sandwich/0000755000176200001440000000000014535611613012057 5ustar liggesuserssandwich/NAMESPACE0000644000176200001440000000362014277043203013274 0ustar liggesusersimport("stats", "zoo") importFrom("utils", "combn") export( ## core ingredients "sandwich", "bread", "meat", ## OPG estimator "vcovOPG", ## HC estimators "vcovHC", "vcovHC.default", "meatHC", ## clustered estimators "vcovCL", "meatCL", ## HAC estimators "vcovHAC", "vcovHAC.default", "meatHAC", "kernHAC", "NeweyWest", "weave", ## panel estimators "vcovPL", "meatPL", ## panel corrected estimators "vcovPC", "meatPC", ## clustered bootstrap (and jackknife) estimator "vcovBS", "vcovBS.default", "vcovBS.lm", ".vcovBSenv", "vcovJK", ## weights/bandwidths for HAC estimators "weightsLumley", "weightsAndrews", "bwAndrews", "bwNeweyWest", ## new estfun generic "estfun", ## auxiliary functions "kweights", "lrvar", "isoacf", "pava.blocks" ) ## methods for extracting bread matrix S3method("bread", "default") S3method("bread", "lm") S3method("bread", "mlm") S3method("bread", "glm") S3method("bread", "survreg") S3method("bread", "coxph") S3method("bread", "nls") S3method("bread", "rlm") S3method("bread", "clm") S3method("bread", "polr") S3method("bread", "gam") S3method("bread", "hurdle") S3method("bread", "zeroinfl") S3method("bread", "mlogit") ## methods for empirical estimating functions S3method("estfun", "lm") S3method("estfun", "glm") S3method("estfun", "mlm") S3method("estfun", "survreg") S3method("estfun", "coxph") S3method("estfun", "nls") S3method("estfun", "rlm") S3method("estfun", "clm") S3method("estfun", "polr") S3method("estfun", "hurdle") S3method("estfun", "zeroinfl") S3method("estfun", "mlogit") ## methods for vcov* S3method("vcovHC", "default") S3method("vcovHC", "mlm") S3method("vcovHAC", "default") S3method("vcovBS", "default") S3method("vcovBS", "lm") S3method("vcovBS", "glm") S3method("vcovJK", "default") sandwich/README.md0000644000176200001440000000272514272074171013344 0ustar liggesusers ## Robust Covariance Matrix Estimators Model-robust standard error estimators for cross-sectional, time series, clustered, panel, and longitudinal data. Modular object-oriented implementation with support for many model objects, including: `lm`, `glm`, `fixest`, `survreg`, `coxph`, `mlogit`, `polr`, `hurdle`, `zeroinfl`, and beyond. **Sandwich covariances for general parametric models:** Central limit theorem and sandwich estimator **Object-oriented implementation in R:** ``` r library("sandwich") library("lmtest") data("PetersenCL", package = "sandwich") m <- lm(y ~ x, data = PetersenCL) coeftest(m, vcov = sandwich) ``` ## t test of coefficients: ## ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.0297 0.0284 1.05 0.3 ## x 1.0348 0.0284 36.45 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` r coeftest(m, vcov = vcovCL, cluster = ~ firm) ``` ## t test of coefficients: ## ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.0297 0.0670 0.44 0.66 ## x 1.0348 0.0506 20.45 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 sandwich/data/0000755000176200001440000000000013005653110012755 5ustar liggesuserssandwich/data/InstInnovation.rda0000644000176200001440000141475013005653110016443 0ustar liggesusersy Tǧd$$IJw0 3c-+TB!$JRiUi׷}mO| ,I`I`C`sI0$p |8Bx` ^$&nX܉%$!R!|IIHL a$XN$'A ""A4 bHK$XE8&d- XGD$ )?ID $$A 6 [ ya IP@B!6 QDb` ۻ`G7/T$).Ԑ`?C$%N'ԑ $8HF"A ?8JN$8AN$)&%N$@$hĥN\&\ :q7HpN!]##<nxB$xF$xA$x IoIIII_IIozRB$A/&AЗ? @I N H0Ab H0$P " IL$P!H`T7&0HFn xL I&@N't. i?N$IY$M=!> $0 @' /0H`J$Np9 ,K $U7Xv d^7A$p$S78vA$XH."7 $XB,$#?X։A$!]ډ0,+HND ENĐ +a j!A|7%A ֑ I$H&A RIFnXݐ Y`Cd ݰy$D|IPDb` ` JA `?('A$D? HPC$CPK}$OBԑ/4HDH7n8 ǻ?h醓T73puCk7 pmp.wÕn ׺7 ?wOwÃ$twËnx u7醷]'wÇ_W!unh7(]У=? }?wÀ ;!  R0/Hn 0unnPa@.Tȿ-[ :4KlOr=j`UTptC 6* 64]Ƥ[љTUd":Ns4aɠ%!FL!D &nhh C4K!:^jHuO NMjHS bOC %|9M#E5f _ bHb~qnasd 3NU2*\%SB3D̎]¶RQѤrRT-q0GwRSLBiMe<-tQiBD94K]0꿔ʤ9dҍMmLKB kLkB!s5E!,s*E-}B3N#ĈLx<>%R1տ:0t.Uو77j#2n,TTHeRMZ"aHU1x@~3`0+B-RTOo-ۘsyF r"/[j̥6 ;:2!}i <./:ۘlc8zvǤT1]xŨ,%BE22?}wU?ZE@p֢hN'1\߽6[\MK̈́8BD9N4-Q$B"PJ5K.1鹚T6iӀV~?튂sĩSX4rbT^SaE8z`RLPhVPBƈ?/QT5-LQE4[BclF'0jE8Djk9oИt]tv3Ē"b@X]W $ +!l/K!~!Vt .r N?@ h֩M3dH56&r'2M1ciީu5PytmSsncUarXB#GgwC %Ǝ3[0cf~WDԈm,Fd |&*UDÒAΐs"s D a:YB%D&]DQ9/0_043 43H'i$\KfLq!XtD%[pWր k#zL֟H"ckOO00wDvj!<IpƂ0T>EJk35Yt.OGDb^CҀ '*|}Y՚MK/3,Y]8~ɟӜe"4yvɲS 6f$o&"!͒gx%iz5 t8O834DlD?W;IBCyAFbq;IA;aLE|c ]D49:5 pDD*L!aS3АxQJ4tRAyCx:LR) : 'r c_c$iTv'dSM'""T Eq_$d(;&/ l IHT'_JƱ4]GZEĽ:#Dj,{ Կ#tr 5 HUd,U 㧢FXu"IQaYKonh%B9&Sw!5Y([AEaSpobtA+!-,~8T3>SMNu~[#B .tC,J~u͙4/!P*5t&"?P(Ń2DJLi aȄf'e C~ VGmLgj†w$at ^LF$%oDM[)v*HIZ9\cHki+s)P0;;$"]"T. JG)ʬ=U_VӘIvZN1W0BƄq,iA--Y8ϛ e75BeAK"fT1dDVB4PY%` "?~OJ0\DԐI V:ōD6EƢ'cl` ~Dk@bVHFPls<跱*t־DKkRqfB0v] x+b&T 5JL: ahwG3ؚ􎺺 aULՅ{'#}?:a󗲬8቉ZJm<ŭL0o~r`;|y QL0!b5[Bi3u?-XX0hl!+ 2 C%6 `҄HH7d9D95k}"1IJ؝օdD,%)T>ߩ6Lh;a,y?W,wI ARJ'''&8B@vt 4:wQP8#T j]N""a 1,ްE 1 +ȁЋx ]h(EdDBx?CQr#\I.Sɑ(P5cF93D ZSRE )ӸCeM9&>.)RU_Ky)Ǵ-M|Hm)NK¦ļPa pHi3/iotɌc4I3:M('gΧ H&f,ɘiҀç?]҄)PP4d2hf░-kxWaR UlM\aY1D~'a+I aDtL"$K~ޏᨔIXm;emYG]3Q߀c+t~hh01wp -"&^ED*(WAdu vb2%K5"P #Ҩ!4$H%/hQm /$<"yGhh 1a:o QGU^F@|)6L( .9N f jb@r,\@ԩ(KTLl *O4gs.qlՏ"#h;PD/.aY:'wpE!QOےq?]xJs Ir7. 0~ -'&Ȁ 'ETTP/Q8ԎStyVK5dt%> ,lcu2^̌.'3:C$' !Gɥs\puߏ'hvΒ?dLK&>XhaJle.KH ,?_,\9Bԑ ?R?ោ@J龜;"~.!C\k!|o '!lTe.¿ _JXHH ;ܟ;=FW1Gh[ v׉lSw/SO}$,; Jth&N2 cE珕!Go3JqH y]䬨̎tWX >d ~P" >3]"0BŪJ[ n|AV?Gtk?eT*ϤeI_WOpjM ~ASt5. $$B7%_PKPhM'jjyIki ZtNE͎V>S4D| .N~?&Ϗ;/%]0WNyu{!V,/^=!u2njW\F٫k}KԬ5pDq6hI|xFMtaS=zBxbǒ{̻[]8%u~%zXiZ=/J_g[wD¡u |pTmMX g=a4;<ݔy= V(#lEi`}Hƛ|]H.p.=\ƕt;o>2iO6zr#>6] ڼsҢ`լ߽mְ|=،م<긄&]ȇ^THл'=ůT3ymw554f1w(k ?ܑ}m,$.K.WĒsl쇕VR){œZ 0M.Q`y!e|XK.ysY럗} 5H/Οxa"s%_?`YAՉXPe1Bi/<: aK=-űگl9sk/ F {]pWO2,VP{l";:m}4:9ˇ([潁'ŏu|֪p5-\e:F Vۚ*X"< ,b3{j{??9~G_X\rD򯳦"l`wCWDYi3շdB)-dxH_f,lvlc~C_=Ep澭,B0TW?03n7q,|îrM B44 JGFf2謼`c *ش"}V,ho$ ~JVVB5m("g)}]13{oјsn~$hzZZϣzysU5+evg[Rc)AZ1(FEsQ==׽Qr$r_+D 'm!ZSB\b22I 7-ºGвa kÆhE 3"%{]ĸ:#Ų['N܋#^]ג&NcO`~uMkl[iՇK՞_:W[z pgX:%FW` _H l?6i|Oog:݌ڇeq"0Q -FݾZQuNؼYnWUqJoϡMh~s]?[ IO]ERk荕3<ƱȰՕ'}3J'!Dq0,w]Ў2װc\Ȳą{/Ry.EK":pbͭLgdY+#=qȪݕYOFNVĊZߺ x<m:aT~#\ڇ~4Tp@{,\^Ҿ&\Y1a Th[7"?-–6ŕn[A};f_]I)|fV%]opWѢLi؜S"VOہ1KTLt5c_qΩFesW\AɇG 6v92rƟaIDR[ ;7ͮ:$̅sH]PCQNc? 8gVyiL7<  (+F{] k56KKqM䠯k !yEaB7T6~%ߤf":u B̼q-YCbM U;Ƿlط2l~X3gksn ׎J?Дy8=pICLf}ocW(酗a޻×儜 涎8;,N"鵃<^a*ZX[R,(,իhCcs wpdVfS}4׿`5v2{p8!o*'o,gNxbWðe l.mڝ2cˣ|*d`TRby;^y0+@#epJ465UOI-arM4L˫ yG9?+~12M (ƒSakS𒢿\E9:f,ؤc8ug$sMCը9f(rw;ӆ 2ƽYJ ݜG wWP`<ƺ(&ie}vd\i=!;r*zq,nK*"iQd _W-_"f-3 5wp?3˓>MMoy3-[_F@r>sD{i}eEBD*rX?(+g/6-aWz7+ֆOBCt[w,u[ǰjN~1 oUG_xͺsAt' #9 a|a '4*Uf}Db8u?bx9ӯZC+jܸݹqnN{&lRS:ry3tJYP8Y8s*\.8Q F̝=qū+`sIS$UƝ>/ѦLO=>֓F AdyQzli^藽e6oxpcj-ӞC|M+() =Ź-:icܿd K> s~om F#vʪXn'U |1eXd]D._f~Qb /m7L֋g1sd _xy#O8Oѣh[ap 3EBoYϱO> l3kâU>^5-?~$OߌEe:XS|h!|y"L f41G7ֳp]/&Iu*?q_LE~de:j9:cQl(=6@tKCclw RfMD47JBU=M6y=+\y75oe0Tؤ&߁V)DZh:̟٪ziy,`ůeMO{̼E)^wv;"vIϣyU>oDD]9C4ϑZ/Q!߾) 1*Շ2?G բ3 ]@A^ȓR={Ukl6L?ϝ#I&܇RuvҜFAб ӝIّ9zBdz<c1狫Ql*:_^q3ك-j춣+QsQE.6**͊ҬAwhNlTOvX3yD̽n\x4zpG_|6y\݌ny *rs oXO*9EY #LBk8V?s.G+ڦ3ozEȞ x⥿e!JIiZdӽob+ '{x!7>)e[\3V܎mz}Ϗݪkv\T#7[Ya74aGW~Aǵ4u?? L)f#aק5X$c̻Ñ|W[&'-Su"Ҕ2sꋷ#gS=e qXV8|"t 8bX.:Vw%Ik;9o8]e5%"PT:cR>#xQϋ Tnacࠤpn2ߎw~K^lu^0@Kio32⡹E(i'`~BB?o׿%3 ZYmp!^CӇso-/ X鯋lvRl78|a5D~?r|u͏ ϳ̍T⇵Ǐ5IOu gۿ NE:Y3 o\CVTȪ׉Oؠoؼ(Ӎ\/=Ͽlyĥ5L̖S0::voo(\C`騇~+zmIq0\v.|?Ooы5{p、XWAq;k ʧUq(}\ _ kN {f+dbOΙ앧,:ZejP;]܈׮59SfǁiQD){ػ32cC/l .6#ǞK 9/x C<Dؾy ,3V]yKe+ |-@zqV\Dp0™GD'7x վZl[#/윊V[FFjaQy4.T]?v5w@٬\ aK66#x4(VQkl/x ɳFpKHq>.Ll3S9Vqf˘(H5YaZ^a>n1')3N`J8,'wSut">nY[W!Hy'u&je5m4iÌr8'r7'q鐻+w;.dy5W(|6 N2˷9g>~p]n. ߪ'@{w1Q.i2zbz[1gX!!JկG~z `U1'p`b m /vj_xI^&ڼ"v>v,T;7i%}l ?p.𯬹[ս"`/bru| fFrF>?QɵJ7>3ת,L0;`nMf{oWLcTz1+,߫ts׌[0UU {zNӡcQrK;(_#ھo 7F}^bxD֨EG΃oz&LvΞ*Xފ3`m~GP,̨ q٬c}ZFG@ҝ ᝦ^ ª9c3)e%XsIk!Zmf {Kq8z%Q$+E-jQT"ըx-1<>߇MMlX ]c75iƬ/&VwO U& ~n >ŢOE GE+Gʜ爵˶8+ۧͿSݐԽ-Hy22<W#]5p2ojy+9{}G,ӼMZrPy) u`TD ;][sE~qqQ]t$mI(4l:~i{Ez0:+1Pm}繿 SEjoOB /ZA?T.b]ƌ{+0wkv'3㜵~8"8%/EտI]B>o=h,|ԯ?7m<M }?\k h-/nVq V)a5s,LvQ\5d \%om[W `Eƌψ?:Ai}ġ,n%7`GΩ}4_'Gcq'cٌ9U11n| ^8lݷ3}Uk`c(}^+i#=GjM$ୡK?)|n8O ?3줞3Re>%_ikRu򳡈ϾwOA?6ОVm:x V"'tupt~xX0+YG/iٛ<ͦB-chY R轹{v !9;?a[]pzq4><<2n~[#y&58t}+_rK C/Q`gW.(^x rsTa'H7|\XuXAh͒A>-.Ep@OXz̿{ WDb;G el:ڵd[]ƼМ}u a}ljpAp_#4|>rG"p0%,E+V~ {Q`Wn01r;׊ś;ML+0vCs_#->U( :I̐|zˑpuǑ1dWlrၖZl^vU/Z;\Aq뷵Nװ?-bۊ>E1;OBA.=?!Pa<'#W=xPIM?QP'fx=Sن1YumQK:3s L[{ܜh~A̯'UauiX%ѣ:?zx==VgoFB$K9!M:G%60kSS$ [Wz!b̈́Q2GX6C]LRizr2<#u^8XM=1 (ߩQ0RŨ G6+аs)c{."?^zR9ƔR#_<=-#^c$(gzgPf$xkrpG{ 5.7|0LmdUr?(ɅbؽԖ>=~m \M p~O%upבqma^|Hl+LFXo=>m>+g4YG[L޸;%ҽC\sx^_}zh3 rx$i7lwxI`$5/ 1G8L i]ò~2DdLZ_^K7¦6+!?{hZ BX_?;jezUN+C† $9>|(2GG>̲99!뗟Aξfۑ7Ġ6JS}͓+[Eb}tY˳pX+-N= i%)tLL{p k^ǘZ5~:{?օ KB|;8`5S=>R7pn6N$$7\{>)vڐRa8n ҟ~k!jldQsA_UkaT|5qzƐiu|a,y^r`}"~_ZR0 U{6~ aOZV}EXx;e;1^^WSއjg|pb?&lݞ(<9D6m0F1L?lujIc= P#| )Tۀw uUrOֆ<iv*[g6!QuH :e2LM%uEp||GŸ~Jʲ‚\GUHEU-zNjd1+^^SemSi.e]^76hel_[=[?aŢe-kP|"n\vu'6%<%GҊ^[\N_/ [e{AIүP[ډѻ2]LɇƾVwCaBйWZ&l_&;O}*cp*yEjM۵gccZ֕z΢R7cP]jqvF Zψ9tq.Jz.A⎧мCkJU{BkkToв3-st$q黐3Ș5xD=/uțA-&̀ oup~FUnjiN1 a,VU<f=,7>3[R˟٬)y,>{ 3 `f,xg3Xkna_ŝr v:| QJ+REᓴS1%gg L7?)<:3{7^"x N'f~D7m>ÚgE:yXy|XF`O6UDp; /}.e $꺂C}G{yoh|sc)X7̫F¾{ܡX!"gh$U<:} ɽ6'hd>%ӋŐ1'EUze U4k~ No1?mӲrpW[=ɂY1X:} jj0zGxaPk(&"b!ӆPUB[`ASRH?6 )+[_r!u|R e^0#``)rbXޛuz5Ϭm#\GI }kǂIS "/]xZ:on>Y%IƉ bqBw +Z˙zhY\r;zyܸcѰsIzfuښ{; =M*+rKU׸gem5|u:{ƺ'kа%kq0aZK%n}(11 ٽ ^}(Wȇ7"} |Oq[1Dd\nBƵuikF"dSv2ܳN&k²enbȭUDĶDϻm/=÷V^b(5bo7 oZ$D<~'vo~NҏQ95y-^?ѿ<r{xzϘTU_@,yK-ۈGe }9_M{g}bn`'uo V=]lώr3Jr=Tָ5 @ԝI;D:ӽ 5 1n#\Js׫˚BÎ[`ڷQuNkpkf|0?Dm_JZ$t*!*p qvkĬqNLLENUn/pn-Es'Zzrv5vƸ5|/XgqfpiռWάXi.X*M]U Km}Ξ:K?/Woȫg`vW,X|Us(S}#wgbӬZԱ7vr5EAyoD ڌn 1aT=-gCmϝ<ICF`tOJ_vAdP_[W,tp(nx2q+n7b'pG=ts s"9-,wnڹ Y-!{zKv\M{_;u$,N@S6nɬ-RzY?aE- VN \4wx_;\F5H-6lThq_g1F>M_='>D+{= yOǛcs}:r]MڻR }S^C?zB j詚]0P.tu0Axy` X%xG;ZvrTWqtR_ƾ[|-u] /Dʈ1Y"zTQ6"/O}BWk#kQlfxHϨ8n87T4XgiZͣ8}cc$ν:뵾c'1t&*)GR{3eBk,ަ7|ڢvf[=iS/pÁxûhXHa$׾A`QLZfv> tpWMSaUD;Jgrٹen<_>8UjbuĦAyȾwQ#6:]~z%c7{8h>ςðeg6Jo^zk (DmR׶)PfffZ%RnܗCڛDܛa2 RJd/p jGn co&eI} UV=n u1|@E4}xŽ6 ,^bR냒u j*l1 :E2{  B)sqhJysdhR,V1'n4٥p;;[t|J{2s5?'T`s逸+!iO5akT3fQJےƎ_rN_ZK̀JcDcf m0{|젩kupۈFjUD\yg*6I8Vd/,-t8*)_>Aj׳c=!M>H,5H2^iHjK}qv Jf>#9<"&)vhȇҞ y(oVĶQyUj=6Z; KjN8A[F(" %T/QjȽFx_s(8OVZq1.8J4VzoX 7Q)ѪH˂עmWâBcoaz>/x% o2F.=z6޽+ UC_oḁp;mq9h^EoϿH\bWo{-iyG<;[_v-ث#1Q>h8笴@dVga(h2nD{ZT/t{߁0H= 3l w`cIε5] ncuY:U7)Ôte.ЪXX w %xp/Ԣg >/>9^LskpRʩS7|`z qzs>W914;2*4!(̏:Xz$|#XJ$OeaijRc彽;R'2=߷MG{]6 uB{,k:?4x=&A9;S%1^ݩ.?dw3ޕd_]YͩaֳV5o*hps64:n갳XrNۣhk8k/Qcgš9dU$h6'ja]a7^>K>ZtmnU0u |8OuO-xwA-e4u'I!i{a/{+ڲjBa909Θ8'iJvՕrY\S0}С֘jl@&^'B&&S3 {R~WUZ5T_O#NsԒ|m2I}Pɓs(ӳ-.F9+Mrtw=$נ*x%AtعvҵkbݣF>HtRes(ʳHlRBZ.SJ_ Y;~Ɔ+]Fw`zXQjV>i?Uۆwa %p_)⧴{N3~3!iQV=.qs- 8N@wݼGĀ :&~m 7PրK$wR!^^m1x#wQg&Lpxږ:g~7U-hl~9ѫh&,0W6t~an`+ {`iX26R$kç "32sVdjR~Z/#ˀ#Jm,֫FC M@X-wպH|Uv,D= bUםMecjU 8qj$ 9;6 )s!vVb|bk#0Jw1R}ag^qBSA=UGck)m儹6-*R;Dŷ'`Ғ<,=prx߱-5yxOO\Gj,n{(W(yv4ly@3I- #3):(~CmTmjO pphʠsp0<'EÓlOTfij>*Nx6k},>^>nj_7N/ɽwW8$ѡ~gy"ExS)ǫ%/Wڳ'`.nPl8_%6 CIϰx #8ҏ:Lè$g/D?B8VJ`btOA*mx]>FV Sr+4Abm9L̛Sk/ZV}7[9S8GZƊpeTTOJǮqG}ޏd۰]ƀ5_Q;AgrQNf].G̣Օh(w V97SS)I+j8ԞSll D߼4{5Y +7M\Pu!1VK8ž{z\CQ퉈sKf#ƋUw"7^/ټg,_XۨI#pއƁ[dcY^pj +l:?Nߌ^(ɣ l75Z5{ٻܞ(!㭦8m~V>MgU7am#%Ἶ-0]~3x>'ii 3u,]x"El{+ͷ_ cvwq̇b-c=q?*%}0:_I1U#G"mJ|t7.)%fqku/|> =Fz"` TcSp!|GzjةroT=vo\!5:/W}5KywOա͔q"&8Qj0ER־.h1fV^^3\(|ߙep^ДyJ'LWN$DУk3PqL|&OKt,sf{gȁ:X W=2v)snB1%E;pL)u>35ñKFX͛랟+A.ː2}]g8\3jSK,.$궄q\^TW?.n_g*5;=TRnK5}i5Dگ6?w"(l "w4k/Ns7vFμ)oVccIq:WWݵ34ox4oZ)ov֤!oZ>Ta,hZqٳ**9ut+U}Pr-uI`*:h`1c_5;eWܴ/"m"ct=r<=&p3wET޵$P4cj/N!xҷOwd><- / xʭ 5[ׅb{$y+$/!bCYX>P?P<\43y9:+p؃^7{Fb4G!JMI^\<;Uդ=qh nV~@\_3]kë@n?3b7 zޒш t2be0981.cĔIXsq=?w&IR)v0#يkIag1m!'̇ÞpquJPy׭5RZ~]q{>fq# %o\E~eh~U-l$!wl8Wad;"ԏ̧sVx!T=,~K1cJaa`SD ´>y*|i8bRTqWaѰ\k-$-4ҎkO!|[_>3)&Wh>QHSQHWqS-GP,~5n.r^MFKfy|D>Dsu֒U5&/N.SnDșj/ gM&(Y_X;r!qo6x Wfyoo_IJp{.qbk6<+OjXFeJG^nQʠv!!)r2eθRtl4b[.=v߷twmӇvӓ6޵ >ٗo~,'1a]m5V) F#޻>ZxIe#l8$l2d,i: ;w׍CJُo>#~-\ן쀃-#s?|o_ Q{hcq4Ď;ě{!EA%HY˓ i*_4@)!=eִpoAQ]+QQMT=1J)*yC~BgFؼ6H|:eK phUici9]o-U?S{n |1|d<>)VT}a#60`}^qҁRdnBWN )nzKsGkwDRfiKB5J]'s}sR>L)^GjxR5^rgm--_ݦ-qF˱{+!3agi^Z3VA}?qCP?7Gg.r}ԇerSj&o=4b 3â8;_܍_v !.bm;vSOğ3]e+PY)TT!ّHjF]OQi: GQi?őea8]DY46ť-rr)ۣq*06\?z 8R`)}6 *_Ö֟QsT`.d^`-sfɅ4?ƀiӗـ♠pGgQ9SnEis2q,J܄zMŠxvo^NZ8 7$nGj"9ڹHII *F'VF77LX35-/ʖWğߟo _AZ\0[!y#ڝQb3M*'yo`~V7|ir L FϿg|'/?wKz>{zP3j[Sl6{!y.9D[kq|rB[;dN%YY 'n'eX]xj[S:) Bx^ }MG؇GG})wCC{?~.OU~LW*55^Qۆ=G/8/1{:kʩ]KRKZ8%k {Nej{ g|(wr͖Fʛw]Eïg`C𚘧uWbi\?8&:&ǎ6h j 3m ό=cٻiU _ĝ2&mޫQL|X9 V -B?n[-0ol\{v}s _ 7ϱ ecTn,u;)k߭›7{g{`stuDp@n("_]6}DRBkV\!rށu|bIXr!JNYUW.!b!W7m߅k{4%wv2=cb[w>0Z[=BN\Asחr8SqҙOhU:"8D.E6m_k$/R{o~`j)-UÕֆ!M~j0s^ѫ6z#xMYS8^69j DOwㇰJ^ߍjy׫E*6+;ƚ}6\xD~v}sY:$DSn(wgE/ams p1?ìE(̯u8Kx%{)tBƳpUV37KRԲk?S,Z2y"IdVP?vri֛MTiXW$򒇭ن$ֲЇ:caJ3܆Vb/ۂl[5VpW OY=GRDYXƍX&^*D<56ȟ=ROs :gf-iZO;vᾨݡdwLt.OVBT1DU G`bxR|I7]<)6aÌݷI-=p) 8ec~2foalO> 9)8a2[/Q)zؚF6 [[&S,Fc7em䳌SpY@M77}2WWD{upe"T̮A:x +\AH國= i5I{gpiZ:)'JἝI_8||}ry8&uDIy ܨYSM;Vjx cNV,9vdA,|q}F}S2m sh V\7Ozf&eX{]x^8)][4kl#H6rij;Z f?s}-?`ܶ44Vr:͑,O☇Ѩ}qlG\t4h;-|_EK蘇z8=k尺v'-)s/5֙Qo+ =XDE]>mT8J?7{p ;]ɰ:>,Qgld`I޻:",S+gLyYo6We7Q,=l=(m P|"tnU1Sfݓ2A5+k^cF0lLnuמz֧T[m(2W< ra~py.)3Ε_N9.OECUQI s7 И'8ˉ_;JC8,9Ow}Xkpק<4^b{,jbfݛ&%6Uiqn.NKU[z~q8/E!lbn3Ů, AP·O n{")z;ǝ@䥈CޟS}i 4 %o"J!xȔ)Yd&2& I4j4IX9y;7|{?q{u]k\CdQm Ϋ< aoC;*νt,{aD\7ơ[~j C5Xs%:{ɾ8[]_.¢Sf3X<7Dh2e 7PN{bk[2e ^S #(kaW;g%2$;+_fS<߮l'φDaVf#/ߚmbiXp]6²)bzYr>\cwwXbnܖĵK0o wC ¯]wW9_<)pT6kJ2.nAأ/bINз T\@=ߊUJ8FIӉ ~Fe$X>//cڧȩۥVy\ɱJ|$)y-Zo0Zؽ Z¬vۛ0$1M5,#Cg0k+1X y2۟]tB2gH? Ns8F^b9fE(N1BI|񻣉(M Y؎Kʦ6Ը: ֏e~N0suxr{ݑRp"C_hǨN5ȞgzDTp!B>rqO]y8/azٳ@ ﳰ qɵ*[iG79)RjsL;Z {V-Q #_ AqKn*F^〸WV9L=Ɖžb[ YCy44W r>̃KdrNa,Ws n`gsϕxIw^[T^!' Z?*5183~՜pIW\ot\L;9Rᶠq36&E[s Gf\KUF`灌s\&@f?En 7[ ug1adh'4@c5ǖwGK""?h1H0$& WHݽ# F־mᮏ餕ap i3:Tr[G8<#8#6w=2WgPU#ֹuKM!oC9aîI ,tģŭ 2=wѳ(cwhkἠAG\7V7 hO ~/sE`X F_ձo5`=<]vU%bZm{>P42Vף:Fٷٕ$_{)E۹@n[R|\0R%E^zUycq 3$f ^ID[pn"Ep#}nn+ptE|n$)e!'Hf'I],؝*١9f74 NZ@kaVF7StH}4 tŎ8J1>\.ϡ+&i$RKw!lWݧA8QZ7DBT⛈rK(;DPݣ63%;D%in|vؼf8\XsuF%E W9oZ:sەZ|9fwGMfk q |ZPy.[w~ƩU~Kl09#t\ؔYPYw`4ueu\D eX8YCgj 2Rj&و4ZdўwCVʸ}}9t<(d>ǖ}cGܽe; / z[8q>'>`ۦ\8%G^L;.cUow4[ÊS,ӏ|ȋ5±pK%/3:exWa.\WP9LqC`R[sq"w}^]p&S )1=( \* Lˉک`ՕG]FZճ89?yA9Ҳ?DblD% 1-O'h/ޱT'R<=7SP#oFžyHxH5" e\8E\TI{_0{QVĩ4O"C"~o|XnCEq(i$"C䛢4}ړmsêZ?<^u 1T9 cUir`68鮍ݹv|7_"41{aևIͧkq*Ei.dzx\d֖{\/M+?&5yNܺAKW"TtK?JV\^S-6%͂lp3]ʼJxD<얋T'M)yXw[ï4lVESg}\Uoh!IĮZAHMC.`jl,څNz"e .v@ʞf>"Tׁ#RܽřR ׊HSq4!b]W3'7IQ*K~52wյYH25yXͯ:g߂iޗ Z:QH시V\Z%~U[Z;E(U㙥QM"M90) /ʠM1Cu{{Y/[:/@Eؓ"P'rSN}Nġ)4pxi\9DRi 鶷BtMMO( bm ĔPP|yn"⳺<2"K|=ϜXaF6\d 0u^L{zǦ蹂pƋ^Bn2v3VS(cTa˛#P#鄪.ܛa3BΟ9h(8ľRɱ&k6!Q1ခRYkЈ&سoVP.2?V+!GG.;Rm3Bw]Oȓ8W^9Z͖ naˠwRPr]VV>RA#G!'oh\2ɺ68xqE0u/#wꯅbPrN;, 6pevWS**u]s'V} K%F욅*loHDx} Rܫ=SG9}NzGP>N c*yNdTVERب8KbJ:f6+)6%+P%EQ9[3.Ţ|M#ɿ$*E{U#vCu㛀ˉK܌SP Is=T5ۤ۠vEBx.N 0(V~p.Ӏ a?D#'>R+nyBk-9{J^~Hχ)`YO6埫LY GfN_{ p[&[oY>e>Z5ucghFwkbGaֽThː2oxYȿw#kvGצwn8rq>A7L8%o{yNMK~œ8114vyl, ~TM'U_p:| O ȓ#7e4/8fERQ;`[Uj9st,_B㴉-`avj;F`Wp;. ept?G̎*Y߃ifwX[96qG Z|Qnȷѿ_Ta>i\1iR=\=}*v/_׏{9k9_W [; _Ôwb~il[if8hz?Wv %wPpQ8Ь[=Cʕ]Bcr a䰘k2y\:)IEj%{S Mƭٖ5$Z90qgJH(]yϮ8MIia|GDAW܋q˿t k;'R3s2iCA;jD/\OB%c-'Q +ͳ,ˢغ0}c&d >o\k>?BEW`Nm;Lnd9)/6ag5[`WĠA_ UĹPvwȟTڼ+* {D)! "&"ǝ.D;vg8"?>IFsMWؐdĨ]_5dT+oB']v*4gFW6L;M;pJ[ *\w_:- =0V蘄y#/DnnU7Ws LblJy6q6X8\sNk/-l$4c:^-9aq!}jJ>BR&lb=*<b:&/b˖Z^r6l :l3o<â81wHJ* j΄TrJn48yZO3dobS)#`#6Ӄmw%F w}|G{#(gAy)m(T  >u#AdTHdOa*c&}`+P{r4ysB} gKCy;?{*Us.ĵWEG|hKHh|i ;!юߠ?kN9|B2K.Xhmqú/pjb.O[ggN=?n9uxt_z@OX&@?+'Uk`yOG7Ф̼%ohh Aw'1I$;\ܥ&l驪Vㄻ1䜣$֜C$e)2g%! YڋKp`T'"kw:wӆ#+bR)pTqtIp0=20<c ҜSl oɱ)Ш+_:";;AO+,8n\けCk6igR]hx y0NA2VͅI"[dS^yȫ rwm΃m f@Mq(7~C^2:('-X{> oл}G>|9j_"x W1i2-5 F \"t>K֏Eٜ8QxK>cH݋!6w&տ# Akx`[׶C~8U BK4x(:8? ʞՠBMYP+u/3r!x plX%^ buIoMDli$D.>BűU7UDzy87d)K ͨddܲ#q܀1/BYDbrț騴8f*iٜ# e͠lT݈[Ge)cѶE;mJA1.jP"O;wϳf\|f5V<ՕjRMofhTw~'9Qc֗\!}&S0̗/.ămedž#^cZYDmޟ٩I FUeHxo/k)Y:ZH0J[h WN3)KF6G]6ķSiE+Y2`78E{#e.Tk.XN<l [ó m`K+*+ `#Ÿp,6^mTNvI@޶ҪsPxټZvvϺ>r;>J, B]Fߍ()8h|P)_'2FA K}+d7Is[p8ѣ,m3mr{%k =Ƕ5ҎraɶbIִ2rWcN om;ARbHYᆣBE9_0LqTңz 1)_P\)FI( T|] s.zJ[ [Ӆba%XdjX8Жl&߮%e܅qlpU|(q?\MȃYv @[yklEvlvoajsSe4?zhDhE+Rc.NuRT99iOVcMU<O"jM3|<)VbwC}ԴYMw NDNrԑj(%Km_$jĪ HOA;Ǜlޔ9YO(惴N+skQtixͬn\rZ1yy@8γ]07PW}$}{YIm~ͻIi/-- ; UMCP6w| zo ƚ>Wh C[u6Oh5QZGp(6g7NIYwJq]no X-Zeg3߂"Gq2W+@垈1.4w^4|aj[m}v=MSxv|A¤8O!$I1S\'/,B*ZjNmX\?,˺,aV]MV28{FOLրjՆ1PaA!aZwC=+{źe#x."5%9^_z ꌚ-U_aIJP'4.V7 =ialx}d2<)):^'4k;i5o*}AJ 3v["$W7!-A ;n+)DeXZX`8Y%l;{ ?WN>Uq#x{fmK2{v@X<2>4'9)쉼0['zx~)3J som01R{{5/?} 7rgą52W/UvdՈyuZI2ʧQƵ =D\5Q-$oMs$ ujE2(+2RګInʼnU&x=BV&"#8ү"i8h igWCF+HcmnL]Sq~qK'ޥP$8ci_2eM* >ccq].,R:=Q=y1Ybo6u3up=õ='r0cNp_{1xȮnP%{ju/Hg;Q#s2+#8Yb0ΖfE|"yyֆ C@_o(x+VB|%c!0ly]IRcH%9^|n6xf& ي%[U|fz#.6i;[5wVE\D$bչO$>ȳlhYW7̑Drtd+m+D*v(C#.bG_kܩ/DC/k  Ñ#y<I=A pv&u◲4}!M{r3cQxQUwv(}g * N],Pߥ 1o;T ^,5C΂aP^a172*=7? @ݹIne+\7vz!TyqS #yxjJ*2wT.rtah{ 8uex,S3gOgtkϫJRP1M<0{>?B6ϺlNC6T.wu,vΓG' Tn+< ΝnHꏗ.0;0dثKkQds(IoNGrTU.$ݸ%)Ѣ7Tm{V`9/_o8f)W5ܐ8᷇nb_OQ<:гUYԨU'lasrLDvZ1sծn.ĊAW !x5,>PP+,Lȣyc`ء9{~ޫCjiE] H,VĘ4}p㶕{y>M3_zgxmBEd%޾H=n2DL=[Μv 'dUaؙ=}uh\a7]҉zn=A^9G,Uwwxm7_^g jgp9^"D{m]^2^ӴpfGDr˃șξrE鵍Ά8ؕM7Œx*u*Izx8ܡ"sXpD~] wg zKx$0kK 'qa2XWgHpvNg 5rǑ"{nroQ' pj>T ]uy dsZ@KXg7$7:T["ou\8(`=yFbݱ6+*cz.Dʫ8f@cȶwyj_%z|\-es5OUv_^1w/}fn351k2Kh<~'&Y<4ᗇO,FM&9RQfTAz&M[Hyi?g2wpz&-{N sv(lxLwnxy<Ӯ֫L+9ǩVmQ{*G9"1QS Zj]<{5C?@IZ(:TGufeB8fq<Eľ1> {x/2O#1[KhBj璗ؾp5Geȼq?rd刏ϫZ=me g5A짝JȾ̾nD;3¨9޴rѮ!`!ph< N=CnM%hUhCj#g>hN}OݭS:|'z쾴kpܚt #(Bv2p_aT4ܿ[+CeTPeE{icⓡ+Zpbf ;G+ګmݥnJ:=d:+ܑ壽\A f]_<#yW&^>-L`'EUoLT8/y/~yh:7NDv'uțq}W; ,i+d(-[)Ց?hٌQ;qwPar^5 3Dž˙]DrڴYpn (v L)8TvL;giQd-p7~J?x*[mȊx=nGKŷ<ufN7oл~ͳ,= W# Ʊ8yvi>]zO1,)Ui<N`mEe(yI3w@U#"'5I=wmdom0|k(dsqre^I5q@(ҷNBA<-UD+%";Uʬx>.vw}-H?/=-8y/)/Z rL:a; @ߔIr%x4tmW.kΓ%afDDOfdxتQ %X; [N~ewg7zHPPv?eT WHJ$RFGM{ 'EjPB YY|N-dO&do6as1CQ;BKJ }(SW̛PLg{s%7tun*Њ Z"䭺Y:޻St8I)/'<$;9x7b} '5EN{ϙTqyŨDqGWEŪ:pЉsgNmϮIkL-M!s6!/!|-}Gqq`وQ`)BkƗQCm lNǷqGHsc2p:I7.):a- ׋N_q+It}-y$-P$"EcqV#Y$u *n܄g7E޺6ihI]){<**9 8:tяv$be_˥US&D2b Щ*CTAOQSUy\6U~Q i P:qSHꏕ.š{M?jdMSpv O.1 Q2IsqO7SܓӉ<|imECB >mCg,h?)(p1QbͣND;2˨eS͆i.:>Cq&3G&,O@[0}8i)MyJm<oX}Q#y ~2zح ab⒎plMi>Xq!xDKSy'UD!i{j为b-Fx;|ќUO5tUK{"ׂ$ވ˟ƒ'vqFךk#`s{XNXҁ&Y,z{"B9axհ.F+cq1bа2d9bE8r0fɽ8VG89G׸Ipbf׽6uE_9:/uJh7͘{l-> r^TƌM6*qS\9mkl uw/\pnL8{2lJ̵74}⏃- 7C!ݢW~:=iE2C2fUD8~ʳLR~}76 !xq$:D|ƎZʴ2HH?4QdZ<:Y:ArF>wS B-0+gKx o+!Y6qTi==,sU3Ӄpq>.788pyjދ/pZM8Or.%WjդqP.<5<94|'}?:T*]xG+RX;]umi-_B΋ƣ -p({ -̭3%uvC;Y>N)y?Wes]'tWi˯A8#Md_0prUnJ(CS"?+c#e]m{Ď³Ԗߪ} #ժc|,·\!۞)&g,qa9+%ϱCpڒKϸ5(gm]~L% ᗢ->G}ςp|a,yM(SU0qޱhw0=k،l ;MQ\vqFnaPo4388qU8˝NZWu~g3`{n8Z WeO[$:~Y/wqS;Lc.!`ýq mF!<  OdĤKAdoϕpnu΄ACg5zt6} &~'l<]q{q[y@dhTrݐT탮IszjO2Da/˔,ùOZ#TE2>8mcHğWzBLc'NBO}IA%ud "V7A*hw JQ`bvў>TI prTng!j6Yr/iqv܋j+->%זn+¥9zZq5ZQE`hk}5v˪ Fӻ&O;wRQI;\MAP*=/`딙U%{s 7i*5Rz+6Q/:K]8(`OFE#Xѩsn(d:Bi?|FT!m~8vn Mtбp$ eY-漆-i;j~k Ћxbdk#׮}-/ꍖtnm?tkt'bϚU g;v ӂOQY;+2wV<Ǧ_8 Aly{ L<}P5yًp]MY4GGȽG൓Zpsu!٪RM> HYՈL\i;OV+W(l}x>x黺2XԿJ̇ )īZ+s 3TK\XAo-m^k nzGAN%y i&jĕcJ&,Ce}Q\M+6Ҍתl^HT&R*GCųI$ C)'-=MD2Q\rXP:)g^LByCƋ/Rop`@Cg4wDžfd<ͿFsgB'| y3'Smy7a9/k j!0D Hء ͳ ^8dȘs] ºK+pe{Ƃw]nX=PX~EEjٞXْ:v7F PJg _GBKt@+kGk],]W+fHMlh7Μ( g6\sQphW OmR7{ymԂ#BV/NDfٟoPKz!`𔽋">Yii=&oEo ##@#Tޤ afBM#i=el.֝S"^6+uu |xX~ %yot& lAq+I˒ch[.Xpab.le68G} F- jq`M,^7K%|{N .wTk>,BБOpmHaxP$.R fc]³qImǃѡjbui TvT;xP=ˑT+T^I(:"rȎt$W<yW5!*upX`arֺeHeE8?mpzk;~fc>N]!mj׼s]YO \O3>0WWD+G&5bt!x=ܦ}~W])FX{˿chzz#n쐂^Ʋ'Ka<,kw!NӃeXq]Qz$Y;ZE̖9;Yc'ȿZ3I-QwҀD=2٤w#7rR=c3+,J})bmHQLSPS0'asg^ |N w= 7Rf24 _H J(c.FNJoӳ뢴xJF%ߜďU.oOC9g}[+r]4A!FF.}@hu+w8"B;j!b`k sUpUm^KF{f招etb+m3[̓KppR鍞_a 3a\W|]\R}oȋ 鶷M>y 3BkPu]m콸ɨ鸪/à|cXǻ0VHx5v9_&<' 6¬2KbqGX]{?Z owf-<<yAQ+%twf/ظ!d ~BH!JJ{{ڵ[4k_&6?Ħ96;ZUz%<EU~ "N&;(.o[K߄ABQȇ6;vԻ}{c?щؤ=9t *JF+ =}l텓wpFp&J~T}uY<ZCrJ Q59\N{qɟs)c&4eҸ2ηW5@12׹Z\0L2XꊣQ!6Jڟ(ކ{'n^Y; ^WꂍMᅯdc=YsC kr^y4찷yFa_(?̦@Xz廋ázH!иs=t+8Lu%bvR^@e̎Ybន/JθݛۆMMT7d-\v/φ:F]23v۞ SIp)ɜ \-Vjߎ=GI4#f89刽U/qj{.x".#?"sdDI S{4ܥ.p ;*.rbw|v9*-Jl/eCxѺPiqĩҌ$)'(BkD˃"oeٕj#ja~"V99_&} fa}WpJYϞ _cIK83WɞOyV|X\ܬX}_/&[ aVv}{љ~*Pn+.>[vV[|WB J'r/0/8H񽻂;p^@703;gWM]n _.Ņs&P༬(˂{N?> 3qKﺩ RNZ{f,!cXH5Aaׇu!X⹒Ndӈl@sdhYI3~ۢf'Ҹ)+ʆO9#'Kb:d+&}#EI kWL4au$WY1:`a}l6,# DQǡfY*FBYwZԅkb1tJ~()Zyg)BOAuL 6GŲ{l_ +w:|I:ʪqRXA[wh,3V%*e|y%MS%/>ϪyY=(%*+(/V/abmFYGXwTUWw߿3V?g)O5mO +蟞oy0PWoVُ,ӗ\E@׵__Y_jGY^;e<,aeeg:'QXAY%gX5,ۗZCUj6~o,k=ܟC/Հ—M.e['IJ F]Pa"Y7*\q?a<}K)x g*~/_ċmA\,spČ6ݕпN%8O~m~\C}~d>bUeL^ ʢoq//!^?O_F_*j *?]2߷:+˽k&.0U_:*5Vǿm{Uu[^_X-Out( +7ǽu|cz/`PV]XD6i?SΠ,SNe|*gXf.qO)J6?p_&G?cUU㌐*+~gQ[-z/G;PIڹ //VG SEu_}]?6y!_3WE~?w͟C*ϙeub?*yzEOzot| Ygr,K/U M3VXK?蟦,/z[Vua/WffU>Y?Ϊ]sO2exU~䟲gXpy_o,')|u}d? ? [ү~M¿͏O˛RVVXAf9<=VUU߿-ݾ[^cj*go2ȪCUVj2/s^"}QVA ./ѯ,߇_>,?rE|ţO1ʪsn~buȟOE"ncQ?ζ{cYAY^Fϳh>.'( ~밪UWx߾Ū7wX$ RVe\ɢyL1eYfO~Z@בU} d>W{rUq?lO?]oYr)YӟowzoGߖom{?/̲ƿdk;h| [}OQV1Vp(=^$Xwek7\z wz|V/\0*o)9}=o=^͢F׮3{ղ+wMtjg.5DGo,K:*_3\}^;u]vBxzy)ӯۺ s~ x.1~C,H|F%O K50_f"D_a!=xݸKAl?}#==׷Y@~:ru!oqj&:1:K_/o<,W[}ݷ~{hKցq=>}[ 7>y~[הܧ/t}]>$q:K[U}>mM(X^y?#~O|OܟU:,0_בGܧm3\eFho m&}~-^kIם}>3NqDV?ߡץ!y;>oPUK<xycC<1wy?g-ӯ㔦tSOyjFq^[Ehп>7w3>^:s<+u{{yTg^R/E|_oNnZs};n8{f{uoq=nSTs}4}C~s<Σx.aw CI3#˦sk!{`/i[_wdW_2ǟd{gU+z޷J&үܫKɞ[2rJ +x=q_"g o w2o5~I/;뫓[>?KU㾤yd<|2 '%?3G~.!9@ȅ^yʗG}ޢSd(3w ٫/ JQB2&G^&ޓ0p_Fg/aSf3~$/I0 =Ow\%]<&~}).q=| o+5JLhu{~訞߽Nc|eL=Yו_Ye ~es/3ݿcz Cڽ {7.ӟOd;XN?ދ$G>%ޗ4y 1D?~^_j>s9.N4cm?N_ӿom|xc \ۋc \G3p? ֝$3c w#擘'敱*asqy }߷)ܷUqЯ\KT"韟>χ㕕?.E?I0G77L_b^I}@<.%3=Gևd9HsvN?~! gB0L~!#oԋ+ȸW z/n$-y}uU?23> )># sO37$<ļ 9G=&_"/~$Y_2LpP~XƧy/J{<_/Il7]Z>ŏ<6̦T͞6]xFNwcwL^"#Q%`\`"GrW _JnIKߏO{;Fӯ $ ;9>C⓶!=o>|=Щ2ݯT/%F<#)n?~_?D}$=ҋiBy/ף1pF:@xO\?~'9L\ ֍'דq9Ǹ?y yo"Cr?9ˌH8?;_gN&Cb}좟C Sk3Mgo׽{`0O1ޣC7㽘iqyE7inkϣcҿs=߷qq".CGb=%曈1Gy?qiFn~[gkR0:rӆa=ոؽl=7^*{8I^Ykay21|V>I߈xɾdo>D6\_JO#l7*=,#ߧx YO2{fr,ϊTg]X<歏߆8`78OJ w0S~{f~k?GӧIzwL0p7k2{'ʓ?v}Λ=7g\;W^z:7{AyD?x73x?pl=iF-z'өl(~uK.N{mo&g{v}r]IW0{?fAW)qzLGY<{Tџsbus+@bVw_ܼO~կ'Owz=kǑEtK-ω {dz)3OTOʧ&o')NŇ}$q @vj0=oY K!ˇ%ILz߭7ϒ${x>DcxY]3?>}oʐ=߷O}[vmcI6:~؞q@3US{{yvlO嚔L|drI\ߖ p gy`3{QL>~5reL02_8jzag\@ ֋ L{t D. 8ϓwCgEfIuD=>QOu}u z̰ Og&YUo^^o>4/gR=Hu[Lm SDcdJ_{>eKI S|H/qHXuc/s'?ASc7bb Oq]wI<&R}v8eƯLpݓ%"1/=龇y|ߠ 9ϫ׏D15V~2~ >dLY ^Ƣ|>u Bf4}?y#Q@#Cd?!uy"Iu <w~}Dٺ>|C/+n# KðKqQV=ߪh?Fw'F/o#řf7/u:s|ߘO̽羍yd=LKۇїSˑu$^utyj,{Izfۢc&KGkI?G'"F_^`_,¢~G, ocQNdR;HH}}6$_gd?T?9 yLVBoz^7:6rt? >q F-x|&}Y'H3'پ s|x"ȓ'yD_""7ϞYW"OI'GkϬKև -HC!q \byD-f來~DY3BBߐG?ôQ-/}!>?4:+ls6!#oRߒ$w?kDʇiD^!'(\,Ϧ2 0d=HGr"9t%PV?Y3<'۱hۙ3֯]Hn%Brr3ǟ<> =OwR@>b}W*O1}p}$pzs_}1!aET6'^(|~>/tmA{}0OB#e$8DGcoFcO':@?q?ݐPqIr|}z3|LW2_3D=)zzC^r?~ޯO>%!# Qz8wr?ofuY:2!5կկSC/y,mi߯>h_Pr?>;>@}x<~AD!xo/%<O^4ӸNa<,S~D^'_Oɬa+oF~Kk"~.r뷏 1ѯ_7כѧMǛ."iLέjwW'J܇ǢO^*r,|Mb_J|1BotNs'}cǨ>@~:/>"ס1G';f~'|+N:ǂM0p{Y.$~'oO?|NAs y+r,q&R\|]}8YWR^ #$Gy5b^~4d-3_>68Z>`O7e=i+ tUp/o|~Z;OzT?Yk/97cU^?3O:> Xf /G|no >%k|ϤD:`W~`B3$=@Y ۙ>~x^d~`#Oѿ0ϱg\侏D_~_|^=է_]v?s }gx?I}JQ">D~oVYO_fҾ\_]_rbba? qFR|i=9_L-T}hB'ynk.U͢{_}OE>)=K0YyDL!"߈ .x5霫~3sH~fa;D3oDf#[8JߗחM&r9/yq}B1O/>dȈa#Fӑ}d9̞? K/cz睼,$@.tHzL࿛qfyD\'S!3o^nfEz1oҋy?;5 Bș>y bO~sb_&},Y&q^sTG;!ťX]MΓa%>V'0<)BՑ>v KzU"n_;~<fv_şMߓxLU~Yfo.21_$.}M[4z]9Gʬ'џw_Ho.E۷gcmg|mYSzoKYW|!r>M?W z`&+L'$~6SOY^Us烒P}~cJq/um7oyN\No ?]=MkD\?ѧ?7)ѧf1P8ziqa"Eqw1Cէ._4?rط&}˄k73w2.`R>D~ ~> [T!ZKNw+ ƨodUzr{˲~D/_OoF_RF_<bL,(ެ׎>^~^? 5`<0sX~rO[?۟GЧOA?yOU&O#~_{!O?/;O_.|D?ӺF߭zK:[GC+COs%$zϗ|*¿ԧ3}âsÏ3%I";#p~/gD?R?@f /@@ Cu>+{q{./O~~o]ʞo_3=iTl?H<4ދ3o!Α".ku" 2)`}>}G^w3#V>}0>D? t7'eq?m}f}mzׇ74O7Gʟ<>kDO'7#7U˪sk~f׳"#F}Gu!D=H}lݘ#}ʿ>yͽϹ=w3b=3{>! 4oi%7?߼_OB.r7$!G$2{}}OΘ9D-oKћwK^ߘL/~K翻_$2ee"O9^}tr)rHLC%p.gxI`@|}]~g^Qy^~D1sN$F}D{d$gڟeL0?9z|& )G'0p/OH>C0W(_EWӷI_FQG|>u1 Ɔa=i:s}atؽg|Yl=iEgq{ Eb{w<;B?#$H>|RYd7Dߚ;/7tI˸ڙ!Zf牓"ЗLΉk&Kr$S/m t3;e >` {|)o0uYY:OۇO~,_~LR2. q'F|7Ĉ+ƙ9.=|>I2IY{7<}d~I39H?'muTL>v@w$?B?$??ٯ^#9?g&֡;O3S(l@#Wa0m)װ=~qh[?mi}4D٨ > \o؟dyS9w$rSpԳk2ci,/k vhsȯ0wqU-DV3ם7#r~}o_80 DnNANcQ`3%ˋ (UU/uCUBǶheP^g~s<Ǩ#Psx5. Ӄ;SGFUZ RgT8Q7Jis>!zaSS465.N?Q\D}U2Dm||| sK3*zE^d"In6$$GF{ Gn*HN9ΘlY?.CEi۪@˼ad*[/9|$O}%U"2rilcѺqؘ^~OS omģ!fPLl>1g{?c:c=N^Ԓ~y ;JDς~qyȷ0ܱF$Hٽk[xqVFrǙcuN iR l~U߱fŞy!n/X'}w,v\;Glk|%W8RiN 4cաg{ݙH,#hlGU"AEi2Nep4Z"LNȖn6& :Z`d+wWcraCnjZӷdY!.% nߩ%gQ;bF Ga.1)i]cRܩe~ܾ%;u`Q4$4%֊Qvg1(+ߵ/JDNXJ꣱ڰzZ]"Ǣcxu.-HXr]eƣeݟe9ohKUa姩8#/kWaݖAMyt?T)BJC ©=r!_/Ⱦ#.æ|GSGAҏAWq(Nk.;Cm}x0~od~)_;MK7wٹzW=.7gG㲳þ/Qn 8R(Jám/QQz:(>|%(oq̈́mAg{|Qp#[6:KE.HTڙˉtu:Kce['IceXGo|XU.t=>;X=4bsY+W }%)2FXՔ3{e4QpN Ͻ gׇS:AJөvW9am+upSU/jYXHf ǩP5*"a)U/k[,Y$qcsȫ H^?!"EaחAuj#oس|8a[Ps}*l:&PRPJOSj-Fw ԫCEC-팪kn. }3OcWO-]qꔗ.0=?4Ni_w1yaY*p~h1 8URN( "ضbP;nުI-3O* 05*|#elI<c#Esa9ׇKQNZɵKFt/[qBB߄X.Ȓ=|v/ P۹ *,?qgZ|iQk*]8֔"ּ "Fnv$$sx!)$+`.1霠]+SsA?ZWc:;3qxgN[:`Zu* D#3qZ0bz!-0 i""=p8R.=%#mE-) ';)#pf$hE&"P["cx@2+lE]'Jr#i]'j Fh&ja40 l`4LǠh3+UGgxʏ&e9~a?+*e rvJvOj͕1 # ǵ~@*1?9y7bGTT"~:5d_L4H؟ND~p)52Ĝsg{$<Mx]ABQwvj L{;>QLSvn*bY&o@gj.!H(jy[Z8w0I>`Ybbq`'O׾7&ηB5jSu-^i}Zj"Ӄ~ⵏ+Cm)pu:%;bf(ߕ|g c%M'tZ Q`\NPnnfn:V0O6y ^-յIۚ[7V.)6|o O.1>/F)6|[[iuDipy,:" tbnPaŞ(Y,8*6'#*PyLF׆?7 A3QxGUӪxS.EʳK%ólUP[\\[d"0V> S:9u5=S| !):"L턐#vN,aauH3iWC\rv'}a9 P}h/8 &6 CZ[q?$KHYO==ܓc}vܩ'?`؈+ǾCт7PAK.hRϙ|;WF;LWH 5y'V#Մ0icqfe+qf en`}9l!M3n ڢYwgOk{sWLuxsVL H냆"9 lk_UX|3jw>A7ZFDpd;ZB[S[ ^$t{G=n}w t6ބlwM0pyX(񩗿K uق,a=_ V #Nګzjn/_maP* K_$8 .?MnڇaH\p"dWLI|d㭲gXPI_hU9k XX&-ZQcBjՙ_3-Y:^q/.468=>!_{3"构uGAo,@F{Q[aEy,fW4#SG說sS#vf q>n4 rI ~qQiGUZd=p\,i Joa<;i=z#j-tE*k^ȤunLsy jpxpvmOr|b;/= ^W% 4%͏ohSCV>K˖,@{~M} vl'mO{ˮ yD.]vyE2?l]sU;gMZe[_'댭i'R6BrY;Cʂo%vMxHr cxo⬀|{/ `,O]ta7RQakzx ak#s8Iq2(3.Y_ZaFg%ԥ%uBLL*׍!A~3vN[{C:;zaG ^Ѿz7Ve[nÇ~ ‡AςxkXS^^AkM7,\HZ~]VrsSesSEqNC,Uv[M&jxV-( Lv&DEIͷԢ'/`CF͢m7NAH#$b7lԬDCM :!w"榶UڊyWY#ؒ?s+vJ\v!JAG@9V>߫3&γW@o U\|8d+sY{R< ȥs͂` öY0٘~CYކ˩{cKdajTl\aC޺%nRXVeBP,{0uX 5;ó׫„=@WFx*԰O`4*Q8\B:F+6O.-a-|M QibRȐ‹M7~4ܡ 8gmT~yD֍^> 5&9|cO1o:Nqy-=œI:JaMW^,5ujpx7$IW<}|{ݭ/v'T6I(D7sQuq5?$$-i+^{Җ$RID!I$|{:3n缞|\:z>n#3dz쐊8Ygo,IZpJT& zJ LCxd BrCgr߆"nR[! ⹨4SRTqHr =l55\_G/n> (v2j;@ȋD\zFCqHVQ܈ S0iFك6:{/] fH5-ĭ'#XC$?4vVml]56f(W:2 _ǧ`oK+ =OŒ]_Tqt'?sԛyAK>BCW:.W§0Xɝh +Qm`a(n[+צ{,PV >]]]fP=Sba3zZH8&dû4`)e!%Ȃh $C'bޤ6r R8Gt;=v$F[U,WQT03w2rQ6?z'Xx ʜAR{QQ|g=Hbc7x֏ZAʬ( 2OnR}aV:ܢSـ]ybx}a{~˾wƜ`ߕAg"@2"KYpt# f ﰕ;n+PixG3Idc4,$5L(b)IF%Tk3dxK%iX.p\.T??|3.YO 0ft\&Ny8Jༀ]QMغ'3rTn@F>iUѓl S"0qZ- h: cnE)^;Qf ΢kc qY?i6B~ky}$)2N7EB8w$ۻM:#zzՓtNF!$(3Hq "t4:z7L R#pS#bJ³Pwz㪟tfF<8cInW'v3@[ǮAG,6t6F/Ym\@wg ~EjqiS7rX=!LDλOdבrIߘwLk}(b#~+6&%8ÏaY'F}yS!Zg[G؟t@A[0JUO< Sy0J""|1V+Jz4s#.dTzn}b;3tRB?-zP3"DBGx>o}겇ung?vbH1[x|v+W77Fϙ9'9+W%yk7}֌D嵶U K2S{.+e!S!F&-9HDi-UF~;$ڢ:=f( oo>kbk/!16c-WkoWajq7 >zß!!=dۇ$+kpT:;wm4S mh+#U.R=>f jg~M^+P%UFxjX7a xX蟜3 N ۬ܐƥ:*?˻y[k :=v~I,TOv@r7"NUhGEv_~A-G' N7<^zPЄהk%tי':[(]y " MH4kஐs!@=F e3znVNv\Twowo,W@t]M>#};`] /Z|<Ov۫f,K_ǒQz];L_wdѠlv:_v c#,VNAOLpa_^ \jtW *H/$QNE85<1XE;齺ΑOcD,!D m.V5J6*=3+R߬0}]F Jw)b@<(7 {}>H; ù>^ntz;ΒeCǹǛJuws YR* 'hj{Ei+pF0Zq ,b1ftP~˽X >p% Sd-ŊXdDWޭwpιwrGEqNs>[Sxrbk(|w8sq!aZFS~ kcsS8/r,W)N1-#ibH97RH%eX[DDɋ0_WFhIzzc۹g֒&tI?|Dc2 녫5Gy)R5VFD=s6gy zĊ ooE"Rk8~ !.jgFi>5Y#Cvޭoxe),{<Y#'G`s~3AQyvR`z>^\l]*Vd'h⢚ɣ2(x#63qћOw Y] ed%R׏aR0ܷ?MCp[L[ f3k8_Â~ 6܊BjvH8C&rod\u#I"Ցn0=4rI~?epP3$mA}P' b&t$x$ o""sx"Ow G"rw8\IJ#ʤ;||L* ^ DSb }~N@ϮE)$9>T#HI̛C|+A)'YQ=CvJGkɸx)Ƞ/0u $@锘/ֺf]9L,aTy5 ثzƗS2^UV\Y)eFFr|2à "d?!hGL <|鋥Pn}D=(>ӝ |Eefqkċsq8'NK^eFa#/-7)ߑAB*~5*} },pA777ep+tkFI꒴)ŀ%"h]}̓GA!AvMv7yFIk+?ny !٭WGbvEB1F|uKAq3{n<}lEY.>\!OPJ)Q$CCJ o^﯆wFG~8ѩm/AqTBQnz֫pj^0QLOn:ﰦSD BI R:z#oVf DOO<Q_el"^^l(fc 5?i]$*<Ǚ 3rudۧV Vȣ7a~$8Jqzdۇ+Kz2w]N'pqNq_Xwė"}@REH-+tk\ǷNP8[~40y+Ԅ>-ĉ~[戊;]%G~}J+QOr;͚ >)2mXdnjܳQR?Vy*l}1Gs~!/s+JJv}++>9/ Lޕ o gG=oʹ_A&y?"\1 CU;e=oTG4sNviĈU&/#Fr> XĈܟI00%@ߖfΧix$]js1zD }H3 B_?B9^SrJ\}^{0~ϫ҂f{B;lWٗ" `2A7#Zm`fO#&^XFNMG-Tm_v% WQZ@W BEҶ6y3OZQIAoEUS F/B@}Y\'y!'RQoC0Z時ʷ&,`}iX0xPe y:ppKXWmP?oB˔' ;ݡQ0tIX8TikGC?~g9nAz24yg¡\+kS"d4qCّUD[O{"GTDq1d^G,٠q?K#RE O>}9Ovrʗs z9Z ~'|2]qY]0wy[Xt^a~ .Ֆ .([ %˳|?Oi pžl,DDa#އ&`7C{(% ~2nV8ۭF1 {L7ތ6NA,y|&}spVCDzb |C!w݄fzCir{#j=7 +GqsM=A } ĔE`dpA[4ѐ[t|/-ABuu\,?_yPkʶ=SAbnDoF%c%g}Wo-AI z)`} G17PT Dze-Pq6B i~@m9^wDQts[ϡf#jJ^eϏF6\ZEN~7j%[K3;YЋ.w}U ^Q9"=Uia # hܬuq5!\򸸷Hmw{sWN3mNUc hm>Tq!_0 {I(ZGϚci=AE Z2wPzNl"E /1넹5,|g9 ) 8ݳ=pC\B+w`HQ&mv##̪k B1xrJu/Y#:ϷE4(E1}rNS3]RJʴL?Qܖ5x:.۲9%yUO#} T>8/^BK9T2|OoY#o[--w_<-(e':AqH/ET&W ^anOsrzf@" _)/:Mvʊ{WxG3t V5v<{l|8>R%R#+o b8Ao. d|6:$,)=7_(cKVr>>EGU۶!lVܮ'` QnJ& I-1?G׮Ayoc2-e!vl11id9P1+e$1A+zdv.Vl~ .K7!/X D=8 ~7{ ywAǠK@Gп9orK$(WD:]"?Ye %D)V@k4pUj+׺;Ergi\NRNBrE!hmXk7dqB#gߖuaTnz=SkLA%s XA !GW; nsQ7wh J z;VO `> e4'@0gXZ (!odbʅN6HI}\Z>vM8Rzb}!hy}GQEԇ!siY=mK2P4#\, GΟ SM- j4}bMpE$ x`??CM<ecLpI7L;`xaX*Dq]^0:da3ip>^ Ko9-pu[]gCG~6O&q*'P?{8pB.m\SM ^ߓ3SТޱ ?B In% gS'a1G2lc~Տ@@D]̌kD`ktCXN7Q ssW;Ș3'VﳴfwQf9#Lm{Vt<ՃIz-eX[]sݕ@GSG&RJr+Q&P{rsXF:XVo%܇\֛Z%C$ֺ ᩽M[xȰ`~v 4v{|`rѼyϙ; 7WְpJdO9y* ʗәR}!;:%Cv_OXXۛT vʴJZ'@0W^viPǂP˓TxסۍhHF<!HXʉ&4@{QhJj{^>K$&В?Xy$к?P;EZo+(Mh|_D$J@;G*O!ސŌ6!j2!SuIp6("FL˖\.R | w4{PE9:]Nx\OobAݱhh롣qܞ&]ߑ Bf+`Cxİ+#3/a.ba GI 16Unx'+Ҽ51pI{u^V+3:(дoj{⑇^ZGwZue;?7ެ= 83y;ctG3NAO]+uWyBl|)r{/fO+ ?G?Uc Lp( "džh2ZمP|NK45yEI%oEs8CW%M]8D><CgR$qykҤ @$JE:@^ݜ=ӿ&!my? z};_`1k >j˦iJ뚷ʱj@xU7ӔR0Sش ͇AuNbX,JPo_hЬf⮷Y{DgвFr2tSD@b]ЧY܉찤d>ZS?"aN3lN{]&FߐDY6X^ .}Fg-9pك3M;Cx/ fS{JDo.3z su}VPA?Giʁ=U>P%x˭p\jm!~qh xHQQuv+(ݾ@ ե39pi/F~WRr-գf2n-uơi@ 㛪lrbTz(k.%WoO'Ż@hx$pCKQy:H$(Yͳ]{Nku9REL_F,R{ gGV>i$58ߍނJ9cIP1Q: GmڇC#PWm~Ac [)C='sg4Ϸ8 q4J^l]y62!M)nI9M(.*Еlc6cv[Y1q q9+ b?o^P)ldV˷N1غ ųT1@6 ^>QU`<7 rG_xV~^G6t ?8oe v_m=THl0ޝhp7Z _m#/-s95)ø{E A#'"[c5Jʣb>ń'.q{1YA]?$'QԎ!OIJњ{7!x7-Nk%Ix.0%=o`nu,Jkm|N%qB^T2aFլkk jX_wZ+ ;hSjk}ЭJf仂.ei[f˔ÁoOߪYyGr9)ЛC" `9җaΡ3wq3X Hk:bC L?vFbFYr *# mc;8ՋݵIC?$<޹Nf$_~1SݨO֟;rua8[y\mԶиK^wvdAcSǃs0d\|C6P6=<ذtB NꞌB@%<}E0KS׃߿ wrAϕ^0{K,EXUÎKzl6_G1, Ηh9jy~Tġ !UGLZDDH\^3:dr!y*$,1+Aodi(AD.'}"QJAb"_#1i2ݵ(S|CdqJNb8vLJ?,ޞ&tFnJ Osrl)B,slɲ?8:4>ɯ'JUJ`NuQ( U6n",6@>G Wz|Px֍UbUAsX}6ڋEr [{V>e8bm 1 UB !d_@OV &3#q㫣\HS- GRHv143ZUBVkh >VېӮ=й"t/DvC/{(msz C?Dy4?%f3o' X$ My4>zǭSEP^| #u(μBSdP63+7er/ NuijUcp]-a#Uԅ?v|;'z61^hx DtFyoW[nP{XG:{†6Tl/v&J)-wpb#'S;*8K]#;|y ^U+"WɍN-8o3mXY*.Dng)SGn3EPf :Bfծm#lȂBx+FƵ"X=Pg@)rt'|MCke_G?w<#EFT&ushFu:?Jfyk3qaڀ9ˊ$9"4Pg똚2y허DV'g>#AK`X!";^YQj٣(r8AppW2/G>>& D*o ڛ驪St>p7+8Bg$~,;.ڛ[-SB@w'c9:#xvԒBT|_CDJ0S ڛX0dXAݽdh'dr (@L;Y6Kx@ڼ9#>=4 %W)RǬSzPg5uا`9qis*U&NiaЧ$B(qA3;atm"=e嬝Ѹյ3 /;rsѪ~ mal\:rnF6j} (F5J~Yү=j8oS[ ICV^8sʒ MO/-)ͲQMaU&?,p:n5!>ThH+bXwEd4Ze@]\V q誠n\<2u/R 3Wp5*mC }Nх%T8gQF ;P{,[TH^Yl>HhqM"Ip) UpHdQL%X+YRI$wNI#?N QTk?$)#~QǧJh* ^ Z@4g*ZM[S`|vj[CլZf+Ia@F`ɏz^w~!" xvNʬ9s'yGd,-yq_6\ pH{ OQ:0iG֋"^d#r,^/iDKown)7iP']U$VH1nvxZ Z| w*,cΌo/(I7 ܑ 3 /3qǟ`KT;gS'-.d.z}<#_@쐰nYPq9PqyswK0Mh9weC!>.`1VhR}jusqGB`XO4:Xõ>b#WRd7'Vf%&Cwi>¬wD+ҝ8v<-݃ 8t5pAO==#/ V$qo%cvG090ei-Sofv$.x =>ڞn Ƽ E[DT,"Z+ZU#bP8 q!RO)|dcfGָW"Y;#?@|$-I&[`lq;\ vKv]~^ tfԇУ-ޣϚpٻo |ߛo.K䩣-~E\Lꁿ~S]5?g:@9 B$'FbMSxH&OF2BRխڟx TW^I;MϺm^^x ۩4Vҵ\qpZ62 ]Sp/ejm}?i8 Cn{Ď\FL?>DfSkB'5ܒpF 0ݵ~X0pM+Al? /QX fǗ)3]f^ֲZiMoYw :&540M=iT sB_t[ʽ]ӎa_Z_5bρy1N\L)W-P-6{`ٴ} ۦU~C~1Z!e0ȉМ~Ǭ/!)ޮ% =e 8^hZO*$mmQ_Wd]1":/2X|FWx_tDgǣeutDOiL@/fy۔Ds?'g1D`נ 7¥<6!J1E~I- "-.]Ed ˳b<9#ht))S>onAw$n=:ޓFT%S Ϸiv  g'|+?ԯd[g#J,CW0Z~>{Fi.;A"q2 3`ڔ:qn&7vO{ø79\(tHG⻧4=ٸ{Լ@wfFnu.&ЇN ^%LD$yTm:L84AzmfĠ(8̫Q s1U53Gq8v,;{߯kPdؙ^wJeha"~xzB7y#*k|a6IfKPZ^) c6{ yK0'Z)z+оwYvA)0,XSS%$ߥ~+.̰q+y їD`_Kפv ƶd-bq+u>UxG+{=&\{x_B'uZνeEYnџ;qɮ5s&;֩QN]d ޟ7?w~9!~{# dmgz""rL8/KhRhh4AJ_Xdpg:ZK퀣uԼsm5vz>nI_s:,,PDTx K?w$VXڱv{+n0cH{ Op;#:csJ(zM | Ʌ?C/IWgLx}O@u-?7hr~!w˼8rKJ7nx΋i ~%oX稥sC0C4:q\]`{Zf>i` 0^ZP9F`vKuxcŀU 1m0%Kr3Uk[~DS~, ϋm6 "Gܭ3S`o"GnKrbnV $74"_$Q$=$P-DFReT:I{@sZ% ?