concat_scheduler_asserts(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) with pytest.raises(TypeError, match=r"Argument schedulers should be a sequence"): ConcatScheduler(schedulers=None, durations=[]) with pytest.raises(ValueError, match=r"Argument schedulers should be of more than one parameter schedulers"): ConcatScheduler(schedulers=[], durations=[]) with pytest.raises(ValueError, match=r"Argument schedulers should be of more than one parameter schedulers"): ConcatScheduler(schedulers=[scheduler_1], durations=[10]) with pytest.raises(TypeError, match=r"Value at index 1 of schedulers should be a parameter scheduler"): ConcatScheduler(schedulers=[scheduler_1, 12], durations=[10]) with pytest.raises(ValueError, match=r"Incorrect number schedulers or duration values"): ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[10, 5]) with pytest.raises(ValueError, match=r"Argument durations should be list/tuple of integers"): ConcatScheduler(schedulers=[scheduler_1, scheduler_2, scheduler_2], durations=[15, 12.0]) with pytest.raises(TypeError, match=r"Argument durations should be list/tuple"): ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations="abc") with pytest.raises(TypeError, match=r"Argument param_names should be list or tuple"): ConcatScheduler.simulate_values( num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names="abc" ) with pytest.raises(ValueError, match=r"Argument param_names should be list or tuple of strings"): ConcatScheduler.simulate_values( num_events=123, schedulers=[scheduler_1, scheduler_2], durations=[15], param_names=[1] ) optimizer_2 = torch.optim.SGD([tensor], lr=0) scheduler_3 = CosineAnnealingScheduler(optimizer_2, "lr", start_value=0.0, end_value=1.0, cycle_size=10) with pytest.raises(ValueError, match=r"schedulers should be related to same optimizer"): ConcatScheduler([scheduler_1, scheduler_3], durations=[30]) scheduler_4 = CosineAnnealingScheduler(optimizer, "lr2", start_value=0.0, end_value=1.0, cycle_size=10) with pytest.raises(ValueError, match=r"schedulers should be related to same param_name"): ConcatScheduler([scheduler_1, scheduler_4], durations=[30]) with pytest.raises(ValueError, match=r"schedulers should be related to same optimizer"): ConcatScheduler.simulate_values(3, [scheduler_1, scheduler_3], durations=[30]) def test_concat_scheduler_state_dict(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=False) steps = 0 for i in range(5): concat_scheduler(engine=None) steps += 1 state_dict = concat_scheduler.state_dict() assert state_dict["durations"] == durations assert state_dict["_current_duration"] == durations[0] - steps assert state_dict["_scheduler_index"] == 0 for _ in range(20): concat_scheduler(None, None) concat_scheduler.load_state_dict(state_dict) assert concat_scheduler.durations == durations assert concat_scheduler._current_duration == durations[0] - steps assert id(concat_scheduler._current_scheduler) == id(scheduler_1) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): concat_scheduler.load_state_dict({"a": 1}) with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of concatenated schedulers"): concat_scheduler.load_state_dict({"schedulers": []}) with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary, but given"): concat_scheduler.load_state_dict(None) @pytest.mark.parametrize("duration_vals_as_np_int", [False, True]) def test_concat_scheduler_two_schedulers(duration_vals_as_np_int): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] if duration_vals_as_np_int: durations = [np.int64(t) for t in durations] concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=True) state_dict = concat_scheduler.state_dict() data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # Cycle 1 of the LinearCyclicalScheduler 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 1 of the CosineAnnealingScheduler 0.0, 0.02447174185242318, 0.09549150281252627, 0.20610737385376332, 0.3454915028125263, 0.5, 0.6545084971874737, 0.7938926261462365, 0.9045084971874737, 0.9755282581475768, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) trainer.state.param_history = None def test_concat_scheduler_two_linear(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.1, cycle_size=2) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.2, end_value=1.0, cycle_size=2) durations = [5] concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=True) state_dict = concat_scheduler.state_dict() assert concat_scheduler.get_param() == 0.0 data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # first LinearCyclicalScheduler 0.0, 0.1, 0.0, 0.1, 0.0, # second LinearCyclicalScheduler 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, 1.0, 0.2, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) trainer.state.param_history = None def test_concat_scheduler_3_schedulers(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.5, cycle_size=20) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.45, cycle_size=10) scheduler_3 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.5, end_value=0.0, cycle_size=20) durations = [10, 5] concat_scheduler = ConcatScheduler( schedulers=[scheduler_1, scheduler_2, scheduler_3], durations=durations, save_history=True ) state_dict = concat_scheduler.state_dict() data = [0] * 10 max_epochs = 2 simulated_values = ConcatScheduler.simulate_values( num_events=len(data) * max_epochs, schedulers=[scheduler_1, scheduler_2, scheduler_3], durations=durations ) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == list( map( pytest.approx, [ # Cycle 1 of the first LinearCyclicalScheduler 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, # Cycle 1 of the second LinearCyclicalScheduler 0.5, 0.49, 0.48, 0.47, 0.46, # Cycle 1 of the third LinearCyclicalScheduler 0.5, 0.45, 0.4, 0.35, 0.3, ], ) ) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs assert lrs == pytest.approx([v for i, v in simulated_values]) concat_scheduler.load_state_dict(state_dict) trainer.state.param_history = None def test_save_param_history(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, save_history=True) lrs = [] def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) assert not hasattr(trainer.state, "param_history") trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) trainer.run([0] * 10, max_epochs=2) state_lrs = trainer.state.param_history["lr"] assert len(state_lrs) == len(lrs) # Unpack singleton lists assert [group[0] for group in state_lrs] == lrs def test_lr_scheduler_asserts(): err_msg = r"Argument lr_scheduler should be a subclass of torch.optim.lr_scheduler.(_LRScheduler|LRScheduler)" with pytest.raises(TypeError, match=err_msg): LRScheduler(123) with pytest.raises(TypeError, match=err_msg): LRScheduler.simulate_values(1, None) @pytest.mark.parametrize( "torch_lr_scheduler_cls, kwargs", [ (StepLR, ({"step_size": 5, "gamma": 0.5})), (ExponentialLR, ({"gamma": 0.78})), (MultiplicativeLR if has_multiplicative_lr else None, ({"lr_lambda": lambda epoch: 0.95})), ], ) def test_lr_scheduler(torch_lr_scheduler_cls, kwargs): if torch_lr_scheduler_cls is None: return tensor = torch.zeros([1], requires_grad=True) optimizer1 = torch.optim.SGD([tensor], lr=0.01) optimizer2 = torch.optim.SGD([tensor], lr=0.01) optimizer3 = torch.optim.SGD([tensor], lr=0.01) opt_state_dict1 = optimizer1.state_dict() opt_state_dict2 = optimizer2.state_dict() opt_state_dict3 = optimizer3.state_dict() torch_lr_scheduler1 = torch_lr_scheduler_cls(optimizer=optimizer1, **kwargs) scheduler1 = LRScheduler(torch_lr_scheduler1) state_dict1 = scheduler1.state_dict() torch_lr_scheduler2 = torch_lr_scheduler_cls(optimizer=optimizer2, **kwargs) with pytest.warns(UserWarning, match=r"the first lr value from the optimizer, otherwise it will be skipped"): scheduler2 = LRScheduler(torch_lr_scheduler2, use_legacy=True) state_dict2 = scheduler2.state_dict() torch_lr_scheduler3 = torch_lr_scheduler_cls(optimizer=optimizer3, **kwargs) state_dict3 = torch_lr_scheduler3.state_dict() def dummy_update(engine, batch): optimizer1.step() optimizer2.step() optimizer3.step() trainer = Engine(dummy_update) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1) @trainer.on(Events.ITERATION_STARTED) def save_lr1(engine): lrs1.append(optimizer1.param_groups[0]["lr"]) @trainer.on(Events.ITERATION_STARTED) def save_lr2(engine): lrs2.append(optimizer2.param_groups[0]["lr"]) @trainer.on(Events.ITERATION_STARTED) def save_true_lr(engine): lrs_true.append(optimizer3.param_groups[0]["lr"]) @trainer.on(Events.ITERATION_COMPLETED) def torch_lr_scheduler_step(engine): torch_lr_scheduler3.step() trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler2) for _ in range(2): lrs1 = [] lrs2 = [] lrs_true = [] data = [0] * 10 max_epochs = 2 trainer.run(data, max_epochs=max_epochs) assert lrs_true == pytest.approx(lrs1), f"{_}: {lrs_true} ({len(lrs_true)}) vs {lrs1} ({len(lrs1)})" assert lrs_true == pytest.approx(lrs2), f"{_}: {lrs_true} ({len(lrs_true)}) vs {lrs2} ({len(lrs2)})" optimizer1.load_state_dict(opt_state_dict1) scheduler1.load_state_dict(state_dict1) optimizer2.load_state_dict(opt_state_dict2) scheduler2.load_state_dict(state_dict2) optimizer3.load_state_dict(opt_state_dict3) torch_lr_scheduler3.load_state_dict(state_dict3) optimizer4 = torch.optim.SGD([tensor], lr=0.01) torch_lr_scheduler4 = torch_lr_scheduler_cls(optimizer=optimizer4, **kwargs) simulated_values = LRScheduler.simulate_values(num_events=len(data) * max_epochs, lr_scheduler=torch_lr_scheduler4) assert lrs1 == pytest.approx([v for i, v in simulated_values]) assert lrs2 == pytest.approx([v for i, v in simulated_values]) def test_piecewiselinear_asserts(): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) with pytest.raises(TypeError, match=r"Argument milestones_values should be a list or tuple"): PiecewiseLinear(optimizer, "lr", milestones_values=None) with pytest.raises(ValueError, match=r"Argument milestones_values should be with at least one value"): PiecewiseLinear(optimizer, "lr", milestones_values=[]) with pytest.raises(ValueError, match=r"Argument milestones_values should be a list of pairs"): PiecewiseLinear(optimizer, "lr", milestones_values=[(0.5,)]) with pytest.raises(ValueError, match=r"Argument milestones_values should be a list of pairs"): PiecewiseLinear(optimizer, "lr", milestones_values=[(10, 0.5), (0.6,)]) with pytest.raises(ValueError, match=r"Milestones should be increasing integers"): PiecewiseLinear(optimizer, "lr", milestones_values=[(10, 0.5), (5, 0.6)]) with pytest.raises(TypeError, match=r"Value of a milestone should be integer"): PiecewiseLinear(optimizer, "lr", milestones_values=[(0.5, 1)]) @pytest.mark.parametrize("milestones_as_np_int", [True, False]) def test_piecewiselinear(milestones_as_np_int): tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0) milestones_values = [(5, 0.5), (15, 1.0), (25, 0.0), (35, 1.0), (40, 0.5)] if milestones_as_np_int: milestones_values = [(np.int64(t), v) for t, v in milestones_values] scheduler = PiecewiseLinear(optimizer, "lr", milestones_values=milestones_values) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 25, max_epochs=2) assert lrs == list( map( pytest.approx, [ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, ], ) ) scheduler.load_state_dict(state_dict) def test_simulate_and_plot_values(): import matplotlib matplotlib.use("Agg") def _test(scheduler_cls, **scheduler_kwargs): if scheduler_cls == LRScheduler: optimizer = scheduler_kwargs["lr_scheduler"].optimizer elif scheduler_cls == ConcatScheduler: optimizer = scheduler_kwargs["optimizer"] del scheduler_kwargs["optimizer"] else: tensor = torch.zeros([1], requires_grad=True) scheduler_kwargs["optimizer"] = torch.optim.SGD([tensor], lr=0.1) optimizer = scheduler_kwargs["optimizer"] max_epochs = 2 data = [0] * 10 simulated_values = scheduler_cls.simulate_values(num_events=len(data) * max_epochs, **scheduler_kwargs) scheduler = scheduler_cls(**scheduler_kwargs) lrs = [] def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_STARTED, save_lr) trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([v for i, v in simulated_values]) # reexecute to check if no internal changes # simulated_values = scheduler_cls.simulate_values(num_events=len(data) * max_epochs, # save_history=True, # this will be removed # **scheduler_kwargs) # assert lrs == pytest.approx([v for i, v in simulated_values]) # launch plot values scheduler_cls.plot_values(num_events=len(data) * max_epochs, **scheduler_kwargs) # LinearCyclicalScheduler _test(LinearCyclicalScheduler, param_name="lr", start_value=1.0, end_value=0.0, cycle_size=10) # CosineAnnealingScheduler _test(CosineAnnealingScheduler, param_name="lr", start_value=1.0, end_value=0.0, cycle_size=10) # LRScheduler tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.1) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.5) _test(LRScheduler, lr_scheduler=torch_lr_scheduler) # ConcatScheduler = [LinearCyclicalScheduler, CosineAnnealingScheduler] scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=20) scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10) durations = [10] _test(ConcatScheduler, optimizer=optimizer, schedulers=[scheduler_1, scheduler_2], durations=durations) # ConcatScheduler = [LinearCyclicalScheduler, LRScheduler] tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=1.5) scheduler_1 = LRScheduler(torch_lr_scheduler) scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.0, cycle_size=10) durations = [10] _test(ConcatScheduler, optimizer=optimizer, schedulers=[scheduler_1, scheduler_2], durations=durations) # PiecewiseLinear tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) _test( PiecewiseLinear, optimizer=optimizer, param_name="lr", milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)], ) with pytest.raises(ModuleNotFoundError, match=r"This method requires matplotlib to be installed."): with patch.dict("sys.modules", {"matplotlib.pyplot": None}): _test( PiecewiseLinear, optimizer=optimizer, param_name="lr", milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)], ) def test_create_lr_scheduler_with_warmup_asserts(): with pytest.raises(TypeError, match=r"Argument lr_scheduler should be a subclass of"): create_lr_scheduler_with_warmup(12, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=10) t1 = torch.zeros([1], requires_grad=True) # A) opt lr != warmup_end_value optimizer = torch.optim.SGD([t1], lr=0.2) torch_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) with pytest.raises(ValueError, match=r"Argument warmup_duration should be at least 2 events"): create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=1 ) with pytest.raises(TypeError, match=r"Argument warmup_duration should be integer"): create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration="abc" ) with pytest.raises(TypeError, match=r"Argument output_simulated_values should be a list of None"): simulated_values = () create_lr_scheduler_with_warmup( torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=10, output_simulated_values=simulated_values, ) @pytest.mark.parametrize( "lr_scheduler_name, warmup_start_value, warmup_end_value, warmup_duration, warmup_end_next_value", [ # A) opt lr != warmup_end_value ("ExponentialLR", 0.01, 0.05, 10, 0.2), ("ExponentialLR", 0.01, 0.05, 2, 0.2), # B) opt lr == warmup_end_value ("ExponentialLR", 0.01, 0.2, 10, 0.2 * 0.98), ("ExponentialLR", 0.01, 0.2, 2, 0.2 * 0.98), # C) lr_scheduler start_value != warmup_end_value ("LinearCyclicalScheduler", 0.01, 0.05, 10, 0.8), ("LinearCyclicalScheduler", 0.01, 0.05, 2, 0.8), # D) lr_scheduler start_value == warmup_end_value ("LinearCyclicalScheduler", 0.01, 0.8, 10, 0.8 - (0.8 / 5.0)), ("LinearCyclicalScheduler", 0.01, 0.8, 2, 0.8 - (0.8 / 5.0)), # E) warmup_end_value is None: fall back to case B) ("ExponentialLR", 0.01, None, 10, 0.2 * 0.98), ], ) def test_create_lr_scheduler_with_warmup( lr_scheduler_name, warmup_start_value, warmup_end_value, warmup_duration, warmup_end_next_value ): t1 = torch.zeros([1], requires_grad=True) if lr_scheduler_name == "ExponentialLR": optimizer = torch.optim.SGD([t1], lr=0.2) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.98) elif lr_scheduler_name == "LinearCyclicalScheduler": optimizer = torch.optim.SGD([t1], lr=0.0) lr_scheduler = LinearCyclicalScheduler( optimizer=optimizer, param_name="lr", start_value=0.8, end_value=0.0, cycle_size=10 ) else: raise ValueError(f"Unknown name: {lr_scheduler_name}") num_iterations = 10 max_epochs = 20 if warmup_end_value is None: expected_warmup_end_value = optimizer.param_groups[0]["lr"] else: expected_warmup_end_value = warmup_end_value simulated_values = [None] * (num_iterations * max_epochs) scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=warmup_start_value, warmup_end_value=warmup_end_value, warmup_duration=warmup_duration, output_simulated_values=simulated_values, ) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @trainer.on(Events.ITERATION_STARTED) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) data = [0] * num_iterations for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([v for _, v in simulated_values]) assert lrs[0] == pytest.approx(warmup_start_value), f"lrs={lrs[: warmup_duration + num_iterations]}" assert lrs[warmup_duration - 1] == pytest.approx( expected_warmup_end_value ), f"lrs={lrs[: warmup_duration + num_iterations]}" assert lrs[warmup_duration] == pytest.approx( warmup_end_next_value ), f"lrs={lrs[: warmup_duration + num_iterations]}" scheduler.load_state_dict(state_dict) @pytest.mark.parametrize("save_history", [False, True]) def test_create_lr_scheduler_with_warmup_on_combined_scheduler(save_history): # Test with a complex scheduler tensor = torch.ones([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.001) max_epochs = 25 lr_max_value = 0.4 num_iterations_per_epoch = 128 num_iterations = max_epochs * num_iterations_per_epoch warmup_duration = 5 * num_iterations_per_epoch cooldown_duration = 5 * num_iterations_per_epoch scheduler_1 = LinearCyclicalScheduler( optimizer, "lr", start_value=lr_max_value, end_value=lr_max_value * 0.9, cycle_size=(num_iterations - warmup_duration - cooldown_duration) * 2, ) scheduler_2 = LinearCyclicalScheduler( optimizer, "lr", start_value=lr_max_value, end_value=0.0, cycle_size=cooldown_duration * 2 ) lr_scheduler = ConcatScheduler( schedulers=[scheduler_1, scheduler_2], durations=[num_iterations - warmup_duration - cooldown_duration], save_history=False, ) lr_values = [None] * num_iterations scheduler = create_lr_scheduler_with_warmup( lr_scheduler, warmup_start_value=0.0, warmup_end_value=lr_max_value, warmup_duration=warmup_duration, save_history=save_history, output_simulated_values=lr_values, ) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) @trainer.on(Events.ITERATION_COMPLETED) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) data = [0] * num_iterations_per_epoch for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert lrs == pytest.approx([v for i, v in lr_values]) if save_history: param_history = trainer.state.param_history["lr"] assert lrs == pytest.approx([v[0] for v in param_history]) trainer.state.param_history = None scheduler.load_state_dict(state_dict) def test_create_lr_scheduler_with_warmup_with_real_model(dummy_model_factory): model = dummy_model_factory(with_grads=False, with_frozen_layer=False) init_lr = 0.01 optimizer = torch.optim.SGD(model.parameters(), lr=init_lr) scaled_lr = 0.02 warmup_duration = 5 step_size = 2 gamma = 0.97 output_simulated_values = [None] * 50 create_lr_scheduler_with_warmup( torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma), warmup_start_value=0.0, warmup_end_value=scaled_lr, warmup_duration=warmup_duration, output_simulated_values=output_simulated_values, ) assert output_simulated_values[0] == [0, 0.0] assert output_simulated_values[warmup_duration - 1] == [warmup_duration - 1, scaled_lr] assert output_simulated_values[warmup_duration] == [warmup_duration, init_lr] v = [warmup_duration + step_size, init_lr * gamma] assert output_simulated_values[warmup_duration + step_size] == v def test_param_group_scheduler_asserts(): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler1 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=0, start_value=1.0, end_value=0.0, cycle_size=10 ) lr_scheduler2 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=1, start_value=1.0, end_value=0.0, cycle_size=10 ) with pytest.raises(TypeError, match=r"Argument schedulers should be a list/tuple"): ParamGroupScheduler(schedulers=None, names=["a", "b", "c"]) with pytest.raises(ValueError, match=r"Argument schedulers should be a list/tuple of parameter schedulers"): ParamGroupScheduler(schedulers=[0, 1, 2], names=["a", "b", "c"]) with pytest.raises(ValueError, match=r"Argument schedulers should be a list/tuple of parameter schedulers"): ParamGroupScheduler(schedulers=[lr_scheduler1, "2"], names=["a", "b"]) with pytest.raises(TypeError, match=r"Argument names should be a list/tuple"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names="ab") with pytest.raises(ValueError, match=r"Argument names should be a list/tuple of parameter scheduler's names"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=[1, 2]) with pytest.raises(ValueError, match=r"\d should be equal \d"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a"]) scheduler = ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a", "b"]) with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary"): scheduler.load_state_dict(None) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): scheduler.load_state_dict({"a": 1}) with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of param group schedulers"): scheduler.load_state_dict({"schedulers": []}) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): scheduler.load_state_dict({}) with pytest.raises( ValueError, match=r"Name of scheduler from input state dict does not " r"correspond to required one" ): scheduler.load_state_dict({"schedulers": [("a", lr_scheduler1.state_dict()), ("bad_name", {})]}) @pytest.mark.parametrize("param_groups_setting", ["single_optim", "multi_optim"]) def test_param_group_scheduler(param_groups_setting): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) if param_groups_setting == "single_optim": optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler1 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=0, start_value=1.0, end_value=0.0, cycle_size=10 ) lr_scheduler2 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=1, start_value=1.0, end_value=0.0, cycle_size=10 ) else: optimizer_1 = torch.optim.SGD(params=[t1], lr=0.1) optimizer_2 = torch.optim.SGD(params=[t2], lr=0.1) lr_scheduler1 = LinearCyclicalScheduler(optimizer_1, "lr", start_value=1.0, end_value=0.0, cycle_size=10) lr_scheduler2 = LinearCyclicalScheduler(optimizer_2, "lr", start_value=1.0, end_value=0.0, cycle_size=10) lr_schedulers = [lr_scheduler1, lr_scheduler2] num_iterations = 10 max_epochs = 20 scheduler = ParamGroupScheduler(lr_schedulers, names=[f"s_{i}" for i in range(len(lr_schedulers))]) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) lrs = [] @trainer.on(Events.ITERATION_STARTED, lrs) def save_lr(_, lrs): lrs.append(scheduler.get_param()) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) data = [0] * num_iterations for _ in range(2): lrs.clear() trainer.run(data, max_epochs=max_epochs) assert [lr[0] for lr in lrs] == pytest.approx([lr[1] for lr in lrs]) scheduler.load_state_dict(state_dict) values = ParamGroupScheduler.simulate_values(max_epochs * num_iterations, lr_schedulers) assert [lr[1] for lr in values] == pytest.approx([lr[2] for lr in values]) assert [lr[0] for lr in lrs] == pytest.approx([lr[1] for lr in values]) @pytest.mark.parametrize( "scheduler_cls, kwargs", [ (LinearCyclicalScheduler, {"param_name": "lr", "start_value": 1.0, "end_value": 0.0, "cycle_size": 10}), ( PiecewiseLinear, {"param_name": "lr", "milestones_values": [(5, 0.5), (15, 1.0), (25, 0.0), (35, 1.0), (40, 0.5)]}, ), (CosineAnnealingScheduler, {"param_name": "lr", "start_value": 0.0, "end_value": 1.0, "cycle_size": 10}), (ExponentialLR, {"gamma": 0.98}), (StepLR, {"step_size": 50, "gamma": 0.5}), ], ) def test_scheduler_with_param_groups(scheduler_cls, kwargs): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler = scheduler_cls(optimizer, **kwargs) if not isinstance(lr_scheduler, ParamScheduler): lr_scheduler = LRScheduler(lr_scheduler) num_iterations = 10 max_epochs = 20 state_dict = lr_scheduler.state_dict() trainer = Engine(lambda engine, batch: None) @trainer.on(Events.ITERATION_COMPLETED) def save_lr(): lrs.append((optimizer.param_groups[0]["lr"], optimizer.param_groups[1]["lr"])) trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler) data = [0] * num_iterations for _ in range(2): lrs = [] trainer.run(data, max_epochs=max_epochs) assert [lr[0] for lr in lrs] == pytest.approx([lr[1] for lr in lrs]) lr_scheduler.load_state_dict(state_dict) def test_lr_scheduling_on_non_torch_optimizers(): # tests https://github.com/pytorch/ignite/issues/1162 optimizer = MagicMock() optimizer.param_groups = [{"params": 0}] FakeParamScheduler(optimizer, "lr") tensor = torch.zeros([1], requires_grad=True) base_optimizer = torch.optim.SGD([tensor], lr=0) optimizer = MockFP16DeepSpeedZeroOptimizer(base_optimizer) milestones_values = [(5, 0.5), (15, 1.0)] scheduler = PiecewiseLinear(optimizer, "lr", milestones_values=milestones_values) def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) lrs = [] trainer.run([0] * 15, max_epochs=1) assert lrs == list( map(pytest.approx, [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]) ) def test_reduce_lr_on_plateau_scheduler(): tensor1 = torch.zeros([1], requires_grad=True) tensor2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": [tensor1]}, {"params": [tensor2]}], lr=1) data = [0] * 8 max_epochs = 10 trainer = Engine(lambda engine, batch: None) @trainer.on(Events.EPOCH_COMPLETED) def evaluate(): evaluator.run(data) scheduler = ReduceLROnPlateauScheduler( optimizer, metric_name="acc", mode="max", factor=0.5, patience=1, threshold_mode="abs", threshold=1.99, min_lr=1e-7, save_history=True, trainer=trainer, param_group_index=0, ) evaluator = Engine(lambda engine, batch: None) evaluator.state.metrics = {"acc": 0.0} generate_acc = iter([3, 7, 7, 9, 10, 11, 8, 8, 4, 7]) @evaluator.on(Events.COMPLETED) def set_acc(): evaluator.state.metrics["acc"] = next(generate_acc) evaluator.add_event_handler(Events.COMPLETED, scheduler) trainer.run(data, max_epochs=max_epochs) lrs = [param[0] for param in trainer.state.param_history["lr"]] assert lrs == list( map( pytest.approx, [1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.25], ) ) assert optimizer.param_groups[1]["lr"] == 1 values = ReduceLROnPlateauScheduler.simulate_values( 5, [10, 9, 9, 9, 8.1], 1.0, save_history=True, factor=0.5, patience=2, threshold=0.1 ) values = np.array(values)[:, 1].tolist() assert values == list( map( pytest.approx, [1.0, 1.0, 1.0, 0.5, 0.5], ) ) def test_reduce_lr_on_plateau_scheduler_asserts(): tensor1 = torch.zeros([1], requires_grad=True) tensor2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": [tensor1]}, {"params": [tensor2]}], lr=1) with pytest.raises(TypeError, match=r"When param_group_index is given, min_lr should be a float, but given"): ReduceLROnPlateauScheduler( optimizer, metric_name="acc", min_lr=[1e-7, 1e-8], param_group_index=0, ) with pytest.raises( ValueError, match=r"Argument engine should have in its 'state', attribute 'metrics' which itself has the metric" ): scheduler = ReduceLROnPlateauScheduler(optimizer, metric_name="acc") evaluator = Engine(lambda engine, batch: None) scheduler(evaluator) with pytest.raises(ValueError, match=r"Length of argument metric_values should be equal to num_events."): metric_values = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] ReduceLROnPlateauScheduler.simulate_values(5, metric_values, 0.01) @pytest.mark.parametrize("warmup_end_value", [0.23, None]) @pytest.mark.parametrize("T_0", [1, 12]) @pytest.mark.parametrize("T_mult", [1, 3]) def test_create_lr_scheduler_with_warmup_cosine(warmup_end_value, T_0, T_mult): lr = 0.2 steps = 200 warm_steps = 50 warm_start = 0.023 def get_optim(): t1 = torch.zeros([1], requires_grad=True) return torch.optim.SGD([t1], lr=lr) def get_cos_shed(): return CosineAnnealingWarmRestarts(optimizer, T_0=T_0, T_mult=T_mult) optimizer = get_optim() scheduler = get_cos_shed() cosine_lrs = [] for i in range(steps): cosine_lrs.append(optimizer.param_groups[0]["lr"]) scheduler.step() optimizer = get_optim() scheduler = create_lr_scheduler_with_warmup( get_cos_shed(), warmup_start_value=warm_start, warmup_end_value=warmup_end_value, warmup_duration=warm_steps ) warm_lrs = [] real_warm_steps = warm_steps if warmup_end_value is not None else (warm_steps - 1) for epoch in range(real_warm_steps + steps): scheduler(None) warm_lrs.append(optimizer.param_groups[0]["lr"]) if warmup_end_value is not None: np.testing.assert_allclose(np.linspace(warm_start, warmup_end_value, warm_steps), warm_lrs[:warm_steps]) assert warm_lrs[real_warm_steps:] == cosine_lrs else: np.testing.assert_allclose(np.linspace(warm_start, lr, warm_steps), warm_lrs[:warm_steps]) assert warm_lrs[real_warm_steps:] == cosine_lrs ignite-0.5.1/tests/ignite/handlers/test_polyaxon_logger.py000066400000000000000000000242101465426447700240600ustar00rootroot00000000000000import os from unittest.mock import call, MagicMock import pytest import torch from ignite.engine import Engine, Events, State from ignite.handlers.polyaxon_logger import ( global_step_from_engine, OptimizerParamsHandler, OutputHandler, PolyaxonLogger, ) os.environ["POLYAXON_NO_OP"] = "1" def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'OutputHandler' works only with PolyaxonLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(step=123, **{"tag/output": 12345}) wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(step=123, **{"another_tag/loss": 12345}) def test_output_handler_metric_names(): wrapper = OutputHandler("tag", metric_names=["a", "b", "c"]) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45, "c": torch.tensor(10.0)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/c": 10.0}) wrapper = OutputHandler("tag", metric_names=["a"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor([0.0, 1.0, 2.0, 3.0])}) mock_engine.state.iteration = 5 mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call(step=5, **{"tag/a/0": 0.0, "tag/a/1": 1.0, "tag/a/2": 2.0, "tag/a/3": 3.0})], any_order=True ) wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() with pytest.warns(UserWarning): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls([call(step=7, **{"tag/a": 55.56})], any_order=True) # all metrics wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45, "c": torch.tensor(10.0)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/c": 10.0}) def test_output_handler_both(): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_called_once_with(step=5, **{"tag/a": 12.23, "tag/b": 23.45, "tag/loss": 12345}) def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.log_metrics.assert_called_once_with(step=10, **{"tag/loss": 12345}) def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 1 mock_logger.log_metrics.assert_has_calls( [call(step=mock_another_engine.state.epoch, **{"tag/loss": mock_engine.state.output})] ) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.log_metrics.call_count == 2 mock_logger.log_metrics.assert_has_calls( [call(step=mock_another_engine.state.epoch, **{"tag/loss": mock_engine.state.output})] ) def test_output_handler_state_attrs(): wrapper = OutputHandler("tag", state_attributes=["alpha", "beta", "gamma"]) mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 5 mock_engine.state.alpha = 3.899 mock_engine.state.beta = torch.tensor(12.21) mock_engine.state.gamma = torch.tensor([21.0, 6.0]) wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with( **{"tag/alpha": 3.899, "tag/beta": torch.tensor(12.21).item(), "tag/gamma/0": 21.0, "tag/gamma/1": 6.0}, step=5 ) def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler OptimizerParamsHandler works only with PolyaxonLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.tensor(0.0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(**{"lr/group_0": 0.01, "step": 123}) wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") mock_logger = MagicMock(spec=PolyaxonLogger) mock_logger.log_metrics = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.log_metrics.assert_called_once_with(**{"generator/lr/group_0": 0.01, "step": 123}) def test_integration(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) plx_logger = PolyaxonLogger() def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.log_metrics(step=global_step, **{"test_value": global_step}) plx_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) plx_logger.close() def test_integration_as_context_manager(): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) with PolyaxonLogger() as plx_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.log_metrics(step=global_step, **{"test_value": global_step}) plx_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) @pytest.mark.parametrize("no_site_packages", ["polyaxon"], indirect=True) def test_no_polyaxon_client(no_site_packages): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires polyaxon"): PolyaxonLogger() ignite-0.5.1/tests/ignite/handlers/test_state_param_scheduler.py000066400000000000000000000441011465426447700252070ustar00rootroot00000000000000import re from pathlib import Path from unittest.mock import patch import pytest import torch import torch.nn as nn from packaging.version import Version from ignite.engine import Engine, Events from ignite.handlers.state_param_scheduler import ( ExpStateScheduler, LambdaStateScheduler, MultiStepStateScheduler, PiecewiseLinearStateScheduler, StepStateScheduler, ) config1 = (3, [(2, 0), (5, 10)], True, [0.0, 0.0, 3.3333333333333335]) expected_hist2 = [0.0] * 10 + [float(i) for i in range(1, 11)] + [10.0] * 10 config2 = (30, [(10, 0), (20, 10)], True, expected_hist2) config3 = ( PiecewiseLinearStateScheduler, {"param_name": "linear_scheduled_param", "milestones_values": [(3, 12), (5, 10)], "create_new": True}, ) config4 = ( ExpStateScheduler, {"param_name": "exp_scheduled_param", "initial_value": 10, "gamma": 0.99, "create_new": True}, ) config5 = ( MultiStepStateScheduler, { "param_name": "multistep_scheduled_param", "initial_value": 10, "gamma": 0.99, "milestones": [3, 6], "create_new": True, }, ) if Version(torch.__version__) < Version("1.9.0"): torch_testing_assert_close = torch.testing.assert_allclose else: torch_testing_assert_close = torch.testing.assert_close class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma def __call__(self, event_index): return self.initial_value * self.gamma ** (event_index % 9) config6 = ( LambdaStateScheduler, { "param_name": "custom_scheduled_param", "lambda_obj": LambdaState(initial_value=10, gamma=0.99), "create_new": True, }, ) config7 = ( StepStateScheduler, {"param_name": "step_scheduled_param", "initial_value": 10, "gamma": 0.99, "step_size": 5, "create_new": True}, ) @pytest.mark.parametrize("max_epochs, milestones_values, save_history, expected_param_history", [config1, config2]) def test_pwlinear_scheduler_linear_increase_history( max_epochs, milestones_values, save_history, expected_param_history ): # Testing linear increase engine = Engine(lambda e, b: None) pw_linear_step_parameter_scheduler = PiecewiseLinearStateScheduler( param_name="pwlinear_scheduled_param", milestones_values=milestones_values, save_history=save_history, create_new=True, ) pw_linear_step_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) expected_param_history = expected_param_history assert hasattr(engine.state, "param_history") state_param = engine.state.param_history["pwlinear_scheduled_param"] assert len(state_param) == len(expected_param_history) assert state_param == expected_param_history state_dict = pw_linear_step_parameter_scheduler.state_dict() pw_linear_step_parameter_scheduler.load_state_dict(state_dict) @pytest.mark.parametrize("max_epochs, milestones_values", [(3, [(3, 12), (5, 10)]), (5, [(10, 12), (20, 10)])]) def test_pwlinear_scheduler_step_constant(max_epochs, milestones_values): # Testing step_constant engine = Engine(lambda e, b: None) linear_state_parameter_scheduler = PiecewiseLinearStateScheduler( param_name="pwlinear_scheduled_param", milestones_values=milestones_values, create_new=True ) linear_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close(getattr(engine.state, "pwlinear_scheduled_param"), float(milestones_values[0][1])) state_dict = linear_state_parameter_scheduler.state_dict() linear_state_parameter_scheduler.load_state_dict(state_dict) @pytest.mark.parametrize( "max_epochs, milestones_values, expected_val", [(2, [(0, 0), (3, 10)], 6.666666666666667), (10, [(0, 0), (20, 10)], 5.0)], ) def test_pwlinear_scheduler_linear_increase(max_epochs, milestones_values, expected_val): # Testing linear increase engine = Engine(lambda e, b: None) linear_state_parameter_scheduler = PiecewiseLinearStateScheduler( param_name="pwlinear_scheduled_param", milestones_values=milestones_values, create_new=True ) linear_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close(getattr(engine.state, "pwlinear_scheduled_param"), expected_val, atol=0.001, rtol=0.0) state_dict = linear_state_parameter_scheduler.state_dict() linear_state_parameter_scheduler.load_state_dict(state_dict) @pytest.mark.parametrize("max_epochs, milestones_values,", [(3, [(0, 0), (3, 10)]), (40, [(0, 0), (20, 10)])]) def test_pwlinear_scheduler_max_value(max_epochs, milestones_values): # Testing max_value engine = Engine(lambda e, b: None) linear_state_parameter_scheduler = PiecewiseLinearStateScheduler( param_name="linear_scheduled_param", milestones_values=milestones_values, create_new=True ) linear_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close(getattr(engine.state, "linear_scheduled_param"), float(milestones_values[-1][1])) state_dict = linear_state_parameter_scheduler.state_dict() linear_state_parameter_scheduler.load_state_dict(state_dict) def test_piecewiselinear_asserts(): with pytest.raises(TypeError, match=r"Argument milestones_values should be a list or tuple"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=None) with pytest.raises(ValueError, match=r"Argument milestones_values should be with at least one value"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=[]) with pytest.raises(ValueError, match=r"Argument milestones_values should be a list of pairs"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=[(0.5,)]) with pytest.raises(ValueError, match=r"Argument milestones_values should be a list of pairs"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=[(10, 0.5), (0.6,)]) with pytest.raises(ValueError, match=r"Milestones should be increasing integers"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=[(10, 0.5), (5, 0.6)]) with pytest.raises(TypeError, match=r"Value of a milestone should be integer"): PiecewiseLinearStateScheduler(param_name="linear_scheduled_param", milestones_values=[(0.5, 1)]) @pytest.mark.parametrize("max_epochs, initial_value, gamma", [(3, 10, 0.99), (40, 5, 0.98)]) def test_exponential_scheduler(max_epochs, initial_value, gamma): engine = Engine(lambda e, b: None) exp_state_parameter_scheduler = ExpStateScheduler( param_name="exp_scheduled_param", initial_value=initial_value, gamma=gamma, create_new=True ) exp_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close(getattr(engine.state, "exp_scheduled_param"), initial_value * gamma**max_epochs) state_dict = exp_state_parameter_scheduler.state_dict() exp_state_parameter_scheduler.load_state_dict(state_dict) @pytest.mark.parametrize("max_epochs, initial_value, gamma, step_size", [(3, 10, 0.99, 5), (40, 5, 0.98, 22)]) def test_step_scheduler(max_epochs, initial_value, gamma, step_size): engine = Engine(lambda e, b: None) step_state_parameter_scheduler = StepStateScheduler( param_name="step_scheduled_param", initial_value=initial_value, gamma=gamma, step_size=step_size, create_new=True, ) step_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close( getattr(engine.state, "step_scheduled_param"), initial_value * gamma ** (max_epochs // step_size) ) state_dict = step_state_parameter_scheduler.state_dict() step_state_parameter_scheduler.load_state_dict(state_dict) from bisect import bisect_right @pytest.mark.parametrize( "max_epochs, initial_value, gamma, milestones", [(3, 10, 0.99, [3, 6]), (40, 5, 0.98, [3, 6, 9, 10, 11])] ) def test_multistep_scheduler(max_epochs, initial_value, gamma, milestones): engine = Engine(lambda e, b: None) multi_step_state_parameter_scheduler = MultiStepStateScheduler( param_name="multistep_scheduled_param", initial_value=initial_value, gamma=gamma, milestones=milestones, create_new=True, ) multi_step_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=max_epochs) torch_testing_assert_close( getattr(engine.state, "multistep_scheduled_param"), initial_value * gamma ** bisect_right(milestones, max_epochs), ) state_dict = multi_step_state_parameter_scheduler.state_dict() multi_step_state_parameter_scheduler.load_state_dict(state_dict) def test_custom_scheduler(): engine = Engine(lambda e, b: None) class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma def __call__(self, event_index): return self.initial_value * self.gamma ** (event_index % 9) lambda_state_parameter_scheduler = LambdaStateScheduler( param_name="custom_scheduled_param", lambda_obj=LambdaState(initial_value=10, gamma=0.99), create_new=True ) lambda_state_parameter_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=2) torch_testing_assert_close( getattr(engine.state, "custom_scheduled_param"), LambdaState(initial_value=10, gamma=0.99)(2) ) engine.run([0] * 8, max_epochs=20) torch_testing_assert_close( getattr(engine.state, "custom_scheduled_param"), LambdaState(initial_value=10, gamma=0.99)(20) ) state_dict = lambda_state_parameter_scheduler.state_dict() lambda_state_parameter_scheduler.load_state_dict(state_dict) def test_custom_scheduler_asserts(): class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma with pytest.raises(ValueError, match=r"Expected lambda_obj to be callable."): lambda_state_parameter_scheduler = LambdaStateScheduler( param_name="custom_scheduled_param", lambda_obj=LambdaState(initial_value=10, gamma=0.99), create_new=True ) @pytest.mark.parametrize("scheduler_cls, scheduler_kwargs", [config3, config4, config5, config6]) def test_simulate_and_plot_values(scheduler_cls, scheduler_kwargs): import matplotlib matplotlib.use("Agg") event = Events.EPOCH_COMPLETED max_epochs = 2 data = [0] * 10 scheduler = scheduler_cls(**scheduler_kwargs) trainer = Engine(lambda engine, batch: None) scheduler.attach(trainer, event) trainer.run(data, max_epochs=max_epochs) # launch plot values scheduler_cls.plot_values(num_events=len(data) * max_epochs, **scheduler_kwargs) @pytest.mark.parametrize("save_history", [False, True]) @pytest.mark.parametrize("scheduler_cls, scheduler_kwargs", [config3, config4, config5, config6]) def test_simulate_values(scheduler_cls, scheduler_kwargs, save_history): max_epochs = 2 data = [0] * 10 scheduler_kwargs["save_history"] = save_history scheduler_cls.simulate_values(num_events=len(data) * max_epochs, **scheduler_kwargs) def test_torch_save_load(dirname): lambda_state_parameter_scheduler = LambdaStateScheduler( param_name="custom_scheduled_param", lambda_obj=LambdaState(initial_value=10, gamma=0.99), create_new=True ) filepath = Path(dirname) / "dummy_lambda_state_parameter_scheduler.pt" torch.save(lambda_state_parameter_scheduler, filepath) loaded_lambda_state_parameter_scheduler = torch.load(filepath) engine1 = Engine(lambda e, b: None) lambda_state_parameter_scheduler.attach(engine1, Events.EPOCH_COMPLETED) engine1.run([0] * 8, max_epochs=2) torch_testing_assert_close( getattr(engine1.state, "custom_scheduled_param"), LambdaState(initial_value=10, gamma=0.99)(2) ) engine2 = Engine(lambda e, b: None) loaded_lambda_state_parameter_scheduler.attach(engine2, Events.EPOCH_COMPLETED) engine2.run([0] * 8, max_epochs=2) torch_testing_assert_close( getattr(engine2.state, "custom_scheduled_param"), LambdaState(initial_value=10, gamma=0.99)(2) ) torch_testing_assert_close( getattr(engine1.state, "custom_scheduled_param"), getattr(engine2.state, "custom_scheduled_param") ) def test_simulate_and_plot_values_no_matplotlib(): with pytest.raises(ModuleNotFoundError, match=r"This method requires matplotlib to be installed."): with patch.dict("sys.modules", {"matplotlib.pyplot": None}): event = Events.EPOCH_COMPLETED max_epochs = 2 data = [0] * 10 kwargs = { "param_name": "multistep_scheduled_param", "initial_value": 10, "gamma": 0.99, "milestones": [3, 6], "create_new": True, } scheduler = MultiStepStateScheduler(**kwargs) trainer = Engine(lambda engine, batch: None) scheduler.attach(trainer, event) trainer.run(data, max_epochs=max_epochs) # launch plot values MultiStepStateScheduler.plot_values(num_events=len(data) * max_epochs, **kwargs) def test_multiple_scheduler_with_save_history(): engine_multiple_schedulers = Engine(lambda e, b: None) configs = [config3, config4, config5, config6, config7] for scheduler, config in configs: if "save_history" in config: del config["save_history"] _scheduler = scheduler(**config, save_history=True) _scheduler.attach(engine_multiple_schedulers) engine_multiple_schedulers.run([0] * 8, max_epochs=2) for scheduler, config in configs: engine = Engine(lambda e, b: None) _scheduler = scheduler(**config, save_history=True) _scheduler.attach(engine) engine.run([0] * 8, max_epochs=2) torch_testing_assert_close( engine_multiple_schedulers.state.param_history[config["param_name"]], engine.state.param_history[config["param_name"]], ) def test_docstring_examples(): # LambdaStateScheduler engine = Engine(lambda e, b: None) class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma def __call__(self, event_index): return self.initial_value * self.gamma ** (event_index % 9) param_scheduler = LambdaStateScheduler(param_name="param", lambda_obj=LambdaState(10, 0.99), create_new=True) param_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=2) # PiecewiseLinearStateScheduler engine = Engine(lambda e, b: None) param_scheduler = PiecewiseLinearStateScheduler( param_name="param", milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)], create_new=True ) param_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=40) # ExpStateScheduler engine = Engine(lambda e, b: None) param_scheduler = ExpStateScheduler(param_name="param", initial_value=10, gamma=0.99, create_new=True) param_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=2) # StepStateScheduler engine = Engine(lambda e, b: None) param_scheduler = StepStateScheduler(param_name="param", initial_value=10, gamma=0.99, step_size=5, create_new=True) param_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=10) # MultiStepStateScheduler engine = Engine(lambda e, b: None) param_scheduler = MultiStepStateScheduler( param_name="param", initial_value=10, gamma=0.99, milestones=[3, 6], create_new=True ) param_scheduler.attach(engine, Events.EPOCH_COMPLETED) engine.run([0] * 8, max_epochs=10) def test_param_scheduler_attach_exception(): trainer = Engine(lambda e, b: None) param_name = "state_param" setattr(trainer.state, param_name, None) save_history = True create_new = True param_scheduler = PiecewiseLinearStateScheduler( param_name=param_name, milestones_values=[(0, 0.0), (10, 0.999)], save_history=save_history, create_new=create_new, ) with pytest.raises( ValueError, match=r"Attribute '" + re.escape(param_name) + "' already exists in the engine.state. " r"This may be a conflict between multiple handlers. " r"Please choose another name.", ): param_scheduler.attach(trainer, Events.ITERATION_COMPLETED) def test_param_scheduler_attach_warning(): trainer = Engine(lambda e, b: None) param_name = "state_param" save_history = True create_new = False param_scheduler = PiecewiseLinearStateScheduler( param_name=param_name, milestones_values=[(0, 0.0), (10, 0.999)], save_history=save_history, create_new=create_new, ) with pytest.warns( UserWarning, match=r"Attribute '" + re.escape(param_name) + "' is not defined in the engine.state. " r"PiecewiseLinearStateScheduler will create it. Remove this warning by setting create_new=True.", ): param_scheduler.attach(trainer, Events.ITERATION_COMPLETED) def test_param_scheduler_with_ema_handler(): from ignite.handlers import EMAHandler model = nn.Linear(2, 1) trainer = Engine(lambda e, b: model(b)) data = torch.rand(100, 2) param_name = "ema_decay" ema_handler = EMAHandler(model) ema_handler.attach(trainer, name=param_name, event=Events.ITERATION_COMPLETED) ema_decay_scheduler = PiecewiseLinearStateScheduler( param_name=param_name, milestones_values=[(0, 0.0), (10, 0.999)], save_history=True ) ema_decay_scheduler.attach(trainer, Events.ITERATION_COMPLETED) trainer.run(data, max_epochs=20) ignite-0.5.1/tests/ignite/handlers/test_stores.py000066400000000000000000000030401465426447700221650ustar00rootroot00000000000000import pytest from ignite.engine.engine import Engine, Events from ignite.handlers import EpochOutputStore @pytest.fixture def dummy_evaluator(): def dummy_process_function(engine, batch): return 1, 0 dummy_evaluator = Engine(dummy_process_function) return dummy_evaluator @pytest.fixture def eos(): return EpochOutputStore() def test_no_transform(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert eos.data == [(1, 0)] def test_transform(dummy_evaluator): eos = EpochOutputStore(output_transform=lambda x: x[0]) eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert eos.data == [1] def test_reset(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(2)) eos.reset() assert eos.data == [] def test_update_one_iteration(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert len(eos.data) == 1 def test_update_five_iterations(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(5)) assert len(eos.data) == 5 def test_attatch(dummy_evaluator, eos): eos.attach(dummy_evaluator) assert dummy_evaluator.has_event_handler(eos.reset, Events.EPOCH_STARTED) assert dummy_evaluator.has_event_handler(eos.update, Events.ITERATION_COMPLETED) def test_store_data(dummy_evaluator, eos): eos.attach(dummy_evaluator, name="eval_data") dummy_evaluator.run(range(1)) assert dummy_evaluator.state.eval_data == eos.data ignite-0.5.1/tests/ignite/handlers/test_tensorboard_logger.py000066400000000000000000000573041465426447700245430ustar00rootroot00000000000000import math import os from unittest.mock import ANY, call, MagicMock, patch import pytest import torch from ignite.engine import Engine, Events, State from ignite.handlers.tensorboard_logger import ( global_step_from_engine, GradsHistHandler, GradsScalarHandler, OptimizerParamsHandler, OutputHandler, TensorboardLogger, WeightsHistHandler, WeightsScalarHandler, ) def test_optimizer_params_handler_wrong_setup(): with pytest.raises(TypeError): OptimizerParamsHandler(optimizer=None) optimizer = MagicMock(spec=torch.optim.Optimizer) handler = OptimizerParamsHandler(optimizer=optimizer) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler OptimizerParamsHandler works only with TensorboardLogger"): handler(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_getattr_method(): # Create a mock SummaryWriter object mock_writer = MagicMock() # Assign the mock object to the writer attribute of a TensorboardLoggerinstance logger = TensorboardLogger() logger.writer = mock_writer # Test that a method passed through the __getattr__ method calls thecorresponding method on the mock object logger.add_scalar("loss", 0.5) mock_writer.add_scalar.assert_called_once_with("loss", 0.5) def test_optimizer_params(): optimizer = torch.optim.SGD([torch.tensor(0.0)], lr=0.01) wrapper = OptimizerParamsHandler(optimizer=optimizer, param_name="lr") mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("lr/group_0", 0.01, 123) wrapper = OptimizerParamsHandler(optimizer, param_name="lr", tag="generator") mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("generator/lr/group_0", 0.01, 123) def test_output_handler_with_wrong_logger_type(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'OutputHandler' works only with TensorboardLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_output_handler_output_transform(): wrapper = OutputHandler("tag", output_transform=lambda x: x) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.output = 12345 mock_engine.state.iteration = 123 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("tag/output", 12345, 123) wrapper = OutputHandler("another_tag", output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("another_tag/loss", 12345, 123) def test_output_handler_metric_names(): wrapper = OutputHandler("tag", metric_names=["a", "b"]) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.add_scalar.assert_has_calls([call("tag/a", 12.23, 5), call("tag/b", 23.45, 5)], any_order=True) wrapper = OutputHandler("tag", metric_names=["a"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor([0.0, 1.0, 2.0, 3.0])}) mock_engine.state.iteration = 5 mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.writer.add_scalar.call_count == 4 mock_logger.writer.add_scalar.assert_has_calls( [call("tag/a/0", 0.0, 5), call("tag/a/1", 1.0, 5), call("tag/a/2", 2.0, 5), call("tag/a/3", 3.0, 5)], any_order=True, ) wrapper = OutputHandler("tag", metric_names=["a", "c"]) mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 55.56, "c": "Some text"}) mock_engine.state.iteration = 7 mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() with pytest.warns(UserWarning): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.writer.add_scalar.call_count == 1 mock_logger.writer.add_scalar.assert_has_calls([call("tag/a", 55.56, 7)], any_order=True) # all metrics wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.add_scalar.assert_has_calls([call("tag/a", 12.23, 5), call("tag/b", 23.45, 5)], any_order=True) # log a torch tensor (ndimension = 0) wrapper = OutputHandler("tag", metric_names="all") mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": torch.tensor(12.23), "b": torch.tensor(23.45)}) mock_engine.state.iteration = 5 wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.add_scalar.assert_has_calls( [call("tag/a", torch.tensor(12.23).item(), 5), call("tag/b", torch.tensor(23.45).item(), 5)], any_order=True ) def test_output_handler_both(): wrapper = OutputHandler("tag", metric_names=["a", "b"], output_transform=lambda x: {"loss": x}) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State(metrics={"a": 12.23, "b": 23.45}) mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.writer.add_scalar.call_count == 3 mock_logger.writer.add_scalar.assert_has_calls( [call("tag/a", 12.23, 5), call("tag/b", 23.45, 5), call("tag/loss", 12345, 5)], any_order=True ) def test_output_handler_with_wrong_global_step_transform_output(): def global_step_transform(*args, **kwargs): return "a" wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 with pytest.raises(TypeError, match="global_step must be int"): wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) def test_output_handler_with_global_step_from_engine(): mock_another_engine = MagicMock() mock_another_engine.state = State() mock_another_engine.state.epoch = 10 mock_another_engine.state.output = 12.345 wrapper = OutputHandler( "tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_from_engine(mock_another_engine), ) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 1 mock_engine.state.output = 0.