sandwich/0000755000175400001440000000000012600751712012246 5ustar zeileisuserssandwich/inst/0000755000175400001440000000000012600735100013214 5ustar zeileisuserssandwich/inst/CITATION0000644000175400001440000000264512220001272014352 0ustar zeileisuserscitHeader("To cite sandwich in publications use:") citEntry(entry="Article", title = "Econometric Computing with HC and HAC Covariance Matrix Estimators", author = personList(as.person("Achim Zeileis")), journal = "Journal of Statistical Software", year = "2004", volume = "11", number = "10", pages = "1--17", url = "http://www.jstatsoft.org/v11/i10/", textVersion = paste("Achim Zeileis (2004).", "Econometric Computing with HC and HAC Covariance Matrix Estimators.", "Journal of Statistical Software 11(10), 1-17.", "URL http://www.jstatsoft.org/v11/i10/.") ) citEntry(entry = "Article", title = "Object-Oriented Computation of Sandwich Estimators", author = "Achim Zeileis", journal = "Journal of Statistical Software", year = "2006", volume = "16", number = "9", pages = "1--16", url = "http://www.jstatsoft.org/v16/i09/.", textVersion = paste("Achim Zeileis (2006).", "Object-Oriented Computation of Sandwich Estimators.", "Journal of Statistical Software 16(9), 1-16.", "URL http://www.jstatsoft.org/v16/i09/."), header = "If sandwich is applied to models other than lm() also cite:" ) sandwich/inst/doc/0000755000175400001440000000000012600735100013761 5ustar zeileisuserssandwich/inst/doc/sandwich-OOP.pdf0000644000175400001440000047511412600735102016725 0ustar zeileisusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4617 /Filter /FlateDecode /N 87 /First 727 >> stream x\YsF~oT657Uز[r+ IH(R!)ۙ; (Eak>}s*+t!*L-pաӺ_!vxMk<8_SHa!MW(/< -V!Rr 0xIBx8p t.C 8uDpB <CTrE׾Ny(B5'@!7=DLDaI@S RHAd)ĈqAt'o Qځ-⠀dt t, +2D*@V), @Kry-qQq4ddmA"c A ร%0drd#",P,< [lYƞCT-8$FLStS@8q6?Yj5Vq^^ZB.txeUh??A_TU==`7Zs7v'/dGe|_-擫qz^<>/W\ ^׫) ?^;kWi{VOAwi >O# 2J4~4:JPU!CmȖ(;W/e"|t1a+9G@?ItTMѽ'&(_ ^hz\-W1p#~Z=>Y7$OaAABb1T+fѭjL-r&7K(61Ζ O~[E4׳?"!{TuiD.q%ҹĵ>'{vʹI.ͭh~S4_\𘯎@kYZ\UMM+e{d'{r6OK0:;xOa664A|u.Rwx2r3U#ОRȭ7}w).sZ4g.6Ԑ^Z~۠VF:ů*BׄH#s"AlX yTDy9&r哪>;o.]v=`Sv^W옝6b1ϧӚp eg윝uy^X~g)`36g%|lɖ'bEU9bGNTGlQ%9>2_GBr`F)^.>EWc1zFg'-Sů%==x1XK \W B_ ZD7P ȡ+ǐX:`xsFpt/݋׀EGj9+35ÇuG\p1>=ST$ n@ߡhS/]`Dpeghsܜы)iaҵLh")sPSAiEHB|Cٞ™m3U{̞@~ds (ˋl5|*ao;sTj9M-F?*Ď|A֋x<A'uqcdQgH6zO,FoؠHm~GuQQ,rJ0*//j1߲.ĀE OuVE 5.O~*Yu!ݝ-͍A34kh(dh ﶁQMvzZY@-K-K>-IƓ%7I[#cmJX+Rm HJTCEJkDϣ'"O? /Nȗ*^6fR9YX疅-F? ˬ1w9DZ%lc˱ r,6{=xOE,R=QokAeMŖz!g7θq܍#D7  W£i%EzJcOcv(uDdCumtO/CgnGMaɾ39SXy▊e׶VnM%jNej")e$.&bbネoovz%-朰hFtE9GHH!4X)*l,hH~ocbmN3z;v$kmei;+3Mq|IRERg5B˾F;ygQF?]EI;C+}x~;xƬo!ow?4mC֩_enu[ SLsͬb]經^_W4.3+2/as Zl?^xM Dp{3kHe[V?N of5Vm6;O V/PXؿ7hZ:\haܳ"SO-81ld8l҅!lÑsŀew`;q8VwtR#eMU2uLw1{$$Ǐ|Jekݪw9i31]9%ޒtb1Ћzj/e$բhRGӶ{ѳ㪾)v|[*\?W4w:4VcO.rv#t5]$)p _2ZjuaY>Eѡ U{ {7D9 fBwд&if݆=_#}eKntiOGU=Vl..E3""+n`\=}̒r5%-("Nd' '|\ĉJRLnRX{vΕTVh4%x%GJqU" %] u[+d?SGL"413w%7_N֚֕w֝k [+e)] D)h)Liu%TH5MQ ?pJV'!8՛8A]8J҃GMd):RQ!ySBmޑs۫z]JeiEI,9ma`% N⤔8m9t=u(M܆q֗~:5` %:كoT n|tSV?8c廦BtΎ[A)̧"Q.jn:TE{RavZ5E^W5:7qX>7l8K|iW:UBeSuLFs@ѵd P%ؗ꯬+F3^X5P&J.);U*mkt))B}~ԃ6 'hwGIL5yd]|EaR%0^ 0X88߈ƕ"ξ)fG ׃*ښp Rrpq1HݍO'{st nJ;_.//{9_Yw߉sQPihI4M0EǏe5ʫj\V+ZjL;˦@j5/'C iKCCM5A644 Rv+y?f&1~1){hk6K8i~S:7y puK?{4Zy⟩h>eИS"Jҵ.xP Ff#եB1 >x\Vi|/1Q2NRI'nCdhӽ;pp ejBYdv B5j-Ϫ˽cp֙xY*DQ _w,3) y'L2/%ep78if0H-EgZX"lnϓP` Eq⇶\o0!Mև Z|Q&ЪVYi m.j B` f ǁ m+n?9<&* GSҭ}q{[{>Z" uMWiiPdq;?\endstream endobj 89 0 obj << /Subtype /XML /Type /Metadata /Length 1338 >> stream 2015-09-24T10:54:24+02:00 2015-09-24T10:54:24+02:00 David M. Jones CMBX12 endstream endobj 90 0 obj << /Type /ObjStm /Length 3300 /Filter /FlateDecode /N 87 /First 801 >> stream x[[s~v:u&IkO-'m4KiR!!ίwK$()q<.=7&$Ki0#KEYrLIKϔvȔĔ )Ob*0ôN--V0xC:]`hp`:FNdF[wd&*5*ìGYt"=rM=J患G$iļtx%jżq؁[ړ6{ڎ̇v'y0{ ҁȂwةNLh$ vj )u2*aQG E"&cc(/\I52WFz,a%SXZP6skẓL=Kls8J>5U<)r~UO?C_Š>PSF__0E.l-~YW2-2-2+m{'gܟW[vl'l~~=WY}o/to7_ |/| rȧ$ʧOx6hˋMo_lg\†L&487@WCqfp8T 7y~(^KD6 9kŲ p8aoX"!~ "1E9l7q2= [Or9 Teҁr-(uPP@5IJɹ&K+iNJ a@9|}Lĝ@ʁN͂j˥z:ɝdOE;lML!D&di%d{BsGO8E=&w{Esr5o3 f6^bbr>~֘^*2bj!/+:m>9OqN Ɠ7ʕ 3\c2$HU"CbzHɳ׿S2)8=W@]:7]ݿhV\9ͻz?_vWMb9EtSϦz2͚`'8[%[ppC{nP+d h7X6=.Ս”d\ox5m!9Ӛri/;YӚRZxUSlm{*}7,J kQ/0튪8W Q+q\hf/fZ^l/h@^|Wִ]`Y𛲠ro{{Svrm{9ooRt1eiĉx"gx!NK8EoHǶԓ ݦ׋x7+Rm/kP5mc ٴ b6o7x/ן*q).K+qf⃘IX0/fb6JD jم,oⷛYS]Xd ̔yU7Sl^OwY|?lMN٧nh>EM 4Z(#׵iRⶪ%pB1/:S^Kx a2ž7՘8E -m;O~œ8!Ɏ VdGPozpiB ?ne%Q=mqxAAy8=d>4&`iɩȃm=f Aia(9Hب[2FA # ~s`znh=i=Aw(3 Nf=gd.s@_m2As-HPAe3#0~OFB~q$@Pwn0pG_=iu5)ɩt8;kݍߟ0tt6j$4%PXr> I a>EI&+e?% JSف;XxRKPإ=,&1x]de&6+H:%5QZmh'8u<GY7%yLq<,N 6C\=,V(N0Y@a l)`@ۘ@4A$O!0, QI9e,T}h@9EXnQ*_QJStNU@ ;"-mKܧ&7pYqCjJSI[ %햠AA\HpI!*|+mln6;`Y*X7+z 6h(p2 ?iy506j+[M{i;26IV֫rbZmT1Y81֯pckjpszIZ.4ܬZ̆a6JC5jrsY}Ӎendstream endobj 178 0 obj << /Type /ObjStm /Length 2698 /Filter /FlateDecode /N 85 /First 765 >> stream xZ[o~c"b$Mvdty{H4C{ùHVb[08<?P$㪅1W#($l{+<9\VE|DqcNNFh/ɠc(F?,SHQ"R&!t##- ~"#J [~ 08˝Y:"$pGmU"t8x+#b`oƈU6։ X/f &6D$2_w )RF<YxƤb5b8,@˱d&`J<=tN g[zh?}<+MD31y_1{ +83[]]bS$wXZnQ~iR?)) $Qt ICڒKU3\֋մ^-֒O+z Z LoEX ~? LuEx:\,b6-uQ//0*4P=#h)hڒ뫕eq>ԁ/H{-:ԁAA!V f,!{A3vY͂F̃ٴ泑nGH`8nIܿr!>- p]lÍݖ'HJI#o)d6Ka7 4^c{m(8!o |]WdtIh[j1-榛L')D+8o 6Y2Z\|PgX~9͠H+!AE%h8Z (8ҁ+=(k$=(Ҧ98F"F$[ibEE?=gALTE-F8l>ta:A֍- l*R6x@bm;N6ks9]& 9Q`GtwHcy` T#_L(Ftb"`<o}ɓ3=G8BA ySw;ooTn&t:.ee^7-Mmp )؊r:L@{D)JGא"P=b(8|G -hg`ܡwXxJb7P6>!3imlC5:.qHxK46ɴ"Yh<+B(j-JuC*wZx}[AjPVCu1ZNz6dj FN|s n\4Fi8Oi|?7vcj]b Aqލ!ilF sa2Kj{L;\RH<ȍcMR?vX Ay&adev:dX5u@)PLT_S.qd eRFE5d{ P{hu>>|$"fS5>@ <\raSĉ2ҥN@vc$" Hs-m>TlgGxyKdUN:zPPhupO1N|{g|>ts%ygǹ3^psOwd Z,FoOwo_i! ̖ZU)4S=_3rYZ _g.ȹ|0wԱ'a<]ĜzM,8ieY]\vy4)&j,'$州苫b ekÃDxQ]|s?ujz2*wZ.> stream x\Is\Gr##pڵ/s H3>4@S _w.dU69tP^UVV._.~9W;}˻ə3u~s˙]ޝ auWg>:\v_7U;vo^n/ت`\o/m\>?\:o.UUa~O]I4*o)fJxj ]\m/l;:A OLؼ{e09>9Iǁf#8أ~ŏCvy:؍_}W] ',\nBFm^oşϴ ;p6k X#. 0sX/#Q18pC@MH >Ï66#S28%2Dio6ۃ!~A⥒ie 3x[hƔ#O{#I)}!҃2 yTj@(3xS_[|c4̐jU2D# r>"`AH nwgl_7{xZKm g78 @diLCx bV<{:7yv/gv _w0Cwgޘ۳׭@<;8 ,}N;&"$%^L,Ne<πH[7θ}YPyBLud#X g =JSƒ29k"E݆016Eǧ $8ALn]Nd2iywr@Q"58{u lME%.&X@V H'(p{A25Ö^-ҳdnb"p^ՙ')"E2 N I2SQ‚~س2efsGSv yO ʁY S  0JZ+$~WO֫.R /]r 2Fp*-#LhV6׍x02kPRk`]N+= aİH*fez^&8ܶ6372V~s)k5:<%!yAfq@;!jN<8AIJӓ݈? F=O'{N>GÑ=$*ll0ᆄ'P_wקe+(5~a _߷X?|Xbefruw>u}³tb1rJnbE p$Y+ |2(C.32ZfM /Z( i@#qVy|F0lL.0"^Xjm"w(CHOs|Asd TO;/-Lz.n>#Yw7"ws"! &KVqD00sKȣ-$u*/½Hq-9%S{9!Bg~T4Է$O>F BEJ%\iP3;I= b9 d5wϿD{s8[6knuY0ݩ14nۉ^_K ICd;ŷXjOxQmKf|*Iqjn WѺd'Tuxg@e>43S'7<#2+xyЍ[C֞5y]eJTlL^J*)7.ֽHYlX,fm8f V: B(r>1,م7SJ,6que9>AÂ,-5TQ2i},P}qy,Je$tFka;.EkC/6> k2W,*\EP 0Seu'CjN0pQ׭ws riXpQI3(% zJZK)nɹuNJc=j`Zb=-;}KHe2H\3*T ԓ_-MnesR.GNZ0ܗDRl.VJi&a4{6`J?/EI+-IFgF R7;+oO>ޔ\QW`nFA-NÜIMqh; !Az0|^p~ě0MlSR!ZX8Y~*Aq\+QҀZl<PQ2>x(x(]L枋'XͰUJscu})AG ֗;Vj BG~/eI'Rv4ݏWH'a-tDTMo z a)mT-N`h5TCqj ʴύ5< }`0 Bc dI#KS@r ʮ =jE +EXѕ*'w7#N-HׂW~YPw25) Ta0 SR6[Q_I;SpS>ˎ˥NcE͓`r;=.i7g ݕWFɄThU[ZddTkY$ 9n~ǀVY[EC=&D_0!oۦmq/+07lj,v4Z{TKO.jYxO 4typ (Q:CUWy(6^u\׻LXFL,|N{`dP9)]4&}2`4@W[ T&3VmwS}O)OSL?A7\%K&Orx٥V3N#όLv 6*/jgF/X'wMڹ $@9P鱋 %ZE}id@{JQi q/ ;]W @+v "'9pƷFq7^t#2%]ֲٴHs:JE/ ~Xz֖q 8sSnVn AKvP< G|NHSyO_6j|9~11aAӠ t[N&49>|Huro$h[5f rdBSYJS*~Ěi, 4fЂ,̫|6tmb~o I2g`=? GxMODjuk T]+si >lgB=DTaQY|YYYfVf=nV4%2jɧB*φE!#EEɎ~HfOrN4}W.<}ɱSU@1l۹%2)&DsIB`BFÊq]A3Rڱگ4ݛJ"6G5ci=$Q^-NBJaR51il^" \UתGFPዣ27p\K}BkA:qԦjl',X/},ߙ`F>jS흿fw>t-f| fHYF\/ c9G*,X;*ˊcH~4iNK6&?u)3oRDcreDƻ1Ҋt8,2 ̕+ `+2Ri=/$otAC=q2B+l<=eAx~MD]tY~Kҷm &UNڼ87 3dOGEi]ېOݔ,mqIzM! Q$%r$+G9@̽9֠k6H@D]휗"1_;%˅VCwz^FtVB("WN!Z +e/~Ku08gXF_c,ܵO_g&%],n= oAMT09=YS%^<2*0'Q>Yl~kF{Ծ=*}WPfEEF0o9;g`Hvjc_{6NG~XXM6" .ZmoxF܊ͥ97.D,Yw}'Il/tMP.i.[$4R+gFYiX^ɽ4Z)]m󕷟}'pKw_IJ60djSpr"{&ZDG"FYkа_@šendstream endobj 265 0 obj << /Filter /FlateDecode /Length 7169 >> stream x][\qГ$O3gH ɱE$(-rWMQ SUݧO셆-k]绍8ȍ?zs!6W]HMכ=7,<9DWS r?Dm7O^_l_]4;9hv{k6X .P@K82sbJS(lipK!+(bcIԈ.fe{Lj`؀ՠ)@I wmԁ8 jY~hBp;8'ɧO 4c :`a%,6W+Lor`o}5"K/R3h^I:Y4UL q7D>YrVEj\D06oRsƥ/nT!XBnEXy{O$g 'mM-soQ9e- ugPp~TАO!I(Qsm,xa»t;5Mf, l$+!g!UC lm}z],[Wվ4"gcAX\Mvc`G=,/A`4&i~fiGQ`(f3'5zK#mLԥ-8 wJ yi|vf"/O|p/)'UESrT£',/e <2l#RglXVL̼^9Y9i[zŦ( v4-u-m∬)$*/z-)*zEvo0Ş࿣౴B;QXh +Gl8]="Qs@ hp#mag!QEHR`goGVN->Ef\V&{,1 H(¦,hsDhN枢#F;GtUT㳶5VVfW/ ep Ed7&* FS 2Xh@  YD5˷66~n|ek,162aM6,g9 [ma2h m%/I[peJ6sI\6_y8,8c""*4FT@/Lnb_HsyŃ7n Z(R Yx Iyu -(u00Id {XP-G(?y? NV>(gdܤ$(١aH~9wݤhJ,NΣm5eo1`j^ ='.MszNrI90lz.rqt]cS 3*XsMNEꖰƾ(DA2< |' 7{vlA_:8\Ҟsp67ف`HQI@]J m]5nL9VG#Z4|O.e^m{& %L%RKr7\~nlY>?9<>Ꞧ?S_H{ ńP, !1t]a0ȃNK-l_WFSdR9AqLYAsKI#[9"QIǪ*66 Aw8ެWu_mr40!J'|hA,Xڀ.M *ג Tmž[g*WPCX4q85’ǎqkE }nO 8p C*W*-a`ØIqad`AǟJ$ B'bCn@xpZ\JunS*aMۆB(HIu,2kuy!ZL bX/Py$ /H`e1PÕL<1Pv *֩eXD؈:wC_r8ac8I%bAwzKN=EŠΚ7bm4R8)+AgVvK_\E.z`pFk Xx5nzr#,(RA"UÒ UG@N@õ7v%LyFL>gY7cOr.$HP( wҐhh/P6rXqpql^Z7l/fE+B%% NfA޺e?:|JX}XYWY1he$4׫"[L}AԟP؛״%rM2E%e8yncG;_B vo"_hi ^@`/pƗ'.EݤJr)NT!EI,`9R!Y+0?~ ScՆT#Ϭ;-U"-?Vӆl UQWnW*Dcnl亯{x 3+`\S+ٯ X6+<ɛ9\>NT X?R&Hv'1Ƅ:׹ oJfuOeX^[`!z0xSb ȥ8/S"ylj g-3ū|M64~ ;Z-c(B"2ؖ}EŦIOymQڄD{xf| 'ղKR b*=f/ I?̾:$Bݤ>$<8;jbb1!&Àˬ=Ԝ tS`]4}fryY'(mi98*J޶G{Mxӣ [( 9ިk"LħO\qc.'C/4H#D/3!Q8oic%Xسd HVi3ʡV8$l◜n/Ig67+K 6T^pꄽv]z1&SΌmX d%R]ab1?ߤN833>!yF]{"ub;i,<g|R͜&!?4 6Wr9mNmٴ-RZpI5>WuZ8S>4< Q?`Yoz`*bA*')EOAcӵy.,['O>Hz[ ~rf#XX_r'56,,+-㩇z܄.e]|D'CrK_Mc,4OcD!x:.沶ehSQqSW{A0`0$|lmxͻ -GoܼPFFXBRڄI.ij:a6eYk-p4 [V 7xDR{X iIJ fpK`Mޙp0:SLAAO ,#QϲRdߵ2GNҁ%T$j-S]bI",ӞT$gϖ,|W:9hhi CcnaI2u5)\0Bݦ qmB:4N.h9|ˣ3EsyLZigN_j7+iKJ.UW_T: ki8u cb aoLfŠ6V6 '4cvw: "a:e!,Y`VWskh>%a/ghZ޲?H`B2 l#nD$foK:U?8aLPEmbV(N99Ò`XqhGyܧާ@`cAzo-dere 6nEle o>9m, vX+a[;8g"O`&*`/}"1(Go>zr' w9>r/+i0^n/nvx}'"MC[KօOKz `’bzhoCR*P -W<#fy_J?B8?^~WbAU{8ωθmX1%A r2% hމ98^{׻3'^hr/aE&RmH٤WP1AMl"K#kʫg 4|oi2[흤귉:./ Yc^W>̩SjfB}Xb}P;'m]n~~l(ܻng87iЮޣؕD9Fy&4JM|}{vwX\r<a1S?IՏܿq|Y bR4 3~f9d  EI@> stream x=َ$q| ?uvQyX`IDԃ x%͝!\AȬ̞̈2ښ<"Oi6?eb\B_7/^o~ FxoqjEhǍ>y^;eݴ9nG&7n{w &?5_ᵏ!W;sk>=51ٿafU=ӸgW[{NjKk}}](#,ަxq4bt|MM]-ݥ)R lK\oR^DBs m=匷|mݥ& vTX`ʐNog`gw4iCqo :=Z0ݷ⾽;}?,FC;<`e8ﭞԻtG|[sE1~Aי.} k*%_)&%M ?Q'BՆ:j29.~{ɼ3 q lk\DƑh3ON,(Q N= ۏwf}S)6#\~9@ꐏ8k J{"s7ngJ% }ab4 [Uf n8WNZA^pZtr@6狰)C2#aij B}?'  j>h@Ъ U5'endzj#, m@YMn'#1*tI0op4L{T*ϒU>$7BRRֳ(ҭ u#5h3 zH5똯: UJVY.@p2k;)A놧 g`hc&d j  SL=a8 k;N7OD6lgI@A7dvE7䭋&t'U >щ/,ȏimh$nNɇ[س/ٌqNdYQtMZ%sjiLhqsx7ixJaeLܻvHc#\!l4b$+IvQKZt"m7M:,$QDHs"45 p:584 hĭ#( qB9Wx0P=69Nυ̳-DD# pq"t3@+3 Mq(̌1>5ʺl2 mqkY򯊴ZҤZm_6 R%R]MQ5B?$GJwLa,!j#0C5ii#q0P=Qya I] "zX=7ZWȌ7BVs$D 0Z;~HMRJI8Z{&$Ҳ/ؐ4*BKhLfa4WkII gt#Ncbw*s I(Auu\Xpmpíݖa!pMWfgmr"*$Xy`,cB*&O?R@}/=Z4p)=bC( iRnF>4;|Z)cpqyV"EcAM Mx _(qHh@)RLVR#ΰRh6UM )v3,f /6ZZ mn[Lf_9F_#F5ZVqq.Cod9"Mi4jɰp} !6'H)g?Foi RgK!=fi&W eQsZ (z+hTZzCXoz,FF+{r^2rrs_N9UU3/JB6ZF@g0l3gx=῀Lx#7q?ՆN"t B}[GLbޗueD'ˉtQ8Ui@b/!;T2; 䎧ؙmz0HeqJWTȴrUf51ub쇤*-X3:+x8}ǽ&䡪WL^y?Ї 2ZPd`8G4ƙ cJ#;p ZV܁qNsh` mN̉ xg4yop-UV|BTOǎ߅ ;2Ta1C)=t- yVAV;!6֠ۚZ"t}K yR (8=qi6sỸۿMAt-4JpQʆ!iOm!|h?<\jGsgCkq!N:B|~fCE6 Rtѵf9 io.!0b0brCZryJ3t]; d~{L 6]B -?b[-c\v)b  >,U~j,M{Ss]6m2YZR}8p:*9}V6Lc 0qZԠb5G4%,K 6?mڨ%OK/iio9:Nan E%$a'UD.[xSe#-YkaN~ȓC5\@zxk GάWâ+'H֟"\R"*U^$ MȜ^ľE" N!E䟾6I#0>ˮM囲KFʤ$~ S5Ula2ՉmW[Ԋ1hQWxI>^(9,F۟U=J6. yT5^wLSm¨|0%tKJv?<ޢp$@ 漞L{aa qR"N3atkXRh[r(?Y+%ofFD- #|`|#Ys,+T(< :-UWzKbqU#n{Z  6̸]'#4 qZҭЩ~ӱ:-cak"~T͹>ќofSNK 8wj|uKO×v]֩ twA%I "H&%MiFUoWZ@\Shr0Y‹g,lEٴ?5S_[JoYJ%1+r:#))T2j0F[L"'QkXT ARI3c3%RN KX%7rbokV 'ĴQrNXW*eΝիgݱ |_k šnq4)&$Tr7n)=/A.]:Ի f 9W}/#ݮ*F.Á~Hd3}]`IȒZGrrq4r5_.wT*" %qLzLpjI:<;Cͧ be2PvrF(964uvqE"- +(Œ;Δ.m*QnI#$w[jEMc@ܕp}S*ϒ|@F=Q6>_[I]}X3ͧ>̓@b͂;U;zeSl/Xw}1Z^c`c>UJjԥD?û+%Z~t˥̘>>]}XxSײXٿ)uĤs>=~P :Y}ŃL>XkLXl^,3=I_U0uE.5Y?6ʄݧ =tv7WeFM?'#t+ ɨ-=yIKK )sH; BA‡()|Dj3ZoD4AX}rt* ̣AƸ4]^ ܹER뎮0-nRrD<̤Nm&39$mtO턶&کڢ5fֆdC6-/.nwmͺ:XDHl{Ҟ V8W,1ɇ|Ugm Jz{)7gWOyD ҥAWY(wJ"#kI_ѼBA@?#+>MhF1o# ^~Ǿ>~SYǛbo?cwwv(V:; %He2/7SfVT,'hD*t*t"&+(AW@t7tNpŌ; /ю}P+RL k]0jٚ0\J:{WY "Mpب[اzr6"&Ȩ7GX+St"DtCSmͰ(絏7V^LlLQ$,`jqAܧwXX_We[RmG SXO_ɇ0k_x]=7gR\xP+iTqL5үlKM.#fpɯo{`%mc3 2]@~Xe;6Dq,}L> fkSԁl6ݠ{7U?8Ж-$%+ltMnu>N]Fq@RQ^3VINOYFqʁIbͧHsVB;endstream endobj 267 0 obj << /Filter /FlateDecode /Length 6420 >> stream x][uvS~0W9-Q@r.Cs =Ruz8+RS]SK⳯<\^(u\m~-Ҙ6Qm C2nsywmmrW6BoOvlwnpĠ>9% ^dU781nBh=|Fi?X9 Bm?qtޛN G}&Vc :*[s?>k(n^vi{/_5OJ iX⒋ۗSgj͋yugѲh-D2/"*]0C[ o ęcr1"dYbFU(xrNI0#4sˮ̋X/3>Mǒ6NhQG PmZvout'» @5IU +A/7hf@ؤyj|Tfdž d([l<1aFjmaTZ2'_ Y= IY=̲_oT7&q}zpQg.l.M&ƳtI2z{Ca{)z~9nY,i0^۩+h,;Pl{nVwְ`%^GA;E[$6"EkyT.ḣZm<ۿ섀ByDIvE2$P֏b77DI as,1.fjf{Lb /`B,kdbl#^v9$fu R8 tPH+"@83պfg.YQ6Q3aCkAڨ`^m ?ɕI6u,0LLRs45#;| (t{qW#R#GLPCpJ8w+x=Ar!w9F+"|nR4z?ͩ677<@-8 A / yQuĄL#`1]H~=KtBjTiHre8){‡69W)gaftxeӃRq?צf19H 9ws+cAo ,e>0qŨo4]E0|=e[l6zM6ϐxf@H~FW oΩ}3۝G) 5gFɏn{pCU<Ҏ+.'G+ɮX}.;c#s^x>0î=9tw6?)&gW핒&6cLdX4ۙC]Eؠ]6, JxD [ãsD6s: N4| *=PI?dHƆ?י+WK] Gˋ?]pHm^?5,SoaŁ4ƁrOϧA  ǼۺXq@C(Si*n :ԶC ɢ&@Ga%=jtQ '7(F&Sc$RCs-:,5-BCNʨF@o_]чh/]İMRkfS8Hn^.X 2D bw-ط g j~sx!# nVaNQ-2ɜB1KL{hZעFy5 fjRʀ2I/`ve3.4yv,&jTG'>Ew6 p jbW]#ȼg$-9`Ǯ +)*|w&@#c")/)zi~MA!1,9!"9m(U1a6W 0[Y>NFDÆ+&Bd@R,@,Hl+MV )cC `=Q{,즊l4hk$H!D B37O^om%r|:eC óm]p]Ͼ @Qf~ޅ1qiZˠRs;'0?us#Dw&h̴$oNO9xL u TG^k;$i2t9[D@㹒S)$X,XFΝ %˹,0P" O,( PYiф89k2ˬ$BcCgS2 bt~EA,@M|J\"H+L){K9 >oEM&DWg[8R*.ws,¢a]!8ȖPMH=fJм+|>muQ8Ѩi;aSJ6;`ڪY09JDy_5q/.C@9_}(FUƘ1)C9V""X+Q5h6Y D#Ocm1M 2$% 68Bі@:lL,qyJ8Y bBmNZw֑A̫IDZEr13AxaY]`N%m?+*y2a_Joά zZC߈PRj4Ֆ( H$1_98;c҈AC 4xPAҮd4EbW b wqKLCg k7rO- {5רl-!Oc>Z3(q:~[& DD?3{;!9LHWx_NW kR9vkFئ6|}jbX42@':ݸFyQ}9n"oF h /H\^0_v{,]xu= !ܿŐ'Jb@.2V9= Z{ٖzZ0LZWlf{NSR F4` {,9IS*UL~a,x2zOc`˫1%2b;fv:3N[4<]7,baԛ8 Jr!W(@Gu8,5s񄨖!#J"eijȈcN< ?|nq"71K8}x)P& ,!< {~_#T``Dg|g9*HX()#0Dp}dC kx{X >n`-UFF=:>}S,VR cC'cSX֎Gjx 96[==f ieT9 ovS-:atkۢ,5z" Zk S ka6F74.X@+Sico xnl&֑qi/KYHY-$]Ŕ{6LVߖǡ<>PEgx[~%X]KQ)ģq%/DžΜ^=ټhVOZWdfyz{iL9h [>0בrH%TQmZTTFmgW%ef*T"TLgчŜkkc[P!Jub*LyxʄDOFEm*s. HsTyDݠ >,r#ѾQ`bѡ+颦&2$z֕]up$`ˆnZpmL t1y5 te\,']E):^ٴ4XamUMӞ2OթGQ]%F& vy"ݯpZlwUy`:s=yZT{;|}Bm'!N2tNd],֘8vq|<]8(bN]iD b1mXӉ)讜|9oTx,&{JqnY!a[MW'mK;Kk 5`>㔍/С`ͮR4-(՚,"}OWJm*@2:VDU^M x_cD^ c7̄.X Keg>Se4?gJDk)L=.k:+)X u,rT_Pܶ qZ["0JM1gOE9"f𦽒Jשo5} Y\2&3l =p/xI~%`j4'DD@z} b4/Kaݒsb-+;^ FN<ޜ-lm6YI`~x0?ɯ lt`endstream endobj 268 0 obj << /Filter /FlateDecode /Length 5868 >> stream x\YsGr~G8~p84E:vR*l#"1\Σ*EjaXhUWבG_ըW=}ycgϯ_4ϏG d*>4!6㘭?<~ypt2a JNF+r֎VVkRQ z[:cgxs~xA7]a_῏x9U N/k1n/`DRrn8_cv5whc>I+z%B^㌒R*L.J0<|mCk? S t¿SAa\upb4!qnp{܆mܰR^=7UpwݟwtLn-]& b {ǴE)8HTaqI9%[ sf'J]/6~>O[I9ޫ4u+=*jy+9pf 4&-ɝ}8\=RA[E'@$V,2ҕOJC;/s.hW $&}cՃ.J|Du; U W:iY?ZȽxE[x$҉͋[YGR6V5nQg<= *Gk 4>oʴa 2ɚn"0^Б@p6i:zE邏V}J`/nf3Df=&g1juER7:m:}ؾ$R p@ _us1gD7ޕpcH|'ZU쫵BSlf㦀# (@yq pH41̢x(~bo[b1vl.3fRfJ-N>k: \'"DПDw- 7Y;gVA§q^k} Χw>s1΁¾_`s*Rv vF*XVC9e-ICV0@¯w"Hi!W߇<`Eѓ=\jtze:. V:^q w6s.SECjc޾"mIGB\[J.[@=,`7I[ XɮȎҬ;n̞1C0>ⓒ ʠeWn+: oMM+C h~`T` uaZip$4!(s4p\<̷HAD-M+r7 wC- CЋBҀS4704ڶo*\)Fgt:0'X<)UCa҆3Tm!l6u=nK,j-M\HExp9QSMVu^"qHst.x"_r>ذ`:A i%%8tj_G$TEz$7hCfC웦kbN=ugoѾYM!/iQw;yF,[qV`Ì@L@5ű4Jrrݴ&Arow)5 䉿MIrPz&zD\ [8Rϛ2{{1j*$%گP[ƅ7 |-Rv|?XA ^Uq" 3q$_G_*>pt .p[u5?kNWy~Js4#]ͱ5&59n [l[䃩x+@=%XBgi(#(r$"%E gbGE":!'v"Xڈ32$0|x-c~^!juE^ݴr`GE0ĠOG6J1`ܲs#?UdU=Ψ{vAx>\k'8>JIb\%2m@>t~oHǎpk/acB+ _DPcy)Y9m߭?ǽY[1; Dt) _!;L3>Q31Fj瑇)b )m'Q+蟛PKnՆejKOz&TBw54%Y{9c3E[ɻ.G+OXe} 0;%Г!Œ &2\ߊQg5ߞW=,@Wcj=U?[ ѹ/nȹ -+EWS+w6; {z/RTR3$t5@扜Ң70A`8XǙ;/)jy9W:FL0KrHdrHo!S#?9*6c&;%`CA.!,<З eo0w(zDk kWozIwD^D,(z]aW%/Gthx !I#Ny ٮs.f][V{;Dz2)PVSPvxpKl3vnnIRXjL1": !8b$\>HS'vGfSKY3m^":>py".輊U3 J|K>k1;W*2^[՛ax.cg\b7Gp;=@pomJkJ6N0]Q~xVV sLDDH-SUINwY. 8!r;5M2|,2$ŴZtؚiͫK*f)Xz՚|w\{ٚ)b"J@!xcc?YehS)8Z "csNRǪ{ǾEH\LuyJjw龼Ax $ZujZ܀{?ϣQ{˲ z[z\lj ݖ4]4Yn]U m?Q_j_Kp_JUo .NwWB}`e]FsfXh~kUA_eVcW&j>]aVx` %Uv Yvk%^mͧ}ž"Su ҭ[XdUӝnvcn:ҥ ,p6J-#S_V"rNH@.̞7X\Uc(TLhs.h+M P}{2 7v2'41^T[i]UR.[l5lX>w:RC7h޳x 7ORO_I -Xb`gvx&tRm!||Lo#dڏ:Q 60Yϋ DS|֚Ek>nͣ|T4)D jN?&?Y|tX̄#|h,i>Ea6Cv5S'gy%L>SFR ׂS.▊L")cd헒(AyˏIGu2pK,x[,-=\-;wkifiUCA¦ɦaKj6{ƫ_"'wgOL?$06F; m<-HN;u1)u1w88~'0 1ʛ/nχLkžnO}?IhRbWF4)ײ3vp\@d(.ET&\P.J)WYoH@CAToKhu~YcQȠ/o/Қv}l8 ~<˥kٹRWNU␡9x~+t`Hy߲n=~H:g%Hʙ;endstream endobj 269 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4423 >> stream xX TS־1$*UogꫢVQQd ̄!eV@f!Ī}@bVvVځj}C?lھׁ!sH>D"a]nWqDG)Hgr,NG׃0}nH%sP?p;9͚l݂@P?OU*;PN_ح ox9ӦEFFNUM ysdHp_aޡjo/;pU@o98pODwkwh0S;ٺhqhXx2u*{.7ߵ~v|m>g 3Y͸1c5\f,c3DfYlaETf182KRf3YdV0bV2*f0 3CpƚH1Si5 &AXr>Y}ΗckqS"#t_.oPۖNhgk6k+Zi`[=g6b!(./;LN@6UM2^ mpzhzD_BoF6!8?38d/GN P?CUwdȑf[d`- wD*{wHgW߷y2%{)#%[ Gzy nDY|TSk-v4$hh%1ddh NY@d Os]Ҡ(ozރ=> ܹ@8 ֦x#n*ea\B{1EjJ4+ 3Bxy٥ $d,Em!1]! ló\KX'SɓI(ZGwS N`q6]Jщ8nT8)oCy'#j#{I&wٳI #xC6Blf/DsUUMGsQR@Kd_}nΤh]bIkR8/-$i ]Y>@TC~hJj #7, RJu{SCzlh PT*)y]8 pPڞ 1DVxem[:rW@Jꅌ3 Ba-.q~g-R8H:\7}tn~S?UeAj͑kc񹸊Y潕VuNXGqW^T~_9r\%38-h^Eh&ţqkihI,l KO;Z-xTt җepbk ;2lr`[9R L^b>83 m3z} iQ aQQulϱ;L>?)3%/ RAѥ'kK%4!7t ʎޯ)|МxxsRa~i[Yه9kјb@jiyYm:b:KU]}Dsxo`ȭ5{;)9'(C).S)t.A{obpC+z73i9g*-.).)*mx..őSnۢ=gl ۥpߖK`rZt:_\-AK}Hܧŧ =KQڲvGšTN)b S*k]z\"d2YpyE9dYCIr#\b&v/4",G{ї@BIIve#.r_+ks8;*gmv꣛UT2.*kvXSJm|-.~3a]ɞ=0SFهE|N%$&5Y}TO"G"&0v?)^؈=Rgh:Xx|Sskrxk/Pt_;yNK,2MAN%lݪøzI {uGCp96<g5)j*S5ԇ9TRV]RzՂGWfa͹ɿӳοI Ks.r(ԖSYsUT~}p q !B|\ y۶LKQAQu?^E/oGv{\1}5?>| {$, șKPoRt,mRm~.ϽnVm$X=[PF,'2QU*[TPx0'òjHlC GA$$dfe&$v'/s؍n1rgϷtN#6bm>a߽%+`lrUsuSeH!)%~FyE7|E*џKd<5MXͧ(Z+ 6+&o4T6n ( /4n_ܣSo9T@DmWm>2$ hs. ]a'zYf˜[XKT RM{޽;ߓi_/[ΗX8rrߑ%+e - ڞ6^KӦҸYP* ad?3bw' UZHgjO9(c]CLR/,o b etS4oS">H%_m-i{ZPBj}քukt!qCP 5G SpdSl*o;z/fa?d{R`H Kq!O5w[ZO^Ӑ^ꝶ/p>uG ŧ.z? "CKb"s&~BE= }7-'!ma0w`!*)F\7{0vZ쇋I ]WpOc{v7i6|+QRD~ڳr]Dd[R3;{6zqz>yRnהDŽĸ0vUV4qaʸ ֕D?_ gYVe|?/Ne?aܪ]\bΉ*Ih D\YW '۳Y%J JZYª5}9Bendstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8381 >> stream xztSWº怕l W; :wpo7a7*[{/l6.S PNHhHȹx2H ɼY[ZK˖콿o+յ %D W4pЅPuoqVS=0f |98z@x.ϐ#]F 4k֌'O8k|_].N~W9x:|w>plϐ&L |7O2u3fsF9j{Lϱv?qzXS`j55ZC}D RSèupj=5@6RMhj35B-R[8jOm>&PjZFMSS4j%5ZE͠>fRb}>B-eGS(8vQݨl*zQ~'5OGS}(J%P @]ЃLIu4~\]4n<;~ch)/1!n#zy^+[^Y墳[\߿f}۝73u@Ї]>%0 ;Π2hHː{C^ j?j؈aAÇ 44WZƁ m5B~pJ61['Fam÷DnT3>tfLТR9Do 24k@t(rP·]}T%jJU3g ߲R5&ުIjA].#}QE hiˠ콷}28(A+_p>s:Gk7C+`ү#+ɬ|h+i $֭[W.PI+Q߅EjZ̡ޢ576 %O煗/u \[MCVBP>}"d_u $mPVKP)ZC4~ͳJyO4Byq/g4>e z#s8`(P8P'Jj.j_ZXk <`AjK[&zP?`ΝID\k=1/,T&V%x. B]1 g= `Ik^P@_4Y^ rtZUrz JsXBOnuZǙlNk}NY삦I34G$ALF@񐁳D3jACGp=e0y+X:Re s[n9:j< O-x 5vMAFחQhߓHfd\M;Hw<;!WӢ-28yt:9iX$*?NRFsYLW;Rq k`+]"Ѐ7 .UF!uIJeʵmɰ(JEVwL$Q]N$C;*H%a*`LukRGعu.SBwb]Dh6H$ np/çzQ|s,^}ȟnˣ3GpC"p*a Q;Y#DW_4u$ϚP^m31FQb;.jBEAx|<Ȯ#!%FT$&MB gEhm(GRn$_?+>F߰ %fYE|Z4kˡZ OשZPk9:4HC1ʧ‘\KI"$f6Сv37ۭٶCoimnl'IE R?4xFnJ0<yNfTpcGmb {2gǩo8e:)hH`[z$d&k4V ڂNE|uܷ2&KUFy}jJ.ɓ|&.P Ʌ- hNS(ʝ!Dmz<2D*\UQjӣ ?/yGϳL`!-WI_:sWoP LΪ:d-n]89VZ}'K8UO;'c'섦)hDy =CrVfD#߄f\FJCY4ĄA",߁\A^-z;&j})hkD8Gf\ʜ):sWr2h=6H.RLޣε~kv`f-ޱW@_XS#)9ItБS%x-O+} GσsdpI@3؅9>BRC,Z槥?vWcgvYB7SB "bcEb/$B1DC/E)qcJE^:9v'0ls2 x5r߾#%f3,U@MvXҢI(_5vqfYbz 2U _yO{l_F|RIS Ф*iR]B6䂡W_MeGEJIȆzueڐ B.C ȽSE׋EW:tPڞi&- mzXf;"‰Xc3 ̫?yZ Rg:pwj?>n^&uĪU1ñ AJ"YXZ\{F9ht61:K-x$SRҰPi}NpRJo(]X4^jY)h& T_yin'LޜWO# \U$ *Wq~Ǹ#7MُIߌȫ|]!b Jr8yutjihtˡ\&k54Krt2]&Ғ23t,_ݬK:3±Y[0MFv?~i&<&;9|(iD,C]pU[8 .*'}5Qqn:+::9F#G_ޅ8jK71xfǑȌ ppAE]Mn/u44x_`uڳLOh4g! kP*l\ZF6ħB zuXQCV'ȧ5$9?mzF LJ#t4"ToSylzͥ1[lHw1(MA*w,tP$ Cq \_G fkTx9tVp = X] -mQ* ᕰ =e#Cx bg"h1ZƠ)Ȟ1w(e,8c- @]/>V Y>|@ \"<в\}I{Ooazm|zHd۠}輹{_ Q(̢9"Qw_8;~gd'EYT>)0h <[{ByA]Έegjht]<:ΏD| ^,7CO\rT`W\9f5fY 㦭H @.7IeLi?<4pIS7]+KJ+*JJ*BC|NVe՝ -`ܙu aN; sFGD*Wud+3aˣQW7ļ͢F-^TRu[_h=|3< 00?VBjV(w•$11J&!YykԝC>oY<.1r}q_qEw޵J \ D*:I(z,zO 9qpA= v%7҉ߪz82quꝤpZ@\ySpS!fC"+DTيB&H䅝II奟JM$."Yl,zM:3c4|r9j~4T|ܗMW]ؼp՞!H \dN>5qGLJkvp1uAF";^~dA/[[VĢ攇5gvm5mOW]OC_>6V4s힍ڽ܁|Sp47u oKtM 4yöp{G> 1wPWN9hl*>ޟ|·Q8'wgy']p<|-Dxk|HT7y6_4W Y欘 NւFåj2i77Q䱓`n DĽ>Vg{gKqkA݄t,ܒ^j޴/c+r% %?<v</½MtIǗ w uBBx` DiX6~3yH܋/^<{!DْR_ -ԗphRoh`p>`(:~aُGǛhSskr燲R%+U^Hcvj JÆ/*kcCJWitaqq^ M[âz-MH,"H֎D {!ѥyY)iVkѨVC"S), ̺}o-F b9/&)i;Ǚ3 V "9k}}zzĕsqX|1Ab<5<}h=DO 2QUi\xf RB{ҧyӎѓ|_!um&3.]Ur/H&N33 =wy]+ yGt;we4>xjeb +a;,n\ܼ;j{zrZP%'&ӭTw!$O߆ \zx⼀~H'I٭bMYd,e?}4>L?p&O˫͏иoM"_Q/B`E K%% cwK7Ǭ7r^Sh$gW*[Zjn<:I@:%055S$xwS8 ~ٷB~:m"Èn>Og{ׯqpS$r~u͘OxWsV{M_) BS &,N q`h-:~]]a'~@;eKd8R 8܍pu݋oϔ$q`iVDA"c-5 _fAhS=]g{v3yY߳EXsGendstream endobj 271 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2202 >> stream xET Tuٙp։D]5R$BQ(p$c)Tr1h*R7$SݎZ,}{{Ϝ39/&Q2Y*"68hG)gMgˡl.wYOi<Sb4J.eYiNIJk5aa 5/i%f5t4^yO>#>%Qo-I3_Y(???PBM~>YY׬֥%j |,H'fkVe$$fS,;G‹!/-}9,(R F*ZNTtg7AyRqʍ*nɬ/&3+K6UnvEb/1knߢI9:  Mѓr1}4+;Q ;!c ֱ_5v]ցvKpt}CZUo_Bic=.gOb*4iWZ)IuqކAGH=B [e. AM.2k_e? 8' |[,BHgw䷵uػ.ll̫"!-}42:řt_bR]$wmo4^7"kiV:^3$Yɵ@ ^MM;].bVui)Yt)+T@19`ԫ)#J8hp`Ueyh}{ɭj%]Ûdɂ8#'ͭ//hcԜup64뵌e~~&6Q4לg>:z`^<7ᗥ:O3]};|awkUo(yFvRae1#+3Fjg^S[?l_j{.9360j]^* 7O;;2Alᰤb}\gױ(MdM˸N̈[t*&x99/_8KX|+̒_&Sg֊i3|6sC{1 6ͪ+XMCY1(9XYw_6ZG'95C:Y"q`NՋo,i1| 9Nj,/F=(H{l[O65* Ʀ4gtvp]}:"a/^,{{uU_ߡ7j|j,փ.|m݇ ;`qQK2_~]EqKz k-uzVK'BnllKe_7-'3͈ T ؄; Gƛue;mz;+%.:{#נ>BuqGoۡ,zZ+pRۭ< !s3y (ƍ = =v8GH\[\"LJ0@ReZ3=oMHJ0R:ɀ]d+ě,ũl,oȃ7oU޿A :)uS ݷnb$F )B4J'D` 5lַ.8w]aA{6FFWJY)>-ǣrgaO9zsl>֏cZV=z'F4A\[h~TV)Vw%E0xGendstream endobj 272 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 650 >> stream x%oHSQU^% sTd_J6&a6Vf!>+l9E(0$`!&DaAEqZT(6> O ~Q-:eGxC<{P.T:9OgrrSSh40e^4Zf.>ZL7ϷnqMr󘀇w36:F3\^fؖrϳSkdV~0(` T%Ľ* Y\&3EȖE~@NSĆ4#܃Im?F ^(GPk4D4q]F:yXߴmUa"QÐ ¢0Tq44KXEePREaYP_!eYE T$dkp 4heˑbZQQm%z~-PI8IcV4h'Ug5?W:{'XTfc}IwcEYH22ӟ{|;tw0{2eeRx JED5-2i|G!ђ]ə>xeʉ$c ; ѦaT>,g,eHMQ r2=endstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2156 >> stream xU{PS1+"jW&*(*Z"ڂ jQHy& O1! W]U])t㮬ә}\k̙sAH$28|ᯏ)a)d4s0B>R-CcPXB*ht]RBA9k'K.\T*EKQ)>f$!]9kyo6Ŧiu +>4'zΤWj ʈҳfZ SdI fMՖ)MC#[`r=}?+xm7z.UjpBM%o1GLaZH.6\s: V` Yk[d]MH˰Pd|𡞄/帚Zf̽N&~GݛvQצ_S[TYtL!}hOS1"1P^0jP"yEk[6#^7hgN;[S 4_I-\,Eβr,xoDb;|F}|3%vendstream endobj 274 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5637 >> stream xY TSgNkkJSM/.ڪjmֽVv!% @FBr7 NNEw U[uتvtfZ^s/SogpP|>>6k0xsf9?t8LO@tፏύ1~Efq,4QN 1)3|Z9s0#ٳ/JIŤLJHIߐ'H RRfhSOY1){fe$<}FX>aOBFvB|Ҵ51) ყ5mqZ(+3!#|uZ|BF*Ś(մŢזd,ݳ,3kEJq̪sVƯIص61i`Farʼfd&"XYkYSXX6gmdMcmbmf=z*kk1k&k5,vSe9gX+YϲcZZÚJa= eh V H9;d79"n_tQKF@T׌}txYaܰ]|r\[[\9GЀ|hϿx6^+Ѻ$`A]d 4kMt#5R.5T1фe㑄b慈( (`&`B+|"5HZ=Ri D2U1WCnWQbZAh1z,ޢc`,k(2٫eq\@C6Uxf nqA#}TDm()qګh8on=B"'5GѐLi$N "k!/UQ J)-I }A 4_iϫt*ldh`m/Eny~@ם˒1K1HCu =ǰIW١W4u2п?$uzل_;Bp$4 gd0۬fJ]B-!h!'OfQ~.!%ߊ|o^|I)gWF#~ITw=Z8M'Í8R6:k0Jݸu6 BQYL='p,g,4Z0*닢/+>,F)D[>T@j,`Ƭz9&U\Eè _!?>lV4,l,+$>4cVw8_2j:@cj,ZU[MBVl+XV[ma)Պrkb~4 M[đmщTJѳӝq(&[޺&]s*Jd+T7fdB:>v`'=ZK ϵ=E$@YhŜ b\yرfڕ̸LSֿ3)wQ!4035+8Wg4`$\ 3u y&g/ϸlRƐN@/P82 7(x-0 Ɂ. %I1ۇ !h jR^ʠ5rYk \mP|htyH LíVB*=̂9ȅ:xFs} JY;$}Wv/M̒M7&p!ؾAGOy\?tCWŬ Vh^nsdk Ls}ܿy%t&e&V+pÍERJ}E`*,0C=}ͺp; )4ƅE:U]*DEd,pLD(;3-w皞?'Qhg cd؏iDG=ֵ]PPZsjc`F> ^>//^RC2!;Yx*"u|*ѰZb J(; Em7 tWe=WEoT$1cۈS8Unž=MʱǛfn`J&g8?w[B|> M+,'עPe<<7r3 :d=6`Q9B56(5YS}hNOdf¥.hRzUK|9_/k.Pv*}ѳi"0v_7=@\tHO/I_[g{ROhil&7,6Ԕ=G5 H ҡQywڿG<{qsuTб `ҀOB1ww竗?;r6mlAWx5\F;z}ŧМ#?WK̔4V Yn)dFlRmi]Rj-GtGb^R7ZܤYe>9l6{%D `'0Gl]4ps^ R:/Hi!w,\d#(Fa20voKM(^ //;w|?csЬ>$^i #/n^}1i5#G!D j4ue-jhT>⎦Юl44AsxyrV 49M0( +P|ؤQѴ ~@b!eh$z=L_ lCy=t:6 .eSIeJXCUro{k@8Wk~ 'wo \/ֲH8.p֡Z!OG33;vJ\&nJ;7RJN jy EQ@l[8)]GQl!xWO&lmPHS5qk't7kگt 178ex-=!uIꪽGV=_J,jZg0䢙OrؔsT{uKbП,?i88 s)!nРan5~Gu5=mHPJCNQbh(c5Fޤ0VPFn_\Д,6?2?f&ڰ kn`N\^aM:9|AS*( wk*VQ[%bQLqMowMn e6ԴA%Q] .]9ww.VSkܶfF ~v29Tm9Qzo}@)s0eC!q7B:qkjfXL`awNzZ:]7~/x~x$e3ꋁûR122^DvR#)1Ftڷj3y*dmTa_VGYN W EL_C3?x[x2jacnsHo K.\'Z1}4E+b"\UZSS`lU a^̰AĘ%[WG*Vb j|K"@bV4Z8⤝nw] IpmEgCOqX4;4s bN%mBﺳ|{X*q(*)>Rܱ\\ [^Eƅ:~AY&K rUˋ+seqm9 + Kp(Lu A& gF0ӘZ`MGżJp/6/7CTή}@qA7NL̠ǣtUx\f =lܥ9Zʦg/7vi˓RqS'踏A/'FɆ_MPĹoafn֦MTJjd2 rQ&^ #rC2eLq?yTXǥetlܡX'<{GMo ZMnH&B5՚͵ 8t`k97m,zԡ7c>Gd]((eƺڢ6zـV3fL3]sv4h=TJyQ[_|Y덈=~=QH}gjvYHQ.h!7]F/ } xݹ!׌bu2l5bwsނyv,%seA"1{O/\zRgv`20\7$5Gj3vmrm:wjzmt7Q>yFĒК%MA|7n/[nH,^ |~PqGdh7AdZK8 yJL6eB`!mDQY6+`.,4Fg!4ރx@p@qgoOW=)68BcpNdž(.Qy\)$hH3k L!OthPhwc(M{.A:ZŇ2:.^܇'|dE*[BY<`"uGUS;޻(VMi4hIXyksZvnWHIXؕ[g~uCsu5EdsC&5K$1i9z~4`Mp`E akHϧV2EZG>C]_WcIdTT b'D݂7 (^8 6F}\_QYWINٝ^[kn$xU4A09T\ka%ٲHw+ h[Z 'xчuJsS$n@&=4j{ʶ1c!PQU]kΕhHVzڪ>}`3 b Sc{꿨 ʹ/;EĔ$En}/z&);sa!Ȳ]'OdaHLZ0^7/~ v"H3YGǞ9L(Jؕ"S9XM0n93P@h] <5_#\F2ߥ\QsoV, ~=k2! }♉"2gfʟ|oq2666&]9ÎjGdh*z>f' ^l=Jxy/GA5r z,e$ TRWEEbtE*Y&Ջ[ŀg2[gA'h%, 1zLk rHc(endstream endobj 275 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5567 >> stream xY \֟J]#}3V^*U+X(*5!$dM@bK\Z۫Oj[[wݰ% Lr (H$Y9mDZ(7flֺWWAX7DԅjEL4nxig;iԩ\B[|C}2_%vZ-T;#S*;J>E7~*@)s SDmuZ"U: snJϷJ?|".ׇ-V+EF|6Po޺o*Goǿ3c滳f;ϙ;o&Ni5ZEA}HGyPcՔ'O&P^GjLQS%Rjrަܨw ʝZI͢6RRj8Cʞr(oGj 5SSCPjeG4P֔z)%ez _>i_%IF87AK`[ 2pHPC+vnQT;|>)#08qcca$5}dP=XF_ `#%(aeP+]z8DiĴ$τԣ 9]Yv?_ ̤k^WZT?+QSI΄\>-;"/"L 6`pi{bOKpͨl QQ)_1_t)w>yzsӥ8*^˴nXGp/!(<;_DgPg °)?ckl=e?L+G/zݕ+׮_v:} OH4~#\ l9 Q'sHlب%nx90{d% 7#fꌗ0yFR>;:+ 1-H3= + GP?ws ޙm\كk}Pr3b@?:8>iԔݮnO8>!(m;P@QO $Q(b)P4I.uR,JCIըf UP[$3nK:~mnX]t[W( C !~$) 3[6ӚBЯU/:ӍbP4 yó~zp=wuV",Pi=N=F oᐫp{:eǻ1S`y"A#[ӔV7AzTtyxoKw-ti AsОfj$^QHO4QЁ LeB91PtgP]qg2E2jbaK8n"e5 tHP *cs\ 6ʅD=A#y,dTŷI->h"J"TLH݂*FK{IQ_ף&QfGQvaAfiv5Iz9)ѕj/] O vg:,Rjfk!@I)<Ki Z-k(lPAf.4"蓼cxqn%ܞsVt1n&"[(1~v}HoKw7h2g6u U4 P-'QaAt`B-M쨥ӫUS աi$AZGQ̎Wzkb(30uJhu-mOCQ.n!&؆PQriQ\3saw@d>SVWZ}Eב7~ml~Ofisk7VFbG7Ÿ$ nTi3Pt C5r4?sɼ8Bo0}a+O!Ϥr-X5} (ڢ)oyowo%8֢]ך^+)P )gJs.J gp5oB q/-YvӒ(S/3`sQ&)܇L8XĮ=vç>;a?Mfk)Φ^_\S&u'b*jkvI\ ɪ6"f37UERL%$GDREa7Z/Vp?Z'>VOCb:ţ,L(M,P* |}sÕ:@L'ؠ>7[<u+Xx`i `_tg/{DXg@ӧ'F_U L%:{8_Hgyk`Ι{jBH| iًKk&qL!Z>E-Z kF>wځ%$pQd+|:nhZLX7DTryuDCCuu7&ٝW6o]lC7*i][8];j+ʠ^oeu^is!?sKJϭdϜ+}Z1Ǔmǯy\vDQ߂CMI6)&W<eG] '7GDY+x'wCBb:_0k2_l_0PEqgʈB`'`{>~Ktz 5M_شXش)RHx 衫-uŭS,;7I3w?м}0Edo<#T"m ٯwiCg3oA9G}I| у'λ9n4ݣ+V.q]=f_Vѫo gй&YG}ZPEU."ȁ0XO 4,6Nⱳ@ ~r 8rokyZC JU9_XLx?Ȇ0L`n lkH}"8x[SXݻ9|Ol >:Q0U,bآTD$gh8|oINOAQ( qg*~Z ʫkȫ<6d;!'xwxA--Ȭ!l*Ė;(ǿ N+ǃYg%{Wey5 U ٙNݤ5,*KQnG>awE9d*HׅMAGN/r޼'DZ_ye'ޘE*%(57YXTg6QScRQ,kM$=I4Dۿkb Afdu{n3 |ǃrA ^_C=^`N= GI()%CDM Fgi8_|/虃GtHa!~| \*8`#:|wdJ** 5b鞰R;-0>sHDqO` Lt 0u)PR*^UVB%ZU iH`uM:&={ОFzFw0'Բ0.&"3g4N *~$e-&ƯӖ =Mv1oq :HglB~.t> stream x\[su~glv=}WU`1%Mq%fč2D`V\zO$I遭Ao_;93?Q(/{|v:8~H_?Ǘ9I%}pt>.ɸG@J'ɣ? [';^]txhb5S4%7%?ǟ)TcJ)FOMxgw8~蕷 WɏVOFuJd6kx K1ُjRz.VnmˀjX[W8Fj#Dð330=0)%y͖̍Sr‹v1Sڦ'o0ZVݵFjcd>L"],k3:xoSA hP쵰|%ހھ@/ւ\,6ʹ^,!I`\~vH+#||ew'G >Z7dc {PxoU5؈@;s|)|cWI\Jp.0b}"⠿u!Wռ5`oAӨc$C1D!+|OzsQDAZ-$lD^q9oq C\A}JӲR󶮌 =? ip pc !4Srs6vX'!ݥlށqYLYpDl Nk3VcSƋ*p8Ny֯w&ע-%+\^ԮF 6#]_r Zdo>z˞1OxBe$zFԻ$#9| ! %0TʏbNG ? xĄX:49ߚ76pO<MDmZC_WeJ9rֿλc2=U^(ddzp=4~:EgԊ M0@r @T9&.&tÿ"M5 Ib: pA)%^vG`4iS>+31:Lm'9+<|)F8hJ\+劥4 ̳Jڟ ,) ֲX5mTY7--Nħ"N g/ҧw^=,6`M ) CJR pGo&AQ;Fy'9(ظ C?oY(|+&n$ޔ@=w߄ZF"=9Q8䬯{nl5$ŢK4KD]Zkڵ!o>`)64[8e<~_E;~"fslY[T7ƨ{!n tnD ە# ,U`]5 ^RWT8)^،hkǯj@C񛺴YUi@@w]Am'x@JgѼX '.)c<DŽQ<2L <떞bq WQZ&$1ITix-# 9C9e+lǼv=I4,T:IjCtIv;-^N,gA2+h(hV|wXZ6F3HHQŖY |B&8'm 6 Va{ei<o%]R&޲'ݦLb~aaߐF͒؂c9v_pry nz6 x0"FОl|mz=\$[dD듛eft^f`fh$Rmɀ|PvPiTvxUc%aLVߴ X-+P"އ3'_{w&u&4ۅy[ќ 9ʏt^ `cXdBU 3ѷUћ ܧ5A?a`m [4giA"AngjbKpқ9UoklCChpCM&.{kp s)55M "M,9.q0kҠWC*VB+8}N&eI0 jT$56|O0eR,ـ{\5 Lsr"09dU[Qli1#{9%VbBaxʃXti{ -N9J>aw.}PcdC&use oA "HcH`W;uo May0#HgrL =̓5ȏ7㎡7Ċ{ 9t jRkR04F hؙ!&SgC1` Q/*A >zt 횺4jˢ9WYFyLY![ yQi@?On*Ӳ am Jgo]:>ٴ= $؝_Ngg"/n_W e7shV4 @bK0ի#4! AN_dI_l =\h[.$M@&K,C82lYDUƒQ׼ݥ5 O7&\t NJrlH~~zR$]|ʶ|8'-{:C'o!uЇ){ #=L#k: r >aWX{*eֆ 0FDfޮ*[EG)#ΉyM8F'sox]o 'Ud3A%dÁcԩlkywA3(pO6)/;J,'¢_4W_Skm`v$AzW5Nw,z#OwV Y[n)01}4er WXkW ,h-;TC%uojԸejfw^q\m'NU?Zd`=G O.yȓ]*i@oʪ??St Y/)+k'ߖN! w 0 e4J=,' +dA2rwLDM ~bLI@ϰ(vMNQuq)aDrQ*OR%c=u!.IzW#`q]IbZ&NZ'-[ K> !,9~p:eENEm XϪϔ%q褔APHxP$%/rg<x9(8ɜWVK粳]9W (uK4뽸%b&${d*!Ti|~=Ԍ*5*)E^T,'tOV7&#,gܘg1ueVn^Ti嵬 i,3"cFcAZI7 A7U+hyR( 6^w 4 @>Pn=' aASV?84G*{\))nULTm+=sFÿb7o{*-pa@ϩƸI|M}{S7gON['_<Ѣ&*=o߽[z|Dkm7!=w~w;7=E>P OnE4_?+3KlʗSDѧKj]K/|Iԑf-U)L&2gw_I]ERpM_X)VaOEwqֵ)M kX2LL&LE%" ]|f4Snp&7FXhVi- _laŸ5OuTlr0Rƍϒ_NoRP~ߛbR+|J\.4U"Rva`-"ҲJ]W魲KnM/5z.`q;hLҊt7ھ_ξazSRkw)֫4L r!@PT}^ѧѧjR[<dfj6oV&b6\l~]/j6woamm6Okxqb 5lx|qe |!.[n7۽&LS,E)RStobUgl2c2HU*bK uO:.D h#kjiG4Dfd-F.(d5o>B pX-'?(.T=0 L#ћH`R@P]qdQYW3a\]0_rqYzǪ@|Zv씌M/揔B~@f{SDQJ#ۤ"`jR CP7kxű |$R|}gDpPT>CGܹq3x:ϢX)ܶ6vS?,>=oş}KD6t(~9n]&5k6E/kxqş]/{8P~'Ed ~v֦M><>k= _> stream xW p^!kYqZͮ ô4p`1\b0 C|HmݻVSo1w(qH[BmSR4)iy>OOiδّ4[ 6H$3Ӷ \".ߘ!>.MFe B "xd\x j{%ZkNPKj>4zuˣ.zc4`vQtr&WYTiyJ>\xU:nevaJu.irw*˔CћEمխ|.,jC" l,R'gn*-huR W""H% v%D2Ndx"xDl&b-D"H"D$B-͸,UHGV}$&G{j51YgNq49#ldpO@LJbc0QvJPl6S%zkA6;d+ |-g׀ "2:`oc{η Ph F*@)͛أuS kzGPGU kP(It/dHKF@@T$bu)ZU7[He-dX%j  {Pil:}ur,GsO@5+kF6Vn|1%e ( LlpQܵ{ FcHM< u 8erW"ޑr+fp*gӨ7w`8| q.]QS4^CKxl9#ob& A40"7Q엟z- @]=-Z5iy_f"EFĿ$⟥PuTɝd&z\spe9Y3Wf5Z}++%Uhqj cKFpS\ pp4dژV[#Vu)K^d*%Ogkm5hu g>FBz0IwCl*#d.goMZ @%{N|‡ܕB X'i<[GZfVd.f|hׄ3A=~(x@!׸}-Cp˴_9c@3+͵z {ͽ=^Pq̌]eXtO|S0 L cE8(728P]Eq}#A^^[kƫ5`;W73S ͷW 0e 3(q vZ]1qLᒱ\շ3EWzCV}Z#@ CΛ ,m݁k9/z%0O.&@I?܆\*FB}QXv?t{sT)Y.1Ui)m8>(8% ~Tˑ*,g+7fK[Δi}Ax~%t Nf~ Z4Ϧe,JC8Bmh,` (vg/&#oGHm I}Fk95*e*,29Vy39cI6G=bx,`"{hR9uh.FeFUbmd ]v'Gq yamfs7ᱨhةhN [wu>ɛAR>)YHuf_gCy{3󀏺B-/U4h=}2^nM=se8q`%o*?;RGo>eYhܯRhKn-9ee_0pBp)j 9)7hUӡ.`Gb<~~118rn"NxQ5:{+V nB=RZ uWr6,~ wq@p|Z?="|lS~\svj,t;< pZƹ;R_}èЖw6(<4Mn_~a IP~i@|E*go@JD O0cƮp;g.>۷w RPhn K@ _Q؝Nc4q6ުb@u~(.('= 괼V[C\+boqnAsA/p(\n $=\1 pSP24?ulÁ8t 4rE,s.1EW߀/A+[ǪM*='x=l ڴZ`~ Y/ttӼ$N(ͩ+*!kƦ$WBRt6*؞ya+df_=a ߦ_Sp .&C s"?±T]].(;\U h5)FzKtHle@ Ƽ-2l1L@τT`:Yx\;|1lhN"4[k> Yn*Q3TPq[c/YsD7][+X:eM#8uAhϼӜN^ S8VPҪlҹH7](=oVM6S%رKqoMcH w0VF(M΃J/#uVdJqRS@4s>:|]zk1Aɐd6Kᙯ0&> stream x]Ar0 E76`FdE;#2,b,z~.$K/O%͛)?x3Ӝ#s*7'i~-[~l^k9Eg-uD/w+uSg%DwQIegT(8 f]"5lqR jVME*kHl4@*D䝓p$@ tHD m -&juVlkRkIړlR> stream xW{tSUN(ւ:iӴy6I~$9ͳm4ihӖ>@y9"âp⸮*8^zꬻ253ucd}-̜! rr6ĸi@̞n]!|\bgH'F%3)Zʕ+g.[teJLZTXS(/ṰER\2fc)%uKeY8S!enId 竫/VJ27d%^.eTKdU šB\ZXQ,-)IʤuE2i\ |mUs *GtmOZsϽ>I ^,lR WC'X")xLQ ݂yBnGc() ϐN̔μ>+_sܞv"mF=Ty_M&EEh-*Z_ܸ;MJy.uuմ\&B:/!~ܩlC3DvZh!,y/!0.4,Gjkn ^9Avg'd& -Rn!V9U%4 <ţgpQ.ꉹn=@?P&Sb@φ/~F6R|kj?uTh%. g=-W3{{!FFڸ a~'rbH@W@t۩w\+LVF \A=^( A9.$2V=FQX\/:C޶]\Z \0c72T -H͛ 1birMvlO3zR^Gߺ-;J+ : (tj:PXQh<-Cs/|W/^ω.i$+U9`;09Av'M0ϊ. 7Rovlڳ׋t5 XOۨ/mN}m#~ϥғ Xw?ZnhuC;ަ#Z T렖]]ݱ}=U+IҾ]S1TRK@pf߅3 ^t_Π?^j,TR9?ȡ߱U. !=B{QVDxb ڛ7g婃!O8"jg,ztrCJ",~Ȯ+׿>;9fF,V':6=wlCoKhg)ɽS'˴5zYa!i.~RP `lm@< W}<*5C8Z>4M!!n'3T[~>$e0?mk\GqE-8L Z ҪEʰ9n| BL|.NO:CWmSȠnJ~Ѿ65K7mI* nEM{]>`\^_gR=`5ht]^mv_+ Y$Oa8uu(c ᛇ \ ${Df)D:l _cͯϰk ~\бT!w`}C;φ{a'3ZTу-XvnR]WV*ʇFRlrl}~_Do(/)7YdmeoDA oJj<rB8q9cM"s@-R 9AXHS7eV9U&R}0:08=>^j c@ +$g0 ` Qq)k~ĕnx [9ZНL,6a^$( FHs`/0N ~~;za&YASuoц1ug4\Vp,~h6҂YJ+2֭/)l#c=]}h~S*ЦIs.c69oVT\C4u7`Ҁ12M8&p >@T9 2WO/uh>D;N99Mۜv4ms`')[ NcM̚CQF2ᶂcDGMj toA?%1zd4 E[555fug'C>3& &O3, v#ec]e'pyFBw ;_ڍ 2.M&٨'wn==Cs^u*ZCZX)~|壋(d8q3 l,sn+qX=v0A#jiN?<_gWt)g\a7 h`#0S j s#G^JIjQ AfgWo^VGͼfډr H@ZjS' h=>C ýM oS^z/*<!IIV:I^ ۇsSUߝ\y#.~r-%Y[3kEبY橧,K LAB|W<|Սކ= А#Wwe;/*6x#((5|d g*z~ W3 E>${vJ$!:ɍDm5PE-%]*M.~ufCk& F(-U 64qfAgљdZ ,%;_==H6uÉ:O_؁NfgyFqk_*b,)2:*;ɯa3>eM'xpQ+vW{KѸ6(VaM7熋_A2&|C:F=x0Bi}eYeP 4pJ~#KQ`vJ*[3ĆXˁ\qryyX`y&ouOlռ? [9+irIBέPet- u88|iT'(!![žG~UtYi_m\y"^ub{0 f'\D;fBݚ׮s1b-Z1" 7=_)7;ya?7/$;t1D?j|Tz}4Pe4/ ]ܙ+"is\Z@?^:Bendstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 660 >> stream x%PKOa>b ڎ $CC|JL.5ci4Iҁ)1} )D;hB7&ԥƵqIis{!жa9194x0|M>ACQ$~v3q :bqC× uxݤpJK!gò`?^#8/!PAyB%n>8/0R g(O2 3.zu 00 Ы5 CIB-sيߘi<)%DY(v> stream xOuݍ@ b@XebD4baⶎfhZ,bC aP8 d7ln7hL/.Q_,y'!9&0Ll]h'G`1%âBlb&|}313X%mE,i)wUWW9Ċj'[b[H>b> stream x]1 E{N $jM G%C`HRx{ac1|ؿun얂~B&֤0:O*AG' .*>_h.髚k~j3``JCR~r.[k%o0؟ʂ x$"j<*p~|oS{@ה/.i1w]fendstream endobj 283 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 444 >> stream x=OkAg4V%mM"E#zbsÒݕ7.m%h"E! ͦЃxߠW1QL+>0L Z(:9,'U-Q'!@,wWghcZo :# Er=&7gR(k)jLƥBJv٠l,sn/-jviL'˴Jݗtܷ-Fi&%v,ئ1꒢F]q V46ާvB(Gh- 'αhѰ]|6Tx^$0^-77@MwSc' Rj/^/>W3oWҨx Mغ f6lC ٝS/!WBE< g?nR7n_&?Est؋7?endstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xcd`ab`ddt v04qT~H3a!Sk7s7˚ׅ' ~O+XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*\c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~|endstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 665 >> stream x-oHqm9s5bIFN,-LC$AnvǼVoJcW"JC|!2$!Pfi _=w:Q/<!"UGkyJ4RK5i&bPkMg2܌H]6 ܭ.lʢ󋊬9l.<xlvA:޼@ 精}Y9tͻ:u0aX.w#X]63>/B72|TvBAeH^D'#^шO7,ZIX*u gTYԝIK(?dF ?ã:GB頄, R~zItkǁ26q ː#C͑E,7=,̪ NX (Pick(_8dF҈12I@͓/)OW?x\Pa3Vdl3>b\\_w_ e֌x8c= AR{yn%pz jH ,BABXZ%QT{Q ;oO$~dHTX#ꄉZ0p5endstream endobj 286 0 obj << /Filter /FlateDecode /Length 6293 >> stream x\Yod7vB^p]s_30ғx: jْG =琼!/Y*Y2+׳|gM|/VbuqwV'>ᯫo@k7NOJ?IWVKzs}Fpi7lRחIכr\s0f[C>[^_E蠽VNj7tB\𛳓޼d_m1;N:جp4 ~s>ϊ1&>3oֱފif㒠j=mJ1~}NDZݞxevIw؄M9?, R8NXX8֭o1zw8z7̍34bo7[_G9 7pTyo]o7(˽ + G8 !Ņ\-f I?qۺS i;R q=aj WK'͜ :#:Rx$2R7<$TSHev"S6PMLpwB $E\gȮ:EWr9iłoWqia5xiΛ1mZBFHt{yFbopFsH93,^'{|+5yHETט@p`#;נa2f"䟊"Fx=<Xy#= qS3F#^S3fIRyG~4ydE?-FAO+\r '>Ƒ;C=9.ʓ308QDQ '!)6m"z%J"+p(ݶæ  ŝwdjz2g-Y51j"z3{ 8'Q${EʈgL<3a40aXYuwqJ8Qc5DfI"W"E9'B\&Bg&M .K \2ONFK@7t^#uxGF]:70#i2@K@کy[Aj|ء+L9. bL#[p%ߕ}i.WLKR5n8k)^8NuTOYV(kAǙRk&L0 "zO+hΪ TͬfK,xȼ U끩%F @b ,U0K \i`S5 Q<0Kn#FS,H3˜Ĭc]mL%=8wo`=69wee'wB7TTH%쇠j8{Ԃy fmI8+#19'kC1[@~mij)|/ڏt zo3N3 [X8!m΅+}ȡQMIeDŸjOlkzQ#h[P;j+k,"*[ Vn׀\NcHp@!{ G6||WJsXћ “aW6%27μM1I &)+%@b .`{,Ww g)]c6,㡮8]%A"x)3 ShM̋Qq'g os¼ 1e;W;JH;':~25(* WTqvO|,-HMl~BƻJ~+: i?}04͆D[GFLfnMtxyzqF˥\ *gE;j\22h%UīQ@ہG]pɸKȎM|(GphwIZvo*FYeR5%~rlW xPDɮS3IXwr(nq ?g7nVO5`ssՉv;lW/t"k1jIyj֤*ͻ'YwM2|>G>;d(IJOi bf.],"*Tϯ$ b[ 7=XArѯ,1KJ.\O3iy'L3M\;@jUm*xO4~,7{;|} 46C,$lX{ ΔBΔє̙ŔThM;AL e} P G*p5CtVx0yx9xHxL7,=oboT$GS0]v?`cB!vGgFt1~}FH0Sܫx|zL}^ K؍SM~'|sL: t|@K DMb9԰caʎ$wP7d__- gBtuϑP)Z"D3jW| Y򀯆f~qF#Jwqn|{_ֿ'bU28<@HbWn q'i/j4~ap@JmlAD@TDPgCģph"kFv#! a`;[r)nd0qqB^lߩXF V## kf4^0׿ o߿/(V3zf>C9ZP8]Q.T]7<^Pg`S˴K8<:K. w\ɞ>%>-WdrBv\~Y[",>M\'/)IJ,M~+&\;, I69.l֯zKГ^$˃L(~#2 ("280I5QhD8Qͻ8\pFQI#o~F H@ٰotӱGn&N`Eҷzf RpE4~NgOzI fRYwJ9C?/IUtucR4G*y[bxf-eiu $;^&e;OȏW*W)fI|}i&k\Tץ+M@$$4Hs@pNL(0OUwe酘H_a+45A)K"A/0WoN~G9TP n@дjm-a>P2^yU: &cCZfn(aHF"E%tʛ3":c!0Q:i|W1hFi]Z4;z'ёNNJL0:`k%Q4LT$bJq<k.X%0I#pQk`()J/m[K4 Ѐeܙ%<%Y3B^{q?.a#\qVHs@,ܬawt8}L $,^ҩ)އoG@NHs6ȉt``K /ܚqUqS+fW /VS! Z+nج f7!k0&.M4iUIŰAԩ(٤aphp),Uނy:M)1D].&Uɭ>h>4hT05%&>G>L Taqn^OK|ʔsdNH0.m &9?~sZϸr2DX.?{p%pC}}|MzW8iua,5(77Ox9⍎3_&%h_b'HSTa$s!+ZcX}GƠ>VN4)ʚMʊ$+~H.1"B t ‡|}r- 0C7X UQ?Mt{7\Z6rCVy,[1UR_La7oIREآ>gghivV3fq]Fo³ 6 L9 ,HE֖89J Kv d˰6ĜrVKG8{G3RQ]NE<;DReƫ,ZdPn֠d(!ha ­Kz;8!N\[_W.d?V-~!댖*6><]tT;?y&!Is 6b<Dl-𵽳!KG(&yQ"Lt&cQ,(B6iɵ3T#1:7zd%/;0lg<~ﱮKq * k:Cn K%7ؖ(MNrS9*B6^KA8}Wu0_q֑LT.:RcP%zz_/O±4SF`1շ/2]]q,1*kŷiɇ&:hr8Z*[}aX/ńN29<TM9R -\s,5xs3muv5ޮeBuH$b×o^N.&K ϲ!nXMkT|]?]?}ltd"[&v{[&a9I yPФ~֙*F֥H bo*T$ m;׃,$\}nS$r` :S (9IJd^y>GoI`ZDV!bcF+4X4 UoQ]-rF'4T\9DדĠ$FŦxX%{ w@,$꼉n;b$d389,tPy'@e]7F,;p=.}[Z Ը% =K-͆QW SxtUa:;8vL%fk<Პ3X[:Xjmi%x}`&@> stream x<ێ7vyݧ|A#/ۼ_8"8Qk mIifdYXs.a{.I٬Co_VjW +}3Ӌ#:=ˑ_Wϳ? 3۬^8O*Uq_ a} f %X5CvO aҦCNN8\gJE 09Q6x7C cN0 * [Nh7ZnxI?qPF=,qZ$U&)ǀ5- sT/pl`4|OPy؝W &Nau/p}^ -{Eoѵr6>F71r2)j$e7#i7oSL3sp.zpW@wc .4HqE}_u/U8tW:W!llz.?zj)1V\H\^C:{ѥƵD5ʕx2ymJ@y*{~"&]%u\GY!\^=wshsn>C!u_/B:~U;'^|U ~Ŧ$8DOyFCUl V/P.LhMP=? >7hlܺl'1xD&$@\`,=h톓WgK6w^i,\&2ߣmV`Pd+s6赘H~K)R1S\?Mvv2LP rlٜ+pmt2`}=AW2yr]΍q\LI5ŕgIIU|-1{.܎S2+te,| q5|E@D8hҁm56 '':VG#ȩ] b"#2̵4"џr96[!wYEc #k1=-%QbA|,A.t-Rc?3Ӵ!hjbva!v\B;UJaGr^)`AKJ V܈=@1Q .R8T^PdA67M)`k llKPJ&>i ޽YE#tی +!fi>x {9e 5h)(!:zҾBcK-n a wt m: p<"Ԙ2EPCڢV5ӺZVOgaSׄkp@ \Y`F 96H79]wOFx?դL_cඁS˓z> =, YAˌj<\H:$շ]iȋ8 W~uj u "-)Bomn] %@/y-Nxۣio7Zp@n)ioW;fK'0ug 3e:gJ^ *$鯇$ m t V`DuNZKTo12K?"hQuv YNwmQܩ\Tl=8E>ԬGNw.($崏L[s ݛYpo#mդ˜”K25eX4ٻyeRaEE1r yz JdzىNdDh-I^{S2QHaFčʈ'WkSh1 1]Io.ۂ#8"c5Gfe|L41G!= 80RC{apQ[Yr dVPڎCW 49vuiD\gt98FWYxL^mt/itYB|AZV_|@NI$pD8  fr,%4r)- 0k MeM#i@0k <8e2,~etP)|D72!NVL^SݷItXaƪaʑ*i,cR1BP@%l9~Qv45w11* AN90@@43ڌb>e c GuluEiCtх{?}vK_b~i}]gʛP4޶MYyI:cŔ$`rA:k}Iix"?]x?ć9`jִH޹߽6~W  _?uupjr}hYsӅ.4 $Vŗ'mb91 _o=Oux^:, ! ց$Dq'lvhRw_Jݩyٛ:s#RqTUm`ep"" X`ubpH̛.J{y0{_8龭+*#uY*a ,UM1;7[tZSn{)m:h\;0,r1MsFnåJ'Rm- q!E$~)̄Np텼ʶCc)͚S $,[)CY-Iv 9ln'冿Ycg3Ci S MQ@b κmK"2Jn&od)E%f$F[&7OHk+e`PVFz)TQ/ l@Br\ܨ`Nq΅Fݼ[8_߽&ikYf`S>iQ0>Hg^UMˮrQjF<>$/_q4OYPVvֶ5 Z Z(~r 0Zn2E텊h7Tun8UTG_,;ao)Ǭ5)<[hHd =WmckM[ z*O> VRJz|Hp!T脁\"Mn-WPʹbϳ9+,h9S4r yzxm:C )A-LF챌qj_I9B'&Bw|8. aw{kLjsoFpRߺ <+H݂'cr_PBt5$o #I7sTQ//.n ; H1dGkz8պ])-%^-TE-[b&r: 8t<'iA7qwJ=h ǫO87^bzx'_y+ d# UbDr)Z~'~7oƕ+!Yqb*NOe'SibRzZfOR&%VDGDr8xODGs @&[(`ڳSJ7]ÿORǠ3\p #D]ăOHQܩ*Ü]'kE%v~#n"݀ZV & JNHϓK (uF'UFk= Ecu(c <3O}r1I q0м'COG'P&]ݢ/'yj,`]aǼhS#Fy9j1>j&> stream x][7v~ tH؅,v53ɒ"9U<ꞛ t۹}BO}N{_'ӫIzuӉ=wΰ/]:={}~N:wѸӳ'> ?W^qvjqsՏau@;F>h[Y>6C@ ήnpFxc뻡lp:C]{Xo18[z7 f&׽ZAve-viklk(FuNCq?a<^\tafL~}f/X[m :Zx2bG!R: =f$Ƹ. C"0`-l4K󂚾qSmi&iߕuzWn?aUp!D٩ci~3'7yYҼ(ͮO-ñ[CF`w|\l=o^#S)9OV]R5X!So nӈt_]i4oJ4yQ5Txw-\QAD? I?mt|<GC"`Q 4Y2ԟJsi~ߦ#I,1:E{2:_Ct!Muistg_ODJ`)GĨy5"0 йd2;׬Uaެy@R]00FL053C ^:`{~Vb"$(!^ŜlpD5<:0 vc4`Eb!'E!% j mMGq鼞kuDz}W`MER.P2UQ|%qakzH,NrNb|(I,R/SğEt?a Ld$i"WB;@ isKfo˯˘|S_`A5lǡ#9ش_eV_̗;;:`w@-r`E2z`a!E)讳4.jǛ-&Up8x߭7Jk2iiNk7R~/Zyzq&JӍ*2(>ѣDU-h` N2,>,H^.$9t#0VҚ{5DXo@AM fl]:?z+$]\ h ̆& Li2_]i^zW3`{1 (pȼA\ԪRn@c5=ץ9gnX2FYXn8\t& ,q|<0)=/E^d&6aqO_n k$n"sbXT7c Lj;Q!A (,ƜڌFro ZW.AHC2^ 78&gZ \Nr"桑w=L J I Eғ H(-:;a/ܠ5[>~mrTܹ֞[r8ܧ B UY)#cAiw4+1/ҝGLX5R ϣq2} ˨WXVpxr1=T#Iion"S.퇙G1ZWBOp.M#pDHNWjˑHJ C&~fJ2@p0SܲZdV$ɓjCB80pj&@פ|hBdؗܡς8ه <1hO4ILhǀT1rjFSj+< !SZy`r2gTͧCpHIMGÀm:+d'ݗݼ-.P(XQRdA@Iaf悒$wR7 khb"m=d>O/e K4~ܔr81PjbQL=@0! JW\v3[#$tVL?CujJf[N y #WJVS!ͨ>6SF=]ьѓWqIO/dZB`|NLN1@7*.N[Q^lB3 Qv0`݃ţ`dQb1/M>`#,-4惵oP]C>9Fz.EDj웦2nޗ&õwmVUD)є*U1,rœI4}ͧI}P33u1ai T6z2Dt1:V/_Lj÷i 'ci-KIv!rm.n5eZb@ʁaP6g ̈́mF_3l La Y]8`z < uƋ#S9ӒShJ1uf=nBr䪱0&-]sNa 05fc3%XP m!•{:L_3pj8X|dc8h 2B?zI/9#Wi1e֒U~<0M,UiiR.4i-r4c4_b%vo"Y Lg?H#^b$]ΘUs'h&``ڡ.D8hP|q*:Z4XQTGQglYYkPd{7HQ g fƄ#sueBx]$6m."]WdAܨ;R93ٱK+Ê+GfaUR K;^}>$\nDR4 ,]_D*2d#Om-:x;(IHaOoX/TbsG 9 z*bx]Vx<1EcrjRr(3 [6YJ?>2k`@t+`41^:2=Lb5K:U-y;fL ф̍]ګ o tgc gÞPX0!h.Ta">0.JFx{XN/LeŦ5C,6V৔F Ky^0>12nsj_ h1`atlS%C@x`䇋Y8'Ng-zyN&$sqTjޔ&e-Ak .X?6f@FSgvԟ_9$+!G>5;FHXH~2a bPUE2ldOl "b*n(O Ǚm#HZ '\+,$Rc fuOI 4Ym3sO<cɩ$H/wE.ac{ʨg.a"Sl{$*jy>ٵlL"pp VЏ<8e V HL՚)cnTzg"QV ? E*)Xb,ŬH!]]_IUx711d\[jl_ϫQCħT &c_-Ν_`7I} 8ķn^OE$i Ċ0 laqyD[˅K l;t6+#@Ӎ ާ8Z/]vpazR@=}#t6 ÂU@LYzj؈~ড(ʸq5A'Z~ckZ؉[Ƞ(%ӿ8p[x9A,0=ǭ{'Btjo^,>Ʋ,|{7qJ%līX:ORVELLΉ MӦ]ezXP38KաE?p?h,~n]cX*WA21 ^LGy: w$+ SPtEKduf؀b䫈HY*8_o7-JrEӁ*~QUSR0Rex>Q5dR(C,L ~LfySY ,};B$1ں>rIw€̃Q{{Km$m oU+*~JmC8)Į66>Vi dJiO c[fCi%.bd_O2Fcȳju-a "#c+6#US7TȘB$jU7OOjy~6kjr-,>(UNc-HSj[ˢ{Ko( fԕr @p0鎏_r@4{rsvi E^no87&d ʴU- VlP0x8ۨp'߆ GnxmR`@V+~ TŶeE&%[Oς\>%=b8%]ѱheGt2뗋LLvU!]z>NBK?fVƂNbNvC 7qݸ]ӯ_V/|$ʽA(G{0W+yC|yxTQǪ"myKm .YN80sZK|4eAK'Ń}KRҕt2\Wd$}u/͢q+Q'gMO!v[xK@ ZzeT}FɄgVxW vbE\ _),ۮ;ey0:#:U"":}EigzGXPADubpCE*Tx`\TR@a=Pe]fu(u~hi8_¥SꎏqzgN^/;=R'|+n`QIA>@K_]XAB> uYݑmkJWX<׹elgaItgk`+ߚU߱c75ZM󥔲$)dg ÎIPa5;֭ K=M#Ŧ${m8T,1V៮zή~@JgIJ*7|d(q` _ú1Yru`y6u7>nZV̹Ysr)#L,-ve,t?h>ɟ}}_1\H-Kendstream endobj 289 0 obj << /Filter /FlateDecode /Length 4606 >> stream x[Ko/=qBF`I.)9$撖{{=KR!0 55zRr)Zbyy!G@<飈rytHʥr>.}vytd\ݛt-,څrZZ_5"%#cCWD`c^qn{1h} rQUS(颋9Z|61Kk_^.Lpb|ⵆ Vyf+^A|؟\-n颱IZji{+f^Z@?e^/U^Bpˇ Jz`$e^! KT~du(:2"Zz'fJ{|5#MнKkhyĉj@ [ fSag] OqX侰M?S@(\~,h*Ln5$xԽS໳t{=Ŭ*!D 5$_f<[ABnaTJ*kSoq}^-7Jx&VJG(Srjmrx- W4ߝ"%=D2F=nNkhI(XY>79{k q(Vcl ay 5z\(u/b @} Cc4u; 86> i^s5.2I@mM*ewR4mw@jPM p֐?q_YK `7[T]av6j 2R3*zm8첻Z(~2/Ww ֺ]ꆐ&tw!@ ILD SiEE9 4YnsUc z8U#T4H ~u(io 5" /׆"hTOw |bz! e~E!8z0WȺ^KPkP&Q;mtW.3vǫ5W~"x8jmUtQLYfRӎ2A@r-gx$BWae0C(V ֳ&Xoe!(%+d=UӲ|GK[*8WG} h&pz Q8l9H4!btvh~$z h;fMC桇)7Щ;c~,(.~MB QyQL46 SkTD(Yg ^Al4(0H\A\e']N㧴2F-=$pK1:H*O@(ξO"0eQئmmG|\H3rXCStUۑQ5E(Q1Rf%HN+C?'q_ :k] YW R@j h(PDas* j$d0)Q=4Άu&6A·hH~Nr 0"" V30 q, :w!(<2>3_ܕ%# i0==i=pAku @199溑넣3 NSviw>"g=ֵlL3I4TXfVCS)l,CۀdNJ4u{L3!U̱dF0M}zM:Gs 䂜u<.#]0vSWeyZm36<+ ,nA*]S+ eyVM} b; pAp\9kO.)PQʨ͌!Qvaw5dx0=UE@F*5ij`VW)nppɌ !YffWjni4(t3-sl^}%4ZE4oYX>g`K@#܅SO{EO14 JK"o7vØlq MM$W C%`k6Vte n"ꑖTTtN{T<[c6>p3m{ϙM6 4cYb$0\꿕ah ӸaZguv<Јó49 ш7Ōᘴ= ec$j4k%X`Vf45LYCWӫ@eyH' gH*/RB_PkH :W'2*RjeUj7l J&C_fu>2zwuyid;,%ސl%18zRG #byrә(+#y ,]@ ob&32h~*'tHH𬒘}SJU.f:>V@{nGi?*MCB4:^P.e AG=^YMrvEWD]s044,>nigf<ݑݞ7]z s?J ":7#3)[WJ3M=ZH/ W'.UpU^`+VoQKJSM`w`QHE֚Ifn+9)0Bb>mS9;L|SOZu gyXw4cs0|#"$tok6w )y,-WA9MLl_VE0Ht@9{b.x< 4χ#RLrpf MFFdjZ S!ymƝuuZR7Z|(>;iH$2xⓜ%B4Wll|\ܞ)]9nP &_ L$X q k3YՐ6]"N"Ϸ'G ԍX!Os^XQI2oC+ŗ\*QΧrS GEOІ+t$aD۲˲M˖e'SeR34K!KpX7UYʒ\fRڲ<.˷ceQH,hzx7< ˒ ߗuY,}^=ڸ~Q(hi?)72vp3m"@Zo)*i V= 2iȈoƷ)5VyZn}u)(bF Qzټ|.x:M/qvYZ⢀ .wn+8vI` rcB!'fi3zg MqxUvMӬz~_Rܯ͜yY~NPfښf@?mՇçnU"%gFHE(؝3^̨clǴbFJɚR=S?vjR;5#fCiUgCn.͸ƏHG)T/#//2+&gέzîrf5- Ɖ_7M6OrxE&-Kx^Ѷ/=pQBNP{%i§2`P1AR@4:M&ϞOaTMg9e C4cp.$?109dǪ?jmwCާ ?m~b-9CFN)O*:GXqZX ֭&U52ΑSm=ɻMϣ4EZX%QA[+hU,` bTUlhE9wmOf=\S:@FÇTUXgge`LuWĈ~u=~ Եɖuе1thD<X4%W3~0r+#nXm&Lu!O:Wa W|[, ,ELV8<^pj -40+g8gY򺉕*\59KF{XObKf&I)a'l̵>ޖc =͎<>}Κ42WM2C,Iendstream endobj 290 0 obj << /Filter /FlateDecode /Length 7008 >> stream x\Yq~GLE upZ,[r8$1If).,v5h<myemzlk6ǎʾH!ٖ-MBz?xSh7D|Z:K|,nٶ,)FZzKyo vݚ.VaQׇvxjϙ7)\0kyԫ^~)?o3XȚ픋'[%Ld7@4jn&ፙ\pe)lOdK~lK%q0w1y} oS .(aJ&%zu# ~M 9-pWX9^+s2<2 7%4e<;/8ݿ<gcHOCffLWɺп¼6G2Y7ȓR| ի%4#u=yAdow8v+/g&215d~#e=^gb2(bXق).ţ d/%]#.{fO*:͇$0hߔJgs N0K$X_wYz;^t4iwz̘iw~8gC;1,~Df`8H{(7 lL^vɴswтQ$ 8 P<8ʿ[@F?d+ @}v0 > : =sY,/tޖs3/YjHMGV+fe'] _qiϕq>aY5&{ S'҇%G~ߊ5U'.y` vGTy6˦XF X녖oτۄRo>|0M2aEǂBJn\tRgs]JnϑFw0'  А D)C5/U-$cKe}= ]a}&9Ribaib17r8J|źR T2<fWb42ډn+|d~YNs5B=RwăMlDܵynxB*ͳDzdL{7Qi2۲ûc1#gOؔ_1K{ }ܯ6X378eY-A%1\ҲP3NE\@魝mcgYxqVɛ02ɑ6OA'(ng8_W/RȦFwi!UGqn77dSZw1znB`inO*V O׿_ͮm#7 x0hc *+h{3:{('Y9@x)0B:D3*|3 5#(dh0j}#ЄIR9HRgb-߀ 9OI.4LB~NҌ:*nBR9УZ?W16ILf  jbفƫ_-E/W2fIPi!f־PT;5?#6+ y|\cwlQ Иw93U]*0+om3D=8VxɈ8'Hf뮹=a1Fӹ=Fy|z耱'Xm' _yy˦P,c'9~6.1[a )H4Ȁk[r_sQ2\cӇ7oF ҹ}5wpY؉1#-& {Og` WmHP&@F8)l2z%):8aklFBuQ˽< ɯOwh4g~2CB/JwJ+T qA Ҙ8P(Q:(K3YU\ @_/owa$ x2~!$y5(CHGv}tͶ|!m/Q4ݪpzE`U@V>ei;創Fch8S[*o %yjUjp@`P'F䎇 f{&zT܈|)hj iE`39m⨕L,d00wiRD[=g?Hld&]=k2:{sù˕G9 lؙ9")yEbc*c|]Ǹ t'b$[”Uc)ҹ4oCXF 8\a<TP+0 x,4'Yñ e4JL t$Z'E9Yq!C2C(KrÚ݅<̕|eQMG fǤ y\p+3mz׍;taϫu\W%g*zqS?mɋ<80qVN3JjL%3_a^~̐!)9=ΕA"L&eɞ^jD]pwU~L+hqMN-(%'hwuX'VRFK-?sRQMwMYF5dKgkINުlԦg\EC] _f~-v`Su)R;2*!?1):9jWPݩr-&*GO$0W9i@Q8?(`ʊh-9s$SWt)>Ps8r 4uJ-.eƒJTH;ۜN4ճ]8B1OϦpsQeVYڨZ[s?|<{_ה(殉ӯT!,1VlsT' Ƣ`BqDe6A+5}H`z_e_רּj!h :e'XMj_58=]nSJ//C?Q0 *P,dO)EA!CH6Awm=sk-pU$PΡ쯂5Q@}~a EN~j5X ׭z,}bYA!X?p> t\,EnM'QNad LKwAF /el V͘R&::$'On֣<w3% Z|έfk}HnԇzϡOT_f7]}k k|,#zxS0|9EY}bj6Qۮ`i`uVwt*]l)i\38f.Ii/T弯(;U;&EHAAqw@u|a!%Q#z=Dq!vOk2װZGY}ټRUGC0keЉ˫LS0nS"_OjA'+Qy]Xt۷exgmL]Tb (/7Ah"A?qF8`ޒ7vJee`M6C#hh;=ddOf)d8X_ƹd RE7L虣a9  )LPX"[s=[q=,+tqK$a(]X3>,1iCԙKU9%_*|Ÿ$^:e=]![RFU]|61Yz=pٝ Ki:g2Љ_HQI U[*gJe$Ѝ,Ր|c>{iPxEYl&sU Z }[e&RU)4L|N4H/\:Ÿ}_8gFm3zDS^_OM۟<ЫCY KW9/yaq9?E}N:CԹmendstream endobj 291 0 obj << /Filter /FlateDecode /Length 193 >> stream x]K G44l Q/chX҅hOA7ѻ{ [M9,IV09(Q;[F W_$]&=8#퉮& QjHOzBDo@_2)M@=W K*F)x.(k h*^ b>-ux1E `endstream endobj 292 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1035 >> stream xU{L[e{[YiQo[`.04q,ӱ9O g|8j" IƩ [l[Ym7\y3e2ht]ƈ1agp||(Q7M ,n h\nނ4%_c_h$"E-Q!Exrmee`EmqgT ?O`5ºZe2NpC?އw K-^^7[G&Xxweѥ{Jna_—)' aw|$}_K@O Ao2rpfr8GV1 T&6J &;-,cZh|!{xҮ4?|# W:՟@QHpyqgtx۹F9 iຄ9_ >X`qƨüHz7Lj`c|+79/QA0endstream endobj 293 0 obj << /Filter /FlateDecode /Length 197 >> stream x]= wN 4"vЪj{&b B޾g~:hV P ڐRSz).7@egSSCJX๙ e#.Ljl3J01Ċ%^u-:mveDtkذ$tOi$^Sy&)T̢ Y(|eendstream endobj 294 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1375 >> stream x{LSgϡU)VzC7DNؔx7e (,7Bir):.ƺY\LX2iLlQb#/{<|єpV܋UL4-;Ide/#3@\$qdp ZE9-WWp\W@78gĥ0y#mM^P1aX79m-Мy}ŷdIyD9m׶Ʊ;[/u@ #cdC؀!+vf%9Ԥȟ;{- +ǗOBG{NqJpR3Qaսo_)HeIh##ba؁Aud Y*S8'mo) /!ڸھLHD |*nJDpf/+l TV5"$X:r+xk4RW (&r1p鉠~~endstream endobj 295 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 375 >> stream xlCMR6$J  WTQmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR6.CMR6Computer ModerndE7_?dєZ__ZU '&ǿM6E8x{wZOJxb_ilJ_zxvCoa  7 ޜ ͊Gendstream endobj 296 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6147 >> stream xX xSUھ!rYdӋ-˽ePdYddk{ӦkҤIf=ٛ4[t_eDP# 3̹>?7RfpiisO{;w/B ]buLˍp#{qH2 z7b(7elw &AT@-&<뉘)<3sbɓ$Iݕ"!/%)3!V+5)O씼Y&%dƉ%sS&)7IRX2!3)}qwX KĬ'&IX4?kxAv"ܼ%K v.Z!K\jwrʚԵigdnV2}̬?=6{ǟemOn1irC"!^"D&c8bx@'6Ieb!Gl!db F,#"^$ˉ b%40xA #BD(!X/яO&s&S[}RGf?ЖN |jAs Y;yC^0x17lҏZ>*6s>Xd, 76r$w̼ɇ(lT9V \焜:i{'4 F,>Y50AJ^#x韟v-|rn U 1w6YM`|BLUh5*IpR8 :I{)@4yͶxִ-8[bv`,̠AQJ^W w Ӈ6.@Ĕ3؈.Q&`ltbG9^~ D}q@}!_5E"FO9؈/|կ?ynVD`_|i@A;pi@KI:OSca~61h&=à/g0A=/O:*Fk3{ꭌ<6݂W}o$: QJK&vO^A.2E"TsNcf=PT83?ft HdLT֗:CQ.#g)@Z]WڷM*|v'&U_\S,P v!qp`CT@ ;yK?} 8GppA!{ :R &/@Y LtPty<͸O18u<^_0a=Fro w 7ZMAn&y跾 0O┴y(9vH+wP^Ho bx&5k"2BP@1VE`ˇ~̉E&ҒZ^=ϞjͱY Zpkv*oGn4R AߓYL0՛j6s)';m ,-+EѹupkӶZ_q&^Jε )TOy\a?ݭ@4PzcGY֨jwrf z>TBNYU<腻:*;Mh6ΐ- zPz6rY8?$6 qdm xn‘;(($r6ag6 Jٜ[bXO}O*X__r9=}kDRTKRaɴ_noǨۂK|'-U6eihqi,FLJ;΁ԅAKk]k쇏F~*h%2VA 5Z?o4T.,-c4춵ZYkxNo^ :腡/ؔ~͒'+SXؾǝybINAO6hhhix)Gcz yA{|7iZ=<Ι~O -`[4-:KIU ; ?@^4Cҿ#+ I$c"iH4l7^m`UZ06P^2IIPlYgJ6M}km~ I_M}!c4&p<]n!!ߨo]al{VVoti:S3zơ3d8h\-B*P f}?V)V<?1s]Uu׳Vb3mo A_YҪrJubAWzyNnR cv{/uVPzKkKI^k>j6WsX@s5x7M5ϟ;N6ZnPO5MnܼVanY7DZE/ܔ^^YP:mPvbVA|R;;ӐjxI0̰FpJ8@\;)jujFܙʀQ*դ4[,Kϓ)H]vx+_l%a׺5yV<`jpBA8ϵ_쨙T}a %@iԤ#O8:JT-9z촭 PMx G#5U6Nl 8  >Ͳ˱;t[xvBi6!3^22eBd<ǫxcpr趼̤̺}mMԿ1]AlVԻ]!7{~SӖoORˊzZߨzrZ7l,GT"%ԧp`6XRH%"ES.Ѕm5-f.)_2X-zԌVWGIݪ&kXk.K-UyK=d婙^j^Ljw}t%Gͩ<fBקO14=-C~m?~ }+m)ɕ^(SrdJ1t0ps/Lg0eꦷ{ۥTOgJXw8uOя겚w:<,mRp;j\ WL^`#ӔKt%U5ԣq+oU*omu"7|?|e 93I|,N))|3MIT~5J%.IQr 7U\̓ZRt-/(J4:iUy&k.FL[fW:\{a1~npt/.B4`vjӲԪ@5k+V7VOrh_e\J),SThj5X( =ѩˁ*6>8ͺ nr7xW;1a**jAbPep x)JK%-#E'-qjΗJrO9KjFj[QˁAAW`ZFC+Ʋ EHHtzk5SMvc%qr671hĘ!n07 [5YV^)Pc5M&g„pwG 5gWixs303&NW+4:F.6Fn,0˚kcߞ!C<["׻3ȁJnΫTI$u ;ߟ[*З $,endstream endobj 297 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2596 >> stream xitSeo6`OU4jK+J) leZh$MtM=yYiB )])Je7퇹8|p<}~#bc2siڬc >͗ȵȎ8HCBlԄ?MA #كhCǓerTM=]6wk/f͜9WvX!ݝW2['.Vr_ DdbehڼeX!Z)+{eŊb咒9Ui!Aoof:ds.z6#]lWC+4<͟"JómvJkZe\>{tCvփg-&WC6k`1jHw|ECv\"; p*xlh|= 投;qBZ0@En=X8x Mwxt`Z̔N*O[d;܁WnCY U:BNiu[Sf.1xȬ+j5YD(gK +믡D4=R( 8(̖]=t/t9ұmmV1Ϥw-ڤ21Zyh ~/2_hNz 0feԹ X磘#wc妿Mz0Vځ_Ɠޜ̹>Iz?_H$*Fiu:7y a:ш%GQ F ezSGw@ؾ: oKcs Wў7̝ChJzwVl\n0ѺWu@e?uȾ l:o.Y+qtbEè /Fz`1YbF_jd'wӁĉVvG#1:RVn1zܖ,8mZ9lNp$E_YMmJudl]߮ i01Z0Cڇ,&PAoTDg g@?5~Xgg@Ri6GD&3mOLЀ~=TW˪@AM }#d%s)hV}][< zTZ~Nac3SfRRB-- yY*jl5նFj c$5{vV33}Dۋ(S!#x`X7tSh!7wM~%hޅK=Op6ICSBW  J+l3?DX)ș9 T^\}q#,+8lp'DA.#\%Ik\~*`a i"4ׇx~{ rspj=t"ǵ϶ ȍlT  -cJ*PChwC[fJ F]FC }bHΟU rȴGz(_AU/ @ n? ԭJ#UzY S[뽾'0q)Zrv 9@Yez9J 2kxC/cHG Er3V Mn>Lw\9 9,բKh6|>^+~LS ^$i@ EFA׬,UT*7d_zz{(εwl#c51P^>GFNkU(/pO`+]B} T\3߷RQSEs< Oٳ?'ufE:p BXa(08 -z=7K2%VX[ $X (.l zϠIwn,B饸 $i?-66݋-mO59@¤'! à]'endstream endobj 298 0 obj << /Filter /FlateDecode /Length 159 >> stream x313R0P0U0S01C.=Cɹ\ &`A RN\ %E\@i.}0`ȥ 43KM V8qy(-> stream x]O10 @+XҡUqP(/ СY:ߝ|reA>E0u- -m1,O)x@fw5|s^[+x$E b'Φ2?M%K17MR{;RB|D[Syendstream endobj 300 0 obj << /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 301 0 obj << /Filter /FlateDecode /Length 151 >> stream x31ӳP0P0T06P0P05WH1230!U`aS027i`9'O.}O_T.p .}*.}gC.}h\nn@n.P9?47XΎEAmGTa?ߠ pS! B)endstream endobj 302 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 @BVUAp$6|/`,@L4[ub,,O\r)x@w|^6#NRP<說J`2ٴ}A*)J7cnw>`?qShendstream endobj 303 0 obj << /Filter /FlateDecode /Length 6642 >> stream x]m7r.K &iw/69!liGJ$=UfMX:#q{|)O=Ua#Fog.$v3wr%QD|z^}xǨ˫r϶b4)PTRh۝z @" O%#V>h^Qvuu ںgCUVN/_ ~{i;k؜1QGz8$ "oN=7PChCQ?I54Hs 4#&TFWr!auta\c? 4-!B[PA+,U4nt!4sYvїC0a-}RS!h[($vU@"IׅKk'>npDJO I2 g0fUdefUOoI\LLM# S'NԚ=?ykrq!dPVNˋ?^$sh7毴)`ta _/Sg6ʲv3 Ż$S#gIKD٧ `]\P, *:8PߵmtG9 )E)8ۈ(PѺQ#`0 *D7vffǪ_pi"i@Ӭ@ QL`~ %K70 &0"r4Veٗ_.IaqzDsQ#.pt$D 6H%e%d+aW,j5޲kd8aq[zH_Q!I3z'PBPJu KI uF -j#"I5aYNeL ec c%(`!X!)i{XMz&"һ>ƠW-PC!Ӌ\ͳ06-ijʂ1Ő1oZh+ܐ yZJ] '_){T>WGW@m~,c[9k,@<#` x"m~Mr?չ3Nb3M-Z.VEN&[7Zq1Xn(UIZ<`"7%&鳷G@"/V\_V`Tɯj,ϲ `3㈷4{E(HlۆC+AIE`AT!0 wWnxϴt7(/Ap[ 8-[5lLe=x )a =aK{kƗ\\1چ#lGg`|1!J(|8ɶa[MӹfTmeG*u!UCTTf|MS5TP gؚUc5j3 a=l;H#zD}v|ЅИyMҝ㐁qWv;31+%?@I&J"yL"AnnihvVș_ѯiP||A{'@NwpĘtI:`-|l'lmszmz  (tT=\S PeV;" q#5hYq3^9I*0, L!;p2NNdЉ@ML0 n?U0 `݉?ʒ?*ڥ)Nܦi*zcq}=*3=ڌx*c0z ?VB^JOPf`E7tBu wbOJFg%w}l> :Zs$wN|▖"9/wP6csg1|' QÀEl$;|X4x? haF8ZK1u8ב Wؕn"( xV!55UAmv;U,4;$0JߑMW#.HCu`̧v %7YvR˖eX\vp9aRA <<˗fƏR3aFKBqA2)peLj.r,޾P%8q1Y'^mv"uD =̚.Mǃ+hјCU@F8V2fp;9GUɢTD1;Нe#Y,0L > BFye`QfĂ#IpPC2g'&`$] N<#qz֕Pd3tuL}C7Zk .N18e?89ٻiT%/%>eJ7Sd|?Lgc'OXDuFK:8bˌp*P3S \L-E%☋/sqoru.>şrqɩ`1Csp`(Isa:< 6G4ӶSgҧs1X]5 Y`vP(:s'ʜ+EUV/v'mX! ܕNT x!;^3]/Pn0p~$JS B'Roܩ{#zAyQ?eTj/9p3]{2I3_eR3 uZjώ$:)`b&MVg?\ƅ#v3 $޴̸|2SlNbJ;`l,U% : ~Bqn"daenu}tLqvs~l׹xۛ2-EUFZ9:4e<] Ǭ!we{1x; r]s2 [$v%'jKPplvg!3Bǘ!n־H]\ODs9p ɺH%ĤĮ7;_`X_J)݇p81Z|\(5Nw &9 Mk'q]nb%QѲ'e?-?_>DUgTF7٦]&h㺑BS[.AUXNCuG"vʪgN wh#T]@h$Fa'B w_ qF}\P7FIY!VYΣ 8(R@or`FS #]ߛj(y4Ҕf^xp&FP5%6c=gt1C/ӁW+91?1y+24s i3[4mg0>:eK̇`J9¨9',z_ʀ8Z EBQ.o̬.J#Yahe/s69ƧPauDG ud ҽ_mN`oj(E@d >1M8JlH́&%vKnzq^{hI\+?apydLY03V3,c%;رJ/IQizL$gi05^Rr _ ԬǩeXɒ%GCv9(Ylq.I+Qӌ[M׵JMۻ\Cslr74V~-yFӿiS],rASX'L~*E.^ bϛre)>:Zu^[?6+0fF9waz4%?65V67n^o3}Sf2Z%M93\l4˒=/.?}u=fìc%G}ZHm9f{;T4a~ oenWyn#Y|՜Epb4r:S\<`vB(&J FDVos&-"Niw)GrD\ @Q9UOwp _ oM,B+ !V_u=/9X[;b֬G)'5NRMnZT@~S75i>)/-d']RAvԹ㋳wҖA8,px0v^jx@^`zM@s[KJ_,4Q:g챋]r?"ScrkF!h~픃7wXdLQW|(33 <|WQv;_mͽo1(#9WӮ(ͶyP^zWV ˸Шc/r;1PxE\s$/}};֏`N3P74xDWMqJ&Z|$SLsC;e/"/{0;0OWDŽz;Z7柙LI)ˈ)jyY`-wsI'PHr]iRqg A\N5&4s*Q%ğ25A>RoXudn?^B6"endstream endobj 304 0 obj << /Filter /FlateDecode /Length 5103 >> stream xztoVb0)*) Zk=hi]!s'ð!U] 6F_msu ں8rTUSRY#kmN{aJv8-4FOiM8s{%Q Gg !.?_!q1"|֯fNMw9k3qn(8w]pG~ =MxE=%_wmȼtz&LjxC`C pe R@ uA6a]%+87+FCz EҨ:_u;'pM :Df#oVk'LI>SGx-lHrHtK\>DI*8!.L+tƹC RbCg CH<E 3D5 ^x15S3g=I>'(V9hP pB4%j4iUiZA[xdy)mu?(3ȫ0(~id;xe|I|;Y7Xڽ`~ 36m֠VQ80W9FM gT0j |X!BG5?Gc!җGmRk'61)AMY^Kͻatù83SZ5xF-T7$0t1B =g8l 2H#`N?4HzS9LFT:Kѿ%{dn݈1XOhS+1w8|WʫChv"$vAz(`PFE١d+0qVpY:S;ڂycvAC M$ |(Zn_p" ]pM:>ii'DGDJI,6 H5|])֫IƷ\G]W *) X񜑹ďOџr!..')K⠜]X8..S12[YQb"{)FbH(!+􏉛baњK2'+٠#PF( 5l?PZq- M'Y"Ob$f:C^Y)#XKVҢO^%~B o^@ U˔k5 FX0Ȁ{yp kVOtJm˥¤ `m|r`\WK6fZPk6 M xK[H)Vnsg>A<.ZGجkTs]73s 8Z0-6)Mr$#u!@ f`iW(#l5(={"崾1(xR$P0[dl*?_@bnߒg әiu-Jٮd }S̎%~]8'X3ĪxPb;J2$&B좇TT)m^ ١[.ٌmIB*}1!9ero0:3雄sBM-7ف eݍklfq~iA l [+ PK{)2*-Q04$Ǚ&by6{:B tz v/*XHv$b Qs-<i5:P\<^iE3 Ե#|mLy6/dhҎnfml9 nbz3 ܼjgɑ` Si;^ bX~H66x d≮zzFTbR6gJmTr@ze2c#^7%ٚR$!7BӴ\ ^X ^GPYȲVi2*OJmOƅPȪ,g# u'l>'ω3R6tȮT\3w[dds5,y]mEs숔7,ŀU,7\ۄ>]61(؊h:|! : Бv^OqhF+_$pUF}{./a :/D>UePY tB`)]R:b s)ƪ6!Pөx(f SӦ&)L Obz8AT<ó;|R=&jX6d 8xsOIc\gU]ipjoz|A[PjRh/^A;kHbްw]pPO: bK/uκ;N['tCg"U&H 'd Ԩeo,Fc1T0x!U[d #/'M ]u}E2o vdadzw68W,15VN 6b5Ek萕.KU*^u$ߚ6ľO&'t6tYB2wxnMH! C=!}R(ifn('maz[%wmz&a9-m-+t pcUz)BjPF&cAMS`潇.,[>kULJrچi_RBs;WɩZ8at?i.͇eD0`&jYt[6Q>ژױim@1H*}]{{3M~|і/Mk\LҙԜƵB*m]'A O2KMI(KyY]fn'kf H 7D%*!=+gi;2f)J::'`R-Oq<DAZ,@|8{/G~d'U}F0cV-ӊ>gS10Q1 XcmV+ ,zw۠ Վc k)/Lm[;Yh2mNcN]>H%sv9NH|A_^`5WX%ݹG5z .jwè?jt/(u_7?X[YŋU矿&4Kه dseT`R}tҥW4я[WF]M`aCA>q[}EEyV=9-9˩wL8X;v{o wxgNG{̬b:2 1>%Dk_4,`@_'1 bFzo{h\؄8XhwyzC&կ5~։̓(G1O<%MtޯI-zD7U'6l?_8>/=W cI|ju3{khlh78e'a,O{mx(3h0-MTMҺem*UKm]cW6/Mg+FiR|^7{{E&V:+;X$JYzR!_)-7=ˍ$%_nM:67?U9񌝾]~~'d~4j|?[xn.֩oM-T w]"qՐ(ݬ sHaG1Ak;`_?9uA!a5+zqxq!IݟJԇendstream endobj 305 0 obj << /Filter /FlateDecode /Length 3966 >> stream xn%݊1RBH`@^{*ʷzN/. `@K|_r_?߇g{ƨ=|O_x;,QDt/}*֏QAٻfp>88v .jmhUÏ ǫ51hCXѪ^a;T!8¦v CgwCLN8pRn4RiޫhZ3X :;a'KbptE*dh ǽ2Wt/ouCN%tڛa{IdĠ b)Aт5_k;x?\@ >Y7ݽ VQӪ a@Qio4e 6< =ŸV_|]nBTr-A=MT3&_T # xY(Ə.tT Z/, [5U,a{{E~p']\wtjI!eo7SW̙JsQܝ6NO-C=ifBܲT&]hiw&bd si\$Q=.A-Vu+ ~dvuJv q ˹gzW|{/<꾢}9I!" (uvty5EQU GG~R*Ae=TmWRWbf{9nę!|UF5i 2Kzw|.1Y7}a2,^| ip SȄOەsZA  B;XY,#K1Ȕ)T@Cu=& kh Yd90xs7,XNj CqX6ٴ]%00.PҀ =Kɪߺ ,]JQ/ssp0MҶ9O[EdZn6|!ҾIMQxNԐ5F* ,]/ E#|օ`<\Ev$kHۂVӯ0Wgz =A2$OU5DZ xsȺ / H$Ʃfe Dx8#-%A $=䦍!q.0|YIJ֎> J$cZ @ I^y "̟\ S#<RǨez-[fmZ-]5c7jQa fcWȇ]lNWS=e` "as?ș?aK2âH6X.!Xc3j=]M C!'C[xC+j 7nT(e*-2bpM.: s9]W_Tj'*x'݀׾OW 旄#x3K H6%ྙ> ^/, x":8m 0pT_5+B-dxG\ʫvOfO;]Dܼ$1G=I򀀔kC$XuiMim?J蹰B-jUt~E]D (,g'trp]z ¯(!8'X.ۆqܰWbEts?*zgR؃‘~8ecTnx)IOM iSv!pOoNUֱQ{-y djuߥ~P{CeBM 񴱣rj杲&Ze(t%>vIu,~T6a*^>7%sC"y TIB$qz_YЧS/xX]U~#(X{ƣZbMî~Uj ׬q^Adyu*^Sm*%~n9;o)*pəIn]z6IcͱcsVT]u4?ȰX)D~EKk.m(I5]I1e\eud[zBm-/zhxW!{]ݕX2btIR9D,F54H0EhA;+GYݔ6zMNSCH^n[JDnTv6&3OPhrmo_(r=}(VD]*.9WX`7-x7_ [5/R)* ˚XP$ō;T O|c݀jju}TH'ET~RFԸQiwr'J|Z2)V4t:Gi Tc S"MRoNh.Y&zXԓ*]=3sI]&~k~K+Fj. 9K2|]95p$8 4$}dq*R2} ؼɣ5xLvTcwvu4vbi* ť^YcgzD%owT!DF*=T궑q=dަ9N {}HC@?wg4]N*Ȑ^(/μxqt!gc5O00[ux)rKlcfMży+KS' 1˜wrXȦ[< aa'6Wϰ`0^ꙇ+M;Ʉ(T&JibeqhVQcGc@E;bhv:}.̒  rtLmRwpWI4:zsAf,Ҩ*-SYv6Yئu_r̖7m4*FUh!ӍZ4 R \rt)+;p5ҙ@Cti Y0݌?(,=h_Ś9RDj~ 8N^[fd!Ա"e@gZs?)6 6du[~Nr6ПWRI]=Cݿk/M[/]7_AJUtO*k˞u֬DsW]"t6vaàààDנD쮲{ J.[UA~_SOmCàĽ%\u]DfoK_T}%:?AHɝRq5V!c N%*lw$D,>nuLF^fe_%XornyOo+f V,ݶfuc0@œL]ʿAU"^!OuT=]I bII pH8 lnBӣҌoOeDwIdI5O1]Bo;[c ?MgWx^tBendstream endobj 306 0 obj << /Filter /FlateDecode /Length 159 >> stream x]O1 y@B.QtЪjbLPB:t8K结r/#=>)ul"-~H0X TYA6ٝUZFg] 6R L:չPXqp8I.~r 6/=Seendstream endobj 307 0 obj << /Filter /FlateDecode /Length 159 >> stream x]O10 @.. PAp$6E0um &-m1'. ߕ/ձ:MWHAL5O*gs SIT @s$Lg);<[Scendstream endobj 308 0 obj << /Filter /FlateDecode /Length 2549 >> stream x[[o\7~wļL9RlEEvyKo]vR4΅z4!CIH"9f3_|Q1;;xu f_F(-_tY3o}-`wd!["|<9x89/mm uҹt:m]s 6Z]s>‹, c.sSB;kC>hhp&z\kҔi^ zBk 2w0uN7+MPB6aC&ZP PB;D+X(43llIr= a\, Мd,s.GvNuiomF $.#Y~B  m\ 茉uu&:H#y Ir2 A-IC|f3iCH-p&Oȣ- Iab.W$%ˡ3 X jo-8X>y {$/(#y6_ z`߲IdDyl /ҭȞ×,%xf YS$\-jBČ4(;$YD_h<ޒ;2KeR[4 R#ՠ'<ȒhkgAm~>6c&&Q!UY_SG]*J2\Pm /xlj( V&_z X'(@jGRG"@CFE'| 7FA'"y #yv$\,v=~(!ɎG]QV0KV(p͂@Du>ts_YM_ȒDG9GYZ GoYrEG"I%MOjd[$[v׭(^=׬J^$|{*p–c>m \1GҰHl1#=Kf#,|lFH˒{L;c=]Fc$hKfN#//]̣B"q=%{ynٗ`98z6iAZ鳙XqeI-L1bmY"mQZdã8%ݳ .Qu9څn7B)} v} q@˶>yЭⶎu!\ v<#&VG'RN+<-wB9€'0X}R˘.;;d`z),#$Ij)3(k1ZSamq8J>6j]Ghh@'0:5$٩U!ñ]E(ڎ`&tR C㐿%faXqK8Y:͐Qg(gs$4"as" |AZH&:'E3S)Jl#~K]KJcL2LP1&Ll`4z_ޤ^P|ߟl^O*m~uRdN4‘y~|r -g56,Ȝ#j,I{9$Mp7JO%:}WQ[N0P˻nTK[aڸt'IL͞oZ{#[NnV(;8b$AX)9Oqg`: RfW$oErH450dw,^ )m\mIcL)1c'x"!ka;7tuž[3NznIj^(/)A:IS+XIUBj GlaC/ ?Q;؂(+7Uw8:=zǶ;[٭ᰶnhAo;75-~*kՔCh#کm{6LRj~}EwK?bIO$%%5rLn䫰|P,3|ǒ̸]"uUp Co4#߽ʷQijW,;`W_Yȡ,~ݵHt6_U% BPqf|ݘ7~}-V[;H5w.N5ff 7|y.7BuL|Cu5UwZ+]~VXEa͒|?zR,:dt3P&$O}WRT&7]{՚{_?Z p}%Gzʦ5A=_.yf?LJ_C-dE "˷_2^ ՐF,] |'S гendstream endobj 309 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 @v@,tahU@p' aKB,N>~l#GpƲ5 HeQ7-Yy!' dv~W3穾UiZB 'mUu1 R 8sW`JM5☛&e=O) @Sjendstream endobj 310 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1055 >> stream x]LSwϡuѮL& $D [6X6dqT$T8Jᴴ"p"QZhh),!!-Qwyq1`ݽO&y$I斜xxSH&8u p;Gw L2i8E:{aM.d;`euNza,r(Ox^gjvGⲳz+.65pwKR|x;%Wq}%(h{ -ׯ9iZTR ums}#D PW|p -zlSw4۳][ƒa#R=W`C XB.PJCpQ!1J%C!A7F\/FVi0$:Xй雑_!LXIR1ټׄ >3s܃`5u*kO@2h]q_[|U?Au@~ z=}J0/gcS$†@*6k5hG[}f#Z*ƒwPo%!̟C m۾1|wcwύ<1=l>9TmHy[<)|7k %|c\> stream xVMo7lÜ) @gs,+Kr,;E{hzfȕHZAp>{$^(bݜZ^l/ύJ߶b2H>bT[UK .ѸvX7|7\qpGz7 q装n\iECAyn8qÝlC H0#O4,J +>Da[rҦNLb.1+: lU5*T [ F PsQqoMN1`ͅޤ,^MI~>bBc>0/< CqLs٥3GU ZuZ)omj# ΌoD9/dEDn#(^6:z gfxPࡄ!Z"wmpB!ݑD.e;匆iDעs%-r&*+i YtGL*^5OgVs%sv4Ѧ䝁O@E1ҙH!R&jE NHT%Pd_HlכKZcCLcmOe@ovh0Bc/JB.],V[gNe&&n'<&W-`̩%ka6j}Es:-paKCs'M>IJVTg]:g\GD͢ \v\i|Do -p[UOf^v 6귧BdUY^dUM›x2 <7tyӤDI9*O &m*]]+C,%endstream endobj 312 0 obj << /Type /XRef /Length 227 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 313 /ID [<05d576a9f272820e1390f034eb5152f5>] >> stream xcb&F~0 $8Jh?P* *^Q*Tѣa fgҀ7?"@Z"%@$WDr p 1D տ, I L~Ap DʬfH]`. v-W=X|"`%_6 RH$=B%K\0+D endstream endobj startxref 161878 %%EOF sandwich/inst/doc/sandwich.Rnw0000644000175400001440000014127212600735100016260 0ustar zeileisusers\documentclass[nojss]{jss} \usepackage{thumbpdf} %% need no \usepackage{Sweave} \author{Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Achim Zeileis} \title{Econometric Computing with HC and HAC Covariance Matrix Estimators} \Keywords{covariance matrix estimators, heteroskedasticity, autocorrelation, estimating functions, econometric computing, \proglang{R}} \Plainkeywords{covariance matrix estimators, heteroskedasticity, autocorrelation, estimating functions, econometric computing, R} \Abstract{ This introduction to the \proglang{R} package \pkg{sandwich} is a (slightly) modified version of \cite{hac:Zeileis:2004a}, published in the \emph{Journal of Statistical Software}. A follow-up paper on object object-oriented computation of sandwich estimators is available in \citep{hac:Zeileis:2006}. Data described by econometric models typically contains autocorrelation and/or heteroskedasticity of unknown form and for inference in such models it is essential to use covariance matrix estimators that can consistently estimate the covariance of the model parameters. Hence, suitable heteroskedasticity-consistent (HC) and heteroskedasticity and autocorrelation consistent (HAC) estimators have been receiving attention in the econometric literature over the last 20 years. To apply these estimators in practice, an implementation is needed that preferably translates the conceptual properties of the underlying theoretical frameworks into computational tools. In this paper, such an implementation in the package \pkg{sandwich} in the \proglang{R} system for statistical computing is described and it is shown how the suggested functions provide reusable components that build on readily existing functionality and how they can be integrated easily into new inferential procedures or applications. The toolbox contained in \pkg{sandwich} is extremely flexible and comprehensive, including specific functions for the most important HC and HAC estimators from the econometric literature. Several real-world data sets are used to illustrate how the functionality can be integrated into applications. } \Address{ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{http://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \SweaveOpts{engine=R,eps=FALSE} %\VignetteIndexEntry{Econometric Computing with HC and HAC Covariance Matrix Estimators} %\VignetteDepends{sandwich,zoo,lmtest,strucchange,scatterplot3d} %\VignetteKeywords{covariance matrix estimator, heteroskedasticity, autocorrelation, estimating functions, econometric computing, R} %\VignettePackage{sandwich} <>= library("zoo") library("sandwich") library("strucchange") library("lmtest") options(prompt = "R> ", continue = "+ ") @ \section{Introduction} \label{sec:intro} This paper combines two topics that play an important role in applied econometrics: computational tools and robust covariance estimation. Without the aid of statistical and econometric software modern data analysis would not be possible: hence, both practitioners and (applied) researchers rely on computational tools that should preferably implement state-of-the-art methodology and be numerically reliable, easy to use, flexible and extensible. In many situations, economic data arises from time-series or cross-sectional studies which typically exhibit some form of autocorrelation and/or heteroskedasticity. If the covariance structure were known, it could be taken into account in a (parametric) model, but more often than not the form of autocorrelation and heteroskedasticity is unknown. In such cases, model parameters can typically still be estimated consistently using the usual estimating functions, but for valid inference in such models a consistent covariance matrix estimate is essential. Over the last 20 years several procedures for heteroskedasticity consistent (HC) and for heteroskedasticity and autocorrelation consistent (HAC) covariance estimation have been suggested in the econometrics literature \citep[among others]{hac:White:1980,hac:MacKinnon+White:1985,hac:Newey+West:1987,hac:Newey+West:1994,hac:Andrews:1991} and are now routinely used in econometric analyses. Many statistical and econometric software packages implement various HC and HAC estimators for certain inference procedures, so why is there a need for a paper about econometric computing with HC and HAC estimators? Typically, only certain special cases of such estimators---and not the general framework they are taken from---are implemented in statistical and econometric software packages and sometimes they are only available as options to certain inference functions. It is desirable to improve on this for two reasons: First, the literature suggested conceptual frameworks for HC and HAC estimation and it would only be natural to translate these conceptual properties into computational tools that reflect the flexibility of the general framework. Second, it is important, particularly for applied research, to have covariance matrices not only as options to certain tests but as stand-alone functions which can be used as modular building blocks and plugged into various inference procedures. This is becoming more and more relevant, because today, as \cite{hac:Cribari-Neto+Zarkos:2003} point out, applied researchers typically cannot wait until a certain procedure becomes available in the software package of their choice but are often forced to program new techniques themselves. Thus, just as suitable covariance estimators are routinely plugged into formulas in theoretical work, programmers should be enabled to plug in implementations of such estimators in computational work. Hence, the aim of this paper is to present an econometric computing approach to HC and HAC estimation that provides reusable components that can be used as modular building blocks in implementing new inferential techniques and in applications. All functions described are available in the package \pkg{sandwich} implemented in the \proglang{R} system for statistical computing \citep{hac:R:2008} which is currently not the most popular environment for econometric computing but which is finding increasing attention among econometricians \citep{hac:Cribari-Neto+Zarkos:1999,hac:Racine+Hyndman:2002}. Both \proglang{R} itself and the \pkg{sandwich} package (as well as all other packages used in this paper) are available at no cost under the terms of the general public licence (GPL) from the comprehensive \proglang{R} archive network (CRAN, \url{http://CRAN.R-project.org/}). \proglang{R} has no built-in support for HC and HAC estimation and at the time we started writing \pkg{sandwich} there was only one package that implements HC (but not HAC) estimators \citep[the \pkg{car} package][]{hac:Fox:2002} but which does not allow for as much flexibility as the tools presented here. \pkg{sandwich} provides the functions \code{vcovHC} and \code{vcovHAC} implementing general classes of HC and HAC estimators. The names of the functions are chosen to correspond to \code{vcov}, \proglang{R}'s generic function for extracting covariance matrices from fitted model objects. Below, we focus on the general linear regression model estimated by ordinary least squares (OLS), which is typically fitted in \proglang{R} using the function \code{lm} from which the standard covariance matrix (assuming spherical errors) can be extracted by \code{vcov}. Using the tools from \pkg{sandwich}, HC and HAC covariances matrices can now be extracted from the same fitted models using \code{vcovHC} and \code{vcovHAC}. Due to the object orientation of \proglang{R}, these functions are not only limited to the linear regression model but can be easily extended to other models. The HAC estimators are already available for generalized linear models (fitted by \code{glm}) and robust regression (fitted by \code{rlm} in package \pkg{MASS}). Another important feature of \proglang{R} that is used repeatedly below is that functions are first-level objects---i.e., functions can take functions as arguments and return functions---which is particularly useful for defining certain procedures for data-driven computations such as the definition of the structure of covariance matrices in HC estimation and weighting schemes for HAC estimation. The remainder of this paper is structured as follows: To fix notations, Section~\ref{sec:model} describes the linear regression model used and motivates the following sections. Section~\ref{sec:estimating} gives brief literature reviews and describes the conceptual frameworks for HC and HAC estimation respectively and then shows how the conceptual properties are turned into computational tools in \pkg{sandwich}. Section~\ref{sec:applications} provides some illustrations and applications of these tools before a summary is given in Section~\ref{sec:summary}. More details about the \proglang{R} code used are provided in an appendix. \section{The linear regression model} \label{sec:model} To fix notations, we consider the linear regression model \begin{equation} \label{eq:lm} y_i \quad = \quad x_i^\top \beta \; + \; u_i \qquad (i = 1, \dots, n), \end{equation} with dependent variable $y_i$, $k$-dimensional regressor $x_i$ with coefficient vector $\beta$ and error term $u_i$. In the usual matrix notation comprising all $n$ observations this can be formulated as $y = X \beta + u$. In the general linear model, it is typically assumed that the errors have zero mean and variance $\VAR[u] = \Omega$. Under suitable regularity conditions \citep[see e.g.,][]{hac:Greene:1993,hac:White:2000}, the coefficients $\beta$ can be consistently estimated by OLS giving the well-known OLS estimator $\hat \beta$ with corresponding OLS residuals $\hat u_i$: \begin{eqnarray} \hat \beta & = & \left( X^\top X \right)^{-1} X^\top y \\ \hat u & = & (I_n - H) \, y \; = \; (I_n - X \left( X^\top X \right)^{-1} X^\top) \, y \end{eqnarray} where $I_n$ is the $n$-dimensional identity matrix and $H$ is usually called hat matrix. The estimates $\hat \beta$ are unbiased and asymptotically normal \citep{hac:White:2000}. Their covariance matrix $\Psi$ is usually denoted in one of the two following ways: \begin{eqnarray} \Psi \; = \; \VAR[\hat \beta] & = & \left( X^\top X \right)^{-1} X^\top \Omega X \left( X^\top X \right)^{-1} \label{eq:PsiHC} \\ & = & \left( \frac{1}{n} X^\top X \right)^{-1} \frac{1}{n} \Phi \left( \frac{1}{n} X^\top X \right)^{-1} \label{eq:PsiHAC} \end{eqnarray} where $\Phi = n^{-1} X^\top \Omega X$ is essentially the covariance matrix of the scores or estimating functions $V_i(\beta) = x_i (y_i - x_i^\top \beta)$. The estimating functions evaluated at the parameter estimates $\hat V_i = V_i(\hat \beta)$ have then sum zero. For inference in the linear regression model, it is essential to have a consistent estimator for $\Psi$. What kind of estimator should be used for $\Psi$ depends on the assumptions about $\Omega$: In the classical linear model independent and homoskedastic errors with variance $\sigma^2$ are assumed yielding $\Omega = \sigma^2 I_n$ and $\Psi = \sigma^2 (X^\top X)^{-1}$ which can be consistently estimated by plugging in the usual OLS estimator ${\hat \sigma}^2 = (n-k)^{-1} \sum_{i = 1}^n {\hat u_i}^2$. But if the independence and/or homoskedasticity assumption is violated, inference based on this estimator $\hat \Psi_{\mathrm{const}} = \hat \sigma (X^\top X)^{-1}$ will be biased. HC and HAC estimators tackle this problem by plugging an estimate $\hat \Omega$ or $\hat \Phi$ into (\ref{eq:PsiHC}) or (\ref{eq:PsiHAC}) respectively which are consistent in the presence of heteroskedasticity and autocorrelation respectively. Such estimators and their implementation are described in the following section. \section[Estimating the covariance matrix]{Estimating the covariance matrix $\Psi$} \label{sec:estimating} \subsection{Dealing with heteroskedasticity} If it is assumed that the errors $u_i$ are independent but potentially heteroskedastic---a situation which typically arises with cross-sectional data---their covariance matrix $\Omega$ is diagonal but has nonconstant diagonal elements. Therefore, various HC estimators $\hat \Psi_{\mathrm{HC}}$ have been suggested which are constructed by plugging an estimate of type $\hat \Omega = \mathrm{diag}(\omega_1, \dots, \omega_n)$ into Equation~(\ref{eq:PsiHC}). These estimators differ in their choice of the $\omega_i$, an overview of the most important cases is given in the following: \begin{eqnarray*} \mathrm{const:} \quad \omega_i & = & \hat \sigma^2 \\ \mathrm{HC0:} \quad \omega_i & = & {\hat u_i}^2 \\ \mathrm{HC1:} \quad \omega_i & = & \frac{n}{n-k} \, {\hat u_i}^2 \\ \mathrm{HC2:} \quad \omega_i & = & \frac{{\hat u_i}^2}{1 - h_i} \\ \mathrm{HC3:} \quad \omega_i & = & \frac{{\hat u_i}^2}{(1 - h_i)^2} \\ \mathrm{HC4:} \quad \omega_i & = & \frac{{\hat u_i}^2}{(1 - h_i)^{\delta_i}} \end{eqnarray*} where $h_i = H_{ii}$ are the diagonal elements of the hat matrix, $\bar h$ is their mean and $\delta_i = \min\{4, h_i/\bar h\}$. The first equation above yields the standard estimator $\hat \Psi_{\mathrm{const}}$ for homoskedastic errors. All others produce different kinds of HC estimators. The estimator HC0 was suggested in the econometrics literature by \cite{hac:White:1980} and is justified by asymptotic arguments. %% check White, maybe explain ideas The estimators HC1, HC2 and HC3 were suggested by \cite{hac:MacKinnon+White:1985} to improve the performance in small samples. A more extensive study of small sample behaviour was carried out by \cite{hac:Long+Ervin:2000} which arrive at the conclusion that HC3 provides the best performance in small samples as it gives less weight to influential observations. Recently, \cite{hac:Cribari-Neto:2004} suggested the estimator HC4 to further improve small sample performance, especially in the presence of influential observations. All of these HC estimators $\hat \Psi_{\mathrm{HC}}$ have in common that they are determined by $\omega = (\omega_1, \dots, \omega_n)^\top$ which in turn can be computed based on the residuals $\hat u$, the diagonal of the hat matrix $h$ and the degrees of freedom $n-k$. To translate these conceptual properties of this class of HC estimators into a computational tool, a function is required which takes a fitted regression model and the diagonal elements $\omega$ as inputs and returns the corresponding $\hat \Psi_{\mathrm{HC}}$. In \pkg{sandwich}, this is implemented in the function \code{vcovHC} which takes the following arguments: \begin{verbatim} vcovHC(lmobj, omega = NULL, type = "HC3", ...) \end{verbatim} The first argument \code{lmobj} is an object as returned by \code{lm}, \proglang{R}'s standard function for fitting linear regression models. The argument \code{omega} can either be the vector $\omega$ or a function for data-driven computation of $\omega$ based on the residuals $\hat u$, the diagonal of the hat matrix $h$ and the residual degrees of freedom $n-k$. Thus, it has to be of the form \code{omega(residuals, diaghat, df)}: e.g., for computing HC3 \code{omega} is set to \verb+function(residuals, diaghat, df)+ \linebreak \verb+residuals^2/(1 - diaghat)^2+. As a convenience option, a \code{type} argument can be set to \code{"const"}, \code{"HC0"} (or equivalently \code{"HC"}), \code{"HC1"}, \code{"HC2"}, \code{"HC3"} (the default) or \code{"HC4"} and then \code{vcovHC} uses the corresponding \code{omega} function. As soon as \code{omega} is specified by the user, \code{type} is ignored. In summary, by specfying $\omega$---either as a vector or as a function---\code{vcovHC} can compute arbitrary HC covariance matrix estimates from the class of estimators outlined above. In Section~\ref{sec:applications}, it will be illustrated how this function can be used as a building block when doing inference in linear regression models. \subsection{Dealing with autocorrelation} If the error terms $u_i$ are not independent, $\Omega$ is not diagonal and without further specification of a parametic model for the type of dependence it is typically burdensome to estimate $\Omega$ directly. However, if the form of heteroskedasticity and autocorrelation is unknown, a solution to this problem is to estimate $\Phi$ instead which is essentially the covariance matrix of the estimating functions\footnote{Due to the use of estimating functions, this approach is not only feasible in linear models estimated by OLS, but also in nonlinear models using other estimating functions such as maximum likelihood (ML), generalized methods of moments (GMM) or Quasi-ML.}. This is what HAC estimators do: $\hat \Psi_{\mathrm{HAC}}$ is computed by plugging an estimate $\hat \Phi$ into Equation~(\ref{eq:PsiHAC}) with \begin{equation} \label{eq:HAC} \hat \Phi \quad = \quad \frac{1}{n} \sum_{i, j = 1}^n w_{|i-j|} \, {\hat V}_i {{\hat V}_j}^\top \end{equation} where $w = (w_0, \dots, w_{n-1})^\top$ is a vector of weights. An additional finite sample adjustment can be applied by multiplication with $n/(n-k)$. For many data structures, it is a reasonable assumption that the autocorrelations should decrease with increasing lag $\ell = |i-j|$---otherwise $\beta$ can typically not be estimated consistently by OLS---so that it is rather intuitive that the weights $w_\ell$ should also decrease. Starting from \cite{hac:White+Domowitz:1984} and \cite{hac:Newey+West:1987}, different choices for the vector of weights $w$ have been suggested in the econometrics literature which have been placed by \cite{hac:Andrews:1991} in a more general framework of choosing the weights by kernel functions with automatic bandwidth selection. \cite{hac:Andrews+Monahan:1992} show that the bias of the estimators can be reduced by prewhitening the estimating functions $\hat V_i$ using a vector autoregression (VAR) of order $p$ and applying the estimator in Equation~(\ref{eq:HAC}) to the VAR($p$) residuals subsequently. \cite{hac:Lumley+Heagerty:1999} suggest an adaptive weighting scheme where the weights are chosen based on the estimated autocorrelations of the residuals $\hat u$. All the estimators mentioned above are of the form (\ref{eq:HAC}), i.e., a weighted sum of lagged products of the estimating functions corresponding to a fitted regression model. Therefore, a natural implementation for this class of HAC estimators is the following: \begin{verbatim} vcovHAC(lmobj, weights, prewhite = FALSE, adjust = TRUE, sandwich = TRUE, order.by, ar.method, data) \end{verbatim} The most important arguments are again the fitted linear model\footnote{Note, that not only HAC estimators for fitted \emph{linear} models can be computed with \code{vcovHAC}. See \cite{hac:Zeileis:2006} for details.} \code{lmobj}---from which the estimating functions $\hat V_i$ can easily be extracted using the generic function \code{estfun(lmobj)}---and the argument \code{weights} which specifys $w$. The latter can be either the vector $w$ directly or a function to compute it from \code{lmobj}.\footnote{If \code{weights} is a vector with less than $n$ elements, the remaining weights are assumed to be zero.} The argument \code{prewhite} specifies wether prewhitening should be used or not\footnote{The order $p$ is set to \code{as.integer(prewhite)}, hence both \code{prewhite = 1} and \code{prewhite = TRUE} lead to a VAR(1) model, but also \code{prewhite = 2} is possible.} and \code{adjust} determines wether a finite sample correction by multiplication with $n/(n-k)$ should be made or not. By setting \code{sandwich} it can be controlled wether the full sandwich estimator $\hat \Psi_{\mathrm{HAC}}$ or only the ``meat'' $\hat \Phi/n$ of the sandwich should be returned. The remaining arguments are a bit more technical: \code{order.by} specifies by which variable the data should be ordered (the default is that they are already ordered, as is natural with time series data), which \code{ar.method} should be used for fitting the VAR($p$) model (the default is OLS) and \code{data} provides a data frame from which \code{order.by} can be taken (the default is the environment from which \code{vcovHAC} is called).\footnote{More detailed technical documentation of these and other arguments of the functions described are available in the reference manual included in \pkg{sandwich}.} As already pointed out above, all that is required for specifying an estimator $\hat \Psi_{\mathrm{HAC}}$ is the appropriate vector of weights (or a function for data-driven computation of the weights). For the most important estimators from the literature mentioned above there are functions for computing the corresponding weights readily available in \pkg{sandwich}. They are all of the form \code{weights(lmobj, order.by, prewhite, ar.method, data)}, i.e., functions that compute the weights depending on the fitted model object \code{lmobj} and the arguments \code{order.by}, \code{prewhite}, \code{data} which are only needed for ordering and prewhitening. The function \code{weightsAndrews} implements the class of weights of \cite{hac:Andrews:1991} and \code{weightsLumley} implements the class of weights of \cite{hac:Lumley+Heagerty:1999}. Both functions have convenience interfaces: \code{kernHAC} calls \code{vcovHAC} with \code{weightsAndrews} (and different defaults for some parameters) and \code{weave} calls \code{vcovHAC} with \code{weightsLumley}. Finally, a third convenience interface to \code{vcovHAC} is available for computing the estimator(s) of \cite{hac:Newey+West:1987,hac:Newey+West:1994}. \begin{itemize} \item \cite{hac:Newey+West:1987} suggested to use linearly decaying weights \begin{equation} \label{eq:NeweyWest} w_\ell \quad = \quad 1 - \frac{\ell}{L + 1} \end{equation} where $L$ is the maximum lag, all other weights are zero. This is implemented in the function \code{NeweyWest(lmobj, lag = NULL, \dots)} where \code{lag} specifies $L$ and \code{\dots} are (here, and in the following) further arguments passed to other functions, detailed information is always available in the reference manual. If \code{lag} is set to \code{NULL} (the default) the non-parametric bandwidth selection procedure of \cite{hac:Newey+West:1994} is used. This is also available in a stand-alone function \code{bwNeweyWest}, see also below. \setkeys{Gin}{width=.7\textwidth} \begin{figure}[tbh] \begin{center} <>= curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, xlab = "x", ylab = "K(x)") curve(kweights(x, kernel = "Bartlett", normalize = TRUE), from = 0, to = 3.2, col = 2, add = TRUE) curve(kweights(x, kernel = "Parzen", normalize = TRUE), from = 0, to = 3.2, col = 3, add = TRUE) curve(kweights(x, kernel = "Tukey", normalize = TRUE), from = 0, to = 3.2, col = 4, add = TRUE) lines(c(0, 0.5), c(1, 1), col = 6) lines(c(0.5, 0.5), c(1, 0), lty = 3, col = 6) lines(c(0.5, 3.2), c(0, 0), col = 6) curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, col = 1, add = TRUE) text(0.5, 0.98, "Truncated", pos = 4) text(0.8, kweights(0.8, "Bartlett", normalize = TRUE), "Bartlett", pos = 4) text(1.35, kweights(1.4, "Quadratic", normalize = TRUE), "Quadratic Spectral", pos = 2) text(1.15, 0.29, "Parzen", pos = 4) arrows(1.17, 0.29, 1, kweights(1, "Parzen", normalize = TRUE), length = 0.1) text(1.3, 0.2, "Tukey-Hanning", pos = 4) arrows(1.32, 0.2, 1.1, kweights(1.1, "Tukey", normalize = TRUE), length = 0.1) @ \caption{\label{fig:kweights} Kernel functions for kernel-based HAC estimation.} \end{center} \end{figure} \item \cite{hac:Andrews:1991} placed this and other estimators in a more general class of kernel-based HAC estimators with weights of the form $w_\ell = K(\ell/B)$ where $K(\cdot)$ is a kernel function and $B$ the bandwidth parameter used. The kernel functions considered are the truncated, Bartlett, Parzen, Tukey-Hanning and quadratic spectral kernel which are depicted in Figure~\ref{fig:kweights}. The Bartlett kernel leads to the weights used by \cite{hac:Newey+West:1987} in Equation~(\ref{eq:NeweyWest}) when the bandwidth $B$ is set to $L + 1$. The kernel recommended by \cite{hac:Andrews:1991} and probably most used in the literature is the quadratic spectral kernel which leads to the following weights: \begin{equation} w_\ell \quad = \quad \frac{3}{z^2} \, \left(\frac{\sin(z)}{z} - \cos (z) \right), \end{equation} where $z = 6 \pi/5 \cdot \ell/B$. The definitions for the remaining kernels can be found in \cite{hac:Andrews:1991}. All kernel weights mentioned above are available in \code{weightsAndrews(lmobj, kernel, bw, ...)} where \code{kernel} specifies one of the kernels via a character string (\code{"Truncated"}, \code{"Bartlett"}, \code{"Parzen"}, \code{"Tukey-Hanning"} or \code{"Quadratic Spectral"}) and \code{bw} the bandwidth either as a scalar or as a function. The automatic bandwidth selection described in \cite{hac:Andrews:1991} via AR(1) or ARMA(1,1) approximations is implemented in a function \code{bwAndrews} which is set as the default in \code{weightsAndrews}. For the Bartlett, Parzen and quadratic spectral kernels, \cite{hac:Newey+West:1994} suggested a different nonparametric bandwidth selection procedure, which is implemented in \code{bwNeweyWest} and which can also be passed to \code{weightsAndrews}. As the flexibility of this conceptual framework of estimators leads to a lot of knobs and switches in the computational tools, a convenience function \code{kernHAC} for kernel-based HAC estimation has been added to \pkg{sandwich} that calls \code{vcovHAC} based on \code{weightsAndrews} and \code{bwAndrews} with defaults as motivated by \cite{hac:Andrews:1991} and \cite{hac:Andrews+Monahan:1992}: by default, it computes a quadratic spectral kernel HAC estimator with VAR(1) prewhitening and automatic bandwidth selection based on an AR(1) approximation. But of course, all the options described above can also be changed by the user when calling \code{kernHAC}. \item \cite{hac:Lumley+Heagerty:1999} suggested a different approach for specifying the weights in (\ref{eq:HAC}) based on some estimate $\hat \varrho_\ell$ of the autocorrelation of the residuals $\hat u_i$ at lag $0 = 1, \dots, n-1$. They suggest either to use truncated weights $w_\ell = I\{n \, \hat \varrho^2_\ell > C\}$ (where $I(\cdot)$ is the indicator function) or smoothed weights $w_\ell = \min\{1, C \, n \, \hat \varrho^2_\ell\}$, where for both a suitable constant $C$ has to be specified. \cite{hac:Lumley+Heagerty:1999} suggest using a default of $C = 4$ and $C = 1$ for the truncated and smoothed weights respectively. Note, that the truncated weights are equivalent to the truncated kernel from the framework of \cite{hac:Andrews:1991} but using a different method for computing the truncation lag. To ensure that the weights $|w_\ell|$ are decreasing, the autocorrelations have to be decreasing for increasing lag $\ell$ which can be achieved by using isotonic regression methods. In \pkg{sandwich}, these two weighting schemes are implemented in a function \code{weightsLumley} with a convenience interface \code{weave} (which stands for \underline{w}eighted \underline{e}mpirical \underline{a}daptive \underline{v}ariance \underline{e}stimators) which again sets up the weights and then calls \code{vcovHAC}. Its most important arguments are \code{weave(lmobj, method, C, ...)} where \code{method} can be either \code{"truncate"} or \code{"smooth"} and \code{C} is by default 4 or 1 respectively. \end{itemize} To sum up, \code{vcovHAC} provides a simple yet flexible interface for general HAC estimation as defined in Equation~(\ref{eq:HAC}). Arbitrary weights can be supplied either as vectors or functions for data-driven computation of the weights. As the latter might easily become rather complex, in particular due to the automatic choice of bandwidth or lag truncation parameters, three strategies suggested in the literature are readily available in \pkg{sandwich}: First, the Bartlett kernel weights suggested by \cite{hac:Newey+West:1987,hac:Newey+West:1994} are used in \code{NeweyWest} which by default uses the bandwidth selection function \code{bwNeweyWest}. Second, the weighting scheme introduced by \cite{hac:Andrews:1991} for kernel-based HAC estimation with automatic bandwidth selection is implemented in \code{weightsAndrews} and \code{bwAndrews} with corresponding convenience interface \code{kernHAC}. Third, the weighted empirical adaptive variance estimation scheme suggested by \cite{hac:Lumley+Heagerty:1999} is available in \code{weightsLumley} with convenience interface \code{weave}. It is illustrated in the following section how these functions can be easily used in applications. \section{Applications and illustrations} \label{sec:applications} In econometric analyses, the practitioner is only seldom interested in the covariance matrix $\hat \Psi$ (or $\hat \Omega$ or $\hat \Phi$) \emph{per se}, but mainly wants to compute them to use them for inferential procedures. Therefore, it is important that the functions \code{vcovHC} and \code{vcovHAC} described in the previous section can be easily supplied to other procedures such that the user does not necessarily have to compute the variances in advance. A typical field of application for HC and HAC covariances are partial $t$ or $z$ tests for assessing whether a parameter $\beta_j$ is significantly different from zero. Exploiting the (asymptotic) normality of the estimates, these tests are based on the $t$ ratio $\hat \beta_j/\sqrt{\hat \Psi_{jj}}$ and either use the asymptotic normal distribution or the $t$ distribution with $n-k$ degrees of freedom for computing $p$ values \citep{hac:White:2000}. This procedure is available in the \proglang{R} package \pkg{lmtest} \citep{hac:Zeileis+Hothorn:2002} in the generic function \code{coeftest} which has a default method applicable to fitted \code{"lm"} objects. \begin{verbatim} coeftest(lmobj, vcov = NULL, df = NULL, ...) \end{verbatim} where \code{vcov} specifies the covariances either as a matrix (corresponding to the covariance matrix estimate) or as a function computing it from \code{lmobj} (corresponding to the covariance matrix estimator). By default, it uses the \code{vcov} method which computes $\hat \Psi_{\mathrm{const}}$ assuming spherical errors. The \code{df} argument determines the degrees of freedom: if \code{df} is finite and positive, a $t$ distribution with \code{df} degrees of freedom is used, otherwise a normal approximation is employed. The default is to set \code{df} to $n-k$. Inference based on HC and HAC estimators is illustrated in the following using three real-world data sets: testing coefficients in two models from \cite{hac:Greene:1993} and a structural change problem from \cite{hac:Bai+Perron:2003}. To make the results exactly reproducible for the reader, the commands for the inferential procedures is given along with their output within the text. A full list of commands, including those which produce the figures in the text, are provided (without output) in the appendix along with the versions of \proglang{R} and the packages used. Before we start with the examples, the \pkg{sandwich} and \pkg{lmtest} package have to be loaded: <>= library("sandwich") library("lmtest") @ \subsection{Testing coefficients in cross-sectional data} A quadratic regression model for per capita expenditures on public schools explained by per capita income in the United States in 1979 has been analyzed by \cite{hac:Greene:1993} and re-analyzed in \cite{hac:Cribari-Neto:2004}. The corresponding cross-sectional data for the 51 US states is given in Table 14.1 in \cite{hac:Greene:1993} and available in \pkg{sandwich} in the data frame \code{PublicSchools} which can be loaded by: <>= data("PublicSchools") ps <- na.omit(PublicSchools) ps$Income <- ps$Income * 0.0001 @ where the second line omits a missing value (\code{NA}) in Wisconsin and assigns the result to a new data frame \code{ps} and the third line transforms the income to be in USD $10,000$. The quadratic regression can now easily be fit using the function \code{lm} which fits linear regression models specified by a symbolic formula via OLS. <>= fm.ps <- lm(Expenditure ~ Income + I(Income^2), data = ps) @ The fitted \code{"lm"} object \code{fm.ps} now contains the regression of the variable \code{Expenditure} on the variable \code{Income} and its sqared value, both variables are taken from the data frame \code{ps}. The question in this data set is whether the quadratic term is really needed, i.e., whether the coefficient of \verb/I(Income^2)/ is significantly different from zero. The partial quasi-$t$~tests (or $z$~tests) for all coefficients can be computed using the function \code{coeftest}. \cite{hac:Greene:1993} assesses the significance using the HC0 estimator of \cite{hac:White:1980}. <>= coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC0")) @ The \code{vcov} argument specifies the covariance matrix as a matrix (as opposed to a function) which is returned by \code{vcovHC(fm.ps, type = "HC0")}. As \code{df} is set to infinity (\code{Inf}) a normal approximation is used for computing the $p$ values which seem to suggest that the quadratic term might be weakly significant. In his analysis, \cite{hac:Cribari-Neto:2004} uses his HC4 estimator (among others) giving the following result: <>= coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC4")) @ The quadratic term is clearly non-significant. The reason for this result is depicted in Figure~\ref{fig:hc} which shows the data along with the fitted linear and quadratic model---the latter being obviously heavily influenced by a single outlier: Alaska. Thus, the improved performance of the HC4 as compared to the HC0 estimator is due to the correction for high leverage points. \setkeys{Gin}{width=.6\textwidth} \begin{figure}[tbh] \begin{center} <>= plot(Expenditure ~ Income, data = ps, xlab = "per capita income", ylab = "per capita spending on public schools") inc <- seq(0.5, 1.2, by = 0.001) lines(inc, predict(fm.ps, data.frame(Income = inc)), col = 4, lty = 2) fm.ps2 <- lm(Expenditure ~ Income, data = ps) abline(fm.ps2, col = 4) text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2) @ \caption{\label{fig:hc} Expenditure on public schools and income with fitted models.