+F1#7Nط Ͱ{w w^d|peQƃ7JiIW=cCN| ^)zz5Ν{=Ĩ[\"9bש1< WkhRx9]xZ]0z1'`.aX:=f/S 1% R4qB)d-CGj`V?/uR@O`Y4 UEނ:}_tw>/QU:OmZag sO-00OSհ2z"T]Q;"u"_Pfu yLD__[~c0+!0q8<_ydAR*h5A@wQA+E,WD` wB{L7\ qM  wQ;9mu&ri1"/*kI:c(ү/t.S ϰ` .TV 9D6͉zN\ r7^MUg $Q@x{>|f_yRP.Bڡ#h͕bBc!\q|'}Mߊ;C,ˎm\%(-E$A0sjtObC6~F+_? %GYWP ogʻ<gH1E ,nKy#1RmNV\.JObuBe^T>[t~W/zp Us? L;,$$jaYi" FNPĜm%g8"O"ܭ9ד MrCqRb5 .}~ċ率h$k&,0Ez/mv9N}"#2`e>Zd dH{½H1q v$N cw~ǪH8!(=lJwoK Ja\N%vz!,k`a$fζ;^ſѾL/J-.ġ>imT#pKh=AGN_TkNe+=wh{FJѫ|,h4gAKFC|6vTm!gތ3N5\{ڵc&IS\N7<' 3Kpp^a9Up% T.HtFY 7Om*#Es:6pM4'njbU'4Ȕ(KmC} n6#qPm* *u2[lAٷiO.Ȇͪm.q/Ee?lβ='2>" 9-RϯA>/.jt<䉫y#ɂYJĉȧq6%XxϽB{®vA.t9v BV6Ay:Vu\ah3c>QU|":G7}$1O5"ijv㞄=^w1@"w@bfjh'%;_-{H=)fK:w0gP;R{#)p}0(HWb ]+xK߳Fg~̓{-x(>[7p:Ϣo+O-ü 0u9pXXLs{Z//ÞFμEDbO68o\8Mi5c'l. #mЎ:/]A( T8h4NO2x!_M'g.qBap^s @[GiU {";$uh $g9Co=g gUQq;.tLĹ'Yd*LGoҬ!t琀o8WץFϘoG/!C3U%57-ꏇH@̥ވs!NLg)C_Ԉ[3(~ j zn}(;Y!%wۇX: :trOAx u=永~=_TD5'J://bCZq [U^f __9@BQ;oCB?; Rqv>9Y¤$ZR#\V\pYnKu[|ם]zًَfS}Gj4#r',tDޢ4nyV݁Ljx[ϴѮ27$5 _B/[帀p+D;'S#&"=b,l@rڧ-|>Y[О3U4GarӵNC\g\E4;^1t^ČK;BF;rvGdsCs).Dkي(fZB聋(yoF`dRTJMewE؃n\zW]Ŏ: O=Q}ŧ{w=ݙ(y8iTWi^pa?.^+*;/;KYN,a$9fs7 y5M*3|ci"5וּ-|T)@#w-w{1'jBvq } 'PifОF#ym44QCP}@J|샯e.]?ÞE8I2$D:zTAyH8))Țz<戬`S3;~CCmv\O敃^7b=5FRMѝ0 d>S5"3v8ϧ2ް3&۷tJ5P 7o&AFZ`̧֡ ] P?zCݶ8m>f7_*5:nW8~?6kVN#ogÂG!/&SpݺW̪~^ dvPs; bFQg'obQ_nP j4ƏO/g+# _~9XrԾf6V#Qy?bawkY]8ZB |(^#[]/^*zXl8Y'쐥`Kű7|,r9r{ϳc)zd AޠOX{ $Ș558O?Gb~3S8 Q q z_'_[5:9O1߀2-,k`Ȇ'ĝd`#Vvvϕ ~}q6_5 !$lbb-FK%.g7^Ԟ-'8]kcrGe=UE:댋SrLExp DxI'X\Dj',~TW1nتC݇nvNSI^ޅݏ -)$tgE5(UZ$~ji $GEdd$Nnd_g !t5}qo&<ߎ|&v{\Ρ=r4p8{C:x #NlD#$=F /qII͕B9hؓkF*J32^# |BiEv.'ȯB2S9**I_)Fpy+ep4.ӭ)8M <zÝ|ّ/wyp좛]hDo0]Ώt=ǡgw# MO}!C~s:҆\mt[-O0QӃW{0}Nx m:L:tS1k Яߢmzl;vnNx[%]e0h;*Џ ièeqnԒT(ZWDBK˛PhZ]EHS!ȟzݖwI(GYvmdDhOP_vcyemu K wMlex&캆.Y.o _be)H_@K1V75t2ArZZE[4@SKL| N%JǷS8Q4gpd޷h6*@/GQ$Bw ߈АH QHgjqiA39&[H}%3xYVSB/\Q*U(PZd߇D"eO%W,O* 9ۣQ9G\AJK}t߀RĤ5nDRa / 5wYm oOGjBdӷyScCTdá$y&+ x+I3Xak/k;+*+{8}SWw.<ո yK;)`n^[4p^Y*j964,Ž=l?*atg`{5Xw_.Ӓ'7wcG/z^+vR$uz'M>.~IҢ-.'8~C]}ԫBH/\6 }H]Mo7e 9Hq qO? T֋(G- eމ–ܢEսm sgS)nϴP^%4F[GdyoW>ܺ;JPEߵ2e6w\z,*UZHPfAcjR:\f˵n!'E0kv\LW^ Ȍ<kҖ&Zp~r @}׫ngr/w܄ѧo=kk\}E S^~gl^{w ӝa(|(uQJm^7om w6~G^%tqψw$b\r#*Op9n)Htn|)X+H i6Ye[_yS%ۜJX-;Ynxf-K7otBVb'A$vit_0 =p}&v_@-]ߨ$}.*.ר.!Pny܉WcUP3A< g^ui\{Ld,킲\$ruR7P2:~H%N̂gzL?M(Ltqn .p< # _A8q+V3ZgpaףJ;f,ai.[?8I>5Ǫx@B{6 cofu8ȵaVk+u6Yw­ttg_^qP俾1"iUg1XdeYi(Dbqщ^a:Foh&#$'Scl}Qs=nXkxR7gZ;9(h$V-6h6O W]Q(c IO}_G4\l,b)|" _d߶fw]4MIHyY鐤_s=a?w*B]g[ ڌCmNӷjܪHj)ܝm_1B,۾r{\#4#h;pr7SsmWH_Yk kVSA}ǨmP`}}H;ڢB\k|n B5T\=WUz|/V,gX|V.7nf@}rl.+YZ)`{з};ߛT} "F3L젞1b[EZ0R^՘I\%)] (e-(,mȵ,^qjȢ?dm'7V`ep lqVi'tDQ(J?*?/eV]Bշi9O G1#.~C{3_E}\/_f$U妷Q <õⅶUг}5zu>=! TqE/pci R'ЫO*9;I{RA;t<;6S &ߝ]0vEG(Ȩ;:INКe_ۑy0ʦsI˷Q--}ETrϓ{;?Li_<"ET":oĭifv^V9=X4$9\\-֞EW'7({O+-K"W| }QE\Dl *舜w[f.⃉{kb_<ѯ<\`k`V෷S] 薈!G,=j?XH+Q)4"r p蠰ÈɵtCEw@:2|m"N=:\Ryvq߽9}5e]Q./5#Α._;_۹xڿW9w[BV[#Iku#5Ӥ;/-w"vG++DȜB`n*B϶9;n̬VT@12(I7izJ/n2Yx!W#vFjr9wC_ @E-bD״V4}e#/ ہ&[n hjxNYޖdGca=ͯg+iua !QEDtxv(_ ?ߊ0|n"4 r0b Yqjrx, <_1<)6zGQʋ>oת W~P+'nE VU 9nqLw70&Rߨ;'`@FM[0%4 ,k`;B9n|6׶}] S*q}Ei;0 xsFWSOsӊXu8NN:Շo@ȝZi? D˧m1K"xd &j>-"6_l3~o;ܼݠg]L}?$gPP9r!?/W$"{tyvILm6Bר5= DŅOzKKoAOȦ5\#EEE cgj\G`}p}>vbB/g2K騄M4gWdm=GdiP*r=.wCRo?Tl;E`Lh\6$[C9]gW+0 .6nc9Os?l_8e%)8e}ڀbEv%tz]} .I' `˳1O$m=*q.| 0f[pJEՠ=UI%T^u<GqکTM/We{[EDPT P@QRbwww-N^l;;;;ۅ}'N^%`{/Yd@E7W~܎)`Y.HږYcuWLMUv֏?g U%w1e:^}@;е `VtQ`F>~{|r d~O|%US 7Ў`(ixX5eZ+[|&z&| 2fiɋgMd;PϒПIA$'{ϟI) !8{c ƹ k:[n6 Cz=n5c ,6 JhVE0by熷946T V(rtuU5P3f&:Ow#w\wK}uywa'j`j˥`ϋgf,['00#__ SG!t(3g-6AwUk }7}\{{IyF}k_n]{oַ]teVX cffyg(kGXi.uL*ؐ=~WkDvjv4 WeIbتP8تXP# 7Oy#DL\FnVik\*dwҫ,LF.a""`!C/?Â;m %ל|K1zpB*TaIы*E+O^ L&`;,mJ:XtzoػAmv\tevC3{@]wºyÕM{ҋN;@dxbWlAģˡ􍡱=>Auy\)O{U9QZ<| Q:,&D%Lh *Z jƽ~-C3P5r} <VvU#Ls=w rޤ9=mrk;{CN%< ܊M5 r* PRnߛ|:dXo2;G%g6enkai ȝ51:l0an0iv͵ށ:S R#8p}qZ#_mxSU;Ӫu8Ձ{`C۷f;yU| 6f?q^ {>0xҸ'v%ÃOJw9!mJ'atX>7K=kڶ̫޳!+񙷵6'sh[O-Kj⯯yy$W=tݲ5̑aOGrQ3n˶F@heK@藫&C fu˃!VkV;y 䌂Aݞ7}{gsf3":wܮxL5o;j49bi7|y{K7j?l)NuH$j#<-VJz?1F&?ܭ1Fmw }mdݺB5lAzqi¬e2rrم]A-5[ou|VL ˝ -cw'(uM:OQu{nmN}q+Ľp{_n ߸Pe$MYb"H~G6u#`unUv:W$ohEΰ-6o'~ Cf\[^KbH}z}C!9sʤ  Xe+Hψ:p^0m`XsGa'789>k #laʟjت^XMĎ x[Q]W`|]킉:ʙBٗONntZSG>NH+i·S/ztRh6Rb\m W Ϳo&6ήu;UΩ2cVsr2?Nh,z5 |{DT%Iߎ@˔l`g3GmVk Q[7 9uiϋn}KVftƚl.|Jnl$WD7S¿nn!tECأ] } W@io΁/f !6 'AjHPR/e;?m8_!X8.=.dtR"6ÈHKo b!\ۥ* ysVӠ}n_:鮓Eн֮&&GuU w^nT*X~gn\b䌂ƽ4"; Qh\pt\͖ɵ!|CW Ε]]\ Dvrk: ,Pi; nr{6)SRK7Xp ;]cH-D&AJT W܆1'N ܦlxq:q5v] 6\/ ՃOW-oo68x5.ktvD 33zcRM< e HTh5rHVzj #Pt17^vKX[8}Xk1'/Gus ; QE+u!QIZݹ0۫SjoNN?f3ߞf*@fUQ 8!2Ĭ벧"d lzud1zIv߯57 G 7HL_΃>1q]oMuxخHn .욑)'KZw6A '`c g |AMts&hJ9kqgPՐȥ~x9Rm iJ1` @à_7YU}{.*]57w67f_c.CWBeA!1SChKj8Xl.}R~e ЩWO5ɇf|ChC !\m^!!Z]V~uu}UzۄMrq{(dCﻹSW~R#_ 8孤p3N t'CjVAB tu2 sGonA3/k]V%灻y&9<8X>?s~iA_!eԪ[Ch #Dn ?xl\mtPޚ;Z[YwmΏn +M'cn7il N-XP`^*8LO Rfo(CѮ`S !>_cl9TY`~fBSUxԫE=^ocpTl Wg/0y Y bW6Km ]s8Q= /:uHHV='>a\00jaAPZq[K#xy0OVytE6mUE*@x£WEEWSyZMC]5k]v4"7f\yn!\Y4Fpc އ6=X}{ awO/1:;^c=5fT NIq|NUu]ZV#W+ac4[QX/4-Njb [M1p4lnZt{ճr޲#𔯫`袛}߰EEEʱa^UGa"+‚EkGm>9;WuhԭϏ;]ㇿW+:yZG=p}^8X3|";ln0W [/mv@Vֈiz.٬2+ȫ@k0l\Љ|'v4c8Pwt4ilKd{h~ &I`ѠgZ9#hfxYŤ mj-yѠ/ی՛F!Uu輨x̻ ^Fw ֯BGE0K0@}^oY1 3 av{&9]F7y9>stvt]g+i4UNvz7߆X vOZcYZ$,3[o۫+[*qg:m|d~)Ϝ̓o fښWݘagVbҵA 3DoM [Oܬ8z_2(bfgw M}q-1 |xFalՔTB ,+? 1<R28Xq޵aysVx]|:+z.w0D,ڽyҮi`ܵ[K0s+Y];& UkZ@Vl u6ܽ]4=ug= 9a^ǘB*ZACC]ǯۢqaaÚgo 4B%5NV^9y!mA-ޑ{i aUiRZ {=w7?~4bm+ˀ;8%MC/6N~.f^1;9[Nyk l1<5n"eǺwzUa .~yWr vXL;~&Ol/^ &+Im>6)wo6":k5QPPߌ~ kNgou3?l-z6-r x{8D<^v7p4\@smW aU2\Po pvSwrǮo6HrGkۭl(m]U(ZJr9/_`m y"KX VVFKk> 8U㜯RJQYZ=>BAVͼZ~5S #ZբM5P-׷`ZS:ֿ/)l?BQ9.a3Y˷#h>z%|/KBޑ\sk_м$V@pwE?@U˝'޻$ǚ$w3 dAᖢ65bk ӝLI;{RO]ۤq;܃Y߂dMoաZS աƃ+o=<ܻj-鳿AURp 9σaFCԂ|Jِ>Roe}}Ymdnm*&鮐3h_Ňwajњ݌st_TjrypXIةsಡ^Z}w/Oaˆ±/;kg}#oPt/ZP!Sln244Yn";e5mia^B!Z3=-SA?ON-NB\v:N߈{{8D ѫn2z ԙ_UKj(|`mu͑~ bc)QUgߗ'B+c[h1?n,mVue@Tjh2̰0ho=y:7N=޿ ;>SϠr΍/OWf@QMyw~}^IPx}/IC}ϳOAG X}2Q3_@Rf<6Qm`Y-->Aɵ#A *C"Zkp,w UP>?۱.hgs/Eܙ )LjsV' Ro|`'T\42 O*O1n|Rhٮ'wX9MVF;h nSb`^̰`R GvNVg&B~Ԭeż=O~=385d> gv2tL9di07þ JbBPYDnd{H^mߣU7Vi0s 4.aŦٰ`B٠64V )gs_$7uU&=l~A}cI缃yE/LŰ9a$,*nQ kИ:kQk`]FQ֦e\!K-uʌeFAn!*?f >ul-Zz^~ MljQ׻e~޹ v]хV;5AzӖl>=Go7:¢wҵO/0uY?-4i6 u_[?m+W,xȡgYT9\;5^ؾuqóUo+ *UTSs.\fAo;= VѬqP ݜ/<&?rÑJ&@Ogvj16aWv6R >@8U5yp4nx#wpOb~KSÉUƮkAw[BPՁN`GYj}oΚll}z[F-45 mo~n_xFK`;nmSa{.9<5sK`a]U^Q)]$r&*Y %~9= EZ7U>R_ysdbT>ٝ ˟{)- gJM@Cܛ&CB7|m4}}O_<#+ӾÖ^j=$WYtV(p(6L*c k&%?=Y) aآ mamm4tCwX`rvhQv$2W7h36vc=z8k|׿]nL%k'4xע 2[y^vYqA>nzӫ4OxP>zh>dԈtz:dd佀^(IgG>-]گ?ϵ=f; N_o5} f/VΟLw=rW%Aպͱ U4Hݠ]qnBƜd:B :ra8<ΫSBr![#⟸ O|%aFΫq^yW.БX[NA=,>ޘG z\}9.kS;pؐC7}]HΛeX/ |y>͛_ˍmsm+ hgcy>\Z?M.H*pyuqchƑ[3+'y\w!pq<a|k*yLJk1s('?sl Txi _ayNa\ 8pC*k<N7|_+4B81>kc4*O*D=E<'{m㐣Kyƚ ps:oϷɭ]()ȴ;s[切2(t~}9iSUa߆I #ʧZ2xN1a/̃f\ț췙 #Dh^0_ K^qCTyKsӾK;?˺<|ǏD9N^+X|r~ 'K͒Ocצ.*λ!x8=CW+:\vNYqS?%f .ɏ=7r/jtu|ܚ"J?!-̱~1a3ET4U:_0}<=:|UycǍ!^xɴX#9T-&^Ӑҩۿq~'1W:眆5ҒG.?YFXv ta{B'J/ށ 0j#rJ^e4w\?r=|-FA}\A}Cӣ~Lk+ˣ=9[9}/Y+VBrIxΟHN>N| *YS@?^4!b'3Z:o 9?=$kmg${8t(4o+qT; ")&p_pephq/+ e)7fyـsQrMXFmoӌ/ZaSa/ܓC!*kaucvLź0'P:D侤6t L'e6<Qw9IG:K)p·mJ^ص#+=Ifs`q;8ߓG`/~
[ɩ_}S=W|V}2\Ș3ɓynf:,G^ :εce"ѰL!H6S=x.5Osu|ϻ%g]l:b_Pb,`NI\ j% O/ qz l n8T5䊏8K809ϕ6xz}/%09b*5bfq}PXOJCmq }D Wǩ OV599}mo*TP.g;O"[;5@?;kq?vR8:ˉ4})ðW9yBa>?<~s}pM"8,㱼"<vNaAl?ci#IؗtnVE?)L QCz)Bd}Wk鈾 w.WHӓոxe]dnxN(b{*ODP-FRm`>0};rMfѶ'(lnZ;ˊ˔qaU5T_c~?EǗDLFssTig+L@'xϩ.zpu>1U"^M}}Xw&r65*v><.ib=U~\}8z^@{wfPGOc}žDlÈQxcB?s*s5g,HxgmG3:ӟ5Q ׇh _,_̎g񘷙~alNshyNmEd;<̦u8ve*KvWgvDY{pOiʂQVعY fg;[cw]!|#C0y,.,sq *Iܦ չ/䢸s:Oe%` ~ C?ܛ 1w29 Ӝ>C?pk0ۏ=x6JCH>;'ofc42;L`t6J%9K/&w!ց$QHЏb6IƟ+|lDl~ԏџU8~Ƭ^sTruN+ovH =C(\/eT} :6XntArNq:at) NE_H>aCtl?k}99޳f9~־Mw#}43rW~6tx.B0bq;&Ϋ9fgQYǯVwx?; ܶ_sNv52x=ZCAx<6uSQ't r=:Vo>Zg;{h cCvC7{Tlvi|9loFtήяgS65J`4'Kq9 B?]AhB$vv!z&EpvSxO;;piJWwԯG0[BZKzʜ&~}`m9+}Z9A(2<{JɷmZyKuC^U|̅(JayXnm9D5G#L>XQO7,Nnav4L`YǯO>˗GL ?WC]Tlwb5/Ov?ymMQ:]%ux}Wέ ?x?(tfc+0b{0+ aC7R|IJ;3['qԁion!G3^_>ϣ=xL5я|f ؆-^ȏJG.{>enUƶ |a:әP- op6oT3b}[Zn orwQ?BK{Y[ ՙ` ,M-<'%2+ .JS^~΃ھw?c̓&}wx TAKUl|aGag Vxr|髪Tg]a^3ck_ʛ-:aY{evi'V'~όmbx#{8ypK >9^6kO(摪絊w wƉua'G}:sƽmaZ+ !ɭa~#&;6 8)c9;CrX`!k>ys+MRw…ZDx"{޷#Yi=/ퟘ6̇L609+YigoRظja xc{pᵏu6|gbs)*+xoz3bq3Xc^dbkDk0AsBo7ގeWt/( i:ֳC/߱%Sپʜ[_vxn׭߀=Lz^<'V)pFa+G=TnUoT8':@.\?ޔL@]Жp`<3u] &6Q{6_cˤG^B~Dr8/~+hڗ_.a$ 6eԱyg ,|)A?ʈtzhKT ;WydBm%XδD'NKZیM@l;D/Mv=N὏a$:-دD6NrR\~s|ȭwS ܺ0-탂%] +(kG;(%W<ܘ*pb}۰+DG$x߯CP۬WrXJOB+nOKcc`Y]Y8f`۳?VG?{ 0컽9WXfoea~#Vէ4l̯''ۉl^WАG%ш01}}\F|bw}&I(BTs0|_lUXƼlߘfOB?8L#A֧s4kJܖ- >??FЏc׏e\'> jHNy*A&ޯ|$z+{{9A|;:ps -Bh)w|q]%UJc|3ֽFns+*IG{{cxDad\$|$؛gpYyzs3N.@nX]*~) #Tlůӑu;M;N}Ao+r`Ⱦ] >˾Ex"0"ߩzg,'[0>F^mWb} ^Vx!wTg(Y~}<'$HzgG>ޞ`.+6֊,^pk_Kk_QWS-$lѵmEL/coYxډ,f:_7ޫ^m5䴅jߩDZ:̻g͗@?N;1@rCve] Adut)*u!o=6異=[C;HNY-!v ҄*w~DeN*s{>.*k9AIxVv/w|$tX|ѐ1c]xѽɃO%NU(wi4v )?̎Sz~/ Ɨ9Synbwo"{d<~lP>%*+ᛚ?q}M"ـ.k Ņ+ENRd'{U\o9+N&ų{vvw;*u nY`wJ]ENS佔Ktj= Y"ov^x9>R$g9ѿ߇}x\=ֻؙy/:ƴɛ;vgŠoJl#݈ꦸLߡ| c|>h~A3duaٚ}:x xÇQZF L~gvNk9VhsT.qǍTx"L66ڦ1ۦ^gX}hxn?dfwQ#[ECŢeRny{h m~qMq}ϳ ,FCڏ7- jE58+1iEb1 "+k3qht`h uĘzŚ/=i9T4Fʴw1h~Ec3"ͫ'1M-Dʥƙ;bZƨYG}G=6U"bm׶V; "ԞcAp@$Qzmuf͹)c=&zMX^cυVgsזE{>Rjpah\(gBkwo\Z4T4Z.5ձh쫚|6S*.fKf5qRmqm>Q#Zmln|X/Ǝ/{mQJlkHmVZ^!b"_hSjdoteZhf 38ٚN6Dũhmj[tl51~NY4VhV +C/6;FIV+5E)X+'<;ĢtSmb+{rW4z^h;SRPǂO.5j7<߫w>;!{D^ygE46SMhff2rڍ\hLn6h\zhIqv;Dck{Gψ5nmzY4z#Sh|u1iyu};L^"F{Ϯ9C2Dc?G&D)B*[vϟH,Jؖo=o<%F}V"lahj!6!1Z]h*C==qhQjIFUJuYelsѴKx'{CĢt!6u(K㊭-rӋݢiQ ^1z>hnDKјt%bEzylvD m%bwOEc+(;[t2A3+h YNYz=>0+cKamw=Ja[ToծQ`\=ؤDw33EcϘ|>dǘT}Ň'ѱ׺KDcܙF[Cd'RDc醕DcA5<.5&&5tSYjS E%[NjFmQbkj^}(ݝ)pׯb&ZV:/+e0`Aۿn"+٢1壁9Ѱrڋ>#E϶bK7UeқDoXhcq{_=,w=R4fsҪs}7-FۮzF4?i9>G:aKO_㑳:gXo]6vZ!]9zY4ޯ[?Ԩƈ&/~6cϮx5U4.i\~ӢK;oF'.kLYgraEhDcžN[lQVݭUG|Ǻqe/*5vX4qE-$U"^XP4X01#V1=/Ec駟$uC^)_x墱Qߣk ^bQ.6fbCwQ1&^j%b{s{RZ7x]jtkwR5VޠX=MjS~ѫfcLj6;y1qche}u1FYy|[j`?E#Dc9vDWc-?g{Ϫ? JYT!9(7Ft6uK{iD+~hl+9?*òX,nr,$sO{!kDB_-5Fz;֦?a} X!t?E*Pk~#] KAtI4/yxy1M?mGqȽKV"Sb#*6ϟtLqvKƌn3:GzKNv?!8. oqiQ裗Eh|a I'fe8%O=aP9hyzu|јcqlbZEcH&ϻƨC _}>l,Pƌʷ\wU;&=6nLz\N44bh\6/5sL8ioܞ颱ƍ[]:)-Xix\{[:WCFHj!zjDctώyq=/ƚ`[h$[qK8ck-[Yڌ2ig5΋;XN9{N;Fn8쯱0U5hI4"Eۆ_Db=)qGsQ}QYUjE雋htE69yck*kS1V["?_9o[fh~E?a^qǦI6b^K46OC4~h]EsMuFzŦ*5zm?f1[ܸDca5b&F=uOohhjڮ8vkh4ڜ}?@,^-euToQE3%b Y/;XPiQ1~E'EJm/?m-=[.G4>UGXZQc{~»ڥ)x zDMէM,E ߶cYShWA㺻Dcԓcݦ"C_C4FͲRY4ҹn7:hw phJ>?aDzFkO Dc?GDz L4:lNS5~@ﮕ{~:W="t t4Y4Pv}~h>ie/=;du&;|6N' p?mذWLnA7'?4叱| ]x0g{LVoJivx;fki֢6vUj:{T[R"-h3uKѨ薨d!1d=kʭi[tKD76QshleP8!m? ƃۙ4CU\ԡc̎Qp?a33+5.x"[ƥES.kmdNXƠ+* Kg5u8ФB6ɳhnknMs[4VRqO?T4l^vZZ>dzYw 1gYɎzHDcRچD9ӟ]#u^YVhbע?ƋvsX4FXmY,Jo1h~B,]sNC}Qߋwky/56zŢsEcܓ~L4]2Ɋ9?a* Xz}%M@?6o+,>A4t3/4N4vwqd(s^ӿ#lʹw~tM٠ NJF'k+U|'zW~f,n}+;/IwRcBO'ZTS&9bQ:mVYE07vQC4Vc\iqNwFoEfV,Bh!EO݃hTZ?6Z jkEnںw=/kW2n>Rcm1zɍ[O;S,JS%N,BÁgN(kw^whzbT 1~Ɵޗmj,X12^4zu,b~?y}_Zj~u-7T4*=0hٌ/%xX]cǾ~vޤuV?Fc%3;%GEc ac56t"J#Ѹ,`j|sy#JĄ-ѯ5v8Lʢ1,?{˨X}{E#tJY4uN';ј`sͯ}ۆa;J=.z[4` iq!7EKZS; !S펁c}Pj̽K oVm3S E}v~҂ѨzޫQqσ?}Y`C# DcDq~%7DcWTjějm5y}IEcYF;^,w}"mh&˻Ϲ^,Bu;1Vvְ EcU1DcH J1xF75hehξ;ȀfyM Kȝ#Ohi]W~c]zRO4;õڏw][uwΆ[ibQz_g[uo+Qd[_ј0IA177p~?@QO4wߵYqå#-G&~!(W=0o=qgǘ6A>Iv)nmiUI4:9?>虽gȕEcדo,u57_4vy<Ǣ1HIqp^3r5EA~ԬDcǢ i6ƔYa#UUCRc䂇Tr{K+okw Oj~k= Է)5>0n5KQlj+O]?f獚YuKE@mDcE *]-&׹p8ѨpG9B}DcK'tlqS4lkv֪[5m+_L*5Fwgr(5K4<^4f_oz~sf1ܼ*[JAIv)59Rc'YAԨ3R"[xyRc5U\Kqk\m(fU٥F;[Whô(9 Pj8ϻM5p<F?mm[=@g_N /--J?SZ˃E釄h"Yٳ5wOsE QV֣aqƦg ־*-JzV=wX"6&{cbF(]SnJ5vԚ 2Ӱm1l*C5zz~hϻuy{S%*!qoʋ KcG^h8ݣKJumwLܪXx{WjԾ޼}UIQpp2X5H׍3hW淚OJ71oi~*_>jUjLycofb{c5aqyRc#Voe}18u5l6Z1wd?F{2-Ltji!Em %e 42_},)e̗2_}̗e?ŗb/e̗2_|/e̗2_ޗZ|/e̗2_7|ٽZ/e̗2_|'?v X/e̗2_ޗXe̗2/Η]|/e̗2_/y|/n_&|/e?dJ3]ĭ?".kQ xkÆPd9$|Jdhx\~ܯogKA|Mvq<]Fs~8\6='q>$Xv(m cy*pހ;tv9_Մ/gb^R=K1jp"NfEj<W(g6)8e3(.P@Ϋ'q@޷ 5|V|+ԡӠΏ&';wM O,- Ӆ+ ҔxTP/iy@m9oy)|aC%|{Q Pvϼú|{yn&hڜ9a:uzq{l^ave׈u49?#-tBڄuY /Xd'f '\dzC6u|>Q1yp/:`"oc2>7Q~YW*|:k5>  B?CF|ԥ"gk F?p~)WpY,xZغfs. YTJrxCOerZx59usvT<.L~1'-C>6*5byT~ 6 |Gr 9ywί*\v*X"$,-B9yHQN~y=H+xRDד'ueڐym+fy|5,S=|SCNvޅ4˓$UU|!O7ޫ [gt3YژG~׺<-ouXbr D20:qQUc>^Wy~Kgdi/ijGY!0fMT|k7GTga~ge55Tk1%ȧ&u;xϓ5sU+>l;SESV* #38ߙ)=xQt j!0L1C|a*H+*w4h}WA6cyDdDwa' ]c/ ~b6ikduFƊHHۃ}4 ga[l΅c0;WtQn^aqZ|9E>y9Fź{<5yuui|F GWkfӁ8>#oXpNdu]%A_o)뒜)BԾ$;BTC?vem T|gP1Ik[ ֶ3ۯC7{ vx|j;4ٳ_6|0Ag[Vygco]TAX>u t:29+ƗPC?#~#zbep~q6ƼFT6 B}9oxm"Wx;"g(Oސ͘<@yQ>b; (Var5L>; ݟa:(Og+t&|nl_M]!?_˦:1PW^lQ*8|fZ<_1-ǛO 4c*M('Y<ި"*r6YFx>gtyzUlaLf=%"kVw[(Khed+BX|&\wVpzo* B/'yr$tNy6Ķ|:[w}yRtqEJr}Q%˧q~38lC#W82*Qòx챬E?PaN +eAYY}PݲvX8Qn8Wɛg$-Cv8"{u1cTE8f%tᙒYż u:E.oCA9|>/! m*WfX?]6Yd%"g0y&O)=?g(! uE=J|О!~QXIvY_ټ ;T|Nd_Qo\xF?ڈX= >#sg Nm r'< Wd6%ʫO07ڮd ƂYBile"Duἳ3lJiw1^aw?Ld}y9T19F;9Kяl)\kÓ*ֵ*byMWa)pYr9%z~I͏.seeT1=Gu;fW2GpYfk4bɧ+eBvb!*ѱ3p,X5azEb}Ԟчe,a; /轩pϕwfM y{&K-b{1w."w(;vIVןŽPGEy#k'fkSX^h7ݣ}gﱘ}pM8a5a>ļr}=Ⱦ?Gq~-8VʟCvET&?VzT 8vL8i%nOR>ynBkc^D;{X&Q1b2't(Iw|υfXuGݙQX߯xP&,M:#B??Y'6F~Woycڱ!kha{:P)}TQ=:ݖ?Liӳ){/|w n&MvYۍ:as!|Ǎm TۓQ6͒mlo#[3srFVˮeOa}:Z*SWؖKخoleE兺>7 IVV^'w*_2C%9yA0f:&vϧ5vINYB8~߉0wȮmyk9yee88vbYlew3 1X8} a{Z־Sw wJJc:9{9beXٚ~=2Yt#ft^ia{˒ؾaooeF :O4XuZ_}3Wp` 9XOO+' )Y$ʰs!L|Hv\3Yyl-=.w{l;"|l^;u !̳;v{y@oLs! {fC |}/a6vc0r}T|W`gl`2 ؾ'r$'\;7) ˝qmj9D֖7u7/ߐg*ꐍ;u<~xn؜e`8 U?)c~g֜7\|^8U=Dž&V{>fsg y`kS3Sx>5c^6BWc;*cP񹒹_ͫ<'6>!Ȟe姼9u\"s~+W;S)s2 T|c.96¹c|V; xyt iuz&KMul:7֭D4*>;X>L]7=;ӱ}W K{Iaa./{,]VWױވe.cYה&K5@co#LV`4 ufg׏WiϲY3z]!w&9c;?sW[kYK9ֶ;K|R{rƨq ˜mZU>MwP0VžAcSǷ*okDo|C#66x>^A8¶N!-BJ7 X wpI"%ƨXӓSNOx={Ӳ>ֿsu$ m|,cYVH_8o\>(_H#'go=(:OLH3L yVY𻤹e~sޝ/g{[(|/K9T@?[o Ue!YKKQK,?koTM2|'0}w'2]@7p y-GKrl-I %!8XrTx#7seؼ m *VXl ߡ3l.`&.*>(oK3c*m,](zz-={dX}ksa STGl~Џ9n0e{ʨoڭJr~ B-½/kCB|9*2edBέA\}ds-8/;۲q2y|fKTW|z|X.1L׃<eΉ/1+wQo!wOBZٷ6LawʂH,}B=^IOMwoL5Fv2w{vT6}[$|Gwg-AT/g=*.9yB°+IƲF+@^+}!Of/I Q9}Gy |Td߷8\77|䊨Nxkʴ-ݟIP߮xUxfv >^oʹ^{i_A=-r|\2_|Ͻlen]jO)2/SxooF/;7}e/|X,M?D*K6e6/[˜YU`ٚ\ ;ySjlռ|.icFϿۋWy_I<Ưl*Ϙ=_}c^+9O߮ʯ-X_>Sl>|ego)殮yw_L^WB`f?lhEC'D!16 1Y5cFt/UHe)sגv7%E" ]zƐ }F\Wۆ IF##XoHn`3H~^Q$\w>VtЭKE$s|H).'}/NI6pO Ig ~W~ FS _$oDE¡ۓnpЭ >uHk遾7 =Nu!S|I'M\Jơu4 ESsImݽ8Rۜ$ޣ]}̔TK s%HE#]/IKipyJ0wBLHyVq6mKuqәH|95d>bH~[Ht 'w2O^@‰H$$>iG~X!RǶ"Z 266&>_:l@هThnOﶫi7yO۪(ӝ -Hz1| _59_?3{Ϋl:ө ץk_h=vE|+|Z.$ǝ%ToLpҮf/d" %a%R ^$NJ,k7w؂IW/WM›NY^'tHFk,v'- I8?|@icqL;vJ&بFUp4|?ٮգ!]CdwbX'kgL'_?N!gN%ۼ )ooFµ=HrfLH{;~HʟpIi$|ERfAynrgQ,2.ǐrFpIyrkgzzOE%Dt"ҩ7jg_` B紫Sκ3oIcF]z z]"ႂIÂIx6R. θޤrI;|!7Q5)7Qbj$8䏘C9^oB(%l Xw@L6ϒ|aTTi*!'ҾF_~?^*|螏IOWIO4n2g[m#yIHvF\гxC,ioBOBA܂k$~XF[҈`?׆}3H.?*i/$(Hq4`6 <> {OݦH>Q5xߝY$ܻ")mN/R>"tŊݑE_zJ92W<ծIAޙNepumRo31B_ j=oȍ[;lS^P=U6't~y#ݿVAG_;kZ-Ǒ~%"XFj w1P=̠]_u]w "Vh.t&5ImBmǿ"Mo$ޣ[Cg(Bv_7|R>\"Ot' hvGHmRM$yE{RUG$=))& ތiH I|F-R_vR <ܢ1i@HNYM$_;s"5'ap/!`Lq#Izb+ }+'HoKڍۘwIg^ά򄄧-H]pqz9'{1I= O/#G| tDǐGY&tDqEs|P`K{S$>#&Pl2;ݍ神A9R:}"qi4u+Iork\HMMvD_BLτ^cpS]{OON23,9'1QtQs lFУp%7RO7zNo`織!z %4 ]W)cH>->OH{wnrao0+O&%x;G Rx2и?a݇*񀊹F7<>Iy}")_ejNZ$,]7>)?!t:DRȯjy:K#>g WnWZΟD:œTnH^r%$|IybGwټk'f+ʈhH:NhEH=6_%7琰gWeR8ҞoI{t#ؒߧR4JMXr_\T~ #2 6;8^Ozuq~0B;ORN$\S3Ҟ)] 7ړHC7g^@ƒ+u$$!&g" y0P}\o'? :hN귞zp)$>z.C-&{&BF 7FC?|ɘ`jsNuΧvmWjmkF˧|$5oÆ99wv]~DУ[W]SӎWk.m=w[`rODw%](JضۀS#XU7Rw<_R=~^\H8`?'8zqqR4#袟CAܑ|~0τ N|Lʻ擰ǪZMG?[$?Y/{N192շ˓[OM$g5!l1Mۛ';/ݛw$t}oUbH;Qoڅ'a1s 'C.o-?ljvLL#ֳکfB!6֦kmFV.|RIcjG}q 8B N`h*Az$D=D!E>~bۓxn%}rh1'}/S8o.K2)wl^d\l"~le!T.TAHzXgzӵrn#frQM$d6':lLƿm}~ )kEuP ''۷v'] Ǯ@9 u!8{zD"wq'~kHx$ئM% 轐M1$%5S[tO59hoEBOeҾk+BWU;o:@5\N) ^>}b`G iA٧iǷB"鏟qKZ߆dͷQ@so ͺ'6Kior,6D^mI;ҩ{,c(Vń̜OL x} FA1E.kʴݬla!$_nђSڧ3"o~8!k:~NMcI):B[H9!IS}(tr#h z *3|v<\oh o\_F{ uKj1MIz>Zt$YHVҁQqIF.H-=r@v!?FOˇOV=$\ma2nvRŒ&lS-'iz)J?&-B͋+$k{r/  K<P'j7T5s\Dm鴅͙=eSoI ![yR;ܡrΡȜk>ɨoӎ%_p\'c=nqrq6BwDXWvP^$ףWHz)N0٪;\Rn\gLrը1ֲ#Ϫ65n$~VRHxhRJI=[&fFpK%Аn>3_C::~zdUQjb'`ACm~6<)SO R><ث!V! G]Ie؍Iti6CjۚgzGXR b#4=IyCfb\xH_]0S:Ϛ:cIZ@޳5vG&|Hy݈)>I,x8tc./=]}uTw?F_O{:bv{.'B:n= m.O)y$Ѥ_-vl5ԗKPywik$q)]{{sʡ\*͡Lro%DZ߷cȸ/A7HE &Xu\0ԫ;%_}njJMpBG $)c0MpJc==Cň(:jINlA}Vh=`F`6j'jp0IwG9V">O❦\gU3WZ:^ ' y軉Qz$cL#j8kM-_-/^k[cK!$3$̩T!p(].vs^|҂53`^wz+nЩw蟥>+oL]5Qumju^MΓwmܛÀv;x#}&:b,KNzRyѺ"O}ÕwbNʇ_G=fHt=#t3)Cև뼕su2u:\'5HOzzsCqk.jOMxΣMy} =MۜLxKy*wl<@x[i7PޛK!Ƀ<=\N?1 ϔ{ttr_!Oi1~>o y9_Ic?2*PzGZM }+v3#h͜<}9O&P<_/.}vC{sW =gG>Lȥxz!^A=HeB#t93 sħL0cڌujv-|،eĐfgjRiٟvcI&nRwr5ى4r~*_}o滏`Iv .7H|qRJzdB}g)|mIG@zÊ|8J/^夏"osy&&'!=>x&z5 ŋ@a:S*<~ЅӬLS:UnK8"!5.}G:}'TwTI=] ]#G,!2W/\ͩ}S )Ӑڕ:*#A9L{ G&'鱉 %Ȕ_unI|_R@B'j?cx4v)4|Q}JR*w "Χv7G*gO!Wk(Ky0#;; {A#Vݾ;kL#tX1y;R>IOIx i@i@JԬ6~-HzpS;nG$]i)@ScLW2HU<:Uz <}Iޞ@'-CŐ3y2oڍ5 0N?c{EozFw`#G$"ݛ`c]U^ lP3wf5}o;ԁ7Lߝ57zzzjoX.}bw`S=~} N3#X熞NHl&9}/N$_/z vJ>w߭S m?wϤ~c-A_wP=4`'찅H#[GNW8NE%QPzK5AfI?ާ﫚d~O[DL?]E{3IcIx#zc{+˩>^:[vZ9Z /v{rؔ]|5T?vjAl6olB[#4H>8_ubgߑ^ 0)7Y')'cr|{q~ G5'| #F<4|*g΋^l}:)ߎڥy,jSS鋄aq$߆#7Imhx,}OlRn \1P6,,ˑ*,N%hIYT.t}ϧaі>$> }~3 }؃_sZ$PDBG)}H0>}W!=L[ I=[禮ޢﳷw:[;{]FO:ڑ:$5]EWJzT,BOF&&.+ȸҠDq=ɻNDJ'}XzxWLQLzsKOxAZNATsR.A˔+z4n^!a%+D*G1sW'jF#ď-yΤ֖nf4}a9Bϖ z }&Գ5~%p'4љG؋` q<*s-;>}'1/_2k<7 -tQF nܦͤ  4IvZvQz}^YzQ{BȠ;#y<+;ͥ/z !=w2%tdBO#:d\}(KF}HwA7h2 ip v~}sO^$ WzK&$lY/\)Ri}m H(R=;*>T߯MׇWmRG\t7U:͡mGCAieǁI\$='(&cr8=?L $R~GCjP1ϛn!$ܤC{N|a0OЋc]w^Iߟ{7s[ڍvo{5ACv #|hR]]>z.!4vg{;q3*Ntq+{_KG5ϑd6z%ir Dm ,:o3o8]z&{}{ ^|)}9?Wq} k@[Tr΢y1y-v4 $gVj1ڛ\wբr*{77GnҟHo$ectvϤI=^wُ;Հy5jo#>}软%xTkIoǵ7Js{\Gkhi]y~U[ՍH|E{I}I곯@­H>t{vԀwL9B:q|Me 1)T׌X@:|v_M?O׋h9Io0 [j.3u}~ɠ;fts3jmCwM^~4oU?{*$u}&o6}G;c]'dYO`JoKՖ *y'mPt= ^ Ws:MaUܠ>;S_jBꭃ;83z[OfhZ}]$?ޭN CV|EBo3XI۫ŕk$!n7H*ڭ&/ks\k,\wc}YގIw"^ )wBccHa^{N;:u$td@43&SC^ߒj7zL?{f0MqxH5=>c ظ <3ZO߭ZIb ;"+QN$k C7A蹧|=MFGv19%LjΩD1[D1a5o0$!M$M* u6K%ͩ$ɖ)IDIB) $ [!%R!~u|}}<ϳֵƽu:7BCZ7<E>w4Z1|*z1kW47#Nb=_%#z<7(̧S#qQ7pLx{gg`0q#>5/7LO3)F˜^sc||l~!ǔ}tN"nU7{e8fw)7B?d:k&.X8| kyxkz'~!T.uNK?pM iJׇڽJkm#XNA޼q Mc;0A݂qN[!n֮VM=Wi) Jvߊe + y`E+Ek>=g;;=n\_oیG*(1մF^{ڵÏC5oG^Aןx$!Aj(-F1θB(WU*_ORBq%ji<}.bϠŷc-ѥKV`\>.y/KW#.&4>(yJ[y 28}pG^im$kc<}*?̗%{ki<XOK+nϢQ4%7g|WHGyϘ͝J'/Xǥǝ9aY? 3w2]A/LxjC.%.~y* 3X^C'z|/{sJ_MyD~]LG7ԥ:mF|Rh6ӛ11 N=N To~۷xMq't{2xʡ'SrIOV TJ(~K(~Oy|R`(m缠dßN6k\۫S^yIk;7<~ F?~lmfc);]֢nAz=ǡNRU5߁٘7M>!y܀۾8O".@ %Al zܬTw?ri]tL?Ch{dA㐃tdnsO󄟂8+EG8ᴵZ;\<( Zz˞y-F>H|w|З>π&݉#hS'M;Mh>(8 C{Qگ}wIpU|B,~!uÕiYhOνCsapݾ`oj?xƮN3bӉY)⌦ߴpxQnwF|_H `T?L?*Zȧt>&%{6i<&@ϫ5I-ƪȠ~ dzy~&ꛭ\׿0;W*!%'I .~ꢯtOmѕ?$o?- (" V&.Q zbΫ󫁷ɘO UB<~#NtQ/<Ͽ~)]?}3څu?7sL1oaz zṾYJ .ت6/RqNa.WV6ĭeMk>R ȏxH.B;Զ=6W{7d0h'>7GH5ycQ7 ,^Wοtv.]ƫ!Mo+ #^8]z 1#l,򶹥hg-KӺs Sj%Vz^<̯hOFf4{WJ3\B Aɝ q<t'r z8Ŀ`OFZot3*l29,@ޑq9'-AkIC^B1w\q/ɘ}? :70? ufX^y%Q|!n2E֯~Ů#)yF[Υqwo6'Ԧtz]U87w5z]3P) R?Lx݋;5@w Dg\=2d3m!)v~c>,;6]ǟlH;z =MsYK=0#'JpR¥EΞsޗ,sTJKj_=FǸ 4J0dzYBGh?dQjDx9#]6VxB7LuRPvtvѼ/Y4_@ *.&bD{qIy9 )^vSz?0?<妁pSzYb<8O< 80^9 V5s]偸ɛ1O;Ryt@UjZ~q") q9qT_ q Z)"+1<G]!5E~|&#2H udH#>!?]VFݎ/y;cmr~Sן::0"wiI7GUo">~ _^oND{Ө i-epoD zwm*'+rh[Qze|*,hOh*=0a:|לblU{EN_슸%FWYщxv8ݧ}fxi;q (o\v8-w癨CMz^ #] ݃xK?tٸkn,1ndF?eNezWt/Dte޴8/#}~~=.1G;lz> c{t,摌P$ YS78XXtn|8duB6 >KG"~mq*#zyKV_8[jP&:s;jG![>^KZduP P7RQd=UN4)8ն􄶪A ?Zv؎D|b̻ޅqM˘@s ?P\NG]o}Qzs4 ^Ey=v9Q]Ok4|`]ş [8 -~Uz~DK0Qh|@C~h?n\ݢ 1/"99IuoZ+m*yq}/qxqf'ħ9/EgW8NQi>}p߁OxϗpG k~XYxgv'%5cQn!j\>]Ei K:Iε4oH~_CRI ht>#~eO¸pK7u0w#nQk-5y(q<u=Pgnrʨ qRKCcq`|-XcG<rPS?pغ^J}qT{q8稃qBSs2Y76( a_q#vL)OV&vrԕMGgȧѪDH)#7]0HaZߝ$v s|R<' ȕP2McqC@ˣCx v({}3ϳc19Y9v ĸBz^W+s-DsC;Ju֡'}w c;QW]1~lRsPo&k0o6)WOh%< [q=O*Dw L9ݏLp?ϧ]Q_\$=~x=?_-cmVO!>mW?y0'G\`}##/|CBGnoü~KP^-я}4IN)g|EW(í4[u T&!m!ob}# #js$Q7"A]دC S[1|&5ܚ}ހZhjE3~XFd;=Ƈd.Nuiu 9N <{ۺus_uVKqּD]ؕG6]GJ<ҹWg]y4 y^k@␂f:O=TWB~z\R8JgO{]@m/R.urZݘ}cy1oMtbei_`p Fb{%Z</3޲)[;]:`?iX/̮sct}8򍃎0/;Ƒ'-`=FmeԝJda[6UU} s^gq>Z<9/N|7Ѐ~t̛~ĺS2+qN PW6zF?sT^-Ϡ 1bs+?JwJ҄XL%" vj!?k .L-wjՈzm`||?{a|89@.g0Y0<>]|9oa ##ԃ03E]o̟;; q&oz6<+G~!`eiFS@pF:~oQ&QC+:,=7Y,.zZ0)o[3ˠX:.i/CmO22%{ߒT[=v%]S*P67~#lM8)<Ⲳ}L|w.񍗷L>jQpW#U/=Ci CkD]<9:q7aS :J Fp1q̙^,E?:j󊚉qJn^6[.D/o/P<٨bN}p|8^!OOq8Ãp<֟sG l4uZ 8ſXagi-8NN8a{n2}wtDdL`6گ NDvjz޺L/uOh^>,)wOٳU7]]o7j]4ۙ:~F룀og(c_ X0=^h;޶h'΄a?!0`b&>O7-t$9sp }ݣ0ސt,kW9b}'1Tv >փm+Gxc|>a>y&~Wn ,xw,y$9Nzf~OJ<'mzn:ye"OZ~d &|BG|JGE|Ǽ:?D"5* \Dn-ۣtj4s~XxGȗy|ϰ/Fe"9qLQoJ`Aqց?Wx~Nz,@{Ûc(=gCG1X'cO 0~9/w\/B< :DG:LL@~^fq磾Է?Fy=`~qbWiM`lC&<'^C^ڙo+o R=߼v;'4J!WD?Bxи9oL-W(nդXNsr=}p_tķqjw{SuҺ0 IW7]v럺cu{"eb[p!_S>U/6&Qo&Mm#N'ju,0d֗LEZܻO"aLn_MZ ~Xj&Mw𺀮w53zK0kwĎ/ |S~c<*h`BU(<00/yg~v\1zvV~ ;8XiXWk{ zI/q6sF1#'SRrȝ <"셯 睥efoEy19߂dGSqr&ȉD-C]rp$ʗ'{(]:پ̘Wq _ )]|MGC{-:4:oV> D_{1SU~`zNbC3 k\zdO]S̈́蟺5>BxøU@}b7,5B>Pr$ݒʰ.lQ' V~@d;т3E=_yKqW uT41otS y W~4/_:/{fXW6@_h}Sz:*8:R~QT%ڽqҼ %% /K7a;1%y|SV#6,/L/L_1yOr qUIٽP)EMx qe-5 C<7G>u_Wdԫ( K>1^A֡b:6VY?F} ˣg?4ikPZqh8񘊃u~ƺ~o7@jʱNdZc]{6Ē2ħ.sE~Foe=[A\ە9`2o1.S#F# TJS&`;'nOży0nPeײ(|օzĖh\Aq'sֹx𮫘]:2GCy ruCV 'L~g=i3#y '#ktY9yZO iRԑ?qir#%y5 {TO\v|trn# 96 )?z~{ Od[P i<ut1nv{ c\L ۱+79w%Jp^/㦌oҘϑLEu<= {#/rzLE]ȷ[W~&3A< ꐅC3-x6^I#P /!.N q:[By;z0Ո%+/k0֯WM I(#`=ђȓ1Q83o{AǤȷہA |S徠m٩Eo]BC x?CZRi)i@Hijh=v=rŔq~=z:X@ L^G/Q04Ua0]֎q4a_; ~GRS8z䊗]t;6n¸gcC!pД]*uȔb8>Jvէq*Ʃ¸DlCޡRxD㺈;?{uFZB-8P#/ E{;;Arԅ:< qQ% wϿyoyџ7CeXhe>?O74>C ;>­23uCq˳s]kUHy;q}Rޠn{hGo Ơ؀\o+Uzy򡉔7Zgۃa$]6&z={yBE B\s v3AtԿ841e8aE:7|;>88/:'i1ݰH*9nS5h|mī\iW?C{$@롇Q*̐C'Lqs'%%b i{Cց#"Frx'yQarp=z_^8.xDW'|R0ٗ0z..ކ]]':0nk`( Q_q3&^hfΛTZԣOu t?V1<%QG7E~{:RHc8ř EjR=~Fu(ףӣ_MI[fW}zvCmE}!;;#.n)'Q)y'~˲$~+TwҸXzq q8gwA7O;U!>-qh1o[M`z*=_Dꦅ[7)ǻft?yXgѩu@sw;/;'t pROϤzw.|1yqv.(LŸe-A8/yn1AĢIpa4 kq|ߺܭӺ#gR50'`>s[A^g,_gEBR| J8k9H1M3!liQz>ۉq02Eaϰ^`d\h 'Ė]1$CQ1֦J*<;Ot?~J7ߵk+}A>ڧȓX (u1a j:틒L 'D;?tt) נ|AyQcf=:ߙFoVOVa~JkE'PCqXByJF{Q!r;=T pC bv4MmBbRE]sqPpHJ@%xNu 'a;i4m!Oo],Юb=XЛ^~An|Ow-k0_D|0!nw_>} Ay9/7P;.4?A2m.v YEy$yz{Y3}z(+Nzw}un `D֡ywD=:ԯWղXh Nk|ejPx|7k69al]پ9wA<t ۖxwoy̓ɯ2WvላӀ81nt6{:'c:=ix,@/y=/Q[:\_6İ v{;=}Ni\-6zv{/lk@BXOnZ '107%B}/X'3-1N73oG\(7n|-AXjKݒVS{z4,+la]ZX?x'a=G=#ж>$f!ŧOnqch%Y[&wl:SW53WqF}(LzK-Ovʃ\o4^DŽ9)sЮ3=p|ХTlR4E>GEɻ1 -9w1^ ej7ŞG\Eb;ͣK9~Cj;Ǻrm0[y:W1C>=:XW)] u 3Q* 1nuqz(ק~Aεz&wޢu Z?-rx/EPM{8/ʓ~|GVb~3_.Cm݀-P'uz܌ӵzFMgma~?> h둃:> |rifczmWY8W[-^@tcmB{\4 ybQG%=H@z\N<b>t5 N ٌZyp\MscP<:ߤ[8qY<XoH+-g)o}qt6cj+]?' ys6\lz}sÐ7wnO_v1n5yuU3'qW}~.@_Xm3~!!NXfc%xDrֳqlx^ykz[)zqIT vu:h݆llӏtIXxCȓJ~ LA`Z2y:u'"ɸM3|8n$nBGn+gb5ȯq%C*@)8xTbp%Ca4>'°~WΤ!.]x5`Rafg6:I`~k)^|Цr[G%T9/,%$oP/ȂQW$./܋: ֢ەtu3u3D"h4_"薛[SjbaCgCJXhE::# >e' D|3VMAC۞6仵c")"?h|s@2aZSˍ1hZ1D|H_3l ]:/u~3xۑ~" zpe&խȋtD}qݟ#ar;9D,uQQ?o?.t E}ُ; O.![u(mZDTcF3mNPD<3M=M3W3my ?x .Ÿ}Aq^ z?xO=jS7b/$J‰6=o'&?4g1b/W'OA q#|U}Eǰtt5cL _L0lf~цܥv,nBw |O93zT_loO0u&e/]M ?8B['񟘌q\YXI\2U@uⱧ!z.'x#;2;j;; yEt$ҖK놐}cHh|GYV̻Hn'M3&z]0 vCzQݱ'H#/L\y}~¼2n!8Ϋwa6e`~nfidEk0naqN\FOK$c&5}L<lASܞI\ɑU@d?Oku_F>CP6uK7u姟@](~f==oA#i}8R/\_A=Cϔ X@/2ȃ1Bި9LD |qO5B^o |ei5t7H[@4is\.ȻT!UEW7Qy!8 '#΅Wg3̴} B|utso|~1;{$]8=m/-|%uO\@i7\-1Fwh?"ij$^pl#_yIYo -Ļ.[9/Cci!9DR+f;'.!v|#3`3W NV7C(4ü@ĭf t+k&ᨋǽ:>hoY{4VЗ$?iGHNνq }FKC $3b i>׃ڂGa&~ux!9ɰWW5n"IWqZX~SuR?#ef\Qϟu78cЇp}\3'a u ON{c.J`bDƒ&x?ynamM̟$#K瘓S N/F\8OztVNZa zx׋.sx=W7w6Q^oI> cǑO7u93~AKsٺRq南ȓ{s̈:tvEJ5_8zM`uNx׬ȃu K^ 'WrwJ#V'wzVҹ$;2sQAeWdf찊z%eKt?J^yJޜtT8n@jI;^rGzUMDf.W*i!'oK c[\^DNen$*`Pӂnʀ"Pr[o[ە<^فC\wY0OϼF,.ff&{lRrϟQ9h{3~QC#݆eȣ+!ܤWa;05گS&<3mT&W|BV|SFӂՍ$"]>ZDrems0]^1HÀ=yHyrTɹ*\ )#Mtuؐ/]a;/"|(amO>=~}I$Gv>}Pͺ6+vR.PCRG8[k~?Y\EIǛe&˴̣b\O; 9wKAF uyʿ$}{μdIʠ%+jkF8t2V>P:swS%'O'DZfA+23O!h:+ɐ>2QRګY (\澻$m2ݧ v:H:2 f݁Gx^l*lWabqK5@aK?xk۾f2uw/j?eC3~o&wXޱӦ?i]7/+>i8Ϸ8gع MWV 8`6mx3>a<8تӖ[Em G| ΑjÇ@:<$o9Q9!U[EݚI_q 琶cm 3mn&{NYRb+ )|^KιFnDDM'7ىFORpXT2m2nχOIfaeN-2mY 8SCPH=s~)J3AA x4rǝ~`pKZjgu.oP>_0>oxࠂDily?H>HE\xk r.WBNo r _t76sWJcypS8owa߳U$Wʆja4Qxv^x /,|]YwOu@%Hɥ`0RK'sKc1lw_ulS_0*:u6跟5]!ςgʶ So ;n*| i #ҧTdʇ@e(ylˌ\f ӞߧT'Pڏz(8o9gm{2yp{B _Y}> @[b=xn0:#.ȝSe`a>`xvVX&k>0\;)dڈ!=^n ia H\d58`9*̄um[ ~)y(:\y wȆ BD0 fy~g~&*p!34ςtLHy+ɃEo)G^\y5rO(9xBHd2uzzZT"(`I]}yn貗]`#/Dh׉ P_{w lr'x>9QԗkiO!mkR"xάg`nSmSYÓȧC먑]/f&O 9@ &eҤU ?Ffn")kKIӡб3&(Fjpϯ[Ods7CX <&]1yW Yqҹ )>AEͻJ`@s@7i[@0+ sw}nL cîgڟ5מeOFN.J#iqo4w 3}rN;O~״DOH JE> .| j9 ~%ɹL82donix[ #:h4-.WgQ[R 4s']M7;bYf~~">7"ȘY۔TlCC.k ;gI٬]Ҋk4AF!x xmY|H6گ{YB{iFp-Zt $e ea]&Z/.{lJ΍̙NnHnlgbr+YB[݋ &M w/@9:,<1 3R=6N2<PK6XY 6QV Dϐ͢jqAJHpw@k|C\nq"0K+f+/pwV\1 $3ڷTEMPo B<,.9)ϯ>K(_nwX˾lgF.{VgF)yjMK6į?ylҐ,yiyܲ?yҾfa3m?JN)s 5gZwV>͖ÌKDxc녱mgE3F!2~Xoȝ yMRFsxa^I`J~ M?}֟^ܻʿmo~M:-߳Fۿ9uHEDʃ_爵R6qІj`\(?b04?\8j? aƽքaд]7=^j>wNA}ME`Ӯ aXk};`8,vܝP;/+7݄ %]${ & {]R |:"7>L kIjl%agq;OXYtDupe3nbϧmY`*\& fu'ֲF8"SMa,$\ty!=k&+csV;eYȊAFZq5|-+:Zڃq],B&2ޓ/!ׄvA{1Y5o3@۝ H[Z7g^dIeߟ޼ЯhߡIrn|g+'wJIGvÀr`Еf9T`Šv\HP8Ն??FL|LˬJT 8N\~i> )Al gyL|tŗWc" acw;@*ϊh1 ̈)]d*7Ly r2 RJ#As==,':d(rJ=Jjd>!<<41cyt3?KQL g5{y1 UzK 7zZ26Q'S7l3K҂f#{i9|q;ISinUäF78rvٸt=iь3#Hxo 0|nja#.29uX&>;5\UEC?dt,w L mm~{as L)XiOmgR'ԒƹB$j˽oZ?Ϳ5Kh/_`{>Mx@^))#kso~=k3L>vt.҆Wsoܦb3siYgI#-BwY? f[K|~339L08<~up 1ڟ<^܌a4-b_{޺%4czἦ|3'_;sK&o?F>2%ߞvnLZ n#qレ2o[~6txh Ҧ_-11=Rq|׀s<9 ew&%Kl$4\ !?,]o%2 ;@&@&ʥ'hn :>W7pHqLDz,.dQ:pVt,glWtTZy!Y}<*7&E[l΋}| T^%\_v:SvCW]V!GHBՂm'q嬩o~ PrGv<>z&{}{qO@Q (f3fc?H[#**;tD*9Cm9wM+qu `|Oq_: db?I>vV"*$t3S+!5#SƗk]rRs/ֻ%w>\vFrC8_×v`'B}NȒZfo4!_gZ_mH./XN~jr~K:ψi/ZP*;ﵝ#Boimڳv;Lc}frGwk 2Fb?FKRTf}f==z5`Lo!_g qB?NϻL'۵rɀ./tq㭺i);>B%< >Sl9 J.W"fZt3+vhqڌӋ/@Pt>V=_z *٦eZA:*Z)H^YL4?S'$ǵKemYS5Mu%3n5>?36WZ!dpLUC)%z`^՞Ȏ]*DZau,sBkcg)L.Xz'Bt6Qv!Ksٜ 5K4c{ct&OJώ#."a?g#wpA#8>ki/p,ZeU?^MU7*'=W|@> 78 50-<D\D|1XYFzD…ټE7UYC^h/<Tt٥mk>J@!n}0|ɸߪ`C|kY?e ^b@{sCAЪUx<$R6iJeko4#! I*lr;=TJ=c$@b+:?uuYnQrsqj_N*vsU"U"]qHsE }4ɥ "K NHf+byl|^f\djb.sTXH$Ouck7sJ3ņO\iby>2qƯgp/O-N8" ;3?osS:`qI䉙\r,^R؍ GNjNKYp @{󎍿~ ?O rĘ2qd&"gQ9%WW!v;BHCg;;離Y4xSÔogֻɉ3~{ҮwK%qI=Kɛ݇^H%/mw9(_~PTܜlTHgn2ZL%U60O/wzy#ʮ}4Wgލ]|2W`o quHp> t"?c936>p4n?=.: TՋ^GAmH! h͟;E*M] 33*Q|:UaERJ sr@5UWbo|F*`s&HBLPrؽY Ps+)P:T56 jg5S'kx`1yWj~ק[FQu ZN8nOz| k&ʋ.5y ~_cq0Qo(A%qp45t%Eu:x\WkQ^G {N^0' x;۴uq({V'??:pye//ұE=>Р@bߖwSө&?83b`2#:˝Bq:PYR2F幨^~n>==$DNiksk<:{M#nMT [wekO@@r6࢘VC8N%0q ve~,%<ޒߡX뵊ԫUB&4kf+Bڷ'u ?OiX!?v&v7'$w3mcp=GRx EHkiUmlٵKX>OMҙ*6oR’ۀɊ|+'D:=5z, &W< CvFAR7mϚ~|F} -a0tyCy+> >?(=ۼk fp}JV&%x]zz*'Lide{[=WıK|' ;Scx,~LtǻÁ0t͢7@=@&Pʅj t>:aʻ37U~m,=_,NQ.gvxHi/뙯PM:j *=!SUOޛ>QAY<30R&.Ғ%kʑk&xNǯ[u~$k){CS ?A\%0Պ?9~lUWu7fyl< +wGߋ1^0g)}歙6sfOծuSlu.oOXk/>Yffkd CX\42<a;s&+q5]\\xYȓԀlUa2%`!ڠ53nP[PjB $tZyMPjʀ7v"#Ϲ0aټ:eCf՗YRЋcb!zאU֓9yVҥVHsW ^M_Y1FwIU`Ӧ %tfyZL\Qׅ'`R3Kj;Rj6%6 NT ,>ӘQom/[3iGٸ:D6pڋ "yQ3穨; &D=2V4 YzӰW rqO aZAh4N=ktl9 b q/d8KJ79Vr幽O[ /D1`d@խv?+FZ^w5X,g.|'7/^wUmC,n͜T#BasHm~ b#B+bEZͰ⭂M7kkCl˾[&HQZ||]7~ )kőosWbw%_6E)L98 Gd _hڞ_ "Ȅ9ƈڈd ^^e1D"8%%Y^ykC*&-Գּ=I# ;0;BwOP~r8HB09\8)>au?,J"{n /4ؕ3vݏ ]X2yqnaZoO^%h=|=w 6)}3wDA`N|^l4R|Ku-ToyL~xnzԍ;VFG$MFI38|akw g[{x$=C:7&VZ%=Ϳq ٿ-iQo\}|{&繓֩dk1-_}se^{? O$kbZG8trW ^ѧcwU*cp~?r!k՜J#RɧزOsIU)WI,NՊg<^glSeY ('yy||;;v4 mLUz4xSWT̈2&|E:hy0Zx 'X@P1h/_{N.  B~pS?/:Bq9@N( ]A0tͺA~ފ5_n@ S5g_F}`@̲DW\7W ]p} 6hVCob$Ig]?I#]Bt~Rϟl@~5tmOu/~c6X2R[wyfpY儀yO|1,,~mEDv~Usa!poX=Ђx\>D弿t?s6.a(fcF)Ҭ,;>?oqh-,nQܳ>k^YE-O3xkϾHg&).gq87oK;_]toE Lw,ؕz\j^xk ͩ4 Dq L -xdH=K-? Rpt_%Uc8bnaNvWđ{r^z~*v<`tm7D a|Q3"=gH{y;3SՋT픏[1H㖽]EIgc9I:h!I ,{U YErr_Z;݆U?o'27oEӂu 9xDҾɣHpKiƧ\vĈf0|#hx8iJKe@͊1F\k=^ZiAx~W ?0?r1z-xw[soʁk^w9Ynͽ~? mXr $+R _6:|Ip7.{}&dkM7"DAk_K,EƈoO4ˌˤӵ4;.oƭVIxsx4Z8hi~>'1˽  u遊Ęs yT'䍘DSկyeٖɛRHJtY0/l2p*_Ɇ&ꂗ${^aʭi/ Bj9?}c|u]yIgq޲>ݢ/<`y ,[Lg /ژ|6TK& uT.+/k.䙂F%:}υYyOE+5,f5pοx^|Out T~~enl~8w/;=cq .8)2.gk>C?CQxc'x f3zLj𸝎s`- 1y?| 9??d\Lx[Λˌq1q˱~Y5Q0p.:_dyX^QLAMkˑw-Gwض2< VhE`W?x*8|N-ü]Bq>?Y\^o7WL\S0x7ߜJ{j1^6e[ϕ°Iv`82(n* {Ƈ(LZt]ݿ?]Fg}m3q%}~blDw@ugv9W |U|MCY4y7L٬`3^p}vv8? 1lqb\&FCLރoB́OA13~`zs-{[*R)L- 7~'p=]o+.Ju>ĞҙV<"k2QB;vK2Fُ@f/?]0PZ| 4J9"AsW0|Xm|,^g!x6\k.W C?\=R6kA%Hu0p9հ]0PK*qy+l~je63x=&^=ah"ynץuu!lsWUY{ vfo3R0+玙t͗1q^?cx`uc%("7c fzd~J/.K}ra뚬>k}(bymCezg>m%g~/IQ{Wi&3LGY xm(GzcC'[6!/2zq!7j$KH/GUaޜs1 )'2 σ^8!+=EѿtfN:Ɗyzf\Qͳ;r}G=5XƓ**<孻~*$##ۋ|t]g]c'l 4z*-D$r,:yIY$m ,"W|ǭ1 @1UqYѽKdZ L 3Z\|Jr SlgP7j%| `X&(su՟:ovt]<*a=/7'bj0H5D8-\ Gt5 ct;w0@P9\c?oEvfZ6o=w1Rݹcn63/2㢕G0qx}/q:̍X_pnVx}y=WC)^@ԋ 1 DnqEXd1dH5ҢWhA C}ABg+h]L1 H͠(5Rl,UM{qHMc#\+e~ߪ-r' TH}U^^>}F+˶z&'m1+ǿ>qOPۄ5A,2s{ ;p+|;oց9-aK.ꍫ:N/՞~!)Q"vػ~ډ^tvaG(Srk(}I:13.CpC7Ojv+E8ІwNE_B;XQ_$s!*P =K~D.̌ n7K{6Xz$z,xu\qFY 2C}8 r7M{+3xr`uY\>1ҫLОKKvg?A%~o˫` X|Gr`Kͅ։%^@X,Ӌ|^ɍ^7 lкKKt\N&?x×~,qSA= 9Y0B8wΧZzCl<2k$~<\dSX[(on5+pkgkؖI}^n~@4OVT糛PW]V9|>U'-kR a9yAShOl+ω?Jf/a W&~>_g[$.#f2r01^ X=j_- S~9zL3zս~&j?G[p0Eޅ1xoBOQF/U)׃NbO"eyh)y]Qe_@x>wnW+ v S8j;;|glߵ3.6 a3YF?1dP_axL\ɯ0?/hɻuq0$]?y!Rj:Ffn|.)7: Zu{5o ;Aґ; Zz@עzfEgǛ\W Nߞ ]0H.r /sli^2υ8~dx|ui}|/z![]˕onNm*͜O=o_ Ye og}^k*SnKsGgVtJZ\nUѰb"-i4%l;b Lx, @ɏ3}A.sQXB"~;3W Sdf&>OjX:?VČ Ilaq{Էc(LG˷SoA@Fi?1/hߺ ԜLwAP2yГlf|.ܯ*ibhΛuhKM^ ^l2gZYbO=2q*k{X]urk7ü;{58s_1EV,Pf~cǑ1[+~hZ&kj CA17QQlՓK$od}?pvg\|vbRrЏ꩜K_s_Nc>04.ЗivɬX}m.0k{٣fe'df㝞 ?Wl]5"eۑe3Pb@!2ΩYwb1}8>0' hgP?*xgDR#?9W͏ }?>^L$bҘ"h|  6QGŁHOϧcT'(=`ܲfh)-s({Ibe߳?Ta /J[?3uӷ;]=OG.Cבgl;ze8{=)8oܞ>6 ,:6Pf>O0@pעu= ".^>OSʃQKJ PC5Fټ!ۿðsEnj{+-y H6)+ S`vd 0P7S|g5YA[[=S^;aE?}?qz@^HE[Md1e[V7v,50\kfg6tcV5ܤKKn0݈IﮘD/mԶc,5m7~v nu=LH²z߿nZSx?e/'"zX~_ c/o;e鹍vVm&?$. ڕ;3<7QM=v_?[2?Au0O'KEJ]Y[&&kr.颿7UܷL͢]7e݊V۹r$jkds3XR=D^iOnL~ۚ%-v{du#ymd4-ŕSs~PO"!j}q&%͋ g1xqxɗ8m_\_wFQmۚsA>۶,u!(oIo9Uv}}; 뽽%K]U5O[RF5r 7ƴqe}:}pB׻_+f6BW~+Iؽ&^qo+TU"U+H=. |#ں]+K!|qߣ+w|y.MR|kxg\] <3u _E?Ӝ u[Vȇ$}~J# zg]s^fn~^~n -8>ɈnOօ%,Y&,iuۺE>Cryo8s?`L5hHw"'D<X:_:3~ќQ6[[90.޴mNuzQe|Ys^y`Ŏ^=Y}5p^b^W~GGzM|ϖ.;_js}uQ_V07v۶d,(h{ȳݢ틝&/^~7o/.+{"!N)v*{]_qy釉ݩlGܹVi+]~Xps^Vg%UƏZ{ L^)xx-"nGfaRqޢu!D 1eF?ο?q C}4 3"Hg o?(q'm[';mgq o>ȝd־p*]nM ;:<;-g)W;;/<Ĕ%V?ps}цO#5}k3ݳEbXN a(`3ohR3CpncKJ_P/L)SV|?u;ay}2[!]X욾^dIC{ﻍ]}_/.\nvR (x!yvk+ވ$'Ah.|J=V]f`Y:nm½&4]7h yס_bJ!`w!hX+%ѿ۶Mj?a5Ŀ }uwm啼ǃE~VG&sq33~W|?=O؇'p݈I+/z@ {|]L?p:)}Oq zSq]$mpm+lq7Vɼ}\ZT%vǍ&Ht^> V59 /}uh}$yNmXq\WbN#q\v|Q3o ޲V5z'1[?\=4yv,^z=x-U`Yӛ7ŸB; {~7W"{kYf?cD6Z͵1"piwEM#Ye||U>~~M0>aWh_c>auZw>Jq0.<}e|[pHe~#ϻ!TkyPIzzU|pTͤY|I_ 3K>f|@I:|Sϕ>]rq8ߺimn ({^Or۶%-LIdEQ'} 6) _ NUCB4ᕋr?/«N٠<^fƹKx3Xc^>'-_a}"K[792wo/rG MoWxt\;=k wȍpp;muqX˜FGRs;:ltHMo?W !-GBxށy"B'+yU[9+Vs2>es~̲_S?%ix+^罪׼nS:ځmv·6c: ]*NIݸԠYmN ^Ԣ1]S_Zb>F,|+].q'TW~{l//Ye~w=:uWTD\gA2oҧhÔwr[%sE#Fo9ʍjyzpnn]AV[4|bwn~o͈Kߪs\*ӔntsL3ޠQ/ b<Vv{Dh{GmSUu[RQkt;LdmZ xf5UZ(T8EfO*.MSϿ\6.&,z-39jeִZk2ur/.׍+Y-~,{9{+`";doYNL?b>y NMxbTsxUM.~W?]q>%>K54NG_E,k8ڏTJ[5'Z-f³ByRfQa3 l\`ylۻm{SwR ŖH^q!c"~ƒ˦ E7i}1H+ٷ}y>¹A(otmK"Wy- pn~^BLm;<[C {JΙ;1_R S Ӎb-\݋ bs=&=VOK |]v).=y&A!ړ\`ĝ~G5; qvD\OJ;dJo#o?}۽sr!-?/6 hu^G/ĝ3eX\ҘPY^" N.?it߯OɆ)Ƿ 4;j;]a_dWݎrzWhqQ|^.SfJ8ƴxӭk0ok[9^em^ɠeyE|Z+5+x4;O6/ xKo%{v?q/NrsЈ㍸B![V*R~1oaK Wߧ9k0j?>juw%>c]&¾7Νt/gVfpoümo}xS75|pQx3YR7(mra}%!ৌ睪y}Nfo,-k׽ qm}{mPi 1N .1/n"# | Qm;%A{%]v\p6#qrKuÌ XQgpI@ʒ3{a"&j]P5^o~q|W"_.Y<$6%4D?a>[ޱdvD \뵝żӀ^ƝUmƞ쪢]gpuE\Po2{ꇾV:׽y^ŲU-y8kxʶMyΪAAU'-)&>2Ag nTogg!H$V闛)YgJSߔ9)aO8%l|>m|kFU%U|5$s%U6B|2/|qWK?% iaO,6lQ ưv}3Ac <A;)x.~;Ȼ#Ie/[%TRKt rvm~#^ͥC5IS4jbE>C|كWYu۹c[3t@Љ|']շ.+96zIoNyĴ'ZW~\^=|j3^ӱ~Qsyո9 Mqi5pc3}sb̪F;MQݞeݫȍOze|h?woІ-U_3ݍ\S"E務C1m}wZ /)G*r =GK3ۜͭ:|{Gr[ݽ5kr{&keqts'' e%kbdJ݋_s]6ihy&Gm>F&軅}_7D!/̧8uxJD޹SflwsB*u^+r#U⊘;^MgGrv4㲞}7 ~z7-P$5i.ުvƶ{ȓavyɾxY[#ym %|~Ņ4 'cEK&ug +TѳY1mNJuJtRKEnsJ`vPC*yZ߷Fa_?cš55Ppbŋ7K5q۶- 7ŋE?r{nD/XU%^~ౚ1"`ok ^8s!+<8k%\4fQEܨ{cz(\rʲ\2]{g1ur1:9]׀dKGpe3C!nO|& Q)W'0Uo( *edU[n|S٥"sX.H봳EV=k.%0ͼujVÆt MX˰nոfxBvrAA]?xG |Mg v>a%*nN;\@ͽv]Kό(Sv4tˋO._}22sz!,"iC8h\pf8+[?xI bϰ>x[E"7^d?nӶyH<ىz"OGA _> Wzb% +:uW3gqm QO&-YFy&~!X?D}h7_Gڒ妦 8nmلs֍Xo۶Ѯ xJW_Qg W'|Tހo6 oR>m~@[佸@ް5~ؘW3Xft6bWFoV9FѴ[v^`>(-諸"{ 'l'Q~ r,=$ ?'!@~?x2O.֙\PIg:~runp)KMM;Ffss9ssQ^Z&Ӭ\^S@ڢ.^PPۡʈa_2H̊9~qV|k'n_A&,w-Tn/l?<`cC<'fk-I'XৌݛSϝŗ$..]ؠW,|R:^abUql7Ye3'0 DE7ytYTq&a q?E(Z`YS>E[=s~W8o 눰D |E?RCX:"Sp>B|ATb{{<(}^d?"to mgB|NE#xm۶dCZM/I-Ƥ ;}khq_@BƼK;.O6ToU{L^TB.ןskScDDAT-s;9-Z$:M㒉x2Π0<Ý#dAMw<|ⳜWolY!>^=i̜)m_Dn`˻{>7,Ϋ^Sڌ 6n0u ^֯WL&^!m(Z' M俊d^κ,&?imRYb]}?KxXn0ZߴPs]dn0kU^KJr0|ss"Emroy_R7)9OZWu'?͌uCw_(i "//V-ͼ$DʟVT ~eRUM6Oe\l(hhv9pcLw.~k+YjUiuVUV|cErSrtnO`7}0pޝb|iOzH؃B͹+A/$) }7ƴڴ4UKШ[b\pD5&.=xz*ĸ&B5-I\W=xւ? 迄yxN]I[nλZ;}ۏ=N6Η{\;D jrv%q߹n5v,M.^znҿf1#žg̟*N5يwE4Űo2[7b怑 <鎞'-bNgo?4ky9<8T(W:qqcS'bսyb<3ùCg-HI*ıHolnWM1 {ruL_CUxM;Oye5iڠae([vw/v&y7EӕVOϋº(mց2{!1;қՙc1?