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.writer.add_scalar.call_count == 1 mock_logger.writer.add_scalar.assert_has_calls( [call("tag/loss", mock_engine.state.output, mock_another_engine.state.epoch)] ) mock_another_engine.state.epoch = 11 mock_engine.state.output = 1.123 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.add_scalar.assert_has_calls( [call("tag/loss", mock_engine.state.output, mock_another_engine.state.epoch)] ) def test_output_handler_with_global_step_transform(): def global_step_transform(*args, **kwargs): return 10 wrapper = OutputHandler("tag", output_transform=lambda x: {"loss": x}, global_step_transform=global_step_transform) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 mock_engine.state.output = 12345 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) assert mock_logger.writer.add_scalar.call_count == 1 mock_logger.writer.add_scalar.assert_has_calls([call("tag/loss", 12345, 10)]) def test_weights_scalar_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = WeightsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'WeightsScalarHandler' works only with TensorboardLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_weights_scalar_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = WeightsScalarHandler(model, tag=tag) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.writer.add_scalar.call_count == 4 mock_logger.writer.add_scalar.assert_has_calls( [ call(tag_prefix + "weights_norm/fc1/weight", 0.0, 5), call(tag_prefix + "weights_norm/fc1/bias", 0.0, 5), call(tag_prefix + "weights_norm/fc2/weight", 12.0, 5), call(tag_prefix + "weights_norm/fc2/bias", pytest.approx(math.sqrt(12.0)), 5), ], any_order=True, ) _test() _test(tag="tag") def test_weights_scalar_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = WeightsScalarHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("weights_norm/fc2/weight", 12.0, 5) mock_logger.writer.reset_mock() wrapper = WeightsScalarHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_has_calls( [ call("model/weights_norm/fc1/weight", 0.0, 5), call("model/weights_norm/fc1/bias", 0.0, 5), ], any_order=True, ) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = WeightsScalarHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_has_calls( [ call("model/weights_norm/fc1/bias", 0.0, 5), call("model/weights_norm/fc2/bias", pytest.approx(math.sqrt(12.0)), 5), ], any_order=True, ) assert mock_logger.writer.add_scalar.call_count == 2 def test_weights_hist_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = WeightsHistHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'WeightsHistHandler' works only with TensorboardLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_weights_hist_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = WeightsHistHandler(model, tag=tag) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.writer.add_histogram.call_count == 4 mock_logger.writer.add_histogram.assert_has_calls( [ call(tag=tag_prefix + "weights/fc1/weight", values=ANY, global_step=5), call(tag=tag_prefix + "weights/fc1/bias", values=ANY, global_step=5), call(tag=tag_prefix + "weights/fc2/weight", values=ANY, global_step=5), call(tag=tag_prefix + "weights/fc2/bias", values=ANY, global_step=5), ], any_order=True, ) _test() _test(tag="tag") def test_weights_hist_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = WeightsHistHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_called_once_with(tag="weights/fc2/weight", values=ANY, global_step=5) mock_logger.writer.reset_mock() wrapper = WeightsHistHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_has_calls( [ call(tag="model/weights/fc1/weight", values=ANY, global_step=5), call(tag="model/weights/fc1/bias", values=ANY, global_step=5), ], any_order=True, ) assert mock_logger.writer.add_histogram.call_count == 2 mock_logger.writer.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = WeightsHistHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_has_calls( [ call(tag="model/weights/fc1/bias", values=ANY, global_step=5), call(tag="model/weights/fc2/bias", values=ANY, global_step=5), ], any_order=True, ) assert mock_logger.writer.add_histogram.call_count == 2 def test_grads_scalar_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = GradsScalarHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'GradsScalarHandler' works only with TensorboardLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_grads_scalar_handler(dummy_model_factory, norm_mock): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = GradsScalarHandler(model, reduction=norm_mock, tag=tag) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 norm_mock.reset_mock() wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" mock_logger.writer.add_scalar.assert_has_calls( [ call(tag_prefix + "grads_norm/fc1/weight", ANY, 5), call(tag_prefix + "grads_norm/fc1/bias", ANY, 5), call(tag_prefix + "grads_norm/fc2/weight", ANY, 5), call(tag_prefix + "grads_norm/fc2/bias", ANY, 5), ], any_order=True, ) assert mock_logger.writer.add_scalar.call_count == 4 assert norm_mock.call_count == 4 _test() _test(tag="tag") def test_grads_scalar_handler_whitelist(dummy_model_factory, norm_mock): model = dummy_model_factory() wrapper = GradsScalarHandler(model, reduction=norm_mock, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_called_once_with("grads_norm/fc2/weight", ANY, 5) mock_logger.writer.reset_mock() wrapper = GradsScalarHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_has_calls( [ call("model/grads_norm/fc1/weight", ANY, 5), call("model/grads_norm/fc1/bias", ANY, 5), ], any_order=True, ) assert mock_logger.writer.add_scalar.call_count == 2 mock_logger.writer.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = GradsScalarHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_scalar.assert_has_calls( [ call("model/grads_norm/fc1/bias", ANY, 5), call("model/grads_norm/fc2/bias", ANY, 5), ], any_order=True, ) assert mock_logger.writer.add_scalar.call_count == 2 def test_grads_hist_handler_wrong_setup(): model = MagicMock(spec=torch.nn.Module) wrapper = GradsHistHandler(model) mock_logger = MagicMock() mock_engine = MagicMock() with pytest.raises(RuntimeError, match="Handler 'GradsHistHandler' works only with TensorboardLogger"): wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED) def test_grads_hist_handler(dummy_model_factory): model = dummy_model_factory(with_grads=True, with_frozen_layer=False) # define test wrapper to test with and without optional tag def _test(tag=None): wrapper = GradsHistHandler(model, tag=tag) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) tag_prefix = f"{tag}/" if tag else "" assert mock_logger.writer.add_histogram.call_count == 4 mock_logger.writer.add_histogram.assert_has_calls( [ call(tag=tag_prefix + "grads/fc1/weight", values=ANY, global_step=5), call(tag=tag_prefix + "grads/fc1/bias", values=ANY, global_step=5), call(tag=tag_prefix + "grads/fc2/weight", values=ANY, global_step=5), call(tag=tag_prefix + "grads/fc2/bias", values=ANY, global_step=5), ], any_order=True, ) _test() _test(tag="tag") def test_grads_hist_handler_whitelist(dummy_model_factory): model = dummy_model_factory() wrapper = GradsHistHandler(model, whitelist=["fc2.weight"]) mock_logger = MagicMock(spec=TensorboardLogger) mock_logger.writer = MagicMock() mock_engine = MagicMock() mock_engine.state = State() mock_engine.state.epoch = 5 wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_called_once_with(tag="grads/fc2/weight", values=ANY, global_step=5) mock_logger.writer.reset_mock() wrapper = GradsHistHandler(model, tag="model", whitelist=["fc1"]) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_has_calls( [ call(tag="model/grads/fc1/weight", values=ANY, global_step=5), call(tag="model/grads/fc1/bias", values=ANY, global_step=5), ], any_order=True, ) assert mock_logger.writer.add_histogram.call_count == 2 mock_logger.writer.reset_mock() def weight_selector(n, _): return "bias" in n wrapper = GradsHistHandler(model, tag="model", whitelist=weight_selector) wrapper(mock_engine, mock_logger, Events.EPOCH_STARTED) mock_logger.writer.add_histogram.assert_has_calls( [ call(tag="model/grads/fc1/bias", values=ANY, global_step=5), call(tag="model/grads/fc2/bias", values=ANY, global_step=5), ], any_order=True, ) assert mock_logger.writer.add_histogram.call_count == 2 def test_integration(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) trainer = Engine(update_fn) tb_logger = TensorboardLogger(log_dir=dirname) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.writer.add_scalar("test_value", global_step, global_step) tb_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) tb_logger.close() # Check if event files are present written_files = os.listdir(dirname) written_files = [f for f in written_files if "tfevents" in f] assert len(written_files) > 0 def test_integration_as_context_manager(dirname): n_epochs = 5 data = list(range(50)) losses = torch.rand(n_epochs * len(data)) losses_iter = iter(losses) def update_fn(engine, batch): return next(losses_iter) with TensorboardLogger(log_dir=dirname) as tb_logger: trainer = Engine(update_fn) def dummy_handler(engine, logger, event_name): global_step = engine.state.get_event_attrib_value(event_name) logger.writer.add_scalar("test_value", global_step, global_step) tb_logger.attach(trainer, log_handler=dummy_handler, event_name=Events.EPOCH_COMPLETED) trainer.run(data, max_epochs=n_epochs) # Check if event files are present written_files = os.listdir(dirname) written_files = [f for f in written_files if "tfevents" in f] assert len(written_files) > 0 def test_no_tensorboardX_package(dirname): from torch.utils.tensorboard import SummaryWriter with patch.dict("sys.modules", {"tensorboardX": None}): tb_logger = TensorboardLogger(log_dir=dirname) assert isinstance(tb_logger.writer, SummaryWriter), type(tb_logger.writer) tb_logger.close() def test_no_torch_utils_tensorboard_package(dirname): from tensorboardX import SummaryWriter with patch.dict("sys.modules", {"torch.utils.tensorboard": None}): tb_logger = TensorboardLogger(log_dir=dirname) assert isinstance(tb_logger.writer, SummaryWriter), type(tb_logger.writer) tb_logger.close() def test_no_tensorboardX_nor_torch_utils_tensorboard(): with patch.dict("sys.modules", {"tensorboardX": None, "torch.utils.tensorboard": None}): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires either tensorboardX or torch"): TensorboardLogger(log_dir=None) ignite-0.5.1/tests/ignite/handlers/test_terminate_on_nan.py000066400000000000000000000050311465426447700241700ustar00rootroot00000000000000import numpy as np import pytest import torch from ignite.engine import Engine, Events, State from ignite.handlers import TerminateOnNan @pytest.mark.parametrize( "state_output,should_terminate", [ (1.0, False), (torch.tensor(123.45), False), (torch.asin(torch.tensor([1.0, 2.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0])), True), (torch.asin(torch.randn(4, 4)), True), ((10.0, 1.0 / torch.tensor([1.0, 2.0, 0.0, 3.0]), 1.0), True), ((1.0, torch.tensor(1.0), "abc"), False), (1.0 / torch.randint(0, 2, size=(4, 4)).type(torch.float), True), ((float("nan"), 10.0), True), (float("inf"), True), ([float("nan"), 10.0], True), (np.array([1.0, 2.0]), False), ], ) def test_terminate_on_nan_and_inf(state_output, should_terminate): torch.manual_seed(12) def update_fn(engine, batch): pass trainer = Engine(update_fn) trainer.state = State() h = TerminateOnNan() trainer.state.output = state_output if isinstance(state_output, np.ndarray): h._output_transform = lambda x: x.tolist() h(trainer) assert trainer.should_terminate == should_terminate def test_with_terminate_on_nan(): torch.manual_seed(12) data = [1.0, 0.8, (torch.rand(4, 4), torch.rand(4, 4)), torch.rand(5), torch.asin(torch.randn(4, 4)), 0.0, 1.0] def update_fn(engine, batch): return batch trainer = Engine(update_fn) h = TerminateOnNan() trainer.add_event_handler(Events.ITERATION_COMPLETED, h) trainer.run(data, max_epochs=2) assert trainer.state.iteration == 5 def test_with_terminate_on_inf(): torch.manual_seed(12) data = [ 1.0, 0.8, torch.rand(4, 4), (1.0 / torch.randint(0, 2, size=(4,)).type(torch.float), torch.tensor(1.234)), torch.rand(5), torch.asin(torch.randn(4, 4)), 0.0, 1.0, ] def update_fn(engine, batch): return batch trainer = Engine(update_fn) h = TerminateOnNan() trainer.add_event_handler(Events.ITERATION_COMPLETED, h) trainer.run(data, max_epochs=2) assert trainer.state.iteration == 4 def test_without_terminate_on_nan_inf(): data = [1.0, 0.8, torch.rand(4, 4), (torch.rand(5), torch.rand(5, 4)), 0.0, 1.0] def update_fn(engine, batch): return batch trainer = Engine(update_fn) h = TerminateOnNan() trainer.add_event_handler(Events.ITERATION_COMPLETED, h) trainer.run(data, max_epochs=2) assert trainer.state.iteration == len(data) * 2 ignite-0.5.1/tests/ignite/handlers/test_time_limit.py000066400000000000000000000017351465426447700230130ustar00rootroot00000000000000import time import pytest from ignite.engine import Engine, Events from ignite.handlers import TimeLimit def test_arg_validation(): with pytest.raises(ValueError, match=r"Argument limit_sec should be a positive integer."): TimeLimit(limit_sec=-5) with pytest.raises(TypeError, match=r"Argument limit_sec should be an integer."): TimeLimit(limit_sec="abc") def _train_func(engine, batch): time.sleep(1) @pytest.mark.parametrize("n_iters, limit", [(20, 10), (5, 10)]) def test_terminate_on_time_limit(n_iters, limit): started = time.time() trainer = Engine(_train_func) @trainer.on(Events.TERMINATE) def _(): trainer.state.is_terminated = True trainer.add_event_handler(Events.ITERATION_COMPLETED, TimeLimit(limit)) trainer.state.is_terminated = False trainer.run(range(n_iters)) elapsed = round(time.time() - started) assert elapsed <= limit + 1 assert trainer.state.is_terminated == (n_iters > limit) ignite-0.5.1/tests/ignite/handlers/test_time_profilers.py000066400000000000000000000761501465426447700237050ustar00rootroot00000000000000import sys import time from unittest.mock import patch import pytest from pytest import approx from ignite.engine import Engine, EventEnum, Events from ignite.handlers.time_profilers import BasicTimeProfiler, HandlersTimeProfiler if sys.platform.startswith("darwin"): pytest.skip("Skip if on MacOS", allow_module_level=True) def _do_nothing_update_fn(engine, batch): pass def get_prepared_engine_for_basic_profiler(true_event_handler_time): dummy_trainer = Engine(_do_nothing_update_fn) @dummy_trainer.on(Events.STARTED) def delay_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.COMPLETED) def delay_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_STARTED) def delay_epoch_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_COMPLETED) def delay_epoch_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_STARTED) def delay_iter_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_COMPLETED) def delay_iter_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_STARTED) def delay_get_batch_started(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_COMPLETED) def delay_get_batch_completed(engine): time.sleep(true_event_handler_time) return dummy_trainer def get_prepared_engine_for_handlers_profiler(true_event_handler_time): HANDLERS_SLEEP_COUNT = 11 PROCESSING_SLEEP_COUNT = 3 class CustomEvents(EventEnum): CUSTOM_STARTED = "custom_started" CUSTOM_COMPLETED = "custom_completed" def dummy_train_step(engine, batch): engine.fire_event(CustomEvents.CUSTOM_STARTED) time.sleep(true_event_handler_time) engine.fire_event(CustomEvents.CUSTOM_COMPLETED) dummy_trainer = Engine(dummy_train_step) dummy_trainer.register_events(*CustomEvents) @dummy_trainer.on(Events.STARTED) def delay_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.COMPLETED) def delay_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_STARTED) def delay_epoch_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_COMPLETED) def delay_epoch_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_STARTED) def delay_iter_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_COMPLETED) def delay_iter_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_STARTED) def delay_get_batch_started(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_COMPLETED) def delay_get_batch_completed(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(CustomEvents.CUSTOM_STARTED) def delay_custom_started(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(CustomEvents.CUSTOM_COMPLETED) def delay_custom_completed(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_STARTED(once=1)) def do_something_once_on_1_epoch(): time.sleep(true_event_handler_time) return dummy_trainer, HANDLERS_SLEEP_COUNT, PROCESSING_SLEEP_COUNT def test_profilers_wrong_inputs(): profiler = BasicTimeProfiler() with pytest.raises(TypeError, match=r"Argument engine should be ignite.engine.Engine"): profiler.attach(None) with pytest.raises(ModuleNotFoundError, match=r"Need pandas to write results as files"): with patch.dict("sys.modules", {"pandas": None}): profiler.write_results("") profiler = HandlersTimeProfiler() with pytest.raises(TypeError, match=r"Argument engine should be ignite.engine.Engine"): profiler.attach(None) with pytest.raises(ModuleNotFoundError, match=r"Need pandas to write results as files"): with patch.dict("sys.modules", {"pandas": None}): profiler.write_results("") def test_dataflow_timer_basic_profiler(): true_dataflow_time_per_ele = 0.1 true_max_epochs = 1 true_num_iters = 2 def dummy_data_loader(data): while True: for d in data: time.sleep(true_dataflow_time_per_ele) yield d dummy_data = range(true_num_iters) profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) dummy_trainer.run(dummy_data_loader(dummy_data), max_epochs=true_max_epochs, epoch_length=true_num_iters) results = profiler.get_results() dataflow_results = results["dataflow_stats"] assert dataflow_results["min/index"][0] == approx(true_dataflow_time_per_ele, abs=1e-1) assert dataflow_results["max/index"][0] == approx(true_dataflow_time_per_ele, abs=1e-1) assert dataflow_results["mean"] == approx(true_dataflow_time_per_ele, abs=1e-1) assert dataflow_results["std"] == approx(0.0, abs=1e-1) assert dataflow_results["total"] == approx(true_num_iters * true_dataflow_time_per_ele, abs=1e-1) def test_dataflow_timer_handlers_profiler(): true_dataflow_time_per_ele = 0.1 true_max_epochs = 1 true_num_iters = 2 def dummy_data_loader(data): while True: for d in data: time.sleep(true_dataflow_time_per_ele) yield d dummy_data = range(true_num_iters) profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) dummy_trainer.run(dummy_data_loader(dummy_data), max_epochs=true_max_epochs, epoch_length=true_num_iters) results = profiler.get_results() dataflow_results = results[-1] assert dataflow_results[0] == "Dataflow" # event name assert dataflow_results[1] == "None" # total assert dataflow_results[2] == approx(true_num_iters * true_dataflow_time_per_ele, abs=1e-1) # min assert dataflow_results[3][0] == approx(true_dataflow_time_per_ele, abs=1e-1) # max assert dataflow_results[4][0] == approx(true_dataflow_time_per_ele, abs=1e-1) # mean assert dataflow_results[5] == approx(true_dataflow_time_per_ele, abs=1e-1) # stddev assert dataflow_results[6] == approx(0.0, abs=1e-1) def test_processing_timer_basic_profiler(): true_processing_time = 0.1 true_max_epochs = 2 true_num_iters = 2 def train_updater(engine, batch): time.sleep(true_processing_time) profiler = BasicTimeProfiler() dummy_trainer = Engine(train_updater) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() processing_results = results["processing_stats"] assert processing_results["min/index"][0] == approx(true_processing_time, abs=1e-1) assert processing_results["max/index"][0] == approx(true_processing_time, abs=1e-1) assert processing_results["mean"] == approx(true_processing_time, abs=1e-1) assert processing_results["std"] == approx(0.0, abs=1e-1) assert processing_results["total"] == approx(true_max_epochs * true_num_iters * true_processing_time, abs=1e-1) def test_processing_timer_handlers_profiler(): true_processing_time = 0.1 true_max_epochs = 2 true_num_iters = 2 def train_updater(engine, batch): time.sleep(true_processing_time) profiler = HandlersTimeProfiler() dummy_trainer = Engine(train_updater) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() processing_results = results[-2] assert processing_results[0] == "Processing" # event name assert processing_results[1] == "None" # total assert processing_results[2] == approx(true_max_epochs * true_num_iters * true_processing_time, abs=1e-1) # min assert processing_results[3][0] == approx(true_processing_time, abs=1e-1) # max assert processing_results[4][0] == approx(true_processing_time, abs=1e-1) # mean assert processing_results[5] == approx(true_processing_time, abs=1e-1) # stddev assert processing_results[6] == approx(0.0, abs=1e-1) def test_event_handler_started_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.STARTED) def delay_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["STARTED"] assert event_results["total"] == approx(true_event_handler_time, abs=1e-1) def test_event_handler_started_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.STARTED) def delay_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_start" in event_results[0] assert event_results[1] == "STARTED" assert event_results[2] == approx(true_event_handler_time, abs=1e-1) # total def test_event_handler_completed_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.COMPLETED) def delay_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["COMPLETED"] assert event_results["total"] == approx(true_event_handler_time, abs=1e-1) def test_event_handler_completed_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.COMPLETED) def delay_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_complete" in event_results[0] assert event_results[1] == "COMPLETED" assert event_results[2] == approx(true_event_handler_time, abs=1e-1) # total def test_event_handler_epoch_started_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 1 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_STARTED) def delay_epoch_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["EPOCH_STARTED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_event_handler_time, abs=1e-1) def test_event_handler_epoch_started_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 1 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_STARTED) def delay_epoch_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_epoch_start" in event_results[0] assert event_results[1] == "EPOCH_STARTED" assert event_results[2] == approx(true_max_epochs * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_epoch_completed_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 1 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_COMPLETED) def delay_epoch_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["EPOCH_COMPLETED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_event_handler_time, abs=1e-1) def test_event_handler_epoch_completed_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 2 true_num_iters = 1 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_COMPLETED) def delay_epoch_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_epoch_complete" in event_results[0] assert event_results[1] == "EPOCH_COMPLETED" assert event_results[2] == approx(true_max_epochs * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_iteration_started_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_STARTED) def delay_iter_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["ITERATION_STARTED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) def test_event_handler_iteration_started_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_STARTED) def delay_iter_start(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_iter_start" in event_results[0] assert event_results[1] == "ITERATION_STARTED" assert event_results[2] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_iteration_completed_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_COMPLETED) def delay_iter_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["ITERATION_COMPLETED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) def test_event_handler_iteration_completed_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_COMPLETED) def delay_iter_complete(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_iter_complete" in event_results[0] assert event_results[1] == "ITERATION_COMPLETED" assert event_results[2] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_get_batch_started_basic_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.GET_BATCH_STARTED) def delay_get_batch_started(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["GET_BATCH_STARTED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) def test_event_handler_get_batch_started_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.GET_BATCH_STARTED) def delay_get_batch_started(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_get_batch_started" in event_results[0] assert event_results[1] == "GET_BATCH_STARTED" assert event_results[2] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_get_batch_completed(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.GET_BATCH_COMPLETED) def delay_get_batch_completed(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"]["GET_BATCH_COMPLETED"] assert event_results["min/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["max/index"][0] == approx(true_event_handler_time, abs=1e-1) assert event_results["mean"] == approx(true_event_handler_time, abs=1e-1) assert event_results["std"] == approx(0.0, abs=1e-1) assert event_results["total"] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) def test_event_handler_get_batch_completed_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.GET_BATCH_COMPLETED) def delay_get_batch_completed(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "delay_get_batch_completed" in event_results[0] assert event_results[1] == "GET_BATCH_COMPLETED" assert event_results[2] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_neg_event_filter_threshold_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 1 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_STARTED(once=2)) def do_something_once_on_2_epoch(): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "do_something_once_on_2_epoch" in event_results[0] assert event_results[1] == "EPOCH_STARTED" assert event_results[2] == "not triggered" def test_pos_event_filter_threshold_handlers_profiler(): true_event_handler_time = HandlersTimeProfiler.EVENT_FILTER_THESHOLD_TIME true_max_epochs = 2 true_num_iters = 1 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.EPOCH_STARTED(once=2)) def do_something_once_on_2_epoch(): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results[0] assert "do_something_once_on_2_epoch" in event_results[0] assert event_results[1] == "EPOCH_STARTED" assert event_results[2] == approx( (true_max_epochs * true_num_iters * true_event_handler_time) / 2, abs=1e-1 ) # total def test_custom_event_with_arg_handlers_profiler(): true_event_handler_time = 0.1 true_max_epochs = 1 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) dummy_trainer.register_events("custom_event") profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_COMPLETED(every=1)) def trigger_custom_event(): dummy_trainer.fire_event("custom_event") args = [122, 324] @dummy_trainer.on("custom_event", args) def on_custom_event(args): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = None for row in results: if row[1] == "custom_event": event_results = row break assert event_results is not None assert "on_custom_event" in event_results[0] assert event_results[2] == approx(true_max_epochs * true_num_iters * true_event_handler_time, abs=1e-1) # total assert event_results[3][0] == approx(true_event_handler_time, abs=1e-1) # min assert event_results[4][0] == approx(true_event_handler_time, abs=1e-1) # max assert event_results[5] == approx(true_event_handler_time, abs=1e-1) # mean assert event_results[6] == approx(0.0, abs=1e-1) # stddev def test_event_handler_total_time_basic_profiler(): true_event_handler_time = 0.125 true_max_epochs = 1 true_num_iters = 1 profiler = BasicTimeProfiler() dummy_trainer = Engine(_do_nothing_update_fn) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.STARTED) def delay_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.COMPLETED) def delay_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_STARTED) def delay_epoch_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.EPOCH_COMPLETED) def delay_epoch_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_STARTED) def delay_iter_start(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.ITERATION_COMPLETED) def delay_iter_complete(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_STARTED) def delay_get_batch_started(engine): time.sleep(true_event_handler_time) @dummy_trainer.on(Events.GET_BATCH_COMPLETED) def delay_get_batch_completed(engine): time.sleep(true_event_handler_time) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() event_results = results["event_handlers_stats"] assert event_results["total_time"].item() == approx(true_event_handler_time * 8, abs=1e-1) def test_event_handler_total_time_handlers_profiler(): true_event_handler_time = 0.125 true_max_epochs = 1 true_num_iters = 1 profiler = HandlersTimeProfiler() dummy_trainer, handlers_sleep_count, processing_sleep_count = get_prepared_engine_for_handlers_profiler( true_event_handler_time ) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) results = profiler.get_results() total_handler_stats = results[-3] # total result row total_processing_stats = results[-2] # processing result row assert total_handler_stats[2] == approx(true_event_handler_time * handlers_sleep_count, abs=1e-1) # total time assert total_processing_stats[2] == approx(true_event_handler_time * processing_sleep_count, abs=1e-1) # total time def test_write_results_basic_profiler(dirname): true_event_handler_time = 0.125 true_max_epochs = 3 true_num_iters = 2 profiler = BasicTimeProfiler() dummy_trainer = get_prepared_engine_for_basic_profiler(true_event_handler_time) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) fp = dirname / "test_log.csv" profiler.write_results(fp) assert fp.is_file() file_length = 0 with open(fp) as f: for _ in f: file_length += 1 assert file_length == (true_max_epochs * true_num_iters) + 1 def test_write_results_handlers_profiler(dirname): true_event_handler_time = 0.125 true_max_epochs = 3 true_num_iters = 2 profiler = HandlersTimeProfiler() dummy_trainer, _, _ = get_prepared_engine_for_handlers_profiler(true_event_handler_time) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) fp = dirname / "test_log.csv" profiler.write_results(fp) assert fp.is_file() file_length = 0 with open(fp) as f: for _ in f: file_length += 1 assert file_length == (true_max_epochs * true_num_iters) + 1 def test_print_results_basic_profiler(capsys): true_max_epochs = 1 true_num_iters = 5 profiler = BasicTimeProfiler() dummy_trainer = get_prepared_engine_for_basic_profiler(true_event_handler_time=0.0125) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) BasicTimeProfiler.print_results(profiler.get_results()) captured = capsys.readouterr() out = captured.out assert "BasicTimeProfiler._" not in out assert "nan" not in out def test_print_results_handlers_profiler_handlers_profiler(capsys): true_max_epochs = 1 true_num_iters = 5 profiler = HandlersTimeProfiler() dummy_trainer, _, _ = get_prepared_engine_for_handlers_profiler(true_event_handler_time=0.0125) profiler.attach(dummy_trainer) dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) HandlersTimeProfiler.print_results(profiler.get_results()) captured = capsys.readouterr() out = captured.out assert "HandlersTimeProfiler." not in out assert "Timer." not in out def test_get_intermediate_results_during_run_basic_profiler(capsys): true_event_handler_time = 0.0645 true_max_epochs = 2 true_num_iters = 5 profiler = BasicTimeProfiler() dummy_trainer = get_prepared_engine_for_basic_profiler(true_event_handler_time) profiler.attach(dummy_trainer) @dummy_trainer.on(Events.ITERATION_COMPLETED(every=3)) def log_results(_): results = profiler.get_results() profiler.print_results(results) captured = capsys.readouterr() out = captured.out assert "BasicTimeProfiler._" not in out assert "nan" not in out assert " min/index: (0.0, " not in out, out dummy_trainer.run(range(true_num_iters), max_epochs=true_max_epochs) ignite-0.5.1/tests/ignite/handlers/test_timing.py000066400000000000000000000023451465426447700221440ustar00rootroot00000000000000import sys import time import pytest from ignite.engine import Engine, Events from ignite.handlers import Timer if sys.platform.startswith("darwin"): pytest.skip("Skip if on MacOS", allow_module_level=True) def test_timer(): sleep_t = 0.2 n_iter = 3 def _train_func(engine, batch): time.sleep(sleep_t) def _test_func(engine, batch): time.sleep(sleep_t) trainer = Engine(_train_func) tester = Engine(_test_func) t_total = Timer() t_batch = Timer(average=True) t_train = Timer() t_total.attach(trainer) t_batch.attach( trainer, pause=Events.ITERATION_COMPLETED, resume=Events.ITERATION_STARTED, step=Events.ITERATION_COMPLETED ) t_train.attach(trainer, pause=Events.EPOCH_COMPLETED, resume=Events.EPOCH_STARTED) @trainer.on(Events.EPOCH_COMPLETED) def run_validation(trainer): tester.run(range(n_iter)) # Run "training" trainer.run(range(n_iter)) assert pytest.approx(t_total.value(), abs=1e-1) == 2 * n_iter * sleep_t assert pytest.approx(t_batch.value(), abs=1e-1) == sleep_t assert pytest.approx(t_train.value(), abs=1e-1) == n_iter * sleep_t t_total.reset() assert pytest.approx(t_total.value(), abs=1e-1) == 0.0 ignite-0.5.1/tests/ignite/handlers/test_tqdm_logger.py000066400000000000000000000441761465426447700231710ustar00rootroot00000000000000# -*- coding: utf-8 -*- import sys import time from argparse import Namespace from unittest.mock import patch import numpy as np import pytest import torch from packaging.version import Version from ignite.engine import Engine, Events from ignite.handlers import ProgressBar, TerminateOnNan from ignite.metrics import RunningAverage if sys.platform.startswith("win"): pytest.skip("Skip on Windows", allow_module_level=True) def get_tqdm_version(): import tqdm return Version(tqdm.__version__) def update_fn(engine, batch): a = 1 engine.state.metrics["a"] = a return a def test_pbar_errors(): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires tqdm to be installed"): with patch.dict("sys.modules", {"tqdm.autonotebook": None}): ProgressBar(ncols=80) pbar = ProgressBar(ncols=80) with pytest.raises(ValueError, match=r"Logging event abc is not in allowed"): pbar.attach(Engine(lambda e, b: None), event_name=Namespace(name="abc")) def test_pbar(capsys): n_epochs = 2 loader = [1, 2] engine = Engine(update_fn) pbar = ProgressBar(ncols=80) pbar.attach(engine, ["a"]) engine.run(loader, max_epochs=n_epochs) captured = capsys.readouterr() err = captured.err.split("\r") err = list(map(lambda x: x.strip(), err)) err = list(filter(None, err)) if get_tqdm_version() < Version("4.49.0"): expected = "Epoch 8 -*- , a=1 [00:00<00:00]" else: expected = "Epoch [2/2]: [1/2] 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ , a=1 [00:00 None: super(DummyInceptionMetric, self).__init__( num_features=num_features, feature_extractor=feature_extractor, output_transform=output_transform, device=device, ) def reset(self): pass def compute(self): pass def update(self, output): self._extract_features(output) def test_dummy_metric(): with pytest.raises(ValueError, match=r"Argument num_features must be greater to zero, got:"): DummyInceptionMetric(num_features=-1, feature_extractor=torch.nn.Identity()).update(torch.rand(2, 0)) with pytest.raises(ValueError, match=r"feature_extractor output must be a tensor of dim 2, got: 1"): DummyInceptionMetric(num_features=1000, feature_extractor=torch.nn.Identity()).update(torch.rand(3)) with pytest.raises(ValueError, match=r"Batch size should be greater than one, got: 0"): DummyInceptionMetric(num_features=1000, feature_extractor=torch.nn.Identity()).update(torch.rand(0, 0)) with pytest.raises(ValueError, match=r"num_features returned by feature_extractor should be 1000, got: 0"): DummyInceptionMetric(num_features=1000, feature_extractor=torch.nn.Identity()).update(torch.rand(2, 0)) with pytest.raises(ValueError, match=r"Argument num_features must be provided, if feature_extractor is specified."): DummyInceptionMetric(feature_extractor=torch.nn.Identity()) with pytest.raises(TypeError, match=r"Argument feature_extractor must be of type torch.nn.Module, got"): DummyInceptionMetric(num_features=1000, feature_extractor=lambda x: x) assert isinstance(DummyInceptionMetric(num_features=10)._feature_extractor, torch.nn.Identity) def test_inception_extractor_wrong_inputs(): with pytest.raises(ValueError, match=r"Inputs should be a tensor of dim 4"): InceptionModel(return_features=True)(torch.rand(2)) with pytest.raises(ValueError, match=r"Inputs should be a tensor with 3 channels"): InceptionModel(return_features=True)(torch.rand(2, 2, 2, 0)) def test_inception_model_probability(): x = torch.rand(2, 3, 299, 299) y = InceptionModel(return_features=False)(x) assert pytest.approx(torch.sum(y[0]).item()) == 1.0 assert pytest.approx(torch.sum(y[1]).item()) == 1.0 assert torch.all(0 <= y) @pytest.fixture() def mock_no_torchvision(): with patch.dict("sys.modules", {"torchvision": None}): yield torchvision def test_no_torchvision(mock_no_torchvision): with pytest.raises(ModuleNotFoundError, match=r"This module requires torchvision to be installed."): InceptionModel(return_features=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_device_mismatch_cuda(): images = torch.rand(10, 3, 299, 299) result = InceptionModel(return_features=False, device="cuda")(images) assert result.is_cuda assert result.shape == torch.Size([10, 1000]) result = InceptionModel(return_features=False)(images.cuda()) assert not result.is_cuda assert result.shape == torch.Size([10, 1000]) images = torch.rand(10, 5) result = DummyInceptionMetric(num_features=5, device="cuda")._extract_features(images) assert result.is_cuda assert result.shape == torch.Size([10, 5]) result = DummyInceptionMetric(num_features=5)._extract_features(images.cuda()) assert not result.is_cuda assert result.shape == torch.Size([10, 5]) ignite-0.5.1/tests/ignite/metrics/nlp/000077500000000000000000000000001465426447700176775ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/metrics/nlp/__init__.py000066400000000000000000000050561465426447700220160ustar00rootroot00000000000000__all__ = ["CorpusForTest"] class CorpusForTest: def __init__(self, lower_split=False): def preproc(text): if lower_split: return text.lower().split() else: return text # BLEU Paper examples self.cand_1 = preproc("the the the the the the the") self.ref_1a = preproc("The cat is on the mat") self.ref_1b = preproc("There is a cat on the mat") self.cand_2a = preproc( "It is a guide to action which ensures that the military always obeys the commands of the party" ) self.cand_2b = preproc("It is to insure the troops forever hearing the activity guidebook that " "party direct") self.ref_2a = preproc( "It is a guide to action that ensures that the military will forever heed " "Party commands" ) self.ref_2b = preproc( "It is the guiding principle which guarantees the military forces always being under the command of " "the Party" ) self.ref_2c = preproc("It is the practical guide for the army always to heed the directions of the party") self.cand_3 = preproc("of the") self.references_1 = [self.ref_1a, self.ref_1b] self.references_2 = [self.ref_2a, self.ref_2b, self.ref_2c] self.sample_1 = ([self.cand_1], [self.references_1]) self.sample_2 = ([self.cand_3], [self.references_2]) self.sample_3 = ([self.cand_2a], [self.references_2]) self.sample_4 = ([self.cand_2b], [self.references_2]) self.sample_5 = ([self.cand_2a, self.cand_2b], [self.references_2, self.references_2]) self.references_3 = [self.ref_2a, self.ref_2b] self.references_4 = [self.ref_2b, self.ref_2c] self.references_5 = [self.ref_2a, self.ref_2c] self.chunks = [ ([self.cand_1], [self.references_1]), ([self.cand_2a], [self.references_2]), ([self.cand_2b], [self.references_2]), ([self.cand_1], [[self.ref_1a]]), ([self.cand_2a], [self.references_3]), ([self.cand_2b], [self.references_3]), ([self.cand_1], [[self.ref_1b]]), ([self.cand_2a], [self.references_4]), ([self.cand_2b], [self.references_4]), ([self.cand_1], [self.references_1]), ([self.cand_2a], [self.references_5]), ([self.cand_2b], [self.references_5]), ([self.cand_1], [[self.ref_1a]]), ([self.cand_2a], [[self.ref_2a]]), ([self.cand_2b], [[self.ref_2c]]), ] ignite-0.5.1/tests/ignite/metrics/nlp/test_bleu.py000066400000000000000000000301041465426447700222350ustar00rootroot00000000000000import os import warnings from collections import Counter import pytest import torch from nltk.translate.bleu_score import corpus_bleu, sentence_bleu, SmoothingFunction import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.nlp import Bleu from . import CorpusForTest corpus = CorpusForTest(lower_split=True) def test_wrong_inputs(): with pytest.raises(ValueError, match=r"ngram order must be greater than zero"): Bleu(ngram=0) with pytest.raises(ValueError, match=r"Smooth is not valid"): Bleu(smooth="fake") with pytest.raises(ValueError, match=r"nb of candidates should be equal to nb of reference lists"): Bleu()._corpus_bleu(references=[[0], [0]], candidates=[[0]]) with pytest.raises(NotComputableError): Bleu().compute() with pytest.raises(ValueError, match='Average must be either "macro" or "micro"'): Bleu(average="macros") parametrize_args = ( "candidates, references", [ ([["a", "a", "a", "b", "c"]], [[["a", "b", "c"], ["a", "a", "d"]]]), corpus.sample_1, corpus.sample_2, corpus.sample_3, corpus.sample_4, ], ) def _test(candidates, references, average, smooth="no_smooth", smooth_nltk_fn=None, ngram_range=8): for i in range(1, ngram_range): weights = tuple([1 / i] * i) bleu = Bleu(ngram=i, average=average, smooth=smooth) if average == "macro": with warnings.catch_warnings(): warnings.simplefilter("ignore") reference = sentence_bleu( references[0], candidates[0], weights=weights, smoothing_function=smooth_nltk_fn ) assert pytest.approx(reference) == bleu._sentence_bleu(references[0], candidates[0]) elif average == "micro": with warnings.catch_warnings(): warnings.simplefilter("ignore") reference = corpus_bleu(references, candidates, weights=weights, smoothing_function=smooth_nltk_fn) assert pytest.approx(reference) == bleu._corpus_bleu(references, candidates) bleu.update((candidates, references)) assert pytest.approx(reference) == bleu.compute() @pytest.mark.parametrize(*parametrize_args) def test_macro_bleu(candidates, references): _test(candidates, references, "macro") @pytest.mark.parametrize(*parametrize_args) def test_micro_bleu(candidates, references): _test(candidates, references, "micro") @pytest.mark.parametrize(*parametrize_args) def test_macro_bleu_smooth1(candidates, references): _test(candidates, references, "macro", "smooth1", SmoothingFunction().method1) @pytest.mark.parametrize(*parametrize_args) def test_micro_bleu_smooth1(candidates, references): _test(candidates, references, "micro", "smooth1", SmoothingFunction().method1) @pytest.mark.parametrize(*parametrize_args) def test_macro_bleu_nltk_smooth2(candidates, references): _test(candidates, references, "macro", "nltk_smooth2", SmoothingFunction().method2) @pytest.mark.parametrize(*parametrize_args) def test_micro_bleu_nltk_smooth2(candidates, references): _test(candidates, references, "micro", "nltk_smooth2", SmoothingFunction().method2) @pytest.mark.parametrize(*parametrize_args) def test_macro_bleu_smooth2(candidates, references): _test(candidates, references, "macro", "smooth2", SmoothingFunction().method2, 3) @pytest.mark.parametrize(*parametrize_args) def test_micro_bleu_smooth2(candidates, references): _test(candidates, references, "micro", "smooth2", SmoothingFunction().method2, 3) def test_accumulation_macro_bleu(): bleu = Bleu(ngram=4, smooth="smooth2") bleu.update(([corpus.cand_1], [corpus.references_1])) bleu.update(([corpus.cand_2a], [corpus.references_2])) bleu.update(([corpus.cand_2b], [corpus.references_2])) bleu.update(([corpus.cand_3], [corpus.references_2])) value = bleu._sentence_bleu(corpus.references_1, corpus.cand_1) value += bleu._sentence_bleu(corpus.references_2, corpus.cand_2a) value += bleu._sentence_bleu(corpus.references_2, corpus.cand_2b) value += bleu._sentence_bleu(corpus.references_2, corpus.cand_3) assert bleu.compute() == value / 4 def test_accumulation_micro_bleu(): bleu = Bleu(ngram=4, smooth="smooth2", average="micro") bleu.update(([corpus.cand_1], [corpus.references_1])) bleu.update(([corpus.cand_2a], [corpus.references_2])) bleu.update(([corpus.cand_2b], [corpus.references_2])) bleu.update(([corpus.cand_3], [corpus.references_2])) value = bleu._corpus_bleu( [corpus.references_1, corpus.references_2, corpus.references_2, corpus.references_2], [corpus.cand_1, corpus.cand_2a, corpus.cand_2b, corpus.cand_3], ) assert bleu.compute() == value def test_bleu_batch_macro(): bleu = Bleu(ngram=4) # Batch size 3 hypotheses = [corpus.cand_1, corpus.cand_2a, corpus.cand_2b] refs = [corpus.references_1, corpus.references_2, corpus.references_2] bleu.update((hypotheses, refs)) with warnings.catch_warnings(): warnings.simplefilter("ignore") reference_bleu_score = ( sentence_bleu(refs[0], hypotheses[0]) + sentence_bleu(refs[1], hypotheses[1]) + sentence_bleu(refs[2], hypotheses[2]) ) / 3 assert pytest.approx(bleu.compute()) == reference_bleu_score value = 0 for _hypotheses, _refs in zip(hypotheses, refs): value += bleu._sentence_bleu(_refs, _hypotheses) bleu.update(([_hypotheses], [_refs])) ref_1 = value / len(refs) ref_2 = bleu.compute() assert pytest.approx(ref_1) == reference_bleu_score assert pytest.approx(ref_2) == reference_bleu_score def test_bleu_batch_micro(): bleu = Bleu(ngram=4, average="micro") # Batch size 3 hypotheses = [corpus.cand_1, corpus.cand_2a, corpus.cand_2b] refs = [corpus.references_1, corpus.references_2, corpus.references_2] bleu.update((hypotheses, refs)) with warnings.catch_warnings(): warnings.simplefilter("ignore") reference_bleu_score = corpus_bleu(refs, hypotheses) assert pytest.approx(bleu.compute()) == reference_bleu_score assert pytest.approx(bleu._corpus_bleu(refs, hypotheses)) == reference_bleu_score @pytest.mark.parametrize( "candidates, references", [ (corpus.cand_1, corpus.references_1), (corpus.cand_2a, corpus.references_2), (corpus.cand_2b, corpus.references_2), (corpus.cand_1, corpus.references_1), ], ) def test_n_gram_counter(candidates, references): bleu = Bleu(ngram=4) hyp_length, ref_length = bleu._n_gram_counter([references], [candidates], Counter(), Counter()) assert hyp_length == len(candidates) ref_lens = (len(reference) for reference in references) closest_ref_len = min(ref_lens, key=lambda ref_len: (abs(ref_len - len(candidates)), ref_len)) assert ref_length == closest_ref_len def _test_macro_distrib_integration(device): from ignite.engine import Engine rank = idist.get_rank() size = len(corpus.chunks) data = [] for c in corpus.chunks: data += idist.get_world_size() * [c] def update(_, i): return data[i + size * rank] def _test(metric_device): engine = Engine(update) m = Bleu(ngram=4, smooth="smooth2") m.attach(engine, "bleu") engine.run(data=list(range(size)), max_epochs=1) assert "bleu" in engine.state.metrics ref_bleu = 0 for candidates, references in data: with warnings.catch_warnings(): warnings.simplefilter("ignore") ref_bleu += sentence_bleu( references[0], candidates[0], weights=[0.25, 0.25, 0.25, 0.25], smoothing_function=SmoothingFunction().method2, ) assert pytest.approx(engine.state.metrics["bleu"]) == ref_bleu / len(data) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_micro_distrib_integration(device): from ignite.engine import Engine rank = idist.get_rank() size = len(corpus.chunks) data = [] for c in corpus.chunks: data += idist.get_world_size() * [c] def update(_, i): return data[i + size * rank] def _test(metric_device): engine = Engine(update) m = Bleu(ngram=4, smooth="smooth2", average="micro") m.attach(engine, "bleu") engine.run(data=list(range(size)), max_epochs=1) assert "bleu" in engine.state.metrics ref_bleu = 0 references = [] candidates = [] for _candidates, _references in data: references.append(_references[0]) candidates.append(_candidates[0]) with warnings.catch_warnings(): warnings.simplefilter("ignore") ref_bleu += corpus_bleu( references, candidates, weights=[0.25, 0.25, 0.25, 0.25], smoothing_function=SmoothingFunction().method2, ) assert pytest.approx(engine.state.metrics["bleu"]) == ref_bleu _test("cpu") if device.type != "xla": _test(idist.device()) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_macro_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_micro_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_macro_distrib_integration(device) _test_micro_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/nlp/test_rouge.py000066400000000000000000000213341465426447700224340ustar00rootroot00000000000000import os import filelock import nltk import pytest import rouge as pyrouge import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.nlp import Rouge from ignite.metrics.nlp.rouge import compute_ngram_scores, RougeL, RougeN from . import CorpusForTest @pytest.fixture(scope="session", autouse=True) def download_nltk_punkt(worker_id, tmp_path_factory): root_tmp_dir = tmp_path_factory.getbasetemp().parent while True: try: with filelock.FileLock(root_tmp_dir / "nltk_download.lock", timeout=0.2) as fn: fn.acquire() nltk.download("punkt") fn.release() break except filelock._error.Timeout: pass corpus = CorpusForTest() @pytest.mark.parametrize( "candidate, reference, n, expected_precision, expected_recall", [ ([], [], 1, 0, 0), ("abc", "ab", 1, 2 / 3, 2 / 2), ("abc", "ab", 2, 1 / 2, 1 / 1), ("abc", "ab", 3, 0, 0), ("ab", "abc", 1, 2 / 2, 2 / 3), ("ab", "cde", 1, 0 / 2, 0 / 3), ("aab", "aace", 1, 2 / 3, 2 / 4), ("aa", "aaa", 1, 2 / 2, 2 / 3), ("aaa", "aa", 1, 2 / 3, 2 / 2), ], ) def test_compute_ngram_scores(candidate, reference, n, expected_precision, expected_recall): scores = compute_ngram_scores(candidate, reference, n=n) assert pytest.approx(scores.precision()) == expected_precision assert pytest.approx(scores.recall()) == expected_recall def test_wrong_inputs(): with pytest.raises(ValueError, match=r"ngram order must be greater than zero"): RougeN(ngram=0) with pytest.raises(ValueError, match=r"alpha must be in interval \[0, 1\]"): RougeN(alpha=-1) with pytest.raises(ValueError, match=r"alpha must be in interval \[0, 1\]"): RougeN(alpha=2) with pytest.raises(ValueError, match=r"multiref : valid values are \['best', 'average'\] "): RougeN(multiref="") with pytest.raises(ValueError, match=r"variant must be 'L' or integer greater to zero"): Rouge(variants=["error"]) with pytest.raises(NotComputableError): RougeL().compute() with pytest.raises(ValueError): Rouge(multiref="unknown") @pytest.mark.parametrize( "ngram, candidate, reference, expected", [ (1, [1, 2, 3], [1, 2], (2 / 3, 2 / 2)), (2, [1, 2, 3], [1, 2], (1 / 2, 1 / 1)), (1, "abcdef", "zbdfz", (3 / 6, 3 / 5)), (2, "abcdef", "zbdfz", (0, 0)), ], ) def test_rouge_n_alpha(ngram, candidate, reference, expected): for alpha in [0, 1, 0.3, 0.5, 0.8]: rouge = RougeN(ngram=ngram, alpha=alpha) rouge.update(([candidate], [[reference]])) results = rouge.compute() assert results[f"Rouge-{ngram}-P"] == expected[0] assert results[f"Rouge-{ngram}-R"] == expected[1] try: F = expected[0] * expected[1] / ((1 - alpha) * expected[0] + alpha * expected[1]) except ZeroDivisionError: F = 0 assert results[f"Rouge-{ngram}-F"] == F @pytest.mark.parametrize( "candidates, references", [corpus.sample_1, corpus.sample_2, corpus.sample_3, corpus.sample_4, corpus.sample_5] ) def test_rouge_metrics(candidates, references): for multiref in ["average", "best"]: # PERL 1.5.5 reference apply_avg = multiref == "average" apply_best = multiref == "best" evaluator = pyrouge.Rouge( metrics=["rouge-n", "rouge-l"], max_n=4, apply_avg=apply_avg, apply_best=apply_best, alpha=0.5, stemming=False, ensure_compatibility=False, ) scores = evaluator.get_scores(candidates, references) lower_split_references = [ [ref.lower().split() for ref in refs_per_candidate] for refs_per_candidate in references ] lower_split_candidates = [candidate.lower().split() for candidate in candidates] m = Rouge(variants=[1, 2, 4, "L"], multiref=multiref, alpha=0.5) m.update((lower_split_candidates, lower_split_references)) results = m.compute() for key in ["1", "2", "4", "L"]: assert pytest.approx(results[f"Rouge-{key}-R"], abs=1e-4) == scores[f"rouge-{key.lower()}"]["r"] assert pytest.approx(results[f"Rouge-{key}-P"], abs=1e-4) == scores[f"rouge-{key.lower()}"]["p"] assert pytest.approx(results[f"Rouge-{key}-F"], abs=1e-4) == scores[f"rouge-{key.lower()}"]["f"] def _test_distrib_integration(device): from ignite.engine import Engine rank = idist.get_rank() size = len(corpus.chunks) data = [] for c in corpus.chunks: data += idist.get_world_size() * [c] def update(_, i): candidate, references = data[i + size * rank] lower_split_references = [reference.lower().split() for reference in references[0]] lower_split_candidate = candidate[0].lower().split() return [lower_split_candidate], [lower_split_references] def _test(metric_device): engine = Engine(update) m = Rouge(variants=[1, 2, "L"], alpha=0.5, device=metric_device) m.attach(engine, "rouge") engine.run(data=list(range(size)), max_epochs=1) assert "rouge" in engine.state.metrics evaluator = pyrouge.Rouge( metrics=["rouge-n", "rouge-l"], max_n=4, apply_avg=True, apply_best=False, alpha=0.5, stemming=False, ensure_compatibility=False, ) rouge_1_f, rouge_2_f, rouge_l_f = (0, 0, 0) for candidate, references in data: scores = evaluator.get_scores(candidate, references) rouge_1_f += scores["rouge-1"]["f"] rouge_2_f += scores["rouge-2"]["f"] rouge_l_f += scores["rouge-l"]["f"] assert pytest.approx(engine.state.metrics["Rouge-1-F"], abs=1e-4) == rouge_1_f / len(data) assert pytest.approx(engine.state.metrics["Rouge-2-F"], abs=1e-4) == rouge_2_f / len(data) assert pytest.approx(engine.state.metrics["Rouge-L-F"], abs=1e-4) == rouge_l_f / len(data) _test("cpu") if device.type != "xla": _test(idist.device()) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/nlp/test_utils.py000066400000000000000000000037121465426447700224530ustar00rootroot00000000000000import pytest from ignite.metrics.nlp.utils import lcs, modified_precision, ngrams @pytest.mark.parametrize( "sequence, n, expected_keys, expected_values", [ ([], 1, [], []), ([0, 1, 2], 1, [(0,), (1,), (2,)], [1, 1, 1]), ([0, 1, 2], 2, [(0, 1), (1, 2)], [1, 1]), ([0, 1, 2], 3, [(0, 1, 2)], [1]), ([0, 0, 0], 1, [(0,)], [3]), ([0, 0, 0], 2, [(0, 0)], [2]), ("abcde", 4, [("a", "b", "c", "d"), ("b", "c", "d", "e")], [1, 1]), ], ) def test_ngrams(sequence, n, expected_keys, expected_values): ngrams_counter = ngrams(sequence=sequence, n=n) assert list(ngrams_counter.values()) == expected_values assert list(ngrams_counter.keys()) == expected_keys @pytest.mark.parametrize( "seq_a, seq_b, expected", [([], [], 0), ([0, 1, 2], [0, 1, 2], 3), ([0, 1, 2], [0, 3, 2], 2), ("academy", "abracadabra", 4)], ) def test_lcs(seq_a, seq_b, expected): assert lcs(seq_a, seq_b) == expected def test_modified_precision_empty(): for k in range(1, 5): n, d = modified_precision([[]], [], k) assert n == 0 and d == 0 n, d = modified_precision([[]], [0], k) assert n == 0 and d == (k == 1) n, d = modified_precision([[0]], [], k) assert n == 0 and d == 0 n, d = modified_precision([[]], list(range(k)), k) assert n == 0 and d == 1 n, d = modified_precision([list(range(k))], [], k) assert n == 0 and d == 0 @pytest.mark.parametrize( "references, candidate, expected", [ ([[0, 0, 0], [1, 2]], [1, 2, 3, 4], ((2, 4), (1, 3), (0, 2))), ([[0, 1, 2], [0, 0, 3]], [0, 0, 0, 1, 2], ((4, 5), (3, 4), (1, 3))), ([[0, 1, 2], [3, 0, 3]], [3, 0, 0, 1, 2], ((4, 5), (3, 4), (1, 3))), ], ) def test_modified_precision(references, candidate, expected): for n, (e_n, e_d) in enumerate(expected, start=1): n, d = modified_precision(references, candidate, n) assert n == e_n and d == e_d ignite-0.5.1/tests/ignite/metrics/regression/000077500000000000000000000000001465426447700212665ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/metrics/regression/__init__.py000066400000000000000000000000001465426447700233650ustar00rootroot00000000000000ignite-0.5.1/tests/ignite/metrics/regression/test__base.py000066400000000000000000000042451465426447700237550ustar00rootroot00000000000000from typing import Optional import numpy as np import pytest import torch import ignite.distributed as idist from ignite.metrics.regression._base import _BaseRegression, _torch_median def test_base_regression_shapes(): class L1(_BaseRegression): def reset(self): self._sum_of_errors = 0.0 def _update(self, output): y_pred, y = output errors = torch.abs(y.view_as(y_pred) - y_pred) self._sum_of_errors += torch.sum(errors).item() def compute(self): return self._sum_of_errors m = L1() with pytest.raises(ValueError, match=r"Input y_pred should have shape \(N,\) or \(N, 1\)"): y = torch.rand([1, 1, 1]) m.update((y, y)) with pytest.raises(ValueError, match=r"Input y should have shape \(N,\) or \(N, 1\)"): y = torch.rand([1, 1, 1]) m.update((torch.rand(1, 1), y)) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(2), torch.rand(2, 1))) with pytest.raises(TypeError, match=r"Input y_pred dtype should be float"): y = torch.tensor([1, 1]) m.update((y, y)) with pytest.raises(TypeError, match=r"Input y dtype should be float"): y = torch.tensor([1, 1]) m.update((y.float(), y)) @pytest.mark.parametrize("size", [100, 101, (30, 3), (31, 3)]) def test_torch_median_numpy(size, device: Optional[str] = None): data = torch.rand(size).to(device) assert _torch_median(data) == np.median(data.cpu().numpy()) @pytest.mark.tpu @pytest.mark.parametrize("size", [100, 101, (30, 3), (31, 3)]) @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_on_even_size_xla(size): device = "xla" test_torch_median_numpy(size, device=device) @pytest.mark.parametrize("size", [100, 101, (30, 3), (31, 3)]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_on_even_size_gpu(size): test_torch_median_numpy(size, device="cuda") @pytest.mark.parametrize("size", [100, 101, (30, 3), (31, 3)]) def test_create_even_size_cpu(size): test_torch_median_numpy(size, device="cpu") ignite-0.5.1/tests/ignite/metrics/regression/test_canberra_metric.py000066400000000000000000000213101465426447700260140ustar00rootroot00000000000000import os import numpy as np import pytest import torch from sklearn.metrics import DistanceMetric import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics.regression import CanberraMetric def test_wrong_input_shapes(): m = CanberraMetric() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_compute(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = CanberraMetric() canberra = DistanceMetric.get_metric("canberra") m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = (np.abs(ground_truth - a) / (np.abs(a) + np.abs(ground_truth))).sum() assert m.compute() == pytest.approx(np_sum) assert canberra.pairwise([a, ground_truth])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += ((np.abs(ground_truth - b)) / (np.abs(b) + np.abs(ground_truth))).