} \end{center} \end{figure} \subsection{Testing coefficients in time-series data} \cite{hac:Greene:1993} also anayzes a time-series regression model based on robust covariance matrix estimates: his Table 15.1 provides data on the nominal gross national product (GNP), nominal gross private domestic investment, a price index and an interest rate which is used to formulate a model that explains real investment by real GNP and real interest. The corresponding transformed variables \code{RealInv}, \code{RealGNP} and \code{RealInt} are stored in the data frame \code{Investment} in \pkg{sandwich} which can be loaded by: <>= data("Investment") @ Subsequently, the fitted linear regression model is computed by: <>= fm.inv <- lm(RealInv ~ RealGNP + RealInt, data = Investment) @ and the significance of the coefficients can again be assessed by partial $z$ tests using \code{coeftest}. \cite{hac:Greene:1993} uses the estimator of \cite{hac:Newey+West:1987} without prewhitening and with lag $L = 4$ for this purpose which is here passed as a matrix (as opposed to a function) to \code{coeftest}. <>= coeftest(fm.inv, df = Inf, vcov = NeweyWest(fm.inv, lag = 4, prewhite = FALSE)) @ If alternatively the automatic bandwidth selection procedure of \cite{hac:Newey+West:1994} with prewhitening should be used, this can be passed as a function to \code{coeftest}. <>= coeftest(fm.inv, df = Inf, vcov = NeweyWest) @ For illustration purposes, we show how a new function implementing a particular HAC estimator can be easily set up using the tools provided by \pkg{sandwich}. This is particularly helpful if the same estimator is to be applied several times in the course of an analysis. Suppose, we want to use a Parzen kernel with VAR(2) prewhitening, no finite sample adjustment and automatic bandwidth selection according to \cite{hac:Newey+West:1994}. First, we set up the function \code{parzenHAC} and then pass this function to \code{coeftest}. <>= parzenHAC <- function(x, ...) kernHAC(x, kernel = "Parzen", prewhite = 2, adjust = FALSE, bw = bwNeweyWest, ...) coeftest(fm.inv, df = Inf, vcov = parzenHAC) @ The three estimators leads to slightly different standard errors, but all tests agree that real GNP has a highly significant influence while the real interest rate has not. The data along with the fitted regression are depicted in Figure~\ref{fig:hac}. \setkeys{Gin}{width=.6\textwidth} \begin{figure}[tbh] \begin{center} <>= library("scatterplot3d") s3d <- scatterplot3d(Investment[,c(5,7,6)], type = "b", angle = 65, scale.y = 1, pch = 16) s3d$plane3d(fm.inv, lty.box = "solid", col = 4) @ \caption{\label{fig:hac} Investment equation data with fitted model.} \end{center} \end{figure} \subsection[Testing and dating structural changes in the presence of heteroskedasticity and autocorrelation]{Testing and dating structural changes in the presence of\\ heteroskedasticity and autocorrelation} To illustrate that the functionality provided by the covariance estimators implemented in \pkg{sandwich} cannot only be used in simple settings, such as partial quasi-$t$~tests, but also for more complicated tasks, we employ the real interest time series analyzed by \cite{hac:Bai+Perron:2003}. This series contains changes in the mean (see Figure~\ref{fig:sc}, right panel) which \cite{hac:Bai+Perron:2003} detect using several structural change tests based on $F$ statistics and date using a dynamic programming algorithm. As the visualization suggests, this series exhibits both heteroskedasticity and autocorrelation, hence \cite{hac:Bai+Perron:2003} use a quadratic spectral kernel HAC estimator in their analysis. Here, we use the same dating procedure but assess the significance using an OLS-based CUSUM test \citep{hac:Ploberger+Kraemer:1992} based on the same HAC estimator. The data are available in the package \pkg{strucchange} as the quarterly time series \code{RealInt} containing the US ex-post real interest rate from 1961(1) to 1986(3) and they are analyzed by a simple regression on the mean. Under the assumptions in the classical linear model with spherical errors, the test statistic of the OLS-based CUSUM test is \begin{equation} \sup_{j = 1, \dots, n} \left| \frac{1}{\sqrt{n \, \hat \sigma^2}} \; \sum_{i = 1}^{j} \hat u_i \right|. \end{equation} If autocorrelation and heteroskedasticity are present in the data, a robust variance estimator should be used: if $x_i$ is equal to unity, this can simply be achieved by replacing $\hat \sigma^2$ with $\hat \Phi$ or $n \hat \Psi$ respectively. Here, we use the quadratic spectral kernel HAC estimator of \cite{hac:Andrews:1991} with VAR(1) prewhitening and automatic bandwidth selection based on an AR(1) approximation as implemented in the function \code{kernHAC}. The $p$ values for the OLS-based CUSUM test can be computed from the distribution of the supremum of a Brownian bridge \citep[see e.g.,][]{hac:Ploberger+Kraemer:1992}. This and other methods for testing, dating and monitoring structural changes are implemented in the \proglang{R} package \pkg{strucchange} \citep{hac:Zeileis+Leisch+Hornik:2002} which contains the function \code{gefp} for fitting and assessing fluctuation processes including OLS-based CUSUM processes \citep[see][for more details]{hac:Zeileis:2004}. After loading the package and the data, <>= library("strucchange") data("RealInt") @ the command <>= ocus <- gefp(RealInt ~ 1, fit = lm, vcov = kernHAC) @ fits the OLS-based CUSUM process for a regression on the mean (\verb/RealInt ~ 1/), using the function \code{lm} and estimating the variance using the function \code{kernHAC}. The fitted OLS-based CUSUM process can then be visualized together with its 5\% critical value (horizontal lines) by \code{plot(scus)} which leads to a similar plot as in the left panel of Figure~\ref{fig:sc} (see the appendix for more details). As the process crosses its boundary, there is a significant change in the mean, while the clear peak in the process conveys that there is at least one strong break in the early 1980s. A formal significance test can also be carried out by \code{sctest(ocus)} which leads to a highly significant $p$ value of \Sexpr{round(sctest(ocus)$p.value, digits = 4)}. Similarly, the same quadratic spectral kernel HAC estimator could also be used for computing and visualizing the sup$F$ test of \cite{hac:Andrews:1993}, the code is provided in the appendix. Finally, the breakpoints in this model along with their confidence intervals can be computed by: <>= bp <- breakpoints(RealInt ~ 1) confint(bp, vcov = kernHAC) @ The dating algorithm \code{breakpoints} implements the procedure described in \cite{hac:Bai+Perron:2003} and estimates the timing of the structural changes by OLS. Therefore, in this step no covariance matrix estimate is required, but for computing the confidence intervals using a consistent covariance matrix estimator is again essential. The \code{confint} method for computing confidence intervals takes again a \code{vcov} argument which has to be a function (and not a matrix) because it has to be applied to several segments of the data. By default, it computes the breakpoints for the minimum BIC partition which gives in this case two breaks.\footnote{By choosing the number of breakpoints with sequential tests and not the BIC, \cite{hac:Bai+Perron:2003} arrive at a model with an additional breakpoint which has rather wide confidence intervals \citep[see also][]{hac:Zeileis+Kleiber:2004}} The fitted three-segment model along with the breakpoints and their confidence intervals is depicted in the right panel of Figure~\ref{fig:sc}. \setkeys{Gin}{width=\textwidth} \begin{figure}[tbh] \begin{center} <>= par(mfrow = c(1, 2)) plot(ocus, aggregate = FALSE, main = "") plot(RealInt, ylab = "Real interest rate") lines(ts(fitted(bp), start = start(RealInt), freq = 4), col = 4) lines(confint(bp, vcov = kernHAC)) @ \caption{\label{fig:sc} OLS-based CUSUM test (left) and fitted model (right) for real interest data.} \end{center} \end{figure} \section{Summary} \label{sec:summary} This paper briefly reviews a class of heteroskedasticity-consistent (HC) and a class of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators suggested in the econometric literature over the last 20 years and introduces unified computational tools that reflect the flexibility and the conceptual ideas of the underlying theoretical frameworks. Based on these general tools, a number of special cases of HC and HAC estimators is provided including the most popular in applied econometric research. All the functions suggested are implemented in the package \pkg{sandwich} in the \proglang{R} system for statistical computing and designed in such a way that they build on readily available model fitting functions and provide building blocks that can be easily integrated into other programs or applications. To achieve this flexibility, the object orientation mechanism of \proglang{R} and the fact that functions are first-level objects are of prime importance. \section*{Acknowledgments} We are grateful to Thomas Lumley for putting his code in the \pkg{weave} package at disposal and for advice in the design of \pkg{sandwich}, and to Christian Kleiber for helpful suggestions in the development of \pkg{sandwich}. \bibliography{hac} \clearpage \begin{appendix} %% for "plain pretty" printing \DefineVerbatimEnvironment{Sinput}{Verbatim}{} <>= options(prompt = " ") @ \section[R code]{\proglang{R} code} The packages \pkg{sandwich}, \pkg{lmtest} and \pkg{strucchange} are required for the applications in this paper. Furthermore, the packages depend on \pkg{zoo}. For the computations in this paper \proglang{R} \Sexpr{paste(R.Version()[6:7], collapse = ".")} and \pkg{sandwich} \Sexpr{gsub("-", "--", packageDescription("sandwich")$Version)}, \pkg{lmtest} \Sexpr{gsub("-", "--", packageDescription("lmtest")$Version)}, \pkg{strucchange} \Sexpr{gsub("-", "--", packageDescription("strucchange")$Version)} and \pkg{zoo} \Sexpr{gsub("-", "--", packageDescription("zoo")$Version)} have been used. \proglang{R} itself and all packages used are available from CRAN at \url{http://CRAN.R-project.org/}. To make the packages available for the examples the following commands are necessary: <>= <> library("strucchange") @ \subsection{Testing coefficients in cross-sectional data} Load public schools data, omit \code{NA} in Wisconsin and scale income: <>= <> @ Fit quadratic regression model: <>= <> @ Compare standard errors: <>= sqrt(diag(vcov(fm.ps))) sqrt(diag(vcovHC(fm.ps, type = "const"))) sqrt(diag(vcovHC(fm.ps, type = "HC0"))) sqrt(diag(vcovHC(fm.ps, type = "HC3"))) sqrt(diag(vcovHC(fm.ps, type = "HC4"))) @ Test coefficient of quadratic term: <>= <> <> @ Visualization: %%non-dynamic for pretty printing \begin{Schunk} \begin{Sinput} plot(Expenditure ~ Income, data = ps, xlab = "per capita income", ylab = "per capita spending on public schools") inc <- seq(0.5, 1.2, by = 0.001) lines(inc, predict(fm.ps, data.frame(Income = inc)), col = 4, lty = 2) fm.ps2 <- lm(Expenditure ~ Income, data = ps) abline(fm.ps2, col = 4) text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2) \end{Sinput} \end{Schunk} \subsection{Testing coefficients in time-series data} Load investment equation data: <>= <> @ Fit regression model: <>= <> @ Test coefficients using Newey-West HAC estimator with user-defined and data-driven bandwidth and with Parzen kernel: %%non-dynamic for pretty printing \begin{Schunk} \begin{Sinput} coeftest(fm.inv, df = Inf, vcov = NeweyWest(fm.inv, lag = 4, prewhite = FALSE)) coeftest(fm.inv, df = Inf, vcov = NeweyWest) parzenHAC <- function(x, ...) kernHAC(x, kernel = "Parzen", prewhite = 2, adjust = FALSE, bw = bwNeweyWest, ...) coeftest(fm.inv, df = Inf, vcov = parzenHAC) \end{Sinput} \end{Schunk} Time-series visualization: <>= plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment") lines(ts(fitted(fm.inv), start = 1964), col = 4) @ 3-dimensional visualization: %%non-dynamic for pretty printing \begin{Schunk} \begin{Sinput} library("scatterplot3d") s3d <- scatterplot3d(Investment[,c(5,7,6)], type = "b", angle = 65, scale.y = 1, pch = 16) s3d$plane3d(fm.inv, lty.box = "solid", col = 4) \end{Sinput} \end{Schunk} \subsection[Testing and dating structural changes in the presence of heteroskedasticity and autocorrelation]{Testing and dating structural changes in the presence of\\ heteroskedasticity and autocorrelation} Load real interest series: <>= data("RealInt") @ OLS-based CUSUM test with quadratic spectral kernel HAC estimate: <>= <> plot(ocus, aggregate = FALSE) sctest(ocus) @ sup$F$ test with quadratic spectral kernel HAC estimate: <>= fs <- Fstats(RealInt ~ 1, vcov = kernHAC) plot(fs) sctest(fs) @ Breakpoint estimation and confidence intervals with quadratic spectral kernel HAC estimate: <>= <> plot(bp) @ Visualization: <>= plot(RealInt, ylab = "Real interest rate") lines(ts(fitted(bp), start = start(RealInt), freq = 4), col = 4) lines(confint(bp, vcov = kernHAC)) @ \subsection{Integrating covariance matrix estimators in other functions} If programmers want to allow for the same flexibility regarding the specification of covariance matrices in their own functions as illustrated in \code{coeftest}, only a few simple additions have to be made which are illustrated in the following. Say, a function \code{foo(lmobj, vcov = NULL, ...)} wants to compute some quantity involving the standard errors associated with the \code{"lm"} object \code{lmobj}. Then, \code{vcov} should use by default the standard \code{vcov} method for \code{"lm"} objects, otherwise \code{vcov} is assumed to be either a function returning the covariance matrix estimate or the estimate itself. The following piece of code is sufficient for computing the standard errors. \begin{Sinput} if(is.null(vcov)) { se <- vcov(lmobj) } else { if (is.function(vcov)) se <- vcov(lmobj) else se <- vcov } se <- sqrt(diag(se)) \end{Sinput} In the first step the default method is called: note, that \proglang{R} can automatically distinguish between the variable \code{vcov} (which is \code{NULL}) and the generic function \code{vcov} (from the \pkg{stats} package which dispatches to the \code{"lm"} method) that is called here. Otherwise, it is just distinguished between a function or non-function. In the final step the square root of the diagonal elements is computed and stored in the vector \code{se} which can subsequently used for further computation in \code{foo()}. \end{appendix} \end{document} sandwich/inst/doc/sandwich.R0000644000175400001440000002125212600735100015706 0ustar zeileisusers### R code from vignette source 'sandwich.Rnw' ################################################### ### code chunk number 1: preliminaries ################################################### library("zoo") library("sandwich") library("strucchange") library("lmtest") options(prompt = "R> ", continue = "+ ") ################################################### ### code chunk number 2: hac-kweights ################################################### curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, xlab = "x", ylab = "K(x)") curve(kweights(x, kernel = "Bartlett", normalize = TRUE), from = 0, to = 3.2, col = 2, add = TRUE) curve(kweights(x, kernel = "Parzen", normalize = TRUE), from = 0, to = 3.2, col = 3, add = TRUE) curve(kweights(x, kernel = "Tukey", normalize = TRUE), from = 0, to = 3.2, col = 4, add = TRUE) lines(c(0, 0.5), c(1, 1), col = 6) lines(c(0.5, 0.5), c(1, 0), lty = 3, col = 6) lines(c(0.5, 3.2), c(0, 0), col = 6) curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, col = 1, add = TRUE) text(0.5, 0.98, "Truncated", pos = 4) text(0.8, kweights(0.8, "Bartlett", normalize = TRUE), "Bartlett", pos = 4) text(1.35, kweights(1.4, "Quadratic", normalize = TRUE), "Quadratic Spectral", pos = 2) text(1.15, 0.29, "Parzen", pos = 4) arrows(1.17, 0.29, 1, kweights(1, "Parzen", normalize = TRUE), length = 0.1) text(1.3, 0.2, "Tukey-Hanning", pos = 4) arrows(1.32, 0.2, 1.1, kweights(1.1, "Tukey", normalize = TRUE), length = 0.1) ################################################### ### code chunk number 3: loadlibs1 ################################################### library("sandwich") library("lmtest") ################################################### ### code chunk number 4: hc-data ################################################### data("PublicSchools") ps <- na.omit(PublicSchools) ps$Income <- ps$Income * 0.0001 ################################################### ### code chunk number 5: hc-model ################################################### fm.ps <- lm(Expenditure ~ Income + I(Income^2), data = ps) ################################################### ### code chunk number 6: hc-test1 ################################################### coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC0")) ################################################### ### code chunk number 7: hc-test2 ################################################### coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC4")) ################################################### ### code chunk number 8: hc-plot ################################################### plot(Expenditure ~ Income, data = ps, xlab = "per capita income", ylab = "per capita spending on public schools") inc <- seq(0.5, 1.2, by = 0.001) lines(inc, predict(fm.ps, data.frame(Income = inc)), col = 4, lty = 2) fm.ps2 <- lm(Expenditure ~ Income, data = ps) abline(fm.ps2, col = 4) text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2) ################################################### ### code chunk number 9: hac-data ################################################### data("Investment") ################################################### ### code chunk number 10: hac-model ################################################### fm.inv <- lm(RealInv ~ RealGNP + RealInt, data = Investment) ################################################### ### code chunk number 11: hac-test1 ################################################### coeftest(fm.inv, df = Inf, vcov = NeweyWest(fm.inv, lag = 4, prewhite = FALSE)) ################################################### ### code chunk number 12: hac-test2 ################################################### coeftest(fm.inv, df = Inf, vcov = NeweyWest) ################################################### ### code chunk number 13: hac-test3 ################################################### parzenHAC <- function(x, ...) kernHAC(x, kernel = "Parzen", prewhite = 2, adjust = FALSE, bw = bwNeweyWest, ...) coeftest(fm.inv, df = Inf, vcov = parzenHAC) ################################################### ### code chunk number 14: hac-plot ################################################### library("scatterplot3d") s3d <- scatterplot3d(Investment[,c(5,7,6)], type = "b", angle = 65, scale.y = 1, pch = 16) s3d$plane3d(fm.inv, lty.box = "solid", col = 4) ################################################### ### code chunk number 15: loadlibs2 ################################################### library("strucchange") data("RealInt") ################################################### ### code chunk number 16: sc-ocus ################################################### ocus <- gefp(RealInt ~ 1, fit = lm, vcov = kernHAC) ################################################### ### code chunk number 17: sc-bp ################################################### bp <- breakpoints(RealInt ~ 1) confint(bp, vcov = kernHAC) ################################################### ### code chunk number 18: sc-plot ################################################### par(mfrow = c(1, 2)) plot(ocus, aggregate = FALSE, main = "") plot(RealInt, ylab = "Real interest rate") lines(ts(fitted(bp), start = start(RealInt), freq = 4), col = 4) lines(confint(bp, vcov = kernHAC)) ################################################### ### code chunk number 19: sandwich.Rnw:786-787 ################################################### options(prompt = " ") ################################################### ### code chunk number 20: sandwich.Rnw:805-807 (eval = FALSE) ################################################### ## library("sandwich") ## library("lmtest") ## library("strucchange") ################################################### ### code chunk number 21: sandwich.Rnw:814-815 (eval = FALSE) ################################################### ## data("PublicSchools") ## ps <- na.omit(PublicSchools) ## ps$Income <- ps$Income * 0.0001 ################################################### ### code chunk number 22: sandwich.Rnw:819-820 (eval = FALSE) ################################################### ## fm.ps <- lm(Expenditure ~ Income + I(Income^2), data = ps) ################################################### ### code chunk number 23: sandwich.Rnw:824-829 (eval = FALSE) ################################################### ## sqrt(diag(vcov(fm.ps))) ## sqrt(diag(vcovHC(fm.ps, type = "const"))) ## sqrt(diag(vcovHC(fm.ps, type = "HC0"))) ## sqrt(diag(vcovHC(fm.ps, type = "HC3"))) ## sqrt(diag(vcovHC(fm.ps, type = "HC4"))) ################################################### ### code chunk number 24: sandwich.Rnw:833-835 (eval = FALSE) ################################################### ## coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC0")) ## coeftest(fm.ps, df = Inf, vcov = vcovHC(fm.ps, type = "HC4")) ################################################### ### code chunk number 25: sandwich.Rnw:855-856 (eval = FALSE) ################################################### ## data("Investment") ################################################### ### code chunk number 26: sandwich.Rnw:860-861 (eval = FALSE) ################################################### ## fm.inv <- lm(RealInv ~ RealGNP + RealInt, data = Investment) ################################################### ### code chunk number 27: sandwich.Rnw:879-881 (eval = FALSE) ################################################### ## plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment") ## lines(ts(fitted(fm.inv), start = 1964), col = 4) ################################################### ### code chunk number 28: sandwich.Rnw:897-898 (eval = FALSE) ################################################### ## data("RealInt") ################################################### ### code chunk number 29: sandwich.Rnw:902-905 (eval = FALSE) ################################################### ## ocus <- gefp(RealInt ~ 1, fit = lm, vcov = kernHAC) ## plot(ocus, aggregate = FALSE) ## sctest(ocus) ################################################### ### code chunk number 30: sandwich.Rnw:909-912 (eval = FALSE) ################################################### ## fs <- Fstats(RealInt ~ 1, vcov = kernHAC) ## plot(fs) ## sctest(fs) ################################################### ### code chunk number 31: sandwich.Rnw:917-919 (eval = FALSE) ################################################### ## bp <- breakpoints(RealInt ~ 1) ## confint(bp, vcov = kernHAC) ## plot(bp) ################################################### ### code chunk number 32: sandwich.Rnw:923-926 (eval = FALSE) ################################################### ## plot(RealInt, ylab = "Real interest rate") ## lines(ts(fitted(bp), start = start(RealInt), freq = 4), col = 4) ## lines(confint(bp, vcov = kernHAC)) sandwich/inst/doc/sandwich-OOP.Rnw0000644000175400001440000010524412600735100016712 0ustar zeileisusers\documentclass[nojss]{jss} \usepackage{thumbpdf} %% need no \usepackage{Sweave} %% Symbols \newcommand{\darrow}{\stackrel{\mbox{\tiny \textnormal{d}}}{\longrightarrow}} \author{Achim Zeileis\\Universit\"at Innsbruck} \Plainauthor{Achim Zeileis} \title{Object-Oriented Computation of Sandwich Estimators} \Keywords{covariance matrix estimators, estimating functions, object orientation, \proglang{R}} \Plainkeywords{covariance matrix estimators, estimating functions, object orientation, R} \Abstract{ This introduction to the object-orientation features of the \proglang{R} package \pkg{sandwich} is a (slightly) modified version of \cite{hac:Zeileis:2006}, published in the \emph{Journal of Statistical Software}. Sandwich covariance matrix estimators are a popular tool in applied regression modeling for performing inference that is robust to certain types of model misspecification. Suitable implementations are available in the \proglang{R} system for statistical computing for certain model fitting functions only (in particular \code{lm()}), but not for other standard regression functions, such as \code{glm()}, \code{nls()}, or \code{survreg()}. Therefore, conceptual tools and their translation to computational tools in the package \pkg{sandwich} are discussed, enabling the computation of sandwich estimators in general parametric models. Object orientation can be achieved by providing a few extractor functions---most importantly for the empirical estimating functions---from which various types of sandwich estimators can be computed. } \Address{ Achim Zeileis\\ Department of Statistics\\ Faculty of Economics and Statistics\\ Universit\"at Innsbruck\\ Universit\"atsstr.~15\\ 6020 Innsbruck, Austria\\ E-mail: \email{Achim.Zeileis@R-project.org}\\ URL: \url{http://eeecon.uibk.ac.at/~zeileis/} } \begin{document} \SweaveOpts{engine=R,eps=FALSE} %\VignetteIndexEntry{Object-Oriented Computation of Sandwich Estimators} %\VignetteDepends{sandwich,zoo,AER,survival,MASS,lmtest} %\VignetteKeywords{covariance matrix estimators, estimating functions, object orientation, R} %\VignettePackage{sandwich} <>= library("AER") library("MASS") options(prompt = "R> ", continue = "+ ") @ \section{Introduction} \label{sec:intro} A popular approach to applied parametric regression modeling is to derive estimates of the unknown parameters via a set of estimating functions (including least squares and maximum likelihood scores). Inference for these models is typically based on a central limit theorem in which the covariance matrix is of a sandwich type: a slice of meat between two slices of bread, pictorially speaking. Employing estimators for the covariance matrix based on this sandwich form can make inference for the parameters more robust against certain model misspecifications (provided the estimating functions still hold and yield consistent estimates). Therefore, sandwich estimators such as heteroskedasticy consistent (HC) estimators for cross-section data and heteroskedasitcity and autocorrelation consistent (HAC) estimators for time-series data are commonly used in applied regression, in particular in linear regression models. \cite{hac:Zeileis:2004a} discusses a set of computational tools provided by the \pkg{sandwich} package for the \proglang{R} system for statistical computing \citep{hac:R:2008} which allows for computing HC and HAC estimators in linear regression models fitted by \code{lm()}. Here, we set out where the discussion of \cite{hac:Zeileis:2004a} ends and generalize the tools from linear to general parametric models fitted by estimating functions. This generalization is achieved by providing an object-oriented implementation for the building blocks of the sandwich that rely only on a small set of extractor functions for fitted model objects. The most important of these is a method for extracting the empirical estimating functions---based on this a wide variety of meat fillings for sandwiches is provided. The paper is organized as follows: Section~\ref{sec:model} discusses the model frame and reviews some of the underlying theory. Section~\ref{sec:R} presents some existing \proglang{R} infrastructure which can be re-used for the computation of sandwich covariance matrices in Section~\ref{sec:vcov}. Section~\ref{sec:illustrations} gives a brief illustration of the computational tools before Section~\ref{sec:disc} concludes the paper. { \section{Model frame} \label{sec:model} \nopagebreak To fix notations, let us assume we have data in a regression setup, i.e., $(y_i, x_i)$ for $i = 1, \dots, n$, that follow some distribution that is controlled by a $k$-dimensional parameter vector $\theta$. In many situations, an estimating function $\psi(\cdot)$ is available for this type of models such that $\E[\psi(y, x, \theta)] = 0$. Then, under certain weak regularity conditions \citep[see e.g.,][]{hac:White:1994}, $\theta$ can be estimated using an M-estimator $\hat \theta$ implicitely defined as \begin{equation} \label{eq:estfun} \sum_{i = 1}^n \psi(y_i, x_i, \hat \theta) \quad = \quad 0. \end{equation} This includes cases where the estimating function $\psi(\cdot)$ is the derivative of an objective function $\Psi(\cdot)$: \begin{equation} \label{eq:score} \psi(y, x, \theta) \quad = \quad \frac{\partial \Psi(y, x, \theta)}{\partial \theta}. \end{equation} } Examples for estimation techniques included in this framework are maximum likelihood (ML) and ordinary and nonlinear least squares (OLS and NLS) estimation, where the estimator is usually written in terms of the objective function as $\hat \theta = \mbox{argmin}_\theta \sum_i \Psi(y_i, x_i, \theta)$. Other techniques---often expressed in terms of the estimating function rather than the objective function---include quasi ML, robust M-estimation and generalized estimating equations (GEE). Inference about $\theta$ is typically performed relying on a central limit theorem (CLT) of type \begin{equation} \label{eq:clt} \sqrt{n} \, (\hat \theta - \theta) \quad \darrow \quad N(0, S(\theta)), \end{equation} where $\darrow$ denotes convergence in distribution. For the covariance matrix $S(\theta)$, a sandwich formula can be given \begin{eqnarray} \label{eq:sandwich} S(\theta) & = & B(\theta) \, M(\theta) \, B(\theta) \\ \label{eq:bread} B(\theta) & = & \left( \E[ - \psi'(y, x, \theta) ] \right)^{-1} \\ \label{obj} M(\theta) & = & \VAR[ \psi(y, x, \theta) ] \end{eqnarray} see Theorem~6.10 in \cite{hac:White:1994}, Chapter~5 in \cite{hac:Cameron+Trivedi:2005}, or \cite{hac:Stefanski+Boos:2002} for further details. The ``meat'' of the sandwich $M(\theta)$ is the variance of the estimating function and the ``bread'' is the inverse of the expectation of its first derivative $\psi'$ (again with respect to $\theta$). Note that we use the more evocative names $S$, $B$ and $M$ instead of the more conventional notation $V(\theta) = A(\theta)^{-1} B(\theta) A(\theta)^{-1}$. In correctly specified models estimated by ML (or OLS and NLS with homoskedastic errors), this sandwich expression for $S(\theta)$ can be simplified because $M(\theta) = B(\theta)^{-1}$, corresponding to the Fisher information matrix. Hence, the variance $S(\theta)$ in the CLT from Equation~\ref{eq:clt} is typically estimated by an empirical version of $B(\theta)$. However, more robust covariance matrices can be obtained by employing estimates for $M(\theta)$ that are consistent under weaker assumptions \citep[see e.g.,][]{hac:Lumley+Heagerty:1999} and plugging these into the sandwich formula for $S(\theta)$ from Equation~\ref{eq:sandwich}. Robustness can be achieved with respect to various types of misspecification, e.g., heteroskedasticity---however, consistency of $\hat \theta$ has to be assured, which implies that at least the estimating functions have to be correctly specified. Many of the models of interest to us, provide some more structure: the objective function $\Psi(y, x, \theta)$ depends on $x$ and $\theta$ in a special way, namely it does only depend on the univariate linear predictor $\eta = x^\top \theta$. Then, the estimating function is of type \begin{equation} \label{eq:estfunHC} \psi(y, x, \theta) \quad = \quad \frac{\partial \Psi}{\partial \eta} \cdot \frac{\partial \eta}{\partial \theta} \quad = \quad \frac{\partial \Psi}{\partial \eta} \cdot x. \end{equation} The partial derivative $r(y, \eta) = \partial \Psi(y, \eta) / \partial \eta$ is in some models also called ``working residual'' corresponding to the usual residuals in linear regression models. In such linear-predictor-based models, the meat of the sandwich can also be sloppily written as \begin{equation} \label{eq:objHC} M(\theta) \quad = \quad x \, \VAR[ r(y, x^\top \theta) ] \, x^\top. \end{equation} Whereas employing this structure for computing HC covariance matrix estimates is well-established practice for linear regression models \citep[see][among others]{hac:MacKinnon+White:1985,hac:Long+Ervin:2000}, it is less commonly applied in other regression models such as GLMs. \section[Existing R infrastructure]{Existing \proglang{R} infrastructure} \label{sec:R} To make use of the theory outlined in the previous section, some computational infrastructure is required translating the conceptual to computational tools. \proglang{R} comes with a multitude of model-fitting functions that compute estimates $\hat \theta$ and can be seen as special cases of the framework above. They are typically accompanied by extractor and summary methods providing inference based on the CLT from Equation~\ref{eq:clt}. For extracting the estimated parameter vector $\hat \theta$ and some estimate of the covariance matrix $S(\theta)$, there are usually a \code{coef()} and a \code{vcov()} method, respectively. Based on these estimates, inference can typically be performed by the \code{summary()} and \code{anova()} methods. By convention, the \code{summary()} method performs partial $t$ or $z$~tests and the \code{anova()} method performs $F$ or $\chi^2$~tests for nested models. The covariance estimate used in these tests (and returned by \code{vcov()}) usually relies on the assumption of correctly specified models and hence is simply an empirical version of the bread $B(\theta)$ only (divided by $n$). For extending these tools to inference based on sandwich covariance matrix estimators, two things are needed: 1.