>]t/xErxn̗_v*z#om߾eccy=~\c^z2{d{{-qV>77Rۭ#xkڤU#̛ʛ<_"i:2or譱y+71y1oY{X oOwx哖__EgmM;ozܖPSEagSe  <_'1́ nm_j=Y3e5}zmx|%rIڼ{}y!ջl{T|qWD?DV>y#5ۄô,<(7.]Y  KD۶-7& q\ xQ?@kX긴"+fM^/_i3yȿHkDgnm @;']sWbZ\uu{(N]cPknO׮NJ$r7{7?~տhy#{#g3Sy#ڜQ>^c{{Y_g?k-+9w,k g֟?zn";uO#_o?c g{g>}W?"I| sW?5.?[Q3eG_}{g|G֟Z#gϜ?]gUO\ #)ҿ8~:_}WyWG8usG[>߻?W_ﯰwW?_ձowVO/ %͟=~U~Z?yW=?/gWY kd>lYmo[c_~׼_s-=u]{Ch?]$;{-oϒ{=#_~oJ?[,+Ԛ?{|=ks3Ϛ??znr ׿rn_YN}Go=]?nw_qmeg󏐋{?)()#+.-WH̾'9l2 ɅBR-ACT򿢒?%+{)_TOk+i~O]}_g)/䛾_gIϾc>c:"*Wt6{W}Te'=KJ|OVt.4ֶ6Pm$=Bwu}:MIMQP{+R"ϺxޏvQp\֎RaI^&xQvW>~ j.`3c&Ɯz R9y:{{xy 7fy{FmutaMJ}/wv먼gKWsoIUkI=T@}c&5Q޿ڭ/$O(wK*_ew p3!E>Q5$R}e;.r%gyi~5YB1OR[՟>˩{QJsޜv-s kEJEjWgitGtt=(kV%GP=Yzꔏ_Շ܍?)өO˅ikQ}+ux5C~z"+JH zfxrJ{F½(MBߔUKC+Y҂oxܿn/݁*.K {0(.^uS MGo{MeXBHkAb?S0 rׯE{BЏjٔzmQ?NY>7+V-/$ zZ QJϙYdR} n: qszxt?(=c=.w7I媛Or1ODrҴZXTݖ9/{ПgmQ{JzK0TO@ r|J4L땶IJGoPF\G_2:ԟ(/s$){4W)5Ԑ$# ][ .Gdc_ !k)eQy^=TnJlkj<%ɡxx/z^䕲p$Mbgpy.ܻKGs p#E7P1;c c\LQ$NWh\a~t=iQX%4v|T;(YҪMV⺹==WiE~ごOYJyMt?;+8"ҍcc] [S1)Ҭvs?ő}$?Y]8kKJ~egci>~7W~9OoO弧#X@xu3ƾ/|;mdNy#b)Zw[_Rߏ+x˘]>mP^:\^jd'W$yukM ƄRO`9+YӨ^)u\B6ZzנI>3Ry1~#~OF~/գқׇwTMcd\)dC]{۴$MU)v˞vҴվ)sr|NO3i7T;E7 ?/8nV|4c k M|j'e՟8e*~/oJOsqB\^@yV]47#<GP=Sbu|֩(;҄4~FosP>rn*ډrO5 (^hEg)Մ;}O1x^R==CM||zT٬ark=j׭YWG^ l{=դw9rIcwMjG㶀Շ4D{ mIXoǎW:o3}$N[U_$Qj\~h/b}~)Oƒ7<-T.w6?0g8ӎGM??ЅFh7c^*sש[y6Q=EW׉`ꚝ(}>i;gؗc?gk)ǹnzJekx +z/p.yTɵz}_Zhj'.{gW̒$t8ۅOU>s]Ow^zRNzn ~{*j/GL.iF%mG}4.!ǡ_g)ߵW0y0;vkaooUZR=6V}yu|"M5z:'osj'#W1\l5RSOt?sH^ɹj1B\8=Z9 |?sG[CzG8s-+wUi,8/~͆Ɠ8e87CoJfʹ+k穾ߠz~bYT[jWJ*_~j=~~4gLqRJWx$}.Rޥ<ǹ筏4.GPq_s _)5LJ^Dr.smAǞQvδp&:qM'P9UwI/é$"Ru XOuU?<ԉMhH.ᗩ>iB5' qŨ|~l,*o<7%>41,]̠+O?=1zBlmD`i|.s)ϽϦàײGEyތqiϓ]>=¸GSοQ}J(5@ϛ[,,*w[xE[I*nIi~_IJ56 a:_<_}qi4^gCy`񗚇z7ϤCiԏ&T/i\S&I&ӸuUpk^Y.EJGS4^Y&P?lP;'>S$\ToAxWZ+ϻ5sӼ(43B3(S{32[} jUe '|-_иbH? 7%RZ|%]W nf2t=+CKR7:+H;__KS$V~|oK UUG9t?Ww/+>02:go{)BK6kA?ёg,rL<4>9m$L7ن'NmI3ЏeԞϐq4~8JG:4ޛކ2z0ZVtczm"/}4&]0WKQ~݉9Ts #WB79v ;R/4\.?S4n]6F~:R#h8ҝWُr*ཷmBzM,}Nܶ6:4_wQ9շ]$-KozNjK׵h`/ Iy*ʉt[ui婼Y#ӆ<:"U@O*=RS>Ɋ,vΫ92qѡm PۗS)_.*ڑ,m韸bcrلNjGrz+J% JT^Kic}r[ )pϛklR>Ƒ-<2W|-\5z;z N |˽.`ѫkNRC`|ִpP=yHGwR}2BVr+Z]?̛=TPz$JM;m>>nr ]ԅŮ: z$o[ݘ-{3cǬ&8 .9^Z?8\rcn|7\s~*/YivZ4%yxPچ\oi}}Kv&}Kng)}AVkȳW ߧ?h#՗F+Ny ﬖй[WN^Dp:A,>~[}aUӷEi?p#1O _Oݩ$4o~~0Oͨ}TA5wKWs0,) e&HɞgYA^BwgYir9NΝoA~lωM,iXT>R 4煄+dH^S}ŷMebJGnNyUW~4z)%֙OP=ijSUթt?Ʃ*7#o>3JTPVEOuE{Jʫ~-]ICil<D ?r`8QGMezиݠqGD z{GfZ_s$/ZׯB~x5+r ~i'>$:| M᜜A=ʕByӦ4o45d?>z+Q^vITwN2_~erTbU/xR9'[D,՟~b}sήGtq-wi(?KP{A'#M뚐^acɡ<ˣ-TcuFX F匨Er;ݖMSh//,|Wr-s85@.Mͩ<2OިC؆K'd\Ԟ}:1'-yOzꡇfF9ZD,ETΪ@*0?ȜNYŷT}ϸᏸtX8 pB_^BzٌJyuo))E|Z!6_a tRGf`=Mm/M)1A;* p*'[OL=\_Pw\!yrEuehQ&S~{_mDnz4=Hpe)9Gբq8,o :g3rz5H~:#9^~4-pNOEsLW=fmQ^eFv?3pW~q;\vY]OO}T>GVuS} /J&#HvɘZg Tﱏ)x}ݴdM^MH ߇-R/x̒Q]!|*(fbV(8?zd9npoe,GL?;NCa5_|Ys$qvTUJ'~6er|.nD{o)y '7 1NQ'GJzS{9E]>4<`7s&4R.LO3D8Rnu2ݷ v`zl=僩Wۿu;E}Q{cy7EMz_Μ}{~:D-QV \[ ,e* ,I/XGkЯ_P'4r7~fCΝcʿE~Ʒ>:_ӻԾU)M%\t8AcܗTZB1;r#5)l2m5`O"}7aB+qܟEHե1ߘoJ 9ajG G{=c^]=qnE.WVJkS?MP?&1>ˊ#inQn:\=<$oW2?*ړ}hYVNC|~!#J,.FzP'wp !/Z@r0۲@?eJyK/QrP=GTHt4TQM^T[LviFucH§ZǦGj=LҷУ1=D׭5^ZyBaHQгT$7LLMZY*ᴸ+7WR4oI;]BHMIrzpP6'͠'Rx>yW;_ EŐ}5z ؅T~}Wb<2 6yH>Eb_sRo ~^8_1unz 7*1k8WpM):@,#OLSDfyԠWZu]77{+J\>op5)k=_6W^~ yPy)qY[1L/ط\;tz}nQ%N m'qdKEQ.B+FpgJfab}0CEqNʗD8RáOM~^+O;·y"Me1 >J3 v)HvwiGb1oPSuaF*9/k/O{թ\9OH>:w%usjE/.b!9'^O|5J7s$y-.iI5 ̔qNԮٌH[j Z#փeֵ ΋oחw,OExH.[{\GG.?LDb>Wކ-|'o \+LNn[9ށ${%Ӹ4<=)8_*h<.Gz&7.";(Ӷ^:5+7v|"ѾO6AsRm|kr>sT}<'o;=ͳk"g wdlKF迋=d% zyU 㒻B]o?&wInR%c>9TO/ N^P>Lv.}Yz ;N@ş&p_@fc)IC޻_I<7c;z뉧*S ?M7p\#9ꮖr+( J~2}h^w8m-T Pu :5GY < 7mD?nQE =t+kai~E8_i-R'ZPsP./K]KБΟv^Aorاg6r!~jhWBg~Sҗld v)7?;__|2i .(T~Byfh˪S昗LϮߛfqj7 +b7gOT ^Bۣ&ҵk}\Y ʨ٦`IbjS{8AUvQDmsqc8|T\pWA+} >mD]KFĊSxS}SZeg_[ }ִX&?9nRRHFCp.~t8OIb|䍏y+\*//Ej5g4{"ʩI/{(huWCN.mPFd:J%o|nufiQocYsi|ø^ ~{K׋$3hgWG:C\Ӏ/hhF彍JIN$n{y o3!7Oǰ 43WI4L?rˍCϕw V8Յ(_2'zhOA.}Hn.cY~[d1;ee@jae#d/M%sdkZ>)ꕷBˉh O~TcWvQ/~Յ+^O~B P>~Y!͕teI+A).ٝix1iҳJ~ir6P;ER9)i Ze?ο9橨_(]`HW94u*'X_pYHOOy5;wTQ2o[ ϿB{c{GS( v~_vt؆TVAC[{ fw}*m1)x9'9ONk ;ί3K-H]@斈}g4o_:JW㜤PQyT?v[=XE͘| :smghJ0c3uUiZORͳgPoNsrlb SX݄w!#'_J8E$<+q|%+xt_f}J }+޼=-ciZJƻh]Ҍ2'Tw#s0}7`·'1i3 %L e(7Ek փBIv̒,t4Fn  O͊V' -Fgmz?7UbxXMr{h?GO ~!^ 6xh['9]۶Ɨ~v74pj#5>S5{t=>2O,C溶THv𻉙 JVKz/K֛$ޱ/]Gb~ƫI\dLS=E^Ԥ(9xsXJt~f]o<|:@WwLŝWun1'zdof˭ ]` R}ij)" e:~Si\|WZY O Kv$-N o΍otdz>eKtH(}~, $D磐g#d(ifừu3zqpcN$LrW$7)+;`b&wGDo-pA9~̴~Jwr:+6/]Eu}l%\Y{=>*+P]l+a8ݸ ?MfS^v÷??xb/P;N=I?mtn!,ʧ)Mk^K'ڎR==*KLvopQ"~b݉2%/ qxAPs-R=_uW*>!~^vs[jbHjxc}k){pM~G k; ?UEL{J1eGj0oaKM;@n ċ2ZK8¼^:A ~HV/UfK'W|p\o)YހQ04SwqVmqeYK]K%~xv S%|.yL8 I^t1`o{ ^Cyٜw4^4.ut_{/$~Ex&8twӸ3wK#%|.uk<1}gaGb6=!nSV}&xo(׊e9|v2*g9r<הZH.}1~Gɓѵ 4΍-蹸d#\7#>9R5(-씹Ͱ.yc^笹|p'-KΥN*X ?Jgwv"#|϶ a{o9g37/d]3*g%8FQ?]+oUU|2\(Mº~oFWcX7òI7 <9u/}iawʍRqN˽g&5p/ZD#cwXE 4LN$*Ҙ;{7Ɂ鍏Rɺo/Q^ xsTo(Ԑ^| *0)\y ߱Ɲy2)U vۤO~~$S7c<VOeG"n}Ӣ&K.P,SR_ν'(áǶq)E1\#BߏV@*?XՙXH2W "ː>E==.~ag\_]zTU#,{GȀW,l2Qo ; <ڨf8&ž+} п4d&~TOԟ+)^skS%=9ѐ4!$?c] O&{ʃ:^1&M0mhʭvo#FJ2);x/^'+mD R{^hIvSn!_ԭ;٢'n,Ql ̭ZNT sFo]~}>CTw>Euo/WwR8'_̡M۟'YKkE7x o$K3.ϙĚDuR X,Hi<)FU`7¾h$;q5H> |WKީX- o%-yOA_h]Ϭr2ի4Y_ve0[Q*1xļqfU977*W^OmIn|%T= hܔx3]<-|r3gvb?uSyק?4:b#HO)v]vS8qžpoҾb }Mg[फ़$ -h9OG &\s2T.`4OcTq=D-*ܧ韰_z |RMORGUKf ɾtM%ʤqMh_Òx]VHTGsړԿט3\jNk?7?3ac ;ӡ JotGW*uOo+4op3w${ \DnvonfIn'_ߙϡG\*3ӎSxM|lom`Ia_._/*W|8ّX^ P喻yނnA!mMxV0-0T|6=f1$g߃_[*'/nj9.xԶw} ܕ3OIsGiQT椥.ـcԞdZ{$wvkҾxǒK]H~,E ֜y$qk˫wuT#EV2qf7+cTסP-i(Aȟ$=˭?ކ[% wlA?y+Y=#1V6AI(J~\k\b/@&Vvg^$^i,a[I̿~i]% x*[y5>/Nu>p%~m_[xv~> 4Y/82֝fuݏKi8>F`_q*Kz'||W=;}c[y*b~t?Ks%S '+SH7}Wa4[(㖼w~"0L |C' &}2OѶ~0We=J-ަ~zS>d|@>=U-kNTs?S6ķ [Ou$*WT_ިt+/3{oM;z \\ts\ zH9p 0Rԏ/c)k_i 8#i{+dL^Wd͢~#9!^tBq q`t'w.HH-i?-R2ɀ;N%=<7Y $l?|MUe y^Ɣjrf Ȟ]t~yTTyX r= C=j$Wg2ouf4xMa*rFՠy_Ur*g 8z җs)ni ڂ? g?C:zbAjV#C s4l3Eu'y$/Bu X yy6ݧ~Oo\:,*],$Kwl2 |.nk/#[O_H@ qؓA {m4.I74n#wmqG`[,4WpŎƣ9)knsٔWDDbM,w qƒ|ly3L?K,N%ZiЯ1h_\.Bglowb9|ɈbB>=[RQt;E++7|:(jG.ρ=swͤ 3i%Wi]WxQ_ԞfOjNdu3 wܢ$U9`rj#8?&5"tnR2jѴ޳7K}4?3$zޡ~' F&4oz|[7|Yy"v6x+o!l2΃t0E>H'[L"n8 D[LE+j;alј zbmPg⦉5߅$gKߨ[UtW(,Ik.~m =mjlkj)vxQV@GdLwǒ!gg|>${(},n41(ͷ7(a|ox dh}v6dNCA^{ɝrS>@ mlɿ/t}rVQ/rսkR wm}Z6aSx}Tz+ ϡ`λ!I?d*o|'=}-\;: Tj;auo Oķ;CUv S ?bv~/8ƭtAӫrը7u -7ng_U_* uY-Α"a_ 2VWvAT1JK!n6;Cb蹬S(t.O}Ӱ_ >,#ě^_ʅ,Ƚ⻝@21҉?'w";*"?`uaT~A{%5ڐr#Γj@9!eV>f׹{zKiL8/8T_tطŷoMEdWҍ#~X_M'9VHFbBr r՛>~%Ӡ#DDFnQULߧ,6Xq%Rd8p25xb>WYઌ2;_L]wFo¿(~ >t.gqrn~`jwpy([1_L,(4%yj稞TjڻxmȎb[b_|8ΥS{걓xadBb.='#;<%v!wo73= 4F<=GsD'j}E"vd1:=)k&1b\{ؙReoI%_V qJF;c+I?ӝP:]vO4kB8jn*ơ?U|7q{_4}6{=}m_Ԧ==ߐ՗TEؿ5zl5vfuܥހ^{yUTO$ŪDzp_e|7ӣ%{wRny#Te?ܳ&ϺiIˍvM/ơ'=~N~~խt1[HwWt>I_9~TOQ6BsBJWS+K|DKh*P֝juvAh\5 4nvpܤ.@Cv,8MOM<L?t~ӴAѰW C͌`yP3_CVA|BMrw- ܠx,+x'$)ˁ=߽'䶀p#s;3 Kw_ڗqg%|o>_{WwQϓz KRdρB;׳M| ~(y]H -'~nRUF^g |<*}XN3؉37 8q!pڽ$5{n xx$.ov<^DRa)WQyP1^U5's߻#/e= q>"i_ȝ!p |Nn<Q=&/M 'wZ:J(+H~,#xAj ېjp޽Sp+H_}:lv?y'{<ů]k/aq¨礗fQ݉)ݚP9e2 |"8k^^iRMnh3Vz =Y /ˬu1c79w(pp1e)"#e/Y/mgk>^-3 QTr IZa5MUG~T'ųd{kzylr옪5P Pijtae *L#)x9%Skx vj:#o?{ܨ+󐞓ʠ y>#?/R+5*%qBOkFZnޙhJWZB&H<1]>}&({<ݥ4k% ![r/؋4Zw%iR>W&F|iWN/!|/ ΃ϔUt~T} ~W/q=7dZx.:sd_< HOƍFݏO5V8kB* ?(1ZZ~oGNvgƤy,CiofwmiDw7r+_5? 8vډw%&M^T[ɯ; ܼqĵx\QyO's:OW宇^=!5xxz{6Rl=kSĽ^ԭ͑PjW1UԞ2vpkf{u~p9Ӛߔg/<@c?tFNok䂸)i_Wo.<2zws[ s:]"9stD_~SGcqˆ߇c!S5N8Α97 |`M^ b 9qe~ ąIkb ߻XWW|yuGNgziDiJ0N OX<3min uOHN>J1+(n;w#a.哀s0\N>Wbw q0s%uVDW~:g⹭؏K .xCēG(`]#{!ӭ,3rKCV C <)E~)if}1oEWxY{k,0ޤWe >z:y:v]i|3p~x.s9*#"w:N'pL^)!q6ZS%+rHk keLx,$7n"1}0/zQ;:MqCɊRV8YiNa'QR]vK NMfC\< | >pE]`C ?zؿ%hWS؋pLqR|G\x'QÖ~Rg.$1T!WoJ|,cMyFzje(uTQc*W;iqhfBھ|&FJbsk=YRm'8&̅\ݗԿeïQs!Q9f]M$_Ht\%-Yz[ ؟=DE>m_Ob=Ey3Rcv8y!OU-UmNx wY'؎͚=|qyfR΂ߛ2|f^!3o8eE.8;&}u<~& wβ!gz7;n|ڤT-̓5i߶n ^voP+OZ[7ڶxm`=43EV{ N|wr>pFC0Bq'9[B֧P*@ȹ3ϛ?C{RI Aش&’3(2S@I.yS?+GEt C({~w7fi?͢>WLGWn~4}ʲk>b{CRUr^sp^L]$5p)g`ҌD}qhv)틸U$꿍 y(xc,`-yz,cejIɏms}HfQO1qȜCr +;T?\!Ԏw{N]'{/qYo"{ ~5QsE]eLs\,10/nGU\|{~#}3; ЎWqT>%VA| \r>?sgw}Гb=r9[ U7O.<7K70p*gmtrŗaqU ƒ&3zf);1YT>y 6%?|fQЏ}iI5 |Gʿ Bu{= ˕>KǼ޷< c2O _҉,)%iR4`T}Q jz!jQN\pI+ZIvn f/p7Fh<_)8 ^_ta{gRxKT3ȝ.xŠ|hC9; 7¥[,,SM/Yvʧ4{;n7Tqqۍr ę,r Wؒ!VCeOQw;/)2<7Q( =_rg=ױ#'80;SԆ/yH`b~# lrXbM\zG QT 焢A=ȴ ;gS\|R@NU&'=5ӷOD_~xW(z/EQ|C\n8iSxF% YKza{j4<;~e ;^_D @]wGJeOhǍnlݏC{,rc;=C|K0I;X|/kP~(S;|Q,Yzzw*Je| dWh!q!.7O^5>>B,a sPͅw ޤńMdS0o8&xwг1+XBvw ~}Iz<13`QZ8ȸg͇?K#V?e'_!Vo<q5dܪ3x,ނs |^W( ːo$LGz:0Ɨ-gs\m=KzfP\Ip ݗHц+ gj=Yz ޳"eR|eZg>&SG|Y.$礑)AW*໓V8UK Z<.Ƽ#{Jh=ɖiIz4.>'Ԇ_iI*~4/~]9f W:|Vkr-ݔ_"7k ^KīЯh͡}9~'D?+:P#2a^}QNת;s?^1 KC?w4{!h7q!uAv6 #r>%25~6q Ue!2JBHK$> 8H,Rr2Ro|k.sUio,v=g?x<o\q$ !vp$䔻g-e`E[_~`إsL6J<$7n#ŝ(W3'yXmTd7 8`WN&ƒ.~/FY|SVri XfxJ3?c9!)C5h~MJB~!,'Uv_j (9Ϡ7.Z)(+L#}D{QvWkSU4뚾p{FO.7]'v[w=<%KIW }fʰoID|,=xZw)iWvS)J;!6>7όMg@Y99̆G?$svrZ5;Sn?q`mG]ۮ.xL{ߋTޑ%8i9|<6(:;$?^z pޝq a#>Vؽ"ׁwZ灸m]wܮ&nV韸1εƁ_*fa/J{YZz/q+2u0xh#XWxLb%M8f.7Kϩ| ^oR_HhgюC?rGc&Sܖ KD~~}Dz^f8E?,ǯ?B}?S[`<9`5 qN,OQ+W?%h?-s8863>8 +Y{d_1!ȤĹO?G3 r ]^37$pJg_űs<)7G3=av-Ќqc89d_? ~_BAwMN<+ͻu(}}z칈Ǜ~#CzS(JR9K]W8}z8j'I=|:8f7!|fEm4/d'b\wGFǶ)!#ꕻ!pq^wv;0wŝ-OqöW醂<(SSxNr*S;X/M/-~Bg{ʥdlIqsq]菊á'{J-u|=úr"7 )>>~=71pnχQ^ƌҗ6 ԺMc?)Us)H'B5yƸ|?"i#2uIf;υ;y(k>3h9+ q %.ɬxL!y)51S3DU1t14vMGd}Lg0͇/3h<~=4eWAļG+1Pī(F%_O{>+C-K$/>:#M<"Kg~ ~zЫ&4e>J 6SD?!ؼ!{iYJ䔪/ot>%Bg)܅RDMLg{dBq{{ x{7/"bI}{pYl/'24xRa| 'Hβkѹ8hLO.j&sKOQ^p,Siz^b ^(_+R{Ik'Oo%> PxlMPu=+pGW^8e:gң7_a?pO;XD4x$LIWBXM7`qXK}~1XO7 vj,qdb(|ns꙾핬E%d/,7ZطCyj[#ʧ:{]"2ZKag0ϥr~O=J p~O p|^} =8gS>Iv#N/9K!pFSR%v,͗,p_R>xQ&jGvn U1у/]4ͱa!]ߐ*Ervq<GJx IS>]dt /=AJW.WM 8XL8쁰4ƍe1ddQ?fa{U<3~G˱i7 U 0w@?%;Jsvu`/ϐ~0zT<vf_H>&+Qu,m7΢{~,ѷ#M1-'<E1X@k8!ҌI/r'yAt=p$zN6~/)[(sꭄ/`ڛflgBtS}kemI˥a!Y'`Nn8J+; X+Z/;y 2@YU{-sċ-bi<6πOEnpΛ+P?7t;ޤuK<+mzhI) nz5z}]b"VEOA0,иӎ`}LHٖ| ?ꡁ?=~Yko]݈+{?^YH?+zC.C],Mnv&Yu؏+?aN|r3HCs\rg- n [Ыz"dcnfY">8U`:P8O'A[S7KB}cGz*pF?$Bobi2?urst4gã&a,h9-m"7~-ؕSL/>v/6\{9_%]8nc~uGߕJEe;N窟A.#uq,N61?OՅ1,x _]sڑ6$C>L%Vng>`54.PɏIwq|:_s#Hҋt%}WlKO؏p[Z"q|}Nۆ>T ~.^D[]uI<,aUm/hV[sߝTE9{֮|خ4>n]ǟMr{B>m/[g/-K'a7HZ3ߊ Ҷk/Gɍ|/ۻYs'9oZ~wXT~'#e/ڋi3 EvJo{emB3ݾuӒ{e'fO]i󙌌<(egCx'cwT!}:unH[Yw*ld^jͳ7AO屎WF kxXMx7+{^jlrSmՖ|w9FQLYaۣ#2Z7sv.eeAᗕӍ|ޅM;^1ܮU*|9Gx/ Tplħ=me3 (0ox7d^|n|ɢ## ۧ~95s{|z~|J.ᝪv}7>δ]w#{f4ȑ3o  YʧTnK=>uu6ovRZ܇O X;֒/065P3lP~p@%Dz:]F{OmoݝLY϶z}m:Xޔd }>| 6VMC[}ʽg5ύU{&*gȜ#Ǟׯmبz5AyG;515^55;jq%C~V nq-w:kLxͭi2ax|e]n5Sw4.'Nw~^t w~kA51]Lʟ}Wm\:9+b^P~󛦼c[GucKE+Z9M ~_Qmҋee]WWV_e>o_YoF#&΄7kO]0~fŮ ݾ*n+c҉Iir]A=^|vj76senλ1|I{KMv 桅e[ҭ 8UR"^Ü)F՝657Ծ <[^(gВ2J/Rx;qm~|,mmU=Ti|I?Kl&̨W*'Yׇ'N۫p<Ȝj ?n[/6p!TY>gַ׸͓]9CƯ~Zl͉?MWW;B 5|}Y@2 㺭>soZv=q3YBᑣsi/cx26X{k[5m֚}xFy9'/f뻔k›Uþ1oI3;oVVذont9wi#j8eBd~wR=N{K#}-:5*SZ$n_x4}B*~kC|0Ź!pbأO {_ne2Ѥoo<嚾[y}|\O;c3D>S \2?.,_1$Mՠd#LjpևVw%Sڅ!-?n 14C!ssr/uVE7'.px SӺWmm˗?oy|lf|-Kkq}U'|_Re:1aӱ}GM9_v*Vl)}fGV'NJ.8n[>_1ܭ7cuGu_v23Z};3;-z+v*|A9x S~mƇ zQ􆡣/сsdUTUU@DAK&%%Hwwwwt ݍҭH"J✫=^{cZP8l^ ͕@9gWsj =R(6.~%k1V %X:ZњKѨm<NS^[h8cy?5^hVlaAw>7p#( I1cUq'[5\hN:d a%3?tT{lAFH_9h_ X~=KQ77`%qD(%AFϱrȹ_?r;ElIW֧\K?XbCj;x^,)*& AG`葡z|?`k 'jJ K4H2? hBu|% XS6ܞV] :Qjxn=9owwIBz=(8uՐ(z)ŝ1) BwҠWTR| /yK2+Wu(N@y@@-l˭?XQҲ٣L߻=R1h9c+W/13A'd14АF,^g|GKw0ln3i:qx?9݆@3O0_;Յ/Jq4"G?s.Mn||lF?bTm"=tY,!;ژ&ݫ/ԢwgzD5+_Cm.ZgKLU%GBϜⴛ qlG13,S&v`9xK7xgAU"IΓE=w&Z>c8rv. R^S/iO.@1}3))(|i8x|G?JABQC˄YFƱ0W.)ESS}Ӳt_ {G| bZFqfOwO[Vb0+tK8WyXWI }P&ƟvYG»k1@@Bvg޺. B6Qm^6 &l,ԅp<[om~=e&⢠~E5\,t9B?>a$-L#+K%%:R!8kO=ΥwhA;U?_0B׈A-f~u%{Ku- /Nr>F~#mqC _#\]5{9`BYH]jCmePXqf6,@oITJ@v_ϸxcixgԷ>Fd8)B@#-a*@׸ cb@*LQD'm3#n*΍Dٹ5o_Os"Bl]9 +ͯ˷z̹g>| %p5:q~9 Ԣ,{eU"v>LՈ5>z yۙTb N16=5ˤArE&uoߵ@lהa=G" IpPbM|76k(TT]~сqEñq#^Ɏ`Mϧ7ٽvZp*H5i!5YnQ{;x$JҼ]tOp9Ce/ F{UarNLDBUXaς Gȱ0AJTu!'1vZqc cKaJ+l\QX`mqE:7?`sE'XouGcYU-JqYoGG0~/ ] !|=K!ӥqpN ˺E]}r%Ht.)/vnT$042JhTw)|1tSN%W")_UЗCqC% #[S9; ?Vqpͥ G >i^t̂1*3nxr'{$>\WSMzj|{ס)[rꛁf#u)7 kC~xi^[J-U}|CPi{3?*31Brz*\SʏZ3Q#$*dJ=A*9+0V/b6WA dދ9:B_2()$}et}3C}I$hrçV^"^Z52Hy @7+:x=^*s׆c+(VO,BΚ5|yj~-4xҙ/ [b`?Zpm9;ܺj]8M1MkoL dI kʚ<}]Ğd>{ pSr:*GS&=3gXOC#3?Lu1A)GңP#Z ۤ:}D|ob$^DyZ,7WB⁖I$Hrr%D& Ӝ-dp2!cA:1hx;@l`OC QL!~K+n^{<؆fjR b Jj&˫Rj}8OzĩXvgHjqlSɫ\d6h~\dӢ[ɴ6٫];)P0F2 ɵp|{Q'iv 懑d ?yC6Z ,Dr/;VlSvr*&;>!c;,M !N>͙H)a餖!Tͤ{ziG[U7O_lA؉hM"XK$fZ97jp~ca2kD}5Z c]Ccտ%&^3=E=wޫ(^)<8rV_䛱CŹﲱ}V^V@?qC QlPO,YC(_giUoJqhy7jʥA#x2|EКyqĜU!YaTHW'"Ùh#gxβܚl),>!L,4$ IA=z3V1tp_DMTRP7Fҵ_oďshH.},7='wvb1:ίV7*&y$3,Q`qڻѧW3uJə+m5ew(ӔگD;A۽W?v_ju&sʜ, DZ#AY?|d7cHd>i.oѱs'z~3)H8h+lGE؅p|b o]uFv\&5/s@"x/}  0JxQ-ޭtnDh]0iwMJ_VEq%+ГrV,]Јn%<'ֳ!/yAcz"_P oB| U6J$O" )#bH#N aۑA#>&'ґI^( |xߓ\-b^'?n8QkCzvNl ;,aTk 77tr 1yyzqbG$N)jWr&};o͸K4ChcW's' Sё66/"J(Ӥҽ<{]BDڀ rn\@G&%.s K=gbe6ֿ7h`:DP;J-*a_˜v&o;Ŵni׎^=‡8 tTO $ݲ{$-to >V}~*Ko9 MU }JSs(5U}8EޱDjcCp"##oĉi U}D'N_#eD_‡ |?3tѦg]Q+URĂnlT@{Q"JXT!M fh3,` ]vc]*W6ȫ=Lvšc(:;-S/qmݪ2s'yƷjžzqSv>0/U*@`KG "ki[UJp-e!1GYnG% x3\*،2t^p5uMyq+C\cnX_0};.褄zAѥeT^ED we첼@{A՚1HTKCrT>Rq+az$:/i)8Xӈ%pOAX2_-(;#\Ȭ*z]u_}?C/㎺J/j(}Q*cȋ%q.M :z~?`]^B SN!"-m&jݙ>3i#?P'u@׵nrqyʚ͉&bqn?>L{ʼn)MzP qOHg#mBOΌH4r̹ g;p_CóM+ڙS2C߰Ԙwiƿj;i_gwR1ӿPnAMQF4cW5qW4x'p/s!L!~z26p)8_JʯhB[~Cb^@Aڣ=da8<를w3b8J8j|nA8*EȐ:o^4I(4Xs$9>͝t_FWqbøE(wyI_vGQXʽk~+ɑ xР<a.*OFvH}*0*ɟ3#l^u[ B=|sBFd_^<"k8u}byU<8xpr^ĝs5#Zb׆]@1Nh[2/Z7axZ쐞׻]FLב㮳. _&@뷷5tP&IR+V[o*MzQijFEA@-`t?+&3G~I>q~lJSnx;ʡ{o큧~^*X43`&Lq 0Bu*"__`6ưO8c BvLv ACr9$4E+ rp؊*!RNW: ߸$msL1i!༲I1XmIuj;O}XPgMqQqCh: Bٹ]…d=0>.}9D]u8.6n7_ߒ] 5buOàOݨ!A~4Ma0qBl\d=Vwi5?­jt=/]w}>p:w gџ!h ڝ~@1SitMPMs_4[o>w𗓔tJoc*7X;}m *۽N0S9GGo:[b)ކҫφT0NCb:Y/_0C^KH C11$ i2=y[y;{sS9WI #2m,D=ծO;VXԟvyU sMN]In=1yu},B] h3 }lQ`%32>yt:,?YSM?m,݅^-g`VCy21saIo}fzp7kY! [ǾK'?",މIEq'-x5h[ },Gf%rde{7"q2;to,G޷j\(*aCpc( JIaZ7"(>\' )O1@&9@,9L)XV1iosZ]P1MwSk|a;]~YPhImeN(uqG.|N[Ƈ  f(~â:r4k0쳤1s\6. ;Oae.H g 58j<ϲ6MࣞH&%{8cTQP4zZϪWtBFjgh| =yU'`\?ҍ/iުx=?:ΜGOݠʰڏ<CJ'ʴmGmDO7[e͘{E.y<Ύ!}B7 >݆G+H 3"}~I̻r _$%{%)cA$TrC[Sv$|}Rߧ!(aQAb({#0:P/ *^PP;7W`\'xZkKz=O:?vIJ?\n $,ϕ?Kptߏ$Q|r:9-?`tj" "H9ɫ/S7̏ HR@w:#GvQ;9G!=7 K}+oO< Ù&J)MZ|>4+uǹiy"*W_ Q^7KWƐzsXT?yIjH.|z;t ]p9Zק?!$} 7@Ӣ\9]%>w} XC"(sy Ӧgw^O[[?ާ~oӗ}_nA> (  -"܄y. 7uAGV*<o=e~1QpqrY" 1^ $̩Y@fE.5"wM%JEmQ*l2.TsTn7^օk!FJ񄻝%}2(&~IPh⨣>rW:72E|Pꆡ'Z,gsa Xe@ v-ݯ&7p){7pJD-G"N6} +,xP?Z~" "HKoNk< ]q};T5Į,+}e /vjI>yql VB "]Yc!4ZF[73Ug_,'-|U+ҍ2@5)\՜"wg@Be N8]P8an P-l?\x%w_5 8|_ <"J_Vq#ZpV\^`pi!MRJ:Bq+Ko*n~w8rvשioݡrҝd\3v(-,0B{fPMTت@i':Nj=m?8EMVoWZG6r %t.P2SOAh-4"_7n@bW5Bybhɚi`kyl齨h&?u`Dxn K= ąVY/Ԃk7.,\_ԍ/>"Ռ-Mbz'5ß)D^&@mez?VjfK~q%G՜^ر>H !}&e/kS1 ~*;|cgM`jjR n4>vOps1M^q7E<3"w X~k.݆ʛx|{E Ow{zF_rz!R1Bν4NGZ`2@܅64T<87ׄ)Gum[_eOj`ZqK)h{Sm&:Ŧ`Ԍw"5cj6 &adDuo~B-wH[M|K'ɣ)/$C*0di@XQaa.mAŵگ) :3>sD[Ms(q''FޢΑnTW+hQ/%eΣmt^S$*G]<to3E{P??vC䟓kPQ⑵wTN>}t>햅nt93l ||J||yk2Cs!M(yU1uj'm u7r..a?oZSSi>Pun5s9)4Ϋ ynVMaNB ۙ%u΄ &`L%3!3s/:ñSv1\KHZG7Y:Na`4yt:j%.v~Qp5wR}6#o'g1CJ$"'FB_T={r,ptde!O]\Cb]kQ?duiƩzI˟_`X"t,lz& &9drš :|f4u9bDϐfg~)FXRE O,X@Ի{tDz vI.ivI_o{JYíe(f*YmU((iq14XǸ1 uvsP!K? XHΪ # ˥\QЦ? 8ʶG྽0 ,C{a{'o$/!g/c0ykE FXY9 [\{AƊf"?0( m08dz,!Y)RsO>0?4 Ca(sh LĶIgAśsAᕌޅrEBPft=E_~`d3#q_B!ϫ_$:5!'wCѣLl΋~>yٙ@1P 9< TͬRGxqCZͽT3>Cr?Cqo`'k=uϏ2$"O%-M!*|,| X:.0Z,{ I1Na+У:ӿ'd[v)ؼZQW- I;1^o[#UGoK7&I;(#B^Ou"ؗ]Ze-b hJE|ӏ+ fq'r^k19{.1#f:"?ƭ#w:۠Qr)ce@ԫ9iEDEe2vM=xꊊG|/eq\E*i9Xjp?2C(92S:ۯXOJM01aZT@ˢ:C0esD\#g| n /1YSElpkDTy8% Y+/ x.Q\Z}W;u| '(A]oP"%~I(VhÃ/fVI3N{Y%!PӦh틡 ˡ)b/Z8d WJ(n$hc J/i.*}#_Aoc^@W2s.$wݶ .0t*Wt~s3a6hew !_߶n©6[8dvE(=(lVd? i{drƕnYCho*tF.'#Hk!HQ0D^ܓCO) .&2w.B؎M^ Sܟ"K}jyt%MPC_y8'|H<,.bqfa?:̖4LՁ&L/oɈ-B+V|'P1LLv ;HaW*:&ϟAur<~f֊~TK;t-5OC`]0>H&'ڤcuoisRH=^\iI*2ԨkU..=<θ9؉= q#nw QҳᐈzO8Sʊ/-҃P\dTU}"ذOF0ՙk **]vaA1 谷"+?7q$Ws`"t&܍Ǯ&O"dO`+ 9_+Acj0Ijx!c:dCzϊp ec\G`jR,+z6C~1'<֥³}%`{>M=m.SkU)FʛDy/PuiX˳Eӑd o-0F݃j 9k\BEj:4"vy񸵲a~=)eL٨N6zE`!PYƒARʛ|g31 $Ͱ7JHڊEpSIiM%U2slu SBc/ֈ? 1.-(|ʨd});lwU&K[ge}"'A\kӢ9&T؝Ӣ}>!~[r~ز&#>p\8RtܦKiݗ}rxb hH [qiV{R&ux98PQW6ѝ@#Mi; 9rZ4!P\@ bZԛ((璥xىd ]G .tthݭOUw-\FfHCXnqa&/miӣѿ5hvbf9n OaN(8©C#T v\0Nkp|v[t+%QWr-K\o9 X_!K O];>V+D@Ɛ!g0tK} $ϱ7Omwn:qgR|[y#PeeBVz!asUOm1׮!eᮢ]e;HJ=}g[cґG ѶGOneZ3"v! 75{#嗘5RҧSXHy _בs ,쭸=Y'I"Ql;̇p84,+&þԪZ3Ll~E!R+s[>G LN ~yD ޚk$"}j wvo`dR!sk:V< C [A\3<]Fl#QO:VК"C1".־wtBum;P69JԆ0vUѣGivf8㱯~pCl=֯[aF~2SMU4д;\ TVlՋ@S῏HKCkßLRH# -ѕC"k( W#|6ZSGQ%En֫5hK}Gf?+]@b<elDN2P"U~vy2* h}BRZ='6!)9*0iQÞie峏Aƻ݈֘ ɽ״7+5\ _Dގ"-[|%ɥRx驋~DOh2?jfv%O^ f\wxJk!qqrR-E;_eO( OIp:fmM(p]K!zL`7R´r}}6zwFi|0R2N;Ƴe PjJ.SgPʭK(oEݐL% _rhH n*vඎ˂ހ;H.nI;N{p q6S=Øo~ Ł2SBGPS¢!4 x(<<҅ԅjet 1. ,m,խ-OĜR:7WL1 |O?"3F^-R 6fx59W9{"ǰBp=mP6٨VW%;Ef5N3c_}í@(]-?;"3/9aIy q6jv܉Y'|0Tg?RCS^;G}v#9Lkrz@£)1tޢH|K1{ .I[BB:O{gdmFo 7J_j@NO#'ÖJ)~$e2¹_wP37撁27ZdFqmdT2d9k%y) &[l߂oQ9e=ձ|ݱ lL<׸/kh w}f;@nԵWSЁӉ69"wXN3޸.rT=6iNjU/:Ve< {#S{"n,y_¨oOG C3>S7i>ꖋ&C`~ezܳU|ߍ؄GW;G]Sۣ{~p+FVe:q䢆7+̲Ay;OP]R( 8Qu|QC飨6;-Ĵfy]uMj䳆yMP nl/Δqgn5.:,SNSRiZ ?R#&CUIo&k.PȺ\'\*+P3N׵? Mu{)JԘ58$Ӳ_9K ȕIF7^oX "tc4k׿_p1iWx&cBorna[cW7ţ8 LdrV˜ih~ eQ}/ڽPb&)ruJ[ 5MI|CN]CG_ C|Z= ym+1MBGT +wH忆= wL{* AO5x~pGB~<}o~HNPeF@_0>^3$_JX=dxS|QXgQ51Zx .h}Ki)# [@ۖw+y+i;'wN9:{8{֊ORcGwvziA:;M 4C>{R.QdtgP)Z_yƷ\3 ȿZ><ÒU־WkV+$N_0x`mn ee(Ⱦs; W>}rC Oa2Sr*&UF׺t^9+\ lo!?({+ (iȥ΄9UwApl/g#rf c`W4oI0r1e8ރaO:/XP6A sghe6^@&Z?T@ә6ztIˆil O;0O5  UmG)l|e9(cQ^ eGߚ@-/% |;ޮص#ۨ9Pem/f>`?"n.tCK($T'=] #ߐM )ꒅ=^~d@%׬CNP~1:"_؀. mmhf9 1"r 'i{#W,Fk µxsy?S# R8;ƴ c*~AU|#}L/8qr4ak6<]-x!҃Wn>z環$lӍW¥5g>wұL|z  <5w[8s4˻x[ UmVLD..'&qqTwߙ}-T&DTlot$Bf&'pFv.- 0{jL/@Ȍw/ v~pm[3z+Խ:YeNsKRgw|Hzq3V*i°L̾ #C:jZ&gnCyQC* 52} oPS2Yޣ;In<dO~c/mPa6_Pً_}{rQ؄K2HϞ A!Rsȿ4]^|aCfvV>?|g399ق~nYY8ޘnf[ Af(1ܲlS 6F{ae]n([31+kt 0ec"< 舂LI${QWm7e"f~6ÍS\fC>~ӓG9M6~}&$?+8+@Diw]bJ]'!1|*TL|лA-ftס`hj{pr>߳d+sV5 3`}}4 91FÆ#+dI˅~uΫK/?7g_9?ug 5B&6 >Wާ?Y8S "e;Le\U2?c[6x O^{e.O4_v&q27(inס`?֮ ]`Z"B tqCj=/{"Yal9]*{Ř )|QFe*)k*4e?RV |5w/$P{_ 6_0?I>Bޚ!jgtQ*R0^E ۟jkcٽ]S0Lwgܩ܂y1Zz#H` 7+Z{x( `?)oH]o^##;U7. XD m{P}$2]7;ϏDeY#Nɵ#(<95J44~AElu}܎SdW/ꊼ=#vqZ'HWU;g& }X! >D/=@@˄8W|֑u z;_q| ?SvEX͛dp/^Cɓ^-醏r|AD(BIs1Eh}>7|NuacnP] [>r!E\%$g:ǖp_D+ۤȃB;[-M-GziJֽ#6pMc|7=ZHlL &}~*o)>N1GeJ1u&sDE1GwS%76p?; ᐩxG7JB]y?tCɍQ(-< Cu4|w8 L|Dz^TwyAA],t M#Sp?4w~pDw}kiZnpF]; HZ&v3XadE5{l8{M} 仩 -υ~7qQ#QdSٱvzzm0|- ɇh%:fyz mV5S'T ;o1jbįnӍmtID\X1@FqF[ 4BҤxjlrrhx FY5`A~}wc bY~gT ;Co[G58'®!u2'烯׻SG룟QV7> aۤ%ڵ NIA)܄%⯂: z#N l`p=n%`< z`dDxW?M$hEHKǿlaA݃tPЙȺ{_Eh[iM_ֹ/+vL4>u>^C9A }2;Ōn?ɏ2+%00R) ׭FvX)uD_QAGd#.`BnPϷ5[?!WCAdenBm%+y+OCBp*}< sl%Ws!إKh`2Dkr8mKݾ.DJO>BR`vRFI@8 4ϟw= 9r?`ȣo hip[;D18Z Nz"\Ni! rja}x_'z aOs]y_]%Lm brȤ 2+@b RUmt(.T+1ahC\$:ΘUކWAƸX,JL}6Z Zd$OpӗQ]\=b?m)3ix+8 { p`c?LJ 5.HRpѫN07ꌷVHJ1䵋3j.ZKK^75H odmxIH%!Cjf,CLdGpew=myPPKZTxUb 4Nw;V9TNi9ic?zs^-{Á&>P^U ̆~ 8:8C3L-:Bה[|1Q*3ombXTjp%=&6~ ǧ(7ӼPR^vaT$v' Vsg@q a+5eۻ^fOx3~3G)hy2y^m Ed:Ǔ[l>eƆA_=Q{_p+ cH}ǁo_g*X?tksDRI$ϙB|zztl"L.>3e_Vhڲo?cs077zhނ~z?6PMٷ8p=U+"-~xI/@֯ uoo-TZˑw4w袈PS=%[/h&vΞ>>JJCeQ7c aώjCpr-Ik kTNxJܑ&Z̺X/T,P1X^?7L Qq{IX1~fsL°(q;mAǬtylp\B`z)઺v>:rmo;[#k\ ZEZV+\<^ YFli W!RG,y?xQdwi[vo^Fzbܲ"__ѓħ)I0֬[yd*ˣe!]g䟸}FR!O؏ B۸}Qr&`W(?ˬӔ0%X&KWA|?lpG,\TkįEN#Wq. eP~"^fӾCzM/GBdXCc[:*0dAvlz}B2#TAYwX2nmlj٤ Wmk`ElA`$ţsVO]PU(DŲE;[(EUr@%F(A-ˆTe PR(q"$8WVWn4 #$ g֩n<;cܾ{> b(xtAcg\?B}}Jx EZx>Uac}aD= O`G$g<z G4B%8=| YyWj{?ߐ;v&Y6u$ rf?CzH{zCT'z>W^D Fi(c0-rl8s" W.}1 A Z\Rt3Y:<﹤=p7=rY8S!1~gM I|98_(:yFZh3/V]zx+ƒ:J-%E=dDD\MGd2Y#ЁDrkx 4-_7ǭ5MU:tؙc`\Ǒ)sa5D ;& `]P_/Aћ0vek6 *l"tߥqW>OÃOz ޴VfK%ʬ sYt!PuVC KݎQ>>[JTlȲI*U86O?7E9Ts0|F(⶧ ڧ K֒a& B0 9L8^h ҡ>Ű]:x F~y q'ǿ!ŗ0*T|~< Y ^ Dw";Th=q#\้OUW#۠i<{JzβiWSg[9)waEf}ƹ^+A`,?=|}W#K}䷋ds@jI{#SNe;w !m I(u)x14^!]:sB4ϽqFi_.9E6,J,{x6"|\Kk9"nOH*ٲ@^vd("݇~)K~)Lh s}3d,mãwSYo(#{Vb0D&'xQa+뵶>C]|dIƬw@EdR̭VA&iȌi"رG Ȟ4<ԏob8 xC5xw䅙mQa8.e@ԌkD}\4;o"Qꈡ3am>bJt ǥ}Lag<-"hggP}&jv/~@Ix8|?^d趿BK61rިCx0B\"WHp\?!8羿a@WW/;ʯQzfqۇtƱ:%exc:T1l:jmbԨY!‡|"BoV-v%ŹZ'Ρcx29].k$a8`:}鶤uhjhT f3ܘyp瘾W9{Sw kfS5oyD^fLl+=f`WxD9pP"mho7pe!<(|xߗe8zMmYXѾ$VL^?ï_\ p&,S/,DCxGe SvPu%?08}x"3^ )P^}=q%m`ny_ յMȱV2Y%tHǧN>a":\ b;/' !+ 0 pZBjg}vDxBoӟs}"'wd ,wW+;G|*I 0}{P]0i//}GjMP r-"E> yߧ:v5mr%FwHaGGs@H7Y!H oge4NI]ݙ=V p{){%Ja;dvoW%ל ۠|P o{ޥK>W!/_\u޲DyвC|}k9( ANIjm$?(sAwƚH1|TruN$$< x! j<,w64 ڍ̛|H#,pjWeUt(p32ѝTy+f1 "U'|p?hiz kC#sgN\kIY#˽ଞuh6zQuP79 DR4xt3; ڦEHX~+xz~+|%Qr%c D:+@HW 1n"!Fug[Iد6dfta~WN#bk +7fNЄ+YRȢ{,(2jO}H)xNmET˧MAPDǙzܗ6a=y8fd ?p6]au5 dVA lZoBH䘬$DVk&CBz 7(7ij$'.@\lR4q'pqKdJH>X݃Gޝ:K ^ebX9, R5•Nt /G\1UdJ95{헿GvwÜvg3zO@'-cI]}J Iaa@-JZ( uB&odIP;Z09,D֧T7qI?iΘaɚZbDn2M_ؒg/ݺJ"nnx/)piѼjWfȎ\nM&vg9Ҏj *kYwy#7|gL 6qN\0r*Oy LaKQ9̿YWO/Ebh>0, l WPYu,.}U:ۧ-Gꚝ܁: O:|ٲA (QҼ ՛<* T$_F~o(p-7P B16+d3jV/ nng'8Yܴue0_M^s!ƧLn`UH*%j)(Y؅#o> 35fPe T|O⊅3žBU{GE~e?lbYr8n8dt+pWzY|_DM>Dcm;A/9" BP5tF ?(DNCS$]Kd[??8T!qS%N YΝ-i:9VL(2.%=0w6LqY>Nqsիv 4x\V ӫ7im{gNE=[cP$ BfH/ErZ!C*TnjҊA6(6}K>%y2MwZIwLzoˊ:Ig:ߡE)d .F2.[ǟ TS}gWha|~c{)bB?MANbHo "gO4_ب YV)C(w+'\!AN[%/MS,kjofPQN6\iPcK O/YJV4%I('A؏JH(6mH@}sS;7CNrZo\FћexG4j#E&=ukz9sȚܴXVC. ΈItCͪ{4.D3xV_I. HAoǰ|Pp'EL <э} [6ѓLvcNIk;ზu=؍H`]DI>ajAzf!~شd ^@13]9wBEtS+wʢѿ׀q/D؞!C" Ѳ+Շ<BvIs\(i[hqf4긗?Y~qŗ}((:3N`G~OKXЧߟ_]Beg⍴ %f2$=n7+EPNbnHMϣCHt/=UÓ'r@Ph+X*08< jQ"ڵv!hK#YLu#M/,G9тGL+sX:\Q{ۑR3Rh5b ^oFǂYYg,"զny#B+IUp ,B78y*NVj^1TZer#2XT|~2vf܃/;T+fU>b-]K3@7bdg&p SQ웈n[1 ^Ap %w*(qҦUފy< *<*g#hL[L7!Icif{=>ט'횠N|?v0fG`"T32GɌڻ"ۥ 1Yz·ќE˹pPSWCsS V[߅br8%}<捒 ` ^}#_QX2, sq2x(^3_vQN*W4H }sp;REV:$o KpEUbƵWxP@/]BfupKk9Ծ݈s ^@NONAWMj)f\fўjPH( ]9SyG Y&a2TVf+8Ԕ3}*LG?wv%js9C`S]'qiF;1(Kak/Rjc EO;s"ri'OӘGT!7~ _PX {I]zQB}/FEXP#NPvKV*#$a+HCp@$!dJ`g%x_i?S+T+К?B'PJUur[Ң\BKbڜU2*9l2ԕMoPʥ%-:PrioGV6X܋ZQbb E]'9D[FoiTkLߔ.B=UDRh]ܮ*бq[ͨOOKibfNs~MP}FܚL.xT+u{o>YJ4䦷-֥j6ݙKE#Ϛ)CGVKYe|XY)--mX䪎i̐[,icο[\mB-mM"E枩WөóNz\&vGOyptoO/y v'r ۽s ePq<ԟM<3cf3t"hڂG%БQa.3غNS*_'@랜՘9ިmR/Dz\_kTw|Soh.R^є}jlٽFԚy]3%Bbkќ ƾnwxtzz̴ݭSiCV-o_y'zx;Wzgeiްy폼 TxտED<w}ḯGm#hٜvo 86S~Xk۴!h۷&35 9nHSŗ?^VJdްˮJdIuFšS_k{-9wgg-ͽ:|QZJK6Nv:F+R\TLΘSLVqFnSЮכ7H{7+RuTv=jxfii_j݄ݏ R㭪V}t&sMJF}ySKV=E țziv_ޥv:zblT"pHjF6q)?7ÅԵ^P6kLJo ~Rvyvm._WeXv^k²Rzk۝TB[1oNnf *FmۨRw#T<A~ԡARo"9Rb!mPU9B/н-JXbrmpRe!xW'R|e'#*POhӮ7S󻵢}.HfYk4M9UIq|4}搞GoY- @I3Vu Ͷn݉?\lʼYڳe Ӿ;ֻcOmլ˼T:o1Fk35F4c,D:h[ U6|`Eun~^Z'j{^NK ;7q^E[np)$(wD :PeȎ ڡ0!lޫPy(miPn$,ug-uuCTrpu4ΤŇ64*ݑiܹ*4ٹbߜ&by>д3['9i!R)ܮӴO3RhiMQ&hy.!%~~2*QpohՏGΜH]C3{ߺTZX6 4;%T4砽$n]A# y"6w8v[E?@|B߼[KR gf)N=|mC 7 h[nLJۚf>twVΡڭ)=^Eg;oϡgOoT:@+4j m",[տݪ{U+PjZ1C{Q][.(}N{'wZH?j5_ќڅrkY*,5]rخԼQV:ܞKE׎N{ǟ.d0E/hۻh6(C3mUlv>m{ڜ_bʹPy {Pο~w4=jFi~;V Y.J*P}}!woLʮ|ݲ_gYZu=h?E勆d.߂Y^0mX;hC>%wsѽtcjQȠ$guuMՇzuܵs%{Sbi|빡~?4uӮޒѢ~NiEޚCw?~K37Yus$ iY+ui5 >vqL ej7nA~rfdZvv@b/ HSTcGK|ŎJuTZ9sI:Xւ `чˏ2ollCnxm}qvj~X%Ү[2\/ihWě>w-,p%mjkJunٯnCMHu Jؽj$ns{^qp#)x;Zy"iܻa[r;vm'4ϣ,ΫLs: (5V:0m:ZoxӢ-8SQynzo5ڵba-PU{=^^H2l=}ů>mμ{,i3tPעѹj'B^Ow4klQwC.PiC'LQ=MFoڷyiQG l<ьwI iڭ{ϼ 磶euͨm;_EvU|%-E wqwh nhԗan}CͿ5i&:M\@ mڂ|Z8wJޯ]δNK?F5#꟨ڷȠK4ikצn_ʑ#Q\಑OגЂUN!Mtv54jwPw^ \avFG_Z[gx'Ma\Ŋ,cʛ1u#7Q 208גlfv#ٖOӾ__dw'm6On,ia4qh>δÀS+VTeb.iW{8њ5T_ _.~(mx6h.aGbR׋?kC߅O90F5k؏Ɵ?4vӪ0>r}VMLMJxɕ& |̌Y[ޯmspl<ܶuW7;v+|M VvHfպmJ4m˲R]HMP3y7;N7E=nOާ-5#vN jdՂ1ٺY'(_c-#罗oII!)L̹<6' 'UKwՕkOW?X*$7׳^6= rw>綂JtZ[>٠aqz-+)ꗵQ/q厥Hvc҃TyչhS#G'8R[vgYEO??,ӽGh'B_}ҜQ^EuiegV7Ec*D&߻u{"m<>M:eOO_ѶsvMY$FNnR?s;{Of{S+v- n4xRԾUCG ~VqhwI1yu/OurѮ+iE[/6mw65\6sZcUKhUZ*vКu6{'/K*^VU_DRiO USи=gPD_Ҋ=4o>׸7=[mJZAyiIC߯/fN+kl\cԈob~-Zջ֭4^3h>mM,2Ӥ*#w?Ax9hn\~Py?鳧wQ~/cW ww"1G4ZLTpeP[|2)~jV!Zloz~<ֻ_ϻ"ikɼ>A7߷:]'C_>5zӯݜ՞.4ݟtSHAnu~\:zNr~Zpu2ζ`+0q y)JrS`pнDgYfLwtI=~A'GR~itp҅keo߻X63e=5mXBuwoOv (EА-@y:hVtsCzR/Zt=>nNW޹uL=ke6 ^e5ubg͝ʍhZd=Mcowܞٍf[(ZrtNf3kMC_X4M^gQnٛZ>>VhqfOOVѰkbu^Nmr| WΆqm?.wS;ʠ ;ԲE^=>\Tb@TT;hRĆ.|I6.܋f-\ޕ liBinIlݘt#m:PMqErkmtE_Lh(܎vJ:[ϼt)ޠwÜVY.-b<;=5^t탾O)htCQv 75vZA w:+;Zqߩto90)RC^Y kkw$='-R=S_gn[ONM[t=5Z\*C;jcoS@w5uT|f hVՕ,:|-diy,qUJ^U-ɏ&<>ڦ_so)5sM&.Vj[4c'5nJ_迖Rm&|*[WtY'Ӈ&t_6fF>/괞V̶-/h.ONl65Ʋ9CU6ʷU 8z%VV9u;/jMcokA&BB6BLnD%%6}(t<3jҬ#i8JTxeTط-+^e]6nʨ{#hYQQ-O8Mk1 -Z$vsvϻ>α)4yJ:WԞW&?]?k{.(Jm 9lXN+k[mpƝotK/KPۀN;wOH{>yOש-۟6)7|K U<=k~joV#bhn{WhX:7&i 6OB_to9ěݷP.ͨioRQ _7$sj4f⽷bfu׀XjqXZ~4]q?FSwA=c/7*zk'e|Ѹd-bӜMТy7.B hi3&e]p(saw+dקW<:UiϮ#hiNihQ#h2{<N5w'- [E6qP5h[sEδ۝iYع+.O=<昹V_]֌ H;ڴwޢZCFlZЬo +nZPvZyOz_^U%8-QVCw]UEؗҙn;@&u3ٚNeƗ:eрa>QwGC,:hRi-cẈie_̷moL7 9Zb3hqI,EuXT{)ix:St IDC3&N Y`yX()W=>1ʑ oVf] +O\;Z>KQs͞f槨Zt\%6#♑0ݞ[]jF6(Ӏ'4ahMh6ǣ'u1fOؔԠ(U^S<.ʎW]o>7 Szۣec(mJiEwJk/l?ۗղɟ׳/AԏYCC]m7<4αۛS4>2WǖizaLiV^TC)AlojG})9?^o2SGiLG8ٜwե@+ӔjԣޒG. =kkPFǨ/a[q7إ-ϒ޴SmfѢmw O>RyxmOVk봝hm֮SI؅sI-4v3t=#/S?nԁlL-\~]ږ,+jҥg۩UnՆ/ֻi93mkCFGw>R93/&ӊ&Zkr/45Pj WܡY_=vݍ~4qQ{t~Lf9x:F-{أCoU}gJlFKpy} Zֆ_ҪsדusZx7⚧Դ :`W쯧iC1vZjs̟6\K?%m:lycd5;ZGif#Hk_OMwi`gZ?9z4ͭdwV}94wZ[S#q{[Z>/hu߈Ze4"˾3>F[J4jҨ}㿬!׵o/oM1?(ӒV~֊2ԪI M߶z׬bhDKExߧe3 QV߰c;̓E'SӴf}|dGOW:QcL.:ߒzjsFwAvͻ4S=~[;iMx7&ZR}SK4&vDNGBٝ%G/VhR12vYTcIqVZ1~S.Φ)Dͤ^^v6(ftw4QBha{ǧKNf$[! ۤ|0u|O|{6-/?9{9=-H߳'\:SfWc6|qμp>Spt4=~ɪ0?jqX︸ͥ=7>fvi~Θ0_OS5cN\}D]&9;us5wfl\sg^jgGOz3^=Q4H}݃U͔ ?Ԙ.%};ۅ:WiY,f4ҾciZ6evZШ;:ݒz1FpW|爚.h&E'?G'_nFêŮ|5QyԦYRA])Q}fv&.n5|z;u|4躌Y5X5u?w!fѨk3Ԣ6z?OZ.zti'M5f ZdZYu#ݖ^vY:T34.oը{:]8OIjZ olhn?j5 N:w> Ҕn>d嫩(zR K{ soGM=2e:w>mPP??N QR̭|A&2wzs5Ys/O /C(:ʑ֐bEmuۀ֓ɋ7C][Kv(~Ⱥ+Pe.[s |UTiΣw>JGE3<23j5fLqd4R+_.fVgXfq4ˌ>tkhAYvmJ-^/@ }N'4^K %ΏF*5ЛRBjZuR7|{gP5= >[7MasZ︋pHH6]hY]-f\ɅVɷ&On5:6U2o6s'CҢO<[Аݫ+lX1:4vtY[uiƨg#rla;}hb}'TB^YG7dIs0J¼kdAimc۩ߺԪNU_}/5ۯ}[PGCnRS%5ܦ!vCL~-BL* yoJhOFc_wi3ߌ5L>-eC-y9w~&:lnTZ|jKaKӪ*ʏ_gѮ]v/^*|9I:Xr\bVkWyAjYFzkÒGB_> 54ԧձݩ㉗f./F=N9Oyj3cѕmP 8t:=Y:5۠*TQlzhs[mP)F(iP ]T̸9X>ޮ-h{Iء1`Ju3c3bNn|~_p :ݑU_>5ϤF5Q:ڋ<0CUnϙ4KSiˊ~|O7_|JgύxSyf/M|5m7vΡY>i%SF:{E-~)۲e)4E%Btʂi`RgKS(+\YON2iB4y9cTu6_RG1=BB:A캕;(*B:ޣkN-I[{L}c[;:3寴qYs.#3BKtm?/k0bqWBVq)ջ^jxomhܱu=Psw/u'FZRWL P/MNUXA V86u\uGw|-&|?(tRCrn'uɻv?R >VԑՙݒRW>(M.<_Ig4Jk3<˱z&>!-곤oӏ!_(G50I96Sti<@ u{d_O'4#5e3aã)ڥx5UNs[w}:K:/Z:^t%wP-^Ll+c4;Qthԛ}v2*!֒kqcy:oDz߹DW3(rċ(vTR52㌛uכ)\þum̖N 2"1uqj9tʦvqԧwh׆ǎ -^KkF)dueqiҹ1iJNU4n[X-3B Թpq:cծzF \5igQr%-ë[HF{Yh6`l}brbԢڅU)޴V c|iPevj[{ׯZ]lR֌;=.{N:Eskӄ]bmӤ15> *-MtɊGOi &҆*~u=m}G__֕lӢ9?S$4^ⱣOHKߕfI o$"1lSpSIӅ+LkZZ )%9JB!wN݇:Q2ٯ2er MnӢY] Uo9/KQu+%.غۖ ;_IEYpଚ4쇿M))ύа5*TYaތh_hfBE)3XC3&[=4N!47(B9Nh4l]pfǙ[e8~=Ң|> -:ng-!5mJqd ZwKh޴ӌU3iGZ\N[=vz)rL3%#t\nWHPPK fYqM^aͅ)*Q.W2Hw(@ۋ}@*4^Ҵ+ZtuEm)՛4d ^ѬU!_;O?Jsҙ,p4ڴ'rMYw_ ~׃5/oj/_5SkY/}\7\cC&B}hcj*в/VVF۶/>+KhiKˠlms\{vk"|U=Ag헾E>]w]iJxFU99.-0`s:|ϽwӒS^x;hT] mұ܆ty}ǷǰAӁA#}JvuO tcZdXe„4YuRĹ=gw܆F~svO"{fln9\ݭN0\ y{5Q٭^z]J><^?VlnfrӬ%ЦqWyxoRwтw̶m:ԗoDMRXT7){.5f}EE͔93jĶ(3uɳgQtηmB.1pt>vq:ۦOS'Fѕvu6v6;*BäAs[XP]ZVn/LXgaXܞ }MCԀMT.OYFvzLg-J| Z~>!պeFҁcrCzm\~Ύj Эew}grmgB̟@6u-~`~X'jrcE|ij#yt_ѨЄ35OCޏoփ%9szpz.* ]vhE Kovm~:ޘ<-vZ{ ָYu6Ry4d01ڙҶ hVW) ~1Mzviqe6sE4|F}hA+ pB]ϾCIԴ!b5iΐ(?R|ra+u?9=dLw#)}mGANjASZŪ4vYR Ө],Ccm8 Goo>Mٷ:Ͱg4kSgiJc[O>j_J..St_ݤ@f>8`C4V'o`P7.n=Du(h =Ŕ|i{Ik`ew}~9܄c#IR~8Zh۰bɊ}bR%F.O..e§ZӋy7KBA!ECw5]{v︴ߊF7>f6mAY8(?3,])"mJyN=7nMktSZT{W/[Q6GnJG<|qK5n՚|PֻZnVo*S;mq1q@ԺώS՝ACjdNȁ[Ё|X][lNURpLGmw!3_iś5.IM\3KIm~s60] w=u{xyԱم-skLm禭|ݖ!Ok/[U7UbJJ)lmx]oo:Im*Fj?d:SAj2X6R@˽|Gnl3}gJ?ҖKIҘǶ>7 V`:i>fР7Dݿ ? Ϲ TFA*$vݪԼM 8&%-M=M:^5$ii0u si9ю+צyfzӾƍG7=S:Tt ggS:i90WPGkGl-85vmK^ IǨN[)KEPÙ{[fw>F '3|Hv=LvTWj nF-3[>ֺ Rի1U=qW򈫴nӭiG{KZ6[ Zi[Fn_.&qW.f΀NSs{?;Vc l󧳿,oͰ"qf׃N?,7oqjvKns^rGMz7mޘ23;4&|(կ%hRGN9f-݃ft~ȢS +Hs[72$9:aFU*c{CkU{o_(F7`97ݻL>nJtۮY]ǚTivw<砰USv}q&]uڝt<5(٨~ՑۯfgŚ{nFinП| *HCZt}Q {L!S:BC/o._kt6fo^!oM֣ݝD +|?poy ]psW(ts=x#UͷלYn8/!-rs7ohZՏ^ђ?8==b~aX9\/H۴M݈ [~^)6un|>&+t<~+EW]A߅nnǍ,w/|ͰEaKcK\Cm/wU:la81($k>j(AtCյ4>WxwStp>4|Wۼ6)scQ_akw{/.6uko7GkͷR}|ee'#\WZC_َ%j25RQ^h(!`r"(U5VtxLjAgX]>_akhP|N̪beL*g{[TֿӤWc|!"=i9l."~DwzEr^4莛)ʋ'9fݰ9@?.ZW{~kd;Aڥ"]΢%$xM);Hg yD:Ej7&q~ՇE>E}ݎ5DTAMQ^@1oc|'bUS/8EZ-Xx]'Ywtǚ"FvHr үm*ʍrtNlbJC٢؏CmBx#bQ*E:VgsȱHW rE_o?|x}[yp{(ʁ/X؟?)C7^ :$Uǰ5tHg8CdHODo|=FgTZ>$"ؿ/ =\k/x%E}?%~k ɐ.<@1z!*AD~5lHgl8AP/zMex3f/7xu|G&;yR:*~Ф'2 -yg>HjX_U vF!җPryLr=b3k"5)z*{>ǵЇDHK$ O|,Pu|AaUSk\SWQ>TDzU5J~ `?0߮ ZrTO"}[ ^`aUe*0z}]w(LuޱK.$$%R_J Qkmy =N ]M?Wر꠳*-QB8ÿ;|&_'S~ c/ڡ1ߡ[lߢюJ)ޟ|)nx˸0 ż3>T¾ăyT/4HY\5߀C[^վ#ڍ㍆~&*MK-,Ն"0?A~ 8.!A#@)zkz :ba#E??B" ȟtD'=7!r>Iuz]e{%QC0ؗ(aCO;P0y(1,`_1Я[,Y_!q|X% o7[Q>U&*؅$s*9?%I O)q8|\|Curyy&qe2~3]9.ƥnpX?5pe  _@J80qt8$? ~>vUA'IJgBE8vp e?8M7yH_h?O a&$.e=T7ig$DZy TmKMM1>|~JPïia3pL8xv8v |cPJZ.^@=Cް>gHDУ/!/=y}Z̳|C#zqt:]]'y p  W5A <.38v!W1DSzcx_U(2>JD^L{*~Þ$ 7I14;5'~zz\`OjX-q7b8/h}'gba|abG}'7H| pw8đIkM'QհOT (}|X LnqqsjՄ=8AW$yJß"s">R\SqB4ER܅}W#oǼp VԐ[y P f}8 W_ Z ɿ)aOに T7FeH_"6-5IAd/ƋrlDnUjAGs"EJGC"|bIOj)rx@ǣs"p 4?+}Ώzc z8 =-=3aUcrWjWo̗8^䷠8N5;vΏ8y/̓/Ň==Wp_]|N?^ ]_bN` -ڭRk}E9ՋO?b*Ic{z\Z ~]PDE`0p! q _F~r|@h/q;{~RS nzU ty Wǁ߼ Ss%0 _0.%% ;q!Z~;;x't:p _5씆󊐋8;a8K?ïOq(#%@HNx}! x r {zR0Nw0OX8Q1/1pMB<|p/x2, FЯ(@.?Qt뙘@ =U^CO1?1> !_?OZr*^/$$zBS4wr^yHλ%"R!^<2Wr:p;w1N^v|+G #B߈a? pK8pH39 Yx_q]uiOX#$IScƼ2nVH'pLW!w yG$ qC%(8dIZ|J߯Lպ"حP؛hӄ2w)o!g7Cޭ%">H්n¸RzCݺyN_DAcO%ix^wH}- Wk!nF'\yã3'k1XaaЯ8̗ p͍ηny¾z*Գ=v|53_Y?5Ю(.qJȑ8@u?yo9_9{GO53W {,v޷<8$#=11Г8lj[)x/ ~ÐWdB3@ΔJ>c^Ts1߫z~yY N(qWAozS{ q %wg7_ĀOȗׅ`Awp?>axݞ;1Dk%!0_e<$+ yR-⸒`yq%~&̿Ksa)Q׋7pnvHCq5, לގx;%!/|I B<8>na8yƀ ^ yC;?_pc?/85⠯&.Ӝr䯓}$pF$\hX3h?q?Η~?y;v  *'A=!. n"NE=焃?,/.S?[7!E~B8FZjcv"NPu %ՈUc?LY8?ED#ފE<y-#!ac #Cgj^=L@>Pn F{_ E~$r?R ZK.qeM[(%hX1Sx?CA;|<(Hqeea 8{OCs6sbJK_K gҞk57-S 7C[~=f?\"U.un35awxxB N  ͚A5hxJZt@x\/o 1`gy8Z*D$q EHL*,q;%)8?jUÇ*a5CR 7񺀚'x?){Q@=? ;-#a?1?.{ NTQ |8c*xq8𷈣`?y?0$q~r<v%zt}9o;[68(PoG\ }K # r82rzM#>e;y~Q |TUKB|5W#'Oơ+#]"`Y>1 O>zo `7pG@"< 87ryo n]3*yQ Ƈc!##~%?H?`yI:oagX~0_G$ +)"yG ~x38x.덜 npp*)̏;: a_ ǹ?J۰˰C/& 8FyӀ?1aW5XNXK@3-~~GuX/`Ռ{7UCi!?^_kuRkOȯ8^ś9eoB^/!Gq?LϑX}v~]}?9އ ?z$xحy~N~'İ=Ea>n8>Gp^z%>%g~?>סD|Ha rPѐh&?D0jOݖo9)Y~hgt恝΃ ֻu&B"ayowjwa:a_WyI$>$WF# |χ^ 8~&"/yOXo `\ /ϰ n3S^k'߃ovI ;d:N, Jבy9REH\$/xm7~4{n7N3*yxx4 S!o.q@՜si"^Kb= ɛD:9Z/`ϐYЛJ=W^_E3}]T'AӉ|p; (8>|G2l!U?WszY'@0Q?{>^Wu=wēC5UEُ9 ۏAo0nv  ] 'HxDs<7\+>J#}= 86r_`?/b1_=G凿(p%ݟ$V& v;!j0^7s c%@N(g>! ~3/u^ |a}KU w^cysu'] Mzc{z> zab?Y-M3⪤f/\$jn,%Ư>WBn8\}Sw5YyRa}0onj~qv,A'?ysWB<0?]Ϲv]ٺcRby3#@7ca8/ h}pd}q^[;~Oq8R_ib¿g!j{s ܁ =@g80/GB#!_o%#oP vCs%u5ˈo4<3Tm?'r >z #nRn J uB%>G*k$!; e{{%Cm4X"5`Ո\@xI<*O@< <~ Qb^9F^ѝWeD [E,g(CYau )^a(Wf4 WToݠS; G6OOH"~yЭ"^LTىc"2? /|=*} %y^џ(b~CNCOYaB`wz { |)@, yQîuszaԐ+>/晟=N Yy\^O/~*>ؠTb|V[ p5%jCi؏4|o8H8  縁gJhׄ?gzA7P/Pq?]pY {X5OWC5?y{x󍉘$! W6yQ^MqB~|~se^" ;bc>۪czSy_/ =CtwqG#X|*C,+W>P|}QEz@ k|[J#&A~x_<]C>P-ʏs*I~@O,86~=V~.~#?b(8[C^xl'?8Egy}?KyE%zrx `<_ ?O\gg E>/|n~4 vw nT0g^"A$"~I'# !WIלxK/n?baa]K.y,q.ǭqg_|phw?ě|m(]3F?N[Bhx<z=W$軖ױj9;p{ 8ZS7@n ?ϯs*sng&uEO+gA~P| v=lw}nđ<<>0l:LB wt_<#RH :f#"1_Ѩq[p-VaK9X>/h0}3ίU}Ry!N @<<^?UyjGx= Uֈy)6x<27SE1./,Ѽ ތ1:tֿRo~>98&sjb>&~1.u$/Lu]U¼)DkG)tX.V.vq~:{_b{aX/yX?X#80;ŽFBnjE[8vy O]Nq@Ձj7C+Um|^'=@g78,덂]ݏsD7C~LkAU B/a\kK(>71v\8|88SX _U%N5u b">=T)C7eGO$رx +y]i# ww4w11qמRN{ {~y8y#ȟ7w(=`3췂 WJW`1~{;j)ϯվǓmQ䗢|Br‘uQ1׊{ 1C~|MoHyh]\am)jհ_b) )(0J`~n+~=u[(*Ka7\?os0$QX$Eu /?F ܗD>)AG@""bǜx vb|_=|'~uYlϗ}a |~e0Eu>>FcNr^^I/sT #O2ydě8J'_}ę/Iȕn<swkK@\`7jZ~}BwcD@qЫ?0(¿<wO$Mw6-J7߇î&#!^_aɰjF^iwo".GK&|t"Dw vE;8Vs[ft慟wr|Cߒa*Ȼ+9>^/<&B+5**荪/J 7Ȼ@#k!wZd0 o1.V•>s.W_7W(x0ύ=  @?9?< >Ɗ~ONvZaOJ}bݓsֽ/(q>R#m#stv,> dR(%|)V7*{\rYz\y2;>$"y"^o9ºXnNg$~"G`'yzB~\FI}PWȻq2wg#AO,G*P>&~CA~ѾK<3su}OMCxoPƼ(/|<~PG[2-#;|q<灅y"~=C9A<E( {[~Im9 vqvNƏ{$s{ 9?0XZϮڍb;)Gh8݊9޷@E x c>x}"x@*?O>o v-ux¯;=t \ K>=sJJP䙂8(w41W~o`??bW0H 9@J%A.o4[=|#f;s`ACá7p<'ω:o׀=w^UC@p S7pc- >. |NKx<3.߈lu}ɜ֝/Ar^J" Q=J\qXH2}O7 ">  Ģ^ p h {?ӊ|=:?_3! FXyuw `/8N@#1X^{])v3B{5knca7bąl\~>G׌Ds5࿚{2jB*VƸbwɐ3~?B8 w \>®!.f}JAOlо%%'yϕxGG+&[;C?`W,8xb\f;,0)c: Nyȧ9,⮲#=ˍ-z|>M  |= p{acG9ܜ[~0O"'|\4GyAy=n |:~#?aq>'>W58K_4 1 ڀC;O؛Al` !/ޠ'n CB|(<| Kɼ^pvūww-4W:5+\<%>~q` D=} !n|aWԘ5-^TG@1.w?! "Q9?q~[A^AܦEԿ&`^П:y6],!|>R>R 5{\{`=T AX@~=Y9UZj磞*C?+y T||l'MXԏ1SOߋDwQ7ӯ@/s_y?h8p  ~!]>/^K/ yDe?TFqBq_菂5/%" >Ng<~5"AKW^AyY3߳|Ǣ̣}]#+4x+D#yh? zxЯ{ j0^yc}98*!g)XJp(T7!ǜ}EjM4qiyZ@ 1r$𓟓 8xIq'^- >Hy~~&vG~ @!? ßs: w#oQ¾qPoĭDŽׅvx% r\pMcxuP"}K$qu+ڃw1O|E{@o!# vsy^a01gF(>?{/ɸO{K/CU>缨 z=O7:% q_ >Ss9~xWC~}e?/RC.c'<v J X/JCO1|m) y`c>zs?\RՑW=q_ =D$vO3x677%w8 Y =2nUc{Fװk'3pvMGA$f8aĺ󋠷&>V]v?oyΣ>WU0=| / 9 %ޯ {o{x$L!ćsP/$ߪ'D#?>~r,WC g葝{q^;ˢƢ}OC7ƏO+x} T[#~_+؟w43J7s\fKC= grdWާg݋B& Q~cvrm:$?C"~\$ _|EK87^/A\ o|~ zqsaq_oTG^7jJoq715[!Em۔?3Wqz8% )|UyU_*5=c^I?; r 0n#׼s71/~S0xO21h@Njq ]T{\:`}Fg_ _><V<## +O3] ~#}~y|01GJ89y.Ͱ^)ƺRu<>7&8XgA8ߗ88Їfv##C~*" zN^+\Z8KC+0E=  ~?F;u{@\Zy2ϗID|nٗ %@7푊/>L ~ JuZd@Tk5`:Q!T>}x?;? SD\rބ?