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([a, b]) v2 = np.hstack([ground_truth, ground_truth]) assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += ((np.abs(ground_truth - c)) / (np.abs(c) + np.abs(ground_truth))).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([v1, c]) v2 = np.hstack([v2, ground_truth]) assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += (np.abs(ground_truth - d) / (np.abs(d) + np.abs(ground_truth))).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([v1, d]) v2 = np.hstack([v2, ground_truth]) assert canberra.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = CanberraMetric() m.attach(engine, "cm") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() canberra = DistanceMetric.get_metric("canberra") data = list(range(y_pred.shape[0] // batch_size)) cm = engine.run(data, max_epochs=1).metrics["cm"] assert canberra.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(cm) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_error_is_not_nan(): m = CanberraMetric() m.update((torch.zeros(4), torch.zeros(4))) assert not (torch.isnan(m._sum_of_errors).any() or torch.isinf(m._sum_of_errors).any()), m._sum_of_errors def _test_distrib_compute(device): rank = idist.get_rank() canberra = DistanceMetric.get_metric("canberra") def _test(metric_device): metric_device = torch.device(metric_device) m = CanberraMetric(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() assert canberra.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() canberra = DistanceMetric.get_metric("canberra") def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = CanberraMetric(device=metric_device) m.attach(engine, "cm") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "cm" in engine.state.metrics res = engine.state.metrics["cm"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() assert pytest.approx(res) == canberra.pairwise([np_y_preds, np_y_true])[0][1] metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_fractional_absolute_error.py000066400000000000000000000210651465426447700301340ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import FractionalAbsoluteError def test_zero_sample(): m = FractionalAbsoluteError() with pytest.raises( NotComputableError, match=r"FractionalAbsoluteError must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = FractionalAbsoluteError() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_compute(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = FractionalAbsoluteError() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = (2 * np.abs((a - ground_truth)) / (np.abs(a) + np.abs(ground_truth))).sum() np_len = len(a) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += (2 * np.abs((b - ground_truth)) / (np.abs(b) + np.abs(ground_truth))).sum() np_len += len(b) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += (2 * np.abs((c - ground_truth)) / (np.abs(c) + np.abs(ground_truth))).sum() np_len += len(c) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += (2 * np.abs((d - ground_truth)) / (np.abs(d) + np.abs(ground_truth))).sum() np_len += len(d) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = FractionalAbsoluteError() m.attach(engine, "fab") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) fab = engine.run(data, max_epochs=1).metrics["fab"] np_sum = (2 * np.abs((np_y_pred - np_y)) / (np.abs(np_y_pred) + np.abs(np_y))).sum() np_len = len(y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(fab) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = FractionalAbsoluteError(device=metric_device) y_pred = torch.rand(size=(100,), device=device) y = torch.rand(size=(100,), device=device) m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() np_sum = (2 * np.abs((np_y_pred - np_y)) / (np.abs(np_y_pred) + np.abs(np_y))).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) fae = FractionalAbsoluteError(device=metric_device) fae.attach(engine, "fae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "fae" in engine.state.metrics res = engine.state.metrics["fae"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() np_y = y_true.cpu().numpy() np_y_pred = y_preds.cpu().numpy() np_sum = (2 * np.abs((np_y_pred - np_y)) / (np.abs(np_y_pred) + np.abs(np_y))).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert pytest.approx(res) == np_ans metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_fractional_bias.py000066400000000000000000000214271465426447700260250ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import FractionalBias def test_zero_sample(): m = FractionalBias() with pytest.raises( NotComputableError, match=r"FractionalBias must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = FractionalBias() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_fractional_bias(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = FractionalBias() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = (2 * (ground_truth - a) / (a + ground_truth)).sum() np_len = len(a) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += (2 * (ground_truth - b) / (b + ground_truth)).sum() np_len += len(b) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += (2 * (ground_truth - c) / (c + ground_truth)).sum() np_len += len(c) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += (2 * (ground_truth - d) / (d + ground_truth)).sum() np_len += len(d) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = FractionalBias() m.attach(engine, "fb") np_y = y.double().numpy().ravel() np_y_pred = y_pred.double().numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) fb = engine.run(data, max_epochs=1).metrics["fb"] np_sum = (2 * (np_y - np_y_pred) / (np_y_pred + np_y)).sum() np_len = len(y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(fb) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_error_is_not_nan(): m = FractionalBias() m.update((torch.zeros(4), torch.zeros(4))) assert not (torch.isnan(m._sum_of_errors).any() or torch.isinf(m._sum_of_errors).any()), m._sum_of_errors def _test_distrib_compute(device, tol=1e-5): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = FractionalBias(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() np_sum = (2 * (np_y - np_y_pred) / (np_y_pred + np_y + 1e-30)).sum() np_len = len(y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(res, rel=tol) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device, tol=1e-5): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,), dtype=torch.double).to(device) y_preds = torch.rand(size=(n_iters * batch_size,), dtype=torch.double).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = FractionalBias(device=metric_device) m.attach(engine, "fb") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "fb" in engine.state.metrics res = engine.state.metrics["fb"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() np_sum = (2 * (np_y_true - np_y_preds) / (np_y_preds + np_y_true + 1e-30)).sum() np_len = len(y_preds) np_ans = np_sum / np_len assert pytest.approx(res, rel=tol) == np_ans metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device, tol=1e-4) _test_distrib_integration(device, tol=1e-4) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device, tol=1e-4) _test_distrib_integration(device, tol=1e-4) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_geometric_mean_absolute_error.py000066400000000000000000000213121465426447700307630ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import GeometricMeanAbsoluteError def test_zero_sample(): m = GeometricMeanAbsoluteError() with pytest.raises( NotComputableError, match=r"GeometricMeanAbsoluteError must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = GeometricMeanAbsoluteError() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_compute(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) np_prod = 1.0 m = GeometricMeanAbsoluteError() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) errors = np.abs(ground_truth - a) np_prod = np.multiply.reduce(errors) * np_prod np_len = len(a) np_ans = np.power(np_prod, 1.0 / np_len) assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) errors = np.abs(ground_truth - b) np_prod = np.multiply.reduce(errors) * np_prod np_len += len(b) np_ans = np.power(np_prod, 1.0 / np_len) assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) errors = np.abs(ground_truth - c) np_prod = np.multiply.reduce(errors) * np_prod np_len += len(c) np_ans = np.power(np_prod, 1.0 / np_len) assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) errors = np.abs(ground_truth - d) np_prod = np.multiply.reduce(errors) * np_prod np_len += len(d) np_ans = np.power(np_prod, 1.0 / np_len) assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = GeometricMeanAbsoluteError() m.attach(engine, "gmae") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) gmae = engine.run(data, max_epochs=1).metrics["gmae"] sum_errors = (np.log(np.abs(np_y - np_y_pred))).sum() np_len = len(y_pred) np_ans = np.exp(sum_errors / np_len) assert np_ans == pytest.approx(gmae) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for i in range(5): # check multiple random inputs as random exact occurencies are rare torch.manual_seed(12 + i) test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = GeometricMeanAbsoluteError(device=metric_device) torch.manual_seed(10 + rank) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() sum_errors = (np.log(np.abs(np_y - np_y_pred))).sum() np_len = len(y_pred) np_ans = np.exp(sum_errors / np_len) assert np_ans == pytest.approx(res) for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = GeometricMeanAbsoluteError(device=metric_device) m.attach(engine, "gmae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "gmae" in engine.state.metrics res = engine.state.metrics["gmae"] np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() sum_errors = (np.log(np.abs(np_y_true - np_y_preds))).sum() np_len = len(y_preds) np_ans = np.exp(sum_errors / np_len) assert pytest.approx(res) == np_ans metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(11 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_geometric_mean_relative_absolute_error.py000066400000000000000000000163531465426447700326670ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import GeometricMeanRelativeAbsoluteError def test_zero_sample(): m = GeometricMeanRelativeAbsoluteError() with pytest.raises( NotComputableError, match=r"GeometricMeanRelativeAbsoluteError must have at least one example before it can be computed", ): m.compute() def test_wrong_input_shapes(): m = GeometricMeanRelativeAbsoluteError() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_compute(): size = 51 np_y_pred = np.random.rand(size) np_y = np.random.rand(size) np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) m = GeometricMeanRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_gmrae == pytest.approx(m.compute()) def test_integration(): y_pred = torch.rand(size=(100,)) y = torch.rand(size=(100,)) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = GeometricMeanRelativeAbsoluteError() m.attach(engine, "gmrae") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) gmrae = engine.run(data, max_epochs=1).metrics["gmrae"] sum_errors = np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).sum() np_len = len(y_pred) np_ans = np.exp(sum_errors / np_len) assert np_ans == pytest.approx(gmrae) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = GeometricMeanRelativeAbsoluteError(device=metric_device) y_pred = torch.rand(size=(100,), device=device) y = torch.rand(size=(100,), device=device) m.update((y_pred, y)) y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) assert m.compute() == pytest.approx(np_gmrae, rel=1e-4) for i in range(3): torch.manual_seed(12 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() torch.manual_seed(12) def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) gmrae = GeometricMeanRelativeAbsoluteError(device=metric_device) gmrae.attach(engine, "gmrae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "gmrae" in engine.state.metrics res = engine.state.metrics["gmrae"] np_y = y_true.cpu().numpy() np_y_pred = y_preds.cpu().numpy() np_gmrae = np.exp(np.log(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())).mean()) assert pytest.approx(res, rel=1e-4) == np_gmrae metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_manhattan_distance.py000066400000000000000000000211271465426447700265270ustar00rootroot00000000000000import os import numpy as np import pytest import torch from sklearn.metrics import DistanceMetric import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics.regression import ManhattanDistance def test_wrong_input_shapes(): m = ManhattanDistance() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_mahattan_distance(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = ManhattanDistance() manhattan = DistanceMetric.get_metric("manhattan") m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = np.abs(ground_truth - a).sum() assert m.compute() == pytest.approx(np_sum) assert manhattan.pairwise([a, ground_truth])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += np.abs(ground_truth - b).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([a, b]) v2 = np.hstack([ground_truth, ground_truth]) assert manhattan.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += np.abs(ground_truth - c).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([v1, c]) v2 = np.hstack([v2, ground_truth]) assert manhattan.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += np.abs(ground_truth - d).sum() assert m.compute() == pytest.approx(np_sum) v1 = np.hstack([v1, d]) v2 = np.hstack([v2, ground_truth]) assert manhattan.pairwise([v1, v2])[0][1] == pytest.approx(np_sum) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = ManhattanDistance() m.attach(engine, "md") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() manhattan = DistanceMetric.get_metric("manhattan") data = list(range(y_pred.shape[0] // batch_size)) md = engine.run(data, max_epochs=1).metrics["md"] assert manhattan.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(md) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_error_is_not_nan(): m = ManhattanDistance() m.update((torch.zeros(4), torch.zeros(4))) assert not (torch.isnan(m._sum_of_errors).any() or torch.isinf(m._sum_of_errors).any()), m._sum_of_errors def _test_distrib_compute(device): rank = idist.get_rank() manhattan = DistanceMetric.get_metric("manhattan") def _test(metric_device): metric_device = torch.device(metric_device) m = ManhattanDistance(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() assert manhattan.pairwise([np_y_pred, np_y])[0][1] == pytest.approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() manhattan = DistanceMetric.get_metric("manhattan") def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = ManhattanDistance(device=metric_device) m.attach(engine, "md") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "md" in engine.state.metrics res = engine.state.metrics["md"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() assert pytest.approx(res) == manhattan.pairwise([np_y_preds, np_y_true])[0][1] metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_maximum_absolute_error.py000066400000000000000000000201651465426447700274670ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MaximumAbsoluteError def test_zero_sample(): m = MaximumAbsoluteError() with pytest.raises( NotComputableError, match=r"MaximumAbsoluteError must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = MaximumAbsoluteError() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_maximum_absolute_error(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = MaximumAbsoluteError() np_ans = -1 m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_max = np.max(np.abs((a - ground_truth))) np_ans = np_max if np_max > np_ans else np_ans assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_max = np.max(np.abs((b - ground_truth))) np_ans = np_max if np_max > np_ans else np_ans assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_max = np.max(np.abs((c - ground_truth))) np_ans = np_max if np_max > np_ans else np_ans assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_max = np.max(np.abs((d - ground_truth))) np_ans = np_max if np_max > np_ans else np_ans assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MaximumAbsoluteError() m.attach(engine, "mae") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) mae = engine.run(data, max_epochs=1).metrics["mae"] np_max = np.max(np.abs((np_y_pred - np_y))) assert np_max == pytest.approx(mae) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = MaximumAbsoluteError(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() np_max = np.max(np.abs((np_y_pred - np_y))) assert np_max == pytest.approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MaximumAbsoluteError(device=metric_device) m.attach(engine, "mae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mae" in engine.state.metrics res = engine.state.metrics["mae"] np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() np_max = np.max(np.abs((np_y_preds - np_y_true))) assert pytest.approx(res) == np_max metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_mean_absolute_relative_error.py000066400000000000000000000216231465426447700306250ustar00rootroot00000000000000import os import numpy as np import pytest import torch from pytest import approx, raises import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MeanAbsoluteRelativeError def test_wrong_input_shapes(): m = MeanAbsoluteRelativeError() with raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_mean_absolute_relative_error(): a = torch.rand(4) b = torch.rand(4) c = torch.rand(4) d = torch.rand(4) ground_truth = torch.rand(4) m = MeanAbsoluteRelativeError() m.update((a, ground_truth)) abs_error_a = torch.sum(torch.abs(ground_truth - a) / torch.abs(ground_truth)) num_samples_a = a.size()[0] sum_error = abs_error_a sum_samples = num_samples_a MARE_a = sum_error / sum_samples assert m.compute() == approx(MARE_a.item()) m.update((b, ground_truth)) abs_error_b = torch.sum(torch.abs(ground_truth - b) / torch.abs(ground_truth)) num_samples_b = b.size()[0] sum_error += abs_error_b sum_samples += num_samples_b MARE_b = sum_error / sum_samples assert m.compute() == approx(MARE_b.item()) m.update((c, ground_truth)) abs_error_c = torch.sum(torch.abs(ground_truth - c) / torch.abs(ground_truth)) num_samples_c = c.size()[0] sum_error += abs_error_c sum_samples += num_samples_c MARE_c = sum_error / sum_samples assert m.compute() == approx(MARE_c.item()) m.update((d, ground_truth)) abs_error_d = torch.sum(torch.abs(ground_truth - d) / torch.abs(ground_truth)) num_samples_d = d.size()[0] sum_error += abs_error_d sum_samples += num_samples_d MARE_d = sum_error / sum_samples assert m.compute() == approx(MARE_d.item()) def test_zero_div(): a = torch.tensor([2.0, -1.0, -1.0, 2.0]) ground_truth = torch.tensor([0.0, 0.5, 0.2, 1.0]) m = MeanAbsoluteRelativeError() with raises(NotComputableError, match=r"The ground truth has 0"): m.update((a, ground_truth)) def test_zero_sample(): m = MeanAbsoluteRelativeError() with raises(NotComputableError, match=r"MeanAbsoluteRelativeError must have at least one sample"): m.compute() def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MeanAbsoluteRelativeError() m.attach(engine, "mare") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) mare = engine.run(data, max_epochs=1).metrics["mare"] abs_error = np.sum(abs(np_y - np_y_pred) / abs(np_y)) num_samples = len(y_pred) res = abs_error / num_samples assert res == approx(mare) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = MeanAbsoluteRelativeError(device=metric_device) y_pred = torch.randint(1, 11, size=(10,), device=device).float() y = torch.randint(1, 11, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() abs_error = np.sum(abs(np_y - np_y_pred) / abs(np_y)) num_samples = len(y_pred) np_res = abs_error / num_samples assert np_res == approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MeanAbsoluteRelativeError(device=metric_device) m.attach(engine, "mare") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mare" in engine.state.metrics mare = engine.state.metrics["mare"] np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() abs_error = np.sum(abs(np_y_true - np_y_preds) / abs(np_y_true)) num_samples = len(y_preds) np_res = abs_error / num_samples assert approx(mare) == np_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_mean_error.py000066400000000000000000000176741465426447700250470ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MeanError def test_zero_sample(): m = MeanError() with pytest.raises(NotComputableError, match=r"MeanError must have at least one example before it can be computed"): m.compute() def test_wrong_input_shapes(): m = MeanError() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_mean_error(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = MeanError() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = (ground_truth - a).sum() np_len = len(a) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += (ground_truth - b).sum() np_len += len(b) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += (ground_truth - c).sum() np_len += len(c) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += (ground_truth - d).sum() np_len += len(d) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MeanError() m.attach(engine, "me") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) me = engine.run(data, max_epochs=1).metrics["me"] np_sum = (np_y - np_y_pred).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(me, rel=1e-4) def get_test_cases(): test_cases = [ (torch.rand(size=(50,)), torch.rand(size=(50,)), 1), (torch.rand(size=(50, 1)), torch.rand(size=(50, 1)), 10), ] return test_cases for _ in range(5): test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = MeanError(device=metric_device) y_pred = torch.rand(size=(100,), device=device) y = torch.rand(size=(100,), device=device) m.update((y_pred, y)) y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() np_sum = (np_y - np_y_pred).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans, rel=1e-5) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device, tol=1e-5): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) me = MeanError(device=metric_device) me.attach(engine, "me") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "me" in engine.state.metrics res = engine.state.metrics["me"] np_y = y_true.cpu().numpy() np_y_pred = y_preds.cpu().numpy() np_sum = (np_y - np_y_pred).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert pytest.approx(res, rel=tol) == np_ans metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_mean_normalized_bias.py000066400000000000000000000210551465426447700270440ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MeanNormalizedBias def test_zero_sample(): m = MeanNormalizedBias() with pytest.raises( NotComputableError, match=r"MeanNormalizedBias must have at least one example before it can be computed" ): m.compute() def test_zero_gt(): a = np.random.randn(4) ground_truth = np.zeros(4) m = MeanNormalizedBias() with pytest.raises(NotComputableError, match=r"The ground truth has 0."): m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) def test_wrong_input_shapes(): m = MeanNormalizedBias() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_mean_error(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = MeanNormalizedBias() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = ((ground_truth - a) / ground_truth).sum() np_len = len(a) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - b) / ground_truth).sum() np_len += len(b) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - c) / ground_truth).sum() np_len += len(c) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += ((ground_truth - d) / ground_truth).sum() np_len += len(d) np_ans = np_sum / np_len assert m.compute() == pytest.approx(np_ans) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MeanNormalizedBias() m.attach(engine, "mnb") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) mnb = engine.run(data, max_epochs=1).metrics["mnb"] np_sum = ((np_y - np_y_pred) / np_y).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(mnb) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = MeanNormalizedBias(device=metric_device) y_pred = torch.randint(1, 11, size=(10,), device=device).float() y = torch.randint(1, 11, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() np_sum = ((np_y - np_y_pred) / np_y).sum() np_len = len(np_y_pred) np_ans = np_sum / np_len assert np_ans == pytest.approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MeanNormalizedBias(device=metric_device) m.attach(engine, "mnb") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mnb" in engine.state.metrics res = engine.state.metrics["mnb"] np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() np_sum = ((np_y_true - np_y_preds) / np_y_true).sum() np_len = len(np_y_preds) np_ans = np_sum / np_len assert pytest.approx(res) == np_ans metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_median_absolute_error.py000066400000000000000000000204001465426447700272370ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MedianAbsoluteError def test_zero_sample(): m = MedianAbsoluteError() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = MedianAbsoluteError() with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4), torch.rand(4, 1, 2))) def test_median_absolute_error(): # See https://github.com/torch/torch7/pull/182 # For even number of elements, PyTorch returns middle element # NumPy returns average of middle elements # Size of dataset will be odd for these tests size = 51 np_y_pred = np.random.rand(size) np_y = np.random.rand(size) np_median_absolute_error = np.median(np.abs(np_y - np_y_pred)) m = MedianAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_median_absolute_error == pytest.approx(m.compute()) def test_median_absolute_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_error = np.median(np.abs(np_y - np_y_pred)) m = MedianAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters): idx = i * batch_size m.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) assert np_median_absolute_error == pytest.approx(m.compute()) def test_integration_median_absolute_error(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_error = np.median(np.abs(np_y - np_y_pred)) batch_size = 15 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MedianAbsoluteError() m.attach(engine, "median_absolute_error") data = list(range(size // batch_size)) median_absolute_error = engine.run(data, max_epochs=1).metrics["median_absolute_error"] assert np_median_absolute_error == pytest.approx(median_absolute_error) def _test_distrib_compute(device): def _test(metric_device): metric_device = torch.device(metric_device) m = MedianAbsoluteError(device=metric_device) size = 105 y_pred = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) y = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy().ravel() np_y = y.cpu().numpy().ravel() res = m.compute() e = np.abs(np_y - np_y_pred) np_res = np.median(e) assert pytest.approx(res) == np_res rank = idist.get_rank() for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 105 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MedianAbsoluteError(device=metric_device) m.attach(engine, "mae") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mae" in engine.state.metrics res = engine.state.metrics["mae"] np_y_true = y_true.cpu().numpy().ravel() np_y_preds = y_preds.cpu().numpy().ravel() e = np.abs(np_y_true - np_y_preds) np_res = np.median(e) assert pytest.approx(res) == np_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: rank = idist.get_rank() for i in range(2): torch.manual_seed(10 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_median_absolute_percentage_error.py000066400000000000000000000210611465426447700314400ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MedianAbsolutePercentageError def test_zero_sample(): m = MedianAbsolutePercentageError() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = MedianAbsolutePercentageError() with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4), torch.rand(4, 1, 2))) def test_median_absolute_percentage_error(): # See https://github.com/torch/torch7/pull/182 # For even number of elements, PyTorch returns middle element # NumPy returns average of middle elements # Size of dataset will be odd for these tests size = 51 np_y_pred = np.random.rand(size) np_y = np.random.rand(size) np_median_absolute_percentage_error = 100.0 * np.median(np.abs(np_y - np_y_pred) / np.abs(np_y)) m = MedianAbsolutePercentageError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_median_absolute_percentage_error == pytest.approx(m.compute()) def test_median_absolute_percentage_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_percentage_error = 100.0 * np.median(np.abs(np_y - np_y_pred) / np.abs(np_y)) m = MedianAbsolutePercentageError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters): idx = i * batch_size m.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) assert np_median_absolute_percentage_error == pytest.approx(m.compute()) def test_integration_median_absolute_percentage_error(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_percentage_error = 100.0 * np.median(np.abs(np_y - np_y_pred) / np.abs(np_y)) batch_size = 15 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MedianAbsolutePercentageError() m.attach(engine, "median_absolute_percentage_error") data = list(range(size // batch_size)) median_absolute_percentage_error = engine.run(data, max_epochs=1).metrics["median_absolute_percentage_error"] assert np_median_absolute_percentage_error == pytest.approx(median_absolute_percentage_error) def _test_distrib_compute(device): def _test(metric_device): metric_device = torch.device(metric_device) m = MedianAbsolutePercentageError(device=metric_device) size = 105 y_pred = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) y = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy().ravel() np_y = y.cpu().numpy().ravel() res = m.compute() e = np.abs(np_y - np_y_pred) / np.abs(np_y) np_res = 100.0 * np.median(e) assert pytest.approx(res) == np_res rank = idist.get_rank() for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 size = 105 y_true = torch.rand(size=(n_iters * size,)).to(device) y_preds = torch.rand(size=(n_iters * size,)).to(device) def update(engine, i): return ( y_preds[i * size : (i + 1) * size], y_true[i * size : (i + 1) * size], ) engine = Engine(update) m = MedianAbsolutePercentageError(device=metric_device) m.attach(engine, "mape") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mape" in engine.state.metrics res = engine.state.metrics["mape"] np_y_true = y_true.cpu().numpy().ravel() np_y_preds = y_preds.cpu().numpy().ravel() e = np.abs(np_y_true - np_y_preds) / np.abs(np_y_true) np_res = 100.0 * np.median(e) assert pytest.approx(res) == np_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: rank = idist.get_rank() for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_median_relative_absolute_error.py000066400000000000000000000210541465426447700311400ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import MedianRelativeAbsoluteError def test_zero_sample(): m = MedianRelativeAbsoluteError() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = MedianRelativeAbsoluteError() with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4, 1), torch.rand(4, 1, 2))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): m.update((torch.rand(4, 1, 2), torch.rand(4))) with pytest.raises(ValueError, match=r"Targets should be of shape"): m.update((torch.rand(4), torch.rand(4, 1, 2))) def test_median_relative_absolute_error(): # See https://github.com/torch/torch7/pull/182 # For even number of elements, PyTorch returns middle element # NumPy returns average of middle elements # Size of dataset will be odd for these tests size = 51 np_y_pred = np.random.rand(size) np_y = np.random.rand(size) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert np_median_absolute_relative_error == pytest.approx(m.compute()) def test_median_relative_absolute_error_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) m = MedianRelativeAbsoluteError() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters + 1): idx = i * batch_size m.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) assert np_median_absolute_relative_error == pytest.approx(m.compute()) def test_integration_median_relative_absolute_error_with_output_transform(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) np_median_absolute_relative_error = np.median(np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean())) batch_size = 15 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = MedianRelativeAbsoluteError() m.attach(engine, "median_absolute_relative_error") data = list(range(size // batch_size)) median_absolute_relative_error = engine.run(data, max_epochs=1).metrics["median_absolute_relative_error"] assert np_median_absolute_relative_error == pytest.approx(median_absolute_relative_error) def _test_distrib_compute(device): def _test(metric_device): metric_device = torch.device(metric_device) m = MedianRelativeAbsoluteError(device=metric_device) torch.manual_seed(10 + rank) size = 151 y_pred = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) y = torch.randint(1, 10, size=(size, 1), dtype=torch.double, device=device) m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy().ravel() np_y = y.cpu().numpy().ravel() res = m.compute() e = np.abs(np_y - np_y_pred) / np.abs(np_y - np_y.mean()) np_res = np.median(e) assert pytest.approx(res) == np_res rank = idist.get_rank() for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 size = 151 y_true = torch.rand(size=(size,)).to(device) y_preds = torch.rand(size=(size,)).to(device) def update(engine, i): return ( y_preds[i * size : (i + 1) * size], y_true[i * size : (i + 1) * size], ) engine = Engine(update) m = MedianRelativeAbsoluteError(device=metric_device) m.attach(engine, "mare") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert "mare" in engine.state.metrics res = engine.state.metrics["mare"] np_y_true = y_true.cpu().numpy().ravel() np_y_preds = y_preds.cpu().numpy().ravel() e = np.abs(np_y_true - np_y_preds) / np.abs(np_y_true - np_y_true.mean()) np_res = np.median(e) assert pytest.approx(res) == np_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: rank = idist.get_rank() for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_pearson_correlation.py000066400000000000000000000176571465426447700267670ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from scipy.stats import pearsonr from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import PearsonCorrelation def np_corr_eps(np_y_pred: np.ndarray, np_y: np.ndarray, eps: float = 1e-8): cov = np.cov(np_y_pred, np_y, ddof=0)[0, 1] std_y_pred = np.std(np_y_pred, ddof=0) std_y = np.std(np_y, ddof=0) corr = cov / np.clip(std_y_pred * std_y, eps, None) return corr def scipy_corr(np_y_pred: np.ndarray, np_y: np.ndarray): corr = pearsonr(np_y_pred, np_y) return corr.statistic def test_zero_sample(): m = PearsonCorrelation() with pytest.raises( NotComputableError, match=r"PearsonCorrelation must have at least one example before it can be computed" ): m.compute() def test_wrong_input_shapes(): m = PearsonCorrelation() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_degenerated_sample(): # one sample m = PearsonCorrelation() y_pred = torch.tensor([1.0]) y = torch.tensor([1.0]) m.update((y_pred, y)) np_y_pred = y_pred.numpy() np_y = y_pred.numpy() np_res = np_corr_eps(np_y_pred, np_y) assert pytest.approx(np_res) == m.compute() # constant samples m.reset() y_pred = torch.ones(10).float() y = torch.zeros(10).float() m.update((y_pred, y)) np_y_pred = y_pred.numpy() np_y = y_pred.numpy() np_res = np_corr_eps(np_y_pred, np_y) assert pytest.approx(np_res) == m.compute() def test_pearson_correlation(): a = np.random.randn(4).astype(np.float32) b = np.random.randn(4).astype(np.float32) c = np.random.randn(4).astype(np.float32) d = np.random.randn(4).astype(np.float32) ground_truth = np.random.randn(4).astype(np.float32) m = PearsonCorrelation() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_ans = scipy_corr(a, ground_truth) assert m.compute() == pytest.approx(np_ans, rel=1e-4) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_ans = scipy_corr(np.concatenate([a, b]), np.concatenate([ground_truth] * 2)) assert m.compute() == pytest.approx(np_ans, rel=1e-4) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_ans = scipy_corr(np.concatenate([a, b, c]), np.concatenate([ground_truth] * 3)) assert m.compute() == pytest.approx(np_ans, rel=1e-4) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_ans = scipy_corr(np.concatenate([a, b, c, d]), np.concatenate([ground_truth] * 4)) assert m.compute() == pytest.approx(np_ans, rel=1e-4) @pytest.fixture(params=list(range(2))) def test_case(request): # correlated sample x = torch.randn(size=[50]).float() y = x + torch.randn_like(x) * 0.1 return [ (x, y, 1), (torch.rand(size=(50, 1)).float(), torch.rand(size=(50, 1)).float(), 10), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_integration(n_times, test_case: Tuple[Tensor, Tensor, int]): y_pred, y, batch_size = test_case def update_fn(engine: Engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = PearsonCorrelation() m.attach(engine, "corr") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) corr = engine.run(data, max_epochs=1).metrics["corr"] np_ans = scipy_corr(np_y_pred, np_y) assert pytest.approx(np_ans, rel=2e-4) == corr def test_accumulator_detached(): corr = PearsonCorrelation() y_pred = torch.tensor([2.0, 3.0], requires_grad=True) y = torch.tensor([-2.0, -1.0]) corr.update((y_pred, y)) assert all( (not accumulator.requires_grad) for accumulator in ( corr._sum_of_products, corr._sum_of_y_pred_squares, corr._sum_of_y_preds, corr._sum_of_y_squares, corr._sum_of_ys, ) ) @pytest.mark.usefixtures("distributed") class TestDistributed: def test_compute(self): rank = idist.get_rank() device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) torch.manual_seed(10 + rank) for metric_device in metric_devices: m = PearsonCorrelation(device=metric_device) y_pred = torch.rand(size=[100], device=device) y = torch.rand(size=[100], device=device) m.update((y_pred, y)) y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() np_ans = scipy_corr(np_y_pred, np_y) assert pytest.approx(np_ans, rel=2e-4) == m.compute() @pytest.mark.parametrize("n_epochs", [1, 2]) def test_integration(self, n_epochs: int): tol = 2e-4 rank = idist.get_rank() device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) n_iters = 80 batch_size = 16 for metric_device in metric_devices: torch.manual_seed(12 + rank) y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) engine = Engine( lambda e, i: ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) ) corr = PearsonCorrelation(device=metric_device) corr.attach(engine, "corr") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "corr" in engine.state.metrics res = engine.state.metrics["corr"] np_y = y_true.cpu().numpy() np_y_pred = y_preds.cpu().numpy() np_ans = scipy_corr(np_y_pred, np_y) assert pytest.approx(np_ans, rel=tol) == res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: corr = PearsonCorrelation(device=metric_device) devices = ( corr._device, corr._sum_of_products.device, corr._sum_of_y_pred_squares.device, corr._sum_of_y_preds.device, corr._sum_of_y_squares.device, corr._sum_of_ys.device, ) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([2.0, 3.0]) y = torch.tensor([-1.0, 1.0]) corr.update((y_pred, y)) devices = ( corr._device, corr._sum_of_products.device, corr._sum_of_y_pred_squares.device, corr._sum_of_y_preds.device, corr._sum_of_y_squares.device, corr._sum_of_ys.device, ) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/regression/test_r2_score.py000066400000000000000000000166161465426447700244270ustar00rootroot00000000000000import os import numpy as np import pytest import torch from sklearn.metrics import r2_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.regression import R2Score def test_zero_sample(): m = R2Score() with pytest.raises(NotComputableError, match=r"R2Score must have at least one example before it can be computed"): m.compute() def test_wrong_input_shapes(): m = R2Score() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_r2_score(): size = 51 np_y_pred = np.random.rand(size) np_y = np.random.rand(size) m = R2Score() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() m.update((y_pred, y)) assert r2_score(np_y, np_y_pred) == pytest.approx(m.compute()) def test_r2_score_2(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) m = R2Score() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) m.reset() batch_size = 16 n_iters = size // batch_size + 1 for i in range(n_iters): idx = i * batch_size m.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) assert r2_score(np_y, np_y_pred) == pytest.approx(m.compute()) def test_integration_r2_score(): np.random.seed(1) size = 105 np_y_pred = np.random.rand(size, 1) np_y = np.random.rand(size, 1) np.random.shuffle(np_y) batch_size = 15 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = R2Score() m.attach(engine, "r2_score") data = list(range(size // batch_size)) r_squared = engine.run(data, max_epochs=1).metrics["r2_score"] assert r2_score(np_y, np_y_pred) == pytest.approx(r_squared) def _test_distrib_compute(device, tol=1e-6): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = R2Score(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() assert r2_score(np_y, np_y_pred) == pytest.approx(res, abs=tol) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.randint(0, 10, size=(n_iters * batch_size,)).to(device).float() y_preds = torch.randint(0, 10, size=(n_iters * batch_size,)).to(device).float() def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) r2 = R2Score(device=metric_device) r2.attach(engine, "r2") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "r2" in engine.state.metrics res = engine.state.metrics["r2"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = r2_score(y_true.cpu().numpy(), y_preds.cpu().numpy()) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device, tol=1e-3) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device, tol=1e-3) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/regression/test_wave_hedges_distance.py000066400000000000000000000176151465426447700270440ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics.regression import WaveHedgesDistance def test_wrong_input_shapes(): m = WaveHedgesDistance() with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4), torch.rand(4, 1))) with pytest.raises(ValueError, match=r"Input data shapes should be the same, but given"): m.update((torch.rand(4, 1), torch.rand(4))) def test_compute(): a = np.random.randn(4) b = np.random.randn(4) c = np.random.randn(4) d = np.random.randn(4) ground_truth = np.random.randn(4) m = WaveHedgesDistance() m.update((torch.from_numpy(a), torch.from_numpy(ground_truth))) np_sum = (np.abs(ground_truth - a) / np.maximum.reduce([a, ground_truth])).sum() assert m.compute() == pytest.approx(np_sum) m.update((torch.from_numpy(b), torch.from_numpy(ground_truth))) np_sum += (np.abs(ground_truth - b) / np.maximum.reduce([b, ground_truth])).sum() assert m.compute() == pytest.approx(np_sum) m.update((torch.from_numpy(c), torch.from_numpy(ground_truth))) np_sum += (np.abs(ground_truth - c) / np.maximum.reduce([c, ground_truth])).sum() assert m.compute() == pytest.approx(np_sum) m.update((torch.from_numpy(d), torch.from_numpy(ground_truth))) np_sum += (np.abs(ground_truth - d) / np.maximum.reduce([d, ground_truth])).sum() assert m.compute() == pytest.approx(np_sum) def test_integration(): def _test(y_pred, y, batch_size): def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) m = WaveHedgesDistance() m.attach(engine, "whd") np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() data = list(range(y_pred.shape[0] // batch_size)) whd = engine.run(data, max_epochs=1).metrics["whd"] np_sum = (np.abs(np_y - np_y_pred) / np.maximum.reduce([np_y_pred, np_y])).sum() assert np_sum == pytest.approx(whd) def get_test_cases(): test_cases = [ (torch.rand(size=(100,)), torch.rand(size=(100,)), 10), (torch.rand(size=(100, 1)), torch.rand(size=(100, 1)), 20), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def _test_distrib_compute(device): rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) m = WaveHedgesDistance(device=metric_device) y_pred = torch.randint(0, 10, size=(10,), device=device).float() y = torch.randint(0, 10, size=(10,), device=device).float() m.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() res = m.compute() np_sum = (np.abs(np_y - np_y_pred) / (np.maximum.reduce([np_y_pred, np_y]) + 1e-30)).sum() assert np_sum == pytest.approx(res) for i in range(3): torch.manual_seed(10 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 y_true = torch.rand(size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = WaveHedgesDistance(device=metric_device) m.attach(engine, "whm") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "whm" in engine.state.metrics res = engine.state.metrics["whm"] np_y_true = y_true.cpu().numpy() np_y_preds = y_preds.cpu().numpy() np_sum = (np.abs(np_y_true - np_y_preds) / (np.maximum.reduce([np_y_preds, np_y_true]) + 1e-30)).sum() assert pytest.approx(res) == np_sum metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_accumulation.py000066400000000000000000000445011465426447700232070ustar00rootroot00000000000000import os import numpy as np import pytest import torch from torch.nn import Linear from torch.optim import SGD import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.accumulation import Average, GeometricAverage, VariableAccumulation torch.manual_seed(15) def test_variable_accumulation_wrong_inputs(): with pytest.raises(TypeError, match=r"Argument op should be a callable"): VariableAccumulation(1) with pytest.raises(TypeError, match=r"Output should be a number or torch.Tensor,"): mean_acc = VariableAccumulation(lambda a, x: a + x) mean_acc.update((1, 2)) with pytest.raises(TypeError, match=r"Output should be a number or torch.Tensor,"): mean_acc = VariableAccumulation(lambda a, x: a + x) mean_acc.update("a") def test_variable_accumulation_mean_variable(): mean_var = VariableAccumulation(lambda a, x: a + x) y_true = torch.rand(100) for y in y_true: mean_var.update(y) a, n = mean_var.compute() assert a.item() == pytest.approx(y_true.sum().item()) assert n == len(y_true) mean_var = VariableAccumulation(lambda a, x: a + x) y_true = torch.rand(100, 10) for y in y_true: mean_var.update(y) a, n = mean_var.compute() assert a.numpy() == pytest.approx(y_true.sum(dim=0).numpy()) assert n == len(y_true) mean_var = VariableAccumulation(lambda a, x: a + x.sum(dim=0)) # iterate by batch of 16 samples y_true = torch.rand(8, 16, 10) for y in y_true: mean_var.update(y) a, n = mean_var.compute() assert a.numpy() == pytest.approx(y_true.reshape(-1, 10).sum(dim=0).numpy()) assert n == y_true.shape[0] * y_true.shape[1] def test_average(): with pytest.raises(NotComputableError): v = Average() v.compute() mean_var = Average() y_true = torch.rand(100) + torch.randint(0, 10, size=(100,)).float() for y in y_true: mean_var.update(y.item()) m = mean_var.compute() assert m.item() == pytest.approx(y_true.mean().item()) mean_var = Average() y_true = torch.rand(100, 10) + torch.randint(0, 10, size=(100, 10)).float() for y in y_true: mean_var.update(y) m = mean_var.compute() assert m.numpy() == pytest.approx(y_true.mean(dim=0).numpy()) mean_var = Average() y_true = torch.rand(8, 16, 10) + torch.randint(0, 10, size=(8, 16, 10)).float() for y in y_true: mean_var.update(y) m = mean_var.compute() assert m.numpy() == pytest.approx(y_true.reshape(-1, 10).mean(dim=0).numpy()) def _geom_mean(t): np_t = t.numpy() return np.exp(np.mean(np.log(np_t), axis=0)) def _mean(y_true): return y_true.mean(dim=0).numpy() def test_geom_average(): with pytest.raises(NotComputableError): v = GeometricAverage() v.compute() mean_var = GeometricAverage() y_true = torch.rand(100) + torch.randint(0, 10, size=(100,)).float() for y in y_true: mean_var.update(y.item()) m = mean_var.compute() assert m == pytest.approx(_geom_mean(y_true)) mean_var = GeometricAverage() y_true = torch.rand(100, 10) + torch.randint(0, 10, size=(100, 10)).float() for y in y_true: mean_var.update(y) m = mean_var.compute() np.testing.assert_almost_equal(m.numpy(), _geom_mean(y_true), decimal=5) mean_var = GeometricAverage() y_true = torch.rand(8, 16, 10) + torch.randint(0, 10, size=(8, 16, 10)).float() for y in y_true: mean_var.update(y) m = mean_var.compute() np.testing.assert_almost_equal(m.numpy(), _geom_mean(y_true.reshape(-1, 10)), decimal=5) @pytest.mark.parametrize("metric_cls, true_result_fn", [(Average, _mean), (GeometricAverage, _geom_mean)]) @pytest.mark.parametrize("shape", [[100, 12], [100]]) def test_integration(metric_cls, true_result_fn, shape): assert len(shape) > 0 and len(shape) < 3 custom_variable = 10.0 + 5.0 * torch.rand(shape) def update_fn(engine, batch): output = custom_variable[engine.state.iteration - 1] output = output.item() if output.ndimension() < 1 else output return 0, output engine = Engine(update_fn) custom_var_mean = metric_cls(output_transform=lambda output: output[1]) custom_var_mean.attach(engine, "agg_custom_var") state = engine.run([0] * shape[0]) np.testing.assert_almost_equal( np.array(state.metrics["agg_custom_var"]), true_result_fn(custom_variable), decimal=5 ) metric_state = custom_var_mean.state_dict() saved_num_examples = custom_var_mean.num_examples saved_accumulator = custom_var_mean.accumulator custom_var_mean.reset() assert custom_var_mean.num_examples == 0 assert custom_var_mean.accumulator == 0 custom_var_mean.load_state_dict(metric_state) assert custom_var_mean.num_examples == saved_num_examples assert (custom_var_mean.accumulator == saved_accumulator).all() def test_compute_mean_std(): n = 8 b = 12 c = 3 w = h = 64 true_data = np.arange(0, n * b * h * w * c, dtype="float64").reshape(n * b, c, h, w) - (n * b * c * w * h * 0.75) mean = true_data.transpose((0, 2, 3, 1)).reshape(-1, c).mean(axis=0) std = true_data.transpose((0, 2, 3, 1)).reshape(-1, c).std(axis=0) train_loader = torch.from_numpy(true_data).reshape(n, b, c, h, w) def compute_mean_std(engine, batch): _b, _c = batch.shape[:2] data = batch.reshape(_b, _c, -1).to(dtype=torch.float64) _mean = torch.mean(data, dim=-1) _mean2 = torch.mean(data**2, dim=-1) return {"mean": _mean, "mean^2": _mean2} compute_engine = Engine(compute_mean_std) img_mean = Average(output_transform=lambda output: output["mean"]) img_mean2 = Average(output_transform=lambda output: output["mean^2"]) img_mean.attach(compute_engine, "mean") img_mean2.attach(compute_engine, "mean2") state = compute_engine.run(train_loader) state.metrics["std"] = torch.sqrt(state.metrics["mean2"] - state.metrics["mean"] ** 2) np.testing.assert_almost_equal(state.metrics["mean"].numpy(), mean, decimal=7) np.testing.assert_almost_equal(state.metrics["std"].numpy(), std, decimal=5) def _test_distrib_variable_accumulation(device): def _test(metric_device): mean_var = VariableAccumulation(lambda a, x: a + x, device=metric_device) y_true = torch.rand(100, device=device, dtype=torch.float64) for y in y_true: mean_var.update(y) y_true = idist.all_reduce(y_true) a, n = mean_var.compute() assert a.item() == pytest.approx(y_true.sum().item()) assert n == len(y_true) * idist.get_world_size() # check if call compute twice a, n = mean_var.compute() assert a.item() == pytest.approx(y_true.sum().item()) assert n == len(y_true) * idist.get_world_size() mean_var = VariableAccumulation(lambda a, x: a + x, device=metric_device) y_true = torch.rand(50, 10, device=device, dtype=torch.float64) for y in y_true: mean_var.update(y) y_true = idist.all_reduce(y_true) a, n = mean_var.compute() assert n == len(y_true) * idist.get_world_size() np.testing.assert_almost_equal(a.cpu().numpy(), y_true.sum(dim=0).cpu().numpy(), decimal=4) a, n = mean_var.compute() assert n == len(y_true) * idist.get_world_size() np.testing.assert_almost_equal(a.cpu().numpy(), y_true.sum(dim=0).cpu().numpy(), decimal=4) # check multiple random inputs as random exact occurencies are rare for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_average(device): def _test(metric_device): with pytest.raises(NotComputableError): v = Average(device=metric_device) v.compute() mean_var = Average(device=metric_device) y_true = torch.rand(100, dtype=torch.float64) + torch.randint(0, 10, size=(100,)).double() y_true = y_true.to(device) for y in y_true: mean_var.update(y) m = mean_var.compute() y_true = idist.all_reduce(y_true) assert m.item() == pytest.approx(y_true.mean().item() / idist.get_world_size()) mean_var = Average(device=metric_device) y_true = torch.rand(100, 10, dtype=torch.float64) + torch.randint(0, 10, size=(100, 10)).double() y_true = y_true.to(device) for y in y_true: mean_var.update(y) m = mean_var.compute() y_true = idist.all_reduce(y_true) np.testing.assert_almost_equal( m.cpu().numpy(), y_true.mean(dim=0).cpu().numpy() / idist.get_world_size(), decimal=5 ) # check multiple random inputs as random exact occurencies are rare for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_geom_average(device): def _test(metric_device): with pytest.raises(NotComputableError): v = GeometricAverage(device=metric_device) v.compute() decimal = 5 if device.type != "xla" else 4 mean_var = GeometricAverage(device=metric_device) y_true = torch.rand(100, dtype=torch.float64) + torch.randint(0, 10, size=(100,)).double() y_true = y_true.to(device) for y in y_true: mean_var.update(y) m = mean_var.compute() log_y_true = torch.log(y_true) log_y_true = idist.all_reduce(log_y_true) np.testing.assert_almost_equal( m, torch.exp(log_y_true.mean(dim=0) / idist.get_world_size()).item(), decimal=decimal ) mean_var = GeometricAverage(device=metric_device) y_true = torch.rand(100, 10, dtype=torch.float64) + torch.randint(0, 10, size=(100, 10)).double() y_true = y_true.to(device) for y in y_true: mean_var.update(y) m = mean_var.compute() log_y_true = torch.log(y_true) log_y_true = idist.all_reduce(log_y_true) np.testing.assert_almost_equal( m.cpu().numpy(), torch.exp(log_y_true.mean(dim=0) / idist.get_world_size()).cpu().numpy(), decimal=decimal ) # check multiple random inputs as random exact occurencies are rare for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _dist_mean(y_true): y_true = idist.all_reduce(y_true) / idist.get_world_size() if len(y_true.shape) > 2: y_true = y_true.reshape(-1, y_true.shape[-1]) return y_true.mean(dim=0).cpu().numpy() def _dist_geom_mean(y_true): log_y_true = torch.log(y_true) log_y_true = idist.all_reduce(log_y_true) if len(log_y_true.shape) > 2: log_y_true = log_y_true.reshape(-1, log_y_true.shape[-1]) np_t = log_y_true.cpu().numpy() return np.exp(np.mean(np_t, axis=0) / idist.get_world_size()) def _test_distrib_integration(device): def _test(metric_cls, shape, true_result_fn, metric_device, tol=1e-5): size = 100 custom_variable = 10.0 + 5.0 * torch.rand(size, *shape, dtype=torch.float64) custom_variable = custom_variable.to(device) def update_fn(engine, batch): return 0, custom_variable[engine.state.iteration - 1] engine = Engine(update_fn) custom_var_mean = metric_cls(output_transform=lambda output: output[1], device=metric_device) custom_var_mean.attach(engine, "agg_custom_var") state = engine.run([0] * size) true_val = true_result_fn(custom_variable) assert len(true_val) == shape[-1] np.testing.assert_almost_equal( state.metrics["agg_custom_var"].cpu().numpy(), true_val, decimal=int(np.log10(1.0 / tol)) ) size = 100 custom_variable = 10.0 + 5.0 * torch.rand(size, dtype=torch.float64) custom_variable = custom_variable.to(device) def update_fn(engine, batch): return 0, custom_variable[engine.state.iteration - 1].item() engine = Engine(update_fn) custom_var_mean = metric_cls(output_transform=lambda output: output[1], device=metric_device) custom_var_mean.attach(engine, "agg_custom_var") state = engine.run([0] * size) assert state.metrics["agg_custom_var"] == pytest.approx(true_result_fn(custom_variable), abs=tol) metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: _test(Average, (12,), _dist_mean, metric_device) _test(Average, (4, 12), _dist_mean, metric_device) _test(GeometricAverage, (12,), _dist_geom_mean, metric_device, tol=1e-4) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: m = VariableAccumulation(lambda a, x: x, device=metric_device) assert m._device == metric_device assert ( m.accumulator.device == metric_device ), f"{type(m.accumulator.device)}:{m.accumulator.device} vs {type(metric_device)}:{metric_device}" m.update(torch.tensor(1, device=device)) assert ( m.accumulator.device == metric_device ), f"{type(m.accumulator.device)}:{m.accumulator.device} vs {type(metric_device)}:{metric_device}" def _test_apex_average(device, amp_mode, opt_level): assert amp_mode == "apex" assert device == "cuda" model = Linear(1, 1) if device: model.to(device) model.weight.data.zero_() model.bias.data.zero_() optimizer = SGD(model.parameters(), 0.1) from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level) mean_var = VariableAccumulation(lambda a, x: a + x) y_true = torch.rand(100).float().to(device) for y in y_true: mean_var.update(y) a, n = mean_var.compute() assert a.item() == pytest.approx(y_true.sum().item()) assert n == len(y_true) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = idist.device() nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_variable_accumulation, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_average, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_geom_average, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) # Enable this test when apex issue is fixed # @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") # @pytest.mark.skipif(not find_spec("apex"), reason="Skip if no APEX") @pytest.mark.skip(reason="Temporarily disabled, as it fails because of an issue from apex side") def test_apex_average_on_cuda(): device = "cuda" _test_apex_average(device, amp_mode="apex", opt_level="O0") _test_apex_average(device, amp_mode="apex", opt_level="O1") _test_apex_average(device, amp_mode="apex", opt_level="O2") _test_apex_average(device, amp_mode="apex", opt_level="O3") @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_variable_accumulation(device) _test_distrib_average(device) _test_distrib_geom_average(device) _test_distrib_integration(device) _test_distrib_accumulator_device(device) ignite-0.5.1/tests/ignite/metrics/test_accuracy.py000066400000000000000000000640311465426447700223150ustar00rootroot00000000000000import os from typing import Callable, Union from unittest.mock import MagicMock import pytest import torch from packaging.version import Version from sklearn.metrics import accuracy_score import ignite.distributed as idist from ignite.engine import Engine, State from ignite.exceptions import NotComputableError from ignite.metrics import Accuracy torch.manual_seed(12) def test_no_update(): acc = Accuracy() with pytest.raises(NotComputableError, match=r"Accuracy must have at least one example before it can be computed"): acc.compute() def test__check_shape(): acc = Accuracy() with pytest.raises(ValueError, match=r"y and y_pred must have compatible shapes"): acc._check_shape((torch.randint(0, 2, size=(10, 1, 5, 12)).long(), torch.randint(0, 2, size=(10, 5, 6)).long())) with pytest.raises(ValueError, match=r"y and y_pred must have compatible shapes"): acc._check_shape((torch.randint(0, 2, size=(10, 1, 6)).long(), torch.randint(0, 2, size=(10, 5, 6)).long())) with pytest.raises(ValueError, match=r"y and y_pred must have compatible shapes"): acc._check_shape((torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 5)).long())) def test__check_type(): acc = Accuracy() with pytest.raises(RuntimeError, match=r"Invalid shapes of y"): acc._check_type((torch.rand([1, 1, 1]), torch.rand([1]))) def test_binary_wrong_inputs(): acc = Accuracy() with pytest.raises(ValueError, match=r"For binary cases, y must be comprised of 0's and 1's"): # y has not only 0 or 1 values acc.update((torch.randint(0, 2, size=(10,)).long(), torch.arange(0, 10).long())) with pytest.raises(ValueError, match=r"For binary cases, y_pred must be comprised of 0's and 1's"): # y_pred values are not thresholded to 0, 1 values acc.update((torch.rand(10), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError, match=r"y must have shape of "): # incompatible shapes acc.