~generalizations of \code{vcov()} that enable computations of sandwich estimates, 2.~inference functions corresponding to the \code{summary()} and \code{anova()} methods which allow other covariance matrices to be plugged in. As for the latter, the package \pkg{lmtest} \citep{hac:Zeileis+Hothorn:2002} provides \code{coeftest()} and \code{waldtest()} and \pkg{car} \citep{hac:Fox:2002} provides \code{linear.hypothesis()}---all of these can perform model comparisons in rather general parametric models, employing user-specified covariance matrices. As for the former, only specialized solutions of sandwich covariances matrices are currently available in \proglang{R} packages, e.g., HAC estimators for linear models in previous versions of \pkg{sandwich} and HC estimators for linear models in \pkg{car} and \pkg{sandwich}. Therefore, we aim at providing a tool kit for plugging together sandwich matrices (including HC and HAC estimators and potentially others) in general parametric models, re-using the functionality that is already provided. \section{Covariance matrix estimators} \label{sec:vcov} In the following, the conceptual tools outlined in Section~\ref{sec:model} are translated to computational tools preserving their flexibility through the use of the estimating functions framework and re-using the computational infrastructure that is already available in \proglang{R}. Separate methods are suggested for computing estimates for the bread $B(\theta)$ and the meat $M(\theta)$, along with some convenience functions and wrapper interfaces that build sandwiches from bread and meat. \subsection{The bread} Estimating the bread $B(\theta)$ is usually relatively easy and the most popular estimate is the Hessian, i.e., the mean crossproduct of the derivative of the estimating function evaluated at the data and estimated parameters: \begin{equation} \label{eq:Bhat} \hat B \quad = \quad \left( \frac{1}{n} \sum_{i = 1}^n - \psi'(y_i, x_i, \hat \theta) \right)^{-1}. \end{equation} If an objective function $\Psi(\cdot)$ is used, this is the crossproduct of its second derivative, hence the name Hessian. This estimator is what the \code{vcov()} method is typically based on and therefore it can usually be extracted easily from the fitted model objects, e.g., for ``\code{lm}'' and ``\code{glm}'' it is essentially the \code{cov.unscaled} element returned by the \code{summary()} method. To unify the extraction of a suitable estimate for the bread, \pkg{sandwich} provides a new \code{bread()} generic that should by default return the bread estimate that is also used in \code{vcov()}. This will usually be the Hessian estimate, but might also be the expected Hessian \citep[Equation~5.36]{hac:Cameron+Trivedi:2005} in some models. The package \pkg{sandwich} provides \code{bread()} methods for ``\code{lm}'' (including ``\code{glm}'' by inheritance), ``\code{coxph}'', ``\code{survreg}'' and ``\code{nls}'' objects. All of them simply re-use the information provided in the fitted models (or their summaries) and perform hardly any computations, e.g., for ``\code{lm}'' objects: \begin{Schunk} \begin{Sinput} bread.lm <- function(obj, ...) { so <- summary(obj) so$cov.unscaled * as.vector(sum(so$df[1:2])) } \end{Sinput} \end{Schunk} \subsection{The meat} While the bread $B(\theta)$ is typically estimated by the Hessian matrix $\hat B$ from Equation~\ref{eq:Bhat}, various different types of estimators are available for the meat $M(\theta)$, usually offering certain robustness properties. Most of these estimators are based on the empirical values of estimating functions. Hence, a natural idea for object-oriented implementation of such estimators is the following: provide various functions that compute different estimators for the meat based on an \code{estfun()} extractor function that extracts the empirical estimating functions from a fitted model object. This is what \pkg{sandwich} does: the functions \code{meat()}, \code{meatHAC()} and \code{meatHC()} compute outer product, HAC and HC estimators for $M(\theta)$, respectively, relying on the existence of an \code{estfun()} method (and potentially a few other methods). Their design is described in the following. \subsubsection{Estimating functions} Whereas (different types of) residuals are typically available as discrepancy measure for a model fit via the \code{residuals()} method, the empirical values of the estimating functions $\psi(y_i, x_i, \hat \theta)$ are often not readily implemented in \proglang{R}. Hence, \pkg{sandwich} provides a new \code{estfun()} generic whose methods should return an $n \times k$ matrix with the empirical estimating functions: \[ \left( \begin{array}{c} \psi(y_1, x_1, \hat \theta) \\ \vdots \\ \psi(y_n, x_n, \hat \theta) \end{array} \right). \] Suitable methods are provided for ``\code{lm}'', ``\code{glm}'', ``\code{rlm}'', ``\code{nls}'', ``\code{survreg}'' and ``\code{coxph}'' objects. Usually, these can easily re-use existing methods, in particular \code{residuals()} and \code{model.matrix()} if the model is of type~(\ref{eq:estfunHC}). As a simple example, the most important steps of the ``\code{lm}'' method are \begin{Schunk} \begin{Sinput} estfun.lm <- function (obj, ...) { wts <- weights(obj) if(is.null(wts)) wts <- 1 residuals(obj) * wts * model.matrix(obj) } \end{Sinput} \end{Schunk} \subsubsection{Outer product estimators} A simple and natural estimator for the meat matrix $M(\theta) = \VAR[ \psi(y, x, \theta)]$ is the outer product of the empirical estimating functions: \begin{equation} \label{eq:meatOP} \hat M \quad = \quad \frac{1}{n} \sum_{i = 1}^n \psi(y_i, x_i, \hat \theta) \psi(y_i, x_i, \hat \theta)^\top \end{equation} This corresponds to the Eicker-Huber-White estimator \citep{hac:Eicker:1963,hac:Huber:1967,hac:White:1980} and is sometimes also called outer product of gradients estimator. In practice, a degrees of freedom adjustment is often used, i.e., the sum is scaled by $n-k$ instead of $n$, corresponding to the HC1 estimator from \cite{hac:MacKinnon+White:1985}. In non-linear models this has no theoretical justification, but has been found to have better finite sample performance in some simulation studies. In \pkg{sandwich}, these two estimators are provided by the function \code{meat()} which only relies on the existence of an \code{estfun()} method. A simplified version of the \proglang{R} code is \begin{Schunk} \begin{Sinput} meat <- function(obj, adjust = FALSE, ...) { psi <- estfun(obj) k <- NCOL(psi) n <- NROW(psi) rval <- crossprod(as.matrix(psi))/n if(adjust) rval <- n/(n - k) * rval rval } \end{Sinput} \end{Schunk} \subsubsection{HAC estimators} More elaborate methods for deriving consistent covariance matrix estimates in the presence of autocorrelation in time-series data are also available. Such HAC estimators $\hat M_\mathrm{HAC}$ are based on the weighted empirical autocorrelations of the empirical estimating functions: \begin{equation} \label{eq:meatHAC} \hat M_\mathrm{HAC} \quad = \quad \frac{1}{n} \sum_{i, j = 1}^n w_{|i-j|} \, \psi(y_i, x_i, \hat \theta) \psi(y_j, x_j, \hat \theta)^\top \end{equation} where different strategies are available for the choice of the weights $w_\ell$ at lag $\ell = 0, \dots, {n-1}$ \citep{hac:Andrews:1991,hac:Newey+West:1994,hac:Lumley+Heagerty:1999}. Again, an additional finite sample adjustment can be applied by multiplication with $n/(n-k)$. Once a vector of weights is chosen, the computation of $\hat M_\mathrm{HAC}$ in \proglang{R} is easy, the most important steps are given by \begin{Schunk} \begin{Sinput} meatHAC <- function(obj, weights, ...) { psi <- estfun(obj) n <- NROW(psi) rval <- 0.5 * crossprod(psi) * weights[1] for(i in 2:length(weights)) rval <- rval + weights[i] * crossprod(psi[1:(n-i+1),], psi[i:n,]) (rval + t(rval))/n } \end{Sinput} \end{Schunk} The actual function \code{meatHAC()} in \pkg{sandwich} is much more complex as it also interfaces different weighting and bandwidth selection functions. The details are the same compared to \cite{hac:Zeileis:2004a} where the selection of weights had been discussed for fitted ``\code{lm}'' objects. \subsubsection{HC estimators} In addition to the two HC estimators that can be written as outer product estimators (also called HC0 and HC1), various other HC estimators (usually called HC2--HC4) have been suggested, in particular for the linear regression model \citep{hac:MacKinnon+White:1985,hac:Long+Ervin:2000,hac:Cribari-Neto:2004}. In fact, they can be applied to more general models provided the estimating function depends on the parameters only through a linear predictor as described in Equation~\ref{eq:estfunHC}. Then, the meat matrix $M(\theta)$ is of type (\ref{eq:objHC}) which naturally leads to HC estimators of the form $\hat M_\mathrm{HC} = 1/n \, X^\top \hat \Omega X$, where $X$ is the regressor matrix and $\hat \Omega$ is a diagonal matrix estimating the variance of $r(y, \eta)$. Various functions $\omega(\cdot)$ have been suggested that derive estimates of the variances from the observed working residuals $(r(y_1, x_1^\top \hat \theta), \dots, r(y_n, x_n^\top \hat \theta))^\top$---possibly also depending on the hat values and the degrees of freedom. Thus, the HC estimators are of the form \begin{equation} \label{eq:meatHC} \hat M_\mathrm{HC} \quad = \quad \frac{1}{n} X^\top \left( \begin{array}{ccc} \omega(r(y_1, x_1^\top \theta)) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega(r(y, x^\top \theta)) \end{array} \right) X. \end{equation} To transfer these tools into software in the function \code{meatHC()}, we need infrastructure for three elements in Equation~\ref{eq:meatHC}: 1.~the model matrix $X$, 2.~the function $\omega(\cdot)$, and 3.~the empirical working residuals $r(y_i, x_i^\top \hat \theta)$. As for 1, the model matrix $X$ can easily be accessed via the \code{model.matrix()} method. Concerning 2, the specification of $\omega(\cdot)$ is discussed in detail in \cite{hac:Zeileis:2004a}. Hence, we omit the details here and only assume that we have either a vector \code{omega} of diagonal elements or a function \code{omega} that computes the diagonal elements from the residuals, diagonal values of the hat matrix (provided by the \code{hatvalues()} method) and the degrees of freedom $n-k$. For 3, the working residuals, some fitted model classes provide infrastructure in their \code{residuals()} method. However, there is no unified interface available for this and instead of setting up a new separate generic, it is also possible to recover this information from the estimating function. As $\psi(y_i, x_i, \hat \theta) = r(y_i, x_i^\top \hat \theta) \cdot x_i$, we can simply divide the empirical estimating function by $x_i$ to obtain the working residual. Based on these functions, all necessary information can be extracted from fitted model objects and a condensed version of \code{meatHC()} can then be written as \begin{Schunk} \begin{Sinput} meatHC <- function(obj, omega, ...) { X <- model.matrix(obj) res <- rowMeans(estfun(obj)/X, na.rm = TRUE) diaghat <- hatvalues(obj) df <- NROW(X) - NCOL(X) if(is.function(omega)) omega <- omega(res, diaghat, df) rval <- sqrt(omega) * X crossprod(rval)/NROW(X) } \end{Sinput} \end{Schunk} \subsection{The sandwich} Based on the building blocks described in the previous sections, computing a sandwich estimate from a fitted model object is easy: the function \code{sandwich()} computes an estimate (by default the Eicker-Huber-White outer product estimate) for $1/n \, S(\theta)$ via \begin{Schunk} \begin{Sinput} sandwich <- function(obj, bread. = bread, meat. = meat, ...) { if(is.function(bread.)) bread. <- bread.(obj) if(is.function(meat.)) meat. <- meat.(obj, ...) 1/NROW(estfun(obj)) * (bread. %*% meat. %*% bread.) } \end{Sinput} \end{Schunk} For computing other estimates, the argument \code{meat.}~could also be set to \code{meatHAC} or \code{meatHC}. Therefore, all that an \proglang{R} user/developer would have to do to make a new class of fitted models, ``\code{foo}'' say, fit for this framework is: provide an \code{estfun()} method \code{estfun.}\emph{foo}\code{()} and a \code{bread()} method \code{bread.}\emph{foo}\code{()}. See also Figure~\ref{fig:sandwich}. Only for HC estimators (other than HC0 and HC1 which are available via \code{meat()}), it has to be assured in addition that \begin{itemize} \item the model only depends on a linear predictor (this cannot be easily checked by the software, but has to be done by the user), \item the model matrix $X$ is available via a \code{model.matrix.}\emph{foo}\code{()} method, \item a \code{hatvalues.}\emph{foo}\code{()} method exists (for HC2--HC4). \end{itemize} For both, HAC and HC estimators, the complexity of the meat functions was reduced for exposition in the paper: choosing the \code{weights} in \code{meatHAC} and the diagonal elements \code{omega} in \code{meatHC} can be controlled by a number of further arguments. To make these explicit for the user, wrapper functions \code{vcovHAC()} and \code{vcovHC()} with suitable default methods are provided in \pkg{sandwich} which work as advertised in \cite{hac:Zeileis:2004a} and are the recommended interfaces for computing HAC and HC estimators, respectively. Furthermore, the convenience interfaces \code{kernHAC()}, \code{NeweyWest()} and \code{weave()} setting the right defaults for \citep{hac:Andrews:1991}, \cite{hac:Newey+West:1994}, and \cite{hac:Lumley+Heagerty:1999}, respectively, continue to be provided by \pkg{sandwich}. \setkeys{Gin}{width=.85\textwidth} \begin{figure}[tbh] \begin{center} <>= par(mar = rep(0, 4)) plot(0, 0, xlim = c(0, 85), ylim = c(0, 110), type = "n", axes = FALSE, xlab = "", ylab = "") lgrey <- grey(0.88) dgrey <- grey(0.75) rect(45, 90, 70, 110, lwd = 2, col = dgrey) rect(20, 40, 40, 60, col = lgrey) rect(30, 40, 40, 60, col = dgrey) rect(20, 40, 40, 60, lwd = 2) rect(5, 0, 20, 20, lwd = 2, col = lgrey) rect(22.5, 0, 37.5, 20, lwd = 2, col = lgrey) rect(40, 0, 55, 20, lwd = 2, col = lgrey) rect(40, 0, 55, 20, lwd = 2, col = lgrey) rect(60, 0, 80, 20, col = lgrey) rect(70, 0, 80, 20, col = dgrey) rect(60, 0, 80, 20, lwd = 2) text(57.5, 100, "fitted model object\n(class: foo)") text(25, 50, "estfun") text(35, 50, "foo") text(12.5, 10, "meatHC") text(30, 10, "meatHAC") text(47.5, 10, "meat") text(65, 10, "bread") text(75, 10, "foo") arrows(57.5, 89, 70, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(57.5, 89, 30, 61, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 30, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 12.5, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 47.5, 21, lwd = 1.5, length = 0.15, angle = 20) @ \caption{\label{fig:sandwich} Structure of sandwich estimators} \end{center} \end{figure} \section{Illustrations} \label{sec:illustrations} This section briefly illustrates how the tools provided by \pkg{sandwich} can be applied to various models and re-used in other functions. Predominantly, sandwich estimators are used for inference, such as partial $t$ or $z$~tests of regression coefficients or restriction testing in nested regression models. As pointed out in Section~\ref{sec:R}, the packages \pkg{lmtest} \citep{hac:Zeileis+Hothorn:2002} and \pkg{car} \citep{hac:Fox:2002} provide some functions for this type of inference. The model for which sandwich estimators are employed most often is surely the linear regression model. Part of the reason for this is (together with the ubiquity of linear regression) that in linear regression mean and variance can be specified independently from each other. Thus, the model can be seen as a model for the conditional mean of the response with the variance left unspecified and captured only for inference by a robust sandwich estimator. \cite{hac:Zeileis:2004a} presents a collection of applications of sandwich estimators to linear regression, both for cross-section and time-series data. These examples are not affected by making \pkg{sandwich} object oriented, therefore, we do not present any examples for linear regression models here. To show that with the new object-oriented tools in \pkg{sandwich}, the functions can be applied as easily to other models we consider some models from microeconometrics: count data regression and probit and tobit models. In all examples, we compare the usual summary (coefficients, standard errors and partial $z$~tests) based on \code{vcov()} with the corresponding summary based on HC standard errors as provided by \code{sandwich()}. \code{coeftest()} from \pkg{lmtest} is always used for computing the summaries. \subsection{Count data regression} To illustrate the usage of sandwich estimators in count data regressions, we use artifical data simulated from a negative binomial model. The mean of the response \code{y} depends on a regressor \code{x} through a log link, the size parameter of the negative binomial distribution is 1, and the regressor is simply drawn from a standard normal distribution. After setting the random seed for reproducibility, we draw 250 observations from this model: <>= set.seed(123) x <- rnorm(250) y <- rnbinom(250, mu = exp(1 + x), size = 1) @ In the following, we will fit various count models to this data employing the overspecification \verb/y ~ x + I(x^2)/ and assessing the significance of \verb/I(x^2)/. First, we use \code{glm()} with \code{family = poisson} to fit a poisson regression as the simplest model for count data. Of course, this model is not correctly specified as \code{y} is from a negative binomial distribution. Hence, we are not surprised that the resulting test of \verb/I(x^2)/ is spuriously significant: <>= fm_pois <- glm(y ~ x + I(x^2), family = poisson) coeftest(fm_pois) @ However, the specification of the conditional mean of \code{y} is correct in this model which is reflected by the coefficient estimates that are close to their true value. Only the dispersion which is fixed at 1 in the \code{poisson} family is misspecified. In this situation, the problem can be alleviated by employing sandwich standard errors in the partial $z$~tests, capturing the overdispersion in \code{y}. <>= coeftest(fm_pois, vcov = sandwich) @ Clearly, sandwich standard errors are not the only way of dealing with this situation. Other obvious candidates would be to use a quasi-poisson or, of course, a negative binomial model \citep{hac:McCullagh+Nelder:1989}. The former is available through the \code{quasipoisson} family for \code{glm()} that leads to the same coefficient estimates as \code{poisson} but additionally estimates the dispersion for inference. The associated model summary is very similar to that based on the sandwich standard errors, leading to qualitatively identical results. <>= fm_qpois <- glm(y ~ x + I(x^2), family = quasipoisson) coeftest(fm_qpois) @ Negative binomial models can be fitted by \code{glm.nb()} from \pkg{MASS} \citep{hac:Venables+Ripley:2002}. <>= fm_nbin <- glm.nb(y ~ x + I(x^2)) coeftest(fm_nbin) @ Here, the estimated parameters are very similar to those from the poisson regression and the $z$~tests lead to the same conclusions as in the previous two examples. More details on various techniques for count data regression in \proglang{R} are provided in \cite{hac:Zeileis+Kleiber+Jackman:2008}. \subsection{Probit and tobit models} In this section, we consider an example from \citet[Section~22.3.6]{hac:Greene:2003} that reproduces the analysis of extramarital affairs by \citet{hac:Fair:1978}. The data, famously known as Fair's affairs, is available in the \pkg{AER} package \citep{hac:Kleiber+Zeileis:2008} and provides cross-section information on the number of extramarital affairs of 601 individuals along with several covariates such as \code{age}, \code{yearsmarried}, \code{religiousness}, \code{occupation} and a self-\code{rating} of the marriage. Table~22.3 in \cite{hac:Greene:2003} provides the parameter estimates and corresponding standard errors of a tobit model (for the number of affairs) and a probit model (for infidelity as a binary variable). In \proglang{R}, these models can be fitted using \code{tobit()} from \pkg{AER} \citep[a convenience interface to \code{survreg()} from the \pkg{survival} package by][]{hac:Thernau+Lumley:2008} and \code{glm()}, respectively: <<>>= library("AER") data("Affairs", package = "AER") fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) @ Using \code{coeftest()}, we compare the usual summary based on the standard errors as computed by \code{vcov()} \citep[which reproduces the results in][]{hac:Greene:2003} and compare them to the HC standard errors provided by \code{sandwich()}. <<>>= coeftest(fm_tobit) coeftest(fm_tobit, vcov = sandwich) @ For the tobit model \code{fm_tobit}, the HC standard errors are only slightly different and yield qualitatively identical results. The picture is similar for the probit model \code{fm_probit} which leads to the same interpretations, both for the standard and the HC estimate. <<>>= coeftest(fm_probit) coeftest(fm_probit, vcov = sandwich) @ See \cite{hac:Greene:2003} for a more detailed discussion of these and other regression models for Fair's affairs data. \section{Discussion} \label{sec:disc} Object-oriented computational infrastructure in the \proglang{R} package \pkg{sandwich} for estimating sandwich covariance matrices in a wide class of parametric models is suggested. Re-using existing building blocks, all an \proglang{R} developer has to implement for adapting a new fitted model class to the sandwich estimators are methods for extracting a bread estimator and the empirical estimating functions (and possibly model matrix and hat values). Although the most important area of application of sandwich covariance matrices is inference, particularly restriction testing, the package \pkg{sandwich} does not contain any inference functions but rather aims at providing modular building blocks that can be re-used in or supplied to other computational tools. In this paper, we show how the \pkg{sandwich} functions can be plugged into some functions made available by other packages that implement tools for Wald tests. However, it should be pointed out that this is not the only strategy for employing sandwich covariances for restriction testing; recent research provides us with at least two other promising strategies: For cross-section data, \cite{hac:Godfrey:2006} shows that the finite sample performance of quasi $t$ or $z$~tests can be improved by computing HC estimators based on the residuals of the restricted model and assessing their significance based on their bootstrap distribution. For time-series data, \cite{hac:Kiefer+Vogelsang:2002} consider $t$-type statistics based on HAC estimators where the bandwidth is equal to the sample size, leading to a non-normal asymptotic distribution of the $t$ statistic. For both strategies, some tools from \pkg{sandwich} could be easily re-used but further infrastructure, in particular for the inference, is required. As this is beyond the scope of the \pkg{sandwich} package, we leave this for future developments in packages focused on inference in regression models. As the new tools in \pkg{sandwich} provide ``robust'' covariances for a wide class of parametric models, it is worth pointing out that this should \emph{not} encourage the user to employ them automatically for every model in every analysis. First, the use of sandwich estimators when the model is correctly specified leads to a loss of power. Second, if the model is not correctly specified, the sandwich estimators are only useful if the parameters estimates are still consistent, i.e., if the misspecification does not result in bias. Whereas it is well understood what types of misspecification can be dealt with in linear regression models, the situation is less obvious for general regression models. Some further expository discussion of this issue for ML and quasi ML estimators can be found in \cite{hac:Freedman:2006} and \cite{hac:Koenker:2006}. \section*{Acknowledgments} The extensions of \pkg{sandwich}, in particular to microeconometric models, was motivated by the joint work with Christian Kleiber on \cite{hac:Kleiber+Zeileis:2008}. We would also like to thank Henric Nilsson for helpful feedback and discussions that helped to improve and generalize the functions in the package. Furthermore, we gratefully acknowledge the valuable comments of the associate editor and two referees which led to an improvement of the paper. \bibliography{hac} \end{document} sandwich/inst/doc/sandwich-OOP.R0000644000175400001440000000647412600735100016352 0ustar zeileisusers### R code from vignette source 'sandwich-OOP.Rnw' ################################################### ### code chunk number 1: preliminaries ################################################### library("AER") library("MASS") options(prompt = "R> ", continue = "+ ") ################################################### ### code chunk number 2: sandwich ################################################### par(mar = rep(0, 4)) plot(0, 0, xlim = c(0, 85), ylim = c(0, 110), type = "n", axes = FALSE, xlab = "", ylab = "") lgrey <- grey(0.88) dgrey <- grey(0.75) rect(45, 90, 70, 110, lwd = 2, col = dgrey) rect(20, 40, 40, 60, col = lgrey) rect(30, 40, 40, 60, col = dgrey) rect(20, 40, 40, 60, lwd = 2) rect(5, 0, 20, 20, lwd = 2, col = lgrey) rect(22.5, 0, 37.5, 20, lwd = 2, col = lgrey) rect(40, 0, 55, 20, lwd = 2, col = lgrey) rect(40, 0, 55, 20, lwd = 2, col = lgrey) rect(60, 0, 80, 20, col = lgrey) rect(70, 0, 80, 20, col = dgrey) rect(60, 0, 80, 20, lwd = 2) text(57.5, 100, "fitted model object\n(class: foo)") text(25, 50, "estfun") text(35, 50, "foo") text(12.5, 10, "meatHC") text(30, 10, "meatHAC") text(47.5, 10, "meat") text(65, 10, "bread") text(75, 10, "foo") arrows(57.5, 89, 70, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(57.5, 89, 30, 61, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 30, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 12.5, 21, lwd = 1.5, length = 0.15, angle = 20) arrows(30, 39, 47.5, 21, lwd = 1.5, length = 0.15, angle = 20) ################################################### ### code chunk number 3: dgp ################################################### set.seed(123) x <- rnorm(250) y <- rnbinom(250, mu = exp(1 + x), size = 1) ################################################### ### code chunk number 4: poisson ################################################### fm_pois <- glm(y ~ x + I(x^2), family = poisson) coeftest(fm_pois) ################################################### ### code chunk number 5: poisson-sandwich ################################################### coeftest(fm_pois, vcov = sandwich) ################################################### ### code chunk number 6: quasipoisson ################################################### fm_qpois <- glm(y ~ x + I(x^2), family = quasipoisson) coeftest(fm_qpois) ################################################### ### code chunk number 7: negbin ################################################### fm_nbin <- glm.nb(y ~ x + I(x^2)) coeftest(fm_nbin) ################################################### ### code chunk number 8: sandwich-OOP.Rnw:626-631 ################################################### library("AER") data("Affairs", package = "AER") fm_tobit <- tobit(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs) fm_probit <- glm(I(affairs > 0) ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs, family = binomial(link = "probit")) ################################################### ### code chunk number 9: sandwich-OOP.Rnw:638-640 ################################################### coeftest(fm_tobit) coeftest(fm_tobit, vcov = sandwich) ################################################### ### code chunk number 10: sandwich-OOP.Rnw:648-650 ################################################### coeftest(fm_probit) coeftest(fm_probit, vcov = sandwich) sandwich/inst/doc/sandwich.pdf0000644000175400001440000064224112600735105016272 0ustar zeileisusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4369 /Filter /FlateDecode /N 88 /First 725 >> stream x\ks۶ |;͜)A܁3g:8&;IvAh,)"9أI,v{,Yi&bieVX3g ,D΄#P>q&Dwä d S{<AYL`ڰ[oYD;Ǥ< 4o <:3@].5"r`P)zƃl01! P@) i2EKGpv)<84BNQHÃ07Y-wY; :`j=;lTvѳiC* z6:> 06BsO=牡>Ў~0P=[K$@c,H\/E5(?de5)St*`|'SOy1*ļ_z9>c3 /gdfjq 鯌7Qߥ?OM ݕH JÈ(ԃP: oBy="E &;)*+SoGhN"C4 cOVώ*" i錐YcHr|TT<~ :<補/*_,k5jI(o`,ZYM/'&]piH=O5Ĝ4i& Rj27d&hM2z~ m"_tN2 94ymMs lfdӨ5~]KwjͤmN֜ƔcHEa 5 4rQƄB|vXSMmmfH8I(N9RgWTSxYNl`СZu Ol J`tn6?M$IV/jhQo/~~$Qsz<SV$Fs2"Pj)-RKtࢁ! k9!N?X2BZkd A+:|] 8c€sݑ]&:FÃ=T FBq)=c+H0F}|AM15K>]S9esQ5EX ?77>x6MG0&?gbK's>33_b^|ټ(xe/g?6B#dtJI$fo0gMc@W0sX6)f_.