^B5ޘ \9.a sOj>/v;yeuX?) #Jvy8h'}"*g;;+gBY+@W;?pm `4/S>'߷Ƹ9J@Mzky1ޥ2kl@A OPA+>>ܲxȏ7xƼ>i5p u9MI~` zQ}}$ cprz0~o!_3%b2q-p+L7ț91QȿT?8Yl"?g |# x_8riP`|1ljC|OrO"ߒNiߵ_$wC2UAoS?Q~*3pkegpl Cy]6wggȑ@x㈏"}g7Y4Xӝy̳& ~vI{/!7}|>zqr;[Pk?붰"pj>>"HPWv _/c*/?G'9 9Rapqj#/u<΋$C_0?s?o#}|ncD;<CN\P^}F,~_F.W  z5XoH2G&M8xMb<8p(*!~ >gL0pC|"O]ӂ~T |P>T3y>ȥz<~%w*"/ ĸXT5IS< &]Jyd|"$a|O|2U ?7~of1/ϋs|L9@N*?kT}|CoQwBN r&G?ϫ|Boװ|yaI+FxIa}"/~|#y:%OOƱJ r+?+#I}w_>";yq?RysUxLJx갷>U~?P(~zÀ8OM|nOcsKJSs%^)c7u |^L3ȷZzY!wxhqAq|ρ{99]n(^;xGlpPi(AO@X`|T qg%~2d~FX)]ϑ}a U+3m,+y_M{62G!qL`Wďџ 4|ni}ݨyNW3.s # . x> z<1|D $T=5͈y_~D@_(F".Խ_ yDU3~IkIȣWys$!߄x$V8O]!lg0NoWtΨ Bk7]v]/8$ q(DȗW+bܠU9onY rt[!m-nO?D` >g*y@>HrU  䝂7~o% ooW"茁 ݎ e\LX|{O(hu^ 3 ΌE}_x"'_=w a|B)e WAuAq|!5`=࿼+}r>|i1h?` WPoB|Mz'$@j^x7$c=_ȇ.@Fl7Hoq~ N {oyh@}/~kloa?7W"Mԭ^.^dɬOka/)Lą#-k|Φv.ڹr;$_絶Hgm[wfs5r|]n!Wq By] vT >W`" rmWW;UGJ(DAc92!G?nɉؘkLWFqQEӗ*"GP(rd( ͹Vbs)rZ "gr_[Er9"9mh Q}k+6RcvQJF3gɱ)C ar῍!*qbnv>Rlr2əol<'or7xXG7qEr"/F/',GV6__E dKF1WrUUeJJN/_cx:7[bx*dG"ʉ+r_^c:npqie9>]-P(rr mdAEmɡsN}d#6CN< rt5؛K EN_٭查WWF˓JNȱOrx/GOU˦ȡSj%G.IIq߿X=eCfY]!ɜ92]*rp~CEN8(!r(r[brHKIy6\2VSЦ̥g#r:;Ra7E1RQI~(eL#%IF_}ნ8|ŐR2Ϯ(%e9\}_O91_E+"gn`JN9Y7T*(r,]ȉ3IFɱ\%r0]ckh[-Ӓ^FsÂYE%)e^9r_ޚ(r0TXCNܮQ`E*9KC\e 疣Q╬SXrˡ=ɩ4Q uBN]QԕCi99\%uǜb㝿"'4aE?o9:%'b79<ӧb8^C,Oȉ 醲+>ѷeeEM.ggrړ5@F_QXLN^ⱜ" 9|6аQtsqv鑌"'/"RWc'U2EgV_/)G (rlBENl'Hk^9CZ?;rr\.ʑ2,cRcGY)kPr۫(ӹdB2EFwݲ)rAˑa\6Z(slup9x!'Pn{Ed>SigW }vnͧ{~ 2[߮ f\"G.'#>ɱư`"gM1;HFQ(*%nϖb (r(l :}rd"LJHT%96Hȭ 94N9XV~rg᭜xHr)ƙ[&SŘϑ)Cs)r;(r榣"gLrdEN"gɉ{9xp"(r_vENJJ8sYPrk1ɑU\z[(r5Qqv9{GN͆ƿ)7ߔQ9˜x?2[ܒ۸랜ڿ[ -m 9ͽ!Trg.YhKG7*r)9cr;#79͆s*ڠ䶾'"Օ|tabY3f+sony֛rz=疳4rvdz|CnNܞ}ɞTfnk9媲Jpپr]8H|>3oIwߞ?Q]oOI)Ko?ߒ6=$mzH|)^җIT4#ǭj$pߒ꒯J CG[!!CBo/{}$K(|#i^2n_ߒ|%]I_")K2rCr^>}%I)ḧDt<%)Sҗ/OIQ%iKҦM/n3^WY̺d=%$HS2>>|$}H#iWҦDZ/KSo{J{JxI%<ѯq1u^~%u~[b%V[b%V[bb[‡/1? B>oxKT;%C}~'&/;<@ͻwWd-%ͺDY)YP!/I񛩑vuB I>瑴mH溅%}LGÿq]90'ϘL)>ylR_ʛ9)d/2PDNPX2y$E#dc*m?J*w,g1f Iۉ`AI[kjP/'].8^3gaciئ}%ͮ m2\M~ȘKiq6/Ujϲe&nIb(_MmT7 ΡaJ堠>l_K+w}m/uPO$_z~|ṃa7vo!IR-lJWjK_r]ַ֑bC\`3s.G9놡 `Y>NHu?Ke+'$?yΎ|H8;$i7,խ?Ѧ:R5/c|Jqpv4Y嵠~6GGiˎ!ϙ's7S)Ws#5Hx576a(W8g氰zR{'ū$:-09&7R:c 9-K@vYߍ4L2|/ж1*mC濱8K7H.`ˍvveF)6f{=i^E:'m\3߳+iplnqtvؘ=7s/|yo_k)2ĦlˤghdFQz$⺆61;l`)c0F(W|H+ m!.ߛF90ʑ1,CC-c dG6橴 Qɚa.Y j9v69mLR_d?r3rІ!74 0v46[C)>.sS|9˴r~i7?A;XPLiCrhsK90V4g cg/R/łM3o c/ D:þxލr9IAmZ<2%Æ8Tj Η15lKyfCYlh 鑎k7RZlL{v Üxc /HR}yb~pR\:R}c$_g톡1Ryྥ~NWCE1c1%ǿK?stgBioh㤘+9cL * i_*+ac9`܃t܌Y,' !_cI)hvxgdQ=`vԏ痴ސr/1,3Fɹ0`?1n Eڇ<s,g4o5q6Tr}~v9]nBjvH?R;btWKJo( 1T]5!yPP.6"lO R#?2 gN;7bhBuc]I GR[NaoRِf~N*1Pَ1mJt>A:WR?.k憸)YnaΘ9-&2fE0Uvbj?iX)~5bRKcKEN RRytRòRYbY)s͛!eŶ9aHgC J}1|3})nIe0^7KCoJNyc1aEۗƜ󖛯XP/J76CKňRk(CR?S<[.gs>6l4vd9C+=B/<6鲡b cmK<;Y^)/1_4䤿y 71>?R Mc3Jڔ )c` /ɲTVs|WRd,M |C92bIc1ܗ{ e+a|"_)>gMiB*q!/)f?Jy%?<<΁f/c$CْR;mH.\T~}i<uPڇܱ Jm|-"x@m+?#,L_nϵgHeʘ;wҹ+2X̐GR%C9O!&n)v0Epac^vIK:O<^C\$mGKa.7i;/i !/hNv1TfY=:1ɰ܁1z |Gnҕ-YdR!As" Rf~&kS~8E~Jcii,5l7 ! ll]\,OOKi1eÿҹ,dM)094y[o/rcR*ۆIS97X. 㨜l1Y9nN`s}C3{ Xδ%w??rFпCctʡܐ&R4 qTGHږ'ˉAg\]1C=cvb7=kbC{Jq9 iiAC&mXp!]9aR\< 7C+i|03w6 &RzLM1>h+#⣜HNl!&ˊKyi׆s}^HqֿIʯ1k䓳pqY*a$Cj,^Ɲ~Ē? -zᘤ1106I7 W0c8Fݐ;r\)ړ%f92'69.i\/'o?TNl"G]4Rk(_,%}ʢaopޥ'])}rrrm:oP/I,;)NCs2_$z-ŐL4F+=5r7VI4ƐeN2VHr/lh7;}7c/ߍ҆qfNImY^#u>geCˤĜl6'eor)]>MraخT Ku,?i2i|f'&!ߌ3דb3chؾmcy-\Iy澥η^n"+]~Nz`_dc9')]}Io3sӟx`E iNrePG>cyΘggwonJ4.e7>X  ڕNr:9ɮ!錄s{EN@gc<b'"9;C|m+ɥT̐OJ&xa|Co/ޒ}$Jo"- &%@%Ha_&Y/*W_ZzUmVzJzя˦ :M[?u$uU o'^-_/Z5e̬vL>=`~_4H7Ҿ::YōB;eūZs¸jg}^ElvZt8 v|/ W\V@{߷HcY{{)~&KkqN(UX@G팴GZO=)o|yp_5^3b~VXd[R#SqcF~ճ:?'+Սq)fߓݥMrǵ^mff 8M)2^2["TYQ)69P |PϥDY5R>L3y&9AW2{ZeBngeW61 E0Tu ;Os|* rQDk>ztfGGJofE?=B]&2C^v9#Ϳ TUߺ-\@UM{F%dU* ;?gc_/wlcxkY~NaOFWRBZһ0/n]3TLӍTlc.|o~U˵nB?vwyIY|þ"U=ʩE~G}azt\/~+0?q!^{*}]7nkj_Mo57`VH^-]gQnK=׮Y=?٧mq"rXDN_ W[.0:X_|D>wS6p_9`tOL7wmb=eH~)i*1U[qtgq>ʟ#TBzO=YM rM+pЯY]MEշo~?UUvmN|};FEz^3]O׶,ULWm}_zA"4hV]Iw .gbvjs921B T:OFnKy^0~?pqRJw*[Z0 G~=HϺ&ʷN,UJ'Y :-e2KD}-=vF/Qb@g]Wo UzeΩB%\KlG/״p5MTL#g'IPSI-\ ˷TJYw\!c6T{9Eo0cyw}U|pEեKgdxB?KiRGq8~<?~4Y|TmrCW.cz,k*jQp=*GZHGHMYK҅k?aܛ t9=kvVc[4^(Z^{rRzYN1(_6 vB;%; RT|o_ل7RəMf:U0 ˪FQm+Yf{ZPꦱENZ߱%~#݄~}kǹwS2qǸ G{Nw Xk%|.sDz;dѥ֠{kbo@zN\t(w[J?/!*>Fid`i} v* vTﰉ^mQlZ4zx■ʐ/8mE`8A϶}]:]Ppŧz[?1w-5NmG.>tvދ|W\L|n}_.}:s 9*^УY)i\:hfš0vL_On__K%BKCsn˫yFV{TcLEᚸ.zFUBE^O#,*Gob\kOY(S|FJӄ|Y(-A?or0HCjݴ2?P#SB^a^ԫ([f}Oe |r5?$勮~C*O4G=:t_ ;t}X8l6kr()9&-س5µxK1Sˮ~EՍR7owljҥ|;dlG2.Zsh[V[)mס)>IjWYt)) |)OsׄUq!>u76z~K0JvRGν5#';'Z1Yo.=J*, Y~/V5+Zc|#b2=\h0B^bbp-j~o͢|#īwUHi=Ȣ&s 쟍豯S~QIVzۄJ7֞}Ԅ&ƾ!YM^G^ op"M- z*Q5iBeEX݄%0Y~ !O?ھp;#+˺Mrj&V+2|wY(e}OuB 3t[ݾx[/Rm9 Yw_|B*_}n%Yɴ&C 5ɺm'S}p*!L;y#;q݈l*T@q='e*ncqYAk~YZ7z(_˕7.z]qb{&F|+۲ZΤaRS6k&@uيF0NasꟜe&[H!c>5s1xGN g~IV{\_Dhetin NX?d]`@z[7)lUw4S}v)MUl]N%VzS+y[FTuk)&' \POWzYȽ2c BL#)vNɂ Sn pW ќoɭ =zd yr@krxN!DK-աxc?)⢴2O/ܟ1id fRAw:ߛlx˖oh{qu Ў݉E.j[q\.k\{y_w_8%=?s|TθEbB8Oe -NH@VFdg{3WK-kBz?y?'kDln~WFꯋo01JEƾ//[p R t2A?,Un_mdzp_EgqߒMV[i?amav d?g3X;lN"߃(|d*+Icយ9Ke1;9Rh qݠRW~.3qmp9\aʳ}Ʃ=k(>]Lū诧X<5;4#?9,o&Gv6zΏݍ3_ohV}V~k@g o2WQhc_Nh߾dv+7 k3X{a ޘ UNl~Q5 .]/OM/l\gWzγT{;!k\POMh0~?Rg꓄WF^a݊jSQ3+v_܇^fp1ߚµt& t*'WJiv\ MigCR]W-]N'>l]^([MXJb9:,\V|5ߴLh: Rϑ7^}:+m1~_a=F9%oUSb+{˂"87wis^߲/x.fҮ׾BDžv[yPpvS>[߮6d?տmBR(>Ϊ:FeןC75_QȊf Y!Ɓn>b~ӫ&2@5w671N)'uRD_?*>mP`a1]D#bq} ncdRB>leP̛U}f|ݿ|zz!UtBwDizTܷoz9UZZu1Wr%T;9Ξܝ#YpjNX$37xWf}OL0W W{G=Cgtlq~,6-0Nybb=rd"'{`_bH|}\?YSq??qC}P陵-sGK5.[XWB~J/|*}ZX'ϬɾĎ,:XS>O'g]V|îV G{mzV^N[Ȧר6\_ F?fqxɺsa|e35 xTWB!>m lȉdO&S8UKgρfg];m}zdNJ˶]܇eS13} }KqfjP[(>Urd~F?zU"Է٬>y*_a|],gl٩hK+\i)(F?.vnh;\jU"tظzJ}ԉ&=Sß |*ظȭ2T\\BB#gukwG[OgʨO{-rOkͲ8-5O7{JgOWj=3I$Ƕ_U 7+5,j|p(Ю*q]*sQ8t5.+qQy׮'()_ Tx_ѣ\R&?~=+{p ]nb~h~µ_d@5 գۺ.Rj6)ɦ'e~MǺ+%SH=>هRIH^!^Bvz˫ն7iG{r]WqV}UoCNU~g@qūIp9zRV%ʙ?gz0uMbb~,a_>U_"^y$wզ ɐ}S} |8.i ugǼ\&ofnzJbp-wETr7i?Ty[B;E-qs4/k ᄒBz/[4z  (M "ĂRDЋ B H3ywܓ%|/prOv{93Aa׿8 MΏ"g8#zHr&_':fWp)}Dv&\y\Lq?2n':Cu?k~]Ǽ/}@ہ~熝E֨_#!lHo, Ͻ''#@}C~,gX&n-4`|y+ GC]G_yx, Fvi_/z=Y N/7y}t%p<ſi]!uk}i-褯yV넳6{鯣<1]2;4>{D#BL SuC9 JȪE?WtiO}C ;#uo_bnשC==2U8_}v߃I+yOH>LLZFMӓH%qM)!~ҎR'!(? 2;ndOۥ6eD5hn !Kf29"~gv ,s[mS=NqnfƃmqVX$G^Wлn. S|z!fc_~[f'h.l& Mf7Ak:w[/|^q߸#=QE? Bx,Qs91}cpM`|vS{BG NJs'+aе ?PvH.-A k62)Y6.g-9YnGnbvK쒉z qze]H_~GxoP3RGq;ߚSKDǮbšO 'eRvMP*UqRT0犁#QΰzJL1g;y-k*NOy+atԄc0(7œ>,_?]_9@q)(zMB? h [%ߟiftx:5Ԟz7Z!z_o0p65BDqE:bvQu=-_%t]}* %CeR[ӹ5ʓr##1= I27 L!0e)vDI1ypo=e\K½IDN'V_{+DĔC(:x!l8iqK KX<#QF<Wab}U?UT1UC>@h1 ){דսbt痠nF~dk7/B}#N1֯E(ʈ&`jË"dfH˄SnlGAoZߟG]}G3Z[PLdVtyǀuF 7g/#޲#IsJim&9J{WAp5h]+N>b6{J־9[u A'o(nB88zq} nk\`6!L4}p_ ;Mܿ;2B4>;} k_a7Og^@M+ P7c|B[~IֻCN[J~G{[heOR_A?<̧HaeowOU QdХ]'r_ី_!a 'ߩ'Fq͘_}+HI+a_vbVNA_~ _C#CӝʜOr P! ~ 1p\hgm|!73~2WUN $=kF |@4܁ и/X]<+|?FG1i(GX,ƱBQ‹3qNJѸ!zC \QLK'./gv:Hh[^yW%b~\oAף=ﴈ}^ߣxXW? ^z 3~'ǫz]O8j!YKlRߓdi%Kع8z*twRywЯ~} C=\L>K~)m >"} U>F߅H`3*9۟c;ko|/J#RǢ^eN^_\OF;z\j|2ʣ\|O.?(Fs!P-u~>h{)|3m'J{ѹێ] h*\!/uDQf~ ew~QVvf_sA`Յ!_G!z !.D\(OFnfJ£NyRΛΨ..`?#uhהE|vӺ-؏?P~‡Ih\NHK딴_{;E dz9t.?} 57|#Ppa(g@$OEq({wb[x쥃B{yZd/|7P./(N$DƳF++9K|Laݗq;`@P]zxc,ȣZ4"@d an Iљγvtؑ7mt d ^DYSf ]5c7ԯ\ 6է!xF/9!k^{ t_xdS}cAXKO~WIS{'Esu}\H6aKxh_(z9bz$T?x:҅$ıF r#sNz} }Ů1@9o>D C{Xͷ":>_Sܱ$Uڃy^[Sjs ܾ7∠Qؿn)@^rGlv] E|=n!TX=!x\3j^7h9glyL.qry pl+R9W&:+*\5!NE7תkl?>4{V*gD anBTpBHӃǢ/.e~MP tCx,{hĝq;@up[A5|A׳Po($a,yyB"_tSpB?Luyrq`x:,&t Wnh0wnEQ/y`q>Yg~_Մt qύ4}|tڟßp搦t&+_KO>"A}i"YGGۡO8LŵZ?MLJ%g?7n _?sn|1x~8x&&A3Qf}"=cqCұkm niWrFVҶ>[>P_RG$>F1?MkJygJeh_MqD3"W}/R_z7}%?=7w8f9ρ~_l]Gzkl&^st}m @"|(|H[V1\Ba67U=M_/lXc6k*'+ߵS+@9SC2! O f36~z4b9>$FoPiNPq ƈYsK|nڝ@уo0;G=X* ^ϼz|ۍ㽛Xß<+oawfzmVa3iD~j2q n3Qtwqsz 6u&t17\3҉- @}"@̉p?;S&^t9Q'~vOtw<8=r=<{C96!rf_v(uk\Osv9$6!  ~bOu{ Z)Y)'8C̮u=,UjN v]&}NVy\p;g TAxʓ/4($NLnw{!W(ozAޠ7arBxq-)' |Uz|MyאNjwP9TyUOY*>'?=uQ ΋̻/thoE0OS/ӄg@\F ]U@>.Yis)&+;/0Su;ȃKj%9Dlbvp Mﳫg N?}н*D?1[5 |֭R1da)ʯ |_" O0E~K>ǿWEuwDDʯjP\Diru'|'6n42=QE/yQ-c^?NI|Զ.7MPf;2eW_ qRߜJuh|1.Ju|Y`9p]{,G_9he qVQ<~}^,=CdTOxI^q9Dk#mSekI*igĝP >`N2߰cA2Iy-cUeLի W%vk/2Rb!;قq*60wQ_U…JQ}h< Mes9!tcWL-泇O}+͔'Br4Z}B;G|_St"=L~nƩGz\_bn%!E!"۟_ļ%jSB*xoT~X{kHrJEB:SDsdvS;䏫kd2l, 4˯ C|$H)v \ :g ~R9*_]@}|Z3=wzr#kzīz$] f} p.#,K}{\/Pʁ+m]Crڟ/<^B?sWRUO0AٟT AdU@he t݆a_|P.<%'< ͘^IpqB"}È_E|A<{ۼ ؿhz1nPߏ/Cf! 5vRE|^u#ΫʏgO;.8>(\/`pLHPnDEoKƒP=Cۃȷ4%cmO6ʅC,C0~LnQbpzO{TTޓJGyT&خ.:S~ _BxCW(,ܟ(|'ᵆy‰ݫCt7͘\u$? 7?@mrJzy~ȴYx tΗ^un} zy?/h=/LD7p.Q99@֨Gl0@ IA+!5>`EKxB$Ď,#ݠ 0y!tنr@ ޴] "~~>]PM-p}'\A?+ps{ڪDruF|o1700T~/'n\޸}?ڟK2<]z c(C~-#z+-Gjw+=c(e58P }WސE0B ˮ 杀bze|. hl\Mb*sϫ_tgg.<ҍ}p]G~.Wh^4'^*yj%Oxy|QH_or>zs+aT<+VB$VM+Jay6 1pku~@R9!qO%1tt~Wgk-9Z _~qEa\6@rvS./ߟ`dgVByx:"1_ǯVoUՃﮥ/7Bf+uﱑ%eD?,_/q 65øNMp7_3[q@=fdoFSxX|}̬{B=M>xٯg!Ctx/ 09#=p ~Y.po?ɄeBgUQ~a `œLo@~@q^^o]ΐL E){I8߱kGV"n+@ݠ86G +?S Wڷ/Q_>(W( !Y濾]׏&/@!Γ tIL ]]J)_J`桚NHFk(o]Ц8@~3٭cve-#ycXFxeN ?GP툧{`3:}qtqފzr{,nVK|fwX7>εKTӈ[&Yyҝ 6zݹ@痎{ךOA֔Ob{kU/A a 2bիm lG g_AhԘL1,UpE~@Jh\[qB={){R>.rAPCbeoѱh';Q> #vf|b:ב+ R=xY߽(qo%2ۥwѮ >̋ġx}Eg}}s\>rv |T_S3SB''E~M;|RЈ9qoSܮ2A{CUyF"(om:O_̅v؞A.×k;.HI9y`?*2AO?29_S7 8>ۅG<`FrQdw}ՇԶq# za4x]ŃE!!ΉS54ZW=y| (2xs9K>?|T.g v]㝣#1 }1g߱>ؓXߨ}HN~:QR.W".9⸧(tFtcn2]Gך㛺F"殭w(/ĵ}φ oBxР tk;PTQ2 ?z\Dvb[@3!w-g: ]D?6ፒeį-t @'Dпc zFg'~a!ErB̈~g ĐC[lvՎfOkE ܏/9,~qDg^]ٿR?%} *-ǬfKF09vx*főJfPҠ~_ٟ{E~9SE笽q>7OWMP~7=W|~"gqg+Of !6Cؾ؞wY<-;N;j]r۟3=>qLF86# _|h̗\#]oijY@;{Ou(GcyNCw#'oB=W׊_T["`] k$/k3}j_LnՓ,:$%@S?N Fesc? ym6i/XkѿFqW6z.lЯo-F;UPOh,@MϟCeUǞKqɇ e{[Hz *͏p\qʕ-sI.+є#{=GNCBG0*{K?U}rhc{*euB>bOoBLћDtWSoWzgwFdMw*ǘ_v儋[g'x>|u|5@{Ah}g(g?o^>r$wφW*я=hY~@59};<ԟ{A7os%G^]_Kzhg􃋳~[s葿 c fGʫi+ɻY*/1fYVȻ~3_>;^eP xkoFnu[=/s[XLt %m)w@L$xL"^=mw?.*u2?мOh ۄZFq(U Q}[#wDZ[3r}ZnGW_P<+ƭ#_i_a&k۵'(Dd&oa0-E0qgvC:Z;`(awEExӻlk֩>;f'<[qHݡ%K|82C20>>-m@3ȸqCs?'nl gO@rud.Y7FsbT;g6ۿ I9D/5węr{ ~FqO#*W}]7;9sP\/)&=C+Af=4n&<=|Cέ}r;A޳_:rv%FBp&;4 F`~^5.L;33%"? Y)#8LnN|T{;A 9Koh[6|ak~ڷiw\~A:ҷMA+ɡtk)S[B-z%ĊBn׃%`mX}gTba^V{Yl}>9F7<6% "6/D'." G /sp#Ӂu0}Tb}WO .<)s~gGX^gAN6}͎w% wD~->bw`۔.X(`6e{5{\CI!,Nî/iyt.F~q[i"zOWJeFKk}gK>?r{Qa {6=@wj uL~C{3k9UK\n݄u@4%/(^R@:E< ҫ r "!0%"L^Pӫ9x\:HtȮ}ݒxGԄ`~oBprZy[u?J?ʑMu!vf Z9!V)0 xVY4̮9ԛ(? _3<}{z:ZSܞ7'{Xe w% u޲"w|W"hOu?N~}!;yNbrgٌqMW37$w.=k "Yݾ?}>vPS?6=G>9T,/~nt+ǥT~e&~! r2r@J8V_]OŧUKkbÿ~M%ܵe,?xTG&g^hi2q I~:wlOA~V0/h㶥tI znjs!LZz>5W ,=r7V|_A땞tZ9_);c-ȞIҹG'lv[~ɫz;,6ףEzZnӹՕS+W2 Wk뿙ʬ'|s\E-|4@?Gt OY_Ⳉ_CS Qu%o5ǜ1of'\_FBH/;ET]H~JQ;<fj̨Kz܎O~v ?t̴Bw;B=pu>t\Ϯs?NdW·}lzZ&vTS4=i}((;8.W9bיG('M 쟣'X?(ul9Ќ6RR‹(v/kӖ"Թ4 d"<̃wZQKLf;G;+ϿrYCV"=K,{؟fL_kt`}gY?Z^}W ~:tg6Wr.B?]H93`yt7p%{] ,nxF?yx&d-'k3$[CSfQ,2W/E81gְ Lk: 8eKPtƿ_J[++^>uc3B\\Czf ioܮ*mel =R/qR[i*?ʚYs(EVr\Nã򯬕'GahX ^'xH n%RδRSOŶz,Z^oߣ7%/.όe% 07;v|/cydɧdW1=ye$\=rBq(('s_y,oGu}gOC|'0g i Hҕ^Hґៃy@g92̛$P8*aq7]AT/5t)XVP~ s6/g 3hPw31@]p B痒E?X( ^54qf~R m!C?_[ׁF7d}鹯q+oy5|Xhٓ/yccj/|E%u!?Oy+.$,2yqf=-Xzyuq t=z:CǬBQeVMG Cd/;K )ϗ+4y奲y@,iZ!. hobc9P?A~$IH?ev>=#VVcSCByvy>͸H\HXcF:I_ (gN׷;o _\+0/#׺ir%\OSƋ@`?19}fCHG[Q;d.`<,jHu)"'Bѹp-3)YA3Y>Y)_0 qqB?Qma啂ݕTdUD~'U7+,^yOA=>*yq[2&z}QM:Ή #,?Ml<{ϙ?$4J~-fnopdb:I~p t4g~ϩM[Y@9ulw7ޥx9d7)fo#Y$[(ٺ28\{@xGJl_rcw2H׹TV[<,&?a C;^DҌ~ !?{C >0 Ϭӟ~Dr;K0,Et} fG9YYKk79 IWmㄞ^^!o,OoǟBhP%q{ܗ1 +Cq\tϚ{v']~yg] C9`OKCr]z}Y?(a [PBw)^?éwg֣Iwt 9@2OM"<,3S<Q[k?PϳA{e<zlxX`~ Dg|1{l$X7y0w]\4\e7FyN*D3C& 鯢Ŵ>6N9XGL)~pc;8`xqӡG-H׺[z;hat?]F̞YOD| '/@/t(ouD?fahܶ\2cH(zegNϙݳX{v.ƕC!_9 _8wmG~|>wO+=Џ^>o$O_.t-WoJEh/hlo.񇌻xNֺXƩCS,—3tʧ8 t_.\@q gY%ף` =/S灐%cHdI̾](у߀ B{Dž<ҝ~H߭J>\&#.džidϼgdzBL?C>/1N9d $G{Γ|OnP~xO!hRKW&mqcO3=T!M8_ 5Bg0pu+w"d&S`_} er[V2\$^5ʑi ?p\lgmaOr:u{1 ɧK#/2]AD] : +\GEYY<,1:_i_t_FRhP-B&!~Κc1)oi {NB_FꗲkK%<zKѾs5X"5-{{5wE?;-ۡ5@_iK(쟶%foEr2xh7kn7t#󑬾l(k:mRnNLiyt~YAg/"N}qKy~YrN.|nL VЎq(13Z&~.ñIRToT2~K= kJߢRd4򝔈8kMwnZʿ.^,>AlrI7hAZE@J^y )ݾYܲ|qS<04U;9$c/\Gg|B$卓t,. d^EGQ/0s북Lm|/ш`x iݑidyܧ"g4-qޜ+7~(L0~i^M~0B3>O%97K(m||OړOW.NG{K-C:wש wO6p>?ј .zeD_`}-ϒn!^@Qtv8Υ/֟ZteB[T|u$oq~lǘ}A$0>A .f>7C>MM^gUo_Tz?>1T bF^rX "ٗ^[)sבx5C{!{Ngt*!]:njB qY,/xltw3 ʐg4YmPOYA+x۱_^'~~~ !87U}5^][r>y7L02g->c֛dD s&8glx=O8q^¯wm7drfI8bysRM38Uf/K\>(k_TH8/~.\}2G~O1/=dy= 82-=or]Wg> ߭`rĦ0__ui`./w7ާ41E!YK:`]߶ kJvX!;\^4,q/1v @Q@Kr~wm q܄̷D!H~f/rB/_nx ESm%Wܩ/RbfweFf#G;~B{o 7s=I{Wq6xͪfB.Q=hibnrљo@Uj~X|7Ry7Xon!H$A xFݧ2y׆vMb*h ?ƙW,4+X5 7dF{}Σ3rp|Jo2\{}@qw'*8:PJAOәqV:O~Y#/ (k~ۇ@>,x_]jah8pP҇{1@#očF zLǸY)`=2b轑DWj+x "3_<+.QM -gFbWg+HePH%>ƅotj{x=Cx>F]3"$e)Fb?YZR}NߵA,Σ=']*}$,ȏ;n5_R\&'刏!ܭ2S\eH҃,1eD~^"ʭ.dpi,4SQ ׮D9b^d<9<'G̳it'wA^o qt C/[lX&6>]s+7ًG;9Z>9S9k~ž]+}>Qag-NM ࿂3Q_!DjT0wsM4ϜGxpb{Oy:@^WNx <|:=sȯpYW'N ?*|_t};d>jfMHu7K5\0izgG~ٙm 70gx N(wEiFA-Ɓ+BxuDoe85ґ~@V~?5PӜ otT^yA@qi.c>ߌeſϿ4e g̓)Udc]*u7ۄ,toZ"^.2e leӸ?(JI) ݜuBudP&UV_‹ $gVF1/x?%[ =2@[]u q,cۮe@0>oUr肋gDd%%#ח@=!$?$6AUrb͋,+}tts^"j2+@? l"܏$@y;mت…>bA9.\.wLcsw6?9-v+f:?iV}C`"AoYiAc!>. (R^!j73܄Ѳ"y}f+luy Gp-S(: @XZi$ `<P} H_sڊ=W w>e~}?6 ~|˦*/).tF/*ް {V_SɠEGyC;ȒV]N%"y}Y_hOBqU/~0=J; ѯYl[Otl2A3CXL˯(DtroV 먙ҝkzLm9g| $ vA+!k Iay2]nD=X8RDzMu"Q N)x|<G҄Wh 7 'CP>r,|[:cejg;Bq3։W%"?ƭ IlאCAO8ױ4sޠ*}N4]%>co~nMH7_n8JrҿBP_=?>,[Wͼ2F|2c0&C9AW%L.h{6p~2\r|6l2&`}6wSvj3[9͏'c~?җy, Yj6z6L"/R>V)-l\igmH*x+t~EBZ<6 fOPJ[i g)lH.f ?4]ބ 9}I˗3v+S~]JygqhO~4g ]!kЏ_[h3| ^Y/7ۭBno]E'soj+GG+(9k4K|BR2/%{G]"5ɛCs^',8?FFĵvkou…-JDI:gbK/e:5ʛ,pʠprgGkɞ]lN JráMVAd @e;v{R^Y}9!,@`_`^:+lS~zx#ݎ`|3K0ߎަ8hECoʾX47Փ?i_6AZ!KE8Ɇy,m8]taq9?H~p@9vd& o 尨aa¯A,R9˙qsG{qa!$Bvs\>\ٟ"D5CDt++N|-C8HaԇvEԳ)u ~GQ/XоAzċJTkLXnRN'y>< X u:A!{6.|-Z[=?ţ\y]!lo*3 ?%Ku#t}7/I%(WoʟUo(\6E.XSKWq1kB./m -s;{a8ntK|P)l,韲k*?n.yOIZd W2aW׃S:Bm1Ώ1yρ|[k(/D{*)*@nz3{PgJk!PG 5]WҪ.sd0\^/CW %fǜ䏒#ywπ~#B^\eB~00=cdq )u O&|`-%d5㣆@yp"b0vdv~OC 4A#R@G]C.k.e%84 ox1'^N?tbqPoy$3|"s 2K"7 T.aF;#1}2X$?ܡbJ=ޤYgnMW%>~0NF={ΉC~@Soar!㨯Kr=ۋW/by W0V=m7㗏PĸLh6LI9> ogۛfv4F<^u|lR0B-nK(9P03V!=l^ya-cǥ ;Y]]\A ~@ޜh/!뀙q s0#LQtm).^كdw|\@^; s*2y?(TQ\azXx`\xy;8㓳C:ŋCA Wǩzz&s 뽭r`~w |p, @ 7AYB}Y hC8_Kc lS5kLN˫d̾7tjwW!d'_"!D5ɛ?k;:>`vT&0.W7_-C;dv*(nrP|^Wh<_? וy>c}Y G/ݡɒa;-A~PES^oCU{с ^I2^͐yGgpU$/K0>|pud4C3pdF|1ȁ^g؛-e%?jHo'z-3P7ya }~^>?Lzڢ jU~H(wsqj)z?c|RP)꓿hc-`8Pgַ?P쭥zAY3'3||O@A)IvnVԩqm"zOroC2No9C`fK[Cp7yGG/<`Y`E1WR'?-G|\S%kwW ?z{ah^UWɓLh ]%)n^2œ(Tof1-n|_U)g\\@D_P߬ӭQc6^?'ؿoha(?,\%~gW%hzGR/Ի_"Ԅgi\r3n]^o4KV[Z_7i?- PЁCi_-xPS6I}~Ou_GPGұks}/[vcn(˽e7ʑ^QQz'1y?KQ]Ãc=`AscA;;rZ=qiAO6 ̗.ZCeMMa•jם陝CB&4>)ģw?%\,rR~5%H7{ZЭr#'CAeʫ+ڢ|ϚFT0;͙P4feZ`|޾+ٷ痙a\vIxCO J+ӗCpk_d|Kzȿ8䐟H۳7#KY$8䛰i+"q ݟ@yr~s~;/ (%|dy_E;Qg&>5LOA>Ih;ϙda|L^B(n)~#j3]{E~]\x&"FSLߢ]0''viW);B>*CEv0p-Oso-MY%0=Oѿ}rRhfi k z~{+LPoGvswZWW)y 'iE}3~[CO(8(*"㦥|g=D˜(Oz[4哰5_ݥV܅cd|G>ౖ":5nMNvWv 3HWVc>H g_҃BFb<]Z9޶Ҧ6;c";>Ũ(OPd3()>eWwze.J% WˊV3RQ?SX?'gN Y1%PiLy!>6_:دZjy9#Ln>z ż Aq opLF[ }g+k׿ /X6ݚ*W qA8Ϲ`hN ;u\Yk8E6ǃzh4.~J1@?Sj虗~3v0;DNT2o3~Ag9=,>yFɞg$9gPNי^Wݞ>p>=uev$x"_'?o7ڻKmeI w,:I߀(ܯ&3{)_KкP|q揂쟛~~GDv}{- >~pQ"H>t|[ts~ҙC )QO@ Kr^OtL[_yIgrwc:쑯pE}$zsGzqy]K: G  L2@ޓiȜM`n3ҳ+/>&+̞adON{}:iu}`k{re. 4/$,o>t^`~,PZ*h\N|o?䂦%lΡxO8ŗPk!ʕٚH_~,qq5 ~N'k‡yah?;@'lOE\GqCi~e/ '|3Gzh}&Gu?B4xEzA,Xo:Xzvd#qߨ>q_g2wX,c[oW| ["p }xJK 3p{rKq5{ちw`M%&GcX}&_B4U_7n_7/Ao">"d(|R5}iŋ篢yoU>o~zSZu.9V`>kAiۃ}>}y=% |ƿY65ޥWXL=?ݤ4^KmK)ض9ys4 0$,݉Mɱ8^ז@1h[h=ޓn>x&ܾpS:vV׃ǂvK'Nғ/y 7*j.W$zZV,A-C'Y%`< &so{;ʓ>A?@њڢ=ꆓ?1LH EP޾Op_ f8Hn} kfyW2ʮ3(>'4[ըkOaPxK;ҷgq*Ow#W~ﲀ|W;ʒW%G7S޳Ϯ #`prO+N@;Z8"e ſXy5߃lal5ݦx9u*k T!Tй"y3E̠oA+a>Ӓ^ꪼAzf+W5k\P|ۡT_wqB?:3?ep"rUvKW;D-}UbYҦRG_a\EԮYlo_R‹t|7a=DUOk7퓴@W~/7`g:J|<@j&hM7UDU+kvhkk,(/]a啵8v{юgo>Q*oO!Dk+Y^80ܦ#EΦ(o[ocKoӡ=5)ʝ~qpy )j[Ze#įw?x]󧢝"= _K7A{f֧Ϟ8|1kL9~@-&>?Pʹu݄ep>Mw&:mҩ@NWq| O1QȜHyUZ(|CB‡, ~P-SSΦ/D| -1.z} <u ?SC8 lZ@^D_,8 Ϡ!?r^r4Br*&2xNl] EWb'I oOlBҋ#C8uP8ҵ!⢃*<﫶琺wOO\E8aIdKsP/s2]i\"#'5rVy<$ϼly2F ?IԡxX@q~ʯB>V}F큟B}B7֩ hcJapW*ucK"i(b}*P>K_mA8^U[wr\>9E wVW~{yAz?[=^VYg(gdC=yOY,}PW4j9foKsv7˧H[]4>C<`Nw Y>~'Zչlr|ߞٝpN4W ۟c^ P).\Cw/#Z{f;S/L:7trw l_F`:x[ GY~X~'?eQ-R<@dO0f>/UsL.dx>R?x)li_ zfQT4V0M>O~I{Ƽ[H.8!wOi3[g:>QD@JlmH89 ;  Z~yFSy℀5-Z.X`zdHo#]_sϑ&xOmK5~3ɻY!!t\.(G@8' |Z?a}d@lkh<6Ǹh!Kb~"?M:NU`}ṗ×ޟ \)ףF;,&k͇vM"ocVA»ncy(gf)̮ `%j+XE 3{]+n~J }Ў;. A}&|!\)z;QQU OL ֿ&oPXƻ^Xf]~vϟ=B],\x&[1=d'$0==.,_ ٖ7t/D _?'ZM_c?kB'@4C?%§O( ֞/sb}~@G ҰR¥'E1<̾A2ynuEu7G7>[0 ~އ.9W?QڃS> =Qb&#]* # f1p=y<n:90u#gQ{ݩ @> [+DtzHOKd/]0t} 068WiM7 QH?BT++\Ly6|<;׳W?+x6aZzH*SG@FC9]5r{CK<}z|ĔQWS0 OA{pL0KJqqynJ\((7! "G. ɛE䯔K(y;׆1zaRuhg<σј 17 grܮӥ~> @ڧjUڟdיzu%Os ygvZ#_Az'*DJ<ÿOkB3!;ODZ,%]KŸ^}v"mE=R7پgu}wwFӞ1 ;nO[39><<zfFzY}w>!pNߔ wAB9n5+0.s%IVPGcY ǃFW |?%|noR9kYR_ysҖekF? Q(G/?@H?1 /FJH4Ch [)^qP0縐W_oq29=)ϓ+¯!efR}G 2,A9g5ʣ~ ᣙVD3zo!\9ߺUy`YC~sy)O A0?]ɫm~Tn_0sS3Y˦/dgRX B;Hx= _8/}Cfr;*!Xamė?(}jNL7 tLV˯^ iݚ{Nm ǶԪ_O\--z-|]"yZl}Y| \Π2{ ,wq>UEk%gyY⣑VxOeٙ!a$d| ; u qQ3.C4i=HDX&8imy2'Sz8dN yqlaKv ēi-3S/2+NU#=SOU3[x.8mn㺪83.,)kC=u1 >̈&+?BdWHKgevn _Or~B~=ڻr4Ú^B >~qF|Y @Nކ0|cl>|F=J.yZWL\f*F]IAqd'W-q6Wy ScB;tTPykKҤ.`<DW/>U<% z%Ÿz?کӃّ'] g~";@J3?f> <ךwi0HyYbHnNەk<ϔ/rz;M/_H&wRY-u.4:/=0ʫ~yPmfB^|d;rO3f2/9~痢oɯQ,Gy E9md_\'?|`}۷.q*Я}gcsXCT&psfF_i^fwxн6>Z'KQOU{Z ~(!.'?"~@܆hZ)Zh^VCv:%:?G>1;blhzD.YIߏ#)s%h_'Xfݡ! O"5ʛq7y!7W֮XOWFx3`*Sfs?>u\ss:,E_1v%9Jq9?e㊋ZYo!9AEt" :~o3}ϟsf~Nt&A~U~M@_Q^'LԊw=mǰvBG4fm?\9Gzol rK8[ٸx8O)*|OCb珘] g#$d$|g,_uu&7}렐)_0#no܆K;qb]ٺ_}C(wܹ-8>mn}Ғ^ c^ZT/y{Aɟص\. _=J)8:٦/({`3>!-f 0c>g:{nG"|?wx?&gu΄p|;}fPfʣa}Ʉ'qڄ,Dž](ڳVdλ}Y4? $EY?{=)W0"9@?ҙ}͍*xahqٍ ( \ϻKFx_*G}O5@y:wMjEd)ʭ OZK)?r:1Y ڹsP˙㑎{u KǕr~yZdn<O9Q*l}s=1ȴG9ylh\>?g9޿z$C+<,?HGth s, 1VHam=Jq OOyPE8#x^y0#1dXV볆Qc_c4[7sHyqfHKlNW݁' H}SN4Ϣt}8нTh ;  Bd3`6snoIT#h. iBf7?/"#=r}A)ԃӔ<(-$'] wAJAr\0=I9y>UMc[KmeQh6GA7ğ--VP܊xM$ɔo(`rJ^ǐ4R=SF ?cgrG3ȯS}!Pt%ӄEa QqCrIn*к57Ga=D`cE)^+ n?/x9D novgD\kZ.۟[=_XAi$ӆܙ3Ў=0iA'j*%>U>VHyTg0Cu.a? lh&;7O.q7a$s4/ڕ_q;~Y\&g;><<]M69 UGyp*yr>x/FT)oN= w)1@q~g*q2!|\_r'/XL0^ Ez]4 u9 ľG$B>OnP~TTEb2i=nXC%,U=\c-4b.}A3gP^㈗ ?ZBoUKL!mFYO;e|څSӑ9)Hb?[/\d=Eg\O-|ꕞ)s%Ra1S.0;!LJCrB5}1 ߽PО~'1_ЕTDVnf8߬gy! ߢL~t+>ᒃe5]s v ٗY<;R;7i " s ja?y}ߟ]}t~~wV}6>_ܯQ$ qLU KD?/GU>/U ص;p,~UoMbb~-RG7 A}u:Y{u]/V [X.ľ:@./o/i͜:3}dDP$`r=!cʍG~P8On+D`D/FGt5K>LoC L}6z&!YBjIN-j_sTN//}138S!mD:K%4xխ>Q?D2Hs6:kL5rA׻*~G(ʃ>= ~-Y?qqKmA|5eZ+Ёo }z+^`WMO_pRU AIߎm@;݀qx1֛`L 'k&ˋ]c+?3:86M."5x/mC y޺K_~K dărʧОpx5qX]*gڈ狐bvڷYa0>̡NIz%GK4 bF:kWpV?m ,Y\>(FVb:eZ 6pP!0bRJO WTOa+}s>(gB wS^!R:g.oYDyZסfGPly}wsE:%q&>/@1ߋ`Wܥ F|\(ЄA_-~ -BHz !}ׂޓ#]w ݝ W(_^ gjB;j5ߏɯ5Ǯ:c[n q 8'91"?V0>w! 0.D_(!mHDdlϮ!_3; ٳDۥK9pqu!R_校؞;J3(f횈vHKPԆ'Oټc %iE!l+8Gr}!QKy&w2eO6';/oQ~IǪ |R*'^*wFϤ2?x4fG(a:~@V;|^ D;׶p\}BtYmƻfoG^&Zqs =(~;?ynXr{^vy:b~ +@Fg:w׌s=HYeH߼}tpEG`9jsmP?0N~|`ps|-w9wIp:5-z@tȴ=g~ryC!R_;k>|~qWyۇ2;ڑgN~`XY\7mnf>^֞A)rQ^`g}WǙ]A!kvل{9H;oy3[ ن ym ',g~P)q-iVy@tW$f)%傥6@B-y/~S";CԠ#'Iob9(JqM`ݎ)t le?KmekԹۓ%~oIr}u y*^/+r3k \"5ED*dʈr9=,cW|sնf_8_ޭ0^ mp߹oHhB_X`UY#SD.R5'g^Iu!m|r~=t}HL/(թ-f%0&ΐfee~tl ;Jci,ߔx|s_ܓǠ| T}x^pqm;S(6׌=֊~OIn7*|,`]WQ:Xė&yP,'MU2O.'Φ<;ʟY+~7SgP~5ɝ/[-ރ)G'r9oS>ؐL>W] q1o6`\h1b L7Ky$ՑKRɿ!+3~kOy3zr%D~m 2xH&w;.^gPDv;p&mN6ٺ_&~CћSrƒButMebr/bJnv1kp00֛{2/S^!/7," ۿ19).|?G?h T횗 RE);:H}<(kMx&MU~uĸ]NEMR\[.^DGyޣhckm1MDz}t.L3^$MsѬ }>ms!UPό`WN D<(nLVE~w }fè"ѷ3š|Kyb ]B#,`;zYݪ/߁o1<'._iCqs=/?CWXw<W]DB0- K_]TQq٭о%o:d#u'>E>D yUONǁufH}{7m?yu2)1>a1d+}Q?_`:+3.}1?$#?)eJ_,SKsz-)]6pE/)iP )h? N_ѧ)Oy>$r@;k fK0{$amJLys8{¯ZJku(nya:}.?>҉Lཆއoס=4PbhWMl +ԳHg9m9;A؀A ;HO /UUyʒ)_1 ]#7oƶ͘=bڮ!i0< Ӻ DT_g}gnO(ojv6l'\zp_Cw%kgrJosRHN/O? >ZG+lW@iޤ A\x>VHvhIVf G\.jH~@Juf: `dy} .hZ:K8iV'pQ@{]ORsugٟOI'KrbzZFnf?^n^ZXN,gT,>F8>/I2r_z2"@)SoLyr^ߪ_P+8]\*;2򶆝vNAUB6ȵ.'()N# EU\p˔f,б?G'_>rhĜE^NHƸ c%txַ1S]Etſ~/J O ʺ2=3~o| iݜpz k?tT6X*i|gto`G%sϫr@B69>k]L~zWsAEBZ#Qu5a~!TԷ0EͳYzȚ(wshVǼEXB^pT 0ۃ>v}pG&.^3 -Wy^k<~57~Ev?7>mY)4lquP2y7ʑݣ/aXw_@ۂ/Ӱ:]oS)a|SSeNDt<ꥄ|h m ,ըwn. w_+]?AbՔ\{=y;qUW2棽yj7r]э+Xv~'3w_U9b]Ї-w QF8/vp&K@gtOH"㆚&e}Q&'BzRJ;2̀fb1Ah+‰{)x+I}^h:y;!!">QiN鹈#R ]W6ѹqj/SM|  tR O@AeﮮO qa Ct!~(W>˴`zߩPW7aVk'u}4WPף&|d/]=v-lCȮqc?|oCb?dOu=*˵ &łd E ѷ`ң8NY2}jd;I]>]n7~~=Ay3l?a&bqhu?^{M?Q+횇q o#5&tg"ON_#I>zGZѶb`p⼵?(u&?CG^b)jI[ b]0yg /QXT!BAyq7re yA+4Ӻ7@w@uGgZO~5 11>D|$u>t?/ۨ2''6Ն>HL51<'ױLR̾;4zuZS~_kSϑs{E0><:|y;VG=J cϏ#` ~+Ĵ7߇ _BvM^Jguck62:{֤{ $6{QC!E*5̏ 2f3;>%?ǜЯ&vm8F= nl|4\߂C3ɟړ͇2`}&HzqAs;[?Hۍ8 K%L{4rŁ_߿ "6:ֳYH/ezKgnγ(Gޫ?A7;)c|\GEhP_u=۵tiKK7ntg-ŋ5pAhry@Mc4ev1xc}*qay!-l?2y8O7+صhSPM:ӆEvJcP8n! +'s\I>it_(D)=r;BH D޳хߣe2\} QN)ngJ5k&=TUX{?viS2|>3 0"Y>U Lq3Xv(t뛜|vr}V_l7[ /~^7br0=DC?ټd F; R^(K^NOEcЏ.UXzkϳx\D Uti D B4.*Ƭ=h&2in|q k@u|K4/=߇6Hԏ,9J֔9krHg>q>@up֫^oȕwk3BHx;5ҟ/fv Sx|ݙ*߈L+|Ř˼Vǰ>wl90,Qx-٧&ctuG2oI➲xRfч}p= 8kqpp0Fz:ОrRp|U2=?c0~ImFN:-Sj寑!iv;[.~|IQ{/D3^/˙Ce=E%]W(Ѯ(~ut+|"%@3Bȷ0{5൵q@x|T0}RoC9,8a<)N5-@}&i7KeϦ}OwB]򣏟IڂWEzG q͐2pεlQxW,\U*o[ę;Łk4h=7&G5zMm!.z,-񃧑nZDZU|vSAIya3It8vx11}?_B2GPKLBD3#B{=QA޴:$m~U ,`^[;˦wZu_=2292ƑHf HP^YOҿGs G$a ~~4,N%~ F+ ןbGPE@H8B^ۿT$'Jg`46"?JZO)x6t3zݴ_b^3 c|jֲ~IjA=C˜:.{8럱Y9tJ,zKMtfgKZNxTڂ(r:kq\PsSMsP4'<ɸ?f<@imĦs<;د0nϯe[)NXhOf^uf~TZu{Vx/q9簷s"CAA1 E9 DPbFEO3J=@pd.s|٪ݝ=>mOwuUuUzAuL!_m^|o^R+)6%ݣ8xV_V0[SM*y1>~Ч{!t;/J ,b1=z7߉o=?zىD'A=EntU] y=ڣKYAi?ʇ[qtrv]u\~wzG8@A˷7G 6 |/CeWQZG`ʻXNrXN/QgMn>4^M.,fP.Ⱦ!'ϴK1_V @'Q/9%I`tD:W^ *>+<"!׈lf'U6ُcFB[!h4;`UzZwʯ86ai+)΍ݯI7BՙO| 'jZ7q-;[sqQgуȳFW,8&Vzw!ۨǴ7Y.eG+۲|K}-w,,: "^XvT{^xVA蔿~E]'RӃ{?~c8'l~źR? z z^"Bgm<%+⯣K߾7nW-}޷ĪG8.//Lna8yhݔwqXgCU~VKBX>wAi栩5-U2mW~#+^sR/0NJ,Ɨ)%k8ui1onWGn:'*weTO99ut^Bst*o?u d/靂 Rm'|ٳo ,=jfL }#t-kf;9Βi$J0kͻ3S!Am aH+}>\C?c=Q,}ьX_lLo!>nWMŹ9㹉㗡8]x 'F]+qD}*G3m oBGyx/8/R-nZ:w/Dy\Wz|"{2# čCpގŞD8e!ҋ M򟲚*EH;Uv.L-MC[!v,ayn0=< Y ev9=L#N5XNPѬA'P_m^Z M`Q|NGoyHҕ1h [*3jnU䧓(h5V/<;ZgG}$7},5D")s/gw 'ae|Gz^>PƯaȸpG2}@fkӇ e|:<07!p{'qS y78(,0EC̯|6#;vԪӓzq?Gَa\/Gca+=HrD0]Gq/Sz>ϝF>RӒC>?WKjG/8ِ_Bp*ߏ)L/y7^K\-Mo;O|:m~#`Aw`ݗ8(IEKcwug%Rr||BockVNJg ߉|!sרU$>P[W r?f߬qh,O{=$x&{} 6nW8X~Ew)y~!4@mt%ѩXN)e~!FNv/DӺ&}ץv|∁̪j(߁%-^ egŕ6VcgDw>FK1_v*2)lGq 5׍b9#WR?iŗ2ќpn\|͐?Sx]/,(mqwv\CFo]sBV=WNSz=@݊wҹoXgj gqM8 x]]LVq 'G[*.9,SB7l<>Ebz|Aދ}\zj_:gF873‘bXy3A; 2>En3GoU?dCx'AYyȼq}׏t5ع V>|xƪG(2be~*_A&o5]B;q|8ˉc^AlINR8;{D? H7m,_ivVxi}Ն?t!s_12%5ezO}5N@e!<ǔ&qLΔ8 W |pcF'3n ug&uyw\_$_W<֣8'`ou+?P5TcZ =șLskQ=fB} R|@Iy?6tLTnx5gj/E|f/?g G8`Bq8[8tSUn3PO)ؿqGwƁ_.Q\X..s1ݴ+D=/+s%i{񤯍rs_jzԈFu>7PfZ>oyYy|p.>~ϸʉ՟mun1~1gz1TqnO7O!?d5Ҷ}ɟ;i{Ոc~Y/V=x~)7~o?VϤ īcgVc>B]>p+}/Mc=hWU|}3ݎGAZH~w[^?ЮR?q_Qc.&N{C* }( Q'yK?e9Z8pĢ?L' mk}|l3' PihuVEr3(L~6٧Ǟ(Tƹ&B)v {1{dq}>EEov3]ؽ d[8棈=,nwW^J>v+qܡl0\Pv7gP4gqܔy/%ƃ gxC4o@~^oX% e11k0,Si[lQ+F:ΰ$39b zB NejG7 S{Ȍ՗kS}W%Ϡ'u҅;a~g )8zyU+yI =g򽇘̑W|5KJ/;1VG]? R_U;ATzAls,> Fu ?ӑV@ngC'OB/}J.ӷa1T&v.͙/A:##' dwLx;~gw_mx4!s@F*LnC;#hIU Z^/Zm.G_Up=$P hAn3?qz@SN1΍4EP# ]Os/\.M=i^(8|/qtJ{qwrCOcK{cMG;O!s)_rj3(??VguwU^H'm;gR;{ |Q,ǍsiB̽:1IO^'MwQӁW ߈ ы@Җqˮ>8*xO&GItx vxL>r's?78>FuS/6"X*ބr$h?걄;CڹeSz*c7IR$kG0_zB"$ x]1~ bfzv6M_x-XP{ CR=qH)";ʹN/V'X3M?ʗXg[͢q)">[_o'\\S ꁼG 5|3j=@Dy9OdoJg|$> $~C}@^SO_ߋ;EwzT/pP[猯HE~1Ӿ:r2W3= j=xNOWKz߶` k-FH(ߧ9qN߷u^H:9VH㍟ޯ~}SI%u$!{7ENCJ~ʐZ =hLO1t),_։}noXO^Dex]2[x;;gaIRr>2ϴHi,80%{6h: K@a}0nB${^qL_q^Kb}3jz47U(w0ݽN$b e/Q2~ҷn>+e щo/g̙Ԉ_bVǯx(NKgzT hr?G0l+:0ZO3qBmi>#ԃv&GlOcquγ,3sb&}{x 9~31}7?,Gn_Ap_m3qp9G@b8?x3n*uֳ %,n O(MvO~/=^C7I{7̲rPJ2"dtmy)nKv,p};9i*ku#_ΪV=B#wi;]+k\iȗȆ^r=X_A|F"vǪZ/ཡ}y]_őNs̩rCh YWC2zԥֿq‰i<ߟθ]wZ{@3_DN\bkWӯ\ͯ@r-s=Uwd-1CxS?o=OT 浓az][N^n$K}q:z'Kk n@`~!yȟϐ>H*{̮ b38l[Nzv!T<]gQ](e6<~8`>!eu=!+=0M7! nZ3ǔY"AM[J9Xd21-_q{;Pt]?K7}#':z|g R>!KMbg=."i>wb{Lq4F|1CPց8s8EU'鬗K|M}|=}s&x!|5D//~fyO;<ѻ5{X҄gr3g06'{SLJf.台N9o ȟ v$6ONU+v>J8S[{{8~7"&e?1=e<8 M<>\io(+X  a[BGc/Z'яxy!ɭ<Կْǔ~_U'9͊͝~M*7,=s9_oh7})-|$H V/V> j>}KY}d<&^vL>Gޖ?n6s^'x]bkq+x <.H?|::LISdzl,&n~Z_<~SvT1C$DLO]~5-SV}lF|2?Qn wY= ~J-!|Kuг2}{ZȮ |ǫLX( >*ˬ* }*'f&]R~/lggj wP,SOgMt *ǟTO)D~A#0(tMv߁"b}$nŸu_#>*D ߃6Ÿ`~ o=Rc̏P@TƩaאWLߛAR*g|N0~GV^A|j6V}//"1"9_,qἆL|j=BJ+J^$a9ȏ3{'_!!'/szOk?񸀑SWbOxtSQϙϰs]>OoA6Be9'\jRO< d!}+ YWAmZ{!WeC >!C狌 ~i?Oyc, =ޗ? o&L۠/O*N8_Yl?^p7;-샎g0{ݍwhGKޭUrC̮ [A-} ~W@Qwut1g?>Y>hZ?ūd原݊v[=,#6t5˟.]|m[a[!Z#n!DpT /'~ 7%jGd7k:ʕׯW|6xU7gdW \CI陚GN_)mizZ=xwۗ!z¹~pĹO0ߓdRqo!{G'LϾs<>X.^ؽ3~)^#TIQӃX.Vr$=ׇndvHep*u?pg}Pf&Q4c ˔3l&`H#rB\12^~[QV\TgIMC>|I{x\ըXz y6|Ńq4V{k֌x΢OZCFϐuH!7A@;5֧*/9Xn[|C>h^ߏܺz3ee^yM>#U+wcoӛ[IsX{D$R?I*?aq=h>޴H+xA h \-p7cL)[},BWoy||X wKE{x;3Q70k0Y??5Ob0ZbO(닳+ xn%kWdĦkzlši7!JeB0FJv G5eP$:o-u?wZbIfO ~7b :9=ws71X_T4bCz._^NKs?90$gr7+H*7|EȡxyU;"~DE/=L:\hGkvU5:+ߓ?w#> wJl/BؾLj++|6.Ov_W(ZtL.yhG%޹nڝH}.}\+-[y9wE[= QÚe nW|EĜ˒N<BA!q/|厜S~zOڠ8PfSN}~ [lnr&'r@||A_~>&; -[ gz52:Uփe @&{*(mO~…=M!f\@:3Ź(ξD8Ϟ79ƿiكd/ߒSn;>o' K:3v9}b>%=@ָD|.4Iꁄ=vHgĶw0#޸MMG]O] l@53g8u~Gno$>zknl%(?6?[{XCXJT?~VHߛ&SU5˓*Z8*+= ?U:KFS|)MX_Zg} Zn߯-"Vw'A&.dswN/֟xjy~h$Ԝ'&ݪ^d3[5_>-: řr!἗_ =[҇тzOY<s קV:o-f8s ŷXv<̓e3 'Z[o3:G|v6p+سj!Z1_2>FyfKbP>h ?ǣ߇UHԾF9%PU#]Du%MYL/p#krΏA{P(Y=.0=╞~ϩkGLQoF;& zVs{9R\,X[y6Il4 QHoio[˼S2>a(w]ߗ>f*>Ssԟ~]Rk}w+#O/v`\uVbl/No%z4o/cxP>9ΙmyG="v؂_qZvk: [v>u[ĩ +αL}c?A²˂ZNAxZxT(軟?y/^|˟F9S(HN%=T0Xk=x~r/gkG|[8[-/8~.'ts˚. Ogr}u=ܡ?d=6Cbg!nՎrNv˭AUhW/>͡Z29JGxߊM࿋@?$)f|{Mfzmyqd.!}g/<|Dy_EL'scrxc|?>~zUx@HN?'_bƆonmxrgK&Q\;cɲVgz—K<= 7|CSԑ*H^ʐr!;$gƑiB2u#CiJZ/lc-/]C$g,V:bM=&Oԧ8sᴕDS(q!8Z ]Q3} =/Ta!~[+\f:ϳߩj'0Mb#A:uPbUj}G ~+_?H/.!)'VNu4vѵsJ6seTHCLitSW]rdzhq^- w@vk[:Uy\J8dh_{ {y$=laoUNTcb8 =$|%~}#kcTv }|Y2A~c:)-d(|}:dpb NWc}mS~O]*SG?c-e]șH4E?$?Hxh#NzF^7D nB 㻊sLefjgg"nФ1$;{ vc {v'<>c~Y&1u=P 翂N!j6&gohG/+kL_鴞.I}w-!2=9xfeIb35Ob ߎ {}Ԃ}}0/Ď>3qxSfz+?8_=m8B/J}՗OͧL/cUA; Az{1 碿?1[{>I7/_Me~3u/%qg\20)>}CFLml3zܨOτ1^*5˘= =(p(TϺYY,>O}8OqY$z58@e 1:e3qҞ(/#֑wt/C;yJ"|@y?J _ΉvؘH}l&v8Hf02=\z/ceW02H_u2cyHq3RS.&ԓ[8t_g|_Nu9Ⱦ},kF[STe19*ORQ\~R}pLm[nO] ,)u\Ÿ q UJqc>&ʀ7[+lk'S 4m:*xkq :l:?B5jG^`Y|9wKonaZ|esk5ϛ 'ᇥA H9<^>Z,56ƒ}wP&#g/SHG.Ĝ߬֋Jq qzęs'|AcL8OebQNO曌Y|̦wXo 6xnUgcw̱G"띿#θ85 NFA|1Zz\Sw}Q#}E9򝰌Q=տ[c~IeL ܆Sً1nGʩb!/} hq%pOYZp!*d@Ь(_yT_s;zR؅uw Oe|MtDcHG@@rP\\C̀L\ v ӓY3̾§=sNGjSe|2_BJAGת.{ _qğnC'KCwT[=<:8Kq@?C?WGz/Qq cq灕UI@n4Qm/vȟ)D!Nֻ^RW×8?C=b8gTٿaMKCPm@vU~28g2hH+O2G~9|EOg9+m~jLXK|bp] 5X!;܉HZTY|4YL!mzI0_єw^ OQ4Aؽ~+:[#[ ?V?LV֧tž}j@C8C p}sV>Ro#|+Y.ڿF;O/axoSdS3tBXD@Oq#G>} <_zIv=G{O<ߟFSlxe|&G%1P>9ʭ~#o@_OEk84iB}6S\½UP\^OKɣ0;}5~.?b!p/WC=P)<|E=&Oۭ}ys[xO5_oܝ_Iz.|1ߤ\?`9eYq!9ogM,D-{}H(֗ySR| 'ϕ)j̟v5]7abuRƅ87S|8KYyg'tzycؽ8.'Vc=S/d\ҧƚQͿwoZn|oYַ^o-'`0=P͇^ziUt]>ӓ1Vz|=d2gz ;O)C~Iq>G:"ݬW~g8BgHR~4c{Bj^g{WC}dxlr#>_l\;ʿ8ry[ri}S2% EAһ11̜;Oev9CP{X BЄjw ÅF"?e3\7* D~Ov$WST_a9?O0\pl1CC&G }9mŕsЃ(K7=`&~|@%=x|ù19Lae!^69@w2D\lZ{:<}Į#տ?>!/z9_=1:n@d/4R?nKx#>8sL΀m3[R{9__aah?}@L.ũҷs`͗3zUn0D Ï_nm0I@ۈ^v quc?QӃ̬2B0DZS+ ߆K*{K9h2:!sfgD;O0dM#Yo^WVcMךxY>G.oIjx_2 [5߁ tX,/ X|V3*j3q^zLIYjx+a&㸵x܀rkԿƸ2 q1hă2}BG۵kenFCA(Wͣ]ߥUqvBVϋs Wc4ހ=O"yXG0~8%Ih-΅8bgӊCW<@P2gih ;@+5y`{gNv.ANy\  *GX9!+Q.O_';Dߴs>3Wc}?3y-̾J;3'qvveM@|,Oex7@o1Kryh&Z|.ڮ.9~>i2ʟCZ3Tmw9EsfDC7FzKEqӛj%-w.Ʋơ| (C;tE.ji}wpƇ3"jp:cw԰NWqM̾e}m(.O6n'BY@BLW~̲ZE!5~Ӌ}sP<%c]מyI^Y//3+w>2~F; EZoB'k_4 y*E󳻬`zH(]AO Z9\O/ʚ1>#~*pAt>m^!c/9~~@~^ g*kQ7+o ?ƙ> Kq yĜ Gau;Xy=!|* ./_{bL창3{Ӭm髮*bqm^k 9]o1##)HsOD T콡2`:$/싡c]iQNO-8)Io9?Ϫ7Hy%d=?,ݏ}P.oC1S 5P; |'Ψq^?<'׋#нcGZaԝP-A)Lo_?R]8 (z!b3qYk==Y/ạcwJN|%Gu>KFb^}׸VbQ9._:އ:iH\G7Ǣ>FR\ iLՇu|ߘaGLkO|]5~~蜶UU?|/mGq [ꁸАA"a\Voi[qA/̯PYÑ̚z@o*`a!)$ND9w>oib/`ƫ35t{)"i\EHdADu|?dXoO:2֢.xM$?\[x?ٙ/E/뻰sׂ Mr A˘s=fݿ4!|w[ۘl/ޤ/Qٝ{_'}e_lKṬANJۡs4|߾kg#_cHۥlWD|Cc7-ĵM"C&?$F$ֿR-}^Fϰ| ǀ8Ox39~x\IѫZ /R(^5D\Ο; RY1zɗTJnis8;N9d';Od?{6{}etK7P^蘮߂z/ _Y d$^)31NdO'/bֹkh}i%$淭䖳 yŷUٹgzO *wa\/=Bv*$o @~bLɫX=C9VrE =tAX8(x)t.Qyʕ?ϹC!7= '1eNg|e8+]z]vz8Cf-@ߑ𣏕%r?QiȗH8Vmhµ[q<%ߧa/{R[jo!ߙ~zi&,#Aiz9@}g]H+>%u=M@Ж3Bj2I#(d^FbuӑOw8~W |~m_Xrf] );(}w-S2 }2Eq-k#BGa/.9L]^?K/G qÿS˕^p8w ({^vXIIMm8XF_PiϰʞJJ_x+zL2zI>YΗt2nUm'|i$d!~#ܗ.鼧k-^`eXOq[,_ A :و tYOfm ߱2.E2zwn]PFŇq!oK7m=O! uWʑjQ5F:]𘌮fysZ~9 =pktWӃp浌^/ _㪤Ë2>v|3w#D}NVNĊ?'B㾢x1 &߉Ea*>ƝŇ۱Bƭ_-ez  Bj)I zi8/w;p.K}D%ܯiG.s6,QED#aYDțYC=vف~7|& =8 s Ϲk^ d7Z4iL~\B9t9~{~ti:r>n!{M: nNR~9(aUHr˿de;MP2*HPPu5=h-Q&^sҌW' ?Kyͬ}'~_v6/-dtU(zDm];k}[\k}FaT->7l ^r%td)|zG8.j]i)Օx  ?sov5d7>>;މv)|ȟ^=j˝Gik2=AT뙼7"xs\|[ X iY}i^>q+c[-f5_YNOnW\(2k𵢫^"᥆6*7ތ8zD1| .SeAVTu=jjuennͯx&ڣBN#)@a*8Tނ}P],X({'P޸XoMdeAH=osw!ܾwKe{!)Qrgb@7/^z_kgߩWzH hOw#%DGq~V 壆B=oqRNG'(bsj'gfS9i)HCZfGWg~ _᛬L(y/0ˏ0:e(VYwʷ@Qe xO|au; B&Jaxd0JJzqyg2oG ~C-›7hoE "YZMzt*w˗XoGhת+&}=p Y}/o#_69ܟɧ?JZ_ЖU&Yg@;G2 |+&w"F>%CW?e|,g^BxҖ7e|]a8ICy":K?${@ŭO3=~ *\@Ɩ\^tL\bdl)=zz= k72O̍2z7:>#7sCK P腄Q֩f )_/Q\ Jpϡ}/lR'S+;vZ/D^sp ;>CWI"?h?;9^we2sKؼb >~O LD10ϸ mf.K@#h WZ_lf~L>OOl8^͇8tioqnbko#03{q^_pWqQ|o{V:{k3^}qc篱|R*2t*gJ ˧]O/'Sr|C/ 'q/iđG=u8E-R;80u~L A DL4} "?2ADo/fȗ!omnQ˕4fZIyq2>_3vc|"xapCXsz+;C8W?gL PLf/ b ;m=ٶ++{ܥ zÏ Tvݼ_vņfז2>̉cP)=}cj=B[Z#_b>xtr[]RB;N'%iy 96i.]v=niS׍UqM8oZQxH^_b_tA6xɨYW#G|Bݍxv1{8<(N8A~<:)^q:m3ݿ@ɏ>7c; ?&F:*va8z}b9ߒ,̟ta9B"/"Ȝ?2丏z@L:<,]9h{B>,;bV7V}C<Ah}&.7[ڟB}=Iy({'8كd9~yZݝO{+%~Kr5܁򙆠]T޽򆧕8pZ֌ qh>zKo΋dq//C?{=O[֟:nLP=N3rL8n/ZsU,xbUPz'BY~PoŝY(*;friXǡ'`|%>,FJ(*BjrT?2Ij!g>8=ˇB۟ӡAl~s$tS8k>W~ggi8 ȧe_ к$jwv Gg>8ؐK77pJE?Hm/n.󁬁t~_b]ewfo~et˃ѧrB'O1_߇OEDv7ς& TCfBX.p1φ,g'-o" $i_2Ot 'zX۹toLqmo[`Qvpa_8H'mɓ;>SreZH:|)~S )H te춌MJ_&J ɯ69PLkPowWQ\%qn=TcnSd^z)g Wܩr yC˙~uKN '*gt&!~o&YHLm ik:F󊯑^Y֠5@q :gEnQ[J{F]PG29/>d}FǸ`jE6Gꃄ/+N=1x'|/uGz 9 BT@:< -߄Pl8= ı;)'<gxz+֙Qh !zK&$lƸ ܚų'y|/ct.= ݻy}V/jCnH CŒg1x[?F0dzro@{Qҕ5s{Oez-) E F9'D? O¹WKJ:?r=RZ?ɐ*GmWު/q$ B-RM6%3? #,,я2qS0=47?׵=>^\:w9+27AA =1,NXo:VIA^R[JpBn{8Ƣ㛉 8f&liAx \&y8 6@ʊK\+5߅{nFDvWv0lk!mF,?rN:N`f{3go˜]'K/:|pNZJ*yHqeg4̋inߦ)gwٕjy!+Y_H&ϔ&µH&gbz^\XgvHg͆G?\cW!(5]eF^ZՈPܝpbJ_;ll;@lh1IM .E)01x!7$<'?tR >:ϓuyx1(y/}|!3a >MKCDXO޵||,8叡Bwz)[swx| P:_K 8(Bv&=rRWSOہBckI^A;jhAW{a̟ Z镉!?^#,]NI`t&$-izzwx<$ѽ ~i4_g|v&Ĵ+1?~ ^~W4|j}@Ɵ*}_M|b-'^:Ϛ"^鍸QMw _z1}rB (W?QW?/0;q&̌z)0<_]j/BnѴ{U-rb}N(Z<~AH{jU/`~>kJZd?Jd?D$|)O>Iڸ a|(j iDZYz-b9.ng(*evCPFu@>ȏ%ii}mft,N(v8PP1&# PurZ4Z<',+ȗ"'U:(WgLK/Køh<~!sMHcxPy/;3oi/:>$^XOIιɟڑKyOjO'v1>,&2!vp/xH*oځ|NFb ͟w3k1eX_%XN/LṽuZ-v=~P".CR+ȿ_ϓJj1KjR&"=V.ez7v7K6&^^,EK⚀GjbFS0?A8Mٷr0Nuv#9Y;k➞&VZS Dtr5g@5j=~o{[>ĎIx&F~Mh?#\y~T?/s#;U̎ya?9J|rBpw:/y=XbhV=ͼ'd9#|͟mY7wFN@ ?uRz0?WH =Ol:Bׁʂ^;,T- _9!/Y]xq*  Yrr ?t/x6pcroGɟ5kH/u 9Kvov)xPb"\'xUnԗד#о< f.ಝe偈i-vɟV5]B5̿Ylh[]N;%lPr9PO7Lû.gqW-rXź$/ύ |~D~Ul2}8䛈+vT>]mߟ>-GjwPnܞ+PΟ65j>t|*7ㆉs1Sk+=qTd>OB&Gj9mp)ӭ ,7?+گ;k3x͞XoW O*<#TYȩg^R[MY{p/]}vbZ^ ŻY7 ̾ä+u(ٍBUlĉqkYo^aϟrGzKji0/ _ZsT+?`7|E1=MN@yDőK<_Y\_p(֑HNWp)KJ+ C :q!=m;mczM?||wFt}?k8C~xc^;qk>q:o>7/M!Oync b|>!Q!i3bGL7HI\o/67r=w' | o]֋>W۶]*~k_O~"oZ(9hdi'N {|ax|{L>:GNyImR!NQ%/nEa,N<{=L9}ݙZ_N-YZ8 }]Eg rAq:<7g1ݡz"ҫx?e-^E3ysn K}<+~*@B q;"̯XG7%c_$?T.h/+k";5=j%uΰkP/y?]S)ǧZ #Q:TgQC-}q}n'!j ŧQ sS82>A;x.7dk$ؾN`?f^OĽj> :M݉xLۦ%l|*d}~|&w g+0o)8(dQmk@.8qY ŗ}Ω)ujngy `9w&_>э;z^<Y}]|㯊SXDEWOXL0ߊ(jgNq />kNt>UQq^2c"ӓ JiMq334 ,ţs/g8_B\hutҹZE_Ib3Kײכj&~;Vwf7'y2,_K/*$\ևQhE[fdQ<`vةO:w_D=zG~z؄zF[>?@[6cCypM=חa憫9{$A\-fӷYҳn}#z勞;"}$SpK'NsBV.aP-?Mjz#J0'MiZ1:kG#Q}oG}۫N‡8~U.ǏBk^&)ϡK).qTP8.\v@c-~:TMGSߏ):,`lP~jgy.=a p_+08uLZoK j:~ {xHރete,=-Sp93'q9ދ_xi:=V~QWV%{8<o%:A5#Q%CI7!1߮҆? Td=_뷿c[~ ?/+ q!`G{5}|G  C~qI?GD;B׭eĞUXC?c'J9އayқW_|{w]lς+kDZߥS Lo9FD=[׌Ndy7nKr^*bWވCI\wTϳj_^7[O1:Z:&RͭB=gvgb=u.DҺ? ;KŁ5y댂[Iq|~/xo[+{硁6&Cm~e|g}֧ڽ&5K_w %.@mߔr? Wt?A) gBvqܶR xXYGX|j=.oy(wfEÌVIVюF`? j4qۙ1H.P?C~"Z9)N+MFyã1s|u} @Teת-٢8b=|5g3!Yz|?2||ecq{!yGOy:' V=Igw`9}sA>#KU^ŵcv-J=bƭU_ESY9tޒq cc<{Jw΍f,@(pSYO#=(xeGx˅t~a~_CqcnC}$&qJR7ҿ!-H/tGpt iMqJW!vNAnGU:z/D6Xan,.uI?K {Z?>{)wC~q-~|)ŻuQӅ ;~qx>i /߶M-Kq;>7P?O̟~u?tL:HӮcv~;tᓔcS0}3dD)'er&=Fϱz/U`u !.7ȚbgNHf&Vz2=f>_a{Y8^,N]JviWSO5K.=99ced]ԳWȍY{,zQDq&7݉OSd ME=ߗTt.s!HrsTL?bܞſ6,`[<ͽZ^!gD2{;>3*䭽'^?$Ս/?9*A2b38.f^v̻^g4jY_֗83Ϲdߢכ-ZBN7֗7pz}"{cYMmKnazԖղpְGɡ|/}6cHIw#Wp{t>0UwN/E:[NAVC\k?iZ'WKQc޿D>6VMlP: =h3yh] w//NRϦՏXs@. yK$p&nU2[ۄ狢~:Eq懧ۃp"VKԬwE}/A|{q1J We7 j>W`5W%=|\cJ&Q~ݚeD[^Zoz[O6d?1V|2tZA|*co_܁ܮ[~+/Ϋ1^"܁_xcCߒx%Bfbҷ8o-@+Y;<LZIyݸmZF u(g<)R+|Ba.Be%$\Z#W2An\pJS/v;[ܐqz"Cgzb<q(CҺ_O]ҝWKvE<>ghǧ,@{qȼa(oS3kxHűNՒn !,ND\M\.e}F# 0#|f,T;!MOf?ƫS}L8~lVqVJ~g(LGBy,/$֩{R]NOX>st~ŕu+R?k ӛ3l~PҀvS.ds!\rS$no6Bb NBb?ze)NRwU=I~]Aѿ""G#쨵>=?Se}X?Ov m ײ|3† uCw+?$[)w| 9RQmr_+]KvV+b݁~j&&W-Q=o5F6.tt8boW#8xm zp .nS >(gtNۑ' Gry|ׯU;c̒0aF'}!)~5{q-k;N܃9իN]>ٽ>oe8?UxkuLxa"~>_|6V^_G<_hx.4nQ >b~id^w͗e³ qEs92D;sUw0kw3w劽q)&EOz&}W|7>4:ѵӳ1;};4,ooW[;8⡊ƿk/aPO{~ aoW[{e󐞦E= +_fb/ Ds5M)"66>m>)Y, zU;~p^ﻭ?iJ+PCPO j wӟJ_~~Oh|2~2yEkkw[4Η]Xo`UќD5/֭uj::"N7|寍4hh@-R>ay3ƛGviOnol_oh%q+_w'J;wV[eQ}\p cϢ~7w3 / }|7g4\?nm};—/m=.m|70ŭ׶}z޾AMEO?VP̎P4a'a -?