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long())) with pytest.raises(ValueError, match=r"y must have shape of "): # incompatible shapes acc.update((torch.randint(0, 2, size=(10, 5, 6)).long(), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError, match=r"y must have shape of "): # incompatible shapes acc.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5, 6)).long())) @pytest.fixture(params=range(12)) def test_data_binary(request): return [ # Binary accuracy on input of shape (N, 1) or (N, ) (torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long(), 1), (torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), # Binary accuracy on input of shape (N, L) (torch.randint(0, 2, size=(10, 5)).long(), torch.randint(0, 2, size=(10, 5)).long(), 1), (torch.randint(0, 2, size=(10, 8)).long(), torch.randint(0, 2, size=(10, 8)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 5)).long(), torch.randint(0, 2, size=(50, 5)).long(), 16), (torch.randint(0, 2, size=(50, 8)).long(), torch.randint(0, 2, size=(50, 8)).long(), 16), # Binary accuracy on input of shape (N, H, W, ...) (torch.randint(0, 2, size=(4, 1, 12, 10)).long(), torch.randint(0, 2, size=(4, 1, 12, 10)).long(), 1), (torch.randint(0, 2, size=(15, 1, 20, 10)).long(), torch.randint(0, 2, size=(15, 1, 20, 10)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 1, 12, 10)).long(), torch.randint(0, 2, size=(50, 1, 12, 10)).long(), 16), (torch.randint(0, 2, size=(50, 1, 20, 10)).long(), torch.randint(0, 2, size=(50, 1, 20, 10)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_binary_input(n_times, test_data_binary): acc = Accuracy() y_pred, y, batch_size = test_data_binary acc.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size acc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: acc.update((y_pred, y)) np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() assert acc._type == "binary" assert isinstance(acc.compute(), float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(acc.compute()) def test_multiclass_wrong_inputs(): acc = Accuracy() with pytest.raises(ValueError): # incompatible shapes acc.update((torch.rand(10, 5, 4), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError): # incompatible shapes acc.update((torch.rand(10, 5, 6), torch.randint(0, 5, size=(10, 5)).long())) with pytest.raises(ValueError): # incompatible shapes acc.update((torch.rand(10), torch.randint(0, 5, size=(10, 5, 6)).long())) @pytest.fixture(params=range(11)) def test_data_multiclass(request): return [ # Multiclass input data of shape (N, ) and (N, C) (torch.rand(10, 4), torch.randint(0, 4, size=(10,)).long(), 1), (torch.rand(10, 10, 1), torch.randint(0, 18, size=(10, 1)).long(), 1), (torch.rand(10, 18), torch.randint(0, 18, size=(10,)).long(), 1), (torch.rand(4, 10), torch.randint(0, 10, size=(4,)).long(), 1), # 2-classes (torch.rand(4, 2), torch.randint(0, 2, size=(4,)).long(), 1), (torch.rand(100, 5), torch.randint(0, 5, size=(100,)).long(), 16), # Multiclass input data of shape (N, L) and (N, C, L) (torch.rand(10, 4, 5), torch.randint(0, 4, size=(10, 5)).long(), 1), (torch.rand(4, 10, 5), torch.randint(0, 10, size=(4, 5)).long(), 1), (torch.rand(100, 9, 7), torch.randint(0, 9, size=(100, 7)).long(), 16), # Multiclass input data of shape (N, H, W, ...) and (N, C, H, W, ...) (torch.rand(4, 5, 12, 10), torch.randint(0, 5, size=(4, 12, 10)).long(), 1), (torch.rand(100, 3, 8, 8), torch.randint(0, 3, size=(100, 8, 8)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_multiclass_input(n_times, test_data_multiclass): acc = Accuracy() y_pred, y, batch_size = test_data_multiclass acc.reset() if batch_size > 1: # Batched Updates n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size acc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: acc.update((y_pred, y)) np_y_pred = y_pred.numpy().argmax(axis=1).ravel() np_y = y.numpy().ravel() assert acc._type == "multiclass" assert isinstance(acc.compute(), float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(acc.compute()) def to_numpy_multilabel(y): # reshapes input array to (N x ..., C) y = y.transpose(1, 0).cpu().numpy() num_classes = y.shape[0] y = y.reshape((num_classes, -1)).transpose(1, 0) return y def test_multilabel_wrong_inputs(): acc = Accuracy(is_multilabel=True) with pytest.raises(ValueError): # incompatible shapes acc.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError): # incompatible y_pred acc.update((torch.rand(10, 5), torch.randint(0, 2, size=(10, 5)).long())) with pytest.raises(ValueError): # incompatible y acc.update((torch.randint(0, 5, size=(10, 5, 6)), torch.rand(10))) with pytest.raises(ValueError): # incompatible binary shapes acc.update((torch.randint(0, 2, size=(10, 1)), torch.randint(0, 2, size=(10, 1)).long())) @pytest.fixture(params=range(12)) def test_data_multilabel(request): return [ # Multilabel input data of shape (N, C) and (N, C) (torch.randint(0, 2, size=(10, 4)).long(), torch.randint(0, 2, size=(10, 4)).long(), 1), (torch.randint(0, 2, size=(10, 7)).long(), torch.randint(0, 2, size=(10, 7)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 16), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 16), # Multilabel input data of shape (N, H, W) (torch.randint(0, 2, size=(10, 5, 10)).long(), torch.randint(0, 2, size=(10, 5, 10)).long(), 1), (torch.randint(0, 2, size=(10, 4, 10)).long(), torch.randint(0, 2, size=(10, 4, 10)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 10)).long(), torch.randint(0, 2, size=(50, 5, 10)).long(), 16), (torch.randint(0, 2, size=(50, 4, 10)).long(), torch.randint(0, 2, size=(50, 4, 10)).long(), 16), # Multilabel input data of shape (N, C, H, W, ...) and (N, C, H, W, ...) (torch.randint(0, 2, size=(4, 5, 12, 10)).long(), torch.randint(0, 2, size=(4, 5, 12, 10)).long(), 1), (torch.randint(0, 2, size=(4, 10, 12, 8)).long(), torch.randint(0, 2, size=(4, 10, 12, 8)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 12, 10)).long(), torch.randint(0, 2, size=(50, 5, 12, 10)).long(), 16), (torch.randint(0, 2, size=(50, 10, 12, 8)).long(), torch.randint(0, 2, size=(50, 10, 12, 8)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_multilabel_input(n_times, test_data_multilabel): acc = Accuracy(is_multilabel=True) y_pred, y, batch_size = test_data_multilabel if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size acc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: acc.update((y_pred, y)) np_y_pred = to_numpy_multilabel(y_pred) np_y = to_numpy_multilabel(y) assert acc._type == "multilabel" assert isinstance(acc.compute(), float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(acc.compute()) def test_incorrect_type(): acc = Accuracy() # Start as binary data y_pred = torch.randint(0, 2, size=(4,)) y = torch.ones(4).long() acc.update((y_pred, y)) # And add a multiclass data y_pred = torch.rand(4, 4) y = torch.ones(4).long() with pytest.raises(RuntimeError): acc.update((y_pred, y)) def _test_distrib_multilabel_input_NHW(device): # Multilabel input data of shape (N, C, H, W, ...) and (N, C, H, W, ...) rank = idist.get_rank() def _test(metric_device): metric_device = torch.device(metric_device) acc = Accuracy(is_multilabel=True, device=metric_device) torch.manual_seed(10 + rank) y_pred = torch.randint(0, 2, size=(4, 5, 8, 10), device=device).long() y = torch.randint(0, 2, size=(4, 5, 8, 10), device=device).long() acc.update((y_pred, y)) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" n = acc._num_examples assert n == y.numel() / y.size(dim=1) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = to_numpy_multilabel(y_pred.cpu()) # (N, C, H, W, ...) -> (N * H * W ..., C) np_y = to_numpy_multilabel(y.cpu()) # (N, C, H, W, ...) -> (N * H * W ..., C) assert acc._type == "multilabel" res = acc.compute() assert n == acc._num_examples assert isinstance(res, float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(res) acc.reset() torch.manual_seed(10 + rank) y_pred = torch.randint(0, 2, size=(4, 7, 10, 8), device=device).long() y = torch.randint(0, 2, size=(4, 7, 10, 8), device=device).long() acc.update((y_pred, y)) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" n = acc._num_examples assert n == y.numel() / y.size(dim=1) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = to_numpy_multilabel(y_pred.cpu()) # (N, C, H, W, ...) -> (N * H * W ..., C) np_y = to_numpy_multilabel(y.cpu()) # (N, C, H, W, ...) -> (N * H * W ..., C) assert acc._type == "multilabel" res = acc.compute() assert n == acc._num_examples assert isinstance(res, float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(res) # check that result is not changed res = acc.compute() assert n == acc._num_examples assert isinstance(res, float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(res) # Batched Updates acc.reset() torch.manual_seed(10 + rank) y_pred = torch.randint(0, 2, size=(80, 5, 8, 10), device=device).long() y = torch.randint(0, 2, size=(80, 5, 8, 10), device=device).long() batch_size = 16 n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size acc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" n = acc._num_examples assert n == y.numel() / y.size(dim=1) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y_pred = to_numpy_multilabel(y_pred.cpu()) # (N, C, L, ...) -> (N * L * ..., C) np_y = to_numpy_multilabel(y.cpu()) # (N, C, L, ...) -> (N * L ..., C) assert acc._type == "multilabel" res = acc.compute() assert n == acc._num_examples assert isinstance(res, float) assert accuracy_score(np_y, np_y_pred) == pytest.approx(res) # check multiple random inputs as random exact occurencies are rare for _ in range(3): _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_integration_multiclass(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 n_classes = 10 torch.manual_seed(12 + rank) y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) acc = Accuracy(device=metric_device) acc.attach(engine, "acc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" assert "acc" in engine.state.metrics res = engine.state.metrics["acc"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = accuracy_score(y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy()) assert pytest.approx(res) == true_res metric_state = acc.state_dict() saved__num_correct = acc._num_correct saved__num_examples = acc._num_examples acc.reset() acc.load_state_dict(metric_state) assert acc._num_examples == saved__num_examples assert (acc._num_correct == saved__num_correct).all() metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) def _test_distrib_integration_multilabel(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 n_classes = 10 torch.manual_seed(12 + rank) y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 8, 10)).to(device) y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 8, 10)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, ...], y_true[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) acc = Accuracy(is_multilabel=True, device=metric_device) acc.attach(engine, "acc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" assert "acc" in engine.state.metrics res = engine.state.metrics["acc"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = accuracy_score(to_numpy_multilabel(y_true), to_numpy_multilabel(y_preds)) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: acc = Accuracy(device=metric_device) assert acc._device == metric_device assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" y_pred = torch.randint(0, 2, size=(10,), device=device, dtype=torch.long) y = torch.randint(0, 2, size=(10,), device=device, dtype=torch.long) acc.update((y_pred, y)) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" def _test_distrib_integration_list_of_tensors_or_numbers(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 n_classes = 10 torch.manual_seed(12 + rank) y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(_, i): return ( [v for v in y_preds[i * batch_size : (i + 1) * batch_size, ...]], [v.item() for v in y_true[i * batch_size : (i + 1) * batch_size]], ) engine = Engine(update) acc = Accuracy(device=metric_device) acc.attach(engine, "acc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" assert "acc" in engine.state.metrics res = engine.state.metrics["acc"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = accuracy_score(y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy()) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_multilabel_input_NHW, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_multiclass, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_multilabel, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_list_of_tensors_or_numbers, (device,), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_multilabel_input_NHW(device) _test_distrib_integration_multiclass(device) _test_distrib_integration_multilabel(device) _test_distrib_accumulator_device(device) _test_distrib_integration_list_of_tensors_or_numbers(device) def test_skip_unrolling(): class DummyAcc(Accuracy): def __init__( self, true_output, output_transform: Callable = lambda x: x, is_multilabel: bool = False, device: Union[str, torch.device] = torch.device("cpu"), skip_unrolling: bool = False, ): super(DummyAcc, self).__init__( output_transform=output_transform, is_multilabel=False, device=device, skip_unrolling=skip_unrolling ) self.true_output = true_output def update(self, output): assert output == self.true_output a_pred = torch.randint(0, 2, size=(8, 1)) b_pred = torch.randint(0, 2, size=(8, 1)) y_pred = [a_pred, b_pred] a_true = torch.randint(0, 2, size=(8, 1)) b_true = torch.randint(0, 2, size=(8, 1)) y_true = [a_true, b_true] acc = DummyAcc(true_output=(y_pred, y_true), skip_unrolling=True) state = State(output=(y_pred, y_true)) engine = MagicMock(state=state) acc.iteration_completed(engine) ignite-0.5.1/tests/ignite/metrics/test_average_precision.py000066400000000000000000000317431465426447700242140ustar00rootroot00000000000000import os from unittest.mock import patch import pytest import sklearn import torch from sklearn.metrics import average_precision_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import AveragePrecision torch.manual_seed(12) @pytest.fixture() def mock_no_sklearn(): with patch.dict("sys.modules", {"sklearn.metrics": None}): yield sklearn def test_no_sklearn(mock_no_sklearn): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires scikit-learn to be installed."): AveragePrecision() def test_no_update(): ap = AveragePrecision() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): ap.compute() def test_input_types(): ap = AveragePrecision() ap.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) ap.update(output1) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): ap.update((torch.randint(0, 5, size=(4, 3)), torch.randint(0, 2, size=(4, 3)))) with pytest.raises(ValueError, match=r"Incoherent types between input y and stored targets"): ap.update((torch.rand(4, 3), torch.randint(0, 2, size=(4, 3)).to(torch.int32))) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): ap.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long())) def test_check_shape(): ap = AveragePrecision() with pytest.raises(ValueError, match=r"Predictions should be of shape"): ap._check_shape((torch.tensor(0), torch.tensor(0))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): ap._check_shape((torch.rand(4, 3, 1), torch.rand(4, 3))) with pytest.raises(ValueError, match=r"Targets should be of shape"): ap._check_shape((torch.rand(4, 3), torch.rand(4, 3, 1))) @pytest.fixture(params=[item for item in range(8)]) def test_data_binary_and_multilabel(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 1), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 1), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 16), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_binary_and_multilabel_inputs(n_times, test_data_binary_and_multilabel): y_pred, y, batch_size = test_data_binary_and_multilabel ap = AveragePrecision() ap.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size ap.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: ap.update((y_pred, y)) np_y = y.numpy() np_y_pred = y_pred.numpy() res = ap.compute() assert isinstance(res, float) assert average_precision_score(np_y, np_y_pred) == pytest.approx(res) @pytest.fixture(params=[item for item in range(4)]) def test_data_integration_binary_and_multilabel(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(100,)).long(), torch.randint(0, 2, size=(100,)).long(), 10), (torch.randint(0, 2, size=(100, 1)).long(), torch.randint(0, 2, size=(100, 1)).long(), 10), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(100, 3)).long(), torch.randint(0, 2, size=(100, 3)).long(), 10), (torch.randint(0, 2, size=(100, 4)).long(), torch.randint(0, 2, size=(100, 4)).long(), 10), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_integration_binary_and_mulitlabel_inputs(n_times, test_data_integration_binary_and_multilabel): y_pred, y, batch_size = test_data_integration_binary_and_multilabel def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) ap_metric = AveragePrecision() ap_metric.attach(engine, "ap") np_y = y.numpy() np_y_pred = y_pred.numpy() np_ap = average_precision_score(np_y, np_y_pred) data = list(range(y_pred.shape[0] // batch_size)) ap = engine.run(data, max_epochs=1).metrics["ap"] assert isinstance(ap, float) assert np_ap == pytest.approx(ap) def _test_distrib_binary_and_multilabel_inputs(device): rank = idist.get_rank() torch.manual_seed(12) def _test(y_pred, y, batch_size, metric_device): metric_device = torch.device(metric_device) ap = AveragePrecision(device=metric_device) torch.manual_seed(10 + rank) ap.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size ap.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: ap.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() res = ap.compute() assert isinstance(res, float) assert average_precision_score(np_y, np_y_pred) == pytest.approx(res) def get_test_cases(): test_cases = [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long(), 1), (torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(10, 4)).long(), torch.randint(0, 2, size=(10, 4)).long(), 1), (torch.randint(0, 2, size=(10, 7)).long(), torch.randint(0, 2, size=(10, 7)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 16), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 16), ] return test_cases for _ in range(3): test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: y_pred = y_pred.to(device) y = y.to(device) _test(y_pred, y, batch_size, "cpu") if device.type != "xla": _test(y_pred, y, batch_size, idist.device()) def _test_distrib_integration_binary_input(device): rank = idist.get_rank() n_iters = 80 batch_size = 16 n_classes = 2 def _test(y_preds, y_true, n_epochs, metric_device, update_fn): metric_device = torch.device(metric_device) engine = Engine(update_fn) ap = AveragePrecision(device=metric_device) ap.attach(engine, "ap") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert "ap" in engine.state.metrics res = engine.state.metrics["ap"] true_res = average_precision_score(y_true.cpu().numpy(), y_preds.cpu().numpy()) assert pytest.approx(res) == true_res def get_tests(is_N): torch.manual_seed(12 + rank) if is_N: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size).to(device) def update_fn(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) else: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size, 10)).to(device) y_preds = torch.randint(0, n_classes, size=(n_iters * batch_size, 10)).to(device) def update_fn(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size, :], ) return y_preds, y_true, update_fn metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): # Binary input data of shape (N,) y_preds, y_true, update_fn = get_tests(is_N=True) _test(y_preds, y_true, n_epochs=1, metric_device=metric_device, update_fn=update_fn) _test(y_preds, y_true, n_epochs=2, metric_device=metric_device, update_fn=update_fn) # Binary input data of shape (N, L) y_preds, y_true, update_fn = get_tests(is_N=False) _test(y_preds, y_true, n_epochs=1, metric_device=metric_device, update_fn=update_fn) _test(y_preds, y_true, n_epochs=2, metric_device=metric_device, update_fn=update_fn) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_binary_and_multilabel_inputs, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_binary_input, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_classification_report.py000066400000000000000000000241101465426447700251030ustar00rootroot00000000000000import json import os import pytest import torch from packaging.version import Version import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics.classification_report import ClassificationReport def _test_integration_multiclass(device, output_dict): rank = idist.get_rank() def _test(metric_device, n_classes, labels=None): classification_report = ClassificationReport(device=metric_device, output_dict=output_dict, labels=labels) n_iters = 80 batch_size = 16 y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) classification_report.attach(engine, "cr") data = list(range(n_iters)) engine.run(data=data) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "cr" in engine.state.metrics res = engine.state.metrics["cr"] res2 = classification_report.compute() assert res == res2 assert isinstance(res, dict if output_dict else str) if not output_dict: res = json.loads(res) from sklearn.metrics import classification_report as sklearn_classification_report sklearn_result = sklearn_classification_report( y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy(), output_dict=True, zero_division=1 ) for i in range(n_classes): label_i = labels[i] if labels else str(i) assert sklearn_result[str(i)]["precision"] == pytest.approx(res[label_i]["precision"]) assert sklearn_result[str(i)]["f1-score"] == pytest.approx(res[label_i]["f1-score"]) assert sklearn_result[str(i)]["recall"] == pytest.approx(res[label_i]["recall"]) assert sklearn_result["macro avg"]["precision"] == pytest.approx(res["macro avg"]["precision"]) assert sklearn_result["macro avg"]["recall"] == pytest.approx(res["macro avg"]["recall"]) assert sklearn_result["macro avg"]["f1-score"] == pytest.approx(res["macro avg"]["f1-score"]) metric_state = classification_report.state_dict() classification_report.reset() classification_report.load_state_dict(metric_state) res2 = classification_report.compute() if not output_dict: res2 = json.loads(res2) for i in range(n_classes): label_i = labels[i] if labels else str(i) assert res2[label_i]["precision"] == res[label_i]["precision"] assert res2[label_i]["f1-score"] == res[label_i]["f1-score"] assert res2[label_i]["recall"] == res[label_i]["recall"] assert res2["macro avg"]["precision"] == res["macro avg"]["precision"] assert res2["macro avg"]["recall"] == res["macro avg"]["recall"] assert res2["macro avg"]["f1-score"] == res["macro avg"]["f1-score"] for i in range(5): torch.manual_seed(12 + rank + i) # check multiple random inputs as random exact occurencies are rare metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: _test(metric_device, 2, ["label0", "label1"]) _test(metric_device, 2) _test(metric_device, 3, ["label0", "label1", "label2"]) _test(metric_device, 3) _test(metric_device, 4, ["label0", "label1", "label2", "label3"]) _test(metric_device, 4) def _test_integration_multilabel(device, output_dict): rank = idist.get_rank() def _test(metric_device, n_epochs, labels=None): classification_report = ClassificationReport(device=metric_device, output_dict=output_dict, is_multilabel=True) n_iters = 10 batch_size = 16 n_classes = 7 y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, ...], y_true[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) classification_report.attach(engine, "cr") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "cr" in engine.state.metrics res = engine.state.metrics["cr"] res2 = classification_report.compute() assert res == res2 assert isinstance(res, dict if output_dict else str) if not output_dict: res = json.loads(res) np_y_preds = to_numpy_multilabel(y_preds) np_y_true = to_numpy_multilabel(y_true) from sklearn.metrics import classification_report as sklearn_classification_report sklearn_result = sklearn_classification_report(np_y_true, np_y_preds, output_dict=True, zero_division=1) for i in range(n_classes): label_i = labels[i] if labels else str(i) assert sklearn_result[str(i)]["precision"] == pytest.approx(res[label_i]["precision"]) assert sklearn_result[str(i)]["f1-score"] == pytest.approx(res[label_i]["f1-score"]) assert sklearn_result[str(i)]["recall"] == pytest.approx(res[label_i]["recall"]) assert sklearn_result["macro avg"]["precision"] == pytest.approx(res["macro avg"]["precision"]) assert sklearn_result["macro avg"]["recall"] == pytest.approx(res["macro avg"]["recall"]) assert sklearn_result["macro avg"]["f1-score"] == pytest.approx(res["macro avg"]["f1-score"]) for i in range(3): torch.manual_seed(12 + rank + i) # check multiple random inputs as random exact occurencies are rare metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: _test(metric_device, 1) _test(metric_device, 2) _test(metric_device, 1, ["0", "1", "2", "3", "4", "5", "6"]) _test(metric_device, 2, ["0", "1", "2", "3", "4", "5", "6"]) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_integration_multiclass(device, True) _test_integration_multiclass(device, False) _test_integration_multilabel(device, True) _test_integration_multilabel(device, False) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_gloo_cpu_or_gpu(local_rank, distributed_context_single_node_gloo): device = idist.device() _test_integration_multiclass(device, True) _test_integration_multiclass(device, False) _test_integration_multilabel(device, True) _test_integration_multilabel(device, False) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_integration_multiclass, (device, True), np=nproc, do_init=True) gloo_hvd_executor(_test_integration_multiclass, (device, False), np=nproc, do_init=True) gloo_hvd_executor(_test_integration_multilabel, (device, True), np=nproc, do_init=True) gloo_hvd_executor(_test_integration_multilabel, (device, False), np=nproc, do_init=True) def _test_distrib_xla_nprocs(index): device = idist.device() _test_integration_multiclass(device, True) _test_integration_multiclass(device, False) _test_integration_multilabel(device, True) _test_integration_multilabel(device, False) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) def to_numpy_multilabel(y): # reshapes input array to (N x ..., C) y = y.transpose(1, 0).cpu().numpy() num_classes = y.shape[0] y = y.reshape((num_classes, -1)).transpose(1, 0) return y @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_integration_multiclass(device, True) _test_integration_multiclass(device, False) _test_integration_multilabel(device, True) _test_integration_multilabel(device, False) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_integration_multiclass(device, True) _test_integration_multiclass(device, False) _test_integration_multilabel(device, True) _test_integration_multilabel(device, False) ignite-0.5.1/tests/ignite/metrics/test_cohen_kappa.py000066400000000000000000000272141465426447700227750ustar00rootroot00000000000000import os from unittest.mock import patch import pytest import sklearn import torch from sklearn.metrics import cohen_kappa_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import CohenKappa torch.manual_seed(12) @pytest.fixture() def mock_no_sklearn(): with patch.dict("sys.modules", {"sklearn.metrics": None}): yield sklearn def test_no_sklearn(mock_no_sklearn): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires scikit-learn to be installed."): CohenKappa() def test_no_update(): ck = CohenKappa() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): ck.compute() def test_input_types(): ck = CohenKappa() ck.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) ck.update(output1) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): ck.update((torch.randint(0, 5, size=(4, 3)), torch.randint(0, 2, size=(4, 3)))) with pytest.raises(ValueError, match=r"Incoherent types between input y and stored targets"): ck.update((torch.rand(4, 3), torch.randint(0, 2, size=(4, 3)).to(torch.int32))) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): ck.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long())) def test_check_shape(): ck = CohenKappa() with pytest.raises(ValueError, match=r"Predictions should be of shape"): ck._check_shape((torch.tensor(0), torch.tensor(0))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): ck._check_shape((torch.rand(4, 3, 1), torch.rand(4, 3))) with pytest.raises(ValueError, match=r"Targets should be of shape"): ck._check_shape((torch.rand(4, 3), torch.rand(4, 3, 1))) def test_cohen_kappa_wrong_weights_type(): with pytest.raises(ValueError, match=r"Kappa Weighting type must be"): ck = CohenKappa(weights=7) with pytest.raises(ValueError, match=r"Kappa Weighting type must be"): ck = CohenKappa(weights="dd") @pytest.fixture(params=range(4)) def test_data_binary(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long(), 1), (torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) @pytest.mark.parametrize("weights", [None, "linear", "quadratic"]) def test_binary_input(n_times, weights, test_data_binary): y_pred, y, batch_size = test_data_binary ck = CohenKappa(weights) ck.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size ck.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: ck.update((y_pred, y)) np_y = y.numpy() np_y_pred = y_pred.numpy() res = ck.compute() assert isinstance(res, float) assert cohen_kappa_score(np_y, np_y_pred, weights=weights) == pytest.approx(res) def test_multilabel_inputs(): ck = CohenKappa() with pytest.raises(ValueError, match=r"multilabel-indicator is not supported"): ck.reset() ck.update((torch.randint(0, 2, size=(10, 4)).long(), torch.randint(0, 2, size=(10, 4)).long())) ck.compute() with pytest.raises(ValueError, match=r"multilabel-indicator is not supported"): ck.reset() ck.update((torch.randint(0, 2, size=(10, 6)).long(), torch.randint(0, 2, size=(10, 6)).long())) ck.compute() with pytest.raises(ValueError, match=r"multilabel-indicator is not supported"): ck.reset() ck.update((torch.randint(0, 2, size=(10, 8)).long(), torch.randint(0, 2, size=(10, 8)).long())) ck.compute() @pytest.fixture(params=range(2)) def test_data_integration_binary(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 10), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 10), ][request.param] @pytest.mark.parametrize("n_times", range(5)) @pytest.mark.parametrize("weights", [None, "linear", "quadratic"]) def test_integration_binary_input(n_times, weights, test_data_integration_binary): y_pred, y, batch_size = test_data_integration_binary def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) ck_metric = CohenKappa(weights=weights) ck_metric.attach(engine, "ck") np_y = y.numpy() np_y_pred = y_pred.numpy() np_ck = cohen_kappa_score(np_y, np_y_pred, weights=weights) data = list(range(y_pred.shape[0] // batch_size)) ck = engine.run(data, max_epochs=1).metrics["ck"] assert isinstance(ck, float) assert np_ck == pytest.approx(ck) def _test_distrib_binary_input(device): rank = idist.get_rank() def _test(y_pred, y, batch_size, metric_device): metric_device = torch.device(metric_device) ck = CohenKappa(device=metric_device) ck.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size ck.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: ck.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() res = ck.compute() assert isinstance(res, float) assert cohen_kappa_score(np_y, np_y_pred) == pytest.approx(res) def get_test_cases(): test_cases = [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long(), 1), (torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), ] return test_cases for i in range(3): torch.manual_seed(10 + rank + i) test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size, "cpu") if device.type != "xla": _test(y_pred, y, batch_size, idist.device()) def _test_distrib_integration_binary_input(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 16 torch.manual_seed(12 + rank) # Binary input data of shape (N,) or (N, 1) y_true = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) y_preds = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) ck = CohenKappa(device=metric_device) ck.attach(engine, "ck") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert "ck" in engine.state.metrics res = engine.state.metrics["ck"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = cohen_kappa_score(y_true.cpu().numpy(), y_preds.cpu().numpy()) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_binary_input, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_binary_input, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_binary_input(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_confusion_matrix.py000066400000000000000000000554031465426447700241150ustar00rootroot00000000000000import os import numpy as np import pytest import torch from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import ConfusionMatrix, IoU, JaccardIndex, mIoU from ignite.metrics.confusion_matrix import cmAccuracy, cmPrecision, cmRecall, DiceCoefficient torch.manual_seed(12) def test_no_update(): cm = ConfusionMatrix(10) with pytest.raises(NotComputableError, match=r"Confusion matrix must have at least one example before it "): cm.compute() def test_num_classes_wrong_input(): with pytest.raises(ValueError, match="Argument num_classes needs to be > 1"): ConfusionMatrix(num_classes=1) def test_multiclass_wrong_inputs(): cm = ConfusionMatrix(10) with pytest.raises( ValueError, match=r"y_pred must have shape \(batch_size, num_classes " r"\(currently set to 10\), ...\)" ): cm.update((torch.rand(10), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError, match=r"y_pred does not have correct number of classes:"): cm.update((torch.rand(10, 5, 4), torch.randint(0, 2, size=(10,)).long())) with pytest.raises( ValueError, match=r"y_pred must have shape \(batch_size, num_classes " r"\(currently set to 10\), ...\) " r"and y must have ", ): cm.update((torch.rand(4, 10, 12, 12), torch.randint(0, 10, size=(10,)).long())) with pytest.raises(ValueError, match=r"y and y_pred must have compatible shapes."): cm.update((torch.rand(4, 10, 12, 14), torch.randint(0, 10, size=(4, 5, 6)).long())) with pytest.raises(ValueError, match=r"Argument average can None or one of"): ConfusionMatrix(num_classes=10, average="abc") with pytest.raises(ValueError, match=r"Argument average should be one of 'samples', 'recall', 'precision'"): ConfusionMatrix.normalize(None, None) @pytest.fixture(params=[item for item in range(10)]) def test_data(request): return [ # Multiclass input data of shape (N, ) (torch.rand(10, 4), torch.randint(0, 4, size=(10,)).long(), 4, 1), (torch.rand(4, 10), torch.randint(0, 10, size=(4,)).long(), 10, 1), (torch.rand(4, 2), torch.randint(0, 2, size=(4,)).long(), 2, 1), (torch.rand(100, 5), torch.randint(0, 5, size=(100,)).long(), 5, 16), # Multiclass input data of shape (N, L) (torch.rand(10, 4, 5), torch.randint(0, 4, size=(10, 5)).long(), 4, 1), (torch.rand(4, 10, 5), torch.randint(0, 10, size=(4, 5)).long(), 10, 1), (torch.rand(100, 9, 7), torch.randint(0, 9, size=(100, 7)).long(), 9, 16), # Multiclass input data of shape (N, H, W, ...) (torch.rand(4, 5, 12, 10), torch.randint(0, 5, size=(4, 12, 10)).long(), 5, 1), (torch.rand(4, 5, 10, 12, 8), torch.randint(0, 5, size=(4, 10, 12, 8)).long(), 5, 1), (torch.rand(100, 3, 8, 8), torch.randint(0, 3, size=(100, 8, 8)).long(), 3, 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_multiclass_input(n_times, test_data): y_pred, y, num_classes, batch_size = test_data cm = ConfusionMatrix(num_classes=num_classes) cm.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size cm.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: cm.update((y_pred, y)) np_y_pred = y_pred.numpy().argmax(axis=1).ravel() np_y = y.numpy().ravel() assert np.all(confusion_matrix(np_y, np_y_pred, labels=list(range(num_classes))) == cm.compute().numpy()) def test_ignored_out_of_num_classes_indices(): num_classes = 21 cm = ConfusionMatrix(num_classes=num_classes) y_pred = torch.rand(4, num_classes, 12, 10) y = torch.randint(0, 255, size=(4, 12, 10)).long() cm.update((y_pred, y)) np_y_pred = y_pred.numpy().argmax(axis=1).ravel() np_y = y.numpy().ravel() assert np.all(confusion_matrix(np_y, np_y_pred, labels=list(range(num_classes))) == cm.compute().numpy()) def get_y_true_y_pred(): # Generate an image with labels 0 (background), 1, 2 # 3 classes: y_true = np.zeros((30, 30), dtype=np.int32) y_true[1:11, 1:11] = 1 y_true[15:25, 15:25] = 2 y_pred = np.zeros((30, 30), dtype=np.int32) y_pred[5:15, 1:11] = 1 y_pred[20:30, 20:30] = 2 return y_true, y_pred def compute_th_y_true_y_logits(y_true, y_pred): # Create torch.tensor from numpy th_y_true = torch.from_numpy(y_true).unsqueeze(0) # Create logits torch.tensor: num_classes = max(np.max(y_true), np.max(y_pred)) + 1 y_probas = np.ones((num_classes,) + y_true.shape) * -10 for i in range(num_classes): y_probas[i, (y_pred == i)] = 720 th_y_logits = torch.from_numpy(y_probas).unsqueeze(0) return th_y_true, th_y_logits def test_multiclass_images(): num_classes = 3 cm = ConfusionMatrix(num_classes=num_classes) y_true, y_pred = get_y_true_y_pred() # Compute confusion matrix with sklearn true_res = confusion_matrix(y_true.reshape(-1), y_pred.reshape(-1)) th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = cm.compute().numpy() assert np.all(true_res == res) # Another test on batch of 2 images num_classes = 3 cm = ConfusionMatrix(num_classes=num_classes) # Create a batch of two images: th_y_true1 = torch.from_numpy(y_true).reshape(1, 30, 30) th_y_true2 = torch.from_numpy(y_true.transpose()).reshape(1, 30, 30) th_y_true = torch.cat([th_y_true1, th_y_true2], dim=0) # Create a batch of 2 logits tensors y_probas = np.ones((3, 30, 30)) * -10 y_probas[0, (y_pred == 0)] = 720 y_probas[1, (y_pred == 1)] = 720 y_probas[2, (y_pred == 2)] = 768 th_y_logits1 = torch.from_numpy(y_probas).reshape(1, 3, 30, 30) y_probas = np.ones((3, 30, 30)) * -10 y_probas[0, (y_pred.transpose() == 0)] = 720 y_probas[1, (y_pred.transpose() == 2)] = 720 y_probas[2, (y_pred.transpose() == 1)] = 768 th_y_logits2 = torch.from_numpy(y_probas).reshape(1, 3, 30, 30) th_y_logits = torch.cat([th_y_logits1, th_y_logits2], dim=0) # Update metric & compute output = (th_y_logits, th_y_true) cm.update(output) res = cm.compute().numpy() # Compute confusion matrix with sklearn true_res = confusion_matrix(th_y_true.numpy().reshape(-1), np.argmax(th_y_logits.numpy(), axis=1).reshape(-1)) assert np.all(true_res == res) def test_iou_wrong_input(): with pytest.raises(TypeError, match="Argument cm should be instance of ConfusionMatrix"): IoU(None) cm = ConfusionMatrix(num_classes=10) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given -1"): IoU(cm, ignore_index=-1) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given a"): IoU(cm, ignore_index="a") with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given 10"): IoU(cm, ignore_index=10) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given 11"): IoU(cm, ignore_index=11) @pytest.mark.parametrize("average", [None, "samples"]) def test_iou(average): y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_res = [0, 0, 0] for index in range(3): bin_y_true = y_true == index bin_y_pred = y_pred == index intersection = bin_y_true & bin_y_pred union = bin_y_true | bin_y_pred true_res[index] = intersection.sum() / union.sum() cm = ConfusionMatrix(num_classes=3, average=average) iou_metric = IoU(cm) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = iou_metric.compute().numpy() assert np.all(res == true_res) for ignore_index in range(3): cm = ConfusionMatrix(num_classes=3) iou_metric = IoU(cm, ignore_index=ignore_index) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = iou_metric.compute().numpy() true_res_ = true_res[:ignore_index] + true_res[ignore_index + 1 :] assert np.all(res == true_res_), f"{ignore_index}: {res} vs {true_res_}" with pytest.raises(ValueError, match=r"ConfusionMatrix should have average attribute either"): cm = ConfusionMatrix(num_classes=3, average="precision") IoU(cm) def test_miou(): y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_res = [0, 0, 0] for index in range(3): bin_y_true = y_true == index bin_y_pred = y_pred == index intersection = bin_y_true & bin_y_pred union = bin_y_true | bin_y_pred true_res[index] = intersection.sum() / union.sum() true_res_ = np.mean(true_res) cm = ConfusionMatrix(num_classes=3) iou_metric = mIoU(cm) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = iou_metric.compute().numpy() assert res == true_res_ for ignore_index in range(3): cm = ConfusionMatrix(num_classes=3) iou_metric = mIoU(cm, ignore_index=ignore_index) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = iou_metric.compute().numpy() true_res_ = np.mean(true_res[:ignore_index] + true_res[ignore_index + 1 :]) assert res == true_res_, f"{ignore_index}: {res} vs {true_res_}" def test_cm_accuracy(): y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_acc = accuracy_score(y_true.reshape(-1), y_pred.reshape(-1)) cm = ConfusionMatrix(num_classes=3) acc_metric = cmAccuracy(cm) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = acc_metric.compute().numpy() assert pytest.approx(res) == true_acc def test_cm_precision(): y_true, y_pred = np.random.randint(0, 10, size=(1000,)), np.random.randint(0, 10, size=(1000,)) th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_pr = precision_score(y_true.reshape(-1), y_pred.reshape(-1), average="macro") cm = ConfusionMatrix(num_classes=10) pr_metric = cmPrecision(cm, average=True) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = pr_metric.compute().numpy() assert pytest.approx(res) == true_pr true_pr = precision_score(y_true.reshape(-1), y_pred.reshape(-1), average=None) cm = ConfusionMatrix(num_classes=10) pr_metric = cmPrecision(cm, average=False) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = pr_metric.compute().numpy() assert np.all(res == true_pr) def test_cm_recall(): y_true, y_pred = np.random.randint(0, 10, size=(1000,)), np.random.randint(0, 10, size=(1000,)) th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_re = recall_score(y_true.reshape(-1), y_pred.reshape(-1), average="macro") cm = ConfusionMatrix(num_classes=10) re_metric = cmRecall(cm, average=True) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = re_metric.compute().numpy() assert pytest.approx(res) == true_re true_re = recall_score(y_true.reshape(-1), y_pred.reshape(-1), average=None) cm = ConfusionMatrix(num_classes=10) re_metric = cmRecall(cm, average=False) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = re_metric.compute().numpy() assert np.all(res == true_re) def test_cm_with_average(): num_classes = 5 y_pred = torch.rand(40, num_classes) y = torch.randint(0, num_classes, size=(40,)).long() np_y_pred = y_pred.numpy().argmax(axis=1).ravel() np_y = y.numpy().ravel() cm = ConfusionMatrix(num_classes=num_classes, average="samples") cm.update((y_pred, y)) true_res = confusion_matrix(np_y, np_y_pred, labels=list(range(num_classes))) * 1.0 / len(np_y) res = cm.compute().numpy() np.testing.assert_almost_equal(true_res, res) cm = ConfusionMatrix(num_classes=num_classes, average="recall") cm.update((y_pred, y)) true_re = recall_score(np_y, np_y_pred, average=None, labels=list(range(num_classes))) res = cm.compute().numpy().diagonal() np.testing.assert_almost_equal(true_re, res) res = cm.compute().numpy() true_res = confusion_matrix(np_y, np_y_pred, normalize="true") np.testing.assert_almost_equal(true_res, res) cm = ConfusionMatrix(num_classes=num_classes, average="precision") cm.update((y_pred, y)) true_pr = precision_score(np_y, np_y_pred, average=None, labels=list(range(num_classes))) res = cm.compute().numpy().diagonal() np.testing.assert_almost_equal(true_pr, res) res = cm.compute().numpy() true_res = confusion_matrix(np_y, np_y_pred, normalize="pred") np.testing.assert_almost_equal(true_res, res) def test_dice_coefficient_wrong_input(): with pytest.raises(TypeError, match="Argument cm should be instance of ConfusionMatrix"): DiceCoefficient(None) cm = ConfusionMatrix(num_classes=10) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given -1"): DiceCoefficient(cm, ignore_index=-1) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given a"): DiceCoefficient(cm, ignore_index="a") with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given 10"): DiceCoefficient(cm, ignore_index=10) with pytest.raises(ValueError, match=r"ignore_index should be integer and in the range of \[0, 10\), but given 11"): DiceCoefficient(cm, ignore_index=11) def test_dice_coefficient(): y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_res = [0, 0, 0] for index in range(3): bin_y_true = y_true == index bin_y_pred = y_pred == index # dice coefficient: 2*intersection(x, y) / (|x| + |y|) # union(x, y) = |x| + |y| - intersection(x, y) intersection = bin_y_true & bin_y_pred union = bin_y_true | bin_y_pred true_res[index] = 2.0 * intersection.sum() / (union.sum() + intersection.sum()) cm = ConfusionMatrix(num_classes=3) dice_metric = DiceCoefficient(cm) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = dice_metric.compute().numpy() np.testing.assert_allclose(res, true_res) for ignore_index in range(3): cm = ConfusionMatrix(num_classes=3) dice_metric = DiceCoefficient(cm, ignore_index=ignore_index) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = dice_metric.compute().numpy() true_res_ = true_res[:ignore_index] + true_res[ignore_index + 1 :] assert np.all(res == true_res_), f"{ignore_index}: {res} vs {true_res_}" def _test_distrib_multiclass_images(device): def _test(metric_device): num_classes = 3 cm = ConfusionMatrix(num_classes=num_classes, device=metric_device) y_true, y_pred = get_y_true_y_pred() # Compute confusion matrix with sklearn true_res = confusion_matrix(y_true.reshape(-1), y_pred.reshape(-1)) th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) th_y_true = th_y_true.to(device) th_y_logits = th_y_logits.to(device) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = cm.compute().cpu().numpy() / idist.get_world_size() assert np.all(true_res == res) # Another test on batch of 2 images num_classes = 3 cm = ConfusionMatrix(num_classes=num_classes, device=metric_device) # Create a batch of two images: th_y_true1 = torch.from_numpy(y_true).reshape(1, 30, 30) th_y_true2 = torch.from_numpy(y_true.transpose()).reshape(1, 30, 30) th_y_true = torch.cat([th_y_true1, th_y_true2], dim=0) th_y_true = th_y_true.to(device) # Create a batch of 2 logits tensors y_probas = np.ones((3, 30, 30)) * -10 y_probas[0, (y_pred == 0)] = 720 y_probas[1, (y_pred == 1)] = 720 y_probas[2, (y_pred == 2)] = 768 th_y_logits1 = torch.from_numpy(y_probas).reshape(1, 3, 30, 30) y_probas = np.ones((3, 30, 30)) * -10 y_probas[0, (y_pred.transpose() == 0)] = 720 y_probas[1, (y_pred.transpose() == 2)] = 720 y_probas[2, (y_pred.transpose() == 1)] = 768 th_y_logits2 = torch.from_numpy(y_probas).reshape(1, 3, 30, 30) th_y_logits = torch.cat([th_y_logits1, th_y_logits2], dim=0) # check update if input is on another device th_y_logits = th_y_logits.to(device) # Update metric & compute output = (th_y_logits, th_y_true) cm.update(output) res = cm.compute().cpu().numpy() # Compute confusion matrix with sklearn th_y_true = idist.all_gather(th_y_true) th_y_logits = idist.all_gather(th_y_logits) np_y_true = th_y_true.cpu().numpy().reshape(-1) np_y_pred = np.argmax(th_y_logits.cpu().numpy(), axis=1).reshape(-1) true_res = confusion_matrix(np_y_true, np_y_pred) assert np.all(true_res == res) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: cm = ConfusionMatrix(num_classes=3, device=metric_device) assert cm._device == metric_device assert ( cm.confusion_matrix.device == metric_device ), f"{type(cm.confusion_matrix.device)}:{cm._num_correct.device} vs {type(metric_device)}:{metric_device}" y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) cm.update((th_y_logits, th_y_true)) assert ( cm.confusion_matrix.device == metric_device ), f"{type(cm.confusion_matrix.device)}:{cm._num_correct.device} vs {type(metric_device)}:{metric_device}" @pytest.mark.parametrize("average", [None, "samples"]) def test_jaccard_index(average): y_true, y_pred = get_y_true_y_pred() th_y_true, th_y_logits = compute_th_y_true_y_logits(y_true, y_pred) true_res = [0, 0, 0] for index in range(3): bin_y_true = y_true == index bin_y_pred = y_pred == index intersection = bin_y_true & bin_y_pred union = bin_y_true | bin_y_pred true_res[index] = intersection.sum() / union.sum() cm = ConfusionMatrix(num_classes=3, average=average) jaccard_index = JaccardIndex(cm) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = jaccard_index.compute().numpy() assert np.all(res == true_res) for ignore_index in range(3): cm = ConfusionMatrix(num_classes=3) jaccard_index_metric = JaccardIndex(cm, ignore_index=ignore_index) # Update metric output = (th_y_logits, th_y_true) cm.update(output) res = jaccard_index_metric.compute().numpy() true_res_ = true_res[:ignore_index] + true_res[ignore_index + 1 :] assert np.all(res == true_res_), f"{ignore_index}: {res} vs {true_res_}" with pytest.raises(ValueError, match=r"ConfusionMatrix should have average attribute either"): cm = ConfusionMatrix(num_classes=3, average="precision") JaccardIndex(cm) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_multiclass_images, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_multiclass_images(device) _test_distrib_accumulator_device(device) ignite-0.5.1/tests/ignite/metrics/test_cosine_similarity.py000066400000000000000000000114751465426447700242550ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import CosineSimilarity def test_zero_sample(): cos_sim = CosineSimilarity() with pytest.raises( NotComputableError, match=r"CosineSimilarity must have at least one example before it can be computed" ): cos_sim.compute() @pytest.fixture(params=list(range(4))) def test_case(request): return [ (torch.randn((100, 50)), torch.randn((100, 50)), 10 ** np.random.uniform(-8, 0), 1), ( torch.normal(1.0, 2.0, size=(100, 10)), torch.normal(3.0, 4.0, size=(100, 10)), 10 ** np.random.uniform(-8, 0), 1, ), # updated batches (torch.rand((100, 128)), torch.rand((100, 128)), 10 ** np.random.uniform(-8, 0), 16), ( torch.normal(0.0, 5.0, size=(100, 30)), torch.normal(5.0, 1.0, size=(100, 30)), 10 ** np.random.uniform(-8, 0), 16, ), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case: Tuple[Tensor, Tensor, float, int]): y_pred, y, eps, batch_size = test_case cos = CosineSimilarity(eps=eps) cos.