`N*ߑf8ώ~P-w}Cw[=ιx7/j.TiV͗Ԇ,}w|CTwKmS/`˨V~'%B= b)Ԇ ؆Ѳrr4؃I=\ݹo@m4zyWO4,؄;'/ {BN.wb9tLwr{T/Y\t//%+>/NG`Q-?GNyN#ъ-Ǘ'kxg#,qY̋EZP|P_SC8I9GmYI & >j|eTju[WBKVbO^C_;D^MwI]ޣĶt7ݡtvY].5fL_X4``SH/m,FS~~nyGuo}f>&Y.d&-kWunfhy5tH-]0C9:|>{|kQC=$O?w:8J.%Ld@!zءY![f8I;iN#7 IpiE \`Tje#5]eTcO&;Um3b4\5Ek{>go &(+mqH* ^Ĉ. uTBe9<0u9yJ U%T*) UǣHsNUjSs\:5itzѩNjٴ,Jao10|YCL2\Dk} &μ4KYn&&3EyJ(k}|<,(#e̽`;[g={IHQh 3}(Q2Y (P1>P "(HwKI( v%?o!g]=?վ{+"Չ!R aC/1Cf6Y+3 @9/ǼdPQr)Q^X5PF,gp/F<%2ZP~˄mEjY®Yeas;l<(%elҝ4-(F L0; AfpiiV 6aY+P%(h\݀zo/+} gUul~DqyV&%D`29*Bz9 ƃr @Iw"K2iEp H`~Cvio)&2]kkEIrR.,a29j{j'þ&K`&bbyN(CeݰC7ΚMaEBJQa:oGօ_|xۣx}lYˆmQVϷqWֿiC_Q=_mdk~n5ڱbAn 2k\qYnzɸ#%@QE<|eΎ^fg :Y恛oko)m,äX,½~7%w{ S2, Ƙ!Cok]1Ao!8yHSTl~ %@]ӳp,=ת)Zկj܇i`ZKgqޜsN:&WM|Ѓ y&%ahxiAYmɥx~sR}{O5fZ]T:>{;-mA^hjVLkI'mc Z6~&m@b-I5e DF6mZڄ/+ lt%޲OaF,+lo+xȘ_F'miɨ㢚]rzjCPA wA.KmmLIy XO_'@IfƤP[j/ڟѸDovg=%a<]>-g-h\&eq Gq^?tL2):\J7)};ǧ=>ڒQe0/޼}L;q 6E֔x鿒R.J=Ц:lmل^etBFHh[lF#eta2y4V))y+&udNN 9R]*Gj XS7o ('2wy7@mʛ%eBJ3gޔ8WX{үBȻNgg\郞1M'C-G -b :|'@9n0I %C 4ރM@yJ%P$"(PkBe#tr9wHZC64B.I@e/t6yn9 ~9G8؊zsc~6)\a43&_h4[}x,4ylz\җ/_nJGB& [f$tn_PC }TT WY.]cQ$Y^|')uHt~Kw>]a#?.ON 5u<:YJXa]/?u@( 6Qrbhfi*K@51''޺ձޒ~Kcg%SV,"ppx2It)fh:Ghex߁A&X [U:ͺEƨ :R7q[-o 'mkHendstream endobj 90 0 obj << /Subtype /XML /Type /Metadata /Length 1338 >> stream 2015-09-24T10:54:26+02:00 2015-09-24T10:54:26+02:00 David M. Jones CMBX12 endstream endobj 91 0 obj << /Type /ObjStm /Length 3667 /Filter /FlateDecode /N 88 /First 812 >> stream x[ks~~>s.t&@S(ҤPJ&Ysڦ"ˑhNȝh=j'Kg7| w#X>OKJmfy8a SOLN$e=ͤ9ppLʺ}=[Jtl*pz/wC:'}~Y Kҗ6=aaߵB#Kef;)7$럞 F;Fn~yF,[{фyˎ>T}Bs*vd/!KBU)]9?3B$JUG/IotQv<1&dU D_<*cRTn<|eLTS gZUtՕu:+!9uȘh ]KLd_w/ *t7,%GsP4|BTfAXA;PN*Pj̝#L8昂*Gႎ!U&u`uBa*B4L$TٗcRV9\ˌ60_:K jb-ONqRZsʀ֞eT2Ge(8x:'w!_+B8URjm?( c&%gg\"U@䢄C[?'ﳓf$1]LqU g5Y(I?dEkvs*GE+%v-Ʊxb ڱ0pѿ,4 /"=ʶk劆Tۻ\ssEc~NOG߼,`} p}lx}(qF .7,c:Px Z-Qu,'SL֥Sp 6Lq`BG_n;GQ'u0yj]]|]Wd ^Ф8\]B\U1qGmU TΨc\C1d,8ݑѯHL֪2u"_栮/w42͒صh*w2.0!8sƘTUJSC@! 4vEb5V\;@A4Gs6sN*jSԃY9(PozsWen2C(wG9 (Kܢfps/y!P..u/P6 /7 eo0 s Sժ|iִMō7_6<.rt6cFH1-u,[|t2 r^:VZ`  # "lnJm7Me*ycKlgu)5E &Ty7zDڦ*ڭUcG~&v4[ ĕ@]ׅ()mum[ qe5 j.ӈ6Wf M<\V~+W)l La6-C)3n6|7[^q-6LuP"(Ʃ1\ԛ~" o+1wp!]I7nwaksD(rk`Ziv쟦u%^c7݂/O~~%7,tfž"87Vd?ry翏A\ȕ\S<_BrZ_ƣE^d_IO2 e7P/끐/w"x8GoNfHy:X}u8=T駾ͮH̾y\h:n 38UOڴѠ/ ]Mz? fY_? `Ì"(dNTD*;Ϫ{g{4f,D"Uۤk~N7L,_WDj-*:y[0D9u i6 )n ud諱l3msf-tk9KБ "^a[/=tz8|4#~uG^B w+?%_B{re}RH~zPL;T A/.6mEoy|#YHlv:@ְ?fendstream endobj 180 0 obj << /Type /ObjStm /Length 3218 /Filter /FlateDecode /N 88 /First 810 >> stream x[r7}߯nqGU*Ul'NYW7ɦHcTH*q{!)P)Ʊ13%ZP2¤ ou"Ĉ֋d rh^2" r9I(itx'[aŋ S>^k"ʓ(L>'abϳ0E@d4 pa6ܫ.! ~t6Gtp$U% ,Z8!.?1e:c /|PA CQ9`=E-B§Ɛ9`P(a&+`<"zyC1bOIcNdctE<(jHѤu""c/0- $@0q&_%MB(&;2x=gDN<֢/A=h YmiA3XHcOlG< arD1l0pU+VƳ=gFcX&d 񓵐 , W.)4J6g&k0Sg0#V[HlD |&~*]RmMmmm]m}mCmcmkk u<ϛ1PL4WO_%#ʼn/ @i3Lϛ=4l>7EȻܽNϚ9VomiN\7e5:/_BW UN)wcfau9>`_MʹmY3㎨+FS&8ߴs9K 9%sG$/;y^p0 (k> (!uP6W@E- P9HŠ?((JY|dزa@`Ch k8rxSfO Hs<-n@i!,n8TU觎FwhkKwѽ1|7qN!u7Uc"hKzv = '=GJX:HX&g]S %T/UOI V&xxIWe} !0qvɬ{b4#v-[f2 B+9 Ze%e4>>㲁V_Qfo *ޑWP[VN>8I邘 eEãE}=qZ^ͳȐMG7a L%p=R!EyIng |g9&=Nʖ8=;c$VSf:-)M+KO.˒hIp:Wi9W-"'tXșԆy5XiQZ4w!Fox=c MS/WLH_e}W?>ώO޾+l|,MOɴ$KXd޸j핥Y1voؕIΙ2RǃoUw JQC5Rc5W1z1\8[U]pyۼ‚_>6|9GQp6dy?"UiHRP@z:~}v[m2=m孵_]tW,W _-]u#\>oS:fnYؑ:V7TU`o簸כH]+XMdܨkuQa^M7uL 5U35W'7r溚f?xt%)mY޶Z~ZmLڗ/p#lc87[3[نshImU3嶷 -vo|BW^XњJJn fKבOlLL!4.x)uwԂT@L.piC(9z5ƢYj%^ffkWm[9sX*X[mԬڟڟm}Lx2LϮM)7VRBV>iBr^*t?}zmltSرxc9 &$p;LVL ..SH*/`xؑFT;rRwm"T9(("^s@[xkl68ҲtÄ(%.@=СRΦ$7PTAa ^ܚ9̻ݼCPٴhF5sCA򙋃`p(XTHCexpZbJ^&=`$H;/AJ$\p21ǴV&}0m JȷHr]1U\qqʙf` tV@H0J}! jp62ŝt6]yT|GjMZ`!1ZApXg e;[#"7 =@a(U 1 aʰ{`Bhq&C;B(/sP@ yX: Ace9xϋ }UPt6}I6J\$ t(5k0QҧAKCx AY\ 1 >o P.H@mG8>kCY H*3 PV#^iwg'g޾VppKu.W̦wUKz˦Z_^Yeп5!ۯ P_oKJVoԩ:S߫·c{=.\ΛpYǏu.&`((}P&7Su.+uU3VC?Q3[֜G73d\"Hz> q>‡_w(l3ڬ<4㵧e%lyX0"-HZ$pⳚ,AAbSx P!䲳epYmFwz|]Jnz2ڔkV~<:W'WʃVzw'kjA=v3 /_Vq s-ÇbK^}[>wQendstream endobj 269 0 obj << /Type /ObjStm /Length 2728 /Filter /FlateDecode /N 86 /First 772 >> stream xZ[s~=_2Le9n=ݔr?5,݇~{!:dDE@yS^2ZGz0+#Z\ph ң,ڀ6;MD&A0iiH.jtAQG3AR⫀%`nc+;AivC dV*Y[#:=:H0Flw!Q_ɌvL(f,8iefBzcр :@!jh@482,&&-@G2h-La6Z0'%u@d射t̡4O` K מHb7VyP9g>*X`3ǂ +l2+V,$ZWk考Z;7 aM`Q1E"6EPɢsc:`>ƢƠCL3@cfNt6:!5 vvA)A'h H CA_ɋ|Y_X2Lsb$|޳ɛS% !E\T2l-Χ\U3lvuVɎ/@2-EN$%HEd}.ٯsMCZnU՜mv ylLDr5Wbv-?0 wr9jj9ƔS93-CvGø 6>SFnӨ*5ck RrdqdS(e>dI`?=cp6dN s} Co1dKK< ':Xp l W00`6̶ebݎ.XjǸ(^aUֲx|*U+vZ̶Áeuʈd҃l:W,X=R,G#BH%,u&E!s\"Շ:b#R2av.v1rJ=Ur%PVHqaRC(PSEmXҿA j NG>>2ޖSJl[:,nt;"*"$+XXF*<ޑSͺDA%(94S4Ca)p%a(c08P{])½$|[Y#dz{@iZYDX tTRU1P"ف2 !|PAga iGɕ HCWaF0(4tzP{jtփ=;i:K.x<ļ1usAM".Nic@J!095Uw3*ɔ`n Kև*lt Eru2t)L5_8?8TôO[|؃6R^WV/髞Ly䦮レLΧgo]Ueu=yG6QbMŹ͊y]~u6)n,Ҡcr? {XK6BDړikLv 鴗6:5"Q/:Hy>+|U|ȳ(c%ED cE)Khy #oqw,^\]'f&z߭۶ =ItG~VAendstream endobj 356 0 obj << /Filter /FlateDecode /Length 6803 >> stream x]I\qOG̱ۡn־F Ӳ|#LИ,`\UeeE7r2+h WWzu{mW uvhC~ݷ9Z 6h:=_Sg\>c-u $Sv!<_N'/ykAz~/hwH6&{\'xj*h|KHc}05I&b9VWWm*n{'2/b-;&-X 5xw{>GfV€dbvrŗ&5䊔T>.1mALlbPJ=dWXf}ͫXf- zxH$cIqG&d}#;CSm*Řhc#҃=c ޴r 1ָ-Z2cM?ĒnJj]θpQmFH+|1f"Ƅ,`1$hnB/%0S&NXmЕ5%-5٪? KA$dJ2X!%B@Y{[}v V^i`,j`6Gr@W N ~,I㞅 :@!BV.IuV&XXgdp%F\xädD'a`=4ma+'?Ѽd G4~?h-kT#g@} >Zp6b(p@ I`Ҝp!90iɫyhϻ Gü!UwY6d28OJJkSVl13ap&u/6\0ٔ1 p :Y^wak||N: 2@[$,8[5w /8i9QVVX PE؀p{1ͅ+]KE8)R' M![ro p;l { N ùOT1 `.CGؤ)F S:UPޤT|7!*&arNyPdLe f ^ވeoi6]b0rsqْޓACY9~Ih噓630#H_ 9$'FH=|S׽ 7fOX D3M[@.P $Ava1a++-,}.b-pd[8ĊPM$4` @"% Yx !Β: sM܈./BO%y/͢‚Tbhő'W() ,Tŷ# |?LVCΉ}I9bI 8qPsijfHS5H< p╫t`~wQjNiD~94K1d]SkVHԲ)sNiwLR-0Fw3F 7eABg)pDœsz>? 9(2c9=Mט.*w4el{RxU:SGyAE2Par-'TJt0Q5I=`:$ i#xP{z&r13DI"כꇉxHaM Qba UIj%x1Ӣl4x9N"&ĒfJI VrR7d/M,𛄀S,I^$X0!x1"5}eBdHA[C:?1Ku|(ߦߌ/T!߷+ ʍH^,.J\ zxlH6)Mٔ)]J.E‘i-j"bFԐ,,;:PTDYHQ 斫S!dM`2h؆v:?qME8lZ֬Zh2=PEIDt9XN6i}#F(" 4TaM9&W'ݿiМnںt{.9-(.G/39[8i>Leڔst-%KHg2NjqpH2X>P59 7ejog3ؗ(̗:%*|͋4j`+8h4ߘfls̗#l< 7,bTaRxړP#MkTI/\0J$[Qb`Dn%%$iȣ&3wc;nfwzOZiCXI8 \|cu-Nƥ9[}J\>jZb{t9DcFL0n"">u%%N#m).֫6du BFo{uH Pw\LR:n^BNPR9ۋUu|Y1UB"3ARG6qϮ̍KyA1 0a3 xw!}A؀?hiRmAɗ-gYHiR_@eK, 0m +0p{8xp@1.PF` C*J1"6jTs#)"6 W;$Rϐ7GJ5f`Qb C<?Oc&_nNNIZbv2L><Q̉3蝨sړjϕzOt0^:19)!OSsRo~ѽz~nY vs-6&P@$[Oޕuqpt7|)t!67Q<>/Dڪż&$c.ƬO=pya PK/O,,YO6ReԯNc#Qut,8[;xdN%aM(Hmg񈺿ѡ}Dy *?o2ɃdL=GU ezK|% Վ9u:f.hB"臎TFQ$]\vC`N.) ˲U&M"hAOp31r y5iyG7{Gtβ$۾噱|=2EȥrCBфr^r"nސϰ's`G_oYɠ< Y_c<] {E~BϱiXi,ݯjSfHBsld|lqtޏ7N<C>/<{5.cFV#17냋4U_( ҃撪/Tx)+#vɲ]Ԩ;ioΨ Bm4X-@jNX\AWJ{6S(㇉ŷLn9WA?t\սcK&Xy&"*dzrgjOF;z7_/;IbˑB\S?j[٢aHMSsoěL"[s d>3| Gzj%s]CY_̘BQ4ߏDܽ267U4河\cY΃yi8ƍxRG,nFlb 1HӬL6N_!O?}M~cܠoދAIt~?%+P@ab"]{x+dyjAij 5axqij)~ƒ|ÇZKdt>bWWr&XRFq0W RN'Bz{v60|Q{q!/Oa8xH]jqn Ջ(E:ykcm@An|!j867}l 1ٕ~p Qr qv5JvMi4A'vqy,=vEE5U}#P#R+!FB!):w`م tSǷ \ !v-zw?x:I H˼p>[ȕ(JPhɒ:A&v?T -Uvkk;ug:@$b,&J(1{D}*p7!m N&302Je3H"2"+eL5Ie J0{LJU\ȹR;st)hqLrHV{~^oi%{ar 1&]1~fj+,6ZCt&q7┓:>)ꥉԣvԽI W>CmmVpdz9G9v^1q DJmox`\쾝cǮxŒG蹔q~S~"F:埅0rabScTAoPcivK[^}V/2Jed ZA{/zhs!X,)m9&1XOy7!*]M52C] @R!Ɉʓc[|*`H@vkʼnq0vn }V_C|N ^saW0_zP)<=9_#~qB1CFe. n(d%za(xw5Li')ObLL L\שXb lPf1WS#0kԔM T]kRՆM|թ5ACђ89#r9O!A(tGZ"ݛN?Rt뤙JVa xX~./ 8J%[&ڧܑ}#ŜHl)ZMϼ^ W44jwH>v`?{&Ӭ(+s/UOB ' ?T5 I3݄J52o}aƅ7!i❔,ŝ ].pUMU1./F#0Yn(i2} +'+x|osocEꞜ)I_t{rE^;qK4g @'b1ӗ`e'FqvlL [fϞYkAƇ5(d& *ΛO Dk >]l_Q@%;QK- K"Gs/"2[݂| ũr]  :V] :J57H{ sT5wq/21 {#ȏ*@W 0(e\ XQzVvOV*2P ws+E~N 3V%hOW !endstream endobj 357 0 obj << /Filter /FlateDecode /Length 6908 >> stream x][q\rg (Fb9Xb# q+=2H?>U=3U= u0Ku]ff>{y찹˅ݔ<{F'}<~~?USoBdˋ''.2rڥk`|^^n1Q-,dkxR _![] .45)x_×??_lUq}>龼w8Z>i1nvJu HJ gi!3&N{gA{A7%&Б̞BוOm.0`M%c`O&z>#3ߟڪv)ByILpBv$Y^3PW?/אvv_rLGkI@d&Y)oL^˂B`Y 590YVP|O7A,gvdKk7f1(&1py()r%!$CW;*,w\UN8p7_]kGĘT3pFRqe pu]"zJs,~BL1Y'=`&. -Fh86€^<'B*({JS#84J'ޤu\AUQlKRj!⒔Ah@P9Ik8I+#Jj2IM|QK.ppN0־S-;->Vq,f3ЯZpóIS6馣+T48ZI6X z^hr!+@(r]|>CԫpVlPKaRAຩX>Y6pp 9pap e<'UZ>mM2K$#FIuͤS1! Nc}bxL7 Bu9ג!+ ,A3P:l¶A c޼9СlE:ih6ʄǂՃO= U9YgSyV8+g FX*JO(88dm1e \BԈ8{ќ3┾B'VvZ1ƃE뼤2q>`_is&DG ˚@PS68vui}@K{Ut#4ߕ]̵<ڡRL5S 嫒(3 !fy 6eqޗO$ۻ< ' f3eM \XC| ܎ەd:\(IJ4* S_`Y D9Tf3ޱ t X. @P%gME&J67 =_e˥։ިA 9K7sh |009eۍrI"3kՊ 0AjQdïgaڋ0,ȴX\՝]e},AVsB͔!33bu)7 1l/?<훜ɁaC6 .JDž ZmUȽk̩O ?$ȏ1UF?+`P @s{nR!0eBsU+ mKJzSzZl7+<+nn0Տ &3Ժ X3"8X|s^O 1CՍ5tEd{&(LgMZ5c]785IHQl; {dg+6X{IL>7ۮ_ttZ!Z.\먋ʎW|;t{HNLɩׇۗrP,.%Y'29&ĘNS _lϓbiI̓: Z2y-X E"֨rr)%M\ˊeZ?\`ey9Dz=G eO~O7,(g{ȄN41Ϧs-}lh0? lo:'U<36EQ?]CŕI9dqn8V{X) o@ͺ8p)ض噳*G{ jl't_Z)l⣧ ,zJ `*-6tA~-`]0d1U>C?m^XXTL~\1=rLeib# J84V_i*ݔ mgJ!v1U %P:AYӋ7/)F/vy))EW>χ''i"YѱmY.MղrX;InRP \Pv7AVK׫@ x1P*tb3!yZp|X`O_Dt9eC+>ŖnV,-B,03C]LsCuiB݆VLYJvYSTоe ׄш1PNZZSױkYV& jvf wܖw.sWIY^[rO]H{Hwk{%!D]^/0]{4խ* gޞp}vlFm<+ՁBFZg抺߮qC ΢]{*@ӟPK XV␪`_?Alendstream endobj 358 0 obj << /Filter /FlateDecode /Length 7222 >> stream x=Yo$y~Ïy 6 +B։`req9宥_UwKnbÀլSէ Wxu?8uz}ww.^GXx*'>M4֟:06)9ŭu˓/6jSF39-Wg7_L)J z c) & +뻝g`j׋D;aK`G˂,a U,(=Xc-ZӼ2ڃ DyIQޫ$ \5@<9G~6%!U[kE$h?nHL$5!*ͥL A~h Iy o,@ w}˔ }QxBV~v#rec9e Q;>^fd0/ו^㮣A6Fa61yfރ M$#}(c6NrYcv6LI}S'iA;I̬|DrXf(q Dufz]H + L5{$$R[Õ}1$\f{4+ zî3(H|X|fI-I7њX$>D(mWvzހ 5jXiPںDT 6 Z#g:py2rq2|KBRoQcYx 5֬E4 \r[1C TеEP\+Lbw :#[W_ƷtE|Ǭx* 4Vr&5[-wYAw$b#[Pl:B=M1]FNDbF@ *wooXLCcu$&^=myWe* _U3AMP &7z{Zۊ8WM {ndd}"(޲oʾ4qfuZm$F8vz)[<oaJn98? ;b雇:^  }->x>9s 9G074G9G5YE ioiuQIs :,}ԫDz'x\+U]bک={6 ^’ wTL^]vT9~õ~p lw^xzA$V(ju(Дz$yt\LMhQ3:<[3UA:ٱy-={o+w/xN'#t6hҊ[?Ӥm%נ> PPIFe[(pׯĭLq`HJxZiE_uYq@琳TUm?3 JFi/H 7 GғO.brɱ4y0{#˔ \ro.9 ;7HoiIw$ 1FV-z#`/mߢ|s`C#יXO@W( ~CX5a%Ds8f.#rux}sGc~yůEN#]To7C<2q²?\',db;4 RU. h0<>ΣHH!+F@y?f F]_jcf<"]iC,tqE<eG ?GfߦԛTamPK%WeYQE$+ŅyM0A67Ox\;s[U h&?Pv*/}/7:E6-LzEhBNc/_W|ZLĀiRλ"nQ܆q\>ZUA:I? ^f#LrUnW,];L)Hޢ|l$֢0eSdw(HkX(ʽ$:4IWɺ h%8*в _nz?ޓv&8BI_t7P*[UD1KG2({?K%j]B֭ɚB=ӁD1jWOWO̴ӻIoM&ai2~E):}p>Z2ȡ Sa'ӧoyFޅ 8x֎~R*lsF(;fSVIyjB$ (̴ ZHiI&5(sm+63Qa>E i'5F{p/w `WVi ΌJfG9-ʋnt|-Z$"“!)fXBEb4>d0,SJw:UӆmڇFZ{ AZϫk=Da㮯 Z8i$` U:=s|*2什^GTLZq/MLA">bvBz t A.2Nbesc[Nl%l0D ||voӀI5eW2DȺ%Krh :s*L{VH (OcB$6G {\+yApYBr>xm˽)M*Q˼Jf8r00r %':NVU]l`heRFG[ە>ǮQlp`5PV_zJFAͬǘK$W @K&ad,W<x`:[ JԖ(R h%cUG+rBXܛFeBL:<^nߦd=.#͟)XL ϗD2!YfgJoB BBДgBùd % ݗЃ#}pZR #P#sW=K$<2wnA`q/Mނai,3(po}<H:@"77'_,uTicsNGfÐ Q[#֔#PVt,j 1cA,({!Q~ӡ,BMJ|gJ)a&"m}s<5[k. hztJYꏆA4ٹy6zEzl_ psa”3Rh/|)9txXT*q۴F&lPTy0oz*3}X E[m cbpl5(Z5UZ6ʖb Ŷ"vR3 ?eÅֿp&"g4,W$T՛5p6#VdYCC~OgLXu$ 1asQI͍>fc% ߭M F*י@+"rxqD~?D9K:͡~Ϟv ɭ Ȳ9%KuND:9{"E^q PF|SӂefA{ܾ_}`qC]@Em763)l!s}/rR\i2֧@C ~691+%a zϪ~S6ѻ`rZ0祦bmܼ3RLfw<Łl`LYpzd8ܻ!qr=JK}\Tyu)եp(/f:)oԗAY JjCE[eqtl@.wM&cXPF)GRX'VTT"Vx6EΖRQYVe릠rjnJ>c~M@|ֹVY-k edF pXbx *K=TJ{VQ]{U#U 51pvȪVMx!AmhJ7t).VzɄO{"H:mnF/Ss#d ֵgl55T1aX.9^NOy6`YMK Օ/,k?ʚ/۔>Qhtr%ύUtcQi߷00QpgNeM&In]b,u.`!\pe@56)9=e<]# %Eߑ0HL[ w908|TORyt*<|nR 1 '@`znB!:tqq0(A0kX|djF|SNklnj8# &}ZN,(F1E.7 Ȭ Q{,gIK>)E+ةDE˵Ƃd:8tCf^ubATI%^PmOhtmAǎ58J_#% ԗV}. G K+A ꓊&Y& Qgn(Zݘ{SԶC"奄9ʸ[m27,0]i^voc TnU*]y+1f[ f<%[*=ZaYwzҿv#+K,6- ?ܭT!,5Q4V|p,zÍ5u*pI=9^nq7JKD編4W9ȂZ:X%:>?8jd6>EVzQ* LF+0{8p, ;gTsldq\@nIL͹Pi|^kC@rӥ$¸5Y#]~Yy3t$EqV#:I1-r+ֲij mm% 01:Lnu@kj+ [g]{5NJ]|`H> 6v8sVLcO8yw~\_@a ~PZ]z@iu~a֌z9nUsr|Wm^&aj (g?R56ؽj3F4YV.M/a]F8; 'kE#F]1k}.V)6 |GwȱU|C7hWXb+lKoț x;w]N F>Rc]s@&+#c!9= d"f6Af u eָG %Og4endstream endobj 359 0 obj << /Filter /FlateDecode /Length 5795 >> stream x\YsǑ~g@FOY7XSEh؇H }31RFl8l5jˣ=~s3#ή=I=9[hxG{ o}=8|snu47Eɽw߭DoJvǫun{t7c;e2]£uAI]л_؝]0AW["RBxxwYZ@Z9x/72nVIz}p\3]n>>`Une Uv\Z،ysiclj NY+y?C|H? "sEuC:A-v*#6M{&2fmKC窄Pѧ)Kael6Z3zr -lBZ{¶?Qˍц,ъ邏록8EPGmGĴAFj7mWAVa&= `5./pDJ{Rj<[Qq'l1'5M=i#yA Sg}<uG#nh3Ժ:n1 T}#xx6~bG`/w&7aM~_;Ă]幔sE_*ɼk{aZ6IBS3FGQQdp$L[k>bL^9竮S ("t?Nx8TglHuTZO$P2iS|8}} FGWuIm eaU8vdԡ4KCўk` F(]ahlhMۮfxhe<칒6\JdA0"=2/aDEFX6D+`:" 1q:3 Ў>8:WBZ5lQ0CBk+38AK/iQNؠ$ԃI &Khqn:C >.ev{vYtvHк6 5| ;x̨Lht2j`1mUYR:Rҙ6(L9 :!F lŋ !±cW9]7܏S22GmA7EN rL`Uc`߮Uyʫ1!ah@o/A zc^FA BkP udpt J=:[mPHGѵRKDt ^I0N" S»Y S'c0Ō#zN#(z[godϯ8$a:?$sxVg6si(;QNɡ7 8 I:veBd* EqJ]yN`Ҁ[Ƿ-LN^O"rjD1yG" @MVbߠe9&*#x۪ZZY-GJf&m#7gUq pqVZaC! 9i47Ggs_O T>&`99$",="Ֆ|II/@T Z4&+Pz+ʂ.#42dOks#r_V@-,Y]5؜ήwVaȶN#ܜ&ɆEeJ̨:낎 ]ǾIrˢ|c6 @2Zx۷Nq ;(h3 PttQjpx$ChNe6gܰ93ߎ1Gu*V!dADZ92G] @}}Es?[$#K0F l308XN5ʡSW'Ex\l,;RI8b%Vc&[oKqNuch%Vѯ-ů]+܁_^6q4ME~ڄ'cD}S:x|FO!C L# qC@/ qILտ, 0wEA#O1H-w# !4qqMLKSި6<^KN"x'1!,V㓀Hʓ[ZW0p )!-7]g6IM .Oer:`訓*{M@&yt4Isk/|6d -wM=!j"Gcf|YgjSCI(2k˥lð`ؼ1Y0CB 1m\LXKh9(@Y3}C 1vleַؓIbgShzmOr^aH78HӍf@e3T?&;$uk.#BDGwX||3~o'l˓0h]0zֿ'u ^c58Ufj ,,\h=ruߥlҤ?0= Dߴ,-[rG_"Ee7Y)ijeF33eFņUȟRz@=YWq2.z-IeȺ&l 09 6c zVx}Rюb O% I-Ru7)2,%iY\`J)x>͌SR>*o̓+sbt2B)b ]s;paO+/΃D@\8xco^cNʹtѕA^r'R"$*e3g>PԞyHR43A˰_ .c]e= QoVyhny$ ӳjۡ3]STb@ϷQItC7Or*p UTZ$VZ'0R1cC2 3`+uZh*`L\dIzvQêLFɰL>:*4&7^eC؅1U2k#<&>H, t7y#Ids$S؅f_x${g IA )6h^a? ^幡h'agFKtJ(aKљ*MUq]7m]7dħhڢ]'X(Ԅ }R6}rGghU5nl“bz; ʓj܎K|mݙ7M+|]֣KG4uMRJi#0t T q*F@hMwu@m4[Q|Hj}żLRpר: Z,ro&(hDUzU*ĥՅ3u>'526o8n\t1 "u0nE*Uf(Yxu-֧7E8n'v**L&Vs,;'Ř7{RE#xf E/5!JJ{,ay,&i/Her5*uhJR$IlP456c\3g7}W;f|T<A\3g\5q1_lL"὿܃+.?v.L`8P6Е7 s/}(_~o Gk/#AVᢼ,[y<-zvlg;XD GʀsiۺZ,?H38n&1 MY;, ~Z +c"TyהHqX:|ɥs\ҍ !KynZܱ Ù$?L[7AU$NEfO~nDsO@9-.k m#Mkަr9xcF<`*{˩Q $ewGD#*^@vDEö-_Rٯ;e_G_'Hfht3Pȣj[8lF߁;WgWgsʯP򖱅i3bqrr6r C9qzȨ<-Yϼ(Kcm %փeYo.!̒0vl(n Lb #1Y y1I_ZR(<:XXaZ6̄;,Dslk0\d$l٠̆2mob߼ϖ7;&7`Z\6h9ܚJ`3<tӽ]A}Əj>JsK| {}gtW.r|~ak~b∿Hw BD(x]w&5U4+uRJ Hb}sc >~gھXX%h}:7d=FI.mTeWlKz @Hʡ"9at<( Qz<~U>ؗU;0Mydo> stream xX TS־1$UYZ(ZP! SEIv2< AD!8=WjkexZ `ٮֿ,w$F"N{TqD?@|Q dn7Jb8&ŭDu w{%Kvxq@PnU*7PN?8VG;L?<|y"##6cC:aoo%8( UC?"7574a+o[&b&Rw&}/-Xsηc̛3ȼLa2ff 3yx0Vf83.jf Yc2`60Hf3q3!̢EdlxN\gY'y6;qYg,$<}pbۤ!3hF٭mOV |ӆn)-{ - PЧhXABu\R~TC|N 9iY`2ncT~8(uNh:*{CgxG4!] , ((DZB-p,K)3GA>rQ妏8]򻠚ENՓaRW!؞ `Ԣ-梭T`{HE 'dL=1< 89gq"  K@8 vmq(umDc;{!_i 'k*V=I"sx 2,dcLBd6=:XP~ſq%@~嫷eۀCT5d)1 r+Se)fqL1c:= x,h }8|W887}Yd>_4?ypX2sRYv.takR{ G +KГ&' fy&N"{&t$A*$ڇg@  N'Q^P@tZ$8Gqu^9A).aq3Nǡ5d6%n ^ę=H}ңڻx;]"ق%=oa9kȌ=4#6^h|Ej(9`^OxY _tLPvv>>~ rRޜ pp(^{9oJsaSqW.CR9YM^ _BE/ZRlj$q9_ 1zHRu]pt?L 'ⰈEU90N< *5Gxn( K i@ , NJ E` sd»^%{}Λ9pvJQjVЕBZN\KljsC'NqLFw0ktKRN˷660(M^.=Ҷ`-wp;{ e.2ђ(HE]'Vlզ'@-RʟVyi&&!#@9G$9m6Oi PBY_u]P*!Fť)Z*zb8Dā?&dUiq`d3z3(͑ #32PR2NR+L)!@[dYfYˑ$g^OO1X.٠5Vѷ 'pU]{ JL9Mƚ\haa{w߾RBˣCOUjj$q   A<ʥgi7ѮO1 zBPNU蹻MB\)dpίE.9vN|lMR#yO$i_C4D>U/%?V$,-exbeϓ# `_Gr{X@UPOc BԬ!Qq f{t+k˒!=1/Of28∳p֙H>h&+B֭Xuu]VTۘJNY(f[V2So \֠lEuAB.:XNuX^qiEtJ魉>Y8לՊQ{J%&܀K~Cs]bTf5R4pp:n= 7;e2?(#5S *?[wVNYcfl:!l cFƈem0 os&~M\Yʫ)~2xyOC]\YH5ty/5s¤(6֠H In"r Ob-qlXH^Q5 'lú|Zo锹I Z:978\LJ8*qn)fe!k5wvNƔ i0[tcVH3$$ m[Oͤ0i|"YӰ="re)5DQSCE>Cn}vhrrVVn2;~oDRIPNE ~n5)>4ydBI78/{%;_( >;}>KK2eE>SjQߠ?fdݰJM>@CxVRSԐudLTZ*;^` r86#RKC0}@C[!4 DBPZjZ|[Mv>]{ܮoi7t@:|.W;(fuz/IxdYIJ"B*ڷZ$pT4>zin1 IeCeOsPՇnR"\?-KLymCҀmKhY-'oȄDZhbkʸӧP'Q q)$00i^ KV~-pMAު ռG[-g==W%|[  6Kܖn=uX 3!c"D" dh!;Voȓ3+9|2S\)4CL@:{ޔ)$??Rq&/1'7 &9PK7eb *J|깎@nA) Žaxl/Ԛt&pqp@AZ<ƗdٙBn^C70U'DِZvtYCH՞~8 #/Jڧ%(JR^~m8Om6N:$&k mؾwz*YZhLYZ_(e>m6 Abo>E+%X|*pPb SVo>^xiS_EPljT!h ->E}V_=粿 Lo)GW 1j|5Q-X\薅JsdGk E%lmQRn;hk0 Vendstream endobj 361 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8611 >> stream xzt׶ٚ9`e ddZ5nz3ƽ w[.%mIȲ&`b!@ @(nBB !gqrߑlroҲ9s (.@ _v8_|.Bg}+oBa(ok>7jyDoP\J3?,pG0vO:n¸qrv[L>x9r 6#8ر!!!c}2|]Ȯ`A]]ۭtq3o}45nk*WwAV{(j\y~oYi EKv/ q\cm>=|Șzn1fݺ2ݭ(j DfP5j-eO Qèpj5H6QQfj>5B-P[OBjO-P$j5ZNMVPS4JLOTՇlT??%)b]TWJFQݨT*zR'GGzS֔R@-&Nm!,( O[0_bז-ψJ2:?GW{nhj{++5WKz?^'->~,>Q9g3׶پ7~C_qI?c;b60aA|o02iHQj vkM^aF/ [ eZDB۾ ^x%:0BZu #9PUg5C%qE%0MR5r^#>,.w`1Q{^, ֯pԿv#A4<w]Tn ̃m;V0[?xқEbպx3Z#}tż}< 仰HEhҚ9Kvʆe[bi<{u.%mgw.ț/BOX-Yﰸh2Fj1l>Xb+d~^PqU^ȓE}{#O#QWxPDC pKv5 ^ s[FzP?`~\ V:h{tc~hL$/A2A)ņ䃜vWpjGiA!}e k75SL'AiV7ukޫ6G$h V# b2!-ZXM`VM{1GԂ69t& 䃶XbH%%AL+B|]>0Zw+_'a-1E]h,1/⃿>u9̪1SBb ++wr[}qNvf#:n:D su&v KZm# =QS+AwOMF`1؊dz~Ju!0 3#~\Vt/3Cر7iw%O'0ڪǯ_%Q0j1Γm:OWuAѭݬBz5Ԛ̒ ;4fթap0T2)}#{6)|;|eft<'-t2Nt`ɝ++B" Y_lR&?hRSrDu6p}/жF!ӇgM>CS\'8z%\ Lܻ@3` ]m ۖ* ueى5Ւ#YD92AFߤTgήxx#\C ELGߵcSϚ$ !?ʢhnzcwնF:@Eka9 t*5 "66>_-6ABΧC4\ 1>.D:qlV䵰CawS6. W Qa=RZfkk6"@ AޠnE2= щlfg3P-QFnئoUPWYѸ5֛.eP Mv &@+k~PtYN_\\ Rlا4 L\ɘɅ`z5uʸH"zj3JsV73#yMok"̳`綈0"YDC,B]@kv-8rޮaBRs, ;x6ddC|_@p׮3*z~Eq.DIH"r>ॄ$mS;6 mi{|pĪ1a "}R2daY=q #&zm(Oyte zgBC>;܏o?E y$EC R^+w 8LoUqt{ 75}Qk! AWX4Kz }?7YEiQ7Eh" ز H"O4M.S Z{A 늖h}ĿP N%<$=G04_( s&@b\XH>FE0ϯ\UQX"SRh=V%KJA YVRS wrkR`,\հ[ WcȪpaB~:v6ئ nCXIr'$w`|hJ>=D0y%#+sZ ڵu7 ]yn,Փף5i Y~]Y[ް(k35 HC$/m;,zro>ſ5Uk;xbX ΍ɫ]p"ex?<+ [j^eQ77|z9_b;3nVД:tӒ}^:[0VIEj[UX, ._@rmXqE 8m{c=#SA^-AI w3/EyO@ &@HTiu NAS=sWmUتqC=3'B0}ں\-9RF* uUcs+/;F&nۢ* r)^!W6؞sj)0 i[ag /4+l{kȁФ䒲x㟇~5nݼH{f;mS34[EZXt×+G9I|*YJPfv"3:vjלbvj%msd^߄l7F4OA3Ri_S3 ?h>3rxڮķ78ĝ9/mhW [;(h j<╠Rp%Oԟ?  KH6V\#}p 9u }l>bLg^p7ȏf4GA$g[w)U eīTˈd4(//u9sImQ{:oWøKY=}#[ýbD}No Q3N2n;C2=ziou0](`dB|WKho}F~=΢_bjwmuj]}HIP)A( a{ڶxx >BA|nFeן -`؞q͌-aUAA.n \KD*WM4呰}B"1Cb(%ŻQˀ75TG?dP_L%PV@TW+$11 &!%)%6|Yf?''}meKi"(z+msΰû4R_i}܏41[ĈH:ﰐ-M![dy^X3|E:/F 66N [o y aR38I@T<)9i!Y$R'L i?K?\LA; GGMUI{9{ uٺʃG_iK̳ 1wLfG6.+>@d5j6q,zoVEh;g?]}v={P63[!z8z55{Ơ8GP`GWrL5b"g|o7Bb\D *1~&?_-~&dlnB+T*opj.MIO3U6{=z#^pZk@3Lֹ R YlbBۼh<Vֵf+ŌO=FмErhb| njjM_EC"(meqtaC9Ǐ7JUmC E,W?Z4/" L"IX 5 zHa%mm 8:Z:}N QDQRy[m&RwQd7&^3 b:0fj YQz)qf"+oϖDJRQBnruIMeefnJw-,/3foouN  /Zh4y{<q$i\A yIֈxoxs]yzYo}Y񛥆I-E1H~q\W\Mi[x8V,Z$4>Q&MX:",,Ldt,dv"΁BNk?wcQ iY-C=!Uc'%, |?l7a''f>ğsPl$kގjn BlÈ^4  N[6(4 F5\( (:x|EANEf\z)xK!rI~~ziEC?|BtUz}~D?3=E˟>?=$%^B[ELȲW)wC6 qNJD0eE%%Uk;w߄,Ϸ@v3Y1Iif/5:wfY~vjz&Xժe~+Irr$se߹w$l;/&)hwnI\'2~?!I\C72!KK,. \&ƱC>YhiA*J= אQt$!Y}[6rI_J=%ǔfFJUpK&<挸L[m}Q}!]gįRBX40s~¢xT6s i<:n, H8 OEad" 4BWK* #RB n?LCt2]~kR"[o(lJ /٤a%^#Tt24㑫1 鎱ҟtP\??кbKR> stream xET PTWmlEݸ FE0(qj4b Ҳ 66fk\A2v"G"DdB$)KuLɣjCj2Ru߻sϓQvc(LƬX|v8Y&!wCk`/{W6 -\&O9">xx,HiVQ:tاY7h<G KKK&{'E.5G҄D$G$Fk5<_V#(rX`~^5ZOm6R˩JJEq35DP(L,f1xfhR V6tF. ps`?áby1Ӕln6wMW LԘK*f:o]1G ,y ?u4Cc8yIbmqz[T::1q`Ȣ|ep5e.h;`}W0}5_TdȀ8vwSZccS]뵍yUgmJq&NnrjsYu#QXVUz'6LsA PV~Ȝ áBHkÀ%@jj[Xՠ8e 9Tw\qS1\ U篎fTJ. J}B۩K~0e'm v \)CN:q ׍hLcNpVe^q] CWsBu9千q֛gIs_jUrƖK3`Q d\6$vȍ~TVq|'rt83dB?zO[-# aɤsCr$  [%j]7?@zdQ+Ż ݚY/N@Lⴴ)-YsK!C:Zwwx"3;F];ԕc|cCs ']AK#V΁BHd1#) b@ %J:^ ~²Ԣ2'ۈiGKhm]q:8p/NuVYxm2hyȜ-* RXc*CꐔM]N&VMfAnt2>US\z·t]lv>Dm9$e:Vm]G37Y`!:w3TG[7:nqFנ]U/ ]n9 \} '^Y`HX6>t-m7J2^,-P'QQ{tA{?V z&͐В, ׅt;,sG0Չ(#|?Cbd2,4QĢ{55UดSzên cR (?&b"T|]wƎIl."8\`YZ_-1:4Hl;/^&ųCO?U{BCqHmA}cg5 =:.vwnFȬ/1cɛa&hăŸ5O ESyWW聻Ճ} pOn'upsgpV,6B|_)L-y l>='#De:JeiQ ̭Vκ*0XڿjG8 !endstream endobj 363 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 599 >> stream x%_HSqݟk[ ֟y32kZ(k9z6+׻ֈ^ փL 街BHE#Cz.'k>sCF(y 핁|YkD%. P @iPZ/˾22 U@HO)Z;> qYnW}>XSQdԐ_LROmʐ]QzS.y{4hrڣhꙶNBy $HD$LF KdIhU9o< NlOlb"f1&3lq79h|K(s}L{xܘs1!C b1`?vbV\aP 8 L==5~vM0kzb a1 B^/[7::G6`؄Q$(!+LfƧUXZxܿ}h,;~!xs3 Pn^\cJ>AgG0 S`׺N ƫ؆c=gĒΤ<ԃ)]f;N{01sZ' endstream endobj 364 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2282 >> stream xViPSi}1'"Oq.n[w;`7₢%," d!w_¾ DT 8jUKm8US=cGjfLM͟TRu~s9DB?m0I"L&\ 8!2𒂗Gdҟ1(u2J$j]&-KW̌]llł)Vq1jEp>IRl%Y&i3scRus5gVI*JWhzEHLJnOfЫ`MJ&YhuzC1&.8;^iW*AL%&b3Fl!jb 1 K"XD!8ƒ!H%M>V07eo=6yqd:5~Oᑂ{\hK 1yGL|dA.?pfhCJﴞndi.xMsQPV[ IeHC$R%a*W3\+!p \!yHR!`nb_xz5˽"/eJF%Y;ŎHE!}ׅC Y|4PI9s.8 }%`>pHZX )Hà) ቘ?|}|̊w .(!y Jk̢)Ԍ[WN_K"R ..@5م.V5ExT.$_3>F65,[682r&C@ނZv}N5^;4r|`K?qfl7Y_ M&k./Wڠ4&0 XN4 T7[E:CErJDy1RtI=ݛ?>crX6:L9Eܾ"hZ!+; F??Z{쒠j A0x5`V)`Ng63h<ɻ8 ,5 ȰZ@ <KÄz()F+~sdh=]=t9Gx܅&SjEC)x T$Lgʫ}d&\dӚs2 "y 5pEߑu(J$?z3ZchU7[3F%/!Eߘ31;vH:h?uOwq?opy 3D~ZKd})v # z6---v(1 G=N3‘Xe*7nXzq5R\&I;I*xmi} &q~@}=vy̵O욲u&皮C3U k)M m-> stream xX tSeھ!4\FoDP@PDAD6e- } iӴtIfkf_J -U68":_29G"o%OR'}J6ߵv/NO1w==0fTWt}߷7!О@p]g(t7mG &ÔCe^ Z!685ujИi9ÂH"(UJ*}`zవ^AMdFWN ?c@NEf\~{-MET?e M\TV~G_~+wc})Z!4A!КqN4рVRHmh4麳}h" oYJTAiO !eEHfNռS{2d3U2 WgM:FFUZv:6\ηP *x?L*NM]Z,fg𐨌"[>>$ߋr("O…sAmJ`2iv 5:ڙcvC>ᡇ$4'Vi6gezVr6 tduAwA 𿎻{/gb~s'^_::~jzS͈~>vȓ qEx}{ %B g fv0.I2UT̊V>وBAӂHbW6>OGф_C/{*W/#njQD?v`?5Yc*Cajz'݂ i !ק.pxf[ݍ8Kπg =d V T@͡7dg(INoykvE}e5[-.:2d@}E+k@ <mCBTf-˧Kf }tu;=N.y޳Ť@ξ e =|3UO{~27OFޱ2j7ILFLɤ#kبא$|,|J0(X/J 7WGx4%&虲xVaXڬBfJPpB hJiю2 Y^J22TU._(wo#`Vg"Г &Pq2v(Է9,Uׯ#QWnhϣ?=n1uv"[ei; Y(/)ٷy0]h/lEM>Ǒ:@cȵu4P*GIcu@]ɏS.[ud$Z@0~/pQyp6ڋ^2z9͵U:O])1}2b b^f3 )gz6*)Pů PldqLFAOp&0Jz5EZDTHs @+;1ǦUoZ@Lvn  |=k=S5 |jP|lg[[#U㨮z2P*(6B s⇭&hInPRy ֡s"9{Y;iT`g-Q*Ge֒XK.(Bi/}87;8[~ +qo:3 a&)LZc 5&@)ϒ3+ɐ٤0plj.*/4skϥ\㙟ԋa$Ǿ=0 'UY\k 1嬵cf K|=Xtea\#}mﶍB ,K5C%W-;67zGг0a qŚYgG!b=?<=C!wOOaׯj"PPG*LNfs a7?|<hӲ ثj;@wNadb&{roevcjikB3C&YF U;] RqjwAjZNdc*@5?wt/Ya3 /rpk.4?R0aN1 <*Iu!kaw0Ub2)3J2Us.# =㼣Qm|C5ɚ=F+y~L+H46/(+F%cj),. +,f*^gשQ!s`/`?sYaX'M10& ;at 66XbS韜@Àɨ|E=]IQ1enNk Lh"֬ZLP Vpت?蛁D7fS1ko7UGqWy4Ho'j%p6>ΚîY|b׿ wz-?pD ӑhM^ Jh lzڰ̫zkM;n\zS,[/?EdAhrC<~!'vBp0 *7x/ޥܤN 4BE|AjUU+{dyyEC8|#^L}q_r0G(HٛLY ֹ|js)=׿֕Z qlmct׈ TęDv;}p񵘮; G|>c7hDW`a=ц?N7;֏3'q| Ny`~Ƙi5 TjUmԴ׵}D*]3ev{~t& #N|DO;yX3,ܱYbq '>FGt3_Xl%Tޑ3rc|k\5,zz.ɡP0z*ٖ-2lm61Gv`:(t%}<=:Y;$<[;{yAܵZkiM <hjTb~F_<̀M6&فQџ"PRWk=<Vze%pCi 3moh.rIa* '3Δ^2E+yb[ ق!->aӧ4scu^5ҥ<dYc۠3. qlb]A`gw޺r")au7Rڼ5ҤZ6?: _SG/9J%ZV0zj|g}n ٔr|>=|rBrNO+{gϭ)i tQdu9,QV~UQkg=,#G_F]A{.vnhi04s}GV[- K d^kp-$]kJ\%b-et`O×I$rVVV>p| }̱^?#;SY~; ;cȭ 8eN?R̃lڢ?&1^Q8XH 2ч{{Z!IK.kQcUO^GZ<8Vc6Ϗ N/ _F,W{K&y'&L&O|n]~ԩmzendstream endobj 366 0 obj << /Filter /FlateDecode /Length 8684 >> stream x]Yq~GGgQuL۲lQp(B"rp;. F:2+ )}Ͽ3׳YEϫ7|oxx&ۋ_=OEqo勿wsg';gw.%nטhlN{MxG|lsqyde6݁wk~K9iW^v}2s~w'NeoahbIJϴ0?/p&frgJ^-Oa2Lz݋ $?fq?akyde+W$v͕)p v$ @J@s,4MfEX&^G/9MC³qN< :<܆_xg?Cu"y]Ep=F .Ő>v,C;@Pj,T8.Ik ]; eR*?43W,Y fMWu~ʪNkU=}Y;[)9~Dɓd=pfH`vf+`X?9RҰA3`z)g s{ i҂obRcA̛)Ȃ4#l&QcUP>epۃ\ hx[\[v] e<ad Mk+:܇vV aXJ1"~gs[2XyXTKE}gF{F׽`lͤg`Tг$",,6Ʌ8yl>ʐ2c߾ľ(2a"ͳZXCWrIdR7-ޭ7xv.ϩiN;W;<($PVA/ iUAb m`.x- *Oɡ'Z!ۛݗﲓ DwmTh,vUλzۮ,@ϋ鿸? jb[t!\&LO= oae(swƜn}㻦Tzzl7MXIEKgϱ |#&'4o5jS Е<>y|68LQZj@Q9 :MPִd߷096rqwxʋ3\\Nl2~'xݢ] z֐#P䞷,Tt@/#ŖaX<}͝@! h-)^ìAI>)*_ϻdIŢ'Ir K0' }d&..>l\-P_K-lV{K`Lo?2t-7SseTn_pA呜KYPF=OUϫ)Vk: \fCֱdaYL`Iv@t~+J ް?,[m Q;0x#_2TVhjSƳCR6V>GSJ" / wN%ȍz|d2r^|i|XNlbaG9I %"܎4Pk.w̹2qt]j1#Ah4:x_d YjnS6-%2:[VF_6Ce?(dVVƋ`alR6iԫ̅S*lhZb*e - úz}BXļI "72FL̽a+#A=A4q=r^>جM'0i"-%_:8.60THA[k&Pd%6Wqu325(wp1ssaY<~K&%w= gFQ)H%5@uK[ĤW5/\*mњ, CNY+أD&Ɔ> 0hb^_X>{aS e/+/uZ7M*dGȅ:|J=@҇_a#])!~dgʴ!&j͑4kdlƾSmlpox>o|mxl Y|ty쾑> ”qh)J}_\% 0Ҏ3<QiNd;+u*CYF 2Unbi%ۍnV"BFF]ED\Jb-9t-`ug8P̯mw)}{T;cVtR%)\^00}RR - Md &0 H8b ҵ7/#>}_ JA=c-yo03z-SͬLKbl"P6r!aZ9kcJsqYB=UʩY7YmUF&e pB2wI68 Q usy 'ܔ')|Me IF!-Дea(NL[2P"T~m>Ua !tZ;-Fv˸ kn!""t!K击RH+-_Zŷ2F ` )dwm 'mp-c˱SaE4 }ouE{|Cvo_X-S`ڻ. ptPkSĠ$|y$ Oqɡ!*ZmJWŃ+2iMvb?tf ՗8GH3a$#+aWpM0rK6 f عap<[5Hn;Bm/T!CC=U xLȣO$'rE%S\V//+ qE4@qȓ2,e8|S3ݩǦMfKj>mpT]8si,OɆm \ \=Չ| S>}^;yQ/:eWѓڶg9"@d{oE<a a`̩AԴ2I9-^N3Y! hsK fb֕h2%ȲjrІ`'C c*L`z8u "1 WTvo:Q)⾑3>rx$HS@K)GpA~n0ZC v>eV.أ Eku F+*!PF$Z9b8F"F +PyTQ@tJ"4IB=fm cQ1h@lqVNƷV>Pj  !Sn[Eµ>㘌W;)r4(Sdz@iN1̕WFk& V5eZ1DnϚ_"'XZ֌' xw~I:Y|vu} } %KrYҀ5s5N\#Ș}M~64$ʂZ%PC(g#G=Po; )lsu7, ڲf y(-C6t\fLg%APcmx'(YlZ@RK]bIŇQڪ@0:s}ZW})rGa^1cYDR~v2| k O}uڋ幮*;SDǓ1I"sjv2}$dM %xe=Ϣvv/; pF_'#!]g9)srEh^NSE{`ڠW~Q9CEv~V#Y'6 o]ʵ y5 Q; _BWK=D8uNվN{$C&qޗ|nuFJw*Rl8Lo|m:bA+\ ֦+ w:zyrXq&/I_]AzǪ\񵄢Ըs! 8ת\crqڈ[9ƽGUp|B(t28/P:/[r6Ő~䇛t,][4pǴ]z1ݍ)%zǩj]l3)+-ᯨkUT;lu˾"ĭ y1o{c[fYR)jH?~Xd1 %~P>t[ wBߥ4aXzO^dB= _g3xWX2q` qЍڑu@Edg\s"~DtH9 |"h4?X# θ(r^~*f?1P=G+88_\^mDDBq,dJiZ?I G@Slqo)}[UK],]|I Fv3G>3T0c(~G 0ߣ%|j DOi|$u$#$cVG+k>nI

6h՗' *_iڪ~l7C"]{wբ}mtY{6>׭gXRI u[tO 9GAn>OY-ﲴMLjT `F MmǤ .dava94.^V7ڂ+u*,(J|\so^VC':3KIr0kƉuk#gHEꓷû/r3 R@TwΡ,c(.8N^먲>EҰqzXؗ~pȌ%:܌.tgTǣ袧á@5w= #Vσ#v|7SA6Tr߽M'2OEtB62h5*nf}e |-!\1ZΧQyrQMHs t.@Xh\w3/`ZVzէ.o&Uh8.#?DmOԞ iF/&`1h˚>d;˒},ITs=igWj>_4:@HwuK1"MyN岕8KN=N] dTwF4jᭆpkCʲ]"{oI 0#['k\ {ȱ ۨ,^Ig;a3󴱑h9`KShtb"0셰 T/OټT-jv(J \Q%ibu!1G V;̵[kf"2.3o}c>!S]>K/fxge暪 afQ HiI}D1DQTW v5hV*a;!nil\ 䴟4[}gEendstream endobj 367 0 obj << /Filter /FlateDecode /Length 6731 >> stream x\rǑ}GG ia~7ֆk{mG! MP='glPHɩKVɓYӹs~U0総gٟάzwuhQ(VS7g=wn}9mכgW.mylM.;|tT6a1ٔ Z)[\K;y;ik=􇗿b|?U69NƋߜ}XicLiYtnz_Ffs<;Ο8Sx3kKpMPKlwg/LXm]&XZ-`nmL`i׵h8e5s UcSIr&-f(K15K[~-?%~b%^BdvԼ/6}9l6. ~[VM2lM[5*}# m00 6ͲOnɥ6is1/v u;c~npqQ?y:1q6ءũ\@ ԭ %'Y%ER $mYy c+0I{ $yK:U&pӇ A4,~J8{J _Ʈ"!@ Xiz}{*b\VID~$ ikJ$:ؘg"OI"`Laf^I? PH ХC:6֊R$t0(YLBps_ m eXIɈGƪNR 9YUiJ:f R[S7ZoH*IaSe c aE%j*F^KYDz2R42*PC\eӪz\dxP48UBB[$+ JWC)[,NvK*> b,&RDe}Sxl؅c<58DFX?#%8$@} $SoCLꬆء( 6CYPM̥³]4F`fvl `#ETA"l,PBG7.Zctn.38)$4 HF}x/mΓAjHɫ_:j,|JԐD/`O^6!`Ȏ2Od0_Yv֩S##QFlscKf1kJ 8 K Q$Na${*yFI\Ī=Ӈ"!8Z4UIDr>ŧeD$E :e)y("c#it2KC8I3^Z."/yK+n.2\Z!_Q3\JFlj4DK{R€RJ0wB-{FK I7J|%v +;SxNWc>HW'g/W8L$HvT /`bp04%%_?8hG(sfF һmM܇a 3L TX*=#Ԉ" +0τd"1/iϡm *YFc@.YyGr1A8Ǎ`0F748BI62#lt %pΩq( &jpE&&CIPh-<#W<"M*\\>iGG`@, H,B sMԷlIE@a>MCa> n .Z7ìip0NħnLiӉؒd`_H$i#:[q|[ դeƑ9S\)0tX:&TB!KM#ȉj? p ݙ(ΌI1k!|=]IdXsP˨΀ɔ zr۟V OX-\ɚ%Ry,Bn˧ .0'(PSQ%(W5q)2uNƥXlSnZE]SL3UH4q ׇbK.+ UW'Kt -?TXa>K~ nW7wo><~7B<ٻVӈ,#O#ΒeߞpBS#XIŊI1f=t4@0x)G`ɛ4$Ã-J5l~Gy\WkA0f''7zYኛkvWR=sZm.iw 6/6-Cd7Wrzӵ~#S{~u}T7NͿ-٠TsN̐]{M @'΍;.ceݚpd|5>paFZj[l CrZ\hdek컜]#̓@$kDhi/~5}[]ń/=,`%K\DR&5iS-97HT6d*;MW:Ǵji wr_@XiN}ڗ.45 6ktLW4֛{3RJomnƒ~dҊqF7w-ۼY~ 2GQp=!&:|߫/eH?i dmń/8Cw  [{zi6 㩱4?O.f?눂\N|; :\x(-zG*U*_}7ȯF v@7ė0u89_. ͩ|ʱ)ivZU ]D}?0]/[+:|}}2`F?ǧ31iP=sLSxk1wm?X&VރZ!tĤ5@]{#0 ` $揲>lNAiV*- ; g&"7]3V89QX1%>B)Xq3&<rAH2Oaˍ z͖Dq @2|?{ >NQjP.rqa,#h~ցM`Q_>8ZSشe1Ip)GēX ^ ~PH'VnscȦܢ'&ׂ ZƊ3TVuOܭڂ2ܬהO2'Rb`33OQB4[%(04W$](bl%NQF1YvoGg 9#`$os=t]#NȦъ?ՌFoEؒF-\}Xqu1KuN3XIJ<}L4Z*{PQώMCt({6¡Lo{SV #Y72 },YE ql2fajn$p$cegMyC &n;tv2gq!x9^x2^4 ]D:b.#r\1S@4#@h̑)Nm SІ'*5ked+$dCӄ%c>ҩ(ձE:b1#Ē-dt:kr?1~KfVv96qX2_iqZ#:RjE]O=yD ooƒ8uᑥ.4k:ؿ[lJ D҆dj%T.U~8SvZ'sN%Gy'\_\9'ewRЮBv*7)c'Jq`fFPfMyX0-`PC-?ib݉Ey(9])ݲb|K.XD9xP{!9P^痼+WD_aՅUdMAi󰿀DSVHLEx6qs}}fqs]NsZ/g@k*;g$ex]ʕaDRo:vQvBϽJ/e'yRYG{_NFsJ=j=O×eJ5,>Qr0pS),>tcEt*"ںaB'J< @[|ɗndcSBa1?焲l3[6XnձmO\= e:rS9\+2bFv-O-z@*ۇ7$:ZXezU炙'O:r&ݿWzPr|hAPbYip)/g{%YspȘ?`B~}b4n:a]ݬ#r H<B'\(Fa*<(_Xq1M05I#Q'SYr}]h9Xuꍢ0H;5BlrfF$4|!G:BN|/Bg'_ 4vhW|+da w٤A,R[?\maw6Ԕóx)#Ǿ>6?t 5!#gRXbЫ 1d {W l^r}4sx0z<އ];K5:01h&!`%5R7ԣ-uG:p%l9r[:G'V0? ӱ"U\G*i{-G9EBLbh}IA+UTRfax(Bwwl46WB(*ę*{_GEPGw(o>zݥr@1KML _X) @V' R6Rcxˆ.v8E< 5m"폎K})6.(=|ͪπ\|i t .Xz%Ŷ\=}KvyC)J6~LKs!o .Cm'500hEF>Z?:YlKUoktY@/'fxN4cB\/dJhO̝YjU\oC59VN+)J<'Rt{kLtoO(Nw LB{!NV\jlf]w,x>>Pa@SptKXNa!iF'#YSZCjCVt^ŗ;ET'ڲXp9sbnz|Xv W}k`ƿz65nY{¦qukJ̿c:Ncxß"E6z?Rч%:mߗ =Sl!R5B[9v4.= | m[އuHRyz%M"C})XnjQS%6)R&.> stream xW tS~B 'eFĂFi’d@bvlP6w;n6eˋv([fhCHSY3g~a$9sڣ#wߓQ1S(LHuEΕfˤN/ ClL軏tSrDoN)))/%۝xɒg[hI²"My9|MQM(]$KJ.\XUU bAIy+$T5JMnʒb]BZN&a_)%EzJ\\a5,vɆ"+?:gԃfWsVox-.xqMc^]{ϴ0~(r8޵PL>Ȍ:~cpN x+6;^NgaZɭItt’* 6ސZʎxNUZjZkX \`Ə}hibϘp 7>s*?> ᮪|q[[4uT$gqwmw}Сzo[qdG'%<ȣD?~ a"A*Di5c$ɇb)so:;]ct&L姲׵ч#φez "k^bxWg&hd_J ޅsf\"Eny"3VF^m.[چ [kYq%K?r{\Cnh!0z& ʤ')_?Ze5;n 3Q2.ȥKJ{3\& F#)w`4NQЮeu!) FHc _m;tZhW#@cv<.QV][]1aܱ/Ώk:P+ӗݜᇳfRsѠ:P[[?d2S.WL_tvBGF#a22c kL&Ͻ ȅs&~g (y2.FWrTϸDb/ ?[Ikp['Pw^<_uL\ҔXi^ʁ{8fKWViBA ra%vN z=iӳ!/}n(KB3|vhEQ;d66q e6uK²$\Ң;ʖ@ۢ+Dr'K17̦},](vvU8PODA!+FiS}Y/ngs{T'NMd<* y|-d:4Z ,T [P:]j|/ lB/47~>ɹ Ҿ5 #14 Zr4+{j{J +kƒa5^ӕmҰ]l6$^!| +E,g;D) ɆQv ICE,^$͌!'gf(S sY} ƓײǾ?_0ҁw<zkzjLRW죁Xo endstream endobj 369 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6784 >> stream xy@SW 檸W@}UA'l! {%'=fPzk*Vڪ0~}qrU :@/nuZ z ]AA8-/R*30pgĞ⽑y_g&?WnYѳtc-\xK'.ey/dE^ knhU-<_w+Y :"KHcq#@AyEq|+@9ߒsrPErtJΞوg1n !?Nf7O6WX保+Wdq569\!qϞwhwb 0 0F{Bϗ:Ŭ6h*`QMAE9q@(B!)ϗGJԯZo`pzb;p㕟@FZ*TVst5⵮,K!3Pqb}BE=_7Z8 .j"?h(?`PGtI#8h77ok`&@c{ Z!Jde|Vj~(0$QDE6YIh4Qx<@|OF> Fo 䲔@#NFA}ni>/Scl4{ ~G?2$&5- JPop1b-rX 8NMׄ(e"bjzLX_ Sl5DNhtRɆQsS󛒣L <Ѽdj(|:ˀO]6 fMhD } 0eVmrj|ߟFlV%GpqS @i7\-FZeCT.eCҀU_\3f8/X\r6Ë85>:؝gE0ɁcAKq;`K~X/bhWW%X"E zUvIey]@mwFs0 xqə%ozF Q8.NIp=_FO'xUb4h[aX7p4zd@ndт WoD9 #!:m3>IuG C;XZdD&):b#.rH UKU*3QՏ5dRjI1{ZT[2*E7PkH "n0Yl,^ۛ7 ??@z1%1]Hl&kS{$L6ga: [nrx:qu/`x9ܨM3s J-)VU)=zU8LùUؑ &ZU!4 < F^4=Z8qBjD"us<,KD=W;W.v,ck/,}dA_z&%w_D}uZxlfc{Ǜu(q2};^p|,H.q@R'xG|lՖ-WMƎ'*tt*uպr}qymP WЛ=Ot Gwne-V@=s>.Rͪ 2 Yy*,h])+]W8 rcg vmY|fk-Y1P+ z:(Hi #(#5zcrluI.Nh x,=4? MJ/@,]\ ʳDb+؄BeeM.I  W#`RLV i)91+apO"u܅&y /V(Nw݊ /4Lm|\!T,)dEjzrOvrc%$WCK6Є}G+[c*qG阎oϏ߱}tv9 ]/5xCԟA+oɏ䝹]=hW0 A`i: U}҈@,ll$< W21uB4/^Va^v-m- 4i#G:: + 5ۼZKnx/ kiuw"0r۽~!