_P4Y%Ma Sxnv/ktmf_}>Jm>hs5Ks@ ]Gf N¾ ;n">l뾆^"l\Z(HgghN$:x&1Un=^?V!?M3wR)Eh):1KkdƵD_J\g\_y>AyOyyU7c%';7qV<<DN;7?M4&* B{_)\?Pװ\޲:yBgW.y&)ƞR"0y6y~=p{EoqO'5~.ʥϮ1>ђMu߫frj~[_~UY4_@=N2x3Cַ0fo'ԅ=Ռ/z.!>erW'ӷhβЦW7׮W~J'ͮg@4Z΢=hyW~Esl댸Ԣ)}(/ױߕP=7P TraxW7B;_ߐ?}q~ܶמi]m~n0og׳fph_kOp ?]Qrٿ+_!y/[2#?zǾ>Rڽv7˩_z;?ktz'=yS4͢g ˔~=qq~F#~b?Eo䳱a.o|G͗hvVE=7О{9_D]@|ҺA4L|zL4exFp-o[|OlZtQr9Ǿ~a7< Ǫ:|NdӜ4}>AI1>q`?xb{;-݇J=HJNZyur5'H_ [rSkY s]}܀i &WS_!^$+8&タ׸^Mdzn:y@&ʶ7~O}9?\˥8iU.q({' Z==m\ß}_GPw!~MU!RXQ~k1}.iP ;o>HoGi.D|u~YM4"!{!8~ϵqy~]_}w]Sw~۾Iݖh؏MgpttlTKs~fplߏ+5MA,9R}j[z6cun|K-kZ| W^=]/w/ ! .EFw+g.F\]n|!^h~bTӞC'1_o#Nb8u9 E$f'uaT~yE;?)b4>~P}~٢ywb% ]]*t?5Sҹ}h꯼9>u'zNdzE{~a}}Q{i[O28ӜgEbH"E1w)~k4߮IW/hd_SmS'7V>M^|[hot8Ƒr?4N~hpn|YGF}bCi|_ahH8}D/s^u]R:ΰ(eǪ>?<=̯F>F+߷(mEg`_ω/Kj"C-f]]Pѕc7]=h(2I>ɱEc$>ќkk=#t;a;?ۡhݦ+;~lzxSkGz]84vuk~M?8oÞss+̛L]U~?v䮽Q;k{[w>1ZvhǭO@4~4f2$?3N{~x?sI߮OFJ9cE俴S87dd9vu]oPqJckDZ6\':_ EFo;ԫÅ`=CC{z.l o~уo_()Og~p}}~I{~5#lc.o>PcG]K~rvaqqmd=h|~V~Ǧ/n+Ny3u!hKv;}*[k_toR}GȾxqM_SR)zxi($DF1.=h[ӱ(צfA4vCy?޳+PޅߙM>}(v{n"]*ioG>.}O&>W4bXEjJ ^8k\)DL9'^{ lLMI4ľirRNOpDٵ^gq>4wtyW~ZˇtY'hq]|OzK1#tY-^=q˩ҝ'S{v? m?CV~jP9|Z;ZEdO0X?h%7aWЗdH5ۯI9㖉:u>!vz3 ZwkzBzT_~mqGZoj}6_N5K2֫}h_jqyq~|&Cն9naaS^¶Ng=R}Y/${kͅq=E\vs^'G}4#!}f^u"㋦ϾPקc55N~r}4}{{⩊l_MOl.O!nk ݟ)is_?o* ɹr **7=߼?AH/Z?"G y_:M{igErݾҗnja q\4FqKz}'/iQm~ &oӍ>V;)/g C6C }O5/8_۔4~q{Ƈ]-w]5E.}cW!wRCo!ckJN_kw.b^ҥ.QdGhdzhIx.xk6\5%=8lez/uk} /ӷϳT8삿cqKgm?Gϳz꛳ QWgiݎ.fhORN/Q}']ԫϹ]blGg}C]vmܿ_i- #lq]uVjyĎ/Us ʿݫ b|VY,[J6 qc.Ϩižis}wo"bڏAyYus3_C)9 Bκh|3/Lr 3܄w?4 NC}n .vs?Ɠ0o3\Ѵ , /"~Q~Oޑkl ~K4n髖˕߶~~[lvd?N;ܦط}:nkt ](K}G;/kߎ@J=O<[r<kiL/ *7nډ{{m;N6C{o~ WO|'aj~XtǾvGtal^n"˅:cy? K->huҎc>L;΍#7>֞i4shC[vyLnOЭv=FMh"> vZVn7=%xK _6&Wguۿ֋y@ڎ uhq:GDãV4ݎ| o #9#vj~7ԾC|,NO7k/T]՞7G;Vihb9{ Ig/~Bt㝔q˵DW~z9FXJr<9] qw];dvB~[8:Z? W?:Yo(|u+܋[!&yvnv;uMO+77ϫ8:W۹ir3:J9Iם 8=}}#MŞ1ޚO*'}ͅB\UWgk{g[.үimݴ`YhuUL/0}Gav\ sm< >}sq-R }$銜ݶ:CwY,Φ@i|ZGԫq$|Gwkgu Ww3$|/ΩxX8o1gVZ+-1^|$|MSkoCWOm׵}]ܛ(!-Cqshhohv"ƾΩmn#ek:(lY,o̷+?]I2o 9oHOG4_3qq!h 8ٍkIs/C`}nCu=ilשswعv{EuF~lv.dc.Hw_OToB5G>k^wt;0t^byQ\]1o` ke}х}?08U~B_s.p`_,nßp,u8xέ~"N%^4LJG+Oqn8>WWQk﫹'pwȮBxk>O;ֽu)VᇾgvXJJ':=o-u+Dӓqv۰y.˿8{{y֒97GFu'B;=E/AYIg_ͯp-^qh-Op *.Dκ Ӯ/YZ υtyϦa#bIhr{QnTkz\hx ~~gokGlD;~9^vj[/C?/.5onjQ~Opr8bWTcWqLn]=amr ws0s4~?EMgitۺFy j;ޠzxC=_I_4))6n##o#]]Jgߏ?#ZD{^6 ^ۥ)m}v{6M㚹O\õ~VF4Eұ3Q=~Ҝ5珦wdAsGәj|x`j-_?vG[v| ~Qua^n{=T.02K|gݾxyx*Jh L>݄ I4vpun).W;疊 hNm~>l6CwѾ?/淬Wvؿp;?Οqg1srKW@{b0vŎYo9ڸd<.hi,ůH.u!/gvgD5bcjj,畺iH5yulv?^S} u+M͹=ޫ{v._ѽ_gqR%d7m!ҏ9N7 9k}=e_gUA\.=RoU ?*b_~9/T犟>!'r;+t^k#>D'_Qٱ7miu>ώl\TMn,V;e^kK`?U=՞vq;YU~hlZvN璾?@Im㢹)N߹rN2<;-~.Ӿۭ/ fS]TcJs1c}kzFp==ǕeM|m|G4=v#/]KO˷r {Mkg?&fK_W/>h]:{-]s?C}7mz'q ^[:{ }^9N/^LW :֟yry=PovD>wI8{ azK Ð/UA.KiZ ~VZLmǗzD>nCwm{i垚׊8N_aóhXZ֫d xWܿwQ3(~GMj=ȯ@3(|M;:ʇ8}" 4D:n'7/O(cLz.ZA} }G}Wn KRnEǻ<[\ 8U}}E1x;V~Qαѷѕ#I/*kp'o6 %0\'C?-ǗكF ^^g{rmPuZ 88r<ۉ.ё]\xvx08mMشa ʷjQZ8ѫVwT.r{b%N\Nثp]:S-Kho&m=#?<~}\ӝwn[\jmAh;hm72_Uy<-FXBю+m_͹ɽ8iZ|58ZM{||{hm+m;Ϧv炙>&VCilG vi 6?9~PIcpiW\om٧k>12Ͼzjq< L&u˥zoh]?6>~=\Ծ;Qov<8nWxpϕP?ovhc[~:pminwfC5;z[%{' {l῞\ 'Ug*8qv} OBV8=6`^G :Gq?l~+Jf~]vn9v.\qh]6Z\Op-v6wx$ h4v~sn4~H]숔dd6 DÌHd'gߎKD~<$>~Z ?m 9ܮCy|}{rϢySZ >)E}vhh x55<|;[?Wdp5ZҝqϷMсL_Fdji7-i'wǟGgm.w;Νjqgw3Yis##W:1qw~;#﹒gQWrSÙ>/F_1^?;YpÃ3-'->L'-ὥc͝~lLs{ga'+YƌwUhXt?itn ~嬟\֙]oijI?q%KKUq&;e1>ђv%N۶mcOwƟ;iKƌ+:bĝiI_\1#kԧ]uu5'[ҶqwyKtw;+vw:F%m귫>~:-U[6ƬӨ߮U;}ڝ6s%3[W-_Fw?#zFzvל'kߖrҒܑ/я7sqO[W;Xt&WcޜvoW]dw/e}UzKوVKƳ2کN[^N.;ߝw5\5WbǗ;]Q}n-7;ӯ8kw]*Joʕe|v&L'Fu.&YrV+i_wݝ1ߵTvw;ܩh4p;cθ0smR9?WܑՓ3jGw42}:Ӯ޹3\˙~ΘqG6wgvG7FmNvƟ}Y=>J_9WΝ~ZҮ-/˕N?='Y_4ҭN0ҧ+/Vh]Lyg}HFzuw~pg.pgܹ+~ѽ+;Z2V\sů;i+w꿘1w1?-ug\8Ϯxli;8-⪏+Qjio80AKFu~nr5tiwgzpծ;swǝ~L2}87ߒz?w3;keKF}ݱN{;k+6?8]qxu&cKƆztgwВ1w%z~fߕt[Lj~ae?pwW]lψ!~Lw;㫥}7躣wE&MWk$WgЀQNbаFQn5X?j!# =`vRCuミʒ{ɱ#qոw;.ǰc.p|gcF wv}2`#Gs1.dr;'a#F${1Z 2xؠ sWa4ށc\mZ9d!毾|c }ǹߏsandwich/data/PublicSchools.rda0000644000176200001440000000143612771061203016227 0ustar liggesusersmkSA'MP۞O2zE]=r݇ IABR}+n+ܷQ]uԽÆsBo d4l∛=#g)ԚBG֠YĞ~8GԆ{CNb 7.W*%Kl9mԘ(qX՗츒NBtҡEZ&S]W0ؤPn5#2ґ/#`˭kB̡ = ^bR}irnz+QhrÅ䦚h~l*3efpVizsQֹHS.L}9DŽMg_Frޖ%VnYw|ywmRtq*i ]2e/v ɴʍ/smII.7e/28%5EIx xsandwich/data/PetersenCL.rda0000644000176200001440000013747513120767107015504 0ustar liggesusersgz'rDE$(j$(Q ~D%s&p'湓ܽY޷ZǦ+[]u>}G}u:ͽnUtw]Su:LgNVJtuB*mQ4F(KxkQi?R](55FQjk:FQkFiQk4JT4(okFyG(j4FiQ>(j6#V(kFQ:iEt(j4J7](=5EhE(5JW|QiKFQjAk2X (C50FQ(#4weF^(5FQieFQ&ieFQi5t2C(4Og2[(s5<2_,(h_5BFYQk%wT,(5 R(5VQ(4_o^l(5&YQheFFٮQvheF٭Qh5eF٧QkF9Qk#F9QkF9QNk3F9Qk FQ.k+FQkFQnk;FQkQTQ5JFyQ5CH<(O4SL<(/4KJhPQ5JF(Q%ZhXQ5JFI(I%Y5JFI(i%]4JF(Y%[h\Q5JF)(Fb(fb(Vb(vRQXhRRQ5JF&.:Q\5Fq(SxioQ|5J5QkF(4JmRG(4J}@4(4JcFiQjfm\(h]Fy_(5CF|Qjvc^t(5J'Y|QhSFQkF\h^FQj/4J?_|Q(4@2H|Qk!eFQ(5ʷeFN(kQeFQ~(c582^L(5$2YL(S54FQfheFIQfk9eFQkFYQ~(4bDQjeeFYQVjUeFYQj?4ʟeFKQk eF٤Q6k4Ul((5S(5FO(4~r@(4arD(4qrB(4irF(4yrA\(4erE\(4urC(4mrG(4}"5Q4JF (4JFyQiFyQiFyQ^iQ4JF(%JDkQ4JFI(%I$kFI(%MkF(%KdkQ4JF)(ŨQLŬQ,ŪM?+]?gB>`]y;fy"FzsuDZ#nX༊M!rtpoj (zv.('ha g~Ef54gE>hp2}QocK?V)&OhHg3dxyDqq2ϸYx zL};s, ,f;;>ڑ~,< 0Z1ߑ߾Qא>xa*ڝ ۆAI?>m+_ MP8p8ʏ/> +;O[~(QN99+.An(ߜQMgg+ YoD?sF,1hw&|t?n"_hwY5ǎفrB/#Gz.*E_uE:[x~ku>Wܮ,ls_qiw6-iC?%eI꺭]x-^FD@.k Qhl=TK>ށ߮l~i}Z~~݋"݃(? wAJs { &GMeg 7\>&I5$*?C-q}\im7]vٻ@{>]p-3e?<K~'ya[#iSPzuyy/MיOkV+1ax7#ĸ^N݋hŴK^<۬(7c4h+xw0 @?iWϣ3nOC9ޒosO,9/Qn@34uG9Q#_jOd.eRܗz̳~A%ǫ>q/g=k䕏:G=> jo>X+Ǽ'"'O҅?'ˌ P z3W@=OV }9hkoWb׿clOϘGFkmv{߯{S_;W:D}ORQ15wK$_r/~tVC䏿Yt'c/`<pI?݂FL2k5{rn]_E?R;@2D{rRQϲ"͏O>\'قt+CZl?QyxnaC{2}ծ(/%3a2җuCti4uWu[о{nىεiUmo(?tXExc}(Nv7BRu3NhciM8%rF(79CAyfZNŵ2Z>Y8/U>pտ= ʏy/qſ}&nC97MxG`g~Lo=CCŬ}H 4?Q3\~)鮜W} nEgE4~Ĝ5σp [~=o@mAB=胿`,K:CwAޞO]DQ}g:t!gC~߯L ]Ynָ~] P߭оqgQ^q5E5+_a2ίEgv\\56a=qrTމVcs\Vw>^2?|{ӳol|_ _h/Ҷ/>xZy_[흁k~Wgf;m:GF3znn|N=^\oF8m !Y>Gq g~DZ]LOye63}fv΂kEgP_QHI=6zY G}i8W#X芫S0j]E˛>cl#}:*wŸ KXo!_r M9^^4F0nE~ =6 E'%MCɟ=3Ho}nQx ^tCq_z?_g:Yirq 6F=VS_S#Hg)kr< +!w϶ \>ڄ|ma&ճ>x{J']eKzA'b۾h[r'>+[p_sx{i? 0ߛ>lsFg\_{xoM}ӫA?O>ӣ6j>-q}ot:t@[A;ԱЯST }Ю%я|IowMϰ^Wz3.K׽J.nO?}fm}# Q^k74>M3a>:pҧM\,:knj@9UN#Do#x'l52y7~? [eAVfAw=ir7xn°ՎўCwZ=xIw/~<x^xUrӎ|k>-Q«sH.w\'~ >0'p_pAch( U{9-]}ޅ{k10"jrmԛ0`20ɔ>h?[ni{?9 (O8v}Au͜A%HWj[֋2};SSQ~fsὩ #gf-эyUYd od|(aW-r|G/b%S WF".I_iKz yct|>ˏ:/ƌ~rb~51hWha_3Q('3}U?؃as9 jh2W툎F.о\?<+e5E=ngeͫ`;3Oݸ+~~DGN.†wEM< }؁IH{ .ߟx9/ Wˮhoƪ9nvsFe#Ia O}ke&.hwx9iݑ4VMXޮ\I}Fh>y|ڑH{aA%fhg1pu΂=C~WpZ:/!mM>ե7[M}~̝xOZc_weV3|Od~rz|kƥ)Hg eꩧ֠h#cٞ|/l"s{QnNxoߒiZR㐳|E7xv62q'O"eҵd߯l\W|C{㱜ӏp[GOM=D?\sʬgC1.9FOƒЎBڟ!^Ǒ>>v qiOr=}3{>X(7K7i|{X3aySkS2<ǒp ҇E;bϹhWߐr3a8O{C>CzڝR'@d+cu.x_n숪nۅkӁzDn1+b&EԆv?{S#K39;#ڢOq2 *7 \i(^i=S낂'Boqs9p9~v&Ơ_w>?3tA h!֗9G?QқuoЋqgʽfێЎЯGG}zj\A}ip|c!KZ5+x=F.Ũ?szӣG?kGl`<곶OFf0Mȟ֓D| ҕ˰Ru''\<ٌu|ј=Of}t6W]j^_}iߡ~\?:q\ͣjx~G7s7߮ ~Yq:y!;;ZI[kM'dQkjmt";<3IA|oܼ 'nH؁EȎ7SU9XoFĒgs;Ê)v_z|7eK/;rr=pp!qY~+:5d\?>XXG?;& bu6Zy"_*h׳wO _;=o J֡`Crz3ޝ'pm{xnϸ!C}2Wex!U"xh9rp 6>?AIX\_fc)>c]B?>"׵e90s Y Rpz1D4B&8`!yc$uU9^_\{HkK~> 7*.}ٽߑY;7DY ڿmo{Ϻx_D{oʠ?PCMp[Dz Mk9?_|Ebei*Kxw8T_Mp}~%ţ M@}Ѯӊ7a#vZO(}ރD>}ʳ4j턹}񻖩ni/xv>)ڝ:I:|3}oΓ-wL؛dF[*%Slۛ>:[DM{yuO^Izp>ocxz|]qvxke菱gٸ/lڙys0v[31޻x+81?h,'@?C~qw^p~12 x̯nU4G;m(E}%y#q-M?t̀'Q.4qm_y͗ȟ1{]7A ~d=6+]waR.'pUPW2?ߓa],o#ʻg?ɓ=ȍߧLmT5r oM|'?GE/o3ׂ~[(OqvG,~$ CcӺ|7Fy[iL7 .Kn-m=FOtk<}X 2+Z}כByO%~rzIsW^_zM`y6øZሊ_V\5Eˑǎc1wC_ԟ+".9YLlC?啴8?(:5gxDtC- ނ~ĺJuC;xFh;<2dOoؑed Y ן'@A\X=_O+/Vi:!ݍ/~W)hot Y C}C@Uq ߫[ݹfyTDڹno<%kF\Ss?kL\Bq5!aO ~9țAź#"x;}FC\RRYC~|yQ'S/Ο[qF/D\Gq[ZzBJ ~OdhoKbA=ϐIwt+X]DܟA}-. mĿ~G W6"Py"׵!Ͼq I{D{Re#s?o)! )Møo.ZyJSr 8qpyߑ>>w*KgcX\M #_e;f2 &ȗ<ȴ]BK za{]:#q, ',h~1 y 9?- "嫉35,gҸq eD1 WWЯYAaq Li<~gО'w+}d#6RLN6>̑>}Qz_QڤHx5&#G#]wCܰ7~?'q_MϨx:E3DuH'N4,sS ]yb_xϚȫs WcNKMG3F/^\Ϭf>Y &Osʇxp"g:bw753WZ(rU\}֙hOhBWЇi;)dDK;dE-DH9{4m총ǦL\/98xV_tw!cbw5{Tz s~༪᪛O?QkHgxآ.T]}z_"DwG6~gXrc` S/iw8vcYM ?8?V.#=mv0COc&;&7.vcVwDFRt.}yKo5'iY0a>C;Y=-(ߔ<vi 9^rh;{|{reƭO)2J^Wf q]KuKD}= 1܀t.X"ŅwL= {svQ [ұ)a1O8'%RW@Y31[[rpvZ܉k?@_vڵ"CX:~ R"36{d#šK<'.ȿ0v[ St~'/R=_(,mE_g_y}pu%Sܜ$z ft+L$4-F `)~:^5l6w݉ ̣ "}I 2SGoLbt\+ks&qUrz9;,6 4z2/ß߿t7ǯ-~386[gGB?s|5+(/:Jd/Џۇ(KU9=o.Nw5^G)L} ޓ|bu/>%quʋ݆x(i~,u0^+~'\ x니-ٴfEʄ?ďy׸{v<{S_P~. (TNyhGܜL@|L x;lW+ vsI)}]~EYjzzY4O\}O ~LU?wn^$2Yxn4FY_I_BGDt;nq *_ de y w;hGm/|_Zڛ8#aaL6ҥy:p3"{OFI* J1b۸}߮ˍL5Ο7 ;Y8QwnvkZ4K"wď(? >0mupl&99/#N'X;5"d܆v().þ>켪ֽބp{Q,CuY]JZ&Ǩs^EH_Pz} ,{w58IoV[P_@x);!^=߳xtX|9wGmٍVB/[TdW˙G?1Hos G~+"ỡv7| Kn?o.Co\<q2"bUOF"8ƸO5-Ti˾k$q=aW_X3 ^p>{|閶ܦð.M/kn顏S'O3w7#Ӯ(J/(?;qG^JMW/7r~y<Ɍ5|I|6dm #$0 z0R,_M> q">"8ORB,A{C }1i;+p5|8kq*WK%֕20 O9Ū(wE¸kݞ^)q}若1AO9ˈ3+M|TjUw7Vq syo!.lޏBVC{Um_,}f|gE{b#EdVv~\8vۛB!G_=v>Y=kQ<>(p"Zvaj~G/Ow4/~RZ?%o}W8W퇡X::0I\Ba9?rL]G 8iѦw}DN5UM|N\Wϐ.:qPŸ"!^՜|d%)dC-CX_[=H{:rTo NzNquMZ/?䓮h+Eb{[K 3\'gGkd<ǽH4X੫武(9xL3+s)pAzI~r+y` +Ay6.i_sfW1q ݥqjZͪ?Km~_-5L`-~^qxيx{g):2mUXs^n3ʶ v}Ws~|!`]">-Ϋz[c_ߪ'^0lKOӏ kD|#/r' Iݩb+o)냹KoE?^TBiU|R83g/8~5(5@o|J;뭚쏍avEa pa7ڱ]3}+' zVfFEp:vۉ#:$no |8 {4@CKA'U[JIxoC;ޭ8`?%R.h^<d cɿuq4GgYOtGz[F>6(#oq>5q D^ ?!7[ÿFH_4v1|kx z0ԄQ'NSulf]8đ[5F|_b_" 2x0=' OpddskB2{Ghw{9C'32 {_Hi1ұ+ 3h׈O|CM{qQ/xeK\e;qi YD\%^~Ox6~"%~WއX ?2v3Qww'M=g0MCoi'"mw7<# u6 BF=!ݳ#'~mE=~ [&ta_]1oaσv+/1q2㔍}=e>Ys%KyۓWK"7r&|l/u k1nRuMѴf,֫k4ڹGf hȸD1F&Ow?'~ŞuiA[p0g.ی'-I%zBHҰ< 9'fŒDo~G8wqG߃A&tkQ<RK?}:o)5y*p/"؋צ#_HW+ Y Fxr(2S{r^/HgucZ!q5amv%H!E,وaN{ˌΓQv!}qW"?q,=wwꑮֿ̛zxĿf?a~'S⚲ܙ.\. fy?\_dw)ͤ_xàǧw_;r?Pkf.=i '%q"@, r>Gq80y'OG|˸3jFڿ|>u@fw)G>>~ôXկ9Gp-L?E=ECuJ뽟EWEY+$(mr|}GkBg7&dj-׿D>0߇q`#mZ~|x[<y~Ə~z9P>ꃎ_OUv |stA 񳶽Aӯ߈_'_cv~+í(7LF:=9h`?)>,;iw]9FWCz,dgGeWw<~ȁiQ൓U[go5V^d+G0 q3G ~ܙ>K;E_}5YF;#gD¸>K&cs4 8a&5D3J^rg7D\ļB\0.BA䷓(=ʕW.=@K')NFk%__(+2O"0";8~PC_"> F~,WȫVv/V„SߖI^$q.Lfq|}]eJN=Ԁ{zMyhgx3Ϋr<\돛C9dT{Mў~YX=;3EV_ģ Po+בq8_i5yVvsezK}{/5ѻ8q>DH ")y kCCnAk2- /2.iͿ˸gA?GifLw"?H?0>qz˸=ܿ8]7Ji-^P=$eNyo~-?΢EX S0 \YpoyO/n%Zp +qp2;7 FB=8҆e}.܋Gf\9FM&_ꇈEgY~Ox)בxG%/a%3/yF"~}}?rE,Џ:vj%+z?(Wﵼ9G=v+h=Ư+.9ܶPC֡i:qf0n2跳8!ׅ| vC%0n44zN;{O|1% i)\\g>6&xOϊnGz t-mtB!~M۹Jܷ_K0[>1hw^KsL 7 /x3A0Ҙhǻ)}|`M#e&.كC99DAKA>Idї,¸ s7R'p8o?v_ڃO(sN^MQz1|}i\wgoX3Ls\1O$wǟx 5Sy#ofJ^Ǔ <% g:6?殪mkv#E+?$!^O8z P+.D\g[l)b\Q$.J\%gW(Rt[:φoD /IA}ZƱطqJ2!I׭ty+g\G!}9эc6:Sv϶nD,qx)O /lgf*M> kTxT=qT埒?Uc3װE]{sf+q򼁼=,_ glCvlw^v;+K㽽;-[f*{{@9Zi7G2C!. {y|r{'i;W$c.s /v?#PxKK:"C"VԧviIh5|-ӋH˷7~Ɍw};<=DB4 t?% 'm" k0^j._ :h bd-(ߺ+GWҿkra|~ :۠aIJHOׁKS\W s!~DZw/5d2wOւKf8^~m>ߞ,A^_68+iVVIOO%2h__] |Ĺ=NV\4tw^>x)a5) 80ea5(tlVK;xTeu_fek!a9tGEdM>R:Ǹ$¨#lʌLIoCe2n"s#]0Tq$=O1qvwnH%UhǸv~\s#4&y/}v``p0<2/EQ?J"7|>#_rq9OʂyG}лla ؓũxI8IQR?3"iw0;7qTq#ͺq+ߝ.i}ї)fws(J2ןPR)+$2S[u~Vd4e:FC^!7Q=ovk I+Cjc'_n"Llk=|7| xh_z̽6Ϻ;ū/v!0uEg;YG_0u-~,37Q^ |8,ׇ灛ZϒO13`]}HFCy>l5 ܋z'qk},>a d0l>AR_V~W>.Xvuux\=WA p.hȸn ^s;DڷWщXkfgrݗ>:4!7hG?!ǹ+p2:DZ~JS UG%Km-QnM ڛR >] q;L#/>I{*ɛ !;ągO/cg_D;3@ =YO ! Q;IG/"Pf~BZWYz@y""H%Qӛg^)~1uu[#g]Mfz\2? FD>N~Zx ys+9ɏgHd\x毜)leA/!~fdGCK(-3bP^ø>xS)K<xT_p7g\ӪHo0?Q֕:о}QY| ]qNy;PNZcɬ:ky-ѸNSUߧ&_[Z2s~(7= CLqcMft9'#. <)~ hr>? i9R9J?\zq8/B~@ɃWx<ݛh3'w@[Z%hơ~ltCoɗ؊xa x˓s~*v'qP"!8!~GρOf"&lO('!ɔH3O񻖆"6d!`&x^i=/x{o';|"oՁKzd]qiGMGPWzU>+M-{*w_n'ߍ0#>MO{P%NRDڥnE_q?.(2>TZ/\3L=rroI&ud\e>c~p9<32^2J=/ߖW0OS{Z#|ִp% ㆾ(/[O+S:p"OEMڣGK"^/r."m\n9gaWy+ȿ`p2$Oq>d&R8f3C'Qx~ko ck /S?C|C^ ^%tȹOXq7ˎL&>>rp2}[7v稺G?!^Gow[H ݖO^WɷV{i|>ӳH%G&Mĉ= ~?o]ϹES?"0<;8Iœ4S#ԉ'߷OivEܙ.jc_m$JBg+ 'nا6Oܣ>rqER_vEă5 {ňydDW͸A{<~Q壎( `uJKطD$\- i> V\(7O3C_l^v%Eq(EEdmB Z'R5_!Cpͯ SF{CGpwԆ?NL_GV=1řNX]h;+ 쟒\\[ [IaIS#ϊhyG9&~yKD>N?8:12 C|[?Qy6qy!}0Hh~n(7e:.YP&’x&qzQ!-Rb_"қCQ,ƺP,!8$qW^AM$=y6'`Ttiϸ7xN}'?#y '"a3.?|뫊wrp= ߁FN ~J.-hGEq^uWYlm2ŏPE8_K<ȺeQVí;c o"Bf[J>9$K#/O K<|a!9ƍ?I؞KysCoai:<֐xܣ=$r,h׫eWL&ߤup8GȋbxHc\gJE0~zĵ[SK Fzkn߭Z].E5Xg( 6Γ|93&~Xb'g28" K;@v=s~rR 6Ȓ Wyu3Oʶ3q('] )dF炇S. >G>Kւ8?u">!1mmFeXM?uw2bWt|%)F=;yȿ@hXe|j SQ[3>C¯ cWQ8OyюX_kGf)xqki\QvƣU}ZQ9X#-&> Oe8JO|w硬s}x=xmԻ1u#}ޙqֆ_qrp㮢eOT9Ʊ>˸QS SQyL{u7Brѯcd_G/G_5b/y ǂoB|8rV~x4D|taO<\c3ۓWV߂y]5Bדܿ%ƓW-#M曰 K-ΛEUNwJƂH"LT4W8⹼}U8 HV2l e޻;ʧnq2ko۔y ~g+`7LEg}];L#d5o8m;Cï,_NxGxwџ^'(uV"I~UzLm'c@^Ju};ohg_On*3ɿ]NތǞ_[4Fo%>5߆kNi|Lަ!<pJ"}lxpŠoE_&!ID^8{_>?ץ1읊~ ˛-[;,?9xx[Nܯtc\BEggEa+ >Z)s\UweA'>ٶ'#bk &Fn)@^7Yn ~wӱpxC11\c\Bp^+!Kĵr˾7ܙ(.b\nME}}=#2!W-O$b"˷-#ԗ2KYx8ӈYpzK< {|:ڝx )!]E,p\.L:OM(iϷ~b};8L&H/0^G't !/ᯒ1&Oen{_'$"w5䃶\Of|L~Ǻx{=[|2v_@FlXFp9E7@\Ix?DI2!o-R /}8u0QꚌ/87QRE7QxA_ףEIK+]&c}CrU˜Uȗ|sevX7c,߹"s=xDCdrvAZDGK}xC?d"{%v'-.g(nO *y%?b\s_xe?-h?LkѾۃhdZWGq/ȯ K|ׄ듔6o+nq+YagxA"7Nsrg\zHިl_hđʼPopaOzϛqx$=? Wns7AY?U9\Kqu{ZM0dR/AiF?EW<3_gW|Cܵ>~# :W3^Ⱥx>opiK$cG #O'_̗/eG)ƽd'B}ʳ:N2ֈlgjK:OTUU R]>H7Gj.V.F.'r| U1xYI+~oMOD\B{^WYЄvX{"lE}h+.o}wɇWy q7ƝeLO Š=(xdվ|w EL]W(1<%e ܈Z>O8Ka ,O:ա}<<LHK`mp.=s}C.Ϟ~ g #__SZL{(('?H|q,p1co"Hu[]!ҽJ9mgB;pyj bJx}a˂tJW˨ůUk λ$u{[b^oRk{9G;^ R/ \yrE\(-^~>O;Gnk?*k`G9/S#Y${pUc\?]0wp<RgWhOa+M{U]9fVT>3^j)ϞKp2Ea跞XOhu;vDyWi[ӿ9ޙ8PŻû;H{^w 'g88b@K~ +]~e`?(<f*gG$O)mg|_0 [/…>Ôy< FQV}E(NQd.pޫE__Q~BEX(zQ4|ZU(.qZ)-Ox5(b ~圝H7\ _8؉;̚zo[mf^a;>H{Ev?R'ؙ^~dBU}*G'j=x-3'H'6<Ѳ#}J~8 D+7ٛ^Vun~kzW?|_Yqdj5/٨.?wak. p>~q/p0YhE2ˮq<;-t2̞<}\$~\jTS˗68 㲍jZ}:鑏2~1eҕ1¯%A3@\/Lc|(q3Rqs[Ku?kyLsE7$.'C \'zOnDܡ?~jfNm1kǾA؄Db ~hpg?|1s1!(2| *n6 8"*C$ s.u^Ǭ╳Vj?\?Aݚ'?̓>,['zaeyt9<^e8C8al@?rېϔ As qJC(=µN|MkV~6wg58N[>KD!Ṉ}E\FE&p\/!gX+>z A/ B1(G;~5p2Yy1~#e/E}/Oelwُ+M Q^Ümʸo`a=/,@X?*uZڟÿ$b|qxkrHuY no)Up_ԧ'ɢSPojeڭ_yWJwmG U`?&?2.$}9K۷li#+ZL~Y*sp;Kp"f,fo"-j:S[FRm+ϑEĉ[d}ʨxnDN.0=GA܉q[K;Jx[415}ZQߥruM?|i.žBfy߹w9lj+3⹛d}J ~Q^PAq]CIgh'yï38v4}Mu{|/ecCYҁ/ ~q֯Ÿl=ӆ}sZo/uEn^G{2=YΫR0)Gq&k3>+Ʋv*~KnUZCģ菌\$zH?D\LM sinF^W[+#_^d&nDz~\vcxA(,21\My{d3(X̀>"SMG>Hmo!B >&O&o%RQygo/uҋ( ugqKѕ5hk!nj+KZJIG]EC xr]d6Co Xa|92Qԅvcש9;MEܒy|\o ygq}] ڇ<_On<{ aWQ;:#Rjwa-oC|=~/ŵ K`}zߥW&ʗoŸt߆vlG|#ד?t+ +r/KO/PE'xSRÈyXdm&RXW+~/IK~'BAܰ(k {=2qsWů`(M!?MI#K̆fϋF܂WuwT; s~5`'#ߒڱ\wdy#N賡W+>zlV'UyE3Tu C@6aӖEd>#+yկGesڊg;?JdyfUVum;Hy >cFZ/ȇs^5~"=5p\/p2& m$ׇZ9_(2ï+ꃟDda巰T]ZZ"R1!ʭX/Ui,]DܐW2-'c Uߑ<تL^/)kxJ[U/UfF(+əQ>xճX{\c~xֶDWh(cF*^ӡyO"[B]\m_bB{?TG[GP|qGjǫ -N}{_%Y3ԗu:7[+F|S$O A|_Iney*ڗR} ߧxoUմ~@x Rm,֡J-GwKSOTW I*Wh/[;yv9};0|@ޕvQyys ʹSG8%Yъ\1T\.wm+S>I|ӭ|yYd2l p;2kӫgԇ8)a POߔ ?&\6ӃF/,?[L&x6Hc)[Z@_ỬE6~]hZO/U2/,xUw#1HVqo U=oʡ>ǴՔH*Z͛\yGڟWW~J5;Y ^ am {~mk da:  dTAu8s:yE|Abk#yǞD}iuЎ9ۋgos=b?٫v(W\'*7ЯTГ2s \J{[' 2)n}P^&ץ|,{[ล}ɳkM׭q)p{)vWv }f$Aq_(:nq۰oUjv:;WY1 2ݞn_nhN^_k?q!U$Wx/ ͋2 qW/%c>%Vz;?W7)G#VXT;oXG2oƍ>򜛰#)ծb~m&J?xe v7 b*cܟ~;$oף?P7Zmo]u$egZNFuiGO\8W3/>cxqaa>);߫36@ ߕy_֪ 1ճ~c~wjz_qREME;Z|HܶcnP%v8+Q 2^+vawt(w=񧞞X"Wp̈Ḷ&{&yo]vUY9 <_tx?TV~!|ӾtjMX\w}SN+.Lj;rW>Kq5>vQTP{"jeGqR-Lſ /Ԝuzl C{b߽7 1S;}Cw z_CZRi+m|!Qܙ믻ۓ1.)?[>m.Mߜ}:K _^;Q쯊keq؝;} E*\~'w$S&">HN;rߵO<}љc{F{S?< 1KVI7+n.cye#ΦߤRÕ곀맒#Ƭ˨GJEp[Of~HҜЋu9?/*~3gS]|G 8ϹֵrFO g/_E# ȟ}Ls~, ?"{ɛ /t?邸Gv=s Pq3m}Y]_?ؕ?)I^ ǯA)׌$^M &7q\{">HNZ[qߩ'YF`S׺vY'o+d5l+dYѯEZ* S7z}Z=$C"nGfS<ܦD|{~☛\χ|8>L<&l ?PuC,(' _w+r쩪;xgZ]ߪ W=QK˸O֫ƙ9ӯaZߣZhחG#}!.E{k]7׉[cTEN[K,Vמ>GgrY?o~2S=}sPuwq~,h? *%Vc|mYeCmHAq62aߕX΁Зw'˦TYRLqg#@|K6JB)`Sjym_~q3J};C*}D_@~]}/-{v+qz9y^Rw-pSk|XOTw<f!!tBתG윪/qyYɳn|xu]SG5t:)nAQ{zI便?xB؇=8x@"nVyk+Q~#ḶK Og*GjaMwAv=[Xg{[//䯾~:=vv/хq:3o tc`Pu=ޓZB/n~49"=px^:~-2~|w *HS#3U^։gT,̯Wc^{E+#yNq U̓?C,=UV*ۻ:tam9DgfD~8 KȚҖt$Ϋַ#}ǴGךs<_9ͅu:WF59~|/O\$N5ײ8q`&KW21wiLwiDY-gľ}ry<:qQv  umaj5#shŹX8SGq}-.a<Iï{;z6NBN_Vƹ,6Y|ݹ_`+(Mè_ߓKe) I0lˈ79)>TNܑ̽pYc_# H?qzQn~,UR)4B;gGdi"TاU!ɢFsпAK1N\f8bu.4{~nׁ'Nfo- 'aY(U$e!Yup^䙈]@F/ 8Ow9>[6v :g]v-:y6kGb2ڈ~3!ΑWYK]v@.{vl<,"bh06nJd*}Ч:g9x~dB~\F2(G ܝȼkɇXڄq]e353z8,VG35{a[uۿksW Gv?Ya#^"˲(Gݺ.\V*'W|}ُv¾/L;#+oVk8{YևՊ~o#_oH6 Cɜ]\<yx~!R q/,8K/T~Ⓠx>Qc3D?W}ԟQ@fAkNyȟi^Ȫ-]Uui3ʭn'qIsZWXJGO)>y!l!bR# 6xI,5ڙ+%~.~=Yŭs;մ`e]Pnnj-[gcOL㉗s cCě4>Y9 ̹D }qs>E(~뉢̻/?~s79F\cu3y󼔄;TήT{ylA9~F<{})>Sk2/+loa=(R-q9#}IC 4uCݧ @n/2 <5"'|*xCܽC7=lPR7}GnUU_/˪x{?ýG{=p W}9ݕSOޏ'aOt|ֹ D7K"?Yt]}ԚASsƿ$jf;J+ =E/'wߔkp8?xE2o}M{\`=/Mk3=#n/?EgFR[{u7*z߮4JY~ iя:YVlQJd)G{O/ϿD}~i9 [%f4y:///-~ I[w@=A|։q.+VjmNǵZ1~?' 0U}rg]ե5jwDwB{(^N=H|3g2mĭ(Og~:Do/o֝$Ocl-e'YnWD{c2/Xͅˠ^/dI Z 54Zag6AGε!O#fގҞC')-q9ɩ ren5]j]?:y&c}zFAtEy-_&/CmUYڄIu_\Yfj3cA?GKKRH~oV|֓Ѵ}FYލ/[d C"8q=G5$ eN|ԟrNѿGu4U&{r#B J2"}VfZ5өVyu}A~a]PNR}qހZ6D>dk t2q."^b TQx_t|”،z=y_!~[#,vS7ޙs6s[ʢY)~̺ϪST +uQv =5c,q/N߬JדW:灋-r_zvQԋd=ԛ|1qqʩs_a=nS(^7SjlRn5*5z'k?R)^e4zHqqk?o|W'T>:?Һl7Ziex?5Evt񚟺OƵ!,162:$Y>x*Byx`s2>ba+D$+v_CW,%mۣ=ňUWGBu>; ` ;'ZmAwrt7C}e߂?P`=c9.!SNQuqʮ`P?FQяX/!n?.dyWa7f{(|%z1ο,;1Xۓw 8%Q yQ`.̓pw?OB|Q-5x a ;ԟ<(*ߗ&߿ ӪGmTлi4E@mg2c3ۆe`e댬ڡ02牊Wy;$-n.QnBqv?ooJCƟ_; ,߸yLۣvGy1((5 +Lsio˘}yk"3= XFPݮ">@̧E>zK2/PoQ-&qQAއ<_W9$oX)SxOߝ!+]$R^vX}W~`\Og $.-&am̢ wuE}Q)q͞9x{_.GeG/>g8Wuu!Eh /YV|Ƽk (ˬI ͤvy" ַ#f?] \ߊ5CnӲ`+Ņ~+>Pu~:YEٙ_:]t[ T_٪o$W$OUPTo?.'#ȳ,//%VF?wǦ0WAot Kr{eyL^"yNQ7u;%o]zwodɓjns m; le#^%ߪ ~@q2q^x9q"j\mT{&̍CMT%b-wT=? N~:!Pci ) ȣP-ڻjU|!O[{qRoy>L`S}qz{gZ~S)ˈs/]\Յb(޸b%/f\wģ(7 e}}#¢/x8ȊXc 8⒊u (ZuCrql<85 8pL2BϿs3 21ÁyRjn&$ ;_E9{߶(>?>_bU}ȯUqw7 8m(kuoPj9a蟵U=z?gTЯ@ _GuiZA.2'n#c5^oU7 9Ǡ]^yzXg+nqCbD=8`T]qc^VUAd=mT]%ZC^s[f]aw. q,uX汖|G=Cܩ,l'dx"qy.QM]~Ъ7;jU݋_zqx1dtoϰW5xX<'W_&{<_=ǟ~J~UC6To IgFxb=)SɧX);p~t4qPgPoɇгȘ^  ֓7~x<ɵ.e @~jث%_pen\]?VC?.hsH:z"²|q7`+`QKV3^4l}8S;4zyNF}.ť3-Lp!wEy Fo?":d6]V~vUvΛ \ٞ8=X+?7e ݇H+~%,Xr,!';QjmD\3Wv7}okk,!Ղ@qNo|;aXag'VGy+3cxmL>#}-z2/W|x=|vπ=H,TS{73˱sQnGE(u}Rƭh6sM<*`U5?Uq Vr~(蘅<bPN5M7Ѿ'\O(b {|f2a;^Y oa?X+g}ls&qMh/oԷ$Hz>13h1Ͻ;LO,]ho|tʱqQo.{Pb_yRl_FDd{G}-C_I#?!<"꼪'Y~M jab\~ɅЧxSlrl:}%S>?bǟHwܬRq߷zqlv$҉gSX:D]F{G{>_cP܋gS\>57Ek=P/#>IqukH-t諨5's7E?Lxw8b *gM|p#N%=ja1ތwh&B^/*2~>v =,X9RrPV~ _ L\6lY,tPs!Ӯ,qHQdE 7}z.\O[0ރ`'p&AGl#:HgE |ȢDw{{zwYZNA=~!for;O/*]AGBƻdc}%Jʁe*qC紋9<ԋٽ{#]j=_<&1|gTg8,ZqY{0g(/|xu-cg~t؂ aRϏ{^{'?CrG`(-%nS*nao( ӗӀ[ 7$㈸G+>GN@\(6{9x+I?pUޗe[z,ߐu4¾\\T/3DZݯZ?<{V/+v3z/ {v/뾹=G8{U]t~u^~z_z GK9+ht,܁fTWW "i|OŽ>19W>yݿٟپ`%qLcTC|,~D է.1x+aBP+~%x })ԛ>x$XN0˔ﲐ?V/~&j{e4VA[qHY;p2-勚ʬos^ܶ!~_?ߌ4)lY߲8)^q.>iCgNnlJ߻,gfKܻ.,W7VU!QсfgЮz(۰.g؞9ā9C}2vY.Hqw$(wa|2'p(2Pw4mo|"7ʜvP2;΍廈Ygz:qaXޛ.J _2яw@1- [O$Ag=[h&4xME|<|2eSoXOE?EVW(lOr̫=փER +M>8;Ky.9K:UGɷir KjtYq}uhUӈ1E/Wbtu <'Tv݂ 勰8Oa}BJ1[ xDMٟ,;zMOq N2K_R "}'/?@{ˊtf5pGMQY)F{+o? #_DCy~ams߿UT]7}WnQO]WO:p`yxuj?q9Xs蟬?Ϊ[V'닝4Ϧֺ:pjuSne{z2 َ}Pid}V};p$v+ȺtwQeuQt5"n,CA>\E\!( ?DY PEXdL$ҝ^i_yz^ս; Wi=t6܈ [w tfݚKI#gYc+bm$>Pκ&EN%A_Ux#/lc-a4̅wӸ"/ #S t:w xDڔM@ UkMg%uǐ9A?Îawb\ƶc]#!,*>><\bcy?^2{&%`8.fy**O_-b%Rs_ӖCbuy3qxuhtԹTf!^"'?ɦ~ǍpdAz*OvP3QOU؇K E2rxvQa7ްg$'@[R;XZ bLblw;ԇ?{@WT&A}7d8cYץ1!+.# p`إx"e?xco#;îw^?{:eAxl҇ky`ăG'X5/:3pb= 7_!hENW=Tn;=*?N'.yoz6Gpz~v?Nݾ#^#͕SϞ8P Z]3ix}_&nQKi-Qӳ7< 'չw^6({ NѺyQÇ~fx7=Lq??0[Ilt 587v @^LRT_OR[7^:,ͨ8%-TR(Mf8/q>F#x?h(qC6$5~ F\fdƷvE.--8r!N}Xmx/=Ǖ'-ۂ/eUE~@}6>iUW>XO@+SUmwwp52n3v/Q_+0hvcwې4x75bOZ&_Mu-DFgS_g`ϯẖ?Ɂ몏7g\J+{jE Q}|")s7+]\p~}6GQ8kzqSK=pYY}uz7*X Gv]f28qh){vvy':3YF;wyoaǙyS]XwK;SG1g*OA/^m_W[ ;wE6c|EW_{Rȣ</$4:nhæf~: ^|(2W@QWAQh 2Ņ2?Y|jsej4ǑIqc"zp>A'V3~?:kګvh8η)8wU ok>Yʴ'v+!; ^749 #ȷ8]vI<\wIexwצ EF#u ^{gCGOㇻ1[+ҙ Ȥ-ռ84}֍Z)>#ZQ~#Ig/mI*r Wx3p*6=ڧzF9* ]Gm܆U8?mFFyo:;#W:/}T+1e93燙?m8Ј9d $OKEyf76 yT,WuΒ4}湿ܻ~+=yQ ^M>1_k8h tl{.㣾 6m|O&®2yK6?D0: "h~~o{moR;07kնUvnAVE_2nB|@O4T_|5ԍhy4AZޕ;!:GK'uGU7X{&>CYg x#ܝ,Xa? ?i{6܏?j)>5ǀӎ۹.3CfV?GEsVF4ci% T?ċHC^Ty$ʛ3 ߓoTW'_-C~OmG@=mRq۾ż W; \6ވ0QhG xi0ٽbuԘħd.hHL2{T|Oix6;gWW@^5>R!ȗS0SN`UX _k+p^t6yԎZ^#?M&ľuy4mc4pܚ;TL0us6wm ~+q!_+ =Hl"uL+ד=c~|S+/]R L|WI`z֍H[Opli'&?SWOSxBaK]+0pSpGd1x ">q?P è[fǖޚ4CCr&lgc^繌cym(~ĵס˧ȯI~.'"8Uy/]Ԏ.免[R0_Bcw5t0յOɣ4nv~xzDjVƋ4#SnG}ou}濕N/tĩKrcﱝ<1m}'/25<7cCn^YyΒk u?|~9w,S_!'iĶ 3/b2}F_ ;6 H{⌌6ro7mY NM]W1:c# tw@T[@ZMb$:mt/D ]i:w%NN,{gmgx2:k 3|V+Lމj=L<+Rଵ"6])'a\V0^x n2)\?m { "c\70oݒsGM?!NOρfbu}y$/f|u)΋_۲TYoOT[XtZ7/1Em¼ 2~]#NO$j`RJJE]bˈG]Si܌*|*~B޽._J匯rcb"J]W o;cE:߆^{}t8YW:|h|죓ς-Y/gR(~}E$UPjIkF/ yHQ1(Jo ːow}\_r AO۾{!> cr|m݉ux<[xCs^xXE-3!! / O-M;y8zyz7"6La./@^]^:8$-q_%6nJ;JC,<.S3W~nD~ DhRS_z6q&e^9N?f~*0%׿o_ڧM}mmg~ѵ?;8qsandwich/data/Investment.rda0000644000176200001440000000210612771061203015605 0ustar liggesusersmT LSgh`"dDP@-8pPJtjcc.j;y^3!,1`%he 8v/E|Dp`L `K,b'XL˔|hR9%Hr o ÏPWq\kdZ. 0/eOq]*֩g_:<hp<^? q>qX/uRZOZ.\/wľ2U|j9ˤYM3'7h|kZM..@|j4s|"$\$A]shgp4s ˯hmehz9DEghjtZNɸ}Xy4偦+hMcCdJB3lk"u]\s]^-E[!M `K]T;9[|{E5 t|76~{htZ8Opore=> 2vC{GO=F>h˭O]^{ޗbAgl?w[6W΅ 9:{R(ȴm N Y P<߮Ղ}ޠw$*`Vq1av߃`AķzyviCb݂ Ig JM^ w@ǴS># j nso;= e8yq .*" %uHg> 9} Km u>} ZCC g'~Bw Zo:ڗ%Fho sandwich/man/vcovPL.Rd0000644000176200001440000001722314124463431014334 0ustar liggesusers\name{vcovPL} \alias{vcovPL} \alias{meatPL} \encoding{UTF-8} \title{Clustered Covariance Matrix Estimation for Panel Data} \description{ Estimation of sandwich covariances a la Newey-West (1987) and Driscoll and Kraay (1998) for panel data. } \usage{ vcovPL(x, cluster = NULL, order.by = NULL, kernel = "Bartlett", sandwich = TRUE, fix = FALSE, \dots) meatPL(x, cluster = NULL, order.by = NULL, kernel = "Bartlett", lag = "NW1987", bw = NULL, adjust = TRUE, aggregate = TRUE, \dots) } \arguments{ \item{x}{a fitted model object.} \item{cluster}{a single variable indicating the clustering of observations, or a \code{list} (or \code{data.frame}) of one or two variables, or a formula specifying which one ore two variables from the fitted model should be used (see examples). In case two variables are specified, the second variable is assumed to provide the time ordering (instead of using the argument \code{order.by}). By default (\code{cluster = NULL}), either \code{attr(x, "cluster")} is used (if any) or otherwise every observation is assumed to be its own cluster.} \item{order.by}{a variable, list/data.frame, or formula indicating the aggregation within time periods. By default \code{attr(x, "order.by")} is used (if any) or specified through the second variable in \code{cluster} (see above). If neither is available, observations within clusters are assumed to be ordered.} \item{kernel}{a character specifying the kernel used. All kernels described in Andrews (1991) are supported, see \code{\link{kweights}}.} \item{lag}{character or numeric, indicating the lag length used. Three rules of thumb (\code{"max"} or equivalently \code{"P2009"}, \code{"NW1987"}, or \code{"NW1994"}) can be specified, or a numeric number of lags can be specified directly. By default, \code{"NW1987"} is used.} \item{bw}{numeric. The bandwidth of the kernel which by default corresponds to \code{lag + 1}. Only one of \code{lag} and \code{bw} should be used.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the meat matrix is returned.} \item{fix}{logical. Should the covariance matrix be fixed to be positive semi-definite in case it is not?} \item{adjust}{logical. Should a finite sample adjustment be made? This amounts to multiplication with \eqn{n/(n - k)} where \eqn{n} is the number of observations and \eqn{k} is the number of estimated parameters.} \item{aggregate}{logical. Should the \code{estfun} be aggregated within each time period (yielding Driscoll and Kraay 1998) or not (restricting cross-sectional and cross-serial correlation to zero, yielding panel Newey-West)?} \item{\dots}{arguments passed to the \code{metaPL} or \code{estfun} function, respectively.} } \details{ \code{vcovPL} is a function for estimating the Newey-West (1987) and Driscoll and Kraay (1998) covariance matrix. Driscoll and Kraay (1998) apply a Newey-West type correction to the sequence of cross-sectional averages of the moment conditions (see Hoechle (2007)). For large \eqn{T} (and regardless of the length of the cross-sectional dimension), the Driscoll and Kraay (1998) standard errors are robust to general forms of cross-sectional and serial correlation (Hoechle (2007)). The Newey-West (1987) covariance matrix restricts the Driscoll and Kraay (1998) covariance matrix to no cross-sectional correlation. The function \code{meatPL} is the work horse for estimating the meat of Newey-West (1987) and Driscoll and Kraay (1998) covariance matrix estimators. \code{vcovPL} is a wrapper calling \code{\link{sandwich}} and \code{\link{bread}} (Zeileis 2006). Default lag length is the \code{"NW1987"}. For \code{lag = "NW1987"}, the lag length is chosen from the heuristic \eqn{floor[T^{(1/4)}]}. More details on lag length selection in Hoechle (2007). For \code{lag = "NW1994"}, the lag length is taken from the first step of Newey and West's (1994) plug-in procedure. The \code{cluster}/\code{order.by} specification can be made in a number of ways: Either both can be a single variable or \code{cluster} can be a \code{list}/\code{data.frame} of two variables. If \code{\link[stats]{expand.model.frame}} works for the model object \code{x}, the \code{cluster} (and potentially additionally \code{order.by}) can also be a \code{formula}. By default (\code{cluster = NULL, order.by = NULL}), \code{attr(x, "cluster")} and \code{attr(x, "order.by")} are checked and used if available. If not, every observation is assumed to be its own cluster, and observations within clusters are assumed to be ordered accordingly. If the number of observations in the model \code{x} is smaller than in the original \code{data} due to \code{NA} processing, then the same \code{NA} processing can be applied to \code{cluster} if necessary (and \code{x$na.action} being available). } \value{ A matrix containing the covariance matrix estimate. } \references{ Andrews DWK (1991). \dQuote{Heteroscedasticity and Autocorrelation Consistent Covariance Matrix Estimation}, \emph{Econometrica}, 817--858. Driscoll JC & Kraay AC (1998). \dQuote{Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data}, \emph{The Review of Economics and Statistics}, \bold{80}(4), 549--560. Hoechle D (2007). \dQuote{Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence}, \emph{Stata Journal}, \bold{7}(3), 281--312. Newey WK & West KD (1987). \dQuote{Hypothesis Testing with Efficient Method of Moments Estimation}, \emph{International Economic Review}, 777-787. Newey WK & West KD (1994). \dQuote{Automatic Lag Selection in Covariance Matrix Estimation}, \emph{The Review of Economic Studies}, \bold{61}(4), 631--653. White H (1980). \dQuote{A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity}, \emph{Econometrica}, 817--838. \doi{10.2307/1912934} Zeileis A (2004). \dQuote{Econometric Computing with HC and HAC Covariance Matrix Estimator}, \emph{Journal of Statistical Software}, \bold{11}(10), 1--17. \doi{10.18637/jss.v011.i10} Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators}, \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \seealso{\code{\link{vcovCL}}, \code{\link{vcovPC}}} \examples{ ## Petersen's data data("PetersenCL", package = "sandwich") m <- lm(y ~ x, data = PetersenCL) ## Driscoll and Kraay standard errors ## lag length set to: T - 1 (maximum lag length) ## as proposed by Petersen (2009) sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "max", adjust = FALSE))) ## lag length set to: floor(4 * (T / 100)^(2/9)) ## rule of thumb proposed by Hoechle (2007) based on Newey & West (1994) sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1994"))) ## lag length set to: floor(T^(1/4)) ## rule of thumb based on Newey & West (1987) sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1987"))) ## the following specifications of cluster/order.by are equivalent vcovPL(m, cluster = ~ firm + year) vcovPL(m, cluster = PetersenCL[, c("firm", "year")]) vcovPL(m, cluster = ~ firm, order.by = ~ year) vcovPL(m, cluster = PetersenCL$firm, order.by = PetersenCL$year) ## these are also the same when observations within each ## cluster are already ordered vcovPL(m, cluster = ~ firm) vcovPL(m, cluster = PetersenCL$firm) } \keyword{regression} sandwich/man/weightsAndrews.Rd0000644000176200001440000001502414125157660016123 0ustar liggesusers\name{weightsAndrews} \alias{weightsAndrews} \alias{bwAndrews} \alias{kernHAC} \title{Kernel-based HAC Covariance Matrix Estimation} \description{ A set of functions implementing a class of kernel-based heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators as introduced by Andrews (1991). } \usage{ kernHAC(x, order.by = NULL, prewhite = 1, bw = bwAndrews, kernel = c("Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning"), approx = c("AR(1)", "ARMA(1,1)"), adjust = TRUE, diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", tol = 1e-7, data = list(), verbose = FALSE, \dots) weightsAndrews(x, order.by = NULL, bw = bwAndrews, kernel = c("Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning"), prewhite = 1, ar.method = "ols", tol = 1e-7, data = list(), verbose = FALSE, \dots) bwAndrews(x, order.by = NULL, kernel = c("Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning"), approx = c("AR(1)", "ARMA(1,1)"), weights = NULL, prewhite = 1, ar.method = "ols", data = list(), \dots) } \arguments{ \item{x}{a fitted model object. For \code{bwAndrews} it can also be a score matrix (as returned by \code{estfun}) directly.} \item{order.by}{Either a vector \code{z} or a formula with a single explanatory variable like \code{~ z}. The observations in the model are ordered by the size of \code{z}. If set to \code{NULL} (the default) the observations are assumed to be ordered (e.g., a time series).} \item{prewhite}{logical or integer. Should the estimating functions be prewhitened? If \code{TRUE} or greater than 0 a VAR model of order \code{as.integer(prewhite)} is fitted via \code{ar} with method \code{"ols"} and \code{demean = FALSE}. The default is to use VAR(1) prewhitening.} \item{bw}{numeric or a function. The bandwidth of the kernel (corresponds to the truncation lag). If set to to a function (the default is \code{bwAndrews}) it is adaptively chosen.} \item{kernel}{a character specifying the kernel used. All kernels used are described in Andrews (1991).} \item{approx}{a character specifying the approximation method if the bandwidth \code{bw} has to be chosen by \code{bwAndrews}.} \item{adjust}{logical. Should a finite sample adjustment be made? This amounts to multiplication with \eqn{n/(n-k)} where \eqn{n} is the number of observations and \eqn{k} the number of estimated parameters.} \item{diagnostics}{logical. Should additional model diagnostics be returned? See \code{\link{vcovHAC}} for details.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the middle matrix is returned.} \item{ar.method}{character. The \code{method} argument passed to \code{\link{ar}} for prewhitening (only, not for bandwidth selection).} \item{tol}{numeric. Weights that exceed \code{tol} are used for computing the covariance matrix, all other weights are treated as 0.} \item{data}{an optional data frame containing the variables in the \code{order.by} model. By default the variables are taken from the environment which the function is called from.} \item{verbose}{logical. Should the bandwidth parameter used be printed?} \item{\dots}{further arguments passed to \code{bwAndrews}.} \item{weights}{numeric. A vector of weights used for weighting the estimated coefficients of the approximation model (as specified by \code{approx}). By default all weights are 1 except that for the intercept term (if there is more than one variable).