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size cos.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: cos.update((y_pred, y)) np_y = y.numpy() np_y_pred = y_pred.numpy() np_y_norm = np.clip(np.linalg.norm(np_y, axis=1, keepdims=True), eps, None) np_y_pred_norm = np.clip(np.linalg.norm(np_y_pred, axis=1, keepdims=True), eps, None) np_res = np.sum((np_y / np_y_norm) * (np_y_pred / np_y_pred_norm), axis=1) np_res = np.mean(np_res) assert isinstance(cos.compute(), float) assert pytest.approx(np_res, rel=2e-5) == cos.compute() def test_accumulator_detached(): cos = CosineSimilarity() y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.ones(2, 2, dtype=torch.float) cos.update((y_pred, y)) assert not cos._sum_of_cos_similarities.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 2e-5 n_iters = 100 batch_size = 10 n_dims = 100 rank = idist.get_rank() torch.manual_seed(12 + rank) device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: y_true = torch.randn((n_iters * batch_size, n_dims)).float().to(device) y_preds = torch.normal(2.0, 3.0, size=(n_iters * batch_size, n_dims)).float().to(device) engine = Engine( lambda e, i: ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) ) m = CosineSimilarity(device=metric_device) m.attach(engine, "cosine_similarity") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "cosine_similarity" in engine.state.metrics res = engine.state.metrics["cosine_similarity"] y_true_np = y_true.cpu().numpy() y_preds_np = y_preds.cpu().numpy() y_true_norm = np.clip(np.linalg.norm(y_true_np, axis=1, keepdims=True), 1e-8, None) y_preds_norm = np.clip(np.linalg.norm(y_preds_np, axis=1, keepdims=True), 1e-8, None) true_res = np.sum((y_true_np / y_true_norm) * (y_preds_np / y_preds_norm), axis=1) true_res = np.mean(true_res) assert pytest.approx(res, rel=tol) == true_res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: cos = CosineSimilarity(device=metric_device) for dev in (cos._device, cos._sum_of_cos_similarities.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]]).float() y = torch.ones(2, 2).float() cos.update((y_pred, y)) for dev in (cos._device, cos._sum_of_cos_similarities.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_dill.py000066400000000000000000000013131465426447700214410ustar00rootroot00000000000000import dill from ignite.metrics import Metric class Accumulation(Metric): def __init__(self): self.value = 0 super(Accumulation, self).__init__() def reset(self): self.value = 0 def compute(self): return self.value def update(self, output): self.value += output def test_metric(): def _test(m, values, e): for v in values: m.update(v) assert m.compute() == e metric = Accumulation() m1 = dill.loads(dill.dumps(metric)) values = list(range(10)) expected = sum(values) _test(m1, values, expected) metric.update(5) m2 = dill.loads(dill.dumps(metric)) _test(m2, values, expected + 5) ignite-0.5.1/tests/ignite/metrics/test_entropy.py000066400000000000000000000106531465426447700222240ustar00rootroot00000000000000import numpy as np import pytest import torch from scipy.special import softmax from scipy.stats import entropy as scipy_entropy import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import Entropy def np_entropy(np_y_pred: np.ndarray): prob = softmax(np_y_pred, axis=1) ent = np.mean(scipy_entropy(prob, axis=1)) return ent def test_zero_sample(): ent = Entropy() with pytest.raises(NotComputableError, match=r"Entropy must have at least one example before it can be computed"): ent.compute() def test_invalid_shape(): ent = Entropy() y_pred = torch.randn(10).float() with pytest.raises(ValueError, match=r"y_pred must be in the shape of \(B, C\) or \(B, C, ...\), got"): ent.update((y_pred, None)) @pytest.fixture(params=[item for item in range(4)]) def test_case(request): return [ (torch.randn((100, 10)), torch.randint(0, 10, size=[100]), 1), (torch.rand((100, 500)), torch.randint(0, 500, size=[100]), 1), # updated batches (torch.normal(0.0, 5.0, size=(100, 10)), torch.randint(0, 10, size=[100]), 16), (torch.normal(5.0, 3.0, size=(100, 200)), torch.randint(0, 200, size=[100]), 16), # image segmentation (torch.randn((100, 5, 32, 32)), torch.randint(0, 5, size=(100, 32, 32)), 16), (torch.randn((100, 5, 224, 224)), torch.randint(0, 5, size=(100, 224, 224)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case): ent = Entropy() y_pred, y, batch_size = test_case ent.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size ent.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: ent.update((y_pred, y)) np_res = np_entropy(y_pred.numpy()) assert isinstance(ent.compute(), float) assert pytest.approx(ent.compute()) == np_res def test_accumulator_detached(): ent = Entropy() y_pred = torch.tensor([[2.0, 3.0], [-2.0, -1.0]], requires_grad=True) y = torch.zeros(2) ent.update((y_pred, y)) assert not ent._sum_of_entropies.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 1e-6 device = idist.device() rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 100 batch_size = 10 n_cls = 50 metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: y_true = torch.randint(0, n_cls, size=[n_iters * batch_size], dtype=torch.long).to(device) y_preds = torch.normal(2.0, 3.0, size=(n_iters * batch_size, n_cls), dtype=torch.float).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = Entropy(device=metric_device) m.attach(engine, "entropy") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "entropy" in engine.state.metrics res = engine.state.metrics["entropy"] true_res = np_entropy(y_preds.cpu().numpy()) assert pytest.approx(res, rel=tol) == true_res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: device = torch.device(device) ent = Entropy(device=metric_device) for dev in [ent._device, ent._sum_of_entropies.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) ent.update((y_pred, y)) for dev in [ent._device, ent._sum_of_entropies.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_epoch_metric.py000066400000000000000000000161741465426447700231710ustar00rootroot00000000000000import pytest import torch import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics import EpochMetric from ignite.metrics.epoch_metric import EpochMetricWarning, NotComputableError def test_epoch_metric_wrong_setup_or_input(): # Wrong compute function with pytest.raises(TypeError, match=r"Argument compute_fn should be callable."): EpochMetric(12345) def compute_fn(y_preds, y_targets): return 0.0 em = EpochMetric(compute_fn) # Wrong input dims with pytest.raises(ValueError, match=r"Predictions should be of shape"): output = (torch.tensor(0), torch.tensor(0)) em.update(output) # Wrong input dims with pytest.raises(ValueError, match=r"Targets should be of shape"): output = (torch.rand(4, 3), torch.rand(4, 3, 1)) em.update(output) # Wrong input dims with pytest.raises(ValueError, match=r"Predictions should be of shape"): output = (torch.rand(4, 3, 1), torch.rand(4, 3)) em.update(output) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output1) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): output2 = (torch.randint(0, 5, size=(4, 3)), torch.randint(0, 2, size=(4, 3))) em.update(output2) with pytest.raises(ValueError, match=r"Incoherent types between input y and stored targets"): output2 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3)).to(torch.int32)) em.update(output2) with pytest.raises( NotComputableError, match="EpochMetric must have at least one example before it can be computed" ): em = EpochMetric(compute_fn) em.compute() def test_epoch_metric(): def compute_fn(y_preds, y_targets): return 0.0 em = EpochMetric(compute_fn) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output1) output2 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output2) assert all([t.device.type == "cpu" for t in em._predictions + em._targets]) assert torch.equal(em._predictions[0], output1[0]) assert torch.equal(em._predictions[1], output2[0]) assert torch.equal(em._targets[0], output1[1]) assert torch.equal(em._targets[1], output2[1]) assert em.compute() == 0.0 # test when y and y_pred are (batch_size, 1) that are squeezed to (batch_size, ) em.reset() output1 = (torch.rand(4, 1), torch.randint(0, 2, size=(4, 1), dtype=torch.long)) em.update(output1) output2 = (torch.rand(4, 1), torch.randint(0, 2, size=(4, 1), dtype=torch.long)) em.update(output2) assert all([t.device.type == "cpu" for t in em._predictions + em._targets]) assert torch.equal(em._predictions[0], output1[0][:, 0]) assert torch.equal(em._predictions[1], output2[0][:, 0]) assert torch.equal(em._targets[0], output1[1][:, 0]) assert torch.equal(em._targets[1], output2[1][:, 0]) assert em.compute() == 0.0 def test_mse_epoch_metric(): def compute_fn(y_preds, y_targets): return torch.mean(((y_preds - y_targets.type_as(y_preds)) ** 2)).item() em = EpochMetric(compute_fn) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output1) output2 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output2) output3 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output3) preds = torch.cat([output1[0], output2[0], output3[0]], dim=0) targets = torch.cat([output1[1], output2[1], output3[1]], dim=0) result = em.compute() assert result == compute_fn(preds, targets) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output1) output2 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output2) output3 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) em.update(output3) preds = torch.cat([output1[0], output2[0], output3[0]], dim=0) targets = torch.cat([output1[1], output2[1], output3[1]], dim=0) result = em.compute() assert result == compute_fn(preds, targets) def test_bad_compute_fn(): def compute_fn(y_preds, y_targets): # Following will raise the error: # The size of tensor a (3) must match the size of tensor b (4) # at non-singleton dimension 1 return torch.mean(y_preds - y_targets).item() em = EpochMetric(compute_fn) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 4), dtype=torch.long)) with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"): em.update(output1) def test_check_compute_fn(): def compute_fn(y_preds, y_targets): raise Exception em = EpochMetric(compute_fn, check_compute_fn=True) em.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"): em.update(output1) em = EpochMetric(compute_fn, check_compute_fn=False) em.update(output1) def test_distrib_integration(distributed): device = idist.device() if idist.device().type != "xla" else "cpu" rank = idist.get_rank() torch.manual_seed(40 + rank) n_iters = 3 batch_size = 2 n_classes = 7 y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,), device=device) y_preds = torch.rand(n_iters * batch_size, n_classes, device=device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) def assert_data_fn(all_preds, all_targets): return (all_preds.argmax(dim=1) == all_targets).sum().item() ep_metric = EpochMetric(assert_data_fn, check_compute_fn=False, device=device) ep_metric.attach(engine, "epm") data = list(range(n_iters)) engine.run(data=data, max_epochs=3) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) ep_metric_true = (y_preds.argmax(dim=1) == y_true).sum().item() assert engine.state.metrics["epm"] == ep_metric_true assert ep_metric.compute() == ep_metric_true def test_skip_unrolling(): def compute_fn(y_preds, y_targets): return 0.0 em = EpochMetric(compute_fn, skip_unrolling=True) em.reset() output1 = (torch.rand(4, 2), torch.randint(0, 2, size=(4, 2), dtype=torch.long)) em.update(output1) output2 = (torch.rand(4, 2), torch.randint(0, 2, size=(4, 2), dtype=torch.long)) em.update(output2) assert all([t.device.type == "cpu" for t in em._predictions + em._targets]) assert torch.equal(em._predictions[0], output1[0]) assert torch.equal(em._predictions[1], output2[0]) assert torch.equal(em._targets[0], output1[1]) assert torch.equal(em._targets[1], output2[1]) assert em.compute() == 0.0 ignite-0.5.1/tests/ignite/metrics/test_fbeta.py000066400000000000000000000166041465426447700216070ustar00rootroot00000000000000import os import numpy as np import pytest import torch from sklearn.metrics import fbeta_score import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics import Fbeta, Precision, Recall torch.manual_seed(12) def test_wrong_inputs(): with pytest.raises(ValueError, match=r"Beta should be a positive integer"): Fbeta(0.0) with pytest.raises(ValueError, match=r"Input precision metric should have average=False"): p = Precision(average="micro") Fbeta(1.0, precision=p) with pytest.raises(ValueError, match=r"Input recall metric should have average=False"): r = Recall(average="samples") Fbeta(1.0, recall=r) with pytest.raises(ValueError, match=r"If precision argument is provided, output_transform should be None"): p = Precision(average=False) Fbeta(1.0, precision=p, output_transform=lambda x: x) with pytest.raises(ValueError, match=r"If recall argument is provided, output_transform should be None"): r = Recall(average=False) Fbeta(1.0, recall=r, output_transform=lambda x: x) def _output_transform(output): return output["y_pred"], output["y"] @pytest.mark.parametrize( "p, r, average, output_transform", [ (None, None, False, None), (None, None, True, None), (None, None, False, _output_transform), (None, None, True, _output_transform), (Precision(average=False), Recall(average=False), False, None), (Precision(average=False), Recall(average=False), True, None), ], ) def test_integration(p, r, average, output_transform): np.random.seed(1) n_iters = 10 batch_size = 10 n_classes = 10 y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes) for i in range(n_iters * batch_size): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 y_true_batch_values = iter(y_true.reshape(n_iters, batch_size)) y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes)) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) if output_transform is not None: return {"y_pred": torch.from_numpy(y_pred_batch), "y": torch.from_numpy(y_true_batch)} return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) evaluator = Engine(update_fn) f2 = Fbeta(beta=2.0, average=average, precision=p, recall=r, output_transform=output_transform) f2.attach(evaluator, "f2") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) f2_true = fbeta_score(y_true, np.argmax(y_pred, axis=-1), average="macro" if average else None, beta=2.0) np.testing.assert_allclose(np.array(f2_true), np.array(state.metrics["f2"])) def _test_distrib_integration(device): rank = idist.get_rank() def _test(p, r, average, n_epochs, metric_device): n_iters = 60 batch_size = 16 n_classes = 7 torch.manual_seed(12 + rank) y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) fbeta = Fbeta(beta=2.5, average=average, device=metric_device) fbeta.attach(engine, "f2.5") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "f2.5" in engine.state.metrics res = engine.state.metrics["f2.5"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = fbeta_score( y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy(), beta=2.5, average="macro" if average else None, ) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: _test(None, None, average=True, n_epochs=1, metric_device=metric_device) _test(None, None, average=True, n_epochs=2, metric_device=metric_device) precision = Precision(average=False, device=metric_device) recall = Recall(average=False, device=metric_device) _test(precision, recall, average=False, n_epochs=1, metric_device=metric_device) _test(precision, recall, average=False, n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) ignite-0.5.1/tests/ignite/metrics/test_frequency.py000066400000000000000000000103711465426447700225220ustar00rootroot00000000000000import os import sys import time import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.metrics import Frequency if sys.platform.startswith("darwin"): pytest.skip("Skip if on MacOS", allow_module_level=True) @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_nondistributed_average(): artificial_time = 1 # seconds num_tokens = 100 average_upper_bound = num_tokens / artificial_time average_lower_bound = average_upper_bound * 0.9 freq_metric = Frequency() freq_metric.reset() time.sleep(artificial_time) freq_metric.update(num_tokens) average = freq_metric.compute() assert average_lower_bound < average < average_upper_bound def _test_frequency_with_engine(workers=None, lower_bound_factor=0.8, upper_bound_factor=1.1, every=1): if workers is None: workers = idist.get_world_size() artificial_time = 1.0 / workers # seconds total_tokens = 400 // workers batch_size = 128 // workers estimated_wps = batch_size * workers / artificial_time def update_fn(engine, batch): time.sleep(artificial_time) return {"ntokens": len(batch)} engine = Engine(update_fn) wps_metric = Frequency(output_transform=lambda x: x["ntokens"]) event = Events.ITERATION_COMPLETED(every=every) wps_metric.attach(engine, "wps", event_name=event) @engine.on(event) def assert_wps(e): wps = e.state.metrics["wps"] # Skip iterations 2, 3, 4 if backend is Horovod on CUDA, # wps is abnormally low for these iterations # otherwise, other values of wps are OK if idist.model_name() == "horovod-dist" and e.state.iteration in (2, 3, 4): return low_wps = estimated_wps * lower_bound_factor high_wps = estimated_wps * upper_bound_factor assert low_wps < wps <= high_wps, f"{e.state.iteration}: {low_wps} < {wps} <= {high_wps}" data = [[i] * batch_size for i in range(0, total_tokens, batch_size)] engine.run(data, max_epochs=2) @pytest.mark.skipif(sys.platform.startswith("win"), reason="Skip on Windows") def test_frequency_with_engine(): _test_frequency_with_engine(workers=1) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_frequency_with_engine_distributed(distributed_context_single_node_gloo): _test_frequency_with_engine(workers=idist.get_world_size()) def test_frequency_with_engine_with_every(): _test_frequency_with_engine(workers=1, every=1) _test_frequency_with_engine(workers=1, every=10) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_frequency_with_engine_distributed_with_every(distributed_context_single_node_gloo): _test_frequency_with_engine(workers=idist.get_world_size(), every=1) _test_frequency_with_engine(workers=idist.get_world_size(), every=10) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_frequency_with_engine, (None, 0.8, 1), np=nproc, do_init=True) gloo_hvd_executor(_test_frequency_with_engine, (None, 0.8, 10), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): _test_frequency_with_engine(workers=idist.get_world_size(), every=10) def _test_distrib_xla_nprocs(index): _test_frequency_with_engine(workers=idist.get_world_size(), every=10) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_gpu_info.py000066400000000000000000000107751465426447700223370ustar00rootroot00000000000000from unittest.mock import Mock, patch import pytest import torch from ignite.engine import Engine, State from ignite.metrics import GpuInfo def test_no_pynvml_package(): with patch.dict("sys.modules", {"pynvml.smi": None}): with pytest.raises(ModuleNotFoundError, match="This contrib module requires pynvml to be installed."): GpuInfo() @pytest.mark.skipif(torch.cuda.is_available(), reason="Skip if GPU") def test_no_gpu(): with pytest.raises(RuntimeError, match="This contrib module requires available GPU"): GpuInfo() def _test_gpu_info(device="cpu"): gpu_info = GpuInfo() # increase code cov gpu_info.reset() gpu_info.update(None) t = torch.rand(4, 10, 100, 100).to(device) data = gpu_info.compute() assert len(data) > 0 assert "fb_memory_usage" in data[0] mem_report = data[0]["fb_memory_usage"] assert "used" in mem_report and "total" in mem_report assert mem_report["total"] > 0.0 assert mem_report["used"] > t.shape[0] * t.shape[1] * t.shape[2] * t.shape[3] / 1024.0 / 1024.0 assert "utilization" in data[0] util_report = data[0]["utilization"] assert "gpu_util" in util_report # with Engine engine = Engine(lambda engine, batch: 0.0) engine.state = State(metrics={}) gpu_info.completed(engine, name="gpu") assert "gpu:0 mem(%)" in engine.state.metrics assert isinstance(engine.state.metrics["gpu:0 mem(%)"], int) assert int(mem_report["used"] * 100.0 / mem_report["total"]) == engine.state.metrics["gpu:0 mem(%)"] if util_report["gpu_util"] != "N/A": assert "gpu:0 util(%)" in engine.state.metrics assert isinstance(engine.state.metrics["gpu:0 util(%)"], int) assert int(util_report["gpu_util"]) == engine.state.metrics["gpu:0 util(%)"] else: assert "gpu:0 util(%)" not in engine.state.metrics @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_gpu_info_on_cuda(): _test_gpu_info(device="cuda") query_resp = None @pytest.fixture def mock_pynvml_module(): with patch.dict( "sys.modules", { "pynvml": Mock(name="pynvml"), "pynvml.smi": Mock(name="pynvml.smi"), "pynvml.smi.nvidia_smi": Mock(name="pynvml.smi.nvidia_smi"), }, ): import pynvml from pynvml.smi import nvidia_smi def query(*args, **kwargs): return query_resp def getInstance(): nvsmi = Mock() nvsmi.DeviceQuery = Mock(side_effect=query) return nvsmi nvidia_smi.getInstance = Mock(side_effect=getInstance) yield pynvml @pytest.fixture def mock_gpu_is_available(): with patch("ignite.metrics.gpu_info.torch.cuda") as mock_cuda: mock_cuda.is_available.return_value = True yield mock_cuda @pytest.mark.skipif(torch.cuda.is_available(), reason="No need to mock if has GPU") def test_gpu_info_mock(mock_pynvml_module, mock_gpu_is_available): global query_resp query_resp = {"gpu": [{"fb_memory_usage": {"used": 100.0, "total": 11000.0}, "utilization": {"gpu_util": 50.0}}]} assert torch.cuda.is_available() _test_gpu_info() # Tests https://github.com/pytorch/ignite/issues/1040 query_resp = {"gpu": [{"fb_memory_usage": {"used": 100.0, "total": 11000.0}, "utilization": {"gpu_util": "N/A"}}]} _test_gpu_info() def _test_with_custom_query(resp, warn_msg, check_compute=False): from pynvml.smi import nvidia_smi def query(*args, **kwargs): return resp def getInstance(): nvsmi = Mock() nvsmi.DeviceQuery = Mock(side_effect=query) return nvsmi nvidia_smi.getInstance = Mock(side_effect=getInstance) gpu_info = GpuInfo() if check_compute: with pytest.warns(UserWarning, match=warn_msg): gpu_info.compute() # with Engine engine = Engine(lambda engine, batch: 0.0) engine.state = State(metrics={}) with pytest.warns(UserWarning, match=warn_msg): gpu_info.completed(engine, name="gpu info") # No GPU info _test_with_custom_query(resp={}, warn_msg=r"No GPU information available", check_compute=True) # No GPU memory info _test_with_custom_query(resp={"gpu": [{"utilization": {}}]}, warn_msg=r"No GPU memory usage information available") # No GPU utilization info _test_with_custom_query( resp={"gpu": [{"fb_memory_usage": {}}]}, warn_msg=r"No GPU utilization information available" ) ignite-0.5.1/tests/ignite/metrics/test_js_divergence.py000066400000000000000000000122331465426447700233270ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from scipy.spatial.distance import jensenshannon from scipy.special import softmax from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import JSDivergence def scipy_js_div(np_y_pred: np.ndarray, np_y: np.ndarray) -> float: y_pred_prob = softmax(np_y_pred, axis=1) y_prob = softmax(np_y, axis=1) # jensenshannon computes the sqrt of the JS divergence js_mean = np.mean(np.square(jensenshannon(y_pred_prob, y_prob, axis=1))) return js_mean def test_zero_sample(): js_div = JSDivergence() with pytest.raises( NotComputableError, match=r"JSDivergence must have at least one example before it can be computed" ): js_div.compute() def test_shape_mismatch(): js_div = JSDivergence() y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0]], dtype=torch.float) with pytest.raises(ValueError, match=r"y_pred and y must be in the same shape, got"): js_div.update((y_pred, y)) def test_invalid_shape(): js_div = JSDivergence() y_pred = torch.tensor([2.0, 3.0], dtype=torch.float) y = torch.tensor([4.0, 5.0], dtype=torch.float) with pytest.raises(ValueError, match=r"y_pred must be in the shape of \(B, C\) or \(B, C, ...\), got"): js_div.update((y_pred, y)) @pytest.fixture(params=list(range(4))) def test_case(request): return [ (torch.randn((100, 10)), torch.rand((100, 10)), 1), (torch.rand((100, 500)), torch.randn((100, 500)), 1), # updated batches (torch.normal(0.0, 5.0, size=(100, 10)), torch.rand((100, 10)), 16), (torch.normal(5.0, 3.0, size=(100, 200)), torch.rand((100, 200)), 16), # image segmentation (torch.randn((100, 5, 32, 32)), torch.rand((100, 5, 32, 32)), 16), (torch.rand((100, 5, 224, 224)), torch.randn((100, 5, 224, 224)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case: Tuple[Tensor, Tensor, int]): y_pred, y, batch_size = test_case js_div = JSDivergence() js_div.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size js_div.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: js_div.update((y_pred, y)) res = js_div.compute() np_y_pred = y_pred.numpy() np_y = y.numpy() np_res = scipy_js_div(np_y_pred, np_y) assert isinstance(res, float) assert pytest.approx(np_res, rel=1e-4) == res def test_accumulator_detached(): js_div = JSDivergence() y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0], [2.0, 3.0]], dtype=torch.float) js_div.update((y_pred, y)) assert not js_div._sum_of_kl.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 1e-4 n_iters = 100 batch_size = 10 n_dims = 100 rank = idist.get_rank() torch.manual_seed(12 + rank) device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: y_true = torch.randn((n_iters * batch_size, n_dims)).float().to(device) y_preds = torch.normal(2.0, 3.0, size=(n_iters * batch_size, n_dims)).float().to(device) engine = Engine( lambda e, i: ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) ) m = JSDivergence(device=metric_device) m.attach(engine, "js_div") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "js_div" in engine.state.metrics res = engine.state.metrics["js_div"] y_true_np = y_true.cpu().numpy() y_preds_np = y_preds.cpu().numpy() true_res = scipy_js_div(y_preds_np, y_true_np) assert pytest.approx(true_res, rel=tol) == res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: js_div = JSDivergence(device=metric_device) for dev in (js_div._device, js_div._sum_of_kl.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]]).float() y = torch.ones(2, 2).float() js_div.update((y_pred, y)) for dev in (js_div._device, js_div._sum_of_kl.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_kl_divergence.py000066400000000000000000000120741465426447700233240ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from scipy.special import softmax from scipy.stats import entropy from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import KLDivergence def scipy_kl_div(np_y_pred: np.ndarray, np_y: np.ndarray) -> float: y_pred_prob = softmax(np_y_pred, axis=1) y_prob = softmax(np_y, axis=1) kl_mean = entropy(y_prob, y_pred_prob, axis=1).mean() return kl_mean def test_zero_sample(): kl_div = KLDivergence() with pytest.raises( NotComputableError, match=r"KLDivergence must have at least one example before it can be computed" ): kl_div.compute() def test_shape_mismatch(): kl_div = KLDivergence() y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0]], dtype=torch.float) with pytest.raises(ValueError, match=r"y_pred and y must be in the same shape, got"): kl_div.update((y_pred, y)) def test_invalid_shape(): kl_div = KLDivergence() y_pred = torch.tensor([2.0, 3.0], dtype=torch.float) y = torch.tensor([4.0, 5.0], dtype=torch.float) with pytest.raises(ValueError, match=r"y_pred must be in the shape of \(B, C\) or \(B, C, ...\), got"): kl_div.update((y_pred, y)) @pytest.fixture(params=list(range(4))) def test_case(request): return [ (torch.randn((100, 10)), torch.rand((100, 10)), 1), (torch.rand((100, 500)), torch.randn((100, 500)), 1), # updated batches (torch.normal(0.0, 5.0, size=(100, 10)), torch.rand((100, 10)), 16), (torch.normal(5.0, 3.0, size=(100, 200)), torch.rand((100, 200)), 16), # image segmentation (torch.randn((100, 5, 32, 32)), torch.rand((100, 5, 32, 32)), 16), (torch.rand((100, 5, 224, 224)), torch.randn((100, 5, 224, 224)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case: Tuple[Tensor, Tensor, int]): y_pred, y, batch_size = test_case kl_div = KLDivergence() kl_div.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size kl_div.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: kl_div.update((y_pred, y)) res = kl_div.compute() np_y_pred = y_pred.numpy() np_y = y.numpy() np_res = scipy_kl_div(np_y_pred, np_y) assert isinstance(res, float) assert pytest.approx(np_res, rel=1e-4) == res def test_accumulator_detached(): kl_div = KLDivergence() y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0], [2.0, 3.0]], dtype=torch.float) kl_div.update((y_pred, y)) assert not kl_div._sum_of_kl.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 1e-4 n_iters = 100 batch_size = 10 n_dims = 100 rank = idist.get_rank() torch.manual_seed(12 + rank) device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: y_true = torch.randn((n_iters * batch_size, n_dims)).float().to(device) y_preds = torch.normal(2.0, 3.0, size=(n_iters * batch_size, n_dims)).float().to(device) engine = Engine( lambda e, i: ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) ) m = KLDivergence(device=metric_device) m.attach(engine, "kl_div") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "kl_div" in engine.state.metrics res = engine.state.metrics["kl_div"] y_true_np = y_true.cpu().numpy() y_preds_np = y_preds.cpu().numpy() true_res = scipy_kl_div(y_preds_np, y_true_np) assert pytest.approx(true_res, rel=tol) == res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: kl_div = KLDivergence(device=metric_device) for dev in (kl_div._device, kl_div._sum_of_kl.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]]).float() y = torch.ones(2, 2).float() kl_div.update((y_pred, y)) for dev in (kl_div._device, kl_div._sum_of_kl.device): assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_loss.py000066400000000000000000000274651465426447700215150ustar00rootroot00000000000000import os from typing import Tuple from unittest.mock import MagicMock import pytest import torch from numpy.testing import assert_almost_equal from torch import nn from torch.nn.functional import mse_loss, nll_loss import ignite.distributed as idist from ignite.engine import State from ignite.exceptions import NotComputableError from ignite.metrics import Loss, Precision class DummyLoss1(Loss): def __init__(self, loss_fn, true_output, output_transform=lambda x: x): super(DummyLoss1, self).__init__(loss_fn, output_transform=output_transform) print(true_output) self.true_output = true_output def reset(self): pass def compute(self): pass def update(self, output): assert output == self.true_output def test_output_as_mapping_without_criterion_kwargs(): y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) criterion_kwargs = {} loss_metric = DummyLoss1(nll_loss, true_output=(y_pred, y, criterion_kwargs)) state = State(output=({"y_pred": y_pred, "y": y, "criterion_kwargs": {}})) engine = MagicMock(state=state) loss_metric.iteration_completed(engine) def test_output_as_mapping_with_criterion_kwargs(): y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) criterion_kwargs = {"reduction": "sum"} loss_metric = DummyLoss1(nll_loss, true_output=(y_pred, y, criterion_kwargs)) state = State(output=({"y_pred": y_pred, "y": y, "criterion_kwargs": {"reduction": "sum"}})) engine = MagicMock(state=state) loss_metric.iteration_completed(engine) def y_test_1(requires_grad=False, device=None): return ( torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]], device=device, requires_grad=requires_grad).log(), torch.tensor([2, 2], device=device).long(), 1.1512925625, ) def y_test_2(): return ( torch.tensor([[0.1, 0.3, 0.6], [0.6, 0.2, 0.2], [0.2, 0.7, 0.1]]).log(), torch.tensor([2, 0, 2]).long(), 1.1253643036, ) def y_test_3(): return torch.tensor([[0.1, 0.3, 0.6], [0.6, 0.2, 0.2]]).log(), torch.tensor([2, 0]).long() def test_zero_div(): loss = Loss(nll_loss) with pytest.raises(NotComputableError, match=r"Loss must have at least one example before it can be computed"): loss.compute() @pytest.mark.parametrize("criterion", [nll_loss, nn.NLLLoss()]) def test_compute(criterion): loss = Loss(criterion) y_pred, y, expected_loss = y_test_1() loss.update((y_pred, y)) assert_almost_equal(loss.compute(), expected_loss) y_pred, y, expected_loss = y_test_2() loss.update((y_pred, y)) assert_almost_equal(loss.compute(), expected_loss) # average def test_non_averaging_loss(): loss = Loss(nn.NLLLoss(reduction="none")) y_pred, y, _ = y_test_1() with pytest.raises(ValueError): loss.update((y_pred, y)) def test_gradient_based_loss(): # Tests https://github.com/pytorch/ignite/issues/1674 x = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]], requires_grad=True) y_pred = x.mm(torch.randn(size=(3, 1))) def loss_fn(y_pred, x): gradients = torch.autograd.grad( outputs=y_pred, inputs=x, grad_outputs=torch.ones_like(y_pred), create_graph=True )[0] gradients = gradients.flatten(start_dim=1) return gradients.norm(2, dim=1).mean() loss = Loss(loss_fn) loss.update((y_pred, x)) def test_kwargs_loss(): loss = Loss(nll_loss) y_pred, y, _ = y_test_1() kwargs = {"weight": torch.tensor([0.1, 0.1, 0.1])} loss.update((y_pred, y, kwargs)) expected_value = nll_loss(y_pred, y, **kwargs) assert_almost_equal(loss.compute(), expected_value) def test_reset(): loss = Loss(nll_loss) y_pred, y = y_test_3() loss.update((y_pred, y)) loss.compute() loss.reset() with pytest.raises(NotComputableError): loss.compute() def _test_distrib_compute_on_criterion(device, y_test_1, y_test_2, tol=None): def _test(metric_device, y_test_1, y_test_2): criterion = nn.NLLLoss().to(device) loss = Loss(criterion, device=metric_device) y_pred, y, _ = y_test_1 loss.update((y_pred, y)) n = loss._num_examples assert n == len(y) res = loss.compute() assert n == loss._num_examples y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) true_loss_value = criterion(y_pred, y) assert_almost_equal(res, true_loss_value.item()) loss.reset() y_pred, y, _ = y_test_2 loss.update((y_pred, y)) n = loss._num_examples res = loss.compute() assert n == loss._num_examples y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) true_loss_value = criterion(y_pred, y) if tol is None: assert_almost_equal(res, true_loss_value.item()) else: assert pytest.approx(res, rel=tol) == true_loss_value.item() _test("cpu", y_test_1, y_test_2) if device.type != "xla": _test(idist.device(), y_test_1, y_test_2) def _test_distrib_accumulator_device(device, y_test_1): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: loss = Loss(nll_loss, device=metric_device) assert loss._device == metric_device assert ( loss._sum.device == metric_device ), f"{type(loss._sum.device)}:{loss._sum.device} vs {type(metric_device)}:{metric_device}" y_pred, y, _ = y_test_1 loss.update((y_pred, y)) assert ( loss._sum.device == metric_device ), f"{type(loss._sum.device)}:{loss._sum.device} vs {type(metric_device)}:{metric_device}" def test_sum_detached(): loss = Loss(nll_loss) y_pred, y, _ = y_test_1(requires_grad=True) loss.update((y_pred, y)) assert not loss._sum.requires_grad @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2()) _test_distrib_accumulator_device(device, y_test_1()) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2()) _test_distrib_accumulator_device(device, y_test_1()) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute_on_criterion, (device, y_test_1(), y_test_2()), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device, y_test_1()), np=nproc, do_init=True) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2()) _test_distrib_accumulator_device(device, y_test_1()) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2()) _test_distrib_accumulator_device(device, y_test_1()) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2(), tol=1e-6) _test_distrib_accumulator_device(device, y_test_1()) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute_on_criterion(device, y_test_1(), y_test_2()) _test_distrib_accumulator_device(device, y_test_1()) def test_override_required_output_keys(): # https://github.com/pytorch/ignite/issues/1415 from ignite.engine import create_supervised_evaluator counter = [0] class DummyLoss2(Loss): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def update(self, output): y_pred, y, criterion_kwargs = output assert y_pred.shape == (4, 3) assert y.shape == (4,) assert criterion_kwargs == c_kwargs assert y.equal(data[counter[0]][1]) counter[0] += 1 def reset(self): pass def compute(self): pass model = nn.Linear(10, 3) metrics = {"Precision": Precision(), "DummyLoss2": DummyLoss2(nll_loss)} # global criterion kwargs c_kwargs = {"reduction": "sum"} evaluator = create_supervised_evaluator( model, metrics=metrics, output_transform=lambda x, y, y_pred: {"x": x, "y": y, "y_pred": y_pred, "criterion_kwargs": c_kwargs}, ) data = [ (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), ] evaluator.run(data) class CustomMultiMSELoss(nn.Module): def __init__(self) -> None: super().__init__() def forward( self, y_pred: Tuple[torch.Tensor, torch.Tensor], y_true: Tuple[torch.Tensor, torch.Tensor] ) -> torch.Tensor: a_true, b_true = y_true a_pred, b_pred = y_pred return mse_loss(a_pred, a_true) + mse_loss(b_pred, b_true) class DummyLoss3(Loss): def __init__(self, loss_fn, expected_loss, output_transform=lambda x: x, skip_unrolling=False): super(DummyLoss3, self).__init__(loss_fn, output_transform=output_transform, skip_unrolling=skip_unrolling) self._expected_loss = expected_loss self._loss_fn = loss_fn def reset(self): pass def compute(self): pass def update(self, output): y_pred, y_true = output calculated_loss = self._loss_fn(y_pred=y_pred, y_true=y_true) assert calculated_loss == self._expected_loss def test_skip_unrolling_loss(): a_pred = torch.rand(8, 1) b_pred = torch.rand(8, 1) y_pred = [a_pred, b_pred] a_true = torch.rand(8, 1) b_true = torch.rand(8, 1) y_true = [a_true, b_true] multi_output_mse_loss = CustomMultiMSELoss() expected_loss = multi_output_mse_loss(y_pred=y_pred, y_true=y_true) loss_metric = DummyLoss3(loss_fn=multi_output_mse_loss, expected_loss=expected_loss, skip_unrolling=True) state = State(output=(y_pred, y_true)) engine = MagicMock(state=state) loss_metric.iteration_completed(engine) ignite-0.5.1/tests/ignite/metrics/test_maximum_mean_discrepancy.py000066400000000000000000000137571465426447700255750ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import MaximumMeanDiscrepancy def np_mmd2(x: np.ndarray, y: np.ndarray, var: float = 1.0): n = x.shape[0] x = x.reshape(n, -1) y = y.reshape(n, -1) a = np.arange(n) ii, jj = np.meshgrid(a, a, indexing="ij") XX = np.exp(-np.square(x[ii] - x[jj]).sum(axis=2) / (var * 2)) XX = (np.sum(XX) - n) / (n * (n - 1)) XY = np.exp(-np.square(x[ii] - y[jj]).sum(axis=2) / (var * 2)) XY = np.sum(XY) / (n * n) YY = np.exp(-np.square(y[ii] - y[jj]).sum(axis=2) / (var * 2)) YY = (np.sum(YY) - n) / (n * (n - 1)) mmd2 = np.clip(XX + YY - XY * 2, 0.0, None) return mmd2 def test_zero_sample(): mmd = MaximumMeanDiscrepancy() with pytest.raises( NotComputableError, match=r"MaximumMeanDiscrepacy must have at least one batch before it can be computed" ): mmd.compute() def test_shape_mismatch(): mmd = MaximumMeanDiscrepancy() x = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0]], dtype=torch.float) with pytest.raises(ValueError, match=r"x and y must be in the same shape, got"): mmd.update((x, y)) def test_invalid_shape(): mmd = MaximumMeanDiscrepancy() x = torch.tensor([2.0, 3.0], dtype=torch.float) y = torch.tensor([4.0, 5.0], dtype=torch.float) with pytest.raises(ValueError, match=r"x must be in the shape of \(B, ...\), got"): mmd.update((x, y)) @pytest.fixture(params=list(range(4))) def test_case(request): return [ (torch.randn((100, 10)), torch.rand((100, 10)), 10 ** np.random.uniform(-1.0, 0.0), 1), (torch.rand((100, 500)), torch.randn((100, 500)), 10 ** np.random.uniform(-1.0, 0.0), 1), # updated batches (torch.normal(0.0, 5.0, size=(100, 10)), torch.rand((100, 10)), 10 ** np.random.uniform(-1.0, 0.0), 16), (torch.normal(5.0, 3.0, size=(100, 200)), torch.rand((100, 200)), 10 ** np.random.uniform(-1.0, 0.0), 16), # image segmentation (torch.randn((100, 5, 32, 32)), torch.rand((100, 5, 32, 32)), 10 ** np.random.uniform(-1.0, 0.0), 32), (torch.rand((100, 5, 224, 224)), torch.randn((100, 5, 224, 224)), 10 ** np.random.uniform(-1.0, 0.0), 32), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case: Tuple[Tensor, Tensor, float, int]): x, y, var, batch_size = test_case mmd = MaximumMeanDiscrepancy(var=var) mmd.reset() if batch_size > 1: np_mmd2_sum = 0.0 n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size x_batch, y_batch = x[idx : idx + batch_size], y[idx : idx + batch_size] mmd.update((x_batch, y_batch)) np_mmd2_sum += np_mmd2(x_batch.cpu().numpy(), y_batch.cpu().numpy(), var) np_res = np.sqrt(np_mmd2_sum / n_iters) else: mmd.update((x, y)) np_res = np.sqrt(np_mmd2(x.cpu().numpy(), y.cpu().numpy(), var)) res = mmd.compute() assert isinstance(res, float) assert pytest.approx(np_res, abs=1e-4) == res def test_accumulator_detached(): mmd = MaximumMeanDiscrepancy() x = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float) y = torch.tensor([[-2.0, 1.0], [2.0, 3.0]], dtype=torch.float) mmd.update((x, y)) assert not any(acc.requires_grad for acc in (mmd._xx_sum, mmd._yy_sum, mmd._xy_sum)) @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 1e-4 n_iters = 100 batch_size = 10 n_dims = 100 rank = idist.get_rank() torch.manual_seed(12 + rank) device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: y = torch.randn((n_iters * batch_size, n_dims)).float().to(device) x = torch.normal(2.0, 3.0, size=(n_iters * batch_size, n_dims)).float().to(device) def data_loader(i): return x[i * batch_size : (i + 1) * batch_size], y[i * batch_size : (i + 1) * batch_size] engine = Engine(lambda e, i: data_loader(i)) m = MaximumMeanDiscrepancy(device=metric_device) m.attach(engine, "mmd") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) x = idist.all_gather(x) y = idist.all_gather(y) assert "mmd" in engine.state.metrics res = engine.state.metrics["mmd"] # compute numpy mmd true_res = 0.0 for i in range(n_iters): x_batch, y_batch = data_loader(i) x_np = x_batch.cpu().numpy() y_np = y_batch.cpu().numpy() true_res += np_mmd2(x_np, y_np) true_res = np.sqrt(true_res / n_iters) assert pytest.approx(true_res, abs=tol) == res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: mmd = MaximumMeanDiscrepancy(device=metric_device) devices = (mmd._device, mmd._xx_sum.device, mmd._yy_sum.device, mmd._xy_sum.device) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" x = torch.tensor([[2.0, 3.0], [-2.0, 1.0]]).float() y = torch.ones(2, 2).float() mmd.update((x, y)) devices = (mmd._device, mmd._xx_sum.device, mmd._yy_sum.device, mmd._xy_sum.device) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_mean_absolute_error.py000066400000000000000000000147741465426447700245630ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import MeanAbsoluteError def test_no_update(): mae = MeanAbsoluteError() with pytest.raises( NotComputableError, match=r"MeanAbsoluteError must have at least one example before it can be computed" ): mae.compute() @pytest.fixture(params=[item for item in range(4)]) def test_case(request): return [ (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 1), (torch.randint(-10, 10, size=(100, 5)), torch.randint(-10, 10, size=(100, 5)), 1), # updated batches (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 16), (torch.randint(-20, 20, size=(100, 5)), torch.randint(-20, 20, size=(100, 5)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case): mae = MeanAbsoluteError() y_pred, y, batch_size = test_case mae.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size mae.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: mae.update((y_pred, y, batch_size)) np_y = y.numpy() np_y_pred = y_pred.numpy() np_res = (np.abs(np_y_pred - np_y)).sum() / np_y.shape[0] assert isinstance(mae.compute(), float) assert mae.compute() == np_res def _test_distrib_integration(device): import numpy as np from ignite.engine import Engine rank = idist.get_rank() def _test(metric_device): n_iters = 80 batch_size = 50 torch.manual_seed(12 + rank) y_true = torch.arange(0, n_iters * batch_size, dtype=torch.float).to(device) y_preds = torch.ones(n_iters * batch_size, dtype=torch.float).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MeanAbsoluteError(device=metric_device) m.attach(engine, "mae") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mae" in engine.state.metrics res = engine.state.metrics["mae"] true_res = np.mean(np.abs((y_true - y_preds).cpu().numpy())) assert pytest.approx(res) == true_res _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: mae = MeanAbsoluteError(device=metric_device) for dev in [mae._device, mae._sum_of_absolute_errors.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) mae.update((y_pred, y)) for dev in [mae._device, mae._sum_of_absolute_errors.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" def test_accumulator_detached(): mae = MeanAbsoluteError() y_pred = torch.tensor([[2.0], [-2.0]], requires_grad=True) y = torch.zeros(2) mae.update((y_pred, y)) assert not mae._sum_of_absolute_errors.requires_grad @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_mean_pairwise_distance.py000066400000000000000000000156211465426447700252210ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import MeanPairwiseDistance def test_zero_sample(): mpd = MeanPairwiseDistance() with pytest.raises( NotComputableError, match=r"MeanAbsoluteError must have at least one example before it can be computed" ): mpd.compute() @pytest.fixture(params=[item for item in range(4)]) def test_case(request): return [ (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 1), (torch.randint(-20, 20, size=(100, 5)), torch.randint(-20, 20, size=(100, 5)), 1), # updated batches (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 16), (torch.randint(-20, 20, size=(100, 5)), torch.randint(-20, 20, size=(100, 5)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case): mpd = MeanPairwiseDistance() y_pred, y, batch_size = test_case mpd.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size mpd.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: mpd.update((y_pred, y)) np_res = np.mean(torch.pairwise_distance(y_pred, y, p=mpd._p, eps=mpd._eps).numpy()) assert isinstance(mpd.compute(), float) assert pytest.approx(mpd.compute()) == np_res def _test_distrib_integration(device): from ignite.engine import Engine rank = idist.get_rank() torch.manual_seed(12 + rank) def _test(metric_device): n_iters = 100 batch_size = 50 y_true = torch.rand(n_iters * batch_size, 10).to(device) y_preds = torch.rand(n_iters * batch_size, 10).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, ...], y_true[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) m = MeanPairwiseDistance(device=metric_device) m.attach(engine, "mpwd") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mpwd" in engine.state.metrics res = engine.state.metrics["mpwd"] true_res = [] for i in range(n_iters * idist.get_world_size()): true_res.append( torch.pairwise_distance( y_true[i * batch_size : (i + 1) * batch_size, ...], y_preds[i * batch_size : (i + 1) * batch_size, ...], p=m._p, eps=m._eps, ) .cpu() .numpy() ) true_res = np.array(true_res).ravel() true_res = true_res.mean() assert pytest.approx(res) == true_res _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: mpd = MeanPairwiseDistance(device=metric_device) for dev in [mpd._device, mpd._sum_of_distances.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[3.0, 4.0], [-3.0, -4.0]]) y = torch.zeros(2, 2) mpd.update((y_pred, y)) for dev in [mpd._device, mpd._sum_of_distances.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" def test_accumulator_detached(): mpd = MeanPairwiseDistance() y_pred = torch.tensor([[3.0, 4.0], [-3.0, -4.0]], requires_grad=True) y = torch.zeros(2, 2) mpd.update((y_pred, y)) assert not mpd._sum_of_distances.requires_grad @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_mean_squared_error.py000066400000000000000000000150511465426447700243760ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import MeanSquaredError def test_zero_sample(): mse = MeanSquaredError() with pytest.raises( NotComputableError, match=r"MeanSquaredError must have at least one example before it can be computed" ): mse.compute() @pytest.fixture(params=[item for item in range(4)]) def test_case(request): return [ (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 1), (torch.randint(-20, 20, size=(100, 5)), torch.randint(-20, 20, size=(100, 5)), 1), # updated batches (torch.randint(0, 10, size=(100, 1)), torch.randint(0, 10, size=(100, 1)), 16), (torch.randint(-20, 20, size=(100, 5)), torch.randint(-20, 20, size=(100, 5)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case): mse = MeanSquaredError() y_pred, y, batch_size = test_case mse.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size mse.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: mse.update((y_pred, y)) np_y = y.numpy() np_y_pred = y_pred.numpy() np_res = np.power((np_y - np_y_pred), 2.0).sum() / np_y.shape[0] assert isinstance(mse.compute(), float) assert mse.compute() == np_res def _test_distrib_integration(device, tol=1e-6): from ignite.engine import Engine rank = idist.get_rank() torch.manual_seed(12 + rank) def _test(metric_device): n_iters = 100 batch_size = 10 y_true = torch.arange(0, n_iters * batch_size, dtype=torch.float).to(device) y_preds = torch.ones(n_iters * batch_size, dtype=torch.float).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) m = MeanSquaredError(device=metric_device) m.attach(engine, "mse") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mse" in engine.state.metrics res = engine.state.metrics["mse"] true_res = np.mean(np.power((y_true - y_preds).cpu().numpy(), 2.0)) assert pytest.approx(res, rel=tol) == true_res _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: device = torch.device(device) mse = MeanSquaredError(device=metric_device) for dev in [mse._device, mse._sum_of_squared_errors.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) mse.update((y_pred, y)) for dev in [mse._device, mse._sum_of_squared_errors.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" def test_accumulator_detached(): mse = MeanSquaredError() y_pred = torch.tensor([[2.0], [-2.0]], requires_grad=True) y = torch.zeros(2) mse.update((y_pred, y)) assert not mse._sum_of_squared_errors.requires_grad @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device, tol=1e-4) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device, tol=1e-4) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_metric.py000066400000000000000000001307051465426447700220100ustar00rootroot00000000000000import numbers import os from typing import Dict, List from unittest.mock import MagicMock import numpy as np import pytest import torch from packaging.version import Version from pytest import approx, raises from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score import ignite.distributed as idist from ignite.engine import Engine, Events, State from ignite.metrics import Accuracy, ConfusionMatrix, Precision, Recall from ignite.metrics.metric import ( BatchFiltered, BatchWise, EpochWise, Metric, reinit__is_reduced, RunningBatchWise, RunningEpochWise, SingleEpochRunningBatchWise, sync_all_reduce, ) from ignite.utils import _tree_map class DummyMetric1(Metric): def __init__(self, true_output, output_transform=lambda x: x): super(DummyMetric1, self).__init__(output_transform=output_transform) self.true_output = true_output def reset(self): pass def compute(self): pass def update(self, output): assert output == self.true_output def test_no_transform(): y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) metric = DummyMetric1(true_output=(y_pred, y)) state = State(output=(y_pred, y)) engine = MagicMock(state=state) metric.iteration_completed(engine) def test_transform(): y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) def transform(output): pred_dict, target_dict = output return pred_dict["y"], target_dict["y"] metric = DummyMetric1(true_output=(y_pred, y), output_transform=transform) state = State(output=({"y": y_pred}, {"y": y})) engine = MagicMock(state=state) metric.iteration_completed(engine) def test_output_as_mapping_wrong_keys(): metric = DummyMetric1(true_output=(0, 1)) state = State(output=({"y1": 0, "y2": 1})) engine = MagicMock(state=state) with pytest.raises( ValueError, match=r"When transformed engine's output is a mapping, " r"it should contain \('y_pred', 'y'\) keys" ): metric.iteration_completed(engine) def test_output_as_mapping_keys_is_none(): class DummyMetric(Metric): required_output_keys = None def reset(self): pass def compute(self): pass def update(self, output): pass metric = DummyMetric() assert metric.required_output_keys is None state = State(output=({"y1": 0, "y2": 1})) engine = MagicMock(state=state) with pytest.raises(TypeError, match=r"Transformed engine output for DummyMetric metric should be a tuple/list"): metric.iteration_completed(engine) def test_output_as_mapping(): y_pred = torch.tensor([[2.0], [-2.0]]) y = torch.zeros(2) metric = DummyMetric1(true_output=(y_pred, y)) state = State(output=({"y_pred": y_pred, "y": y})) engine = MagicMock(state=state) metric.iteration_completed(engine) def test_no_grad(): y_pred = torch.zeros(4, requires_grad=True) y = torch.zeros(4, requires_grad=False) class DummyMetric(Metric): def reset(self): pass def compute(self): pass def update(self, output): y_pred, y = output mse = torch.pow(y_pred - y.view_as(y_pred), 2) assert y_pred.requires_grad assert not mse.requires_grad metric = DummyMetric() state = State(output=(y_pred, y)) engine = MagicMock(state=state) metric.iteration_completed(engine) def test_arithmetics(): class ListGatherMetric(Metric): def __init__(self, index): self.index = index super(ListGatherMetric, self).