{F^Ƴ6娼L^*/Q +sÁXSv^>S9v(,jζO b򓔽ڶ H L`4m.p2_pN߅6 CRXJ8ӝ:>W$hJHGIz)4\p;3>nB;-UhF~뒺4o2'!ײDN3$X·:kBkt87i϶? { k&{ZxO)wrs|X|h֯$W<.տ{ ;ktdФh 7ϷƒGE@ (Uڹ=qyGN,tf6U$gg$e~=0=@Twk4|\t M@%X%] ˳+ ~â'ڙE?Ȕ'^pٛ W rYyKS].6y 0:0X!Ԁl d6mz/ͨH4% z†aqӚuOHJRJGCEO^9c{hpRUe 0>)>y"~k\?O_ B58Vfm"q$BS02~{ 7v FdT()X'bV5 C%O+RfUՇ*P2K\]>kbny3OCKuwWVXW-US44w@7xJ|X[1E@MI׳7۴vBlB@&rN|`x/W6b '77]")MJNJd!QRB~0R$ b*8$?+3+Wה<\P c A-PT**@YOq!4~JN]T:>}嗛LDTF@qHP,QhAEC|cp Nn{ M-c'uvHF0Ѩ^QϢr22r#eq2+>&"{4'{NX. 7Jh 3?^/W(7IN7]?Spf&$2QM$4[- 9x"*ßCN͉ (6ݣy*$jP 2gtf~;lƑӺu k84dɘ8%Y!+C@XH $dñ$΄8t/ρs'Phl嫻On>JXj2 3@AW,{h>q /__׻kR2; \KQ4pݳTHfeJJZ*N5bH2T0-\8cZq})g%[c@4OkۨlP^@xqY%f!. :,6m9΂ӧ*G;SvNS[{;m[~(]&)&F$3毕)qdhQU^]mϜir=~<#"8EuvlڰtN\=S}HY}aaY~rm*Ӧn[ s@9UQ*2!"@tNl^"|l嘷K *,: ,vxiѹ\+hjڏ~kP·h ]Ԍld~Ҍو&eVTTD0 DtEn0UCqvnAqb y h^@$?;S9ʐ ٢\4䌦me6WaE-E̖;KB%H%H3SY8qܧL؏X4rH,Qu܍3*m? cub:5͠8Ah@֟BFhljG| XX_Iǯ>]n;=t788oܭ?3Un9zq vKi}SgD_ Ywó6* JYXV\+SAmAva6Iˠ!j_: SZk\Hvh$"?Gc.f۲~u/e5|׼eicis.mdd~^>PEpqTU4M`yh8nh ͍49!Ma)Ɣ5^O7:ؔNK\vFŤĥqG64+ VeDsG="ɤ4d- Uѝ "kUk5R 9JR@$_.`޵[W]U^cvi|FL6M˽OFSuSu% r (NUQrőʊ¬sF q inAfbuo 4{C/rD8^; h3CbepzNYӴnqa ^8ѳ"Yy .(o6Tn`ByᕌuDR fon(y -(K..?rr5 #dbus|L 1ߪJk5 %uendstream endobj 370 0 obj << /Filter /FlateDecode /Length 197 >> stream x]M  jL6vEp .zXab/ޭ\S':o.aK|y&kn_*':21\u|#rJ@M(JHE .Q&'d}UZЛn/푉jW3VEUUcQaGmj)'’L7BjEe1$osRBT<%8}dendstream endobj 371 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1101 >> stream xUmLSg<%M n24 s#l.C Ȧ"*Pʕ+By@mJ{-fsh3¶lF^btxge9''$ǒ07+e?Q[p$%*V Z(!$9YT6g FMS{rr^۽;FJJVMlbgTmW!w׮LΔklI5jX5UBhc]Md,U:]gtz6R 6ZVYkR5ðF/WZaEXv{یw+d:~6I#]ҵ4;/y\x~@P/ax,ve~f >PZ[A<#jsmv{iQVws(^=^FŊRXt~@;+#_}AxXlrh.zFܑi0N:F~tx@#*Rl@WגecaNoBQR7!;*N[5?;J yF&\"wXP],ݡy87?,,dVN.J^e+'3j5꘺@S(äH?ΒY Z\=g7n8D녁ŊKG^VqE&=/I$i iendstream endobj 372 0 obj << /Filter /FlateDecode /Length 177 >> stream x]OA  ~i/xi~p⡿`mfݙ̰&n5鈋_# qTj ʄYºA+ fdF4eU"rs# :wwh~>3$m@ldg(n.G" kRQrxj!WZbendstream endobj 373 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 362 >> stream x=OKAg\[!4K j]#bQp]Yg[to /:Xngh;}BNZxxA/O6i C'qV:;ޝ&-"|x!lyVk*AReIdѮZIjDX[ꨨjQ|JHs+u=%ɭVr$kq A\jyEnjڨKĝDi  Aoڹ ao]|lX$jF73fYG6a2=7eiԈ>DCs!:>:˶H!^G_bg:z;qٳ~ \-endstream endobj 374 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1091 >> stream xUH[W33mcnQZAitctʢy&&#FS1WS'Gk7v!csbK: xoϱR9\R&Q4M';UǯӘMY `3*(@biZz}JiW}w=/u5V CܛFw۫N,xYE- M܁6A+9xjcB 4o@;z"avI*g TF4dqQCRb0qb?!Ï:&P—:Ku 0G-+!ZAqztWy!DAUb$7bY Ȉ=A 3jMprdS Ցvb F}~EC7 \_w#ݙ;b~_W[[^˪&cV74[u(-܌卽dGCg9R ji}Y@$ [ J5 |A1v'[.QO2$MXR.Cg iD'Ng^>o~=kF鲎 xG ,Bv9Ȭ~tY!edL w_e|2s b52G!jSm,2upAVq-*>7] 4'`=!y mk KƓo쾱G[hHs>dendstream endobj 375 0 obj << /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~endstream endobj 376 0 obj << /Filter /FlateDecode /Length 8788 >> stream x=kq0}naCڱ6l1v)Bytjsy~ݔ#ɔU֛GzcBl̛㔭ezd3B.ژ^'R& MM)eJz82, :`ͩ&"?ЪA)eއyQNng)mo*u!63Mo* `x*0/2[KJqi萷O*jq00&WC9}Xۤ7k!(G1`҄_kf/~rwBݔ  ިĸCʪg>lyyC H×Ux' 2P,NesJv7 r n'|Wl4~Kg%v,}ڏm0a%֑Vؙ1|af)O|-c֗҅mG M!c ab`ɱ`3BɨLn*JD )fSI@iw2 D@\x_Ɖɫ4):|Vw(T&V#o&e.I<\%bbH6ݠʓ$rJS!g0 qɋ(q*Ǝ!|]Q<=hmo|v$"Z^pn>U|\&f<(O|Z~RҴp>7 )ͣ9`M}OI). @I?<q䑕nwΰ$YA`0V)TJ XHEd U6yTP"01EŃeON,'3"мb9:G P pz|l.I9Riy(xܠ`S)ʹ)($--Ee!ʟCM  HK1v/RW$)wk`;#2صn0)j4}IA&$V=Gk"!Bl%P4c@z0zUqF`㬇d_{3450`tBwJ-ؤ[j zfg%[) \P/I m͂aS䔗JJ!Ok6y帨͛<Ԧp\׵ij)}t)f~1Yݞ 6͘?c65NP?wB KKRd:vUTnox⚱L %ayxX.tpXo9{۸MT}DM_|1t2&cOհ<9nOZgP$9Ch)k\c횀`E&"jamώgfO$j47gAf]K/;Pɱ s p뼻%`G!ܨUVYm> Bu*ϟ S{g6WVa``;n4w=|m4Q- i3X14Etnr'a@=OTc̀-C/6bw A1Z6κ_?l4MgmShN(r`G#2FN]<@UGlNDߙ!"Jjd50~g#d>H M  V$>aFi,RZ|q%E3Kn* 19Ts|W/L<Nj{?L 6kz'{,hn*Xۨ1KA> g̥>ǩ{@ƔF2D 6'LODg w>ԏZd- 2i^XEp_s-7{.: Kd 2̻a'3!8'Hˊ:k#>RH8VcsO.ul|CרJ0k i.MIZgEJuㅎ`s4 Tl?\u& gKt~NGmwDKU6AncU D5:0]ͻkjbѼYJJ/IxH ֋-iIEEӦ0{xSuWMsH9MneQy|c AgAiqNDCCGUQvxbMF̚! $[tW O0skA}ޠq*3*S2 _s+yk_Bh-9D-/6V,.m` ^i;K;Ppcm)y-?ڮ$.ƭ?+/^-VH#-qiWt$'Zo脓-3G:.1s4Co$T|Ml]~1JG 킹Q޴A~6,>iɡL>C9`GD֚lNGa 6P3b8*<8e(ҝȩz%g uz Ց]^e #d-->וvcpxפfE7F+Z`}5_)c y4I>F*y'ZZ8T8 rT p[Ẁ y+hώtr  ʰR/ǡ$#[`z[=g.Zv[KB -*=-PI H1{]>^4ʱ{H:bL;F.冰10}'VR tKI6̱#c|$x淕6 aY7(@W4?"E`u߆Q?;HZ.$8s~P+r.#(JOR{{vp. Utb[0|V}va!s\ѵ4A.f`タ|ø |&^m3Qg\5aB «Ujݢ 2"y"p&P9(Hr|Gܲ#EsphG*KFgTvf]=c l9Z;4@/ӦUđAs&Vnu׽%nG+&)})*|oO1a*11Zr.b2-0hYweWx~KehdЊ{& {3eq3?(DBAەa<\ćȖ,TQzm#>Wp\R3Sd Pm>p0;r+B7R |RÚkO梀.-ʅ}zYUTp!U=Jx>BJm'_Ƞ7!?4jMԜ\[.7% ԂƲ†hCo%eRO`בx`Ӕl<:}5Y6s,@ 8ޙv PPj>$r-B3lrݪw|Yc=N.l}Zۄ?*b>ݔ xKL|LK+m؃^M{< c%G2$5VHv͟u)uk@YzA}y]:>L@TjV˿ǜU4ap ȸ;y HqoRO(|`Mַ*_YY'"Cyu:=kt<<|74pO}=8L9-qGEa? w'I9+W >9מtoyln ۽ .04ThٴMݢKg,hn}gZ\!e,S5WJbkʝ:|NI/?Hi>6sl "sqaC;-xVKֻ2%l-"+7.=l&^T/5I|,bo[;ua͐25(/'MM)f—bOw pğ@RBŰZe.O{zf?Wpê"&"gzg)o %oeSoc,V ƩH+ob JJ%1$iEm@?[H]w􅙐S}oXgirl}/h޵i!j)n +~K> RuvHӌSXIZtZ0 6G+B{׼TRnki {w&M4aA8(˜ =m={ ;||mb*c"1&%L8'FS`:9PI$|O~ջvT{)Rb"v)Bఠj@in^VJ`ZZ@랥AH?R{U *+W~rHR]aZۜ|W]|ssqK'YM꼴DH]x*66a jnX!jlCU*hCd"-v^\Wf1۫[jٛqGCa e;\´|׈j~bWiͱk<&fp{P~\@$`c:$7|,'nXѸ~ dxRi&c5&hp$T}[1s9sW/͜iKi` |ׂAnpCUp.JQ7j5br"MAK"T6358tj-e)sI?Jhm\gH x k2”7<C&2-LHT/+Z^rG|7 *1 -EscFsLVqG%Oa`0KNLװ-ez:BX_T2CW8dWgo^#*%RY=z(ޜ7E7?/j7j㒾|>\QRA&J+یk҄"6AG0 ())s 5JuלTNaL?V)ZNOСk KJF[Za>pQ%S.J*~S֧YE(P$bIGEe?m JiEÃJsendstream endobj 377 0 obj << /Filter /FlateDecode /Length 8906 >> stream x=k\uVX(:Sx&|?"U 7@4H+KV+?򒇼Ӆ/u%ſ<__|m٫GG}$׳۳<죈ٷҫ,3o>j{M>F)7nH#ܼ^h/6-b m^N2İyM-| %vZrFBEÉ ^X6Fui\!| UZ@OX([9W ~sHVrJ`S샰͑~[kW9竨%,ϐ77hK{6nk[vK tt? "F;iGnϳ\N;m=4]6De\t 0!ZUy?8`*O<7SBn!)= ' aT+"47Em>ǵd;"VFGL-P@,u? 72Q^"8xh`4v|;1'< j4cee3$OS 4ˌ6=-.By@w>x˔ g) |ƈ7"a-iv&E\#⯞/e#?E/+'e >+ONb lqn-ђ(tfo ,`jb[0a˔+cm~3rWyy{S:7v7|"w6_ڼ,H3]ym͗6`C-kHگU.\Sz~>1A;ʶrNs ]8&ro8| y4!ࡖT td2c ;[XhT;K+4υ٣?J={w[uIGc\sto6/l7ѼBQ2 yn(5iCೣ+j-^;m:@@O >X,*fΰ05pi[ua!KD*$*7;)" `H|AA ]m`~ $2X^hjy1k%{w!?n@D\*M6VNڄ  >4Wi@HOq/`%@;ky9f/x0 ,W\'{1ې. I.vH< ~-(BIiiءEIo%*l㯓H hqI ^n;glNH[Tey&VΠ4`+UȠM;Z:x*̋4![Dv2ZWNG Ῥ*[魓ʉN1f|^FO~ՇX 'Ge]XKz?oI@+Vdzh42_=!T8b鿨dqidd.znX p 4(u!͑+J+a֠m9l2xl=+/Ck:cF-))8 xM(:"W٘7dɦ@h')ʬҙ0ԨCMm9:;Ň_|l44wev @ExmL&E؃rx |!X_%8|SǏωBi')?ëDBwߣbmƊ٭U`me)Py[6e`ׯ^?̄ e~ȣGY.Úu"Ì؋B+U.+j <xnH&+Weu4`sHȑ  7J_[ea3(G %گ9s,Xp, f%8F*\WV; /қ0>2eꮃ=e."b?r͟3 TmtD70GQ GfI%l-"4{D7${W^ =fq= gQ'Y!Qࢫ&7fl>嫢:-ZhR- 7(3*ڽE-KEŶ怪[`plN-h#QdGe\ ۼV}S6ބN۝ &|iSK}Ev'')DMM45U;\TC$aeKTMG %[h"<< gL~]afށѫ'3 .˹zǍ5(i=41U@'4' !qEh{S{&:TN`! dBTM[ [ k /oF6rFt3^q0: :%pvF@Qpk%4kc} G(ѱlkhNu"Xr41,PDؗب),) ޝmݤ^@=C;z藝}Rp Y€h:I2}X/[=bU b,qY{Ϭ{]c(=m([[ %5T>m7ז2X6 oEy~{mhᆭ2ԌW(mZ*ʼz՛lHrV5nsNN+m?ݗ䯅 tGTZEq[Xb0JacA=S:s: u.9b^v41#=+)Eva9wBxht3b!3}TXĮF$&. %@gv@))Tߥ(/a[VE(M}CK9 r=5lsޝyJrlTbԙ)@4xbE6*W,Cm#Raʀ)|}:S^23H!fЀ9IK h9Qb~CP(Q-i# Gq6uaVv.AfC U<%I=$8J{Xfl_:q A#:3&tlpLNAmDӳoʰ3*(5, ?%4tX#'K}Ey|f:]:S+tmaz'gu0]ʎL*R Flϱ[IȤ`U3KS:C@rSX!ڔ;&{y~q`a2NH;~ Mn]*)w3RSU$hŽ:rx3Z6Alb=nS"iQ$:ŁGծ+FyûZR<%!D$M86s'l,})i R|Uk}m^W6lv{ߐkةCj"ehDdARq>u: 2 Fzt2*R=j#0tK,"(ygrWs!(*~X0I*Ε0C]D+J3lB8I@̙u #c@ΒG4k<LIX'/;13k_}hm]1\EO2{TiX  c:&1F3[ &G3p}DCY1}oA䑽YC PqXRfYvm$- \c0ipu^0djҨ[JT: ;/V9NuZ;Ḑ}Yq҉^."ɼ}%6(1Rb@2R >e‰PNj<&py"a{ADAILE8rќ̀ȍf|hFkOh_GsVBkc ,_Ρf{Q4|[6A *{;x=|8ؓ}q'(iZn5Q;ֵԪzHc m S8Sޝ@RmόbN]A,5jB?*ZEmp\?nC[W UU(q3nWOEbd ږIa.+O 6l.%ϞB㡙6r uԵcFpv0l"Vɴuvm"tx6`x4 H,Z{lodڜ0^W T@$fB*vH85S2FDPJC W<2Sӻ~v6Zk{p>m^YOfQIJTHoP hOf\a2ZȈ=fpjYSVu%r&œ,q]Gwz€ W SF5EGc?03 b`eLTh?OY8wtW y-~EY1rZpYih&v=q3T(K_m ;g*2X1<0뭾ŀh2zV}`!q-zjGavkKi i-zrRx"b҅b" ! " HumpO u)n0~k:K.Au{EɁV1}Fqɔc-M׿v} kc9/D%#H86,CW@L8:$B٢ĠDl,ˤ-ȝyoNIK҅cAl)XjUQ`(etԄduj\[_q"iރ*eÁsHϊ}ode Mk׬ڰ"nChVUe<bl9-0Ɖ `{Wb%^}J ߽l0pq Q:JSAdcR;\*?+ݏ #y~Mބϴ,Sv[GN{LƢ^)6,OJuB [s4Y3F,(6x\SwO{W=AM)s, jvYf6XUmzmڧ1󙦏KjGtsK0%M7tdlC$|R`0$@b{@D+:R4Hm(")Oq-h4ih"M僛%JvW"o\v`1br{EB~_1Qo0pEg .ٰtwJ=3b &7ԏhıcqpaMf0#ANG81a2}cv 9<>¾ב7ӲZG.p4~Z_.ꁍa=yZ]4S.~4*kVӎޠf=.rqlK}a!]샑l).#[U:ڤk-*f|3"搑;KL6x̓~ѹwRY8 ƌ(о|#!zR Kf Z4jHULК*{\>yHx;F?kd%L,4fV;`5~Οjokr0geʃ@cK,YGi1L\H*}cr3^/ա-nf A^o9dΝCg=HO1S]mP[b\*.N'9@3\lǼ@kN|-+fܴ8Ot2ZeҊf(/1飧W%ӻi_`qew yk9q&!UOH4f788,g(` K:swF890^ɻGcE6"J847M*|d_ Ip{le, c0<6ŽˍK_5Z|5ٽ0_^ʅ͢530߉(XUسwP,pIǠE}+` 2%:IgFvtؽ9PyaACrlNW aIw4[@r}C )c<ɷ";Nƴ"tizl.N "hڗq)ov+ζk>8Own8:psf{ |8~Xr>3;RکR=`y-=vIP_n+'p}E%'J:t^}Z-8{\L9쥱g; Y64&A7D O}NJU 2Q[7)IQyCe~sqN_MsZ|ʏ?\ wlit,{!!?v?/ieFm'(1E/^*h%Og4g366W(֭6`^obցϕL\d2&l|G!}c6[Mt!VD_?Q{ {J5Q<cUt1cuMsv݆-q*4Q:7=p 0k̙ȥTOlle3 kUf&c?{e>$w#-qb$KDRK0f>|a78TZ,ސIځP::/UQ6ɗ[+0?%@›v@(Pu_D/S0tDqvswNQ &vx/LID[~LOFu4UQT>4@&y&T"ey:0o UfYեÉ1)32tj(ns @\4 *:U{4)÷n&˴p-Wex,ԕ XDnoGt ìnc 2!@]*L !LLE8|JS︸c*-o]NsU[X:4?L kS5+nCV-'ͬUii5K.9H>2 &E6[ǐVg--X<m28։. Lpǻ3ZuJpޑ 'Y8ӖnC)}*P#g*ohh%j 61ygMۈ')A6R^-Z3e 4ERUC΋d^,q 7ɯ5խ _AfK"ju( .)&]0 )u׾y[7h@uGP)a!RroTrlFP6 & |l("Y0__Dcsv3~iIͩ*,'i~%|>1Vb=ێŘL-l3u>L&&Ӫ{UDE+]~VW(mT Z,#{RL@B}ofSdjZ(%E^m>u;ؚfƫCjbYDIeI|~_ݢ;)^E"1XKjTe8/UVu+iH uȝw0q<|/i6~Vu+u,a (Ժ`vԑO6Z,Sov.oskN<}RI\&(ƴendstream endobj 378 0 obj << /Filter /FlateDecode /Length 5785 >> stream x<]sq,}q2 8U:TlrIh\ԙyoO`vE]\A hw78Ո=>qu?;H_W?׫oOp!INj*0$V'GkeO(;=|prvw`Zod[np~]5A_EwF)S\Ќޯ/ah|Dxo+ 6*.A$#0F F`#Eڏ^ kT{[>FxOݛc퇔]z8yo;{tzYZo: 8!ƭPv(эVLMCqLv"jtfkG)o\-#P<8{"xq_tp(8Zr@i>#t\瑘^ BB[_Xs WA4)) LD#<=\oOD+|Ηr :ZIyVlXPzAG x 7 "H 286.yHt+V3Ux`?2B@u%$I%C˓i=oxgL,lWWl bvDQU ;;n4PÌVЂzF^=SD v}V8JX0݊d%LTkDPjyQ[0@7UnR֯ޝ=h 8|%PNYyib/g { \ 5M̈́/3v]Gp/&8`8 r/,CJeH/@Vgw@?TRj \zw4CyP(4/YܺbWnp\>aapvi#!&EJn2OGm3hp{=I?c|iA=:av;F{->Em=qpEU# AFƞ?#ܰi$=$z5j;(^5*t/jsN72qL裢,ĝ<%4*UFiTNj$ljKoPV{ ?ߙ]L,QͅtI/DOh3EɘtO @Zӳ v&dߜwux^ӧn,O?`LSdkYc 0} ڢx!hCAp$IwW m3͘э59WuiF&sKH&iSk@AY_ø$s.; b$j@L`0``%QIXC>'rl4nd1zCjCx{aΪJusGݧTf6VfՅ!2\qRfc"eꜧ.,%U`ⱨ\H0D#< 9覔k3XUşjG\H!-.|dUîyIy/l<&\ybk@W+qLR1 zZg`7f*bt65<"3LDž?zW?A~~紏pyV],xwYH<^Q@V@h7} yixu/KD@ x$3r yA"bat"'Ӽ!6j 0ɶ"'S! T{pL& JQ>Yey"J h]RpaLIJArpX_عj/@áRj2E rt˜U2֕CpI3Gp@w.ӽgcG.74F!N3Yx:#-nGYΑn:(s(KU1,\8*EKb+<΂3u$BNԢ;ce>ZGTwɟN_K_ՆlR8MkouA+\MR 8Lm^֡ rXNg'NG|7K6>y$>յwuP*6:B (ypziM\.y[($NF=Nu)4gQY Y}&wa,E?4K&pZm!'4=cckaP*\KnD)޶$LRFMu[tl fR.S_D5iWƷ9ޮoh;XlŴoᒑTo94B_˪U5b5PhgHZ8Jї [ [t,w#j]zmA`Vp 쿜ڢ[S2}گM^ XH6=!AE7Kt>dh0',oV} rصLwmJQZl/sRi/#5O"kNv|DiW ݘ-n*caZQ//䒔J;n'jBm "-ZAaJ\|i{iJU,-cEHNL4&lTZhkKC59k1ʓ \,RyU%a^HS:SD(*k)]k;J.LXd!eV#^̋N*S\s+*SR@3@Տdl{a[ [F؁ض!PbӁQԖ&gA*dpW'JJP:6ۇMׯ!O@ ]T9WbDWXBZrgu~0꾺YaEP%=Awy%Q] ids/9PBqX@ѳ}a8vi@} bKo*y򐓍7r}5l%>1G|fWeAjK#+uIiln+u^`MwSXm]/O^6 m 3eK/A6p1h2=r"ef]A8Eqog4oANRn1YmYYN14}W)BfDWT$:4Y[z2vK3kʨƠoJىlӢA8@rs}h- R.͂(^f]JI+_g`p@9-/Q1̘M/DgFҝCp?ĵQHp,~';؁=)*8ң*z.N*p^i \\}O<;ٖXf(֧R_alw`NX]ς6d_`(@53LRW*UX=j5/0)T͒>iH ܌|+ ;ygl@yGiX. WK0*IwJggg<}ܛ%]]_ *s]t~h06cnJy]5˷}1KF5nr[r,*qύ, ˏ!s\Z'cWj*/٧鯄-U~Eݾ~)Y|; gVZa ſG M]/:|VzM]xbW?{rעCZ<_a=9[ f|y&E@_AL1`xҧOn!cRoa9yR(㭀a$?߼* PR?ɭ^ o9!ȑg@~Ț .\IفG堉_2cKQm%{$0!=81UgP|lJD@L.\Ne~{-Iy*ΑCExU̙ Y&z/W^A]V X@} #4zB /mfYm=_ _ hփ9 A57_8xH;a: 7jhOlНsOYJ_BvhЕp.#:^p<qXpzrͅz᷷d,C 4!`8WfLQ,eyuiϤ֒ꊿ)MLfP<x0*f3{U,8XD"iJѶli D<%JD QAWSYUVYw:% H&Hk=KRh&՟`Oz-ҦuOQ.ϧWE! \Ms*S, PU1?r! z8jeNSɪ3T /Xw }rUd2$X k""_kAfǬ]HKg:[AZR+7(Ꮐ{z*<-w>Nԙ5+%,ϚddB&, YN@‰g3}/Gvendstream endobj 379 0 obj << /Filter /FlateDecode /Length 2708 >> stream xYKoXQ1GarzdKT>_uLW+!0[]]]}U5.E/ŋ## u!ӯg{14=飈ry|ȯʥr>.}vy|xnWNj߽[HlCTRhZkki0D/Bw %#)㱏!cz`c^nIWǠk:*zE'bm\sh4 %3Ňvg57vXizBwHctIe SXhsZNѹ_ t''%TP^C 2`]qI*Jj1[".6{ɇr|6FM=vU'Lwx^]wQ }[Y55Rc#Hטd'6 &]`*(h<o4xfu921'c\t/1H4*$ӑWʕ, !,3&$z((f*ŶUi7Yh$*+0QE).&0EG/#`OY+|V2^"]˵tU D7h4q5qZvз,K7rv4ަKJߐ1.qa™@88Jk|40Q y>wMfK+Ҝ@{yy9YVqDF1aҊ2*]QˆH~{/quʩlWk* 3,p]fj$vvw3eX͖8OCh|u k:Ӓ᎕ eЦjYr@-.Z=`Nͫ^VDb̧ϫh*XHG]))]? ȮdGdgAv0s/|\:@@0#{f*L{)&Q,2]TVJg800f͸ᬊ׶W1+<u@6I߂v6d9_H*4KxtRe+Hh# ڔ4Ѹ+{p#bSbP0?WAh 8 lXr ' gYdb.w KҕSZq ư4$G̓mh/uʚ`O* %GL|< gYM-.mphKXK/aUF._r er{4TDn r!;4Uٰ/ Cs&@ې*zpBaҘvnh>Dk(Af4o洄dh\wdY*PyB۰t<|_#j[96磬P Q&3Ajlv~70({ųNﴂL\z`M}Y$Uf Φ[ U[yJۡBZi&cvK͔fdJwixO1r.'5߰k/E^pnh焳4rb#rĄd.6W,X#yhP?yc/ǂ{]C4/h{eӡ Kh? NbpM%#r> stream x]=n0F{N?"l-EI.fXQXRx?xr}ySO4q\nsU㜶_k/}.iNם<2(}7Z4Ŋo}0w`#mR鹮7L7gRx[endstream endobj 381 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4585 >> stream xXyXSwNң"vt9t:mmG3Z)]dԺ[P$!@’}9wIBv/(QJZNvYko{am/t>ϝ?@r~~~~ӧ Bik֤/^ؽϦMTs3a"H3ѵP\S0K(,.7[ 5hU꼜S/]d~c-M].(9ي5٪<[n,ΑJTyOT%O.\XYYhbe3O R7H$ In UrITNH+$5ŹDZ&͗g%ٻ%\I*[YP,G)-Q Ti%/VWRTHe[Y)ޗ@@VTp ll,l ~#X%X-X"ssw B2BV B>`pltEӵ? w33J=mHb^Ws*'7sٹ|Vߝzw= 9bGc BqѵSbƢ+ HɰC';jq=]اbě'[QueT9t'2 Dz|F @XʗdQey[Q0'YCiRU{2!ԹMvXDd "~k_&.@τG&a1&:ݐEgpJ8xEz܆r/f|>_oߒQN:j {}@Iw">cL PDOɩg`O*צwPE$;" mpnRLJU ^_޸պu 2^&.' 6M`Sv`sд b,R8Z]z>DkZ104u5^@h}g{~=}*`&V9{v8zg̫R2/k/Bࣷ8gj7IB_ܸ w-:ٌͤNy@< Oи lL͟zK>IlͻAmr7+jA70ԵQAEg@ =ܳv(I5v-p$Qz[5utt6tՅj-XNߡPvH~fAz[jtf9e:l`'LnkH.{ FV<<ĢqTgp3*%][HV3&\M-mBmj vUCɷڧR ׅ΋P4c>UppC'7XyRzPZD8~Vv~!MO@?wEMu*Q`$sg,y B]KHmU!6y2.:&JfݿL D!s10gzP_pR`}hG@SŐF+?8vZфSH| _<O[}ɷTcğ &T3DQ{3:~#ͺ7ꘁF'Um5Bc 5 I _0/OKC?4%&aڍꗲyN$}{)^ܠZo!54-g ^1 |vn?` E}wp/Ga^aU FaWiLf6gͥf]ЃȋrXW½}\A n:A/6WQYL\ Cd n ζ݋~ J꫔r5~}[)ҭ[ ftq0?;6OlqfC~JC&߸yH8:YJ !w}̺OB-h*Oc+SÔ慈Zqp_:`nCOW5:wBGǂGÈHF }(E0S@07O8NGt=݌[O$G쏃Qagg"zMno"J%~uGq躐t}TSq^ñ^\[MEU+TzMA.` It{j# \tsd o w /O"q[|vNR_*+"'/§Q{j ҲG|OV`pz%;i`4b1҅~9 1Z>;:|mt%VK s&Pm1vȦcRb)ɯLdV3}רRtzP4T} A9oslaXJoiF(rEMi|'puә'Wr6=~(pQWry2\9p`8\KyGF<~%Xk˰U: .7`cBJ;z1 I{Wqf(GQw1ss7ij7}PjƑ;%8JX{gcb.#Cr<ZOsHGu8HkwD[LFt-&^[}kCPkOgܵe*P.n iD_oDн!>mHq]{(:5wDt=u(1% F0D6ƗMG`L,~WwC3|A=!.ٮ/Rxm7)%)Lد0 ZE 4MMn⩋4y<_!oi?GϬKYӗDgendstream endobj 382 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1979 >> stream x{PYiH QjN1B-*1cf|"&!BBy1@#>@w])EPwut])ugTss;Iс I)`ӖsOI~; 0'p FQGhAr_v*!-16FzEzK-[#]LF)KnPenUEiR/Z|ʤĘ>ҔX\E$KLEIUjL:%@Lد%J7dAW$"Ꮛ׏ f__`"&S Fpp'B#a$)RNs9 Q NShD;!~lh_k! 6B_iekw/&>ij8 MЫse YCaQy$EW*.~h*pIxebS: YA?f%Ѥtt^60+, I#s%$s(d g?dA]~s9뱮U{Zɦ' Q,ij1X}ط?!158 -^6j>i9lb1 "!H K ^lϵS}}9[eYFcVcM̙"a C+"@eP%:<xoQ- z 1Axu@W{P|L(kϭ'[Px~99z00ǛÀRŪl7%ʺ9Y\~QP]8\Pp+*2Wu9ohM=w=ɵ]ֲ|P]LSmsXLUT}HO)6B"4B,aoQ!2gTOq'=M>tѲ xT}@xІm$3(;ǿd[ ͣ\MXo/3b|\-=Z-xӿ6dljQN^i0J coE m3j{zly(ޑdU9j0 R 5M5Òy“^y ,z.7Y?M {=> stream x5]HSauu,k;7QA,K2(#1ۜ;Nܣ)?f-:) 袨[yϜJGG/ǃ4ae Mmu߳BN g$ߒ;r ȥ+I2p菑Ǒc84NJNXEU&bjXI>٬50K556ZcV-+U{ 2t;CUJ?1XX`7B(WpO?B =Gt{L!)BO,ŏ)&+Y_l9IQZBgl`+/`F!Q qNC Oҗ-P,w{''ar0i%y$5H_N,ONNwf EvdǪecԘWar7S=2 9`bK:.UG$SNDvpvWv"}mؖS$qZY6nM$WO\0Dss)z2+ճԀ7[:]0n0k-P|C궿=93㋮uג19cзux/s&&J(ׅE7x npJGC}|Wfx>Dvofa ;J* C.e5-etPzgD^^w]endstream endobj 384 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 436 >> stream xcd`ab`ddds 24T~H3a!3=k7s7rBG``ad+nju/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsSn%E )Eyř ] L,t^q%V0~]w?L~|];lZY@]лG9o%t?aet|7>>wK@7G6[uswcĮ.-3{z~+_QX̞Yo"ǶM |ӽhڊ\v_QϗSO4gbOdrYl1݉U]erf-+[yNƾ |Sxxe`DIendstream endobj 385 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream xcd`ab`ddds4T~H3a!Ck7s7߅G ~"ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*&s JKR|SR3Yfظ" g.qcu~.]RWW4f%+(?u)}Sv8*R5Di[̙}-s`nJ[k:[uweJuWqDL?aw]+k*Z##9*/?q֌U|e ~8O6{ Sq=b1ùendstream endobj 386 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 991 >> stream x%Puǿ{tIOf泧k`1J= 2~,6`8Dq>8^1 '/./ dwEvrvi}] s_PQ(͔D"Pr)|Kp~$~I$(}MsXoҕ[ؒ|bj*Oھ=K5J|Rի-5贖z>rŘPWW֛ [:њ&Vg-|ZWWGAohM|A5U#dI;^y59hbSh#Ft( Cu*P^5u#FORY[-P4h c7MiQ$2yuao7L=8VMX*gu\N deTv/T]_7WձXػ+w/Lz_FA\6O$"ij=: LԺ]ܙ tМ~/Nc[ ؜N84 j@QD,p +1S}[kS G=*kt4j~s&N9%^U0S\SX//=Fݓ k 8pfa10w4 1GmV'8Ƽ=-u9:4BsBHw;_GyRӚ[J[P q|n1HU_wh3(,KO=Vc%?awi _cۧ:&虇a1b(kqz<ǎM,LŐG6q8}w +|̞+a7e\bsn]5V(5P@FNWbW6q[ !a$qehQ̣P\Fvk)rcbZ G}u!1sl;2$#~ZX[r#=r єendstream endobj 387 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5908 >> stream xYTTֽE7I[545*"d 6̙IG)*"bMli1k41ńx.H Jye ʺ_;g0{1a#W%kץ@ ?oR]`^fO?<3n(IM8n[2`O7`*?W/po{Ϝ0!44tOx@9څz{9ra7}7;ƛ?|Cp ef|w70dѮP%aۗ.r+=VV=v܍$ݢEtVC\m@Й8\mraۂh?N'_{’* %{)3q@tE*8,XuzӠÈ8^~ArCE  |Eus.'I2ԪcnE,]3܅R]Vߋd/"zr߬ͨWs VbJmTņR1 x4&vd l$ZoZABz~4H7icSM8 M^e.2pߖ-.YuF:Ǚ$;DuTMNFG֒d*q&q&qw:1Xb9pȢkqOG :H+0M|5X)jXzw|3./N7w$㔙nABL1s]Pa_Qߐ>k6lw{ϳd9ӓ ]XğM&qI*~9ߝCWI$@E"!U d]û:bA Pd{O@ac 2 0uJLrOTzӎ +Љ8+P0'I ^eOJ+`$l![k)͛EUIbU8 o8ezҝ!1dwėOݿx*BNQ\7h׮r/͕l|e EB_QVR_SSeY\zX2J!W\w{7;F(QX*kǘv)>gfjRe=w{u}q{4Y 0p㦌UhtECB@*RӳsҚi[\<ZR&xȘN.j˚D&cFA$ <(Pj 1aI]C:g~ztxJ\6d8=vQabkTvTLAQֲRb݅,"c!ƞhg%!7bWqpxKXta5\=R͒޷_pYqo ;_>/T` #LXGlwߗ"˓-k4d_SdΚU>{eݡS)8-.ywo߬DDelM,D;Oްadv@3Y YX .=C1h+>3d82:g /tCJ(iR 97Flwo4zTʚR.A }.ASYڜ:~U8$)R\kҵU4@M6mn+x/xtO̶Rmwm#wk2!v2kx˦>^ϙX3e'?P ݣ{ tdPfCŲ+_z)eTgBJq9^ȓlbS!RS:pwdoj\*l!%+53+1=Zoz^$ߤGW4jo V*G Rsnr߻)psY,,*hٚ*+dV~mW0k }&dܪ ~>lOзda {zU4%hqR%T|'ѼDВ_"tP?Iz,q_T - 4Քט/1BL). R .A w?6fD"%LnK\D.6Qs]D?}٭¡jw+,SKsy U6T kPHs2q1{[~#Jխou0Fv9{q4JM}L՞vr}q58V4U^5DC)kH^m ȯ3K.T3S Ptbh0ꛡ COȠݱmUvg\/Vdi'=!ᅯBͧ'eܩ! ЯQ|]N"U"czp)i6UuVأk쐒7oxts5PMY DYNDuWMzTJbEXJzZFwlJ7Bi3D=TgT46n q#iA{Qd=sp{UpTlU`],ظnN~Kr*fMxa?Cﯤv|zdmLŠȤ9@!!gC-cokΞ8qC:fWR]Zj;.>gƦuYB6^+V,>>ߜ"JpÃ?n{AO#ڴ3C^1wgiXuuIIu}Pl16$m tΞZ_mV %TcvE޾ƒF]uUFDL~9~B3[puL ׽7|8趤Єqk>TySR35Gʏx%,s]\v XtU sL!b]'kJw_oS"ٴ1S lMIm2n]"73)UM6mIps޽(.MK# qBDx4j_σ_w`CGcMm\b8\GVU֜r=>z7>GRV h B޵y-erwathBqA,UQ>ܕN[͗CGbɷII <ف ' |R P&Nr 5Mc DvX?xsFZjKnT'{C I,pqڠH>Xk@@6U&9ԜƐs JN(<.~aR!sW\GhuZ^gOK 2*v$')!)(,):Ь7;7$©lkzvb/!YSP(`?!YM[>NOȾu |и3߿ȿޘWX#\vNR܇sry:S}ןૃ>>A>A5/3+9(9pJEn}8|%,A[x/Pτ0i#?jUW5?Qyp C.Kp#d `-fRZO[EsH=t5)F!PlP",XwMxY_7;^CԐRafj_EӋ-_2[Z^-0 $Xendstream endobj 388 0 obj << /Filter /FlateDecode /Length 159 >> stream x313R0P0U0S01C.=Cɹ\ &`A RN\ %E\@i.}0`ȥ 43KM V8qy(-> stream x]O10 *XЪj8(Nߗ,N>~l#GpƲ5 HeQV-ƃ剳B7OfKUUiZB 'mQt1 l.kSIT @s$Lg)CSxendstream endobj 390 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 665 >> stream x-oHqm9s5bIFN,-LC$AnvǼVoJcW"JC|!2$!Pfi _=w:Q/<!"UGkyJ4RK5i&bPkMg2܌H]6 ܭ.lʢ󋊬9l.<xlvA:޼@ 精}Y9tͻ:u0aX.w#X]63>/B72|TvBAeH^D'#^шO7,ZIX*u gTYԝIK(?dF ?ã:GB頄, R~zItkǁ26q ː#C͑E,7=,̪ NX (Pick(_8dF҈12I@͓/)OW?x\Pa3Vdl3>b\\_w_ e֌x8c= AR{yn%pz jH ,BABXZ%QT{Q ;oO$~dHTX#ꄉZ0p5endstream endobj 391 0 obj << /Filter /FlateDecode /Length 6833 >> stream x][od7rkE~CC}rx'lư-#z@+uuKSU!<<-i4FnRWҿAF_? /'J8^zxecӗ'S6 ʅ3nʬNO~\~vBOqJ֯)Ũ__oJA f G7D >}b_2O7Ru؜|Z2@~q:pB˻fsj}naV{?xaׇ F{0>5yCږFŽq4AV v>BX48AJ:HXhiDjv.we@?dG^6}ઃeʻ Fxt~b}G~T9 D0~A2% y!޸5D;ؤy(&J@<+Z1_mY׿)k@H_A81|m2~sSm[{+߬$F CbG3h!(` vO'jނnD VNI|u}CW'/ꏚȓ pRnH'a@'P.>q~vN'7SH,K v4bU}#0JdK&ήQ&q-M}Vh[Ac BOL lo([Ekp=uX`ipKC yJu |P,K*$ {\m TPs΀5!uNmր]1"G?iιT$ _7zڈ_B٥]ݠk:純\6 *۴=9Zgjzwc 1hoJ (;4Rup 6$^ȸ!uHgԨ/] F nj`4^52 /ВIx8K9*GQ^{lHj6d +ڬڑ8Ӭnf@aʂ1Ѕr҆[5*<=-aKzZ$%Z_6E@8HL5;QD:R L8iai,CxrG!gPyC<[vqpUXm!, ,sD^݋MnK;H@AP$*o +7 yѯ70fNQui~uv qW#`xĐ Xo[oѭ6EXj==5/Je]i^mhs(siR\Fy`|gޔ~"?7s.;_MпXoNN0 0h>x0GV BI< + h@mwH0Kb*`_u9-’wi Qܧc),)`gpUu½(͟K3หDQ$O$ߎH#h#@-##'Jwt1OTqU9>R$@S?&Q8 4:c!Ah~Ͼ}1Xa ^la{T_n/(M8IڄQʬ9kñG< ìS?E"`6pOm!ϼf 0UI>QEM&IxRʌAy}CZB Կ{ *媚cwhFJPttbq('#`XrݮZ wv2N:8^d xtNVھʅ:f}ǖuR=)BnNPD zXpqQYSEȊ3b.jYx Z#Ik(MOI|ںw,J;:5f:T"]&_&8}C`=6ˋژyb[c7LUVF h1iTSta?([eڔBTGw7Dzv4#vQN;rr/챇;xTxrb|J=$'yX( 2mB %$q4ܽuj! č|\=l}\EOK+y{;OIJyT~M+`esVA]V Y# ph$б~ZkYk/)kd1yD&e_f9RtqCHRhu2 օXq㕴@.b+ϱr.d}(7 lO>#S@(a:B#rf.8%P0uN$ѕLLΊo4NӶeAN5"FbdroP_}NAg1q;m ӆ7f^u\n7!Qr0nΛYufk b~(/z*WR} h"Z\^F_/V19Q|5xRj,Y&q+煑vi5 oXqFOi/qoU,[Y8W_d%NFAs$>_z`?XF5X5w" C4mTU`0,.B0iot^OU1i֮._ #ؿoLB34٠lMf!"aW"U2 >շqJErRIX̒aPf"gҋIQfYP Eͬt$EΊKiuB/WM;~Vm#Q5Ma 'pp$[q\ wźHˢ/#HoRtT)84Z(2H5mTm B/z,r!R3HA]]2b1~/ƘDǪl~f0XgnԬU !|"bXJh_଒\,t?b3£r:?O4%T5+.E`s)c;t=#Vo'2J r!bH`"\^Hr WʶoJs}ipV>b_,UVSwT_Sr0)e9!#=Ԗf5r&`2(BҾoXa$/YĈTҥt0$(@d {%uP*anH_#~EeŰcnǙ\o=P쳛7@K';@t㝭>+6yԮBw);`\j:3瘏/A3E ^u[e@jXPn}][LJ벨Gd~2"aZ=z*pj{JD"gqM R&g̰aiauR ~\<@ҨPQ\x*'DS1Հ\]&w"X5Sr遼 yҌXr07_x-O!vKDΊ6_%īW.hH%ѤRb6"NF`"V)krM)BHM?e6Ni>>d[{>"L Ux G=Œq er+qi54T[bdߨ͸Wi `jEY88E/5i YhּJE.ǧ>k0yE)깎 2=abɄfC$_^ZV fIuv )vmIZ}l7P^C[}i(~Kn{ۭhO)9GP?1"q5pcAܦ t31!iS]ׅٷy_/n.]4h|˯Xku[~w3tyO'e{?do3O^nci~]z-.:gMR]](4ҁ2>{"XQ_j JJ:ڱ)Ej$Nt]Z,A{ y0.A0]_xLGlk ֟bewޭؽ&Qg /m=z>!y+t$p]e˗pȃ/OJVA2lٯ{q\kgIU80^m0PWžA~LV=٥g(K< 8m(|m!c.껍=}t!9I -Yz7yGIp һf%zM:w{ԓk Ҩm'9X >]3T2& R $]a-%?cKΑR8>(%^^jk3vV6Hdɞ+BEijF3c/ޗMtؗS\I#7Zͱ).}vݗ #=^-c8Z7]˗ķWK/Fe1 Xhˍ}xTF>ҼK ,Īu~_f<{=J~jG -/5t` h_xbՐQG<.vY3GxbE&ޕ&ܗyi*ͻҼ/>X |/> stream x88f|F2z8lhsvWg7_&p)uix MB^AheC0>ït:&N!}1NmJ;p~oXP'2b_;Y%)?Irni7܊yr6^G`#-vc (C)#O.t:|vx4-/\H7 5҄x-E`a>eh`S Vs?f@7Ob|>x1L<3eoy`|5y>8E4B)7m`A/tO,(吒h@}̒@NƉq@/kG&1'Hzi6*yfn]@yQYLgq441i&܏b$XmܖQ !dmo}o5_]r"Vshefk⨴e)x;JsꆍfDcɆI ^Tdf0U j[tymk55}J|4fӓK!]ZD9հg~Te=H)A-;>$^ļ8ԢKݴJ^FdlT8Wx} 8>Ba1 3yPfvU[0'yAB,&~'ʊ˶"O9'y)pLzt|$h@:xU<`A$ef* lzpaHhkͣ}[`IIK ~94BjN`utSC%u0Xy1",HLE7qOJ3zh .=sXTNA:ӍjwU ^%$Ţb8PT4ɫHjՓ&IڙXΫtdEREmu=^rVނP8?O>]q`=OCvc}o/)8 f t-ڣaF0ϔ 2{+",J9M 5685=vQֱdr]9"'˩-XdjLœg}B*J5Kf $}c턇*2{Hʑ>n[فG#E!##8liTvg@u 1L" f_>l@ }K _6!%ԛq&WyJlAg<~5^\/kEmuvH]L6|ӝ%Zdsf*n馛|Q{Ҩy_Q/k3S ]Є[2ڼn~vƯ6?MK`ͺ_|EX=a;}NR]5JOy=Эh3Hp@?{Sɖͩ9 K]]?oͽ?Kڼw]j?jnoC塚j6RmĀ7ݣ@+GkRi.צFC WwjSuA 0(Lvd,֦3WG:*< zǓ~r(yhjpwJ>]L|2cH܉;Ww3q]yIGDw'Sf,xmЖ.W:n==8%OvfAriY6Mgm&yD #ֳhj{Bż=C͟H,4q(ev%lL?fz0*^z;]:pұ-E-єkޚ} tgzay4d1?115oÌ@Nøh,^t ݼ"&0\Ci$}7 ph4K ;p%dS)Y͹Lm8 Ea=xw狈Q[/s%mpzG&\2dzOiEj} DfZY J~.4)#8٦\_μoj{l?θl/O VgA@4!9%2Õ ^? )0 E*PYt˼%rs v STnh]\l>bex>?VAG09<bW]IjF[s#1OJDWf& Jm  4%h!ܫڨ>SU쥠uQG@ab6̓T:&"N\Z5,&Vq 5>M5KuL\(M͙yܛk}> ԽH{ad8hy8oKZ3kN9am?gl?2RkKP$Y lHph9ù4mm6K?)῟0g|S[#"ug8z. )Df\ XnnARNl;k*g'[yU˨6"UǻeB.{&'{ǘ +1I= Jk8]|fZn!~;0V`Ft6D ߕYLdQ[P%}nV^ s_ۈV^~;6Zc>Sg)# f-xo+h9-7q8#]J.)Agvf VcBUֽ@!V"O0`^= T6 X?(<~7:-7,[att6Xۂ8={m|t͘9<610\9nfV)`y_nmщ^W 2EI\4[^1ɰ 3rk|c~)s[u[.VڴYL\'@Ssz?O]B(ǬZe@ SJ@U T!,nfRO*HqE~^-}F+`Vw7@w0)ib+w#5uZfLEgDxA\ fHKQJ)M }SyyPK[dDSy@mMKb52IC$klM{A֛X/3K|̪0iucGw b s8l_"86SЃ~!|EZ/i&33=M BJ9byGe z6g*hP^UI/$-C(oWHI€9xo)38pHML$AT/аy t+TJtҧ1֧6WЕ%#:S]ٓCgLpVZ@2|%F*' :`YTxkfɹ)`_w1\COGT]ڄaR1"j!sX)8R/BIx6Z&<U/=/jH-8街FE>Vj7.Dl^e9qkbFK:Yr' ӡ]p7&Z%=Y,StMdakJkhQbH7Mf3p^ќ%> stream x][qcGll@())K]))r=.i40pW.UI,4uGf'ś'?GO_OD_^93aɔ椎|¯ S2ٛ';Gg׆X':'gSDwG)S]A^ACc`tFg7O>[|R AsR=gTXzk?{9v}%by:;Ǹگk?.w36){;#/_n(B&n4hȄq_qst&3FӐbS7X]y /;Jy`ky*9?,|sbgyJs>>nBJ E<9-D ʻe)`'8TLnfT\Ht53|嚇6Sw<syl+L3AP mpC;@H&gz=[#B<>䶫4bO{R;Q({IkUfD`VpӾzOXjQz}$zጚfcx~8=psêSݓ3i ^3)Hܐ8@oea/ljCytk%j;aZ9N* HEGu9jV}O+_xES6ȟ Oh14'Nx DA&w ݢwf?H5+"5W(.9y܁gY%ك5i S@9t6On&J ,QJK?%fQ-2a68 A~J>d`QsRvxe-+6J_ۘy%آfQ׵s!ԓ ";ҕfg:a`{䉹Ll |f}SVE3VS[ʁ5 mDg$.Y\bu>@soiP7=qvEi+6a-KLc[ Yyr APQ= L60Pkqg!eG',kpʻH(ME<,Kpi5@_|YKӦC8z͓g=Xhd<&w)Mkim~Y`KumCm>k$iZ<͋|WFqJMYuWo~~gu_毆6ͯקuY?~t"]m~%)W^k6>|Q03E1Cy:Wa2۶b<›.: ')~:$S@C"τ?^$. d?@'5z:X"lM?: O,JW׺0\8Zb~&]w.x]c:·MPj0_3b6yG.5ҳo|*T` E}-90Q;._ L/V)MII@a椭w7h{cF*)cEO0Y h-Հ/um͗6/k3#Uj7|c[,5&ڋi\5K:4@{HLj؇):y⏁G5~fB6 \@ '5NJ:jܪ̸+E=[{&\7^)e607|ZTppsAqdqG}=hÀņMaSJY5A&4 w1,~1kbBLwؙLI<8,;?f5t]H&s]7a0 ym֑g1*#Qb؏C<xܷ%3H&ØH(_Z&GyWzFwaPjw'#⡷ui\5.V.VfCslm 2`V_Ym /6CN6xv`&5*U@y)0JMp},5xA4 eMof&*Ip< טIJޛ @nWe+ a+pq#0`J'؟BbLsNAŢx\ ?Ct0L\Lt]<13J~X/fŻL(dҀ~0?T_dE_\V<3#XkM5K+J ě1?⢺<׍4 !Ա:e)N_2G7<3dɣۦ NXR9VӋ,M oI[.%:ExI,O;q;Ҷ/!&V5!ܟ 4DbLڳf86昽B1i+DW$& ҖAkX L߳2K1st2]@U3XK:ʒ^sP`$~JH&A62y9}Sӡmڛ FCBEGDE8{tʝ1w[^cJsaH"t!.]c??R(qq.ϷhZFl]A97ݱО󈨚KoaEf;e73G{IC0x>㢁݀SֵNsvwkuaqΐ1+:Fv}I=^4UPDFų"!6#Q=42 Xr`V0G#f1;IsMsFSENmJlGeʻL~uf +u$[,X\j6٭%SBM?Vx e8;V\Tiۣ2rz7U;>k,u` \nzLQVY: >+UjֆAёN^bI]-Sc4!8¿znȰQDTCD ˔R uJ /ʏuc$)؆G0hÝ&mɚbm'R-ko˓k';oCHU9D{NB#-gK'.?|q,ؾv;:?Ǧ&k C^bo: oT$l@Vw) ϔzֱ FmA7~i֌rLϼ LtϲL~xQ@i\Lc,O$*2#Oyrsd,cl(p}{o0UӮz-?rhK7c=xD dmρc|pQ -s=ː vI 4KiWWnZnqKBs]4H/UTCY72KJjY=CQ3oM=n~vͧ.WՊ._&2'49tt b"'L,t&s)h"v=\̸&^r:ymtˍkojuisywVЈEg0se!ߡ\sALCA٦{Q U>)ntD/WQ# ǔhLU?DWz<@W6E~m p[@k ?IO wC3tu82E@y\v:6zt?ОoF# ..nq{]!|џxArosf,MqMnʂŢQ2W +o2TY5 -V|ct5$MWbq*`V1P-5 $ OHeW1V? !#,#@ i`FYB"K6hmp6Qp*f6=AHq$$>R p ?zsşQ3G9dڔk"#nKawbBJ5p/wy$rBu9O=2lpS^;H$Jt]ݮ`DJnO<}5ZYs|q1s3ٺ͠_~GC-,)Ҋ&slһHwn#n٬jR$VoKׯlvvѤ)`Nڸhe /QcGcTVt/=W:ةm7[)gWQti@%~(0M?'7#0yĀ9'|]IԲD\|\o^N.7' v[8ZV#XUrG3`37^4Yw]k@bم3*lXtqZL9ә|7T' ( 9Zes߃gxp}R="p~vkUIiT$zmxB2YoTލt8ud| Wz[zOvn:٨{.E uѿ>k vgd9>'D|c/T|3lOtqs#Ng @n`b2)) .p{AjbNd޸N}V|ʛYt4rۉdSO] k^MXu7xi108(46^koN>'X'SB:inu)7BJH8AVf,ŭ &r.Хr YX;)dpCwk4WEM ҹ9Ӭ ,J{yX'Nbsy.g7d-ku͟kMJG.3kRЮX`1R=v?-8s"~N x$4m4%\,UyzU{9u Ĉm6.KwffU$eޝY$Pcf9]26DY@+' wde(He=9xӨC!lEmڜ+"G4" l$VOY! Kw&7JQY[ p-lٽqM1i7(Py,3)V K-gɊxM(6dEm95f,Py,9 e'Bb8Ȩ+ۺ4nθѮML^~n_eT D3$R~|N n7U]yXVuPUjИixMKFꅡ4"C^Ë́[¸\eFVŀ%렸bwU Dq fd xcF0dщQ\uTլ 1R%yS4]U6+@a/T]9 'YQ6χOj3~;!PI%4x3oCF\/+|Cf \.К/>6Ր..MQVW.D[#w? B6jCm^|'_Omm6"jI<'_1T r@k:?}cut4kTZUè C+}d 8L!l2i?gTp[@qE po. S^َIy\ \O݇W[j}H_^~;61!K#2ٷC\?y%s]Sc0`v',/]T1dµME|HۃrFX,BȀpרūCC,F6ѕʝ䘗mo@;W> stream x]O10 €XҡUqP(/ СY:ߝ|reA>E0u- -m1,O)x@fw5|s^[+x$E b'Φ2?M%K17MR{;RB|ES{endstream endobj 395 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 988 >> stream x]L[eع%5IMY[dbGeg@)B)RJKK@؀&NN.dzh^ P/yP3V­WQ7.\be5jNcQv+Ƕe01oVBW?ݩ Z+Kݱ?s3#h(43sy_]{: dռ&=8l{Wo* }ބld)C>fuyLu5veGI8Ȥ e^ُ|y<6;sǭ]t̓Dw\ջ7Llŵ]}AHÝNj6*,?Id9ܸ8חOBD5sಐu;[rhuڪeB]u9d,苍}RW\q& my"CD ;cS+WcsQ52XW%lQkHZ܏ؾp"KPMe?Gec9Ϧ<99Lendstream endobj 396 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2517 >> stream xVyPWai G:1{6 $HwTAaaQCcdѠq Jj^h+&51N= Vmj{=@D"2dƍ l_E bi|﫝M nfeyN}EbH5E\'H.X$$(IQH:,)Z' % .]\S/|T$J$UK6ȴ2M,F\IE'$c{zL#YiATi)RY|bcx>~s "#fF"!>$"`b)XI"[<‹`•x$fD_T0!X/ɱiqp¨GaWWiׯηN[{" /+7tJPrhtҠvg3CWl'Gq!> uOg!M'# َ^ܣROY|0:E?|jA֌xc)i,&T $nydEPݎȟՆ1XVYl^ 9t}jEM%}#석xcw>rD#;؟_\Z0748 r88q+:}]̧7:0' v)2]6sP,3J9࿢޷#Ր[lJqPsf!oimM^AT5وCSj#9Г";zOG'cG)nyv|:}|WzeҘ0Pqh@ꡑ')۶&h4=&d '@7>wù;RqzcTxqD,lj9zM`ԡ5wZ`iuj5-l8 v~G4R a=W9Tʼn oc Ț6C*⸶&=b)|^t+6QJ-SjPžSYgj+,OYB:VzPoN]tjڻ,_З2{Tɹ-InZ;(~XqH̢Ιں ̫+w/X$CNfjqB SE5M츜jErV#5|m$Ff&Op$A>sӨ^;Wi`֎- '2j1DNp%h;9 s>)o)ݚ6h 9b>JkLvOȭ#ȜY!٢X"C" UBnB9}2xx& YݗBץͥ{֖B˲O@#B1j:BMNlXb  !gbw΃l+̩1V>`/4:@=~]ђζ--OnɫdwF(cYUZԜ Z֘ ݢS"zj0P"/ۅLfLGcG$[K|^o-+ P:El >}h> va|cHk L%ɭNX M GhwXFA8ΠCPn41^ʶ2 aa۶DŽxE(ǟ-6JStK[nNxPrK9B"HxYM'cOZaDĚ3OtOV= =Ǐ}<&.[ŗ/y9ϠƛbDSLQ3XO9;sexD)7ˢE]u Z* 1 'Ou[C6k7zC(,?$b@{Yҵp'rX̓9q+ZuBgZ,H*rc~w'bµ:~Ί}PMU4uo&b~F,zP0 uDKۯ FVldT̪Mf`&,NY&]ygTb^Aa.)cy1giW.K /1uI4'Īb;]=ή Ig!|U-#Ϙ]$. %bHRw41o8;>{rhI5ʝ9W1]¹Yݦ "endstream endobj 397 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 618 >> stream xcd`ab`dddsTH3a!˜;ǣ~<<,+|'={3#c^qs~AeQfzFFcnjQfrbobIFjnb ZRaQRR`_^^[_nPYZZTWvt-(-I-ROI-c```+``gd`zcǏP_N5JމKv_bٛ9vUkȑioݒ&tLjljk+2KLMh^d 0azQerDv'vTeus4M4w rn-ذcewvMYsNk|KacB{}o ) gΚ2}\ɫ'1wت:8\e[P%)i^։=gv5{/99&;*{Ҕϖ]sj#ݒ9|WCYd|9DYLݽ3f-[cn]bb g%usxUߚ4wBy҅?M=!i쫸rq\2ycendstream endobj 398 0 obj << /Filter /FlateDecode /Length 7602 >> stream x]͓\qOoS>To)(vTĔB)ܥK_?;n {].\T)G hw7lLg/O~6ϮONr򟳗OcD}<$6ڧ i\'6_<>:iʄݴkߡd|ܾܝcFN4)n/0_DRLn5p)l4֤hfU;~|~ >9S{˓7[9b*p*>දm&?~އ趇KrrS؞w 8\νۛVРG FxW޾eD0GF*Ξ}Ry7 -;1%f*Zl|6!cNF2y:&JSE@҆P3Io_ ]ZI-rU`1^Ԃ潀nǘHLovtF}:3ɝW;3Q1,#ڰ=0I3CEX ߷D֘dWRVoO}h>N! &#x`+oi|InνE~ӁZf`oɧ3ȑםع"t{F+E١0-yFhHW"S*/ȱ1 6xQZp/(}f80bZe66MfybM0pyQ{<8~Egs.PuD=⪍fktzh>1<&fz9N@3+1LHߠGMe, `9=ʘy_L rv|<#MږG 7a7S Tr4= ÌJQXr}n!~`zں%XR)gcPl@=<S!8=DaV6* zboijg 3+ L ,0ȚXM`{ D?g gø0eqMAaT"]vՉ1j=xTܭl(G>iJO7*@}JErrwڨ|y]hB8%(2dIp)<[?bZCqt :w ?]iqd#~o84Pw `"JU G2PE@(eV[d."\DXX_±%x0ն G@9.P ;eXÎ94^$?eV_@'?nOF~65~Jl05~2~p0lk(V2x5~*~@X8 B~ka4m p9D+s@Q"9P9`AWNb_wI_@ q,ܲ)s@4 f( x.[ZOgHQʟGm'K)~*5~cd)Ik!}˼R MYT#2IK5 w;zE[ݤG)|>/aM{p\!?ﲇ9)kf g?+w|YjW>tƋd6䰭J%\kb$OOi>b(OA/v;qN"| zN[ ERYGUXi>D@>t‡p2aब蝃 H'Q%`-;zwK]wbYjN=GK/#eJv{͑JblDH<ê-g`M"Uw5*FZVHMuGa$L 鷽E0 GiO]=uCj/V$|IW_ͭUaGMƲ9GԇU`UU*>[3\7Zse0>刣e(q)*WU*"i<|?y~4}&y2n1ecŏ)S?Lٗo~ZFș;9Hu^m\n.95St|Jcۛ7T pO)cśFK'7ߝmzuqv}Q { ȡB¨?H5m/.[SIDY-xft\IhJ-qp%hLi[^6Af? G~zszwgbClp}&e+hsg [s9O EUj(y6V& U؝HjrXQWpI f*ьUR'1rf*~& 7̵BFV1=K4©qqMv ) *5\m,Ui^rɩ#W)6MNvXǧF Є;P.d–"̱|ŮJZYތ/I=P~1MSLDV,AÔ8urXV IpB<}'7TvlR; *fu3^Xex(sXs Wœ `݆]@&-ul\Z3+ݝrCEg˺p 7 7'jHxͦJ4@q|iAW5#eELceirR+יr e g땊QYh@md.5#_¾Rm_'/BG#PRܠSr}bWm'b 5@dQ(zgX~7B> ,4 t_b_~b4)ŅHL \\(B<~úݲINyiK{+#+iz?\] 1Pa(OxVtGL\rjdW o&"iV]Tv`l+G)B={5y%0ރSGB3t,#-_ZsW7y =q6H:mĂarU588gvJp˺w2k@ˍNd{.\w]S\ AB#lqu1ɟI:W?@Xb ɟޑAQP~>f92ñKȗc5Kཱུj 3#.BSe-ȷo(*g/suAJ_ҕ16Htj@~BUCEϣuwZŀ7Qc/6d9.W)2 ~)Utb|B#hmm fZWGDMy|5v{>Υ~Yk\DaLn|=pzwy8>ۧ(@XtH +<Ԉ)VxKo4]d:wIH史)cU!_Oc%ATdab#EA]n*R >7ur5խ!(1( ' I>Q^&3UwQJ`*Ott|-B;:`串}``BQɥOy' w+;bN*[nwҁ-d?3awbf4XD52IZK2Ky__Q˜s7/N4͉F(-`Y"=Q" toLǂ=]4/&A kPyy!%R{L'z9dsV x &?}K;0>۰W1K2J=X+*}Jdc/og!p\ ꏃV'\/?]?;[=3]ICbUK *(y;ɮEjUl!yei:4tA8;p9׳^~-OAO#wzOMCJ.?+ٮ.IM@iꥃÆxPN<&[0T>(+\d>oּ͛nGyٚ5jo'c\/Zek^sk~2vQy|ݚ^'S)eu}8`ze ,lHckG6ּ\bjHt쓿Fh[ɮ Nɲ2Y |eg6rfz h;>‰"l[lG+eSNʊ9ZmaIe5~(WoE5y(;>-=t1IMzOa2q#aI͊~z_-ZֳɖW6v-tzHs4 b Ɯμ2nLVU""ra8`gī=@d<] V6Z@K*kPVx^;DTQc,~]vY[RObOs$TyY/R ~9= r].gE}yp]dǶ#'xVrښ#ԻL뮖fbʀ跏PV𝚧g_]|_"Db&WMZbǿY.Lչ{#%{;].:ʸ^T2iĐE]ħ\JwK%lbE|ѡ\~+zTI^BNz3kMAR 3^^wx~M}ǜ̢Ld? `*7X7hֱ" +55,pʶ[I#1Ai]HE~{Rx RXQ J5suWsocݿuAxqI?p~HqkMR]XCu^J>o~R I.c%IC촙0GxugIb}.ٙf"&6v$ɚ]ẒWLhXuy jSU0Wm`zCU ו}vBJf j VYcU:4!sCu'y8EoU{r 3&˄tf3A)dݩ~s*VsOe#t,eCjּX zߵ׋[s'[ժF ٧Py2SOD٬Oo>?],|^qe_› ژz)rx[K[:o~lWmwM6Y0~W0ߐVS.ucQ(slendstream endobj 399 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 *XЪj8(Nߗ,N>~l#GpƲ5 HeQV-ƃ剳B7OfKUiZB 'mQt1 l.kSIT @s$Lg)HSendstream endobj 400 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5135 >> stream xXy|SU!XA¼싲(l, ZҖiIzI4]}( *7 "AEqqCHa{{'zD"Q߅֯ܰa?a"ax/w<~r À Çm"Ў)HWaZ$%FzٳgN1mʔ#'JS2F%'?i#gƧ$#Iɲ<9//oR\zLiҼ'K%X(MLRfltY9DU f\XRҜeyq]+ʄՉ_NJ^~OjZiό|ryc7~퓦LeIj-5ZO6PcWWqFjL-&RQ-bj2J-Qө3 j%ZM͢vP,%$(⩾T??5zH@ SCt7IDE'z-x{$%y4Mҟ*ﶾ_΀u>xɇn T 8‡^53d#y4Kl{k踡C~c11ctj 5%$_ h5xtGү׾77,8o"ڐP}Ep:%`c yJC3Jcqʾ[x5ވ+&K:9|W3chvq&gXs\ 숥!4hqFښq 'P/MYm|/_߂5/} XhJc@^P7B#?}`>ay;ńL7NXC;#R˴Ovo͍ϯk|LCU\Ќ_Rm~G=^/`O[Q<0h[ @,rpxfevGl5ECߓ- m}!T Klbͫ"z7w-ǣm.Asy:H@3J_ͽp DQ/Cy|jMsw{1M}͚r.uhuQ_OqLWH~!t,$@T*G.(7ʥ'fɖˈBNV>JtrV{AH^Wd,uɘֲ; <;+cyHUK;ob1 Pj -}i7υ~Ih͉O_o9_e'KDNZ}L晟/|Bȩ_\d,f%/w^q7irCh;-.o#O[M%8)\%(2{BNDDƹ{MY@+8P`s1W%mMXrsMGlr49co<𓻰56韠uWQΞQ`.,<l5&$&+Lġh%9rj, Qʞ b ;d- ox&dD/A k6'MWrBl5TC0yO,‹>1m&..Zɐ´囱$ ߀Qp>0` Ǒ8!dVm%, I#9$bUIC!y/yZP6ՙCO$۠B"<+anVP,pjmP /<_lB﮿ioa2k]`"rp>g)٘Tw,؎uW'Ć"U/$i}oX<?+e 1dA :Is7L`ZDFJOm>dX6RY|"Nclḍ׭m|na%Z yFP5"]:B߶4Z}YhU^w߾ѥkh2ՁM Ԑw6_`d,`9S޵rYiq8fu]͙G~yX#9F}%s[N<#&oXV`|$Zv$؂='{a*8[A.*@^ꙺxɂǏ[:&D7 oֳkDڥ%FCz^={D+]o[= RG*{.7NϪ!?vRĖp[FDϣVrh=R$%_A4&߻k<UNu'/=րR|?sV:G+K;Vq;LyA9gGF̌͟ .9[B&S⑙E豛7~{XoL$q9W57VkGFNqhixJClil6}U6;жokt|SyguJE^` M:Y!}+7NgMN ٌ\C\en,fqAl69q5؇'Oطg۪kV{vܚG.s&,^T$ެ)J?PX/&|9A|zh9xpxt~_җ=[zRkW 9tZ*d}n{.q^gw9<,icEVHն)uK/S*{[,ΰu4Yto0l,QAxd 葏cQRLXձ@|o όXY7e5?& kNrJ:SS3x"6>TMX6vG>>QU/wmiz8Ȝ:{ XȇܶOM* mݰ\G®3g֐Y'goR0\v+o)i/݄h1).]EeJ~OE*O6}4^QEjqRwm^{M[7s O2ù#ڣ-GO&/F+;?oFA&l%XP{h[;0%Ig1_vw{( J]Z9Z&)fɌ9Q1;Zhu77$ H{\̉./( 1@f!SptRDV"s8`c_7l9>~F\s˴D! 8B_n} ќhI$.sy%2mj8*;X47XlMւFfDgYk ,Kf),b%|克k{V+kj8t?!1 %!@1 &]ળy\ ':9 AР"uV2+R:Nٕ*"ЗyU)vK5E92(OQq_F{ehdfZ[u- dn+зZ$Cs\@(Hu PBl&ŠV7mZ)ɲlIttcZK'BWEv$IbvLEA]NcjZ큀C2?EV tCdX*%Ǖ僊QdmoWvn=99d0W,r3kMr,f'o0^(yV<Ӥ096s4r_i3d`d^mem6*k>_}jYg׻u1ӟ*xy+aV ;%MB>q=O/2p ɵZ"PtN#:c Ϛ ueaI^"<_t. b~dڠ=1\q~!95\>@;im r\Rj٪2Ce`'Pbʣ%52#^zu!(bs* *Jvgigj2|E.+rԋؖh3JGC]w oQ ' ps\S5MԻKRߒ& Xx]?gu e#K^{^LgFQ1Sk8\t4֍xavx"Ç LT3Z_^J X__Q(5$8~xGn 6GP}/k5zrcuNyC`Ƥ&!V+,/-irrVg q_W 5ՕKǜGen'W-.l:a5uhIL-B]n(4sR<^К0p:$ӊ̱J"l"~hF#h\E-r=1ؾsoRjRCnk gQ]WaXH#QEC7\R':Eh" ?j]cy?,FH[\ u|ƯsZFo@ԖD,XwC9E֘^uw?