} } \details{\code{kernHAC} is a convenience interface to \code{\link{vcovHAC}} using \code{weightsAndrews}: first a weights function is defined and then \code{vcovHAC} is called. The kernel weights underlying \code{weightsAndrews} are directly accessible via the function \code{\link{kweights}} and require the specification of the bandwidth parameter \code{bw}. If this is not specified it can be chosen adaptively by the function \code{bwAndrews} (except for the \code{"Truncated"} kernel). The automatic bandwidth selection is based on an approximation of the estimating functions by either AR(1) or ARMA(1,1) processes. To aggregate the estimated parameters from these approximations a weighted sum is used. The \code{weights} in this aggregation are by default all equal to 1 except that corresponding to the intercept term which is set to 0 (unless there is no other variable in the model) making the covariance matrix scale invariant. Further details can be found in Andrews (1991). The estimator of Newey & West (1987) is a special case of the class of estimators introduced by Andrews (1991). It can be obtained using the \code{"Bartlett"} kernel and setting \code{bw} to \code{lag + 1}. A convenience interface is provided in \code{\link{NeweyWest}}. } \value{ \code{kernHAC} returns the same type of object as \code{\link{vcovHAC}} which is typically just the covariance matrix. \code{weightsAndrews} returns a vector of weights. \code{bwAndrews} returns the selected bandwidth parameter. } \references{ Andrews DWK (1991). \dQuote{Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation.} \emph{Econometrica}, \bold{59}, 817--858. Newey WK & West KD (1987). \dQuote{A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix.} \emph{Econometrica}, \bold{55}, 703--708. } \seealso{\code{\link{vcovHAC}}, \code{\link{NeweyWest}}, \code{\link{weightsLumley}}, \code{\link{weave}}} \examples{ curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, xlab = "x", ylab = "k(x)") curve(kweights(x, kernel = "Bartlett", normalize = TRUE), from = 0, to = 3.2, col = 2, add = TRUE) curve(kweights(x, kernel = "Parzen", normalize = TRUE), from = 0, to = 3.2, col = 3, add = TRUE) curve(kweights(x, kernel = "Tukey", normalize = TRUE), from = 0, to = 3.2, col = 4, add = TRUE) curve(kweights(x, kernel = "Truncated", normalize = TRUE), from = 0, to = 3.2, col = 5, add = TRUE) ## fit investment equation data(Investment) fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) ## compute quadratic spectral kernel HAC estimator kernHAC(fm) kernHAC(fm, verbose = TRUE) ## use Parzen kernel instead, VAR(2) prewhitening, no finite sample ## adjustment and Newey & West (1994) bandwidth selection kernHAC(fm, kernel = "Parzen", prewhite = 2, adjust = FALSE, bw = bwNeweyWest, verbose = TRUE) ## compare with estimate under assumption of spheric errors vcov(fm) } \keyword{regression} \keyword{ts} sandwich/man/vcovCL.Rd0000644000176200001440000002572614272070642014330 0ustar liggesusers\name{vcovCL} \alias{vcovCL} \alias{meatCL} \encoding{UTF-8} \title{Clustered Covariance Matrix Estimation} \description{ Estimation of one-way and multi-way clustered covariance matrices using an object-oriented approach. } \usage{ vcovCL(x, cluster = NULL, type = NULL, sandwich = TRUE, fix = FALSE, \dots) meatCL(x, cluster = NULL, type = NULL, cadjust = TRUE, multi0 = FALSE, \dots) } \arguments{ \item{x}{a fitted model object.} \item{cluster}{a variable indicating the clustering of observations, a \code{list} (or \code{data.frame}) thereof, or a formula specifying which variables from the fitted model should be used (see examples). By default (\code{cluster = NULL}), either \code{attr(x, "cluster")} is used (if any) or otherwise every observation is assumed to be its own cluster.} \item{type}{a character string specifying the estimation type (HC0--HC3). The default is to use \code{"HC1"} for \code{lm} objects and \code{"HC0"} otherwise.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the meat matrix is returned.} \item{fix}{logical. Should the covariance matrix be fixed to be positive semi-definite in case it is not?} \item{cadjust}{logical. Should a cluster adjustment be applied?} \item{multi0}{logical. Should the HC0 estimate be used for the final adjustment in multi-way clustered covariances?} \item{\dots}{arguments passed to \code{meatCL}.} } \details{ Clustered sandwich estimators are used to adjust inference when errors are correlated within (but not between) clusters. \code{vcovCL} allows for clustering in arbitrary many cluster dimensions (e.g., firm, time, industry), given all dimensions have enough clusters (for more details, see Cameron et al. 2011). If each observation is its own cluster, the clustered sandwich collapses to the basic sandwich covariance. The function \code{meatCL} is the work horse for estimating the meat of clustered sandwich estimators. \code{vcovCL} is a wrapper calling \code{\link{sandwich}} and \code{\link{bread}} (Zeileis 2006). \code{vcovCL} is applicable beyond \code{lm} or \code{glm} class objects. \code{\link{bread}} and \code{\link{meat}} matrices are multiplied to construct clustered sandwich estimators. The meat of a clustered sandwich estimator is the cross product of the clusterwise summed estimating functions. Instead of summing over all individuals, first sum over cluster. A two-way clustered sandwich estimator \eqn{M} (e.g., for cluster dimensions "firm" and "industry" or "id" and "time") is a linear combination of one-way clustered sandwich estimators for both dimensions (\eqn{M_{id}, M_{time}}) minus the clustered sandwich estimator, with clusters formed out of the intersection of both dimensions (\eqn{M_{id \cap time}}): \deqn{M = M_{id} + M_{time} - M_{id \cap time}}. Additionally, each of the three terms can be weighted by the corresponding cluster bias adjustment factor (see below and Equation 20 in Zeileis et al. 2020). Instead of subtracting \eqn{M_{id \cap time}} as the last subtracted matrix, Ma (2014) suggests to subtract the basic HC0 covariance matrix when only a single observation is in each intersection of \eqn{id} and \eqn{time}. Set \code{multi0 = TRUE} to subtract the basic HC0 covariance matrix as the last subtracted matrix in multi-way clustering. For details, see also Petersen (2009) and Thompson (2011). With the \code{type} argument, HC0 to HC3 types of bias adjustment can be employed, following the terminology used by MacKinnon and White (1985) for heteroscedasticity corrections. HC0 applies no small sample bias adjustment. HC1 applies a degrees of freedom-based correction, \eqn{(n-1)/(n-k)} where \eqn{n} is the number of observations and \eqn{k} is the number of explanatory or predictor variables in the model. HC1 is the most commonly used approach for linear models, and HC0 otherwise. Hence these are the defaults in \code{vcovCL}. However, HC0 and HC1 are less effective than HC2 and HC3 when the number of clusters is relatively small (Cameron et al. 2008). HC2 and HC3 types of bias adjustment are geared towards the linear model, but they are also applicable for GLMs (see Bell and McCaffrey 2002, and Kauermann and Carroll 2001, for details). A precondition for HC2 and HC3 types of bias adjustment is the availability of a hat matrix (or a weighted version therof for GLMs) and hence these two types are currently only implemented for \code{\link{lm}} and \code{\link{glm}} objects. An alternative to the clustered HC3 estimator is the clustered jackknife estimator which is available in \code{\link{vcovBS}} with \code{type = "jackknife"}. In linear models the HC3 and the jackknife estimator coincide (MacKinnon et al. 2022) with the latter still being computationally feasible if the number of observations per cluster is large. In nonlinear models (including non-Gaussian GLMs) the jackknife and the HC3 estimator do not coincide but the jackknife might still be a useful alternative when the HC3 cannot be computed. The \code{cadjust} argument allows to switch the cluster bias adjustment factor \eqn{G/(G-1)} on and off (where \eqn{G} is the number of clusters in a cluster dimension \eqn{g}) See Cameron et al. (2008) and Cameron et al. (2011) for more details about small-sample modifications. The \code{cluster} specification can be made in a number of ways: The \code{cluster} can be a single variable or a \code{list}/\code{data.frame} of multiple clustering variables. If \code{\link[stats]{expand.model.frame}} works for the model object \code{x}, the \code{cluster} can also be a \code{formula}. By default (\code{cluster = NULL}), \code{attr(x, "cluster")} is checked and used if available. If not, every observation is assumed to be its own cluster. If the number of observations in the model \code{x} is smaller than in the original \code{data} due to \code{NA} processing, then the same \code{NA} processing can be applied to \code{cluster} if necessary (and \code{x$na.action} being available). Cameron et al. (2011) observe that sometimes the covariance matrix is not positive-semidefinite and recommend to employ the eigendecomposition of the estimated covariance matrix, setting any negative eigenvalue(s) to zero. This fix is applied, if necessary, when \code{fix = TRUE} is specified. } \value{ A matrix containing the covariance matrix estimate. } \references{ Bell RM, McCaffrey DF (2002). \dQuote{Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples}, \emph{Survey Methodology}, \bold{28}(2), 169--181. Cameron AC, Gelbach JB, Miller DL (2008). \dQuote{Bootstrap-Based Improvements for Inference with Clustered Errors}, \emph{The Review of Economics and Statistics}, \bold{90}(3), 414--427. \doi{10.3386/t0344} Cameron AC, Gelbach JB, Miller DL (2011). \dQuote{Robust Inference with Multiway Clustering}, \emph{Journal of Business & Ecomomic Statistics}, \bold{29}(2), 238--249. \doi{10.1198/jbes.2010.07136} Kauermann G, Carroll RJ (2001). \dQuote{A Note on the Efficiency of Sandwich Covariance Matrix Estimation}, \emph{Journal of the American Statistical Association}, \bold{96}(456), 1387--1396. \doi{10.1198/016214501753382309} Ma MS (2014). \dQuote{Are We Really Doing What We Think We Are Doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors}, \emph{Mimeo, Availlable at SSRN:} URL \url{https://www.ssrn.com/abstract=2420421}. MacKinnon JG, Nielsen MØ, Webb MD (2022). \dQuote{Cluster-Robust Inference: A Guide to Empirical Practice}, \emph{Journal of Econometrics}, Forthcoming. \doi{10.1016/j.jeconom.2022.04.001} MacKinnon JG, White H (1985). \dQuote{Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties} \emph{Journal of Econometrics}, \bold{29}(3), 305--325. \doi{10.1016/0304-4076(85)90158-7} Petersen MA (2009). \dQuote{Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches}, \emph{The Review of Financial Studies}, \bold{22}(1), 435--480. \doi{10.1093/rfs/hhn053} Thompson SB (2011). \dQuote{Simple Formulas for Standard Errors That Cluster by Both Firm and Time}, \emph{Journal of Financial Economics}, \bold{99}(1), 1--10. \doi{10.1016/j.jfineco.2010.08.016} Zeileis A (2004). \dQuote{Econometric Computing with HC and HAC Covariance Matrix Estimator}, \emph{Journal of Statistical Software}, \bold{11}(10), 1--17. \doi{10.18637/jss.v011.i10} Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators}, \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \seealso{\code{\link{vcovHC}}, \code{\link{vcovBS}}} \examples{ ## Petersen's data data("PetersenCL", package = "sandwich") m <- lm(y ~ x, data = PetersenCL) ## clustered covariances ## one-way vcovCL(m, cluster = ~ firm) vcovCL(m, cluster = PetersenCL$firm) ## same ## one-way with HC2 vcovCL(m, cluster = ~ firm, type = "HC2") ## two-way vcovCL(m, cluster = ~ firm + year) vcovCL(m, cluster = PetersenCL[, c("firm", "year")]) ## same ## comparison with cross-section sandwiches ## HC0 all.equal(sandwich(m), vcovCL(m, type = "HC0", cadjust = FALSE)) ## HC2 all.equal(vcovHC(m, type = "HC2"), vcovCL(m, type = "HC2")) ## HC3 all.equal(vcovHC(m, type = "HC3"), vcovCL(m, type = "HC3")) ## Innovation data data("InstInnovation", package = "sandwich") ## replication of one-way clustered standard errors for model 3, Table I ## and model 1, Table II in Berger et al. (2017), see ?InstInnovation ## count regression formula f1 <- cites ~ institutions + log(capital/employment) + log(sales) + industry + year ## model 3, Table I: Poisson model ## one-way clustered standard errors tab_I_3_pois <- glm(f1, data = InstInnovation, family = poisson) vcov_pois <- vcovCL(tab_I_3_pois, InstInnovation$company) sqrt(diag(vcov_pois))[2:4] ## coefficient tables if(require("lmtest")) { coeftest(tab_I_3_pois, vcov = vcov_pois)[2:4, ] } \dontrun{ ## model 1, Table II: negative binomial hurdle model ## (requires "pscl" or alternatively "countreg" from R-Forge) library("pscl") library("lmtest") tab_II_3_hurdle <- hurdle(f1, data = InstInnovation, dist = "negbin") # dist = "negbin", zero.dist = "negbin", separate = FALSE) vcov_hurdle <- vcovCL(tab_II_3_hurdle, InstInnovation$company) sqrt(diag(vcov_hurdle))[c(2:4, 149:151)] coeftest(tab_II_3_hurdle, vcov = vcov_hurdle)[c(2:4, 149:151), ] } } \keyword{regression} sandwich/man/lrvar.Rd0000644000176200001440000000413213452213134014240 0ustar liggesusers\name{lrvar} \alias{lrvar} \title{Long-Run Variance of the Mean} \description{ Convenience function for computing the long-run variance (matrix) of a (possibly multivariate) series of observations. } \usage{ lrvar(x, type = c("Andrews", "Newey-West"), prewhite = TRUE, adjust = TRUE, \dots) } \arguments{ \item{x}{numeric vector, matrix, or time series.} \item{type}{character specifying the type of estimator, i.e., whether \code{\link{kernHAC}} for the Andrews quadratic spectral kernel HAC estimator is used or \code{\link{NeweyWest}} for the Newey-West Bartlett HAC estimator.} \item{prewhite}{logical or integer. Should the series be prewhitened? Passed to \code{\link{kernHAC}} or \code{\link{NeweyWest}}.} \item{adjust}{logical. Should a finite sample adjustment be made? Passed to \code{\link{kernHAC}} or \code{\link{NeweyWest}}.} \item{\dots}{further arguments passed on to \code{\link{kernHAC}} or \code{\link{NeweyWest}}.} } \details{ \code{lrvar} is a simple wrapper function for computing the long-run variance (matrix) of a (possibly multivariate) series \code{x}. First, this simply fits a linear regression model \code{x ~ 1} by \code{\link[stats]{lm}}. Second, the corresponding variance of the mean(s) is estimated either by \code{\link{kernHAC}} (Andrews quadratic spectral kernel HAC estimator) or by \code{\link{NeweyWest}} (Newey-West Bartlett HAC estimator). } \value{For a univariate series \code{x} a scalar variance is computed. For a multivariate series \code{x} the covariance matrix is computed.} \seealso{\code{\link{kernHAC}}, \code{\link{NeweyWest}}, \code{\link{vcovHAC}}} \examples{ suppressWarnings(RNGversion("3.5.0")) set.seed(1) ## iid series (with variance of mean 1/n) ## and Andrews kernel HAC (with prewhitening) x <- rnorm(100) lrvar(x) ## analogous multivariate case with Newey-West estimator (without prewhitening) y <- matrix(rnorm(200), ncol = 2) lrvar(y, type = "Newey-West", prewhite = FALSE) ## AR(1) series with autocorrelation 0.9 z <- filter(rnorm(100), 0.9, method = "recursive") lrvar(z) } \keyword{regression} \keyword{ts} sandwich/man/bread.Rd0000644000176200001440000000315113735441645014205 0ustar liggesusers\name{bread} \alias{bread} \alias{bread.default} \alias{bread.lm} \alias{bread.mlm} \alias{bread.survreg} \alias{bread.coxph} \alias{bread.gam} \alias{bread.nls} \alias{bread.rlm} \alias{bread.hurdle} \alias{bread.zeroinfl} \alias{bread.mlogit} \alias{bread.polr} \alias{bread.clm} \encoding{UTF-8} \title{Bread for Sandwiches} \description{ Generic function for extracting an estimator for the bread of sandwiches. } \usage{ bread(x, \dots) } \arguments{ \item{x}{a fitted model object.} \item{\dots}{arguments passed to methods.} } \value{ A matrix containing an estimator for the expectation of the negative derivative of the estimating functions, usually the Hessian. Typically, this should be an \eqn{k \times k}{k x k} matrix corresponding to \eqn{k} parameters. The rows and columns should be named as in \code{\link{coef}} or \code{\link{terms}}, respectively. The default method tries to extract \code{\link{vcov}} and \code{\link{nobs}} and simply computes their product. } \seealso{\code{\link{lm}}, \code{\link{glm}}} \references{ Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators.} \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \examples{ ## linear regression x <- sin(1:10) y <- rnorm(10) fm <- lm(y ~ x) ## bread: n * (x'x)^{-1} bread(fm) solve(crossprod(cbind(1, x))) * 10 } \keyword{regression} sandwich/man/vcovBS.Rd0000644000176200001440000003556414533603730014337 0ustar liggesusers\name{vcovBS} \alias{vcovBS} \alias{vcovBS.default} \alias{vcovBS.lm} \alias{vcovBS.glm} \alias{.vcovBSenv} \encoding{UTF-8} \title{(Clustered) Bootstrap Covariance Matrix Estimation} \description{ Object-oriented estimation of basic bootstrap covariances, using simple (clustered) case-based resampling, plus more refined methods for \code{\link[stats]{lm}} and \code{\link[stats]{glm}} models. } \usage{ vcovBS(x, \dots) \method{vcovBS}{default}(x, cluster = NULL, R = 250, start = FALSE, type = "xy", \dots, fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL, center = "mean") \method{vcovBS}{lm}(x, cluster = NULL, R = 250, type = "xy", \dots, fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL, qrjoint = FALSE, center = "mean") \method{vcovBS}{glm}(x, cluster = NULL, R = 250, start = FALSE, type = "xy", \dots, fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL, center = "mean") } \arguments{ \item{x}{a fitted model object.} \item{cluster}{a variable indicating the clustering of observations, a \code{list} (or \code{data.frame}) thereof, or a formula specifying which variables from the fitted model should be used (see examples). By default (\code{cluster = NULL}), either \code{attr(x, "cluster")} is used (if any) or otherwise every observation is assumed to be its own cluster.} \item{R}{integer. Number of bootstrap replications.} \item{start}{logical. Should \code{coef(x)} be passed as \code{start} to the \code{update(x, subset = ...)} call? In case the model \code{x} is computed by some numeric iteration, this may speed up the bootstrapping.} \item{type}{character (or function). The character string specifies the type of bootstrap to use: In the default and \code{glm} method the three types \code{"xy"}, \code{"fractional"}, and \code{"jackknife"} are available. In the \code{lm} method there are additionally \code{"residual"}, \code{"wild"} (or equivalently: \code{"wild-rademacher"} or \code{"rademacher"}), \code{"mammen"} (or \code{"wild-mammen"}), \code{"norm"} (or \code{"wild-norm"}), \code{"webb"} (or \code{"wild-webb"}). Finally, for the \code{lm} method \code{type} can be a \code{function(n)} for drawing wild bootstrap factors.} \item{\dots}{arguments passed to methods. For the default method, this is passed to \code{update}, and for the \code{lm} method to \code{lm.fit}.} \item{fix}{logical. Should the covariance matrix be fixed to be positive semi-definite in case it is not?} \item{use}{character. Specification passed to \code{\link[stats]{cov}} for handling missing coefficients/parameters.} \item{applyfun}{an optional \code{\link[base]{lapply}}-style function with arguments \code{function(X, FUN, \dots)}. It is used for refitting the model to the bootstrap samples. The default is to use the basic \code{lapply} function unless the \code{cores} argument is specified (see below).} \item{cores}{numeric. If set to an integer the \code{applyfun} is set to \code{\link[parallel]{mclapply}} with the desired number of \code{cores}, except on Windows where \code{\link[parallel]{parLapply}} with \code{makeCluster(cores)} is used.} \item{center}{character. For \code{type = "jackknife"} the coefficients from all jacknife samples (each dropping one observational unit/cluster) can be centered by their \code{"mean"} (default) or by the original full-sample \code{"estimate"}.} \item{qrjoint}{logical. For residual-based and wild boostrap (i.e., \code{type != "xy"}), should the bootstrap sample the dependent variable and then apply the QR decomposition jointly only once? If \code{FALSE}, the boostrap applies the QR decomposition separately in each iteration and samples coefficients directly. If the sample size (and the number of coefficients) is large, then \code{qrjoint = TRUE} maybe significantly faster while requiring much more memory.} } \details{ Clustered sandwich estimators are used to adjust inference when errors are correlated within (but not between) clusters. See the documentation for \code{\link{vcovCL}} for specifics about covariance clustering. This function allows for clustering in arbitrarily many cluster dimensions (e.g., firm, time, industry), given all dimensions have enough clusters (for more details, see Cameron et al. 2011). Unlike \code{vcovCL}, \code{vcovBS} uses a bootstrap rather than an asymptotic solution. Basic (clustered) bootstrap covariance matrix estimation is provided by the default \code{vcovBS} method. It samples clusters (where each observation is its own cluster by default), i.e., using case-based resampling. For obtaining a covariance matrix estimate it is assumed that an \code{\link[stats]{update}} of the model with the resampled \code{subset} can be obtained, the \code{\link[stats]{coef}} extracted, and finally the covariance computed with \code{\link[stats]{cov}}. The \code{update} model is evaluated in the \code{environment(terms(x))} (if available). To speed up computations two further arguments can be leveraged. \enumerate{ \item Instead of \code{\link[base]{lapply}} a parallelized function such as \code{\link[parallel]{parLapply}} or \code{\link[parallel]{mclapply}} can be specified to iterate over the bootstrap replications. For the latter, specifying \code{cores = ...} is a convenience shortcut. \item When specifying \code{start = TRUE}, the \code{coef(x)} are passed to \code{update} as \code{start = coef(x)}. This may not be supported by all model fitting functions and is hence not turned on by default. } The ``xy'' or ``pairs'' bootstrap is consistent for heteroscedasticity and clustered errors, and converges to the asymptotic solution used in \code{vcovCL} as \code{R}, \eqn{n}, and \eqn{g} become large (\eqn{n} and \eqn{g} are the number of observations and the number of clusters, respectively; see Efron 1979, or Mammen 1992, for a discussion of bootstrap asymptotics). For small \eqn{g} -- particularly under 30 groups -- the bootstrap will converge to a slightly different value than the asymptotic method, due to the limited number of distinct bootstrap replications possible (see Webb 2014 for a discussion of this phenomonon). The bootstrap will not necessarily converge to an asymptotic estimate that has been corrected for small samples. The xy approach to bootstrapping is generally only of interest to the practitioner when the asymptotic solution is unavailable (this can happen when using estimators that have no \code{estfun} function, for example). The residual bootstrap, by contrast, is rarely of practical interest, because while it provides consistent inference for clustered standard errors, it is not robust to heteroscedasticity. More generally, bootstrapping is useful when the bootstrap makes different assumptions than the asymptotic estimator, in particular when the number of clusters is small and large \eqn{n} or \eqn{g} assumptions are unreasonable. Bootstrapping is also often effective for nonlinear models, particularly in smaller samples, where asymptotic approaches often perform relatively poorly. See Cameron and Miller (2015) for further discussion of bootstrap techniques in practical applications, and Zeileis et al. (2020) show simulations comparing \code{vcovBS} to \code{vcovCL} in several settings. The jackknife approach is of particular interest in practice because it can be shown to be exactly equivalent to the HC3 (without cluster adjustment, also known as CV3) covariance matrix estimator in linear models (see MacKinnon, Nielsen, Webb 2022). If the number of observations per cluster is large it may become impossible to compute this estimator via \code{\link{vcovCL}} while using the jackknife approach will still be feasible. In nonlinear models (including non-Gaussian GLMs) the jackknife and the HC3 estimator do not coincide but the jackknife might still be a useful alternative when the HC3 cannot be computed. A convenience interface \code{\link{vcovJK}} is provided whose default method simply calls \code{vcovBS(..., type = "jackknife")}. The fractional-random-weight bootstrap (see Xu et al. 2020), first introduced by Rubin (1981) as Bayesian bootstrap, is an alternative to the xy bootstrap when it is computationally challenging or even impractical to reestimate the model on subsets, e.g., when "successes" in binary responses are rare or when the number of parameters is close to the sample size. In these situations excluding some observations completely is the source of the problems, i.e., giving some observations zero weight while others receive integer weights of one ore more. The fractional bootstrap mitigates this by giving every observation a positive fractional weight, drawn from a Dirichlet distribution. These may become close to zero but never exclude an observation completly, thus stabilizing the computation of the reweighted models. The \code{\link[stats]{glm}} method works essentially like the default method but calls \code{\link[stats]{glm.fit}} instead of \code{update}. The \code{\link[stats]{lm}} method provides additional bootstrapping \code{type}s and computes the bootstrapped coefficient estimates somewhat more efficiently using \code{\link[stats]{lm.fit}} (for case-based resampling) or \code{\link[base]{qr.coef}} rather than \code{update}. The default \code{type} is case-based resampling (\code{type = "xy"}) as in the default method. Alternative \code{type} specifications are: \itemize{ \item \code{"residual"}. The residual cluster bootstrap resamples the residuals (as above, by cluster) which are subsequently added to the fitted values to obtain the bootstrapped response variable: \eqn{y^{*} = \hat{y} + e^{*}}{y* = yhat + e*}. Coefficients can then be estimated using \code{qr.coef()}, reusing the QR decomposition from the original fit. As Cameron et al. (2008) point out, the residual cluster bootstrap is not well-defined when the clusters are unbalanced as residuals from one cluster cannot be easily assigned to another cluster with different size. Hence a warning is issued in that case. \item \code{"wild"} (or equivalently \code{"wild-rademacher"} or \code{"rademacher"}). The wild cluster bootstrap does not actually resample the residuals but instead reforms the dependent variable by multiplying the residual by a randomly drawn value and adding the result to the fitted value: \eqn{y^{*} = \hat{y} + e \cdot w}{y* = yhat + e * w} (see Cameron et al. 2008). By default, the factors are drawn from the Rademacher distribution: \code{function(n) sample(c(-1, 1), n, replace = TRUE)}. \item \code{"mammen"} (or \code{"wild-mammen"}). This draws the wild bootstrap factors as suggested by Mammen (1993): \code{sample(c(-1, 1) * (sqrt(5) + c(-1, 1))/2, n, replace = TRUE, prob = (sqrt(5) + c(1, -1))/(2 * sqrt(5)))}. \item \code{"webb"} (or \code{"wild-webb"}). This implements the six-point distribution suggested by Webb (2014), which may improve inference when the number of clusters is small: \code{sample(c(-sqrt((3:1)/2), sqrt((1:3)/2)), n, replace = TRUE)}. \item \code{"norm"} (or \code{"wild-norm"}). The standard normal/Gaussian distribution is used for drawing the wild bootstrap factors: \code{function(n) rnorm(n)}. \item User-defined function. This needs of the form as above, i.e., a \code{function(n)} returning a vector of random wild bootstrap factors of corresponding length. } } \value{ A matrix containing the covariance matrix estimate. } \references{ Cameron AC, Gelbach JB, Miller DL (2008). \dQuote{Bootstrap-Based Improvements for Inference with Clustered Errors}, \emph{The Review of Economics and Statistics}, \bold{90}(3), 414--427. \doi{10.3386/t0344} Cameron AC, Gelbach JB, Miller DL (2011). \dQuote{Robust Inference with Multiway Clustering}, \emph{Journal of Business & Economic Statistics}, \bold{29}(2), 238--249. \doi{10.1198/jbes.2010.07136} Cameron AC, Miller DL (2015). \dQuote{A Practitioner's Guide to Cluster-Robust Inference}, \emph{Journal of Human Resources}, \bold{50}(2), 317--372. \doi{10.3368/jhr.50.2.317} Efron B (1979). \dQuote{Bootstrap Methods: Another Look at the Jackknife}, \emph{The Annals of Statistics}, \bold{7}(1), 1--26. \doi{10.1214/aos/1176344552} MacKinnon JG, Nielsen MØ, Webb MD (2022). \dQuote{Cluster-Robust Inference: A Guide to Empirical Practice}, \emph{Journal of Econometrics}, Forthcoming. \doi{10.1016/j.jeconom.2022.04.001} Mammen E (1992). \dQuote{When Does Bootstrap Work?: Asymptotic Results and Simulations}, \emph{Lecture Notes in Statistics}, \bold{77}. Springer Science & Business Media. Mammen E (1993). \dQuote{Bootstrap and Wild Bootstrap for High Dimensional Linear Models}, \emph{The Annals of Statistics}, \bold{21}(1), 255--285. \doi{10.1214/aos/1176349025} Rubin DB (1981). \dQuote{The Bayesian Bootstrap}, \emph{The Annals of Statistics}, \bold{9}(1), 130--134. \doi{10.1214/aos/1176345338} Webb MD (2014). \dQuote{Reworking Wild Bootstrap Based Inference for Clustered Errors}, Working Paper 1315, \emph{Queen's Economics Department.