__init__() def reset(self): self.list_ = [] def update(self, output): self.list_ = output def compute(self): return self.list_[self.index] m0 = ListGatherMetric(0) m1 = ListGatherMetric(1) m2 = ListGatherMetric(2) # __add__ m0_plus_m1 = m0 + m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_plus_m1.compute() == 11 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_plus_m1.compute() == 22 m2_plus_2 = m2 + 2 m2.update([1, 10, 100]) assert m2_plus_2.compute() == 102 m2_plus_2 = 2 + m2 m2.update([1, 10, 100]) assert m2_plus_2.compute() == 102 # __sub__ m0_minus_m1 = m0 - m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_minus_m1.compute() == -9 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_minus_m1.compute() == -18 m2_minus_2 = m2 - 2 m2.update([1, 10, 100]) assert m2_minus_2.compute() == 98 m2_minus_2 = 2 - m2 m2.update([1, 10, 100]) assert m2_minus_2.compute() == -98 # __mul__ m0_times_m1 = m0 * m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_times_m1.compute() == 10 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_times_m1.compute() == 40 m2_times_2 = m2 * 2 m2.update([1, 10, 100]) assert m2_times_2.compute() == 200 m2_times_2 = 2 * m2 m2.update([1, 10, 100]) assert m2_times_2.compute() == 200 # __pow__ m0_pow_m1 = m0**m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_pow_m1.compute() == 1 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_pow_m1.compute() == 2**20 m2_pow_2 = m2**2 m2.update([1, 10, 100]) assert m2_pow_2.compute() == 10000 m2_pow_2 = 0.99**m2 m2.update([1, 10, 100]) assert m2_pow_2.compute() == 0.3660323412732292 # __mod__ m0_mod_m1 = m0 % m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_mod_m1.compute() == 1 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_mod_m1.compute() == 2 m2_mod_2 = m2 % 2 m2.update([1, 10, 100]) assert m2_mod_2.compute() == 0 # __truediv__ m0_truediv_m1 = m0 / m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_truediv_m1.compute() == approx(0.1) m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_truediv_m1.compute() == approx(0.1) m2_truediv_2 = m2 / 2 m2.update([1, 10, 100]) assert m2_truediv_2.compute() == approx(50.0) m2_truediv_2 = 200 / m2 m2.update([1, 10, 100]) assert m2_truediv_2.compute() == approx(2.0) m0_truediv_m1 = m0.__truediv__(m1) m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_truediv_m1.compute() == approx(0.1) m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_truediv_m1.compute() == approx(0.1) m2_truediv_2 = m2.__truediv__(2) m2.update([1, 10, 100]) assert m2_truediv_2.compute() == approx(50.0) m2_truediv_2 = m2.__rtruediv__(200) m2.update([1, 10, 100]) assert m2_truediv_2.compute() == approx(2.0) # __floordiv__ m0_floordiv_m1 = m0 // m1 m0.update([1, 10, 100]) m1.update([1, 10, 100]) assert m0_floordiv_m1.compute() == 0 m0.update([2, 20, 200]) m1.update([2, 20, 200]) assert m0_floordiv_m1.compute() == 0 m2_floordiv_2 = m2 // 2 m2.update([1, 10, 100]) assert m2_floordiv_2.compute() == 50 def test_attach(): class CountMetric(Metric): def __init__(self, value): self.reset_count = 0 super(CountMetric, self).__init__() self.reset_count = 0 self.compute_count = 0 self.update_count = 0 self.value = value def reset(self): self.reset_count += 1 def compute(self): self.compute_count += 1 return self.value def update(self, output): self.update_count += 1 def process_function(*args, **kwargs): return 1 engine = Engine(process_function) m1 = CountMetric(123) m2 = CountMetric(456) m1.attach(engine, "m1") m2.attach(engine, "m2_1") m2.attach(engine, "m2_2") engine.run(range(10), 5) assert engine.state.metrics["m1"] == 123 assert engine.state.metrics["m2_1"] == 456 assert engine.state.metrics["m2_2"] == 456 assert m1.reset_count == 5 assert m1.compute_count == 5 assert m1.update_count == 50 assert m2.reset_count == 5 assert m2.compute_count == 10 assert m2.update_count == 50 assert m1.is_attached(engine) assert m2.is_attached(engine) def test_detach(): class DummyMetric(Metric): required_output_keys = None def reset(self): pass def compute(self): pass def update(self, output): pass def process_function(*args, **kwargs): return 1 engine = Engine(process_function) m1 = DummyMetric() m2 = DummyMetric() m1.attach(engine, "m1") m2.attach(engine, "m2_1") m2.attach(engine, "m2_2") m1.detach(engine) m2.detach(engine) engine.run(range(10), 5) assert "m1" not in engine.state.metrics assert "m2_1" not in engine.state.metrics assert "m2_2" not in engine.state.metrics assert not m1.is_attached(engine) assert not m2.is_attached(engine) def test_integration(): np.random.seed(1) n_iters = 10 batch_size = 10 n_classes = 10 y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes) for i in range(n_iters * batch_size): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 y_true_batch_values = iter(y_true.reshape(n_iters, batch_size)) y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes)) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) F1 = precision * recall * 2 / (precision + recall) precision.attach(evaluator, "precision") recall.attach(evaluator, "recall") F1.attach(evaluator, "f1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) precision_true = precision_score(y_true, np.argmax(y_pred, axis=-1), average=None) recall_true = recall_score(y_true, np.argmax(y_pred, axis=-1), average=None) f1_true = f1_score(y_true, np.argmax(y_pred, axis=-1), average=None) precision = state.metrics["precision"].numpy() recall = state.metrics["recall"].numpy() f1 = state.metrics["f1"].numpy() assert precision_true == approx(precision), f"{precision_true} vs {precision}" assert recall_true == approx(recall), f"{recall_true} vs {recall}" assert f1_true == approx(f1), f"{f1_true} vs {f1}" def test_abstract_class(): with raises(TypeError): Metric() def test_pytorch_operators(): def _test(composed_metric, metric_name, compute_true_value_fn): metrics = { metric_name: composed_metric, } y_pred = torch.rand(15, 10, 5).float() y = torch.randint(0, 5, size=(15, 10)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y validator = Engine(update_fn) for name, metric in metrics.items(): metric.attach(validator, name) def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = validator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set([metric_name]) np_y_pred = np.argmax(y_pred.numpy(), axis=-1).ravel() np_y = y.numpy().ravel() assert state.metrics[metric_name] == approx(compute_true_value_fn(np_y_pred, np_y)) precision_1 = Precision(average=False) precision_2 = Precision(average=False) norm_summed_precision = (precision_1 + precision_2).norm(p=10) def compute_true_norm_summed_precision(y_pred, y): p1 = precision_score(y, y_pred, average=None) p2 = precision_score(y, y_pred, average=None) return np.linalg.norm(p1 + p2, ord=10) _test(norm_summed_precision, "mean summed precision", compute_true_value_fn=compute_true_norm_summed_precision) precision = Precision(average=False) recall = Recall(average=False) sum_precision_recall = (precision + recall).sum() def compute_sum_precision_recall(y_pred, y): p = precision_score(y, y_pred, average=None) r = recall_score(y, y_pred, average=None) return np.sum(p + r) _test(sum_precision_recall, "sum precision recall", compute_true_value_fn=compute_sum_precision_recall) precision = Precision(average=False) recall = Recall(average=False) f1 = (precision * recall * 2 / (precision + recall + 1e-20)).mean() def compute_f1(y_pred, y): f1 = f1_score(y, y_pred, average="macro") return f1 _test(f1, "f1", compute_true_value_fn=compute_f1) def test_indexing_metric(): def _test(ignite_metric, sklearn_metic, sklearn_args, index, num_classes=5): y_pred = torch.rand(15, 10, num_classes).float() y = torch.randint(0, num_classes, size=(15, 10)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y metrics = {"metric": ignite_metric[index], "metric_wo_index": ignite_metric} validator = Engine(update_fn) for name, metric in metrics.items(): metric.attach(validator, name) def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = validator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) sklearn_output = sklearn_metic( y.view(-1).numpy(), y_pred.view(-1, num_classes).argmax(dim=1).numpy(), **sklearn_args ) assert (state.metrics["metric_wo_index"][index] == state.metrics["metric"]).all() assert np.allclose(state.metrics["metric"].numpy(), sklearn_output) num_classes = 5 labels = list(range(0, num_classes, 2)) _test(Precision(), precision_score, {"labels": labels, "average": None}, index=labels) labels = list(range(num_classes - 1, 0, -2)) _test(Precision(), precision_score, {"labels": labels, "average": None}, index=labels) labels = [1] _test(Precision(), precision_score, {"labels": labels, "average": None}, index=labels) labels = list(range(0, num_classes, 2)) _test(Recall(), recall_score, {"labels": labels, "average": None}, index=labels) labels = list(range(num_classes - 1, 0, -2)) _test(Recall(), recall_score, {"labels": labels, "average": None}, index=labels) labels = [1] _test(Recall(), recall_score, {"labels": labels, "average": None}, index=labels) # np.ix_ is used to allow for a 2D slice of a matrix. This is required to get accurate result from # ConfusionMatrix. ConfusionMatrix must be sliced the same row-wise and column-wise. labels = list(range(0, num_classes, 2)) _test(ConfusionMatrix(num_classes), confusion_matrix, {"labels": labels}, index=np.ix_(labels, labels)) labels = list(range(num_classes - 1, 0, -2)) _test(ConfusionMatrix(num_classes), confusion_matrix, {"labels": labels}, index=np.ix_(labels, labels)) labels = [1] _test(ConfusionMatrix(num_classes), confusion_matrix, {"labels": labels}, index=np.ix_(labels, labels)) class DummyMetric2(Metric): @reinit__is_reduced def reset(self): pass def compute(self): pass @reinit__is_reduced def update(self, output): pass def _test_compute_with_sync_all_reduce_doesnt_change_attributes(device): class DummyMetric3(Metric): @reinit__is_reduced def reset(self): self.a = torch.tensor(0.0, device=self._device) self.b = 0.0 def update(self, output): self.a += torch.tensor(1.0) self.b += 1.0 @sync_all_reduce("a", "b") def compute(self): return self.a.item(), self.b metric_device = device if torch.device(device).type != "xla" else "cpu" metric = DummyMetric3(device=metric_device) metric.update(None) assert metric.a.item() == metric.b == 1.0 metric.compute() assert metric.a.item() == metric.b == 1.0 def _test_invalid_sync_all_reduce(device): class InvalidMetric(Metric): @reinit__is_reduced def reset(self): self.a = torch.tensor([0.0, 1.0, 2.0, 3.0], requires_grad=False) self.c = 0.0 self.n = 0 self.m = -1 self.d = "a string" def compute(self): pass def update(self): pass @sync_all_reduce("a:sum") def invalid_reduction_op_1(self): pass @sync_all_reduce("c:MaX") def invalid_reduction_op_2(self): pass @sync_all_reduce("n:MINN") def invalid_reduction_op_3(self): pass @sync_all_reduce("m:PROduCT") def invalid_reduction_op_4(self): pass @sync_all_reduce("missingattr") def invalid_reduction_op_5(self): pass @sync_all_reduce("d") def invalid_reduction_op_6(self): pass metric_device = device if torch.device(device).type != "xla" else "cpu" m = InvalidMetric(device=metric_device) m.reset() if idist.get_world_size() > 1: with pytest.raises(ValueError, match=r"Reduction operation is not valid"): m.invalid_reduction_op_1() with pytest.raises(ValueError, match=r"Reduction operation is not valid"): m.invalid_reduction_op_2() with pytest.raises(ValueError, match=r"Reduction operation is not valid"): m.invalid_reduction_op_3() with pytest.raises(ValueError, match=r"Reduction operation is not valid"): m.invalid_reduction_op_4() with pytest.raises(ValueError, match=r"has no attribute named `missingattr`."): m.invalid_reduction_op_5() with pytest.raises( TypeError, match=r"Attribute provided to sync_all_reduce should be a number or tensor but `d`" ): m.invalid_reduction_op_6() def _test_distrib_sync_all_reduce_decorator(device): class DummyMetric(Metric): @reinit__is_reduced def reset(self): # SUM op self.a = torch.tensor([0.0, 1.0, 2.0, 3.0], device=self._device, requires_grad=False) self.a_nocomp = self.a.clone().to("cpu") self.b = torch.tensor(1.0, dtype=torch.float64, device=self._device, requires_grad=False) self.b_nocomp = self.b.clone().to("cpu") self.c = 0.0 self.c_nocomp = self.c self.n = 0 self.n_nocomp = self.n # MAX op self.m = -1 # MIN op self.k = 10000 # initialize number of updates to test (MAX, MIN) ops self.num_updates = 0 # PRODUCT op self.prod = torch.tensor([2.0, 3.0], device=self._device, requires_grad=False) self.prod_nocomp = self.prod.clone().to("cpu") @sync_all_reduce("a", "b", "c", "n:SUM", "m:MAX", "k:MIN", "prod:PRODUCT") def compute(self): assert (self.a.cpu() == (self.a_nocomp + 10) * idist.get_world_size()).all() assert (self.b.cpu() == (self.b_nocomp - 5) * idist.get_world_size()).all() assert self.c == pytest.approx((self.c_nocomp + 1.23456) * idist.get_world_size()) assert self.n == (self.n_nocomp + 1) * idist.get_world_size() assert self.m == self.num_updates * (idist.get_world_size() - 1) - 1 assert self.k == 10000 - self.num_updates * (idist.get_world_size() - 1) temp_prod_nocomp = 5 * self.prod_nocomp # new variable for the recomputing temp_prod_nocomp = temp_prod_nocomp.pow(idist.get_world_size()) assert (self.prod.cpu() == temp_prod_nocomp).all() @reinit__is_reduced def update(self, output): # SUM op self.n += 1 self.c += 1.23456 self.a += 10.0 self.b -= 5.0 # MAX op self.m += idist.get_rank() # MIN op self.k -= idist.get_rank() # numper of updates for (MAX, MIN) ops self.num_updates += 1 # PRODUCT op self.prod *= 5 metric_device = device if torch.device(device).type != "xla" else "cpu" m = DummyMetric(device=metric_device) m.update(None) m.compute() # check if attributes are restored to their original values after previous `compute` m.compute() def _test_creating_on_xla_fails(device): with pytest.raises(ValueError, match=r"Cannot create metric on an XLA device. Use device='cpu' instead."): DummyMetric2(device=device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) test_state_dict() test_load_state_dict() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(Version(torch.__version__) < Version("1.7.0"), reason="Skip if < 1.7.0") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) test_state_dict() test_load_state_dict() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = "cpu" if not torch.cuda.is_available() else "cuda" nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_sync_all_reduce_decorator, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_invalid_sync_all_reduce, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_compute_with_sync_all_reduce_doesnt_change_attributes, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_creating_on_xla_fails(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_sync_all_reduce_decorator(device) _test_creating_on_xla_fails(device) _test_invalid_sync_all_reduce(device) _test_compute_with_sync_all_reduce_doesnt_change_attributes(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) def test_completed(): class DummyMetric(Metric): def reset(self): pass def compute(self): pass def update(self, output): pass m = DummyMetric() # tensor engine = MagicMock(state=State(metrics={})) m.compute = MagicMock(return_value=torch.tensor(1.0)) m.completed(engine, "metric") assert engine.state.metrics == {"metric": 1.0} assert isinstance(engine.state.metrics["metric"], numbers.Number) # mapping engine = MagicMock(state=State(metrics={})) metrics = {"foo": 1, "bar": torch.tensor(2.0), "baz": {"qux": "quux"}} m.compute = MagicMock(return_value=metrics) with pytest.raises(ValueError, match=r"Argument name 'foo' is conflicting with mapping keys"): m.completed(engine, "foo") m.completed(engine, "metric") metrics["metric"] = metrics assert engine.state.metrics == metrics # other engine = MagicMock(state=State(metrics={})) m.compute = MagicMock(return_value="foo") m.completed(engine, "metric") assert engine.state.metrics == {"metric": "foo"} @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_completed_on_cuda(): # Checks https://github.com/pytorch/ignite/issues/1635#issuecomment-863026919 class DummyMetric(Metric): def reset(self): pass def compute(self): return torch.tensor([1.0, 2.0, 3.0], device="cuda") def update(self, output): pass m = DummyMetric() # tensor engine = MagicMock(state=State(metrics={})) m.completed(engine, "metric") assert "metric" in engine.state.metrics assert isinstance(engine.state.metrics["metric"], torch.Tensor) assert engine.state.metrics["metric"].device.type == "cpu" def test_usage_exception(): engine = Engine(lambda e, b: b) m = DummyMetric2() with pytest.raises(TypeError, match=r"Unhandled usage type"): m.attach(engine, "dummy", usage=1) with pytest.raises( ValueError, match=r"usage should be '\(Running\)EpochWise.usage_name' or '\(\(SingleEpoch\)Running\)BatchWise.usage_name'", ): m.attach(engine, "dummy", usage="fake") class DummyAccumulateInListMetric(Metric): def __init__(self): super(DummyAccumulateInListMetric, self).__init__() self.value = [] def reset(self): self.value = [] def compute(self): return self.value def update(self, output): self.value.append(output) @pytest.mark.parametrize("usage", ["epoch_wise", EpochWise.usage_name, EpochWise()]) def test_epochwise_usage(usage): engine = Engine(lambda e, b: b) m = DummyAccumulateInListMetric() m.attach(engine, "ewm", usage=usage) @engine.on(Events.EPOCH_COMPLETED) def _(): ewm = engine.state.metrics["ewm"] assert len(ewm) == 3 assert ewm == [0, 1, 2] engine.run([0, 1, 2], max_epochs=10) m.detach(engine, usage=usage) class DummyAccumulateMetric(Metric): def __init__(self): super(DummyAccumulateMetric, self).__init__() self.value = 0 def reset(self): self.value = 0 def compute(self): return self.value def update(self, output): self.value += output @pytest.mark.parametrize("usage", ["running_epoch_wise", RunningEpochWise.usage_name, RunningEpochWise()]) def test_running_epochwise_usage(usage): engine = Engine(lambda e, b: e.state.metrics["ewm"]) engine.state.metrics["ewm"] = 0 @engine.on(Events.EPOCH_STARTED) def _(): engine.state.metrics["ewm"] += 1 m = DummyAccumulateMetric() m.attach(engine, "rewm", usage=usage) @engine.on(Events.EPOCH_COMPLETED) def _(): assert engine.state.metrics["rewm"] == sum(range(engine.state.epoch + 1)) engine.run([0, 1, 2], max_epochs=10) m.detach(engine, usage=usage) @pytest.mark.parametrize("usage", ["batch_wise", BatchWise.usage_name, BatchWise()]) def test_batchwise_usage(usage): engine = Engine(lambda e, b: b) m = DummyAccumulateInListMetric() m.attach(engine, "bwm", usage=usage) @engine.on(Events.ITERATION_COMPLETED) def _(): bwm = engine.state.metrics["bwm"] assert len(bwm) == 1 assert bwm[0] == (engine.state.iteration - 1) % 3 engine.run([0, 1, 2], max_epochs=10) m.detach(engine, usage=usage) @pytest.mark.parametrize("usage", ["running_batch_wise", RunningBatchWise.usage_name, RunningBatchWise()]) def test_running_batchwise_usage(usage): engine = Engine(lambda e, b: b) m = DummyAccumulateMetric() m.attach(engine, "rbwm", usage=usage) @engine.on(Events.EPOCH_COMPLETED) def _(): assert engine.state.metrics["rbwm"] == 6 * engine.state.epoch engine.run([0, 1, 2, 3], max_epochs=10) m.detach(engine, usage=usage) @pytest.mark.parametrize( "usage", ["single_epoch_running_batch_wise", SingleEpochRunningBatchWise.usage_name, SingleEpochRunningBatchWise()] ) def test_single_epoch_running_batchwise_usage(usage): engine = Engine(lambda e, b: b) m = DummyAccumulateMetric() m.attach(engine, "rbwm", usage=usage) @engine.on(Events.EPOCH_COMPLETED) def _(): assert engine.state.metrics["rbwm"] == 6 engine.run([0, 1, 2, 3], max_epochs=10) m.detach(engine, usage=usage) def test_batchfiltered_usage(): class MyMetric(Metric): def __init__(self): super(MyMetric, self).__init__() self.value = [] def reset(self): self.value = [] def compute(self): return self.value def update(self, output): self.value.append(output) engine = Engine(lambda e, b: b) m = MyMetric() usage = BatchFiltered(every=2) m.attach(engine, "bfm", usage=usage) @engine.on(Events.EPOCH_COMPLETED) def _(): bfm = engine.state.metrics["bfm"] assert len(bfm) == 2 assert bfm[0] == 1 engine.run([0, 1, 2, 3], max_epochs=10) def test_override_required_output_keys(): # https://discuss.pytorch.org/t/how-access-inputs-in-custom-ignite-metric/91221/5 import torch.nn as nn from ignite.engine import create_supervised_evaluator counter = [0] class CustomMetric(Metric): required_output_keys = ("y_pred", "y", "x") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def update(self, output): y_pred, y, x = output assert y_pred.shape == (4, 3) assert y.shape == (4,) assert x.shape == (4, 10) assert x.equal(data[counter[0]][0]) assert y.equal(data[counter[0]][1]) counter[0] += 1 def reset(self): pass def compute(self): pass model = nn.Linear(10, 3) metrics = {"Precision": Precision(), "CustomMetric": CustomMetric()} evaluator = create_supervised_evaluator( model, metrics=metrics, output_transform=lambda x, y, y_pred: {"x": x, "y": y, "y_pred": y_pred} ) data = [ (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), (torch.rand(4, 10), torch.randint(0, 3, size=(4,))), ] evaluator.run(data) @pytest.mark.parametrize("shapes", [[(10,), ()], [(5, 32, 32), (5, 32, 32)]]) def test_list_of_tensors_and_numbers(shapes): def check_fn(output): assert len(output) == 2 assert isinstance(output[0], torch.Tensor) assert isinstance(output[1], torch.Tensor) assert output[0].shape == (1,) + shapes[0] assert output[1].shape == (1,) + shapes[1] def get_data(gt_as_scalar=False): return [ ( [torch.rand(shapes[0]) for _ in range(3 + i)], # predictions [ torch.rand(shapes[1]).item() if gt_as_scalar else torch.rand(shapes[1]) for _ in range(3 + i) ], # ground truth ) for i in range(5) ] class MyMetric(Metric): def __init__(self, check_fn): super(MyMetric, self).__init__() self.check_fn = check_fn def reset(self): pass def compute(self): pass def update(self, output): self.check_fn(output) engine = Engine(lambda e, b: b) m = MyMetric(check_fn) m.attach(engine, "m") data = get_data() engine.run(data) if len(shapes[1]) == 0: data = get_data(gt_as_scalar=True) engine.run(data) def test_list_of_tensors_and_numbers_unsupported_output(): class MyMetric(Metric): def reset(self): pass def compute(self): pass def update(self, output): pass engine = Engine(lambda e, b: ([0, 1, 2], [0, 1, 2], [0, 1, 2])) m = MyMetric() m.attach(engine, "m") with pytest.raises(ValueError, match=r"Output should have 2 items of the same length"): engine.run([0] * 10) engine = Engine(lambda e, b: ([0, 1, 2], [0, 1, 2, 4])) m = MyMetric() m.attach(engine, "m") with pytest.raises(ValueError, match=r"Output should have 2 items of the same length"): engine.run([0] * 10) class DummyMetric4(Metric): _state_dict_all_req_keys = ( "dnumber", "fnumber", "tensor", "tensor2", "metric", "metric_dict", "metric_list", "initially_none", ) @staticmethod def gen_expected_state(value): expected_state = { "dnumber": value + 1, "fnumber": value + 2.234, "tensor": torch.tensor(value + 2.5), "tensor2": torch.tensor(value + 3.5), "metric": { "_num_correct": torch.tensor(value + 3), "_num_examples": value + 4, }, "metric_dict": { "m1": { "_num_correct": torch.tensor(value + 5), "_num_examples": value + 6, }, "m2": { "_numerator": torch.tensor([value + 7, value + 8]), "_denominator": torch.tensor([value + 9, value + 10]), "_weight": value, "_updated": True, }, "n": value + 12, }, "metric_list": [ { "_numerator": torch.tensor([value + 11, value + 12]), "_denominator": torch.tensor([value + 13, value + 14]), "_weight": value, "_updated": True, }, { "_numerator": torch.tensor([value + 15, value + 16]), "_denominator": torch.tensor([value + 17, value + 18]), "_weight": value, "_updated": True, }, value + 234, ], "initially_none": None, } return expected_state def __init__(self, value): super().reset() self.expected_state = DummyMetric4.gen_expected_state(value) self.dnumber = self.expected_state["dnumber"] self.fnumber = self.expected_state["fnumber"] self.tensor = self.expected_state["tensor"] self.tensor2 = self.expected_state["tensor2"] self.metric = Accuracy() self.metric._num_correct = self.expected_state["metric"]["_num_correct"] self.metric._num_examples = self.expected_state["metric"]["_num_examples"] self.metric_dict: Dict[str, Metric] = { "m1": Accuracy(), "m2": Precision(), "n": self.expected_state["metric_dict"]["n"], } self.metric_dict["m1"]._num_correct = self.expected_state["metric_dict"]["m1"]["_num_correct"] self.metric_dict["m1"]._num_examples = self.expected_state["metric_dict"]["m1"]["_num_examples"] self.metric_dict["m2"]._numerator = self.expected_state["metric_dict"]["m2"]["_numerator"] self.metric_dict["m2"]._denominator = self.expected_state["metric_dict"]["m2"]["_denominator"] self.metric_dict["m2"]._weight = self.expected_state["metric_dict"]["m2"]["_weight"] self.metric_dict["m2"]._updated = self.expected_state["metric_dict"]["m2"]["_updated"] self.metric_list: List[Metric] = [ Recall(), Precision(), self.expected_state["metric_list"][2], ] self.metric_list[0]._numerator = self.expected_state["metric_list"][0]["_numerator"] self.metric_list[0]._denominator = self.expected_state["metric_list"][0]["_denominator"] self.metric_list[0]._weight = self.expected_state["metric_list"][0]["_weight"] self.metric_list[0]._updated = self.expected_state["metric_list"][0]["_updated"] self.metric_list[1]._numerator = self.expected_state["metric_list"][1]["_numerator"] self.metric_list[1]._denominator = self.expected_state["metric_list"][1]["_denominator"] self.metric_list[1]._weight = self.expected_state["metric_list"][1]["_weight"] self.metric_list[1]._updated = self.expected_state["metric_list"][1]["_updated"] self.initially_none = None def reset(self): self.dnumber = -1 self.fnumber = -2.0 self.tensor = torch.tensor([-3]) self.tensor2 = 0 self.metric.reset() for m in self.metric_dict.values(): if isinstance(m, Metric): m.reset() for m in self.metric_list: if isinstance(m, Metric): m.reset() self.initially_none = None def update(self, output): pass def compute(self): pass def test_wrong_state_dict(): class WrongMetric(Metric): _state_dict_all_req_keys = ("object",) def __init__(self, value): super().__init__() self.object = value def reset(self): pass def update(self, output): pass def compute(self): pass metric = WrongMetric(object()) with pytest.raises(TypeError, match="Found attribute of unsupported type. Currently, supported types include"): metric.state_dict() delattr(metric, "object") with pytest.raises(ValueError, match="Found a value in _state_dict_all_req_keys that is not among"): metric.state_dict() def test_wrong_load_state_dict(): metric = DummyMetric4(1) with pytest.raises(TypeError, match="Argument state_dict should be a dictionary"): metric.load_state_dict(123) with pytest.raises(ValueError, match="Incorrect state_dict object. Argument state_dict should be a dictionary"): metric.load_state_dict({"abc": 123}) with pytest.raises(ValueError, match="Expected a list of state_dicts of size equal world_size"): metric.load_state_dict({Metric._Metric__state_dict_key_per_rank: []}) # @pytest.mark.distributed # @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") # @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") # def test_distrib_state_dict_metric_in_metric(distributed_context_single_node_nccl): # class _TestMetric(Metric): # _state_dict_all_req_keys = ("metric", ) # def __init__(self): # self.metric = Accuracy() # def reset(self): # self.metric.reset() # def update(self, output): # self.metric.update(output) # def compute(self): # return self.metric.compute() # m = _TestMetric() # m.update(( # torch.rand(4, 10), # torch.randint(0, 10, size=(4, )), # )) # rank = idist.get_rank() # import time # time.sleep(rank * 0.1) # print("m: ", m.state_dict()) # assert False def test_state_dict(): metric = DummyMetric4(1) state = metric.state_dict() assert isinstance(state, dict) and len(state) == 1 and Metric._Metric__state_dict_key_per_rank in state rank = idist.get_rank() ws = idist.get_world_size() list_state_dicts = state[Metric._Metric__state_dict_key_per_rank] assert len(list_state_dicts) == ws state = list_state_dicts[rank] expected_state = metric.expected_state assert state.keys() == expected_state.keys() # Flatten expected state and output state and compare values output_flatten = [] expected_flatten = [] def get_func(flatten): def wrapper(x, key): if isinstance(x, Metric): flatten.extend([(key, getattr(x, k)) for k in x._state_dict_all_req_keys]) else: flatten.append((key, x)) return wrapper _tree_map(get_func(expected_flatten), expected_state) _tree_map(get_func(output_flatten), state) assert len(output_flatten) == len(expected_flatten) and len(expected_flatten) > 0, ( expected_flatten, output_flatten, ) for key_output, key_expected in zip(output_flatten, expected_flatten): key1, output = key_output key2, expected = key_expected assert key1 == key2, (key1, key2) if isinstance(output, torch.Tensor): assert isinstance(expected, torch.Tensor) assert (output == expected).all(), (output, expected) else: assert output == expected, (output, expected) def test_load_state_dict(): metric = DummyMetric4(1) state = metric.state_dict() metric.reset() metric.initially_none = 1 metric.load_state_dict(state) rank = idist.get_rank() world_size = idist.get_world_size() assert len(state[Metric._Metric__state_dict_key_per_rank]) == world_size expected_state = state[Metric._Metric__state_dict_key_per_rank][rank] # Flatten expected state and output state and compare values output_flatten = [] expected_flatten = [] def get_func(flatten): def wrapper(x, **kwargs): if isinstance(x, Metric): flatten.extend([getattr(x, k) for k in x._state_dict_all_req_keys]) else: flatten.append(x) return wrapper _tree_map(get_func(expected_flatten), expected_state) _tree_map(get_func(output_flatten), {key: getattr(metric, key) for key in metric._state_dict_all_req_keys}) assert len(output_flatten) == len(expected_flatten) and len(expected_flatten) > 0, ( expected_flatten, output_flatten, ) for output, expected in zip(output_flatten, expected_flatten): if isinstance(output, torch.Tensor): assert isinstance(expected, torch.Tensor) assert (output == expected).all(), (output, expected) else: assert output == expected, (output, expected) class DummyMetric5(Metric): def __init__(self, true_output, output_transform=lambda x: x, skip_unrolling=False): super(DummyMetric5, self).__init__(output_transform=output_transform, skip_unrolling=skip_unrolling) self.true_output = true_output def reset(self): pass def compute(self): pass def update(self, output): assert output == self.true_output def test_skip_unrolling(): # y_pred and y are ouputs recieved from a multi_output model a_pred = torch.rand(8, 1) b_pred = torch.rand(8, 1) y_pred = [a_pred, b_pred] a_true = torch.rand(8, 1) b_true = torch.rand(8, 1) y_true = [a_true, b_true] metric = DummyMetric5(true_output=(y_pred, y_true), skip_unrolling=True) state = State(output=(y_pred, y_true)) engine = MagicMock(state=state) metric.iteration_completed(engine) class DummyMetric6(Metric): def reset(self): pass def compute(self): pass def update(self, output): pass def __call__(self, value): pass def test_access_to_metric_dunder_attributes(): metric = DummyMetric6() import inspect # `inspect.signature` accesses `__signature__` attribute of the metric. assert "value" in inspect.signature(metric).parameters.keys() ignite-0.5.1/tests/ignite/metrics/test_metric_group.py000066400000000000000000000072271465426447700232260ustar00rootroot00000000000000import pytest import torch from ignite import distributed as idist from ignite.engine import Engine from ignite.metrics import Accuracy, MetricGroup, Precision torch.manual_seed(41) def test_update(): precision = Precision() accuracy = Accuracy() group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) y_pred = torch.randint(0, 2, (100,)) y = torch.randint(0, 2, (100,)) precision.update((y_pred, y)) accuracy.update((y_pred, y)) group.update((y_pred, y)) assert precision.state_dict() == group.metrics["precision"].state_dict() assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() def test_output_transform(): def drop_first(output): y_pred, y = output return (y_pred[1:], y[1:]) precision = Precision(output_transform=drop_first) accuracy = Accuracy(output_transform=drop_first) group = MetricGroup( {"precision": Precision(output_transform=drop_first), "accuracy": Accuracy(output_transform=drop_first)} ) y_pred = torch.randint(0, 2, (100,)) y = torch.randint(0, 2, (100,)) precision.update(drop_first(drop_first((y_pred, y)))) accuracy.update(drop_first(drop_first((y_pred, y)))) group.update(drop_first((y_pred, y))) assert precision.state_dict() == group.metrics["precision"].state_dict() assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() def test_compute(): precision = Precision() accuracy = Accuracy() group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) for _ in range(3): y_pred = torch.randint(0, 2, (100,)) y = torch.randint(0, 2, (100,)) precision.update((y_pred, y)) accuracy.update((y_pred, y)) group.update((y_pred, y)) assert group.compute() == {"precision": precision.compute(), "accuracy": accuracy.compute()} precision.reset() accuracy.reset() group.reset() assert precision.state_dict() == group.metrics["precision"].state_dict() assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): rank = idist.get_rank() torch.manual_seed(12 + rank) n_epochs = 3 n_iters = 5 batch_size = 10 device = idist.device() y_true = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) y_pred = torch.randint(0, 2, (n_iters * batch_size,)).to(device) def update(_, i): return ( y_pred[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) precision = Precision() precision.attach(engine, "precision") accuracy = Accuracy() accuracy.attach(engine, "accuracy") group = MetricGroup({"eval_metrics.accuracy": Accuracy(), "eval_metrics.precision": Precision()}) group.attach(engine, "eval_metrics") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) assert "eval_metrics" in engine.state.metrics assert "eval_metrics.accuracy" in engine.state.metrics assert "eval_metrics.precision" in engine.state.metrics assert engine.state.metrics["eval_metrics"] == { "eval_metrics.accuracy": engine.state.metrics["accuracy"], "eval_metrics.precision": engine.state.metrics["precision"], } assert engine.state.metrics["eval_metrics.accuracy"] == engine.state.metrics["accuracy"] assert engine.state.metrics["eval_metrics.precision"] == engine.state.metrics["precision"] ignite-0.5.1/tests/ignite/metrics/test_metrics_lambda.py000066400000000000000000000436101465426447700234710ustar00rootroot00000000000000import os import numpy as np import pytest import torch from pytest import approx from sklearn.metrics import f1_score, precision_score, recall_score import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics import Accuracy, Metric, MetricsLambda, Precision, Recall class ListGatherMetric(Metric): def __init__(self, index): super(ListGatherMetric, self).__init__() self.index = index def reset(self): self.list_ = None def update(self, output): self.list_ = output def compute(self): return self.list_[self.index] def test_metrics_lambda(): m0 = ListGatherMetric(0) m1 = ListGatherMetric(1) m2 = ListGatherMetric(2) def process_function(engine, data): return data engine = Engine(process_function) def plus(this, other): return this + other m0_plus_m1 = MetricsLambda(plus, m0, other=m1) m2_plus_2 = MetricsLambda(plus, m2, 2) m0_plus_m1.attach(engine, "m0_plus_m1") m2_plus_2.attach(engine, "m2_plus_2") engine.run([[1, 10, 100]]) assert engine.state.metrics["m0_plus_m1"] == 11 assert engine.state.metrics["m2_plus_2"] == 102 engine.run([[2, 20, 200]]) assert engine.state.metrics["m0_plus_m1"] == 22 assert engine.state.metrics["m2_plus_2"] == 202 # metrics are partially attached assert not m0.is_attached(engine) assert not m1.is_attached(engine) assert not m2.is_attached(engine) # a dependency is detached m0.detach(engine) # so the lambda metric is too assert not m0_plus_m1.is_attached(engine) # the lambda is attached again m0_plus_m1.attach(engine, "m0_plus_m1") assert m0_plus_m1.is_attached(engine) # metrics are always partially attached assert not m0.is_attached(engine) m0_plus_m1.detach(engine) assert not m0_plus_m1.is_attached(engine) # detached (and no longer partially attached) assert not m0.is_attached(engine) def test_metrics_lambda_reset(): m0 = ListGatherMetric(0) m1 = ListGatherMetric(1) m2 = ListGatherMetric(2) m0.update([1, 10, 100]) m1.update([1, 10, 100]) m2.update([1, 10, 100]) def fn(x, y, z, t): return 1 m = MetricsLambda(fn, m0, m1, z=m2, t=0) # initiating a new instance of MetricsLambda must reset # its argument metrics assert m0.list_ is None assert m1.list_ is None assert m2.list_ is None m0.update([1, 10, 100]) m1.update([1, 10, 100]) m2.update([1, 10, 100]) m.reset() assert m0.list_ is None assert m1.list_ is None assert m2.list_ is None def test_metrics_lambda_update_and_attach_together(): y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y engine = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta**2) * p * r / (beta**2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.attach(engine, "f1") with pytest.raises(ValueError, match=r"MetricsLambda is already attached to an engine"): F1.update((y_pred, y)) y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.update((y_pred, y)) engine = Engine(update_fn) with pytest.raises(ValueError, match=r"The underlying metrics are already updated"): F1.attach(engine, "f1") F1.reset() F1.attach(engine, "f1") def test_metrics_lambda_update(): """ Test if the underlying metrics are updated """ y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta**2) * p * r / (beta**2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.update((y_pred, y)) assert precision._updated assert recall._updated F1.reset() assert not precision._updated assert not recall._updated """ Test multiple updates and if the inputs of the underlying metrics are updated multiple times """ y_pred1 = torch.randint(0, 2, size=(15,)) y1 = torch.randint(0, 2, size=(15,)) y_pred2 = torch.randint(0, 2, size=(15,)) y2 = torch.randint(0, 2, size=(15,)) F1.update((y_pred1, y1)) F1.update((y_pred2, y2)) # Compute true_positives and positives for precision correct1 = y1 * y_pred1 all_positives1 = y_pred1.sum(dim=0) if correct1.sum() == 0: true_positives1 = torch.zeros_like(all_positives1) else: true_positives1 = correct1.sum(dim=0) correct2 = y2 * y_pred2 all_positives2 = y_pred2.sum(dim=0) if correct2.sum() == 0: true_positives2 = torch.zeros_like(all_positives2) else: true_positives2 = correct2.sum(dim=0) true_positives = true_positives1 + true_positives2 positives = all_positives1 + all_positives2 assert precision._type == "binary" assert precision._numerator == true_positives assert precision._denominator == positives # Computing positivies for recall is different positives1 = y1.sum(dim=0) positives2 = y2.sum(dim=0) positives = positives1 + positives2 assert recall._type == "binary" assert recall._numerator == true_positives assert recall._denominator == positives """ Test compute """ F1.reset() F1.update((y_pred1, y1)) F1_metrics_lambda = F1.compute() F1_sklearn = f1_score(y1.numpy(), y_pred1.numpy()) assert pytest.approx(F1_metrics_lambda) == F1_sklearn @pytest.mark.parametrize("attach_pr_re", [True, False]) def test_integration(attach_pr_re): torch.manual_seed(1) n_iters = 10 batch_size = 10 n_classes = 10 y_true = torch.arange(0, n_iters * batch_size) % n_classes y_pred = 0.2 * torch.rand(n_iters * batch_size, n_classes) for i in range(n_iters * batch_size): if torch.rand(1) > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = torch.randint(0, n_classes, size=(1,)) y_pred[i, j] = 0.7 y_true_batch_values = iter(y_true.reshape(n_iters, batch_size)) y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes)) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) return y_pred_batch, y_true_batch evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta**2) * p * r / (beta**2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) if attach_pr_re: precision.attach(evaluator, "precision") recall.attach(evaluator, "recall") F1.attach(evaluator, "f1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) precision_true = precision_score(y_true, y_pred.argmax(dim=-1), average=None) recall_true = recall_score(y_true, y_pred.argmax(dim=-1), average=None) f1_true = f1_score(y_true, y_pred.argmax(dim=-1), average="macro") assert f1_true == approx(state.metrics["f1"]), f"{f1_true} vs {state.metrics['f1']}" if attach_pr_re: precision = state.metrics["precision"].numpy() recall = state.metrics["recall"].numpy() assert precision_true == approx(precision), f"{precision_true} vs {precision}" assert recall_true == approx(recall), f"{recall_true} vs {recall}" metric_state = F1.state_dict() F1.reset() F1.load_state_dict(metric_state) f1_value = F1.compute() assert f1_value == state.metrics["f1"] def test_load_state_dict(): acc = Accuracy() error = 1.0 - acc acc.update( ( torch.randint(0, 2, size=(8,)), torch.randint(0, 2, size=(8,)), ) ) e = error.compute() a = acc.compute() assert 1.0 - a == e metric_state = error.state_dict() error.reset() error.load_state_dict(metric_state) e2 = error.compute() assert e2 == e def test_state_metrics(): y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) F1 = precision * recall * 2 / (precision + recall + 1e-20) F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1) precision.attach(evaluator, "precision") recall.attach(evaluator, "recall") F1.attach(evaluator, "f1") def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = evaluator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set(["precision", "recall", "f1"]) def test_state_metrics_ingredients_not_attached(): y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) F1 = precision * recall * 2 / (precision + recall + 1e-20) F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1) F1.attach(evaluator, "F1") def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = evaluator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set(["F1"]) def test_recursive_attachment(): def _test(composed_metric, metric_name, compute_true_value_fn): metrics = { metric_name: composed_metric, } y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y validator = Engine(update_fn) for name, metric in metrics.items(): metric.attach(validator, name) def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = validator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set([metric_name]) np_y_pred = y_pred.numpy().ravel() np_y = y.numpy().ravel() assert state.metrics[metric_name] == approx(compute_true_value_fn(np_y_pred, np_y)) precision_1 = Precision() precision_2 = Precision() summed_precision = precision_1 + precision_2 def compute_true_summed_precision(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return p1 + p2 _test(summed_precision, "summed precision", compute_true_value_fn=compute_true_summed_precision) precision_1 = Precision() precision_2 = Precision() mean_precision = (precision_1 + precision_2) / 2 def compute_true_mean_precision(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return (p1 + p2) * 0.5 _test(mean_precision, "mean precision", compute_true_value_fn=compute_true_mean_precision) precision_1 = Precision() precision_2 = Precision() some_metric = 2.0 + 0.2 * (precision_1 * precision_2 + precision_1 - precision_2) ** 0.5 def compute_true_somemetric(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return 2.0 + 0.2 * (p1 * p2 + p1 - p2) ** 0.5 _test(some_metric, "some metric", compute_true_somemetric) def _test_distrib_integration(device): rank = idist.get_rank() n_iters = 10 batch_size = 10 n_classes = 10 def _test(metric_device): y_true = torch.arange(0, n_iters * batch_size, dtype=torch.int64).to(device) % n_classes y_pred = 0.2 * torch.rand(n_iters * batch_size, n_classes).to(device) for i in range(n_iters * batch_size): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 def update_fn(engine, i): y_true_batch = y_true[i * batch_size : (i + 1) * batch_size, ...] y_pred_batch = y_pred[i * batch_size : (i + 1) * batch_size, ...] return y_pred_batch, y_true_batch evaluator = Engine(update_fn) precision = Precision(average=False, device=metric_device) recall = Recall(average=False, device=metric_device) def Fbeta(r, p, beta): return torch.mean((1 + beta**2) * p * r / (beta**2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.attach(evaluator, "f1") another_f1 = (1.0 + precision * recall * 2 / (precision + recall + 1e-20)).mean().item() another_f1.attach(evaluator, "ff1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) y_pred = idist.all_gather(y_pred) y_true = idist.all_gather(y_true) assert "f1" in state.metrics assert "ff1" in state.metrics f1_true = f1_score(y_true.view(-1).cpu(), y_pred.view(-1, n_classes).argmax(dim=-1).cpu(), average="macro") assert f1_true == approx(state.metrics["f1"]) assert 1.0 + f1_true == approx(state.metrics["ff1"]) for i in range(3): torch.manual_seed(12 + rank + i) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_metrics_on_diff_devices(device): n_classes = 10 n_iters = 12 batch_size = 16 rank = idist.get_rank() torch.manual_seed(12 + rank) y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) evaluator = Engine(update) precision = Precision(average=False, device="cpu") recall = Recall(average=False, device=device) def Fbeta(r, p, beta): return torch.mean((1 + beta**2) * p * r / (beta**2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.attach(evaluator, "f1") another_f1 = (1.0 + precision * recall * 2 / (precision + recall + 1e-20)).mean().item() another_f1.attach(evaluator, "ff1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "f1" in state.metrics assert "ff1" in state.metrics f1_true = f1_score(y_true.view(-1).cpu(), y_preds.view(-1, n_classes).argmax(dim=-1).cpu(), average="macro") assert f1_true == approx(state.metrics["f1"]) assert 1.0 + f1_true == approx(state.metrics["ff1"]) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_metrics_on_diff_devices(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_metrics_on_diff_devices, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_metrics_on_diff_devices(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_multilabel_confusion_matrix.py000066400000000000000000000435651465426447700263350ustar00rootroot00000000000000import numpy as np import pytest import torch from sklearn.metrics import multilabel_confusion_matrix import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics.multilabel_confusion_matrix import MultiLabelConfusionMatrix torch.manual_seed(12) def test_no_update(): cm = MultiLabelConfusionMatrix(10) with pytest.raises( NotComputableError, match=r"Confusion matrix must have at least one example before it can be computed" ): cm.compute() def test_num_classes_wrong_input(): with pytest.raises(ValueError, match="Argument num_classes needs to be > 1"): MultiLabelConfusionMatrix(num_classes=1) def test_multiclass_wrong_inputs(): cm = MultiLabelConfusionMatrix(10) with pytest.raises( ValueError, match=r"y_pred must at least have shape \(batch_size, num_classes \(currently set to 10\), ...\)" ): cm.update((torch.rand(10), torch.randint(0, 2, size=(10, 10)).long())) with pytest.raises( ValueError, match=r"y must at least have shape \(batch_size, num_classes \(currently set to 10\), ...\)" ): cm.update((torch.rand(10, 10), torch.randint(0, 2, size=(10,)).long())) with pytest.raises(ValueError, match=r"y_pred and y have different batch size: 10 vs 8"): cm.update((torch.rand(10, 10), torch.randint(0, 2, size=(8, 10)).long())) with pytest.raises(ValueError, match=r"y does not have correct number of classes: 9 vs 10"): cm.update((torch.rand(10, 10), torch.randint(0, 2, size=(10, 9)).long())) with pytest.raises(ValueError, match=r"y_pred does not have correct number of classes: 3 vs 10"): cm.update((torch.rand(10, 3), torch.randint(0, 2, size=(10, 10)).long())) with pytest.raises(ValueError, match=r"y and y_pred shapes must match."): cm.update((torch.rand(10, 10, 2), torch.randint(0, 2, size=(10, 10)).long())) with pytest.raises( ValueError, match=r"y_pred must be of any type: \(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64\)", ): cm.update((torch.rand(10, 10), torch.rand(10, 10))) with pytest.raises( ValueError, match=r"y must be of any type: \(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64\)" ): cm.update((torch.rand(10, 10).type(torch.int32), torch.rand(10, 10))) with pytest.raises(ValueError, match=r"y_pred must be a binary tensor"): y = torch.randint(0, 2, size=(10, 10)).long() y_pred = torch.randint(0, 2, size=(10, 10)).long() y_pred[0, 0] = 2 cm.update((y_pred, y)) with pytest.raises(ValueError, match=r"y must be a binary tensor"): y = torch.randint(0, 2, size=(10, 10)).long() y_pred = torch.randint(0, 2, size=(10, 10)).long() y[0, 0] = 2 cm.update((y_pred, y)) def get_y_true_y_pred(): # Generate an image with labels 0 (background), 1, 2 # 3 classes: y_true = np.zeros((1, 3, 30, 30), dtype=np.int64) y_true[0, 0, 5:17, 7:11] = 1 y_true[0, 1, 1:11, 1:11] = 1 y_true[0, 2, 15:25, 15:25] = 1 y_pred = np.zeros((1, 3, 30, 30), dtype=np.int64) y_pred[0, 0, 0:7, 8:15] = 1 y_pred[0, 1, 5:15, 1:11] = 1 y_pred[0, 2, 20:30, 20:30] = 1 return y_true, y_pred def test_multiclass_images(): num_classes = 3 cm = MultiLabelConfusionMatrix(num_classes=num_classes) y_true, y_pred = get_y_true_y_pred() # Compute confusion matrix with sklearn sklearn_CM = multilabel_confusion_matrix( y_true.transpose((0, 2, 3, 1)).reshape(-1, 3), y_pred.transpose((0, 2, 3, 1)).reshape(-1, 3) ) # Update metric output = (torch.tensor(y_pred), torch.tensor(y_true)) cm.update(output) ignite_CM = cm.compute().cpu().numpy() assert np.all(ignite_CM == sklearn_CM) # Another test on batch of 2 images cm = MultiLabelConfusionMatrix(num_classes=num_classes) # Create a batch of two images: th_y_true1 = torch.tensor(y_true) th_y_true2 = torch.tensor(y_true.transpose(0, 1, 3, 2)) th_y_true = torch.cat([th_y_true1, th_y_true2], dim=0) th_y_pred1 = torch.tensor(y_pred) th_y_pred2 = torch.tensor(y_pred.transpose(0, 1, 3, 2)) th_y_pred = torch.cat([th_y_pred1, th_y_pred2], dim=0) # Update metric & compute output = (th_y_pred, th_y_true) cm.update(output) ignite_CM = cm.compute().cpu().numpy() # Compute confusion matrix with sklearn th_y_true = idist.all_gather(th_y_true) th_y_pred = idist.all_gather(th_y_pred) np_y_true = th_y_true.cpu().numpy().transpose((0, 2, 3, 1)).reshape(-1, 3) np_y_pred = th_y_pred.cpu().numpy().transpose((0, 2, 3, 1)).reshape(-1, 3) sklearn_CM = multilabel_confusion_matrix(np_y_true, np_y_pred) assert np.all(ignite_CM == sklearn_CM) def _test_distrib_multiclass_images(device): def _test(metric_device): num_classes = 3 cm = MultiLabelConfusionMatrix(num_classes=num_classes, device=metric_device) y_true, y_pred = get_y_true_y_pred() # Compute confusion matrix with sklearn sklearn_CM = multilabel_confusion_matrix( y_true.transpose((0, 2, 3, 1)).reshape(-1, 3), y_pred.transpose((0, 2, 3, 1)).reshape(-1, 3) ) # Update metric output = (torch.tensor(y_pred).to(device), torch.tensor(y_true).to(device)) cm.update(output) ignite_CM = cm.compute().cpu().numpy() assert np.all(ignite_CM == sklearn_CM) # Another test on batch of 2 images num_classes = 3 cm = MultiLabelConfusionMatrix(num_classes=num_classes, device=metric_device) # Create a batch of two images: th_y_true1 = torch.tensor(y_true) th_y_true2 = torch.tensor(y_true.transpose(0, 1, 3, 2)) th_y_true = torch.cat([th_y_true1, th_y_true2], dim=0) th_y_true = th_y_true.to(device) th_y_pred1 = torch.tensor(y_pred) th_y_pred2 = torch.tensor(y_pred.transpose(0, 1, 3, 2)) th_y_pred = torch.cat([th_y_pred1, th_y_pred2], dim=0) th_y_pred = th_y_pred.to(device) # Update metric & compute output = (th_y_pred, th_y_true) cm.update(output) ignite_CM = cm.compute().cpu().numpy() # Compute confusion matrix with sklearn th_y_true = idist.all_gather(th_y_true) th_y_pred = idist.all_gather(th_y_pred) np_y_true = th_y_true.cpu().numpy().transpose((0, 2, 3, 1)).reshape(-1, 3) np_y_pred = th_y_pred.cpu().numpy().transpose((0, 2, 3, 1)).reshape(-1, 3) sklearn_CM = multilabel_confusion_matrix(np_y_true, np_y_pred) assert np.all(ignite_CM == sklearn_CM) _test("cpu") if device.type != "xla": _test(idist.device()) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: cm = MultiLabelConfusionMatrix(num_classes=3, device=metric_device) assert cm._device == metric_device assert ( cm.confusion_matrix.device == metric_device ), f"{type(cm.confusion_matrix.device)}:{cm._num_correct.device} vs {type(metric_device)}:{metric_device}" y_true, y_pred = get_y_true_y_pred() cm.update((torch.tensor(y_pred), torch.tensor(y_true))) assert ( cm.confusion_matrix.device == metric_device ), f"{type(cm.confusion_matrix.device)}:{cm._num_correct.device} vs {type(metric_device)}:{metric_device}" def test_simple_2D_input(): # Tests for 2D inputs with normalized = True and False num_iters = 5 num_samples = 100 num_classes = 10 torch.manual_seed(0) for _ in range(num_iters): target = torch.randint(0, 2, size=(num_samples, num_classes)) prediction = torch.randint(0, 2, size=(num_samples, num_classes)) sklearn_CM = multilabel_confusion_matrix(target.numpy(), prediction.numpy()) mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) mlcm.update([prediction, target]) ignite_CM = mlcm.compute().numpy() assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) mlcm = MultiLabelConfusionMatrix(num_classes, normalized=True) mlcm.update([prediction, target]) ignite_CM_normalized = mlcm.compute().numpy() sklearn_CM_normalized = sklearn_CM / sklearn_CM.sum(axis=(1, 2))[:, None, None] assert np.allclose(sklearn_CM_normalized, ignite_CM_normalized) def test_simple_ND_input(): num_iters = 5 num_samples = 100 num_classes = 10 torch.manual_seed(0) size_3d = 4 for _ in range(num_iters): # 3D tests target = torch.randint(0, 2, size=(num_samples, num_classes, size_3d)) prediction = torch.randint(0, 2, size=(num_samples, num_classes, size_3d)) mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) mlcm.update([prediction, target]) ignite_CM = mlcm.compute().numpy() target_reshaped = target.permute(0, 2, 1).reshape(size_3d * num_samples, num_classes) prediction_reshaped = prediction.permute(0, 2, 1).reshape(size_3d * num_samples, num_classes) sklearn_CM = multilabel_confusion_matrix(target_reshaped.numpy(), prediction_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) size_4d = 4 for _ in range(num_iters): # 4D tests target = torch.randint(0, 2, size=(num_samples, num_classes, size_3d, size_4d)) prediction = torch.randint(0, 2, size=(num_samples, num_classes, size_3d, size_4d)) mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) mlcm.update([prediction, target]) ignite_CM = mlcm.compute().numpy() target_reshaped = target.permute(0, 2, 3, 1).reshape(size_3d * size_4d * num_samples, num_classes) prediction_reshaped = prediction.permute(0, 2, 3, 1).reshape(size_3d * size_4d * num_samples, num_classes) sklearn_CM = multilabel_confusion_matrix(target_reshaped.numpy(), prediction_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) size_5d = 4 for _ in range(num_iters): # 5D tests target = torch.randint(0, 2, size=(num_samples, num_classes, size_3d, size_4d, size_5d)) prediction = torch.randint(0, 2, size=(num_samples, num_classes, size_3d, size_4d, size_5d)) mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) mlcm.update([prediction, target]) ignite_CM = mlcm.compute().numpy() target_reshaped = target.permute(0, 2, 3, 4, 1).reshape(size_3d * size_4d * size_5d * num_samples, num_classes) prediction_reshaped = prediction.permute(0, 2, 3, 4, 1).reshape( size_3d * size_4d * size_5d * num_samples, num_classes ) sklearn_CM = multilabel_confusion_matrix(target_reshaped.numpy(), prediction_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) def test_simple_batched(): num_iters = 5 num_samples = 100 num_classes = 10 batch_size = 1 torch.manual_seed(0) for _ in range(num_iters): # 2D tests mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) targets = torch.randint(0, 2, size=(int(num_samples / batch_size), batch_size, num_classes)) predictions = torch.randint(0, 2, size=(int(num_samples / batch_size), batch_size, num_classes)) for i in range(int(num_samples / batch_size)): target_sample = targets[i] prediction_sample = predictions[i] mlcm.update([prediction_sample, target_sample]) ignite_CM = mlcm.compute().numpy() targets_reshaped = targets.reshape(-1, num_classes) predictions_reshaped = predictions.reshape(-1, num_classes) sklearn_CM = multilabel_confusion_matrix(targets_reshaped.numpy(), predictions_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) size_3d = 4 for _ in range(num_iters): # 3D tests mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) targets = torch.randint(0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d)) predictions = torch.randint(0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d)) for i in range(int(num_samples / batch_size)): target_sample = targets[i] prediction_sample = predictions[i] mlcm.update([prediction_sample, target_sample]) ignite_CM = mlcm.compute().numpy() targets_reshaped = targets.permute(0, 1, 3, 2).reshape(-1, num_classes) predictions_reshaped = predictions.permute(0, 1, 3, 2).reshape(-1, num_classes) sklearn_CM = multilabel_confusion_matrix(targets_reshaped.numpy(), predictions_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) size_4d = 4 for _ in range(num_iters): # 4D tests mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) targets = torch.randint(0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d, size_4d)) predictions = torch.randint( 0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d, size_4d) ) for i in range(int(num_samples / batch_size)): target_sample = targets[i] prediction_sample = predictions[i] mlcm.update([prediction_sample, target_sample]) ignite_CM = mlcm.compute().numpy() targets_reshaped = targets.permute(0, 1, 3, 4, 2).reshape(-1, num_classes) predictions_reshaped = predictions.permute(0, 1, 3, 4, 2).reshape(-1, num_classes) sklearn_CM = multilabel_confusion_matrix(targets_reshaped.numpy(), predictions_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) size_5d = 4 for _ in range(num_iters): # 5D tests mlcm = MultiLabelConfusionMatrix(num_classes, normalized=False) targets = torch.randint( 0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d, size_4d, size_5d) ) predictions = torch.randint( 0, 2, size=(int(num_samples / batch_size), batch_size, num_classes, size_3d, size_4d, size_5d) ) for i in range(int(num_samples / batch_size)): target_sample = targets[i] prediction_sample = predictions[i] mlcm.update([prediction_sample, target_sample]) ignite_CM = mlcm.compute().numpy() targets_reshaped = targets.permute(0, 1, 3, 4, 5, 2).reshape(-1, num_classes) predictions_reshaped = predictions.permute(0, 1, 3, 4, 5, 2).reshape(-1, num_classes) sklearn_CM = multilabel_confusion_matrix(targets_reshaped.numpy(), predictions_reshaped.numpy()) assert np.all(sklearn_CM.astype(np.int64) == ignite_CM.astype(np.int64)) # @pytest.mark.distributed # @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") # @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") # def test_distrib_nccl_gpu(distributed_context_single_node_nccl): # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # @pytest.mark.distributed # @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") # def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # @pytest.mark.distributed # @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") # @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") # def test_distrib_hvd(gloo_hvd_executor): # device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") # nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() # gloo_hvd_executor(_test_distrib_multiclass_images, (device,), np=nproc, do_init=True) # gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) # @pytest.mark.multinode_distributed # @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") # @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") # def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): # # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # @pytest.mark.multinode_distributed # @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") # @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") # def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): # # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # @pytest.mark.tpu # @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") # @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") # def test_distrib_single_device_xla(): # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # def _test_distrib_xla_nprocs(index): # device = idist.device() # _test_distrib_multiclass_images(device) # _test_distrib_accumulator_device(device) # @pytest.mark.tpu # @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") # @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") # def test_distrib_xla_nprocs(xmp_executor): # n = int(os.environ["NUM_TPU_WORKERS"]) # xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_mutual_information.py000066400000000000000000000114421465426447700244350ustar00rootroot00000000000000from typing import Tuple import numpy as np import pytest import torch from scipy.special import softmax from scipy.stats import entropy from torch import Tensor import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import MutualInformation def np_mutual_information(np_y_pred: np.ndarray) -> float: prob = softmax(np_y_pred, axis=1) marginal_ent = entropy(np.mean(prob, axis=0)) conditional_ent = np.mean(entropy(prob, axis=1)) return max(0.0, marginal_ent - conditional_ent) def test_zero_sample(): mi = MutualInformation() with pytest.raises( NotComputableError, match=r"MutualInformation must have at least one example before it can be computed" ): mi.compute() def test_invalid_shape(): mi = MutualInformation() y_pred = torch.randn(10).float() with pytest.raises(ValueError, match=r"y_pred must be in the shape of \(B, C\) or \(B, C, ...