ݺ~N,4 ]DOᘏ Ce ~F+F#x٩x$j}`6 sYĄubȩ/ԫ,fHg.eʚ =ڽ=c=P[&,tʴ+JЗsbendstream endobj 401 0 obj << /Filter /FlateDecode /Length 8392 >> stream x|kuw"o8|{1d@@pu!yi kes (FNuuUN%>/ۓ`WZt"p'5bƩv>{/obԐ˛Ce_2%~~usRY3]a16(v~֠Z{{ǶiT|LK9'='4.%]j:Փдr~G|k<2.>ђ}2b1PO_c+KūMX|*5ʕt>z`(bZmjmH8AeO\ \.)zk!zeĖ_Ho 6bVy6Jvڄ0TӥSR^tO3駖vNSGƥpK2-c.- tK k2wFjXgt:vSOO[Ыk/yX:s5&^o;,XeI1f9q=؅JRT1ȘBOJ)*mM@eRSoCQ G؄zyŔc5Ҫ97A>ZL2{PTX[Qǵabn+W5*Ԣ6+cKnZ2 g,A(aBP%>ˍ][=g=5rz/6흟\zP .Bۦ^N:kfՄEjRL_?0 Kq^Nմ֡(3^4) y!-X];" %~lu"рǿYC-*`k}`xkϭEub-?*[ϭyl-4w>w? HF^+zT ;cTE- ջW7-u^GҒZ)vՀ=Lunܪ?{đVtjU+jw %rKфG&(X҂%0x8gKi/LJbaU?:vt K#y<{{{WUo+B_)F4\wo~ӛx] /1/^ /?}mbp~ fB/yWD`bDm#N}#b~{diw%_ALv$yH1GDR7 @D`; a!џ4 _l $Y!#T"% ='6-ٰ$ϐ6{ѐ1wğ͑w!A:=lSv]%HCFtHYLgBIY1ZAYxb@q5TAAe@Q8PrQ7@݁>@rFN8 t yqG_jǶ&\qFɀ&֜ A[Fx)GSH]&RE<)TN~7օ8`aͼ0qH0\G JB\ʭF%fS,P҃sf_DDs,d!CBR4B/4IP\]#R\im ˉ(((x~Kk:<k Jaݝqf,D<"e 8v' ׺ϡepR' @tBˋBK&o_0Ԙ)5:0 YrQً krc~aMp%4Uˀ.}iT.dHp 4$8OnIT`HvWsNWY0C- ՜swu'RK4;DF_ :dCZÐP[_``˪&Ua'KXx4$QRҤ׬=C,g3DcG+*찹&9yndfQHT5J!Jue$RKY1K` IS#i:Q0w\M,`Ltt7Z  (2yN9X~X B "c栭AzA'Pv18Un[{ eǤC&9ht W}3"՛dL%;i"ŀLt#cJFH,Xr]IDHxE7jO0$* XaJuc8aXbHwE7 3 T%{5g4ހ ޤSvtBqRPA (a@F*Yb'#bfD M&bH^LK+A*f KCmE܃cdXbb A5AÆF "Tb$ǦsC1!UcC`vMpĺDIkCe  R$y?alw+?1LʏRb^mmb $!Q!cI  XR(8ҤXGV(݀k !Ʌ`z!E%xGGԢI&hDZ HOA+VңWY7Z Q؆!*Iz2ǭ *4#E藤G﫻b`a֍LzDuuݕ=$>@]롞G.ѤKL,-X)5`nUң^L @,t2G\>X@:rbeRB.4RxV2!~"DÊ,JCTE V"`'1`!A2dxd")j08@T1g16&[ھM2tʤS~t ? Ij#qʯ@W!41L)R}X`%c&͐Ic2eVBE!bp"\jtC㩖Wn$eUXI rU?<2tefGq'h4a|3y!jB6 T¨tfE2`H~|sɖjiBsU !CJDQztɑf[uc%9#3AJ֦+̬1Q|vđj3|8ԤbIDbpײv2In.;LďS,ܲ)JUg>O]~HC lc.WzaOƈ̤ݘ7;-M4(]ifqCܳfdvWɂ:~eNErĊ@ϋ}3d\."5 tݑlƀt.+U hۂu4$ϩ3LɐO* @xmWM,ڧO>jF|~C0/ϻ7g~Mr,c9-F?mK/7/̷|Az',9Z.?wAn!77v82 Aa:z~ʞ}~ǣ@J>k^§mmh~0l_N>`FD*OVggqw\FyeĹ^ݰΐs -bAW!i-2zn;OѿQ@6?d2&_g8_{c*X<5/ll @oFD:.\ez:=:nnY_ږe_헗~zC=~_~|_S~<_~ol/_/_n~_N}_|aggtkGp\~ڕ| Mwk|5[Ѝ\R 4L-c#+3[oLͳ1Iy1u1/t; HyRuGq5cؼ*-\vf˚,qǧبaF,cLc/W6tZIXBWX:I7W;Oc*+n,62w"{~*<8軁9pȬ/ Hx7|,^ѧ)?Eq `Zb_Y(Ps n1FtH!nk&m,qA}CT|5$x[6]Z?~¶w3F"0h۸< nN/B&悭HlD[\{sov_ƣlNKM &:l/od:=RNS_9^M"{?aazp.-#40q%\`o?B7SyW-(}j{ rؿ,Ưo6;:+/}gGA7Ms6־|,߭IpSn?Ojp#IGyig1 YIl rB!O<͒Y?4LJDLfKy9!̚4Xow9wN#{>\ vTQ3q}fH%r5ucjYd~xܛ=z8 ~sdb!bR#0KaomQD`Ɔ2LJ~9%wsG6.[=ߔ~8a.{t~_fSBx_>#lx#>D_ụvx~p:O A<Rܼ?ߛѷ1勏r~~~ f?}4΍oj9>.'>S<6{~&wXa^m'Fu>ەCj9';aFrW3~wx_/kW!j~yl\jͱuv~ q/e/`?Vڪ_ömv#e/o> (-͓~va'_N5_헿/X(^>8lp%orN T·IeBaq4o?2m8?ѫKjSyMb[/Pl}_t,td:Zo֭6=o٤rJRǖbηx)<حF|!ۅ۲kZ2gl{nՏMCej6%nq\Mi߇k&1b/E[VCR5 ?'Fz"?&.d-%[ׅo> stream x=]o\7va_v&f/E@$4+݇I5$ǑQ烗<ʲ(H(&Q{uӁ_N^~|# lҔTFu\$_^IvzOwO*;i:YM nirɮv/R~u&TLquM3yz tR)ܴFeWR A^"dbd(] zh%8Xçj'a%hꔻq~GR*mm>fW5,{$jTk3 9H6; 8åյijfM;ـp0-̻cvLyVGÉM4qpM˃n3͋ڼTVf 7H4lvR73 n YGKV)ͤ MrT4gy^b)yTimumiLQdYS#a>|(;+1F0Nj@%%F סuܸx'iHm *O|wDT`r`7)UQMk8VivFiǀ?[G4K~$l`R"m;tq`%2y!L70w` HMFԭv`(6|G,tJ349ǂ%Kßp1`K('M RXIo}%Mc! G%  S0 gBh2r@JY5EhUȾs^ݤ$e%سG8]VgHNEZbo٪B[f[1hS+NTK:tDVL4t.|&cՠN.q İPku+O5$C+rxuNx]r7t_W* ֹLy"O,rbIJXt$O֍}f8tp@f`ȁ۲ 65kfK.rim.8'8>gʁ Zx]A%$ eѓ|/n k+O -s<X*Yuf{h>"a5Oj'ΌlpvjVF<%ջ 'acA>>^4Tfn `K?a)}#f4@f !3 v=UuI[HF&#JLtEWp~m)jɓk=M6fR7dΓEn+ݶ[,V۾Va|IKno+&QOblBcw"1l5c`(uӒpu,Mk jB/#?./#g\ I-DVV(_a}#X}"Z:,l~$*օ'$`f*bt))B.*~WsqyZF9G|6RE,3-i:+c,T"F$Y@' c^[OuJ]tYO0+~>J:iVޱ*j9VOAyѨ !g$ٷG;{<|'U*5ґY756ɀRԐ3m3:Ї.wڳ ,.[^_#LѰ;z |^L X-K;"dN`X Eo1y b.Stb ƒ\գp9 Ш  Hp _VYgl42Z/Ad dOn6Z^W9Yڼ׵)–"ym~TGsIV6qȴg?/\oa\3.& w@j@1^̢#fp䘂c'y3p- 284qQ;Dts ?q/c9~E^*GW_ኈMm>R6ɰ_jQrh渉<] 6?ON x^!|X.osT*f`ig6 .3^IX6ڼ֦HH"ѳQۓ<-r9HT>6?r6?Gெ[ (ͯj{[yQh%Q|Մ$y">p=REm pN%}1NNLrR tX(QQl+Ea!_̈|!}a<`|Xp^I>]/V٩;; p&xࢤU*'&*5_Jju7"ڶ2FȲ;KhCg勔UGwdJ딭WrTAB4&8ằ8puԽE**&c\# rgZ,BG/q -O5z9{Dӆ*|"Dњ$hB o?d!;9$CUh`k,Ew"n10Η|2&HkXLJ ]fS&g‡Fx9ֆ҉xO ]L N)L6(i#';ks9O~P`%P4r6d&#BYj(di:]*eqI1eI.4@qx@l1ڣ5l+VCksv4&s&xkG}1 B΄_ڂy9?p䤁EVm^aȁ.υmϰ#l%P$oŕz^vx1tw0$-˕jNyp[wQ:,4Ѐ8{Z@ Rsz% smQ"hpx$*e F@woRlyhp3ÏIi{c[YUU_.\TZ[FIp(/X|ϩ@"MCz]/:!]s擶sH,-3gcS(6°t%R+^u˓ǩ0#B4h|Yq )QW=$!M) X|3uC~x@RktFDxYi 0|할&8d!üWSl`if{.p4eȖ7h<ɆHI/Y|DR%Bq 4S- /x S(kap0.M%~iϗ bқQY K<ݹT)%#h?m#]4OATtGVXcFm$pwizrq3X\(r`)8 >:i(1҄.:l<-:B57r".`s#0!0jzFRdXr4ُ9OoPAq'쁌%gi^frғ:1D\s7ׄ/,ƻOր5s4af4헢(؎=+aa L饄9Zn@V%;EƮHg~&E/e r? Qknd;M~QlcVm8ut-lAZ'074EވL--Y@rZf\MQ"8_zuuБ!)m&nwKn/< jC5mXC"ы{8C^[R0S<Ԧ(cf:bb1TJ#PKQ*:ANd}I0\Gy=3(*$'հ[=_/(.CRTt|zPK1BhaJ$@7۪0ҀR9>Wrmkіʙ=mpM JFFvy~.km"ҙNKsAR38ۯ1k^JSYV?˵[$Ch z^vwط)tj"!J`2?㺈ocRr#޳fCVmuxɨ;g(-6AI<6Vlªnz>r!Š@be־-HfPٍ׾%0į owt^u #mn=|gQ&󉊷j_ڢ߶T 66Rsly"~C(FLJ'nyHp+_ 7~zy+gLB׫ k"51Oy`ժwBntƶ|W[B;-Xt u= 95l\=ho9_ʢr. F“\U t,,[NxyO*e]XтurAْ=;QU,q]endstream endobj 403 0 obj << /Filter /FlateDecode /Length 3215 >> stream x[[oTG~C~Ù,smXDhCJۘ3c R~Vwsz\沬pKu]Hr$ҟtS#FGkՎ̿u?fF(r[FmG{; 㽗09:٪Ga|Yx,Z#P'1o" ai*\s@&])e9R c څvnZ%c>D 4gij^-+n sf![ Gx&+X*'e +U3/Okct&+Ha2>X\fᘞ 7heXcN"XaD, "vzKfE.{$F ]5Nstڃj Hɑ46Ne FGm\1G /uӦ&dY˕ji{k0+B?{{8thV0Q 4fFPeH=3BR2Td<+ΒmP}l-Ӡ#jYX=:&"ef`Ln4 \V<϶=w jlSxÓ98dq8~41j'b<.*O:Yp681R5[KŞm w r^tfH φ|#TsAR Ҭ '+5{!Lbc]d ǯNQ6@xyփcsHqW%1oN)Оe(8L0щ*T".`K(~_AybQ`XM[GEAрR}?%lسH5ⓦ7ˁ`cgs:z:]<&{`w`eәz'19X 5y-K{$N(!]"9?%8 RP>[pAt 8vKªWA5`h$ݚQ~TM7I={u륩B%Z5AVi;s( (B-$5]e`,x gBL™kQt7&6yhӲ CVw*eoBp .Y"_Vx)8hBDވn}#D0m/f;Ҙ3:r$^UXJ%HKV^iX%yk~Z{Tl? Ѫ@ B0~Es)7]<=}R (p`K*[t)^uQ%X` 59ƇLYVrxG\|&sP.bDrsjSp5nZ>M@'{zsW|[A'Q>e)ߵ0GYL5l)%H^'ϐ|E)ɖ;OL $Ѓϑ\"ɃLB:%H!`uXМr׳HQyҘ(]_C@{r%3ir/#:f{ObVyKr^i͕E=E÷XL7$i+ro=VSs8n M)&K+?ǰ3h%ؕ:*N-XAp[ LH \e!(p=@3a(EA#E(LIi9Sv !bX 9G /#~gyO;{~˝ y .]~K-^h]"96C{i6ZہVa41`)>!ۏd#@jrWҊ/ 9 hVvSuu<0׀ QP:'Pr{}w]!$d+tgk@YRzSY-11JlY+&T/y)?/|( kˬ)r)iIΞ]fbTjK[I&s:N8ϵEc}WdHRt޷ρa gXQ 9hR̾}!s[T;x]K欠y>IEdS1$ rk=*|ty4itr 6 ;_{)$֤{gC!#C=.|kJB $_WsDC3' kP 1mdIj3 A3V|5]bhYfNK^ $%Β%O\r%+# fsMg^op)IH&E }?vP~?~E蠀fhV̭d!NntApV7Gd2,&)r0U>7{hN)jMmZhJ!WJ꓏|˞AO>׾P^#IJ{b"NXհn3w>c @d#s"yAG!Y[+$1vyبu$ _lRDk}yXq!|dB>PB>ֿyux !)96"~I;]nCK~!눛5:(ū/YOܽ\{D.ӈO]XO# `rZq}UӧV$IZ|UȗU!_B]%/>hO_d?/#b-] IgYyIh8-VYV4a$* W>*>*EiQ o6LFv%"5Ŝn6~-?dG0| m ZHݜ")dڤĮO^LAWjW]յxI.Wiwtc:V;of掴Hc=L&9l0?N\7E_Hf;e|sggDO.x.^?ܝ1^dGoUGsCڃHGX~?dZ1Fw{]# LJU@{m5m`~ߞ_7coO=]{37Un_r9;GLb+ n(OJ~ >MN4-'8J> dzY}1-Y[h7%LQE[_y nC-Z { a|an6P;$ c9^6\?__ endstream endobj 404 0 obj << /Filter /FlateDecode /Length 2770 >> stream xZs t7p<}86u?2t4L<ФbEيwuyxƆ{X,ŻH?Ϳ󳽿4btރg~6f4RGhzW>#b}yhzz2+W;}u<NX.TgֺTO@!̀dLamuU`c^Qn4WǠiMEUVN%J4G*͙D:8 :71)+$RHsta & v.[&2qVIWvj(X(ViHBF]}ѬiV*Mgre yǘa?RgU05 $bgd8#8im5ɛ BXYP11QHPn]V Z`l:`5h7j5[$Q r|>$B Aނ ɹ.ID#*mpe9`in^+fDnz]k gs*EE[-QYBY_;**2:'NF0(Skc}q 76Lz!b`C+!5K$? y]㌝d璅9{Oz;eӁBE_ξA4/M$BKް H1Q0aɨ)l,%kd\7lQ>ѢD5'[5J o8:S^'^f$t:4r׆Ho}i|Fr%evIG۹G_+[$K$/t`m9r 9q) aN P2{r# EϤR N*UZ"HI4YNA+s2Ѧ Mpۢ xX=-Kw(Eڞ]7It~uQ8o &SD SMft\&[s,{\vTIetȚҹ?e )M_ۇPnr,e c ZnxKj6)IN5Et%nbx]*o*TEaF&Ll(H?XAbH[[;  X4iMPHK F:3nE#Jl6y$JYkSed#Ҋ lLh!,vz-C݂mGH(sрD/W5?.e?CFd(:-IO[ I b,7q_ c$Oؠw'H# gڏ$-8PR6s4I]/a-Dt'H>J߳|Xc k!ryN~*]O|l,G&>'|b{OҐQX+TR,)GmݗZ[m*k7UsWJN*l}{ŖfRm"ђTwoq[4|<)%޿D|DA9a zaW{̞%rY'D5N0:R{ gH" I56wqtOy=: 'w|X r+R]|rsHA!']n 680#-}JHEO2fktBM1Ə(w5jD9pl2!qgrPw$odkzй@FEdώ`h ٚ4\®Y=&LQ[rĚ[-va6Q(C?i=kAk?^H|>&C,D_5Y<=dѴF:MLL4$hB\NXiAiZkHLacMHk zy??H/e) LL:+TǤ%636mm@gAwԄ.A anCHYg{)ڇJJ_nzrz[]hEwH^K=PHhN*y f+Oy|>ܧiI=Nu>yz+(\}\SR>o (]Q.o5;$1FUZ9ʣ|b3/l.G>5MIBaVXk[yfoIoJF?J9#S<;umh\4:WUmm=l#:}4iJXfX~2ryܩKflsKK[;`>|j*n]ԝ^`vn(O[H10s]*4mʫRՀq3{Kp8UA:B IT/i~y LnҪ ;=u!ۛƜ?kJk`u?.mGzg"} fć!:y"E;{6 Vendstream endobj 405 0 obj << /Filter /FlateDecode /Length 4447 >> stream xn] BFu}1$Mi:JjȺ$qs9!/JS0`#W싕'{z7O?كI~GCÓUQ=K I9٪. G{?L_F(9x;m.6ib Mgl-RkXjJ Zt9}oN\0A W[u ^=Ox@ a< ^_e:Viz~rf%p)VAXwOFUPc2s;pv(`Q:3ݰb1 6 ` Hh9R:A qk$?l7ڮsI{`PA$=Bi .9AdT#HQ*PYPʘTh"32ȶJpH2UNs' mq PpJlw >cl<1DzgE'A @1Ex?7@YV_u€F3i:@ 1dR#'ZF4a2nB@ 6Bm7=p 80.& FeWF# 1X`)R* h H=`] U[zXa}z\^Y]U]^._e]M]8d0dZ^哺ۙ0.e)l?f?1fNm?{q!UOO|W~V*ESC|]Cؙ#W#CDp>aK2ZNomM"H/ 7ՑY5v?3[ݛ.caaEAaP+X0;ԑ=Z1\؜/vVcp;\Nh7"- G| {z鬹˚.ez3 8 ˥,AK~j fVVCR?Zy|7d/z!%Gdw<4z/LV;P`DgԐc+nzryEni7nNQcG0>bZKi%+;PVJ %"dsjCA| P?)OPƜ3M CZ !}Ty R LFB8帼&J;E|ޱoژod^ s)\' @( ˓ێq&B1%l(*rL|* PQ!T+Hmc`NNl2 :xPYA  X1BTJ3W4` +| Hk2 \MiO K< ^Be8=Yҥv&n09Jkufpx}0,S:EnfY[Bh[m !1cL|5 $ k",J$rLG\IAOyP{VT+"C\^:Nme ]/핶-t0elӁ9oRcWu;삌#>qNڗbNfnPttPF/ ZIZ&p3I}1\o*1N*&cv:ezEA 9,NLkt7ȕ*ZxXc 's>$HcKJ?y6KjB|Q" yβQO+J%!yYӶZ{SޯްpAe>`y\3<[ۤZ-ԱSB|pRhKԻٓBڒ/NMA.vQ=?.flֵmLzmӶ" d&asH wYz~5)V8F\ N?{9A3a0%ܣSYN1ޯl'U֩`|ǰvB=fA,~zI:VR.`A^vָ&ٻeCTZj[^%o˱bvAH }4wM!6׸7l쨘f}G>bp(Ax \S3:Ţmx7`tٻf#4Ñ&^3솽wV(-%P`>iK.Bn,f YQ7ېqP! \"DR"b^İS7cuxhY9tӴ@CWcC86[%ͽˋG42GiaȞuKALCs HgsFiP gƒdl(!npޝ [aߦ -wAU^Ө:;gKvOoa0 cW5Y-ǪH ߑL?O)Ԙ#OR'.vn35.j.5.zp7A눍y2yVGӃCĴk|̸ #~ю33=+4ߑ-|wG\,? lѓ4#zݚQ͞svz$!۠*_½ , ְ>ߤ>x ONӇmL|_4W(M#'s'簲[ᣖd/ t^ܺw-O3`e?UT=5)l]z!yq/l.b|Î\ww ix/9[nQ8tu8_ŕn#;h|꾭۽e 6wڋbZ(}}Cmq}a$0ZlAJ>=Qإ.VW ;r!8v|UCWUZٝvJD `O6N59ˤ=atI NU%w\Ė/MP'R6nk5A0H)p#D~: YRY"9Dri vˀ{QS1;CAnveac1vZk"~_Ěendstream endobj 406 0 obj << /Filter /FlateDecode /Length 151 >> stream x31ӳP0P0T06P0P05WH1230!U`aS027i`9'O.}O_T.p .}*.}gC.}h\nn@n.P9?47XΎEAmGTa?ߠ pS! B)endstream endobj 407 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 *U ]ZUm?eB:t8K结ϲ(-n H0dY h> stream x]O10 N. 2D! }I:gׁm_Xց$i,Ÿ> stream x]O1 y@vX%C1C2 tpw'y?\gG:ikD&X+@[L 7ޟ@fϓ8UkZBMĺ1R :EV,C\ H.I.` >l`_@Sjendstream endobj 410 0 obj << /Filter /FlateDecode /Length 5790 >> stream x\[q~My90`6h!(MI`V\rIiKqICUuOwS]U]𫃚A'/~Щ3'/?{D#sVY=;+ y1ssm`|^heC^n(UoL9e?]{09F#g#Z~AXɪf~ty6i{苳ztk4?;s>3C.ǐCBǴ+0pzL}v)˟<|/@eg>0@3XCagg87g##sTOi$ .v &~$JXm8Y*kvև~6IRE Ul/#'*]WrѨ/la"Mla %*Jmֳ٤hO@hwb)T!<TIZZ3~lpjNf6ZwEofaM&?<kJsAX$͑WHjѳ0iֆ̵@_Gj#Gj#9Hj#jF t QTAUTAUTU+gD'duT鍕TudJ H&@]TuDRM22PF I|SPՑ.STu8S Ig-xn#і`y#%_:ݓݴkE02 p]IQ[!'wUaBO*NZO&Д @J?|2.qt$֐g%0=ҽ&34T퇛Af&8 7F` !>MGGA90Ē7Y7>'w,s YZvyTgU$ƥ.$O-ӋWM*($u6v{V}~rϧ \G>5w̜l,(\go羚8TN8Qe% }܆j^n5[X`&Q̎I$ ٘#e1d\-K*eC#eWhQhi&X`fUK#`M(1(y-ȕ*qP!ȹUJ<pUCWιZ:k¤@|a'h H.3"LČ( e0Rb$V=#&B-vqNTuLH/dTQ2W /Da&Ƽ`*h !P1A~*pDX(kjADM-E0 v[a8⏁-w lpFN|#ykcg-_azGX (_B&a)D>"TS x URr#@Y6\9bPWN쇕X|$ŬeX[w@~|>m/0)I3F΅@tZ璲#x#ipZ1뱍೑7&*5&xUkqē4 1e/c$+ #- N[FS~3\f0p`e9F[S~QaC KMq{4B%Uz1R BMEWsܛ̘*U-^wnc{7 sêSgtBpdnj;L QSUn&Tk3)DDB3(`e7z7Vd.?SSV)d4ٟzK ڷ}qR.zd'#|slzkK~Qo7YkzI4jiA*_&O]8rޔYP7,Ŵ5Ly!YO?_E䰫0ݞMkNJdpB # ey؏6o@$ĚG GlhϥHv5<?}Dդ~4\kͿEC.aRĩ){ 4GDjz` Cy-{bؓfYj/}qR>|gI愭\Vr`,^ idQ,\ʑBH=/[_n:Ybv/[3Cs1Cj9(Wt\gʽ@ n*RDWRhE@oܐL؎75OhwwN/fE^)QD 8[WX g-TB.I7'q}]vCaBC.XSS\(1Ak+S/8*EZf9̀Jt+q՗yXg`a0B9_¶To蒀x𜔝.Ff --% @Gm55C6mAa,1v 9ƳTD?qC* 0(4Ģ?ZvzLPpi!=ե bٰXtWD! 4\D9"yJ0e]b=o]xHdsZ{ۍW1;|=^=q5%ź%j%>A[ AYUpR!P,&/FuAUrHPPs9JS Ľkwe-U :+UNfD 2G~aȢ-KEV6<],Vsieê4m䆂D5)m0w T!oY n/zU:{i Kߔ ¹Kռ@PD@ ' 9G \W*FiOb qU(VW}bCY1aJt飹/8y:\ɪFC<>9~ \A\JQ.S8cbf3L5 fqԝCLs((U OJ,+f\QHhHOTSԉd -eU.dzD nE7SEFQ%5Xբ}Ȧ }~1-aͷc_,8Reh5~,mRa/k"d0HL\SalJ_A<"X{XQO3S0֬Q-`d@/$7]_Ǜq|?:߂@-=otkfi]{U9+5*U;l@;r`Pr/(u20 Ce^ن#Wckp!3e> =aK i:a^!%ODKw@GKW=  ?ZcNqA6œ<8 .|(e-\Nen^RE4eqY6tc9A+6tTM9}\|D3g3K ?!+3( q`<؝"4C%)iqKQV"<+dfJ}͝؈йg̫yGu#P*zWzq[Bt|_=%!``rYF)sK+&E| t b|}t1&.2lK#ęFxF;*<=s̽G$m mne1|;` la){YQ*"g[Owsut1cGoEZ `#J哮zQʿۛ`#E(Y^T<~Som:A>F&/HDiA53vl]7?xWՊtZ7᳥]{bٞqcIo^ *rqhi=/f1Arc8j(!T Nc~]S;.(Zn W'uyTd֏\ԦɃg-OQ )l R^v/>D]\QBԔk9CV"CN[y# `jUx9md?woLL#+vF.7z9#t=O6y9o'We2徻ʌӅKmپ*o77SB>zgfYHG >؜ܜ>?ǯ7! ޲ihͼQn^-(rXS uDsut_1Iex!go L!^Fܹ Š~m@NvSWTdRÖeBću].R]S<\^&VWIQ|w5W!Ѕiկ2v~sE(䒕〵wt$b9GfkVqW e}p_u(Cyg+E {,QֶU!BPwq;kf>h%'y( b>j|shRN` pۨyauOo ?o?6Լ$DEi5f.=W~c;V-W͊Kf^ԸkP3pKA釧ynhLk8ڎWU_u;Eq0)keqz=,Ouא;*iMoTIx}SG_ic:d^Ϻ_G!A)qfG2v<ۍ~W&?5sendstream endobj 411 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 0~ 8ʀ0%!tpw'0^G#8|QcYZ`ٲcay⢼M2䳭ڼ:MWHAL3O*gs SIT @s$Lg);>7Sfendstream endobj 412 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xcd`ab`ddt v04qT~H3a!Sk7s7˚ׅ' ~O+XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*\c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~|endstream endobj 413 0 obj << /Filter /FlateDecode /Length 605 >> stream x;o@ w} :LM -$PMXNGW/$J!Ka'O%HUBy[L-ۂBef]t#x?+sGlMֈ԰]r@j*,L,h)l?4MlGQ AwY6'`M+ISM\ǼHgQw)0.[Fx˸=:exERf|a0>3>2.;F9ab漽#IZwR\Zq_'K6tFq2S8XgGelt!O3]%v8ë/Biendstream endobj 414 0 obj << /Type /XRef /Length 270 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 415 /ID [<59005a1596a5e2b64466044159196c98>] >> stream xcb&F~0 $8JLVl=c4mZ*n?M$"URyT1 6gWwA)A D6H RD* i#rB`Y3ީ W̾ "@$ 0X:lB1TE6>,B!,6\ZuE^ 3 A;؅o?"Y R H<7Al)|&_"HH"/c8 endstream endobj startxref 213632 %%EOF sandwich/tests/0000755000175400001440000000000012220001272013373 5ustar zeileisuserssandwich/tests/Examples/0000755000175400001440000000000012220001272015151 5ustar zeileisuserssandwich/tests/Examples/sandwich-Ex.Rout.save0000644000175400001440000004773012505052744021166 0ustar zeileisusers R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet" Copyright (C) 2014 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > pkgname <- "sandwich" > source(file.path(R.home("share"), "R", "examples-header.R")) > options(warn = 1) > library('sandwich') > > base::assign(".oldSearch", base::search(), pos = 'CheckExEnv') > cleanEx() > nameEx("Investment") > ### * Investment > > flush(stderr()); flush(stdout()) > > ### Name: Investment > ### Title: US Investment Data > ### Aliases: Investment > ### Keywords: datasets > > ### ** Examples > > ## Willam H. Greene, Econometric Analysis, 2nd Ed. > ## Chapter 15 > ## load data set, p. 411, Table 15.1 > data(Investment) > > ## fit linear model, p. 412, Table 15.2 > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > summary(fm) Call: lm(formula = RealInv ~ RealGNP + RealInt, data = Investment) Residuals: Min 1Q Median 3Q Max -34.987 -6.638 0.180 10.408 26.288 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -12.53360 24.91527 -0.503 0.622 RealGNP 0.16914 0.02057 8.224 3.87e-07 *** RealInt -1.00144 2.36875 -0.423 0.678 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 17.21 on 16 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.8141, Adjusted R-squared: 0.7908 F-statistic: 35.03 on 2 and 16 DF, p-value: 1.429e-06 > > ## visualize residuals, p. 412, Figure 15.1 > plot(ts(residuals(fm), start = 1964), + type = "b", pch = 19, ylim = c(-35, 35), ylab = "Residuals") > sigma <- sqrt(sum(residuals(fm)^2)/fm$df.residual) ## maybe used df = 26 instead of 16 ?? > abline(h = c(-2, 0, 2) * sigma, lty = 2) > > if(require(lmtest)) { + ## Newey-West covariances, Example 15.3 + coeftest(fm, vcov = NeweyWest(fm, lag = 4)) + ## Note, that the following is equivalent: + coeftest(fm, vcov = kernHAC(fm, kernel = "Bartlett", bw = 5, prewhite = FALSE, adjust = FALSE)) + + ## Durbin-Watson test, p. 424, Example 15.4 + dwtest(fm) + + ## Breusch-Godfrey test, p. 427, Example 15.6 + bgtest(fm, order = 4) + } Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Breusch-Godfrey test for serial correlation of order up to 4 data: fm LM test = 12.07, df = 4, p-value = 0.01684 > > ## visualize fitted series > plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment") > lines(ts(fitted(fm), start = 1964), col = 4) > > > ## 3-d visualization of fitted model > if(require(scatterplot3d)) { + s3d <- scatterplot3d(Investment[,c(5,7,6)], + type = "b", angle = 65, scale.y = 1, pch = 16) + s3d$plane3d(fm, lty.box = "solid", col = 4) + } Loading required package: scatterplot3d > > > > cleanEx() detaching 'package:scatterplot3d', 'package:lmtest', 'package:zoo' > nameEx("NeweyWest") > ### * NeweyWest > > flush(stderr()); flush(stdout()) > > ### Name: NeweyWest > ### Title: Newey-West HAC Covariance Matrix Estimation > ### Aliases: bwNeweyWest NeweyWest > ### Keywords: regression ts > > ### ** Examples > > ## fit investment equation > data(Investment) > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > > ## Newey & West (1994) compute this type of estimator > NeweyWest(fm) (Intercept) RealGNP RealInt (Intercept) 594.1004817 -0.5617817294 36.04992496 RealGNP -0.5617817 0.0005563172 -0.04815937 RealInt 36.0499250 -0.0481593694 13.24912546 > > ## The Newey & West (1987) estimator requires specification > ## of the lag and suppression of prewhitening > NeweyWest(fm, lag = 4, prewhite = FALSE) (Intercept) RealGNP RealInt (Intercept) 359.4170681 -0.3115505035 -4.089319305 RealGNP -0.3115505 0.0002805888 -0.005355931 RealInt -4.0893193 -0.0053559312 11.171472998 > > ## bwNeweyWest() can also be passed to kernHAC(), e.g. > ## for the quadratic spectral kernel > kernHAC(fm, bw = bwNeweyWest) (Intercept) RealGNP RealInt (Intercept) 794.986166 -0.7562570101 48.19485118 RealGNP -0.756257 0.0007537517 -0.06485461 RealInt 48.194851 -0.0648546058 17.58798679 > > > > cleanEx() > nameEx("PublicSchools") > ### * PublicSchools > > flush(stderr()); flush(stdout()) > > ### Name: PublicSchools > ### Title: US Expenditures for Public Schools > ### Aliases: PublicSchools > ### Keywords: datasets > > ### ** Examples > > ## Willam H. Greene, Econometric Analysis, 2nd Ed. > ## Chapter 14 > ## load data set, p. 385, Table 14.1 > data(PublicSchools) > > ## omit NA in Wisconsin and scale income > ps <- na.omit(PublicSchools) > ps$Income <- ps$Income * 0.0001 > > ## fit quadratic regression, p. 385, Table 14.2 > fmq <- lm(Expenditure ~ Income + I(Income^2), data = ps) > summary(fmq) Call: lm(formula = Expenditure ~ Income + I(Income^2), data = ps) Residuals: Min 1Q Median 3Q Max -160.709 -36.896 -4.551 37.290 109.729 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 832.9 327.3 2.545 0.01428 * Income -1834.2 829.0 -2.213 0.03182 * I(Income^2) 1587.0 519.1 3.057 0.00368 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 56.68 on 47 degrees of freedom Multiple R-squared: 0.6553, Adjusted R-squared: 0.6407 F-statistic: 44.68 on 2 and 47 DF, p-value: 1.345e-11 > > ## compare standard and HC0 standard errors > ## p. 391, Table 14.3 > library(sandwich) > coef(fmq) (Intercept) Income I(Income^2) 832.9144 -1834.2029 1587.0423 > sqrt(diag(vcovHC(fmq, type = "const"))) (Intercept) Income I(Income^2) 327.2925 828.9855 519.0768 > sqrt(diag(vcovHC(fmq, type = "HC0"))) (Intercept) Income I(Income^2) 460.8917 1243.0430 829.9927 > > > if(require(lmtest)) { + ## compare t ratio + coeftest(fmq, vcov = vcovHC(fmq, type = "HC0")) + + ## White test, p. 393, Example 14.5 + wt <- lm(residuals(fmq)^2 ~ poly(Income, 4), data = ps) + wt.stat <- summary(wt)$r.squared * nrow(ps) + c(wt.stat, pchisq(wt.stat, df = 3, lower = FALSE)) + + ## Bresch-Pagan test, p. 395, Example 14.7 + bptest(fmq, studentize = FALSE) + bptest(fmq) + + ## Francisco Cribari-Neto, Asymptotic Inference, CSDA 45 + ## quasi z-tests, p. 229, Table 8 + ## with Alaska + coeftest(fmq, df = Inf)[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC0"))[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC3"))[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC4"))[3,4] + ## without Alaska (observation 2) + fmq1 <- lm(Expenditure ~ Income + I(Income^2), data = ps[-2,]) + coeftest(fmq1, df = Inf)[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC0"))[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC3"))[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC4"))[3,4] + } Loading required package: lmtest Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric [1] 0.8923303 > > ## visualization, p. 230, Figure 1 > plot(Expenditure ~ Income, data = ps, + xlab = "per capita income", + ylab = "per capita spending on public schools") > inc <- seq(0.5, 1.2, by = 0.001) > lines(inc, predict(fmq, data.frame(Income = inc)), col = 4) > fml <- lm(Expenditure ~ Income, data = ps) > abline(fml) > text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2) > > > > cleanEx() detaching 'package:lmtest', 'package:zoo' > nameEx("bread") > ### * bread > > flush(stderr()); flush(stdout()) > > ### Name: bread > ### Title: Bread for Sandwiches > ### Aliases: bread bread.lm bread.mlm bread.survreg bread.coxph bread.gam > ### bread.nls bread.rlm bread.hurdle bread.zeroinfl bread.mlogit > ### bread.polr bread.clm > ### Keywords: regression > > ### ** Examples > > ## linear regression > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > ## bread: n * (x'x)^{-1} > bread(fm) (Intercept) x (Intercept) 1.0414689 -0.2938577 x -0.2938577 2.0823419 > solve(crossprod(cbind(1, x))) * 10 x 1.0414689 -0.2938577 x -0.2938577 2.0823419 > > > > cleanEx() > nameEx("estfun") > ### * estfun > > flush(stderr()); flush(stdout()) > > ### Name: estfun > ### Title: Extract Empirical Estimating Functions > ### Aliases: estfun estfun.lm estfun.glm estfun.mlm estfun.rlm estfun.polr > ### estfun.clm estfun.survreg estfun.coxph estfun.nls estfun.hurdle > ### estfun.zeroinfl estfun.mlogit > ### Keywords: regression > > ### ** Examples > > ## linear regression > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > ## estimating function: (y - x'beta) * x > estfun(fm) (Intercept) x 1 -0.68507480 -0.57647056 2 0.13214846 0.12016225 3 -0.96783127 -0.13658036 4 1.36873882 -1.03586495 5 0.08173006 -0.07837294 6 -0.99685418 0.27853651 7 0.40942540 0.26898700 8 0.69524135 0.68784276 9 0.47205088 0.19454089 10 -0.50957471 0.27721940 > residuals(fm) * cbind(1, x) x [1,] -0.68507480 -0.57647056 [2,] 0.13214846 0.12016225 [3,] -0.96783127 -0.13658036 [4,] 1.36873882 -1.03586495 [5,] 0.08173006 -0.07837294 [6,] -0.99685418 0.27853651 [7,] 0.40942540 0.26898700 [8,] 0.69524135 0.68784276 [9,] 0.47205088 0.19454089 [10,] -0.50957471 0.27721940 > > > > cleanEx() > nameEx("isoacf") > ### * isoacf > > flush(stderr()); flush(stdout()) > > ### Name: isoacf > ### Title: Isotonic Autocorrelation Function > ### Aliases: isoacf pava.blocks > ### Keywords: regression ts > > ### ** Examples > > x <- filter(rnorm(100), 0.9, "recursive") > isoacf(x) [1] 1.00000000 0.75620784 0.52668286 0.31877074 0.17874234 0.10451987 [7] 0.07597397 0.07597397 0.07054562 0.03324149 -0.02266489 -0.02266489 [13] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [19] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [25] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [31] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [37] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [43] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [49] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [55] -0.03242424 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [61] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [67] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [73] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [79] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [85] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03924011 [91] -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011 [97] -0.03924011 -0.03924011 -0.03924011 -0.03924011 > acf(x, plot = FALSE)$acf , , 1 [,1] [1,] 1.00000000 [2,] 0.75620784 [3,] 0.52668286 [4,] 0.31877074 [5,] 0.17874234 [6,] 0.10451987 [7,] 0.06774750 [8,] 0.08420043 [9,] 0.07054562 [10,] 0.03324149 [11,] -0.02547696 [12,] -0.08386780 [13,] -0.12702588 [14,] -0.15733924 [15,] -0.22570274 [16,] -0.27858103 [17,] -0.32634007 [18,] -0.31457877 [19,] -0.32132555 [20,] -0.32323138 [21,] -0.28412580 > > > > cleanEx() > nameEx("kweights") > ### * kweights > > flush(stderr()); flush(stdout()) > > ### Name: kweights > ### Title: Kernel Weights > ### Aliases: kweights > ### Keywords: regression ts > > ### ** Examples > > curve(kweights(x, kernel = "Quadratic", normalize = TRUE), + from = 0, to = 3.2, xlab = "x", ylab = "k(x)") > curve(kweights(x, kernel = "Bartlett", normalize = TRUE), + from = 0, to = 3.2, col = 2, add = TRUE) > curve(kweights(x, kernel = "Parzen", normalize = TRUE), + from = 0, to = 3.2, col = 3, add = TRUE) > curve(kweights(x, kernel = "Tukey", normalize = TRUE), + from = 0, to = 3.2, col = 4, add = TRUE) > curve(kweights(x, kernel = "Truncated", normalize = TRUE), + from = 0, to = 3.2, col = 5, add = TRUE) > > > > cleanEx() > nameEx("lrvar") > ### * lrvar > > flush(stderr()); flush(stdout()) > > ### Name: lrvar > ### Title: Long-Run Variance of the Mean > ### Aliases: lrvar > ### Keywords: regression ts > > ### ** Examples > > set.seed(1) > ## iid series (with variance of mean 1/n) > ## and Andrews kernel HAC (with prewhitening) > x <- rnorm(100) > lrvar(x) [1] 0.007958048 > > ## analogous multivariate case with Newey-West estimator (without prewhitening) > y <- matrix(rnorm(200), ncol = 2) > lrvar(y, type = "Newey-West", prewhite = FALSE) [,1] [,2] [1,] 0.0097884718 0.0005978738 [2,] 0.0005978738 0.0073428222 > > ## AR(1) series with autocorrelation 0.9 > z <- filter(rnorm(100), 0.9, method = "recursive") > lrvar(z) [1] 0.4385546 > > > > cleanEx() > nameEx("meat") > ### * meat > > flush(stderr()); flush(stdout()) > > ### Name: meat > ### Title: A Simple Meat Matrix Estimator > ### Aliases: meat > ### Keywords: regression > > ### ** Examples > > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > meat(fm) (Intercept) x (Intercept) 0.54308202 -0.06199868 x -0.06199868 0.21823310 > meatHC(fm, type = "HC") (Intercept) x (Intercept) 0.54308202 -0.06199868 x -0.06199868 0.21823310 > meatHAC(fm) (Intercept) x (Intercept) 0.32259620 0.08446047 x 0.08446047 0.37529225 > > > > cleanEx() > nameEx("sandwich") > ### * sandwich > > flush(stderr()); flush(stdout()) > > ### Name: sandwich > ### Title: Making Sandwiches with Bread and Meat > ### Aliases: sandwich > ### Keywords: regression > > ### ** Examples > > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > sandwich(fm) (Intercept) x (Intercept) 0.06458514 -0.04395562 x -0.04395562 0.10690628 > vcovHC(fm, type = "HC") (Intercept) x (Intercept) 0.06458514 -0.04395562 x -0.04395562 0.10690628 > > > > cleanEx() > nameEx("vcovHAC") > ### * vcovHAC > > flush(stderr()); flush(stdout()) > > ### Name: vcovHAC > ### Title: Heteroskedasticity and Autocorrelation Consistent (HAC) > ### Covariance Matrix Estimation > ### Aliases: vcovHAC vcovHAC.default meatHAC > ### Keywords: regression ts > > ### ** Examples > > x <- sin(1:100) > y <- 1 + x + rnorm(100) > fm <- lm(y ~ x) > vcovHAC(fm) (Intercept) x (Intercept) 0.008125428 -0.002043239 x -0.002043239 0.018939164 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > cleanEx() > nameEx("vcovHC") > ### * vcovHC > > flush(stderr()); flush(stdout()) > > ### Name: vcovHC > ### Title: Heteroskedasticity-Consistent Covariance Matrix Estimation > ### Aliases: vcovHC vcovHC.default vcovHC.mlm meatHC > ### Keywords: regression ts > > ### ** Examples > > ## generate linear regression relationship > ## with homoskedastic variances > x <- sin(1:100) > y <- 1 + x + rnorm(100) > ## model fit and HC3 covariance > fm <- lm(y ~ x) > vcovHC(fm) (Intercept) x (Intercept) 0.008318070 -0.002037159 x -0.002037159 0.019772693 > ## usual covariance matrix > vcovHC(fm, type = "const") (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > sigma2 <- sum(residuals(lm(y ~ x))^2)/98 > sigma2 * solve(crossprod(cbind(1, x))) x 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > cleanEx() > nameEx("vcovOPG") > ### * vcovOPG > > flush(stderr()); flush(stdout()) > > ### Name: vcovOPG > ### Title: Outer Product of Gradients Covariance Matrix Estimation > ### Aliases: vcovOPG > ### Keywords: regression ts > > ### ** Examples > > ## generate poisson regression relationship > x <- sin(1:100) > y <- rpois(100, exp(1 + x)) > ## compute usual covariance matrix of coefficient estimates > fm <- glm(y ~ x, family = poisson) > vcov(fm) (Intercept) x (Intercept) 0.004526581 -0.003679570 x -0.003679570 0.008110051 > vcovOPG(fm) (Intercept) x (Intercept) 0.005183615 -0.003086646 x -0.003086646 0.009584083 > > > > cleanEx() > nameEx("weightsAndrews") > ### * weightsAndrews > > flush(stderr()); flush(stdout()) > > ### Name: weightsAndrews > ### Title: Kernel-based HAC Covariance Matrix Estimation > ### Aliases: weightsAndrews bwAndrews kernHAC > ### Keywords: regression ts > > ### ** Examples > > curve(kweights(x, kernel = "Quadratic", normalize = TRUE), + from = 0, to = 3.2, xlab = "x", ylab = "k(x)") > curve(kweights(x, kernel = "Bartlett", normalize = TRUE), + from = 0, to = 3.2, col = 2, add = TRUE) > curve(kweights(x, kernel = "Parzen", normalize = TRUE), + from = 0, to = 3.2, col = 3, add = TRUE) > curve(kweights(x, kernel = "Tukey", normalize = TRUE), + from = 0, to = 3.2, col = 4, add = TRUE) > curve(kweights(x, kernel = "Truncated", normalize = TRUE), + from = 0, to = 3.2, col = 5, add = TRUE) > > ## fit investment equation > data(Investment) > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > > ## compute quadratic spectral kernel HAC estimator > kernHAC(fm) (Intercept) RealGNP RealInt (Intercept) 788.6120652 -0.7502080996 49.78912814 RealGNP -0.7502081 0.0007483977 -0.06641343 RealInt 49.7891281 -0.0664134303 17.71735491 > kernHAC(fm, verbose = TRUE) Bandwidth chosen: 1.744749 (Intercept) RealGNP RealInt (Intercept) 788.6120652 -0.7502080996 49.78912814 RealGNP -0.7502081 0.0007483977 -0.06641343 RealInt 49.7891281 -0.0664134303 17.71735491 > > ## use Parzen kernel instead, VAR(2) prewhitening, no finite sample > ## adjustment and Newey & West (1994) bandwidth selection > kernHAC(fm, kernel = "Parzen", prewhite = 2, adjust = FALSE, + bw = bwNeweyWest, verbose = TRUE) Bandwidth chosen: 2.814444 (Intercept) RealGNP RealInt (Intercept) 608.3101258 -0.5089107386 -64.93690203 RealGNP -0.5089107 0.0004340803 0.04689293 RealInt -64.9369020 0.0468929322 15.58251456 > > ## compare with estimate under assumption of spheric errors > vcov(fm) (Intercept) RealGNP RealInt (Intercept) 620.7706170 -0.5038304429 8.47475285 RealGNP -0.5038304 0.0004229789 -0.01145679 RealInt 8.4747529 -0.0114567949 5.61097245 > > > > cleanEx() > nameEx("weightsLumley") > ### * weightsLumley > > flush(stderr()); flush(stdout()) > > ### Name: weightsLumley > ### Title: Weighted Empirical Adaptive Variance Estimation > ### Aliases: weightsLumley weave > ### Keywords: regression ts > > ### ** Examples > > x <- sin(1:100) > y <- 1 + x + rnorm(100) > fm <- lm(y ~ x) > weave(fm) (Intercept) x (Intercept) 0.007957440 -0.001936926 x -0.001936926 0.018775226 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > ### *