} \url{https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1315.pdf}. Xu L, Gotwalt C, Hong Y, King CB, Meeker WQ (2020). \dQuote{Applications of the Fractional-Random-Weight Bootstrap}, \emph{The American Statistician}, \bold{74}(4), 345--358. \doi{10.1080/00031305.2020.1731599} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \seealso{\code{\link{vcovCL}}, \code{\link{vcovJK}}} \examples{ ## Petersen's data data("PetersenCL", package = "sandwich") m <- lm(y ~ x, data = PetersenCL) ## comparison of different standard errors suppressWarnings(RNGversion("3.5.0")) set.seed(1) cbind( "classical" = sqrt(diag(vcov(m))), "HC-cluster" = sqrt(diag(vcovCL(m, cluster = ~ firm))), "BS-cluster" = sqrt(diag(vcovBS(m, cluster = ~ firm))), "FW-cluster" = sqrt(diag(vcovBS(m, cluster = ~ firm, type = "fractional"))) ) ## two-way wild cluster bootstrap with Mammen distribution vcovBS(m, cluster = ~ firm + year, type = "wild-mammen") ## jackknife estimator coincides with HC3 (aka CV3) all.equal( vcovBS(m, cluster = ~ firm, type = "jackknife"), vcovCL(m, cluster = ~ firm, type = "HC3", cadjust = FALSE), tolerance = 1e-7 ) } \keyword{regression} \keyword{bootstrap} sandwich/man/vcovHAC.Rd0000644000176200001440000001315413735442444014423 0ustar liggesusers\name{vcovHAC} \alias{vcovHAC} \alias{vcovHAC.default} \alias{meatHAC} \title{Heteroscedasticity and Autocorrelation Consistent (HAC) Covariance Matrix Estimation} \description{ Heteroscedasticity and autocorrelation consistent (HAC) estimation of the covariance matrix of the coefficient estimates in a (generalized) linear regression model. } \usage{ vcovHAC(x, \dots) \method{vcovHAC}{default}(x, order.by = NULL, prewhite = FALSE, weights = weightsAndrews, adjust = TRUE, diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(), \dots) meatHAC(x, order.by = NULL, prewhite = FALSE, weights = weightsAndrews, adjust = TRUE, diagnostics = FALSE, ar.method = "ols", data = list(), \dots) } \arguments{ \item{x}{a fitted model object.} \item{order.by}{Either a vector \code{z} or a formula with a single explanatory variable like \code{~ z}. The observations in the model are ordered by the size of \code{z}. If set to \code{NULL} (the default) the observations are assumed to be ordered (e.g., a time series).} \item{prewhite}{logical or integer. Should the estimating functions be prewhitened? If \code{TRUE} or greater than 0 a VAR model of order \code{as.integer(prewhite)} is fitted via \code{ar} with method \code{"ols"} and \code{demean = FALSE}.} \item{weights}{Either a vector of weights for the autocovariances or a function to compute these weights based on \code{x}, \code{order.by}, \code{prewhite}, \code{ar.method} and \code{data}. If \code{weights} is a function it has to take these arguments. See also details.} \item{adjust}{logical. Should a finite sample adjustment be made? This amounts to multiplication with \eqn{n/(n-k)} where \eqn{n} is the number of observations and \eqn{k} the number of estimated parameters.} \item{diagnostics}{logical. Should additional model diagnostics be returned? See below for details.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the meat matrix is returned.} \item{ar.method}{character. The \code{method} argument passed to \code{\link{ar}} for prewhitening.} \item{data}{an optional data frame containing the variables in the \code{order.by} model. By default the variables are taken from the environment which \code{vcovHAC} is called from.} \item{\dots}{arguments passed to \code{\link{sandwich}} (in \code{vcovHAC}) and \code{\link{estfun}} (in \code{meatHAC}), respectively.} } \details{The function \code{meatHAC} is the real work horse for estimating the meat of HAC sandwich estimators -- the default \code{vcovHAC} method is a wrapper calling \code{\link{sandwich}} and \code{\link{bread}}. See Zeileis (2006) for more implementation details. The theoretical background, exemplified for the linear regression model, is described in Zeileis (2004). Both functions construct weighted information sandwich variance estimators for parametric models fitted to time series data. These are basically constructed from weighted sums of autocovariances of the estimating functions (as extracted by \code{\link{estfun}}). The crucial step is the specification of weights: the user can either supply \code{vcovHAC} with some vector of weights or with a function that computes these weights adaptively (based on the arguments \code{x}, \code{order.by}, \code{prewhite} and \code{data}). Two functions for adaptively choosing weights are implemented in \code{\link{weightsAndrews}} implementing the results of Andrews (1991) and in \code{\link{weightsLumley}} implementing the results of Lumley (1999). The functions \code{\link{kernHAC}} and \code{\link{weave}} respectively are to more convenient interfaces for \code{vcovHAC} with these functions. Prewhitening based on VAR approximations is described as suggested in Andrews & Monahan (1992). The covariance matrix estimators have been improved by the addition of a bias correction and an approximate denominator degrees of freedom for test and confidence interval construction. See Lumley & Heagerty (1999) for details. } \value{A matrix containing the covariance matrix estimate. If \code{diagnostics} was set to \code{TRUE} this has an attribute \code{"diagnostics"} which is a list with \item{bias.correction}{multiplicative bias correction} \item{df}{Approximate denominator degrees of freedom} } \references{ Andrews DWK (1991). \dQuote{Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation.} \emph{Econometrica}, \bold{59}, 817--858. Andrews DWK & Monahan JC (1992). \dQuote{An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator.} \emph{Econometrica}, \bold{60}, 953--966. Lumley T & Heagerty P (1999). \dQuote{Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression.} \emph{Journal of the Royal Statistical Society B}, \bold{61}, 459--477. Newey WK & West KD (1987). \dQuote{A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix.} \emph{Econometrica}, \bold{55}, 703--708. Zeileis A (2004). \dQuote{Econometric Computing with HC and HAC Covariance Matrix Estimators.} \emph{Journal of Statistical Software}, \bold{11}(10), 1--17. \doi{10.18637/jss.v011.i10} Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators.} \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} } \seealso{\code{\link{weightsLumley}}, \code{\link{weightsAndrews}}, \code{\link{weave}}, \code{\link{kernHAC}}} \examples{ x <- sin(1:100) y <- 1 + x + rnorm(100) fm <- lm(y ~ x) vcovHAC(fm) vcov(fm) } \keyword{regression} \keyword{ts} sandwich/man/kweights.Rd0000644000176200001440000000271413735442674014764 0ustar liggesusers\name{kweights} \alias{kweights} \title{Kernel Weights} \description{ Kernel weights for kernel-based heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators as introduced by Andrews (1991). } \usage{ kweights(x, kernel = c("Truncated", "Bartlett", "Parzen", "Tukey-Hanning", "Quadratic Spectral"), normalize = FALSE) } \arguments{ \item{x}{numeric.} \item{kernel}{a character specifying the kernel used. All kernels used are described in Andrews (1991).} \item{normalize}{logical. If set to \code{TRUE} the kernels are normalized as described in Andrews (1991).} } \value{ Value of the kernel function at \code{x}. } \references{ Andrews DWK (1991). \dQuote{Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation.} \emph{Econometrica}, \bold{59}, 817--858. } \seealso{\code{\link{kernHAC}}, \code{\link{weightsAndrews}}} \examples{ curve(kweights(x, kernel = "Quadratic", normalize = TRUE), from = 0, to = 3.2, xlab = "x", ylab = "k(x)") curve(kweights(x, kernel = "Bartlett", normalize = TRUE), from = 0, to = 3.2, col = 2, add = TRUE) curve(kweights(x, kernel = "Parzen", normalize = TRUE), from = 0, to = 3.2, col = 3, add = TRUE) curve(kweights(x, kernel = "Tukey", normalize = TRUE), from = 0, to = 3.2, col = 4, add = TRUE) curve(kweights(x, kernel = "Truncated", normalize = TRUE), from = 0, to = 3.2, col = 5, add = TRUE) } \keyword{regression} \keyword{ts} sandwich/man/PetersenCL.Rd0000644000176200001440000000251213735444251015130 0ustar liggesusers\name{PetersenCL} \alias{PetersenCL} \title{Petersen's Simulated Data for Assessing Clustered Standard Errors} \description{ Artificial balanced panel data set from Petersen (2009) for illustrating and benchmarking clustered standard errors. } \usage{data("PetersenCL")} \format{ A data frame containing 5000 observations on 4 variables. \describe{ \item{firm}{integer. Firm identifier (500 firms).} \item{year}{integer. Time variable (10 years per firm).} \item{x}{numeric. Independent regressor variable.} \item{y}{numeric. Dependent response variable.} } } \details{ This simulated data set was created to illustrate and benchmark clustered standard errors. The residual and the regressor variable both contain a firm effect, but no year effect. Thus, standard errors clustered by firm are different from the OLS standard errors and similarly double-clustered standard errors (by firm and year) are different from the standard errors clustered by year. } \source{ \url{https://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm} } \references{ Petersen MA (2009). \dQuote{Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches}, \emph{The Review of Financial Studies}, \bold{22}(1), 435--480. \doi{10.1093/rfs/hhn053} } \keyword{datasets} sandwich/man/isoacf.Rd0000644000176200001440000000252114277040300014355 0ustar liggesusers\name{isoacf} \alias{isoacf} \alias{pava.blocks} \title{Isotonic Autocorrelation Function} \description{ Autocorrelation function (forced to be decreasing by isotonic regression). } \usage{ isoacf(x, lagmax = NULL, weave1 = FALSE) } \arguments{ \item{x}{numeric vector.} \item{lagmax}{numeric. The maximal lag of the autocorrelations.} \item{weave1}{logical. If set to \code{TRUE} \code{isoacf} uses the \code{acf.R} and \code{pava.blocks} function from the original \code{weave} package, otherwise R's own \code{acf} and \code{isoreg} functions are used.} } \details{ \code{isoacf} computes the autocorrelation function (ACF) of \code{x} enforcing the ACF to be decreasing by isotonic regression. See also Robertson et al. (1988). } \value{ \code{isoacf} returns a numeric vector containing the ACF. } \references{ Lumley T & Heagerty P (1999). \dQuote{Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression.} \emph{Journal of the Royal Statistical Society B}, \bold{61}, 459--477. Robertson T, Wright FT, Dykstra RL (1988). \emph{Order Restricted Statistical Inference}. John Wiley and Sons, New York. } \seealso{\code{\link{weave}}, \code{\link{weightsLumley}}} \examples{ set.seed(1) x <- filter(rnorm(100), 0.9, "recursive") isoacf(x) acf(x, plot = FALSE)$acf } \keyword{regression} \keyword{ts} sandwich/man/vcovOPG.Rd0000644000176200001440000000442413735443027014453 0ustar liggesusers\name{vcovOPG} \alias{vcovOPG} \title{Outer-Product-of-Gradients Covariance Matrix Estimation} \description{ Outer product of gradients estimation for the covariance matrix of the coefficient estimates in regression models. } \usage{ vcovOPG(x, adjust = FALSE, \dots) } \arguments{ \item{x}{a fitted model object.} \item{adjust}{logical. Should a finite sample adjustment be made? This amounts to multiplication with \eqn{n/(n-k)} where \eqn{n} is the number of observations and \eqn{k} the number of estimated parameters.} \item{\dots}{arguments passed to the \code{\link{estfun}} function.} } \details{ In correctly specified models, the \dQuote{meat} matrix (cross product of estimating functions, see \code{\link{meat}}) and the inverse of the \dQuote{bread} matrix (inverse of the derivative of the estimating functions, see \code{\link{bread}}) are equal and correspond to the Fisher information matrix. Typically, an empirical version of the bread is used for estimation of the information but alternatively it is also possible to use the meat. This method is also known as the outer product of gradients (OPG) estimator (Cameron & Trivedi 2005). Using the \pkg{sandwich} infrastructure, the OPG estimator could easily be computed via \code{solve(meat(obj))} (modulo scaling). To employ numerically more stable implementation of the inversion, this simple convenience function can be used: \code{vcovOPG(obj)}. Note that this only works if the \code{estfun()} method computes the maximum likelihood scores (and not a scaled version such as least squares scores for \code{"lm"} objects). } \value{ A matrix containing the covariance matrix estimate. } \references{ Cameron AC and Trivedi PK (2005). \emph{Microeconometrics: Methods and Applications}. Cambridge University Press, Cambridge. Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators.} \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} } \seealso{\code{\link{meat}}, \code{\link{bread}}, \code{\link{sandwich}}} \examples{ ## generate poisson regression relationship x <- sin(1:100) y <- rpois(100, exp(1 + x)) ## compute usual covariance matrix of coefficient estimates fm <- glm(y ~ x, family = poisson) vcov(fm) vcovOPG(fm) } \keyword{regression} \keyword{ts} sandwich/man/vcovHC.Rd0000644000176200001440000001266414227102411014307 0ustar liggesusers\name{vcovHC} \alias{vcovHC} \alias{vcovHC.default} \alias{vcovHC.mlm} \alias{meatHC} \title{Heteroscedasticity-Consistent Covariance Matrix Estimation} \description{ Heteroscedasticity-consistent estimation of the covariance matrix of the coefficient estimates in regression models. } \usage{ vcovHC(x, \dots) \method{vcovHC}{default}(x, type = c("HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5"), omega = NULL, sandwich = TRUE, \dots) meatHC(x, type = , omega = NULL, \dots) } \arguments{ \item{x}{a fitted model object.} \item{type}{a character string specifying the estimation type. For details see below.} \item{omega}{a vector or a function depending on the arguments \code{residuals} (the working residuals of the model), \code{diaghat} (the diagonal of the corresponding hat matrix) and \code{df} (the residual degrees of freedom). For details see below.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the meat matrix is returned.} \item{\dots}{arguments passed to \code{\link{sandwich}} (in \code{vcovHC}) and \code{\link{estfun}} (in \code{meatHC}), respectively.} } \details{The function \code{meatHC} is the real work horse for estimating the meat of HC sandwich estimators -- the default \code{vcovHC} method is a wrapper calling \code{\link{sandwich}} and \code{\link{bread}}. See Zeileis (2006) for more implementation details. The theoretical background, exemplified for the linear regression model, is described below and in Zeileis (2004). Analogous formulas are employed for other types of models, provided that they depend on a single linear predictor and the estimating functions can be represented as a product of \dQuote{working residual} and regressor vector (Zeileis 2006, Equation 7). When \code{type = "const"} constant variances are assumed and and \code{vcovHC} gives the usual estimate of the covariance matrix of the coefficient estimates: \deqn{\hat \sigma^2 (X^\top X)^{-1}}{sigma^2 (X'X)^{-1}} All other methods do not assume constant variances and are suitable in case of heteroscedasticity. \code{"HC"} (or equivalently \code{"HC0"}) gives White's estimator, the other estimators are refinements of this. They are all of form \deqn{(X^\top X)^{-1} X^\top \Omega X (X^\top X)^{-1}}{(X'X)^{-1} X' Omega X (X'X)^{-1}} and differ in the choice of Omega. This is in all cases a diagonal matrix whose elements can be either supplied as a vector \code{omega} or as a a function \code{omega} of the residuals, the diagonal elements of the hat matrix and the residual degrees of freedom. For White's estimator \code{omega <- function(residuals, diaghat, df) residuals^2} Instead of specifying the diagonal \code{omega} or a function for estimating it, the \code{type} argument can be used to specify the HC0 to HC5 estimators. If \code{omega} is used, \code{type} is ignored. Long & Ervin (2000) conduct a simulation study of HC estimators (HC0 to HC3) in the linear regression model, recommending to use HC3 which is thus the default in \code{vcovHC}. Cribari-Neto (2004), Cribari-Neto, Souza, & Vasconcellos (2007), and Cribari-Neto & Da Silva (2011), respectively, suggest the HC4, HC5, and modified HC4m type estimators. All of them are tailored to take into account the effect of leverage points in the design matrix. For more details see the references. } \value{ A matrix containing the covariance matrix estimate. } \references{ Cribari-Neto F. (2004). \dQuote{Asymptotic Inference under Heteroskedasticity of Unknown Form.} \emph{Computational Statistics & Data Analysis} \bold{45}, 215--233. Cribari-Neto F., Da Silva W.B. (2011). \dQuote{A New Heteroskedasticity-Consistent Covariance Matrix Estimator for the Linear Regression Model.} \emph{Advances in Statistical Analysis}, \bold{95}(2), 129--146. Cribari-Neto F., Souza T.C., Vasconcellos, K.L.P. (2007). \dQuote{Inference under Heteroskedasticity and Leveraged Data.} \emph{Communications in Statistics -- Theory and Methods}, \bold{36}, 1877--1888. Errata: \bold{37}, 3329--3330, 2008. Long J. S., Ervin L. H. (2000). \dQuote{Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model.} \emph{The American Statistician}, \bold{54}, 217--224. MacKinnon J. G., White H. (1985). \dQuote{Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties.} \emph{Journal of Econometrics}, \bold{29}, 305--325. White H. (1980). \dQuote{A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Heteroskedasticity.} \emph{Econometrica} \bold{48}, 817--838. Zeileis A (2004). \dQuote{Econometric Computing with HC and HAC Covariance Matrix Estimators.} \emph{Journal of Statistical Software}, \bold{11}(10), 1--17. \doi{10.18637/jss.v011.i10} Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators.} \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} } \seealso{\code{\link{lm}}, \code{\link[car]{hccm}}, \code{\link[lmtest]{bptest}}, \code{\link[car]{ncv.test}}} \examples{ ## generate linear regression relationship ## with homoscedastic variances x <- sin(1:100) y <- 1 + x + rnorm(100) ## model fit and HC3 covariance fm <- lm(y ~ x) vcovHC(fm) ## usual covariance matrix vcovHC(fm, type = "const") vcov(fm) sigma2 <- sum(residuals(lm(y ~ x))^2)/98 sigma2 * solve(crossprod(cbind(1, x))) } \keyword{regression} \keyword{ts} sandwich/man/estfun.Rd0000644000176200001440000000342014277040071014421 0ustar liggesusers\name{estfun} \alias{estfun} \alias{estfun.lm} \alias{estfun.glm} \alias{estfun.mlm} \alias{estfun.rlm} \alias{estfun.polr} \alias{estfun.clm} \alias{estfun.survreg} \alias{estfun.coxph} \alias{estfun.nls} \alias{estfun.hurdle} \alias{estfun.zeroinfl} \alias{estfun.mlogit} \encoding{UTF-8} \title{Extract Empirical Estimating Functions} \description{ Generic function for extracting the empirical estimating functions of a fitted model. } \usage{ estfun(x, \dots) } \arguments{ \item{x}{a fitted model object.} \item{\dots}{arguments passed to methods.} } \value{A matrix containing the empirical estimating functions. Typically, this should be an \eqn{n \times k}{n x k} matrix corresponding to \eqn{n} observations and \eqn{k} parameters. The columns should be named as in \code{\link{coef}} or \code{\link{terms}}, respectively. The estimating function (or score function) for a model is the derivative of the objective function with respect to the parameter vector. The empirical estimating functions is the evaluation of the estimating function at the observed data (\eqn{n} observations) and the estimated parameters (of dimension \eqn{k}). } \seealso{\code{\link{lm}}, \code{\link{glm}}} \references{ Zeileis A (2006). \dQuote{Object-Oriented Computation of Sandwich Estimators.} \emph{Journal of Statistical Software}, \bold{16}(9), 1--16. \doi{10.18637/jss.v016.i09} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \examples{ ## linear regression x <- 1:9 y <- sin(1:9/5) m <- lm(y ~ x) ## estimating function: (y - x'beta) * x estfun(m) residuals(m) * cbind(1, x) } \keyword{regression} sandwich/man/vcovJK.Rd0000644000176200001440000001222214277052101014314 0ustar liggesusers\name{vcovJK} \alias{vcovJK} \alias{vcovJK.default} \encoding{UTF-8} \title{(Clustered) Jackknife Covariance Matrix Estimation} \description{ Object-oriented estimation of jackknife covariances, i.e., based on the centered outer product of leave-on-out estimates of the model coefficients/parameters. } \usage{ vcovJK(x, \dots) \method{vcovJK}{default}(x, cluster = NULL, center = "mean", \dots) } \arguments{ \item{x}{a fitted model object.} \item{cluster}{a variable indicating the clustering of observations, a \code{list} (or \code{data.frame}) thereof, or a formula specifying which variables from the fitted model should be used (see examples). By default (\code{cluster = NULL}), either \code{attr(x, "cluster")} is used (if any) or otherwise every observation is assumed to be its own cluster.} \item{center}{character specifying how to center the coefficients from all jacknife samples (each dropping one observational unit/cluster). By default the coefficients are centered by their \code{"mean"} across the sample or, alternatively, by the original full-sample \code{"estimate"}.} \item{\dots}{arguments passed to methods. For the default method, this is passed to \code{\link{vcovBS}}.} } \details{ Jackknife covariance estimation is based on leave-one-out estimates of the coefficients/parameters of a model. This means that the model is reestimated after dropping each observational unit once, i.e., each individual observation in independent observations or each cluster in dependent data. The covariance matrix is then constructed from the scaled outer product of the centered jackknife estimates. Centering can either be done by the mean of the jackknife coefficients (default) or by the original full-sample estimates. Scaling is done by (N - 1)/N where N is the number of observational units. Recent research has shown that the jackknife covariance estimate have particularly useful properties in practice: they are not downward biased and yield better coverage rates for confidence intervals compared to other "robust" covariance estimates. See MacKinnon et al. (2022) and Hansen (2022) for more details. As jackknife covariances are also based on reestimation of the coefficients on subsamples, their computation is very similar to bootstrap covariances. Hence, the \code{\link{vcovBS}} methods provided in the package all offer an argument \code{vcovBS(..., type = "jackknife")}. This is called by the default \code{vcovJK} method. Therefore, see the arguments of \code{vcovBS} for further details, e.g., for leveraging multicore computations etc. In the linear regression model, the jackknife covariance can actually be computed without reestimating the coefficients but using only the full-sample estimates and certain elements of the so-called hat matrix. Namly the diagonal elements or blocks of elements from the hat matrix are needed for independent observations and clustered data, respectively. These alternative computations of the jackknife covariances are available in \code{\link{vcovHC}} and \code{\link{vcovCL}}, respectively, in both cases with argument \code{type = "HC3"}. To obtain HC3 covariances that exactly match the jackknife covariances, the jackknife has to be centered with the full-sample estimates and the right finite-sample adjustment has to be selected for the HC3. In small to moderate sample sizes, the HC3 estimation techniques are typically much faster than the jackknife. However, in large samples it may become impossible to compute the HC3 covariances while the jackknife approach is still feasible. } \value{ A matrix containing the covariance matrix estimate. } \references{ Bell RM, McCaffrey DF (2002). \dQuote{Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples}, \emph{Survey Methodology}, \bold{28}(2), 169--181. Hansen BE (2022). \dQuote{Jackknife Standard Errors for Clustered Regression}, Working Paper, August 2022. \url{https://www.ssc.wisc.edu/~bhansen/papers/tcauchy.html} MacKinnon JG, Nielsen MØ, Webb MD (2022). \dQuote{Cluster-Robust Inference: A Guide to Empirical Practice}, \emph{Journal of Econometrics}, Forthcoming. \doi{10.1016/j.jeconom.2022.04.001} Zeileis A, Köll S, Graham N (2020). \dQuote{Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.} \emph{Journal of Statistical Software}, \bold{95}(1), 1--36. \doi{10.18637/jss.v095.i01} } \seealso{\code{\link{vcovJK}}, \code{\link{vcovHC}}, \code{\link{vcovCL}}} \examples{ ## cross-section data data("PublicSchools", package = "sandwich") m1 <- lm(Expenditure ~ poly(Income, 2), data = PublicSchools) vcovJK(m1, center = "estimate") vcovHC(m1, type = "HC3") * (nobs(m1) - 1)/nobs(m1) ## clustered data data("PetersenCL", package = "sandwich") m2 <- lm(y ~ x, data = PetersenCL) ## jackknife estimator coincides with HC3 (aka CV3) vcovJK(m2, cluster = ~ firm, center = "estimate") vcovCL(m2, cluster = ~ firm, type = "HC3", cadjust = FALSE) } \keyword{regression} \keyword{bootstrap} sandwich/man/weightsLumley.Rd0000644000176200001440000000750013735442221015763 0ustar liggesusers\name{weightsLumley} \alias{weightsLumley} \alias{weave} \title{Weighted Empirical Adaptive Variance Estimation} \description{ A set of functions implementing weighted empirical adaptive variance estimation (WEAVE) as introduced by Lumley and Heagerty (1999). This is implemented as a special case of the general class of kernel-based heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators as introduced by Andrews (1991), using a special choice of weights. } \usage{ weave(x, order.by = NULL, prewhite = FALSE, C = NULL, method = c("truncate", "smooth"), acf = isoacf, adjust = FALSE, diagnostics = FALSE, sandwich = TRUE, tol = 1e-7, data = list(), \dots) weightsLumley(x, order.by = NULL, C = NULL, method = c("truncate", "smooth"), acf = isoacf, tol = 1e-7, data = list(), \dots) } \arguments{ \item{x}{a fitted model object.} \item{order.by}{Either a vector \code{z} or a formula with a single explanatory variable like \code{~ z}. The observations in the model are ordered by the size of \code{z}. If set to \code{NULL} (the default) the observations are assumed to be ordered (e.g., a time series).} \item{prewhite}{logical or integer. Should the estimating functions be prewhitened? If \code{TRUE} or greater than 0 a VAR model of order \code{as.integer(prewhite)} is fitted via \code{ar} with method \code{"ols"} and \code{demean = FALSE}.} \item{C}{numeric. The cutoff constant \code{C} is by default 4 for method \code{"truncate"} and 1 for method \code{"smooth"}.} \item{method}{a character specifying the method used, see details.} \item{acf}{a function that computes the autocorrelation function of a vector, by default \code{\link{isoacf}} is used.} \item{adjust}{logical. Should a finite sample adjustment be made? This amounts to multiplication with \eqn{n/(n-k)} where \eqn{n} is the number of observations and \eqn{k} the number of estimated parameters.} \item{diagnostics}{logical. Should additional model diagnostics be returned? See \code{\link{vcovHAC}} for details.} \item{sandwich}{logical. Should the sandwich estimator be computed? If set to \code{FALSE} only the middle matrix is returned.} \item{tol}{numeric. Weights that exceed \code{tol} are used for computing the covariance matrix, all other weights are treated as 0.} \item{data}{an optional data frame containing the variables in the \code{order.by} model. By default the variables are taken from the environment which the function is called from.} \item{\dots}{currently not used.} } \details{ \code{weave} is a convenience interface to \code{\link{vcovHAC}} using \code{weightsLumley}: first a weights function is defined and then \code{vcovHAC} is called. Both weighting methods are based on some estimate of the autocorrelation function \eqn{\rho}{r} (as computed by \code{acf}) of the residuals of the model \code{x}. The weights for the \code{"truncate"} method are \deqn{I\{n \rho^2 > C\}}{I{n * r ** 2 > C}} and the weights for the \code{"smooth"} method are \deqn{\min\{1, C n \rho^2\}}{min{1, C * n * r ** 2}} where n is the number of observations in the model an C is the truncation constant \code{C}. Further details can be found in Lumley & Heagerty (1999). } \value{ \code{weave} returns the same type of object as \code{\link{vcovHAC}} which is typically just the covariance matrix. \code{weightsLumley} returns a vector of weights. } \references{ Lumley T & Heagerty P (1999). \dQuote{Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression.} \emph{Journal of the Royal Statistical Society B}, \bold{61}, 459--477. } \seealso{\code{\link{vcovHAC}}, \code{\link{weightsAndrews}}, \code{\link{kernHAC}}} \examples{ x <- sin(1:100) y <- 1 + x + rnorm(100) fm <- lm(y ~ x) weave(fm) vcov(fm) } \keyword{regression} \keyword{ts} sandwich/DESCRIPTION0000644000176200001440000000440414535611612013566 0ustar liggesusersPackage: sandwich Version: 3.1-0 Date: 2023-12-10 Title: Robust Covariance Matrix Estimators Authors@R: c(person(given = "Achim", family = "Zeileis", role = c("aut", "cre"), email = "Achim.Zeileis@R-project.org", comment = c(ORCID = "0000-0003-0918-3766")), person(given = "Thomas", family = "Lumley", role = "aut", email = "t.lumley@auckland.ac.nz", comment = c(ORCID = "0000-0003-4255-5437")), person(given = "Nathaniel", family = "Graham", role = "ctb", email = "npgraham1@gmail.com", comment = c(ORCID = "0009-0002-1215-5256")), person(given = "Susanne", family = "Koell", role = "ctb")) Description: Object-oriented software for model-robust covariance matrix estimators. Starting out from the basic robust Eicker-Huber-White sandwich covariance methods include: heteroscedasticity-consistent (HC) covariances for cross-section data; heteroscedasticity- and autocorrelation-consistent (HAC) covariances for time series data (such as Andrews' kernel HAC, Newey-West, and WEAVE estimators); clustered covariances (one-way and multi-way); panel and panel-corrected covariances; outer-product-of-gradients covariances; and (clustered) bootstrap covariances. All methods are applicable to (generalized) linear model objects fitted by lm() and glm() but can also be adapted to other classes through S3 methods. Details can be found in Zeileis et al. (2020) , Zeileis (2004) and Zeileis (2006) . Depends: R (>= 3.0.0) Imports: stats, utils, zoo Suggests: AER, car, geepack, lattice, lme4, lmtest, MASS, multiwayvcov, parallel, pcse, plm, pscl, scatterplot3d, stats4, strucchange, survival License: GPL-2 | GPL-3 URL: https://sandwich.R-Forge.R-project.org/ BugReports: https://sandwich.R-Forge.R-project.org/contact.html NeedsCompilation: no Packaged: 2023-12-11 08:49:01 UTC; zeileis Author: Achim Zeileis [aut, cre] (), Thomas Lumley [aut] (), Nathaniel Graham [ctb] (), Susanne Koell [ctb] Maintainer: Achim Zeileis Repository: CRAN Date/Publication: 2023-12-11 13:50:02 UTC sandwich/build/0000755000176200001440000000000014535546374013171 5ustar liggesuserssandwich/build/vignette.rds0000644000176200001440000000105214535546374015526 0ustar liggesusersTMs0uc7t-u)tÁ7><Nq#k `[zo zA.3{(8ϧ$duD NoXVTf݁P@ ߡ@ӯ߀ $=OpR @1˴er"*irĒYM0w塉6c#v;/&D (J.*(fcdqE7~o2i],ں[W`mxҞCltV.c3\h brC\g܀6H1CsYvXÔ ք9?Rx22k=|]cmTF %T%R&ۤ3/pB*%`QR|]=7,YZ}m"3W@W!!o ╔=RmRC+BƛgFγEbC9NѕOTAx{yU39_B "ɥq[H|Ŏ_O{nȃ&mE0llsandwich/build/partial.rdb0000644000176200001440000000007514535546345015316 0ustar liggesusersb```b`afd`b1 H020piּb C"{7sandwich/tests/0000755000176200001440000000000014535327010013214 5ustar liggesuserssandwich/tests/Examples/0000755000176200001440000000000013335514117014775 5ustar liggesuserssandwich/tests/Examples/sandwich-Ex.Rout.save0000644000176200001440000007705714463401660021000 0ustar liggesusers R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > pkgname <- "sandwich" > source(file.path(R.home("share"), "R", "examples-header.R")) > options(warn = 1) > library('sandwich') > > base::assign(".oldSearch", base::search(), pos = 'CheckExEnv') > base::assign(".old_wd", base::getwd(), pos = 'CheckExEnv') > cleanEx() > nameEx("InstInnovation") > ### * InstInnovation > > flush(stderr()); flush(stdout()) > > ### Name: InstInnovation > ### Title: Innovation and Institutional Ownership > ### Aliases: InstInnovation > ### Keywords: datasets > > ### ** Examples > > ## Poisson models from Table I in Aghion et al. (2013) > > ## load data set > data("InstInnovation", package = "sandwich") > > ## log-scale variable > InstInnovation$lograndd <- log(InstInnovation$randd) > InstInnovation$lograndd[InstInnovation$lograndd == -Inf] <- 0 > > ## regression formulas > f1 <- cites ~ institutions + log(capital/employment) + log(sales) + industry + year > f2 <- cites ~ institutions + log(capital/employment) + log(sales) + + industry + year + lograndd + drandd > f3 <- cites ~ institutions + log(capital/employment) + log(sales) + + industry + year + lograndd + drandd + dprecites + log(precites) > > ## Poisson models > tab_I_3_pois <- glm(f1, data = InstInnovation, family = poisson) > tab_I_4_pois <- glm(f2, data = InstInnovation, family = poisson) > tab_I_5_pois <- glm(f3, data = InstInnovation, family = poisson) > > ## one-way clustered covariances > vCL_I_3 <- vcovCL(tab_I_3_pois, cluster = ~ company) > vCL_I_4 <- vcovCL(tab_I_4_pois, cluster = ~ company) > vCL_I_5 <- vcovCL(tab_I_5_pois, cluster = ~ company) > > ## replication of columns 3 to 5 from Table I in Aghion et al. (2013) > cbind(coef(tab_I_3_pois), sqrt(diag(vCL_I_3)))[2:4, ] [,1] [,2] institutions 0.009687237 0.002406388 log(capital/employment) 0.482883549 0.135953255 log(sales) 0.820317600 0.041523405 > cbind(coef(tab_I_4_pois), sqrt(diag(vCL_I_4)))[c(2:4, 148), ] [,1] [,2] institutions 0.008460789 0.002242345 log(capital/employment) 0.346008637 0.165274677 log(sales) 0.349190437 0.117219737 lograndd 0.492667825 0.140473107 > cbind(coef(tab_I_5_pois), sqrt(diag(vCL_I_5)))[c(2:4, 148), ] [,1] [,2] institutions 0.007381543 0.002443707 log(capital/employment) 0.440056227 0.131984715 log(sales) 0.183853108 0.063364163 lograndd 0.008971905 0.107406681 > > > > cleanEx() > nameEx("Investment") > ### * Investment > > flush(stderr()); flush(stdout()) > > ### Name: Investment > ### Title: US Investment Data > ### Aliases: Investment > ### Keywords: datasets > > ### ** Examples > > ## Willam H. Greene, Econometric Analysis, 2nd Ed. > ## Chapter 15 > ## load data set, p. 411, Table 15.1 > data(Investment) > > ## fit linear model, p. 412, Table 15.2 > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > summary(fm) Call: lm(formula = RealInv ~ RealGNP + RealInt, data = Investment) Residuals: Min 1Q Median 3Q Max -34.987 -6.638 0.180 10.408 26.288 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -12.53360 24.91527 -0.503 0.622 RealGNP 0.16914 0.02057 8.224 3.87e-07 *** RealInt -1.00144 2.36875 -0.423 0.678 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 17.21 on 16 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.8141, Adjusted R-squared: 0.7908 F-statistic: 35.03 on 2 and 16 DF, p-value: 1.429e-06 > > ## visualize residuals, p. 412, Figure 15.1 > plot(ts(residuals(fm), start = 1964), + type = "b", pch = 19, ylim = c(-35, 35), ylab = "Residuals") > sigma <- sqrt(sum(residuals(fm)^2)/fm$df.residual) ## maybe used df = 26 instead of 16 ?? > abline(h = c(-2, 0, 2) * sigma, lty = 2) > > if(require(lmtest)) { + ## Newey-West covariances, Example 15.3 + coeftest(fm, vcov = NeweyWest(fm, lag = 4)) + ## Note, that the following is equivalent: + coeftest(fm, vcov = kernHAC(fm, kernel = "Bartlett", bw = 5, prewhite = FALSE, adjust = FALSE)) + + ## Durbin-Watson test, p. 424, Example 15.4 + dwtest(fm) + + ## Breusch-Godfrey test, p. 427, Example 15.6 + bgtest(fm, order = 4) + } Loading required package: lmtest Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric Breusch-Godfrey test for serial correlation of order up to 4 data: fm LM test = 12.07, df = 4, p-value = 0.01684 > > ## visualize fitted series > plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment") > lines(ts(fitted(fm), start = 1964), col = 4) > > > ## 3-d visualization of fitted model > if(require(scatterplot3d)) { + s3d <- scatterplot3d(Investment[,c(5,7,6)], + type = "b", angle = 65, scale.y = 1, pch = 16) + s3d$plane3d(fm, lty.box = "solid", col = 4) + } Loading required package: scatterplot3d > > > > cleanEx() detaching ‘package:scatterplot3d’, ‘package:lmtest’, ‘package:zoo’ > nameEx("NeweyWest") > ### * NeweyWest > > flush(stderr()); flush(stdout()) > > ### Name: NeweyWest > ### Title: Newey-West HAC Covariance Matrix Estimation > ### Aliases: bwNeweyWest NeweyWest > ### Keywords: regression ts > > ### ** Examples > > ## fit investment equation > data(Investment) > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > > ## Newey & West (1994) compute this type of estimator > NeweyWest(fm) (Intercept) RealGNP RealInt (Intercept) 594.1004817 -0.5617817294 36.04992496 RealGNP -0.5617817 0.0005563172 -0.04815937 RealInt 36.0499250 -0.0481593694 13.24912546 > > ## The Newey & West (1987) estimator requires specification > ## of the lag and suppression of prewhitening > NeweyWest(fm, lag = 4, prewhite = FALSE) (Intercept) RealGNP RealInt (Intercept) 359.4170681 -0.3115505035 -4.089319305 RealGNP -0.3115505 0.0002805888 -0.005355931 RealInt -4.0893193 -0.0053559312 11.171472998 > > ## bwNeweyWest() can also be passed to kernHAC(), e.g. > ## for the quadratic spectral kernel > kernHAC(fm, bw = bwNeweyWest) (Intercept) RealGNP RealInt (Intercept) 794.986166 -0.7562570101 48.19485118 RealGNP -0.756257 0.0007537517 -0.06485461 RealInt 48.194851 -0.0648546058 17.58798679 > > > > cleanEx() > nameEx("PublicSchools") > ### * PublicSchools > > flush(stderr()); flush(stdout()) > > ### Name: PublicSchools > ### Title: US Expenditures for Public Schools > ### Aliases: PublicSchools > ### Keywords: datasets > > ### ** Examples > > ## Willam H. Greene, Econometric Analysis, 2nd Ed. > ## Chapter 14 > ## load data set, p. 385, Table 14.1 > data("PublicSchools", package = "sandwich") > > ## omit NA in Wisconsin and scale income > ps <- na.omit(PublicSchools) > ps$Income <- ps$Income * 0.0001 > > ## fit quadratic regression, p. 385, Table 14.2 > fmq <- lm(Expenditure ~ Income + I(Income^2), data = ps) > summary(fmq) Call: lm(formula = Expenditure ~ Income + I(Income^2), data = ps) Residuals: Min 1Q Median 3Q Max -160.709 -36.896 -4.551 37.290 109.729 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 832.9 327.3 2.545 0.01428 * Income -1834.2 829.0 -2.213 0.03182 * I(Income^2) 1587.0 519.1 3.057 0.00368 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 56.68 on 47 degrees of freedom Multiple R-squared: 0.6553, Adjusted R-squared: 0.6407 F-statistic: 44.68 on 2 and 47 DF, p-value: 1.345e-11 > > ## compare standard and HC0 standard errors > ## p. 391, Table 14.3 > coef(fmq) (Intercept) Income I(Income^2) 832.9144 -1834.2029 1587.0423 > sqrt(diag(vcovHC(fmq, type = "const"))) (Intercept) Income I(Income^2) 327.2925 828.9855 519.0768 > sqrt(diag(vcovHC(fmq, type = "HC0"))) (Intercept) Income I(Income^2) 460.8917 1243.0430 829.9927 > > > if(require(lmtest)) { + ## compare t ratio + coeftest(fmq, vcov = vcovHC(fmq, type = "HC0")) + + ## White test, p. 393, Example 14.5 + wt <- lm(residuals(fmq)^2 ~ poly(Income, 4), data = ps) + wt.stat <- summary(wt)$r.squared * nrow(ps) + c(wt.stat, pchisq(wt.stat, df = 3, lower = FALSE)) + + ## Bresch-Pagan test, p. 395, Example 14.7 + bptest(fmq, studentize = FALSE) + bptest(fmq) + + ## Francisco Cribari-Neto, Asymptotic Inference, CSDA 45 + ## quasi z-tests, p. 229, Table 8 + ## with Alaska + coeftest(fmq, df = Inf)[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC0"))[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC3"))[3,4] + coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC4"))[3,4] + ## without Alaska (observation 2) + fmq1 <- lm(Expenditure ~ Income + I(Income^2), data = ps[-2,]) + coeftest(fmq1, df = Inf)[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC0"))[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC3"))[3,4] + coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC4"))[3,4] + } Loading required package: lmtest Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric [1] 0.8923303 > > ## visualization, p. 230, Figure 1 > plot(Expenditure ~ Income, data = ps, + xlab = "per capita income", + ylab = "per capita spending on public schools") > inc <- seq(0.5, 1.2, by = 0.001) > lines(inc, predict(fmq, data.frame(Income = inc)), col = 4) > fml <- lm(Expenditure ~ Income, data = ps) > abline(fml) > text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2) > > > > cleanEx() detaching ‘package:lmtest’, ‘package:zoo’ > nameEx("bread") > ### * bread > > flush(stderr()); flush(stdout()) > > ### Name: bread > ### Title: Bread for Sandwiches > ### Aliases: bread bread.default bread.lm bread.mlm bread.survreg > ### bread.coxph bread.gam bread.nls bread.rlm bread.hurdle bread.zeroinfl > ### bread.mlogit bread.polr bread.clm > ### Keywords: regression > > ### ** Examples > > ## linear regression > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > ## bread: n * (x'x)^{-1} > bread(fm) (Intercept) x (Intercept) 1.0414689 -0.2938577 x -0.2938577 2.0823419 > solve(crossprod(cbind(1, x))) * 10 x 1.0414689 -0.2938577 x -0.2938577 2.0823419 > > > > cleanEx() > nameEx("estfun") > ### * estfun > > flush(stderr()); flush(stdout()) > > ### Name: estfun > ### Title: Extract Empirical Estimating Functions > ### Aliases: estfun estfun.lm estfun.glm estfun.mlm estfun.rlm estfun.polr > ### estfun.clm estfun.survreg estfun.coxph estfun.nls estfun.hurdle > ### estfun.zeroinfl estfun.mlogit > ### Keywords: regression > > ### ** Examples > > ## linear regression > x <- 1:9 > y <- sin(1:9/5) > m <- lm(y ~ x) > > ## estimating function: (y - x'beta) * x > estfun(m) (Intercept) x 1 -0.13577304 -0.13577304 2 -0.04481531 -0.08963062 3 0.03061755 0.09185265 4 0.08353989 0.33415956 5 0.10786351 0.53931755 6 0.09864034 0.59184202 7 0.05225971 0.36581794 8 -0.03340770 -0.26726157 9 -0.15892494 -1.43032449 > residuals(m) * cbind(1, x) x [1,] -0.13577304 -0.13577304 [2,] -0.04481531 -0.08963062 [3,] 0.03061755 0.09185265 [4,] 0.08353989 0.33415956 [5,] 0.10786351 0.53931755 [6,] 0.09864034 0.59184202 [7,] 0.05225971 0.36581794 [8,] -0.03340770 -0.26726157 [9,] -0.15892494 -1.43032449 > > > > cleanEx() > nameEx("isoacf") > ### * isoacf > > flush(stderr()); flush(stdout()) > > ### Name: isoacf > ### Title: Isotonic Autocorrelation Function > ### Aliases: isoacf pava.blocks > ### Keywords: regression ts > > ### ** Examples > > set.seed(1) > x <- filter(rnorm(100), 0.9, "recursive") > isoacf(x) [1] 1.00000000 0.75620784 0.52668286 0.31877074 0.17874234 0.10451987 [7] 0.07597397 0.07597397 0.07054562 0.03324149 -0.02266489 -0.02266489 [13] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [19] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [25] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [31] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [37] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [43] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [49] -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 -0.02266489 [55] -0.03242424 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [61] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [67] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [73] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [79] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 [85] -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03500610 -0.03924011 [91] -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011 -0.03924011 [97] -0.03924011 -0.03924011 -0.03924011 -0.03924011 > acf(x, plot = FALSE)$acf , , 1 [,1] [1,] 1.00000000 [2,] 0.75620784 [3,] 0.52668286 [4,] 0.31877074 [5,] 0.17874234 [6,] 0.10451987 [7,] 0.06774750 [8,] 0.08420043 [9,] 0.07054562 [10,] 0.03324149 [11,] -0.02547696 [12,] -0.08386780 [13,] -0.12702588 [14,] -0.15733924 [15,] -0.22570274 [16,] -0.27858103 [17,] -0.32634007 [18,] -0.31457877 [19,] -0.32132555 [20,] -0.32323138 [21,] -0.28412580 > > > > cleanEx() > nameEx("kweights") > ### * kweights > > flush(stderr()); flush(stdout()) > > ### Name: kweights > ### Title: Kernel Weights > ### Aliases: kweights > ### Keywords: regression ts > > ### ** Examples > > curve(kweights(x, kernel = "Quadratic", normalize = TRUE), + from = 0, to = 3.2, xlab = "x", ylab = "k(x)") > curve(kweights(x, kernel = "Bartlett", normalize = TRUE), + from = 0, to = 3.2, col = 2, add = TRUE) > curve(kweights(x, kernel = "Parzen", normalize = TRUE), + from = 0, to = 3.2, col = 3, add = TRUE) > curve(kweights(x, kernel = "Tukey", normalize = TRUE), + from = 0, to = 3.2, col = 4, add = TRUE) > curve(kweights(x, kernel = "Truncated", normalize = TRUE), + from = 0, to = 3.2, col = 5, add = TRUE) > > > > cleanEx() > nameEx("lrvar") > ### * lrvar > > flush(stderr()); flush(stdout()) > > ### Name: lrvar > ### Title: Long-Run Variance of the Mean > ### Aliases: lrvar > ### Keywords: regression ts > > ### ** Examples > > suppressWarnings(RNGversion("3.5.0")) > set.seed(1) > ## iid series (with variance of mean 1/n) > ## and Andrews kernel HAC (with prewhitening) > x <- rnorm(100) > lrvar(x) [1] 0.007958048 > > ## analogous multivariate case with Newey-West estimator (without prewhitening) > y <- matrix(rnorm(200), ncol = 2) > lrvar(y, type = "Newey-West", prewhite = FALSE) [,1] [,2] [1,] 0.0097884718 0.0005978738 [2,] 0.0005978738 0.0073428222 > > ## AR(1) series with autocorrelation 0.9 > z <- filter(rnorm(100), 0.9, method = "recursive") > lrvar(z) [1] 0.4385546 > > > > cleanEx() > nameEx("meat") > ### * meat > > flush(stderr()); flush(stdout()) > > ### Name: meat > ### Title: A Simple Meat Matrix Estimator > ### Aliases: meat > ### Keywords: regression > > ### ** Examples > > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > meat(fm) (Intercept) x (Intercept) 0.54308202 -0.06199868 x -0.06199868 0.21823310 > meatHC(fm, type = "HC") (Intercept) x (Intercept) 0.54308202 -0.06199868 x -0.06199868 0.21823310 > meatHAC(fm) (Intercept) x (Intercept) 0.32259620 0.08446047 x 0.08446047 0.37529225 > > > > cleanEx() > nameEx("sandwich") > ### * sandwich > > flush(stderr()); flush(stdout()) > > ### Name: sandwich > ### Title: Making Sandwiches with Bread and Meat > ### Aliases: sandwich > ### Keywords: regression > > ### ** Examples > > x <- sin(1:10) > y <- rnorm(10) > fm <- lm(y ~ x) > > sandwich(fm) (Intercept) x (Intercept) 0.06458514 -0.04395562 x -0.04395562 0.10690628 > vcovHC(fm, type = "HC") (Intercept) x (Intercept) 0.06458514 -0.04395562 x -0.04395562 0.10690628 > > > > cleanEx() > nameEx("vcovBS") > ### * vcovBS > > flush(stderr()); flush(stdout()) > > ### Name: vcovBS > ### Title: (Clustered) Bootstrap Covariance Matrix Estimation > ### Aliases: vcovBS vcovBS.default vcovBS.lm vcovBS.glm .vcovBSenv > ### Keywords: regression bootstrap > > ### ** Examples > > ## Petersen's data > data("PetersenCL", package = "sandwich") > m <- lm(y ~ x, data = PetersenCL) > > ## comparison of different standard errors > suppressWarnings(RNGversion("3.5.0")) > set.seed(1) > cbind( + "classical" = sqrt(diag(vcov(m))), + "HC-cluster" = sqrt(diag(vcovCL(m, cluster = ~ firm))), + "BS-cluster" = sqrt(diag(vcovBS(m, cluster = ~ firm))), + "FW-cluster" = sqrt(diag(vcovBS(m, cluster = ~ firm, type = "fractional"))) + ) classical HC-cluster BS-cluster FW-cluster (Intercept) 0.02835932 0.06701270 0.07067533 0.06596187 x 0.02858329 0.05059573 0.04878784 0.04965168 > > ## two-way wild cluster bootstrap with Mammen distribution > vcovBS(m, cluster = ~ firm + year, type = "wild-mammen") (Intercept) x (Intercept) 0.004135069 0.000364327 x 0.000364327 0.002659964 > > ## jackknife estimator coincides with HC3 (aka CV3) > all.equal( + vcovBS(m, cluster = ~ firm, type = "jackknife"), + vcovCL(m, cluster = ~ firm, type = "HC3", cadjust = FALSE), + tolerance = 1e-7 + ) [1] TRUE > > > > cleanEx() > nameEx("vcovCL") > ### * vcovCL > > flush(stderr()); flush(stdout()) > > ### Name: vcovCL > ### Title: Clustered Covariance Matrix Estimation > ### Aliases: vcovCL meatCL > ### Keywords: regression > > ### ** Examples > > ## Petersen's data > data("PetersenCL", package = "sandwich") > m <- lm(y ~ x, data = PetersenCL) > > ## clustered covariances > ## one-way > vcovCL(m, cluster = ~ firm) (Intercept) x (Intercept) 4.490702e-03 -6.473517e-05 x -6.473517e-05 2.559927e-03 > vcovCL(m, cluster = PetersenCL$firm) ## same (Intercept) x (Intercept) 4.490702e-03 -6.473517e-05 x -6.473517e-05 2.559927e-03 > ## one-way with HC2 > vcovCL(m, cluster = ~ firm, type = "HC2") (Intercept) x (Intercept) 4.494487e-03 -6.592912e-05 x -6.592912e-05 2.568236e-03 > ## two-way > vcovCL(m, cluster = ~ firm + year) (Intercept) x (Intercept) 4.233313e-03 -2.845344e-05 x -2.845344e-05 2.868462e-03 > vcovCL(m, cluster = PetersenCL[, c("firm", "year")]) ## same (Intercept) x (Intercept) 4.233313e-03 -2.845344e-05 x -2.845344e-05 2.868462e-03 > > ## comparison with cross-section sandwiches > ## HC0 > all.equal(sandwich(m), vcovCL(m, type = "HC0", cadjust = FALSE)) [1] TRUE > ## HC2 > all.equal(vcovHC(m, type = "HC2"), vcovCL(m, type = "HC2")) [1] TRUE > ## HC3 > all.equal(vcovHC(m, type = "HC3"), vcovCL(m, type = "HC3")) [1] TRUE > > ## Innovation data > data("InstInnovation", package = "sandwich") > > ## replication of one-way clustered standard errors for model 3, Table I > ## and model 1, Table II in Berger et al. (2017), see ?InstInnovation > > ## count regression formula > f1 <- cites ~ institutions + log(capital/employment) + log(sales) + industry + year > > ## model 3, Table I: Poisson model > ## one-way clustered standard errors > tab_I_3_pois <- glm(f1, data = InstInnovation, family = poisson) > vcov_pois <- vcovCL(tab_I_3_pois, InstInnovation$company) > sqrt(diag(vcov_pois))[2:4] institutions log(capital/employment) log(sales) 0.002406388 0.135953255 0.041523405 > > ## coefficient tables > if(require("lmtest")) { + coeftest(tab_I_3_pois, vcov = vcov_pois)[2:4, ] + } Loading required package: lmtest Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric Estimate Std. Error z value Pr(>|z|) institutions 0.009687237 0.002406388 4.025634 5.682195e-05 log(capital/employment) 0.482883549 0.135953255 3.551835 3.825545e-04 log(sales) 0.820317600 0.041523405 19.755548 7.187199e-87 > > ## Not run: > ##D ## model 1, Table II: negative binomial hurdle model > ##D ## (requires "pscl" or alternatively "countreg" from R-Forge) > ##D library("pscl") > ##D library("lmtest") > ##D tab_II_3_hurdle <- hurdle(f1, data = InstInnovation, dist = "negbin") > ##D # dist = "negbin", zero.dist = "negbin", separate = FALSE) > ##D vcov_hurdle <- vcovCL(tab_II_3_hurdle, InstInnovation$company) > ##D sqrt(diag(vcov_hurdle))[c(2:4, 149:151)] > ##D coeftest(tab_II_3_hurdle, vcov = vcov_hurdle)[c(2:4, 149:151), ] > ## End(Not run) > > > > cleanEx() detaching ‘package:lmtest’, ‘package:zoo’ > nameEx("vcovHAC") > ### * vcovHAC > > flush(stderr()); flush(stdout()) > > ### Name: vcovHAC > ### Title: Heteroscedasticity and Autocorrelation Consistent (HAC) > ### Covariance Matrix Estimation > ### Aliases: vcovHAC vcovHAC.default meatHAC > ### Keywords: regression ts > > ### ** Examples > > x <- sin(1:100) > y <- 1 + x + rnorm(100) > fm <- lm(y ~ x) > vcovHAC(fm) (Intercept) x (Intercept) 0.008125428 -0.002043239 x -0.002043239 0.018939164 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > cleanEx() > nameEx("vcovHC") > ### * vcovHC > > flush(stderr()); flush(stdout()) > > ### Name: vcovHC > ### Title: Heteroscedasticity-Consistent Covariance Matrix Estimation > ### Aliases: vcovHC vcovHC.default vcovHC.mlm meatHC > ### Keywords: regression ts > > ### ** Examples > > ## generate linear regression relationship > ## with homoscedastic variances > x <- sin(1:100) > y <- 1 + x + rnorm(100) > ## model fit and HC3 covariance > fm <- lm(y ~ x) > vcovHC(fm) (Intercept) x (Intercept) 0.008318070 -0.002037159 x -0.002037159 0.019772693 > ## usual covariance matrix > vcovHC(fm, type = "const") (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > sigma2 <- sum(residuals(lm(y ~ x))^2)/98 > sigma2 * solve(crossprod(cbind(1, x))) x 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > cleanEx() > nameEx("vcovJK") > ### * vcovJK > > flush(stderr()); flush(stdout()) > > ### Name: vcovJK > ### Title: (Clustered) Jackknife Covariance Matrix Estimation > ### Aliases: vcovJK vcovJK.default > ### Keywords: regression bootstrap > > ### ** Examples > > ## cross-section data > data("PublicSchools", package = "sandwich") > m1 <- lm(Expenditure ~ poly(Income, 2), data = PublicSchools) > vcovJK(m1, center = "estimate") (Intercept) poly(Income, 2)1 poly(Income, 2)2 (Intercept) 97.84092 1055.131 1370.855 poly(Income, 2)1 1055.13101 25053.095 31336.158 poly(Income, 2)2 1370.85525 31336.158 46955.800 > vcovHC(m1, type = "HC3") * (nobs(m1) - 1)/nobs(m1) (Intercept) poly(Income, 2)1 poly(Income, 2)2 (Intercept) 97.84092 1055.131 1370.855 poly(Income, 2)1 1055.13101 25053.095 31336.158 poly(Income, 2)2 1370.85525 31336.158 46955.800 > > ## clustered data > data("PetersenCL", package = "sandwich") > m2 <- lm(y ~ x, data = PetersenCL) > > ## jackknife estimator coincides with HC3 (aka CV3) > vcovJK(m2, cluster = ~ firm, center = "estimate") (Intercept) x (Intercept) 4.499186e-03 -6.714627e-05 x -6.714627e-05 2.577098e-03 > vcovCL(m2, cluster = ~ firm, type = "HC3", cadjust = FALSE) (Intercept) x (Intercept) 4.499186e-03 -6.714627e-05 x -6.714627e-05 2.577098e-03 > > > > cleanEx() > nameEx("vcovOPG") > ### * vcovOPG > > flush(stderr()); flush(stdout()) > > ### Name: vcovOPG > ### Title: Outer-Product-of-Gradients Covariance Matrix Estimation > ### Aliases: vcovOPG > ### Keywords: regression ts > > ### ** Examples > > ## generate poisson regression relationship > x <- sin(1:100) > y <- rpois(100, exp(1 + x)) > ## compute usual covariance matrix of coefficient estimates > fm <- glm(y ~ x, family = poisson) > vcov(fm) (Intercept) x (Intercept) 0.004526581 -0.003679570 x -0.003679570 0.008110051 > vcovOPG(fm) (Intercept) x (Intercept) 0.005183615 -0.003086646 x -0.003086646 0.009584083 > > > > cleanEx() > nameEx("vcovPC") > ### * vcovPC > > flush(stderr()); flush(stdout()) > > ### Name: vcovPC > ### Title: Panel-Corrected Covariance Matrix Estimation > ### Aliases: vcovPC meatPC > ### Keywords: regression > > ### ** Examples > > ## Petersen's data > data("PetersenCL", package = "sandwich") > m <- lm(y ~ x, data = PetersenCL) > > ## Beck and Katz (1995) standard errors > ## balanced panel > sqrt(diag(vcovPC(m, cluster = ~ firm + year))) (Intercept) x 0.02220064 0.02527598 > > ## unbalanced panel > PU <- subset(PetersenCL, !(firm == 1 & year == 10)) > pu_lm <- lm(y ~ x, data = PU) > sqrt(diag(vcovPC(pu_lm, cluster = ~ firm + year, pairwise = TRUE))) (Intercept) x 0.02206979 0.02533772 > sqrt(diag(vcovPC(pu_lm, cluster = ~ firm + year, pairwise = FALSE))) (Intercept) x 0.02260277 0.02524119 > > > > > cleanEx() > nameEx("vcovPL") > ### * vcovPL > > flush(stderr()); flush(stdout()) > > ### Name: vcovPL > ### Title: Clustered Covariance Matrix Estimation for Panel Data > ### Aliases: vcovPL meatPL > ### Keywords: regression > > ### ** Examples > > ## Petersen's data > data("PetersenCL", package = "sandwich") > m <- lm(y ~ x, data = PetersenCL) > > ## Driscoll and Kraay standard errors > ## lag length set to: T - 1 (maximum lag length) > ## as proposed by Petersen (2009) > sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "max", adjust = FALSE))) (Intercept) x 0.01618977 0.01426121 > > ## lag length set to: floor(4 * (T / 100)^(2/9)) > ## rule of thumb proposed by Hoechle (2007) based on Newey & West (1994) > sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1994"))) (Intercept) x 0.02289115 0.02441980 > > ## lag length set to: floor(T^(1/4)) > ## rule of thumb based on Newey & West (1987) > sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1987"))) (Intercept) x 0.02436219 0.02816896 > > ## the following specifications of cluster/order.by are equivalent > vcovPL(m, cluster = ~ firm + year) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > vcovPL(m, cluster = PetersenCL[, c("firm", "year")]) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > vcovPL(m, cluster = ~ firm, order.by = ~ year) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > vcovPL(m, cluster = PetersenCL$firm, order.by = PetersenCL$year) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > > ## these are also the same when observations within each > ## cluster are already ordered > vcovPL(m, cluster = ~ firm) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > vcovPL(m, cluster = PetersenCL$firm) (Intercept) x (Intercept) 5.935164e-04 2.222292e-05 x 2.222292e-05 7.934905e-04 > > > > cleanEx() > nameEx("weightsAndrews") > ### * weightsAndrews > > flush(stderr()); flush(stdout()) > > ### Name: weightsAndrews > ### Title: Kernel-based HAC Covariance Matrix Estimation > ### Aliases: weightsAndrews bwAndrews kernHAC > ### Keywords: regression ts > > ### ** Examples > > curve(kweights(x, kernel = "Quadratic", normalize = TRUE), + from = 0, to = 3.2, xlab = "x", ylab = "k(x)") > curve(kweights(x, kernel = "Bartlett", normalize = TRUE), + from = 0, to = 3.2, col = 2, add = TRUE) > curve(kweights(x, kernel = "Parzen", normalize = TRUE), + from = 0, to = 3.2, col = 3, add = TRUE) > curve(kweights(x, kernel = "Tukey", normalize = TRUE), + from = 0, to = 3.2, col = 4, add = TRUE) > curve(kweights(x, kernel = "Truncated", normalize = TRUE), + from = 0, to = 3.2, col = 5, add = TRUE) > > ## fit investment equation > data(Investment) > fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment) > > ## compute quadratic spectral kernel HAC estimator > kernHAC(fm) (Intercept) RealGNP RealInt (Intercept) 788.6120652 -0.7502080996 49.78912814 RealGNP -0.7502081 0.0007483977 -0.06641343 RealInt 49.7891281 -0.0664134303 17.71735491 > kernHAC(fm, verbose = TRUE) Bandwidth chosen: 1.744749 (Intercept) RealGNP RealInt (Intercept) 788.6120652 -0.7502080996 49.78912814 RealGNP -0.7502081 0.0007483977 -0.06641343 RealInt 49.7891281 -0.0664134303 17.71735491 > > ## use Parzen kernel instead, VAR(2) prewhitening, no finite sample > ## adjustment and Newey & West (1994) bandwidth selection > kernHAC(fm, kernel = "Parzen", prewhite = 2, adjust = FALSE, + bw = bwNeweyWest, verbose = TRUE) Bandwidth chosen: 2.814444 (Intercept) RealGNP RealInt (Intercept) 608.3101258 -0.5089107386 -64.93690203 RealGNP -0.5089107 0.0004340803 0.04689293 RealInt -64.9369020 0.0468929322 15.58251456 > > ## compare with estimate under assumption of spheric errors > vcov(fm) (Intercept) RealGNP RealInt (Intercept) 620.7706170 -0.5038304429 8.47475285 RealGNP -0.5038304 0.0004229789 -0.01145679 RealInt 8.4747529 -0.0114567949 5.61097245 > > > > cleanEx() > nameEx("weightsLumley") > ### * weightsLumley > > flush(stderr()); flush(stdout()) > > ### Name: weightsLumley > ### Title: Weighted Empirical Adaptive Variance Estimation > ### Aliases: weightsLumley weave > ### Keywords: regression ts > > ### ** Examples > > x <- sin(1:100) > y <- 1 + x + rnorm(100) > fm <- lm(y ~ x) > weave(fm) (Intercept) x (Intercept) 0.007957440 -0.001936926 x -0.001936926 0.018775226 > vcov(fm) (Intercept) x (Intercept) 8.124921e-03 2.055475e-05 x 2.055475e-05 1.616308e-02 > > > > ### *