\), got"): mi.update((y_pred, None)) @pytest.fixture(params=list(range(4))) def test_case(request): return [ (torch.randn((100, 10)).float(), torch.randint(0, 10, size=[100]), 1), (torch.rand((100, 500)).float(), torch.randint(0, 500, size=[100]), 1), # updated batches (torch.normal(0.0, 5.0, size=(100, 10)).float(), torch.randint(0, 10, size=[100]), 16), (torch.normal(5.0, 3.0, size=(100, 200)).float(), torch.randint(0, 200, size=[100]), 16), # image segmentation (torch.randn((100, 5, 32, 32)).float(), torch.randint(0, 5, size=(100, 32, 32)), 16), (torch.randn((100, 5, 224, 224)).float(), torch.randint(0, 5, size=(100, 224, 224)), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_compute(n_times, test_case: Tuple[Tensor, Tensor, int]): mi = MutualInformation() y_pred, y, batch_size = test_case mi.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size mi.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: mi.update((y_pred, y)) np_res = np_mutual_information(y_pred.numpy()) res = mi.compute() assert isinstance(res, float) assert pytest.approx(np_res, rel=1e-4) == res def test_accumulator_detached(): mi = MutualInformation() y_pred = torch.tensor([[2.0, 3.0], [-2.0, -1.0]], requires_grad=True) y = torch.zeros(2) mi.update((y_pred, y)) assert not mi._sum_of_probabilities.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: def test_integration(self): tol = 1e-4 n_iters = 100 batch_size = 10 n_cls = 50 device = idist.device() rank = idist.get_rank() torch.manual_seed(12 + rank) metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: y_true = torch.randint(0, n_cls, size=[n_iters * batch_size], dtype=torch.long).to(device) y_preds = torch.normal(0.0, 3.0, size=(n_iters * batch_size, n_cls), dtype=torch.float).to(device) engine = Engine( lambda e, i: ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) ) m = MutualInformation(device=metric_device) m.attach(engine, "mutual_information") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "mutual_information" in engine.state.metrics res = engine.state.metrics["mutual_information"] true_res = np_mutual_information(y_preds.cpu().numpy()) assert pytest.approx(true_res, rel=tol) == res def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(device) for metric_device in metric_devices: mi = MutualInformation(device=metric_device) devices = (mi._device, mi._sum_of_probabilities.device) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[2.0, 3.0], [-2.0, -1.0]], requires_grad=True) y = torch.zeros(2) mi.update((y_pred, y)) devices = (mi._device, mi._sum_of_probabilities.device) for dev in devices: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_precision.py000066400000000000000000000600551465426447700225200ustar00rootroot00000000000000import warnings import pytest import torch from sklearn.exceptions import UndefinedMetricWarning from sklearn.metrics import precision_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import Precision torch.manual_seed(12) def test_no_update(): precision = Precision() assert precision._updated is False with pytest.raises(NotComputableError, match=r"Precision must have at least one example before it can be computed"): precision.compute() assert precision._updated is False def test_average_parameter(): with pytest.raises(ValueError, match="Argument average should be None or a boolean or one of values"): Precision(average=1) pr = Precision(average="samples") with pytest.raises( ValueError, match=r"Argument average='samples' is incompatible with binary and multiclass input data." ): pr.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long())) assert pr._updated is False pr = Precision(average="samples") with pytest.raises( ValueError, match=r"Argument average='samples' is incompatible with binary and multiclass input data." ): pr.update((torch.rand(10, 3), torch.randint(0, 3, size=(10,)).long())) assert pr._updated is False pr = Precision(average=True) assert pr._average == "macro" def test_binary_wrong_inputs(): pr = Precision() assert pr._updated is False with pytest.raises(ValueError, match=r"For binary cases, y must be comprised of 0's and 1's"): # y has not only 0 or 1 values pr.update((torch.randint(0, 2, size=(10,)).long(), torch.arange(0, 10).long())) assert pr._updated is False with pytest.raises(ValueError, match=r"For binary cases, y_pred must be comprised of 0's and 1's"): # y_pred values are not thresholded to 0, 1 values pr.update((torch.rand(10), torch.randint(0, 2, size=(10,)).long())) assert pr._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes pr.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long())) assert pr._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes pr.update((torch.randint(0, 2, size=(10, 5, 6)).long(), torch.randint(0, 2, size=(10,)).long())) assert pr._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes pr.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5, 6)).long())) assert pr._updated is False with pytest.warns( RuntimeWarning, match="`y` and `y_pred` should be of dtype long when entry type is binary and average!=False", ): pr = Precision(average=None) pr.update((torch.randint(0, 2, size=(10,)).float(), torch.randint(0, 2, size=(10,)))) with pytest.warns( RuntimeWarning, match="`y` and `y_pred` should be of dtype long when entry type is binary and average!=False", ): pr = Precision(average=None) pr.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).float())) def ignite_average_to_scikit_average(average, data_type: str): if average in [None, "micro", "samples", "weighted", "macro"]: return average if average is False: if data_type == "binary": return "binary" else: return None elif average is True: return "macro" else: raise ValueError(f"Wrong average parameter `{average}`") @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_binary_input(average): pr = Precision(average=average) assert pr._updated is False def _test(y_pred, y, batch_size): pr.reset() assert pr._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size pr.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: pr.update((y_pred, y)) np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() assert pr._type == "binary" assert pr._updated is True assert isinstance(pr.compute(), torch.Tensor if not average else float) pr_compute = pr.compute().numpy() if not average else pr.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "binary") assert precision_score( np_y, np_y_pred, average=sk_average_parameter, labels=[0, 1], zero_division=0 ) == pytest.approx(pr_compute) def get_test_cases(): test_cases = [ # Binary accuracy on input of shape (N, 1) or (N, ) (torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)), 1), (torch.randint(0, 2, size=(10, 1)), torch.randint(0, 2, size=(10, 1)), 1), # updated batches (torch.randint(0, 2, size=(50,)), torch.randint(0, 2, size=(50,)), 16), (torch.randint(0, 2, size=(50, 1)), torch.randint(0, 2, size=(50, 1)), 16), # Binary accuracy on input of shape (N, L) (torch.randint(0, 2, size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.randint(0, 2, size=(10, 1, 5)), torch.randint(0, 2, size=(10, 1, 5)), 1), # updated batches (torch.randint(0, 2, size=(50, 5)), torch.randint(0, 2, size=(50, 5)), 16), (torch.randint(0, 2, size=(50, 1, 5)), torch.randint(0, 2, size=(50, 1, 5)), 16), # Binary accuracy on input of shape (N, H, W) (torch.randint(0, 2, size=(10, 12, 10)), torch.randint(0, 2, size=(10, 12, 10)), 1), (torch.randint(0, 2, size=(10, 1, 12, 10)), torch.randint(0, 2, size=(10, 1, 12, 10)), 1), # updated batches (torch.randint(0, 2, size=(50, 12, 10)), torch.randint(0, 2, size=(50, 12, 10)), 16), (torch.randint(0, 2, size=(50, 1, 12, 10)), torch.randint(0, 2, size=(50, 1, 12, 10)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10,), dtype=torch.long), torch.randint(0, 2, size=(10,)), 1), (torch.zeros(size=(10, 1), dtype=torch.long), torch.randint(0, 2, size=(10, 1)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_multiclass_wrong_inputs(): pr = Precision() assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes pr.update((torch.rand(10, 5, 4), torch.randint(0, 2, size=(10,)).long())) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes pr.update((torch.rand(10, 5, 6), torch.randint(0, 5, size=(10, 5)).long())) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes pr.update((torch.rand(10), torch.randint(0, 5, size=(10, 5, 6)).long())) assert pr._updated is False pr = Precision(average=True) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates pr.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).long())) pr.update((torch.rand(10, 6), torch.randint(0, 5, size=(10,)).long())) assert pr._updated is True with pytest.raises(ValueError): # incompatible shapes between two updates pr.update((torch.rand(10, 5, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) pr.update((torch.rand(10, 6, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) assert pr._updated is True pr = Precision(average=False) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates pr.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).long())) pr.update((torch.rand(10, 6), torch.randint(0, 5, size=(10,)).long())) assert pr._updated is True with pytest.raises(ValueError): # incompatible shapes between two updates pr.update((torch.rand(10, 5, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) pr.update((torch.rand(10, 6, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) assert pr._updated is True with pytest.warns( RuntimeWarning, match="`y` should be of dtype long when entry type is multiclass", ): pr = Precision() pr.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).float())) @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_multiclass_input(average): pr = Precision(average=average) assert pr._updated is False def _test(y_pred, y, batch_size): pr.reset() assert pr._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size pr.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: pr.update((y_pred, y)) num_classes = y_pred.shape[1] np_y_pred = y_pred.argmax(dim=1).numpy().ravel() np_y = y.numpy().ravel() assert pr._type == "multiclass" assert pr._updated is True assert isinstance(pr.compute(), torch.Tensor if not average else float) pr_compute = pr.compute().numpy() if not average else pr.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "multiclass") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) sk_compute = precision_score(np_y, np_y_pred, labels=range(0, num_classes), average=sk_average_parameter) assert sk_compute == pytest.approx(pr_compute) def get_test_cases(): test_cases = [ # Multiclass input data of shape (N, ) and (N, C) (torch.rand(10, 6), torch.randint(0, 6, size=(10,)), 1), (torch.rand(10, 4), torch.randint(0, 4, size=(10,)), 1), # updated batches (torch.rand(50, 6), torch.randint(0, 6, size=(50,)), 16), (torch.rand(50, 4), torch.randint(0, 4, size=(50,)), 16), # Multiclass input data of shape (N, L) and (N, C, L) (torch.rand(10, 5, 8), torch.randint(0, 5, size=(10, 8)), 1), (torch.rand(10, 8, 12), torch.randint(0, 8, size=(10, 12)), 1), # updated batches (torch.rand(50, 5, 8), torch.randint(0, 5, size=(50, 8)), 16), (torch.rand(50, 8, 12), torch.randint(0, 8, size=(50, 12)), 16), # Multiclass input data of shape (N, H, W, ...) and (N, C, H, W, ...) (torch.rand(10, 5, 18, 16), torch.randint(0, 5, size=(10, 18, 16)), 1), (torch.rand(10, 7, 20, 12), torch.randint(0, 7, size=(10, 20, 12)), 1), # updated batches (torch.rand(50, 5, 18, 16), torch.randint(0, 5, size=(50, 18, 16)), 16), (torch.rand(50, 7, 20, 12), torch.randint(0, 7, size=(50, 20, 12)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10, 6)), torch.randint(0, 6, size=(10,)), 1), (torch.zeros(size=(10, 4)), torch.randint(0, 4, size=(10,)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_multilabel_wrong_inputs(): pr = Precision(is_multilabel=True) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes pr.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).long())) assert pr._updated is False with pytest.raises(ValueError): # incompatible y_pred pr.update((torch.rand(10, 5), torch.randint(0, 2, size=(10, 5)).long())) assert pr._updated is False with pytest.raises(ValueError): # incompatible y pr.update((torch.randint(0, 5, size=(10, 5, 6)), torch.rand(10))) assert pr._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates pr.update((torch.randint(0, 2, size=(20, 5)), torch.randint(0, 2, size=(20, 5)).long())) pr.update((torch.randint(0, 2, size=(20, 6)), torch.randint(0, 2, size=(20, 6)).long())) assert pr._updated is True def to_numpy_multilabel(y): # reshapes input array to (N x ..., C) y = y.transpose(1, 0).cpu().numpy() num_classes = y.shape[0] y = y.reshape((num_classes, -1)).transpose(1, 0) return y @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted", "samples"]) def test_multilabel_input(average): pr = Precision(average=average, is_multilabel=True) assert pr._updated is False def _test(y_pred, y, batch_size): pr.reset() assert pr._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size pr.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: pr.update((y_pred, y)) np_y_pred = to_numpy_multilabel(y_pred) np_y = to_numpy_multilabel(y) assert pr._type == "multilabel" assert pr._updated is True pr_compute = pr.compute().numpy() if not average else pr.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "multilabel") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) assert precision_score(np_y, np_y_pred, average=sk_average_parameter) == pytest.approx(pr_compute) def get_test_cases(): test_cases = [ # Multilabel input data of shape (N, C) (torch.randint(0, 2, size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.randint(0, 2, size=(10, 4)), torch.randint(0, 2, size=(10, 4)), 1), # updated batches (torch.randint(0, 2, size=(50, 5)), torch.randint(0, 2, size=(50, 5)), 16), (torch.randint(0, 2, size=(50, 4)), torch.randint(0, 2, size=(50, 4)), 16), # Multilabel input data of shape (N, C, L) (torch.randint(0, 2, size=(10, 5, 10)), torch.randint(0, 2, size=(10, 5, 10)), 1), (torch.randint(0, 2, size=(10, 4, 10)), torch.randint(0, 2, size=(10, 4, 10)), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 10)), torch.randint(0, 2, size=(50, 5, 10)), 16), (torch.randint(0, 2, size=(50, 4, 10)), torch.randint(0, 2, size=(50, 4, 10)), 16), # Multilabel input data of shape (N, C, H, W) (torch.randint(0, 2, size=(10, 5, 18, 16)), torch.randint(0, 2, size=(10, 5, 18, 16)), 1), (torch.randint(0, 2, size=(10, 4, 20, 23)), torch.randint(0, 2, size=(10, 4, 20, 23)), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 18, 16)), torch.randint(0, 2, size=(50, 5, 18, 16)), 16), (torch.randint(0, 2, size=(50, 4, 20, 23)), torch.randint(0, 2, size=(50, 4, 20, 23)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.zeros(size=(10, 4)), torch.randint(0, 2, size=(10, 4)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_incorrect_type(average): # Tests changing of type during training pr = Precision(average=average) assert pr._updated is False y_pred = torch.softmax(torch.rand(4, 4), dim=1) y = torch.ones(4).long() pr.update((y_pred, y)) assert pr._updated is True y_pred = torch.randint(0, 2, size=(4,)) y = torch.ones(4).long() with pytest.raises(RuntimeError): pr.update((y_pred, y)) assert pr._updated is True @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_incorrect_y_classes(average): pr = Precision(average=average) assert pr._updated is False y_pred = torch.randint(0, 2, size=(10, 4)).float() y = torch.randint(4, 5, size=(10,)).long() with pytest.raises(ValueError): pr.update((y_pred, y)) assert pr._updated is False @pytest.mark.usefixtures("distributed") class TestDistributed: @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"]) @pytest.mark.parametrize("n_epochs", [1, 2]) def test_integration_multiclass(self, average, n_epochs): rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 60 batch_size = 16 n_classes = 7 metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) pr = Precision(average=average, device=metric_device) pr.attach(engine, "pr") assert pr._updated is False data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "pr" in engine.state.metrics assert pr._updated is True res = engine.state.metrics["pr"] if isinstance(res, torch.Tensor): # Fixes https://github.com/pytorch/ignite/issues/1635#issuecomment-863026919 assert res.device.type == "cpu" res = res.cpu().numpy() sk_average_parameter = ignite_average_to_scikit_average(average, "multiclass") true_res = precision_score( y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy(), average=sk_average_parameter ) assert pytest.approx(res) == true_res @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"]) @pytest.mark.parametrize("n_epochs", [1, 2]) def test_integration_multilabel(self, average, n_epochs): rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 60 batch_size = 16 n_classes = 7 metric_devices = ["cpu"] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, ...], y_true[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) pr = Precision(average=average, is_multilabel=True, device=metric_device) pr.attach(engine, "pr") assert pr._updated is False data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "pr" in engine.state.metrics assert pr._updated is True res = engine.state.metrics["pr"] res2 = pr.compute() if isinstance(res, torch.Tensor): res = res.cpu().numpy() res2 = res2.cpu().numpy() assert (res == res2).all() else: assert res == res2 np_y_preds = to_numpy_multilabel(y_preds) np_y_true = to_numpy_multilabel(y_true) assert pr._type == "multilabel" sk_average_parameter = ignite_average_to_scikit_average(average, "multilabel") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) assert precision_score(np_y_true, np_y_preds, average=sk_average_parameter) == pytest.approx(res) @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"]) def test_accumulator_device(self, average): # Binary accuracy on input of shape (N, 1) or (N, ) metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: pr = Precision(average=average, device=metric_device) assert pr._device == metric_device assert pr._updated is False # Since the shape of the accumulated amount isn't known before the first update # call, the internal variables aren't tensors on the right device yet. y_pred = torch.randint(0, 2, size=(10,)) y = torch.randint(0, 2, size=(10,)).long() pr.update((y_pred, y)) assert pr._updated is True assert ( pr._numerator.device == metric_device ), f"{type(pr._numerator.device)}:{pr._numerator.device} vs {type(metric_device)}:{metric_device}" if average != "samples": # For average='samples', `_denominator` is of type `int` so it has not `device` member. assert ( pr._denominator.device == metric_device ), f"{type(pr._denominator.device)}:{pr._denominator.device} vs {type(metric_device)}:{metric_device}" if average == "weighted": assert pr._weight.device == metric_device, f"{type(pr._weight.device)}:{pr._weight.device} vs " f"{type(metric_device)}:{metric_device}" @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"]) def test_multilabel_accumulator_device(self, average): # Multiclass input data of shape (N, ) and (N, C) metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: pr = Precision(is_multilabel=True, average=average, device=metric_device) assert pr._device == metric_device assert pr._updated is False y_pred = torch.randint(0, 2, size=(10, 4, 20, 23)) y = torch.randint(0, 2, size=(10, 4, 20, 23)).long() pr.update((y_pred, y)) assert pr._updated is True assert ( pr._numerator.device == metric_device ), f"{type(pr._numerator.device)}:{pr._numerator.device} vs {type(metric_device)}:{metric_device}" if average != "samples": # For average='samples', `_denominator` is of type `int` so it has not `device` member. assert ( pr._denominator.device == metric_device ), f"{type(pr._denominator.device)}:{pr._denominator.device} vs {type(metric_device)}:{metric_device}" if average == "weighted": assert pr._weight.device == metric_device, f"{type(pr._weight.device)}:{pr._weight.device} vs " f"{type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_precision_recall_curve.py000066400000000000000000000264031465426447700252450ustar00rootroot00000000000000import os from typing import Tuple from unittest.mock import patch import numpy as np import pytest import sklearn import torch from sklearn.metrics import precision_recall_curve import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics.epoch_metric import EpochMetricWarning from ignite.metrics.precision_recall_curve import PrecisionRecallCurve @pytest.fixture() def mock_no_sklearn(): with patch.dict("sys.modules", {"sklearn.metrics": None}): yield sklearn def test_no_sklearn(mock_no_sklearn): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires scikit-learn to be installed."): y = torch.tensor([1, 1]) pr_curve = PrecisionRecallCurve() pr_curve.update((y, y)) pr_curve.compute() def test_precision_recall_curve(): size = 100 np_y_pred = np.random.rand(size, 1) np_y = np.zeros((size,)) np_y[size // 2 :] = 1 sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y, np_y_pred) precision_recall_curve_metric = PrecisionRecallCurve() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) precision_recall_curve_metric.update((y_pred, y)) precision, recall, thresholds = precision_recall_curve_metric.compute() precision = precision.numpy() recall = recall.numpy() thresholds = thresholds.numpy() assert pytest.approx(precision) == sk_precision assert pytest.approx(recall) == sk_recall # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_integration_precision_recall_curve_with_output_transform(): np.random.seed(1) size = 100 np_y_pred = np.random.rand(size, 1) np_y = np.zeros((size,)) np_y[size // 2 :] = 1 np.random.shuffle(np_y) sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y, np_y_pred) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) precision_recall_curve_metric = PrecisionRecallCurve(output_transform=lambda x: (x[1], x[2])) precision_recall_curve_metric.attach(engine, "precision_recall_curve") data = list(range(size // batch_size)) precision, recall, thresholds = engine.run(data, max_epochs=1).metrics["precision_recall_curve"] precision = precision.numpy() recall = recall.numpy() thresholds = thresholds.numpy() assert pytest.approx(precision) == sk_precision assert pytest.approx(recall) == sk_recall # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_integration_precision_recall_curve_with_activated_output_transform(): np.random.seed(1) size = 100 np_y_pred = np.random.rand(size, 1) np_y_pred_sigmoid = torch.sigmoid(torch.from_numpy(np_y_pred)).numpy() np_y = np.zeros((size,)) np_y[size // 2 :] = 1 np.random.shuffle(np_y) sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y, np_y_pred_sigmoid) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) precision_recall_curve_metric = PrecisionRecallCurve(output_transform=lambda x: (torch.sigmoid(x[1]), x[2])) precision_recall_curve_metric.attach(engine, "precision_recall_curve") data = list(range(size // batch_size)) precision, recall, thresholds = engine.run(data, max_epochs=1).metrics["precision_recall_curve"] precision = precision.cpu().numpy() recall = recall.cpu().numpy() thresholds = thresholds.cpu().numpy() assert pytest.approx(precision) == sk_precision assert pytest.approx(recall) == sk_recall # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_check_compute_fn(): y_pred = torch.zeros((8, 13)) y_pred[:, 1] = 1 y_true = torch.zeros_like(y_pred) output = (y_pred, y_true) em = PrecisionRecallCurve(check_compute_fn=True) em.reset() with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"): em.update(output) em = PrecisionRecallCurve(check_compute_fn=False) em.update(output) def _test_distrib_compute(device): rank = idist.get_rank() def _test(y_pred, y, batch_size, metric_device): metric_device = torch.device(metric_device) prc = PrecisionRecallCurve(device=metric_device) prc.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size prc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: prc.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() res = prc.compute() assert isinstance(res, Tuple) assert precision_recall_curve(np_y, np_y_pred)[0] == pytest.approx(res[0].cpu().numpy()) assert precision_recall_curve(np_y, np_y_pred)[1] == pytest.approx(res[1].cpu().numpy()) assert precision_recall_curve(np_y, np_y_pred)[2] == pytest.approx(res[2].cpu().numpy()) def get_test_cases(): test_cases = [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)), 1), (torch.randint(0, 2, size=(10, 1)), torch.randint(0, 2, size=(10, 1)), 1), # updated batches (torch.randint(0, 2, size=(50,)), torch.randint(0, 2, size=(50,)), 16), (torch.randint(0, 2, size=(50, 1)), torch.randint(0, 2, size=(50, 1)), 16), ] return test_cases for i in range(3): torch.manual_seed(12 + rank + i) test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: y_pred = y_pred.to(device) y = y.to(device) _test(y_pred, y, batch_size, "cpu") if device.type != "xla": _test(y_pred, y, batch_size, idist.device()) def _test_distrib_integration(device): rank = idist.get_rank() def _test(n_epochs, metric_device): metric_device = torch.device(metric_device) n_iters = 80 batch_size = 151 torch.manual_seed(12 + rank) y_true = torch.randint(0, 2, (n_iters * batch_size,)).to(device) y_preds = torch.randint(0, 2, (n_iters * batch_size,)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) prc = PrecisionRecallCurve(device=metric_device) prc.attach(engine, "prc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_true = idist.all_gather(y_true) y_preds = idist.all_gather(y_preds) assert "prc" in engine.state.metrics precision, recall, thresholds = engine.state.metrics["prc"] np_y_true = y_true.cpu().numpy().ravel() np_y_preds = y_preds.cpu().numpy().ravel() sk_precision, sk_recall, sk_thresholds = precision_recall_curve(np_y_true, np_y_preds) assert precision.shape == sk_precision.shape assert recall.shape == sk_recall.shape assert thresholds.shape == sk_thresholds.shape assert pytest.approx(precision.cpu().numpy()) == sk_precision assert pytest.approx(recall.cpu().numpy()) == sk_recall assert pytest.approx(thresholds.cpu().numpy()) == sk_thresholds metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for _ in range(2): _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_compute, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_compute(device) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_psnr.py000066400000000000000000000172531465426447700215110ustar00rootroot00000000000000import numpy as np import pytest import torch from skimage.metrics import peak_signal_noise_ratio as ski_psnr import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import PSNR from ignite.utils import manual_seed def test_zero_div(): psnr = PSNR(1.0) with pytest.raises(NotComputableError, match="PSNR must have at least one example before it can be computed"): psnr.compute() def test_invalid_psnr(): y_pred = torch.rand(1, 3, 8, 8) y = torch.rand(1, 3, 8, 8) psnr = PSNR(1.0) with pytest.raises(TypeError, match="Expected y_pred and y to have the same data type."): psnr.update((y_pred, y.double())) with pytest.raises(ValueError, match="Expected y_pred and y to have the same shape."): psnr.update((y_pred, y.squeeze(dim=0))) @pytest.fixture(params=["float", "YCbCr", "uint8", "NHW shape"]) def test_data(request, available_device): manual_seed(42) if request.param == "float": y_pred = torch.rand(8, 3, 28, 28, device=available_device) y = y_pred * 0.8 elif request.param == "YCbCr": y_pred = torch.randint(16, 236, (4, 1, 12, 12), dtype=torch.uint8, device=available_device) y = torch.randint(16, 236, (4, 1, 12, 12), dtype=torch.uint8, device=available_device) elif request.param == "uint8": y_pred = torch.randint(0, 256, (4, 3, 16, 16), dtype=torch.uint8, device=available_device) y = (y_pred * 0.8).to(torch.uint8) elif request.param == "NHW shape": y_pred = torch.rand(8, 28, 28, device=available_device) y = y_pred * 0.8 else: raise ValueError(f"Wrong fixture parameter, given {request.param}") return (y_pred, y) def test_psnr(test_data, available_device): y_pred, y = test_data data_range = (y.max() - y.min()).cpu().item() psnr = PSNR(data_range=data_range, device=available_device) psnr.update(test_data) psnr_compute = psnr.compute() np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() np_psnr = 0 for np_y_pred_, np_y_ in zip(np_y_pred, np_y): np_psnr += ski_psnr(np_y_, np_y_pred_, data_range=data_range) assert psnr_compute > 0.0 assert isinstance(psnr_compute, float) assert np.allclose(psnr_compute, np_psnr / np_y.shape[0]) def _test( y_pred, y, data_range, metric_device, n_iters, batch_size, atol, output_transform=lambda x: x, compute_y_channel=False, ): def update(engine, i): return ( y_pred[i * batch_size : (i + 1) * batch_size], y[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) psnr = PSNR(data_range=data_range, output_transform=output_transform, device=metric_device) psnr.attach(engine, "psnr") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y = idist.all_gather(y) y_pred = idist.all_gather(y_pred) assert "psnr" in engine.state.metrics result = engine.state.metrics["psnr"] assert result > 0.0 if compute_y_channel: np_y_pred = y_pred[:, 0, ...].cpu().numpy() np_y = y[:, 0, ...].cpu().numpy() else: np_y_pred = y_pred.cpu().numpy() np_y = y.cpu().numpy() np_psnr = 0 for np_y_pred_, np_y_ in zip(np_y_pred, np_y): np_psnr += ski_psnr(np_y_, np_y_pred_, data_range=data_range) assert np.allclose(result, np_psnr / np_y.shape[0], atol=atol) @pytest.mark.usefixtures("distributed") class TestDistributed: def test_input_float(self): device = idist.device() def get_test_cases(): y_pred = torch.rand(n_iters * batch_size, 2, 2, device=device) y = y_pred * 0.65 return y_pred, y n_iters = 100 batch_size = 10 rank = idist.get_rank() for i in range(3): # check multiple random inputs as random exact occurencies are rare torch.manual_seed(42 + rank + i) y_pred, y = get_test_cases() _test(y_pred, y, 1, "cpu", n_iters, batch_size, atol=1e-8) if device.type != "xla": _test(y_pred, y, 1, idist.device(), n_iters, batch_size, atol=1e-8) def test_multilabel_input_YCbCr(self): device = idist.device() def get_test_cases(): y_pred = torch.randint(16, 236, (n_iters * batch_size, 1, 12, 12), dtype=torch.uint8, device=device) cbcr_pred = torch.randint(16, 241, (n_iters * batch_size, 2, 12, 12), dtype=torch.uint8, device=device) y = torch.randint(16, 236, (n_iters * batch_size, 1, 12, 12), dtype=torch.uint8, device=device) cbcr = torch.randint(16, 241, (n_iters * batch_size, 2, 12, 12), dtype=torch.uint8, device=device) y_pred, y = torch.cat((y_pred, cbcr_pred), dim=1), torch.cat((y, cbcr), dim=1) return y_pred, y n_iters = 100 batch_size = 10 def out_fn(x): return x[0][:, 0, ...], x[1][:, 0, ...] rank = idist.get_rank() for i in range(3): # check multiple random inputs as random exact occurencies are rare torch.manual_seed(42 + rank + i) y_pred, y = get_test_cases() _test( y_pred, y, 220, "cpu", n_iters, batch_size, atol=1e-8, output_transform=out_fn, compute_y_channel=True ) if device.type != "xla": dev = idist.device() _test( y_pred, y, 220, dev, n_iters, batch_size, atol=1e-8, output_transform=out_fn, compute_y_channel=True ) def test_multilabel_input_uint8(self): device = idist.device() def get_test_cases(): y_pred = torch.randint(0, 256, (n_iters * batch_size, 3, 16, 16), device=device, dtype=torch.uint8) y = (y_pred * 0.65).to(torch.uint8) return y_pred, y n_iters = 100 batch_size = 10 rank = idist.get_rank() for i in range(3): # check multiple random inputs as random exact occurencies are rare torch.manual_seed(42 + rank + i) y_pred, y = get_test_cases() _test(y_pred, y, 100, "cpu", n_iters, batch_size, atol=1e-8) if device.type != "xla": _test(y_pred, y, 100, idist.device(), n_iters, batch_size, atol=1e-8) def test_multilabel_input_NHW(self): device = idist.device() def get_test_cases(): y_pred = torch.rand(n_iters * batch_size, 28, 28, device=device) y = y_pred * 0.8 return y_pred, y n_iters = 100 batch_size = 10 rank = idist.get_rank() for i in range(3): # check multiple random inputs as random exact occurencies are rare torch.manual_seed(42 + rank + i) y_pred, y = get_test_cases() _test(y_pred, y, 10, "cpu", n_iters, batch_size, atol=1e-8) if device.type != "xla": _test(y_pred, y, 10, idist.device(), n_iters, batch_size, atol=1e-8) def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if torch.device(device).type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: psnr = PSNR(data_range=1.0, device=metric_device) dev = psnr._device assert dev == metric_device, f"{dev} vs {metric_device}" y_pred = torch.rand(2, 3, 28, 28, dtype=torch.float, device=device) y = y_pred * 0.65 psnr.update((y_pred, y)) dev = psnr._sum_of_batchwise_psnr.device assert dev == metric_device, f"{dev} vs {metric_device}" ignite-0.5.1/tests/ignite/metrics/test_recall.py000066400000000000000000000577521465426447700220010ustar00rootroot00000000000000import warnings import pytest import torch from sklearn.exceptions import UndefinedMetricWarning from sklearn.metrics import recall_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import Recall torch.manual_seed(12) def test_no_update(): recall = Recall() assert recall._updated is False with pytest.raises(NotComputableError, match=r"Recall must have at least one example before it can be computed"): recall.compute() assert recall._updated is False recall = Recall(is_multilabel=True) assert recall._updated is False with pytest.raises(NotComputableError, match=r"Recall must have at least one example before it can be computed"): recall.compute() assert recall._updated is False def test_average_parameter(): re = Recall(average="samples") with pytest.raises( ValueError, match=r"Argument average='samples' is incompatible with binary and multiclass input data." ): re.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long())) assert re._updated is False re = Recall(average="samples") with pytest.raises( ValueError, match=r"Argument average='samples' is incompatible with binary and multiclass input data." ): re.update((torch.rand(10, 3), torch.randint(0, 3, size=(10,)).long())) assert re._updated is False re = Recall(average=True) assert re._average == "macro" def test_binary_wrong_inputs(): re = Recall() assert re._updated is False with pytest.raises(ValueError, match=r"For binary cases, y must be comprised of 0's and 1's"): # y has not only 0 or 1 values re.update((torch.randint(0, 2, size=(10,)), torch.arange(0, 10).long())) assert re._updated is False with pytest.raises(ValueError, match=r"For binary cases, y_pred must be comprised of 0's and 1's"): # y_pred values are not thresholded to 0, 1 values re.update((torch.rand(10, 1), torch.randint(0, 2, size=(10,)).long())) assert re._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes re.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10, 5)).long())) assert re._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes re.update((torch.randint(0, 2, size=(10, 5, 6)), torch.randint(0, 2, size=(10,)).long())) assert re._updated is False with pytest.raises(ValueError, match=r"y must have shape of"): # incompatible shapes re.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10, 5, 6)).long())) assert re._updated is False with pytest.warns( RuntimeWarning, match="`y` and `y_pred` should be of dtype long when entry type is binary and average!=False", ): re = Recall(average=None) re.update((torch.randint(0, 2, size=(10,)).float(), torch.randint(0, 2, size=(10,)))) with pytest.warns( RuntimeWarning, match="`y` and `y_pred` should be of dtype long when entry type is binary and average!=False", ): re = Recall(average=None) re.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).float())) def ignite_average_to_scikit_average(average, data_type: str): if average in [None, "micro", "samples", "weighted", "macro"]: return average if average is False: if data_type == "binary": return "binary" else: return None elif average is True: return "macro" else: raise ValueError(f"Wrong average parameter `{average}`") @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_binary_input(average): re = Recall(average=average) assert re._updated is False def _test(y_pred, y, batch_size): re.reset() assert re._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size re.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: re.update((y_pred, y)) np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() assert re._type == "binary" assert re._updated is True assert isinstance(re.compute(), torch.Tensor if not average else float) re_compute = re.compute().numpy() if not average else re.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "binary") assert recall_score(np_y, np_y_pred, average=sk_average_parameter, labels=[0, 1]) == pytest.approx(re_compute) def get_test_cases(): test_cases = [ # Binary accuracy on input of shape (N, 1) or (N, ) (torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)), 1), (torch.randint(0, 2, size=(10, 1)), torch.randint(0, 2, size=(10, 1)), 1), # updated batches (torch.randint(0, 2, size=(50,)), torch.randint(0, 2, size=(50,)), 16), (torch.randint(0, 2, size=(50, 1)), torch.randint(0, 2, size=(50, 1)), 16), # Binary accuracy on input of shape (N, L) (torch.randint(0, 2, size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.randint(0, 2, size=(10, 1, 5)), torch.randint(0, 2, size=(10, 1, 5)), 1), # updated batches (torch.randint(0, 2, size=(50, 5)), torch.randint(0, 2, size=(50, 5)), 16), (torch.randint(0, 2, size=(50, 1, 5)), torch.randint(0, 2, size=(50, 1, 5)), 16), # Binary accuracy on input of shape (N, H, W) (torch.randint(0, 2, size=(10, 12, 10)), torch.randint(0, 2, size=(10, 12, 10)), 1), (torch.randint(0, 2, size=(10, 1, 12, 10)), torch.randint(0, 2, size=(10, 1, 12, 10)), 1), # updated batches (torch.randint(0, 2, size=(50, 12, 10)), torch.randint(0, 2, size=(50, 12, 10)), 16), (torch.randint(0, 2, size=(50, 1, 12, 10)), torch.randint(0, 2, size=(50, 1, 12, 10)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10,), dtype=torch.long), torch.randint(0, 2, size=(10,)), 1), (torch.zeros(size=(10, 1), dtype=torch.long), torch.randint(0, 2, size=(10, 1)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_multiclass_wrong_inputs(): re = Recall() assert re._updated is False with pytest.raises(ValueError): # incompatible shapes re.update((torch.rand(10, 5, 4), torch.randint(0, 2, size=(10,)).long())) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes re.update((torch.rand(10, 5, 6), torch.randint(0, 5, size=(10, 5)).long())) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes re.update((torch.rand(10), torch.randint(0, 5, size=(10, 5, 6)).long())) assert re._updated is False re = Recall(average=True) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates re.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).long())) re.update((torch.rand(10, 6), torch.randint(0, 5, size=(10,)).long())) assert re._updated is True with pytest.raises(ValueError): # incompatible shapes between two updates re.update((torch.rand(10, 5, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) re.update((torch.rand(10, 6, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) assert re._updated is True re = Recall(average=False) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates re.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).long())) re.update((torch.rand(10, 6), torch.randint(0, 5, size=(10,)).long())) assert re._updated is True with pytest.raises(ValueError): # incompatible shapes between two updates re.update((torch.rand(10, 5, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) re.update((torch.rand(10, 6, 12, 14), torch.randint(0, 5, size=(10, 12, 14)).long())) assert re._updated is True with pytest.warns( RuntimeWarning, match="`y` should be of dtype long when entry type is multiclass", ): re = Recall() re.update((torch.rand(10, 5), torch.randint(0, 5, size=(10,)).float())) @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_multiclass_input(average): re = Recall(average=average) assert re._updated is False def _test(y_pred, y, batch_size): re.reset() assert re._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size re.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: re.update((y_pred, y)) num_classes = y_pred.shape[1] np_y_pred = y_pred.argmax(dim=1).numpy().ravel() np_y = y.numpy().ravel() assert re._type == "multiclass" assert re._updated is True assert isinstance(re.compute(), torch.Tensor if not average else float) re_compute = re.compute().numpy() if not average else re.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "multiclass") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) sk_compute = recall_score(np_y, np_y_pred, labels=range(0, num_classes), average=sk_average_parameter) assert sk_compute == pytest.approx(re_compute) def get_test_cases(): test_cases = [ # Multiclass input data of shape (N, ) and (N, C) (torch.rand(10, 6), torch.randint(0, 6, size=(10,)), 1), (torch.rand(10, 4), torch.randint(0, 4, size=(10,)), 1), # updated batches (torch.rand(50, 6), torch.randint(0, 6, size=(50,)), 16), (torch.rand(50, 4), torch.randint(0, 4, size=(50,)), 16), # Multiclass input data of shape (N, L) and (N, C, L) (torch.rand(10, 5, 8), torch.randint(0, 5, size=(10, 8)), 1), (torch.rand(10, 8, 12), torch.randint(0, 8, size=(10, 12)), 1), # updated batches (torch.rand(50, 5, 8), torch.randint(0, 5, size=(50, 8)), 16), (torch.rand(50, 8, 12), torch.randint(0, 8, size=(50, 12)), 16), # Multiclass input data of shape (N, H, W, ...) and (N, C, H, W, ...) (torch.rand(10, 5, 18, 16), torch.randint(0, 5, size=(10, 18, 16)), 1), (torch.rand(10, 7, 20, 12), torch.randint(0, 7, size=(10, 20, 12)), 1), # updated batches (torch.rand(50, 5, 18, 16), torch.randint(0, 5, size=(50, 18, 16)), 16), (torch.rand(50, 7, 20, 12), torch.randint(0, 7, size=(50, 20, 12)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10, 6)), torch.randint(0, 6, size=(10,)), 1), (torch.zeros(size=(10, 4)), torch.randint(0, 4, size=(10,)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) def test_multilabel_wrong_inputs(): re = Recall(is_multilabel=True) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes re.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).long())) assert re._updated is False with pytest.raises(ValueError): # incompatible y_pred re.update((torch.rand(10, 5), torch.randint(0, 2, size=(10, 5)).long())) assert re._updated is False with pytest.raises(ValueError): # incompatible y re.update((torch.randint(0, 5, size=(10, 5, 6)), torch.rand(10))) assert re._updated is False with pytest.raises(ValueError): # incompatible shapes between two updates re.update((torch.randint(0, 2, size=(20, 5)), torch.randint(0, 2, size=(20, 5)).long())) re.update((torch.randint(0, 2, size=(20, 6)), torch.randint(0, 2, size=(20, 6)).long())) assert re._updated is True def to_numpy_multilabel(y): # reshapes input array to (N x ..., C) y = y.transpose(1, 0).cpu().numpy() num_classes = y.shape[0] y = y.reshape((num_classes, -1)).transpose(1, 0) return y @pytest.mark.parametrize("average", [None, False, "macro", "micro", "samples"]) def test_multilabel_input(average): re = Recall(average=average, is_multilabel=True) assert re._updated is False def _test(y_pred, y, batch_size): re.reset() assert re._updated is False if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size re.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: re.update((y_pred, y)) np_y_pred = to_numpy_multilabel(y_pred) np_y = to_numpy_multilabel(y) assert re._type == "multilabel" assert re._updated is True re_compute = re.compute().numpy() if not average else re.compute() sk_average_parameter = ignite_average_to_scikit_average(average, "multilabel") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) assert recall_score(np_y, np_y_pred, average=sk_average_parameter) == pytest.approx(re_compute) def get_test_cases(): test_cases = [ # Multilabel input data of shape (N, C) (torch.randint(0, 2, size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.randint(0, 2, size=(10, 4)), torch.randint(0, 2, size=(10, 4)), 1), # updated batches (torch.randint(0, 2, size=(50, 5)), torch.randint(0, 2, size=(50, 5)), 16), (torch.randint(0, 2, size=(50, 4)), torch.randint(0, 2, size=(50, 4)), 16), # Multilabel input data of shape (N, H, W) (torch.randint(0, 2, size=(10, 5, 10)), torch.randint(0, 2, size=(10, 5, 10)), 1), (torch.randint(0, 2, size=(10, 4, 10)), torch.randint(0, 2, size=(10, 4, 10)), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 10)), torch.randint(0, 2, size=(50, 5, 10)), 16), (torch.randint(0, 2, size=(50, 4, 10)), torch.randint(0, 2, size=(50, 4, 10)), 16), # Multilabel input data of shape (N, C, H, W, ...) (torch.randint(0, 2, size=(10, 5, 18, 16)), torch.randint(0, 2, size=(10, 5, 18, 16)), 1), (torch.randint(0, 2, size=(10, 4, 20, 23)), torch.randint(0, 2, size=(10, 4, 20, 23)), 1), # updated batches (torch.randint(0, 2, size=(50, 5, 18, 16)), torch.randint(0, 2, size=(50, 5, 18, 16)), 16), (torch.randint(0, 2, size=(50, 4, 20, 23)), torch.randint(0, 2, size=(50, 4, 20, 23)), 16), # Corner case with all zeros predictions (torch.zeros(size=(10, 5)), torch.randint(0, 2, size=(10, 5)), 1), (torch.zeros(size=(10, 4)), torch.randint(0, 2, size=(10, 4)), 1), ] return test_cases for _ in range(5): # check multiple random inputs as random exact occurencies are rare test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size) @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_incorrect_type(average): # Tests changing of type during training re = Recall(average=average) assert re._updated is False y_pred = torch.softmax(torch.rand(4, 4), dim=1) y = torch.ones(4).long() re.update((y_pred, y)) assert re._updated is True y_pred = torch.zeros(4) y = torch.ones(4).long() with pytest.raises(RuntimeError): re.update((y_pred, y)) assert re._updated is True @pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"]) def test_incorrect_y_classes(average): re = Recall(average=average) assert re._updated is False y_pred = torch.randint(0, 2, size=(10, 4)).float() y = torch.randint(4, 5, size=(10,)).long() with pytest.raises(ValueError): re.update((y_pred, y)) assert re._updated is False @pytest.mark.usefixtures("distributed") class TestDistributed: @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"]) @pytest.mark.parametrize("n_epochs", [1, 2]) def test_integration_multiclass(self, average, n_epochs): rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 60 batch_size = 16 n_classes = 7 metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) re = Recall(average=average, device=metric_device) re.attach(engine, "re") assert re._updated is False data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "re" in engine.state.metrics assert re._updated is True res = engine.state.metrics["re"] if isinstance(res, torch.Tensor): # Fixes https://github.com/pytorch/ignite/issues/1635#issuecomment-863026919 assert res.device.type == "cpu" res = res.cpu().numpy() sk_average_parameter = ignite_average_to_scikit_average(average, "multiclass") true_res = recall_score( y_true.cpu().numpy(), torch.argmax(y_preds, dim=1).cpu().numpy(), average=sk_average_parameter ) assert pytest.approx(res) == true_res @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"]) @pytest.mark.parametrize("n_epochs", [1, 2]) def test_integration_multilabel(self, average, n_epochs): rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 60 batch_size = 16 n_classes = 7 metric_devices = ["cpu"] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, ...], y_true[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) re = Recall(average=average, is_multilabel=True, device=metric_device) re.attach(engine, "re") assert re._updated is False data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "re" in engine.state.metrics assert re._updated is True res = engine.state.metrics["re"] res2 = re.compute() if isinstance(res, torch.Tensor): res = res.cpu().numpy() res2 = res2.cpu().numpy() assert (res == res2).all() else: assert res == res2 np_y_preds = to_numpy_multilabel(y_preds) np_y_true = to_numpy_multilabel(y_true) assert re._type == "multilabel" sk_average_parameter = ignite_average_to_scikit_average(average, "multilabel") with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) assert recall_score(np_y_true, np_y_preds, average=sk_average_parameter) == pytest.approx(res) @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro"]) def test_accumulator_device(self, average): # Binary accuracy on input of shape (N, 1) or (N, ) metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: re = Recall(average=average, device=metric_device) assert re._device == metric_device assert re._updated is False # Since the shape of the accumulated amount isn't known before the first update # call, the internal variables aren't tensors on the right device yet. y_reed = torch.randint(0, 2, size=(10,)) y = torch.randint(0, 2, size=(10,)).long() re.update((y_reed, y)) assert re._updated is True assert ( re._numerator.device == metric_device ), f"{type(re._numerator.device)}:{re._numerator.device} vs {type(metric_device)}:{metric_device}" if average != "samples": # For average='samples', `_denominator` is of type `int` so it has not `device` member. assert ( re._denominator.device == metric_device ), f"{type(re._denominator.device)}:{re._denominator.device} vs {type(metric_device)}:{metric_device}" if average == "weighted": assert re._weight.device == metric_device, f"{type(re._weight.device)}:{re._weight.device} vs " f"{type(metric_device)}:{metric_device}" @pytest.mark.parametrize("average", [False, "macro", "weighted", "micro", "samples"]) def test_multilabel_accumulator_device(self, average): # Multiclass input data of shape (N, ) and (N, C) metric_devices = [torch.device("cpu")] device = idist.device() if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: re = Recall(is_multilabel=True, average=average, device=metric_device) assert re._device == metric_device assert re._updated is False y_reed = torch.randint(0, 2, size=(10, 4, 20, 23)) y = torch.randint(0, 2, size=(10, 4, 20, 23)).long() re.update((y_reed, y)) assert re._updated is True assert ( re._numerator.device == metric_device ), f"{type(re._numerator.device)}:{re._numerator.device} vs {type(metric_device)}:{metric_device}" if average != "samples": # For average='samples', `_denominator` is of type `int` so it has not `device` member. assert ( re._denominator.device == metric_device ), f"{type(re._denominator.device)}:{re._denominator.device} vs {type(metric_device)}:{metric_device}" if average == "weighted": assert re._weight.device == metric_device, f"{type(re._weight.device)}:{re._weight.device} vs " f"{type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_roc_auc.py000066400000000000000000000325151465426447700221400ustar00rootroot00000000000000import os from unittest.mock import patch import pytest import sklearn import torch from sklearn.metrics import roc_auc_score import ignite.distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics import ROC_AUC from ignite.metrics.epoch_metric import EpochMetricWarning torch.manual_seed(12) @pytest.fixture() def mock_no_sklearn(): with patch.dict("sys.modules", {"sklearn.metrics": None}): yield sklearn def test_no_sklearn(mock_no_sklearn): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires scikit-learn to be installed."): ROC_AUC() def test_no_update(): roc_auc = ROC_AUC() with pytest.raises( NotComputableError, match=r"EpochMetric must have at least one example before it can be computed" ): roc_auc.compute() def test_input_types(): roc_auc = ROC_AUC() roc_auc.reset() output1 = (torch.rand(4, 3), torch.randint(0, 2, size=(4, 3), dtype=torch.long)) roc_auc.update(output1) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): roc_auc.update((torch.randint(0, 5, size=(4, 3)), torch.randint(0, 2, size=(4, 3)))) with pytest.raises(ValueError, match=r"Incoherent types between input y and stored targets"): roc_auc.update((torch.rand(4, 3), torch.randint(0, 2, size=(4, 3)).to(torch.int32))) with pytest.raises(ValueError, match=r"Incoherent types between input y_pred and stored predictions"): roc_auc.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long())) def test_check_shape(): roc_auc = ROC_AUC() with pytest.raises(ValueError, match=r"Predictions should be of shape"): roc_auc._check_shape((torch.tensor(0), torch.tensor(0))) with pytest.raises(ValueError, match=r"Predictions should be of shape"): roc_auc._check_shape((torch.rand(4, 3, 1), torch.rand(4, 3))) with pytest.raises(ValueError, match=r"Targets should be of shape"): roc_auc._check_shape((torch.rand(4, 3), torch.rand(4, 3, 1))) @pytest.fixture(params=range(8)) def test_data_binary_and_multilabel(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 1), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 1), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 16), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 16), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_binary_and_multilabel_inputs(n_times, test_data_binary_and_multilabel): y_pred, y, batch_size = test_data_binary_and_multilabel roc_auc = ROC_AUC() roc_auc.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size roc_auc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: roc_auc.update((y_pred, y)) np_y = y.numpy() np_y_pred = y_pred.numpy() res = roc_auc.compute() assert isinstance(res, float) assert roc_auc_score(np_y, np_y_pred) == pytest.approx(res) def test_check_compute_fn(): y_pred = torch.zeros((8, 13)) y_pred[:, 1] = 1 y_true = torch.zeros_like(y_pred) output = (y_pred, y_true) em = ROC_AUC(check_compute_fn=True) em.reset() with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"): em.update(output) em = ROC_AUC(check_compute_fn=False) em.update(output) @pytest.fixture(params=range(4)) def test_data_integration_binary_and_multilabel(request): return [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(100,)).long(), torch.randint(0, 2, size=(100,)).long(), 10), (torch.randint(0, 2, size=(100, 1)).long(), torch.randint(0, 2, size=(100, 1)).long(), 10), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(100, 3)).long(), torch.randint(0, 2, size=(100, 3)).long(), 10), (torch.randint(0, 2, size=(100, 4)).long(), torch.randint(0, 2, size=(100, 4)).long(), 10), ][request.param] @pytest.mark.parametrize("n_times", range(5)) def test_integration_binary_and_multilabel_inputs(n_times, test_data_integration_binary_and_multilabel): y_pred, y, batch_size = test_data_integration_binary_and_multilabel def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) roc_auc_metric = ROC_AUC() roc_auc_metric.attach(engine, "roc_auc") np_y = y.numpy() np_y_pred = y_pred.numpy() np_roc_auc = roc_auc_score(np_y, np_y_pred) data = list(range(y_pred.shape[0] // batch_size)) roc_auc = engine.run(data, max_epochs=1).metrics["roc_auc"] assert isinstance(roc_auc, float) assert np_roc_auc == pytest.approx(roc_auc) def _test_distrib_binary_and_multilabel_inputs(device): rank = idist.get_rank() def _test(y_pred, y, batch_size, metric_device): metric_device = torch.device(metric_device) roc_auc = ROC_AUC(device=metric_device) roc_auc.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size roc_auc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: roc_auc.update((y_pred, y)) # gather y_pred, y y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) np_y = y.cpu().numpy() np_y_pred = y_pred.cpu().numpy() res = roc_auc.compute() assert isinstance(res, float) assert roc_auc_score(np_y, np_y_pred) == pytest.approx(res) def get_test_cases(): test_cases = [ # Binary input data of shape (N,) or (N, 1) (torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10,)).long(), 1), (torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 1)).long(), 1), # updated batches (torch.randint(0, 2, size=(50,)).long(), torch.randint(0, 2, size=(50,)).long(), 16), (torch.randint(0, 2, size=(50, 1)).long(), torch.randint(0, 2, size=(50, 1)).long(), 16), # Binary input data of shape (N, L) (torch.randint(0, 2, size=(10, 4)).long(), torch.randint(0, 2, size=(10, 4)).long(), 1), (torch.randint(0, 2, size=(10, 7)).long(), torch.randint(0, 2, size=(10, 7)).long(), 1), # updated batches (torch.randint(0, 2, size=(50, 4)).long(), torch.randint(0, 2, size=(50, 4)).long(), 16), (torch.randint(0, 2, size=(50, 7)).long(), torch.randint(0, 2, size=(50, 7)).long(), 16), ] return test_cases for i in range(5): torch.manual_seed(12 + rank + i) test_cases = get_test_cases() for y_pred, y, batch_size in test_cases: _test(y_pred, y, batch_size, "cpu") if device.type != "xla": _test(y_pred, y, batch_size, idist.device()) def _test_distrib_integration_binary_input(device): rank = idist.get_rank() n_iters = 80 batch_size = 16 n_classes = 2 def _test(y_preds, y_true, n_epochs, metric_device, update_fn): metric_device = torch.device(metric_device) engine = Engine(update_fn) roc_auc = ROC_AUC(device=metric_device) roc_auc.attach(engine, "roc_auc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "roc_auc" in engine.state.metrics res = engine.state.metrics["roc_auc"] true_res = roc_auc_score(y_true.cpu().numpy(), y_preds.cpu().numpy()) assert pytest.approx(res) == true_res def get_tests(is_N): if is_N: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size).to(device) def update_fn(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) else: y_true = torch.randint(0, n_classes, size=(n_iters * batch_size, 10)).to(device) y_preds = torch.rand(n_iters * batch_size, 10).to(device) def update_fn(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size], ) return y_preds, y_true, update_fn metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: for i in range(2): torch.manual_seed(12 + rank + i) # Binary input data of shape (N,) y_preds, y_true, update_fn = get_tests(is_N=True) _test(y_preds, y_true, n_epochs=1, metric_device=metric_device, update_fn=update_fn) _test(y_preds, y_true, n_epochs=2, metric_device=metric_device, update_fn=update_fn) # Binary input data of shape (N, L) y_preds, y_true, update_fn = get_tests(is_N=False) _test(y_preds, y_true, n_epochs=1, metric_device=metric_device, update_fn=update_fn) _test(y_preds, y_true, n_epochs=2, metric_device=metric_device, update_fn=update_fn) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_binary_and_multilabel_inputs, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_integration_binary_input, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_binary_and_multilabel_inputs(device) _test_distrib_integration_binary_input(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_roc_curve.py000066400000000000000000000127021465426447700225100ustar00rootroot00000000000000from unittest.mock import patch import numpy as np import pytest import sklearn import torch from sklearn.metrics import roc_curve from ignite import distributed as idist from ignite.engine import Engine from ignite.exceptions import NotComputableError from ignite.metrics.epoch_metric import EpochMetricWarning from ignite.metrics.roc_auc import RocCurve def test_wrong_setup(): def compute_fn(y_preds, y_targets): return 0.0 with pytest.raises(NotComputableError, match="RocCurve must have at least one example before it can be computed"): metric = RocCurve(compute_fn) metric.compute() @pytest.fixture() def mock_no_sklearn(): with patch.dict("sys.modules", {"sklearn.metrics": None}): yield sklearn def test_no_sklearn(mock_no_sklearn): with pytest.raises(ModuleNotFoundError, match=r"This contrib module requires scikit-learn to be installed"): RocCurve() def test_roc_curve(): size = 100 np_y_pred = np.random.rand(size, 1) np_y = np.zeros((size,)) np_y[size // 2 :] = 1 sk_fpr, sk_tpr, sk_thresholds = roc_curve(np_y, np_y_pred) roc_curve_metric = RocCurve() y_pred = torch.from_numpy(np_y_pred) y = torch.from_numpy(np_y) roc_curve_metric.update((y_pred, y)) fpr, tpr, thresholds = roc_curve_metric.compute() assert np.array_equal(fpr, sk_fpr) assert np.array_equal(tpr, sk_tpr) # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_integration_roc_curve_with_output_transform(): np.random.seed(1) size = 100 np_y_pred = np.random.rand(size, 1) np_y = np.zeros((size,)) np_y[size // 2 :] = 1 np.random.shuffle(np_y) sk_fpr, sk_tpr, sk_thresholds = roc_curve(np_y, np_y_pred) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) roc_curve_metric = RocCurve(output_transform=lambda x: (x[1], x[2])) roc_curve_metric.attach(engine, "roc_curve") data = list(range(size // batch_size)) fpr, tpr, thresholds = engine.run(data, max_epochs=1).metrics["roc_curve"] assert np.array_equal(fpr, sk_fpr) assert np.array_equal(tpr, sk_tpr) # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_integration_roc_curve_with_activated_output_transform(): np.random.seed(1) size = 100 np_y_pred = np.random.rand(size, 1) np_y_pred_sigmoid = torch.sigmoid(torch.from_numpy(np_y_pred)).numpy() np_y = np.zeros((size,)) np_y[size // 2 :] = 1 np.random.shuffle(np_y) sk_fpr, sk_tpr, sk_thresholds = roc_curve(np_y, np_y_pred_sigmoid) batch_size = 10 def update_fn(engine, batch): idx = (engine.state.iteration - 1) * batch_size y_true_batch = np_y[idx : idx + batch_size] y_pred_batch = np_y_pred[idx : idx + batch_size] return idx, torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) engine = Engine(update_fn) roc_curve_metric = RocCurve(output_transform=lambda x: (torch.sigmoid(x[1]), x[2])) roc_curve_metric.attach(engine, "roc_curve") data = list(range(size // batch_size)) fpr, tpr, thresholds = engine.run(data, max_epochs=1).metrics["roc_curve"] assert np.array_equal(fpr, sk_fpr) assert np.array_equal(tpr, sk_tpr) # assert thresholds almost equal, due to numpy->torch->numpy conversion np.testing.assert_array_almost_equal(thresholds, sk_thresholds) def test_check_compute_fn(): y_pred = torch.zeros((8, 13)) y_pred[:, 1] = 1 y_true = torch.zeros_like(y_pred) output = (y_pred, y_true) em = RocCurve(check_compute_fn=True) em.reset() with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"): em.update(output) em = RocCurve(check_compute_fn=False) em.update(output) def test_distrib_integration(distributed): rank = idist.get_rank() torch.manual_seed(41 + rank) n_batches, batch_size = 5, 10 y = torch.randint(0, 2, size=(n_batches * batch_size,)) y_pred = torch.rand((n_batches * batch_size,)) def update(engine, i): return ( y_pred[i * batch_size : (i + 1) * batch_size], y[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) device = torch.device("cpu") if idist.device().type == "xla" else idist.device() metric = RocCurve(device=device) metric.attach(engine, "roc_curve") data = list(range(n_batches)) engine.run(data=data, max_epochs=1) fpr, tpr, thresholds = engine.state.metrics["roc_curve"] assert isinstance(fpr, torch.Tensor) and fpr.device == device assert isinstance(tpr, torch.Tensor) and tpr.device == device assert isinstance(thresholds, torch.Tensor) and thresholds.device == device y = idist.all_gather(y) y_pred = idist.all_gather(y_pred) sk_fpr, sk_tpr, sk_thresholds = roc_curve(y.cpu().numpy(), y_pred.cpu().numpy()) np.testing.assert_array_almost_equal(fpr.cpu().numpy(), sk_fpr) np.testing.assert_array_almost_equal(tpr.cpu().numpy(), sk_tpr) np.testing.assert_array_almost_equal(thresholds.cpu().numpy(), sk_thresholds) ignite-0.5.1/tests/ignite/metrics/test_root_mean_squared_error.py000066400000000000000000000123521465426447700254420ustar00rootroot00000000000000import os import numpy as np import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import RootMeanSquaredError def test_zero_sample(): rmse = RootMeanSquaredError() with pytest.raises( NotComputableError, match=r"MeanSquaredError must have at least one example before it can be computed" ): rmse.compute() @pytest.fixture(params=[0, 1, 2, 3]) def test_data(request): return [ (torch.empty(10).uniform_(0, 10), torch.empty(10).uniform_(0, 10), 1), (torch.empty(10, 1).uniform_(-10, 10), torch.empty(10, 1).uniform_(-10, 10), 1), # updated batches (torch.empty(50).uniform_(0, 10), torch.empty(50).uniform_(0, 10), 16), (torch.empty(50, 1).uniform_(-10, 10), torch.empty(50, 1).uniform_(-10, 10), 16), ][request.param] @pytest.mark.parametrize("n_times", range(3)) def test_compute(n_times, test_data): rmse = RootMeanSquaredError() y_pred, y, batch_size = test_data rmse.reset() if batch_size > 1: n_iters = y.shape[0] // batch_size + 1 for i in range(n_iters): idx = i * batch_size rmse.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size])) else: rmse.update((y_pred, y)) np_y = y.numpy().ravel() np_y_pred = y_pred.numpy().ravel() np_res = np.sqrt(np.power((np_y - np_y_pred), 2.0).sum() / np_y.shape[0]) res = rmse.compute() assert isinstance(res, float) assert pytest.approx(res) == np_res def _test_distrib_integration(device, tol=1e-6): from ignite.engine import Engine rank = idist.get_rank() def _test(metric_device): n_iters = 2 batch_size = 3 torch.manual_seed(12 + rank) y_true = torch.arange(0, n_iters * batch_size, dtype=torch.float).to(device) y_preds = (rank + 1) * torch.ones(n_iters * batch_size, dtype=torch.float).to(device) def update(engine, i): return y_preds[i * batch_size : (i + 1) * batch_size], y_true[i * batch_size : (i + 1) * batch_size] engine = Engine(update) m = RootMeanSquaredError(device=metric_device) m.attach(engine, "rmse") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "rmse" in engine.state.metrics res = engine.state.metrics["rmse"] true_res = np.sqrt(np.mean(np.square((y_true - y_preds).cpu().numpy()))) assert pytest.approx(res, rel=tol) == true_res _test("cpu") if device.type != "xla": _test(idist.device()) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device, tol=1e-4) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device, tol=1e-4) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/metrics/test_running_average.py000066400000000000000000000361411465426447700236760ustar00rootroot00000000000000import warnings from functools import partial from itertools import accumulate import numpy as np import pytest import torch import ignite.distributed as idist from ignite.engine import Engine, Events from ignite.metrics import Accuracy, RunningAverage from ignite.metrics.metric import RunningBatchWise, RunningEpochWise, SingleEpochRunningBatchWise def test_wrong_input_args(): with pytest.raises(TypeError, match=r"Argument src should be a Metric or None."): RunningAverage(src=[12, 34]) with pytest.raises(ValueError, match=r"Argument alpha should be a float between"): RunningAverage(alpha=-1.0) with pytest.raises(ValueError, match=r"Argument output_transform should be None if src is a Metric"): RunningAverage(Accuracy(), output_transform=lambda x: x[0]) with pytest.raises(ValueError, match=r"Argument output_transform should not be None if src corresponds"): RunningAverage() with pytest.raises(ValueError, match=r"Argument device should be None if src is a Metric"): RunningAverage(Accuracy(), device="cpu") with pytest.warns(UserWarning, match=r"`epoch_bound` is deprecated and will be removed in the future."): m = RunningAverage(Accuracy(), epoch_bound=True) @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("epoch_bound, usage", [(False, RunningBatchWise()), (True, SingleEpochRunningBatchWise())]) def test_epoch_bound(epoch_bound, usage): with warnings.catch_warnings(): metric = RunningAverage(output_transform=lambda _: _, epoch_bound=epoch_bound) e1 = Engine(lambda _, __: None) e2 = Engine(lambda _, __: None) metric.attach(e1, "") metric.epoch_bound = None metric.attach(e2, "", usage) e1._event_handlers == e2._event_handlers @pytest.mark.parametrize("usage", [RunningBatchWise(), SingleEpochRunningBatchWise()]) def test_integration_batchwise(usage): torch.manual_seed(10) alpha = 0.98 n_iters = 10 batch_size = 10 n_classes = 10 max_epochs = 3 data = list(range(n_iters)) loss = torch.arange(n_iters, dtype=torch.float) y_true = torch.randint(0, n_classes, size=(n_iters, batch_size)) y_pred = torch.rand(n_iters, batch_size, n_classes) accuracy_running_averages = torch.tensor( list( accumulate( map( lambda y_yp: torch.sum(y_yp[1].argmax(dim=-1) == y_yp[0]).item() / y_yp[0].size(0), zip( y_true if isinstance(usage, SingleEpochRunningBatchWise) else y_true.repeat(max_epochs, 1), y_pred if isinstance(usage, SingleEpochRunningBatchWise) else y_pred.repeat(max_epochs, 1, 1), ), ), lambda ra, acc: ra * alpha + (1 - alpha) * acc, ) ) ) if isinstance(usage, SingleEpochRunningBatchWise): accuracy_running_averages = accuracy_running_averages.repeat(max_epochs) loss_running_averages = torch.tensor( list( accumulate( loss if isinstance(usage, SingleEpochRunningBatchWise) else loss.repeat(max_epochs), lambda ra, loss_item: ra * alpha + (1 - alpha) * loss_item, ) ) ) if isinstance(usage, SingleEpochRunningBatchWise): loss_running_averages = loss_running_averages.repeat(max_epochs) def update_fn(_, i): loss_value = loss[i] y_true_batch = y_true[i] y_pred_batch = y_pred[i] return loss_value, y_pred_batch, y_true_batch trainer = Engine(update_fn) acc_metric = RunningAverage(Accuracy(output_transform=lambda x: [x[1], x[2]]), alpha=alpha) acc_metric.attach(trainer, "running_avg_accuracy", usage) avg_output = RunningAverage(output_transform=lambda x: x[0], alpha=alpha) avg_output.attach(trainer, "running_avg_loss", usage) metric_acc_running_averages = [] metric_loss_running_averages = [] @trainer.on(Events.ITERATION_COMPLETED) def _(engine): metric_acc_running_averages.append(engine.state.metrics["running_avg_accuracy"]) metric_loss_running_averages.append(engine.state.metrics["running_avg_loss"]) trainer.run(data, max_epochs=3) assert (torch.tensor(metric_acc_running_averages) == accuracy_running_averages).all() assert (torch.tensor(metric_loss_running_averages) == loss_running_averages).all() metric_state = acc_metric.state_dict() saved__value = acc_metric._value saved_src__num_correct = acc_metric.src._num_correct saved_src__num_examples = acc_metric.src._num_examples acc_metric.reset() acc_metric.load_state_dict(metric_state) assert acc_metric._value == saved__value assert acc_metric.src._num_examples == saved_src__num_examples assert (acc_metric.src._num_correct == saved_src__num_correct).all() metric_state = avg_output.state_dict() saved__value = avg_output._value assert avg_output.src is None avg_output.reset() avg_output.load_state_dict(metric_state) assert avg_output._value == saved__value assert avg_output.src is None def test_integration_epochwise(): torch.manual_seed(10) alpha = 0.98 n_iters = 10 batch_size = 10 n_classes = 10 max_epochs = 3 data = list(range(n_iters)) y_true = torch.randint(0, n_classes, size=(n_iters, batch_size)) y_pred = torch.rand(max_epochs, n_iters, batch_size, n_classes) accuracy_running_averages = torch.tensor( list( accumulate( map( lambda y_pred_epoch: torch.sum(y_pred_epoch.argmax(dim=-1) == y_true).item() / y_true.numel(), y_pred, ), lambda ra, acc: ra * alpha + (1 - alpha) * acc, ) ) ) def update_fn(engine, i): y_true_batch = y_true[i] y_pred_batch = y_pred[engine.state.epoch - 1, i] return y_pred_batch, y_true_batch trainer = Engine(update_fn) acc_metric = RunningAverage(Accuracy(), alpha=alpha) acc_metric.attach(trainer, "running_avg_accuracy", RunningEpochWise()) metric_acc_running_averages = [] @trainer.on(Events.EPOCH_COMPLETED) def _(engine): metric_acc_running_averages.append(engine.state.metrics["running_avg_accuracy"]) trainer.run(data, max_epochs=3) assert (torch.tensor(metric_acc_running_averages) == accuracy_running_averages).all() @pytest.mark.parametrize("usage", [RunningBatchWise(), SingleEpochRunningBatchWise(), RunningEpochWise()]) def test_multiple_attach(usage): n_iters = 100 errD_values = iter(np.random.rand(n_iters)) errG_values = iter(np.random.rand(n_iters)) D_x_values = iter(np.random.rand(n_iters)) D_G_z1 = iter(np.random.rand(n_iters)) D_G_z2 = iter(np.random.rand(n_iters)) def update_fn(engine, batch): return { "errD": next(errD_values), "errG": next(errG_values), "D_x": next(D_x_values), "D_G_z1": next(D_G_z1), "D_G_z2": next(D_G_z2), } trainer = Engine(update_fn) alpha = 0.98 # attach running average monitoring_metrics = ["errD", "errG", "D_x", "D_G_z1", "D_G_z2"] for metric in monitoring_metrics: foo = partial(lambda x, metric: x[metric], metric=metric) RunningAverage(alpha=alpha, output_transform=foo).attach(trainer, metric, usage) @trainer.on(usage.COMPLETED) def check_values(engine): values = [] for metric in monitoring_metrics: values.append(engine.state.metrics[metric]) values = set(values) assert len(values) == len(monitoring_metrics) data = list(range(n_iters)) trainer.run(data) @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("epoch_bound", [True, False, None]) @pytest.mark.parametrize("src", [Accuracy(), None]) @pytest.mark.parametrize("usage", [RunningBatchWise(), SingleEpochRunningBatchWise(), RunningEpochWise()]) def test_detach(epoch_bound, src, usage): with warnings.catch_warnings(): m = RunningAverage(src, output_transform=(lambda _: _) if src is None else None, epoch_bound=epoch_bound) e = Engine(lambda _, __: None) m.attach(e, "m", usage) for event_handlers in e._event_handlers.values(): assert len(event_handlers) != 0 m.detach(e, usage) for event_handlers in e._event_handlers.values(): assert len(event_handlers) == 0 def test_output_is_tensor(): m = RunningAverage(output_transform=lambda x: x) m.update(torch.rand(10, requires_grad=True).mean()) v = m.compute() assert isinstance(v, torch.Tensor) assert not v.requires_grad m.update(torch.rand(10, requires_grad=True).mean()) v = m.compute() assert isinstance(v, torch.Tensor) assert not v.requires_grad m.update(torch.rand(10, requires_grad=True).mean()) v = m.compute() assert isinstance(v, torch.Tensor) assert not v.requires_grad @pytest.mark.usefixtures("distributed") class TestDistributed: @pytest.mark.parametrize("usage", [RunningBatchWise(), SingleEpochRunningBatchWise()]) def test_src_is_output(self, usage): device = idist.device() rank = idist.get_rank() n_iters = 10 n_epochs = 3 # Data per rank data = list(range(n_iters)) rank_loss_count = n_epochs * n_iters all_loss_values = torch.arange(0, rank_loss_count * idist.get_world_size(), dtype=torch.float64).to(device) loss_values = iter(all_loss_values[rank_loss_count * rank : rank_loss_count * (rank + 1)]) def update_fn(engine, batch): loss_value = next(loss_values) return loss_value.item() trainer = Engine(update_fn) alpha = 0.98 metric_device = device if device.type != "xla" else "cpu" avg_output = RunningAverage(output_transform=lambda x: x, alpha=alpha, device=metric_device) avg_output.attach(trainer, "running_avg_output", usage) @trainer.on(usage.STARTED) def reset_running_avg_output(engine): engine.state.running_avg_output = None @trainer.on(usage.ITERATION_COMPLETED) def running_avg_output_update(engine): i = engine.state.iteration - 1 o = sum([all_loss_values[i + r * rank_loss_count] for r in range(idist.get_world_size())]).item() o /= idist.get_world_size() if engine.state.running_avg_output is None: engine.state.running_avg_output = o else: engine.state.running_avg_output = engine.state.running_avg_output * alpha + (1.0 - alpha) * o @trainer.on(usage.COMPLETED) def assert_equal_running_avg_output_values(engine): it = engine.state.iteration assert ( engine.state.running_avg_output == engine.state.metrics["running_avg_output"] ), f"{it}: {engine.state.running_avg_output} vs {engine.state.metrics['running_avg_output']}" trainer.run(data, max_epochs=3) @pytest.mark.parametrize("usage", [RunningBatchWise(), SingleEpochRunningBatchWise(), RunningEpochWise()]) def test_src_is_metric(self, usage): device = idist.device() rank = idist.get_rank() n_iters = 10 n_epochs = 3 batch_size = 10 n_classes = 10 def _test(metric_device): data = list(range(n_iters)) np.random.seed(12) all_y_true_batch_values = np.random.randint( 0, n_classes, size=(idist.get_world_size(), n_epochs * n_iters, batch_size) ) all_y_pred_batch_values = np.random.rand(idist.get_world_size(), n_epochs * n_iters, batch_size, n_classes) y_true_batch_values = iter(all_y_true_batch_values[rank, ...]) y_pred_batch_values = iter(all_y_pred_batch_values[rank, ...]) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) trainer = Engine(update_fn) alpha = 0.98 acc_metric = RunningAverage(Accuracy(device=metric_device), alpha=alpha) acc_metric.attach(trainer, "running_avg_accuracy", usage) running_avg_acc = [ None, ] true_acc_metric = Accuracy(device=metric_device) @trainer.on(Events.ITERATION_COMPLETED) def manual_running_avg_acc(engine): iteration = engine.state.iteration if not isinstance(usage, RunningEpochWise) or ((iteration - 1) % n_iters) == 0: true_acc_metric.reset() if ((iteration - 1) % n_iters) == 0 and isinstance(usage, SingleEpochRunningBatchWise): running_avg_acc[0] = None for j in range(idist.get_world_size()): output = ( torch.from_numpy(all_y_pred_batch_values[j, iteration - 1, :, :]), torch.from_numpy(all_y_true_batch_values[j, iteration - 1, :]), ) true_acc_metric.update(output) if not isinstance(usage, RunningEpochWise) or (iteration % n_iters) == 0: batch_acc = true_acc_metric._num_correct.item() * 1.0 / true_acc_metric._num_examples if running_avg_acc[0] is None: running_avg_acc[0] = batch_acc else: running_avg_acc[0] = running_avg_acc[0] * alpha + (1.0 - alpha) * batch_acc engine.state.running_avg_acc = running_avg_acc[0] @trainer.on(Events.ITERATION_COMPLETED) def assert_equal_running_avg_acc_values(engine): print(engine.state.iteration) if not isinstance(usage, RunningEpochWise) or ( (engine.state.iteration > 1) and ((engine.state.iteration % n_iters) == 1) ): assert ( engine.state.running_avg_acc == engine.state.metrics["running_avg_accuracy"] ), f"{engine.state.running_avg_acc} vs {engine.state.metrics['running_avg_accuracy']}" trainer.run(data, max_epochs=3) _test("cpu") if device.type != "xla": _test(idist.device()) def test_accumulator_device(self): device = idist.device() metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: # Don't test the src=Metric case because compute() returns a scalar, # so the metric doesn't accumulate on the device specified avg = RunningAverage(output_transform=lambda x: x, device=metric_device) assert avg._device == metric_device # Value is None until the first update then compute call for _ in range(3): avg.update(torch.tensor(1.0, device=device)) avg.compute() assert ( avg._value.device == metric_device ), f"{type(avg._value.device)}:{avg._value.device} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_ssim.py000066400000000000000000000262411465426447700214770ustar00rootroot00000000000000from typing import Sequence, Union import numpy as np import pytest import torch from skimage.metrics import structural_similarity as ski_ssim import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import SSIM def test_zero_div(): ssim = SSIM(data_range=1.0) with pytest.raises(NotComputableError): ssim.compute() def test_invalid_ssim(): y_pred = torch.rand(1, 1, 4, 4) y = y_pred + 0.125 with pytest.raises(ValueError, match=r"Expected kernel_size to have odd positive number."): ssim = SSIM(data_range=1.0, kernel_size=2) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Expected kernel_size to have odd positive number."): ssim = SSIM(data_range=1.0, kernel_size=-1) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Argument kernel_size should be either int or a sequence of int."): ssim = SSIM(data_range=1.0, kernel_size=1.0) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Argument sigma should be either float or a sequence of float."): ssim = SSIM(data_range=1.0, sigma=-1) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Expected sigma to have positive number."): ssim = SSIM(data_range=1.0, sigma=(-1, -1)) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Argument sigma should be either float or a sequence of float."): ssim = SSIM(data_range=1.0, sigma=1) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Expected y_pred and y to have the same shape."): y = y.squeeze(dim=0) ssim = SSIM(data_range=1.0) ssim.update((y_pred, y)) ssim.compute() with pytest.raises(ValueError, match=r"Expected y_pred and y to have BxCxHxW shape."): y = y.squeeze(dim=0) ssim = SSIM(data_range=1.0) ssim.update((y, y)) ssim.compute() with pytest.raises(TypeError, match=r"Expected y_pred and y to have the same data type."): y = y.double() ssim = SSIM(data_range=1.0) ssim.update((y_pred, y)) ssim.compute() @pytest.mark.parametrize( "shape, kernel_size, gaussian, use_sample_covariance", [[(8, 3, 224, 224), 7, False, True], [(12, 3, 28, 28), 11, True, False]], ) def test_ssim(available_device, shape, kernel_size, gaussian, use_sample_covariance): y_pred = torch.rand(shape, device=available_device) y = y_pred * 0.8 compare_ssim_ignite_skiimg( y_pred, y, available_device, kernel_size=kernel_size, gaussian=gaussian, use_sample_covariance=use_sample_covariance, ) def compare_ssim_ignite_skiimg( y_pred: torch.Tensor, y: torch.Tensor, device: torch.device, precision: float = 2e-5, # default to float32 expected precision *, skimg_y_pred: Union[np.ndarray, None] = None, skimg_y: Union[np.ndarray, None] = None, data_range: float = 1.0, kernel_size: Union[int, Sequence[int]] = 11, gaussian: bool = True, use_sample_covariance: bool = False, ): sigma = 1.5 ssim = SSIM(data_range=data_range, sigma=sigma, device=device) ssim.update((y_pred, y)) ignite_ssim = ssim.compute() if y_pred.dtype == torch.bfloat16: y_pred = y_pred.to(dtype=torch.float16) if skimg_y_pred is None: skimg_y_pred = y_pred.cpu().numpy() if skimg_y is None: skimg_y = skimg_y_pred * 0.8 skimg_ssim = ski_ssim( skimg_y_pred, skimg_y, win_size=kernel_size, sigma=sigma, channel_axis=1, gaussian_weights=gaussian, data_range=data_range, use_sample_covariance=use_sample_covariance, ) assert isinstance(ignite_ssim, float) assert np.allclose(ignite_ssim, skimg_ssim, atol=precision) @pytest.mark.parametrize( "metric_device, y_pred_device", [ [torch.device("cpu"), torch.device("cpu")], [torch.device("cpu"), torch.device("cuda")], [torch.device("cuda"), torch.device("cpu")], [torch.device("cuda"), torch.device("cuda")], ], ) def test_ssim_device(available_device, metric_device, y_pred_device): if available_device == "cpu": pytest.skip("This test requires a cuda device.") data_range = 1.0 sigma = 1.5 shape = (12, 5, 256, 256) ssim = SSIM(data_range=data_range, sigma=sigma, device=metric_device) y_pred = torch.rand(shape, device=y_pred_device) y = y_pred * 0.8 if metric_device == torch.device("cuda") and y_pred_device == torch.device("cpu"): with pytest.warns(UserWarning): ssim.update((y_pred, y)) else: ssim.update((y_pred, y)) if metric_device == torch.device("cuda") or y_pred_device == torch.device("cuda"): # A tensor will always have the device index set excepted_device = torch.device("cuda:0") else: excepted_device = torch.device("cpu") assert ssim._kernel.device == excepted_device def test_ssim_variable_batchsize(available_device): # Checks https://github.com/pytorch/ignite/issues/2532 sigma = 1.5 data_range = 1.0 ssim = SSIM(data_range=data_range, sigma=sigma) y_preds = [ torch.rand(12, 3, 28, 28, device=available_device), torch.rand(12, 3, 28, 28, device=available_device), torch.rand(8, 3, 28, 28, device=available_device), torch.rand(16, 3, 28, 28, device=available_device), torch.rand(1, 3, 28, 28, device=available_device), torch.rand(30, 3, 28, 28, device=available_device), ] y_true = [v * 0.8 for v in y_preds] for y_pred, y in zip(y_preds, y_true): ssim.update((y_pred, y)) out = ssim.compute() ssim.reset() ssim.update((torch.cat(y_preds), torch.cat(y_true))) expected = ssim.compute() assert np.allclose(out, expected) def test_ssim_variable_channel(available_device): y_preds = [ torch.rand(12, 5, 28, 28, device=available_device), torch.rand(12, 4, 28, 28, device=available_device), torch.rand(12, 7, 28, 28, device=available_device), torch.rand(12, 3, 28, 28, device=available_device), torch.rand(12, 11, 28, 28, device=available_device), torch.rand(12, 6, 28, 28, device=available_device), ] y_true = [v * 0.8 for v in y_preds] for y_pred, y in zip(y_preds, y_true): compare_ssim_ignite_skiimg(y_pred, y, available_device) @pytest.mark.parametrize( "dtype, precision", [(torch.bfloat16, 2e-3), (torch.float16, 4e-4), (torch.float32, 2e-5), (torch.float64, 2e-5)] ) def test_cuda_ssim_dtypes(available_device, dtype, precision): # Checks https://github.com/pytorch/ignite/pull/3034 if available_device == "cpu" and dtype in [torch.float16, torch.bfloat16]: pytest.skip(reason=f"Unsupported dtype {dtype} on CPU device") shape = (12, 3, 28, 28) y_pred = torch.rand(shape, device=available_device, dtype=dtype) y = y_pred * 0.8 compare_ssim_ignite_skiimg(y_pred, y, available_device, precision) @pytest.mark.parametrize( "shape, kernel_size, gaussian, use_sample_covariance", [[(8, 3, 224, 224), 7, False, True], [(12, 3, 28, 28), 11, True, False]], ) def test_ssim_uint8(available_device, shape, kernel_size, gaussian, use_sample_covariance): y_pred = torch.randint(0, 255, shape, device=available_device, dtype=torch.uint8) y = (y_pred * 0.8).to(dtype=torch.uint8) sigma = 1.5 data_range = 255 ssim = SSIM(data_range=data_range, sigma=sigma, device=available_device) ssim.update((y_pred, y)) ignite_ssim = ssim.compute() skimg_pred = y_pred.cpu().numpy() skimg_y = (skimg_pred * 0.8).astype(np.uint8) skimg_ssim = ski_ssim( skimg_pred, skimg_y, win_size=kernel_size, sigma=sigma, channel_axis=1, gaussian_weights=gaussian, data_range=data_range, use_sample_covariance=use_sample_covariance, ) assert isinstance(ignite_ssim, float) assert np.allclose(ignite_ssim, skimg_ssim, atol=1e-5) @pytest.mark.usefixtures("distributed") class TestDistributed: @pytest.mark.parametrize("metric_device", ["cpu", "process_device"]) def test_integration(self, metric_device): from ignite.engine import Engine rank = idist.get_rank() torch.manual_seed(12 + rank) n_iters = 100 batch_size = 10 device = idist.device() if metric_device == "process_device": metric_device = device if device.type != "xla" else "cpu" y_pred = torch.rand(n_iters * batch_size, 3, 28, 28, dtype=torch.float, device=device) y = y_pred * 0.65 def update(engine, i): return ( y_pred[i * batch_size : (i + 1) * batch_size, ...], y[i * batch_size : (i + 1) * batch_size, ...], ) engine = Engine(update) SSIM(data_range=1.0, device=metric_device).attach(engine, "ssim") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) y_pred = idist.all_gather(y_pred) y = idist.all_gather(y) assert "ssim" in engine.state.metrics res = engine.state.metrics["ssim"] np_pred = y_pred.cpu().numpy() np_true = np_pred * 0.65 true_res = ski_ssim( np_pred, np_true, win_size=11, sigma=1.5, channel_axis=1, gaussian_weights=True, data_range=1.0, use_sample_covariance=False, ) tol = 1e-3 if device.type == "xla" else 1e-4 # Isn't better to ask `distributed` about backend info? assert pytest.approx(res, abs=tol) == true_res engine = Engine(update) SSIM(data_range=1.0, gaussian=False, kernel_size=7, device=metric_device).attach(engine, "ssim") data = list(range(n_iters)) engine.run(data=data, max_epochs=1) assert "ssim" in engine.state.metrics res = engine.state.metrics["ssim"] np_pred = y_pred.cpu().numpy() np_true = np_pred * 0.65 true_res = ski_ssim(np_pred, np_true, win_size=7, channel_axis=1, gaussian_weights=False, data_range=1.0) assert pytest.approx(res, abs=tol) == true_res @pytest.mark.parametrize("metric_device", [torch.device("cpu"), "process_device"]) def test_accumulator_device(self, metric_device): device = idist.device() if metric_device == "process_device": metric_device = torch.device(device if device.type != "xla" else "cpu") ssim = SSIM(data_range=1.0, device=metric_device) assert ssim._kernel is None assert isinstance(ssim._kernel_2d, torch.Tensor) for dev in [ssim._device, ssim._kernel_2d.device]: assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" y_pred = torch.rand(2, 3, 28, 28, dtype=torch.float, device=device) y = y_pred * 0.65 ssim.update((y_pred, y)) dev = ssim._sum_of_ssim.device assert dev == metric_device, f"{type(dev)}:{dev} vs {type(metric_device)}:{metric_device}" ignite-0.5.1/tests/ignite/metrics/test_top_k_categorical_accuracy.py000066400000000000000000000153321465426447700260460ustar00rootroot00000000000000import os import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import TopKCategoricalAccuracy def test_zero_div(): acc = TopKCategoricalAccuracy(2) with pytest.raises( NotComputableError, match=r"TopKCategoricalAccuracy must have at least one example before it can be computed" ): acc.compute() def test_compute(): acc = TopKCategoricalAccuracy(2) y_pred = torch.FloatTensor([[0.2, 0.4, 0.6, 0.8], [0.8, 0.6, 0.4, 0.2]]) y = torch.ones(2).long() acc.update((y_pred, y)) assert isinstance(acc.compute(), float) assert acc.compute() == 0.5 acc.reset() y_pred = torch.FloatTensor([[0.4, 0.8, 0.2, 0.6], [0.8, 0.6, 0.4, 0.2]]) y = torch.ones(2).long() acc.update((y_pred, y)) assert isinstance(acc.compute(), float) assert acc.compute() == 1.0 def top_k_accuracy(y_true, y_pred, k=5, normalize=True): import numpy as np # Taken from # https://github.com/scikit-learn/scikit-learn/blob/4685cb5c50629aba4429f6701585f82fc3eee5f7/ # sklearn/metrics/classification.py#L187 if len(y_true.shape) == 2: y_true = np.argmax(y_true, axis=1) num_obs, num_labels = y_pred.shape idx = num_labels - k - 1 counter = 0.0 argsorted = np.argsort(y_pred, axis=1) for i in range(num_obs): if y_true[i] in argsorted[i, idx + 1 :]: counter += 1.0 if normalize: return counter * 1.0 / num_obs else: return counter def _test_distrib_integration(device): from ignite.engine import Engine def _test(n_epochs, metric_device): n_iters = 100 batch_size = 16 n_classes = 10 y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device) y_preds = torch.rand(n_iters * batch_size, n_classes).to(device) def update(engine, i): return ( y_preds[i * batch_size : (i + 1) * batch_size, :], y_true[i * batch_size : (i + 1) * batch_size], ) engine = Engine(update) k = 5 acc = TopKCategoricalAccuracy(k=k, device=metric_device) acc.attach(engine, "acc") data = list(range(n_iters)) engine.run(data=data, max_epochs=n_epochs) y_preds = idist.all_gather(y_preds) y_true = idist.all_gather(y_true) assert "acc" in engine.state.metrics res = engine.state.metrics["acc"] if isinstance(res, torch.Tensor): res = res.cpu().numpy() true_res = top_k_accuracy(y_true.cpu().numpy(), y_preds.cpu().numpy(), k=k) assert pytest.approx(res) == true_res metric_devices = ["cpu"] if device.type != "xla": metric_devices.append(idist.device()) rank = idist.get_rank() for i in range(3): torch.manual_seed(12 + rank + i) for metric_device in metric_devices: _test(n_epochs=1, metric_device=metric_device) _test(n_epochs=2, metric_device=metric_device) def _test_distrib_accumulator_device(device): metric_devices = [torch.device("cpu")] if device.type != "xla": metric_devices.append(idist.device()) for metric_device in metric_devices: acc = TopKCategoricalAccuracy(2, device=metric_device) assert acc._device == metric_device assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" y_pred = torch.tensor([[0.2, 0.4, 0.6, 0.8], [0.8, 0.6, 0.4, 0.2]]) y = torch.ones(2).long() acc.update((y_pred, y)) assert ( acc._num_correct.device == metric_device ), f"{type(acc._num_correct.device)}:{acc._num_correct.device} vs {type(metric_device)}:{metric_device}" @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_nccl_gpu(distributed_context_single_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_gloo_cpu_or_gpu(distributed_context_single_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_hvd_support, reason="Skip if no Horovod dist support") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test_distrib_hvd(gloo_hvd_executor): device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") nproc = 4 if not torch.cuda.is_available() else torch.cuda.device_count() gloo_hvd_executor(_test_distrib_integration, (device,), np=nproc, do_init=True) gloo_hvd_executor(_test_distrib_accumulator_device, (device,), np=nproc, do_init=True) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gloo_cpu_or_gpu(distributed_context_multi_node_gloo): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_nccl_gpu(distributed_context_multi_node_nccl): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) _test_distrib_accumulator_device(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n) ignite-0.5.1/tests/ignite/test_utils.py000066400000000000000000000233311465426447700202130ustar00rootroot00000000000000import logging import platform import sys from collections import namedtuple import pytest import torch from packaging.version import Version from ignite.engine import Engine, Events from ignite.utils import _to_str_list, convert_tensor, deprecated, hash_checkpoint, setup_logger, to_onehot def test_convert_tensor(): x = torch.tensor([0.0]) tensor = convert_tensor(x) assert torch.is_tensor(tensor) x = torch.tensor([0.0]) tensor = convert_tensor(x, device="cpu", non_blocking=True) assert torch.is_tensor(tensor) x = torch.tensor([0.0]) tensor = convert_tensor(x, device="cpu", non_blocking=False) assert torch.is_tensor(tensor) x = [torch.tensor([0.0]), torch.tensor([0.0])] list_ = convert_tensor(x) assert isinstance(list_, list) assert torch.is_tensor(list_[0]) assert torch.is_tensor(list_[1]) x = (torch.tensor([0.0]), torch.tensor([0.0])) tuple_ = convert_tensor(x) assert isinstance(tuple_, tuple) assert torch.is_tensor(tuple_[0]) assert torch.is_tensor(tuple_[1]) Point = namedtuple("Point", ["x", "y"]) x = Point(torch.tensor([0.0]), torch.tensor([0.0])) tuple_ = convert_tensor(x) assert isinstance(tuple_, Point) assert torch.is_tensor(tuple_[0]) assert torch.is_tensor(tuple_[1]) x = {"a": torch.tensor([0.0]), "b": torch.tensor([0.0])} dict_ = convert_tensor(x) assert isinstance(dict_, dict) assert torch.is_tensor(dict_["a"]) assert torch.is_tensor(dict_["b"]) assert convert_tensor("a") == "a" with pytest.raises(TypeError): convert_tensor(12345) @pytest.mark.parametrize( "input_data,expected", [ (42, ["42.0000"]), ([{"a": 15, "b": torch.tensor([2.0])}], ["a: 15.0000", "b: [2.0000]"]), ({"a": 10, "b": 2.33333}, ["a: 10.0000", "b: 2.3333"]), ({"x": torch.tensor(0.1234), "y": [1, 2.3567]}, ["x: 0.1234", "y: 1.0000, 2.3567"]), (({"nested": [3.1415, torch.tensor(0.0001)]},), ["nested: 3.1415, 0.0001"]), ( {"large_vector": torch.tensor(range(20))}, ["large_vector: [0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000, ...]"], ), ({"large_matrix": torch.randn(5, 5)}, ["large_matrix: Shape[5, 5]"]), ({"empty": []}, ["empty: "]), ([], []), ({"none": None}, ["none: "]), ({1: 100, 2: 200}, ["1: 100.0000", "2: 200.0000"]), ], ) def test__to_str_list(input_data, expected): assert _to_str_list(input_data) == expected def test_to_onehot(): indices = torch.tensor([0, 1, 2, 3], dtype=torch.long) actual = to_onehot(indices, 4) expected = torch.eye(4, dtype=torch.uint8) assert actual.equal(expected) y = torch.randint(0, 21, size=(1000,)) y_ohe = to_onehot(y, num_classes=21) y2 = torch.argmax(y_ohe, dim=1) assert y.equal(y2) y = torch.randint(0, 21, size=(4, 250, 255)) y_ohe = to_onehot(y, num_classes=21) y2 = torch.argmax(y_ohe, dim=1) assert y.equal(y2) y = torch.randint(0, 21, size=(4, 150, 155, 4, 6)) y_ohe = to_onehot(y, num_classes=21) y2 = torch.argmax(y_ohe, dim=1) assert y.equal(y2) # Test with `TorchScript` x = torch.tensor([0, 1, 2, 3]) # Test the raw `to_onehot` function scripted_to_onehot = torch.jit.script(to_onehot) assert scripted_to_onehot(x, 4).allclose(to_onehot(x, 4)) # Test inside `torch.nn.Module` class SLP(torch.nn.Module): def __init__(self): super(SLP, self).__init__() self.linear = torch.nn.Linear(4, 1) def forward(self, x): x = to_onehot(x, 4) return self.linear(x.to(torch.float)) eager_model = SLP() scripted_model = torch.jit.script(eager_model) assert eager_model(x).allclose(scripted_model(x)) def test_dist_setup_logger(): logger = setup_logger("trainer", level=logging.CRITICAL, distributed_rank=1) assert logger.level != logging.CRITICAL def test_setup_logger(capsys, dirname): trainer = Engine(lambda e, b: None) evaluator = Engine(lambda e, b: None) assert len(trainer.logger.handlers) == 0 trainer.logger.addHandler(logging.NullHandler()) trainer.logger.addHandler(logging.NullHandler()) trainer.logger.addHandler(logging.NullHandler()) fp = dirname / "log" def _test(stream): trainer.logger = setup_logger("trainer", stream=stream, filepath=fp, reset=True) evaluator.logger = setup_logger("evaluator", stream=stream, filepath=fp, reset=True) assert len(trainer.logger.handlers) == 2 assert len(evaluator.logger.handlers) == 2 @trainer.on(Events.EPOCH_COMPLETED) def _(_): evaluator.run([0, 1, 2]) trainer.run([0, 1, 2, 3, 4, 5], max_epochs=5) captured = capsys.readouterr() if stream is sys.stdout: err = captured.out.split("\n") else: err = captured.err.split("\n") with open(fp, "r") as h: data = h.readlines() for source in [err, data]: assert "trainer INFO: Engine run starting with max_epochs=5." in source[0] assert "evaluator INFO: Engine run starting with max_epochs=1." in source[1] _test(stream=None) _test(stream=sys.stderr) _test(stream=sys.stdout) # Needed by windows to release FileHandler in the loggers logging.shutdown() def _setup_a_logger_and_dump(name, message): logger = setup_logger(name) logger.info(message) def test_override_setup_logger(capsys): _setup_a_logger_and_dump(__name__, "test_override_setup_logger") source = capsys.readouterr().err.split("\n") assert "tests.ignite.test_utils INFO: test_override_setup_logger" in source[0] # change the logger level of _setup_a_logger_and_dump setup_logger(name=__name__, level=logging.WARNING, reset=True) _setup_a_logger_and_dump(__name__, "test_override_setup_logger") source = capsys.readouterr().err.split("\n") assert source[0] == "" # Needed by windows to release FileHandler in the loggers logging.shutdown() @pytest.mark.parametrize("encoding", [None, "utf-8"]) def test_setup_logger_encoding(encoding, dirname): fp = dirname / "log.txt" logger = setup_logger(name="logger", filepath=fp, encoding=encoding, reset=True) test_words = ["say hello", "say δ½ ε₯½", "say こんにけわ", "say μ•ˆλ…•ν•˜μ„Έμš”", "say ΠΏΡ€ΠΈΠ²Π΅Ρ‚"] for w in test_words: logger.info(w) logging.shutdown() with open(fp, "r", encoding=encoding) as h: data = h.readlines() if platform.system() == "Windows" and encoding is None: flatten_data = "\n".join(data) assert test_words[0] in flatten_data for word in test_words[1:]: assert word not in flatten_data else: assert len(data) == len(test_words) for expected, output in zip(test_words, data): assert expected in output def test_deprecated(): # Test on function without docs, @deprecated without reasons @deprecated("0.4.2", "0.6.0") def func_no_docs(): return 24 assert func_no_docs.__doc__ == "**Deprecated function**.\n\n .. deprecated:: 0.4.2" # Test on function with docs, @deprecated without reasons @deprecated("0.4.2", "0.6.0") def func_no_reasons(): """Docs are cool""" return 24 assert func_no_reasons.__doc__ == "**Deprecated function**.\n\n Docs are cool.. deprecated:: 0.4.2" # Test on function with docs, @deprecated with reasons @deprecated("0.4.2", "0.6.0", reasons=("r1", "r2")) def func_no_warnings(): """Docs are very cool""" return 24 assert ( func_no_warnings.__doc__ == "**Deprecated function**.\n\n Docs are very cool.. deprecated:: 0.4.2\n\n\t\n\t- r1\n\t- r2" ) # Tests that the function emits DeprecationWarning @deprecated("0.4.2", "0.6.0", reasons=("r1", "r2")) def func_check_warning(): """Docs are very ...""" return 24 with pytest.deprecated_call(): assert func_check_warning() == 24 with pytest.warns( DeprecationWarning, match="This function has been deprecated since version 0.4.2 and will be removed in version 0.6.0." + "\n Please refer to the documentation for more details.", ): # Trigger a warning. func_check_warning() # Test that the function raises Exception @deprecated("0.4.2", "0.6.0", reasons=("reason1", "reason2"), raise_exception=True) def func_with_everything(): return 1 with pytest.raises(Exception) as exec_info: func_with_everything() assert ( str(exec_info.value) == "This function has been deprecated since version 0.4.2 and will be removed in version 0.6.0." + "\n Please refer to the documentation for more details." ) def test_smoke__utils(): from ignite._utils import apply_to_tensor, apply_to_type, convert_tensor, to_onehot # noqa: F401 @pytest.mark.skipif(Version(torch.__version__) < Version("1.5.0"), reason="Skip if < 1.5.0") def test_hash_checkpoint(tmp_path): # download lightweight model from torchvision.models import squeezenet1_0 model = squeezenet1_0() torch.hub.download_url_to_file( "https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth", f"{tmp_path}/squeezenet1_0.pt" ) hash_checkpoint_path, sha_hash = hash_checkpoint(f"{tmp_path}/squeezenet1_0.pt", str(tmp_path)) model.load_state_dict(torch.load(str(hash_checkpoint_path), "cpu"), True) assert sha_hash[:8] == "b66bff10" assert hash_checkpoint_path.name == f"squeezenet1_0-{sha_hash[:8]}.pt" # test non-existent checkpoint_path with pytest.raises(FileNotFoundError, match=r"not_found.pt does not exist in *"): hash_checkpoint(f"{tmp_path}/not_found.pt", tmp_path) ignite-0.5.1/tests/run_code_style.bat000066400000000000000000000006221465426447700176670ustar00rootroot00000000000000@ECHO OFF if "%1" == "lint" goto lint if "%1" == "fmt" goto fmt if "%1" == "mypy" goto mypy if "%1" == "install" goto install goto end :lint flake8 ignite tests examples --config setup.cfg ufmt diff . goto end :fmt ufmt format . goto end :mypy mypy --config-file mypy.ini goto end :install pip install --upgrade flake8 "black==24.3.0" "usort==1.0.8.post1" "ufmt==2.5.1" "mypy" goto end :end popd ignite-0.5.1/tests/run_code_style.sh000077500000000000000000000005271465426447700175420ustar00rootroot00000000000000#!/bin/bash set -xeu if [ $1 = "lint" ]; then flake8 ignite tests examples --config setup.cfg ufmt diff . elif [ $1 = "fmt" ]; then ufmt format . elif [ $1 = "mypy" ]; then mypy --config-file mypy.ini elif [ $1 = "install" ]; then pip install --upgrade flake8 "black==24.3.0" "usort==1.0.8.post1" "ufmt==2.5.1" "mypy" fi ignite-0.5.1/tests/run_cpu_tests.sh000066400000000000000000000016511465426447700174150ustar00rootroot00000000000000#!/bin/bash source "$(dirname "$0")/common_test_functionality.sh" set -xeu skip_distrib_tests=${SKIP_DISTRIB_TESTS:-0} use_last_failed=${USE_LAST_FAILED:-0} match_tests_expression=${1:-""} run_tests \ --core_args "--tx 4*popen//python=python -vvv tests/ignite" \ --cache_dir ".cpu-not-distrib" \ --skip_distrib_tests "${skip_distrib_tests}" \ --use_coverage 1 \ --match_tests_expression "${match_tests_expression}" \ --use_last_failed ${use_last_failed} # https://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_06_02 if [ "${skip_distrib_tests}" -eq "1" ]; then exit 0 fi # Run 2 processes with --dist=each run_tests \ --core_args "-m distributed -vvv tests/ignite" \ --world_size 2 \ --cache_dir ".cpu-distrib" \ --skip_distrib_tests 0 \ --use_coverage 1 \ --match_tests_expression "${match_tests_expression}" \ --use_last_failed ${use_last_failed} ignite-0.5.1/tests/run_gpu_tests.sh000066400000000000000000000024571465426447700174260ustar00rootroot00000000000000#!/bin/bash source "$(dirname "$0")/common_test_functionality.sh" set -xeu skip_distrib_tests=${SKIP_DISTRIB_TESTS:-1} use_last_failed=${USE_LAST_FAILED:-0} ngpus=${1:-1} match_tests_expression=${2:-""} if [ -z "$match_tests_expression" ]; then cuda_pattern="cuda" else cuda_pattern="cuda and $match_tests_expression" fi run_tests \ --core_args "-vvv tests/ignite" \ --cache_dir ".gpu-cuda" \ --skip_distrib_tests "${skip_distrib_tests}" \ --use_coverage 1 \ --match_tests_expression "${cuda_pattern}" \ --use_last_failed ${use_last_failed} # https://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_06_02 if [ "${skip_distrib_tests}" -eq "1" ]; then exit 0 fi run_tests \ --core_args "-vvv -m distributed tests/ignite" \ --cache_dir ".gpu-distrib" \ --skip_distrib_tests 0 \ --use_coverage 1 \ --match_tests_expression "${match_tests_expression}" \ --use_last_failed ${use_last_failed} if [ ${ngpus} -gt 1 ]; then run_tests \ --core_args "-vvv -m distributed tests/ignite" \ --world_size "${ngpus}" \ --cache_dir ".gpu-distrib-multi" \ --skip_distrib_tests 0 \ --use_coverage 1 \ --match_tests_expression "${match_tests_expression}" \ --use_last_failed ${use_last_failed} fi ignite-0.5.1/tests/run_multinode_tests_in_docker.sh000066400000000000000000000042741465426447700226470ustar00rootroot00000000000000#!/bin/bash # Tests configuration: if [[ -z "$1" || "$1" -lt 2 ]]; then echo "nnodes setting default to 2" export nnodes=2 else export nnodes=$1 fi if [[ -z "$2" || "$2" -lt 1 ]]; then echo "nproc_per_node setting default to 4" export nproc_per_node=4 else export nproc_per_node=$2 fi if [ -z "$3" ]; then echo "gpu setting default to 0 ( False )" export gpu=0 else export gpu=$3 fi # Start script from ignite root folder if [ ! -d tests ]; then echo "Ignite tests folder is not found. Please run script from ignite's root folder" exit 1 fi docker_image="pytorchignite/tests:latest" docker build -t $docker_image -<

S¦:1εεσKοuζmB―έω||Π-χedόβ_~Ρuι°ώ’.ΨδLŒ'd(ϊΞAα3ΞPybb›δ‰ž3bζ~±δH`rRp 6~ž›ΗΌuα _.λΕ α\&'gg§1³‚έ΅yυ–0Q©Ιπ Ι8O2j–ŽΉB9#gιψ χ P–™!ΐ80μw~<0 Ι*Κ`θB€3^žz:€\²ν/Μώ#‡‚έΦΥx,C€!ΐ`„<Μΐ9δ›ˆ)Θ`0Bδ|Η¬N• χσN+ζpβ~o ‰τ½v{m =δΡx?†’sΏ‡o‘—fσ“6 χυ`Œ<˜m Πxβ<KΕ%›§Ϋππ¦Ϊψy?"Ακ΄w~r§Ώώ6:|¦–“!ΰwχgΈŸw€³ƒ_XΙYϋ³ψύ€@Έσ—;ύ΅η΅™3rΞΟΟη½9sFΞ\0Ό·ζ©i ­Άκ,;‹—ˆdCΞαΌμx€Aa%εpӝ!ΰ₯­Ϋ›%Ο͜‘†1uχΐžχ H–˜!ΐ8pμwώ”žaY… &Ώq$Ξ8θύΗ½ͺΏΗΖ2 †@Ψ Υrότ_ϊSΫ‘AΑΥ΄?Λ DYΟ <‡–Ψ[Gϋ{`~W2+“!ΐΨ//FεK΅όέΕ1GΖ χσήΆΣ‚e–ΙqZ²Ψ oΛ Υτ)εΗΠT™‹”ΜWΖ‘–Σhll@vZ’¨ς$nώς‡hŸdχC΅ ™^ -tbίςΗΏZΌ¬ΤήυήAΰ3Χ°³ ί`όβΏƒΐ/¬ΏδΌύΩ™πF άίοάιοu8η••$%%!>>žχδΌ³³ƒ±‰)¬­­»ΛΞΞΡιΕτ?‚a!"aε£E$3L G °<ουEΙF)’Ί+σ§E ­`χ@ž—p`[†C€!ΰ ύΟΒsΐYνY/αΐΆ †C@ ύΏZufq †Cΐ½ΈΧυwΧ>μn›o ’·έΌq3gμό駟ςCΓύόΑhE}΅\ŸμΑγ;ΏΓΗοΏƒ‡’λρ<Ύί†ϋΏϋ.^{€I63H°,מ `ιšΪwό₯ζ__<8οIƒ0‘ }„γ—}Ԙ:ͺΒϊK:@cYBu‚½»»»ΘΚΚBDDffΟ!έ€!’\Dt’RrCD›ΠPƒ8‡F;0- †C€!ΐ`0 †C€!ΐ`0 ίΆs΄ο*‡g =Wώ=α©:Ӛ!ΐ`Ί/†©(œqσθ'ΓΌLiΛ9'˜ΒϊΌT— €ζB¬γf A„yE˜ϊιžίό₯ΕΏΊqYε{Œ@(ρ ΗsώμΏν1Όa#žυ—Β¦©˜’N`οN€aΡ^#u`‡›½ΖŠe`0 †C€!ΐ`0 †C€!ΐ`0 ΧD΅?ύ—“xwvd°Χ» ,5C€!ΐ`„$•/ΥΪΗHJržB9ΞΩ‡rΓϊ<σx*΅(Ϋ2ϋ…ΏœροΑiIVS†@θ!*όboά,!ε«~R9lΛ`μ_ΨϋŸvΫfffς'ζζΩ”Om„c#b•(ΰζxφ`Ζ0Ξ³έY­ †C€!ΐ`0 †C€!ΐ`0ϋ`{pŽψΟώω§ώςΦ—όY+‹!ΐ`0 †C€!ΐ`0 †C€!ΐ`ΊΊ:^fίΐPΠe‡«ΐ¨€,DgV†«ϊΡ»c|Ή#ΘHω¬P†C€!ΐ`0 †C€!ΐ`0 †C€!,Œ…š’V&ΗΘ%%%šηέE ρIŒ9ΆγΛ‘ξ2²σ †C€!ΐ`0 †C€!ΐ`0 †C€!ΐp‹@dŒΫ$,C€!ΐ`0 †C€!ΐ`0 †C€!ΐ`0²GdŸ“‘A ?lσlq%„κh*Ζ«g*‘Ή‹σS\nχγΠXˆWΞΧρυ^žθΑ[mƒ!TqͺxyΏ»(ΙγSήτ{|αχy=γkΉOψΣcXΒ°A@‹ΟTχϋέοΏςε~$/…Θ‰(3;@t³Ή½‚ξ•… i‹Τ˜(^ΦζξV4ή;@o™ρ€DΗ#.2‘|ΏgσkΣέVSζνΣ6±κ~ή|6²ƒ=Dΐ€’ό ˜’γΝ½Ήοb}eCSXΤ«•Ώθ-˟ωΙK*ώ Ÿώ’χ<αΟζΚς„Ο΄€ΊΟηž›άυ—φ’η΅κΜβά#>s/Τe 6βμv’!ΐ`0 †C€!ΐ`0 †C€!ΐ`0¦[Η‡Π9©€Χ…ΊΘ$y±Ρ±HA<d«ΛNl`)Ν₯ϊεΖ%ΐcD*ΰ' φ/€Δ*£sΓVξΘΧλΣ±DΧ1ΎΘΣSΏ‚€"TM(2hέ―ΐμκ8L aT­vΈέGjέΩΎ‚€1ΗΚq¨ˆξG!<ύδ .wΞ)i<έΛ¬Δ|i\ϊωόμ—Α™Hγ‘z1dδ‘•Ζλ–°hτ(‹Η‰β‘‘•Β—5―σι$ήεκ€λ~χ ν„^χ{|ΰ—`σ§vYμž  >σΗύ.H^’dμΡΆ,₯ΝiΩφ]<œάšΓΗτΠ­ΡΧςŸͺΙ8“wΒk°5K£}°Θbq$³ •‰Ι0Θqκ X–GqΫbVε‘σzyIo>΅Jlo0βΩΖR”UδΘ}$EŽΟααγ'ΈΪαε€)Φ_Bθχ—tς„Νβw|ζL†ϋ|Ύτ—8©{ΛσΞκΝβ"(>s*Πσ:ߞ<ΐR2 †C€!ΐ`0 †C€!ΐ`0 †ΐ@ Š 7ϋ³•‹S*q>-Σi‘I†,œΙŽΒΦh7†¦{Bq_¦ς™«·0§ωr“ΛρbzΆΣσœΗ΄ψ([#ΦΤ2tuv±±λ˜Θ[y™qF›9iΫ»BΥXL^I)N7ρεχoΝάΐ9XςΖ§ΝΈqg–œ Ύqι8ΫT0 ε‚£²ΠšUŽt9B΅³³Že'7Ύ\Ÿ* οκ–§«~©¨Λ(€«ιι yΈKヲ±OΈέGƒPšςpϊPUε!ΑΞ‘­ώνΞΈ>l.Œ›)™yd*(«ΈΦH}V©UŒέσGJΧ>MH’ž©ΚSΦ»’‚Ε»€Ύϋέ»ΪΨ¦ΦΣορ…_‚ΛŸΆueG{„@0ωΜχ»‚RyIτ½ΪŒC8ž”¬-7& 'ΣK1§κOh'ΤΫ”U¦7S1k΄ϊΛͺΊΈ(r7 3 p.roMΙ9υς’ή|²`Ά³gδεΣ€d2nv i8|τ 2ŒŸΰΝ6ΟίάY ΄ξΎ΄ώ’NžΠW+ηΉάς™“¬žδΣέ_"™{ΝσNͺΝ’] ΰ Ÿ]κ ξψqvΡpμC€!ΐ`0 †C€!ΐ`0 †C€!ΐ`x†@D$σΰμR€2δ£UeάlεΌ’Z§Ώ†ί@IDAT0C–QΩ‰ω8š–%x‹IGir2†χk°ΥΡL’P„s*γ桍9τ.Y0±΅…Ψ¨xZ : ‡’`έ΄υˆœ"8oΒΌhΑβ§ΰ—³Ά‘±»Ž!{Tς,€Σγ…MΗςIΨ.-CoJ-B$x}*OΣRtP·*λ`|k –<Λ8ξJξτΘ‘j58gXcœAeάΌNT†υ[λN—™Φ}}꬏^yΊκOž¬E=gWι^]_„es ›δ3<ט…Ζ$ρl\.j“,°, žΧΓξ>Ωϋ3[^~α jμΌ§ϋTWS9ͺ«xίΝTΜ$žάρ©8Ώg^΅’οi8ρ+“ρψ]ŠώƒΕ»:οwέΣΩορ…_‚ΚŸΊaύ‡@σY¨σ’ŽFͺH«U7ob`ތ«ι¦RœI§—Ρ€ΆRγ,+›:$ΈΞRFς›ŒΆΣv–·Χ±’ΞΑΏXΧf1½±ŒΩM:Ώ³…¨( siυ!RB&βΖΠ!Ύ{θε%½ωΤ*³ύ½F`c£šš…eqΡ‰¨―n@i† W~]=NOLγζ°«μ°ώ’o¬ώ’Nžπ­rΆΉ=β3Ϋ,ό‘§ωτφ—φšη5ͺΜ’ΌBΐ=Ÿ‘―Γ«}MΌ§ΞΙI9δΑ³0³4ιYBS5ρ/πΉXoΓΟίοΒμa>o“Ή―γ:f–¬.‹MN-G-ΡgŒŠΒΞ§›XίXΒό\'&4Ÿ{4“,= ©Ζ4ΔGG!*‚fOΊ†Λ .Ή#ž,BMΝŽ‹εη]――O’c¬Η“Œ,;ςžΓΧΎ~ž_–Βy?ΏtΛ]ίΟ§!›Ζ]7ΦΝ°κX%Μwφ¦„μΣίΒ—_oζT/<±ιX|ςs|Νχƒ¬” IΒΰχζφ$5ο[}*ιαχy]4yאƒ΄<€Π Ο/›˜ŸŠΎyΧ<¦” Θ:Π‹β̚ηωΤe°}?!ΐxΙO@ξa1‘Κσygρ•7ΞSίeΦ'ογ­ίάρHi§πΖ7^F&-Ά